11-th Korean Mathematical Olympiad 1997/98

First Round - November 16, 1997

1. For a positive integer n let $f(n)$ be the number of different ways to decompose n into a sum of positive odd integers (two decompositions that differ only in order are considered different). Find an expression for $f(n)$ in terms of n.
2. For a positive integer n let

$$
a_{n}=\sum_{k=0}^{[n / 2]}\binom{n-k}{k}\left(-\frac{1}{4}\right)^{k} .
$$

Compute a_{1997}.
3. Let $A B C D E F$ be a convex hexagon with $A B=B C, C D=D E$ and $E F=F A$. Prove the inequality

$$
\frac{B C}{B E}+\frac{D E}{D A}+\frac{F A}{F C} \geq \frac{3}{2}
$$

and find when equality occurs.
4. Let p be an odd prime and a, b be positive integers such that

$$
1+\frac{1}{2^{3}}+\cdots+\frac{1}{(p-1)^{3}}=\frac{a}{b} .
$$

Prove that p divides a.
5. In a triangle $A B C$ of area T, a, b, c are the lengths of sides $B C, C A, A B$, and x, y, z the lengths of the medians from A, B, C, respectively. Prove the inequality

$$
\frac{a^{2}}{x}+\frac{b^{2}}{y}+\frac{c^{2}}{z} \geq 4 \sqrt{T \sqrt{3}}
$$

and find the cases of equality.
6. Find all polynomials $p(x, y)$ with the following properties:
(i) $x^{100}+y^{100} \leq p(x, y) \leq 101\left(x^{100}+y^{100}\right)$ for all x, y;
(ii) $(x-y) p(x, y)=(x-1) p(x, 1)+(1-y) p(1, y)$ for all x, y.
7. Let X, Y, Z be points outside triangle $A B C$ such that $\angle B A Z=\angle C A Y, \angle C B X=$ $\angle A B Z, \angle A C Y=\angle B C X$. Show that the lines $A X, B Y, C Z$ are concurrent.
8. Prove that there are no different positive integers x, y, z, w such that $x^{2}, y^{2}, z^{2}, w^{2}$ form an arithmetic progression.

