
Beg i n n er o n l i n e t ra i n i n g , Sp r i n g 2021

Source routines

An introduction to a new approach to source routines

Why user routines?

• FLUKA offers plenty of built-in tools to define primary beams and estimate
quantities

• Sometime these are not enough

• There is the need to write some dedicated code: a “User Routine”

• URs are beyond the scope of this course because of intrinsic difficulties

• Nevertheless, we have started an effort to make URs more user-friendly

• We want to introduce here the first effort in this direction:

a modernized version of the source routine

• Why the source routine first? Built-in options allow to sample from a limited number

of distribution and not from histograms. This is an effort to overcome this limitation

Source routines 2

The “old” source routine

• Scary for beginners, limited documentation

• Use of IMPLICIT and FORTRAN77 naming convention (see later)

Source routines 3

The “new” source routine

• Distributed since FLUKA4-1.0 release

• Simplified appearance

• Long & meaningful names for variables and routines

• Use of implicit none (see later)

• Abundant comments and examples

• Advanced sampling routines

• Variables for user’s usage clearly indicated

• Lines not to be edited are “hidden” in routines

in the source_library.inc library file

• Old source routines can still be used

Source routines 4

Removed from
snapshot

The “new” source routine

• Without removing comments, examples and advanced features

(notice the ratio of code and comment lines)

• Note: the snapshot is not meant to be read – Detailed view will follow

Source routines 5

History of Fortran

• Fortran born in the early 1950s, and the first compiler was released in 1957

Standards:

• Fortran 66 – The first standard

• Fortran 77 – Extension on Fortran 66

• Fortran 90 – Dynamic memory allocation / introduction of the Free format

• Fortran 95 – High performance Fortran specification

• Fortran 2003 – Object oriented programming

• Fortran 2008 / 2018 – Extensions of Fortran 2003

FLUKA is still mostly (if not fully) compatible Fortran 77

This doesn’t mean that we can’t use newer things in our user routines

Source routines 6

(Unexpected) Features and limitations of Fortran (77)

• Source file format

• Fixed

• Free

• Naming convention

• Subprograms

• Functions

• Subroutines

• Variable declaration

• Implicit

• Explicit

Source routines 7

Source file format

• Fortran 77 uses the Fixed file format (extensions: .f or .for):

• Maximum 78 characters in one line

• First 6 are reserved for special function:

• If the first character is ‘c’ or ‘*’, then the line is a comment

• If the 6th position is not empty, then the line is treated as a continuation of the previous one

(Often the ‘&’ character is used)

• With the gfortran compiler it is possible to increase the maximum line length

• In FLUKA 4 it is extended to 132 characters

• Fortran 90 introduced the Free format (extensions: .f90, [.f95, etc.]):

• Code can start at the 1st position

• Note: It is not possible to mix both in the same source file.

Gfortran compiler expects the “correct” format based on the file extension.

Source routines 8

Naming convention

• Fortran 77 variable and (subprogram) names:

• Limited to 6 alphanumerical characters

• Have to start with a letter

• Case insensitive

• Starting with Fortran 90 the variable names

• Can be up to 31 character long

• Can contain letters, numbers and underscore (‘_’)

• Have to start with a letter

• Case insensitive

• Note: Try to use descriptive names, to make code readable

Source routines 9

Feature exploited in

the new source routine

Subprograms

• Two types:

• Function

• Has a return value

• Used in assignment: variable = function(input_variable_1, …)

• Subroutine

• Doesn’t have a return value

• Accessible with the CALL statement: call subroutine(input_variable_1, …)

• Passing variables

• In Fortran you pass the variable, not the value of the variable (Like passing a pointer in C)

• This means the subprograms may irreversibly modify the value of the input variables

• Desired behavior if you want to return multiple variables

• Can lead to side effects

Source routines 10

Variable declaration

• Fortran by default uses implicit declaration, which means the type of the variable

(integer, real, etc.) is determined by a preset rule.

• The default rule is:

• If the variable starts with the letter I, J, K, L, M, or N it is an integer

• Otherwise, it is a real (single precision float)

• In FLUKA however:

• Variables with the 1st letter I, J, K, L, M, and N are still integers

• But the others are double precision (floats)

• It is possible (and necessary) to overwrite this with explicit declaration, where you

manually specify the type of the variable, like:
double precision my_intensity

logical my_flag

Source routines 11

Variable declaration

• Biggest issue is that typos remain hidden:

If you have a typo in a variable name, the compiler won’t raise an error

It is a different, but valid variable without a value

Using it in calculations will lead to unexpected results

• Other issue is the unexpected type conversion:

For example: Information is lost if you want to assign a double precision number to INTEGER

• Solution in the “new” source routine: implicit none

This statement disables the implicit declaration, and every variable has to me manually declared

Exception: FLUKAs built in variables don’t need to be declared in the source routine

(they will remain implicitly declared)

• Convention in the “new” source routine:

• Variables with uppercase names: FLUKA variables

• Variables with lowercase names: explicitly declared variables

Source routines 12

Numbers and Constants in User routines

• To keep the high accuracy of the calculation

• Every variable containing a floating-point number should have the type double precision

• The assigned numbers should also be double precision:

For example: radius = 2.0D0, or in a function: variable = function(1.0D0)

The ‘D’ character indicated, that this is number should be treated as double precision.

If it is ‘E’ or missing, then the number will be single precision

• To simplify writing numbers FLUKA already defined many numbers as variables:
• ONEONE = 1.0D0

• TWOTWO = 2.0D0

• HLFHLF = 0.5D0

• PIPIPI = 𝝅 = 3.141592…

• TWOPIP = 𝟐𝝅 = 6.283185…

Full list available in the dblprc.inc include file

Source routines 13

Source routine – Initialization

• Dedicated space for the declaration of user variables (and functions)

Source routines 14

Source routine – Initialization

• Initialization of internal variables

• Only performed the first time the routine is called

• To overwrite the default values the relevant lines needs to be uncommented, by
removing the ‘*’ at the beginning of the line.

(See next slides)

Source routines 15

Source routine – Primary particle

• By default, the particle type given in the BEAM card is taken

• Particle codes explained in FLUKA manual section 5.1

• Possible application: beam made of more than one type particles

Source routines 16

• Only used if primary particle is set to HEAVYION or ISOTOPE

• Default values are set on the HI-PROPE card, or for 12C if the card is missing

Source routine – Energy / momentum

• By default, the particle momentum is expected

• The default value is based on the BEAM card

(Automatically converted into momentum if energy is given on the BEAM card)

• If energy is specified in the source routine, the following logical value must be set
.true.

Source routines 17

• The momentum divergence set on the BEAM card is not retained

• It in necessary to specify in the source routine

• It is easy with the supplied functions / subroutine

Flat spectrum:

Gaussian spectrum:

Maxwell-Boltzmann spectrum:

Spectrum from histogram:

Exponential spectrum:

(biased sampling)

Source routine – Energy / momentum

Source routines 18

Source routine – Particle weight

• Monte Carlo concept for biased sources

• The default value (particle_weight = 1.0) is usually sufficient

• Not for a beginners’ use, mentioned here for completeness

• Note: The exponential spectrum sampling subroutine, uses variable particle weight

Source routines 19

Source routine – Beam divergence

• By default:

• values are taken from the BEAM card

• It is assumed to be a flat angular distribution

• For Gaussian divergence the following logical value must be set .true.

Source routines 20

Source routine – Beam starting position

• By default, values are taken from the BEAMPOS card

• Beam shape set on the BEAM card, and

• Extended sources specified on additional BEAMPOS cards are not implemented

Source routines 21

• Some predefined routines (2 functions and 1 subroutine) are already available:

Flat distribution:

Gaussian distribution:

Annular distribution:

Remember the values must be in double precision (1.0D0).

Note: If annular sampling is used, the coordinates has to be set manually as well.

Source routine – Beam starting position

Source routines 22

• By default, values are taken from the BEAMPOS card

• If the direction_flag is set to:

• 0 : All three values are considered and the they are normalized automatically (Default)

• 1 : The manually set value of the z direction is disregarded. Instead, it is calculated from the x

and y direction cosines with a positive sign.

• 2 : As with option 1, but negative sign is used.

• A predefined subroutine is are already available for isotropic direction sampling

Source routine – Beam direction

Source routines 23

• To help debug the source routine, the major particle parameters can be printed

• To enable this feature, set

• The printed parameters:

• Energy / momentum

• Coordinates

• Direction

• Weight

• The number of primaries printed can be set with:

Source routine – Debugging

Source routines 24

Some predefined FLUKA random sampling routines

Source routines 25

• FLUKA offers some useful, predefined routines for random sampling

• my_variable = FLRNDM(XDUMMY)

Assigns a 64-bit random number in [0,1)

• call FLNRRN(gauss1)

Returns a Gaussian distributed random number

• call FLNRR2(gauss1,gauss2)

Returns two uncorrelated Gaussian distributed random numbers

• call SFECFE(sint,cost)

Returns sine and cosine of a random azimuthal angle

SOURCE card and passing parameters

Source routines 26

• To invoke a source routine, it is necessary to add a SOURCE card

• A SOURCE card can be empty or can be used to pass parameters to the routine

• Max. 18 numerical values (WHASOU(ii)) and 1 string (max. 8 characters)

(SDUSOU) can be

• Good practice advice:

Even if the beam energy / momentum is defined in the source routine,

specify it in the BEAM card as it is used for internal initialization.

Set a momentum value higher than the maximum possible one.

Adding the user routine to the project folder

Source routines 27

1. Open [Compile] tab

2. It is maybe hidden in the

dropdown menu

3. Click the [Database] button

(Use [Add] for an existing file)

4. Select the user routine you

want to use

5. Click [Copy to Project]

The copied user routine will be in

the Flair projects directory

Compiling a custom FLUKA executable

Source routines 28

1. Verify that the user routine is in

the list

2. Name your custom executable

3. Select the appropriate linker:

a. Use lfluka by default

b. Use ldpmqmd if DPMJET or

RQMD models are needed

4. Compile the executable

The custom executable should be

set default on the [Run] tab

automatically

Time to do some hands-on practice!

Source routines 29

• We will now see together a few small examples of “new” source routine

xkcd.com/303

