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J.C. Maćıas Ponce, A.E. Giles Flores, S.E. Delgadillo Alemán, R.A. Kú Carrillo
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J. Mas and J. Maŕın . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Relative research contributions towards the characterization of scour in bridge piers based
on operational modal analysis techniques
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1

Developable surface patches bounded by NURBS
curves

L. Fernández-Jambrina♭1

(♭) ETSI Navales,
Universidad Politécnica de Madrid

Avenida de la Memoria 4, 28040-Madrid, Spain.

1 Introduction

In this talk we review the problem of constructing a developable surface patch bounded by two
rational or NURBS (Non-Uniform Rational B-spline) curves.

NURBS curves are curves which are piecewise rational. That is, they are a generalisation
of spline curves, which are piecewise polynomial curves. Similarly we define NURBS surfaces and
solids. NURBS curves have been the standard in Computer Aided Design [1] for a long time through
IGES and STEP specifications. They are described by a list of points called control polygon and
two list of numbers: the list of weights and the list of knots.

Developable surfaces are ruled surfaces with null Gaussian curvature [2]. This implies that
they can be constructed from planar surfaces by just cutting, rolling and folding, so that metric
properties such as lengths and angles between curves and areas are preserved. These geometric
properties are of great interest for steel and textile industry, since these are pieces designed in the
plane and then combed into space.

For instance, in naval architecture sheets of steel are adapted to fit into the hull of a ship [3–5].
If these sheets are combed just with a folding machine, the costs are lower than if they require the
use of heat. In textile industry cloth is planar and is cut and sewn to produce garments and the
quality is improved if it is not stretched [6]. They have also been used for designing facades in
architecture [7] and in automobile industry [8].

In geometric design the standard relies on the use of rational B-spline curves and surfaces
(NURBS), which are described by control polygons or nets and lists of weights and knots. In the
case of ruled surfaces, the control net is formed by just the control polygons of the bounding curves,
since segments can be described by just their endpoints, which form their control polygon.

This problem has been addressed in several ways [9], but the key drawback is that when we
require the developable surface to be NURBS and bounded by NURBS curves, the possibilities are
restricted [10,11].

In some cases, the bounding curves are planar and lie on parallel planes [12,13] and this simplifies
the problem.

For instance, one can obtain general solutions for developable NURBS surfaces bounded by
NURBS curves [15–19].

1leonardo.fernandez@upm.es
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Considering the dual space in projective geometry has been also profitable, since developable
surfaces may be seen as envelopes of lines of planes [20,21].

For this reason our proposal is to consider developable surface patches which are not NURBS,
though bounded by NURBS curves [22]. In fact, we are able to obtain every possible solution, good
or bad, to this problem in our framework.

Our approach is based on performing a reparametrisation on one of the bounding curves of
the surface patch and imposing that the resulting surface be developable [22]. One would expect
a differential equation for the reparametrisation function. However, the condition happens to
be algebraic. Another approach [23] reduces the null Gaussian curvature condition to quadratic
equations.

Moreover, if the bounding curves are (piecewise) polynomial or rational of degree n, the devel-
opability condition is an algebraic equation of degree 2n− 2. The degree may be lowered to n− 1
if the curves are (piecewise) polynomial and lie on parallel planes.

2 Methods

We start with a ruled surface parametrised by b(t, v) and bounded by two parametrised curves,
c(t), d(t),

b(t, v) = (1− v)c(t) + vd(t), t, v ∈ [0, 1].

For given c(t) and d(t), this ruled surface will not be developable in general, but, if it is
developable, this feature shall not depend on the chosen parametrisation.

The Gaussian curvature K(t, v) is the quotient of the determinants of the second, B(t, v), and
first, G(t, v), fundamental forms of the surface patch parametrised by b(t, v),

K(t, v) = detB(t, v)
detG(t, v) .

The first fundamental form G(t, v) is the usual scalar product restricted to tangent vectors to
the surface at the point b(t, v) and is used, for instance, for calculating areas,

Area(S) =
∫

D

√
detG(t, v) dtdv,

but, since its determinant is positive and appears at the denominator of K(u, v), we need not pay
attention to it, though due to Gauss’ Theorema Egregium [2], the Gaussian curvature is an intrinsic
property and may be written in terms of just the first fundamental form.

On the other hand, the second fundamental form B(t, v) is the extrinsic curvature of the surface
at the point b(t, v) with ν as unitary normal to the surface and can be constructed with the
projections of the second derivatives of the parametrisation along the unitary normal ν(t, v) to the
surface at b(t, v),

B(t, v) =
(
btt · ν btv · ν
bvt · ν bvv · ν

)
(t,v)

.

In this sense, the second fundamental form is used to compute the normal curvature at points
on the surface.

For a ruled surface parametrised as in (1),

detB(t, v) =
∣∣∣∣∣ ((1− v)c′′(t) + vd′′(t)) · ν (d′(t)− c′(t)) · ν

(d′(t)− c′(t)) · ν 0

∣∣∣∣∣
(t,v)

= −
((
d′(t)− c′(t)

)
· ν
)2
,

2
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d(t)

c(t)

d'(t0)

c'(t0)

d(t0)-c(t0)

Figure 1: Developability is equivalent to having the same tangent plane along each ruling of a ruled
surface

we see that the Gaussian curvature is always non-positive and hence there are no elliptic points on
a ruled surface, since detB(t, v) is always positive.

Moreover, vanishing Gaussian curvature is equivalent to vanishing (d′(t)− c′(t))·ν on the points
of the ruled surface.

Since at a point b(t, v) on the surface we have bt(u, v) = (1−v)c′(t) +d′(t), bv(t, v) = d(t)− c(t)
as two tangent vectors to the surface, we may construct a normal vector to the surface at b(t, v) as
N = bt × bv, and then having a vanishing Gaussian curvature is equivalent to having a vanishing
triple product,

c′(t) · d′(t)× (d(t)− c(t)) = det
(
c′(t), d′(t), d(t)− c(t)

)
= 0, t ∈ [0, 1] (1)

at all points of the surface patch.
As we see in Fig 1, this is equivalent to requiring that the three vectors c′(t), d′(t) and d(t)−c(t)

lie on the same plane for all values of t. This also implies that the normal to the surface is the
same for all points on the segment (ruling) linking c(t) and d(t).

Our contribution to deal with this problem is based on reparametrisation of one of the bounding
curves by a function T (t),

b̃(t, v) = (1− v)c(t) + vd(T (t)) (2)

and require b̃(t, v) to satisfy the null Gaussian curvature condition.

3 Results

The developability condition (1) applied to parametrisations such as (2) can be seen to be algebraic
in T (t), since the dependence on the derivative T ′(t) is factored out by the determinant,

det
(
c′(t), ḋ(T ), d(T )− c(t)

)
= 0, (3)

where the dot stands for derivation with respect to T .
In the case of (piecewise) polynomial or rational curves c(t), d(t), further consequences may be

derived:
Theorem 1: Let c(t), d(T ), t, T ∈ [0, 1] be rational curves of degree n. The parameterized ruled
surface,

b(t, v) = (1− v)c(t) + vd(T (t)), t, v ∈ [0, 1],

is a developable surface if the reparameterization function T (t) satisfies the algebraic equation

det
(
c′(t), ḋ(T ), d(T )− c(t)

)
T =T (t)

= 0,

3
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c(t)

d(T(t))

c0

c4

d0d4

Figure 2: Developable patch bounded by two cubic spline curves

c(t)

d(T)

c0

d0

c4

d4

Figure 3: Developable surface with a regression area

and is a real monotonically increasing function of t.
This equation is of degree 2n− 2 at most. If both curves are (piecewise) polynomial and lie on

parallel planes, the equation is of degree n− 1 at most. We may see an example in Fig 2.
The price to pay is that solutions of this algebraic equation will not be rational or polynomial

in general and b̃(t, v) will no longer be NURBS.
Since the condition on the reparametrisation is algebraic, the number of possible solutions is

finite, but not all of them are geometrically acceptable.
For being a reparametrisation, T (t) must be a monotonically increasing function. Otherwise,

we would have unpleasant regression areas with more than on ruling through some points of the
curves (See Fig 3). This can be checked with the help of

T ′(t) =
det

(
c′′(t), ḋ(T ), d(T )− c(t)

)
det

(
d̈(T ), c′(t), d(T )− c(t)

)
∣∣∣∣∣∣
T =T (t)

,

which we derive from the null Gaussian curvature condition.
This implies that monotonicity is granted if

sgn
(
c′′(t) · ν(t)

)
= sgn

(
d̈(T ) · ν(t)

)∣∣∣
T =T (t)

,

where ν(t) is the unitary normal to the ruled surface along the segment at t. This means that the
normal curvatures of both curves must have the same sign for each value of t.

Hence, acceptable solutions just appear if both curves are qualitatively similar regarding their
curvature.
Theorem 2: Let c(t), d(T ), t, T ∈ [0, 1] be parameterized curves. Let T (t) be a reparameterization
function so that

b(t, v) = (1− v)c(t) + vd(T (t)), t, v ∈ [0, 1],

4
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is a developable surface. T (t) is a monotonically increasing function if and only if for all t,

sgn
(
c′′(t) · ν(t)

)
= sgn

(
d̈(T ) · ν(t)

)∣∣∣
T =T (t)

,

where ν(t) is the unitary normal to the surface along the ruling at t.
Or equivalently, for the normal curvatures kn,c, kn,d of both curves

sgn (kn,c(t)) = sgn (kn,d(T (t)) ,

for all values of t.
In the case of parameterizations of class Ck of differentiability, T (t) is of class Ck−1.

4 Conclusions

We have produced a new approach for dealing with the problem of constructing a developable
surface patch between two parametrised curves c(t) and d(t).

This approach is grounded on performing a reparametrisation of one of the curves and the
developability condition is not a differential equation, but an algebraic equation, and provides all
possible solutions to the problem.

In the case of (piecewise) polynomial or rational curves of degree n, the developability condition
is an algebraic equation of degree 2n− 2. Since the most usual degree in Computer Aided Design
is three, this means we are dealing with a fourth degree equation, which can be handled either by
numerical or analytical methods.

For (piecewise) polynomial curves of degree n, lying on parallel planes, the algebraic equation
is of degree n− 1.

Requiring that the reparametrisation function be a monotonically increasing function, in order
to avoid regression areas on the developable surface patch, is achieved if the sign of the normal
curvatures of both bounding curves is the same at the endpoints of each ruling.

With this approach, it is easy to control the final class of differentiability of the surface in the
piecewise case.
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rep., GM Research Publication R&D-8057, 1993.

[9] Pottmann, H., Wallner, J., Computational line geometry, Mathematics and Visualization, Berlin,
Springer-Verlag, Berlin, 2001.
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1 Introduction

One of the major public health threats today is antibiotic resistance, i.e. the ability of certain
bacteria to genetically adapt and resist antibiotic treatment [12, 14]. The evolution of antibiotic
resistance has been particularly worrying in recent years, and the latest forecasts estimate that by
the year 2050, resistance will cause around 10 million deaths annually and an annual cost of 100
billion USD [7]. In the face of this challenge, mathematical modeling can provide great value in
predicting, monitoring and aiding public health policy decisions.

On the evolution of the dynamics of antibiotic resistance, is well-known that antibiotic consump-
tion increases bacterial resistance [3]. This evidence is based on the fact that, in an environment
with the presence of antibiotic, resistance is a competitive advantage for the bacteria and, conse-
quently, resistant bacteria survive in greater proportion than sensitive bacteria [9]. However, in
the absence of antibiotic, there is no clear consensus on whether maintaining resistance is a disad-
vantage for the resistant bacteria and, then, whether antibiotic resistance can be reversed [2, 10].

In this work, a general random mathematical model that describes the evolution over time of the
proportion of a resistant microorganism against an antibiotic have been proposed. The equation
depends on the antibiotic consumption. Using real available data on antibiotic consumption and
the proportion of resistance, the random model parameters have been calibrated using the Multi-
Objective Particle Swarm Optimization (MOPSO) bio-inspired evolutionary algorithm [5] and the
Monte Carlo method. In this way, the probability distributions of the parameters that best capture
the uncertainty of the time series of data have been obtained.
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2 Methods

2.1 Model description

The proposed random mathematical model describes the evolution of bacterial resistance to an
antibiotic in a population over time. This equation has been derived from a compartmental micro-
biological model with three species (subpopulations): resistant bacteria, sensitive bacteria and free
space left by dying bacteria [11]. The random equation for the proportion of resistant bacteria in
a population is given by:

p(t) = eτA(t)−∆κt+θ0

eτA(t)−∆κt+θ0 + 1
∈ (0, 1), (1)

where τ ∈ R+ is the antibiotic kill rate, ∆κ ∈ R+ is the difference between resistant and sensitive
bacterial mortality rates, and θ0 ∈ R is the ratio θ(t), which is defined as θ(t) = log

(
p(t)

1−p(t)

)
, at

time t = 0. The three parameters are considered in this model as random variables. The cumulative
antibiotic consumption function, defined as A(t) =

∫ t
0 a(u)du ∈ R+ (where a(t) is the antibiotic

consumption registered at time t), is considered as a known deterministic function.

2.2 Data

The random model has been applied to study the resistance evolution of the Acinetobacter bau-
mannii (or A. baumannii) bacterium, which is one of the most problematic microorganisms in
hospitals. As antibiotic, we have chosen colistin because is one of the last efective antibiotics
against A. baumannii [4, 8]. For our application, the data series of interest have been (i) the
proportion p̂ = {p̂t : t = 0, 1, . . . , 107} of A. baumannii colistin-resistant monthly cases in the
2012-2020 period [13], and (ii) the yearly colistin consumption â = {ât : t = 47, . . . , 107} [1] in
the 2016-2020 period. As consumption data between 2012 and 2015 are not registered in antibiotic
consumption database, and a linear growth have been observed, the 2012-2015 period monthly
consumption data have been interpolated by a linear regression model, obtaining an estimation
function â(t) = β1t+ β0 = 0.000525t+ 0.031625 for the 2012-2020 entire period.

2.3 Model calibration

The first step in the calibration process is to specify the family distribution of the model param-
eters. From the data we do not have any information about the effect of decreased resistance to
a reduction in consumption. Consequently, we assume the worst possible scenario: resistance is
not a competitive disadvantage in the absence of antibiotic, or, ∆κ = 0. On the other hand, the
remaining parameters τ ∈ R+ and θ0 ∈ R can be considered as random variables with log-normal
and Gaussian distributions respectively, so that

τ ∼ log-N (µτ , στ ), θ0 ∼ N (µθ0 , σθ0),

Once defined the random model parameters, the calibration goal is to find the parameter set
π = (µτ , µθ0 , στ , σθ0) that best captures the uncertainty of the data within a specific (1 − α)-
confidence region. A significance level of α = 0.05 has been chosen. To calibrate the model, the
Multi-Objective Particle Swarm Optimization (MOPSO) bioinspired evolutionary algorithm have
been applied [5]. The algorithm follows these steps:

1. Generate L particles. Each particle represents a set of parameters π = (µτ , µθ0 , στ , σθ0),
which characterizes τ ∼ log-N (µτ , στ ) and θ0 ∼ N (µθ0 , σθ0) random model parameters.
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2. Generate a set P = {pi(t;π) : t = 0, . . . , 107; i = 1, . . . , n} of n model simulations using the
random model in Equation (1) with n sampled pairs {τ, θ0}ni=1 from the model parameters
distributions (Monte Carlo sampling), and considering ∆κ = 0.

3. Compute the objetive functions with set P and real data p̂, and the time instants set T =
{0, . . . , 107}. Two orthogonal or antagonistic objective functions have been applied:

• Inside-outside error function: if we define qt = q(t;P ) and Qt = Q(t;P ) as the α/2
and 1 − α/2 quantiles, respectively, of the set {pi(t;π)}ni=1 given a time instant t, the
inside-outside error function Fio is defined as

Fio (p̂, P ) =
∑
t∈T

min {|p̂t − qt|, |p̂t −Qt|}1p̂t ̸∈[qt,Qt] , (2)

where 1p̂t ̸∈[qt,Qt] is the indicator function.
• Standard deviation error function: if we define σt = σ(t;P ) as the standard deviation

of the set {pi(t;π)}ni=1 given a time instant t, the standard deviation error function Fσ

is defined as

Fσ(P ) =
∑
t∈T

σ(t;P ). (3)

As both functions are orthogonal, we are facing a multi-objective optimization problem.

4. Check if [Fio (p̂, P ) , Fσ(P )] is a local best and/or a global best. It is considered as local best
if the particle is not Pareto dominated by any of the previous local bests, and global best if
the solution is not Pareto dominated by any of the previous global bests.

5. Update particle randomly or via the velocity term, using the classical PSO implementation [6].

6. Repeat from 2 until convergence is achieved.

Generally, the result of optimization a set of solutions (the Pareto front) called Pareto-optimal
solutions, which are not dominated by any other solution.

3 Results

After the application of the optimization algorithm on the model and the data, a Pareto front has
been obtained, from which a good solution has been chosen, preferring solutions with a low inside-
outside error Fio, ensuring that the majority of the data are within the 95%-confidence interval.
Based on these criteria, the chosen solution has been

π∗ = (µτ , στ , µθ0 , σθ0)∗ = (−1.1507, 0.0210,−3.9327, 0.4523) ,
τ ∼ log-N (−1.1507, 0.0210), θ0 ∼ N (−3.9327, 0.4523), (4)
[F ∗

io, F
∗
σ ] = [0.3233, 2.6597].

The probability distributions of the model parameters and the fit to the data are shown in
Figure 1.
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Figure 1: Random model expected value and 95%-confidence interval (left) and model parameters
PDFs (right).

4 Conclusions

A general model for antibiotic resistance proportion dynamics considering antibiotic consumption
have been analyzed and successfully applied to a real-world case of antibiotic resistance: the colistin-
resistant A. baumannii. Additionally, a complete random calibration method based on the MOPSO
algorithm and Monte Carlo method have been performed to find the random model parameters
that best fit to real resistance data series, successfully capturing the randomness within a 95%-
confidence interval.
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1 Introduction

Concrete is one of the most widely used materials in construction. This is due to the numerous
advantages it offers in terms of durability, versatility, and cost, among others. Cement is the
hydraulic binder of concrete, so the compressive strength depends, to a large extent, on the chemical
reaction of cement hydration [1]. Consequently, this publication deals with the determination of
the compressive strength of concrete during the cement hydration process, and the prediction at
early ages of the compressive strength at day 28.

For this purpose, the chemical reaction of the cement hydration process has been studied,
in which tricalcium silicate, dicalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite
react with water to form ettringite, calcium hydroxide and calcium silicate gel [2]. In addition,
an internal structure of capillaries and cavities arises with ions dissolved in the water acting as a
reagent. Under these conditions, when an electric field is applied, an accelerated movement of ions
occurs.

This explains how increases in electrical resistivity indicate the decrease in porosity, which is
the fundamental mechanism that characterizes concrete hydration and compressive strength gain
over time. However, it is influenced by several factors related to concrete mix composition (such
as cement type, cement content, water-cement ratio, and use of admixtures and supplementary
cementations materials). These factors influence the microstructure of concrete as well as the pore
solution chemistry, and therefore influence its electrical resistivity.

2 Methodology

With this concept, a system capable of measuring the ions through the electrical resistivity mea-
surement has been developed. The developed system is an own hardware development based on
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Wenner’s four-point method. Throughout the development of the hardware, a study of the opti-
mal electrode design, excitation methodology, power supply system and communication system has
been carried out.

Figure 1: Harware scheme to resisitivity measures.

Finally, the resistivity value is obtained from the following expression

ρ = 4πaRshunt(VB − VC)
VD

(1)

Once the way to measure the electrical resistivity of the concrete has been established, an
algorithm based on artificial intelligence has been developed to determine the relationship between
resistivity and compressive strength. As well as the methodology to predict at early ages the
value that the compressive strength of the concrete will acquire on day 28. For the training of the
algorithm, compressive strength and electrical resistivity data have been taken during the cement
hydration process in different dosages.

The aim of this document is to train the neural network to obtain the curves that define the
hardening of the analysed dosages. From these curves it will be possible to determine the real
resistance of an instrumented element using the system as well as to identify anomalies in early
stages of curing.

3 Test description

For the demonstration of the functioning, the following tests have been considered:

• A total of 2 dosages will be carried out. Both dosages will be cured under controlled (indoor)
conditions D1 and D2.

Table 1: Composition of two dosages for testing.

• One of the dosages (D1) will be repeated and left to cure under not controlled conditions
(outdoor) (D1’).

13



Modelling for Engineering & Human Behaviour 2022

• Two mixtures (Test) shall be carried out on each dosage. For each of the mixtures, density,
porosity (% air) and consistency (concrete slump test) measurements shall be taken.

• A total of 16 test specimens shall be made from each test. Two specimens will be instrumented
with the systems and the other 14 will be used to carry out two compressive strength tests
at 1, 2, 7, 14, 21, 28, 60 days after mixing.

• The measured data together with the data collected by the hardware system will be used to ex-
tract the theoretical resistivity and resistivity evolution curves and the Resistivity-Resistivity
curve for each dosage under ideal conditions, as well as for the third dosage at outdoor
conditions.

4 Neural Network training

The system performs periodic measurements of resistance (Ohms) over test piece and the environ-
mental conditions temperature and humidity each two hours. The resistivity values are strongly
influenced by environmental conditions, therefore the system performs periodic measurements of
temperature and humidity in order to correct the measured values.

The curves of all dosages together are shown below to see the similarity between tests of the
same dosage and the differences between different dosages.

Figure 2: Corrected resisitivity measures of dosages

This is due to the fact that outdoor conditions (heat and wind) favour the evaporation of water
from the concrete, reducing the amount of water left to react with the cement and harden. This
loss of water causes a higher increase in resistivity than the curing process without water loss.

As the amount of water is less than necessary for the chemical reaction to take place, the
chemical reaction is not completed, not all of the cement hardens and therefore it can be expected
that the dosage 3 will not reach the expected strength.

4.1 Compressive strength

Over 14 specimens was carried out two compressive strength tests at 1, 2, 7, 14, 21, 28 and 60 days
after mixing.

14



Modelling for Engineering & Human Behaviour 2022

Table 2: Measures of compressive strengths.

4.2 Neural Network training

The selected network structure consists of two hidden layers, the first of 15 neurons and the second
of 7.

Figure 3: Neural Network structure

Whose inputs and outputs are:

Table 3: Neural Network inputs and outputs.
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5 Results and conclusions

The training results show a mean squared error of less than 0.0008 and a regression greater than
0.99 for training dataset, validation dataset and total dataset. These results show satisfactory
training, however, as the inputs and outputs are normalised, they do not show the real error that
is made.

In order to have an estimation of the error it is most appropriate to compare the real curves
with the theoretical curves for each of the dosages.

Figure 4: Theoretical curves (RNN) and measured curves fo D2.

As can be seen in the graphs above, the values obtained by the neural network agree with
the measured data. For a more objective analysis, the errors have been calculated for each of the
measurements of resistivity (RS) and strengths (RC). According to the following expression:

RX Error(%) = 100abs(RXreal −RXRNN )
RXreal

, where X = C or S (2)
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Table 4: RC Error (%) of each test. Mean (RC Error) = 0.4253%.

Table 5: RS Error (%) of each test. Mean (RS Error) = 4.9467 %.

This result shows that is possible to determine the optimum moment to remove the shoring, to
remove the formwork or to demould. In addition, the compressive strength of the concrete after
the hydration process of the cement can be known at an early stage.
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1 Introduction

Infrastructure maintenance investment needs are growing yearly due to the increasing ageing of the
infrastructure and the higher stresses it is exposed to. Therefore, in addition to ensuring safety,
maintenance investment optimisation must be a priority for infrastructure managers, as delaying
investment increases the costs and risks of ageing infrastructure.

Nowadays, most maintenance plans are designed based on the findings of traditional visual in-
spections. The effectiveness of these visual inspections depends entirely on the skills and experience
of the bridge inspector, and these defects must have a visible manifestation. The transmission of
information to the assessing engineer, who is responsible for deciding on any necessary action, is
as accurate and consistent as possible and is also a critical factor.

In recent years, non-destructive techniques (NDT) have been developed to extend the range of
identifiable defects (i.e. both visible and non-visible). However, even if an inspector employs such
equipment, the inspection still has the same spot and discrete nature that characterises and limits
the usefulness of traditional visual inspections.

Faced with the decision that the Manager of these structures must make as to which bridges
would be most strategic and beneficial to install such systems, several questions arise that this
study has addressed.
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2 Methods

2.1 Problem definition

As is well known, all structures require periodic maintenance, which, if not applied in response to
the needs of the bridge or at the right time, can compromise the structure’s functionality or even
its stability. This makes it mandatory to ask the following questions:

• What maintenance actions does the bridge need?

• How often does it need them?

At this point, monitoring based on the implementation of advanced SHM systems based on
developing a Digital Twin of the bridge provides a valuable aid. These techniques allow us to
know the bridge’s structural needs, thus minimising the investment in maintenance by acting at
the optimum time through the necessary maintenance or reinforcement operation.

Bearing in mind that all bridges need maintenance and that structural monitoring is a tool
that allows optimising and prioritising maintenance actions, it can be stated that having a high
percentage of monitored bridges can be interesting. However, this objective cannot be achieved in
the short term. Based on this approach, the question is: Which bridges should be monitored
first?

To this end, all the available data and background information on the bridges of the networks
under study is analysed based on a series of criteria with which we can rank the bridges that should
be monitored first in the most objectively and exhaustively way possible.

2.2 Choosing evaluation criteria

The different criteria considered for the evaluation of the bridge networks are set out below. Pa-
rameters that have a high impact on bridge maintenance should be chosen. They can be divided
in:

• Strategic parameters: traffic intensity and alternative routes.

• Structural parameters: age, structural health and bridge length.

• Environment parameters: hydrology, scour, seismicity and liquefaction.

2.3 Scoring system

For each criterion, a parameter has been defined ranging from 0 to 50 depending on its importance
on bridge maintenance. Each of the parameters considered in the previous section are shown below.

• Traffic intensity. SHM should prioritize high-demand bridges in the network. TMDA
(Tránsito Medio Diario Anual) can be used to score this criterion and obtain the Traffic
Intensity Index (TII). Evolution of this index can be seen in Figure 1 left.

• Alternative routes. The more time required to take an alternative route, the higher the
Redundancy Index (RI) should give importance to the poorly connected bridges (Figure 1
right).
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Figure 1: Traffic Intnesity Index (left), Redundancy Index (right).

• Age. Older structures are more attractive than new ones in Advanced SHM Systems. For
this reason, Age Index (AI), that can be seen in Figure 2 left, is defined as giving less weight
to newer bridges.

• Structural Health. Structural health is also an interesting parameter for determining which
structures SMH Systems should be installed. The visual inspection score defines Structural
Health Index (SHI). This score is based on the number of defects found during the inspection
(Figure 2 right).

Figure 2: Age Index (left), Structural Health Index (right).

• Bridge length. The bigger the bridge size is, the more maintenance investment is required
to ensure the safety of its users. Bridge Length Index (BLI) is defined to keep this in mind.
Evolution of this index can be seen in Figure 3 left.

• Hydrology. The riverbed behind the bridge should be considered if it has any of its piles in
the river. The riverbed type, near vegetation and Strahler order are combined to define the
Hydraulic Index (HI) shown in Figure 3 right.

Figure 3: Bridge Length Index (left), Hydraulic Index (right).
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• Scour. Scour is a phenomenon that can be very dangerous to the structure in some situa-
tions. Therefore, this parameter must be considered a criterion to determine which bridges
to monitor first (Figure 4 left).

• Seismicity. Seismic activity is essential in some situations since these phenomena can affect
structure stability and integrity. Therefore a seismic criterion is made based on the seismic
zone of the structure to analyze as shown in Figure 4 right. Liquefaction is also a phenomenon
to be considered. It is linked to the terrain type and seismic activity and occurs more
frequently in cohesionless and saturated soils. The liquefaction Index (LI) is defined in terms
of the ISL (́Indice de Susceptibilidad a la Licuefacción) and is a modifier of the Seismicity
Index.

Figure 4: Scour Index (left), Seismic Index (right).

In order to obtain the final score, a weighted average of each index is made in Equation 1, where
the weight of each index can be varied according to the analyst’s needs. The weights assigned for
each criterion are shown in Table 1

Score =
8∑

i=1

PIi ·Wi

100 (1)

PIi TII RI AI SHI BLI HI SCI SI

Wi (%) 10 5 10 20 10 10 20 15

Table 1: Assigned weights for each index.

3 Results

With the application of the scoring system to every bridge of the network, structures with higher
scores can be selected. In these bridges, the installation of SMH Systems should be prioritized in
order to minimize costs.

As an example of application, some of the bridges belonging to the “Ruta de los Ŕıos” (Chile)
have been analysed (Figure 5). A higher score will indicate a higher monitoring priority, allowing,
at a glance, to decide which bridges in the network to apply advanced SHM systems.

Rucaco Bridge, San Pedro Bridge and Cruces Bridge are the three highest-scoring bridges in
this case (Figure 6). Therefore, these bridges should be prioritised for SHM installation.
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Figure 5: Bridge scoring in “Ruta de los Ŕıos”.

Figure 6: Highest-scoring bridges in “Ruta de los Ŕıos”.

4 Conclusions

Advanced SMH Systems can provide more frequent or continuous information about the structure,
but they cannot be installed in every network bridge. A tool to select in which bridges to install
SMH has been developed based on different parameters affecting costs (strategic, structural and
environmental). As output, a bridge rank can be obtained, and the structures with a higher score
are more suitable to install SHM Systems.
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1 Introduction

Most phenomena observed in nature can be described as a function changing smoothly over time.
However, sometimes the system suddenly changes its state, requiring special mathematical tools
to model its dynamics correctly. This is common in biology, medicine, or engineering when deter-
mining the effectiveness of specific impulsive-type control strategies. In ecology, these are known
as harvesting models [5, 9, 10].

In this contribution, we will study, from a probabilistic standpoint, the following random Initial
Value Problem (IVP):


dX(t, ω)

dt = g(X(t, ω), t,A(ω))−
N∑

k=1
Γk(ω)δ(t− tk)X(t, ω), t > t0,

X(t0, ω) = X0(ω).

(1)

Here t0 denotes a real number; X0(ω), A(ω) := (A1(ω), . . . , Am(ω)) and {Γk(ω)}Nk=1 are assumed
to be independent absolutely continuous random variables defined on the Hilbert space L2(Ω,R),
whose elements are real-valued random variables with finite variance and (Ω,F ,P) denotes a com-
plete probability space [6]; δ(t − tk) stands for the Dirac delta function [4] acting at the prefixed
time instants t = tk, k = 1, . . . , N and g is known as the (scalar) field function satisfying certain
conditions that will be specified later. Finally, X(t, ω) denotes the solution of the random IVP (1)

1vibees@doctor.upv.es
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2 Methods and Results

2.1 Pathwise solution

The deterministic Laplace transform [2] and the usual conditions required for the existence and
uniqueness of ODEs have allowed us to construct a right-continuous pathwise solution of the random
IVP (1), given by

X(t, ω) = X0(ω) +
∫ t

t0
g(X(s, ω), s,A(ω))ds−

N∑
k=1

Γk(ω)X(tk, ω)H(t− tk), t ≥ t0, (2)

X(tk, ω) = X(t−k , ω)
1 + Γk(ω) = X(t+k , ω), ω ∈ Ω̃. (3)

2.2 Probability Density Function evolution

RDEs verifies a probability conservation property; that is, the total probability in the phase space
is conserved through time. This fact gives an evolution PDE which is verified by its 1-PDF. The
theorem can be stated as follows

Theorem 1. [1] Let b(·, t) : R −→ R be a Lipschitz-continuous function for all t ∈ (t0,∞), and
continuous in t. Let X(t, ω), t ≥ t0, ω ∈ Ω be the stochastic process verifying the following RDE
in the almost-surely or mean square sense:

dX(t)
dt = b(X(t), t), t > t0,

X(t0) = X0 ∈ L2(Ω,R).
(4)

Let D be a set such that {X([t0,∞), ω)}ω∈Ω ⊂ D. Then, the 1-PDF of the stochastic process X(t),
denoted by f = fX(t), verifies the Liouville PDE:

∂tf(x, t) + ∂x[b f ](x, t) = 0, x ∈ D, t > t0,

f(x, t0) = f0(x), x ∈ D,

∂xf(x, t) = 0, x ∈ ∂D, t ≥ t0,

(5)

where f0 is the PDF of X0 = X0(ω).

When the RDE has random parameters, IVP (5) becomes a family of deterministic PDE prob-
lems indexed in the realizations, a, of the random parameter vector, A = A(ω),

∂tf(x, t |a) + ∂x[b(x, t,a)f(x, t |a)] = 0, x ∈ D ⊆ R, t > t0,

f(x, t0 |a) = f0(x), x ∈ D.
(6)

The PDF of the RDE solution (independent of parameter realizations) is obtained by marginalizing
the joint PDF of both the solution and the parameter vector A, which, using the conditional PDF
can be written as:

f(x, t) =
∫
Rm

f(x, t |a)fA(a)da = EA[f(x, t |A)], (7)

where fA is the parameters’ joint PDF and E denotes the expectation operator. This shows that
the PDF can be obtained by solving (6) for all realizations a of A and then computing its mean.
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However, a priori, global-in-time existence of a solution to the Liouville equation can only be
assured when the field function b(·, t) is Lipschitz continuous, uniformly in t. The field of the RDE
class under study, b(x, t) = g(x, t)−∑k γkδ(t− tk)x, does not verify this hypothesis at the impulse
times {tk}Nk=1. We want to obtain a condition such as (3), but for the PDF. This will allow the
computation of the evolution of f0, accurately capturing the discontinuities at the impulse times.

Let us turn back to the set of conditions in (3), which are identities between random variables.
We are going to make use of the RVT theorem, which can be written as follows:
Theorem 2. [2,8] Let X, Y : Ω→ RM be two random vectors with PDFs fX and fY, respectively.
Assume that there is a one-to-one, C1 function h such that X = h(Y). Then, denoting h−1 as the
inverse mapping of h,

fX(x) = fY(h−1(x))
∣∣∣∣∣∂h−1(x)

∂x

∣∣∣∣∣ , (8)

where
∣∣∣∂h−1(x)

∂x

∣∣∣ denotes the absolute value of the determinant of the Jacobian matrix.

Now, the Liouville equation describes the evolution of the PDF between impulse times, whereas
at any impulse time, applying the RVT theorem, we obtain:

f(x, tk) = EΓk
[f
(
x (1 + Γk), t−k

)
|1 + Γk|], ∀x > 0, k = 1, . . . , N, (9)

because of the relations at (3).

3 Results

In this contribution, we are going to deal with the impulse-harvest generalized logistic model with
a finite number of captures, say N ,

X ′(t, ω) = α(t) r(ω)X(t, ω)
(

1−
(
X(t, ω)
K(ω)

)ν(ω))
−

N∑
n=1

Γn(ω)δ(t− tn)X(t, ω), (10)

X(t0, ω) = X0(ω),

where t ≥ t0 and ω ∈ Ω̃. As usual, t is interpreted as the time, the parameter r is the growth (r > 0)
or decay (r < 0) rate, and K is the carrying capacity. The differential equation is generalized by
adding two terms: a positive, monotonically growing function α(·) and a constant positive term ν.
The first term, α(·), allows controlling the so-called lag phase, which is the growth phase in which
the population under study has not yet achieved a fully exponential growth. In particular, we have
chosen [7]:

α(t) := q(ω)
q(ω) + e−m(ω) t

, q,m > 0 a.s.

The latter, ν, is a power that controls how fast the carrying capacity K is approached and is known
as deceleration term. When ν = 1, the classical logistic differential equation is obtained. And when
ν tends to 0, the Gompertz equation is given. The incorporation of both the function α(·) and the
power ν allows for more flexible S-shaped curves to model growth phenomena over time.

3.1 Tumor removal

Radiotherapy, chemotherapy, and direct retrieval of a fraction of a tumor mass are some of the
main techniques used to treat cancer. The first two treatments have a prolonged effect of tumor
destruction, whereas the latter can be modeled via a delta-type impulse function because of the
sudden extraction of the tumor mass with respect to the total treatment. Let us model this problem
as (10), where the parameter vectors are chosen as follows:
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• The initial tumor size X0 ∼ N|(0,1)(0.15, 0.01), where N|(0,1) is a normal distribution truncated
on the interval (0, 1).

• Variables q and m will be given the same deterministic values as in the previous example:
q = 1 and m = 4.

• We consider r ∼ N|(0,1)(0.15, 0.0075), ν ∼ Unif(1, 1.25) and K ∼ Unif(0.9, 1).

• We are going to consider 5 removals with equally distributed intensity given by Γ ∼ N|R+(2, 0.01),
at times TTumor = {t1 = 15, t2 = 25, t3 = 35, t4 = 45, t5 = 55}.

Figure 1, shows the mean and 95%-confidence intervals according to the prefixed parameters and
removal times. It is seen how, after each removal, the tumor size grows according to the un-removed
size of the tumor. Interestingly, the confidence interval amplitude before each removal is higher than
the uncertainty after the removal. Indeed, since all removals are distributed as Γ ∼ N|R+(2, 0.01),
it is easily seen that each removal takes away half of the tumor (in average), thus reducing the
uncertainty after each removal time. This case allows having a long-time prediction with a reduced
level of uncertainty while still considering random impulses. This is further seen in Figure 2, where
the PDF given as the solution of the Liouville equation in this particular problem setting is shown
in every simulated time in TTumor.
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Figure 1: Time evolution of the mean tumor size and a 95% confidence interval with several
extractions.

4 Conclusions

In this contribution, we have obtained a pathwise solution to a general random differential equa-
tion with a finite number of random-intensity, state-dependent, impulsive terms, with the usual
assumptions on the regularity of the field function. Furthermore, we have determined the evolution
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Figure 2: Full view of the PDF evolution simulations at the corresponding time values in TTumor,
together with the mean (red) and 95% confidence intervals (dashed, black). Compare with Figure
1.

of the first probability density function of the solution stochastic process by combining the Liou-
ville equation and the Random Variable Transformation theorem. We have applied our general
theoretical findings to a mathematical model emerging from the generalized logistic model with
natural growth altered by impulsive terms acting contrarily to its natural dynamics.

As a final note, the work on which this presentation was based has been submitted to a scientific
journal as a research article.
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References

[1] V. Bevia, C. Burgos, J.C. Cortés, A. Navarro, and R.J. Villanueva. Analysing Differential
Equations with Uncertainties via the Liouville-Gibbs Theorem: Theory and Applications,
pages 1–23. Springer Singapore, Singapore, 2020. ISBN 978-981-15-8498-5. doi: 10.1007/978-
981-15-8498-5 1. URL https://doi.org/10.1007/978-981-15-8498-5 1.

[2] V. Bevia, C. Burgos, J.C. Cortés, A. Navarro-Quiles, and R.-J. Villanueva. Uncer-
tainty quantification analysis of the biological Gompertz model subject to random fluc-
tuations in all its parameters. Chaos, Solitons & Fractals, 138:109908, 2020. doi:
https://doi.org/10.1016/j.chaos.2020.109908.

28



Modelling for Engineering & Human Behaviour 2022

[3] P. Dyke. An Introduction to Laplace Transforms and Fourier Series. Springer London, 2014.
ISBN 978-1-4471-6394-7.

[4] C. Gasquet and P. Witomski. Fourier Analysis and Applications. Filtering, Numerical Com-
putation, Wavelets. Springer, 1998.

[5] N. Hritonenko and Yu. Yatsenko. Bang-bang, impulse, and sustainable harvesting in
age-structured populations. Journal of Biological Systems, 20(02):133–153, 2012. doi:
10.1142/S0218339012500088.
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1 Introduction

The combined matrix of a nonsingular matrix M is defined as C(M) = M ◦M−T where the symbol
◦ denotes the Hadamard product of two matrices. Those matrices are known as the relative gain
array in Mathematical Control Theory (see [1]) as it is pointed out by Johnson and Shapiro in [10],
where some mathematical problems of those matrices are studied. Properties of combined matrices
can be seen in [4] and [8] and [2].

The basic properties of combined matrices are

• The sum of the entries of any column and any row of a combined matrix is 1.

• Note that if the combined matrix is nonnegative then it is double stochastic.

• C(M) preserves the zero entries of M .

• C(MD) = C(DM) = C(M) for any nonsingular diagonal matrix D.

• C(PMQ) = PC(M)Q, where P and Q are two permutation matrices.

• C(MT ) = C(M−1).

The name combined matrix seems to be used by the first time by Fiedler in [4]. Before this paper,
the name Relative Gain Array (RGA) was used either in Control Theory and in the correponding
field of Mathematics.

In this work, we explain some applications of combined matrices and introduce the reduced
combined matrix, which is a special combined matrix in such a way that the sums of its columns
are lower bounds of the condition number of the matrix. In particular, we give properties of the
reduced combined matrix and given the relationship with both combined matrices. Matrices for
which the lower bound is sharp are also given.

1rbru@imm.upv.es
2mgasso@mat.upv.es
3msantana22@uasd.edu.do
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2 Applications

Below are the main applications of combined matrices: (i) Computing double stochastic matrices,
(ii) Mapping eigenvalues with diagonal entries, (iii) Control systems, (iv) Bounding the condition
number κ(A). We are going to discuss these applications mainly those related to control theory
and bounding the condition number. The authors of [6] give some algorithms to compute dou-
ble stochastic matrices, mainly based on some upper Hessenberg matrices and from orthogonal
(unitary) matrices. In both cases, double stochastic matrices are obtained.

It is known (see [10]) the following relation.

• Given a diagonalizable matrix B = [bij ] of size n× n

• with eigenvalues λ1, λ2, . . . , λn.

• Then, there exists an invertible matrix A such that

B = A diag(λ1, λ2, . . . , λn)A−1,

and therefore, 
b11
b22
...
bnn

 = C(A)


λ11
λ22

...
λnn

 .

That is, the image of the eigenvalues of the diagonalizable matrix B by the combined matrix
A is the diagonal entries of B.

• Two more applications are explained in the sections below.

Example 1. Given the matrix

M =

 2.4500 −1.5200 0.4500
−1.3700 5.8300 −3.5400
−2.3500 0.6700 4.4500


its combined matrix is

C(M) =

 1.3037 −0.4118 0.1081
−0.1819 1.3103 −0.1284
−0.1218 0.1014 1.0203

 .
Note that the sums of its columns and rows are 1.

3 Relative gain array

Suppose we have a MultiInput MultiOutput control system (MIMO) with

• inputs u1, u2, . . . , un.

• outputs y1, y2, . . . , yn.

• controllers c1, c2, . . . , cn.
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Using the controllers ci, the question is: How to assign (loop pairing) outputs (yi) with inputs (uj)?
A MIMO system is given by its transfer matrix G(s), which is a rational matrix. The Rel-

ative Gain Array (RGA) is the combined matrix of the transfer matrix evaluated at 0, that is,
G(0) = [gij ]. It turns out that of G(0) gives information about pairing the output j with input i
(see [11]):

• If we pair output j with input i and gij < 0 then the plant will not be stable.

• It is known that gij > 0 is a necessary condition for stability (see [9]) and gij > 0 should be
close to 1.

Actually, we have the following result.

Theorem 3. Let G the transfer matrix of a given multiinput output system (MIMO). Let C(G) its
combined matrix. A necessary condition so that the MIMO system be stable is that the C(G) has a
positive monomial submatrix.

Then, we have to find a monomial submatrix of order 4 in the RGA matrix to assign outputs
j with inputs i. Let us see the following example.

Example 2. Suppose we have the following transfer matrix

G =


1.4000 0.9000 0.2860 0.1000
1.4000 1.0000 0.4400 0.4000
0.2200 0.2640 0.0242 −0.0660
0.2000 0.3000 0.0880 0.5000

 .
Then its relative gain array, that is, its combined matrix is

C(G) = (RGA) =


4.6455 −1.6395 −2.1126 0.1066
−2.8095 0.6803 3.5374 −0.4082
−0.9146 1.7506 0.0076 0.1565

0.0786 0.2086 −0.4324 1.1451

 .
To loop pairing outputs with inputs we have to extract a monomial submatrix of order 4 from the
matrix RGA. One possible monomial matrix is one whose nonzero entries are the (1,1), (2,3),
(3,2) and (4,4) entries of RGA, Then, the loop pairing can be seen in the following figure.

G

C1

y1u1

C2

y2
u2

C3

y3u3

C4

y4u4

The loop pairing is output 1 with input 1, Output 2 with input 3, output 3 with input 2, and output
4 with input 4.
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4 Combined and reduced matrices and conditioning

Let M = [mij ] be an n × n nonsingular matrix and denote the ith column by mi. Consider the
factorization

M = AF, (1)

where the matrix A = [a1, a2, . . . , an] with the ith column of A given by ai = mi

||mi||2
and the

diagonal matrix F = diag(||m1||2, ||m2||2, . . . , ||mn||2).
Let P = [pij ] be the inverse of M and denote by pi the ith row vector of P . Consider the

factorization
P = M−1 = GB. (2)

Denoting the rows of a matrix with super indices, we have that bi = pi

||pi||2
and the diagonal matrix

G = diag
(
||p1||2, ||p2||2, . . . , ||pn||2

)
.

Now, let us see how we can compute the minimal projection of an invertible matrix by its
combined matrix (see [5] and [8]). First, we recall the definitions of combined and reduced combined
matrices given in [3].

Definition 1. Let M be an invertible matrix.
(i) The matrix

C(M) = M ◦
(
M−1

)T

is called the combined matrix of M , where ◦ is the Hadamard product.
(ii) Let A be the matrix obtained by normalizing the columns of matrix M . The matrix

R(M) = A ◦BT

is said to be the reduced combined matrix of M , where B is M−1 with normalized rows.

The results listed below are given in the work [3].
The reduced combined matrix of MT and M−1 has the same relationship as the combined

matrix of both matrices, as we see in the following result.

Theorem 4. Let M be an invertible matrix. Then

R(MT ) = R(M−1),

where R(MT ) and R(M−1) are the reduced combined matrices of MT and M−1, respectively.

The relationship between the combined matrix and the reduced combined matrix is the follow-
ing.

Theorem 5. Let M be an invertible matrix. Let C(M) and R(M) be the combined and the reduced
combined matrix of M , respectively. Then

C(M) = R(M)FG, (3)

where F and G are the matrices of the factorizations (1) and (6), respectively.

Theorem 6. Suppose the combined and the reduced combined matrix of a matrix M are equal.
Then, M has its columns orthogonal.

Theorem 7. Let M be a unitary matrix of order n. Then its combined matrix is equal to its
reduced combined matrix, that is, C(M) = R(M).
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We are going to see that with the reduced combined matrix we can obtain a lower bound of
the condition number of M .

Let M be an invertible matrix.The condition number of M is

κ(M) = ||M ||||M−1||,

where || · || denotes a matrix norm. Usually, the spectral norm of M is used, that is, κ(M) =
||M ||2||M−1||2, where ||M ||2 = σ1. Here, σ1 denotes the maximum singular value of M .

Theorem 8. Let M be an invertible matrix of order n. Let rj = ∑n
i=1 rij , 1 ≤ j ≤ n, the sum

of the column entries of the reduced combined matrix R(M) = [rij ]. Let r(M) = min
1≤i≤n

|ri|, Then

1 ≤ 1
r(M) ≤ κ(M).

The sum of the column entries of the reduced combined matrix R(M) is an upper bound of the
condition number of M .

Example 3. Consider the invertible matrix M of the first example. The reduced combined matrix
is

R(M) = A ◦BT =

 0.6465 −0.1773 0.0567
−0.0902 0.5641 −0.0674
−0.0604 0.0437 0.5355

 .
• The column sums of the matrix R(M) are r1 = 0.4959, r2 = 0.4305, r3 = 0.5248.

• The minimal column sum is r(M) = 0.4305.

• The lower bound of κ(M) = 5.2436 is 1
r(M) = 2.3228.
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[7] Gassó M. T., Gil I., Giménez I., Santana M., Segura E., Diagonal entries of the combined matrix of
sign regular matrices of order three. Proyecciones (Antofagasta), 40(1):255–271, 2021.

[8] Horn R. A., Johnson C. R., Topics in Matrix Analysis. Cambridge Univ. Press, 1991.

[9] Hovd M., Skogestad S., Sequencial design of decentralized controllers. Automatica, 30(10):1601–1607,
1994.

[10] Johnson C., Shapiro H., Mathematical aspects of the relative gain array. SIAM J. Algebraic Discrete
Methods, 7(4):627–644, 1986.

[11] McAvoy T.J., Interaction Analysis: Principles and Applications. Pittsburgh, Instrument Society of
America, 1983.

[12] Wilkinson J. H., The Algebraic Eigenvalue Problem. Oxford, Clarendon Press, 1965.

35



7

Random Fractional Hermite Differential Equation:
A full study un mean square sense

C. Burgos ♭,1 T. Caraballo ♮ J. C. Cortés♭ and R. J. Villanueva♭
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Abstract

In this contribution a full probabilistic study for the Random Fractional Hermite differential equa-
tion is performed. Firstly, applying the random fractional Fröbenius method we will construct a
solution convergent in mean square sense. Then, we will obtain reliable approximations for the
mean and for the standard deviation taking into account that the solution described by a power
series converges in mean square sense. After that, we will go a step further computing first prob-
ability density function of the solution. Finally, we show one numerical example to illustrate the
theoretical findings.

1 Introduction

Hermite differential equation is applied in quantum physics to obtain the solution of problems which
describes the dynamics of particles, as atoms protons and neutrons. An example of it is the quantum
harmonic oscillator which is defined by the Schrödinger differential equation. Nevertheless, when
we describe the dynamics of quantum particles, there exist non-local and memory effects which
are not able to describe by classical derivatives. In the recent years, it has been observed that
fractional operators can properly address this complex dynamics, [1]. In this work the classical
derivative in the Hermite differential equation is reemplaced by the Caputo fractional operator.

It is also worthly mentioned that the parameters of the differential equations, forcing term,
initial conditions, etc. include uncertainties which have to take into account to model accurately
a real phenomena. In this contribution, besides including a fractional operator in the Hermite
differential equation, we will consider that the parameters of the equation are random variables
instead deterministic values.

In this work we will deal with the following Initial Value Problem (IVP)

(CD2α
0 Y )(t)− 2tα(CDα

0 Y ) + λY (t) = 0, Y (0) = Y0, Y ′(0) = Y1, (1)
where λ, Y0 and Y1 are random variables and (CDα

0 Y ) is the Caputo derivative of order α ∈]0, 1]
of the stochastic process Y (t) defined in mean square (m.s). The operator (CD2α

0 Y ) is given by [2]
(CD2α

0 Y ) :=C Dα
0 (CDα

0 Y (t))
1clabursi@posgrado.upv.es
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This contribution is organized as follows: Section 2 is devoted to construct a m.s. convergent
solution of the IVP (1). In Section 3, we will obtain approximations for the mean and for the
standard deviation of the solution. Then, in Section 4, we go an step further and applying the
Random Variable Transformation Technique [3], we will obtain approximations for the first prob-
ability density function (1-PDF) of the solution Finally, the last Section, Section 5, is devoted to
illustrate the theoretical findings with a numerical example.

2 Constructing mean square convergent solutions

This section is devoted to apply the random fractional Fröbenius method to compute the solution
stochastic process of the RFIVP (1).

The fractional Fröbenius method allows us to obtain a solution in terms of a generalized power
series,

Y (t) =
∞∑

m=0
Ymt

αm. (2)

Computing the coresponding Caputo fractional derivatives, (CDα
0 ) and (CD2α

0 ), of Y (t), and
substituting these expressions in the IVP (1), we can obtain the coefficients Ym. Thus, the solution
is given by

Y (t) =Y0

(
1 +

∞∑
m=1

[
t2mα

Γ(2αm+ 1)

(
m−1∑
i=0

λi+1(−1)i+1Gm−1,i

)])

+ Y1

(
tα +

∞∑
m=1

[
Γ(α+ 1)t(2m+1)α

Γ((2m+ 1)α+ 1)

(
m∑

i=0
λi(−1)iĜm,i

)])
, (3)

where

Gm,i =


∑

j1<j2<...<jm−i

2 Γ(2j1α + 1)
Γ((2j1 − 1)α + 1) · 2 Γ(2j2α + 1)

Γ((2j2 − 1)α + 1) · · · . . . 2 Γ(2jm−iα + 1)
Γ((2jm−i − 1)α + 1) , if i < m,

1, if m = i,

0, otherwise,

(4)

and

Ĝm,i =


∑

j1<j2<...<jm−i

2Γ((2j1 − 1)α + 1)
Γ((2j1 − 2)α + 1) · 2Γ((2j2 − 1)α + 1)

Γ((2j2 − 2)α + 1) . . . 2Γ((2jm−i − 1)α + 1)
Γ((2jm−i − 2)α + 1) , if i < m,

1, if m = i,

0, otherwise.

(5)

As it can be observed, the solution is described by a generalized random power series. Assuming
the following hypotheses, we can guarantee that (3) is convergent in mean square sense.

• H1: The inputs parameters Y0, Y1 and λ are independent random variables.

• H2: The random variable λ is bounded random variable, i.e. exist b1 and b2 finite such that
b1 < λ(ω) < b2 for each ω ∈ Ω.

3 Approximating the mean and the standard deviation

Once a mean square convergent solution for the IVP (1) is obtained we compute reliable approxi-
mations for the mean and for the standard deviation of the solution.
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To do it, it is important to take into account that mean square convergence of the random series
(3)-(5) guarantees the convergence of the approximations of the mean and the standard deviation
by truncating at a specific order, say M > 0 integer, the series solution, [3, Th. 4.3.1]. This leads
to the following approximations for the mean and for the second order moment

E[YM (t)] =E[Y0]
(

1 +
M∑

m=1

[
t2mα

Γ(2αm+ 1)

(
m−1∑
i=0

E[λi+1](−1)i+1Gm−1,i

)])

+ E[Y1]
(
tα +

M∑
m=1

[
Γ(α+ 1)t(2m+1)α

Γ((2m+ 1)α+ 1)

(
m∑

i=0
E[λi](−1)iĜm,i

)])
(6)

and

E[Y 2
M (t)] =E[Y 2

0 ]
(

1 + 2
M∑

m=1

[
t2αm

Γ(2αm+ 1)

(
m−1∑
i=0

E[λi+1](−1)i+1Gm−1,i

)]

+

 M∑
m=1

M∑
n=1

 t2α(m+n)

Γ(2αm+ 1)Γ(2αn+ 1)

m−1∑
i=0

n−1∑
j=0

E[λi+j+2](−1)i+j+2Gm−1,iGn−1,j


+ E[Y 2

1 ]
(
tα + 2tα

M∑
m=1

[
Γ(α+ 1)t(2m+1)α

Γ((2m+ 1)α+ 1)

(
m∑

i=0
E[λi](−1)iĜm,i

)]

+
M∑

m=1

M∑
n=1

 Γ(α+ 1)2t(2n+2m+2)α

Γ((2m+ 1)α+ 1)Γ((2n+ 1)α+ 1)

 m∑
i=0

n∑
j=0

E[λi+j ](−1)i+jĜm,iĜn,i


+ 2E[Y0]E[Y1]

(
tα + tα

M∑
m=1

[
t2αm

Γ(2αm+ 1)

(
m−1∑
i=0

E[λi+1](−1)i+1Gm−1,i

)]

+
M∑

m=1

[
Γ(α+ 1)t(2m+1)α

Γ((2m+ 1)α+ 1)

(
m∑

i=0
E[λi](−1)iĜm,i

)]

+
M∑

m=1

M∑
n=1

 Γ(α+ 1)t2αmt(2n+1)α

Γ((2n+ 1)α+ 1)Γ(2αm+ 1)

m−1∑
i=0

n∑
j=0

E[λi+j+1](−1)i+j+1Gm−1,iĜn,j

 ,
(7)

respectively.
Taking into account (6) and, (7) and σ[YM (t)] =

√
E[YM (t)2]− E[YM (t)]2, we can compute the

standard deviation.

4 Computing approximations for the 1-PDF of the solution SP

So far, approximations for the two first statistical moments have been obtained. Nevertheless,
sometimes higher one-dimensional moments are also needed. The 1-PDF of the solution allows us
to compute these higher moments. Applying the Random Variable Transformation technique [3, Ch.
2] to the truncated solution of order M we can construct approximations for the 1-PDF. After some
involved computations, one gets
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Figure 1: Mean and standard deviation of the solution for different orders of truncation M .

fYM (t)(y) =
∫

D(Y1,λ)
fY0


y − y1

(
tα +

M∑
m=1

[
Γ(α+1)t(2m+1)α

Γ((2m+1)α+1)

(
m∑

i=0
λi(−1)iĜm,i

)])

1 +
M∑

m=1

[
t2αm

Γ(2αm+1)

(
m∑

i=0
λi+1(−1)i+1Gm−1,i

)]
 fY1(y1)fλ(λ)

· 1∣∣∣∣∣1 +
M∑

m=1

[
t2αm

Γ(1αm+1)

(
m−1∑
i=0

λi+1(−1)i+1Gm−1,i

)]∣∣∣∣∣
dy1dλ.

(8)
Assuming that the PDF of random variable Y0, fY0 , is Lipschitz, it can be rigorously proved

that (8) converges to the 1-PDF of the solution stochatic process, Y (t), as M →∞.

5 Numerical Examples

This section is addressed to numerically illustrate the previous theoretical results. We will take
α = 0.5. We will assume that, λ ∼ Be(2, 3), where Be(2, 3) denotes the beta distribution of
parameters (2, 3); Y0 ∼ Ga(1, 1) and Y1 ∼ N(2,

√
22), where Ga(1, 1) stands for the Gamma

distribution of parameters (1, 1) and N(2,
√

22) Gaussian distribution of parameters (2,
√

22).
Figure 1 shows the mean and the standard deviation of the solution for different orders of trun-

cation M ∈ {5, 7, 10, 12, 15}. We can observe in the zoomed area the convergence as M increases.
The 1-PDF has been plotted in Figure 2 considering different orders of truncation M . Each

subplot corresponds to different t ∈ {0.25, 0.5, 0.75}. To verify the convergence as the order of
truncation, M , increases, a zoom has been performed in each subplot.
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1 Introduction

Frailty is a clinical state in a person that increases the vulnerability to develop adverse outcomes
such as dependency and mortality when it is exposed to a stressor [Caballero-Mora(2017)]. Frailty
is a predictor of mortality, disability, mobility loss, institutionalization, falls and cardiovascular
disease [Rizos and Soler(2013)].

There are two conceptual definitions of frailty: physical frailty [Fried et al.(2001)]based on
Fried’s criteria, and frailty based on the deficit accumulation [Rockwood(2005)] (includes social
assessment, comorbidity, among other elements). The frailty indices are derived from the deficit
accumulation definition. Frail-VIG index [Amblàs-Novellas et al.(2017)] is a frailty index based
on the comprehensive geriatric assessment (CGA, VIG in Spanish). The CGA is considered the
gold standard for management of frailty in elderly people. This index is composed with variables
recorded during the usual clinical evaluation process. The Frail-VIG Index establishes a situational
diagnosis of the severity of the patient’s frailty.

There is a relationship between frailty, disability and comorbidity, but there are not the same
concepts. Between 23% and 26% of the frail elderly people do not have disability or comorbidity
[Alcalá et al.(2010)]. Furthermore, the physical frailty and the two stages of disabilities (disability
in instrumental and basic activities of daily living) follow a hierarchy along a continuum [Zamudio-
Rodŕıguez et al.(2020)].

There are multiple factors associated with frailty and dependency. However, there are few
studies that predict who will be frail or dependent in clinical settings. In a systematic review
published in 2022 [Grootven and van Achterberg(2022)], it was concluded that no revised predictive
model of functional status can be recommended for implementation in practice. Most of the studies
aimed to predict frailty are based in the Fried criteria, such as the model made by Vieira de
Sousa [de Sousa et al.(2018)], or the nomogram developed by Bing-Ru [Dong et al.(2021)]. Other
models predicted frailty conditions (no frailty), like mortality, urgent hospitalization, disability,
fracture or emergency admission [Tarekegn et al.(2020)].

1sucatoval@gmail.com
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Our aim is to develop predictive models to know the probability of being frail according to
the Frail-VIG Index or dependent for basic activities of daily living (using the Barthel Index) at a
given age, according to clinical and sociodemographic variables.

2 Methods

This is an observational population-based study, in people aged 70 year or over from two lists of
general practitioners of the Moncada’s Primary Health Care. Sociodemographic data were collected:
gender, marital status, educational level and number of cohabitants. Dependence was measured
with the Barthel Index, and frailty with the Frail-VIG Index [Amblàs-Novellas et al.(2017)] and the
Short Physical Performance Battery (SPPB) [Guralnik et al.(1994)]. We requested the chronicity
level to the Conselleria de Sanitat of Valencia, which classifies the chronicity in four categories:
level 0, level 1, level 2 and level 3, meaning healthy people, chronic patients with low, moderate
and high complexity, respectively.

The Barthel Index is a questionnaire that measures performance in activities of daily living.
It was categorized in the next groups, based in the Shah criteria [Shah et al.(1989)]: no depen-
dent (IB≥95), mild dependency (IB 90-65), moderate-severe dependency (IB 25-60), and absolute
dependency (IB≤20). Frail-VIG Index is a questionnaire with 22 items that assess 25 deficits clas-
sified in eight domains: functional, nutritional, cognitive, emotional, social, geriatric syndromes,
severe symptoms and diseases. The range goes from 0 to 1, and categorizes frailty in: no frail
(<0.20), mild frailty (0.20-0.35), moderate frailty (0.36 − 0.50) and severe frailty (>0.50). The
SPPB [Guralnik et al.(1994)] assess the lower extremity physical performance status. It consist
in three test: test of standing balance (tandem, semi-tandem and side-by-side stands), walking
speed test, and the ability to rise from a chair test. The range goes from 0 to 12. The cut of
point we established was “seven”, because it was the best cut-off point identificated in the Fradea
study [Abizanda et al.(2012)] to define frailty. Frail-VIG index includes the Barthel Index, for that
reason we calculated a new cut-off point of the Frail-VIG Index without the Barthel Index item.

This study was approved by the “Ethic Investigation Corporative Committee of Primary Health
Care from the Comunitat Valenciana”, in 01/31/2019, registration number 18/10. Participants or
representatives were informed and signed the consentiment.

Data were anonymized, and the study complied with the data protection regulation “Organic
Law 3/2018, of December 5, concerning protection of personal data and guarantee of digital rights”.

2.1 Survival Analysis

The time from the age of 70 years old until the occurrence of one particular event is consider as
the survival time. Survival technics are used to evaluate two different events or end-points:

1. Time until dependence measured with the Barthel Index (time free of dependence) .

2. Time until frailty measured with the Frail-VIG index (time free of frailty).

Two studies were performed taking into account these two end-points. The main objective in
both studies was to establish prognostic factors for dependence and frailty in population over 70
years old. Kaplan-Meier estimator for the survival functions and the Log-Rank test for compar-
ing survival functions of different data groups were used to establish the prognostic factors in a
univariate analysis. A p-value obtained < 0.05 was consider significant. The Cox model was used
as a multivariate analysis to explore the relationship between the survival time of a patient and
the explanatory variables. The selected models were obtained using a variable selection strategy
suggested in [Collett(2003)]. The resulting models made it possible to define risk groups according
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to the characteristics of the patients and to predict the probability of dependence or frailty at
different ages (70, 85 and 95 years old).

Harrell’s concordance index (C-index) [Harrell et al.(1982)] was used to asses models accuracy
(discrimination). The C-index is the non-parametric version of the Area Under the Curve (AUC)
that can take into account censored data. It ranges from C = 0.5 (random discrimination) to
C = 1 (perfect discrimination). This area represents the probability that for two randomly chosen
patients, the patient with characteristics of a worse prognosis has the event under study before.

Statistical analysis were done using R [Team(2010)]

3 Results

A total of 416 patients were considered into the dataset. Median age was 77 years old, 180 patients
(43.3%) were male and 236 (56.7%) female. Other patients characteristics were collected for this
study defining the following variables: marital status (with partner or others situations); educational
level (without basic studies or with studies); number of cohabitants (with three levels: live alone,
2 cohabitants and 3 or more cohabitants) and chronicity level (with two levels: healthy or low
complexity chronic disease and medium/high complexity chronic disease). Among the 416 patients,
111 individuals (26.7%) were classified as dependent by the Barthel index and 122 cases (29.3%)
as frail person by the Frail-VIG index.

Univariate analysis established marital status, frail-VIG index and chronicity level as predictive
variables of dependence and the variables marital status and chronicity level as predictive factors
of frailty. The resulting Cox models for both endpoint (dependence and frailty) are shown in
Table 1. Both models identified as prognostic factors to predict dependence and frailty: gender,
marital status and chronicity level. The concordance index c obtained for both models were 0.69
for dependence model and 0.70 for frailty model.

Both fitted models establish that female patients have more risk to be dependent or frail along
time respect male patients; patients without partner reduce the risk of dependency and frailty
respect those patients with partner and finally, patients with a medium or severe chronic dis-
ease increase risk of dependency and frailty (more than 4-fold) respect patients healthy or with
a low complexity chronic disease. These 3 variables code each one with two levels define 8 dif-
ferent characteristic groups (Table 2). The predicted probabilities of dependence and frailty for
a patient belonging each group of characteristic at 70, 85 and 95 years old are shown in Table 3.
Corresponding survival functions are depicted in Figure 1.

Dependence Frailty

Covariates HR p value HR p value

Gender

Male, Female 1.99 (1.27-3.11) 0.002 1.60 (1.06-2.41) 0.026

Marital status

With partner, No partner 0.31 (0.19-0.49) <0.001 0.33 (0.22-0.52) <0.001

Chronicity level

Healthy/Low level, Medium/Severe level 2.80 (1.74-4.50) <0.001 4.53 (2.66-7.71) <0.001

Table 1: Hazard Ratios (HR), 95% CI (in parenthesis) and p value for the probability of dependence
and frailty. Estimates using Cox model.
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Male

With partner
Healthy/Low Chronic level Group 1

Moderate/Severe Chronic level Group 2

Without partner
Healthy/Low Chronic level Group 3

Healthy/Low Chronic level Group 4

Female

Without partner
Healthy/Low Chronic level Group 5

Moderate/Severe Chronic level Group 6

Without partner
Healthy/Low Chronic level Group 7

Healthy/Low Chronic level Group 8

Table 2: Characteristic Groups.

Dependence Frailty
Group 70 yr. 85 yr. 95 yr. 70 yr. 85 yr. 95 yr.
G1 0.99 (0.99-1.00) 0.76 (0.65-0.90) 0.04 (<0.001-0.47) 0.99 (0.99-1.00) 0.79 (0.67-0.91) 0.17 (0.04-0.65)
G2 0.98 (0.98-0.99) 0.47 (0.34-0.65) <0.01 (<0.01-0.07) 0.98 (0.98-1.00) 0.33 (0.22, 0.50) <0.01 (<0.01-0.05)
G3 0.99 (0.99-1.00) 0.92 (0.87-0.97) 0.37 (0.18-0.76) 0.99 (0.99-1.00) 0.99 (0.87-0.97) 0.55 (0.36-0.85)
G4 0.99 (0.99-1.00) 0.80 (0.70-0.90) 0.64 (0.01-0.38) 0.99 (0.99-1.00) 0.69 (0.58-0.83) 0.07 (0.01-0.33)
G5 0.99 (0.99-1.00) 0.59 (0.43-0.79) <0.01 (<0.01-0.03) 0.99 (0.99-1.00) 0.68 (0.54-0.86) 0.06 (0.01-0.56)
G6 0.97 (0.94-0.99) 0.22 (0.11-0.43) <0.01 (<0.01-0.02) 0.98 (0.96-1.00) 0.17 (0.09-0.35) <0.01 (<0.01-0.02)
G7 0.99 (0.99-1.00) 0.85 (0.78-0.93) 0.14 (0.04, 0.51) 0.99 (0.99-1.00) 0.88 (0.82-0.95) 0.38 (0.20-0.73)
G8 0.99 (0.98-0.99) 0.63 (0.53-0.75) <0.01 (<0.01-0.11) 0.99 (0.99-1.00) 0.53 (0.45-0.68) 0.01 (<0.01-0.14)

Table 3: Free of dependency probability and free of frailty probability at 70, 85 and 95 years old,
and 95% CI (in parenthesis).
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Figure 1: Survival functions (time free of dependency on left and time free of frailty on right) for the eight
characteristic gropus.
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4 Conclusions

We developed a model to predict dependency and another one to predict frailty in general popu-
lation. Included variables in both models were gender, marital status and chronicity level. These
variables are easy to collect in clinical practice except chronicity level, but usually the computerized
medical history (ABUCASIS system in Comunitat Valenciana) shows it.

We found differences compared to previous studies on marital status: in our study be married
is a risk factor for the dependency and frailty. In the Kogima study [Kojima et al.(2020)], be
single implies twice the risk of frailty than married person. On the other hand, in the Trevisan
study [Trevisan et al.(2016)], single man had more risk of frailty, and widow female had less risk
than married female. Both studies valued frailty with Fried criteria, not with a frail index. This
topic could be the subject of future studies.

Several studies and models [Grootven and van Achterberg(2022),Arnau et al.(2016)] concluded
that the SPPB and gait of speed (included in the SPPB) could be variables to identify risk of
disability. However, this variables were not significant in our study.

There are important differences between groups in the free time of frailty or dependency. There-
fore, there are two points to consider in clinical practice: the modificable variables are the patient’s
diseases, assessed with the chronicity level or with Frail-VIG index; and risk groups must be iden-
tified in order to approach them.

Next step will be to study the effect of frailty (estimated with Frail-VIG Index and SPPB) and
dependency in mortality in general population.
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Jordan structures of an upper block echelon matrix
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1 Introduction

Some methods adapted to structured classes of matrices have been studied recently. An important
class of structured matrices due to its applications is the sign regular (SR) matrices, that is, matrices
whose all their minors of the same order have the same sign (see e.g. [9] and the references therein).
Relevant subclasses of SR matrices are formed by irreducible totally nonnegative (ITN) matrices
and by totally nonpositive (t.n.p.) matrices.

Recall that a matrix A is irreducible if there is not a permutation matrix P such that

PAP T =
[
B C
O D

]
,

where O is an (n − r) × r zero matrix (1 ≤ r ≤ n − 1). A matrix A ∈ Rn×n is called ITN matrix
if it is irreducible and all its minors are nonnegative. Otherwise, a matrix A = (−aij) ∈ Rn×n is
called t.n.p. matrix if all its minors are nonpositive. We have two subclasess of t.n.p. matrices,
we say that A = (−aij) ∈ Rn×n is a type-I t.n.p. matrix if it is t.n.p. and −a11 < 0. Otherwise,
A = (−aij) ∈ Rn×n is called type-II t.n.p. matrix if it is t.n.p., −a11 = 0, −a12 < 0 and −a21 < 0.
All these matrices have been studied by several authors (see, for instance, [2, 6–8]).

Let A ∈ Rn×n be an ITN matrix or a t.n.p. matrix with rank(A) = r and principal rank
p-rank(A) = p, that is, r is the size of the largest invertible square submatrix of A, and p is the
size of the largest invertible principal submatrix of A. We say [1] that the sequence of integers
α = {h1, h2, . . . , hp} ∈ Qp,n is the sequence of the first p-indices of A if for j = 2, . . . , p we have
det(A[h1, h2, . . . , hj−1, hj ]) ̸= 0 and det(A[h1, h2, . . . , hj−1, t]) = 0, hj−1 < t < hj .

Note that if A is totally nonnegative matrix without null rows or columns, then h1 = 1. In [1]
the authors use this sequence to study the linear dependence relations between rows or columns of
totally nonnegative matrices.

A triple (n, r, p) is called (1, h2, . . . , hp)-realizable if there exists an ITN matrix or a t.n.p.
matrix A ∈ Rn×n with rank r, principal rank p, and H = {1, h2, . . . , hp} is the sequence of its
first p-indices. It is known that the Jordan structure corresponding to the zero eigenvalue in the
Jordan canonical form of A can be complex but not arbitrary. In [2] the authors proved that the
number of Jordan canonical forms of ITN matrices associated with a realizable triple (n, r, p) is
P p

n−r(n − p), that is, the number of partitions of n − p into exactly n − r parts with the largest
part at most p, and presented an algorithm to obtain these Jordan structures. So, the matrix A

1bcanto@mat.upv.es
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has n − r zero Jordan blocks whose sizes are given by the Segre characteristic of A relative to its
zero eigenvalue [10]. This sequence, denoted by S = (s1, s2, . . . , sn−r), satisfies

s1 ≤ min{r − p+ 1, p}
si ≤ si−1, i = 2, . . . , n− r∑n−r

i=1 si = n− p.

It is known that some properties that ITN matrices satisfy without prescribed p-indices, are
not satisfied when they are prescribed. For instance, by [7], the upper bound for the maximum
rank of an ITN matrix A associated with a realizable triple (n, r, p) is n −

⌈
n−p

p

⌉
, but this bound

can be lower when the sequence of the first p-indices is prescribed, see [1]. On the other hand,
if the sequence of the first p-indices is prescribed, then the number of the zero-Jordan structures
admissible for a realizable triple (n, r, p) is less than or equal to this number when the sequence is
not prescribed.

In [5] the authors construct an ITN or a t.n.p. matrix A using the product A = LU where
L is a lower triangular matrix with all its nonzero elements equal to 1, and U is an upper block
echelon TN matrix of size n×n, with rank equal to r, principal rank equal to p and with the same
zero-Jordan structure and sequence of the first p-indices as matrix A. We recall that a matrix is
an upper echelon matrix if the first nonzero entry in each row (leading entry) is to the right of the
leading entry in the row above it and all zero rows are at the bottom. A matrix is upper block
echelon if each nonzero block, starting from the left, is to the right of the nonzero blocks below
and the zero blocks are at the bottom. A matrix is a lower (block) echelon matrix if its transpose
is an upper (block) echelon matrix.

Moreover, in [5] the authors show that this matrix U , can be transformed by similarity and
permutation similarity, into a matrix T̂ = XUX−1. For that, in this work we obtain all possible
rows and columns of T̂ that allow us to obtain the matrices U used to construct some ITN matrices
or t.n.p. matrices with a zero-Jordan structure admissible when the sequence of the first p-indices
is prescribed.

2 Obtaining rows and columns of matrix T̂

Let U be an upper block echelon matrix of size n× n, such that rank(U) = r, p-rank(U) = p and
H = [h1, h2, . . . , , hp] as the sequence of its first p-indices. Let T̂ be the matrix obtained from U by
similarity and permutation similarity following the steps given in [5]. This matrix has the following
structure

T̂ =
[
A1 O

O T

]
,

where A1 ∈ Rp×p is a non-derogatory nonsingular matrix, with one Jordan block of size p corre-
sponding to its unique eigenvalue λ = 1 and T is an upper block echelon nilpotent matrix of size
q × q, where q = n− p. The block partition of T by rows and columns is [t1, t2, . . . , tp−1, tp], that
is,

T =



O T12 T13 T14 · · · T1,p−1 T1p

O O T23 T24 · · · T2,p−1 T2p

O O O T34 · · · T3,p−1 T3p
...

...
...

...
...

...
O O O O · · · Tp−2,p−1 Tp−2,p

O O O O · · · O Tp−1,p

O O O O · · · O O



t1
t2
t3
...

tp−2
tp−1
tp

,
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where ti = hi+1 − hi − 1, i = 1, . . . , hp, being hp+1 = n and its rank is r2 = r − p.
Since the zero-Jordan blocks of T and U are the same, we are going to calculate all possible rows

and columns of T to obtain matrices U with the admissible zero-Jordan structures. To construct
T , we consider the following conditions: each row and column has at most one 1 and the rest of
their entries are 0; and each 1 of a nonzero row is always strictly to the right of the 1 of the row
above it. The Jordan structure of T is obtained from the ranks of the successive powers of the
matrix.

We calculate all admissible rows of T that allow us to obtain the rank r of the matrix U .
The matrix T must have rank r2, for that, the ones are distributed along the q − tp rows of T ,
considering the upper block echelon structure. The different possibilities are the combinations

without repetition of q − tp elements taken r2 in r2, that is
(
q − tp
r2

)
.

Algorithm 0 (see Annex) calculates the admissible rows. The inputs of this Algorithm are the
size n, the rank r, the principal rank p and the sequence of the first p-indices H; the output are all
possibilities for the rows of T given by the matrix CR.

On the other hand, it is known that the block structure limits the available columns to calculate
the rank r2 for the matrix T . Then, we calculate, for each admissible row, the different combinations
of columns that we can choose to obtain this rank taking into account the structure of T . For that,
we use Algorithm 0 (see Annex). The inputs are the triple (n, r, p), the sequence H and one row
R from CR; the output is the matrix CCR for each row R. CCR has the different combinations
of columns that we can choose to obtain the rank r2.

We give the following example to clarify the algorithms.
Example 1. We consider a triple (12, 9, 5) and the sequence of the first p-indices H =

{1, 3, 6, 8, 11}. The block partition of T is [1, 2, 1, 2, 1], that is

T =



0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

0 0 0 ⋆ ⋆ ⋆ ⋆
0 0 0 ⋆ ⋆ ⋆ ⋆

0 0 0 0 ⋆ ⋆ ⋆

0 0 0 0 0 0 ⋆
0 0 0 0 0 0 ⋆

0 0 0 0 0 0 0

.


The different possibilities for the rows of T that we obtain using Algorithm 0 are:

CRT =


3 2 2 2 2 1 1 1 1 1 1 1 1 1 1
4 4 3 3 3 4 3 3 3 2 2 2 2 2 2
5 5 5 4 4 5 5 4 4 5 4 4 3 3 3
6 6 6 6 5 6 6 6 5 6 6 5 6 5 4

 .
If we choose, for instance, the row R2 = [2, 4, 5, 6], the Algorithm 0 shows “The rank cannot be
obtained”, because there are not enought columns to obtain rank r2 with this rows. Otherwise, if
we consider R8 = [1, 3, 4, 6] then we obtain its corresponding columns:

(CCR8)T =


4 3 3 3 2 2 2
5 5 4 4 5 4 4
6 6 6 5 6 6 5
7 7 7 7 7 7 7

 .
Once we have obtained the corresponding rows and columns that allow us to obtain the rank
r2, we continue as follows. For each row and one of its corresponding columns, for example the
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row R = [1, 3, 4, 6] of CR and the column C = [3, 5, 6, 7] of CCR8, we construct a matrix
RC2×(r−p) = [R;C] and we follow the steps described below to obtain the paths of pairs Pz = (i, j),
z = 1, 2, . . .. To clarify the procedure we follow it using Example 1.

Step 1. Construct a permutation table with two rows, RU and R̂T . The first entries of the RU
are the sequence of the first p-indices H of the matrix U , and the following are the missing
number from 2 to n in ascending order. The entries of the R̂T are consecutive numbers from
1 to n. In Example 1 we have

RU 1 3 6 8 11 2 4 5 7 9 10 12
R̂T 1 2 3 4 5 6 7 8 9 10 11 12 .

Step 2. Obtain a new matrix R̂C, adding p to each entry of RC. That is

R̂C = RC + 5 ∗ ones(2, 5) =
[

6 8 9 11
8 10 11 12

]
.

Step 3. Obtain the positions in the matrix U that correspond to the new entries obtained in Step 2,
using the permutation table. For that, we look for the numbers of R̂C in R̂T and change
them with the corresponding number in RU . In Example 1 is

R̂C =
[

6 8 9 11
8 10 11 12

]
→

[
2 5 7 10
5 9 10 12

]
.

Step 4. Create a matrix Pz where the rows contain the numbers obtained in Step 3 plus the p-
indices in increasing order. Match the inputs it from the first row with its corresponding jt,
t = 1, . . . , r − p and obtain the path Pz. In Example 1 is

Pz = {(2, 3), (3, 5), (5, 6), (6, 8), (7, 9), (8, 10), (10, 11), (11, 12)}.

These steps are implemented in Algorithm 0 (see Annex). Finally, with Pz and using Algorithms
5 and 6 from [5], we obtain the matrix U and then, the matrix A that can be an ITN matrix, a
type-I t.n.p. matrix or a type-II t.n.p. matrix. All these matrices have the same sequence of its
first p-indices and the same zero-Jordan structure (see [3, 4]).

Example 2. With Example 1, the row R = [1, 3, 4, 6], the column C = [3, 5, 6, 7] and the
path Pz = {(2, 3), (3, 5), (5, 6), (6, 8), (7, 9), (8, 10), (10, 11), (11, 12)}, using Algorithm 5 from [5], we
obtain the matrix U and S = (4, 2, 1)

U =



1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1
0 0 1 1 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 1 1 2 2 2 2 2
0 0 0 0 0 0 0 1 2 2 2 2
0 0 0 0 0 0 0 1 2 3 3 3
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 2
0 0 0 0 0 0 0 0 0 0 0 0



.

Applying Algorithm 6 from [5], we can obtain the matrices ITN, type-I t.n.p. or type-II t.n.p.
all of them associated with the triple (12, 9, 5), with the same sequence of its first p-indices H =
{1, 3, 6, 8, 11} and the same zero-Jordan structure given by the Segre characteristic S = (4, 2, 1).
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3 Conclusions

This work improves the result given in [5] because in that paper we only obtain one ITN matrix,
type-I t.n.p. matrix or type-II t.n.p. matrix, both of them associated with a triple (n, r, p) with
the same sequence of its first p-indices H and the same zero-Jordan structure. Now, in this
contribution, we extend the results and obtain all admissible rows and columns that allow us to
calculate matrices, with an specific structure, associated with the triple (n, r, p) and with a sequence
of its first p-indices H but with all possible Jordan structures.
Acknowledgements.This research was partially supported by the Generalitat Valenciana under
the grant CIAICO/2021/162.
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4 Annexes

Algorithm 1 CCR = pairsPz(n, r, p,H,R,C)
1: PT = p ∗ ones(r − p, 2) + [R′ C ′]; RT = [1 : n]; RU = [0];
2: for j = 1 : n do
3: m = ismember(RT (1, j)H);
4: if m = 1 then
5: RU = [RU,RT (1, j)];
6: end if
7: end for
8: RU = [H,RU(1, 2 : n+ 1− p)];
9: for j = 1 : r − p do

10: Pz(j, :) = [RU(1, PT (j, 1))RU(1, PT (j, 2))];
11: end for
12: Pz = [sort([S(:, 1); H ′])sort([S(:, 2); H ′])]; Pz = Pz(2 : r, :);
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Algorithm 2 CR = rows(n, r, p,H)
1: q = n− p; r2 = r − p; HA = [H,n+ 1]; a2 = length(HA);
2: R = combnk([1 : q − (HA(a2)−HA(a2− 1)− 1)], r2);

Algorithm 3 CCR = columnsR(n, r, p,H,R)
1: q = n− p; r2 = r − p; HA = [H,n+ 1]; C = combnk([HA(2)−HA(1) : q], r2);
2: a2 = size(C, 1); B = [0];
3: for i = 1 : p do
4: B(i+ 1) = B(i) +HA(i+ 1)−HA(i)− 1;
5: end for
6: E = [0]; i = 1;
7: while i <= r2 do
8: j = 1;
9: while j <= p do

10: m = ismember(R(i), [B(j) + 1 : B(j + 1)]);
11: if m == 1 then
12: E = EB(j + 1)]; j = p+ 1;
13: else
14: j = j + 1;
15: end if
16: end while
17: i = i+ 1;
18: end while
19: E = E(2 : r2 + 1); CCR = zeros(1, r2); i = 1;
20: while i <= a2; do
21: d = C(i, :)− E; h = d > 0; l = h ∗ ones(r2, 1);
22: if l == r2 then
23: CCR = [CCR;C(i, :);
24: end if
25: i = i+ 1;
26: end while
27: a3 = size(CCR, 1);
28: if a3 == 1 then
29: The rank cannot be obtained
30: else
31: CCR = CCR(2 : a3, :);
32: end if
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1 Introduction

A wound is an injury to living tissue in the body caused by a cut or an impact. The body
has mechanisms to repair the wound. These mechanisms of wound healing are organized into
the overlapping stages, namely, homeostasis, inflammation, proliferation, and remodeling. Within
minutes of the happening of the wound, blood clots are formed and the bleeding stops. This is the
first provisional matrix formed for the wound. Next, in the inflammation stage the focus of the
mechanisms implemented will be to remove pathogens and debris . The turnover of the provisional
matrix proceeds in the proliferation and remodeling stages. Understanding the mechanisms in
wound healing is of interest in improving wound care and determining causes of diseases.

According to MedlinePlus [6] by the United States National Library of Medicine, wounds are
”injuries that break the skin or other body tissues” and can include ”cuts, scrapes, scratches,
and punctured skin.” The formation of a wound involves a disruption in skin and other tissue
integrity. Where and how this integrity of the body composition and function is disrupted is what
characterizes the type of wound and what can elucidate the overall pathology to be diagnosed.
Some types of wounds include those caused by mechanical stress. Examples of these types of
wounds are penetrating wounds, blunt force trauma wounds (i.e., abrasions, lacerations, skin tears),
closed wounds (i.e., contusions, hematomas ), etcetera. Mechanisms that cause chronic wounds are
another important type of wound to study since these types of wounds can lead to amputation
and death. Nussbaum et al. [9] points out that individuals who are at risk are elderly, disabled, or
in general, individuals who cannot care from themselves and individuals with pre-existing skin or
immunological conditions.

In addition to being involved in the before mentioned wounds, the wound healing process is
involved in cardiovascular issues. For example, when blood does not circulate properly in the
myocardium, oxygen is not able to be distributed to cells. Heart cells undergo necrosis and tissues
die, hence the sequence of phenomena that characterizes what is known as mycardium infarction
(i.e., heart attack). This context of wound healing has been of interest due to this repair process
leading to adverse after effects. The dynamics of this process have been studied by methods
incorporating experimental data and differential equation modeling such as in [4].

The dynamical processes of wound healing is not just important for treating wounds but in
addressing economical related concerns. Research by Nussbaum et al. [9] conducted a retrospective

1apatrick@mavs.uta.edu
2bmchen@uta.edu
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analysis of the cost of chronic wound care. Some prevalent wound types among Medicare benefi-
ciaries were surgical infections, diabetic infections, traumatic wounds, skin disorders, and venous
infections. Data from 2014 revealed that there was a high prevalence amount individuals who were
75 years or older, and total Medicare expenditure estimates reached between 3 billion and 96.8
billion dollars where surgical wounds were one of the most expensive.

Mathematical modeling provides a means to help provide framework and understanding It is
a tool to develop theories and try scenarios that may be hard or impossible to test under experi-
mentation. Ordinary differential equation models are useful when studying dynamics over time in
a nonspecific unit of space. Previous studies have incorporated this methodology to study wound
healing phenomena such as the recovery after a myocardial infarction [4], keloid and hypertorphic
scarring [1], relationship between transforming growth factor β and tissue tension [8], and acute
wound healing [7], just to name a few.

There are several types of models of wound healing. Ordinary differential equations models
do not model dependence in space, but concentrate on change over time for a determined unit of
space. These are the most common models. Among the papers with wound models that have been
presented, Reynolds et al. [11] focused on inflammation and anti-inflammation with their state
variables being activated phagocytes, tissue damage, and anti-inflammatory mediators. Activated
phagocytes are representative of inflammation and include neutrophils and macrophages. The anti-
inflammatory variable is representative of mediators including cortisol and interleukin-10 (IL-10).
Here subsystems based on mass action kinetics are presented and the quasi-steady state assumption
is implemented on the local response and resting phagocytes. Subsequent to model construction,
different scenarios of pathogen growth rate and initial conditions are presented in scenarios where
the wound is under circumstances that result in a healthy outcome, aseptic death, and septic death.

Cooper et al. [2] built a model expanding on Reynolds. The inflammation state variable replaced
by more specialized inflammatory variables, neutrophils and macrophages. Estrogen and cortisol
inhibition and enhancement factors are also implemented. A set of parameters that result in
dynamical assumptions are simulated, the assumptions being that neutrophils peak between 0.75
and 2.75 days; the peak for macrophages is between 2.75 and 6.25 days; and that macrophage
levels dropped below 0.1 by day 20. For some of the state variables, the rates per cell units were
adapted from Reynolds. More specifically, pathogen carrying capacity was chosen as 106 cells per
unit space per unit time which, in order for the model to be well defined, sets P-units for the
state variable P to be the same. The units for these cells are important when comparing results to
experimental conditions, when combining results from different experiments, or when comparing
parameters from different model experiments. For the Cooper study the purpose was to simulate
general behavior, so units for some state variables such as debris were set to be arbitrary.

Torres et al. [13] utilizes these cell dynamics with experimental results. For pathogens, neu-
trophils, M1 and M2 macrophages, units are chosen to be 107 units. Note that the interaction
mechanisms such as phagocytation and activation which has units pathogen units per inflamma-
tion cell units per time and cells per pathogen units per time, respectively, will be affected by these
chosen units. For example, the background immune defense parameter, kbp, activation of local
background immune response by pathogen, value would change when switching from 106 P-units
to 107 P-units.

Some studies that modeled the proliferation and remodeling stage are Jin et al. [4] and Segal et
al. [12]. Jin et al. incorporates macrophages, MMP-9, TGF-β, fibroblasts, and collagen to model
the healing process after a myocardial infarction. They assume inhibition of MMP-9 by TGF-β
due to the induced presence of TIMP-1. Subsequent to model formation they validate their model
and parameter values by comparing model output to experimental data.

Segal et al. [12] constructs a model incorporating inflammation, pathogens, fibroblasts, and
collagen. They include three types of fibroblasts (proliferating fibroblasts, migrating fibroblasts,
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and active fibroblasts). The collagen state variable is chosen to be a percentage where 0 represents
the wound not being filled and 1 being the wound being filled. Values are allowed to go above 1
to account for scarring. They also include both inhibition of collagen deposition and degradation
influenced by the current amount of collagen fibers formed. It is assumed the closer the wound is
from being filled, the less need for fibroblasts which reduces amount of collagen being deposited.
Moreover, they assume that inflammation cells can release enzymes that degrade collagen. To
determine values for their parameters experimental data for collagen where scaled so that the
highest values was a little above one. Subsequently, the resulting model was tested using low and
high values of pathogen that resulted in high collagen deposition and low collagen disposition,
respectively.

As mentioned above, the main four stages of wound healing are: 1. Hemostasis, blood co-
agulates. 2. Inflammation, sterilization of the wound. 3. Proliferation, tissue regrowth. 4.
Remodeling, formation of new epithelium and scar tissue. In this paper, we will construct a model
of the inflammation phase. It will extend the results of [2] and [13] by adding more species and
adding and modifying certain hypotheses based on newer research.

2 Methods

2.1 State variables

The model considers the following variables: 1. Pathogens, P , that are assumed to proliferate
logistically. 2. Debris, Pt. Upon initiation of the wound and the physical obstruction of tissue,
these dead cells and possibly outside debris must be removed. 3. Neutrophils, N , which are
the first phagocytic cells introduced to the wound during the inflammation stage. Neutrophils
phagocytize pathogens and debris and afterwards commit apoptosis. Apoptotic Neutrophils, AN ,
that can influence some critical parts of the wound healing process, namely, the continuation of
the inflammation stage, the resolution of debris removaland the polarization between macrophages.
M1 and M2 Macrophages, M1 and M2, have diverse functions in wound healing. There is spectrum
of macrophage types. For our application, we will choose to categorize macrophages with more
pro-inflammatory functions as M1 macrophages and macrophages with more anti-inflammatory
functions as M2 macrophages. There are many chemical factors present, but in order not to over
complicate the model, their quantities are assumed proportional to the cells producing them.

2.2 Parameters

Parameter values were estimated based on previous findings in the literature. One estimate utilizing
a list of assumptions and another estimate based upon experimental data. For the first estimate,
the following assumptions were implemented:

1. Neutrophils peak around day 1 day post injury (dpi)

2. M1 macrophages peak between 2 - 3 dpi

3. M2 macrophages peak at least 1 dpi after M1 macrophages peak and once M2 macrophages
peak they are the dominant macrophages present.

Initial conditions where assumed to be P0 = 1 and Pt0 = 2 which has a higher starting pathogen
density then in Cooper et al. [2] to simulate a wound with more pathogenic result.

For the method utilizing data, parameters were found that minimized the output from exper-
imental data (Torres et al., [13]). In Torres, the experiment captures wound dynamics under the
conditions that there is pathogen, but minimal debris. Pathogen starts small, but due to increase
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in carrying capacity the pathogen density increases causing the onset of the inflammation process.
For the initial conditions we assume Pt = 0.001 and let P0 be an optimization argument. Due to
the nature of the experiment, another state variable B for broth was included. To account how
the broth affects the carrying capacity, another parameter kkbp∞ was included. The inflammation
dynamic from this experiment is modeled by the system with a modification on the logistic growth
term for pathogens and with the inclusion of a new equation for broth which is the following:

dB

dt
= −kbpBP.

The pathogen equation was modified to the following:

dP

dt
= kpgP (1− P

P∞ + kkbp∞B
)− kpbsbP

µb + kbpP
− kpnPN(1 + kenE)− kpmP (M1 +M2)(1 + kemE).

The fmincon MATLAB function [5] was used to fit the solution to the data using the following
equation weighted least squares function:

min
p

n∑
i=1

(yi − y(ti, pi)
σi

)2. (1)

2.3 The model

dP

dt
= kpgP (1− P

P∞
)− kpbsbP

µb + kbpP
− kpnPN(1 + kenE)− kpmP (M1 +M2)(1 + kemE)

dPt

dt
= µanAN − kptnPtN(1 + kenE)− kptm1PtM1(1 + kemE)

− kptm2PtM2(1 + kemE)− µptPt

dAN

dt
= kanN − kanm1ANM1(1 + kemE)− kanm2ANM2(1 + kemE)− kannN(1 + kenE)

− danAN − µanAN

dN

dt
= RN

Snr

µnr +RN

1
(1 + E

Eninf
)2 − kanN, RN = knptPt + knpP + knanAN

dM1
dt

= RM1
smr

µmr +RM1 +RM2
− km1m2ANM1 + km2m1M2 − µm1M1,

RM1 = kmptPt + km1pP + km1nN + km1m1M1

1 + ( E
EM∞

)2 + km1anAN

dM2
dt

= RM2
smr

µmr +RM1 +RM2
+ km1m2ANM1 − km2m1M2 − µm2M2,

RM2 = km2m2M2 + kc.

(2)

3 Results

Numerical simulations were performed using different initial conditions to take into account the
severity of the wound. The peaks of Neutrophils, and of macrophages M1 and M2 were at the
correct times and heights. The wound healed in all simulations with the parameters used. The
numerical simulations were done using the routine ode45 of MATLAB [5] To analyze the model
behavior in regard to the parameters, a bifurcation analysis was conducted in XPPAUTO [3]. The
following are analyses conducted for pathogen growth and carrying capacity.
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Bifurcation analysis was conducted with respect to kpg, the growth rate of the pathogen.
XPPAUTO indicated bifurcation points in three main locations: between 15 and 16, at 54.956, and
a Hopf bifurcation at 15.446. The XPPAUTO program was subsequently run from the periodic
solutions from the Hopf points, which resulted in unstable solutions. Different kpg values where
tested around the bifurcation points. For high enough pathogen and debris initial conditions, kpg
= 20 and kpg = 80 resulted in an unhealthy outcome indicated by the high end behavior for M1 and
M2 macrophages. For kpb, the source of background local response, there where two bifurcation
points found: a Hopf bifurcation at kpb = 16.215 and at kpb = 17.57 . For low values of kpb the
steady state is relatively high for all state variables and also the transient end behaviors are high.
For ub, the intrinsic decay of local response, there where two bifurcation points found: at ub =
0.2085 and at a Hopf bifurcation ub = 0.1748 . As ub increases the steady state of each variable
steadily increases but after a high enough value this steady state does not change much. Around
the bifurcation point there is oscillatory behavior in apoptotic neutrophils. For snr, the source of
resting neutrophils, there was one bifurcation point found at snr = 4.222 . For small snr, the steady
state for debris, apoptotic neutrophils, M1 macrophages, and M2 macrophages is relatively high
and it goes down as snr increases. After snr is big enough the steady state starts increasing at a
steady rate and for the other state variables except pathogens the steady state remains relatively
higher.

A global sensitivity analysis of each of the state variables with respect to all the parameters
was done. The chosen sensitivity analysis method used was the Fourier Amplitude Sensitivity Test
(FAST). This was implemented within the SAFE package [10] written in MATLAB. The FAST
method is a variance based method that implements ANOVA decomposition and uses the Fourier
series to estimate the total model variance. The Fourier transform is used to decompose the variance
of the model output described by each parameter. The sensitivity indices are the proportion of the
variance attributable to the factor of interest over the total variance and has a range between 0
and 1. This method was chosen since it is computationally efficient and can be used for non-linear,
non-monotonic models [14]. This analysis is conducted utilizing each state variable as the output,
and afterwords the average of all the state variables as the output.

4 Conclusions

Models can capture multifaceted elements that control outcomes, but these models are a tool that
apply results based on current knowledge. As the experimental literature on these topics expand,
the more accurate these scientific models will be as the assumptions are updated. The use of the
model is dependent on the specifications the model was built upon. Models are supplemental in
providing a means to elucidate outcomes and effects and can help build integrity in the exper-
imental literature where unavoidable limitations such as those in in vivo vs in vitro, animal vs
human research, and also the consideration that immune response from a wound in a controlled
environment may not be the same as in a specimen that is exposed to different environments.

Established models lead to further analysis that important in analyzing the behavior under a
set of specified assumptions and circumstances. Methods such as sensitivity analysis is useful for
identifying which factors are important. These findings can be used to help factor in consideration
for experimental design. For example, the influx of monocytes when compared to other factors
may have a high sensitivity index for the overall inflammation stage implying experimental investi-
gations of changes in the expected inflammation output may consider monocyte recruitment. The
bifurcation results show that there are certain condition sunder which wounds do not heal, and
how changing certain values of the parameters the wound will heal. This can be very useful in
practice when wounds do not heal.
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1 Introduction

It has been almost 25 years since the invention of the PageRank algorithm [1], which established
Google as the world’s most used search engine ever since. This algorithm relies on the network
of hyperlinks between different websites, which can be described as a directed graph G = (N , E)
where n,m ∈ N represent webpages and (n,m) ∈ E iff there is a hyperlink between in webpage
n pointing to webpage m. Furthermore, this graph as a representation in terms of its adjacency
matrix A = (anm) ∈ R|N |×|N |, where anm = 1 if (n,m) ∈ E , otherwise anm = 0.

Let us establish some notation which will come in handy. We will denote the number of nodes
as |N | = N . We say that a vector v ∈ RN is stochastic if all of its components are positive
(vi > 0, ∀ i = 1, ..., N) and if it has unit 1-norm (|v|1 = 1). We will also denote the vector of ones
as e = (1, ..., 1) ∈ RN .

The PageRank algorithm computes the only stochastic vector π(G,α, v) ∈ RN solution to the
eigenvalue problem

πT = πT (αP + (1− α)e vT ) (1)
where α ∈ (0, 1) is the damping factor, v ∈ RN stochastic is the personalization vector, and P is
the row-normalizedadjacency matrix of G.

The interpretation behind this equation is the following: consider a random walker on a node in
the graph, following a simple set of rules. With probability α, it will follow the out-edges of the node,
with equal probability for each (this corresponds to the first term, due to the row-normalization),
with probability 1− α it will instead teleport at random to another node in the network, with the
chance to teleport to node i given by vi. Then, the PageRank vector π is the stationary distribution
of the random walker on the nodes of the network. This interpretation represents an average user,
surfing the web following links until searching something else completely unrelated.

Although at first [1] they were not explicitly mentioned, these network theoretical foundations
were soon recognized by the scientific community and ignited a torrent of research in understanding
the main features of this algorithm. In particular, the dependency of the PageRank vector on α
was thoroughly studied (see for instance [2]), but something that remained understudied is the
relation between the personalization vector v and the PageRank vector.

In this work we attempt to shed some light in this matter, in relation to centrality controllability.
1gonzalo.contreras@urjc.es
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2 PageRank controllability

Our goal is to understand how far PageRank scores can be altered after making changes in some
of its ingredients. At first glance, there are two changes that turn out to be dead ends in order to
attain full control of the centrality scores:

• Modifying the weights of the underlying graph G: this won’t allow us to set an arbitrary
centrality vector as the PageRank vector. The reason for this is the row-normalization of the
adjacency matrix in order to obtain P , this renders any single out-edge (those from nodes
with out-degree one) weightless to the eyes of PageRank.

Figure 1: A simple counterexample, the directed cycle C6. Weighting it is pointless, due to the
row-normalization.

• Modifying the damping factor: it would be unreasonable to think that changing a single
parameter could reach the whole space of centrality vectors. In fact, it’s easy to check that
for α = 1 the PageRank solution is the eigenvector associated to the spectral radius ρ(P ),
but for α = 0 the result will depend on the choice of personalization vector v. This already
hints at the interplay between the damping factor and the personalization vector when trying
to control the PageRank centrality.

We want to make this interplay between the damping factor and the personalization vector, in
relation to centrality scores, explicit. In other words, can any PageRank vector be set for a given
graph and damping factor if we have control over the personalization vector used in the algorithm?

The answer is no: in general there is no positive (⟨v, ei⟩ > 0, ∀1 ≤ i ≤ N) solution. Nevertheless,
we can study the conditions under which π0 actually has an associated personalization vector v.
In fact, in [4] the following theorem regarding the above conditions is proven:

Theorem I (Existence of the personalization vector). Given G = (V,E) and π0 ∈ RN
+ with

|π0|1 = 1, then there exists v ∈ RN
+ with |v|1 = 1 personalization vector such that

π(G,α, v) = π0 ⇐⇒ ⟨π0, ej⟩ > απT
0 Pej ∀1 ≤ j ≤ N (2)

This is a highly restrictive condition for the existence of a personalization vector, as it consists
of N inequalities which must be satisfied together, for a fixed choice of α. We can, however, relax
these constraints while retaining control over the centrality, if we consider controlling centrality
“rankings” rather than centrality “scores”. The idea is that, for most practical applications, one
is not interested in the specific centrality score of each node. Instead, what’s interesting is which
nodes are more important than others: the ranking (first, second, third, ...) of the nodes by their
importance.

Dealing with centrality rankings seems harder than with specific scores, however in the PageR-
ank case there is a nice geometrical interpretation which will allow us to crack the problem of their
control. Consider the N -simplex defined as

△N = {x ∈ Rn
+; |x|1 = 1}. (3)
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This represents both the space of all possible personalization vectors and the space of all possible
PageRank vectors of graphs with n nodes. Therefore, we can see PageRank as the following map:

π(G,α, ·) : △N −→ △N

v ↪−→ π(G,α, v) (4)

The key point in this geometric viewpoint is that we can associate each possible ranking to
a portion of the simplex. Consider the midpoint of the simplex, given by normalization of e, i.e.
ẽ = 1

N e = 1
N

∑N
i=1 ei. We can then define the hyperplanes bisecting the simplex through the

midpoint ẽ and any combination of n− 2 vertices as

Hi,j
N =


N∑

k=0, k ̸=i,j

λkek

∣∣∣∣∣∣ e0 ≡ ẽ, λk ∈ R

 . (5)

The relevance of this construction is that it provides us with a way to classify the points π ∈ △n

according to their ranking, as shown in 2.

Figure 2: Different ranking regions in the n = 3 case. For instance, π = (π1, π2, π3) ∈ A \ ∂A
corresponds to π2 > π1 > π3, while the intersection between triangles would lead to equal scores,
e.g. π ∈ B ∩ C would correspond to c2 = c3 > c1.

In this light, we can see that there is ranking control if and only if

ẽ = 1
n
e ∈ Im(π), ẽ = 1

n
e /∈ ∂Im(π). (6)

The argument here is identical to that of the hyperplanes: π = ẽ is the point in ranking space
where c1 = c2 = ... = cN . And given that all hyperplanes Hi,j

n pass through ẽ by construction,
all ranking regions are ϵ away from it. Thus, moving ϵ away in any direction will lead to different
rankings. The following theorem, proven in [4], formalizes this idea:

Theorem II (Necessary condition for ranking control) Given a network G = (V,E) and α =
(0, 1), then it is possible to obtain obtain any ranking of the nodes under the PageRank π(G,α, v)
for a v ∈ △n if and only if

1
α
> max

j
(

n∑
i=1

Pij) (7)

This tells us that if we have α < 1/maxj
∑

i Pij , we can always find the chosen ranking with
an appropriate personalization vector.
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2.1 Real network implications

It is left for us to discuss the implications of the above inequality. While it is far less restrictive
than 2, it is nevertheless a hard bound; in networks with thousands of nodes, this condition will
likely force α to be very small.

In fact, we have computed the maximum value of α satisfying that bound for several real
directed networks (all fetch from the KONECT network repository [5] and the CASOS network
repository), and indeed these values are incredibly small. This is shown in Figure 3.

Figure 3: Scatter plot showing the number of edges against the number of nodes for 84 different
real networks, with datapoints colored based on the maximum value of α providing ranking control.

As we can see in the Figure, networks with their maximum α (that saturating the bound) are
mostly below 0.4, with a handful of exceptions above 0.6.

3 Conclusions and outlook

Knowing that most applications of PageRank use relatively high values of α, around 0.85, the above
discussion implies that there is absolutely no ranking control in those situations. But this is good
news, as it implies that the orderings yielded with PageRank can’t be judiciously modified.

The described methods and geometric ideas are not restricted to the standard PageRank algo-
rithm: there are other ones which can benefit from theorems 1 and 2, so long as they feature a map
like 4. In view of this fact, an analogous treatment is carried out in [4] for the biplex PageRank
algorithm, an alternative to the standard PageRank one studied in [6].
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1 Introduction

Xylella fastidiosa (Xf) is an insect-transmitted bacterial plant pathogen associated with serious
diseases in a wide range of plants. The vectors or transmitting agents of the disease are insects
that feed on the xylem of plants. Once the vector bites and sucks on an infected plant, it acquires
the bacteria that remain in the insect’s feeding structures and will transmit it to the next plant it
bites for nourishment. It has no cure.

Since 2013, several outbreaks appeared in the Mediterranean area: in 2017, the threat reached
the almond trees of the province of Alicante (Valencian Community, Spain)

In general, the rapid spread of invasive organisms is the result of the drastic alteration of nat-
ural environments by human activities as well as global trade. Our mobile society is redistributing
species on earth at a rate that challenges ecosystems, threatens human health and produces eco-
nomic stress [1]. Climate change is also allowing certain bacteria to occupy new niches that were
not suitable before [2].

Farmers do not agree with the policies of the European Union to eradicate: 81600 trees are
going to be cut down, so their incomes have dropped dramatically.

In this paper we present, a surveillance model that aims to prevent and minimize as far as
possible the impact of the expansion of Xylella fastidosa. For that, we control the evolution of
plant mass since it is the main factor that allows the nymphs of the insect to develop

2 Methods

2.1 Temperature and humidity impact on the propagation of Xf

This, which is of transcendental importance since it affects the bacterium due to its thermophilic
nature, has made it possible to establish models that determine the potential risk of contamination
based on the minimum temperature. Although these are still preliminary results, the maps devel-
oped by the Valencian Institute of Agricultural Research (IVIA) provide a first approximation of

1jj.cortes@ua.es
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Figure 1: Impact of temperature on the propagation of Xylella fastidiosa Comunidad Valenciana
(Spain) [3]

the areas with a potentially more favorable climate for the development of this disease, as shown
in Fig.1, [3]

In addition to the temperature maps of Purcell that divide the total territory into four tem-
perature areas approximately parallel to the Mediterranean coast (see Figure 1), other works such
as [4]. We have observed humidity as it affects the spread of the pest Xylella fastidiosa (Xf)

As we have temporary photos at a certain moment, depending on the level of rain, wind,
temperature, we could obtain a model based on the plant mass based on some variables that would
give more weight to the model. These variables are basically humidity. We could establish an
improved model to that of the Conselleria Agricultura of Generalitat Valenciana of temperature
Figure 1, with depending on the amount of rain and the amount of heat the plant mass that would
act as a reservoir for the vectors that spread the plague

2.2 Collecting data to control the evolution of the plant mass

We will use the available data from the ESA (European Space Agency) Copernicus project. Coper-
nicus is a project that consists in observing the earth through satellites. Specifically, we will use
images taken by the Sentinel-2 project. Sentinel-2 is a polar-orbiting, high-resolution multispectral
imaging mission for land monitoring to provide, images of vegetation, land and water cover, inland
waterways, and coastal areas. It has two satellites in orbit, Sentinel-2A which was launched on
June 23, 2015 and Sentinel-2B followed on March 7, 2017.

Sentinel-2 is designed to provide images that can be used to distinguish between different types
of crops, as well as data on numerous plant indices, such as leaf area index, leaf chlorophyll content,
and plant water content, leaves, all of which are essential to accurately monitor plant mass which
is the main factor affecting the vector of expansion

Sentinel 2 has various forms of image processing, we will use level 2A.
Level 2A processing includes scene classification and atmospheric correction applied to Level 1C

orthoimage products of the upper atmosphere (TOA). The main level 2A output is an orthoimage
background-of-atmosphere (BOA) corrected reflectance product.

Additional outputs are an Aerosol Optical Thickness (AOT) map, a Water Vapor (WV) map,
and a Scene Classification Map (SCM) along with Quality Indicators (QI) for cloud and snow
probabilities at a given distance (Table 1). 60m resolution. Level 2A output image products will
be resampled and generated with equal spatial resolution for all bands (10 m, 20 m or 60 m).
Standard distributed products contain the envelope for all resolutions in three different folders:
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(a) Table 1 Xpectral bands of Sentinel 2 (b) Table 2 Band’s name of Sentinel 2

10 m: contains spectral bands 2, 3, 4, 8, a true color image (TCI), and AOT and WV maps
scaled from 20 m.

20 m: contains spectral bands 2 - 7, bands 8A, 11 and 12, a true color image (TCI), a scene
classification map (SCL), and an AOT and WV map. The B8 band is omitted because B8A
provides more accurate spectral information.

60m: Contains all components of the 20m product resized to 60m, plus bands 1 and 9. Cirrus
band 10 is omitted as it does not contain surface information.

The 13 spectral bands of Sentinel-2 (Table 2) range from the Visible (VNIR) and Near Infra-
Red (NIR) to the Short Wave Infra-Red (SWIR):

4 x 10 metre Bands: the three classical RGB bands ((Blue (4̃93nm), Green (560nm), and Red
(6̃65nm)) and a Near Infra-Red (8̃33nm) band.

6 x 20 metre Bands: 4 narrow Bands in the VNIR vegetation red edge spectral domain
(7̃04nm,7̃40nm, 7̃83nm and 8̃65nm) and 2 wider SWIR bands (1̃610nm and 2̃190nm) for appli-
cations such as snow/ice/cloud detection, or vegetation moisture stress assessment.

3 x 60 metre Bands mainly focused towards cloud screening and atmospheric correction (4̃43nm
for aerosols and 9̃45nm for water vapour) and cirrus detection (1̃374nm). Radiometric resolution
is the capacity of the instrument to distinguish differences in light intensity or reflectance. The
greater the radiometric resolution, the more accurate the sensed image will be. [9]

Radiometric resolution is routinely expressed as a bit number, typically in the range of 8 to 16
bits. The radiometric resolution of the MSI instrument is 12 bit, enabling the image to be acquired
over a range of 0 to 4095 potential light intensity values. citeefsa

As we have images from 2015, we can monitor the province of Alicante since Xf entered in 2017,
in the province of Alicante.

Figure 2 shows the most common shades in a false color composition are:
Magenta red indicates healthy and well-developed vegetation. Intensity and saturation of red

allows estimates of the growth cycle of plant areas Pink, less dense plant areas or with less developed
vegetation or areas of early growth. White, areas with little or no vegetation. Dark blue or black
indicates the presence of water. Metallic gray or blue represents cities or populated areas. Beige
or golden transition zones such as dry meadows or scrub.

Here the primary colors red, green and blue have been used to other layers that do not cor-
respond to the wave amplitude that corresponds naturally. But this is very useful in the visual
analysis of vegetation, for example, since it sometimes allows us to distinguish by discrimination
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covers that have an apparent visible behavior but have a different appearance in electromagnetic
radiation. For example in this image composition the magenta red represents vigorous vegetation
such as irrigated crops, meadows or forests. The study of the intensity and saturation of red allows
estimates of the growth cycle of plant areas, even comparing them with images taken previously.
The pink color shows areas such as less dense vegetation, or areas of early growth. White represents
areas of no vegetation, such as bare ground, sand, clouds, snow. The dark blue-black areas fully or
partially covered with water. Metallic gray or blue represents cities or populated areas. The beige
or golden transition zones such as dry meadows or scrub.

From which we can extract the areas where we have vegetation, areas where there is vegetation
in white and a black background where there is no vegetation, Figure 3 and Figure 4.

Or areas where there is no vegetation upside down, black area where there is vegetation.

(a) Infrared (b) Vegetation white (c) Vegetation black

Here we have another photo taken of the Guadalest reservoir (Figure 5) where the first case of
Xf was detected, on the peninsula in 2017. Figure 5 we have an image using the bands that interest
us, which are B2, B4 and B8

This does not give information to be able to see how the plant mass evolves, with Google Maps
we can also see how the plant mass evolves, but by discriminating frequencies we can separate plant
mass from shrubs and plant mass from trees. We have solved this problem with Sentinel-2. This
allows us to model through climate models and establish a risk map based on rainfall, temperature,
wind, humidity.

With this experiment we can label on the one hand the plant mass for a certain area. Also
based on environmental parameters such as we can download from Sentinel-2 photos of the same
area from a few years ago, we can monitor the plant mass of a certain place. With what we
could see where plant mass is being destroyed and where that plant mass is growing, in a study
area. With these data we can extrapolate how the plant mass has evolved over time depending on
variables of temperature, rain, wind, etc. As the studies of [6] affirm, we will carry out two studies
in the control of plant mass, one in summer and the other in autumn. In addition, within the
plant mass [5] we studied two subtypes: the vegetation of the soil of the orchards and the woody
areas. We have in Sentinel-2 since 2016 of the entire Valencian Community with which we have
a corpus of images that we can predict based on a series of climatic data and a series of photos
predict if the plant mass is going to grow or decrease in a certain area . The idea would be to
define areas vulnerable to the epidemic and establish a risk map for pest surveillance as provided
by the model [7], of treating all plant material in these areas in spring, which would slow down the
rate Of reproduction.

These data allows us establishing areas where there are a risk of transmission and monitoring
these areas is recommended. This monitoring could be done with Drones as has with this experi-
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(a) Natural view (Google) (b) Infrared view

Figure 4: First Xf. in Spain.

ment we can label the plant mass for a certain area. Also based on environmental parameters such
as we can download photos of the same area from a few years ago from Google Maps. With what
we could see where plant mass is being destroyed and where that plant mass is growing, in a study
area.

Based on the mathematical models described, we are making projections of the entire Comu-
nidad Valenciana with which we have a corpus of images that we can predict based on a series of
climatic data and a series of photos whether the plant mass will increase or decrease in a certain
area. The idea would be to define areas vulnerable to the pest and establish a risk map for pest
surveillance as provided by the model [7], of treating all plant material in these areas in spring,
which would slow down the rate of reproduction. Where we would establish several colors based
on high risk (red), moderate risk (yellow), no changes (white), no risk (green)

3 Results

Working with these bands we have some samples that show how the plant mass evolves depending
on climatic variables, temperature, humidity. This allows us to train a multilayer perceptron to
provide zones where the plant mass grows or decreases. Figure 4 shows the data flow diagram with
citedatos, citeefsa After generating a risk map we mark with colors: red for high risk (plant mass
grows), green for low risk (plant mass increases slightly), yellow for medium risk. The white has
the same vegetable mass.

4 Conclusions

By monitoring the plant mass with the help of the photos from Sentinel 2, and the variables
Temperature and Humidity, we can establish risk maps.

These areas should be monitored when an increase in plant mass is detected
This work may be improved by increasing the resolution. It would be advisable to monitor the

areas to be studied with drones with higher resolution hyperspectral cameras
As a future work we could also foresee reforestation of a fire. The photos taken by Sentinel-2

are free and we can have one every 5 days depending on the cloudiness.
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(a) Data flow diagram (b) Result

Figure 5: Results.
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1 Introduction

One of the main problems in the analysis of complex networks is to find the most important entities
(nodes and edges) from the relationships and interactions between them [2, 3]. The existence of
interactions of different nature and simultaneous interactions between nodes and edges (v.g., group
collaborations, chemical reactions in which more than two components interact, ...) have shown
that hypergraphs and multilayer networks are very suitable structures for this type of studies [1,2].
On the other hand, the latest advances in modern linguistics are based on the treatment of a
language as a system or a complex network, to which mathematical tools, statistical measures and
procedures of this branch of science can be applied to obtain a new, efficient and effective approach
to the study of language [3, 5, 8, 9]. Additionally, the search for linguistic patterns, stylometry
and forensic linguistics have in the theory of complex networks, their structures and associated
mathematical tools, allies with which to model and analyze texts [4, 5]. Other linguistic aspects
and elements, such as the specific terminology of a specialty language and the different combinations
of words that give rise to new meanings (called ”collocations”) have also been successfully modeled
using an appropriate methodology within the scope of this model [5]. Our idea is to look for a new
methodology supported by several mathematical structures in order to analyze the relationships
between words, sentences, paragraphs, chapters and texts, focusing on a quantitative concept of
dependency between these elements that will be of singular help both to detect the style and
level of knowledge of a language by an author, and to create new tools to detect plagiarism. Our
motivation is the identification of the main structures and language level in written texts and
specialized languages, and as a main motivation, the characterization of the level of competence of
the language of a written text and the detection of elements that allow characterizing the style of
an author. So, the questions we address are the following:

• How to characterize the competence level of language used in a written text?

• Can an author’s style be determined using specific parameters of a linguistic network associ-
ated with one of his written texts?

• What is the combination of words most frequently used in a corpus beyond locating the most
relevant individual words?

1angeles.criado@urjc.es
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• How to determine the most representative words of a text (not necessarily the most frequent)?

• Is it possible to associate a numerical measurement index and a mathematical structure that
characterizes and identifies the author?

2 Methods and results

Many questions arise when trying to quantify and to associate a numerical measure index to a text
or to a part of such tex. In fact, a breakthrough in linguistics was to be able to associate a complex
network structure to a text in order to identify patterns, linguistic units, syntactic and semantic
structure ..., so in order to solve this question we will set our sights on some new mathematical
structures related to graph theory and higher order networks that will allow us to dissect and
analyze this kind of linguistic structures. Therefore, our efforts will be focused on associating a
mathematical structure to a written text as if it were a kind of seal of identity of that text. Having
in mind that the latest advances in modern linguistics are based on the treatment of a language
as a system or a complex network, we will extended these ideas to a general context in which the
PageRank algorithm, the mathematical structure of hypergraph and a suitable multilayer line graph
will be considered. A linguistic corpus can be mathematically modeled as a multilayer complex
network G = (X,E), in such a way that such that each node X = {1, . . . , n} is a word that appears
in any of the texts that make up the linguistic corpus, and a direct link is established between two
words that appear consecutively [5]. Within the multilayer network, four layers are distinguished
(lexical layer, verbal layer, linking layer and remainder layer). The color indicates the type of node
(layer). The unit of analysis considered is the sentence, that is, the words enclosed between two
periods [7]. Also, it is important to note that commas and other punctuation marks within the
sentence have been removed for the analysis done, as well as a previous analysis carried out by
linguistic experts to distribute the words into the different layers of the network.

In this study we will focus on the lexical layer. For this purpose, we first take into account
that a linguistic corpus can be mathematically modeled as a hypergraph, in which the nodes are
the lexical words of the corpus, and each hyper-edge, corresponds to a sentence of a text of the
corpus (set of lexical words between two points) and is formed by the lexical words that are part of
it. So, the next step is to progress from lexical words to consider mesoscale structures: sentences,
paragraphs, chapters,...:

To carry out this study a linguistic corpus composed by 86 extended abstracts and papers (vol-
umes 1-6 of the International Journal of Complex Systems in Science (IJCSS), published between
April 2011 and November 2016 (http://www.ij-css.org)), giving a total amount of 25, 210 sentences
and 147, 637 words (of which 2,203 are lexical words) have been considered and analyzed.

Let’s remember that a hypergraph (or higher order network) is a pair H = (X, ε) where:

• X is a finite set (the set of nodes), X = {1, ..., N}, and

• ε = {h1, h2, . . . , hn} a collection of subsets of X such that hi ̸= ∅ (i = 1, 2, . . . , n) and
X = ⋃n

i=1 hi. .

Each of these subsets hi ̸= ∅ (i = 1, 2, . . . , n) is called a hyperedge of H = (X, ε).
In this way, hypergraphs appeared as the natural extensions of complex networks to describe

group interactions. In our model, we consider a higher order network (hypergraph) built on the
set of lexical words (mainly adjectives and nouns). The hyper-edges may be sentences, paragraphs,
chapters....

As we have said, throughout this study, we will consider that the nodes of the hypergraph
are the lexical words of our written texts (or corpus) and the hyper-edges are the sentences, i.e.,
each sentence is the set of lexical words located between two periods. Now, in order to measuring
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similarity and dissimilarity of texts, first we consider how to analyze the similarity of sets. The
basic Jaccard index to compare the degree of coincidence or similarity between two sets A and B
can be obtained from the formula

J (A,B) = |A ∩B|
|A ∪B|

0 ≤ J (A,B) ≤ 1.

In this regard, different generalizations of Jaccard index have been introduced in the literature
(including the overlap index):

Jn(A,B) = |A ∩B|
n

|A ∪B|
, I(A,B) = |A ∩B|

min{|A|, |B|}

and C(A,B) = J (A,B) · I(A,B). Observe that 0 ≤ C(A,B) ≤ 1.
Let us now recall some other definitions of the different elements and structures involved in our

model. Another fundamental ingredient for carrying out this study is the PageRank algorithm.
We consider in our model the PageRank algorithm and the Random Walkers’ Heuristics. In that
sense, it is clear that if we surf at random on a network, the more frequently we pass over a node
or an edge, the more relevant that element is. So we consider a Markov chain on the network such
that

• At time t = 0 we choose one node at random.

• If at time t the Markov chain is at node j, then we move at random (uniformly) and at time
t+ 1 we move to one of the neighbors of j, i.e. the probability of moving from j to i is

pji = aji

grout(j)
.

• In order to avoid sink nodes, at each step there is a small probability to make a random jump
outside of the neighborhood.

This Markov chain has the following transition matrix

ϕij = (1− q) aji

grout(j)
+ q

n
,

where the frequency of reaching node i is the i-component of the stationary state of ϕij , the
stationary state is a positive eigenvector of ϕij and, since ϕij > 0, this eigenvector is unique, up
to normalization (Perron-Frobenius theorem). According to all of this, we consider the PageRank
centrality, defined as the stationary state of the Markov chain with transition matrix

ϕij = (1− q) aji

grout(j)
+ quj ,

with u = (u1, · · · , un) ≥ 0 such that ∥u∥1 = 1, is a celebrated centrality measure used in many
applications, such as the web pages ranking (Google), bibliographic and scientific collaboration
networks, transportation systems, cybersecurity and many others. Finally, another ingredients
related to this study are the concepts of of linegraph and dual graph of a hypergraph. If H = (X, ε)
is a hypergraph, the linegraph associated to H is the graph L(H) = (ε, E′), where if hi, hj ∈ ε,
then

{hi, hj} ∈ E′ ⇔ hi ∩ hj ̸= ∅.

It is also notorious that the linegraph L(H) of a hypergraph H is a graph even though H is a
hypergraph. Note that this concept is a particular case of the concept of intersection graph. If
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H = (X, ε) is a hypergraph, the dual hipergraph associated with H is the hypergraph H∗ = (ε,X ′)
in such a way that if X = {1, ..., N}, then X ′ = {v1, ..., vN} where vi = {hj |i ∈ hj}, i = 1, ..., N . It
is not difficult to verify that (H∗)∗ = H. So, for any hypergraph H we have that Π2(H∗) = L(H).
Moreover, if I is the incidence matrix of H, then its transpose matrix It is the incidence matrix of
H∗. In fact:

(I(H)t) · (I(H)) = Ã(H) = (ãij) ∈ R|ε|×|ε|

and
(I(H)) · (I(H)t) = A(H) = (aij) ∈ RN×N ,

where

aij =
{
|{h ∈ ε | i ∈ h}| if i = j,
|{h ∈ ε | i, j ∈ h}| if i ̸= j.

(1)

It is important to highlight that nowadays there is a growing interest in all these structures.

1
2

3

4 5 6

1

2
3

4 5 6
h1

h3

h4

h2

Figure 1: An example: H, L(H) = Π2(H∗) and Π2(H).

At this point, we can give the following definition:

Definition 1. Given a hypergraph H = (X, ε), with A(H) = (aij) ∈ RN×N , the derivative hyper-
graph of H with respect to the pair of nodes i, j ∈ X is the numerical value

∂H
∂{i, j}

= ai − aij + aj − aij

aij
= ai − 2aij + aj

aij
. (2)

So, looking at Figure 1 we get ∂H
∂{2,3} = 3−2+3−2

2 = 1, ∂H
∂{5,6} = 0, ∂H

∂{1,2} = 1
2 , ∂H

∂{1,3} = 3,
∂H

∂{2,4} = 2, ∂H
∂{1,4} = 1, ∂H

∂{3,5} = 2, and ∂H
∂{3,4} = +∞ = ∂H

∂{4,5} = ∂H
∂{2,6} .

From these values, the derivative graph ∂H and the homogeneity graph HG(H) can be con-
structed [6] (see Figure 2), having in mind that ∂H is the weighted graph obtained by considering
the derivative of H with respect all the pairs of nodes i, j ∈ X, and by setting ∀i, j ∈ X the
corresponding numerical value of ∂H

∂{i,j} on the edge {i, j}, in such a way that if ∂H
∂{i,j} = 0, then

the nodes i and j collapse into a single node (ij), and having in mind that if ∂H
∂{i,j} =∞, then the

edge {i, j} does not exist in the derivative graph, and the homogeneity graph HG(H) of H is the
weighted graph with the same nodes and edges as ∂H , but considering as the weight of each edge
the inverse value of the weight corresponding to the derived graph ∂H.
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Figure 2: Derivative graph ∂H and Homogeneity graph HG(H) of the analyzed example.

For the same reason, when analyzing the hypergraphH formed by all the sentences of the corpus
under study, we obtained 82 pairs of words that appear in exactly the same sentences. Thus, for
example

∂H
∂{Monte, Carlo}

= ∂H
∂{differential, RungeKuttta}

= ∂H
∂{oscillatory, asynchronous}

= 0.

∂H
∂{network, system}

= 16.33, ∂H
∂{language, formal}

= ∂H
∂{connectance, asymetry}

= 2.

Some computations have been made on our selected corpus composed of 25210 sentences (hyper-
edges). The numerical experiments were run on a iMac18,3 with 4,2 GHz Intel Core i7 and RAM
16 GB by using a Python 3.7 implementation with machine precision ε ≈ 2.22× 10−16. In fact, we
consider three different rankings to be applied on the set of lexical words of the considered corpus:

To calculate Ranking 1. we first have built a graph on which to apply the PageRank algorithm.
In order to do that, we convert each hyperedge of H into a clique to obtain the projection graph
Π2(H). After this, taking into account that the average number of words of a sentence within the
corpus under study is 5.97 and that, therefore, the local lexical density is 5.97 ,we can deduce that
the damping factor corresponding to this configuration is 0.85, since

5.97 =E(ℓ) =
∞∑

k=0
k · P(ℓ = k) =

∞∑
k=1

k · (1− q) · qk

=(1− q) · q
∞∑

k=1
k · qk−1 = q

1− q .

To calculate the Ranking 2, we will apply the PageRank algorithm considered on the network

Π2(H∗) = L(H)

so that, once the numerical value attributed to each phrase has been obtained, this value is dis-
tributed proportionally among the words that make up that sentence. Now, using the same rea-
soning as in the previous case, and having in mind that the average number of sentences of a paper
included in the corpus under study is 27.12, in this context, the damping factor corresponding to
this configuration is 0.96. Finally, to calculate Ranking 3, we apply the PageRank algorithm con-
sidered on the weighted graph HG(H). Taking into account that the average number of words of
a sentence is 5.63 (since, after collapsing words pairs {i, j} such that ∂H

∂{i,j} = 0, the average length
of sentences decreases, albeit slightly), the damping factor corresponding to this configuration is
0.84. And these are the rankings produced using these three criteria:
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Ranking 1 Ranking 2 Ranking 3
1st network network network
2nd system system system
3nd model model model
4th complex complex complex
5th process number graph
6th number process process
7th information structure structure
8th graph new information
9th new information number
10th structure distribution new

Table 1: Rankings of lexical words

3 Conclusions

By means of conclusions, we can point out the following:

• We introduce and study the derivative of a hypergraph and the homogeneity graph of a
hypergraph as new and useful structures that can be used to study the degree of independence
of the nodes of a hypergraph as well as to obtain a ranking of the most representative nodes
of the hypergraph.

• The associate parameters to the homogeneity graph of a hypergraph allow us to obtain
technical characteristics related to the style of different authors and the language competence
level of any text written in English.

• These new concepts are developing and being implemented to configurate a tool for searching
similarities and differences in a set of texts. The automatic classification of texts according to
their differences or similarities, as well as its different applications to text classification, text
summarization, stylometry and authorship detection are some of the possible applications of
the methodology underlying this model.
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Camino de Vera, s/n, 46022 Valencia, Spain.

1 Introduction

The problem of computing a matrix function is a problem interesting and difficult at the same
time. On the one hand, it is difficult due to the need to use matrices, which can be of large di-
mension, where accurate results are to be achieved with the lowest computational cost. On the
other hand, it is interesting because the great variety of different matrix functions (exponential,
sign, trigonometric, hyperbolic, etc.) to be computed, each of which has its own problematic,
and its multiple applications in different areas of applied mathematics, science and engineering.
Among these matrix functions, the matrix exponential highlights, together with logarithm function.

Given a nonsingular matrix A ∈ Cn×n satisfying that σ(A) ⊂ C − (−∞, 0 ], we denote as a
matrix logarithm of A to any matrix X ∈ Cn×n fulfilling the matrix equation

A = eX , (1)

where eX is the matrix exponential of X. There are infinite solutions of equation (1), but we only
will focus on the principal matrix logarithm or the standard branch of the logarithm, denoted by
log (A), which is the unique one of matrix A, see Theorem 1.31 of [1], whose eigenvalues all lie in
the strip {z ∈ C;−π < Im(z) < π}. The matrix logarithm is used in engineering [2], optics [3],
mechanics [4], the study of viscoelastic fluids [5], control theory [6], graph theory [7], statistics and
data analysis [8], among other many areas.

Several algorithms have been provided for computing this matrix function. The proposed meth-
ods include, for example, the inverse scaling and squaring (ISS) technique [9], an algorithm based
on the arithmetic-geometric mean iteration [10], or the use of contour integrals [11]. In [12], a
method based on Schur–Fréchet algorithm was ed. In references [13–17], different authors studied
the use of Padé approximations with distinct and interesting variants. Recently, a method based
on the Taylor series was presented in [18]. Also, methods based on different quadrature formulas
were proposed in [19,20].

1edefez@imm.upv.es



Modelling for Engineering & Human Behaviour 2022

2 The original method proposed

In [19], the following integral representation of the matrix logarithm is given:

log (A) = (A− I)
∫ 1

0
((A− I)t+ I)−1 dt. (2)

Carrying out the change of variable t = 1 + u

2 , we can write (2) in the form:

log (A) = (A− I)
∫ 1

−1
((A− I)(1 + u) + 2I)−1 du. (3)

In [20], integral of (3) was approximated using the Gauss-Legendre method, that it is a well
known form of Gaussian quadrature for approximating the definite integral of a function. Consid-
ering the integration interval [−1, 1], the Gauss–Legendre rule takes the form:∫ 1

−1
f(x)dx ≈

n∑
i=1

wif(ui), (4)

where n is the number of sample points used in the quadrature, u are the quadrature nodes,
given by the roots of the n-th Legendre polynomial Pn(u), and w are quadrature weights, defined
by

wi = 2
(1− u2

i ) (P ′
n(ui))2 , i = 1, 2, . . . , n.

This choice of weights w and nodes u is the only one that allows the quadrature rule to integrate
exactly polynomials of order 2n− 1.

In [20], authors presented the Algorithm 3 designed to compute log (A) by automatically adding
abscissas until the error is smaller than a given tolerance. This algorithm is reproduced in the Figure
1.

Figure 1: Computation log(A) based on Gaus Legnedre quadrature [20, Algorithm 3].
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The proposed algorithm is clearly based on the scalar one, and it has the problem that a matrix
inverse must be calculated in each evaluation of the function to integrate. While in the scalar case
the inverse is just a simple division, in the matrix case it is a very expensive operation, with a
computational cost of O

(
8r3/3

)
flops, where r is the dimension of the matrix. Moreover, none of

the previous calculations can be reused in the algorithm proposed.

A short trace is shown below to clarify the inefficiency of this Algorithm 3. Let us start it with
m0 = 2 and see how many inverses are needed if we simply perform 3 iterations:

• Step 1. To obtain G0, the quadrature nodes u1 = −0.57735, and u2 = 0.57735 are needed.
Thus, the matrices FGL (−0.57735), and FGL (0.57735) are evaluated, for which two inverse
matrices are computed.

• Step 2. To evaluate G1, the quadrature nodes u1 = −0.861136, u2 = −0.339981, u3 = 0.339981,
and u4 = 0.861136 are employed. Note that these nodes are all different from the ones used
in the previous step. Thus, the matrices FGL (−0.861136), FGL (−0.339981), FGL (0.339981),
and FGL (0.861136) are evaluated by calculating four different inverse matrices more.

• Step 3. To provide G2, we need the quadrature nodes u1 = −0.96029, u2 = −0.796666,
u3 = −0.525532, u4 = −0.183435, u5 = 0.183435, u6 = 0.525532, u7 = 0.796666, and
u8 = 0.96029, all of them distinct from the previous ones. Then, we compute the matri-
ces FGL (−0.96029), FGL (−0.796666), FGL (−0.525532), FGL (−0.183435), FGL (0.183435),
FGL (0.525532), FGL (0.796666), and FGL (0.96029), after working out eight additional in-
verse matrices.

• Step 4. To evaluate G3, the quadrature nodes to be considered are u1 = −0.989401, u2 =
−0.944575, u3 = −0.865631, u4 = −0.755404 ,u5 = −0.617876, u6 = −0.458017, u7 =
−0.281604, u8 = −0.0950125, u9 = 0.0950125, u10 = 0.281604, u11 = 0.458017, u12 =
0.617876, u13 = 0.755404, u14 = 0.865631, u15 = 0.944575, are u16 = 0.989401. Again
no node is repeated. Thus, we evaluate the matrices FGL (−0.989401), FGL (−0.944575),
FGL (−0.865631), FGL (−0.755404), FGL (−0.617876), FGL (−0.458017), FGL (−0.281604),
FGL (−0.0950125), FGL (0.0950125), FGL (0.281604), FGL (0.458017), FGL (0.617876),
FGL (0.755404), FGL (0.865631), FGL (0.944575), and FGL (0.989401) and sixteen different
inverse matrices more will have been computed.

If we assume the given result in this Step 4 is sufficiently accurate to finish Algorithm 3, we
would use the 16 computed matrices to calculate the matrix logarithm.

In this way, we can see that a total of 30 different inverse matrices have been calculated, but
then only 16 have been used to calculate the sought matrix logarithm. Since slightly less than
half of the calculated matrices are not used in the final approximation, we can conclude that this
algorithm proposed in [20] is not computationally efficient.

In addition, it is usual in the matrix logarithm approximation to use a scaling factor s that
follows from the well-known equality log (A) = 2s log (A2−s). This step has not been considered
in the previous described algorithm, but if it is considered in most of the other ones proposed in
the state–of–art. For example, MATLAB function logm(A) uses the algorithm described in [9,12],
composed of three different stages. In the first phase, an integer s so that matrix A2−s is “near” to
the identity matrix I is calculated. To compute the matrix square roots, the scaled product form of
the Denman–Beavers iteration [1, eq. (6.29)] is used. In the second phase, the value of log (A2−s) is
approximated by rm(A2−s), where rm(x) is the diagonal Padé approximant of function log (1 + x)
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of degree m. Finally, in the last phase, log (A) is computed as log (A) = 2s log (A2−s).

The purpose of this work is to introduce a new method, based on the Gauss–Legendre quadra-
ture, that is more computationally efficient and that provides accurate results in the approximation
of the matrix logarithm.

3 The proposed alternative algorithm

Algorithm 1 computes the logarithm of a matrix A by using the Gauss-Legendre method described
in Section 2. The following is a description of the main stages that comprise the algorithm:

1. Determining an integer s so that matrix A2−s is “near” to the identity matrix I. This is
achieved in Steps from 1 to 7, where A is brought close to I by taking successive square roots
of itself until its norm is lower than ε. To compute the required matrix square roots, the
scaled Denman–Beavers iteration [1, eq. (6.29)] is used. This iteration is defined by:

Xk+1 = 1
2(µkXk + µ−1

k Y −1
k ),

Yk+1 = 1
2(µkYk + µ−1

k X−1
k ),

(5)

with X0 = A, Y0 = I and µk = |det(Xk) det(Yk)|−1/(2n), and n is the dimension of matrix A.
Although convergence is not guaranteed, if it does then Xk converges to A1/2.

2. Computing log (A2−s) by means of the Gauss-Legendre quadrature with a fixed number of
nodes (Step 8).

3. Recovering log (A) = 2s log (A2−s) (Step 9).

Algorithm 1 Given a matrix A ∈ Cr×r, the number of nodes n, a tolerance ε, and a maximum
number of iterations maxiter, this algorithm computes L = log(A) by the n-point Gauss-Legendre
quadrature rule (4).

1: s = 1
2: finish = ||A− I|| ≤ ε
3: while not finish and s ≤ maxiter do
4: A← A1/2, using scaled DB iteration (5)
5: finish = ||A− I|| ≤ ε
6: s = s+ 1
7: end while
8: Compute L by using (4).
9: L← 2sL

What is the optimal number n of nodes to be taken into account in the logarithm computation?.
Let us remind that to guarantee the result of the quadrature is exact, the number n of nodes to
use with Gauss-Legendre must be greater than or equal to (m+ 1)/2, where m is the degree of the
polynomial function to be integrated. If we consider that m is the Taylor polynomial order that
is used to approach the matrix logarithm, we could approximate and substitute the integrand by
analogy with a polynomial of degree m−1. Thus, the number of nodes n could be estimated as m/2.
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The Table 6 of Ref. [18] shows that the average degree of the Taylor polynomials used with the
function logm−pol in the three numerical experiments described there is 42, 45, and 39, which gives
an arithmetic mean of 42. In this way, if we take m = 42, we get that n = 42/2 = 21. Moreover,
it has been experimentally proven that n = 20 is the value that delivers the most accurate results
in our executions, which practically coincides with the one previously provided. Therefore, n = 20
will be the fixed number of nodes in our implementation of the Gauss-Legendre quadrature formula.

The function logm−gauss−sqr(A) has been coded in MATLAB language, implementing our
proposed Gauss-Legendre algorithm.

4 Numerical Experiments

Obviously, we need to check and compare the effectiveness, and accuracy of our algorithm, and its
corresponding codification in the function logm−gauss−sqr(A), with other existing implementations.
For this purpose, the following state-of-the-art codes have been considered:

• logm−new. Initially, this function transforms the input matrix A to the Schur triangular form
A = QTQ⋆. Then, the logarithm of the triangular matrix T is computed by using the inverse
scaling and squaring technique and the Padé approximation. The square roots of matrix T
are worked out by the Björck and Hammarling algorithm [1, eq. (6.3)]. It corresponds to the
Algorithm 4.1 of [9].

• logm−iss−full. In this code, the matrix logarithm is computed by means of the transformation-
free form of the inverse scaling and squaring method with the Padé approximation. In this
case, the matrix square roots are calculated by the product form of the Denman–Beavers
iteration. It corresponds to the Algorithm 5.2 of [9].

In our numerical experiments, a total of 225 heterogeneous matrices were employed, spread
over three distinct sets respectively composed of 99 diagonalizable matrices (Set 1), 99 non-
diagonalizable matrices (Set 2), and 18 matrices from the Matrix Computation Toolbox [22] and
9 from the Eigtool MATLAB Package [23] (Set 3). The size of all these matrices was 128 × 128,
performing all calculations with MATLAB 2020b.

The results obtained in 3 numerical experiments, each corresponding to a distinct set of ma-
trices, are discussed below. Firstly, for each code in comparison and respectively for each set of
matrices, Figures 2, 3, and 4 show the graphs corresponding to the performance profile, the
normwise relative error committed by each function, and the ratio of the relative error incurred by
logm−gauss−sqr(A) with respect to logm−new and logm−iss−full. In terms of accuracy of results,
our method exhibited a clear superiority over the other two ones for Sets 1 and 3, being more
modest for Set 2. Next, Tables 1, 3, and 5 contain the percentage of cases in which the function
logm−gauss−sqr(A) provided a relative error less than, greater than or equal to that of the functions
logm−new and logm−iss−full. As can be seen, logm−gauss−sqr(A) outperformed the other 2 codes
in a very considerable percentage of occasions, regardless of the set of matrices analyzed. Finally,
Tables 2, 4, and 6 incorporate the elapsed times in the calculation of all the matrices that comprise
each set. Depending on the set involved, the execution time of function logm−gauss−sqr(A) may
be longer, shorter or intermediate to that of the other codes in comparison.
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Numerical test 1
E(logm−gauss−sqr) < E(logm−new) 88.89% E(logm−gauss−sqr) < E(logm−iss−full) 100.00%
E(logm−gauss−sqr) > E(logm−new) 11.11% E(logm−gauss−sqr) > E(logm−iss−full) 0.00%
E(logm−gauss−sqr) = E(logm−new) 0.00% E(logm−gauss−sqr) = E(logm−iss−full) 0.00%

Table 1: Improvement percentage in the normwise relative error committed by all the codes for
Set 1.

Execution time for Set 1
logm−gauss−sqr 7.54

logm−new 12.24
logm−iss−full 4.24

Table 2: Execution time, in seconds, for matrices from Set 1.
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Figure 2: Profile, normwise relative errors, and ratio of relative errors for Set 1.

Numerical test 2
E(logm−gauss−sqr) < E(logm−new) 63.64% E(logm−gauss−sqr) < E(logm−iss−full) 100.00%
E(logm−gauss−sqr) > E(logm−new) 36.36% E(logm−gauss−sqr) > E(logm−iss−full) 0.00%
E(logm−gauss−sqr) = E(logm−new) 0.00% E(logm−gauss−sqr) = E(logm−iss−full) 0.00%

Table 3: Improvement percentage in the normwise relative error committed by all the codes for
Set 2.

Execution time for Set 2
logm−gauss−sqr 14.44

logm−new 11.21
logm−iss−full 8.56

Table 4: Execution time, in seconds, for matrices from Set 2.

5 Conclusions

In this work, a new algorithm based on the Gauss-Legendre quadrature formula has been pre-
sented to calculate the matrix logarithm. This algorithm have been tested on a battery of test
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Figure 3: Profile, normwise relative errors, and ratio of relative errors for Set 2.

Numerical test 3
E(logm−gauss−sqr) < E(logm−new) 74.07% E(logm−gauss−sqr) < E(logm−iss−full) 77.78%
E(logm−gauss−sqr) > E(logm−new) 25.93% E(logm−gauss−sqr) > E(logm−iss−full) 22.22%
E(logm−gauss−sqr) = E(logm−new) 0.00% E(logm−gauss−sqr) = E(logm−iss−full) 0.00%

Table 5: Improvement percentage in the normwise relative error committed by all the codes for Set
3.

Execution time for Set 3
logm−gauss−sqr 0.02

logm−new 0.07
logm−iss−full 0.10

Table 6: Execution time, in seconds, for matrices from Set 3.
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Figure 4: Profile, normwise relative errors, and ratio of relative errors for Set 3.

matrices in order to select to study their computational cost and accuracy. Taking into account
the experimental results, it can concluded that:

• The normwise relative error figure indicates that the proposed algorithm is as numerically
stable as the other known methods.

• In general, the proposed method logm−gauss−sqr has proven to be more accurate when
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compared to other very well-known methods in the scientific literature, such as logm−new
and logm−iss−full.
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1 Introduction

In this work, we use the least-squares method for inconsistent systems with priority in some equa-
tions to find a new distribution law for shortage and surplus problems. These problems consist
of distributing goods or resources among a set of agents. Notice that we can have three cases
depending on the available resource, i.e., when the state is less than, greater than, or equal to the
agents’ demands, which correspond to the shortage, surplus, and the trivial one, respectively. In
the literature, the most common shortage problem is the so-called Bankruptcy problem, charac-
terized by non-negative solutions where no agent can obtain more than was demanded ( [8], [9]).
The allocation problem that we study is an interesting case since it considers different priorities to
satisfy the demands of the agents, which are characteristics that agents may have or possess and
that will influence the way the distribution is carried out. Such allocation may allow an agent to
receive more than his demand or give from his resources, implying a redistribution of resources.

Let us define an allocation problem as the pair (d, E) ∈ Rn×R, where d = (d1, . . . , dn) is called
the demand vector, di ≥ 0 denotes the demand of the agent i, for i = 1, . . . , n, while that E ≥ 0
represents the available amount of a perfectly divisible resource. Our approach will be to set a
system of n+ 1 linear equations and n unknowns as follows

xi = di, i = 1, . . . , n, (1)
n∑

i=1
xi = E, (2)

where equations (1) are called “demands” and equation (2) is called the “efficiency equation”. In
terms of this notation, the surplus case occurs when ∑n

j=1 dj < E, while the shortage case occurs
when ∑n

j=1 dj > E. For both cases, the system given by equations (1) and (2) is inconsistent.
For the trivial case, we have that ∑n

j=1 dj = E. To solve (1) and (2) we use the least-squares
method (LSM) for inconsistent systems which appears in different areas such as statistics [2], or
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linear algebra [6]. One problem with the LSM solution is that the efficiency equation could not
be satisfied. Since it is desirable to divide the resources ultimately, we will apply the LSM to a
reformulated linear system of equations that prioritizes the efficiency equation.

2 Methodology and Results

In this section we provide the definitions and main results of our method. Let us start by defining
the M-inner product:

Definition 15.1. Let M be a m×m real positive definite matrix, we define the M-inner product
as ⟨v,u⟩M = v⊤Mu, for u, v ∈ Rm.

Next, we write the LSM in terms of the M-inner product.

Proposition 1. Let A be a matrix of size m × n with real entries, b ∈ Rm and M a positive
definite matrix of size m×m. A vector x ∈ Rn is a least squares solution of the equation Ax = b
with respect to the M-inner product if and only if it satisfies the following equation

A⊤MAx = A⊤Mb. (3)

Note that if Ax = b is consistent, the least-squares solution is the usual one. We will call the
M-Least Squares Method (M-LSM) the solution where the distance function is given by the norm
induced by the M-inner product. The case where the M-LSM solution can be explicitly computed
is the following.

Theorem 9. In the setting of Proposition 1, the system Ax = b, has a unique least-squares solution
with respect to the M-inner product if and only if the columns of A are linearly independent. In
this case, the M-LSM solution is given by

x̂ = (A⊤MA)−1A⊤Mb. (4)

2.1 M-LSM and allocation problems

To solve the allocation problem we need to prioritize the efficiency equation. First, we apply the
LSM to the equation system (1) and (2), but repeating the last equation k−times to give it a
certain priority, i.e.,

xi = di, i = 1, . . . , n,

∑n
i=1 xi = E,
...

...
...∑n

i=1 xi = E.

 k− times (5)

In matrix notation, this system can be written as Akx = bk, where

Ak =


I
e
...
e


(n+k)×n

and bk = (d1, d2, . . . , dn, E, . . . , E︸ ︷︷ ︸
k−times

)⊤. (6)

The following result tell us what occurs when we take the limit as k to infinity.
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Theorem 10. Let Ak be a complete rank matrix as defined in (6), Akxk = bk the system of
equations given by (5), and x̂k the LSM solution for this system. Then, x̂k converges to x∗ as
k →∞, whose i-th element is given by

[x∗]i = di +
E −

∑n
j=1 dj

n
; i = 1, . . . , n. (7)

We will call this equation LSM rule.

The achieved solution can be interpreted as each agent receiving what demands plus an n-th
of the deficit or surplus. Under certain conditions, this rule corresponds to the Constrained Equal
Loss rule, [4, 5], which gives priority to the agents with higher demand. Now, we discuss the
relationship between the repetition of the efficiency equation (2) and the M-inner product. Let us
define the matrix Mk of dimension (n+ 1)× (n+ 1), as in Proposition 1,

Mk =
(

I 0⊤

0 k

)
(n+1)×(n+1)

(8)

where k is the number of repetitions of the efficiency equation, 0 is a row zero vector of dimension
n, and I is identity matrix of size n × n. The M-LSM solution given by Theorem 9, equation (4)
is given by

x̂Mk
= (A⊤MkA)−1A⊤Mkb

which is obtained using the M-inner product, Definition 15.1. It is easy to see that

(A⊤MkA)−1 = (A⊤
k Ak)−1 and A⊤Mkb = A⊤

k bk,

therefore x̂Mk
= (A⊤Ak)−1A⊤

k bk = x̂k. This changes a linear system of high dimension (large k)
to modify the [(n+1), (n+1)]-th element of the matrix Mk given in (8). In particular, the M-LSM
solution x̂Mk

of Theorem 9 coincides with the solution x̂k of Theorem 10, and so we have that

lim
k→∞

x̂Mk
= lim

k→∞
x̂k = x∗.

2.2 Allocation problems with priority agents

Now, we can generalize the distribution rule by considering different priorities to satisfy the agents’
demands, by applying Theorem 9 to the system Ax = b where M is given by

Mk =
(

pI 0⊤

0 k

)
(9)

where p = (p1, . . . , pn), and pi ≥ 1 is the priority of the agent i, i ∈ {1, . . . , n}. Note that the
priorities, pi, are a generalization of the repetitions of equation i, but they are no longer required
to be a natural number. Moreover, if pi > pj we say that the agent i has more priority than the
agent j. The following result provides each agent’s allocated amount depending on its priority.

Corollary 1. Let Axk,p = b be the system of equations resulting of an allocation problem given in
equations (1) and (2), and let Mk as in (9). Then, the i-th element of the M-LSM solution of this
system, x̂k,p, is given by

[x̂k,p]i = di +
E −

n∑
j=1

dj

pi

(
1
k +

n∑
j=1

1
pj

) ; i = 1, . . . , n. (10)
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If we request that the efficiency equation be satisfied, then we take the limit of the equation
(10), as k tends to infinity. Therefore, x̂k,p converges to x∗

p as k →∞, whose i-th element is given
by

[x∗
p]i = di +

E −
∑n

j=1 dj

pi
∑n

j=1
1
pj

, i = 1, . . . , n. (11)

Let us call this the Priority M-LSM rule. Moreover, we present a procedure to set priorities so that
we recover different distribution rules reported in the literature [7].

3 Application of Priority M-LSM Rule

We present an application of the Priority M-LSM rule, equation (11), in order to propose a new
distribution of the real police force for the states in Mexico2, by considering the criminal incidence
as a criterion to prioritize. Then, we select pi as the total number of crimes committed by the
population aged 18 and over, per 100,000 inhabitants, for each state i, according to the data from
Public Safety and Justice 2018 from INEGI3. Also, we compare our distribution with the computed
with other rules, such as the LSM rule, taking pi = 1, for all i = 1, . . . , 32 and the proportional
rule, taking pi =

∑
j

dj

di
. In Figure 1, one can see the results obtained with these three allocation

rules.

Figure 1: Graphs of the RSF, demand, and allocation solutions of police officers using three types
of priorities for each state of Mexico.

Source: Own elaboration.
2https://www.eleconomista.com.mx/politica/Identifican-deficit-de-mas-de-100000-policias-en-el-pais-20210504-

0014.html
3https://www.inegi.org.mx/temas/incidencia/
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Figure 2: Percentage of a loss considering the LSM rule, proportional rule, and priority LSM rule
for each state of Mexico.

Source: Own elaboration.

We can visualise more easily the difference among the rules, depending on the difference between
the demand and the allocation, which is called loss. In Figure 1, we present the percentages of loss
according with different rules, for each state. As expected, the Proportional rule always gives the
same percentage of loss to all the agents (states), approximately 13%. In contrast, the percentage
of loss for the LSM and the Priority M-LSM can vary abruptly from one state to the other. In this
figure, we can also observe that the difference between the percentage of loss is significant for these
two rules for most of the states.

Figure 3: a) Percentage of loss of the demanded number of police officers and criminal incidence for
each state of Mexico, b) Surplus (positive) and deficit (negative) of police officers of RSF according
to Priority M-LSM solution in each state of Mexico.

Source: Own elaboration.

In Figure 3 a), we present the percentage of loss of the demanded number of police officers
in ascending order and the criminal incidence for each state of Mexico, using only the M-LSM
rule. Observe that the loss percentage is low for a high criminal incidence because the priority was
established using this data. However, this does not occur for some states, since the police officer
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allocation also depends on the demand. In Figure 3 b), we show the surplus and deficit of police
officers of RSF according to the Priority M-LSM solution in each state. Notice that Mexico City
has the highest excess of police officers according to our rule. Moreover, the surpluses, mainly from
Mexico City, are allocated among the states with deficit.
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References

[1] Casas, F. M. G., Ramos, M. Á. H., & Sánchez, F. J. S. (2006). Teoŕıa de Juegos Aplicada a
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1 Introduction

In order to model a population of microorganisms in a given environment through time and space,
ordinary differential equations (ODEs) and partial differential equations (PDEs) are, respectively,
well studied and very valuable tools. In practice, exact solutions are few and so numerical solutions
are often used to describe the dynamic behaviour of the population through time. In order to assert
that the numerical solutions are modelling real world phenomena, it is important to calibrate these
models with biological and physical data.

In this work, we have applied the Fisher Kolmogorov- Petrovsky–Piskunov (FKPP) equation
to model the change in density trough time of Candida Auris (CA) inside an Intensive Care Unit
(ICU). The multi-drug resistant yeast CA poses a global threat to the healthcare environment.
This model allows us to evaluate the efficacy of well timed cleaning measures on CA population
control in the ICU.

2 Methods

2.1 Numerical scheme

The 2-dimensional Fisher Kolmogorov–Petrovsky–Piskunov (Fisher–KPP) model is a reaction-
diffusion system that is used to model population growth in a two dimensional coordinate space
through time [8], given by the following equation:

∂u

∂t
= D

(
∂2u

∂x2 + ∂2u

∂y2

)
+ ru(1− u), (1)

where x and y are the coordinates of a point on a plane, u is the density of the population in
[a, b]× [c, d], a, b, c, d ∈ R at a given time t, D > 0 is the diffusion coefficient and 0 ≤ r ≤ 1 is the
growth rate.

1cperdiu@upv.es
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In this model the variation of the population density u through time is guided by both the
diffusion term D

(
∂2u
∂x2 + ∂2u

∂y2

)
which models microorganism’s expansion in a plane, and the popu-

lation growth term ru(1 − u), which indicates the amount of CA at a given time, with restricted
growth, as it is assumed that the environment has a limited amount of resources. However, the
closed solution to the FKPP equation is not known. We thus have to solve it numerically.

We first solve the logistic growth equation ∂u
∂t = ru(1− u) with closed-form solution:

u(t) = u0 exp(rt)
u0(exp(rt)− 1) + 1 , (2)

where u0 is the initial normalized quantity of CA in the ICU. In order to estimate the growth
rate, r, and the initial value, u0, we fit the solution to the logistic growth model (2) to CA in vitro
growth data [2] using least squares estimation method for non-linear functions in R programming
language.

We then solve the FKPP model numerically using Matlab. We use explicit finite differences. We
buid a 101× 101 mesh-grid to model the plane representing the ICU where x ∈ {0, 0.1, 0.2, . . . , 10}
and y ∈ {0, 0.1, 0.2, . . . , 10}, which sets the spatial step to be h = 0.1. We set Neumann, no flux
boundary conditions, where the four corners of the ICU plane have no flux and are maintained to
be 0.

We let the time go from 0 to 48 hours with a time step of

k = min{0.5, 0.99 h
2

4D}

so that k < h2

4D in order to guarantee stability in the numerical scheme [5,6].
Our numerical scheme, in matrix form is given by:

u(j+1) = kD

h2 Au
(j) + u(j) + kru(j) ◦ (1− u(j))

u(j)′ =
[
u1,1,j = 0, u2,1,j , u3,1,j , . . . , uN,1,j = 0, . . . , u1,N,j = 0, . . . , uN,N,j = 0

] (3)

for j = 1, . . . , T = 48, where A is a N2 × N2, N = 100 matrix with all zeroes except at the
main diagonal, D0, off 1 diagonals, D−1, D1 and off 10 diagonals,D−N , DN . Here ◦ denotes the
Hadamard product (also known as the element-wise product).

D0 =
( N+1︷ ︸︸ ︷

0 . . . 0
N2−2N+2︷ ︸︸ ︷
−4 . . . − 4

N+1︷ ︸︸ ︷
0 . . . 0

)

D1 = D−1 =
( N︷ ︸︸ ︷

0 . . . 0
N2−2N−1︷ ︸︸ ︷
1 . . . 1

N︷ ︸︸ ︷
0 . . . 0

)

D−N =
(
0

N−2︷ ︸︸ ︷
1 . . . 1 0 0

N−2︷ ︸︸ ︷
1 . . . 1 . . .

)

DN =
( N+1︷ ︸︸ ︷

0 . . . 0
N−2︷ ︸︸ ︷

1 . . . 1 0 0
N−2︷ ︸︸ ︷

1 . . . 1 . . .
)

This numerical solution has error O(h+ k2).
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To numerically solve the Fisher-KPP model, we define our initial condition, so that it both
agrees with previous results and literature on microorganism populations, the dynamics of which
in biofilms have been shown to share structural aspects with urbanizations [7]:

u(x, y, 0) = exp{3
(
− (x− 5)2 − (y − 5)2)}. (4)

We then applied Particle Swarm Optimization (PSO), a bio-inspired optimization algorithm,
fist introduced by Kennedy and Eberhar in 1995 [3], to calibrate both the diffusion coefficient D
and the growth coefficient r simultaneously. We define as the objective function for the PSO to
minimize, the Symmetric Mean Absolute Percentage Error (SMAPE), which has been shown to be
a better measure of relative error [9]. SMAPE is defined as:

S = 1
n

n∑
i=1

|zi − f(ti)|
|zi|−|f(ti)|

2
(5)

where {t1, t2, . . . , tn} is the set of times where CA’s A600nm (absorbance at 600nm wavelength)
was measured [2].

2.2 Introduction of a cleaning factor

The ICU is cleaned regularly by trained staff in order to minimize the spread of any harmful
microorganism. To model this and in order to estimate the efficacy of cleaning measures on CA
population control and determine potential recommendations, we introduce a cleaning factor into
our model. We assume that the ICU is cleaned in a uniform manner. So at times separated by
equal intervals, the amount of CA is reduced by some percent at every point (x, y) on the plane.
Then when this is introduced to the model, the amount of CA in the ICU at every point (x, y) on
the plane and time t is

u(x, y, t) =
{
pû(x, y, t), if cleaning happend at time t,
û(x, y, t), otherwise.

(6)

So we periodically reduce the population of CA present in the ICU by a percentage in a homo-
geneous way.

We then compare the values of

M = maxi=1,...,n[total amount of CA at time point i]
1, 0197× 102 (7)

for different combination of time intervals between cleaning (TI) and cleaning efficacy (CE).
This represents the maximum quantity of CA present in the ICU relative to the worse case scenario
where the whole ICU is infected (1, 0197× 102).

We choose to vary TI from 2 hours to 10 hours with a one hour increase. Cleaning more often
than every 2h seems unrealistic and expensive, whereas cleaning less than every 10h appears to be
too low for a healthcare environment with gravely ill patients who are very susceptible to any sort
of infection.

3 Results

The PSO results for SMAPE return the parameter estimates D̂ = 0.4141, r̂ = 0.3539. Figure 2
shows the dispersion of CA through the ICU and Figure 1 shows that our total amount of CA at
any given time point follows the real data rather well. Using these parameters we then introduced
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Figure 1: Observed in vitro growth of CA (points in orange) and total amount of CA at any given
time point (blue line) estimated using PSO and SMAPE error.

the cleaning factor.

Table 1: Normalized maximum total amount of CA present between 0 and 48 hours (M (7)) for
different combinations of TI and CE

TI (hours)
2 3 4 5 6 7 8 9 10

CE (%) 96.6 0.0103 0.0103 0.0103 0.0103 0.0103 0.0103 0.0103 0.0103 0.0185
90 0.0103 0.0103 0.0103 0.0103 0.0103 0.0265 0.1591 0.3573 0.4875
80 0.0103 0.0103 0.0103 0.0362 0.2644 0.4727 0.7144 0.8023 0.8476
70 0.0103 0.0103 0.0865 0.3949 0.6540 0.7570 0.8493 0.8951 0.9226
60 0.0103 0.0702 0.4587 0.6695 0.7918 0.8557 0.9049 0.9341 0.9525
50 0.0122 0.4161 0.6707 0.7901 0.8631 0.9062 0.9369 0.9564 0.9689

Table 1 compares values of M (7) and shows us that in order to control CA population and keep
its amount always under the initial amount present in the outbreak, cleaning of the ICU should be
performed at most every 3h. If cleaning is performed every 3h the cleaning efficacy of the agent
should be at least 70%. If it is affordable to perform cleaning every 2h, then the cleaning agent
should have an efficacy of at least 60%. For cleaning efficacies of 50% and under, we do not achieve
the desired population control.

4 Conclusions

We have built a FKPP reaction-diffusion model, which we solved numerically and then calibrated
to real-life data of CA growth. In our simulations, we showed that if cleaning is done often enough,
and at a high enough frequency, the maximum amount of CA present in the ICU does not surpass
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(a) Time 0h (b) Time 18h

(c) Time 25h (d) Time 48h

Figure 2: 3D plots of the FKPP numeric solutions when r̂ = 0.3539, D̂ = 0.4141

the initial amount of the outbreak. If cleaning is performed every 3 hours the cleaning efficacy of
the agent should be at least 70%. If cleaning is performed every 2 hours, then the cleaning agent
should have an efficacy of at least 60%.

There are, however, great limitations in our model and the introduction of the cleaning factor
that need to be addressed.

First, our model is calibrated with in-vitro growth of CA which is not equivalent to microbial
growth in a health care environment [2]. The ICU is kept at a temperature of 23oC, whereas the
strains in the observed data were incubated at 37oC, which is a lot closer to the optimal temperature
for CA growth. Therefore, we can expect CA growth to be slower in an ICU, approaching a full
contamination level at around 48 hours, as mentioned by ICU personnel, rather than 25 hours.

Secondly, our model does not account for the ecological pressures present in the microbial
environment such as local extinction and colonization processes as different species compete for
resources [4]. It is important to think about how cleaning can affect the environmental competition.
Cleaning could perhaps reduce in a more significant way a microorganism that is highly competitive
with CA, which would then allow CA access to more resources and accelerate its growth. Some
cleaning agents such as H2O2 vapor have been shown to be more effective at killing non CA
species [1].

Homogeneous cleaning is also an unreasonable assumption. Some of the ICU material cannot
be cleaned as in depth as a simple plastic surface. Keyboards, screens, tubes, etc. cannot be always
cleaned with all cleaning agents and in a in depth manner.

This model, however, indicates that the efficacy of the cleaning agent and how often the ICU
room is cleaned greatly affects how well the yeast can be controlled.

95



Modelling for Engineering & Human Behaviour 2022

References

[1] Alireza Abdolrasouli et al. “In vitro efficacy of disinfectants utilised for skin decolonisation and
environmental decontamination during a hospital outbreak withiCandida auris/i”. In: Mycoses
60.11 (Sept. 2017), pp. 758–763. doi: 10.1111/myc.12699.

[2] Leiwen Fu et al. “Study on growth characteristics of Candida auris under different conditions
in vitro and its in vivo toxicity”. In: Zhejiang da Xue Xue Bao, Journal of Zhejiang University.
Medical Sciences 40.7 (2020), pp. 1049–1055

[3] J. Kennedy and R. Eberhart. “Particle swarm optimization”. In: Proceedings of ICNN’95-
International Conference on Neural Networks. IEEE. doi:

[4] Juan E. Keymer et al. “Bacterial metapopulations in nanofabricated landscapes”. In: Proceed-
ings of the National Academy of Sciences 103.46 (Nov. 2006), pp. 17290–17295. doi: 10.1073/p-
nas.0607971103.

[5] Patrick Lascaux. Lectures on Numerical Methods for Time Dependent Equations: Applications
to Fluid Flow Problems. Vol. 52. Tata Institute of Fundamental Research, 1976.

[6] Jordan Lee and Mr Sungwoo Jeong. Stability of Finite Difference Schemes on the Diffusion
Equation with Discontinuous Coefficients. (2017.

[7] Amauri J. Paula, Geelsu Hwang and Hyun Koo. “Dynamics of bacterial population growth in
biofilms resemble spatial and structural aspects of urbanization”. In: Nature Communications
11.1 (Mar. 2020). doi: 10.1038/s41467-020-15165-4.

[8] Vladimir M Tikhomirov. Selected Works of AN Kolmogorov: Volume I: Mathematics and
Mechanics. Vol. 25. Springer Science & Business Media, 1991, pp. 242–245.

[9] Tofallis, C ”A Better Measure of Relative Prediction Accuracy for Model Selection and Model
Estimation”, In: Journal of the Operational Research Society, 66(8),1352-1362 (2015).

96

https://doi.org/10.1111/myc.12699
https://doi.org/10.1073/pnas.0607971103
https://doi.org/10.1073/pnas.0607971103
https://doi.org/10.1038/s41467-020-15165-4


17

Relative research contribution towards railways
superstructure quality determination from the

vehicles inertial response
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1 Introduction

In recent years, rail transport has become the most important strategic mode of transport for both
freight and passengers [1]. In this context, the maintenance of track quality, as well as the rapid
intervention of its defects, is one of the challenges on which railway administrations focus their
efforts.

Consequently, this publication deals with the mathematical treatment of the inertial signals
experienced by the track user vehicle, from the bogie room model [2], to determine the presence of
alterations in the track superstructure geometry affecting the track quality, from a data acquisition
system installed on commercial trains in operational conditions.

In this way, firstly, the appropriate hardware was designed to record the necessary data for the
application of the mathematical model proposed, which is basically made up of triaxial accelerome-
ters placed on the unsprung masses of the bogie, a GPS-type positioning system, a data acquisition
system, a communication system and a power supply system. Secondly, algorithms were developed
to process the signal obtained in each case, including the selection of the optimum frequency fil-
ter. Finally, the system was technologically packaged and functional prototype tests were carried
out on track 1 of MetroValencia, in the section between the stops Torrent and Paiporta, where it
was possible to verify the importance of signal filtering, a subject on which the thesis is currently
focusing.

2 Methods

This section presents in detail, the methodology followed for the indirect assessment of rail defects
and irregularities, which can be divided in two phases: i) data acquisition; and ii) data processing.

1egomez0@alu.ucam.edu
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2.1 Data acquisition

In this regard, the time history of accelerations is registered on the vehicle body by means of
tri-axial accelerometers; while its position on the track is constantly recorded with a GPS. The
acquisition system was installed on a locomotive wagon of MetroValencia (Valencia, Spain) as
shown in Figure 1. The tests consisted of two passes over the section between the Torrent and
Paiporta stops, which is 4 km long.

(a) Train assembly diagram
(b) Photographs of the data acquisition system set-up

Figure 1: Assembly of data acquisition system

2.2 Data processing

. Then, the measurements are processed and transformed into 3D rail geometry data along the
railway line, according to the algorithm described below and presented in Figure 2.

Figure 2: Scheme of the data processing algorithm

First, the recorded time history of accelerations is double-integrated over time through eq. (1)
in order to obtain the time history of vehicle displacements.

Zu(t) = W0 + V0t+
∫ ∫ t

0
Acc(t) dt dt (1)

98



Modelling for Engineering & Human Behaviour 2022

Where x(t) and v(t) are the displacement and acceleration time histories, respectively; and x0,
v0 are the initial values of vehicle displacements and velocities. Once the vehicle displacements
have been calculated in the time domain, they shall be transformed into the frequency domain in
order to allow a subsequent filtering of the data. This process is carried out by means of the Fourier
transform in a discrete form (DFT, (2)).

Zu(w) =
n∑

r=1
Zu(t)ůe

2πi(r−1)(s−1)
n (2)

Figure 3: Quarter bogie model

Where coefficients r and s vary from 1 to n; and n is
the total number of points in the data series. A high-pass
filtering of the signal is then performed with the aim of
removing low frequencies (i.e., long wavelength compo-
nents), since they do not correspond to rail irregularities
or alignment defects, but to track geometry regular vari-
ations, such as cant and slope changes.

The fourth step of the algorithm deals with the
vehicle-track interaction as shown in Figure 3. In this
phase, the displacements on the wheel-rail interface are
calculated by solving the system of differential equations
provided by the two-masses model of the vehicle - eq. (3)
-. The model explicitly accounts for the effect of the un-
sprung mass (i.e., wheelset) and a combination of sprung
(i.e., car body) and semi-sprung (i.e., bogie) masses.

msZ̈s + Cs(Żs − Żu) +Ks(Zs − Zu) = 0
muZ̈1 − CsŻs + CsŻu −KsZs + (Kt +Ks)Zu −KtW = 0

W = Zu + msZ̈s +muZ̈u

Kt

(3)

Where mu is the unsprung mass; ms is the combination of sprung and semi-sprung masses; k1 is
the track stiffness; and Ks, Cs are the stiffness and damping coefficients of the primary suspension,
respectively. The recorded data have been transformed in the previous step into the frequency
domain for filtering; and thus, eq.(3) is transformed into eq.(4) by means of the Fourier transform
properties [3] and solved in such domain.

−msw
2Zs + iCsw(Zs − Zu) +Ks(Zs − Zu) = 0

−muw
2Zu − iCswZs + iCswZu −KsZs + (Kt +Ks)Zu −KtW = 0

(4)

Once the rail geometry is known in the frequency domain, the results shall be transformed back
to the time domain, which is performed by means of the inverse discrete Fourier transform shown
in eq. (5).

W (t) = 1
n

n∑
r=1

W (w)ůe−2πi
(r−1)(s−1)

n (5)

Finally, the rail geometry dataset in the time domain is transformed into the space domain by
correlating its values with the locations provided by the GPS.In this way, the position W for each
rail point is obtained, which can be analysed and compared with the standard and track geometry
defects can be discovered through its geometrical parameters: levelling, alignment, superelevation,
track gauge and warping.
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3 Results

The tests have been carried out on 4 km of MetroValencia track between the Torrent and Paiporta
stops. In these tests, the geometric parameters, divided into vertical and horizontal, were anal-
ysed by applying the methodology. Vertical parameters include levelling, cant and warping, while
alignment and track gauge are horizontal parameters.

For the sake of conciseness, only the results for superelevation are shown. Figure 4 shows the
superelevation obtained and the GPS trajectory after the analysis, superimposed on the limits set
by the UNE-EN 13868-1 standard.

Figure 4: Experimental results for superelevation parameter

Then, Table 1 shows the results obtained for the first pass and Table 2 shows the results obtained
for the second pass. Both tables show the number of out-of-tolerance points, the percentage of out-
of-tolerance points in relation to the total, and the equivalent in linear metres out of tolerance that
this percentage represents.

Results 1
Parameters Points out

of tolerance
Points

analysed
Track % out of

tolerance
Meters out
of tolerance

Leveling L 7204 534009 1.35 51.8
Leveling R 5348 534009 1 38.45
Alignment L 8115 534009 1.52 58.35
Alignment R 7266 534009 1.36 52.25
Gauge 0 534009 0 0
Superelevation 72848 534009 13.64 523.8
Warping 187 534009 0.04 1.34

Table 1: Results obtained for the first pass.
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Results 2
Parameters Points out

of tolerance
Points

analysed
Track % out of

tolerance
Meters out
of tolerance

Leveling L 7858 544000 1.44 55.33
Leveling R 5261 544000 0.97 37.04
Alignment L 8134 544000 1.5 57.27
Alignment R 7027 544000 1.29 49.48
Gauge 0 544000 0 0
Superelevation 100174 544000 18.41 705.33
Warping 171 544000 0.03 1.2

Table 2: Results obtained for the second pass.

4 Conclusions and Future Work

The experiment carried out in MetroValencia has served to collect the necessary data to apply
the methodology proposed in this paper. It has been observed that it is possible to analyse the
quality of the railway superstructure through the inertial response of the vehicle and, through the
mathematical treatment of the signal, to obtain the geometric parameters of the track.

In the comparison between the results obtained for the two passes (see Table 1 and Table 2),
a good correlation of data was observed for all geometric parameters except camber, where there
is a 5 % difference in the number of defects detected. In this sense, this result indicates that the
signal filtering algorithm for the superelevation will be revised.

As for future work, in order to guarantee maximum precision on the measurements, the following
steps will be carried out:

• A comparison of the records and the thresholds established according to the current regula-
tions.

• Development and adjustment of adaptive filters with the speed.

• Adaptation of the analysis to the direction of circulation of the railway vehicles.
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Camı́ de Vera s/n, València 46022, Spain.

1 Introduction

Following the line started in [1], some interesting numerical and computational techniques used in
part of our research in Cosmology are now presented. As remarked in [1] (with other algorithms we
built), we also think the tools described in this conference presentation may work in different tasks
concerning our research fields. Moreover, they may even be extended in Science and Technology
in general. The approaches showed here have been developed in N-body algorithms applied when
describing the CMB (Cosmic Miicrowave Background) anisotropies (see [2–6]). In our methods,
innovations in CMB maps treatments are performed. Such novelties may be extended to other
studies.

2 Methods

Along more than a decade, we have presented the advance of our CMB anisotropy computations
using N-body codes. The codes with more resolution and precision we used were the N-body Hydra
ones (see [3]). All versions were designed by members of the Hydra Consortium. We used 1) Codes
without baryons. 1.a) Sequential versions. 1.b) Parallel ones. With both of them we computed the
weak lensing (WL) and the Rees-Sciama (RS) contributions to the CMB angular power spectrum.

Using our numerical techniques, we reported a higher contribution –to lensing– than previous
approaches. Our CMB anisotropies computations on every step of the run allowed less inter-
polations and approximations. This could be the explanation of our excess of power in lensing
computations. Our higher resolution could also contribute to this excess.

Afterwards, we also performed computations with baryons (see [6]). This version allowed us to
compute Sunyaev-Zel’dovich (SZ) contribution to the CMB angular power spectrum too.

An appropriate ray-tracing procedure through N-body simulations was proposed in the following
basic references: [7, 8]. In these papers it was explained how to chose a preferred direction (PD)
to cross the N-body simulated boxes. Such directions wee chosen to reach the initial position
after passing through 16 boxes. For a box size L = 512h−1Mpc the distance between points
entering and leaving each box was ∼ 104h−1Mpc. So, one had independent regions from redshift
z ∼ 6 (∼ 5900h−1Mpc). For our computations, starting in z ∼ 6 was sufficient. There was no need
to start computations at higher redshifts. Applications based on our ray-tracing methods through
PM simulations can be seen, for instance, in [2, 9].

1mfullana@mat.upv.es
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Some important computational details of the map construction are now detailed.
For weak lensing (see [3]), small, unlensed maps of CMB temperature contrasts (∆ = δT/T )

were constructed to be subsequently deformed by lensing. In order to deform the unlensed maps,
the lens deviations corresponding to a set of directions, covering an appropriate region of the sky,
were calculated. These deviations corresponded to the quantities:

δ⃗ = −2
∫ λ0

λe

W (λ)∇⃗⊥ϕ dλ , (1)

where ∇⃗⊥ϕ = −n⃗∧ n⃗∧ ∇⃗ϕ is the transverse gradient of the peculiar gravitational potential ϕ, and
W (λ) = (λe − λ)/λe. The variable λ is:

λ(a) = H−1
0

∫ 1

a

db

(Ωm0b+ ΩΛb4)1/2 . (2)

Once the deviations were calculated, they could be easily used to get the lensed maps from the
unlensed ones. This was achieved using the relation:

∆L(n⃗) = ∆U (n⃗+ δ⃗) , (3)

where ∆L and ∆U are the temperature contrasts of the lensed and unlensed maps, respectively.
The unit vector n⃗ defines the observation direction (line of sight).

Given the unlensed map ∆U , and the map ∆L obtained from it after deformation by lensing (the
lensed map), the chosen power spectrum estimator could be used to get the quantities Cℓ(U) and
Cℓ(L), whose differences Cℓ(LU) = Cℓ(L)− Cℓ(U) could be considered as an appropriate measure
of the weak lensing effect on the CMB.

For the Rees-Sciama contribution we computed the integral (see [2, 4]):

∆T
TB

(n⃗) = 2
∫ λ0

λe

W (λ) ∂ϕ
∂λ

dλ , (4)

where ϕ is the peculiar gravitational potential ϕ, W (λ) = (λe − λ)/λe and λ is given in eq(2).
For the Sunyaev-Zel’dovich thermal contribution in the long wave regimes we computed the

integral (see [6]):
∆T
TB

(n⃗) = −2 σT

mec2

∫ λ0

λe

ne k Te dλ , (5)

where the subscript e refers to electrons.
Notice that we had to define different weak lensing regimes. Basically, this is the way to proceed

(see [3]):

• AWL (A weak lensing), namely the effect due to scales k > 2π/Lmax (where Lmax = 42h−1

Mpc) at redshifts z < 6. This signal is dominated by strongly nonlinear scales (namely
structures).

• BWL, the lensing signal due to scales k < 2π/Lmax which corresponds to modes that are
always in the linear regime down to z = 0.

• CWL, the lensing signal due to scales k ≥ 2π/Lmax but at redshifs z > 6.

• RS, the same regimes that one has for WL apply for RS.

• SZ, this distinction does not apply.
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We now describe the main features of the algorithm designed to compute the physical quantities
described above and that allowed to study the CMB anisotropies using the Hydra N-body codes
(see [3]):

1. Decide upon the direction of the normal rays representing the geodesics.

2. Assuming the Born approximation and using the photon step distance ∆ps, determine all
the evaluation positions and times on the geodesics within the simulation volume from z = 6
down to the final redshift.

3. Associate test particles with each of these positions and times.

4. At each time-step of the N-body simulation (while it is running) determine which test particles
require force evaluations (or other physical quantities depending on the CMB anisotropy
effect to be computed).

5. At each test particle position evaluate the force (or corresponding physical quantity) on the
test particle using the long-range FFT component and short-range PP correction as in the
HYDRA algorithm.

6. During the FFT convolution for the test particles eliminate contributions from scales larger
than 42h−1 Mpc by removing the signal from wavenumbers satisfying k ≤ 0.15h Mpc−1.

7. If the evaluation time for a point on the geodesic lies between two time-steps calculate a
linear interpolation of the two forces from the time-steps that straddle the correct time.

8. Resolve the force into its transverse component and hence recover the transverse com-
ponent of the potential gradient. This applies for WL. For RS and SZ, see [2, 4] and [6],
respectively, for the physical quantities to be computed (potential in Eq. (4) and electrons
temperatures in Eq. (5), respectively).

3 Results

Simulations were performed in the framework of the concordance model with the following param-
eters: h = 0.7, Ωb = 0.046, Ωd = 0.233, ΩΛ = 0.721, optical depth τ = 0.084 and σ8 = 0.817.
The power spectrum of the scalar (adiabatic) energy density perturbations was obtained with the
CMBFAST code. No tensor modes were considered at all.

One of the numerical advances of our work was that the correlation function ξ(r) extracted
from one simulation (instead of 30 which was the usual method) was sufficient. This showed that
our nonlinear algorithm was very robust. Besides, its form was that expected for the softening
length and the box size. The code worked very well in spite of the modifications required by our
CMB calculations.

For lens deformations (see [3]), the angular power spectra for one simulation was compared
to the same simulation but where deflections were calculated by including an average over the 8
nearest geodesics. This reduced the resolution of the geodesic method, but maintained the same
resolution in the gravitational solver. The resulting power spectrum was plotted in Figure 10 of [3]
and showed a decaying signal at high ℓ which was similar to that found in earlier works (e.g. [10]).
This showed that as we degraded the resolution of our ray-tracing method we indeed had close
results to those of previous works with less resolution than ours. Therefore, the local averages,
used in methods of other authors, might hide the highly nonlinear structures effects. Notice that
these structures had a relative small size.

For RS (see [2, 4]) and SZ (see [6]), the results we obtained were of the order of magnitude or
slightly greater than those obtained by other authors.

104



Modelling for Engineering & Human Behaviour 2022

4 Conclusions

Our AP3M codes adapted to CMB calculations could be run for different values of the parameters
defining the simulations; hence, this code allowed us to see how the resulting angular power spectra
depended on the parameters defining both the N-body simulation and the ray-tracing procedure.

Simulations in boxes of 512h−1 Mpc led to good Cℓ(LU) spectra for 1000 < ℓ < 7000. For
2000 < ℓ < 7000, all the simulations lied in a region of width ∼0.5 µK, indicating that the
simulations gave consistent estimates of the signal in this range (see [3]). The signal in the range
4000 < ℓ < 7000 is 2.0± 0.4 µK, which is ∼1.4 µK higher than that found elsewhere [10].

The values we obtained were compatible with studies based on the Millennium simulation
(see [11]), where the authors reported a small contribution from nonlinearity at ℓ ≃ 4100. However,
the methods of [11] were designed to build all-sky lensed maps, and therefore did not have the
necessary resolution to perform an accurate estimate of the weak lensing by strongly nonlinear
structures in the ℓ-interval where we found our main effect.

Now we are working on the analysis and description of the numerical advances we have made in
all the research described in the present paper. Such as the improvements we made on the resolution
of N-body algorithms, on our FFT subroutines and on numerical parallelisation technics. Also our
ameliorations on the numerical treatment of images necessary to extract the power spectrum of
CMB. This work will be presented in the near future.
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1 Introduction

The problem of calculating the roots of nonlinear functions arises in any scientific and technolog-
ical application. Due to the increasing volume of data available, the problems modeled by these
applications are of larger dimensions and therefore more difficult to solve.

Most processes require the resolution of a system of nonlinear equations of the form F (X) = 0,
where F : D ⊆ Rn −→ Rn is a sufficiently Fréchet differentiable function in D, being D an open
convex set.

Very often the complexity of the system F (X) = 0 prevent its analytical resolution, and as
a consequence its solution is approximated numerically using iterative methods. There is a large
classical literature regarding this issue, especially dedicated to the scalar case of solving nonlinear
equations [1,2]. For this case, a lot of iterative methods have been designed with very high orders
of convergence that allow obtaining quality approximations to the solutions of the problems.

However, for multidimensional nonlinear problems it is important to take into account that the
dimensions of the problem difficult the efficiency of iterative schemes to approximate their roots,
so that it is more frequent to use methods that, although they have lower orders of convergence,
require a lower computational cost and therefore are usually more efficient. In this sense, we recall
Traub’s iterative scheme [3] with cubic order of convergence and the following iterative expression:

y(k) = x(k) − [F ′(x(k))]−1F (x(k)),
x(k+1) = y(k) − [F ′(x(k))]−1F (y(k)),

k = 0, 1, 2, . . . , (1)

where F ′(x(k)) is the Jacobian matrix of F in the k-th iteration.
In addition to the order of convergence, the methods can be compared in terms of their efficiency

and computational cost. In this sense, Ostrowski introduced in [4] the efficiency index, defined by
EI = p1/d, where p is the order of convergence of the iterative method and d is the number of
different functional evaluations performed on each iteration of the algorithm. Traub’s method
computes two evaluations of F at the points x(k) and y(k), that is 2n functional evaluations, and a
Jacobian matrix, with n2 functional evaluations. Therefore, its efficiency index is

EI = 31/(n2+2n).

1neugarsa@mat.upv.es



Modelling for Engineering & Human Behaviour 2022

Furthermore, Cordero et al. in [5] introduced the computational efficiency index defined by
CI = p1/(d+op), where op is the number of products-quotients required per iteration. In Traub’s
method we must take into account that each iteration requires solving two different linear systems
with the same matrix of coefficients, F ′(x(k)). These kind of systems are solved by Gaussian
elimination and need 1

3n
3 + n2 − 1

3n products and quotients. As in Traub’s method both systems
have the same matrix of coefficients, the total number of products-quotients is only 1

3n
3 +2n2− 1

3n.
Then, we have

CI = 31/( 1
3 n3+3n2+ 5

3 n).

In this work, we propose to generalise Traub’s method to a two-step family of iterative schemes
for solving nonlinear problems with a real parameter in its iterative structure. To this end, in
Section 2 we present the iterative structure of the family and we analyze its order of convergence.
We devote Section 3 to check numerically the performance of some members of the family to solve
two bidimensional systems of nonlinear equations. Finally, we end this paper with some conclusions.

2 Design and convergence of TMα family

Based on Traub’s iterative method, in this section we propose a generalization of the scheme by
including a real parameter α ̸= 0. Our aim is to keep the order of convergence and efficiency of
Traub’s scheme, but at the same time to design a family of methods from which to select the most
stable ones for each problem. That is, to select from among the different methods of the family
obtained when selecting different values of α those that best approximate the solution and even
improve the performance of Traub’s scheme.

From Traub’s iterative expression in (1), we include the sequence of points

z(k) = x(k) + α(y(k) − x(k)), k = 0, 1, 2, . . .

with a parameter α ∈ R, α ̸= 0, and then by making some changes in the second step of (1), we
obtain the following family of methods:

y(k) = x(k) − [F ′(x(k))]−1F (x(k)),
z(k) = x(k) + α(y(k) − x(k)),

x(k+1) = y(k) − 1
α2 [F ′(x(k))]−1

(
(α− 1)F (x(k)) + F (z(k))

)
,

k = 0, 1, 2, . . . (2)

Let us note that for each value of α ∈ R in (2) we obtain a different method belonging to the
iterative family that is denoted by TMα. In addition, Traub’s method is obtained for α = 1.

We can observe that each iteration of TMα family requires three different functional evaluations:
two of the vectorial functions F (x(k)) and F (z(k)), and one of the Jacobian matrix F ′(x(k)). The
following result shows the error equation of TMα family and the sufficient conditions to prove that
it has cubic order of convergence for any value of the parameter.

Theorem 11. Let F : D ⊆ Rn −→ Rn be a sufficiently differentiable function in an open convex set
D and let us denote by x∗ ∈ D a solution of F (x) = 0, such that F ′ is continuous and nonsingular
in x∗. Then, if the initial estimation x(0) is close enough to x∗, family TMα converges to x∗ with
order of convergence three for any value of α ̸= 0, being its error equation

e(k+1) =
(
2C2

2 + (α− 1)C3
)
e(k)3 +O(e(k)4),

where e(k) = x(k) − x∗ is the error in each iteration and Cj = 1
j! [F ′(x∗)]−1F (j)(x∗), j ≥ 2.
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All the methods of TMα family converge cubically, so all of them have the same efficiency index
and computational efficiency index than Traub’s method.

After generalizing Traub’s iterative scheme, next section is devoted to check numerically the
performance of some members of the family. The results are also compared with Traub’s method
in order to verify that the proposed family includes methods that even improve the performance
of Traub’s one.

3 Numerical experiments

Next we consider two polynomial systems to test the performance of TMα family. For the numerical
implementation we have selected three members of the family, corresponding to α = 1 (Traub’s
method), α = 10 and α = −10.

As mentioned in Theorem 11, the initial estimate x(0) needs to be close to the solution of the
problem to guarantee convergence. Since all the iterative methods require an initial estimate x(0),
we have previously performed a study of the basins of attraction of the selected methods for each
numerical example. This dynamical study is based on the multidimensional real dynamical tools
described in [6, 7]. The basins of attraction are the initial estimates that converge to the roots of
the nonlinear function. The study of these initial estimates allows us to compare the performance
of the different methods of the family and to determine those that have a greater number of initial
estimates converging to the solution we are trying to approximate. All numerical developments
in this section have been performed in two dimensions, that is, two nonlinear equations with two
variables (x1 and x2) in order to be able to represent the basins of attraction of the methods in
the dynamical planes.

In the dynamical planes we represent each variable on the coordinate axes. We define a grid of
points in the plane, so that each point represents an initial estimate to start calculating iterations
of each method. When there is convergence to the root on the nonlinear function, the point is
represented in a colour. In other case, the point is represented in black. Therefore, with the
dynamical planes we can see the set of points that if taken as initial estimation will converge to
the root and we can compare these sets for different methods.

Example 1

Let us consider the following polynomial system
x2

1x2 = 1,

x2
2x1 = 1,

whose only real root is x∗ = (1, 1). We are going to approximate x∗ using methods of TMα family.
Figure 1 represents the dynamical planes of Example 1, corresponding to Traub’s method, and

the iterative schemes obtained for α = 10 and α = −10. These plots have been generated taking a
mesh of 500× 500 points. The convergence is set when ||x(k)− x∗|| < 10−10 or the method reach a
maximum of 50 iterations. When there is convergence to x∗, the point is depicted in orange. We
also represent the root of the nonlinear system with a white star.

We can see in Figure 1 that the method for α = −10 improves the stability of Traub’s scheme
and the corresponding to α = −10 as the number of initial estimations converging to x∗ (orange
colour) is greater in Figure 1a than in Figures 1b and 1c.

Taking into account the basins of attraction of Figure 1, we have selected to test the methods
some initial estimations taken from different regions in the plane. Table 1 shows the numerical
results obtained for solving Example 1. The table includes the number of iterations until the
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(c) α = −10

Figure 1: Dynamical planes for Example 1.

stopping criteria is reached, the value of ||F (x(k+1))|| in the last iteration, the difference ||x(k+1) −
x(k)|| between the two last iterates and an approximation to the theoretical order of convergence
of the methods by means of the ACOC, defined in [8] by

p ≈
ln
(
||x(k+1) − x(k)||/||x(k) − x(k−1)||

)
ln
(
||x(k) − x(k−1)||/||x(k−1) − x(k−2)||

) , k = 2, 3, . . .

The convergence is set when ||x(k+1) − x(k)|| < 10−10 or ||F (x(k+1))|| < 10−10, and the iterations
stop when there is no convergence to the roots after 50 iterations. We write nc to indicate this
case.

x(0) α iter ||F (x(k+1))|| ||x(k+1) − x(k)|| ACOC(
1.5
1.5

) 1 4 6.38446e-28 5.97037e-10 2.95792
10 4 5.83313e-17 1.98129e-6 2.888
-10 3 6.55344e-26 2.97059e-9 2.1447(

4
3

) 1 5 3.8879e-5 2.10075e-14 2.88947
10 6 1.27539e-13 2.94634e-5 3.71231
-10 4 5.01225e-12 9.9243e-5 2.91059(

−0.5
2

) 1 nc - - -
10 nc - - -
-10 9 7.50067e-17 2.44021e-6 2.99672

Table 1: Numerical results for Example 1.

We can observe in Table 1 that the results agree with the dynamical planes (Figure 1). The
best results approximating the solution of the problem are obtained for α = −10, since it requires
fewer iterations and in some cases it is the only method of the three considered that is convergent.
In general, when the methods are convergent, we obtain approximations very close to the solution
and with an ACOC close to the cubic order of convergence obtained in Section 2.
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Example 2

Now we consider a polynomial system with two real roots:
x3

1 + x3
2 = 9,

x2
1x2 + x1x2

2 = 6.

The real solutions of the system are denoted by x∗
1 = (1, 2) and x∗

2 = (2, 1).
For the implementation of the dynamical planes we follow the same criteria as in Figure 1, but

for Example 2 we have denoted in blue or orange the convergence to x∗
1 or x∗

2, respectively. Figure
2 shows the dynamical planes of Example 2 and the methods of TMα for α = {1, 10,−10}. We
can see again that the basins of attraction of Traub and α = 10 are smaller since there are more
points in the plane represented in black.
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(a) α = 1 (Traub)
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(b) α = 10
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Figure 2: Dynamical planes for Example 2.

As the considered polynomial system has two real roots, we show in different tables the numer-
ical results obtained when we are trying to approximate each solution. In this sense, we have select
from Figure 2 initial points represented in blue or orange for Tables 3 and 4 in order to analyze the
convergence to x∗

1 or x∗
2, respectively. Similar results to those in Table 1 are obtained, since the

method obtained for α = −10 is always convergent to the corresponding root even in cases where
the other methods are not convergent.

x(0) α iter ||F (x(k+1))|| ||x(k+1) − x(k)|| ACOC(
1.5
3

) 1 4 4.88318e-27 9.43998e-10 2.95792
10 4 4.46148e-16 3.13269e-6 2.888
-10 3 5.01241e-25 4.69692e-9 2.1447(

−4.5
1

) 1 nc - - -
10 nc - - -
-10 10 9.60177e-18 1.33838e-6 2.1109(

4.5
−1

) 1 nc - - -
10 nc - - -
-10 10 1.87412e-21 6.53728e-8 2.88154

Table 2: Numerical results for Example 2 approximating x∗
1 = (1, 2).
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x(0) α iter ||F (x(k+1))|| ||x(k+1) − x(k)|| ACOC(
4
1

) 1 4 6.06358e-11 2.08324e-4 2.68829
10 5 3.8871e-17 1.79614e-6 3.02901
-10 4 1.89885e-22 3.04763e-8 2.71486(

2
−3.5

) 1 7 3.50169e-11 1.73502e-4 2.59589
10 nc - - -
-10 10 5.54428e-22 4.35592e-8 2.88959(

−1.5
−4

) 1 nc - - -
10 nc - - -
-10 10 4.33411e-28 4.43146e-10 2.88404

Table 3: Numerical results for Example 2 approximating x∗
2 = (2, 1).

4 Conclusions

In this paper, we propose a family of iterative methods with a real parameter α. This family is a
generalization of Traub’s iterative scheme, obtained for α = 1. After determining the sufficient con-
ditions to obtain a cubic order of convergence for any value of the parameter, a numerical analysis of
some schemes of the family when applied to approximate the solution of systems of nonlinear equa-
tions is carried out. This study allows verifying that the theoretical developments are correct and
that the family includes methods that improve the stability of the classical Traub’s iterative scheme.

Acknowledgements: This research was partially supported by Spanish Ministerio de Ciencia,
Innovación y Universidades PGC2018-095896-B-C22 and by the internal research project MICoCo
of Universidad Internacional de La Rioja (UNIR).
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Avenida de Los Próceres #49, Los Jardines del Norte 10602,

Santo Domingo, Dominican Republic.
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1 Introduction

Fractional calculus is an extension of classical calculus, and the theoretical aspects from this are
held. Many problems can be described by using fractional calculus, because of the higher degree
of freedom compared to classical calculus [1, 2].

In recent years, some Newton-type methods for solving nonlinear equations have been proposed
by using the Riemann-Liouville, Caputo and conformable fractional derivatives [3–5].

First, let us introduce some preliminary concepts related to conformable derivative. The left
conformable fractional derivative of a function f : [a,∞) −→ R, starting from a, of order α ∈ (0, 1],
α, a, x ∈ R, a < x, is [6]

(T a
αf)(x) = lim

ε−→0

f(x+ ε(x− a)1−α)− f(x)
ε

. (1)

If the limit exists, f is α-differentiable. If f is also differentiable, (T a
αf)(x) = (x− a)1−αf ′(x). If f

is α-differentiable in (a, b), for some b ∈ R, (T a
αf)(a) = lim

x→a+
(T a

αf)(x). Note that T a
αC = 0, where

C is a constant.
Newly, a Newton-type method by using conformable derivative was designed for solving non-

linear equations in [5] with the following iterative expression:

xk+1 = a+
(

(xk − a)α − α f(xk)
(T a

αf)(xk)

)1/α

, k = 0, 1, 2, . . . (2)

where (T a
αf)(xk) is the left conformable fractional derivative of order α, α ∈ (0, 1], starting from

a, a < xk, ∀k. When α = 1, we obtain the classical Newton-Raphson method. The quadratic
convergence of this method is stated in [5] by using an appropriate conformable Taylor series [7].

The method proposed in [5], as seen in equation (1), can be used only to solve scalar problems.
To design a conformable vectorial Newton-type method in order to find the solution x̄ ∈ Rn of

1giro.candelario@intec.edu.do
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a nonlinear system F (x) = 0̂, with coordinate functions f1, . . . , fn, where F : D ⊆ Rn −→ Rn

is a sufficiently Fréchet-differentiable function in an open convex set D, we have to introduce the
necessary existing concepts and results.

We can find in [8] a definition of conformable partial derivative:

Definition 1. Let f be a function in n variables, x1, . . . , xn, the conformable partial derivative of
f of order α ∈ (0, 1] in xi > a = 0 is defined as:

∂α
0

∂xα
i

f(x1, . . . , xn) = lim
ϵ→0

f(x1, . . . , xi + ϵx1−α
i , . . . , xn)− f(x1, . . . , xn)

ϵ
, (3)

In [8] we can also find a definition of conformable Jacobian matrix:

Definition 2. Let f , g be functions in 2 variables x and y, and the respective partial derivatives
exist and are continuous. Being x > a1 and y > a2, where a = (a1, a2) = (0, 0) = 0̂, then the
conformable Jacobian matrix is:

F
α(1)
0̂ (x) =


∂α

0 f

∂xα

∂α
0 f

∂yα

∂α
0 g

∂xα

∂α
0 g

∂yα

 =

x
1−α∂f

∂x
y1−α∂f

∂y

x1−α ∂g

∂x
y1−α ∂g

∂y

 . (4)

This concept can be directly extended to higher dimensions.
The new concepts and results required to design a conformable vectorial Newton-type method

are stated in the next Section.

2 Methods

2.1 New concepts and results

Considering that in equation (3), xi ∈ (0,∞), it can be defined the conformable partial derivative
in xi ∈ (a,∞):

Definition 3. Let f be a function in n variables, x1, . . . , xn, the conformable partial derivative of
f of order 0 < α ≤ 1 in xi ∈ (a,∞) is

∂α
a

∂xα
i

f(x1, . . . , xn) = lim
ϵ→0

f(x1, . . . , xi + ϵ(xi − a)1−α, . . . , xn)− f(x1, . . . , xn)
ϵ

. (5)

When xi = a, ∂α
a

∂xα
i

f(x1, . . . , a, . . . , xn) = lim
xi→a+

∂α
a

∂xα
i

f(x1, . . . , xi, . . . , xn).

This conformable partial derivative is linear, and the product, quotient and chain rules are held,
like conformable derivative in [6].

It can also be stated the definition of conformable Jacobian matrix for x1 ∈ (a1,∞) and
x2 ∈ (a2,∞), being x = (x1, x2) and a = (a1, a2):

Definition 4. Let f and g be the coordinate functions of a vector valued function F : R2 −→ R2

with variables x1 > a1 and x2 > a2, being x = (x1, x2) and a = (a1, a2), such that the respective
partial derivatives exist and are continuous. The conformable Jacobian matrix is

Fα(1)
a (x) =


∂α

a1f

∂xα
1

∂α
a2f

∂xα
2

∂α
a1g

∂xα
1

∂α
a2g

∂xα
2

 =

(x1 − a1)1−α ∂f

∂x1
(x2 − a2)1−α ∂f

∂x2

(x1 − a1)1−α ∂g

∂x1
(x2 − a2)1−α ∂g

∂x2

 . (6)

This concept can also be directly extended to higher dimensions.
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Likewise in [7] (Theorem 4.1), we can get a new Taylor series, where the conformable derivatives
start from some point a = (a1, . . . , an) ∈ Rn distinct from another point b = (b1, . . . , bn) ∈ Rn where
they are being evaluated:

Theorem 1. Let F : Rn −→ Rn be an infinitely α-differentiable vector valued function, for
α ∈ (0, 1], around some point bi ∈ (ai,∞), ∀i = 1, . . . , n, being a = (a1, . . . , an) ∈ Rn and
b = (b1, . . . , bn) ∈ Rn. Then, F has the conformable Taylor power series

F (t) = F (b) + F
α(1)
a (b)
α

∆ + F
α(2)
a (b)
2!α2 ∆2 + · · · , (7)

being ∆ = H⊙α − L⊙α; H = t− a, L = b− a, where ⊙ is the Hadamard power.

In addition, in order to perform the convergence analysis, another concept has to be introduced.

Theorem 2. Let x, y ∈ Rn, r ∈ R, and be ⊙ the Hadamard product/power. The Newton’s binomial
theorem for fractional power and vector values is

(x+ y)⊙r =
∞∑

k=0

(
r

k

)
x⊙(r−k) ⊙ y⊙k, k ∈ {0} ∪ N, (8)

where the generalized binomial coefficient (see [9]) is(
r

k

)
= Γ(r + 1)
k!Γ(r − k + 1) , k ∈ {0} ∪ N. (9)

Now, we set the design of conformable Newton-type method for solving nonlinear systems.

2.2 Design and convergence analysis

As we can see in [5], let us consider the approximation of a function F with the Taylor power series
(7) up to order one, evaluated at the solution x̄ of F (x) = 0̂:

F (x) ≈ F (x̄) + F
α(1)
a (x̄)
α

∆. (10)

Since F (x̄) = 0̂, and ∆ = H⊙α − L⊙α; H = x− a, L = x̄− a,

F (x) ≈ F
α(1)
a (x̄)
α

[
(x− a)⊙α − (x̄− a)⊙α] . (11)

Multiplying both sides of (11), by α
[
F

α(1)
a (x̄)

]−1
from the left,

α
[
Fα(1)

a (x̄)
]−1

F (x) ≈ (x− a)⊙α − (x̄− a)⊙α. (12)

From (x̄− a)⊙α, we can get x̄, so

x̄ ≈ a+
(

(x− a)⊙α − α
[
Fα(1)

a (x̄)
]−1

F (x)
)⊙1/α

. (13)

Considering iterates x(k) and x(k+1) as approximations of solution x̄, we get the conformable
Newton-type method for nonlinear systems:

x(k+1) = a+
[(
x(k) − a

)⊙α
− α

[
Fα(1)

a

(
x(k)

)]−1
F
(
x(k)

)]⊙1/α

, k = 0, 1, 2, . . . (14)

Next result shows that quadratic convergence of vectorial Newton-type method (14) by using
the conformable Taylor series (7) is obtained.
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Theorem 3. Let F : D ⊆ Rn −→ Rn be a continuous function in an open convex set D ⊆ Rn

holding a zero x̄ ∈ Rn of a vector valued function F (x). Let Fα(1)
a (x) be the conformable Jacobian

matrix of F starting at a ∈ Rn, of order α, for any α ∈ (0, 1]. Let us suppose that Fα(1)
a (x) is

continuous and non-singular at x̄. If an starting point x(0) ∈ Rn is quite close to x̄, then the local
order of convergence of conformable vectorial Newton’s method

x(k+1) = a+
[(
x(k) − a

)⊙α
− α

[
Fα(1)

a

(
x(k)

)]−1
F
(
x(k)

)]⊙1/α

, k = 0, 1, 2, . . .

is at least 2, and the error equation is

e(k+1) = αC2(x̄− a)⊙(α−1)e(k)2 +O
(
e(k)3)

, (15)

where Cj = 1
j!αj−1

[
F

α(1)
a (x̄)

]−1
F

α(j)
a (x̄), j = 2, 3, 4, . . . , such that a < x(k), ∀k.

Next, some numerical tests with some nonlinear systems of equations are made. We comment
that, in all tests, a comparison with classical Newton-Raphson’s method (when α = 1) is being
made. The dependence on initial estimates of both methods is also analyzed.

3 Results

The numerical tests are made by using Matlab R2020a with double precision arithmetic, ∥F (x(k+1))∥ <
10−8 or ∥x(k+1) − x(k)∥ < 10−8 as stopping criterium, and a maximum of 500 iterations. We used
a = (a1, . . . , an) = (−10, . . . ,−10) for each test to be sure that ai < xi, ∀i = 1, . . . , n, as seen in
Definitions 3 and 4, and a < x(k), ∀k, according to Theorem 3. We also use the Approximated
Computational Order of Convergence (ACOC)

ACOC = ln(∥x(k+1) − x(k)∥/∥x(k) − x(k−1)∥)
ln(∥x(k) − x(k−1)∥/∥x(k−1) − x(k−2)∥)

, k = 0, 1, 2, . . . ,

introduced in [10], to verify the theoretical order of convergence is got in practice, and α ∈ (0, 1].
Our test function to vector values is F (x, y) = (x2−2x−y+0.5, x2+4y2−4)T with real and com-

plex roots x̄1 ≈ (−0.2222, 0.9938)T , x̄2 ≈ (1.9007, 0.3112)T and x̄3 ≈ (1.1608− 0.6545i,−0.9025−
0.2104i)T . The conformable Jacobian matrix of F (x, y) is

Fα(1)
a (x, y) =

(
(x− a1)1−α(2x− 2) (y − a2)1−α(−1)

(x− a1)1−α(2x) (y − a2)1−α(8y)

)
,

where a = (a1, a2) = (−10,−10).

α x̄ ∥F (x(k+1))∥ ∥x(k+1) − x(k)∥ iter ACOC
1 - - - > 500 -

0.9 x̄3 5.40× 10−11 5.86× 10−6 54 2.00
0.8 x̄3 9.77× 10−9 7.87× 10−5 86 2.00
0.7 x̄3 2.27× 10−14 4.75× 10−8 36 1.98
0.6 x̄2 2.95× 10−10 1.16× 10−5 23 2.05
0.5 x̄2 4.89× 10−10 1.48× 10−5 122 2.05
0.4 x̄2 5.34× 10−13 5.01× 10−7 86 2.04
0.3 x̄2 4.94× 10−10 1.79× 10−5 35 2.03
0.2 x̄2 1.16× 10−14 6.76× 10−8 21 1.98
0.1 x̄2 2.16× 10−10 1.08× 10−5 39 2.06

Table 1: Results for F (x, y) = 0̂ with initial estimation x(0) = (−2,−1.5)T
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α x̄ ∥F (x(k+1))∥ ∥x(k+1) − x(k)∥ iter ACOC
1 x̄1 8.31× 10−11 7.29× 10−6 5 2.00

0.9 x̄1 5.94× 10−11 6.15× 10−6 5 2.00
0.8 x̄1 4.21× 10−11 5.17× 10−6 5 2.00
0.7 x̄1 2.97× 10−11 4.33× 10−6 5 2.00
0.6 x̄1 2.09× 10−11 3.62× 10−6 5 2.00
0.5 x̄1 1.45× 10−11 3.01× 10−6 5 2.00
0.4 x̄1 1.01× 10−11 2.49× 10−6 5 2.00
0.3 x̄1 6.97× 10−12 2.06× 10−6 5 2.00
0.2 x̄1 4.80× 10−12 1.69× 10−6 5 2.00
0.1 x̄1 3.30× 10−12 1.39× 10−6 5 2.00

Table 2: Results for F (x, y) = 0̂ with initial estimation x(0) = (−2, 1.5)T

In Table 1, we can see for F (x, y) that classical Newton’s method (when α = 1) does not get any
solution in 500 iterations, while conformable vectorial Newton’s procedure converges. We observe
also that ACOC may be even slightly greater than 2 when α ̸= 1. Note also that complex root x̄3
is found with real initial estimate.

In Table 2, we can observe for F (x, y), with a different initial estimation, that classical Newton’s
scheme and conformable Newton’s method have a similar behaviour, regarding the number of
iterations and the ACOC. Once again, the quadratic convergence of conformable Newton’s method
is held for any α ∈ (0, 1].

In order to study the stability of conformable vectorial Newton’s method tested above, we
analyze the dependence on initial estimates by observing convergence planes, which is defined
in [11], and is also employed in [3–5].

For constructing convergence planes we consider from initial estimates (x0, y0), the points x0 in
the horizontal axis, and values of α ∈ (0, 1] in the vertical axis. Each one of 2 planes in the figure is
performing a distinct value of y0 from initial estimates (x0, y0). Each color in the planes represents
different solutions, and when it is painted in black no solution was found in 500 iterations. Each
plane is generated by a 400×400 grid, with a maximum of 500 iterations, and a tolerance of 0.001.

In Figure 1, it can be observed for F (x, y) that in (b) is obtained almost 100% of convergence,
while in (a) is obtained around 86% of convergence. This method converges to all roots for each
case, even to complex root with real initial estimates.

We can also see, in general, it is possible to get several solutions with the same initial estimate
by choosing different values of α.

4 Conclusions

The first conformable fractional Newton-type iterative method for solving nonlinear systems has
been designed. We have introduced the analytical implements needed for the construction of this
method. The convergence analysis has been made, and quadratic convergence of classical Newton’s
method is held. Numerical tests have been made, and the dependence on initial estimates was ana-
lyzed, sustaining the theory. We could see that conformable vectorial Newton-type method shows,
in some cases, a better numerical behaviour than classical one in terms of number of iterations,
ACOC, and wideness of basins of attractions of the roots. We could also see that complex roots
may be found with real initial estimates, and several roots may be obtained with the same initial
estimate by choosing distinct values for α.

Acknowledgement: This research was partially supported by PGC2018-095896-B-C22 (MCIU
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Figure 1: Convergence planes of F (x, y). x̄1: green, x̄2: red, x̄3: blue
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1 Introduction

Nasdaq Biotechnology (NBI) is a stock market index that includes companies related to biotech-
nology sector which are listed on Nasdaq Market. It was created in 1993 with base 200 and it’s
currently composed by 373 companies that meet the inclusion’s criteria. Biotechnological sector
has grown in recent years, and biotechnological companies are characterized by low income, many
intangible assets (from product patents), high expenses in research and development and many of
them present losses [1–3]. The companies included in NBI reveal differences in terms of size, where
there are few companies with many employees and many small companies with a reduced number
of employees [1].

In addition to financial analysis, investors have recently begun to consider environmental, social
and governance factors (ESG) in their decisions that affect value creation and risk of companies.
According to a report by the Organization for Economic Cooperation and Development, only 25%
of listed companies in the USA have sustainability rating, compared to 10% in Europe and 5% in
Japan. However, companies rated represent 95% of total market capitalization in USA while in
Europe and Japan, that percentage is reduced to 89% and 78%, respectively [4]. Companies that
are not rated have lower trading volume [5].

Nowadays, there are more than 125 agencies dedicated to rate companies in terms of sustain-
ability, some of them are: Bloomberg ESG Data Service, ISS, MSCI ESG Risk, S&P Sustainability,
Sustainalytics y Refinitiv. Sustainalitycs’ ESG risk rating turns out to be the most stable over time
and considers all sustainable factors as a whole [6]. To do so, Sustainalitycs evaluates firms accord-
ing to their exposure to risk management and assigns them a score that reflects their level of ESG
risk level. The higher the score, the worse their rating since the company is considered riskier.

Another important aspect that investors consider is efficiency. It indicates the optimization of
resources used to obtain results [7]. Efficiency is the relationship between inputs and outputs of
a productive system. Data Envelopment Analysis (DEA) is used to study the efficiency of several
sectors and stock markets, highlighting sectors such as: banking, energy, tourism, among others.
It is a non-parametrical deterministic technique, that uses mathematical programming, and an
efficient frontier is obtained as a result [8].

The objective of this study is to evaluate the efficiency of the companies that are included in

1silgonde@upv.es
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Nasdaq Biotechnology based on financial and stock market data, and its relationship with ESG
risk rating carried out by Sustainalitycs.

2 Methods

For each of the 373 companies include in NBI, the followings variables are collected from website
www.investing.com at 31st December 2021: number of indexes where the company is listed, year
of initial public offering, employees, shares outstanding, price per share, assets, liabilities, equity,
revenue, operating income and net income.

From the website www.sustainalytics.com, the sustainability rating of the companies is ob-
tained. Those with an ESG risk score less than 30 points are classified as “sustainable”, on the
contrary, those that exceed this value are considered “unsustainable”.

Based on the data collected, the following variables are calculated: return on equity (ROE),
return on assets (ROA), market capitalization, age of the value listing in the market and level of
debt.

For the study, those companies with risk rating and positive net worth are included. A factorial
analysis is carried out with the principal component factor extraction method to determine the
dimensions that best explain the variability of this sample of companies. According to the results
of this analysis, each company is assigned the score obtained in each of the resulting factors. And
finally, the companies that turn out to have a similar size from the previous analysis are considered.

To evaluate the efficiency, Data Envelopment Analysis (DEA) is used, in which each company
constitutes a Decision-Making Unit (DMU). The following inputs are included: total assets, number
of employees, level of debt, and the number of years that the company is listed (non-controllable
input). As outputs are considered: ROE, ROA, the annual variation in market capitalization and
the level of ESG risk (undesirable output).

The methodology with input and output orientation and variable returns to scale is used. This
analysis is expressed in its input orientation according to equation (1.1), and output orientation
equation (1.2):

min θ − ε
(

m∑
i=1

s−
i +

s∑
r=1

s+
r

)
subject to

n∑
j=1

λjxij + s−
i = θxio i = 1, 2, ...,m;

n∑
j=1

λjyrj + s+
r = yro r = 1, 2, ..., s;

λj ≥ 0 j = 1, 2, ..., n;
n∑

j=1
λj = 1

(1)

max ϕ− ε
(

m∑
i=1

s−
i +

s∑
r=1

s+
r

)
subject to

n∑
j=1

λjxij + s−
i = xio i = 1, 2, ...,m;

n∑
j=1

λjyrj + s+
r = ϕyro r = 1, 2, ..., s;

λj ≥ 0 j = 1, 2, ..., n;
n∑

j=1
λj = 1

(2)
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Where xij (xij ≥ 0) represents the quantities of input i (i = 1, 2,..., m) consumed by the j-th
unit and yrj (yij ≥ 0) represents the observed quantities of output r (r = 1, 2,...,s) produced by
the j-th unit.

3 Results

Of the 373 companies that are included in the NBI, 268 meet the required criteria of having ESG
risk rating, at least 1 year being listed and positive net worth. When performing the factorial
analysis, figure 1 shows that 4 factors are obtained, which explain 73% of the variance. Factor 1
is the one that explains the most variability (44%) and is related to the dimension or size of the
company. Factor 2 refers to financial results. Factor 3 is related to age, indexes and sustainability
performance. And factor 4 identifies those companies that are more indebted and perform worse
results in terms of financial profitability.

Figure 1: Factorial analysis results

Figure 2: Efficiency by region

To assess their efficiency, 260 companies are finally included whose factorial score of factor 1 is
between -1 and 1. Out of these 260 companies, 90% belong to the USA, 7% to Europe and 3% to
the rest of the world. 65 of these companies (25%) are sustainable.
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Figure 3: Relationship between efficiency companies and sustainability

Figure 4: Relationship between efficiency and age of listing

When carrying out DEA, 30% of the companies are efficient, as shown in figure 2, both in input
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and output orientation, being the same companies efficient in both orientations.
It is observed that under the output orientation the scores obtained are, on average, better than

under input orientation. And USA companies obtained the higher results.
Of the efficient ones, 35% are sustainable (with an ESG risk index between low and medium)

as figure 3 shows. No relationship is observed between sustainability and efficiency. In the USA,
10% of companies are both efficient and sustainable, while in Europe, that percentage increases to
18%, and 10% in the remaining region.

Regarding the age of listing, figure 4 shows that the efficient and sustainable companies are on
average older than the non-efficient and non-sustainable ones.

Regarding the slacks, figure 5 shows that the inefficient companies must reduce their inputs or
increase their outputs on average to reach the efficient frontier. It can be seen that the variables
with the hightest slack in both orientations are the same: ROE and market capitalization.

Figure 5: Slacks

4 Conclusions

The companies included in the NBI are very different in terms of their size and economic-financial
indicators. Many of them have a particular functioning given that their activity has been dedicated
to the development of patents and pharmaceutical products, that is why they have a high volume
of expenses, little income, and even negative net worth.

The factor analysis shows that the dimension that most differentiates the 373 companies is their
size and explains 44% of their variability. In addition, factor 3 indicates that older companies are
listed in a larger number of indices and obtain better sustainability results.

Out of the 260 companies finally included in the analysis, 90% of them belong to the USA and
25% are sustainable (65 companies). The efficiency evaluation shows that the same companies are
located on the efficient frontier (30%), regardless of the orientation used. In the USA, 29.9% of
companies are efficient, while in Europe 31.6% are efficient, and in the remaining region 30%. Inef-
ficient companies must reduce the number of employees by an average of 22% (in input orientation)
and increase their economic profitability by 385%. Furthermore, out of the 65 companies that are
sustainable, 43% are efficient. Therefore, a relationship between sustainability and efficiency is not
observed.
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1 Introduction

The purpose of this work is twofold. Firstly, we introduce a new algorithm to find feedback Nash
equilibria of stochastic differential games and, secondly, we apply our methodology to a problem
of significance in the social sciences, related to human behavior.

The numerical analysis of stochastic differential games (SDG) is currently a topic of growing
interest (see [2–4, 12, 15, 16]). However, most contributions in the literature on differential games
focus either on the study of the theoretical properties of certain classes of SDGs; or on using heuristic
approximations to avoid solving the stochastic Hamilton-Jacobi-Bellman (HJB) equations of the
problem. Our approach extends the idea in [9], where an algorithm- called RaBVItG (Radial Basis
Value Iteration Game)- is introduced to solve the HJB system to find feedback Nash equilibria of
deterministic differential games.

The second objective of this work is related to a research line followed by [1], [8], [17], [18] -
among others- focused on mathematical models of love relationships. In this work, our goal is to
evaluate the risk of rupture in a dyadic romantic relationship that is intended to last (see [10]).
By analyzing the state variable (the feeling), being- in this model- a stochastic process, we can
compute, as a key result, a measure of the ”probability of rupture”, at a certain moment of the
relationship.

2 Methods

2.1 Mathematical Model

The model presented here is a stochastic two–person generalization of the optimal control model
introduced in [17]. A deterministic version was also considered in [10]. The state variable at time

1j-man@ccee.ucm.es
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t ≥ 0 is described by x(t) – called the feeling variable–, which is modeled by a stochastic process
{x(t)}t≥0, with x : [0,∞)→ X ⊆ R+, being X the state space. The feeling evolves according to

dx (t) = [−rx(t) + a1c1 (t) + a2c2 (t)] dt+ σ (x (t)) dw, (1)

where r, a1, a2 > 0 and, for i = 1, 2, ci : [0,∞) → R+ is a (piece-wise continuous) function that
measures the effort put into the relationship by partner i at time t, and w(t) is a Wiener process.

The total well-being Wi of each partner i is defined as

Wi (ci) = E
(∫ ∞

0
e−ρit (Ui (x (t))−Di (ci (t))) dt|x(0) = y

)
, i = 1, 2, (2)

where Ui and Di are, respectively, the utility of feeling and disutility of effort and ρi > 0 is the
individual rate of temporal preference. The underlying psychological rationale is explained in [17].

Given (1) and x(0) = x0, the couple finds the effort trajectories c∗
1(t), c∗

2(t) such that each
individual’s well-being integral (2) is maximal. Let us consider ci = Si (x), being Si : X → R+ the
feedback map that provides the effort by player i for the feeling x. We look for

(
S♡

1 (·) , S♡
2 (·)

)
,

such that S♡
i : X → R+ is a stationary feedback Nash equilibrium of the stochastic differential

game. Indeed, this equilibrium is attained if S♡
1 (x (t)) solves

max
c1(t)

E
(∫ ∞

0
e−ρ1t (U1 (x (t))−D1 (c1 (t))) dt|x(0) = y

)
(3)

with dx (t) =
[
−rx(t) + a1c1 (t) + a2S

♡
2 (x (t))

]
dt+ σ (x (t)) dw, and also S♡

2 (x (t)) solves

max
c2(t)

E
(∫ ∞

0
e−ρ2t (U2 (x (t))−D2 (c2 (t))) dt|x(0) = y

)
(4)

with dx (t) =
[
−rx(t) + a1S

♡
1 (x (t)) + a2c2 (t)

]
dt+ σ (x (t)) dw, where y = x0, and ci(t) ∈ R+ for

t ≥ 0.
Assuming the existence of a feedback Nash equilibrium S♡ =

(
S♡

1 , S
♡
2

)
for the couple’s problem,

we define v♡
i : X → R as the value function of partner i,

v♡
i (x0) = Wi

(
S♡

i (x (t))
)
, i = 1, 2.

where S♡
i (x (t)) is the optimal feedback control for partner i with initial state x(0) = x0. The

value functions v♡
i must satisfy the following stochastic (HJB) equations,ρ1v1 (x) = maxc1∈R+

{
U1 (x)−D1 (c1) + v′

1 (x)
(
−rx+ a1c1 + a2S

♡
2 (x)

)
+ 1

2v
′′
1 (x)σ2 (x)

}
,

ρ2v2 (x) = maxc2∈R+

{
U2 (x)−D2 (c2) + v′

2 (x)
(
−rx+ a1S

♡
1 (x) + a2c2

)
+ 1

2v
′′
2 (x)σ2 (x)

}
.

(5)
And the solution of (5) gives the stochastic feedback maps asS

♡
1 (x) = argmaxc1∈R+

{
U1 (x)−D1 (c1) + v′

1 (x)
(
−rx+ a1c1 + a2S

♡
2 (x)

)
+ 1

2v
′′
1 (x)σ2 (x)

}
,

S♡
2 (x) = argmaxc2∈R+

{
U2 (x)−D2 (c2) + v′

2 (x)
(
−rx+ a1S

♡
1 (x) + a2c2

)
+ 1

2v
′′
2 (x)σ2 (x)

}
,

(6)
obtaining the feedback Nash stochastic equilibirum of the problem. By inserting S♡

i (x(t)), i = 1, 2,
into (1), we obtain

dx (t) =
[
−rx(t) + a1S

♡
1 (x (t)) + a2S

♡
2 (x (t))

]
dt+ σ (x (t)) dw,

with
{
x♡(t)

}
t≥0

, the optimal stochastic process of feeling for the couple with x0.
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2.2 Discretization and Pseudocode

Although we present here a discretization and computational implementation of the model intro-
duced above, it can be easily extended to N - players with more than one control and state variables
per player. The presented model is discretized in a Semi-Lagrangian way (see, for instance, [5]).
Thus, the discrete version of (2) is

W h
i

(
ch

i

)
= E

{
h

∞∑
k=0

e−ρik (Ui (xk)−Di (ci,k)) |x0 = y

}
, i = 1.2, (7)

where ch
i = {ci,k}k≥0 is a sequence of (feasible) controls for partner i, defined by the piece-wise

constant function ch
i (τ) = ci,k, τ ∈ [tk, tk+1), where tk = hk, k ∈ N∪{0}. The sequence xk = x(tk)

is obtained by discretization of (1) using the Euler-Maruyama scheme [11],

xk+1 = xk + hf (xk, c1,k, c2,k) + σ (xk) ξk, (8)

with f(x, c1, c2) = −rx + a1c1 + a2c2, x0 = y, and ξk as the increment of a standard Brownian
motion w(t) in the interval [tk, tk+1). The discrete value function for partner i = 1, 2 is given by

vh
i (y) = max

ch
i

W h
i

(
ch

i

)
.

According to [14], the Gaussian variable ξk, can be replaced by a discrete variable with probability
distribution P

(
ξk =

√
h
)

= P
(
ξk = −

√
h
)

= 1
2 . Therefore, we can redefine (8) as a set of two

displacements,
xk+1 = xk + δd, d = 1, 2,

where, for the sake of simplicity, we will write δd = hf (xk, c1,k, c2,k) + σ (xk)
(
±
√
h
)
.

Then, we arrive to the Dynamic Programming Principle in discrete timev
h
1 (y) = maxc1∈R+

{
h (U1 (y)−D1 (c1)) + (1−ρ1h)

2
∑2

d=1 v
h
1
(
y + δd

(
y, c1, Sh

2 (y)
))}

,

vh
2 (y) = maxc2∈R+

{
h (U2 (y)−D2 (c2)) + (1−ρ2h)

2
∑2

d=1 v
h
2
(
y + δd

(
y, Sh

1 (y) , c2
))}

,
(9)

together with the corresponding discrete version of (6), namelyS
h
1 (y) = argmaxc1∈R+

{
h (U1 (y)−D1 (c1)) + (1−ρ1h)

2
∑2

d=1 v
h
1
(
y + δd

(
y, c1, Sh

2 (y)
))}

,

Sh
2 (y) = argmaxc2∈R+

{
h (U2 (y)−D2 (c2)) + (1−ρ2h)

2
∑2

d=1 v
h
2
(
y + δd

(
y, Sh

1 (y) , c2
))}

.

(10)
We consider an approximation of the functions vh

i , satisfying (9), by a spatial discretization of
the state space. Defining X̃ = {yj}j=1,...,Q ⊂ X as a set of arbitrary Q points, in general, the points
y♯

i = yj + δd (yj , c1, c2) in (9) do not belong to X̃. To find approximate values ṽh
i (yj) of vh

i (yj) for
yj ∈ X̃, i = 1, 2, the values vh

i

(
y♯
)

in (9) are calculated through a collocation mesh-free algorithm
using the set of scattered nodes X̃, by means ofṽ

h
1 (yj) = maxc1∈R+

{
h (U1 (yj)−D1 (c1)) + (1− ρ1h)RBF [V1]

(
y#

1

)}
,

ṽh
2 (yj) = maxc2∈R+

{
h (U2 (yj)−D2 (c2)) + (1− ρ2h)RBF [V2]

(
y#

2

)}
,

(11)

with discrete feedback strategiesS̃
h
1 (yj) = argmaxc1∈R+

{
h (U1 (yj)−D1 (c1)) + (1− ρ1h)RBF [V1]

(
y#

1

)}
,

S̃h
2 (yj) = argmaxc2∈R+

{
h (U2 (yj)−D2 (c2)) + (1− ρ1h)RBF [V1]

(
y#

2

)}
.

(12)
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where y
♯
1 = yj + hf

(
yj , c1, S̃h

2 (yj)
)

+ σ (yj)
(
±
√
h
)
,

y♯
2 = yj + hf

(
yj , S̃

h
1 (yj) , c2

)
+ σ (yj)

(
±
√
h
)
,

and RBF [Vi], i = 1, 2, denoting the average of the i-th value function’s approximation by radial
basis functions [6]. Specifically, for y♯ that does not belong to X̃, we have, for i = 1, 2,

ṽh
i

(
y#

i,d

)
≈ RBF [Vi] = 1

2

2∑
d=1

Q∑
j=1

λi,jΦ
(∥∥∥y#

i,d − yj

∥∥∥) ,
where y♯

i,d = yj+hf (yj , [c1, c2])±σ (yj)
√
h, and λi,j ∈ R are weighting coefficients, with Φ (∥y − yj∥) =

exp
(
−∥y−yj∥2

σ2

)
, and σ > 0 (see [7]). In addition, for i = 1, 2, and j = 1, ..., Q, the parameters λi,j ,

are obtained by solving
Aλ̄i = Vi,

where A is the matrix with entries Aj,l = Φ (∥yl − yj∥) for j = 1, ..., Q, and λ̄i = [λi,1, ...., λi,Q]T .
The algorithm to produce a solution of the discretized problem is called RaBVItG, which refers

to Radial Basis approximations, Value Iteration and Game Iteration. It essentially consists of two
main loops: game iteration, to find a Nash Equilibrium for a given value function, and value itera-
tion, to improve the approximation of the value function, given a previously obtained equilibrium.
Let us define V = [V1,V2], C = [C1,C2], denoting the arrays storing the information for both
partners, with Vi =

[
ṽh

i (y1) , ..., ṽh
i (yQ)

]T
, Ci =

[
c̃h

i (y1) , ..., c̃h
i (yQ)

]T
, i = 1, 2., evaluated at the

points yj ∈ X̃.
Let Ti = [Ti,1, ..., Ti,Q] : RQ → RQ and Gi = [Gi,1, ..., Gi,Q] : RQ → RQ be two operators defined

component-wise by

Ti,j (Vi) = h (Ui (yj)−Di (ci)) + (1− ρih)RBF [Vi] (yj + δd) , j = 1, ..., Q,

and

Gi,j (Vi) = arg max
ci∈R+

{
h (Ui (yj)−Di (ci)) + (1− ρih)RBF [Vi] (yj + δd)

}
, j = 1, ..., Q, (13)

with δd, d = 1, 2, the set of displacements δd = hf (yj , [c1, c2])± σ (yj)
√
h. Then, we define

1. Game Iteration. For s = 0, 1, , ..., generate Cs+1
i at step s+ 1 for partner i, as follows:

Cs+1
i = θCs

i + (1− θ)Gi (Cs,Vr
i ) , i = 1, 2,

where Gi is defined in (13), θ ∈ (0, 1) is a weighting coefficient –see [13], and V r
i is defined

below. The Game Iteration loop follows the scheme

c̃s+1
1,j ≡ θc̃s

1,j + (1− θ) argmaxc1∈R+

{
h (U1 (yj)−D1 (c1)) + (1− ρ1h)RBF [Vr

1]
(
y♯

1

)}
,

c̃s+1
2,j ≡ θc̃s

2,j + (1− θ) argmaxc2∈R+

{
h (U2 (yj)−D2 (c2)) + (1− ρ2h)RBF [Vr

2]
(
y♯

2

)}
,

y♯
1 = yj + hf

(
yj ,
[
c1, c̃s

2,j

])
± σ (yj)

√
h,

y♯
2 = yj + hf

(
yj ,
[
c̃s

1,j , c2
])
± σ (yj)

√
h,

where c̃s
i,j ≡ c̃s

i,j (yj). Is iterated until a convergence criterion is satisfied, that is,
∥∥Cs+1 − Cs

∥∥ <
ϵ1, for a given ϵ1 > 0 (∥·∥ is the Euclidean norm). Given Vr

i , i = 1, 2, a candidate for feedback
Nash equilibrium is thus obtained: Cs+1 =

[
Cs+1

1 ,Cs+1
2

]
.

This is the input for the next loop, to produce an estimate of the functions Vr+1
i , i = 1, 2.
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2. Value Iteration. Given Cs+1, obtained from the previous loop, the value functions at step
r + 1 are:

Vr+1
i = Ti

(
Vr

i ; Cs+1
)
, i = 1, 2,

where, for j = 1, ..., Q,
T1,j ≡ h

(
U1 (yj)−D1

(
c̃s+1

1,j

))
+ (1− ρ1h)RBF [Vr

1]
(
y♯

1

)
,

T2,j ≡ h
(
U2 (yj)−D2

(
c̃s+1

2,j

))
+ (1− ρ2h)RBF [Vr

2]
(
y♯

2

)
,

y♯
1 ≡ y

♯
2 = yj + hf

(
yj ,
[
c̃s+1

1,j , c̃
s+1
2,j

])
± σ (yj)

√
h.

Is iterated until satisfying the convergence criterion
∥∥Vr+1 −Vr

∥∥ < ϵ2, with ϵ2 > 0 given. A
candidate solution for the value functions are thus obtained: Vr+1 =

[
Vr+1

1 ,Vr+1
2

]
.

Once the convergence conditions are met, the algorithm generates the outputs V♡ =
[
V♡

1 ,V
♡
2

]
,C♡ =[

C♡
1 ,C

♡
2

]
as the computational solutions for the value functions and control policies of the couple’s

problem. Notice that V♡ and C♡ is an approximate fixed-point of the numerical scheme{
Cs+1 = G(Cs,Vr,∆),
Vr+1 = T (Vr,Cs+1,∆),

where ∆ denotes the chosen set of spatio-temporal discretization parameters. Once
(
C♡,V♡

)
are

obtained, we can recover the corresponding approximated feedback maps defined in (12). For the
purpose of our model analysis below, we take f (y, [c1, c2]) = −ry + a1c1 + a2c2, and σ (yj) ≡ σ
constant.

3 Results

Our analysis is based on some parameterization of the model from the literature (see [8] and [10]).
We present a synthesized approach of how our algorithm can compute the probability of breakup
for a couple, addressing the problem of estimating the change in the probability of breakup after
a shock of the feeling occurring at time k > 0. Even though the stabilization mechanism obtained
by the algorithm is working, the perturbed feeling trajectory may enter the zone of risk of rupture
at a certain moment k. This ”alarm zone” is called ”Love at Risk (LaR)” here, and it is defined as
follows:

P
(
x♡

k ≤ xmin

)
= α

where x♡
k is the (optimal) solution of the computational couple’s problem previously defined, P is

its probability function, so that xmin is the α-percentile of the distribution of x♡
k .

To illustrate the probability estimation described above, consider the case where s− consists of
a large one-period shock (of size σ) taking place at time k = 60 (five years after the wedding). In
Figure 1 (left) we show the percentile trajectories of the stochastic process steered by the approx-
imated stabilization mechanism for a particular couple, and for different values of σ. Computing
a large ensemble of trajectories, we produce an estimate of the distribution of the feeling values
for the perturbed process over a whole year (k = 60, ..., 72) after the shock at k = 60. In Figure
1 (right) we show the empirical distributions of the feeling variable before the shock and over one
year after the shock. As shown in Figure 1 (right), given that the shock at k = 60 has the size of
the uncertainty σ, the probability of breakup over the year after the event increases as σ increases.
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Figure 1: Left: Feedback response to a one-period shock of size s−- proportional to σ five years after
the wedding (k = 60) for a heterogamous couple with a1 = 1, a2 = 1.75, and for σ = 0.5, 1.25, 1.75.
Feeling trajectories are obtained through the feedback-map. Right: Empirical distribution for the
feeling values obtained from an sample of 10000 trajectories before and after the shock for the
different values of σ. LaR values correspond to the unperturbed process.

We also analyze how the probability of breakup after a shock varies with respect to the size
of the shock and the uncertainty of the feeling dynamics. For the same type of couple considered
above, we also obtain that the probabilities of breakup for different values of σ- and different sizes
of a one-period shock occurring five years after the wedding- for any level σ, the probability of
breakup increases as the size of the shock increases. Also, a higher level of uncertainty entails a
lower LaR level and, in addition, it makes more likely that the level of feeling remains in the secure
zone (i.e. over xmin) for the relationship.

4 Conclusions

In this article we have introduced an algorithm to find feedback Nash equilibria for a class of
stochastic differential games. The algorithm builds on a combination of two fixed point iterations,
a first one to find the Nash equilibrium by fixing the value of the game, and a second iteration to
find the value of the game given a Nash equilibrium. The algorithm can be applied to a general class
of N -player infinite horizon stochastic games. We have also considered a substantial issue in the
applied sciences, namely the design of a long-term rewarding romantic relationship. We formulate
this problem as a two-person optimal control problem to steer the feeling of the relationship in a
stochastic environment. The algorithm allows us to find approximate solutions of a computational
version of the control problem for different stochastic dynamics. In particular, we have focused
on estimating the risk of breakup of a long-term relationship at a certain time after the initial
commitment. The computational model allows us to estimate the probability of breaking up in the

130



Modelling for Engineering & Human Behaviour 2022

face of an external shock. The analysis can be applied to different types of couples and different
levels of stochasticity in the feeling dynamics.
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1 Introduction

Graph theory has become an essential element in many scientific areas, as its ability to model many
types of relationships and processes has made it a powerful tool for the resolution of problems in
areas such as physics, biology, or computer science. The study of graphs modelling real-world
systems has shown that in these systems there exists a high level of order and structure in their
vertices. This characteristic is what is called community structure. A community consists of a
group of vertices with similar properties and functions in its graph. Numerous algorithms have
been proposed for the detection of communities in the last few decades [1]. Nevertheless, none
of the algorithms presented to date have shown good results in every kind of graph, due to the
great variety of them that can be found in real systems. Classical methods, such as Girvan-
Newman [2], Walktrap [3], or Fast Greedy [4], have shown good results in strongly connected
and well-conditioned graphs; but little to none work has been done to develop good performing
algorithms for detecting communities in directed weakly connected bad-conditioned graphs.

The objective of this work is to propose a method for the detection of communities in this specific
complicated type of graph. In these, we can find edges whose weight is much lower compared to
other edges in the graph, which can condition the resulting communities. These edges act like noise
in the system, and can be eliminated under certain conditions, and the goal of this work is to find
a method to eliminate that noise under adequate conditions.
Keywords: Graphs and networks applications. Complex networks. Noise filtering.

2 Methods

2.1 Edge detection in images

Edge detection is commonly used as one of the first steps when retrieving information from an
image, as it provides data about the structure and properties of the objects in the scene. Edge
detection techniques are commonly based on the use of convolution, a mathematical process that
consists in adding its neighbors to each element of a matrix, weighted by a kernel (or filter). The
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election of this kernel will determine the result obtained and its use. An example of convolution
over a image is shown in Figure 1.
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Figure 1: Convolution using a 3× 3 filter.

This work will be focused on the Laplacian of Gaussian filter (or LoG), an edge detection filter
that combines both the Gaussian smoothing to reduce noise in the image with the second derivative
computation with the Laplacian. This filter is defined by the following equation:

∇2g(x, y) =
(x2 + y2 − 2σ2

σ4

)
e

−x2+y2

2σ2 (1)

where σ corresponds to a regularisation parameter that defines the amount of noise removed, as
well as the potential loss of information. An example of edge detection in images can be seen in
Figure 2, where the Laplacian of Gaussian is applied over the image on the left. The images in
the figure are obtained using Python 3.10, the original one comes from the scikit-image package,
and the results are obtained with the gaussian laplace function from the scipy package. It can
be appreciated how the regularisation parameter affects the final result: a lower value of σ does
not remove all the noise in the image, while a larger value removes some information (this can be
appreciated in the buildings in the background).

(a) Original image (b) LoG with σ = 2 (c) LoG with σ = 4

Figure 2: Example of edge detection using Laplacian of Gaussian.

2.2 Convolution-based community detection algorithm

Recently, some algorithms have been proposed that use the convolution product to detect com-
munities in graphs, in a similar fashion to what is done in the detection of edges in images. This
technique was used previously with a community detection algorithm in [5]. In this algorithm, the
convolution product is applied over the line graph of the graph of interest in order to detect borders

134



Modelling for Engineering & Human Behaviour 2022

between communities. A new algorithm based on convolution was proposed by the group in [6],
where the convolution product is used to detect and prune edges acting as noise in the graph.

The method presented in this work is a variation from the previous method, and it was developed
in order to improve the results obtained with the previously commented community detection
methods. The main differences are found in the method for computing the kernel of weights and
the edges involved in the convolution. A convolution distance, n, is defined, and the convolution
product is obtained taking into account all the edges of the graph at a maximum distance n from
and to the edge to convolve. Figure 3 shows a diagram with the edges involved in the convolution
of a given edge e, and a convolution distance n = 2. The nomenclature of the edges follows the
scheme wdestination, distance, id.

w
e,2,1

we,2,2

w
e,2,3

we,2,4

w
e,1,1

w e,1,
2

we,0,0
e

w e,1,
3

w
e,1,4

we,2,5

w
e,2,6

we,2,7

w
e,2,8

Figure 3: Edges involved in the convolution of edge e given a convolution distance n = 2

The convolution product of an edge e is obtained from the next equation:

ka(n) = k0 ∗ we,0,0 +
n∑

i=1

m∑
j=1

ki ∗ we,i,j (2)

where k = [k0, k1, k2, . . . , kn] is a kernel of weights computed using the Laplacian of Gaussian as
described in the next equation:

ki = ∇2g(i, 0) ; i = 1, . . . , n (3)

k0 =
n∑

i=1
qiki (4)

where qi expresses the number of edges at a distance i from or to the edge to convolve. The kernel
k0 is computed in such a way that the sum of all kernels is equal to 0, trying to mimic the kernels
used in image processing. This way, in areas where the edges are uniform, the gradient would be
close to 0.

The community detection algorithms are applied to the graph after the edges that are potentially
impeding the correct detection of communities are pruned. The edges to be removed are those for
which the corresponding convolution product is lower than 0. In particular, those pruned edges
have also a significantly lower weight than their neighbor edges.

3 Results

The efficiency of this algorithm was tested over the graph that models the access procedure to the
public university system in Spain, with data from the Valencian Community in the year 2014. This
graph with 215 vertices and 9615 edges is a good example of a directed badly conditioned weakly
connected graph. A graphic representation can be seen in Figure 4.
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Figure 4: Spanish public university access system graph

Preliminary community detection results were obtained using classical algorithms, such as Walk-
trap or Girvan-Newman, but they were not good: either the modularity was too low, or the
communities obtained did not provide much information. In an effort to improve the results
obtained with the classical community detection algorithms, the method based on convolution
presented in [6] was applied to the graph, obtaining the results shown in Figure 5. Two different
convolution filters were used: the Laplacian of Gaussian and the Log kernels. As can be observed,
very different results were obtained. The Log convolution filter (Figure 5.b) obtains particularly
good modularity, 0.94, but at the cost of removing almost all edges, and thus losing a lot of valuable
information. On the contrary, the Laplacian of Gaussian convolution (Figure 5.a) prunes a much
lower number of edges, but the results obtained when detecting communities are not good (this can
be seen in the low modularity obtained). These results motivate the design and implementation of
improvements over the algorithms presented.

In order to improve the community detection results obtained so far, the convolution method
presented in this work was applied over the graph. Using σ = 0.5 to compute the Laplacian of
Gaussian, the convolution product was applied over all edges of the graph, and the edges with
a negative convolution product were pruned from the graph. This pruned graph is shown in
Figure 6.a, where 7924 edges were removed, the 82% of the total number of edges. The Walktrap
community detection algorithm was then applied to the pruned graph, obtaining the communities
shown in Figure 6.b. The modularity obtained is 0.64, which is an acceptable result, and the
communities can also give useful information about the graph, and, therefore, about the entire
system. For example, isolated communities can be found, that correspond to the less solicited
university degrees; as well as medium size communities, that contain degrees in very specific areas,
such as philology or forestry engineering. The biggest communities correspond to broader areas of
knowledge: social sciences, natural and health sciences, and engineering. These results outperform
greatly the results obtained with previous algorithms.

Method Kernel Pruned edges Modularity
Previous Method [6] Laplacian of Gaussian 332 (3.45%) 0.0207
Previous Method [6] Log kernel 9350 (97.24%) 0.97

New Method Laplacian of Gaussian 7924 (84%) 0.64

Table 1: Comparison of results
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(a) Communities detected with (b) Communities detected with
Laplacian of Gaussian Log kernel Gaussian

Figure 5: Community detection results with the method described in [6]

(a) Pruned graph (b) Communities detected with
Walktrap

Figure 6: Community detection results with the new method

4 Conclusions

The results obtained with this new community detection algorithm show that the methods based
on convolution techniques can be a satisfactory solution for the detection of communities in badly
conditioned weakly-connected graphs. Future work can be continued in various ways. On the one
hand, a method for the optimisation of the regularisation parameter of the algorithm presented in
this work must be developed in order to find the optimal ratio between noise reduction and loss of
information. On the other hand, other convolution filters can be used that may be more suitable
for the pruning phase of the graph.
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1 Introduction

Managing water distribution systems (WDS) in large metropolitan areas is a complex task. As
highly connected, buried infrastructures, WDS are often exposed to failures and pose difficult
control problems. To recover its capacity, various rehabilitation alternatives can be considered.
Yet, specially in large, intermittent WDS, the wide spectrum of available alternatives leads to
complex decision-making processes. To support WDS managers, hydraulic models can help disclose
the impacts of interventions in the system. To cope with the inherent uncertainty, simulation
processes built on top of those hydraulic models can shed light on each type of intervention. In-
depth evaluations of the solutions under various criteria can help. Considering pipe replacement
as a strategy for water network rehabilitation, we combine water distribution system analysis
with multi-criteria analysis to rank alternatives for pipe replacement. Eight performance criteria
are used to evaluate the rehabilitation alternatives. The Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) [1] is adopted to rank the solutions. Our case study is the
one proposed in the Battle of Intermittent Water Supply (BIWS) [2]. A budget constraint is set for
alternatives’ generation. Results show as pipe replacement is an important rehabilitation strategy,
since the eight evaluation criteria are improved. Sensitivity analyses show the robustness of the
best solutions, with just a few variations in ranking positions. The most frequent best solution is
then hydraulically evaluated, showing the real benefits of pipe replacement in terms of pressure
deficit reduction.

2 Methods

2.1 Leakage simulation

This work uses hydraulic theory to generate rehabilitation solutions. Simulations use Epanet 2.2
linked to Python using the library WNTR. Simulations are assessed by using TOPSIS. Leaks are
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distributed along the pipes to simulate leakage in a realistic way in WDS. We create a leaking
node by splitting the corresponding pipe into two pipes connected by a node without demand
but provided with an emitter that characterizes the leak. To avoid computational/mathematical
problems derived from possible negative pressures, we create a new node which is linked to the
leaking node by an artificial pipe, a short pipe of large diameter such to avoid additional headloss.
A check valve to control the flow direction is added to this pipe.

2.2 Pipe replacement simulation

Pipe replacement is used by water companies to recover the hydraulic capacities of their WDS. After
a pipe replacement, leaks are fixed, since the new pipe is fully watertight. A replaced pipe has same
diameter and length as the old one, but its roughness is updated. this leak repair is simulated by
setting the emitter coefficient of the leaking node to zero. Each pipe has a replacement cost, which
is related to the price of the pipe itself and to the civil interventions as well. This cost limits the
number of pipes to be replaced according to the budget of the water Company. In this work we
follow the most recent references about cost as a function of diameter.

2.3 Evaluation Criteria

In addition to the costs, we use a set of indicators to evaluate the feasibility and advantages of a
solution. Solutions are evaluated using eight multifaceted criteria (formulae omitted here).

I1: percentage of hours that a consumer is served
I2: proportion of consumers with continuous service
I3: volume of water leakage
I4: percentage of volume of water supplied to the users
I5: pressure level at consumption nodes
I6: percentage of users supplied continuously
I7: average length of pipes under negative pressure
I8: total energy consumed by pump stations

2.4 Multi-criteria and sensitivity analyses

Alternatives will be evaluated and ranked by using TOPSIS, which is able to deal with a huge
number of alternatives, as it is the case of the present paper and can lead the evaluation by
distinctively weighting the criteria, what allows sensitivity analyses (see, for example [3]).

3 Results

The developed methodology is applied to the BIWS network [CITA]. In this work only the pipe re-
placement solution is explored. This network has 2.859 junctions, 3.231 pipes, 7 pump, 6 reservoirs,
4 tanks, and 15 valves. Around 3600 leaks are set at a number of pipes. The final hydraulic model
is then built with more than 10.000 nodes and 6.800 pipes. This makes hydraulic simulation harder
than for the original setting and application of heuristic optimization is virtually impossible. Figure
1 presents the network topology depicting node elevation. A high elevation zone corresponds to
the red nodes and a low elevation zone corresponds to the dark-blue nodes. Since the operational
pressure is inversely proportional to the elevation, it is expected the high elevation zone to have
supply problems derived from low pressures, while the low elevation zone will have problems with
leaks due to high pressures.

A budget of €650.000 is considered, following the description of the Battle, and corresponds to
the total amount of money that can be invested on rehabilitation. Considering this budget, 150
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Figure 1: Water network topology of BWIS network highlighting the elevation of water system

solutions are simulated. Each solution is generated by randomly selecting pipes with leaking nodes
to be replaced.

The solutions are evaluated based on the given indicators. Table 1 presents an statistical
analysis of indicators. The box plot in Figure 2 analyzes the criteria value distribution. From
Table 1 and the box plot in Figure 2 one verifies that some indicators do not vary significantly
for pipe rehabilitation (e.g. I1, I4 and I5). Comparing the statistical parameters and the criteria
calculated for the original network, we note that I1 is improved by all the solutions. However,
a comparison among solutions shows slight differences between the minimum and maximum I1
values. The same analysis can be explored for criterion I4, which is improved by all the solutions,
although, comparing minimum and maximum I4 values, slight differences are noticed. Finally, the
minimum of I5 is virtually equal to the same indicator in the original network, while the maximum
I5 is slightly better than in the original network. The analysis on the other parameters shows that
network rehabilitation by replacing pipes can improve indicators I2, I3, I6, I7 and I8. More than
that, observing the variation of these criteria, it is also possible to highlight that some solutions
are better than others. It is also important to underline as some solutions can impair indicator I6,
and this is because reducing leaks in a certain region leads to higher pressures on this region but,
since leaks depend on pressure, the remaining leaks can increase.

I1 I2 I3 I4 I5 I6 I7 I8
Average 0.957 0.908 0.432 0.923 0.769 0.848 59064 6731649
Std 0.0014 0.0343 0.0061 0.0009 0.0036 0.0881 33178 79017
Min 0.954 0.729 0.380 0.920 0.763 0.547 30163 6213527
Max 0.962 0.922 0.441 0.928 0.790 0.921 155425 7037708
Original 0.882 0.708 0.489 0.874 0.760 0.698 93091 6565165

Table 1: Statistical characterization of pipe replacement solutions and evaluation criteria calculated
for the original network without any intervention

A question remains: which solution is more suitable to be applied considering that all them cost
virtually the same? The MCDM method TOPSIS is applied to answer this question, specifically
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Figure 2: Box plot of each indicator used to evaluate the rehabilitation solutions

to rank the solutions based on evaluation criteria. Table 2 shows the five best solutions obtained
by applying TOPSIS.

ID TOPSIS
Score I1 I2 I3 I4 I5 I6 I7 I8

22 0.975254 0.961 0.921 0.423 0.926 0.781 0.922 31464.0 6459619
128 0.971187 0.958 0.918 0.432 0.925 0.770 0.918 31778.0 6769291
115 0.970083 0.957 0.917 0.431 0.923 0.770 0.917 32191.0 6714131
141 0.96904 0.958 0.918 0.433 0.922 0.768 0.911 32227.0 6736640
18 0.968505 0.955 0.917 0.433 0.923 0.769 0.916 32709.0 6680980

Table 2: Ranking of five best solutions and the corresponding evaluation criteria

First, consider that criteria may have different weights. A robust methodology for ranking
solutions must handle this situation. For this reason, a sensitivity analysis of criteria weight is
conducted.

Finally, to evaluate the real impact of the solutions on the hydraulic system, the best solutions
are hydraulically simulated. The results of this analysis can help decision makers to understand
how and where the hydraulic features (e.g. flow and pressure) are changed.

4 Conclusions

Rehabilitation is paramount for water supply managers. The diversity of alternatives to improve
hydraulic and energy performance involves complex decision-making. To help in the decision-
making process, this work has presented a methodology for ranking pipe replacement solutions
based on the TOPSIS methodology. Based on eight multifaceted criteria, solutions are evaluated
and compared. To assess the robustness of the proposal, a sensitivity assessment has to be applied.
It can be done with groups of criteria. Finally, the best solutions have to be hydraulically checked
and the accompanying improvements made explicit.
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1 Introduction

In railway tracks, transition zones are located between the civil structures and the embankments.
In this sense, differential settlements take place due to the difference of stiffness between the two,
resulting in direct damage to the track. Currently, railway managers have tried, without success,
to solve this problem using granular wedges.

For this reason, to achieve a continuous and gradual track vertical stiffness in transition zones,
a new type of transition wedge has been designed using prefabricated concrete slabs. In addition,
it was studied if the new wedge was valid to be installed in urban environments, as it is thought
that the transmission of railway vibrations through concrete could be very high.

With this purpose, firstly the design and validation of the new transition wedge has been carried
out. To do this, the different alternatives were installed in a test field and the one with the best
performance was selected. Once selected, an FEM was used to validate its performance compared
to a granular wedge. Secondly, using the FEM of the validated solution, a comparison of the
vibrational response of both alternatives was carried out to determine whether the new wedge is
suitable for installation in urban environments.

The results showed that the new wedge using concrete slabs was an optimal solution to be
installed in railway transition zones. However, these wedges did not show an adequate performance
in urban environments, so the use of granular wedges was concluded to be more appropriate.

2 Design and validation of new prefabricated wedge

The proposed methodology for the design of a new transition wedge is then proposed with the
main objective of obtaining vertical stiffness in the adjacent areas of the structures and providing
optimum structural performance. Together with the methodology, the results will also be presented.

1milabpa@upv.es
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2.1 Methodology

Approach to initial cases

The design of the transition wedges depends on the distance between the top of the structure and the
runway [1]. Thus the new transition wedge has been designed to be adaptable to different scenarios
and has been constructed using precast concrete slabs. For this document, four scenarios have
been proposed whose specifications have been defined by ADIF (Administrador Infraestructuras
Ferroviarias, Spain), depending on the distance between the top of the structure and the bottom
of the sub-ballast: i) Case 1. Depth equal to 0 m; ii) Case 2. Depth less than 0.5 m; iii) Case 3.
Depth between 0.5 m and 2.0 m; and, iv) Case 4. Depth greater than 2.0 m.

(a) Prefabricated concrete slab dimensions.
(b) Model of the new transition wedge.

Figure 1: Design of the new transition wedge.

Two geometric models have been designed for the prefabricated wedges. The first design consists
of a three-step wedge with a final length of 21.6 m and a height of 1.8 m. This design has been
applied in cases 1, 2 and 3 (see Figures 2a, 2b and 2c). The second one has been designed with
three steps with a final length of 10.6 m and a height of 1.8 m. This second design has been applied
to case 4 (Figure 2d).

(a) Longitudinal section Case 1. (b) Longitudinal section Case 2.

(c) Longitudinal section Case 3. (d) Longitudinal section Case 4.

Figure 2: Longitudinal section of the case studies.

Field tests

The deformation determines the magnitude of the dynamic overloads transmitted to the track and,
as a consequence, its deterioration [2]. For this reason, each case was reproduced in real size on a
test track. The test field was set up in a stone quarry in Oliva (Valencia, Spain).

The tests consisted of the application of 3 load values on different sections of the wedge to
study its behaviour under deformation. The results of the tests are shown in Figure 4 and, as can
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Figure 3: Installation of the prefabricated and granular wedge in a stone quarry located in Oliva
(Valencia) Spain

be seen, the best performance is obtained for case 1 of depth = 0m.

(a) Granular wedge. (b) Prefabricated wedge.

Figure 4: Vertical settlement recorded in the field tests.

Numerical model

Following the determination of the optimal solution, the granulated and prefabricated wedges have
been installed to i) calibrate and validate a Finite Element Model (FEM); and, ii) validate the
prefabricated wedge as an optimal solution. The solution has been installed on the ADIF high-
speed line in Antequera (Málaga, Spain). Both wedges have been calibrated using the real data
acquired, comparing with the outputs obtained in the model. After this, the correct parameters
have been obtained to validate the finite element model in Figure 5.

(a) Results for granular wedge model. (b) Results for prefabricated wedge model.

Figure 5: Numerical model for the granular and prefabricated wedges.
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2.2 Results

The comparison between granular and prefabricated transition wedges was made in terms of vertical
displacements thanks to the calibrated and validated FEM. The deformation curve is shown in
Figure 6, where the x-axis is the distance from the structure and the y-axis is the displacement
of the top rail. The deformation curve is shown in Figure 7, where the x-axis is the distance
from the structure and the y-axis is the displacement of the top rail. Both solutions show similar
deformation, with the prefabricated solution being a better solution, as the maximum deformation
is reached at a greater distance from the structure.

Figure 6: Deformation curve between granular and prefabricated wedges.

It is concluded that the FEM obtained has been validated and calibrated, being possible to verify
that the use of a prefabricated transition wedge is an optimal solution compared to conventional
granulated wedges.

3 New wedge vibration analysis in urban environments

Once the new transition wedge has been validated, a vibration study has been carried out in this
section with the objective of assessing whether the new wedge is suitable for urban environments.

3.1 Methodology

Case approach

Figure 7: Data measuring points in
track cross-section.

The ability of concrete structures to transmit vibrations
could preclude the use of precast wedges in urban environ-
ments, as these vibrations could propagate to surrounding
areas and granulated wedges would be more suitable. To
determine its suitability, the validated FEM has been used
to reproduce urban rail vehicle traffic.

In order to evaluate the vibration behaviour of the pre-
cast wedge and the granular wedge, the accelerations of the
structure have been studied. The speed of rail vehicles has
been set at a constant 80 km/h and three critical points have
been evaluated: i) on a rail; ii) in the sub-ballast layer; and
iii) at 0.9 m depth (half the height of the wedge). The points
selected for assessment are shown in Figure 7.

146



Modelling for Engineering & Human Behaviour 2022

3.2 Results

Vibrations on the rail

The vibration results obtained for the railway track using the numerical model are shown in Figure
8. As can be seen, the vibration is very similar for the granular and prefabricated wedge. The
vibrations induced by passing trains are between 50 and 80 Hz [3,4], so it is expected that increasing
the stiffness of the materials close to the rail will increase the vibrations [5].

Figure 8: Accelerations on the rail at a 80 km/h train speed.

Vibration in the subballast layer

The results of the simulation are presented in Figure 10, which shows, firstly, a decrease in ac-
celerations away from the vibrating core, as expected. Secondly, different vibration performances
are observed for the two types of wedges. The prefabricated wedge has higher acceleration peaks,
which leads to the conclusion that the granular wedge reduces vibration more than the prefabri-
cated wedge. Secondly, different vibration performances are observed for the two types of wedges.
The prefabricated wedge has higher acceleration peaks, which leads to the conclusion that the
granular wedge reduces vibration more than the prefabricated wedge. The granular wedge is able
to reduce peak vibration by 33%.

Figure 9: Accelerations in the subballast layer at a 80 km/h train speed.

Depth = 0.9 m from the subballast line

The third case study also shows the expected vibration behaviour, as shown in Figure 11. Vibrations
are reduced compared to the previous case, with accelerations decreasing as they move away from
the railway track. Both wedges show different vibration behaviour. Therefore, special attention
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was paid to the peaks at critical points, and it was determined that the granular wedge reduces
the maximum vibrations by 30% compared to the prefabricated wedge.

Figure 10: Accelerations on a depth of 0.9 m at a 80 km/h train speed.

4 Conclusions

In this paper, the performance of a new type of transition wedge has been evaluated, which has
been made possible through the division of the study into two stages. The first stage consisted of
a comparison between the new transition wedge and the traditional granular wedge. The second
stage consisted of evaluating the performance of the newly designed transition wedge in an urban
environment.

The evaluation of the results presented in this document has made it possible to reach the
following conclusions:

• Both granular wedges (correctly executed) and precast wedges allow for a gradual transition
of stiffness.

• The optimal installation scenario for the precast wedges is to place them just below the
sub-ballast line.

• New prefabricated wedges improve structural performance.

• The new prefabricated wedges have poorer vibration performance and are less suitable for
urban environments.
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1 Introduction

In today’s world, the usage of social media platforms has popularized to the point where the volume
of information they offer is unmatched by other more traditional surveying methods. For example,
it is estimated that, for Instagram, over half a billion users are active everyday, and over 95 million
images and videos get posted daily2. It is no wonder then that interest has surfaced into how to
properly utilize this data in different areas of study such as tourism [1] of marketing [2].

It is important to note that, while social media posts truly contain useful data, this data does not
present itself in an obvious and direct way. Instead, it has to be extracted through different tools,
such as those performing face recognition or sentiment analysis tasks. Thus, the main objective of
this work will be the exploration of different tools that allow for the extraction of useful information
from social media, particularly from Instagram. Many previous works exist dealing with this kind
of problem. This one in particular was born as an extrapolation from [3], but other relevant works
such as [4] or [5] can be cited by their usage of face recognition and sentiment analysis respectively,
both in the context of tourism. The base idea of our work was set as an study of the Instagram
posts with location set in a particular city in 2018 and 2021 to allow for an additional study of the
effects that the pandemic of COVID-19 might have had on this kind of data.

2 Data

The dataset used in this study is made up of 10140 Instagram posts, which were requested to the
Instagram Basic Display API, with the requirement of having the location set in the city of Vigo
(Pontevedra, Spain). This city is the most populated of the northwest region of Spain (with 293.837
inhabitants recorded as of 01-01-20213), and also receives a considerable amount of visitors which
ensures a good flow of social media posts coming from there.

1ana.larranaga.janeiro@uvigo.es
2https://www.wordstream.com/blog/ws/2017/04/20/instagram-statistics
3Spanish Statistical Office, National Statistics Institute (INE), https://www.ine.es/en/
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Half of the posts are from 2018 representing the social profiles before the pandemic, while the
other half are from 2021, over a year after said pandemic hit. The posts were made in both years
on the months of May and June, so they belong to the same season. The good climate of the area
in those months, paired with the fact that Vigo is a coastal city, guarantees that both visitors and
locals will partake in many outdoor activities, and likely post about them in social media, which
serves as great fuel for an study like this.

The reason why the Instagram platform was chosen for this study is due to its visual nature.
Posts must be accompanied of at least one photo or video, which means an image analysis can be
reliably performed as a way to obtain sufficient information. Other social media platforms such as
Twitter could be used, but the methods employed should shift to a more text-based approach.

Some of the data available for each post is more straightforward, like the date and time, or
the number of interactions received, that is, likes and comments. However, other more complex
attributes like the image or the caption will require some methods to extract information from
them, which will be introduced in the next section. An example on how all of this information
would be displayed on a post can be seen on figure 1.

Figure 1: Example of an Instagram post, detailing the available information.

3 Methods

The posts obtained are only filtered by location and date of publication. This means that a portion
of the dataset will be composed of posts made by businesses such as restaurants, which are of no
relevance to this particular study. This is why a method to filter out posts that come from business
accounts is required. For that purpose, a supervised machine learning model was trained. In order
do so, a sample of over 400 randomly selected posts was manually labeled, based on whether each
post was made by a personal account or a business account. For the purpose of this study, we
considered a business account to be any account that was trying to sell a product or service to its
readers, while any other account was labeled as personal. The training and test sets came from an
85− 15 split of this sample.

Four different supervised classification algorithms were considered: random forest, support vec-
tor machine, k-nearest neighbors and multilayer perceptron. The predictors used by the models
were the following: number of likes and comments (interactions) received, day of week of publi-
cation, hour of publication (integer from 0 to 23), number of hashtags and mentions used in the
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caption, character count of the caption, amount of numbers in the username of the poster, and
dummy variables indicating the year (2018 or 2021), whether the post is a video, whether it con-
tains more than one media file (image or video) or just one, and the presence of a url or a phone
number in the caption.

The hyperparameters of each model were tuned using 10-fold cross-validation, evaluating the
performance through the accuracy, precision, sensitivity, and area under the receiver operating
characteristic curve (AUC-ROC). Once tuned, the random forest was discarded due to poor per-
formance, and the used model was an ensemble model of the support vector machine, the k-nearest
neighbors and the multilayer perceptron. This model classified 6293 out of the 10140 posts as
coming from personal accounts.

In order to obtain useful information from more complex attributes of this newly labeled data
such as the image or the caption of posts, some additional methodology is required. For the images,
an image classification model and a face recognition model were applied. For the captions, data
about the sentiments and education level was obtained.

The education level was inferred for each post through the use of readability formulas. This
kind of formulas give a score to a text that serves as a measure of how difficult it is to understand.
In particular, the Flesch reading-ease score [6] was used, which follows the following formula:

0.39
( total words

total sentences

)
+ 11.8

(total syllables
total words

)
− 15.59. (1)

This formula will assign higher scores to texts with simple words and short sentences, which are
easier to read, while giving lower scores to harder texts. Thus, it is possible to infer an approximate
education level of the author of each caption by assigning a higher education level to the authors
of posts which received a lower Flesch score, and a lower education level to authors of posts with
higher scores. It is worth noting that, since the texts used in this work belong to social media, it
is to be expected that they are more on the simpler side, regardless of the education of the author.

The sentiment analysis over the captions was performed through the VADER [7] model. This is
a lexicon-based model that “combines these lexical features with consideration for five generalizable
rules that embody grammatical and syntactical conventions that humans use when expressing or
emphasizing sentiment intensity” ( [7]). Some of the rules the model takes into account are, for
example, punctuation signs or capital letter usage. Thus, the preprocessing step of the caption
data, usually performed to clean unwanted characters from the texts, will only involve translation to
English and removal of hashtags and mentions, both for this model and the Flesch score calculation.

The facial recognition software used was Face++4. The model returns predictions for the age
and gender of each detected face, which serves as demographic information of the person behind
each post. The accuracy of this model has been assessed before [8], showing that it produces
acceptable results. Additional experiments were however performed while in the making of this
study, utilizing the FairFace dataset [9]. The results show a face detection rate of 0.996, a gender
prediction rate of 0.846, with an acceptable error on the prediction for the ages (which can not be
exactly precised due to the ages of the dataset being given as an interval, instead of an integer).

Additionally, the ResNeXt model [10] was used, through its ImageNet1k [11] implementation.
This allowed for general classification of the images based on objects detected in them, which was
useful particularly for the many posts in which no face was present. Then, one of 67 image tags5

can be assigned to each image based on its detected subject.
Finally, in order to perform a better analysis of the results, a clustering method was applied

to the 6293 posts classified as coming from personal accounts. The model used was the k-means
algorithm with k = 3. It was applied independently for the 2018 and the 2021 data. The variables

4https://www.faceplusplus.com/
5https://github.com/noameshed/novelty-detection/blob/master/imagenet categories.csv
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used were the number of interactions received by a post (likes and comments, 2 variables), measuring
the reach the post had; the number of hashtags and mentions (2 variables) used in the caption,
measuring the reach the author tried to obtain for the post; and the Flesch score of the caption as
given by the formula 1 after removing the hashtags and mentions.

To ensure a better performance of the algorithm, a logarithmic transformation was applied to
the likes and comments variables, then all 5 variables were normalized to a 0 − 1 range. Figure 2
shows the scatter plots of the likes received versus the hashtags used in 2018 (left) and 2021 (right),
differentiating by the clusters to which each post belongs. This gives an intuition of the kind of
posts that belong to each cluster, even if they are not perfectly separated. Posts from cluster 1 used
few hashtags and received few likes, posts from cluster 2 used few hashtags yet received many likes,
and posts from cluster 3 used a high number of hashtags. Note that this is just a generalization
that is not true for every post of the dataset, as can be seen by the fact that a small subset of posts
from cluster 1 seem to have received a high number of likes.

Figure 2: Scatter plots for the clusters formed for 2018 (left) and 2021 (right).

4 Results

The method chosen to present the data obtained form the tools reviewed in last section (VADER,
Flesch reading-ease score, Face++) was the plotting of different histograms for each attribute,
cluster and year. In particular, data about age and gender can be found in the figure 3, data about
the reading ease of captions is in the figure 4, and finally figure 5 presents data about the sentiment
analysis.

This graphs serve multiple purposes, since not only is it possible to study the differences of the
clusters based on this attributes, but also how those attributes were affected by the global pandemic
of 2020 (that is, the differences on the attributes between 2018 and 2021). For example, figure 3
shows that the amount of young people that can be classified in cluster 1 was drastically reduced,
while figure 5 shows that posts belonging to clusters 2 and 3 carry more positive sentiments in their
captions.

Additional context about the clusters can be obtained through the ResNeXt model, that pro-
vided information based on the posts’ images without the need of faces in them. For example, the
model detected a lot of swimwear in the posts of the second cluster from 2021, but not on 2018,
which means more people from that cluster chose to upload images of themselves at the beach after
the pandemic. It is also unlikely that this is due to a huge difference of temperatures between the
periods of time considered for both years. The reason is that a lot of swimwear was detected in
posts of cluster 3, while very few was detected for cluster 1, independently of the year.
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Figure 3: Ages predicted by Face++ on the faces detected on the posts of 2018 (left) and 2021
(right); for clusters 1 (top), 2 (middle) and 3 (bottom); and differentiating between men (blue) and
women (red).

Figure 4: Flesch reading-ease scores for the captions of 2018 (left) and 2021 (right); for clusters 1
(top), 2 (middle) and 3 (bottom).

Figure 5: VADER scores for the captions of 2018 (left) and 2021 (right); for clusters 1 (top), 2
(middle) and 3 (bottom).
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5 Conclusions and Future work

In this work, different tools that allow for the extraction of social and demographic information of
people through their social media posts have been presented. The usage of methodology such as
the one in this work could be a great addition to multiple areas including tourism and marketing.
The volume of unfiltered data obtainable from social media is unmatched by any traditional survey,
so learning how to make use of such data could become crucial in the near future.

This study only worked with data coming from Instagram, which is characterized by requiring
posts to be accompanied by a media file, usually an image but with the possibility of a video too.
Other social media sites vary from Instagram not only in the demographic of their users, but also in
the structure of their posts. For example, TikTok is based around posting videos instead of images,
while Twitter was built as a text-based social media page first, even if it allows media files too.
All of this means that it would be interesting to explore new tools in future works that perform
similarly on videos and text, to maximize the information obtained while decreasing the bias on
the user base of each platform.

Acknowledgments: The work of Ana Larrañaga has been supported by the 2020 predoctoral
grant of the University of Vigo.
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1 Introduction

In this contribution we deal with the stochastic analysis of the deflection of a cantilever beam with
its load modelled through Brownian motion. This phenomenon can be mathematically described
by means of the following fourth-order differential equation [1]

d4Y (x)
dx4 = W (x)

EI
, 0 < x < l, (1)

with boundary conditions

Y (0) = 0, Y ′(0) = 0, Y ′′(l) = 0, Y ′′′(l) = 0, (2)

Figure 1: Cantilever beam with
load modelled via Brownian mo-
tion.

where Y (x) represents the deflection of the beam, E is the
Young’s modulus of elasticity of the material of the beam, I
denotes the moment of inertia of the cross section of the beam
around a horizontal line through the centroid of the cross sec-
tion (hereinafter, we will denote it as i, indicating that it will
be a deterministic value), l is the length of the beam and W (x)
represents the density of downward force acting vertically on
the beam at the space point x. We will assume that E and
W (x) are aleatoric factors due to the heterogeneity of the ma-
terial of the beam and the load. For the latter, we will assume
that W (x) is given by the sum of a deterministic value, w0 and
a certain random quantity given by Brownian motion, B(x)

W (x) = w0 +B(x), 0 < x ≤ l. (3)

In Figure 1 we can observe a scheme of this model.

The aim of this contribution is to obtain the first probability density (1-PDF) function of the
stochastic solution, and other quantities of interest, as the maximum deflection and slope, using
the Random Variable Transformation method (RVT) [2], which we will develop in Section 2. All
these theoretical findings are illustrated via a numerical example in Section 2.
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2 Computing the first probability density function

This section is devoted to obtain the 1-PDF of the stochastic solution that represent the deflection
of the cantilever beam, and other quantities of interest. In order to do this, we will take advantage
of the Karhunen–Loève expansion of the Brownian motion [3]

B(x) = µB(x) +
∞∑

j=1

√
νjϕj(x)ξj(ω), ω ∈ Ω, 0 < x ≤ l, (4)

where µB(x) = 0, ξj(ω) are independent and identically distributed random variables, ξj(ω) ∼
N(0, 1), j = 1, 2, . . . , and

νj = 4l2
π2(2j − 1)2 , ϕj(x) =

√
2
l

sin
((2j − 1)π

2l x

)
, j = 1, 2, . . .

are the eigenvalues and eigenfunctions obtained when solving the homogeneous Fredholm integral
equation of second kind [4]. Now, we will consider the approximation ofB(x) obtained by truncating
its Karhunen–Loève expansion at N . So, the model is approximated via the following stochastic
differential equation

d4Y (x)
dx4 = 1

Ei

w0 +
N∑

j=1

√
νjϕj(x)ξj(ω)

 , 0 < x < l. (5)

To obtain the 1-PDF of the deflection we first need to explicitly calculate the stochastic solution
of model (5)-(2). We can use, for example, the Laplace transform to obtain the solution which is
given by the following parametric stochastic process, 0 < x ≤ l,

Y (x) = 1
Ei

x2

2

w0

2 l2 + l

√
2
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N∑
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3 + 6 sin (bjx)
6b5

j

 .

(6)

Then, we are going to use RVT method to obtain the expression of the 1-PDF of (6). In short,
RVT is a method to obtain the PDF of a random vector V that results from mapping of another
random vector U whose PDF is known. We have considered that E and ξj , j = 1, . . . , N are
independent whose PDF’s are known. In order to make this abstract a light read, we suppress the
calculations and give the final result of the 1-PDF, that is given by

fY (x)(y) = Eξ1,...,ξN

fE

 1
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 , 0 < x ≤ l.

(7)
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Other important characteristics that we can obtain are the maximum deflection, D, and the max-
imum slope, S, these being a cantilever beam, are obtained at the free end of the beam. The
maximum deflection is obtained by evaluating the solution at l and the maximum slope by evalu-
ating the derivative at l and are given by the following expressions

D = Y (l) = 1
Ei
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3 l

3
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(8)

and

S = Y ′(l) = 1
Ei
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(9)

Then, applying again RVT method we can obtain the PDF of the maximum deflection,

fD(d) =Eξ1,...,ξN

fE
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(10)

and the PDF of the maximum slope

fS(s) =Eξ1,...,ξN
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(11)

3 Numerical example

This section is dedicated to illustrate the above theoretical conclusions. We take the following data
for the deterministic parameters of the model (5): the length of the beam, l = 10 m, the moment
of inertia, i = 722 · 10−8 m4, and w0 = 20. For the random parameters, we will assume that the
Young’s modulus of elasticity, E, has a Gaussian distribution, E ∼ N(210 · 109; 420 · 107). We
will consider a Karhunen-Loève expansion truncated at order N = 1 to approximate the Brownian
motion, B(x).
In Figure 2, we show the graphical representation of the 1-PDF at different spatial points. We can
observe, that the variance increases as the position does.
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Figure 2: 1-PDF, fY (x)(y), of the solution stochastic process (6), computed by (7), at different
spatial position x ∈ {1, ..., 10} of the cantilever beam considering an approximation of the Brownian
motion, B(x), via a Karhunen-Loève expansion truncated at order N = 1.

In Figure 3, we show on the left hand side the plot of the PDF of the maximum deflection and on
the right hand side the PDF of the maximum slope.
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Figure 3: Left: PDF, fD(d), of the maximum deflection at the free end. Right: PDF, fS(s), of the
maximum slope at free end.

Finally, in Figure 4 we show the graphical representation of the maximum deflection for different
values of the truncation order, N . We can observe in this zoom, that the approximations are very
similar with N = 1.

4 Conclusions

In this work, we have obtained a probabilistic description via the first probability density function of
the stochastic solution of the fourth-order random differential equation, that describes the deflection
of a cantilever beam whose load is modelled through Brownian motion. In addition, we have
obtained other densities of quantities of interest such as the maximum deflection and the maximum
slope at the free end of the beam. In order to obtain the probability density function we have
taken advantage of the Random Variable Transformation method. Finally, we have illustrated
these theoretical findings with a numerical example.
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Figure 4: PDF of the maximum deflection at free end, fD(d), for different values of the truncation
order, N , to approximate the Brownian motion by its Karhunen-Loève expansion.
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1 Introduction

In this work we study pivoting techniques for the balanced incomplete factorization preconditioner
(BIF) [7], for solving ill-conditioned sparse nonsingular linear systems of equations of the form

Ax = b, A ∈ Rn×n, b ∈ Rn (1)

using iterative Krylov methods. There are different pivoting techniques being partial, complete
and rook pivoting the more important ones [5,6]. Basically, at a given step of Gaussian elimination
pivoting looks for an element sufficiently large in magnitude in the remaining submatrix, the
Schur complement, to use it as the next pivot. These techniques involve row and possibly column
permutations of the matrix that supposes a computational overhead. In this sense, partial pivoting
is the cheapest pivoting technique, since it looks only in the first column of the Schur complement.
Close behind is rook pivoting [6], it selects a pivot with maximum absolute value in his row and
column, moving first to the biggest entry in magnitude in the first column, then it moves in the
corresponding row, and then again in the column, and so on until the requirement is fulfilled.
Finally, complete pivoting is the most expensive one, but guarantees the largest pivot at any stage
however because the pivot is the entry of biggest magnitude in all the Schur complement.

BIF preconditioning is based on the incomplete Sherman-Morrison decomposition, ISM. The
ISM decomposition uses recursion formulas derived from the Sherman-Morrison formula and was
introduced in [7] as a method for computing approximate inverse preconditioners. In [8] and [9]
the authors show that, applying the ISM algorithm to A and AT , it is possible to compute an
incomplete LDU factorization. Moreover, the inverse factors are also available and they influence
the computation of the LDU factorization, and vice versa. In addition, the availability of the direct
and inverse factors is exploited to implement norm based dropping rules [3]. The numerical results
show that BIF is a robust algorithm comparable to other techniques as ILU(τ) [1], ILUT [10]
and RIF [2]. Nevertheless, as mentioned above, computing stable (incomplete) factorizations for
ill-conditioned problems still require the application of pivoting techniques. Here we show that
with a slight modification of the ISM recursion formulas it is possible to incoporate pivoting to
BIF.
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2 The ISM decomposition

The ISM decomposition computes approximate inverse preconditioners since it obtains a factoriza-
tion of the (shifted) inverse matrix of A, as

s−1I −A−1 = s−2ZD−1
s V T

s , (2)

where s > 0 is a given scalar and the columns of the matrices Z and Vs are computed using the
recursion formulas

zk = ek −
k−1∑
i=1

vT
i ek

sri
zi and vk = yk −

k−1∑
i=1

yT
k zi

sri
vi, (3)

for k = 1, 2, . . . , n. In (3) the vector ek (ek) denotes the k−th column (row) of the identity matrix,
yk = (ak − sek)T where ak denotes the k-th row of A, and

rk = 1 + yT
k zk/s = 1 + vT

k ek/s (4)

are the entries of the diagonal matrix Ds.
It was proved in [8] that for symmetric matrices the factorization A = LDLT and the decom-

position (2) satisfy
D = sDs, Z = L−T , Vs = LD − sL−T .

The algorithm to get the decomposition of A uses explicitly the computed factors of A−1, that
is, A−1 is implicitly factorized at the same time. Therefore, to get the LU factorization for general
matrices it is necessary to compute also the ISM decomposition of AT that gives as result

Z̃ = L−T , and Ṽs = LD − sU−1,

where we have denoted with tilde the factors of the ISM decomposition of AT .
It is well known that a nonsingular matrix A has an LU factorization if there exists a lower unit

triangular matrix L and an upper triangular matrix U , such that A = LU . The LDU factorization
is obtained from the LU factorization by taking D as the diagonal matrix whose entries are the
diagonal entries of U , and applying its inverse to U as D−1U . Both factorizations are closely related
with Gaussian elimination. Note that not all the nonsingular matrices have LU factorization since
a zero pivot can be found during the Gaussian elimination process. However it is always possible
to permute some rows, and maybe some columns of the matrix in such a way that the permuted
matrix PAQ has LU factorization. Here P and Q are permutation matrices acting on rows and
columns of A, respectively.

The idea is that it is possible to find permutation matrices P and Q such that at the k-th step
of the Gaussian elimination process one obtains the matrix

(PAQ)(k) =
[
L11 O
L21 I

] [
U11 U12
O S(k)

]
(5)

where the Schur complement S(k) = A22−A21A
−1
22 A12 is nonsingular and its first diagonal element

is nonzero. Then, the permuted matrix PAQ is factorized as

PAQ =
[
A11 A12
A21 A22

]
=
[
L11 0
L21 L22

] [
U11 U12
0 U22

]
. (6)

Note that in practice, the permutation matrices P and Q are not known in advance and therefore
LU factorization algorithms determine which rows and columns must be interchanged during the
elimination process.
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3 Right looking ISM algorithm

To implement pivoting in the ISM decomposition it is necessary to know the Schur complement of
the LU factorization. To accomplish that the vectors zk and vk must be computed in a different
way. Instead of computing only one pair of vectors in the k-th step of the algorithm according to
equations (3), the modification consist in updating also the remaining vectors, from k + 1 to n.
That is, the right part of the matrices Z and V are updated in each step. The following MATLAB
code implements the new right looking version of ISM.

Algorithm 1 The ISM right looking algorithm
function [Z, V, D] = ismrl(A)
n = size(A,1);
Y = (A-eye(n))’;
Z = eye(n);
V = A’-eye(n);
D = zeros(n,1);
for k=1:n-1
D(k) = 1+V(k,k);
for l = k+1:n
Z(:,l) = Z(:,l) - V(l,k)/D(k)*Z(:,k);
V(:,l) = V(:,l) - (Y(:,l)’*Z(:,k))/D(k)*V(:,k);
end
end
D(n)=1+V(n,n);

The next results show that the Schur complement S(k) is available from the matrix V . We
denote by V

(k)
22 the (n − k) × (n − k) submatrix of V in Algorithm 1 after step k, with rows and

columns with indexes in {k + 1, . . . , n}.

Theorem 12. If A is a nonsingular matrix, then at the k-th step of the right looking ISM algorithm
1

V
(k)

22 = S(k)T

− I (7)

Corollary 2. If the right looking algorithm is applied to AT then

Ṽ
(k)

22 = S(k) − I

To introduce pivoting strategies the relation

V
(k)

22 = S(k)T

− I

should be taken into account. The new pivot is looked for into the submatrix V
(k)

22 + I that
corresponds to the transpose of the same submatrix in A(k) in Gaussian elimination. Thus, in
partial pivoting if two columns k and p > k are permuted at step k in matrix V (k), the rows k and
p should be permuted in A.

Also note that the pivoting strategy should be decided looking into the Schur complement
contained in Vs, or that in Ṽs, but not both. In contrast, for complete pivoting it is clear that Vs

or Ṽs produce the same pivot in exact arithmetic so any of them or both may be used.
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Table 1: Test problems

Matrix n nz cond(A) Application
adder dcop 06 1,813 11,224 1.1 · 1012 circuit simulation matrix
adder dcop 19 1,813 11,224 5.9 · 1011 circuit simulation matrix
oscil dcop 01 1,813 11,224 5.9 · 1012 circuit simulation problem
oscil dcop 57 1,813 11,224 1.4 · 1021 circuit simulation problem
radfr1 1,048 13,299 5.9 · 1010 chemical process separation

4 Numerical experiments

In this section we report the results of some numerical experiments with a set of matrices from
The Univesity of Florida Sparse Matrix Collection [4]. The matrices are listed in Table 1 where
their size, number of nonzeros, condition number and application are indicated. They correspond
to very ill-conditioned and highly indefinite problems for which Gaussian elimination without piv-
oting fails to compute good quality L and U factors, so the same is expected to be the case for
incomplete LU factorizations. Partial, rook and complete pivoting techniques have been tested.
The experiments have been implemented and run in MATLAB R2022. As iterative solvers the
MATLAB implementation of full GMRES [11] and BiCGStab [12] were used. The iterations were
stopped when the initial residual was reduced by 8 orders of magnitude with a maximum number
of 1, 000 iterations. The right hand side vector was computed such that the solution was the vector
of all ones. To compare the results obtained with BIF the problems were also solved with the
MATLAB’s incomplete LU preconditioner with partial pivoting, ILUTP.

The implementation of the BIF preconditioner is based on the algorithm described in [9] but
with the right looking modification described in Section 3. For simplicity, all the experiments
have been done with the the parameter s of the ISM decomposition equal to one. The algorithm
is implemented such that the ISM decompositions of A and AT are computed at the same time.
Therefore, accessing to A and AT simultaneously is needed. The pivot is choosen from the Schur
complement contained in Vs rather than Ṽs. We note that for complete pivoting the same pivot
could be obtained working either with Vs or Ṽs but we choose working with Vs for simplicity.

In Table 2 the pivoting strategy is indicated with C, P and R for the complete, partial and
rook pivoting strategies, respectively. Density is the ratio between the number of nonzeros of
the preconditioner and the matrix. Column iter shows the number of iterations of the solver and
droptol is the tolerance used to drop elements in BIFP and ILUTP. The other columns are self
explanatory. To reduce the numbers in the tables, a blank space means that the value is the same
appearing in previous rows. For instance, in Table 2 the droptol value for BIFP was always 10−6

and therefore it appears only in the first row. The same holds for the preconditioner densities
which are the same for GMRES and BiCSTAB and therefore only indicated once.

Next, we will comment on the results. We note that the matrices tested can not be solved
without pivoting with both BIFP and ILUTP preconditioners. Thus, pivoting is an essential tool
to gain robustness for these factorizations. From the University of Florida test matrices, Table 2,
we observe for the adder group that there are not big differences between the different pivoting
strategies for BIFP. Density is small, except for adder dcop 06. The same can be said for the
number of iterations spent by both iterative solvers. For the rest of matrices one can see that
BIFP with complete pivoting computes sparser preconditioners than partial and rook pivoting.
The iteration count does not present remarkable differences except for the oscil dcop 01 matrix for
which GMRES with partial pivoting, although with larger nonzero density, doubles the number of
iterations.
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Finally, comparing the performance of BIFP with ILUTP we did not observed significative
differences, specially with the preconditioned BiCGStab method. We recall that ILUTP uses
partial pivoting and we observe that BIFP with this pivoting strategy performed closely in most
cases.

5 Conclusions

In this paper we have presented an improved version of the BIF preconditioner that incorporates
pivoting. The algorithm relies on a modification of the recursion formulas such that the Schur
complement of standard Gaussian elimination is available at each step of the factorization. Thus,
the application of different pivoting techniques, as for instance partial, rook and complete pivoting,
can be done in a straightforward maner. Incorporating pivoting turns out to be an important
step in order to achieve our initial goal of obtaining a more robust preconditioner since it is able
to solve very ill-conditioned and indefinite problems that it may not be possible to solve in other
way. The results of the numerical experiments with several matrices arising in different applications
confirm that BIF with pivoting is a robust algorithm. Partial, rook and complete pivoting has been
tested. Although complete pivoting very often produces sparser preconditioners with a competitive
iteration count, rook and partial pivoting perform also quite well. Taking into account that partial
and rook are less expensive from a computational point of view since they need less comparisons
in order to determine the pivot, these two techniques may be prefereable as default.
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Table 2: Test results for the University of Florida matrices

Matrix precond solver droptol piv density iter
BIFP GMRES 10−6 C 1.76 4

P 1.81 3
R 2.92 4

adder dcop 06 BiCGStab C 1
P 1
R 1

ILUTP GMRES 10−7 P 1.67 3
BiCGStab P 1

BIFP GMRES 10−6 C 0.69 3
P 0.94 3
R 0.72 3

adder dcop 19 BiCGStab C 2
P 1
R 2

ILUTP GMRES 10−2 P 0.70 6
BiCGStab P 2

BIFP GMRES 10−7 C 2.06 10
P 2.64 19
R 2.08 11

oscil dcop 01 BiCGStab C 1
P 4
R 1

ILUTP GMRES 10−9 P 2.70 3
BiCGStab P 1

BIFP GMRES 10−16 C 2.31 11
10−11 P 2.28 28
10−16 R 2.57 11

oscil dcop 57 BiCGStab C 1
P 2
R 1

ILUTP GMRES 10−16 P 2.74 11
BiCGStab P 1

BIFP GMRES 10−2 C 2.25 3
10−5 P 3.86 1
10−2 R 2.70 2

radfr1 BiCGStab C 9
P 3
R 8

ILUTP GMRES 10−3 P 2.69 2
BiCGStab P 10
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1 Introduction

Transportation infrastructure is one of the most important and valuable assets globally v, specially
bridges since they are designed for a useful life of 100 years [2]. It is precisely its long service life
the reason that causes them to suffer different pathologies throughout their life cycle, which must
be identified to guarantee their structural safety.

However, despite the need for bridge auscultation, bridges continue to experience collapses
around the world, such as the subway bridge in Mexico City, the Morandi viaduct (Italy), the
bridge in Jaracoba (Dominican Republic), or the Ventana 2 bridge on the Coca River (Ecuador),
all of which are events that have occurred in recent years [3–6].This is why infrastructure managers
need to implement a predictive maintenance philosophy aimed at the pathologies affecting bridges,
which would require quasi-continuous monitoring campaigns.

For bridges with piers over river channels, the main pathology responsible for bridge collapse is
scour [7]. This pathology is the removal of the soil under pier and abutment foundations following
a hydraulic phenomenon, or the replacement of the existing soil in the foundations by another
of inferior quality (filling phenomenon), thereby causing a decrease in the stiffness of the pier-
soil assembly and, therefore, decreasing the structural stability of the bridge. Its nature makes
it difficult to detect since the presence of soil does not guarantee the stiffness of the pile-soil
assembly. The importance of bridge scour was confirmed by the study carried out by the European
Commission, which determined that around 20 % of bridges in Europe will be at high risk of scour
in the next 20 years, affecting 48,000 road bridges in Europe [7, 8].

In this paper we present a bridge scour detection method based on the measurement of the
accelerations at the pier heads and at the centre of the bridge span by means of an operational
modal analysis. The analysis is based on the frequency domain decomposition method and the
dynamic behaviour based on a finite-element model of the bridge over Leza’s river near the city of
Logroño. It should be noted that during the data acquisition phase, one of the bridge piers was
repaired due to suffering from scour, so records are available before and after said action and will
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be used to verify the performance of the system. We present some results and end the paper with
conclusions

2 Method

This section details the methodology to diagnose bridge scour from an operational modal analysis.
Figure 1 shows all the steps to be followed to obtain it from a combined random load applied to
the bridge.

Figure 1: Methodology process scheme.

2.1 Data Acquisition System

The data acquisition system consists of wireless nodes composed of an ultra-wide bandwidth,
low-noise, 3-axis digital accelerometer sensor (IIS3DWB) and other components such as the trans-
mission module, internal storage, battery and solar panel. Additionally, to be able to transmit the
data, a commercial gateway system was used (Xbee 4G). As mentioned above, these devices have
been installed at the pier heads and at the centre of the bridge span.

Figure 2: Data acquisition position scheme of the
bridge over the Leza river. Figure 3: Hardware installed on the bridge.

2.2 Data Pre-processing

Data processing is a time-consuming and computationally expensive process. Even more so given
that the information acquired can correspond to signals with low energy that can affect the accuracy
of modal identification methods.

For that reason, a methodology is developed and implemented to categorise signals using a
cumulative intensity function and the Rainflow-counting algorithm. The cumulative intensity of
a record can be determined by Eq (1), where ü is the acceleration measured between t0 and t1.
This measure considers the amplitude of the signal and its duration, achieving a more complete
representation compared to, for example, taking the maximum value of the record. In addition, by
analysing the acceleration acquired in different windows, it is also possible to identify the periods
that contain the most interesting information for modal analysis.

IAi = α

∫ t1

t0
(ü(t))2 dt (1)
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The previous results are complemented with the Rainflow-counting algorithm, which determines
the number of cycles and their corresponding amplitude. These values can be operated according
to EQ 2, where m is the number of cycles found in window i, rn is the amplitude of cycle n and cn
is the number of times the cycle is repeated.

RFi =
m∑

n=1
cnrn (2)

2.3 Analytical Model

The analytical model in charge of obtaining the structure’s natural frequencies is based on the fre-
quency domain decomposition method (FDD) (shown in Figure 4) which performs an approximate
decomposition of the system response into a set of independent single degree of freedom (SDOF)
systems, one for each mode.

Figure 4: Methodology process scheme.

As described by Rainieri and Fabbrocino [9] the theoretical proof of the method is based on the
modal expansion of the structural response:

y(t) = [ϕ]p(t) (3)

Where ϕ is the modal matrix and p(t) the vector of modal coordinates. From eq 3 the correlation
matrix of the responses can be computed as follows:

[Ryy(τ)] = E[{y(t+ τ)}{y(t)}T ] = [τ ][Rpp(τ)][ϕ]T (4)

The PSD matrix can be obtained from eq 4 by taking the Fourier transform:

[GY Y (ω)] = [ϕ][GP P (ω)][ϕ]H (5)

The PSD matrix of the modal coordinates is diagonal if they are uncorrelated. A similar
decomposition is obtained in the case of uncorrelated excitation forces characterised by a flat
spectral density function.

Taking into account that the SVD of the PSD matrix at a certain frequency ω leads to the
following factorisation:

[GY Y (ω)] = [U ][Σ][V ]H (6)

Where [U] and [V] are the unitary matrices holding the left and right singular vectors and [Σ] is
the matrix of singular values (arranged in descending order), for a Hermitian and positive definite
matrix, such as the PSD matrix, it follows that [U]=[V] and the decomposition of eq 6 can be
rewritten as:

[GY Y (ω)] = [U ][Σ][U ]H (7)

The comparison between eq 5 and eq 7 suggests that it is possible to identify a one-to-one
relationship between singular vectors and mode shapes; moreover, the singular values are related
to the modal responses and they can be used to define the spectra of equivalent Single Degree of
Freedom (SDOF) systems characterized by the same modal parameters as the modes contributing to
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the response of the MDOF system under investigation. Since the SVD provides the singular values
arranged in descending order, near a resonance the first singular value contains the information
about the dominant mode at that frequency. Moreover, since the number of nonzero elements in [Σ]
equals the rank of the PSD matrix at the considered frequency, this property can be used to identify
closely spaced or even coincident modes. In fact, the number of dominant singular values (defining
the rank of the output PSD matrix) at a certain frequency equals the number of modes that give
a significant contribution to the structural response at that particular frequency. Assuming that
only one mode is dominant at the frequency ω, and that the selected frequency is associated to the
peak of resonance of the k-th mode, the PSD matrix approximates to a rank one matrix with only
one term on the right side of eq 7:

[GY Y (ω)] = σ1{u1}{u1}H , ω → ωk (8)

In such a case, the first singular vector u1 represents an estimate of the mode shape of the k-th
mode:

{ϕ̂k} = {u1(ωk)} (9)

and the corresponding singular value σ1 belongs to the auto PSD function of the equivalent
SDOF system corresponding to the mode of interest. The equivalent SDOF PSD function is
identified as the set of singular values around a peak of the singular value plots that are characterized
by similar singular vectors.

2.4 Numerical Model

Operational Modal Analysis is a process that allows the dynamic properties of the structure to be
determined from its natural frequencies, damping ratios and vibration modes. In this way, it makes
it possible to obtain a mathematical model that is a faithful representation of the real structure, on
which different types of verifications can be carried out to find out the current state of the bridge,
or even simulations of highly demanding scenarios for the structure and predict its behaviour.

The differential equation governing the linear, time-invariant, multi-degree-of-freedom system,
in which both the excitation and response of the structure are stationary, random processes, is
shown in equation 10:

[M ]{Ẍ}+ [C][{Ẋ}][K][{X}] = {F (t)} (10)

Where [M], [C] and [K] are the mass, damping and stiffness matrices, respectively; X is the
vector of displacements in each degree of freedom of the system and F(t) is the external excitation.

Once the numerical model has been set up, it can be calibrated by matching the natural
frequencies obtained previously with the analytical model. This is done by modifying the properties
of the materials and the stiffness of the soil iteratively. The model validation is subsequently
performed on the basis of the deformation under self-weight and the damping ratio measured at
the centre of the bridge span.

3 Results

Once all the equipment has been fully installed on the bridge and the equipment has started to
operate, the data obtained from each of the sensors and their respective frequency registers can be
observed by applying the mathematical model. A series of records obtained by the system at each
of the sensor nodes of the bridge are shown below.
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Figure 5: Accelerometer registry at the centre of the bridge span. Each colour represents an axis.

Figure 6: Spectral frequency in each axis at the centre of the bridge span.

Figure 7: Accelerometer registry at the pier head. Each colour represents an axis.

Figure 8: Spectral frequency in each axis at the pier head.

Figure 9 shows the frequency associated with the first singular value obtained after performing
singular value decomposition of the spectral density matrices. While Figure 10 shows the maximum
frequency after applying the peak-picking algorithm.

4 Conclusions

The data acquisition system has been developed and installed on the bridge over the river Leza
is capable of recording and transmitting data continuously and in real time. It has also been
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Figure 9: First singular value of all spectral den-
sity matrices.

Figure 10: Maximum frequencies after applying
the peak-picking algorithm.

verified that both the pre-processing algorithms and the analytical model to obtain the vibration
frequencies of the pier are working successfully. Although future work will focus on specifying the
best combination of spectral density matrices (i.e., how many registries to employ and from which
sensor) to be used for the singular value decomposition method. Additionally, the authors will
work on the calibration of the numerical model and the comparison between the results before and
after the scour reparation action.
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(⋄) I. U. de Matemàtica Multidisciplinar,
Universitat Politècnica de València,
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1 Introduction

There exists a scientific debate about whether happiness is a trait or a state (see [1] for a review).
However, some authors go beyond by an inclusive proposal about the happiness nature: it is both
a trait and a state [2]. We adopt that approach in this study.

If happiness has a state nature as well as a trait one, we will be able to study its dynamics as
both short and long term, even as a result of a unique eliciting stimulus in a single session, as it
can be a drug intake. For instance, it has been demonstrated that, after a single dose intake, both
alcohol and caffeine can increase happiness and feelings such as euphoria in the short term [3-5].
On the other hand, the existence of individual differences inside the acute effects of both drugs has
been proved [6-8]. But its short-term dynamics has not been well described yet.

There exists a mathematical dynamical model to predict and describe how the whole personality
changes (The General Factor of Personality or GFP) during a single session in response a single
dose of caffeine or alcohol and how the responses vary between individuals [9, 10], but it has not
been applied to the study of happiness yet. In this study, we present a dynamical model to predict
the evolution of a subject’s happiness in response a single dose of alcohol or caffeine.

The model is provided by the following integrodifferential equation:

q̇ (t) = a (b− q (t)) + δ

M
s(t)q(t)− γ

M

∫ t

t0
exp

(
r − t
τ

)
s(r) · q(r) dr

q (t0) = q0

(1)
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In Eq. (1), q(t) represents the GFP dynamics; and b and q0 are respectively its trait level and its
initial value. Its dynamics is a balance of three terms, which provide the time derivative of the
GFP: the homeostatic control (a(b − q(t))), i.e., the cause of the fast recovering of the tonic level
b, the excitation effect ((δ/M)s(t)q(t)), which tends to increase the GFP per drug unit, and the
inhibitor effect ((γ/M)ů

∫ t
0 exp r−t

τ s(r)q(r)dr), which tends to decrease the GFP per drug unit and
is the cause of a continuous delayed recovering, being M the amount of drug intake. Parameters α,
δ, γ and τ are named respectively the homeostatic control power, the excitation effect power, the
inhibitor effect power and the inhibitor effect delay. In addition, s(t) provides the dynamics of the
stimulus by the drug kinetics:

s (t) = s0 exp(−βt) =
{

αM
β−α (exp(−αt)− exp(−βt)) α ̸= β

αMt exp(−αt) α = β
(2)

In Eq. (2) α is the drug assimilation rate and β is the drug elimination rate, being again M the
amount of drug intake.

The model given by eqs, 1 and 2 has been applied in a study with two participants with a
different level of the happiness trait, by using a Trait-State Scale of Happiness previously validated
in [11]. This scale was based on the Euphoria Scale [12], and it has been proved that this scale
is closely related with the Oxford Happiness Inventory (short version) [13] and how this scale is
sensitive to the changes produced by eliciting stimulus [14]. We also use a Smiling Face Scale. Both
scales will be described below.

2 Methodology

Two voluntary men participated in this study. A single-case experimental ABC design was used. In
phase A the participants received no treatment. At the start of phase B, both participants received
26.51 ml of alcohol and a slight food. In phase C, both participants received 330 mg of caffeine.
Two instruments to evaluate happiness were used: 1) The trait-State Scale of Happiness [11] in
its trait-format (“Are you like this in general?”) and its state-format (“Are you like this at this
moment?” or “do you feel so at this moment?”). It is a 4-item Likert-type response scale with the
following self-descriptive adjectives: cheerful, elated, exhilarated, and lively. The scale score goes
from 0 (no effect) to 5 (maximum effect); 2) The Smiling Face Scale, that is a 7-item Likert-type
response scale, that shows images with very sad to very happy faces, so ranging from negative
to neutral to positive values [15, 16]. Both participants filled in the Euphoria Scale in its trait
format at the very beginning of this study, and every 5 minutes over a 1,5-hour period, all the
three phases long. For the mathematical analysis, the modified response model was applied, whose
usefulness has been shown to model the dynamic effect of both drugs. Figures 1 to 4 show the data
(Expression) jointly with the predicted by the model response curves (Happiness).
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Figure 1: Participant 1: (Left) Happiness response to alcohol dose (R2=.43); (Right) Happiness
response to caffeine dose (R2=.45).

Figure 2: Participant 1: (Left) Expression response to alcohol dose (R2=.36); (Right) Expression
response to caffeine dose (R2=.16).

Figure 3: Participant 2 (Left) Happiness response to alcohol dose (R2=.90); (Right) Happiness
response to caffeine dose (R2=.87).

Figure 4: Participant 2: (Left) Expression response to alcohol dose (R2=.74); (Right) Expression
response to caffeine dose (R2=.83).
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3 Conclusions

The difference between both participants in the experiment is evident: Participant 1 presents more
dispersion than Participant 2. In addition, the dynamic model presented here adapts better to
Participant 2. However, the results provide random residuals in both cases, and so the model
represents the deterministic predictive part of the dynamical responses.

As other studies pointed out [9, 10], a model describe and predict how the GFP changes in
response to a single dose of caffeine or alcohol. This mathematical model predicts that the lower
the GFP-trait score is the higher the response to both caffeine and alcohol intake will be, and
better the corresponding model evolution curve fits the data. That is precisely what happens in
the present study, so the participant 2 scores lower in the GFP-trait (17 points) than participant
1 (23 points), and that is because his response is higher, and the model fits the experimental data
better. This fact is coherent with the mathematical model prediction [17], and with the fact that
GFP and Happiness scores are closely related [11,14].

Regarding the Happiness scores, the relationship between the trait and the state evolution after
a single dose intake of caffeine or alcohol is not the same as regarding the GFP. So, the difference
between both participants is not as high as regarding the FGP (10 and 14 points respectively for
the Trait Scale of Happiness, and the same score (5) for the Face Scale). So that, this discrepancy
should be studied in the future.

Besides, these results are consistent with the ones obtained for the FGP in the sense that the
lower the initial score is, the higher level will be achieved during the response to the drug intake.
Likewise, the same happens regarding Happiness as this study reveals. So, the initial scores for
participant 1 are 9 and 4 for the State Scale of Happiness and for the Face Scale, respectively, while
for participant 2 they are 3 for both scales This result is coherent with the model prediction for
the personality responses to drug intakes [17].

Note however, that this study is a first approach to the relationship between happiness and
drug consumption, taking into account that this subject can provide an upset social discussion due
to somebody can understand that this paper suggests consuming drugs to reach short periods of
happiness, while its objective is the opposite: preventing consumers that drug consumption must
be done rationally. From this result, in a future research, the objective could be to relate happiness
with personality dynamics, such as it has been already with the General Factor of Personality
dynamics [18].
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Camı́ de Vera s/n, 46022, València, Spain.

1 Introduction

This paper presents a way to get a Hamiltonian function for a coupled first order differential
equation system whose independent variable is time or, as it is called shortly in the literature
about the subject, a dynamical system. In addition, the Hamiltonian is also first order in momenta,
oppositely to physics dynamics, where the Hamiltonian is second order respect the momenta (note
that the corresponding dynamical systems in physics are, by the Newton laws of Nature, coupled
second order differential equation systems). Besides, while the temporal variables involved in
physics are of spatial nature, in the dynamical systems here considered the temporal variables
involved are abstract, i.e., they are of arbitrary nature, such as, for instance, biological populations,
chemical components, or any other variables related with social or behavioural nature. The way
used to get the Hamiltonian is that provided by Dirac by his Generalized Hamiltonian Dynamics
method [1]. This method is applied for those systems for which the Hamiltonian cannot be provided
from the Lagrangian function for two cases: either for those where the generalized velocities cannot
be isolated as a function of the momenta, or for those with singular Hamiltonians, for which
the momenta vanish. The second case is the corresponding to this paper. This method was
developed by Dirac for fields in order to get the Hamiltonian of the electromagnetic field, which
was also singular. Note that here, at difference of fields, which are infinite-dimensional systems, the
system dimension is finite and equal to the number of the first order differential equations involved
in the model studied. There are other approaches different to Dirac’s method, such as Hava’s
approach [2] or Pontryagin’s approach [3]. Hava’s approach [2] focuses on the Lagrangian to discuss
possible conservation laws, and Pontryagin’s approach [3] uses a different Hamiltonian way steered
to optimize dynamical functions, although Dirac’s and Pontryagin’s results are mathematically
similar but with different objectives. In fact, the real Dirac’s objective is to get the Schrödinger
equation from the Hamiltonian. Different authors have followed Pontryagin’s method [3] to get
the same quantum approach objective [4, 5] in other contexts. However, this paper objective does
not consider the quantum approach, which is so considered in [6, 7]. In addition, the equivalence
between Hava’s and Dirac’s approach is addressed in [8] and also more recently in [6, 7]. Section 2
is devoted to get the Hamiltonian following Dirac’s approach [1]. Section 3 is devoted to use the
formalism presented to get a General System Thermodynamics (GST), while Section 4 points out
how this formalism could reproduce the classical reversible Thermodynamics as a particular case
of the GST. Section 5 is devoted to the paper discussion and the possible future applications of the
formalism.
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2 Getting the Hamiltonian

Let qk (t), k = 1, 2, . . . , n, the abstract variables of a dynamical system, with q = (q1, q2, . . . , qn):

q̇k (t) = fk (t,q) ; k = 1, 2, . . . , n. (1)

The problem of minimum action principle consists in finding an integral action Λ (t):

Λ (t) =
∫ t2

t1
L (t,q, q̇) dt (2)

with arbitrary t1 and t2 times, being L (t,q, q̇) the Lagrangian, such that Λ (t) be a minimum, i.e.,
δΛ (t) = 0. This process of minimization provides the Euler-Lagrange equations:

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0; k = 1, 2, . . . , n. (3)

Eq. (3) must reproduce the system of Eq. 1. This problem is known in the scientific literature as
the Lagrange inverse problem [2].

As Dirac [1] and Havas [2] argue, the only possibility to solve the inverse Lagrange problem for
Eq. 1 is as a linear combination for the Lagrangian such as the following:

L (t,q, q̇) =
n∑

j=1
gj (t,q) q̇j − h (t,q) . (4)

In Eq. (4) the gj (t,q) and h (t,q) functions are unknown functions by the moment. Note that the
momenta pk can be defined from Eq. (4) as:

pk = ∂L

∂q̇k
= gk (t,q) (5)

As it is well known, the Hamiltonian (H0 (t,q,p)) is defined from the Lagrangian as:

H0 (t,q,p) =
n∑

j=1
pj q̇j − L (t,q, q̇) = h (t,q) (6)

Note that the Hamiltonian H0 (t,q,p) of Eq. 6 is singular due to it does not depend on the
momenta. Dirac’s method [1] solves the problem by the steps described in the beginning. The first
step is defining the primary constraints ϕj (t,q,p) from Eq. 5:

ϕj (t,q,p) = pj − gj (t,q) = 0; j = 1, 2, . . . , n (7)

that are added to the Hamiltonian Eq. 6 by the λj (t,q,p) unknown multiplying functions as:

H (t,q,p) = H0 (t,q,p) +
n∑

j=1
λj (t,q,p) ϕj (t,q,p) = h (t,q) +

n∑
j=1

λj (t,q,p) ϕj (t,q,p) (8)

Note that the primary constraints are non-zero valued inside the Hamiltonian. By considering Eq.
7, the Hamilton equations for the new Hamiltonian H (t,q,p) are:

q̇k = ∂H(t,q,p)
∂pk

= λk(t,q, p)
ṗk = −∂H(t,q,p)

∂qk
= −∂h(t,q)

∂qk
+ j = ∑n

j=1 λj(t,q,p)∂gj(t,q)
∂qk

 ; k = 1, 2, . . . , n (9)
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The first result obtained by comparing Eqs. 1 and 9 is that:

λk (t,q,p) = fk (t,q) ; k = 1, 2, . . . , n (10)

Note that in Eq. 9 the zero value of the primary constraints outside the Hamiltonian has been
used. In order to get the gj (t,q) and h (t,q) functions of the formalism, the functions primary
constants ϕj (t,q,p) must hold the consistency conditions, i.e., ϕ̇l = 0(l = 1, 2, . . . , n), that is:

ϕ̇l (t,q,p) = ∂ϕl (t,q,p)
∂t

+
n∑

k=1

∂ϕl (t,q,p)
∂qk

q̇k +
n∑

k=1

∂ϕl (t,q,p)
∂pk

ṗk = 0; l = 1, 2, . . . , n (11)

The substitution of Eqs. 9 and 10 in Eq. 11 provides, taking into account the zero value of the
primary constraints, and after some calculations:

−∂gl (t,q)
∂t

− ∂h (t,q)
∂ql

+
n∑

k=1

(
−∂gl (t,q)

∂qk
+ ∂gk (t,q)

∂ql

)
fk (t,q) = 0; l = 1, 2, . . . , n (12)

In Eq. 12 the following Fkl (t,q) functions can be defined:

Fkl (t,q) = −F lk (t,q) = −∂gl (t,q)
∂qk

+ ∂gk (t,q)
∂ql

; k, l = 1, 2, . . . , n (13)

Eq. 12 can be rewritten by using Eq. 13:
n∑

k=1
Flk (t,q) fk (t,q) = −∂gl (t,q)

∂t
− ∂h (t,q)

∂ql
; l = 1, 2, . . . , n (14)

In order to get an equation for the Flk (t,q) functions without the h (t,q) function, such as in
Eq. 14, the following steps are followed: 1. Take the derivative respect an arbitrary qj in Eq. 14;
2. Rewrite Eq. 14 by replacing l by j; 3. Take the derivative respect qj in the rewritten equation;
4. Subtract both equations. Taking into account the equality of both h (t,q) crossed derivatives,
the result is:

∂F jl (t,q)
∂t

= ∂

∂qj

(
n∑

k=1
Flk (t,q) fk (t,q)

)
− ∂

∂ql
(Fjk (t,q) fk (t,q)) ; j, l = 1, 2, . . . , n (15)

Therefore, the process to get the gj (t,q) and h (t,q) functions of the Hamiltonian given by Eq. 8
is: 1. Get the Flk (t,q) functions by Eq. 15; 2. Substitute these results in Eq. 13 to get the gj (t,q)
functions; 3. Substitute these results in Eq. 14 to get the h (t,q) function. Take into account in
this process that Fll (t,q) = 0 and that Fkl (t,q) = −F lk (t,q).

However, two different classes of solutions must be considered depending on the system dimen-
sion n. This is due to the antisymmetric definition of the Flk (t,q) functions. On the one hand, if
n is even, then, in general det (Flk (t,q)) ̸= 0. In this case Eqs. 14 or 15 are independent. On the
other hand, if n is odd, then always det (Flk (t,q)) = 0, and being det (Flk (t,q)) ̸= 0 for the n− 1
even dimension, one of the Eq. 14 is dependent on the others, which makes that some Flk (t,q)
functions become undetermined parameters from which the rest ones depend on.

Actually, this last case always happens due to Eq. 14 is a coupled set of n equations and
n + 1 unknown variables: gl (t,q) (l = 1, 2, . . . , n) and h (t,q). For instance, let the special one-
dimensional (n = 1) odd case be. The consistence conditions that provide Eq. 14 become:

η (t, q) := ∂g (t, q)
∂t

+ ∂h (t, q)
∂q

= 0 (16)
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Note that Eq. 16 does not provide the λ (t, q, p) = f (t, q) multiplying function. When this
case happens, the Dirac’s method [1] prescription is to consider the equations such as Eq. 16 as
secondary constraints. In order to get the multiplying function in an equation, the time derivative
is taken in Eq. 16:

η̇ (t, q) = ∂η (t, q, p)
∂t

+ ∂η (t, q, p)
∂q

q̇ + ∂η (t, q, p)
∂p

ṗ = 0 (17)

Taking into account the Hamilton equations Eq. 9, as for the primary constraints, Eq. 17 becomes,
after some calculations:

∂2g (t, q)
∂t2

+ ∂2h (t, q)
∂t ∂q

+ f (t, q)
(
∂2g (t, q)
∂q ∂t

+ ∂2h (t, q)
∂q2

)
= 0 (18)

Note in Eq. 18 that just an equation is provided for two unknown variables, g (t, q) and h (t, q),
then one of the two variables become undetermined.

Now, with all the formalism background developed, the gj (t,q) (j = 1, 2, . . . , n) and h (t,q)
functions can be found, and the Hamiltonian can be written from Eqs. 7 and 8, as:

H (t,q,p) =
n∑

j=1
fj (t,q) (pj − gj (t,q)) + h (t,q) =

=
n∑

j=1
fj(t,q) · pj −

n∑
j=1

fj(t,q) · gj(t,q) + h(t,q) (19)

Observe in addition that, if the dynamical model Eq. 1 is autonomous, thus fk (t,q) = fk (q)
and both gj (t,q) = gj (q) (j = 1, 2, . . . , n) and h (t,q) = h (q) can be found as time independent
functions, thus the Hamiltonian H (t,q,p) = H (q,p) and it is a constant of the dynamics, then it
can be identified with the system energy E, that is:

E =
n∑

j=1
fj (q) (pj − gj(q)) + h (q) =

n∑
j=1

fj(q) · pj −
n∑

j=1
fj(q) · gj(q) + h(q) (20)

3 A proposal of a General System Thermodynamics (GST)

A first theoretical application of the Hamiltonian formalism developed is to state a general or
abstract theory of systems, called here as a System General Thermodynamics (GST), by introducing
some new postulates. The First Postulate is: identify the Hamiltonian of Eq. 19 as the
system Internal Energy. The Hamilton equations will correspond to the state equations. Note
that time is indispensable in this formalism, unlikely to the classical quasi-static evolution of
Thermodynamics [9]. The Second Postulate is: assume the two following equations:

gk (t,q) = ∂χ (t,q)
∂qk

; k = 1, 2, . . . , n (21)

h (t,q) = −∂χ (t,q)
∂t

(22)

From Eqs. 21 and 22, Eq. 14 hold identically (even for the case n = 1 given by Eq. 16), being
χ (t,q) an arbitrary function, and Eq. 15 and 18 are unnecessary to compute gk (t,q) and h (t,q).
Therefore, the primary constraints of Eq. 7 become:

ϕ̄j (t,q,p) = pj −
∂χ (t,q)
∂qj

= 0; j = 1, 2, . . . , n (23)
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and the Hamiltonian (Eq. 19) becomes:

H (t,q,p)
n∑

j=1
fj(t,q) · ϕ̄j(t,q,p)− ∂χ(t, q)

∂t
=

n∑
j=1

fj(t,q) · pj −
n∑

j=1

∂χ(t,q)
∂qj

fj(t,q)− ∂χ(t, q)
∂t

(24)

The corresponding Hamilton equations to Eq. 24 are:

q̇k = ∂H(t,q,p)
∂pk

= fk(t, q)
pk = −∂H(t,q,p)

∂qk

∑n
j=1 fj(t,q)∂2χ(t,q)

∂qk∂qj
+ ∂2χ(t,q)

∂qk∂t ;

 ; k = 1, 2, . . . , n (25)

and that the time derivative of the Hamiltonian is:

dH (t,q,p)
dt

= ∂H (t,q,p)
∂t

= ∂2χ (t,q)
∂t2

−
n∑

k=1
fk (t,q) ∂

2χ (t,q)
∂qk ∂t

(26)

Note in Eq. 26, as it is well-known, that the fact that the Hamiltonian total time derivative be equal
to its partial time derivative is a general property of the Hamiltonian systems. On the other hand,
χ (t,q) can be fixed by the Third Postulate, which introduces in the formalism the generalized
temperature T (t, q) and the generalized Entropy and S (t, q) in the Hamiltonian (Eq. 24) as:

n∑
j=1

∂χ (t,q)
∂qj

fj (t,q) + ∂χ (t,q)
∂t

= −T (t,q) · St, q (27)

Then, this Hamiltonian of Eq. 24 can also be written as:

H (t,q,p)
n∑

j=1
fj(t,q) · pj + T (t,q) · S(t,q) (28)

that mathematically looks like much more to the Internal Energy of the classical Thermodynamics.
The Fourth Postulate is a generalized Gibbs-Duhem equation [9], written as:

n∑
k=1

fk(t,q) · dpk + S(t,q) · dT (t,q) = 0 (29)

Dividing Eq. 29 by dt, developing the total time derivative of T (t,q) and making use subsequently
of Eq. 25, the generalized Gibbs-Duhem equation becomes:

S (t,q) ∂T (t,q)
∂t

+S (t,q)
n∑

k=1
fk (t,q) ∂T (t,q)

∂qk
= −

n∑
k=1

fk (t,q)

 n∑
j=1

fj (t,q) ∂
2χ (t,q)
∂qk ∂qj

+ ∂2χ (t,q)
∂qk ∂t


(30)

Taking the differential of H (t,q,p) in Eq. 28 and considering the generalized Gibbs-Duhem equa-
tion Eq. 29:

dH (t,q,p)
n∑

k=1
dpk · dfk(t,q) + T (t,q) · dS(t,q) (31)

Dividing Eq. 31 by dt, developing the total time derivative of S (t,q) and making use subsequently
of Eqs. 23, 25 and 26, Eq. 31 becomes:

T (t,q) ∂S (t,q)
∂t

+ T (t,q)
n∑

k=1
fk (t,q) ∂S (t,q)

∂qk
=
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= −∂
2χ (t,q)
∂t2

−
n∑

k=1
fk (t,q) ∂

2χ (t,q)
∂qk ∂t

−
n∑

k=1

∂χ (t,q)
∂qk

∂fk (t,q)
∂t

+
n∑

j=1

∂fk (t,q)
∂qj

fj (t,q)

 (32)

Eqs. (27), (30) and (32) define a system of three partial differential equations for χ (t,q), T (t,q)
and S (t,q). However, the χ (t,q) function can be uncoupled by taking the total time derivative
of T (t,q) · St, q in Eq. 27, developing it by its partial derivatives, and comparing the result with
Eqs. 30 and 32. This process provides the following equation for the χ (t,q) function:

n∑
k=1

fk (t,q) ∂
2χ (t,q)
∂qk ∂t

= 0 (33)

Eq. 33 allows computing the χ (t,q) function, and at once simplifying Eqs. 30 and 32:

S (t,q) ∂T (t,q)
∂t

+ S (t,q)
n∑

k=1
fk (t,q) ∂T (t,q)

∂qk
= −

n∑
k=1

fk (t,q)

 n∑
j=1

fj (t,q) ∂
2χ (t,q)
∂qk ∂qj

 (34)

T (t,q) ∂S (t,q)
∂t

+ T (t,q)
n∑

k=1
fk (t,q) ∂S (t,q)

∂qk
=

= −∂
2χ (t,q)
∂t2

−
n∑

k=1

∂χ (t,q)
∂qk

∂fk (t,q)
∂t

+
n∑

j=1

∂fk (t,q)
∂qj

fj (t,q)

 (35)

In conclusion, Eqs. (33), (34) and (35) are the base to compute the χ (t,q), T (t,q) and S (t,q)
functions.

4 Reversible Thermodynamics is a particular case of the GST?

In order to answer the question of this section, the non-explicit time dependence of Hamiltonian Eq.
28 is assumed. Therefore: (a) the system Eq. 1 is autonomous (fk (t,q) = fk (q) ; k = 1, 2, . . . , n);
(b) Temperature holds T = T (q) and Entropy holds S = S (q). In addition, it is assumed that
there exists at least one steady state qe = (qe1, qe2, . . . , qen), such that fk (qe) = 0; k = 1, 2, . . . , n.
Expanding at first order the fk (q) functions and substituting them in the Hamiltonian Eq. 28:

H (q,p)
n∑

j=1

(
n∑

l=1
νjl (ql − qel)

)
· pj + T (q) · S(q) =

=
n∑

l=1

 n∑
j=1

νjl · pj

 (ql − qel) + T (q) · S(q) (36)

In Eq. 36: νjl = ∂fj

∂ql
(qe). If the following canonical transformation is done:

Ql = ql − qel

Pl = ∑n
j=1 νjl · pj

}
; l = 1, 2, . . . , n (37)

Then, the Hamiltonian Eq. 36 becomes:

H (Q,P) =
n∑

l=1
Pl ·Ql + T (Q) · S(Q) (38)

Eq. 38 is then similar to that corresponding to a reversible thermodynamics.
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5 Conclusions

Note that all the formalism presented is an attempt to develop a complete classical analytical
dynamics or mechanics for dynamical systems, here represented as coupled first order differential
equation systems.

On the one hand, the formalism is called classical versus the quantum possible development
from the Hamiltonian. In fact, a first attempt to bring the formalism to the quantum context is
done in [7]. On the other hand, it is a first attempt because more background can be developed,
such as the Hamilton-Jacobi equation, or the corresponding canonical transformations.

It is important to emphasize that the formalism is completely open to solve many theoretical
problems as well as its applications. For instance, about the relationship with the physical formal-
ism, already faced by Havas in [2] from a Lagrangian perspective, in which the energy conservation
should be also faced from a Hamiltonian perspective. This is important because a second order
differential equation formalism can be reduced to a first order formalism by introducing the veloc-
ities as new variables. The same happens with the relationship of both formalisms in the quantum
context [7]: the probability is conserved but the Hamilton-Jacobi equation does not present any
stochastic further term.

Another problem faced from the presented formalism is, as pointed out already in [6], that the
Hamiltonian can be reinterpreted as a nonlinear version of the Thermodynamics Internal Energy,
expressed by the second Thermodynamics postulate, identifying the Internal Energy with the
Hamiltonian. In fact this formalism goes beyond, because from the Hamiltonian function, an
attempt to develop a General System Thermodynamics (GST) is presented. Observe that the
GST presented is nonlinear and a comparing with the classical Thermodynamics referred to quasi-
static or reversible systems. Thus, the irreversible systems [9] should be described by the GST.
Note that, at this point, Section 4 shows how a Hamiltonian that does not depend explicitly on
time in the linear context about a steady state reproduces the classical reversible Internal Energy.
However, both linear and nonlinear general approaches should reproduce for Eqs. 34 and 35 the
third Thermodynamics postulate, i.e., T (t,q) > 0, while any sign of the Entropy time derivative(
Ṡ (t,q) > 0, Ṡ (t,q) = 0 or Ṡ (t,q) < 0

)
should inform us whether the system is tending to order

or to disorder. The most interesting application in this context is that related with the dynamics of
the chemical reactions, due to it is modelled with coupled first order differential equation systems [9].
It could be a way to state the whished objective of physics to unify dynamics and thermodynamics.
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1 Introduction

A large number of problems in Computational Sciences and other disciplines can be stated in
the form of a nonlinear equation or nonlinear system of equations using mathematical modelling.
Finding the solution ξ of a nonlinear system of equations F (x) = 0 is a classical and difficult
problem in Numerical Analysis, Applied Mathematics and Engineering, wherein F : D ⊂ Rn → Rn

is a sufficiently Frechet differentiable function in an open convex set D. We can find in [1, 2], and
in the references therein, several overviews of the iterative methods for solving nonlinear systems
published in the last years. The best known method for finding a solution ξ ∈ D is Newton’s
scheme.

The dynamical behavior of the rational operator associated to iterative schemes for solving
nonlinear systems, applied to low-degree polynomial systems, has shown to be an efficient tool
for analyzing the stability and reliability of the methods, see for example [1, 3] and the references
therein.

In this manuscript, we introduce a new sixth-order parametric family of multistep iterative
schemes for solving nonlinear systems of equations as an extension of the family presented in [4] for
solving nonlinear equations. This family is built from the Ostrowski’s scheme, adding a Newton step
with a “frozen” derivative and using a divided difference operator. We study its convergence, its
real dynamics for stability and its numerical behavior. The dynamical planes are presented showing
the complexity of the family. From the parameter spaces, presented in [4] for scalar functions, we
have been able to determine different members of the family for vector functions that have bad
convergence properties, since attracting periodic orbits and attracting strange fixed points appear
in their dynamical planes. Moreover, this same study has allowed us to detect family members
with specially stable behavior and suitable for solving practical problems. Several numerical tests
are performed to illustrate the efficiency and stability of the presented family.

1marmosma@doctor.upv.es
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2 New parametric family

The new triparametric family called MCTC(α, β, γ), object of study in this manuscript, has the
following iterative expression:

y(k) = x(k) − [F ′(x(k))]−1F (x(k))
z(k) = y(k) − [2[x(k), y(k);F ]− F ′(x(k))]−1F (y(k))

x(k+1) = z(k) − (αI + βu(k) + γv(k))[F ′(x(k))]−1F (z(k))
, (1)

where u(k) = I − [F ′(x(k))]−1[x(k), y(k);F ], v(k) = [x(k), y(k);F ]−1F ′(x(k)), k = 0, 1, 2, ..., and α, β
and γ are arbitrary parameters. The divided difference operator [x, y;F ], defined in [5], is the map
[·, ·;F ] : D ×D ⊂ Rn × Rn → L(Rn), satisfying [x, y;F ](x− y) = F (x)− F (y),∀x, y ∈ D.

Theorem 13 (triparametric family). Let F : D ⊆ Rn → Rn be a sufficiently differentiable function
in an open convex set D and ξ ∈ D a solution of the nonlinear system F (x) = 0. Let us suppose
that F ′(x) is continuous and nonsingular at ξ, and x(0) is an initial estimate close enough to ξ.
Then, sequence {x(k)}k≥0 obtained by using expression (1) converges to ξ with order four, being its
error equation

e(k+1) = (1− α− γ)
(
C3

2 − C3C2
)
e(k)4 +O(e(k)5),

where e(k) = x(k) − ξ, Cq = 1
q! [F ′(ξ)]−1F (q)(ξ) and q = 2, 3, ...

From Theorem 13, it follows that the new triparametric family has an order of convergence of
four for any value of α, β and γ. However, convergence can be speed-up if only one parameter is
held and the family is reduced to an uniparametric iterative scheme.

Theorem 14 (uniparametric family). Let F : D ⊆ Rn → Rn be a sufficiently differentiable function
in an open convex set D and ξ ∈ D a solution of the nonlinear system F (x) = 0. Let us suppose
that F ′(x) is continuous and nonsingular at ξ, and x(0) is an initial estimate close enough to ξ.
Then, sequence {x(k)}k≥0 obtained by using expression (1) converges to ξ with order six, provided
that β = 1 + α and γ = 1− α, being its error equation

e(k+1) =
(
C2

3C2 − C3C
3
2 + 6C5

2 − 6C2
2C3C2

)
e(k)6 +O(e(k)7),

where e(k) = x(k) − ξ, Cq = 1
q! [F ′(ξ)]−1F (q)(ξ) and q = 2, 3, ...

From Theorem 14, it follows that if we only hold α in (1), the triparametric family is reduced to
an uniparametric family with an order of convergence of six, for any value of α, as long as β = 1+α
and γ = 1− α. So, the iterative expression of the new three-step uniparametric family, dependent
only of α and which we will call MCTC(α) family, is defined as

y(k) = x(k) − [F ′(x(k))]−1F (x(k))
z(k) = y(k) − [2[x(k), y(k);F ]− F ′(x(k))]−1F (y(k))

x(k+1) = z(k) − (αI + (1 + α)u(k) + (1− α)v(k))[F ′(x(k))]−1F (z(k))
, (2)

where u(k) = I − [F ′(x(k))]−1[x(k), y(k);F ], v(k) = [x(k), y(k);F ]−1F ′(x(k)), k = 0, 1, 2, ..., and α is
an arbitrary parameter.

Because of the results obtained with the convergence analysis carried out, from now on we only
work with MCTC(α) family of iterative methods and, to select the best members of this family,
we use the real dynamics tools discussed in Section 3.
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3 Real dynamics for stability

This section refers to the study of the dynamical behavior of the rational operator associated with
iterative schemes of MCTC(α) family. This study give us important information about the stability
and reliability of the family. We will construct dynamical planes in order to show the behavior of
particular methods in terms of the basins of attraction of their fixed points, periodic points, etc.

3.1 Rational operator

The rational operator can be built on any nonlinear system; however, we construct this operator
on the following low-degree nonlinear polynomial system:

F (x1, x2) =
(
x2

1 − 1, x2
2 − 1

)
= (0, 0) , (3)

since the criterion of stability or instability of a method applied to this system can be generalized
for other multidimensional cases.

Proposition 1 (rational operator RF ). Let the polynomial system F (x1, x2) given in (3), with
roots (−1,−1), (−1, 1), (1,−1), (1, 1) ∈ R2. The rational operator associated with MCTC(α)
family and applied on F (x1, x2), with α ∈ R an arbitrary parameter, is

RF (x1, x2, α) = (RF11 , RF12) , (4)
where

RF11 = 1
32

((
x2

1 − 1
)4 (

α+ (α− 19)x4
1 − 2(α− 1)x2

1 + 1
)

4x5
1
(
x2

1 + 1
)2 (3x2

1 + 1
) + 8

(
x4

1 + 6x2
1 + 1

)
x3

1 + x1
− α

(
x2

2 − 1
)4

x3
2
(
x2

2 + 1
)2
)
,

RF12 = 1
32

((
x2

2 − 1
)4 (

α+ (α− 19)x4
2 − 2(α− 1)x2

2 + 1
)

4x5
2
(
x2

2 + 1
)2 (3x2

2 + 1
) + 8

(
x4

2 + 6x2
2 + 1

)
x3

2 + x2
− α

(
x2

1 − 1
)4

x3
1
(
x2

1 + 1
)2
)
.

To simplify the rational operator RF defined in Proposition 1, we can select a value of α that
cancels terms of the expression and reduces it. It is easy to show that for α = 0, the rational
operator is simpler and there will be fewer fixed and critical points that can improve the stability
of the associated method. Also, the components of this RF (x1, x2, 0) will be of separate variables.

3.2 Fixed points and their stability

We calculate the fixed points of the rational operator RF (x1, x2, α) given in (4), and analyze their
stability.

Proposition 2 (fixed points). The real fixed points of RF (x1, x2, α) are the roots of the equation
RF (x1, x2, α) = (x1, x2). That is

fp1 = (−1,−1), fp2 = (−1, 1), fp3 = (1,−1), fp4 = (1, 1),

that correspond to the roots of the polynomial system F (x1, x2) given in (3), and they are also
superattracting. Other strange fixed points may appear but their components are roots of polyno-
mials of very high degrees.

From Proposition 2, we establish there is a minimum of 4 fixed points. Of these, from fp1 to
fp4 correspond to the roots of the original polynomial system F (x1, x2) and are attractive and
critical points.
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3.3 Dynamical planes

Here, we study the stability of two MCTC(α) family methods as representatives. The first method
is for α = 0, whose value is inside the stability region of the parameter spaces shown in [4], that is,
it is in the red area. The second method is for α = 200, whose value is outside the stability region
of the same parameter spaces, located in the black area.

Dynamical planes are built with a mesh from -2 to 2, with a step equal to 0.01. Every initial
estimation is iterated 100 times (maximum) with a tolerance of 10−3. The points in the mesh are
represented based on the roots to which they converge: the color is brighter when lesser are the
iterations. If all the iterations are completed and not convergence to any roots is reached, then the
point is represented in black. Fixed points are illustrated with a white circle ‘#’, critical points
with a white square ‘□’ and attractors with a white asterisk ‘∗’. Also, the basins of attraction are
depicted in different colors. The resulting graphic is made in Matlab R2020b with a resolution of
400x400 pixels.

Thus, the dynamical planes for RF (x1, x2, 0) and RF (x1, x2, 200), with some convergence orbits
in yellow, are shown in Figure 1. On the one hand, the method for α = 0 presents four basins
of attraction associated with the roots. Also, there are no black areas of non-convergence to the
solution. Consequently, this method shows good dynamical behavior: it is very stable. On the
other hand, the method for α = 200 presents the same four basins of attraction associated with the
roots, but of reduced size, which minimizes the chances of convergence to the solution. Likewise,
there are black areas of slow convergence of the method. Consequently, this method has poor
dynamical behavior: it is unstable.

(a) α = 0 and pf = (−1,−1) (b) α = 200 and pf = (−1,−1)

Figure 1: Dynamical planes for RF .

4 Numerical results

In this section, we perform several numerical tests to illustrate the efficiency and stability of the
presented family. We consider the same two members of MCTC(α) proposed in Section 3.3, for
α = 0 and α = 200. These methods are applied on two nonlinear test systems, whose expressions
and corresponding roots are shown in Table 1.
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Table 1: Nonlinear test systems and corresponding roots.

Nonlinear test system Roots

F1(x1, x2) =
(
x2

1 − 1, x2
2 − 1

)
= (0, 0) ξ ≈ (1, 1)T

F2(x1, x2) =
(
x2

1 + x2
2 − 1, x2

1 − x2
2 −

1
2

)
= (0, 0) ξ ≈

(√
3

2 ,
1
2

)T

The calculations have been developed in Matlab R2020b programming package using variable
precision arithmetics with 200 digits of mantissa. For each method, we analyze the number of
iterations (iter) required to converge to the solution, so that the stopping criteria ||x(k+1)−x(k)|| <
10−100 or ||F (x(k+1))|| < 10−100 are satisfied.

To check the theoretical order of convergence of the methods, we calculate the approximate
computational order of convergence (ACOC) given in [12]. In the numerical results, if the ACOC
vector inputs do not stabilize their values throughout the iterative process, it is marked as ‘-’; and,
if any of the methods used does not reach convergence in a maximum of 50 iterations, it is marked
as ‘nc’.

Thus, in Table 2 we show the numerical performance of MCTC(0) for initial estimates near and
far from the solution, that is, for x(0) ≈ 2ξ and x(0) ≈ 10ξ. The results are encouraging because
we can notice that MCTC(0) always converges to the solution in the two nonlinear test systems,
regardless of the initial estimates used. Therefore, we verify this method is robust, according to
the stability results shown in Section 3.

Table 2: Numerical performance of MCTC(0) on test problems.

System x(0) ||x(k+1) − x(k)|| ||F (x(k+1))|| iter ACOC
F1 ≈ 2ξ (2, 2)T 6.4031e-71 8.0537e-173 5 3.1906
F2 ≈ 2ξ (1.7, 1)T 6.6576e-68 1.4261e-166 6 3.6518

F1 ≈ 10ξ (10, 10)T 6.7666e-41 3.4488e-113 10 6.4467
F2 ≈ 10ξ (9, 5)T 3.9e-70 5.5314e-172 12 3.4528

Now, in Table 3 we show the numerical performance of MCTC(200) for initial estimations very
close to (x(0) ≈ ξ) and near to (x(0) ≈ 2ξ) the solution.

Table 3: Numerical performance of MCTC(200) on test problems.

System x(0) ||x(k+1) − x(k)|| ||F (x(k+1))|| iter ACOC
F1 ≈ ξ (1.5, 1.5)T 8.1881e-94 1.5574e-207 4 2.5252
F2 ≈ ξ (1.3, 0.8)T nc nc nc nc

F1 ≈ 2ξ (2, 2)T nc nc nc nc
F2 ≈ 2ξ (1.7, 1)T nc nc nc nc

Note that the results shown in Table 3 also corroborate the stability analysis performed in
Section 3. The MCTC(200) presents convergence problems even for estimates very close to the
root (x(0) ≈ ξ), this method does not converge to the solution in one of two cases. Furthermore,
for estimations near to the root (x(0) ≈ 2ξ), it does not converge to the solution in all cases,
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establishing a dependency on the initial estimates used. Therefore, the instability of this method
is verified.

5 Conclusions

A highly efficient family of iterative methods MCTC(α) has been designed to solve nonlinear
systems. This family proved to have an excellent numerical performance considering stable members
as representatives. The method for α = 0 proved to be robust (stable), according to the real
dynamics analysis performed. The method for α = 200 proved to be unstable, chaotic and cannot
converge to the solution according to the initial estimate and the nonlinear system used. Also, the
order of convergence is verified by the ACOC, which is close to 6. Numerical experiments confirm
the theoretical results.
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Universidad de La Laguna
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1 Introduction

Structural models usually present several types of nonlinearities [1,2]. Particularly, some materials,
such as the reinforced concrete (RC), introduce nonlinear stress-strain relationships in the mechan-
ical model. The implementation of these models usually requires the application of numerical
methods for solving the corresponding nonlinear equations, such as, for example, the Newton-type
methods [3]. In fact, the correct solver for solving a nonlinear problem is often a choice between
computational cost and accuracy [4]. However, despite of the high nonlinear nature of the problem,
sometimes the previous determination of a solvability region for the equation to solve is possible
using algebraic procedures, what allows improving the efficiency of the numerical solver.

2 Problem statement

2.1 Solvability of the steel constitutive model

Several authors [5–7] consider a steel reinforcement stiffened by the concrete bonded to it (or also
called as “embedded bar model”). One of these approaches, the so-called Refined Compression
Field Theory (RCFT) [8], includes in the steel constitutive model an equilibrium condition that
takes into account the concrete tension stiffening effect between cracks. As result, a nonlinear
equation is introduced in the steel constitutive model in terms of the apparent yield strain. This
last theory predicts the average stress of an embedded bar as a function of the average strain (i.e.,
measured on certain length including several cracks) such as follows:

σs,av =

 fy −
Ac

As

fct

1 +
√

3.6Mεs,av
if εs,av ≥ εmax,

Esεs,av if εs,av < εmax,
(1)

1jjpadilla@ucam.edu
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with,

εmax = fy

Es
−

fct

1 +
√

3.6Mεmax

EsAs
, M = Ac∑

πϕ
,

where Es is the elastic modulus of the steel, fy is the steel yield stress, fct is the tensile concrete
strength, σs,av and σct,av are the average tensile stresses in the reinforcing steel and in the concrete,
respectively, As is the cross section of the steel bars, εs,av is the average strain in the reinforcing
bar and Ac is the area of concrete bonded to the bar participating in the tension stiffening effect.
The previous formulation is based on the concept of equilibrium of forces between a cracked sec-
tion (where only the reinforcement contributes) and a generic section (where both steel plus the
surrounding concrete contribute; see Figure 1). Technical codes [9] propose a value for Ac equal

Figure 1: Average stresses profiles (σct,av and σst,av) and prescribed tension stiffening area (Ac)
effectively bonded to the steel.

to the rectangular area (surrounding the bar) over a distance not exceeding 7.5Ø from the center
of the bar (Figure 1), and Ø is the diameter of the bar. It can be proven that when this value
is adopted, for certain specimens (specifically those with high values of the ratio fct/ρ, being ρ
the reinforcement ratio) it is not possible to obtain a positive real solution for the apparent yield
strain (ϵmax) defined in Equation (1). Moreover, if the solvability analysis is posed in terms of the
variables fct and ϵmax and the value of the area Ac is increased monotonically, from a certain value
of this area the bijection between fct and ϵmax is broken (problem of uniqueness), and subsequently,
for higher values of the area Ac until up the value prescribed by technical codes, the absence of a
real solution is achieved (problem of existence) [10]. This last fact indicates that the equilibrium
of internal forces along the cracked member is not verified.

In [10] the greatest value of the area Ac for which the embedded steel constitutive model has, at
least, a positive real solution, is determined using algebraic procedures. In this sense, the greatest
portion of the tension stiffening area which may be taken in order to preserve the solvability of
the constitutive model (i.e., in order to preserve the internal equilibrium of forces, in such a way
that as concrete participation increases, the steel stress diminishes) is represented by the following
coefficient:

λ = As · fy

Ac · fct
·

2
3 +

√
(1 + 10.8 ·M · ϵy)3

48.6 ·M · ϵy

 (2)

being ϵy the strain corresponding to the steel yield stress (i.e.,ϵy = fy/Es). Therefore, the coefficient
λ represents the boundary of the solvability region for the embedded steel constitutive model
proposed by the RCFT; since this region is only obtained from algebraic considerations, it may be
applied to every experimental approach of the concrete tension stiffening model.

The previous boundary, for certain design cases, may be lower than the value prescribed by the
technical codes for the area Ac (i.e., the solvability region lies within the design range prescribed by
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technical codes). In fact, several works [8,11,12] point out the convenience of correcting the tension
stiffening area in order to adjust the shear response of reinforced concrete members, particularly
for high shear strains, where the technical codes underestimate the concrete tension stiffening.

Input Range
Es (MPa) [195000, 205000]
fy (MPa) [400, 500]
fct (MPa) [25, 50]
ϕ (mm) [6, 40]

λ (dimensionless) [0, λlim]

Table 1: Ranges for input parameters of the Equation (2).

3 Higher order numerical methods

The Newton-Raphson method belongs to the family of the so-called linearization methods for
solving non-linear equations and systems of equations and its iterative scheme is based on a local
convergence process [13], what might be critical in the context of solvability described in the Section
2.1 (particularly, in the boundary of such region).

Due to this local convergence, several strategies have been developed to allow the convergence
to be achieved from far starting points into the neighbourhood of a local minimizer. Likewise, one
of the main drawbacks of the Newton-type methods is the evaluation of the Hessian matrix, since,
in certain contexts (i.e., physics equations), the second-order derivative may be highly expensive
from a computational point of view. One of these strategies are the higher-order modifications of
Newton’s method for solving nonlinear equations in order to increase the order of convergence [14],
or even, the combination of the high-order Newton method and the Newton method in order to
reduce the calculation time and to improve the efficiency [15].

3.1 A parametric family of root-finding iterative methods

We will use a two-step uniparametric family, of fourth-order iterative methods, to find roots of
nonlinear equation (1). This family uses a damped Newton in the first step (predictor), and the
second step (corrector) is defined as a Newton-type scheme, in which three functional evaluations
are used.

Theorem 1. Let f : I ⊆ R → R be a sufficiently differentiable function in an open interval I
and x∗ ∈ I a simple root of equation f(x) = 0. Let G(η), be a real function, satisfying G(1) = 1,
G′(1) = −3

4 , G′′(1) = 9
4 , and |G′′′(1)| < +∞. If γ = 2

3 and we choose an initial approximation x0

close enough to x∗, then iterative family defined by

yk = xk − γ
f(xk)
f ′(xk) ,

xk+1 = xk −G(η) f(xk)
f ′(xk) , k = 0, 1, 2, ..., (3)

satisfying the error equation below:

ek+1 =
[(

5 + 32G′′′(1)
81

)
c3

2 − c2c3 + c4
9

]
e4

k +O(e5
k),
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where ck = 1
k!
f (k)(α)
f ′(α) , η = f ′(yk)

f ′(xk) , k = 2, 3, . . . and ek = xk − x∗. Therefore, all the members of
class 3 converges to x∗ with order of convergence four.

We select a particular subclass of iterative methods, depending on a parameter α, whose itera-
tive expression is

yk = xk −
2
3
f(xk)
f ′(xk) ,

xk+1 = xk −
(
1− 3

4(ηk − 1) + 9
8(ηk − 1)2 + α(ηk − 1)3

) f(xk)
f ′(xk) , k = 0, 1, 2, ... (4)

where the variable of the weight function is ηk = f ′(yk)
f ′(xk) .

In [16] the dynamical behavior of this class of iterative methods was studied, finding the most
stable members (in particular α = 1) and also those showing chaotic performance (as α = −20 +
45i). These values are used in the next section.

4 Numerical results

In order to evaluate the efficiency of different numerical iterative methods (among them, the para-
metric family previosly described) regarding to the physical problem presented in Section 2, a
sample of 100 values for the inputs of the Equation (2) has been adopted. This sample has been
generated randomly, within the ranges presented in Table 1 for each input parameter.

Numerical computations have been carried out by using MATLABő R2019a, on a PC equipped
with a Intelő Core™ i5-5200U CPU 2.20GHz. In Table 1, we show the residuals |f(xk+1)| and
|xk+1 − xk| at the last iteration, the estimation of the solution found, the number of iterations
needed and the execution time in seconds, calculated with the command cputime. The stopping
criterion used is |xk+1 − xk|+ |f(xk+1)| < 10−6.

Solution |f(xk+1)| |xk+1 − xk| Iteration
0.000635867598422514 6,56612e-11 5,33986e-07 7
0.000517406121549559 6,75826e-11 4,96554e-07 7
0.000446396692152001 6.81218e-11 4.86223e-07 7
0.000599111127570943 6,64413e-11 5,22456e-07 7
0.000600487981552110 6,64141e-11 5,26344e-07 7
0.000413110652300844 6,81422e-11 4,79587e-07 7
0.000605207957076228 6,62967e-11 5,33798e-07 7
0.000525637445813513 6,74148e-11 4,92513e-07 7
0.000537940095960127 6,74358e-11 5,12146e-07 7
0.000451978308427051 6,81995e-11 5,01625e-07 7

Table 2: Method (3), α = 1, x0 = 450
2e5 , t=4.5 s
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Solution |f(xk+1)| |xk+1 − xk| Iteration
0.000635026251270566 - 1.82794944086520e-07i 3,46e-10 9,75837e-07 37
0.000517111210020908 + 5.82759991250184e-07i 3,84e-10 9,43327e-07 36
0.000446140213854697 + 5.57181484272692e-07i 3,66636e-10 8,99109e-07 36
0.000598305827351175 - 1.46005246945238e-07i 3,19626e-10 9,12315e-07 37
0.000599671246190458 - 1.54467715109439e-07i 3,27595e-10 9,30678e-07 37
0.000412872936808692 + 5.43899516322722e-07i 3,5893e-10 8,77331e-07 36
0.000604369040412069 - 1.71703918414669e-07i 3,43246e-10 9,6699e-07 37
0.000525350335557838 + 5.70774200440979e-07i 3,72896e-10 9,23301e-07 36
0.000537166425339973 - 1.08432551780129e-07i 2,97758e-10 8,56745e-07 37
0.000451683580721046 + 6.05570673260231e-07i 4,09452e-10 9,79693e-07 36

Table 3: Method (3), α = −20 + 45i, x0 = 450
2e5 , t=8.0 s

In order to compare the results, in terms of robustress and effectiveness, we check the perfor-
mance of high-order schemes (3) with α = 1 and α = −20 + 45i. However, we perform also the
numerical test on known classical procedures as Newton and Jarrat. By using x0 = 450

2e5 as initial
guess of the apparent yield strain ϵmax, we notice in Table 1 and 3 that performance of the stable
element of family (3) α = 1 is much better than the unstable one α = −20 + 45i, as in terms of
number of iterations needed to converge (7 in case of α = 1, and around 37 for α = −20 + 45i) as
in precision and, of course, in terms of mean execution time.

Solution |f(xk+1)| |xk+1 − xk| Iteration
0.000636206293661355 3,42126e-10 6,03471e-07 10
0.000517716984601877 3,47046e-10 5,57127e-07 10
0.000446700051134824 3,49e-10 5,44532e-07 10
0.000599441292717526 3,44772e-10 5,8924e-07 10
0.000600820952928857 3,45036e-10 5,93973e-07 10
0.000413409408484667 3,48016e-10 5,36655e-07 10
0.000605546303030168 3,45179e-10 6,0304e-07 10
0.000525945349712532 3,45645e-10 5,52161e-07 10
0.000538262467333356 3,48397e-10 5,76359e-07 10
0.000452293149904906 3,5123e-10 5,63653e-07 10

Table 4: Newton, x0 = 450
2e5 , t=4.4 s

Regarding known methods, we observe in Table 4 that Newton’s scheme is able to find the
solution in a similar time as the best fourth order method, but using almost a 50% more iterations.
Also Jarratt’s procedure whose numerical results can be seen in Table 5, show the same mean time
as the best proposed scheme (3) with α = 1 with a slightly lower number of iterations.
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Solution |f(xk+1)| |xk+1 − xk| Iteration
0.000635801360966030 3,6846e-11 5,93549e-07 6
0.000517349955326238 4,01937e-11 5,68203e-07 6
0.000446343620616066 4,13593e-11 5,62143e-07 6
0.000599048149568916 3,79913e-11 5,86213e-07 6
0.000600424161803673 3,7832e-11 5,89457e-07 6
0.000413059263537066 4,18013e-11 5,57337e-07 6
0.000605142462375379 3,74734e-11 5,95492e-07 6
0.000525581928713347 4,0176e-11 5,64157e-07 6
0.000537880456824904 3,94078e-11 5,80921e-07 6
0.000451922171196378 4,08155e-11 5,75796e-07 6

Table 5: Jarratt, x0 = 450
2e5 , t=4.5 s

5 Conclusions

In this manuscript, a new strategy for solving the yield strain equation is proposed. The main
approach is to include values of parameters in the boundary of the solvability region and use a high-
order family of iterative methods. In particular, stable members of this class of iterative methods
show very good numerical performance in terms of precision and number of iterations/execution
time.
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strategies as applied to shear strain effects in reinforced concrete beams. Applied Soft Computing, 57,
164-176.

[13] Rheinboldt, W.C.: Methods for solving systems of nonlinear equations. SIAM, 1998.

[14] Guo, C., Y. Gao, and C. Xia: Improved newton iteration method and convergence order analysis. In
Proceedings of the 2020 4th International Conference on Digital Signal Processing, pages 29–32, 2020

[15] Wei, Y., Q. Li, P. Wang, M. Yang, Z.Zeng, and X. Wang: A new combination algorithm based on
higher-order newton and simplified newton method. In The 16th IET International Conference on AC
and DC Power Transmission (ACDC 2020), volume 2020, pages 1804–1809. IET, 2020.

[16] Padilla, J.J.; Chicharro, F.I.; Cordero, A.; Torregrosa, J.R. Parametric Family of Root-Finding Iterative
Methods: Fractals of the Basins of Attraction. Fractal Fract. 2022, 6, 572.

197



34

A generalization of subdirect sums of matrices

F. Pedroche♮,1

♮ Institut Universitari de Matemàtica
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1 Introduction

In this paper we present the concept of weighted subdirect sum of matrices that has been recently
published [5]. The definition of this new concept arises as an extension of the term subdirect sum
of matrices coined in [3]. A review of the literature concerning this topic can be found in [4],
where it can be checked that the subdirect sum of matrices has been analyzed for a wide variety
of matrix classes (for example, in [1] is studied the case of inverses of M-matrices, in [2] the case of
S-Strictly Diagonally Dominant matrices, etc.). The subdirect sum of matrices appears naturally
when studying systems that present some overlapping regions, such as in graphs, in numerical
applications of finite elements, when studying overlapping areas in a brain [6], etc.. Therefore, it
seems useful to define an extension of the subdirect sum as we comment in this paper.

2 Subdirect sum of matrices

The subdirect sum of matrices was introduced in [3], as follows. Given two matrices

A =
[
A11 A12
A21 A22

]
, B =

[
B11 B12
B21 B22

]
, (1)

with A22 and B11 of size k × k, the sum

C =

 A11 A12 O
A21 A22 +B11 B12
O B21 B22

 (2)

is called the k-subdirect sum (or simply the subdirect sum) of A and B, and it is denoted as
C = A ⊕k B. Notice that the particular case k = 0 can be considered as the usual direct sum of
matrices.

Example 1. Given

A =
[

2 3
5 4

]
B =

[
7 −2
1 9

]
1pedroche@imm.upv.es
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The 1-subdirect sum of A and B is

A⊕1 B =

 2 3 0
5 11 −2
0 1 9


Given a matrix class S, the questions that were addressed in [3], for some positivity matrix

classes, were the following.

Q1 If A and B belong to S, does it hold that A⊕k B belongs to the same class S, for k = 1?

Q2 Given a matrix of the form

C =

 C11 C12 O
C21 C22 C23
O C32 C33


belonging to a class S, can it be written as A⊕1 B with A and B in the same class as C, for
k = 1?

Q3 Question 1 but taking k > 1.

Q4 Question 2 but taking k > 1.

3 Weighted subdirect sum of matrices

In [5] the weighted subdirect sum of matrices is defined as follows. Given two matrices A and B
partitioned as in (1), and for nonnegative α and β

A⊕α,β
k B :=

 A11 A12 O
A21 αA22 + βB11 B12
O B21 B22

 (3)

Note that the weighted subdirect sum can be written in terms of the subdirect sum in the form

A⊕α,β
k B =

[
A11 A12
A21 αA22

]
⊕k

[
βB11 B12
B21 B22

]

Example 2. Given

A =

 1 5 4
1 2 5
3 1 9

 , B =

 6 12 −5
1 −5 1
2 4 7


we have

A⊕2,3
2 B =


1 5 4 0
1 22 46 −5
3 5 3 1
0 2 4 7
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Class Question
Q1 Q2 Q3 Q4

PSD A A A A
PD A A A A
SM A A A A
CP A A A A
DN A A A A
M A A A
P A A A
P0 A A A
TN A A A

Table 1: Summary of affirmative answers to questions Q1 to Q4.

4 Results

In [5] we have studied the questions Q1 to Q4 when using the weighted subdirect sum of matrices.
In more detail, the questions that have been addressed were the following:

Q1 If A and B belong to S, do exist some α > 0 and β > 0 such that A ⊕α,β
k B belongs to the

same class S, for k = 1?

Q2 Given a matrix of the form

C =

 C11 C12 O
C21 C22 C23
O C32 C33


belonging to a class S, can it be written as A⊕α,β

1 B with A and B in the same class as C,
for k = 1?

Q3 Question Q1 but taking k > 1.

Q4 Question Q2 but taking k > 1.

The positivity matrix classes that were analysed were the following: Positive definite (PD)
and positive semidefinite (PSD) matrices, symmetric M matrices (SM), completely positive ma-
trices (CP), double nonnegative matrices(DN), M matrices, P matrices, P0 matrices, and totally
nonnegative matrices (TN).

Regarding the questions Q1 to Q4, we summarized in Table 1 the questions with affirmative
answer (see [5] for details) for each class.

5 Conclusions

We have presented the concept of weighted subdirect sum of matrices that has been recently pub-
lished in [5], jointly with some properties for the following matrix classes: Positive definite (PD)
and positive semidefinite (PSD) matrices, symmetric M matrices (SM), completely positive ma-
trices (CP), double nonnegative matrices(DN), M matrices, P matrices, P0 matrices, and totally
nonnegative matrices (TN).
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1 Abstract

In this manuscript we propose a new inverse model for a display based on the direct model developed
in [6]. We use an iterative method to compute what inputs are able to produce a desired color.
Whereas this iterative approach has been used in the past, we take advantage here of the model
[6] to design a method able to converge in few iterations yielding a very accurate result.

2 Introduction

Display characterization has been an important topic in the field of color imaging for years, gaining
interest with the recent availability increase of a variety of display technologies. Having a precise
display characterization allows accurate image reproduction. This is important not only from the
consumer point of view in order to optimize viewing experience, but, also, it is critical for any
color imaging application, where accurate image reproduction is paramount, and for vision science
research to precisely control the stimuli shown to observers when carrying out psychophysics. In
general, display characterization means to create a model able to relate device dependent DACRGB
inputs with display outputs expressed in an appropriate device independent color space (usually
tristimulus values XY Z or xyY color coordinates). A colorimeter, or even better a spectropho-
tometer or spectroradiometer, is used to measure outputs related to a set of DACRGB inputs.
Some years ago, usually, the measurements needed to be taken manually. This led to the devel-
opment of display models based on their physical behavior and that could be built using just a
few measurements, which was convenient. Examples of these models are those in [1, 2] that are
based on representing the nonlinear behaviour of inputs with some power function or look-up-table
and then relate the linearized inputs with the outputs through a simple linear transformation (and
so assuming constant chromaticity for them). An alternative model presented [3, 4] is based on
using measurements in xyY coordinates and processing separately the Y component with a power
function of the inputs and the xy chromaticity using linear interpolation between measurements.
On the other hand, mathematical models have been also developed. One of the classical ones is
based on trying to find the best linear application able to relate inputs (or some function of them

1smorillas@mat.upv.es
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a) xyCIE1931 b) xyY color space.

Figure 1: Color spaces xyCIE1931 (https://dot-color.com/) and xyY space adapted from a wire-
frame animation © 2007 Bruce Lindbloom.

like powers or square roots) and outputs (or some function of them) [5]. To find this linear ap-
plication an overdetermined equation system is formulated using the measurements taken and the
best solution is found by squared error minimization using Penrose pseudo-inverse [7], which is the
reason why this method is named the Pseudo-Inverse method.

3 Introductory concepts

RGB is a color representation space based on additive synthesis with which it is possible to represent
a color by the addition mixing of the three primary light colors. It is a device-dependent color space,
that is, the same RGB values may display markedly different colors on different displays using this
color space. The RGB model is the one used by most devices. It is a three-dimensional space
where each color is represented by a vector (r,g,b) with each coordinate belonging to the naturals
from 0 to 255 (in the common case of 8-bit representation). Each color is a combination of the
three pure colors: red (255, 0, 0), green (0, 255, 0), and blue (0, 0, 255).

In 1931, the Commission International de l’Eclairage (CIE) established a frame of reference
to define colors univocally, based on their wavelengths. The (X,Y, Z) CIE tristimulus values
can describe any color visible by the human eye. It is a device independent color space. The
XY Z values are transformed into two x and y values known as chromatic coordinates through
the expressions,

x = X
X+Y +Z y = Y

X+Y +Z

These chromatic coordinates correspond to the colors that human eye sees and are represented on
a plane xyCIE1931 (see Figure 1). This is complemented by the Y value which gives the color
what is known as luminance, represented in the xyY color space (see Figure 1). It is important to
note that although all the colors seen by the human eye are represented in the color tongue on the
xy space, the different devices can only represent a part of these colors, namely those contained in
the triangle in the Figure 1.
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4 Methods

As we said in the introduction we need a display characterization, i.e. models that, given a specific
monitor, allow us, on the one side, to predict the (X,Y, Z) values corresponding to some given
RGB values (direct model), and on the other side, approximate the RGB inputs me should use
to show a certain color expressed in device-independent coordinates (XY Z, xyY or other)(inverse
model). In this paper we focus our interest on the last question.

4.1 Direct model our proposal is based on

The direct method developed by Kim and Lee [3] estimates a variable of light leakage from the screen
through the color filters to calculate what they call pure XY Z colors from the XY Z measurements
of the colorimeter. This model has the advantage of predicting the colorimetric information for all
types of screens with high accuracy, which is not the case with other direct models. We use these
set of pure colors in our inverse model.

4.2 Inverse model

Since given a physical color with coordinates (X,Y, Z), our objective is to determine which RGB
coordinates give an approximation of XY Z from the ramps of RGB pure colors, we need to solve
a system that has no analytical solution, so we use an iterative method. As the space of solutions
to explore in the method is very large and for image reproduction a high number of coordinates
need to be computed, we need to be very efficient (a few number of iterations) in order to be useful
in practice. We have used certain heuristics when performing the iterations that has turned out to
be very fast.

Since we will need it during the application of the algorithm, the first step is to determine
what are the values of X,Y, Z corresponding to the RGB values of pure red, green and blue,
obtained using a colorimeter and the ramps of RGB given in [3], i.e., of the respective RGB
values: (i, 0, 0), (0, i, 0), (0, 0, i) and (i, i, i) where i ∈ {0, 1, · · · , 255}.

We begin with the study of the chromaticity. We draw on the plane xyCIE1931 of chromatic
coordinates a triangle T0 whose vertices, R, G and B, are the corresponding x and y values of
the RGB coordinates of each of the most saturated three pure colors, that is, those whose RGB
coordinates are (255, 0, 0) (for red), (0, 255, 0) (for green) and (0, 0, 255) (for blue).

Let (X,Y, Z) be the device-independent coordinates of certain color. Let (x, y) be its chromatic
coordinates that we represent as the point P on the space xyY CIE1931. We now obtain its
orthogonal projections, PR, PG and PB, onto the sides of the triangle T0. (see Figure 2). That is

PR = tR,1
B B + tR,1

G G

PG = tG,1
B B + tG,1

R R with tR,1
B + tR,1

G = 1, tG,1
B + tG,1

R = 1 and tB,1
R + tB,1

G = 1.
PB = tB,1

R R+ tB,1
G G

Now, as an initial iteration of the RGB searched for, we consider (R1, G1, B1) where:

R1 = rpi( tG,1
R +tB,1

R
2 · 255) G1 = rpi( tR,1

G +tB,1
G

2 · 255) B1 = rpi( tG,1
B +tR,1

B
2 · 255)

where rpi means the nearest integer.
We obtain an approximation P (1) of P looking for, among the values previously obtained, the

(X,Y, Z) values corresponding to the pure RGB: (R1, 0, 0), (0, G1, 0) and (0, 0, B1) and suming the
corresponding coordinates:

X(P (1)) = X(R1, 0, 0) +X(0, G1, 0) +X(0, 0, B1)
Y (P (1)) = Y (R1, 0, 0) + Y (0, G1, 0) + Y (0, 0, B1)
Z(P (1)) = Z(R1, 0, 0) + Z(0, G1, 0) + Z(0, 0, B1)
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Figure 2: Plane xyY CIE1931, points P and P (1) and its orthogonal projections.

From these we obtain the xyY CIE1931 coordinates of P (1), a point that approximates P with
the above RGB values.

For the next iteration we consider, on the space xyCIE1931, a new triangle T1 whose vertices,
called again R,G, and B for simplicity, are the chromatic coordinates of the new (R1, 0, 0) (0, G1, 0)
and (0, 0, B1) . Now we project orthogonally P and P (1) on the sides of the triangle T1 obtaining
respectively PR, PG and PB, and P (1)R, P (1)G and P (1)B.

PR = rR
BB + rR

GG
PG = rG

BB + rG
RR

PB = rB
RR+ rB

GG

P (1)R = sR
BB + sR

GG
P (1)G = sG

BB + sG
RR

P (1)B = sB
RR+ sB

GG

We can see points P, P (1) and its projections in Figure 2.
Iterating, we reach a triangle Tn whose vertices, called again R,G, and B for simplicity, are the

chromatic coordinates of (Rn, 0, 0) (0, Gn, 0) and (0, 0, Bn). We project P and P (n) on the sides of
the triangle Tn obtaining respectively PR, PG and PB, and P (n)R, P (n)G and P (n)B. Their values
are:

PR = rR
BB + rR

GG
PG = rG

BB + rG
RR

PB = rB
RR+ rB

GG

P (n)R = sR
BB + sR

GG
P (n)G = sG

BB + sG
RR

P (n)B = sB
RR+ sB

GG

In order to find a better approximation we can modified, for example, the values t by adding
to the its last value the half differences between the proportions of the projections of P and P (n):

tR,n+1
B = tR,n

B + 1
2
(
rR

B − sR
B

)
tG,n+1
B = tG,n

B + 1
2
(
rG

B − sG
B

)
tB,n+1
R = tB,n

R + 1
2
(
rB

R − sB
R

)
tR,n+1
G = tR,n

G + 1
2
(
rR

G − sR
G

)
tG,n+1
R = tG,n

R + 1
2
(
rG

R − sG
R

)
tB,n+1
G = tB,n

G + 1
2
(
rB

G − sB
G

)
Similarly to what we did in the first iteration we obtain new valuesRGB (Rn+1, 0, 0), (0, Gn+1, 0)

and (0, 0, Bn+1):

Rn+1 = rpi

(
tG,n+1

R
+tB,n+1

R

2 · 255
)

Gn+1 = rpi

(
tR,n+1

G
+tB,n+1

G

2 · 255
)

Bn+1 = rpi

(
tG,n+1

B
+tR,n+1

B

2 · 255
)

By using the ramps obtained at the beginning of the subsection we obtain the pure values (X,Y, Z)
associated to them. By summing them we obtain the (X,Y, Z) coordinates of a new approximation
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Figure 3: Luminance

of the point P . We compute its corresponding chromatic coordinates and obtain a new point
P (n+ 1) on the xyCEI1931 space.

Up to now, we have estudied the chromaticity. The next step is the study of luminance.
From the initial coordinates of P we get its luminance Y . We consider now that we have reached

the iteration n, and got the RGB values: (Rn, Gn, Rn). Due to the proportionality between the
R,G, and B values and since the luminance of a point with coordinates (Rn, Gn, Rn) are obtained
by summing the luminance of (Rn, 0, 0), (0, Gn, 0), (0, 0, Rn) we can say that,

(Rn+1, Gn+1, Rn+1) = K (Rn, Gn, Rn) and Yn = Y (Rn) + Y (Gn) + Y (Bn)

for some constant K. Then we must choose a suitable constant K.
The relationship of the luminance of red, green and blue dates of our display is represented

in Figure 3. We see that the color that provides the most luminance is green and the graphic
of the green has a approximate parabola shape that an approximation by least squares gives
Y (G) = 0.001832G2 (see Figure 3). Then G(Y ) =

√
Y

0.001832 and if Gn+1 = KGn, we then take

K = Gn+1
Gn

∼ Gn + α (G(Y )−G(Yn))
Gn

= 1 + α

Gn
(G(Y )−G(Yn)) .

We consider α = 1
2 and then

K = 1 + 1
2Gn

√ Y

0.001832 −
√

Yn

0.001832

 and

Rn+1 = rpi(K ·Rn) Gn+1 = rpi(K ·Gn) Bn+1 = rpi(K ·Bn)

We go iterating until they stabilize.

5 Results

To discriminate the advantages or disadvantages of the method we will measure with the colorimeter
9260 RGB coordinates. We will apply the described method, using different stopping criteria, to
the corresponding 9260 coordinates (X,Y, Z), and compare the obtained results with the initial
RGB values.

A smaller number of input data has generated good preliminary results of the chromaticity and
luminance as we can see in Figure 4.
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RGB measured xy measured (P) P(6) ||P-P(6)||
{150, 114, 222} {0.238211, 0.178435} {0.237616, 0.177402} 0.00119221
{222, 150, 114} {0.46001, 0.366537} {0.459551, 0.367301} 0.000891428
{246, 102, 138} {0.486608, 0.282426} {0.485899, 0.283513} 0.00129749

{54, 90, 66} {0.261584, 0.425806} {0.263327, 0.425545} 0.00176255
{150, 126, 114} {0.371154, 0.345913} {0.3719, 0.345883} 0.000746814

RGB measured xy measured (P) P(6) ||P-P(6)||
{150, 66, 30} {0.601293, 0.362987} {0.596861, 0.359555} 0.00560519

{114, 246, 126} {0.264215, 0.526032} {0.266775, 0.52416} 0.00317163
{198, 54, 114} {0.499097, 0.249962} {0.496406, 0.25482} 0.00555291
{78, 102, 30} {0.373003, 0.550964} {0.371467, 0.548853} 0.00261064

{102, 78, 222} {0.177777, 0.116012} {0.17579, 0.112613} 0.00393741

RGB measured xy measured (P) P(6) ||P-P(6)||
{174, 18, 54} {0.626028, 0.287795} {0.617277, 0.29718} 0.0128317
{30, 186, 30} {0.244618, 0.692386} {0.254722, 0.678603} 0.0170896
{54, 246, 186} {0.194573, 0.429994} {0.206681, 0.425796} 0.0128156

{6, 162, 78} {0.213521, 0.575475} {0.228894, 0.57077} 0.0160763
{18, 42, 90} {0.1365, 0.128646} {0.145565, 0.122745} 0.0108175

{126, 150, 18} {0.408498, 0.556402} {0.403706, 0.548295} 0.00941718
{78, 198, 210} {0.185331, 0.311377} {0.192844, 0.30827} 0.00812968

RGB measured RGB obtained Iterations
{150, 114, 222} {150, 114, 221} 4
{222, 150, 114} (221,151,113) 5
{246, 102, 138} (244,104,137) 3

{54, 90, 66} (54, 90, 65) 7
{150, 126, 114} {149, 126, 114} 2

RGB measured RGB obtained Iterations
{150, 66, 30} (151,66,34) 3

{114, 246, 126} (119,245,127) 7
{198, 54, 114} (195,59,112) 4
{78, 102, 30} (77,102,31} 7

{102, 78, 222} (103,77,226) 4

RGB measured RGB obtained Iterations
{174, 18, 54} (170,36,51) 13
{30, 186, 30} {47,185,34} 7

{54, 246, 186} (79,244,185) 7
{6, 162, 78} (40,160,75) 7
{18, 42, 90} (29,39,94) 6

{126, 150, 18} (126,150,31) 5
{78, 198, 210} (90,196,209) 6

Figure 4: First results on chromaticity and luminance.

6 Conclusions

Based on a recent precise direct model for display characterization we have proposed in this paper
an iterative method to solve the inverse model problem. The main advantage of the proposed
method is its ability to converge in very few iterations to a very accurate result. As future work,
we aim at testing the model in a range of different displays and compare extensively with methods
in the state of the art.
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1 Introduction

Polynomial algebras emerged during the decade of the 1990 [3] as a tool to propagate efficiently sets
of points around an initial condition x0. They were first used in the study of particle accelerators.

The main idea of a polynomial algebra approach is to approximate a function g(x) by a poly-
nomial P (ξ) in such a way that P (ξ) ≈ g(x0 + ξ). This technique is usually applied to functions
like Poincaré maps, flow maps, etc. The polynomial approximation of functions is equivalent to
the floating-point approximation of real values. As it is the case of the floating-point, where the
real numbers are truncated up to a given number of digits, the polynomials are truncated up to a
given order N . Therefore, Jets (or truncated polynomials) are used to approximate functions. The
larger is the order N the better is the approximation of the function.

The use of polynomial arithmetics has been widely extended for the last decades. Some examples
of its implementation can be found in [8, 9]. Using such arithmetics, given two truncated series
Sa and Sb one can compute the jet of all the classic operations, like products Sa · Sb, additions
Sa +Sb, or divisions Sa/Sb (assuming that the independent term of Sb does not banish), as well as
exponentials, logarithms or trigonometric operations, among other. For instance, if Sa = ∑n

i=0 aiξ
i

and Sb = ∑
i=0 biξ

i. Then, the coefficients of Sc = Sa · Sb = ∑
i=0 ciξ

i and Sd = Sa/Sb = ∑
i=0 diξ

i

are given by:

ci =
i∑

j=0
ai−jbj , cn =

an −
∑n

j=1 cn−jbj

b0
. (1)

These techniques have been used in several applications. The main one is in the propagation of
ordinary differential equations. In [3] the bases of the technique were introduced. Later on, [1,2,10]
used it to study and propagate trajectories and its uncertainties in the evolution of spacecrafts and
asteroids. In [4, 5] the same ideas were applied in the modification of a Kalman filter and in the
orbit determination with uncertainties. From a theoretical point of view, [6] used the jet transport
technique to compute periodic orbits of delayed differential equations and [7] computed high order
expansions of invariant manifolds around tori of high dimension.
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As can be observed in the bibliography, the Jet Transport is widely used in the context of the
propagation of differential equations. However, there are other fields where it can be used. One of
those applications is in the solution of non-linear equations with parameters.

Let us consider a non-linear equation f(x) = 0. Usually, such equation can be solved numerically
by means of iterative methods such as Newton’s method:

xk+1 = N(xk) = xk −
f(xk)
fx(xk) .

If the initial seed x0 is close enough to the solution x⋆ of f(x) = 0, the iteration converges to x⋆.
In the following, let us consider a function f which depends on a parameter c. Hence, we want

to solve f(x, c) = 0. Therefore, we look for a solution x(c) such that f(x(c), c) = 0. It follows
from the Implicit Function Theorem that x(c) exists under regularity conditions. We want to find
x(c) = ∑

ai(c0 − c)i such that f(x(c), c) = 0. However, such solution x(c) may require an infinite
sum. Hence, we will restrict to a finite order polynomial approximation xN (c) = ∑N

i=0 ai(c0 − c)i.
In Section 2 we show how to use the jet arithmetics to solve an example of such problem. Let

c = c0 +ξ, and assume that x0 is a solution of f(x0, c0). The first step is to apply Newton’s method
to the function f(x, c0 + ξ) with the initial seed x0. We have that

xk+1(ξ) = xk(ξ)− f(xk(ξ), c+ ξ)
fx(xk(ξ), c+ ξ) .

We show that at each step there is an increasing number of coefficients that correctly approximate
x(c). In Section 3 we give the main result of the paper. There, we proof that at each iterate of the
procedure the number of vanishing coefficients of the Taylor expansion of f(xk(ξ), c0 + ξ) doubles.
Finally, in Section 5 we give some conclusions.

2 Preliminary example

Given the function f(x, c) = x2 + x + c, where c ∈ R, We want to find a parametric solution of
f(x, c) = 0 around c = c0 = 0. Notice that x = 0 is a solution of f(x, c0) = 0 (f(0, 0) = 0). The

exact solution is given by x(c) = −1 +
√

1− 4c
2 . The Taylor series of the previous function can be

computed by derivation, obtaining

x(c0 + δc) = −δc− δc2 − 2δc3 − 5δc4 − 14δc5 − 42δc6 − 132δc7 − 429δc8 − 1430δc9 + o(δc10).

Instead of using derivation, we can obtain the Taylor series of xc (up to a given order) applying
the Newton Polynomial Technique

xk+1 = xk −
f(xk, 0 + ξ)
fx(x, 0 + ξ) .

We look for a functional solution of f(x, c(ξ)) = 0, where c(ξ) = c0 + ξ = 0 + ξ. We take as
initial approximation of the constant solution x0(ξ) = 0, since f(x0(ξ), c(0)) = 0. After iterating
the procedure once, we obtain

x1(ξ) = x0(ξ)− f(x0(ξ), 0 + ξ)
fx(x0(ξ), 0 + ξ) = 0 + 02 + 0 + 0 + ξ

2 · 0 + 1 = −ξ.

Repeating the procedure and applying the polynomial algebra formulas 1 to the fraction we get

x2(ξ) = x1(ξ)− f(x1(ξ), 0 + ξ)
fx(x1(ξ), 0 + ξ) = 0 + (−ξ)2 − ξ + 0 + ξ

2(−ξ) + 1 = −ξ − ξ2 − 2ξ2 + o(ξ3)
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Counting the constant term, the power series of x1(ξ) has 2 exact terms. After applying the
procedure, x2(ξ) has 4 exact terms. As we will see, at each step of new Newton Polynomial
Technique we double the number of exact terms. Indeed, for x3(ξ) we get

x3(ξ) = −ξ − ξ2 − 2ξ3 − 5ξ4 − 14ξ5 − 42ξ6 − 132ξ7 + o(ξ8).

3 Main Theorem

In this section we formalize the results discussed up to now. This is the content of Theorem A.
Before stating the theorem, we define the concept of polynomial zero of a (sufficiently smooth)
function f(x).

Definition 1. A polynomial P (ξ) is a polynomial zero of order n of a function f if

f(P (ξ)) = 0 +O(ξn).

Theorem A. Let f(x, c) be a sufficiently smooth function depending on a parameter c ∈ R. Let
N(x) denote the Newton method using polynomial iterates,

Pk+1(ξ) = N(Pk(ξ)) = x− f(Pk(ξ), c0 + ξ)
fx(Pk(ξ), c0 + ξ) ,

and let P0(ξ) = x0 be the initial seed with f(x0, c0) = 0. Then, the iterate Pk(ξ) is a polynomial
zero of order 2k of f(x, c+ ξ).

Proof. We will prove the result by induction. Notice that the (constant) polynomial P0(ξ) = x0
is a polynomial zero of order 1 = 20. Indeed, by hypothesis we have that f(x0, c0 + ξ) = 0 +O(ξ).

For the sake of clarity, next prove that P1 is a polynomial zero of order 21. We have:

P1(ξ) = P0(ξ)− f(P0(ξ), c0 + ξ)
fx(P0(ξ), c0 + ξ)

= x0 −
f(x0, c0 + ξ)
fx(x0, c0 + ξ) .

Evaluating f using its Taylor expansion with respect to x around x0 we get:

f(P1(ξ), c0 + ξ) =f
(
x0 −

f(x0, c0 + ξ)
fx(x0, c0 + ξ) , c0 + ξ

)
=f(x0, c0 + ξ)− fx(x0, c0 + ξ)

(
f(x0, c0 + ξ)
fx(x0, c0 + ξ)

)
+ 1

2fxx(x0, c0 + ξ)
(
− f(x0, c0 + ξ)
fx(x0, c0 + ξ)

)2
+O

((
− f(x0, c0 + ξ)
fx(x0, c0 + ξ)

)3)
.

Using that f(x0, c0 + ξ) = 0 + α1ξ + o(ξ) we get that

f(P1(ξ), c0 + ξ) = 0 +O(ξ2).

We conclude that P1(ξ) is a polynomial zero of order 2 = 21.
We will use induction to prove the general case. The induction hypothesis is that the

polynomial Pk is a polynomial zero of order 2k, that is:

f(Pk(ξ), c0 + ξ) = O
(
ξ2k
)
.
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The polynomial Pk+1 is given by

Pk+1(ξ) = Pk(ξ)− f(Pk, c0 + ξ)
fx(Pk, c0 + ξ)︸ ︷︷ ︸

P̃k+1(ξ)

.

Evaluating f(x, c0 + ξ) at Pk+1 and using the Taylor expansion of f(x, c0 + ξ) with respect to
x around Pk(ξ) we get

f(Pk+1(ξ), c0 + ξ) =f
(
Pk(ξ)− P̃k+1(ξ), c0 + ξ

)
=f(Pk(ξ), c0 + ξ)− fx(Pk(ξ), c0 + ξ)f(Pk(ξ), c0 + ξ)

fx(Pk, c0 + ξ)

+ 1
2fxx(Pk(ξ), c0 + ξ)(−P̃k+1(ξ))2 +O

((
P̃k+1(ξ)

)3
)
.

By induction hypothesis we have f(Pk, c0 + ξ) = O
(
ξ2k
)

and, therefore

P̃k+1(ξ) = f(Pk, c0 + ξ)
fx(Pk, c0 + ξ) = O

(
ξ2k
)
.

Finally, we get

f(Pk+1(ξ), c0 + ξ) =1
2fxx(Pk, c0 + ξ)

(
f(Pk(ξ), c0 + ξ)
fx(Pk(ξ), c0 + ξ)

)2
+O

((
P̃k+1(ξ)

)3
)

=1
2fxx(Pk(ξ), c0 + ξ)

(
O
(
ξ2k
))2

+O
((
O
(
ξ2k
))3

)
=O

(
ξ2k+1)

.

4 Conclusions

This paper studies methods for solving non-linear equations using a polynomial algebra. The
method computes the solution, x(c0 + ξ), of the non-linear equation f(x, c0 + ξ) = 0. This is done
by approximating x(c0 + ξ) as a jet, P (ξ), and working with polynomial arithmetics in a Newton’s
method scheme. The main theorem of the paper shows that each iterate of the procedure, Pk(ξ),
multiplies by two the coefficients that vanish in f(Pk(ξ), c0 + ξ).
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1 Introduction

A modern approach to investigate the linear quadratic tracking control is the reinforcement learning
approach [5–7]. An online learning algorithm to investigate the linear quadratic tracking problem
for partially-unknown continuous-time systems is developed in [7]. A tracking algebraic Riccati
equation to solve the problem is derived. The reinforcement of on-line learning algorithm is applied
to the Riccati equation. The solution of optimal tracking of nonlinear affine and non-affine systems
is investigated in [6]. The optimal tracking control problem for linear systems subject to multiple
false-data-injection attacks is considered in [5]. This is considered as a problem for solving an
algebraic game theoretic Riccati equation. A Q-learning algorithm to solve the Riccati equation
is proposed. It is worth mentioning that the above studies have been done for time-invariant
control systems. Generally speaking, in practical examples, as mentioned above, various factors
as temperature varying, disturbance, unpredictable factors, lead us to systems that should be
time-varying. This is why, recently many researchers considered the time-varying case. See for
example [3], [9], [11], and the reference therein.

Moreover, the subject and applications of the backward jump matrix Riccati type differential
equations is intensively analysed by researches. The backward jump matrix linear differential
equations with Riccati type jump is a strong tool to investigate the control problems [1,2,4,8]. The
solvability of this type of the Riccati equation which is related with an optimal control problem with
random coefficients is analysed in [10]. The optimal control problem has an unique optimal control
in an affine state feedback form if and only if a jump Riccati type matrix differential equation
admits a stabilizing solution.

In this paper we consider a stochastic system described by Itô differential equations controlled
by impulses. The paper’s aim is to design a control u(t) to minimize the deviation of the controlled

1lucian.popa@uab.ro
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output z(t) from the reference signal r(t) under the given performance criterion. We prove the
equivalence between the solvability of a stochastic linear differential equation with jumps and the
solvability of a discrete-time linear equation. A definition of the concept of the mean square
stabilizability by impulses is introduced and applied in the investigation. We consider a backward
jump matrix linear differential equation (BJMLDE) with impulses driven by Riccati type operator
as a power tool of investigation.

We derive necessary and sufficient conditions which guarantee the existence of the bounded and
stabilizing solution of the BJMLDE. We prove several properties of the solution. Finally, we derive
the explicit formula of the optimal control which solves the introduced optimal control problem.

Let us consider the controlled system described by:

dx(t) = A0(t)x(t)dt+A1(t)x(t)dw(t), kh < t ≤ (k + 1)h (1a)
x(kh+) = Ad0(k)x(kh) +Bd0(k)u(k) + wd(k)(Ad1(k)x(k) +Bd1(k)u(k)), k ∈ Z+ = {0, 1, . . .},

(1b)
z(t) = C(t)x(t), t ∈ R+ = [0,∞), (1c)

where x(t) ∈ Rn are the state parameters, z(t) ∈ Rnz is the controlled output and u(k) ∈ Rm

are the control parameters; {w(t)}t≥0 is an 1-dimensional standard Wiener process defined on the
probability space (Ω,F,P), {wd(k)}k∈Z+ is a sequence of independent random variable with zero
mean and variance 1. The system (1a)-(1b) is a system of Itô differential equations controlled by
impulses, where the period between two impulses is h > 0, fixed.

Let r(·) : R+ → Rnz be a bounded and continuous vector valued function. In the sequel, r(·)
will be called ”reference signal” or simply ”reference”. Roughly speaking, our aim is to design
a control u(k), k ∈ Z+, which to minimize the derivation of the controlled output z(t) from
the reference signal r(t). For a rigorous setting of the output problem, let us describe the class
of admissible controls and to introduce a performance criterion. First, we make the following
assumption referring to the noises which affect the coefficients of the system (1).
(A1)

(a) The Wiener process, w(t), t ≥ 0 has the properties: w(0) = 0, E[w(t)] = 0, E[w2(t)] = t, for
all t > 0.

(b) The sequence of random variables {wd(k)}k≥0 has the properties: E[wd(k)] = 0, E[wd(k)wd(l)⊤] =
δkl, for all k, l ∈ Z+, where δkl being the Kronecker symbol.

(c) {w(t)}t≥0 and {wd(k)}k∈Z+ are independent stochastic processes.

Here and in the sequel E[·] stands for the mathematical expectation. For each t > 0, Ft ⊂ F is
the σ−algebra generated by the random variables w(s), wd(k) for all 0 < s ≤ t, k ∈ Z+ such that
kh < t augmented with all events Θ ∈ F such that P(Θ) = 0.

For each x0 ∈ Rn, the set of admissible controls Uad(x0) consists of all sequences u = {u(k)}k∈Z+

where for each k, u(k) : Ω→ Rm is a random vector Fkh−measurable and, additionally we have

sup
k∈Z+

E[|u(k)|2] <∞ (2a)

sup
t≥0

E[|x(t;x0,u)|2] <∞, (2b)

with x(·;x0,u) being the solution of the stochastic linear differential equation with jumps (JSLDE)
(1a)-(1b) corresponding to the input u and satisfying x(0;x0,u) = x0. To measure the quality of
the tracking of the reference signal r(t) by the controlled output z(t) of the system (1) determined
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by an admissible control u we introduce the performance criterion:

J(x0; u) = lim
n→∞

sup

 1
Nh

Nh∫
0

E[|z(t;x0,u)− r(t)|2]dt+ 1
N

N−1∑
k=0

E[u⊤(k)R(k)u(k)]

 (3)

where z(·;x0,u) = C(·)x(·;x0,u) is the controlled output of the system (1) determined by the
control u ∈ Uad(x0). The optimal control problem which we want to solve in this work ask for
finding an admissible control ũ ∈ Uad(x0) with the property that

J(x0, ũ) = min
u∈Uad(x0)

{J(x0; u)} (4)

2 A class of backward jump matrix linear differential equations
with Riccati type jumping operators

Based on the matrices involved in (1) and (3) we consider the following backward jump matrix
linear differential equation (BJMLDE) on the Hilbert space Sn :

− Ẏ (t) = A⊤
0 (t)Y (t) + Y (t)A0(t) +A⊤

1 (t)Y (t)A1(t) + 1
h
C⊤(t)C(t), kh ≤ t < (k + 1)h (5a)

Y (kh−) =
1∑

j=0
A⊤

dj(k)Y (kh)Adj(k)−

 1∑
j=0

A⊤
dj(k)Y (kh)Bdj(k)

 ·
·

R(k) +
1∑

j=0
B⊤

dj(k)Y (kh)Bdj(k)

−1 1∑
j=0

B⊤
dj(k)Y (kh)Adj(k)

 , k ∈ Z+. (5b)

One sees that the right hand side of (5b) has the form of a operator arising in a discrete-time
Riccati equation. That is way in the sequel (5) will be named BJMLDE with Riccati type jumping
operator.

In this work we are interested in solutions Y (·) : R+ → Sn of (5) which are bounded functions
and satisfy a condition of the form:

inf
k∈Z+

∣∣∣∣∣∣ det

R(k) +
1∑

j=0
B⊤

dj(k)Y (kh)Bdj(k)

∣∣∣∣∣∣ > 0. (6)

To derive the optimal control of the problem of the optimal control (4) a crucial role will be played
by the bounded and stabilizing solution of (5).

We give a proof that the the BJMLDE (5) has a bounded and stabilizing solution.

3 Results

We present our approach to solve the tracking problem. We derive the explicit formula of the
control ũ ∈ Uad(x0) which solves the optimal control problem (4). The main tools are the bounded
and stabilizing solution of the BJMLDE with Riccati type jumping operator (5) and the unique
bounded on R+ solution of the following BJLDE:

− φ̇(t) = A⊤
0 (t)φ(t) + 1

h
C⊤(t)C(t), kh ≤ t < (k + 1)h (7a)

φ(kh−) = (Ad0(k) +Bd0(k)F̃ (k))⊤φ(kh), k ∈ Z+, (7b)
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where {F̃ (k)}k≥0 is associated to the bounded and stabilizing solution Ỹ (·) of (5)
The main result of this work. It provides the control which solves the optimization problem

(4).

Theorem 15. Assume:

(a) the assumptions (A1) and (A2) hold;

(b) the BJMLDE with Riccati type jumping operator (5) has a bounded and stabilizing solution
Ỹ (·).

Under these conditions for each x0 ∈ Rn, the optimal control problem which is requiring the mini-
mization of the cost function (3) along the trajectories of the controlled system (1) determined by
the set of admissible controls Uad(x0) has a unique optimal control ũ = {ũ(k)}k∈Z+ The minimal
value of the cost function is

J(x0; ũ) = lim
N→∞

sup

 1
Nh

Nh∫
0

|r(t)|2dt− 1
N

N−1∑
k=0

φ̃⊤(kh)Bd0(k)Π−1
d (k, Ỹ (kh))B⊤

d0(k)φ̃(kh)

 . (8)

4 Conclusions

In this paper the linear quadratic tracking problem has been investigated for a class of impulsive
controlled stochastic systems. The infinite horizon case is taken into account. First, the concept
of mean square stability by impulses is introduced. Then, the proposed linear quadratic tracking
problem was transformed to a special optimal control problem for a backward jump matrix linear
differential equations with Riccati type jumping operators. Finally, the explicit solution of the
tracking problem was derived based on the bounded and stabilizing solution of the considered
optimal control problem. In addition, for the particular cases of periodic systems as well as time-
invariant systems the explicit formula of the tracking problem in derived.

It is worth mentioning that our approach can be extended to the finite/infinite horizon tracking
problems with preview for impulsive controlled stochastic systems.
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1 Introduction

In an interconnected world like ours, a cyber-epidemic is a real risk. A cyber-virus that spreads from
one device to another until it undermines the global Internet system with devastating consequences
in terms of economic costs and social damage related to the shutdown of essential services is not
so far of our reality. Since the first attempt to describe the spread of computer viruses [1], several
other studies have attempted to adapt classical, global or networked compartmental models.

In particular, the SIR model [2, 3] is one of the simplest compartmental models, and describes
the evolution of diseases resulting in the immunization or death of the infected individuals. The
model assumes that, at each time, each individual can be in one of three possible compartments:
susceptible (denoted by S), infected (I), or removed (R). The susceptible units of the network
are those healthy individuals that can develop the disease if they are in contact with infected
individuals. Once an individual contracts the infection, it moves into the infected (and infective)
compartment, and then, after some time, into the removed compartment, which indicates that the
individual cannot catch the disease anymore (or passes it on), due to a lasting resistance conferred
by the recovery (or because it dies).

Starting from the work by Pastor–Satorras and Vespignani [4], the last years have seen a burst
of activity on understanding the effects of the network topology on the rate and patterns of the
disease spread. A lot of studies have tried indeed to predict the total number of infected individuals,
the duration of an epidemic, or to estimate various relevant parameters such as the reproductive
number, among others. Moreover, and especially in relation to the recent COVID19 world pandemic
crisis, these models have been used to assess the effects of public health interventions and/or to
quantify the efficiency of issuing a limited number of vaccines in a given population [5, 6].

In our work [7], we introduce a new model for studying the spreading of a malware and the
awareness of its incidence through different waves which are evolving on the same graph structure
(the global network of connected devices). We show the evolution of a cyber-epidemic from the
moment a new virus is planted on the network, until some users(or one) realize that their devices
have been damaged and, consequently, initiates a wave of awareness that finally ends with the
development of a suitable antivirus software.
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Figure 1: The compartmental model for cyber-epidemics. Units of the network can be
in one of four possible states before recovery: susceptible-unaware (Su), susceptible-aware (Sa),
infected-unaware (Iu), and infected aware (Ia). The recovery or healed status (Ha) is by nodes
that, after getting aware of the existence of the malware, applies a suitable operation on the system.
Orange (blue) arrows stand for contact-based (localized spontaneous) transitions.
Source: Reprinted figure from Ref. [7].
©2022 with permission from Elsevier.

2 Results

In our model, we consider a wave of malware contagion as well as, but also a second wave of
awareness and actions to counteract it. That is, we define a vector version of the SIR model, in
which each susceptible or infected node is also aware or unaware of the existence of the virus. This
means that there are four possible states before recovery: susceptible-unknown (Su), susceptible-
aware (Sa), infected-unknown (Iu), and infected-aware (Ia), see Fig. 1. Finally, the nodes (devices)
whose users apply an appropriate operation on the system, for example, the installation of an
antivirus, after learning of the existence of the virus go to the recovery or cured state (Ha).

The transition probabilities between such states are mediated by four fundamental parameters,
whose meaning is directly linked to specific processes occurring during a cyber-epidemic:

• τ is the equivalent of the standard infection parameter in the SIR model. Here, it accounts
for the contact-based transition rate from the susceptible to the infected status. In the case
of Sa individuals, a different infection rate is used (τ ′ = τ/10),

• ν is the rate of spreading of awareness due to network contacts;

• µ accounts for the individual awareness parameter;

• γ is the recovery/healing parameter.

Symbol Description Range Chosen value
τ Infection rate [0,1] 0.0055
ν (Contact-based) awareness parameter [0,1] 0.011
µ0 (Spontaneous or local) awareness parameter [0,1] 0.011
γ Recovery parameter [0,1] 0.03
ρ0 Fraction of population initially infected [0,1] 0.01

Table 1: Summary of the parameters involved in the model.

Two types of transitions may therefore occur in our model: contact-based transitions and individual
(or contact-independent) ones. In individual transitions, the change of state is fully independent
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Figure 2: The typical cycle of a cyber-epidemic. The total number of Su, Sa, Iu, Ia and Ha

units (see legend for color code) vs. time, during a typical cyclic evolution of the virus. Simulations
refer to an ensemble average over 1000 realization of an Erdős-Rényi random network withN = 1000
nodes, average degree ⟨k⟩ = 10, threshold θ = 0.2 and constant damage d = 0.3. It is possible to
distinguish three different phases of the cycle: an initial phase of no awareness where more and
more nodes pass from the Su to the Iu state; a second stage, the awareness phase starting at around
t ∼ 30, when a given Iu node becomes Ia and ignites an awareness wave so that the total number
of both Ia and Sa grows by contact transitions; a final healing stage where all nodes turn to the
Ha state.
Source: Reprinted figure from Ref. [7].
©2022 with permission from Elsevier.

of the states of the rest of the devices, but is only due to the perception of the damage caused to
the device (in the case of the passage from the state Iu to the state Ia at rate µ) and/or the user’s
interest in using an antivirus (in the case of the passage from any aware state to the state Ha at
rate γ).

In our simulations, we initially prepare the network with all its units in the Su state. Then,
one node (or a small group of nodes) is turned to the state Iu, and contact propagations start,
producing an initial spreading of the virus. At a second time, i.e., when one of the infected users
gets aware of the damage produced by the cyber-virus in its device, a second wave (which spreads
awareness in the same network) starts due to an initial local transition from the state Iu to the
state Ia. Eventually, the entire cycle of the cyber-epidemic takes place, with an end state of the
network where all its units are in the Ha state.

To control how damaging a cyber-epidemic can be in a network of devices, we introduce the d
damage parameter in [0, 1] caused when a device is infected by the virus, and we quantify the total
damage caused to the system as the sum of the damage done to each of the devices. Finally, since
the µ parameter is entirely related to the damage done to a device, it is convenient to define it as
proportional to the d parameter. In addition, the µ parameter is activated depending on whether
it exceeds a threshold θ ∈ [0, 1], to take into account the user’s sensitivity to damage to the device.
The latter leads to the following expression with µ0 ∈ [0, 1]:

µ =
{
µ0(d− θ) if d ≥ θ,
µ = 0 if d < θ.

Figure 2 reports the total number of Su, Sa, Iu, Ia and Ha units vs. time during a typical cyclic
evolution of the virus. From the figure, one can clearly distinguish the three different stages of the
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Figure 3: Effects of network topology. D/N vs. d, for different choices of networks (Barabási-
Albert or Erdős-Rényi) of mean degree 6, 10 and 14 (see legend at the bottom of the figure for
color code) and different values of the threshold θ: a) θ = 0.2, b) θ = 0.4, and c) θ = 0.6.
Source: Reprinted figure from Ref. [7].
©2022 with permission from Elsevier.

cycle: an initial stage of no awareness where more and more nodes are infected (passing from the
Su to the Iu state), the beginning of the awareness phase (around t ∼ 30) when a given Iu node
becomes Ia and starts an awareness wave so that the total number of both Ia and Sa grows by
contact transitions, and the final healing stage where all nodes turn to the Ha state.

To quantify the total injury produced in the system by the cyber-virus during its cycle of
evolution, we introduce the quantity D/N accounting for the normalized sum of the individual
damages suffered by each node. Its value is obtained with multiplying d by the total number of
infected nodes during a cycle (regardless on whether they are in the state Iu or Ia), and dividing
by N . When d is below the threshold θ the presence of the cyber threat is never detected and, as
a consequence, the virus will propagate to all nodes in the network yielding D/N = (N · d)/N = d.
A non trivial behavior is instead observed for all values d > θ, where the awareness mechanism is
activated at a given time in the cycle.

As a first step, we face the problem of assessing how different topologies of the network react to
a virus (causing a constant damage d when infecting a device) at different values of the threshold
θ. With the aim of comparing homogeneous and heterogeneous topologies Fig. 3 illustrates the
results of our simulations, and reports D/N vs. d for Barabási-Albert [8, 9] scale free and Erdős-
Rényi [10] random networks, at different values of the mean degree ⟨k⟩ and different values of θ.
A first, even though rather trivial, evidence is that the global damage is higher for higher values
of θ, indicating that the harder it is for nodes to become aware, the more free is the cyber threat
to propagate without countermeasures. Finally, and more remarkably, the results shown in Fig. 3
allow to conclude that Barabási-Albert scale free (i.e., heterogenous) networks are more fragile,
and more sensitive to the spreading of viruses causing a fixed damage than Erdős-Rényi (i.e.,
homogenous) ones, in line with what was already known about their structural fragility against
intentional attacks [11].

We then move to consider the effects of a damage which is variable in time, that is, d = d(t),
where t is a discrete time measuring the number of iterations in the model (a time unit being the
lapse from one to another iteration of the networks’ nodes). Namely, starting at d0 = 0.1, the

221



Modelling for Engineering & Human Behaviour 2022

D
/N

BA, q = 0.2ER, q = 0.2 BA, q = 0.6ER, q = 0.6

0.2

0.4

0.6

0

Time varying

Fixed max

a b c

0 0.25 0.750.5 1 0 0.25 0.750.5 1
3 3

0 0.25 0.750.5 1 0 0.25 0.750.5 1
3 3

Ck D = 6 Ck D = 10 Ck D = 14

d

Figure 4: Effects of time varying damage. D/N vs. ε (see text for definition), for different
choices of networks (Erdős-Rényi in the left column and Barabási-Albert in the right column) of
mean degree 6, 10 and 14 (see legend at the bottom of the figure for color code) and different values
of the threshold θ: a,b) θ = 0.2, c,d) θ = 0.6. In all panels the maximal injuries achieved by a fixed
strength virus (the global maximum of the curves of Fig. 3) are reported with horizontal dashed
lines.
Source: Reprinted figure from Ref. [7].
©2022 with permission from Elsevier.

damage is increased in times as

d(t) = d0eεt

1 + d0(eεt − 1) , (1)

for some ε > 0. Note that the function d(t) is the logistic function with growth rate ε, initial
population d0 and carrying capacity 1, so that it displays an exponential behavior (d(t) ≈ d0eεt)
when t ≈ 0 and approaches 1 when t→∞. Choosing the logistic function as the damage function
is ideal in the model, as the intentions of the bad team is precisely that of spawning as much
damage as possible before the virus is detected by users.

Fig. 4 reports D/N vs. ε, for both Erdős-Rényi (left column) and Barabási-Albert (right
column) at different mean degrees and different values of θ. For comparison, in the same figure the
maximum possible injury caused to the system by a fixed strength virus is reported by horizontal
dashed lines. One can easily see that, as a function of ε, D/N displays an initial monotonic growth
and an asymptotic behavior for ε→ 1, featuring a local maximum for some 0 < ε̄ < 1. Remarkably,
one can notice that for low values of the threshold, there is a range of ε for which the amount of
injury inflicted to the system is actually higher than the maximum at constant base damage. On
the contrary, at high values of θ (i.e., when security is not so demanding), viruses whose base
damage is given by Eq. (1) cause an overall injury which is comparable with the maximal value at
constant damage strength.

3 Conclusions

In conclusion, we have introduced a novel compartmental model that describes the spread of mal-
ware (and knowledge of its occurrence) in a given network of devices. The novelty of our approach
is to consider vector compartments formed by two components the first describing the state of the
device with respect to the spread of the virus, and the second the awareness of the device user
about the presence of the cyber threat.
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We then illustrate the global damage that a malware is capable of producing in Erdős-Rényi
and scale-free architectures both for the case where the virus causes fixed damage on each device
and for the case where, instead, the virus is that the virus is designed to mutate as a function of
time.
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1 Introduction

Mathematical modeling has become an essential tool in the study of dryland ecosystems, help-
ing analyze threshold-type dynamics and identify critical factors that can affect degradation and
restoration trajectories. Different types of dryland vegetation models have been proposed in the
literature, with different methodological approaches, species and responses. In order to reflect the
effect of past information of the system on the dynamic behavior of the models, it is often nec-
essary to include time delays into the models. It is well known that the inclusion of delay terms
in population models may fundamentally impact the dynamics of a system, which may result in
stability changes and the presence of oscillations and periodic solutions (e.g., [1, 2]).

In this work, a mean field approximation to a cellular automata model that integrates basic
ecological processes in drylands [3], including the effect of surrounding vegetation on favouring
plant establishment and facilitating recovering from soil degradation, is considered. Both discrete
and distributed time delay terms, to account for the effects of cumulated seed bank on plant estab-
lishment and of past continuous vegetation cover on soil recovery, are incorporated. Distributed
delay terms with gamma type kernels are considered, and the so called linear chain trick is used
in the analysis [4, 5]. The dynamics of the models is analysed in terms of equilibria, stability, and
the presence of bifurcations, both depending on a parameter representing environmental conditions
and on the effects of delays.

2 Methods and Results

The spatially explicit cellular automata model in [3] included three possible states, vegetated,
empty and degraded, for each site in a rectangular mesh. The derived spatially implicit mean
field approximation model [6] considers the frequencies for each type of state. Since the sum of
frequencies total one, the model can be reduced to a system of two independent equations [3],
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x′(t) ≡ dx(t)

dt
= −mx(t) + (1− x(t)− y(t))x(t)(b− cx(t))

y′(t) ≡ dy(t)
dt

= d(1− x(t)− y(t))− y(t)(r + fx(t)),

where x and y represent, respectively, the frequencies of vegetated and degraded states, so that
x, y ≥ 0 and x+ y ≤ 1, the frequency of the empty state being 1− x− y.

There are six parameters in the model, m (mortality), c (competition), b (plant establishment),
d (degradation), r (regeneration), and f (facilitation). Vegetation may disappear at a rate m
and recover, from empty sites and depending on seed production, at a maximum rate b, which is
diminished by competition (c). Degraded sites are unable to sustain new vegetation, and they are
originated, from empty sites, at a constant rate d, and recovered, into empty sites, at a constant
rate r increased by facilitation (f) depending on surrounding vegetation.

There are two terms in this model where it is reasonable to expect and consider delay effects,
revegetation of empty sites and vegetation-dependent regeneration of degraded soil. Production of
seed is not immediate, and plant establishment may depend on seeds produced the previous season
or cumulated during a certain period, leading to models with either discrete or distributed delays.
The effect of vegetation on recovery is almost certainly cumulative, with maintenance of vegetation
helping improve soil properties, and so a distributed delay would be a reasonable choice.

The inclusion of a discrete delay in the first equation of the model was considered in [7],{
x′(t) = −mx(t) + (1− x(t)− y(t))x(t− τ)(b− cx(t))
y′(t) = d(1− x(t)− y(t))− y(t)(r + fx(t)),

showing that the presence of the delay could help recovery after disturbances. In this work dis-
tributed delays are introduced in the form of Gamma kernels,

gp
a(t) := aptp−1e−at

(p− 1)! ,

that is, the density function for a Gamma distribution with parameters a > 0 and p = 1, 2..., so
that

∫∞
0 gp

a(t)dt = 1.
We consider different models, including distributed delays in the revegetation term,

x′(t) = −mx(t) + (1− x(t)− y(t))(b− cx(t))
∫ t

−∞
gp

a(t− s)x(s)ds,

or in the vegetation-dependent facilitation,

y′(t) = d(1− x(t)− y(t))− y(t)
(
r + f

∫ t

−∞
gp

a(t− s)x(s)ds
)
,

as well as combinations of either discrete or distributed delay in the first equation and distributed
delay in the second one.

In particular, we use so called weak (p = 1) and strong (p = 2) Gamma kernels (Figure 1). In
these type of kernels, the average delay is given by p/a, with variance p/a2 (Figure 2), so that a
discrete delay τ can be recovered as the limit case when p→∞ and a = p/τ .

For these type of kernel, the so called linear chain trick [4,5] can be used to convert the system
with delays into an extended ordinary differential equations system. Thus, for instance, the model{

x′(t) = −mx(t) + (1− x(t)− y(t))x(t− τ)(b− cx(t))
y′(t) = d(1− x(t)− y(t))− y(t)

(
r + f

∫ t
−∞ gp

a(t− s)x(s)ds
)
,
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Figure 1: Weak (p = 1, left) and strong (p = 2, right) Gamma kernels.

Figure 2: Weak and strong Gamma kernels with different average delays and variances.

with p = 1, introducing the new variable

z(t) =
∫ t

−∞
ae(t−s)x(s)ds,

can be transformed into the system


x′(t) = −mx(t) + (1− x(t)− y(t))z(t)(b− cx(t)),
y′(t) = d(1− x(t)− y(t))− y(t)(r + fz(t)),
z′(t) = ax(t)− az(t).

Similarly, for the same model with p = 2, defining two new variables,

z(t) =
∫ t

−∞
a2(t− s)e(t−s)x(s)ds,

w(t) =
∫ t

−∞
ae(t−s)x(s)ds,
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it can be transformed into the system
x′(t) = −mx(t) + (1− x(t)− y(t))x(t)(b− cx(t)),
y′(t) = d(1− x(t)− y(t))− y(t)(r + fz(t)),
z′(t) = aw(t)− az(t),
w′(t) = ax(t)− aw(t).

Equilibrium points, stability and bifurcations

For all the models considered here, with or without delays, there is one trivial equilibrium point
with no vegetation (x = 0, y = d/(d + r)), called desert state, and possibly up to two equilibria
with positive vegetation given by the solutions in (0, 1] of the third degree equation

g(x) = cfx3 + (−cf − bf + rc)x2 + (−mf + bf − rc− br)x−md−mr + br.

Hence, for a certain range of parameter values, there can be two non-trivial equilibria (Figure 3,
left), with two stable states (desert and vegetated) separated by an unstable equilibrium.

Figure 3: Left: Stable (blue) and unstable (dashed red) vegetation equilibria, and bifurcation
points (LP and BP), as function of plant establishment (b). Right: Bifurcation analysis depending
on parameters b and f .

.

Linearising at equilibria points, and with standard stability analyses, it can be shown that the
presence of different types of delays do not alter the stability properties of equilibria in the different
models. As a function of plant establishment, the parameter best representing environmental
conditions, all the models exhibit a limit point (fold bifurcation) and a branch point (LP and BP
in Figure 3 left), at the critical values of b defining the region of bistability. As function of the two
parameters b and f , there is a cusp bifurcation (CP in Figure 3 right), showing that there needs
to be a minimum level of facilitation for the model to exhibit bistability.

Recovery from perturbations

The presence of either discrete or distributed delays in the different models affect the capacity of the
system to recover from random disturbances. As shown in Figure 4, after a decrease in vegetation
from the equilibrium vegetated state, the presence of a delay allows the system to recover, but not
below a certain critical value of the delay.

A more detailed analysis can be obtained by considering all possible perturbations from veg-
etated equilibrium, both in vegetation and degraded states frequencies. Different magnitudes of
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Figure 4: Dynamics of vegetation (blue) and degraded sites (ochre) after perturbation from vege-
tated equilibrium in the models without delay (top left) and with distributed delay in the revege-
tation term with p = 2 and different average delay values (top right: a = 10; bottom left: a = 143;
bottom right: a = 145).

perturbations are simulated by displacing the system to new x and y values, and the final equi-
librium state, with or without vegetation, is obtained. As shown in Figure 5, for a model with
distributed delay in the vegetation-dependent facilitation term, the presence of a delay reduces the
basin of attraction of the desert state, helping the recovery of vegetation.

3 Conclusions

The mean field dryland vegetation models considered in this work, both with and without discrete
and/or distributed delays, may exhibit bistability for a range of environmental conditions, as rep-
resented by plant establishment (b), with the presence of a fold bifurcation for a critical value of b,
also depending on a minimum level of facilitation.

The presence of a time delay affecting either revegetation or vegetation-dependent facilitation
of recovery from the degraded state may increase the regeneration capacity of the system after
random disturbances from equilibrium, reducing the basin of attraction of the desert state, with
the need of a minimum critical level of delay for this effect to happen.
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Figure 5: Final state of the system, vegetated (green) and desert (ochre) in the models without
delay (left) and with a distributed delay in the vegetation-dependent facilitation term with p = 1
and a = 0.5 (right), after different levels of perturbations from vegetated equilibrium
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[3] Kéfi, S., Rietkerk, M., van Baalen, M., and Loreau, M., Local facilitation, bistability and
transitions in arid ecosystems, Theoretical Population Biology, 71: 367–379, 2007.

[4] Cushing, J.M. Integrodifferential Equations and Delay Models in Population Dynamics.
Springer, Heidelberg 1977.

[5] Smith, H. An Introduction to Delay Differential Equations with Applications to the Life Sci-
ences. Springer, New York, 2011.

[6] Morozov, A., Poggiale, J.-C. From spatially explicit ecological models to mean-field dynamics:
The state of the art and perspectives, Ecological Complexity 10: 1–11, 2012.

[7] Lachachi, F.Z., Medjahdi, I., Castro, M.A., Rodŕıguez, F. Stability, bifurcations, and recovery
from perturbations in a mean-field semiarid vegetation model with delay. In: J.R. Torre-
grosa, J-C. Cortés, J. A. Hervás, A. Vidal-Ferràndiz and E. López-Navarro, eds. Modelling
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Universitat Politècnica de València
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1 Introduction

Currently, prior to pavement maintenance, periodic monitoring campaigns are considered, together
with visual inspections, to detect pavement deterioration (corrective/preventive maintenance). In
these campaigns, the International Regularity Index (IRI) is measured, which indicates whether
there are irregularities in the pavement that may negatively influence the driver’s comfort and
convenience and that may affect traffic safety. However, current high-precision systems are slow
and/or costly procedures.

2 Methodology

The project has developed a solution that achieves: on the one hand to obtain an auscultation
vehicle from a conventional vehicle capable of recording, at conventional operating speed (80km/h),
the International Roughness Profile (IRI), all with high accuracy and on the other hand, as an added
value, the system is able to provide a survey of the defects detected, a prediction of the evolution
of the roughness and a maintenance plan, all automatically, continuously and in real time. The
proposed system consists of 4 subsystems:

2.1 Hardware subsystem

• 2 triaxial accelerometers, which are installed one on the fixed mass of the vehicle and the
other on the suspended mass, The accelerometers used are MEMS type with a measurement
range of ±6 g and a bandwidth of 1000 Hz.

• A 6-channel analog data acquisition system (3 for each accelerometer) with high resolution
(16 bits) and a sampling rate of 2000 Hz.
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• A Global Positioning System (GPS).

• An On Board Diagnostics II (OBD-II) reader or interface.

2.2 Communication subsystem

To facilitate the installation of the device, the hardware has been divided into two units, the
NODEBOX (in charge of taking the accelerometer measurements) and the COMMUNICATION
BOX (in charge of taking the OBD and GPS measurements, storing the NODEBOX data and
sending them to the server). The communication between the two units is done through a TCP
socket via a Wi-Fi connection. Finally, through another TCP socket, the data is sent to the web
server by means of 4G module.

2.3 Software subsystem

The SOFTWARE system: consists of four algorithms:

• Obtaining the IRI: algorithm based on the quarter car model obtains the roughness profile
of the road.

• Defect detection: the algorithm uses a Wavelet Space Scale filter to extract the acceleration
peaks due to the presence of defects, then by means of a shape analysis it classifies the defect
into bumps or potholes and quantifies its intensity and size.

• IRI prediction: from periodic readings of the roughness of a road and its characteristics by
means of a neural network, the algorithm is able to predict the evolution of the roughness of
the road.

• Predictive maintenance: from the previous results, the algorithm is able to detect the pathol-
ogy suffered in a section of the road and propose a series of actions for its correction.

Obtaining the IRI

The roughness profile is obtained from the measured accelerations and the vehicle position according
to the following expression (developed from the quarter car model): [1]

W = Zu + MsZ̈s +MuZ̈u

Kt
, where Zu =

∫ ∫ T

0
Z̈u dt (1)

The Golden Car simulation is carried out on the profile obtained [2]:

MsZ̈s + Cs(Żs − Żu) +Ks(Zs − Zu) = 0
MuZ̈u − Cs(Żs + Żu)−Ks(Zs − Zu) +Kt(W − Zu) = 0

}
→ ẋ = Ax+B hps (2)

Finally, with the accelerations obtained from the simulation, the IRI is obtained according to
its definition:

IRI = 1
L

∫ L
v

0
|Żs − Żu| dt (3)

231



Modelling for Engineering & Human Behaviour 2022

Defects detection

Defect detection is based on Wavelet transforms:

f(x) =
J∑

j=1

K∑
k=1

ψj,k(x)W (j, k) (4)

Specifically, the Scale Space Filter (SSF) is used, the mother function is the db2 of the Daubechy
family of functions of order 2 and the spatial correlation of order Ω2(j, k) is used as the identification
signal. [3].

Ω2(j, k) = W (j, k)W (j + 1, k) (5)

The developed algorithm [4] follows the following steps to obtain the new filtered Wavelet
coefficients Wnew(j, k) These coefficients are used to identify abrupt changes in acceleration due to
the presence of potholes or bumps on the road.

Predictive maintenance

As for the future IRI prediction algorithm, a NARX [5] type neural network is used for this purpose,
and the inputs are a characterization of the road and the previous measured IRI values.

In order to simplify maintenance, an algorithm for the recognition of the different defect patterns
has been developed and a database of the most appropriate correction method for each of the
typologies has been established [6].

3 Results

3.1 Results of IRI measures

To validate the system as a profilometer, a series of tests were carried out on the CV-101 and CV-
240. Both sections are single carriageway roads with 2 lanes, one in each direction of approximately
2 km in length. A total of 4 passes were made on each lane in order to compare the different
measurements. The IRI deviation obtained a maximum value of 0.3352 m/km for CV101 C2 and a
mean value of 0.2837 m/km. Comparing these measures with the values obtained by a commercial
system (Greenwood laser profilometer) obtained errors are less than 0.5 m/km, the average being
around 0.39 m/km.

Figure 1: IRI measures over CV101
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Mean errors (m/km) CV101 C1 CV101 C2 CV240 C1 CV240 C2
P1 0.4520 0.4805 0.3118 0.2712
P2 0.4023 0.3250 0.3509 0.4183
P3 0.4813 0.6130 0.2770 0.3248
P4 0.4105 0.4823 0.3421 0.3410

Mean 0.4353 0.4635 0.3191 0.3348

Table 1: Mean error of different measures

CEDEX certification

The equipment was then subjected to the annual intercomparison test of regularity index measure-
ment equipment organized by CEDEX. The test was carried out over A1 from pk 70 to 79.

Figure 2: IRI measures over A1 pk 79 to 70

The results obtained for the section in question can be seen in the following graphs in both
directions, for the measurements a deviation of 0.135 and 0.178 m/km was obtained.

According CEDEX results, the system got an average deviation of 0.07 mm/km between their
runs, which is good parameter. But the problem appears when comparing it with the reference
values, where an average error of 11.9% is obtained, this is increased by the number of passes made
with a

√
3, where the value of 20.6% is obtained while the rest of the teams were around 10%. For

this reason, the results were negative.

Improvements

In order to improve the results of IRI, some modifications were made to the hardware and software.

• Improve crystal precision with changes of temperature, change internal crystal of 4% stability
by external with 25ppm (± 0,0025 %).

• News accelerometers developed by Microsensor are 5 times more accurate (Nonlinearity =
0.1% (0,5%) and Transverse sensitivity = 1% (5%).

• Install accelerometers on the rear axle (reduce influence of motor vibration)

• Calibrate with real IRI measures (nowadays is calibrated to improve repeatability)

• Calibrate or compare with obtained profile (calibration is done by only IRI measures)

• Filter acceleration with other family of filters (currents filters are based in FFT it presents
distortions around localized disturbances “potholes and bumps”)
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• Compare Golden-Car algorithm with a commercial software (Profile to IRI)

• Change quarter-car model by half-car model or complete model (reduce influence of vibration
due to other wheels)

Results and improvements

Once improvements have been made, tests have been carried out with the Applus auscultation
vehicle to check the improvement in the system’s operation and to carry out the proposed software
improvements. The test has been carried out according to the instructions followed during the
CEDEX tests and the results have been analysed according to the same procedure. To obtain the
reference measurements, a conventional Applus laser profilometer (certified by the CEDEX test)
was used.

Figure 3: IRI measures over M30 pk 2 to 8

According to this analysis, an average error of 7.11% is obtained. The error obtained is much
better than the one obtained in the CEDEX tests. It is estimated that the improvement in the
results is due to the improvement in the acquisition times. The use of the higher precision external
crystal allows less error in the positioning of the data.

Work continues to improve the software, especially with the use of alternative filters to the
FFT. An improvement in the influence of anomalies has been observed with Hanning filtering.

With the current results and improvements being developed, the device is expected to be ready
to pass the next CEDEX test.

3.2 Results of defect detection algorithm

A series of tests were then carried out to validate the defect detection and classification algorithm.
Some tests were carried out to see the general functioning of the algorithm, the defects that were
passed were marked manually. Here we can see in red triangle the defects identified manually, and
the defects detected by the algorithm bumps (circles) and the potholes (squares).
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Figure 4: Defect detection results

4 Conclusion

• Nowadays, the system allows obtaining roughness profiles (IRI) with a mean standard devi-
ation lower than 0.2 m/km.

• Several improvements have been implemented:

– Improved location accuracy, (Start and end route identification)
– Improved correlation between acceleration, GPS and OBD data.
– Improved time accuracy

• Several improvements are currently being made to improve the accuracy of the equipment:

– Filtering engine vibration
– Improved compensation for changes in speed.

• Validation plan of the defect detection algorithm in a real environment have been developed

• With all these improvements, it is expected to achieve the objective precision
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1 Introduction

One of the major problems of recent decades is environmental pollution. Among the various causes
of contamination, human activity is one of the main ones. Intense industrial activity has brought
with it multiple ecological damages, including the generation of polluting wastes and residues that
have a negative impact on the environment. At present, one of the serious consequences of envi-
ronmental problems is water pollution, especially the discharge of toxic industrial effluents such as
lead, copper or organic dye waste into wastewater [2–5,5]. The effects of pollutants cause detrimen-
tal impacts on both the environment and human health [2, 3]. These can be avoided by treating
contaminated wastewater. In recent years, numerous techniques such as reverse osmosis [2, 4],
ultrafiltration [6], photocatalysis [6], electrochemical degradation [6], coagulation [2,4] and adsorp-
tion [2, 3, 6], among others, have been studied and applied to remove pollutants from wastewater.
Adsorption has been recognized as superior to other techniques due to its high efficiency, simple
design, easy operation and maintenance, and availability of different adsorbents at relatively low
cost [2, 4–6,6, 8, 9].

Adsorption is a surface phenomenon in which atoms, ions or molecules are trapped or deposited
on the surface of a material. The efficiency of this process is studied by means of adsorption kinetics,
since it provides important information on the rate and mechanism of adsorption, as well as on
the time required for the adsorption process to complete [8–10]. In the literature we can find
several models that have been developed to describe the adsorption kinetic process such as the
pseudo-first-order model [11], the pseudo-second-order model [12], the Ritchie’s equation [13] or
the Elovich model [14], the first two being the most widely used. In the present work, we will
introduce the pseudo-n-order (PNO) equation, whose form is as follows

dq(t)
dt = kn(qe − q(t))n, n > 1, (1)

where q(t) represents the adsorption capacity at time t (mg/g), n the reaction order, qe the ad-
sorption capacity at equilibrium (mg/g) and kn the rate ratio ((mg/g)1−n min−1), which, in turn,
has the following expression
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kn = r

qn−1
e

, (2)

where r is the adsorption rate (min−1). For further details, see [10].
By integrating equation (1) yields the exact solution of the PNO model

q(t) = qe

1−
(

1
1 + t(n− 1)knq

n−1
e

) 1
n−1
 , (3)

and substituting kn for expression (2) the following expression is ensured

q(t) = qe

(
1−

( 1
1 + t(n− 1)r

) 1
n−1
)
, (4)

where the parameters qe and r are strictly positive and n > 1.
In many studies these parameters are considered deterministic. However, they are calculated

from experimental data, so they have measurement errors, and depend on molecular properties that
are not completely know and also on random external factors such as temperature or humidity,
so they contain an intrinsic uncertainty [10]. Therefore, it is more convenient to consider them
as random variables. Consequently, this leads to the equation (1) becoming a random differential
equation, the solution of which will now be a stochastic process of the following form

q(t, ω) = qe(ω)
(

1−
( 1

1 + t(n(ω)− 1)r(ω)

) 1
n(ω)−1

)
, ω ∈ Ω, (5)

where qe(ω), r(ω) and n(ω) are assumed to be absolutely continuous random variables defined on
a common complete probability space (Ω,FΩ,P), with a known joint probability density function
(PDF) f0(qe, r, n). For simplicity, the ω-notation related to the sample dependence for random
variables will be omitted.

This document is organized as follows. In section 2, we will determine the first probability
density function (1-PDF), f1(q, t), of the solution (5). In section 3, the PNO random model is used
to model the adsorption of cadmium on the tree fern, in order to apply the theoretical results to
real case. Conclusions are drawn in the last section.

2 Computing the 1-PDF of the solution

This section is devoted to determine the 1-PDF of the solution of the PNO random model described
in (5). For this purpose, we will apply the Random Variable Transformation (RVT) technique [10].
In this way, we will obtain a complete probabilistic information of the proposed model.

We set t > 0 and we apply the RVT technique using the following identification

v = (qe, r, n), fv(v) = f0(qe, r, n),

w = (w1, w2, w3) = r(qe, r, n),

being the mapping r : R3 −→ R3 and its inverse s : R3 −→ R3 given, respectively, by

w1 = r1(qe, r, n) = qe ⇒ qe = s1(w1, w2, w3) = w1,

w2 = r2(qe, r, n) = qe

(
1−

( 1
1 + t(n− 1)r

) 1
n−1
)
⇒ r = s2(w1, w2, w3) =

(
1− w2

w1

)1−w3 − 1
t(w3 − 1) ,
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w3 = r3(qe, r, n) = n ⇒ n = s3(w1, w2, w3) = w3.

As qe = w1 > 0, n = w3 > 1 and 0 ≤ q(t)
qe

= w2
w1

< 1, then
(
1− w2

w1

)1−w3
> 1 and r =(

1− w2
w1

)1−w3
−1

t(w3−1) > 0, so it follows that the inverse mapping is well-defined in the conditional proba-
bility space (Ω,FΩ,P[·|C]), where C = {ω ∈ Ω : qe(ω) > q(t, ω)}. But, due to the way the problem
is defined, this condition is guaranteed so the probability of event C is 1 on the above conditional
probability space.
The corresponding Jacobian is

J3 = 1
tw1(1− w2

w1
)w3

> 0.

Thus, the joint PDF of the random vector w = (w1, w2, w3) is

fw1,w2,w3(w1, w2, w3) = f0

w1,

(
1− w2

w1

)1−w3 − 1
t(w3 − 1) , w3

 1
tw1(1− w2

w1
)w3

.

Finally, considering an arbitrary t and taking into account that q(t, ω) = w2, we obtain the 1-PDF
of the solution (5) as follows

f1(q, t) =
∫ ∞

0

∫ ∞

1
f0

qe,

(
1− q

qe

)1−n
− 1

t(n− 1) , n

 1
tqe(1− q

qe
)n

dn dqe. (6)

From it, we can compute all the one-dimensional statistical moments of q(t, ω), such as the
mean, E[q(t, ω)] =

∫
R qf1(q, t)dq, or variance, V[q(t, ω)] =

∫
R q

2f1(q, t)dq − (E[q(t, ω)])2, and other
interesting features such as the probability that the solution lies within a particular interval of
interest, P[{ω ∈ Ω : a ≤ q(t, ω) ≤ b}] =

∫ b
a f1(q, t)dq, or the probability that the adsorbed amount

exceeds a given quantity q̂, P[{ω ∈ Ω : q(t, ω) > q̂}] =
∫∞

q̂ f1(q, t)dq.

3 An application

The aim of this section is to apply our proposed model together with the above theoretical results
to a real case, particularly in a chemical environment, to study cadmium adsorption on tree ferns.
In [16] they conclude that tree fern may be a suitable sorbate for sorption of metal cations due its
polar and acid characters. The data are shown in Table 1.

ti 0 4 5 10 15 20 30 45 60
qi 0 7.172414 8.022989 9.724138 9.793103 10.551724 10.574713 11.103448 11.195402

Table 1: Adsorption capacity of cadmium ions on tree ferns, qi, for different time instants ti,
i ∈ {1, 2, . . . , 9}. Source [16].

To meet the objective of this section, it is first necessary to establish a joint PDF of the model
parameters. Due to the physical significance of the variables, we can consider them independent,
so that f0(qe, r, n) in this case is the product of the marginals, f0(qe, r, n) = fqe(qe)fr(r)fn(n).
Therefore, a PDF must be assigned for each of the model parameters. This is a crucial step in
practice, since it is necessary to find appropriate parameter distributions that best capture the
data uncertainty.

238



Modelling for Engineering & Human Behaviour 2022

To do so, we are going to use the Random Least Mean Square (RLMS) method [17]. Considering
the positivity, boundedness and the available information of the random variables in the framework
of this chemical application we assume

qe ∼ Unif(a, b), a, b > 0,

r ∼ Ga(α, β), α, β > 0,

n ∼ NT (µ, σ2), T = [1, 3].

Nevertheless, the generality of the results presented in the previous section allows the choice of
probability distributions different from those already chosen, which is an advantage on a practical
level.
To know the 1-PDF of the solution, it is required to determine the parameters of the proposed
parametric distributions, since it depends on these. To this end, we will minimize the mean squared
error between the observed data, qi, and the expectation of the solution q(ti, ω; a, b, α, β, µ, σ)
evaluated at the time instants ti. This leads to the next optimization program

min
a,b,α,β,µ,σ,>0

9∑
i=1

(qi − E [q(ti, ω; a, b, α, β, µ, σ)])2 , (7)

where the expectation of the solution is calculated as indicated in section 2, with f1(q, t) being the
expression given in (6).
The output of the minimization problem (7) are the following local optimal values obtained using
the Nelder-Mead’s algorithm implemented in Mathematica© software

a = 10.9934, b = 12.1161, α = 42.0172, β = 0.009594, µ = 1.8858, σ = 0.3710.

Once the distributions of the model parameters have been estimated using the RLMS method,
we obtain the 1-PDF of the solution of the PNO random model, the graph of which is shown in
Figure 1.

Figure 1: Visual display of the 1-PDF of the solution of the PNO random model, f1(q, t), given in
equation (6), at time instants ti for i = 2, ..., 9, collected in Table 1.

It is observed that for each time instant, the PDF is concentrated approximately around the
adsorbed quantity registered, following a morphology quite similar to that of a Gaussian. It is also
observed that the density mass shifts with time towards quantities closer and closer to equilibrium
levels, with some leptokurtic tendency and some negative asymmetry.
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As mentioned above, from the 1-PDF we can get a broader analysis of the solution, thus
obtaining its expectation together with the 95% confidence interval, whose representation is shown
in Figure 2.

Real data

E[q( t ,ω)]

95%CI

10 20 30 40 50 60
t

2

4

6

8

10

12

mg/g

Figure 2: Visual display of the expectation (solid line) together with the 95% confidence interval
(dashed lines) of the solution of the PNO random model, which represents the probabilistic fit of
the data (points) indicated in Table 1.

Note that the expected value fits the data series well at all time points and that its evolution is
increasing over time and stabilizes around equilibrium. As for the 95% confidence interval, we note
that it captures the uncertainty coming from our data.

4 Conclusions

In this work we have proposed a randomization of a kinetic model formulated by differential equa-
tions to describe the chemical adsorption process. For this purpose, we have treated all the model
parameters as random variables with arbitrary distributions. Then, we have solved it proba-
bilistically by determining its respective first probability density function, thus obtaining a full
probabilistic description of the solution at each time instant. Given real data, we have shown an
uncertainty quantification technique for assigning appropriate distributions to all model parameters
when applying the PNO model to real-world data.
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1 Introduction

Let (E, ∥.∥) be a real Banach space, D be a nonempty closed and convex subset of E, T : D → D
a self map of D and x0 ∈ D. Suppose that FT = {p ∈ D | T (p) = p} is the set of all fixed points
of T in D.

Starting with a suitable initial guess x0, the recurrence process

xn+1 = Txn, n ≥ 0, (1)

is known as the classical Picard’s iteration. This iteration is locally convergent if |T ′(x)| < 1 for
all x ∈ [a, b].
Mann [1] defined the Mann iteration as

un+1 = (1− αn)un + αn Tun, (2)

where {αn}∞n=0 is a sequence of real numbers in [0, 1]. For αn = 1, (2) reduces to the well-known
Picard iteration.
Imoru and Olatinwo [2] proved the stability of Picard and Mann iterative schemes using the fol-
lowing contractive condition: there exists δ ∈ [0, 1) and a monotone increasing and continuous
function ϕ : [0,∞)→ [0,∞) with ϕ(0) = 0 such that for each x, y ∈ E,

∥Tx− Ty∥ ≤ ϕ(∥x− Tx∥) + δ ∥x− y∥. (3)
Very recently, Kanwar et al. [3] have proposed a new geometrically constructed iterative scheme

defined as follows:
xn+1 = mxn + Txn

m+ 1 , (4)
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where m ≥ 0 is a real number. When m = 0, it reduces to the well-known Picard’s iteration scheme.
The basic idea here is to approximate the nonlinear function y = T (x) by a linear approximation.
Geometrically, the fixed point occurs where the graph of linear approximation

y = mx+ T (x)
m+ 1 , (5)

intersects with the straight line y = x.
Khan [6] developed the Picard-Mann hybrid itertive process as:{

un+1 = Tvn,

vn = (1− αn)un + αn Tun,
(6)

where {αn}∞n=0 is a sequence of real numbers in (0, 1).

2 Development of new iterative scheme

There is a stiff competition among researchers to develop and identify the fastest fixed point
iteration schemes. This tough race has made significant advancement to the fixed point iterations
and fixed point theory in general. There are very few high quality iterative schemes available in
the literature.

With this aim, we propose a new family of iterative schemes having higher precision than some
of the widely used schemes in practice. The idea is to compute the fixed point using two nonlinear
curves rather than taking a straight line and a nonlinear curve.
In what follows, equations y = T (x) and (5) gives

T (x) = mx+ T (x)
m+ 1 . (7)

Letting x0 as the initial guess and x1 as the first approximation to the required fixed point, one
gets a new recursive process from (1) as

x1 = (m+ 1)Tx0 − Tx1
m

, (8)

where m > 0 is a real number.
We can’t predict x1 in the left hand side unless x1 in the right hand side is known. In order to
get round off this difficulty, we approximate x1 in the right hand side of equation (2) by our own
scheme (4).
Without loss of generality, the general form of the above iterative scheme can be written as

xn+1 = 1
m

(
(m+ 1)Txn − Tx∗

n+1
)
, n ≥ 0, (9)

where x∗
n+1 = mxn + Txn

m+ 1 and m > 0 is a real number.

2.1 Two-step iterative schemes

We propose the two different new two-step iterative scheme as follows:
(i) First iteration scheme:
For x0 in D, the sequence {xn} in D is defined by

xn+1 = Tyn,

yn = 1
m

(
(m+ 1)Txn − T

(
mxn + Txn

m+ 1

))
,

(10)
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where m ≥ 1 is a real number.
(ii)Second iteration scheme:
For x0 in D, the sequence {xn} in D is defined by

xn+1 = T

(
m

′
yn + Tyn

m′ + 1

)
,

yn = 1
m

(
(m+ 1)Txn − T

(
mxn + Txn

m+ 1

))
,

(11)

where m ≥ 1 and m
′
> 0 are real numbers.

Theorem 16. Let D be a nonempty closed and convex subset of real Banach space E and T : D →
D be a mapping satisfying (3) with δ < 1

3 and p is a fixed point of T . Let {xn}∞n=0 be defined by
the iteration process (11) and x0 ∈ D, where m ≥ 1 and m′

> 0 are real numbers. Then, {xn}∞n=0
converges strongly to a unique fixed point p of T .

Theorem 17. Let D be a nonempty closed and convex subset of real Banach space E and T : D →
D be a mapping satisfying (3) with δ < 1

3 and p is a fixed point of T . Let {xn}∞n=0 be defined by
the iteration process (11), where m ≥ 1 and m

′
> 0 are real numbers. Then, the iterative scheme

(11) is T-stable.

Theorem 18. Let D be a nonempty closed and convex subset of real Banach space E and T : D →
D be a mapping satisfying (3) with δ < 1

3and p is a fixed point of T. Let {αn}∞n=0 be a sequence of
real numbers in (0, 1) satisfying α0 ≤ αn < 1 for all n ∈ N and m ≥ 1,m′

> 0 are real numbers. For
given u0 = x0 ∈ D, consider the iterative schemes {xn}∞n=0 and {un}∞n=0 defined by the iteration
processes (11) and (6), respectively. Then, {xn}∞n=0 converges to p faster than {un}∞n=0.

2.2 Three-step iterative schemes

In this section, we propose the following new three-step iterative scheme as follows:
(i) First iteration scheme:
For x0 in D, the sequence {xn} in D is defined by

xn+1 = Tyn,

yn = T

(
m

′
zn + Tzn

m′ + 1

)
,

zn = 1
m

(
(m+ 1)Txn − T

(
mxn + Txn

m+ 1

))
,

(12)

where m ≥ 1 and m
′
> 0 are real numbers.

(ii) Second iteration scheme:
For x0 in D, the sequence {xn} in D is defined by

xn+1 = T

(
m

′′
yn + Tyn

m′′ + 1

)
,

yn = T

(
m

′
zn + Tzn

m′ + 1

)
,

zn = 1
m

(
(m+ 1)Txn − T

(
mxn + Txn

m+ 1

))
,

(13)

where m ≥ 1, m′
> 0 and m

′′
> 0 are real numbers.
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3 Numerical examples

In order to check the effectiveness of our schemes, we consider two different nonlinear equations
which are illustrated in examples (1) and (2). We denote the iteration schemes (10), (11), (12)
and (13) by Itr (10), Itr (11), Itr (12) and Itr (13), respectively. In Table 1, we have compared
different two-step iterative schemes mentioned in [4], [5] and [6] with new two-step iterative schemes
Itr (10) and Itr (11) . In Table 2, we have compared various three-step iterative schemes with
new three-step iterative schemes Itr (12) and Itr (13). In Table 1 and 2, we have mentioned the
results after fourteen iterations (i.e. k = 14). We have considered αn = βn = γn = 3

4, m = 9 and

m
′ = m

′′ = 1
10. Computations are performed with the package Mathematica 12.0 with multiple

precision arithmetic. The a(±b) stands for a × 10±b. E.C. and R.E. stand for errors between two
consecutive iterations and residual errors in the corresponding function by using the obtained fixed
point, respectively.

Example 1. Let us consider the following problem

f(x) = sin x− 10(x− 1). (14)

Let E = R and D = [0, 2]. We can easily obtained the following fixed point iterative method
T : D → D based on expression (14) as

T (x) = 1 + sin x
10 . (15)

The required zero of expression (14) and fixed point for (15) is p = 1.08859775239789. We select
x0 = 2 as the initial guess for comparison.

Example 2. Assume another test problem as following

f(x) = x+ 2− ex. (16)

Let E = R and D = (−∞, 0]. The corresponding fixed point iterative method T : D → D is given
as follows:

T (x) = ex − 2. (17)

The required zero of expression (16) and fixed point for (17) is p = −1.84140566043696 with initial
guess x0 = −1.

Table 1: Comparison of two-step iterative schemes on examples (1) and (2) with k = 14

Examples
E.C.

Ishikawa [4] S iteration [5] Picard-Mann [6] Itr (10) Itr (11)R.E.

(1)
|xk+1 − xk| 4.3(−9) 1.4(−24) 3.0(−27) 2.2(−39) 1.2(−51)
|f(xk)| 5.5(−8) 1.3(−23) 2.9(−26) 2.1(−38) 1.1(−50)

(2)
|xk+1 − xk| 2.3(−8) 9.8(−16) 6.4(−18) 6.8(−23) 1.1(−31)
|f(xk)| 2.8(−8) 9.0(−16) 5.7(−18) 5.9(−23) 8.9(−32)
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Table 2: Comparison of three-step iterative schemes on examples (1) and (2) with k = 14

Examples
E.C.

Noor [8] CR Iteration [9] Piri et al. [10] Itr (12) Itr (13)R.E.

(1)
|xk+1 − xk| 4.1(−9) 3.2(−32) 1.5(−53) 2.5(−70) 1.4(−82)
|f(xk)| 5.3(−8) 3.1(−31) 1.4(−52) 2.4(−69) 1.3(−81)

(2)
|xk+1 − xk| 1.5(−8) 8.8(−22) 3.8(−35) 6.8(−43) 1.1(−51)
|f(xk)| 1.7(−8) 7.6(−22) 3.2(−35) 5.7(−43) 9.0(−52)

4 Conclusions

We propose new classes of fixed point iterative schemes and prove that they converge faster than
a number of existing iterations schemes. Backed by numerical examples, a comparative study
with some existing ones manifests that our proposed schemes produce approximations of greater
accuracy and excellent error estimates. Further, our proposed two-step iterative schemes perform
better than some of the three-step iterative schemes available in the literature. Therefore, this
paper further enriches and develops methods for computing fixed points and their applications in
related fields.
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1 Introduction

In numerical analysis, solving nonlinear equations effectively is one of the most interesting tasks
due to its wide application in engineering and sciences. Sometimes it is not possible to solve these
problems analytically. Therefore, to solve these problems, the iterative numerical methods are used.
The first well known method is Newton’s method [1] used to approximate the root of nonlinear
equation g(x) = 0 and defined as

xq+1 = xq −
g(xq)
g′(xq) , q = 0, 1, 2, 3 . . . , (1)

where g′(xq) is the first-order ordinary derivative of function g at the point xq of the qth iteration.
For the simple root of the nonlinear equation the Newton’s method has quadratic convergence.
Several variants of Newton’s method have been developed in order to obtain a faster conver-
gence rate. Some of the well-known cubically convergent methods are Halley method [2], Euler’s
method [3], Super-Halley method [4], Weerakoon and Fernando [5] etc. All of the above mentioned
methods consist of second order derivatives except Weerakoon and Fernando. From 1964 to 2012,
researchers [6–9] has developed fourth order methods to find the roots of the nonlinear equations
such as Traub and Ostrowski [6], King [7], Cordero and Torregrosa [8], Kanwar et al. [9] etc. Out
of them, Kanwar et. al. [9] introduced a method which consists of second order derivatives while
other listed methods has first-order derivative. Sometime it is difficult and time consuming to
evaluations of the second order derivative of the function.
In the 70s of the 20th century multiplicative calculus introduced by Grossman and Katz [10] and
several authors applied the multiplicative calculus in various branches like in 2008 Bashirov et
al. [11] discussed the theoretical foundations as well as various applications of multiplicative cal-
culus. Florack and Van Assen [12] used multiplicative calculus in biomedical image analysis, Filip
and Piatecki [13] used it to investigate economic growth, Mısırlı and Gurefe [14], Riza et al. [15],
and Özyapıcı and Mısırlı [16] used multiplicative calculus to develop multiplicative numerical meth-
ods and Bashirov et al. [17] used it to develop multiplicative differential equations. Bashirov and
Riza [18] and Uzer [19] extended the multiplicative calculus to include complex valued functions
of complex variables, which was previously applicable only to positive real valued functions of real
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variables.
In last few years, researchers use multiplicative derivatives for solving the nonlinear equations.
With this same concept we constructed the fourth order Multiplicative King’s method to approxi-
mate the root of function g(x) = 0.

2 The Proposed Method and Analysis of Convergence

The proposed King’s iterative method in multiplicative derivative reprsented as

yq = xq −
ln g(xq)
ln g∗(xq) ,

xq+1 = yq −
(

log g(xq) + βlog g(yq)
log g(xq) + (β − 2)log g(yq)

)(
log g(yq)
log g∗(xq)

)
. (2)

Where q is iteration step, g∗(x) is multiplicative derivative, and β is a free parameter.
Theorem: For an open interval I, let r ∈ I be a multiplicative zero of a sufficiently multiplicative
differential function g : I ⊆ R → R+, then multiplicative King’s method has fourth order of con-
vergence with error

xq+1 = (b3
2 + 2βb3

2 − b2b3)e4
q +O(e5

q).

3 Numerical Examples

In this section, we solve the nonlinear equation g(x) = 0 using ordinary King’s method [7] denoted
as (KM), Chun method [21] denoted as (CM), Jnawali method [22] denoted as (JM) and the
proposed multiplicative King’s method denoted as (PM). The results obtained using these methods
are presented in Table 1. All computations have done in Mathematica version 11.1.1 software and
the stopping criteria |xq+1 − xq| < ϵ and ϵ = 10−200 is used. We used a free parameter β = 3, 0.5
and −1. Moreover, the Approximated computational order of convergence(ACOC) is computed by
using the following.

ρ ∼=
ln|
∣∣∣∣∣xq+1 − r
xq − r

∣∣∣∣∣
ln

∣∣∣∣∣ xq − r
xq−1 − r

∣∣∣∣∣
. (3)

Numerical results indicate in the Table 1 that the proposed method execute less number of itera-
tions and reduce the computational time.

Remark: The meaning of expression m(±n) is m × 10±n and d represents that scheme is
divergent in all the tables.

Example 1. We consider the population growth model that formulate the following nonlinear equa-
tion

g(x) = 1000
1564e

x + 435
1564(ex − 1)− 1.

In this model we evaluate the birth rate denoted as x, if in a specific local area has 1000 thousand
people at first and 435 thousand move into the local area in the first year. Likewise, assume
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1564 thousand individuals toward the finish of one year. The computed results towards the root
xr = 0.1009979 . . . are displayed in Table 1. Clearly, the method PM shows better results in terms
of consecutive error and number of iteration in comparison of existing ones.

β Method q |xq − xq−1| |g(xq)| ρ No. of iteration C.P.U time
2 4.4(−5) 3.7(−5)

3 KM 3 2.4(−18) 2.0(−18) 4.000 5 0.32
4 2.1(−71) 1.8(−71)
2 2.7(−18)

3 P M 3 4.8(−74) 1.000 4.000 4 0.32
4 4.6(−297)
2 4.1(−7) 3.5(−7)

0.5 KM 3 3.8(−27) 3.3(−27) 4.000 5 0.39
4 3.0(−107) 2.5(−107)
2 2.7(−19)

0.5 P M 3 2.4(−78) 1.000 4.000 4 0.26
4 1.5(−314)
2 1.8(−5) 1.5(−5)

−1 KM 3 1.8(−20) 1.6(−20) 4.000 5 0.39
4 1.9(−80) 1.6(−80)
2 2.2(−20)

−1 P M 3 5.5(−83) 1.000 4.000 4 0.29
4 2.0(−333)
2 1.8(−5) 1.5(-5)

CM 3 4.8(−20) 4.1(−20) 4.000 5 0.37
4 2.5(−78) 2.1(−78)
2 4.4(−6) 3.7(−6)

JM 3 8.8(−23) 7.5(−23) 4.000 5 0.34
4 1.5(−89) 1.3(−89)

Table 1: Results of population growth model with initial guess x0 = 1

4 Conclusions

By deriving multiplicative root finding method better approximations can be achieved with less
computational time and complexity. In this paper, we developed the multiplicative King’s method.
We tested the proposed method for nonlinear equations and compared it to ordinary King’s
method,Chun method, and Jnawali method. The proposed method works efficiently in transcen-
dental equations.
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[15] M. Riza, A. Özyapıcı, E. Mısırlı, Multiplicative finite difference methods. Q. Appl. Math. 67(4),745–754
(2009).
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1 Introduction

Numerical analysis is a process in which we develop, analyze, and investigate numerous methods
and algorithms for numerically solving problems in diverse domains such as electrical engineering,
chemical engineering, mathematics, physics, and applied sciences. The most significant and difficult
task is to find an efficient and accurate solution to systems of non-linear equations F (X) = 0 with
F : Ω ⊆ Rn → Rn. For this purpose, many higher order iterative methods are developed that
are efficient and have less computational cost such as [1, 2]. The simplest and most powerful root
finding method to solve systems of non-linear equations is Newton-Raphson method, defined as:

X(n+1) = X(n) − F ′(X(n))−1F (X(n)),

where F ′(X(n))−1 is the Jacobian matrix for the function F evaluated at the nth iterations. One of
the major problems of numerical analysis is the construction of efficient iterative methods for solving
nonlinear equations as well as systems of equations. There are different ways to construct iterative
schemes for nonlinear systems: The natural way is to construct a method for scalar equations and
then extend to the multidimensional case. Some researchers like [3] adopted this way to construct
higher order schemes for nonlinear systems. However, the main practical difficulty associated with
these methods is to calculate the first-order Fréchet derivative at each step of the computation.
There are several real-life situations where the calculation of Fréchet derivatives is expensive and/or
it requires a great deal of time for them to be given or calculated. So, it is obvious that all the
modifications or variants of Newton’s method has the same drawback. To overcome such problems,
a class of derivative-free methods Steffensen type processes were introduced that replaces F ′ with
operator:

[ϖ
(
X(k)

)
, X(k), F ],

where ϖ: Rn → Rn. Using these divided differences, some non-optimal and derivative-free higher-
order convergent methods have also been proposed by researchers, for example, by Sharma and
Arora [4], Wang and Zhang [5] etc.
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We, in here, present a new seventh-order Steffensen-type family of methods based on weight
functions using four function evaluations that make it valuable for solving nonlinear systems. More-
over, we show its applicability chemical equilibrium problem, neurophysiology application, and
economics modeling application.

1.1 Formulation of the Seventh Order Scheme for Systems of Nonlinear Equa-
tions

We develop a three-step seventh-order method to solve systems of non-linear equations, which is
described:

Y (n) = X(n) − (F ′(X(n)))−1(F (X(n))),
Z(n) = Y (n) −H((θ(n)))F [X(n), Y (n)]−1F (Y (n)),

X(n+1) = Z(n) − (G(θ(n)) + L(ν(n)))F [X(n), Y (n)]−1F (Z(n)). (1)

For multidimensional vector-valued function F , we can write θ(n) as:

θ(n) = I − (F ′(X(n)))−1F [X(n), Y (n)].

Similarly, for multidimensional vector-valued function F , we can write ν(n) as:

ν(n) = I −H(θ(n))(F [X(n), Y (n)])−1F [Y (n), Z(n)].

where H, G : Mn×n(R) → Γ(Rn), L : Nn×n(R) → Γ(Rn), such that Mn×n, Nn×n are the set of
n× n square matrices respectively and Γ(Rn), is the set of linear operators from Rn to Rn.

Theorem 19. Let us suppose that Ψ is the root of the function, F : Ω ⊆ Rn → Rn, be a Frechet
differentiable function in the neighborhood of closed interval Ω of its root Ψ. Let F ′ be continuous
and non-singular at Ψ. Furthermore, the convergence of the described scheme is confirmed if we
consider that the initial guess X(0) is close to Ψ. Then our defined method has convergence order
seven with the following defined conditions on the weigth functions:

H0 = H(0) = I, H1 = H ′(0) = I,

G0 = G(0) = I, G1 = G′(0) = I, G2 = G′′(0) = (2 + a)I,
L0 = L(0) = 0, L1 = L′(0) = I

where H2 = H ′′(0) <∞, G3 = G′′′(0) <∞, L2 = L′′(0) <∞,

The expression for the final error equation:

E(n+1) = 1
12C

2
2 (2C3 − 6C2

2 +H ′′(0)C2
2 )× (3H ′′(0)C2

2 − 48C2
2 +G′′′(0)C2

2 − C2
2H

′′′(0) + 18C2)E(n)7

+ ...+O(E(n)9).

From Theorem 1, several cases of our proposed scheme (1) are obtained for various choices
of the weight functions. We consider some specific cases of weight functions for the proposed
multidimensional scheme:

Case 1 WF1: We get a seventh-order scheme for multidimensional case by taking the weight
functions as:

H(θ(n)) = [I − (θ(n))]−1,
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G(θ(n)) = [I + θ(n) + (θ(n))2],

L(ν(n)) = [ν(n) + 1
2(ν(n))2].

Case 2 WF2: We get another seventh-order scheme for multidimensional case by taking the
weight functions as:

H(θ(n)) = [I + θ(n)],
G(θ(n)) = [I + (θ(n))2]−1,

L(ν(n)) = [ν(n) + 1
2(ν(n))2].

Case 3 WF3: We consider a seventh-order scheme for multidimensional case by taking the
weight functions as:

H(θ(n)) = [I − (θ(n))]−1,

G(θ(n)) = [I − θ(n) + 3
2(θ(n))2]−1,

L(ν(n)) = [ν(n) + 1
2(ν(n))2].

1.2 Numerical Results

In this section, we consider some examples of a system of non-linear equations and solve the systems
by using proposed schemes WF1, WF2, and WF3. In order to check the efficiency of our proposed
schemes, we also compare these results with a Steffensen type method developed by Abad et al. [3],
denoted by AC having seventh order of convergence. Tables show the comparison of seventh order
scheme results by listing errors in consecutive iteration

∥∥∥X(n) −X(n−1)
∥∥∥

∞
, and the residual error

in function
∥∥∥H (

X(n)
)∥∥∥

∞
. Software MATLAB R2014a is used to perform all the computations for

the multivariate case.

Example 1. Let us consider a chemical equilibrium problem from [6], which is given below in the
form of system of nonlinear equations:

x1x2 + x1 − 3y5 = 0,
2x1x2 + x1 + 2R10x

2
2 + x2x

2
3 +R7x2x3 +R9x2x4 +R8x2 −Rx5 = 0,

2x2x
2
3 +R7x2x3 + 2R5x

2
3 +R6x3 − 8x5 = 0,

R9x2x4 + 2x2
4 + 4Rx5 = 0,

x1 (x2 + 1) +R10x
2
2 + x2x

2
3 +R7x2x3 +R9x2x4 +R8x2 +R5x

2
3 +R6x3 + x2

4 − 1 = 0,

where

R = 10, R5 = 0.193, R6 = 0.002597√
40

, R7 = 0.003448√
40

R8 = 0.00001799
40 , R9 = 0.0002155√

40
, R10 = 0.00003846

40 .

The system of above equations has four real, twelve complex, and an infinite number of solutions at
infinity. One of real solution of our problem is Ψ = (0.0031141, 34.5979245, 0.0650417, 0.8593780, 0.0369518)
and our initial root is: X(0) = (0.001, 35, 0.05, 0.5, 0.01) .
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Table 1: Numerical Solution of CE problem
Cases n

∥∥∥X(n) −X(n−1)
∥∥∥

∞

∥∥∥H (
X(n)

)∥∥∥
∞

WF1 1 0.7481 0.6858
2 0.3461 0.3423
3 3.3322(−8) 0.3232(−7)

WF2 1 0.3460 4.54(−2)
2 0.2466 0.3085(−11)
3 1.024(−10) 0.4318(−43)

WF3 1 0.3866 0.0013
2 0.1544(−1) 0.1741(−16)
3 3.2487(−16) 0.3004(−46)

AC 1 0.7481 0.6858
2 0.3461 0.3423
3 3.3322(−8) 0.3232(−7)

Example 2. Consider another problem which is a neurophysiology application from [7] which
considers the following nonlinear system:

x2
1 + x2

3 = 1,
x2

2 + x2
4 = 1,

x5x
3
3 + x6x

3
4 = c1,

x5x
3
1 + x6x

3
2 = c2,

x5x1x
2
3 + x6x2x

2
4 = c3,

x5x3x
2
1 + x6x4x

2
2 = c4,

where ci, i = 1, ..., 4 can be taken arbitrarily, we considered ci = 0, for each i. The desired so-
lution of our problem is (−0.8282192, 0.5446434,−0.0094437, 0.7633676, 0.0199325, 0.1466452) and
our initial root is: X(0) = (−0.5, 0,−0.005, 0.5, 0.02, 0.10) .

Table 2: Numerical Solution of NP problem
Cases n

∥∥∥X(n) −X(n−1)
∥∥∥

∞

∥∥∥H (
X(n)

)∥∥∥
∞

WF1 1 0.5001 0.0290
2 0.2895(−1) 0.7917(−15)
3 7.9169(−16) 0.1593(−57)

WF2 1 5.0143(2) 326.6471
2 4.5155(2) 49.9890
3 4.9989(1) 0.4660(−21)

WF3 1 0.5001 0.0290
2 0.2895(−1) 0.7917(−15)
3 7.9169(−16) 0.1593(−57)

AC 1 9.7416(1) 9.7416(1)
2 9.5409(1) 1.4101(2)
3 1.9066 1.9104

Example 3. Lastly, we consider another example that is an economics modeling application. The
modeling problem is considered as difficult and can be scaled up to arbitrary dimensions [8]. The
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problem is given by the following system of nonlinear equations:(
xk +

n−k−1∑
i=1

xixi+k

)
xn − ck = 0, 1 ≤ k ≤ n− 1,

n−1∑
l=1

xi + 1 = 0.

The constants ck can be randomly chosen. We considered the value 0 for the constants in our
experiment and the case of four equations. So, for n = 4, our four equations becomes:

(x1 + x1x2 + x2x3)x4 − c1 = 0,
(x2 + x1x2)x4 − c2 = 0,

x3x4 − c3 = 0,
x1 + x2 + x3 + 1 = 0.

The desired solution of our problem is Ψ = (−0.1639324,−0.3813209, 0.2242448,−0.0755094) and
our initial root is: X(0) = (−0.10,−0.35, 0.20,−0.05) .

Table 3: Numerical Solution of EM problem
Cases n

∥∥∥X(n) −X(n−1)
∥∥∥

∞

∥∥∥H (
X(n)

)∥∥∥
∞

WF1 1 8.3974(7) 1.6580(22)
2 2.3511(6) 0.2289(−9)
3 1.4901(−8) 0.5798(−59)

WF2 1 9.8997(8) 2.3443(25)
2 1.0546(7) 0.7887(−7)
3 3.9577(−8) 0.4557(−55)

WF3 1 8.3974(7) 1.6578(22)
2 2.3509(6) 0.1132(−9)
3 1.4901(−8) 0.9589(−42)

AC 1 7.9364(1) 7.9348(1)
2 1.6727(1) 1.0444(5)
3 1.8102(−14) 0.1810(−13)

The numerical results show that our newly developed seventh-order method is better or equally
efficient as that of already existing methods.
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1 Introduction

In many problems in engineering or applied mathematics, it is necessary to solve nonlinear equations
f(x) = 0. They cannot always be solved exactly, which is why iterative methods appear to solve
them. A well-known one is Newton’s method, which has the following expression:

xk+1 = xk −
f(xk)
f ′(xk) , for k = 0, 1, . . .

To ensure the convergence of Newton’s method, the derivative of the function evaluated in the
solution must be non-zero, that is, the solution must be a simple root of f(x) = 0. This is not
always the case. For this reason, iterative methods appear that allow us to obtain solutions with
a multiplicity greater than 1.

One of them is the following modification of Newton’s method, that can be find in [6], where
m is the multiplicity of the solution of the equation.

xk+1 = xk −m
f(xk)
f ′(xk) , for k = 1, 2, 3 . . .

In order to be able to apply this method, we must know the multiplicity of the solution in a priori.
To avoid the need to know the multiplicity in advance, iterative methods for multiple roots are

designed that do not use this multiplicity in their iterative expression, see [2].
In this way, we propose the following iteratives methods based on Kurchatov’s method.
To estimate the roots of f(x) = 0, we define the following method, denoted by KM,

xk+1 = xk −
g(xk)

g[2xk − xk−1, xk−1] , k = 0, 1, 2, . . .

where g(x) = f(x)
f ′(x) and g[y, z](y − z) = g(y)− g(z).

To calculate the expression of g(x) in the previous method we use the derivative of the function
to be solved. We can replace this derivative by a divided difference operator, so that to estimate
the roots of f(x) = 0, we define the following method, denoted by KMD,

xk+1 = xk −
g(xk)

g[2xk − xk−1, xk−1] , k = 0, 1, 2, . . .

1ptrinav@doctor.upv.es
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where g(x) = f(x)
f [x+f(x),x] .

In this paper, we will analyse the order of convergence of the proposed methods and we will
also perform numerical experiments to illustrate the behaviour of them.

2 Convergence analysis

Theorem 20. Let f : C −→ C be a sufficiently differentiable function in an neighbourhood of α,
which we denote by D ⊂ C, such that α is a multiple zero of f(x) = 0 with unknown multiplicity
m ∈ N−{1}. Then, taking an estimate x0 close enough to α, the sequence of iterates {xk} generated
by method KM converges to α with order 2.

Proof. We first obtain the Taylor expansion of f(xk) around α where ek = xk − α:

f(xk) = f (m)(α)
m!

(
em

k + C1e
m+1
k + C2e

m+2
k + C3e

m+3
k

)
+O(em+4

k ),

being Cj = m!
(m+j)!

f (m+j)(α)
f (m)(α) for j = 1, 2, . . .

Calculating the derivative of the above expression we obtain

f ′(xk) = f (m)(α)
m!

(
mem−1

k + (m+ 1)C1e
m
k + (m+ 2)C2e

m+1
k + (m+ 3)C3e

m+2
k

)
+O(em+3

k ).

Now. we calculate g(xk)

g(xk) = f(xk)
f ′(xk) = 1

m

(
ek −

1
m
C1e

2
k + (m+ 1)C2

1 − 2mC2
m2 e3

k

)
+O(e4

k).

In an equivalent way, we obtain the following expressions for g(xk−1) and g(2xk − xk−1)

g(xk1) = f(xk−1)
f ′(xk−1) = 1

m

(
ek−1 −

1
m
C1e

2
k−1 + (m+ 1)C2

1 − 2mC2
m2 e3

k−1

)
+O(e4

k−1),

g(2xk − xk−1) = f(xk)
f ′(2xk − xk−1) =

= 1
m

(
2ek − ek−1 −

1
m
C1(2ek − ek−1)2 + (m+ 1)C2

1 − 2mC2
m2 (2ek − ek−1)3

)
+O4(ek, ek−1),

with ek−1 = xk−1 − α.
From the above relations, we obtain

g[2xk − xk−1, xk−1] = g (2xk − xk−1)− g (xk−1)
2(xk − xk−1)

= 1
m

(
1− 2

m
C1ek + (m+ 1)C2

1 − 2mC2
m2

(
4e2

k − 2ejek−1 + e2
k−1

))
+O3(ek, ek−1).

Thus, applying the above relationship, the following error equation is obtained:

xk+1 − α = xk − α−
g(xk)

g[2xk − xk−1, xk−1]

= −1
m
C1e

2
k + (m+ 1)C2

1 − 2mC2
m2

(
−5e3

k + 2e2
kek−1 − eke

2
k−1

)
+O4(ek, ek−1).
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We have some different possibilities for the behaviour of ek+1 respect to ek and ek−1.
By the expression, we only are going to take into account if the behaviour is like e2

k or eke
2
k−1,

because e3
k and e2

kek−1 converge faster to 0 than e2
k.

Then,

ek+1 ∼
−1
m
C1e

2
k −

(m+ 1)C2
1 − 2mC2
m2 eke

2
k−1.

• If ek+1 ∼ e2
k, then the order of convergence is 2.

• Now, we suppose that ek+1 ∼ eke
2
k−1. We assume that the method has R-order p, that means,

ek+1 ∼ ep
k.

In the same way, ek ∼ ep
k−1. From the above relations, we get

ek+1 ∼ ep2

k−1.

Then, the error equation is
ek+1 ∼ eke

2
k−1 ∼ e

p+2
k−1.

By equating the exponents of ek−1 of the above relations, we obtain the following polynomial
p2−p−2 = 0, whose only positive root is p = 2, then the order of convergence of the method
is 2.

Theorem 21. Let f : C −→ C be a sufficiently differentiable function in an neighbourhood of α,
which we denote by D ⊂ C, such that α is a multiple zero of f(x) = 0 with unknown multiplicity
m ∈ N−{1}. Then, taking an estimate x0 close enough to α, the sequence of iterates {xk} generated
by method KMD converges to α with order 2.

Proof. We first obtain the Taylor expansion of f(xk) around α where ek = xk − α:

f(xk) = f (m)(α)
m!

(
em

k + C1e
m+1
k

)
+O(em+2

k ).

being Cj = m!
(m+j)!

f (m+j)(α)
f (m)(α) for j = 1, 2, . . .

In the same way,

f(xk + f(xk)) = f (m)(α)
m!

(
(ek + f(xk))m + C1 (ek + f(xk))m+1

)
+O(em+2

k ).

Then,

f(xk + f(xk))− f(xk) = f (m)(α)
m!

(
(ek + f(xk))m − em

k + C1
(
(ek + f(xk))m+1 − em+1

k

))
+O(em+2

k ).

Using Newton’s binomial and the Taylor expansion of f(xk) around α we obtain that

f(xk + f(xk))− f(xk)
xk + f(xk)− xk

= f (m)(α)
m!

(
mem−1

k + (m+ 1)C1e
m
k

)
+O(em+1

k ).

We then calculate g(xk) from the above expressions.

g(xk) = f(xk)
f [xk + f(xk), xk] = em

k + C1e
m+1
k +O(em+2

k )
mem−1

k + (m+ 1)C1em
k +O(em+1

k )
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= 1
m

(
ek −

1
m
C1e

2
k

)
+O(e3

k).

In an equivalent way, we obtain the following expressions for g(xk−1) and g(2xk − xk−1)

g(xk−1) = 1
m

(
ek−1 −

1
m
C1e

2
k−1

)
+O(e3

k−1),

g(2xk − xk−1) = 1
m

(
2ek − ek−1 −

1
m
C1(2ek − ek−1)2

)
+O3(ek, ek−1),

with ek−1 = xk−1 − α.
Then, appyling the above relations, we obtain that

g[2xk − xk−1, xk−1] = g(2xk − xk−1)− g(xk−1)
2(xk − xk−1)

= 1
m

(
1− 2

m
C1ek

)
+O2(ek, ek−1).

Thus, the following error equation is obtained

xk+1 − α = xk − α−
g(xk)

g[2xk − xk−1, xk−1]

= − 1
m
C1e

2
k + ekO2(ek, ek−1) +O(e3

k).

We have some different possibilities for the behaviour of ek+1 respect to ek and ek−1.
By the expression, we only are going to take into account if the behaviour is like e2

k or eke
2
k−1,

because e3
k and e2

kek−1 converge faster to 0 than e2
k.

Then

• If ek+1 ∼ e2
k, then the order of convergence is 2.

• If we assume that ek+1 ∼ eke
2
k−1. Then, we assume that the method has R-order p, that

means,
ek+1 ∼ Dk,pe

p
k.

At the same time, ek ∼ ep
k−1, then we obtain that

ek+1 ∼ ep2

k−1.

From the error equation and the last relation, we obtain that

ek+1 ∼ eke
2
k−1 ∼ e

p+2
k−1.

By equating the exponents of ek−1 of the last two equation, we obtain the following polynomial
p2−p−2 = 0, whose only positive root is p = 2, then the order of convergence of the method
is 2.
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3 Numerical experiments

Now, we perform a numerical experiment to see the behaviour of the two proposed iterative meth-
ods. For the computational calculations, we use Matlab R2020b with an arithmetic precision of
500 digits iterating from an initial estimate x0 until it is verified that the absolute value of the
function evaluated in the iteration is less than 10−50, that is,

|f(xk)| < 10−50.

The numerical results we are going to compare the methods in the different examples are:

• the approximation obtained,

• the norm of the equation evaluated in that approximation,

• the norm of the distance between the last two approximations,

• the number of iterations necessary to satisfy the required tolerance,

• the computational time and the approximate computational convergence order (ACOC), de-
fined by Cordero and Torregrosa in [3], which has the following expression

p ≈ ACOC = ln(|xk+1 − xk|/|xk − xk−1|)
ln(|xk − xk−1|/|xk−1 − xk−2|)

.

The equation we try to solve is f(x) = (x2 − 1)3, which has two roots with multiplicity 3.

Table 1: Results for (x2 − 1)3 = 0.

x0 x−1 ∥xk+1 − xk∥ ∥g(xk+1)∥ Iter ACOC
KM 0.5 0.1 3.3307e-16 0 7 2.0058

KMD 0.5 0.1 9.7478e-14 0 9 1.7006

The results obtained for each of the methods for the function to be solved are shown in Table
1. We can see from the Tables that in all cases the ACOC is close to the theoretical convergence
order shown above. It can be seen that the best results for this numerical experiment are obtained
with the KM method. Both methods give good approximations to the solution, although the KM
method performs less iterations to verify the stopping criterion.

4 Conclusions

In this work, we have studied two iterative methods for multiple roots with memory, obtaining that
the order of convergence of them is 2. These iterative methods do not use the multiplicity of the
root in their iterative expression, so it is not necessary to know this multiplicity before applying the
iterative method. In the numerical experiments, we have verified the theoretical results concerning
the order of convergence of the methods.
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1 Introduction

Non-harmonic oscillations described by a double-well potential allow to model various physical
phenomena and provide insight into their properties without overly simplifying the problem, thereby
extending the more elementary harmonic case. Important applications of the anharmonic oscillator
range from classical instantons and field theory to quantum theory and particle physics [1–3].

This presentation focuses on the treatment of the anharmonic oscillator in connection with
the double-well potential including the non-negligible relativistic effects of a strong and uniform
gravitational field. It extends previous work of the relativistic harmonic oscillator to the anharmonic
model [4].

Our analysis parts from a relativistic action principle, where the dynamics is described as usual
by the corresponding Euler-Lagrange equations. However, complications arise on how to handle the
relativistic potential of the strong gravitational field. We proceed by deriving an integral equation
for this potential following an approach—a method introduced by Goldstein & Bender for the
brachistochrone problem [5] and more recently applied to the pendulum [6,7].

Finally, a numerical simulation of the relativistic results is carried out to examine the dynamics
of the model and compare it with the purely classical calculations. A detailed study of the phase
space for both models will enable us to detect very distinct features among them, and thereby
confirms the necessity for including relativistic corrections to yield reliable predictions for the
strong-gravity case.

2 Methods

2.1 Lagrangian approach

Lagrangian mechanics is based on a Hamilton’s principle (see e.g. Ref. [8]). The Lagrangian L =
T − V consists of the kinetic energy T and the potential energy V . In this model, the potential

1mtung@mat.upv.es
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energy consists of the standard gravitational potential and also the double-well potential given by

Vdouble-well = βx4 − αx2, (1)

where α and β are positive parameters to control the typical double-well shape of the potential.
In particular, the ratio α/β determines the shape of the double-well. The behaviour around the
origin is shown in Figure 1, where the red curve represents a high α/β-ratio, the blue curve a low
ratio, and the green curve a balanced ratio, respectively.

Figure 1: Double-well potential, viz. Eq. (1), for different parameters α, β > 0.

Substituting for the potential Eq. (1), the deterministic equations of motion will result from
the following variational principle by varying over all possible paths x(t), while keeping the two
end points fixed:

δ

∫
dtL(x, ẋ) = δ

∫
dt

[1
2m0 ẋ

2 −m0gx− βx4 + αx2
]

= 0. (2)

Here, as usual, g is the gravitational constant appearing in the gravitational potential, Vg(x) =
m0gx, with inertial mass m0. Thus, we consider a one-dimensional dynamical system, and the
corresponding Euler-Lagrange equation are derived from(

d

dt

∂

∂ẋ
− ∂

∂x

)
L = 0, (3)

which then leads to the equations of motion for the classical case:

m0ẍ+m0g + 4βx3 − 2αx = 0. (4)

2.2 Relativistic generalization

For the generalization of Eq. (2) to special relativity, it is essential to regard the mass as a relativistic
quantity, which thus will depend on the actual velocity of the body in motion ẋ(t). The relation
between rest mass, m0, and the relativistic mass, m, is expressed by m = γm0, with the relativistic
factor γ = 1/

√
1− ẋ2/c2 and the speed of light c. Hence, we postulate the following variational

principle for the relativistic Lagrangian:

δ

∫
dt

−m0c
2

√
1− ẋ2

c2 − βx
4 + αx2 − Vg(x)

 = 0, (5)

264



Modelling for Engineering & Human Behaviour 2022

where the relativistically corrected gravitational potential, Vg, is still to be determined. The La-
grangian, integrand of Eq. (5), does not explicitly depend on time, so that total energy is conserved
and serves as one of the integrators of the equation of motion.

According to the procedure first established in Ref. [5] and also explained in Ref. [4], we are
able to obtain a integral equation for Vg and solve it analytically, thus yielding

Vg(x) =
(
1− e− g

c2 x
) [
m0c2 − 24β

(
c2

g

)4
+ 2α

(
c2

g

)2
]

+24βx
(

c2

g

)3
− 12βx2

(
c2

g

)2
+ 2x

[
2βx2 − α

] (
c2

g

)
− βx4 + αx2.

(6)

Note that taking α = −k/2 and β = 0 reproduces the result for the harmonic oscillator calculated
in Ref. [4]. This completes all the required data necessary for entirely describing the relativistic
motion of the anharmonic oscillator in the gravitational field. The governing equation resulting
from Eq. (5) is then provided by the second-order differential equation

m0ẍ(
1− ẋ2

c2

) 3
2

+ 4βx3 − 2αx+ V ′
g(x) = 0, (7)

where the exact derivative of Eq. (6) is readily obtained, the analytic integration of Eq. (7), however,
is impossible to carry out. Note that the direct integration of the equation of motion for the classical
case, Eq. (4), is considerably complicated, producing elliptical functions and beyond. So computing
a result in fully symbolic form for the more involved relativistic case, viz. Eq. (7), is hopeless.

3 Results

3.1 Numerical integration

For accurate estimates with precise predictions, we require to numerically integrate the differential
equation in Eq. (7). For a state-of-the-art approach we employ the Julia programming language
with the library DifferentialEquations.jl, see Refs. [9, 10].

Observe that for a forthright coding Eq. (7) can be recast into the convenient form

A(x)ẍ+B(x)g = 0, (8)

where the factors A(x) and B(x) are lengthy expressions containing simple polynomials in the
variable x and also the gravitational potential Vg(x) given by Eq. (6). The natural choice for the
boundary conditions is x(0) = 0 and ẋ(0) = 0. For the integration using Julia, we adopt the default
first-order interpolation algorithm, with at least a stepsize of ∆t = 0.005s for the time domain,
and a relative tolerance of 10−12 for high accuracy.

3.2 Simulation of phase space

Figure 2 depicts the phase-space trajectories for the classical case (red curve) and the relativistic
case (blue curve) of the anharmonic oscillator within a gravitational field and a double-well po-
tential. For mechanical systems, the phase space represents all physically possible values of the
position and velocity variables (or alternatively momentum). For illustration purposes, we have
chosen α = 2.0 [kg/s2] and β = 0.5 [kg/m2s2] for the shape parameters in the double-well potential,
viz. Eq. (1). Obviously both oscillatory phenomena are periodic, which is made manifest by the
closed trajectories. As is well-known, the phase space of the plain oscillator (not suspended in
a gravitational field) acquires a perfectly elliptical form. However, the asymmetric shape of the
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red curve in Figure 2 is caused by gravity, which introduces a directional preference. Moreover,
incorporating relativistic effects, further distorts the pear-shaped classical trajectory into a bullet
shaped trajectory—clearly shown in Figure 2 for this extreme case. The pronounced elongation
of the blue, relativistic prediction in x-direction is due to the dynamic quality of the relativistic
mass—a variable mass instead of the fixed inertial mass in the classical phase-space simulation.
A heavier mass certainly will be more affected by gravity. Additionally, the slimmer shape of the
blue curve in ẋ-direction results from the increasing inertia resisting further acceleration with in-
creasing velocity. This effect is purely relativistic and absent in any classical model. The reduced
velocity range for the blue curve, taking values for ẋ in the interval [−1, 1] instead of [−3, 3], is
thus explained by the physical upper speed limit of relativistic dynamics.

Figure 2: Phase-space diagram of the anharmonic oscillator in a uniform gravitational field,
corresponding to the classical and relativistic case for the double-well potential, Eq. (1), with
α = 2.0 [kg/s2] and β = 0.5 [kg/m2s2].

4 Conclusions

Starting from a Lagrangian approach for a classical anharmonic oscillator in a gravitational field
and with a double-well potential, we generalized the discussion to include relativistic effects. By
neglecting insignificant tidal effects on a small scale, it was not necessary to employ the fully
developed general relativistic framework, but it sufficed to resort to special relativity.

The governing equations of motion for the classical model and its corresponding relativistic
extension had to be integrated numerically. We used the Julia programming language as a state-
of-the-art tool for obtaining numerical estimates for both models with high accuracy and precision.
This allowed us to compute and visualize the phase space for the classical and relativistic case, and
then compare both models.

A careful analysis of the phase-space trajectories showed that the differences between the predic-
tions for the classical and the relativistic model are significant. More importantly, these differences
are not merely quantitative but show that their origin is of fundamental nature—an immediate
consequence of the very different concept of mass in the classical and relativistic approach. This
reflects itself in the noticeably distinct shapes of the classical and relativistic trajectories taken in
phase space.

In summary, our observations confirm the necessity for including relativistic corrections in our
model to produce reliable predictions for the strong-gravity case or when velocities comparatively
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close to the speed of light are reached.
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1 Introduction

The evolution of the neutron field and thus the heat field inside a nuclear reactor core can be
modelled by the neutron transport equation, approximated by the time dependent neutron diffusion
equation. First, the steady state of the reactor is calculated and then the time evolution against any
perturbation is simulated. For a small oscillating perturbation that does not change the average
state of the reactor, the frequency domain neutron noise diffusion equation can be worked out.
This equation resolves is useful to simulate the effect of mechanical vibrations of core internals,
periodical anomalies in coolant inlets, flow blockages...

To numerically solve this equation in a nuclear reactor, a large, sparse and complex value linear
system must be solved. These types of systems also arise from the discretization of differential
equations of interest in wave propagation, electromagnetism, structural dynamics, quantum me-
chanics, etc. This work is dedicated to efficiently solve the complex-valued linear systems that arise
from the frequency-domain neutron noise equation using real-valued formulations.

The neutron flux in a nuclear reactor in the multigroup diffusion approximation is given by

V ∂Φ
∂t

+ LΦ = (1− β)MΦ +
K∑

k=1
λkXkCk, (1)

where the concentrations of the neutron precursors is

∂Ck

∂t
= βkFΦ− λd

k Ck, k = 1, . . . ,K. (2)

The matrices for the usual 2 energy group approximation are

Φ =
(
ϕ1
ϕ2

)
, F =

(
νΣf1 νΣf2

)
, L =

−∇⃗ · (D1∇⃗
)

+ Σa1 0
−Σs12 −∇⃗ ·

(
D2∇⃗

)
+ Σa2

 ,
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M =
(
χp

1νΣf1 χp
1νΣf2

χp
2νΣf1 χp

2νΣf2

)
, V =

(
1/v1 0

0 1/v2

)
, Xk =

(
χd,k

1
χd,k

2

)
.

For a given state, a steady-state configuration of the reactor can be found through the following
eigenvalue problem:

L0Φ0 = 1
λ
M0Φ0, (3)

The first-Order neutron noise equation can be found if we split each term X(r⃗, t), into its mean
value, X0, which is considered as the steady-state solution; and its fluctuation around the mean
value, δX.

X(r⃗, t) = X0(r⃗) + δX(r⃗, t). (4)
The fluctuations are assumed to be small compared to the mean values

|δX(r⃗, t)|≪ |X0(r⃗)|. (5)

The different magnitudes are then split as,

L = L0 + δL,
M =M0 + δM,

F = F0 + δF .,
Φ = Φ0 + δΦ,
Ck = Ck,0 + δCk

Finally, we perform a Fourier Transform to analyse the problem in the frequency domain. This
leads to the frequency-domain neutron noise diffusion equation,(

iωV + L0 − γM0

)
δΦ =

(
− δL+ γδM

)
Φ0,

γ = (1− β) +
K∑

k=1

λkβk

iω + λk
.

In the usual 2 energy groups approximation:

CδΦ = DΦ0 = d,

where

C =
[

iω
v1
− ∇⃗D1∇⃗+ Σ0

a1 + Σ0
12 − γνΣ0

f1 −γνΣ0
f2

−Σ0
12

iω
v2
− ∇⃗D2∇⃗+ Σa2

]
,

D =
[
−δΣa1 − δΣ12 + γδνΣf1 +γδνΣf2

δΣ12 −δΣa2

]
.

To summarize, we need to solve a complex system as:

CδΦ = d,

(
−∇⃗D1∇⃗+ σR11 + iσi11 σR12 + iσ12

σR21 + iσ21 −∇⃗D2∇⃗+ σR22 + iσ22

)(
δϕ1
δϕ2

)
=
(
d1
d2

)
,

We discretize the equation using the continuous Galerkin Finite Element Method.
To sum up, we must study preconditioners to the problem:(

−∇⃗D1∇⃗+ σR + iσi

)
δΦ = d
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2 Real equivalent formulations

If we consider the complex linear system

Cz = d, (6)

where C = A+ iB, z = x+ iy and d = b+ ic. The most usual real formulation is:(
A −B
B A

)(
x
y

)
=
(
b
c

)
, (7)

However, the choice of the real and imaginary part of the coefficient matrix is largely arbitrary and
other equivalent real formulation exist:(

A B
B −A

)(
x
−y

)
=
(
b
c

)
, (8)(

B A
−A B

)(
x
y

)
=
(
c
−b

)
, (9)(

B A
A −B

)(
x
y

)
=
(
c
b

)
. (10)

The performance of direct linear solvers applied to the real formulations degrades in comparison
to the original complex case. Also, the effectiveness of preconditioners related to sparse direct
solvers, like ILU, deteriorates similarly [1].

Then, we centre our efforts in equation (7). It must be noted that the elements of A and
B must not be not stored twice. We also look for preconditioners that do not double storage
requirements. Indeed matrix-free methodology is applied to non-diagonal blocks to minimize the
memory requirements.

3 Block Preconditioners for real formulations

As in the neutron noise problem, A is dominant, the simplest preconditioner is to use a block Jacobi
preconditioner:

PBJ =
(
A 0
0 A

)
. (11)

Another, usual choice will be the the Block Gauss-Seidel preconditioner.

PGS =
(
A B
0 A

)
.

This preconditioner is effective when A−1B ≈ 0 as it is the case in neutron noise simulations.
Another possible choice of a preconditioner is the shifted skew symmetric and the Hermitian/skew-

Hermitian splitting (HSS) preconditioner,

PHSS =
(
A+ αI 0

0 A+ αI

)(
αI −B
B αI

)
where α > 0.

Pα =
(
αI A
−A αI

)
, PHSS =

(
B + αI 0

0 B + αI

)(
αI A
−A αI

)
.

Both preconditioners require the solution of systems (A2 + α2I)u = r.
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Table 1: Numerical results with FE = 1.

Algebra Precond N◦ of its CPU Time(s) Memory (Mb)
Complex system ILU(0) 110 its 7.0 s 500
Complex system Jacobi 798 its 20.6 s 500
Complex system None 1079 its 26.89 s 500

Real system ILU(0) 193 its 11.4 s 1000
Real system Jacobi 798 its 24.6 s 500
Real system None 1079 its 32.7 s 500

Table 2: Results with FE = 1

4 Numerical Results

To study the different practitioners proposed, we use a hexagonal reactor, the VVER-440. Figure 1
use the . First, linear polynomials in the Finite Element Method are studies. In this case, each
energy-group block of the real formulation has a size of 65.611× 65.611. Thus, the total size of the
matrix is 262.444× 262.444.

If block structures are not used, complex algebra is faster to equivalent real formulations, as
Table 1 shows. However, we use the real value and imaginary value separation, that solves a 2x2
block structure. Here we can use matrix-free methodology for the non diagonal blocks that greatly
reduces the memory demands. The results are displayed in Tables 3. The block Gauss Seidel
preconditioners shows the best results using the real equivalent formulation in terms of CPU time
and memory. Figure 2 shows the convergence graph of the different practitioners studied with
FE = 1.

(a) Radial Plane (b) Axial View

Figure 1: Solution of the VVER-440 reactor.
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Table 3: Numerical results with FE = 1.

Algebra Precond N◦ of its CPU (s) Memory (Mb)
Real system Block Jacobi 8 its 29.4 s 135
Real system Blok Gauss Seidel 6 its 15.2 s 135
Real system PSS 6 its 20.2 s 135
Real system PHSS 5 its 18.4 s 135
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(b) Block Preconditioning

Figure 2: Convergence graph of the different practitioners studied with FE = 1.

Now, we study the same problem using second degree polynomials in finite element method. In
real formulations, each block has a size of 504.691.691 and the total size of the matrix is 2.018.764×
2.018.764. The results are displayed in Tables 4 and 5. Again, if we do not use real equivalent
formulations, the complex system is faster, but it uses more memory to store the matrix. The block
Gauss Seidel preconditioners shows the best results using the real equivalent formulation in terms
of CPU time and memory. Figure 3 shows the convergence graph of the different practitioners
studied with FE = 2.

5 Conclusions

Sparse complex linear systems arise from the discretization of the neutron noise diffusion equations.
In this work, real equivalent formulations are a practical way to solve them using libraries for

Table 4: Numerical results with FE = 2.

Algebra Precond N◦ of its CPU (s) Memory (Mb)
Complex system ILU(0) 298 its 250 s 4000
Complex system Jacobi 3588 its 1245 s 4000
Complex system None 6715 its 2300 s 4000
Complex system ILU(0) 745 its 786 s 8000
Complex system Jacobi 3588 its 1618 s 4000
Complex system None 6715 its 2990 s 4000
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Figure 3: Convergence graph of the different practitioners studied with FE = 2.

Table 5: Numerical results with FE = 2.

Algebra Precond N◦ of its CPU (s) Memory (Mb)
Real system Block Jacobi 8 its 372 s 1065
Real system Blok Gauss Seidel 6 its 275 s 1065
Real system PSS 6 its 455 s 1065
Real system PHSS 5 its 375 s 1065

real-valued matrices. Preconditioners based on matrix factorizations, as ILU, deteriorate in real
equivalent formulations.

However, block preconditioning permit to use matrix-free techniques and parallelism. For the
neutron noise problem, Block Gauss-Seidel preconditioner show the best agreement between mem-
ory usage and CPU time.

Future works will be centred in multigrid preconditioner that have shown good results in similar
problems.
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1 Introduction

The use of LED lamps as an energy-saving policy is a practice that occurs in several countries [4,7].
However, in emerging countries the metrological control is not deepened. There are standardized
methods for measuring the properties of LED luminaires such as ANSI/IES LM 79-19 Approved
Method: Optical and Electrical Measurements of Solid-State Lighting Products [5], or CIE S
025/E:2015 Test Method for LED Lamps, LED Luminaires, and LED Modules [6].

These methods suggest, among others, the use of an integrating sphere plus a spectroradiometer
as the main elements for measuring the properties of the lamp, as well as the power supply and
electrical meter to measure the electrical magnitudes [8]. Figure 1 shows a typical scheme for
measuring a LED lamp.

Figure 1: Integrating sphere for luminous flux detection according to IES LM 79

These methods are demanding in their conditions. In particular, the ambient temperature
condition for LM 79 is 25◦C ± 1.2◦C [5]. The device under test (DUT), in general, must be

1cavf1@alu.ua.es
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stabilized for a time that is usually close to 2 hours so that its photometric magnitudes are stable.
In this process, there is a phenomenon of heat transmission from the lamp to the environment.

An ISO/IEC 17025 [4] accredited laboratory has the necessary equipment to meet this condition.
However, the problem is in taking data from a significant number of test items. A given DUT can
use the complete experimental scheme for just over 2 hours (its stabilization and data collection),
and this would imply an approximate maximum of 7 test items per day.

On the other hand, an efficiency policy consistent with the quality of imported items requires
market surveillance, which depending on the volume of brands in the market could reach a need of
up to 40 tests per day [2].

This is a problem that can be solved technically. If the longest time (stabilization) can be done
outside the integrating sphere, the experimental scheme would be used only for data collection,
allowing the tests required for market surveillance to be carried out.

The stabilization outside the integrating sphere would represent 40 lamps turned on simulta-
neously that would act as heat sources in a stabilized environment [1]. For the construction of an
isolated stabilization bench that does not disturb the thermal stabilization of the environment, it
is necessary to find an adequate distance between the lamps.

Some studies indicate that, although an LED lamp has many components, its thermal behavior
and heat transmission to the environment can be studied through a suitable simulation [9, 10].

2 Methods

The construction of the stabilization bench starts from the resolution of the equation to find the
heat transfer from a heat source to the environment,

ρcp
∂T

∂t
+ ρcpu∇T = ∇(k∇T ) +Q+Qvh +Wp, (1)

where ρ is density, cp is the specific heat capacity at constant pressure, T is temperature, t, time,
Qvh is the viscous dissipation, Wp is the thermodynamic work, u is the velocity vector, k∇T is the
heat flux by conduction, and Q is the heat source, which is computed as

Q = Ptot

V
, (2)

where Ptot is the power of the lamp and V is the volume. Additionally, the contour of the bank
must be isolated, so that the insulation will be modeled by

−n(k∇T ) = 0, (3)

where n is the normal vector. In this model, convection is considered to be negligible.

3 Results

LED chips were modeled as solid bulk aluminum plates surrounded by air for the development of
the simulation. 40 lamps of 10W were taken into account. First, the 2D system was solved by
locating the lamps in different distributions, finding that the location in matrix form is the most
appropriate, with a separation of 30cm between lamps (Figure 2).

Heat transfer was calculated for a period of 2 hours, that is, 7200 seconds, and it was supervised
that the temperature distribution between the lamps did not exceed 30◦C. Then a 3D simulation
was carried out, varying the number of planes in which to place the lamps. However, the speci-
fications of the laboratory and the space available for the construction of the stabilization bench
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means that the bench should not be too wide, although it can have large dimensions both in length
and height.

Figure 2: On the left is the simulation at time t = 0s and on the right the simulation at time
t = 7200s.

The final diagram used that meets the real spatial requirements as well as the thermal conditions
can be seen in the Figure 3.

Figure 3: Simulation at time t = 0s.

Again, the behavior of the heat sources was studied in a time of 7200 seconds as shown in
Figure 4.

Figure 4: Simulation at time t = 7200s.

Based on these results, we proceeded to design the structure of the stabilization bank (Figure
5), considering both the results obtained in the heat transfer study and also the space requirements
of the laboratory.
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Figure 5: Stabilization bench construction diagram

Thermal insulation also performs an important function. The level of lighting of 40 lamps
turned on simultaneously inside the laboratory was studied. The result was that at the operator’s
distance from the integrating sphere he/she would receive more than 4000 lx (Figure 6). For this
reason, isolation not only prevents the thermal disturbance of the controlled environment, but also
ensures that visible radiation does not affect the performance of people inside the laboratory.

Figure 6: Lighting of 40 lamps without a physical light blockage

4 Conclusions

Market surveillance requires a significant capacity of testing laboratories. Generally, the test of
a DUT according to LM 79 requires a stabilization prior to the test, which represents a loss of
effective testing time. It is possible to stabilize the LED lamps outside the integrating sphere to
perform many more measurements, meet the measurement standard and perform proper market
surveillance. Modeling heat transfer for an array of LED lamps resulted in the selection of a matrix
of positions in which the lamps must be located 30cm apart, considering thermal insulation at the
edges.

Future work includes analysing the behaviour of lamps that are not necessarily for domestic use
and understand the variations in distance required in higher powers. The electrical component is
also important, designing the electrical diagram for the synchronization of power supplies to allow
entering the lamp into the integrating sphere without going through OFF. Finally, the bank must
be practically built and its results contrasted with the simulations.
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1 Introduction

Nonlinear phenomena occur in various fields of science, business, and engineering. Research in
the area of computational science is constantly growing, with the development of new numerical
schemes or with the modification of existing ones. One of the major issues of numerical analy-
sis is the construction of efficient iterative methods for solving nonlinear equations and systems
of equations. Applicability to several real-life problems is the reason behind its importance that
can be seen in the available literature. Moré [9] presented several nonlinear model problems and
majority of them are stated in the form of G(X) = 0. Also Grosan and Abraham [5] analyzed
the relevancy of the nonlinear systems in neurophysiology, kinematics syntheses, chemical equilib-
rium, combustion and economics modeling problems. Furthermore, Lin et al. [8] also expressed
the applications of the nonlinear system in transportation theory. Usually, nonlinear phenomena
in physical and medical sciences are modelled as nonlinear equations. So, researchers many are
actively engaged to give effective and widely applicable iterative methods. Recently, researchers
have proposed sixth-order iterative methods using weight functions and parameter approaches (we
can see in [2, 3, 6, 7]). Abad et al. [1] proposed an efficient Steffensen family of three-step iterative
schemes with seventh-order convergence using four function evaluations. The proposed methods are
obtained by using the weight functions procedure. However, such numerical schemes, objectively
need to be computationally inexpensive with higher order of convergence. Taking into account
these demanding features, this article attempts to develop a new seventh-order scheme based on
weight functions using four function evaluations. Some applications are also given to check the
numerical performance of the scheme.

2 Development of Seventh Order Method

We use the weight function approach in the development of our scheme. For the multivariate vector
valued function G : D ⊆ Rn → Rn, we have

v(n) = r(n) −
(
G

′ (
r(n)

))−1
G
(
r(n)

)
,

1saimayasin08@gmail.com
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z(n) = v(n) − P
(
s(n)

)
.
(
G

′ (
r(n)

))−1
G
(
v(n)

)
,

r(n+1) = z(n) −
(
R
(
s(n)

)
+Q

(
t(n)

))
.
(
G

′ (
r(n)

))−1
G
(
z(n)

)
. (1)

s(n) = I −
(
G

′ (
r(n)

))−1
G[r(n); v(n)].

and
t(n) = I −

(
G

′ (
r(n)

))−1
G[v(n); z(n)]P

(
s(n)

)
.

where P : An×n(R)→Γ(Rn), Q : Bn×n(R)→Γ(Rn) R : Cn×n(R)→Γ(Rn) with An×n, Bn×n and
Cn×n be the set of n× n matrices and Γ(Rn) be the set of linear operators from Rn to Rn. We
define the seventh-order scheme for nonlinear system of equations by using some weight functions
that are described from the following theorem.

Theorem 22. Let us suppose that G : D ⊆ Rn → Rn be a sufficiently differentiable function in a
closed neighborhood D . We consider that G′ (X) is continuous and nonsingular at Υ . In addition,
that convergence is guaranteed if we consider that initial guess X(0) is close to root Υ. Then, the
numerical scheme (1) has seventh order convergence under the following conditions:

P (0) = I, P ′(0) = 2I, P ′′(0) = 0, ∥P ′′′(0)∥ <∞,
R(0) = I,R′(0) = 2, R′′(0) = 2, ∥R′′′(0)∥ <∞,
Q(0) = 0, Q′(0) = I, ∥Q′′(0)∥ <∞.

Some particular cases of the proposed scheme are given as :
FS1: If we take the weight functions P (s(n)), R(s(n)) and Q(t(n)) of the following form:

P (s(n)) = (a0I + a1s
(n) + a2(s(n))2)−1,

R(s(n)) = (b0I + b1s
(n) + b2(s(n))2)−1

Q(t(n)) = c0I + c1t
(n) + c2(t(n))2,

and
a0 = 1, a1 = −2, a2 = 4,

b0 = −1, b1 = −2, b2 = −5,

c0 = 2, c1 = 1, c2 = c2

We take c2 = 9 in particular.
FS2: If the weight functions P (s(n)), R(s(n)) and Q(t(n)) are taken of the following form:

P (s(n)) = (a0 + a1s
(n) + a2(s(n))2)−1,

R(s(n)) = b0I + b1s
(n) + b2(s(n))2

Q(t(n)) = c0I + c1t
(n) + c2(t(n))2,

with
a0 = 1, a1 = −2, a2 = 4,

b0 = −1, b1 = 2, b2 = 1,

c0 = 2, c1 = 1, c2 = c2.
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In particular, we take c2 = 15 .
FS3:Let us take the weight functionsP (s(n)), R(s(n)) and Q(t(n)) of the following form:

P (s(n)) = a0 + a1s
(n) + a2(s(n))2,

R(s(n)) = (b0 + b1s
(n) + b2(s(n))2)−1

and
Q(t(n)) = c0I + c1t

(n) + c2(t(n))2,

such that
a0 = 1, a1 = 2, a2 = 0,

b0 = −1, b1 = −2, b2 = −5,
c0 = 2, c1 = 1, c2 = c2.

Particularly, we choose c2 = 10.

3 Numerical Results

We want to verify the numerical results of our iterative method so, compare the results of our
schemes namely FS1, FS2, and FS3 with respect to number of iterations n, absolute residual
error of the corresponding function

∥∥∥G(r(n))
∥∥∥ and absolute error in two consecutive iterations∥∥∥r(n)−r(n−1)

∥∥∥. Our method is compared with seventh-order method presented by Abad et al. [1]
that is given below

v(n) = r(n) − (G′(r(n)))−1G(r(n)),
z(n) = v(n) −K(s(n))[r(n), v(n);G]−1G(v(n)),

r(n+1) = z(n) −H(s(n))[v(n), z(n);G]−1G(z(n)), (2)

where

K(s(n)) = I + s(n),

H(s(n)) = I + (s(n))2.

Example 1. Consider a problem [10] in which we have to determine the steady state concentration
of naphthalene in the lung and liver. In steady-state process, concentration of components remains
the same i.e. no changes takes place with time. Hence, no material accumulates anywhere in the
system. In engineering, a material balance is conducted over each compartment to account for every
material that is entering and leaving a system. From this material balancing process, we obtain
a system of equations to find unknowns such as concentrations of some specific species from each
compartment. Now, consider a material balancing of naphthalene over two chambers such as lung
and liver. Therefore, a 2× 2 system of equations is obtained, G4(X) = 0, and is described as:

780(1−R) +R(0.5Cliver + 1.5Clung)− ( 8.75Clung

2.1 + Clung
)0.08− 2Clung = 0,

0.5Clung − ( 118Cliver

7 + Cliver
)0.322− 0.5Cliver = 0. (3)

For given value R = 0.6, the above equations can be written as:

0.3Cliver − 1.1Clung −
0.7Clung

2.1 + Clung
+ 312 = 0,
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Table 1: Comparison of methods for Example 1.

Cases m ∥ r(n)−r(n−1)∥ ∥ G
(
r(n)

)
∥

FS1 1 79.31126 1.03007e(−11)
2 2.81033e(−11) 1.07399e(−91)
3 9.75868e(−92) 1.36080e(−576)

FS2 1 79.31126 4.56475e(−12)
2 1.24447e(−11) 4.47472e(−94)
3 4.06887e(−94) 7.11030e(−591)

FS3 1 79.31126 9.10306e(−12)
2 2.48351e(−11) 4.88632e(−92)
3 4.43997e(−92) 1.2066e(−578)

AC 1 79.31126 9.99659e(−12)
2 2.73194e(−11) 4.20853(−91)
3 3.81759e(−91) 5.24784e(−573)

0.5Clung − (37.996Cliver

7 + Cliver
)− 0.5Cliver = 0. (4)

We will solve this system for the two unknowns i.e. Clung and Cliver. The root of this system is:

(361.3112614, 287.1278085)t.

The initial guess is taken as: (C(0)
lung, C

(0)
liver) = (358, 282)t.

Example 2. We consider Combustion Problem taken from [5] for a temperature of 3000 0C. The
problem is described by the following sparse system of equations:

x2 + 2x6 + x9 + 2x10 = 10−5

x3 + x8 = 3·10−5

x1 + x3 + 2x5 + 2x8 + x9 + x10 = 5·10−5

x4 + 2x7 = 10−5

0.5140437·10−7x5 = x2
1

0.1006932·10−6x6 = 2x2
2

0.7816278·10−15x7 = x2
4

0.1496236·10−6x8 = x1x3

0.6194411·10−7x9 = x1x2

0.2089296·10−14x10 = x1x
2
2.

and we take initial guess as (0.000018,0.000012,0.0013,0.0000000062,0.00006,0.00003,
0.00049,0.0016,0.000038,0.000038)t.

Example 3. We take nonlinear system of three equations, taken from [4], is:

3x1 − cos(x2x3)− 1
2 = 0,

x2
1 − 81(x2 + 0.1)2 + sin(x3) + 1.06 = 0,

e−x1x2 + 20x3 + (10π3 − 1) = 0,

where we take initial guess as (0.6,1,-0.6)t.
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Table 2: Comparison of methods for Example 2.

Cases m ∥ r(n)−r(n−1)∥ ∥ G
(
r(n)

)
∥

FS1 1 1.61533e(−3) 3.15559e(−10)
2 1.02184e(−3) 1.15147e(−11)
3 1.06685e(−4) 3.60548e(−13)

FS2 1 1.57932e(−3) 4.45799e(−11)
2 5.05179e(−4) 1.40737e(−12)
3 1.53520e(−5) 1.28762e(−13)

FS3 1 1.51060e(−3) 4.33644e(−10)
2 1.25310e(−3) 1.23174e(−12)
3 1.87269e(−4) 9.49965e(−13)

AC 1 2.47379e(−3) 6.51052e(−10)
2 2.14719e(−3) 1.94073e(−11)
3 2.589545(−4) 3.57629(−13)

Table 3: Comparison of methods for Example 3.

Cases m ∥ r(n)−r(n−1)∥ ∥ G
(
r(n)

)
∥

FS1 1 9.38605e(−1) 1.30180
2 6.15009e(−2) 1.72088e(−3)
3 1.06482e(−4) 4.02249e(−21)

FS2 1 1.01300 1.90013e(−1)
2 1.30033e(−2) 6.10908e(−6)
3 3.77576e(−7) 1.01367e(−38)

FS3 1 9.18735e(−1) 1.85315
2 8.13347e(−2) 1.13912e(−3)
3 7.04488e(−5) 3.10923e(−22)

AC 1 8.88511e(−1) 2.80943
2 1.10954e(−1) 8.65758e(−3)
3 5.34043e(−4) 3.68782e(−17)
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4 Conclusion

A new seventh-order convergent scheme with four function evaluations per iteration is presented
to solve nonlinear models in the multivariate scenario. The proposed method is evaluated to be
adequate in terms of accuracy and reliability. This was further supported when we compare the
numerical results of non linear problems to our scheme with these of existing families of Steffensen
type methods [1].
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1 Introduction

Numerical analysis refers to the process in which we develop, analyze, and investigates numerous
methods and algorithms for numerically solving the problems in the diverse domains such as elec-
trical engineering, chemical engineering, mathematics, physics, and applied sciences. The most
significant and difficult task is to find an efficient and accurate solutions to systems of non-linear
equations G(X) = 0 with G : D ⊆ Rn → Rn. For this purpose, many higher order iterative
methods are developed that are efficient and have less computational cost such that Ostrowski [8],
Traub [9]. The simplest and most powerful root finding method to solve non-linear systems is
Newton-Raphson method, defined as:

X(n+1) = X(n) −G′(X(n))−1G(X(n)),

where G′(X(n)) is the Jacobian matrix. Many researchers work to improve the efficiency of iterative
methods and developed some sixth-order derivative based methods [3,4,6], a seventh-order method
[1] that was not Jarratt type, and a non-optimal seventh-order Jarratt type method [2].

To achieve higher convergence order, we develop three-step seventh-order Jarratt type method
for solving systems of non-linear equations. The suggested multidimensional method requires only
three function evaluations and one Jacobian at each iteration. It also involves the divided differences
in weight functions, defined as:

[y, x;G]ji = (Gj [y1, y2, ..., yi−1, yi, xi+1, ..., xn]−
Gj [y1, y2, ..., yi−1, xi, xi+1, ..., xn])/(yi − xi),

1 ≤ j, i ≤ n,

1fizazafar@bzu.edu.pk
This research was partially supported by Ministerio de Ciencia, Innovación y Universidades, Spain PGC2018-
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where the index j denotes the jth function and the index i represents the nodes. Furthermore,
comparison of our method for some specific cases of weight functions to the existing sixth-order
method [3] and a non-optimal seventh-order Jarratt type method [2] shows that the proposed
method is more or equally efficient than already existing methods by taking some nonlinear systems
from mechanical, civil and environmental, and bioengineering.

2 Development of the Seventh Order Method

We developed a three-step seventh order method to solve systems of non-linear equations, which is
described as:

Y (n) = X(n) −G′(X(n))−1G(X(n)),
Z(n) = Y (n) −H(U (n))G′(X(n))−1G(Y (n)),

X(n+1) = Z(n) − L(U (n))K(V (n))G′(X(n))−1G(Z(n)), (1)

where for multidimensional case, U (n) and V (n) are formulated as:

U (n) = I −G′(X(n))−1[X(n), Y (n);G],
V (n) = I −H(U (n))G′(X(n))−1[Z(n), Y (n);G].

H, L : An×n(R) → Γ(Rn),K : Bn×n(R) → Γ(Rn) with An×n, Bn×n are the set of n × n matrices
and Γ(Rn) is the set of linear operators from Rn to Rn.

Theorem 23. Let us suppose that G : D ⊆ Rn → Rn be a Frechet differentiable function in D
containing simple root Q. We consider that G′ be continuous and non-singular at a point Q. The
described scheme has seventh-order convergence if we consider initial guess X(0) sufficiently close
to the root Q and the proposed seventh-order scheme satisfies the following conditions:

H0 = H(0) = I,H1 = H ′(0) = 2I,H2 = H ′′(0) = −2I,
H3 = H ′′′(0) = 36I, ∥H(iv)(0)∥ <∞,
L0 = L(0) = I, L1 = L′(0) = 2I, L2 = L′′(0) = 0, ∥L′′′(0)∥ <∞,
K0 = K(0) = I,K1 = K ′(0) = I, ∥K ′′(0)∥ <∞.

The final error equation is: E(n+1) = −1
6(−C3+6C2

2 )C2
2 (−72C2

2 +C2
2L

′′′(0)+12C3)E(n)7 +O(E(n)8).

From Theorem 1, several cases of our proposed scheme (1) are obtained for various choices
of the weight functions. We consider some specific cases of weight functions for the proposed
multidimensional scheme.

HM1 : We get a seventh-order scheme for multidimensional case by taking the weight functions as:

H(U (n)) = I + 2U (n) − (U (n))2 + 6(U (n))3,

L(U (n)) = (I − 2U (n) + 4(U (n))2)−1,

K(V (n)) = (I − V (n))−1.

HM2 : A seventh-order scheme is obtained for multidimensional system when we takeH(U (n)), L(U (n))
and K(V (n)) as rational functions such that:

H(U (n)) = (I + 6U (n))−1(I + 8U (n) + 11(U (n))2),

L(U (n)) = (I + U (n) − 2(U (n))2)−1(I + 3U (n)),
K(V (n)) = (I − V (n))−1.
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HM3 : We get another multivariate seventh-order scheme by taking the weight functions as:

H(U (n)) = (I + 8
5U

(n) − 11
5
(
U (n)

)2
)−1

(
I + 18

5 U
(n)
)
,

L(U (n)) = I + 2U (n),

K(V (n)) = I + V (n).

3 Numerical Results

Here, we consider some examples for system of nonlinear equations and obtain numerical results
for different cases of our proposed scheme (1). These cases are named as HM1, HM2 and HM3.
Now, to check the computational performance and effectiveness of our methods, we compare these
results with existing sixth and seventh order methods. First comparison method that we take
is a two-point sixth order multivariate method suggested by Behl et al. [3] for the case where
α = 7

4 named as OM. Moreover, we compare our schemes with seventh-order scheme proposed by
Behl and Arora [2] denoted as PM . To find the numerical solutions, various systems are taken
from different fields of science such as mechanical, civil and environmental engineering, [5], and a
bioengineering problem [7]. We take first three iterations in each case in the comparison Tables 1,2
and 3 which includes the number of iterations, n, residual error ∥ G(X(n)) ∥∞ and error between
two consecutive terms ∥ X(n) − X(n−1) ∥∞. Software Matlab R2014a is used to perform all the
computations for the multivariate case.

Example 1. (Mechanical Engineering)Let us consider a cylindrical object at room temperature
T3 = 25 0C. The innermost section of the cylinder is separated from middle section by vacuum.
The outer shell around the cylinder is separated from the middle container by air. The outermost
layer of cylinder is in contact with room air.The heat flux between these layers of cylinder is equal
i.e. q = q1 = q2 = q3. We have to find temperatures T1, T2 at steady state and the heat flux q. We
take T0 = 450 0C. The 3× 3 system of nonlinear equations, G1(X) = 0, is given as:

q − 273.245607 + 10−9(T1 + 273)4 = 0,
q − 4(T1 − T2) = 0,

q − 1.3(T2 − 25)
4
3 = 0. (2)

The desired root of this system is,

(137.0988374, 75.85865250, 244.9607397)t.

The initial guess is X(0) = (138, 74, 245).
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Table 1: Comparison of Seventh-Order Schemes for Vector-Valued Function G1(X).

Cases n ∥ X(n) −X(n−1) ∥∞ ∥ G(X(n)) ∥∞
HM1 1 1.8586524981 7.630716552(−11)

2 4.434213497(−11) 5.327559676(−47)
3 7.845399845(−59) 5.327559676(−47)

HM2 1 1.8586524981 4.500340268(−11)
2 4.146245999(−11) 7.492873218(−47)
3 1.769517727(−47) 5.327559676(−47)

HM3 1 1.8586524981 4.532685546(−11)
2 4.234684718(−11) 4.908886205(−47)
3 9.879220128(−49) 5.327559676(−47)

PM 1 1.8586514560 6.036597396(−11)
2 5.567449222(−11) 4.334055473(−47)
3 1.413897451(−58) 4.334055473(−47)

OM 1 1.85865149236 1.701474025(−7)
2 1.4980561404(−7) 1.375887236(−30)
3 9.173626483(−35) 1.376434519(−30)

Example 2. (Civil and Environmental Engineering) Let us take five nonlinear system of
equations, G2(X) = 0, that describes chemistry of rainwater:

kh1 = 106[H+][HCO−
3 ]

KHPCO2
, kh2 = [H+][CO2−

3 ]
[HCO−

3 ]
, kw = [H+][OH−],

CT = KHPCO2

106 + [HCO−
3 ] + [CO2−

3 ],

0 = [HCO−
3 ] + 2[CO2−

3 ] + [OH−]− [H+]. (3)

Here, kH =Henry’s constant, kh1, kh2, kw are coefficients of equilibrium.
In order to find five unknowns, CT = total inorganic carbon, [HCO−

3 ] = bicarbonate, [CO2−
3 ]

= carbonate, [H+] = hydrogen ion, and [OH−] = hydroxyl ion such that

[HCO−
3 ] = a, [CO2−

3 ] = b, [H+] = c, CT = d, [OH−] = e,

equations in (3) can be rearranged as:

g1 = kh1kHPCO2 − 106ac,

g2 = kh2a− cb,
g3 = kw − ce,

g4 = d− a− b− kHPCO2

106 ,

g5 = a+ 2b+ e− c. (4)

Given that
kH = 10−1.46, kh1 = 10−6.3, kh2 = 10−10.3, kw = 10−14, PCO2 = 315.

The required solution is:

(0.2337× 10−5, 5.0025× 10−11, 0.2341× 10−5, 0.1325× 10−4, 4.2701× 10−9)t.

The initial approximation is taken as X(0) = (1, 1, 1, 1, 1).

288



Modelling for Engineering & Human Behaviour 2022

Table 2: Comparison of Seventh-Order Schemes for Vector-Valued Function G2(X).

Cases n ∥ X(n) −X(n−1) ∥∞ ∥ G(X(n)) ∥∞
HM1 1 8.180985819(−1) 7.210728392(4)

2 3.147311532(−1) 3.061238662(3)
3 6.484832440(−2) 1.299616559(2)

HM2 1 9.914107904(−1) 1.864216660(3)
2 1.764948121(−1) 6.506165653(1)
3 3.297207774(−2) 2.2706670513

HM3 1 9.350523772(−1) 2.257986376(4)
2 2.744642063(−1) 1.000942430(3)
3 5.778692776(−2) 4.437075942(1)

PM 1 8.943697089(−1) 4.463103353(4)
2 3.291662682(−1) 2.178784144(3)
3 7.272838683(−2) 1.063632162(2)

OM 1 9.600176000(−1) 2.674045563(4)
2 2.374449999(−1) 1.279572582(3)
3 5.194109365(−2) 6.122954564(1)

Example 3. (Bioengineering) Consider a problem in which we have to determine the steady state
concentration of naphthalene in the lung and liver. In steady-state process, concentration of com-
ponents remains the same i.e. no changes takes place with time. Hence, no material accumulates
anywhere in the system. In engineering, a material balance is conducted over each compartment
to account for every material that is entering and leaving a system. From this material balancing
process, we obtain a system of equations to find unknowns such as concentrations of some specific
species from each compartment. Consider a material balancing of naphthalene over two chambers
such as lung and liver. Therefore, a 2× 2 system of equations is obtained, G3(X), and is described
as:

780(1−R) +R(0.5Cliver + 1.5Clung)− ( 8.75Clung

2.1 + Clung
)0.08− 2Clung = 0,

0.5Clung − ( 118Cliver

7 + Cliver
)0.322− 0.5Cliver = 0.

For given value R = 0.6, the above equations can be written as:

0.3Cliver − 1.1Clung −
0.7Clung

2.1 + Clung
+ 312 = 0,

0.5Clung − (37.996Cliver

7 + Cliver
)− 0.5Cliver = 0. (5)

We will solve this system for the two unknowns i.e. Clung and Cliver given as (361.3112614, 287.1278085)t.

The initial guess is taken as: (C(0)
lung, C

(0)
liver) = (300, 200)t.
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Table 3: Comparison of Seventh-Order Schemes for Vector-valued Function G3(X).

Cases n ∥ X(n) −X(n−1) ∥∞ ∥ G(X(n)) ∥∞
HM1 1 8.712780853(1) 2.185470307(−9)

2 5.961335590(−9) 3.488610168(−46)
3 3.739677655(−46) 4.023806166(−47)

HM2 1 8.712780853(1) 2.499859628(−9)
2 6.818811960(−9) 3.488610168(−46)
3 3.7396776561(−46) 4.023806166(−47)

HM3 1 8.712780853(1) 2.009863852(−9)
2 5.482470512(−9) 3.488610168(−46)
3 3.739677656(−46) 4.023806166(−47)

PM 1 8.712780854(1) 1.332283585(−10)
2 3.634956392(−10) 4.023806166(−47)
3 1.254281853(−58) 4.023806166(−47)

OM 1 8.712780837(1) 5.956254525(−8)
2 1.619277035(−7) 7.881694568(−31)
3 2.690016233(−37) 7.8816945677(−31)

The numerical results shows that our newly developed seventh-order method is better or equally
efficient as that of already existing methods.
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1 Introduction

In seventeenth century, Newton and Leibnitz created the differential and integral calculus concept
based on subtraction and addition operation. Later on 1970’s, Grossman and Katz [1] developed a
different definition of differential and integral calculus that utilize the multiplication and division
operation instead of addition and subtraction. This definition of differential and integral calculus
named as Multiplicative Calculus. In 2008, Bashirov et al. [2], contributed on multiplicative calculus
and its applications. After this, some authors worked on some applications of multiplicative calculus
in different areas like in biology [3], in science, and finance [4], in the biomedical sciences [5], in
economic growth [6] etc.

Motivated from the relevance of multiplicative calculus, some authors [7, 8] apply it to solve
multiplicative nonlinear model g1(x) = 1 instead of solving nonlinear equation g(x) = g1(x)− 1 =
0. Basically, these authors worked on simple root finding iterative methods with multiplicative
derivatives. In literature, there is no work related to evaluate the multiple root of nonlinear models.
So, focusing on same multiplicative derivative concept, we proposed the validity of multiple root
finding Schröder Method [9] in multiplicative calculus. We also proposed the joint Schröder Method
to enhance the convergence order.

2 Proposed Schemes

Here, we developed the following iterative methods to solve the nonlinear equation in context to
multiplicative derivative.
Multiplicative Schröder Method (MSM)

xk+1 = xk −
ln (g(xk)) ln (g∗(xk))

(ln (g∗(xk)))2 − ln (g(xk)) ln (g∗∗(xk))
, ∀k = 0, 1, 2... (1)

.
Joint Multiplicative Schröder Method (JMSM)

1soniamaths5@gmail.com
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yk =xk −
ln (g(xk)) ln (g∗(xk))

(ln (g∗(xk)))2 − ln (g(xk)) ln (g∗∗(xk))
,

xk+1 =yk −
g(yk)g′(yk)

(g′(yk))2 − g′(yk)g′′(yk)
, ∀k = 0, 1, 2...

(2)

3 Convergence analysis

Theorem 1: Assume the sufficiently multiplicative differential function g : Ω ⊆ R → R+ with r1
multiplicative zero in an open interval Ω. Whenever x0 is sufficiently close to r1, then multiplicative
Schröder scheme (1) has quadratic convergence.

Theorem 2: Let the function g : Ω ⊂ R→ R+ has a root r in an open interval I. Assume that
g(x) is sufficiently ordinary, and multiplicative differentiable about the point r. Then the method
JMSM given in (2) has fourth order of convergence.

4 Results

In this section, some experiments have been performed on suggested iterative methods for solv-
ing nonlinear equations. All the numerical work has been done on Mathematica 11 Software
with the stopping criterion |g(xk)| < 10−50 in ordinary derivative case and in multiplicative
derivative case |g1(xk) − 1| < 10−50. The experimental work of proposed multiplicative Schröder
method(MSM), and joint multiplicative Schröder method(JMSM) are compared with ordinary
Newton methods(NM), ordinary Schröder method(SM), modified Newton’s method(MONM) [9],
and multiplicative Newton method(MNM) [7]. In every numerical work the approximate computa-
tional order of convergence(ACOC) ρ, iteration index k, and consecutive iteration error |xk+1−xk|
presented in [10] are evaluated and showed in Table 1.

Example 1. We consider the population growth model that formulate the following nonlinear equa-
tion

g(x) = 1000
1564e

x + 435
1564(ex − 1)− 1.

In this model we evaluate the birth rate denoted as x, if in a specific local area has 1000 thousand
people at first and 435 thousand move into the local area in the first year. Likewise, assume
1564 thousand individuals toward the finish of one year. The computed results towards the root
xr = 0.1009979 . . . are displayed in Table 1. Clearly, the methods MSM , and JMSM shows better
results in terms of consecutive error and number of iteration in comparison of existing ones.

5 Conclusions

This paper presents a Schröder iterative method and joint Schröder iterative method with use of
multiplicative derivative. The convergence analysis of the constructed schemes are studied. In order
to measures its efficiency the proposed techniques are tested to find the roots of nonlinear equation
with multiplicity m ≥ 1. The numerical results depict that the new Schröder methods provides
satisfactory outcomes as compared with other techniques on the basis of errors, and iteration index.
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Table 1: Convergence behavior of the methods NM , MNM , SM , MSM , JMSM at approxima-
tion x0 = 1.

Schemes k |x(k+1) − x(k)| ρ T otal number of iterations CP U time(Seconds)

NM
2 3.7(−2) 2.000 5 0.281
3 6.7(−4)
4 2.1(−7)

MNM
2 2.6(−5) 1.999 4 0.359
3 2.9(−11)
4 3.6(−23)

SM 2 4.2(−1) 2.006 6 0.329
3 1.1(−1)
4 5.8(−3)

MSM
2 1.7(−2) 2.001 4 0.313
3 1.2(−5)
4 6.4(−12)

JMSM
2 1.3(−4) 4.000 4 0.469
3 2.5(−19)
4 3.3(−78)
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1 Introduction

The 3-body problem is a well-known problem in classical mechanics [1]. An approximate mathemat-
ical model is the circular restricted 3-body problem (CR3BP) [2,3], based on differential equations
under specific hypotheses that allow its simplification and numerical simulation. In [4], the CR3BP
is studied adding additional factors to the mathematical model corresponding to the gravitational
potential and the resulting basins of convergence. On the other hand, the angular velocity has also
been considered in [5] similarly.

The study of the stationary points (also called Lagrange points) carries a significant difficulty,
so several simplifying hypotheses are usually incorporated in the literature. The CR3BP [1] reduces
the complexity by considering only the masses of the two primary bodies, which orbit circularly
around their center of masses. The mass of the third body is considered negligible for the problem.
In addition, the CR3BP considers that all the bodies’ orbits are on the same plane.

To better analyse the orbit of the third mass, different CR3BP-modified models have been used
in the literature, considering some perturbing accelerations by modifying the potential function
[2–4]. In these papers, the effects of irregularities on the shapes of the primary masses, the radiation
pressure, or relativistic effects, are considered.

A basin of convergence (BC) is a set of points where the dynamics of an infinitesimal mass with
null velocity will evolve to a Lagrange point. These regions and the equilibrium points are calculated
using numerical methods, such as Newton–Raphson’s (NR) [6] or Broyden’s [7] methods. In fact,
the NR method has been used in many works to study the BC in different restricted problems of
3-bodies with modifications in the potential function, to consider radiation pressure and oblateness
effects, see for example [4, 5, 8].

The goal of this work is to analyze how to introduce simultaneously several additional pertur-
bations to the CR3BP model to increase its precision. These additional factors affect the dynamics
of the model by considering the radiation forces, the flattening of the primary bodies, the presence
of natural satellites, and some relativistic effects. Once modified, the resulting model is integrated
by using the NR method to determine the position of the Lagrange points and the basins of con-
vergence of the system.

This paper is structured as follows: in Section 2 the dynamical model description is given by
adding different perturbations to the classical formulation. In addition, the developed algorithm
to calculate the Lagrange points and the convergence basins is presented in Section 3. Next, in
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Section 4, the algorithm is applied to study the Sun - Mars system considering different effects.
Finally, in Section 5, the conclusions can be found.

2 Model Description

The CR3BP considers the masses of two primary bodies, m1 and m2, orbiting circularly around
their center of masses and on the same plane together with the third infinitesimal body. The
corresponding equations are usually written in a rotating coordinate system, whose origin is the
center of masses of the primaries system. It has an angular velocity equal to the mean motion of
the orbits of the primaries which is given by:

nD =
√

G (m1+m2)
R3 (1)

where R is the distance between the primary bodies and G is the gravitational constant. Besides,
the equations of the CR3BP are expressed in dimensionless terms, taking the appropriate unit
measuring system. Then, the equations describing the dynamics of the infinitesimal mass from
classical mechanics are:

ẍ− 2ẏ = ∂Ω
∂x

ÿ + 2ẋ = ∂Ω
∂y

(2)

where x and y are the coordinates of the infinitesimal mass and Ω the potential function defined
as

Ω (x, y) = 1
2

(
x2 + y2

)
+ 1−µ

r1
+ µ

r2
(3)

with r1 and r2 the distances between the infinitesimal body and each one of the primary masses,
and µ = m2/(m1 + m2) the dimensionless mass parameter. This parameter gives the positions of
the primary bodies as:

x1 = −µ x2 = 1− µ y1 = 0 y2 = 0 (4)

Some additional effects will be separately considered in the equations following several studies
[3,8–11]. These effects will be added to the effective potential modifying the effective potential in a
cumulative way. The final potential (Ω∗) would incorporate all these effects. Since the physical and
geometrical properties of the primary masses also affect the mean motion of the orbit, a modified
mean motion n∗

D must be used. Then, the equations of motion are:

ẍ− 2n ẏ = ∂Ω∗

∂x
ÿ + 2n ẋ = ∂Ω∗

∂y
(5)

where n = n∗
D/nD is the dimensionless corrected mean motion.

The first effect to be considered will be the radiation forces produced by one or both primary
masses. Considering this radiation as isotropic, from [2,5] its effects are introduced in the dynamic
system by means of a multiplicative radiation factor qi in the terms associated with the primary
masses. This factor is given by a relation between the gravitational effects Fgi and the effects of
the forces associated with radiation Fri

qi = 1− Fri
Fgi
. (6)

Next, the flattening or oblateness of the primary masses is considered. Several authors have
modified the effective potential in order to introduce these new geometries [3, 9, 10]. Then, 3
semi-axes, aj , bj and cj , have to be considered in each primary mass j, measured on a right-hand
trihedral axis. Thus, the triaxiality parameters σij are defined by:

σ1j =
a2

j − c2
j

5R2 σ2j =
b2

j − c2
j

5R2 (7)
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and, each primary mass will have two triaxiality functions fij , i = 1, 2 given by:

f1j = 2σ1j − σ2j f2j = σ2j − σ1j (8)

which will appear in the modified effective potential.
In order to introduce the relativistic effects, the effective Schwarzschild potential is considered,

which introduces a term of the form ϵ/r3. According to the development shown in [4], the parameter
ϵ ∈ [0, 1] is used to incorporate these relativistic effects in the term of the second primary mass
potential function.

Finally, the effect of the presence of natural satellites in the CR3BP model is studied in a similar
way as in [12]. It will be assumed that the satellites are spherical bodies with a significantly lower
mass than the primaries and they are not a source of radiation.

For each satellite i = [1, ns] its mass is denoted by msi and it modifies the effective potential
with an additive factor of the form αi/rsi , where and rsiαi = msi/(m1 +m2) and rsi is the position
of the satellite.

Therefore, the effective potential considering all the aforementioned potential effects is:

Ω∗(x, y, τ) = n2

2 (x2 + y2) + 1− µ
r1

(
q1 + f11

2r2
1

+ 3y2f21

2r4
1

)
+ µ

r2

(
q2 + f12

2r2
2

+ 3y2f22

2r4
2

+ ϵ

r2
2

)
+

ns∑
i=1

αi

rsi

(9)

On the other hand, the influence of the considered effects on the mean motion n has to be
analyzed too. This analysis leads to that the radiation and the natural satellites effects do not
affect to the mean motion of the primaries while the oblateness and the relativistic effects modify
the mean movement resulting in

n =
√[

1 + 3
2(2σ11 − σ21) + 3

2(2σ12 − σ22)
]

(1 + 3ϵ) (10)

Then, the equations of motion are (5) with n and Ω∗ given by (10) and (9), respectively.

3 Lagrange Points and Basins of Convergence

The Lagrange points of the system are the extrema of the resulting effective potential (9). At these
points the position of the third mass can remain stationary since the gravitational field exerted by
the primary bodies is compensated by the centrifugal acceleration of the infinitesimal mass. The
basins of convergence determine towards which Lagrange point an infinitesimal mass evolves, given
its initial conditions (x0, y0) and assuming a null initial velocity (ẋ0 = ẏ0 = 0).

In general, in classical mechanics, 5 Lagrange points appear in the study of the effective po-
tential. However, when perturbations are added, the number of Lagrange points can increase [9].
Since, the equations that will define them are:

Ω∗
x = 0, Ω∗

y = 0 (11)

a numerical method can be used to solve them. In order to apply an iterative method, a portion
of the planed will be divided into nx × ny elements uniformly distributed. The centroid of each of
these cells will be taken as initial conditions.

One of the most common numerical methods used to find zeros of functions is the NR method.
In fact, many works employing it to solve the equations (11) can be found in the literature [4–6].
This method, based on a first-order linear approximation of the function, can be formulated as:

F(xn+1) = F(xn) + F′(xn)(xn+1 − xn) (12)
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where x = {x, y}T , F(x) = {Ω∗
x,Ω∗

y}T , and F′(xn) represents the jacobian matrix of the function
F(x) evaluated at the point xn. Then, the zeros of the function F(xn+1) are iteratively obtained:

xn+1 = xn − (F′(xn))−1F(xn). (13)

A solution is considered to converge when the distance between two consecutive iterations is
below a given precision threshold. Moreover, two obtained solutions will be considered equal if
they are close enough, that is, if the distance between them is less than a given threshold. Once
all the possible solutions have been determined, they define the different Lagrange points of the
problem. Afterwards, the solution reached in each cell is compared with the Lagrange points to
assign the cell to the corresponding Lagrange point. The convergence basins of the system are the
graphic representations of these identifications.

Then, a modular code has been developed, which allows to compare the obtained solutions for
the different effects one by one with the existing in the literature [4, 5, 9]. In these articles, each
one of the effects appear separately. Using the same parameters values for each situation the same
results have been obtained, which validates the code developed in this paper.

All the effects considered are validated in the literature, except for the natural satellites per-
turbations. This effect has been studied in [12] for a single satellite with a different formulation.
Moreover, it is worth mentioning that our algorithm allows considering more than one satellite.

4 Application: Sun - Mars System

In this section, the algorithm is applied to the Sun - Mars system including the effects of the
triaxiality of the primary masses, the radiation forces, and the presence of the natural satellites of
Mars, Phobos, and Deimos. The solution is compared to the classical CR3BP one. The masses of
the Sun and Mars and the distance between them have been taken from [13,14], where the distance
is considered equal to the semi-major axis of the elliptical orbit of Mars. These values give the
mass parameter, µ = 3.22710 ∗ 10−7 [−]. Under these considerations, the convergence basins of the
problem in the classical CR3BP formulation are shown in Figures 1, 2 and 3 for different sizes in
the domain. The estimated coordinates of the Lagrange points in this case are shown in Table 1.

Clearly, a larger convergence region has been obtained than in the validation process (Sun-Earth
system) since the dimensionless parameter of masses is smaller in this case. It can also be observed
that the Lagrange points are located very close to the primary masses, specially to Mars in the
case of L1 and L2 (see Figure 3). On the other hand, L4 and L5 remain at the midpoint between
the primary masses, as it can be seen in Table 1.

Figure 1: Basins of convergence Sun - Mars
(classical formulation) [broad domain]

Figure 2: Basins of convergence Sun - Mars
(classical formulation) [reduced domain]
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Figure 3: Bases of convergence Sun - Mars
(classical formulation) [zoom Mars]

Libration Points Obtained Coordinates
(xL, yL) [−]

L1 (0.99525, 0)
L2 (1.00476, 0)
L3 (-1.00000, 0)
L4 (0.50000, 0.86603)
L5 (0.50000, -0.86603)

Table 1: Coordinates of the Sun - Mars libration
points (classical formulation)

4.1 Triaxiality and Satellites Effects

Now, in order to introduce the triaxiality and satellites effects together, the necessary Sun and Mars
data are taken from [13] and [14], respectively. And the corresponding to Phobos and Deimos are
obtained from [15] and [16]. These data allow to calculate the oblateness parameters appearing in
the model described in Section 2. Note that the terms associated with the Sun hardly change due
to its very low ellipticity, while, the corresponding to Mars subtancially change because of a greater
ellipticity. In this case the location of the Lagrange points has hardly changed by the inclusion
of both effects with respect to the classical formulation. This can be explained because the terms
associated with the Sun have more weight than those associated with Mars and its satellites, and
because the star is practically spherical. However, a slight change can be seen in far-field solutions.

4.2 Triaxiality and Radiation Effects

In this subsection the effects of the Sun radiation forces are included along with triaxiality effects.
The satellites are not included in the simulation since their effect has been proven to be negligible.
For the simulation an arbitrary value of radiation factor q1 = 0.4 [−] for the Sun and a null radiation
factor for Mars (q2 = 0 [−]) have been chosen. The results are shown in Figures 4, 5 and 6 and
Table 2. It can be seen that the radiation does have an important effect on the convergence basins
and on the Lagrange points.

Figure 4: Bases of convergence Sun - Mars
(triaxiality + radiation effects) [broad domain]

Figure 5: Bases of convergence Sun - Mars
(triaxiality + radiation effects) [reduced domain]
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Figure 6: Bases of convergence Sun - Mars
(effects of triaxiality + radiation) [zoom Mars]

Libration Points Obtained Coordinates
(xL, yL) [−]

L1 (0.73680, 0)
L2 (-0.73681, 0)
L3 (0.27144, 0.68498)
L4 (0.27144, -0.68498)

Table 2: Coordinates of the Sun - Mars libration
points (triaxiality + radiation effects)

In this case, the number of Lagrange points has been reduced to four and the convergence 
regions also change with respect to those in the classical formulation. Moreover, it can be observed 
that the triangular points are now closer to the Sun and the collinear points are located almost 
symmetrically with respect to the Sun.

5 Conclusions

In this paper, the classical CR3BP has been modify to increase the precision of the model by adding 
to the effective potential the effects of the radiation forces, the oblateness of the primary masses, 
some relativistic effects and satellites contribution.

An algorithm has been developed in a modular way to calculate the Lagrange points and the 
convergence basins of the model. It has been seen that the results obtained in the literature are 
recovered when working in the same conditions.

The code has been applied to the Sun - Mars system including triaxiality, radiation effects 
and Phobos and Deimos contribution. In this case, it is observed that the convergence basins and 
the Lagrange points are mainly affected by the radiation effects since the terms in the effective 
potential associated to the star are more important than those of Mars.
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Abstract

In this project, we have developed an application through which the Spanish multinational company
Inditex can obtain objective information about the health of the batteries of their PDAs. To imple-
ment this application, we developed an executable where we generated a Classification Trees model.
Through this method, the PDA is classified depending on the range of its battery health using the
SMOTE technique due to the unbalanced data found in the sample.

1 Background

Batteries currently used in electronic devices are made of lithium due to the advantages of high
energy density and low discharge rate, which makes lithium batteries a suitable energy storage
solution for many applications [1]. In fact, in addition to dominating the electronic device market,
it also dominates the automotive market. However, the main problem is that these batteries become
less effective over time [3].

Because lithium batteries have many types of applications, the development of the technology
is increasing, especially in the automotive market, where the demand for more efficient batteries
is continuously growing to provide competitive technology in terms of range and durability. In
addition, governments are taking measures to stimulate this type of vehicle, contributing to sus-
tainability and reducing polluting gases [2]. All this means that the use of lithium and its value is
steadily increasing, while lithium reserves are being depleted. That is why we must try to maximise
the life of these batteries, studying their behaviour and what habits we should follow to take care
of the batteries’ health. In our case, when we want to predict when it is necessary to change a
device due to the poor state of the battery, we have to try to be as accurate as possible to avoid
this waste of lithium.

The battery durability and health of the world of bateries is still very complex and challenging
to understand. In addition, the environmental impact of lithium-ion batteries depends significantly
on the battery’s lifetime, which is limited by the degradation of the battery. Because of this, there
are a multitude of studies that discuss what factors contribute to an increase or decrease in battery
life. In fact, N. Omar says that the impact of operating temperature is a determining factor in
slowing down battery ageing [3], whereas voltage changes under different charging currents can
reduce the electrical performance of batteries [4].



Modelling for Engineering & Human Behaviour 2022

Our research simply classified where the battery of an android device currently stands in its
life, based on information extracted from the device itself and information on the use of the device
provided by third parties. To do this, we have relied on the methodology used by Apple to provide
an estimated battery health value. Determining the state of battery health is a pending task for
Android, as its main competitor in the mobile market (Apple) is ahead in this area. As already
mentioned, the latter company estimates the percentage of useful life remaining in the device’s
battery, and depending on the value obtained, it is advisable or not to replace the device (the
advisable value for replacing the device in iOS is usually around 40%)1.

The main drawback is when an Android user wants to know when it is the right time to replace
their old device and buy a new one because of the battery condition. This problem is intensified
in the case of department stores that work with Android devices constantly and rely heavily on
them. These devices are often referred to as Personal Digital Assistant (PDA) and are widely used
in companies for functions such as labelling and relabelling, distribution, shipping, etc.

The research work we have carried out focuses on the study and behaviour of the batteries of
Android devices. This work has been carried out with the help of INDITEX, a Spanish multina-
tional textile manufacturing, and distribution company, whose objective with the collaboration in
this work is to be able to analyse their PDA devices used in warehouses and other places and to
be able to carry out a diagnosis, in order to quantify the number of devices in poor condition. The
aim is to anticipate events and be able to have the necessary stock of PDAs, as well as to reduce
costs and contribute to sustainability by avoiding unnecessary purchases of material.

2 Data availability and software

The data has been provided by Inditex using an Android device to extract information for the
PDAs. The tool used to extract information from our Android devices is dumpsys 2. You can call
dumpsys to get a diagnostic result for all system services running on a connected device. We will
focus on battery usage in our case so that the dumpsys command batterystats will be used3.

Figure 1 shows the process we have carried out to obtain the final database. When a PDA
is connected, the information is extracted by dumpsys, and we get as many TXTs as PDAs. It
must be cleaned and processed to turn it into a proper database. We first carried out a process
of investigating the meaning of the variables. After eliminating those unrelated to our objective,
we eliminated missing values, as we understand that the type of device ’PDA’ does not create
information of this type, and we carry out the necessary transformations.

In addition to the TXT with the information of each PDA extracted through battery stats, our
Inditex contact also shared with us an Excel with information like the function performed by each
PDA, whether the PDAs have an RFID device, the time of use. . . and the state of the battery,
our response variable. These variables are also added to the final database (Figure 1).

One of the problems we encountered in making these transformations is that the difference in
the number of values for each PDA is abysmal for each variable. Therefore, variables with few
values or numerical variables have a simpler transformation. But in the case of variables with
around 400 values and categorical variables, the transformation becomes more complicated (Figure
2).

We performed two different modifications, one for the numerical data and one for the qualitative
data, this can be seen in Table 1.

In addition, we perform transformations to move from qualitative to numerical data (Table 2).

1https://appletoolbox.com/at-what-percentage-replace- iphone-battery/
2https://developer.android.com/studio/command-line/dumpsys
3https://developer.android.com/studio/command-line/dumpsys#battery
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Figure 1: Process carried out to obtain the
database

Figure 2: Number of times each variable is
repeated

Table 1: Transformations made on numerical
and categorical variables Table 2: Transformations of categorical vari-

ables into numerical

As can be seen in the Figure 3, the battery’s state can be less than 25, greater than 25 but less
than 50, greater than 50 but less than 75, or greater than 75. We observed that most PDAs have
a high battery status. We did find scant values of the battery status group below 25 and even less
between 50 and 25.

Thus, in our final database, we have obtained a good number of rows with 83 variables, com-
bining manually extracted data and data extracted from dumpsys.

3 App

All the preprocessing done is combined in an application. By connecting a PDA and running the
app, the data will be downloaded, and the PDA diagnostics will be performed, giving you back the
value of the battery health status.

This can be seen in the following video: SaludPDAs

4 Methods

A classification problem is characterized by having a qualitative variable Y as the answer. This
dependent variable is a standard quality of the observations in the data set that we want to predict.
The prediction of the category or class to which an individual belongs within this variable is to
assign a class to that observation. In our case, we are faced with a clear classification problem in
which the qualitative variable to be predicted the state of the PDA’s battery with four different
classes. Our main goal is to build a simple, intelligent, and robust classification model in an efficient
and scalable way to perform a correct classification of PDA battery status. In order to carry out
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Figure 3: Bar chart of the number of samples
of each class.

Table 3: Manually provided battery status cat-
egories.

the modeling we have to deal with some limitations of the models used, for example, we cannot
work with incomplete information. That is when unknown values appear in some attributes of the
training cases. For this purpose, once the database has been loaded, a cleaning function has been
applied to eliminate the NaN and Inf values from the database.

Due to the data collection format, we can only have missing data in any input variable if it, in
turn, contains null data in the response variable ”STAT BAT”.

Futhermore, the variables of non-numerical character will be eliminated because they cannot
be treated and are not fundamental at the time of classification. In our case, we eliminate PDA
and battery identifiers and the date of manufacture of the battery.

One of our main problems is that we face a classification problem with unbalanced classes, so
we decided to try several oversampling techniques. There are a few reasons why undersampling is
not possible in this Project: First, when you undersample, you are essentially throwing away data,
and we have a small database. This can lead to the sample of the majority class chosen could be
biased; Second, undersampling can lead to problems with your model’s ability to generalize to new
data; Third, during undersampling, you are removing data from the majority class. Because of this,
you can lose potentially important information. And fourth, it may not be possible to accurately
identify which instances are most important to keep. Mainly we opted for SMOTE, since, in our
situation, adding data is preferable to removing data.

SMOTE first selects a minority class instance at random and finds its k nearest minority class
neighbors. Then an instance is created by choosing one of the k nearest neighbors at random and
connecting them to create a new observation in the feature space. The synthetic instances are
generated as a convex combination of the two chosen neighbors’ instances4. This technique is only
applied to the training set because if you modify the test set, you will predict non-real data.

Another limitation is the small number of observations we have. By creating new observations
with the oversampling method, we increase the size of the database, but still, due to the scope of
this project, the number of observations we have is limited.

To evaluate the model’s predictive capacity, it is necessary to check how close its predictions
are to the valid values of the response variable. To quantify it correctly, it is essential to have a set
of observations of which the response variable is known but which the model has not ”seen”, that is
to say, which have not participated in its adjustment. So, the step before applying a classification
method is to partition the data set into two smaller data sets that will be used for the following

4https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/
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purposes: training and test.
The training data subset is used to estimate the model parameters, and the test data subset is

used to check the behavior of the estimated model.
To carry out the validation, we apply two techniques, a k-fold division with k = 5 and an

allocation of 70% of the data to the train set and 30% to the test set. In both techniques, we will
do it in a stratified way; that is to say, the division is done by keeping the same proportion of
classes in the two sets.

The K-fold method divides a data set into K blocks. Considering one of them as a validation
set and the rest (K-1) as the training set. The first combination is the one that considers the first
block as a validation set and the rest as a training set, and so on with the rest of the combinations.

Firstly, k-fold splitting was proposed to vary the train and test set to solve the problem of
having too little data. Using this technique, we split the data5 times successively into train and
test sets, respectively. Once we have the candidate models with the selected optimal parameters,
we evaluate them by performing cross-validation with these sets. This technique was discarded
since we later received more data and were able to apply a single split.

Finally, the evaluation is carried out with a single split of the data into a train and a test set.
This is done by training the model with 70% of the observations to which the SMOTE algorithm
has been applied and validating it with cross-validation. The 30% set will be used exclusively to
evaluate the predictive capability of the proposed model.

To find out which specific parameters were the most suitable for each of the possible estimators,
the GridSearchCV tool was used. This technique performs an exhaustive search of the different
parameters within a model to choose the combination of parameters that best scores the selected
score. In this case, the scoring of f15 has been used because it is the classifier score that best suits
the situation of our data since they are unbalanced6.

precision = tp

p+ fp
= retrieved and relevant documents

all retrieved documents

recall = tp

p+ fn
= retrieved and relevant documents

all relevant documents

F = 2 · precision · recall
precision + recall

A measure such as an accuracy measure has problems with giving the same importance to a
well-ranked individual from the majority class as one from the minority class. This is incorrect in
a study of these characteristics, as it is required that the importance lies in a good classification of
all classes and there is no bias in classifying only the majority class well, as the model would have
a good accuracy but could be a poor predictor for the minority classes. In the case of the f1 score,
accuracy and recall (which tells us how well the model can detect the types) are combined, which
gives a much more objective value and is widely used in cases of unbalanced databases.

The models selected for this GridSearch were Logistic Regression, Nearest Neighbours, Neural
Networks, Decision Trees, and Support Vector Machines. After searching the possible combinations
of parameters in this GridSearch, we found the most suitable criteria to maximise the f1 score in
each model.

Once the models and their parameters were obtained, we proceeded to test them by them-
selves, with Bagging, Boosting and Stacking. These techniques7 combine several types of models
with different strategies. In the case of Bagging, a trained model is created for one of the training

5 https://deepai.org/machine-learning-glossary-and-terms/precision-and-recall
6 https://medium.com/@nicolasarrioja/c%C3%B3mo-actuar-ante-el-desbalance-de-datos-a0d64f2b9619
7https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205
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samples, which produces the same number of models as training samples, and once all the predic-
tions have been obtained, an average is made. On the other hand, Boosting consists of creating
models from previous models, as the training data are the same but for each iteration, weights are
assigned depending on the error, to improve their accuracy; Finally, the Stacking technique trains
weak models in parallel to then create a metamodel that combines the predictions of different weak
models.

After running all these models, we decided to choose based on the Brier Score8, which focuses
on magnifying how large the forecasting error was on a scale of 0 to 1. Another suggested option
was to apply a cost matrix with subjective weights adapted to the problem. However, this way of
the evaluation was discarded because it’s an ordinal problem, so the matrix had to be symmetrical,
something the team disagreed with due to the fact that some errors were more significant than
others. Furthermore, it was impossible to apply the cost matrix to train the model. Therefore,
it was decided to discard this form of evaluation between the difficulties encountered and the fact
that it would be a subjective way of dealing with the problem without being experts in the field.

BS = 1
N

N∑
t=1

(ft − ot)2

The modes with the best Brier Score are Decision Tree, Stacking and K-Neighbours, all of them
with a Brier Score of 0. We have chosen Decision Tree because it is a simpler model and can be
interpreted more easily than the others. Furthermore, Decision Tree is capable of handling both
numerical and categorical data and works well with large data sets. In addition, techniques such
as Boosting can lead to over-fitting, especially when the amount of training data is so small.

Finally, two scores have been used to choose the parameters and models for this work (Table
4). First, the f1 score was used to calculate the parameters best adapted to this database. This
score was chosen for this purpose because of its robustness to unbalanced data, as was the case.
Next, the Brier Score was used for the final decision between models. It was chosen for its qualities
against unbalanced and because we were dealing with an ordinal classification problem. To sum
up, we chose these two metrics because they are appropriate for the problem we were dealing with
and to have more information about the models and not base our decision on one metric alone as
this can be risky.

5 Results

The classification tree model, the one finally selected for this work, has as its main virtue that they
are accessible to understanding the classification model, which makes this method a very attractive
alternative for the end-user of a knowledge extraction system: the knowledge obtained during the
supervised learning process is represented by a tree in which each internal node contains a binary
question about the different variables present in our database (with a child node for each possible
answer) and in which each leaf refers to a decision (labelled with one of the classes of the problem).

Once the model was implemented on our data with the optimal parameters, the interpretation
shown in Figure 4 was obtained.

When the PDAs present a value greater than 61.04 percent spent in the variable that indicates
battery expenditure (GASTO BAT), they will be classified with 0% battery status.

PDAs will be classified with a 25% battery status if they have a value less than or equal to 61.04
percentage spent on battery expenditure (GASTO BAT), a value greater than -0.203 mAh in the
energy consumed on-screen (PWI mAh scrn), a value greater than 0.99 seconds in the time that

8https://www.statisticshowto.com/brier-score/
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Table 4: Results of the metrics used in the mod-
els. Table 5: Manually provided battery status cat-

egories.

the PDA has had the screen off during the charging stage (CSD duration s neg) and a value less
than or equal to 6.472 hours in the hours that have worked with the PDA (HORAS TRABAJO).

In the case of PDAs presenting a value less than or equal to 58.11 percent spent in battery
expenditure (GASTO BAT), a value greater than -0.203 mAh in the energy that has been invested
in screen (PWI mAh scrn), a value greater than 0.99 seconds in the time that the PDA has had
the screen off during the charging stage (CSD duracion s neg), a value greater than 6. 472 hours
in the hours they have worked with the PDA (HORAS TRABAJO), a value less than or equal to
0.071 seconds when the PDA has had good Wi-Fi signal strength (WSGT intensi buena) will be
rated at 50% battery status.

For a PDA to be rated at 75% battery, the PDA has to have a value less than or equal to 61.04
percent spent on battery expenditure (GASTO BAT), a value less than or equal to -0. 203 mAh
in the energy consumed on-screen (PWI mAh scrn), a value less than or equal to 0.398 seconds in
the time the battery is low discharged (DC baja), and a value greater than 6.34 hours in the hours
worked with the PDA (HORAS TRABAJO). A summary can be seen in Table 5.

It should be noted that when interpreting the model for each class, we have selected the leaves
where the highest number of instances were found.

The importance of each predictor in the model is calculated as the total (normalized) reduction
in the division criterion. In this case, we have based it on the entropy that the predictor achieves
in the divisions in which it participates in. If a predictor has not been selected in any division,
it has not been included in the model and will get a higher entropy value. A low entropy value
indicates that the node contains observations of only one class.

Once the model has been interpreted, we can see that the most important variables have been
the following: the variable GASTO-BAT with an entropy of 0.43, the variable HORAS TRABAJO
with an entropy of 0.15, the variable PWI mAh scrn with an entropy of 0.088, the variable DC baja
with an entropy of 0. 062, the variable NUEVA USADA with an entropy of 0.06, the variable
CSD duration s neg with an entropy of 0.05, the variable BR claro with an entropy of 0.045 and
the variable CSD duration p neg with an entropy of 0.04 and the variable WSGT internal buena
with an entropy of 0.03.
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Figure 4: Decision Tree of the final mode.

6 Risk

Concerning the study of the impact of our decisions and the risks we had faced; we differentiate
between internal and external threats.

6.1 Internal risks

On the one hand, internal risks were the lack of data at the beginning of the project and its
subsequent long collection process, because the company did not have an historical record about
the PDA’s batteries. This situation limited us significantly at the time of concluding, testing
different models, or making certain decisions about the disbalanced classes problem. To mitigate
this risk, we collected data from personal devices trying to make progress in pre- analyzing the
data in order to select the useful variables from de dumpys database and starting to change the
data format from one text file per device to an csv file with all PDAs. In turn, this may lead us
to the following internal risk we have gone through, this is that the model may not be the most
appropriate due to the short time we have to decide an algorithm, try hyperparameters, etc. To
mitigate this risk, as soon as we had a representative sample of the processed data, we started the
corresponding tests to choose the model and then test it on a larger scale.

6.2 External risks

On the other hand, when discussing external risks that may arise when testing the model in Inditex
warehouses. When the loading cycles, usage habits, or PDA model change and the data used to
train the model become obsolete, the model will continue to predict based on old data and will
not provide good results as the population would have changed. The confidence that users place
in the results of our predictions may also influence, as this may lead them to overuse the devices.
To solve this risk, we tried to investigate how to implement the model in the cloud and be able to
keep it updated with new data. Unfortunately, due to the time limit we were not able to achieve
this, but we have shared our idea with the Inditex team as a future work to get done.

Another external risk that we have detected in our project is that we had to anticipate possible
changes in variables in the data. We started working with data obtained from Android mobiles,
with different Android versions of the PDAs. Because of this, when we received the data from the
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PDAs, the information had differences, as some variables did not appear and there were new ones.
For this, we decided to anticipate and reserving a period of two weeks at the beginning assigning
three people to analyse and compare it with the data we already had and understand the latest
data.

7 Discussion

We have shown that the best oversampling data processing method for this project is SMOTE due
to its results with a high number of f1-scores in the different models. Furthermore, the best model
adapted to this project is decision trees, as demonstrated by the Brier score criterion. This sets a
precedent as no studies treat PDA battery life in a classificatory way with the Android dumpsys
tool. We hope this will help future work that wants to use this Android tool on new data.

8 Legacy

As for the lessons learned from this work, as a group, we have learned methodologies to put projects
in order, such as CRISP-DM. Despite applying it, it has not been followed to the letter and has
led to misunderstandings between the Modeling and Data Preparation processes. This is why,
after this experience, we have acquired the necessary knowledge of this type of methodologies and
how useful this knowledge is when carrying out data science projects that will be applied in future
works.

In addition, the hard work done in the search for documentation and models has caused sklearn
to limit us in testing different techniques as this library does not offer enough tools, such as the
impossibility of implementing models with cost matrices as metrics or the use of these models with
missing values. This will be considered in the future to discover more machine learning libraries
and methods.

On the other hand, being a large group of 7 people, there were times when we were not very
clear on how to divide tasks, and there were even people with no work to do. In addition, we did
not have a leader figure to direct, assign tasks, and, most importantly, control where each group
member was and make sure that the established deadlines were met. In our case, this responsibility
was divided among three team members, which increased their workload.

Because of this, deadlines were delayed, and misunderstandings arose, so we believe we have
learned our lesson and in future work, we will take into account the importance of the leader’s
figure. By assigning this role to one person, the work and organisation would be more effective.
At the same time, this person would carry out fewer tasks related to the project, but would be
in charge of organising the subdivisions of the group, controlling that everything goes according
to plan and that all the members of the group know where they are in the project and what the
problems are at any given moment.

In addition, we are used to receiving data that does not involve as much pre-processing work
as on this occasion and what this involves. However, when carrying out a real project developed
by a company, we have faced challenges and problems continuously, such as having to update some
of the decisions taken due to the gradual collection of data, which has helped us to learn how to
act in the future with this type of problems that are so common in the world of work. Regarding
communication with the company, we believe that there are points that could be improved for
future projects, but we believe that we have had good follow-up and that they have been involved
in all the important decisions. We recommend that the deadlines for data delivery be defined from
the beginning of the project so that the group of data scientists can better plan the tasks to be
carried out and measure times.
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9 Code

The code used in the realization of this project can be found in this GitHub repository: Project-
Batteries2022.

10 Conclusions and future work

The lack of a tool that would provide the well-known Inditex company with objective information
about the health of its PDA batteries was of vital importance to adjusting its budgets and material
costs. Having a system to inform the company about this data would allow them to determine
when the devices would no longer be valid and when they would have to invest in the material
renewal. In addition, it would also allow them to avoid technical problems such as PDAs failing in
the middle of a working day. We developed an application that returns the PDA’s battery health
percentage in response to this situation.

With this application, we can classify PDAs through a classification tree model. The device is
classified depending on the range of its battery health. Thanks to this application, the company
will be able to anticipate having PDAs available for replacement and maximize the use of the
battery and the device.

Our model has an f1-score coefficient of 0.83. This statistic could be improved if historical
data on PDA batteries were available, as it would allow us to know fundamental characteristics to
enhance the model’s prediction. Furthermore, we could obtain better results if the data collected
included a more significant number of PDAs in poor condition. We have had access to very little
data on devices with these characteristics during this project.

Thanks to our application, Inditex will be able to adjust its annual budgets. Incorporating
our application into the company’s operations will mean a significant reduction in the company’s
budget for purchasing PDAs or batteries. As for future work, the current model has been trained
with a reduced sample of data due to the project’s time constraints. With a massive collection of
new data extracted from more PDAs, we could improve the model’s effectiveness by using more
representative samples with more observations. Finally, although the application created to run
the extraction, cleaning, and diagnosis of the PDA works correctly, we still need to reduce the size
of this software and improve its speed and efficiency when running it.
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1 Introduction

Could mathematicians solve a crime? This article is a proof that graphs are a useful tool for solving
many problems in everyday life, apart from the field of mathematics itself. Next, we will present
and develop a fictitious case of a murder and, modelling it as a graph theory problem, we will see
how to solve it.

Graph theory is a branch of mathematics dedicated to the study of the properties and results
related to objects known as graphs. But what is a graph? As the work is the result of an activity
proposed in a first-year undergraduate level Discrete Mathematics class, only basic graph concepts
and algorithms have been used (see [1], [2] and [3]).

A graph G is an ordered pair (V,E), where V is a finite (non-empty) set and E is a set of pairs
of elements of V (called vertices). An undirected graph is one in which the elements of E, called
edges, are no ordered pairs of V , that is, represent symmetric relationships. H is a subgraph of
G if V (H) is contained in V (G) and E(H) is contained in E(G). A path is a finite alternating
succession of vertices and arcs/edges in which neither vertices nor arcs/edges are repeated. If the
firts and last vertex of a path are equal, we call it a cycle.

Throughout the development, we will want to see if the graphs obtained are connected or not. A
graph G is called connected if any two vertices are connected by a path. One way to determine
which vertices v reaches a given one u (that is, if there exists a path from u to v) would be to apply
the DFS or BFS search algorithms (Depth First Reach and Breadth First Reach) algorithms. We
represent this in the so-called access matrix. Having G = (V,E) where |V | = n, the access matrix
A = [aij ] is the matrix of size n× n whose elements are defined as:

aij =
{

1 if vi reaches vj

0 if vi does not reach vj

Such a matrix can be obtained from the repeated application of the DFS and BFS algorithms.
Concretely, each of the rows, i = 1, 2, ...n of the access matrix is obtained by applying one of the
two aforementioned methods to the vertex vi.
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On the other hand, we will also work with weighted graphs, that is to say graphs such that each
edge/edge has an associated weight. Since the weights we will use are positive, we will apply Dijk-
stra’s algorithm to obtain the minimum cost path from a given vertex to the rest of the vertices.

Finally, the tree concept will be used. A tree is an undirected, connected, acyclic graph. An span-
ning tree of an undirected connected graph G is a subgraph of G that is a tree which includes all of
the vertices of G. A minimum spanning tree is a spanning tree with a weight less than or equal to
the weight of every other spanning tree. After applying Kruskal’s algorithm we will find such a tree.

2 Methods

As good mathematical researchers, at the beginning of the problem, we were presented with a case
of murder at a party. We were given a list of clues as to which of the party guests were related to
each other and a floor plan of the house showing where everyone was at the time of the event, as
well as the distances between rooms.To solve the crime, we had to eliminate suspects by answering
a series of questions.

We first modelled the problem by constructing two graphs.The first graph represented the rela-
tionships between the guests and matched a vertex to each of them according to their first initial.
An edge existed between two vertices if the people to whom those vertices corresponded knew
each other. The other graph represented the floor plan of the house, with the vertices as the
different rooms.An edge existed between two vertices if access could be gained from each of the
rooms corresponding to the vertices to the other and the edges were weighted with the distance in
metres between the two rooms. Both were undirected graphs because friendship relationships are
considered reciprocal and a corridor can be used both to go to and from a room.

We then discarded the guests who were not related to the murdered person, using the concepts
of connection in graphs, connected components, access matrix and the DFS Algorithm. Applying
the DFS algorithm to the friendship graph, we obtained the connected components of that graph.
We discarded vertices that did not belong to the connected component of the murdered person’s
vertex (in a green circle in Figure 1), as this is evidence that they did not know each other and
they could not commit the crime. We were still working with 7 suspects.

Figure 1: Result of the exercise.
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Following a confession by one of those present at the crime scene, it was discovered that some room
doors had been locked before the murder took place. As some rooms had been inaccessible after
this closure, it is logical to try to rule out those people who had not been able to access the room
where the crime was committed. Thus, we constructed a new graph by varying the initial one that
modelled the rooms of the house, eliminating the edges corresponding to the closing of the doors.

We used the concepts of accessibility in graphs and the BFS Algorithm to locate the rooms that
had been isolated and then eliminate the corresponding suspects. By applying the BFS algorithm
we located the rooms that were accessible from the murder site (as we can see in Figure 2). We
focused our attention on the rooms that were cut off from that access and ruled out the people
who were in the blocked rooms. We were still working with 5 suspects.

Figure 2: Result of the exercise. Source: SWGraphs.

As a third and final question for solving the crime, we posed that the culprits had to have done it
in the shortest possible time and assumed that the time is taken to move from one place to another
depends on the distance travelled. Thus, we looked for the shortest path from the murder room to
all the other rooms and from there we took the smallest value.

To do this, we used Dijkstra’s Algorithm on the graph corresponding to the house with the doors
closed. By applying the algorithm we obtained the results shown in the table of Figure 3, from
which we deduced that the culprits were in room 1 or room 2. By checking the floor plan we found
that room 2 was empty, so we established the two guests in room 1 as the culprits.

Figure 3: Table compiled from data provided by SWGraphs.
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Finally, we were asked to provide the optimal installation of security cameras in the house to prevent
a similar situation from occurring again, taking into account that, as conditions of the owners and
the installation company: at least one door in each room should be covered by the cameras, that
the installation should be uninterrupted, and that it was intended to be as cost-effective as possible
(the cost depended on the metres of corridor covered by the installation itself).

Thus, we modelled the problem using the graph corresponding to the initial house plan (without
closing doors) and weighted with the distances between the different rooms.

The conditions provided corresponded to a graph that, starting from the aforementioned, has all
the vertices, does not contain cycles (this would be an unnecessary route for the installation), is
connected and whose sum of the weights of its edges is the minimum possible. These characteristics
correspond to those of a minimum spanning tree, which is obtained by applying Kruskal’s algorithm
to the graph.

We used this lgorithm, which gave us the optimal route to follow for the installation (showed in
the Figure 4, marked in blue).

Figure 4: Result of the exercise. Source: SWGraphs.

3 Results

As a result of the problem we obtained that the murder had been committed by two people, who
knew the victim, were not affected by the closing of doors, and were able to do it in less time than
the rest of the guests to avoid being seen, so they were not eliminated in any of the discarding
processes based on the knowledge of graph theory.

In addition, we obtained a way to solve a problem such as the need to install a security camera
installation and want to spend as little money as possible by using concepts such as spanning trees
or Kruskal’s Algorithm.
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4 Conclusions

The main purpose of the elaboration and presentation of this project is to show a non-mathematical
a priori context and to show how it can be solved through Graph Theory. In this way, it has been
demonstrated once again how mathematics is present in our everyday life, and the conception that
it only deals with abstract terms is put aside. It has been shown that graph theory is an area of
mathematics that is particularly well suited to modelling real problems, as it is a useful tool for
tackling a wide range of problems in diverse areas.

Although we have presented a very particular and fairly simple case of what could have been a
crime, we have shown that within the field of criminology and criminalistics we can make use of
graphs to mathematically model a data structure. Thus, we have been able to see the relationships
that exist between these two disciplines, normally considered to be very distant both in content
and in their working techniques.
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1 Introduction

In this project we have created different problems related to graph theory and the Harry Potter
saga of JK. Rowling.
The objective is to link fantasy and mathematics through a problem and to be able to bring the
students closer to graph theory. For that reason we have decided to create an immersive exercise
where we will send letters to the pupils so that they can answer them and solve the different
statements.
To solve them, it is necessary to model and apply algorithms that we have learned in the first year
of the Double Degree in Mathematics and Civil Engineering. The structure of this summary will
be divided into two parts: The first one will consist of a different statements where the student
must apply their knowledge in order to find the solution. The second part deals with the resolution
where the algorithm or model to be used will be explained in detail.

2 Methods

2.1 Statements

1.- Problem

We urgently need you to send us the school plan in order to draw strategic attacks. It is necessary
for you to translate the map into the language of the SWGraphs spell, an ancient language known
as graphs. We know that you are one of the greatest professionals in this area so, you will not have
any problems.You should take into account that for now on each road we can go both ways. Send
us the map in .xml format. There we have the original map.
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Figure 1: Map of the School made with Prezi

2.- Problem

We have to protect the students so we’re going to take them to the shelters. They are very old
shelters and the only information we have is the number of tunnels that are connected to each
room and they are round-trip.Besides, each tunnel begins in one room and ends in a different one
(see Figure 2). We send you the information on another parchment. We need to know if the tunnel
network is applicable to SWGraphs.

Figure 2: Chart with the rooms and the number tunnels

3.- Problem

a) We have observed that the enemy is preparing to launch some attack. We want a map of the
school where all the buildings are connected to each other and all the original sections of the map
appear, but you can pass through them with a single direction due to the fact that Voldemort has
cast a spell which forces people to walk in one direction along the roads. b) There are some injured
or endangered students so the objective is to send a squad of animagus to help them.We need you
to give us a graph where you can reach all places from the station. We don’t need them to go back
to the station as the principal is planning a plan to pick up the students.
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4.- Problem

We are going to evacuate the school so that all the students can return home safely. Dumbledore’s
plan is:A train pass through all areas of Hogwarts and return to it with all the students to depart
from Hogwarts to the city. Using a magical spell, the principal has ordered all students and
staff to take to the streets to speed up the collection process. Our objective is to carry out the
principal’s plan by making the path with the least possible weight. We have assigned a coefficient
to each section and we have multiplied it by the distances of the paths (see it on the Figure 3).
Voldemort’s army has cast two spells of Petrificus Totalus on the Station-Ollivanders and Weasley’s
house-Hogsmade sections.

The coefficients that we have applied based on the number of enemies have been the following:

Figure 3: Chart with the coefficients

5.- Problem

Our objective is to rebuild the school after the enemy attack. They want to reform only the
necessary roads, thus being able to spend as little as possible. All buildings must be connected to
each other. What is the best way to act?

2.2 Results

1.- Problem

First we model the problem:
G is the set formed by the sets of vertex (V) and edges (E)
This is an undirected graph (UG)
V represents the different places in the school.
E=((u,v)/u,v ∈ V and u is connected to v by a path with no intermediate vertex.)
Graphical representation with SWGraphs:

2.- Problem

To see if it is applicable or not, we have to know if our graph is a graphical sequence.
We model the problem:
G is the set formed by the sets of vertex (V) and edges (E). In this case, we have an undirected

graph.
V represents the different places in the school.
E= (u,v) / u,v ∈ V u and v are connected by a tunnel

HAKIMI
A → Slytherin Common Room
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Figure 4: Graphical representation of the graph

B → Clock Tower
C → infirmary
D → Large dining room
E → Potions room
F → Dungeons
G → Chamber of Secrets
H → Lobby
I → Dumbledore’s Office

Figure 5: Resolution with Hakimi’s algorithm

The number of vertex of odd degree is even. There are no vertex of degree greater than or equal
to the number of vertex.
It is a graphical sequence. Therefore, it can be represented as a simple undirected G. The solution
provided by Hakimi is not unique. As a consequence, we are going to apply a spell to the school
so it adapts (moving stairs and rooms) to our new plane. Then, the network of tunnels exists.

3.- Problem

a) First we see if our graph is directed. We apply the Robbin’s Theorem.We note that my graph is
connected and has no bridges, since every edge belongs to a cycle. As it is orientable we will apply
the Hopcroft-Tarjan algorithm.
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Figure 6: Representation of the oriented graph

b) We want a directed tree with root where the root is the Station so we apply DFS and BFS
algorithm. Each algorithm will give a directed tree with a different root.

Figure 7: Resolution with BFS algorithm

Figure 8: Resolution with DFS algorithm

4.- Problem

G is the set formed by the sets of vertex (V) and edges (E), This is a directed graph (DG)
V=Hagrid’s Hut, Quidditch, Hogwarts, Boxer Willow, Lake, Herbology Class, Station, Azkaban,
Clock Yard, Gringotts, Weasley’s House, Hogsmade, Zonko’s, Ollivanders E=(u,v)/u,v ∈ V and u
is connected to v by a path. p(x,y)=degree of enemies by distance. We attach the map with the
modified weights:

Next, we are told that there are paths that are cut off by the spells. If we eliminate these
paths, that is, the indicated edges, we obtain a subgraph G’=(V’,E’),G’ is the set formed by the
sets of vertex (V’) and edges (E’), to which we can apply the desired algorithm. G’ is the subgraph
induced by the following vertices: V’=Hagrid’s Hut, Quidditch, Hogwarts, Boxer Willow, Lake,
Herbology Class, Station, Azkaban, Clock Yard, Gringotts, Weasley’s House
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Figure 9: New subgraph with eliminated paths

The algorithm to apply is Hierholzer’s algorithm and the weights constitute irrelevant informa-
tion
RESULT: Station → Hogwarts→ Herbology Class → Lake → Hogsmade → Quidditch → Hagrid’s
House → Hogsmade → Boxer Willow → Station → Gringotts → Weasley’s House → Station →
Azkaban → Clock Yard → Station

Figure 10: Result of applying Hierholzer’s algorithm

5.- Problem

The aim is to reduce the expenses of the work, we seek to rebuild part of the roads so that you can
go from anywhere to any other.
To do this, we apply Kruskal’s algorithm. We apply this algorithm to the initial plan of the school,
since, as we have been informed, everything has been destroyed. We have obtained the minimum
cost spanning tree.

3 Conclusions

To sum up, mathematics is linked to all areas. The project we have presented is a clear example of
this. We can solve different types of problems using Graph Theory. However, developing statements
to solve with this method is not as simple as it seems, since normally a series of requirements have
to be met in the graphs for the algorithms to be applicable. The fact of inventing a context that
gives meaning to the exercise is important because that can help you modify the problem and give
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Figure 11: Initial plan of the school

Figure 12: Result of applying Kruskal’s algorithm

it meaning. Finally, we can say that in every corner of Hogwarts there is a little bit of magic, a
little bit of mathematics.
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Camı́ de Vera s/n, València, Spain.

1 Introduction

The air travel industry is a really volatile market, where sudden events can lead to unexpected
results in flight transactions. Companies of the sector must be ahead of the curve in predicting
and understanding the impact of these events.

ForwardKeys, a data collection and analysis company, has provided us data about flight trans-
actions in Paris during November 2014 and 2015. In this paper we aim to study the data in depth
so that we can obtain detailed information on cancellations, using association rules to discover the
main repeating patterns among the data, to better explain and outline the clients profile of the
market.

Furthermore, to better understand what defines the profile of a client, a linear discriminant analysis
and a decision tree are performed to determine importance to attributes of the airline tickets

Our first action was to look for what happened in Paris in November 2015. As expected, we
found an event that considerably changed air traffic in Paris. On November 13, 2015, the terrorists
attacks that shocked the city of Paris took place. The impact of such events on the air transport
sector is not a widely studied topic, although some studies show that most of the costs in these
situations are cancelled and delayed flights. [4]

2 Methods

In order to achieve our main objectives (finding patterns in the data and better understanding our
data-set to study cancellations), a variety of machine learning models can be used. In this case,
three approaches will be utilised: an exploratory analysis, an unsupervised model and a supervised
model.

2.1 Finding patterns among the clients: association rules [2]

One of the most useful things that an exploratory analysis can show is which combinations of
conditions lead to more cancellations or what are the characteristics of people that cancel the most
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(given a terrorist attack has happened). This could be extrapolated to other situations of fear and
uncertainty. Moreover, the information is going to be extremely helpful to travel retailers, hotels,
and tourism-related companies.

Given our dataset, we will be focusing on the following variables: bookingsign (Type of trans-
action: new booking, modification of the booking or a cancellation), paxprofile (Estimated client
profile by ForwardKeys’ classification algorithm), losname (Type of stay or transfer from the flight),
distchannel (Type of travel agency) and cabinclass (Code of the cabin class type).

2.2 Understanding the client profile: linear discriminant analysis for paxprofile

Linear discriminant analysis is a generalisation of Fisher’s linear discriminant, a statistical method
that tries to find a linear combination of predictor variables to describe the differences between
the different classes of a categorical target variable. This method can be later used to reduce the
dimensionality of the data or as a linear classifier [3].

As previously mentioned, the client profile is a really interesting and important variable to ex-
plore and fully comprehend. According to ForwardKeys, this variable is “the purpose of the trip
according to the company’s classification algorithm”. This classification decision is unknown to us,
and thus, considered as a black box model. An interpretable model that can explain the decisions
the classification algorithm makes when categorising was trained in order to help companies reach
their target and fully comprehend passenger preferences. We opted for a linear discriminant anal-
ysis model to predict the variable paxprofile.

Taking these limitations into consideration, our model uses eight variables, continuous and cat-
egorical that have been converted into dummy variables: leadtime (Difference in days between the
date of booking and the date of the flight), cabinclass, distchannel, pax (difference in passengers
from last modification of the reservation), numpss (number of previous steps in the itinerary),
numpss (number of next steps in the itinerary) and losname.

2.3 Other interpretable model: recursive partitioning trees

Decision trees are another easy-to-interpret model. These models divide the data according to
splits in the input features so that they maximise the decrement in the impurity of the resulting
children nodes [6]. The purity is the homogeneity of the target variable in the node.

In order to compare this model with the LDA one, we will be using the same dataset (with
undersampling to take into account class imbalance) and the same seed for the train-test partition.
Since the data is the same, and it is still unbalanced, the metrics used to evaluate the effectiveness
of the model are the same as in LDA: the Kappa Coefficient and the weighted balanced accuracy.

3 Results

3.1 Association Rules

Rules are valued by lift as it is the most important metric for our analysis. A value 1 means that
the condition (left hand side) helps the rhs happen, the higher, the better.
In 2015 people that went to Paris to stay had the highest chance of cancelling as it appears in every
rule, and because this condition is nowhere to be seen in 2014, we could argue that these people
are the first to cancel for fear.
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Figure 1: Top 6 rules which consequent is a full cancellation sorted by lift (2014). Notice how common
cabinclass B and distchannel OTHER are.

Figure 2: Top 6 rules which consequent is a full cancellation sorted by lift (2015). losname STAY is one
of the strongest conditions, in addition, it is nowhere to be seen in 2014. This means these passengers are
really sensitive to sudden events of fearful nature.

Cabinclass B, “Business”, is another condition that people who cancel usually have. But because
it appears on both years we dont know how impactful the terrorist attack was for them. Perhaps
they just cancel more often.

The distchannel = “other” condition (travel agencies different from online, retail or corporate)
appears in more rules in 2014 than in 2015, thus arguing that people that take these flights are
not really fearful about the attack, as its importance on cancellations during 2015 has at least not
kept up with the other conditions.

A “long transfer” length of stay is a strong condition for not cancelling on both years, same goes
for distchannel = “other” and cabinclass “T” and “E” (Tourist/Economy).

3.2 Linear Discriminant Analysis

Figure 3 shows the confusion matrix and some performance metrics on the test set for the final
model, that uses numerical and categorical variables and on which undersampling was performed
to reduce class imbalance:

Figure 3: Confusion matrix in the set dataset of linear discrim-
inant model. Since the target variable still presents imbalance,
the accuracy is not relevant to evaluate the model. The Kappa
Coefficient is pretty low.

The model still has a tendency to classify most samples as LEISURE. The Kappa Coefficient is
not good either: sitting below the 0.4 mark, the model does not distinguish well enough between
classes.
Regarding which variables are more important when building the discriminant dimensions, Figures
4 and 5 show that some variables such as the number of passengers of having a cabin class code F or

327



Modelling for Engineering & Human Behaviour 2022

Figure 4: Feature importance in the first discrim-
inatory dimensions (that explains 73% of the data
variability). Different categories of the type of stay
are very important

E do not contribute that much to any dimension, whereas staying at the destination (losnameclean
“default”) has a great contribution in the two main dimensions.

Figure 5: Overall feature importance weighted by
the % of variability explained per dimension. The
same tendencies as in the first discriminant dimen-
sion (Figure 1) can be seen in the global behaviour

If we take a look class-wise, Figure 6 shows similar results: in the groups VFR and GROUP, the
length of stay is the most important factor, while in the most common groups (LEISURE and
BUSINESS), this attribute is not so important.

Figure 6: Top 5 most important variables for each
class in paxprofile. As Table 4, losnameclean DE-
FAULT is a very decisive attribute to decide the
profile of a passenger

3.3 Recursive partitioning tree

Figure 7 shows the confusion matrix and some performance metrics on the test set (which is the
same as in the LDA model, and hence, with undersampling) for the final tree model:
The use of a recursive partitioning tree shows a small enhancement on the performance, improving
the Kappa Coefficient by 0.12 and the weighted balanced accuracy by 0.05. Still, these values are
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Figure 7: Confusion matrix in the set dataset of rtree model. Al-
though slightly better than in the LDA model, the Kappa coeffi-
cient is still below 0.5. The influence of LEISURE is clearly shown
in its prevalence.

pretty low, and the prevalence of the class LEISURE is still significantly greater than the prevalence
of the other classes.

Class-wise, the classifier performs greatly in distinguishing the minor classes from the most com-
mon ones. However, it continues to struggle differentiating between the main two ones BUSINESS
and LEISURE.

When comparing ROC curves of the two models, Figure 8 shows that, in fact, LDA performs
better in the BUSINESS/LEISURE portion. The tree excels at every other pairing (Figure 9).

Figure 8: ROC curves comparison between
BUSINESS vs LEISURE, The LDA model
performs slightly better

Figure 9: ROC curves comparison between
GROUP vs LEISURE, The tree model is
much better in distinguishing these classes

4 Conclusions

4.1 Association rules

After comparing the rule-set for each year, the team has decided that clients with a business profile
and staying in the city are the strongest conditions for a cancellation in November of 2015 (which
are not for November of 2014). Figure 10 shows the evolution of relative cancellations throughout
the month. The cabin class code B is not taken into account because it was also a common condition
in 2014. When it comes to the day of the attack, we can see a huge peak. About 35% of that day’s
transactions were cancellations, when usually it stays around 10%.
Also because we remove the cabinclass condition, there are more samples and the conclusions are
more robust. People willing to STAY with a BUSINESS paxprofile are the most likely to cancel
due to a surprising/fearful event.
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Figure 10: Relative % of can-
cellations per day for both
2014 and 2015 with and with-
out the losname = STAY
and paxprofile = BUSINESS.
Notice the strength at the
peak and the following days,
whereas 2014 is not altered as
much.

4.2 Linear discriminant analysis and partitioning trees

Despite not fully following all the assumptions and conditions to perform an ideal linear discrim-
inant analysis, and possibly due to the amount of the data provided by Forwardkeys, our LDA
model with 3 discriminant dimensions gives a weighted balanced accuracy of around 68% of the
clients’ profile from the test set, whereas a recursive partitioning tree improves this metric by 5%.
Despite the improvements, both models fail to reach a good Kappa coefficient (both below 0.5),
not providing a good model to understand ForwardKeys’ black box model.

In both models the most important attributes to determine the client’s profile are type of stay, the
cabin class code and the type of travel agency.

Since the main objective of these models was trying to provide interpretable and contrastive ex-
planations to a profile classification done by an unknown model, rather than precisely predicting
said profile (therefore giving really good results in metrics such as the Kappa Coefficient and the
weighted balanced accuracy score), we can conclude that we may be able to have a loose intuition
of what attributes are more determinant to assign a client a specific profile. One thing we can be
sure of is that more unprovided variables could help construct a more robust and complete model.
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