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ABSTRACT. The expansions of algebraic functions can be computed "fast" using the Newton Polygon 

Process and any "normal" iteration. Let M(j) be the number of operations sufficient to multiply two /th- 

degree polynomials. It is shown that the first N terms of an expansion of any algebraic function defined by an 
nth-degree polynomial can be computed in O(nM(N)) operations, while the classical method needs O(N*) 

operations. Among the numerous applications of algebraic functions are symbolic mathematics and combina 

torial analysis. Reversion, reciprocation, and nth root of a polynomial are all special cases of algebraic 

functions.
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1. Introduction

Let
P(W, z) = A n(z)Wn + - + A 0 (z), (1.1)

where the A {(z) are polynomials over a field A. In general we shall take A to be the 
field of complex numbers; Section 7 is an exception. (Many of the results hold for an 
algebraically closed field of characteristic 0.) Without loss of generality we assume 
A 0(z) & Oand A n (z) & 0. Usually, but not always, capital letters will denote polynomials 
or series; lower-case letters will denote scalars.

The zero of (1.1), a function S(z) such that P(S(z), z) = 0, is called the algebraic 
function corresponding to P(W, z). Let z0 be an arbitrary complex number, finite or 
infinite. It is known from the general theory of algebraic functions that S(z) has n 
fractional power series expansions around z0 . By the computation of an algebraic 
function we shall mean the computation of the first N coefficients (including zero 
coefficients) of one of its expansions. (This will be made precise in Section 3.) The 
problem we study in this paper is the computation of one expansion of the algebraic 
function. Our results can be modified for computing more than one expansion or all 
expansions of the algebraic function.

As described in most texts, the classical method computes algebraic functions by 
comparison of coefficients. It is not difficult to show that the method can take O(Nn) 
operations, where n is the degree of P(W, z) with respect to W. Hence the classical 
method is very slow when n is large.
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The main result of this paper is that every algebraic function can be computed fast. 
Let M(N) denote the number of operations sufficient to multiply two Nth-degree 
polynomials over the field A. Let C(N) be the number of operations needed to compute 
any algebraic function. We prove that C(N) = O(nM(N}). Since M(N) = O(/V2 ) (or 
M(N) = O(N log N) if the FFT is used), our algorithms are considerably faster than the 
classical method even for moderate n. It is an open problem whether or not a general 
algebraic function can be computed in less than O(M(N}} operations.

The "fast computation" of the title is because the coefficients of a "regular" problem 
can always be computed fast by iteration (Section 5) and the general problem can be 
reduced to a regular problem (Section 6) with cost independent of N.

Brent and Kung [5] showed that the cost for reversion of a polynomial, which is a 
very special case of an algebraic function (see discussion later in this section), is 
O((N log 7V) 1/2M(AO). We stated above that the cost of expanding an algebraic function 
is O(nM(N)). These results are reconciled by the observation that we are considering 
the case that the degree n of P(W, z) with respect to W is fixed and independent of N, 
while Brent and Kung considered the case where n   N.

There are known examples of computation using Newton-like iteration in settings 
such as algebraic number theory [8, 2], power series computation [10, 5], and the 
Zassenhaus construction in p-adic analysis [21]. Computation of algebraic functions 
raises certain issues not present in these other settings; see especially Section 6. As we 
will see in Section 5, there is nothing special about Newton-like iteration; any "normal 
iteration" can be used.

Although the complexity results are stated asymptotically, Theorems 5.1 and 6.1 
give nonasymptotic analyses of the algorithms. Hence various nonasymptotic analyses 
can also be carried out.

We are interested in the computation of algebraic functions for a number of reasons. 
These include

1. A number of problems where fast algorithms are known are special cases of 
algebraic functions. (More details are given below.)

2. There are numerous applications. For example, many generating functions of 
combinatorial analysis and functions arising in mathematical physics are algebraic 
functions. The integrands of elliptic and more generally Abelian integrals are algebraic 
functions. See Section 9 for an example.

3. Algorithms for expanding algebraic functions are needed in systems for symbolic 
mathematics such as MACSYMA [14].

4. Algebraic functions are of theoretical interest in many areas of mathematics. 
These include integration in finite terms [17], theory of plane curves [20], elliptic 
function theory [6], complex analysis [1, 18], and algebraic geometry [12]. Algebraic 
function theory is a major subject in its own right. (See, for example, [3, 7].)

We exhibit special cases of algebraic functions where fast algorithms are known.
A. Reciprocal of a polynomial. P(W, z) = Ai(z)W - 1. (See Kung [10].) (Actually 

Kung uses P(W, z) = W~ l - A^z) which is not of the form (1.1), and allows A^z) to be 
a power series.)

B. n-th root of a polynomial. P(W, z) = Wn - A 0(z). (See [4, Sec. 13], where the 
A Q(z) is allowed to be a power series.)

C. Reversion of a polynomial. Let F be a given polynomial with zero constant 
term. We seek a function G such that F(G(z)) = z. To see that this is a special case of 
an algebraic function, let F(x) = a n xn + a n-iXn~ l +     + a±x. Then we seek G(x) such 
that a n Gn(z) +     + OiG(z) - z = 0. This is an instance of our general problem with 
Ai(z) = a i9 i = 1, ... , /i, A 0(z) = -z. See [5].

We summarize the results of this paper. In Section 2 we show that without loss of 
generality we can take z 0 = 0 and assume A n (Q) =£ 0. Notation is established and a few 
basic facts from algebraic function theory are summarized in Section 3. The concept of 
normal iteration is introduced in Section 4 and convergence of normal iterations for
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regular problems is established in Section 5. In Section 6 we state and analyze the 
Newton Polygon Process, which reduces the general problem to a regular problem. A 
symbolic mode of computation with exact arithmetic is introduced in Section 7. Section 
8 shows that C(N) = O(nM(N)). In Section 9 we give a number of examples, several of 
which are more general than the theory of the preceding sections. Section 10 discusses 
extensions of the work presented here.

In this paper we analyze algorithms under the assumption that the coefficient of 
power series are "nongrowing," e.g. all coefficient computations are done in a finite 
field or in finite-precision floating point arithmetic. An analysis dealing with variable- 
precision coefficients is yet to be performed.

2. Preliminary Transformations

Recall that we wish to compute one of the expansions around z 0 of the algebraic 
function 5(z) corresponding to

z) = A n (z)Wn +  - + A 0U),

i.e. P(S(z), z) = 0. In this section we show that after two simple transformations we 
need only deal with the case that z () = 0 and A n (Q) * 0. If we transform P(W, z) to 
P(W, z), then 5(z) is defined by P(S(z), z) = 0. 

Consider first the case z0 = ». Let

P(W, z) = z m P(W, 1/z), (2.1)

where m = max0<^ n (deg A-,). By definition, an expansion of S(z) around z 0 = x is an 
expansion of 5(z) around z 0 = 0.

Consider next the case that z 0 is any finite complex number. Define P(W, z) = P(W, 
z + z0). An expansion of S(z) around the origin is an expansion of 5(z) around z = z0 .

For the remainder of this paper we shall therefore take z 0 = 0.
Let A n (Q) = 0. Then the algebraic function S(z) corresponding to P(W, z) has one or 

more expansions with negative powers. Using the following transformation, we need 
only deal with expansions with nonnegative powers. It is convenient to use ord notation.

Definition 2.1. Let^4(z) be an integral or fractional power series. If A(z) & 0, then 
ord (A) denotes the degree of the lowest degree term in A(z). If A(z) = 0, then 
ord(A) = oc. D

Choose nonnegative integers /u, and X to satisfy the following conditions:

fi + OTd(A n) = rcX, /LL + ord (A*) > iX, i = 1, ... , n - 1.

Let P(W, z) = z*P(W/z\ z). Then the coefficients of P(W, z), A ( (z), are polynomials 
with A n(Q) ^ 0, and S(z) has only expansions with nonnegative powers. Since the 
expansions of S(z) are those of S(z) divided by z x , it suffices to compute expansions of 
S(z). For the remainder of this paper, we therefore assume that A n(ty i=- 0. (One should 
note, however, that the results of Section 5 hold without the assumption.)

3. Facts from Algebraic Function Theory

We introduce some notation and state a basic result of algebraic function theory which 
characterizes the expansions of the algebraic function corresponding to

P(W, z) =A n(z)W* + - +>U*).

There exist r positive integers </j, ... , dr such that di +     + dr = n and the expansions 
of the algebraic function are given by

00

5(J(z) = l5(.,^-z"* (3.1)
/=0

for / = 1 , . . . , r and j = 0, . . . , d, - 1 , where f ,- is a primitive dt th root of unity and the
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Sjj are complex numbers. For each /, the expansions Sitj , j   0, ... , d, - 1, are said to 

constitute a cycle.
The problem considered in this paper is to compute one expansion of an algebraic 

function. For notational convenience, let the expansion be denoted by

X

5(2) = S Wrf -
/=0

Hence our problem can be formulated as that of computing the value of d and the 

coefficients 5 0 , Si, ... . (In this paper 5(z) represents either an algebraic function or one 

of its expansions, depending upon the context.) Note that since P(S(z), z) = 0, we have 

P(s Q , 0) = 0. Thus, 5 0 is a zero of the numerical polynomial P(W, 0). We say our 

problem is regular with respect to So if s n is a simple zero of P(W, 0). (In this definition 

we allow A n (0) to be 0.) For a regular problem, we have d = 1, that is, the expansion 

S(z) is an integral power series. In Section 5 we shall show that a regular problem can 

always be solved by iteration. In Section 6 we shall show how the general problem can 

be transformed to a regular problem.

4. Normal Iterations

We introduce the concept of a normal numerical iteration. We give a novel definition 

of the order of a normal iteration which is convenient for the application to power 

series iteration. In Section 5 we shall show that a normal iteration with order greater 

than unity will always converge if used for a regular problem.
Let p(w) be the numerical polynomial P(W, 0), let s be a zero of p(w), and let e(n = 

w (i) - s denote the error of the /th iterate. To motivate the definition of normal 

iteration we first consider two examples.
Example 4.1. Newton iteration.

From the Taylor series expansions

p(w (i >) = p'(s}e(l) + 

and
p'(w(l} ) = p'(s) 

we have

e<,>n = (p"(s )/2p W(e(i)) 2 + Cj-W, (4.1)
j=3

where the c} are rational expressions of the derivatives of p at 5, with powers of p'(s) as 

the denominators. D 
Example 4.2. Secant iteration.

Using the Taylor series expansions of p(w(i)) and p(wu~ 1}), we obtain

(i - l) + 1 cjr (e(i)Y(e(i - l) } 1 , (4.2)

where the cjt are rational expressions of the derivatives ofp at 5, with powers of p'(s) as 

the denominators. D
Consider now a general iteration

w(m) - i//(w ( '>, H> (l'- n , ... , w (i ~ m)), (4.3) 

which is defined in terms of rational expressions of p and its derivatives.
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Assume that by using Taylor series expansions, we can derive

<? 0>1) = S cjv ..,j m -(e ii})>'     (e(i- m} y« 9 (4.4) 
j/ao

where the Cj,,...,jm are rational expressions of the derivatives of p at 5.
Definition 4.1. i// is said to be a normal iteration if the denominator of each Cj,,...^ 

is a power of p'(s). D
From (4.1) and (4.2) we have that both Newton iteration and secant iteration are 

normal. In fact most commonly used iterations are normal. We prove that the classical 
one-point inverse interpolatory iterations i//p (see [19, Sec. 5.1]; in particular i|/ 2 is the 
Newton iteration) are normal. Let q denote the inverse function to p and v (0 = p(ww). 
Then

s = 

By definition of t//p ,

and

Note that
p(wu}) = p W° + '/2 p"(s)(e(/)) 2 +  

and that <? (j) (v> 0)) is a rational expression of p (k\w(i) ) for A: = 1, ... , j and has the 
denominator (p'(w(n))j . Expanding the p(k\w(i)) around s shows that i//p is a normal 
iteration.

Definition 4.2. For a normal iteration i|/ defined by (4.3) and satisfying (4.4), we 
define the order p of \ff by

p = sup{r|rm+1 <;0 rm +/1 rm- 1 +   + jm for all (/0 , ... , y m)
such that cjftj Jm ^0 for some polynomial p}. D

By (4.1), it is easy to check that the Newton iteration has order 2. In general it can 
be shown that the one-point inverse interpolatory iteration i//p has order p. Consider 
now the secant iteration. By (4.2), the order of the iteration is given by

p = sup{r|r2 <;> + / for all/, / > 1},

which is equivalent to p = sup{r|r2 < r + 1}. Hence p is the positive root of r2 = r + 1, 
i.e. p = (/> = (1 + V5)/2.

5. Regular Problems: Normal Iterations on Power Series

We show how normal numerical iterations with order greater than unity can always 
compute an expansion of an algebraic function for a regular problem. The main result 
is Theorem 5.1. As a corollary of this theorem we show that a Newton-like iteration 
always ''converges quadratically." We also show the convergence of a secant-like 
iteration. We end the section with an example of a convergent first-order iteration.

We begin with some definitions. Recall that a meromorphic series is a power series 
with a finite number of negative powers.

Definition 5.1. Given a meromorphic series A(z) and a real number a-, then by the 
notation B(z) = A(z) (mod z°"), we mean B(z) is a finite series consisting of all terms of 
A(z) of degree less than cr. , D

Let 0 be a normal numerical iteration. Let the numbers w (!\ ... , w (i ~ m) in (4.3), the 
defining relation for i//, be replaced by meromorphic series W(i)(z), ... , W(i~ m}(z). Then 
the iterate W{i+1 \z) defined by
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W(i+1 \z) = <MW(i)(z), ... , W°'- m)(z))

is in general a meromorphic series, provided that it is well defined. Let £(0(z) = 
W(i\z) - S(z) denote the error of the /th iterate.

Definition 5.2. We say an iteration on a meromorphic series converges if lim,^ 
ord(E0)) = x. D

Our main result for regular problems is given by the following theorem.
THEOREM 5.1. //

(i) P(s 0 , 0) = 0, P'fco, 0) * 0,
(//) $ is a normal iteration with order p > 1,

(I'M) Wm(z) = 50 , W(1)(z), ... , W(m)(z) are polynomials in z such that ord(E{i} ) > p 1 for 
i = 0, ... , m, where S(z) is the expansion starting with the term s 0 ,

(iv) i/KW(0(z), W"- 1 ^), ... , W(i -m)(z)), i = m, m + 1, ... , is a well-defined mero 
morphic series ,

then the iterates

), ... , W(i-m\z)) (mod zpl>1 ) 

satisfy the property that

») > p'+1 , (5.1)

and hence the iteration converges.
PROOF. Let / = m. By (iv), </fWm)(z), W0"- 1^), ... , W(0)(z)) is a well-defined 

meromorphic series. Since (4.4) is derived by Taylor series expansions and since the 
Taylor series expansion is valid over meromorphic series, we have that

E(m + n(z) = ^ c (E< >(z)yo ... (£<o>(z) )Jm (5.2) 
j,-*o

holds for meromorphic series. The constant term of P'(S(z), z) is P'(s 0 , 0), which is 
nonzero by condition (i). Thus by conditions (ii) and (iii), (5.2) implies that

ord(£(m+i)) > min(/0p- +y 1p- 1 + - + y m ),

where the minimum is taken over all the (y 0 , ... , jm ) sucn tnat c>»,...j. is nonzero for 
some P(W, z). By the definition of p in Section 4, we have

ord(£"(m+1) ) > pm+1 .

By induction, (5.1) can be established for / = m + 1, m + 2, ... , using similar 
arguments. The convergence of the iteration follows immediately from Definition 5.2. D

Remark 5.1. Thus well-defined normal iterations on regular problems always 
converge. This behavior is strikingly different from the behavior of these iterations on 
numerical polynomials, where only local convergence is assured unless strong conditions 
are imposed. Note that the expansion S(z) may converge in only a small disk around 
the origin; we shall not pursue the domain of convergence here.

Remark 5.2. (5.1) shows that W*° is a power series with nonnegative powers only 
rather than a meromorphic series. Until this fact was established it was necessary to 
work over the field of meromorphic series.

Remark 5.3. Observe that we do not define order for power series valued iteration 
but only for normal numerical iterations.

Remark 5.4. Note that in Theorem 5.1 we need not assume that A n (0) =£ 0. This 
fact will be used in the proof of Theorem 6.1.

We apply Theorem 5.1 to two specific iterations. We begin with a Newton-like 
iteration, which is defined by (5.3) below. This iteration is obtained from the numerical 
Newton iteration. In the power series setting we hesitate to call it Newton iteration, 
since Newton [15] actually used a different method for computing the expansion. His
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method computes one coefficient per iteration and in general is not as efficient as the 

Newton-like iteration defined below. We will discuss the Newton-like iteration in some 

detail since we anticipate it will be the most commonly used iteration in practice. Here 

and elsewhere we use the notation

P'(W, z) = (3P/dW)(W, z).

Recall that the numerical Newton iteration is a normal iteration of order 2. From 
Theorem 5.1 we have 

COROLLARY 5. 1. 1 //

(/) P(s», 0) = 0 and P'(s n , 0) * 0, 
(ii) W°» = s 0 , i.e. ord(E (0) ) > 1,

then the iterates W(i) generated by the Newton-like iteration

W(i+l)(z) * W(i)(z) - P(W(i\z), z)/P'(W{i)(z), z) (mod z21") (5.3) 

are well defined and satisfy

ord(E (i)) > 2l (5.4)

for / = 0, 1, 2, ... , and hence the iteration converges.
PROOF. We need only show that the iterations W(i\z) are all well defined. This 

holds since for all i the constant term in P'W<0 , z) is P'(s 0 , 0), which is nonzero. D
Remark 5.5. If we define the valuation of a power series A(z) to be b~°M(A\ where 

b is any positive constant, then Corollary 5.1 follows from a known theorem in 

valuation theory (see [2, Ch. II, Theorem 4.2]).
It is easy to show that if S(z) is a polynomial of degree q, then iteration (5.3) will 

compute it in Ilog2 q\ + 1 iterations. By a slight modification of the hypotheses of 

Corollary 5.1 we can replace the inequality (5.4) by equality.
COROLLARY 5.2. //

(i) P(s 0 , 0) = 0, P'(s0 , 0) * 0, P"(s0 , 0) * 0, 
(ii) W(0) = s 0 , ord(E (Q) ) = 1,

then the iterates generated by the Newton-like iteration satisfy ord(E(i)) = 2'. D

Corollaries 5.1 and 5.2 can easily be generalized to any one-point inverse interpola
tor} iteration i//p .

As our second example we consider a secant-like iteration. One has to be somewhat
careful in defining this iteration. A straightforward approach would generate iterates by

(modz*'+1), (5.5)

where 0 = (1 + \/5)/2. Then W(i+l) becomes undefined when W(i) = W(i ~ l) . This 

happens when there is a "large" gap between the degrees of two consecutive terms, in 
the expansion which we want to compute. A solution to the problem is given in the 

following corollary. The idea is to use a perturbed Wi} in (5.5) so that the denominator 
is guaranteed to be nonzero. 

COROLLARY 5.3. //

(/) P(s 0 , 0) = 0, P'(s 0 , 0) * 0,
(ii) W 0) = s 0 , W l} = s 0 + s,z,

then the iterates W(i} generated by

(mod Z F<+* (5.6) 

are well defined and satisfy-

1 A result similar to Corollary 5.1 has been proved independently by Professor Lipson [13].
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ord(E(l >) > F; - 2 .

where the F-t is the i-th Fibonacci number (i.e. F0 = 0. F, = 1, and F,_, = F - F,, ,} and 
W n = W" + ;:>'  '.

PROOF. Consider the case / = 1. Clearly, W(l} = W(l} + z2 * W(Q) and ord(W(1) - 

W 0) ) < F3 . Since by the Taylor series expansion,

and since P'(W< 0) ) has a nonzero constant term P'(s () , 0), we have 

ord(P(W(1) ) - P(W(0) )) =

Hence (P(W(1) ) ^ P(W(0) ). This ensures that W(2) is well defined by (5.6). Note that for 

/ = 1, (4.2) holds with E(1) replaced by E(1) = W(l) - 5. Thus,

ord(F(W(1) ) - P(W(0))) = ord(W(1) - W(0) ) < F3 .

> min(ord(£:(1)), F3) + ord(£(0)) > F3 + F2 = F4 .

By induction, one can similarly prove that for / = 2, 3, ... , W(i) is well defined and 

ord(£(/) ) > F/>2 . D
Results similar to Corollary 5.3 hold for other suitably modified iterations with 

memory (i.e. iterations with m > 0 in (4.3)).
So far we have only dealt with iterations of order greater than one. We now consider 

an iteration with order one. Define

for/ = 0, 1, 2, ... .Then

= (p"(s)/p'(s))e^e^ - (p"(s)/2p f (s))(e (i)) 2 + cLl(e Y(e(i)) 1 ,
j+f>3

j>0,/2:l

where the cjti are rational expressions whose denominators are powers of p'(s). This 

implies that the iteration is normal and has order p = 1 . We may use the iteration on 

power series and obtain the following theorem, which is an easy consequence of (5.7): 

THEOREM 5.2. //

(i) P(s 09 0) - 0, P'(*o, 0) * 0, 
(ii) W<°> = s0 ,

then the iterates W(i) generated by

W«+1)(z) = W{i\z) - P(W(i)(z))/P'(W(0\z)) (mod z i+2) (5.8) 

are well defined and satisfy

ord(E(i) ) > / + 1,

and hence the iteration converges. D
The iteration (5.8) can be used, for example, to find the initial iterates of an iteration 

with memory.

6. The General Problem: Newton Polygon Process

Recall that our general problem is to compute the value of d and the coefficients s () , 5,, 

... of an expansion
x:

S(z) = 2,sr :l/d
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of the algebraic function corresponding to a given

In this section we show that the general problem can be reduced to a regular problem 
by transforming P(W, z) to some P(W, z). The regular problem can then be solved b\ 
normal iterations, as described in Section 5.

Since P(s 0 , 0) = 0, s () can be obtained by finding a zero of the numerical polynomial 
P(W, 0). In this section we assume that finding a zero of a numerical polynomial is a 
primitive operation.- (This assumption will be removed in Section 7 by carrying the 
zeros symbolically.) If P'(s {} , 0) ^ 0, we have a regular problem solvable by a normal 
iteration. Hence we assume that P'(s {} , 0) = 0. Then $ 0 is a multiple zero of the 
numerical polynomial P(W, 0) and there is more than one expansion of the algebraic 
function starting with s 0 . We would not expect an iteration starting with W(0) = s 0 to 
converge since the iteration would not "know" to which expansion it should converge. 
Intuitively the convergence of an iteration requires that it start with an initial segment 
of a unique expansion. This suggests that we find an initial segment of a unique 
expansion starting with s0 . The existence of the segment is guaranteed only if no two 
expansions coincide, i.e. the discriminant D(z) of P(W-, z) with respect to W is not 
identically equal to zero. Therefore, in this section we shall assume that D(z) ^ 0. The 
assumption holds when P(W, z) is irreducible or simply when P(W, z) is square-free 
[20, Theorem 3.5]. Hence we can make this condition hold by using factorization or 
square-free decomposition algorithms, but we do not pursue this here.

A classical method for finding an initial segment of a unique expansion uses a 
geometric aid known as the Newton Polygon, which provides a convenient tool for 
analyzing a set of inequalities. (Some authors refer to Puiseux's Theorem because of 
the work of Puiseux [16], but clearly the idea originated with Newton [15, p. 50].) The 
method has not been subject to algorithmic analysis.

We state the Newton Polygon Process adapting, with some modifications, the 
description in [20]. In Theorem 6.1 we show that the Newton Polygon Process 
transforms the general problem to a regular problem. Theorem 6.1 also gives the 
connection between the number of identical terms in at least two expansions and the 
number of Newton Polygon stages. Theorem 6.2 gives an a priori bound on the number 
of stages which differs by at most a factor of two from the optimal bound. Example 6.1 
shows that in general P(W, z) must be transformed to a new polynomial P(W, z); it is 
not enough to compute an initial segment of a unique expansion and use it as the initial 
iterate for a normal iteration on the original polynomial P(W, z).

In the following algorithm let ^4 />fr (z) be the coefficient of W in Pk(W, z). IM,- >A.(r) ^ 
0, let a itk z ai ' k be the lowest degree term in Aj.k(z).

NEWTON POLYGON PROCESS
Nl. k «- 1, Pk(W, z) <- P(W, z).
N2. Plot the points fiik = (i, a i>k) on the xy plane for i such that^4 i(fe(z) ^ 0. Join/OJt to/n .t with a convex

polygon arc each of whose vertices is an fifk and such that no fitk lies below any line extending an arc
segment. 

N3. If k = 1, choose any segment y + ykx = (3 k of the arc. If k > 1, choose a segment with yk > 0. (Such a
segment always exists.) Let gk denote the set of indices i for which fijt lies on the chosen segment. Solve
the polynomial equation

2 a ijcx f = 0. (6.1)
<eok

Let ck be any of the nonzero roots. (Such a nonzero solution always exists.) 
N4. If c k is a simple zero, go to N6; else go to N5. 
N5. Pt+JW, z) <- z-0k -Pk(z y* (W + ck), z), k 4- A: + 1. Go to N2. 
N6. t *  k. (Hence t represents the number of stages taken by the Newton Polygon Process.)

, z} «- z-0<-Pt (zy < W, z), P(W, z) «- P(W, zd ),

2 I.e. zeros of a polynomial can be computed to any prespecified precision.
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where d is the smallest common denominator of y,, ... , y,. (y, may be zero. If y! = 0 we assume that y, 

has one as its denominator.) Terminate the process.

LEMMA 6.1. After the Newton Polygon Process terminates, the following properties 

hold:

(i) The coefficients of P(W, z) are polynomials in z. 

(ii) c t is a simple zero of the numerical polynomial P(W, 0).

PROOF. It is easy to verify (i). To prove (ii) we show that

, 0) = £ auW.

For notational convenience, let aitt = a,, a itt s a/, ft = /3, yt   y, gt = g, and let g 

denote the set complementary tog with respect to {0, 1, ... , n}. Let

Pt (W, z) = (a nz«* + Qn(z))W» + - + (a0 *a° + Q0(z)), 

where ord(Q/ ) > a,. Then

, z) = fl«W + ajf+
i€0 JE0 t=o

Since /3 = a( -f iy < a, + ;>, V/ G g, Vy e g,

, 0) - P( W, 0) = Z fl,W*. D

THEOREM 6.1. A/ter r/ze Newton Polygon Process terminates, the following proper 

ties hold:
(i) The general problem of computing an expansion S(z) of the algebraic function 

corresponding to P(W, z) has been reduced to the following regular problem: Compute 

the expansion S(z) starting from ct for the algebraic function corresponding to P(W, z). 

Then let
t-\

S(z) = S CiZy ' +-+y ' + zy i + "'+y<'S(zlld). 
1=1

(ii) S(z) is the unique expansion with starting segment £ l=i CjZ7^""1"7 '.

(I'M) There is more than one expansion which starts with 2i-i c i z 'yi+ ""'" y' for every 

j < t. That is, there are at least two expansions which coincide in their first t - 1 terms.

PROOF. By Lemma 6.1, we conclude that the problem of computing S(z) is 

regular. (Note that the leading coefficient of P(W, z) may vanish at z = 0. See Remark 

5.4.) (i) follows from P(W, z) = P(W, zd) and

, z) = z-^ +- +^pcf zy^'" +yt + z y* + '"+ y'W, 2 
\/=l

(ii) and (iii) hold since the Newton Polygon Process does not terminate until ct is a 

simple zero. D
Since there is only one expansion which starts with £/=i c,-z Yl+ '" +y * , we might expect 

that if this segment is taken as the initial iterate for a normal iteration then the iteration 

on the original polynomial P(W, z) rather than on the transformed polynomial P(W, z) 

will converge. The following example shows this not to be the case; in general we must 

use the transformed problem.
Example 6.1. This problem appears in [9, p. 29], although it is not used to 

illustrate the point we wish to make here. Let

P(W, z) = W2 - (2 H- z +z 3 )W -I- 1 + z + V4Z 2 + z 4 . 

The two expansions are
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S,(z) = 1 + l hz + z3 '2 + ••• , S2 (z) = 1 + l /2z - z312 + ••• .

Suppose that we want to compute Sj(z) by the Newton-like iteration. If we take W 0) = 
1 + l /2z + z3/2 in

we find W(1) = 1 + Vzz - ! /4z5/2 + ••• . W(1) differs from S, even in the coefficient of 
z3/2j Although there is only one expansion starting with W(0) , namely, 5l5 the Newton- 
like iteration starting from W(0) does not converge to 5,. D

We illustrate the Newton Polygon transformation, the transformations of Section 2, 
and the iterative process with another problem in [9, p. 31].

Example 6.2. Find all the expansions of the algebraic function corresponding to 
P(W, z) =  W3 + zW + z 2 around z0 = <*. The first transformation of Section 2 
converts P(W, z) to -z2 W* + zW + 1, which is then converted by another transformation 
to -W3 + zW + z. The Newton Polygon Process yields t = 1, 0i = 1, y l = ! /3, d = 
1, d = 3, and P(W, z) = -W3 + zW + 1. Take W(0) = 1. Then the Newton-like 
iteration (5.3) applied to P(W, z) gives

= 1 + z/3, W(2) = 1 + z/3 - z 8/81. 
Thus

5(z) = z1/3 5(z1/3) = z1 '3 4- z2/3 /3 - z4/3 /81 + - .

Let T(z) = S(z)/z = z~2/3 + z~ 1/3 /3 - z 1/3 /81 + ••• . Then an expansion of the given 
problem is

TXl/z) = z2/3 + V 3 z1/3 - Vsiz- 1 /3 + — . 

The other two expansions are
0z2/3 + (0Y3)z 1/3 - (0/81)z- 1/3 + ••• , 02z2/3 + ((9/3)z 1/3 - (02 /81)z- 1/3 + ••• ,

where 0 is the primitive third root of unity. D
The following theorem gives an a priori bound on the number t of stages in the 

Newton Polygon Process which differs by at most a factor of two from the optimal 
bound.

THEOREM 6.2.
l. (6.2)

Furthermore for all t there exist problems for which t = ] /2 ord(D).
PROOF. The theorem is trivial if t = 1. We assume that t > 2. Then by (iii) of 

Theorem 6.1, there are at least two series expansions 5X and S2 which agree in the first 
t   1 nonzero terms. Write

where the {0,}, {b} are strictly increasing nonnegative integer sequences such that none 
of thej^.,^. vanish ands ljfl . = s 2 ,b ^ a\/di = bjd2 for / = 1, ... , t - 1. Without loss 
of generality, assume dl < d2 . Note that the cycle which contains S { has the series

00

S — ^ c £ja,. ,a,/d, ; — n sf — 1 1J — ^ ̂ l.a, S 1 z ' S / ~ U» ••• » «i 1,

and the cycle which contains 52 has the series

where
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Note that we do not rule out the possibility that 5! and 52 are in the same cycle and that 
therefore the cycles {S^} and {52j-} are identical. Since

and a i/d l = bjd2 for / = 1, ... , t - 1, Su and S2J agree in the first t - 1 terms for; = 
0, ... ,<*,-!. Hence,

ord(Su - S2J) => (Vi 4- l)/d2 = a,.,/**, + l/d2 .

Let
"i- 1

VU) = Fl (Su(*) - 52J(z)). j=o

Then

ord(D) > ord(V) > d^a^/di + l/d2 ) > a,_! + 1.

Since the {a,} is a strictly increasing nonnegative integer sequence, a t-i ^ t - 2. Thus, 
ord(D) > r - 1, which establishes (6.2). Let

t 
Sfc) = S z\ S2(z) = S,(z) - z<,

j=0

and

) = (W-Sl(z))(W-St(z)).

By Theorem 6.1, the Newton Polygon Process has t stages. ord(Z)) = ord^Sx - S2 ) 2 ) = 
2/, which completes the proof. D

Theorem 6.2 gives a computable a priori bound but requires the computation of 
ord(D). A very cheap bound is given by

COROLLARY 6.1. t < m(2n - 1) + 1, where m = max^^n(deg A,-).
PROOF. D(z) is a determinant of order 2n - 1 whose elements are polynomials of 

maximal degree m. Hence D(z) is a polynomial of degree at most m(2n - 1). Since D(z) 
cannot vanish identically, ord(D) < m(2n - 1). D

7. A Symbolic Mode of Computation

The Newton Polygon Process involves computing roots of polynomial equations (6.1). 
Instead of actually solving the equations, in this section we carry the roots symbolically 
through their minimum polynomials. We assume that the underlying field A is one 
where exact arithmetic can be performed, such as a finite field or the field Q of rational 
numbers. Then the expansions can be computed symbolically with exact arithmetic. 
The following example, where A is taken to be Q, will illustrate the idea. 

Example 7.1.

P(W, z) = W3 + (z 4- z 2)^2 - 2z 2 W - 2z 3 .

We shall compute an expansion of the algebraic function corresponding to P(W, z), 
using exact rational arithmetic. The first stage of the Newton Polygon Process yields y l 
= 1, ft = 3, and c\ + c\ - 2c, - 2 = 0. Since c\ + c\ - 2c, - 2 = (c\ - 2) (c, + 
1)» Ci = V2, — >/2, or -1. Suppose that we are interested in the equation starting with 
V2 or  J2. Instead of using an approximation to V2 or — V2, we carry c l symbolically 
through its minimal polynomial MX (JC) = x2 - 2. That is,

c?-2 = 0. (7.1)
Since the equation has only simple zeros, the Newton Polygon Process terminates with 
t = 1, and
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P(W, z) = z~3P(zW, z) = W* + (1 + z)W* - 2W - 2.

We use the Newton-like iteration (5.3) to compute S(z) such that P(S(z), z) = 0. Let 
W0)(z) = d. Then

W(1)(z) s Cl - (c? - (1 + z)c? - 2d - 2)/(3c2 + 2(1 + z)Cl - 2) (mod z 2 ). 
Using (7.1), we obtain

W(1)(Z) = d - '/3Z.

Similarly all coefficients of ;cj in W^z) can be represented as linear polynomials in d 
with rational coefficients. By (ii) of Theorem 6.1, a solution to the given problem is

5(Z) = ZS(Z) = C,Z - '/3Z 2 + ••',

which represents both the numerical expansions starting with J2z and -v'2z. CD
In general, when the Newton Polygon Process is performed, c k , k = 1, ... , r, can be 

carried symbolically through its minimum polynomial Mk(x) over Q(CI, ... , c fc _!). Then 
all the coefficients of the expansion 5(z) are in the extension field Q(c l , ... , c t ). To 
simplify the computation, one can compute from Mk(x) the minimum polynomial M(x) 
for c, where c is a primitive element of the extension field Q(CI, ... , c,), i.e. £)(c) = 
Q(c^ ... , c,). Then the coefficients of the expansion S(z) can all be represented by 
polynomials of the form ]£ to1 <?,-<;'', where h = deg M and <?, G g. 5(z) can be 
computed entirely with exact arithmetic. Furthermore, S(z) gives a simultaneous 
representation of h numerical expansions; S(z) can be used to produce h numerical 
expansions by substituting zeros of M(x) for c in the coefficients of 5(z). (This implies 
that h < n.)

8. Asymptotic Cost Analysis

In this section we analyze the cost of computing the first N terms (including zero terms) 
of an expansion for large N. Since the Newton Polygon Process is independent of N, by 
Theorem 6.1 we can without loss of generality assume the problem is regular. Further 
more, since the asymptotic results will be the same for any normal iteration with order 
greater than one, we shall assume that the iteration (5.3) is used. Our cost measure is 
the number of operations used over the field A. If we carry zeros symbolically as 
described in Section 7, then we work over an extension field A(c) rather than A. If the 
minimum polynomial for c is of degree /z, then operations in A(c) are more expensive 
than in A by a factor of O(h) or O(h 2 ). Since h is independent of N, in our analysis we 
shall not be concerned with whether or not zeros of polynomials are carried symbolically. 

Let M(j) be the number of operations needed to multiply twoyth-degree polynomials 
over the field A. Assume that M(j) satisfies the following mild condition: There are a, 
0 e (0, 1) such that

M([a;l) < 0Af(Tyl) (8.1)
for all sufficiently large;. Observe that W i\z) is a polynomial of degree at most 2' - 1, 
and that the computing W>n(z) by (5.3) takes O(nM(2 i - 1)) operations. Hence the 
total cost of computing N terms in the expansion is O(n(M(N) + M(\N/2~\) + M(\N/4]) 
+ •••)), which is O(nM(N}) by condition (8.1). (See [5, Lemma 1.1].) We summarize 
the result of this section in the following.

THEOREM 8.1. The first N terms of an expansion of any algebraic function can be 
computed in O(nM(N}} operations over the field A. D

9. Examples

We choose as our examples calculation of the Legendre polynomials through their 
generating function, solution of an equation with transcendental coefficients, and 
calculation of the expansion of a complete elliptic integral. Although the first two
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examples are not covered by the theory of this paper, they are covered by easy 
extensions of our results. Examples 9.1 and 9.3 are illustrations of the many applications 
of algebraic function expansions.

We use the Newton-like iteration (5.3) in all three examples with the notation:

p. = P(w{i\z), z), P; s p'(w">(z), z) = (a p/d w™)(w«\ z«), 6, = pjp\.
Within each iteration step we exhibit enough terms so that Wn(z) can be computed to 
2' - 1 terms.

Example 9.1. Legendre polynomials. The generating function for Legendre poly 
nomials,

X

(1 - 2/z 4- z2)- 1 '2 =
f

satisfies
P(W, z, f) = (1 - 2fz + 

Take W(0) = 1. Then

Po = -2fz, Pi = 2, 80 = -rz, W(1) = 1 + fz;
P! = (1 - 3;2)z2 + (2f - 2/3)z3 , P; = 2(1 - /z), «! = V 2(l - 3r2 )z2 -H V 2 (3r - 

5r3 )z3 , Wr(2) = 1 + tz 4- V2 (3f2 - l)z 2 -h V2 (5r3 - 3t)z\
Hence the first four Legendre polynomials are

L0(0 = 1, L,(r) = t, L2(t) = } /2(3t2 - 1), and L3(t) = V2(5r3 - 3r).

B. Neta, a student at Carnegie-Mellon University, computed the first 32 Legendre 
polynomials by this iteration using MACSYMA.

This example is for illustration; it may not be the best way to compute Legendre 
polynomials. D

Example 9.2.

P(W, z) = W2 + (z + l)W + sin z. 

Note that sin z = z - z3 /3! + z5 /5! - z7/7! + — . Take Ww = 0. Then

PO = z, Pi = 1, 80 = z, W(1) = -z;
Pj = -z3/6, A' = 1, 8j = -z3/6, W (2) = -z 4- z3/6. D

Example 9.3. A complete elliptic integral. Define the integral by
/-7

= 
-^o

- t2 sin

Let
P(W, z) = (1 - z)^2 - 1, z = f2 sin2 (9. 

Take W» = 1. Then

P0 = -z, P0 = 2, 80 = -z/2, W(1) = 1 -f z/2;
Pl = -3/4Z2 _ 1 /4Z3 ? pj = 2 - Z, «! = - 3/8Z2 - 5/16Z3 , 

W (2) = 1 -f Z/2 + 3/8Z2 + 5/16Z3 .

W(2) is an initial segment of the algebraic function 5(z) corresponding to P(W, z). Since

/w = f
Jo

/(') =
where
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77, - | s\r\2i 8dO.

For this simple example the result can he obtained directly by a binomial expansion, 
but this cannot of course be done in general. D

10. Extensions
Our aim in this paper has been to show that algebraic functions form an interesting and 
useful domain in which to do algorithmic and complexity analysis and to exhibit fast 
algorithms for computing an expansion of an algebraic function. In this initial paper 
we have restricted ourselves to the "pure" case of algebraic functions where P(W, z) is 
a polynomial in W with polynomial coefficients. We list some additional problems 
which we hope to discuss in the future. For a number of these our results (especially on 
regular problems) apply with minor modifications; others will require major new 
results.

1. Let W be a scalar variable but take z to be a vector variable. Results similar to 
those in Section 5 should hold. We have seen this case in Example 9.1.

2. Let the coefficients of P, Aj(z), be power series (rather than polynomials). 
Results similar to those in Section 5 should hold. See Example 9.2.

3. Let both W and z be vector variables. This is the fully multivariate case, which, 
except for regular problems, is in general very difficult.

4. The domain over which we have worked is not algebraically closed since problems 
with polynomial coefficients lead to solutions represented by fractional power series. If 
the coefficients are fractional power series, the domain is algebraically closed (Puiseux's 
Theorem; see, e.g. [12]), and this is therefore a natural setting. The Newton-like 
iteration is still valid on fractional power series for regular problems.

5. The field A need not be restricted to the complex number field. It is of particular 
interest to extend all the results to finite fields.

6. An important computational model is the "fully symbolic' 1 one where the 
coefficients of the expansion series are expressed as functions of the input coefficients.

7. Perform complexity analysis which includes the cost due to the "growth" of 
coefficients.
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