Table of Contents

Experimental Section
Figure S1 Polarization curves of a) NiMo-NH ₃ , b) NiMo-N ₂ /H ₂ , and c) NiMo-NH ₃ /H ₂ samples that were synthesized at different temperatures for HER in 1 M KOH
Figure S2 TEM images of NiMo-H ₂ /N ₂ catalysts synthesized at a temperature of a) 450 °C, b) 500 °C, c) 550 °C and d) 600 °C.
Figure S3 TEM images of NiMo-NH ₃ catalysts synthesized at a temperature of a) 450 °C, b) 500 °C, c) 550 °C and d) 600 °C
Figure S4 TEM images of NiMo-H ₂ /NH ₃ catalysts synthesized at a temperature of a) 450 °C, b) 500 °C, c) 550 °C and d) 600 °C
Figure S5 The XRD patterns of NiMo-NH ₃ /H ₂ catalysts synthesized at different reaction temperatures.
Figure S6 The ECSA values of NiMo catalysts synthesized at different temperatures and under different gases
Figure S7 The EIS spectraof different NiMo-based catalysts at -0.1 V for HER
Figure S8 Chronopotentiometric measurement of HER at the potential of -0.1 V using NiMo-NH ₃ /H ₂ as catalyst
Figure S9 The double-layer capacitances. The CV curves of a) NiMo-N ₂ /H ₂ , b) NiMo-NH ₃ /H ₂ , c) NiMo-NH ₃ and d) pristine NiMoO ₄ electrodes in 1.0 M KOH at scan rates from 20 to 100 mV \cdot s ⁻¹ . 13
Figure S10 Plots for calculating C_{dl} of NiMo-NH ₃ /H ₂ , NiMo-N ₂ /H ₂ , NiMo-NH ₃ and NiMoO ₄ electrodes. Scan rate: 20 mV s ⁻¹ to 100 mV s ⁻¹ ; Potential: 0.7 V to 0.8 V vs RHE
Figure S11 The XPS spectra of NiMo-based materials. (a-c) High-resolution of Ni 2p, Mo 3d and N 1s for NiMo-N ₂ /H ₂ . (d-f) High-resolution of Ni 2p, Mo 3d and N 1s for NiMo-NH ₃ /H ₂ . (g-i) High-resolution of Ni 2p, Mo 3d and N 1s for NiMo-NH ₃
Figure S12 The XRD patterns of NiMo catalysts synthesized at 550 °C
Figure S13 TEM images of Fe-NiMo-N ₂ /H ₂ and Fe-NiMo-NH ₃ catalysts detached from nickel foam support
Figure S14 a) The original and IR-corrected LSV curve of NiMo-NH ₃ /H ₂ catalyst for HER. b) The original and IR-corrected LSV curve of Fe-NiMo-NH ₃ /H ₂ catalyst for OER
Figure S15 Polarization curves of NiMo-NH ₃ /H ₂ and Fe-NiMo-NH ₃ /H ₂ catalysts for OER in 1 M KOH; scan rate: 1 mV/s

Figure S16 Polarization curves of a) Fe-NiMo-NH ₃ , b) Fe-NiMo-NH ₃ /H ₂ , and c) Fe-NiMo-N ₂ /H ₂ synthesized at different temperatures for OER in 1 M KOH; scan rate: 1 mV/s
Figure S17 The double-layer capacitances. The CV curves of a) Fe-NiMo-NH ₃ /H ₂ , b) Fe-NiMo-NH ₃ , c) Fe-NiMo-N ₂ /H ₂ and d) pristine Fe-NiMoO ₄ electrodes in 1.0 M KOH at scan rates from 20 to 100 mV· s ⁻¹
Figure S18 The Plots for calculating C _{dl} and ECSAs of Fe-NiMo-NH ₃ /H ₂ , Fe-NiMo-N ₂ /H ₂ , Fe-NiMo-NH ₃ and Fe-NiMoO ₄
Figure S19 The TOF curves of different Fe-NiMo-based electrodes at different potentials20
Figure S20 The TOFs of Fe-NiMo catalysts loaded on a carbon cloth support
Figure S21 The a) Tafel slopes and b) EIS spectra of Fe-NiMo-NH ₃ /H ₂ , Fe-NiMo-N ₂ /H ₂ , Fe-NiMo-NH ₃ and Fe-NiMoO ₄ electrodes at 1.45 V for OER
Figure S22 The IR-corrected polarization curves of Fe-NiMo-NH ₃ /H ₂ catalyst after different CV cycles in 1 M KOH solution. 22
Figure S23 Chronopotentiometric measurement of OER at the potential of 1.46 V using Fe-NiMo- NH ₃ /H ₂ as catalyst
Figure S24 The corresponding element mapping images of Fe-NiMo-NH ₃ catalyst detached from NF support after anodic activation. 23
Figure S25 The corresponding element mapping images of Fe-NiMo-H ₂ /N ₂ catalyst detached NF support after anodic activation
Figure S26 The XPS spectra of Fe modified NiMo samples after anodic activation. High-resolution spectra of (a) Ni 2p, (b) Mo 3d, (c) Fe 2p and (d) N 1s for Fe-NiMo-N ₂ /H ₂ , NiMo-NH ₃ /H ₂ and Fe-NiMo-NH ₃ catalysts
Figure S27 The XPS spectra of Fe-NiO _x -NF electrodes after anodic activation. High-resolution spectra of (a) Ni 2p and (b) Fe 2p
Figure S28 The SEM images of a) Fe-NiMo-NH ₃ /H ₂ and b) Fe-NiO _x -NF electrodes after anodic activation. c) The TEM image of Fe-NiO _x -NF catalyst that detached from nickel foam. d) The plots for calculating C_{dl} of NiMo-NH ₃ /H ₂ and Fe-NiO _x -NF electrodes. Scan rate: 20 mV s ⁻¹ to 100 mV s ⁻¹ 26
Figure S29 The schematic illustration of a MEA for water electrolysis
Figure S30 The performance of MEAs employing Fe-NiMo-N ₂ /H ₂ NiMo-N ₂ /H ₂ and Fe-NiMo-NH ₃ NiMo-NH ₃ pairs at temperatures from 20 °C to 80 °C
Table S1. The Call and ECSA values of NiMo-based materials

Table S2. The XPS data of NiMo-based materials. The results were calculated from specific peak areas
of XPS spectra
Table S3. The element contents of Fe-NiMo catalyst after OER activation. 28
Table S4. The comparison of the HER performance of NiMo-based catalysts with other state-of-the-art
electrocatalysts in alkaline medium
Table S5. The comparison of the OER performance of Fe-NiMo-based catalysts with other state-of-
the-art electrocatalysts in alkaline medium
Table S6. The comparison of the performance of MEAs employing noble or non-noble metal-based
catalysts in alkaline medium
References

Experimental Section

The preparation of NiMoO₄ precursor: Typically, a commercial nickel foam (NF; 5×30 mm; thickness 1.6mm; porosity 95%) was sonicated with acetone for 30 min, then washed by ethanol and water for several time. After that, the NF was put into a 10 wt % HCl solution for 30 min to clean the surface oxide layer. And then, the NF was washed with water and acetone for several times and dried under N₂ gas. Next, one piece of NF was immersed into 20 mL of H₂O containing 1 mmol NiCl₂ and 1 mmol Na₂MoO₄ in a Teflon autoclave. After continuous stirring for 30 min, the autoclave was put into a muffle furnace and heated at 160 °C for 6 h. After the autoclave was cooling to room temperature, the NiMoO₄/NF was taken out and washed with deionized water for several times.

The preparation of NiMo-based catalysts: In a typical process, the above synthesized NiMoO₄ precursor was put into a tube furnace and heated at different temperature (450 °C, 500 °C, 550 °C and 600 °C) in a mixed H₂/NH₃ (5% H₂) atmosphere for 2 h. Then, the as-prepared NiMo-H₂/NH₃ catalysts were immersed by ethanol before taking out and kept under N₂ gas for characterization. The NiMo-NH₃ and NiMo-H₂ catalysts were prepared following the same procedures, except for changing the atmosphere into pure NH₃ or mixed H₂/N₂ (5% H₂) gas.

The preparation of Fe-NiMo-based catalysts: For the growth of FeOOH nanoclusters onto NiMobased electrodes, the above synthesized NiMo-H₂/NH₃, NiMo-NH₃ and NiMo-H₂/N₂ electrodes were dipped into 25 ml of a freshly prepared FeCl₃ solution (1 mmol) for 15 min under continuous stirring. After that, the electrodes were taken out and put into oven for drying at 70 °C. After drying in air for 1 h, the Fe-NiMo-based catalysts were ready for anodic activation and further electrochemical tests.

The preparation of NiMo-based and Fe-NiMo-based powders: Typically, 50 mg NiMoO₄ powder was put into a tube furnace and heated at 550 °C in mixed H_2/N_2 , NH_3/H_2 and pure NH_3 gas for 2h, respectively. The products were taken out after the samples were cooling to room temperature. Next, 10 mg of NiMo-H₂/NH₃, NiMo-NH₃ and NiMo-H₂/N₂ powder was added into 2 ml of 0.01 M FeCl₃ ethanol solution, respectively. After sonicating for 1h, the above solutions were put into oven for drying at 70 °C. The Fe-NiMo-based ready for anodic activation and further electrochemical tests after drying in air for 5 h.

Characterization: TEM measurement was carried out on a FEI Tecnai Osiris electron microscope equipped with a high-brightness field emission gun (XFEG) and an energy dispersive X-ray spectroscopy (EDX) analyzer. XPS measurements were performed on a PHI5000 Versa Probe II XPS system by Physical Electronics (PHI) with a detection limit of 1 atomic percent. Monochromatic X-rays were generated by an Al K α source (1,4867 eV). The diameter of the analyzed area is 10 µm. The contact angles were taken from contact angle measuring instrument DSA 100 at room temperature. Electrochemical active surface area (ECSA) was calculated by the electrochemical double-layer capacitance. The C_{dl} and C_s are the double-layer capacitance of the working electrodes and a flat NiFeO_x (0.081 mF cm⁻²) for OER, respectively. The equation is ECSA= C_{dl}/C_s. The calculation of TOF was according to the equations: $TOF = \frac{J \times A}{4 \times F \times m}$, where J is the current density at a given overpotential, A is the geometric surface area of the electrode, F is the Faraday constant (a value of 96485 C mol⁻¹), and m is the number of active site on the electrode. The Fe loadings are measured by ICP-OES. The total amount of Fe-Ni unit is identical to the amount of Fe ions. Thus, m can be represented by the total number of Fe ions.

Electrochemical Measurements: All the electrochemical tests were carried out on a multichannel potentiostat/galvanostat (VSP, Bio-Logic) electrochemical workstation using a three-electrode system. A saturated Ag/AgCl (saturated KCl solution) was used as the reference electrode (RE) and a 1 M KOH solution was used as the electrolyte. The Fe-NiMo-based and NiMo-based catalysts on NF were used as working electrodes directly. The linear sweeping voltammetry (LSV) scans were recorded at a scan rate of 1 mV s⁻¹. The potential range is from 0 V to 0.6 V versus Ag/AgCl for OER. Ohmic drop correction was performed using the current interrupt (CI) method available in the potentiostat software. Chronopotentiometric measurements were carried out to evaluate the long-term stability. Electrochemical impedance spectroscopy (EIS) measurements were carried out by applying an AC voltage with 5 mV amplitude in a frequency range from 100 KHz to 10 mHz. All of the potentials were calibrated to the reversible hydrogen electrode (RHE) according to Nernst equation.

The assembly and performance test of MEAs: The NiMo-based and Fe-NiMo-based powders were first ground in a mortar for uniformity. Then, 5 mg of each sample powders was mixed with 40 ul

Nafion solution (as binder) and 1 ml ethanol. The mixed solution was subjected to ultrasonication for 1 h to obtain a highly disperse catalyst ink. The ink was immediately spray onto carbon paper. The loading mass of catalyst was about 3.0 mg cm⁻². The NiMo-based catalysts were used as cathode layers and Fe-NiMo-based catalysts were used as anode layers. Subsequently, cathode and anode were sandwiched with a sustainion anion exchange membrane (X37-50 grade T, Dioxide Materials) and pressed to prepare a membrane electrode assembly (MEA) device. The flowing 1 M KOH solution was used as electrolyte and the temperature of electrolyte can be controlled at 20 °C to 80 °C by a constant temperature heating chamber. The potential range is from 1.1 V to 1.8 V at a scan rate of 1 mV s⁻¹. The corresponding energy conversion efficiency was calculated according to the following equations: 1) $\eta = E_0/V$; 2) $E_0 = -\Delta G/nF$; 3) $\Delta G = \Delta H - T\Delta S$, where η is the energy conversion efficiency and E_0 is the theoretical voltage of water splitting (H₂O \rightarrow H₂ + 1/2O₂). n is the number of electrons, F is the Faradaic constant (96485 C mol⁻¹), T is the reaction temperature and V is the measured voltage. ΔG is the change of Gibbs free energy, ΔH is the change of enthalpy (-285.8 kJ mol⁻¹) and ΔS is the change of entropy (-163.34 J K⁻¹ mol⁻¹) during water electrolysis.

Figure S1 Polarization curves of a) NiMo-NH₃, b) NiMo-N₂/H₂, and c) NiMo-NH₃/H₂ samples that were synthesized at different temperatures for HER in 1 M KOH.

Figure S2 TEM images of NiMo-H₂/N₂ catalysts synthesized at a temperature of a) 450 °C, b) 500 °C, c) 550 °C and d) 600 °C.

Figure S3 TEM images of NiMo-NH₃ catalysts synthesized at a temperature of a) 450 °C, b) 500 °C, c) 550 °C and d) 600 °C.

Figure S4 TEM images of NiMo-H₂/NH₃ catalysts synthesized at a temperature of a) 450 °C, b) 500 °C, c) 550 °C and d) 600 °C.

Figure S5 The XRD patterns of $NiMo-NH_3/H_2$ catalysts synthesized at different reaction temperatures.

Figure S6 The ECSA values of NiMo catalysts synthesized at different temperatures and under different gases.

Figure S7 The EIS spectraof different NiMo-based catalysts at -0.1 V for HER.

Figure S8 Chronopotentiometric measurement of HER at the potential of -0.1 V using NiMo-NH₃/H₂ as catalyst.

Figure S9 The double-layer capacitances. The CV curves of a) NiMo-N₂/H₂, b) NiMo-NH₃/H₂, c) NiMo-NH₃ and d) pristine NiMoO₄ electrodes in 1.0 M KOH at scan rates from 20 to 100 mV· s⁻¹.

Figure S10 Plots for calculating C_{dl} of NiMo-NH₃/H₂, NiMo-N₂/H₂, NiMo-NH₃ and NiMoO₄ electrodes. Scan rate: 20 mV s⁻¹ to 100 mV s⁻¹; Potential: 0.7 V to 0.8 V vs RHE.

Figure S11 The XPS spectra of NiMo-based materials. (a-c) High-resolution of Ni 2p, Mo 3d and N 1s for NiMo-N₂/H₂. (d-f) High-resolution of Ni 2p, Mo 3d and N 1s for NiMo-NH₃/H₂. (g-i) High-resolution of Ni 2p, Mo 3d and N 1s for NiMo-NH₃.

Figure S12 The XRD patterns of NiMo catalysts synthesized at 550 °C.

Figure S13 TEM images of Fe-NiMo-N₂/H₂ and Fe-NiMo-NH₃ catalysts detached from nickel foam support.

Figure S14 a) The original and IR-corrected LSV curve of NiMo-NH₃/H₂ catalyst for HER. b) The original and IR-corrected LSV curve of Fe-NiMo-NH₃/H₂ catalyst for OER.

Figure S15 Polarization curves of NiMo-NH₃/H₂ and Fe-NiMo-NH₃/H₂ catalysts for OER in 1 M KOH; scan rate: 1 mV/s.

Figure S16 Polarization curves of a) Fe-NiMo-NH₃, b) Fe-NiMo-NH₃/H₂, and c) Fe-NiMo-N₂/H₂ synthesized at different temperatures for OER in 1 M KOH; scan rate: 1 mV/s.

Figure S17 The double-layer capacitances. The CV curves of a) Fe-NiMo-NH₃/H₂, b) Fe-NiMo-NH₃, c) Fe-NiMo-N₂/H₂ and d) pristine Fe-NiMoO₄ electrodes in 1.0 M KOH at scan rates from 20 to 100 mV· s⁻¹.

Figure S18 The Plots for calculating C_{dl} and ECSAs of Fe-NiMo-NH₃/H₂, Fe-NiMo-N₂/H₂, Fe-NiMo-NH₃ and Fe-NiMoO₄.

Figure S19 The TOF curves of different Fe-NiMo-based electrodes at different potentials.

Figure S20 The TOFs of Fe-NiMo catalysts loaded on a carbon cloth support.

Figure S21 The a) Tafel slopes and b) EIS spectra of Fe-NiMo-NH₃/H₂, Fe-NiMo-N₂/H₂, Fe-NiMo-NH₃ and Fe-NiMoO₄ electrodes at 1.45 V for OER.

Figure S22 The IR-corrected polarization curves of Fe-NiMo-NH $_3$ /H $_2$ catalyst after different CV cycles in 1 M KOH solution.

Figure S23 Chronopotentiometric measurement of OER at the potential of 1.46 V using Fe-NiMo-NH₃/H₂ as catalyst.

Figure S24 The corresponding element mapping images of Fe-NiMo-NH₃ catalyst detached from NF support after anodic activation.

Figure S25 The corresponding element mapping images of Fe-NiMo- H_2/N_2 catalyst detached NF support after anodic activation.

Figure S26 The XPS spectra of Fe modified NiMo samples after anodic activation. High-resolution spectra of (a) Ni 2p, (b) Mo 3d, (c) Fe 2p and (d) N 1s for Fe-NiMo-N₂/H₂, NiMo-NH₃/H₂ and Fe-NiMo-NH₃ catalysts.

Figure S27 The XPS spectra of Fe-NiO_x-NF electrodes after anodic activation. High-resolution spectra of (a) Ni 2p and (b) Fe 2p.

Figure S28 The SEM images of a) Fe-NiMo-NH₃/H₂ and b) Fe-NiO_x-NF electrodes after anodic activation. c) The TEM image of Fe-NiO_x-NF catalyst that detached from nickel foam. d) The plots for calculating C_{dl} of NiMo-NH₃/H₂ and Fe-NiO_x-NF electrodes. Scan rate: 20 mV s⁻¹ to 100 mV s⁻¹.

- **b**: Polytetrafluoroethylene layer (PTFE)
- **c:** Gasket for preventing the leakage
- **d:** Conductive plate
- e: Sustainion anion exchange membrane
- **f:** Nickel foam supporter

- g: Cathode catalyst layer on carbon paper
- i: Anode catalyst layer on carbon paper
- **h:** PET insulative plate

Figure S29 The schematic illustration of a MEA for water electrolysis.

Figure S30 The performance of MEAs employing Fe-NiMo-N₂/H₂ $||NiMo-N_2/H_2|$ and Fe-NiMo-NH₃ $||NiMo-NH_3|$ pairs at temperatures from 20 °C to 80 °C.

	Catalysts					
	NiMo-N ₂ /H ₂ NiMo-NH ₃ /H ₂ NiMo-NH ₃ NiM					
$C_{dl} (mF cm^{-2})$	3.2	3.0	2.4	1.3		
ECSA	20	18.8	15	8.1		

Table S1. The C_{dl} and ECSA values of NiMo-based materials.

Table S2. The XPS data of NiMo-based materials. The results were calculated from specific peak areas of XPS spectra.

Catalysts	XPS data				
	Ni ⁰ /Ni ²⁺	Mo^{0}/Mo^{4+}	N (%)		
NiMo-N ₂ /H ₂	0.25	0.52	0		
$NiMo-NH_3/H_2$	0.22	0.43	9.8		
NiMo-NH ₃	0.18	0.40	10.2		

 Table S3. The element contents of Fe-NiMo catalyst after OER activation.

Catalysts	EDS(%)					
	Ni	Mo	Fe	Ν	0	
$Fe-NiMo-N_2/H_2$	35.7	4.8	20.0	0	39.5	
Fe-NiMo-NH ₃ /H ₂	40.8	1.4	18.9	1.8	37.1	
Fe-NiMo-NH ₃	38.5	1.9	19.2	2.1	38.3	

Table S4. The comparison of the HER performance of NiMo-based catalysts with other stateof-the-art electrocatalysts in alkaline medium.

Catalysts	η@10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	Substrate	Electrolyte	References
NiMo-NH ₃ /H ₂	11	35	NF	1.0 KOH	This work
NiMo-N ₂ /H ₂	27	47	NF	1.0 KOH	
NiMo-NH ₃	29	68	NF	1.0 KOH	
MoNi ₄ /MoO ₂ @Ni	15	30	NF	1.0 KOH	1
Ni ₄ Mo/MoO _x	16	64	Cu foil	1.0 KOH	2
NiMo alloy	17	43	Ti foil	1.0 KOH	3
MoS ₂ /CoNi ₂ S ₄	81	67	CFP	1.0 KOH	4
Nanoporous Co ₂ P	60	40	CFP	1.0 KOH	5
Co@Co ₃ O ₄ nanosheet/Ni foam	90	44	NF	1.0 KOH	6
MoS ₂ /NiCo-LDH	78	76	CFP	1.0 KOH	7
NiPt ₃ @NiS	12	24	FTO	1.0 KOH	8
MoNi-HS	38	31	GCE	1.0 KOH	9
Cu ₅₃ Ru ₄₇	15	30	GCE	1.0 KOH	10
Ni/WC@NC	77	68	GCE	1.0 KOH	11
Ni ₃ N/Ni	12	29	NF	1.0 KOH	12
Ni ₃ FeN	75	98	NF	1.0 KOH	13
Ni ₂ P/Fe ₂ P	121	67	GCE	1.0 KOH	14
Ni ₃ N _{1-x}	55	54	NF	1.0 KOH	15

Table S5. The comparison of the OER performance of Fe-NiMo-based catalysts with other

 state-of-the-art electrocatalysts in alkaline medium.

Catalysts	η ₁₀ (mV)	η100 (mV)	Tafel slope (mV dec ⁻¹)	Electrodes	References
Fe-NiMo-NH ₃ /H ₂	192	219	28	NF	This work
Fe-NiMo-N ₂ /H ₂	200	230	29	NF	
Fe-NiMo-NH ₃	198	226	28	NF	
NF-AC-NiO _x -Fe	215	248	34.0	NF	16
Ni:FeOOH	214	270	36.2	NGF	17
Fe-doped β- Ni(OH) ₂	219	280	53.0	NF	18
NiFe(OH) _x /FeS	/	255	/	IF	19
a-LNF(t-d)	189	310	36	glassy carbon	20
NiTe/NiS	/	257	49	NF	21
fcc-NiFe@NC	226	263	41	CC	22
Ni _{0.8} Fe _{0.2} -AHNA	190	248	34.7	NF	23
FeOOH(Se)	/	310	54	IF	24
NiFeO _x	230	271	31.5	CFP	25
DR-Ni ₃ FeN/N-G	250	310	38.0	RDE	26
Ni ₆₀ Fe ₃₀ Mn ₁₀	208	270	62.0	Alloy Foam	27
NiFe hydroxides	245	280	28.0	NF	28
HG-NiFe _x	310	380	39	GCE	29
Ni-Fe LDH hollow prisms	280	370	49.4	GC	30
NiFe-OH-F-SR	_a	228	22.6	NF	31
EG/Co _{0.85} Se/NiFe LDH	203	260	57	Graphene Foam	32

Table S6. The comparison of the performance of MEAs employing noble or non-noble metalbased catalysts in alkaline medium.

Catal	ysts	Electrode	Membrane	Efficiency Catalyst @1A/cm ²	Voltage @ <i>J</i> (V @ mA cm ⁻²)	Temper ature (°C)	Ref.
Anode catalyst	Cathode catalyst						
NiMo-NH ₃ /H ₂	Fe-NiMo- NH ₃ /H ₂	NF	Sustainion X37-50	75.1	1.57@1.0	80	This work
NiMo-N ₂ /H ₂	Fe-NiMo- N ₂ /H ₂	NF	Sustainion X37-50	70.3	1.68@1.0	80	
NiMo-NH ₃	Fe-NiMo- NH ₃	NF	Sustainion X37-50	72.6	1.62@1.0	80	•
NiFe-LDH	Pt/C	СР	Sustainion X37-50	74.3	1.59@1.0	80	33
NiFe-LDH	Pt/C	СР	Sustainion X37-50	71.8	1.67@1.0	60	
IrO _x	Pt/C	СР	Sustainion X37-50	71.8	1.67@1.0	60	
IrO _x	Pt /C	carbon	FAA-3-50	/	1.8@1.15	70	34
IrO ₂	Pt black	Ti form	A-201, Tokuyama	/	1.8@0.4	50	35
NiFe ₂ O ₄	NiFeCo	Baekart	Sustainion X37-50	63.1	1.9@1.0	60	36
IrO ₂	Pt	СР	Sustainion X37-50	73.6	1.63@1.0	60	•
Ni	Ni	СР	A-201, Tokuyama	/	1.9@0.15	50	37
IrO ₂	Pt/C	NF/CP	SEBS-Pi	/	2.0@0.4	50	38
CuCoO ₃	Ni/(CeO ₂ - La ₂ O ₃)/C	CP/CC	A-201, Tokuyama	/	1.9@0.47	50	39
Cu _{0.81} Co _{2.19} O ₄	Pt/C	NF	Fumasep FAA-3-PE- 30	/	1.68@0.1	30	40
Cu _{0.7} Co _{2.3} O ₄	Pt/C	stainless steel	Membrane with	68.3	1.8@1.0	25	41
Co ₃ O ₄		meshes	quaternary ammonium function groups	/	1.8@0.6	25	

References

- (1) Zhang, J.; Wang, T.; Liu, P.; Liao, Z.; Liu, S.; Zhuang, X.; Chen, M.; Zschech, E.; Feng, X. *Nat. Commun.* **2017**, *8*, 15437.
- (2) An, Y.; Long, X.; Ma, M.; Hu, J.; Lin, H.; Zhou, D.; Xing, Z.; Huang, B.; Yang, S. Adv. Energy *Mater.* **2019**, *9*, 1901454.
- (3) Nairan, A.; Zou, P.; Liang, C.; Liu, J.; Wu, D.; Liu, P.; Yang, C. Adv. Funct. Mater. 2019, 29, 1903747.
- (4) Hu, J.; Zhang, C.; Yang, P.; Xiao, J.; Deng, T.; Liu, Z.; Huang, B.; Leung, M. K. H.; Yang, S. *Adv. Funct. Mater.* **2020**, *30*, 1908520.
- (5) Tan, Y.; Wang, H.; Liu, P.; Cheng, C.; Zhu, F.; Hirata, A.; Chen, M. Adv. Mater. 2016, 28, 2951–2955.
- (6) Yan, X.; Tian, L.; He, M.; Chen, X. Nano Lett. 2015, 15, 6015–6021.
- (7) Hu, J.; Zhang, C.; Jiang, L.; Lin, H.; An, Y.; Zhou, D.; Leung, M. K. H.; Yang, S. *Joule* **2017**, *1*, 383–393.
- (8) Panda, C.; Menezes, P. W.; Yao, S.; Schmidt, J.; Walter, C.; Hausmann, J. N.; Driess, M. J. Am. *Chem. Soc.* **2019**, *141*, 13306–13310.
- (9) Zhou, Y.; Luo, M.; Zhang, W.; Zhang, Z.; Meng, X.; Shen, X.; Liu, H.; Zhou, M.; Zeng, X. ACS *Appl. Mater. Interfaces* **2019**, *11*, 21998–22004.
- (10) Wu, Q.; Luo, M.; Han, J.; Peng, W.; Zhao, Y.; Chen, D.; Peng, M.; Liu, J.; de Groot, F. M. F.; Tan, Y. ACS Energy Lett. 2020, 5, 192–199.
- (11) Ma, Y.-Y.; Lang, Z.-L.; Yan, L.-K.; Wang, Y.-H.; Tan, H.-Q.; Feng, K.; Xia, Y.-J.; Zhong, J.; Liu, Y.; Kang, Z.-H.; et al. *Energy Environ. Sci.* **2018**, *11*, 2114–2123.
- (12) Song, F.; Li, W.; Yang, J.; Han, G.; Liao, P.; Sun, Y. Nat. Commun. 2018, 9, 4531.
- (13) Zhang, B.; Xiao, C.; Xie, S.; Liang, J.; Chen, X.; Tang, Y. Chem. Mater. 2016, 28, 6934–6941.
- (14) Ge, Y.; Dong, P.; Craig, S. R.; Ajayan, P. M.; Ye, M.; Shen, J. Adv. Energy Mater. 2018, 8, 1800484.
- (15) Liu, B.; He, B.; Peng, H.-Q.; Zhao, Y.; Cheng, J.; Xia, J.; Shen, J.; Ng, T.-W.; Meng, X.; Lee, C.-S.; et al. *Adv. Sci.* **2018**, *5*, 1800406.
- (16) Song, F.; Busch, M. M.; Lassalle-Kaiser, B.; Hsu, C.-S.; Petkucheva, E.; Bensimon, M.; Chen, H. M.; Corminboeuf, C.; Hu, X. ACS Cent. Sci. 2019, 5, 558–568.
- (17) Suryawanshi, M. P.; Ghorpade, U. V; Shin, S. W.; Suryawanshi, U. P.; Jo, E.; Kim, J. H. ACS *Catal.* **2019**, *9*, 5025–5034.
- (18) Kou, T.; Wang, S.; Hauser, J. L.; Chen, M.; Oliver, S. R. J.; Ye, Y.; Guo, J.; Li, Y. ACS Energy Lett. **2019**, *4*, 622–628.
- (19) Niu, S.; Jiang, W.-J.; Tang, T.; Yuan, L.-P.; Luo, H.; Hu, J.-S. Adv. Funct. Mater. 2019, 29, 1902180.
- (20) Chen, G.; Zhu, Y.; Chen, H. M.; Hu, Z.; Hung, S.-F.; Ma, N.; Dai, J.; Lin, H.-J.; Chen, C.-T.; Zhou, W.; et al. *Adv. Mater.* **2019**, *31*, 1900883.
- (21) Xue, Z.; Li, X.; Liu, Q.; Cai, M.; Liu, K.; Liu, M.; Ke, Z.; Liu, X.; Li, G. Adv. Mater. **2019**, *31*, 1900430.

- (22) Wang, C.; Yang, H.; Zhang, Y.; Wang, Q. Angew. Chemie Int. Ed. 2019, 58, 6099–6103.
- (23) Liang, C.; Zou, P.; Nairan, A.; Zhang, Y.; Liu, J.; Liu, K.; Hu, S.; Kang, F.; Fan, H. J.; Yang, C. *Energy Environ. Sci.* **2020**, *13*, 86–95.
- (24) Niu, S.; Jiang, W.-J.; Wei, Z.; Tang, T.; Ma, J.; Hu, J.-S.; Wan, L.-J. J. Am. Chem. Soc. 2019, 141, 7005–7013.
- Wang, H.; Lee, H.-W.; Deng, Y.; Lu, Z.; Hsu, P.-C.; Liu, Y.; Lin, D.; Cui, Y. Nat. Commun. 2015, 6, 7261.
- (26) Zhao, S.; Li, M.; Han, M.; Xu, D.; Yang, J.; Lin, Y.; Shi, N.-E.; Lu, Y.; Yang, R.; Liu, B.; et al. *Adv. Funct. Mater.* **2018**, *28*, 1706018.
- (27) Detsi, E.; Cook, J. B.; Lesel, B. K.; Turner, C. L.; Liang, Y.-L.; Robbennolt, S.; Tolbert, S. H. *Energy Environ. Sci.* **2016**, *9*, 540–549.
- (28) Senthil, R. A.; Pan, J.; Yang, X.; Sun, Y. Int. J. Hydrogen Energy 2018, 43, 21824–21834.
- (29) Wang, J.; Gan, L.; Zhang, W.; Peng, Y.; Yu, H.; Yan, Q.; Xia, X.; Wang, X. *Sci. Adv.* **2018**, *4*, eaap7970.
- (30) Yu, L.; Yang, J. F.; Guan, B. Y.; Lu, Y.; Lou, X. W. D. Angewandte Chemie International *Edition*. 2018, pp 172–176.
- (31) Zhang, B.; Jiang, K.; Wang, H.; Hu, S. *Nano Lett.* **2019**, *19*, 530–537.
- (32) Hou, Y.; Lohe, M. R.; Zhang, J.; Liu, S.; Zhuang, X.; Feng, X. *Energy Environ. Sci.* **2016**, *9*, 478–483.
- (33) Koshikawa, H.; Murase, H.; Hayashi, T.; Nakajima, K.; Mashiko, H.; Shiraishi, S.; Tsuji, Y. *ACS Catal.* **2020**, *10*, 1886–1893.
- (34) Park, J. E.; Kang, S. Y.; Oh, S.-H.; Kim, J. K.; Lim, M. S.; Ahn, C.-Y.; Cho, Y.-H.; Sung, Y.-E. *Electrochim. Acta* **2019**, *295*, 99–106.
- (35) Leng, Y.; Chen, G.; Mendoza, A. J.; Tighe, T. B.; Hickner, M. A.; Wang, C.-Y. J. Am. Chem. Soc. 2012, 134, 9054–9057.
- (36) Kaczur, J. J.; Yang, H.; Liu, Z.; Sajjad, S. D.; Masel, R. I. Frontiers in Chemistry . 2018, p 263.
- (37) Ahn, S. H.; Lee, B.-S.; Choi, I.; Yoo, S. J.; Kim, H.-J.; Cho, E.; Henkensmeier, D.; Nam, S. W.; Kim, S.-K.; Jang, J. H. *Appl. Catal. B Environ.* **2014**, *154–155*, 197–205.
- (38) Su, X.; Gao, L.; Hu, L.; Qaisrani, N. A.; Yan, X.; Zhang, W.; Jiang, X.; Ruan, X.; He, G. J. Memb. Sci. 2019, 581, 283–292.
- (39) Pavel, C. C.; Cecconi, F.; Emiliani, C.; Santiccioli, S.; Scaffidi, A.; Catanorchi, S.; Comotti, M. *Angew. Chemie Int. Ed.* **2014**, *53*, 1378–1381.
- (40) Choi, W.-S.; Jang, M. J.; Park, Y. S.; Lee, K. H.; Lee, J. Y.; Seo, M.-H.; Choi, S. M. ACS Appl. Mater. Interfaces 2018, 10, 38663–38668.
- (41) Wu, X.; Scott, K. J. Mater. Chem. 2011, 21, 12344–12351.