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and V. Muerza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pag: 185-189

33. A high order iterative scheme of fixed point for solving nonlinear Fredholm in-
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Romero, and M. D. Roselló . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pag: 243-248



43. On some properties of the PageRank versatility, by F. Pedroche, R. Criado, E. Garćıa,
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1 Introduction

We present the main features of a model of choice where the alternatives are characterized by
one fuzzy soft set in each of an indefinite number of periods. This model extends the standard
model for choosing among fuzzy soft sets so that it can operate when the consequences of a
decision extend over an infinite number of periods, or their termination date is unknown.

We explain how we can associate a characteristic fuzzy soft set with each modelisation in
our framework. With this tool we are enabled to produce a decision making procedure for the
selection of alternatives.

The target applications include portfolio selection in finance and evaluation of environmental
issues among others [3].

2 Soft sets and fuzzy soft sets: notation and definitions

Let X denote a set. Then P(X) is the set of all non-empty subsets of X. A fuzzy subset
(also, FS) A of X is a function µA : X → [0, 1]. For each x ∈ X, µA(x) ∈ [0, 1] is the degree of
membership of x in that subset. The set of all fuzzy subsets of X will be denoted by FS(X).

In soft set theory we refer to a universe of objects U , and to a universal set of parameters
E.

Definition 1 (Molodtsov [12]). Let A be a subset of E. The pair (F,A) is a soft set over
U if F : A −→ P(U).

The pair (F,A) in Definition 1 is a parameterized family of subsets of U , and A represents
the parameters. Then for every parameter e ∈ A, we interpret that F (e) is the subset of U
approximated by e, also called the set of e-approximate elements of the soft set.

∗e-mail: jcr@usal.es
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Other interesting investigations expanded the knowledge about soft sets. Soft set based
decision making was pioneered by Maji, Biswas and Roy [11], and further applications of soft
sets in decision making were given [4, ?, 7, 11, 13].

Definition 2 (Maji, Biswas and Roy [10]). The pair (F,A) is a fuzzy soft set (henceforth,
FSS) over U when A ⊆ E and F : A −→ FS(U).

The set of all fuzzy soft sets over U will be denoted as FS(U). Any soft set can be considered
as a fuzzy soft set with the natural identification of subsets of U with FSs of U . For example, if
our set of options are films and they are parameterized by attributes, then fuzzy soft sets permit
to deal with properties like “scary” or “funny” for which partial memberships are quite natural.
However soft sets are suitable only when properties are categorical, e.g., “Oscar awarded” or
“3D version available”.

In real practice both U and A use to be finite. Then let k and n denote the respective
number of elements of U and A. These soft sets can be represented either by k×n matrices or
by a tabular form (cf. [1]). The k rows are associated with the objects, and the n columns are
associated with the parameters. Both practical representations are binary, that is to say, all
cells are either 0 or 1. One can proceed in a similar way in fuzzy soft sets, but now the possible
values in the cells lie in [0, 1].

Table 1 below compares the most important criteria for decision making when the alterna-
tives are characterized by FSSs.

Ref. Aggregation Methodology Solution Other issues

[13] Min operator Scores from a Unique Many ties
comparison matrix Information is lost by

aggregation
[8] Not provided Choice value of level Not unique Ties proliferate

soft set Richness introduces
indeterminacy
Additional inputs needed
(e.g., threshold fuzzy set)

[1] Product Scores from new relative Unique Good power of discrimination
operator comparison matrix

[9] Not provided Similarity measure Unique Use of subjective weights

Table 1: A list of the main fuzzy soft set based decision making procedures with their main
characteristics.

3 An intertemporal model for FSSs

The spirit of a parameterized description of the universe can be merged with other char-
acteristics that are not present in the original formulation of the (fuzzy) soft sets. Here we
investigate the case where each attribute produces a possibly different fuzzy parameterization
of the universe, for each of an indefinite number of periods.

3.1 The model

Let S denote the set of infinite sequences of the interval [0, 1] (also called infinite utility
streams in specialized literature, e.g., [2, 5]). Our intertemporal model of fuzzy soft sets over
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U is defined by F̄ : A −→ S(U) where S(U) represents the mappings U −→ S. In this fashion,
for each attribute and each alternative, we express the degree of belongingness of such an
alternative in each period of time.

In practical terms, where both U = {o1, . . . , om} and A = {e1, . . . , en} are finite, we can
represent this information in a table where the cells are either finite or infinite sequences of
membership degrees:

e1 e2 . . . . . . en

o1 (u111, u
2
11, . . . , u

t
11, . . .) (u112, u

2
12, . . . , u

t
12, . . .) . . . . . . (u11n, u

2
1n, . . . , u

t
1n, . . .)

...
om (u1m1, u

2
m1, . . . , u

t
m1, . . .) (u1m2, u

2
m2, . . . , u

t
m2, . . .) . . . . . . (u1mn, u

2
mn, . . . , u

t
mn, . . .)

Table 2: Tabular representation of our intertemporal model for fuzzy soft sets.

With this notation we represent F̄ (ej)(oi) = (u1ij, u
2
ij, . . . , u

t
ij, . . .) ∈ S, hence utij means the

degree of membership of oi to the fuzzy set of elements that verify attribute ej in period t.

3.2 Some relationships

It is natural to embed the FSS model in this context. With each (F,A) ∈ FS(U) we
associate F̄ : A −→ S(U) such that for each ej and oi, F̄ (ej)(oi) = (F (ej)(oi), . . . , F (ej)(oi), . . .).
This is the intertemporal assignment where at each moment, the degree of membership of
alternative oi to the fuzzy set of elements that verify attribute ej is constant.

Conversely, we can use reduction mechanisms in order to associate a FSS with each in-
tertemporal modelization. The easiest mechanisms are applied cell-by-cell. For example, one
can select the evaluation at a fixed period (e.g., the first one); or in finite instances, their high-
est/lowest evaluation, their (either arithmetic or geometric) average, .... Under infinity of the
periods, natural modifications by supremum/infimum or discounted sums serve this purpose.

4 Decision making in intertemporal FSSs

We proceed to define a procedure for prioritizing the alternatives in Table 2. It consists of
three basic steps.

Algorithm for decision making

Inputs : An intertemporal table of fuzzy soft sets (in the notation of Table 2). A reduction
mechanism. A fuzzy soft set decision making procedure (e.g., from Table 1).

1: Associate a FSS with the original intertemporal information by the recourse to the selected
reduction mechanism.

2: Prioritize the alternatives in the reduced FSS by the selected decision making procedure.

3: The result of the decision is any object ok that is at the top of the ranking in the previous
step.
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5 An example with a finite horizon

We need to decide among three development plans for the next 4 years. Their adequacies
for 4 affected provinces are given by the following intertemporal table of fuzzy soft sets:

e1 e2 e3 e4

o1 (0.2, 0.3, 0.3, 0.4) (0.5, 0.5, 0.6, 0.6) (0.7, 0.7, 0.6, 0.6) (0.6, 0.5, 0.5, 0.6)
o2 (0.6, 0.5, 0.5, 0.4) (0.3, 0.4, 0.6, 0.6) (0.4, 0.5, 0.5, 0.5) (0.6, 0.6, 0.4, 0.4)
o3 (0.3, 0.3, 0.4, 0.5) (0.5, 0.5, 0.7, 0.6) (0.5, 0.6, 0.6, 0.5) (0.5, 0.4, 0.6, 0.6)

We use the arithmetic average reduction mechanism in order to obtain the FSS whose
tabular representation is

e1 e2 e3 e4

o1 0.3 0.55 0.65 0.55
o2 0.5 0.475 0.475 0.5
o3 0.375 0.575 0.55 0.525

Now we apply the algorithm in [1], which produces the following comparison table and score
table:

o1 o2 o3

o1 0 0.491 0.199
o2 0.4 0 0.25
o3 0.193 0.335 0

Row-sum (Ri) Column-sum (Ti) Score (Si)

o1 0.69 0.593 0.097
o2 0.65 0.825 −0.175
o3 0.528 0.449 0.079

By looking at the Si scores, we conclude that the prioritization of the plans should be
o1 � o3 � o2.

6 Conclusions

We have paved the way to analyzing choices in soft computing models, when their conse-
quences extend over time and do not terminate at a fixed date. Long-term projects (like public
investments or environmental actions) are within the range of the potential applications.

Although we have worked under the assumption that uncertain knowledge is modelled by
fuzzy soft sets, the intertemporal analysis makes sense in other popular and applicable frame-
works: separable fuzzy soft sets [6], hesitant fuzzy sets, et cetera. This will be the subject of
separate analyses in the future.
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1. Introduction 
 
Methylphenidate (MPH) is a stimulant drug that produces effects such as euphoria, vigor and 
kindness, as well as anxiety and confusion [1]. The work [2] presents a study with 23 healthy 
subjects: 12 subjects reported a general pleasant effect and 9 subjects reported a general non-
pleasant effect. 
 
Besides, the Self-Regulation Therapy (SRT) is a psychological procedure based on learning 
and suggestion. It has been specially designed to facilitate the reproduction of drug effects, 
imitation and re-experimenting effects of drugs [3]. In addition, the SRT is capable to 
reproduce the MPH effects on personality and mood, as well as its influence on different 
biological indicators such as glutamate, and the DRD3 and c-fos regulator genes [4-6]. 
 
This paper presents an experiment to study the dynamical effect of a MPH single dose (10 mg) 
in two mood scales: happiness and depression [7]. A previous study demonstrated that the SRT 
applied on drug consumers reproduced mood, increasing happiness and decreasing depression 
[8]. In addition, a dynamical mathematical model, the so-called response model, was provided 
in the work [9] to describe the personality change due to the MPH and reproduced by the SRT. 
Also a dynamical mathematical model, a modified version of the response model, is here used 
to describe the mood change due to the MPH [10]. In addition, the dynamical response to the 
SRT is demonstrated that can be described by the new response model in a healthy subject. 
 
  

2. Participant, design and procedure                                                                          
The participant was a 56-year-old man who is a University of Valencia staff member. A single-
case experimental ABC design was used. In phase A, the participant received no treatment. At 
the start of phase B, the participant consumed 10 mg of MPH. In phase C, the participant 
underwent the SRT to reproduce the effects of MPH, but did not consume this drug. The 
participant filled in a sheet of adjectives every 7.5 minutes over a 3-hour period. These 
adjectives measure happiness and depression mood [7]. For the mathematical analysis, the 
modified response model was applied, whose usefulness has been shown to model the dynamic 
effect of a stimulant drug. 
 

 
3. The response model   

The response model is given by the integro-differential equation:  
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑎𝑎(𝑏𝑏 − 𝑦𝑦(𝑡𝑡)) + 𝑝𝑝 · 𝑠𝑠(𝑡𝑡) · 𝑦𝑦(𝑡𝑡) − 𝑞𝑞 · ∫ 𝑒𝑒
𝑥𝑥−𝑡𝑡
𝜏𝜏 · 𝑠𝑠(𝑥𝑥) · 𝑦𝑦(𝑥𝑥) 𝑑𝑑𝑥𝑥𝑡𝑡

0
𝑦𝑦(0) = 𝑦𝑦0

�                          (1)                                                                           

 
In Eq. 1, y(t) represents the mood dynamics, i.e., happiness or depression; and b and y0 are 
respectively its tonic level and its initial value. Its dynamics is a balance of three terms, which 
                                                 
1 E-mail: salvador.amigo@uv.es 
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provide the time derivative of the mood dynamics studied: the homeostatic control 
(𝑎𝑎(𝑏𝑏 − 𝑦𝑦(𝑡𝑡))), i.e., the cause of the fast recovering of the tonic level b, the excitation effect 
(𝑝𝑝 · 𝑠𝑠(𝑡𝑡) · 𝑦𝑦(𝑡𝑡)), which tends to increase the dynamics, and the inhibitor effect (𝑞𝑞 ·

∫ 𝑒𝑒
𝑥𝑥−𝑡𝑡
𝜏𝜏 · 𝑠𝑠(𝑥𝑥) · 𝑦𝑦(𝑥𝑥) 𝑑𝑑𝑥𝑥𝑡𝑡

0 ), which tends to decrease the dynamics and is the cause of a 
continuously delayed recovering. Parameters a, p, q and τ are named respectively the 
homeostatic control power, the excitation effect power, the inhibitor effect power and the 
inhibitor effect delay. In addition, the 𝑠𝑠(𝑡𝑡) time function represents the dynamics of the 
stimulus. It can be described by the equation: 

 

𝑠𝑠(𝑡𝑡) = 𝑠𝑠0℮−𝛽𝛽·𝑡𝑡 + �
𝛼𝛼·𝑀𝑀
𝛽𝛽−𝛼𝛼

�℮−𝛼𝛼·𝑡𝑡 − ℮−𝛽𝛽·𝑡𝑡� ∶  𝛼𝛼 ≠ 𝛽𝛽

𝛼𝛼 · 𝑀𝑀 · 𝑡𝑡 · ℮−𝛼𝛼·𝑡𝑡 ∶  𝛼𝛼 = 𝛽𝛽
                                                     (2) 

 
In Eq. 2 m(t) is the non-assimilated methylphenidate amount, M is the initial amount of 
methylphenidate of a single dose and α is the methylphenidate assimilation rate. In addition 
s(t) represents the stimulus, i.e., the amount in organism of the methylphenidate non-consumed 
by cells, 𝑠𝑠0 is the amount of methylphenidate present in organism before the dose intake, and 
β is the methylphenidate metabolizing rate. 
 
In the calibration process of Eqs. 1 and 2, M=10 mg for Phase B, and M is calibrated in Phase 
C, while 𝑠𝑠0 = 0, due to the individual has not consumed methylphenidate for very long. The 
calibration consists in finding the optimal parameter values that minimize the square sum of 
the difference between the experimental values and the theoretical ones in both Phases B and 
C for both scales: happiness and depression. However, both scales share the same M, 𝛼𝛼 and 𝛽𝛽 
values in the same phases. The strength of the calibration is measured by the determination 
coefficient (R2). In addition, the residuals’ randomness is provided by the p-value of the 
Anderson-Darling test, which reports if the residuals distribute as a N(0,std), i.e., as a Normal 
distribution of zero mean and constant standard deviation (std), being std the standard deviation 
of the residuals. 
 
 

4. Results  
In Figs. 1, 2 and 3, the evolution of the happiness can be observed in the three phases of the 
experiment (A: Base Line; B: 10 mg of MPH; C: SRT). Note that in Phase B the happiness 
holds an inverted-U shape, reaching a maximum two hours after starting the phase. In Phase 
C, the SRT reproduces the same dynamical shape but reaching its maximum approximately 
half an hour after starting the phase, decreasing much earlier than Phase B. The same behavior 
was found in the above cited work [9]. 
 
On the other hand, Figs. 4, 5 and 6 show the dynamical evolution of the depression for the 
three phases of the experiment (A: Base Line; B: 10 mg of MPH; C: SRT). Note in Phase B 
that, as a consequence of the MPH dose (10 mg), the depression decreases quickly, reaching 
its lowest level approximately an hour and a half after starting the phase. Similarly than the 
previous case, the SRT reproduces the MPH dynamics, but much earlier than in the previous 
case, reaching its lowest level approximately half an hour after starting the phase. 

 

   
Fig. 1. Phase A: Base line. Fig. 2. Phase B: R2=0.87. P-

value=0.79. 
Fig. 3. Phase C: R2=0.80. P-
value=0.88. 
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Fig. 4. Phase A: Base line. Fig. 5. Phase B: R2=0.94. P-

value=0.58. 
Fig. 6. Phase C: R2=0.86. P-
value=0.94. 

5. Discussion  
 The SRT has demonstrated its efficacy to reproduce the effects on the mood similarly to the 
mood observed as a consequence of a single dose of MPH. Concretely: increasing the 
happiness and reducing the depression. However, the SRT effect is shorter but of similar 
power. In addition the response model has been able to reproduce the mood dynamics, for both 
the MPH and the SRT. 
 
These results open a way to the therapeutic application of the method presented in different 
behavioral disciplines, such as psychology, psychiatry or neurology. To do this, the patients 
need to be able to reproduce the MPH effects in several sessions. This assumption has been 
found in previous works [11], although a habituation effect can be observed.  
 
Besides, there is clinical evidence that the results of the experiment can be used to treat the 
depression of a patient by using the MPH and the SRT to reproduce euphoria effects [12].  
 
However, more scientific evidence is necessary to support the therapeutic use of this method, 
although this paper confirms its potential therapeutic benefit. In addition, having a 
mathematical tool such as the response model to reproduce the different dynamics is important 
to predict the therapeutic efficacy, as well as to reproduce the dynamical evolution of a 
treatment. 
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November 26, 2018

1 Introduction

Diabetes Mellitus is an autoimmune disease that has a high prevalence in the
world population. It is caused by a defect in the production (or effectiveness)
of insulin, which means that the glucose we take from food is not processed
correctly and therefore increases blood glucose levels. To avoid complications
it is necessary to maintain glucose levels in a healthy range so is important
to predict the glucose level value in a period of time.

We propose an adaptation of the model introduced in [1] to describe the
evolution of the levels of glucose of a patient during an hour, taking into
account the uncertainty due to measurements. The obtained parameters
that describe the glucose levels during this hour will allow us to predict the
glucose levels over the next four hours. This prediction will be accurate at
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the beginning of the 4 hours, but it will deteriorate as the time goes on. In
order to avoid this inconvenience and improve the accuracy, every half an
hour we will remove the first 30 minutes of data used for calibration and add
the new 30 minutes of glucose data.

This abstract is organized as follows. In Section 2 we introduce the model
and the data uncertainty treatment. In Section 3 we describe the aforemen-
tioned approach to predict the glucose level of a patient. Then, we apply
this technique to one particular patient, and the obtained results are shown
in Section 4. Finally, Section 5 is devoted to conclusions.

2 Model description and data uncertainty treat-

ment

In this section we introduce the model to predict the glucose level of a diabetic
patient. The model we are going to consider, is the one adapted from [1]. We
use this model because the model parameters correspond with therapeutic
parameters used in the daily treatments to the patients. The model is given
by the following system of difference equations.

Ut+1 = Ut + Vt, (1)

Vt+1 = Vt − 2agVt − a2gUt + Kga
2
gCht, (2)

Gt+1 = Gt −XtGt − Sg0Gt + Uendo + C
Ut

M
, (3)

Xt+1 = Xt − axXt + axX
1
t , (4)

X1
t+1 = X1

t − axX
1
t + Kxax

It
M

, (5)

where Ut represents the gut glucose absorption at time t, Vt is the variation
rate of the gut glucose absorption at time t, Gt stands for the level of Glucose
at time t, Xt is the insulin action and X1

t represents the intermediate insulin
action at time t.

The parameters of the model are related with the daily clinics of the
patient, is to say, they are related with the biology of the patient. Cht

and It are the level of ingested carbohydrates and insulin, respectively, C
is the constant 50/9, M is the weight of the patient. Also ag is the inverse
of the meal time constant, Kg is the unitless bioavailability of the meal of
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interest, Sg0 is the glucose effectiveness at zero insulin, Uendo is the insulin
independent endogenous glucose production, ax is the inverse of the insulin
absorption/action time constant and Kx is the insulin sensitivity.

As we said before, we measure the glucose with an electronic device which
measurement error is about 5% of the measured value. Furthermore, we want
the model also captures the measurement uncertainty. To deal with this
problem, we are going to assume that instead of having a single number for
the glucose level, we have a Gaussian random variable with mean the glucose
level value and standard deviation of 5% of the glucose level value. Then,
we compute the percentiles 2.5 and 97.5 of each random variable (in each
datum) and let us denote them by LPt and UPt respectively. These 95%
confidence intervals will allow us to seek the sets of parameters that best
capture the data uncertainty expressed via the 95% confidence intervals.

3 Procedure design

In this section, we describe a method to determine the sets of parameters
that capture the uncertainty in the first hour and then predict 4 hours more
with the same set of parameters. It is expected that the predictions obtained
on the first minutes are more reliable than those obtained on the last minutes
of these 4 hours. To avoid this deterioration every 30 minutes, we feedback
the model rejecting the first half an hour and adding the new half an hour
data. Thus, we will obtain new sets of parameters able to predict the glucose
level over the next 4 hours.

To seek the set of parameters that capture the best the data uncertainty,
we define for each set of parameters Par = (ag, Kg, Sg0 , Uendo, ax, Kx) the
following fitness function

FF (Par) =

∣∣∣∣∣
60∑
t=1

g(GPar
t )

∣∣∣∣∣ , (6)

where

g(GPar
t ) =

{
0, if LPt ≤ GPar

t ≤ UPt,
min

{
GPar

t − LPt, UPt −GPar
t

}
if GPar

t ≥ LPt or UPt ≥ GPar
t ,
(7)

that is, the function is zero if the glucose level returned by the model lies
inside the 95% confidence interval, and the minimum of the distance between
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the glucose level and each percentile, otherwise.
Then, applying several times an rPSO algorithm, [5], we save all the set of

parameters of all the rPSO iterations with their error. Among them, we want
to select those sets of model parameters such that, when we substitute them
into the model, retrieve the glucose level output given by the model in the
same instants we have the glucose data and calculate their 95% confidence
interval, these are as close as possible to the 95% confidence intervals of data.
In order to select those outputs that capture the best the data uncertainty,
we define M as the total amount of stored rPSO iterations, let E be the
iterations and let us denote by Ei, 0 ≤ i ≤ M the i-th iteration. Then, we
apply the following selection algorithm to select the best 100 iterations:

1. Initialization.

• Initialize N index subsets S1, . . . , SN with 100 elements of the set
{1, . . .M} (particles) chosen randomly without repetition. Eval-
uate the fitness of all the particles F (S1), . . . , F (SN).

• Define the individual best fitness as Sbest
i = Si, i = 1, . . . , N and

the global best fitness Sbest
global as the Sb

i est which fitness is the
minimum.

2. For i = 1, . . . , N, we extract without repetition 100 iterations from the
union of the current particle, its individual best and the global best,
and we denoted it as Si. Evaluate the fitness of all the new particles
F (S1), . . . , F (SN).

3. Update the individual best fitness Sbest
i , i = 1, . . . , N and the global

best fitness Sbest
global. Go to Step 2.

4 Results

In Figures 1, we can see how evolves the calibration-selection procedure de-
scribed in the previous section as the times goes on. Only 3 calibrations
and predictions are shown for illustration purposes. We must say that we
have chosen to test the described procedure the period starting where the
patient is still sleeping, then wakes up and have breakfast until just before
the lunch time. In this period there is a high and sudden change (wake up
and breakfast) in the trajectory of the glucose level.
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Figure 1: Feedback and fitting and prediction at the minutes 0, 30, 60. On
left line of the greed lines we can see the fitting obtained in the first and
second step respectively in the firsts half hours. Then, between the red and
green lines we can see the fitting in this third step. On the right of the red
line the 4 hour predictions are shown.

5 Conclusions

The problem of predicting the glucose levels for diabetic patients is very
complex. To face it, we propose an adapted model introduced in [1]. We
design an appropriate computational technique handling the data uncertainty
to predict with confidence intervals in the short-term the glucose levels of a
patient.

Even though the obtained results are partial and a thorough examination
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of the way we perform the experiment is required, we think that we will be
able to tune the procedure to provide to the doctors, in advance, tools to
make appropriate and accurate decisions in the patient’s treatment.
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1. Introduction 

This contribution proposes a Multi-Criteria Decision-Making (MCDM)-based approach 

to support organizational risk assessment in industrial environments. 

Clerici et al. (2016) affirm that an organization is a plurality of “human elements”, and 

risks often depend on organizational criticalities, whose reduction can be undertaken by 

implementing effective human resource management (HRM). In particular, HRM is 

defined as a system of structured procedures aimed at optimizing the manpower 

management in a company (Azadeh and Zarrin, 2016), its workers being the most 

valuable assets of the organization (Boatca and Cirjaliu, 2015; Carpitella et al., 2017). 

As asserted by Cirjaliu and Draghici (2016), nowadays companies seek to continuously 

improve the well-being and satisfaction of human resources within their own operative 

environments. An important aspect to take into account within this context is integrated 

by human factors and ergonomics (HF/E), whose optimal management is crucial to 

achieve important objectives. 

The importance of this concept is broadly shared in literature. Wilson (2014) asserts that 

any understanding of systems ergonomics must be related to the idea of systems 

engineering. Hassall et al. (2015) stress that analyses based on human factors and 

ergonomics are commonly used to improve safety and productivity, particularly in 

complex systems. Sobhani et al. (2017) underline as the improvement of workplace 

ergonomic conditions gives opportunities to better deal with production variations and 

optimize the performance of operation systems. 

Given the importance of aspects related to HF/E within industrial workplaces, the 

Decision-Making Trial and Evaluation Laboratory (DEMATEL) method, firstly 
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developed by Fontela and Gabus (1974; 1976), is herein suggested as mathematical 

model to evaluate mutual relationships of some of the most important human factors 

involved in industrial processes. Among various MCDM methods proposed in 

literature, the DEMATEL is particularly helpful to take into account existing 

interdependencies among the main elements involved in any complex decision-making 

problem, on the basis of judgments attributed by a team of experts. It is clear, indeed, 

the high degree of correlation bonding human factors in any process led by humans. 

These interdependencies are eventually represented by means of a graphical chart. 

 

 

2. Human factors and ergonomics in industry 

Amount and intensity of human interactions with processes generally depend on the 

field in which the organisation operates. It is neither possible nor convenient totally 

eliminating the human contribution to processes, even when a high degree of 

automation is pursued, such as in manufacturing industries (Choe et al., 2015). On one 

hand, industries with high production volumes may consider machines and computers 

as faster and more reliable than humans in leading automatic operations. On the other 

hand, the more customised the manufacturing process, the more crucial the role of 

human factors. 

On the basis of what expressed so far, organisational risk assessment in industrial 

environments is conducted with the aim of evaluating, eliminating or at least minimise 

risks related to ineffective manners of work, in terms of methods and operations 

management from humans. Such kind of risks derives from psychological and physical 

conditions that negatively impact on the broad quality of work and life. 

In particular, when leading organisational risk assessment, the main areas reported in 

Table 1 are analysed with a deep level of detail. The purpose consists in highlighting the 

presence of possible criticalities related to human factors and ergonomics within each 

area, which could potentially damage the global wellness and health of workers, and 

then the performance of the whole organisation. 
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Table 1. Description of investigated area related to human factors and ergonomics 

ID Investigated area focused on HF/E 

A1 Organisational culture and role 

A2 Career development and job stability 

A3 Communication, information, consultation and participation 
of workers 

A4 Training, awareness and competence 

A5 Operational control: indication of measures and instruments 

A6 Extraordinary situations and changes management 

A7 Outsourcing and interference management 

A8 Workload and working hours 

 

We propose a MCDM-approach to rank the reported areas and then focus on major 

criticalities related to human factors. In particular, the DEMATEL methodology is 

suggested to select those areas more influencing each other (Carpitella et al., 2018). 

This approach is useful to suggest an order in planning and implementing reduction 

measures of organisational risk. 

 

 

3. The DEMATEL to increase the level of safety in industrial processes 

The implementation of the DEMATEL methodology can be summarised through the 

following steps. 

• Clear definition of the problem under analysis, in terms of goal and main 

elements/factors involved. 

• Building the non-negative matrices 𝑋𝑋(𝑘𝑘), where 1 ≤ 𝑘𝑘 ≤ 𝐻𝐻, 𝐻𝐻 being the number of 

experts, expressing judgments on the mutual influence between pairs of elements. 

Elements 𝑥𝑥𝑖𝑖𝑖𝑖
(𝑘𝑘) (𝑖𝑖, 𝑗𝑗 = 1, … ,𝑛𝑛, 𝑛𝑛 being the number of compared elements) represent 

the numerical values encoding the judgments. The meanings of those numerical 

values are defined as follows: 0 (no influence), 1 (very low influence), 2 (low 
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influence), 3 (high influence), 4 (very high influence). The main diagonal values of 

any of these matrices are zero. 

• Building the direct-relation matrix 𝐴𝐴, incorporating the matrices filled in by the 

experts. 𝐴𝐴 is a 𝑛𝑛 × 𝑛𝑛 squared matrix whose entries 𝑎𝑎𝑖𝑖𝑖𝑖 are obtained by: 

 𝑎𝑎𝑖𝑖𝑖𝑖 = 1
𝐻𝐻
∑ 𝑥𝑥𝑖𝑖𝑖𝑖

(𝑘𝑘)𝐻𝐻
𝑘𝑘=1 .        (1) 

• Building the normalized direct-relation matrix 𝐷𝐷 = 𝑠𝑠 𝐴𝐴, where 𝑠𝑠 is given by: 

 𝑠𝑠 = min � 1
max
1≤𝑖𝑖≤𝑛𝑛

∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1

, 1
max
1≤𝑖𝑖≤𝑛𝑛

∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1

�.      (2) 

• Calculating the total relation matrix 𝑇𝑇, incorporating direct and indirect effects, 

calculated as the sum of the series of powers of 𝐷𝐷, given by 

 𝑇𝑇 = 𝐷𝐷(𝐼𝐼 − 𝐷𝐷)−1;        

 (3) 

where 𝐼𝐼 is the identity matrix. 

• Obtaining a causal diagram by previously defining 𝑟𝑟𝑖𝑖 and 𝑐𝑐𝑖𝑖 as 𝑛𝑛 × 1 and 1 × 𝑛𝑛  

vectors respectively representing the sum of rows and sum of columns of the total 

relation matrix 𝑇𝑇. The sum 𝑟𝑟𝑖𝑖 + 𝑐𝑐𝑖𝑖 gives the overall effect of element 𝑖𝑖 and the 

subtraction 𝑟𝑟𝑖𝑖 − 𝑐𝑐𝑖𝑖 helps in dividing the elements into cause (if the subtraction is 

positive) and effect (if the subtraction is negative) groups.  

• Drawing the chart by mapping the dataset of (𝑟𝑟𝑖𝑖 + 𝑐𝑐𝑖𝑖,  𝑟𝑟𝑖𝑖 − 𝑐𝑐𝑖𝑖), after having 

established a proper threshold to avoid taking into account also negligible effects. A 

threshold value is finally determined as the average value of the elements belonging 

to 𝑇𝑇. 

To exemplify the applicability of our approach, a real-world case study is developed to 

evaluate interdependencies among the areas focused on human factors with relation to a 

manufacturing process of a Sicilian firm. 

 

4. Real-world case study of a Sicilian winery 

The case study refers to a manufacturing firm, precisely a winery located in the city of 

Trapani, in the isle of Sicily (Italy). The DEMATEL is herein applied to evaluate 
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interdependencies among the human factors of Table 1 related to the wine bottling 

process carried out by the company. 

This process is composed of 13 different phases, reported in Figure 1, and takes place in 

the area dedicated to delivery and production. In the mentioned area there are three 

fixed stations and a mobile position, respectively occupied by the following operators: 

1. W1, worker dedicated to control that bottles are filled in and plugged; 

2. W2, worker dedicated to control the global quality of bottles; 

3. W3, worker dedicated to wrap final products; 

4. W4, worker dedicated to carry out the following two activities: raw materials 

(empty bottles, labels and corks) and packaging supply; handling of wrapped 

final products. 

 

 

Figure 1. Phases of the bottling process 

 

Three experts in the field (𝐻𝐻 = 3) were involved to apply the DEMATEL, namely the 

enologist, the department chief and the technical consultant. Each decision-maker was 

asked to evaluate the direct influence between any two human factors by means of 

integer scores from 0 to 4. Three non-negative square matrices 𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 were 

collected and then aggregated to obtain the direct-relation matrix 𝐴𝐴 = [𝑎𝑎𝑖𝑖𝑖𝑖] of size 8 ×

8 (Table 2). Table 3 and Table 4 respectively report the total-relation matrix and the 

final ranking of areas, whereas Figure 2 represents the final chart (by considering a 

threshold of 0.872 ).  
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Table 2. Direct-relation matrix 𝑨𝑨 

𝑨𝑨 A1 A2 A3 A4 A5 A6 A7 A8 
A1 0.000 4.000 2.333 2.333 2.333 2.333 2.333 4.000 

A2 4.000 0.000 3.000 3.000 2.333 2.333 2.333 3.000 

A3 2.000 3.333 0.000 2.333 2.333 2.333 2.333 2.333 

A4 2.333 3.333 2.333 0.000 2.000 3.000 3.333 2.000 

A5 2.333 2.333 2.333 2.333 0.000 2.000 2.333 4.000 

A6 2.333 2.333 1.333 3.000 1.667 0.000 4.000 4.000 

A7 2.333 2.333 2.667 4.000 1.667 3.667 0.000 2.333 

A8 4.000 2.667 2.667 1.333 3.667 4.000 2.333 0.000 
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Table 3. Total direct-relation matrix 𝑻𝑻 

𝑻𝑻 A1 A2 A3 A4 A5 A6 A7 A8 𝒓𝒓𝒊𝒊 + 𝒄𝒄𝒊𝒊  𝒓𝒓𝒊𝒊 − 𝒄𝒄𝒊𝒊 
A1 0.842 1.019 0.822 0.878 0.801 0.943 0.907 1.070 14.492 0.072 

A2 1.001 0.871 0.851 0.909 0.805 0.948 0.915 1.042 14.769 -0.085 

A3 0.814 0.883 0.630 0.780 0.707 0.832 0.804 0.891 12.574 0.109 

A4 0.876 0.935 0.770 0.734 0.735 0.909 0.892 0.934 13.546 6.786 

A5 0.857 0.876 0.752 0.803 0.638 0.852 0.831 0.984 12.634 0.551 

A6 0.898 0.918 0.751 0.872 0.742 0.814 0.936 1.027 14.244 -0.331 

A7 0.896 0.923 0.800 0.912 0.741 0.958 0.783 0.969 13.991 -0.025 

A8 1.025 1.002 0.856 0.872 0.873 1.031 0.939 0.953 15.422 -0.318 

 

Table 4. Final ranking of areas 

Ranking of areas  𝒓𝒓𝒊𝒊 + 𝒄𝒄𝒊𝒊    ↓ 

A8 15.422 

A2 14.769 

A1 14.492 

A6 14.244 

A7 13.991 

A4 13.546 

A5 12.634 

A3 12.574 
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Figure 2. DEMATEL chart 

 

The arrows in the chart represent relations of influence and they bond two areas 𝐴𝐴𝑖𝑖 and 

𝐴𝐴𝑖𝑖 if the related value of the total-relation matrix is 𝑇𝑇�𝐴𝐴𝑖𝑖,𝐴𝐴𝑖𝑖� ≥ 0.872. 

As we can observe, the area 𝐴𝐴8 occupying the first position in the ranking should be 

more carefully monitored during the process of organisational risk management related 

to the wine bottling process object of the case study. In other terms, aspects related to 

workload and working hours should be object of analysis and readjustment in order to 

globally enhance organisation quality. Indeed, variations implemented within this area 

can correspond to variations of all the other aspects. Lastly, being the value of  𝑟𝑟𝑖𝑖 − 𝑐𝑐𝑖𝑖 >

0 for the mentioned area, we can consider it as a cause-element. 
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Introduction 
Currently, the Spanish Navy has two types of frigates in service, the F-80 class and 

the F-100 one. F-80 frigates will be replaced in 2022, after 35 years of service. It is 
planned that F-80 units will be replaced by brand-new F-110 frigates. The F-110 project 
is in the conceptual design phase and one of the objectives is to provide the new frigate 
F-110 with a remarkable anti-submarine capability. Frigates are surface warships and 
anti-submarine warfare (ASW) is one of the most complex concerns in a surface warship 
(González-Cela, Bellas, Martínez, Touza, & Carreño, 2018). 

The presence of an enemy submarine in the area of operations of a surface warship 
is a dangerous threat against the ship. Therefore, one of the important decisions that must 
be taken is the choice of the best anti-torpedo decoy that will be implemented in the F-
110. 

When a torpedo is launched, it goes straight to the target because it is fitted with an 
electronic device that enables it to find and hit the target. An anti-torpedo decoy is an 
acoustic device used as countermeasure to avoid the attack of torpedoes. A decoy works 
by transmitting the emulated ship’s signature to confuse the torpedo (Liang & Wang, 
2006). 

This paper addresses the problem of the selection of the best anti-torpedo decoy to 
be implemented in the new F-110 frigates. The methodology described below was carried 
out in order to solve this problem. According to the Navy guidelines, two possible decoy 
alternatives were chosen: towed device (N) and expandable device (L), (Ercís, 2013). A 
group of experts from the Navy established the proper criteria and the Analytic Hierarchy 
Process (AHP) method was applied to determine the best anti-torpedo decoy (Saaty, 
1990). The result of applying the AHP did not produce a solution to the problem since 
none of the decoys obtained a better score to the other one to make a decision. This 
allowed implementing a new method for decision-making, the Graphic Method of 
Measurement of Uncertainty Beyond Objectivity (GMUBO). The new method integrates 
the uncertainty in the AHP method and can help the Spanish Navy Staff (EMA) to make 
a decision. 
 
Methodology 

First of all, an evaluation by experts from the Navy was done in order to establish 
relevant criteria and sub-criteria. The chosen criteria had been previously monitored by 
the EMA so a survey was administered to experts of the Navy. The survey results allowed 
to determine the weights of the criteria which were used in the AHP method. The sub-
                                                 
1 E-mail: rafaelcarreno@uvigo.es  
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criteria and criteria are presented in the chart 1, where all values are fictitious due to real 
ones are classified information. 

Secondly, the AHP method was applied to determine the best anti-torpedo decoy. 
The decision process based on the AHP considers a finite number of alternatives xi, for i 
from 1 to n. A score is assigned to each alternative (wi is the score of alternative xi), 
providing a weight vector. A square matrix of pairwise comparison is used to solve a 
Multi-Criteria Decision Making (MCDM). 

 
𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖� 

 
Where aij =1/aji and aii =1 for all i from 1 to n (Saaty, 1990). Saaty proposed a 

consistency index (CI) to evaluate the consistency of the pairwise comparison matrix, CI 
= (max – n)/(n – 1). 

To deduce the weight vector, is used the eigenvector theory. The method consists 
of finding the Perron-Frobenius eigenvector (Brunelli, 2015), which corresponds to the 
maximum eigenvalue of the pairwise comparison matrix, that is A·w = max ·w. 

The AHP decomposes a problem into a hierarchy of smaller sub-problems which 
can more easily be evaluated. Thus, the AHP provides a hierarchy of goal, criteria (ci), 
sub-criteria (scij) and alternatives (ai). 

Thirdly, for the logistics sub-criteria "storage volume" (SV), a utility function were 
used. This allows to add objective data of the real volume occupied by each decoy in a 
warship. Similarly, a utility function is used to evaluate the sub-criteria “reaction time” 
(RT). This adds objectivity since the real values of the time it takes to make effective use 
of the decoy of each of the alternatives are known (Marzouk & Moselhi, 2003). Thus, the 
following linear utility functions were considered:  

 

𝑦𝑦𝑆𝑆𝑆𝑆 = 𝐴𝐴 · 𝑥𝑥𝑆𝑆𝑆𝑆 + 𝐵𝐵 ⇔ �𝑥𝑥𝑆𝑆𝑆𝑆 = 5 𝑚𝑚3 ⟹ 𝑦𝑦𝑆𝑆𝑆𝑆 = 0
𝑥𝑥𝑆𝑆𝑆𝑆 = 1 𝑚𝑚3 ⟹ 𝑦𝑦𝑆𝑆𝑆𝑆 = 1

 

 

𝑦𝑦𝑅𝑅𝑅𝑅 = 𝐶𝐶 · 𝑥𝑥𝑅𝑅𝑅𝑅 + 𝐷𝐷 ⇔ �𝑥𝑥𝑅𝑅𝑅𝑅 = 30 𝑠𝑠 ⟹ 𝑦𝑦𝑅𝑅𝑅𝑅 = 0
𝑥𝑥𝑅𝑅𝑅𝑅 =   0 𝑠𝑠 ⟹ 𝑦𝑦𝑅𝑅𝑅𝑅 = 1 

 
Once the AHP was applied, the results are shown in the table 1. For a better analysis 

of this result, a sensitivity analysis was carried out as is shown in figures 1, 2 and 3. 
Finally, the GMUBO method considers uncertainty of the process. In order to 

achieve a robustness in the results, the uncertainty in the process must be integrated. To 
do this, different scenarios were considered. These scenarios are changes to the 
weightings of the objective. Then, uncertainty of the alternatives, considered as grey 
numbers, was calculated. Subsequently, the best alternative was determined, taking into 
account that the scenarios are not controllable by the decision maker. 

In the AHP method, a criteria comparison matrix is multiplied by a priority vector 
and an overall priority vector (OPV) is obtained. The OPV determines a hierarchy on the 
selection of alternatives and provides a first selection that does not consider uncertainty. 
A decision maker do not know which scenario is going to arise. Then, it is necessary to 
repeat the process considering a number of scenarios. Each scenario allows to obtain a 
corresponding OPV. Keeping this in mind a Penalties Matrix (m x n) is built: 

𝑃𝑃 = �𝑐𝑐𝑖𝑖𝑖𝑖� 
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Consider 𝐴𝐴 = {𝑎𝑎1,𝑎𝑎2 … 𝑎𝑎𝑚𝑚} the set of alternatives and 𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2 … 𝑠𝑠𝑛𝑛} the set of 
scenarios. In P matrix, each cij is the penalty obtained after choosing the alternative ai 
when the given scenario is sj. 

To choose the best alternative two calculations are performed. On the one hand, a 
measure of the uncertainty is needed. On the other hand, weighted sums calculation is 
carried out. The best alternative should have the highest value of weighted sum and the 
lowest value for uncertainty. 

Since the penalties are considered as grey numbers, the following expression is a 
measure of the uncertainty for each alternative: 

 

𝑔𝑔𝑖𝑖0 =
1 ⋅ 𝑐𝑐𝑖𝑖𝑚𝑚 + ∑𝜇𝜇𝑖𝑖𝑖𝑖 ⋅ 𝑐𝑐𝑖𝑖𝑖𝑖 + 0 ⋅ 𝑐𝑐𝑖𝑖𝑖𝑖

𝑐𝑐𝑖𝑖𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑚𝑚
 

 
Where 𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑎𝑎𝑥𝑥

𝑖𝑖≠𝑖𝑖,𝑚𝑚
𝑐𝑐𝑖𝑖𝑖𝑖 and 𝑐𝑐𝑖𝑖𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖≠𝑖𝑖,𝑚𝑚
𝑐𝑐𝑖𝑖𝑖𝑖, with 𝜇𝜇𝑖𝑖𝑖𝑖 ∈ [0,1]. 

 
Now the weighted sum is calculated for each alternative i: 

 
𝑊𝑊𝑖𝑖 = 𝜆𝜆𝑖𝑖1 ⋅ 𝑝𝑝𝑖𝑖1 + ⋯+ 𝜆𝜆𝑛𝑛𝑛𝑛 ⋅ 𝑝𝑝𝑛𝑛𝑛𝑛 

 
The best alternative should have the highest value of weighted sum and the lowest 

value for uncertainty. If both values lead to more than one alternative, then the alternative 
with the greatest final sum FS must be selected. 

 
𝐹𝐹𝑆𝑆 = 𝑊𝑊𝑖𝑖 + (𝑚𝑚𝑎𝑎𝑥𝑥𝑔𝑔𝑖𝑖0 − 𝑔𝑔𝑖𝑖0) + 1 �𝑐𝑐𝑖𝑖𝑖𝑖�  

 
Results and discussion 

The AHP method has wide applicability and allows dealing with complex problems 
by synthesizing them. Moreover, it establishes a ratio scale that makes easy the 
measurement (Forman & Gass, 2001). The AHP has an axiomatic foundation and uses a 
clearly defined mathematical structure (Saaty, 1986). 

Although the criteria, sub-criteria and their weights were provided by a survey 
conducted with EMA experts, a utility functions had to be used for two of the sub-criteria. 
Specifically, the sub-criteria of SV and RT, since the real values of the storage volume 
and the reaction times were available. This was possible because the technical features of 
the different alternatives were available, all of which allowed the process to be more 
objective. 

Table 1 provide the final decision matrix. Then, as is shown in column 1, there is 
no clear preference for one of the alternatives. As shown in Table 1, the results are clearly 
different if only one of the criteria is taken into account. Specifically, alternative N 
acquires a clear advantage over alternative L if only the "Logistics" criterion is considered 
in the evaluation. Similarly, if only the criterion "Operational Capabilities" is taken into 
account, it is observed that alternative L is better than alternative N. 

It follows that, once the AHP method is applied, practically equal results are 
obtained for both N and L alternatives. To be exact, it is obtained that the alternative L is 
slightly preferable to the alternative N, but with only a 1 percent difference between L 
and N. Because this difference is very small, it can be concluded that given the available 
information, it is not advisable to establish which alternative is better. 

Figures 1, 2 and 3 show a sensitivity analysis obtained by varying the weights 
assigned to the criteria. The sensitivity analysis allows to observe that a small variation 
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in the weights assigned to the criteria produces that the chosen alternative changes. 
Therefore, the result obtained in the problem is very sensitive to variations in the influence 
or weight of the two criteria "Logistics" and "Operational Capabilities". 

This means that, according to this result, it is not advisable to choose any of the two 
alternative solutions if you want to be certain of success. This is because the method does 
not clearly decide which alternative is preferable to the other. This is one source of 
uncertainty in the decision-making process. The AHP is a method that does not handle 
uncertainty although it is a good starting point to implement a better solution. 

Different options were evaluated: reevaluation and addition of more criteria, the use 
of complementary calculations, simulations or sophisticated software, and the integration 
of uncertainty in the AHP method. These options are discussed below. 

Initially, by adding new criteria to the hierarchy to proceed to a re-evaluation, 
applying again the AHP. This option was discarded because it required more time and did 
not take into account the uncertainty inherent in the process. It should also be noted that 
this solution would imply that the experts would not have done their job correctly. 
However, the EMA took special care to define the most important criteria for decision-
making. Moreover, the experts assigned the scores according to their experience and 
current environment. 

Then, some mathematical techniques were considered as the theory of probability 
and fuzzy logic, among others, which do consider uncertainty. The implementation of 
these techniques involved complex calculations, simulations and sophisticated software. 
Actually, decision-makers do not have time to develop techniques that require excessive 
amounts of knowledge. Hence, ease of use and an exactness are basic features to 
encourage decision-makers in using of useful techniques. 

Finally, uncertainty was implemented using the GMUBO method, which is easy to 
use and useful to help decision-making under uncertainty, as well as providing a very 
useful graphical tool (Figure 4). GMUBO provides two vectors that are combined 
subsequently. On the one hand, a measure of the uncertainty given by the degree of 
greyness of each alternative. On the other hand, for a given alternative, the inverse of the 
sum of its penalties is measured. Both vectors can provide a clear and only alternative. 
However, there are situations where each vector leads to a different alternative. In these 
cases, the final sum (FS) would resolve the discrepancy. 

FS measures the suitability of an alternative considering all the scenarios that can 
arise. FS controls and minimize the effect of a very small uncertainty that could modify 
the choice of the best alternative. It is considered that for a given alternative, the inverse 
of the sum of its penalties should be as large as possible to avoid alternatives with both 
high penalty values and a very small uncertainty. 

GMUBO considers uncertainty and allows to measure the robustness of the selected 
alternative. Furthermore, it is a helpful method for decision-makers since it has a great 
ease of use. 
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Chart 1: Sub-criteria and criteria used in AHP method. 
 

 
 
 

 
 
 

 
 
 
 

Figure 1: Sensitivity analysis  

Figure 2: Sensitivity of the weight assigned 
to the Logistics criterion 

Figure 3: Sensitivity of the weight assigned 
to the Operational Capabilities criterion 
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 Decision matrix 

 Logistics (35%) Operational capabilities (65%) 
Alternatives sub-criteria sub-criteria 
N (49.5%) 84% 41% 
L (50.5%) 16% 59% 

Table 1: Final decision matrix. 
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1. Introduction 
 

The General Systems Theory (GST) appeared in the middle of the last century at the hands of Von 
Bertalanffy [1] with the intention to introduce a global vision of things (which implies interdisciplinary 
collaboration among specialists) and maybe to become a universal language common to all academic 
disciplines. Since then, several attempts to formalize GST have took place (for instance: [2-6]), one of 
them [7-13] has given rise to a modelling methodology that has yield many studies and mathematical 
models applied mainly to the social sciences (for instance: [14-20]). The following tries to be an outline 
of this methodology. For a comparative analysis of some possible approaches to the formalization of the 
GST you can see the one of Caselles [21] in the EOLSS Encyclopaedia. 
 
 

2. Basic concepts 
 
The basic idea of the formalization of Caselles (sensitized by the criticisms from many authors to the 
previous formalizations) is that this is really useful. In other words, it can serve as a basis for a 
methodology and its associated software tools that facilitate the process of building models of real 
systems. This implies a definition of basic concepts (ontology) and a form of acquisition and 
representation of knowledge (epistemology) that takes into consideration the two original ideas of GST: 
global vision and universal language, besides the practical utility. 
 
The definition of system as "set of interrelated elements" firstly leads to the concept of structure [7] that 
would be formalized, given a set A, as a subset of the Cartesian product of AxA, i.e., something that would 
be translated into a diagram of arrows or a binary relationship, showing connections, influences, 
dependencies, etc., among the considered elements. Some derived concepts would be: the "structural 
application" which would make correspond the set of its influencers to each element; input, output, strict, 
isolated, level 1, 2,..., n elements; and others such as: direct influence, indirect influence, loop, etc.   
Secondly, the term "related" also gives place, depending on the type of relationship in study, to the 
concept of behaviour that would imply that the elements being considered are represented by 
mathematical variables (symbols with a domain of possible values, not necessarily numeric). Then, the 
behaviour of the system, which would be based on its structure (the variables that influence each of them 
are known), would allow us to know the value that would take each variable of the system from the 
values that would take the other variables, and what is the form of the function that allows to determine 
this value. This set of functions (determined under the form of equations, tables, logical rules or 
algorithms) would be that would define the behaviour of the system. 
 
Thirdly, it is necessary to classify systems with behaviour into static and dynamic, deterministic and 
stochastic, temporal, spatio-temporal, learning, etc. And the variables into state-variables or not, 
dimensioned or not, with uncertainty or not, and the input variables into constants or value-changing, etc. 
Finally, having a list of variables, each one with its own features, and a list of functions, one for each 
output variable, it proceeds to check that we have a hierarchical system, i.e. a system without loops. 
Otherwise calculations are not possible. The elimination of loops implies the introduction in the system of 
state variables (those which depend on its previous value or earlier ones) and their corresponding memory 
variables (which should also be input variables). The hierarchysation of the system consists in to classify 
variables by levels according to the level that have the variables of lower level on which they depend. For 
instance, level-1 variables would be the input ones (data); level-2 variables would be those depending 
only on level-1 ones; level-3 variables would depend only on level-1 and level-2 variables, etc. This 
hierarchy allows setting the order of calculation. Obviously the memory variables must be updated at 
each time step. 
 
 

3. Tools 
 
The second part of the methodological problem, the first is the representation of knowledge, already 
explained (structure and behaviour: model), is the use of this knowledge for the resolution of problems. 
This requires auxiliary tools which, in our case, we have reduced to the following software: 
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SIGEM, an intelligent system generator of computerized models [10, 13, 22, 23], is an automatic 
programming tool. Effort required by the development and debugging of a computer program is well 
known by all programmers. SIGEM tries to minimize this effort. In short, the only thing the programmer 
should do is to prepare two text files: a file with the list of variables with their characteristics represented 
with symbols (with uncertainty or not, dimensioned or not, state-variable or not, etc.), and another file 
with the list functions (one for each output variable, and not necessarily ordered). SIGEM collects, in an 
interactive way, some additional data about the system and, as a result of its work, it develops three 
programs: a data manager, a simulator/optimizer and a results manager. These programs would not have 
more errors than those existing in the referred text files (lists of variables and functions). SIGEM is 
currently programmed in Visual Basic 6 and the programs that it produces also are (they can be executed 
inside an EXCEL spreadsheet). 
 
REGINT is an interactive search engine and adjuster of functions [23, 24] which are linear combination 
of other more simple functions, linear or non-linear (identity, product, exponential, logarithm, cosine, 
etc.). It uses as data a table of up to 13 columns (for a dependent variable and up to 12 independent ones) 
and up to 60000 rows or points. It allows several search options (exhaustive, sampling and genetic 
algorithm) and determination options for the degree of adjustment (by R2, s2, etc.). It allows obtaining 
deterministic or stochastic type functions (estimating the mean and the standard deviation as functions of 
the independent variables) that may enter as such in SIGEM. 
 
EXTRAPOL is an extrapolator with confidence intervals of the type developed by REGINT or other 
functions. It is useful to design strategies and scenarios for the future to be simulated. 
 
While non-numeric or mixed type computerized models can be built with SIGEM, sometimes there are no 
more information available than that can be deduced from opinions of experts in relation to the elements 
or functions of a system. In these cases it may be more practical to try to computerize the system and the 
resolution of the problem with other tools. For this reason our methodology includes two new programs: 
 
DIFU is a fuzzy cognitive maps analyzer. It is based on estimating the degree of direct influence on each 
ranked pair of variables by means of expert opinions, resulting in an array of data. The result is another 
array with the total influences (the direct one plus the indirect ones by all possible influence chains). The 
program friendly presents these results indicating those elements having the greatest influence over each 
one of them, from the most positive one to the most negative one. 
 
CISTE is a cross-impact simulator. It needs as data, the previous and current values of each output 
variable and forecasts for the future of the input variables, in addition to the previously mentioned array 
of direct influences. Events (with their respective estimated probability) are also permitted. The model 
may be either deterministic or stochastic (when each value of a variable or impact is introduced with their 
respective mean and standard deviation). In this last case, the forecasts would come with its respective 
confidence intervals or standard deviations. 
 
 

4. The modelling process 
 
As regards the overall modelling process [9, 19, 23], consider the following steps or "life cycle" since, 
although it seems, it is not a strictly sequential process: normal is that in each stage it is necessary to 
update the previous ones. 

1. To find the list of elements/factors/variables. 
A. To state the problem: objectives, constraints, assumptions, types of data, types of results. 
B. To seek the involved factors from experts (bibliography, Brainstorming, Delphi). 
C. To find the variable or variables representing each involved factor (with its respective 

measurement unit and possible values).  
D. To classify them into input and output variables (black box diagram). 

2. To seek from experts (bibliography, Brainstorming, Delphi) which variables have a causal or 
previous influence on each of them (causal diagram, blocks diagram). 

3. To shape the relations/functions that allow giving a value to each variable based on the values of 
those influencing it. It requires prior knowledge of the subject in study. In some cases, it will be 
necessary to look for and adjust equations from tables (REGINT). If the system is dynamic (with 
state variables) it may be interesting to build a hydrodynamic diagram or Forrester                      
[25] diagram. 

4. To build the corresponding computer programs (SIGEM). 
5. To verify the model and computer programs: the desired data must produce the corresponding 

expected results.  
6. To validate the model: to be sure about the utility of the model to solve the proposed problem. 

The “prediction of the past” method is usual in this phase but other methods are possible, for 
instance: “prediction of the future” (waiting for its arrival), acceptation by experts, or acceptation 
by those assuming the corresponding risks.  
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7. Once the model is validated it proceeds to use it to solve the stated problem: to design 
experiments to be performed with the simulator, or starting the optimization procedure 
(designing strategies and scenarios, genetic algorithm, etc.). 

 
 
Conclusions 
 
As it has been shown in application cases publications [14-20], the suggested formalization of the 
GST and the corresponding working methodology and software tools have been demonstrated to be very 
useful for modelling systems, using a universal language, and solving problems. 
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1. Introduction 

 
The social importance of alcohol consumption in our Western Society cannot be neglected. Its 
common consumption is culturally accepted in suitable doses, but its relationship with personality 
disorders should be studied [1, 2]. However, the prediction about what a suitable dose is or what 
misuse is depends on the individual personality [3, 4].  
     
The General Factor of Personality (GFP) and the response model are, respectively, the suitable 
psychological and mathematical tools to study the alcohol misuse. On a hand, the GFP is a trait that 
occupies the apex of the hierarchy of personality, and extends from an impulsiveness-and-
aggressiveness pole (approach tendency) to an anxiety-and-introversion pole (avoidance tendency) 
[5]. In addition, the General Factor of Personality Questionnaire (GFPQ) proposed in the work [5] 
presents a questionnaire constructed specifically to assess GFP. Another way to measure GFP is the 
Five-Adjective Scale of the General Factor of Personality (GFP-FAS). The 5 adjectives are: 
adventurous, daring, enthusiastic, merry and bored. However, it can integrate all basic traits of 
personality [22]. Its validity and its relationship with the GFPQ to measure the GFP is proved in the 
works [6, 7]. Note from these works that extraversion is another way to refer to GFP, and it has a 
broader meaning than that generally implied in current personality research. In addition, the GFP-
FAS scale has a trait-format (GFP-T) (how extraverted is an individual in general), which represents 
the individual stable personality, and a state-format (GFP-S) (how extraverted is an individual in a 
concrete situation), which represents the individual situational personality. Thus, the suitable way to 
measure the GFP dynamical response to a stimulus such as a stimulant drug is to determine the time 
evolution of the GFP-S.  
 
Besides, the response model is capable to predict the short-term effects of a dose of alcohol on GFP 
and to report the results of an alcohol intake experiment. In fact, the dynamical GFP pattern 
(identified by the time evolution of the GFP-S scores) has a typical inverted-U pattern [8-10]. The 
inverted-U pattern was already identified by Solomon & Corbit [11] Grossberg [12] and Amigó [8], 
as the typical personality response to a stimulant drug. Moreover, these works report that, in the 
presence of a stimulus, the inverted-U is a consequence of a balance between an excitation effect and 
a delayed inhibitor effect. Additionally, those individuals with higher GFP-T scores have higher 
excitation and inhibitor effects (measured by the time evolution of the GFP-S scores). Oppositely, the 
individuals with lower GFP-T scores have lower excitation and inhibitor effects (also measured by the 
time evolution of the GFP-S scores). Note that, although alcohol is considered a depressant drug, its 
acute effects reproduce generally an inverted-U, referred in the literature about alcohol as biphasic 
effect, similar to a stimulant drug, such as literature demonstrates [13-15]. 
 
 

2. The experiment 
 
Fifty volunteers presented to participate in the experiment, all of them from Valencia (Spain). Some 
selection rules were applied on them to be accepted as participants in the experiment:  
a)    Do not have incompatible medication with alcohol.  
b)    Come accompanied to the experiment.  
c)    Do not work the day of the experiment.  
d)    Do not be abstemious.  
e)    Do not be alcoholic.  
f)    For the control group: have had bad experiences with alcohol.  
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These selection rules provided thirty seven participants, divided into two groups: the experimental 
group (28 alcohol consumers) and the control group (9 non consumers). From them there were 10 
males (27%) and 27 females (73%). The mean age was 32.84 (SD=11) with ages ranging between 20 
and 55 years. The mean weight was 64.18 kg with weights ranging between 50 and 94 kg. 
 
All the participants completed The Five-Adjective Scale of the General Factor of Personality (GFP-
FAS) in trait-format (GFP-T) and state-format (GFP-S) before alcohol consumption. The participants 
in the experimental group (28) received M=26.51 g. of alcohol and a slight food, while the 
participants in the control group (9) just received the food. Every participant filled the GFP-S each 7 
minutes. The response model calibration to the GFP-S scores is demonstrated that reproduces the 
biphasic GFP dynamics as a consequence of an alcohol dose intake described by the literature, i.e., a 
stimulant-like or excitation effect balanced by a sedative-like or inhibitor effect. In fact, the response 
model predicts that the high scores of GFP-T provide a stronger stimulant-like effect and a stronger 
inhibitor effect. Thus, the response model is a useful mathematical tool to predict those individuals 
inclined to the alcohol misuse.  
 
  

3. The response model 
 
The response model is the mathematical tool used to compute the short term dynamics of the GFP as 
a result of a stimulus produced by a single dose intake of a drug, such as it has been used in [9, 16, 
17-19]. The kinetic part of the response model provides the evolution of the alcohol amount in 
organism, after being consumed by an individual. It is given by: 

  

𝑠𝑠(𝑡𝑡) = �
𝛼𝛼·𝑀𝑀
𝛽𝛽−𝛼𝛼

�𝑒𝑒−𝛼𝛼·𝑡𝑡 − 𝑒𝑒−𝛽𝛽·𝑡𝑡� ∶  𝛼𝛼 ≠ 𝛽𝛽

𝛼𝛼 · 𝑀𝑀 · 𝑡𝑡 · 𝑒𝑒−𝛼𝛼·𝑡𝑡 ∶  𝛼𝛼 = 𝛽𝛽
                                                          (1) 

 
The s(t) variable represents the stimulus, i.e., the amount in organism of the alcohol non-consumed by 
cells, assuming that the amount of alcohol present in organism before the dose intake is zero, due to 
the experimental conditions, which obligates the participants to the non-alcohol consumption since 
the afternoon prior to the experiment. M is the drug initial amount, α is the drug assimilation rate and 
β is the drug metabolizing rate. The dynamics of the GFP is given by the integro-differential equation: 

 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑎𝑎(𝑏𝑏 − 𝑦𝑦(𝑡𝑡)) + 𝑝𝑝
𝑏𝑏
𝑠𝑠(𝑡𝑡) − 𝑏𝑏 · 𝑞𝑞 · ∫ 𝑒𝑒

𝑥𝑥−𝑡𝑡
𝜏𝜏 · 𝑠𝑠(𝑥𝑥) · 𝑦𝑦(𝑥𝑥) 𝑑𝑑𝑥𝑥𝑡𝑡

0
𝑦𝑦(0) = 𝑦𝑦0

�                          (2)                                                                           

                                                                          
In Eq. 2, y(t) represents the GFP dynamics; and b and y0 are respectively its tonic level and its initial 
value. Its dynamics is a balance of three terms, which provide the time derivative of the GFP: the 
homeostatic control (𝑎𝑎(𝑏𝑏 − 𝑦𝑦(𝑡𝑡))), i.e., the cause of the fast recovering of the tonic level b, the 
excitation effect (𝑝𝑝

𝑏𝑏
𝑠𝑠(𝑡𝑡)), which tends to increase the GFP, and the inhibitor effect (𝑏𝑏 · 𝑞𝑞 ·

∫ 𝑒𝑒
𝑥𝑥−𝑡𝑡
𝜏𝜏 · 𝑠𝑠(𝑥𝑥) · 𝑦𝑦(𝑥𝑥) 𝑑𝑑𝑥𝑥𝑡𝑡

0 ), which tends to decrease the GFP and is the cause of a continuously delayed 
recovering. Parameters a, p, q and τ are named respectively the homeostatic control power, the 
excitation effect power, the inhibitor effect power and the inhibitor effect delay.  
 
Once the model is calibrated for an individual, the excitation effect intensity is represented by the 
individual excitation effect power value divided by the tonic level, p/b, and the inhibitor effect 
intensity is represented by the individual inhibitor effect power value multiplied by the tonic level, 
b·q. Thus, both terms, p/b and b·q, represent the corresponding individual intensities of the excitation 
effect and the delayed inhibitor effect demanded by the dynamic patterns forecasted in the works [8, 
11, 12]. Therefore, the p/b and b·q terms are interpreted in the following way: the more inclination to 
the individual alcohol misuse (with higher GFP-T scores), the greater the individual excitation effect 
intensity value, p/b, and the greater the inhibitor effect intensity value, b·q, must be held; and 
oppositely, the lesser inclination to the individual alcohol misuse (with lower GFP-T scores), the 
lower the individual excitation effect intensity value, p/b, and the lower the inhibitor effect intensity 
value, b·q,  must also be held. 
 

 
4. Calibration of the response model 

 
The calibration of the response model for the experimental group (Case 0) and the control group 
(Control 0), represented by their GFP-S time averages (one point each seven minutes), is provided 
respectively in Figs. 1 and 2. Both figure’s description provides the fitting level by the determination 
coefficient (R2). They also provide the residuals’ randomness by the p-value of the Anderson-Darling 
test, which reports if the residuals distribute as a N(0,std), i.e., as a Normal distribution of zero mean 
and constant standard deviation (std), being std the standard deviation of the residuals.  
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Fig. 1. General Factor of Personality response to the alcohol 
Intake versus time. Experimental values (dots) and theoretical  
values (line) for the experimental group (Case 0). R2=0.97.  
P-value=0.97. 

 
Fig. 2. General Factor of Personality response to the  
atmosphere stimulus versus time. Experimental values  
(dots) and theoretical values (line) for the control  
group (Control 0). R2=0.91. P-value=0.92. 

 
 

5. The response model and the alcohol misuse 
 
The experimental group (EG) is divided into two subgroups: the introverted group (IEG), or the 
consumers that have a GFP-T scores lesser than the median (17) (N=12) and the extraverted group 
(EEG), or the consumers that have a GFP-T scores greater than the median (N=12), also considering 
their b, p and q values obtained from the model calibration for both groups. Subsequently, a Mann-
Whitney test is performed to know if there significant differences between both groups. The results 
are presented in Table 1. 
 
Table 1. Statistics (U) and p-values of the Mann-Whitney tests to compare the excitation effect intensity values (p/b) and the inhibitor effect 
intensity values (b·q) for extraverts and introverts. EEG: extraverted group; IEG: introverted group. 
 
 Intensities Group  N Average rang  U Sig.  

p/b EEG 12 15.75 33 .024 
IEG 12 9.25 

b·q EEG 12 15.58 35 .033 
IEG 12 9.42 

 
6. Discussion  

 
Note that the results of the Mann-Whitney test confirm that the more introverted group (those with 
lesser GFP-T, below median) has a lesser value for p/b and b·q intensities, and thus, lesser stimulant-
like and sedative-like effects, as a consequence of the alcohol intake. And, vice versa, the more 
extraverted group (those with greater GFP-T, above median) has a greater value for p/b and b·q 
intensities, and thus, greater stimulant-like and sedative-like effects, as a consequence of the alcohol 
intake. The consequence of this test with the experimental group is that the GFP-T scores, i.e., the 
GFP-FAS in its trait format, jointly the response model, are good predictors of the alcohol misuse. 
 
 
References 
 
[1] J.M. Malouff, E.B. Thorsteinsson, S.E. Rooke, N.S. Schutte, Alcohol involvement and the Five-
Factor Model of personality: a meta-analysis, J. Drug Educ. 37 (2007) 277-294. 
 
[2] K.J. Sher, T.J. Trull, Personality and disinhibitory psychopathology: alcoholism and Antisocial 
Personality Disorder, J. Abnorm. Psychol. 1 (1994) 92-102. 
 
[3] G.F. Koob, F. Weiss, Pharmacology of drug self-administration, Alcohol 7 (1990) 1142– 8. 
 
[4] J. Stewart, H. de Wit, R. Eikelboom, Role of unconditioned and conditioned drug effects in the 
self-administration of opiates and stimulants, Psychol. Rev. 91 (1984) 251– 68. 
 
[5] S. Amigó, A. Caselles, J.C. Micó, The General Factor of Personality Questionnaire (GFPQ): Only 
one factor to understand the personality?, Span. J. Psychol. (2010) 5–17. 
 
[6] S. Amigó, J.C. Micó, A. Caselles, Five adjectives to explain the whole personality: a brief scale of 
personality, Rev. Int. Sist. 16 (2009) 41–43. 
 



Modelling for Engineering & Human Behaviour 2018_____________________________38 
 

[7] S. Amigó, J.C. Micó, A. Caselles, Adjective scale of the unique personality trait: measure of 
personality as  
an overall and complete system, in: Proc. 7th Congr. Eur. Syst. Union, Lisboa, 2008. 
 
[8] S. Amigó, La teoría del rasgo único de personalidad. Hacia una teoría unificada del cerebro y la 
conducta (The unique-trait personality theory. Towards a unified theory of brain and conduct), Ed. 
Universitat Politècnica de València, 2005. 
 
 [9] S. Amigó, A. Caselles, J.C. Micó, A dynamic extraversion model. The brain’s response to a 
single dose of a stimulant drug, Br. J. Math. Stat. Psychol. 61 (2008) 211–231. 
 
[10] A. Caselles, J.C. Micó, S. Amigó, Cocaine addiction and personality: A mathematical model, Br. 
J. Math.  
Stat. Psychol. 63 (2010) 449–480. 
 
[11] R.L. Solomon, J.D. Corbit, An opponent-process theory of motivation: I. Temporal dynamics of 
affect, Psychol. Rev. 81 (1974) 119–145. 
 
[12] S. Grossberg, The imbalanced brain: from normal behavior to schizophrenia, Biol. Psychiatry. 48 
(2000) 81–98. 
 
[13] L. Pohorecky, Biphasic action of ethanol. Bio behavioral Reviews, 1 (1977) 231–240. 
 
[14] T.W. Rall, (1990), Hypnotics and sedatives: ethanol, Goodman and Gilman’s the 
pharmacological basis of therapeutics, 8th ed. New York: Pergamon. pp. 345– 82, Ed. A.G. Gilman 
T.W. Rall, A.S. Nies P. Taylor.  
 
[15] D.B. Newlin, J.B. Thomson, Alcohol challenge with sons of alcoholics: a critical review and 
analysis,  
Psychol. Bull. 108 (1990) 383–402. 
 
[16] J.C. Micó, S. Amigó, A. Caselles, Changing the General Factor of Personality and the c-fos Gene 
Expression with Methylphenidate and Self-Regulation Therapy, Span. J. Psychol. 15 (2012) 850–867. 
 
[17] J.C. Micó, A. Caselles, S. Amigó, A. Cotolí, M.T. Sanz, A Mathematical Approach to the Body-
Mind Problem from a System Personality Theory (A Systems Approach to the Body-Mind Problem), 
Syst. Res. Behav. Sci. 30 (2013) 735–749. 
 
[18] A. Caselles, J.C. Micó, S. Amigó, Dynamics of the General Factor of Personality in response to a 
single dose of caffeine, Span. J. Psychol. 14 (2011), 675-692. 
 
[19] J.C. Micó, S. Amigó, A. Caselles, From the Big Five to the General Factor of Personality: a 
Dynamic Approach, Span. J. Psychol. 17 (2014) E74 1-18. 
 
 



An optimal eighth-order scheme for multiple
roots applied to some real life problems

Ramandeep Behl a, Eulalia Mart́ınez b, Fabricio Cevallos c, Ali Saleh Alshomrani a

a Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia

b Instituto Universitario de Matemtica Multidisciplinar, Universitat Politècnica de València, Spain
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1 Introduction

The construction of higher-order optimal multi-point iterative methods for
locating zeros of the nonlinear equation f(x) = 0 with multiplicity m ≥ 1
when the involved function f : D ⊂ C→ C is analytic in the region enclosing
the required zero is one of the toughest, most challenging and most important
tasks in the field of numerical analysis.

In the recent and past years, many researchers have tried to construct
an optimal eighth-order iterative scheme for multiple zeros with multiplic-
ity m ≥ 1. There are few multi-point iterative schemes/families reaching
high order of convergence. Our mean to say that some multi-point iterative
schemes for multiple zeros who attain maximum sixth-order convergence. All
these schemes were proposed in the recent years.

These schemes use four functional evaluations in order to attain sixth-
order convergence with the efficiency index 6

1
4 = 1.5650. According to the

classical Kung-Traub’s conjecture [1], all these schemes are non optimal. And
not everyone works with multiplicity m = 1. So, we need an optimal eighth-
order scheme which will work for multiple zeros (m > 1) as well as for simple
zeros (m = 1). The better efficiency index compared to existing methods of
lower order and the small number of iterations required in order to obtained
the desired accuracy make eight-order shceme an interesting field of study.
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Motivated and inspired by this, we present an optimal scheme with eighth-
order convergence which will work for multiple zeros with multiplicity m ≥ 1.
The proposed scheme is the extension of Chun and Neta’s scheme [4].

2 Development of an optimal eighth-order scheme

An optimal eighth-order scheme proposed by Chun and Neta [4] for simple
zeros can be extended for multiple zeros by implementing it in the following
form

yn = xn −mun,

zn = xn −mun
[
v2n −

1

vn − 1

]
,

xn+1 = zn −mtnun
[
φf (vn) +

tn
vn − atn

+ 4tn

]
,

(1)

where the weight function φf : C→ C is an analytic function in a neighbor-

hood of zero, with un = f(xn)
f ′(xn)

, vn =
(

f(yn)
f(xn)

) 1
m
, tn = vn

(
f(zn)
f(yn)

) 1
m

and the

free parameter a ∈ R. The Chun and Neta’s [4] scheme is a special case of
the above algorithm for m = 1.

Theorem 1. Let x = α be a multiple zero with multiplicity m ≥ 1 of
f(x) = 0, with f : C → C an analytic function in a region enclosing the
required zero. Then, the scheme defined by (1) reaches eighth-order conver-
gence if the following expressions hold

φ(0) = 1, φ′(0) = 2, φ′′(0) = 4, φ′′′(0) = −6.

Finally we obtain the optimal asymptotic error constant term, which is
given as follows:

en+1 = −
c1

(
(m+ 7)c21 − 2mc2

)
48m7

[(
φ′′′′(0) + 6a(m+ 7)2 − 14m2 − 192m− 730

)
c41

− 24m
(
a(m+ 7)− 2(m+ 8)

)
c21c2 + 24(a− 1)m2c22 − 24m2c1c3

]
e8n +O(e9n),

where φ′′′′(0), a ∈ R.
The above expression demonstrate that our proposed scheme reaches

eighth-order convergence by using only four functional evaluations (viz. f(xn),
f ′(xn), f(yn) and f(zn)) per iteration. Therefore, it is an optimal scheme
according to Kung-Traub’s conjecture.
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2.1 Special cases of the proposed scheme

In this section, we will discuss some special cases of our proposed scheme (1)
by assigning different weight functions φf . For example

1. We consider one weight function of the following form:

φ(v) =
1− v3

1− 2v + 2v2
.

Then, we find another optimal eighth-order iteration function, which
is given as follows:

yn = xn −mun,

zn = xn −mun
[
v2n −

1

vn − 1

]
xn+1 = zn −mtnun

[
1− v3n

1− 2vn + 2v2n
+

tn
vn − atn

+ 4tn

]
.

(2)

2. We consider

φ(v) =
v + 1

3v3 − v + 1
,

with the above weight function, we will obtain a new optimal eighth-
order iteration function, which is given as below:

yn = xn −mun

zn = xn −mun
[
v2n −

1

vn − 1

]
xn+1 = zn −mtnun

[
v + 1

3v3 − v + 1
+

tn
vn − atn

+ 4tn

]
.

(3)

3 Numerical experiments

To conclude, we will check the efficiency and effectiveness of our proposed
scheme with the weight functions. Therefore, we choose some of the expres-

sions from our scheme (1), namely, the expression (2) for

(
a = 1, 2(m+8)

m+7
,

7m2+96m+437
3(m+7)2

)
and the expression (3) for

(
a = 1, 2(m+8)

m+7

)
, with what we get

the methods PM1, PM2, PM3, PM4 and PM5, respectively. Here we have
an application example:
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Example 1. We consider one standard nonlinear test function, which is
given as follows:

f1(x) =

(
x−
√

5
)4

(x− 1)2 + 1
.

The above function has a multiple zero at x =
√

5 of multiplicity 4. We have
chosen the initial approximation x0 = 2.5.

f(x) n PM1 PM2 PM3 PM4 PM5

f1(x) 1 1.1(−6) 3.4(−5) 4.2(−5) 1.1(−6) 3.4(−5)

2 1.2(−55) 1.4(−45) 5.8(−46) 1.5(−55) 2.2(−45)

3 4.1(−447) 2.9(−368) 1.8(−372) 2.3(−446) 1.6(−366)

Table 1: Comparison based on residual error (i.e. |f(xn)|) of different itera-
tion functions.
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1 Introduction

Plants are a food source for man and many species. They also are sources of
medicines, fibers for clothes, and are essential for a healthy environment. But
plants are subject to diseases many of which are caused by viruses. These
viruses often kill the plant. As a result, billions of dollars are lost every year
because of virus related crop loss. Most of the time, virus propagation is
done by a vector, usually insects that bite infected plants, get themselves
infected and then bite susceptible plants. Insect vectors typically have a
seasonal behavior. They are very active in the warm months and not very
active, almost dormant, in the cool months. To combat the vectors, chemical
insecticides are commonly used as a control. Unfortunately, these chemicals
not only are expensive but also have toxic effects on humans, animals and
the environment in general. An alternative is to introduce a predator species,
or just increase the number of a naturally present one, to prey on the insects
and limit the spread of the virus. A combination of insecticide and predators
can be used to control the vector population. The question is whether there
is an optimal combination.

In our study we consider six populations: susceptible, infected and recov-
ered plants, susceptible and infected vectors, and predators. We assume that
the susceptible plants can become infected if an infected insect feeds and is

∗e-mail:bmchen@uta.edu
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able to transmit the virus to the plant; the infected plant will either die from
the virus or recover; a healthy vector will can obtain the virus by feeding on
an infected plant; the infected vectors have no ill effects from the virus so
they do not fight the virus and therefore they do not recover; and the virus
does not affect the predators. Also, the total number of plants is assumed
to be constant since the farmers will replace a dead plant with a healthy
one. The plant populations can be determined using the total constant plant
population.

We first introduce a mathematical model of ordinary differential equations
describing the interaction between plants, vectors and predators. This model
can be used with constant coefficients or with periodic coefficients such as
the infection and birth and death rates. To determine the optimal amount
of predators to introduce and insecticide to use, an objective function giving
the total cost to the farmer of the disease. This function depends on the
number of infected plants and on the cost of the predators and the insecticide.
The cost of the insecticide can also include an environmental cost. We find
the controls that minimize the objective function subject to the population
variables satisfying the differential equation model and initial conditions,
together with constraints such that the controls are nonnegative.

There are two main methods of determining the optimum cost. One is
using indirect methods. This approach is based on Pontryagin maximum
principle.

Because this method can present convergence issues, we also consider a
direct method to solve the problem. Direct methods have the advantage over
indirect methods in that they are more straightforward to apply and more
robust with respect to the initialization. The cost, however, is that some
precision is lost [1]. The direct methods transforms the infinite dimensional
optimal control problem into a finite dimensional problem. To do this, the
direct method constructs approximations of the state and control variables
which are substituted into the objective function and dynamics equations to
obtain an optimization problem in many variables. The BOCOP software
discretizes the equations and the variables giving the user several choices. It
then utilizes the IPOPT solver that implements a primal-dual interior point
algorithm [7] to solve the discrete nonlinear optimization problem.
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2 Assumptions and Mathematical Model

With similar assumptions as in [2], [3], [4], [6], we consider 6 populations:
susceptible plants S(t), infected plants I(t), recovered plantsR(t), susceptible
insect vectors X(t), infected insect vectors Y (t), and predators P (t). Each
variable describes it’s respective population at time t. Susceptible plants do
not have the disease but could contract the disease if infected with the virus.
The infected plants have the virus but cannot directly transmit the virus to
susceptible plants. Infected plants can either die from the disease or recover.
Additionally, since the infected plants can die from the viral infection their
death rate is higher than that of plants that do not have the virus. We
also assume that as soon as a plant dies either from the infection or from
a natural death, it is immediately replaced with a new susceptible plant by
a farm worker. Thus it is reasonable to assume that the plant population
remains fixed and the total plant population will be denoted by K. This
assumption has the modeling advantage that K = S(t) + I(t) + R(t) can
be used to eliminate the recovered population from the system of equations.
The susceptible insects do not have the virus but can obtain the virus if
they come in contact with a infected plant. Infected insects can transmit the
virus to susceptible plants upon contact. We assume no vertical transmission
of the virus with neither plants nor vectors. Moreover, we assume that the
virus does not harm the vector and thus the vector does not defend against
the virus and it retains the virus for the rest of its life. Since the insects do
not show signs of being infected, the predators cannot differentiate between
healthy and infected insects. Thus, we assume that the predators consume
both infected and healthy insects at the same rate. The interaction between
vector and plant as well as that of predator and vector are assumed to have
a limitation of the form of predator-prey Holling type 2. The following table
lists the parameters in the model.

The following is system of ordinary differential equations modeling the
biological situation:
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dS

dt
= µ(K − S) + dI − βY

1 + αY
S

dI

dt
=

βY

1 + αY
S − (d+ µ+ γ)I

dX

dt
= Λ− β1I

1 + α1I
X − c1X

1 + α3X
P −mX − din(t)X

dY

dt
=

β1I

1 + α1I
X − c2Y

1 + α3Y
P −mY − din(t)Y

dP

dt
= Λp +

α4c1X

1 + α3X
P +

α4c2Y

1 + α3Y
P − δP − εP 2

Our first goal is to minimize the cost of insecticide and infected plants. To
achieve such goals, we use the above equations as constraints to an objective
function. We consider the case when insecticide is the only control used in
the minimization. To do so, we want to minimize the cost functional∫ T

0

AI(t)2 +Gdin(t)2dt.

3 Methods for Solving the Optimization Prob-

lem

We first tried the indirect method based on Pontryagin’s principle [5]. We
had convergence difficulties for times greater than a 100 days. Therefore we
consider a direct method to solve the problem. The idea is to discretize the
control problem, then apply Nonlinear Programming (NLP) techniques to
the resulting finite-dimensional optimization problem.

There are several software packages for direct methods.We chose BOCOP
[1] that uses C++ and includes a GUI. Solves problems with multiple controls
and delay equations, but one has to write several routines [1]. We succesfully
solved the problem with no delays, no seasonality and only one control for
time up to at least 365 days. Therefore we use BOCOP to solve the full
problem with delays, seasonality and two controls.
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4 Direct Methods Solving the Delay Opti-

mization Problem with Seasonality

Since it takes time for the virus to spread throughout the plant and insect,
we now consider an optimal control problem with delays and seasonality. Let
τ1 be the time it takes a plant to become infected after contagion and τ2, to
be the time it takes a vector to become infected after contagion. Then the
problem with the two discrete delays and seasonality is

min
din(t),Λp

∫ T

0

AI(t)2 +Gdin(t)2 + FΛ2
pdt

subject to

dS

dt
= µ(K − S) + dI − β(t)Y (t− τ1)

1 + αY (t− τ1)
S(t− τ1)

dI

dt
=

β(t)Y (t− τ1)

1 + αY (t− τ1)
S − (d+ µ+ γ)I

dX

dt
= Λ− β1(t)I(t− τ2)

1 + α1I(t− τ2)
X(t− τ2)− c1X

1 + α3X
P −mX

dY

dt
=

β1(t)I(t− τ2)

1 + α1I(t− τ2)
X(t− τ2)− c2Y

1 + α3Y
P −mY

dP

dt
=

α4c1X

1 + α3X
P +

α4c2Y

1 + α3Y
P − δP − εP 2,

where

β(t) = β(1 + h cos(
2πt

365
)) β1(t) = β1(1 + h cos(

2πt

365
)). (1)

5 Conclusions

For our particular models, the direct optimal control methods implemented
in BOCOP are more robust than the indirect methods using Pontryagin max-
imum principle. The plant virus propagation model presented which includes
periodicity and delays to make the model more realistic but at the cost of
making the model more complex. However, with the BOCOP software, we
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are able to calculate the state values and control functions at the optimal so-
lution for specific parameter values. Even though we know of no measured or
calculated values for some of the model parameters, we hope that this work
will encourage farmers to measure the parameters necessary to determine an
optimal cost for a particular situation. We also showed that relative costs are
important and, as the cost for pesticides and predators change, so does the
optimal controls. While the simulations only provide specific examples, they
can give insight to farmers who want to minimize the cost of virus disease to
plants.
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1 Introduction

A large amount of problems in Science and Engineering lack of an analytical solution.
A way to proceed with this kind of problems is the application of iterative methods.
There is a vast literature regarding this topic [1], and so many classifications based
on their own features.

The quality of iterative methods can be analyzed in terms of the order of con-
vergence p, the number of functional evaluations per step d or the optimality of the
method [2] when p = 2d−1. However, these parameters do not guarantee the stability
of the method for every initial guess. This study can be performed with a dynamical
analysis.

The inclusion of memory in the iterative schemes improves the order of conver-
gence of the method [3, 4], at the expense of increasing the computational effort
[5].

From the well-known non-optimal Traub’s method of third-order of convergence
[6], whose iterative expression is

yk = xk − f(xk)
f ′(xk)

,

xk+1 = yk − f(yk)
f ′(xk)

,
(1)
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two schemes are designed for the inclusion of memory in order to increase the order
of convergence.

2 Inclusion of memory in Traub-type methods

The first step for the improvement of the order requires the inclusion of an acceler-
ating parameter in (1), resulting in the method T1:

yk = xk −
f(xk)

f ′(xk) + δf(xk)
,

xk+1 = yk −
f(yk)

f ′(xk)
,

whose error equation is

ek+1 = 2c2(c2 + δ)e3k +O(e4k), (2)

being ek = xk−α, α represents the solution of f(x) and cj = f (j)(α)
j!f ′(α)

, j ≥ 2. Focusing

on the error equation (2), if δ = −c2, the order of convergence reaches the value, at
least, four. However, since α is unknown, obtaining an approximation of f ′(α) and
f ′′(α) is mandatory. This approximation is the key point of the memory.

Different approximations of δ and, consequently, of f ′(α) and f ′′(α), can be ap-
plied. For instance, if a linear approximation is performed,

f ′(α) ≈ f ′(xk), f ′′(α) ≈ f ′(xk)− f ′(xk−1)
xk − xk−1

,

the accelerating parameter results in

δk = −1

2

f ′(xk)− f ′(xk−1)
(xk − xk−1)f ′(xk)

,

obtaining an iterative method with p = 3.30 when it replaces the parameter δ in T1.
Using the Newton’s interpolation polynomial of second order

N2(t) = f(xk) + f [xk, xk−1](t− xk) + f [xk, xk−1, yk−1](t− xk)(t− xk−1),

and approximating the derivatives by

f ′(α) ≈ N ′2(xk), f ′′(α) ≈ N ′′2 (xk),
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the accelerating parameter has the expression

δk = − N ′′2 (xk)

2N ′2(xk)
= − f [xk, xk−1, yk−1]

f [xk, xk−1] + f [xk, xk−1, yk−1](xk − xk−1)
.

The resulting method, named TM1, has order of convergence 3.30.
Recalling (1), if two accelerating parameters are included in each step, it gives

the method T2, whose iterative expression is

yk = xk −
f(xk)

f ′(xk) + δ1f(xk)
,

xk+1 = yk −
f(yk)

f ′(xk) + δ2f(xk)
,

whose error equation is

ek+1 = (δ1 + c2)(δ2 + 2c2)e
3
k +O(e4k).

In a similar way to proceed as in the T1 case, for δ1 = −c2 and δ2 = 2δ1 = −2c2, the
method has p ≥ 4, but the information about α is not available. The linear and the
Newton’s interpolation polynomial approximations result in a method with order of
convergence 3.56. For Newton’s case, the expressions of the accelerating parameters
are

δ1k = − N ′′2 (xk)

2N ′2(xk)
= − f [xk, xk−1, yk−1]

f [xk, xk−1] + f [xk, xk−1, yk−1](xk − xk−1)
,

and δ2k = 2δ1k. The resulting iterative scheme is called TM2.

3 Dynamical analysis

In order to analyze the stability of methods TM1 and TM2, their dynamical analysis
is performed. Some fundamentals about dynamics in a real multidimensional scenario
can be found in [4].

Let Ψ1 : R3 → R3 be the fixed point function associated to the method TM1,
defined as

Ψ1(xk−1, yk−1, xk) = (xk, yk, xk+1) = (xk, yk, ψ1(xk−1, yk−1, xk)), k ≥ 1, (3)

where ψ1 represents the method TM1. When TM1 is applied on a generic quadratic
polynomial pc(x) = x2 + c, the fixed point operator results in

Ψ1(z, w, x) =

(
x, y,−c

3 − 3c2x2 + 23cx4 − 5x6

2x (c− 3x2)2

)
, k ≥ 1,
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where z = xk−1, w = yk−1, y = yk and x = xk.
A fixed point of Ψ1 must satisfy z = w = x and x = Ψ1(z, w, x). Therefore, when
these conditions are applied to (3) the following one-dimensional operator is obtained:

[Ψ1(z, w, x)]|z=w=x = Ψ̃1(x) = −c
3 − 3c2x2 + 23cx4 − 5x6

2x (c− 3x2)2
.

The only real fixed points of Ψ̃1(x) are xF1,2(c) = ∓i
√
c for c < 0, that match with

the roots of pc(x) and their behavior is superattracting. By solving Ψ̃′1(x) = 0, two
free critical points xC1,2(c) = ∓

√
c
15

are obtained.
Let Ψ2 : R3 → R3 be the fixed point function associated to the method TM2.

When TM2 is applied on pc(x) the fixed point operator is

Ψ2(z, w, x) =

(
x, y,−2x(−2c3 + 5c2x2 − 8cx4 + x6)

(c− 3x2)2(c− x2)

)
, k ≥ 1.

Following the same procedure as method TM1, the one-dimensional operator of
method TM2 is

Ψ2(z, w, x)|z=w=x = Ψ̃2(x) = −(c− 15x2) (c+ x2)
3

2x2 (3x2 − c)3
.

The fixed points of Ψ̃2 are the roots of pc(x), xF1,2(c) = ∓i
√
c for c < 0, and also

xF3 = 0 is a strange fixed point. By evaluating the fixed points in |Ψ̃′2(x)|, xF1,2(c) are

superattracting and xF3 is a repelling point. The operator Ψ̃2 has two free critical

points: xC1,2(c) = ±
√

2
3
c.

An interesting representation of the stability of the methods is the dynamical
plane. In its origins, it was devoted to complex dynamics [7]. However, it has
been adapted to real dynamics [8] to represent dynamical lines. When the rational
functions include one parameter, either by the iterative expression, or by the involved
polynomial, the best tool is the convergence plane [9]. In any of the three cases, the
information is similar. Each attracting fixed point is mapped to a different color.
When an initial guess tends to one of the attracting points, it is illustrated with the
corresponding color. Below there are some representations of convergence planes in
Figure 1 varying the value of the parameter c, and some illustrations of dynamical
lines in Figure 2, for specific cases of the value c. The roots −i

√
c and i

√
c are

mapped with colors blue and orange, respectively. In the convergence planes, black
and white lines represent the critical and strange points, respectively.
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Figure 1: Convergence planes of methods on pc(x) = x2 + c.

Focusing on Figure 1, every initial guess tends to an attracting point, for both
TM1 and TM2 methods, showing the wide stability of this schemes. Note that only
the region of c < 0 has been represented. In Figure 2 two dynamical lines of both
methods are included to capture the effect of c > 0. In this cases, every initial guess
does not tend to any real root.

c=-2
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x0

(a) TM1

c=2
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(b) TM1

c=-2
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(c) TM2

c=2
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(d) TM2

Figure 2: Dynamical lines of methods on pc(x) = x2 + c, for c = {−2, 2}.

4 Conclusions

This paper presents two iterative methods with memory based on the well-known
Traub’s method. In order to increase the order of convergence, the introduced meth-
ods include some acceleration parameters that involve the use of memory. The
resulting schemes achieve order of convergence 3.30 and 3.56, improving the third
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order of the original method. Moreover, an essential feature of the iterative methods
is also proved. The stability of the method in terms of the election of an initial guess
is checked with the help of dynamical analysis, showing for both methods two wide
basins of attraction.
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1 Introduction

In this paper, we deal with the random second order linear differential equa-
tion 

Ẍ(t) + A(t)Ẋ(t) + B(t)X(t) = 0, t ∈ R,
X(t0) = Y0,

Ẋ(t0) = Y1.

(1)

The data coefficients A(t) and B(t) are stochastic processes and the initial
conditions Y0 and Y1 are random variables on an underlying complete prob-
ability space (Ω,F ,P). The solution of (1), X(t), is a stochastic process as
well.

The goals of this paper are the following:

∗e-mail: jccortes@imm.upv.es
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• To specify the meaning of the random differential equation (1) via the
Lp(Ω) random calculus or more concretely using the so-called mean
square calculus, that corresponds to p = 2.

• To find a proper stochastic process solution to (1).

• To compute its main statistical information (expectation and variance)
under mild conditions.

Particular cases of (1) have been used in previous contributions using
Lp(Ω) random calculus. For instance, Airy, Hermite, Legendre and Bessel
differential equations have been randomized and rigorously studied in [1],
[2], [3] and [4]. A very important case of problem (1) is when its coefficients
are random variables rather than stochastic processes. In [5], the authors
constructed the first and second PDF of the solution stochastic process.

The novelty of this article is that we solve the general form of a random
second order linear differential equation via mean square power series. Some
important equations studied in the literature, like Airy, Hermite, etc., will
be particular cases of our theory.

2 Solving the random non-autonomous sec-

ond order linear differential equation

We will assume that the data stochastic process A(t) and B(t) are analytic
at t0: A(t) =

∑∞
n=0 An(t − t0)n and B(t) =

∑∞
n=0 Bn(t − t0)n, for t ∈ (t0 −

r, t0 + r), being r > 0 fixed, and the sum is understood in the L2(Ω) setting.
We search for a solution process X(t) of the form X(t) =

∑∞
n=0 Xn(t− t0)n,

for t ∈ (t0 − r, t0 + r), where the sum is in L2(Ω).

Theorem 2.1 Let A(t) =
∑∞

n=0 An(t− t0)n be a random power series in the
Lp(Ω) setting (p ≥ 1), for t ∈ (t0− r, t0 + r), r > 0. Then the random power
series

∑∞
n=1 nAn(t − t0)n−1 exists in Lp(Ω) for t ∈ (t0 − r, t0 + r), and the

Lp(Ω) derivative of A(t) is equal to it: Ȧ(t) =
∑∞

n=1 nAn(t − t0)n−1, for all
t ∈ (t0 − r, t0 + r).

Theorem 2.2 Let U =
∑∞

n=0 Un and V =
∑∞

n=0 Vn be two random series
that converge in L2(Ω). Suppose that one of the series converges absolutely,
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say
∑∞

n=0 ‖Vn‖L2(Ω) <∞. Then(
∞∑
n=0

Un

)(
∞∑
n=0

Vn

)
=
∞∑
n=0

Wn, Wn =
n∑

m=0

Un−mVm,

where
∑∞

n=0 Wn is understood in L1(Ω).

Theorem 2.3 Let A(t) =
∑∞

n=0 An(t− t0)n and B(t) =
∑∞

n=0 Bn(t− t0)n be
two random series in the L2(Ω) setting, for t ∈ (t0 − r, t0 + r), being r > 0
finite and fixed. Assume that the initial conditions Y0 and Y1 belong to L2(Ω).
Suppose that there is a constant Cr > 0, maybe dependent on r, such that
‖An‖L∞(Ω) ≤ Cr/r

n and ‖Bn‖L∞(Ω) ≤ Cr/r
n, n ≥ 0. Then the stochastic

process X(t) =
∑∞

n=0 Xn(t− t0)n, t ∈ (t0 − r, t0 + r), where

X0 = Y0, X1 = Y1, (2)

Xn+2 =
−1

(n + 2)(n + 1)

n∑
m=0

[(m + 1)An−mXm+1 + Bn−mXm] , n ≥ 0, (3)

is the unique analytic solution to the random initial value problem (1) in the
mean square sense.

The hypotheses concerning the L∞(Ω) growth of the coefficients An and
Bn, n ≥ 0, may seem quite restrictive. However, these hypotheses have been
necessary to prove the main theorem. Moreover, these L∞(Ω) hypotheses are
equivalent to a growth condition on the moments of the random variables
A0, A1, . . . and B0, B1, . . .: for a given random variable Z, we have that
E[|Z|n] ≤ HRn for certain H > 0 and R > 0, if and only if ‖Z‖L∞(Ω) ≤ R.
This key fact is a direct consequence of the following result: if Z is a random
variable, then limn→∞ ‖Z‖Ln(Ω) = ‖Z‖L∞(Ω).

Growth hypotheses of the form E[|Z|n] ≤ HRn, for certain H > 0 and
R > 0, are common in the literature to find stochastic analytic solutions to
particular cases of (1). See for example Airy’s random differential equation
in [1] and Hermite’s random differential equation in [2]. Hence, our main
theorem will allow us to generalize the results obtained in the literature.

The hypotheses of our main theorem, besides providing a stochastic solu-
tion to our problem (1), also give a pointwise classical solution to (1) under
the additional assumption Y0, Y1 ∈ L∞(Ω). This manner of studying ran-
dom differential equations is referred to as the sample path approach, see [6,
Appendix I].
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3 Statistical information of the solution stochas-

tic process: mean and variance

The expectation and variance of the stochastic process X(t) =
∑∞

n=0 Xn(t−
t0)n given by (2)–(3) can be approximated. Indeed, first, one has to obtain
Xn as a function of Y0, Y1, A0, . . . , An−1 and B0, . . . , Bn−1 by recursion via
(3), for n = 0, 1, . . . , N . After this, we construct a truncation

XN(t) =
N∑

n=0

Xn(t− t0)n (4)

of the solution stochastic process X(t). Since limN→∞XN(t) → X(t) in
L2(Ω), we have limN→∞ E[XN(t)] = E[X(t)] and limN→∞V[XN(t)] = V[X(t)].

There are other approaches to approximate these statistics of X(t): dis-
honest method, Monte Carlo simulations, gPC expansions, etc.

4 Examples

Example 4.1 Airy’s random differential equation is the following:
Ẍ(t) + AtX(t) = 0, t ∈ R,
X(0) = Y0,

Ẋ(0) = Y1,

(5)

where A, Y0 and Y1 are random variables. In [1], the hypothesis used in order
to obtain a mean square analytic solution X(t) is E[|A|n] ≤ HRn, n ≥ n0.
Notice that this hypothesis is equivalent to ‖A‖L∞(Ω) ≤ R.

Consider A ∼ Beta(2, 3) and Y0, Y1 independent random variables such
that Y0 ∼ Normal(1, 1) and Y1 ∼ Normal(2, 1). In Table 1 and Table 2, we
approximate the expectation and variance of the solution process X(t) at
different times t.

Example 4.2 Consider
Ẍ(t) + (A0 + A1t)Ẋ(t) + (B0 + B1t)X(t) = 0, t ∈ R,
X(0) = Y0,

Ẋ(0) = Y1,

(6)
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t E[X15(t)] E[X16(t)] dishonest MC 50, 000 MC 100, 000
0.00 1 1 1 0.99701 1.00138
0.25 1.49870 1.49870 1.49870 1.49519 1.49976
0.50 1.98752 1.98752 1.98752 1.98353 1.98829
0.75 2.45108 2.45108 2.45102 2.44667 2.45160
1.00 2.86856 2.86856 2.86818 2.86383 2.86893
1.25 3.21494 3.21494 3.21339 3.21008 3.21534

Table 1: Approximation of the expectation of the solution stochastic process,
Example 4.1.

t V[X15(t)] V[X16(t)] MC 50, 000 MC 100, 000
0.00 1 1 0.99610 0.99530
0.25 1.06035 1.06035 1.05902 1.05642
0.50 1.23142 1.23142 1.23408 1.22793
0.75 1.49261 1.49261 1.50041 1.48944
1.00 1.81392 1.81392 1.82744 1.81127
1.25 2.15870 2.15870 2.17768 2.15721

Table 2: Approximation of the variance of the solution stochastic process,
Example 4.1.
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where A0 = 4, A1 ∼ Uniform(0, 1), B0 ∼ Gamma(2, 2), B1 ∼ Bernoulli(0.35),
Y0 = −1 and Y1 ∼ Binomial(2, 0.29) are assumed to be independent.

In order for the hypotheses of our main theorem to be satisfied, the
Gamma distribution will be truncated. For the Gamma distribution with
shape and rate 2, it can straightforwardly be checked that the interval [0, 4]
contains approximately 99.7% of the observations. In Table 3 and Table 4,
we approximate the main statistics of the solution stochastic process X(t) at
different times t.

t E[X19(t)] E[X20(t)] dishonest MC 50, 000 MC 100, 000
0.00 −1 −1 −1 −1 −1
0.25 −0.886467 −0.886467 −0.886418 −0.886789 −0.886432
0.50 −0.809269 −0.809269 −0.808743 −0.809370 −0.809219
0.75 −0.747589 −0.747589 −0.745742 −0.747321 −0.747526
1.00 −0.693453 −0.693453 −0.689284 −0.692816 −0.693375
1.25 −0.643943 −0.643944 −0.636462 −0.642985 −0.643845

Table 3: Approximation of the expectation of the solution stochastic process,
Example 4.2.

t V[X15(t)] V[X16(t)] MC 50, 000 MC 100, 000
0.00 0 0 0 0
0.25 0.0102077 0.0102074 0.0101172 0.0102664
0.50 0.0190996 0.0190999 0.0189214 0.0192053
0.75 0.0237400 0.0237403 0.0235191 0.0238499
1.00 0.0268721 0.0268711 0.0266311 0.0269620
1.25 0.0297852 0.0297465 0.0295049 0.0298201

Table 4: Approximation of the variance of the solution stochastic process,
Example 4.2.
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1 Introduction

Gut microbiota is the complex community of microorganisms that lives in
the digestive tracts of humans and other animals. The composition of human
gut microbiota changes over time, and modeling its structure and changes
could be of great value in the rational design of microbiota-tailoring diets
and therapies.

In this work, we present a statistical model with a Lotka-Volterra structure
to predict microbiome dynamics of the growth of intestinal bacteria. This
approach allows us to understand the ecological structure of the intestinal
microbiota and make predictions.

Our proposal is based on Lotka-Volterra approach, which has been used in
several works on microbiota, see for example [1–4]. However, in most of them
compositional data conformation has not been considered. In this paper, the

∗e-mail: icreus@alumni.uv.es

63



Modelling for Engineering & Human Behaviour 2018 64

proposed model considers that the proportions (the relative abundances) fol-
low a Dirichlet distribution, and that its time-varying parameters, after a
proper transformation, presents a Lotka-Volterra dynamic structure. There-
fore, our proposal includes both a Lotka-Volterra structure and compositional
data consideration.

2 Data

The dataset includes sequencing counts of a marker gene (16S rRNA) which
are put into correspondence to the available taxonomically annotated database
of microbial genomes or genes. The result of this classification determinates
the relative abundances of each specie. We consider the relative abundance
of Porphyromonadaceae, Prevotellaceae and Other for 30 time points in a
Spanish sixty-six year old male. The data are extracted from [5].

3 The Model

Let yt=(y1t,y2t, . . . , yKt), where yit ∈ (0,1), and i = 1, 2, . . . , K, is the
relative abundance of specie i at time t, so that y1t+y2t+, . . . ,+yKt = 1. We
consider that the vector yt|yt−1,yt−2, . . .y1, follows a Dirichlet distribution
with positive parameters αt=(α1t, α2t, . . . , αKt):

yt|yt−1,yt−2, . . .y1 ∼ Dir(αt)

In order to link αt with yt−1,yt−2, . . . , we define:

g(αjt) = µjt := εj ln
( yjt−1
yKt−1

)
+ln
( yjt−1
yKt−1

)
·
(
Mj1 ln

yjt−1
yKt−1

+· · ·+MjK−1 ln
yK−1t−1
yKt−1

)
Taking into account similar proposals presented in [6], we consider that the
reparametrized vector of the time-varying parameters, αt, follows a Lotka-
Volterra structure. Note that Mjl represents the effect that specie j has upon
specie l and the parameter εj is related to birth rate of the specie j. Our
microbiota database is a compositional time series where the observation
vector at each t sum up to 1. Traditionally, such time series have been
modeled considering a log-ratio transformation of the observations.
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Note that given g(αjt), with j = 1, 2, . . . , K − 1, the vector of parameters
is unidentifiable. In order to properly identify these parameters, we assume
that α1t+α2t+. . .+αKt=τ for all time-point t. This assumption allows us
to estimate αt with αt = g−1(µt). In our case, and taking into account a
Lotka-Volterra structure and the first-order Taylor approximation, we con-
sider g(αjt) = E

(
ln(yjt/yKt)

)
≈ ln

(
E
(
yjt/yKt

))
, and then ln

(
αjt/αKt

)
= µjt.

The inverse expressions are then given by:

α̂jt =
τ eµ̂jt

1 + eµ̂1t + eµ̂2t + · · ·+ eµ̂K−1t

α̂Kt =
τ

1 + eµ̂1t + eµ̂2t + · · ·+ eµ̂K−1t

Using the previously presented formulas, we can calculate E
(
yit
)

and Var
(
yit
)

as:

E
(
yit
)

=
α̂it

α̂1t + α̂2t + · · ·+ α̂Kt

Var
(
yit
)

=
αit
(
τ − αit

)
τ 2
(
τ + 1

)
3.1 Model estimation

We have considered maximum likelihood estimation. Let β be the vector of
the model parameters, β = (ε1, ε2,M11,M12,M21,M22, τ). Note that in our
scenario, K=3. The log-likelihood function is defined by LT (β) =

∑T
t=1 `t(β),

where

`t(β) = ln
(
Γ
(
τ
))
−

3∑
i=1

ln
(
Γ
(
αit
))

+
3∑
i=1

(
αit−1

)
ln(yit) t = 1, 2, . . . , T = 30

We maximize LT (β) using the Nelder-Mead simplex method with the func-
tion optim of R [7]. We obtain the following estimations:
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Parameter Estimation

ε1 1.514990
ε2 1.130968
M11 0.285277
M12 -0.006742
M21 -0.125196
M22 0.0910394
τ 168.21223

Table 1: Paremeter estimates.

4 Results

The values of yit (dots), E
(
yit
)

(blue line) and E
(
yit
)
±
√

Var
(
yit
)

(green

lines) are shown in Figure 1. We can observe that the expected values show
a good agreement with the original data.
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Figure 1: Available data and predictions.
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1 Introduction and notation

Hermite matrix polynomial Hn(x,A) has the generating function, see [1]:

ext
√
2A = et

2 ∑
n≥0

Hn (x,A)

n!
tn, (1)

from following expressions for the matrix hyperbolic sine and cosine are derived:

cosh
(
xt
√
2A
)

= et
2 ∑
n≥0

H2n(x,A)

(2n)!
t2n

sinh
(
xt
√
2A
)

= et
2 ∑
n≥0

H2n+1(x,A)

(2n+ 1)!
t2n+1

 , x ∈ R, |t| < ∞. (2)
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Recently we have shown the following formulas which are a generalization of
formulas (2):∑

n≥0

H2n+1(x,A)

(2n)!
t2n = e−t2

[
H1(x,A) cosh

(
xt
√
2A

)
−2t sinh

(
xt
√
2A

)]
,

∑
n≥0

H2n+2(x,A)

(2n+ 1)!
t2n+1 = e−t2

[
H1(x,A) sinh

(
xt
√
2A

)
−2t cosh

(
xt
√
2A

)]
,

∑
n≥0

H2n+3(x,A)

(2n+ 1)!
t2n+1 = e−t2

[(
H2(x,A)+4t2I

)
sinh

(
xt
√
2A

)
−4tH1(x,A) cosh

(
xt
√
2A

)]
.


(3)

We will use formulas (3) to obtain a new expansion of the hyperbolic matrix
sine and cosine in Hermite matrix polynomials series.

Throughout this paper, we denote by Cr×r the set of all the complex square
matrices of size r. We denote by Θ and I, respectively, the zero and the identity
matrix in Cr×r. If A ∈ Cr×r, we denote by σ(A) the set of all the eigenvalues
of A. For a real number x, ⌊x⌋ denotes the lowest integer not less than x and
⌈x⌉ denotes the highest integer not exceeding x.

We recall that for a positive stable matrix A ∈ Cr×r the n−th Hermite
matrix polynomial is defined in [1] by:

Hn(x,A) = n!

⌊n
2 ⌋∑

k=0

(−1)k
(√

2A
)n−2k

k!(n− 2k)!
xn−2k, (4)

which satisfies the three-term matrix recurrence:

Hm(x,A) = x
√
2AHm−1(x,A)− 2(m− 1)Hm−2(x,A) , m ≥ 1,

H−1(x,A) = Θ , H0(x,A) = I .

 (5)

2 Some new Hermite matrix series expansions
for the hyperbolic matrix cosine and sine

LetA ∈ Cr×r be a positive stable matrix, then the matrix polynomialH1(x,A) =√
2Ax is invertible if x ̸= 0. Substituting sinh

(
xt
√
2A
)
given in (2) into the

first expression of (3) we obtain the following new rational expression for the
hyperbolic matrix cosine in terms of Hermite matrix polynomials:
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cosh
(
xt
√
2A
)

= et
2

∑
n≥0

H2n+1(x,A)

(2n)!

(
1 +

2t2

2n+ 1

)
t2n

 [H1(x,A)]
−1

,

x ∈ R ∼ {0} , |t| < +∞.
(6)

Substituting sinh
(
xt
√
2A
)

given in (2) into the second expression of (3)

and using the three-term matrix recurrence (5) we obtain the expression of

cosh
(
xt
√
2A
)
given in (2).

On the other hand, replacing the expression of sin
(
xt
√
2A
)
given in (2) into

the third expression of (3), we obtain another new rational expression for the
hyperbolic matrix cosine in terms of Hermite matrix polynomials:

cosh
(
xt
√
2A

)
=

=
−et

2

4

∑
n≥0

H2n+3(x,A)

(2n+ 1)!
t2n −

(
H2(x,A) + 4t2I

)
⋆

∑
n≥0

H2n+1(x,A)

(2n+ 1)!
t2n+1

 [H1(x,A)]−1 ,

x ∈ R ∼ {0} , |t| < +∞. (7)

Comparing (7) with (6), we observe that it always has a matrix product
more when evaluating (7), the matrix product remarked by symbol “⋆” in (7).
Due to the importance of reducing the number of matrix products, see [2–4] for
more details, we will focus mainly on the expansion (6).

From (4), it follows that, for x ̸= 0:

H2n+1 (x,A) [H1(x,A)]
−1

=
(2n+ 1)!

x

n∑
k=0

(−1)kx2(n−k)+1(2A)n−k

k!(2(n− k) + 1)!

= H̃2n+1 (x,A) , (8)

where

H̃n(x,A) = n!

⌊n
2 ⌋∑

k=0

(−1)k
(√

2A
)n−2k−1

k!(n− 2k)!
xn−2k, (9)

so the right side of (8) is still defined in the case where the matrix A is
singular. In this way, we can re-write the relation (6) in terms of the matrix

polynomial H̃2n+1 (x,A):
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cosh
(
xt
√
2A
)

= et
2

∑
n≥0

H̃2n+1 (x,A)

(2n)!

(
1 +

2t2

2n+ 1

)
t2n

 ,

x ∈ R, |t| < +∞.

(10)

Replacing the matrix A by matrix A2/2 in (10) we can avoid the square
roots of matrices, and taking x = λ, λ ̸= 0, t = 1/λ, we finally obtain

cosh (A) = e
1
λ2

∑
n≥0

H̃2n+1

(
λ, 1

2A
2
)

(2n)!λ2n+1

(
1 +

2

(2n+ 1)λ2

) , 0 < λ < +∞. (11)

3 Numerical approximations

Truncating the given series (11) until order m, we obtain the approximation
CHm (λ,A) ≈ cosh (A) defined by

CHm (λ,A) = e
1
λ2

(
m∑

n=0

H̃2n+1

(
λ, 1

2A
2
)

(2n)!λ2n+1

(
1 +

2

(2n+ 1)λ2

))
, 0 < λ < +∞.

(12)
Working analogously to the proof of the formula (3.6) of [5] one gets, for

x ̸= 0 the following bound:

∥∥∥∥H̃2n+1

(
x,

1

2
A2

)∥∥∥∥
2

≤ (2n+ 1)!
e sinh

(
|x|
∥∥A2

∥∥1/2
2

)
|x| ∥A2∥1/22

. (13)

Then we can obtain the following expression for the approximation error:

∥cosh (A)− CHm (λ,A)∥2 ≤ e
1
λ2

∑
n≥m+1

∥∥∥H̃2n+1

(
λ, 1

2A
2
)∥∥∥

2

(2n)!λ2n+1

(
1 +

2

(2n+ 1)λ2

)
(14)

≤
e1+

1
λ2 sinh

(
λ
∥∥A2

∥∥1/2
2

)
λ2 ∥A2∥1/22

∑
n≥m+1

2n+ 1

λ2n

(
1 +

2

(2n+ 1)λ2

)
.

Taking λ > 1 it follows that
2

(2n+ 1)λ2
< 1, and one gets

∑
n≥m+1

2n+ 1

λ2n

(
1 +

2

(2n+ 1)λ2

)
≤ 2

∑
n≥m+1

2n+ 1

λ2n

=
4 + (4m+ 6)(λ2 − 1)

λ2m (λ2 − 1)
2 ,
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m zm λm

2 0.0020000000061361199 909.39256098888882
4 0.079956209874370632 99.997970988888895
6 0.34561400005673254 39.999499988888893
9 1.1120032200657 17.997896988889799
12 2.2373014291079998 11.882978988901458
16 4.1086396680000004 7.9999999964157498

Table 1: Values of zm and λm for cosh (A).

m1 = 2 m2 = 4 m3 = 6 m4 = 9 m5 = 12 m6 = 16
m̄k 1 2 3 5 7 11
m̃k 1 2 4 10 13 17

fmk
(max) 0 0 1.9 · 10−17 6.0 · 10−19 1.4 · 10−26 1.3 · 10−35

Table 2: Values m̄k, m̃k, and fmax.

thus from (14) we finally obtain:

∥cosh (A)− CHm (λ,A)∥2 ≤
e1+

1
λ2 sinh

(
λ
∥∥A2

∥∥1/2
2

) (
4 + (4m+ 6)(λ2 − 1)

)
∥A2∥1/22 λ2m+2 (λ2 − 1)

2
.

(15)
From this expression (15) we derived the optimal values (λm; zm) such that

zm = max

z =
∥∥A2

∥∥
2
;
e1+

1
λ2 sinh

(
λz1/2

) (
4 + (4m+ 6)(λ2 − 1)

)
z1/2λ2m+2 (λ2 − 1)

2 < u


where u is the unit roundoff in IEEE double precision arithmetic, u = 2−53. The
optimal values of m, z and λ have been obtained with MATLAB. The results
are given in the Table 1.

If cosh(A) is calculated from the Taylor series, then the absolute forward
error of the Hermite approximation of cosh(A), denoted by Ef , can be computed
as

Ef = ∥cosh (A)− Pmk
(B)∥ =

∥∥∥∥∥∥
∑
i>m̄k

fmk,iB
i

∥∥∥∥∥∥ ∼=

∥∥∥∥∥∥
∑
i>m̃k

fmk,iB
i

∥∥∥∥∥∥ ,
where the values of m̄k and m̃k for each mk ∈ {2, 4, 6, 9, 12, 16} appear in the
Table 2.

Scaling factor s and the order of Hermite approximation mk are obtained
by the following:
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Theorem 3.1 ( [6]) Let hl(x) =
∑
i≥l

pix
i be a power series with radius of con-

vergence w, h̃l(x) =
∑
i≥l

|pi|xi, B ∈ Cn×n with ρ(B) < w, l ∈ N and t ∈ N with

1 6 t 6 l. If t0 is the multiple of t such that l 6 t0 6 l + t− 1 and

βt = max{d1/jj : j = t, l, l + 1, . . . , t0 − 1, t0 + 1, t0 + 2, . . . , l + t− 1},

where dj is an upper bound for ||Bj ||, dj > ||Bj ||, then

||hl(B)|| 6 h̃l (βt) .

We have empirically verified that by neglecting the coefficients whose abso-
lute value is lower than u, the efficiency results are far superior to the state-of-
the-art algorithms, with also excellent accuracy.

4 Numerical experiments

The MATLAB’s implementation coshmtayher is a modification of the MAT-
LAB’s code coshher given in [5], replacing the original Hermite approxima-
tion coshher by the new Hermite matrix polynomial obtained from (11). In
this section, we compare the new MATLAB function developed in this paper,
coshmtayher, with the functions coshher and funmcosh:

• coshmtayher. New code based on the new developments of Hermites matrix
polynomials (11).

• coshher. Code based on the Hermite series for the hyperbolic matrix cosine
[5].

• funmcosh. MATLAB function funm for compute matrix functions, i. e. the
hyperbolic matrix cosine.

The tests have been develop using MATLAB (R2017b), runing on an Apple
Macintosh iMac 27” (iMac retina 5K 27” late 2015) with a quadcore INTEL
i7-6700K 4 Ghz processor and 16 Gb of RAM.
The following sets of matrices have been used:

a) One hundred diagonalizable matrices of size 128 × 128. Table 3 show the
percentage of cases in which the relative errors of coshmtayher (new
Hermite code) are lower, greater or equal than the relative errors of
coshher(Hermite code) and funmcosh (funm code). Table 4 shows the
matrix products of each method. Graphics with the Normwise relative
errors, see [7, p. 253] and Performance Profile, see [7, p. 254], are given
in Figure 1.

b) One hundred non diagonalizables matrices of size 128 × 128 with multiple
eigenvalues randomly generated. Table 5 shows the percentage of cases in
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which the relative errors of coshmtayher are lower, greater or equal than
the relative errors of coshher and funmcosh. Table 6 shows the matrix
products of each method. Graphics of the Normwise relative errors and
the Performance Profile are given in Figure 2.

c) Ten matrices from the Eigtool MATLAB [8] package with size 128 × 128,
and thirty matrices from the function matrix of the Matrix Computa-
tion Toolbox [9] with dimensions lower or equal than 128. These matrices
have been chosen because they have more varied and significant char-
acteristics. Table 7 shows the percentage of cases in which the relative
errors of coshmtayher are lower, greater or equal than the relative errors
of coshher and funmcosh. Table 8 shows the matrix products of each
method. Graphics of the Normwise relative errors and the Performance
Profile are given Figure 3.

E(coshmtayher) < E(coshher) 47.50%
E(coshmtayher) > E(coshher) 50.00%
E(coshmtayher) = E(coshher) 3.00%

E(coshmtayher) < E(funmcosh) 100.00%
E(coshmtayher) > E(funmcosh) 0.00%
E(coshmtayher) = E(funmcosh) 0.00%

Table 3: Comparative between the methods

cosmtayher coshher funmcosh
671 973 1500

Table 4: Matrix products

E(coshmtayher) < E(coshher) 52.50%
E(coshmtayher) > E(coshher) 47.00%
E(coshmtayher) = E(coshher) 1.00%

E(coshmtayher) < E(funmcosh) 100.00%
E(coshmtayher) > E(funmcosh) 0.00%
E(coshmtayher) = E(funmcosh) 0.00%

Table 5: Comparative between the methods
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Figure 1: Diagonalizable matrices

cosmtayher coshher funmcosh
685 989 1500

Table 6: Matrix products
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Figure 2: Non diagonalizable matrices

E(coshmtayher) < E(coshher) 57.50%
E(coshmtayher) > E(coshher) 30.00%
E(coshmtayher) = E(coshher) 12.50%

E(coshmtayher) < E(funmcosh) 97.50%
E(coshmtayher) > E(funmcosh) 2.50%
E(coshmtayher) = E(funmcosh) 0.00%

Table 7: Comparative between the methods
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cosmtayher coshher funmcosh
191 315 600

Table 8: Matrix products
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Figure 3: Matrices from the Eigtool and the Matrix Computation Toolbox
packages

5 Conclusions

The more accurate are the implementations based on the Hermite series: the
initial MATLAB implementation (coshher) and the proposed MATLAB im-
plementation based on (11) (coshmtayher). Also, the new implementation
(coshmtayher) have considerably lower computational costs than the other func-
tions.
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1 Introduction

In this work, a novel methodology towards the minimization of rolling noise

through changes of the Railway Wheel (RW) cross-sectional geometry is pre-

sented. The approach is based on shifting the Natural Frequencies (NF) of

the acoustically-relevant modes out of the excitation range or at frequen-

cies where it has a lower content. The presented procedure permits a deep

exploration of the solution space with a reduced computational expense.

It is assumed that the maximization of the NF corresponding to the most

relevant vibration modes leads to a reduction of the radiated sound power,

given the lower frequency content of the excitation force in the high frequency

domain [1]. Hence, the range of frequencies in which the optimization is

performed is chosen according to the spectrum of the combined excitation

roughness defined in the standard EN 13979-1:2011 [2].

This approach has the advantage of a reduced computation cost compared

to other similar approaches in the field [3],[4]. The common procedures for

*e-mail: jorgugi1@upv.es
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the calculation of acoustic power radiation are very expensive computation-

ally (Boundary Element Method - BEM) in an iterative procedure or require

simplified and/or commercial models (TWINS software). Instead, the im-

plementation developed in this work, which avoids the need of deriving noise

radiation, intends to reduce greatly the time required to perform an iteration

while achieving an adequate FEM mesh accuracy in the process.

A Genetic Algorithm (GA) is used as optimization technique, whereas

the Objective Function (OF) has been defined as an expression depending

on the NF of a set of selected modeshapes which are more likely to contribute

to sound radiation.

2 Methodology

Figure 1: Main components of the optimization procedure.

The optimization algorithm implements a data flow as illustrated in Fig.

1. At the start of the procedure, an initial design is proposed and introduced

in the main search loop. At each iteration, first a high-cycle fatigue analysis is

carried out according to standard [2] using a Finite Element Method (FEM)

model, and only structurally acceptable candidates whose critical stress dif-

ference ∆σc is lower than the admissible ∆Am, are further considered. In

such case, the modeshapes Φ and undamped NF ω of design candidate i

are obtained through a modal analysis. Such analysis is configured by the
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maximum frequency fm = 5000 Hz up to which modes are obtained, the

maximum element size h = 0.015 m of the FE mesh, and the number of

Fourier terms nf = 12 used in the axisymmetric computation.

The modeshapes that have a greater sound contribution are selected and

identified through their nodal diameters n and nodal circumferences m [1].

The average NF of those selected modes ω̂m,ID is then used to generate

the basis OF value Objb through Eq. 1. This value is then filtered by two

modifying masks or transfer functions, resulting in the effective penalty value

Obj which is to be minimized,

Obj =Objb ·me ·mp =[ 1

(ω̂m,ID)k

]
·
[− tanh

( ω̂m,ID−f0
s

+ 1
)

2

]
·
[
1 + |

ω̂p,ID − ω̂0
p,ID

ω̂p,ID

|
]
.

(1)

The so-called excitation mask term me considers the frequency content of

the combined excitation roughness spectrum, derived from the standard [2]

and is implemented in the form of a hyperbolic tangent function, controlled

by parameter s. It acts as a filter favouring the shift of the modal frequencies

towards the region considered as having less significant amplitude content,

determined by f0. The penalization mask term mp considers the possible neg-

ative effect of shifting certain modes into the range of important frequency

content of the excitation, in case this spectrum is not monotonically decreas-

ing. Such a penalization is computed through the difference on the average

natural frequency value of the identified modes to penalise ω̂p,ID with respect

to their initial value, ω̂0
p,ID. The processed candidate OF value Obj is trans-

mitted to the GA, which will derive the design variables for the next iteration

and compute the OF value variation between previous candidates ∆Obj. If

such difference is lower than the specified tolerance tolm, the best solution

found x∗ is then returned. Otherwise, the update variables are introduced

again in the beginning of the main loop.

In order to obtain a geometry to generate a FE model used within the

optimization algorithm, a geometric parametrization of the transversal sec-

tion of the wheel is defined according to its relevance in the noise radiation

problem [4],[5]. The details are shown in Figure 2.

While x1 in Fig. 2 is directly related to its corresponding design variable,

x2, x3 and x4 are defined in terms of a scalar multiplier to a base value.
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Figure 2: Geometric design variables and an explanatory design (shaded)

with reduced x1, x2, x3 and x4 parameters. Note that x4 is the axial distance

between the middle point of the hub surface and the contact point.

Regarding the discretization of the geometry stated above, general ax-

isymmetric elements have been used for the wheel FEM model presented in

this work. These consider Fourier series in their shape functions with the

purpose of describing the change of the displacement field in the circumfer-

ential direction θ. For the calculation of the full response, nf nodal planes

are generated from the transverse sections, which act as the master plane.

The displacements are interpolated taking into account the Fourier series

expansion as:

u =
∑
i=1

Ni ui ·

c1 +
∑
nf

(
anf

cos(nf θ) + bnf
sin(nf θ)

) , (2)

where c1, an and bn are the Fourier constants, ui the displacements in each

node and Ni the 2D shape functions of linear quadrilateral elements.

3 Results

Fig. 3 compares the obtained NF distributions and cross-sectional geome-

tries of the initial and Best Found Solution (BFS) using the methodology

proposed. It is seen that those modeshapes selected for NF maximization,

with n = 2, 3, 4 and m = 1, have been shifted to a higher frequency region

where the excitation is significantly lower. As expected, the optimized ge-

ometry presents features associated by literature [1],[6] with reduced wheel
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rolling noise, namely smaller wheel radius (x1), larger transition radii (x2)

and a thicker web (x3) with a straight shape (x4), showing that low noise-

radiation wheel designs can be obtained with a NF maximization approach.

Figure 3: Top: NF distribution of the wheel before (dashed line) and of the

BFS (solid blue line). Middle: Roughness spectrum under which the RW is

excited as a function of frequency from [2]. Bottom: Cross-sectional designs

of the initial wheel (shaded), and the BFS (blue).

Considering only those modeshapes which are most relevant for the gen-

eration of rolling noise in Eq. 1, provides slightly better results than using

an OF without penalization and excitation masks, which simply consists in

the average value of the NF of all the set of modeshapes. Improvements in

convergence times have been observed with the application of the excitation

mask me term using s = 500 and f0 = 1388 Hz. The use of a penalization

mask mp term has no considerable shift restriction effect on the modeshape

targeted for this, with n = 2, 3, 4;m = 0. In Fig. 3 it can be seen how the

n = 2;m = 0 modeshape has been undesirably shifted to a local maximum

of the excitation spectrum with increased amplitude, around 400 Hz. The

results suggest an important degree of coupling between modeshapes in a

RW.
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4 Conclusions

A RW geometric optimization maximizing the NF of those modeshapes which

contribute more to sound radiation is performed. It is seen that the use of a

modeshape identification based OF slightly improves performance, and the

so-called excitation mask term produces a faster convergence. Generally,

results reflect that a significant maximization of the targeted modeshapes

can be achieved using the methodology proposed, leading to wheel designs

with characteristics associated in literature with lower sound radiation.
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1 Introduction

The use of iterative methods for solving nonlinear equations f(x) = 0 goes back to
several centuries, as stated in [1]. The digital revolution of last decades has given a
boost to the development of iterative methods, as can be observed in the amount of
publications regarding this issue.

These iterative methods can be classified depending on several aspects. On the
one hand, the absence of derivatives results in derivative-free methods. On the other
hand, the inclusion of previous iterates to obtain the current one gives rise to methods
with memory. The former schemes improve the computational effort and the amount
of problems that can be solved, since the obtention of derivatives is avoided. The
latter ones increases the order of convergence of the methods without adding new
functional evaluations at the expense of computational efficiency [2].

From the third-order Traub’s iterative method [3],

yk = xk −
f(xk)

f ′(xk)
,

xk+1 = yk −
f(yk)

f ′(xk)
,

(1)
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that includes derivatives and has not memory, two derivative-free methods with
memory are introduced.

2 Traub-type methods with memory

Taking (1) as a reference, the replacement of the derivatives by divided differences
holds the order of convergence in 3. For memory purposes, an accelerating parameter
is also included. This gives rise to the iterative expression of D1, whose expression
is

wk = xk + ρf(xk),

yk = xk −
f(xk)

f [xk, wk]
,

xk+1 = yk −
f(yk)

f [xk, wk]
,

(2)

and its error equation is

ek+1 = (1 + f ′(α)ρ) (2 + f ′(α)ρ) c22e
3
k +O(e4k), (3)

where α is the root of f(x), ek = xk − α and cj = f (j)(α)
j!f ′(α)

, j ≥ 2. It is clear that,

for ρ = − 1
f ′(α)

or ρ = − 2
f ′(α)

the method has, at least, order of convergence 4.

The unknown value of α demands the obtention of an approximation of f ′(α) and,
therefore, the resulting method will not reach fourth order of convergence.

Below, two approximations are introduced. On the one hand, by applying a linear
approximation, f ′(α) can be obtained as a divided difference f [xk, xk−1], where xk−1
includes memory. On the other hand, a Newton’s interpolation polynomial of second
order N2(t) = f(xk) + f [xk, xk−1](t− xk) + f [xk, xk−1, yk−1](t− xk)(t− xk−1), whose
derivative is obtained in the point xk, can be applied as a substitute of f ′(α). The first
approximation results in an iterative method with memory with order of convergence
of 3.30, while the second one gives rise to a value of 3.73. The dynamical analysis
will be performed over the second method, denoted as DM1 from now on. Its final
iterative expression is

wk = xk −
f(xk)

f [xk, xk−1] + f [xk, xk−1, yk−1](xk − xk−1)
,

yk = xk −
f(xk)

f [xk, wk]
,

xk+1 = yk −
f(yk)

f [xk, wk]
.

(4)
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In a similar way to proceed, we include in (2) a new step as follows:

wk = xk + ρf(xk),
qk = xk + θf(xk),

yk = xk −
f(xk)

f [xk, wk]
,

xk+1 = yk −
f(yk)

f [xk, qk]
.

(5)

It can be proved that (5) has order of convergence 3 with independence of parameters,
and its error equation is

ek+1 = (1 + ρf ′(α))(2 + θf ′(α))c22e
3
k +O(e4k). (6)

Needless to say that the replacement ρ = − 1
f ′(α)

or θ = − 2
f ′(α)

makes (5), at least,

fourth-order convergent. Since the value of f ′(α) is unknown, the estimation of its
value is mandatory. For a lineal approximation such as ρ = θ

2
= − 1

f [xk,xk−1]
the

order of convergence gets the value 3.56. If a Newton’s polynomial approximation is
applied,

ρ =
θ

2
= − 1

N ′2(xk)
, (7)

the order of convergence reaches the value 4.23. The method DM2, wherein Newton’s
approximation is applied, has the iterative expression

wk = xk −
f(xk)

f [xk, xk−1] + f [xk, xk−1, yk−1](xk − xk−1)
,

qk = xk −
2f(xk)

f [xk, xk−1] + f [xk, xk−1, yk−1](xk − xk−1)
,

yk = xk −
f(xk)

f [xk, wk]
,

xk+1 = yk −
f(yk)

f [xk, qk]
.

(8)

3 Dynamical analysis

As DM1 is a method with memory which uses Newton’s interpolation polynomial
through the points xk, xk−1 and yk−1, its fixed point function Φ1 : R3 → R3 has the
expression

Φ1(xk−1, yk−1, xk) = (xk, yk, xk+1) = (xk, yk, φ1(xk−1, yk−1, xk)), k ≥ 1, (9)
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being x0, y0 and x1 three initial estimations of the method. When Φ1 is applied on
a quadratic polynomial pc(x) = x2 + c, c ∈ R, the result is the fixed point operator:

Φ1(z, u, x) =

(
x, y,

5c3x− 13c2x3 + 39cx5 − 7x7

(c− 3x2)3

)
, k ≥ 1, (10)

where z, u, y and x denote xk−1, yk−1, yk and xk, respectively.
Fixed points of (9) must satisfy conditions z = u = x and x = φ1(z, u, x), and then
real dynamics of Φ1 becomes in the dynamical study of a one-dimensional operator:

Φ1(z, u, x)|z=u=x = Φ̃1(x) =
5c3x− 13c2x3 + 39cx5 − 7x7

(c− 3x2)3
.

Let us recall that the calculation of the fixed points of Φ1 is equivalent to the calcu-
lation of those of Φ̃1. Real fixed points of the operator are xF1,2(c) = ∓i

√
c for c < 0,

and also the strange fixed point xF3 = 0. Evaluating the fixed points in |Φ̃′1(x)| it is
proven that xF1,2(c) are superattracting and xF3 is a repelling point.

The critical points of Φ̃1(x), which are the solutions of the equation Φ̃′1(x) = 0, are

the roots of pc(x) and the free critical points xC1,2(c) = ∓i
√

5c
21

.

The dynamical approach of DM2 method follows a similar structure as in method
DM1. The real multidimensional fixed point function associated to DM2 is

Φ2(z, u, x) = (x, y, φ2(z, u, x)), k ≥ 1.

By applying method DM2 on the polynomial pc(x), the fixed point operator is of the
form

Φ2(z, u, x) =

(
x, y,−2x (−2c3 + 5c2x2 − 8cx4 + x6)

(c− 3x2)2 (c− x2)

)
, k ≥ 1. (11)

In order to obtain the fixed points of Φ2, the one-dimensional operator obtained
imposing conditions z = u = x to (11) is

Φ2(z, u, x)|z=u=x = Φ̃2(x) = −2x (−2c3 + 5c2x2 − 8cx4 + x6)

(c− 3x2)2 (c− x2)
.

By solving the equation Φ̃2(x) = x, we get that method DM2 has the same fixed
points as method DM1. In addition, xF1,2(c) are superattracting points and xF3 is a

repelling point. The free critical points of method DM2 are xC1,2(x) = ∓
√

2c
3

.
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A common use in the complex analysis is the representation of the basins of
attraction [4, 5]. When the methods include memory, a real analysis is performed
instead [6, 7]. The key point of this representation is the mapping of a root of the
polynomial with a color. In this sense, if an initial guess x0 tends to a root, then x0 is
painted with the root corresponding color; otherwise, the initial guess is represented
in black.

Figure 1 shows two particular cases of the dynamical lines for both DM1 and
DM2 methods. For c < 0 cases, two basins of attraction - one per attracting fixed
point - can be found. For c > 0, the polynomial has complex roots.

c=-2

-30 -20 -10 0 10 20 30
x0

(a) DM1

c=2

-30 -20 -10 0 10 20 30
x0

(b) DM1

c=-2

-30 -20 -10 0 10 20 30
x0

(c) DM2

c=2

-30 -20 -10 0 10 20 30
x0

(d) DM2

Figure 1: Dynamical lines of methods on pc(x) = x2 + c.

The convergence plane [6] summarizes in one figure the behavior of every value
of c. In this way, Figure 2 represents the convergence planes of DM1 and DM2. The
critical points are represented in a black line, while the white line is the strange fixed
point.

-30 -20 -10 0 10 20 30

x0

-30

-20

-10

0

c

(a) DM1

-30 -20 -10 0 10 20 30

x0

-30

-20

-10

0

c

(b) DM2

Figure 2: Convergence planes of the methods on pc(x) = x2 + c.

4 Conclusions

Two iterative methods have been introduced. On the one hand, they include memory
for increasing the order of convergence. On the other hand, both are derivative-
free. In terms of stability, both convergence planes of Figure 2 show wide basins of
attraction, where the stability for every initial guess is guaranteed.
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ABSTRACT 

1. Introduction 

Railway interaction is characterised by the coupling between the train and the track 
introduced through the forces appearing in the wheel/rail contact area. This work presents 
models for the wheelset and the rail, both in contact, which adopt an Eulerian-modal 
approach, leading to linear differential equations in modal coordinates that drastically 
reduce the number of state variables of the dynamic system and thus the associated 
computational cost. Since these equations of motion obtained in the formulation are still 
coupled, this paper develops a formulation that decouples them and allows solving each 
one independently for each time step. The decoupling integration method proposed is 
compared in terms of computational performance with two time integration schemes 
commonly used in vehicle dynamics: Newmark algorithm and Matlab’s ode45. 

2. Wheelset/track interaction model 

Both wheelset and track substructures are coupled in the contact area between the wheel 
and the rail through the contact force. In this work, the contact force is applied to a point 
corresponding to the contact node in the wheel and the rail. The normal contact force is 
uncoupled from the tangential one if wheel and rail are made of the same material [1] and 
is obtained from the Hertzian formulation [2]; the tangential one is computed from the 
normal one through CONTACT algorithm [3]. Homogenous equations of motion for the 
coupled wheelset/track system are assembled by considering the equations for the rotating 
wheelset [4] and for both inner and outer rails supported by a uniform viscoelastic 
Winkler bedding [5]: 

mailto:juanginer@upv.es
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Eq. (1) is a linear differential system coupled by the generalised contact forces wr
cQ~ , in 

which its matrices are in general not diagonal. This work proposes a strategy to uncouple 
the previous system through an efficient modal approach based on two variable 
transformations applied during pre-processing. The resulting formulation consists of m2  
independent equations that can be expressed as: 

 
* *

 ,    1,... ,
s s G

m
s s G
ι ι ι ι

ι ι ι ι

λ
ι

λ
+ =  =

+ = 




 (20) 

where m  is the number of modal coordinates considered for the wheelset/track system. 

3. Results 

The computational performance of each integration scheme used is addressed through a 
parameter study that evaluates the time consumption and error of the computed physical 
response dependent of the number modal coordinates used for the modal approach. The 
error is evaluated in the node in which the contact force is applied; the reference solution 
will be the norm of its displacement solution along the simulation. Since the largest 
deformation field will be registered at this point, the registered error will be more 
appropriate for the numerical evaluation. 

As first approximation, the 3D MEM rail model is simplified to 1D one based on Koh et 
al. formulation [6] uniformly meshed along the longitudinal direction using 500 bar 
elements. The contact force has been previously calculated from a simulation in curved 
and randomly corrugated rails, assuming a corrugation spectrum corresponding to the 
ISO 3095 limit [7], which establishes a third-octave band spectrum of the rail roughness. 
The contact node is located in the middle of the beam. The vertical displacement of the 
contact node along the time simulation is computed and plotted in Fig. 1 using the three 
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integration schemes mentioned. It indicates that the fixed time step of 5×10-6 s for the 
decoupling and Newmark schemes has been properly selected to match the reference 
solution. As observed, the decoupling method fits better the ode45 reference solution than 
the Newmark algorithm, a first indicator of the computational advantages of the proposed 
method. 

 

Figure 1: Time series for the vertical displacement of the contact node using three 
schemes of integration: decoupling technique ( ), Newmark ( ) and 

ode45 ( ). 

 

The simulations are run for different number of modes by truncating the mode shape 
function matrix of dimension 500. The computational time required for a time simulation 
of 1 s and the error computed from the reference solution are gathered for each simulation 
and plotted in Figs. 2. Fig. 2 (a) shows that both constant-step decoupling and Newmark 
schemes reduce drastically the time consumption required for the simulation. The 
decoupling method requires much lower computational time than Newmark (114 vs. 1964 
s for 500 modes). As seen in Fig. 2 (b), this increment of the computational velocity does 
not compromise the error, which follows the same decreasing curve with the number of 
nodes than the other two algorithms. Fig. 2 (c) synthesises both figures, indicating that 
the decoupling technique permits to reach an accurate solution for much lower 
computational times, then strongly enhancing the numerical efficiency of the time 
integration. 
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(c) 

Figure 2: Comparison of the computational performance of the numerical 
integration of a 1D MEM track subjected to a precalculated contact force applied 

in the contact node through the decoupling ( ), Newmark ( ) and ode45 
( ) schemes. (a) Number of modal coordinates vs. computational time 

required for a time simulation of 1 s; (b) number of modal coordinates vs. error 
with respect to the reference solution; (c) computational time vs. error. 
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1 Introduction

The neutron diffusion equation is an approximation of the neutron transport
equation relying on the assumption that the neutron current is proportional
to the gradient of the neutron flux by means of a diffusion coefficient.

For a given a configuration, the criticality of a nuclear reactor core can
be forced dividing the fission operator in the neutron diffusion equation by
a positive number, λ, obtaining a neutron balance equation: the λ-modes
problem. For the two energy groups approximation and without considering
up-scattering, this equation can be written as [5]

[
−~∇(D1

~∇) + Σa1
+ Σ12 0

−Σ12 −~∇(D2
~∇) + Σa2

] [
φ1
φ2

]
=

1

λ

[
νΣf1 νΣf2

0 0

] [
φ1
φ2

]
, (1)

where φ1 and φ2 denote the fast and thermal flux, respectively. The macro-
scopic cross sections Dg, Σag, νΣfg, with g = 1, 2, and Σ1,2 are constants
that depend on the position.

The dominant eigenvalue indicates a measure of the criticality of the
reactor and its corresponding eigenfunction describes the steady-state neu-
tron distribution in the core. Next eigenvalues and their corresponding

∗e-mail:dginesta@mat.upv.es
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eigenfunctions are useful to develop modal methods to integrate the time-
dependent neutron diffusion equation and to classify BWR (boiling water
reactor) instabilities.

To discretize the problem (1), a high order continuous Galerkin finite
element method is used leading to a generalized algebraic eigenvalue problem[

L11 0
L21 L22

] [
φ̃1
φ̃2

]
=

1

λ

[
M11 M12

0 0

] [
φ̃1
φ̃2

]
, (2)

where φ̃ =
(
φ̃1, φ̃2

)T
is the algebraic vector of weights corresponding to the

neutron flux in terms of the Lagrange polynomials (more details can be found
in [6]). The open source finite elements library Deal.II [1] has been used for
the implementation of the finite element method.

Different iterative methods have been successfully used to compute a set
of dominant eigenvalues and their corresponding eigenvectors of the problem
(2). For this computation, we propose to use the modified generalized block
Newton method ([2]), where the eigenvectors converge in block. This method
requires to solve many linear systems by preconditioned iterative solvers. In
this work, we propose several ways to precondition these methods efficiently.

2 The modified generalized block Newton method

The modified generalized block Newton method (MGBNM) was introduced
by Lösche et al in 1998 [4] for ordinary eigenvalue problems and an extension
to generalized eigenvalue problems was studied in [2]. Given the partial
generalized eigenvalue problem

MX = LXΛ, (3)

where X ∈ Rn×q is a matrix with q eigenvectors and Λ ∈ Rq×q is a diagonal
matrix with the q eigenvalues associated. We suppose that the eigenvectors
can be factorized as X = ZS, where Z is an orthogonal matrix. Moreover,
the biorthogonality condition WTZ = I, is introduced, where W is a fixed
matrix. Thus, the problem (3) can be rewritten as

MX = LXΛ⇔MZ = LZSΛS−1 ⇔MZ = LZK.

Then, the solution can be obtained by solving the non-linear problem

F (Z,Λ) :=

[
MZ − LZK
W TZ − Iq

]
=

[
0
0

]
.

Using the Newton’s method, a new iterated solution arises as

Z(k+1) = Z(k) −∆Z(k), K(k+1) = K(k) −∆K(k),



Modelling for Engineering & Human Behaviour 2018 99

where ∆Z(k) = (∆z
(k)
1 , . . . ,∆z

(k)
q ) and ∆K(k) = (∆k

(k)
1 , . . . ,∆k

(k)
q ) are ob-

tained from the solutions of the linear systems[
M − Lλ(k)i LZ(k)

Z(k)T 0

][
∆z

(k)
i

−∆k
(k)
i

]
=

[
Mz

(k)
i − Lz

(k)
i λ

(k)
i

0

]
, i = 1, . . . , q.

The solution of these systems is computed by using the Generalized
minimal residual method (GMRES). However, these systems need to be
preconditioned (in each iteration and for each eigenvalue) to reduce the
condition number of the matrix and to obtain a faster convergence.

2.1 Preconditioning

The first choice for a preconditioner is assembling the matrix

A =

[
M − λ(k)i L LZ(k)

Z(k)T 0

]
,

and constructing the full preconditioner associated with the matrix. We use
the ILU(0) preconditioner since A is a non-symmetric matrix. In other works,
it was shown that there are no significant differences if the preconditioner
obtained for the matrix associated with the first eigenvalue is used for all
eigenvalues in the same iteration. This preconditioner is denoted by P .

To devise an alternative preconditioner without the necessity of assem-
bling the matrix A, we write the explicit inverse of A,

A−1 =

[
J−1(I − C1(C

T
2 C1)

−1CT
2 ) J−1C1(C

T
2 C1)

(CT
2 C1)

−1CT
2 −(CT

2 C1)
−1

]
,

where
J = M − λiL, C1 = LZ, CT

2 = ZTJ−1.

We desire a preconditioner for A by suitably approximating A−1. Let us
call PJ a preconditioner for J . Then, we can define after setting C̃T

2 = ZTPJ ,

P̂ =

[
PJ(I − C1(C̃

T
2 C1)

−1C̃T
2 ) PJC1(C̃

T
2 C1)

(C̃T
2 C1)

−1C̃T
2 −(C̃T

2 C1)
−1

]
. (4)

For instance, PJ = (LU)−1, where L,U are the incomplete L and U factors
of J . By using the ILU(0) preconditioner of J for PJ , the preconditioner is
called P̂J .

The previous preconditioner does not need to assemble the entire matrix
A, but it needs to assemble the matrix J to build the ILU preconditioner.
Therefore, the next alternative that we propose is using a preconditioner of
−L instead of the J = M − λ1L. This preconditioner works well because in
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the discretization process, the L matrix comes from the discretization of the
differential matrix that has the gradient operators and the diffusion terms.
In addition, in nuclear calculations, λ1 is near to 1.0. We denote by P̂L the
preconditioner P̂ where the preconditioner of −L is used to precondition the
block J .

Finally, the last alternative to avoid assembling the matrix L is to take
advantage of the block structure of this matrix. For that purpose, we carry
out a similar process as the one used for matrix A. We write the explicit
form of the inverse of L and substitute the inverses by preconditioners. Thus,
the preconditioner of L has the following structure

PL =

[
P11 0

−P22L21P11 P22

]
,

where P11, P22 denote a preconditioner of L11 and L22, respectively. The
block matrices L11, L22 are symmetric and positive definite. Then, we can use
as preconditioner the Incomplete Cholesky decomposition. The application
of P̂ with PJ = PL is called as P̂L̂. However, the main advantage of this
preconditioner is that it permits to use a matrix-free implementation that
does not require to allocate all matrices. Only, we need to assemble the
blocks L11 and L22 to construct the ILU preconditioners associated.

3 Numerical results

The performance of the preconditioners is studied considering the NEACRP
reactor [3]. The four dominant eigenvalues computed have been 1.00200,
0.98862, 0.985406 and 0.985406. The initialization of the MGBNM has been
computed using a multilevel technique. The modified block Newton method
has been implemented using a dynamic tolerance in the solution of the linear
systems. In this case, these values have been {10−2, 10−3, 10−5, 10−8, 10−8, . . . }.
First, we show the results obtained applying directly the ILU preconditioner
of A. Table 1 collects the average number of iterations and the total time
required by GMRES to reach the residual error of the linear systems given in
Tol(‖b−Ax‖). It is also displayed the time spent to assemble the matrices
and to build the preconditioner (Setup time (s)). These data are presented
for each iteration and in a total sum. This Table shows that the number of
iterations is not very high, but the time spent to assemble the matrix and to
construct the preconditioner increases the total CPU time considerably. It is
necessary to build in each iteration a new preconditioner for A because of
the columns related to the block Z change considerably in each updating.

Table 2 displays these data for the proposed block preconditioner P̂ (4)
that uses the ILU preconditioner for approximating the inverse of M − λ1L.
It is observed that we only need to assemble matrix M − λ1L and build
the preconditioner in the first iteration since we only need to preconditioner
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Table 1: Summary of results for the preconditioner P .

no it. Tol GMRES Setup time (s) Total time (s)
MGBNM (‖b−Ax‖) avg its.

1 10−2 4.5 12.0 18.0
2 10−3 9.75 12.0 20.4
3 10−5 20.75 12.0 25.2
4 10−8 37.5 12.0 33.2

Total 72.5 48.0 96.8

M −λ1L and the value of λ1 is very similar for all iterations. The total CPU
time of using this block preconditioner has been reduced by more than 26s
with respect to the full preconditioner in spite of a (slight) increasing of the
average number of the GMRES iterations. This is mainly due to the time
saved in the setup stage which goes from 48s (full preconditioner) to 6.6s
(block preconditioner).

Table 2: Summary of results for the preconditioner P̂J .

no it. Tol GMRES Setup time (s) Total time (s)
MGBNM (‖b−Ax‖) avg. its

1 10−2 8.25 6.6 12.9
2 10−3 13.25 − 9.5
3 10−5 23.25 − 16.6
4 10−8 41.25 − 30.0

Total 86.0 6.6 70.0

The next computations are obtained by using the block preconditioner, P̂ ,
but, in these cases, approximating the (M−λ1L)−1 by the ILU preconditioner
of −L (P̂L) and by a block preconditioner of −L (P̂L̂). The most relevant
data to compare the preconditioners considered in this work are exposed in
Table 3. These are the total iterations of the GMRES, the total setup time,
the total time to compute the solution and the maximum computational
memory occupied by the matrices. We observe that the number of iterations
increases when worse approximations of the inverse of A are considered, but
the setup time that needs each preconditioner becomes smaller. Moreover,
the maximum memory occupation (max RAM) is also reduced significantly.
In the total CPU times, we observed that the block preconditioner (P̂ ), in
all its versions, improves the times obtained of applying directly the ILU
preconditioner of A. Among the possibilities for obtaining a preconditioner
of M − λ1L, there are not big differences in the computational times but
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there is an important saving up in the computational memory. The best
results are obtained by the P̂L̂ preconditioner if the computational memory
consumption is taken into account.

Table 3: Summary of results obtained of using different preconditioners.

Prec. GMRES Its Setup time (s) Total time (s) Max RAM (Mb)

P 72.5 48.0 96.8 2062

P̂J 86.0 6.6 70.0 1418

P̂L 98.0 4.4 77.2 787

P̂L̂ 100.25 1.8 76.3 319

4 Conclusions

Different implementations for preconditioning the linear systems to be solved
at each iteration of the modified block Newton method, have been studied as
an alternative to assemble the full matrix and construct a preconditioner in
each iteration. These new implementations for the preconditioner break down
the setup cost at the price of a slight increasing of the number of iterations.
The result is a significant reduction of the total CPU time needed to reach
the convergence and the memory occupancy. Among the implementations
studied in this work, it is shown that the best option is the one that takes
into account the structure of the matrix L. This implementation allows to
implement the MGBNM using a matrix-free technique thus greatly reducing
the memory consumption.
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modes for the neutron diffusion equation and their computation. Annals
of Nuclear Energy, 110:1010–1022, 2017.

[3] H Finnemann and A Galati. NEACRP 3-D LWR core transient bench-
mark, final specification. 1991.
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1. Introduction 

Female salmon production is advantageous for salmon farming industry since this 

gender is less susceptible to illnesses, results in a better quality product and also it 

allows to increase the farm productivity by needing less resources and attentions than 

male specimens. 

That is the reason why a low cost, portable and precise gonad differentiation system is 

claimed by the fishing industry. The solution proposed is an automatic and intelligent 

diagnosis system able to distinguish the salmon gender on early stages of its life 

(juvenile). The aim of this research is to design and develop an Echography 

reconstruction algorithm based on morphological mathematical operators to remove the 

noise component and increase the image resolution for its later analysis.  

2. Ultrasound Scan 

During an ultrasound scan, a piezoelectric glass generates ultrasound pulses that are 

partially reflected when arriving to a two different materials interface. When these 

echoes return to the piezoelectric glass, depending on their intensity, numerical register 

vectors are created.  

mailto:ansanbru@upvnet.upv.es
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For each sensor the evolution in time of the echo’s intensity is registered. After a 

discretization process, in which the time is divided into ‘N’ sections, the data is stored 

in a vector.  

  

Fig. 1: Echo intensity evolution. 

For an ultrasound scan system formed by ‘M’ sensors, a [N x M] matrix will contain all 

of the registers. Every matrix element is ranged from 0 (black) to 255 (white), 

composing an 8 bit image. This is called ‘rough picture’.  

 

Fig. 2: Rough picture obtained during test. 

3. Image treatment 

Rough picture contains irrelevant elements known as artifacts. To remove these 

artifacts, the first step is to create a binary image. This filtering procedure is known as 

thresholding. It consists on replacing  each pixel in an image comparing to a threshold. 

Intensity values higher than the threshold become white, and lower values become 

black. Only white areas are of interest. 
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Fig. 3: Binary images. From left to right: Threshold 100, 135 and 170. 

It was determined, by trial-error procedure, that the most useful results were obtained 

for a threshold value of 135. 

Next step in image treatment is known as ‘segmentation’. It consists of using 

morphological algorithms in order to emphasise on picture elements of interest – gonads 

-. This is achieved by consecutive application of erode-dilation processes.  

Eroding is a mathematical process where elements whose size is less than a determinate 

resolution become removed and bigger ones, become reduced. With this, every element 

of the picture smaller than supposed size of gonads is removed. Its expression is: 

A Ѳ B = {x / Bx ⊆ A} (1) 

Where ‘A’ is the original image and ‘B’ is the structural element. 

Later recovering of the main elements size and shape is necessary. That is the reason 

why a dilation process is required.  

A ⊕ B = {x | (𝐵𝐵�)x ∩ A ≠ ∅} (2) 

 
Fig. 4: Original (left), eroded (mid) and dilated (right) images. 

After three consecutive eroding-dilation processes, images are prepared for abdomen 

identification.  
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Fig. 5: Binary and segmented image of salmon abdomen. 

4. Abdomen identification 

A characterization algorithm has been programmed in MATLAB in order to establish a 

classification criterion of size and shape patterns of stomach. These characteristics are 

based on its width, height and centroid coordinates. The result of this phase is a 

database with characteristics that allows later classification. 

Attending to those ‘patterns’, by means of Simple Bayesian Classifiers, it was possible 

to focus the area of interest closer to the stomach – where gonads are most probably to 

be founded -.  

 

Fig. 6: Gonads area location (centre of the stomach marked on red) 

Finally, for salmon gender identification, Histogram of Oriented Gradients (HOG) 

technique is chosen for gonad identification and classification.  
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Fig. 7: HOG descriptor phases.  
 
This procedure divides the image in ‘n’ small regions – cells – and obtains, for each 

one, a histogram from its pixels gradient orientation. In addition, for a better response, 

contrast should be normalized in larger areas, which are called blocks. 

The size of cells is determined as: 

𝐶𝐶 = 𝐶𝐶𝑥𝑥  ×  𝐶𝐶𝑦𝑦 (3) 

Where Cx and Cy are the numbers of pixels in each axis. 

The directional gradients of the image (∇Ix y ∇Iy) are calculated through discrete 

differential operators, such as Sobel, Prewitt or Laplace. From these, the gradient’s 

magnitude and phase can be obtained: 

|∇𝐼𝐼| = �∇𝐼𝐼𝑥𝑥2 + ∇𝐼𝐼𝑦𝑦2 (4) 

𝜑𝜑 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 2 �
∇𝐼𝐼𝑦𝑦
∇𝐼𝐼𝑥𝑥

� (5) 

The histogram should be robust to differences in image contrast. For that reason, the 

magnitude of the gradient |∇I| is normalized as |∇I|N: 

|∇𝐼𝐼|𝑁𝑁 =
|∇𝐼𝐼| 

∑ |∇𝐼𝐼|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 (6) 

Where: 

�|∇𝐼𝐼|𝑁𝑁
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 1 (7) 

The value of the parameter in each pixel is calculated by multiplying the value of the 

normalized magnitude of the gradient by the corrected angle: 

𝑔𝑔 = φ𝑐𝑐 · |∇𝐼𝐼|𝑁𝑁 (8) 

Finally, after obtaining all cell histograms of the image, the image is then divided into 

blocks. For each block k, the histograms of the cells hcij that are part of it are 
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concatenated, where the subscripts i and j indicate the row and column of the cells in the 

block. The resultant vector is:  

𝑣𝑣𝑘𝑘����⃗

= �[ℎ11][ℎ12] … �ℎ1𝑗𝑗�… �ℎ1𝑏𝑏𝑥𝑥�[ℎ21] … �ℎ2𝑗𝑗�… �ℎ2𝑏𝑏𝑥𝑥�… �ℎ𝑖𝑖𝑗𝑗�… �ℎ𝑏𝑏𝑦𝑦1� �ℎ𝑏𝑏𝑦𝑦2�… �ℎ𝑏𝑏𝑦𝑦𝑏𝑏𝑥𝑥  

(9

) 

This vector is inserted into a Support Vector Machine classifier, where the detection 

criteria for gonad identification is established as finding in, at least, four of the cells, a 

HOG pattern similar to obtained by a true gonad containing cell. For this purpose, 

previous SVM algorithm train period is required.  

All of these functions have been already implemented in MATLAB: ‘svmtrain’ for 

previous training phase and ‘svmclassify’ for gonad existence positive or negative 

classification.  

In these early stages, gonads are not completely formed yet. Since male salmons take 

longer to develop their reproductive organs, only female ones are appreciable.  

 
Fig. 8: Female salmon scan (left) and male salmon scan (right). Gonads location 

marked.   
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Introduction 

Almost any civil construction has an important proportion of its budget earmarked for 

earthworks. In addition, due to the fact that the payment of these tasks is carried out by 

the same contractor, it is very usual to find a lack of confidence on the actual realized 

consignment. That shows the necessity of applying measures for real control of the actual 

stocked or moved earth volume to really know the development of the execution.  

In this way, the purpose of this research project is to develop a new economical earthwork 

control system, based on the 3D reconstruction of the work area by using stereoscopic 

vision techniques applied to a set of pictures taken from a HD camera assembled in an 

Unmanned Aerial System (UAS or ‘drone’) equipped with GPS.  

1. Stereoscopic vision 

From two different pictures (2D) taken in two adjacent points, it is possible to obtain the 

depth or the third dimension (3D) by means of a triangulation process, as humans and 

animals do with their eyes [1].  

mailto:jvictorespertball@gmail.com
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Fig. 1: Stereoscopic vision model with two different cameras or vision points. [2] 

So, for a specific point it is possible to calculate the distance to the plane where the images 

have been extracted by similarity of triangles. 

𝑑𝑑1 = 𝑓𝑓 ·
𝐷𝐷1
𝑍𝑍

= 𝑓𝑓 ·
𝐷𝐷
𝑍𝑍

𝑑𝑑2 = 𝑓𝑓 ·
𝐷𝐷2
𝑍𝑍

= 𝑓𝑓 ·
𝐷𝐷 − 𝑏𝑏
𝑍𝑍

� → 𝐷𝐷 =
𝑑𝑑1 · 𝑏𝑏
𝑑𝑑1 − 𝑑𝑑2

→ 𝑍𝑍 =
𝑏𝑏 · 𝑓𝑓
∆𝑑𝑑

 (1) 

For this purpose, it is necessary to take various pictures of the same area with at least a 

superposition of 30-50% in each pair of sequential images.  

2. Description of the KTL algorithm 

When a camera captures an image, a slight distortion is introduced. So, a calibration of 

the camera is required, in order to obtain its focal characteristics and the distortion 

produced. The distortion coefficients of the lens can be used to obtain the undistorted 

pixel locations.  

The identification of coincident points is automatically carried out by applying the 

‘Matching based on properties’ technique, which consists on the identification and match 

of singular elements (edges, apexes, points, etc.) [3]. 

After that, those points become tracked and a Bundle Adjustment- by means of KLT 

algorithm (Kanade-Lucas-Tomasi) - allows to know the relative location between both 
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pictures,  which is transformed to global {X,Y,Z} coordinates using the position of the 

previous photography. The relative distance is calculated as:  

𝐿𝐿 = ���𝐹𝐹(𝑥𝑥+ℎ) − 𝐺𝐺(𝑥𝑥)�
𝑥𝑥 ∈𝑅𝑅

2
 (2) 

Where F(x) and G(x) are both functions that represent the location ‘x’ of each respective 

picture – ‘x’ is a vector -.  

The KLT algorithm is based on the idea of a local search using gradients weighted by an 

approximation to the second derivative of the image. So, the disparity vector, h, can be 

estimated as: 

ℎ ≈ ���𝐺𝐺(𝑥𝑥) − 𝐹𝐹(𝑥𝑥)� · �
∂F
∂x
�

𝑥𝑥

� ���
∂F
∂x
�
𝑇𝑇

𝑥𝑥

· �
∂F
∂x
��
−1

 (3) 

 

The KLT algorithm is an iterative process that performs a pyramidal search. It generates 

a pyramid of images. In each level of this pyramid, the resolution of the image is reduced 

compared to the inferior image. The algorithm initially performs the search at the upper 

level until it converges, and then transmits the information to the lower level, where the 

search is repeated, up to the last level.  

 

Fig. 2: Scheme of pyramidal operation of the KLT method. Source: Mathworks.com 
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3. Reconstruction process 

Although the KLT algorithm has its own error detection, it could be possible that a small 

number of points are detected incorrectly, generating disparities which fall away from the 

global average of the image plane. 

The way to detect them is by means of a histogram of disparities, defining minimum 

thresholds of repetition, so that the points that are not around the image plane are 

eliminated. 

 

Fig. 3: Detection of erroneous points based on disparities histogram. 

Due to the characteristics of the method based on characteristic points, only the disparity 

of these points is known. So, only a cloud of points is available from the scene to be 

reconstructed. However, the procedure has been adjusted in order to obtain enough points 

to make the reconstruction feasible (estimating the disparity of the points that are not 

known). 

 In order to obtain full images with high resolution, a moving average filter has been 

implemented in several iterations so that the window size is increased between 

consecutive iterations. 
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Fig. 4: Solid image reconstruction process. 

4. Results and discussion 

Once the reconstruction is finished, a low-pass filter is applied to smooth the edges and 

homogenize the result. This filter was calibrated to not miss ground relief peaks.  

Finally, for each pixel/cell, the volume is obtained as: 

V = L · W · (Zt – Zb) (4) 

Where L and W are the length and wide of the cell respectively; Zt is the terrain height 

and Zb is the base ground height.  

Once thickness is known, as the other two dimensions, it is possible to carry out an 

earthworks balance.  

This new system has been developed, primarily, for linear projects – railways, roads, 

pipes, ducts, etc. - where huge terrain volumes are involved in one preferential direction 

and not always its balance control results an easy task.  

To achieve this purpose, it is a usual practice to establish longitudinal profiles of terrain 

excavation-filling regions along the whole layout. This is carried out during the project 

design phase and not modified during its execution – except in eventual situations for 

major reasons -.  
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One of the most important advantages of this new solution is that with geometrical 

obtained data from UAV, it is possible to reproduce another longitudinal earthwork 

balance profile and directly compare it with the original plan.  

As volume results data are stored with its relative location, after every UAV flight, the 

database becomes updated and deviations from project foresight could be detected and 

corrected in real time.  

 
Fig. 5: Earthworks balance longitudinal profile (upper) and excavation / filling absolute volumes vs. longitudinal 

distance (lower).   
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1. Introduction 

According to UN data (www.un.org), , global population by June  2017 will exceed in 

up to 7.6 billion and predictions are that it will increase up to more than 8.6 billion in 

2030. As a consequence, natural resources are becoming increasingly scarce. This 

problem constitutes in many countries   supply-demand disequilibrium between forests 

and wood industries. This results in notorious consequences for economy and 

environment.  In addition, existent measurement and monitoring solutions for forest 

balance status – growth, decline, illegal practices detection, etc – are shown to be 

inadequate for this purpose.  

For this reason, a new forest status monitoring system based on UAV images taken 

from has been developed. This solution makes possible: i) Tree detection and account, 

ii) Individual dendrometric variable determination (tree height and treetop diameter). As 

a result, from these data, forest mass growing models, biomass and wood quantification 

and deforestation/degradation models could be developed and achieve an optimum 

management of forest resources.  

 

mailto:frarilla@upv.es


Modelling for Engineering & Human Behaviour 2018________________________________117 
 

2. Tree detection 

To achieve this goal, a new image processing algorithm has been developed. First of all, 

an orthophoto of the whole interest area must be taken. This is carried out by 

overlapping subsequent images. A Genetic Algorithm, whose role is to maximize the 

correlation between two sections of both pictures – to compare 20% of the image -, 

attains this purpose.  

Then, this orthophoto is converted from initial RGB to Lab space. After that, three 

different range filters will be defined for each channel (L, a & b), according to each tree 

typology studied (pine, eucalyptus and carob) to distinguish between trees and ground 

pixels.      

To avoid false interpretations, while the image obtained is processed we correct possible 

‘holes’ in normal and inverted colour image. All of this is also implemented by using 

MATLAB image treatment tools. 

  

Fig. 1: Left to right: Original, LAB filtered, Corrected image 

Once the image has been corrected, the tree detection algorithm is programmed. This 

algorithm identifies each object whose size is among 3500 and 13000 pixels as a tree. 

After each detection process, each tree is removed from the image and saved in another 

image, and the remaining objects are eroded. Objects of less than 3500 pixels are also 

deleted.  
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The erosion and identification process continues until there are no objects left in the 

image.  

 
Fig. 2: Left to right: identified trees, and overlapped image. 

Finally, these objects – trees - are counted, obtaining the exact number of specimens in 

the studied area. 

3. Estimation of characteristics 

Once every tree has been identified, it is necessary to estimate the tree characteristics. 

Those characteristics are the height, and the treetop and trunk diameter.  

The height of the trees is estimated by spectroscopy. From two different 2D pictures of 

the same object taken with a separation of ‘L’, it is possible to obtain the third 

dimension, as animals and human do with their eyes, in this case, the depth.  

𝐿𝐿 =
𝑡𝑡𝑥𝑥 · 𝑑𝑑

2𝑑𝑑𝑝𝑝 · tan𝜑𝜑2
 (1) 

Where ‘L’ is drone-to-point distance, ‘t’ is axis resolution where the lag is produced, ‘d’ is 

distance covered by the drone between both pictures, ‘dp’ is this same distance in pixels and Ф 

is the vision angle (rad.). 

This procedure can only be applied to isolated and perimeter trees, because as they are the only 

ones whose lateral projection is observable. The height of the other trees is assumed to equal the 

average height of the perimeter trees.  
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The Surface Digital Model (SDM) [1] was obtained after that, which consists of a 3D 

representation of the area of interest. The difference between this SDM and Terrain Digital 

Model (TDM) – which represents the 3D referent relief, without plants, trees, etc. and must be 

known previously – forms the Canopy Height Model (CHM) [2].  

 

Fig. 3: CHM image of the trees. 

The height of each tree is implicit in CHM model. Obtained precision in controlled tests has 

been reached until 95-96 % in height determination. 

 
Fig. 4: Algorithm procedure scheme. 

The treetop diameter will be obtained based on the results of the detection algorithm. The 

treetop diameter is estimated as the diameter of the disc equivalent to the area of the identified 

objects. The formula used would be the following: 

∅ = 2 · �
𝐴𝐴
𝜋𝜋

 (2) 
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The difficulty of obtaining the trunk diameter is the same as the height estimation: the treetop is 

hiding the trunk. So, it is assumed that the trunk diameter of the whole area is equal to the 

average measured on the perimeter.   

For wood volume estimation, two empirical models are possible [3]: i) Wooded area charts as a 

group – depending on average trunk perimeter, covered area and tree species -, ii) Individual 

calculated volume – total volume is the summation of each tree -. In this case, empirical 

expressions depending on the specie, with/without bark volume and calculation model – 

determine the total volume.  

4. Forest control 

The data obtained from the previous procedure in different moments allow the analysis of the 

forest evolution. The growth and deforestation estimation are based on the comparison of 

different time images. Therefore, the methodology proposed for this control is composed of two 

stages: i) Comparison of areas with and without vegetation. This stage consists of selecting the 

layer that exclusively contains zones for the monitoring of change processes, ii) Comparison of 

images from different dates - to identify degradation/recovery-. 

In this context, it is necessary to refer to types of vegetation density depending on the species 

determined at the beginning of the campaign, since depending on whether it is a native forest or 

a plantation it will be more productive to study the occupied surface or the volume of wood. 

For native species, the growing is calculated as: 

𝛥𝛥𝛥𝛥𝐴𝐴 =  𝛥𝛥𝐴𝐴𝑡𝑡2 − 𝛥𝛥𝐴𝐴𝑡𝑡1 (3) 

Where ‘BA’ is the basal area of each moment. A negative growing means deforestation of the 

native forest. 

 In the case of a plantation, it is interesting to know the increase of the wood volume and the 

growth rate: 

𝛥𝛥𝛥𝛥 =  𝛥𝛥𝑡𝑡2 − 𝛥𝛥𝑡𝑡1 (4) 

𝑅𝑅𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅 =  𝛥𝛥𝛥𝛥/(𝑡𝑡2 − 𝑡𝑡1) (5) 
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In addition, biomass could be also obtained, which is a recognized indicator of the environment 

status evolution. The method of E. Canafa for biomass estimation requires a subdivision of the 

area in circular plots. Each one of those plots requires a correction factor.  This correction factor 

is a coefficient that approximates empirical data to real plots, which is governed by the 

following equation: 

𝐹𝐹𝐹𝐹 =
10000
𝜋𝜋 ∗ 𝑅𝑅2

 (6) 

For the calculation of the biomass, only those plots with an occupation of more than 80% are 

selected, that is in this case they have a number of trees higher than half of the average of the 

plots approximately.  

The equation to calculate a tree biomass is: 

𝑊𝑊 = 0.009892 ∗ (𝑑𝑑2 ∗ ℎ)1.023– 0.00434 ∗ 𝑑𝑑2 ∗ ℎ + 61.57– 6.978 ∗ 𝑑𝑑 + 0.3463 ∗ 𝑑𝑑2 (7) 

Where ‘W’ is biomass dry weight for each tree, ‘d’ is the diameter of the trunk and ‘h’ 

its calculated height.   

For the forest calculation, it is necessary multiply for the number of trees and the 

corrective factor, obtaining the biomass Kilogram/hectare: 

𝛥𝛥𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴𝐵𝐵𝐵𝐵 =  
(𝑊𝑊1 ∗ 𝑁𝑁1) + (𝑊𝑊2 ∗ 𝑁𝑁2) + ⋯+ (𝑊𝑊𝑊𝑊 ∗ 𝑁𝑁𝑊𝑊)

𝐴𝐴
∗ 𝐹𝐹𝐹𝐹 (8) 
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1. Introduction 

In pavement construction, independently of its composition – asphalt or concrete -, its 

early stages become crucial for its adequate durability, resistance, capacity and final 

refinements in general. An inadequate care during its installation will incur, in most cases, 

in third part discords, penalties and, naturally, in a lower quality product – which could 

involve high economical losses -.  

Current execution quality control tools and techniques in this matter have some 

inconveniences: are not always applicable, could be expensive and could negatively affect 

to the normal development of its installation – delays, specific times spent on its control, 

provide results in delayed time, etc. -.  

For this reason, a new non-intrusive real time monitoring is proposed herein. It consist of 

a commercial Unmanned Aerial Vehicle (UAV or drone) equipped with a HD camera and 

in which have been added a thermal camera and a LIDAR scanner system.  

mailto:tereaher@upv.es
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In this way, pavement main properties can be monitored when work managers desire. All 

of the collected data is sent via Wifi to a remote host, where data processing software is 

installed.  

2. Control parameters 

There are three essential parameters for quality control during pavement execution. These 

parameters are: i) layer thickness, ii) temperature and iii) degree of compaction.  

Moreover, what its controlled trough them is exposed herein:  

i) Layer thickness: As in asphalt pavements or in concrete pavements, granular subjacent 

layers, whose execution is critical for surface integrity, must be extended and compacted 

in limited thickness ratios which are not often accomplished. From it depends the final 

bearing capacity of the blanket. In addition, especially in rigid pavements, surface layer – 

usually made of reinforced concrete – require to strictly accomplish with minimum project 

thickness because of resistance and cracking.  

ii) Temperature: In asphalt pavements, its viscosity and, as a consequence, its workability, 

compaction and density are closely related with its installation temperature. A uniform 

temperature distribution implies a homogeneous layer densification and avoids thermal 

segregation. On the other hand, in concrete pavements, temperature is a reliable indicator of 

curing process quality and, as a consequence, about its final resistance.  

iii) Degree of compaction: Absence of air occlusions is usually synonym of major final resistance 

/ capacityratios. In open-gap asphalt mixtures – for drainage encouraging -, even a certain pores 

volume is desired, it must be also controlled. It is closely related with density and it is controlled 

as in surface layer (pavement itself) as in subjacent structural layers. 
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3. Method 

Once the importance of each control parameter is exposed, how does the new solution 

perform this monitoring is detailed:  

i) Layer thickness: For its monitoring, LIDAR scanner creates several subsequent 

cylindrical {r,y,z} cloud of points which result, after drone GPS synchronization in a 

virtual 3D image of the environment. It is necessary to assure that the whole area of 

interest has been covered during drone flight.  

To achieve that 3D virtual image and also be capable to measure distances and layer 

thicknesses, first it is necessary to correct registered points coordinates with rigid body 

movements – translations and rotations of the UAV -. For this purpose a coordinate 

transformation matrix (T) should be carried out – more details of this procedure on [1] -.  

𝑇𝑇 =  �

cos(𝑃𝑃) cos (𝑌𝑌) − cos(𝑃𝑃) sin (𝑌𝑌)
cos(𝑅𝑅) sin(𝑌𝑌) + sin(𝑅𝑅) sin(𝑃𝑃) cos (𝑌𝑌) cos(𝑅𝑅) cos (𝑌𝑌) − sin(𝑅𝑅) sin(𝑃𝑃) sin(𝑌𝑌)

sin (𝑃𝑃) 𝑡𝑡𝑥𝑥
− sin(𝑅𝑅) cos (𝑃𝑃) 𝑡𝑡𝑦𝑦

sin(𝑅𝑅) sin(𝑌𝑌) − cos(𝑅𝑅) sin(𝑃𝑃) cos (𝑌𝑌) sin(𝑅𝑅) cos(𝑌𝑌) + cos(𝑅𝑅) sin(𝑃𝑃) sin (𝑌𝑌)
0 0

cos(𝑅𝑅) cos (𝑃𝑃) 𝑡𝑡𝑧𝑧
0 1

� 
(1) 

Where ‘R’, ‘P’ and ‘Y’ are the three rotation angles: roll angle, pitch and heading. And 

tx, ty and tz are the translation along the three axes. 

After that, layers thicknesses could be obtained as:  

ℎ𝑖𝑖 = 𝑐𝑐 · 𝛥𝛥𝑡𝑡/2                                                          (2) 

where ‘hi’ is the thickness of layer ‘i’; ‘c’ is the known propagation velocity of the wave 

and ‘Δt’ is the wave-travelling time lapse.  

ii) Temperature: a thermal camera allows to know in real time surface temperature of the 

pavement. For asphalt pavement it is possible to observe ‘cold points’ or other defects in 

layer being able to act immediately during its construction [2,3].  
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In case of concrete pavements, observed temperature could be correlated with its maturity 

level and determine if curing process is being carried out successfully or needs any 

corrective action.  

 
Fig. 1: Thermal image obtained on a test flight during drone devices calibration. 

 

iii) Degree of compaction: It is not possible to direct measure the degree of compaction 

by non-intrusive measures. For this reason, a numerical FEM model combined with 

LIDAR thickness measurement results could determine, indirectly, the number of 

compaction cycles needed to achieve an optimal density value. According with [4], non-

linear elasto-visco-plastic response of asphalt during compaction is defined in terms of 

both constitutive functions: shear modulus function G(n) and viscosity function η(n), 

which depend on the ‘n’ rolling compaction cycles supported . It changes its status from 

fluid-like to high viscosity fluid-like status during compaction. For this reason, from a 3D 

FEM numerical model implemented in ANSYS LS DYNA v14, by a steady-state 

analysis, the optimal compaction cycles is estimated.   

4. Results and conclusions  

The solution proposed herein is able to obtain several indicators of the final quality of the 

pavement, being able to carry out a continuous, global and remote quality control. In 

addition, these tasks are executed simultaneously to the process construction of each layer 

that conforms the pavement. 
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Through the temperature image is possible to control the viscosity of the asphalt mixture 

or the maturity of the concrete.  

By means of combining the thickness variation for each section of the work, it is also 

possible to control the base or pavement layer compactness and subsequently, is it 

possible to predict its final capacity.  

In this way, it is expected that this new application of thermal scanner, LIDAR and GPS 

technologies’ combination greatly ease the complex task of quality control during the 

execution of pavement works.  

In addition, the potential of this solution does not end only in this kind of works. Other 

linear works’ execution, as railway layouts, channels or ducts that also require the quality 

control in real time along all of its route could be benefited  of this technology as in other 

constructions that require massive volumes of concrete – building’s foundations, 

platforms, power plants, airports, etc -.  

New commercial trending in terms of quality and safety control in civil works are 

searching for solutions that do not affect to the normal development of the tasks, manage 

the information in real time and whose results could not be influenced by the human factor 

– perception deviations of the controller -. For this reason, future lines of investigation 

will be focused on all of the aforementioned possibilities.  

Additionally, the use of commercial devices globally extended enhance the accessibility 

of the solution in terms of availability and economy.   
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1. Introduction 

Road maintenance implies a great investment to avoid pavement deterioration of the road 

network, in order to ensure the safety and welfare of users. One of the most used 

parameters as criteria in this maintenance is the surface roughness of the pavement, which 

is usually quantified by IRI – International Roughness Index – ratio. There exist five 

different ways to measure the roughness of the pavement: i) manual devices, ii) 

profilometers, iii) light profilometers, iv) inertial profilometers and v) Road Type 

Response Roughness Measurement Systems (RTRRMS). However, all of mentioned 

systems require expensive specific equipment which is not always suitable or include 

defects effects in roughness calculation, which is inaccurate.  

Hence, a new alternative is proposed for the analysis of the pavement condition for road 

maintenance. It is based on RTRRMS techniques but including accelerometers in a 

conventional vehicle and a GPS locator. That allows to integrate the IRI obtaining models 

from vertical accelerometer data [1] with the identification of localized defects [2]. 

javascript:void(window.open('/imp/dynamic.php?page=compose&to=fjvea%40becsa.es&popup=1','','width=820,height=610,status=1,scrollbars=yes,resizable=yes'))
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2. IRI estimate 

The procedure for obtaining the IRI is as follows: The first step of the procedure consists 

of measuring the elevations of the terrain that allow representing the profile of the road. 

Next, a mobile average filtering is performed to obtain a corrected profile. Finally, the 

Quarter Car model is applied to obtain the roughness profile. 

 

Figure 1: Quarter Car model Outline. 

Applying the General Dynamic Equilibrium Equation, the elevation profile of the terrain 

is obtained: 

𝑊𝑊 = 𝑍𝑍𝑢𝑢 +  
𝑀𝑀𝑠𝑠 · 𝐴𝐴𝑠𝑠 + 𝑀𝑀𝑢𝑢 · 𝐴𝐴𝑢𝑢

𝐾𝐾𝑡𝑡
 (1) 

Where Ms and Mu are the sprung and unsprung mass; As and Au are the vertical measured 

accelerations; Zu is the double integral of vertical acceleration of the vehicle and W is the 

calculated profile.  

A moving average filter is applied to this profile in order to obtain a corrected profile:  

ℎ𝑝𝑝𝑠𝑠(𝑖𝑖) =  
1
𝑘𝑘

 � ℎ𝑝𝑝(𝑗𝑗)
𝑖𝑖+𝑘𝑘−1

𝑗𝑗=1

 

𝑘𝑘 = max [1,𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛 �
𝐿𝐿𝐵𝐵
𝛥𝛥
�] 

(2) 

Where hp is the calculated profile and hps is the same smoothed profile. LB being the length 

of the moving medium, and Δ the longitudinal sampling interval, which in any case should 

be a maximum of 25mm for class I systems. 
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A second filter must be applied to the new profile obtained from applying the first 

filtering, which is based on the quarter car model. The Quarter Car Model is defined as 

a set of masses (sprung mass and unsprung mass) linked to each other through a spring 

and a linear damper.  

This model uses a series of standardized reference parameters, called Golden Quarter Car. 

These parameters are the following: 

𝑘𝑘2 =
𝐾𝐾𝑠𝑠
𝑀𝑀𝑠𝑠

= 63,3  ;    𝑘𝑘1 =
𝐾𝐾𝑟𝑟
𝑀𝑀𝑠𝑠

= 653  ;     𝑐𝑐 =
𝐶𝐶𝑠𝑠
𝑀𝑀𝑠𝑠

= 6  ;     µ =  
𝑀𝑀𝑟𝑟

𝑀𝑀𝑠𝑠
= 0,15       (3) 

Where Ms is the sprung mass, Mr is the unsprung mass, Ks is the spring constant of the 

suspension, Kr is the spring constant of the wheel, and Cs is the shock absorber. 

The model of the quarter car is described by 4 ordinary differential first-order equations, 

which can be represented as a matrix as it follows: 

�̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵ℎ𝑝𝑝𝑠𝑠 (4) 

Where: 

𝑥𝑥 = [𝑧𝑧𝑠𝑠, 𝑧𝑧𝑠𝑠,̇  𝑧𝑧𝑟𝑟, 𝑧𝑧𝑟𝑟]̇ 𝑇𝑇 ;    𝐴𝐴 =  

⎣
⎢
⎢
⎢
⎡

0 1 0 0
−𝑘𝑘2 −𝑐𝑐 𝑘𝑘2 𝑐𝑐

0 0 0 1
𝑘𝑘2
𝜇𝜇

𝑐𝑐
𝜇𝜇

−
𝑘𝑘1 + 𝑘𝑘2

𝜇𝜇
−
𝑐𝑐
𝜇𝜇⎦
⎥
⎥
⎥
⎤

 ;     𝐵𝐵 = [0, 0 ,0,
𝑘𝑘1
𝜇𝜇

]𝑇𝑇      

Where hps corresponds to the elevation of the smoothed profile, and zs and zsr 

correspond, respectively, to the elevations of the sprung and unsprung masses. And x is 

the matrix of the state variables. 

The IRI is an accumulation of the simulation of the movement between the sprung and 

unsprung mass:  

𝐼𝐼𝐼𝐼𝐼𝐼 =
1
𝐿𝐿

 � |�̇�𝑧𝑠𝑠
𝐿𝐿/𝑉𝑉

0
−  �̇�𝑧𝑟𝑟| 𝑑𝑑𝑛𝑛 (5) 

Where L is the normalized length and V is the vehicle speed, which is defined as 80km/h.  

3. Fault location 
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The IRI is one of the most widespread criteria for the identification of the state of the 

road, because surface damage increases the roughness; however it is not an infallible tool. 

There could be serious localized damages on the road, and overall roughness criteria 

would still be met. For this reason, a method to detect localized defects is proposed, based 

on the analysis by means of filters of the roughness profile. 

In order to road damage identification and quantification, the Wavelet Transform is 

applied to the vertical profile signal: 

𝑊𝑊𝑓𝑓(𝑠𝑠, 𝜏𝜏) = �𝑓𝑓(𝑛𝑛)𝜓𝜓𝑠𝑠,𝜏𝜏
∗ (t)dt (6) 

By stretching and moving a wavelet, it can be adjusted with the study event, thus allowing 

finding out its frequency and location in time. 

To apply the Wavelet multi-resolution analysis, the roughness profile can be decomposed 

into components of low (λ) and high (μ) frequency. By the following expressions: 

�̂�𝑐𝑚𝑚0 =  ��̃�𝜆𝑙𝑙−2𝑚𝑚𝑐𝑐𝑙𝑙1

𝑙𝑙

 (7) 

�̂�𝑑𝑚𝑚0 =  �𝜇𝜇�𝑙𝑙−2𝑚𝑚𝑐𝑐𝑙𝑙1

𝑙𝑙

 (8) 

According to the ‘Theory of the elevation scheme’, biorthogonal wavelet type was chosen 

to decompose the signal in low (λ) and high (μ) frequency components, adding free 

parameters to the basic functions.  

 Low frequency High frequency 

Reconstruction ℎ𝑘𝑘,𝑙𝑙 =  ℎ𝑘𝑘,𝑙𝑙
𝑜𝑜𝑙𝑙𝑜𝑜 +  ��̃�𝑠𝑘𝑘,𝑚𝑚 𝑔𝑔𝑚𝑚,𝑙𝑙

𝑜𝑜𝑙𝑙𝑜𝑜

𝑚𝑚

 𝑔𝑔𝑚𝑚,𝑙𝑙 = 𝑔𝑔𝑚𝑚,𝑙𝑙
𝑜𝑜𝑙𝑙𝑜𝑜  

Decomposition ℎ�𝑘𝑘,𝑙𝑙 = ℎ�𝑘𝑘,𝑙𝑙
𝑜𝑜𝑙𝑙𝑜𝑜  𝑔𝑔�𝑚𝑚,𝑙𝑙 =  𝑔𝑔�𝑚𝑚,𝑙𝑙

𝑜𝑜𝑙𝑙𝑜𝑜 +  ��̃�𝑠𝑘𝑘,𝑚𝑚 ℎ�𝑘𝑘,𝑙𝑙
𝑜𝑜𝑙𝑙𝑜𝑜

𝑘𝑘

 

Table 1. Biorthogonal wavelet filters with free parameters in HF component decomposition. 

Where ℎ𝑘𝑘,𝑙𝑙
𝑜𝑜𝑙𝑙𝑜𝑜  and 𝑔𝑔𝑚𝑚,𝑙𝑙

𝑜𝑜𝑙𝑙𝑜𝑜 are the initial filters, and �̃�𝑠𝑘𝑘,𝑚𝑚  are the free parameters. 
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Due to the free parameters, high pass filters will be increased compared to low pass filters 

in the decomposition process. Applying the filter of high frequency decomposition to the 

inputs of the roughness profile: 

 𝑑𝑑𝑚𝑚0 =  �(𝑔𝑔�𝑚𝑚,𝑙𝑙
𝑜𝑜𝑙𝑙𝑜𝑜 + ��̃�𝑠𝑘𝑘,𝑚𝑚 ℎ�𝑘𝑘,𝑙𝑙

𝑜𝑜𝑙𝑙𝑜𝑜

𝑘𝑘

 
𝑙𝑙

)𝑐𝑐𝑙𝑙1 =  𝑟𝑟𝑚𝑚 −  �𝑎𝑎𝑘𝑘�̃�𝑠𝑘𝑘,𝑚𝑚 
𝑘𝑘

 (9) 

Where rm corresponds to the high components and ak to the low frequency components 

resulting from the decomposition.  

Road defects are identified into the HF component. But it is required a training period to 

calibrate the free parameters. The condition to extract them will be: 

𝑑𝑑𝑚𝑚0 =  𝑟𝑟𝑚𝑚 −  �𝑎𝑎𝑘𝑘�̃�𝑠𝑘𝑘,𝑚𝑚 
𝑘𝑘

= 0 (10) 

For the learning of the free parameters, the algorithm will use 2n signals for its training. 

Being 2n the number of equations that will be taken from the previous expression. 

However, the number of unknown variables is 2n+12. This is the reason why the 

condition that the sum of high-pass decomposition filters must be zero should also be 

added. 

� �̃�𝑠𝑘𝑘,𝑚𝑚 = 0
𝑚𝑚+𝑛𝑛

𝑘𝑘=𝑚𝑚−𝑛𝑛

 (10) 

Once Wavelet filters have been constructed, the wear locations of the surface in the 

roughness profile can be detected automatically. 

Since the free parameters are prepared to cancel the components of the new filters when 

detecting the characteristics of the training defects, a possible detection strategy would be 

to find the location that causes d_m^0=0 to be met. 

However, this could result in the detection of points where the high-frequency 

components are close to zero, both in the initial filters and in the new ones. In this way, 
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to avoid false positives, it has been decided to maximize a new function Im, which is the 

difference between the components of both filters. 

 

Figure 2: Fault detection function Im. 

When Im becomes greater than a certain threshold, it will be determined that there are 

defects in the pavement. Thus, a graphic representation of the value of Im, can be obtained, 

where the location of the defects and their severity can be clearly identified. 
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1. Introduction 

Every time a train crosses from an embankment area (soil) to a bridge, tunnel, viaduct or 

box culvert – and vice versa – the vertical stiffness of support under the track 

superstructure changes too abruptly. This areas are called transition zones and require 

much more maintenance than regular track [1] due to the great difference between 

materials stiffness – concrete/steel vs. embankment ground -.  For this reason, a new 

transition wedge formed by steps made of precast concrete slabs has been conceived.  

 

2. Problem approach 

In common transition zones, the progressive compaction of the embankment material 

with several load cycles during its lifespan produces a progressive differential settlement 

between the terrain supported section and the part supported by the pre-existent structure.  

 

This is caused by an abrupt change in the vertical stiffness of the support and originates 

that vertical dynamic forces become increased – up to twice according with [2] -. All of 

mailto:jureaher@upv.es
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these repetitive effects result in a potential source of damage on the rolling stock and on 

the same railway track.  

On the other hand, for the execution of traditional granular transition zones a huge amount 

of resources and time are required – up to 72 days per wedge in order to carry out an 

adequate compaction and humidity rates – and its final quality is challenging to be 

checked during the works.  

For this reason, a new precast transition wedge has been designed. It consists on stepped 

solution formed by precast reinforced concrete slabs that is placed under the ballast layer.   

 
Fig 1: Stiffness abrupt changes in traditional solutions (left) and precast concrete transition wedge purposed (right). 
 

Usually, in Civil Engineering, these problems are solved by means of FEM (Finite 

Element Models) software tools. In this case, due to PTW application is desired to be 

possible in any potential scenario – type of railway and infrastructure -, its particular 

optimized design is not compatible with iterative FEM calculations because of the huge 

amount of computational consumption time required.  

 

For this reason, the design of this structural element involves the achievement of three 

different goals: i) the consecution of an accurate – comparable in results to FEM - 

analytical model which vertical stiffness / longitudinal distance function could be 

implemented in mentioned optimization problem, ii) automatic optimization algorithm 

design and iii) result in a PTW that efficiently works for each particular scenario. 
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In this research, first of those objectives is of concern. The selected analytical model must 

be capable of supporting stepped stiffness variations along the rail and correlate aleatory 

configurations of moving loads with vertical deformation in the rail top.  

 

3. Method 

For new precast transition wedge (PTW) design, different variables are identified: number 

of steps, length of steps, depth of the wedge, height of the steps, etc. It means that its 

optimal design could be approached as a mathematic optimization problem where the 

minimization functions are: i) stiffness / longitudinal distance gradient and ii) resources 

used for its construction – volume of the wedge –.  

A numerical model based on analytical expressions is chosen to develop the future 

optimization problem.  

Several simplifying hypothesis are assumed to minimize computation times and to soften 

up the model requirements: i) Load and shape longitudinal symmetry – respect to the rail 

track axis – ; ii) Linear elasticity of the materials – which fits properly with one single 

load cycle (vehicle) pass -; iii) Material homogeneity – a 2D vertical middle section 

trough the rail web is representative of the vertical deformations of interest -.   

 

4. Numerical modelling 

Winkler idealization is the first approach to accomplish with model requirements [3]. It 

consists of the soil as a linear elastic medium where the load-deformation constitutive 

relation is defined by infinite individual springs of ‘k’ stiffness constant. In 1946, M. 

Hetenyi published a new Winkler-based model. In this case, interaction between adjacent 

springs was modelled by incorporating an elastic flexural deformation only beam/plate.  
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Flexural rigidity of the beam/plate -Young modulus and bending axis inertia- must be 

known and incorporated as new parameters to Winkler approach. In addition, this model 

allows to abruptly change the stiffness among adjacent sections by juggling deformations 

in their contact edges. Its expression and scheme are: 

 
Fig 2: Hetenyi’s model constitutive equation and 2D scheme. Source: Self-made from [4] 

5. Model implementation and validation 

Once the model is chosen, it was implemented in MATLAB by dividing the transition 

zone in different section lengths, according to its vertical stiffness variations due to the 

wedge steps. A PWT was reproduced in a 3D numerical FEM model in ANSYS APDL 

v16 commercial software and its equivalent 2D longitudinal mid-section was also 

implemented in mentioned MATLAB code in order to compare results and analyze the 

new model behavior.  

 
Fig 3: Initial longitudinal transition profile (left, up), ANSYS FEM model (left, down), 2D sprung idealized section 

(right, up) and Hetenyi 2D model implemented in MATLAB. 
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Equivalent stiffness of each layer was calculated attending to Hooke’s Elasticity 

relationship with Winkler constitutive equation (Eq. 3) and in series spring adding (Eq. 

4):  

𝑘𝑘𝑒𝑒𝑒𝑒,𝑖𝑖 = 𝐸𝐸𝑖𝑖· 𝐴𝐴𝑙𝑙
ℎ𝑖𝑖

             (3)          ;                         𝐾𝐾𝑒𝑒𝑒𝑒 = 1
(1/𝑘𝑘𝑒𝑒𝑒𝑒,𝑖𝑖)+(1/𝑘𝑘𝑒𝑒𝑒𝑒,𝑗𝑗)+⋯+(1/𝑘𝑘𝑒𝑒𝑒𝑒,𝑛𝑛)

             (4) 

Properties of C30 concrete (according to EN 1992:1-1), UIC-54 for rail and ADIF 

transition zones normative specifications for embankment (ADIF PGP-2008) were used 

in order to simulate as accurately as possible a standard transition zone. Results profile 

for vertical displacement on the rail top under a 9 tn load – reproducing a typical axle 

load – are:  

 

Fig 4: Vertical deflection in longitudinal rail mid-section profile. ANSYS results vs HETENYI multi-layered model.  
 

Results obtained required a total time of computation of 24 seconds in MATLAB 

application for Hetenyi’s model and greater than 3 hours for ANSYS steady state 

simulation with only an average deviation of 6.8% in vertical deflection, which makes 

approachable the problem of design optimization in future phases. 
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6. Conclusions 

In this research, a new method based on analytical expressions has been defined to 

calculate the railway transition element.  

Accurate results, with an average deviation lower than 7% from 3D FEM models has 

been achieved.  

Only 24 seconds per calculation are required carry out a simulation with the proposed 

method while more than 3 hours were required for the equivalent 3D FEM steady-state 

analysis – by using a conventional PC [Intel Core Duo 2.93 GHz and 4.00 GB RAM 

specifications], which means a substantial reduction in computation time.  

The analytical expressions set chosen together with volume of material needed 

estimation allow developing the desired future automatic design algorithm.   
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1. Introduction 

More than 4000 M€ per year are spent in European rail infrastructure maintenance [1] 

whose 20% is only invested in repairing railway track damages caused by defects on train 

wheels [2]. The reason is that current Wheel Impact Detectors (WID) cannot accurately 

predict the occurrence of the failure. In addition, those systems do not indicate which and 

when maintenance operations must take place.  

The solution proposed herein is an automatable algorithm that allows, through strategical 

disposition of inertial sensors (accelerometers) in the railway track, to detect subtle 

changes in wheel tread and become a useful tool for infrastructure managers for future 

maintenance operations prediction.  

2. Wheel pathologies  

First of all, it is important to know the different pathologies that a wheel can present. In 

general, depending on their morphology, and although they have different origins, can be 

classified as spalling, wheel flats, corrugation or generalized wear. 

mailto:jureaher@upv.es
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If a sudden braking occurs while a train moves along the track owing to an incidence, an 

instant blockage of the wheels could happen, this causes the wheel slide over the track. 

During the blockage, the rolling stock is modified producing a chamfer on its running 

surface.  

A spalling defect is also known as a cavity and refers to the loss of material. This type of 

defect can appear in only one point defect localization, although it is common to appear 

as a group of points. This is what is known as a wheel flat. 

Corrugation is characterized by wavy geometry; this pathology can cause a loss of 

circularity or wavy wear. The last pathology type is generalized wear defect which refers 

to the equal loss of wheel radius. 

Of these, the most common defect and which can have the most influence is the wheel 

flat defect. Additionally, the defects type spalling have a similar behavior and the other 

kinds of defects have a much lower importance in the deterioration of the track. For these 

reasons this research project will focus on the detection of pathologies type wheel flats. 

3. Theoretical model 

All these pathologies create situations where the tracks suffer high intensity impacts or 

forces that result in permanent damage to the rails. Since these forces are applied 

vertically to the rails, they create accelerations in the same axis that can be measured by 

the means of sensors, such as accelerometers. These accelerations can be later analysed 

mathematically to detect the presence or the starting of these pathologies with high 

accuracy. 

The objective of the algorithm is to analyze the vibrations signals caused by the train 

passing to the early detection of wheel pathologies. For the study of vibratory patterns, a 
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study of the signal in the frequency domain can be carried out using the Fourier transform 

or a wavelet filtering. 

For this purpose, a research about vibration patterns using Wavelet Transform has been 

carried out. The Wavelet Transform (WT) allows to analyse sudden transient signals in 

frequency domain without losing time domain information – as happens with Fourier 

Transform -. In addition, it is possible to divide the whole frequency broadband registered 

in ranges and localize in which ones the defects are located.  

In order to know the vibratory frequencies that characterize a wheel flat pathology and 

therefore the decomposition level, a model of the theoretical vibratory patterns has been 

made. To this end a model for predicting vibrations in response to different stresses 

(numerical model of finite elements - FEM) and a model for calculating the temporal 

history of the contact force for both a smooth wheel without defects and for a wheel with 

defects (analytical models) have been developed. 

In the next figure can be seen the wavelet transform obtained for a vibratory signal of a 

health wheel. 

 

Fig. 1: Wavelet transform for a vibratory signal of a health wheel 
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The wavelet on the signal without defects we observe how in the details of level 3 and 4 does 

not see any kind of disturbance. Looking these levels details for the signal caused by damage 

wheel: 

 

Fig. 2: Details of level 3 (left) and level 4 (right) for a Wheel flat of 40µ (up) and 80µ (down) 

Looking the last figures it can be concluded that the existence of wheel damage is defined 

by the existence of peaks in levels 3 (frequencies between 250 and 500 Hz) and 4 

(frequencies between 125 and 250 Hz). 

4. Signal analysis procedure 

The aim of this research is to identify and locate wheel flats by analysing a Wavelet 

Transformed acceleration signal in order to determine if any corrective action is necessary 

and where it should be applied – in axis ‘n’ of bogie ‘m’ -. This type of defect is very 

usual and could produce stresses up to 4 times greater than in healthy wheels. 

Haar wavelet type was chosen (step function), because other typologies could produce 

signal distortion after its treatment. 

First of all, it is necessary to determine time lapse between consecutive bogies. It is 

possible by peak to peak time lapse analysing in original signal (tb). If axle separation is 

known (db), it is possible to determine vehicle velocity as: 𝑣𝑣 =  𝑑𝑑𝑏𝑏/𝑡𝑡𝑏𝑏.  
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For time lapse between the axles detection, a type of wavelet filtering has been used to 

detect abrupt changes in the frequency of the signal and after them a simple peak detection 

algorithm. 

 

Fig. 3: Axle detection with a vibratory signal of 12 axles train.  

In order to detect wheel pathologies, a damage detection criteria based on acceleration 

amplitude was needed. For this purpose and, due to vertical acceleration registers are 

closely related with vehicle velocity, a statistical analysis based on box-whisker and 

normal probability distribution (NPD) was performed: 

 

Fig. 4: Statistical analysis for wavelet decomposed signal of one accelerometer register. Box-whisker plot (left) and 

NPD (right).  

 
Fig. 5: Analysis of levels 3 (up) and 4 (down) of vibratory signal of a train with a wheel flat on the second axle. 
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As all of registers were analysed, it was determined that wheel flat identification criteria will 

be for those values which exceed in, at least, a 50% the obtained for 99 percentile of each 

sample. 

5. Results and conclusions 

This made possible to correlate WT obtained signal in decomposition levels of interest (3rd 

and 4th) with potential defects appearance in time domain and, consequently, to deduce 

which bogies or axles need maintenance actions.  

 

Fig. 6: Conclusion of the algorithm with the signal of the figure 5. 

Applying the method with vibratory patterns caused by the train passing with validated 

data on the parked vehicle, it can be concluded that detail of level 4 provides better results, 

not showing false positives in which it detects a possible failure when it is not. Then it can 

be used to detect current failures.  

The detail of level 3 is more precise and would detect as pathology some irregularities of 

little significance, such as marks that are hardly noticeable to the touch. In this way it can 

be used to detect possible future failures. 
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1. Introduction 

Every year, important structures whose foundation is supported by granular or low-

cohesive soils in wet environments have to deal with one of the most unpredictable and 

harmful events, the soil liquefaction. This phaenomenon is continuously causing severe 

material, human and economic damages, especially in seismic areas.  

Herein, a mathematical characterization of liquefaction is exposed. The objective of this 

research is to determine distinctive patterns which could be mathematically expressed. 

In this way, this phaenomena could be predicted, simulated or detected automatically by 

real-time monitoring systems. For this purpose, liquefaction is analysed herein from 

structural and terrain effects.  

2. Mathemathical characterization 

Attending to Terzaghi’s Principle (1925), in a static equilibrium situation, granular soils 

behaviour is determined by:           σ = σ’ + U                                                               (1) 

where “σ” is the total pressure; “ σ’ “ is the solid particle contact pressure and “U” is the 
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pore water pressure. Under sudden and high intensity shakings, as produced during an 

earthquake, the liquid phase of the soil – pore water – is ejected into a particle 

rearrangement process, causing a rapid increase of water pressure (ΔU>>0) and, as a 

consequence, the loss of foundation stability (Δσ’<<0).  

Additionally, a foundation stability loss implies a decrease on stiffness on structural 

support systems. Mathematically it means a substantial diminution in stiffness matrix in 

dynamic equilibrium equation – based on Newton’s Second Law - (Ec. 2).  

 [M]{𝑥𝑥}̈ + [C]{𝑥𝑥}̇+ [K]{x} = {F(t)}                                                       (2) 

[M]{𝑥𝑥}̈ + [K]{x} = {0}                                                                   (3) 

where [M] , [C] and [K] are mass, damping and stiffness matrixes respectively; �̈�𝑥 , �̇�𝑥 , 𝑥𝑥 

are acceleration, velocity and displacement vectors and {F(t)} resultant forces vector. 

 A particular case of this equation, where no damping is considered ([C]=0) and 

resultant forces are zeroed ({F(t)} = 0) – known as ‘free vibration’ conditions – allows 

to obtain natural vibration frequencies and modes (Ec. 3) as an eigenvalues/eigenvectors 

problem – which is known as modal analysis of a structure -:  

From both equations, it is deduced that if stiffness matrix decreases, natural frequencies 

will be affected, concretely, a diminution up to 50% of initial value could be achieved 

[1]. In addition, damping ratio could increase, in conditions of full liquefaction of soil, 

up to 20% - from usual values of 2-5% - [1]. This variation additionally reduces natural 

frequencies as:                                    𝑓𝑓𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =  𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

�1−𝜁𝜁
                                           (4) 

Regarding stiffness loss, it is a complex interaction among air, water and granular 

phases of soil. Deep non-linear processes are involved in this event and it hinders its 

mathematical representation. For this reason, it is possible to distinguish three different 

phases during liquefaction [1]:  
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i) No liquefaction – for low range excitations (ΔU < 0.1 Umax). Soil’s bearing capacity 

variations do not endanger structural integrity. Expectable natural frequency decrease 

up to 15%. 

ii) Partial liquefaction – for mid-range excitations – (0.1 Umax < ΔU < 0.4 Umax). Soil’s 

bearing capacity loss is significant. Structural damages appear. Instability could produce 

displacements from original structure position. Expectable natural frequency decrease 

up to 50%. 

iii) Transient and full liquefaction – for high intensity excitations – (0.4 Umax < ΔU; 

σ’≈0). Risk of collapse. Serious or irreparable damages. Expectable natural frequency 

decrease up to 60%. 

3. Method: numerical analysis 

As it was aforementioned, there are two recognizable aspects that characterize 

liquefaction: increase of pore pressure (ΔU) and soil stiffness decrement.   

Regarding ΔU, it is only relevant for liquefaction detection. Field disposition of 

piezometers or other adequate pressure sensors may constitute an effective alert system 

of liquefaction is taking place.  

 

Stiffness decrement could be analysed by different ways. For stability loss scenarios 

simulation, 3D FEM models where soil is modelled as a multi spring-dashpot system is 

one of the most efficient options for computational analysing.  

According with [2], during liquefaction, the ideal value of the spring stiffness diminish 

by a ‘α’ or ‘p-multiplier’ empirical factor. For an accurate simulation, this factor is only 



Modelling for Engineering & Human Behaviour 2018________________________________149 
 

applied to those springs which are under liquefaction conditions. This technique is used 

in huge offshore structures design, among others [3]. 

  
Fig. 1:  Example of a pier foundation interaction by spring-dashpots system (left). Spring discretization and ‘p-

multiplier’ effect on spring stiffness. Source: own elaboration & [2] 
 

4.  Evaluation  

Extracting eigenvalues from Frequency Domain Decomposed (FDD) vibration signal 

shows the natural frequency values and its possible time variation. Thus, it is possible to 

detect if potential damage caused by liquefaction is being produced and estimate 

severity of liquefaction attending to mentioned criteria.  

In addition, disposing inertial and pressure sensors allow to know not only if damage is 

producing (natural frequency decrement) but which part of the structure could be more 

degraded (where maximum pore pressure values have been reached).  

Moreover, all of this procedure could be automated by means of an algorithm definition 

where aforementioned behaviour patterns would be identified.  

In this algorithm, Power Spectrum Density (PSD) decomposition is carried out in order 

to identify the eigenvalues by peak picking techniques. Previously, the noise of the 

signal should be reduced / removed by means of a Moving Average Filter.  

A Savitzky-Golay filter is also applied in order to enhance the peack picking 

identification procedure.  
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Once the peaks have been identified, natural frequencies are known in current 

conditions, without the necessity of artificial means of excitation (Modal Operational 

Analysis).  

If only noise is detected during this treatment, the curve is discarded and not included 

into the study of natural frequencies’ variation.  

The scheme of this procedure is shown below:  

   Fig. 2: Scheme of the automatic data treatment algorithm proposed. Source: own elaboration 
 

All of the signal analysis tools mentioned are implemented in commercial software 

MATLAB, what makes easier its constitution and use.  

5. Conclusions  

In this research, a new procedure for liquefaction monitoring based on structural and 

support response parameters control has been defined.   

This procedure is based on FDD and eigenvalue extraction of the vibration response of 

the structure and also, by means of the pore pressure analysis in its support. This double 

approach allows to: 
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- Detect the liquefaction in real time. Pore pressure variations in different points 

of the structure support make possible to identify an estimate the appearance of 

this event and its severity.  

- Predict damage severity. By means of pore pressure register & previous FEM 

simulations, it is possible to correlate the loss of support stiffness with the 

variation of the stability in the structure.  

- Use commercial software and measurement devices to implement and carry out 

this process.  

In addition, the applicability of this methodology does not depend on the type of 

structure and is a non-intrusive technique.   
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1. Introduction 

One of the most challenging aspects in ‘in-situ’ elaborated concrete is the inability to 

accurately obtain the maximum compression strength during its beginnings. This induces 

several uncertainty when shuttering removal, when is necessary to apply special curing 

cares and other common situations in concrete element manufacturing.  

The solution proposed herein aims to determine and control in a rapid and non-destructive 

way the evolution of concrete compression strength by means of electrical resistivity 

monitoring registered at work – real time data monitoring -. It also allows to predict which 

will be the maximum reached resistance after its hardening.  

2. Neural Network 

First of all, a study was made of the factors that influence the resistivity-compression 

resistance of the concrete. By means of an ANOVA analysis with real concrete 

specimens, the most influential factors were selected. It can be differentiated between the 

factors related to the dosage of the concrete and the factors related to the curing 

conditions. 

mailto:tereaher@upv.es
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Regarding to the dosage factors: i) cement type, ii) cement portion, iii) water/cement ratio, 

iv) percentage of fines in the sand, v) maximum diameter of the aggregate, vi) 

consistency. These properties a priori are known and controllable, then it can be use as 

inputs for the prediction algorithm. Due to the amount of factors, an Artificial Neural 

Network (ANN) was chosen to develop the prediction algorithm. 

On the other hand, the curing conditions are not in any sense controllable: vii) curing 

technique, viii) curing time, ix) temperature, x) humidity. For this reason, to take them 

into account they will be used as corrections of the real time resistivity measurement. 

The ANN will be used to predict the resistivity and compression resistance curves of a 

concrete with known dosing data. The data of the necessary curves are 1, 3, 7, 14 and 28 

days of maturation. Therefore the neural network will have 6 input data (mentioned 

factors ‘i’ to ‘iv’) and 10 output data (5 for resistivity and 5 for resistance). For this 

purpose, the number of hidden nodes (9) has been determined according to next equation: 

ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛 =  �
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛 + 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛

2
�+ 1 = 9 (1) 

ANN training phase has been divided into three different stages – training, validation, test 

– according to the percentage of aleatory data used in each one - [70% - 20% -10%] – in 

order to avoid any processing bias.  

Based on this, the performance of different neural networks has been studied, testing with 

different number of hidden neurons, with only neural network for resistivity and 

resistance, with two separate neural networks. Finally, attending to the validation error, 

the better results have been obtained using a single neural network with nine hidden 

neurons. 
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For ANN working, a -1 to 1 normalization process of input data is carried out:  

𝑋𝑋𝑖𝑖 =  
𝑋𝑋 − 𝑋𝑋 𝑛𝑛𝑖𝑖𝑖𝑖

𝑋𝑋max− 𝑋𝑋 𝑛𝑛𝑖𝑖𝑖𝑖
· (1 − (−1)) + 1 (2) 

where ‘Xmax’ and ‘Xmin’ are the maximum and minimum potential values of each 

variable.  

The ANN allows predicting the concrete curves from the concrete dosing data, both in 

terms of compression strength and resistivity over time, as well as the relationship 

between them. 

In this way, for its use it is necessary to normalize the input data first. With the neural 

network predict the normalized output data and proceed to the denormalization of them. 

Finally, to have intermediate data in the curves and carry out a continuous study of the 

concrete resistance to compression evolution during its maturation, it was decided to 

perform a linear interpolation between the predicted days. 

 

Fig. 1: Algorithm working scheme. 
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3. Prediction algorithm 

In addition, a correction algorithm was also implemented to transfer field data to a 

standardised potential situation of resistance evolution according to normative - nCh 1037 

in this case -.Then with the algorithm, it will be possible know the state at the time of the 

measurement from the data measure in situ of the concrete. 

From [1] and [2], it is possible to obtain the relationship between resistivity and 

temperature; this relationship can be used to solve the problem that the resistivity measure 

does not correspond to a state under standardized conditions:  

𝜌𝜌 =
𝑖𝑖−𝐸𝐸 𝑅𝑅𝑅𝑅�

𝑖𝑖
−𝐸𝐸

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟�
 (3) 

where E is the activation energy (33258 J/mol); R is the gas constant (8.314 J/mol·K) and 

T the absolute temperature in K.  

 

Fig. 2: Resistivity data corrected by temperature factor. [2] 

Comparing the curves of the resistivity measured at 20 degrees Celsius with the 

measurement at 10 degrees Celsius the difference between the two is evident. Multiplying 

by the correction factor both curves overlap. 
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Once this corrected value is known, it is possible to obtain, from the resistence (MPa) – 

resistivity (Ohm·m) graphic the real status of concrete strength.  

 

Fig. 3: Strength – Resistivity curve. 

After that, it is possible to determine the time lapse between both situations (real and 

theoretical) under the standardised conditions.  

 

Fig. 4: Equivalent standardised time vs real measured time. Delay from ideal conditions.  

As it could be appreciated in last figure, processed example shows a maturity delay of 5 

days if its fabrication and curing conditions were as normative predictions indicate. This 

evidences that possibly, additional cares are needed. Opposite situation, where treal<teq is 

also possible and it would indicate that curing is developing in more favourable conditions 

than predicted by normative. 
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4. Results and conclusions 

The correct work of the developed algorithm has been verified. At first the concrete 

curves have been obtained from the input data relative to the dosage. 

   

Fig. 5. Predicted curves for a known concrete. Concrete strength over time, resistivity over time and 
relationship between resistivity and resistance.  

The curves obtained with the ANN were compared with known real curves, obtaining an 

error of 12%. This error is assumable because the resistivity measurement error is of the 

same order of magnitude. 

Once the concrete curves have been obtained, the correct performance of the prediction 

algorithm has been verified. This algorithm works with the concrete curves, the data taken 

in situ and the temperature. And it is able to calculate the resistivity, predict the 

compression strength and calculate the theoretical time if the concrete had been in 

standard conditions. 
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1. Introduction 

According to future trends predictions in 2011 Transport White Paper, freight and 

passenger in Europe will have significant increases in demand, velocity and tonnage in near 

future. This means that robust and capable railway infrastructures will be needed. One of 

the main challenges that these infrastructures have to deal with is the misalignment defects 

due to lateral dynamic effects – forces and deformations -, which suppose more than 26% 

of track maintenance costs [1]. To deal with this, a new concrete sleeper equipped with 

additional stabilizer appendixes has been conceived.  

 
Fig. 1: Misalignment defect or buckle (left) and new stabilizer sleeper solution proposed.  

 
2. Method 

To achieve an adequate design, a 3D numerical FEM (Finite Element Model) has been 

implemented in ANSYS LS DYNA v14 commercial software.  

mailto:jureaher@upv.es
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One of the most relevant causes of lateral misalignment is rail dilation due to high increase 

of temperatures – especially in continuous welded rails -.  Mathematically, modelling this 

phaenomena implies serious challenges that are not obvious to save. 

In a conventional basic static model, displaced geometry is obtained by a linear relation 

between loads – thermal in this case – and structural stiffness – determined by material and 

shape properties. However, in this case, interaction between rail and ballast, non-linear 

geometrical effects – buckling -, and sliding of some elements – rail / support pads and  

sleepers / ballast – presumable have serious importance on lateral response.  

For this reason, in mentioned 3D FEM model, a straight-curve-straight section of 

conventional metric wide ballasted track has been reproduced.  

 
Fig. 1: Numerical modelization of a curved section of ballasted railway. Thermal effects on buckling.  

 
Rail has been modelled as linear elastic – determined only by Young modulus (E) and 

Poisson coefficient (ν) - material with rectangular shape and equivalent inertia in vertical 

and cross axis inertia than a 45 kg/m Vignole type has. Oak wood sleepers of 1.9x0.22x0.13 

meters have been also modelled as linear elastic. Ballast and foundation layers have been 

modelled as elastoplastic Drucker-Prager materials – which additionally require internal 

friction angle (Ф) and cohesion definition (c) -.  
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Fig. 2: Drucker-Prager elastoplastic criteria related with average stress. 

 
where ‘a’ and ‘b’ are characteristic parameters of the material; ‘σe’ is the Drucker-Prager 

yielding surface; ‘σ1,2,3’ are 3D principal stresses and ‘σm’ the average hydrostatic stress.  

Thermal supporting elements have been used to rail modelling in order to accurately 

reproduce dilation process.  

Regarding boundary conditions, displacement has been constrained at limit surfaces in its 

perpendicular direction. Rail longitudinal displacement has been released from support 

pads but coincident with them in vertical and cross direction. ‘Contact Elements’, which 

are non-linear 2D contour elements that allow displacement among different deformable 

volumes have been disposed in sleeper surfaces in order to allow its relative displacement. 

These elements follow the Hertzian Contact Theory. The displaced geometry between the 

‘contact elements’ requires iterative calculation for its equilibrium solution. A maximum 

penetration depth of 0.1 mm was allowed as a compromise solution between accuracy and 

convergence of the solution.   

 

Fig. 3: Contact elements working scheme in ANSYS. Source: ANSYS APDL Element Reference Manual. 
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Ballast Young modulus and friction angle; foundation Young modulus and sleeper-ballast 

friction coefficient for contact elements are defined through carrying out a model 

calibration with real field test data.  

Because the original geometry of the model should be distorted because of the combination 

of different non-linear processes, a large displacement steady state analysis has been 

performed. The Newton-Rhapson algorithm was used to determinate the final shape of the 

railway section.  

Additionally, due to the high level of non-linear assumptions required, the Arc-Length 

method was included during solution calculation.  

 

3. Results and model validation 

Validation of the model was carried out by measuring lateral displacement on rail web in 

the mid cross-section of the curve on a real test bank – in Solares, Spain - with similar 

geometry and properties as the model exposed, by increasing progressively the temperature 

of rails from 8 to 38 ºC.  

 
Fig. 4: 3D FEM lateral displacement results (left), real test (mid) and results comparison for ΔT and validation (right). 

 
Once the model was validated and calibrated, new stabilized design concrete sleepers 

were introduced and lateral displacement for identical temperature increases were 

compared with different modular shapes: i) H-shaped, ii) Cross-shaped, iii)  with vertical 

heels and iv) Cross-shaped combined with heels. 
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Fig. 5: Different shape alternatives tested by numerical simulation.  

 
Results of numerical modelling revealed that ‘X+Vertical Heels’ alternative had a better 

response than the others and increases lateral resistance respect to wood sleepers up to 

91% more.  

According to [2 – 4], other commercial solutions – winged sleepers, frictional sleepers, 

framed sleepers, etc. - only achieve to increase up to 59% of lateral resistance but being, 

at least, 21% more expensive in terms of track maintenance and renewal cost than the 

proposed one .  

4. Conclusions 

In this research, the numerical 3D FEM modelling technique has been applied in order to 

design a new sleeper which improves the lateral stability of the railway. Lateral 

displacement of the track elements over the support layers involves a challenging task from 

a mathematical convergence perspective.  For its convergence, Newton-Rhapson algorithm 

combined with the Arc-Length criteria have been used during calculation process. Soil 

layers’ plasticity has been also included in the model by following Drucker-Prager non-

linear model. Thus, a steady-state analysis with non-linear geometry - large displacements 

– and temperature effects was performed.  

A real field data test measurement in Solares (Spain) provided the necessary information 

for the calibration of the model and the order of magnitude of expected results, which was 

necessary to set the parameters of mentioned resolution algorithms in order to convergence 

assurance.  
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Once the model had been calibrated, four different design alternatives of the sleepers were 

simulated. Those ones equipped with vertical heels shown the best response in terms of 

lateral stability – minimum displacement -. 

Up to a 91% gain in lateral resistance respect to conventional sleepers was estimated in the 

model results. On the other hand, pre-existent commercial solutions are only able to 

achieve a 59% more lateral resistance than conventional ones. All of this by needing an 

average cost increment of 21% more than the solution proposed herein.  
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1. Introduction In open-pit mining, it is crucial to maximize productivity while the 

costs of transporting the ores, which is vital to guarantee the future and profitability 

of the operation. It represents approximately 50% of the total operating cost. In this 

way, not only saving costs by the adequate maintenance of mining trucks is of major 

concern, also, it is possible to achieve a significant resources saving by improving 

road conditions.  

A considerable amount of research has been developed in recent years in order to deal 

with this major challenge [1 – 10]. The most of these studies are focused on analysing the 

main characteristics of the network of mining roads – roughness, elevation profile, surface 

condition, etc. -.  

The methodology proposed herein is to stablish an optimized action plan of maintenance 

operations on an open-pit mining road based on a sequence of different algorithms which 

will work by real time data input taken by sensors installed on the mining vehicle.  

2. Neural Network 

mailto:jureaher@upv.es
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For this purpose, at first, an Artificial Neural Network (ANN) is defined to calculate the 

elevation profile and the roughness of the roads – by obtaining the Displacement Spectral 

Density (DSD) -. The input data are the vertical accelerations of both sides of the front 

axle of the mining vehicle. An ANN can be defined as a calculation model based on an 

interconnected set of nodes (neurons) organized in several layers. 

Mathematically, each neuron adds the input signals weighted with a series of synaptic 

weights, and applies a function, called the activation function, which depends on this sum 

and the activation threshold of the neuron. 

𝑢𝑢𝑛𝑛 = �𝑤𝑤𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛

𝑚𝑚

𝑖𝑖=1

 (1) 

yn =  φ(un + bn) (2) 

Where xj represents the input signals; wnj the synaptic weights of the neuron; un is the 

result of the sum of the weighted input signals, bn is the activation threshold, and φ() the 

sigmoid activation function, which results in the output signal yn. Sigmoid function is 

mathematically defined as [10]: 

φ(u) =  
1

1 + eau
 (3) 

Where "a" is the characteristic parameter of the function. 

A training stage must be carried out, which means to provide the neural network the input 

data in order to adjust the network parameters until obtain accurate output signals. The 

proposed model is based on a NARX-type neural network (Non Linear with Exogenus 

Inputs Networks) with 7 input neurons, 5 in the hidden layer and 2 in the output – where 

the elevation profile and the DSD are obtained -. This implies that the calculation of each 

result should be based on the values of the input signals as well as the past values obtained 

from the results. 
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y(t) =  f(u(t), u(t − 1), … , u(t − d), y(t − 1), … , (y(t − d)) (4) 

3. Defect analysis 

Once the elevation profile is obtained, an identification and classification of road defects 

is carried out attending to its geometrical properties – length, width, angle, etc. -. There 

are several types of defects that could appear on the surface of a mining road, such as 

undulations, obstacles, gullies or bumps. 

The methodology used is based on a search of the protuberances and concavities of the 

profile with a minimum size, with respect to the average profile. For each of those points, 

the main characteristics of the defect are extracted. 

The type of defect found is determined from the comparison with the requirements 

marked for identification. 

Once the defects are classified by type, a new classification is applied, separating the 

faults according to its gravity. This way it is possible find the faults that must be repaired. 

Therefore, the repair cost of each defect is calculated according to its necessary corrective 

operations, searching in the database developed. 

4. Rolling Resistance 

A rolling resistance (RR) estimation based on the characteristics of the terrain – obtained 

from the DSD – is used to predict the operating cost for the mining road operation. 

In this calculation, amortization costs, vibration and impacts effects and fuel consumption 

are considered to finally establish a daily operation cost. For example, fuel consumption 

can be calculated as: 
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𝐶𝐶𝑡𝑡 =
𝑃𝑃𝑃𝑃 · 𝐷𝐷 · 𝐹𝐹𝐶𝐶

1000 · 𝑉𝑉
 (5) 

Where D is the transport distance in meters, FC is the consumption factor (l/h•t), V is the 

vehicle speed (km/h), and Pv is the weight of the loaded or empty vehicle (t). 

In order to calculate the operating costs of each road, a simulation of the operation of the 

vehicle will be practiced from the rolling resistance of the different sections. 

5. Action Plan 

The minimization of the total transport costs (daily operation and daily road maintenance 

costs) becomes into the Optimized Action Plan – where, when and how many resources 

are necessary to apply -.  

 

Figure 1: Daily costs evolution. 

Whenever the overall expenses of the maintenance of the vehicle and the losses caused 

by the road condition are higher than the fixing costs, the corresponding maintenance 

operation will be carried out in each section. Otherwise, the losses and the cost of the 

operation and maintenance of the vehicle will be assumed. 
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1. Introduction 

The conservation of the railroad tracks is essential in order to maintain the geometric 

quality standards that the circulation demands at a certain speed. Railway maintenance 

has evolved over time in parallel with the changes introduced in the track grid design, 

given that the new track designs needed, on the one hand, fewer human resources for 

maintenance and, on the other hand, higher-performance track machinery. 

Regarding the inspection methods for bridges, if we focus only on the structure itself we 

find two types of inspections, the basic inspection and the main inspection. These main 

inspections are not carried out systematically or on a regular basis, but as a consequence 

of the damages detected in a main inspection or as a consequence of an extraordinary 

situation 

Once the issue has been framed, this paper intends to synthesise different mathematical 

methodologies that allow the diagnosis of the structural health of railway bridges to be 

carried out automatically from the excitations of the road operation itself.  
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2. Pathologies 

Metallic truss bridges were widely used during XIX and XX century in railway 

infrastructures. These structures are light and allow to cross large spans and resist the 

exigent railway loads by using a low quantity of material. But their worst enemy is the 

fragile cracking, it is produced mainly by two causes: fatigue and corrosion. 

Fatigue is caused by repetitive load-unload cycles where the strength limits of the material 

are not exceeded. During several cycles of deformation, the material accumulates 

deformation that could finally break. 

Fatigue propagation velocity was described by Paris-Erdogan LAW. If loads doesn´t 

exceed a percent of material strength (usually 50%-60% for steel), unlimited life is 

assumed.  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐶𝐶∆𝐾𝐾𝑚𝑚                                                         (1) 

Interrogating this curve, the maximum number of cycles supported by a constant load 

level is obtained. This is known as the S-N curves (stress-number of cycles). 

𝑁𝑁 = 𝐴𝐴
∆𝜎𝜎𝑛𝑛

                                                        (2) 

For elements that support variable stress levels, it is necessary to normalize its 

contribution to final cracking in order to account them as a whole. This is achieved by the 

Palmgren-Miner expression and its normalized damage coefficient ‘D’. 

𝐷𝐷𝐿𝐿 = ∑ 𝑛𝑛𝑖𝑖
𝑑𝑑𝑖𝑖

= 𝑛𝑛1
𝑑𝑑1

+ 𝑛𝑛2
𝑑𝑑2

+ 𝑛𝑛3
𝑑𝑑3

                                                  (3) 
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3. Maintenance strategies 

There are different maintenance strategies and techniques for structure conservation. 

Predictive maintenance with non intrusive means are the most treding techniques because 

they guarantee a good health of the structure without huge investments. 

These structures have demonstrated being proper designed and many of them have 

successfully overcome their lifespan. It is also possible that their initial planed loading 

conditions have changed -weightier and faster vehicles, more traffic, etc-. For this reason, 

it is necessary to know its current status by non-intrusive on-site techniques in real time. 

There are two different ways for structural defects detection: critical points and global 

structure. 

In critical elements, which are supporting continuously load-unload cycles and where 

potential fatigue could appear, it is possible to know the stress level by its deformation 

measure using strain gauges. 

On the other hand, in global structures is used natural frequencies variation to detect 

damages in unexpected structural element. 

 

 

Fig 1. Types of maintenance. Source: self made. 
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4. Method 

For fatigue analysis, first critical element must be identified. Its initial lifespan estimation 

will be evaluated. After installing and obtaining first data set about load cycles and 

intensity. Damage index is obtained and current element lifespan is updated and the 

procedure starts again, damage index is obtained by Rainflow Algorithm. 

After obtaining equivalent stress level in time domain, this signal is decomposed on 

cycles of representative intensity. 

The number of cycles, average stress supported and the amplitude of stress added by each 

cycle are identified. 

Stress normalization could be done by different ways, such as, Soderberg, Gerber and 

Goodman. Goodman is the most extended because it uses yielding point as a reference. 

The other ones use braking point, which is more difficult to know accurately. 

Once the stress has been normalized, by using the characteristic S-N curve of our steel, it 

is possible to determinate which part of the stress is contributing to fatigue of the material 

per cycle -Ni- and finally obtaining the Damage coefficient Di. 

On the other hand, for general structure monitoring, the analysis of vibrations produced 

by normal operation and environment give us the natural frequencies of the structure in a 

determinate status. 

It´s Power Spectrum Density decomposed in Singular Values give us the natural 

frequencies of the structure. A decrease in natural frequencies is indicator of structure 

stiffness variation that could be originated by a structural cracking. 

For both procedures is only necessary to use commercial devices as accelerometers, strain 

gauges, microcontrollers and a transmission data Gateway. 

For theorical validation of the procedure, a numerical FEM was implemented in ANSYS. 

A metallic truss structure was represented according to it´s building plans. 
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Fig 2. Numerical simulation. Source: self made 

Two vehicle loading running through the bridge was simulated by means of a transient 

analysis where 8 loads simulate the effect of the wheels. 

 

Fig 3. Loads of numerical simulation. Source: self made 

5. Theorical result 
 
Fatigue analysis procedure was used for forces and moments, and equivalent Von 
Mises stress was obtained in a longitudinal beam. 

Fig 4. Forces of fatigue (top-left), moments of fatigue (top-right), tension shear forces (down-left) and tension eq. Von Mises (down-

right). Source: self made 
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Rainflow algorithm results are shown on figure 5. S-N curve was also represented for 

normalized stresses and an unlimited life of this element was obtained. This means that 

the structure will not suffer fatigue for it´s current railway traffic. 

 

Fig 5. Rainflow algorithm results. Source: self made 

Regarding modal analysis, the breaking of this same longitudinal element was simuled, 

which originated a NF decrease of 3,1% and a spectral amplitude decrease in vertical 

accelerations of 20%.  

 

 

Fig 6. Cracking Healthy span (left) and Damaged span (right). Source: self made 
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1 Introduction

In the aftermath of the recent boom and the real estate burst in developed
countries, growing interest in appraisal methods has been shown (Krause and
Bitter, 2012), with an extended use of spatial econometrics. The geographi-
cal location of homes and the spatial dependence relations among prices are
taken into account in these spatial models. The existence of spatial auto-
correlation, which requires the use of a weight matrix, is assumed in these
models (Dubin, 1998). Autoregressive models have recently progressed to
more sophisticated models (Brasington, 2004; Liao and Wang, 2012; Liu,
2013) with different weight matrices (Affuso et al., 2017), which may lead to
distinct results (Dubin, 1998).

Nonetheless, home purchase-sale prices have been used in all models
(Brasington, 2004; Chernobai et al., 2011; Liao and Wang, 2012; McCluskey
et al., 2013), and the few exceptions are: home price offers (Chasco and Le
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Gallo, 2013) when purchase-sale prices are not available, rent values (Pholo
et al., 2014), and cadastral values (Zoopi et al., 2015). However, other hous-
ing values exist, such as mortgage appraisal values (McGreal and Taltavull,
2012), which no previous work has modeled. Mortgage appraisal values are
used for financial institutions to grant home loans (Cerruti et al., 2017), and
for evaluating financial risks (Lacour-Little and Malpezzi, 2003).

Given the importance of such appraisals, it is very important to develop
appraisal models that identify the exact characteristics and services that
underlie appraisals of home prices. This study aimed to analyse the effects
that the mean characteristics of the homes in borough, the demographic
and socio-economic aspects, citizen security and co-existence, environmental
aspects, and closeness to public transport and education centres, had on the
mean housing appraisal value in each borough. The city chosen for this study
was Valencia.

2 Data and Methodology

The city of Valencia had 790 201 inhabitants in 2016, and is located in east
Spain on the Mediterranean coast. It is divided into 19 districts in adminis-
tration terms, which are all divided, in turn, into differents boroughs, which
amount to 85. Districts 17 to 19 are on the outskirts, far from the city cen-
tre, and have a small population and a few buildings. For this reason, the
analysis was limited to districts 1 to 16, which contain 70 boroughs. The
mortgage appraisal price is available for 5551 residential properties in the
province of Valencia, of which 2564 are located in these 70 boroughs. The
information available for each residential property is: mortgage appraisal
value (in euros), physical variables (surface (m2), air conditioning, preser-
vation, swimming pool, lift) and temporary variables (age of building). A
hierarchy variable is also available, and refers to the cadastral value of the lo-
cation, which varies between 1 (the highest value) and 67 (the lowest value).
It corresponds to the zones with values restricted by the Cadastre to do
calculations for cadastral reports. A map of value zones results from hier-
archising the land values throughout the territory, obtained with national
coordinate-homogeneity criteria. The home mortgage appraisal values were
provided by four official appraisal societies according to the method set out
in Article 2a) of Order ECO/805/2003. Each residential property was val-
ued only once by a single company. The appraisal values of the residential
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properties was a mean of 143 450.29 euros and 1270.86 euros/m2. The mean
surface area of each property was 104.74 m2 and its mean age was 41.35
years. The geographical location in UTM coordinates was known for each
property. The analysis included two phases: the first, an exploratory one,
aimed to detect if spatial autocorrelation existed in the data; the second, a
modeling one, built regression models to explain the mean price for a square
meter. Presence of the spatial component in these models depends on the
result of phase 1. We begin with a brief description of the tools to carry
out the exploratory spatial data analysis (ESDA), followed by the spatial
autoregressive and error regression models.

The first of the models, known as a spatial lag model, is expressed as:

y = β0 +
∞∑
n=1

βkxk + ρWy + ε (1)

where y is the response variable, xk,k=1,...,p are the independent variables
with which we wish to model y, and ε the error term. The difference with
a multiple linear regression model lies in the inclusion of term Wy, which
represents the mean of the y values observed in its neighborhood. This model
aims to capture the influence that the neighbors have on an observation. A
positive ρ value indicates that y increases because of this influence, provided
that ρ significantly differs from 0.

The model is denoted as spatial autoregressive by its analogy with the
AR models in time series, in which the temporal autocorrelation is modeled
by including temporal lags yt−k of the dependent variable.

The second model is known as the spatial error model, which is expressed
as:

y = β0 +
∞∑
n=1

βkxk + ρWε+ ε (2)

This model assumes that the errors in a multiple linear regression model
are spatially autocorrelated. The spatial autoregressive model (1) does not
allow such a direct interpretation as it happens in a multiple linear regression
model (each one represents the variation that the response variable undergoes
when the independent variable related to the parameter increases by one unit,
but the others remain unchanged). If a similar notation to that used for the
previous model is adopted, then:

y = β0ιn + ρWy +Xβ + ε (3)
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where ρ is the spatial coefficient and W is the neighborhood matrix. A simple
operation allows (3) to be rewritten as follows:

y = (In − ρW )−1(β0ιn +Xβ + ε) (4)

which evidences that now the partial derivatives matrix is not diagonal, which
is what happened before. Now the variation of a covariable in one of the
boroughs directly affects the value of the dependent variable for this borough,
but also its neighbors and the neighbors of the other boroughs. Thus, by
means of a kind of boomerang effect, the original borough is also affected.

3 Results

Moran’s Index value for the spatial distribution of ln(mvm2) is 0.4078, with
a p-value of 2.44E−09 or 0.001, depending on whether it was obtained by the
asymptotic test or by the random permutations test. This value implies the
acceptance that spatial autocorrelation exists.

We observe coefficients ρ and λ of the spatial terms, the former is sig-
nificant but not the latter. Another justification for using spatial models is
provided by Moran’s Indices for the residuals of the three models, with val-
ues of 0.123, 0.015 and −0.011 for the OLS, autoregressive and error model,
respectively. The p-value of the OLS model residuals, 0.029, indicates that
spatial autocorrelation still exists, while those that correspond to the spatial
autoregressive and spatial error models indicate the exact opposite.

The three models show good performance for goodness of fit, which is de-
duced from its determination coefficients and from the other measures. With
respect to the spatial models, the autoregressive model offers the best value
for these indicators and its spatial term is significant, which does not happen
with the error model. The autoregressive model also has the advantage of
allowing a simpler and natural interpretation.

4 Conclusions

Like home purchase-sell prices, mortgage appraisal prices can also be modeled
by hedonic and spatial models.

The OLS and the spatial error or autoregressive models provided very
good fit results, which somewhat improved when spatial aspects were added,
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spatial aspects which in turn eliminated the spatial autocorrelations observed
in the OLS model.

The characteristics of the considered residential properties (state of preser-
vation, lift, swimming pool, and the hierarchy variable of the cadastre value)
clearly influenced the mean prices in the borough.

Regarding the borough-related variables, the variables associated with
vehicles’age or cylinder capacity positively corresponded to the mean price
of residential properties. The mean size of a family property, however, neg-
atively affected prices, and the distance from a metro station or from infant
or primary education centers also had a negative influence.

However, the models showed some unexpected results, such as the pos-
itive influence on the price of residential properties caused by the ratio of
incidences due to drug addiction, unauthorized public activities or distances
to secondary education centers. Nor does it seem logical that the mean dis-
tance to a tram or bus stop did not influence the models.
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1 Derivation of a new family of third order

iterative methods

In a classical result given by Gander in 1985 [3] it is shown that third order
methods for solving nonlinear equations f(x) = 0 can be written in the form
xn+1 = G(xn) where

G(x) = x−H(Lf (x))
f(x)

f ′(x)
, (1)

H is a twice differentiable function around x = 0 that satisfies the conditions
H(0) = 1, H ′(0) = 1/2 and |H ′′(0)| <∞ and Lf (x) is defined as the quotient

Lf (x) =
f(x)f ′′(x)

f ′(x)2
. (2)
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There exists a geometrical way to obtain these methods, as it can be seen
in [2]. It is based on the idea of approximating the function f(x) by means
of adequate interpolating functions of conic type, in particular parabolic or
hyperbolic curves. In this paper we present two new iterative methods that
are constructed from interpolating functions of exponential and logarithmic
type. In the first case, we approximate f(x) by a function g(x) of exponential
type given by

g(x) = a+ exp(c+ bx) ,

where a, b, c are chosen to satisfy

g(xn) = f(xn) , g′(xn) = f ′(xn) , g′′(xn) = f ′′(xn)

at a given approximation xn. In this way, we get the numerical method given
by

xn+1 = xn + log (1− Lf (xn))
f ′(xn)

f ′′(xn)
, (3)

where Lf (x) is the quotient defined in (2).
In the second case, we approximate f(x) by a function h(x) of logarithmic

type:
h(x) = a+ c log(x+ b),

where a, b, c are chosen to satisfy the tangency conditions

h(xn) = f(xn) , h′(xn) = f ′(xn) , h′′(xn) = f ′′(xn)

at a given approximation xn. In this way, we deduce the numerical method

xn+1 = xn + (1− exp(Lf (xn)))
f ′(xn)

f ′′(xn)
. (4)

The idea of considering interpolating functions of exponential type has
been considered, for instance by S. Amat and S. Busquier [1]. In view of
the expressions (3) and (4), and taking into account Gander’s result, we can
formulate a convergence result for methods of the form xn+1 = S(xn) for

S(x) = x− T (Lf (x))
f ′(x)

f ′′(x)
. (5)

Theorem 1 Let α be a simple zero of the equation f(x) = 0 that satisfies
f ′′(α) 6= 0. Let us assume that T : R→ R is a differentiable enough function
around zero that satisfies T (0) = 0, T ′(0) = −1 and T ′′(0) = −1. Then
the iterative method given by xn+1 = S(xn), where S is defined in (5) is
convergent to α with at least order three.
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Remark 1 As an application of this result, we see that iterative methods of
the form

xn+1 = xn −

(
Lf (xn) +

1

2
Lf (xn)2 +

∑
j≥3

ajLf (xn)j

)
f ′(xn)

f ′′(xn)
(6)

are cubically convergent to simple roots of f(x) = 0. The previous series
development must be seen in a formal way, assuming that the corresponding
convergence conditions are fulfilled.

Remark 2 In particular, if aj = 0 for j ≥ 3 in (6), we obtain a new con-
struction of the well-known Chebyshev’s iterative method

xn+1 = xn −
(

1 +
1

2
Lf (xn)

)
f(xn)

f ′(xn)
. (7)

This method and some of its properties have been studied by many authors
(see [4] for more details).

Remark 3 We would like to highlight that the family of methods given in
(6) is essentially the same as the one given previously by Gander in (1). In
fact,

xn+1 = xn −

(
Lf (xn) +

1

2
Lf (xn)2 +

∑
j≥3

ajLf (xn)j

)
f ′(xn)

f ′′(xn)

= xn −

(
1 +

1

2
Lf (xn) +

∑
j≥2

aj+1Lf (xn)j

)
Lf (xn)

f ′(xn)

f ′′(xn)

= xn −

(
1 +

1

2
Lf (xn) +

∑
j≥2

aj+1Lf (xn)j

)
f(xn)

f ′(xn)
.

2 Two local convergence results with asymp-

totic error constants

We present new local convergence theorems for the iterative methods (3) and
(4), that in addition prove their cubic order of convergence. In the statement
of these results we consider the usual notations

en = xn − α, cj =
f (j)(α)

j!f ′(α)
, j ≥ 2. (8)



Modelling for Engineering & Human Behaviour 2018 184

Theorem 2 Assume that f(x) : D → R is a sufficiently many times differ-
entiable function with a simple zero α ∈ D, with D an open interval, and
let x0 be an initial guess close enough to α. Then, the exponentially-fitted
method defined in (3) has third-order of convergence and the error equation
is

en+1 =
2c22 − 3c3

3
e3n + O(e4n) .

Theorem 3 Assume that f(x) : D → R is a sufficiently many times differ-
entiable function with a simple zero α ∈ D, with D an open interval, and
let x0 be an initial guess close enough to α. Then, the logarithmically-fitted
method defined in (4) has third-order of convergence and the error equation
is

en+1 =
4c22 − 3c3

3
e3n + O(e4n) .

We finish our work with some numerical examples where we have com-
pared the introduced methods with other well-known methods of same order.
From the numerical examples, we conclude that the proposed methods out-
perform the other methods for each of the types of functions for which they
have been designed, and can be comparable for other kind of functions. Thus,
the proposed methods may be considered as alternative methods for solving
nonlinear equations, particularly if the functions involved present exponential
or logarithmic behaviors.
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1. INTRODUCTION 
 

This article focuses on the study of the maintenance cost optimization of an annuity under the Life 
Cycle Cost (LCC) approach based on reliability engineering. For doing this, the Delay Time Model 
approach is adapted to the railway case and a previous proposal of graphic resolution method is 
used (Pascual et al., 2017). In this paper, we present the discussion of the model where a study is 
made of the boundaries of the domain in which the graphic method is valid. Once the limits of the 
domain are established, a graphical analysis of the sharpness of the curve is performed, which we 
interpret as the risk in the selection of inspection periods, depending on the different variables of the 
problem. Likewise, a graphic study of the asymmetry of the model is carried out, depending on the 
different variables of the problem. On the other hand, an assessment of the influence of the use of 
exponentials in the graphic model used and the possibility of simplification that implies is 
performed. Finally, the drawing of graphs developed for the prediction of risk in the selection of 
inspection periods is proposed, and after its evaluation, the construction of a simplified method of 
interpretation of results is proposed. 

 

2. ASSESSMENT 
 

Initially the limits of the work domain will be discussed, that is, the ranges of the physical variables 
(failure rate, inspection period in days, delay time, etc...) for which the developed graphic method is 
valid, concluding that the abacuses are valid for most applications with physical meaning. 

Next, the shape of the "curve of the bathtub” is studied, explaining how the asymmetry of the same 
and its sharpening varies depending on each of the variables involved, emphasizing the relevance of 
the sharpening of the function C(T) - total cost depending on the inspection period (see Eq. (1)). 
This sharpening represents the risk that is assumed (in increment of incurred cost) when deviating 
from the optimal inspection period. Flat curves imply that the cost increase will be low if it is not 
inspected with the optimum frequency. However, very sharp curves will involve a large increase in 
cost (great risk) if it is not inspected at the optimum frequency. 
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To study the influence of the use of exponential distributions on risk, we start with the graphic study 
of each of the terms that make up the cost function as a function of period. The expression of the 
cost function is the following: 

 

 

(1) 

 

As a result, new abacuses are presented, representing the level of risk or sharpening for the entire 
field of solutions, proposing a possible categorization of equipment to be maintained according to 
their risk and cost (see Figure1 and Figure 2). 

 
Figure 1. Cost functions as a function of the period for the same period of T = 1 day, identical failure rate and variable 

delay time rate. Curves taken to the same abscissa point to study the shape. 

Figure 1 shows potential achievable solutions for an assortment of delay time values. All cost 
values have been homogenized to the same cost value to ease visual comparison. Two relevant 
shape parameters become then noticeable: both the sharpness and  the asymmetry of the curves.  

Regarding the sharpness, the longer the delay time used on the model,  the flatter the curve gets. 
Sharper curves imply higher risk whereas a flat curve means a lower risk related if a suboptimal 
inspection period is chosen. It has been observed that the curve sharpness achieves an asymptotical 
limit that can also be observed on the General Graphic Model (Pascual et al., 2017) 
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Figure 2. Optimum inspection period to obtain maximum savings per cycle based on the Corrected Rate of Failure  Λ and 
Delay Time Rate  β  

The isovalues line for inspection times T=10 shows how an increase on the Delay Time Rate β 
implies a decrease on the Corrected Rate of Failure Λ until it arrives to a convergence zone.  

 

To study the sharpness variation depending upon the inspection period, Figure 1 was calculated and 
plotted for several inspection periods. The resulting potential cost functions for an assortment of 
time delay values are shown on Figure 3 for inspection periods equal to T=10, T=20 and T=150 
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Figure 3. Families of cost curves for periods T = 10, T = 20 and T = 50; Cost scale (abscissa) homogenized and variable 

delay time 

A visual inspection of the potential solutions reveals two observable facts:   

First, certain asymmetry is shown for any given delay time. A stiffer negative slope is observed on 
inspection periods shorter than the optimal inspection period. Beyond the optimal inspection period, 
the positive slope becomes softer. 

On the other hand, maximum sharpness occurs for lower inspection periods. This behavior arises 
from the use of exponential distribution to model both, the failure rate and the delay time. Thus, the 
Delay Time Model (Christer 1984) when applied with exponential distributions will yield risk-
decreasing solution curves as the optimal inspection period increases. This outcome entails that 
physical cases with intrinsic long inspection periods will get low-risk, flat cost curves.  

 

 

3. CONCLUSION 
 

This paper shows the assessment of the graphical model for solving the Delay Time Model with 
exponential distributions for its application in inspection of repairable machinery. The objective is 
to establish the limits of the domain for its practical application in this type of operations. The 
discussion of its limits of application allows us to make a correct use and obtain an enriched 
knowledge of the problem to study in an agile and precise way. The possibility of obtaining 
effective information that avoids the risk of expensive decision making when setting the delay times 
in maintenance operations, is another of the main contributions of the graphic model. 
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Figure 3. Qualitative graphic classification according to risk and cost 

Assigning to each element studied a cost value (the optimal cost) and a value for the risk (the 
average of the slopes around the optimum), the elements can be categorized, visually ordering them 
in a perceptual map in which each value is represented according to its cost and risk (Figure 3). 
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1 Introduction

In this paper, we consider the integral equations given by

x(s) = f(s)− λ
∫ b

a

K(s, t)H(x(t))dt, (1.1)

with H : R −→ R a derivable scalar function, f : [a, b] −→ R a continuous function and

K : [a, b]× [a, b] −→ R continuous function in both arguments.

Nonlinear integral equation (1.1) is a particular case of Fredholm integral equations

[1, 2]. These equations have strong physical background and arise from the electro-

magnetic fluid dynamics and play a very significant role in several applications, as for

example the dynamic models of chemical reactors.

∗e-mail: mahernan@unirioja.es

190



Modelling for Engineering & Human Behaviour 2018 191

As the Fredholm integral equations of form (1.1) cannot be solved exactly, we can

use numerical methods to solve them, such as the different techniques that can be found

in the references of this work. If we pay attention to the iterative methods that can

be applied for approximating a solution x∗ ∈ C[a, b] of (1.1), the method of successive

approximations plays an important role (see, [3]-[6]).

This method consists of applying the fixed point theorem to the equation

x(s) = F (x)(s), (1.2)

with F : Ω ⊆ C[a, b] −→ C[a, b], where Ω is a nonempty convex domain in C[a, b], with

F (x)(s) = f(s) − λ
∫ b

a
K(s, t)H(x(t))dt and obtaining a sequence {xn+1 = F (xn)}n∈N

that converges to a solution x∗ ∈ C[a, b] of (1.1), i. e., a fixed point of F .

So in this paper, we consider an iterative process for approximating a fixed point of

F , whose iterative algorithm is{
yn = xn − [I − F ′

(xn)]−1(xn − F (xn))

xn+1 = yn − [I − F ′
(xn)]−1(yn − F (yn)), n ≥ 0,

(1.3)

where x0 ∈ C[a, b] is given.

We obtain a semilocal convergence result for the iterative process (1.3) from which

we will carry out the qualitative study for the equation (1.1).

In what follows, we consider the Nemytskii operator H : Ω ⊆ C[a, b] −→ C[a, b] such

that H(x)(s) = H(x(t)). Obviously, it is a Frechet differentiable operator and then, the

operator

F (x)(s) = f(s)− λ
∫ b

a

K(s, t)H(x(t))dt

verifies

[F
′
(x)y](s) = −λ

∫ b

a

K(s, t)[H′
(x)y](t)dt = −λ

∫ b

a

K(s, t)H
′
(x(t))y(t)dt.

1.1 Existence and location of a solution for (1.1)

Now, to obtain a semilocal convergence result for (1.3), let us assume that the following

conditions are satisfied:

(I) Γ0 = [I − F
′
(x0)]

−1 exists for some x0 ∈ Ω ⊆ C[a, b], with ‖Γ0‖ ≤ β, ‖Γ0(x0 −
F (x0))‖ ≤ η.
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(II) H′ is a ω-Lipschitz continuous operator such that

‖H′
(u)−H′

(v)‖ ≤ ω(‖u− v‖) for u, v ∈ Ω, (1.4)

where ω : R+ −→ R+ is a continuous and nondecreasing function satisfying ω(αz) ≤
φ(α)ω(z) for α, z ∈ [0,+∞) with φ : R+ −→ R+ a continuous and nondecreasing

function.

As first step, from the previous conditions, we easily obtain the following result for

the operator F
′
.

Lemma 1.1. F
′

is a ω-Lipschitz continuous operator in Ω such that

‖F ′
(u)− F ′

(v)‖ ≤ |λ|Mω(‖u− v‖) for u, v ∈ Ω,

with M = max
s∈[a,b]

∣∣∣ ∫ b

a

K(s, t)dt
∣∣∣.

As second step, denoting Γn = [I−F ′
(xn)]−1, we prove the existence of these operators

for each n ∈ N from Banach Lemma.

Lemma 1.2. Given R ∈ R+, if xn ∈ B(x0, R) ⊆ Ω, and β|λ|Mω(R) < 1 then [I −
F

′
(xn)]−1 exists and ‖[I − F ′

(xn)]−1‖ ≤ βR, where

βR =
β

1− β|λ|Mω(R)
.

From now, we denote θ(t) =
β

1− β|λ|Mω(t)
, then βR = θ(R).

In what follows, we tested two more technical lemmas by analyzing how the iterative

method (1.3) works for our problem (1.2) under conditions (I) and (II) established in

subsection 2.1, we obtain the bounding conditions to define the recurrence relations need

for the sequences {xn} and {yn}. First of all, we define the following parameters

r0 = η

s0 = ψR(r0)r0

S = 1 + ψR(r0)

T = χR(r0, s0)ψR(r0)

where ψR(u) = βR |λ|M Q ω(u), χR(u, v) = βR |λ|M
(
ω(u)+Q ω(v)

)
and Q =

∫ 1

0
φ(t)dt.

So, by considering the following scalar sequences rn = Trn−1 and sn = ψR(rn)rn, we

have that, if T < 1, rn and sn are decreasing scalar sequences and after proving some

results we establish the existence of the fixed point x∗.
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Theorem 1.1. With the previous notations, let F : C[a, b] → C[a, b] be the nonlinear

Fréchet differentiable operator given by [F (x)](s) = f(s) − λ
∫ b

a
K(s, t)H(x)(t)dt. If the

equation:

t =
1 + θ(t) |λ| M Q ω(η)

1− θ(t) |λ| M
(
ω(η) +Q ω(θ(t) |λ| M Q ω(η)η)

)
θ(t) |λ| M Q ω(η)

η (1.5)

has at least one positive real root and the smallest positive real root, denoted by R, satisfies

β |λ| M ω(R) < 1, B(x0, R) ⊆ Ω and assumptions (I) and (II) hold, then, for the

starting point x0, the method (1.3) converges to a fixed point x∗ of (1.2). Moreover,

xn, yn, x
∗ ∈ B(x0, R).

Finally, we apply all the above-mentioned to some nonlinear Fredholm integral equa-

tions for obtaining different results on the existence and uniqueness of the solution of

these applied problems.

Agreements: Research supported in part by the project of Generalitat Valenciana
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1 Introduction

The problem of finding a simple zero x̄ of a nonlinear function f(x) yields
frequently to the use of an approximating method. Newton’s scheme is the
best known one to find x̄, being a one-step method. Based on it, extensive
research has been developed over the years to improve its behavior, in terms
of order of convergence or computational efficiency. Some good texts about
both kind of procedures can be found in [1–3].

In this manuscript, we present several parametric classes that can hold
the quadratic convergence of Newton’s method and whose sets of converging
initial estimations can be wider than those of Newton’s scheme, for some
problematic functions.

The proposed iterative family is

xk+1 = xk −
f(xk)

f ′(xk) + αf(xk)
, k = 0, 1, 2, . . . , (1)

where α is a parameter. Note that for α = 0, we obtain Newton’s scheme.
The following result establishes the convergence of iterative methods (1).

∗This research was partially supported by Ministerio de Economı́a y Competitividad
MTM2014-52016-C2-2-P and Generalitat Valenciana PROMETEO/2016/089
†e-mail: sermalqu@ade.upv.es
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Theorem 1 Let f : D ⊆ R −→ R be sufficiently differentiable at each point
of an open interval D such that x̄ ∈ D is a simple solution of equation f(x) =
0 and the initial estimation x0 is close enough to x̄. Then, sequence {xk}k≥0
obtained from expression (1) converges to x̄ with order 2 with independence
of parameter α, being in this case the error equation

ek+1 = (α + C2)e
2
k +O(e3k),

where cj =
1

j!

f (j)(x̄)

f ′(x̄)
, j = 2, 3, . . . and ek = xk − α.

Other proposed families are

xk+1 = xk +
1

α
ln

[
1− α f(xk)

f ′(xk)

]
, (2)

or even

xk+1 = xk − α
f(xk)

f ′(xk)
− β

(
f(xk)

f ′(xk)

)2

. (3)

Let us observe that family (3) includes Newton’s method for α = 1 and
β = 0. We can establish a similar result to Theorem 1 for these both classes
of iterative methods. The methods of families (2) and (3) have order of
convergence two, for any values of the parameters.

2 General second-order weight function struc-

ture

These families can be generalized with the following weight function structure

xk+1 = xk −H(t(xk)), (4)

where t(xk) =
f(xk)

f ′(xk)
.

The order of convergence of (4) is established in the following result.

Theorem 2 Let f : D ⊆ R −→ R be a real function with the second deriva-
tive in D. Let x̄ ∈ D be a simple root of f(x) = 0. If we choose an initial
guess close enough to x̄ and a sufficiently differentiable function H(t) such
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that H(0) = 1, then methods described by (4) converge to x̄ with quadratic
order of convergence, being their error equation

ek+1 = (−H ′(0) + c2)e
2
k +O(e3k),

where cj =
1

j!

f (j)(x̄)

f ′(x̄)
, j = 2, 3, . . . and ek = xk − x̄.

3 Numerical performance

In this section, the numerical results obtained by applying Newton’s method
and the families denoted by M1 (1), M2 (2) and M3 (3) are compared using
the following test functions.

• f1(x) = arctan(x), x̄ = 0,

• f2(x) = x3 − 2x+ 2, x̄ ≈ −1.769292,

• f3(x) = sin(x) + x cos(x), x̄ = 0,

• f4(x) = x2ex
2 − sin2(x) + x, x̄ = 0.

The numerical computations have been carried out using MATLAB R2017
with variable precision arithmetics and 1000 digits of mantissa. The stop-
ping criterion used is |xk+1 − xk| + |f(xk+1)| < 10−100. For each class and
test function, we calculate the number of iterations, the value of residual
|f(xk+1)| at the last iteration and the computational order of convergence
ACOC, approximated by (see [4])

p ≈ ACOC =
ln(|xk+1 − xk| / |xk − xk−1|)

ln(|xk − xk−1| / |xk−1 − xk−2|)
. (5)

As it can be seen in Table 1, M1 and M2 (for specific value of α = 0.319
and α = −0.107, respectively) converge to the root of f1(x) with x0 = 2 when
Newton’s method does not. The same can be said for f2(x) when x0 = 1,
Newton’s scheme diverges while M1, M2 and M3 converge to the root. For
M3 we observe that its approximated computational order of convergence
(ACOC) is only 1 due to it does not satisfy H(0) = 1, which is a necessary
condition in Theorem 4 for having quadratic order of convergence. In Table
1, the no convergence is represented by −.
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Function f1(x) f2(x) f3(x) f4(x)

x0 2 1 0.5 3
Newton 31 - 7 18
M1 α = 0.319 7 64 8 22

iter M1 α = −0.107 21 11 8 20
M2 α = −0.574 10 32 8 22
M3 α = 0.834, β = 0.289 - 142 130 143
Newton - - 2e-774 9e-504
M1 α = 0.319 4e-214 4e-297 5e-333 1e-312

incr M1 α = −0.107 4e-313 2e-221 4e-302 3e-263
M2 α = −0.574 4e-357 3e-325 2e-285 1e-347
M3 α = 0.834, β = 0.289 - 2e-101 6e-102 9e-102
Newton - - 3.0 4.0
M1 α = 0.319 2.0 2.0 2.0 2.0

ACOC M1 α = −0.107 2.0 2.0 2.0 2.0
M2 α = −0.574 2.0 2.0 2.0 2.0
M3 α = 0.834, β = 0.289 - 1.0 1.0 1.0

Table 1: Numerical results for the different methods and several test func-
tions.

(a) M1, α = 0.1 (b) M2, α = 0.1 (c) M3, α = β = 0.1

Figure 1: Dynamical planes of all the methods for f1(x)

In Figure 1, different dynamical planes are shown where a mesh of 400×
400 initial estimations have been defined and, by using the routines described
in [5] and the value of parameter α = 0.1 in case of Figures 1a and 1b and
α = β = 0.1 for M3 family in Figure 1c, each initial point has been plotted
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in orange color if it has converged to the zero of f1(x) (up to a tolerance of
10−3 and in black color if it has not happened in a maximum of 80 iterations.
It can be observed that the set of initial converging points is a bit wider in
case of class M1 than that of M2, being the basin of attraction of the zero
much smaller in case of M3.

(a) M1 (b) M2 (c) M3

Figure 2: Parameter planes of all the methods for f1(x) and x0 = 2

However, in Figure 2, the point of view is different: the initial estimation
is fixed in x0 (the value used in Table 1) and the mesh of points defines
complex values of parameter α (for families M1 and M2, Figures 2a and 2b)
or pairs of real values of (α, β) in case of class M3, in Figure 2c. We observe
that the best values of α to converge to the root of f1(x) = 0 are those with
real part positive and close to zero, meanwhile in case of M2, α should have
the real part negative. In case of M3, the get the best results, real α must
be inside the interval [0.5, 1.5] and β ∈ [−0.2, 0]. These results agree with
the numerical performance of the families presented in Table 1.
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1 Introduction

Consumption is one of the main drivers of the economy. It is promoted in
our society due to its contribution to the public revenues through taxation as
well as its impact on macroeconomics indicators. Indeed, in western counties,
shopping is classified as a leisure activity, a way to manage emotions or a
means of expressing the self-identity.

In this context, a current culture of consumption has been generated,
leading to the development of different types of consumers. The rational
consumer who bases his purchase on a logical mental process and that is
governed by satisfying primary needs has given way to consumers who obtain
pleasure through the purchased product or the shopping experience and,
ultimately, consumers who consume with spending patterns that interfere in
their interaction with society, carrying serious labour, social and economic
problems [1].

This overconsumption is driven by external or internal factors, but have
in common that the consumer receives a profit from the product or from the

∗e-mail:paloma.merello@uv.es
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purchase experience itself. Thus, we can find hedonistic consumption and
conspicuous consumption. In the first, the consumer is self-satisfied thanks
to the act of consumption or the pleasures derived from the product [2], [3];
in the latter, the consumer emulates the upper classes through the purchase
of similar products [4], [5].

In XXI century, digital revolution has brought the emergence of e-commerce
and individuals are changing their patterns of behaviour. The literature pro-
vides evidence that consumers’ compulsion differences exist compulsion de-
pending on their frequency of online shopping [6]. The results of [6] illustrate
that the type of goods purchased is not a determinant to distinguish com-
pulsive and non-compulsive buyers; but also, Lam and Lam [7] stated that
buying on internet more than once a week increases significantly the risk of
becoming a problematic shopper.

The age has been identified as a determinant factor in the development
of a pathological consumption disorder [1]. Concretely, age is inversely cor-
related with the disorder indicating that younger people are more prone to
manifest the pathology.

In this paper, the transit of individuals among subpopulations is explained
through diverse factors such as the hedonistic consumption (Pascal effect) [8],
the imitation or conspicuous consumption (Veblen effect), [9], bandwagon
effect, economy, psychological, technological and demographic.

In this vein, the interest of the study relies on quantifying the magnitude
of the over consumers in Spain and the reasoning behind their behaviour.
Also, it is relevant to determine the drivers that explain how an impulsive
consumer might transit to pathological buyer [10]. Thus, to design preven-
tion strategies and/or develop a more responsible culture of consumption,
reinforcing from childhood the values that prevent the risk of development
of pathological consumption behaviour, [11].

2 The model

Consumers can be classified depending on their buying behaviour into three
categories: ordinary consumers, impulsive consumers and pathological con-
sumers. Ordinary consumers (Nj) are those buyers with a rational and
planned purchase behavior, impulsive consumers (Sj) are characterized by
spontaneous, immediate loss of control buying [1],[12] and pathological con-
sumers (Aj) repeat inappropriate spending patterns that interfere with social,
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work, or role functioning [1],[13].
In this work we identify and classify the Spanish population by their level

of consumption paying special attention to the differences by ages. Thus,
four age groups j = 1, 2, 3, 4 comprising the age intervals [16-25]; [26-35];
[36-64] and over 65 years old, respectively, are identified.

We propose a compartmental discrete non-linear model of difference equa-
tions to explain consumers’ behaviour trends during the period of time 2016-
2020 [14]. We consider a short term period for the simulations as the hy-
potheses need to be accurate for a finite domain and that is only guaranteed
in short-term for harsh human problems [15].

The compartmental difference equations model for the dynamic of buying
behavior in Spain is as follows (t in semesters),

Nt+1 = (σ − γ × σ − µ× σ)Bt +
∑4

j=1 ij,tτ − djNj,t +Nt + α 1
58
S3,t+∑4

j=1 ij,t (1− τ)
Nj,t

Bj,t
−
(
V ′
j,t + P ′

j,t

)
N ′

j,t + rAt ,

St+1 = St + (γ × σ)− djSj,t − α 1
58
S3,t +

∑4
j=1 ij,t (1− τ)

Sj,t

Bj,t
+(

V ′
j,t + P ′

j,t

)
N ′

j,t − (P + V ) (uj + Ej,t)Sj,t ,

At+1 = At + (µ× σ)Bt − djAj,t +
∑4

j=1 ij,t (1− τ)
Aj,t

Bj,t
+

(P + V ) (uj + Ej,t)Sj,t − rAt .

(1)

The demographic variables considered are the birth rate (σ) and the death
rate (dj) for every j. Besides, new incomers in the model needs to consider
γ and µ as the prevalence rate of impulsive (S) and pathological consump-
tion (A) in high school students. The migratory balance is also considered
(parameter ij,t), and defined as immigrants minus emigrants for every sub-
population.

In addition, a retirement effect is considered, defining α as the proportion
of impulsive consumers of 64 years old that transit to rational consumers
when they become 65 years old and get retired [16].

As regards to the transits from ordinary (N) to impulsive buyers (S),
Pascal and Veblen effects are considered. This way, we define P and V
as the percentage of consumers affected by the Pascal and Veblen effect,
respectively. Furthermore, e-commerce influences the frequency with which
consumer goods are purchased [6], hence it is assumed a catalyst for the
Veblen and Pascal effects and involved in the formulation of Pj,t and V ′

j,t.
Finally, transits from impulsive (S) to pathological buyers (A) include

also Pascal and Veblen effects, but they need an external trigger to take
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j N % S % A %
j = 1 1, 600, 827 34.9 2, 138, 373 46.6 848, 213 18.5
j = 2 1, 913, 703 31.8 2, 997, 857 49.8 1, 114, 155 18.5
j = 3 6, 688, 474 33.7 11, 581, 381 58.3 1, 588, 683 8.0
j = 4 5, 988, 292 69.2 2, 375, 051 27.4 294, 362 3.4
Total 41.4 48.8 9.8

Table 1: Initial sub-populations in Spain at January 2016, t = 0.

place. That kind of transit is complex and we consider that only an external
distress, economic (Ej,t) and/or emotional (uj), can affect those consumers
suffering from anxiety or depression increasing their levels of compulsion.

As the recognition of the addiction has been maintained in our society,
we consider the same therapy recovery rate (r) for pathological buyers as in
[17] and adapt its value to semi-annual transits.

The initial sub-populations are computed and take the values as Table 1
shows.

The initial sub-populations of pathological buyers (Aj) have been cal-
culated according to the literature values for different samples and ages
[17],[18],[19]. Rational consumers (Nj) perform planned purchases; this cate-
gory also comprises those consumers that due to their beliefs (religion/culture)
or forced by their economic situation (long-term unemployed workers and
people at risk of poverty) do not spend their economic surplus in purchases.
Finally, the impulsive consumers (Sj) in t = 0 are calculated by difference
for every j.

3 Results

As the economic situation is considered in the model, we simulate the short-
term future sub-populations in July 2020 under different possible future evo-
lutions of the poverty risk rate.

The following three scenarios are considered. The base scenario does not
consider any substantial changes neither in the political nor in the economic
situation of Spain in the following years but also from January 2017 the
poverty risk rates keep constant. The recovery scenario considers a possible
labor reform with reinforcement of the salaries, temporality and labor condi-
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Figure 1: Sub-populations of consumers by age in Spain in July 2020; base
scenario. White block represents the ordinary consumers, gray block repre-
sents impulsive consumers and black block represents pathological consumers.

tions as a result of the change in the Spanish government. Under the recovery
scenario, the poverty risk rates are decreasing 0.5 points every semester since
January 2017 for j = 1, 2, 3; however, it remains constant for j = 4 as re-
tirement pensions will rise with the CPI and their purchasing power will not
change. The worsening scenario assumes an opposite situation. As far as we
know, the current macroeconomic indicators in Spain are improving but pre-
carious workers also increase [20]. If we consider that the government does
not develop any labor reform, precariat will increase. Under the worsening
scenario we consider an increase in the poverty risk rates about 0.5 points
every semester since January 2017.

The results of the simulations are shown in Figure 1 and 2. Figure 1 illus-
trates the evolution of the different sub-populations if the economic situation
remains constant.

Under base scenario, ordinary buyers decrease for all age groups, as well
as pathological consumers increase for j = 3 and 4 (being 8% and 3.4% the
percentage estimated for 2016 and 9.2% and 4.9% in 2020, for j = 3 and 4,
respectively) and there is a lightly decrease for j = 1 and 2 (being 18.5% the
percentage estimated for 2016 and 17.2% and 17.6% in 2020, for j = 1 and
2, respectively).

It is remarkable that impulsive buyers increase for all sub-populations
minus for j = 4. A sensitivity analysis is performed for the retirement effect
coefficient (α) considering α between 0.1 and 0.9 under the base scenario. The
results predict an increase of the impulsive consumers in the total Spanish
consumers’ population for all possible values of α.
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Figure 2: Total sub-populations of consumers in Spain in January 2016 com-
pared to sub-populations in July 2020 under the three scenarios considered.
White block represents the ordinary consumers, gray block represents impul-
sive consumers and black block represents pathological consumers.

As regards to the differences between scenarios, Figure 2 shows that or-
dinary consumers decrease for the three scenarios considered, meanwhile im-
pulsive and pathological buyers increase. Pathological consumers increase
the most under worsening scenario, due to the economic effect of the in-
crease of precariat. The recovery scenario presents the largest increase in the
impulsive buyers’ subpopulation, from 48.8 in January 2016 to 51.6% in July
2020.

4 Conclusions and discussions

The compulsive buying has been a topic of interest in the recent decades
as the consumption culture has led to the development of different types of
shopping behavior.

Impulsive consumption is governed by two internal behavioral mecha-
nisms that respond fundamentally to the hedonism and the emulation or Ve-
blen effect. This paper presents a compartmental mathematical model that
allows estimating in the short term the ordinary, impulsive and pathological
buyers in Spain under three different economic scenarios.

The results show that impulsive and pathological buyers will increase
under all economic scenarios. Notable differences in the number of ordinary
buyers are found for the group over 65 years old.

The limitations of this work are the impossibility of finding real data
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for Spain for some of the transit parameters. As is common in this type of
models, the estimates are calculated under some assumptions and hypotheses
of simplification of human behavior. In the future, it would be interesting
to validate the estimates of our model by comparing with data from a real
sample of Spanish consumers.
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1. Introduction 
 
The present work is an attempt to define a minimum action principle to describe the short term 
dynamics of personality as a consequence of a stimulus, including the Lagrangian and the 
Hamiltonian functions of this formalism [1]. In physics, the current problem consists in getting the 
dynamics (by a set of coupled second order differential equations) from a known Lagrangian. 
However, the inverse Lagrange problem [2] consists in finding the Lagrangian from the known 
dynamics. In the context of this paper, the inverse Lagrange problem is applied to the short term 
dynamics of personality as a consequence of a stimulus. Once the Lagrangian is found, the 
Hamiltonian is derived by its definition from the Lagrangian. 
     
Personality is here measured by the Five-Adjective Scale of the General Factor of Personality (GFP-
FAS) [3], which measures dynamically the General Factor of Personality (GFP), i.e, a way to 
measure the overall human personality [4]. The so-called response model is the mathematical tool 
used to model the personality dynamics [5]. However, the response model here presented has a slight 
different mathematical structure, which produces a more realistic dynamics [6]. The response model 
presented is an integro-differential equation where the stimulus is an arbitrary time function. It is 
transformed in a second order differential equation for which a Lagrangian and a Hamiltonian are 
found, solving like this the corresponding inverse Lagrange problem.    
 
An application case is presented: an individual consumes 20 mg of methylphenidate, and the GFP-
FAS are observed every 7.5 minutes during 3 hours. Methylphenidate is a stimulant drug that can be 
modelled by a known time function [7], which produces significant changes in the biological bases of 
personality [7, 8]. This time function is considered in the second order differential equation. The 
response model is then calibrated with the experimental outcomes of the individual GFP-FAS. The 
corresponding Hamiltonian dynamics is also reproduced.  
 
  

2. The response model 
 
The response model is given by the integro-differential equation: 

 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑎𝑎(𝑏𝑏 − 𝑦𝑦(𝑡𝑡)) + 𝑝𝑝 · 𝑠𝑠(𝑡𝑡) · 𝑦𝑦(𝑡𝑡) − 𝑞𝑞 · ∫ 𝑒𝑒
𝑥𝑥−𝑡𝑡
𝜏𝜏 · 𝑠𝑠(𝑥𝑥) · 𝑦𝑦(𝑥𝑥) 𝑑𝑑𝑥𝑥𝑡𝑡

0
𝑦𝑦(0) = 𝑦𝑦0

�                                      (1)                                                                           

 
In Eq. 1, 𝑦𝑦(𝑡𝑡) represents the GFP dynamics; and b and y0 are respectively its tonic level and its initial 
value. Its dynamics is a balance of three terms, which provide the time derivative of the GFP: the 
homeostatic control (𝑎𝑎(𝑏𝑏 − 𝑦𝑦(𝑡𝑡))), i.e., the cause of the fast recovering of the tonic level b, the 
excitation effect (𝑝𝑝 · 𝑠𝑠(𝑡𝑡) · 𝑦𝑦(𝑡𝑡)), which tends to increase the GFP, and the inhibitor effect (𝑞𝑞 ·

∫ 𝑒𝑒
𝑥𝑥−𝑡𝑡
𝜏𝜏 · 𝑠𝑠(𝑥𝑥) · 𝑦𝑦(𝑥𝑥) 𝑑𝑑𝑥𝑥𝑡𝑡

0 ), which tends to decrease the GFP and is the cause of a continuously delayed 
recovering. Parameters a, p, q and τ are named respectively the homeostatic control power, the 
excitation effect power, the inhibitor effect power and the inhibitor effect delay. In addition, the 𝑠𝑠(𝑡𝑡) 
time function represents the dynamics of an arbitrary stimulus.   
 
Taking the time derivative in Eq. 1 and subsequently substituting the inhibitor effect (the integral 
term) in this equation, the second order differential equation, in addition of the initial conditions, 
arises: 
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�̈�𝑦(𝑡𝑡) = �−𝑎𝑎 − 1
𝜏𝜏

+ 𝑝𝑝 · 𝑠𝑠(𝑡𝑡)� �̇�𝑦(𝑡𝑡) + �− 𝑎𝑎
𝜏𝜏
− 𝑞𝑞 · 𝑠𝑠(𝑡𝑡) + 𝑝𝑝

𝜏𝜏
· 𝑠𝑠(𝑡𝑡) + 𝑝𝑝 · 𝑠𝑠′(𝑡𝑡)�𝑦𝑦(𝑡𝑡) + 𝑎𝑎·𝑏𝑏

𝜏𝜏

𝑦𝑦(0) = 𝑦𝑦0
�̇�𝑦(0) = 𝑎𝑎(𝑏𝑏 − 𝑦𝑦0) + 𝑝𝑝 · 𝑠𝑠0

�                (2)                        

                                                                          
Eq. 2 is an equivalent version of Eq. 1. In it, 𝑠𝑠0 is the amount of in the initial time t=0. From now 
onwards Eq. 2 is the version of the response model to be used. 
 

 
3. Hamiltonian for the response model 

 
The minimum action principle applied to Eq. 2 asserts that the Action between two arbitrary times 𝑡𝑡1 
and 𝑡𝑡2, defined as 𝐴𝐴 = ∫ 𝐿𝐿(𝑡𝑡, 𝑦𝑦, �̇�𝑦) 𝑑𝑑𝑡𝑡𝑡𝑡2

𝑡𝑡1
, being 𝐿𝐿(𝑡𝑡,𝑦𝑦, �̇�𝑦) the Lagrangian, must be minimum under the 

parameter variation, i.e., 𝛿𝛿𝐴𝐴 = 0. The last equation provides the so-called Euler-Lagrange equation: 
 

𝑑𝑑
𝑑𝑑𝑡𝑡
�𝜕𝜕𝜕𝜕
𝜕𝜕�̇�𝑑
� = 𝜕𝜕𝜕𝜕

𝜕𝜕𝑑𝑑
                                                                            (3) 

 
The Lagrange inverse problem consists in finding the Lagrangian that provides Eq. 2. To solve it, if 
𝑢𝑢(𝑡𝑡), 𝑣𝑣(𝑡𝑡) and 𝑤𝑤(𝑡𝑡) are unknown time functions by the moment, the following Lagrangian is 
essayed: 

  𝐿𝐿(𝑡𝑡,𝑦𝑦, �̇�𝑦) = 1
2
𝑢𝑢(𝑡𝑡) · �̇�𝑦2 + 1

2
𝑣𝑣(𝑡𝑡) · 𝑦𝑦2 + 𝑤𝑤(𝑡𝑡) · 𝑦𝑦                                                      (4) 

 
Applying Eq. 3 to Eq. 4:        

 
�̈�𝑦(𝑡𝑡) = −𝑢𝑢′(𝑡𝑡)

𝑢𝑢(𝑡𝑡) �̇�𝑦 + 𝑣𝑣(𝑡𝑡)
𝑢𝑢(𝑡𝑡)𝑦𝑦 + 𝑤𝑤(𝑡𝑡)

𝑢𝑢(𝑡𝑡)                                                                                   (5) 
 
By comparing Eq. 5 and Eq. 3: 
 

−𝑢𝑢′(𝑡𝑡)
𝑢𝑢(𝑡𝑡) = −𝑎𝑎 − 1

𝜏𝜏
+ 𝑝𝑝 · 𝑠𝑠(𝑡𝑡) ; 𝑣𝑣(𝑡𝑡)

𝑢𝑢(𝑡𝑡) = −𝑎𝑎
𝜏𝜏
− 𝑞𝑞 · 𝑠𝑠(𝑡𝑡) + 𝑝𝑝

𝜏𝜏
· 𝑠𝑠(𝑡𝑡) + 𝑝𝑝 · 𝑠𝑠′(𝑡𝑡) ; 𝑤𝑤(𝑡𝑡)

𝑢𝑢(𝑡𝑡) = 𝑎𝑎·𝑏𝑏
𝜏𝜏

              (6)          
 

Eq. 6 provides:  
 

𝑢𝑢(𝑡𝑡) = 𝑢𝑢0℮
�𝑎𝑎+1𝜏𝜏�𝑡𝑡−𝑝𝑝 ∫ 𝑠𝑠(𝑥𝑥) 𝑑𝑑𝑥𝑥𝑡𝑡

0

𝑣𝑣(𝑡𝑡) = 𝑢𝑢(𝑡𝑡) �− 𝑎𝑎
𝜏𝜏
− 𝑞𝑞 · 𝑠𝑠(𝑡𝑡) + 𝑝𝑝

𝜏𝜏
· 𝑠𝑠(𝑡𝑡) + 𝑝𝑝 · 𝑠𝑠′(𝑡𝑡)�  ;   𝑤𝑤(𝑡𝑡) = 𝑢𝑢(𝑡𝑡) 𝑎𝑎·𝑏𝑏

𝜏𝜏
 
�                                                (7) 

 
Thus, the Lagrangian is given by Eqs. 4 and 7. Note that it is undetermined by the constant 𝑢𝑢0. The 
canonical momentum must be defined to find the Hamiltonian: 
 

𝛾𝛾 = 𝜕𝜕𝜕𝜕
𝜕𝜕�̇�𝑑

= 𝑢𝑢(𝑡𝑡) · �̇�𝑦                                                                                      (8) 
 
And the Hamiltonian, through its known formula, becomes: 
 

𝐻𝐻(𝑡𝑡,𝑦𝑦, 𝛾𝛾) = 𝜕𝜕𝜕𝜕
𝜕𝜕�̇�𝑑
�̇�𝑦 − 𝐿𝐿(𝑡𝑡, 𝑦𝑦, �̇�𝑦) = 1

2
𝛾𝛾2

𝑢𝑢(𝑡𝑡) −
1
2
𝑢𝑢(𝑡𝑡) · �̅�𝑣(𝑡𝑡) · 𝑦𝑦2 − 𝑢𝑢(𝑡𝑡) 𝑎𝑎·𝑏𝑏

𝜏𝜏
𝑦𝑦 + 𝐻𝐻0                         (9) 

 
after having used Eq. 8 to substitute �̇�𝑦 by 𝛾𝛾, where �̅�𝑣(𝑡𝑡) = −𝑎𝑎

𝜏𝜏
− 𝑞𝑞 · 𝑠𝑠(𝑡𝑡) + 𝑝𝑝

𝜏𝜏
· 𝑠𝑠(𝑡𝑡) + 𝑝𝑝 · 𝑠𝑠′(𝑡𝑡). 

 
Note that the Hamiltonian found is not a conserved amount, due to, as it is known in the general case, 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝜕𝜕𝑑𝑑
𝜕𝜕𝑡𝑡

, but by Eq. 9: 𝜕𝜕𝑑𝑑
𝜕𝜕𝑡𝑡
≠ 0. Thus, 𝑑𝑑𝑑𝑑

𝑑𝑑𝑡𝑡
≠ 0. However, as a hypothesis, the Hamiltonian of Eq. 9 can 

be considered a non-conserved energy of personality as a consequence of a stimulus 𝑠𝑠(𝑡𝑡). Note again 
that it is undetermined by the constant 𝑢𝑢0, and also by an additive constant added 𝐻𝐻0, which help us 
to define the convenient energy value in the initial time t=0.   
 
 

4. The application case 
 
The application case consists in providing 20 mg of methylphenidate to an individual (male) of 54 
years old. Methylphenidate is a stimulant drug whose dynamics can be modelled by a set of two 
coupled differential equations [7] as: 
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𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −𝛼𝛼 · 𝑚𝑚(𝑡𝑡)
𝑚𝑚(0) = 𝑀𝑀

�            
𝑑𝑑𝑠𝑠(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝛼𝛼 · 𝑚𝑚(𝑡𝑡) − 𝛽𝛽 · 𝑠𝑠(𝑡𝑡)
𝑠𝑠(0) = 𝑠𝑠0

�                                         (10)                                                                    

   
  
In Eq. 10 𝑚𝑚(𝑡𝑡) is the non-assimilated methylphenidate amount, M is the initial amount of 
methylphenidate of a single dose and α is the methylphenidate assimilation rate. In addition 𝑠𝑠(𝑡𝑡) 
represents the stimulus, i.e., the amount in organism of the methylphenidate non-consumed by cells, 
𝑠𝑠0 is the amount of methylphenidate present in organism before the dose intake, and β is the 
methylphenidate metabolizing rate. The time function 𝑠𝑠(𝑡𝑡) corresponding to the stimulus dynamics is 
obtained by integrating the system of Eq. 10: 
 

𝑠𝑠(𝑡𝑡) = 𝑠𝑠0℮−𝛽𝛽·𝑡𝑡 + �
𝛼𝛼·𝑀𝑀
𝛽𝛽−𝛼𝛼

�℮−𝛼𝛼·𝑡𝑡 − ℮−𝛽𝛽·𝑡𝑡� ∶  𝛼𝛼 ≠ 𝛽𝛽

𝛼𝛼 · 𝑀𝑀 · 𝑡𝑡 · ℮−𝛼𝛼·𝑡𝑡 ∶  𝛼𝛼 = 𝛽𝛽
                                                     (11) 

 
Note that Eq. 11 must be considered in the response model of Eq. 2. In addition, M=20 mg and 𝑠𝑠0 =
0, due to the individual has not consumed methylphenidate for very long. The calibration of the 
response model for the individual GFP-FAS outcomes, observed every 7.5 minutes during 3 hours, 
consists in finding the optimal parameter values that minimize the square sum of the difference 
between the experimental values and the theoretical ones. The strength of the calibration is measured 
by the determination coefficient (R2). In addition, the residuals’ randomness is provided by the p-
value of the Anderson-Darling test, which reports if the residuals distribute as a N(0,std), i.e., as a 
Normal distribution of zero mean and constant standard deviation (std), being std the standard 
deviation of the residuals. Fig. 1 provides this calibration. Note that the visual observation provides a 
very good theoretical prediction of the response model given by Eqs. 2 and 11, supported by a 
determination coefficient close the unit (R2=0.94) and an Anderson-Darling’s p-value=0.58 that 
confirms the residuals’ randomness. 
 
Fig. 2 represents the dynamics of the Hamiltonian given by Eq. 9. In it, the additive constant has been 
taken 𝐻𝐻0 = 4 and 𝑢𝑢0 = 1 in order to present its evolution in the range of positive values. Note that 
after a strong increase, it reaches its maximum and, after a slight decrease, it tends to a constant value. 
 
 

 
 

Fig. 1. General Factor of Personality response to 20 mg  
of methylphenidate intake versus time. Experimental  
values (dots) and theoretical values (line). R2=0.94.  
P-value=0.58. 

Fig. 2. Hamiltonian versus time with 𝐻𝐻0 = 4 and 𝑢𝑢0 = 1. 

 
 
Conclusions  
 
Fig. 1 confirms that the response model, given by Eqs. 2 and 11 (when a stimulant drug is being 
modelled) is suitable to reproduce the dynamical response of the GFP as a consequence of a dose 
intake of a stimulant drug. The works [7, 8] points out clearly the utility of the response model to 
reproduce the dynamics of the GFP and the changes in its biological bases. Also it is a tool to describe 
the personality change with the help of drugs and the support of the self-regulation therapy there 
provided.  
  
In addition, the analytical approach to the problem given by the minimum action principle, the 
Langrangian and the Hamiltonian is a success theoretical approach because it connects the behavioral 
sciences with a consolidated formalism of physics. This connection represents an objective of General 
Systems Theory: provide to the human disciplines of the same epistemological status than positive 
sciences have. However, no utility has been found by the moment, which must be still investigated. 
However, the motivation of the authors is given by the search of an “energy function” to explain the 
human personality. If mathematically it has been found in the context of the short term dynamics 
response of the GFP to a stimulant drug, it must be also sought for other kinds of stimuli and for long 
term dynamics responses. In addition, the utility of the Hamiltonian could be speculated that consists 
in analyzing the Hamiltonian terms searching for the processes of sensitization and habituation of 
personality. Another use could consist in providing a quantum approach to brain.         
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1 Introduction

Most of the multitasking robots used in large factories are characterized by
the performance of repetitive and highly accurate actions. Its correct oper-
ation is crucial to obtain an excellent, competitive and sustainable product.
Often, machines act in a chain, so that the tasks that fall on a machine affect
the operation of the next. During their lifespan, machine components suffer
deterioration motivated by multiple pathologies that do not necessarily im-
ply a breakdown. These deteriorations could be unnoticed during time and
have negative consequences like for instance, energy waste, slowed down the
production process, breakdowns in contiguous components, etc. With the
aim of minimizing the impact on the cost of production that causes deterio-
ration in automated systems, the present paper shows a pattern recognition
Bayesian model able to detect the deviation that the machine has compared
with correct behavior. This deviation is measured in terms of the technical
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cycle time of the machine. As a result, the posterior distribution of proba-
bilities of each one of the considered machine pathologies is obtained, in a
mixture of Gaussian distributions. As an example of the proposed method-
ology, a welding unit located at Ford factory in Almussafes was isolated and
tested for some pathologies. These pathologies are in a proportional valve, a
cylinder, an electrical transformer, the robot speed and the loss of pressure.
As a result, and based on a real-time cycle time monitorization, a ”ranking”
of pathologies based on probabilities of its occurrence is established.

2 Previous works. From micro-term to long-

term

Figure 1: A pyramid of terms.

The data used in the analysis of the production lines is classified into
long-term and short-term. Long-term is mainly used for process planning,
while short-term focuses, primarily, on process control. Following the defini-
tion in [2], short-term is referred to an operational period not large enough
for machine failure period to be described by a statistic distribution. The
machine cycle time is considered short-term. In [3], [4] redefines short-term
into two new terms, mini-term and micro-term, see figure 1. A mini-term
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could be defined as a machine part, in a predictive maintenance policy or in
a breakdown, replaceable easier and faster than another machine part sub-
division. Furthermore, a mini-term could be defined as a subdivision that
allows us to understand and study the machine behavior. These sub-cycle
times (micro-terms and mini-terms) are not the same at each repetition and
they follow a probabilistic distribution, mean value µ and standard devia-
tion σ. In addition to that, the probabilistic sub-cycle time for each machine
component varies during the lifespan of the component. In other words, the
deterioration indicators that can be measured with thermal cameras, vibra-
tion and ultrasonic devices have an effect on the machine cycle time. In most
cases, the measurement of these cycle times does not imply any additional
costs because the actuators that allow the sub-cycle time measurement were
installed in the machine and are used for their automated work.

3 A test bench for a welding station.

The behavior of the welding station, figure 2, is simple. First, the robot arm
moves the welding clamp to the point to weld. Then, a pneumatic cylinder
moves the welding clamp in two phases: One to bring closer the clamp and
a second one to weld. The pressure applied by the clamp is controlled by a
control system.

Figure 2: Welding station

The Robot Arm and Welding Clamp need a certain time to develop their
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task and their components also need a certain time to develop their own
tasks. In [5] the welding station was divided in three mini-terms, the robot
arm, the welding clamp motion and the welding task. .

3.1 Pathologies analysed.

The welding station, as well as other stations in the industry, is bound to
suffer from pathologies that produce an effect on the cycle time. Based on
the operator’s experience, In [5] were selected the most common ones for
the experimental welding station. These pathologies produce a cycle time
modification but do not produce failure of the component, going unnoticed
for maintenance workers and also for the control system, in other words, after
the change point and before the failure of the component, see Figure ??. The
pathologies rated are; for the welding clamp mini-term: the proportional
valve, the cylinder stiffness, welding failure produced by the transformer and
pressure loss, and for the robot arm mini-term; the robot arm speed.

3.2 Rules definition and Bayesian mixture model.

In [5] was analyzed the experimental samples to understand how the patholo-
gies affect the cycle time and to generate rules that allow us to define it. The
test developed without pathology is called as ”C” (control test) and the be-
haviour with one of the pathologies (P1...P5), that is, six different situations
for each mini-term. It is obvious that the cycle time for the mini-terms with
pathology are different compared with the control or bassal situation.

The statistical tests used in [5] was Shaphiro-Wilk, Levene, ANOVA,
Kruskal-Wallis and a variance. For all the tests, the significance level is
α = 0.05. With this, statistical rules was obtained, allowing to diferenciate
between pathologies. In Table 1 is shown a resume of the rules. the first two
rows are rules that classify mean and variance values according to the pathol-
ogy. Third row shows threshold values to determine if there are pathologies
or not and the last row shows extra rules like for instance, when pathology
4 occurs, the data do not pass the normality test.

By means of these rules, A Bayesian model that mix the gausians is used
to determine which pathology occurs in real-time. [6].
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Table 1: Rules for the Knowledge-driven MSS. Welding station case.
Robot Motion mini-terms

Mean rule µC = µP1 = µP2 = µP3 = µP4 < µP5

Variance rule −−−
Stand. desv rule. S > 25.4 · 10−3 → All
Normality rule −−−−

Welding Motion mini-terms
Mean rule µC = µP5 < µP1 < µP3 < µP2 < µP4

Variance rule σ2
C = σ2

P1 = σ2
P3 = σ2

P5 < σ2
P2 < σ2

P4

Stand. desv. rule S 6∈ [47 · 10−474 · 10−4]→ P2, P4

Normality rule P4fail
Welding task mini-terms

Mean rule µP2 < µP4 < µC = µP3 < µP5 < µP1

Variance rule σ2
C = σ2

P3 = σ2
P5 < σ2

P2 = σ2
P4 < σ2

P1

Stand. desv. rule S > 12.9 · 10−3 → P1, P2, P4

Normality rule P1fail

4 Conclusions and actual developments.

This paper shows how to design real-time Maintenance Support System to
prognosticate breakdowns in production lines. The system is based on the
sub-cycle time (mini-terms) monitorization, statistical analysis, learning of
the data obtained for the real production lines, defining the density functions
that govern the decisions, based on Bayesian model. The system is nowadays
on an standarization process in a Ford Motor company where thousands of
mini-terms and their pathologies are reported and analyzed. The system is
well known as mini-term 4.0, see, [7].
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1 Introduction

Respiratory Syncytial Virus (RSV) is an acute respiratory infection that
infects millions of children and infants worldwide. It is the major cause
of their hospitalizations, especially for bronchiolitis and pneumonia [1] and
its impact on health services is increasing [2]. The impact on adults also
is studied because up to 18% of the pneumonia hospitalizations in patients
older than 65 years are due to RSV [3].

The cost of pediatric hospitalization for the Valencian Health Service is
about e3.5 million per year being the RSV the cause of annual seasonal epi-
demics with minor variations each year but its coincidence with other com-
mon viral infections such as influenza or rotavirus produces an overstretching
of the health service.

Recent research clearly shows the possibility of developing a variety of
effective vaccines on RSV. Some of those types are already in preclinical
development or even in clinical trials. These vaccines might be available in
the near future so, planning of vaccination strategies is urgently required.

Mathematical models are powerful tools to analyse the epidemiology of
infectious illnesses, to understand their behaviour, to predict their social
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impact and to discover how external actors change the impact of disease. In
the case of RSV, the building of a reliable model is a priority objective to
predict the medical care requirements needed in the following seasons [4].

Different mathematical models have been studied to simulate the propa-
gation of RSV. For instance, Weber et al. [5] proposed and studied a classical
SIRS and its variation MSEIRS (including maternal immunity and latent pe-
riod). Some of SIRS models of RSV use differential equations [4, 5, 6, 7, 8, 9]
and others are based on network models [10] or even the SIRS model has
been studied from a Bayesian perspective [11].

Although the network model [4] achieved fitting the seasonality without
that forcing, most of models reproduce the seasonality forcing it by means a
periodic transmission function β varying with a cosine with higher transmis-
sion during winter months, such as appears in literature [4, 5]:

β(t) = b0 + b1cos(2πt+ φ) (1)

In this study, we consider this type of SIRS model but with fixed tem-
poral immunity, w, as Brauer et al. proposes [12]. We analyze if the cosine
coefficient, b1, is small enough to remove the seasonal forcing when we fit the
model to data. In order to fit the parameters of the model we use data from
children hospitalizations in the Spanish Region of Valencia from November
2001 to 2004, which are the same ones as we used in the classical model [4].

2 Data

In this work we use the same data as were used in our previos work [4]:

• Weekly data between 2001 and 2004 (208 weeks) with the number of
hospitalizations of children less than one year.

• Population data are obtained from the IVE (Valencian Institute of
Statistics).

• We initially consider an infectivity period of 10 days [1, 4, 5] and a
recovered period of 200 days [4, 5] to do comparisons with the results
obtained in [4].

• In the same way we use at first the proportion of infected children who
are hospitalized, s = 0.022, that was obtained in [4].
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3 Model

Usually in SIRS models, individuals remain in the Recovered state for a
period of time after which they return to susceptible class, but we consider
a constant period of temporary immunity, w, following recovery from the
infection, such as proposed Brauer in [12]. This type of SIRS model can have
abiding oscillations even if the seasonal forcing in function β is not used.

3.1 Description

Therefore, in our model there is a temporary immunity period of fixed length,
w, after which recovered infectives revert to the susceptible class, what means
that w is a delay in the lost of immunity. See Figure 1.

Figure 1: Model with temporary immunity period of fixed length (w).

If we use discrete-time evolution, the transmission dynamics of RSV can be
modeled by only two equations [12]:

S(t+ 1) = S(t)− βS(t)I(t) + αI(t− w)
I(t+ 1) = I(t) + βS(t)I(t)− αI(t)

(2)

3.2 Two age groups and constant population

In our calculations we use constant population (N=S+I+R) and as well as
the available data are only for children younger than one year we divide the
population into two age groups: [0-1[ and older than one year old.

In order to have an adequate distribution of the age groups we consider
the data from IVE averaged between 2001 and 2004 having adjusted the
mortality rate of the second group for maintaining of constant population.
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3.3 Calibration

We have adjusted the parameters of the seasonal term (b0, b1, φ) and the
proportion of hospitalized patients (s) to minimize the Root Mean Square
Error (RSME) between data and the model output every week.

The Particle Swarm Optimization (PSO) algorithm has been used for this
calibration [13, 14].

As initial conditions, it has been necessary to estimate 28 values of I1 and
I2. The immunity rate α is the related to a period of immunity of 10 days
(or 1.43 weeks) and as delay w in the loss of immunity we consider 28 weeks
(200 days). In addition, we have left a transitory period of stabilization of
the disease of 520 weeks before beginning the calibration.

4 Results

The first result has been obtained with the parameters α ∼ 10 days and
w = 28 weeks that were already used in [4]. Values obtained are:

b0 = 0.922; b1 = 0.143;φ = 1.627; s = 0.0339;RSME = 1.1645 (3)

and the graph representing the fitting is:

Figure 2: Comparison between the weekly data of children under one year that
were hospitalized by RSV (red dots) and the results obtained in the simulation
made using the values b0 = 0.922; b1 = 0.143;φ = 1.627 and s = 0.0339 (blue
line) during the 208 weeks.

The parameter b1 is the coeficient that extends the periodic part of β(t),
then to study its relevance we must compare its proportion with b0. If we
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compare the new values to the ones obtained in [4] we can observe that the
new b1 is less relevant that the previous one because

b1(0.143)

b0(0.922)
<
b1(14.31)

b0(69.52)

[4]

On the other hand, one of the objectives of incorporating this delay was to
see if the oscillations of the data can be reproduced by reducing the seasonal
forcing of the transmission rate. So we have made new calibrations with
b1 = 0 but allowing a different infected period α 6∼ 10 days and a different
period of losing immunity w 6=28 weeks.

In this case we show two interesting results:

• The first one has been selected because it is capable of reproducing
seasonal maxima very well although the RSME is larger than in the
previous result

b0 =0.860;α∼15 days;w=26 weeks; s=0.016;RSME=1.4165 (4)

and their graph representation is:

Figure 3: Same as Figure 2 with b0 = 0.860; b1 = 0.0;α ∼ 15 days;w =
26 weeks and s=0.016

• The second result is the best one (minimum RSME) obtained with
b1 = 0 and without constraints for α and w:

b0 =0.865;α∼14 days;w=26 weeks; s=0.012;RSME=1.0574 (5)
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Figure 4: Same as Figure 2 with b0 = 0.865; b1 = 0.0;α ∼ 14 days;w =
26 weeks and s=0.012

5 Conclusions

We have adapted the SIRS model of RSV [4] incorporating a temporary
immunity period of fixed length (or delay) following the approach proposed
by Brauer and Castillo-Chavez in [12].

• Periodic oscillations appear naturally in this model based on equations
in differences:

– With 28 weeks of immunity and 10 days as a period of infectivity
we found good values of parameters where b1 reduces its relevance.

– Allowing other values for these parameters we can obtain a cali-
bration of the model without seasonal forcing (b1 = 0).

• The seasonal forcing in these models can be reduced or even obviated
by using a delay in the loss of immunity.

• This reduction in the seasonal forced also appeared in the network
model [10] but not as a consequence of the delay in the loss of immunity.

• Oscillations in models do not appear related only to external reasons,
they could be related to intrisic values of illness.
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1. Introduction 
 
Transportation is a key factor in the social and economic development of a country; it 
influences the activities of the inhabitants in terms of mobility, and has an impact on the 
activities of all economic sectors. Transportation is a complex domain, and involves several 
stakeholders and levels of decision-making processes. In addition, investments are capital-
intensive and usually require long implementation delays. 

This paper proposes a model based on the Analytic Hierarchy Process (AHP) for the 
selection of the best solution (type of Urban Distribution Center- UDC) to improve the 
distribution of goods in different urban environments. Three typologies of distribution centers 
are considered: (i) Large size UDCs, characterized by the existence of an own distribution 
electric vehicles fleet, the possibility to manual or semi- motorized distribution to perform the 
last mile delivery, and self-service collection (ii) Small size UDCs, characterized by a manual 
or semi- motorized distribution, and the availability of a self-service collection; and (iii) 
Automated or self-service UDCs. In addition, a Geographic Information System (GIS) is used 
to identify those urban areas where it is possible to locate the UDC according to its typology. 
Different layers are applied to make the decision (e.g. number of inhabitants, population 
dispersion, and commerce location). 
 
2. Background 
 
2.1. The location problem 
 
There have been proposed some methodologies for the location selection’s problem by using 
different approaches (e.g. Analytic Hierarchy Process, Topsis, Artificial Neural Network, 
Genetic Algorithm and Fuzzy Logic).  

Thus, for example, Kayikci (2010) presents a model based on a combination of the 
fuzzy-analytic hierarchy process (AHP) and artificial neural networks (ANN) method to 
identify criteria in a framework of an empirical survey. Rao et al. (2015) integrate the 
economic, environmental and social dimensions of sustainability. Li et al. (2011) outline a 
hybrid method, which incorporates Axiomatic Fuzzy Set (AFS) and TOPSIS techniques into 
an evaluation process, in order to select competitive regions in logistics. Bozorgi-Amiri and 
Asvadi (2015) locate relief logistics centers using AHP. The study is focused on availability, 
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risk, technical issues, cost and coverage criteria. More recently, Di Matteo et al. (2016) 
propose a multicriteria hybrid model AHP-Electre for optimal locating emergency operation 
centers.  

The typology of logistics center in urban freight distribution is important. In this regard, 
according to Marcucci and Danielis (2008), the lack of knowledge on the cost structure, and 
the potential freight transport demand for the urban freight consolidation centre, are revealed 
as causes of failure of many European schemes.  

 
2.2. The Analytic Hierarchy Process (AHP) 
 
AHP is a multicriteria method used in decision-making processes. It considers a discrete 
number of alternatives which can be explicitly treated. AHP allows the consideration of 
multiple actors, factors, criteria and scenarios. The method considers four-steps (Saaty, 1980; 
1994): (i) modeling, (ii) valuation, (iii) prioritization and (iv) synthesis. One of the 
characteristics of this approach is that it requires the translation of perceptions into numerical 
scales. For doing this, it can be used the Saaty's fundamental scale in pairwise comparisons 
(Saaty, 1980). 

The priorities of the model (wi=1,…,n) can be obtained using different methods. One of 
the most used is the eigenvector problem, which considers the following expression: 

wAw maxλ=         ∑
=

=
n

i
iw

1
1 (1) 

where A=(aij) is the reciprocal pairwise comparison matrix, λmax is the principal eigenvalue of 
A and w is the vector of priorities. The measure of inconsistency in judgements is obtained 
applying the Consistency Index (CI) (Saaty, 1980), expressed as: 

1
max

−
−

=
n

nCI λ

 (2) 

where λmax is the principal eigenvalue of the judgements matrix, and n its order. When the 
reciprocal comparison matrix is consistent λmax = n, and CI=0. Saaty proposed the 
Consistency Ratio (CR) to normalize the measurement. It is calculated as: 

)(nRI
CICR =  (3) 

where RI(n) is the Random Consistency Index for matrices of order n, obtained by simulating 
100,000 reciprocal matrices randomly generated (Aguarón and Moreno-Jiménez, 2003). 
 
3. Development and assessment of the AHP model 
 
A group of five experts in urban freight transport and urban mobility defined and assessed the 
elements of the model (decision by consensus). The problem was structured in three levels: 
Goal, criteria (4), subcriteria (18). The elements of the model can be seen in Figure 1. Local 
priorities and global priorities of the model can be seen in Table 1. All the paired comparison 
matrices presented acceptable inconsistencies (CR<0.10).  
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Figure 1. Elements of the proposed model 
Table 1. Model prioritization 

 
 
The application of the model has been carried out by assessing three alternatives (A): (i) 
Large size UDCs, characterized by the existence of an own distribution electric vehicles fleet, 
the possibility to manual or semi- motorized distribution to perform the last mile delivery, and 
self-service collection (ii) Small size UDCs, characterized by a manual or semi- motorized 
distribution, and the availability of a self-service collection; and (iii) Automated or self-
service UDCs. The valuation of the three alternatives was made by the same group of experts 
participating in the definition of the model based on their knowledge and expertise, and the 
city of Zaragoza, and specifically the “Las Fuentes” district was selected as case study. From 
a global point of view, it can be seen the total or final priorities of the alternatives: w(A1) = 
0.391; w(A2) = 0.263; w(A3) = 0.346. The ranking of alternatives shows that Small size 
UDCs (A1>A3> A2) is the preferred alternative in terms of improvement of the distribution 
of goods in a city (Figure 2). 

 
Figure 2. Final priorities of the analyzed alternatives 
 
4. Location of terminals through GIS 
 
The location of terminals has been performed through the application of the software QGIS, a 
free-of-charge Geographical Information System (GIS). The methodology followed consisted 
of the following steps: 

• Step 1. Study of the district’s demand “Las Fuentes”. 
• Step 2. Number of distribution centers: current situation versus future situation. 
• Step 3. Determination of the location of distribution centers.   

 
4.1. Study of the district’s demand “Las Fuentes” 
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The demand for parcels in an area is influenced by many variables such as the age of the 
population, purchasing power, sex, immigration rate, commercial activity, among others. In 
this study we simplify and consider two factors: age of population (with high possibility to 
use e-commerce (15-65 years old) which highly determine demand), and commercial activity. 
 A Spanish delivery company provided us the data of the average volume delivery: 
17,000 parcels distributed in small carriages; 2,000 larger parcels distributed by van; 2,000 
parcels collected in the office at request of the customer; 3,000 large ordinary parcels 
collected in the office because they do not fit in the address box; and 6,000 collected in the 
office due to the absence of the customer at home. Thus, it can be estimated that the demand 
of the district “Las Fuentes” is 30,000 monthly parcels. Table 2 shows the main 
characteristics of the district. For the determination of the future demand it has been 
considered an increment of 25 %2.  
 
Table 2. Main characteristics district “Las Fuentes” 

N. 
Inhabitants Area (sqm) Inhabitants/ha 

Population 
use e-

commerce 

Monthly 
demand 
(parcels) 

Monthly 
demand 
forecast 
(parcels) 

42,610 6.31 67.52 27,527 30,000 37,500 
  
4.2. Number of distribution centers: current situation versus future situation 
 
Currently, the district “Las Fuentes” has only one large size UDC used for the delivery of 
parcels.  
According to the results obtained in the AHP model, for this district A1 is the preferred 
alternative, very close to A3 (4.5 % difference). In addition, from the results obtained it can 
be estimated that a large size UDC has a capacity of 30,000 parcels/ month. According to this 
information it is intended to cover the future demand (7,500 extra parcels) by using 
Automated or self-service UDCs (HP). An HP has a capacity of 60 parcels/ month. Thus, it is 
estimated the use of 125 HP. 
 
4.3. Determination of the location of distribution centers 
 
The location of HPs will depend on the population with the highest possibility to use e-
commerce and the concentration of commerce in the area. The population is concentrated in 
one area with high density (a higher number of HPs will be located) and one area with lower 
concentration. The typology of commerce selected for this study considers the possibility of 
transportation of products by means of parcels and lacks of own transportation service. Using 
the information provided by the City Council of Zaragoza four typologies of commerce have 
been selected (see Table 3) and can be depicted (see Figure 3): second hand, haberdasheries, 
bookstores and electronics. The current UDC is represented by a red star. 
 
Table 3. Typology of commerce under study district “Las Fuentes” 

Second hand Haberdasheries Bookstores Electronics Total 
2 5 17 30 54 

 

                                                      
2 https://ecommerce-news.es/comercio-electronico-espana-2017-71707 
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(a) “Las Fuentes “ district (b) Location of commerce and population 

distribution 

Figure 3. Main characteristics in terms of population and commerce of “Las Fuentes” district   
 
Once it is know the quantity and location of commerce, the highest concentration of 
commerce can also be represented (see Figure 4, grated area). 
 

 
Figure 4. Higher concentration of commerce in “Las Fuentes” district   
 
Due to the total number for the district is of 125 HPs, and a 90 % of the population is in this 
area, it is proposed to locate 113 HPs in this area.  
 
5. Conclusions 
 
This paper proposes an AHP-GIS approach for the location of UDCs according to three 
typologies: (i) Large size UDCs, characterized by the existence of an own distribution electric 
vehicles fleet, the possibility to manual or semi- motorized distribution to perform the last 
mile delivery, and self-service collection (ii) Small size UDCs, characterized by a manual or 
semi- motorized distribution, and the availability of a self-service collection; and (iii) 
Automated or self-service UDCs. The prioritization of alternatives is analysed for a district in 
the city of Zaragoza. In addition, a GIS is proposed for its location. Two main criteria has 
been used: (i) age of population (with high possibility to use e-commerce (15-65 years old) 
which highly determine demand), and (ii) commercial activity. This procedure allows the 
calculation of the number of UDCs to locate to comply with the future demand (considering 
an increment of 25 %) and the distribution area. Future research will focus on determining the 
place (shop, mall, bus stop…).  
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1 Introduction

Our main motivation is to develop multiscale mathematical modelling strate-
gies of gas transport processes through paperboard that can describe, on sev-
eral space scales, how internal structural features and local defects affect the
permeability of the material, perceived as a thin long permeable membrane.

To this end, we study the diffusion of particles through a thin heteroge-
nous membrane under a one–directional nonlinear drift. Using mean-field
equations derived from a Monte Carlo lattice dynamics for the problem at
hand (for details, see [2]), we study the possibility to upscale the system and
to compute the effective transport coefficients accounting for the presence
of the membrane, adding this way analytic results to our simulation study
[3]. For a special scaling regime, we perform a simultaneous homogenization
asymptotics and dimension reduction, allowing us not only to replace the het-
erogenous membrane by an homogeneous obstacle line, but also to provide
the effective transmission conditions needed to complete the upscaled model
equations. The heterogeneities we account for in this context are assumed
to be arranged periodically, but the same methodology can be adapted to
cover also the locally periodic case. As working techniques, we employ scal-
ing arguments as well as two-scale homogenization asymptotics expansions

∗e-mail: adrian.muntean@kau.se
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to guess the structure of the model equations and the corresponding effective
transport coefficients.

The research presented here goes on the line open by M. Neuss-Radu
and W. Jäger in [5] by adding to the discussion the presence of nonlinear
transport terms and is remotely related to our work on filtration combustion
through heterogeneous thin layers; compare [4].

2 Results

We apply simultaneously two conceptually different limiting processes – a pe-
riodic homogenization upscaling designed for a thin layered composite mate-
rial and the dimension reduction of this layer to a sharp interface. Depend-
ing strongly on the choice of the microstructure model, a typical result of
this procedure is a macroscopic model with nonlinear transmission boundary
conditions. Hinting to the results reported in [1], a typical outcome is the
following reduced upscaled model:

Find the triplet (U l, um
0 , Ur) satisfying the following set of mass-balance

equations:

∂U i

∂T
−∇ ·Di[∇U i + G(U i)] = F i in Ωi (i ∈ {l, r}), (1)

where Ωi are two domains separated by a sharp interface (the flat support of
the collapsed thin layer the thin layer). ”Inside” the sharp interface, in the
lower dimensional domain it holds

∂um
0

∂T
−∇y2 ·Dm[∇y2u

m
0 + G(um

0 )] = Fm. (2)

Further, boundary and initial conditions complete the model equations, viz.

um
0 is periodic in y2, (3)

um
0 (z2, y2, T ) = U i(0, z2, T ), for i = l,r and um

0 (z2, y2, 0) = V m(X1, z2),
(4)

−Dl(∇U l + G(U l) · n = ØΓl
Dm

11

∂um
0

∂z1

+ Dm
12

∂um
0

∂y2

+ Dm
11 g(um

0 ), (5)

−Dr(∇Ur + G(Ur)) · n = ØΓr −D
m
11

∂um
0

∂z1

−Dm
12

∂um
0

∂y2

−Dm
11 g(um

0 ), (6)
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U l(X,T ) = ul on Γv ∩ Γl and Ur(X,T ) = ur on Γv ∩ Γr, (7)

J i(X,T ) · n = 0 on Γh ∩ Ωi for i = l,r, (8)

U i(X, 0) = V i(X) in Ωi for i = l,r. (9)

The coupling between the equations (1) and (2) is done via the micro-
macro boundary conditions (4), (5), and (6). Note that the structure of the
nonlinearity in the transmission conditions (5) and (6) depends on both the
initial geometry of the thin later as well as of the balance laws incorporated
in the microscopic model.

Currently, we work on estimating the quality of such nonlinearly coupled
model from a multiple points of view: mathematical analysis, multiscale
approximation perspective as well as validity with respect to the physical
transport scenario supposed to be described.
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Okružńı 517/10, České Budějovice, Czech Republic,

(†) Department of Informatics and Natural Sciences, Institute of Technology and Business,
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1 Introduction

In engineering constructions, the most endangered parts are rotating com-
ponents. Reliability of shaft endangers in particular two limit states. In the
vicinity of resonance there is an enormous increase in the amplitudes of the
state variables and the achievement of the yield strength of the material.
These conditions often occur with the coupling shafts of cardan mechanisms.
The torque is transmitted here over long distances. Shafts are long and slen-
der and are prone to transverse bending. The gearbox shafts are compact
and operate at a sufficient distance from the resonant area. In this case, they
are threatened by fatigue fractures; they need to be checked for safety to
fatigue. A similar situation to gearboxes is with gear pump shafts. The au-
thors have long-term cooperation with engineering companies in questions of
design and modelling of joint shafts and gear pumps. Mathematical models
of gear pumps lead to solutions from the field of linear algebraic equations.
In the case of bending oscillations, the motion equation of the basic element
is a partial differential equation of the 4th order for the variables x and t. An
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analytical solution for simpler cases can be used. A real shaft profile must
be resolved by using one of the most sophisticated methods. In the cases
solved by us, the finite element method and transfer matrix method proved
to be successful. The transfer matrix method does not increase the matrix
size (matrix 4x4 for planar oscillation, 8x8 for spatial oscillation), resulting in
lower hardware requirements. Transfer matrix method uses a combination of
analytical and numerical methods. Transfer matrix method also gives us the
possibility to calculate the deformations caused by external excitation and
dynamic deformation and stress analysis. Using the transfer matrix method
is relatively easy to obtain a solution of the whole system (the whole Cardan
mechanism). Another advantage is that it can be combined with the method
of the imaginary slice which analytically solve the differential equations of
motion for a smooth shaft (smooth continuum - a constant diameter), we
derive the transfer matrices for shaft, matrices of concentrated mass and the
elastic bearing, which are the basic structural elements of a dynamic model
of shafts. The aim of our work is to provide designers of small mediums
and businesses with whom we work together for a long time and who do not
have specialized hardware and software equipment to facilitate their work.
The aim of our work is to provide designers of small mediums and businesses
with whom we work together for a long time and who do not have special-
ized hardware and software equipment to facilitate their work. Our aim is
to provide tools to help engineers, which are working in small and medium-
sized companies, with which we co-operate and who do not have specialized
hardware and software, with their problems. An exemplary demonstration of
the application of the transfer matrix method is the solution of the dynamic
deformation analysis of the Cardan coupling shaft in the real vehicle drive,
where permanent bending deformations occurred.

2 Transfer Matrix Method

Transfer Matrix Method (TMM) is combination of numerical and analytical
methods and comes from the exact analytical solution (PDE of 4th order).
Advantage of TMM is that it does not increase size of matrix (Planar oscil-
lations - 4x4 matrix, Spatial oscillations - 8x8 matrix). That means lower
hardware requirements. It allows us to calculate the deformation caused by
external excitation, deformation caused by dynamics and also to make stress
analysis. TMM can be used for solving of the whole system (whole Cardan



Modelling for Engineering & Human Behaviour 2018 239

Mechanism).
It is necessary to derive transfer matrices for each of basic structural

elements: shaft H, concentrated mass M and elastic bearing K.
We need to define vector of state Vi on the edge cuts of each elements

based on amplitudes of state variables.

Vector of state:

V(x, t) = V(x)eiωt,V(x) = [Y(x)|Z(x)]

Y(x) =


y(x)
y′(x)
−Mz(x)
−Qy(x)

 ,Z(x) =


z(x)
z′(x)
−My(x)
−Qz(x)


,

where y(x) is the amplitude of deflection, y′(x) is slope of deflection,
Mz(x) is the amplitude of the bending moment and Qy(x) is moving force.

2.1 Derivation of transfer matrix

Vi+1 = HjVi, where j = 1, . . . , σ, i = j + 2, V2 = K1V1,V3 = M1V2 . . .,
Vf = P ·V1, where P is the Transfer Matrix

P = K2 ·M2 ·Hσ . . .Hj . . .H1 ·M1 ·K1

P =

[
Py 0
0 Pz

]
,Py = Pz = [pij]

4
1

After entering the edge vectors, transfer matrix and matrix multiplication

Ay ·By = Dy

Az ·Bz = Dz
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2.2 Solution of the set of equation

Ay = Az =


p11 p12 −1 0
p21 p22 0 −1
p31 p32 0 0
p41 p42 0 0



By =


y1(0)
y′1(0)
y0(l0)
y′0(l0)

 ,Bz =


z1(0)
z′1(0)
z0(l0)
z′0(l0)



Dy = M1z ·


p13
p23

p34 −M2z/M1z

p43

 ,Dz = M1y ·


p13
p23

p34 −M2y/M1y

p43


Solution of left edge of the joint shaft

y1(0) =
p42 (p33M1z −M2z)− p32p43M1z

p31p42 − p32p41

y′1(0) =
p31p43M1z − p41 (p33M1z −M2z)

p31p42 − p32p41

z1(0) =
p42 (p33M1y −M2y)− p32p43M1y

p31p42 − p32p41

z′1(0) =
p31p43M1y − p41 (p33M1y −M2y)

p31p42 − p32p41

2.3 Transfer Matrix for Shaft

H(x) =

[
Hy(x) 0

0 Hz(x)

]
,Hy = Hz = [H11|H12|H13|H14]

H11 =
1

β2
1 + β2

2


β2
2 cosh β1l + β2

1 cos β2l
β1β2 (β2 sinh β1l − β1 sin β2l)
EJβ2

1β
2
2 (cosh β1l − cos β2l)

EJβ2
1β

2
2 (β1 sinh β1l + β2 sin β2l)
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H12 =
1

β2
1 + β2

2


β2
2/β1 sinh β1l + β2

1/β2 sin β2l
β2
2 cosh β1l + β2

1 cos β2l
EJβ1β2 (β2 sinh β1l − β1 sin β2l)
EJβ2

1β
2
2 (cosh β1l − cos β2l)



H13 =
1

β2
1 + β2

2


1/EJ (cosh β1l − cos β2l)

1/EJ (β1 sinh β1l + β2 sin β2l)
β2
1 cosh β1l + β2

2 cos β2l
β3
1 sinh β1l − β3

2 sin β2l



H14 =
1

β2
1 + β2

2


1/EJ (1/β1 sinh β1l − 1/β2 sin β2l)

1/EJ (cosh β1l − cos β2l)
β1 sinh β1l + β2l

β2
1 cosh β1l + β2

2 cos β2l


where:

J =
π

4

(
r42 − r41

)

β1 =

− ρ

2E

(
ω2 − ω2

)
+

[
ρ2

4E2

(
ω2 − ω2

)2
+

4ρ (ω − ω)2

E (r22 + r21)

] 1
2


1
2

β2 =

 ρ

2E

(
ω2 − ω2

)
+

[
ρ2

4E2

(
ω2 − ω2

)2
+

4ρ (ω − ω)2

E (r22 + r21)

] 1
2


1
2

2.4 Transfer matrix for concentrated mass

M =

[
My 0
0 Mz

]

My = Mz =


1 0 0 0
0 1 0 0
0 −J1ω2 + (J0 − J1)ω

2 1 0

m (ω + ω)2 0 0 1
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2.5 Transfer matrix for elastic bearing

K(x) =

[
Ky 0
0 Kz

]

Ky = Kz =


1 0 0 0
0 1 0 0
0 0 1 0
−k 0 0 1


3 Conclusion

• We are able to calculate vector of state in every part of the shaft based
on known physical characteristics

• Calculation of transfer matrix P and all other amplitude-frequency
characteristics of state quantity are done in Octave 4.2.0

• By application of this method we are able to assess the resistance of
the shaft to transverse oscillation during the design
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1 Introduction

In this contribution we solve, from a probabilistic point of view, the following
second-order random linear differential equation

X ′′(t) + p(t;A)X ′(t) + q(t;A)X(t) = 0,

X(t1) = Y0, X ′(t1) = Y1, t > t1 > t0 ∈ R,

 (1)

where A, Y0 and Y1 are assumed to be absolutely continuous dependent
random variables (RVs) defined on a common complete probability space,
(Ω,F,P). Notice that, in IVP (1) t0 is a singular-regular point and t1 belongs
to a neighbourhood of t0, t1 ∈ N (t0).
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The results obtained in this contribution are a continuation of those es-
tablished in a previous work [1], where approximations of the first probabil-
ity density function (1-PDF) of the solution SP of the second-order random
differential equation (1) about an ordinary or regular point are computed.
Then, in this work the objective is to obtain an expression to approximate
the 1-PDF of the solution SP of the IPV (1). The 1-PDF gives us a full
probabilistic description of the solution, X(t), in every instant time t. In
addition, from it some interesting properties of the SP can be derived, like
the mean and the variance,

E [X(t)] =

∫
R
xf1(x, t)dx, V [X(t)] =

∫
R
x2f1(x, t)dx− E [X(t)]2 .

The 1-PDF also allows to obtain confidence intervals. Additionally, the asym-
metry and the kurtosis functions can be obtained from the 1-PDF too since
any higher one-dimensional moment of the solution SP can be calculated via
the 1-PDF:

E
[
Xk(t)

]
=

∫
R
xkf1(x, t)dx, k = 1, 2, . . .

The key tool to achieve the aforementioned goals is the Random Variable
Transformation (RVT) technique. In the multi-dimensional version, this re-
sult is stated in Theorem 1.

Theorem 1 (Multidimensional RVT method) [2, p.25]. Let us con-
sider X = (X1, . . . , Xn)T and Z = (Z1, . . . , Zn)T two n-dimensional abso-
lutely continuous random vectors defined on a probability space (Ω,F,P).
Let r : Rn → Rn be a one-to-one deterministic transformation of X into
Z, i.e., Z = r(X). Assume that r is continuous in X and has continu-
ous partial derivatives with respect to each Xi, 1 ≤ i ≤ n. Then, if fX(x)
denotes the joint probability density function of the random vector X, and
s = r−1 = (s1(z1, . . . , zn), . . . , sn(z1, . . . , zn))T represents the inverse map-
ping of r = (r1(x1, . . . , xn), . . . , rn(x1, . . . , xn))T, the joint probability density
function of random vector Z is given by

fZ(z) = fX (s(z)) |J | ,

where |J |, which is assumed to be different from zero, is the absolute value of



Modelling for Engineering & Human Behaviour 2018 245

the Jacobian defined by the determinant

J = det

(
∂sT

∂z

)
= det


∂s1(z1,...,zn)

∂z1
· · · ∂sn(z1,...,zn)

∂z1
...

. . .
...

∂s1(z1,...,zn)
∂zn

· · · ∂sn(z1,...,zn)
∂zn

 .

2 Computing the 1-PDF

By the Fröbenious method [3], the solution SP of the IVP (1) can be written
as

X(t) = K0(A, Y0, Y1)X1(t;A) + K1(A, Y0, Y1)X2(t;A), t ≥ t1 > t0, (2)

where the random power series X1(t;A) and X2(t;A) are determined taking
into account the values of the roots (r1 and r2) of the associated indicial
equation

r(r − 1) + p0r + q0 = 0, where p0 = p(t0;A), q0 = q(t0;A).

Notice that, in the deterministic setting the Fröbenious method considers
the following three cases: r1 − r2 6= 0, r1 − r2 = N ∈ N, r1 = r2. As in our
context, the roots r1 and r2 depend on the absolutely continuous RV A,the
two latter cases occur with probability 0. Therefore, both scenarios will be
neglected hereinafter to conduct our subsequent analysis. As a consequence,
the random power series X1(t;A) and X2(t;A) are given, respectively, by

X1(t;A) =
∞∑
n=0

Cn(A)|t− t0|n+r1(A), and
∞∑
n=0

Dn(A)|t− t0|n+r2(A), (3)

where the coefficients Cn(A) are determined by adequate recurrences From
a computational standpoint, the infinite series in (3) must be truncated to
keep the computational burden affordable. So, we consider

XN(t) = K0(A, Y0, Y1)X
N
1 (t;A) + K1(A, Y0, Y1)X

N
2 (t;A),

XN
1 (t;A) =

N∑
n=0

Cn(A)|t− t0|n+r1(A),
N∑

n=0

Dn(A)|t− t0|n+r2(A),
(4)



Modelling for Engineering & Human Behaviour 2018 246

being N a positive integer. By applying Th.1, it can be proved that the PDF
of XN(t) is given by

fN
1 (x, t) =

∫
R2

fA,Y0,Y1

(
a,

x− y1S
N
2 (t; a)

SN
1 (t; a)

, y1

) ∣∣∣∣ 1

SN
1 (t; a)

∣∣∣∣ , (5)

where
SN
1 (t;A) = G0,1(A)XN

1 (t;A) + G1,1(A)XN
2 (t;A),

G0,1 =
X ′2(t1;A)

E(A)
, G1,1 =

−X ′1(t1;A)

E(A)

SN
2 (t;A) = G0,2(A)XN

1 (t;A) + G1,2(A)XN
2 (t;A),

G0,2 =
−X2(t1;A)

E(A)
, G1,2 =

X1(t1;A)

E(A)
.

(6)

Finally, we point out that assuming some mild conditions on the random
vector (Y0, Y1, A), and on its PDF, it can be shown that the approximation
fN
1 (x, t) given in (5) will converge to the exact PDF f1(x, t) of the exact

solution SP (2)–(3), i.e.,

lim
N→+∞

fN
1 (x, t) = f1(x, t), for each (x, t) ∈ R× [t1,+∞[ fixed. (7)

3 An illustrative example

In this section we consider the particular random IVP

At2X ′′(t) + t(t + 1)X ′(t)−X(t) = 0,

X(1) = Y0, X ′(1) = Y1, t > 1 > 0,

 (8)

where A, Y0 and Y1 are assumed to be independent RVs with the following
distributions: A is a uniform RV on the interval [1, 2], i.e., A ∼ U([1, 2]); Y1

is a Beta RV with parameters 2 and 3, i.e., B ∼ Be(2; 3); Y0 is a Gaussian
RV with 0 mean and variance 0.1, i.e., Y0 ∼ N(0; 0.1). In Figures 1 and 2,
we show fN

1 (x, t) at the time instants t = 1.1 and t = 1.5, respectively, for
different values of N (truncation order). On the left, for N ∈ {1, . . . , 5} and
N ∈ {1, . . . , 6}, and on the right for N ∈ {4, 5} and N ∈ {5, 6}. We can
observe that when the truncation increases the 1-PDF of the approximate
solution tends to the exact 1-PDF. In addition, when the time instant t is
close the initial time t = 1 the convergence is faster. For sake of clarity in
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Figure 1: Plot of fN
1 (x, 1.1) given by (5)–(6) for different values of N : N ∈

{1, . . . , 5} (left), N ∈ {4, . . . , 5} (right).

Table 1 the error between the approximate and the exact distributions is
shown

eN =

∫ +∞

−∞
|fN+1

1 (x, t)− fN
1 (x, t)| dx, N ≥ 1, t ≥ 1 fixed. (9)

eN N = 1 N = 2 N = 3 N = 4 N = 5
t = 1.1 0.519832 0.166420 0.039233 0.007228 0.001129
t = 1.5 0.437495 0.219520 0.071847 0.018712 0.004031

Table 1: Error measure eN defined by (9) for different time instants, t ∈
{1.1, 1.5}, and series truncation orders, N ∈ {1, 2, 3, 4, 5}.
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Figure 2: Plot of fN
1 (x, 1.5) given by (5)–(6) for different values of N : N ∈

{1, . . . , 6} (left), N ∈ {5, . . . , 6} (right).
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1 Introduction

The study of multilayered networks is a major area of research within the
field of Complex Networks. In the literature, one can find some studies
that failed to satisfactorily describe the behaviour of the systems by using
classical techniques of monoplex networks; See, e.g, [7] for fails about de-
tection of communities, [11] for misunderstandings when combining different
interactions on social networks, [9] for ranking differences when ignoring the
multilayered nature of a metro system, and [10] for an analysis of the tran-
sition from a collection of independent networks to a whole multiplex. As a
consequence, it was necessary to implement new concepts and techniques to
cope with the heterogeneity of links shown by these networks (see, e.g, [1],
[12], [2] for more references). In particular, the concept of multiplex networks
(formed by some layers with the same nodes and such that the only allowed
interlayer links are those corresponding to nodes connected with themselves,
see Fig. 1) has been used extensively.
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2 Classic PageRank

For the sake of simplicity, let us consider an undirected connected graph with
n nodes, and with adjacency matrix A ∈ Rn×n, where

aij =

{
1 if node i is connected with node j
0 otherwise

and let PA be the row stochastic matrix defined as PA = (pij) ∈ Rn×n such
that

pij =
aij∑n
k=1 aik

In this case, the Google matrix (see, e.g., [8]) is defined as

G = αPA + (1− α)evT ∈ Rn×n (1)

where α is a probability, e is the column vector of all ones and v is a prob-
ability distribution vector, that is, is nonnegative and vTe = 1. The classic
PageRank vector π̂ is the unique positive left eigenvector of G associated
with the eigenvalue 1 and normalized such that π̂Te = 1.

3 PageRank versatility

In this paper, we focus on a centrality measure called PageRank versatility
that was introduced in [4] where the authors make use of the tensor notation
for multilayer networks developed in [3]. Formally, a multilayer network is
characterized by a multilayer adjacency tensorMαγ̃

βδ̃
, where indices with tilde

refer to layers. Let us denote by n the number of nodes of each layer, and
by k the number of layers. For example, when handling with a multiplex
network like the one shown in Fig. 1, we have n = 3 and k = 3 and the
tensor Mαγ̃

βδ̃
can be represented in matrix notation (without explicitly show

the indices of the nodes) by a matrix M of size nk×nk in the following form

M iα
jβ ≡M =

k∑
α,β=1

E(α, β)⊗ C(α, β)

where⊗ denotes the Kronecker product (see, e.g., [6]) and the matrix E(α, β) ∈
Rk×k is given by

E(α, β) = ekα ⊗ (ekβ)T
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Figure 1: A multiplex with three layers and three nodes on each layer. Red
dashed lines represent inter-layer links.

where ekα is the α-th (column) vector of the canonical basis of Rk×1 and the
superscript T means transposition. Note, for example, that

E(1, 3) =

 1
0
0

⊗ (0 0 1) =

 0 0 1
0 0 0
0 0 0

 .

The matrices C(α, β) ∈ Rn×n represent both the adjacency matrices of the
layers and the matrices accounting for the links between layers, that is, in
the example of Fig 1:

C(α, β) =

{
In if α 6= β
Aα if α = β

where In is the identity matrix of size n and Aα is the adjacency matrix of
layer α.

Once M is defined, the PageRank versatility can be defined following a
similar procedure as in the classic PageRank [8]. For the sake of clearness
we use matrix notation. Note that in a multiplex framework with undirected
links, the matrix M is a symmetric matrix and has no zero rows. Let us
denote mij, i, j ∈ {1, 2, . . . , nk} each element of M. Hence we can define the
row stochastic matrix T with elements tij as follows

tij =
mij∑nk
j=1mij
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and define a matrix G ∈ Rnk×nk (analogous to the Google matrix 1) as follows

G = αT + (1− α)enkvT

where enk ∈ Rnk×1 is the vector of all ones, and vT = 1
k
[v1

T v2
T , . . .vk

T ] is a
personalization vector formed by staking the personalization vector of each
layer vi ∈ Rn×1. We remark that by taking vi = 1

n
[1, 1, . . . , 1] for all i, the

term enkvT is 1
nk

multiplied by a square matrix of size nk × nk with all its
elements equal to one.

By construction, G is row stochastic and positive and therefore by using
the Perron Theorem for positive matrices it is known that G has a unique
positive left eigenvector Π ∈ Rnk×1 with norm equal to 1 associated to the
eigenvalue 1 of G. This vector can be folded to obtain a vector of size Rn×1

by doing the following. First, we define

pi = ek ⊗ eni , i = 1, 2, . . . , n

where ek is the vector of all ones in Rk×1 and eni is the i-th column of the
identity matrix of size n. Second, we define

πi = pTi Π ∈ R

and finally, the PageRank versatility is the vector of Rn×1 given by

π = [π1, π2, . . . , πn]T .

From the expressions above it is straightforward to obtain some proper-
ties of the versatility PageRank that are derived from those of the classic
PageRank. To illustrate this, in the next section, we focus on a case where
we only have two layers,

4 Example with two layers

In the case of two layers, with n nodes in each one, the multilayer adjacency
tensor becomes

M =

(
A1 I
I A2

)
,

where I is the identity matrix of order n, and Ai is the adjacency matrix of
layer i = 1, 2. From this matrix we can construct an stochastic matrix PM in
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the usual way: by dividing each entry of M by the sum of its corresponding
row entries. Once this operation is performed we obtain a Google matrix of
the form

G = αPM + (1− α)evT (2)

with e the column vector of all ones with 2n components, and vT = [vT1 vT2 ]
where each vi

T is a probability distribution vector. The analogy between
equations (1) and (2) allows us to apply all the known results about the
classic Google matrix to obtain properties of matrix G. That is, once G is
constructed, all the properties of the PageRank vector Π associated to G are
the corresponding of those of the PageRank vector of G. For example, the re-
sults about the localization of the PageRank Π of G follow the corresponding
formulas of those about the localization of the PageRank of G (see, [5]).

The open problem that remains is to relate some properties of the versa-
tility PageRank with the classic PageRanks associated to each of the matrices
A1 and A2. We propose this as a future work.
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Juan M. Garćıa-Gómez‡, and J. Alberto Conejero[

([) Instituto Universitario de Matemática Pura y Aplicada (IUMPA),
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1 Introduction

Happiness is a universal fundamental human goal. Since the emergence of
Positive Psychology [8], a major focus in psychological research has been to
study the role of specific factors in the prediction of happiness. Conventional
methodologies are based on linear relationships, such as the commonly used
Multivariate Linear Regression (MLR) [2], which may suffer from the lack
of representative capacity to the varied psychological features. Using Deep
Neural Networks (DNN), a Happiness Degree Predictor (HDP) was defined
based on the answers to five standardized psychometric questionaries [7].
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The lower-level dimensions of psychological factors are separately ensem-
bled for being subsequently merged by higher-level dimensions until happi-
ness is reached. The DNN that gives us this HDP was trained and tested us-
ing a cross-sectional survey targeting non-institutionalized adult population
residing in Spain completed by 823 cases and recruited by different inter-
viewers. A total of 111 survey elements were grouped by socio-demographic
data, and by five psychometric scales measuring five psychological dimen-
sions. Coping strategies factor was measured by Brief COPE Inventory [3],
personality by EQPR-A [5], emotional distress by GHQ-28 [10], and social
support by MOS-SSS [9]. As an outcome of Happiness, it was considered
the result in the SDSH scale [6]. Each psychometric scale is composed of
items (questions) that can be regrouped into sub-scales matching psycholog-
ical subdimensions. The 28 Brief COPE Inventory items were regrouped into
14 sub-scales, the 24 EPQR-A items into 4, the 28 GHQ-28 items into 4, and
the 19 MOS-SSS items into 4. Covering a great variety of psychological indi-
cators, such as substance abuse, self-distraction, sincerity, somatic symptoms
or positive social interaction.

2 Data Structure-driven Deep Neural Net-

work as Happiness Degree predictor

We propose a hierarchical ensembling data-driven method for modeling the
task in hand. The preconceived data structure has led the deep neural net-
work layers’ ensembling. The items of the psychometric scales employed for
measuring the psychological factors used as predictors have been empirically
proved to cluster into sub-dimensions and dimensions mentioned above.

With the 105 of the 111 elements for each participant we construct a
column vector with the inputs for the deep neural network. The first element
represents a numeric identifier for the interviewer. From 2nd to the 5th
elements we have the socio-demographic data about the interviewee. The
rest of inputs (from 6th to the 105th) are the responses to the items that
make up the standardized psychometric scales. The sum of the other six
elements, ranging from 0 depression to 18 happiness, formed the output
becoming the gold-standard for supervised-training for the outcome of the
D-SDNN.

We have mimicked this empirically-based conceptual structure in the
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design of the architecture. This shapes our first contribution, the Data-
Structure driven Deep Neural Network (D-SDNN) architecture, that is shown
in Figure 1.

Figure 1: Data-structure architecture for our proposed neural network model.
The associated numbers to each arrow are related to the number of the items
enclosed into the sub-dimension. The structure is shown up to the sub-
dimension level.

We have considered two metrics (1) and (2) that allow us to quantify the
psychological dimensions influence in the outcome. Let ninp be the number of
inputs of one neuron of the layer L. In order to measure the global importance
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of the inputs, we propose the following metrics regarding weights for the jth
neuron in the layer L

L
(j)
i =

ninp∑
i=1

|wij|
ninp

, (1)

and the positivity or negativity of the relationship is determined by

sgn
(
L
(j)
i

)
= sgn

(
ninp∑
i=1

wij

)
. (2)

We have used 578 instances (column vectors) of the total sample, ap-
proximately the 70%, for training the 4 tentatives D-SDNNs. Regarding the
other 30%, a 15% has been used for validating and the last 15% for testing.

With performance assessment purposes, we have used the Mean Squared
Error (MSE) to compare the results (just on the testing set) of our D-SDNN
with the state-of-the-art model in the field, MLR, where our approach pro-
vided a better outcome (MSE: 1.46 · 10−2) than MLR (MSE: 2.30 · 10−2),
hence improving by 37% the predictive accuracy. We have observed better
performance of deep machine-learning architectures concerning traditional
methodologies. These results demonstrate the success of predicting happi-
ness degree through psychological variables assessed by standardized ques-
tionnaires. The influence metrics of the psychological dimensions are shown
in Table 1.

Conceptual dimensions L
(l)
32 sgn

(
L
(l)
32

)
Interpretation

Interviewer 0.0311 - Small negative influence
Socio-demographic data 0.1403 + Small positive influence

Coping Strategies 0.4476 - Most negatively influential
Personality 0.4186 + Positively influential

Emotional Distress 0.3897 - Negatively influential
Social Support 0.5025 + Most positively influential

Table 1: Influence metric values D-SDNN.

It can be considered congruent with common sense expectations the sig-
nificantly high and negative influence of Emotional Distress in the degree
of happiness. The significantly high and positive influence of the Perceived
Social Support in the degree of happiness is consistent with the existing lit-
erature. According to these findings, the Perceived Social Support may be
seen as a buffer for the deleterious effect of Emotional Distress.
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3 A new fully automated data structure con-

struction approach

3.1 Motivation

The hidden structure of the D-SDNN provides a limited amount of informa-
tion about the conceptual interpretation of the psychological factors associ-
ated with happiness. This is due to the lack of backpropagation possibility
that psychological subdimension layers has some influence in the metrics
computation. For this purpose, we have explored different options in order
to design other DNN architectures which not only promoted a better under-
standing concerning the study of psychological sub-dimensions influencing
happiness but also automatically built and set the DNN architecture.

On the one hand, the trending Network Science paradigm is becoming a
widely used mechanism when a vast amount of data must be treated, due to
its capability of data association [11] and structure creation through a natural
binary relationship defined by the analyst. On the other hand, machine
learning approaches suffer low popularity in applied sciences because of its
lack of interpretability [4] provoked by the complexity of the models.

In this sense, we have tried to combine both technologies with the purpose
of their complementation and the expectation of that the the automatic
model construction would also contribute to the interpretation of the results.

3.2 Proposed methodology

With the same dataset, we have tried to measure the similarity between each
pair of items, no matter to which questionnaire/dimension they belong. The
more people answers in the same sense a pair of items, the more similar we
consider that they are. Then a weight is assigned to the edge connecting
each pair of items according to this similarity, shaping a similarity graph
in which two nodes (items) are connected if and only if at least two people
have answered them in the same sense. We have assigned a weight to the
connection that is proportional to the number of similar pairs of answers.

We have also analyzed the modularity of this network using the work
of Blondel et al. [1]. The study of different communities in which the net-
work can be split permits us to fully-automatic design new DNN granulated-
architectures that are competitive respect to the one given the HDP. The
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point is that this new approach permits us also to have a better understand-
ing about how different psychological factors are correlated and how do they
influence happiness.

The challenges we are affording cover two main aspects:

1. How to fix the number of granularity levels not only to obtain a good
estimation ability but also optimize the computational complexity.

2. In case the items belonging to one subdimension that fall on different
dimensions, how to automatically build the minimum auxiliary layers
to ensure that the conceptual data structure provided by the graph is
maintained.

Nevertheless, we also point out that the proposed methodology could ben-
efit of big data approaches, since they are radically different to the approach
used in the psychology in which each validated questionnaire can only be
considered as a whole or, at most, split into few dimensions.
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1 Introduction

In this paper we consider the nonlocal interaction biological dynamic model
described by the partial integro-differential reaction-diffusion problem (PIDE),
see [3]:

∂U

∂t
= D∆U+βU(x, t)

(
1−aU(x, t)−b

∫
Ω

ψ(x−y)U(y, t)dy
)
, x ∈ Ω, t ∈ [0, T ],

(1)
where Ω ⊆ R2 is a bounded or unbounded domain, ψ(x) is a nonnegative
kernel function satisfying ∫

R2

ψ(x)dx = 1, (2)

β and b are some positive constants, a is a nonnegative constant and D is a
positive dispersal rate, together with the initial and boundary conditions

U(x, 0) = f(x), x ∈ Ω, U(x, t) = 0, x ∈ ∂Ω, (3)

where f(x) represents an arbitrary continuous function.
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From the biological point of view, the first term of the right-hand side
models the diffusion, the second includes the pure logistic quadratic term
and the consumption of resources in some area around the average location.
Note that if the kernel ψ(x) is the Dirac delta function centered at the origin,
equation (1) recovers the Fisher-KPP equation, see [2]. In ecological context,
there is no real justification for assuming that the interactions are local.

In this work, we develop an explicit finite difference scheme for the numer-
ical computation of problem (1)-(3), together with an exhaustive numerical
analysis. The integral term of the PIDE is treated using Gauss quadrature
rules having the versatility advantage of including both the bounded and un-
bounded domain cases, just adapting the quadrature rule. Positivity of the
numerical solutions is crucial dealing with a population problem and needs
to be guaranteed. It is also important to check that numerical solutions are
bounded by the habitat carrying capacity, in agreement with the behaviour
of the theoretical solution [3].

2 Discretization and numerical scheme con-

struction

The continuous problem is discretized here, with the goal to reach an explicit
finite difference scheme. Hereafter, we will work in a suitable bounded nu-
merical domain. Let us consider the domain [−A,A]2 × [0, T ], with A > 0
large enough so that outside of this area the population is negligible and
T > 0 denoting the time horizon. Let M and N be positive integers, so that
the domain [−A,A]2 × [0, T ] is partitioned in (2M + 1)2 × (N + 1) mesh
points denoted by (x1,i, x2,j, t

n), where x1,i = ih, −M ≤ i ≤ M , x2,j = jh,
−M ≤ j ≤ M , and tn = nk, 0 ≤ n ≤ N . The step sizes discretizations h
and k verify hM = A and kN = T , respectively. The numerical approxima-
tion of the unknown variable at the mesh point (x1,i, x2,j, t

n) is denoted by
uni,j ≈ U(x1,i, x2,j, t

n), while for the integral term in (1), we designate

gni,j ≈ G(x1,i, x2,j, t
n) =

∫
Ω

ψ(xi,j − y)U(y, tn)dy, −M ≤ i, j ≤M, n ≥ 0.

(4)
where xi,j = (x1,i, x2,j).

The approximation gni,j of the integral term G(x1,i, x2,j, t
n) is performed

by means of the accurate and computationally cheap Gauss quadrature rule.
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Gauss-Hermite or Gauss-Legendre quadratures are used depending on whether
the support of the kernel function ψ(x) is unbounded or compact, respec-
tively. As the nodes of the quadrature rule are not necessarily mesh points
of the grid, a bilinear interpolation is used for the computation of the terms
gni,j.

According to the expression for the Gauss-Hermite quadrature, we have∫ ∞
−∞

∫ ∞
−∞

ψ(xi,j − y)U(y, tn)dy

≈
L∑
l=1

L∑
m=1

wlwme
x2
l +x2

mψ(x1,i − ŷ1,l, x2,j − ŷ2,m)U(ŷ1,l, ŷ2,m, t
n), (5)

where wl, wm, are the weights and ŷ1,l, ŷ2,m, 1 ≤ l,m ≤ L, are the nodes of
the Gauss-Hermite quadrature, respectively.

Given a node (ŷ1,l, ŷ2,m), 1 ≤ l,m ≤ L, let us consider the indexes il and
jm such that the grid point (y1,il , y2,jm) verifies

y1,il ≤ ŷ1,l ≤ y1,il+1, y2,jm ≤ ŷ2,m ≤ y2,jm+1. (6)

Thus, the approximation gni,j of the integral term G(x1,i, x2,j, t
n) takes the

form

gni,j =
L∑
l=1

L∑
m=1

wlwme
x2
l +x2

mψ(x1,i − ŷ1,l, x2,j − ŷ2,m)ū(ŷ1,l, ŷ2,m, t
n). (7)

Regarding the differential part of PIDE (1), considering forward approxi-
mation for time derivatives and central approximation for spatial derivatives,
the following explicit numerical scheme for (1),(3) has been constructed:

un+1
i,j =

Dk

h2
(uni−1,j + uni+1,j + uni,j−1 + uni,j+1) +

(
1− 4Dk

h2

)
uni,j

+ kβuni,j(1− auni,j − bgni,j), −M + 1 ≤ i, j ≤M − 1, 0 ≤ n ≤ N − 1, (8)

with initial and transferred boundary conditions of our numerical domain

u0
i,j = f(xi,j), un−M,j = unM,j = uni,−M = uni,M = 0, 1 ≤ i, j ≤M. (9)
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3 Positivity, stability and consistency

Considering the previous result regarding the theoretical solution,

0 ≤ U(x, t) ≤ 1/a, x ∈ Ω̄, t ≥ 0. (10)

we show that under appropriate step size conditions the numerical solu-
tion {uni,j} is nonnegative and is bounded by the carrying capacity 1/a in
agreement with (10). Thus the stability of the numerical solution is granted
because it is bounded. Precisely, assuming that 0 ≤ u0

i,j ≤ 1/a, and taking a
temporal step size k such that

k <
h2

4D + βαh2
, α = max

{
1,

2b

a

}
, (11)

it is guaranteed that 0 ≤ uni,j ≤ 1/a, 1 ≤ n ≤ N .

Note that stability and positivity step size condition is linked to the prob-
lem dimension. In particular, for the one dimensional case, the condition
becomes

k <
h2

2D + βαh2
, α = max

{
1,

2b

a

}
. (12)

Now we study the consistency of the numerical solution, given by the
scheme (8), with the problem (1)-(3). Let us consider the equation (1), in a
compact form as L(U) = 0, and the finite difference scheme (8), written as
L(u) = 0.

Scheme L(u) is said to be consistent with problem L(U) if local truncation
error T n

i,j(U),
T n
i,j(U) = L(Un

i,j)− L(Un
i,j), (13)

tends to zero as k → 0, h→ 0, where Un
i,j = U(x1,i, x2,j, t

n) is the value of the
exact solution of problem (1)-(3). It can be verified that the local truncation
error T n

i,j(U) satisfies:

T n
i,j(U) = O(k) +O(h2) + ε(L), (14)

where ε(L) is the associated quadrature error of the two-dimensional Gauss
quadrature formula. An estimation of the error bound for Gaussian quadra-
ture rules in two dimensions can be found in [1].
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4 Numerical example

Following example illustrates the stability results. Let us consider the non-
local logistic diffusion model (1)-(3) in an unbounded one space dimension,
with parameters values (D, β, a, b) = (0.25, 5, 1, 1) and

f(x) =

{
1/4, −4 ≤ x ≤ 4,

0, otherwise,
(15)

ψ(ξ) =

{
1/2, −1 ≤ ξ ≤ 1,

0, otherwise.
(16)

We take h = 0.05, k = 0.004 and L = 10. According to the expression
(12), if k < 0.004762, which is fulfilled in this case, the positivity and stability
of the solution are guaranteed. Figure 1 shows the behaviour of the numerical
solution U(x, t) from t = 0 to the time horizon T = 2. If we choose a
temporal step size k = 2/398 ' 0.005025, breaking the stability condition
(12), it is clear from Figure 2 that the behaviour of the numerical solution
U(x, t) becomes unstable and it reaches negatives values.

Figure 1: Numerical solution in the case of one space dimension and un-
bounded domain.
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Figure 2: Numerical solution when the positivity and stability condition is
broken.
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1 Introduction and motivation

Epilepsy is one of the most ancient diseases that we have knowledge. De-
scriptions of epileptic seizures can be traced back to 2,000 B.C. Nowadays,
even is much of this disease is still a mystery in many senses, it can be con-
trolled giving patients much more quality of life. In Spain it is estimated
that around 400,000 people are affected, with nearly 60% of patients having
partial onset or focal seizures (POS) [1]. These are caused by a problem
in the electrical signalling of the brain. Groups of neurons suddenly begin
firing excessively, leading to involuntary responses, including strange sensa-
tions, emotions, behaviours or convulsions, muscle spasms, and possibly loss
of consciousness. Anti-epileptic Drugs (AEDs) effect is centred on the great-
est reduction of the number of epileptic seizures, while minimizing adverse
effects and long-term toxicity as far as possible [2]

In this study we propose a method that mathematically simulates these
health stage transitions, which represent a relevant epilepsy outcome. In
this contribution, we consider that patients are in one of the following four
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Figure 1: Health stage transitions of an epilepsy patient treated with AEDs.

states: 1. Non-responder, 2. Free seizure, 3. Partial responder (50%),
4. Discontinuation. In Figure 1 we show the health stage transition of an
epilepsy patient treated with AEDs.

Let {xn = (x1n, x
2
n, x

3
n, x

4
n)>, n = 0, 1, . . . } be a Markov chain, where n

denotes the cycle or period. Each component xkn lies in the interval [0, 1] and
denotes the percentage of population in the state k in the cycle n. Moreover,
they satisfy x1n + x2n + x3n + x4n = 1 for every n. Then, taking into account
Figure 1, given pij the probability of transition from the state i to the state
j, the mathematical model is

xn+1 = p xn, p =


1− p12 − p13 − p14 0 0 0

p12 1− p14 0 0
p13 0 1− p14 0
p14 p14 p14 1

 (1)

where p, usually called the transition matrix, is a matrix which entries repre-
sent the probabilities to change either from one state to another or to remain
in the same state between two consecutive cycles.

These probabilities are normally obtained from experiments, then it con-
tains a certain measurement error. This situation makes more advisable to
consider these parameters as random variables (RVs) rather than determin-
istic constants. Most of the limitations of studies about chronic diseases,
with probabilities of crisis with no explanation, is the uncertainty of results
depending on each patient. Therefore, the main goal of this contribution is
to solve, from a probabilistic point of view, the resulting random model. To
distinguish RVs from deterministic variables, hereinafter RVs will be written
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using capital letters. So the randomized model is written as

Xn+1 = PXn, P =


1− P12 − P13 − P14 0 0 0

P12 1− P14 0 0
P13 0 1− P14 0
P14 P14 P14 1

 , (2)

where P12, P13 and P14 are assumed to be absolutely continuous RVs de-
fined on a common probability space (Ω,F ,P) with joint probability density
function fP12,P13,P14(p12, p13, p14).

2 Solving the randomized model

As a main difference with respect to the deterministic framework, solving
a randomized problem means not only to obtain its solution but also the
probabilistic information associated with it such as the mean a the variance.
In order to have a full probabilistic description of the solution process (SP)
the main contribution of this work is the computation of its first probability
density function (1-PDF), that is the 1-PDF of the effectiveness of AEDs in
Epileptic patients. The computation of the 1-PDF is advantageous since it
permits to compute all one-dimensional statistical moments of the solution
SP

E
[
(Xn)k

]
=

∫ 1

0

xkf1(x;n) dx, k = 0, 1, 2, . . .

As a consequence, the mean, E [Xn], and the variance, V [X(t)] = E [(Xn)2]−
E [Xn]2, are easily derived as particular cases.

Taking as initial condition x0 = (1, 0, 0, 0)>, the solution SP of the ran-
domized problem (2) is

Xn = P n x0 =



(1− P12 − P13 − P14)
n

P12((1− P14)
n − (1− P12 − P13 − P14)

n)

P12 + P13

P13((1− P14)
n − (1− P12 − P13 − P14)

n)

P12 + P13

1− (1− P14)
n


. (3)

Then, in order to compute the 1-PDF we apply the RVT method [3], which
has been successful applied in previous randomized models [4]. For in-
stance, applying the RVT technique, the 1-PDF of the solution SP X1

n of
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non-responder sub-population, defined in (3) is

f1(x;n) =

∫
R2

fP2,P3,P4

(
1− x1/n − δ − η, δ, η

) ∣∣∣∣−x−1+1/n

n

∣∣∣∣ dδ dη. (4)

3 Graphical Example

In this example we study the effectiveness of the Brivaracetam AED as treat-
ment of epileptic patients. Based on [5] the deterministic transition prob-
abilities are p12 = 0.02520, p13 = 0.13765 and p14 = 0.05720. Therefore,
we consider that P12, P13 and P14 are independent RVs, each one with a
truncated Beta Distribution in the interval Ti and parameters (ai; bi), i.e.,
P1i ∼ BeTi

(ai; bi), with

Ti = [p1i(1− 0.2), p1i(1 + 0.2)],


ai = p1i

(
p1i(1− p1i)

σ2
i

− 1

)
,

bi = (1− p1i)
(
p1i(1− p1i)

σ2
i

− 1

)
.

In Figure 3 the 1-PDF of the solution SP of non-responder sub-population
is plotted for different instants time n ∈ {1, 2, . . . 8}. We can observe that the
number of non-responder decrease in time, going to zero when the time tends
to infinity. This graphical representation is in agreement with the Figure 3
where the expectation as well as the 95% of confidence interval is represented.

Figure 2: 1-PDF of non-responder sub-population, X1
n, for different instants

time n ∈ {1, 2, . . . 8}.
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Figure 3: Expectation (line) and 95% confidence intervals (dotted line)
of non-responder sub-population, X1

n, for different instants time n ∈
{1, 2, . . . 8}.

4 Conclusions

In this contribution we propose a randomized model to study the effective-
ness of anti-epileptic drugs in epileptic patients. To solve this mathematical
model we apply the Random Variable Transformation technique in order to
compute the first probability density function of the solution stochastic pro-
cess. Particularly, the distribution of the number of non-responder patients
is computed. The probability density function gives us a full probabilistic
description of the solution in every instant time t. Moreover, from it the
mean and the variance can be easily derived, and then, confidence intervals
which allow us to do predictions. Finally, a numerical example is drawn to
shown the capability of the theoretical results previously established.
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1 Introduction

Causality is an important notion in every field of science. In empirical sci-
ences, causality is a useful way to generate knowledge and provide for ex-
planations. When a quantum physicist calculates the probability of an atom
absorbing a photon, he analyses this event as the cause of the atom’s jump to
an excited energy level; that is, he tries to establish a cause-effect relationship
[1].

Causation is a type of relationship between two entities: cause and effect.
The cause provokes an effect, and the effect is a consequence of the cause.
Causality can be a direct process when A causes B and B is a direct effect
of A, or an indirect one when A causes C through B, and C is an indirect
effect of A.

The typical form of causality is A causes B and the classic form of condi-
tionality is If A then B. Causality and conditionality are not only restricted
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to these formats. Synonyms of cause or effect may indicate causality. State-
ments like B is due to A, A produces B, etc., are some other ways of ex-
pressing causality, as well as there are some other forms of expressing condi-
tionality, like B if A, or A if only B. Therefore, in order to study causality,
these forms need also to be taken into account.

The use of causal graphs as a way to represent information has been very
present in literature, as Pearl [2], Spirtes [3], or Sobrino et al. [4] exemplifies.
These representations usually have a qualitative ponderation in the edges to
represent causal intensity like always, can, sometimes. . . . On the other hand,
there are studies about causality that use a numerical degree to weight edges
in a graph, which supposed and advance in the study of causal graphs. One
of these studies is the one presented by López et al. [5] to obtain the causality
degree of several causal paths linking two nodes. In this paper we present
as novelty the application of such weighted causal graphs to the detection
of new centrality measures related to causality. These measures are focused
in quantifying the idea of finding the most central vertex in a graph, for
example taking into account the length of the paths derived from a node. If
we have a weighted graph according to causality measures, we will be able
to adapt these weights to get the central vertex in a graph and predict the
strongest set of effects produced by a cause for example.

In section 2 we will explain these new definitions of centrality measures
depicted by a practical example.

2 Weighted Centrality Measures

In this paper, we propose change the centrality measures of causal graph’s
vertices defined in [5] by using the weights of the incoming and outcoming
edges of such vertices. This would create the idea of dynamic graph, as edges
ponderation would not be the same though it would be calculated in base to
their causality degree, so centrality would be calculated from a causal point
of view.

With these premises, we establish the following definitions:
Definition 1: given a causal graph of n vertices, the weighted output

degree of a vertex is the addition of all weights that come out of the vertex
and the input weighted degree of a vertex is the addition of all the weights
of the edges linking the vertex.

Definition 2: given a causal graph of n vertices, the weighted centrality
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in the output degree of a vertex is the weighted output degree of such vertex
divided by n− 1, and the weighted centrality in the input degree of a vertex
is the weighted input degree of such vertex divided by n− 1.

Remarks:
1. To calculate the weighted centrality output degree of a vertex i,

we just have to calculate the addition of the elements of the row i of the
weighting matrix A1 + ...+An−1 [5] divided by the order of such matrix −1.

2. To calculate the weighted centrality input degree of a vertex i, we
just have to calculate the addition of the elements of the column i of the
weighting matrix A1 + ...+An−1 [5] divided by the order of such matrix −1.

Definition 3: given a causal graph of n vertices, the weighted proximity
centrality in the output degree of a vertex is the addition of the degrees of
all causal paths going from that vertex to the rest, divided by the number of
vertices.

Definition 4: given a causal graph of n vertices, the weighted proximity
centrality in the input degree of a vertex is the addition of the degrees of all
causal paths going from all vertices to v, divided by the number of vertices.

Remarks:
1. To calculate the weighted proximity centrality in the output degree

of a vertex i, we just have to calculate the maximum of the coefficients of
the element (i, j) of the matrix A1 + ... + An−1 [5] and add these maximum
elements from j = 1 till n, dividing the result by n.

2. To calculate the weighted proximity centrality in the input degree
of a vertex i, we just have to calculate the maximum of the coefficients of
the element (i, j) of the matrix A1 + ...+An−1 and add these maximum from
i = 1 till n, dividing the result by n.

In all cases we are looking for the vertex or vertices with a highest cen-
trality measure.

Example:
With these definitions, we propose a practical example based in the graph

of figure 1 and calculate the weighted centrality of its vertices. We have 9
vertices,, and the following weights on each edge:

w(v1, v2) = 0.95, w(v1, v4) = 0.9, w(v1, v9) = 0.85, w(v2, v3) = 0.95, w(v3, v4) =
0.5, w(v4, v5) = 0.6, w(v4, v6) = 0.6, w(v5, v8) = 0.6, w(v6, v7) = 0.6, w(v7, v9) =
0.95, w(v8, v9) = 0.6.
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So, the weighting matrix of this graph is: M =



0 19
20

0 9
10

0 0 0 0 17
20

0 0 19
20

0 0 0 0 0 0
0 0 0 1

2
0 0 0 0 0

0 0 0 0 3
5

3
5

0 0 0
0 0 0 0 0 0 0 3

5
0

0 0 0 0 0 0 3
5

0 0
0 0 0 0 0 0 0 0 19

20

0 0 0 0 0 0 0 0 3
5

0 0 0 0 0 0 0 0 0


Figure 1.Causal graph to answer the question How smoking causes death?

Automatically extracted from [4], [6].
If we apply the first observation of definition 1, we will obtain the following

weighted centralities in the output degree:
v1:

1
8

(
19
20

+ 18
20

+ 17
20

)
= 27

80
, v2:

1
8

19
20

= 19
160

, v3:
1
8

1
2

= 1
16
, v4:

1
8

(
3
5

+ 3
5

)
=

3
20
, v5:

1
9

3
5

= 1
15

, v6:
1
8

3
5

= 3
40
, v7:

1
8

19
20

= 19
160

, v8:
1
8

3
5

= 3
40
, v9: 0.

So v1 is the vertex with highest weighted centrality in the output degree.
Applying remark 2 of definition 2, we will obtain the following weighted

centralities in the input degree:
v1: 0, v2:

1
8

19
20

= 19
160

, v3:
1
8

19
20

= 19
160

, v4:
1
8

(
9
10

+ 1
2

)
= 7

40
, v5:

1
8

3
5

= 3
40

, v6:
1
8

3
5

= 3
40
, v7:

1
8

3
5

= 3
40
, v8:

1
8

3
5

= 3
40
, v9:

1
8

(
17
20

+ 19
20

+ 3
5

)
= 3

10
.

So v9 is the vertex with highest weighted centrality in the input degree.
The matrix A1 + ... + An−1 of this graph is:

0 0.95v1v2 0.9025v1v2v3 0.9v1v4 + 0.45125v1v2v3v4 0.54v1v4v5 + 0.27075v1v2v3v4v5 0.54v1v4v6 + 0.27075v1v2v3v4v6 0.324v1v4v6v7 + 0.16245v1v2v3v4v6v7 0.324v1v4v5v8 + 0.16245v1v2v3v4v5v8 0.85v1v9 + 0.3078v1v4v6v7v9 + 0.1543275v1v2v3v4v6v7v9 + 0.1944v1v4v5v8v9 + 0.09747v1v2v3v4v5v8v9
0 0 0.95v2v3 0.475v2v3v4 0.285v2v3v4v5 0.285v2v3v4v6 0.171v2v3v4v6v7 0.171v2v3v4v5v8 0.16245v2v3v4v6v7v9 + 0.1026v2v3v4v5v8v9
0 0 0 0.5v3v4 0 0 0 0 0
0 0 0 0 0.6v4v5 0.6v4v6 0.36v4v6v7 0.36v4v5v8 0.342v4v6v7v9 + 0.216v4v5v8v9
0 0 0 0 0 0 0 0.6v5v8 0.36v5v8v9
0 0 0 0 0 0 0.6v6v7 0 0.57v6v7v9
0 0 0 0 0 0 0 0 0.95v7v9
0 0 0 0 0 0 0 0 0.6v8v9
0 0 0 0 0 0 0 0 0


Applying observation 1 of definitions 3 and 4, we will obtain the following

weighted proximity centralities in the output degree:
v1: 1/9 (0.95 + 0.9025 + 0.9 + 0.54 + 0.54 + 0.324 + 0.324 + 0.85) = 0.5923,
v2: 1/9 (0.95 + 0.475 + 2× 0.285 + 2× 0.171) = 0.2597,
v3: 1/9 (0.5 + 2× 0.3 + 2× 0.18) = 0.1622,
v4: 1/9 (2× 0.6 + 2× 0.36) = 0.2133, v5 and
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v6:
0.6
9

= 0.0667, v7, v8 and v9: 0.
So v2 is the vertex with a highest weighted proximity centrality in the

output degree.
Applying observation 2 of definitions 3 and 4, we will obtain the following

weighted proximity centralities in the input degree:
v1: 0, v2:

0.95
9

= 0.1056, v3:
1
9

(0.9025 + 0.95) = 0.2058, v4:
1
9

(0.9 +
0.475 + 0.5) = 0.2083,

v5:
1
9

(0.54 + 0.285 + 0.3 + 0.6) = 0.1917,
v6:

1
9

(0.324 + 0.171 + 0.18 + 0.36 + 0.6) = 0.1817,
v7:

1
9

(0.324 + 0.171 + 0.18 + 0.36 + 0.6) = 0.1817,
v8:

1
9

(0.324 + 0.171 + 0.18 + 0.36 + 0.6) = 0.1817,
v9:

1
9

(0.85 + 0.16245 + 0.171 + 0.342 + 0.36 + 0.57 + 0.95 + 0.6) = 0.4451
So v9 is the vertex with a highest weighted proximity centrality in the

input degree.

3 Conclusions

The problem in causal graphs of selecting the most causal path linking two
nodes has been largely discussed and is not trivial. In this paper we have
proposed a new approach by applying weighted centrality measures to select
those nodes with highest degrees and in accordance, obtain the ‘best’ causal
path between two nodes. This approach takes into account the relationship
of a node with the ones surrounding him and the input and output edges,
providing better results than the ones that we used before. In addition, for
future works, it will serve us for three main goals:

The first one is to select the most important nodes according to its causal
weight when creating a summary. The second would be when asking a ques-
tion, select the causal path that links two nodes with the highest degree of
causality to include those nodes in the answer of the question. The third
use would be to remove redundant nodes in a causal graph. For instance in
the graph included in [6] we had “tobacco use” and “smoking”. With this
measurement we are able to select the node with a highest weight to work
with.
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Abstract

In this work we deal with a random heat equation with initial con-
dition considering zero mixed-type boundary conditions. We propose
a random finite difference scheme to solve this problem and sufficient
conditions are provided in order to stablish consistency and stability
in adequate norms. Finally, theoretical findings are illustrated via an
example.

1 Introduction

It is well known the random nature of the parameters of the majority of
ordinary differential equations and partial differential equations due to the
complexity of the problem or to measurements errors. In recent years the
study and use of random models has been extended. One of the classical
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equations of mathematical physics is the heat equation. The heat equation
has a great deal of application in many branches of sciences [2, 1, 7]. The
finite difference method is useful to solve partial differential equations in the
deterministic scenario [3, 4, 6, 5]

In this work we propose a random finite difference scheme to solve the
random heat equation

ut(x, t) = βuxx(x, t), t > 0, 0 ≤ x ≤ 1, (1)

with initial condition
u(x, 0) = u0(x), (2)

and zero-mixed boundary conditions

ux(0, t) = 0, u(1, t) = 0, (3)

where ut and ux stand for the derivatives of u respect to t and x variables,
respectively, and β is a random variable defined on a complete probability
space (Ω, F , P). Provided method is consistent and stable.

Finally, we will provide numerical examples and the obtained results will
be compared using another established methods.

2 Computing the numerical solution

To compute the numerical solution, in a first step time and space are dis-
cretized in intervals equally spaced, tn = n∆t, n = 0, 1, 2, . . ., and xk =
x0 + k∆x = k∆x, k = 0, 1, . . . ,M + 1, respectively. These discretization
given us a mesh. The unknowns of these mesh are given in k = 0, 1, . . . ,M ,
n = 1, 2, . . .

The following approximation is used for the temporal derivative

∂u

∂t
=
u(x, t+ ∆t)− u(x, t)

∆t
+O (∆t) .

For the spatial derivative we use

∂2u

∂x2
=
u(x−∆x, t)− 2u(x, t) + u(x+ ∆x, t)

∆x2
+O

(
∆x2

)
,

∂u

∂x
=
u(x+ ∆x, t)− u(x−∆x, t)

2∆x
+O

(
∆x2

)
.
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Introducing the notation u (x0 + k∆x, n∆t) = u(xk, tn) = unk , and using
last approximations to derivatives in (1) one gets, taking r = β ∆t

(∆x)2
,

un+1
k = (1− 2r)unk + runk+1 + runk−1, k = 0, 1, . . . ,M, (4)

where
u0
k = u0(xk), unM+1 = u(xM+1, tn) = u(1, tn) = 0.

For k = 0 a ghost node is introduced in equation (4)

un+1
0 = (1− 2r)un0 + run1 + run−1

It is determined using the approximation to left-boundary condition ux(0, t) =
0, obtaining un−1 = un1 , n = 0, 1, . . .

Summarizing, next random difference method has been constructed in
order to solve numerically problem (1)–(3)

un+1
0 = (1− 2r)un0 + 2run1
un+1
k = (1− 2r)unk + runk+1 + runk−1, k = 1, 2, . . . ,M,

(5)

where

u0
k = u0(xk), k = 0, 1, . . . ,M,

unM+1 = 0, n = 0, 1, . . . ,

r = β
∆t

(∆x)2
, β is a random variable.

The random finite difference scheme constructed, is mean square consis-
tent introducing adequate norms and probability spaces. Under condition

∆t ≤ (∆x)2

2β1

, 0 < β(ω) ≤ β1, ∀ω ∈ Ω, (6)

the random finite difference scheme is stable in a mean square sense. Also,
the order of convergence can be established.

3 An illustrative example

In this section we develope a numerical example for problem (1)–(3). We
have chosen the random variable as β ∼ Be(1; 3). In this case 0 < β(ω) <
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Figure 1: ∆x = 1/32, ∆t = 1/2400. Left: Expectation of both exact and
numerical solution. Right: Variance of both exact and numerical solution.

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

[u(x,1/2)]

0.2 0.4 0.6 0.8 1.0
x

0.05

0.10

0.15

σ[u(x,1/2)]

Figure 2: ∆x = 1/16, ∆t = 1/600.Left: Expectation of both exact and
numerical solution. Right: Variance of both exact and numerical solution.

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

[u(x,1/2)]

0.2 0.4 0.6 0.8 1.0
x

0.05

0.10

0.15

σ[u(x,1/2)]

Figure 3: ∆x = 1/8, ∆t = 1/150. Left: Expectation of both exact and
numerical solution. Right: Variance of both exact and numerical solution.
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1 = β1. Taking u0(x) = cos
(
πx
2

)
as initial condition, the analytical solution is

u(x, t) = e−
1
4
π2βt cos

(
πx
2

)
. Using the numerical scheme developed in previous

section we obtain the the results displayed in Figures 1, 2 and 3 for the
different meshes.

Comparing the numerical results with the analytical solution we obtain
the results displayed in Table 1. This results are compatible with a numerical
order of one in time and two in space. If we compare with Montecarlo we
obtain Table 2. As we can observe the developed method gives better results
than MonteCarlo.

M N ∆x ∆t mean error standard deviation error
32 1200 1/32 1/2400 3.78 10−6 1.51 10−5

16 300 1/16 1/600 1.51 10−5 6.05 10−5

8 75 1/8 1/150 6.06 10−5 2.42 10−4

Table 1: Errors for random numerical difference scheme

simulations mean error standard deviation error
1000 7.28 10−3 3.58 10−3

10000 1.60 10−3 4.78 10−5

100000 1.64 10−4 3.02 10−4

1000000 4.38 10−5 1.69 10−4

Table 2: Errors for Montecarlo method

4 Conclusions

We have introduced randomness into the diffusion coefficient of the heat flow
model and we have proposed a random finite difference scheme (RFDS) for
solving this model with zero-mixed boundary conditions. The constructed
method is mean square consistent. Sufficient conditions are provided for the
mean square stability of the RFDS. The numerical experiments show that the
proposed RFDS gives reliable approximations for the mean and the standard
deviation of the solution stochastic process.
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1 Introduction
Bladder cancer is a challenge for urology and efforts in each step of the diagno-
sis and treatment of the patients should be implemented to improve oncological
results. Bladder cancer is the most common cancer in the urinary tract. It is clas-
sified into two types: non-muscle-invasive bladder cancer (NMIBC) and muscle
invasive tumor. In a first diagnosis, 75-85% of bladder cancers are non-muscle-
invasive bladder cancer (NMIBC) and 30-80% of these NMIBC patients have a
recurrence of the disease and 1-45% of these patients progress to muscle-invasive
tumor.

The non-invasive bladder cancer (NMIBC) is the tumor that generates the
greatest economic cost of all cancers due to its low mortality and long follow-
up period. Different strategies are needed to be tackled to reduce this cost such
as: to identify molecular markers that allow the use of more specific treatments
protocols depending on the particular characteristics of each tumor in order to
avoid unnecessary treatments; to establish cost-effective follow-up and treatment
protocols and to avoid the complications generated by this tumor.

Once a diagnosis of a new non-muscle-invasive bladder cancer (NMIBC) is
done in a patient, the only way to establish a successful specific follow-up and
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treatment protocol is based on a good prediction of the recurrence process and
the progression process of the primary tumor. The classical Cox model has been
widely used for this purpose [1], but this approach is not valid for the assess-
ment of this kind of events because the time between recurrences in the same
patient may be strongly correlated. Then new approaches for the risk estimation
of recurrence and progression are needed to lead to individualized monitoring and
treatment plan.

2 Successive steps towards the full model
Multi-state stochastic processes are a convenient framework for modeling the evo-
lution of disease processes and the statistical Flowgraph approach [2] is a con-
venient tool to perform the task. Flowgraph technique is specifically suited for
semi-Markov processes. This methodology in the context of stochastic networks
was introduced by Butler and Huzurbazar in [3] and widely applied in many con-
texts of multistate stochastic networks and biomedical applications. See [2] for an
introductory book on statistical Flowgraph models.

Our approach develops what we started in [4], with the aim of modeling the
recurrrence-progression process, visualized as a multi-state process, (see Figure
1).

RTU
Primary
tumor

-Recurrence -Recurrence -

HHH
HHH

HHj ?

���
���

���

�
�

�
�

�
�)

Progression

Figure 1: Recurrence-progression process

We found some difficulties within this framework. On one side, the manage-
ment of covariates is not straightforward [5]. More importantly, the semi-Markov
assumption implies independence among waiting time distributions. However,
we need to relax this assumption, because recurrences in the same patient are not
independent events, and in fact, the hypothesis of independence led us to unsatis-
factory results.
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We addressed the first problem in [6] and [7], using Erlang distributions, a
kind of phase type distribution [8], following the approach suggested in [9].

Let us recall that the distribution F(.) on [0,∞[ is a phase–type distribution
(PH-distribution) with representation (α,T ) if it is the distribution of the time
until absorption in a Markov process on the states {1, . . . ,m,m+1}with generator(

T T 0

0 0

)
,

and initial probability vector (α,αm+1) where α is a row m-vector.
In this way, we were able to incorporate covariates in a relatively simple man-

ner. Computations are quite tractable combined with the flowgraph methodology.
On the other hand dependency management is not achieved with generality

within the framework of Flowgraph methodology, only in a few special cases. A
successful approach is required when the conditional independence assumption
for waiting times does not hold. We addressed this problem in [10] and [11] using
the Markovian Arrival Process (MAP), that has the relevant property of depen-
dence between consecutive inter–arrival times in a process with multiple events.
These processes are in some way a generalization of phase type distributions.

A Markovian Arrival Process (MAP) (π,D0,D1) is an irreducible Markov
chain with a finite state space S, initial vector π and a generator matrix Q which
can be represented as Q = D0 +D1 where,

• D1 ≥ 0, D1 6= 0

• D0(i, j)≥ 0 for i 6= j

• (π,D0) is a phase-type distribution.

Two useful references for both phase-type distribution and the Markovian Arrival
Process are [12] and [13].

However, the introduction of MAPs entails the difficulty of not having a way
to include covariates nor censoring in MAPs. Our solution for the covariates issue
was discussed in [14]. The management of censored times is addressed in the
current work, on the occasion of the construction of a full flowgraph model of the
recurrence progression process, using a database of patients with NMIBC from
La Fe University Hospital of Valencia (Spain).
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3 A flowgraph model for NMIBC
The database consisted of 960 patients from University Hospital “La Fe”. Valen-
cia (Spain). Follow-up period was1995-2010 with a median follow-up of 48.1 (3−
160) months. All had a primary superficial transitional cell carcinoma of the blad-
der. Tumor was removed by means of TUR. 435 patients underwent a recurrence,
26 a progression, and 499 had censored times. Then, 62 patients were lost. From
the remaining 373 patients, 226 patients underwent a second recurrence 19 un-
derwent a progression and 128 were censored. 30 patients were lost. From the
remaining 196 patients, 4 underwent a progression. In our model we consider up
to two recurrences and progression. Main objective is to model the overall risk of
progression.

For that, we have to calculate the PDF of the specific path of the overall time
to progression. Taking into account the previous steps, the idea is to build the
appropriate phase-type distribution for each transition. All paths between two
consecutive states can be managed according to the general flowgraph methodol-
ogy, using our approach with Erlangs distributions. As in path 0→ 1→ 2 there
is dependence, we model that path with a MAP. To do this, the matrix D0 is made
up as if all the states were independent, using the flowgraph methodology. And π

and matrix D1 are constructed using a maximum likelihood procedure that allows
us to incorporate the information of censored times. It should be noted that as far
as we know, the issue of censored data with MAPs has not yet been addressed.

In this way we can obtain a representation (αk,Tk), k = 1, . . . ,5 of a phase-type
distribution in each branch of the graph
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Then path 0→ 1→ 2 is fitted using MAP and Flowgraph technics. T3, T4 and
T5 are fitted using Flowgraph technic.

In short, we have managed to extend the flowgraph methodology beyond the
semi-Markovian framework, simplifying the incorporation of covariates and with-
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out excluding censored times. All of which has allowed us to build a multistate
model of the evolution of NMIBC.
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1. Introduction 

One of the fundamental problems of some developed societies is the imbalance of their 
population pyramids. This imbalance can threaten the population and economic sustainability of 
these societies. The case of Spain and Norway, which are presented here as a case of application, 
is representative of this problem: its population pyramid tends to contract for working ages and to 
grow for retirement ages (see Fig. 1a and 1b). 

a) b)  
Fig. 1. Pyramid population, female (red) and male (orange) population for. a) Spain in 2017; b) Norway in 2017. 
A main factor considered by demographers as the cause of the problem is the low birth rate [1, 

2]. From this assumption, one could ask what would be the appropriate birth rate for a society so 
that, within a reasonable period, its population pyramid could reach a wished equilibrium. 
International agreements do not specify targets in terms of values of the dependency ratio. 
However, in 2005, 66 per cent of Governments were concerned about the size of their working-
age population, and 52 per cent of them reported that population ageing represented an issue of 
major concern [3]. 

The aim of this work is to use the demographic model developed by the authors [4] to solve the 
described problem. However, in this work the model is presented slightly modified in order to 
include the birth rate as a control variable. In addition, the model is presented in its stochastic 
formulation, which is one step beyond the cited work, in which its validity in deterministic 
formulation is demonstrated. Once the model has been validated for the case of Spain, it is used to 
determine what the future evolution of the birth rate should be in order to achieve a balanced 
population pyramid, i.e., a convenient dependency ratio. This evolution of the birth rate, which is 
considered optimal, is calculated with the use of a genetic algorithm.    

  
2. Demographic Model 
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The starting point of this demographic model is the model presented by [4]. In its continuous 
form it is constituted by the following equations, 

∂𝑤𝑤𝑖𝑖(𝑡𝑡,𝑥𝑥)
∂t

+ 𝑐𝑐 ∂𝑤𝑤𝑖𝑖(𝑡𝑡,𝑥𝑥)
∂x

= −𝑏𝑏𝑖𝑖(𝑡𝑡, 𝑥𝑥) · 𝑤𝑤𝑖𝑖(𝑡𝑡, 𝑥𝑥) + 𝑚𝑚𝑖𝑖(𝑡𝑡, 𝑥𝑥)                                                        (1) 

𝑤𝑤𝑖𝑖(𝑡𝑡, 0) = ∫ 𝑎𝑎𝑖𝑖(𝑡𝑡, 𝑥𝑥) · 𝑤𝑤2(𝑡𝑡, 𝑥𝑥) 𝑑𝑑𝑥𝑥∞
0                  (2) 

𝑤𝑤𝑖𝑖(𝑡𝑡0, 𝑥𝑥) = 𝑢𝑢𝑖𝑖(𝑥𝑥)                             (3) 

Where, i = 1 represents men and i = 2 women.  
Eq. 1 is a von Foerster-McKendrick equation that determines the dynamics of population 

density depending on time and age, 𝑤𝑤𝑖𝑖(𝑡𝑡, 𝑥𝑥), where 𝑏𝑏𝑖𝑖(𝑡𝑡, 𝑥𝑥) represents the death rate and 𝑚𝑚𝑖𝑖(𝑡𝑡, 𝑥𝑥) 
the migratory balance. Eq. 2 represents the boundary condition, that is, births at x = 0 (𝑎𝑎𝑖𝑖(𝑡𝑡, 𝑥𝑥) 
represents the fertility rate). Eq. 3 is the initial condition, that is, the initial population density, 
𝑢𝑢𝑖𝑖(𝑥𝑥), at t=t0. 

Based on this model, a simplification hypothesis is that the fertility rate can be calculated 
according to Eq. 4: 

 

𝑎𝑎𝑖𝑖(𝑡𝑡, 𝑥𝑥) ≈ 𝑎𝑎�𝑖𝑖(𝑥𝑥) · 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖(𝑡𝑡) · 𝑡𝑡𝑝𝑝𝑎𝑎𝑐𝑐(𝑡𝑡) · 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡(𝑡𝑡)      (4) 
 

Where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖(𝑡𝑡) is the proportion of men or women born (according to i = 1 or 2, respectively), 
that is, births per sex (𝑏𝑏𝑏𝑏𝑝𝑝𝑏𝑏𝑖𝑖(𝑡𝑡)) divided by the total number of births (𝑏𝑏𝑏𝑏𝑝𝑝𝑡𝑡(𝑡𝑡)) (see Eq. 5 below); 
𝑡𝑡𝑝𝑝𝑎𝑎𝑐𝑐(𝑡𝑡) is the birth rate, i.e., total numbers of births (𝑏𝑏𝑏𝑏𝑝𝑝𝑡𝑡(𝑡𝑡)) divided by the total population 
(𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡(𝑡𝑡)) (see Eq. 6 below); and 𝑎𝑎�𝑖𝑖(𝑥𝑥) is the ratio between the fertility rate and births (see Eq. 7 
below). 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖(𝑡𝑡) = 𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏𝑖𝑖(𝑡𝑡)
𝑏𝑏𝑖𝑖𝑏𝑏𝑡𝑡(𝑡𝑡)                  (5) 

𝑡𝑡𝑝𝑝𝑎𝑎𝑐𝑐(𝑡𝑡) = 𝑏𝑏𝑖𝑖𝑏𝑏𝑡𝑡(𝑡𝑡)
𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡(𝑡𝑡)                 (6) 

𝑎𝑎�𝑖𝑖(𝑥𝑥) = 𝑎𝑎𝑖𝑖(𝑥𝑥)
𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏𝑖𝑖(𝑡𝑡0)                  (7) 

About the Eq.4, there are variables which can be calculated from other as Eq. 16 and 17 show, 

𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) = ∫ �𝑤𝑤1(𝑡𝑡, 𝑥𝑥) + 𝑤𝑤2(𝑡𝑡, 𝑥𝑥)� 𝑑𝑑𝑥𝑥+∞
0               (8) 

On the other hand, given that the migratory balance is defined by the difference between 
immigration and emigration, in [4] it is considered as the product of absolute migrations dependent 
on time and the proportions per unit of age of the population of the system (Eq. 9, 10 and 11). In 
our work, we consider Eq. 12 and 13. 

 
𝑚𝑚𝑖𝑖(𝑡𝑡, 𝑥𝑥) = 𝑦𝑦𝑝𝑝𝑚𝑚𝑏𝑏𝑖𝑖(𝑡𝑡, 𝑥𝑥) − 𝑒𝑒𝑚𝑚𝑏𝑏𝑒𝑒𝑖𝑖(𝑡𝑡, 𝑥𝑥)                                               (9) 
𝑦𝑦𝑝𝑝𝑚𝑚𝑏𝑏𝑖𝑖(𝑡𝑡, 𝑥𝑥) = 𝑓𝑓𝑖𝑖(𝑥𝑥) · 𝑒𝑒𝑝𝑝𝑦𝑦𝑝𝑝𝑖𝑖(𝑡𝑡, 𝑥𝑥) · 𝑤𝑤𝑖𝑖(𝑡𝑡, 𝑥𝑥)                         (10) 
𝑒𝑒𝑚𝑚𝑏𝑏𝑒𝑒𝑖𝑖(𝑡𝑡, 𝑥𝑥) = 𝑒𝑒𝑖𝑖(𝑥𝑥) · 𝑒𝑒𝑝𝑝𝑒𝑒𝑚𝑚𝑖𝑖(𝑡𝑡, 𝑥𝑥) · 𝑤𝑤𝑖𝑖(𝑡𝑡, 𝑥𝑥)             (11) 
 
Where, 
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𝑒𝑒𝑝𝑝𝑒𝑒𝑚𝑚𝑖𝑖(𝑡𝑡, 𝑥𝑥) =
∑ 𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖(𝑡𝑡,𝑥𝑥)−𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖(𝑡𝑡0,𝑥𝑥)

𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖(𝑡𝑡0,𝑥𝑥)
𝑡𝑡𝑛𝑛
𝑡𝑡=𝑡𝑡0

𝑡𝑡𝑛𝑛−𝑡𝑡0
              (12) 

𝑒𝑒𝑝𝑝𝑦𝑦𝑝𝑝𝑖𝑖(𝑡𝑡, 𝑥𝑥) =
∑ 𝑦𝑦𝑛𝑛𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡,𝑥𝑥)−𝑦𝑦𝑛𝑛𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡0,𝑥𝑥)

𝑦𝑦𝑛𝑛𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡0,𝑥𝑥)
𝑡𝑡𝑛𝑛
𝑡𝑡=𝑡𝑡0

𝑡𝑡𝑛𝑛−𝑡𝑡0
              (13) 

 
A similar simplification has been done for the death rates [4], which are defined as a function 

of age as 𝑏𝑏𝑖𝑖(𝑥𝑥) (Eq. 14). In our work, we consider Eq. 15 and 16. 
 
𝑑𝑑𝑒𝑒𝑎𝑎𝑡𝑡𝑖𝑖(𝑡𝑡, 𝑥𝑥) = 𝑏𝑏𝑖𝑖(𝑥𝑥) · 𝑤𝑤𝑖𝑖(𝑡𝑡, 𝑥𝑥)                         (14) 
𝑑𝑑𝑒𝑒𝑎𝑎𝑡𝑡𝑖𝑖(𝑡𝑡, 𝑥𝑥) = 𝑏𝑏𝑖𝑖(𝑥𝑥) · 𝑒𝑒𝑝𝑝𝑑𝑑𝑒𝑒𝑖𝑖(𝑡𝑡, 𝑥𝑥) · 𝑤𝑤𝑖𝑖(𝑡𝑡, 𝑥𝑥)              (15) 

𝑒𝑒𝑝𝑝𝑑𝑑𝑒𝑒𝑖𝑖(𝑡𝑡, 𝑥𝑥) =
∑ 𝑑𝑑𝑒𝑒𝑑𝑑𝑡𝑡𝑖𝑖(𝑡𝑡,𝑥𝑥)−𝑑𝑑𝑒𝑒𝑑𝑑𝑡𝑡𝑖𝑖(𝑡𝑡0,𝑥𝑥)

𝑑𝑑𝑒𝑒𝑑𝑑𝑡𝑡𝑖𝑖(𝑡𝑡0,𝑥𝑥)
𝑡𝑡𝑛𝑛
𝑡𝑡=𝑡𝑡0

𝑡𝑡𝑛𝑛−𝑡𝑡0
               (16) 

 
With these considerations on the initial model, the following equations are obtained: 

∂𝑤𝑤𝑖𝑖(𝑡𝑡,𝑥𝑥)
∂t

+ 𝑐𝑐 ∂𝑤𝑤𝑖𝑖(𝑡𝑡,𝑥𝑥)
∂x

= (−𝑏𝑏𝑖𝑖(𝑥𝑥) · 𝑒𝑒𝑝𝑝𝑑𝑑𝑒𝑒𝑖𝑖(𝑡𝑡, 𝑥𝑥) + 𝑓𝑓𝑖𝑖(𝑥𝑥) · 𝑒𝑒𝑝𝑝𝑦𝑦𝑝𝑝𝑖𝑖(𝑡𝑡, 𝑥𝑥) − 𝑒𝑒𝑖𝑖(𝑥𝑥) · 𝑒𝑒𝑝𝑝𝑒𝑒𝑚𝑚𝑖𝑖(𝑡𝑡, 𝑥𝑥)) · 𝑤𝑤𝑖𝑖(𝑡𝑡, 𝑥𝑥)    (17)                                                

𝑤𝑤𝑖𝑖(𝑡𝑡, 0) = 𝑏𝑏𝑏𝑏𝑝𝑝(𝑡𝑡) · 𝑛𝑛𝑖𝑖(𝑡𝑡)
𝑛𝑛1(𝑡𝑡)+𝑛𝑛2(𝑡𝑡) · ∫ �𝑤𝑤1(𝑡𝑡, 𝑥𝑥) + 𝑤𝑤2(𝑡𝑡, 𝑥𝑥)� 𝑑𝑑𝑥𝑥+∞

0 · ∫ 𝑎𝑎�𝑖𝑖(𝑥𝑥) · 𝑤𝑤2(𝑡𝑡, 𝑥𝑥) 𝑑𝑑𝑥𝑥+∞
0           (18) 

𝑤𝑤𝑖𝑖(𝑡𝑡0,𝑥𝑥) = 𝑢𝑢𝑖𝑖(𝑥𝑥)                                                                                                   (19) 
 
3. Model Validation 

The validation of the model is done for Spain in the 2008-2016 period, since it is from these 
years that information is obtained, in order to fit the equations of the model, based on the Eurostat 
statistical database [5]. 

The model has been written as a set of differential and functional equations. The solutions have 
been calculated with the Euler Method following [6, 7], which explain that the Euler Method is 
more adequate to solve such equations. In the case of the integral in Eq. 9, it is calculated through 
the Simpson Composite Rule. This approach results in a set of finite difference equations that has 
been programmed in Visual Basic 6.0 using Sigem [8, 9]. 

The corresponding validation has been performed numerically by calculating the determination 
coefficients and the random residuals tests for the case of the deterministic validation. Figures 2 
to 7 show some of the obtained results compared with the historical data. The validation process 
is considered successful for the deterministic validation because the determination coefficients, 
R2, are very high, and the maximum relative error does not exceed 2.3% in any case. Due to space 
limitation, we do not show the stochastic validation. 

 

a) b)  
Fig. 2. Female Births in the 2008-2016 period. a) Deterministic validation for Spain, R2=0.987666; b) 

Deterministic validation for Norway, R2=0.842235. 



Modelling for Engineering & Human Behaviour 2018_______________________________295 
 

Note that the fitting of the functions to historical data of each one of the input variables (for 
each country) has been made through Mathematica 11.00 [10] with the NonLinearModelFit 
package and with the Regint function fitter [8, 9]. 

 

a) b)  
Fig. 3. Female Births in the 2008-2016 period. a) Deterministic validation for Spain, R2=0.981417; b) 

Deterministic validation for Norway, R2=0.887119. 
 

a) b)  
Fig. 4. Female Population by age in 2008. a) Deterministic validation for Spain, R2=0.970624; b) Deterministic 

validation for Norway, R2=0.982761. 

a)  b)  
Fig. 5. Male Population by age in 2008. a) Deterministic validation for Spain, R2=0.990115; b) Deterministic 

validation for Norway, R2=0.994378. 
 

a) b)  
Fig. 6. Female Population by age in 2016. a) Deterministic validation for Spain, R2=0.981417; b) Deterministic 

validation for Norway, R2=0.887119. 
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a) b)  
Fig. 7. Male Population by age in 2016. a) Deterministic validation for Spain, R2=0.981417; b) Deterministic 

validation for Norway, R2=0.887119. 
 

4. Simulation and decision making: optimization with a genetic algorithm contrast to 
strategies and scenarios 

A genetic algorithm (GA) is automatically programmed by the Sigem automatic programing 
tool [8, 9]. The GA allows optimizing, at each step of time, a previously defined objective variable 
from other variables included in the model. In this work, the goal is to maximize the proportion of 
the working age population over the population that does not work (Eq. (11)) in the 2017-2117 
period for the case of Spain and Norway, where xm is the age from which you can work and xM the 
retirement age.  

𝑝𝑝𝑏𝑏𝑜𝑜𝑒𝑒(𝑡𝑡) =
∑ ∫ 𝑤𝑤𝑖𝑖(𝑡𝑡,𝑥𝑥) 𝑑𝑑𝑥𝑥𝑥𝑥𝑀𝑀

𝑥𝑥𝑒𝑒𝑖𝑖

∑ �∫ 𝑤𝑤𝑖𝑖(𝑡𝑡,𝑥𝑥) 𝑑𝑑𝑥𝑥𝑥𝑥𝑒𝑒
0 +∫ 𝑤𝑤𝑖𝑖(𝑡𝑡,𝑥𝑥) 𝑑𝑑𝑥𝑥+∞

𝑥𝑥𝑀𝑀
�𝑖𝑖
          (20) 

 

 In Eq. 20 xm is the starting age to be able to work and xM the retirement age.  
There is an important difference between the optimization with the GA and others, such as the 

quasi-optimization obtained with the method of strategies and scenarios (SS) [11, 12]. The 
difference is that the input variables that have been fitted with respect to time (𝑡𝑡𝑝𝑝𝑎𝑎𝑐𝑐(𝑡𝑡)) (with SS) 
are now calculated by the model by means of the GA, which searches for the optimal strategy to 
reach the goal, that is, the optimal value of 𝑡𝑡𝑝𝑝𝑎𝑎𝑐𝑐(𝑡𝑡) to achieve maximizing 𝑝𝑝𝑏𝑏𝑜𝑜𝑒𝑒(𝑡𝑡). Due to the 
available space, only the results obtained with the model defined in its deterministic formulation 
are shown in Fig. 8 and 9. They reveal that the dependency rate increase with both optimization. 
To modify the population pyramid and to get more people of working age it is necessary to modify 
the trend of the birth rate. In the case of SS optimization, Fig. 8b and Fig. 9b show that the birth 
rate must be increased since 2017 to 2046 (Spain) and 2058 (Norway). Fig. 10 and 11 present that 
the absolute values of the corresponding births are increased respect to 2017 (Fig. 1) to obtain the 
goal proposed, in the case of Norway (Fig. 11), but the opposite case must be produced in the case 
of Spain (Fig. 10).   

 

a)  b)  
Fig. 8. Dependency ratio for Spain in the period 2017-2117. a) Optimization with GA; b) Optimization with SS, 

Optimist strategy: Increase the birth rate by 2% (blue), Tendency strategy: Maintain current tendency (red), 
Pessimistic strategy: Decrease the birth rate by 2% (green). 
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a)  b)  
Fig. 9. Dependency ratio for Norway in the period 2017-2117. a) Optimization with GA; b) Optimization with SS, 

Optimist strategy: Increase the birth rate by 2% (blue), Tendency strategy: Maintain current tendency (red), 
Pessimistic strategy: Decrease the birth rate by 2% (green). 

a)  b)  
Fig. 10. Pyramid population, female (red) and male (orange) population for Spain in 2117. a) Optimization with 

GA; b) Optimization with SS. 

a)   b)  
Fig. 11. Pyramid population, female (red) and male (orange) population for Norway in 2117. a) Optimization with 

GA; b) Optimization with SS. 
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1 Introduction

The most endangered parts are rotating components in engineering construc-
tions. Reliable shaft operations endanger two limit states in particular. In
the vicinity of resonance there is an enormous increase in amplitudes of state
quantities and the yield strength of the material. These conditions often
occur with the coupling shafts of the cardan mechanisms. The torque is
transmitted here over long distances. The shafts are long and slim and are
prone to transverse bending. The gearbox shafts are compact and operating
at a sufficient distance from the resonant area. In this case they are endan-
gered by fatigue fractures. They need to be checked for safety to fatigue.
A similar situation to gearboxes is with gear pump shafts. The authors
have long been concerned with the design of joint shafts and gear pumps in
cooperation with engineering companies.

Mathematical models pumps lead to solutions from the field of linear
algebraic equations. In the case of bending oscillations, the equations of
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motion of the basic element is a partial differential equations of the 4th order
for the variables x and t.

The solving the equations is to use an analytical solution for simpler cases.
For a real shaft profile, one of the most sophisticated methods is needed.

In the cases solved by us, the finite element method and transfer matrix
method proved to be successful.

The Finite Element Method seems to us very good to obtain the modal
and spectral properties and our eigen oscillation frequencies [1]. The con-
tinuum is discretized using this method. In solution, it does not provide
infinitely many eigen frequencies because they vanish to the finite number
of elements, and for higher frequencies it loses precision. In this way, fre-
quencies can be examined not only for strength (lower frequency) and noise
(higher frequencies near the operating area, which is particularly important
for cars). The disadvantage of using the finite element method is the clains
on the hardware because the matrix size is increased in the calculation. Our
aim is therefore to develop methods that can be successfully applied within
the limited resources of small and medium-sized enterprises with which we
cooperate.

At present, we have a model for solving eigen oscillations in rotating
parts of machine mechanisms. The next step is the generalization to solve
forced oscillations. For the calculations, we also use variational analysis
methods. The mathematical model is described by Euler-Lagrange equations
(the equations of motions). Thus, the model formulation is provided by the
Hamilton equations, which we obtain through the Legendre transformation
of coordinates.

2 Mathematical model of shaft element

At present, we have a model for solving eigen oscillations in rotating parts of
machine mechanisms. The next step is the generalization to solve forced os-
cillations. For the calculations, we also use variational analysis methods. The
mathematical model is described by Euler-Lagrange equations (the equations
of motions). Thus, the model formulation is provided by the Hamilton equa-
tions, which we obtain through the Legendre transformation of coordinates.
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Fig. 1. The element of shaft in state of combined bending-gyratory
vibration

The deflection y of the range 0 ≤ x ≤ l (see Fig. 1) is expressed as

y(x, t) =
4∑
i=1

qi(t)Φi(x) (1)

where Φi(x) are 3rd order polynomials

Φi(x) = a3ix
3 + a2ix

2 + a1ix+ a0i

with coefficient a3i, a2i, a1i, a0i.
Boundary conditions:

Φ1(0) = 1, Φ1(l) = 0, Φ′
1(0) = 0, Φ′

1(l) = 0,

Φ2(0) = 0, Φ2(l) = 0, Φ′
2(0) = 1, Φ′

2(l) = 0,

Φ3(0) = 0, Φ3(l) = 1, Φ′
3(0) = 0, Φ′

3(l) = 0,

Φ4(0) = 0, Φ4(l) = 0, Φ′
4(0) = 0, Φ′

4(l) = 1.

Polynomials Φi(x):

Φ1(x) = 2
(
x

l

)3

− 3
(
x

l

)2

+ 1,

Φ2(x) =
x3

l2
− 2

x2

l
+ x,

Φ3(x) = −2
(
x

l

)3

+ 3
(
x

l

)2

,

Φ4(x) =
(
x

l

)3

− x2

l
.
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The potential energy of an element:

Ep =
1

2
EJ

∫ 1

0

(
∂2y

(∂x)2

)2

dx (2)

subtituing (1) to (2) we get

Ep =
1

2
EJ

∫ 1

0
([Φ′′(x)] [q])

2
dx, (3)

where [Φ′′(x)] = [Φ′′
1(x),Φ′′

2(x),Φ′′
3(x),Φ′′

4(x)] and [q] = [q1, q2, q3, q4]
T .

The kinetic energy of above element:

Ek =
1

2
µ
∫ 1

0

(∂y
∂t

)2

+ (yω)2
 dx+

1

2
µ̄
∫ 1

0

(
∂2y

∂t ∂x

)
dx, (4)

where µ = ρπ (r22 − r21), µ̄ = ρπ
4

(r42 − r41) and J = π
4

(r42 − r41)
The Lagrange function L:

L = Ek − Ep, (5)

where Ek, resp. Ep

Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, (6)

where i = 1, 2, . . . 4.
Euler–Lagrange equations of the shaft element:

{[M1] + [M2]}[q̈]− {[K1]− [K2]}[q] = 0, (7)

where

[M1] = µ
∫ 1

0
[Φ]T [Φ] dx =

µl

420


156 22l 54 −13l
22l 4l2 13l −3l2

54 13l 156 −22l
−13l −3l2 −22l 4l2

 , (8)
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[M2] = µ̄
∫ 1

0
[Φ′]

T
[Φ′] dx =

µ̄

30l


36 3l −36 3l
3l 4 −3l −l2
−36 −3l 36 −3l

3l −l2 −3l 4l2

 , (9)

[K1] = EJ
∫ 1

0
[Φ′′]

T
[Φ′′] dx =

EJ

l3


12 6l −12 6l
6l 4l2 −6l 2l2

−12 −6l 12 −6l
6l 2l2 −6l 4l2

 , (10)

[K1] = µω2
∫ 1

0
[Φ]T [Φ] dx = µω2


156 22l 54 −13l
22l 4l2 13l −3l2

54 13l 156 −22l
−13l −3l2 −22l 4l2

 . (11)

3 Conclusions

Possible generalizations:
1) Legengre transformation, Hamiltonian and Hamilton equations.
2) Generalization to connected shafts.
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1. Introduction 
 

Integer Linear Programming (ILP) is increasingly applied in the field of energy and buildings to solve 
optimization problems [1-3]. Buildings account 40% of the total EU’s energy consumption [4] and are 
a key potential source of energy savings. Investments in buildings refurbishment deliver energy 
savings with lower running costs, improved health and comfort with added value. Furthermore, around 
54% of the buildings in Spain date back before 1980, when no thermal regulation was available [5]. 
With the aim of adapting technical standards to the new needs of buildings owners and occupants, in 
September 2013 the “Basic Document” for Energy Savings of the CTE was published (Documento 
Básico DB HE «Ahorro de energía» del Código Técnico de la Edificación) [6]. The thermal envelope 
of a buildings is usually the main element that needs to be refurbished and its thermal transmittance 
must abide by the current legislation [6] depending on the climate zone. The thermal transmittance U 
(Wm-2K-1) measures the rate of heat flow through the elements of the building envelope [7] and is a 
key magnitude to assess the energy efficiency. The transparent part represents the weakest element of 
the envelope from the thermal (and also acoustic) point of view for the greater thermal exchange rate. 
This paper extends the ILP approach presented in [3] to deal with the problem of minimizing costs for 
the thermal refurbishment of a façade with thickness and thermal transmittance bounds and with an 
intervention both on the opaque part (wall) and the transparent part (windows).  Among thousands of 
combinations of materials, thicknesses and type of windows for the thermal refurbishment of a building 
envelope, the aim is to choose the one that minimizes the cost, without violating any restriction 
imposed to the refurbishment of the façade. Our case study will be Building 1B of the School for 
Building Engineering in the Vera Campus of the Universitat Politècnica de València, Spain. 
 
 

2. Definition of the problem 
 

The problem of minimizing the cost of refurbishment of a façade to comply with current energy 
efficiency regulations is formulated in this section as an ILP problem. To this aim, we first present 
some notations, the used variables and parameters, for a better understanding of the formulation. 
− Let 𝑆𝑆 = 𝑆𝑆𝑤𝑤+ 𝑆𝑆𝑜𝑜 be the total surface in m2 of the façade, where Sw is the surface corresponding 

to the windows and So is the surface corresponding to the opaque part of the façade. 
Furthermore,  𝑆𝑆𝑜𝑜 = 𝑆𝑆𝑜𝑜𝑙𝑙 + 𝑆𝑆𝑜𝑜𝑢𝑢, where 𝑆𝑆𝑜𝑜𝑙𝑙  is the surface corresponding to the first lower meter of 
the opaque part of the façade, and 𝑆𝑆𝑜𝑜𝑢𝑢 is the upper surface to the first lower meter of the opaque 
part of the façade. Those parts can show different thermal insulation materials in order to avoid 
rising dump. These surfaces will be also taken into account on preliminary calculations such as 
computing the price and the transmittance of the different types of windows to cover surface Sw, 
or to determine the availability or the price of certain materials for the wall.  
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− Let 𝜇𝜇 be the number of layers of the original façade, let 𝜎𝜎 be the sum of the quotients 𝑡𝑡𝑖𝑖 𝜆𝜆𝑖𝑖⁄  

where 𝜆𝜆𝑖𝑖 (Wm-1K-1) and 𝑡𝑡𝑖𝑖 (m) represent the thermal conductivity and the thickness respectively 
of each layer i of the original façade, and let 𝜏𝜏 be the sum of these thicknesses 𝑡𝑡𝑖𝑖, 𝑖𝑖 ∈ {1, … , 𝜇𝜇}. 

− Let n be the number of layers to be added to the external side of the original façade, which will 
be numbered from the inside (layer attached to the wall) to the outside. Each layer 𝑖𝑖 ∈ {1, … ,𝑛𝑛} 
is made of one of the 𝑚𝑚𝑖𝑖 different materials available for this layer, and given a layer 𝑖𝑖 ∈
{1, … ,𝑛𝑛}, the material 𝑗𝑗 ∈ {1, … ,𝑚𝑚𝑖𝑖} is available in 𝑟𝑟𝑗𝑗𝑖𝑖 different thicknesses. For each 𝑖𝑖 ∈
{1, … ,𝑛𝑛}, 𝑗𝑗 ∈ {1, … ,𝑚𝑚𝑖𝑖}, 𝑘𝑘 ∈ �1, … , 𝑟𝑟𝑗𝑗𝑖𝑖�, the following parameters are defined: 
• 𝑡𝑡𝑖𝑖,𝑗𝑗,𝑘𝑘 thickness corresponding to material j with type of thickness k available for layer i. 
• 𝑐𝑐𝑖𝑖,𝑗𝑗,𝑘𝑘 cost of placing in layer i 1m2 of material j with type of thickness k. 

− Let 𝑛𝑛𝑙𝑙𝑜𝑜 be the different options for the first lower meter of the thermal insulation (first layer of 
So), for each 𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑙𝑙𝑜𝑜} there are available 𝑟𝑟𝑗𝑗 different thicknesses of this option. For each 
𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑙𝑙𝑜𝑜} and 𝑘𝑘 ∈ �1, … , 𝑟𝑟𝑗𝑗� the following parameters are defined: 
• 𝑡𝑡𝑗𝑗,𝑘𝑘

𝑙𝑙𝑜𝑜  thickness corresponding to option j and type of thickness k for the chosen material. 
• 𝑐𝑐𝑗𝑗,𝑘𝑘

𝑙𝑙𝑜𝑜  cost of placing on the first layer of the lower opaque part 1m2 of the chosen material with 
option j and type of thickness k. 

− Let 𝑛𝑛𝑓𝑓 and 𝑛𝑛𝑔𝑔 be the number of different window’s frames considered and the number of 
different combinations of glasses and air chambers considered for the windows respectively, all 
of them complying with the maximum allowed transmittance for these materials. For each 𝑖𝑖 ∈
�1, … ,𝑛𝑛𝑓𝑓� and 𝑗𝑗 ∈ �1, … ,𝑛𝑛𝑔𝑔� the following parameters are defined: 
• 𝑡𝑡𝑖𝑖𝑤𝑤 thickness corresponding to window’s frame of type i. 
• 𝑐𝑐𝑖𝑖,𝑗𝑗𝑤𝑤  cost of placing 1m2 of window with type of frame i and type of glasses combination j. This 
cost includes the proportional part of removing old windows. 

− Given two consecutive layers, there may exist incompatibilities between some materials and 
thicknesses corresponding to these layers, as described in [3]. 

− The total thickness of added layers is comprised between bounds 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 and 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚. 
− Let 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 be the maximum thermal transmittance allowed for the external wall (its upper opaque 

part), according to the legislation for the climate zone where the building is located.  
− Let Wmin be the minimum recommended windowsill (difference between the final wall thickness 

and the new window’s frame thickness).  
− Let 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘 be a binary variable which value is 1 if layer i is made with material j and type of 

thickness k,  and  0 otherwise, 𝑖𝑖 ∈ {1, … , 𝑛𝑛}, 𝑗𝑗 ∈ {1, … ,𝑚𝑚𝑖𝑖}, 𝑘𝑘 ∈ �1, … , 𝑟𝑟𝑗𝑗𝑖𝑖�. Note that for i=1, 
this variable is associated only with the upper opaque part. 

− Let 𝑦𝑦𝑗𝑗,𝑘𝑘 be a binary variable which value is 1 if option j with thickness type k is chosen for the 
first layer of the lower opaque part, and 0 otherwise, 𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑙𝑙𝑜𝑜},𝑘𝑘 ∈ �1, … , 𝑟𝑟𝑗𝑗�. 

− Let 𝑧𝑧𝑖𝑖,𝑗𝑗 be a binary variable which value is 1 if window with type of frame i and type of glasses 
combination j is chosen for the refurbishment, and 0 otherwise, 𝑖𝑖 ∈ �1, … ,𝑛𝑛𝑓𝑓�, 𝑗𝑗 ∈ �1, … , 𝑛𝑛𝑔𝑔�. 

− Given a material j, with 𝑗𝑗 ∈ {1, … ,𝑚𝑚𝑖𝑖} for some 𝑖𝑖 ∈ {1, … ,𝑛𝑛}, and let 𝜆𝜆𝑗𝑗 be its thermal 
conductivity, according to [3] the linear constraint to comply with the thermal transmittance 
upper bound for the upper opaque part of the façade is:  

 

���
𝑡𝑡𝑖𝑖,𝑗𝑗,𝑘𝑘

𝜆𝜆𝑗𝑗
𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘 ≥

1
𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚

−
1
ℎ𝑖𝑖𝑚𝑚𝑖𝑖

−
1
ℎ𝑒𝑒𝑚𝑚𝑖𝑖

𝑟𝑟𝑗𝑗𝑖𝑖

𝑘𝑘=1

𝑚𝑚𝑖𝑖

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

− 𝜎𝜎                                 (1) 

 
Taking into account all the concepts, restrictions and suppositions given above, the problem of 
minimizing the refurbishment cost of a façade can be formulated mathematically as the following ILP 
problem, defined through Eqs. (2) to (13): 

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑀𝑀   𝑆𝑆𝑜𝑜���𝑐𝑐𝑖𝑖,𝑗𝑗,𝑘𝑘𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑟𝑟𝑗𝑗𝑖𝑖

𝑘𝑘=1

𝑚𝑚𝑖𝑖

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=2

+ 𝑆𝑆𝑜𝑜𝑢𝑢��𝑐𝑐1,𝑗𝑗,𝑘𝑘𝑥𝑥1,𝑗𝑗,𝑘𝑘

𝑟𝑟𝑗𝑗1

𝑘𝑘=1

𝑚𝑚1

𝑗𝑗=1

+ 𝑆𝑆𝑜𝑜𝑙𝑙 ��𝑐𝑐𝑗𝑗,𝑘𝑘
𝑙𝑙𝑜𝑜 𝑦𝑦𝑗𝑗,𝑘𝑘

𝑟𝑟𝑗𝑗

𝑘𝑘=1

𝑚𝑚𝑙𝑙𝑙𝑙

𝑗𝑗=1

+ 𝑆𝑆𝑤𝑤��𝑐𝑐𝑖𝑖,𝑗𝑗𝑤𝑤 𝑧𝑧𝑖𝑖,𝑗𝑗

𝑚𝑚𝑔𝑔

𝑗𝑗=1

𝑚𝑚𝑓𝑓

𝑖𝑖=1

 (2) 

s.t.: 
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��𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘 = 1   

𝑟𝑟𝑗𝑗𝑖𝑖

𝑘𝑘=1

𝑚𝑚𝑖𝑖

𝑗𝑗=1

∀𝑖𝑖 ∈ {1, … ,𝑛𝑛}                                                              (3) 

 

  ��𝑦𝑦𝑗𝑗,𝑘𝑘

𝑟𝑟𝑗𝑗

𝑘𝑘=1

= 1
𝑚𝑚𝑙𝑙𝑙𝑙

𝑗𝑗=1

                                                                                             (4)   

 
 

��𝑧𝑧𝑖𝑖,𝑗𝑗

𝑚𝑚𝑔𝑔

𝑗𝑗=1

𝑚𝑚𝑓𝑓

𝑖𝑖=1

= 1                                                                                               (5) 

 

��𝑡𝑡1,𝑗𝑗,𝑘𝑘𝑥𝑥1,𝑗𝑗,𝑘𝑘

𝑟𝑟𝑗𝑗1

𝑘𝑘=1

𝑚𝑚1

𝑗𝑗=1

= ��𝑡𝑡𝑗𝑗,𝑘𝑘
𝑙𝑙𝑜𝑜 𝑦𝑦𝑗𝑗,𝑘𝑘

𝑟𝑟𝑗𝑗

𝑘𝑘=1

𝑚𝑚𝑙𝑙𝑙𝑙

𝑗𝑗=1

                                                            (6)  

 

𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 ≤ ���𝑡𝑡𝑖𝑖,𝑗𝑗,𝑘𝑘𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑟𝑟𝑗𝑗𝑖𝑖

𝑘𝑘=1

𝑚𝑚𝑖𝑖

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

≤ 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚                                                                   (7) 

 

���𝑡𝑡𝑖𝑖,𝑗𝑗,𝑘𝑘𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑟𝑟𝑗𝑗𝑖𝑖

𝑘𝑘=1

𝑚𝑚𝑖𝑖

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

+ 𝜏𝜏 −��𝑡𝑡𝑖𝑖𝑤𝑤𝑧𝑧𝑖𝑖,𝑗𝑗

𝑚𝑚𝑔𝑔

𝑗𝑗=1

𝑚𝑚𝑓𝑓

𝑖𝑖=1

≥ 𝑊𝑊𝑚𝑚𝑖𝑖𝑚𝑚                                  (8) 

 

���
𝑡𝑡𝑖𝑖,𝑗𝑗,𝑘𝑘

𝜆𝜆𝑗𝑗
𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘 ≥

1
𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚

−
1
ℎ𝑖𝑖𝑚𝑚𝑖𝑖

−
1
ℎ𝑒𝑒𝑚𝑚𝑖𝑖

𝑟𝑟𝑗𝑗𝑖𝑖

𝑘𝑘=1

𝑚𝑚𝑖𝑖

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

− 𝜎𝜎                                     (9) 

 

𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘 + 𝑥𝑥(𝑖𝑖+1),𝑗𝑗′,𝑘𝑘′ ≤ 1    ∀ (𝑖𝑖, 𝑗𝑗, 𝑘𝑘 − (𝑖𝑖 + 1), 𝑗𝑗’, 𝑘𝑘’) −  𝑖𝑖𝑛𝑛𝑐𝑐𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀   (10) 
 

𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘 ∈ {0,1}    ∀ 𝑖𝑖 ∈ {1, … ,𝑛𝑛}, 𝑗𝑗 ∈ {1, … ,𝑚𝑚𝑖𝑖}, 𝑘𝑘 ∈ �1, … , 𝑟𝑟𝑗𝑗𝑖𝑖�                  (11) 
 

𝑦𝑦𝑗𝑗,𝑘𝑘 ∈ {0,1}         ∀ 𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑙𝑙𝑜𝑜}, 𝑘𝑘 ∈ �1, … , 𝑟𝑟𝑗𝑗�                                        (12) 
 

 𝑧𝑧𝑖𝑖,𝑗𝑗 ∈ {0,1}        ∀ 𝑖𝑖 ∈ �1, … ,𝑛𝑛𝑓𝑓�, 𝑗𝑗 ∈ �1, … ,𝑛𝑛𝑔𝑔�                                         (13) 
Where: 

− Eq. (2) is the objective function, that is, the total cost of the refurbishment. 
− Eqs. (3) and (4) ensure that each layer is made exactly of one material with a given thickness. 

Note that layer 1 has one material for its lower part and another one for its upper part. 
− Eq. (5) guarantees that only one type of window is chosen for the whole transparent part. 
− Eq. (6) ensures that both the lower part of layer 1 and its upper part have the same thickness. 
− Eq. (7) restricts the total thickness of added layers within the established bounds. 
− Eq. (8) guaranties that the width of the windowsill is at least Wmin. 
− Eq. (9) is the key restriction with respect to energy efficiency. It ensures that the upper opaque 

part of the wall does not exceed the maximal allowed thermal transmittance. 
− Eq. (10) forbids to place a material j’ with thickness k’ in the next layer to the one (layer i) 

containing the material j with thickness k (we denote this fact (i,j,k-(i+1),j’,k’)-
incompatibility). At most one of the two materials will appear in the corresponding layer.  

− Finally, Eqs. (11) to (13) define the variables of the problem as binary.  
 

Note that the above formulation contains the most usual constrains given in the refurbishment of a 
façade, but it could include other types of linear constraints to fit as much as possible the real problem.  
 

3. Case study 
 

Our case study will be building 1B of the School for Building Engineering in the Vera Campus of the 
Universitat Politècnica de València, Spain. Built in the late ‘60ties as first building ever of 83, its 
classification is F for energy consumptions, with 350 kW·h·m-2·year-1, and E for CO2 emissions, with 
64 kgCO2·m-2·year-1. The opaque part of the façade is a 3-layer wall: two external layers of concrete 
(20 mm each) and an interior layer made by simple wood chips mixed with mortar (60 mm). Its 
transmittance is Uopaque= 1.2 Wm-2K-1, which is over the limit for the correspondent B3 climate zone 
(Umax,opaque=0.82 Wm-2K-1). The transparent part shows windows with metallic frame and simple glass 
with a transmittance Uframe = Uglass = 5.7 Wm-2K-1 also over the maximum values (Umax,windows=3.6 (east) 
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- 3.8 (north) Wm-2K-1). Both values are estimations as there are no available project data. We will study 
two representative façades of the building: the façade with the highest amount of transparent part 
(54%) on the east side and the largest façade (307 m2) on the north side, as shown in Figure 1.  
 

  

Figure 1. Plan of the ETSEE with position of façade 1 and 2, and detail of the existing façade. 

Table 1 summarizes the main data of the two façades, where Utransparent= 0.86· Uglass + 0.14· Uframe. 
 

Table 1. Data of the chosen façades. 
 

 Façade 1 (EAST) Façade 2 (NORTH) 
Surface [m2] 72.80 307.00 

Opaque part [m2] 33.6 267.8 
Uopaque [Wm-2K-1] 1.2 1.2 

MAX admissible Uopaque in zone B3 0.82 0.82 
Transparent part [m2] 39.2 39.2 

Utransparent [Wm-2K-1] 5.7 5.7 
MAX admissible Utransparent in zone B3 3.6 3.8 

Frame [m2]  (units) 5.6 (14) 5.6 (14) 
Uframe [Wm-2K-1] 5.7 5.7 

Glass [m2] 33.6 33.6 
Uglass[Wm-2K-1] 5.7 5.7 

 

The suggested refurbishment solution includes the removal of the old windows, the preparation of the 
“holes” (as a fixed cost), new windows with double glass (standard or low emissive) and 2 different 
options for the frame (PVC, aluminum) as well as an added multilayer “coat” with flexible 
configuration (thermal insulation, air chamber, new panel and external finish).  
We have selected 50 options for the thermal insulation of the upper part of the façade, 12 options for 
the thermal insulation of the lower part, 9 options for the air chamber, 7 options for the new panel, 11 
options for the external finish, 2 options for the windows’s frame and 40 options for the combinations 
of glasses and internal air chamber of the window. Main data are included in Table 2 and 3. 
 
Table 2. Opaque part. 
 

Layer Function Material Thickness [mm] 
Layer 0 Existing façade Concrete plate with wood 

chips and mortar 
100 

 
Layer 1 

 Projected Polyurethane 
Extruded polystyrene 

30 up to 60 
30 up to 60 

façade 2 

façade 1 
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Thermal 
insulation 

Mineral wool 
Expanded polystyrene 
Expanded cork 

30 up to 60 
30 up to 60 
30 up to 60 

 
Layer 2 

 
Air cavity 
 

Light ventilated 
Not ventilated 
Absence 

30, 50, 80, 100 
30, 50, 80, 100 
0 

 
Layer 3 

 
New panel 
 

Facing brick 
Pressed facing brick 
Composite panel 
Extruded ceramic panel 
Absence 

115 
120 
5 
16 
0 

 
Layer 4 

 
External finish 

Regular plaster 
Thermal plaster 
Absence 

10 up to 20 
10 up to 20 
0 

 

Table 3. Transparent part. 
 

Element Material Composition [mm] 
Frame PVC 

Aluminum 
82 glass packages - max 52mm thickness 
53 glass packages - max 30mm thickness 

 
 
Double 
glass 

Standard 
 
 
 
Low emissivity 
 

External glass: 4, 5, 6, 8 
Air chamber: 6, 8, 10, 12, 14, 16 
Air chamber with argon: 10, 12, 16 
Internal glass: 4, 5, 6, 8 
External glass: 4, 6, 8 
Air chamber: 6, 8, 10, 12, 14, 16 
Air chamber with argon: 10, 12, 16 
Internal glass: 6,8  

 

The costs of the different constructive solutions include materials, staff and site facilities, and have 
been consulted in the cost generator website of CYPE Ingenieros [8] during March 2018.  
 

4. Results and conclusions 
 
After removing all the incompatible combinations (e.g. adding facing brick plus external finish) we 
have a total of 792,000 possible solutions for the refurbishment of this façade, which shows the 
complexity of choosing the adequate solution.  
To solve both problems (two façades) we have run Mathematica 11.0 [9] on a PC Intel® Core™ I7-
6700 with 4 processors, 3.46GHz and 8GB RAM. The CPU time to obtain each one of the optimal 
solutions was little than 0.05s, which is insignificant given the number of possible solutions. 
According to the obtained results, three main constructive solutions have been selected as shown in 
Figure 2. The first constructive solution is a direct application over the existing wall of 30 mm of 
expanded polystyrene with 10 mm of regular plaster achieves the lowest total thickness with an U-
value of 0.597 Wm-2K-1. The lowest U= 0.399 Wm-2K-1 is obtained with 60 mm of expanded 
polystyrene. The first meter will be always made by extruded polystyrene for avoiding rising dump. 
The second constructive solution increases up to three the number of layers (expanded polystyrene, 
light ventilated air chamber, extruded ceramic panel) with a lower final U= 0.36 Wm-2K-1. The third 
solution includes a waterproof face brick of 24x11.5x5 mm. With a non ventilated air gap and the 
inclusion of 30 mm of expanded polystyrene as thermal insultation we reach an U=0.44 Wm-2K-1.  
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Figure 2. Suggested constructive solutions for thermal refurbishment. 

Cost per m2 are quite different depending on the chosen constructive solutions as well as on the 
transparency of the façade (54% for façade 1 and 13% for façade 2). For solution 1 we have a cost of 
76.86€/m2 for façade 1 and 34.40€/m2 for façade 2 with a great difference. Solution 2 shows almost 
the same price for façade 1 (111.57€/m2 ) and façade 2 (104.16€/m2) due the more expensive material 
used for layer 3. Lastly costs for solution 3 are intermediate but closer to the ones for solution 2 (95.12 
€/m2 and 84.98€/m2 respectively for façade 1 and façade 2). 
In addition we identified that a small variation in the thickness of the wall can increase considerably 
the final cost with a small improvement on the thermal transmittance of the wall. The thickness change 
if we change the constructive solution. For constructive solution 1 we have thickensses between 40 
and 80 mm for example. Solution 2 starts with 76 mm and solution 3 with 175 mm. Furthermore we 
found out that an improved windows with PVC frame and a 4/6/4 glass package is the commoun and 
cheapest option for all constructive solutions. 
Finally the ILP approach seams to be convenient for finding out the best constructive solution under 
budget, transmittance and thickness constraints taking into account the improvement of the thermal 
behaviour of a façade that needs to fulfil the new regulation in force and create a better user’s comfort. 
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1 Introduction

Bone fracture healing is an efficient regenerative process that results in a
complete reconstruction of the bone. However, in immune-compromised in-
dividuals the healing process can fail or take longer to heal [2]. In addition,
surgical complications, disabilities, and high morbidity rates often occurs in
individuals with osteoporotic fractures and severe traumas [2]. Therefore,
it is important to have a better understanding of the bone fracture healing
process and develop new strategies for fracture treatments under a variety of
pathological conditions.

Recent experimental results have indicated that the modulation of inflam-
mation via macrophages and mesenchymal stem cells (MSCs) provides new
opportunities to optimize bone healing [1, 2]. In [3], a mathematical model
based on the interactions among the macrophages, MSCs, and osteoblasts
was developed to study the regulatory effects of pro- and anti-inflammatory
cytokines during bone fracture healing. It was found that high concentra-
tions of pro-inflammatory cytokines negatively affect the healing time of a
fracture and that the administration of anti-inflammatory cytokines can ac-
celerate the healing process in a dose-dependent manner. However, the model
assumed that the only source of anti-inflammatory cytokines is given by the
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MSCs, which may not be enough to promote and correctly represent the
complex pattern of bone fracture healing formation. Therefore, it is impor-
tant to account for the capabilities of macrophages as additional source of
anti-inflammatory cytokines during the bone fracture healing process [1, 2].

In this paper, a new mathematical model is developed to better under-
stand of the regulatory effect of cytokines in the bone fracture healing process.
It represents an extension of the model in [3], as it separately incorporates
the two different phenotypes of macrophages: classically and alternatively
activated macrophages. Both phenotypes have the capabilities to modulate
the inflammation, however that is achieved though their different phagocytic
rates and cytokines productions. Classically activated macrophages release
high levels of pro-inflammatory cytokines, including the TNF-α which ex-
hibits inhibitory and destructive properties in high concentrations [2]. In
contrast, alternatively activated macrophages are characterized by the secre-
tion of the anti-inflammatory cytokines, such as the IL-10, which increase
their phagocytic activities and promote growth of the tissue cells [1, 2].

2 Modeling Assumptions

The most important interactions between macrophages and tissue cells dur-
ing the bone fracture healing process are observed during the inflammatory
and repair phases [3]. In the inflammatory phase, macrophages together
with the MSCs modulate and resolve the inflammation, while during the
repair phase macrophages provide an optimal environment for the cellular
proliferation, differentiation, and tissue production. The primary cells dur-
ing the inflammatory and repair phases of the bone fracture healing process
are debris (D), classically activated macrophages (M1), alternatively acti-
vated macrophages (M2), MSCs (Cm), and osteoblasts (Cb). Their cellular
dynamics are regulated by two generic pro- and anti-inflammatory cytokines:
c1 and c2, respectively. It is assumed that the regenerative process is given
by the production of two extracellular matrices: the fibrocartilage (mc), and
the woven bone (mb). The variables represent homogeneous quantities in
a given volume. Their dynamics are depicted in Figure 1, where the cellu-
lar dynamics are represented by the circular shapes and solid arrows. The
molecular concentrations and their production/decay are represented by the
octagonal shapes and dashed arrows. The pro- and anti-inflammatory cy-
tokines activation/inhibition effects on the cellular functions are represented
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Figure 1: Flow diagram of the cellular and molecular dynamics during the
inflammatory and repair phases of the bone fracture healing process.

by the dotted arrows. Removal of debris and the negative effect among the
variables are represented by the dot-ending dotted arrows.

For modeling the inflammatory and repair phases of the healing process,
the same assumptions are used as in [3]. In addition, it is assumed that the
migrating macrophages are classically activated and that they switch to their
alternative phenotype at a constant rate. The migration rate of macrophages
increases proportionally to the density of debris. The maximal density of the
macrophages is denoted by Mmax. It is assumed that M1 deliver the c1 while
M2 and MSCs release the c2. Both M1 and M2 engulf debris at different
rates.

3 Model Formulation

The process of bone fracture healing is modeled with a mass-action system of
nonlinear ordinary differential equations. Following the flow diagram given
in Figure 1 and the above biological assumptions yields the resulting system
of equations:
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dD

dt
= −RD(ke1M1 + ke2M2) (1)

dM1

dt
= RM − k12M1 − d1M1 (2)

dM2

dt
= k12M1 − d2M2 (3)

dc1
dt

= H1(k0D + k1M1) − dc1c1 (4)

dc2
dt

= H2(k2M2 + k3Cm) − dc2c2 (5)

dCm

dt
= AmCm

(
1 − Cm

Klm

)
− F1Cm (6)

dCb

dt
= AbCb

(
1 − Cb

Klb

)
+ F1Cm − dbCb (7)

dmc

dt
= (pcs − qcd1mc)Cm − qcd2mcCb (8)

dmb

dt
= (pbs − qbdmb)Cb. (9)

Here, the engulfing rate RD and migration rate RM of macrophages are
modeled as below:

RD =
D

aed +D
, RM = kmax

(
1 − M1 +M2

Mmax

)
D,

the inhibitory effects of c2 are modeled by the following functions:

H1 =
a12

a12 + c2
, H2 =

a22
a22 + c2

,

and the proliferation and differentiation rates of Cm and Cb are modeled by:

Am = kpm ×
a2pm + apm1c1

a2pm + c21
, Ab = kpb ×

apb
apb + c1

, F1 = dm × amb1

amb1 + c1
.

4 Discussion and Conclusion

A complete qualitative analysis of the model was performed. It was deter-
mined that there are three biologically meaningful equilibria: two nonunions
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and one successful outcome. Their corresponding stability properties are de-
fined in terms of the tissue cells’ proliferation and differentiation rates (kpm,
kpb, dm and db). From the stability conditions of the successful outcome,
the parameter values of the model were selected from [3, 5] and fixed to run
different sets of numerical simulations. First, simulations were performed
to numerically monitor the evolution of a broken bone for different debris
concentration, i.e., different types of fractures. Next, a set of numerical
simulations was run to explore possible therapeutic treatments through the
administration of anti-inflammatory cytokines, both by increasing the initial
concentration of c2 and also the c2 production rate by M2, which is given
by the parameter k2. Figure 2 displays the simulation curves of the evo-
lution of a moderate fracture for different values of the parameter k2. For
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Figure 2: Tissues evolution in a moderate fracture under different anti-
inflammatory cytokines treatments.

the base value of k2 = 3.72 × 10−6 ng/cells/day (solid line), the simulation
shows that the constant administration of anti-inflammatory cytokines in the
moderate fractures improves the tissues evolution but in a dose-dependent
manner. On one hand, when k2 is doubled (dashed line) it enhances the early
production of cartilage and increases the bone synthesis, while a drastic in-
crease of k2 by eighty times (dotted lines) leads to less cartilage and bone
formation. Similar results were obtained when c1(0) was increased to 10 and
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100 ng/mL, respectively. Therefore, the presented mathematical model and
corresponding numerical simulations suggest that increasing the production
of anti-inflammatory cytokines does not always improve the bone fracture
healing process, as it has already been observed experimentally and reported
in the scientific literature [4].

The flexibility and strength of the new mathematical model allows for a
variety of different types of numerical simulations to be performed quickly
and cost-effectively to replicate the bone fracture healing process under dif-
ferent conditions. For example, the parameter values of the model can be
easily adjusted to simulate the healing of a broken bone in edged and senile
osteoporosis individuals. In addition, the model can be used to simulate
different medical interventions in the bone fracture healing process, such as
MSCs injection and transplantation. The model can also be easily adapted
to a variety of other therapeutic approaches and be used to guide clinical
experiments and bone tissue engineering strategies.
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1 Introduction

Shortly after concluding with the formulation of the general theory of relativ-
ity in 1916, Einstein moved on to devise relativistic models of the universe,
applying his new theory to the realm of physical cosmology. Assuming uni-
formity and isotropy for a universe on a very large scale, he produced a
simple cosmological model of a finite, static universe with constant spherical
curvature, nowadays called the Einstein cylinder [1, 2].

Such spaces of constant curvature represent maximally symmetric geome-
tries. This property explains its fundamental importance in many physics
and engineering applications, e.g. in the description of uncharged, perfect
relativistic fluids [3] and other standard cosmological models [4, p. 59]. More-
over, in the past years, quantum mechanical phenomena in spaces of constant
curvature have attracted the focus of intense investigation [5], raising critical
questions beyond their possible experimental verification. Nonetheless, the
simulation of acoustic phenomena [6] in such spaces has so far been vastly
neglected.

In this work, we explore the possibilities to simulate acoustics on the
Einstein cylinder with the help of acoustic metamaterials—materials which
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enable researchers and engineers to contrive extraordinary devices with ex-
ceptional properties, exceeding the limits established by nature. These meta-
materials offer researchers and engineers unique opportunities to design and
build novel artificial devices with exceptional characteristics, see e.g. Refs. [6–
9].

Modelling acoustic wave propagation with this particular geometry can be
shown to result from a simple variational principle for the acoustic potential,
a framework developed in Ref. [10] and extended to various other spacetime
geometries [11–14]. This approach yields a wave equation in the form of
a partial differential equation for the potential, connected to a harmonic
time dependence and to a Sturm-Liouville problem for the radial isotropic
coordinates, which can be treated analytically.

The same framework also permits to determine the acoustic parameters
corresponding to the postulated spacetime via the so-called constitutive equa-
tions [10]. Exactly this fine-tuning implements the acoustic wave propagation
for the curved background spacetime under consideration.

Analytical results and numerical estimates conclude this discussion for
interesting test cases, which might motivate future laboratory experiments.

2 Spacetime geometry of the Einstein cylin-

der

Here, we consider the special case of constant positive curvature, a > 0,
for two dimensions. It is the 2-sphere S2, which we then embedded into
(2 + 1)D spacetime with Lorentzian signature. This is the prototype model
of a homogeneous and isotropic spacetime. The (2 + 1)-dimensional Einstein
cylinder , M = R+ × S2, is defined by the following metric [2]

g = − (cdt) ⊗ (cdt) + (adΩ2) ⊗ (adΩ2) , (1)

where Ω2 denotes the familiar solid angle for S2, apart from the time coordi-
nate with the constant speed c > 0. The constant a > 0 represents a natural
scale factor for length.

In isotropic radial coordinates (see Fig. 1 for further explanation) the
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Figure 1: Isotropic radial coordinates are defined by r = a sinϑ and are quite
commonly used in the description of spherically symmetric spacetimes. The
graphical representation shows that 0 ≤ r < a, or alternatively 0 ≤ ϑ < π/2.
As usual for the azimuthal angle holds 0 ≤ ϕ < 2π.

original metric of Eq. (1) is recast into the more convenient form

g = −
(
cdt
)
⊗
(
cdt
)

︸ ︷︷ ︸
θ0

+
dr√

1 − r2/a2
⊗

dr√
1 − r2/a2︸ ︷︷ ︸
θ1

+
(
r dϕ

)
⊗
(
r dϕ

)
︸ ︷︷ ︸
θ2

,

(2)
where we have introduced the local coframe with dual base θµ (µ = 0, 1, 2).

As the name implies, this frame (θ0, θ1, θ2) possesses local flatness. Apart
from this, orthogonality holds, such that η = −θ0⊗θ0+θ1⊗θ1+θ2⊗θ2, where
η is the Minkowski metric. Then Cartan’s structure equations will allow us
to compute the curvature 2-form Ω. The final result of this calculation yields
that for M = R+ × S2 the only non-zero and independent component of the
Riemann curvature tensor in the coframe is

R̂1
212 =

1

a2
⇒ G00 = Ĝ00 =

1

a2
, (3)

where the 00-component of the Einstein tensor is the same in the local frame
and coordinate frame.
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This immediately implies for the energy-matter density ρ0:

G00︸︷︷︸
1/a2

=
8πG

c4
T00︸︷︷︸
ρ0c

2

⇒ ρ0 =
c2

8πGa2
> 0, (4)

where G is the gravitational constant. Thus, a universe filled uniformly with
energy-matter will implement the static model of an Einstein cylinder.

3 Acoustic space and metamaterial tuning

The prescription for a constant energy-matter density throughout the Ein-
stein cylinder, viz. Eq. (4), in the general theory of relativity has its counter-
part in acoustic theory. More precisely, there exists a 1-to-1 correspondence
between the metric of a given spacetime metric and the acoustic parameters
of the metamaterial which will display analogous properties. This relation-
ship was derived in Ref. [10].

Accordingly, the acoustic engineer who wishes to implement a spacetime
(M,g) in the laboratory environment ( physical space) has to fine-tune the
mass-density tensor % and bulk modulus κ in such a manner that it will
produce the desired acoustic wave propagation in the corresponding acoustic
space (virtual space).

In explicit form, both spaces—physical and virtual space—are linked by
the constitutive relations [10], and in the case for the Einstein cylinder a
straightforward calculation shows that the bulk modulus κ and the density
tensor ρ have to be

κ =
1√

1− r2/a2
, ρ0ρ

ij =
√

1− r2/a2

(
1 0
0 1/r2

)
, (5)

where 0 < r < a and i, j = r, ϕ. Recall that
√

1− r2/a2 = cosϑ, and the
variables are restricted to a domain without coordinate singularities.

4 Wave propagation and its simulation

The fundamental law which governs acoustic wave propagation within a
curved spacetime background is dictated by a variational principle, similar
to Fermat’s principle of least time in theoretical optics.
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According to this principle, for a given spacetime M with metric g, the
action is stationary with respect to variations of the acoustic potential φ :
M → R such that [10]:

δ

δφ

∫
Ω⊆M

dvolg g(∇φ,∇φ) = 0. (6)

Here Ω ⊆ M is a bounded spacetime domain and dvolg its volume element.
As a consequence, the corresponding physical propagation law will have its
equivalent in equations of motion with self-adjoint differential operators act-
ing on the related field variables [15, p. 351]. This produces separable partial
differential equations which are Sturm-Liouville problems for one of the field
variables with analytical or at least semi-analytical solutions.

Eq. (6) corresponds to the following simple Euler-Lagrange equation which
contains the Laplace-Beltrami operator ∆M on manifold M :

∆Mφ =
1√
−g
(√
−g gµνφ,µ

)
,ν

= 0 (7)

where g = det g < 0. As usual, spacetime indices µ, ν = 0, 1, 2 preceded by a
comma stand for partial derivatives with respect to xµ and xν , respectively.

For acoustic wave propagation on the Einstein cylinder, Eq. (7) converts
to

− 1

c2

∂2φ

∂t2
+

[(
1− r2

a2

)
∂2

∂r2
+

1

r

(
1− 2r2

a2

)
∂

∂r

]
φ+

∂2φ

∂ϕ2
= 0. (8)

This is exactly the acoustic wave equation with background metric Eq. (2),
engineered and implemented by the acoustic parameters provided in Eqs. (5).

To probe the spacetime properties of the Einstein cylinder, we will choose
concentric radial waves leaving the origin:

φ(t, r, ϕ) = A+eiωtφ1(r). (9)

The amplitude is A+ > 0 and the frequency is ω > 0. Function φ1(r) repre-
sents the radial dependency in the full expression of the acoustic potential

φ(t, r, ϕ) = φ0(t)φ1(r)φ2(ϕ). (10)

Applying the separation of variables method as the standard procedure, it is
straightforward to recognize that the time dependence in Eq. (10) displays a
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simple harmonic behaviour, i.e. φ0(t) = eiωt. Because of the radial symmetry
of the concentric prototype waves, the angular factor φ2(ϕ) in Eq. (10) is just
a constant which can be absorbed into the amplitude A+ in Eq. (9).

So ultimately all of the non-trivial behaviour for the wave propagation
will be contained in the radial contribution φ1(r). An explicit analysis reveals
that the second-order linear differential equation determining φ1(r) has reg-
ular singular points at r = 0, a,∞. The canonical forms for such differential
equations are either Gauss’s differential equation or the generalized hyperge-
ometric equation [16, 17]. Then, a lengthy computation yields the following
general solution for the remaining radial part of the concentric prototype
waves in Eq. (9):

φ1(r) = C1 2F1

 1
4

(
1 +

√
1 + 4a2 ω2

c2

)
1
4

(
1−

√
1 + 4a2 ω2

c2

)
1

∣∣∣∣∣∣ r
2

a2


(11)

+ C2 G
2,0
2,2

 1
4

(
3 +

√
1 + 4a2 ω2

c2

)
1
4

(
3−

√
1 + 4a2 ω2

c2

)
0 0

∣∣∣∣∣∣ r
2

a2

 ,

where 2F1 are hypergeometric functions [17] and G2,0
2,2 Meijer G-functions [18].

These are well defined functions, implemented with high precision on many
modern computer systems.

For the numerical wave simulation, we normalize the amplitude A+ = 1
paired with frequency ω = 1/2π, and put length scale a = 100. In the graph-
ical representations, Fig. 2, we pick several, distinct boundary conditions to
illustrate the non-trivial propagation behaviour for the concentric prototype
waves travelling on the Einstein cylinder. In cases (a)–(c), we observe a
characteristic damping of the wave, which is due to the stretching of θ1, see
Eq. (2), for the isotropic radius approaching the equator at r = a, viz. Fig. 1.
Case (d) shows a wave travelling inwards—from close to the equator to the
origin—displaying significant amplification.

5 Conclusions

We presented a detailed analysis of acoustic wave propagation on the Einstein
cylinder, motivated by the simplicity of its underlying spacetime geometry,
being maximally symmetric and having constant positive curvature.
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Using concentric waves for probing characteristic features of this space-
time, a detailed study led us to fully analytic results expressed in terms of
hypergeometric functions and Meijer G-functions. We also provide the cor-
responding acoustic metamaterial parameters for future engineering of such
an analogue spacetime in the laboratory setting and for making it subject to
challenging experiments.
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Figure 2: Representation of the non-trivial radial behaviour φ1(r) for con-
centric wave propagation on the Einstein cylinder with length scale a = 100.
The amplitude A+ and the speed c are both normalized to unity. The fre-
quency is always ω = 1/2π. For illustrative purposes, different boundary
conditions are chosen, and they are individually given in the legend of all
subfigures. In cases (a)–(c) a characteristic wave damping is observed. Case
(d) shows a wave travelling inwards from the equator to the origin.
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1 Introduction

Traditionally classical explicit methods have not been used for sti� ordinary
di�erential equations due to their stability limitations. However, very often,
the dimension is high and the eigenvalues of the Jacobian matrix are known to
be in a long narrow strip along the negative real axis. This situation typically
arises when discretizing spatially parabolic equations or hyperbolic-parabolic
equations such as advection-di�usion-reaction equations (with dominating dif-
fusion or reaction). In this case, stabilized explicit Runge-Kutta methods were
demonstrated to be very e�cient (see [1, 3, 4, 7] and references therein).

Extrapolated Stabilized Explicit Runge-Kutta methods (ESERK) are pro-
posed, in this work, to solve multi-dimensional non-linear partial di�erential
equations (PDEs). For such methods it is necessary to evaluate the function nt
times per step, but the stability region is O(n2

t ). Hence, the computational cost
is O(nt) times lower than for a traditional explicit algorithm. In that way sti�
problems can be integrated by the use of simple explicit evaluations in which
case implicit methods usually had to be used.

We �rst calculate the �rst-order SERK method. Later, we compute the nu-
merical results of the initial value problem (IVP) by performing ni steps with
step size ∆ti to obtain y∆ti(x0 + h) := REi,1 from y(x0). We do these calcu-
lations with this method for various length-step values ∆t1 > ∆t2 > ∆t3 > . . .
(taking ∆ti = ∆t/ni, ni being a positive integer). This idea has been consid-
ered to develop fourth- (ESERK4, [6]) and �fth-order (ESERK5, [5]) ESERK
method.

During the next years, we are working in two di�erent issues:
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i) We are planning to develop from second- to sixth-order codes based on
ESERK methods, and combine all of them in one code. In several papers,
including [6], the authors showed how depending on the prescribed tol-
erance, but also the sti�ness of the problem (and also some functions or
intervals considered), lower-order methods have better results sometimes,
and in others it was necessary to obtain good approximations faster.

ii) Since we need s stages to obtain the �rst-order stabilized explicit Runge-
Kutta approximation (RE1,1), the total number of function evaluations
of the fourth-order method is nt = 10s, and for the �fth-order scheme is
nt = 15s. To increase the speed of these higher-order methods, we are
working on parallelized versions of the codes described in [5, 6].

In this work, we brie�y explain how we derived sixth-order ESERK (ES-
ERK6) methods and how we are parallelizing all these codes: ESERK4, ES-
ERK5, and ESERK6 algorithms.

2 Stabilized Explicit Runge-Kutta methods

For the construction of these kinds of algorithms two problems need to be solved:

i) Finding stability functions with extended stability domains along the neg-
ative real axis;

ii) Finding explicit Runge-Kutta methods with those polynomials as stability
functions.

2.1 Stability functions with extended stability domains

The main ingredient for these methods is a Chebyshev polynomial of the �rst
kind:

Ts(x) = cos(s arccos(x)).

If we now consider

Rs,p(z) =
Ts(w0,s,p + w1,s,pz)

Ts(w0,s,p)
, w0,s,p = 1 +

µp
s2
, w0,s,p =

Ts(w0,s,p)

T ′s(w0,s,p)
, (1)

(s being the number of stages and p the order of the �nal extrapolated scheme)
we obtain polynomials oscillating between −λp and λp in a region which is
O(s2), and Rs,p(z) = 1 + z +O(z2).

The parameter λp is always a value smaller than 1, which depends on the
order of convergence, p, of the �nal extrapolated method, see [6]. For example,
we calculated λ3 ≤ 0.368008, λ4 ≤ 0.311688, λ5 ≤ 0.277923, and λ6 ≤ 0.25658
numerically. We took µ4 = 27/16, µ5 = 192/100 and µ6 = 208/100 in Equation
(1) to develop fourth-, �fth- and sixth-order schemes, respectively.

As for the new sixth-order schemes, the number of stages of the built Runge-
Kutta methods were: s = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
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20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600,
700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000, 3200,
3400, 3600, 3800, and 4000.

2.2 Derivation of the explicit Runge-Kutta method with

those stability functions

We �rst construct the �rst-order methods for s = qm using the following theo-
rem:

Theorem 1 Let the stabilized explicit Runge-Kutta method be:

g0 = y0,

g1 = g0 + α · ∆t · f(g0),

gj = 2gj−1 − gj−2 + 2α · ∆t · f(gj−1) j = 2, . . . ,m,

gm+1 = gm + α · ∆t · f(gm),

gj = 2gj−1 − gj−2 + 2α · ∆t · f(gj−1) j = m+ 2, . . . , 2m, (2)

. . .

g(q−1)m+1 = g(q−1)m + α · ∆t · f(g(q−1)m),

gj = 2gj−1 − gj−2 + 2α · ∆t · f(gj−1) j = (q − 1)m+ 2, . . . , s,

and y1 =
∑s
j=0 bjgj where α = α4 = 2/s2 for the fourth-order method, α =

α5 = 100/(49s2) for the �fth-order method, α6 = 100/(47s2); and bj are the
solutions of the linear system

Rs,p(z) = b0T0 +

q∑
j=1

m∑
i=1

(
bi+m(j−1)TiT

j−1
m

)
, (3)

where Ti = Ti(1 + αpz) are the shifted Chebyshev polynomials.

This algorithm has Rs,p(z) as its stability function and, therefore, it is �rst-

order accurate.

Later extrapolated techniques are employed to increase the order of con-
vergence of the methods, in our case we utilized the Aitken-Neville algorithm
with the �harmonic sequence�. Thus, for example, the previous fourth- (given as
RE4,4 = y(xn+1)+O(h4)), and �fth-order (RE5,5 = y(xn+1)+O(∆t5)) schemes
were calculated as:
- Fourth-order methods:

RE4,4 =
64y∆t/4(xn+1) − 81y∆t/3(xn+1) + 24y∆t/2(xn+1) − y∆t(xn+1)

6
.

- Fifth-order methods:

RE5,5 =
625y∆t/5(xn+1) − 1024y∆t/4(xn+1) + 486y∆t/3(xn+1) − 64y∆t/2(xn+1) + y∆t(xn+1)

24
.
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In the case of the new sixth-order schemes the Aitken-Neville algorithm
provides us the following formula:

RE6,6 = 324/5y∆t/6(xn+1) − 3125/24y∆t/5(xn+1)+

+256/3y∆t/4(xn+1) − 81/4y∆t/3(xn+1) + 4/3y∆t/2(xn+1) − 1/120y∆t(xn+1). (4)

Example: Let us consider the case p = 6 (order), s = 4 (number of stages),
m = 2, q = 2, with α6 = 100/(47s2) for all the sixth-order methods.

(1.) We �rst calculate R4(z) taking µ6 = 208/100 in (1). Precisely, we obtain
w0,4,6 = 1.13, and

w1,4,6 =
T4 (1.13)

T ′4 (1.13)
= 0.136284,

and hence

R4(z) = 1 + z + 0.25853z2 + 0.02391z3 + 0.00072083z4.

(2.) Now, we can write R4(z) as a combination of the modi�ed Chebyshev
polynomials for x = 1 + 100z/(47s2):

R4(z) = −0.20992T0(x) + 0.03262T1(x) + 0.12802T2(x)+

+0.47299T3(x) + 0.57629T4(x).

(3.) The stabilized explicit Runge-Kutta �rst-order method (with R4(z) as
stability function) is derived applying equation (2).

(4.) We utilize Richardson extrapolation to obtain the higher-order scheme.
Let us suppose that y0 ≈ y(x0) is the solution previously obtained, and
∆t is the length step for the following iteration. Using the latter step, a
�rst-order approximation is obtained, S1,1 ≈ y(x0 + ∆t). When we utilize
y0 and two steps of the �rst-order SERK scheme given in (3.), but with
∆t/2, then we obtain RE2,1, and so on. Finally we employ (4) to obtain
the sixth-order approximation RE6,6.

2.3 Parallelization of the ESERK schemes

The idea of the parallelization for ESERK schemes is very simple: it is possible
to calculate at the same time REi,1 = y∆t/i(xn+1) separately from REj,1 =
y∆t/j(xn+1) for di�erent values of i, j. At the same time, we know that the
computational cost of calculating REi,1 is proportional to the number of func-
tion evaluations necessary to calculate it: i× s. Hence, when the �nal order of
the ESERK method is even p = 4 or 6, we calculate REp,1 in one processor,
REp−1,1 and RE1,1 in another one, etc. And �nally REp/2,1 in the last one.
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If the �nal order of the ESERK method is odd, as with p = 5, we calculate
REp,1 in one processor, REp−1,1 and RE1,1 in another one, etc. For example,
for p = 5, we calculate RE5,1 in one processor, RE4,1 and RE1,1 in another
processor, and RE3,1 and RE2,1 in a third one. In this way, the computational
cost is proportional to 5s and not to 15s as in the sequential code.

2.4 Variable-step and number of stages algorithm

The step size estimation and stage number selection are similar to the ones given
for other similar schemes, but it is necessary to change the formulae according
to the order of the methods derived, see [5, 6] and references therein. First,
we select the step size in order to control the local error and then, later we
choose the minimum number of stages such that the stability properties are
satis�ed. The best results (for these extrapolated schemes) were obtained using
techniques described in [2] for (traditional) extrapolated methods.

3 Numerical example and conclusions

Let us consider the following two-dimensional non-linear problem from combus-
tion theory, see [8].

ut = d4u+
R

αδ
(1 + α− u)eδ(1−1/u), (5)

de�ned on the unit square for t ≥ 0. The problem is subjected to u(x, y, 0) = 1.
For t > 0 we consider Dirichlet boundary condition u = 1 at x = 1, y = 1, but
Neumann boundary condition at x = 0, y = 0. We used second-order schemes
to approximate the Neumann condition. The parameter values in this problem
are d = 2.5, α = 1, δ = 20, and R = 5. We used N = 600 equispaced nodes in
each variable and solved �rst in the interval [0, 1.45] and later from 1.45 to 1.48.

First, in Table 1, numerical results at tend = 1.45 (L∞ errors) are shown in
the upper part of the Table. In this interval the solution is very smooth as it
is explained in [8]. We can clearly see how, for tolerances 10−6 and 10−8, and
similar errors ∼ 10−5, 10−6, the number of steps given by ESERK5 are smaller
than with ESERK4, but the number of function evaluations and CPU times are
bigger in this interval. It is more di�cult to compare RKC with this table in
this interval, however for moderate tolerances is faster than the other two codes.

However, we also solved this problem at tend = 1.48, and calculated times,
Nfe and number of steps in the interval [1.45, 1.48]. We show these di�erences
in Table 1 (bottom part).

We show how the number of steps (with the three methods) is higher in the
small interval [1.45, 1.48] than previously in [0, 1.45]. It is caused because of the
sti� solution in this interval (see [8]), and this motivates the use of variable-step
algorithms with very sti� PDEs. However, the number of function evaluations,
and CPU times do not grow in the same proportion; obviously, the reason is all
these codes vary the number of stages to optimize the CPU times. Finally, in
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Interval Tolerance Method max. err. Time (s) NFE Steps
RKC 0.5151−2 393.24 40264 123

[0, 1.45] 10−6 ESERK4 0.2598−4 2368.47 243728 51
ESERK5 0.2208−4 2562.71 285750 34
RKC 0.2471−3 841.13 87300 545

[0, 1.45] 10−8 ESERK4 0.7085−6 3476.68 358539 122
ESERK5 0.9726−7 5709.96 418466 75

RKC 0.17970 57.75 9211 262
[1.45, 1.48] 10−6 ESERK4 0.9094−3 420.30 64712 112

ESERK5 0.7583−3 707.97 74171 71
RKC 0.8426−2 212.01 21040 1259

[1.45, 1.48] 10−8 ESERK4 0.2288−4 668.13 105674 314
ESERK5 0.3217−5 745.04 103212 177

Table 1: Maximal absolute error, CPU times, number of function evaluations,
steps, and maximal steps for the methods RKC, ESERK4, and ESERK5 for
[0, 1.45] (up), and [1.45, 1.48] (bottom).

this interval, for moderate errors < 10−5, 10−6 higher-order codes provide faster
more accurate solutions. This motivates that we want to combine ESERK codes
with di�erent convergence orders into one �nal code.
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1 Introduction

Pest control in crops is of utmost importance for agricultural companies. Pes-
ticides have proven to be a reliable option to control pest invasions, but there
is a potential hazard for consumers and also to our environment. Biological
pest control is widespread because it results in organic and environmentally
sustainable products; it involves the introduction of natural predators or
parasitoids and the use of biological pesticides.

Mathematical models of biological pest control involving ordinary differ-
ential equations have been shown to be successful [1]; for instance, in [2],
the impact of parasites to control larva pests using Lotka-Volterra equations
is described. Another approach is the use of difference equations [3], where
both successes and remaining problems were present, signaling the need for
more work in this field. More complex models include also the effect of
the temperature [4] or rainfall [5] in the growing rate of pests and all the
species involved. Other efforts include stochastic models [6], models with
stage-structure [7], etc. Several works in this topic which raise interesting
questions from the mathematical and modeling point of view such as in [8].
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Our work responded to a call by a local company which grows, freezes and
packs vegetables in central Mexico. This work is focused on the production
of broccoli, which involves transplanting the baby plants from a greenhouse
to an open location where they grow for 90-120 days until harvested. During
their growth stage, the plants are attacked by several larvae, among them
the Plutella Xylostella (diamond back moth or DBM). The DBM larvae is
a major issue because of its quick growing rate and the fact that it kills the
plant after feeding from the leaves. The biological control consisted of the
release of wasp parasitoids of the genera Diadegma and Trichogramma. The
company also periodically spread toxins such as Bacillus Thuringiensis to
restrain the outbursts of DBM.

This work proposes simple mathematical models for the pest population
dynamics and control. We use the exponential growth model with migration
to model the pest population dynamics, and the effect of biological control
is thought in two ways: one that abruptly decreases the pest population
modelled with infinite impulses; and one where the effect of the control lasts
for an interval of time, modelled as a square wave. The main advantage of
these models is that it is possible to compute analytic solutions. Also, discrete
models for the dynamics are easily obtained and conditions for stability can
be found. Furthermore, we were able to use experimental time series provided
by the company to show that the model fits adequately the data, showing
the potential benefits of mathematical modeling in pest management.

2 Modelling pest dynamics and control

We propose a model for the population dynamics of the pest as an exponential
growth model with positive migration, given by

ẋ(t) = αx(t) + β, x(0) = x0, (1)

where x(t) is the size of the pest population, α is the growth rate, β is the
migration rate and x0 is the initial pest population size.

2.1 Pest control as infinite impulses

We first assume that the control has an instantaneous effect on the pest pop-
ulation. This is modelled with a control term consisting of infinite impulses
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at times t = T1, T2, . . ., given by

ẋ = αx+ β −
∞∑
i=1

γ xδ(t− Ti), x(0) = x0, (2)

where δ(t) is the Dirac delta function and γ is the effectiveness of the control.
The analytical solution x(t) of equation (2) is obtained by Laplace transform
methods and involves H(t), the step or Heaviside function. The values of
the solution x(Ti) at the times of the control applications are calculated to
satisfy continuity, and a recursive formula for them can be obtained. A graph
of a solution of (2) is shown in Figure 1(a).

For the case of regularly spaced applications Tn = nT , the solution of
(2) can be expressed explicitly and we obtained a sequence x(nT ) of the
points where the population hits a minimum as an immediate response to
the control application. It can be shown that this sequence converges when
eαT/(1 + γ) < 1 and diverges otherwise. The local maxima correspond to
the limit x(nT−) as x → nT with t < nT , and are given by x(nT−) =
(1 + γ)x(nT ). This provides a simple criteria to optimize the response.

2.2 Pest control with finite effect rate

We assume that the application of the biological control is periodic with
period T , and that its effect is active for a duration τ , with τ < T . The
application occurs at times t = nT − τ and the end of its effect is at t = nT .
The model proposed is

ẋ = αx+ β − f(t)x,

f(t) =

{
0, nT ≤ t ≤ (n+ 1)T − τ,
γ, (n+ 1)T − τ < t < (n+ 1)T,

n = 0, 1, 2, . . . (3)

We calculated the analytical solution of model (3), an example of this
solution is presented in Figure 1(b).

Let us remark, the times at which the pest population changes abruptly
are when: a) the pesticide is applied (t = nT − τ), that corresponds to a
local maximum; and b) the pesticide effect ends (t = nT ), that corresponds
to a local minimum. From the analytic solution, it is possible to conclude
that any solution converges to a periodic solution when γ > (T/τ)α), and
diverges otherwise.
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Figure 1: (a) A solution for model (2). (b) A solution for model (3).

3 Broccoli production with biological control

Our aim is to illustrate the application of the studied models in the real
world, but we are aware that this is first approximation to a very complex
problem.

3.1 Experimental data and parameter identification

We were provided with experimental data by a company that produces,
freezes and packs broccoli and uses biological pest control methods. Our
first step was to approximate the parameters that correspond to the models
studied in this work.

The parameter estimation was obtained minimizing a least-square func-
tion error E(p) =

∑N
k (x∗k − xk(p, x0))2, where x∗k is the observed DBM larva

population per plant at time tk. xk(p, x0) is the model solution for (3) and
p = (α, β, γ, Ti), where Ti, i = 1, 2, 3, ..., TN are the application times of the
control. It is important to mention that model (3) considers equally space
time intervals cycles of length T , but we adapted the model for different
lengths of time cycles.

3.2 Simulations

The results of the simulations based on the estimated parameters are pre-
sented in Figure 2 for two land plots. We can observe that the solutions fit
well the experimental data in the beginning of the simulation. Generally, for
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Figure 2: Comparison of simulations for the model (3) with the experimental
data (X) of the population of DBM in broccoli production for two land plots,
using parameter appoximations.

the longer times (closer to 90 days), the model solution does not approximate
the experimental data appropriately. This could be a consequence of a num-
ber of factors that were not consider in our model such as the age-structure
of all involved populations, the delays or the stochasticity of different param-
eters such as the rain, temperature, etc. However, our results show that a
simple model can be useful to qualitative and quantitative describe the DBM
population dynamics.

4 Conclusions

We have presented and studied models for the population dynamics of a pest
under biological controls. Particularly, two basic models were analyzed: one
with infinite impulses and another one with square wave function to model
biological control applications. We provided analytical solutions in each case
and described criteria for the convergence of solutions. These results are of
theoretical and practical interest. On one side they describe analytically the
solution of the model and the asymptotic behavior of the solutions. On the
other side, we have shown that these models can be applied to real world
problems. Let us say, that our models are based on the effectiveness of the
control and can be used to simulate different scenarios. An important part
of the study of pest control is the estimation of the parameters, which we did
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based on experimental data. The parameters were used in the simulations,
obtaining promising results.
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1 Introduction

Being able to monitor the state of nuclear reactors while they are running at
nominal conditions is a safety requirement. The early detection of anomalies
gives the possibility to take proper actions before such problems lead to safety
concerns or impact plant availability. The CORTEX project [1], funded by
the European Commission in the Euratom 2016-2017 work program, aims
at developing an innovative core monitoring technique that allows detecting
anomalies in nuclear reactors, such as excessive vibrations of core internals,
flow blockage, coolant inlet perturbations, etc. The technique is based on
primarily using the inherent fluctuations in neutron flux recorded by in-core
and ex-core instrumentation, often referred to as neutron noise, from which
the anomalies will be detected.

In this work, we aim to simulate the neutron field behaviour of nuclear
reactor when one fuel assembly is vibrating. These vibrations cause neutron
flux and power oscillations, also known as neutron noise [3]. Similar studies
have been performed in the time domain [5] and in the frequency domain [6].

∗e-mail:dginesta@mat.upv.es
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To study the neutron flux fluctuations due to bundle vibrations it is
necessary to simulate them accurately. The simulation is performed with
a continuous Galerkin finite element method and a semi-implicit numerical
time integration [4]. The small amplitude of the fuel assembly vibrations
makes an accurate simulation of the neutron power evolution a challenging
problem. One dimensional numerical examples are studied in this work.

2 Results

In order to test the numerical tools developed a simple one dimensional
benchmark is defined. The benchmark is composed of 11 assemblies of 25 cm
where the vibrating assembly is placed in the middle of the reactor as Figure 1
shows. The cross sections are defined in Table 1 and zero flux boundary
conditions are imposed. The problem is made critical before starting the
time dependent calculation.

The oscillation of the central assembly is defined as

xi(t) = xi0 + A sin(2πft), (1)

where xi(t) is each position of the vibrating assembly along time, originally
placed in xi0. A is the oscillation amplitude and f is the oscillation frequency.

Figure 2 shows the total power evolution for an oscillation of 1 mm of
amplitude and a frequency of 1 Hz along 10 periods. It can be seen a sinu-
soidal change in the total power with a really small amplitude, about 7.87e-8,
with a constant increment along time. This increment is caused because the
reactor is supercritical when the central assembly moves from its starting
position. Figure 3 displays the static keff through the positions travelled dur-
ing one period. It can be seen that the change in the keff is less that 1.2e-9.
The behaviour of the total power was solved analytically in a point kinetic
reactor in [2].

In these Figures, 2 non-equidistant meshes are compared. One mesh with
47 cells and a second mesh with the double of cells, 94. Also a uniform mesh
with 17600 cell is compared. All computations are calculated with 5th degree
polynomials in the finite element method. These meshes display almost equal
results. Then, the results with the local 47 cells mesh are converged.
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Figure 1: Geometry of the one dimensional benchmark.

Table 1: Cross sections of the materials of the one dimensional benchmark.

Material g Dg Σag νΣfg Σfg Σ12

(cm) (1/cm) (1/cm) (1/cm) (1/cm)

Fuel 1 1.40343 1.17659e–2 5.62285e–3 2.20503e–3 1.60795e–2
2 0.32886 1.07186e–1 1.45865e–1 5.90546e–2

Vibrating 1 1.40343 1.17659e–2 5.60285e–3 2.19720e–3 1.60795e–2
Assembly 2 0.32886 1.07186e–1 1.45403e–1 5.88676e–2

Reflector 1 0.93344 2.81676e–3 0.00000e+0 0.00000e+0 1.08805e–2
2 0.95793 8.87200e–2 0.00000e+0 0.00000e+0

Figure 4 shows the neutron power evolution for different oscillation ampli-
tudes from 0.3 mm to 3 mm while the frequency is fixed to 1 Hz. Obviously
as the oscillation amplitude increases its effect in the total power increases.
Figure 5 displays the spatial resolution of the neutron flux in 4 different time
stamps.
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Figure 5: Evolution of the neutron noise.
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3 Conclusions

A time-domain FEM kinetic code is being developed to solve the neutron
distribution inside a nuclear reactor with vibrating assemblies. The results
show that the variation in the keff is about 10−8 in the transient and the vari-
ation in the total power is around 10−9 for an oscillation with an amplitude of
1 mm. This implies that we need to work with a very high precision. These
initial results show that fuel assembly vibration cannot cause large noise in-
stabilities in normal conditions without a coupling with thermal-hydraulics
system or several fuel assembly vibrations.
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1 Introduction

Bladder cancer has become one of the most common and dangerous neo-
plasms in the urinary system [1], [2]. In a high number of cases, a recurrence
is expected. However, there is not information about the mechanism that
makes this recurrence happens. The aim of this work is to provide a useful
tool to urologists and anatomical pathologists which is able to predict the
dates of the recurrences in order to improve the success of the treatment
applied. For this reason, the evolution of the disease and the treatment is
studied, a mathematical model is proposed and then the mathematical model
is calibrated in order to predict the evolution of a specific patient.

2 Available data

The procedure followed during the treatment of the disease is the following.
First, the patient goes to the family doctor because a hematuria (blood in

∗e-mail: damarro3@upv.es
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the urine). The doctor address the patient to the urologist, who diagnoses
a tumour in the bladder. A trans-urethral resection (TUR) is made and the
biological sample is sent to the anatomical pathologist, who determines if
the tumour is malignant. If it is, intra intravesical instillations of bacillus
Calmette-Guerin (BCG) are administrated in order to stimulate the immune
system. If there is recurrence, this procedure is repeated until the patient is
cured or the cancer evolves into a higher stage.

With the aim to know what information is available during the medical
daily practice, the archive of ”Hospital Universitario y Politécnico La Fe” [3]
in Valencia was studied, obtaining the data of a patient called Patient X.

Date Activity Size (mm) Inflammatory cells/Field

01/03/2012 Ultrasound 3-5 —
14/06/2012 TUR 25 260
15/02/2015 Cystoscopy 1-2 —
28/04/2015 TUR 5 515
30/01/2017 Cystoscopy 20 —
14/03/2017 TUR 30-35 508

Table 1: Evolution of patient X. Data obtained from the archive of ”Hospital
Universitario y Politécnico La Fe” [3].

3 Model building

As far as our research has found in literature, only the model developed in [4]
is able to explain the interactions of bladder cancer elements including BCG
instillations. With the purpose of using the data available during the daily
medical practice shown in Table 1 we have made some modifications in order
to achieve this objective. The modified model that shows the interaction
between all the macroscopic elements that form bladder cancer in shown in
Equations 1, 2, 3 and 4.

E(t+ 1) = E(t) − µ2E(t) + αTu(t) + p4E(t)B(t) − p5E(t)Tu(t) (1)

Tu(t+ 1) = Tu(t) − p2B(t)Tu(t) − p6E(t)Tu(t) + k(Tu(t)) (2)
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Ti(t+ 1) = Ti(t+ 1) − p3E(t)Ti(t) + p2B(t)Tu(t) (3)

B(t+ 1) = −µ1B(t) − p1E(t)B(t) − p2B(t)Tu(t) + b(t) (4)

The model is a system of difference equations with four different elements:

• E(t): Inflammatory cells in the tumour microenvironment. It is mea-
sured as the mean of five inflammatory cells microenvironment counting
made with a 40x microscope magnifications.

• Tu(t): Size of uninfected with BCG tumour cells measured as mm of
diameter.

• Ti(t): Size of infected with BCG tumour cells measured as mm of
diameter.

• B(t): Amount of BCG cells measured as ml of instillations.

The different parameters are the interactions between the elements of the
system. For further information, see [4].

4 Model calibration

Once the model has been proposed in order to be used with data of Table 1,
we are using an optimization algorithm in order to know if the model is able
to represent the reality of our patient.

Objective function F:

• Substitute the values of the model parameters.

• Run the model and obtain the outputs in the same time instants as in
Table 1

• Obtaining the root mean square difference between the output of the
model and the values of Table 1.

To optimize the value of the output of the objective function F, Random
Particle Swarm Optimization algorithm is used [5]. The result of the model
calibration is shown in Figure 1.
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Figure 1: Evolution of the bladder cancer tumour. The first day is settle the
01/03/2012.
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1 Introduction

The application of iterative methods for solving nonlinear equations f(z) = 0, with
f : C→ C, gives rise to rational functions whose dynamical properties are not well-
known. The simplest model is obtained when f(z) is a quadratic polynomial and
the iterative process is Newton’s method. The study on the dynamics of Newton’s
scheme has been extended to other point-to-point iterative methods used for solving
nonlinear equations, with convergence order up to three (see, for example [1], [2], [3],
among others).

In [4], one third-order family of Ermakov-Kalitkin type was described. It showed
to be convergent, as well in case of equations as in the multidimensional case, when
Newton’s method even did not converge. The iterative expression corresponding to

∗This research was supported by Spanish Ministry grant MTM2014-52016-C02-2-P, Generalitat
Valenciana PROMETEO/2016/089 and UJI project P1.1B20115-16.
†e-mail: acordero@mat.upv.es
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the class described in [4], main aim of this work, is:

yk = xk − α
f (xk)

f ′ (xk)
,

xk+1 = xk −
f (xk)

2

bf (xk)
2 + cf (yk)

2

f (xk)

f ′ (xk)

where b = 1−α+2α2

2α2 and c = 1
2α2(α−1) . This family is denoted by PM class.

On the other hand, it is known (see, for example, [5, 6]) that the roots of a
polynomial can be transformed by an Möbius map h (z) with no qualitative changes
on the dynamics of the family of polynomials, where

h (z) =
z − a
z − b

.

By applying this conjugacy map, the operator of PM class is conjugated to the
rational function

LG(z, α) =
z3
(
α2 + 2 (1 + z)2 (α− 1)

)
α2z2 + 2 (1 + z)2 (α− 1)

. (1)

2 Fixed and critical points

We study now the dynamics of operator LG(z, α) as a function of parameter α.
Firstly, we calculate the fixed points of LG(z, α) and then, its critical points. As we
will see, the number and the stability of the fixed and critical points depends on the
parameter α.

The fixed points satisfy
LG(z, α) = z.

The roots of this equation are z ∈ {0,∞, 1,−1}. To study the stability of these fixed
points, we need the derivative of the operator LG(z, α),

LG′(z, α) = z2
α4z2 + 12 (1 + z)

4
(1− 2α) + 2α2 (1 + z)

2 (
α
(
3− 2z + 3z2

)
+
(
3 + 14z + 3z2

))(
α2z2 + 2 (1 + z)

2
(−1 + α)

)2 .

Proposition 2.1 Given α = a + ib, a, b ∈ R, the stability of the fixed point z = 1
satisfies the following statements:
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1. Fixed point z = 1 is an attractor, that is |LG′ (1, α)| < 1 if,

a ≤ −17 ,

−17 < a < 4
(
−2−

√
5
)

, −
√
−16 + 32a− 15a2 − a3

17 + a
< b <

√
−16 + 32a− 15a2 − a3

17 + a

4
(
−2 +

√
5
)
< a < 1 , −

√
−16 + 32a− 15a2 − a3

17 + a
< b <

√
−16 + 32a− 15a2 − a3

17 + a
.

2. z = 1 is indifferent, that is |LG′ (1, α)| = 1 if

16 + 15a2 + a3 + 17b2 + a(−32 + b2) = 0.

3. In any other case, z = 1 is a repulsive fixed point.

This result comes from the analysis of the curve

16 + 15a2 + a3 + 17b2 + a(−32 + b2) = 0,

that can be separated in two different parts, as can be observed in Figure 1.
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Figure 1: Boundary of the loci of stability of z = 1

Moreover, it is easy to check that |LG′(−1, α)| = 1, as it is stated in the following
resut.

Proposition 2.2 The fixed point z = −1 is an indifferent point for every value of
the parameter.

In addition, from the expression of LG′(z, α) (or from the order of convergence
of the members of the family), we obtain that the fixed points z = 0 and z =∞ are
also critical. In addition, we also have four free critical points

c1(α) =
C1 +

√
C2

1 − 4

2
, c2(α) =

C1 −
√
C2

1 − 4

2
,

c3(α) =
C2 +

√
C2

2 − 4

2
, c4(α) =

C2 −
√
C2

2 − 4

2
,
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(a) Critical points c1 and c2 (b) A detail

Figure 2: Parameter plane of LG(z, α) for c1 and c2

where

C1 =
−4 (−1 + α) (−6 + 6α + α2)− α2

√
2 (1− α) (26− 26α + 3α2)

6 (−1 + α) (−2 + 2α + α2)
,

C2 =
−4 (−1 + α) (−6 + 6α + α2) + α2

√
2 (1− α) (26− 26α + 3α2)

6 (−1 + α) (−2 + 2α + α2)
.

Nevertheless, it is easy to check that c1(α)c2(α) = 1 and c3(α)c4(α) = 1 for every
value of the parameter and their parameter planes are equivalent, so only two of
them are independent and give rise to different parameter planes. Moreover, the
number of critical points decreases for some values of the parameter.

(a) Critical points c3 and c4 (b) A detail

Figure 3: Parameter plane of LG(z, α) for c3 and c4
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3 Parameter planes

As we have said, the dynamical behavior of operator LG(z, α) depends on the values
of the parameter α and it is obtained by following the orbit of a free critical point. In
this family there are four free critical points, but only two of them are independent.
The fact that they are inverses two-by-two implies that if one critical orbit converges
to z = 0 then the other one converges to z = ∞; therefore, it is enough to analyze
the asymptotic behavior of one of the critical orbits, i.e. the orbits of the critical
points, to study the existence of any other attractor than the roots. In fact, we only
have two different parameter planes (Figures 2 and 3).

These parameter planes show us the reason for the bad general behavior of this
family, since for all α values there are at least two free critics that will be in basins of
attraction different from those of the roots. We must continue the analysis in order
to detect why, when Newton fails, these methods behave better than it.
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1 Introduction

Construction of stable and optimal iterative methods for multiple roots having prior knowledge

of multiplicity (m > 1) is one of the most important and challenging tasks in computational

mathematics. Some optimal and non-optimal fourth-order methods have been developed in the

recent past, however, it is indeed the need of time to design iterative methods for multiple roots

not only in a general, optimal and efficient context but also in terms of deep analysis of their stable

regions of convergent of initial estimations. Most recently, Behl et al. [1] in (2015), Behl et al. [2] in

(2016), Behl et al. [3] (2017) and Lee et al. [5] (2017) have constructed and analyzed such families

of methods. Moreover, most of these schemes are either the modification or extension of Newton’s

method or Newton-like methods by involving additional functional evaluations and increasing the

amount of substeps of the original methods.

In this work, we propose an iterative family that has the flexibility of choice at both steps. The

development of the scheme is based on using weight functions. The first step can not only recapture

Newton’s method for multiple roots as special case but is also capable of defining new choices of

first substep and hence different iterative schemes in terms of both substeps. We compare our
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methods with the existing ones of the same order for standard test problems. From the numerical

results, we find that our methods can be considered as a better alternative for the exiting methods

of the same order.

2 Construction of Optimal Fourth-Order Scheme

Let α be a multiple zero with integer multiplicity m > 1, of f : C→ C an analytic function in the

neighborhood of α. Then, for a given initial guess x0, we define the following iterative scheme in

order to find an approximate zero of f :

yn = xn − h(xn)
f(xn)

f ′(xn)
,

xn+1 = xn −Qf (vn)
f(xn)

f ′(xn)
, (1)

where weight functions h : C→ C and Qf : C→ C are analytic in the neighborhoods of α and 0,

respectively with vn =
[
f ′(yn)
f ′(xn)

] 1
m−1

.

The investigation on the convergence analysis of the proposed family (1) and the conditions on

weight functions h(xn) and Qf (vn) are apparent from the following result.

Theorem 1 Let f : C → C be an analytic function in the neighborhood of the required multiple

zero α of multiplicity m ∈ N− {1}. In addition, we also consider that Q : C→ C and h : C→ C
are an analytic functions in the neighborhood of origin and multiple zero α, respectively. Then,

for an initial guess x0 sufficiently close to α the family of iteration functions (1) has fourth-order

convergence when the following conditions hold:

h (α) = m, h′ (α) = 0, h′′ (α) = 0,

Qf (0) = m, Q′f (0) = m, Q′′f (0) =
4m2

m− 1
(2)

and also
∣∣h′′′ (α)

∣∣ <∞, ∣∣Q′′′f (0)
∣∣ <∞.

Remark 1 Proposed family (1) has an advantage of making selection at both steps. It is also clear

that the first step recaptures Newton’s method as special case and it is capable of obtaining first

step different from the traditional choice of Newton’s scheme.

From Theorem 1, we can obtain several new multiple root finding two-point methods by using

different cases for h(xn) and Qf (vn) in the proposed scheme (1). Some particular cases of the

proposed scheme are given as follows:
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NM1: We take h(xn) = m and Qf (vn) = m+mvn + 2m2

m−1v
2
n +Q3v

3
n, for Q3 = 32.6 in (1).

NM2: Also as another special case let h(xn) = m+w3
n

1+a2w3
n

with wn = f (xn) , a2 = −16.3 and Qf (vn) is

same as that of NM1.

NM3: Lastly, we take h(xn) = m+ a3f(xn)m for a3 = 50 with Qf (vn) is same as that of NM1.

It is noteworthy that the selection of specific values of parameters Q3, a2 and a3 can be made

under the point of view of an improvement of the stability and a widening of the set of converging

initial estimations. These aspects will be analyzed in future works.

3 Numerical Results

We investigate the performance and convergence behavior of our proposed fourth order methods

namely denoted by NM1, NM2 and NM3, respectively, by carrying out some test functions involving

standard nonlinear functions. We compare the methods with the recent optimal fourth order

method given by Lee [5] (LKM).

For numerical tests, all computations have been performed in computer algebra software Maple

16 using 1000 significant digits of precision. Table 1 shows the per step numerical errors of ap-

proximating real root |xn − xn−1| and the absolute residual error of the test function for the first

three iterations , where E(−i) denotes E × 10−i in all the tables. The initial approximation x0,

the computational order of convergence (COC, see [6])

rc ≈
log |f(xn+1)/f(xn)|
log |f(xn)/f(xn−1)|

and asymptotic error constant

ac =
|xn+1 − xn|
|xn − xn−1|4

,

are also included in this table. We have taken into consideration the following standard test

problem.

Example 1 Let us consider the following standard non-linear test function:

f1(x) =

(
sin

(
1

x

)
− x3 + 1

)3

. (3)

The above function has a multiple zero at α ≈ 1.20253919024135112296187908278 of multiplicity

m = 3; in our tests, we use as with initial guess x0 = 1.25.
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Example 2 Assume another non-linear test problem which is given below:

f2(x) = (x− 1)
(
x ln(x)−

√
x+ x4

)2
. (4)

Function f2 has a multiple zero at α = 1 with multiplicity m = 3, and initial guess x0 = 1.1.

f1(x) =
(
sin
(
1
x

)
− x3 + 1

)3
, x0 = 1.25

Methods n |xn − xn−1| |f (xn)| rc ac

LKM 1 4.745384266(-2) 3.749911402(-14)

2 6.967096919(-6) 6.184240718(-60) 3.966126232 1.373935383

3 3.820695713(-21) 4.575159589(-243) 3.999998725 1.621567542

NM1 1 4.745890969(-2) 7.606120898(-16)

2 1.900060722(-6) 3.226081940(-74) 4.410031791 3.745384886(-1)

3 6.626315657(-26) 1.031678958(-307) 4.000088731 5.083960864(-3)

NM2 1 4.746080422(-2) 1.875993439(-23)

2 5.530835722(-9) 1.179732013(-104) 3.895632250 1.090059958(-3)

3 4.738506100(-36) 1.844915398(-429) 4.000000186 5.063821720(-3)

NM3 1 4.746080809(-2) 5.109598493(-25)

2 1.664086562(-9) 6.492241143(-111) 3.833089962 3.279709665(-4)

3 3.883099658(-38) 1.692082630(-454) 4.000000052 5.063780615(-3)

Table 1: Comparison of multiple root finding methods for f1 (x)

Example 3 Continuous Stirred Tank Reactor (CSTR)

Consider the isothermal continuous stirred tank reactor (CSTR). Components A & R are fed

to the reactor at rates of Q and q-Q respectively. The following reaction scheme develops in the

reactor:

A+R → B

B +R → C

C +R → D

D +R → E.

The problem was analysed by Douglas [4] in order to design simple feedback control systems. In

the analysis, he gave the following equation for the transfer function of the reactor:

KC
2.98 (x+ 2.25)

x4 + 11.50x3 + 47.49x2 + 86.0325x+ 51.23266875
= −1,
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f2 (x) = (x− 1) (x ln(x)−
√
x+ x4)

2
, x0 = 1.1

Methods n |xn − xn−1| |f (xn)| rc ac

LKM 1 9.973228391(−2) 3.888577634(−10)

2 2.677160895(−4) 2.352566232(−40) 3.853170778 2.706022566

3 2.264847390(−14) 3.175439431(−161) 3.999892196 4.409009687

NM1 1 9.983089756(−2) 9.796949329(−11)

2 1.691024370(−4) 2.880566614(−47) 4.327807202 1.702511144

3 1.124650632(−16) 1.859782372(−193) 4.001739973 1.375365624(−1)

NM2 1 9.979306935(−2) 1.795411740(−10)

2 2.069306440(−4) 3.353782987(−46) 4.368837238 2.086523533

3 2.549000828(−16) 3.417356322(−189) 4.002164322 1.390179047(−1)

NM3 1 9.979300583(−2) 1.797065853(−10)

2 2.069941600(−4) 3.366337536(−46) 4.368901372 2.0871692921

3 2.552177510(−16) 3.468814483(−189) 4.002165039 1.390203910(−1)

Table 2: Comparison of multiple root finding methods for f2 (x)

where KC is the gain of the proportional controller. The control system is stable for values of KC

that yields roots of the transfer function having negative real part. If we choose KC = 0 we get the

poles of the open-loop transfer function as roots of the nonlinear equation:

f3 (x) = x4 + 11.50x3 + 47.49x2 + 86.0325x+ 51.23266875 = 0 (5)

given as:

x = −1.45,−2.85,−2.85,−4.35.

So, we see that there is one multiple root with multiplicity 2. We take m = 2 and x0 = −3.

It is apparent from the construction and numerical results that our proposed family is optimal,

efficient in terms of small residual errors and flexible in terms of choice of first substep different

from Newton’s method.
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f3 (x) = x4 + 11.50x3 + 47.49x2 + 86.0325x+ 51.23266875, x0 = −3.0

Methods n |xn − xn−1| |f (xn)| rc ac

LKM 1 1.521916174(−1) 1.008561681(−5)

2 2.191856237(−3) 1.197664817(−13) 2.160003501 4.085536881

3 2.388130175(−7) 7.327948015(−58) 5.578713509 1.034688766(4)

NM1 1 1.500116811(−1) 2.865442731(−10)

2 1.168116988(−5) 9.489712144(−44) 4.075138694 2.306672973(−2)

3 2.125772928(−22) 1.141014571(−177) 4.000006184 1.141751293(−2)

NM2 1 1502676260(−1) 1.504078150(−7)

2 2.676260156(−4) 7.279363956(−33) 4.606463395 5.248879797(−1)

3 5.887583365(−17) 3.950506405(−134) 4.000186954 1.147687774(−2)

NM3 1 1.432777532(−1) 9.492439797(−5)

2 6.722245222(−3) 4.948225872(−18) 4.927870715 1.595141817(1)

3 1.535023789(−9) 8.435094413(−75) 4.273783471 7.517227707(−1)

Table 3: Comparison of multiple root finding methods for f3 (x)
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1 Bertalanffy model

Bertalanffy model [1] is a biological ordinary differential equation model
that describes the relationship between the metabolism and the growth of
an organism. The metabolism is divided into anabolism (synthesis) and
catabolism (destruction). The model assumes that the body weight W (t) of
an animal is the result of the counteraction of the processes of anabolism and
catabolism:

W ′(t) = ηWm(t)− κW n(t),

where η and κ are the constants of anabolism and catabolism, proportional
to some power of the body weight (law of allometry).

The surface rule states that the dependence of anabolism on body weight
takes the power m = 2/3 [2, 3]. Bertalanffy justified that the rate of
catabolism should have the power n = 1. Bertalanffy model thus becomes

W ′(t) = ηW
2
3 (t)− κW (t).
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2 Random non-autonomous Bertalanffy model

The random non-autonomous Bertalanffy model is defined as{
x′(t, ω) = a(t, ω)x(t, ω) + b(t, ω)x(t, ω)

2
3 , t ∈ [t0, T ], ω ∈ Ω

x(t0, ω) = x0(ω), ω ∈ Ω.
(1)

We work on a complete probability space (Ω,F ,P), where a(t, ω) and b(t, ω)
are stochastic processes and x0(ω) is a random variable. The response

x(t, ω) =

(
x0(ω)

1
3 e

1
3

∫ t
t0
a(s,ω) ds

+
1

3

∫ t

t0

b(s, ω)e
1
3

∫ t
s a(r,ω) dr ds

)3

(2)

solves (1) in some probabilistic sense.
Our goal is to understand the probabilistic behavior of x(t, ω) and to com-

pute/approximate its PDF, fx(t)(x). The following results are proved from
extant theorems on the random non-autonomous linear differential equation,
see [4].

3 Solution process in the sample path and

mean square senses

In this section, we show two results on the existence of a sample path and
mean square solution to (1).

Theorem 3.1 (Sample path solution) Suppose a(·, ω), b(·, ω) ∈ L1([t0, T ]),
for a.e. ω ∈ Ω. Then the stochastic process x(t, ω) given by (2) satisfies that,
for a.e. ω ∈ Ω, x(·, ω) is absolutely continuous on [t0, T ] and satisfies (1) for
a.e. t ∈ [t0, T ].

If a(·, ω) and b(·, ω) are continuous on [t0, T ], then x(·, ω) is in C1([t0, T ])
and satisfies (1) for all t ∈ [t0, T ].

Theorem 3.2 (Mean square solution) If a(t, ω) and b(t, ω) are continu-
ous in the L48(Ω) and L24(Ω) setting, respectively,

S := sup
t∈[t0,T ]

∥∥∥e
±

∫ t
t0
a(s,ω) ds

∥∥∥
L48(Ω)

<∞ (3)

and x0 ∈ L4(Ω), then x(t, ω) defined by (2) is differentiable in the mean
square sense and satisfies the random Bertalanffy model (1).
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4 Obtaining the PDF of the solution stochas-

tic process

Let a(t, ω) and b(t, ω) be stochastic processes in L2([t0, T ] × Ω). We can
expand both a(t, ω) and b(t, ω) via a Karhunen-Loève expansion:

a(t, ω) = µa(t) +
∞∑
j=1

√
νj φj(t)ξj(ω), b(t, ω) = µb(t) +

∞∑
j=1

√
γj ψj(t)ηj(ω),

(4)
respectively.

From a, b ∈ L2([t0, T ] × Ω), we have a(·, ω), b(·, ω) ∈ L1([t0, T ]), there-
fore the process x(t, ω) has absolutely continuous sample paths and solves
the random Bertalanffy model (1). Under stricter assumptions, the process
x(t, ω) will be a mean square solution too.

Consider the following truncations:

aN(t, ω) = µa(t)+
N∑
j=1

√
νj φj(t)ξj(ω), bN(t, ω) = µb(t)+

N∑
j=1

√
γj ψj(t)ηj(ω),

xN(t, ω) =

(
x0(ω)

1
3 e

1
3

∫ t
t0
aN (s,ω) ds

+
1

3

∫ t

t0

bN(s, ω)e
1
3

∫ t
s aN (r,ω) dr ds

)3

. (5)

Denote ξξξN = (ξ1, . . . , ξN), ηηηM = (η1, . . . , ηM) and

Ka(t, ξξξN) =

∫ t

t0

(
µa(s) +

N∑
j=1

√
νj φj(s)ξj

)
ds,

Sb(s,ηηηN) = µb(s) +
N∑
i=1

√
γi ψi(s)ηi.

Suppose that x0 and (ξ1, . . . , ξN , η1, . . . , ηN) are absolutely continuous
(AC) and independent, for each N ≥ 1. By the Random Variable Trans-
formation (RVT) technique, for 0 6= x ∈ R,

fxN (t)(x) =
1

x
2
3

E
[
fx0

({
x

1
3 e−

1
3
Ka(t,ξξξN ) − 1

3

∫ t

t0

Sb(s,ηηηN)e−
1
3
Ka(s,ξξξN ) ds

}3
)

·
{
x

1
3 e−

1
3
Ka(t,ξξξN ) − 1

3

∫ t

t0

Sb(s,ηηηN)e−
1
3
Ka(s,ξξξN ) ds

}2

e−
1
3
Ka(t,ξξξN )

]
(6)
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(this expectation may be approximated with MC simulations).
The goal is to prove that fx(t)(x) = limN→∞ fxN (t)(x), under certain con-

ditions.

Theorem 4.1 Assume the following four hypotheses:

H1 : a, b ∈ L2([t0, T ]× Ω);

H2 : x0 and (ξ1, . . . , ξN , η1, . . . , ηN) are AC and independent, N ≥ 1;

H3 : fx0 is continuous on R and fx0(x) ≤ C

|x| 23
, for x 6= 0;

H4 : ‖e−
1
3
Ka(t,ξξξN )‖L2(Ω) ≤ C, for all N ≥ 1 and t ∈ [t0, T ].

Then, for all 0 6= x ∈ R and t ∈ [t0, T ], the sequence {fxN (t)(x)}∞N=1 given by
(6) converges to the density fx(t)(x) of the solution process x(t, ω) given by
(2).

Theorem 4.2 Assume that

H1 : a, b ∈ L2([t0, T ]× Ω);

H2 : x0, η1, (ξ1, . . . , ξN , η2, . . . , ηN) are AC and independent, N ≥ 1;

H3 : fη1 is continuous and bounded on R;

H4 : ξ1, ξ2, . . . have compact support in [−A,A] and ψ1 > 0 on (t0, T ).

Then, for each 0 6= x ∈ R and t ∈ (t0, T ], the sequence {fxN (t)(x)}∞N=1 given
by (6) converges to the density fx(t)(x) of the solution process x(t, ω) given
by (2).

5 Approximation of the expectation and vari-

ance of the solution process

The following result shows conditions under which the expectation and vari-
ance of x(t) can be approximated.

Theorem 5.1 If a(t, ω) is a Gaussian process or ξ1, ξ2, . . . have a common
compact support, if ‖x0‖L2+s(Ω) <∞ and if

‖µb‖L6+s([t0,T ]) +
∞∑
i=1

√
γi‖ψi‖L6+s([t0,T ])‖ηi‖L6+s(Ω) <∞ (7)
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for some s > 0, then x(t, ω) ∈ L2(Ω) and xN(t, ω) tends in L2(Ω) to x(t, ω),
for each t ∈ [t0, T ]. As a consequence, E[xN(t, ω)]→ E[x(t, ω)] and V[xN(t, ω)]→
V[x(t, ω)] as N →∞, for each t ∈ [t0, T ].

6 Numerical example

We work on [t0, T ] = [0, 1]. Let

a(t, ω) =
∞∑
j=1

√
2

j3
sin(tjπ)ξj(ω), (8)

where ξ1, ξ2, . . . are independent with distribution Uniform(−
√

3,
√

3). Let

b(t, ω) =
∞∑
i=1

√
2

i4 + 6
sin(tiπ)ηi(ω), (9)

where η1, η2, . . . ∼ Normal(0, 1) are independent. Let x0 ∼ Exponential(2).
It is assumed x0, ξ1, ξ2, . . . and η1, η2, . . . to be independent.

Figure 1: fxN (0.3)(x) for N = 5 (left) and N = 6 (right) at t = 0.3. Observe
the convergence.

N 1 2 3 4 5 6
E[xN (0.3, ω)] 0.5071 0.5078 0.5076 0.5076 0.5076 0.5076
V[xN (0.3, ω)] 0.2754 0.2769 0.2768 0.2768 0.2768 0.2768

Table 1: E[xN(0.3, ω)] and V[xN(0.3, ω)] for N = 1, 2, 3, 4, 5, 6.
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1 Introduction

The prediction of the neutron distribution inside nuclear reactors is impor-
tant because of several reasons. First, the power generated inside the nu-
clear reactor core is related with the neutron distribution. Consequently, an
accurate prediction of the power distribution is crucial to determine an ac-
curate prediction of the thermal-hydraulic behavior. Thus, one makes sure
that these values are under the safety limits to avoid any kind of accident
and damaging the components of the nuclear reactor core. Second, the neu-
tron flux irradiates the different structural components of the nuclear reactor
core, including the fuel, which influences strongly the mechanical resistance
of them [1].

The Neutron Transport Equation describes accurately the transport of
neutrons in any control domain, so one can solve this equation to get an
accurate prediction of the neutron distribution inside the nuclear reactor
core. This equation is an integrodifferential equation containing spatial and
time derivatives terms and it depends on seven independent variables: three
of the space domain, two of the direction domain, one of the energy domain
and one of time domain [1]. Even if one considers only the steady state, the
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solution of this equation in nuclear reactor cores is not straightforward. In
fact, one should use numerical methods to solve it.

These numerical methods discretize each variable of the Neutron Trans-
port Equation: energy, space and direction. In order to deal with the energy
dependence, one commonly applies an energy multi-group approximation,
obtaining a set of equations depending on the number of energy groups [2].
In this case, the final solution will be the sum of the solutions for each group.
As regards the direction, the Discrete Ordinates method is the method most
used to discretize the direction variables. This approach solves the Neutron
Transport Equation for a set of selected directions (quadrature sets), obtain-
ing a set of directional equations and solutions for each equation which are
the angular flux. The final solution is the weighted sum of all the directional
solutions. Finally, space discretization is solved by classical methods, such
as Finite Difference, Finite Element or Finite Volume Methods.

In this work, the authors focused on the selected directions used in the
Discrete Ordinates Formulation. Each direction can be described by a polar
and azimuthal angle. The value of these directions and their weights is vital
to obtain accurate results of the neutron flux distribution. These weights are
used to perform different numerical integrations of the variables depending
on the direction variables. There are a number of quadrature sets used for
this purpose, such as Level-Symmetric, or Legendre-Chebyshev [3]. All these
approaches might obtain accurate solutions of the neutron flux for a large
number of directions. However, the larger the number of directions, the larger
the number of equations, and consequently the computational cost.

In addition, the authors studied the numerical integration of the previous
quadrature sets in numerical integration of several functions. The authors
realized that these sets might provide wrong results. Therefore, they de-
veloped a new quadrature set which is based in a product quadrature, for
the polar and azimuthal variable. The authors tested this new quadrature
set for integrating numerically functions depending on direction variables.
These values are also compared with the values obtained with the other sets
mentioned above. Finally, the authors tested the different quadrature sets
for solving the Neutron Transport Equation.

The outline of the rest of the paper is as follows. Section 2 explains the
new product quadrature. Section 3 shows the results.
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2 Method

The authors developed a new product quadrature using the Gauss-Legendre
quadrature for the polar (cos(θ)) and azimuthal (ϕ) variables. First, the
method considers Np collocation points for cos(θ). This value Np is an even
number, with the aim of conserving the symmetry with respect to θ. For
each one of the Np collocation points, the method uses the weights wxi and
collocation points xi of the Gauss-Legendre quadrature.

Second, the method performs four integrals with respect to ϕ, one in each
quadrant of the domain of ϕ. For each quadrant (q), one chooses Na collo-
cation points yj and weights wyj of the Gauss-Legendre quadrature. Then,
one performs a change of interval from the Gauss-Legendre domain to the
domain of each quadrant. To sum up, Equations 1-3 show the collocation
points and weights, which are normalized to 8.

cos(θi) = xi , 1 ≤ i ≤ Np (1)

ϕq,j =
π

4
yj +

(2q − 1)π

4
, 1 ≤ j ≤ Na , 1 ≤ q ≤ 4 (2)

wi,q,j =
8 · wxi · w

y
j∑Np

i=1

∑4
q=1

∑Na

j=1w
x
i · w

y
j

, 1 ≤ j ≤ Na , 1 ≤ q ≤ 4 , 1 ≤ i ≤ Np

(3)

3 Results

On the one hand, this section tests this new quadrature set for integrating
numerically functions depending on direction variables. These values are
also compared with the values obtained with the following quadrature sets:
Level-Symmetric (Sn), Legendre-Chebyshev (PnTn) and product quadrature
based on Gauss-Legendre quadrature for the polar variable and equal weights
for the azimuthal variable (PnEW ).

On the other hand, the authors tested the different quadrature sets for
solving the Neutron Transport Equation, with the Discrete Ordinates and
Finite Difference Method. This section also includes a sensitivity analysis of
the different quadrature sets and number of directions.



Modelling for Engineering & Human Behaviour 2018 369

First, the following integral is evaluated: I = 1
4π

∫ 1

−1
exp(µ)dµ

∫ 2π

0
exp(ϕ)dϕ.

One can integrate this term analytically, and evaluate the numerical integra-
tion errors with relative errors. Table 1 shows the relative errors for the new
product quadrature, where Nd is the number of directions. Table 2 displays
the relative errors for other quadrature sets.

Table 1: Relative errors (%) of the numerical integration with the product
quadrature based on Gauss-Legendre

Nd Np/2 Na Error(%)
8 1 1 9.88
16 2 1 0.81
32 2 2 6.32
24 3 1 3.48
48 3 2 3.35
72 3 3 3.45
32 4 1 4.48
64 4 2 1.95
96 4 3 2.30
128 4 4 2.13
40 5 1 4.96
80 5 2 1.22
120 5 3 1.62
160 5 4 1.55
200 5 5 1.46
48 6 1 5.22
96 6 2 0.79
144 6 3 1.19
192 6 4 1.18
240 6 5 1.11
288 6 6 1.07

From these tables, one draws two conclusions. First, the new product
quadrature obtains better results than other quadrature sets for a lower num-
ber of collocation points. Second, the results of the new product quadrature
depend on the number of collocation points for both variables. In fact, one
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Table 2: Relative errors (%) of the numerical integration with different
quadrature sets

Nd Sn PnTn PnEW
8 9.88 9.88 9.88
24 5.12 4.47 1.53
48 3.34 2.65 0.26
80 2.45 1.77 0.80
120 1.94 1.27 0.98
168 1.58 0.96 1.02
224 1.35 0.75 1.01
288 1.16 0.61 0.97

obtains better results if the number of collocation points for the polar and
azimuthal variables is similar.

As regards the Neutron Transport Equation, the authors tested the dif-
ferent quadrature sets with a formulation based on the Discrete Ordinates
and Finite Difference Method. This formulation was applied to a homoge-
neous 2D reactor. The geometry of the reactor is a rectangle of 40 cm ×
40 cm, which is modeled with a structured mesh of 10 × 10. The Neutron
Transport Equation uses the the two-energy group formulation with isotropic
scattering.

The authors calculated the eigenvalue problem of the Neutron Transport
Equation of this reactor, with vacuum boundary conditions. The largest
eigenvalue is evaluated for the different quadrature sets. Table 3 shows the
eigenvalue for the new product quadrature, where Nd is the number of direc-
tions. Table 4 displays the eigenvalue for other quadrature sets.

One draws two conclusions from Tables 3 and 4. First, the new prod-
uct quadrature obtains better results than other quadrature sets for a lower
number of collocation points. Actually, the eigenvalue calculated with 16
directions with the new product quadrature is the same as the eigenvalue
obtained with other quadrature sets with 220 directions. Second, the results
obtained with the new product quadrature depend on the number of collo-
cation points for both variables. In particular, one obtains excellent results
with Np ≥ 2 and Na ≥ 2.
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Table 3: Eigenvalue for the product quadrature based on Gauss-Legendre

Nd Np/2 Na Eigenvalue
1 1 4 1.099438
1 2 8 1.104771
1 3 12 1.104438
2 1 8 1.108929
2 2 16 1.114042
2 3 24 1.113738
3 1 12 1.109215
3 2 24 1.114346
3 3 36 1.114043

Table 4: Eigenvalue for different quadrature sets

Nd Sn PnTn PnEW
4 1.099438 1.099438 1.099438
12 1.112082 1.111766 1.110148
24 1.113045 1.113058 1.111119
40 1.113477 1.113504 1.111668
60 1.113649 1.113710 1.112036
84 1.113762 1.113822 1.112188
112 1.113824 1.113888 1.112373
144 1.113872 1.113933 1.112558
180 1.113902 1.113965 1.112710
220 1.113929 1.113986 1.112802
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1 Introduction

A fundamental robotics task is to plan collision-free motions among a set of
static and known obstacles from a start to a goal position. The geometric
construction of this planning strategy is computationally hard and hence un-
feasible for its use in real-time (RT) applications [12]. This motion planning
(or the piano mover’s) problem has motivated many works in the field of
robotics.

In the above context, one of the most popular algorithms is the so-called
Artificial Potential Field technique (APF) [6, 12, 13].This technique is very
fast for real-time applications, except when the robot is trapped in a deadlock
(a local minima of the potential function). The solution of this problem lies
in the use of harmonic functions to generate the potential field [7]. Despite
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their attractive properties, path planning based on harmonic functions has
some drawbacks that have prevented the extensive use of this methodology,
as indicated in [5].

Lately, a novel approach called the Proper Generalized Decomposition
(PGD) has appeared to approximate the solutions of non-linear convex vari-
ational problems [3]. In our previous work, [11], [4], was presented for the
first time, the Proper Generalized Decomposition method to solve the mo-
tion planning problem. In that work, the PGD was designed just for static
obstacles and computed as a vademecum for all Start and goal combinations.

However, in a realistic scenario, it is necessary to take into account dy-
namic obstacles. The goal of this work is to solve this problem applying PGD
considering dynamic obstacles as an extra parameter.

2 PGD-Vademecum for Path Planning in static

environment

For the path planning application proposed here, the space is not decom-
posed in X and Y but parameters in the model are set as additional extra-
coordinates, that is, a PGD-Vademecum, see [1] and [2]. In our previous
works,[8],[9],[10], [11] the additional extra-parameters are considered in the
source term, being all the posible combinations of the start and goal config-
urations.

2.1 Source term definition

Consider the functions gS : ΩX × ΩS → R and gT : ΩX × ΩT → R as 2D
Gaussian density distributions centered in the start S = (s1, s2) ∈ ΩS and
target configurations T = (t1, t2) ∈ ΩT , respectively. Both functions are
assume to have equal variance given by a diagonal matrix Σ = diag(r, r) for
some r > 0, r ∈ R. More precisely, we can write:

gS = gS((x, y); (s1, s2), r) = (2πr)−1e−
1
2r

((x−s1)2+(y−s2)2),

gT = gT ((x, y); (t1, t2), r) = (2πr)−1e−
1
2r

((x−t1)2+(y−t2)2)

and hence ΩX = Ωx × Ωy, ΩS = Ωs × Ωr and ΩT = Ωt × Ωr.
Here ΩX = ΩS = ΩT ⊂ R2.
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Let’s assume that the source term f is non-uniform, that is, f = gS − gT
when (x, y) ∈ ΩX and zero otherwise. Then, the Poisson equation is now

−∆u(X,S, T ) = f(X,S, T ) (1)

2.2 PGD-Vademecum solution

The PGD-Vademecum is constructed considering that the solution of the
potential field u can be constructed as a finite sum of terms, each one con-
sisting of the product of three functions: a function R of the environment X,
a function W of the start configuration S and a function K of the target or
goal configuration T:

un−1(X,S, T ) =
n−1∑
i=1

Ri(X) ·Wi(S) ·Ki(T ) (2)

and where the enrichment step is given by

un = un−1 +R(X) ·W (S) ·K(T ). (3)

3 PGD-Vademecum for Path Planning in a

dynamic environment

In some practical situations, it is not enough that the target modifies its posi-
tion since the environment could, spontaneously, change. With the previous
formulation, but modifying the spatial domain ΩX , considering now the new
position of the obstacle. However, an obstacle could be seen as a region of
the space towards which the vehicle must not to go. Mathematically this can
be also obtained by modifying the properties of the initial domain ΩX , i.e.
defining the flux as −K(X)∇u(X). Higher values of K(X) will imply at-
traction of the vehicle while smaller values of K(X) will provoke a repulsion
to the vehicle. Note that in previous sections we consider K(X) ≡ 1.

Using this formulation, a different set of obstacles can be modelled by a
different definition of function K. Without losing in generality, let assume
that all possible obstacle configurations can be modelled by a single param-
eter p ∈ Ωp (one can always add more parameters to define more complex
obstacles since the PGD permits to solve high dimensional problems easily).
Therefore function
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K (X, p) =
M∑
i=1

Kx(X)Kp(p) (4)

models all possible obstacle configurations. Then the Laplace problem
can be rewritten as follows:

∇ · (−K(X, p)∇u) = f (5)

Then, the use of the PGD technology for solving equation 5 produces a
solution as follows

u (X, p) =
N∑
i=1

Xi (X)Pi(p) (6)

This solution represents the potential field for any position of the space
and for any position of the obstacle. Thus, the new path planning will only
require to post process this solution when the obstacle configuration changes.
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1.  Introduction 
 
In 2017, the decrease of the Spanish level of unemployment announced the end of 
the crisis. However, despite the positive figures of the Spanish GDP indicator, the 
risk of poverty has not stopped increasing since 2007. Thus, a new phenomenon is 
emerging, the flattering of the Spanish middle class produced by the so-called “gig 
economy” characterized as a race to the bottom in wages and labour rights bringing 
the impoverishment of workers (Barbieri, 2009). 
 
In addition, the creation of new contracts produced by the economic recovery lacks 
not only the proper economic conditions, but also missing suitable conditions. As a 
result, the new contracts are mainly temporary/ involuntary part-time or false self-
employed rather than permanent contracts. A new concept emerges fiercely in 
western countries, the precariat (Standing, 2012). In the Spanish context, the 
precariat population embraces those individuals who lack of wages higher than 
1,250 euros/month and cannot live autonomously in dignified living conditions 
(Nachtwey, 2017). 
 
The importance of the problem is evident and is in force; the crisis has led to the 
destruction of the Spanish middle class, due to the increasing divergence of salaries, 
traditionally fixed in Spain, and the consequent imbalance in the welfare of society, 
accelerated by the process of robotization, and the emergence of the digital 
economy, that is to say, the massive destruction of jobs and the creation of others, 
but to a lesser extent that demand a high qualification. 
 
Compared to previous studies in which the poverty threshold in Spain is analyzed 
from information derived from surveys and statistical inference (Eurostat, 2016; 
Felgueroso et al., 2018) and which offers only a partial and fixed image of the 
Spanish social reality, this work proposes a model that allows quantifying the 
population at risk of precariousness in Spain with a dynamic approach. Thus, we 
build a compartmental mathematical model to identify and quantify the size of the 
Spanish population at risk to become precariat in the period of time 2017-2021 (De 
la Poza y Jódar, 2018, De la Poza et al., 2016). 
 
The drivers taken into account to build the model are economic, demographic, 
substance abuse, socio-legal, psychological and technological. The proposed model 
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is built for the particular case of Spain but it is applicable to any European country 
when data is available. The relevance of this study relies on reporting the problem to 
public authorities responsible for addressing policies to stop this trend (Rifkin, 
2011). 
 
 
2.  Model 
 
The dynamic population model (Haddad et al., 2002; Goldthorpe, 2016) quantifies 
the amount of people from 18 years old who lives in precarious condition in Spain.  
 
Thus, the Spanish population is classified into 6 categories according to their level 
of precariat: 
Z(n): zero risk subpopulation. It represents the population over 18 years old that is 
idle (lives on income) or is retired with sufficient income in the n-th semester after 
December 2017, (n = 0). Z is assumed to remain constant for the period of study 
(Spanish Statistics Institute, 2016). 
PL(n): professional training students and university students (Bachelor and Master 
students) who are older than 18 years old.; PL also includes those who will embrace 
the job market after graduating or hold part-time jobs, (in Spain 30% part-time 
workers, OECD, 2018). 
E(n): entrepreneurs.  
FNP(n): fixed employed people including civil servants, public employees and 
employees of large corporations with a level of monthly gross amount of incomes 
higher than 1,250 Euros, (Spanish Statistics Institute, 2016). 
P(n): precarious people. Those who are false self-employed workers, non-registered 
household workers, all types of temporary and part-time employees (excluding those 
who are students at the same time, 30%, OECD, 2018), retired people with low 
pensions and long-term unemployed. 
HIM(n): marginalized subpopulation lacking of social and economic integration, 
such as gypsies, refugees, undocumented immigrants, convicted prisoners (Spanish 
Statistics Institute, 2016). 
 
The individuals transit to lower or higher levels of precariousness by the conjunction 
of factors; those factors are explained by economic, legal, socio-demographic and 
psychological causes.  
 
Starting by the retirement transit (αr); E(n) and FNP(n) individuals transit to Z(n+1) 
when getting retired perceiving convenient pension incomes; however, 85% of E(n) 
and 100% P(n) individuals transit to P(n+1) when retire.  
 
The next transit is explained by the economy; according to the IMF and Funcas 
forecast, the economic growth will create 200,000 new jobs per year during the 
period of study. PL(n) individuals transit to P(n+1) due to the economic effect (βe), 
but also a small proportion of  PL(n) achieves a permanent contract (with 
compensations higher to 1,250 euros) becoming FNP(n+1). This transit is assumed 
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constant due to the Spanish high level of unemployment for the period of study. 
Linked to the economy, it is the emergence of start-ups and other companies 
explaining the entrepreneurship transit generating a shift from PL(n) and P(n) to 
E(n+1), (βen). 
 
Regarding the demographic transit, the variables considered are the birth rate, the 
death rate, the immigration and emigration assumed constant for the period of study. 
As a result, the net emigration result amounted to 44,563 individuals by semester in 
2017, which is split into the six categories (Spanish Statistics Institute). Also, each 
semester 30,000 HIM individuals regularize their labor status, transiting to P(n+1), 
(βrgb). 
 
Next it is the adulthood transit (βa), which explains the PL(n) individuals transit to 
the rest of categories when becoming 26 years old. 
Related to the robotization process, its effect is double. It destroys jobs, so FNP(n) 
transits to P(n+1) (Cameron, 2018), but also fosters the creation of qualified jobs, 
promoting the transit from PL(n) to FNP(n+1). 
 
In addition, the emotional status of individuals impacts negatively on their 
precariousness; thus, P(n) individuals transit to HIM (n+1). This transit is modeled 
through the combination of three factors: long-term unemployed with emotional 
stress and abuse of drugs and alcohol. 
Finally, it is considered that the Government will rise the increase of the minimum 
wages per month to 1,000 euros; as a result, a proportion of the permanent contracts 
(assumed as P(n) individuals) will transit to FNP(n+1), (αrl). 
  
Following, the compartment dynamic model to quantify the precarious population is 
expressed: 

Z(n + 1) − Z(n) = αrE(n) ∙ E(n) + αrFNP(n)FNP(n) + bdZ + brlZ(n) 
PL(n + 1) − PL(n)

= −(βenE(n)+βeP(n) + βeFNP(n) + βaE + βaFNP + βaP
+ βrbFNP(n)) ∙ PL(n) + bdPL + brlPL(n) 

E(n + 1) − E(n)
= −(αrE(n) + αrP(n)) ∙ E(n) + βenE(n) ∙ P(n) + (βenE(n) + βaE)
∙ PL(N) + bdPL + brlE(n) 

FNP(n + 1) − FNP(n)
= −�βrbFNP(n)+αrFNP(n)� ∙ FNP(n)
+ (βeFNP(n) + βaFNP + βrbFNP) ∙ PL(n) + bdFNP + brlFNP(n) 

P(n + 1) − P(n)
= βrbFNP(n) ∙ FNP(n) + αrP(n) ∙ E(n) + (βaP(n)
+ βaE + βaFNP) ∙ PL(N) + βrgbHIM(n) ∙ HIM(n)
− (αrlFNP(n) + αemHIM + βenE(n)) ∙ P(n) + bdP + brlP(n) 

HIM(n + 1) − HIM(n)
= −βrgbHIM(n) ∙ HIM(n) + αemHIM(n) ∙ P(n) + bdHIM
+ brlHIM(n) 
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3.  Results 
 
By computing the model, the subpopulation values are estimated by semester. Table 
1 shows the results at the beginning of the study, n=0 (December 2017) and at the 
end, n=8 (December 2018). 
 

Table 1. Subpopulations forecast at n=0 and n=8. 

 
Results show how the precarious subpopulation grows for the 4 years period of 
study, representing close to the 40% of the Spanish population in 2021. Conversely 
to the economic recovery, the precarious do increase over time. On contrast, the pre-
labor category decreases. 
 
4.  Conclusions  
 
The study shows the deterioration of the Spanish population living standards despite 
the improvement experienced by the macro indicators. The model estimates 
evidence of the destruction of the Spanish middle class and the impoverishment of 
society. 
The stop to this social problem requires the policy makers’ action to incentive 
permanent contracts with suitable economic compensations but also new formulas to 
link the employees’ wages to the firm performance. 
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