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PREFACE

This series of “Notes on Applied Science” is published by the National

Physical Laboratory with the object of providing for industrialists and

technicians information on various scientific and technical subjects which

is not readiljr available elsewhere. The experience of the Laboratory has

indicated a number of subjects on which short monographs would appear

to be of value, and a list of those already published is given in Sectional

List No. 3, obtainable on request from H.M. Stationery Office.

Further information, or advice on specific questions, can be obtained

by writing to the Director of the Laboratory.

The scientific work of the Laboratory is made known through the many
contributions which are made to learned societies, etc., and which appear

in their journals. A list of these papers is issued quarterly and maj’- be

obtained free of charge on application to the Laboratory.

National Physical Laboratory

Teddington, Middlesex

1961
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INTRODUCTION

The first edition of Modern Computing Methods was based on lectures

delivered by various members of the staff of Mathematics Division,

N.P.L., as part, of a vacation course on ‘Computers for Electrical Engineer-

ing Problems’, organized by the Electrical Engineering Department of

the Imperial College of Science and Technology, and attended by repre-

sentatives of industrial firms. The course was designed to teach the basic

principles of the use of analogue machines, high-speed digital computers,

and the techniques of numerical mathematics involved in the solution of

problems in electrical engineering.

Numerical methods are required in all branches of science, and the

techniques are generally independent of the source of the problem. For

example, the same type of differential equation may represent a problem

in physiology as well as a problem in electrical engineering. The oppor-

tunity was therefore taken to present, as one of the N.P.L. series ofAotes

on Applied Science, suitably edited versions of those lectures contributed

to the course by members of Mathematics Division.

The success of this first edition has encouraged the authors to under-

take a complete revision, in the course of which the booklet has been
very largely rewritten. The object has been to bring the material up to

date, particularly with regard to methods suitable for automatic compu-
tation, and the principal changes are as follows. The chapter on Relaxation
Methods has been replaced by one on Linear Equations and Matrices:
Iterative Methods, while the chapter in the original edition headed
Computation of Mathematical Functions has been expanded into two
chapters entitled Evaluation of Limits; Use of Recurrence Relations and
Evaluation of Integrals. Most of the other chapters have had new material
added, some being completely rewritten, and the order of the chapters
has been changed. In addition, the chapters on Linear Equations and
Matrices: Error Analysis and on Chebyshev Series are new.

The authors make no apology for the varying level of treatment of the
different topics; this is inevitable if the account is to be kept within a
comparatively small compass. Some of the new material is given in
greater detail than classical material already well catered for in available
text-books. It is hoped that the resulting booklet will prove useful both
as a working manual for those engaged in computational work and as a
basis for courses in numerical analysis in universities and technical colleges.
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The first edition was written by L Fox E T Goodwin J G L Michel

F W J Olver and J H W llLnson The present edition has been pre

pared bv C W Oenshaw E T Goodwin D TV Martin G F Miller

F TV J Olver and J H Wilkinson all members of the staff of Mathe
maties Division \ PL \aluable cnticisms and suggestions hare also

been made by L Fox now Director of the Oxford University Computing
Laboratory and many other members of Mat hematics Division particu

larly E L Albasmj J G Hayes and T \ ichers Mrs I Goode has
collated the material prepared the printer s copv and helped to see the
work through the press

E T Goodwin
Superintendent
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1

LINEAR EQUATIONS AND MATRICES:

DIRECT METHODS

DEFINITION'S AND PROPERTIES

1. A general set of n linear simultaneous algebraic equations in n un-

knowns xv Xo, ...,xn can be written in the form
->

all
a;l+ a12 ;c

2 + "-+ 0 ln a;n = b
l>

Ct 21*^1 "k ^22*^2 ~k • • * ~h a 2n ^2j
( 1

)

anl ,
'Cl+ an2;C2+ = bn-_

The coefficients a rs
form a square matrix of order n,

«ii &12 aln

A = «21 &22 • • • a2n

_<*nl a„2 ann

(2)

which is to be considered simply as an array of numbers, and the column
of constants 6

r
similarly foi'ms a column matrix or vector b. The unknowns xr

form a vector x. Equations (1) can then be written in the shortened form

Ax = b. (3)

The equality sign means that each element of the product vector Ax is

equal to the corresponding element of the vector b, and the left of (1)
gives the ride for prcmultiplication of a vector by a matrix.

2. The solution of (1) can be written in general terms as

x1 — oe11b1 + a12bs + ... + alnbn ,

X2 = <*21^1 h <Xn2b2 "T ... + a2n^n>

xn — aiil^l + an2&2 + -”+ aHn^n>J

or in matrix notation as

H)

x = A-1
b,

1

(5)



where A"1 has the same form as (2) with a replaced by a The matrix A" 1

is called the inverse or reciprocal of the matrix A
The elements of A-1 depend only on the elements of A It is clear

from (4) that a knowledge of the a„ would enable the solutions of (1) to

be obtained with relative ease for any set of constants br, but the deter

mination of the a„ is not trivial One method of obtaining them is

suggested by equations (4) if in these equations we write

6, = 1, fcj = = 0,

we obtain the elements of the first column of the inverse It follows that

the various columns of A-1 can be found in succession by solving equi

tions (1) with the right hand sides replaced by successive columns of

the matrix

I„

10 0

0 I 0

0 0 1

0

0

0
(6)

This js the unit matrix of order n or identity malnz, so called

the relation —

virtue of

(7)

for any vector x The suffix n is usually omitted when there 13 no possible

ambiguity
3 The mam properties of matrices required in practice are those of

addition, multiplication, and transposition

Matrices can be added only when of the same order, and if B is the
matrix (2) m which a is replaced by b, then

o,
:
i+bu al*+blt aJn + h1B

a*:
L
+ 6« at, + bf.

{8)

an 1 + &B1* a„, + 4„, tfun + bfin j

If a matrix A is multiplied by a number k, the resulting matrix has
elements lant that is, every clement is multiplied by k

Square matrices of the same order can be multiplied, to give

«*A»+«s*V+«»*»+ , an611 -m Si {>i4+atJ63,+ ,

(0)

If we use the notation r
f(A),er(A) to denote respectively the rth row and

rth column of matrix A, and rre, to denote the result of multiplying



corresponding elements of ?'
r and cs and adding the results {scalar 'product),

\re can write (9) in the simpler form

‘
r1(A)c1(B) rj(A)c2(B) ... r1(A)cB(B)

'

ATJ
r2(A)Ci(B) TziA) Cn(fi) ••• fr>(A)cn(B) . .

L ^(AJ^iJB) rn(A)c2(B) ... rn(A)cn(B) J

From (10) it is obvious that in general AB # BA, so that the order of multi-

plication is important. In (10) we refer to AB as B premultiplied by A, or

multiplied on the left by A, or as A postmultiplied by B, or multiplied on

the right by B.

The transposed matrix of A, called A' or AT,
is derived from A by

interchanging rows and columns. If a matrix is symmetric, so that

«„ = aw ,
then A' = A, and

A'A = AA\ (11)

Other important cases in which the order of nndtiplication is immaterial

are contained in the equations

AI = IA, (12)

AA-i = A-1A = I. (13)

The transpose of a product is given by

and its inverse by

(AB)' = B'A',

(AB)-1 = B-1A_1
;

(14)

(15)

note that in both operations the order of multiplication is reversed.

4. Associated with a matrix A is its determinant, denoted by detA or

I
A]. Whereas the matrix is an array of numbers and can be regarded in
many ways as an operator, the determinant is a pure number. For example.

do Gfg

61 bn b3 = «1
bo

“«2 h 63
+ a3

h h

C1 c2 C3

Co Cg C3 Cl C2

°l(^2 C3 ^3^”) Rn(6j Cg~ Cj) "j* flg(6^Cl) 5oCj)." ' ‘ “ “
'

(
16

)

The sign associated with ar is ( — )
r+1

, and the general rule for evaluation
is obvious. The determinant

bn b3
5

Co Cg

obtained by omitting the row and column containing av is called a minor
of order 2 of the original determinant.

It can be shown that the inverse A-1 of A is given by

1

1A |

-^-si A31 —
*^12 -^22 Ago A^o

3

(II)



where the minors A„ which are obtained bj omitting from the original

determinant the row and column containing a„, occur with alternate signs

and are transposed in comparison with the corresponding elements an of A.

5 Wien 1A |

= 0, it is clear from (17) that the matrix A has no inverse

Such a matrix is called singular, and the corresponding linear equations

have in general no solution If } A| = 0, th© rows of A arc not hnmrly

independent, at least one can be obtained by linear combination of the

others For example, in the equations

T
i +**+ ar* “ htl 1

Xj—

X

j+2xj = 6t , > (18)

3ij+ Tj+ 4x* — hj,
J

it can be verified that the determinant

1 1 I

1 -1 2 =» 0,

3 1 4

and the third of (18) is obtained by adding twice the first to tho second.

In this case the equations ore incompatible unless 261 +61 = b3, and if tlus

holds we have effectively only two equations in three unknowns and

there is an infinity of solutions.

If the equations are homogeneous, that is, the constants 6, are all zero,

the equations have no solution other than x3 =* xt = = xn — 0 unless the

determinant vanishes, m which case we can omit one equation and solve

the rest to find the ratios of the xr ,
provided that the n - 1 equations are

not themselves linearly dependent For example, m the homogeneous set

ofequations corresponding to (18), we can omit the last equation and solve

xjx1+xtlzi + 1=0,1

xjxt — xjx3 + 2 = 0, j

finding x
t
/x3 — —15, xjx3 = 06, which also satisfy the remaining equa-

tion 3xJx3 +xtlx3 + 4 = 0

6 In solving a set of equations, it is a great advantage to be able to

u«e the «ame number of decimal places throughout any on© stage of the
computation It is a further advantage if the same number can be used
at every stage These advantages can be gamed very simply by multiply-
ing the various rows and columns of coefficients by powers of ten so as
to make the largest coefficient in each row and column, including the
column of constants, lie between 0 1 and 1 0 Multiplying tb© rows does
not- affect t.b/1 enJ.'ttwiw, <w?/I vwiU-'.yW.v/j tfea. I'iViW.wi vnf/j «.

trivial change m the unknowns
The same procedure should be carried out on a matnx of which tho

inverse is required In thi3 case, however, the multiplier of each row
must subsequently be multipbed into tb© corresponding column of the
inverse obtained, and the multiplier of each column into the corn?
spending row of the inverse, m order to recover the inverse of the
original matnx

4



With a symmetric matrix, when a method of solution or inversion is

to be used which takes advantage of the symmetry, the multiplier of

each row of the matrix must be the same as that of the corresponding

column of the matrix, in order to maintain the symmetry. In general,

it will then be possible to ensure only that the largest coefficients or

elements lie in the wider range O' 1 to 10.

A matrix, modified in this way, is well-conditioned when its inverse, also,

has its largest elements of order unity. In some cases, however, the ele-

ments of the inverse may have several figures before the decimal point,

and it is then more difficult to get an accurate inverse or solution to the

associated equations. Such a matrix or set of equations is said to be

ill-conditioned, and tins situation, which may be regarded as an approach

towards singularity, manifests itself by a loss of significant figures during

the computation.

SOLUTION OF EQUATIONS BY ELIMINATION
OB PIVOTAL CONDENSATION

7. The simple elimination method taught at school is in practice carried

out systematically and with the inclusion of frequent checks. If in equa-

tions (1) we select the largest of the coefficients of xv say akv and add
suitable multiples of the corresponding equation to all the other equa-

tions, so that in each resulting equation the coefficient of xx is zero, we
shall be left with n— 1 equations in the n--l unknowns x2 ,

x3 ,
...,xn . The

multipliers are clearly — axxlakx ,
— a2Jakl , ..., and never exceed unity.

The equation containing akl ,
the pivot, is called the pivotal equation, and

is of course kept unchanged and temporarily left aside. We now select

as pivot the largest coefficient of x2 in the new set of to— 1 equations and
repeat the process. Continuing in this way we have finally a single

equation in the unknown xn . The various pivotal equations are then
assembled, and have the form

^11*^1 ^12*^2 *

C23 ^3 + •••

+ Ci„ Xn — dv

+ c2nxn = ^2 >

cn—l,n—l^n—l"b cn—l.n-^n ^ti—1>

^71
, ?t 'I’ll ^ V.

‘

(20)

The process used to produce this set of equations is known as Gaussian
elimination or pivotal condensation.
We can now calculate xn directly from the last of (20), and inserting its

calculated value in the previous equation we can obtain xn ,, and so
&
on.

This process is called back-substihition.
Several sets of equations, for the same A and varying b, can be solved

almost simultaneously, as far as the elimination goes, by keeping several
cohimns b; m particular, these may be the columns of the unit matrix
it A is required. Each back-substitution process is of course performed
separately. In practice, the full equations at each stage are not recorded
but only the matrix of coefficients and column of constants.

5



The basic check on the elimination consists in carrying an extra column,

whose rth element is formed of the sum of all the elements of A and b in

the rth row These elements are treated in the elimination exactly like the

columns of constants, and after each elimination the 'sum' element should

be equal, apart from Bmall end figure discrepancies through accumulation

of rounding errors to the sum of the other elements in its row
The final results are checked by direct insertion m the original equations

or, usually sufficiently, into an equation given by the sum of the original

equations, this corresponds to the sum check in the elimination

It is important to choose as pivot the largest element in a column, the

multipliers are all then less than urnty, and we can work with a constant

number of decimals, see also Chapter 5

If the matrix of coefficients is symmetric, symmetry is maintained if

pivots are cho«en on the diagonal The work of elimination is then almost

halved but the multipliers may exceed unity

EXAMPLE
8 The solution of the equations

0 409ftr
t+0 1234*t + 0 3678xs + 0 2943x4 = 0 4043.

0 224to1+ 0 3S72ra -f 0 4015x, + 0 1129x
4 = 0 1550,

0 3645^+0 1920xa + 0 3728x, + 0 0643x4 = 0 4240,

0 1 784*, + 0 4002*, + 0 2786x, + 0 3927x
4
=» - 0 2557,

is earned out as follows The pivots are in italics, the sum column is

labelled 2, and the multipliers are called m An extrv decimal place is

retamed in the computations in order to compensate for the accumulation
of rounding errors compare Chapter 5 § 14

Elimination

m x
l x. xs x4 b 2

0 4096 0 1234 0-3678 0-2943 0-4043 1 5994
-0 54834 0 2246 0 3872 0 4015 0 1129 0 1550 1 2812
-0 889S9 0 3645 0 1920 0 3728 0 0643 0 4240 1 4176
-0 43555 0 1784 0 4002 0 2786 0 3927 -0 2557 0 0942

-0 92230 0 31953 0 19982 -0 04848 -0 06669 0 40418(0)
-023723 008219 004550 -0 19769 0 06422 -000568(9)

0 34645 011840 0 26452 -0 43179 0 29758*'

0 09062 - 0 29245 0 33155 0 12972

V

-0 19212 0 01741 -0 26034 0 16665 -0 07628(7)

-020425 0 10295 - 0 10120;

Back -substitution

x
i xi x» x4

-0 00593 -1 55547 2 03123 - 0 50429

Cfcecl, twiny sum of original equations

1 1771xj+ 1 1028xj+ 1 4207x,+0 8642x4 = 0 7276 (0 72764)

6



The loss of a significant figure in forming the third pivot indicates

that the equations are somewhat ill-conditioned. The number of significant

figures in this pivot is the maximum number that can be expected to be

correct in the various elements of the solution, even though the last

check may be better than this. The accurate solution of the equations to

six decimal places is in fact

Sj = - 0-006124, x2 = - 1-55559S, a:3
= 2-031468, x4 = - 0-504263.

If the coefficients and constant terms are uncertain to the extent of

half a unit in the last figure the solutions have even greater tolerances.

A full analysis of the rounding errors in this example is given in Chapter 5
,

§§ 6-11 *

If the pivots are selected at each stage from the largest coefficient in the

complete relevant matrix, rather than from the columns in order, the

tendency is for the pivots to lose significant figures gradually, and the last

pivot is usually the smallest. Tins choice does not, however, lead to

significantly greater accuracy in the final results.

Several variations of this straightforward elimination process are des-

cribed in detail in [16].*

COMPACT ELIMINATION METHODS

9 . For desk machines, the disadvantage of the simple elimination

method is the large amount of recording; there is also an associated loss of

accuracy, since at each recording a number is rounded and a small error

introduced. This is avoided in the ‘compact’ elimination methods, of
which we describe the method of Doolittle applied to the set of four
equations

(i) fli1 ic1+ a 12X2 + £i13a<"3 + a14 .'c4 = blt

(n) "i^’£2^'2'i^23*^3 4 ^24*^4 boy

(21)
(iii) + + + = b3 ,

(iv) + &40.T2 + °43-T3 + (l44X4 — b4 .

The procedure is as follows:

(a) Add a multiple of (i) to (ii) to eliminate x1 from (ii), thus forming
a new equation (ii).

(b) Add multiples of (i) and the new (ii) to (iii) to eliminate x, and ar2from (iii), thus forming a new equation (iii).

(c) Add multiples of (i), the new (ii) and the new (iii) to (iv) to eliminate
aq, and x3 from (iv), thus forming a new (iv).

The resulting equations (i), the new (ii), the new (iii) and the new (iv) have
he form of (20 ), and can be solved as before by back-substitution As
before, a sum column is used as a check.

Numbers in square brackets refer to the Bibliography on pages 145 to 165.



The computing sheet haa tho following appearance-

mlt
m 13

in,, «„ c ti a13 ft ft

ma in,! “ts a*3 “ti ft ft

Wl>4 «J3 “31 ft ft

ft ft

The first multipliermit is obtamed from the equation

«u«ii+«*i = °>

and the coefficients of the new (u) are obtamed from equations typified by

oM = w, sa, 4
+o s ,.

The second column of multipliers is obtamed from the equations

tBjjUji+aj, = 0,

W, 13aJJ-*" Wl *3atS + aM **

and the coefficients of the new (ui) from equations typified by

ft *= »«isft-
L «is3ft+ ft

Finally, the last column of multiphcrs is obtamed from the equations

!»„«„+ 77Im a., + 0„ =0,

»»i4«is+»BM fli*,+

m

3,«M +a,3 = 0,

and tho coefficients of the new (iv) from equations typified by

®M *= ,nll all+ wl*l“M+ wl3l aM+ 0l4

The final equations from which back substitution is performed are

not the same as the pi\ otal equations of the previous method, unless the

chosen pivot at each stage m the latter 13 the first element m its column
In this event the two sets of equations are the same, except for rounding

errors

Tho saving in recording time and space is clear The arrangement is

also satisfactory in that quantities to be multiplied together lie m the same
row of the computing sheet The method of Crout, described in [16], has
a still more compact lay out but is less proof against error, since numbers
winch arc to be multiplied together do not have this favourable combina-
tion of position

In the case of symmetric matrices labour may be Baved by computing
the i»’s from the a’s by means of the relation m

tj
= — «

METHODS DEFEND IN G ON MATRIX PROPERTIES
10 The matrix of coefficients c„ m (20) is denoted by U and called upper

triangular
,
since all its elements below the main diagonal are zero A matrix

with zero elements above this diagonal is labelled L and called lou.tr

triangular. Triangular matrices are obviously more convenient than com-
plete matrices for solving linear equations tho determinant of such a
matrix, moreover, is just the product of the diagonal terms

8



With the Gaussian elimination method, the original equations (1), for

Avliich the matrix is complete, were transformed into equations (20), for

which the matrix is upper triangular. The elimination is effectively equiva-

lent to multiplying the original matrix A by a lower triangle L, producing

an upper triangle U ;
thus

LA = U. (22)

The equations from which the solutions are obtained by back-substitution

ate then
LAx = Ux = Lb. (23)

The matrix L here has ones in its diagonal
;
hence from (22) and the fact

that the determinant of a matrix product is the product of the separate

determinants [13], we see that the determinant of A is the same as that

of U, and equal to the product of the diagonal terms of U. (If the pivots do

not all he on the diagonal, the sign of the determinant may be changed.)

Another class of method, the best for desk machines, uses the fact that

a square matrix can be expressed as the product of two triangles, in

^ fM'm
A - LO, (24)

provided that it has non-zero leading principal minors, that is, the deter-

minant composed of elements common to the first r rows and first

r columns of A is non-zero for every r = 1, 2, ...,« — 1. The diagonal terms
of either L or U can here be chosen arbitrarily, the rest then being deter-

mined uniquely. If the matrix is symmetric, the diagonal of U is best

taken to be the same as that of L; then U is the transpose of L, so that
only one triangle has to be determined from the equation

A = LL', (25)

though some elements will be imaginary if A is not positive definite

(Chapter 3, § 3).

11. When multiplying two matrices on desk machines, it is best to
record the transpose of the right-hand matrix vertically beneath the
left-hand matrix, so that the rule (10) for multiplication can be written as

AB =
r^A^B') r^A^B')
r2(A)rx(B') r2(A)r,(B')

and elements of rows are multiplied together, corresponding elements
lying in the same column. In particular, if B is A' we have

AA' =
K(A)}

2 ri(A)r2(A) ...

r1(A)r2(A) {r2(A)P (26)

^termination of L and U in general is sufficiently illustrated by
consideration of a matrix of order three. The notation and arrangement

9



are as follows, the tnangle L being here taken with unit diagonal elements

and the transpose of the upper tnangle U being the lower triangle U'

A b

«11 °1J °13 bi

atl a tt
ai3 bt

flji an a33 b3

2

2i

2S

L

U s x

w,j «! rt

«u U ;J
Sj

«1S “« *33 *3 *3

y Vi y* y*

s st s3

The method and order of calculation are as follows The multiplication

rule gives

o« = r,(L) r
t
(U') = a lt = r,(L)r,{U

)
= w„ a

ls = = u,,

giving the first column of U ,

atl =» r2(L) rj(U') = ln u,„ giving the second row of L,

“» a 't(W#) 5>Ia“ii+% aH - 'ilI'W'3') = i„uu +tiM,
giving

the second column of U
,

o3 i
= r3(L)r,(U') = Zai u„, a„ = ^(LJr.fU') =» giving the

third row of L, and finally

O33 = r3(L) r3(U )
= laiUu + ^jOu+Kja, giving the last element in U'.

In the symmetnc case U is L and need not be recorded, the diagonal
terms of L are denoted by ln ,

lti and la and we have the equations

On “I11 <*it - hihu ai3 « hihv

®IS = ^1 "b Ojj *= ijilji +ijjlj2 ,

o» = ^ + l?»+/|
s,

for the successive determination of the ltr
12 When this triangular resolution or decomposition is finished, we can

solve the linear equations (3) b} two processes of hack substitution
Introducing the auxiliary rector y, defined by

Ux = y, (27)

we can write Ax = LUx = Ly = b, (28)

solving for y from the last of (28), and for x from (27)

10



The elements of y are obtained in the same way as those of U . If they

are written in transposed form as a row vector with components yv y2 , y^>

shown in position in the arrangement of § 11, then the equation Ly = b

gives

y-i = bv hiVi + Vz — &2 > hiVi+ hzl/z + 1/3-

from which the yr
are obtained in succession.

As a check on the work we form the sum column £, composed of

the row sums ofA and b, and a sum row S, composed of the column sums

of U' and y'. As each of the latter becomes available we use the successive

relations

r1(L)S = E1I r2(L)S = £2 ,
r3(L)S = £3 ,

or Si = £1} Z21>S1+ #S
,

2 = £2, + 3S3+S3 = £3 .

We finally calculate x from (27) from equations typified by

cr(U') x = yT. (29)

The elements ofx are recorded as shown, and calculated from the successive

equations obtained by taking r = 3, 2, 1 in (29), and given by u3^c3 = y3 ,

w 23*3+«22*2 = 2/21 «i3 a;3 + “i2 a:2 + %n a:i = Vv If s column formed of

the row sums of U', a suitable check on this back-substitution is given by

Si*! + s2x2 + s3x3 = yx+y2+ 2/a-

It should be noticed that the array of multipliers in the Doolittle

method (§ 9) is the same as L', with the signs changed and the unit

diagonal terms omitted, and that the array of coefficients and in

Doolittle’s resulting equations is the same as U. Thus the computations
are precisely the same in the two methods

;
only the arrangement differs.

If the matrix is symmetric, equations (27) and (28) are replaced by

L'x = y,

Ax = LL'x = Ly = b,

so that U' = L and the only change in arrangement is the complete
omission of U', the sums S and s being attached to L.

13. The solution by this method of the previous example is given on
the next page. The fact that the answers agree with those of § 8 to
barely four decimals is due to the ill-conditioning of the equations noted
previously.

14. For matrix inversion there are various possibilities following the
triangular resolution. One method is to invert both L and U, and then
find A-1 from

A 1 = U 1L_1 (unsymmetric case),

A-1 = (L')
-1 L-1 (symmetric case).

In the second of (31), L-1 = {(L')
-1

}', so that only one triangle has to
be inverted.

The arrangement for inversion of triangles and the final multiplication
are described in [16]; still more compact methods are described in [17],
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These compact methods, in which at most one triangle 19 m\ erted, are

usually preferred.

A b 2
0 4096 0 1234 0-3678 0 2943 0-4043 1 5994

0

V

0 2246 0 3S72 0 4015 0 1129 0 1550 1 28120(19)

0 3645 0 1920 0-3728 0 0643 0-4240 1 41760(59)

017S4 0 4002 0 2786 0 3927 - 0 2a57 0 99420v

L

0 54834 l

0 8S9i>9 0 2o721 1

0 4355a 1 08426 16 65290 1

U s X

0 40960 0 409G0 -0-00609

0 12340 0 31953 0 44293 - 1 55560

0-36780 019982 —0 00a90 0 50172 2 03144

0 29430 0 04S4S —0 18al3 3 40003 3 46072 -0 50427

y 0 40430 0 06669 0 0S137 -1 714i3 (
- 1 29555^)

S l 59940 0 40418 -0 10960 1 68550



2

LINEAR EQUATIONS AND MATRICES:

DIRECT METHODS ON AUTOMATIC COMPUTERS

INTRODUCTION

1. Wlien linear equations are solved on a desk machine, the minimiza-

tion of the number of quantities which have to be written down and the

convenience of the layout are of paramount importance. The time taken

to write a number is comparable with that taken to perform an arith-

metical operation, and a high percentage of the total number of mistakes

occurs in the writing stage. Although properly applied checks give com-

plete protection against undetected errors, the solution of a system of

equations of quite moderate order is tedious unless mistakes are infrequent.

In contrast, an automatic computer in good working order may be

relied upon to solve a very large system of equations without making

any mistakes. The problems of layout are still present, though in a rather

different form. They are now mainly concerned with the use of an

auxiliary store having an access time different from that of the high-

speed store. For instance, it is often of decisive importance whether
matrices are held in the auxiliary store in rows or in columns.

2. In other respects, an automatic computer is less flexible than a desk
machine. For example, the method of triangular decomposition described

in §§ 10-14 of the previous chapter is superior to the elimination method
only if the scalar products are accumulated without rounding each
contribution. It is therefore essentially a fixed-point method, but an
experienced hand computer will add extra figures when the need arises.

In practice this need is likely to arise quite frequently, because no pro-
vision has been made for the selection of pivots comparable with that
described in Gaussian elimination. In consequence, a diagonal element of
the upper triangular matrix U may sometimes be quite small, with the
result that some of the elements of L and U are considerably larger
than those of the matrix of the original equations.

Unsystematic modifications of this type are unsatisfactory in auto-
matic work. In general, in order to achieve the maximum accuracy in
the solution we try to design programmes in such a way that all numbers
fully occupy the storage registers (perhaps it should be added that most
automatic computers do not work any faster with numbers which are
less than a full word length). Accordingly, in this chapter we shall analyse
the computing procedures in more detail.
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3 The precise details of the arithmetical facilities of the computer

are of great importance On many machines both fixed point and floating

point facilities are available If floating point operations are used through

out then there is apparently no need to give detailed attention to the

size ofnumbers arising daring the course of the computation It is shown

in Chapter 5 however that this procedure does not remove the necessity

for interchanges in Gaussian, elimination and related methods Moreover

for a given word length the precision of floating point arithmetic is lower

than that attainable with fixed point arithmetic because some digits have

to be allocated to the exponent In most matrix problems it is possible

to carry out the necessary scaling m fixed point operations using fewer

digits than would be required for the floating point exponents

4 Fixed point operation is particularly advantageous on computers

which are equipped with the following two facilities

(l) The ability to accumulate scalar products ?a
i
b

(
exactly This

facility is possessed by all desk machines the exact scalar product is

usually produced whether required or not On automatic computers the

decisive feature is whether or not double precision m the product may be

obtained without special programming The main advantage of this

facility is that onlj one rounding error is made this occurring when the

accumulated sum is rounded to single precision

(n) The ability to divide a double precision number by a single precision

number When this facility is provided in conjunction with the facility (i)

only one rounding error is introduced in the computation of quantities

of the form (Zatbt)/c Both facilities are available on the computers in

use at N P L and their provision elsewhere is becoming increasingly

common

GACTSSIAk ELIMINATION

5 Elimination with selection of pivots may be carried out quite satis

factonly with fixed point arithmetic Storage presents no special problems
because the successive reduced equations maj be overwritten in the

locations occupied by the original matrix It is usually desirable to design
the programme so that it will deal simultaneously with an)' number
r say of right hand sides For a sjstem of order n a total of n{n + r)

storage locations is then required
6 Since pivotal selection is used all the multipliers are bounded by

unity and may therefore be computed without scale factors If the
original equations are scaled so that all coefficients and constant terms
are numerically less than J say, it is then extreme!) uncommon for an
element of any of the reduced equations to exceed unity

In a general purpose programme it is desirable to include some pro
csd-'K*. wbw.h weAcOTAViwJAy -w/Ai \W -iaTigvr of ovcrspift 'SVie

following method is based on the observation that if all the elements
of a given reduced set of equations are less than £ then no element of
the next reduced set can exceed unity As each reduced equation is

formed its elements are tested for size If any exceeds ^ then that cqua
tion is divided throughout b) 2 In this wav the maximum precision is

preserved and the possible need to repeat the computations as a result
of overspill is avoided

14



7 In the programmes written for the N.P.L. computers, the elements

of the rth pivotal row are interchanged with those of the rth row at each

stage of the reduction so that the final triangular, set of equations is

stored in the natural order. For this reason elimination with selection ol

pivots is often referred to as elimination with interchanges. On other

machines it is sometimes more convenient to leave each row in its original

position and to store the locations of the pivotal rows. The location of the

pivotal equation for the (r-f l)th reduction may be determined during

the course of the rth reduction ;
we merely have to keep a record of the

size and location of the numerically largest coefficient of £r+1 occurring in

the reduced equations up to and including the current stage.

THE BACK -SUBSTITUTION

8. In the reduction to triangular form, the need for scaling is almost

non-existent. In the back-substitution, however, scaling is the major pre-

occupation in fixed-point work, since the scaling of the original equations

places no restriction whatever on the size of the solutions. A convenient

scheme is the following.

The rth pivotal equation has the form

(1)

In applying this equation, xT+1,xr+i,
...,xn have already been calculated;

x
r
is now found from

— a'/l+i xr+l ~ ®r!r+2
~ • • • ~ <4, h Xn + / o

\

Xr= — rT > W
a
T,T

and if the facilities described in § 4 are available, the computation of xr

involves only one rounding error. The process may be carried out in this

simple form until a calculated xr exceeds unity. When this happens,

a scale factor 2~s
,
where s ^ 1, is introduced to bring xr into the permissible

range. All the previously calculated x
{
are then multiplied by this factor.

Scale factors may be introduced in this way several times during the
back-substitution. At the stage when the accumulated scale factor is 2~s

,

the equation determining xr may be written in the form

a:,. = ~r r+l ' r+1‘T-r-l.l - b l

r
r)

(
- 2~s

)

7 (r) (
3 )

where the .r
{
denote the currently stored values of these variables. If the

quantity ( - 2_s
)
is stored as though it were an extra variable, then the

numerator of (3) may be treated as a scalar product of order n+l— r.

At the end of the back-substitution the stored value of 2~s gives the
final scale factor. The computed solution x will therefore have its maximum
component in the range (2

s-1
,

2

s
)
and with the full number of significant

figures, unless no scaling has taken place, in which event all components
of x are numerically less than unity.

9. In many computations we require the solution of a system of equa-
tions with a number of different right-hand sides, not all of which are
known at the time when the elimination is performed. For example,
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with gome methods of computing latent vectors (see Chapter 3) we wish

to solve successively the systems

b(r> = (r=l,2, ), (4)

where the JL
(M ate scalars, usually normalizing factors Here each right

hand side is determined by the previous solution

To cope with such problems, sufficient information must be stored so

that we can apply to the right hand side the transformations which are

normally applied during the reduction process and the bach substitution

In order to be able to do this we must store the multipliers, the pivotal

rows and the details of the interchanges

10 We now describe a convenient way of doing this which requires a

total storage space of n(n + l) words The configuration at a typical stage

m the reduction is illustrated below for a matrix of order 5, at the end

of the second stage The quantities ma and mn are the multipliers used

in the first and second stages, and the a
{{
denote the current values of

the coefficients of the equations The multipliers have the opposite signs

to those introduced in § 8 of Chapter 1

Pi «u °u au aM a ls

Vx a.* Ojs ««

Pi mn mn an
0 m41 mtx «« a <4 ««
0 msi mSi «S5 flSl °*s

Each element is given the suffixes corresponding to the storage position

it occupies no account of interchanges is taken >n this nomenclature

The quantities pt
and p* are the numbers of the pivotal rows m the first

and second stages, and are therefore integers less than 6 The first and
second pivotal rows are now of course m the first and second positions

During the second reduction the number, p3 of the next pivotal row will

have been determined in advance as described in §
7

The elements a
(l

in row p3
are now interchanged with those m row 3,

but the mtf
in these rows must not bo interchanged Multiples rn

)3
and

r»M of the new row 3 are subtracted from the current rows 4 and 5 the

new values of a
{j

are overwritten on the elements from winch they are

derived, and ml3 and tnu are overwritten on a43 and aH ,
respectivelj

During this reduction the next pivotal row number, pt
is determined,

and is written at the beginning of row 4 Me are then ready to start

the next stage of the reduction
1 1 The use of the stored information to deal with a right hand side b

may be adequately described by the reduction to the third stage for the
system of order 5 The right hand side will occupy 5 storage locations,

and we call the current contents of these locations, 6*. 6* , 6* The third
stage is as follows

(i) Interchange b3 and (If p3
~ 3 no interchange is necessary, but

it is simplest to allow the programme to effect the ‘interchange’

)

(u) Subtract multiples ma, mSJ of 6, from b4 and b6 and overwrite the
new values m the 4th and 5th locations Note that tho elements tj,b*
obtained m the earlier stages are unaltered since p3 is not less than 3
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In general, there are n- 1 stages of this type and when they are com-

pleted, the equations are ready for the hack-substitution.

The complete processing of a right-hand side, starting from the stage

at which the elimination has been completed, requires approximately

n- multiplications and n divisions. K the process of division is slower than

that of multiplication and there are several right-hand sides, it will be

economical to form the reciprocals of the pivotal elements. If we were to

compute the inverse of A, then we could obtain the solution corresponding

to a given right-hand side, b, by forming the product A-1
b. This requires

v 2 multiplications. It must be remembered, however, that the number

of multiplications needed to calculate the inverse of A exceeds that

needed to produce the matrix of multipliers and pivotal rows by about §n
z

.

Therefore unless we have a very large number of right-hand sides, it is

uneconomical to find the inverse.

Programmes of the type which decompose the matrix of coefficients

into two triangular matrices, which may then be used to solve with any
right-hand side, have proved to be among the most useful of those in

the N.P.L. library.

VARIANTS OP GAUSSIAN ELIMINATION

12. Many methods of solving linear equations have been devised winch
are essentially variants of Gaussian elimination. Often they exploit some
special feature of a particular machine. Most commonly they are designed

to compensate for the loss of speed when the system of equations is too
large to be held in the high-speed store. For the most part they have no
specific names but they are more important in automatic work than
many of the named variants used on desk machines. Furthermore, they
are often mathematically distinct from Gaussian elimination and tri-

angular decomposition, whereas many of the named variants used on
desk machines differ only in the layout of the work.

13. There is one variant which is of particular advantage when the
system of equations is fed in as data and not produced by the computer
itself, since it enables the solution to be effected using approximately
hi- locations instead of n2

. There are n major steps in this process.
At a typical step, the rtli, there are r— 1 equations in the high-speed
store, the first involving xvxz, ...,xn, the second xz,xs ,

...,xn ,
and the

(r— l)th, •Tr_1 , xr, At tins stage only r— 1 equations have been read
into the store. For r = 4, n — 6 and one right-hand side, the stored system
has the following configuration:

all aiZ a i3 °14 ®15 a!6

#22 &23 ^24 ^25 ^26 ^2

a33 a34 a35 a36 ^3

We refer to the reduced equations represented by the three rows as the
1st, 2nd and 3rd equations respectively. Interchanges may take place in
the next step but we shall still refer to the equation currently occupying
the 1st position as the 1st equation, and similarly for the others. The
4th stop proceeds as follows.

(i) The 4th equation is read into the store.
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(u) The coefficients of y, in the 1st and 4th equations are compared

and if necessary the equations are interchanged so that the 1st contains

the larger coefficient A multiple of the 1st equation is then subtracted from

the 4th to give a zero coefficient of ar, This multiple cannot exceed unity

(m) The new 4th equation is now compared with the 2nd If necessary

an interchange is performed so that the 2nd equation has the larger

coefficient of xt
A multiple of the *>nd equation is now subtracted from

the 4th to give a zero coefficient of xt

(iv) The 4th equation is now compared with the 3rd and if necessaiy

an interchange is performed so that the 3rd equation has the larger

coefficient of x3
A multiple of the 3rd equation is then subtracted from

the 4th to give a zero coefficient of x3 This completes the 4th stage

It is evident that the total storage required for a system with one

nght hand side is only slightly greater than that needed to hold the final

triangular set of equations and is thus about half that needed to hold

the full set of equations

14 We cannot take advantage of this variant if we wish to solve with

nght hand sides which are not known when the elimination is performed

In this case we will need to store the multipliers as well as the pivotal

rows and will therefor® require n 1 storage locations However the method
of performing the interchanges still has adiantages on some computers
particularly for sets of equations which are large enough to require the

use of the auxiliary store Furthermore the details of the interchanges

can now be stored in a particularly simple manner We record whether
or not an interchange took place just before each of the multipliers was
produced by sacrificing the least significant digit of each multiplier and
storing in its place a one or a zero

TRlAI.GtTI.AR DECOMPOSITION WITH INTERCHANGES
15 Interchanges may be introduced in the method of tnangular de

composition m such a way that all the elements of L remain less than
unity Indeed this is just as important for triangular decomposition as

for Gaussian elimination A satisfactor} technique has not been described
in the literature however no doubt because of the inconvenience of
carrying out the interchanges on a desk machine We now describe a
procedure which has been programmed for the ACE computer at N P L

16 The matrix of the coefficients is processed column by column
There are n major steps the rth of which is concerned with the modi
fication of the rth column only In addition to the storage space occupied
by the matrix n pairs of storage locations are required to hold n exact
scalar products accumulated during the column processing The con
figuration at the beginning of the rth step is typified by that shown below
for r — 3 n = 5

tilt

ln
hi

hi

hi

Pi
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In the general case, the elements of the first r— 1 columns of L and U
(apart from the diagonal elements of L which are unity and are not

stored) have been produced and overwritten on the corresponding ele-

ments of A. The quantity appearing at the foot of the ith column is

an integer specifying the interchanges and is defined below. The pairs of

registers needed to store the double-length scalar products are denoted

by s
i
s
i-

To avoid misunderstanding we stress that the triangular

matrices L and U, stored in the machine at the conclusion of the process

are not such that LU is equal to A with its rows rearranged. Tor this to

be true the elements in each column of L would have to be permuted

and a different permutation used for each column. Each column of the

stored matrix L is in the most convenient form for the processing of

the columns of A and of a right-hand side.

The rth step takes place in the following four stages:

(i) Multiplication of each element of the rth column by unity to give n

double-precision numbers, and the storage of the results in the double

locations ss.

(ii) Successive calculation of u
lt r, «2> r, . . . , ftr_lf r .

(iii) Calculation of pr and u
r r.

(iv) Calculation of ?r+1> r ,
lr+2i T, . ,

l„
t r

.

Stage (i) is self-explanatory.

Stage (ii) has r — 1 substages in the rth of which v
ti r

is computed. The
rth step is as follows. Extract s

pt
and round to single precision to give u

l r .

Overwrite this on a
l T and then overwrite s

t
on spr Subtract multiples

Z/+i
of u(r from st+1,sl+2 , ...,sn and overwrite the modified

scalar products so obtained on their old values.

Stage (iii). Select the largest, sPr, of the scalar products sr , sr+1 ,

.

This sPr
defines pr which is entered at the foot of the rth column. Round

spr to give wr>r,
and overwrite on ar r. Overwrite sr on sPr .

Stage (iv) has n— r substages in the rth of which lr+l> r is computed by
dividing sr+l r by urr to give Zr+J r ,

and then overwriting the result on

It is evident that only one rounding error is made when calculating
each element of L and U, provided that the computer has both of the
facilities described in § 4.

Since we have stored complete information on the triangular decom-
position, we may subsequently deal with any number of right-hand sides.
The details of the processing of the right-hand side closely follow those
of the decomposition, and we omit them.

17. It may be noted that the exact accumulation of scalar products
is not essential to the columnwise processing; it merely improves the
accuracy. The method may be used without this facility and is then
exactly equivalent to performing Gaussian elimination with interchanges.

ILL-CONDITIONED EQUATIONS
is. For a system of ill-conditioned equations the calculated solution

may not be sufficiently close to the exact solution owing to the limitation
ot the working accuracy by the given word-length. If we have stored
complete information about the matrix transformation, an improved
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solution mar be obtained without recour«e to double length arithmetic as

follows Let xn> be the computed solution of the equations

Ax = b (5)

If we defire rm by the equation

r'» = b-Ax'», (6)

then we have

A[x-x' ,,]*r‘» (7)

The correction to be applied to xH> to give the solution of (5) is the

solution of equation (1) Now unless the matrix A is very ill-conditioned,

the components of r,n will bo smaller than those of b On a computer

which accumulates double length scalar products we may calculate r'"

exactly, if its largest element lies between 2~k< ’ and we may
multiply all its components by 2** and round the resulting vector to

sirgle precision We denote this vector by £*"’ r11 ’ and solve the equations

(8)

using the stored information, to obtain S ,s> The vector

is then an improved solntion We may contmue this process to obtain

sequences x(,
\ r'°, and 8<0 defined bv

r°> = b - As'0 (9)

the maximum element of 2*"’?'° lies between JJand 1 and

A8'-» = 2*1' ?"> (10)

x«4+, > = x»‘> + 2-*<

' S«'» (II)

19 Three comments may be made on the above process

(i) The exact accumulation of scalar products is important in the compu
tation of r{,) If each multiplication is rounded individually or if the

residuals are computed using single precision floating point arithmetic

the error made m computing the residual mar be comparable with its

true value If floating point arithmetic is used we must work to double
precision to obtain residuals of comparable accuracy to those obtained

on a fixed point computer equipped with the facility of accumulation
(u) If the equations are too dl-conditioned then although the com

ponents of r{,) may be much smaller thin tho e of b, the r" 1 will not
decrease with each iteration They will either remain much the same size,

or even increase In either case we will not gain accuracy by repeating
the process and it is almost certain that x,l

> has no correct figures In this

event it is necessary to repeat the whole process using double JeDgth
arithmetic throughout

(ui) Ifonly one or two binary figures are gamed per stage, then mam
iterations are needed before the answers are correct to single precision
Ifthe solution is required for a number of different right hand sides, then
it will be more economical to perform the computation m double precision
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arithmetic. If single-precision computation with a i-digit word is capable

of giving a solution at all, double-precision computation will give at least

t correct figures in the first step. If single-precision work provides no
solution, then double-precision work will be required anyway. If there is

reason to expect the equations to be very ill-conditioned, the case for

undertaking double-precision work at the outset is very strong.

The main advantage of using the iterative process to improve the

solutions is that it provides an extremely reliable indication of the accuracy
of the solution. If x(1) agrees with x (2) to r figures and x (2) with x (3> to

2r figures, we may be fairly certain that x (3) has 3r correct figures.

It should be emphasized that the extra figures obtained in this way
will be meaningful only if the original equations are exact or if the errors

in them are correlated in some special way. This is discussed further in
Chapter 5.
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3

LATENT ROOTS AND VECTORS OF MATRICES

INTBOD0CTION

1 The problem of finding the latent roots of a matrix is of funda

mental importance and frequent occurrence in numerical analysis, it may
be defined as follows

fJiven a square matrix A we require those values of A for which the

set of linear equations

Ax = Ax (1)

has a non trmal solution x The values of A are called the latent roots or

eigenvalues of A and the corresponding vectors x are called the latent

vectors or eigenvectors of A Each vector x is determined apart from an

arbitrary constant multiplier It is usual to choose the multiplier so that

the sum of the squares of the components of x is unity, or sometimes so

that its largest element is unity Such a vector is called a normalized

latent vector

Quite commonly the latent root problem an«es m the form

Cx = ABx, (2)

but this maj be converted to the simpler form by writing it as

B-»Cx = Ax

2 The latent root problem often arises from the solution ofsimultaneous
linear differential equations with constant coefficients If, for example,
we have a set of n second order equations we may write these in vector

form as

Ax+Bx + Cx = 0, (3)

where A, B and C are «xn matrices and the dot represents differentia

tion Introducing n new variables p defined by

i = p, (4)

we may wnte the equations in the form

Ap+Bp+Cx = 0. (5)

From the theory of differential equations it is known that the solution
of the set of equations (4) and (5) in 2n unknown®, x and p, consists of
linear combinations of solutions of the type

x — ae**, p => be**.
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where — ^
in virtue of (4), and (5) gives the relation

AAb +Bb+Ca = 0. (7)

Equations (6) and (7) may be combined into the single matrix equation

(S)
I o' a O I a

.0 A. _b. -C -B. b

where is a vector with 2n components. Renaming this vector z, we

may write (S) in the form
APz = Qz, (9)

equivalent to that of equation (2).

3. An important physical problem which gives rise to a latent root

problem is the determination ofthe periods of free vibration of a dynamical

system about a position of equilibrium, for which the differential equations

are of the form

Ax = — Bx. (10)

Here the matrices A and B are both positive definite ,
that is, the quadratic

form
x'Ax = Sau «t

Xj (11)

is positive for all real values of the variables x
i ;

similarly for B. A necessary

and sufficient condition for a symmetric matrix to be positive definite is

that all of its latent roots are positive [14]. Eor positive definite A and B
it can be shown that the solutions of equation (10) are of the form
x = y c,Ai , where the A are real and satisfy the equation

AA2
y = By.

FUNDAMENTAL RELATIONS

4. The latent roots of a matrix A are those values of A for which

|

A — AI
}

= 0. (12)

From (12) we could obtain an explicit polynomial equation of degree n
for A which is called the characteristic equation of A. We may write this as

°0 +aiA+o2A
2+ ... +a„_1 A"

_1 + ( — l)
n An = 0. (13)

Equation (13) has n roots A
l5 A,, ...,An , and these are the latent roots of

the matrix A. They may be real or complex; for simplicity we assume
that they are distinct. The corresponding latent vectors will be called
xi> x2 - • • • • n

?1
: they are linearly independent if the latent roots are distinct

[T^]*

The matrix A
, which is the transposed matrix of A, will have as its

latent roots those values of A for which

!
A' — AI

|

= 0.
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Since (A— AI) = A'— AI and the determinant of a matrix is equal to the

determinant of its transpose, A' has the same latent roots as A, though

in general its latent rectors will be different The latent vectors of A'

corresponding to A,, , A, will be denoted by x*, , x*

We then hare As^. = (15)

and A’x* = \x*. (16)

The transpose of (15) gives the equation

<A' = A^ (17)

premultiphcation of (16) by xj gives

x;a'x? = a,x;xj, (18)

and postmultiplication of (17) by x* gives

xrA’xf =» A^xJ (19)

From (18) and (19) we find

(20)

so that x/rj =» 0 if K^K (21)

The two 6ets of vectors x, and xf are said to be biorthogcmal If A is syro

metric then A = A , the x, and x* comcidc, and we have

x;xJ=.0 (.*;) (22)

The latent roots of a symmetric matrix are real For if A is a complex
latent root X is also a latent root and is different from A If x, x denote

the corresponding latent vectors, equation (22) shows that the scalar

product of x and x is zero This is clearly impossible since this scalar

product is the sum of the squares of the real and imaginary parts of the

elements of x

ITEBATIVE PROCESSES

5 One of the simplest methods of finding simultaneously a latent root

and vector of a matnr A is the following Suppose the latent roots

Aj.Aj, , A„, assumed real and distinct, to be arranged in order of descend
ing modulus An arbitrary vector y0 is taken and two sequences of vectors

yt
and z

{
are formed from the relations

- Ay, (23)

Tft+i
- — (numencallj largest element of zm) (24)

vmArba -j, 'k/l-eh vathi Tueai’uer \A Vmdn ’nas Yra ’vargwft,

element equal to unity If we assume that the x, are normalized so that
their numerically largest elements are unit} then y, tends to the vector x,
corresponding to the root Aj For y# maj be expressed uv terms of the
latent vectors xlP x, ,x„ by the relation

y*=S*i*i (25)
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If Gk is a constant corresponding to division by the largest element of

the vector, we have

Cky* = |
= Af{aix1+ |

x,j . (26)

Now (A,-/A1)
fc-^0 as £-»oo (*V 1), and hence

Cty^A^x-!, (
27

)

which means that y;
. tends to xl5

since Ok is chosen so that the. largest

component is -unity. The speed at which the convergence takes place

depends on the ratio if this is almost equal in modulus to unity

convergence may be slow.

6. The rate of convergence may often be improved by a very simple

device. If x
f
is a latent vector of A then we have

(A- pi) x
4 = (Af-pjx,-, (28)

for any value of p. The latent vectors of A -pi are therefore the same as

those of A and the latent roots differ from those of A by the quantity p.

Suppose the latent roots of A to be 6, 5, 4, 3, 2, 1. If we iterate with

A we tend to Xj at a speed determined by the rate at which (5/6)
fc ->0.

If we iterate with A - 31 we tend to xx at a speed determined by the rate

at which (2/3)
A'->0, which is more than twice as great. If we iterate with

(A— 41), whose roots are 2, 1, 0, -I, -2, -3, we tend to x6 at a speed

determined by the rate at which (2/3)
fc ->0.

7. The process may be used to give convergence either to the largest

or to the smallest root : it cannot be used to determine the intermediate

roots. These can be found by a process of successive root-removal des-

cribed later in §§ 10-13. Sometimes, however, the root nearest to a given
value is required. To find this we may make use of a device similar to

that of § 6.

From equation (2S), with x,- replaced by x, X
i
by A, we obtain the

equation
(A-pI)_1x = (A-p)_1x. (29)

This shows that the latent, vectors of (A -pi)-1 are the same as those
of A, but the latent root corresponding to A

{
is (A,—p)~\ The dominant

root of (A-pI)-1 will correspond to the root A
f
of A nearest to p because

this will give the greatest value of (A -p)_1. It is unnecessary to compute
the inverse of A— pi explicitly'; indeed, it would be uneconomical to do
so in general. We perform Gaussian elimination, or triangular decomposi-
tion with interchanges, on the matrix A—pi. Iteration may then be
carried out by using the relations

(A-pI)z
t
.+1 = yf, (30)

y.+i = z
;4-i (numerically largest element of zi+1), (31

)

as described in Chapter 2, §§ 9-1 1 . Ifp is close to a latent root, the matrixA—pi will be ill-conditioned. Nevertheless, the accuracv of the latent
vectors determined in this way is unaffected; see [32].
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S A second iterative method for finding the latent root of largest

modulus and its corresponding vector is that of matrix powering. If the

sequence A, A 5
,A1

,A8
, is formed, then all the columns of A** become

parallel to the dominant latent vector This can be seen if we express A
m terms of its columns m the form

A = [a,, a„ ,
a,]

Then A* — AA = [Aaj.Aa,, , Aa„],

A* = A’A* = [A5a„ A*as ,
,AsaJ,

A** = [A^aj.A**-^*, .A^aJ
(32)

The proofs of § 5 show that each of the columns in parentheses is ulti-

mately parallel to the dominant latent vector The speed of convergence

is given by the rate at which (XJ\1
)*

k-+0 Thi3 gives more rapid con-

vergence than the previous iterative method, but each iteration requires

n 5 multiplications instead of n* It is readily seen that for a given ratio

ofA, and A„ matrix powenng is the more efficient method only for matrices

of low order The method has the further disadvantage that if A contains

a number of zero elements, then these zeros do not persist in the matrix

powers

METHODS FOE FINDING A SUBDOMINANT ROOT

9 The iterative methods described are suitable for finding the greatest

or smallest root of a matrix To find a subdominant root by these methods
the dominant root must first be removed from the matrix
For a symmetric matrix the simplest method is the following Suppose

we have the root Ax and corresponding vector x„ normalized so that

xj x, =» 1 of a matrix A Then the matrix Alf defined by

A, = A- AjXjX,, (33)

has the same latent roots and vectors as A except that the root corre
spending to A

2
has become zero For we have

AjX, = Axj-AjXjXjX, = AjXj-AjXj = 0

Also, if Aj and x2 are another root and vector of A, then

A1*2 = Axj-Ajxjx'jx* = AjXj,

since xjij = 0 by the orthogonality relation for latent vectora of »
symmetric matrix

10 For unsymmetnc matrices the following is probably the simplest
method of removing a known root A2 and vector xz The matrix A is

written m partitioned form as

(34)



where pi is the first row of A. The known vector xx
is normalized so that

its first component is unity. The matrix Ax is then computed from the

relation Aj = A—

x

xpx . (35)

If Xn and x2 are latent roots and vectors of A, x2
being normalized so that

its first component is unity, then xx — x2 is a latent vector of Av with

latent root A2 . For

A^-x,) = Aix^XoJ-XiPiiXi-Xa)

= Axxx A2x 2
— Xj(Aj A2 )

^A^Xj-Xa). (36)

Hence the latent roots of A2 are the same as those of A, except that the

root Ax has become zero, since Axxx = Axx
— x-^Xi = A2 Xj — Xj A: = 0. The

latent vectors are simply related to those of A. It is easily seen that the

first row of Ax
is zero throughout and that, since each of the latent vectors

x
x
— x

;
of Ax has a zero component in its first position, we need work only

with the matrix of order n— 1 in the bottom right-hand corner of Ax .

Hence the order of the relevant matrix is reduced by unity with each root

we find.

For the computation of the required vector, we first find a latent vector

y2 of the (?i — 1) x (?i— 1) matrix obtained from Ax ,
and extend it to order

n by giving it a zero first component. Then the latent vector x2 of A,
corresponding to y2 ,

is given by

x2 = x1 + A-y2 , (37)

where we use the extended y2 . The factor k is necessary because of a
normalizing factor in y2 . Multiplying (37) by px , we have

A2 = A1 + ^p(y2 , (38)

and from this we obtain k. Equation (37) then provides the required
vector x2.

In tliis description it was assumed that xx had been normalized so that
its first element is unity. From the point of view of numerical conveni-
ence it is better to normalize so that the largest element is unity. The
analysis is unaltered, but since we then use the row of A in the position
corresponding to this largest element instead of the first row, the notation
is not so convenient.

11. A simple example will illustrate the method of root-removal. A root
and vector of the matrix

2 3 2

10 3 4

3 6 1

are respectively A = — 2 and x =
1

2

-5

Formalizing x so that its largest component is 1
, we obtain

- 0-2

-0-4

1-0

x =



The last row of A is therefore usedw the root removal process and we find

[

26 42 22'

112 54 44

0 0 0

It is clear that the latent vectors of Aj all have zero for their last com
poncnt and therefore we need only work with vectors of order 2 and the

matrix

of order 2 A latent vector of this matrix is the vector with the

corresponding latent root equal to — 3

We can then remove this vector of order 2 from the matrix of order 2

To do this we wnte the vector in the form
j

and use the last row

in the root removal process This gives the matrix

fli 8 251

l 0 0 J

It is clear that the two latent vectors of this matrix hai e zero in the last

position and that we need only work with the single element 11 The last

latent root is therefore 11

We have thus obtained 3 latent vectors

' — 0 2"l f— 0 75l [l 0]

-0 4 [ 100J
I 0

of which only the first is a latent vector of the original matrix A
12 Tor a matrix of order n we would have found n vectors of the form

one vector of order n (a true latent vector of the matrix A)

one vector u, of order n— 1

one vector U3 of order n - 2

one vector u, of order 1

To obtan from the vector of order n—r a true latent vector of the
original matrix A we would proceed in the following r steps
A vector of order n—r -v- 1 would be computed using the vector

u, of order n-r+ 1 from relations of types (37) and (38)
From this vector one of order n — r + 2 would be computed using

these relations again with the latent vector u_j of order n—r+2 and
so on until we obtained a true latent vector of order n



13. In the above example the vector
® leads to a true latent

vector Xo from the relation

' —0-2
" ' — 0-75~

Xo = -0-4 + k 1-00

1-0 0-00

Multiplying this by [3, 6, 1], the last row of A, we find, from (38), the

result -3 = - 2 + 3-75/;, so that k = -A, and then

Xo =
0

2
“ 3

The third vector may be found in two similar steps, given below

:

(i) y3 =
-0-75

1-00
+ k

1-00

0-00

Multiplication by [11-2, 5-4] gives

11 = —3 + 11-2k, so that k = 1-25, and y3 =

(h)

0-

50

1

-

00

' -0-2' '0-5~

x3 = -0-4 4* k 1-0

1-0 0-0

Multiplication by [3, 6, 1] gives

1 1 = — 2 + 7-5k, so that k = ft, and

14. We have described these iterative methods in some detail because
they are simple and, besides being of value in their own right, they are

frequently used in conjunction with other methods. For symmetric
matrices there are a number of more powerful methods which would,
in most circumstances, be used instead. We now describe some of these.

THE METHOD OF JACOBI

15. This method depends upon the fact that if TT' = I, that is, if T is

orthogonal, then the roots of TAT' are the same as those of A. For

T(A— AI)T' = TAT'— AI, (39)

so that the zeros of
|
A— AI| are the same as those of | TAT' -All.

2
3

4
;

3

1



A simple orthogonal matrix T is given by Tu = 1(» #p,?), Tt} = 0 for all

other %,j except that

Tpp — cos 8, Tn = cos 6, = srn 9, = -sinfl (40)

If w e form TAT , onlj tlie p and q rows and the p and q columns ofA are

altered, and the matrix remains symmetric The {p, q) element of TAT
is given by aM cos29—^[app -atq

)Bm29 from which it follows that if

tan20 = ^apvj{app '-am ), (41)

then the (p,g) element of TAT is zero

It is easy to prove that both the sum of the diagonal elements (the

trace) and the sum of the squares of the off diagonal elements other than

the (p,q)
and (q p) elements are unchanged If we choose a succession

of T matrices and successively premultiply by T and postmultiply by T

,

each T matrix being chosen to make zero the largest off diagonal elements

m the resulting matrix at that stage then we ultimately obtain a diagonal

matrix We have

T,T^, TjATjT, T, = D, (42)

where D is a diagonal matrix Since the product of orthogonal matrices

is itself orthogonal, the elements of D are the latent roots of A If the

latent vectors of A are wanted they are given bj the columns of the

product matrix ^ T_
_ s

This follows from (42) since

S'AS = D, (44)

giving AS * (S )->D = SD (45)

GIVENS’ METHOD

10 Each step of the reduction in Jacobi s method, consisting of pre
multiplication by the matrix T and postmultiphcation by its transpose
T' where the non zero elements of T are given by (40) is called a rotation

The pair of values of p q is called the plane of the rotation and 6 the

angle of the rotation

The method of Givens is similar to that of Jacobi inasmuch as each
stop of it consists of a rotation In this case however we choose 6 so

that the element in the (p — 1 q) position (p > 1 ) becomes zero This gives

tan 6 = „/ap_, „ (46)

The rotations are applied systematically to the matrix to make zero,
in order the foliowmg elements

Pes-Avo-a* c£ raa Avnastia Pfanes o) rotation-

1st row (1,3) (1,4) (1,5) ,(l,n) (2 3), (2, 4), (2, 5) ,(2,»)

2nd row (2,4) (2,5), ,(2,n) (3,4) (3 5), ,(3,n)

(n— 2)th row (n— 2,n)

30
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In contrast to the Jacobi rotations, each zero element, once produced,

persists throughout the subsequent transformations. The symmetry of

the matrix is preserved, so that after carrying out the above }(n- 1) (n— 2)

rotations, all elements are zero, other than those in the principal diagonal

and the immediately adjacent diagonals, one on either side. The matrix

is then said to be of triple-diagonal form, or sometimes tri-diagonal or

co-diagonal form.

As the work progresses the amount of computation in a rotation

becomes steadily less. At the stage when zeros are introduced in the rth

row, we are effectively working with a matrix of order n—

r

+ 1 since the

first r_ i rows and columns remain unaltered. Because of this and the

non-iterative nature of the computation, the reduction to triple-diagonal

form takes about one-twentieth of the time for the reduction to diagonal

form by Jacobi’s method [216].

17. The latent roots of the symmetric triple-diagonal form are the same

as those of the original matrix, and we now consider their evaluation.

Since other methods lead to triple-diagonal matrices and also many latent

root problems give rise to matrices which are already in this form, the

solution of this problem is important quite apart from its present context.

DETERMINATION OP THE LATENT ROOTS AND VECTORS
OP A SYMMETRIC TRIPLE-DIAGONAL MATRIX

IS. The method we describe, sometimes called the method of bisections,

is often much slower than alternative methods in existence, but it is

comparatively simple, and has such remarkable numerical stability that
it is frequently used. It depends on the following result [30, 31].

Let pr(
A) be the value of the rth leading principal minor of C— AI, where

C is a symmetric triple-diagonal matrix, and p0(A) = 1. Then the number,
s(A), of agreements in sign between consecutive members of the sequence

Is equal to the number of latent roots of C
which are greater than A. (Note that s(A) is an integer between 0 and n
inclusive.)

Let the non-zero elements of C be denoted by

^r,r = °T> dr-1, r = ^r,r-1 = A" (47)

We assume that no
/ft vanishes since otherwise the problem could be

broken up into the solution of a number of smaller triple-diagonal
matrices. With this assumption, it may be shown that C has no multiple
latent roots. The values of the leading principal minors, pr{A), may be
computed from the recurrence relations,

2>oW = L 2h(A) = cq — A,

MA) = (“r— A)pr_x
(A) — ft:

p

r_2 (A) (

r

= 2, 3,

If any p is zero, its sign should be regarded as the opposite of that of
t5ie assumption

ft.AO we cannot have two consecutive vwinch are zero.
-rr

19. The result may be applied to determine any latent root, the £th
Ak say. as follows. Suppose it is known that

s{a)^k, s(6) < ft
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thena<Xt <b Clearly, if s{4(o +b)} < L, then Ak lies between a and {{a+ 6)

while if «{|{a+6)}»i, Ak lies between J(a+6) and 6 In either case, an

evaluation of a{A) at the midpoint of the interval (a, 6) enables us to

locate it m an interval of width |(6-a) B} making t successive apphca

tions of this principle we locate Ak in an interval of width 2-*(6—a), this

requires the evaluation of s{A) at t points

In order to begin the process we need values for a and b Now if A is

anj latent root of C and x is the corresponding latent vector, we have

firxr_ 1 + aTxr +fi^xr+1 = Xxr, (49)

where and £„+1 are to be taken as zero Hence

A ~ /,'^+a'+/u,ir
(50)

Taking xr
to be the element of x of greatest modulus. we deduce that

|A|<IAI+KI+lfr*ii (51)

Adequate values of a and b are therefore given bj

o,6- +max{|£r | + |or |
+ ]fr+ 1 |}

(52)

20 The method has the following advantages

(i) We may find a latent root of any prescribed enumeration without

determining the others As a corollary, we are not obliged to find all the

roots to the same precision , the number of steps l may be pre assigned

for each root

(n) The time taken to find each root is directly proportional to n
(not to a higher power of n), and to the number of steps i e the required

precision It is independent of the separation of the roots

(iu) If all the elements a, and
fir are numerically less than J, then

l steps of floating point computation with t binary digits in the mantissa

yields the value of any latent root with an error not exceeding 4 x S'4

The proof of (ui) requires a detailed error analysis and we refer the

reader to [32]
21 The latent vectors of the original matrix A are equal to those of

the tnple-diagonal matrix C, premultiplied by the product S of the

rotation matrices, compare § 15 To complete the solution of the problem
we therefore have to find the latent vectors of C Smco the latent roots

of C are readily computable to high accuracy, we might expect that this

would be a comparatively trivial problem Formally, the components of

the latent vector corresponding to Ak are given by

J>o(A*), ~Pi(Xkm p,(A*)/{ft&). . ,(A*)/{ftft fin)

(53)

Now although the p,(A) may be used to determine the latent roots in a

very stable manner, the determination of the latent vector from (53) is

unstable Even if the » quantities are determined exactly for a value of A*

which is itself almost exactly a latent Toot, the resulting vector may he
very nearly orthogonal to the true latent vector
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Accurate vectors may be found by the following process. Corresponding

to each computed A*., the matrix C-A
;
.I is reduced to an upper triangular

matrix Tk ,
by Gaussian elimination with interchanges. The equations

T
;
.x = e, where e is the vector with all its components equal to unity,

are then solved, and the solution x is the latent vector corresponding

to A,
:

. For further details the reader is referred to [22],

householder’s method

22. For several years Givens’ method was probably the best of the

known methods for symmetric matrices of general form. Recently,

Householder [28] has suggested an alternative method of reduction to

triple-diagonal form using elementary orthogonal transformations which
are not plane rotations. This method is a substantial improvement on
Givens’ method. It requires only half as many arithmetical operations,

has an even smaller maximum rounding error and, if the vectors are

wanted, requires less storage. For details of the practical application of

the method, see [25].

UNSYMMETRIC MATRICES

23. There are no methods for unsymmetric matrices which are as
satisfactory as those we have just described for symmetric matrices.
However, a number of direct methods exist which, in general, have
advantages over the iterative methods of §§ 5-13 when all the roots are
required. Because of the inherent instability of the unsymmetric problem,
considerable attention to arithmetical detail is necessary in designing
effective programmes. The presentation of these methods is beyond the
scope of this manual, but references to the more satisfactory ones are
given in the Bibliography on pages 147-148.
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4

LINEAR EQUATIONS AND MATRICES:
ITERATIVE METHODS

DEFIMTIOJtS

1 In Chapters 1 and 2, some direct methods have been described, these

yield solutions after an amount of computation that can be specified ui

advance In contrast, the tteratne or indirect methods of this chapter

start from an approximation to the true solution and, if successful, derive

a convergent sequence of closer approximations from a computational

cycle repeated as often as may be necessary for the purpose This means

that in a direct method the number of arithmetic operations is inde

pendent of the accuracy required in the solution (provided the word length

of our computer is adequate to offset any ill conditioning), while in an

iterative process the amount of arithmetic depends upon the accuracy

required

When a genuine choice is available, usually the direct methods should

be preferred, but for matrices containing a large proportion of zero

elements, such as anse in the solution of partial differential equations,

iterative methods which preserve these elements, and therefore involve a
smaller amount of machine store, can be advantageous

For desk machine work the ‘relaxation methods developed by
Southwell, Fox and others are very suitable and descriptions are avail

able in the previous edition of this manual and elsewhere [103] However,
these methods are not convenient for use on automatic computers, and
we shall not discuss them here

2 We proceed to describe two basic iterative methods which can be
applied to the solution of a general set of linear equations

Ax - b (1)

It is convenient first to reduce (1) to the form

(I —L— U)x = d (2)

where L and U are respectively lower and upper triangular matrices with
nuii diagonals, and 1 is the unit matrix This is achieved "by rearranging
the equations so that no diagonal coefficient vanishes, and then dividing
each equation by the corresponding diagonal coefficient Furthermore it

is advantageous, whenever possible, similarly to manoeuvre the largest

coefficients into the diagonal positions, since the iterations are likely then
to converge more rapidly

Si



3

.

To illustrate the methods presented we shall consider the equations

x1 — ^x2 — ;}.r3 = 1,

— 4*1+ *2
— 4*4 = i>

—
?*1 + *3 4*4 = 4>

4*2 4*3 + *4 = 4
' _

(It is shown in Chapter 12 that equations of this form arise in the solution

of Laplace’s equation.)

These equations have the form (2) with

U =

L

i 0

0 1

0 i

0

L = U'. (4)

Their exact solution is x
x — 0-875 = x2 ,

x3 = 0-625 = xi .

4.

We shall denote the ?ith approximation to the solution vector x by
x(n) and the error vector x —

x

(n) by e <n)
. Obviously e (ri) cannot be

evaluated before the solution is available and so, to indicate the progress

of the computations, we examine the elements of the displacement

vector y
(n)

,
defined by

y(«) _ x(n+1) —

x

(n)
. (5)

It follows from repeated application of (5) that

x(n+l) _ x (0 ! +Syk>
-

i—0
(6 )

Hence, for a process to converge, it is necessary that y (n) ->0 in such a
way that the series

(
6) converges as >co.

SIMPLE OR JACOBI ITERATION

5.

In this process, applied to equations (3), we calculate x(n+1) from x (n)

according to the formulae

*i
n+1) = ia4"

,

+ia4»» +|,

•rl
n+1) = 4*l

n) + i*i
n) + b

*i
n+1) = l*i

n) + !-^n) + h
lo*(w) j. 1t^)r(n+1 ) __

:t
4

— +i

(
7 )

This is called a method of simultaneous displacements since no element
of x<" +1 > is used in this iteration until every element has been calculated,
and then x(n+1) replaces x(n) entirely for the next cycle.
For the general case

(
2

) we use

x<*+n = (L+ U)x (,l) + d.

From (5) and (8 ), the change to be made to x (,l) is

yO.) 7 d — (I — L— U)x(n)
.
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Ifwe take the initial values xtw to be zero in (7), we obtain the following

sequence of approximations and displacements for equations (3)

jin y
(1> X(S> y(*i xis> yis) x l,) y1,) x,w

0 3 0 1876 0 687o 0 09375 0 78125 0 04687 0 S2S12 0 02344 0 85156

0 5 0 1875 0 6876 0 09375 0 78125 0 04687 0 82812 0 02344 0 85156

0 25 0 1875 0 4375 0 09376 0 53125 0 046S7 0 57812 0 02344 0 60156

0 25 0 1875 0 4375 0 09375 0 63125 0 04687 0 57812 0 02344 0 60156

We observe that y'*’ is halved by each iteration after the first, so that

five decimal accuracy will be achieved after seventeen cycles

GAUSS SEIDEL OR LIEBMANN ITERATION

6 For the equations (3), the elements of x,n+11 are determined m
succession from the equations

+ Jza"
1 + £ 1

+W’ +
» „„

*;»+» - +£*>»>+ J
[

'

x<4
-«>= + +1 ]

Corresponding elements of xin+11 now replace those of x 1" 1 in the ealeu

lation as soon as they have been computed and so this is called a method

of successive displacements A complete iteration cycle comprises one such

displacement for each equation
The matrix expression of this process for the general case (2) is

*<«+»- Lx<»+» +Ux lB, + d (II)

From (5) and (11) it follows that the change made to x,n|
is

Y("'-d+Lx<B+1»-(I-U)x'"> (12)

For equations (3) if we take the initial values x(0) to be zero, the

following sequence of approximations and displacements is obtained

from (10)

xu> ylll y(t> jilt y(3) y(4>

0 5 0 25 0 75 0 09375 0 84375 0 02344 0 80719 0 00586 0 87305

0 625 0 1875 0 8125 0 04688 0 85938 0 01172 0 87110 0 00292 0 87402

0 375 0 1875 0 5625 0 04688 0 60938 0 01 172 0 621 10 0 00292 0 62402

0 5 0 09375 0 59375 0 02344 0 61719 0 00586 0 62305 0 00146 0 62451

It is clear that y”" is multiplied by J in each iteration after the second,
so that five-decimal accuracy will be achieved after nme cycles

CONXBRQEUCE OF THE ITERATIONS

7 A process converges if the corresponding sequence e,’,( tends to
zero, where e*"' denotes x-x<*> For the Jacobi iteration, (2) and (8) give

e<"» = (L+U)e‘*-i> _ = (L + U)'l e ,0) (13)
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(
14)

For tlie Gauss-Seidel process, (2) and (11) lead to

e <*> = (I— L)
_1 Ue(n-1) = ...= [(I— L)

_1 U]n e <0)
.

Now it may be shown, [7, § 2.06], [216], that any real symmetric

matrix of order m has m linearly independent latent vectors v0 whether

or not the corresponding latent roots X
i
are distinct. The matrix L+U

of (3), for example, has vectors

1 r 1r-H

l r
1 -i 1 -i

1
}

i
3 -1 3 -i

1 l
1 * -1

i 1

corresponding respectively to the latent roots 0, 0,
—

Accordingly, for such an iteration matrix we can express the initial

error vector e (0) in the form
m

e<°> = S aiV*. (15)

Hence, for the Jacobi iteration,

771

e (l) = (L + U) e (0! = 2 a
(
A

t
.v

t
.,

i=l

and
m

e ( Tii _ 2 cc
{
A]1 v

f . (16)
i=i

For the iterations to converge from an arbitrary vector x (0) it is clearly

necessary that all the latent roots of the iteration matrix have modulus
less than unity. The smaller the magnitude of the largest root, the faster

the process converges.

8. In general, the iteration matrix will not be symmetric, and an
unsymmetric matrix B of order m with repeated latent roots may have
fewer than m independent latent vectors. For some repeated latent root A
of B there will then exist one or more principal vectors w of grade p (p> 1)
satisfying the equation

(B-AI)p_1w = v, (17)

where v is a latent vector corresponding to A. In such a case the latent
vectors and principal vectors together comprise m linearly independent
vectors.

As illustration, we have for equations (3),

(I — L)-1U

'0
i i-

0"

0 it 4

0 is ur h

.0 & A i.
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This matrix is clearly unsyrometnc, and it can be shown to possess three

latent vectors vlt v*, and v3 and a principal vector w of grade 2

'

4
' 0‘ r O'

l 0 6“
,

v3 = , and w s=

2
* -1 0 4

1 0 0 ~I

and the associated latent roots are 0,0,0, respectively It is readily

verified that (I-L)~lUw = v
3 , and that v3> vt ,

v3 and \v are hnearly

independent
We now give the counterpart to (1G) for an iteration matrix which has

m— l latent vectors vt, vs ,
vm_„ and a principal vector of grade 2,

vm ,
corresponding to the repeated latent root Am_1 In this case, it follows

from (IS) and (17) that

e<» * ”2
«,K v,

+

<xjv„ , + \n-iym )

=* "s *tK V
t + (a„-

1

\»-l +O Vm 1 + V„. (10)
i«l

and

e,n) « + (20)

As before, it is necessary for convergence that all the latent roots have

modulus less than unity The association of the factor n with vm_„ as

compared with (16), does not affect the convergence appreciably For the

Gauss-Seidel iteration (18), the associated root is zero and the term m
vM_j vanishes

9 With arbitrary L and U it is difficult to guarantee m advance that

the convergence condition will be satisfied and theoretical results are

available only for special classes of matrices For example, if I-L-U
13 symmetric then a necessary and sufficient condition for the Gauss-
Seidel iteration to converge is that I — L— U should be positive definite

(Chapter 3, § 3) Again if none of the elements of L +U is negative, then
the Jacobi and Gauss-Seidel iterations either both converge or both
diverge

Another class of matrices which arises frequently in the study of partial

differential equations consists of matrices possessing what is known as

Properly A [112], that is, the equations can be rearranged to provide
L+ U with the form

where O represents a null square submatnx For this and certain other
rearrangements of such equations the Gauss-Seidel iteration has latent

roots equal to the squares of the latent roots of the Jacobi iteration

(though the correspondence is not one to one), so that when the former
converges it does so twice as fast as the latter
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These theorems are all illustrated by the equations (3), for which

I_L-U is symmetric. This matrix has latent roots If, 1,1, Also it

possesses Property A since the equations can be rewritten in the form

*1 ix2 =

xi
~~

~i
X2
~

4*^3 = i >

-\xl-f®4+ X2 = h
—

ia:l
—

4-T4 + X3 = i-

The largest latent root of (I-L)-XU is the square of that of L + U, and

we have seen that the former iteration converges more rapidly.

SUCCESSIVE OVERRELAXATION

10. Much recent research has been directed to developing processes

which converge more rapidly than those given in §§ 5, 6. Here we describe

only the simplest of these iterations (but one of the most powerful),

known variously as ‘extrapolated Gauss-SeideT, ‘extrapolated Liebmann’,

and ‘successive overrelaxation’.

Successive overrelaxation is defined by the use of

^(714-1) = _|_ wtd+Lx^MI-tOxW] (23)

in place of (11). By means of (2), it can be shown that

e(n) = (I — coL)
-1 [wU— (a> — 1) I] e(n_1> = E(w)et"-1

), say. (24)

The essence of the method is to use an optimum value cvb of a> which mini-

mizes the modulus of the largest latent root of the iteration matrix E(w).

For suitable rearrangements of matrices possessing Property A, it can
be shown [112] that

=
1 +^( 1 - 02)’ (25)

where 6 is the largest latent root of L + U. Further, the largest latent
root of E(o>6) has modulus cob — 1, and is associated with a principal vector
of grade 2.

In the example (3), 0 = 1- and a>b = 1-071S. The early iterations and
displacements starting from x (0) = 0 are given below, and it can be verified
that five-decimal accuracy is obtained with six cycles.

Y<°> x (1
> y

( 1) x<2) Y (2) x<3) Y (3> x<4)

0-5 0-53590 0-23636 0-7S977 0-07248 0-86745 0-00625 0-87415
0-63398 0-67950 0-15802 0-848S7 0-02199 0-87244 0-00216 0-87476
0-38398 0-41155 0-17596 0-60014 0-02072 0-62235 0-00225 0-62476
0-52276 0-56029 0-05196 0-61598 0-00772 0-62425 0-00063 0-62493

For many large matrices 6 is close to unity, and the superiority of
successive overrelaxation is demonstrable as follows. Let 02 equal 1 - e

2

where e is small. Then
5

Wrl =
fe h l" 2e

'
(
26

)

When e = 0-1, w6
- 1 = 0-82, while 02 = 0-99, and 6 = 0-995.
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CO'N CLUPING REMARKS

II One feature of these iterative methods is that the matrix of the

original equations is used in unmodified form dunng the computation

This is particularly advantageous when the matrix contains many zero

elements distributed systematically, as in finite-difference equations

Further, the non zero elements in these matrices are often simple binary

fractions, and this benefits both the programmer of an automatic com

puter with binary shift facilities, and the desk machine worker More-

over, it is convenient for the latter to work with a small number of figures

m the early iterations, and to add figures as the approximation converges

In addition to the classes of matrix cited in § 9, convergence is likely

to be rapid when the off-diagonal elements are small compared with the

diagonal elements Even when such favourable conditions do not obtain,

however, it is sometimes possible to accelerate convergence by applying

Aitken’a technique (see Chapter 13, § 3) to the corresponding elements of

three successive vectors in a sequence of iterates However, little benefit

will result until the error consists mainly of the vector corresponding to

the largest latent root of the iteration matrix and it is not easy to

provide an algorithm to determine when this stage has been reached
Successive overrelaxation is very suitable for use on automatic com

puters In particular, storage need be allocated for only one iteration

vector, since each element of a new iterate may overwrite the corre

sponding element of the preceding approximation It is not easy to

determine the optimum overrelaxation parameter by an automatic
sequence of arithmetical operations, but considerable progress has been

made in the case of Property A matrices [113] In addition, qualitative

arguments often provide an estimate of w6 which gives very good results
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5

LINEAR EQUATIONS AND MATRICES:

ERROR ANALYSIS

INTRODUCTION

1.

Tlie problem of error analysis associated with the solution of n

simultaneous linear equations

Ax = b, (1)

may be regarded as the determination of the effect upon the solution x of

(i) errors (if any) in the data, that is, the elements ofA and b, (ii) rounding

errors introduced during the course of computing the solution. In the

application of direct methods the number of multiplications is very large,

approximately \n3 for the methods of Chapter 1, and the number of

roundings correspondingly great. The problem is therefore not easy; at

the same time it is important.

The direct determination of the effect upon the solution of each indi-

vidual rounding error is possible, but the total effort entailed greatly

exceeds that required to compute the solutions themselves. Theoretical

upper bounds for the errors obtained by this approach aTe not easy to

calculate and also tend to overestimate grossly the actual errors.

2. We proceed here on different lines. After obtaining the approximate
solution of equations (1), we seek perturbations (or rather upper bounds
for perturbations) of the elements of A and b such that the computed
solution is the exact solution of the perturbed equations.

We shall find that in this form the problem is quite tractable. From
the results obtained we are able to make searching comparisons between
the accuracy of the various methods of solution, and also arrive at
practical rules governing the safe but economical number of guarding
figures which need to be carried during the computation of the solution.

‘accurate’ solutions
3. Before proceeding with the error analysis proper, we ask the question

:

‘What is it reasonable to expect of our solution?’
Suppose that the elements of A and b do not exceed unity in absolute

value (this can always be arranged by scaling), and that we use a working
precision of t figures. Then, unless the elements of A and b are exact
1-decimal numbers, they will have to be rounded to t decimals and we
inevitably solve a perturbed set of equations

(A + SA)x = b-f Sb, (2)

in which the upper bound of the elements of SA, Sb is il(H.
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4 Even if the elements are exact t decimal numbers, in the process of

solution they will almost inevitably be multiplied by numbers which are

not small integers Consider the effect of the single simple operation of

multiplying the equations (1) throughout by l, a t-digit number in the

range 0 ! to 1 0 Asa result of rounding to t decimals (1) is replaced by

(IA+E)x = Ib+e, (3)

where the elements of E and e are bounded by £10-* This is equivalent to

(A+i_, E)x — b + k-1 e, (4)

and the error terms of this perturbed set have bounds which depend on I

but are at least jlO-*

5 We shall show that the approximate solution of a set of equations (1)

obtained by a direct method i» the exact solution of a perturbed set of

the form (2) It is clear from the simple illustrations that have just been

given that it would be quite unreasonable to expect the bounds of the

elements of SA and 8b to be less than J10
-1

, for a working precision of

l figures Much higher bounds might well be anticipated and it is a

matter for some surprise that with certain methods the ideal is in fact

approached.

EBBOP AN ALV SIS FOB GAT.SS1AN ELIMINATION

C We introduce our method of error analysis in terms of the numerical

example of § 8 of Chapter 1 Purely for notational convemenee we have

rearranged the original equations so that successive pivotal rows are in

order one beneath the other Tins use of hindsight does not affect the

analysis it merely eases the description

On the left of Table 1 we repeat the numbers recorded during the

computation of the solution by Gaussian elimination, for convemenee
we have included previous pivotal rows in each reduced set and also

elements that have become zero We therefore have four sets of

equations

A ,r>x = b<" (r = 1 2 3 4) (5)

all of which would have had identical solutions if the computation had
been performed exactly

Reduction to tnanyular form

7 We consider first the reduction to triangular form We work back
wards from the fourth set of equations deriving successively perturba
tions to the third second and first sets so that they are satisfied exactly
by the exact solutions of the fourth (triangular) set Such perturbations
are not unique and we select those which reproduce exactly the recorded
multipliers m

tj
The perturbed sets of equations are denoted by

(A,rt +SA,r,)x = bw, +8btM (r = 1,2,3) (6)
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If (xi,xz,x3,x4 ) is the exact eolation of the computed triangular set

A,4,x = h14
’, we have

aJVX,+ «JV x* +aSl* X, + oIV x4= &S
1
', (7)

aJJ1 Xj+aJj'xj + al >x4 s&i*>, (8)

fl§>Xa+ a
j
>x4 = 6<3 >. (0)

a[ ,x4s6J
41

, (10)

where equivalence signs denote that the equations are satisfied exactlj

As is indicated by the superscripts, the pivotal row (7) of the first set of

equations appears unaltered in sets 2, 3, 4, (8) occurs in sets 2, 3, 4 and

(9) in 3 and 4

In the subsequent analysis we shall assume that none of the elements

aj'1 and 6j
rl exceeds unity This is clearly true in the example, and is a

normal feature of most automatic work It is easily arranged, because any
growth of the maximum coefficient from set to set is quite slow in

practice and a preliminary scaling which reduces all the original coeffi-

cients a}}* to a maximum of 'ay, $ is sufficient m all but pathological cases

This point is also discussed in Chapter 2, § 6

The determination of 5A,3) and 5b(3>

8 Equations (7), (8) and (9) are the same in set 3 as in set 4 and so

are automatically satisfied exactlj The multiplier mn and elements eJV
and 6J

4> were obtained from the equations

S7«a>. HD
— aM* +ml3 aS4

>

> ( * 2)

6' 4 > = 6<*> +m43 6J
3
> (13)

and rounded to five decimals The rounded accordingly

e“otlr -«,
)J.(aS<v«a') +,„ h„Klio-*

'rle”ce

'rhere *

satisfies

<U)

(15)

( 10)

The values of aJJ’ and obtained from equations (12) and (13) are

rounded to fi\ e decimals, so that

a
i4

, = a ij
, + n,«aM , + fii

,

> l*8M<|10 s
> (17)

6'4, s6' 3
' +m4S

6«' + €« 3 > |e<
s>|«£10“ s

(18)

«J5', <J\*
and «J

3> are thus the porturbations required in aj|> aj3> and 6J
3)

to make the third set exactlj equnalent to the fourth and to reproduce
exactly the computed multiplier w? 43 Each perturbation is bounded by
J10-s ,

this 13 obviouslj true for ejy and cj3> and is a rounding error

multiplied by a number which by hypothesis does not exceed unity Thus

(SA(S1
1 5b,3,

J ^ J10~
5

|

0

0

0

0

0 0

0 0

0 0

0 1

0

0

0
(19)
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where the inequality sign means that the absolute value of each element

of the left-hand side does not exceed the corresponding element of the

right-hand side. In the example of Table 1 the computations coire

spending to (15), (17) and (18) are

ga <3 ) = e (|) = _(_0- 19212) (0-09062)- 0-01741

= - 10
_5(0-00So6),

Sa (3 ) _ 6 (3 ) = _ 0-20415 + 0-26034- (-0-19212) (-0-29245)

= l0-5(0-45060),

8b™ _ 6«> = 0-10295 -0-16665- (-0-19212) (0-33155)

= — 10
-5(0-26140).

It may be noted that these numbers are exact ten-decimal numbers.

The determination of SA(2) and Sb <2)

9. Equations (7) and (8) appear imehanged in set 2 and so are auto-

matically satisfied. Since the third equation of the third set is not per-

turbed, the perturbations of the third equation of the second set are

obtained by an analysis following precisely the lines of the previous

section. For example, 42)
*s obtained from the equation

b™^b™+m32b™ + e™ I4
2)
K-|10-

5
, (20)

which corresponds exactly to (IS). Therefore 4!', 41’; 42) ari<i 42> are

bounded by |-10~5 .

The perturbation of the fourth equation of set 2 must, however, be
chosen so that the perturbed fourth equation of set 3 is exactly repro-

duced. Thus while bf] satisfies the relation

6f
) s 6«2)+m42

&<2 > +42
>, |4

2
>K-|10-5

, (21)

it is b{3) + 43) that must be reproduced. Since

6 (3 > + e (3 ) = 6 ( 3
) +m-

42 6
<2

) + e ( 2
) + €(3)

5 {22 )

we see that 42) + 43) is the perturbation that must be added to b™
; thus

the perturbation arises from two rounding errors which are purely additive
and do not interact in any way. This is also true for the perturbations
to a™ and a' 21

. Since the zero element a$ was unperturbed, we see that
the necessary perturbation of a™ arises from a single rounding error and
is given by the equation

-w
12

(?<!> = + (23)

exactly analogous to (15). Thus

[SA(2)
|
Sb (2)

] < i-10
-5

0 0 0 0 o'

0 0 0 0 0

0 1 1 1 1

_0 1 2 2 2

(24)
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The right hand side of (24) may be regarded as the sum of the bounds
of the perturbation (19) arising in the reduction from the third to the

fourth set, and the corresponding perturbations, bounded by

ilQ
-5 (25)

arising m the reduction from the second to the third set, the two sets of

perturbations being simply additive ictfAout interaction

In the example of Table 1 the computation corresponding to (22), for

example, is

S6«> -
« 0 16665-0 06422 + (-0 23723) (0 43179) -10'5{0 26140)

=* - 10“*(0 61657)

Similar calculations lead to the perturbations given in Table 1 Again

they are all terminating numbers of ten decimal places

The determination of SA<U and 8b (1 >

10 The pattern of the analysis is now quite clear The next step leads

to an additional set of perturbations bounded by

iio
-5

to be added to (24), so that

1 1 1

1 1 1

[8A,a |$bw]< JIO
-*

(26)

The results for our example are agam given in Table 1 , it will be seen

that all the perturbations he within the limits (27)

The bacl.-subsMulion

11 We have shown that a perturbed set of equations

(A'1’ + 8A,a
) x = b (1> + 8b<», (28)

can be obtained such that successive derived sets are exactly

(A(t)+8A,i,)x = b'** + Sb<3>
, (29)

(A13*+ 8A«3
*) x = b,s * + 8b'3*, (30)

A“*x = b<4)
, (31)
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and the multipliers used in the reduction are exactly the computed

multipliers
;
the actual perturbations for our example are given in Table 1

and in the general case of order 4 they have bounds given by (27), (24)

and (19).

We now consider the solution of the triangular set (31), written in full

in equations (7) to (10). Consider, for example, the determination of x2 ,

when Sg and xi have been found. Equation (8) is used in the form

x„=
bi2) -af$xa

- -a l„fx4

« (2 >won
+ Vz> l^l^i10

5
> (32)

in which there is only one rounding error, tj2 ,
since the numerator is

accumulated exactly on the machine.

In taking |ij2 |

^1-10~5 we are assuming that the x
{
are computed and

recorded to 5 decimals. Since the x
{
may be large this could mean working

with more than 5 significant figures
;
we return to this point in.§ 15. Erom

(32) we obtain

a™ x2 + e4|> x3+ x4
s 6< 2

> + Sc2 , (33)

Where
IScglrl^oS’KhaKilO-8

. (34)

A similar result holds for each variable. The computed solution of the
triangular set of equations is therefore the exact solution of the equations

A(4) x = b (4) + Sc,
I

Sc
t- 1
<£10~5

. (35)

Now it is readily seen that the addition of a further perturbation Sb
given by

Sb =

Scj

—m218c1+ Sc2

tu32 Sc2 “i” s

c

3

^41 bc4 71Z4 2 Sc 2— 771 SCg 5c.,

(36)

to the right-hand side of (28) will result in the final reduced set of equa-
tions having the form (35). This follows because the perturbation Sb does
not affect the multipliers, and the consequent additions to the right-
hand sides of (29), (30) and (31) are respectively

Scj Scx Scj

Sc2 Sc2 Sc2
— WI30 SCo “i

- SCj
>

Sc3
and

Sc3
TO42 SCo m 43 Sc3 + Sc4 Sc3 + 8c4 1

OO
4? 1

Since no multiplier exceeds unity,

Sb^ilO-5

1

2

3

4

(37)
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In the example ofTable 1, we find

I0s8h, = -0 00790 IO3^ = 0 02252 915o0

10s 8hs = -0 01306 97oo0 10s Sbt - 0 07320 03293

Summarizing we have shown that the computed solution is the exact

solution of the set of equations

where

(A«»+SA“>)* = b«»+8b<” + 8b

[8A<t»|Si>m |Sb]s;JI0

0 0 0 0

1111
12 2 2

12 3 3

0

3

3

4

(38)

(39)

and we have kept separate the perturbations to the right hand side

arising from the reduction and the back substitution

The general case

12 The result (39) can be extended immediately to a set of n equa
tions solved using a working precision of t decimals The bounds of the

perturbations are given by

'0 0 0 0 0 0 0 1
'

1111 1 1 1 2

1 2 2 2 2 2 2 3

1 2 3 4 (u-2) (n-2) n — 2 n-t
.1 2 3 4 (n— 1) (7i-l) n- 1 n .

[8Aa * 1
8b< 1

' 1 8b] ^ J 10
-*

When binary arithmetic is used 10 ‘ is replaced by 2-*
(40)

ERROR ANALYSIS FOE TRIANGULAR DECOMPOSITION

13 A similar analj sis can be applied to the method of triangular
decomposition with mterchanges described in Chapter 2 §§15 16 If
t decimals are retained throughout the computed solution x satisfies

exactly a set of equations of the form (38) with

(41)

The proof(32] is apprccra&fy simpferthan that for the methoc! ofGaussian
elimination and the smaller bounds obtained are \cry impressive In fact

as foreshadow ed in § 5 we have here a method which approaches very
close!} what must bo considered the ideal in which the bound for each
perturbation is \ 1(H
Again when bmarj arithmetic is used 10-1 is replaced b} 2~*
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THE JIEAIv'IKG OF THE BOUNDS

14. Let us suppose that the elements of A, b in the original equations

are prescribed to t decimals. Then, since the largest hound of the peitui-

bations given by (40) is the sum of n rounding errors, the retention of

one extra decimal for n = 10, two for n = 100 and in general log10 ?i, will

result in the solution obtained by Gaussian elimination being the exact

solution of a set of equations which do not differ from the original set

by more than the possible rounding errors inherent in the data. For

binary arithmetic, log„ n additional binary places will be required to

ensure this.

This result is also true for the method of triangular decomposition.

However, since in this case the elements of SA (1)
,
Sb (1) are hounded by

one rounding error, it is necessary to carry the additional decimals only

in the hack-substitution, which is much the smaller part of the calculation.

It should be borne in mind that (40) and (41) give strict upper bounds.

In practice we expect the rounding errors to accumulate statistically

and, consequently, n to be replaced by N/?i.
This suggests that it would

not be unreasonable to use only one additional guarding figure for sets

of up to 100 equations.

15. We return now to the point made in § 11 regarding the size of the

solution x. If we are restricted by our machine to the use of t significant

figures, and if the largest element x{ lies between 10 fc and 10fc_1
, then we

are only able to retain t — l: decimals in the course of the back-substitution.

This has the effect of multiplying the associated perturbation Sb by 10 fc

,

so that for both Gaussian ehmination and triangular decomposition we
now have the bounds

|

S6
f |
< hi10k

~l
. (42)

The consequent loss of accuracy is not as great as might appear.
It can be shown, for example, that it is possible to absorb Sb by an
additional perturbation of A which does not contain the factor 10 fc

.

Alternatively, we may consider the upper bounds for the residuals.

The residual vector r is given by

r = b-Ax = -Sb (1) — Sb+ SA(1) x. (43)

In the case of Gaussian ehmination it follows from (40), and the fact that
each

[
x

t |

is bounded by 10 fc

,
that

I G |<W ~
1) 10-' + Hl0-‘+ il0 fr-'[l + 2 + . . . + (i — 1) + (ti — i + 1) (i — 1)]

= |(f-l)10-»+^'10-*+ J10^(*-l)(»-Ji+ l) (44)

when we retain t decimals in the back-substitution, and

K-K i(i— 1) 10-'+ li 10*-'+ 1 1

0

fc
-'(i- 1 ) (»-|i+ 1) (45)

when we retain t — k decimals in the back-substitution. The difference
between these bounds is less than while each is greater than

~ 1 '"'hen i = n, a proportional increase of less than 2j?i.
In the case of triangular decomposition the bounds corresponding to

(44) and (45) are
&

|

r
f |<I10-,+ H10-'+ A?il0 fc

-f

(46)
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and (47)

in this case the maximum bound for JrJ| is less than twice that for |r<|

1 6 These bounds may be compared with those obtained for the residuals

when we tale the exact solution x„ round it to I -

1

decimals, and substi

tute this rounded solution r, into the original equations We then have

|{Axr-bMH[A(*r
-*

e)] (
l^lO‘-‘ (48)

We may replace (44) and (45) by the slightly weaker inequality

ir,Kiio»^(*-i)(ft-i»+3)+ij

The largest bound is that for |r„l Hence, for all t,

I
r<K i*

0*-<(|n*+fn — 2) (Gaussian elimination) (49)

Similarly, for all «,

|r4|< jl0*-/(2n + l) (triangular decomposition) (50)

The ratio of the bounds (49) (4S) is

(n» + 5n — 4))2n, (51)

which is an increasing function of n and attains the values 10, 100 for

n = 15, 195 respectively Thus for sets of order up to 15 the residuals

corresponding to the solution computed by Gaussian ehmination may be

expected to be no greater than those corresponding to the exact solution

rounded to one decimal less, while for sets of orders 15 to 195, no greater

than those corresponding to the exact solution rounded to two deci

mala less

For triangular resolution we have the remarkable result that for any
order the residuals are not expected to exceed twice those of the exact
solution rounded to the same number of decimals

17 Again the results obtained in the preceding sections are strict

upper bounds In practice we would expect a statistical accumulation of
roundings, m which case the ratio (51) would be replaced approximately

by its square root In this case we could expect the residuals to be no
greater than those of the exact solution rounded to one decimal less

for sets of orders up to 195

These results are even more satisfactory than those given in § 14 The
difference hes in the fact that in § 14 we attached as much weight to the
perturbations fib as to SA An assessment based purely on the size of the
residuals is much more realistic If r is the residual vector corresponding
to an approximate solution x, then the true solution is x+A-, r the

error is therefore directly dependent on the residual vector

THE EFFECT OF USING LA HO E MULTIPLIERS

18 We have stressed the importance of using as pivots the largest

element m each column, that is, carrying out our calculations with inter-

changes It may be thought that this restriction is really unnecessary
and could be overcome, for example, by using floating point arithmetic

The example, given in Table 2 opposite, shows that this is not so



The original equations and first reduced set are denoted by

A(i> x = b' 11
,

A<2) x = b (2)
,

(52)

respectively, as in the previous example. The smallest element, an , is

used as pivot in the reduction. The ‘perturbed
5 form of the original

equations which corresponds exactly to the reduced set is given by the

Table 2

m A«>

0-000003 0-213472 0-332147 0-235262

-71837-3 0-215512 0-375623 0-476625 0-127653

-57752-3 0-173257 0-663257 0-625675 0-285321

A'3 ' b<2 >

0-000003 0-213472 0-332147 0-235262

0-000000 -15334-9 -23860-1 -16900-6

0-000000 - 12327-S -19181-6 -13686-6

Exact equivalent offirst reduced set

0-000003 0-213472 0-332147 0-235262

0-2156129 0-3521056 0-4436831 0-0868726

0-1732569 0-6989856 0-6531881 0-3216026

third array of numbers, computed by the method of § 8. The second and
third members differ substantially from the original ones; indeed, their

solution (which is, of course, also the solution of the reduced set) bears

no resemblance to that of the original equations.

What has happened is that the second and third equations of the

reduced set are almost entirely composed of a multiple of the pivotal

equation. We would obtain an identical system A(2) x = b (2) for a whole
class of matrices [A(1) jbU)]. Tor consider the computation of a typical

element in six-figure floating-point arithmetic, given by

= 0-476625 - 71837-3 x 0-332147

= 0-476625 -23S60-6 = -23860-1.

Because the product m21 a
(

1
1
3
) is so much larger than a||>, nearly all figures

of the latter are ignored. We obtain precisely the same aif for all values
of<3

> lying between 0-45 and 0-55.

ILL-CONDITIONED EQUATIONS
19. It may well be asked what bearing the results obtained in this

chapter have on the difficulties associated with ill-conditioned equations.
We have obtained bounds for the perturbations in A and b which give
equations satisfied exactly by the computed x, and we have been able
to deduce rules for the number of guarding decimals that should if
possible, be used.
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If, as is usual!} the case the coefficients m the original equations are

approximate, then ire can determine immediately from these bounds
whether or not the computed solution is as accurate as the data warrants

Tlus is the case for both ill and well conditioned equations and in man}
problems this information will suffice

20 In some applications, hoireier, ire may wish to knoir to how many
figures our solutions actually agree with the exact solution of the original

equations An analytical investigation of this requires a knowledge of the

inverse matrix A-1
,
and e\en the estimation of a satisfactory upper

bound for its elements will usual!} involve more effort than the solution

of the equations In practice it will be necessary to follow the procedure

described in Chapter 2, § 18

ERROR ANALYSIS OF OTIIEB ALGEBRAIC PROCESSES

21 The technique described in this chapter has been applied to a wide
range ofalgebraic processes including man} of the better known methods
for solving linear equations computing eigensystems and calculating the

zeros of polynomials [216] Both fixed point and floating point computa
tion have been considered In all cases the computed solution of the

problem has been shown to be the exact solution of a perturbed problem
and bounds have been determined for the perturbations This has the
advantage of allowing a direct comparison between the effect of rounding
errors and of the errors inherent in the original data

If small stnet bounds can be found for the perturbations, then the
method being anal}sed must be regarded as a good method If such
bounds cannot be found however, we cannot necessarily deduce that the
method is bad Nevertheless, in such a case the analysis will frequently

suggest cases in which the method will undoubted]} lead to inaccurate

results An example of this kind has been gnen in § 18, where we showed
the importance of interchanges in Gaussian elimination

Sometimes the bounds for the perturbations will provide strict a pnon
bounds for the computed solution the most important example of this is

the calculation of the latent roots of symmetric matrices More fre

quently, however the determination of a strict bound for the error in

the solution will require information which is at least as difficult to
obtain as the solution itself in this case the best we can hope for is an
a posteriori bound



6

ZEROS OF POLYNOMIALS

EVALUATION OF A POLYNOMIAL

1. We take as our standard form of polynomial

f(z) = an z" + a„_j zn
~l + an_2 z

n~2 + ... +a 0 , ( 1

)

and suppose throughout this chapter that the coefficients as
are real.

The evaluation of /(z) for a given real value z = a can be effected on a

desk machine equipped with a transfer, by cyclic repetition of the processes

of multiplication, setting, addition and transference, according to the

formula
/(a) = [{(fl n a + or,

1
_i)a+ a,

!
_2}a + On-3] a + ...

. (2)

No intermediate recording is then necessary. This process is sometimes

called nested multiplication.

2. The numbers which appear in the product register immediately

before the successive transfers are the coefficients in the quotient poly-

nomial which results on dividing f{z) by the linear factor z— a. For, by
equating coefficients in the relation

/(z) = (?n 2"
-1 + 2«—

l

2"-2+ +<Zi)(2 -“) + ?(»

we find

and generally,

Also

— a n> Sn-1 — ?« « + «„-i>

<7S = QWia + Os (s = n— l,?z. — 2, ... ,0).

/(«) = 2o-

(3)

(4)

(5)

(6)

POLYNOMIALS OF LOW DEGKEE

3.

Real roots of the equation

/(z) = 0, (7)

that is, real zeros of /(z), can be located by examining the sign of /(z)
at z = 0 and +oo, and evaluating /(z) at a few trial values of z. If/(z) has
opposite signs at z = zx and z = z2, then at least one root lies between
z2 and z„.

Regarding z1 and z2 as approximations to the root, we can obtain a new
approximation z3 by inverse linear interpolation, according to the formula

„ )
(z0 — Zjl/Cz.)

3 ~ /(z2)-/(Zl)

~ Z2
~fk) Zf&)'

(S)
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The process can then be repeated Alternatively, Newton’s rule, described

in § 9 below, may be used

4 If}{z) is a cubic polynomial, one real root may be determined by this

method and the corresponding linear factor then divided out, as described

in § 2 The zeros of the residual quadratic, whether real or complex, may
be obtained by application of the usual formula This method is quite

satisfactory for the solution of the occasional cubic equation

6 Equations of higher degree may also be solved by this method,

provided that at most one pair of roots is complex If two pairs are

complex, the problem reduces to that of solving a quartic equation We
now describe a variant of the classical method for solving equations of

this degree which is convenient for computation

THE QUABTIC

6 We suppose that/(z) has been normalized so that the coefficient of z*

is unity, and that

z*+a,2*+a,z*+o 1z+aft
=* (z*+61z+c1)(z

,+b*z+Cj) (9)

The problem is essentially to determine fcj.Cj 6*,c, from aa,av a
t
a,

Equating coefficients, we obtain

“ hi +&*, a, — &i^* + cj + c*> (10)

«i = &iC*+6*Ci ao
=

°i ct (”)
We write

m = e, + c, (12)

Then m satisfies the equation

m*—

a

Jm, + (aiaJ — 4a
#
)nH-(4a t -a|)a0 — aj - 0 (13)

For, by solving the first of (10) and the first of (11) for 6, and 6, we find

6, b,
«3 C»-«1

Cj-C,

Substitution in the second of (10) gives

(<h + e,— <a,) (e,- .cj* +

a

1as(cl+ ct)
- a| i^c, - aj = 0

(14)

(16)

Eliminating cx and c, from this equation by means of (12) and the second
of (II), we immediately obtain (13)

Equation (13) is called the reducing cubtc A real root can be found by
the method of § 3 Equation (12) and the 6eoond of (11) show that and c,

are the roota of the quadratic equation

c*—mc+a0 = 0, (16)

and equations (14) then give 6, and b.

In solving (13) a root should be sought which satisfies the inequality
m*> 4a0 otherwise the roots of (10) will bo complex, and the factorization

(9) will not be into conjugate pairs of roots Thus if a0 is positive, we first

seek a value ofm in the range (2^a0 co) If no such root exists, and this

can only happen when some of the roots of the quartic equation are real,

we seek a root of (13) in the range (— co, — 2^a0 ), which must exist
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Example

7. Consider the equation

z4— 2z3 -f-7z2— 10z+ ll = 0. (17)

Here a 0 = 11, cq = — 10, a2 = 7,a3 = — 2. Equation (13) becomes

<£(m) = m3 — 1m? — 24m+ 164 = 0. (18)

The value of 2<]a0 is 2 N
/1 1 = 6-63... . Taking the nearest integer value

m = 7, we find = — 4. This has the opposite sign to
<f>( + oo); hence

there is a root of (18) in the range (7, co). Next, we find <£(S) = 36 ;
therefore

the wanted root must be less than 8. Starting from these two approxima-
tions, we determine the root accurately to 5 decimals, say, by repeated
application of (8)

:

m 7 8 7-1 7-161 7-14758 7-14766

-4 36 -1-359 0-09766 -0-00237 -0-00003

Equation (16) becomes

c2 — 7-14766c + ll = 0, (19)

giving Cj = 2-24257, c2 = 4-90509. Prom (14) we obtain ^ = —2-07129,
6, = 0-07129. As a check, we verify that equations (10) and (11) are
satisfied.

8. Polynomials having more than two pairs of complex zeros may be
classified with the ‘high-degree’ polynomials. As a preliminary to outlining
methods for finding the zeros of these polynomials we now describe the
iterative processes of Newton and Bairstow.

newton’s rule

9. Let a be an approximation to a zero a of/(z). Then in general a better
approximation is a -1- Sa, where

= -/(<*)//'(a)- (20)

This can be seen graphically. In Figure 1 AC is the tangent to the curve
y ~f(z)

a-t the point z = a, and its intersection C with the real axis is the
point z = a+ Scc.

Figure 1
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The result (20) can be found by expanding f{z) m the Taylor senes

centred at s = a We have

/(2) -/(«) + (J -»)/(«) +^ (2-o)V(«)+ =0, (21)

when 2 = a, giving

/(«) 2»/(«)
V >

This equation also shows that the error in«+fa is of order (S»)* For
this reason formula (20) is said to be quadratically convergent The precise

implication of (22) is seen on renting it ui the form

q-q /(«) 1 <*/’{*) (a -<x\*

«
=
"a/W'2'/Wl « /

(23)

Clearly if
|
Ja/'(a)jy'(a)| is of order unity, the number of correct significant

figures in the zero is doubled by each iteration More generally, if

|
jof'{a)lf (a)

|
is of order 10* and the number of correct figures m a is S,

the number of correct figuresm «+ 5a will be 2S~i
10 It is of interest to compare Newton’s rule with the process of succes

sive linear interpolation desenbed in § 3 Let the errors in z,, zt be respec

lively Aj, A, so that

2,-a-A, -,-a-A, (24)

Substituting these expressionsm the first of (8) and expanding by Taylor’s

theorem, we find

- , ,

AJ-(a-A,)-A t/(a-At )

^ /(a -A.) -/(a -A,)

_ ,*»( -*./ W+WftO- }-*,{-V(q) + l*i/
,
(q)- }

(hl-ht)J(a) +

= a +
/•(q)

2/ (a)
A,A S + (25)

Therefore if
|
la/'(a)// (a)| is of order unity the relative error in z3 is

the product of the relative errors in z, and z2 In comparison as we tune
seen in § 9 each application of Newton s rule squares the relative error

in these circumstances

The total computing effort necessitated by each process is about the
same, however This is because at each step of the successive linear

interpolations only a new function value has to be evaluated compared
with a new function value and a new derivative at each application of
Newton’s rule

1 1 The order of convergence of the process of successive linear inter

polation may be deduced from the result of the preceding section Let A,

denote the error in zr Then on taking logarithms of (25) we find that
for large s

In A, = In A,., + In A,.
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which is satisfied by In hs — p
s

,
if

P
2-P- 1 = 0.

The positive root of this equation, winch is the order of convergence, is

|(I +V5) = 1-62....

BAIRSTOW’S PROCESS

12. Newton’s rule remains valid if the wanted root is complex. In

applying the rule, the easiest way of computing/(z) and/'(z) for a complex

value s = a would be to evaluate the remainders on dividing /(z) and

f'{z) by the real quadratic polynomial (z — a)(z— a), where a is the conjugate

of a. A more convenient iterative process, however, which determines the

corrections to the coefficients of an approximate quadratic factor rather

than to an approximate root, is due to Bairstow. We first describe the

computations involved in dividing f(z) by a quadratic polynomial.

13. Let z2 —pz— l be a given quadratic polynomial. The division of /(z)

by this quadratic is expressed by the equation

f(z) = (z2 -pz- 1) q(z) + rx z+ r0 , (27)

where the quotient q(z) is a polynomial of degree n— 2, and i\ z+ r0 is the

remainder.

By equating coefficients in (27), we may show that the process of

division is equivalent to the application of the recurrence relation

<ls = as+Ms+l+ hs+Z’ (28)

for s = n,n~ 1, .. . , 0, starting with qn+2 = qn+1 — 0. Then

q(z) = qn zn
~~2 + qn_x

zn
~~2 + ... +qz , (29)

1IIII
rH (30)

14. In Bairstow’s process, we first compute the sequence qn , qn_v ...
, qQ ,

and then divide q(z) by z2—pz — l by computing the sequence Tn_2 ,

T„_X,...,T0, defined by

Ts = qs+i+pTs+1 + lTs+2 (s = n-2,n~3,...,0), (31)

with Tn = Tn_x = 0. If z2 ~pz — l is an approximate quadratic factor off(z),
a better approximation is given by z2 -(p + Sp)z-(l + SI), where

m = M9i ~T0 q0 , DSp = Tiqo-T0 q

<

1} (32)

and M = XTx+pT0, D = T2-MTV (33)

Simple clieolis on the evaluation of (32) and (33) (but not on the
computation of the sequences qs and Ts ) are furnished by the identities

T^l+T^p^-q^, T0 SI + MSp = — q0 . (34)

15. Tins result may be proved as follows.* If z2 -(p + 8p) z-(l+ SI) were
an exact factor, we would have

f(z) = {z2- (p + 8p)z- (1 + 81)} Q{z), (35)

where Q(z) is a polynomial of degree n — 2.

* Another proof is given in [1].

57



Subtracting (35) from (27), and using (30), we find

(z’-2J3-f){9(j)-0(z))+ (2S? +S!)Q(2)+?1(z-p)+ §r0 = 0 (36)

Let aj {j = 1, 2) be the zeros of z*—pz—l Then to the first order of small

quantities Bp and Bl, we have Q(aj) — g{<xj) The value of q(a}) is obtained

from the remainder Ttz+Tt—pTx on dividing q(z) by zs-pz— l, thus

q{«s) = T^+^-pT, = T^-pJ + To (37)

Setting 2 = txf in (36) we find that the first term vanishes, and substituting

the nght of (37) for Q(ctj) we obtain

(ayfip+SI^T^oiy—j>)+Tc}+gi(ay-p) + g0 = 0

Replacing ajfaj—p) by l, we find on reduction

(a,-p)%8p + T,«+ ?,} + {(IT, +pT0)Bp + T0 Bl + q<i} = 0 (38)

Since tins equation holds for both zeros ai, we may equate the contents of

each set of braces separately to 2ero This yields immediately the two
equations (34), and solving for Bp and SI, we obtain (32)

16 The proofshows that, like Newton’s rule, the process 13 quadratically

convergent
,
the number of correct figures may be doubled by each

iteration

The two formulae are not exactly equivalent, however
,
this is shown

by the fact that Bairstow’a process yields an exact result vf /(z) is itself a
quadratic polynomial whereas Newton’s rule does not

Example

17 The polynomial

/(*) = 2* + 0 0416342* + 1 1 454602s + 0 1636372*+ 0 2914302 + 0 142857

is divided by the approximate factor

za-pz—l ~ 2* — 04162 + 0 487

Table 1 Baikstou s Process

I

p
-0-487
0 41d

— O-4872S0
0-415354

a. ?. T._, 7.

5
4

1

0 041634
I

0-456634
1

0 8716
1

0-4569S8
3 1 145460 0 847963 0 7227(T{] 0-847992
2 0-163637 0-293161 0 16S6(T,) 0 293173
1

0
-V
D
61

6p
\

0-291439
0-142857

OOOOU3(?,)

0 000147(5,)

-&-2S20
0-2322

-0 000230
0-000354

0 OOOOOOfa)
0 000000(5,)

The sequence qt, q„ , q0 given in the centre column ofTable 1 is evaluated

by application of (28) The next column gives Tt,Tt, Tlt T0,
computed by
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means of (31). The corrections

Sp = 0-000354, SI = - 0-000280,

are found from (32) and (33), and checked by (34). The new factor

z2- 0-415354z+ 0-487280

is checked by division into /(z). Further corrections are obviously less

than a unit in the sixth decimal place.

POLYNOMIALS OF HIGH DEGREE

IS. The complete solution of polynomial equations

/(z) = an z" +a„_1 z”-
1 +«

}l
_2 z*-

2 + ... +«0 = 0 (
39 )

of degree n exceeding five is seldom worthwhile on desk machines
;
such

problems should be referred, where possible, to organizations equipped

with automatic computers. In the remainder of this chapter we describe

some of the features of the automatic calculation of the zeros of poly-

nomials with real coefficients. For further details the reader should

consult [36].

19. An important aspect, which should be fully understood, is that the

zeros of a polynomial of high degree, expressed in the explicit form (39),

are often poorly determined inasmuch as some, or even all, of them may
be extremely sensitive to slight changes in the coefficients.

To determine the effect on a zero a of a small variation in the coefficient

a
s . we differentiate (39) with respect to as, and then replace z by a. Then

(40)

da tx
s

g^g P„
=

8as f (a)
(41)

or, in terms of relative errors,

Sex as~1 a„Sa„

a “
f'(ec) a

s

(42)

If /'(a) vanishes, corresponding to a multiple zero, da/8as is infinite.

Thus values of multiple zeros are seriously affected by slight changes in
the coefficients. But polynomials with quite distinct zeros may also be
afflicted by this malady. Consider, for example,

f(z) = (z+l)(z + 2)(z+ 3)...(z+20). (43)

One of the worst cases is obtained by taking a = - 16 and s = 19 in (42)
We then find that

Sex

a

1618 x 210 Sas
4! 15!

= 3-2 x 1010—

.

a.
(44)

This means that in solving a polynomial equation whose roots have a
distribution similar to the zeros of (43), we must carry out some parts of
the work using at least 10 figures more than are required in the answer
whatever method of sohttio7i is employed.
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General purpose programmes for the solution of polynomial equations

must therefore be of high working precision, at least double word length

must bo used for most computers

As a corollary , analogue computers such as isographs and electrolytic

tanks, see
[
200], are of little use except for low degree polynomials, because

of their very restricted working precision

20 The ill-determination of the zeros of htgh-degree polynomials no
doubt suggests to the reader that unless the solution of the physical

problem giving nso to a high-degree polynomial equation is itself poorly

determined, then another and more 6table formulation of the computing
problem must exist This is often true and such a formulation should

always be sought Nevertheless, the polynomial equation, computed and

solved with high working precision, may often provide the easiest solution

because of the simplicity and generality of its form

APPLICATION OF ITERATIVE METHODS

21 Among the more suitable methods for automatic work are those

based on the use of quadratically convergent iterative formulae with

arbitrary initial guesses Except m pathological cases, repeated applicx

tions of Bairstow s process (§ 14) with any initial tnal factor will converge

after a sufficient number of iterations

The quadratic factor of/(z) so obtained may be divided out (§ 13) and
the process repeated with the quotient replacing /(z) In this way' all the

factors are obtained To guard against the possible accumulation of round

ing errors, the factors obtained from the successive quotients should

subsequently be checked by iteration in the original polynomial
equation (39)

22 The process fails when as might happen in practice, the

accumulation of rounding errors is so severe that very poor approxima
tions obtained to the later factors converge on earlier ones when iterated

in the original polynomial equation It can be shown, however, that this

will not occur if the zeros of the polynomial are found m ascending order

of modulus magnitude see [36]

There is no easy way of ensuring that the zeros are evaluated in precisely

this order, but difficulties seldom arise in practice if all the initial

approximations to the zeros are taken to be in the neighbourhood of the

origin

23 The number of iterations needed depends on a variety of
circumstances, but for a polynomial of degree 20 it is as a rule, of the

order of 10 rather than 100 There is, however one special situation

which should be anticipated Consider the polynomial z*°— 1, and for

illustration take z = £ as the initial approximation and apply Newton’s
rule The next approximation is found to be

l_m« 2 l*

Further approximations zr are given by

l-z» 19
- ^+

20^ " 20
*"
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when zr is large. The successive approximations therefore diminish slowly

and many iterations are required before the neighbourhood of the two real

roots ± 1 is approached.

This kind of difficulty may be overcome by imposing the condition

\zr+1 \^C\zr \, (45)

where C is an arbitrarily chosen constant, 3 for example
;
the exact value

is not critical. Values of zr+1 which violate this inequality are replaced

by Gzr .

A similar safeguard should be used with Bairstow’s process.

24. Another device for reducing the number of iterations is to take as

the initial approximation at each stage the quadratic factor which has

been obtained and divided out at the previous stage. If there is ill-

conditioning due to the next factor being close to the previous one, this

initial guess will be good. If, however, the factors are well separated,

there is no ill-conditioning; the fact that the initial guess is now poor is

of no importance. When the first factor obtained has the smallest zeros

this procedure results in the other zeros being found in roughly increasing

order of magnitude (compare § 22).

25. Advantages of the method described are, first, that iterative

processes require relatively few instructions and are easy to programme.
Secondly, iterative processes demand the use of no more than the
minimum working precision inherently necessary to compensate for
ill-conditioning. The root-squaring process, which enjoyed considerable
favour on desk machines (see [37]), is difficult to programme and suffers
more severely from cancellation when applied to ill-conditioned poly-
nomials.
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7

FINITE-DIFFERENCE METHODS

DEFINITIONS AND NOTATIONS

1, Table I gives four decimal values of amx at 10° intervals of the

argument x In the next column are written down the differences between

successive values of smz, these are called the first differences The next

column contains the second differences, which are the differences between

Table 1

0s + 0-0000

10* 1736

20' 3420

30' 6000

40° 6428

60' 7660

60' 8660

70“ 9397

80“ 0 9848

90' +

1

0000

+ 1736

-62
1684 -62

104

1580 48

162

1428 44

196

1232 36

232
1000 31

263
737 23

286
451 - 13

-299
+ 152

+ 4

8

+ 10

+ 0

+ 4

+ 2

+ 4

+ 6

successive values of the first differences, and so on It will be noted that

the differences steadily decrease m magnitude until they are finally small

and oscillatory, a computer would accordingly say that sin a; is ‘well

behaved’ at this interval The convention that signs are given at the ends

of a column and where they charge is a standard nne Tables Jbsted on
automatic computers however, will usually give all the negative signs

but not the positive

If a general function y(x) is tabulated at equal intervals A, that is, for

arguments xn = x0+ nh, the function y{xn ) may be denoted by yn The
general scheme of differences may then be set out in three different ways,
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according to whether the notation offorward (A), backward (V) or central

(8) differences is used. The defining equations are given by

Alin
~ %n+l = %n+i = Vn+1 ~Vn> ^

and the corresponding tables of differences are shown in Table 2

It should be noted that the same numerical values are representedm tne

three schemes: for example, A3
_l5

V3 and Sf all represent the same quantity

(2/2

—

3?/i
4- 37/0

- y-i )-

Table 2

y-i

y-i

A_o
A2

.

Vo

A-i
A2

-

2/1

A0

As

3/a

A,

y-2

V-i
y-i

3/-1 vs
V?

2/-1

Ala Vo
etc. y„ Vf etc. 2/0

All v, V3

2/i

V;
vs 2/1

2/a 2/2

<5~s

<5-1

<5j

<5?

<51,

<55

<55

<51i
etc.

-5!

DETECTION OF EE.BOBS BY DIFFEBENCING

Table 3

0 0 0 0

0 0 0

0 0 0 + 1

0 0 + 1

0 0 + 1 - 6

0 + 1 - 5

0 + 1 -4 + 15

+ 1 -3 + 10

1 -2 + 6 -20
-1 +3 -10

0 + 1 -4 + 15

0 -1 + 5

0 0 + 1 - 6

0 0 - 1

0 0 0 + 1

0 0 0
0 0 0 0

2. Table 3 shows how the effect of a single error spreads out fanwise

in a table of differences and is at the same time considerably magnified.

This fact can be used to detect errors by differencing.

In Table 4 the differences do not decrease smoothly, the terms of S4

being bigger than those of S3 . Comparison with Table 3 suggests that there
is an error of — 9 in the last place of the entry for x = 0-5. This is in fact
the case; the correct entry is 0-6065 and the last two figures have been
transposed, a very common form of error. An error detected in this way
should always be corrected by recomputation of the function.

It may be mentioned that some accounting machines are very useful
for the formation of differences, which can be printed up to the fifth or
more at about 300 lines per hour. Punched card machines may also be used
and are appreciably faster, if the values are already on cards.
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It can easily be verified that the (»+ l)th differences, like the (n+ l)th

denvatu e, ofan nth degree polynomial, are zero, that is, the nth differences

are constant This makes it possible to build up polynomials from a known
constant difference, again accounting machines and punched card

machines can be used

o-o l oooo

1 0 9043

2 8187

3 7403

4 6703

5 6056

6 6488

7 4906

8 4493

0 9 0-4066

Table 4

6*

-952

861

779

705

647

568

622

473

-427

+ 91

74

79

46

49

+ 46

- 8
-16

+ 37
+21

+ 3

- 3

+36

- 6

SYMBOLIC RELATIONS

3 Difference formulae are most easily obtained by symbolio methods,
regarding the symbols A, V and 8 as operators To establish formulae for

interpolation, the displacement operator E and averaging operator p mil
also be required These are defined by the relations

Ev» = y*+i Mn = +y„_») (2)

The definitions are seen to lead immediately to the relations

A = E- L

]V=1 -E-\ p = |{E» + E'*).i

from which others may also be obtained For example

A = VE = SE», p* = 1 + J8* (4)

4 To obtain difference formulae for analytical processes such as differ

entiation and integration it is necessary to establish relations between
these operators and the differential operator D, defined by the relation
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The connection is provided by Taylor’s theorem expressed in the form

Ey{x) = y{x+h)

h2
= y(x) + hy'{x) + 2 |

y"ix) + • - •

l 7T> h2D2 \ . \

= / 1 +/iJ5+—gj—i-

—J
y(x )

= ehDy(x),

so that E = e
hD

. •

The interrelations between all these operators are summarized in

Table 5.

Table 5

E A 8 V hD

E E 1+A 1 +18* + 8 ,1(1+16*) (l-Y)-i ghD

A E-l A 8 J(1+18*) + i<5
2 Y(l-V)-1 ehD — 1

<5 Ei -E-l A(l+A)-‘ 8 V(l-V)-» 2 sinh IhD

V 1-E~ l A(1 +A)_l 8 SI(1+16*) - U* V I — e~hD

hD log£ log(I+A) 2 sinh-1 1(5 -log(l-V) hD

h(El+E~l) (l+iA)(l+A)-» f(l+i6*) (1 — £V) (1 — V)_i cosh IhD

INTERPOLATION FORMULAE

5. These formulae express yp ,
that is y(x0 +ph), when p is not necessarily

an integer, in terms of yQ ,

y

1
and appropriate differences; the formulae

differ in the precise sets of differences employed.

(i) Newton’s interpolation formulae

6. This formula, using forward differences, is easily obtained in the

form
yp = Ery

0 = (l +Wy0

= Vo +phy0 + A2
y0 + .... (7)

The interpolate obtained by truncating this series at the ?ith difference is

the same as the value taken at xp by the interpolating polynomial of
degree n which reproduces exactly the function values at x0,xx , ...,xn .

The corresponding backward-difference formula is obtained in a similar

WaJ
‘

Up = Evy
0 = (1 - V)-Py

0

= 2/o+^0+^f^V^0 + .... (8)

In tliis case the interpolating polynomial of degree n reproduces the
function values at x0 , x_lt ..., x_n .

These formulae are not satisfactory for use other than near the end of a
difference table, when central differences may not be available. By substi-
tution for the forward differences in terms of central differences, Newton’s
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forward-difference formula can be transformed into more suitable

formulae, which however may also be obtained directly as follows

(u) Everett's interpolation formula

7. This formula expresses the interpolate yp m terms of even differ

ences ofya and yv so that we assume an expression of the form

yp =* (a0+o,8t +o.8
1 + )y0 +(l'0+bi8

l + {i
I S

4+ )yx (9)

Now

yp ~EPya ~(l+Ay>y0, y, = (l+A)y0 5* = A"(l+ A)-*

Thus (l+A^tro' j(“»+*o+ 6oA)+(«i + ^i + &iA)Y^;

+ (at +6I +6.A)^-~ji+
J
y0 (10)

Multiplying by (1 4- A)*, expanding the remaining denominators and
equating powers of A**+1 and A**41

,
we obtain the relations

where q «= 1 ~p Then

+ra,+!£±!Mci!ii,lt
(p+sup+iipr^iHf-2)

t,r +

(13)

This formula can also bo obtained by expressing yp in the form

Vp - E(q)y0 + E(p)yJ ,
where F(p) = (£>

-

E-v)!(E - E- 1
)
and expanding

F m powers of 51

We wnte (13) in the form

yv - (i-f>)yo+^*8s
yo+£« s'yo+

+pyt+

F

t S
1
y1
+f'4S*y,+ , (U)

where Et Ft, Et , Ft,
etc

,
are the Everett coefficients The chief advantage

dmvwg feam. tha use <i£ Ihre.wtt.’s. fexuujJa. is, that onJLy v.t'ifV&tK
ences need be tabulated Also the interpolating polynomial ofdegree 2n-f 1

reproduces the function values at xx+Itxn, ,x^, since these are centred
about the interval (r0 ,

x,) the function is thus usually represented more
accurately in this interval than it would be by the interpolatingpolynomial
of degree 2n + 1 associated with either (7) or (8)
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(iii) Bessel’s interpolation formula

8. This formula expresses yp in terms of mean differences of even order

- ,l

yi
and odd-order differences S2n+1 ?/j. It is written as

yP = yo+p8yi +B^-y0+8hJl)+B3S
3
yi
+Bi (S

i
y0+8i

y1 ) + ...
>

(15)

where the Bessel coefficients B„, B3 ,
etc., are readily obtained with the use

of Everett’s formula and relations of the form

E2 8*y0+F2 8*yi = UE2+K)(8-y0+ 8hy1) + b(^-E2)8
a
yi , (16)

so that Bo = l{En + Fo), Bs = I(I\-E„), and similarly for coefficients of

higher orders.

Bessel’s formula is the simplest to use when differences of order greater

than the third are negligible.

Examples of the use of interpolation formulae are given in Inter-

polation and allied tables [167] and in various text-books. The notation

used here is the same as that adopted in this latest edition of Interpolation

and allied tables, where, in particular, an account will be found of the use

of these formulae for inverse interpolation, that is, the determination of the

value of xp corresponding to a given value of y.

FORMULAE FOR DERIVATIVES

(i) Backward- or forward-difference formulae

9. Formulae giving the derivative at a pivotal point in terms of the

backward or forward differences at that point can be obtained immediately
from the relations between D, A and V. With backward differences we find

hy'
0 = hDy0 = - {log (1 - V)}?/0

= (V + |V 2+ iV3 +...)?/0 , (17)

and with forward differences we have

%o = hDVo = flog (1 + A)}y0

= (A-l-A2 + iA3 -...)y0 . (IS)

The coefficients in these expressions decrease slowly and it is preferable
to use central differences if they are available. If a derivative is required
at the penultimate point of a table, one of the following formulae may be
used to obtain better accuracy:

hy'
0 = hDE~1

y1 = -(l-V){log(l-V)}y
1

= (V-!W-|V3 ~...)yv

hl/o ~ hDEy_x — (1 + A) (log (1 + A)}?/_
1

= (A + |A2 —|A3 + . ..)y_x .

(ii) Central-difference formulae
1

'i'-iP
16 re^on between the second derivative at a pivotal point and

he differences centred on that point is obtained immediately in a similar
way. We find

h 2y”
0 = h~D~y

0 = (2sinh-1 |S)2
y0

= (S2-^+^S«-...)y
0 .
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In the case of the fast derivative, however, the senes obtained would be

in terms of the odd-order differences 5*"* 1

y0 which do not actually appear

m the difference table The series required will involve mean differences

of odd order p$*'*eiy
0
and this is obtained by introducing the factor p

into the numerator, and the corresponding factor (1 + £S!) 1 into the

denominator, in the course of the development This device is frequently

of use We have

htfc = hDy9 = (2sinh-1 }S)y0

= (l+j8*)-M2sinh-4S)pya

~<p8-£pS*+^P$s - )y„ (21)

Another formula, used in a numerical method for solving first-order

differential equations (Chapter 9, § 16), connects the mean of the denva
lives yj,yj with the mean differences at the half way point, and is given by

lA{y» +y{) = tyy» =
= (2sinh-l JS)(l + iS*)J y|

= (8+*5»-Tb5s + )y, (22)

Other formulae to suit special circumstances can be obtained by a
combination of these methods [167}

FORMULAE FOR NUMERICAL INTEGRATION

(i) Central-difference formulae

11 By reversion of the central difference formula (22) for the mean
first derivative at the half way point, a senes is obtained expressing the

first difference in terms of mean even differences of the derivative, given

by
$y, » >8yJ (23)

This gives immediately an expression for the integral taken over a single

interval, m the form

-lV/*8
I+ 7Vtp8‘ - )y, (24)

An integral over an extended range may be evaluated by direct sum
mation of values calculated from tins formula, guarding figures may be
retained to offset the accumulation of rounding errors Alternative!} , the
summation may be performed analytically, giving the formula

ij%dx = (iy0+ y, + + y„.j + £y„)

- - MSy
fl
) +Ao(p5 syB - pS*y0 ) - (25)

Tha baa tcirnv xfi Vbe wdA known iirqiKsi/i&rA ru'd:, together wAlti w
difference correction associated with the ends of the range of integration

12 If a sequence of such integrals is required for successive values of n
tn the upper limit in the integral of (25), it is convenient to use the first

sum S' 1
,
defined by the relation
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Tlie formula for the indefinite integral is obtained immediately as

i

|
"ydx = {yS-1 -rsyS +rio^3 ~ •• •)!/«• (

2")

To obtain the definite integral from x0 to x„, the arbitrary constant in the

first sum must be chosen so that the integral vanishes at the lower limit.

Thus + = (i+i^pS— y^g-fiS
3 -}- ...)y0 - (28)

(30)

13. A formula which is used extensively in the integration of second-

order differential equations is obtained by reversion of the series (20) for

the second derivative, and is given by

322/o= (
1+*S2-^o S4+-) /̂ o- (29)

(ii) Badacard-difference formulae

14. Reversion of the two formulae (17) and (18) for the derivative

in terms of backward differences leads immediately to the relations

= (i + 2^+A^2+
Vy0 = (i-iv-AV2 -...)^..

The first of these is used as a ‘predictor’ formula and the second as a

‘corrector’ in the Adams-Bashforth process for integrating differential

equations (Chapter 9, § S).

(iii) Gregory’s formula

15. The central-difference formulae should be used wherever possible,

since they are the most rapidly convergent. In some cases, however, the
integrand may not be readily computable outside the range of integra-
tion. In such cases Gregory’s formula, which uses only available differences,

should be applied. It is obtained by combining the second of (30) with
the corresponding expression for Ay0 ,

given by

Ay0 = (l+|A-tWA2 + ...)7;y’. (31)

We then find Gregory’s formula, expressible in the form

d*.
ydx = (^+yi + --+ y„-i+ hfn) - r?(Vy7!

- Ay
0 )

-A(V2
y„ + Az

y0) -^(V3
y„ - A3

y0 )
- . . .

. (32)

(iv) Simpson’s rule

16. A useful central-difference integration formula is obtained if the
integral over two intervals is expressed in terms of the central differences
at the middle pivotal point. We find

1
',Xl

u J x
‘ y** =WiD)~ly

x
- im-'y-j

-02>)-V8yo

= (2sinh-4S)-i(l+iS2)iSy
0

= (1 +'6^“—4oS4 + ...)y0 .
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In particular, if fourth and higher differences are neglected it can be
written m the Lagrangiatt form

ydx = - (yj + -tyo+y-i), (34)

which is well known. a3 Simpson s rule

Bickley [49] has listed a number of formulae of this type in which
differences above a certain order havebeen neglected and the rest expressed
m terms of pivotal values These formulae, involving equally spaced

abscissae, are called the Neuton Coles formulae Unless the differences of y
are formed it may be difficult to obtain an accurate estimate of the result

ing error If the accuracy required can be assured however, this type of

formula is valuable and particularly easy to use with automatic computers
Other integration formulae are considered m Chapter 14

DIVERGING DIFFERENCES

17 It must be emphasized that the formulae given in this chapter can
onlj be expected to give accurate results for functions which are ‘well

behaved' in the sense of § 1 A brief account of the effects of using

dnergmg differences is given bj Fox [76 page 27]
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8

CHEBYSHEV SERIES

INTRODUCTION

1. The formulae of the previous chapter which involve the explicit use

of finite differences, are not, in general, well suited to automatic computa-

tion. We may recall, for instance, that Table 1 of Chapter 7 gave sufficient

information for the computation of sin a; to four decimal places for any x

in the range (0, \-n) with the aid of a standard interpolation formula. In

conjunction with other finite-difference formulae, it will yield values of

integrals and derivatives, though not necessarily to the same accuracy.

However, such calculations would require a somewhat elaborate computer

programme, and the user of an automatic machine seeks a more convenient

procedure.

2. Basically the same information as that given by the above-mentioned

table of sin re, is given, to similar accuracy, by the approximate relation

sin^=M336T
1(.'c)-0-13SlT3(a;) + 0-0045T5(.r) (- 1 1), (1)

where Tr(x) is the Ghebyshev polynomial of degree r in x, defined by

T
t
(x) = cos (rcos-1 a;). (2)

The representation of sin Ittx is thereby achieved with the storage of only
three numbers, the coefficients of Tr{x), T3{x) and T5(x) ; the right of (1)

may then be readily evaluated, as we shall show later. The expression (1)

may also be integrated or differentiated, though again with some qualifica-

tion regarding accuracy.

The desk-machine user is seldom attracted by the compactness of (1)

;

he usually insists on seeing the function values and differences in order to
ascertain at a glance the behaviour of the function, and to obtain a reliable
check against isolated computing errors. However, for an automatic com-
puter, which is much less prone to isolated errors, the Chebyshev series
representation is preferable.

In this particular example, much of the advantage could also have been
gained by use of the approximation

sin i-n-x= T5708.T— 0-6460.r3 -t- (M)797.t
5 — O-OOTZa;7

(3)

obtained by truncating the Taylor-series expansion about x = 0. We note
that this approximation has one more term than (1); if the Taylor series
is truncated after the third term, its maximum error is larger." This is a
simple example of the general property that in a given finite range, an
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approximation in Chebyshev senes of prescribed degree represents a

function of a real variable more accurately than a truncated Taylor senes

of the same degree (In the special case where the function happens to be
a polynomial of the required degree the Chebyshev and Taylor representa

tions are equally accurate each being a rearrangement of the other

)

Moreover any function which can be represented by an orthodox single

entry table can. be represented by a single Chebyshev senes whereas a
Taylor senes valid over the whole tabular range may not exist

BEST POLYNOMIAL APPROXIMATION"

3 The economy achieved by expansions m Chebyshev senes may be

regarded as a consequence of the following theorem

Let f{x) be an arbitrary single valued function defined in the closed

interval (a 6) and suppose p„(x) to be a polynomial of given degree n such

that the deviation c„(ar) = f(x) -pB(x) attains its greatest absolute value L
at not less than n + 2 distinct points m (a b) and is alternately -f-L and
—L at the successive points Then pn(x) is the best polynomial approxima

tion of degree n to f(x) in (a b) in the sense that the maximum value of

|eB(x)| is as small as possible

[For let qn(x) be a better polynomial approximation

Then tn{x)-r/K{x) = gH(x)—pn(x) \s evidently a polynomial of degree not

greater than n which is alternately positive and negative at the n+2
(or more) maxima of |«„(x)| since at these pomts |

J

7„(x)!<|«n(x)[ by

hypothesis This is clearly impossible and so the theorem is proved ]

It should be obsen cd that the theorem docs not assert the existence of

pn(x) The conditions are quite reasonable however in that thej imply a
set of n + 2 equations for L and the n + 1 coefficients ofpn(x) By similar

arguments we can show that if p„(x) exists it is unique

4 The relevance of Chebyshev polynomials to this result is that in the
closed interval (-1 1) the polynomial Tr{x) attains its greatest absolute

value (unity) at r+I pomts including the end points with alternating

sign This is evident from the definition (2) and is illustrated by the
diagrams of T^x) and 7i(x) opposite which serve as typical examples of

odd and even-order polynomials respectively The turning values of Tr(x)

occur at the points

x, cos*’ (8 = 01’ r) (4)

and the zeros at

x, = cos^ii^ (j = 0 I 2 r- 1
) (j)

This property of Tr(x\ together with the theorem of § 3 shows that if

J(x) is an arbitrary polynomial of degree n + 1 the best polynomial
approximation of degree n m ( — 1 1) is

P«(*) /(*) — ®b+i J!»+l(*) (6)

where an+,
is a constant chosen so that the coefficient of x"+1 on the right

of (6) vanishes
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5 No simple explicit expression is known for the best polynomial

approximation of given degree to an arbitrary function f(x). Suppose,

however, thatf(x) can be expanded in the form

f(x) = iaQ + 7[(x) + a,T2(x) + ... ( - 1 < *< 1 ),

which we shall henceforth denote by

/(.*)== SXTO (
?

)

r=0

where the prime indicates that the first term of the sum is to be halved.

T,(*> W
Figure 1

Then, provided that this series converges reasonably rapidly, the partial

sum

i'arTr{x)
r=

0

will be a good approximation to the best polynomial of degree n in ( — 1, 1 ),

for the dominant term of the truncation error, whether it be a„+1 Tn+1(x)
or a later term, has the form required by the theorem of § 3. The supposi-
tion that the series (7) converges rapidly is often thoroughly justified;
indeed Lanczos [54] has shown that such expansions are the most strongly
convergent of a wide class of expansions in orthogonal polynomials.

CONNEXION WITH FOURIER SERIES

G. The problem of expanding /(x) in a Chebyshev series of the form (7)
is essentially the same as that of expanding an arbitrary function in a
Fourier cosine series. For if we set x - cos 9, then (7) becomes

CO

/(cose) = S'a r cosr0 fg)
r-0 v '
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Sufficient conditions for this expansion to exist are that /(cos 9) is a
continuous function of 6, and has a finite number of maxima and minima

in (0,w), these are fulfilled if/(z) is a continuous function of x and has a

finite number of maxima and minima in (
— 1, 1)

For example, the function %/{4x*+ 1) may be expanded w the form (7),

whereas x sin (l/*) may not The former illustrates the fact that a function

can often be expanded m a Chebysher senes in an interval in which no
single Taylor expansion converges

7 Although an expansion in Chebyshev series is essentially a Founer
cosine senes, it has an important property not shared by the general

Founei senes The expansion (7) represents a function /(cos 6) which is

naturally penodic
,
/(cos 8) is at least as well behaved when regarded as a

function of 6 in (—co,oo) as is f(z) regarded as a function of x in (—1, 1)

Wo may reasonably expect that expansions of such periodic functions in

senes of tngonometnc functions are more rapidly convergent as a class

than similar expansions of non penodic functions, and this is indeed the

case

ADEQUACY OF CHEBYSHEV FORM

8 We may summarize §§ 1 to 7 by restating that a truncated Chebyshev
senes is normally a good approximation to the best polynomial represents

tion in the sense of § 3 In any given case the best polynomial approxuna
tion of specified degree n may be found by solving the n + 1 equations

obtained bj equating to each other, with alternating signs, the »+2
expressions for the maximum deviations the truncated Chebyshev scries

may be used to provide a first approximation in an iterative procedure
Alternate ely, wc may usb senes which gn e the coefficients m the best

polynomial in terms of the coefficients in the infinite Chebyshev senes
Homecher [58] has given expressions for the leading terms in such senes,

and these terms are often sufficient in practice to give the best polynomial
to the required accuracy see al«o [59]

However, it transpires that in practical applications the truncated
Chebyshev senes is usually very clore to the best possible polynomial, the

refinements nece'san to improve it are seldom worthwhile

PROPERTIES OF CHEBYSHEV POLYNOMIALS
9 The following properties of Chebyshev polynomials may be denved

from the definition (2), as in [54]

~2xTr{x) + Tr_i {x) = 0 (9)

KM (r-O)

l m*) (r= 1)
(10)



and. for n > 0 and r, s ^ n,

n

S'
3=0

Tr(Xj)Ts(x} )

'n (r = s = 0 or n)

<\n {r = s 0 or n)

0 (r s).

(
12

)

In (12), Xj - cos (Trjjn) and 2" denotes a finite sum whose first and ]ast

terms are to be halved, so that

£" Uj = lu0+ u1+u2+ ... + (13)

3=0

10. Chebyshev polynomials may be defined for ranges other than

(-1, 1), and similar properties derived for them. In practice, however, it

is usually more convenient to convert any finite range to
(
— 1,1) by

linear transformation of the variable. An exception to this is the range

(0, 1), which is of sufficiently frequent occurrence to merit a notation for

its own Cliebyshev polynomials, namely

T* (x) = Tr(2x — 1) = cos {r cos-1(2x— 1)}. (14)

Equations similar to those numbered (9) to (12) can be derived without

difficulty. We also have

T-r (x*) = T2r(x). (15)

11. Explicit expressions for the first few Cliebyshev polynomials are

T0{x) = 1, Tx(x) = x, T2{x) = 2a;2 - 1, T3{x) = 4a;3- 3a;,

jP4(x) = Sx4— Sx2 + 1 ,
T5(x)

= 1 6a;5 — 20a;3 + ox,

T6(x) = 32xG — 48x4 + lSx2 — 1, (16)

and

?'o(x) = 1, T{(x) = 2x — 1 ,
T*(x) « 8x2- 8x + 1

,

Tl(x) = 32x3 - 48x2 +1S.X-1, T*(x) = 12Sx4- 256x3 + 160x2 - 32x+ 1,

Tl(x) = 512x5 — 12S0x4 + 1120x3 — 400x2 + 50x — 1. (17)

Similar expressions for higher orders, up to T12(x) and T*
0(x), may be

found in [54],

CALCULATION OF CHEBYSHEV COEFFICIENTS

12.

The coefficients in the Chebyshev expansion of an arbitrary function

/(*) = Ii'arTr{x) (18)
r—0

can be obtained in various ways, the most obvious being suggested by the
orthogonality relation (11). Thus we have

2 f
+1f(x) TJx) , 2 f*

Qr ~^
J-1 7(1-

x

2
)

dx =
^Jo

/(cos0)^r0d0. (19)
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In practice this formula is seldom used to evaluate the a„ but it does

yield the following upper bounds, discussed in § 1

7

o ir 4 xr

|o0|<2J/, I |cosr0|<f0 = (r>0), (20)
v Jo 7T

where il is the maximum value of |/(r)j m (
— 1, 1)

13

A more generally useful method of evaluating the coefficients

is based on the relation (12) Let us define quantities a, for r = 0,

1,2, ,n by

«, = | S'
(2,)

where x

,

*= cos (»rj/n)

Iff(x) is a polynomial of degree n or le«s we hax e a, = a
f1
by virtue of

(12) For general /(ar), however, this relation is only approximate, with

the aid of an obvious extension of (12) we can show that

- 2

n
jE'a, £' («)

- + «..-.+«,.« + «.-, + (
23 )

Provided that n is chosen sufficiently laTge, the coefficients a, for «>n
and hence the differences a, -a, for all r, will vanish to any presenbed

accuracy Yl e then have, within the limits of this accuracy,

/<*)=* EXW (24)

where

14 There is another method for calculating ar
which may be preferable

when/(x) satisfies an ordinary linear differential equation this is described
in Chapter 9 §§ 23 to 25

SUMMATION OF CHEBXSHEV SERIES

15 YVe now consider the problem of evaluating the Chebyshex series

(24), with given numencal coefficients, for an arbitrary value of ar in ( —1,1)
A simple example of such a senes is given in the relation ( 1 ) One way is to
replace the polynomials Tr(x) by their expressions (1 G) in powers ofx and
then rearrange the result m the form

/(x) = c0 + cJ x+clx
i + +cn x

n

Given the coefficients cr we may evaluate /(x) for anj x m (
— 1,1) bj the

process of nested multiplication (Chapter 6, § 1) Essentially this con«i«ts

of evaluating successively the quantities d„ dn ,d0 defined b}

dr dn+1 = 0 (26)

The required result is gn en bj m = d„
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16. An alternative procedure avoids this rearrangement; f(x) is

evaluated directly from the numerical values of the Chebyshev coefficients

a
r
by recurrence. We form successively bn , bn_v bn_2 ,

...,b0 from

br
— 2xbr+1 — br+2+ ar, b-n+i = ^«+2 = ffl)

Then
f(x) = Ub0-b2). (28)

In [57] it is shown that although the sequence of br may be subject to

an appreciable building-up error, the resulting error in f(x) is small.

17. For automatic computation, the first of these methods is usually the

faster, because its recurrence relation has one term fewer. On the other

hand, it suffers from the disadvantage that the coefficients cT are functions

of
;
a more complete notation for them would be cn> r . A decision to use

a lower order of approximation would require the evaluation of a com-

pletely fresh set of coefficients, whereas in the second method we merely

truncate the series (24) earlier. As a consequence, the publication of

‘machine tables’ of universal applicability would require a separate set

of polynomial coefficients c
r
for each n, compared with just one set of

Chebyshev coefficients ar .

A second reason for preferring the Chebyshev series to the rearranged

series is that the a
r
are bounded, as we saw in (20). The coefficients cr ,

in

contrast, may become excessively large, thereby restricting the accuracy
obtainable with a given word length.

For example, the Bessel function </0(10r) may be represented in (—1,1)
to nine decimal places by the first thirteen terms of its infinite Chebyshev
expansion. The coefficients a

r
in this expansion, obtained by using the

method of Chapter 9, §§ 23 to 25, are given in Table 1 together with the
coefficients cr in the rearranged polynomial of degree 12 in x1

.

Table I

r
( - )

r
«r (-) r

<v r l-)rOr (~)rcr

0 0-06308 1226 1-00000 0000 7 0-00569 8082 240-10331 7504

1 0-21461 6183 24-99999 9868 8 0-00067 7504 93-48251 6480

2 0-00433 6020 156-24999 2936 9 0-00006 0947 28-41391 9232

3 0-26620 3654 434-02762 5984 10 0-00000 4309 6-68205 0560

4 0-30612 5520 67S-16663 1936 11 0-00000 0246 1-11987 9168

5 0-13638 8770 678-15586 5600 12 0-00000 0012 0-10066 3296

C 0-03434 7540 470-89281 6384

We see that although the two expressions are exactly equivalent in that

12 12

J0(10.r)= = 2 crx
2r

,

r=0 r=0

there are three more decimal figures (or eleven more binary figures! in the
greatest |cr |

than in the greatest |ar j.
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18 For evaluating Chebyshev senes of the forms

/(*) - S (29)

/(*) *
T
S'*rJW*), (30)

/(*)=
r—

0

(31)

the necessary modifications of the recurrence method are

of the symbol x on the right of (27) by 2x— 1,2**— l,2x*

and m the caso of (31) only, the replacement of (29) bv

the replacement
-1 respective!}

,

/(xJ-x^-bj) (32)

INTEGEATION

19 Given an expansion of the form (7) we may obtain a corresponding

expansion for the indefinite integralj*/(x)dx by application of (10)

Thus

Jtw*- “““ +
aj

Y*^r+,|j(“r - «
r
i

(33)

where

(34)

and A0 is determined by the lower limit of integration As an example we

evaluate the expansion forJVdr, starting with four-decimal values of the

coefficients ar m the expansion of e* The analytical formula for the
coefficients, obtained from (19) is ar = 2/r(I) where I, is the modified

Bessel function of order r

Table 2

r a, A r

0 2 5321 —
1 1 1303 1 13030

2 0 2715 0-27150

3 0 0443 0 04433

4 0 00a5 0 00a48

6 0-0005 0 00055

6 0-0000 0 00004

27,(1)

2 53213

1 13032

0 27150

0 04434

0 00a47

0 00054

0 00004

We observe that there is a gain in accuracy in forming the A, from the

a,, consequent upon the division by 2r For further details, including a
comparison with other methods for numerical integration Bee [134]

78



DIFFERENTIATION

20. Tlxe problem of differentiation is the inverse of that of § 19. Given

a set A 0,Av A 2 , ..., we require the coefficients aQ,als az, ... . They can be

found by using (34) in the form

ar-i — ar+1+ 2rA r. (35)

If An is the coefficient of highest order which is not negligible, we take

an = an+l = an+z — ... = 0, and then find an_lt an_2 , ...,a0 by successive

application of (35). Tlie factor 2r is now multiplicative, and thus gives

rise to the loss of accuracy which invariably accompanies numerical
differentiation. It is advisable if possible to retain extra decimal places

in the coefficients of high order, to minimize this loss.
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9

ORDINARY DIFFERENTIAL EQUATIONS
INITIAL VALUE PROBLEMS

INTRODUCTION

1 Ordinary differential equations wlueh arise in practical problems,

even when linear and of apparently simple form, can rarely be solved

analytically in terms of functions already tabulated Even if an analytical

solution can be found the labour of calculating values of tho solution for

many values of the independent variable may be considerable For

example the simple equation

has the solution

dV _
dx I — x*

y = exp (tan-1
*)

(l)

(-’>

where A is chosen to fit some extra condition such as y = l when X = 0
The systematic tabulation of y for a range of values of x is not a trivial

undertaking In particular tables are needed of tan lx and e1, and
interpolation is necessary m the latter

The apparently trivial addition of the term x to the right of (I), giving

-'J

dx 1 — 7* (3)

increases considerably the complexity of the analytical solution which is

now

V = (irf)
e5P (

tan 1 *) exP ( - tan-1 x) dx+ dj, (4)

where A is chosen to fit an extra condition Tho e\ aluation of this expres
sion involves not only tho extensive use of mathematical tables but also

numerical quadrature

Other methods of solution, Buch as the expression of y as a power senes

y ~ Xc(a 9
+a

l
x+a

l
xl+ ) (5)
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are practicable in only a small number of cases, and may lead to a large

amount of work.

2. To overcome these difficulties various numerical methods have been

developed. Some are graphical, while some use crude finite-difference

approximations to derivatives, and no great precision can be expected

from such methods. Most of the methods described in this and the follow-

ing chapter, however, use formulae which are accurate within prescribed

limits, taking into account all significant terms.

The method selected to solve a given differential equation depends

largely on the supplementary conditions winch specify the particular-

solution required. These conditions are commonly given either at one or

at both of the end-points of the range of integration. For example, in the

case of a linear second-order differential equation, two supplementary

conditions are normally required to specify a solution. In this case the

numerical values of the required solution and of its derivative may be

given at one end-point
;
alternatively the numerical values of the solution

may be given at both end-points. The former is an example of an initial-

value problem, the latter of a boundary-value problem
;
the remainder of

this chapter is devoted to methods for solving initial-value problems,

boundary-value problems being considered in Chapter 10.

3. When all the supplementary conditions are given at the same point,

it is convenient to solve the equation using a step-by-step method,
numerical values being calculated at successive pivotal points, equally
spaced at an interval h. Most step-by-step methods use finite-difference

formulae, but first we discuss a method based on the use of the Taylor
series.

THE TAYLOR-SERIES METHOD

4.

This method is, in theory, applicable to an equation of any order.
As an example, consider the case of the second-order equation

y" = f(x=y,y')-
(
6

)

If the function y and its derivative y' have known values y0 ,
y'
Q at x0 ,

then
Vo can be computed directly from the differential equation (6). Moreover
differentiation of (6) with respect to x leads to the equation

M+M,
dx &y'

iT
<1

(?)

from which y”
0 can be computed, and so on for higher derivatives. It is

then possible to compute the values yx,y'x , of y,y' at the next pivotal
point x

x = x0 + h using the Taylor series

yi = yo+hy'0 +-^yl+^y"+..., (8 )

y[= y’o+ hy’0 .
(
9

)
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This process may then be repeated vn order to advance to the point *,

First, however, it is usual to cheek the previous step and calculation of

the derivatives by applying the formulae

s'« = yi-*yi+§iyI-|iyT+ . ooj

y*
0 = yi-fyl+lryl- l”)

5 In numerical practice it 13 usual to express the senes in terras of

reduced denvatiita r*s!~y{n', retaining one or too extra figures in the

reduced derivatives, and calculating the senes m the forms

y0 -(yi+tJ+t«+ )-(Tl+ Ti+ )

y*>= {yi+**+Ti+ )+(t{+t5+ ),

t‘ = (t1+ 3t? + 5t»+ )-(2tJ + 4t}+ ),

T*“ H+Sii+M* )+(2t! +4t i
+ >

6 This method has several advantages A large interval can often be

used, it can be applied, at least theoretically, to non linear equations, and

no special starting procedure is required, an added advantage when an
automatio computer is to be used, though the disadvantage of having to

use a special starting procedure should not be exaggerated On the other

hand, the denvatives have to be computed, and this may be difficult

unless the equation has a simple form such that a recurrence relation for

the denvatives can be readily established For automatic computation it

certainly implies extra programming
The method has been successfully applied on a wide vanety of

automatio computers to the equation

p(a)y'+g(*)y + r(x)y = 0 (13)

where p, q and r are quadratic functions of x In tins case there is a five

term recurrence relation between the denvatives

PREDICTOR CORRECTOR METHODS

7 These methods are based on finite difference formulae, but use them
in their Lagrangian form In the case of the first order equation

yW(*.?), <n)

the method consists of advancing from the point x„ to tho point x„+1 by
means of a quadrature formula which does not include the unknown
denvative yj,+1 ,

when the latter has been determined with the aid of the
differential equation, the result is corrected by the application of a more
accurate formula



For example, the ‘predictor formula

Vn+l ~ Vn + hH^y’n ~ * ®Vn-l+ ^Vn-z) (^)

may be used to determine an approximate yn+1 . An approximate y'n+J

is then computed from the differential equation and a more accurate

Vn+\ calculated from the corrector formula

yn+

1

= 2/n+TS^(%n+i "f
—

2/„_i)* (16)

From this result y'n+1 can be recomputed from (14) and yn+1 from (16), and

so on until there is no further change.

Similar methods may be applied to equations of higher order. A variety

of predictor and corrector formulae have been given by Milne [63].

These methods are simple to apply but they are of limited accuracy

unless a small interval is used; also they may be unstable (see § 27). From
the point of view of automatic computation they suffer from the added

disadvantage that a special starting procedure is needed. This will usually

mean calculating the first few values with the aid of the Taylor series.

8.

The classical method of Adams and Basliforth may be regarded as a

predictor-corrector method which makes use of formulae involving back-

ward differences. For first-order equations the formulae are given by

Vn+i = 2/„ + ( 1 + l-V +^V 2 + f

V

3 + . . . 1 hy'n (predictor)
, (17)

Hn+i = Vn + (1 -tv- in?V
2-ikV3- .-)hy'n+1 (corrector). (18)

Higher-order equations are solved by repeated application of these

equations, though the predictor formula need only be used in the first

integration of the derivative of highest order. It may be noted that (17)

and (18), truncated after V2
,
are identical -with (15), (16), respectively.

Though there is no truncation error in this method, so that it may be
expected to be applicable at a larger interval than those involving
Lagrangian formulae, this advantage is offset by the large accumulation
of rounding error caused by the slow decrease of the coefficients. For
automatic computation this method has little merit; apart from the usual
disadvantage of requiring a special starting procedure, the use of a slowly
convergent series of differences would make heavy demands on the store.

CENTRAL-DIFFERENCE METHODS

9. Central-difference formulae have more rapidly decreasing coefficients
and their use is preferable for accurate work with desk machines. In the
methods based on these formulae, in contrast to the methods already
described, the quantities used in prediction or extrapolation are not all
available when required and must be estimated and afterwards checked.
Procedures for first-order and second-order equations are given in some
detail.

The first-order equation y' = f{x, y)

10. The recorded quantities are y and Thy' and the table shows the
situation when values of yn and 2hy'n have been estimated but not verified
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of corrected Horizontal dashes denote recorded quantities

*}h y 8* 8* 2hi/ 8* S«

n+1

Computation then proceeds in the following steps

(i) Estimate S*(2hy'H) and Sl(2hy'n ) denoted by crosses m the table

(u) Calculate yB+1 from the extrapolation formula

y»+i 53 (l + «s*~-T5Ss* + )~ky'n (19)

(ui) Compute 28yB+, from the differential equation, thus correcting the

estimate of S*(2AyJ,)

(iv) Calculate 8y„_, ^om th0 quadrature formula

&y« W»-,. (20)

thus obtaming a check or correction to the previously extrapolated y„
(v) Correct 2ht/n and repeat the cycle if necessary

The second order equation y" = f{x,y,y')

11 The recorded quantities are hero y, 2hy' and 4A*y', and the table

shows the situation when tentative values of yn 2hy'n and 4A*y* have
just been recorded

ar/A y 81 8‘ 2hy 5’ 8* 4A*y* 8* 8«

n— 3 — — — — — — —

n— 1 —

n —

Computation then proceeds in the following steps

(0 Estimate S*(4A*y^) and 54 (-4A* t^), shown by crosses in the table
(u) Calculate 8*t/B ,

hence building up to an estimate of yn+„ from the
formula

8>Jf„ - J(l+*S ,-rfiSi + )«V. (21)
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Complete the differencing, obtaining in particular S3 2/„_i for use in the

next step.

(iii) Check or correct the value of 2hy
,

n_1 ,
so far only extrapolated, from

the formula = (22)

(iv) Calculate 2hy'n+1 from the extrapolation formula

2hy’n+1 = 2fo/n_1 + (l+&*-jh8*+ ...)4h*y'n. (23)

(v) Calculate 4hz y"
n+1 from the differential equation and complete the

differencing, correcting the original estimate for S2(47t2y"). Repeat the

cycle if necessary.

12. Though in theory there are no truncation errors it will be noted

that a check on the estimated fourth difference is not available until a

later stage, and it is advisable to have an interval small enough for the

estimation to be performed correctly within a few units. Also it has been

assumed that sixth differences are negligible: their inclusion complicates

the process.

These methods, or modifications of them, have been very extensively

used in the computation of planetary and cometary orbits. They are,

however, in many cases inferior to the methods described in the next

section and they are not suitable for automatic computation. Apart from
the minor disadvantage of requiring an alternative starting procedure, the

retention of large numbers of differences makes heavy demands on the

store and the estimation process is difficult to programme.

DEFERRED-CORRECTION METHODS

13. The finite-difference methods so far described all use formulae
which are properly classed as integration formulae. Another class of

methods uses differentiation formulae. Only the function and its differ-

ences, but not its derivatives, are recorded. The methods are particularly

suitable for linear equations.

The linear second-order equation y" +f{x)y' -\-g{x)y = k(x)

14. The derivatives are replaced by central-difference formulae, of
which the first terms are expressed in terms of pivotal values and the
remainder collected to form the difference correction Cy. Then the following
equation, the recurrence relation, is obtained and must be satisfied at the
pivotal point r

:

(
1 + Wr)2/r+i-(2-7i2 Srr)yr+(l-yt/r)yr_1+ (7yr = h*kr. (24)

The difference-correction operator is given by

C = (-XV8* -...) + hfr( -|/*S
3+^8*- . .

.
)

. (25)

If two initial values y0 and y1 are known, and the difference correction is
everywhere ignored, successive pivotal values are calculable from the
recurrence relation to form a first approximation 7/

(1 >. From the differ-
ences of?/' 1

' values of Cy?\ approximations to those of Gyr, are calculated
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and inserted in the recurrence relation from which better approximations

to the y, are obtained The process is repeated until further changes m yt
are negligible

After the first use of the recurrence relation the formula

(1+WrUr+l-V -h'9rUr+ Wr) *>r-
1+ = 0 0

(20)

provides corrections ij to the first approximation y
(I) The advantage of

calculating the correction rather than the second approximation is that

fewer significant figures need be retamed

There is no estimation or truncation and a large interval can be used,

the convergence of the method is rapid, more than two cycles rarely being

necessary Though a special starting procedure is required, it is provided

by the calculation of y, using the Taylor senes The calculation of the fir't

few values of the difference correction requires a knowledge of j/_i,y_t
etc , which should be computed by using the recurrence relation in the

reverse direction

The linear equation y'+/(x)y «= i(x)

15

When the first derivative is absent, the recurrence relation can be

wntten m a form which involves a smaller difference correction, given bv

(1 +^Vr+l)yr+l - (2-tfA7,)!/r
+(l + iWr-l) Vr- 1 + <&,

'

= lM*m +10J.r+ir ,)

C = ri^6»- T^^S8 +

(27)

The linear first order equation y +f(x)y = k(x)

16 Similar methods can be applied to first order equations For
example, if the differential equation is used to substitute for y^j and
y' in the formula

yr*i~y, - 2A(y,+i+yr)+(-T^S
3 + iio5

5 -Tio8 7 + )yf+ ,
(2S)

there results the two term recurrence relation

yr+iV+W„x)-y,(\-\hfT ) + Cyr+i = \h(lr+ hM ),

C —
tV5

s — i2oS
s +y«5S 7—

Betads and other applications of these methods have been given by
Fox and Goodwin [65]

Non linear equations

17 In the case of non linear equations the recurrence relation is also

generally non linear For example the differential equation

y’=ffr y) (30)

can be expressed vn the finite-difference form

fa+:1 2/r+x)} - {2yr +HA7(arf,yr)}

+ {yr—l-A^Vt^V-l 2k-l)} + fyr= 0,

0 *= T4?S*—i^reifS s -f
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The application of Newton’s rule (Chapter 6, § 9) for the calculation of

y is quick and accurate; the quantities 8frjdy used in it also occur' in

the determination of the correction -q which satisfies the linear equation

J
(32)

Further details and apphcations of these methods have been given by

Clenshaw and Olver [66].

18.

The particular equation (30), as distinct from those which are non-

linear in y', can also be solved by using the recurrence relation

lfr+1
~ %r+ 2/r-l+ GVr = Wf(*r’ !fr).

j

G — —^S4 + -^S6— ... . J

(33)

Though the difference correction is much larger than in (31), this equation

is linear in yr+1 , the quantity required. The method is easily extended to

simultaneous sets of equations of the form (30).

19.

These methods are ideally suited for desk machines and they have

also been used very successfully on automatic computers. In particular,

there are often occasions when they are preferable to many other methods
because of their greater stability (see § 27).

THE METHOD OF RUN GE AND KUTTA

20. This method applies to the single first-order equation y' ~ f{x,y)

or to sets of first-order equations
;
hence it may be used for equations of

higher order, which can always be represented as a set of first-order

equations. In advancing one step the function f{x, y) is computed at a
number of intermediate points, the choice of which is to some extent

arbitrary. Those used below are particularly simple and this choice is

frequently made.
If the pointX has been reached and y{X) = Y, we calculate in succession

the quantities

h = 7i/(N, I ),

k\ = hf(X+ -|7i, Y -f

I'a = hf{X + \h, Y + il’i),

k3 = hf(X+h, Y + k„).

Then y(X+h) = y(X) + ^(k0 -j- 2kx + 2fc,+ kz )
with an error of the order h5

.

All processes with an error of this order are called fourth-order processes.
For other formulae see [67], and for further developments [68] and [69],
Methods of this type are not recommended for desk computation since

the frequent calculation of f(x, y) is laborious. They are, however, well
suited to automatic computation : no special starting procedure is required

;

very light demands are made on the store
; no estimation is required and

a straightforward computational procedure is repeated several times. The
calculations are often checked by repetition using a different interval.

21. The extension to the set of first-order equations

Vr = fr(®> 27l> Ifn)
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is immediate and is given by the equations

l
rfl = hMX,Y1 Yi, ,Yn )

Lrl “WX+ ih,Y1+ \Lw r,+ ,Y„ +Uk0).

Lrt = mX+ik,Yl+ llll,Yt+lLsl, ,l n+ il„i), 0'S)

Ln = hMX+Kii + lwTt + lr.

VAX +*) - yr(-3T) + J(irt + 2i„ + 2irt + *„)

A disadvantage of the Runge-Kutta process applied to a set ofequations

is its possible instability (see § 27)

THE METHOD OF DE V OGELAERE

22 This is an interesting hybnd method [70] for solving the second

order equation y
m = f(x,y), in which the first derivative is absent, or a

set ofsuch equations It employs one intermediate point, and the Integra

tton from x, to xr+t is earned out by cy chc use of the equations

2/r+J - Vr + Wr+ilh'Wr-fr-l)

y«..-yr+Ay;+Wr+2A»). (*<*)

yWl ** yr + lMfr + *fr+t +/r+l)

where fr denotes f(xr y,) The neglected terms are of order A‘,A‘,A*

respectively and the method, is in fact comparable in accuracy with the

fourth order Runge-Kutta process The function / is however, computed
only' twice per step

Though at the start it is necessary to know not only y9 y’0 but aNo/_p
this quantity is readily obtained from y_4 ,

given to sufficient accuracy b\

V I = 2/o-^'/o+

(

3?)

SOLUTION IN CHEB1 SJIEV SERIES

23 Two methods which take advantage of the properties of Chebyshet
polynomials have been proposed for linear equations whose coefficients

are polynomials in x Lanczos [6] ( the r method’) finds the coefficients

of a polynomial solution of the differential equation perturbed by a small

multiple t of Tn{x) while Clenshaw [71] calculates directly the coefficit its

of the Chebyshev-senes expansion of the solution The latter method,
described below is often more convenient in practice

Suppose the range ofintegration is normalized to — 1 < x $ 1 We assume
the expansion

y[x) = |«0 + a, Tx{x) +«*Tt{x) + (38)

ioofoxiftvnuAn t^para-tuns fat Vue 4etivAt\ es

y
{,) {z) = $a',;'+a ,t'Tl(x)+a

,

i
,'Tl(x)+ (s = 1,2, ,q) (39)

where q is the order of the differential equation Then from the relation

2 fwt.5aM.Eia
J r+1 r—l
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we obtain
(41)2m<

r
s) = - a^f 1 (r > 1),

a relation which holds for s = 0 if we define a' 0) to be ar.

If, in addition, Cr(/) is used to denote the coefficient of in the

expansion of a function /, and hvice this coefficient when r = 0, then from

the relation

2xTr(x) = Tv_h(x) + Tr+1(x) (r = 0, 1, 2, ... ), (42)

we obtain

and hence

W) = i«n +«&) (I =
(43)

(^\ a<s>
•

/r
=

°>
(44)W) = i|

c(f

If the series (3S), (39) are substituted into the differential equation,

then, using the relations (41), (44) we obtain an infinite set of simultaneous

equations for the coefficients aj.
s>

. These are solved by recurrence, with the

assumption that «j.
s) = 0 for r greater than some suitably large N, to

determine the coefficients a<s) (r = N-1,N -2 , ...) corresponding to one

or more sets of assumed values of the aft (s — 1, 2, ...,rj). The solutions so

obtained are then combined to satisfy the initial conditions.

24. As an example, consider the solution of the equation

xy" + y' + 1 6xy = 0 (45)

in the range 0 < x ^ 1, with initial conditions

2/(0) - 1, 2/'(0) = 0. (46)

This corresponds to the solution of Bessel’s equation for J0{x) over the
range 0 to 4.

The solution is an even function of x and so the Tr of odd order do not
appear in its expansion. Tlius, from (45),

Cr{xy") + Cr{y')+ 16(7r(xy) = 0 (r = 1, 3, 5, ...), (47)

and using (43), we find that

l(a'r+l+ a r-l) + ar+ S(ar+I+ ar-1) — 0 (r = 1, 3, 5, . .
. ). (48)

Equations (48) and (41) could now be used to compute the coefficients.

However, it is simpler first to use (41) to eliminate the a". Equation (48)
implies that

i«-2 + «;- «;-<+2 )

+

(a'r-i -<+i)

+ S(a
r_2 +«r-a r -ar+2)

= 0 (r = 2,4,...), (49)

whence, using (41), we obtain

^(^r—l*h®r+l) "t ®(^r—2 ®r+2) = 0 (?’ = 2, 4, . , .). (50)

Equations (41) and (50) are then used alternately in the recurrence processm the forms

<-i = <+i + 2ra r

Wr-2 = a r+2
— i?'(ar-l + ar+l)

(r = N,N-2,...,2). (51)
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In a typical case we take au = 1 with all higher order coefficients

zero, this leads to the tnal solution given m Table 1

Table 1

Trial Values

0

6
8
10

O,

-1089
+ 7225
-27W
+ 361
- 25

+ I

<+»

+ 11220
-17680
+ 39o2
- 390
+• 20

Final

+ 01003
-0-6653

+ 0 2-190

-0-0332

+ 0 0023
-0 0001

The second condition (46) has been satisfied automatical!} and only the

condition j/(0) = 1 remains This is satisfied by dividing the trial solution

by the constant factor

(\ac~at+at—at+ )
= — 10860 5,

leading to the final values of a, gnen in the table As a check the sum

of the senes at x = 1 is —0 3972, in agreement with the true value

*7j(4) — —0 39715

The precision of the results may always be increased by taking a larger

value of X

BUILDI1.G-UP ERRORS

26

Suppose an attempt is made to obtain the solution y = e~x to the

equation \f ~ y = 0 with the initial conditions y(0) = l,y (0) = — 1 Then
however manv significant figures are kept in the computation, the round

mg error will introduce a small multiple of the unwanted solution e* and,

if the computation is earned far enough this solution will increase to such

an extent that it will eventually swamp the required solution

This phenomenon is known as building up error In the case given it

could easily be avoided by computing in the reverse direction from known
values of e~z and its denvativc for a large value X of x In general,

however, such a simple procedure will not be available, and some ingenuity

is needed to obtain an accurate solution Considerable experience is

required and this section is included merelv as a warning

STABILITY

27

In the previous subsection we have mentioned the difficulty of

obtaining a decreasing solution of a differential equation m the presence

of an unwanted increasing solution Sometimes, although the original

differential equation does not have an unwanted increasing solution, the

associated finite-difference equation does have such a solution In such a

case we say that the method is unstable
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Instability of tills nature may arise in two ways

:

(i) The finite-difference equation may be of a higher order than the

differential equation it represents, and an additional solution so introduced

may be increasing.

(ii) If the differential equation has some solutions which decrease very

rapidly compared with the others, then it may happen that only the latter

are adequately represented by the finite-difference equation, while the

former are transformed into rapidly increasing functions.

28. As an example of the first type of instability, let us attempt to solve

the system

y' = -Ay, 2/(0) = 1, (A> 0 ), (52)

which has the solution y = e~Xx
,
by any predictor-corrector method which

uses Simpson’s rule as a corrector [63], Then

v»+

1

- 2/n—i = ¥(y'„+i + ±y'n + y’n-i)- (53)

From (52) and (53) we obtain

(1 + ;
\A/i) yn+1 + %Xhyn — (1 — %Xh) yn_1 = 0. (54)

The general solution of this difference equation is

y„ = AEl + BE%, (55)

where A, B are arbitrary constants and

Elt Ez = [ - fAZf ± %/(l + rA
2
Zs
2
)]/(1 + ’AA). (56)

The ratio E of consecutive values yn+1 , yn of the true solution is e~Xh
,
and

on expansion E1 is foimd to differ from this only in terms of the fifth and
higher orders. On the other hand

|

E„
j
is always greater than unity, so that

an unwanted increasing solution has been introduced and the method is

in fact unstable.

29. As an illustration of the second type of instability, consider the
equations

y' = - 10y + 62, 2' = 13*57/— 102
, (

57
)

with ?/(0) = |e, 2
(
0

)
= 0. The analytic solution is

y = fe(e-
x + e~19x ), 2 = e(e^- e“19x). (58)

For values of a; greater than unity the second exponential is negligible to
seven decimal places and it might be expected that the equations could
be integrated at an interval of, say, h = 0-2. In fact, if we apply the
Runge-Kutta process (35), starting from x = 1 and retaining two decimals,
we obtain the results of Table 2, winch are clearly incorrect.

Table 2

X 1-0 1-2 1-4 1-6 1-8 2-0

V 0-67 0-55 0-46 0-40 0-41 0-68
1-00 0-82 0-66 0-51 0-29 - 0-28
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The explanation lies in the fact that when the Runge-Kutta process

(34) is used to integrate y" — —Ay, it represents E — e_AA by

Et = I — AA+ §Al k* - JA»AS+ j^.V h*

This is a good approximation for the first exponential, for which AA =* 0*2

but for the second AA = 3 8, so that e~3 * = 0 02 is replaced bj

El = 3 96 In fact this process is stable if AA < 2 8, since
|
jE7j

{ < 1 for

tins range

30 A\ith a large set of simultaneous equations, which m general will

not have constant coefficients and maj well be non linear, it is often

difficult to determine whether or not rapidly decreasing functions of this

type will be present It is essential that the method used is stable for the

interval selected This requirement would sometimes necessitate the use of

an extremely small interval with the Runge-Kutta process, and other

methods are then preferable For example, formula (20) with the difference

correction neglected, applied to the equation y' = — Ay leads to the

approximation

Et

1 — |AA

1 + JAA

and |A<i| is less than unity however large A This method is accordinglj

stable and it could, for example, be used to integrate the equations (57)

quite satisfactorily at the interval A = 0 2

A full discussion of stability problems is outside the scope of this

manual As a general rule it is advisable to test any method on simple

equations such as y' = — Ay If a method that may be unstable has to

be used, particular care must be taken to ensure that the results are

subject to adequate independent checks
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10

ORDINARY DIFFERENTIAL EQUATIONS:

BOUNDARY-VALUE PROBLEMS -

INTRODUCTION

1. In tins chapter we consider the solution of differential equations for

which the supplementary conditions are given at both ends of the range

of integration. For illustration we use the linear second-order equation

y" +/{*) y'+g(*)y = k(x), (U

though the principal features of the methods apply equally to linear

equations of higher order, and to systems of linear differential equations.

DIRECT FINITE-DIFFERENCE METHOD
2. As in the deferred-correction method, described in Chapter 9, § 14,

we replace each derivative by a central-difference formula, of which the

first term is expressed in terms of pivotal values and the remaining terms
constitute the difference correction Cy. This leads to the system of
equations

(l - Ulfr) y>—1
- (2 - h 2

(Jr) ?/r+ (! + Wr) ?/r+1 + GlJr = h~K
(r= 1,2,. ..,71-1), (2)

where

0 =(-AS4+^S6- ...) + Vr(-i^3 +^S5 - ...)• (3)

If we disregard the difference corrections there are n — 1 equations in the
7! + 1 unknowns y0 ,

y

x , y„, ..., yn_v yn .

3. The extra two equations needed to provide a solution are obtained
from the boundary conditions. The simplest and probably most common
case is that in which both y0

and yn are known. In this case we merely
substitute their values in the n— 1 equations, which then can be written
in the form

l--h~<h)y
1 + (l + Wi)i/2 = h2]^ — Cyj — (l — iJifx)yQ,

t
:

1

~Wa) 2/i - (2 - h2
g„) y„ + ( 1 + \hf„) y3 = h2

Jcz
- Cy2 ,

(!“Ws) 2/2-

(

2-/^3) 2/3+ (i + Ws) 2/4
= Wk3-Cya,

^ Wn-2)y„_3— (2— /i
2
g'n_2)y„_2+(l +P/n-2) 2/„_1 = h2kn_z— Cyn_„,

D — ify/n-l) Vn—Z
~ (- h'Un-l) Vn-J = — Oyn_x

— (1 + zhfn-i)yn .
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orm shortened matrix notation as

Ay = d— Cy (5)

Here Cy denotes the \ ector of difference corrections Cyr,
d the remaining

terms on the right hand side, which are known, and A is a square matrix

of special form, given by

6, Ci

a, 6, c,

o3 *3 cs

a»-t ^n-J Cn_j

an-l ^n-1

All the elements are zero except those in the mam diagonal and two

adjacent diagonals This is sometimes called a band matrix of tcidth three

or a triple-diagonal matrix (compare Chapter 3, § 16)

4. In (5) the term Cy is not included in d because its values are not

known in advance, but depend on the y values, so far unknown The
difference correction depends on the size of the interval h, and will be

negligible for sufficiently small h Even for much larger h its values may
not be very large, so that a suitable method is one of successiv e approxtma
tion, and proceeds as follows

(I) In equation (5) a first approximate solution y
{1 > is obtained by

neglecting Cy and solving the equations

Ay<u - d (7)

The difference between y,li and the true solution y depends on the size of

Cy and therefore on the interval h

(II ) We next calculate a correction q l by differencing the y
(l' obtained

from (7), calculating Cy* 1
* (which will be a close approximation to Cy)

and solving the equations

Arh = — Cy<» (8)

The boundary values of rj
l
are of course zero, since y*11 already has its

correct values at these points, and the terms h* l T have been included in

the calculation of «/
<u

, so that the nght of (8) contains only the difference

correction, and the matnx on the left of (8) 13 identical with (6)

( III ) The process can be continued if Ciji is significant we can calculate

a further correction tj, from an equation corresponding to (8), given by

A»),« — Ctj,. (9)

and repeat until there is no further change In practice the cycle rarely

needs to be performed more than twice

5 The calculation of the difference correction, using central differences

as in the expression (3), cannot be performed immediately at points near
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the ends of the range, since central differences do not exist there. It is

clear from equation (2), however, that if any two adjacent values yT, yr+l
are given, we can calculate yr-i and Vr+z directly, writing (2) in the

respective forms

(i — Wr) Vr-i =(2-Wgr)yr -{i+Wr)yr^+WK -Oyr,

(1 + ihfr+l) Vr+Z — (2 — ^ 2
£7r+l) 2/r+l

— (1 — 2^/r+l) Vr+ ^r+1
— ^Vr+lJ

The terms Cy are of course neglected in the first approximation and

included in others. Equations similar to (10) can be used to extend the

solution at each end of the range x
0
to xn ,

providing material from which

central differences can be obtained for use in Cy.

6. The choice of interval h is governed by two factors. First, if h is

sufficiently small for the difference correction to be negligible, then the

matrix A may be of very large order, the labour of calculation excessive,

and high accuracy difficult to acliieve. Second, the interval must not be

so large that the differences do not converge, since the finite-difference

equations then have no meaning : very slow convergence of the differences

may also be inconvenient, involving many repetitions of the iterative

process. These restrictions apart, we can choose any value of h, and it is

usually possible to keep to an acceptable size the number of linear equa-
tions involved.

7. As an example we consider the solution of the simple equation

y"+y~ o, (ii)

with 7/(0) = 0, 7/(1 )
= 0-84147. Equations (2) and (3) become

Vr-i - (2- h2
) yr+ t,r+1 + Cyr = 0

,

C = -&S^S6 -...,

and, with interval h = 0-2, the basic equations are

7/r_j
- l'96?/

r + 7/r+1 -f (77/r = 0.

(
12

)

(13)

The complete set of equations corresponding to (4) is given by

-1-967/(0-2)+ t/(0-4) = — Cy[0-2),

?/(0-2)- 1-96?/(0-4)+ t/(0-6) =~Cy{ 0-4),

t/(0-4) - 1-967/(0-6) + t/(0-S) = - <7t/(0-6),

t/(0-6)- 1-967/(0-8) = -(7t/(0-8)- 0-84147.

The first approximation t/ ( 1)
, obtained by neglecting Cy in (14), has the

values

(W)

y{0-2) = 0-19878, t/(0-4) = 0-3S962, t/(0-6) = 0-564S6, 7/(0- 8) = 0-71752,

and the use of (13), with Cyr neglected, to obtain external values to thesame degree of approximation, gives the results shown in Table 1.
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Table I

6* Cy

—04 -033961
+ 19083

-02 -0 19378 + 795
19878 —795

0-0 O00000 0 + 1

19378 794 +27
+0-2 +0 19878 - 794 28 +13 -2 3

19084 766 40

04 038962 1560 68 - 23 -5 7

17524 69S 17

06 056486 22o8 85 +16 -7 1

15266 613 33

0-8 071752 2871 118 -17 - 9 8

12395 495 +16
10 0-84147 3366 +134

9029 - 361

1 2 093176 - 372'

+ 5302

+ 1 4 +0 93478

The sixth differences are oscillating about zero bo that we ignore them
in the calculation of the difference correction, this is then just —
and is given in the table, with an extra figure, opposite the relevant

pivotal points Insertion of these results in the correction equations, given

by (14) with the exclusion of the constant - 0 84147, gives the corrections

,(0-2) = -000011, ,(0 4) = -0 00020,

,(0 6) = -0 00022, ,(0 8) = -0 00016

W hen we difference these quantities, as shown in Table 2, there is clearly

no further correction, and the final solution is y
n> + ,, given by

y(0-2) = 0 19867, y(0-4) = 0-38942,

y(0 6) =* 0 56464, y(0 8) = 0 71736,

agreeing with the analytical solution y = bibv

Table 2

x t) a* a*

+ 0-0 - 0-00000

-ii
0-2 0 00011 + 2

- 9 +5
0 4 0-00020 + 7 -4

- 2 +1
0-6 0-00022 + 8 +1

+ 6 +2
0-8 0-00016 +10

+ 16

+10 - 0-00000

8 If some other boundary condition is imposed, involving the first

derivative, a slightly different procedure is necessary at that boundary
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If the boundary is at x0 ,
we satisfy the differential equation at this point

also by using the equation

(l — lhf0)y_1— (2 — h2g0)y0+{l + §hf0)y1 + Cy0 = h2 k0 , (15)

winch is equation (2) with r = 0. The boundary condition will have the

form y'
0
+ay0 = b, (16)

which we replace by its central-difference equivalent

yi-y-i + 2hay0+ C1y0 = 21ib, (17)

where Cx is a new difference-correction operator, given by

Gx = 2(-i^S3 + -...), (
18

)

and the first difference pSy0 in the derivative formula has been replaced

by l(yl— y_l ). The point rc„1 is external to the range, and we eliminate

the value y_x from (15) with the use of (17), giving the new equation

{(1 - Wo) Via - (2 - h2g0)} y0 + 2y1

= h2 k0+ 2hb(l - Wo) -Cy0
-(i- Wo) Cxy0 . (

19
)

Tiffs is the first of the new equations corresponding to (4), and the second

is obtained by moving the term in y0 over to the left in the first of (4).

The remaining equations are unchanged until the second boundary is

reached, where the procedure again depends on the boundary condition.

In the worst case, in which a first derivative occurs at both boundaries,

the new matrix will have order ?i+l, corresponding to the unknowns

Vo’Vv but it will still be a band matrix like (6).

For the calculation of the difference corrections, including that of type
C

x
t/
0 in (19), values external to the range can be calculated as before,

once approximations to internal values are known, by applying successive

basic equations in a step-by-step process.

It may be possible to use the differential equation, the boundary
condition and the Taylor series to obtain a relation of the form

yi = Py0 +Q, (20)

where P,Q are constants. If this is used in place of (19), there is no longer
a difference correction associated with the boundary condition. The addi-
tional work of deriving (20) may, however, outweigh this advantage.

SOLUTION OF THE ALGEBRAIC EQUATIONS
9. The solution of the equations Ay = d, when A has the form (6), can

be effected in several ways. The method described in Chapter 1, §§ 10-12,
which uses the decomposition A = LU is very convenient; L and U each
have non-zero elements only in the leading diagonal and one adjacent
diagonal, and the equations determining the elements are correspondingly
simple. In this particular case, moreover, the same equations are obtained
by straightforward elimination without interchanges.
We eliminate the term in y1

from the second equation

a^yi+b2yz+czy3 = d2 ,
(
21

)
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by subtracting the appropriate multiple of the first equation

hVi+CiVt = di i~~)

This leads to a new equation

Pi’Jt+Cifr = $1 (-3)

which m turn can be used to eliminate the term in yt from the thud

equation and so on We thus obtain a cet of equations

ftyr+ CrJVtl = $r O’*8 1,2 ,n-2), (24)

where ft, ft are obtamed from the recurrence relations

Pr = 6,-mrCr_I, K = dr
-m£r-i. ,nr = ar!pr~l>

w ith ft = 6,5, — d, The final equation is

ft = 8,-1 W)
from which y,., may be obtamed immediately Then y„-i yn_3 , ,y, may
be obtamed successively from the recurrence relation (24)

The process is well adapted to both desk machine and automatic work

If the difference correction is now incorporated, the new values of yr are

obtamed by u«e of (24) and the second of (25) only, together with the

values offt, nir already computed
10 Iterative methods («ee Chapter 4) can be used when the matrix is

well conditioned, and this is usually the case when the complementary

function of the differential equation is of exponential type

When the complementary function is of oscillatory character, however,

iterative methods may converge slowly or even diverge The method of

elimination just described can still be used, though difficulties may occur

ifone or more of the
ft.

is very small These difficulties have been discussed

by Fox (76] They do not arise however, if interchanges are used m the

elimination process furthermore the band structure of the equations

is preserved They are al«o a\ oided by usmg step by step methods as

described m §§11 12 If ft , vanishes A is singular and the equations

Ay — d have no solution

USE OF STEP BY STEP METHODS
11 Boundary value problems may also be solved by the step by step

methods of Chapter 9 Ue compute a number of trial solutions which fulfil

the boundary conditions at one end of the range, and combine them m
such a way as to satisfy the conditions at the other end In the case of a

linear second-order differential equation, only two tnal solutions have to

be combined in this way
In fact this method differs from that already discussed only in using a

different procedure to solve the associated algebraic equations In the

case of equation (1) with the boundary values given for example, the

following sequence of operations is earned out
(i) With an arbitrary we calculate by recurrence a particular

solution y
nt satisfying the fir*t n — 2 equations of (4), with the difference

correction neglected



(ii) In a similar way we obtain a solution y
(2) satisfying the first n — 2

of the homogeneous equations corresponding to (4).

(iii) We now determine a such that ?/
(1) + cq/ (2>

,
which satisfies the first

n _ 2 equations of (4) automatically, also satisfies the last equation.

(iv) Next, the difference correction C(y {1) + ay (2>
)

is computed and

inserted into the equations (4). The calculations of (i) and (iii) are then

repeated, though since the homogeneous equations are unchanged, we

use the same solution i/
(2)

. The difference correction should be calculated

from the differences of y
ll) + cci/

(2) rather than those of y { 1\y {2) separately,

since the latter may vary much more rapidly over the range of integration.

12. If the boundary condition at x0 is of the more general form (16)

then we modify our equations as indicated in § 8. The term in y0 is

transferred to the left-hand side ofthe first equation of (4) and an additional

equation relating y0 and yt
is provided by (19) or (20). In either case the

subsequent computation is carried out as in § 11, with the additional

difference correction Cx y0 if (19) is used. Problems having the more
general form of boundary condition at both ends can be solved in a

similar way.
Several methods of this type have been discussed by Fox [76]. It should

be noted that when the complementary functions are of exponential type

there will often be a loss of significant figures when the trial solutions are

combined: in such cases the method of § 9 is preferable.

METHOD OF CHEBYSHEV EXPANSION

13. No essential modification of the method of Chapter 9, §§ 23-25 is

required in order to apply it to boundary-value problems associated with
linear differential equations having polynomial coefficients. The boundary
conditions give immediately two equations which must be satisfied by the
coefficients in the expansion of the solution in Chebysliev series.

LINEAR DIFFERENTIAL EQUATIONS OF OTHER ORDERS

14. Similar methods can be used for equations of other orders and for
simultaneous differential equations. In particular, a fourth-order equation
may have two boundary conditions at each end-point, and the matrix A
is a band matrix of width five. The algebraic equations can then be solved
by matrix decomposition. In general, if A is a band matrix of width 2k + 1,
where k > 2, the matrices L and U each have non-zero elements in the
leading diagonal and k adjacent diagonals.

NON-LINEAR EQUATIONS

,

the case of non-linear differential equations the algebraic equa-
tions resulting from the use of finite differences will also be non-linear.
There is no established method for solving simultaneous non-linear alge-
braic equations. In many cases, however, the type of solution will be
known from physical considerations, and iterative methods can be used.
Whatever method of solution is used for the first approximation, successive
corrections are usually obtained from linear equations, and the methods of
this chapter are then applicable.



EIGENVALUE PROBLEMS

1(> Problemsofboundary value type occurring, forexample, in \ibration

theory lead to differential equations, usually bnear and homogeneous con

taming a parameter A and for which non tnnal solutions exist onlj for

certain values ofA The problem 13 to calculate one or more values ofA and

the associated solutions

The simplest example of this type is the equation

y'+\y=0 (27)

w ith boundary conditions y = 0 at r = 0 x = 1 This problem has a known
solution, non trivial only if A = n*w* (n = 1, 2, ) when y — smmrx The
use of finite difference equations leads to a matrix equation of the form

(A-AI)y = 0, (28)

and the problem reduces to that of calculating the latent roots and vectors

of the matrix A for which general methods have been discussed in

Chapter 3 In the case of ordinary differential equations A is a band matrix

and the smallest roots A are the most important
The use of relaxation for solving eigenvalue problems by finite-difference

methods is described in [76] and [77]

1 7 Eigenvalue problems are also com ementlj soh ed by the method of

Chebyshev expansion if the coefficients in the differential equation are

polynomials in x The coefficients ar in the expansion of y in series of

Chebj shev polynomials are now linear functions of A The resulting infinite

set of linear equations for the aT and A can be solved by an iterative method
outlined m [71] or bj direct methods The latter approach juelds an
algebraic latent root problem, which resembles that of (28) We may
expect, however, that for the same order matnx the Chebjshev method
will yield more accurate eigenvalues A because of the economy of its senes
representation
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11

HYPERBOLIC PARTIAL DIFFERENTIAL
EQUATIONS

CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS

1. We commence by indicating the fundamental classification of

quasi-linear partial differential equations of the second order in two
independent variables into elliptic, parabolic and hyperbolic types. The
difference between these classes concerns the analytic character of their

solutions, and the types of boundary conditions necessary to determine

these solutions.

The general equation has the form

8hi
,

Shi 8hi
a
8x~

+
8x dy

+ G
By1

(I)

where a,b,c and e are functions of u, 8u/8x, 8u/8y,x and y, but not of the
second derivatives. We shall adopt the standard notation in which

8u 8u 8hi 8"u

^ 8x’ ^ 8y 8x2 ’ Bx 8y
’

82uw (
2

)

Then equation (1) becomes

ar + bs + ct = e. (3)

2. Suppose we are given a curve in the
(
x,y

)

plane and values of u,p
and q at all points on that curve. It is assumed that these satisfy the
relation

, 8u
, 8u 7 7du

=fc
dx

+fy
dy = P dx + qdy (

4
)

along the curve, since otherwise p and q could not possibly be the
derivatives of w. We might ask ourselves the question, “Do the values of
V ’P and q on this curve, together with the requirement that u satisfies the
differential equation, enable us to determine r,s and t on the curve?” We
must have

8htj— dx+
(7.x-

8hi

8x8y
dy

or dp = rdx+sdy,

101

(5 )



and also

\<5V txcy cy*

or dq = sdx+tdy (6)

Equations (3), (5) and (6) form a set of three linear equations in three

unknowns r, s and t In general there exists one solution, so that unique

values of the second derivatives are determined at e^ch point of the curve

If, however, the determinant of the coefficients of r
>
8 and t vanishes at

any point, that is if

1 a b c
|

dx dy 0 = 0 ,

0 dx dy

then m general the equations (3), (5) and (6) have no solution for that

point For a solution to be possible we know froifl the theory of linear

equations [13] that the rank of the matrix

e a b c
*

dp dx dy 0

dq 0 dx dy

must be two The rank will be two if any of the three relations

or

e a b

dp dx dy = 0,

dq 0 dx

dp dx 0 =0,

dq 0 dy

dp dy 0

dq dx dy

(8)

0)

(10)

is true, each of these relations being equivalent to the others if equation

(7) holds The latter may be written w the form

a (dy)* — bdydx-¥c[dx)'1 = 0, (11)

which is a quadratic equation in dy/dx For a point (*, It)
associated with

gnen values of u,p and q then according as b

'

is greater than, equal to,

or les3 than 4ac there will be two directions for which (11) is satisfied, one
direction or no possible direction respectively
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3. If we have a domain in the (x,y) plane in which u,p,q are defined

and if b~ > 4ac at each point of that domain, then the differential equation

is said to he hyperbolic in that domain. Similarly, if b2 = 4ac throughout

the domain the equation is said to be parabolic
,
and if b2 < 4ac the equation

is said to be elliptic. It is important to notice that the class to which the

equation belongs may be dependent upon the solution. Thus the equation

82u 82u

!)tf
+U

lkf2
= 0 (12)

is elliptic in any domain over which the solution u is positive, and hyper-

bolic in any domain over which the solution is negative. If the equation

is linear, that is if a, b and c in (1) are functions of x and y only, then for

a given domain in the (x, y) plane the class of the differential equation

is independent of the particular solution required and is determined in

advance. Thus the equation

(i«’)S+a+rt$-° <>»>

is always elliptic and the equation

82u

8x2 + (l—x"— y
2
)

82uW 0

is elliptic inside the unit circle and hyperbolic outside.

(14)

DISCONTINUOUS SOLUTIONS

4. Returning to our original question we see that, when the relation

(11) is satisfied along our curve, then in order for a solution to be possible

we must insist that a further relation, given by any of the equivalent
relations (8), (9) or (10), should also hold along our curve. If this is so,

the theory of linear algebraic equations shows that there is an infinite

number of solutions.

Let us suppose that we have chosen our initial curve and the values of
u, p and q on it so that the relation (11) holds for all points on the curve.
Such a curve, together with the values of u, p and q on it, is called a
characteristic of the differential equation. (There is a lack of uniformity
in the nomenclature used in the literature; some writers refer to the
curve itself as a ‘characteristic’, and to the curve plus the values of
u

> P and q on it as a ‘characteristic strip’.) For a solution of the differ-
ential equation to be possible, u, p and q must satisfy the further rela-
tion (8), say, and then we may choose one of r, s and t arbitrarily, the
other two being determined uniquely. This means that we may have a
curve 0, lying in the domain of a solution u, such that the solution on
both sides of the curve has the same values of u, p and q along the curve
but different values of r, s and t. It is this important property which
distinguishes hyperbolic partial differential equations from elliptic, since
for elliptic equations such a situation is not possible. We may say that
hyperbolic partial differential equations are characterized by the posses-
sion of real characteristics.
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5 It is quite simple to construct a solution exhibiting the phenomenon

ju->t described The two functions

«i= (*-y)*+(*-y)+i

«*= 2(z-y)*+(z-y)+l

satisfy «, = u, = 1 on x = y

Also rtijcx = tujdx = 1, enjoy — Pujcy = — 1 on x = y

The functions and their first derivatives therefore take the same values

on the line x — y The} clearly also satisfy the differential equation

rs« _ chi

c?~ cy*

of which this line is a characteristic The second derivatives, however,

have quite different values on this line

This phenomenon is of frequent occurrence m physical problems and

is not merely of theoretical interest

6 Another way of deriving the equations for the characteristic lines vs

to seek curves along which the partial differential equation reduces to an

ordinary differential equation If dx di/ du dp.dq denote differentials

along any curve C then they must satisfy equations (5) and (6) Multiply

ing (5) by ady (6) b\ cdx and adding the results we have

adydp +cdxdq (
ar+cl)dxdy+ as{dy)i+ cs{dx)'t (lo)

Substitution from the differential equation (3) gives

adydp+cdxdq => {-bs + e)dxdy + astfy)* + w(tfx)1

- edxdy + «{o(dy)* -bdxdy+ c(dx)1} (16)

If the cun e is chosen so that

— bdxdy + c{dx)* =* 0 (17)

then the term in s is eliminated and equation (16) reduces to

adydp + cdxdq — edxdy (18)

which is an ordinary differential equation Fquations (17) and (18) are the

characteristic relations (7) and (9) above
7 In the rest of this chapter we shall discuss hyperbolic equations and

some numerical methods for solving such equations The treatment of

parabolic and elliptic equations is discussed m Chapter 12

SIMPLE EXAMPLE OF A HVPERBOLIC PARTIAL
ULEEE.U.TVK'CtA.ti E.'VJk’EVJlS

8 The simplest example of a hyperbolic partial differential equation
is provided by a vibrating string If u is the displacement, x is measured
along the equilibrium position of the string and t is the time then the
differential equation is the simple wave equation

e*u 1 0*11
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Putting ct — y we obtain

(
20

)

o1u £2u

(The symbol t has been used in two senses, but since the independent,

variable t is now replaced by y this should cause no confusion.) The charac-

teristic directions are given by the determinantal equation

1 0-1
dx dy 0 =0, (21)

0 dx dy

which reduces to the simple result dyjdx = ± 1. The characteristic curves

are therefore the straight lines y = ± x+ constant. For a solution to be

possible we must also have

0 1 0

dp dx dy = 0, (22)

dq 0 dx

giving dy/dx = dpldq, so that dpjdq = ± 1 must be satisfied on the charac-

teristics.

SOLUTION OF A SIMPLE DIFFERENTIAL EQUATION
BY THE METHOD OF CHARACTERISTICS

9. So far, the notion of characteristics has been used to classify various

types of differential equations. For hyperbolic equations the existence

of real and distinct characteristics leads to the most satisfactory known
method of numerical solution. The relation (8) or its equivalents must be
satisfied along characteristic fines. From the equations (7) and (8) we
can construct the characteristics and the solution to the differential

equation on these lines.

10. Before describing the general method it will be helpful to consider
the simple case of the vibrating string, satisfying the differential equa-
tion (19). Suppose that we have a string fixed at both ends, x — 0 and
r = 1 say, and that initially both its form u and velocity du/dt are speci-
fied. The ‘boundary conditions’ for equation (20) are then

a = 0 at x=0 and 1, O^y^co, (23)
and hence

q = cht/% = 0 at x = 0 and 1, 0^y<oo. (24)

The ‘initial conditions’ specify u, and hence p = dujdx, and q at y
— 0

for0<a;<l.
Suppose we wish to know the displacement and velocity of the points

of the string at some later time given by y = k. It has already been shown
that the characteristics are the lines x±y — constant, and that the
relations p + q = constant must be satisfied on them. If in Figure 1 we
take any point P on y = k we can draw two characteristics through it.
The line PP3 ,

which satisfies x+y = constant, meets x = 1 at P
3 . We
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can draw through P3 the characteristic P3Pl
of type x—y = constant,

meeting the line AB, or y = 0, at Pt (In general, for a large value of h,

we shall hit the boundaries i = 0 and z = 1 a number of times before we
reach the hne AB ) Similarly, if we draw the other characteristic through

P we ultimately reach AB at Pt

11 At P, the values of p and q, say p, and are given by the initial

conditions Then on PjPj we have

p— q = constant = p4 — qv (25)

At the point Ps on BD we know q — 0, from the boundary conditions

(24), and therefore

P - Pi-?, (26)

On the line PP3 we have

p + q = constant — p3 — q\ (27)

in virtue of (26) and (24) Similarly, starting from P2
at which p and q

have known values pt , qv say, we have, on P2P4 ,

p + q = constant = p* + qt (28)

At the point P4 on AC we know q = 0, so that, at Pt ,

P=Pi + 1t (29)

On P,Pwe have p— q
— constant *= P*+7* (30)

m virtue of (29) and (24) Equations (27) and (30) are both satisfied at P,

60 that

P = {{Pi-Vi+Pi+ ?*).)

?=}(Pi-?i -Pt-qt) )
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We may find p and q at all points on y = h in a similar manner. The

quantity g gives us the velocity, and by integrating p with respect to x
,

starting at x = 0 where u = 0, we obtain u at all points. At x = 1 we

should obtain the given boundary value u = 0.

12. The solution of this example is very simple because the charac-

teristics in the (x, y) plane are determined independently of the solution

and are straight lines. The general case has neither of these simplifications.

THE SOLUTION BY CHARACTERISTICS IN THE GENERAL CASE

13. Suppose we are given the values of u,p, q on a curve AB in Figure 2

which is not a characteristic curve. This restriction is important in view of

the considerations of § 4. If we take two points P and Q on AB, then there

are two characteristics through P and and two through Q. The directions
of the two characteristics are given by equation (11), whose solutions are

dy _b ± (6
2— 4ac)*

dx 2a

These may be represented by

,

dx J and

(32)

(33)

The relation (9) which must be satisfied on a characteristic gives

edxdy— adpdy— cdqdx = 0.
(
34

)

The characteristic PS of the / type meets the characteristic QS of the
g type at S. IfP is close to Q, then as a first approximation we may regard

,

as a straight line of slope fP. We have therefore as a first approxima-
tion the equation

a

Vs-Vp =fp{xs-xF).
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Similarly, regarding QS as straight, we have

ys-yo = 3Q^s-xo) (36)

Equations (35) and (36) are a pair of linear equations in the two unknowns

ys and x8,
which can therefore he determined Using these initial approxi

mations to xs and y8 we may approximate to (34) by the equations

«pfes-yp)-ap(Ps-J»i*)/p-c>(3s-5p) = 0 (along PS),\

and by
J

(3<)

e0i!/s-yQ)~aQ(Ps-Po) 9q-Cq{<Js-<1q) = 0 (along <>S) )

This is a pair of linear equations m pg and from which first approxima

tions to these values may be found We may then obtain us from the

relation

where — — are mean values along PS This gives
ex ey

us = Up + (z8—xP) l(ps +

p

P) + (ys—

y

P) J(qs+qP) (39)

From the approximations to u8 , p8 and qs so obtained we can approxi

mate to fB and gs from (32) and (33)

14 We may now obtain impro\ed values for xs,yB,ps,qs,u8 in the

following way As improved versions of (35) and (36) we have

yS~ fJp = J(/s +/p)(zs-zp)i 1

ys-y<j = I

from wluch we calculate more accurate values of xs and ys Similarly the

improved version of the first of (37) is

Hep+ es) [y8- yP) - J {aP + as) (p3—pP) |(fP +fs)
- J (eP + cs){q8 ~qP) = 0,

(41)

with a similar improvement for the second of (37) From these two equa-

tions we obtain more accurate values of p8 and qs and finally of us as

before The process should be repeated until two successive approxima
tions to argl y8, pg, qSi tts agree to the accuracy to which we are working
Normally we would take the point P so eIoce to Q that one improvement
gives the desired accuracy When tlus accuracy has been attained at S and
T we can proceed a step further, to the point U m Figure 2, and so on

15 Our method, then, is to take a number of points on our initial

curve at convenient distances apart and to obtain the values of x, y, u,

p, q at all points of the mesh shown in Figure 2 It will be seen that the

curve AB and the values of u, p and q on it only determine the values of

u, p and q in the curvilinear triangle ABC bounded by the two charac-

teristics AC and JSC Points outside this triangle are influenced by values

on the continuation of the enrve AB The values at the points in ABC
are completely independent of the values of ti, p and q at points on the

initial curve beyond A and B
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COMPRESSIBLE FLOW

16. Apart from the ordinary linear wave equations of which the vibrat-

ing string is a simple example, perhaps the most important example of a

hyperbolic partial differential equation is provided by steady super-

sonic compressible flow in two dimensions. If we have isentropic potential

flow, then there is a velocity potential it, and the pressure P is a function,

P(p), of the density p only. The quantity dPjdp is equal to a2
,
where

a - a(p) is the velocity of sound. The equation satisfied by the potential

It IS

(a 2—p2
)

•

where

8u
1

«

IIa

dll

8-n 8-it 8-v
I w-o = °.
8y-

(42)

(43)

There is a further relation (Bernoulli’s equation) given by

rdP'

c

= constant — \{p
2+ q

2
). (44)

The left-hand side of (44) is a function of p, so that (44) gives p in terms

of p and q, and since a is a function of p it is also a function of p and q.

17. The characteristic directions (Mach lines) are given by

(a2—p2
) (dy)

2 + 2pqdxdy+ {a2 - q
2
) (dx)

2 = 0. (45)

These are real if p2
q
2 > (a

2—p2
) (a

2 — q
2
),

that is, if p2 + q
2 > a2

. (46)

Now p2+ q
2

is the square of the velocity, so that we see from (46) that
the equation is hyperbolic if the motion is supersonic. The relation to be
satisfied on the characteristics is

giving

0 (a2 —

p

2
)

dp dx

dq 0

(a2— q
2
)

0

dy

= 0

,

-{a 2 -p2)dpdy = (a
2 —q2)dqdx

,

or

from (45) we then find

dy = (a 2 — q
2
)
dq

dx (a2 — p2
)
dp

"

(47)

(48)

(a2- q
2
)
(dqjdp)2- 2pq{dq[dp) + (a2-p2

) = 0, (49)

for the relations to be satisfied on the characteristics. Since, however, a is
a function of p and q, (49) can be integrated (in general only numerically),
ana hence the relation between p and q along a characteristic is indepen-
dent of the curve hi the (x, y) plane. This is always true of the homo-
geneous quasi-linear second-order equation (3) in which the coefficients
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of r, * and t are functions of p and q only It is clear from (45) and (49)

that if the directions of the characteristics are given by dyjdx

dyjdx — g, then along them we have dqjdp = — Ijg and dqfdp ** ~
\jf

respectively

SIMULTANEOUS FAP.TIAL DIFFERENTIAL EQUATIONS

18 The method of characteristics may be applied to a system of simul

taneous first-order differential equations An example will make this clear

Suppose we consider the non steady one-drmensional motion of com
pressible fluid in which P = P(p) so that dPjdp = a", the square of the

velocity ofsound The equation of motion is given by

du du a*dp— -»-u— + - = 0.
ct dx p dx

(50)

and the equation of continuity is

cu dp tE
dx

0 (51)

Again we may pose the question if we are given the values of u and p
on a curve m the (x,t) plane, do the differential equations determine

-*7 -§ and ^ on this line* The equations
ct cx ct ox

&u du J , ...
jjdt + j^dx- du, (o2)

(53)

must be satisfied, and together with (50) and (51) they provide four

equations in the four unknowns ^ and for which in general

a unique solution will be obtained If however the relation

l M 0 —
P

0 P 1 « =0
dl dx 0 0

0 0 dl dx

is satisfied, the equations will not have a solution unless

(54)

l u 0 0

0 P 1 0
= 0, (55)

dl dx 0 du

0 0 dt dp

or any of the three equivalent relations is satisfied Equation (54) reduces

to dx'dt = u±a This means that for all one-dimensional unsteady flow
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problems there are two real characteristic directions, it being natural to

use the same nomenclature here as in the quasi-linear second-order case.

The relation (55) reduces to

du _ a

dp %’ (56)

for dxjdi = u±a. Equation (56) gives

(57)

and, since a is a function of p, u is also a function of p. The pair of differ-

ential equations (50) and (51) may be solved by the method of character-

istics in exactly the same manner as in the case of a second-order partial

differential equation already described.

COMPARISON WITH ELLIPTIC EQUATIONS

19. The above examples manifest a feature which distinguishes the

formulation of problems involving hyperbolic and parabolic equations

from those involving elliptic equations, namely that the boundary condi-

tions are commonly specified on an open boundary. For elliptic equations

it is usual to have closed boundaries. A typical problem in the elliptic field

is: “Given u on a closed curve, to find « inside that curve to satisfy the

boundary condition and the differential equation

S2u 82« _
3S
2+ Jy-~

inside the curve”. An interesting feature of this problem is that even if

the values of u on the boundary are discontinuous at a number of points,
the solution u has derivatives of all orders in both x and y inside the
curve. This is in striking contrast to the hyperbolic case, where boundary
conditions with discontinuities in the derivatives give rise to solutions
with discontinuities in the derivatives. The well-behaved nature of
the solution in the elliptic case has the result that finite-difference tech-
niques are far less likely to lead to difficulties and it is usually quite safe
to use a rectangular mesh of points. For hyperbolic equations the possi-
bility of having discontinuities in the second derivative across the charac-
teristics makes the use of a rectangular mesh rather hazardous, and it is

better to use the characteristic mesh in spite of the fact that it provides
values of u, p and q at the rather inconveniently placed points of inter-
section; see also [81].
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PARABOLIC AND ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS

BOUNDARY CONDITIONS

1 In Chapter 1 1 the three types of partial differential equations, hyper

bohc, parabolic and elbptic were distinguished by reference to their

characteristics For hyperbolic equations the characteristics were real

curves, and the chosen numerical method of solution involved a step-

by step process earned out along these curves this method was possible

and convenient because the supplementary conditions were of initial value

type and the boundary was open

With elliptic equations the conditions are of boundary value type,

generally given at all points of a closed boundary There arc corresponding

distinctions m the methods of solution step bj step methods being

replaced by the simultaneous solution of the relevant finite-difference

equations
Parabolic equations come somewhere between these two extremes The

boundary is open, but usually onlym one direction and the best methods of
solution are combinations of boundary value and initial value techniques

PARABOLIC EQUATIONS
2 Physical problems leading to parabolic equations are those of heat

conduction and diffusion The simplest equation of this kind is given by

ex’ et
(I)

with conditions specifying / on three sides of a rectangle t = 0, x = -1,
x =» + 1, as shown ta Figure 1 The boundary is open in the positive

<-direction

«=0



It is worth noticing in passing that the equation as presented is

dimensionless. The original equation might be given as

Pf_df
8z2 St’

(2 )

with the boundaries at x = — l and +1. In the heat conduction equation/

is temperature, x is length, t is time and k, called the diffusivity or thermo-

metric conductivity, has the dimensions of L2T-1
. If we introduce the new

independent variables X = (ljl)x, T = (kjp)t, the equation reduces to (1)

with x and t replaced by X and T, and the boundaries are at T —
0,

X = + 1. Such ‘non-dimensional’ treatment is often of considerable value

in numerical work.

Analytical solutions given, for example, by Carslaw and Jaeger [90],

can sometimes be obtained to equations like (1) "with various boundary
conditions. As with ordinary differential equations, however, these are

often rather complicated expressions, whose evaluation is not trivial:

small changes in the equations or boundary conditions, moreover, may
prohibit the production of such a solution. Again, therefore, numerical

methods of solution, based on the use of finite differences, have been
developed. We shall use the simple equation (1) to illustrate methods that

are applicable to parabolic equations of much more general form.

REDUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

3. We first replace the second derivative in the ^-direction by finite

differences. We divide the range - 1 to 1 into equal intervals 8x with
pivotal points x0 ,

xv ..., xn ,
the first and last points lying on the boundaries,

and we denote by fr(t) the function / evaluated as a function of t for the
constant value xT of a. We can then replace (1) by the equations

(S*)2f = (fr-l-2fr+fr+l) +CJr (r = 1,2, ... ,71-1). (3)

Here 0xfr is the difference correction

~ Vs + Vo
—

• • • > (4)

the suffix a; referring to differences in the avdirection.

Equations (3) represent a set of ordinary differential equations and, if
the difference correction is neglected, they can be written as

p{dfjdt) + 2f1
- /2 = /0 ,

p(dfjdt)- A + 2/2- fa — 0,

V{dfz!dt) — /2 + 2/3 — /4 =0,

p{dfn-zldt) —
/n-3+ 2/„_2 - fn-1 = 0,

PWn-Jdt) - fn_2 + 2/„_1 = fn ,

where p = (S.v)-. There are n— 1 equations in to— 1 unknown functions,
anc

:
tile ext>ra conditions provide known values of all the f, at t = 0 • f„

and fn are known for all i.
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Equations in this form hare been used to sohe problems in belt

conduction on the differential analyser [92] They can be solved on desk

machines or automatic machines, by the methods of Chapter 9, the

application of some of which we describe below

4 If the conditions on x — ± 1 do not specify the function, but imohe
some law of cooling represented by

I+V-J. (0)

say, with L and g known functions of t, we use the method given in

Chapter 10 §8 for the similar problem of ordinary differential equations

involving derivative conditions at the boundaries The set (5) will then

have two extra equations involving dfjdt and dfjdt

The centre line x = 0 is often a line of symmetry, and we can tike

advantage of this fact to halve the number of equations in (5)

5 For an equation in cylindrical coordinates, given by

dr* rdr St’
(7)

we replace both the second and first r derivatives by their amplest finite

difference approximations and can again produce equations similar to (5)

The line r = 0 is one of symmetry and for the equation on this line we
replace (7) by

j>*-
i«)

where p = (Sr)* and the suffixes 0 and 1 here lefer to the centre line and
the adjacent lino in the field of integration

USB OF THE KUNQE-KUTTA METHOD

6 The Runge-Kutta process which is well suited to automatic work

is immediately applicable to the set of equations (6) Unfortunately,
however, though the truncation error in the fourth order process can be
mode negligible without prohibitive reduction of the interval, the stability

requirement 9ev erely restricts the size of interval Si that may be used
The homogeneous equations obtained from (5) by neglecting the

right hand sides have solutions of the form fr = ar e~
u where A and a,

(r = 1,2, ,n— I) are constants satisfying

(2-Ap)a
t
- at

-ai + (2 — Ap)a t-a,

These equations in turn are satisfied by ar = am r0, provided that
2—Ap = 2cos0 and sinnf? = 0, that is

= 0,

= 0 ,

- a„_j -f (2 — Ap) an„ j
= 0 J

A
4

t
n

p 2n (&e)*

V7T

2n
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The largest value of A is approximately 4/(Sx)2
. Since the fourth-order

Runge-Kutta process is stable for an interval h, in this case St, such that

A/; < 2-8 (see Chapter 9, § 29), we see that this leads to the restriction

8t

(§*)
2
<0-7.

(
11

)

If the partial differential equation is not of the simple form (1) but

contains rapidly varying functions, so that a fairly small interval ox has

to be used, the restriction (11) on the interval 8t maybe prohibitive. For

tliis reason it may be desirable, even when using an automatic computer,

to keep the interval 8x as large as possible and incorporate the difference

correction Gxf.

AN EXPLICIT METHOD

7. This method replaces the time-derivative in equations (3) by its

simplest finite-difference approximation

*(!), (
12

)

Then neglecting the difference corrections, we have

fr. t.+St = fr. /„ +^2 (/r -1
“ 2/r +/r+1)/.

(r = 1 , 2, . .
.
, » - 1). (13)

The values of fT at time t0+ St are thus obtained directly from those at

time t
0 ,
and for this reason the method is said to be explicit.

Though the truncation error in (12) is much greater than that involved
in the Runge-Kutta process, it is usually the stability requirement that
governs the permissible size of St. An analysis similar to that of the
previous section shows that tliis method is stable provided that

St

(8x)2
< (14)

This restriction is only slightly more stringent than that of (11) for the
Runge-Kutta process and, of course, the present method involves less

computation. Again it would be possible to include the difference correc-
tions, but the choice of an interval St for which C,f must be included is
only to be recommended for desk-machine work.

Richardson’s method
8. If (12) is replaced by the better approximation

(15)

we obtain, in place of (13),

2St
fr,t,+3l — fr, to St+ (§x)2

^fr~1 fr+1)(,. (16)

This method, however, is unstable for all values of 8t!(8z)2, and so should
Hot be used.
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THE METHOD OF CRANK. AND NICOLSOK

9 Tlus process is obtained by applying to the set of equations (3) the

method outlined in Chapter D, § ID for the solution of first order ordinary

differential equations Thus, combining (3) with the relations

- i5'{(l)„„
+
(l)J

+(C
'/)““'

where C
t
= '-TjSj’+rioS,

5— ,

we derive

{ft-i—2(l+*)/, +/r+l+ CV/r}!,+«

= - {/^i- 2(1- *)f,+/r+i+CJ,} c.
-WCJT)UH„ <r=l,2, — 1).

(18)
where s «= (Bzp/Bt

To obtain the values of/ at the time t0 + St we then have to solve a set

of simultaneous equations this is accordingly an implicit method If the

difference correction Cxf is neglected the matrix of coefficients of these

equations is a band matrix of width three and the equations can be solved

very simply by the method given in Chapter 10, § 9

It may be noted that [Cxfr)u will often be a good approximation to

(Czfr)t.+it< ftnd maJ bo used to replace it in (18), in this way the difference

correction Cxf is effectively incorporated in a single integration run

Determination or estimation, of the difference correction CJ is less

convenient, and on an automatic computer it is customary to use an

interval Bt sufficiently small for CJ to be assumed negligible The validity

of this assumption can be checked by a second run using a different

interval St

Though this method involves a good deal more work at each step it has

the great advantage, shared with the corresponding method of Chapter 9,

of being stable for all values of the mterv als 8x and 5/ The number of

tune steps needed is often considerably less than with other methods and
in consequence the Crank-Nicolson method is usually to be recommended

SON LIN EAR EQUATIONS
10 If the differential equation, while retaining its parabolic form, is

non linear or has non Imear boundary conditions, then the methods of

§§ 6 and 7 are immediately applicable The Crank Nicolson method,
however, involves the solution of a set of simultaneous non linear algebraic

equations This may be accomplished by extrapolating from the known
values of

/

r for tg ,
t„ — 8t to obtain an estimate offr for l0+ St, and then

applying Newton’s rule (Chapter 6, § 9) to obtain an accurate solution of

the equations
, one or two applications normally suffice Again, despite the

added complexity of the calculations, this method is often much faster

than those subject to restrictive stability limitations

SINGULARITIES
11 AH methods may have difficulties when there are singularities in

the boundary conditions, for example with ‘quenching’ problems in which
a high temperature at t = 0 is reduced instantaneously’ to zero on the
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boundaries x = ± 1. Near the corner points f = 0,a; = ±l, the finite-

difference equations cease to be meaningful, and the step-by-step process

is either replaced in the early stages by an analytical solution calculable

for small t, oris carried out following a transformation of both independent

variables which removes the singularity.

When the singularity is at x = 0, t = 0, the transformation usually

employed is

IIEh«
fe-

llH (19)

Equation (1) becomes
82f + oX 8f -2T df

8X2
+^8X 8T’

(20)

and the point x = 0, t = 0 is ‘stretched out’ into the Z-axis.

In cases when the transient phenomena are not of interest it is sometimes

possible to ignore the meaningless nature of the finite-difference representa-

tion in the neighbourhood of the singularity, because the errors so intro-

duced do not persist; see for example [96].

ELLIPTIC EQUATIONS

12. Elliptic differential equations are of pure boundary-value type.

The simplest equation of this kind is the famous equation of Laplace,

given in two dimensions by

V 2
/ = a2//Sx2 + fi

2
//^y

2 = 0. (21)

A more general equation is that of Poisson, given by

V2
/ = g{x, y), (

22
)

in which the right-hand side is a known function. With such equations
are associated boundary conditions at all points of a closed boundary,
specifying values of the function, or its normal derivative, or a combina-
tion of these quantities.

The general method of solution is to divide the region into a square or
rectangular grid ofpivotal points, replace the differential equation by finite-

difference equations, and solve the resulting set of algebraic equations.

FINITE -DIFFERENCE REPRESENTATIONS
13. The simplest problem of this type is given by equation (21), with

/specified at points on a rectangular boundary. If we consider a particular
point (.t

0 , yn) of the grid dividing up the rectangle, we can use the central-
difference formula

(3xfW*2 = (Si-j^+^s® - . .
. )/0 , (

23 )

the suffix x denoting, as before, ‘differencing in the ^-direction’. A similar
formula holds for the second derivative in the y-direction. As in the
corresponding solution of ordinary differential equations of boundary-
value type we replace the leading terms in the derivative formulae by
their expressions in terms of pivotal values, given by

8i/o = (A- 2/o +/_!)*, Sy/o = (A — 2/o +/_!)„,
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where the values

/

t>1
and /_* c belong to the pivotal points r0+Sr, xQ -S.r,

with similar meanings for fXv and / , „ We can then replace the differ

ential equation b> the difference equation

(/i- 2/d+/-i)*+ ^(/i- 2/o+/~i),+ Cfo “ 0. (2->)

where a = Sx/Sy and C/0 is the difference correction In the most common
case, in which &e = Sy *= A equation (25) becomes

(fL+f-ih+Vi+f-ih-lfo+Cfo = 0, 1

C- (-AS‘+^S>- )i+ (_-V5*+^8*- ),)
U '

The differential equation (22) leads to the same finite-difference equa

tion, with the addition of the term X*y(r0,y0) on the right of the first

of (26)

14 If the boundary values are known, an equation of type (26) is to

be satisfied at every internal point of the mesh, and the number of

unknowns is the same as the number of equations This may be fairly

large but each equation contains at most five unknowns and the set is

fairh well conditioned They can usual!} be solved quite conveniently on
an automatic computer either bj direct methods or by the iterative

methods described m Chapter 4 and on desk machines by direct methods

or relaxation

15 The direct methods are exemplified by Poisson's equation with a

rectangular boundary which leads to algebraic equations which can be

represented bj the matrix equation

Af «= b, (27)

in which A has the following special form in partitioned matrix notation

B I O O O

I B I O O

O I B I O
(28)

I is a unit matrix and B a band matrix

f
-4 I 0

0 1-4

The order of A is the total number of internal mesh points, while the

order of I and B is the number of internal mesh points in one direction
Descriptions of methods of solving (27) in these circumstances hare

been given by Karlqvist [U0] and Comock [111] with extensions to
fourth-order equations of biharmomc type (see § 19)

16

As with ordinary differential equations our general procedure is

to choose a reasonably large interval, to keep the number of algebraic
equations as small as possible In a first approximation the difference
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correction is neglected and a solution fa) produced. A few values can be

found at external points by a step-by-step process, enough to enable the

significant central differences off
ll) to be obtained at all internal pivotal

points, and Gfm can then be calculated at all these points. Insertion of

gfin in the first of (26), with all constant terms suppressed, then provides

a correction S/{1)
,
and the process can be repeated if necessary.

When an automatic computer is used, it is customary to choose an

interval for which the difference correction is expected to prove negligible.

If the differences of the solution so obtained show that this is not so, then,

even if storage limitations prevent the choice of a smaller interval, the

difference corrections can be incorporated fairly readily. In such a case

direct methods of solution of the algebraic equations have the advantage

that the triangular decomposition of A does not have to be repeated.

BOUNDARY CONDITIONS INVOLVING A DERIVATIVE

17. If the boundary condition involves a derivative on the rectangular

boundary, the procedure is very similar to that for ordinary differential

equations. The finite-difference equation (26) is now used at a boundary
point also, and the external value so introduced is eliminated by use of

the finite-difference form of the boundary condition, involving a difference

correction of new type at a boundary point.

A new problem is presented if the boundary is curved. Few boundary
points are now mesh points, and the simple formula (26) cannot be used
at pomts like 0 in Figure 2, since point 1 is outside the boundary. The
boundary value ( x ) is known, so that using an interpolation formula
we can express the value fx in terms of the boundary value and values at
internal points, thereby eliminating fx

from the basic finite-difference

equation.

If the normal derivative is involved in the condition at a curved bound-
ary the problem is much more difficult, since the direction of the normal
does not coincide with that of either set of mesh lines.

HORE ACCURATE FINITE-DIFFERENCE REPRESENTATION
18. For equations involving the Laplace operator we can construct

wore accurate but more complicated finite-difference expressions for the
quantity V-/. In the notation of Figure 3 we find, neglecting sixth and
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higher differences, the formula

tf'VVt+f**Y, = Mfv+/*+/*+/«) +(/»+/« +/»+/•) - 20/o (30)

Here both terms on the left hand side are known, Y*/o being replaced bv
zero for Laplace’s equation and by for Poisson’s equation (22) Other
formulae and their method of derivation have been given by Bicklei [101]

Figure 3

For more general equations such as

<31 >

where tbe y, are known functions of x and y, the replacement of all the

derivatives bj their central difference equivalents and the expression of

their first terms by pivotal values will lead to a five term formula like

(26), though all the coefficients may be different More accurate simple

formulae like (30) are unlikclv to exist in the general case

is an elliptic equation of frequent occurrence in problems of elastic stress

analysis When g = 0 it is called the biharmomc equation Associated

with the differential equation we now need two conditions at each
boundary point, the most common conditions specifying boundary values

ofboth / and its normal derivative ?//cv Tbe approximate finite difference

form of V*/ is given by

**V7. - 20/#-SS/r+22/, + S/r.

m the notation of Figure 3 and the two boundary conditions again permit

the production of a set of algebraic equations, equal in number to the

number of internal mesh pomt3
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The general equation contains thirteen unknown pivotal values.

Iterative solution of the equations is more difficult than in the second-

order case, mainly due to ill-conditioning, but direct methods [110],

[111]
based on matrix operations are quite practicable.

The problem of curved boundaries is in a sense less difficult in this case

than for second-order equations. This is associated with the fact that a

knowledge of both / and Sfjcv at the boundary implies a knowledge of

both dfj8x and ofjoy, the derivatives in the directions of the mesh lines.

20.

Problems in elasticity may also involve the solution of two simul-

taneous second-order equations of the form

. 82u 82u _

Sx2 Gy2 oxdy
= 0 ,

„S2v ,82v _ 82u AB
8x2

+A
8y2

+ C
dx8y~ ’

(34)

with u and v, or some equivalent conditions, imposed at all points of a

closed boundary. By replacing derivatives by finite differences, in the

usual way, we produce a set of algebraic equations in the unknown pivotal

values of u and v. The only new feature is contained hi the approximate
equation

nl)

ih2
£§/

= Ws “ + “7 - «8. (35)

in the notation of Figure 3.

In all these problems the difference corrections have a known form,
and can be introduced at a later stage to correct a first approximation.

21.

Some elliptic equations, such as

W+A/=0, (36)

are of eigenvalue type, and lead to the solution of the algebraic problem

(A— AI)f= 0, (37)

already discussed in Chapter 3.

22.

Finally, in some problems, notably in fluid motion and in plasticity,
the position of part of the boundary is not known in advance, and an
extra condition is imposed at this boundary to fix its position. The usual
method is one of iteration; the problem is solved for guessed boundary
positions, and the true position estimated to fit the extra condition.
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13

EVALUATION OF LIMITS, USE OF
RECURRENCE RELATIONS

1 In this chapter •we discuss the evaluation of limits of sequences

slowlj convergent senes and continued fractions and the use of recurrence

relations The emphasw is on numencal procedures of wide applicability

rather than mathematical transformations relevant only to specialized

problems

RICHARDSON S DEFERRED \FPROACH TO THE LIMIT

2 This method can often be used to improve approximate results

obtained by finite-difference methods without the explicit use ofa dtffer

ence correction The approximation /, saj obtained with the neglect of

the difference correction differs from the true value of / by an amount
depending on the interval A, Let us suppose that for small A, the approxi
mation/, is of the form

/i-/+AAf+»f+*+ (1)

where A and B are unknown constants If we calculate two approxima
tions /, andft using different intervals ftj and h t we have two equations
of the form (1) from which we can eliminate A In this way we obtain a
new approximation

h3AzWj _ r+ nivt* -W1
. m

/{-A* } +a A*~A*
+ 1 '

which may be termed the hk-exlrapolahon formula In particular if L — 2
and h2 — -JA, equation (2) becomes

f=fi+UA-ft) 0)

with an error JB/J + The method can clear! v bo extended to obtain
formulae which take account of further terms in the expansion (1) An
investigation of the conditions under which the particular form (3) is

valid in the solution of differential equations by finite difference methods
is reported in [119]

Generallyspeaking /^-extrapolation is applicable whenever a Ath order

process is used to compute for example approximations to an integral

or the solution of a differential equation provided that there aie no



singularities in the range of integration. In practice it is usualty desirable

to employ at least three different intervals in order to allow comparison

between the results of two or more applications of (2); this will help to

ensure that the fr have been computed to sufficient accuracy, that the

intervals used are sufficiently small and that the correct value of k has

been chosen. If the exponent is not known, it can be determined numeri-

cally (provided that an expansion of the form (1) is known to exist) from

the approximate formula

9k -= fizA-
’/a-/*’

where the intervals corresponding to fvf3,f3 satisfy the relations

7*3 = ih2 = |/q. pi*

As "an example, let us evaluate the integral sin a; da; = 1 by applying

/^-extrapolation to approximations obtained with the use of the

trapezoidal rule (Chapter 7, § 11). Using intervals of frr, -J-rr and |tt, we
obtain 0-94S06, 0-97705, 0-98712 respectively; applying formula (2) to the

first and last and also to the last two of these approximations, we derive

the values 1-00014 and 1-00007 respectively, from which the correct value

can be inferred to within a unit of the fourth decimal. The excellence of

tills result is due to the fact that the coefficient of hs in (1) (with k = 2) is

in this case zero, while that of 7i
4
is small compared with A

;
these favour-

able circumstances are quite common in practice.

EXPONENTIAL EXTKAPOLATION

3. This device, which is also known as Aitkeri’s 82-process [39], can often

be used to accelerate the convergence of an infinite sequence or iterative

process. If a-

r_1 , xT,
&-
r+1 are three successive approximations to a quantity

x, and if the errors x— xr are approximately in geometric progression, a
better approximation is provided by the expression

x
> = xr-ixr+i~ xr = x

(xr+1 -xr )

2

xr+1 ~~ ~xr + xr—l
f+1 xr+1 — %xr -fXr_^

The two forms are equivalent; the second is often more convenient
computationally as the limit is approached (see [2], §3.4). The formula
may also be used with xT_1} xr+x replaced by x

r_p,xT+p , where p is an
integer greater than unity.

The process can be extended by forming the sequence x'r,x
'

r+1 , ...,

applying (4) again to produce a further sequence x';+1 ,
x';+2 , ..., andWon’

In the special case when the form of the relation between each iterate x
and its predecessor is independent of r, it is usually better to proceed as
follows. For a given ,t0 we perform two iterations to produce xl and x2 ,

and calculate x[ according to (4). The cycle is then repeated with xl
replaced by x'lt and so on. Because of the symmetry of formula (4), a
meaningful result corresponding to r = -oo may sometimes be obtained
in this way even if the given sequence diverges as oo.
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Example.

4 The smallestpositn e root of the equation tanx = e* can be compufed

iteratively using xr+1 = tan_, (e*»)» with x„ = 0, but the convergence is

rather slow The first three iterates derived in this way are

0 78540, 1 14302, 1 26213

Applying formula (4) to this tmd and performing two more iterations we
obtain

1 32161, 1 31016 1 30729,

and a further application of (4) yields the value 1 30G33, which is already

correct to five decimal places

SUMMATION OF SLOWLY COMEROENT SERIES

5 This problem is closely related to that of evaluating the limit of a
sequence, indeed the two are mathematically equivalent Many special

transformations have been devised to deal with particular types of senes,

but most of the computer s practical needs are likely to be met either by
applying the method of § 3 to the sequence of partial sums or by using

one or other of the transformations of Euler and \an Wijngaarden
described in §§ 6 to 1 1 below

It must be assumed that the terms in the infinite senes ultimate!}

conform to a regular pattern, for otherwise the value of the sum of the

infinite senes could not be inferred by considenng onl} a finite number of

terms If, as frequently happens, the early terms are irregular or decrease

fairly rapidly, they can be summed directly and the selected method of
extrapolation applied to the remaining series lie may also observe m
passing that a given senes can sometimes be brought to a more tractable

form by a simple rearrangement or regrouping of its terms

THE EULER TRAS SFORMATION

6 This transformation, given b}

£<->•». -jsfer*". (5)

is chiefly used to sum senes wbo«e terms alternate in sign It is valid [51]
whenever both senes converge, and may be demonstrated by symbolic
methods as follows

SMX = Sf-W* = (!+£)->«, = *(1 + *A) >«
0 = i f(-|A)'u0

(6)
7 As an example consider the senes

1-4+4-4+ = 4>r =* 0 78540 (7)

Working to five decimal places, we find by straightforward addition that
the sum of the first six terms is 0 74401 Let the remaining senes be

124



denoted by £ (-)s«s . Then the terms in the transformed series (5) may
s=0

be evaluated as follows:

5 ns
A A2 A3 A4 (-)!A%/2*W

0 + 0-07692
-1025

+ 0-03846

1 •06067 + 240 •00256

785 -74

2 •05SS2 166 + 26 -00030

619 — 4S

3 •05263

-501
+ 11S •00005

4 + -04762 •00001

E= +0-04138

For the complete sum we have

0-74401 + 0-0413S = 0-7S539.

8. The application of Euler’s transformation is not restricted to

convergent series; meaningful results can sometimes be obtained even

when the original series diverges, and the method is widely used in the

summation of asymptotic series. In such cases, however, the reliability of

the results should, if possible, be tested by applying an independent

numerical check.

9. A more general form of the transformation, given by

<8 >

is useful in summing power series for various values of x. Further, by
substituting x = eie we can derive formulae for transforming sine and
cosine series.

10. A modification ofthe procedure of §§ 6 and 7 , due to van Wijngaarden,
is ideal for automatic computation. We express Euler’s transformation in

the form

S s Y,vs = v0+v1± ... +«„_!+ i T,M°vn , (9)
s=0 s=0

where If = 4(1 + 2?) is the foncard mean operator defined by

Hvs = Mvs+vs+1). (10)

The equivalence of (5) and (9), with vn+s = ( - )
s«5, may easily be verified.

We denote by Sn<p the approximation to S obtained when the upper limit
on the right of (9) is replaced by p.

Starting with S0 0 — ivQ , we take as our next approximation
S0_i = 1{v0+Mvq )

or <S10 = t/Q+ fuj, according as \Mv0 or 4-zq is smaller;
to obtain S0fl or -S1>0 we add either ilfr0 or Mv0 to S00 . In general, either
P or is increased by unity at each step, according as lfP+1 vn or Mv vn+l
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is the smaller, and a new partial sum <Sn p+1 or <SB+1_ P obtained by adding

i r, or M**lvn to Snp A useful practical criterion for terminating

the calculation is the negligibility of the added term m two (or more)

consecutive cycles

An important feature of the method is the economy of storage which

it permits At any stage it is necessary to retain only a single row of

backward means, typified by

W 1TW4 JPw* > U*vm (ll)

During the cycle which follows the calculation of S„ p, this row is

replaced by
Mv,tr , JU-*‘vn , (12)

if n, and not p, is increased, the last term is subsequently dropped As
soon as the fcth member of (11) has contributed to forming the (t+ l)th

member of (12), it can be overwritten by the Ath member of (12)

VAN WUNOAABDEN’S TRANSFORMATION

11 The powerful Euler technique is not directly applicable to senes of

positive terms However, by means of a transformation due to van
Wijngaarden, given by

5s Iv- Jif-r'uv (13)

where

wr = v, + 2vtr + 4vtr + 8vtr+ , (14)

we can convert a senes of positive terms into an alternating senes, to

which Euler’s transformation, can then be applied
From (14) we deduce the relation

2wv = w.-v„ (IS)

which can be used to compute the wt of even suffix It also provides the
basis for a simple proof of (13) thus

t
’i + l * + w3 + = («’ 1 -2tPI ) + (tt I -2u!4)+(ira — 2tt g ) +

= (16)

The conditions needed to justify the rearrangement and ensure the
convergence of (14) are very mild, for example, it is sufficient that either

Itv+il^lVrl and SrT converges, or that lu,l< where K and c are
pos:ttr& constant#
As an example, if vr = r

-*-1 (c>0), we have

wr *= v*"1 + 2(2r)~e
~1 + 4(4r)-< i +

= r-*'1(I+2-e+4-e + ) = r-»"V(l-2-e)

L +JL_
1 — 2-1 \l 1+e 214<

+
31+e
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COMPARISON WITH AN INTEGRAL

12. If vr is the value at x = r of a function v(x) whose integral is known,

an integration formula can be used to sum the series. For example, we may

employ^the central-difference quadrature formula (25) of Chapter 7 in the

form

S vr = f
v(x)dx-(-^fiS—gkn8

3+ —)v„, (17)

r*=n-fl J n

or the Euler-Madaurin formula

lvn + S vr = f
«(cc)dx-{-^;

,

(
72)- 74o^'’(«.)+ ...}. (18)

r=n+l J n

Even if the given series cannot immediately be dealt with in this way,

it may yet be possible to subtract from each term vr a quantity v* which
f* 00

approaches vr asymptotically for large r and is such that v*(x) dx can

he easily evaluated or found from tables. The residual series E(vr— v')

then converges more rapidly than the original series and it may be

practicable to sum it directly.

EVALUATION OF CONTINUED FRACTIONS

13. Another type of limiting expression of fairly common occurrence is

the infinite continued fraction, obtained by letting n tend to infinity in

the expression

60 +
&x +

®2
(19)

(For a discussion of convergence and an account of the general theory, see

[125] or [126].)

The expression (19) is known as the nth approximan

t

or convergent. It
can be calculated directly by alternate division and addition, working
backwards from the right

;
in this case a check must be applied to ensure

that the value of n chosen is sufficiently large. Alternatively, the successive
approximants AJBn may be generated by means of the recurrence
relations

^n+l Ujj-i-x A,,—i, -®7i+l — bn+l^n + an+l-®«-l> (20)

with A
0 = b0 , A 1 — ^pfex + Oj, £0 = 1, ^1 = 5x7

or by use of the summation formula

B
where the p t

- are given by

< 2 Pi Pi Pit
f=

i

r
‘ Civ Pl

«X . 1 1— y-j 1 + p» = . 1 -j- p. =
bi

r
1 +r, l+r,n+ ri( 1 +Pi-i)

(
21

)

(i> 3).

(
22

)
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Ia automatic work, the second method has the slight disad\ antage that

the numbers A n and Bn are apt to grow large By contrast, the number of

figures m the pt
can actually be reduced as the terms in the sum (21)

decrease, but the recurrence (22) requires modification if any of the b(

s amsh or are -eery small

THE USE OF BECtJRRET.CE RELATIONS

14 Recurrence relations are often of assistance in the computation of

mathematical functions, for example, the recurrence relations satisfied by
Bessel functions were widely used in the tabulation of these functions

They gire nse to a very economical form of computing, since each stepm
the computation yields one required value of the function

Careful attention should be given to the possibility oferror build up when
recurrence relations are used The dependence of the error m each newlj

computed value on those of its immediate predecessors is usually apparent

by inspection, but since these errors are interrelated the overall pattern is

not immediatelyobvious In the case ofa linear recurrence relation, the most
common in practice, the errors themselves represent a solution, the way
in which they are propagated can then be easily determined by applying

the recurrence with arbitraiy starting values and observing the rate at

which the resulting solution increases

15 Consider the relation

/,«-f -o. (23)

satisfied by the Bessel functions Jn and Y„ If «70 and J1 are known, (23)

can be used to calculate Jt J, successively all for the same argument x
The process is accurate however only so long as n does not exceed x
thereafter there is a rapid build up of error This is because the solution

obtained inevitably contains a small multiple of the unwanted solution

which increases exponentially with n when n>x whereas the wanted
function «/„ decreases On the other hand if we calculate I B by the same
procedure, with T

0 and Yx given, the wanted function mereases as fast as

the error and there is no loss of significant figures

16 An alternative method for calculating JH when n > x is to choose N
so large that JN is negligible and recur baekwarda taking as initial condi
tions/v+1 = 0 fN = 1 In this case Yn decreases while Jn increases and the
unwanted part of the solution decays Thus the values obtained are effec

tively those of JH multiplied by a constant factor, this can finally be
determined from some known value of J for example J0[x) or indepen
dently by using the relation

= 1

The same principle is employed m the method for calculating Chebysbev
coefficients described m Chapter 9 § 23

17 Useful information can sometimes he obtained by considering the
hunting form of the recurrence relation for large « For example, when
n~*-ao the equation

{» + (2n 4-1 ) */„ + n/B_i = 0
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satisfied by the Legendre functions Pn {x) and Q„{x), assumes the limiting

form

fn+l~ 2xfn +fn-

1

= (
25

)

This is a difference equation with constant coefficients with the general

solution

(i) Aein0+Be~in9 with 9 = cos-1 x, (26)

or (ii) Aena +Be~na with a. = cosh-1 x, (27)

according as x is less than or greater than unity; for simplicity we consider

only positive values of x.

In case (i) all solutions of (25) are bounded as n -> co. This suggests that

in the evaluation of any particular solution of (24) by recurrence there is

scarcely any tendency for the error to grow. (We disregard the mere
accumulation of rounding errors, which is usually of secondary signifi-

cance.) In case (ii), however, the solution (27) indicates that equation (24)

possesses solutions of exponential type for large n; by analogy with the
computation ofJn and Yn discussed in §§ 15 and 16, the direction in which
the recurrence should proceed will thus depend on whether the required
solution increases or decreases with n.
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14

EVALUATION OF INTEGRALS

GENERAL METHODS

1 The numerical evaluation of an integral on desl machines is usually

earned out using one of the finite difference quadrature formulae of

Chapter 7 These formulae are particularly well suited to the evaluation

of an indefinite integral at several successive tabular points Indeed then

use is often preferred even when a closed expression is available for the

integral

2 As an example consider the integral

-I
t 1 ,

x1 ax + a * I
. ,

. . ...

If this is required for a single value of x computation of the analytical

expression is a suitable method For a sequence of values of x however it

is much easier to compute the integral by quadrature using for example
formula (27) of Chapter 7 The analytical formula will nevertheless still

be used to provide spot checks for one or more values of %

3

In automatic uotL the more complicated finite difference formulae
are usually discardedm favour ofSimpson s rule (Chapter 7 equation (34))

In the case of definite integration the result of repeatedly applying

this formula may be expressed in the form

£ !ii/i-J%(0) +s,(1) + 2?. + 4J',! P)

where
Sh - y (2ft) + y(4h) + + y{[n - >) k)

T»-y(fc)+y(3A) + + 2
/{(n 1)A>

and n = 1/h is an even positive integer The interval h must be sufficiently

small to ensure that the truncation error is negligible A convenient auto
matio procedure is to apply the formula with a coarse interval initially

then to halve it repeatedly until the results of two (or more) successive
applications agree Only alternate ordinates have to be computed and
summed each time the interval is halved is obtained by adding Sh
and T/, both of which are available from the previous stago

For indefinite integration unless an interval size which is both safe and
economical can be determined beforehand it is desirable to test at every
step whether the current interval should be halved or mav be doubled
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For further details of the methods of this and the following two sections,

see [134].

4. Another suitable method, described in Chapter S, § 19, is the

termwise integration of the Chebyshev expansion of the integrand
;
this is

particularly valuable for indefinite integration.

5. A third general method which is well suited to the automatic

evaluation of definite integrals is the use of the Gauss quadrature formula.

The transformation

x = i(a+b) + i(b—a)X

yields the standard form

fycto = i(b-a) P ydX = i(b-a) £ <<>y(X<">), (3)

Ja J—X r=l

where the points X<n) and the weights it’*"
1 are chosen so that the formula

is exact when y is any poljmomial of degree less than 2n. Thus by the use

of n points the Gauss formula achieves an accuracy comparable with that

of an equal-interval formula using 2n points.

This advantage is to some extent offset by the increased difficulty of

checking. In order to ensure that the error associated with a particular

value of n is negligible, it max' be necessary to repeat the calculation using

a different n, and this entails the evaluation of a completely new set of

ordinates. For this reason, the method achieves the greatest economy
when applied to a batch of similar integrals for which a suitable value of n
can be determined by examining one or two test cases.

Extensive tables of X]” 1 and zvjV 1 are given in [137], [138] and [139].

I Is FINITE INTEGRALS

6. When the upper limit of integration is infinite, the finite-difference

formula (25) of Chapter 7 yields

I
y dx = h{hy0 + Syr + c-y0) , (4)

Jx, r=l

where yr = y(x0 + rh) and

cI/o = (Am3 - TsWtS3 + • • ) Vo- (5)

If the convergence of the integral is rapid, the expression (4) is readily
evaluated and no new problem arises. As with finite integrals, it will
usually be convenient to choose h so small that only a few terms in the
difference correction (5) are needed. In the special case when the mean
odd differences at x0 (and hence Cy0 ) vanish, however, it is practicable to
use a. comparatively large interval. This happens, for example, when
•To
= — co, in wliich case (4) reduces to the trapezoidal rule

:

fco CO

ydx — h 2 y(rh). (6)
J -co r=- co

The accuracy of a result obtained from (6) can, as a rule, be checked
by repetition using a different h, the use of differences of y being thus
altogether avoided. The formula is not, of course, exact; its asymptotic
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nature is discussed and bounds for the error determined bj Goodwin {141]

in the case of integrands of the form e **/(x) See also [X42]

7 The Lagvcrre-Gauss and Hermile-Gausa formulae

J”<
>s(x)<ir = £x"W) = ix-’sWM m

are sometimes useful when the arbitrary function y{x) approximates to a

polynomial oflow or moderate degree For tables of the requisite abscissae

and weights see [137] and [140]

8 In cons denng the problem of the evaluation of slouly convergent

integrals two principal cases may be distinguished (a) the integrand y(x)

decreases steadily to zero as x-*-co (b) y{x) oscillates in a regular manner
about zero as x-rca Both cases may often be dealt with by first expressing

the integral as an infinite senes of ordinates together with a difference

correction as m equation (4) and then applying one of the methods for

summing slowly convergent senes described in Chapter 13

9 In case (a) the methods ofAitken and van II jjngaarden (Chapter 13

fj§ 3 and II) are directly applicable to the senes £ V

In case (b) let us suppose that for sufficiently large r the sign of yr

changes approximately every m terms We first group the terms m the
form

XV.-0/1+ +».) + (»—!+ +Ji>j + <5't»-.l+ +!'!-) +
f-1

“2l+ *J+ 2s+ 8a' (8)

and then apply Euler s transformation (Chapter 13 §|6tol0) Anumencal
example is presented in § 12 below

10 This method is simple and effective but may require a large

number of ordinates yr An alternative procedure for evaluating oscillatory

integrals which demands the computation of fewer ordinates is as

follows First consider integrals of the form
J

f(x)smxdx where f(x) is

a steadily decreasing function whose differences at the interval n are well

behaved in the range of integration Substituting for / in the sub range
f7r$x<(r+ 1)77 in terms of Everetts formula (Chapter 7 §7) and
integrating term by term we derive an expansion of the form

’ f(x)smxdz = (-) (1 +a1
S 1 +a t S‘+ ) (/, +/r+I ) (9)

where/, —/(rjr) Hence summing from r — n to r = oo we obtain

J
/(x)sinxdx =s ( — )

x (l +c1 8
, + a,S1 + )/„ (10)

The first few coefficients a
(

obtained by expanding the operator

(1+ (log E'fjv2}
1m powers of 8* (Chapter 7 § 3) aTe

<tj - -0 10132 118 a2 = 0 01870 941

a3 = -0 00387 695 a4 = 0 OOOS4 579
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11 . The method is readily extended to the case in which the integrand

is expressible in the form M sin 0, where the modulus M varies slowly and

the phase, 6 increases steadily with x. We then take 6 as a new variable of

integration and write

M sin 8 dx
M sin 6

o, ~ddjdz
d6. (

11
)

which is amenable to the treatment described.

Example

12. Let us apply the methods of §§ 9 to 11 to evaluate

roo

J0{x)dx.
JXo

Talcing a;0 = 0, h = 1 and m = 3, and using the first thirty ordinates, we
obtain for the series

(
8

)

s z
r = 0-72904— 0-42410 + 0-38140 — 0-36944 + 0-36378 — 0-35811

r=

1

+ 0-35023 - 0-33929 + 0-32501 - 0-30738 + ....

Summing the first three terms directly and applying Euler’s transformation
OO

to the remainder, we obtain 2 zr = 0-50001. Application of formula (4),

r=l
with y0

— 1
,
Cy0 = 0 , then yields for the integral the value 1 -00001

,
in

virtual agreement with the true value, unity.

The modulus-phase representation required for the application of the

second method is here given by

J0{x) = if cos
-A,

M* = Jl+Y% = ~ (12)

(compare Chapter 15, § 20 ). Hence taking x0 = j0,«> the utli zero of JQ{x),

we obtain

J0(x)dx = r r = f“(|77XiY3)sin 0 d0
,

Jto.n J (n-i)rr dtp/dx J njf

where 8 — ip+ -J
77 . Hence from

(
10

)

I
J0(x)dx = (-)n(l +aiS2 + a2S4 + (13)

^o.n

where the differences are those of ItttxM3 tabulated at an interval rr in ip,

and the suffix n refers to the point “xp = {n— Ej-x, corresponding to x = j0n .

With n = 5, for example, application of (13) yields, with the use of seven
ordinates,

j

J0(x) dx = - 0-20565,
J},.,

wliicli is correct to five decimal places.
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SINGULAR INTEGRALS

13 SIanj types of singularity can be remoxed by a suitable change, of

variable For example integrals of the forms

J
/(*)*-* dr, J/(x)ln xdx,

J*
/(*)(*

in which f(x) is well behaved become non singular with the transforms

turns

x — C x = e
-

*, x — sin t

respectively In the second case one limit of integration becomes infinite

but the convergence of the transformed integral is rapid For the tlurd

integral an alternative is to Bplit the range at x = 0 and appl} the

algebraic transformations x = ±(I -«*) to the upper and lower parts

respectively

14 Another approach is to employ a formula of the type

- &,/(*,) (»>

in which /(z) is again an arbitrary well behaved function the points xr
are prescribed and the coefficients depend on the given function tr(x)

(which may bo singular in <t^x<6) and on the limits a,b
When the points xr

uto equally spaced, the formula is said to be of

Newton-Cotes type (compare Chapter 7 § 16), the case it(x) — In* is

treated in (143) and the three cases u(i) = x±» and lnx m (144), see

also (188]

If the abscissae are chosen to secure the maximum accuracy consistent

with a given order of formula wo have a formula of Gauss type (compare

§§ 5 and 7) examples are the Chebxjxhev-Gauss and Jacobi-Causs quadra
ture formulae corresponding to the weight functions

tt(x) » (1 -x*) * and u(x) * (1 -x)“(l +x)> (a>-l /)>-!)

respectively, and limits of integration a = - 1 6=1 For details see [4}
and (5]

15 The method of the extraction of a singular part may be illustrated

by considering the integral

f(*) ” Jo Y~it
du ( ,5)

We note that the integrand has a pole at u = I and that 7(1) = oo In the
neighbourhood of u = 1 the integrand behaves like «— *(1 -«) 1

, accord
ingjy we express /frl in the form

The first term on the right is equal to — e 1 In
j
1 — x\ while the second

has no singularity at x = 1 and can be evaluated quite easily by numerical
quadrature Ifx> 1 the value obtained in this way is the Cauchy principal
talue of I{x)
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ANALYTICAL TECHNIQUES

16. While the discussion of methods of a purely mathematical character

is beyond the scope of this manual, mention may he made of a few basic

mathematical procedures wliich frequently facilitate the numerical

evaluation of integrals. Further details are given in [135].

17. A fairly common requirement is the integration for n — 0, 1, 2, ...

of a function containing a factor such as xn, cos nx or Jn (x). Integrals of

these types may satisfy a linear recurrence relation.

A simple example is afforded by the generalized exponential integral

En (x).
Integrating by parts we obtain

r°°
e xu

du —
- _ e-XU 8

1 X

h (n— l)un~l
i n-1J]

rdu

n
-xE^ix)}. (16)

From the values of the exponential integral Ex(x) = — Ei( — a;), we can

compute E„(x),

E

3(x), ... in succession by means of (16); many guarding

figures are needed, however, when x is large (see Chapter 13, § 14).

IS. If a function defined by a definite integral satisfies a differential

equation with respect to a parameter, the most convenient way of evaluat-

ing the integral for a range of parameter values is often provided by the

numerical integration of the differential equation. A value of the integral

is thereby obtained at each step of the process of solution.

For example, the function

-& (”>

satisfies the differential equation

F'(x) + 2xF(x) = fn — (l lx). (18)

This equation was used by Goodwin and Staton [136] to compute F(x) on
desk machines. For automatic work, (IS) could be used to derive
Chebyshev expansions of F(x) by the method of Chapter 9, § 23.

19. Although an integral may be amenable to expansion in a variety
of ways, it is generally advisable to consider a purely numerical approach
before undertaking a lengthy mathematical investigation. Nevertheless, a
series expansion will often afford a convenient means of computation,
particularly in the neighbourhood of a singularity. For example, the
integral (17) can be computed for small values of x by means of the
ascending series

F{x) = — e_x’ln.r + e_x
’ - 2

r2»

tW(2?i+ 1) n! 2n 2
(19)

where y = 0-577 ... is Euler’s constant.
20. Asymptotic expansions are frequently used in computing integrals.

If the given integral can be reduced to the form

(20)
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then an expansion in descending powers ofx mar be obtained by expand
mg ^(1) m ascending powers of t and integrating formally term by term
Precise conditions justifying this procedure are given for example m
[145] Thus for the integral (17) we have

1 r^L d±~

2Ja fl+xfl

2j0 ", af+>
e

2 r_ a af*1

(21 )

The useful computational range of this expansion may be increased bj
application of the Euler transformation (Chapter 13 § 8) see [136]
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15

TABULATION OF MATHEMATICAL
FUNCTIONS

INTRODUCTION

1. The preparation of a new numerical table of a mathematical func-

tion takes place in several stages. For convenience we may separate

these into two main groups.

First, there is the mathematical and numerical investigation of the

properties of the function to determine the most convenient method or

methods of computation, and the computation itself.

Second, there is the checking, subtabulation (if required), preparation

of interpolation aids, preparation of final copy and printing. These matters,

which may be termed principles of table-making, form the main subject

of this chapter.

Before discussing these topics, however, we consider a most important

question confronting the table-maker: has the right choice of tabular

functions been made? A type of difficulty encountered in making the

correct choice is described in the next two sections.

CHOICE OP SOLUTIONS OF DIFFERENTIAL EQUATIONS

2. Consider, for example, the equation

This has the general solution

y = Aex + Be~x,

(
1
)

(2)

where A. B are arbitrary constants. Another form of the general solution is

y — A cosh x +B sinh x. (3)

Given tables of ex and e~x having a prescribed number of figures, we can
evaluate the expression (2) to a certain accuracy for any values of A,
B and x. This accuracy is not attainable for large values of x if we use
instead tables of cosh a and sinh a; and the expression (3), because the
leading figures of the corresponding values of these functions are the
same, and this results in severe cancellation when A is approximate^
equal to -B.
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For this reason ex and e x are said to be a numerically satisfactory pair

of solutions of equation (1) for large values of x The pair eoshx and
sinhx are not numerically satisfactory even though they are linearlv

independent m the mathematical seme
This Lind of difficulty is associated with differential equations whose

solutions are of exponential type for large values of the independent

variable or are unbounded in the neighbourhood of a singularity The
choice between oscillatory solutions is usually far less critical

3 A less simple example is provided by Bessel s equation

d*y

dx* (4)

In the neighbourhood of the singularity x => 0 the solution J0(x) is

bounded and the solution Ii(x) unbounded both functions oscillate for

large positive x Accordingly J0(x) and I c(x) comprise a numerically

satisfactory pair of solutions for all real positiv e values of x
In the complex plane however this is no longer true both «/

fl
(z) and

Y0(z) become exponentially large as z tends to infinity along any ray not
parallel to the real axis A numerically satisfactory pair of solutions in the
upper half of the complex plane both in the neighbourhood of the origin

and at infinity is J0(z) and the Hankel function H'0
v(z)

PREPARATION OF PRINTED TABLES

4 IVhen the function values have been computed they must be
checked systematically This is usually performed by differencing using

either an accounting machine with several registers or if the values

are already punched on cards a punched card tabulating machine Any
blunders that have been made in the computation will then be revealed
Small end figure errors of a unit or so will not always be found in this

way, so that the original computations and the differencing are per
formed with the retention of one or more guarding decimals and subse
quently rounded mechanically to the number of decimals required in
the final table

6 At this stage any subtabulation which is necessary will be carried
out If an automatic computer has been used for the calculations it is

probable that every value required in the final table will have been
evaluated directly On desk machines however it is usually economic
to perform the original calculations at the largest convenient interval
in the argument at which the function has convergent differences The
intermediate values can then be filled in by systematic interpolation, the
whole process being earned out mechanically by punched card or account
ing, machine

6 The final stages in the preparation of the table depend on the method
of reproduction In the past tables were invanably set m type by com
positors and pnnted m the usual way by letterpress This necessitates

careful and labonous checking of proofs to ensure that the correct figures

have been pnnted The proof reading is earned out by comparison with
the computed values and by differencing the latter method being much
the sounder
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At present, increasing numbers oftables are reproduced photographically.

This has the advantages of being slightly cheaper and reducing the amount

of necessary proof-reading. Good copy can be prepared directly from the

computer output or from punched cards by means of an automatic type-

writer or line printer. Letterpress, however, has greater flexibility in

arrangement and a more pleasing appearance, and many fundamental

tables are still printed in this way.

INTERPOLATION AIDS

7. Many tables of elementary functions, such as logarithms and sines

and cosines, are produced with an interval in the argument sufficiently

small to ensure that linear interpolation is accurate. The compiler need

then make no special provision for interpolation, except possibly to pro-

vide a table of mean first differences or proportional parts.

In the case of tables of higher mathematical functions, with more than

three or four figures, economic and other limitations on space may be

too stringent to permit provision of a linearly interpolable table. In

this case the user must perform the interpolation by means of a more
complicated formula, and it is incumbent on the compiler to ease the

labour of interpolation by providing quantities in the table in addition

to the fimction values. These quantities are known as interpolation aids.

Differences

8. The commonest aids are the central differences of the function, for

use either with Bessel’s formula

fp ”A+^i + -®2(^0 + ^l) + -®3 S} + -84(^0 + C>l) + -”> (
5 )

or with Everett’s formula

fp ~ (l~P)fo+Pfi+E2&o+F28l+E4 8$ +Fi 8l+ (6)

see Chapter 7, §§ 7, S. Everett’s formula has the advantage that it does
not use differences of odd order, and in consequence only those of even
order need be given in the table.

The routine application of (5) or (6) requires tables of the interpolation
coefficients B2,B3,E2,F2 ,

.... Interpolation and allied tables [167] gives
these and other coefficients and a detailed explanation of their use.

Modified differences

9. The power of differences is greatly increased by use of a device
known as the throw-back, the basis of which is as follows. An examination
of numerical tables of the interpolation coefficients Bfip) andB2(p) reveals
that their ratio varies over the comparatively small range ( — —£§)
when 1. This suggests that we may allow for most of the effect of
fourth differences by forming a modified second difference

8» =8* -CSS (7)

where G is a constant. Neglecting differences of the fifth and higher
orders, we can then write (5) in the form

fv = /»+*«» + -B
2(8?„o + 8“a ) +B3 8?,

13910
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with a residual error of amount

« = (fl4 +Ci?t){8*+8J) (0)

The constant 0 is chosen so that the coefficient in (9) has the smallest

maximum numerical valuem the range 0<p < 1 We find the approximate

value 0 184 for C, and the maximum value of
|
f?4+ 0 I84B,| does not

exceed 0 00023 Therefore if fourth differences do not exceed 1100 the

error of this approximation is less than half a unit m the last decimal

Because of the equivalence of Bessel’s and Everett’s formulae we can

replace (6) in the same circumstances by

/»-(!-?)/,+j>/,+£A+ SSI, (10)

Thus the effect of fourth differences which are less than 1 100 can bo

allowed for by giving 5* in place of 8 sm the table The modified difference

is treated m the same way as an ordinary difference in carrying out the

interpolation This device helps the compiler by removing the need to

tabulate fourth differences, and the user bj providing a simpler formula

10 The idea can be extended The formula

/• - (i-pi/.+y/i+s.^+asi.+Jl.j'S+A’.ri (")

in which

8*. = 8* -0 1848* + 0 03808 2S«- 0 008308* + 0 001 9S 10 -
, 1

(12

Y
* = 0 0018*- 0 00027 838* + 0 0000C 88* - 0 000025 1® + , J

and

AIt =* I000(£
4 + 0 184£

t )
A 4 = 1000(£4 + 0 184j;)f (13)

allows for the effect of all differences provided that

|/*8*| < 300 000 and
1

8’ (<27,000

These conditions ensure that the truncation error does not exceed one
half unit of the last figure given provided of course, that the differences

do not diverge (Chapter 7 § 17)

The full theory of throw bach' interpolation is given in [150]

Reduced derivatives

11 If we define

t«=*•/<•> (a)/*' (*=12 ) (14)

where / is the tabulated function and h the argument interval, then the
Taylor senes at the tabular point x = a may be written m the form

f{a+ph) =/(a)+pr+p*Ts+ps T3+ (15)

In this method the aids to interpolation are the quantities t, t*, , known
as the reduced derivatives of/, they are a by product of the Taylor senes
method for integrating differential equations (Chapter 9, §§ 4—6) As many
of them as are significant m (15) are tabulated side by side with / The
process of interpolation is the evaluation of the nght hand side of (15)
for the value ofp in question, and can be performed either with the u«e
of a table of powers or by treating the curtailed senes as a polynomial
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in p and building it up on a desk machine by nested multiplication

(Chapter 6, § 1).

These aids occupy considerable space in a printed table and axe not

often given.

Economized polynomials

12. In this method the tabulated function f(x) is represented in the

interval a ^ x < a + h by a polynomial of the form

f(a+ph) = f(a) + cxp + c2
p"+ c3p

3 + . . . + cnp
n

, (16)

the degree of which is chosen to be as small as possible subject to the

condition that the error of the representation shall not exceed half a unit

in the last decimal. The coefficients c1; c2 , ...,cn are tabulated side by side

with /, and the interpolation is carried out by direct evaluation of the

polynomial on the right of (16).

From the standpoint of the user the method resembles the use of

reduced derivatives; the essential difference is that the latter requires

more terms.

The coefficients c1; c2 ,
...,cn may be determined from the expansion of

f(a+ph) in Chebyshev polynomials (Chapter 8) for the range 1. In

this way expansions for the coefficients can be derived in series of central

differences similar to (12); see [151].

13. The effect of rounding errors in the use of (16) may be minimized
by the following device, due to D. B. Gillies. The function values and
the coefficients are evaluated with guarding figures. Then /,Cj, c2 , ... are

rounded in succession in such a way that, with primes denoting the values
to be tabulated, + c[,f' + c[ + c2 , ... are the correctly rounded values
of/,/+c

1,/+c1 + c2 , ..., respectively. The consequent error in an unrounded
interpolate cannot then exceed one half. For

f — f' + e
o> /+ ci — /

, + ci + ei: /+ ci + c2 =/
, + <n + C2+ e2 , ..., (17)

cs = c
's
+ 6

s
~ es-i- (IS)

where |es |^i. Hence

The error in an interpolate is accordingly

!e0+ (e1 -e0)p+ ... +(e„-en_1)p"|
= |e0(l-p) + e

1(p-^2)+ ... +en_ 1{p
n~1 -pn

)+ enpn |

<i{( 1 -p) + (p-p2)+ ... +(p7,_1-p7l

)+i>”} = &
14. The advantage of this method is the speed and convenience with

wliich an interpolation may be carried out. For the same interval, the
coefficients cs require more space than the modified differences, but it is
often worthwhile to increase the interval and use a polynomial of higher
degree.

15. Another form of economized interpolation polynomial is obtained
by rearranging (11) in the form

/;> = 9/o+ <?( 1 ~ <f) d2i o + <?
3
(
1 - q

2
)
d

4> 0 +pfx +p{ 1 -p2
) d2 x +£>

3
(1 -p2

)
d

it 1;

where q = l —p and

rf2 = i(-S2,+ 16/), =
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This has the same type of symmetry as the Everett formulae (6) and (11),

but has the advantage that it can be evaluated easily without the aid of

tables of interpolation coefficients

Usinga device similar to that of § 1 3, we can ensure that the accumulated

error in an unrounded interpolate never exceeds one half This compares

favourably with the maximum error of 1 I unit3 associated with (11),

see [150]
Examples of tables which have aids for use with (16) and (19) are given

in [215]

Lagrange's method

16 Here the interpolate jv is computed from a number of consecutive

tabular values surrounding the desired value of the argument With an

odd number (2n + 1) of points Lagrange’s formula may be written as

fP = L_H(p)f_n+L_n+1{p)f_n„+ +Ln(p)fn , (21)

and with an even number (2n) as

/» - A,,1(j>)/_.»+ZL„1<J>)/-„,+ +K(t>)/. (22)

The advantages of this method are wholly on the side of the compiler,

no interpolation aids are given From the standpoint of the user there are

several drawbacks The calculation is laborious, bulky tables of the

Lagrange coefficients L,(p) are required, there is difficulty in deciding

how many points to use, particularly if the full accuracy of the table is not

required, and interpolation near the ends of a table may bo troublesome

It is true that by omitting interpolation aids, space is made available

which could be filled with additional function values, thus permitting a
reduction of the interval This would have the effect of reducing the

degree of the Lagrange polynomial needed for interpolation Nevertheless,

the more powerful aids at the unreduced interval are almost invariably

faster to use than the Lagrange formula at the smaller interval

USE OF AUXILIARY VARIABLES

17 We have assumed, in effect, that for the purpose of interpolation

the tabulated function can be represented reasonably as a polynomial
It may not always be possible to do this directly and the compiler must
then introduce new variables, dependent or independent or even both
We mention here some of the circumstances m which tlus need may arise

Singularities

18 Suppose, for example, that near x = 0 we have

f(x) ~ x~l + <f>[x) (23)

where j>{x) 13 a well behaved function Clearly f(x) cannot be interpolated
directly by a polynomial near x = 0, but we may tabulate either /(x)—

x

-t

or xf(x), both of which are well behaved there
A common form of singularity involves the logarithmic function For

example, near x = 0 the exponential integral

-&(-*)_
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(a;> 0) (25)

has the series expansion

- Ei( - x) = -y- In x+ £ (

-

where y = 0-577 ... is Euler’s constant. Accordingly, for interpolation

purposes, near x = 0 we tabulate — Ei( - x) + Inx rather than — Ei( — »)

itself.

Singularities at infinity

19. In order to make a table which can be used for indefinitely large

values of the argument x, we must take a new argument such as a;
-1

.

For example, for large x the exponential integral has the asymptotic

expansion
erx l 112' \ e~x_Ei(—*)~^-(l— S(x), say. (26)

With argument z=x~x the function S can be computed for values of z

between 0-0 and 0-1, say, and it is easily interpolable to about seven

decimals at the interval 0-01 in z. The required function is then obtainable

by multiplication by e~x/x, readily determined from exponential tables.

20. As a second example, for large x the Bessel functions J0(x) and Y0(x)
are oscillatory functions with period approximately equal to 2n. This can

be seen from the asymptotic expansions

J0(x) = [— 1 (Bcos 6— Qsin 6), Y0(z) = (—) (P sin 6 + Q cos 6), (27)
\ttxj \ttxJ

where 0 — x— l

v

and

1 2 .3 2
1 2 .32 .5 2 .7 2 l 2

,

1 2 .3 2 .52

2!(8.t)
2+

4
!
(8x)4

_
l!(8x)

+
3!(8x) 3

(28)

For large x we can tabulate P and Q as functions of x~x
. Then J0(x) and

Y
0(x) can be found with the aid of tables of the trigonometric functions.
Another pair of auxiliary functions which vary slowly and are well

behaved at x~x = 0 is (\nxfiM and fi—x, where M and ip are defined by

J0(x) = M cos ip, Y0[x) = M sin tp. (29)

M and ip are sometimes called the modulus function and phase function
respectively.

21.

Besides being necessary for satisfactory interpolation, auxiliary
functions are often easier to compute than the original functions.
For example, if we substitute

y = Me 1'!’

(
30

)

m the differential equation (4) satisfied by J0(x) and Y0(x), divide
throughout by ei'-r and separate real and imaginary parts, we obtain

M" - MxP'2+ aw1 M' +M = 0, Mfi" + 2M'f + x~x Mf’ = 0. (31)

The second of these equations can be re-expressed as

2
M' fi" 1 m
—TT + "77 d = 0,M Xp' X (32)
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and then integrated immediately to gue

JJ*0' = ear1

, (33)

where c 13 a constant Substitution of (33) in the first of (31) now gives a

differential equation forM
(34)

The value of c depends on the normalization of the solutions, for the

choice (29) we have e — Zjir

The equation (34) can he integrated numerically for AT, for example by
the method of § 21 of Chapter 9, and ji subsequently evaluated by
quadrature of c/(*A/1) Although non linear, equation (34) is easier to

integrate than the original equation (4) because the rapid oscillations

presentm the solutions of (4) have effectively been remov ed Accordingly,

the integration can be earned out at a much larger interval

This procedure is ofgeneral applicability to modulus and phase functions

associated with oscillatoiy solutions of linear second-order differential

equations

TABLES FOB AUTOMATIC COMPUTERS
22 The conventional type of mathematical table is inconvenient to use

with an automatic computer because of the excessive amount of storage

required The storage requirement can be reduced only at the expense of

having an elaborate interpolation routine

In the case of elementary functions simple properties can often he used

to evaluate them directly, and the need for tables avoided The processes

used include iteration, recurrence summation of power senes, evaluation

of continued fractions and even the solution of differential equations
23 It is not always possible or convenient to use these methods A

general method is to represent the wanted function /(x) over a large range
a by an expansion in Chebyshev senes

/(*) = ia# +a1 T1
(0+atr8(0+ (35)

where
,

2x-a-b
1 " ~b^r (

36)

The values of the coefficients o# a 1 a t then comprise a compact
macktne table from which f(x) can be evaluated with the aid of a sub
routine based on the algonthm given in Chapter 8, § 16 Machine tables

of this kind for elementary functions and certain higher functions of a
single variable are given in [165] and [214] Table 1 of Chapter 8 pro
vides a typical example

24 In planning future mathematical tables first consideration should
be given to a machine form This form can then be used to generate the
orthodox table and might often, with advantage be published together
with it Indeed, as more automatic computers become available, it is

likely that for many functions machine tables will supplant the conven
tional form This is particularly true of functions of several variables
orthodox tables of which generally do not fulfil interpolation require
ments satisfactorily
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integration of ordinary' differential equations. Proc. Camb. Phil. Soc. 45,

373-3SS.

66. Clenshaw, C. W. and Olver, F. W. J. 1951 Solution of differential equations
by recurrence relations. Math. Tab., Waslt

.

5, 34-39.
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78 Warner, F J 1957 On the solution of ’jury* problems with many degrees of
freedom Math Tab , IFosh 11, 268-271

The computation of eigenvalues is treated in many of the foregoing references
See also the following treatise

79 Coixatz, L 1945 Eigentcertprobleme und thre numerische Behandlung Leipzig
Becker and Erler

PABHAh DIPTEBENTIaB EQUATIONS (CHAPTERS 11, 12)

Short introductions are given in [1], [2], [3] For more extensive treatments see

160] and [217]

80 Lowast, A N 1957 The operator approach to problems oj stabilityand convergence
oj solutions oj difference equations and the convergence oj various iteration
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procedures. New York: ScriptaMathematica; Washington: Office of Technical

Services.

A connected account of the solution of stability and convergence problems by

use of matrix theory. All three kinds of partial difference equation are treated.

Hyperbolic equations

See [15], [60] and [210],

81. BLyrtree, D. R. 1953 Some practical methods of using characteristics in the

calculation of non-steady compressible flow. Harvard University, Dept, of

Maths. Ecp. No. LA-HU-1.

A good readable introduction, though rather inaccessible.

82. Courant, R. and Hilbert, D. 1937 Methoden der Mathemalischen Physik H.
Berlin: Springer.

83. Courant, R. and Friedrichs, K. O. 1948 Supersonic flow and shock waves.

New York and London: Interscience.

These two references give information on the physics of common problems, as

well as on numerical methods of solution.

84. Courant, R., Isaacson, E. and Rees, M. 1952 On the solution of nonlinear

hyperbolic differential equations by finite differences. Cornmun. Pure Appl.
Math . 5, 243-255.

See also [89].

85. Douglas, J. 1956 On the relation between stability and convergence in the

numerical solution of linear parabolic and hyperbolic differential equations.

J. Soc. Indust. Appl. Math. 4, 20-37.

This aspect is also treated in [80].

86. von Neumann, J. and Richtmyer, R. D. 1950 A method for the numerical
calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232-237.

87. Fox, P. and Ralston, A. 1956 On the numerical solution of the equations for

spherical waves of finite amplitude, I. J. Math. Phys. 35, 313-328.

88. Roberts, L. 1956 On the numerical solution of the equations for spherical

waves of finite amplitude, II. J. Math. Phys. 35, 329-337.

These three papers examine difficulties in carrying out numerical work in the
neighbourhood of a shock wave.

Parabolic equations

See [60].

89. Richtjiyer, R. D. 1957 itifference methods for initial-value problems. New York
and London : Interscience.

90. Carslaw, H. S. and Jaeger, J. C. 1959 Conduction of heat in solids. Second
edition (first edition 1946). Oxford University Press.

A standard work of reference on analytical solutions of the heat-conduction
equation. Numerical methods are treated very briefly in the final chapter.

91. Crank, J. 1956 The mathematics of diffusion. Oxford University Press.
A text-book on analytical and numerical methods of solving diffusion problems.

92. Eyres, N. R., Hartree, D. R., Ingham, J., Jackson, R., Sarjant, R. J. and
Wagstaff, J. B. 1946 The calculation of variable heat flow in solids. Phil.
Trans. A, 240, 1-57.

93. Crank, J. and Nicolson. P. 1947 A practical method for numerical evaluation
of solutions of partial differential equations of the heat-conduction time.
Proc. Camb. Phil. Soc. 43, 50-67.

The original reference to the Crank-Nicolson method. Comparison is made with
methods given in the preceding reference.
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94 Todd, J 1956 A direct approach to the problem of stability in tho numerical

solution of partial differential equations Commun Pure Appl Math 8,

597-612

Stability is investigated by matrix theory The paper contains an extensile

bibliography See also [80]

95 0 Briev, G G , Hyman, M A and Kaplan, S 1951 A study of the numerical

solution of partial differential equations J Math Phys 29, 225-251

Investigates stability by the method of von Neumann See also [85]

96 At-BASINV, E L I960 On the numerical solution of a cylindrical heat conduction

problem Quart J Mech 13, 374-384

Includes an investigation of the effect of neglecting singularities in the boundary
conditions m setting up the finite difference equations Singularities are also treated

m [91] and the following reference

97 Crank, J 1957 Two methods for the numerical solution of moving boundary
problems m diffusion and heat flow Quart J Mrch 10,220-231

98 Conte, S D 1957 A stable implicit finite difference approximation to a

fourth-order parabolic equation J Ass Comp Mach 4, 18-23

99 Peiceman, D W and RacktoRD H H 1955 The numerical solution of
parabolic and elliptic differential equations J Soc Indust Appl Math 3,

28-41

Gnes a modification of the implicit method for solving the heat conduction
equation with two space variables The method can be used to find the steadj

state solution hence soiling Laplace’s equation, 6ee also [116]

100 Douglas, J 1955 On the numerical integration of ^7+^r = ^ by implicit

methods J Soc Induat Appl Math 3, 42 65

Elliptic equations relaxation methods Jor desk machines

See [3], [60]

101 Biukley, W G 1948 Finite difference formulae for the square lattice Quart
J Mech 1, 35-42

102 Shaw, F S 1958 An introduction to relaxation methods Second edition (first

edition 1953) New York Dover, London Constable

103 Allen, D N be G 1954 Relaxation methods New York and London
McGraw HlH

Thesetwo books teach the basic computational processes of the relaxation method

104 Southwell, R V 1946 and 1956 Relaxation methods in theoretical physics
Volume 1 (1946), Volume 2 (1956) Oxford Unnersity Press

Contains examples of the application of the relaxation process to physical
problems. Volume 1 covers second order equations and Volume 2 fourth order
equations, m two independent variables See also [15]

103

Fox, L 1947 Some improvements m the use of relaxation methods for the
wiio/ur} -utii fimVia'i fr/Berwftia'i enratiuns Free 5\im Sot 2»,

190, 31 59

Gives a full treatment of the ‘difference correction' technique

106 Fox, L 1950 The numerical solution of elliptic differential equations when
tho boundary conditions mi olve a demative Phil Trans A, 242, 345-378

107 Viswanathan, R V 1057 Solution of Poisson’s equation bj relaxation
method—normal gradient specified on curved boundaries Math Tab,
TToaft 11,67-78
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108. Motz, H. 1946 The treatment of singularities of partial differential equations

by relaxation methods. Quart. Appl. Math. 4, 371-377.

109. Woods, L. C. 1953 The relaxation treatment of singular points in Poisson’s

equation. Quart. J. Mcch. 6, 163—185.

Singularities are also treated in [42].

Elliptic equations: methods for automatic computers

110. KarLQVIST, O. 1952 Numerical solution of elliptic difference equations by
matrix methods. Tellus 4, 374—384.

111. Cornock, A. F. 1954 The numerical solution of Poisson’s and the bi-harmonic
equations by matrices. Proc. Camb. Phil. Soc. 50, 524-535.

These two papers describe direct methods for solving the algebraic equations which
represent the partial differential equation.

112. Engeli, M., Ginsburg, Th., Rutishauser, H. and Stiefel, E. 1959 Refined
iterative methods for computation of the solution and the eigenvalues of self-

adjoint boundary-value problems. Basle : Birkhauser.

A detailed study of theoretical and practical aspects of iterative methods,
including gradient methods and successive overrelaxation, containing valuable basic

material.

113. Carre, B. A. 1961 The determination of the optimum accelerating factor for

successive overrelaxation. Computer J. {In press.)

Describes an automatic process for solving equations with Property A (Chapter 4,

§9).

114. Young, D. M. 1955 ORDVAC solutions of the Dirichlet problem. J. Ass. Comp.
Mach. 2, 137-161.

An account of practical experience of using the method of successive over-
relaxation.

115. Keller, H. B. 1958 On some iterative methods for solving elliptic difference
equations. Quart. Appl. Math. 16, 209-226.

Classifies some of the iterative processes and compares their efficiencies.

116. Conte, S. D. and Dames, R. T. 1960 On an alternating direction method for
solving the plate problem with mixed boundary conditions. J. Ass. Comp.
Mach. 7, 264-273.

Describes the solution of the biharmonic equation by the method of [99], and
contains references to other applications of this method.

EVALUATION OF LIMITS (CHAPTER 13)

General theory of iterative processes

See [7],

117. Bartree, D. R. 1949 Notes on iterative processes. Proc. Camb. Phil. Soc. 45,
230-236.

Defines and classifies the various types of process.

118. Ostrowski, A. M. 195S A method of speeding up iterations with super-linear
convergence. J. Math. Mcch. 7, 117-120.

Sums of series; limits of sequences
Brief treatments are given in [1], [2], [3], [4].

119. Richardson, L. F. and Gaunt, J. A. 1926 The deferred approach to the limit.
Phil. Trans. A, 226, 299-361.
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120 Shanks. D 1955 Nonlinear transformations of divergent and slowly

conv ergent sequences J Math Phys 34, 1-42

Surveys earlier work and gives a generalization, the f.lS.I transformation, of

the 8* process of A itken [39]

121 \Tm, P 1950 On a device for computing the e_{.S„) transformation Math
Tab , IToeft 10, 91-96

122 Salzer, II E 1954 A simple method for summing certain slowly convergent

series J Math Phys 33, 356-359

Describes a numerical method applicable when the nth partial sum behaves like

a polynomial in 1/n

123 Bickley.W G and Miller. J C P 1936 The numerical summation of slowly

convergent senes of positive terms Phil Mag 22, 754-767

124 AntEY, J R 1937 The ‘converging factor’ m asymptotic senes and the

calculation of Bessel, Laguerre and other functions Phd Mag 24, 521-552

These two references are among many which describe methods based on particular

asymptotic forms of the higher terms of the senes In these two papers expansions

are derived in descending powers of n for the conierging factor, defined as

(w,«i +*>.+,+ )lvm.

where v, is the nth terra of the series

Continuedfractions

Elementary properties are given m [4] and [51]

125 'Wall, H S 1948 Analytic theory of continued fractions New \orh Van
Nostrand

126 Perron, O 1954 Die Lehre con den hcttenbruchen Third edition (first edition

1913) Stuttgart Teubner

These two references are standard works on the general theory of continued

fractions

127 Teichroew, D 1952 Lse of continued fractions in highspeed computing
Math Tab, Hash 6 127 133

128 Macon, N and Baskervill, M 1956 On the generation of errors m the digital

evaluation of continued fractions J Ass Comp Mach 3 199-202

129 Wynn P 1959 Converging factors for continued fractions Numenscht Math
1, 272-320

The quotient difference algorithm

The quotient difference (QD) algorithm is essentially a procedure for transforming
a power series into a continued fraction but it has applications in other branches of
numerical analysis

130 Rotishatjseb, II 1954 Der Quoticnten Differenzen Algonthmus Z angew
Math Phys S, 233-251

Describes the algorithm and applies it to the evaluation of zeros of polynomials,
obtaining a generalization of Bernoulli s method, essentially the same as that given
in [39]

131 Runshauser, H 1954 Annendungen dea Quotlenten Differenzen Algorith
mus Z angew Math Phys 5, 496-508

Denves an alternative form of the algorithm, called the ‘progressive’ form, and
considers applications to the transformation of series into continued fractions and
agam to the evaluation of zeros of polynomials
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132. Henrici, P. 1958 The quotient-difference algorithm. Appl. Math. Ser. U.S.

Bui\ Stand. 49, 23-46.

A self-contained introduction to the algorithm, which uses an approach different

from that of the two preceding references. Applications are made to latent roots of

matrices, zeros of polynomials and expansions in continued fractions.

133. Wynn, P. 1959 A sufficient condition for the instability of the q-d algorithm.

Numerische Math. 1, 203-207.

EVALUATION OP INTEGRALS (CHAPTER 14)

Finite-difference methods of quadrature are treated in most of the references

given in the sections entitled General and The Calculus of Finite Differ-
ences. Gauss-type formulae are also discussed in many of these references; in

particular, see [4] and [5].

134. Clenshaw, C. W. and Curtis, A. R. 1960 A method for numerical integration

on an automatic computer. Numerische Math. 2, 197—205.

Discusses the basic problems of numerical quadrature from the standpoint of

automatic computation, and proposes a new method based on the termwise integra-

tion of expansions in Chebyshev polynomials.

135. Abramowitz, M. 1954 On the practical evaluation of integrals. J. Soc. Indust.

Appl. Math. 2, 20-35.

Describes many methods and artifices, mainly of an analytical character.

13G. Goodwin, E. T. and Staton, J. 1948 Table of f —— du. Quart. J . Mech. 1,

319-326. -'0 u+ x

Describes methods that were used in the evaluation of this integral on desk
machines. This example has been used as a ‘guinea pig’ by some later writers.

137. Appl. Math. Ser. U.S. Bur. Stand. 37 1954 Tables of functions and of zeros

offunctions. Washington : Government Printing Office.

Includes a 15-decimal table of the zeros of the first 16 Legendre polynomials and
the corresponding weight factors for use in Gauss’s quadrature formula, and also a
similar 12-decimal table for use with the Laguerre-Gauss quadrature formula.

138. Davis, P. and Rabinowitz, P. 1956 Abscissas and weights for Gaussian
quadratures of high order. J. Res. Nat. Bur. Stand. 56, 35-37.

Gives 21-decimal values of the zeros of the Legendre polynomials, and the
corresponding weights, for degrees 2, 4, 8, 16, 20, 24, 32, 40, 48.

139. Davis, P. and Rabinowitz, P. 1958 Additional abscissas and weights for
Gaussian quadratures of high order: values for n = 64, 80 and 96. J. Res. Nat.
Bur. Stand. 60, 613-614.

140. Salzer, H. E., Zucker, R. and Capuano, R. 1952 Table ofthe zeros and weight
factors of the first twenty Hermite polynomials. J. Res. Nat. Bur. Stand. 48,
111-116.

141. Goodwin, E. T. 1949 The evaluation of integrals of the form j* /(x) e~ x' dx.

Proc. Camb. Phil. Soc. 45, 241-245.

Shows that many integrals of this type can be evaluated to high accuracy by use
of the trapezoidal rule applied with a large interval. An expression for the error of
the representation is determined by means of contour integration.

142. Fettis, H. E. 1955 Numerical calculation of certain definite integrals by
Poisson’s summation formula. Math. Tab., IFas//. 9, 85-92.

An alternative treatment of the problem considered in the preceding reference.
ie results apply to infinite integrals and integrals of periodic functions taken over

a whole number of periods.
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143 Luke, Y L 1056 Evaluation of an integral anting in numerical integration

near a logarithmic singularity Math Tab , Wash 10, 14-21

144 Kaplan, E L 1952 Numerical integration near a singularity J Math Phys
31, 1-28

Contains tables for facilitating integration near singularities of the forms ***

and lnz
Singular integrands are also discussed m [4] [5], [45] and [188]

145 Watson, G N 1914 Theory oj Bessel Junctions Second edition (first edition

1022} Cambridge University Press

§ 8 3 of this book contains a lemma (
Watson s lemma )

which states precise

conditions for denying the asymptotic expansion of an integral of the form

* JF’(t) dt by the termwise integration of the expansion of F(f) in ascending

powers of (

146 Mtrjjm
, J C P 1960 humencsl quadrature o\er a rectangular domain m

two or more dimensions Part 1 Quadrature o\ er a square, using up to sixteen

equally spaced points Math Computation, 14, 13-20

One of the more practical papers on the valuation of double integrals

TABULATION Of MATHEMATICAL rONCTIONS (CHAPTER 16)

147 Miller, J C P 1949 The construction of mathematical tables Set J R
Coll Sc* 20, 1-11

This readable pamphlet gives a briefaccount ofthe basic principles of table making

148 Miller, J C P 1950 Checking by differences—I Math Tab , Wash 4, 3-11

Examines the chance of a difference of a given older, which is entirely composed
of rounding errors, exceeding a certain 6ize

149 Fox, L and Miller, J C P 1951 Table making for large arguments The
exponential integral Math Tab

,
Wash 5, 163-167

Gives an example of the use of auxiliary variables for large values of the argument

Useful instruction on methods of compilation and checking can also be gained
from the introductions to published mathematical tables particularly the senes of
tables of the Bntiah Association the Royal Society and the National Bureau of
Standards

Interpolation aids

Much practical information is contained in [167]

150 Fox L 1956 The use and construction of mathematical tables Math Tab Nat
Phys Lab 1 London HJH Stationery Office

Descnbea in detad the \ anous interpolation aids particularly modified differences
and economized polynomials The anal} sis of error is very thorough Also included is

a brief survey of the various standard processes for computing mathematical
functions Amaheubjed.Caroxnf this,ertviVi'auj/djidcfi >c.e-tyink.en/dJadOv.vwmwAah
approximation edited byR E Langer and published by the University ofWisconsin
Press, Madison (19o9)

151 Clenshaw, C U and Olver F \\ J 1955 The use of economized polynomials
in mathematical tables Proe Comb Phil Soc 51, 614-628

Derives expansions in senes of central differences for the coefficients of the
economized interpolation polynomials, and compares these aids with existing one*
The method given for reduemg the rounding error is superseded by that of
Chapter 15, § 13 See also [215]
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152. Woodward, P. M. and Woodward, A. M. 1946 Four-figure tables of the Airy

function in the complex plane. Phil. Mag. 37, 236-261.

Dismisses the use of modified differences as aids for the interpolation of analytic

functions tabulated at points of a square grid in the complex plane.

Sublabulation

Tho ‘end-figure’ method is described in [2] and [51].

153. Nautical Almanac Office 1958 Subtabulation. London: H.M. Stationery

Office.

This comprehensive manual, which is a companion to [167], describes three types

of method in order of increasing power and complexity : direct methods, the method

of precalculated second differences, and the method of bridging differences. Worked
examples and necessary tables are included.

154. Woollett, E. R. 1958 Subtabulation with special reference to a high-speed

computer. Quart. J. Mech. 11, 185-195.

TABLES
Tables for desk-machine work

The following books are among the best collected tables of the common functions.

155.

Barloio's tables 1947 (Edited by L. J. Comrie). Fourth edition (first edition

1814). London: Spon.

These well-known tables give principally squares, cubes, square roots, cube roots

and reciprocals of all integers up to 12,500.

15C. Comkie, L. J. 1947 Chambers's four-figure mathematical tables. Edinburgh:
Chambers.

This compact volume includes logarithms, square roots, cube roots, reciprocals,

trigonometric, exponential and hyperbolic functions and the error function.

157. Milne-Thomson, L. M. and Comrie, L. J. 1948 Standard four-figure
mathematical tables. Second edition (first edition 1931). London: Macmillan.

Covers the same ground as the previous reference, but is a larger book because of
the use of finer intervals of tabulation. A table of the gamma function is also
included.

158. Dale, J. B. 1949 Five-figure tables of mathematical functions. Second edition
(first edition 1905). London: Arnold.

. ^
compact collection of elementary functions and many higher transcendents,

including the gamma and error functions; Bessel functions; and sine, cosine,
exponential and elliptic integrals.

159. Comrie, L. J. 1948 and 1949 Chambers's six-figure mathematical tables (Two
volumes). Edinburgh: Chambers; New York: Van Nostrand.

acc"°

VCrS
Sround to [156] and [157], with of course the extra two-figure

in nrri^ v i

OTe Qre ®xPlanations of basic desk-machine practices, similar to those

• V
’ olume I gives logarithmic values, and the more widely-used Volume II

° es nahiral values. An abridged version also exists.

GO.
1959 Tables of elementary functions. Third edition (first edition

1940). Leipzig: Teubner.

oxcononr
S

i

powers, reciprocals and factors, and of trigonometric,

accuracy
1

'

an<* “5'Perbolic functions with both real and complex arguments. The

formulae if
Senera% 4-6 significant figures. There are many graphs, relief maps,

nomocran
111

f
n°^e

?
concerning these and other functions, and also a collection of

, ormulae and tables for solving quadratic, cubic and quartic equations.
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161 JAHSB.E and&iDE, F 1952 Tables of higher /unction* Fifth edition (first

edition 1009) Leipzig Tenbner

A well known and valuable collection of short tables, formulae, graphs and relief

maps of tbe higher transcendental functions of frequent occurrence ui numerical

work A new edition, revised by F Losch, bos just been published

A large Handbook of /unctions is being compiled by the National Bureau of

Standards, Washington It will contain extensive collections of formulae, tables

and graphs for both elementary and bigher functions

162 Fustcheb, A , Mhxer, J C P and Rosenhead, L 1946 An tndix of moCht
matical tables (Second edition in press ) London Scientific Computing

An excellent index containing a vast amount of information The second edition

covers all tables published before 1955 and major tables in the period 1955-1959

Other information on recent tables is contained in the following Russian mdex

163 Lebedev, A V and Fedorova, R 51 1956 Spraiochmh po matematicheskim
tablitsam (An index of mathematical tables ) Moscow Izdatel stvo

Ak&demu Nauk SSSR,
and its first supplement

164 Bcbcnova, N 5f 1959 Spravochmk po matematicheskim tablitsam

Dopolnemo No 1 Moscow Izdntel etvo Akadermi Nauk SSSR

Tablesfor automatic work

165 Clevshaw, C II 1954 Polynomial approximations to elementary functions

Math Tab , Wash 8, 143-147

Gives 9-decimal values of the coefficients in the Chebj'hev expansions for

trigonometric, exponential and logarithmic functions, and for the gamma function

and the Bessel functions Jt and J, An extension of these tables, giving more
functions and an accuracy of generally 20 significant figures is in preparation for

the NPL Mathematical Tables series, see (214)

166 Hastings, C 1957 Approximations for digital computers Second edition (first

edition 1955) Princeton University Press

Includes approximations, usually in rational or explicit polynomial form, for

trigonometric, exponential and logarithmic functions, the gamma and error

functions, the exponential integral and the complete elliptic integrals The accuracy
of the approximations is 10 significant figures for some functions, but for most of
them it is less

TACTS AID FOBMOLAE
Many books of tables contain collections of mathematical formulae The presenta

tion of such information is a primary purpose of the following references

167 Nautical Almanac Office 1956 Interpolation and allied tables London H 51

Stationery Office

Thi3 valuable working manual contains tables of interpolation and other
coefficients , a large collection of finite difference formulae for interpolation,
differentiation, integration, the solution of ordinary differential equations and
estimation of error, and an account of the central difference method for integrating
ordinary differential equations

168 Dwight, II B 1957 Tables of integrals and other mathtmaUcal data Third
edition (first edition 1931) heir 1 ork Macmillan

A useful small collection of definite and indefinite integrals and senes

169 Adams, E P 1939 Smithsonian mathematical formulae and tables of elliptic

functions Washington Smithsonian Institution

Contains a useful collection of ctementaTy formulae for algebra, trigonometry,
geometry, infinite senes and some higher transcendental functions
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170. Ryshiic, I. M. and Gradstein, I. S. 1957 Tables of series, products and integrals.

First edition in English. Berlin: Deutscher Verlag der Wissenscliaften.

A large collection offormulae for series, indefinite and definite integrals, elementary

functions and higher transcendental functions.

Integrals and integral transforms

See [108] and [170].

171. Meyer zur Capellen, W. 1950 Integraltafeln. Berlin: Springer.

Gives indefinite integrals of elementary functions.

172. Grobner, W. and Hofreiter, N. 1957 and 1958 Integraltafeln (Two Parts).

Second edition (first edition 1949). Vienna : Springer.

Part I (1957) and Part II (195S) give respectively indefinite and definite integrals

of elementary functions.

173. Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. 1954

Tables of integral transforms (Two volumes). New York and London:
McGraw-Hill.

A vast collection of integral transforms of the higher transcendental functions.

174. Byrd, P. F. and Friedman, M. D. 1954 Handbook of elliptic integrals for

engineers and physicists. Berlin: Springer.

175. Kamke, E. Differentialgleichungen, Losungsmetlioden und Losungen. Part I,

1956 (fifth edition). Leipzig: Becker and Erler. Part II, 1959 (fourth edition).

Leipzig: Akademisclie Verlagsgesellschaft.

Gives analytic solutions of various differential equations. Part I deals with
ordinary and Part II with partial differential equations.

CURVE-FITTING AND SMOOTHING
This subject is not easy and has pitfalls for the unwary. Good introductions to the

practical side are contained in [2] and [6], both of which illustrate some of the
dangers in the process. Sound theoretical accounts of least-square approximations
and the use of orthogonal polynomials are contained in [4] and [1]. See also [11]
and [44],

176.

Fisher, B. A. and Yates, F. 1957 Statistical tables for biological, agricultural

and medical research. Fifth edition (first edition 1938). Edinburgh : Oliver
and Boyd.

Table XXIII gives values of orthogonal polynomials up to degree 5 to facilitate

the fitting of equispaced data at up to 75 points.

177. DeLtjry, D. B. 1950 Values and integrals of the orthogonal polynomials up to

n = 26. Toronto University Press.

Extends the tables mentioned in the preceding reference, when the number of
points does not exceed 26, by giving the values of all the orthogonal polynomials.

178. Hayes, J. G. and Vickers, T. 1951 The fitting of polynomials to unequally-
spaced data. Phil. Mag. 42, 1387-1400.

Describes good desk-machine procedures for fitting unequally-spaced data.

179. Forsythe, G. E. 1957 Generation and use of orthogonal polynomials for
data-fitting with a digital computer. J. Soc. Indust. Appl. Math. 5, 74-88.

180. Ascher, M. and Forsythe, G. E. 1958 SWAC experiments on the use of
orthogonal polynomials for data fitting. J. Ass. Comp. Mach. 5, 9-21.

These two papers examine the problem of fitting unequally-spaced data from the
standpoint of automatic computation.

181.

Clenshaw, C. W. 1960 Curve fitting with a digital computer. Computer J. 2,

Describes a refinement of the method given in the two preceding references winch
makes lower demands on the store and achieves a more concise form of output.
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HARMONIC ANAI.YSIB

See [I], [2] tfl. [11] and, especially, [6J

182 Bbcnt, D 1931 The combination of observations Second edition (first edition

1923) Cambridge University Press

183 Pollax, L W Otophysteal publications 1947 and 1949 Volume 1 (1947)

Harmonic analysis and synthesis schedules for 3 to 100 equidistant value*

of empiric functions \ olume 2 (1949) All term guide for harmonic analysis

and synthesis Dublin Stationery Office

184 DAUnrtso'., G C and Lanczos, C 1942 Some improvements in practical

Fourier analysis and their application to X ray scattering from liquids

J Franllm Inst 233, 365-380 and 435-452

I2.TKOBAL EQUATION

S

Numerical treatments are included in [1], [3], [5]

185 LovrrT, W V 19o0 Linear integral equations Reprint (first edition 1924)

New York Dover

An elementary introduction to analytical theory

186 TRlCOMl, F G 1957 Integral equations New A ork and London Interscience

A compact account of the analytical theory

187 Fox, L and Goodwin E T 1953 The numerical solution of non-singular
linear integral equations Phil Trans A, 245, 501 534

A comprehensiv e account of the solution of equations of Fredholm and Yolterra
types by finite difference methods

188 kocNo, A 1954 Approximate product integration Proc Roy Soc A 224
552-561

This is a preliminary to the following paper

189 Young, A 1954 The application of product integration to the numerical
solution of integral equations Proc Roy Soc A, 224 501-573

Applicable to certain types of singular or near singular equations

UISCEl-LlNEOtTS

190 Stegun, I A and Abbasiowitt M 19o6 Pitfalls in computation J Soc
Indust Appl Math 4 207-219

191 Forsythe, G E 1953 Singularity and near singularity in numerical analysis
Amcr Math Mon 65 229-240

COMfCTI N O MACHINES
Desk, machines

Bnef introductions are giv en in [1] and [2] Fuller treatments on use are given in
the following two references and [197) below

192 Sabeelny, H 1939 Modem machine calculation London Scientific Computing
Service

193 Vabveb, W V, 1957 Computing mth desk, calculators New York Rinehart

Punehed-card machines

194 Smith, J S 1960 Punched cards London Macdonald and Evans
Contains a readable account of the various types of punched-card machines and

discusses their applications particularly to accountancy
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195. Casey, R. S., Perky, J. AA\, Berry', M. M. and Kent, A. {Editors} 1959

Punched cards: their applications to science and industry. Second edition (first

edition 1951). New York: Reinhold; London: Chapman and Hall.

Contains an extensive bibliography.

See also [197].

Automatic digital computers

See [8], [209], [210], and [211].

196. Grabbe, E. M., Ramo, S. and AAtjoldredge, D. E. (Editors) 1959 Handbook

of automation, computation, and control. A7olume 2: Computers and data

processing. New York and London: John AYiley.

This reference work of some 1000 pages also includes chapters on analogue

computers.

197. Montgomerie, G. A. 1956 Digital calculating machines. Glasgow: Blackie.

Provides a short introduction: desk machines and punched-card machines are

also treated.

198. Hollingdale, S. H. 1959 High speed computing: methods and applications.

London: English Universities Press.

An introduction aimed at the general scientific reader.

199. Wilkes, M. V. 1956 Automatic digital computers. London: Methuen.

Concentrates on logical design and programming.

Analogue computers

See [196].

200. Soroka, AY. AA\ 1954 Analog methods in computation and simulation. New York
and London : McGraw-Hill.

A good introduction, which describes all types of analogue machines and discusses
their applications.

201. Hartree, D. R. 1949 Calculating instruments and machines. Urbana : University
of Illinois Press.

The first part describes the application of the differential analyser and similar
machines. The second part similarly treats automatic digital computers, but it is

now somewhat out of date.

202. Johnson, C. L. 1956 Analog computer techniques. New York and London:
McGraw-Hill.

Devoted to the electronic differential analyser.

203. Kartltjs, W. J. 195S Analog simulation. New York and London: McGraw-Hill.

Devoted to machines for solving partial differential equations. Applications are
treated in considerable detail.

NOMOGRATHY'
204. Brodetsky', S. 193S A first course in nomography. London: Bell.

An elementary account of the construction of alignment nomograms for equations
containing up to four variables.

205. Allcock, H. J., Jones, J. R. and Michel, J. G. L. 1950 The nomogram.
Fourth edition (first edition 1932). London: Pitman.

A readable book containing all the computor really requires about the subject.

-06. d Ocagne, M. 1921 Traite de nomographic. Paris: GauthierWillars.
This is an outstanding account of the theory of nomography.
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207 Dcu£\ M 1951 Construction dee abaquee Pam Gauthier \ illars

208 Meyer zur Capeiaev, W 1953 Lcitfoden dtr A omograpt it Berlin Springer

A good summary with bibliographies of modem Russ an developments in the

subject including the empirical construction of nomograms is contained in

l ye) ishtel naja Matematila So 4 (19o9)

JOURNALS AND REVIEWS

The volume of literature on numerical analysis has increased very rapidly in the

last two decades and papers appear in many periodicals Journals which are largely

devoted to the subject include

Journal of the Association for Computing Machinery (American)

The Computer Journal (British)

Mathematics of Computation (formerly Mathematical Tables and other Aids to

Computation) (American)
A umenscle Mathcmatik (German)
Journal of the Society for Industrial and Applied Mat] ematics (American)
Chijfrts (French)
I ycl i si tel naja Malemotika (Russian)

Reviews of papers on numerical analysis appear in

Mathematical Pertetcs

Appl ed Mechanics Review
Computing Reviews (at present incorporated in the Communications of the Association

for Computing Machinery)
Referativnyi Zhurnal Malematika (Russian)

Mention may also be made of the

fnternotionnl Journal of Abstracts Statistical Theory and Method which gives &
complete coverage m the field of statistical theory and new contributions to
statistical method as published after October 1st 1958

ITEMS ADDED IS PROOF

209 Lance G A I960 Numerical met) odsjor high speed computers London lliffe

Cues an account of methods of numerical analysis which are suitable for auto
matic work Subjects include evaluation of functions matrix algebra ordinary end
partial differential equations zeros of polynomials continued fractions and
quadrature

210 Ralston A and Wilt H S (Editors) 1960 Mathematical methods for d gital

computers A eu A ork and London John Wiley

Gives some selected methods with flow diagrams The subjects treated are
similar to those of the preceding reference

211 Alt F L (Editor) 1960 Advances in computers Volume 1 Aew York and
London Academic Press

Surveys recent progress in business applications weather prediction language
translation games appbcationa and word recognition Further volumes on these
and other applications including numerical analysis are in preparation

212 Faddekva V N 19o9 Computational methods of linear algebra (Translated
by C D Benster

) Aew 1 ork Dover London Constable

The first part of this book is a useful summary of the parts of matrix thcoiy
which are important in numerical anaty sis The second part prov ides an account of
some of the more important methods direct and iterative for Bolvmg linear equa
tions and inverting matrices The third and final part treats methods for computing
latent roots and vectors but is less valuable than the other parts because of rapid
advances which have been made in this field since the original Russian edition
was written
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213. Wilkinson, J. H. 1960 Error analysis of floating-point computation. Ntimer

-

ische Math. 2, 319-340.

Gives the fundamental inequalities satisfied by the rounding errors in the basic

arithmetical operations. Applies the results to the analysis of a number of related

techniques for computing latent roots.

214. Clensraw, C. W. Chebysliev series for mathematical functions. Math. Tab.

Nat. Phys. Lab. 5, London : H.M. Stationery Office. (In press.)

Gives 20-decimal values of the coefficients in the Chebyshev expansions for the

trigonometric, exponential, logarithmic, gamma and error functions, the expon-
ential integral, and Bessel functions J, Y, I, K of orders 0 and 1. The Introduction

gives a comprehensive account of the use of Chebyshev series in numerical analysis.

215. Olver, P. W. J. Tables for Bessel functions of moderate or large orders.

Math. Tab. Nat. Phys. Lab. 6, London: H.M. Stationery Office. (In press.)

Provides interpolation aids based on economized polynomials (Chapter 15,

§§ 12-15).

216. Wilkinson, J. H. The algebraic eigenvalue problem. Oxford "University Press.

(In press.)

A critical assessment of methods from the standpoint of automatic computation,
with emphasis on numerical stability.

217. Forsythe, G. E. and Wasow, W. R. 1960 Finite-difference methods for partial
differential equations. New York and London: John Wiley.

A comprehensive account of modem finite-difference procedures, with special
emphasis on automatic computation. All three kinds of partial differential equation
are considered, though naturally the most extensive treatment is that of elliptic

equations.
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INDEX

Acceleration of convergence, 123, 155-166,

see also Aitken’s 82-process, Extrapola-

tion, Summation of series

Adams-Basliforth method, 83

Aitken’s S 2-process, 40, 123, 132, 149, 156

Algebraic equations, see Linear algebraic

equations, Zeros of polynomials

Alternating-direction method, 155

Analogue computers, 163

Analytic solution of differential equations:

ordinary, 161; partial, 153, 161

Asymptotic expansions, asymptotio series,

125, 135, 158

Automatic computers, 13-14, 163; tables

for, 144, 160

Back-substitution, 5, 15; error analysis of,

46-48

Bairstow’s process, 57-61

Bessel functions, computationby recurrence

,

128

Bessel’s interpolation formula, 67, 139

‘Best’ or ‘best fit’ polynomial approximation,

72-74

Biharmonic equation, 120-121, 154-155

Bisection, method of, 31-32

Boundary-value problems in ordinary differ-

ential equations, 81, 93-100, 152

, methods for solving: Chebyshev
series, 99; direct finite-difference, 93-97;

initial-value techniques, 98-99; relaxa-

tion, 152

Building-up errors: in solution of ordinary'

differential equations, 90, 152; in the use

of recurrence relations, 12S-129

Central-difference methods for ordinary'

differential equations, S3-S5, 151

Characteristic equation, characteristic poly-

nomial, 23
Characteristic strip, 103

Characteristics: definition of, 103; method
of, 105-10S, 153

Chebyshev polynomials, 71-75; explicit

expressions for, 75; properties of, 74-75
Chebyshev series, 71-79, 150-151; calcula-

tion of coefficients in, 75-76; differen-

tiation of, 79; evaluation of, 76-77;
integration of, 78; methods for solving
ordinary differential equations, 88-90, 99,

100; summation of, 76-77

Computing machines, 162-163

Continued fractions, 127-128, 156

Converging factor, 156

Crank-Nicolson method, 116, 153

Crout’s method, 8

Cubio equations, 54, 149

Curve -fitting, 161

Deferred approach to the limit, 122-123

Deferred-correction methods, 85-87

Desk machines, 162

Determinant, 3

Difference correction, 85, 122

Difference-correction techniques for solving

differential equations: ordinary, 85-87,

154; partial, 116, US, 154

Differences, see Finite differences

Differential equations, see Ordinary', Partial

Differentiation, numerical: by Chebyshev
series, 79; finite-difference formulae for,

67-68

Doolittle’s method, 7, 11

Double integrals, 158

Economized polynomials, 141

Eigenvalues : ofmatrices, see Latent roots ; of

ordinary differential equations, 100; of

partial differential equations, 121

Eigenvectors, see Latent vectors

Elimination, 5-6; compact methods for, 7;

see also Gaussian elimination

Elliptic partial differential equations, 103,

111, 117-121, 154-155; eigenvalue prob-
lems in, 121; stability' of methods for,

152—153; treatment of singularities, 155;
with curved boundaries, 119, 154; with
free boundaries, 121

Error analysis : of linear algebraic processes,

41-52, *148-149; of back substitution,

46-48; of floating-point computations,
50-51; of Gaussian elimination, 42—48; of
ill-conditioned equations, 51; of inter-

polation, 141—142; of polynomial equa-
tions, 59; of triangular decomposition,
48-50

Errors: building-up, 90, 128, 152; detection
by differences, 63, 13S, 158

Euler-Maclaurin formula, 127
Euler’s transformation of series, 124, 132,

133, 136; van Wijngaarden’s modified
procedure for, 125
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Everetts interpolation formula 66, 132

139
Extrapolation exponential 1*3 13®, ate

aha Ait ken a 1* process A* 12 > 123

Finite difference formulae for interpolation

6o—67 for numerical differentiation 67

68 for numerical integration, 68-70 for

ordinary different al equations 83-87

93-97 for partial differential equations

113-121

Finite difference operators 64-70

Finite differences 6® 63 as interpolation

aids 139 calculus of 64-70 149-150

checking by 63 divergence of 70 effect

of errors on 63 159 notation for 63

symbol c relations between 64

Fixed point arithmetic 14-15 20

Floating point arithmetic 14 20 50-51

Fourier senes 73-74 125 162

Caussian elimination 5-6 error analysis of

4*-48 variants of 14 17 with inter

changes 15-17
Gaussian quadrature 131-132 134 157

Gauss-Seidel method 36-39

Gill es method for reducing rounding errors

141

Givens method 30-31 147

Gregory e integration formula 69

A'-extrapolat on 12’ 123

Harmonic analysis 163

HoBsenberg matrix 141 118
Householder s method 33

Hyperbolic partial different al equations
101-111 153 for compressible flow 109-

111 discontinuity of solutions of 103

simultaneous 110 stability of methods
for 152 153 for vibrating string 104-106

III conditioning of matrices and linear

equations 5 7 11 19-21 error analysis

of 61 of polynomial equations 59
Indirect methods for linear algebraic equa

tions 34-40 155 Gauss-Seidel 36-39
Jacobi 8 3o-38 Liebmann s 36 39
relaxation 34 simultaneous displace

ments 35 successive displacements 36
successive overrelaxation 39-40

In tial value problems in ordinary differen

tial equations 80-92 »e« alto Ord nary
different al equations

Integral equations 1 62
Integral transforms 161

Integrals 130-136 157 158 analytical

evaluation of 135 161 double 158
evaluation by Chebysbev senes 78

Integration formulae for finite-difference

68-“0 Gauss type 131-132 134 15“

Gregorys 69 Newton-Cotes 70 134
Simpson s 69-"0 91, 130 trapezoidal

68 123 131

Integration of differential equations ate

Ordinary differential equations Partial

differential equations

Interchanges in Gaussian elimination 15-

17 in triangular decomposition 18-19

48
Interpolating polynomial 65
Interpolation aids 139-142 158-159

auxiliary variables for 14* 143 by
economized polynomials 141 by finite

differences, 139 in two variables 159

inverse 67 near erngulariUes 142 eucces

mve linear 53 66 tables for 160, using

reduced derivatives 140 fee alao Inter

potation formulae Subtabulation

Interpolation formulae 65-67 139-14*

Bessels 67 139 Everetts 66 132 139

Lagrange a 142 hewton s 65
Inverse interpolation 67

Iterative processes acceleration of ate

Acceleration of convergence classifies

tion of 155 for latent roots and vectors

24-26 for linear algebraic equations ate

Indirect methods for zeros of poly
normals, 53-61 order of convergence of

56 12*

Jacobi a method for latent roots and
vectors 29-30 for linear algebraic equa
tions 35-38

Lagrange a interpolation formula 142

Laplace a equation 117 120
Latent roots and vectors 22-33 147-149

linear independence of 23 37 Bub
dominant 26-29

methods for evaluating bisection SI-
32 Givens 30-31 147 Householders
33 iteration 24-26 Jacobi a 29-30
LR transformation 148 minimized itera-

tions 148 QD algorithm 157

Least squares approximations 181

Liebmann a method 36 39
Limits evaluation of 12*-129 155-157

Linear algebraic equations 1 2t 34—40

147 automat c solution of 13—21 error

analys s of 41-5* 148-149 ill condition

ingof 5 7 11 19-21

methods for Grout a 8 Doolittle a 7
II triangular resolution or decomposi
tion 8-12 18-19 48-50 see afro Gaussian

elimination Indirect methods
Linear independence 4 23 37 138
LR transformation 148



Machine tables, 77, 144, 160

Mathematical tables: interpolation aids for,

139-142; of elementary functions, 159-

160; preparation and printing of, 137, 138

Matrix, 1; addition of, 2; band or co-

diagonal, 31, 94, 97, 99; characteristic

equation of, 23; Hessenberg, 147, 14S;

identity, 2: inversion of, 2-5, 11-12, 17,

147; mathematical theory of, 146-147;

methods for elliptic partial differential

• equations, 118; multiplication of, 1-3, 9;

norms, 14S; orthogonal, 29; positive

definite, 9, 23; property ‘A’, 38-39;

quadratic form associated with, 23;

reciprocal, 2; rotation of, 30; similarity

transformation of, 148; singular, 4;

symmetric, 3; trace of, 30; transposed, 3;

triangular, 8; triangular resolution of,

S-12, 1S-19, 4S-50; tri- or triple-diagonal,

31, 94, 97-9S; unit 2; see also Latent roots

and vectors

Minor, 3-4; leading principal, 9

Modified differences, 139-140

Modulus function, 133, 143

Nested multiplication, 53, 76

Newton-Cotes integration formulae, 70, 134

Newton’s interpolation formulae, 65

Newton’s rule, 55-57, 60

Nomography, 163-164

Numerically satisfactory solutions of differ-

ential equations, 137-138

Operators, in finite-difference theory, 64-70

Order of convergence ofapproximate formu-

lae, 56, 122

Ordinary differential equations, 80-100,

151-152; analytic solution of, 161;

building-up errors in, 90, 152; choice of

solutions of, 137-13S; eigenvalue prob-

lems in, 100, 152

, methods for solving: Adams-Basli-
forth, 83; central-difference, 83-85, 151;
Chebyshev series, SS-90, 99-100; de-

ferred-correction, 85-87
;

predictor-cor-

rector, S2-83, 151; Runge-Kutta, S7-8S,
151-152; Tavlor-series, 81-82, 151; de
Vogelaere’s, SS ; stability of, 90-92,

152; see also Boundary-value problems,
methods for solving

Orthogonal polynomials, 73
Overrelaxation parameter, 39-40

Parabolic partial differential equations, 103,
112-117, 153-154; analytic solution of,

153; non-linear, 116; treatment of singu-
larities, 116: with moving boundaries, 154—— , methods for solving: CranU-Nicolson,
116, 153; explicit, 115; implicit, 116;
Richardson’s, 115; Runge-Kutta, 114-
115; stability of, 115-116, 154

Partial differential equations: analytic solu-

tion of, 153, 161 ; boundary conditions for,

111, 112; classification of, 101-103; dis-

continuity of solutions of, 103; quasi-

linear, 101, 109; sec also Elliptic, Hyper-

bolic and Parabolic partial differential

equations

Phase function, 133, 143

Pivotal condensation, 5, see also Gaussian

elimination

Polynomials: division by linear factor, 53;

division by quadratic factor, 57; econo-

mized, 141; evaluation of, 53, 57; evalua-

tion of zeros of, see Zeros of polynomials

;

of best approximation or fit, 72-74; see

also Chebyshev polynomials

Predictor-corrector methods, 82-83, 151

Proof-reading, 138

Property ‘A’, 38—39

Puncbed-card machines, 162-163

Quadratic convergence, 55

Quadrature, sec Integration, formulae for

Quartie equations, 54-55, 149

Quasi-linear partial differentia] equations,

101, 109

Quotient-difference (‘QD’) algorithm, 156-

157

Recurrence relations, 128-129, 135
Reduced derivatives, 82, 140
Reducing cubic, 54
Relaxation methods: for linear algebraic

equations, 34; for ordinary differential

equations, 100; for partial differential

equations, 118, 154-155; see also Succes-
sive overrelaxation

Richardson’s method: for /^-extrapolation,

122-123; for parabolic equations, 115
Rounding errors: in an interpolate, 141; in

the solution of linear algebraic equations,

14, 19, 41-51, 148-149, polynomial equa-
tions, 59-60; see also Error analysis.

Errors

Runge-Kutta method, 87-88, 91-92, 151-
152; used to solve parabolic partial

differential equations, 114—115

Scalar product, 3; exact accumulation of,

14, 15, 19-21

Simpson’s rule, 69-70, 91, 130
Singular integrals, 134, 150, 158
Singularities: in interpolation, 142-143; in

numerical analysis generally, 162; in
partial differential equations, 103, 116-
117, 154, 155

Smoothing, 161
Stability of methods: for ordinary differen-

tial equations, 90-92, 152; for partial
differential equations, 115-116, 154; for
zeros of polynomials, 59-60
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bubtabulat on 138 159

Successive overretaxat on 39—10

Sumjnat on of senes 124-127 155-156

Table making 137 139 158

Tables tee Machine tables Mathemat cal

tables

Taylor senes 71 72
Taylor senes method 81 82 151

Taylor s theorem operational form of 6.1

Throwback 139
Trapezo dal rule 68 123 131

Triangular decompos tion 8-12 error analy

sis of 46-50 with interchanges 18-19

\ ector 1 biorthogonal 24 displacement

35 error 35-39 normalized 2** pnnci
pal 37 39 residual 49

de Vogelaere a method 88

Height factors for numencat integral on
131 157

tan lYijngaarden a modified procedure for

Euler a traosformat on l n5
van W ijngasrden a transformation of ser es

126 13*

Zeros of polynomials 63-61 149 effect of

changes in the coeffic ents on 69 ill

cond t orung of 59 mult pie 59 of 3rd

or 4th degree 54 149
— - methods for evaluating Bairstows

57-61 Bernoull s 149 cho ce of 54 60—
61 convergence of 55-57 Mullers 149

Newton s 55-57 60 QD algonthm 156-
157 root squaring 61 149 stab 1 ty of
60 success ve linear interpolation 53
56


