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ABSTRACT: 

 

In this study, we evaluate the performance of several reanalyses and satellite-based products of near-surface air temperature and 

precipitation to determine the best product in estimating daily and monthly variables across the complex terrain of Turkey. Each 

product’s performance was evaluated using 1120 ground-based gauge stations from 2015 to 2019, covering a range of complex 

topography with different climate classes according to the Köppen-Geiger classification scheme and land surface types according to 

the Moderate Resolution Imaging Spectroradiometer (MODIS).  Furthermore, various traditional and more advanced machine 

learning downscaling algorithms were applied to improve the spatial resolution of the products. We used distance-based interpolation, 

classical Random Forest, and more innovative Random Forest Spatial Interpolation (RFSI) algorithms. We also investigated several 

satellite-based covariates as a proxy to downscale the precipitation and near-surface air temperature, including MODIS Land Surface 

Temperature, Vegetation Index (NDVI and EVI), Cloud Properties (Cloud Optical Properties, Cloud Effective Radius, Cloud Water 

Path), and topography-related features. The agreement between the ground observations and the different products, as well as the 

downscaled temperature products, was examined using a range of commonly employed measures. The results showed that AgERA5 

was the best-performing product for air temperature estimation, while MSWEP V2.2 was superior for precipitation estimation. 

Spatial downscaling using bicubic interpolation improved air temperature product performance, and the Random Forest (RF) 

machine learning algorithm outperformed all other methods in certain seasons. The study suggests that combining ground-based 

measurements, precipitation products, and features related to topography can substantially improve the representation of 

spatiotemporal precipitation distribution in data-scarce regions.  
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1. INTRODUCTION 

Accurate depiction of the near-surface air temperature and 

precipitation in both time and space is crucial for various fields, 

including hydrometeorology and climatology, as they are 

critical components in the water cycle. Such accurate 

representation is necessary for predicting extreme weather 

events, monitoring droughts, flood forecasting, in shaping the 

ecology of the different regions and ecosystems, in remote 

sensing, in hydrological and environmental modelling, in 

understanding the impacts of the climate change, and for 

agriculture (Arismendi et al., 2014; Arnaud et al., 2011; 

Colombi et al., 2007; Graae et al., 2012; Liou & Kar, 2014; Mu 

et al., 2021; Terando et al., 2018). Precise assessments of spatial 

and temporal variations in air temperature and precipitation 

across the Earth's land surface are vital for comprehending the 

climate and the mechanisms that support life on land (Prihodko 

& Goward, 1997). These variables have been obtained through 

ground-based measuring instruments with a long history of 

providing in-person observations (Timmermans et al., 2019). 

 

Ground-based stations offer precise measurements of these 

variables, but only over a limited region and time frame. When 

these point measurements are extended or estimated to cover 

larger areas, a significant amount of uncertainty is introduced. 

Interpolation methods can result in substantial spatial sampling 

errors, particularly in areas with few ground stations and uneven 

distribution (Elgamal et al., 2017). 

 

Furthermore, hydro-climatological research is hampered in 

many semi-arid and arid regions due to the rough terrain, harsh 

climate conditions, and absence of monitoring stations. Several 

factors, such as limited observation period, inadequate spatial 

coverage, missing data, and biases from various sources, can 

impact the accuracy of measurements for these variables. These 

limitations hinder accurately depicting the temporal and spatial 

variability of hydrological processes at the watershed scale 

(Chen & Brissette, 2017). 

 

State Meteorological Service (TSMS) is responsible institution 

for measuring climate variables throughout Turkey. However, 

considering Turkey's rough and vast topography, the data 

required for hydrological analysis are only available in some 

locations. Some spatial interpolation methods and statistical 

analysis exist to predict climate data. Several methods are 

available to interpolate point measurements of climate data over 

larger areas, such that Geographically Weighted Regression 

(GWR) (Brunsdon et al., 2010), Kriging interpolation (Hengl et 

al., 2007), Inverse Distance Weighting (IDW) (Shepard D, 

1968). However, these methods introduce a considerable 

amount of uncertainty. Therefore, continuous and spatially 

distributed climate data are needed. 
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Satellites can measure various environmental factors using 

remote sensing techniques, including temperature, moisture, 

cloud cover, precipitation, vegetation, and soil indices. These 

measurements can obtain information about the Earth's surface 

and environmental conditions (Condom et al., 2020).  

 

There are mainly three data sources spatially varying climate 

data (precipitation, temperature, etc.): 

 

• Satellite-based remote sensing data 

• Gridded data of point measurements by spatial interpolation 

methods 

• Blending ground observations with satellite-based products  

 

There is the lack of accurate and downscaled remote sensed 

climate variables (near-surface temperature and precipitation) 

datasets in areas having complex topography, like Turkey. The 

aims of this study can be listed as follows: 

- To assess the effectiveness and accuracy of satellite-based 

products (near-surface air temperature, precipitation) in Turkey 

in diverse climate using ground-based stations. 

- To improve the spatial resolution of the selected products 

representing the fine-scale variability of temperature and 

precipitation distribution in Turkey through spatial downscaling 

to a specific grid utilizing various interpolation techniques. 

- To implement algorithms for blending ground observations 

with satellite-based precipitation products. 

 

2. MATERIALS AND METHODS 

2.1 Ground-based Observation Data and Datasets 

In this study, ground-based observations from the Turkish State 

Meteorological Service (TSMS) are utilized. There are two 

types of meteorological stations: Automated Weather Observing 

Systems (AWOS) and pluviometer-type stations. AWOS 

stations provide hourly data, while pluviometer-type stations 

record data three times a day. To ensure data quality control, 

collocation between AWOS stations and pluviometer stations is 

implemented (Derin & Yilmaz, 2014). The historical data used 

in this study encompasses daily mean air temperature and daily 

total precipitation measurements taken at 1120 meteorological 

stations from January 2010 to December 2019. The locations of 

these stations, depicted in Figure 1, are displayed on a Digital 

Elevation Map (DEM) with a spatial resolution of 30 meters, 

which can be retrieved from https://earthdata.nasa.gov/ (Farr et 

al., 2007). Turkey's average altitude is 1130 meters, and it rises 

progressively from the central part of Anatolia towards the east. 

Despite Turkey's primary location in the Mediterranean region, 

its diverse topography, including parallel coastal mountains, 

leads to a range of climatic conditions. 

 

In this study, the stations are grouped into classes based on the 

Köppen-Geiger climate classification system developed by 

German botanist-climatologist Wladimir Köppen that takes into 

account local vegetation and seasonality of monthly air 

temperature and precipitation (Köppen, Wladimir; Geiger, 

1936). Climate classes of stations and their mean elevations are 

presented in Table 1. 

 

In the context of this study, we utilized the MODIS MCD12Q1 

Version 6 data product for land cover classification, which 

employs land cover classes derived from supervised 

classifications of MODIS Terra and Aqua reflectance data. This 

data product provides global land cover types yearly from 2001 

to 2019 with a spatial resolution of 500 meters. It comprises 

five land cover classification schemes, with the primary scheme 

identifying 17 land cover classes (Friedl et al., 2010) (Figure 2). 

 

 

 
 

Figure 1. Distribution of Meteorological Stations over Digital 

Elevation Model (DEM) in Turkey 

 

 

 
 

Table 1. Climate classes of stations and their mean elevations 

 

 

 
 

Figure 2. Distribution of Meteorological Stations over land 

cover in Turkey 

 

The near-surface air temperature  products used in this study are 

given in Table 2 and the precipitation products are given in 

Table 3. All products are arithmetically averaged into daily and 

monthly time series. Then, performance analysis is conducted 

on a daily and monthly time scale separately. 
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Table 2. Characteristics of the near-surface temperature  

products 

 

Product 

Grid Size  

(Lat x 

Lon) 

Temporal 

Resolution 
Type Latency Reference 

ERA5 0.250x0.250 Hourly Reanalysis 5 days 
(Hersbach et al., 

2019b) 

ERA5 Land 0.10x0.10 Hourly Reanalysis 10 days 
(Hersbach et al., 

2019b) 

IMERG V06 

Early 
0.10x0.10 Hourly Satellite 4 hr 

(Hou et al., 2014; 

Huffman et al., 2007) 

IMERG V06 

Late 
0.10x0.10 Hourly Satellite 12 hr 

(Hou et al., 2014; 

Huffman et al., 2007) 

IMERG V06 

Final 
0.10x0.10 Hourly 

Satellite 

Observational 

3 

months 

(Hou et al., 2014; 

Huffman et al., 2007) 

TMPA 3B42 0.250x0.250 3 Hourly Satellite 10 days (Huffman et al., 2007) 

TMPA 

3B42RT 
0.250x0.250 3 Hourly Satellite 7 hrs (Huffman et al., 2007) 

CHIRPS 2.0 0.050x0.050 Daily 
Satellite 

Observational 
3 weeks (Funk et al., 2015) 

CMORPH 

CDR V1.0 
0.080x0.080 

Half 

Hourly 

Satellite, 

Observational 

3 

months 
(Joyce et al., 2004b) 

PERSIANN 0.250x0.250 Hourly Satellite 2 days (Nguyen et al., 2019) 

PERSIANN 

CCS 
0.040x0.040 Hourly Satellite 1 hr (Khan et al., 2011) 

PERSIANN 

CDR 
0.250x0.250 Daily 

Satellite 

Observational 

3 

months 
(Ashouri et al., 2015) 

MSWEP 

V2.2 
0.10x0.10 3 Hourly 

Reanalysis 

Gauge 

Satellite 

3 hr - 

years 
(Beck et al., 2019) 

SM2RAIN-

ASCAT V1.5 
0.110x0.110 Daily Satellite 

5 

months 

(Brocca et al., 2014; 

Camici et al., 2019) 

JRA-55 1.50x1.50 6 Hourly Reanalysis 4 days 

(S. Kobayashi et al., 

2015)(Kobayashi et 

al., 2015) 

MERRA-2 
0.50 x 

0.6250 
Daily Reanalysis 

2-3 

months 

(Gelaro et al., 2017; 

Rienecker et al., 2011) 

 

 
Table 3. Characteristics of the precipitation products 

 

Standard statistical estimators are utilized to assess accuracy by 

comparing the agreement between ground observations, 

different products, and the downscaled temperature product. 

The station-based dataset serves as the ground truth, and 

performance metrics are calculated for evaluation. Daily, 

monthly, seasonal, and annual statistical indices such as mean 

absolute error (MAE), root-mean-square error (RMSE), 

correlation coefficient (CC), and bias (Eq 1- Eq 4) are used to 

assess accuracy of the near-surface air temperature products. 

Additionaly, Eq 5-Eq 6 are used to assess accuracy of the 

precipitation products. 

 

 

 

 

(1) 

 

 

(2)  

 

(3)  

 

(4)  

 

 

(5) 

 

 

 

(6) 

 

 

 

(7) 

 

 

In the above equations, , , ,  refer to the observed 

temperature, product temperature estimate, the average 

observed temperature, and the average product temperature 

estimates, respectively. The letter N indicates the number of 

stations, and o and p represent the observed and predicted data 

values, respectively. The r value represents the correlation 

coefficient, μs and  μo represent the mean of the prediction and 

observation values, respectively, σs  and σo represent the 

variability of the prediction and observation values. 

 

2.2 Downscaling Methods 

The study employs a range of conventional interpolation 

techniques, including bilinear, bicubic (Keys, 1981), distance-

weighted average remapping (Eum et al., 2012), largest area 

fraction remapping (Jones, 1997), nearest neighbour (NN) 

(Thévenaz et al., 2009), first-order conservative remapping 

(Jones, 1999)  methods, along with the random forest algorithm 

(Breiman, 2001) to downscale the near-surface air temperature 

data obtained from the reanalysis product. As distance-based 

interpolation methods Nearest Neighbourhood interpolation, 

Bilinear interpolation, Bicubic interpolation, Distance-weighted 

average remapping, Largest area fraction remapping, First-order 

conservative remapping methods are used. As machine learning 

methods Random Forest and Random Forest Spatial 

Interpolation methods are used. The choice of predictors plays a 

crucial role in building a downscaling model. Hence, it is 

essential for the predictors to be informative, and the 

relationship between them and their response should remain 

constant or stationary. (Pang et al., 2017). Several predictor 

variables are selected for developing the RF model. The 

availability of high spatial resolution is considered as a 

significant factor in selecting these predictors. Table 4 provides 

information on the spatial and temporal resolutions of the 

predictors used. Furthermore, auxiliary data was also taken into 

account by calculating the distance of each station to the coast. 

For downscaling the precipitation products cloud properties 

(Cloud Optical Thickness, Cloud Effective Radius, Cloud Water 

Path) derived over the 2015-2020 period using MOD06_L2 

product are used as additional predictor data. 
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Abbreviation Variable Source Explanation 

LST_Day, Land Surface 

 Temperature 

MODIS 

Daily average Land 

Surface Temperature 

derived over the 

2015-2020 period using 

MOD11A1 product 

LST_Night 

LST_DN 

Day-Night  

Land Surface  

Temperature  

Difference 

NDVI 

Normalized difference 

vegetation  

index 

MODIS 

Normalized difference 

vegetation index derived 

from 

16-day composite 

MOD13A2 product 

Lon Longitude Meteorological 

data 
The geographical location 

Lat Latitude 

El Elevation 

SRTM 

Extracted from 30 m 

resolution 

Digital Elevation Model 

(SRTM-DEM) 
Sl Slope 

As Aspect 

Dis Distance to coast 
Meteorological 

data 

Based on the GSHHS 

coastline 

 

 
Table 4. Summary of predictor data used in downscaling 

 

 

3. RESULTS 

3.1 Near-surface Air Temperature Products Evaluation 

Several statistical metrics are employed to assess the 

performance of reanalysis products against ground-based 

observations. The initial evaluation covers monthly data from 

2015 to 2019, focusing on the mean monthly temperature. 

Validation results for all seasons are summarized in Table 5, 

comparing observed mean temperature values with data from 

various products across the study domain. The findings show 

that reanalysis-based products effectively capture the mean 

monthly temperature in Turkey throughout all seasons 

(Karaman & Akyürek, 2023). 

 

Several statistical metrics are employed to evaluate the 

performance of multiple reanalysis products compared to 

ground-based observations for daily time series. The initial 

evaluation covers daily data from 2015 to 2019. Table 6 

presents a summary of the validation results for all seasons by 

comparing daily observed mean temperature values with the 

corresponding data from the reanalysis products. 

 
 

Table 5. Seasonal and annual statistics for the entire study area 

 

Table 6. Seasonal and annual mean statistics for the entire study 

area (daily) 

 

Figure 3 illustrates MAE (°C) for monthly time series of 

Köppen-Geiger climate classes. Across all classes, AgERA5, 

ERA5, and ERA5-Land products exhibit a similar pattern. 

However, AgERA5 consistently outperforms the other products. 

Among the compared products, JRA-55 demonstrates the 

lowest performance, followed by the MERRA-2 product. The 

maximum mean absolute error of 2°C is observed for the (Dfb) 

class, characterized by wet seasons, cold winters, and hot 

summers, as well as the (Dsa) class, characterized by severe 

winters and dry, very hot summers. 

 

In Figure 4, MAE (°C) is displayed for daily time series across 

different climate classes. In the analysis, the arid steppe hot 

(Bsh), arid desert cold (Bwk), cold no dry season cold summer 

(Dfc), and cold dry summer cold summer (Dsc) classes are 

excluded due to an insufficient number of stations, making it 

difficult to derive statistically meaningful results. However, 

considering the daily time series, the AgERA5 product exhibits 

superior performance across all climate classes. On the other 

hand, the AgERA5 product performed best in all climate 

classes, followed by the JRA-55 product and the MERRA-2 

product. 

 

 
 

Figure 3. MAE (oC) for monthly time series on varying climatic 

conditions 
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Figure 4. MAE (oC) for daily time series on varying climatic 

conditions 

 

3.2 Precipitation Products Evaluation 

Figure 5 and Figure 6 present box-and-whisker plots showing 

the KGE scores for 16 precipitation datasets for monthly and 

daily data series, respectively. The mean KGE of all datasets is 

0.47. Datasets performed better on a monthly scale with 

improved KGE scores compared to daily time series. 

 

 

 
 

Figure 5. Box-and-whisker plots of KGE score of precipitation 

products in monthly time series 

 

 
 

Figure 6. Box-and-whisker plots of KGE score of precipitation 

products in daily time series 

3.3 Downscaling of Temperature Product  

From the evaluation of the near-surface temperature products 

AgERA5 is found superior among other products. Therefore, 

this product is downscaled to 5 km for monthly time series and 

daily time series. The results are given in Table 7 for monthly 

and Table 8 for daily time series, respectively. Results indicate 

that different interpolation methods result in similar results with 

minor differences. 

 

Season Metric AgEra5
Nearest 

Neighbor
Bilinear Bicubic

Distance-

Weighted

 Average

Largest 

Area 

Fraction

First-

Order 

Converva

tive

Random 

Forest

MAE 1.50 1.52 1.48 1.47 1.50 1.55 1.48 1.22

CC 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99

RMSE 2.04 2.05 2.00 1.99 2.02 2.11 2.00 1.65

Bias 0.95 0.93 0.97 0.95 0.99 1.00 0.97 0.66

MAE 1.82 1.82 1.81 1.80 1.82 1.89 1.81 1.51

CC 0.92 0.92 0.92 0.92 0.93 0.92 0.92 0.94

RMSE 2.45 2.45 2.43 2.43 2.43 2.57 2.43 2.03

Bias 1.23 1.21 1.27 1.25 1.28 1.29 1.27 0.98

MAE 1.53 1.53 1.52 1.49 1.53 1.58 1.52 1.14

CC 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.96

RMSE 2.06 2.05 2.02 2.00 2.04 2.13 2.02 1.54

Bias 1.16 1.14 1.18 1.15 1.20 1.20 1.18 0.54

MAE 1.36 1.38 1.33 1.31 1.35 1.40 1.33 1.12

CC 0.91 0.90 0.91 0.91 0.91 0.91 0.91 0.93

RMSE 1.84 1.86 1.78 1.76 1.81 1.87 1.78 1.52

Bias 0.74 0.72 0.76 0.72 0.78 0.78 0.76 0.53

MAE 1.32 1.34 1.29 1.28 1.30 1.36 1.29 1.10

CC 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98

RMSE 1.77 1.80 1.73 1.73 1.74 1.83 1.73 1.47

Bias 0.67 0.66 0.70 0.68 0.72 0.73 0.70 0.60

MAE 1.31 1.31 1.30 1.28 1.31 1.37 1.30 0.97

CC 0.91 0.90 0.91 0.91 0.91 0.90 0.91 0.94

RMSE 1.79 1.80 1.75 1.74 1.77 1.87 1.75 1.34

Bias 0.95 0.93 0.97 0.95 0.99 1.00 0.97 0.66

Annual

Complete

 Time 

Series

Winter

Spring

Summer

Autumn

 
 

Table 7. Performance metrics for different interpolation 

algorithms for monthly time series 

 

 

Season Metric AgEra5
Nearest 

Neighbor
Bilinear Bicubic

Distance-Weighted

 Average

Largest 

Area Fraction

First-Order 

Convervative

Random 

Forest

MAE 1.62 1.65 1.58 1.57 1.6 1.63 1.58 1.59

CC 0.97 0.97 0.98 0.98 0.98 0.97 0.98 0.97

RMSE 2.17 2.2 2.12 2.11 2.14 2.19 2.12 2.09

Bias 0.82 0.82 0.83 0.8 0.86 0.82 0.83 0.58

MAE 2.06 2.1 2.04 2.03 2.06 2.1 2.04 1.85

CC 0.92 0.91 0.92 0.92 0.92 0.91 0.92 0.93

RMSE 2.75 2.79 2.72 2.72 2.73 2.82 2.72 2.45

Bias 1.2 1.22 1.23 1.21 1.26 1.22 1.23 0.92

MAE 1.7 1.71 1.67 1.65 1.69 1.71 1.67 1.66

CC 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.93

RMSE 2.26 2.27 2.21 2.2 2.24 2.29 2.21 2.18

Bias 1.12 1.12 1.13 1.1 1.16 1.13 1.13 0.53

MAE 1.51 1.54 1.46 1.45 1.49 1.5 1.46 1.54

CC 0.9 0.9 0.91 0.91 0.91 0.91 0.91 0.89

RMSE 2.01 2.05 1.95 1.93 1.98 2 1.95 2.01

Bias 0.7 0.71 0.71 0.67 0.74 0.69 0.71 0.51

MAE 1.54 1.58 1.51 1.51 1.52 1.56 1.51 1.53

CC 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

RMSE 2.05 2.09 2.01 2.01 2.02 2.08 2.01 2.01

Bias 0.65 0.66 0.67 0.65 0.7 0.67 0.67 0.56

MAE 1.27 1.28 1.25 1.24 1.26 1.32 1.25 0.96

CC 0.91 0.9 0.91 0.91 0.91 0.91 0.91 0.94

RMSE 1.74 1.75 1.7 1.68 1.71 1.8 1.7 1.32

Bias 0.84 0.82 0.87 0.84 0.88 0.89 0.87 0.61

Annual

Complete

 Time 

Series

Winter

Spring

Summer

Autumn

 
 

Table 8. Performance metrics for different interpolation 

algorithms for daily time series  

 

 

3.4 Downscaling of Precipitation Product  

From the evaluation of the precipitation products MSWEP V2.2 

is found superior among other products. Therefore, this product 

is downscaled to 5 km for monthly time series and daily time 

series. The results presented in Table 9 and Table 10 allow for a 

comparison of the performance of the original MSWEP V2.2 

products with that of the downscaled product for monthly and 

daily time series, respectively. The various statistical measures, 

such as KGE, MAE, CC, RMSE, and bias, provide information 

on the accuracy and reliability of the downscaled product for 
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different seasons and for the entire study domain. This 

comparison can help to identify any potential improvements or 

limitations of the downscaling method. 

 

 

Season Metric MSWEP V2.2
Randım Forest

Cloud

Random Forest

LST

KGE 0.55 0.18 0.19

MAE 1.62 4.88 0.59

CC 0.62 0.24 0.31

RMSE 4.91 9.36 2.49

Bias -0.01 -0.36 -0.10

KGE 0.59 0.16 0.18

MAE 2.25 6.01 0.76

CC 0.64 0.20 0.33

RMSE 5.99 10.94 3.38

Bias -0.07 -0.87 -0.14

KGE 0.56 0.21 0.19

MAE 1.74 4.35 0.66

CC 0.61 0.27 0.37

RMSE 4.32 7.69 2.14

Bias -0.10 -0.69 -0.19

KGE 0.35 -0.04 0.16

MAE 1.13 3.70 0.59

CC 0.45 0.19 0.26

RMSE 4.30 8.39 2.63

Bias 0.08 0.80 -0.04

KGE 0.57 0.20 0.19

MAE 1.36 4.75 0.44

CC 0.64 0.30 0.31

RMSE 4.87 9.49 1.96

Bias 0.04 0.01 -0.09

KGE 0.63 0.65 0.34

MAE 145.30 136.53 27.30

CC 0.80 0.71 0.47

RMSE 218.94 202.16 43.08

Bias -3.36 -28.37 -12.70

Annual

Complete

Time

Series

Winter

Spring

Summer

Autumn

 
 

Table 9. Seasonal and annual mean statistics for the entire study 

area (Monthly time series) 

 

Downscaling MSWEP with selected predictors doesn't perform 

well in general. Therefore, Random Forest Spatial Interpolation 

method is used through blending the product with in situ 

measurements. The RFSI model was used to generate a 

regression model for each day in the dataset. The stations were 

separated into two groups, training (%80) and testing (%20). 

These stations were selected randomly with consideration for 

their uniform spatial distribution. A 10-fold cross-validation 

was also used during the training process of each model. The 

daily RFSI models were trained with the training dataset, which 

allowed for the analysis of the sensitivity of the results to spatial 

information. The models were built using 500 trees, and five 

neighbouring stations were selected to calculate spatial 

autocorrelation. To calculate spatial autocorrelation, five 

adjacent stations were chosen. 

 

Box and whisker plots for the complete time series of MSWEP 

V2.2, IMERG V06 Final and merged product are also presented 

in Figure 7. The spatial distribution of KGE indicates a trend 

towards higher values (Figure 8). There is a noticeable 

improvement in KGE scores across all regions of Turkey. 

Despite the challenging topography in the Eastern Black Sea 

region, with its high elevation differences affecting the accuracy 

of precipitation products, the merged product still demonstrates 

much better performance with high accuracy. The merging 

method has played a role in addressing these difficulties. In 

addition, MSWEP V2.2 and merged products on estimating 

precipitation over varying climatic conditions are investigated. 

Figure 9 presents MAE (mm) for complete-time series on 

varying climatic conditions for MSWEP V2.2 and Merged 

products. 

 

 

Season Metric MSWEP V2.2

Random 

Forest

Cloud

Random Forest

LST

KGE 0.74 0.65 0.27

MAE 20.07 19.38 4.21

CC 0.80 0.68 0.40

RMSE 35.49 35.85 9.62

Bias -0.61 -2.73 -1.06

KGE 0.72 0.61 0.24

MAE 27.74 30.10 3.29

CC 0.80 0.68 0.41

RMSE 46.38 51.93 9.67

Bias -2.38 -8.96 -0.83

KGE 0.71 0.58 0.27

MAE 19.13 21.54 4.15

CC 0.76 0.63 0.46

RMSE 29.70 32.22 7.39

Bias -3.10 -7.04 -1.77

KGE 0.63 0.36 0.24

MAE 15.31 10.51 5.83

CC 0.71 0.63 0.34

RMSE 30.95 22.99 13.25

Bias 2.08 3.70 -0.58

KGE 0.70 0.58 0.34

MAE 18.09 16.57 3.58

CC 0.81 0.65 0.46

RMSE 32.35 30.94 6.80

Bias 0.95 0.07 -1.06

KGE 0.64 0.65 0.34

MAE 144.90 136.53 27.29

CC 0.80 0.71 0.47

RMSE 217.09 202.16 43.07

Bias -7.33 -28.37 -12.70

Annual

Complete

Time

Series

Winter

Spring

Summer

Autumn

 
 

Table 10. Seasonal and annual mean statistics for the  

entire study area (Daily time series) 

 

 

 
 

Figure 7. KGE values for MSWEP V2.2 and Merged Products 
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Figure 8. Spatial distribution KGE scores of stations:  

a) MSWEP V2.2 product, b) Merged MSWEB V2.2 product 

 

 

 
 

Figure 9. Comparison of MSWEP V2.2 and merged products  

on climatic conditions and Land Cover Classes 

 

 

4. DISCUSSIONS  

To evaluate the accuracy of reanalysis products (AgERA5, 

ERA5, ERA5-Land, MERRA-2, and JRA-55) in estimating 

near-surface air temperature in Turkey, a comprehensive 

assessment is conducted by comparing these products with 

ground-based measurements. The comparison is performed at 

both daily and monthly time scales to assess their performance 

across different temporal resolutions. Furthermore, the 

performance of each product is analyzed across various climatic 

conditions and land cover types, utilizing Köppen-Geiger 

classifications and land cover classes retrieved from the MODIS 

MCD12Q1 Version 6 data product. 

 

It is evident that the AgERA5 product demonstrates remarkable 

accuracy in estimating near-surface air temperature across 

Turkey, both on a seasonal and annual basis. Subsequently, to 

further improve its performance, various interpolation 

algorithms are utilized to enhance the spatial resolution of the 

AgERA5 product. To achieve this, a combination of traditional 

distance-based methods and a machine learning-based approach 

using the RF algorithm is implemented to downscale the 

AgERA5 product. Random forest performs best among all 

interpolation methods. However, it has disadvantage of loss of 

data due to cloud contamination. It definitely provides much 

higher accuracy in clear-sky conditions (Karaman & Akyürek, 

2023).  

 

Performance evaluation of reanalysis, gauge, and satellite-based 

products of ERA5, ERA5 Land, IMERG V06, TMPA 3B42, 

TMPA 3B42-RT, SM2RAIN-ASCAT V1.0, MSWEP V2.2, 

CHIRPS 2.0, CMORPH, PERSIANN, PERSIANN CCS, 

PERSIANN CDR, and JRA-55 products on estimation of daily 

and monthly total precipitation over Turkey has been performed 

by comparing ground-based measurements. The effectiveness of 

each product was evaluated by comparing them on daily and 

monthly time scales, as well as in different climatic conditions 

using the Köppen-Geiger classification system. Initial analysis 

revealed that the MSWEP V2.2 product outperforms others in 

estimating daily and monthly total precipitation across Turkey 

both seasonally and annually. To enhance its performance, the 

spatial resolution of the MSWEP V2.2 product was improved 

through the use of various interpolation algorithms. Traditional 

downscaling methods were combined with a machine learning 

approach using the Random Forest algorithm to improve the 

MSWEP V2.2 products spatial resolution. The effectiveness of 

each interpolation algorithm in enhancing the product's estimate 

was investigated. Despite the use of various interpolation 

algorithms, the results showed that the performance of the 

product was not improved significantly. In addition, different 

predictors were used in estimating daily and monthly 

precipitation values by applying the Random Forest machine 

learning algorithm. It was found that incorporating cloud 

properties such as cloud effective radius (CER), cloud optical 

thickness (COT), and cloud water path (CWP) led to higher 

performance in downscaling precipitation, compared to using 

land surface temperature (LST), normalized difference 

vegetation index (NDVI) parameters. 

 

It was found that the KGE scores of the merged product are 

higher in all seven regions of Turkey when compared to the 

MSWEP V2.2 products. The distribution of the KGE scores of 

the stations in each region was analysed using box and whisker 

plots presented in Figure 7. The results indicate a clear 

improvement in the performance of the merged product in all 

regions, with higher KGE scores observed compared to 

MSWEP V2.2. In order to enhance the precision of precipitation 

products, we utilized a merging algorithm that incorporates 

ground-based observations. The results indicate a substantial 

improvement in the daily performance of the precipitation 

product. The performance of the merged product was also 

analysed spatially in different climatic conditions and land 

cover classes.   

 

The results highlight the significance of incorporating ground 

observations in developing satellite-based products and 

combining remote sensing data with observations in the RFSI 

model, which results in the most favourable outcomes. 

 

The results of this study can provide useful information for 

decision-makers and researchers who use near-surface air 

temperature and precipitation data in various applications, such 

as hydrological modelling, weather forecasting, and climate 

change studies. Additionally, the results can be used to improve 

the quality of satellite and reanalysis data products by 

highlighting their strengths and weaknesses and suggesting 

areas for future improvement. While this study concentrates on 

climate variables such as precipitation and temperature, the 

proposed methods are applicable to any type of climate or land 

surface variables, such as soil moisture, snow cover, snow water 

equivalent, etc. 
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