Notes on Applied Science No. 16

MODERN COMPUTING METHODS

CHECKED
SECOND EDITION

(9) Crown cofyrugh 1961
Pubished by HEA Mhgestys Sthtiovery Office
To be purchased from
York Howse kangway Londan wez
423 Oxford Street London 141
13* Castle Street Edinburgh 2
309 St liary Stree Cand \boldsymbol{f}^{7}
39 hug Steet Wlanchestet 2
so Fa rfax Street Ifrstol ;
3 Edmund Steect, Brmugharn 3
8o Ch chenter Sureet Be fast
pothreugh ans booksellet
Proce $\mathcal{L} 1 \mathrm{is}$ od nee

PREFACE

This series of "Notes on Applied Science" is published by the National Physical Laboratory with the object of providing for industrialists and technicians information on various scientific and technical subjects which is not readily available elsewhere. The experience of the Laboratory has indicated a number of subjects on which short monographs would appear to be of ralue, and a list of those already published is given in Sectional List No. 3, obtainable on request from H.M. Stationery Office.

Further information, or advice on specific questions, can be obtained by writing to the Director of the Laboratory.

The scientific work of the Laboratory is made known through the many contributions which are made to learned societies, etc., and which appear in their journals. A list of these papers is issued quarterly and may be obtained free of charge on application to the Laboratory.

National Physical Laboratory
Teddington, Middlesex

1961

CONTENTS

Introduction page v
1 Lusear Equations and Matriees Drrect Methods 1
2 Loneat Equations and Matnces Mrect Methods on Automatis Computers 13
3 Latent Roots and Vectors of Matroes 29
4 Linear Equations and Matnces Herativo Methods 34
5 Lunear Equations and 3latnces Error Analysis 41
6 Zeros of Polynomals 53
7 Finste difference Methods 62
\& Chebrsher Senies 7
8 Ondinary Differential Equations Intial ralue Iroblems 80
10 Ordunary Differential Equations Bonndary ralue Problems 93
11 Hyperbolic Partal DLferental Equations 101
12 Parabolic and Elliptic Partial Differential Equstions 112
13 Evaluation of Lunats Use of Recurrence Relations 122
14 Eraldation of Integrals 130
${ }^{15}$ Tabulation of Matheratical Functions 137
Miblography 145
Indes 167

INTRODUCTION

The first edition of Modern Computing Methods was based on lectures delivered by various members of the staff of Mathematics Division, N.P.L., as part of a vacation course on 'Computers for Electrical Engineering Problems', organized by the Electrical Engineering Department of the Imperial College of Science and Technology, and attended by representatives of industrial firms. The course was designed to teach the basic principles of the use of analogne machines, high-speed digital computers, and the techniques of numerical mathematics involved in the solution of problems in electrical engineering.

Numerical methods are required in all branches of science, and the tecliniques are generally independent of the source of the problem. For example, the same type of differential equation may represent a problem in physiology as well as a problem in electrical engineering. The opportunity was thercfore taken to present, as one of the N.P.L. series of Notes on Applied Science, suitably edited versions of those lectures contributed to the course by members of Mathematics Division.

The success of this first edition has encouraged the authors to undertake a complete revision, in the course of which the booklet has been very largely rewritten. The object has been to bring the material up to date, particularly with regard to methods suitable for automatic computation, and the principal changes are as follows. The chapter on Relaxation Methods has been replaced by one on Linear Equations and Matrices: Iterative Methods, while the chapter in the original edition headed Computation of Mathematical Functions has been expanded into two chapters entitled Evaluation of Limits; Use of Recurrence Relations and Evaluation of Integrals. Most of the other chapters have had new material added, some being completely remritten, and the order of the chapters has been changed. In addition, the chapters on Linear Equations and Matrices: Error Analysis and on Chebyshev Series are new.

The anthors make no apology for the varying level of treatment of the different topics; this is inevitable if the account is to be kept within a comparatively small compass. Some of the new material is given in greater detail than classical material already well catered for in available text-books. It is hoped that the resulting booklet will prove useful both as a working manual for those engaged in computational work and as a basis for courses in numerical analysis in universities and technical colleges.

The first edition was watten by LI Fox E T Goodwin J G L Muchel F W J Olver and J II Wilh nson The present edition has been pre pared br C IV Clenshaw E T Goodmin D W Martun G F Mbller F W J Olver and J HI Whlinson all members of the staff of Mathe matics Diviston YPh Valuable enticisms and nuxgestions hare aloo been made by L Fox now Director of the Orford University Computing Laboratory and many other members of Misthematics Division particu larly E L Alhasiny J G Hayes and T Buchers IUrs I Goode has collated the matenal prepared the printer s copr and helped to see the work through the preas

E T Goodwin
Supersitendent Mathematies Dis ision Aational Physical Laboratory

1

LINEAR EQUATIONS AND MATRICES: DIRECT METHODS

DEFINITIONS AND PROPERTIES

1. A general set of n linear simultaneous algebraic equations in n unknowns $x_{1}, x_{2}, \ldots, x_{n}$ can be written in the form

$$
\left.\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \tag{1}\\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2}, \\
\ldots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n} .
\end{array}\right\}
$$

The coefincients $a_{r s}$ form a square matrix of order n,

$$
\mathrm{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \tag{2}\\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots \ldots \ldots \ldots \ldots \ldots . \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right],
$$

which is to be considered simply as an array of numbers, and the column of constants b_{r} similarly forms a column matrix or vector \mathbf{b}. The unknowns x_{r} form a vector x. Equations (1) can then be mitten in the shortened form

$$
\begin{equation*}
A x=b . \tag{3}
\end{equation*}
$$

The cquality sign means that each element of the product vector $A x$ is equal to the corresponding element of the rector b, and the left of (1) gives the rule for prcmultiplication of a rector by a matrix.
2. The solution of (1) can be mitten in general terms as
or in matrix notation as

$$
\begin{equation*}
x=A^{-1} b, \tag{5}
\end{equation*}
$$

wbere A^{-1} has the same forra as (2) with a replaced by a The matrix A^{-1} is called the anverse or reciprocal of the mainx A

The elements α_{cs} of A^{-1} depend only on the elements of A It is clear from (4) that a knowledge of the a_{n} would enable the solutions of (1) to be obtauned with relative ease for any set of constants b_{r}, but the deter mination of the ors is not trival One metbod of obtaming tbem 18 suggested by equations (4) If in these equations we witte

$$
b_{1}=1, \quad b_{2}=b_{3}=.=b_{n}=0,
$$

we obtan the clements of the first column of tbe inverse It follows that the ranous columas of A^{-1} can be found in succession by eolming equt tions (1) with the nght hand sides replaced by successive columns of the matnx

$$
I_{n}=\left[\begin{array}{lllll}
1 & 0 & 0 & & 0 \tag{6}\\
0 & 1 & 0 & & 0 \\
0 & 0 & 1 & & 0 \\
& & & & \\
0 & 0 & 0 & & 0
\end{array}\right]
$$

This is the unt malraz of order n or idenity malrus, so called in nitue of the relation

$$
\begin{equation*}
\mathbf{I}_{0} x=x \tag{7}
\end{equation*}
$$

for any vector x The suffix n is usually omitted when there is no possible ambiguity

3 The main properties of matrices required in practice are those of addation, multipication, and transposition

Matrices can be added only then of the same order, and if B is the matrix (2) in wheb a as replaced by b, then

$$
A+\mathrm{B}=\left[\begin{array}{lll}
a_{12}+b_{11} & a_{12}+b_{12} & a_{2 n}+b_{1 n} \tag{8}\\
a_{21}+b_{21} & a_{42}+b_{5 n} & a_{2 n}+b_{2 n} \\
a_{n 1}+b_{n 13} & a_{22}+b_{n 2} & a_{n n}+b_{n n}
\end{array}\right]
$$

If a matrix A is multipled by a number 2 , the resulting matrix ins elements $l a_{r m}$, that is, every element is multuphed by k

Square matnces of the same onder can be multaphed, to give

$$
\mathrm{AB}=\left[\begin{array}{ll}
a_{12} b_{11}+a_{12} b_{21}+a_{13} b_{31}+ & a_{11} b_{12}+a_{12} b_{22}+a_{12} b_{32}+, \tag{9}\\
a_{21} b_{21}+a_{22} b_{21}+a_{23} b_{31}+ & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{33}+,
\end{array}\right]
$$

If we use tbe notation $r_{\text {, }}(A), e_{p}(A)$ to denote respectively the r th row and rth column of matrix A, and $r_{r} c_{p}$ to denote the result of multplying
corresponding elements of r_{r} and c_{s} and adding the results (scalar product), we can write (9) in the simpler form

$$
\mathbf{A B}=\left[\begin{array}{cccc}
r_{1}(\mathrm{~A}) c_{1}(\mathrm{~B}) & r_{1}(\mathrm{~A}) c_{2}(\mathbf{B}) & \ldots & r_{1}(\mathrm{~A}) c_{n}(\mathrm{~B}) \tag{10}\\
r_{2}(\mathrm{~A}) c_{1}(\mathrm{~B}) & r_{2}(\mathrm{~A}) c_{2}(\mathrm{~B}) & \ldots & r_{2}(\mathrm{~A}) c_{n}(\mathbf{B}) \\
\ldots \\
r_{n}(\mathrm{~A}) c_{1}(\mathrm{~B}) & r_{n}(\mathrm{~A}) c_{2}(\mathrm{~B}) & \ldots & r_{n}(\mathrm{~A}) c_{n}(\mathbf{B})
\end{array}\right] .
$$

From (10) it is obrious that in general $A B \div B A$, so that the order of multiplication is important. In (10) we refer to $\mathbf{A B}$ as \mathbf{B} premultiplied by \mathbf{A}, or multiplied on the left by A, or as A postmultiplied by B, or multiplied on the right by \mathbf{B}.

The transposed matrix of \mathbf{A}, called A^{\prime} or \mathbf{A}^{T}, is derived from A by interchanging rows and columns. If a matrix is symmetric, so that $a_{r s}=a_{s r}$, then $A^{\prime}=\mathbf{A}$, and

$$
\begin{equation*}
A^{\prime} \mathrm{A}=\mathrm{A} A^{\prime} . \tag{1}
\end{equation*}
$$

Other important cases in which the order of multiplication is immaterial are contained in the equations

$$
\begin{gather*}
\mathrm{AI}=\mathrm{IA} \tag{12}\\
\mathrm{AA}^{-1}=\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I} \tag{13}
\end{gather*}
$$

The transpose of a product is given by

$$
\begin{equation*}
(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime} \tag{14}
\end{equation*}
$$

and its inverse by

$$
\begin{equation*}
(A B)^{-1}=B^{-1} A^{-1} ; \tag{15}
\end{equation*}
$$

note that in both operations the order of multiplication is reversed.
4. Associated with a matrix A is its determinant, denoted by $\operatorname{det} A$ or $|A|$. Whereas the matrix is an array of numbers and can be regarded in many ways as an operator, the determinant is a pure number. For example,

$$
\begin{align*}
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| & =a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{cc}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right| \\
& =a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right) . \tag{16}
\end{align*}
$$

The sign associated with a_{r} is $(-)^{r+1}$, and the general rule for evaluation is obvious. The determinant

$$
\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|
$$

obtained by omitting the row and column containing a_{1}, is called a minor of order 2 of the original determinant.

It can be shown that the inverse A^{-1} of \AA is given by

$$
\frac{1}{|\mathrm{~A}|}\left[\begin{array}{rrrrr}
A_{11} & -A_{21} & A_{31} & -A_{41} & \cdots \tag{17}\\
-A_{12} & A_{22} & -A_{32} & A_{42} & \cdots \\
\cdots \cdots
\end{array}\right],
$$

where the munors $A_{r x}$ wheh are obtaned by orniting from the ongmal determmant the row and column contamung $a_{y s}$, occur with alternate signs and are transposed in companson with the corresponding elements $a_{s y}$ of A.
5 When $|\hat{A}|=0$, it is elear from (17) that the matrix A has no inverse Such a matrix is called anngular, and the corresponding linear equations have in general no solution If $|A|=0$, the rows of A are not lmestly independent, at least one can be ohtamed by linear combination of the others For example, in the equations

$$
\left.\begin{array}{r}
x_{1}+x_{2}+x_{3}=b_{1}, \tag{I8}\\
x_{1}-x_{2}+2 x_{2}=b_{2} \\
3 x_{4}+x_{2}+4 x_{3}=b_{3}
\end{array}\right\}
$$

it can be verified that the determinant

$$
\left|\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 2 \\
3 & 1 & 4
\end{array}\right|=0
$$

and the thind of (18) is ohtained hy adding tmmee the first to the second, In thas case the equations are uncompatihle unless $2 b_{1}+b_{3}=b_{3}$, and if this holds we have effectirely only two equations in three unknowns and there as an anfinity of solutions.

If the equations are homogentous, that 1s, the constants b_{r} are all zero, the equations hare no solution other than $x_{1}=x_{1}==x_{n}=0$ unless the determanant vamshes, in whoh case we can omit one equation and solve the rest to find the ratios of the x_{r}, promided that the $n-I$ equations are not themselves linearly depondent For example, th the homogeneous set of equations oorresponding to (18), we can omit the last equation and solie

$$
\left.\begin{array}{l}
x_{1} / x_{3}+x_{2} / x_{3}+1=0_{0} \tag{19}\\
x_{1} / x_{3}-x_{2} / x_{3}+2=0
\end{array}\right\}
$$

finding $x_{1} / x_{3}=-13, x_{2} / x_{3}=05$, whel also satisfy the remaning equa$\operatorname{tion} 3 x_{1} / x_{3}+x_{2} / x_{3}+4=0$

6 In solving a set of equations, it is a great advantage to be able to wre the ame number of decimal ylaces throughout any one stage of the computation It is a further adrantage if the same number can be used at erery stage These adrantages can be gauned very sumply by multrplying the vanous roms and columns of coefficients by posers of ten so as to mahe the largest coefficent in each row and eolumn, including the column of constants, lie between 01 and 10 Multiplyng the coms does
 trival change in the unhnowns

The same procedure should be earrued out on a matrix of wheh the interse is requited In thrs case, howerer, the multipher of each row must subsequently be multiplied anto the correxponding cohurn of the inverse obtamed, and the multapler of eacle column into the corro sponding ron of the mnerse, in order to recover the mrerse of the orgmal matrix

With a symmetric matrix, when a method of solution or inversion is to be used which takes adrantage of the symmetry, the multiplier of cach row of the matrix must be the same as that of the corresponding column of the matrix, in order to maintain the symmetry. In general, it will then be possible to ensure only that the largest eoefficients or elcments lie in the wider range 0.1 to 10 .

A matrix, modified in this way, is well-conditioned when its inverse, also, has its largest clements of order unity. In some cases, however, the elements of the inverse may have several figures before the decimal point, and it is then more difficult to get an accurate inverse or solution to the associated equations. Such a matrix or set of equations is said to be ill-conditioned, and this situation, which may be regarded as an approach towards singularity, manifests itself by a loss of significant figures during the computation.

SOLUTION OF EQUATIONS BY ELIMINATION OR PIVOTAL CONDENSATION

7. The simple elimination method taught at school is in practice carried out systematically and with the inclusion of frequent checks. If in equations (1) we seleet the largest of the coefficients of x_{1}, say $a_{k 1}$, and add suitable multiples of the eorrcsponding equation to all the other equations, so that in eaeh resulting equation the eoeffieient of x_{1} is zero, we shall be left with $n-1$ equations in the $n-1$ unknowns $x_{2}, x_{3}, \ldots, x_{n}$. The multipliers are elearly $-a_{11} / a_{k 1},-a_{21} / a_{k 1}, \ldots$, and never exceed unity. The equation containing $a_{k 1}$, the pivot, is called the pivotal equation, and is of course kept unchanged and temporarily left aside. We now seleet as pivot the largest eoefficient of x_{2} in the new set of $n-1$ equations and repeat the process. Continuing in this way we have finally a single equation in the unknown x_{n}. The various pivotal equations arc then assombled, and have the form

$$
\left.\begin{array}{rlr}
c_{11} x_{1}+c_{12} x_{2}+\ldots & +c_{1 n} x_{n} & =d_{1} \tag{20}\\
c_{22} x_{2}+c_{23} x_{3}+\ldots & +c_{2 n} x_{n} & =d_{2} \\
\ldots \\
c_{n-1, n-1} x_{n-1}+c_{n-1, n} x_{n} & =d_{n-1} \\
c_{n, n} x_{n} & =d_{n}
\end{array}\right\}
$$

The process used to produce this set of equations is known as Gaussian elimination or pivotal condensation.

We can now calculate x_{n} directly from the last of (20), and inserting its calculated value in the previous equation we can obtain x_{n-1}, and so on. This process is called back-substitution.

Several scts of equations, for the same \mathbf{A} and varying \mathbf{b}, can be solved almost simultaneously, as far as the elimination goes, by keeping several columns b; in particular, these may be the columns of the unit matrix if A^{-1} is required. Each back-substitution process is of course performed separately. In practice, the full equations at eacli stage are not recorded, but only the matrix of coefficients and column of constants.

The basic check on the elimonation consists in carrying an extra columon, whose r th element is formed of the num of all the elements of A and bin the rth row These elements are treated in the elimination exactly lise the columns of constants, and after each elimmation the 'sum' element should be equal, apart from mall end figure discrepanctes through aecumulation of rounding errors to the sum of the other elements in sts row

The final results are cheched by direct insertion in the onginal equations or, twally sufficently, mito an equation geven by the sum of the ongnal equations, this corresponds to the sum chech in the elimination

It 18 important to choose as pivot the largest element in a column, the multiplers are all then less than unty, and we can work with a constaut number of demmala, see also Chapter 5

If the matrix of coefficients as symmetric, symmetry is mamtained if pirots are chosen on the dagonal Tho work of elimination is then almost falved hut the multipliers may exceed unty

EXAMPLE

8 The solution of the equations

$$
\left.\begin{array}{l}
04096 x_{2}+01231 x_{2}+03678 x_{3}+02943 x_{4}=04043_{2} \\
02946 x_{1}+03872 x_{2}+04015 x_{3}+01129 x_{4}=01550 \\
03645 x_{1}+01920 x_{3}+03728 x_{3}+00643 x_{4}=04240 \\
01785 x_{1}+04009 x_{2}+02786 x_{3}+03927 x_{4}=-02557
\end{array}\right\}
$$

ta carried out as follows The pirots are in italics, the sum column sa labelied Σ, and the maltiphers are called in An extri deamal place 19 retained in the computations in order to compensate for the accumulation of rounding errors compare Chapter 5 § 14

Eliminaion						
m	\boldsymbol{z}_{1}	x_{2}	2_{3}	x_{4}	b	Σ
	04096	01234	0.3678	0. 2043	0.10 .13	15993
-054834	02246	03872	04015	01129	01550	12812
-088989	036.45	01920	03728	00643	04240	14176
-043555	01784	01002	02786	03927	-02557	09912
-092230		031953	019982	-004848	-006669	040418 (0)
-0 03723		008919	004550	-019769	006422	-00050S(9)
		034645	011840	0. 25452	-043179	029758 !
			009082	-029245	033155	012973
-019212			001741	-02603t	016065	-007628(
				-020315	010995	-010120,

Bach-substitution
$\begin{array}{ccccc}x_{1} & x_{2} & x_{2} & x_{4} \\ -000593 & -1 & 55547 & 203123 & -050129\end{array}$
Check, using sum of orginal equatrons
$11771 x_{1}+11028 x_{2}+14207 x_{2}+08642 x_{4}=07276(072761)$

The loss of a significant figure in forming the third pivot indicates that the equations are somewhat ill-conditioned. The number of significant figures in this pivot is the maximum number that can be expected to be correct in the various elements of the solution, even though the last check may be better than this. The accurate solution of the equations to six decimal places is in fact

$$
x_{1}=-0.006124, \quad x_{2}=-1.555598, \quad x_{3}=2.031468, \quad x_{4}=-0.504263 .
$$

If the coefficients and constant terms are uncertain to the extent of half a unit in the last figure the solutions have even greater tolerances. A full analysis of the rounding errors in this example is given in Chapter 5, §§ 6-11.

If the pirots are selected at each stage from the largest coefficient in the complete relevant matrix, rather than from the columns in order, the tendency is for the pirots to lose significant figures gradually, and the last pivot is usually the smallest. This choice does not, however, lead to significantly greater accuracy in the final results.
Several variations of this straightforward elimination process are described in detail in [16].*

COMIPACT ELIMINATION METHODS

9. For desk machines, the disadvantage of the simple elimination method is the large amount of recording; there is also an associated loss of accuracy, since at each recording a number is rounded and a small error introduced. This is aroided in the 'compact' elimination methods, of which we describe the method of Doolittle applied to the set of four cquations

$$
\left.\begin{array}{l}
\text { (i) } a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+a_{14} x_{4}=b_{1}, \tag{21}\\
\text { (ii) } a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+a_{24} x_{4}=b_{2}, \\
\text { (iii) } a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+a_{34} x_{4}=b_{3}, \\
\text { (iv) } a_{41} x_{1}+a_{42} x_{2}+a_{43} x_{3}+a_{44} x_{4}=b_{4} .
\end{array}\right\}
$$

The procedure is as follows:
(a) Add a multiple of (i) to (ii) to eliminate x_{1} from (ii), thus forming a new equation (ii).
(b) Add multiples of (i) and the new (ii) to (iii) to eliminate x_{1} and x_{2} from (iii), thus forming a new equation (iii).
(c) Add multiples of (i), the new (ii) and the new (iii) to (iv) to eliminate x_{1}, x_{2} and x_{3} from (iv), thus forming a new (iv).

The resulting equations (i), the new (ii), the new (iii) and the new (iv) have the form of (20), and can be solved as before by back-substitution. As before, a sum column is used as a check.

[^0]The computing sheet has the following appearance-

m_{12}	m_{13}	m_{14}	a_{11}	a_{12}	a_{13}	a_{14}	b_{1}	Σ_{1}
m_{23}	m_{24}		α_{13}	α_{23}	α_{21}	β_{2}	Σ_{2}	
	m_{34}			α_{33}	α_{34}	β_{3}	Σ_{2}	
					α_{24}	β_{3}	Σ_{5}	

The first multipher m_{12} is ohtamed from the equation

$$
m_{12} a_{12}+a_{n 1}=0
$$

and the coeflicients of the ners (iu) are obtamed from equations typified by

$$
\alpha_{ \pm 1}=n_{12} a_{14}+a_{21} .
$$

The second column of multuphers is obtaned from the equations

$$
\begin{aligned}
& m_{13} A_{11}+a_{32}=0, \\
& m_{13} a_{12}+m_{22} a_{22}+a_{3 z}=0,
\end{aligned}
$$

and the coefficients of the new (iw) from equations typried by

$$
\beta_{3}=m_{13} b_{1}+m_{3} \beta_{2}+b_{3}
$$

Finally, the last columen of multuphers is obtanned from the equation*

$$
\begin{array}{ll}
m_{11} a_{11}+a_{11} & =0 \\
m_{51} a_{13}+m_{25} \alpha_{22}+a_{42} & =0 \\
2 m_{14} a_{13}+m_{21} \alpha_{23}+m_{31} a_{23}+a_{43} & =0
\end{array}
$$

and the coefficients of the new (iv) from equations typified by

$$
a_{44}=m_{14} a_{14}+m_{24} \alpha_{24}+n_{34} \alpha_{31}+a_{44}
$$

The final equatrons from which back substitution is performed are not the same as the protal equations of the pronous method, unlesa the chosen pirot at each stage in the latter is the first element in its column In this event the two sets of equations are the same, except for rounding ercors

The saving in recording thme and spaoe is clear The arrangement is also satisfactory in that quantities to be multipled together he in the same row of the computing sheet The method of Crout, desertbed in [16], Has a still more compact lay out hut is less proof against error, sinco numbers wheh are to be multupled together do not have tha favourable combunation of position

In the case of eymmetrse matrices labour may be baved by computing the m 's from the α 's by means of the relation $m_{i j}=-\alpha_{i j} / \alpha_{i s}$

METHODS DEYENDING ON MATELX PROPEETIES

10 The matrix of coeffienents c_{rs} in (20) is denoted by U and called upper trangular, sunce all its elements below the mun diagonal are zero A matrix with zero elements above this dagonal is labolled L and called louer trangular. Trangular matnces are obvousily more convenient than complete matrices for solving linear equations tho determiriant of such a matrix, moreover, is just the groduct of the diagonal terms

With the Gaussian elimination method, the original equations (1), for which the matrix is complete, were transformed into equations (20), for which the matrix is upper triangular. The elimination is effectively equivalent to multiplying the original matrix A by a lower triangle L, producing an upper triangle \mathbf{U}; thus

$$
\begin{equation*}
\mathbf{L A}=\mathbf{U} \tag{22}
\end{equation*}
$$

The equations from which the solutions are obtained by back-substitution are then

$$
\begin{equation*}
L A x=U x=L b . \tag{23}
\end{equation*}
$$

The matrix L here has ones in its diagonal; hence from (22) and the fact that the determinant of a matrix product is the product of the separate determinants [13], we see that the determinant of A is the same as that of \mathbf{U}, and cqual to the product of the diagonal terms of \mathbf{U}. (If the pivots do not all lie on the diagonal, the sign of the determinant may be changed.)

Another class of method, the best for desk machines, uses the fact that a square matrix can be expressed as the product of two triangles, in the form

$$
\begin{equation*}
A=L U, \tag{24}
\end{equation*}
$$

provided that it has non-zero leading principal minors, that is, the determinant composed of elements common to the first r rows and first r columns of A is non-zero for every $r=1,2, \ldots, n-1$. The diagonal terms of cither L or U can here be chosen arbitrarily, the rest then being determined uniquely. If the matrix is symmetric, the diagonal of U is best taken to be the same as that of \mathbf{L}; then \mathbf{U} is the transpose of L , so that only one triangle has to be determined from the equation

$$
\begin{equation*}
A=L L^{\prime}, \tag{25}
\end{equation*}
$$

though some elements will be imaginary if \mathbf{A} is not positive definite (Chapter 3, §3).
II. When multiplying two matrices on desk machines, it is best to record the transpose of the right-hand matrix vertically bencath the left-hand matrix, so that the rule (10) for multiplication can be written as

$$
\mathbf{A B}=\left[\begin{array}{ccc}
r_{1}(\mathbf{A}) r_{1}\left(\mathbf{B}^{\prime}\right) & r_{1}(\mathbf{A}) r_{2}\left(\mathbf{B}^{\prime}\right) & \ldots \\
r_{2}(\mathbf{A}) r_{1}\left(\mathbf{B}^{\prime}\right) & r_{2}(\mathbf{A}) r_{2}\left(\mathbf{B}^{\prime}\right) & \ldots \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots
\end{array}\right]
$$

and elements of rows are multiplied together, corresponding elements lying in the same column. In particular, if B is A^{\prime} we have

$$
\mathrm{AA}^{\prime}=\left[\begin{array}{lll}
\left\{r_{1}(\mathrm{~A})\right\}^{2} & r_{1}(\mathrm{~A}) r_{2}(\mathrm{~A}) & \ldots \tag{26}\\
r_{1}(\mathrm{~A}) r_{2}(\mathrm{~A}) & \left\{r_{2}(\mathrm{~A})\right\}^{2} & \ldots \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \ldots
\end{array}\right] .
$$

The determination of L and U in general is sufficiently illustrated by consideration of a matrix of order three. The notation and arrangement
are as follows, the tranglo L beang here tahen with unt dragonal elements and the transpose of the upper trangle U beng the lower trangle U^{\prime}

The method and order of calculation are as follows The multipheation rule gives

```
\(a_{11}=r_{1}(\mathrm{~L}) r_{1}\left(\mathbf{U}^{\prime}\right)=u_{11}, a_{12}=r_{1}(\mathrm{~L}) r_{2}\left(\mathbf{U}^{\prime}\right)=u_{12} \quad a_{12}=r_{3}(\mathrm{~L}) r_{3}\left(\mathbf{U}^{\prime}\right)=u_{13}\)
    gring the first colvon of \(U\),
\(a_{11}=r_{2}(L) r_{1}\left(U^{\prime}\right)=l_{11} u_{11}\), ging the second row of \(L\),
\(a_{22}=r_{2}(L) r_{2}\left(U^{\prime}\right)=l_{21} u_{12}+u_{21} \quad a_{33}=r_{2}(L) r_{3}\left(U^{\prime}\right)=l_{21} u_{13}+r_{23}, \quad g \operatorname{ving}\)
    the second column of \(U\),
```

$a_{31}=r_{3}(L) r_{1}\left(U^{\prime}\right)=l_{11} u_{11}, a_{32}=r_{3}(L) r_{2}\left(U^{\prime}\right)=l_{31} u_{11}+l_{32} u_{2}$, giving tho
thicd row of L, and finally
$a_{33}=r_{3}(\mathrm{~L}) r_{3}(\mathrm{U})=l_{31} u_{13}+l_{38} u_{23}+u_{33}$ giring the last element in U^{\prime}.

In the symmetric case $\mathbf{U}{ }_{13} L$ and need not be recorded, the daggonal terms of $L_{\text {s }}$ sedenoted by $I_{11}, l_{x z}$ and $l_{s z}$ and we have the equations

$$
\begin{array}{lll}
a_{11}=\Gamma_{15} & a_{12}=l_{11} l_{21}, & a_{23}=l_{11} l_{31} \\
& a_{22}=l_{51}+l_{21}^{t} & a_{23}=l_{21} l_{31}+l_{28} l_{32} \\
& & a_{23}=l_{51}+l_{32}^{4}+l_{33}^{l}
\end{array}
$$

for the successive determmation of the $l_{\text {re }}$
12 When the trangular resolution or decomposition is firushed, we can solve the linear equstions (3) by two processes of back substitution Introdteing the auxilaary vector y, defined by

$$
\begin{gather*}
\mathbf{U x}=\mathbf{y}, \tag{27}\\
\mathbf{A x}=\mathbf{L U x}=\mathbf{L} \mathbf{y}=\mathrm{b}_{2}, \tag{28}
\end{gather*}
$$

wo can write
solving for y from the last of (e8), and for x from (27)

The elements of y are obtained in the same way as those of \mathbf{U}^{\prime}. If they are written in transposed form as a row vector with components y_{1}, y_{2}, y_{3}, shown in position in the arrangement of §11, then the equation $L y=b$ gives

$$
y_{1}=b_{1}, \quad l_{21} y_{1}+y_{2}=b_{2}, \quad l_{31} y_{1}+l_{32} y_{2}+y_{3}=b_{3}
$$

from which the y_{r} are obtained in succession.
As a check on the work we form the sum column Σ, composed of the row sums of A and b, and a sum row S, composed of the column sums of U^{\prime} and y^{\prime}. As each of the latter becomes available we use the successive relations
or

$$
\begin{gathered}
r_{1}(\mathrm{~L}) \mathbf{S}=\Sigma_{1}, \quad r_{2}(\mathrm{~L}) \mathrm{S}=\Sigma_{2}, \quad r_{3}(\mathrm{~L}) \mathrm{S}=\Sigma_{3}, \\
S_{1}=\Sigma_{1}, \quad l_{21} S_{1}+S_{2}=\Sigma_{2}, \quad l_{31} S_{1}+l_{32} S_{2}+S_{3}=\Sigma_{3} .
\end{gathered}
$$

We finally calculate x from (27) from equations typified by

$$
\begin{equation*}
c_{r}\left(U^{\prime}\right) \mathrm{x}=y_{r} . \tag{29}
\end{equation*}
$$

The elements of x are recorded as shown, and calculated from the successive equations obtained by taking $r=3,2,1$ in (29), and given by $u_{33} x_{3}=y_{3}$, $u_{23} x_{3}+u_{22} x_{2}=y_{2}, u_{13} x_{3}+u_{12} x_{2}+u_{11} x_{1}=y_{1}$. If s is the column formed of the row sums of U^{\prime}, a suitable check on this back-substitution is given by

$$
s_{1} x_{1}+s_{2} x_{2}+s_{3} x_{3}=y_{1}+y_{2}+y_{3} .
$$

It should be noticed that the array of multipliers $m_{i j}$ in the Doolittle method ($\S 9$) is the same as L^{\prime}, with the signs changed and the unit diagonal terms omitted, and that the array of coefficionts $a_{1 j}$ and $\alpha_{i j}$ in Doolittle's resulting equations is the same as U. Thus the computations are precisely the same in the two methods; only the arrangement differs.

If the matrix is symmetric, equations (27) and (28) are replaced by

$$
\left.\begin{array}{c}
L^{\prime} x=y \tag{30}\\
A x=L L^{\prime} x=L y=b,
\end{array}\right\}
$$

so that $\mathrm{U}^{\prime}=\mathrm{L}$ and the only change in arrangement is the complete omission of U^{\prime}, the sums \mathbf{S} and s being attached to L .
13. The solution by this method of the previous example is given on the next page. The fact that the answers agree with those of $\S 8$ to barely four decimals is due to the ill-conditioning of the equations noted previously.
14. For matrix inversion there are various possibilities following the triangular resolution. One method is to invert both L and U , and then find A^{-1} from

$$
\left.\begin{array}{l}
A^{-1}=\mathrm{U}^{-1} \mathrm{~L}^{-1} \text { (unsymmetric case) }, \tag{31}\\
\mathrm{A}^{-1}=\left(\mathrm{L}^{\prime}\right)^{-1} \mathrm{~L}^{-1} \text { (symmetric case). }
\end{array}\right\}
$$

In the second of (31), $\mathbf{L}^{-1}=\left\{\left(L^{\prime}\right)^{-1}\right\}^{\prime}$, so that only one triangle has to be inverted.

The arrangement for inversion of triangles and the final multiplication are described in [16]; still more compact methods are described in [17].

These compact methods, in wheh at most one triangle is inverted, are usually preferred.

A					b	Σ
	04096	01234	0.3678	08943	0-4043	150040
	02296	03572	04015	01129	01550	$125120(19)$
	03645	01930	0.3728	00643	0.4840	$141760(59)$
	01784	04002	02786	03927	-0.0.057	009420
L						
1						
	054834	1				
	088969	020.21	1			
	04355	108126	1605290	1		
U					5	x
	040960				040900	-0.0060n
	012340	031953			044293	- 155560
	0.36780	010982	-000.90		056172	-03144
	029430	004848	-018.13	340003	346072	-050497
y	040430	000609	00813°	-171433	$\left(-129555{ }^{\text {d }}\right.$)	
S	189940	040418	-0t0966	165550		

LINEAR EQUATIONS AND MATRICES:

direct methods on automatic computers

INTRODGCTION

1. When linear equations are solved on a desk machine, the minimization of the number of quantities which have to be written down and the convenience of the layout are of paramount importance. The time taken to write a number is comparable with that taken to perform an arithmetical operation, and a high percentage of the total number of mistakes ocours in the writing stage. Although properly applied checks give complete protection against undetected errors, the solution of a system of equations of quite moderate order is tedious unless mistakes are infrequent.

In contrast, an automatic computer in good working order may be relied upon to solve a very large system of equations without making any mistakes. The problems of layout are still present, though in a rather different form. They are now mainly concerned with the use of an auxiliary store haring an access time different from that of the highspeed store. For instance, it is often of decisive importance whether matrices are held in the auxiliary store in rows or in columns.
2. In other respcots, an automatic computer is less flexible than a desk machine. For example, the method of triangular decomposition described in $\S \$ 10-14$ of the previous chapter is superior to the elimination method only if the scalar products are accumulated without rounding each contribution. It is therefore essentially a fixed-point method, but an experienced hand computer will add extra figures when the need arises. In practice this need is likely to arise quite frequently, because no prorision has been made for the selection of pivots comparable with that described in Gaussian elimination. In consequence, a diagonal element of the upper triangular matrix U may sometimes be quite small, with the result that some of the elements of \mathbf{L} and U are considerably larger than those of the matrix of the original equations.

Unsystematic modifications of this type are unsatisfactory in automatic work. In general. in order to achieve the maximum accuracy in the solution we try to design programmes in such a way that all numbers fully occupy the storage registers (perhaps it should be added that most automatic computers do not work any faster with numbers which are less than a full word length). Accordingly, in this chapter we shall analyse the computing procedures im more detail.

3 The precise detaila of the anthnetical iacilities of the compater are of great importance On many machnes both fised pount and floating point fachities are a valable If foating point operations are used through out then there is apparently no reed to give detalled attention to the suze of numbers ansing daring the course of the computation It is shown in Chipter 5 however that thes procedure does not remove the necessity for isterchanges in Gausstan elimnation and related methods Moreorer for a given word length the precision of floating pount arthmetic is lower than that attanable whth fixed pont anthmetre because some digits have to be allocated to the exponent In most matrix problems it is possible to carry out the necessary scaling in fixed pornt operations usung fewer digts than would be requred for the floatug pount exponents

4 Fixed point operation is particularly adrantageotis on computers which are equipped with the following two factities
(1) The ability to accumulate sealar products $\Sigma a_{6} b_{6}$ exactly This fachity $1 s$ possessed by all desk machones the exact scalar product is usually produced whether requred or not On automatic computers the decisire feature is whether or not double precision in the product myy be obtaned without specal programming The main adrantage of this facility is that only one rounding error is mede this occuring when the accumulated sum ss rounded to engle preasion
(in) The abilty to diride a double prection number by a suggle precision number When this facilty is pronded in conjunction mith the facility (1) only one rounding etror is introduced in the eomputation of quantities of the form ($\left.\Sigma a_{i} b_{i}\right) / c$ Both facsitues are aralable on the computers in use at NPL and their provision elsewhere is becoming increasingly common

Qatgaian ELIMIVATION

5 Ehimination with selection of putols may be carried out quite matis factonily whth fised pount arsthmetic Storago presents no special problems because the successive reduced equations may be overwritten in the loentions oscupied by the orginal matrix It is usually desmable to design the programme so that it will deal amultaneously with any number r siy of rught hand sties For a system of order n a total of $n(n+r)$ storage locations is then requared

6 Since protal selection is used all the muitiphers are bourded by unty and mar therefore be computed wathout scale factors If the origenal equations are scaled so that all coefficients and constant terms aro numencally less than $\frac{1}{1}$ say, it is then extremely uncommon for an element of any of the reduced equations to exceed units

In a general purpose programme it is destrable to unclude some pro sedure Thach deak autematically whin the datrger of uverspm Thue following method is based on the obcervation that of all the elements of a given reduced set of equations are less than $\frac{1}{2}$ then no element of the nert reduced set can exceed unity As each reduced equation is formed its clements are tested for sive If any exceeds $\frac{1}{2}$ then that equa tion is divded throughout by 2 In thss way the maximum preesion is preserved and the possible need to repeat the computations as a result of overspull is avorded
7. In the programmes written for the N.P.L. computers, the elements of the r th pivotal row are interchanged with those of the rth row at each stage of the reduction so that the final triangular set of equations is stored in the natural order. For this reason elimination with selection of pivots is often referred to as elimination with interchanges. On other machines it is sometimes more convenient to leave each row in its original position and to store the locations of the pivotal rows. The location of the pivotal equation for the $(r+1)$ th reduction may be determined during the course of the r th reduction; we merely have to keep a record of the size and location of the numerically largest coefficient of x_{r+1} occurring in the reduced equations up to and including the current stage.

THE BACK-SUBSTITUTION

S. In the reduction to triangular form, the need for scaling is almost non-existent. In the back-substitution, however, scaling is the major preoccupation in fixed-point work, since the scaling of the original equations places no restriction whatever on the size of the solutions. A convenient scheme is the following.

The r th pivotal equation has the form

$$
\begin{equation*}
a_{r, r}^{(r)} x_{r}+a_{r, r+1}^{(r)} x_{r+1}+\ldots+a_{r, n}^{(r)} x_{n}=b_{r}^{(r)} \tag{1}
\end{equation*}
$$

In applying this equation, $x_{r+1}, x_{r+2}, \ldots, x_{n}$ have already been calculated; x_{r} is now found from

$$
\begin{equation*}
x_{r}=\frac{-a_{r r+1}^{(r)} x_{r+1}-a_{r, r+2}^{(r)} x_{r+2}-\ldots-a_{r, n}^{(r)} x_{n}+b_{r}^{(r)}}{a_{r, r}^{(r)}}, \tag{2}
\end{equation*}
$$

and if the facilities described in $\S 4$ are available, the computation of x_{r} involves only one rounding error. The process may be carried out in this simple form until a calculated x_{r} exceeds unity. When this happens, a scale factor 2^{-8}, where $s \geqslant 1$, is introduced to bring x_{r} into the permissible range. All the previously calculated x_{i} are then multiplied by this factor. Scale factors may be introduced in this way several times during the back-substitution. At the stage when the accumulated scale factor is 2^{-s}, the equation determining x_{r} may be written in the form

$$
\begin{equation*}
x_{r}=\frac{-a_{r r+1}^{(r)} x_{r+1}-\ldots-a_{r n}^{(r)} x_{n}-b_{r}^{(r)}\left(-2^{-s}\right)}{a_{r, r}^{(r)}} \tag{3}
\end{equation*}
$$

where the x_{i} denote the currently stored values of these variables. If the quantity $\left(-2^{-s}\right)$ is stored as though it were an extra variable, then the numerator of (3) may be treated as a scalar product of order $n+1-r$. At the end of the back-substitution the stored value of 2^{-s} gives the final scale factor. The computed solution \mathbf{x} will therefore have its maximum component in the range ($2^{s-1}, 2^{s}$) and with the full number of significant figures, unless no scaling has taken place, in which event all components of x are numerically less than unity.
9. In many computations we require the solution of a system of equations with a number of different right-hand sides, not all of which are known at the time when the elimination is performed. For example,
with some methods of comphtang latent vectors (see Chapter 3) फe wish to solve successively the systems

$$
\begin{equation*}
A x^{(r+1)}=h^{(r)}, \quad b^{(r)}=L^{(r)} x^{(r)} \quad(r=1,2, \quad) \tag{4}
\end{equation*}
$$

where the ${ }^{\text {fri }}$ are scalars, usually mommaling factors Fere each night hand sude as determined hy the previons solution
To cope with such prohlems, enffenent information must be stored so that we can apply to the right hand side the transformations which are normally applied during the rednction process and the bach substitution In order to be able to do this we mist stone the multiphers, the pirotal rows and the detauls of the naterchanges

10 We now describe a convement way of doug this which requares a total storage space of $n(n+1)$ words The consiguration at a typical stage in the reduction sa illustrated below for a matrix of order 5 , at the end of the second stage The quantities $\mathrm{mf}_{\mathrm{it}}$ and m_{12} aro the multiphers used in the first and second stages, and the $a_{i j}$ denote the current values of the coefficients of the equations The multupluers have the opposite signs to those introduced in $\$ 8$ of Chapter 1

p_{1}	a_{14}	a_{12}	a_{13}	a_{14}	a_{15}
p_{2}	m_{21}	a_{21}	a_{23}	a_{24}	a_{25}
p_{3}	m_{21}	m_{12}	a_{32}	a_{34}	a_{35}
0	m_{41}	m_{43}	a_{42}	a_{44}	a_{55}
0	m_{51}	m_{52}	a_{53}	a_{54}	a_{65}

Each element is given the suffizes corresponding to the storage position it occupies no account of unterchanges is tiken in this nomenclature The quantatues p_{1} and p_{2} are the nambers of the protal rows in the first and second stages, and aro therefore mtegers less than 6 The first and second protal rows are now of course in the first and second positions During the second reduction the number, p_{3} of the next pivotal row wall havo been determined in advance as describerl in §§ 7

The elements $a_{f f}$ m row p_{3} are now interchanged with those in row 3 , hut the $m_{i j}$ in these rows must not be interchanged DIultiples $m_{n j 3}$ and m_{53} of the new row 3 are subtracted from the current rows 4 and 5 the new values of $a_{\$ j}$ are overwatten on the elements from which they are derved, and m_{33} and m_{63} are overwntten on a_{43} and a_{63}, respectirels Durng this reduction the next pavotal row number, p_{4} is determined, and is written at the begmong of row 4 We are then ready to start the next stage of the reduction

11 The use of the stored information to deal with a night hand side h may be adequately described hy the reduction to the thard stage for the system of order 5 The nght hand sade will occupy 5 storage locations, and we calf the current contents of these locations, b_{1}, b_{2}, b_{5} The third stage is as followe
(i) Interchange b_{3} and b_{p}. (If $p_{3}=3$ no intcrchange is necessary, hut it is simplest to allow the programme to effect the 'interchange')
(iv) Suhtract multiples m_{43}, m_{53} of b_{3} from b_{4} and b_{5} and overwito the new values in the 4 th and 5ih locatsons Note that the elements b_{1}, b_{2} ohtaned in the earher stages are unaltered ance $p_{3} 19$ not less than 3

In general, there are $n-1$ stages of this type and when they are complcted, the equations are ready for the back-substitution.

The complete processing of a right-hand side, starting from the stage at which the elimination has been completed, requires approximately n^{2} multiplications and n divisions. If the process of division is slower than that of multiplication and there are several right-hand sides, it will be economical to form the xeciprocals of the pivotal elements. If we were to compute the inverse of A, then we could obtain the solution corresponding to a given right-hand side, \mathbf{b}, by forming the product $\mathbf{A}^{-1} \mathbf{b}$. This requires n^{2} multiplications. It must be remembered, however, that the number of multiplications needed to calculate the inverse of A exceeds that needed to produce the matrix of multipliers and pivotal rows by about $\frac{2}{3} n^{3}$. Therefore unless we have a very large number of right-hand sides, it is uneconomical to find the inverse.

Programmes of the type which decompose the matrix of coefficients into two triangular matrices, which may then be used to solve with any right-hand side, have proved to be among the most useful of those in the N.P.L. library.

VARIANTS OF GAUSSIAN ELIMINATION

12. Many methods of solving linear equations have been devised which are essentially variants of Gaussian elimination. Often they exploit some special feature of a particular machine. Most commonly they are designed to compensate for the loss of speed when the system of equations is too large to be held in the high-speed store. For the most part they have no specific names but they are more important in automatic work than many of the named variants used on desk machines. Furthermore, they are often mathematically distinct from Gaussian elimination and triangular decomposition, whereas many of the named variants used on desk machines differ only in the layout of the work.
13. There is one variant which is of particular advantage when the system of equations is fed in as data and not produced by the computer itself, since it enables the solution to be effected using approximately $\frac{1}{2} n^{2}$ locations instead of n^{2}. There are n major steps in this process. At a typical step, the r th, there are $r-1$ equations in the high-speed store, the first involring $x_{1}, x_{2}, \ldots, x_{n}$, the second $x_{2}, x_{3}, \ldots, x_{n}$, and the $(r-1)$ th, $x_{r-1}, x_{r}, \ldots, x_{n}$. At this stage only $r-1$ equations have been read into the store. For $r=4, n=6$ and one right-hand side, the stored system has the following configuration:

a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	a_{16}	b_{1}
	a_{22}	a_{23}	a_{24}	a_{25}	a_{26}	b_{2}
		a_{33}	a_{34}	a_{35}	a_{36}	b_{3}

We refer to the reduced equations represented by the three rows as the 1st, 2nd and 3rd equations respectirely. Interchanges may take place in the next step but we shall still refer to the equation currently occupying the 1st position as the 1st equation, and similarly for the others. The 4th step proceeds as follows.
(i) The 4th equation is read into the store.
(n) The coefficients of $x_{1} \mathrm{~m}$ the 1st and 4th equations are compared and if necessary the equations are unterchanged so that the 1 st contans the larger coefficient A multiple of the lst equation is then suhtracted from the 4th to gree a zero coefficient of x_{1} This muliplo cannot exceed unity
(m) The new the equation is now compared with the 2nd If necessary an interchange is performed so that the and equation has the larger coefficient of $x_{2} A$ multiple of the "nd equation is now suhtracted from the 4 th to give a zero coefficient of x_{2}
(iv) The 4 th equation is now compared with the 3rd and if necessary an interchange is performed so that the 3rd equation has the larger cosficient of x_{3} A multiple of the 3rd equation is then suhtracted from the 4 th to give a zero coefficient of x_{3}. This completes the 4 th stage

It is endent that the total storage requared for a system whth one nght hand side 25 only slightily greater than that needed to hold the final traangular set of eqnations and ss thus about half that needod to hold the full set of equations

14 We cannot tahe advantage of the varnant if we wish to solve mith right hand atdes thich are not known when the elimination is performed In this case we mill need to store the multuplers as woll as the pirotal rows and will therefore requre \boldsymbol{n}^{2} etorage locations However ths method of performing the interchanges still has adsantages on some compntext particularly for sets of equations which are large enough to requirs the use of ths auxilisy store Furthermore the detalls of the meterchanges can now be stored in a particularly simple manner Te record whether or not an anterchenge took place just before each of the multrphers was produced hy escrifieng the least stgmficant digt of esch multiplier and storing in it ${ }^{4}$ place a one or a zero

TRIANOULAR DECOXPOSITIO* WITH INTERCHANOES

15 Interchanges may he introduced in the method of trangular de compostion in such a way that all the elements of L reman less then unity Indeed thus $1 s$ just as important for trangular decomposition as for Gaussian elimmation A satisfactory technique has not been desenbed in the litersture however no douht because of the inconvenuence of carrying out the interchanges on a desk machine tho now describe a procedure which has heen programmed for the ACE computer at NPL

16 The matrix of the coeficients is procesced column by column There are n major steps the rth of which is concerned with the modi fication of the rth columan only In addution to the storage space occupred by the matras n pairs of storsge locatons are required to hold n enset scalar groducts accumulated during the column processing The con Ggaration at the beganing of the rth step st typried by that shown below for $r-3 n=5$

${ }_{11}$	\boldsymbol{y}_{12}	a_{12}	a_{1}	a_{15}	$s_{1} s_{1}$
12	1_{52}	$a_{\text {za }}$	a_{3}	$a_{2 s}$	${ }^{*} \mathrm{E}^{\text {c }}$
t_{31}	l_{31}	a_{33}	a^{2}	a_{35}	$8_{3}{ }^{x_{3}}$
f_{4}	l_{42}	a_{43}	\boldsymbol{a}_{4}	a_{45}	1
t_{51}	$l_{5 z}$	a_{53}	a_{54}	a_{35}	${ }^{5} 8{ }_{5}$
p_{1}	p_{2}	0	0	0	

In the general case, the elements of the first $r-1$ columus of L and U (apart from the diagonal elements of L which are unity and are not stored) have been produced and overwritten on the corresponding elements of \mathbf{A}. The quantity p_{i} appearing at the foot of the i th column is an integer specifying the interchanges and is defined below. The pairs of registers needed to store the double-length scalar products are denoted by $s_{i} s_{i}$. To aroid misunderstanding we stress that the triangular matrices L and U, stored in the machine at the conclusion of the process are not such that LU is equal to \mathbf{A} with its rows rearranged. For this to be true the elements in each column of L would have to be permuted and a different permutation used for each column. Each column of the stored matrix L is in the most convenient form for the processing of the columns of \mathbf{A} and of a right-hand side.

The r th step takes place in the following four stages:
(i) Multiplication of each element of the r th column by unity to give n double-precision numbers, and the storage of the results in the double locations ss.
(ii) Successive calculation of $u_{1, r}, u_{2, r}, \ldots, u_{r-1, r}$.
(iii) Calculation of p_{r} and $\iota_{r, r}$.
(iv) Calculation of $l_{r+1, r}, l_{r+2, r}, \ldots, l_{n, r}$.

Stage (i) is self-explanatory.
Stage (ii) has $r-1$ substages in the t th of which $u_{t, r}$ is computed. The t th step is as follows. Extract $s_{p_{t}}$ and round to single precision to give $u_{l_{, r}}$. Overwrite this on $a_{\ell, r}$ and then overwrite s_{l} on $s_{p t}$. Subtract multiples $l_{l+1, t}, l_{l+2, l}, \ldots, l_{n, t}$ of $u_{l, r}$ from $s_{l+1}, s_{t+2}, \ldots, s_{n}$ and overwrite the modified scalar products so obtaincd on their old values.

Stage (iii). Selcct the largest, $s_{p,}$, of the scalar products $s_{r}, s_{r+1}, \ldots, s_{n}$. This $s_{p_{r}}$ defines p_{r} which is entered at the foot of the r th column. Round $s_{p_{r}}$ to give $u_{r, r}$, and overwrite on $a_{r, r}$. Overwrite s_{r} on $s_{p_{r}}$:

Stage (iv) has $n-r$ substages in the t th of which $l_{r+l, r}$ is computed by dividing $s_{r+1, r}$ by $u_{r, r}$ to give $l_{r+1, r}$, and then overwriting the result on $a_{r+h, r}$.

It is evident that only one rounding error is made when calculating each element of L and U, provided that the computer has both of the facilities described in § 4.

Since we have stored complete information on the triangular decomposition, we may subsequently deal with any number of right-hand sides. The details of the processing of the right-hand side closely follow those of the decomposition, and we omit them.
17. It may be noted that the exact accumulation of scalar products is not essential to the columnwise processing; it merely improves the accuracy. The method may be used without this facility and is then exactly equivalent to performing Gaussian elimination with interchanges.

ILL-CONDITIONED EQUATIONS

1S. For a system of ill-conditioned equations the calculated solution may not be sufficiently close to the exact solution owing to the limitation of the working accuracy by the giren word-length. If we have stored complete information about the matrix transformation, an improved
solution mar be obtamed withont recouree to double leagth arithmetic as follows Lat $\mathbf{x}^{(1)}$ be the computed solution of the equations

$$
\begin{equation*}
\mathrm{Ax}=\mathrm{b} \tag{5}
\end{equation*}
$$

If we defire $r^{\text {(3) }}$ by the equation

$$
\begin{equation*}
\mathbf{r}^{[1]}=b \sim A r^{[2]} \tag{6}
\end{equation*}
$$

then we hare

$$
\begin{equation*}
A\left[x-x^{(11)}\right]=r^{[1]} \tag{7}
\end{equation*}
$$

The correction to be appied to $z^{(1)}$ to gre the solution of (5) is the solution of equation (5) Now ulers the matrux A is tery ill-conditioned, the components of $r^{(1)}$ will be kmallicr than those of b On a computer which accumulates double length sealar products we may calculate \mathbf{r}^{13} esaetly, if ats largest element lees between 2^{-11} and $9^{-(t 51)}+11$ the may moltuply all its components by 2^{3+}, and round the remilturg vector to

$$
\begin{equation*}
A \delta^{(1)}=q^{\prime \prime \prime} i^{(1)} \tag{8}
\end{equation*}
$$

using the stored information, to obtam 8^{611} The rector

$$
x^{(9)}=x^{(1)}+g^{-k^{(10}} \delta^{(1)}
$$

- then an improved solotion We may continue the process to ohtain ecquences $\mathbf{x}^{(0)}, \mathbf{r}^{(0)}, h^{(1)}, \overline{\mathbf{r}}^{(0)}$ and $\boldsymbol{\delta}^{(0)}$ defined $b v$

$$
\begin{equation*}
r^{(1)}=b-A x^{(1)} \tag{9}
\end{equation*}
$$

the maximum element of $\mathbf{g}^{50} \bar{r}^{(0)}$ bes between $\frac{1}{2}$ and 1 and

$$
\begin{gather*}
A \delta^{(6)}=2^{4} \bar{i}^{(0)} \tag{10}\\
x^{(i+1)}=x^{(6)}+9^{-k^{4}} \delta^{(1)} \tag{1I}
\end{gather*}
$$

19 Three comments may be made on the above process
(1) The exact accumalation of ecalar products es important in the compu tation of $x^{(4)}$ If each multuphation s rounded indundualls or if the residuals are computed nsing sungle prection floating point artbmetic the error made m computing the residual mas be comparable with its trwe value If foatug point anthmetio as used we muat rorh to double preciston to ohtam readuals of comparable accuracy to those obtamed on a fised point computer equpped with the facility of accumulation
(ii) If the equations are too all-sonditioned then although the com ponents of $r^{(1)}$ may be much emaller thin tho e of b, the $r^{(i)}$ will not decrease with each iteration They mill either reman much the same stre, or eren increase In entber case we will not gaun accuracy by repeating the proces and it is almost ecrian that x^{12} has no correct figures In thas erent it is necessary to repeat the whole process using double length anthmetic throughoat
(iu) If only one or two bnary figures are gamed per stage, then mans iterations are needed before the answers are correct to sugle precision If the solation is required for a number of diferent right hand sides, then it will be more coonomalal to perform tbe computation in donble precision
arithmctic. If single-precision computation with a t-digit word is capable of giring a solution at all, double-precision computation will give at least t correct figures in the first step. If single-precision work prorides no solution, then double-precision work will be required anyway. If there is reason to expect the equations to be very ill-conditioned, the case for undertaking double-precision work at the outset is very strong.

The main adrantage of using the iterative process to improve the solutions is that it prorides an extremely reliable indication of the accuracy of the solution. If $\mathrm{x}^{(1)}$ agrees with $\mathrm{x}^{(2)}$ to r figures and $\mathrm{x}^{(2)}$ with $\mathrm{x}^{(3)}$ to $2 r$ figures, we may be fairly certain that $x^{(3)}$ has $3 r$ correct figures.

It should be emphasized that the extra figures obtained in this way will be meaningful only if the original equations are exact or if the errors in them are correlated in some special way. This is discussed further in Chapter 5.

3

LATENT ROOTS AND VECTORS OF MATRICES

KNTRODDCTION

1 The problem of findeng the latent moots of a matrax is of funda mental importance and frequent occurrence in numencal analysis, it mas be defined as follows

Given a square matrix A we require those values of λ for which the set of Incear equations

$$
\begin{equation*}
A x=\lambda x \tag{I}
\end{equation*}
$$

has a non trivial solution x The values of λ are called the latent roots or engentalues of A and the corresponding vectors x are called the lalent rectors or eqgenvectors of A Each vector x is determused apart from an arbitrary constant muitupher It is usual to choose the multipher so that the sum of the squares of the components of x is unuty, or sometimes so that its largest element is unty Such a rector is called a normalized latent vector

Qute coramonly the Intent root problem anses in the form

$$
\begin{equation*}
C x=\lambda B x \tag{2}
\end{equation*}
$$

hut this may be converted to the sumpler form by writing it as

$$
B^{-1} C x=A x
$$

2 The latent root problem often anses from the solution of simultaneous hinear differential equations with constant coefficients If, for exsmple, we have a set of n second order equations we may wnte these in vector form as

$$
\begin{equation*}
A x+B \dot{x}+C x=0 \tag{3}
\end{equation*}
$$

where A, B and C are $n \times n$ matrices and the dot represents differentia toon Introducing n new vansbles p defined by

$$
\begin{equation*}
\dot{\mathbf{x}}=\mathbf{p}, \tag{4}
\end{equation*}
$$

we may write the equations in the form

$$
\begin{equation*}
A \dot{p}+B P+C x=0 \tag{5}
\end{equation*}
$$

From the theory of differental equations it as known that the solution of the set of equations (4) and (5) in in unknowns, x and p, consists of linear combinations of solutions of the type

$$
x=a e^{\lambda,}, \quad p=b e^{\lambda,},
$$

$$
\begin{equation*}
\lambda a=b, \tag{6}
\end{equation*}
$$

in virtue of (4), and (5) gives the relation

$$
\begin{equation*}
\mathrm{A} \lambda \mathrm{~b}+\mathrm{Bb}+\mathrm{Ca}=0 . \tag{7}
\end{equation*}
$$

Equations (6) and (7) may be combined into the single matrix equation

$$
\lambda\left[\begin{array}{ll}
I & 0 \tag{8}\\
0 & A
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{rr}
0 & I \\
-C & -B
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

where $\left[\begin{array}{l}a \\ b\end{array}\right]$ is a vector with $2 n$ components. Renaming this vector z, we may write (S) in the form

$$
\begin{equation*}
\lambda \mathbf{P z}=\mathbf{Q z} \tag{9}
\end{equation*}
$$

equivalent to that of equation (2).
3. An important plysical problem which gives rise to a latent root problem is the determination of the periods of free vibration of a dynamical system about a position of equilibrium, for which the differential equations are of the form

$$
\begin{equation*}
A \ddot{x}=-B x . \tag{10}
\end{equation*}
$$

Here the matrices A and B are both positive definite, that is, the quadratic form

$$
\begin{equation*}
\mathbf{x}^{\prime} \mathrm{Ax}=\Sigma a_{i j} x_{i} x_{j} \tag{ll}
\end{equation*}
$$

is positive for all real values of the variables x_{i}; similarly for \mathbf{B}. A necessary and sufficient condition for a symmetric matrix to be positive definite is that all of its latent roots are positive [14]. For positive definite A and B it can be shown that the solutions of equation (10) are of the form $x=y e^{i \lambda t}$, where the λ are real and satisfy the equation

$$
A \lambda^{2} y=B y
$$

FUNDAMENTAL RETATIONS

4. The latent roots of a matrix A are those values of λ for which

$$
\begin{equation*}
|A-\lambda I|=0 . \tag{12}
\end{equation*}
$$

From (12) we could obtain an explicit polynomial equation of degree n for λ which is called the characteristic equation of A. We may write this as

$$
\begin{equation*}
a_{0}+a_{1} \lambda+a_{2} \lambda^{2}+\ldots+a_{n-1} \lambda^{n-1}+(-1)^{n} \lambda^{n}=0 . \tag{13}
\end{equation*}
$$

Equation (13) has n roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, and these are the latent roots of the matrix A. They may be real or complex; for simplicity we assume that they are distinct. The corresponding latent rectors will be called $x_{1}, x_{2}, \ldots, x_{n}$: they are linearly independent if the latent roots are distinct [14].

The matrix A^{\prime}, which is the transposed matrix of A, will have as its latent roots those ralues of λ for which

$$
\begin{equation*}
\left|A^{\prime}-\lambda I\right|=0 . \tag{14}
\end{equation*}
$$

Since $(A-N I)=A^{\prime}-M$ and the determinant of a matrix $1 s$ equal to the determmant of its transpose, A^{\prime} has the same latent roots as A, though m general its latent vectors will be different The latent vectors of A^{\prime} corresponding to $\lambda_{1}, \quad, \lambda_{n}$ uill be denoted by $x_{1}^{*}, \quad, x_{n}^{*}$

We then hare

$$
\begin{align*}
A x_{r} & =\lambda_{r} x_{r} \tag{25}\\
A^{\prime} x_{y}^{*} & =\lambda_{r} x_{f}^{*} . \tag{10}
\end{align*}
$$

The transpose of (15) gives the equation

$$
\begin{equation*}
x_{r}^{\prime} A^{\prime}=\lambda, x_{r}^{\prime} \tag{17}
\end{equation*}
$$

premultipheation of (10) by x_{r}^{\prime} grves

$$
\begin{equation*}
Y_{r}^{\prime} A^{\prime} x_{1}^{*}=\lambda_{r} Y_{r}^{\prime} x_{z}^{*}, \tag{18}
\end{equation*}
$$

and postrultiplication of (17) by x_{2}^{*} gives

$$
\begin{equation*}
x_{r} A^{\prime} x_{d}^{*}=\lambda_{r} x_{r}^{\prime} x_{s}^{*} \tag{18}
\end{equation*}
$$

From (18) and (19) we find

$$
\begin{gather*}
0=\left(\lambda_{r}-\lambda_{4}\right) x_{r}^{\prime} x_{x}^{*} \tag{20}\\
x_{T}^{\prime} x_{s}^{*}=0 \quad \text { if } \lambda_{r} \neq \lambda_{n} \tag{21}
\end{gather*}
$$

The two sets of vectors x_{i} and x_{i}^{*} are said to be biorthogonal If A is sym metre then $A=A$, the x_{6} and x_{i}^{*} comerde and we have

$$
\begin{equation*}
x_{i}^{\prime} x_{1}=0 \quad(1 \neq 3) \tag{22}
\end{equation*}
$$

The latent roots of a symmetrio mastrix are real For if λ_{15} a cormples latent root $\lambda_{i s}$ siso a tatent root and is different from λ If x, \bar{x} denote the corresponding latent vectors, equition (22) shows that the scala: product of x and $\overline{\mathbf{z}}$ is zero This is clearly impossible sunce this ecalar product is the sum of the squares of the real and iraginary parts of the elements of x

ITEBATIFE PROCESSES

5 One of the stmplest methods of findeng amultaneously a latent root and vector of a matrix A is the followng Suppose the latent roots $\lambda_{1}, \lambda_{2}, \quad, \lambda_{n}$, assumed real and distinct, to be arranged in order of descend ing roodulus An arbstrary vector y_{0} is taken and tro sequences of yectors Y_{i} and z_{i} are formed from the relations

$$
\begin{gather*}
z_{i+1}=A y_{i} \tag{23}\\
y_{i+1}-z_{i+1}-\text { (numencally largest etement of } z_{i+1} \text {) } \tag{24}
\end{gather*}
$$

 element equal to unity If we assume that the x_{i} are normaluzed so that their numencally largest elements are unty then y_{i} tends to the vector x_{1} corresponding to the root λ_{1} For y_{0} may be expressed un texns of the latent rectors $x_{1}, x_{2}, \quad, x_{p}$, hy the relatron

$$
\begin{equation*}
y_{\phi}=\sum_{i}^{m} x_{i} x_{i} \tag{25}
\end{equation*}
$$

If C_{k} is a constant corresponding to dirision by the largest element of the vector, we have

$$
\begin{equation*}
C_{k} y_{k}=\sum_{1}^{n} \alpha_{i} \lambda_{i}^{k} x_{i}=\lambda_{1}^{k}\left\{\alpha_{1} x_{1}+\sum_{2}^{n} \alpha_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} x_{i}\right\} . \tag{26}
\end{equation*}
$$

Now $\left(\lambda_{i} / \lambda_{1}\right)^{k} \rightarrow 0$ as $k \rightarrow \infty(i \neq 1)$, and hence

$$
\begin{equation*}
C_{k} y_{k} \rightarrow \lambda_{1}^{k} \alpha_{1} x_{1}, \tag{27}
\end{equation*}
$$

which means that y_{k} tends to x_{1}, since C_{k} is chosen so that the largest component is unity. The speed at whieh the convergence takes place depends on the ratio $\lambda_{2} / \lambda_{1}$; if this is almost equal in modulus to unity convergence may be slow.
6. The rate of convergence may often be improved by a very simple derice. If x_{i} is a latent rector of A then we have

$$
\begin{equation*}
(\mathrm{A}-p \mathrm{I}) \mathrm{x}_{i}=\left(\lambda_{i}-p\right) \mathrm{z}_{i}, \tag{2S}
\end{equation*}
$$

for any value of p. The latent rectors of $\boldsymbol{A}-p \mathbf{I}$ are therefore the same as those of A and the latent roots differ from those of A by the quantity p.

Suppose the latent roots of A to be $6,5,4,3,2,1$. If we iterate with A we tend to x_{1} at a speed determined by the rate at which $(5 / 6)^{x} \rightarrow 0$. If we iterate with $A-3 I$ we tend to x_{1} at a speed determined by the rate at which $(2 / 3)^{k} \rightarrow 0$, which is more than trice as great. If we iterate with (A-4I), whose roots are $2,1,0,-1,-2,-3$, we tend to x_{6} at a speed determined by the rate at which $(2 / 3)^{k} \rightarrow 0$.
7. The process may be used to give convergence either to the largest or to the smallest root: it cannot be used to determine the internediate roots. These can be found by a process of successive root-removal described later in $\$ \$ 10-13$. Sometimes, howerer, the root nearest to a given valne is required. To find this we may make use of a device similar to that of $\S 6$.

From equation (2S), with x_{i} replaced by x, λ_{i} by λ, we obtain the equation

$$
\begin{equation*}
(A-p \mathbf{I})^{-1} \mathbf{x}=(\lambda-p)^{-1} \mathbf{x} \tag{29}
\end{equation*}
$$

This shows that the latent vectors of $(A-p \mathbf{I})^{-1}$ are the same as those of A , but the latent root corresponding to λ_{i} is $\left(\lambda_{i}-p\right)^{-1}$. The dominant root of $(\mathrm{A}-p \mathrm{I})^{-1}$ will correspond to the root λ_{i} of A nearest to p because this will gire the greatest value of $(\lambda-p)^{-1}$. It is mnnecessary to compute the inverse of $\mathbf{A}-p \mathbf{I}$ explicitly; indeed, it would be uneconomical to do so in gencral. We perform Gaussian elimination, or triangular decomposition with interchanges, on the matrix $\mathbf{A}-p \mathbf{I}$. Iteration may then be earried out by using the relations

$$
\begin{gather*}
(\mathrm{A}-p \mathrm{I}) \mathrm{z}_{i+1}=\mathrm{y}_{i}, \tag{30}\\
\mathrm{y}_{i+1}=z_{i+1} \div\left(\text { numerically largest element of } z_{i+1}\right), \tag{31}
\end{gather*}
$$

as described in Chapter $\stackrel{2}{ }$, $\S \S 9-11$. If p is close to a latent root, the matrix A-pI will be ill-conditioned. Nevertheless, the accuracy of the latent rectors determined in this way is unaffected; see [32].

S A second iterative method for finding the latent root of largest modulus and its corresponding rector is that of matrix powerng. If the sequence A, A^{2}, A^{4}, A^{k}, 19 formed, then all the columns of $A^{2}{ }^{2}$ become parallel to the dominant latent vectoe This can be seen if we express A in terms of its columans in the form

$$
A=\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \quad, \mathbf{a}_{n}\right]
$$

Then

The proofa of $\$ 5$ show that each of the columns in parentheses is ultimately parallel to the dommant latent rector the speed of convergence is given by the rate at which $\left(\lambda_{2} / \lambda_{1}\right)^{t^{4}} \rightarrow 0$ This gives more rapid conrergence than the prevous sterstive methed, but each steration requires n^{2} multipheations unstead of n^{2} It is readily seen that for a green ratio of λ_{4} and λ_{1}, matrix powering is the more efficient method only for matrices of low order The method has the further disadvantage that if A contains a number of zero elements, then these zeros do not persist in the matrix рошетs

METHODS FQR FINDINO A SUBDOMINANT ROOT

0 The iteratire methods described are suitable for finding the greatest or smallest root of a matrux To find a subdownant root by these methods the domunant root must first be remored from the matrix

For a symmetric matrix the simplest method is the folloming Suppose we have the root λ_{1} and corresponding vector x_{1}, normalized so that $\mathbf{x}_{1}^{\prime} \mathbf{x}_{1}=1$ of a matrix A Then the matix A_{1}, defined by

$$
\begin{equation*}
A_{1}=\lambda-\lambda_{1} x_{1} x_{1} \tag{33}
\end{equation*}
$$

has the same latent roots and rectora as A except that the toot corre sponding to λ_{1} has become zero For we have

$$
A_{1} x_{1}=A x_{1}-\lambda_{1} x_{1} x_{1} x_{2}=\lambda_{1} x_{1}-\lambda_{1} x_{1}=0
$$

Also, if λ_{2} and x_{2} are another root and vector of A, then

$$
A_{1} x_{2}=A x_{2}-\lambda_{1} x_{1} x_{1}^{\prime} x_{2}=\lambda_{2} x_{2}
$$

sunce $x_{1}^{\prime} x_{2}=0$ by the orthogonahty relation for batent vectora of a symmetric matrix

10 For ungrmmetne matnees the folloring is probably the simplest method of remoring a known root λ_{1} and vector x_{1} The matrix A is written in partitioned form as

$$
A=\left[\begin{array}{l}
\mathbf{P i}_{\mathbf{i}} \tag{34}\\
\mathrm{B}
\end{array}\right]
$$

where p_{1}^{\prime} is the first row of A. The known vector x_{1} is normalized so that its first component is unity. The matrix A_{1} is then computed from the relation

$$
\begin{equation*}
A_{1}=A-x_{1} p_{1}^{\prime} . \tag{35}
\end{equation*}
$$

If λ_{2} and x_{2} are latent roots and vectors of $\mathbf{A}, \mathbf{x}_{2}$ being normalized so that its first component is unity, then $x_{1}-x_{2}$ is a latent vector of A_{1}, with latent root λ_{2}. For

$$
\begin{align*}
A_{1}\left(x_{1}-x_{2}\right) & =A\left(x_{1}-x_{2}\right)-x_{1} p_{1}^{\prime}\left(x_{1}-x_{2}\right) \\
& =\lambda_{1} x_{1}-\lambda_{2} x_{2}-x_{1}\left(\lambda_{1}-\lambda_{2}\right) \\
& =\lambda_{2}\left(x_{1}-x_{2}\right) . \tag{36}
\end{align*}
$$

Hence the latent roots of \mathbf{A}_{1} are the same as those of A, except that the root λ_{1} has become zero, since $A_{1} x_{1}=A x_{1}-x_{1} p_{1}^{\prime} x_{1}=\lambda_{1} x_{1}-x_{1} \lambda_{1}=0$. The latent vectors are simply related to those of \mathbf{A}. It is easily seen that the first row of A_{1} is zero throughout and that, since each of the latent vectors $x_{1}-x_{i}$ of A_{1} has a zero component in its first position, we need work only with the matrix of order $n-1$ in the bottom right-hand corner of A_{1}. Hence the order of the relevant matrix is reduced by unity with each root we find.

For the computation of the required vector, we first find a latent vector y_{2} of the $(n-1) \times(n-1)$ matrix obtained from A_{1}, and extend it to order n by giving it a zero first component. Then the latent vector x_{2} of A, corresponding to y_{2}, is given by

$$
\begin{equation*}
\mathrm{x}_{2}=\mathrm{x}_{1}+k \mathrm{y}_{2}, \tag{37}
\end{equation*}
$$

where we use the extended y_{2}. The factor l is necessary because of a normalizing factor in y_{2}. AIultiplying (37) by p_{1}^{\prime}, we have

$$
\begin{equation*}
\lambda_{2}=\lambda_{1}+k p_{1}^{\prime} y_{2} \tag{38}
\end{equation*}
$$

and from this we obtain k. Equation (37) then provides the required vector \mathbf{x}_{2}.

In this description it was assumed that x_{1} had been normalized so that its first element is unity. From the point of view of numerical convenience it is better to normalize so that the largest element is unity. The analysis is unaltered, but since we then use the row of A in the position corresponding to this largest element instead of the first row, the notation is not so convenient.
11. A simple example will illustrate the method of root-remoral. A root and vector of the matrix

$$
\left[\begin{array}{rrr}
2 & 3 & 2 \\
10 & 3 & 4 \\
3 & 6 & 1
\end{array}\right] \text { are respectively } \lambda=-2 \text { and } x=\left[\begin{array}{r}
1 \\
2 \\
-5
\end{array}\right] .
$$

Normalizing x so that its largest component is 1 , we obtain

$$
x=\left[\begin{array}{r}
-0.2 \\
-0.4 \\
1.0
\end{array}\right]
$$

The lest row of A is therefore used in the root removal process and we find

$$
A_{1}=\left[\begin{array}{cll}
26 & 42 & 22 \\
112 & 54 & 44 \\
0 & 0 & 0
\end{array}\right]
$$

It is clear that the latent vectors of A_{1} all have zero for therr last com ponent and therefore we need only work with vectors of order 2 and the matnx

$$
\left[\begin{array}{rrr}
2 & 6 & 48 \\
112 & 5 & 4
\end{array}\right]
$$

of order 2 A latent vector of this matnx is the vector $\left[\begin{array}{r}-3 \\ 4\end{array}\right]$ with the corresponding latent noot equal to $\mathbf{- 3}$

We can then remove thas vector of onder 2 from the matrix of order 2 To do this we write the vector an the form $\left[\begin{array}{rr}-0 & 75 \\ 1 & 0\end{array}\right]$ and use the last row in the root removal process This gives the matrix

$$
\left[\begin{array}{rl}
11 & 825 \\
0 & 0
\end{array}\right]
$$

It is clear that the two latent vectors of this matrix have zero in the list position and that we need only work unth the single element II The last latent root is therefore 11

We have thus obtaned 3 latent vectors

$$
\left[\begin{array}{r}
-0 \\
-0 \\
-0 \\
1
\end{array} 0\right]\left[\begin{array}{r}
-0 \\
1
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 00
\end{array}\right] \text { and }\left[\begin{array}{ll}
1 & 0
\end{array}\right]
$$

of which only the fint is a latent vector of the ongan matrix A
12 For a matrix of order n we would have Found n vectors of the form one vector μ_{1} of order n (a true latent vector of the matrix A) one vector u_{2} of order $n-1$
one vector u_{3} of order $n-2$
one vector u_{n} of order 1
To obtan from the vector of onder $n \rightarrow r$ a true latent vector of the ongmal matnx A we would proceed in the following r steps

A vector of order $n-7+1$ would be compuited nasing the vector u, of order $n-r+1$ from relstrons of types (37) and (38)
From thas vector one of order $n-r+2$ would be computed using these relations again with the latent vector u_{r-1} of order $n-r+2$ and so on untul we obtaned e true latent vector of order n
13. In the abore example the vector $\left[\begin{array}{r}-0.75 \\ 1.00\end{array}\right]$ leads to a true latent vector x_{2} from the relation

$$
x_{2}=\left[\begin{array}{r}
-0.2 \\
-0.4 \\
1.0
\end{array}\right]+k\left[\begin{array}{r}
-0.75 \\
1.00 \\
0.00
\end{array}\right] .
$$

Murtiplying this by $[3,6,1]$, the last row of A, we find, from (38), the result $-3=-2+3 \cdot 75 k$, so that $k=-\frac{4}{15}$, and then

$$
x_{2}=\left[\begin{array}{r}
0 \\
-\frac{2}{3} \\
1
\end{array}\right]
$$

The third vector may be found in two similar steps, given below:

$$
\mathbf{y}_{3}=\left[\begin{array}{r}
-0.75 \tag{i}\\
1.00
\end{array}\right]+k\left[\begin{array}{l}
1.00 \\
0.00
\end{array}\right] .
$$

Multiplication by [11•2, 5.4] gives

$$
11=-3+11 \cdot 2 k, \text { so that } k=1 \cdot 25, \text { and } y_{3}=\left[\begin{array}{l}
0.50 \\
1.00
\end{array}\right]
$$

(ii)

$$
\mathrm{x}_{3}=\left[\begin{array}{r}
-0.2 \\
-0.4 \\
1.0
\end{array}\right]+k\left[\begin{array}{l}
0.5 \\
1.0 \\
0.0
\end{array}\right] .
$$

Multiplication by [3, 6, 1] gives

$$
\begin{gathered}
11=-2+7 \cdot 5 k \text {, so that } k=\frac{28}{15} \text {, and } \\
\mathrm{x}_{3}=\left[\begin{array}{l}
\frac{2}{3} \\
\frac{4}{3} \\
1
\end{array}\right] .
\end{gathered}
$$

14. We have described these iterative methods in some detail because they are simple and, besides being of value in their own right, they are frequently used in coujunction with other methods. For symmetric matrices there are a number of more powerful methods which would, in most circumstances, be used instead. We now describe some of these.

THE METHOD Of JACOBI

15. This method depends upon the fact that if $\mathrm{TT}^{\prime}=\mathrm{I}$, that is, if T is orthogonal, then the roots of TAT' are the same as those of A. For

$$
\begin{equation*}
\mathrm{T}(\mathrm{~A}-\lambda \mathrm{I}) \mathrm{T}^{\prime}=\mathrm{TAT}^{\prime}-\lambda \mathrm{I}, \tag{39}
\end{equation*}
$$

so that the zeros of $|A-\lambda I|$ are the same as those of $\left|T A T^{\prime}-\lambda I\right|$.

A simple orthogonal matrix $T{ }_{13}$ given by $T_{i f}=1(1 \neq p, q), T_{i j}=0$ for all other t, j except that

$$
\begin{equation*}
T_{p p}=\cos \theta, \quad T_{q q}=\cos \theta, \quad T_{p q}=\sin \theta, \quad T_{q p}=-\sin \theta \tag{40}
\end{equation*}
$$

If ne form TAT, only the p and q rows and the p and q columns of A are altered, and the matrix remans symmetric The (p, q) element of TAT is given by $a_{p q} \cos 2 \theta-\frac{1}{p}\left(a_{p p}-a_{\text {ep }}\right) \sin 2 \theta$ from which it follows that if

$$
\begin{equation*}
\tan 2 \theta=2 a_{p} /\left(\alpha_{p p}-a_{q q}\right), \tag{41}
\end{equation*}
$$

then the (p, q) element of TAT is zemo
It is easy to prove that both the sum of the diagonal elements (the trace) and the sum of the squares of the off dagonal elements other than the (p, q) and (q p) elements are unchanged If wo choose a succession of T matrices and successively premultaply by T and postmultiply by T, each \mathbf{T} matrix beigg chosen to make zero the largest off duagonal elements in the Teasulting matrix at that stage then we ultimately obtain a diagonal matrix We have

$$
\begin{equation*}
\mathrm{T}_{r} \mathrm{~T}_{r-2} \quad \mathrm{~T}_{1} \mathrm{AT}_{1} \mathrm{~T}_{2} \quad \mathrm{~T}_{r}^{s}=\mathrm{D} \tag{42}
\end{equation*}
$$

whers D is a dagonal matrux Since the product of orthogonal matroces 13 itself orthogonal, the elements of D are the latent roots of A If the latent vectors of A are wanted they are given by the columns of the product matrix

$$
\begin{equation*}
\mathbf{T}_{1} \mathbf{T}_{2} \quad \mathbf{T}_{p}=\mathbf{S} \tag{43}
\end{equation*}
$$

Thus follows from (42) since

$$
\begin{gather*}
S^{\prime} A S=D, \tag{44}\\
A S=(S)^{-1} D=S D \tag{45}
\end{gather*}
$$

giving

GIVENS" METHOD

18 Each step of the reduction in Jacohis method, consisting of pre multiplication by the matrix T and postmultipheation by its transpose T' where the non zero elements of T are given by (40) is called a rotation The part of values of $p q$ as called the plane of the rotation and θ the angle of the rotation

The method of Givens is minular to that of siacobi masmuch ns each step of at consists of a cotation In the case howerer we chooss θ so that the element in the ($p-1 q$) position ($p>1$) becomes zero This gives

$$
\begin{equation*}
\tan \theta=a_{p-1} d a_{p-1} p \tag{46}
\end{equation*}
$$

The rotations are apphed systematically to the matris to make zero, in order the followng elements

	Protuons of zero ukments	Pixnes of rotatum	
lst row	$(1,3)(1,4)(1,5) \quad,(t, n)$	(2 3), (2,4), (2,5)	, (2,n)
2nd row	$(2,4)(2,5),(2, n)$	$(3,4)(35)$,	,$(3, n)$
(n-2)th row	($n-2, n$)		$-1, n)$

In contrast to the Jacobi rotations, each zero element, once produced, persists throughout the subsequent transformations. The symmetry of the matrix is preserved, so that after carrying out the above $\frac{1}{2}(n-1)(n-2)$ rotations, all elements are zero, other than those in the principal diagonal and the immediately adjacent diagonals, one on either side. The matrix is then said to be of triple-diagonal form, or sometimes tri-diagonal or co-diagonal form.

As the work progresses the amount of computation in a rotation becomes steadily less. At the stage when zeros are introduced in the r th row, we are effectively working with a matrix of order $n-r+1$ since the first $r-1$ rows and columns remain unaltered. Because of this and the non-iterative nature of the computation, the reduction to triple-diagonal form takes about one-twentieth of the time for the reduction to diagonal form by Jacobi's method [216].
17. The latent roots of the symmetric triple-diagonal form are the same as those of the original matrix, and we now consider their evaluation. Since other methods lead to triple-diagonal matrices and also many latent root problems give rise to matrices which are already in this form, the solution of this problem is important quite apart from its present context.

DETERMINATION OF THE LATENT ROOTS AND VECTORS

 OF A SYMMETRIC TRIPLE-DIAGONAL MATRIX1S. The method we describe, sometimes called the method of bisections, is often much slower than alternative methods in existence, but it is comparatively simple, and has such remarkable numerical stability that it is frequently used. It depends on the following result [30, 31].

Let $p_{r}(\lambda)$ be the value of the r th leading principal minor of $\mathbf{C}-\lambda \mathbf{I}$, where \mathbf{C} is a symmetric triple-diagonal matrix, and $p_{0}(\lambda)=1$. Then the number, $s(\lambda)$, of agreements in sign between consecutive members of the sequence $p_{0}(\lambda), p_{1}(\lambda), p_{2}(\lambda), \ldots, p_{n}(\lambda)$ is equal to the number of latent roots of \mathbf{C} which are greater than λ. (Note that $s(\lambda)$ is an integer between 0 and n inclusive.)

Let the non-zero elements of \mathbf{C} be denoted by

$$
\begin{equation*}
d_{r, r}=\alpha_{r}, \quad d_{r-1, r}=d_{r, r-1}=\beta_{r} . \tag{47}
\end{equation*}
$$

We assume that no β_{r} vanishes since otherwise the problem could be broken up into the solution of a number of smaller triple-diagonal matrices. With this assumption, it may be shown that \mathbf{C} has no multiple latent roots. The values of the leading principal minors, $p_{r}(\lambda)$, may be computed from the recurrence relations,

$$
\left.\begin{array}{ll}
p_{0}(\lambda)=1, \quad p_{1}(\lambda)=\alpha_{1}-\lambda, & \tag{48}\\
p_{r}(\lambda)=\left(\alpha_{r}-\lambda\right) p_{r-1}(\lambda)-\beta_{r}^{2} p_{r-2}(\lambda) \quad(r=2,3, \ldots, n) .
\end{array}\right\}
$$

If any p_{r} is zero, its sign should be regarded as the opposite of that of p_{r-1}. With the assumption $\beta_{r} \neq 0$ we cannot have two consecutive p_{r} which are zero.
19. The result may be applied to determine any latent root, the k th, λ_{2} say, as follows. Suppose it is known that

$$
s(a) \geqslant k, \quad s(b)<k
$$

then $a<\lambda_{k} \leqslant b$ Clearly, if $s\{\{a+b)\}<h$, then λ_{k} lies between α and $\{\{a+b)$ while of $\delta\left\{\frac{1}{2}(a+b)\right\} \geqslant h, \lambda_{k}$ hes betueen $\frac{1}{2}(a+b)$ and b In ether casc, an evaluation of $z(\lambda)$ at the mid pormt of the mterval (a, b) enables us to locate it in an interval of whdth $\frac{1}{(}(b-a)$ By making i successive applea tions of this principle we locate $\boldsymbol{\lambda}_{k}$ in an mierval of midtb $2-t(b-a)$, this requres the evaluation of $s(\lambda)$ at t points

In order to begin the process we need valnes for a and b Now if $\lambda_{\text {IS }}$ any latent root of C and x is the corresponding latent rector, we have

$$
\begin{equation*}
\beta_{r} x_{r-1}+\alpha_{r} x_{r}+\beta_{r+1} x_{r+1}=\lambda x_{r} \tag{49}
\end{equation*}
$$

where β_{1} and β_{n+1} are to be taken as zero Hence

$$
\begin{equation*}
\lambda=\beta, \frac{x_{r-1}}{x_{r}}+\alpha_{r}+\beta_{r+1} \frac{x_{r+1}}{x_{r}} \tag{50}
\end{equation*}
$$

Takng x_{r} to be the element of \mathbf{x} of greatest modulus, we deduce that

$$
\begin{equation*}
|\lambda| \leqslant\left|\beta_{r}\right|+\left|\alpha_{r}\right|+\left|\beta_{r+1}\right| \tag{51}
\end{equation*}
$$

Adequate values of a and b are therefore given by

$$
\begin{equation*}
a, b=\mp \max \left\{\left|\beta_{r}\right|+\left|\alpha_{p}\right|+\mid \beta_{r+1}\right\} \tag{52}
\end{equation*}
$$

20 The method has the followang advantages
(i) We may find a latent root of any prescrihed enumeration mothout determing the others As a corollary, we are not obliged to find all the roots to the same precision, the number of eteps t may be pre assigned for each root
(1i) The time taken to find each root is drectly proportional to n (not to a higher porer of n), and to the number of steps it the sequared precsaion It is independent of the separation of the roots
(in) If all the elements α_{r} and β, aro mmencally less than $\frac{1}{6}$, then t steps of foating point computation mith t hinery digits in the mantissa yields the value of any latent root mith an error not exceeding 4×2^{-6}

The proof of (u) requires a detaled error analysis and we refer the reader to [32]

21 The latent vectors of the onginal matne A are equal to those of the tmple-diagonal matnx C, premultuphed by the product S of the rotation matrices, cornpare § 15 To complete the solution of the problem we therefore have to find the latent vectors of C Sinco the latent roots of C are readily computahle to high accuracy, we mught expect that this would be a comparatively tnvial problem Formsily, the components of the lateat vector corresponding to λ_{k} are given by

$$
\begin{equation*}
p_{0}\left(\lambda_{k}\right), \quad-p_{1}\left(\lambda_{k}\right) / \beta_{2} \quad p_{3}\left(\lambda_{k}\right) /\left(\beta_{2} \beta_{3}\right), \quad, \quad(-)^{n-1} p_{m}{ }_{2}\left(\lambda_{k}\right) /\left(\beta_{2} \beta_{3} \quad \beta_{n}\right) \tag{53}
\end{equation*}
$$

Now although the $p_{r}(\lambda)$ may be used to determine the latent roots in a very stable mannet, the determanation of the latent vector from (53) is unstable Even if the 27 quantities are determened exactly for a value of λ_{2} whech is itself almost exactly a latent root, the resulting vector may be very nearly orthogonil to the true latent vector

Accurate vectors may be found by the following process. Corresponding to each computed λ_{k}, the matrix $\mathbf{C}-\lambda_{k} I$ is reduced to an upper triangular matrix \mathbf{T}_{k}, by Gaussian elimination with interchanges. The equations $\mathrm{T}_{k} \mathrm{x}=\mathrm{e}$, where e is the vector with all its components equal to unity, are then solved, and the solution \mathbf{x} is the latent vector corresponding to λ_{k}. For further details the reader is referred to [22].

HOUSEHOLDER'S METHOD

22. For several years Givens' method was probably the best of the known methods for symmetric matrices of general form. Recently, Householder [28] has suggested an alternative method of reduction to triple-diagonal form using elementary orthogonal transformations which are not plane rotations. This method is a substantial improvement on Givens' method. It requires only half as many arithmetical operations, has an even smaller maximum rounding error and, if the vectors are wanted, requires less storage. For details of the practical application of the method, see [25].

UNSYMMETRIC MATRIOES

23. There are no methods for unsymmetric matrices which are as satisfactory as those we have just described for symmetric matrices. However, a number of direct methods cxist which, in general, have advantages over the itcrative methods of $\S \S 5-13$ when all the roots are required. Because of the inherent instability of the unsymmetric problem, considerable attention to arithmetical detail is neccssary in designing effective programmes. The presentation of these methods is beyond the scope of this manual, but references to the more satisfactory ones are given in the Bibliography on pages 147-148.

4

linear equations and matrices: ITERATIVE METHODS

DEFINITIONS

1 In Chapters I and 2, some direct methods have been described, these yseld solutions after an amount of computation that can be speerfied in advance In contrast, the teratute or indurect methods of this chapter start from an appromation to the true solution and, if successful, dente a convergent sequence of closer approxmations from a computatronal oycle repeated as often as may be necessary for the purpore This means that in a dreet method the number of arnthmetio operations is mode pendent of the eccuracy required in the solution (pronded the word length of our computer is adequate to offset any ill conditioning), while in an sterative process the amount of anthmetic depends upon the accuracy required

When a genune choice is araulable, asually the direct methods should be preferred, but for matnces contanung a large proportion of zera elements, such as arise in the solution of partial duferential equationa, iteratise methods which preserve thees elements, and thereforo $2 \boldsymbol{2 r o l r e}$ a smaller amount of machune store, can be adrantageous

For desh machine worh the 'relaxation methods developed by Southwell, Fox and others are very sutable and descriptions are avail able in the premous edition of this manual and elsewhere [103] Howerer, these methods are not convenent for use on automitio computers, and wo shall not discuss them here

2 We proceed to describe two basio iterative methods which can bo apphed to the solution of a general set of lunear equations

$$
\begin{equation*}
A x=b \tag{2}
\end{equation*}
$$

It is convement first to reduce (1) to the form

$$
\begin{equation*}
(\mathbf{I}-\mathbf{L}-\mathbf{U}) \mathbf{x}=\mathbf{d} \tag{2}
\end{equation*}
$$

where L and U are respecticely lower and upper triangular matroes with nül dugonals, and i is the unit matrax This 13 acheved by rearranging the equations so that no dragonal coeffient vanushes, and then dinding each equation by the corresponding diagonal coeflicent Furthermore it is advantageons, whenever possible, smal2rly to manocurre the largest coefficients into the diagonal positions, since the aterations are likely then to converge more rapidy
3. To illustrate the methods presented we shall consider the equations

$$
\left.\begin{array}{rl}
x_{1}-\frac{1}{4} x_{2}-\frac{1}{4} x_{3} & =\frac{1}{2} \tag{3}\\
-\frac{1}{4} x_{1}+x_{2}-\frac{1}{4} x_{4} & =\frac{1}{2} \\
-\frac{1}{4} x_{1}+x_{3}-\frac{1}{4} x_{4} & =\frac{1}{4} \\
-\frac{1}{4} x_{2}-\frac{1}{4} x_{3}+x_{4} & =\frac{1}{4}
\end{array}\right\}
$$

(It is shown in Chapter 12 that equations of this form arise in the solution of Laplace's equation.)

These equations have the form (2) with

$$
\mathrm{U}=\left[\begin{array}{llll}
0 & \frac{1}{4} & \frac{1}{4} & 0 \tag{4}\\
& 0 & 0 & \frac{1}{4} \\
& & 0 & \frac{1}{4} \\
& & & 0
\end{array}\right], \quad \mathbf{L}=\mathrm{U}^{\prime}
$$

Their exact solution is $x_{1}=0.875=x_{2}, \quad x_{3}=0.625=x_{4}$.
4. We shall denote the nth approximation to the solution vector x by $\mathbf{x}^{(n)}$ and the error vector $\mathbf{x}-\mathbf{x}^{(n)}$ by $\mathrm{e}^{(n)}$. Obviously $\mathrm{e}^{(n)}$ cannot be evaluated before the solution is available and so, to indicate the progress of the computations, we examine the elements of the displacement vector $\gamma^{(n)}$, defined by

$$
\begin{equation*}
\gamma^{(n)}=\mathbf{x}^{(n+1)}-\mathbf{x}^{(n)} \tag{5}
\end{equation*}
$$

It follows from repeated application of (5) that

$$
\begin{equation*}
\mathrm{x}^{(n+1)}=\mathrm{x}^{(0)}+\sum_{i=0}^{n} \gamma^{(i)} \tag{6}
\end{equation*}
$$

Hence, for a process to converge, it is necessary that $\gamma^{(n)} \rightarrow 0$ in such a way that the series (6) converges as $n \rightarrow \infty$.

SIMPLE OR JACOBI ITERATION

5. In this process, apphed to equations (3), we calculate $\mathbf{x}^{(n+1)}$ from $\mathbf{x}^{(n)}$ according to the formulae

$$
\left.\begin{array}{lr}
x_{1}^{(n+1)}= & \frac{1}{4} x_{2}^{(n)}+\frac{1}{4} x_{3}^{(n)} \tag{7}\\
x_{2}^{(n+1)}=\frac{1}{4} x_{1}^{(n)} \\
x_{3}^{(n+1)}=\frac{1}{4} x_{1}^{(n)} & +\frac{1}{4} x_{4}^{(n)}+\frac{1}{2}, \\
x_{4}^{(n+1)}= & +\frac{1}{4} x_{4}^{(n)}+\frac{1}{4}, \\
x_{2}^{(n)}+\frac{1}{4} x_{3}^{(n)} & +\frac{1}{4} .
\end{array}\right\}
$$

This is called a method of simultaneous displacements since no element of $x^{(n+1)}$ is used in this iteration until every element has been calculated, and then $\mathbf{x}^{(n+1)}$ replaces $\mathbf{x}^{(n)}$ entirely for the next cycle.

For the general case (2) we use

$$
\begin{equation*}
\mathbf{x}^{(n+1)}=(\mathrm{L}+\mathrm{U}) \mathrm{X}^{(n)}+\mathrm{d} . \tag{8}
\end{equation*}
$$

From (5) and (8), the change to be made to $\mathrm{x}^{(n)}$ is

$$
\begin{equation*}
\gamma^{(n)}=\mathbf{d}-(I-L-U) \mathbf{x}^{(n)} . \tag{9}
\end{equation*}
$$

If we tahe the intial values $\mathbf{x}^{\text {(0) }}$ to be zero in (7), we obtain the following sequence of approvimations and displacements for equations (3)
$\begin{array}{llllllll}\boldsymbol{x}^{(1)} & \boldsymbol{\gamma}^{(1)} & \mathbf{x}^{(2)} & \boldsymbol{\gamma}^{(3)} & \boldsymbol{x}^{(3)} & \boldsymbol{\gamma}^{(3)} & x^{(1)} & \boldsymbol{\gamma}^{(3)}\end{array} \mathbf{x}^{(3)}$
050187506970008375078125004687082812002344085156
-5 0187506875000375078125004687082819002344085156
$0250187504375009376053125004687057812002344060 t 56$
0250187504375009375053125004687057812002344060156
We observe that $\gamma^{[n]}$ is halved by each iteration after the first, so that five decmal accuracy will be achteved after soventeen cycles

GAUSS SEIDEL OR IHEBMANN ITERATION

6 For the equations (3), the elements of $\mathbf{x}^{(n+1)}$ are determined in suecession from the equations

Corresponding elements of $x^{(n+1)}$ now replace those of $x^{(n)}$ in the calcu lation as aoon as they have been computed and so this is oalled a method of successue dusplacements A complete iteration cycle comprises one such dusplacement for each equation

The matrix expresaion of thes process for the general ense (2) is

$$
\begin{equation*}
x^{(n+1)}=L x^{(n+1)}+U x^{(n)}+d \tag{11}
\end{equation*}
$$

From (6) and (1I) it foltows that the change made to $x^{(n)}$ is

$$
\begin{equation*}
\mathbf{Y}^{(n)}=\mathbf{d}+\mathbf{L} \mathbf{x}^{(n+11}-(\mathbf{I}-\mathbf{U}) \mathbf{x}^{(n)} \tag{12}
\end{equation*}
$$

For equations (3) If te take the untial values $x^{(0)}$ to be zeno, the following sequence of approvimations and displacements is obtaned from (10)
$x^{(1)} \quad \boldsymbol{\gamma}^{(1)} \quad \mathbf{x}^{(5)} \quad \boldsymbol{\gamma}^{(7)} \quad x^{(3)} \quad \boldsymbol{\gamma}^{(3)} \quad x^{(4)} \quad \boldsymbol{y}^{(4)} \quad x^{(5)}$
$050025 \quad 075 \quad 009375084375002344086710000586087305$ 06250187508125004688085038001172087110000292087402 03750187505625004688060933001172062110000292062402 05009375059375002344061719000586062305000146062451

It as clear that $\gamma^{(n)}$ is multiphed by i in each ateration after the second, so that five-decmal accuracy will be achicved after mine cycles

COY, ERGENCE OF THE ITERATIONS

7 A process converges if the correspouling sequence $e^{\text {(n) }}$ tends to zero, where $e^{i n 1}$ denotes $\mathbf{x}-\mathbf{x}^{\text {tn1 }}$ For tho dacobi iteration, (2) and (8) give

$$
\begin{equation*}
e^{(n)}=(L+U) e^{(x-1)}==(L+U)^{n} e^{(0)} \tag{13}
\end{equation*}
$$

36

For the Gauss-Seidel process, (2) and (11) lead to

$$
\begin{equation*}
\mathbf{e}^{(n)}=(\mathbf{I}-\mathbf{L})^{-1} \mathbf{U} \mathbf{e}^{(n-1)}=\ldots=\left[(\mathbf{I}-\mathbf{L})^{-1} \mathbf{U}\right]^{n} \mathbf{e}^{(0)} . \tag{14}
\end{equation*}
$$

Now it may be shown, [7, §2.06], [216], that any real symmetric matrix of order m has m linearly independent latent vectors v_{i}, whether or not the corresponding latent roots λ_{i} are distinct. The matrix $L+U$ of (3), for example, has vectors

$$
\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right], \quad\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right], \quad\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right],
$$

corresponding respectively to the latent roots $\frac{1}{2}, 0,0,-\frac{1}{2}$.
Accordingly, for such an iteration matrix we can express the initial error vector $\mathbf{e}^{(0)}$ in the form

$$
\begin{equation*}
\mathrm{e}^{(0)}=\sum_{i=1}^{m} \alpha_{i} \mathbf{v}_{i} . \tag{15}
\end{equation*}
$$

Hencc, for the Jacobi iteration,

$$
\mathbf{e}^{(1)}=(\mathbf{L}+\mathrm{U}) \mathbf{e}^{(0)}=\sum_{i=1}^{m} \alpha_{i} \lambda_{i} \mathbf{v}_{i},
$$

and

$$
\begin{equation*}
\mathbf{e}^{(n)}=\sum_{i=1}^{m} \alpha_{i} \lambda_{i}^{n} \mathbf{v}_{i} . \tag{16}
\end{equation*}
$$

For the iterations to converge from an arbitrary vector $\mathbf{x}^{(0)}$ it is clearly necessary that all the latent roots of the iteration matrix have modulus less than unity. The smaller the magnitude of the largest root, the faster the process converges.
8. In general, the iteration matrix will not be symmetric, and an unsymmetric matrix B of order m with repeated latent roots may have fewer than m independent latent vectors. For some repeated latent root λ of \mathbf{B} there will then exist one or more principal vectors \mathbf{w} of grade $p(p>1)$ satisfying the equation

$$
\begin{equation*}
(\mathrm{B}-\lambda \mathbf{I})^{p-1} \mathbf{w}=\mathbf{v}, \tag{17}
\end{equation*}
$$

where v is a latent vector corresponding to λ. In such a case the latent vectors and principal vectors together comprise m linearly independent vectors.

As illustration, we have for equations (3),

$$
(\mathrm{I}-\mathrm{L})^{-\mathbf{1}} \mathrm{U}=\left[\begin{array}{cccc}
0 & \frac{1}{4} & \frac{1}{4} & 0 \tag{18}\\
0 & \frac{1}{16} & \frac{1}{16} & \frac{1}{4} \\
0 & \frac{1}{16} & \frac{1}{16} & \frac{1}{4} \\
0 & \frac{1}{32} & \frac{1}{32} & \frac{1}{8}
\end{array}\right] .
$$

This matrix is clearly unsymmetric, and it can be shown to possess three latent rectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$, and $\mathbf{v}_{\mathbf{3}}$ and a prinepal vector wo grade 2

$$
v_{1}=\left[\begin{array}{l}
4 \\
2 \\
2 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{r}
0 \\
1 \\
-1 \\
0
\end{array}\right] . \quad v_{3}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad \text { and } \quad w=\left[\begin{array}{r}
0 \\
0 \\
4 \\
-1
\end{array}\right]
$$

and the associated latent roots are $\mathbf{1 , 0 , 0 , 0}$, respectively It is readily verified that $(1-L)^{-1} U w=v_{s}$, and that v_{1}, v_{2}, v_{3} and w are lurearly independent

We now give the counterpart to (16) for an iteration matrux which has $m-1$ latent rectors $\mathbf{\gamma}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\boldsymbol{m}-1}$, and a princtpal vector of grade $\mathbf{2}_{3}$ v_{m}, corresponding to the repeated latent root λ_{m-1} In this case, it folloms from (15) and (17) that

$$
\begin{align*}
e^{d t} & =\sum_{i=1}^{m-1} \alpha_{i} \lambda_{i} v_{i}+\alpha_{m}\left(v_{m}+\lambda_{m-1} v_{m}\right) \\
& =\sum_{i=1}^{m} \alpha_{i} \lambda_{i} v_{i}+\left(\alpha_{m-1} \lambda_{m-1}+\alpha_{m}\right) v_{m i 1}+\alpha_{m} \lambda_{m-1} v_{m} \tag{10}
\end{align*}
$$

and

$$
\begin{equation*}
e^{(n)}=\sum_{i=1}^{m-2} \alpha_{i} \lambda_{i}^{\pi} v_{i}+\left(\alpha_{m-1} \lambda_{m i}^{n}+n \alpha_{m} \lambda_{m-1}^{n-1}\right) v_{m-1}+\alpha_{m} \lambda_{m-1}^{n} v_{m} \tag{20}
\end{equation*}
$$

As before, it is necessary for convergence that all the latent roots have modulus less than unsty The assoctation of the factor n with \mathbf{v}_{m-1}, as compared with (16), does not affect the convergenco appresably For the Gauss-Sendel ateration (18), the associated root is zero and the term in $v_{\mathrm{bn}-1}$ vanishes

9 With arhitrary L and U it is difficult to guarantee in adrance that the convergence condition will be satusfied and theoretical results are arailable only for special classes of matrices For example, if $\mathbf{I}-\mathrm{L}-\mathrm{U}$ 15 bymmetrie then a necessary and sufficient condition for the GaussSeldel iteration to converge $\mathbf{l s}$ that $\mathbf{I}-\mathbf{L}_{\mathbf{4}}$ - U should be positive definute (Chapter 3, §3) Again of none of the elements of $L+U$ is negative, then the dacobi and Gauss Sexdel sterations eather hoth converge or both divergo

Another class of matrices whoch anses frequently in the study of partial differential equations consists of matrices possessing what is known as Property A [112], that $2 s$, the equations can be rearranged to provide $\mathrm{L}+\mathrm{U}$ with the form

$$
\left[\begin{array}{ll}
\mathrm{O} & \mathrm{R} \tag{21}\\
\mathrm{Q} & \mathrm{o}
\end{array}\right],
$$

where 0 represents a nuil square aubmatrix For thes and certain other rearrangements of such equations the Gauss Seidel iteration has latent roots equal to the squares of the latent roots of the Jacobi iteration (tlough the correspondence not one to one), so that when the former converges it does so twice as fast as the latter

These theorems are all illustrated by the equations (3), for which $\mathrm{I}-\mathrm{L}-\mathrm{U}$ is symmetric. This matrix has latent roots $1 \frac{1}{2}, 1,1, \frac{1}{2}$. Also it possesses Property A since the equations can be rewritten in the form

$$
\left.\begin{array}{rl}
x_{1} \quad-\frac{1}{4} x_{2}-\frac{1}{4} x_{3} & =\frac{1}{2}, \tag{22}\\
x_{4}-\frac{1}{4} x_{2}-\frac{1}{4} x_{3} & =\frac{1}{4}, \\
-\frac{1}{4} x_{1}-\frac{1}{4} x_{4}+x_{2} & =\frac{1}{3}, \\
-\frac{1}{4} x_{1}-\frac{1}{4} x_{4}+x_{3} & =\frac{1}{4} .
\end{array}\right\}
$$

The largest latent root of $(\mathbf{I}-\mathbf{L})^{-\mathbf{1}} \mathbf{U}$ is the square of that of $\mathbf{L}+\mathbf{U}$, and we have seen that the former iteration converges more rapidly.

SUCCESSIVE OVERRELAXATION

10. Much recent research has been directed to developing processes which converge more rapidly than those given in $\S \S 5,6$. Here we describe only the simplest of these iterations (but one of the most powerful), known variously as 'extrapolated Gauss-seidel', 'extrapolated Liebmann', and 'successive overrelaxation'.

Successive overrelaxation is defined by the use of

$$
\begin{equation*}
\mathbf{x}^{(n+1)}=\mathbf{x}^{(n)}+\omega\left[\mathbf{d}+L \mathbf{x}^{(n+1)}-(\mathbf{I}-\mathbf{U}) \mathbf{x}^{(n)}\right] \tag{23}
\end{equation*}
$$

in place of (11). By means of (2), it can be shown that

$$
\begin{equation*}
\mathrm{e}^{(n)}=(\mathrm{I}-\omega \mathrm{L})^{-1}[\omega \mathrm{U}-(\omega-1) \mathrm{I}] \mathrm{e}^{(n-1)}=\mathrm{E}(\omega) \mathrm{e}^{(n-1)}, \text { say } \tag{24}
\end{equation*}
$$

The cssence of the method is to use an optimum value ω_{b} of ω which minimizes the modulus of the largest latent root of the iteration matrix $\mathbf{E}(\omega)$.

For suitable rearrangements of matrices possessing Property A, it can be shown [112] that

$$
\begin{equation*}
\omega_{b}=\frac{2}{1+\sqrt{\left(1-\theta^{2}\right)}}, \tag{25}
\end{equation*}
$$

where θ is the largest latent root of $L+U$. Further, the largest latent root of $\mathrm{E}\left(\omega_{b}\right)$ has modulus $\omega_{b}-1$, and is associated with a principal vector of grade 2 .

In the example (3), $\theta=\frac{1}{2}$ and $\omega_{b}=1.0718$. The early iterations and displacements starting from $\mathbf{x}^{(0)}=0$ are given below, and it can be verified that five-decimal accuracy is obtained with six cycles.

$\boldsymbol{\gamma}^{(0)}$	$\mathbf{x}^{(1)}$	$\boldsymbol{\gamma}^{(1)}$	$\boldsymbol{x}^{(2)}$	$\boldsymbol{\gamma}^{(2)}$	$\boldsymbol{x}^{(3)}$	$\boldsymbol{\gamma}^{(3)}$	$\mathbf{x}^{(4)}$
0.5	0.53590	0.23686	0.78977	0.07248	0.86745	0.00625	0.87415
0.63398	0.67950	0.15802	0.84887	0.02199	0.87244	0.00216	0.87476
0.38398	0.41155	0.17596	0.60014	0.02072	0.62235	0.00225	0.62476
0.52276	0.56029	0.05196	0.61598	0.00772	0.62425	0.00063	0.62493

For many large matrices θ is close to unity, and the superiority of successive overrelaxation is demonstrable as follows. Let θ^{2} equal $1-\epsilon^{2}$, where ϵ is small. Then

$$
\begin{equation*}
\omega_{b}-1=\frac{1-\epsilon}{1+\epsilon} \fallingdotseq 1-2 \epsilon \tag{26}
\end{equation*}
$$

When $\epsilon=0 \cdot 1, \omega_{b}-1=0.82$, while $\theta^{2}=0.99$, and $\theta=0.995$.

II One feature of these iterative methods is that the matrix of the ongmal equations is used in unmodified form during the computation This is particularly advantageous when the matrix contains many zero elements dustributed systematically, as in fimitedifference equations Further, the non zero elements in these matnces are often simple binary frections, and this henefits hoth the progzammer of an automatic com puter with binary shift facilities, and the desk machine worker Moreover, it is convenient for the latter to work with a amull number of figures in the early tecations, and to add figurea as the approximation converges

In addition to the classes of matrix cited in $\$ 9$, convergence is likely to be rapid when the off-dagonal elements are small compared with the dragonal elements Even when such favourable conditions do not obtam, howerer, it is sometimes possihle to accelerate convergence by applying Aithen's technique (see Chapter I3, § 3) to the corresponding elements of three successive rectora in a sequence of iterates However, httie benefi will result until the error consists raanly of the vector corresponding to the largest latent root of the iteration matrix and it is not easy to provide an algorithm to determape when this stage has been reached

Succeasive averrelaxation 13 very swtahle for use on automatic com puters In particular, storage need be allocated for only one iteration vector, since each element of a new sterate may orermrite the corre sponding eloment of the preceding approximation It is not easy to determue the optimum orerrelaxation parameter hy an sutomatio sequence of arithmetical operations, but considerahle progress has been made in the case of Eroperty A matnces [113] In addutron, qualitative arguments often proride an estamate of ω_{h} which grves very good result [114]

5

LINEAR EQUATIONS AND MATRICES:

ERROR ANALYSIS

INTRODUCTION

1. The problem of error analysis associated with the solution of n simultaneous linear equations

$$
\begin{equation*}
A x=b \tag{1}
\end{equation*}
$$

may be regarded as the determination of the effect upon the solution x of (i) errors (if any) in the data, that is, the elements of A and b, (ii) rounding errors introduced during the course of computing the solution. In the application of direct methods the number of multiphications is very large, approximately $\frac{1}{3} n^{3}$ for the methods of Chapter 1 , and the number of roundings correspondingly great. The problem is therefore not easy; at the same time it is important.

The direct determination of the effect upon the solution of cach individual rounding orror is possible, but the total effort entailed greatly exceeds that required to compute the solutions themselves. Theoretical upper bounds for the errors obtained by this approach are not easy to calculate and also tend to overestimate grossly the actual errors.
2. We proceed here on different lines. After obtaining the approximate solution of equations (1), we seek perturbations (or rather upper bounds for perturbations) of the elements of \mathbf{A} and \mathbf{b} such that the computed solution is the exact solution of the perturbed equations.

We shall find that in this form the problem is quite tractable. From the results obtained we are able to make searching comparisons between the accuracy of the various methods of solution, and also arrive at practical rules governing the safe but economical number of guarding figures thich need to be carried during the computation of the solution.

'accurate' solutions

3. Before proceeding with the error analysis proper, we ask the question: 'What is it reasonable to expect of our solution?'

Suppose that the elements of \mathbf{A} and \mathbf{b} do not exceed unity in absolute value (this can always be arranged by scaling), and that we use a working precision of t figures. Then, unless the elements of A and b are exact t-decimal numbers, they will have to be rounded to t decimals and we inevitably solre a perturbed set of equations

$$
\begin{equation*}
(\mathbf{A}+\delta \mathbf{A}) \mathbf{x}=\mathbf{b}+\delta \mathbf{b}, \tag{2}
\end{equation*}
$$

in which the upper bound of the elements of $\delta \mathrm{A}, \delta \mathrm{b}$ is $\frac{1}{2} 10^{-1}$.

4 Eren if the elemenis are exact \boldsymbol{i} decomal numbers, in the process of solution they mill almost meritably be multrphed by numbers whoch are not small integers Cousider the effect of the sungle sumple operation of multiplang the equations (1) throaghout by k, a t-dight number an the range 01 to 10 As a result of rounding to i decmals (l) is replaced by

$$
\begin{equation*}
(L A+E) x=L b+c, \tag{3}
\end{equation*}
$$

where the elements of E and e are bounded by $\frac{110^{-4} \text { Thes is equaralent to }}{}$

$$
\begin{equation*}
\left(A+l^{-1} E\right) x-b+L^{-i} e \tag{4}
\end{equation*}
$$

and the error terms of this perturbed set have hounds which depend on 4 but are at least $\frac{1}{2} 10^{-4}$

5 We shall show that the approwmate solution of a set of equations (1) obtaired hy a direct method is the exact solution of a perturbed set of the form (2) It 13 clear from the sumple illustrations that have just been green that it would be quate unreasonable to expect the hounds of the clements of 8 A and $\delta \mathrm{h}$ to be less than $\frac{1}{2} 10^{-6}$, for a working precision of t figures Much hugber bounds might well be antrapated and it is a matter for some sarprise that with certain methods the ideal is in fact approached.

6 We introdnce our method of error anviysts in terms of the numencal example of $\$ 8$ of Chapter 1 Purely for nothtional convenuence we have rearranged the orignal equations so that suecessise purotal rows are in order one beneath the other Thus use of hindsight does not affect the analveis it merely eases the desenption

On the left of Tahle I we repeat the numbers recorded dutng the computation of the solution by Gaussan elemmation, for convenience we have noluded prenious protal rows in each reduced set and also elements that have become zero We therefore have fout sets of equations

$$
\begin{equation*}
A^{(n)} x=b^{(r)} \quad(r=1234\} \tag{5}
\end{equation*}
$$

all of which would have had identical solutions if the computation find been performed exactly

Reducteon to inangular form

7 We consider first the reduction to triangular form We work back wards from the fourth set of equations deriming suecessurely perturba tions to the thrrd second and first sets so that they are satisfied exactly by the exaet solutions of the fourth (tranguiar) set Such perturbations are not umque and we select tbose which reproduce exactly the recorded multiphers m_{4}, The perturbed sets of equations are denoted hy

$$
\begin{equation*}
\left(A^{(r)}+\delta A^{(r)}\right) x=b^{(r)}+\delta b^{(r)} \quad(r=1,2,3) \tag{6}
\end{equation*}
$$

If $\left(x_{1}, x_{2}, x_{s}, x_{4}\right)$ is the exact eolation of the computed triangular set $A^{(1)} x=b^{14}$, we have

$$
\begin{align*}
a_{11}^{(1)} x_{1}+a_{12}^{(11)} x_{2}+a_{13}^{(1)} x_{3}+a_{11}^{(1)} x_{3} & =b_{1}^{(1)}, \tag{7}\\
a_{2}^{(2)} x_{2}+a_{23}^{(9)} x_{3}+a_{24}^{(2)} x_{3} & \equiv b_{2}^{(2)}, \tag{8}\\
a_{33}^{(9)} x_{3}+a_{31}^{(31} x_{4} & =b_{1}^{(3)}, \tag{9}\\
a_{14}^{(1)} x_{4} & =b_{4}^{(4)}, \tag{10}
\end{align*}
$$

where equralence agns denote that the equations are satisfied exactly As is indicated by the superscopts, the pirotal row (7) of the first eet of equations appears unaltered in kets 2, 3, 4, (8) occurs in sets 2, 3, 4 and (9) in 3 and 4

In the subsequent analysis we ahall assume that none of the elements
 normal feature of most automatic work It is easily arranged, because any growth of the maxmum coefficient from cet to set is quate slop in practice and a preliminary scaling which reduces all the ongnal coefficrents $a_{i}^{[1]}$ to a maximum of cay, 7 is sufficient in all but pathologeal cases This point is also discussed in Chapter $2, \$ 6$
The determination of $\delta A^{(2)}$ and $\delta b^{(3)}$
8 Equations (7); (8) and (9) are the same in set 3 as in set 4 and so are automatically satusfied exactl3 The multipleer $m_{s y}$ and elements $a_{4}^{(4)}$ and $b_{d}^{(1)}$ कere obtained from the equations

$$
\begin{gather*}
m_{13}=-a_{33}^{(3)} / a_{33}^{(3)}, \tag{L1}\\
a_{42}^{(4)}=a_{4}^{(3)}+m_{15} a_{23}^{(3)}, \tag{12}\\
b_{4}^{(1)}=b_{3}^{(\prime \prime}+m_{43} b_{3}^{\prime \prime} \tag{13}
\end{gather*}
$$

and rounded to fire decmals The rounded m_{13} accordingly satisfies exaotly
whence
where

$$
\begin{gather*}
-m_{43}=\left(a_{43}^{(3)} \mid a_{33}^{(3)}\right)+\eta_{43} \quad\left|\eta_{43}\right| \leqslant \frac{1}{2} 10^{-5} \tag{14}\\
-n_{53} a_{33}^{(3)} \equiv a_{13}^{33}+\varepsilon_{43}^{33} \tag{15}\\
\left|\varepsilon_{33}^{(3)}\right|=\left|a_{33}^{43} \eta_{43}\right| \leqslant\left|\eta_{43}\right| \leqslant \frac{1}{2} 10^{3} \tag{10}
\end{gather*}
$$

The values of a_{11}^{11} and $b_{1}^{(1)}$ obtamed from equations (12) and (13) are rounded to five decimals, so that

$$
\begin{array}{ll}
a(4)=a_{41}^{(1)}+m_{13} a_{3}^{(31}+\epsilon_{11}^{(3)}, & \left|\epsilon_{13}^{(3)}\right| \leqslant \frac{1}{2} 10^{5}, \\
b_{4}^{(4)} \equiv b_{4}^{(3)}+m_{43} b_{3}^{(3)}+\epsilon_{4}^{(3)} & \left|\epsilon_{4}^{(3)}\right| \leqslant \frac{1}{2} 10^{-5} \tag{18}
\end{array}
$$

$\epsilon_{43}^{(3)}, \epsilon_{41}^{(3)}$ and $\epsilon_{4}^{(31}$ are thus the porturbations required in $a_{43}^{(3)} a_{31}^{(3)}$ and $b_{1}^{(3)}$ to make the third set exactly equivalent to the fourth and to reproduce exactly the computed multrpher m_{13} Each perturbation 13 bounded by $\$ 10^{-5}$, thas $3 s$ obviously true for $\epsilon_{11}^{(3)}$ and $\varepsilon_{1}^{(3)}$ and $\epsilon_{43}^{(3)}$ is a roundng error multuplted by a number whuch by hypotbesis does not exceed unity Thus

$$
\left[\delta A^{(3)} \mid \delta b^{(3)}\right] \leqslant \frac{1}{2} 10^{-5}\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \tag{19}\\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \\
0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

where the inequality sign means that the absolute value of each element of the left-hand side does not exceed the corresponding element of the right-hand side. In the example of Table 1 the computations corresponding to (15), (17) and (18) are

$$
\begin{aligned}
\delta a_{43}^{(3)}=\epsilon_{43}^{(3)} & =-(-0 \cdot 19212)(0.09062)-0.01741 \\
& =-10^{-5}(0.00856), \\
\delta a_{44}^{(3)}=\epsilon_{44}^{(3)} & =-0.20415+0 \cdot 26034-(-0.19212)(-0.29245) \\
& =10^{-5}(0.45060), \\
\delta b_{4}^{(3)}=\epsilon_{4}^{(3)} & =0 \cdot 10295-0.16665-(-0.19212)(0.33155) \\
& =-10^{-5}(0.26140) .
\end{aligned}
$$

It may be noted that these numbers are exact ten-decimal numbers.

The determination of $\delta \mathbf{A}^{(2)}$ and $\delta \mathbf{b}^{(2)}$

9. Equations (7) and (8) appear unchanged in set 2 and so are automatically satisfied. Since the third equation of the third set is not perturbed, the perturbations of the third equation of the second set are obtained by an analysis following precisely the lines of the previous section. For example, $\epsilon_{3}^{(2)}$ is obtained from the equation

$$
\begin{equation*}
b_{3}^{(3)} \equiv b_{3}^{(2)}+m_{32} b_{2}^{(2)}+\epsilon_{3}^{(2)}, \quad\left|\epsilon_{3}^{(2)}\right| \leqslant \frac{1}{2} 10^{-5}, \tag{20}
\end{equation*}
$$

which corrcsponds exactly to (18). Therefore $\epsilon_{32}^{(2)}, \epsilon_{33}^{(2)}, \epsilon_{34}^{(2)}$ and $\epsilon_{3}^{(2)}$ are all bounded by $\frac{1}{2} 10^{-5}$.

The perturbation of the fourth equation of set 2 must, however, be chosen so that the perturbed fourth equation of set 3 is exactly reproduced. Thus while $b_{4}^{(3)}$ satisfies the relation

$$
\begin{equation*}
b_{4}^{(3)} \equiv b_{4}^{(2)}+m_{42} b_{2}^{(2)}+\epsilon_{4}^{(2)}, \quad\left|\epsilon_{4}^{(2)}\right| \leqslant \frac{1}{2} 10^{-5}, \tag{21}
\end{equation*}
$$

it is $b_{4}^{(3)}+\epsilon_{4}^{(3)}$ that must be reproduced. Since

$$
\begin{equation*}
b_{4}^{(3)}+\epsilon_{4}^{(3)} \equiv b_{4}^{(2)}+m_{42} b_{2}^{(2)}+\epsilon_{4}^{(2)}+\epsilon_{4}^{(3)}, \tag{22}
\end{equation*}
$$

we see that $\epsilon_{4}^{(2)}+\epsilon_{4}^{(3)}$ is the perturbation that must be added to $b_{4}^{(2)}$; thus the perturbation arises from two rounding errors which are purely additive and do not interact in any way. This is also true for the perturbations to $a_{43}^{(2)}$ and $a_{44}^{(2)}$. Since the zero element $a_{42}^{(3)}$ was unperturbed, we see that the necessary perturbation of $a_{42}^{(2)}$ arises from a single rounding error and is given by the equation

$$
\begin{equation*}
-m_{42} a_{22}^{(2)}=a_{42}^{(2)}+\epsilon_{42}^{(2)}, \tag{23}
\end{equation*}
$$

exactly analogous to (15). Thus

$$
\left[\delta \mathbf{A}^{(2)} \mid \delta \mathbf{b}^{(2)}\right] \leqslant \frac{1}{2} 10^{-5}\left[\begin{array}{cccc|c}
0 & 0 & 0 & 0 & 0 \tag{24}\\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 2 & 2
\end{array}\right]
$$

The right hand side of (24) may be regarded as the sum of the bounds of the perturbation (10) arsing in the reduction from the third to the fourth set, and the corresponding perturbations, bounded by

$$
\frac{1}{2} 10^{-3}\left[\begin{array}{llll|l}
0 & 0 & 0 & 0 & 0 \tag{25}\\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

arising in the reduction from the second to the therd set, the two sets of perturbations being sumply addthive uttheut snterachon

In the example of Table 1 the computation corresponding to (22), for example, is

$$
\begin{aligned}
\delta \delta_{4}^{(2)} & =e_{4}^{(2)}+\varepsilon_{2}^{(2)} \\
& =016665-006492+(-023723)(043170)-10^{-5}(026140) \\
& =-10^{-5}(061657)
\end{aligned}
$$

Sumular calculations lead to the perturbations given in Table 1 Again they are all termunting numbers of ten decimal places

The determination of $\delta A^{(1)}$ and $\delta b^{(3)}$
10 The pattern of the analysis is now quite clear The next step leads to an additional set of perturbations bounded by

$$
\frac{1}{2} 10^{-0}\left[\begin{array}{llll|l}
0 & 0 & 0 & 0 & 0 \tag{26}\\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

to be added to (21), so that

$$
\left[\delta \mathrm{A}^{(1)} \mid \delta \mathrm{b}^{(0)}\right] \leqslant \frac{1}{2} 10^{-5}\left[\begin{array}{llll|l}
0 & 0 & 0 & 0 & 0 \tag{27}\\
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 & 2 \\
1 & 2 & 3 & 3 & 3
\end{array}\right]
$$

The results for our example are again given in Table 1, it will be seen that all the perturbations be withm the lumts (27)

The bach-substitution

11 We have shown that s perturbed set of equations

$$
\begin{equation*}
\left(A^{(1)}+\delta A^{[1]}\right) x=h^{(1)}+\delta b^{(1)} \tag{28}
\end{equation*}
$$

can be obtamed such that successure dernved sets are exactly

$$
\begin{align*}
\left(A^{(9)}+\delta A^{(2)}\right) \times & =b^{(2)}+\delta b^{(4)}, \tag{29}\\
\left(A^{(3)}+\delta A^{(9)}\right) \times & =b^{(3)}+\delta b^{(3)}, \tag{30}\\
A^{(6)} \times & =b^{(6)} . \tag{31}
\end{align*}
$$

and the multiphiers used in the reduction are exactly the computed multipliers; the actual perturbations for our example are given in Table 1 and in the general case of order 4 they have bounds given by (27), (24) and (19).

We now consider the solution of the triangular set (31), written in full in equations (7) to (10). Consider, for example, the determination of x_{2}, when x_{3} and x_{4} have been found. Equation (8) is used in the form

$$
\begin{equation*}
x_{2} \equiv \frac{b_{2}^{(2)}-a_{23}^{(2)} x_{3}-a_{24}^{(2)} x_{4}}{a_{22}^{(2)}}+\eta_{2}, \quad\left|\eta_{2}\right| \leqslant \frac{1}{2} 10^{-5}, \tag{32}
\end{equation*}
$$

in which there is only one rounding error, η_{2}, since the numerator is accumulated exactly on the machine.

In taking $\left|\eta_{2}\right| \leqslant \frac{1}{2} 10^{-5}$ we are assuming that the x_{i} are computed and recorded to 5 decimals. Since the x_{i} may be large this could mean working with more than 5 significant figures; we return to this point in $\S 15$. From (32) we obtain
where

$$
\begin{gather*}
a_{22}^{(2)} x_{2}+a_{23}^{(2)} x_{3}+a_{24}^{(2)} x_{4} \equiv b_{2}^{(2)}+\delta c_{2}, \tag{33}\\
\left|\delta c_{2}\right|=\left|\eta_{2} a_{22}^{(2)}\right| \leqslant\left|\eta_{2}\right| \leqslant \frac{1}{2} 10^{-5} . \tag{34}
\end{gather*}
$$

A similar result holds for each variable. The computed solution of the triangular set of equations is therefore the exact solution of the equations

$$
\begin{equation*}
\mathbf{A}^{(4)} \mathbf{x}=\mathbf{b}^{(4)}+\delta \mathbf{c}, \quad\left|\delta c_{i}\right| \leqslant \frac{1}{2} 10^{-5} . \tag{35}
\end{equation*}
$$

Now it is readily seen that the addition of a further perturbation $\delta \mathbf{b}$ given by

$$
\delta \mathbf{b}=\left[\begin{array}{ll}
\delta c_{1} & \tag{36}\\
-m_{21} \delta c_{1}+ & \delta c_{2} \\
-m_{31} \delta c_{1}-m_{32} \delta c_{2}+ & \delta c_{3} \\
-m_{41} \delta c_{1}-m_{42} \delta c_{2}-m_{43} \delta c_{3}+\delta c_{4}
\end{array}\right]
$$

to the right-hand side of (28) will result in the final reduced set of equations having the form (35). This follows because the perturbation $\delta \mathrm{b}$ does not affect the multipliers, and the consequent additions to the righthand sides of (29), (30) and (31) are respectively

$$
\left[\begin{array}{cc}
\delta c_{1} & \\
\delta c_{2} & \\
-m_{32} \delta c_{2}+ & \delta c_{3} \\
-m_{42} \delta c_{2}-m_{43} \delta c_{3}+\delta c_{4}
\end{array}\right],\left[\begin{array}{c}
\delta c_{1} \\
\delta c_{2} \\
\delta c_{3} \\
-m_{43} \delta c_{3}+\delta c_{4}
\end{array}\right] \text { and }\left[\begin{array}{c}
\delta c_{1} \\
\delta c_{2} \\
\delta c_{3} \\
\delta c_{4}
\end{array}\right]
$$

Since no multipher exceeds unity,

$$
\delta b \leqslant \frac{1}{2} 10^{-5}\left[\begin{array}{l}
1 \tag{37}\\
2 \\
3 \\
4
\end{array}\right]
$$

In the example of Table 1, we find

$$
\begin{array}{cl}
10^{3} \delta b_{1}=-000790 & 10^{5} \delta \delta_{2}=002252915 \% 0 \\
10^{5} \delta b_{3}=-00130697030 & 10^{5} \delta b_{1}-00732003293
\end{array}
$$

Summarizing we bave shown that the computed solution is the exact solution of the set of equations

$$
\begin{equation*}
\left(A^{(1)}+\delta A^{(t)}\right) x=\mathbf{h}^{(01}+\delta \mathbf{h}^{(1)}+\delta b \tag{38}
\end{equation*}
$$

wbere

$$
\left[\delta A^{(1)}\left|\delta h^{(1)}\right| \delta b\right] \leqslant \frac{1}{2} 10^{5}\left[\begin{array}{llll|l|l}
0 & 0 & 0 & 0 & 0 & 1 \tag{39}\\
1 & 1 & 1 & 1 & 1 & 2 \\
1 & 2 & 2 & 2 & 2 & 3 \\
1 & 2 & 3 & 3 & 3 & 4
\end{array}\right]
$$

and we bare kept separate the perturbations to the right hand side arisung from the reduction and the hach substitution

The general case

12 The result (30) ean be extended immediately to a set of n equa thons solved using a worhing precision of t decmals The bounds of the perturbations are given by
$\left[\delta A^{(1)}\left|\delta b^{(1)}\right| \delta b\right] \leqslant \frac{1}{2} 0^{-1}\left[\begin{array}{cccccc|c|c}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\ 1 & 2 & 2 & 2 & 2 & 2 & 2 & 3 \\ & & & & & & & \\ 1 & 2 & 3 & 4 & (n-2) & (n-2) & n-2 & n-1 \\ 1 & 2 & 3 & 4 & (n-1) & (n-1) & n-1 & n\end{array}\right]$

When binary antbmetic is used 10^{-4} is replaced by 2^{-4}

EREOR ANALYSTS FOK TEIAKGELAR DECONIPOSITION
13 A sumular analysis can be appled to the racthod of triangular decomposition with interchanges described in Chapter 2 t decimals are retaned throughout the computed solution \times satasfies exactly a set of equations of the form (38) with

$$
\begin{equation*}
\left|\delta a_{i j}^{(1)}\right| \leqslant \frac{1}{2} 10^{-6} \quad\left|8 b_{3}^{\prime \prime}\right| \leqslant \frac{1}{2} 10^{-6} \quad\left|\delta b_{i}\right| \leqslant \frac{1}{2} 110^{-4} \tag{41}
\end{equation*}
$$

The proof [32] is appreciably smpter than that for the method of Gaussian elimination and the smaller bounds obtaned are very umpressive In fact as foreshadoned in $\$ 5$ we have hero a method which approaches very closely what must be considered the rdeal m whach the bound for each perturbation is $\frac{1}{1} 10^{-4}$

Agam when bmary anthmetic is used 10^{-6} is replaced by 2^{-1}
14. Let us suppose that the elements of \mathbf{A}, b in the original equations are prescribed to t decimals. Then, since the largest bound of the perturbations given by (40) is the sum of n rounding errors, the retention of one extra decimal for $n=10$, two for $n=100$ and in general $\log _{10} n$, will result in the solution obtained by Gaussian elimination being the exact solution of a set of equations which do not differ from the original set by more than the possible rounding errors inherent in the data. For binary arithmetic, $\log _{2} n$ additional binary places will be required to ensure this.

This result is also true for the method of triangular decomposition. However, since in this case the elements of $\delta \mathbf{A}^{(1)}, \delta \mathbf{b}^{(1)}$ are bounded by one rounding error, it is necessary to carry the additional decimals only in the back-substitution, which is much the smaller part of the calculation.

It should be borne in mind that (40) and (41) give strict upper bounds. In practice we expect the rounding errors to accumulate statistically and, consequently, n to be replaced by $\downarrow n$. This suggests that it would not be unreasonable to use only one additional guarding figure for sets of up to 100 equations.

15 . We return now to the point made in § 11 regarding the size of the solution x . If we are restricted by our machine to the use of t significant figures, and if the largest element x_{i} lies between 10^{k} and 10^{k-1}, then we are only able to retain $t-k$ decimals in the course of the back-substitution. This has the effect of multiplying the associated perturbation $\delta \mathbf{b}$ by 10^{k}, so that for both Gaussian climination and triangular decomposition we now have the bounds

$$
\begin{equation*}
\left|\delta b_{i}\right| \leqslant \frac{1}{2} i 10^{k-t} . \tag{42}
\end{equation*}
$$

The consequent loss of accuracy is not as great as might appear. It can be shown, for example, that it is possible to absorb δb by an additional perturbation of \mathbf{A} which does not contain the factor 10^{k}. Alternatively, we may consider the upper bounds for the residuals.

The residual vector r is given by

$$
\begin{equation*}
\mathbf{r}=\mathbf{b}-\mathbf{A} \mathbf{x}=-\delta \mathbf{b}^{(1)}-\delta \mathbf{b}+\delta \mathbf{A}^{(1)} \mathbf{x} \tag{43}
\end{equation*}
$$

In the case of Gaussian elimination it follows from (40), and the fact that each $\left|x_{i}\right|$ is bounded by 10^{k}, that

$$
\begin{align*}
\left|r_{i}\right| & \leqslant \frac{1}{2}(i-1) 10^{-t}+\frac{1}{2} i 10^{-t}+\frac{1}{2} 10^{k-t}[1+2+\ldots+(i-1)+(n-i+1)(i-1)] \\
& =\frac{1}{2}(i-1) 10^{-t}+\frac{1}{2} i 10^{-t}+\frac{1}{2} 10^{k-t}(i-1)\left(n-\frac{1}{2} i+1\right) \tag{44}
\end{align*}
$$

when we retain t decimals in the back-substitution, and

$$
\begin{equation*}
\left|r_{i}^{\prime}\right| \leqslant \frac{1}{2}(i-1) 10^{-t}+\frac{1}{2} i 10^{k-t}+\frac{1}{2} 10^{k-t}(i-1)\left(n-\frac{1}{2} i+1\right) \tag{45}
\end{equation*}
$$

when we retain $t-k$ decimals in the back-substitution. The difference betreen these bounds is less than $\frac{1}{2} n 10^{k-t}$ while each is greater than $\frac{1}{2} n^{2} 10^{k-i}$ when $i=n$, a proportional increase of less than $2 / n$.
In the case of triangular decomposition the bounds corresponding to (4t) and (45) are

$$
\begin{equation*}
\left|r_{i}\right| \leqslant \frac{1}{2} 10^{-t}+\frac{1}{2} i 10^{-t}+\frac{1}{2} n 10^{k-t} \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|r_{d}^{\prime}\right| \leqslant \frac{1}{2} 10^{-4}+\frac{1}{2}+10^{k-1}+\frac{1}{2} n 10^{k-4}, \tag{47}
\end{equation*}
$$

in thes case the maximum hound for $\left|r_{d}\right| 18$ leas than trice that for $\left|r_{1}\right|$
16 These hounds may be compared with those ohtanned for the residuals when we tale the exact solation x_{c} round it to $l-i$ decimals, and substi tute this rounded solution x, into the onginal equations We then have

$$
\begin{equation*}
\left|\left(A x_{r}-b\right)_{l}\right|=\mid\left[A\left(x_{r}-x_{d}\right)\right] d \leqslant \ln 10^{k-t} \tag{48}
\end{equation*}
$$

We may replace (4t) and (45) by the sleghtly weaker mequality

$$
\left|r_{t}\right| \leqslant \frac{1}{2} 10^{2}-\left\{(i-1)\left(n-\frac{1}{2} 4+3\right)+1\right\}
$$

The largest bound is that for $\left|r_{n}\right|$ Hence, for all 4 ,

$$
\begin{equation*}
\left[r_{6} \left\lvert\, \leqslant \frac{1}{2} 10^{k-1}\left(\frac{1}{2} n^{2}+\frac{5}{2} n-2\right) \quad\right.\right. \text { (Ganssian elmmenation) } \tag{49}
\end{equation*}
$$

Sumularly, for all:

$$
\begin{equation*}
\left|r_{i}\right| \leqslant \frac{1}{2} 10^{k-r}(2 n+1) \quad \text { (triangular decomposition) } \tag{50}
\end{equation*}
$$

The ratio of the bounds (49) (48) is

$$
\begin{equation*}
\left(n^{2}+5 n-4\right) / 2 n \tag{52}
\end{equation*}
$$

which is an znereasing function of n and attans the values 10,100 for $n=15,195$ respectively Thus for sets of order up to 15 the resaduals corresponding to the golutron computed hy Gaussian eliroination may be expected to be no greater than those corresponding to the exact eolution rounded to one decimal lees, while for sets of orders is to 105, no greater than those corresponding to the exact solution rounded to two deci mals less

For trangular resolution we bave the remarkahle result that for any order the ressduals are not expected to exceed tmice those of the exact solution rounded to the same number of decimals

17 Agasn the results obtained in the preceding sections are strict upper bounds In practice we would expect e statistical accumulation of roundings, in wheh case the ratio (51) would be replaced approximately by its equare root In this case we could expect the residuals to be no grester than those of the exact solution roxaded to one decimal less for sets of orders up to 195

Theso results aro even more satisfactorg than those gren in \&f 14 The difference lies an the fact that in $\delta 14$ we attached as much weight to the perturhations $\delta \mathrm{b}$ as to $\delta \mathrm{A}$ An assessment based purely on the size of the restuals is much more reahstic If is the resadual vector corresponding to an approximate solution x, then the true solution $19 \times+A^{-3} \mathbf{x}$ the error is therefore drectly dependent on the residual vector

THE EFFECT OF UMINA LAROE MCLTIPLIEAS

18 We have stressed the importanco of uang as pivots the largoat element in each colnmin, that is, carrying out our calculations with enterchanges It may be thought that thus restnction is really unnecessary and could be overcome, for example, by using floating point anthmetic The example, gren in Tahle 2 opposite, phows that this is not so

The original equations and first reduced set are denoted by

$$
\begin{equation*}
\mathbf{A}^{(1)} \mathbf{X}=\mathbf{b}^{(1)}, \quad \mathbf{A}^{(2)} \mathbf{X}=\mathbf{b}^{(2)}, \tag{52}
\end{equation*}
$$

respectively, as in the previous example. The smallest element, a_{11}, is used as pivot in the reduction. The 'perturbed' form of the original equations which corresponds exactly to the reduced set is given by the

Table 2

m		$A^{(1)}$	$b^{(1)}$	
	0.000003	0.213472	0.332147	0.235262
-71837.3	0.215512	0.375623	0.476625	0.127653
-57752.3	0.173257	0.663257	0.625675	0.285321
		$A^{(3)}$		$\mathbf{b}^{(2)}$
	0.000003	0.213472	0.332147	0.235262
	0.000000	-15334.9	-23860.1	-16900.5
	0.000000	-12327.8	-19181.6	-13586.6

Exact equivalent of first reduced set

0.000003	0.213472	0.332147	0.235262
0.2155129	0.3521056	0.4436831	0.0868726
0.1732569	0.6989856	0.6531881	0.3216026

third array of numbers, computed by the method of § 8 . The second and third members differ substantially from the original ones; indeed, their solution (which is, of course, also the solution of the reduced set) bears no resemblance to that of the original equations.

What has happened is that the second and third equations of the reduced set are almost entirely composed of a multiple of the pivotal equation. We would obtain an identical system $\mathbf{A}^{(2)} \mathbf{x}=\mathbf{b}^{(2)}$ for a whole class of matrices $\left[A^{(1)} \mid \mathbf{b}^{(1)}\right]$. For consider the computation of a typical element $a_{23}^{(2)}$ in six-figure floating-point arithmetic, given by

$$
\begin{aligned}
a_{23}^{(2)} & =a_{23}^{(1)}+m_{21} a_{13}^{(1)} \\
& =0.476625-71837.3 \times 0.332147 \\
& =0.476625-23860.6=-23860.1
\end{aligned}
$$

Because the product $m_{21} a_{13}^{(1)}$ is so much larger than $a_{23}^{(1)}$, nearly all figures of the latter are ignored. We obtain precisely the same $a_{23}^{(2)}$ for all values of $a_{28}^{(1)}$ lying between 0.45 and 0.55 .

ILL-CONDITIONED EQUATIONS

19. It may well be asked what bearing the results obtained in this chapter have on the difficulties associated with ill-conditioned equations. We have obtained bounds for the perturbations in \mathbf{A} and \mathbf{b} which give equations satisfied exactly by the computed x, and we have been able to deduce rules for the number of guarding decimals that should, if possible, be used.

If, as is usually the case the coefficients in the onginal cquations are approxmate, then wo can determme mmediately from these bounds Whether or not the compnted solution is as accurate as the data urrants Thus is the case for both thl and well conditroned equations and in many problems this information will suffice

20 In some appleations, however, we may wish to know to how many figares our sointrons nctually quree mith the exact solution of the ongmal equations An analytical intestigation of thas requires a hnowledge of the merse matrux A^{-1}, and even the estmation of a satisfactory upper bound for its elements mill usually involve nore effort than the colution of the equations In practree it will be necessary to follow the procedure described in Chapter 2, § 18

21 The technique described in this chapter has been appled to a mide range of algebruc processes meludng many of the better bnown methods for solving linear equations computing ergensystems and calculating the zeros of polynomials [?16] Both fixed point and toating point computa tion bave been considered In all cases the computed solution of the problem has been shown to be the exact solution of a perturbed problem and bounds hare been determined for the perturbations This has the adrantage of ellowing a direct companson between the effect of rounding errors and of the errors inherent un the origual date

If small strict bounds can be found for the perturbations, then tbe method being amalysed must be regarded ss a good method If such bounds cannot be found howerer, we cannot necessanly deduce that the method is bad Nerertheless, in such a case the analgsis mill frequently suggest cases in whelb the method mill undoubtedly lead to maccurate results An example of this land hat been gren in § I8, where we showed the mportance of moterchanges in Gaussian elimanation

Sometimes the bounds for the perturbations will provide strict a pron bounds for the computed solution the most mportant example of this is tbe calculation of the latent roots of symmetric matnces 3ore fre quently, honever the determmatiou of a strict bound for the error in the solation mill requite miormation which is at least as difficult to obtain as the solution itcell in thas case tbe best we can bope for 15 an a pasterarn bound

6

ZEROS OF POLYNOMIALS

EVALUATION OF A POLYNOMIAL

1. We take as our standard form of polynomial

$$
\begin{equation*}
f(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+a_{n-2} z^{n-2}+\ldots+a_{0} \tag{1}
\end{equation*}
$$

and suppose throughout this chapter that the coefficients a_{s} are real.
The evaluation of $f(z)$ for a given real value $z=\alpha$ can be effected on a desk machine equipped with a transfer, by cyclic repetition of the processes of multiplication, setting, addition and transference, according to the formula

$$
\begin{equation*}
f(\alpha)=\left[\left\{\left(a_{n} \alpha+a_{n-1}\right) \alpha+a_{n-2}\right\} \alpha+a_{n-3}\right] \alpha+\ldots . \tag{2}
\end{equation*}
$$

No intermediate recording is then necessary. This process is sometimes called nested multiplication.
2. The numbers which appear in the product register immediatcly before the successive transfers are the coefficients in the quotient polynomial which results on dividing $f(z)$ by the linear factor $z-\alpha$. For, by equating coefficients in the relation

$$
\begin{equation*}
f(z)=\left(q_{n} z^{n-1}+q_{n-1} z^{n-2}+\ldots+q_{1}\right)(z-\alpha)+q_{0} \tag{3}
\end{equation*}
$$

we find

$$
\begin{equation*}
q_{n}=a_{n}, \quad q_{n-1}=q_{n} \alpha+a_{n-1}, \tag{4}
\end{equation*}
$$

and generally,

$$
\begin{equation*}
q_{s}=q_{s+1} a+a_{s} \quad(s=n-1, n-2, \ldots, 0) . \tag{5}
\end{equation*}
$$

Also

$$
\begin{equation*}
f(\alpha)=q_{0} . \tag{6}
\end{equation*}
$$

POLYNOMIALS OF LOW DEGREE

3. Real roots of the equation

$$
\begin{equation*}
f(z)=0 \tag{7}
\end{equation*}
$$

that is, real zeros of $f(z)$, can be located by examining the sign of $f(z)$ at $z=0$ and $\pm \infty$, and evaluating $f(z)$ at a few trial values of z. If $f(z)$ has opposite signs at $z=z_{1}$ and $z=z_{2}$, then at least one root lies between z_{1} and z_{2}.

Regarding z_{1} and z_{2} as approximations to the root, we can obtain a new approximation z_{3} by inverse linear interpolation, according to the formula

$$
\begin{equation*}
z_{3}=\frac{z_{1} f\left(z_{2}\right)-z_{2} f\left(z_{1}\right)}{f\left(z_{2}\right)-f\left(z_{1}\right)}=z_{2}-\frac{\left(z_{2}-z_{1}\right) f\left(z_{2}\right)}{f\left(z_{2}\right)-f\left(z_{1}\right)} . \tag{8}
\end{equation*}
$$

The process can then be repeated Alternatively, Niewton's rule, described in § 9 below, may be used

4 If $f(z)$ in a cubic polynotual, one real root may be determoned by thas method nnd the corresponding linear factor then divided out, as described in \$ 2 The zeros of the reardual quadratic, whether real or complex, may be ohtaned hy eppheation of the usual formula Ths method is quite gatisfactory for the solution of the occasional enbic equation

5 Equations of higher degree may also bo solved by this method, prowided that at most one parir of roots is complex If two paus are complex, the problem rednoes to that of solntig a quartio equation We now describe a variant of the elassical method for solving equations of thus degree which is convement for computation

THE QUARTLC

6 We suppose that $f(z)$ has been nomalized so that the coefficient of \boldsymbol{z}^{4} is umity, and that

$$
\begin{equation*}
z^{2}+a_{3} z^{3}+a_{1} z^{2}+a_{1} z+a_{0}=\left(z^{4}+b_{1} z+c_{1}\right)\left(z^{2}+b_{2} z+c_{5}\right) \tag{0}
\end{equation*}
$$

The problem is essentally to determine $b_{1}, c_{1} b_{2}, c_{1}$ from $a_{0}, a_{3}, a_{2} a_{3}$
Equating coefficients, we obtain

$$
\begin{array}{ll}
a_{3}=b_{1}+b_{2} & a_{1}=b_{1} b_{2}+c_{1}+c_{1} \\
a_{1}=b_{1} c_{2}+b_{2} c_{1} & a_{0}=c_{1} c_{2} \tag{11}
\end{array}
$$

We write

$$
\begin{equation*}
n=c_{1}+c_{1} \tag{12}
\end{equation*}
$$

Then m saturies the equation

$$
\begin{equation*}
m^{4}-a_{1} m^{3}+\left(a_{1} a_{3}-4 a_{0}\right) m+\left(4 a_{2}-a_{2}^{4}\right) a_{a}-a_{1}^{4}=0 \tag{13}
\end{equation*}
$$

For, by solving the first of (10) and the first of (II) for b_{1} and b_{2} we find

$$
\begin{equation*}
b_{1}=\frac{a_{1}-a_{3} c_{1}}{c_{1}-c_{1}}, \quad b_{1}=\frac{a_{2} c_{2}-a_{1}}{c_{2}-c_{1}} \tag{14}
\end{equation*}
$$

Substitution in the second of (10) gives

$$
\begin{equation*}
\left(c_{1}+c_{2}-a_{2}\right)\left(c_{2}-c_{1}\right)^{2}+a_{1} a_{3}\left(c_{1}+c_{2}\right)-a_{2}^{2} c_{1} c_{2}-a_{1}^{2}=0 \tag{15}
\end{equation*}
$$

Etiminating c_{1} and c_{3} from this equation hy means of (12) and the second of (11), we mmediately obtam (13)

Equation (13) is called the reducung cubre A real root can be found by the method of \& 3 Equation (12) and the second of (11) show that c_{1} and c_{2} are the roots of the quadratice equation

$$
\begin{equation*}
c^{3}-m c+a_{6}=0, \tag{16}
\end{equation*}
$$

and equations (14) then give b_{1} and b_{2}
In solving (13) a root should be eought which satisfies the mequality $m^{2} \geqslant 4 a_{0}$ otherwise the roots of (16) will be complex, and the factorization (9) will not be unto conjugate parss of roots Thus if a_{0} is positive, we first scek a value of m in the range ($\left.2 \sqrt{ } a_{0} \infty\right)$ If no such root exists, and thes can only happen when some of the roots of the quartic equation are real, we seek a root of (13) in the range ($-\infty,-2 \sqrt{ } a_{0}$), which must enst

Example

7. Consider the equation

$$
\begin{equation*}
z^{4}-2 z^{3}+7 z^{2}-10 z+11=0 . \tag{17}
\end{equation*}
$$

Here $a_{0}=11, a_{1}=-10, a_{2}=7, a_{3}=-2$. Equation (13) becomes

$$
\begin{equation*}
\phi(m) \equiv m^{3}-7 m^{2}-24 m+164=0 . \tag{18}
\end{equation*}
$$

The value of $2 \sqrt{ } a_{0}$ is $2 \sqrt{ } 11=6 \cdot 63 \ldots$. Taking the nearest integer value $m=7$, we find $\phi(7)=-4$. This has the opposite sign to $\phi(+\infty)$; hence there is a root of (18) in the range (7, ∞). Next, we find $\phi(8)=36$; therefore the wanted root must be less than 8 . Starting from these two approximations, we determine the root accurately to 5 decimals, say, by repeated application of (8):

m	7	8	$7 \cdot 1$	$\mathbf{7 . 1 5 1}$	$\mathbf{7 . 1 4 7 5 8}$	$\mathbf{7 . 1 4 7 6 6}$
$\phi(m)$	-4	36	-1.359	0.09766	-0.00237	-0.00003

Equation (16) becomes

$$
\begin{equation*}
c^{2}-7 \cdot 14766 c+11=0, \tag{19}
\end{equation*}
$$

giving $c_{1}=2 \cdot 24257, c_{2}=4.90509$. From (14) we obtain $b_{1}=-2.07129$, $b_{2}=0.07129$. As a check, we verify that equations (10) and (11) are satisfied.
8. Polynomials having more than two pairs of complex zeros may be classified with the 'high-degree' polynomials. As a preliminary to outlining methods for finding the zeros of these polynomials we now describe the iterative processes of Newton and Bairstow.

NETTON'S RULE

9. Let α be an approximation to a zero a of $f(z)$. Then in general a better approximation is $\alpha+\delta \alpha$, where

$$
\begin{equation*}
\delta \alpha=-f(\alpha) / f^{\prime}(\alpha) . \tag{20}
\end{equation*}
$$

This can be seen graphically. In Figure $1 A C$ is the tangent to the curve $y=f(z)$ at the point $z=\alpha$, and its intersection C with the real axis is the point $z=\alpha+\delta \alpha$.

Figure 1

The result (20) can be found by expanding $f(z)$ in the Taylor senes centred at $z=\alpha$ We bave

$$
\begin{equation*}
f(z)=f(\alpha)+(z-\alpha) f(\alpha)+\frac{1}{2^{4}}(z-\alpha)^{2} f^{\prime \prime}(\alpha)+\quad=0, \tag{21}
\end{equation*}
$$

when $z=a$, giving

$$
\begin{equation*}
a-\alpha=-\frac{f(\alpha)}{f(\alpha)}-\frac{1 f^{\prime}(\alpha)}{21} f(a)(a-\alpha)^{2}- \tag{22}
\end{equation*}
$$

This equation also shows that the error $3 n \alpha+\delta x$ is of order ($\delta \alpha)^{*}$ For this reason formula (20) as eard to be quadnatically contergent The precse impheation of (22) is seen on writing it un the form

$$
\begin{equation*}
\frac{a-a}{a}=-\frac{f(a)}{a f(a)}-\frac{1}{2 f} \frac{a f^{\prime}(a)}{f(a)}\left(\frac{a-a}{a}\right)^{2}- \tag{23}
\end{equation*}
$$

Clearly if $\left|\frac{1}{2} \alpha f^{\prime \prime}(\alpha) / /^{\prime}(\alpha)\right|$ is of order unty, the number of correct sigmicant figures in the zero is doubled by each rieration More generally, if $\left|\frac{1}{2} \alpha f^{\prime \prime}(\alpha) / f(\alpha)\right|$ is of order 10^{k} and the number of correct figures in α is S, the number of correct figures $3 n \alpha+\delta x$ will be $2 S \sim L$

10 It is of interest to compare Newton's rule mith the process of succes sive linear interpolation described in $\$ 3$ Let the errors in z_{1}, z_{z} be respec turely h_{1}, h_{z} so that

$$
\begin{equation*}
z_{1}=a-h_{1} \quad z_{2}-a-h_{2} \tag{24}
\end{equation*}
$$

Substututung these expreasions in the first of (8) and expanding by Taylor's theorem, we find

$$
\begin{align*}
z_{3} & =a+\frac{h_{2} f\left(a-h_{1}\right)-h_{1} f\left(a-h_{2}\right)}{f\left(a-h_{2}\right)-f\left(a-h_{2}\right)} \\
& =a+\frac{h_{1}\left(-h_{1} f(a)+\frac{1}{2} h_{1}^{2} f^{\prime}(a)-\frac{h_{1}}{(a)}\left(-h_{2} f(a)+\frac{1}{2} h_{2}^{2} f^{\prime}(a)-\right]\right.}{\left(h_{2}-h_{2}\right) f(a)+} \\
& =a+\frac{f^{\prime}(a)}{2 f(a)} h_{1} h_{2}+
\end{align*}
$$

 the product of the relative errors in z_{1} and z_{z} in comparison as we have seen in $\$ 9$ each application of Newton s rule squares the relative error in these circumstances

The total computugg effort necessitated by each process is about the same, however Thus is berause at each step of the successive hnear interpolations only a new function value has to be evaluated compared with a new function ralue and a new dervative at each application of Nexton's rule

11 The order of contergence of the process of nuccessive linear inter polation may be deduced from the result of the preoeding section Let $h_{\text {, }}$ denote the error in z_{s}. Then on taking logarithms of (25) we find that for large s

$$
\begin{equation*}
\ln h_{z}=\ln h_{z-1}+\ln h_{s-2} \tag{26}
\end{equation*}
$$

which is satisfied by $\ln \hbar_{s}=\rho^{s}$, if

$$
\rho^{2}-\rho-1=0 .
$$

The positive root of this equation, which is the order of convergence, is $\frac{1}{2}(1+\sqrt{5})=1 \cdot 62 \ldots$.

BAIRSTOW'S PROCESS

12. Newton's rule remains valid if the wanted root is complex. In applying the rule, the easiest way of computing $f(z)$ and $f^{\prime}(z)$ for a complex value $z=\alpha$ would be to evaluate the remainders on dividing $f(z)$ and $f^{\prime}(z)$ by the real quadratic polynomial $(z-\alpha)(z-\bar{\alpha})$, where $\bar{\alpha}$ is the conjugate of α. A more convenient iterative process, however, which determines the corrections to the coefficients of an approximate quadratic factor rather than to an approximate root, is due to Bairstow. We first describe the computations involved in dividing $f(z)$ by a quadratic polynomial.
13. Let $z^{2}-p z-l$ be a given quadratic polynomial. The division of $f(z)$ by this quadratic is expressed by the equation

$$
\begin{equation*}
f(z)=\left(z^{2}-p z-l\right) q(z)+r_{1} z+r_{0} \tag{27}
\end{equation*}
$$

where the quotient $q(z)$ is a polynomial of degree $n-2$, and $r_{1} z+r_{0}$ is the remainder.

By equating coefficients in (27), we may show that the process of division is equivalent to the application of the recurrence relation

$$
\begin{equation*}
q_{s}=a_{s}+p q_{s+1}+l q_{s+2} \tag{28}
\end{equation*}
$$

for $s=n, n-1, \ldots, 0$, starting with $q_{n+2}=q_{n+1}=0$. Then

$$
\begin{gather*}
q(z)=q_{n} z^{n-2}+q_{n-1} z^{n-3}+\ldots+q_{2} \tag{29}\\
r_{1}=q_{1}, \quad r_{0}=q_{0}-p q_{1} . \tag{30}
\end{gather*}
$$

14. In Bairstow's process, we first compute the sequence $q_{n}, q_{n-1}, \ldots, q_{0}$, and then divide $q(z)$ by $z^{2}-p z-l$ by computing the sequence T_{n-2} T_{n-1}, \ldots, T_{0}, defined by

$$
\begin{equation*}
T_{s}=q_{s+2}+p T_{s+1}+l T_{s+2} \quad(s=n-2, n-3, \ldots, 0) \tag{31}
\end{equation*}
$$

with $T_{n}=T_{n-1}=0$. If $z^{2}-p z-l$ is an approximate quadratic factor of $f(z)$, a better approximation is given by $z^{2}-(p+\delta p) z-(l+\delta l)$, where
and

$$
\begin{equation*}
D \delta l=M q_{1}-T_{0} q_{0}, \quad D \delta p=T_{1} q_{0}-T_{0} q_{1} \tag{32}
\end{equation*}
$$

Simple checks on the evaluation of (32) and (33) (but not on the computation of the sequences q_{s} and T_{s}) are furnished by the identities

$$
\begin{equation*}
T_{1} \delta l+T_{0}^{7} \delta p=-q_{1}, \quad T_{0} \delta l+M \delta p=-q_{0} \tag{34}
\end{equation*}
$$

15. This result may be proved as follows.* If $z^{2}-(p+\delta p) z-(l+\delta l)$ were an exact factor, we would have

$$
\begin{equation*}
f(z)=\left\{z^{2}-(p+\delta p) z-(l+\delta l)\right\} Q(z), \tag{35}
\end{equation*}
$$

where $Q(z)$ is a polynomial of degree $n-2$.

[^1]Subtractugg (35) from (27), and usmg (30), we find

$$
\begin{equation*}
\left\{z^{2}-p z-\eta\right)\{q(z)-Q(z)\}+\left(z \delta p+\delta b \varphi(z)+q_{1}(z-p)+q_{0}=0\right. \tag{36}
\end{equation*}
$$

Let $\alpha_{f}(j=1,2)$ be the zeros of $z^{2}-p z-l$ Then to the first order of small quantities δp and δl, we have $Q\left(\alpha_{j}\right)=q\left(\alpha_{j}\right)$ The value of $q\left(\alpha_{j}\right)$ is obtanned from the remainder $T_{2} z+T_{0}-p T_{1}$ on dividing $q(z)$ by $z^{2}-p z-l$, thus

$$
\begin{equation*}
q\left(\alpha_{j}\right)=T_{1} \alpha_{f}+T_{0}-p T_{1}=T_{1}\left(\alpha_{f}-p\right)+T_{0} \tag{37}
\end{equation*}
$$

Setting $z=\alpha, \ln (36)$ we find that the first term vanushes, and gubstututing the rught of (37) for $9\left(\alpha_{j}\right)$ we obtain

$$
\left(\alpha_{y} \delta p+\delta l\right)\left\{T_{1}\left(x_{1}-p\right)+T_{0}\right\}+q_{1}\left(\alpha_{y}-p\right)+q_{0}=0
$$

Replacing $\alpha_{f}\left(\alpha_{j}-p\right)$ by l, we find on reduction

$$
\begin{equation*}
\left(\alpha_{1}-p\right)\left\{T_{0} \delta p+T_{2} \delta l+q_{2}\right\}+\left\{\left(l T_{1}+p T_{0}\right) \delta p+T_{0} \delta l+q_{0}\right\}=0 \tag{38}
\end{equation*}
$$

Since the equation bolds for both zeros α_{f}, we may equate the contents of each ect of braces separately to zero Thus yrelds mmedately the two equations (34), and solving for δp and δt, we ohtans (32)

16 The proof shows that, luke Newton's role, the process $1 s$ quadratically convergent, the number of correct figuses may be doubled by each iteration
The two formulas are not exactly equivalent, however, this is shown by tho fact that Barstow'a process yelds an oxact result if $f(z)$ is itself a quadratio polynomual whereas Newton's rule does not

Example

17 The polynomal

$$
f(x)=z^{4}+0041634 z^{4}+1145460 z^{3}+0163637 z^{2}+0991439 z+0142857
$$

is dinded by tho approsimate factor

$$
z^{2}-p z-l=z^{2}-0415 z+0487
$$

Table Bairston a Process

t	$\begin{array}{r} -0.487 \\ 0415 \end{array}$			$\begin{array}{r} -0-487280 \\ 0.415354 \end{array}$
a	σ_{2}	9.	T-	2
5	${ }_{0}^{1} 0041634$	$\mathrm{I}_{0} \mathrm{C} 458631$	${ }_{0}^{1} 8716$	1
3	0011634 1145160	$0-456633$ 0847963		0-456988
2	0.163637	0-293181	$01686\left(T_{0}\right)$	0293173
1	0-291339	$0000143\left(q_{1}\right)$		$0000000\left(5_{1}\right)$
0	0-142857	$0000157(8)$		$0000000(80)$
N			-0-2950	
D			0-2322	
8			-0000230	
δ_{p}			0.00035.4	

The sequence q_{s}, q_{4}, q_{0} given in the centre column of Table 1 is evaluated by apphestion of (28) The nest column gaves $T_{3}, T_{2}, T_{1}, T_{8}$, computed by
means of (31). The corrections

$$
\delta p=0.000354, \quad \delta l=-0.000280
$$

are found from (32) and (33), and checked by (34). The new factor

$$
z^{2}-0 \cdot 415354 z+0 \cdot 487280
$$

is checked by division into $f(z)$. Further corrections are obviously less than a unit in the sixth decimal place.

POLYNOMIALS OF HIGH DEGREE

18. The complete solution of polynomial equations

$$
\begin{equation*}
f(z) \equiv a_{n} z^{n}+a_{n-1} z^{n-1}+a_{n-2} z^{n-2}+\ldots+a_{0}=0 \tag{39}
\end{equation*}
$$

of degree n exceeding five is seldom worthwhile on desk machines; such problems should be referred, where possible, to organizations equipped with automatic computers. In the remainder of this chapter we describe some of the features of the automatic calculation of the zeros of polynomials with real coefficients. For further details the reader should consult [36].
19. An important aspect, which should be fully understood, is that the zeros of a polynomial of high degree, expressed in the explicit form (39), are often poorly determined inasmuch as some, or even all, of them may be extremely sensitive to slight changes in the coefficients.

To detcrmine the effect on a zero α of a small variation in the coefficient a_{s}. we diffcrentiate (39) with rcspect to a_{s}, and then replace z by α. Then
giving

$$
\begin{gather*}
f^{\prime}(\alpha) \frac{\partial \alpha}{\partial a_{s}}+\alpha^{s}=0, \tag{40}\\
\frac{\partial \alpha}{\partial a_{s}}=-\frac{\alpha^{s}}{f^{\prime}(\alpha)} . \tag{41}
\end{gather*}
$$

or, in terms of relative errors,

$$
\begin{equation*}
\frac{\delta \alpha}{a}=-\frac{a^{s-1} a_{s}}{f^{\prime}(\alpha)} \frac{\delta a_{s}}{a_{s}} . \tag{42}
\end{equation*}
$$

If $f^{\prime}(a)$ vanishes, corresponding to a multiple zero, $\partial \alpha / \partial a_{s}$ is infinite. Thus ralues of multiple zeros are seriously affected by slight changes in the coefficients. But polynomials with quite distinct zeros may also be afflicted by this malady. Consider, for example,

$$
\begin{equation*}
f(z)=(z+1)(z+2)(z+3) \ldots(z+20) . \tag{43}
\end{equation*}
$$

One of the worst cases is obtained by taking $\alpha=-16$ and $s=19$ in (42). We then find that

$$
\begin{equation*}
\frac{\delta \alpha}{a}=\frac{16^{18} \times 210}{4!15!} \frac{\delta a_{s}}{a_{s}} \fallingdotseq 3.2 \times 10^{10} \frac{\delta a_{s}}{a_{s}} . \tag{44}
\end{equation*}
$$

This means that in solving a polynomial equation whose roots have a distribution similar to the zeros of (43), we must carry out some parts of the work using at least 10 figures more than are required in the answer, whatever method of solution is employed.

General purpose programmes for the solution of polynomial equations must therefore be of high working precision, at least double word length must be used for most computers

As a corollary, analogue computers, such as ssographs and electrolytic tanks, see [200], are of little use except for low degree polynomuals, bechuse of their very restincted worling precision

20 The ill-determmation of the zeros of high-degree polynomials no doubt suggests to the reader that unless the solution of the physical problem giving nse to a hugh-degree polynomal equation is itself poorly determined, then another and more stable formulation of the computing problem must exist This es often true and such a formulstion should always be sought Nevertheless, the polynomal equation, computed and solved with high working precison, may often pronde the easiest solution because of the amplinty and generality of its form

afrileation of iterative methods

21 Among the more suitable methods for automatic work are those based on the use of quadratically convergent iterative formulae with arbitrary initual guesses Except in pathological cases, reperted applics thons of Barstow s process (§ 14) with any mitial tral factor will converge after a sufficient number of iterations

The quadratic factor of $f(z)$ so obtamed may be divided out (\$ 13) and the process repeated with the quoticnt replacing $f(z)$ In this way all the factors are obtaned To guard agamst the possible accumulation of round ing errors, the factors ohtamed from the successive quotients should subsequently be cheched by itcration in the original polynomal equation (39)

22 The process falls when as mught happen in practice, the accumulation of rounding erross is so severo that very poor approxima thons ohtsuned to the later factors converge on earher ones when iterated in the onginal polynoralal equation It can be shown, however, that this mill not oocur if the zeros of the polynomal are found in ascending order of modulus magnutude see [36]

There is no easy way of ensung that the zeros are evaluated in preorsely thus order, but dificulties seldom anse in practice if all the inutial apprommations to the zeros are taken to be in the neighbourhood of the ongin

23 The number of iterations needed depends on a variety of crrcumstances, but for a polynomal of degree 20 it is as a rule, of the order of 10 rather than 100 There 13 , however one special situation whuch should be anticipated Consider the polynomal $z^{20}-1$, and for illustration tahe $z=\frac{1}{2}$ as the matial approximation and apply Newton'a rule The next approxumation is found to be

$$
z=\frac{i}{2}+\frac{I-(1)^{20}}{20\left(\frac{1}{2}\right)^{15}}=\frac{1}{2}+\frac{2^{1}}{20}=269149
$$

Further approximations z_{r} are given by

$$
z_{r+1}=z_{r}+\frac{1-z_{r}^{20}}{20 z_{r}^{10}}=\frac{19}{20^{10}} z^{2}
$$

when z_{r} is large. The successive approximations therefore diminish slowly and many iterations are required before the neighbourhood of the two real roots $\pm l$ is approached.

This kind of difficulty may be overcome by imposing the condition

$$
\begin{equation*}
\left|z_{r+1}\right| \leqslant C\left|z_{r}\right| \tag{45}
\end{equation*}
$$

where C is an arbitrarily chosen constant, 3 for example; the exact value is not critical. Valnes of z_{r+1} which violate this inequality are replaced by $C z_{r}$.

A similar safeguard should be used with Bairstow's process.
24. Another device for reducing the number of iterations is to take as the initial approxiniation at each stage the quadratic factor which has been obtained and divided out at the previous stage. If there is illconditioning due to the next factor being close to the previous one, this initial guess will be good. If, however, the factors are well separated, there is no ill-conditioning; the fact that the initial guess is now poor is of no importance. When the first factor obtained has the smallest zeros this procedure results in the other zeros being found in roughly increasing order of magnitude (compare § 22).
25. Advantages of the method described are, first, that iterative processes require relatively few instructions and are easy to programme. Secondly, iterative processes demand the use of no more than the minimum working precision inherently necessary to compensate for ill-conditioning. The root-squaring process, which enjoyed considcrable favour on desk machines (see [37]), is difficult to programme and suffers more scverely from cancellation when applied to ill-conditioned polynomials.

7

FINITE-DIFFERENCE METHODS

DEEINITIONG AND NOTATIONS

1. Table I gives four decrmal values of $\sin x$ at 10° intervals of the argument x In the next column are written down the differences between successive values of $\sin x$, these are called the first differences The next column contains the second dsfferences, which are the differences between

successive values of the first differences, and so on It will be noted that the differences steaduly decrease in magnitude until they are finally small and oscillatory, a computer would accordengly bay that $\sin x$ is "well hehaved' at thrs interval The convention that eagns are given at the ends of a column and where they change is as standard nan Tahles listed on automatic computers however, will usually give all the negative asgns but not the positive

If a general function $g(x)$ is tabulated at equal intervals h, that is, for arguments $x_{n}=x_{0}+n h$, the function $y\left(x_{n}\right)$ may be denoted hy y_{n} The general scheme of differences may then be set out in three different ways,
according to whether the notation of forward (Δ), backward (∇) or central (δ) differences is used. The defining equations are given by

$$
\begin{equation*}
\Delta y_{n}=\nabla y_{n+1}=\delta y_{n+\frac{1}{2}}=y_{n+1}-y_{n} \tag{1}
\end{equation*}
$$

and the corresponding tables of differences are shown in Table 2.
It should be noted that the same numerical values are represented in the three schemes: for example, $\Delta_{-1}^{3}, \nabla_{2}^{3}$ and δ_{1}^{3} all represent the same quantity $\left(y_{2}-3 y_{1}+3 y_{0}-y_{-1}\right)$.

Table 2

DETECTION OF ERRORS BY DIFFERENOING

| Table 3 | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | +1 |
| 0 | 0 | 0 | 0 | +1 | +1 | -6 |
| 0 | 0 | +1 | +1 | -4 | -5 | +15 |
| 1 | +1 | -2 | -3 | +6 | +10 | -20 |
| 0 | -1 | +1 | +3 | -4 | -10 | +15 |
| 0 | 0 | 0 | -1 | +1 | +5 | -6 |
| 0 | 0 | 0 | 0 | 0 | -1 | +1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

2. Table 3 shows how the effect of a single error spreads out fanwise in a table of differences and is at the same time considerably magnified. This fact can be used to detect errors by differencing.
In Table 4 the differences do not decrease smoothly, the terms of δ^{4} being bigger than those of δ^{3}. Comparison with Table 3 suggests that there is an error of -9 in the last place of the entry for $x=0.5$. This is in fact the case; the correct entry is 0.6065 and the last two figures have been transposed, a very common form of error. An error detected in this way should always be corrected by recomputation of the function.

It may be mentioned that some accounting machines are very useful for the formation of differences, which can be printed up to the fifth or more at about 300 lines per hour. Punched card machines may also be used and are appreciably faster, if the values are already on cards.

It can easily be verufied that the $(n+1)$ th dufferences, hike the $(n+1)$ th denvatise, of an nth degree polynomasl, are zero, that ns, the nth differenees are constant Thus mahes it possuble to bubld ap polynomads from a known constant dufference, agaun accounting machunes and punched card maschunes can be used

Tabie 4					
*	e^{-4}		s^{2}		s^{*}
00	10000				
		-952			
1	09045		+91		
2	8187		82		+1
3	2408	779	74	-8	-8
		705		-16	
4	6703		58		+37
5	6056	647	79	+21	-54
		568		-33	
6	5483		46		+36
7	4966	628	49		- 6
		473		- 7	
8	403		+13		
09	0.4066	-127			

SYBBOLIC RELATEONS
3 Difference formulae are most eassly obtanned by symbolio methods, regsarding the aymbols Δ, ∇ and δ as operators To establush formulas for interpolation, the displacement operator E and averagng operator μ will also be required These are defined by the relations

$$
\begin{equation*}
E_{y_{n}}=y_{m+1} \quad \mu y_{n}=\frac{1}{2}\left(y_{n+1}+y_{n-1}\right) \tag{2}
\end{equation*}
$$

The defimitons are seen to lead mmediately to the relations

$$
\left.\begin{array}{ll}
\Delta=E-1 & \delta=E^{d}-E \tag{3}\\
\nabla=1-E^{-1}, & \mu=\frac{1}{2}\left(E^{1}+E^{-1}\right)
\end{array}\right\}
$$

from which others may also be obtaned For example

$$
\begin{equation*}
\Delta=\nabla E=\delta E^{3}, \quad \mu^{2}=1+\frac{1}{2} \delta^{2} \tag{4}
\end{equation*}
$$

4 To obtain difference formulao for analytical processes such as differ entiation and integration it is necessary to estahias relations between these operators and the dafferential operator D, defined by the relation

$$
\begin{equation*}
D_{y}=\frac{d y}{d x} \tag{5}
\end{equation*}
$$

The connection is provided by Taylor's theorem expressed in the form

$$
\begin{aligned}
E y(x) & =y(x+h) \\
& =y(x)+h y^{\prime}(x)+\frac{h^{2}}{2!} y^{\prime \prime}(x)+\ldots \\
& =\left(1+h D+\frac{h^{2} D^{2}}{2!}+\ldots\right) y(x) \\
& =e^{h D} y(x),
\end{aligned}
$$

so that

$$
\begin{equation*}
E=e^{h D} . \tag{6}
\end{equation*}
$$

The interrelations between all these operators are summarized in Table 5.

Table 5

	E	Δ	δ	∇	$h D$
E	E	$1+\Delta$	$1+\frac{1}{2} \delta^{2}+\delta \sqrt{ }\left(1+\frac{1}{4} \delta^{2}\right)$	$(1-\nabla)^{-1}$	$e^{h D}$
Δ	$E-1$	Δ	$\delta \sqrt{ }\left(1+\frac{1}{4} \delta^{2}\right)+\frac{1}{2} \delta^{2}$	$\nabla(1-\nabla)^{-1}$	$e^{h D}-1$
δ	$E^{1}-E^{-1}$	$\Delta(1+\Delta)^{-1}$	δ	$\nabla(1-\nabla)^{-1}$	$2 \sinh \frac{1}{2} h D$
∇	$1-E^{-1}$	$\Delta(1+\Delta)^{-1}$	$\delta \sqrt{ }\left(1+\frac{1}{4} \delta^{2}\right)-\frac{1}{2} \delta^{2}$	∇	$1-e^{-n D}$
$h D$	$\log E$	$\log (1+\Delta)$	$2 \sinh ^{-1} \frac{1}{2} \delta$	$-\log (1-\nabla)$	$h D$
μ	$\frac{1}{2}\left(E^{1}+E^{-1}\right)$	$\left(1+\frac{1}{2} \Delta\right)(1+\Delta)^{-1}$	$\sqrt{ }\left(1+\frac{1}{4} \delta^{2}\right)$	$\left(1-\frac{1}{2} \nabla\right)(1-\nabla)^{-1}$	$\cosh \frac{1}{2} h D$

INTERPOLATION FORMUIAE

5. These formulae express y_{p}, that is $y\left(x_{0}+p \hbar\right)$, when p is not necessarily an integer, in terms of y_{0}, y_{1} and appropriate differences; the formulae differ in the precise sets of differences employed.
(i) Newton's interpolation formulae
6. This formula, using forward differences, is easily obtained in the form

$$
\begin{align*}
y_{p} & =E^{p} y_{0}=(1+\Delta)^{p} y_{0} \\
& =y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{0}+\ldots \tag{7}
\end{align*}
$$

The interpolate obtained by truncating this series at the nth difference is the same as the value taken at x_{p} by the interpolating polynomial of degree n which reproduces exactly the function values at $x_{0}, x_{1}, \ldots, x_{n}$. The corresponding backward-difference formula is obtained in a similar way:

$$
\begin{align*}
y_{p} & =E^{p} y_{0}=(1-\nabla)^{-p} y_{0} \\
& =y_{0}+p \nabla y_{0}+\frac{p(p+1)}{2!} \nabla^{2} y_{0}+\ldots . \tag{8}
\end{align*}
$$

In this case the interpolating polynomial of degree n reproduces the function values at $x_{0}, x_{-1}, \ldots, x_{-n}$.

These formulae are not satisfactory for use other than near the end of a differencc table, when central differences may not be available. By substitution for the forward differences in terms of central differences, Newton's
forward-difference formula can bo transformed into more suitable formulae, which howerer may also be ohtamed dinectly as follows

(u) Eierett's interpolation formula

7. Thus formula expresses the interpolate y_{p} in terms of even differ ences of y_{0} and y_{1}, so that we assume an expression of the form

$$
\begin{equation*}
y_{p}=\left(a_{0}+a_{1} \delta^{2}+a_{2} \delta^{4}+\quad y_{0}+\left(b_{0}+b_{1} \delta^{2}+b_{2} \delta^{4}+\right) y_{2}\right. \tag{9}
\end{equation*}
$$

Now

$$
y_{p}=E^{p} y_{0}=(1+\Delta)^{p} y_{0} \quad y_{1}=(1+\Delta) y_{0} \quad \delta^{2}=\Delta^{n}(1+\Delta)^{-1}
$$

Thus

$$
\begin{align*}
(1+\Delta)^{p} y_{0}= & \left(a_{0}+b_{a}+b_{0} \Delta\right)+\left(a_{1}+b_{2}+b_{2} \Delta\right) \frac{\Delta^{t}}{1+\Delta} \\
& +\left(a_{2}+b_{2}+b_{2} \Delta\right) \frac{\Delta^{4}}{(1+\Delta)^{2}}+\int y_{0} \tag{10}
\end{align*}
$$

Arultaplyng by $(1+\Delta)$, expanding the remannag denomunators and equating powers of Δ^{2+4} and Δ^{2+12}, we obtan the relations

$$
\begin{equation*}
b_{s}=\binom{p+b}{2 s+1}, \quad a_{p+1}+b_{z+1}=\binom{p+s}{g s+2} \tag{11}
\end{equation*}
$$

Hence $\quad a_{s}=\binom{p+s-1}{2 s}-\binom{p+s}{2+1}=-\binom{p+z-1}{2 s+1}=\binom{q+s}{z s+1}$,
Where $q=1-p$ Then

$$
\begin{align*}
y_{p}= & q y_{0}+\frac{(q+1) q(q-1)}{3^{!}} \delta^{2} y_{0}+\frac{(q+2)(q+1) g(q-1)(q-2)}{5!} \delta^{4} y_{0}+ \\
& +p y_{1}+\frac{(p+1) p(p-1)}{3^{!}} \delta y_{1}+\frac{(p+2)(p+1) p(p-1)(p-2)}{51} \delta y_{1}+ \tag{13}
\end{align*}
$$

This formula can also be obtaned by expressing y_{p} in the form $y_{p}=F(q) y_{0}+F^{\prime}(p) y_{s}$, where $F(p)=\left(E^{p}-E^{-p}\right) /\left(E-E^{-1}\right)$ and expanding $F \mathrm{~m}$ powers of δ^{2}

We write (13) in the form

$$
\begin{align*}
& y_{p}=(1-p) y_{0}+E_{2} \delta^{3} y_{0}+E_{4} \delta^{4} y_{0}+ \\
&+p y_{1}+F_{2} \delta^{2} y_{1}+F_{1} \delta^{4} y_{1}+, \tag{14}
\end{align*}
$$

where $E_{2} F_{2}, E_{8}, F_{4}$, etc, are the Eterett coefficients The chief advantage
 ences need be tabulated Also the miterpolateng polynombal of degree $2 n+1$ reproduces the function values at $x_{n+1}, x_{n,}, x_{-n}$, since these are centred about the interval $\left(x_{0}, x_{1}\right)$ the function is thus usually represented more aecurately in this interval than it would be by the interpolating polynomial of degree $2 n+1$ assocuated with erther (7) or (8)
(iii) Bessel's interpolation formula
8. This formula expresses y_{p} in terms of mean differences of even order $\mu \delta^{2 n} y_{1}$ and odd-order differences $\delta^{2 n+1} y_{1}$. It is written as

$$
\begin{equation*}
y_{p}=y_{0}+p \delta y_{1}+B_{2}\left(\delta^{2} y_{0}+\delta^{2} y_{1}\right)+B_{3} \delta^{3} y_{1}+B_{4}\left(\delta^{4} y_{0}+\delta^{4} y_{1}\right)+\ldots \tag{15}
\end{equation*}
$$

where the Bessel coefficients B_{2}, B_{3}, etc., are readily obtained with the use of Everett's formula and relations of the form

$$
\begin{equation*}
E_{2} \delta^{2} y_{0}+F_{2} \delta^{2} y_{1}=\frac{1}{2}\left(E_{2}+F_{2}\right)\left(\delta^{2} y_{0}+\delta^{2} y_{1}\right)+\frac{1}{2}\left(F_{2}-E_{2}\right) \delta^{3} y_{\frac{1}{2}} \tag{16}
\end{equation*}
$$

so that $B_{2}=\frac{1}{2}\left(E_{2}+F_{2}\right), B_{3}=\frac{1}{2}\left(F_{2}-E_{2}\right)$, and similarly for coefficients of higher orders.

Bessel's formula is the simplest to use when differences of order greater than the third are negligible.

Examples of the use of interpolation formulae are given in Interpolation and allied tables [167] and in various text-books. The notation used here is the same as that adopted in this latest edition of Interpolation and allied tables, where, in particular, an account will be found of the use of these formulae for inverse interpolation, that is, the determination of the value of x_{p} corresponding to a given value of y.

FORMULAE FOR DERIVATIVES

(i) Backward- or forward-difference formulae
9. Formulae giving the derivative at a pivotal point in terms of the baokward or forward differences at that point can be obtained inmediately from the relations between D, Δ and ∇. With backward differences we find

$$
\begin{align*}
h y_{0}^{\prime} & =h D y_{0}=-\{\log (1-\nabla)\} y_{0} \\
& =\left(\nabla+\frac{1}{2} \nabla^{2}+\frac{1}{3} \nabla^{3}+\ldots\right) y_{0}, \tag{17}
\end{align*}
$$

and with forward differences we have

$$
\begin{align*}
h y_{0}^{\prime} & =h D y_{0}=\{\log (1+\Delta)\} y_{0} \\
& =\left(\Delta-\frac{1}{2} \Delta^{2}+\frac{1}{3} \Delta^{3}-\ldots\right) y_{0} . \tag{18}
\end{align*}
$$

The coefficients in these expressions decrease slowly and it is preferable to use central differences if they are available. If a derivative is required at the penultimate point of a table, one of the following formulae may be used to obtain better accuracy:

$$
\left.\begin{array}{rl}
h y_{0}^{\prime} & =h D E^{-1} y_{1}=-(1-\nabla)\{\log (1-\nabla)\} y_{1} \tag{19}\\
& =\left(\nabla-\frac{1}{2} \nabla^{2}-\frac{1}{6} \nabla^{3}-\ldots\right) y_{1}, \\
h y_{0}^{\prime} & =h D E y_{-1}=(1+\Delta)\{\log (1+\Delta)\} y_{-1} \\
& =\left(\Delta+\frac{1}{2} \Delta^{2}-\frac{1}{6} \Delta^{3}+\ldots\right) y_{-1} .
\end{array}\right\}
$$

(ii) Central-difference formulae
10. The relation between the second derivative at a pivotal point and the differences centred on that point is obtained immediately in a similar way. We find

$$
\begin{align*}
h^{2} y_{0}^{\prime \prime} & =h^{2} D^{2} y_{0}=\left(2 \sinh ^{-1} \frac{1}{2} \delta\right)^{2} y_{0} \\
& =\left(\delta^{2}-\frac{1}{12} \delta^{4}+\frac{1}{90} \delta^{6}-\ldots\right) y_{0} \tag{20}
\end{align*}
$$

In the case of the first denvatuse, howerex, the series obtaned would be in terms of the odd-order differences $\delta^{* n+1} y_{0}$ whech do not actually appear in the difference table The senns requared will involve mean dufferences of odd order $\mu \delta^{2 n+1} y_{0}$ and thas is obtained by introducing the factor μ into the numerator, and the corresponding factor $(1+1, \delta z)$ into the denominator, in the course of the development This device is frequently of tuse We have

$$
\begin{align*}
& h y_{0}^{\prime}=h D y_{0}=\left(2 \sinh ^{-1} i \delta\right) y_{0} \\
& =\left(1+{ }_{4}^{8} \delta^{2}\right)^{-4}\left({ }^{2} \mathrm{smhh}^{-1}{ }^{15}\right) \mu V_{0} \\
& =\left(\mu \delta-\frac{1}{6} \mu \delta^{5}+\frac{1}{3} \mu^{2} \delta^{5}-\right) y_{0} \tag{1}
\end{align*}
$$

Another formula, used in a numencal method for solving first-order differential equations (Chapter $9, \$ 16$), connects the mean of the deriva tives $y_{0}^{\prime}, y_{1}^{\prime}$ with the mean dufferences at the half way pomt, and is given by

$$
\begin{align*}
\frac{1}{2}\left(y_{0}^{2}+y_{1}^{1}\right) & =h \mu y_{1}^{4}=h D_{\mu y_{1}} \\
& =\left(2 \sinh ^{-1} \frac{1}{2} \delta\right)\left(1+\frac{1}{6} \delta^{2}\right)^{1} y_{1} \\
& =\left(\delta+\frac{1}{1} \delta^{3}-\frac{1}{1} \frac{1}{2} \delta^{5}+3 y_{1}\right.
\end{align*}
$$

Other formulac to surt apecial circumstances can bo obtamed by a cornbmation of these methotis \{167\}

FORMELAR POR SOMERICAL INTHGBATION

(i) Central-diference formuine

11 By reversion of the central dufference formula (28) for the mean first denvative at the half way point, a senes is obtamed expresung the first difference in terms of rean even differences of the denvatave, given by

$$
\delta y_{t}=\left(\mu_{1}-\frac{1}{1} \mu^{\prime} \delta^{7}+\frac{\mu^{2}}{\sqrt{2} \delta} \mu^{4} \delta^{4}-\right) h_{y_{k}^{\prime}}
$$

Thus gives merneduately an expression for tho integral taken over a sungle interral, in the form

$$
\begin{equation*}
\frac{1}{h} \int_{x_{1}}^{x_{0}} y d x=\left(\mu-\frac{1}{1 z} \mu \delta^{2}+\frac{31}{7 x} \mu \delta^{4}-\right) y_{k} \tag{24}
\end{equation*}
$$

An integral over an extended range may be evaluated hy durect suru mation of values calculated from the formula, guarding figures may be retaned to offset the accumulation of romonang errors Altemativels, the summation may be performed analytically, giving the formula

$$
\begin{align*}
\frac{1}{h} \int_{x}^{x_{0}} y d x & =\left(\frac{1}{2} y_{0}+y_{1}++y_{n-3}+\frac{1}{3} y_{n}\right) \\
& -\frac{1}{2}\left(\mu \delta y_{n}-\mu \delta y_{0}\right)+\frac{11}{2}\left(\mu \delta \delta^{2} y_{n}-\mu \delta^{3} y_{0}\right)- \tag{25}
\end{align*}
$$

 difference correction associated with the ends of the range of integration

12 If a sequence of such motegrals is required for anccessive values of n in the npper limit in the integral of $\{\mathbf{~} 5 \boldsymbol{y}$, it is convenient to wse the first sum δ^{-1}, defined by the relation

$$
\begin{equation*}
\delta^{-1} y_{n+1}-\delta^{-1} y_{n-b}=y_{k} \tag{26}
\end{equation*}
$$

The formula for the indefinite integral is obtained immediately as

$$
\begin{equation*}
\frac{1}{h} \int^{x_{n}} y d x=\left(\mu \delta^{-1}-\frac{1}{1 \Xi} \mu \delta+\frac{11}{\sqrt{2} 0} \mu \delta^{3}-\ldots\right) y_{n} . \tag{27}
\end{equation*}
$$

To obtain the definite integral from x_{0} to x_{n}, the arbitrary constant in the first sum must be chosen so that the integral vanishes at the lower limit. Thus

$$
\begin{equation*}
\delta^{-1} y_{t}=\mu \delta^{-1} y_{0}+\frac{1}{2} y_{0}=\left(\frac{1}{2}+\frac{1}{12} \mu \delta-\frac{11}{720} \mu \delta^{3}+\ldots\right) y_{0} \tag{2S}
\end{equation*}
$$

13. A formula which is used extensively in the integration of secondorder differential equations is obtained by reversion of the series (20) for the second derivative, and is given by

$$
\begin{equation*}
\delta^{2} y_{0}=\left(1+\frac{1}{12} \delta^{2}-\frac{1}{240} \delta^{4}+\ldots\right) h^{2} y_{0}^{\prime \prime} . \tag{29}
\end{equation*}
$$

(ii) Baclward-difference formulae

14. Reversion of the two formulae (17) and (18) for the derivative in terms of backward differences leads immediately to the relations

$$
\left.\begin{array}{l}
\nabla y_{1}=\left(1+\frac{1}{2} \nabla+\frac{5}{12} \nabla^{2}+\ldots\right) h y_{0}^{\prime}, \tag{30}\\
\nabla y_{0}=\left(1-\frac{1}{2} \nabla-\frac{1}{12} \nabla^{2}-\ldots\right) h y_{0}^{\prime} .
\end{array}\right\}
$$

The first of these is used as a 'predictor' formula and the second as a 'corrector' in the Adams-Bashforth process for integrating differential cquations (Chapter $9, \S 8$).
(iii) Gregory's formula
15. The central-difference formulae should be used wherever possible, since they are the most rapidly convergent. In some cases, however, the integrand may not be readily computable outside the range of integration. In such cases Gregory's formula, which uses only available differences, should be applied. It is obtained by combining the second of (30) with the corresponding expression for Δy_{0}, given by

$$
\begin{equation*}
\Delta y_{0}=\left(1+\frac{1}{2} \Delta-\frac{1}{12} \Delta^{2}+\ldots\right) h y_{0}^{\prime} \tag{31}
\end{equation*}
$$

We then find Gregory's formula, expressible in the form

$$
\begin{align*}
\frac{1}{h} \int_{x_{0}}^{x_{n}} y d x= & \left(\frac{1}{2} y_{0}+y_{1}+\ldots+y_{n-1}+\frac{1}{2} y_{n}\right)-\frac{1}{12}\left(\nabla y_{n}-\Delta y_{0}\right) \\
& \quad-\frac{1}{24}\left(\nabla^{2} y_{n}+\Delta^{2} y_{0}\right)-\frac{19}{720}\left(\nabla^{3} y_{n}-\Delta^{3} y_{0}\right)-\ldots . \tag{32}
\end{align*}
$$

(iv) Simpson's rule
16. A useful central-difference integration formula is obtained if the integral over two intervals is expressed in terms of the central differences at the middle pivotal point. We find

$$
\begin{align*}
\frac{1}{2 h} \int_{x_{-1}}^{x_{1}} y d x & =\frac{1}{2}\left\{(h D)^{-1} y_{1}-(h D)^{-1} y_{-1}\right\} \\
& =(h D)^{-1} \mu \delta y_{0} \\
& =\left(2 \sinh ^{-1} \frac{1}{2} \delta\right)^{-1}\left(1+\frac{1}{4} \delta^{2}\right)^{\ddagger} \delta y_{0} \\
& =\left(1+\frac{1}{6} \delta^{2}-\frac{1}{18 \delta^{4}} \delta^{4}+\ldots\right) y_{0} . \tag{33}
\end{align*}
$$

In particular, if foarth and higher differences are neglected it carn be written in the Lagrangian form

$$
\begin{equation*}
\int_{2}^{x_{1}} y d x=\frac{h}{3}\left(y_{1}+4 y_{0}+y_{-1}\right)_{1} \tag{31}
\end{equation*}
$$

whech is well hnown as Sumpson s rule
Bichley [49] has listed a number of formulae of thas type in which dufferences above a certam order have been neglected aod the rest expreaged in terms of pisotal values These formulae, involving eqially spaced abscissae, are called the Neuton Cotes formulae Unless the differences of y are formed it may be difficult to oht un an accurate estimate of the result ing error If the accuracy required can beassured however, thas type of formula is valushle and particularly easy to use whth automatio computers

Other integration formulae are considened in Chapter 14

DIFREGIAG DIFFEREVOES

17 It must he emphasized that the formulae grven in this chapter can only be expected to gre accurate results for functions which are 'rell behared' in the sense of \$1 A brief account of the effects of usung dwerging differences is given by Fox [76 page 27]

8

CHEBYSHEV SERIES

INTRODUOTION

1. The formulae of the previous chapter which involve the explicit use of finite differences, are not, in general, well suited to automatic computation. We may recall, for instance, that Table 1 of Chapter 7 gave sufficient information for the computation of $\sin x$ to four decimal places for any x in the range $\left(0, \frac{1}{2} \pi\right)$ with the aid of a standard interpolation formula. In conjunction with other finite-difference formulae, it will yield values of integrals and derivatives, though not neccssarily to the same accuracy. However, such calculations would require a somewhat elaborate computer programme, and the user of an automatic machine seeks a more convenient procedure.
2. Basically the same information as that given by the above-mentioned table of $\sin x$, is given, to similar accuracy, by the approximate relation

$$
\begin{equation*}
\sin \frac{1}{2} \pi x \fallingdotseq 1 \cdot 1336 T_{1}(x)-0 \cdot 1381 T_{3}(x)+0 \cdot 0045 T_{5}(x) \quad(-1 \leqslant x \leqslant 1), \tag{1}
\end{equation*}
$$

where $T_{r}(x)$ is the Chebyshev polynomial of degree r in x, defined by

$$
\begin{equation*}
T_{r}(x)=\cos \left(r \cos ^{-1} x\right) . \tag{2}
\end{equation*}
$$

The representation of $\sin \frac{1}{2} \pi x$ is thereby achieved with the storage of only three numbers, the coefficients of $T_{1}(x), T_{3}(x)$ and $T_{5}(x)$; the right of (1) may then be readily evaluated, as we shall show later. The expression (1) may also be integrated or differentiated, though again with some qualification regarding accuracy.

The desk-machine user is seldom attracted by the compactness of (1); he usually insists on seeing the function values and differences in order to ascertain at a glance the behaviour of the function, and to obtain a reliable oheck against isolated computing errors. However, for an automatic computer, which is much less prone to isolated errors, the Chebyshev series representation is preferable.

In this particular example, much of the advantage could also have been gained by use of the approximation

$$
\begin{equation*}
\sin \frac{1}{2} \pi x \fallingdotseq 1.5708 x-0.6460 x^{3}+0.0797 x^{5}-0.0047 x^{7} \quad(-1 \leqslant x \leqslant 1), \tag{3}
\end{equation*}
$$

obtained by truncating the Taylor-series expansion about $x=0$. We note that this approximation has one more term than (1); if the Taylor series is truncated after the third term, its maxinum error is larger. This is a simple example of the general property that in a given finite range, an
approvimation in Chehysher sernes of prescribed degree represents a function of a real warable more accurately than a truncated Taylor senes of the same degree (In the speecal case where the function bappens to be a polynomal of the required degree the Chebyshev and Taylor represent a tions are equally accurate each beogg a rearrangernent of the other) Moreover any function which can be nepresented by an orthodor sungle entry table can be represented by a smgle Chebysher serkes whereas a Taylor senes valid over the whole tabular range may not exast

BEST FOLYマOMIAL APPROXYMATION

3 The economy achueved by expansions in Chebrshev sertes may be regarded as a consequence of the following theorem

Let $f(x)$ be an arbitrary kingle rslued function defined in tbe closed metral (a b) and supposo $p_{n}(x)$ to bo a polynomal of gren degree n sucli that the deviation $\boldsymbol{c}_{n}(x)=f(x)-p_{n}(x)$ attains its greatest aboolute value L at not less than $n+2$ dustinct pents in (a b) and as alternately $+L$ and - L at the successive points Then $p_{n}(x)$ is tbe best polynomial approxma tion of degree n to $f(x)$ un $(a b)$ in the sense that the maximum value of $\left|\epsilon_{n}(x)\right|$ is as amall as possible
[For let $g_{n}(x)-f(x)-\eta_{n}(x)$ be a better polynomisl apprownation Then $f_{n}(x)-\eta_{n}(x)=g_{n}(x)-p_{n}(x)$ is exidently a polynomal of degree not greater tban n which is alternately pooztive and negative at the $n+2$ (or more) maxima of $\left|\epsilon_{n}(x)\right|$ sunce at these points $\left|\eta_{n}(x)\right|<\left|\epsilon_{n}(x)\right|$ by hypothesis This is clearly impossible and so the theorem is proved]

It sbould be obaeried that the theorem docs not assert the existence of $p_{p}(x)$ The conditions are quite resconable however in that they mply η set of $n+2$ equations for L and the $n+1$ coefficients of $p_{n}(x)$ By sumilar arguments we can show that if $p_{n}(x)$ exists it is unique

4 The relerance of Chebyshev polynomals to thas tesuit is that in the closed interval (-11) the polynomal $T_{f}(x)$ attans its greatest absolute value (unty) at $r+1$ pointa meluding the end points with siternating sign This is evident from the defintion (2) and is llustrated by the diagrams of $T_{5}(x)$ and $T_{6}(x)$ opposite which serve as typical examples of odd and eren-order polynomals respectively The turaing values of $T_{r}(x)$ oceur at the ponsts

$$
x_{s} \quad \cos ^{s \pi} \quad\left\{\begin{array}{l}
r \tag{4}\\
r
\end{array} 1^{2} \quad v\right)
$$

and the zeros at

$$
\begin{equation*}
x_{x}=\cos \frac{\left(x+\frac{1}{2}\right) \pi}{t} \quad(s=012 \quad r-1) \tag{o}
\end{equation*}
$$

Thus property of $T_{f}(x)$ together wath the theorem of 53 shows that if $f(x)$ is an arhitrars polynomal of degree $n+1$ the best polynomal approximation of degree n in $\left(\begin{array}{ll}-1 & 1)\end{array}\right.$ is

$$
\begin{equation*}
p_{n}(x) \quad f(x)-a_{n+1} T_{n+1}(x) \tag{6}
\end{equation*}
$$

where a_{n+1} is a constant chosen so that the coefficient of x^{n+1} on the nght of (6) , vanshes
5. No simple explicit expression is known for the best polynomial approximation of given degree to an arbitrary function $f(x)$. Suppose, however, that $f(x)$ can be expanded in the form

$$
f(x)=\frac{1}{2} a_{0}+a_{1} T_{1}(x)+a_{2} T_{2}(x)+\ldots \quad(-1 \leqslant x \leqslant 1),
$$

which we shall henceforth denote by

$$
\begin{equation*}
f(x)=\sum_{r=0}^{\infty} a_{r} T_{r}(x) \quad(-1 \leqslant x \leqslant 1), \tag{7}
\end{equation*}
$$

where the prime indicates that the first term of the sum is to be halved.

Figure 1
Then, provided that this series converges reasonably rapidly, the partial sum

$$
\sum_{r=0}^{n} a_{r} T_{r}(x)
$$

will be a good approximation to the best polynomial of degree n in ($-1,1$), for the dominant term of the truncation error, whether it be $a_{n+1} T_{n+1}(x)$ or a later term, has the form required by the theorem of § 3 . The supposition that the series (7) converges rapidly is often thoroughly justified; indeed Lanczos [54] has shown that such expansions are the most strongly convergent of a wide class of expansions in orthogonal polynomials.

CONNEXION WITH ROURIER SERIES

6. The problem of expanding $f(x)$ in a Chebyshev series of the form (7) is essentially the same as that of expanding an arbitrary function in a Fourier cosine series. For if we set $x=\cos \theta$, then (7) becomes

$$
\begin{equation*}
f(\cos \theta)=\sum_{r=0}^{\infty} a_{r} \cos r \theta \quad(0 \leqslant \theta \leqslant \pi) . \tag{8}
\end{equation*}
$$

Sufficient conditions for thrs expansion to exist are that $f(\cos \theta)$ is a continuous function of θ, and has a finte number of maxima and muma in $(0, \pi)$, these are fulfilled if $f(x)$ is a contmuous function of x and has a finte number of maxime and mmma $m(-1,1)$

For cxample, the function $\left(4 x^{2}+1\right)$ may be expanded in the form (7), whereas $x \sin (1 / x)$ may not The former illustrates the fact that a function can often be expanded in a Chebysher eeries in an interval in which no single Taylor expansion converges

7 Although an expansion m Chebysher series is essentially a Founer cosme senes, it has an moportant property not ahared by tho general Founer senes The expanston (7) reprecents a function $f(\cos \theta)$ whuch is naturally periodic, $f(\cos \theta)$ is at least as well behaved when regarded as a function of θ in $(-\infty, \infty)$ as is $f(x)$ regarded as a function of x in $(-1,1)$ Wo may reasonahly expect that expansions of such periodic functions in series of trigonometric functions are more rapidly convergent as a class than sumlar expansions of non penode functions, and this is indeed the case

ADEQUACY OF CREDYSHET FORM

8 We may summanze $\$ \$ 1$ to 7 by restatug that a truscated Chebyshor senes is normally a good approzmation to the best polynomal representa tion in the sense of §̧ 3 In any given case the best polynomal approzima tion of हpecified degree n may be found by solving the $n+1$ equations obtaned by equating to each other, with altemating signs, the $n+2$ expressions for the mammum devations the truncated Chebyshev renea may be used to pronde a first approximation in an aterative procedure Alternatisely, we may uso semes whoch give the coefficents in the best polynomal in terms of the coefficients in the manite Chehysher senes Hornecher [58] has given expressons for the leadins terms in such sences, and these terms are often eufficient in practice to gre the hest polynomal to the requred accuracy see also [59]

However, it transpures that in practical appheations the truncated Chebysher series is usually very cloce to the best possible polynomal, the refinements necessars to improve it are seldom worthinhle

PEOPERTEES OF CHEEXSEXV POLY*OMIALS

9 The following properties of Chebyshev polvnomats may be derived from the definition (9), as m [54]

$$
\begin{align*}
& T_{r+1}^{r}(x)-2 x T_{r}(x)+T_{r-1}(x)=0 \tag{0}\\
& \int T_{r}(x) d x= \begin{cases}T_{1}(x) & (r=0) \\
\frac{1}{T}(x) & (r=1) \\
\frac{1}{2}\left(\frac{T_{r+1}^{\prime}\left(\left\{^{\prime}\right)\right.}{r+1}-\frac{T_{r-1}}{r-1}\right) & (r>1),\end{cases} \tag{10}\\
& \int_{-1}^{+1}{\underset{r}{r}}_{T(x) T_{s}(x)}^{\sqrt{\left(1-x^{2}\right)}} d x= \begin{cases}\pi & (r=s=0) \\
\frac{1}{2} n & (r=s \neq 0) \\
0 & (r \neq s)\end{cases} \tag{11}
\end{align*}
$$

and. for $n>0$ and $r, s \leqslant n$,

$$
\sum_{j=0}^{n}{ }^{\prime \prime} T_{r}\left(x_{j}\right) T_{s}\left(x_{j}\right)= \begin{cases}n & (r=s=0 \text { or } n) \tag{12}\\ \frac{1}{2} n & (r=s \neq 0 \text { or } n) \\ 0 & (r \neq s)\end{cases}
$$

In (12), $x_{j}=\cos (\pi j / n)$ and Σ^{n} denotes a finite sum whose first and last terms are to be halred, so that

$$
\begin{equation*}
\sum_{j=0}^{n}{ }^{n} u_{j}=\frac{1}{2} u_{0}+u_{1}+u_{2}+\ldots+u_{n-1}+\frac{1}{2} u_{n} . \tag{13}
\end{equation*}
$$

10. Chebyshev polynomials may be defined for ranges other than $(-1,1)$, and similar properties derived for them. In practice, however, it is usually more convenient to convert any finite range to ($-1,1$) by linear transformation of the variable. An exception to this is the range $(0,1)$, which is of sufficiently frequent occurrence to merit a notation for its own Chebyshev polynomials, namely

$$
\begin{equation*}
T_{r}^{*}(x)=T_{r}(2 x-1)=\cos \left\{r \cos ^{-1}(2 x-1)\right\} \tag{14}
\end{equation*}
$$

Equations similar to those numbered (9) to (12) can be derived without difficulty. We also have

$$
\begin{equation*}
T_{r}^{*}\left(x^{2}\right)=T_{2 r}(x) \tag{15}
\end{equation*}
$$

11. Explicit expressions for the first few Chebyshev polynomials are
$T_{0}(x)=1, \quad T_{1}(x)=x, \quad T_{2}(x)=2 x^{2}-1, \quad T_{3}(x)=4 x^{3}-3 x$,
$T_{4}(x)=\mathrm{S} x^{4}-\mathrm{S} x^{2}+1, \quad T_{5}(x)=16 x^{5}-20 x^{3}+5 x$,
$T_{6}(x)=32 x^{6}-48 x^{4}+18 x^{2}-1$,
and
$T_{0}^{*}(x)=1, \quad T_{1}^{*}(x)=2 x-1, \quad T_{2}^{*}(x)=8 x^{2}-8 x+1$,
$T_{3}^{*}(x)=32 x^{3}-48 x^{2}+18 x-1, \quad T_{4}^{*}(x)=128 x^{4}-256 x^{3}+160 x^{2}-32 x+1$,
$T_{5}^{*}(x)=512 x^{5}-1280 x^{4}+1120 x^{3}-400 x^{2}+50 x-1$.
Similar expressions for higher orders, up to $T_{12}(x)$ and $T_{20}^{*}(x)$, may be found in [54].

CALCULATION OF CHEBYSHEV COEFFICIENTS

12. The coefficients in the Chebyshev expansion of an arbitrary function

$$
\begin{equation*}
f(x)=\sum_{r=0}^{\infty} a_{r} T_{r}(x) \tag{18}
\end{equation*}
$$

can be obtained in various ways, the most obvious being suggested by the orthogonality relation (11). Thus we have

In practree thas fornula is seldom used to en aluate the a_{p}, but at does yield the following upper bounds, discossed in $\$ 17$

$$
\begin{equation*}
\left|a_{0}\right| \leqslant 2 M, \quad\left|a_{r}\right| \leqslant \frac{2 M}{\pi} \int_{0}^{\pi}|\cos r \theta| d \theta=\frac{4 M}{\pi} \quad(r>0), \tag{20}
\end{equation*}
$$

where M is the manamum value of $|f(x)|$ in ($-1,1$)
13 A more generally oseful method of evaluating the coeficients is based on the relation (12) Let us define quantities α for $r=0$, 1,2, n by

$$
\begin{equation*}
\alpha_{f}=\frac{2}{n} \sum_{j=0}^{n} \cdot f\left(x_{j}\right) T\left(x_{j}\right)=\frac{2}{n} \sum_{j=0}^{n}=f\left(\cos \frac{\pi}{n}\right) \cos \frac{\pi r}{n}, \tag{21}
\end{equation*}
$$

where $x_{j}=\cos \left(\pi_{j} / n\right)$
If $f(x)$ is a polynomal of degree n or leas we hase $\alpha_{p}=a_{n}$, by nirtue of (12) For general $f(x)$, however, this relation is only approvimate, with the and of an obvoous extension of (12) we can show that

$$
\begin{align*}
a_{p} & =\frac{2}{n, \sum_{s-0}^{\infty} \cdot a_{i} \sum_{f=0}^{n}-T_{i}\left(x_{j}\right) T_{r}\left(x_{j}\right)} \tag{22}\\
& =a_{p}+a_{2 n \rightarrow p}+a_{2 n+r}+a_{4 n \rightarrow+}+a_{s n+p}+a_{8 n \rightarrow+}+ \tag{23}
\end{align*}
$$

Provided that n is chosen sufficently large, the coeffiments a_{s} for $s \geqslant n$ and hence the differences $\alpha-a$, for all r, will vanush to any presenbed accuracy We then hare, withan the lumits of tha accuracy,

$$
\begin{equation*}
f(x)=\sum_{r=0}^{N} a_{r} T_{r}(x) \tag{24}
\end{equation*}
$$

where

$$
a,=\frac{2}{n} \sum_{j=0}^{n} n\left(\cos \frac{\pi j}{n}\right) \cos \frac{\pi \pi_{j}}{n}
$$

14 There is another method for calculating a, wheh may be preferable when $f(x)$ satisfies an ordinary hnear differentiat equation this is desenbed in Chapter $9 \S 823$ to 25

StHMATION OF CHEBYSHEV SERIES

15 We now consuder the problem of evaluating the Chebyshes series (24), with given numerical coefficients, for an arbitrary value of x in $(-1,1)$ A sumple example of such a series si given in the relition (1) One way is to replace the polynomals It (x) by therr expressions (16) in powers of x and then rearrange the result m tbe form

$$
f(x)=c_{0}+c_{2} x+c_{2} x^{2}+\quad+c_{n} x^{n}
$$

Given the coefficents c, we may craluate $f(x)$ for any x in $(-1,1)$ by the process of nested multuplucation (Chapter 6, § 1) Essentially this consests of evaluating successively the quantites $d_{n} d_{n}, d_{n-2}, d_{0}$ defined by

$$
\begin{equation*}
d_{r}=x d_{r+1}+c_{r} \quad d_{n+1}=0 \tag{26}
\end{equation*}
$$

The required result is given by

$$
f(x)=d_{0}
$$

16. An alternative procedure avoids this rearrangenent; $f(x)$ is evaluated directly from the numerical values of the Chebyshev coefficients a_{r} by recurrence. We form successively $b_{n}, b_{n-1}, b_{n-2}, \ldots, b_{0}$ from

$$
\begin{equation*}
b_{r}=2 x b_{r+1}-b_{r+2}+a_{r}, \quad b_{n+1}=b_{n+2}=0 \tag{27}
\end{equation*}
$$

Then

$$
\begin{equation*}
f(x)=\frac{1}{2}\left(b_{0}-b_{2}\right) \tag{28}
\end{equation*}
$$

In [57] it is shown that although the sequence of b_{r} may be subject to an appreciable building-up error, the resulting error in $f(x)$ is small.
17. For automatic computation, the first of these methods is usually the faster, because its recurrence relation has one term fewer. On the other hand, it suffers from the disadvantage that the coefficients c_{r} are functions of n; a more complete notation for them would be $c_{n, r}$. A decision to use a lower order of approximation would require the evaluation of a completely fresh set of coefficients, whereas in the second method we merely truncate the series (24) earlier. As a consequence, the publication of 'machine tables' of universal applicability would require a separate set of polynomial coefficients c_{r} for each n, compared with just one set of Chebysher coefficients a_{r}.

A second reason for preferring the Chebyshev series to the rearranged series is that the a_{r} are bounded, as we saw in (20). The coefficients c_{r}, in contrast, may become excessively large, thereby restricting the accuracy obtainable with a given word length.
For example, the Bessel funetion $J_{0}(10 x)$ may be rcpresented in $(-1,1)$ to nine decimal places by the first thirteen terms of its infinite Chebyshev expansion. The eoefficients a_{r} in this expansion, obtained by using the method of Chapter $9, \$ \S 23$ to 25 , are given in Table 1 together with the coefficients c_{r} in the rearranged polynomial of degree 12 in x^{2}.

	TABLE 1				
r	$(-)^{r} a_{r}$	$(-)^{r} c_{r}$	r	$(-)^{r} a_{r}$	$(-)^{r} c_{r}$
0	0.063081226	1.000000000	7	0.005698082	240.103317504
1	0.214616183	24.999999868	8	0.000677504	93.482516480
2	0.004336620	156.249992936	9	0.000060947	28.413919232
3	0.266203654	434.027625984	10	0.000004309	6.682050560
4	0.306125520	$678 \cdot 166631936$	11	0.000000246	1.119879168
5	0.136388770	678.155865600	12	0.000000012	0.100663296
6	0.034347540	470.892816384			

We see that although the two expressions are exactly equivalent in that

$$
J_{0}(10 x) \fallingdotseq \sum_{r=0}^{12} a_{r} T_{2 r}(x)=\sum_{r=0}^{12} c_{r} x^{2 r}
$$

there are three more decimal figures (or eleven more binary figures) in the greatest $\left|c_{r}\right|$ than in the greatest $\left|a_{r}\right|$.

18 For evaluating Chebssher senies of the forms

$$
\begin{align*}
& f(x)=\sum_{r=\infty}^{N} \cdot a_{r} T_{r}(x), \tag{29}\\
& f(x)=\sum_{r=\infty}^{N} a_{r} T_{s}(x) \tag{30}\\
& f(x)=\sum_{r=0}^{\infty} a_{r} T_{i r+1}(x) \tag{31}
\end{align*}
$$

the necessary modifications of the recurrence method are the replacement of the symbol x on the nght of (27) hy $2 x-1,2 x^{2}-1,2 x^{2}-1$ respectively, and in the case of (31) only, the replacement of (28) hy

$$
\begin{equation*}
f(x)=x\left(b_{0}-b_{2}\right) \tag{32}
\end{equation*}
$$

HETEGEATION

19 Given an expansion of the form (7) we may ohtain a corresponding expansion for the undefinte mitegral $\int f(x) d x$ by apphention of $\{10\}$ Thus

$$
\begin{equation*}
\int f(x) d x=\text { const }+\frac{a_{0} T_{3}}{2}+\frac{a_{1} T_{z}}{4}+\sum_{r=2}^{\text {P }} \frac{a_{r}}{2}\left(\frac{T_{r+1}(x)}{r+1}-\frac{T_{n-1}(x)}{r-1}\right)=\sum_{r=0}^{\infty} A_{r} T_{r}(x), \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{1}=\frac{a_{r-1}-a_{r+1}}{2 r} \quad(r>0) \tag{34}
\end{equation*}
$$

and A_{0} as determined by the lower limit of nitegration As an example we evaluate the expansion for $\int e^{*} d x$, starting with four-decumal values of the coeffictents a_{r} in the expansion of e^{2} The analytreal formula for the coefficients, obtamed from (19) $13 a_{r}=2 I_{r}(1)$ where I_{r} is the modified Bessel function of order r

Table 2

\cdots	a	A.	22.(1)
0	25321	-	953213
1	11303	113030	113032
2	02715	0-87150	-27150
3	00.143	001433	00.4431
4	00005	000.48	-000.47
5	0.4005	000055	000054
6	00000	000004	000004

We observe that there ss a gam maccuracy in formung the A_{r} from the a_{r} consequent upon the division by $2 r$ For further details, including a comparson with other methods for numerical integration see [134]
20. The problem of differentiation is the inverse of that of § 19. Given a set $A_{0}, A_{1}, A_{2}, \ldots$, we require the coefficients $a_{0}, a_{1}, a_{2}, \ldots$. They can be found by using (34) in the form

$$
\begin{equation*}
a_{r-1}=a_{r+1}+2 r A_{r} . \tag{35}
\end{equation*}
$$

If A_{n} is the coefficient of highest order which is not negligible, we take $a_{n}=a_{n+1}=a_{n+2}=\ldots=0$, and then find $a_{n-1}, a_{n-2}, \ldots, a_{0}$ by successive application of (35). The factor $2 r$ is now multiplicative, and thus gives rise to the loss of accuracy which invariably accompanies numerical differentiation. It is advisable if possible to retain extra decimal places in the coefficients of high order, to minimize this loss.

ORDINARY DIFFERENTIAL EQUATIONS
 INITMAL VALUE PROBLEMS

INTRODUCTIOR

1 Ordinary differential equations whuch arnse in practicsl problems, even when linear and of apparently sumple form, can rarely be solved analytically in terms of furctions already tabulated Eren of an analytical solution can be foumd the labour of calculating values of the solution for many values of the independent vanable may be consaderable For example the smple equation

$$
\begin{equation*}
\frac{d y}{d x}-\frac{2 y}{1-x^{4}}=0 \tag{1}
\end{equation*}
$$

has the solution

$$
\begin{equation*}
y=A\left(\frac{1+x}{i-x}\right)^{\frac{1}{2}} \exp \left(\tan ^{-1} x\right) \tag{2}
\end{equation*}
$$

Where A is ebosen to fit some extra condition such as $y=1$ when $x=0$ The ss stematic tabulation of y for a range of ralues of x is not a tmmal undertaking In particular tables are needed of $\tan ^{I^{\prime}} x$ and e^{x}, and interpolation is necessary in the latter

The apparently trivial addition of the term x to the right of (I), giving

$$
\begin{equation*}
\frac{d y}{d x}-\frac{2 y}{1-x^{4}}=x \tag{3}
\end{equation*}
$$

increases considerably the compleuty of the analytical solution whre is now

$$
y=\left(\frac{1+x}{1-x}\right)^{\frac{3}{2}} \exp \left(\tan ^{1} x\right)\left\{\int x\left(\frac{1-x}{1+x}\right)^{4} \exp \left(-\tan ^{-1} x\right) d x+A\right\}
$$

where A is chosen to fit an extra condition Tho es aluation of this expres sion involves not onfy the extensive use of mathematical tables but also numerical quadrature

Other methods of solntion, such as the expression of y as a power senes

$$
\begin{equation*}
y=x^{6}\left(a_{0}+a_{1} x+a_{3} x^{2} z\right) \tag{5}
\end{equation*}
$$

are practicable in only a small number of cases, and may lead to a large amount of work.
2. To overcome these difficulties various numerical methods have been developed. Some are graphical, while some use crude finite-difference approximations to derivatives, and no great precision can be expected from such methods. Most of the methods described in this and the following chapter, however, use formulae which are accurate within prescribed limits, taking into account all significant terms.

The method selected to solve a given differential equation depends largely on the supplementary conditions which specify the particular solution required. These conditions are commonly given either at one or at both of the end-points of the range of integration. For example, in the casc of a linear second-order differential equation, two supplementary conditions are uormally required to specify a solution. In this case the numerical values of the required solution and of its dcrivative may be given at one end-point; alternatively the numerical values of the solution may be given at both end-points. The former is an example of an initialvalue problem, the latter of a boundary-value problem; the remainder of this chapter is deroted to methods for solving initial-value problems, boundary-value problems boing considered in Chapter 10.
3. When all the supplementary conditions are given at the same point, it is convenient to solve the equation using a step-by-step method, numerical values being calculated at successive pivotal points, equally spaced at an interval h. Most step-by-step methods use finite-difference formulae, but first we discuss a method based on the use of the Taylor series.

THE TAYLOR-STRRES METHOD

4. This method is, in theory, applicable to an equation of any order. As an example, consider the case of the second-order equation

$$
\begin{equation*}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right) \tag{6}
\end{equation*}
$$

If the function y and its derivative y^{\prime} have known values y_{0}, y_{0}^{\prime} at x_{0}, then $y_{0}^{\prime \prime}$ can be computed directly from the differential equation (6). Morcover differentiation of (6) with respect to x leads to the equation

$$
\begin{equation*}
y^{\prime \prime}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime}, \tag{7}
\end{equation*}
$$

from which $y_{0}^{\prime \prime}$ can be computed, and so on for higher derivatives. It is then possible to compute the values y_{1}, y_{1}^{\prime}, of y, y^{\prime} at the next pirotal point $x_{1}=x_{0}+h$ using the Taylor series

$$
\begin{align*}
& y_{1}=y_{0}+h y_{0}^{\prime}+\frac{h^{2}}{2!} y_{0}^{\prime \prime}+\frac{h^{3}}{3!} y_{0}^{\prime}+\ldots \tag{8}\\
& y_{1}^{\prime}=\quad y_{0}^{\prime}+h y_{0}^{\prime \prime}+\frac{h^{2}}{2!} y_{0}^{\prime \prime}+\ldots \tag{9}
\end{align*}
$$

This process may then be repeated in onder to advance to the point x_{2} First, howerer, it is usual to chech the previous step and calculation of the dermatives by applying the formulae

$$
\begin{align*}
& y_{4}=y_{1}-k y_{1}^{\prime}+\frac{h^{2}}{2} y_{i}-\frac{h^{3}}{3!} y_{1}^{z}+\quad, \tag{10}\\
& y_{0}^{\prime}=\quad y_{1}^{\prime}-h_{1}^{*}+\frac{h^{2}}{2!} y_{1}^{z}- \tag{11}
\end{align*}
$$

5 In numerical pracince it is ussal to express the senes in terms of reduced derivatues $7^{n}=\frac{k^{n}}{n!} y^{(n)}$, retainng one or two extra figures in the reduced derisatives, and calculating the senes in the forms

6 This method has sereral advantages A largo interval can often be used, it can be apphed, at least theoretically, to non hnear equations, and no apecial etarting procedure se requred, an added advantage when an automatio computer is to be used, though the disadvantage of having to use a spectal starting procedure ohould not he oraggerated On the other hand, the densatives hase to be computed, and this may be dufficult unless the equation has a emple form such that a recurrence relation for the derivatives can be readily estahlished For automatic computation at certanly mples extra programming

The method has been ouccessfully appliod on a mide vamety of automatio computers to the equation

$$
\begin{equation*}
r(2) y^{\prime \prime}+q(x) y+r(x) y=0 \tag{13}
\end{equation*}
$$

where p, g and r are quadratic functions of x In thas case there is a five term recurrence relation between the decivatives

PREDICTOB COHRECTOR WETIODS

7 These methods are based on firute dufference formulae, but use them in their Lagrangran form In the case of the first order equation

$$
\begin{equation*}
y^{\prime}=f(x, y) \tag{14}
\end{equation*}
$$

the method conssts of advancing from the paint x_{n} to tho point x_{n+1} by means of a quadrature formula wheh does not molude the unknown denvative y_{n+1}^{\prime}, when the Intter has been uetermined with the and of the differential equation, the result is corrected hy the application of a moro accurate formula

For example, the predictor formula

$$
\begin{equation*}
y_{n+1}=y_{n}+\frac{1}{i 2} h\left(23 y_{n}^{\prime}-16 y_{n-1}^{\prime}+\overline{5} y_{n-2}^{\prime}\right) \tag{15}
\end{equation*}
$$

may be used to determine an approximate y_{n+1}. An approximate y_{n+1}^{\prime} is then computed from the differential equation and a more accurate y_{n+1} calculated from the corrector formula

$$
\begin{equation*}
y_{n+1}=y_{n}+\frac{1}{12} h\left(5 y_{n+1}^{\prime}+8 y_{n}^{\prime}-y_{n-1}^{\prime}\right) . \tag{16}
\end{equation*}
$$

From this result y_{n+1}^{\prime} can be recomputed from (14) and y_{n+1} from (16), and so on until there is no further change.

Similar methods may be applied to equations of higher order. A variety of predictor and corrector formulae have been given by Milne [63].

These methods are simple to apply but they are of limited accuracy unless a small interval is used; also they may be unstable (see § 27). From the point of view of automatic computation they suffer from the added disadvantage that a special starting procedure is needed. This will usually moan calculating the first few values with the aid of the Taylor series.
8. The classical method of Adams and Bashforth may be regarded as a predictor-corrector method which makes use of formulae involving backward differences. For first-order equations the formulae are given by

$$
\begin{align*}
& y_{n+1}=y_{n}+\left(1+\frac{1}{2} \nabla+\frac{5}{12} \nabla^{2}+\frac{3}{8} \nabla^{3}+\ldots\right) h y_{n}^{\prime} \quad \text { (predictor) } \tag{17}\\
& y_{n+1}=y_{n}+\left(1-\frac{1}{2} \nabla-\frac{1}{12} \nabla^{2}-\frac{1}{24} \nabla^{3}-\ldots\right) h y_{n+1}^{\prime} \quad \text { (corrector). } \tag{18}
\end{align*}
$$

Higher-order equations are solved by repeated application of thesc equations, though the predictor formula nced only be used in the first integration of the derivative of highest order. It may be noted that (17) and (18), truncated after ∇^{2}, are identical with (15), (16), respectively.

Though there is no truncation error in this method, so that it may be expected to be applicable at a larger interval than those involving Lagrangian formulae, this advantage is offset by the large accumulation of rounding error caused by the slow decrease of the coefficients. For automatic computation this method has little merit; apart from the usual disadvantage of requiring a special starting procedure, the use of a slowly convergent series of differences would make heavy demands on the store.

GENTRAL-DIFFERENCE METHODS

9. Central-difference formulae have more rapidly decreasing coefficients and their use is preferable for accurate work with desk machines. In the methods based on these formulae, in contrast to the methods already described, the quantities used in prediction or extrapolation are not all available when required and must be estimated and afterwards checked. Procedures for first-order and second-order equations are given in some detail.

The first-order equation $y^{\prime}=f(x, y)$

10. The recorded quantities are y and $27 y^{\prime}$ and the table shows the situation when values of y_{n} and $2 h y_{n}^{\prime}$ have been estimated but not verified
or corrected Honizontal daches denote recorded quantities

n+1
Computation then proceeds in the followmg steps
(1) Fstimate $\delta^{z}\left(2 h y_{n}^{\prime}\right)$ and $\delta^{1}\left(2 h y_{n}^{\prime}\right)$ denoted by crosses in the table
(11) Calculate y_{n+1} from the extrapolation formula

$$
\begin{equation*}
y_{n+1}=y_{n-1}+\left\{1+\frac{1}{\delta} \delta \delta^{2}-\frac{1}{13} \delta \delta^{4}+\right\} 2 k y_{n}^{\prime} \tag{19}
\end{equation*}
$$

(iu) Compute $2 h y_{n+1}^{*}$ from the dsferential equation, this correcting the estimato of $\delta^{2}\left(2 h y_{n}^{\prime}\right)$
(iv) Calculate δy_{n-1} from the quadrature formula

$$
\begin{equation*}
\delta y_{n}=\frac{1}{\frac{1}{2}}\left(\mu-\frac{1}{1} \mu \delta^{2}+\frac{11}{22} \delta \mu \delta^{4}-\right) 2 h y_{n-k}^{\prime}, \tag{20}
\end{equation*}
$$

thus obtaming a check or correction to the previously extrapolated y_{n}
(v) Correct $9 y_{n}^{\prime}$ and repeat the cyele if necessary

The second order equation $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$
11 The recorded quantities are here $y, 2 h y^{\prime}$ and $4 h^{2} y^{\prime \prime}$, and the table shows the stuation then tentative values of $y_{n} 2 h y_{n}^{\prime}$ and $4 \hbar^{z} y_{n}^{\prime \prime}$ hare just been recorded

x / \hbar	1	δ^{2}	84	2hy	$\delta{ }^{*}$	$\delta{ }^{4}$	$4 h^{*} V^{*}$	δ^{2}	δ^{4}
$n-4$	-	-	-	-	-		-	-	-
$n-2$	-	-	-	-	-			-	-
n-2	-		-		-			-	_
$n-1$	\sim	-		-	-			-	
n	-			-			-	\times	\times

$$
n \neq 1
$$

Computation then proceeds in the following steps
(1) Estimate $\delta^{2}\left(4 h^{2} y_{n}^{n}\right)$ and $\delta^{4}\left(4 z^{2} y_{n}\right)$, thown by crowses in the table
(u) Calculate $\delta^{2} y_{n}$, bence buhling $u p$ to an estimate of y_{n+1}, from the formula

$$
\begin{equation*}
\delta^{2} y_{n}=\frac{3}{4}\left(1+\frac{1}{12} \delta^{2}-\frac{1}{10} \delta^{4}+\right) 4 h^{2} y_{n}^{\prime} \tag{21}
\end{equation*}
$$

Complete the differencing, obtaining in particular $\delta^{3} y_{n-\neq}$ for use in the next step.
(iii) Check or correct the value of $27 y_{n-1}^{\prime}$, so far only extrapolated, from the formula

$$
\begin{equation*}
2 h y_{n-1}^{\prime}=2\left(\mu \delta-\frac{1}{6} \mu \delta^{3}+\frac{1}{30} \mu \delta^{5}-\ldots\right) y_{n-1} \tag{22}
\end{equation*}
$$

(iv) Calculate $27 y_{n+1}^{\prime}$ from the extrapolation formula

$$
\begin{equation*}
2 h y_{n+1}^{\prime}=2 h y_{n-1}^{\prime}+\left(1+\frac{1}{6} \delta^{2}-\frac{1}{180} \delta^{4}+\ldots\right) 4 h^{2} y_{n}^{\prime \prime} . \tag{23}
\end{equation*}
$$

(v) Calculate $4 h^{2} y_{n+1}^{n}$ from the differential equation and complete the differencing, correcting the original estimate for $\delta^{2}\left(4 h^{2} y_{n}^{n}\right)$. Repeat the cycle if necessary.
12. Though in theory there are no truncation errors it will be noted that $\&$ check on the estimated fourth difference is not available until a later stage, and it is advisable to have an interval small enough for the estimation to be performed correctly within a few units. Also it has been assumed that sixth differences are negligible: their inclusion complicates the process.

These methods, or modifications of them, have been very extensively used in the computation of planetary and cometary orbits. They are, however, in many cases inferior to the methods described in the next section and they are not suitable for automatic computation. Apart from the minor disadvantage of requiring an alternative starting procedure, the retention of large numbers of differences makes heavy demands on the store and the estimation process is difficult to programme.

DEFERRED-GORRECTION METHODS

13. The finite-difference methods so far described all use formulae which are properly classed as integration formulae. Another class of methods uses differentiation formulae. Only the function and its differences, but not its derivatives, are recorded. The methods are particularly suitable for linear equations.

The linear second-order equation $y^{\prime \prime}+f(x) y^{\prime}+g(x) y=k(x)$

14. The derivatives are replaced by central-difference formulae, of which the first terms are expressed in terms of pivotal values and the remainder collected to form the difference correction $C y$. Then the following equation, the recurrence relation, is obtained and must be satisfied at the pirotal point r :

$$
\begin{equation*}
\left(1+\frac{1}{2} h f_{r}\right) y_{r+1}-\left(2-h^{2} g_{r}\right) y_{r}+\left(1-\frac{1}{2} h f_{r}\right) y_{r-1}+C y_{r}=h^{2} k_{r} \tag{24}
\end{equation*}
$$

The difference-correction operator is given by

$$
\begin{equation*}
C=\left(-\frac{1}{12} \delta^{4}+\frac{1}{90} \delta^{6}-\ldots\right)+h f_{r}\left(-\frac{1}{6} \mu \delta^{3}+\frac{1}{30} \mu \delta^{5}-\ldots\right) . \tag{25}
\end{equation*}
$$

If two initial values y_{0} and y_{1} are known, and the difference correction is everywhere ignored, successive pivotal values are calculable from the recurrence relation to form a first approximation $y^{(1)}$. From the differences of $y^{(1)}$ values of $C y_{r}^{(1)}$, approximations to those of $C y_{r}$, are calculated
and inserted in the recurrence relation from whicb better approximationg to the y_{r} are obtamed The process is repeated untul furtber changes in y, are neghigble

After the first use of the recurrence relation the formula

$$
\begin{equation*}
\left(1+\frac{1}{2} h f_{r}\right) \eta_{r+1}-\left(2-h^{2} g_{r}\right) \eta_{r}+\left(1-\frac{1}{2} f_{f}\right) \eta_{r-1}+C y_{r}^{(1)}=0 \quad \eta_{0}=\eta_{t}=0 \tag{26}
\end{equation*}
$$

provides corrections η to the fixst approxmation $y^{(1)}$ The advantage of calculatug the correction rather thian the second approximation is that fewer signaficant figures need be retamed

There is no cstimation or truncation and a large interval can be used, the convergence of the method is rapid, mone than two cycles rarely being necessary Thougb a special starting procedure is required, it is pronded by the calculation of y_{1} using the Taylor series The calculation of the firct few values of the difference correction requires a knowledge of y_{-1}, y_{-2} ete, which should be computed by usug the recurrence relation in the reverse direction
The linear equation $y^{\prime \prime}+f(x) y=h(x)$
15 When the first derivative is absent, the recurrence relation can be written in a form which involves a emaller difference correction, gren by

The linear first order equation $y+f(x) y=h(x)$
16 Smular methods can be appled to first order equations For example, of the differential equation is used to suhstitute for $y_{t \rightarrow 1}$ and y_{r}^{\prime} in the formula

$$
\begin{equation*}
y_{r+1}-y_{r}=\frac{1}{2} h\left(y_{r+1}+y_{r}\right)+\left(-\frac{1}{1} \delta^{3}+T_{1}^{1} \frac{1}{2} \delta^{5}-\tau^{1} \delta^{2} \delta^{7}+\right) y_{r+1} \tag{28}
\end{equation*}
$$

there results the two term recurrence relation

$$
\begin{gather*}
y_{r+1}\left(1+\frac{1}{2} h_{r+1}\right)-y_{1}\left(1-\frac{1}{2} h f_{r}\right)+C y_{r+1}=\frac{1}{2} h\left(\lambda_{r}+h_{r+1}\right) r \tag{}\\
C=\frac{1}{1} \delta^{3}-\frac{1}{120} \delta^{5}+\frac{1}{14} \delta^{2}
\end{gather*}
$$

Detalis and other applications of these methods have been given by Fox and Goodwn [65]

Non linear equations

17 In the case of nom linear equatuons the recurtenco relation is also generally non linear For example the differential equation

$$
\begin{equation*}
y^{\prime \prime}=f(x y) \tag{30}
\end{equation*}
$$

can be expressed in the finte-duference form

$$
\left.\begin{array}{c}
\left\{y_{r+1}-\frac{1}{12} h^{2} f\left(x_{r+1} y_{r+1}\right)\right\}-\left\{2 y_{r}+\frac{1}{12} h^{2} f\left(x_{r}, y_{r}\right)\right\} \tag{31}\\
+\left\{y_{r-1}-\frac{1}{12} h^{2} f\left(x_{r-1} y_{r-1}\right)\right\}+C y_{r}=0 \\
C=\frac{1}{240} \delta^{3}-\frac{13}{1612} \delta^{8}+
\end{array}\right\}
$$

The application of Newton's rule (Chapter 6, § 9) for the calculation of y_{r+1} is quick and accurate; the quantities $\partial f_{r} / \partial y$ used in it also occur in the determination of the correction η which satisfies the linear equation

$$
\begin{equation*}
\left(1-\frac{1}{12} h^{2} \frac{\partial f_{r+1}}{\partial y}\right) \eta_{r+1}-\left(2+\frac{10}{12} h^{2} \frac{\partial f_{r}}{\partial y}\right) \eta_{r}+\left(1-\frac{1}{12} h^{2} \frac{\partial f_{r-1}}{\partial y}\right) \eta_{r-1}+C y_{r}^{(1)}=0 \tag{32}
\end{equation*}
$$

Further details and applications of these methods have been given by Clenshaw and Olver [66].
18. The particular equation (30), as distinct from those which are nonlincar in y^{\prime}, can also be solved by using the recurrence relation

$$
\left.\begin{array}{c}
y_{r+1}-2 y_{r}+y_{r-1}+C y_{r}=h^{2} f\left(x_{r}, y_{r}\right), \tag{33}\\
C=-\frac{1}{12} \delta^{4}+\frac{1}{80} \delta^{6}-\ldots .
\end{array}\right\}
$$

Though the difference correction is much larger than in (31), this equation is linear in $y_{\tau+1}$, the quantity required. The method is easily extended to simultaneous sets of equations of the form (30).
19. These methods are ideally suited for desk machines and they have also been used very successfully on automatic computers. In particular, there are often occasions when they are preferable to many other methods because of their greater stability (see § 27).

THE METHOD OF RUNGE AND KUTTA

20. This method applies to the single first-order equation $y^{\prime}=f(x, y)$ or to sets of first-order equations; hence it may be used for equations of higher order, which can always be represented as a set of first-order equations. In advancing one step the function $f(x, y)$ is computed at a number of intermediate points, the choice of which is to some extent arbitrary. Those used below are particularly simple and this choice is frequently made.

If the point X has becn reached and $y(X)=Y$, we calculate in succession the quantities

$$
\left.\begin{array}{l}
k_{0}=h f(X, Y), \tag{34}\\
k_{1}=h f\left(X+\frac{1}{2} h, Y+\frac{1}{2} k_{0}\right), \\
k_{2}=h f\left(X+\frac{1}{2} h, Y+\frac{1}{2} k_{1}\right), \\
k_{3}=h f\left(X+h, Y+k_{2}\right) .
\end{array}\right\}
$$

Then $y(X+h)=y(X)+\frac{1}{6}\left(k_{0}+2 k_{1}+2 k_{2}+k_{3}\right)$ with an error of the order h^{5}. All processes with an error of this order are called fourth-order processes. For other formulae see [67], and for further developments [68] and [69].

Methods of this type are not recommended for desk computation since the frequent calculation of $f(x, y)$ is laborious. They are, however, well suited to automatic computation: no special starting procedure is required; very light demands are made on the store; no estimation is required and a straightforward computational procedure is repeated several times. The calculations are often checked by repetition using a different interval.
21. The extension to the set of first-order equations

$$
y_{r}^{\prime}=f_{r}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)
$$

is immediate and is given by the equations

$$
\begin{align*}
& L_{n c}=h_{f(X}\left(X, Y_{1} Y_{n}, \quad, Y_{n}\right) \\
& h_{11}=h_{f}\left(X+d h, Y_{1}+\frac{1}{2} L_{10} Y_{2}+h_{2 p} \quad, Y_{n}+\frac{1}{2} h_{n 0}\right), \\
& L_{n}=h f_{n}\left(X+\frac{1}{2} k, Y_{1}+\frac{1 k_{12}}{}, Y_{2}+\frac{1}{2} k_{21}, \quad, Y_{n}+\frac{1}{2} \lambda_{n 1}\right), \tag{35}\\
& L_{n 3}=h f,\left(X+h_{2} I_{1}+L_{12}, Y_{2}+L_{2}, \quad, Y_{n}+h_{n t}\right), \\
& y_{r}(X+h)=y_{r}(X)+{ }_{1}^{1}\left(l_{r 0}+2 h_{n 1}+2 h_{r 2}+h_{r s}\right)
\end{align*}
$$

A disadvantage of the Runge-Kítta process applred to a set of equations 19 its possible instabulty (see § 27)

THE METHOD OFDE OGELAERE

22 This is an minteresting hybnd method [70] for solving the second order equation $y^{*}=f(x, y)$, in wheh the first derivative is absent, or 3 set of such equations It employs one intermeduate point, and the integra tion from x, to x_{r+1} is carred ont by cy elie use of the equations

$$
\left.\begin{array}{l}
y_{r+4}=y_{r}+\frac{1}{2} h y_{r}^{\prime}+\frac{1}{24} h^{2}\left(4 f_{r}-f_{r-i}\right) \tag{84}\\
y_{r+1}=y_{r}+h y_{r}^{\prime}+\frac{1}{8} h^{\top}\left(f_{r}+2 f_{r+i}\right), \\
y_{r+1}=y_{r}+\frac{1}{8} h\left(f_{r}+4 f_{r+1}+f_{r+1}\right)
\end{array}\right\}
$$

where f_{r} denotes $f\left(x, y_{r}\right)$ The neglected terms are of order h^{4}, h^{8}, h^{d} respectively and the inethod, is in fact comparable in accuracy with the fourth order Runge-Kutta proces The function f is however, computed only twice per step

Though at the start it is necessary to know not only $y_{0} y_{0}^{\prime}$ but also f_{-1}, this quantity is readily obtained from y_{-k}, green to sufferent acouracy bs

$$
\begin{equation*}
y:=y_{0}-\frac{1}{2} h y_{0}+\frac{1}{2} \hbar^{2} f_{0} \tag{37}
\end{equation*}
$$

SOLETION IV CHEEVSAEV SERIES

23 Two methods which take advantage of the properties of Chebythet polynomuals have been proposed for lincar equations whose coefficients are polynomals in x Lavezos [6] (the τ method') finds the coeffieients of a polynomal solution of the differental equation perturbed by a small multiple \boldsymbol{r} of $T_{n}(\boldsymbol{x})$ white Clenshaw [71] calculates directly the coefficic its of the Chebyshev-sertes expansion of the solution The latter methord, described below is often more comvenient in practice

Suppose the range of integration is normaluzed to $-1 \leqslant x \leqslant 1$ We assume the expansion

$$
\begin{equation*}
y(x)=\frac{1}{2} a_{0}+a_{1} T_{1}(x)+a_{2} T_{2}(x)+ \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
y^{(x)}(x)=\frac{1}{1} a_{0}^{(s)}+a_{2}^{(0)} T_{2}(x)+a_{2}^{(s)} T_{2}(x)+\quad(s=1,2, \quad, q) \tag{39}
\end{equation*}
$$

where q is the order of the dufferential equation Then from the relation

$$
\begin{equation*}
2 \int T_{r}(x) d x=\frac{T_{r+1}(x)}{r+1}-\frac{T_{r-1}(x)}{r-1} \tag{40}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
2 r a_{r}^{(s)}=a_{r-1}^{(s+1)}-a_{r+1}^{(s+1)} \quad(r \geqslant 1), \tag{41}
\end{equation*}
$$

a relation which holds for $s=0$ if we define $a_{r}^{(0)}$ to be a_{r}.
If, in addition, $C_{r}(f)$ is used to denote the coefficient of T_{r} in the expansion of a function f, and twice this coefficient when $r=0$, then from the relation

$$
\begin{equation*}
2 x T_{r}(x)=T_{|r-1|}(x)+T_{r+1}(x) \quad(r=0,1,2, \ldots), \tag{42}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
C_{r}\left(x y^{(s)}\right)=\frac{1}{2}\left(a_{\mid r-11}^{(s)}+a_{r+1}^{(s)}\right) \quad\binom{r=0,1,2, \ldots}{s=1,2, \ldots, q}, \tag{43}
\end{equation*}
$$

and hence

$$
\begin{equation*}
C_{r}\left(x^{p} y^{(s)}\right)=\frac{1}{2^{p}} \sum_{j=0}^{p}\binom{p}{j} a_{1 r-p+2 j 1}^{(s)}\binom{r=0,1,2, \ldots}{s=1,2, \ldots, q} . \tag{44}
\end{equation*}
$$

If the series (38), (39) are substituted into the differential equation, then, using the relations (41), (44) we obtain an infinite set of simultaneous equations for the coefficients $a_{r}^{(s)}$. These are solved by recurrence, with the assumption that $a_{r}^{(s)}=0$ for r greater than some suitably large N, to determine the coefficients $a_{r}^{(s)}(r=N-1, N-2, \ldots)$ corresponding to one or more sets of assumed values of the $a_{N}^{(s)}(s=1,2, \ldots, q)$. The solutions so obtained are then combined to satisfy the initial conditions.
24. As an example, consider the solution of the equation

$$
\begin{equation*}
x y^{\prime \prime}+y^{\prime}+16 x y=0 \tag{45}
\end{equation*}
$$

in the range $0 \leqslant x \leqslant 1$, with initial conditions

$$
\begin{equation*}
y(0)=1, \quad y^{\prime}(0)=0 \tag{46}
\end{equation*}
$$

This corresponds to the solution of Bessel's equation for $J_{0}(x)$ over the range 0 to 4 .

The solution is an even function of x and so the T_{r} of odd order do not appear in its expansion. Thus, from (45),

$$
\begin{equation*}
C_{r}\left(x y y^{\prime \prime}\right)+C_{r}\left(y^{\prime}\right)+16 C_{r}(x y)=0 \quad(r=1,3,5, \ldots), \tag{47}
\end{equation*}
$$

and using (43), we find that

$$
\begin{equation*}
\frac{1}{2}\left(a_{r+1}^{\prime \prime}+a_{r-1}^{\prime \prime}\right)+a_{r}^{\prime}+S\left(a_{r+1}+a_{r-1}\right)=0 \quad(r=1,3,5, \ldots) . \tag{48}
\end{equation*}
$$

Equations (48) and (41) could now be used to compute the coefficients. However, it is simpler first to use (4I) to eliminate the $a_{r}^{\prime \prime}$. Equation (4S) implies that

$$
\begin{align*}
& \frac{1}{2}\left(a_{r-2}^{\prime \prime}+a_{r}^{\prime \prime}-a_{r}^{\prime \prime}-a_{r+2}^{\prime \prime}\right)+\left(a_{r-2}^{\prime}-a_{r+1}^{\prime}\right) \\
& \quad+8\left(a_{r-2}+a_{r}-a_{r}-a_{r+2}\right)=0 \quad(r=2,4, \ldots), \tag{49}
\end{align*}
$$

whence, using (41), we obtain

$$
\begin{equation*}
r\left(a_{r-1}^{\prime}+a_{r+1}^{\prime}\right)+8\left(a_{r-2}-a_{r+2}\right)=0 \quad(r=2,4, \ldots) \tag{50}
\end{equation*}
$$

Equations (4I) and (50) are then used alternately in the recurrence process, in the forms

$$
\left.\begin{array}{l}
a_{r-1}^{\prime}=a_{r+1}^{\prime}+2 r a_{r} \tag{51}\\
a_{r-2}=a_{r+2}-\frac{1}{8} r\left(a_{r-1}^{\prime}+a_{r+1}^{\prime}\right)
\end{array}\right\} \quad(r=N, N-2, \ldots, 2) .
$$

25 In a typical case we take $a_{10}=1$ wath all hugher order coefficients zero, thes leads to the tral solution given in Table 1

Table:

The second condition (46) has been eatusfied automatically and only the condition $y(0)=1$ remains Thus ss satustied by dividing the trial solution by the constant factor

$$
\left(\frac{1}{2} a_{0}-a_{2}+a_{4}-a_{4}+\quad\right)=-108605
$$

leading to the final ralues of a_{r} green in the table $A s$ a chech the sum of the series at $x=1$ is -03952 , in agreement with the true ralue $J_{0}(4)--039713$

The precision of the results may always be increasod by taking a larger Falue of \boldsymbol{N}

HUILDING-UP ERRORS

20 Suppose an attempt is made to obtain the solution $y=e^{-x}$ to the equation $y^{\prime \prime}-y=0$ with the untial condetions $y(0)=1, y(0)=-1$ Then bowerer many agnaficant figures are lept in the computntion, tbe round ing error will introduce a small muliple of the unwanted solution e^{x} and, if the computation is carned far enough thes solution mill merease to such an extent tbat it will eventually swamp the required sointion

Thus phenomenon 15 known as bulding up error In the case given it could easily be aroided by compatung in the reverse direction from known values of e^{-x} and its derivative for a large value X of x In general, howerer, such a simple proceduro will not be araulable, and some ingenuity is needed to obtasin an accurate eolution Conalderablo experience is required and this section 18 inctuded mevelv as a marning

STARILITY

27 In the previous sabsection wo have mentioned the difficulty of obtainung a decreasing solution of a differential equation in the presence of an unmanted increasing solution Sometimes, elthough the onginal differential equation does not have an unwanted mereasing solution, the associated finte-difference equation does have such a solution In euch a case we say that the metbod is wrstable

Instability of this nature may arise in two ways:
(i) The finite-difference equation may be of a higher order than the differential equation it represents, and an additional solution so introduced may be increasing.
(ii) If the differential equation has some solutions which decrease very rapidly compared with the others, then it may happen that only the latter are adequately represented by the finite-difference equation, while the former are transformed into rapidly increasing functions.
28. As an example of the first type of instability, let us attempt to solve the system

$$
\begin{equation*}
y^{\prime}=-\lambda y, \quad y(0)=1, \quad(\lambda>0), \tag{52}
\end{equation*}
$$

which has the solution $y=e^{-\lambda x}$, by any predictor-corrector method which uses Simpson's rule as a corrector [63]. Then

$$
\begin{equation*}
y_{n+1}-y_{n-1}=\frac{1}{3} h\left(y_{n+1}^{\prime}+4 y_{n}^{\prime}+y_{n-1}^{\prime}\right) . \tag{53}
\end{equation*}
$$

From (52) and (53) we obtain

$$
\begin{equation*}
\left(1+\frac{1}{3} \lambda h\right) y_{n+1}+\frac{4}{3} \lambda h y_{n}-\left(1-\frac{1}{3} \lambda h\right) y_{n-1}=0 . \tag{54}
\end{equation*}
$$

The general solution of this difference equation is

$$
\begin{equation*}
y_{n}=A E_{1}^{n}+B E_{2}^{n} \tag{55}
\end{equation*}
$$

where A, B are arbitrary constants and

$$
\begin{equation*}
E_{1}, E_{2}=\left[-\frac{2}{3} \lambda h \pm \sqrt{ }\left(1+\frac{1}{3} \lambda^{2} h^{2}\right)\right] /\left(1+\frac{1}{3} \lambda h\right) . \tag{56}
\end{equation*}
$$

The ratio E of consecutive ralues y_{n+1}, y_{n} of the true solution is $e^{-\lambda h}$, and on expansion E_{1} is found to differ from this only in terms of the fifth and higher orders. On the other hand $\left|E_{2}\right|$ is always greater than unity, so that an unwanted increasing solution has been introduced and the method is in fact unstable.
29. As an illustration of the second type of instability, consider the equations

$$
\begin{equation*}
y^{\prime}=-10 y+6 z, \quad z^{\prime}=13 \cdot 5 y-10 z, \tag{57}
\end{equation*}
$$

with $y(0)=\frac{4}{3} e, z(0)=0$. The analytic solution is

$$
\begin{equation*}
y=\frac{2}{3} e\left(e^{-x}+e^{-19 x}\right), \quad z=e\left(e^{-x}-e^{-19 x}\right) . \tag{58}
\end{equation*}
$$

For values of x greater than unity the second exponential is negligible to seven decimal places and it might be expected that the equations could be integrated at an interval of, say, $h=0.2$. In fact, if we apply the Runge-Kutta process (35), starting from $x=1$ and retaining two decimals, we obtain the results of Table 2, which are clearly incorrect.

Table 2

x	1.0	1.2	1.4	1.6	1.8	2.0
y	0.67	0.55	0.46	0.40	0.41	0.68
z	1.00	0.82	0.66	0.51	0.29	-0.28

The explanation hes in the fact that when the Runge-Kutta proesess (34) is used to integrate $y^{\prime}=-\lambda y$, it represents $E=z^{-\lambda \lambda}$ by

$$
E_{1}=1-\lambda h+\frac{1}{2} \lambda^{8} h^{8}-\frac{1}{8} \lambda^{3} h^{3}+\frac{1}{24} \lambda^{4} h^{4}
$$

Thes is a good approximation for the first exponential, for which $\lambda /=0-2$ but for the second $\lambda \hbar=38$, so that $e^{-38}=002$ is replaced bs $E_{1}=396$ In fact thus process is stable if $\lambda_{h}<28$, sunce $\left|E_{1}\right|<1$ for this range

30 With a large set of stmultaneous equations, wheb in general witl not have constant coefficrents and may well be non linear, it is often difficult to determine whether or not rapudiy decreasing functions of this type wall bo present It is essential that the metbod used is stable for the interval selected Thus requrement uould sometumes necessitate the uze of an extremely small interval with the Ringe-Kintta process, and other methods are then preferable For example, formula (29) with the differenco correction neglected, applied to the equation $y^{z}=-\lambda y$ leads to the approximation

$$
E_{1}=\frac{1-\frac{1}{2} \lambda h}{1+\frac{1}{2} \lambda h}
$$

and $\left|E_{1}\right|$ is less than unity however large λ Thus metbod is accordingly stable and it could, for example, be used to integrate tbe equations (57) quite antisfactorily at the interval $h=02$

A full discussion of stability problems is outade the scope of thes manual As a general rule it is advisable to test any metbod on smple equations such es $y^{\prime}=-\lambda y$ If a method that may be unstable bas to be used, particular care must be tahen to ensure that the results are subject to adequate independent cliecks

10

ORDINARY DIFFERENTIAL EQUATIONS:

BOUNDARY-VALUE PROBLEMS

INTRODUCTION

1. In this chapter we consider the solution of differential equations for which the supplementary conditions are given at both ends of the range of integration. For illustration we use the linear second-order equation

$$
\begin{equation*}
y^{\prime \prime}+f(x) y^{\prime}+g(x) y=k(x), \tag{1}
\end{equation*}
$$

though the principal features of the methods apply equally to linear equations of higher order, and to systems of linear differential equations.

DIRECT FINITE-DIFFERENCE METHOD

2. As in the deferred-correction method, described in Chapter $9, \S 14$, we replace each derivative by a central-difference formula, of which the first term is expressed in terms of pivotal values and the remaining terms constitute the difference correction $C y$. This leads to the system of equations

$$
\begin{align*}
&\left(1-\frac{1}{2} h f_{r}\right) y_{r-1}-\left(2-h^{2} g_{r}\right) y_{r}+\left(1+\frac{1}{2} h f_{r}\right) y_{r+1}+ C y_{r}=h^{2} k_{r} \\
&(r=1,2, \ldots, n-1), \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
C=\left(-\frac{1}{12} \delta^{4}+\frac{1}{90} \delta^{6}-\ldots\right)+h f_{r}\left(-\frac{1}{6} \mu \delta^{3}+\frac{1}{30} \mu \delta^{5}-\ldots\right) . \tag{3}
\end{equation*}
$$

If we disregard the difference corrections there are $n-1$ equations in the $u+1$ unknowns $y_{0}, y_{1}, y_{2}, \ldots, y_{n-1}, y_{n}$.
3. The extra two equations needed to provide a solution are obtained from the boundary conditions. The simplest and probably most common case is that in which both y_{0} and y_{n} are known. In this case we merely substitute their values in the $n-1$ equations, which then can be written in the form

$$
\left.\begin{array}{rl}
\left(2-h^{2} g_{1}\right) y_{1}+\left(1+\frac{1}{2} h f_{1}\right) y_{2} & =h^{2} k_{1}-C y_{1}-\left(1-\frac{1}{2} h f_{1}\right) y_{0}, \\
\left(1-\frac{1}{2} h f_{2}\right) y_{1}-\left(2-h^{2} g_{2}\right) y_{2}+\left(1+\frac{1}{2} h f_{2}\right) y_{3} & =h^{2} k_{2}-C y_{2}, \\
\left(1-\frac{1}{2} h f_{3}\right) y_{2}-\left(2-h^{2} g_{3}\right) y_{3}+\left(1+\frac{1}{2} h f_{3}\right) y_{4} & =h^{2} k_{3}-C y_{3}, \\
\ldots \ldots
\end{array}\right\}
$$

or in shortened matrix notation as

$$
\begin{equation*}
A y=d-C y \tag{5}
\end{equation*}
$$

Here Cy denotes the vector of difference cornections $C y_{r}, \mathbf{d}$ the remaining terms on the nght hand sude, which are known, and A is a square matrix of special form, given by

$$
A=\left[\begin{array}{lllllll}
b_{1} & c_{1} & & & & & \tag{6}\\
a_{2} & b_{2} & c_{2} & & & & \\
& a_{3} & b_{3} & c_{2} & & & \\
& & & & & & \\
& & & & a_{n-2} & b_{n-2} & c_{n-2} \\
& & & & & a_{n-1} & b_{n-1}
\end{array}\right]
$$

All the elements are zero except those in the main disgonsl and tro adjacent diagonals Thrs is sometimes called a band matrix of wedth three or a triple-diagonal matrix (compare Chapter 3, 8 I6)
4. In (5) the term Cy 13 not included in d because its values are not known in edrance, hut depend on the y values, so far unknoms The difference correction depends on the aze of the interval h, and will be neghgible for suffictently small h Even for much larger h its values may not be very large, so that a swtahle method is one of successu eapproxima tron, and proceeds as follows
(3) In equation (5) a first approvimate solution $y^{(1)}$ is ohtained by neglectung Cy and solving the equations

$$
\begin{equation*}
A y^{(1)}=d \tag{7}
\end{equation*}
$$

The difference between $y^{(1)}$ and the true solution y depends on the size of Cy and therefore on the interval h
(i) We next calculate a correction η_{1} by differencing the $y^{(1)}$ obtamed from (7), calculating $\mathrm{Cy}^{(1)}$ (which will be a close approvimation to Cy) and solving the equations

$$
\begin{equation*}
A \eta_{1}=-C y^{[1]} \tag{8}
\end{equation*}
$$

The boundary values of η_{1} are of course zero, Ence $y^{(1)}$ already has its cornect values at these points, and the terms $h^{2} h_{r}$ have been included in the calculation of $y^{(1)}$, во that the right of (8) contams only the differenee correction, and the matrix on the left of (8) is identical mith (6)
(w) The process can be continned if C_{1} is sigmicant we can calculate a further correction η_{2} from an equation corresponding to (8), given by

$$
\begin{equation*}
A \eta_{2}=-C \eta_{1} \tag{9}
\end{equation*}
$$

and repeat untrl there $t s$ no further change In practice the cycle rarely needs to be performed more than twice

5 The calculation of the difference correction, using central dufferences as in the expression (3), esmot be performed immedratels at points near
the ends of the range, since central differences do not exist there. It is clear from equation (2), however, that if any two adjacent values y_{r}, y_{r+1} are giren, we can calculate y_{r-1} and y_{r+2} directly, writing (2) in the respective forms

$$
\left.\begin{array}{l}
\left(1-\frac{1}{2} h f_{r}\right) y_{r-1}=\left(2-h^{2} g_{r}\right) y_{r} \quad-\left(1+\frac{1}{2} h f_{r}\right) y_{r+1}+h^{2} k_{r}-C y_{r} \tag{10}\\
\left(1+\frac{1}{2} h f_{r+1}\right) y_{r+2}=\left(2-h^{2} g_{r+1}\right) y_{r+1}-\left(1-\frac{1}{2} h f_{r+1}\right) y_{r}+h^{2} k_{r+1}-C y_{r+1} .
\end{array}\right)(
$$

The terms Cy are of course neglected in the first approximation and included in others. Equations similar to (10) can be used to extend the solution at each end of the range x_{0} to x_{n}, providing material from which central differences can be obtained for use in $\mathbf{C y}$.
6. The choice of interval h is governed by two factors. First, if h is sufficiently small for the difference correction to be negligible, then the matrix A may be of very large order, the labour of calculation excessive, and high accuracy difficult to achieve. Second, the interval must not be so large that the differences do not converge, since the finite-difference equations then have no meaning: very slow convergence of the differences may also be inconvenient, involving many repetitions of the iterative process. These restrictions apart, we can choose any value of h, and it is usually possible to keep to an acceptable size the number of linear equations involved.
7. As an example we consider the solution of the simple equation

$$
\begin{equation*}
y^{n}+y=0 \tag{Il}
\end{equation*}
$$

with $y(0)=0, y(1)=0.84147$. Equations (2) and (3) become

$$
\left.\begin{array}{l}
y_{r-1}-\left(2-h^{2}\right) y_{r}+y_{r+1}+C y_{r}=0, \tag{12}\\
C=-\frac{1}{12} \delta^{4}+\frac{1}{90} \delta^{6}-\ldots,
\end{array}\right\}
$$

and, with interval $h=0 \cdot 2$, the basic equations are

$$
\begin{equation*}
y_{r-1}-1 \cdot 96 y_{r}+y_{r+1}+C y_{r}=0 . \tag{13}
\end{equation*}
$$

The complete set of equations corresponding to (4) is given by

$$
\left.\begin{array}{rlrl}
-1 \cdot 96 y(0.2)+y(0.4) & & =-C y(0.2), \tag{14}\\
y(0.2)-1 \cdot 96 y(0 \cdot 4)+\quad y(0.6) & & =-C y(0.4), \\
y(0.4)-1 \cdot 96 y(0.6)+ & y(0.8) & =-C y(0.6), \\
y(0 \cdot 6)-1 \cdot 96 y(0.8) & =-C y(0.8)-0.84147 .
\end{array}\right\}
$$

The first approximation $y^{(1)}$, obtained by neglecting $\mathbf{C y}$ in (14), has the values

$$
y(0.2)=0.19878, \quad y(0.4)=0.38962, \quad y(0.6)=0.56486, \quad y(0.8)=0.71752
$$

and the use of (13), with $C y_{r}$ neglected, to obtain external values to the same degree of approximation, gives the results shown in Table 1.

Tapey 1

\pm	y		${ }^{\text {t }}$		8		84	$c y$
-0-4	-0-33961							
		$+10083$						
-02	-019378		± 795					
$0-0$	$0-00000$	10878	0	-705	+ 1			
		10978		794		+27		
+02	+019878		- 794		28		+13	-23
		10084		766		40		
0-4	0-35962		1560		65		-23	-57
0	0.56486	17524	2203	698	85	17	+16	-71
		15256		613		33		
08	071762		2871		118		-17	-98
		12395		495		$+16$		
10	0.84147		3366		+134			
		9029		-361				
12	003176		-372°					
		$+5302$						
+14	+098578							

The saxth differences are oscillating about zero so that we agnore them in the caloulation of the difference correction, this is then yist $-\frac{1}{1} \delta^{4} y$ and is given in the tahle, with an extra figuro, opposite the relevant pivotal points Insertion of these results in the correction equations, given hy (14) with the exclusion of the constant -0 84147, gires the corrections

$$
\begin{array}{ll}
\eta(0-2)=-000011, & \eta(04)=-000020, \\
\eta(06)=-000022, & \eta(08)=-000010
\end{array}
$$

When we difference these quantuttes, as shown in Table 2, there is clearly no further correction, and the final solution is $y^{(2)}+\eta$, given hy

$$
\begin{array}{ll}
y(0-2)=019867, & y(0-4)=0.38342, \\
y(06)=056461, & y(08)=071736,
\end{array}
$$

agreeng with the analytical solution $y=$ bin x
Table 2

\pm	η		${ }^{1}$		6^{4}
$+0.0$	-000000				
		-11			
0.2	000011		$+2$		
01	0.00020		$+7$	$+5$	-
		- 4		$+1$	
06	000022		$+8$		+1
		$+6$		$+2$	
08	0000016	+16	$+10$		
+10	-000000				

8 If some other boundary coudition is imposed, unvolvang the first denvative, a slightly different procedure is necesaary at that boundary

If the boundary is at x_{0}, we satisfy the differential cquation at this point also by using the equation

$$
\begin{equation*}
\left(1-\frac{1}{2} h f_{0}\right) y_{-1}-\left(2-h^{2} g_{0}\right) y_{0}+\left(1+\frac{1}{2} h f_{0}\right) y_{1}+C y_{0}=h^{2} k_{0} \tag{15}
\end{equation*}
$$

which is equation (2) with $r=0$. The boundary condition will have the form

$$
\begin{equation*}
y_{0}^{\prime}+a y_{0}=b \tag{16}
\end{equation*}
$$

which we replace by its central-difference equivalent

$$
\begin{equation*}
y_{1}-y_{-1}+2 h a y_{0}+C_{1} y_{0}=2 h b \tag{17}
\end{equation*}
$$

where C_{1} is a new differeuce-correction operator, given by

$$
\begin{equation*}
C_{1}=2\left(-\frac{1}{6} \mu \delta^{3}+\frac{1}{30} \mu \delta^{5}-\ldots\right), \tag{18}
\end{equation*}
$$

and the first difference $\mu \delta y_{0}$ in the derivative formula has been replaced by $\frac{1}{2}\left(y_{1}-y_{-1}\right)$. The point x_{-1} is external to the range, and we eliminate the value y_{-1} from (15) with the use of (17), giving the new equation

$$
\begin{align*}
&\left\{\left(1-\frac{1}{2} h f_{0}\right) 2 h a-\left(2-h^{2} g_{0}\right)\right\} y_{0}+2 y_{1} \\
&=h^{2} k_{0}+2 h b\left(1-\frac{1}{2} h f_{0}\right)-C y_{0}-\left(1-\frac{1}{2} h f_{0}\right) C_{1} y_{0} \tag{19}
\end{align*}
$$

This is the first of the new equations corresponding to (4), and the second is obtained by moving the term in y_{0} orer to the left in the first of (4). The remaining equations are unchanged until the second boundary is reached, where the procedure again depends on the boundary condition. In the worst case, in which a first derivative occurs at both boundaries, the new matrix will have order $n+1$, corresponding to the unknowns $y_{0}, y_{1}, \ldots, y_{n-1}, y_{n}$, but it will still be a band matrix like (6).

For the calculation of the difference corrections, including that of type $C_{1} y_{0}$ in (19), values external to the range can be calculated as before, once approximations to internal values are known, by applying successive basic equations in a step-by-step process.

It may be possible to use the differential equation, the boundary condition and the Taylor series to obtain a relation of the form

$$
\begin{equation*}
y_{x}=P y_{0}+Q \tag{20}
\end{equation*}
$$

where P, Q are constants. If this is used in place of (19), there is no longer a difference correction associated with the boundary condition. The additional work of deriving (20) may, however, outweigh this advantage.

SOLUTION OF THE ALGEBRAIC EQUATIONS

9. The solution of the equations $A y=d$, when A has the form (6), can be effected in several ways. The method described in Chapter $1, \$ \S 10-12$, which uses the decomposition $A=L U$ is very convenient; L and U each have non-zero elements only in the leading diagonal and one adjacent diagonal, and the equations determining the elements are correspondingly simple. In this particular case, moreover, the same equations are obtained by straightforward climination without interchanges.
We eliminate the term in y_{1} from the second equation

$$
\begin{equation*}
a_{2} y_{1}+b_{2} y_{2}+c_{2} y_{3}=d_{2} \tag{21}
\end{equation*}
$$

by subtracting the appropaste multiple a_{2} / b_{1} of the first equation

$$
b_{1} y_{1}+c_{1} y_{2}=d_{1}
$$

This leads to a new equation

$$
\begin{equation*}
\beta_{2} y_{2}+c_{2} y_{3}=\delta_{z} \tag{23}
\end{equation*}
$$

which in turn can be used to eliminate the term in y_{z} from the thrrd equation and so on We thus ohtam a cet of equations

$$
\begin{equation*}
\beta_{r} y_{r}+c_{r} y_{r+1}=\delta_{r}, \quad(r=1,2 \quad, n-2)_{,} \tag{24}
\end{equation*}
$$

where $\beta_{n} \delta_{p}$ are obtatned from the recorrence relations

$$
\begin{equation*}
\beta_{r}=b_{r}-9 n_{r} c_{r-1}, \quad \delta_{r}=d_{r}-m \delta_{r-1}, \quad 9 n_{r}=a_{r} / \beta_{r-1}, \tag{27}
\end{equation*}
$$

with $\beta_{1}=b_{1} \delta_{1}=d_{1}$ The final equation is

$$
\begin{equation*}
\beta_{n}, y_{n-1}=\delta_{n-1} \tag{26}
\end{equation*}
$$

from which y_{n-1} may be ohtained ummedately Then $y_{n-2} y_{n-3}, \quad, y_{1}$ may he obtained successivelv from the recurrence relation (24)

The procese ts well adtapted to both desh machme and automstio worh If the difference correction is now incorporated, the new values of y, are ohtained hy use of (24) and the second of (25) only, together with the ralues of β_{n}, m, already computed

10 Iferatire methods (eee Chapter 4) can be used when the matnx 89 mell condutioned, and this is usually the case when the complementan function of the differentral equation is of exponential type

When the complementary function is of oscllatory character, however, iteratuse methods mas converge slowly or even diverge The method of elumuation just described can stıll be used, though difficulties may occur uf one or more of the β_{r} is very small These difficuittes have heen discuseed hy For [76] They do not antse howeser, if interchanges are used in the eliranation process furthermore the band etructure of the equations is preserved They are also avoded hy using step hy step methods as desenbed in $\$ 1112$ If β_{n}, vanshes A is singular and the equations $A y=d$ have no eolution

CSE OF STEP BE STEP METHODS

11 Boundary value prohiems may also be solved by the step by step methods of Chapter 9 We compute a number of trid solutions which fulfil the boundary conditions at one end of the range, and combine theni in euch a way as to satisfy the condrions at the other end In the case of a inear second-order differentual equation, only two tral solutions have to be combined in thus way

In fact this method defers from that already discuseed only in using a different procedure to solve the assoenated algebrace equations In the case of equation (1) with the boundary values given for erample, the following sequence of operations is carried out
(1) With an arbitary y_{1}, wo calculate by recurrence a particular solution $y^{(1)}$ gatisfyung the first $n-2$ equations of (4), with the difference correction neglected
(ii) In a similar way we obtain a solution $y^{(2)}$ satisfying the first $n-2$ of the homogeneous equations corresponding to (4).
(iii) We now determine α such that $y^{(1)}+\alpha y^{(2)}$, which satisfies the first $n-2$ equations of (4) automatically, also satisfies the last equation.
(iv) Next, the difference correction $C\left(y^{(1)}+\alpha y^{(2)}\right)$ is computed and inserted into the equations (4). The calculations of (i) and (iii) are then repcated, though since the homogeneous equations are unchanged, we use the same solution $y^{(2)}$. The difference correction should be calculated from the differences of $y^{(1)}+\alpha y^{(2)}$ rather than those of $y^{(1)}, y^{(2)}$ separately, since the latter may vary much more rapidly over the range of integration.
12. If the boundary condition at x_{0} is of the more general form (16) then we modify our equations as indicated in $\S 8$. The term in y_{0} is transferred to the left-hand side of the firstequation of (4) and an additional equation relating y_{0} and y_{1} is provided by (19) or (20). In either case the subsequent computation is carried out as in §11, with the additional difference correction $C_{1} y_{0}$ if (19) is used. Problems having the more general form of boundary condition at both ends can be solved in a similar way.
Several methods of this type have been discussed by Fox [76]. It should be noted that when the complementary functions are of exponential type there will often be a loss of significant figures when the trial solutions are combined; in such cases the method of § 9 is preferable.

METHOD OF CHEBYSHEV EXPANSION

13. No essential modification of the method of Chapter $9, \$ \$ 23-25$ is required in order to apply it to boundary-value problems associated with linear differential equations having polynomial coefficients. The boundary conditions give immediately two equations which must be satisfied by the coefficients in the expansion of the solution in Chebyshev series.

LINEAR DIFFERENTIAL EQUATIONS OF OTHER ORDERS

14. Similar methods can be used for equations of other orders and for simultaneous differential equations. In particular, a fourth-order equation may have two boundary conditions at each end-point, and the matrix A is a band matrix of width five. The algebraic equations can then be solved by matrix decomposition. In general, if \mathbf{A} is a band matrix of width $2 k+1$, where $k \geqslant 2$, the natrices L and U each have non-zero elements in the leading diagonal and k adjacent diagonals.

NON-LINEAR EQUATIONS

15. In the case of non-linear differential equations the algebraic equations resulting from the use of finite differences will also be non-linear. There is no established method for solving simultaneous non-linear algebraic equations. In many cases, however, the type of solution will be lnown from physical considerations, and iterative methods can be used. Whatever method of solution is used for the first approximation, successive corrections are usually obtained from linear equations, and the methods of this chapter are then applicable.

1t Problems of boundary value type occurring, for example, in vibration theory lead to differential equations, usualis hear and homogeneous con tainung a parameter λ and for whoch nom tnvial solutions exnst ody for certan values of λ The problem is to calculate one or more values of λ and the associated solutions

The simplest example of this type is the equation

$$
\begin{equation*}
y^{\prime \prime}+\lambda y=0 \tag{27}
\end{equation*}
$$

with boundary conditions $y=0$ at $x=0 x=1$ Thus problem has a known solution, non trivial only if $\lambda=n^{2} \pi^{2}(n=1,2$,$) when y=\sin n \pi x$. The use of fimite difference equations leads to a matrex equation of the form

$$
\begin{equation*}
(A-\lambda I) y=0 \tag{28}
\end{equation*}
$$

and the problem reduces to that of calculating the latent roots and vectors of the matrix A for rhich general methods have been discussed in Chapter 3 In the case of ordmary differential equations \bar{A} is a band matris and the smallest roots λ are the most important

The use of relaxation for solving ergenvalue problems by finte-difierence methods 28 described $14[76]$ and $[77]$

17 Eigenvalue prohlems are also convenuently solved by the method of Chelyshar expansion of the coeffictents in the differential equation are polynomals in x The coefficients a, in the expansion of y in series of Chebysher polynomals are now linear functions of λ The reaultmg infinte set of hnear equations for the a_{v} and λ can be solved by an iterative method outlined m [71] or by drect methods The latter approach yzelds an algebrato latent root problem, which resembles that of (28) We may expect, howeres, that for the same order matnz the Cheby aher method will yreld more accurate engenvalues λ because of the economy of its seres representation

11

HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

CLASSIFICATION OF PARTIAL DIEEERENTYAL EQUATIONS

1. We commence by indicating the fundamental classification of quasi-linear partial differential equations of the second order in two independent variables into elliptic, parabolic and hyperbolic types. The difference between these classes concerns the analytic character of their solutions, and the types of boundary conditions necessary to determine these solutions.

The general equation has the form

$$
\begin{equation*}
a \frac{\partial^{2} u}{\partial x^{2}}+b \frac{\partial^{2} u}{\partial x \partial y}+c \frac{\partial^{2} u}{\partial y^{2}}=e, \tag{I}
\end{equation*}
$$

where a, b, c and e are functions of $u, \partial u / \partial x, \partial u / \partial y, x$ and y, but not of the second derivatives. We shall adopt the standard notation in which

$$
\begin{equation*}
p=\frac{\partial u}{\partial x}, \quad q=\frac{\partial u}{\partial y}, \quad r=\frac{\partial^{2} u}{\partial x^{2}}, \quad s=\frac{\partial^{2} u}{\partial x \partial y}, \quad t=\frac{\partial^{2} u}{\partial y^{2}} . \tag{2}
\end{equation*}
$$

Then equation (1) becomes

$$
\begin{equation*}
a r+b s+c t=e . \tag{3}
\end{equation*}
$$

2. Suppose we are given a curve in the (x, y) plane and values of u, p and q at all points on that curve. It is assumed that these satisfy the relation

$$
\begin{equation*}
d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y=p d x+q d y \tag{4}
\end{equation*}
$$

along the curve, since otherwise p and q could not possibly be the deriratives of u. We might ask ourselves the question, "Do the values of u, p and q on this curve, together with the requirement that u satisfies the differential equation, enable us to determine r, s and t on the curve?" We must have

$$
d\left(\frac{\partial u}{\partial x}\right)=\frac{\partial^{2} u}{\partial x^{2}} d x+\frac{\partial^{2} u}{\partial x \partial y} d y
$$

or

$$
\begin{equation*}
d p=r d x+s d y \tag{5}
\end{equation*}
$$

and also
or

$$
\begin{gather*}
d\left(\frac{\hat{c}^{u} u}{\hat{c} y}\right)=\frac{\hat{c}^{2} u}{c^{2} x y} d x+\frac{\hat{c}^{2} u}{\hat{c} y^{2}} d y \\
d q=s d x+t d y \tag{6}
\end{gather*}
$$

Equations (3), (5) and (6) form a cet of three hinear equations in three unknowns r, s and t In general there exisis one solution, so that unique ralues of the second denvatives are determmed at each point of the curve If, however, the determinant of the coefficients of r, s and t rambhes at any point, that is if

$$
\left|\begin{array}{ccc}
a & b & c \tag{7}\\
d x & d y & 0 \\
0 & d x & d y
\end{array}\right|=0
$$

then in general the equations (3), (5) and (B) have no eolution for that point For a colution to be possible we know from the theory of Lunent equations [18] that the rank of the matrex

$$
\left[\begin{array}{cccc}
c & a & b & c \\
d p & d x & d y & 0 \\
d q & 0 & d x & d y
\end{array}\right]
$$

must be tro The rank will be two if any of the three relations

$$
\begin{align*}
& \left|\begin{array}{ccc}
e & a & b \\
d p & d x & d y \\
d q & 0 & d x
\end{array}\right|=0 \tag{8}\\
& \left|\begin{array}{ccc}
e & a & c \\
d p & d x & 0 \\
d q & 0 & d y
\end{array}\right|=0 \tag{9}
\end{align*}
$$

or

$$
\left|\begin{array}{ccc}
e & b & c \tag{10}\\
d p & d y & 0 \\
d q & d x & d y
\end{array}\right|=0
$$

is true, each of these relations being equivalent to the others if equiation (7) holds The latter may be wniten m the form

$$
\begin{equation*}
a(d y)^{2}-b d y d x+c(d x)^{2}=0 \tag{11}
\end{equation*}
$$

Whoh is a quadratic equation in $d y / d x$ For a point (x, y) ascocated with gisen values of u, p and q then according as b^{2} as greater than, equal to, or less than a ac there will be two drrections for which (il) is satiafied, one direction or no possible durectron respectively
3. If we have a domain in the (x, y) plane in which u, p, q are dofined and if $b^{2}>4 a c$ at each point of that domain, then the differential equation is said to be hyperbolic in that domain. Similarly, if $b^{2}=4 a c$ throughout the domain the equation is said to be parabolic, and if $b^{2}<4 a c$ the equation is said to be elliptic. It is important to notice that the class to which the equation belongs may be dependent upon the solution. Thus the equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+u \frac{\partial^{2} u}{\partial y^{2}}=0 \tag{12}
\end{equation*}
$$

is elliptic in any domain over which the solution u is positive, and hyperbolic in any domain over which the solution is negative. If the equation is linear, that is if a, b and c in (1) are functions of x and y only, then for a given domain in the (x, y) plane the class of the differential equation is independent of the particular solution required and is determined in advance. Thus the equation

$$
\begin{equation*}
\left(1+x^{2}\right) \frac{\partial^{2} u}{\partial x^{2}}+\left(1+y^{2}\right) \frac{\partial^{2} u}{\partial y^{2}}=0 \tag{13}
\end{equation*}
$$

is always elliptic and the equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\left(1-x^{2}-y^{2}\right) \frac{\partial^{2} u}{\partial y^{2}}=0 \tag{14}
\end{equation*}
$$

is elliptic inside the unit circle and hyperbolic outside.

DISCONTINUOUS SOLUTIONS

4. Returning to our original question we see that, when the relation (ll) is satisfied along our curve, then in order for a solution to be possible we must insist that a further relation, given by any of the equivalent relations (8), (9) or (10), should also hold along our curve. If this is so, the theory of linear algebraic equations shows that there is an infinite number of solutions.

Let us suppose that we have chosen our initial curve and the values of u, p and q on it so that the relation (11) holds for all points on the curve. Such a curve, together with the values of u, p and q on it, is called a characteristic of the differential equation. (There is a lack of uniformity in the nomenclature used in the literature; some writers refer to the curve itself as a 'characteristic', and to the curve plus the values of u, p and q on it as a 'characteristic strip'.) For a solution of the differential equation to be possible, u, p and q must satisfy the further relation (8), say, and then we may choose one of r, s and t arbitrarily, the other two being determined uniquely. This means that we may have a curve C, lying in the domain of a solution u, such that the solution on both sides of the curve has the same values of u, p and q along the curve but different values of r, s and t. It is this important property which distinguishes hyperbolic partial differential equations from elliptic, since for elliptic equations such a situation is not possible. We may say that lyperbolic partial differential equations are characterized by the possession of real characteristics.

5 It is quite simple to construet a solution exhibiting the phenomenon just described The two funetions
satisfy

$$
\begin{aligned}
& u_{1}=(x-y)^{2}+(x-y)+1 \\
& u_{2}=2(x-y)^{2}+(x-y)+1
\end{aligned}
$$

Also $\quad c u_{3} / c x=\hat{c} u_{2} / \hat{c} x=1$, $\hat{c} u_{1} / \hat{c} y=\hat{z} u_{2} f \hat{c} y=-1$ on $x=y$
The functions and therr first dervatives therefore take the same values on the line $x=y$ They clearly also satisfy the differental equation

$$
\frac{c^{2} u}{c x^{2}}=\frac{c^{2} u}{c y^{2}}
$$

of which thas line is a characterstic The second denvatives, however, have quite different values on this line

Thus phenomenon is of frequent occurrence in physical prohlems and is not merely of theoretical interest

6 Another way of denving the equations for the charactenstio lines is to seek curres along which the partial differential equation reduces to an ordinary differential equation If $d x d y d u d p, d q$ denote differentials along ang curse C then they must satisf) equations (5) and (6) Vultaply ing (5) hy $a d y$ (6) br $c d x$ and adding the results we have

$$
\begin{equation*}
a d y d p+c d x d q \quad(a r+c l) d x d y+a s(d y)^{2}+c s(d x)^{2} \tag{10}
\end{equation*}
$$

Suhstitution from the differential equation (3) gres

$$
\begin{align*}
a d y d p+c d x d q & =(-b s+c) d x d y+a s(d y)^{2}+c s(d x)^{2} \\
& -e d x d y+\left(a(d y)^{2}-b d x d y+c(d x)^{2}\right\} \tag{16}
\end{align*}
$$

If the curve is chosen so that

$$
\begin{equation*}
a(d y)^{2}-b d x d y+c(d x)^{z}=0 \tag{17}
\end{equation*}
$$

then the terman in is elmmated and equation (16) reduces to

$$
\begin{equation*}
a d y d p+c d x d q-e d x d y \tag{18}
\end{equation*}
$$

which is an ordinary difterental equation Fquations (17) and (18) are the characterstic relations (7) and (9) above

I In the rest of thas chapter we shall dhscuss hyperbohe equations and some numencal methods for solving such equations The treatment of parabohc and elluptic equations is discossed in Chapter 12

SIMPLE EXAMPEV OFA TIPERBOLIC PARTIAL

8 The simplest example of a hyperbolic partial dufferential equation is provided by a finmating string If x is the diaplacement, x is measured along the equlilinum position of the string and t is the time then the differential equation is the smmple wave equation

$$
\begin{equation*}
\frac{c^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{v^{2} u}{c c^{2}} \tag{19}
\end{equation*}
$$

Putting $c t=y$ we obtain

$$
\begin{equation*}
\frac{\hat{\partial}^{2} u}{\partial x^{2}}=\frac{\hat{\delta}^{2} u}{\partial y^{2}} . \tag{20}
\end{equation*}
$$

(The symbol t has been used in two senscs, but since the independent variable t is now replaced by y this should cause no confusion.) The characteristic directions are given by the determinantal equation

$$
\left|\begin{array}{ccc}
1 & 0 & -1 \tag{21}\\
d x & d y & 0 \\
0 & d x & d y
\end{array}\right|=0
$$

which reduces to the simple result $d y / d x= \pm 1$. The characteristic curves are therefore the straight lines $y= \pm x+$ constant. For a solution to be possible we must also have

$$
\left|\begin{array}{ccc}
0 & 1 & 0 \tag{22}\\
d p & d x & d y \\
d q & 0 & d x
\end{array}\right|=0
$$

giving $d y / d x=d p / d q$, so that $d p / d q= \pm 1$ must be satisfied on the characteristios.

SOLUTION OF A SIMPLE DIFFERENTIAL EQUATION BY THE METHOD OF CHARACTERISTICS

9. So far, the notion of characteristics has been used to classify various types of differential equations. For hyperbolic equations the existence of real and distinct characteristics leads to the most satisfactory lnown method of numerical solution. The rolation (8) or its equivalents must be satisfied along characteristic lines. From the equations (7) and (8) we can construct the characteristics and the solution to the differential equation on these lines.
10. Before describing the general method it will be helpful to consider the simple case of the vibrating string, satisfying the differential equation (19). Suppose that we have a string fixed at both ends, $x=0$ and $x=1$ say, and that initially both its form u and velocity $\partial u / \partial t$ are specified. The 'boundary conditions' for equation (20) are then

$$
\begin{equation*}
u=0 \quad \text { at } \quad x=0 \quad \text { and } \quad 1, \quad 0 \leqslant y \leqslant \infty, \tag{23}
\end{equation*}
$$

and lience

$$
\begin{equation*}
q=\partial u / \partial y=0 \quad \text { at } \quad x=0 \quad \text { and } \quad 1, \quad 0 \leqslant y \leqslant \infty . \tag{24}
\end{equation*}
$$

The 'initial conditions' specify u, and hence $p=\partial u / \partial x$, and q at $y=0$ for $0 \leqslant x \leqslant 1$.

Suppose we wish to know the displacement and velocity of the points of the string at some later time given by $y=k$. It has already been shown that the characteristics are the lines $x \pm y=$ constant, and that the relations $p \pm q=$ constant must be satisfied on them. If in Figure 1 we take any point P on $y=k$ we can draw two characteristics through it. The line $P P_{3}$, which satisfies $x+y=$ constant, meets $x=1$ at P_{3}. We
can draw through P_{3} the charactenstuc $P_{3} P_{1}$ of type $x-y=$ constant, meeting the line $A B$, or $y=0$, at P_{1} (In genteral, for a large value of k, we shall hut the boundaries $\boldsymbol{x}=\mathbf{0}$ and $x=1$ a number of tumes before we reach the line $A B$) Similarly, if we draw the other charactenstic through P we ultimatelv reach $A B$ at $\boldsymbol{P}_{\mathbf{z}}$

Fagure 1
11 At P_{1} the values of p and q, say p_{1} and q_{1}, are given by the mital conditions Then on $P_{1} P_{3}$ wo have

$$
\begin{equation*}
p-q=\text { constant }=p_{1}-q_{1} \tag{25}
\end{equation*}
$$

At the point P_{s} on $B D$ we know $q=0$, from the houndary conditions (24), and therefore

$$
\begin{equation*}
p=p_{1}-q_{t} \tag{26}
\end{equation*}
$$

On the line $P P_{3}$ we have

$$
\begin{equation*}
p+q=\text { constant }=p_{1}-q_{1} \tag{27}
\end{equation*}
$$

in virtue of (26) and (24) Simularly, starting from P_{2} at whec p and q have known values p_{2}, q_{2}, say, we have, on $P_{z} P_{1}$,

$$
\begin{equation*}
p+q=\text { constant }=p_{2}+q_{2} \tag{28}
\end{equation*}
$$

At the point P_{4} on $A C$ we know $q=0$, so that, at P_{4},

$$
\begin{equation*}
p=p_{\mathbf{2}}+q_{\mathbf{2}} \tag{29}
\end{equation*}
$$

On $P_{4} P$ we have

$$
\begin{equation*}
p-q=\text { constant }=p_{2}+q_{z} \tag{30}
\end{equation*}
$$

in virtue of (20) and (24) Equations (27) and (30) are both satisfied at P, so that

$$
\left.\begin{array}{c}
p=\frac{1}{2}\left(p_{1}-q_{1}+p_{2}+q_{3}\right) \tag{31}\\
q=\frac{1}{2}\left(p_{1}-q_{1}-p_{2}-q_{2}\right) \\
106
\end{array}\right\}
$$

We may find p and q at all points on $y=k$ in a similar manner. The quantity q gives us the velocity, and by integrating p with respect to x, starting at $x=0$ where $u=0$, we obtain u at all points. At $x=1$ we should obtain the given boundary value $u=0$.
12. The solution of this example is very simple because the characteristics in the (x, y) plane are determined independently of the solution and are straight lines. The general case has neither of these simplifications.

the solution by charagteristios dn the general case

13. Suppose we are given the values of u, p, q on a curve $A B$ in Figure 2 which is not a characteristic curve. This restriction is important in view of the considerations of $\S 4$. If we take two points P and Q on $A B$, then there

Figure 2
are two characteristics through P and and two through Q. The directions of the two characteristics are given by equation (11), whose solutions are

$$
\begin{equation*}
\frac{d y}{d x}=\frac{b \pm\left(b^{2}-4 a c\right)^{\frac{1}{2}}}{2 a} . \tag{32}
\end{equation*}
$$

These may be represented by

$$
\begin{equation*}
\frac{d y}{d x}=f \quad \text { and } \quad \frac{d y}{d x}=g \tag{33}
\end{equation*}
$$

The relation (9) which must be satisfied on a characteristic gives

$$
\begin{equation*}
e d x d y-a d p d y-c d q d x=0 \tag{34}
\end{equation*}
$$

The characteristic $P S$ of the f type meets the charaoteristic $Q S$ of the g type at S. If P is close to Q, then as a first approximation we may regard $P S$ as a straight line of slope f_{P}. We have therefore as a first approximation the equation

$$
\begin{equation*}
y_{S}-y_{P}=f_{P}\left(x_{S}-x_{P}\right) \tag{35}
\end{equation*}
$$

Sumbarly, regarding $Q S$ as straught, we have

$$
\begin{equation*}
y_{s}-y_{Q}=g_{Q}\left(x_{S}-x_{Q}\right) \tag{35}
\end{equation*}
$$

Equations (35) and (36) are a par of hnear equations in the two unhnowns y_{s} and x_{S}, which can therefore be determuned Using these inntial approxi mations to x_{S} and y_{E} we may approximate to (34) by the equations
and by

$$
\left.\begin{array}{l}
\left.c_{P}\left(y_{S}-y_{P}\right)-a_{P}\left(p_{S}-p_{P}\right) f_{P}-c_{P}\left(q_{S}-q_{P}\right)=0 \text { (along } P S\right) \tag{37}\\
\epsilon_{Q}\left(y_{S}-y_{Q}\right)-a_{Q}\left(p_{S}-p_{Q}\right) g_{Q}-c_{Q}\left(q_{S}-q_{Q}\right)=0(\text { along } Q S)
\end{array}\right)
$$

This is a par of hnear equations in p_{g} and q_{s} from whech first approxima tons to these ralues may be found We may then obtain u_{s} from the relation

$$
\begin{equation*}
u_{s}=u_{p}+d x\left(\frac{\overline{c u}}{\frac{\partial x}{}}\right)+d t\left(\frac{\overline{c u}}{\partial y}\right) . \tag{35}
\end{equation*}
$$

Where $\frac{\overline{z_{u}}}{\overline{c x}} \frac{\overline{c u}}{\partial y}$ are mean values along $P S$ Thus gres

$$
\begin{equation*}
w_{S}=u_{P}+\left(x_{S}-x_{P}\right) \frac{k}{2}\left(p_{S}+p_{F}\right)+\left(y_{s}-y_{P}\right) \frac{1}{L}\left(q_{B}+q_{P}\right) \tag{39}
\end{equation*}
$$

From the approxmations to $\psi_{S,} p_{S}$ and q_{S} so obtaned we can approxi mate to f_{8} and g_{g} from (32) and (33)

14 We may now obtan improved walues for $x_{s}, y_{s,} p_{s,} q_{s}, z_{s}$ in the following way As mpeoved versions of (35) and (38) we have

$$
\left.\begin{array}{l}
y_{s}-y_{P}=\frac{1}{2}\left(f_{s}+f_{P}\right)\left(x_{s}-x_{P}\right) \tag{40}\\
y_{S}-y_{Q}=\frac{1}{2}\left(g_{s}+g_{Q}\right)\left(x_{s}-x_{Q}\right)_{s}
\end{array}\right\}
$$

from which we calculste more accurate values of x_{g} and y_{s} Simalarly the unproved version of the first of (37) is

$$
\begin{equation*}
\left.\frac{1}{1}\left(c_{P}+e_{S}\right) \varphi_{S}-y_{P}\right)-\frac{1}{2}\left(a_{P}+a_{S}\right)\left(p_{S}-p_{P}\right) \frac{1}{2}\left(f_{P}+f_{S}\right)-\frac{1}{1}\left(c_{P}+c_{S}\right)\left(q_{S}-q_{P}\right)=0, \tag{11}
\end{equation*}
$$

With a sumular improveraent for the second of (37) From these two equatrons we ohtan more accurate values of p_{s} and q_{s} and finally of $u_{S^{s}}$ as befone The process should be repeated untal tro successive approxtma twons to $x_{s}, y_{s}, p_{s}, q_{s_{s}}, v_{s}$ agree to the accuracy to wheh we are worhing Normalls we would tahe the point. P so close to Q that one umprovement gres the desired aceuracy When thes accuracy has been attamed at S and T we can proceed a step further, to the point U in Figure 2, and so on

15 Our method, then, is to take a number of points on our unital curve at convenuent distances apart and to obtan the values of x, y, u, p, q at all points of the mesh shown ma Figure 2 It will be seen that the curve $A B$ and the values of x, p and q on it only determine the values of u, p and q in the curriknear triangle $A B C$ bounded by the two characteristics $A C$ and $B C$ Points outside thus triangle are influenced by values on the continuation of the curve $A B$ The ralues st the points in $A B C$ are completely independent of the values of u, p and y at pounts on the mitalal curve beyond A and B
16. Apart from the ordinary linear wave equations of which the vibrating string is a simple example, perhaps the most important example of a hjperbolic partial differential equation is provided by steady supersonic compressible flow in two dimeusions. If we have isentropic potential flow, then there is a velocity potential u, and the pressure P is a function, $P(\rho)$, of the density ρ only. The quantity $d P / d \rho$ is equal to a^{2}, where $a=a(\rho)$ is the relocity of sound. The equation satisfied by the potential u is

$$
\begin{equation*}
\left(a^{2}-p^{2}\right) \frac{\partial^{2} u}{\partial x^{2}}-2 p q \frac{\partial^{2} u}{\partial x \partial y}+\left(a^{2}-q^{2}\right) \frac{\partial^{2} u}{\partial y^{2}}=0, \tag{42}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
p=\frac{\partial u}{\partial x}=-(\text { velocity in } x \text { direction }), \tag{43}\\
q=\frac{\partial u}{\partial y}=-(\text { velocity in } y \text { direction }) .
\end{array}\right\}
$$

There is a further relation (Bernoulli's equation) given by

$$
\begin{equation*}
\int \frac{d P}{P}=\text { constant }-\frac{1}{2}\left(p^{2}+q^{2}\right) . \tag{44}
\end{equation*}
$$

The left-hand side of (44) is a function of ρ, so that (44) gives ρ in terms of p and q, and since a is a function of ρ it is also a function of p and q.
17. The characteristic directions (Mach lines) are given by

$$
\begin{equation*}
\left(\alpha^{2}-p^{2}\right)(d y)^{2}+2 p q d x d y+\left(a^{2}-q^{2}\right)(d x)^{2}=0 . \tag{45}
\end{equation*}
$$

These are real if

$$
\begin{gather*}
p^{2} q^{2}>\left(a^{2}-p^{2}\right)\left(a^{2}-q^{2}\right), \\
p^{2}+q^{2}>a^{2} . \tag{46}
\end{gather*}
$$

Now $p^{2}+q^{2}$ is the square of the velocity, so that we see from (46) that the equation is lyperbolic if the motion is supersonic. The relation to be satisfied on the characteristics is

$$
\left|\begin{array}{ccc}
0 & \left(a^{2}-p^{2}\right) & \left(a^{2}-q^{2}\right) \tag{47}\\
d p & d x & 0 \\
d q & 0 & d y
\end{array}\right|=0
$$

giving

$$
-\left(a^{2}-p^{2}\right) d p d y=\left(a^{2}-q^{2}\right) d q d x,
$$

$$
\begin{equation*}
-\frac{d y}{d x}=\frac{\left(a^{2}-q^{2}\right)}{\left(a^{2}-p^{2}\right)} \frac{d q}{d p} . \tag{48}
\end{equation*}
$$

From (45) we then find

$$
\begin{equation*}
\left(a^{2}-q^{2}\right)(d q / d p)^{2}-2 p q(d q / d p)+\left(a^{2}-p^{2}\right)=0, \tag{49}
\end{equation*}
$$

for the relations to be satisfied on the characteristics. Since, however, a is a function of p and q, (49) can be integrated (in general only numerically), and hence the relation between p and q along a characteristic is independent of the curve in the (x, y) plane. This is always true of the homogeneous quasi-linear second-order equation (3) in which the coefficients
of $r_{1} s$ and t are functions of p and q only It 15 clear from (45) and (19) that if the directions of the characterstics are given by $d y / d x=f$ $d y / d x-g$, then along them we have $d q / d p=-1 / g$ and $d g / d p=-1 / f$ respectrvely

bimutaneous partial differential equations

18 The method of characteristics may be applied to a system of simul taneous first-order differential equations an example will make this clear Suppose we consider the non steady one-dmmensional motion of com pressible fluad in whech $P=P(p)$ so that $d P / d \rho=a^{*}$, the square of the velocity of sound The equation of motion is given by

$$
\frac{\partial u}{d t}+u \frac{\partial u}{\partial x}+\frac{a^{2}}{\rho} \frac{\partial \rho}{\partial x}=0
$$

and the equation of continumt 3 is

$$
\begin{equation*}
\rho \frac{c u}{\partial x}+\frac{\partial p}{\tilde{t}}+u \frac{\partial \rho}{\partial x}=0 \tag{51}
\end{equation*}
$$

Again we may pose the questioo of we are given the values of u and ρ on a curre in the (x, t) plane, do the diferential equations determane $\frac{i u}{\partial t} \frac{\partial u}{\partial z}, \frac{\partial p}{d t}$ and $\frac{\partial p}{\partial x}$ on this lene? The equations

$$
\begin{align*}
& \frac{\partial u}{\vec{\partial} t} d t+\frac{\partial u}{\partial x} d x-d u \tag{02}\\
& \frac{\partial \rho}{\partial t} d t+\frac{\partial \rho}{\partial x} d x=d \rho \tag{53}
\end{align*}
$$

must be satisfied, and together mith (50) and (51) they prowide four equations in the four unkowns $\frac{\partial z}{c t}, \frac{\partial u}{\partial x}, \frac{\partial \rho}{c t}$ and $\frac{\partial \rho}{\partial x}$, for which in general a unuque solution will be obtaned If bowever the relation

$$
\left|\begin{array}{cccc}
1 & n & 0 & \frac{a^{z}}{p} \tag{54}\\
0 & p & 1 & u \\
d t & d x & 0 & 0 \\
0 & 0 & d t & d x
\end{array}\right|=0
$$

is satisfied, the equatrons will not have a solution unless

$$
\left|\begin{array}{cccc}
1 & u & 0 & 0 \tag{55}\\
0 & p & 1 & 0 \\
d l & d x & 0 & d u \\
0 & 0 & d t & d \rho
\end{array}\right|=0
$$

or any of the three equivalent relations is satisfied Equation (54) reduces to $d x^{\prime} d t=u \pm a$ This means that for all one-dumensional unsteady flow
problems there are two real characteristic directions, it being natural to use the same nomenclature here as in the quasi-linear second-order case. The relation (55) reduces to

$$
\begin{equation*}
\frac{d u}{d \rho}=\mp \frac{a}{\rho}, \tag{56}
\end{equation*}
$$

for $d x / d t=u \pm a$. Equation (56) gires

$$
\begin{equation*}
u=\mp \int \frac{a}{\rho} d \rho \tag{57}
\end{equation*}
$$

and, since a is a fumction of ρ, u is also a function of ρ. The pair of differential equations (50) and (51) may be solved by the method of characteristics in exactly the same manner as in the case of a second-order partial differential equation already described.

COMPARISON WITH ELLIPTIC EQUATIONS

19. The above examples manifest a feature which distinguishes the formulation of problems inrolving hyperbolic and parabolic equations from those involving elliptic equations, namely that the boundary conditions are commonly specified on an open boundary. For elliptic equations it is usual to hare closed boundaries. A typical problem in the elliptic field is: "Given u on a closed curre, to find u inside that curve to satisfy the boundary condition and the differential equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\hat{\sigma}^{2} u}{\partial y^{2}}=0
$$

inside the curve". An interesting feature of this problem is that even if the values of u on the boundary are discontinuous at a number of points, the solution u has derivatives of all orders in both x and y inside the curre. This is in striking contrast to the hyperbolic case, where boundary conditions with discontinuities in the derivatives give rise to solutions with discontinuities in the derivatives. The well-behared nature of the solution in the elliptic case has the result that finite-difference techniques are far less likely to lead to difficulties and it is usually quite safe to use a rectangular mesl of points. For hyperbolic equations the possibility of having discontinuities in the second derivative across the characteristics makes the use of a rectangular mesh rather hazardous, and it is better to use the characteristic mesh in spite of the fact that it provides values of u, p and g at the rather inconveniently placed points of intersection; see also [81].

12

PARABOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

HOETDARY CONDITIONS

1 In Chapter il the three types of partial differential equations, hyper bolic, parabolio and elliptic were distingusbed by reference to their cbaractenstics For hyperboho equations the charactenstics were real curres, and the chosen numencal method of solution marolred a stephy step process carned out along these curres this method was possible and convement because the supplementary conditions were of mitual salue type and the houndary was open

With ellpptic equations the condations are of boundary talue type, generally given at all pounts of a closed boundary There aro correspondmg distinctions in the methods of solution step hy step methods betng replaced by the sumultaneous solution of the relevant finte-diference equations

Parabolic equations come somewhere between these two extremes The boundary is open, hut usually only in one drection and the best methods of solution are combinations of boundary value and untial value techniques

PARABOLIC EQUATIONS

2 Physical problems leading to parabole equations ace those of heat conduction and diffuston The sumplest equation of the kind 15 g gren by

$$
\begin{equation*}
\frac{c^{2} f}{c x^{6}}=\frac{c f}{c t} \tag{I}
\end{equation*}
$$

with conditions speafyurg f on three sides of a rectangle $t=0, x=-1$, $x=+1$, as shown in Figure 1 The boundary is open in the poastive t-direction

Fugum 1

It is worth noticing in passing that the equation as presented is dimensionless. The original equation might be given as

$$
\begin{equation*}
\hbar \frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial f}{\partial t}, \tag{2}
\end{equation*}
$$

with the boundaries at $x=-l$ and $+l$. In the heat conduction equation f is temperature, x is length, t is time and k, called the diffusivity or thermometric conductivity, has the dimensions of $\mathrm{L}^{2} \mathrm{~T}^{-1}$. If we introduce the new independent variables $X=(1 / l) x, T=\left(k / l^{2}\right) t$, the equation reduces to (1) with x and t replaced by X and T, and the boundaries are at $T=0$, $X= \pm 1$. Such 'non-dimensional' treatment is often of considerable value in numerical work.
Analytical solutions given, for example, by Carslaw and Jaeger [$\mathbf{9 0}$], can sometimes be obtained to equations like (1) with various boundary conditions. As with ordinary differential equations, however, these are often rather complicated expressions, whose eraluation is not trivial: small changes in the equations or boundary conditions, moreover, may prohibit the production of such a solution. Again, therefore, numerical methods of solution, based on the use of finite differences, have been developed. We shall use the simple equation (1) to illustrate methods that are applicable to parabolic equations of much more general form.

REDUCTION TO ORDINARY DIFEERENTIAL EQUATIONS

3. We first replace the second derivative in the x-direction by finite differences. We divide the range -1 to 1 into equal intervals δx with pivotal points $x_{0}, x_{1}, \ldots, x_{n}$, the first and last points lying on the boundaries, and wc denote by $f_{r}(t)$ the function f evaluated as a function of t for the constant value x_{r} of x. We can then replace (1) by the equations

$$
\begin{equation*}
(\delta x)^{2} \frac{d f_{r}}{d t}=\left(f_{r-1}-2 f_{r}+f_{r+1}\right)+C_{x} f_{r} \quad(r=1,2, \ldots, n-1) \tag{3}
\end{equation*}
$$

Herc $C_{x} f_{r}$ is the difference correction

$$
\begin{equation*}
C_{x}=-\frac{1}{12} \delta_{x}^{4}+\frac{1}{90} \delta_{x}^{6}-\ldots \tag{4}
\end{equation*}
$$

the suffix x referring to differences in the x-direction.
Equations (3) represent a set of ordinary differential equations and, if the difference correction is neglected, they can be written as

$$
\left.\begin{array}{rrr}
p\left(d f_{1} / d t\right)+2 f_{1}-f_{2} & =f_{0} \tag{5}\\
p\left(d f_{2} / d t\right)-f_{1}+2 f_{2}-f_{3} & =0, \\
p\left(d f_{3} / d t\right) & -f_{2}+2 f_{3}-f_{4} & =0, \\
\ldots \\
p\left(d f_{n-2} / d t\right) & -f_{n-3}+2 f_{n-2}-f_{n-1}=0, \\
p\left(d f_{n-1} / d t\right) & -f_{n-2}+2 f_{n-1}=f_{n},
\end{array}\right\}
$$

where $p=(\delta x)^{2}$. There are $n-1$ equations in $n-1$ unknown functions, and the extra conditions provide linown values of all the f_{r} at $t=0 ; f_{0}$
and f_{n} are known for all t.

Equations in thus form have been used to solve problems in hent conduction on the differential analyser [92] They can be solved on desh machones or automatic machunes, by the metbods of Chapter 8, the appbeation of some of which we describe below

4 If the conditions on $x= \pm 1$ do not specify the function, but unvole some law of cooling represented by

$$
\begin{equation*}
\frac{\partial f}{\partial x}+h f=g \tag{G}
\end{equation*}
$$

say, with h and g known functions of t, we use the method gleen in Chapter 10 § 8 for the simalar problem of ordmary differential equitions involving derivative conditions at the boundaries The set (5) will then hare two extra equations mvolying $d f_{0} / d t$ and $d f_{n} / d t$

The centre line $x=0$ is often a line of symmetry, and we can tahe advantage of this fact to halve the number of equations in (5)

5 For an equation in cylmdrical coordinates, given by

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial r^{2}}+\frac{1}{r} \frac{\partial f}{\partial r}=\frac{\partial f}{\partial t^{\prime}} \tag{7}
\end{equation*}
$$

we replace both the second and first r derivatues by thetr momplest finte defference approxmations and can again produce equations sumular to (5) The line $r=0$ is one of symametry and for the equation on this Line we replace (7) by

$$
\begin{equation*}
p \frac{d f_{0}}{d \ell}=4\left(f_{1}-f_{0}\right), \tag{8}
\end{equation*}
$$

where $p=(\delta r)^{2}$ and the anffixes 0 and 1 here refer to the centre hone and the adjacent line in the field of integration

USE OF THE RUMGE-KGTTA METHOD

6 The Runge-Kutta process whech well suated to automatio worh 15 immedately applicible to the set of equations (5) Unfortunately, however, though the truncation errot in the fourth order process can be mode neglighble without prohsbine reduction of the interval, the stablity requirement severely restricts the size of interval ot that may be used

The homogeneous equations obtuned from (5) by neglecting the nght hand sides have solutions of the form $f_{r}=a_{r} e^{-k t}$ where λ and a_{r} ($r=1,2, \quad, n-1$) are constanta satisfying

These equations in turn are satisfied by $a_{r}=\sin r \theta$, provided that $2-\lambda p=2 \cos \theta$ and $\sin n \theta=0$, that is

$$
\begin{equation*}
\lambda=\frac{4}{p} \sin ^{2} \frac{\varphi \pi}{2 n}=\frac{4}{(\delta x)^{2}} \sin ^{2} \frac{\pi \pi}{2 n} \quad(r=1,2, \quad, n-1) \tag{10}
\end{equation*}
$$

The largest value of λ is approximately $4 /(\delta x)^{2}$. Since the fourth-order Runge-Kutta process is stable for an interval h, in this case δt, such that $\lambda h<2 \cdot$ S (see Chapter $9, \S 29$), we see that this leads to the restriction

$$
\begin{equation*}
\frac{\delta t}{(\delta x)^{2}}<0.7 \tag{Il}
\end{equation*}
$$

If the partial differential equation is not of the simple form (1) but contains rapidly varying functions, so that a fairly small interval δx has to be used, the restriction (11) on the interval δt may be prohibitive. For this reason it may be desirable, even when using an automatic computer, to keep the interral δx as large as possible and incorporate the difference correction $C_{x} f$.

AN EXPLICIT METHOD

7. This method replaces the time-derivative in equations (3) by its simplest finite-difference approximation

$$
\begin{equation*}
\delta t\left(\frac{\partial f_{r}}{\partial t}\right)_{t_{0}}=f_{r, t_{0}+\delta t}-f_{r, t_{0}} \tag{12}
\end{equation*}
$$

Then neglecting the difference corrections, we have

$$
\begin{equation*}
f_{r, t_{0}+\delta t}=f_{r, t_{0}}+\frac{\delta t}{(\delta x)^{2}}\left(f_{r-1}-2 f_{r}+f_{r+1}\right)_{t_{0}} \quad(r=1,2, \ldots, n-1) . \tag{13}
\end{equation*}
$$

The values of f_{r} at time $t_{0}+\delta t$ are thus obtained directly from those at time t_{0}, and for this reason the method is said to be explicit.
Though the truncation error in (12) is much greater than that involved in the Runge-Kutta process, it is usually the stability requirement that governs the permissible size of δt. An analysis similar to that of the previous section shows that this method is stable provided that

$$
\begin{equation*}
\frac{\delta t}{(\delta x)^{2}}<\underline{1} \tag{14}
\end{equation*}
$$

This restriction is only slightly more stringent than that of (11) for the Runge-Kutta process and, of course, the present method involves less computation. Again it would be possible to include the difference corrections, but the choice of an interval δt for which $C_{t} f$ must be included is only to be recommended for desk-machine work.

RICIAARDSON'S METHOD

8. If (12) is replaced by the better approximation

$$
\begin{equation*}
2 \delta t\left(\frac{\partial f_{r}}{\partial t}\right)_{t_{0}}=f_{r, t_{0}+\delta t}-f_{r, l_{0}-\delta t} \tag{15}
\end{equation*}
$$

we obtain, in place of (13),

$$
\begin{equation*}
f_{r, t_{0}+\delta t}=f_{r, t_{0}-\delta t}+\frac{2 \delta t}{(\delta x)^{2}}\left(f_{r-1}-2 f_{r}+f_{r+1}\right)_{t_{0}} . \tag{16}
\end{equation*}
$$

This method, however, is unstable for all valnes of $\delta t /(\delta x)^{2}$, and so should not be used.

THE METEOD OF CEAYh AVD SICOLSON

0 This process is ohtained by applying to the set of equations (3) the method outlined in Chapter $9, \$ 16$ for the solution of first order ordmary differential equations Thus, combining (3) with the relations
where
we denve

$$
\begin{align*}
& \left\{f_{r-1}-2(1+s) f_{r}+f_{r+1}+C_{r} f\right\}_{L_{r}+z t} \\
& \quad=-\left\{f_{r-1}-2(1-s) f_{r}+f_{r+1}+C_{x} f\right\}_{5}-2 s\left(C_{1} f_{r}\right)_{h+1 s t} \quad(r=1,2, \quad, n-1), \tag{18}
\end{align*}
$$

where $s=\{\delta x)^{2} / \delta t$
To obtan the values of f at the tume $t_{0}+\delta t$ we then have to solve a set of simultaneous equations thas is accondengly an mplict method If the difference correction $C_{x} f$ is neglected the matrix of coefficients of these equations 18 a band matrix of width three and the equations can besolved very $81 r \mathrm{p}$ ly by the method given un Chapter 10, 80

It may be noted that $\left(G_{z} f_{r}\right)_{4}$ whl often be a good approxamation to ($\left.C_{z} f_{p}\right)_{t+e b}$, and may be used to replace it in (18), in this way the difference correction $C_{x} f$ is effectively incorporated in a sungle integration run Determination or estimation, of the difference correction $G_{l} f$ is less convenient, and on an automatic computer it is customary to use an interval δt sufficiently small for $C_{t} f$ to be assumed neghogble The valdity of this assumption can be checked by a second ran using a different interval 8

Though this method involves a good deal more work at each step it has the great edsantage, shared mith the corresponding method of Chapter 0 , of being stable for all ralues of the intertals δx and δt The number of time ateps necded is often considerably less than with other methods and in coneequence the Cranh-ineolson method is usually to be recommended

NON LINEAK EQTATHONS

10 If the differential equation, whule retaming its parabolic form, is non linear or has non hnear boundary conditions, then the methods of §§ 6 and 7 are immediately applicable The Crank Nicolson method, however, involves the solution of a set of simultaneous non linear aigebraic equations Thus may be accomplished by extrapolitung from the known values of f_{r} for $t_{0}, t_{0}-\delta t$ to obtam an estimate of f, for $t_{0}+\delta t$, and then applywg Newion's rule (Chapter 6, $\mathbf{5} 9$) to obtain an accurate solution of the equations, one or two appheations normally suffice Agam, despite the added complexity of the calculations, this method is often much faster than those subject to restrictive stablity himitations

SINGELABLTIES

11 All methods muy have difficulties when there are singularties in the boundary conditions, for example with 'quenching' problems in whech a fugh temperature at $t=0$ is reduced instantancously to zero on the
boundaries $x= \pm 1$. Near the corner points $t=0, x= \pm 1$, the finitedifference equations cease to be meaningful, and the step-by-step process is either replaced in the early stages by an analytical solution calculable for small t, or is carried out following a transformation of both independent variables which removes the singularity.
When the singularity is at $x=0, t=0$, the transformation usually employed is

$$
\begin{equation*}
X=\frac{x}{2 \sqrt{t}}, \quad T=\sqrt{ } t \tag{19}
\end{equation*}
$$

Equation (1) becomes

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial X^{2}}+2 X \frac{\partial f}{\partial X}=2 T \frac{\partial f}{\partial T} \tag{20}
\end{equation*}
$$

and the point $x=0, t=0$ is 'stretched out' into the X-axis.
In cases when the transient phenomena are not of interest it is sometimes possible to ignore the meaningless nature of the finite-difference representation in the neighbourhood of the singularity, because the errors so introduced do not persist; see for example [96].

ELIIPTIC EQUATIONS

12. Elliptic differential equations are of pure boundary-value type. The simplest equation of this kind is the famous equation of Laplace, given in two dimensions by

$$
\begin{equation*}
\nabla^{2} f=\partial^{2} f / \partial x^{2}+\partial^{2} f / \partial y^{2}=0 \tag{21}
\end{equation*}
$$

A more general equation is that of Poisson, given by

$$
\begin{equation*}
\nabla^{2} f=g(x, y) \tag{22}
\end{equation*}
$$

in which the right-hand side is a known function. With such equations are associated boundary conditions at all points of a closed boundary, specifying values of the function, or its normal derivative, or a combination of these quantities.
The general method of solution is to divide the region into a square or rectangular grid of pivotal points, replace the differential equation by finitedifference equations, and solve the resulting set of algebraic equations.

FINTTE-DIFFERENCE REPRESENTATIONS

13. The simplest problem of this type is given by eqnation (21), with f specified at points on a rectangular boundary. If we consider a particular point (x_{0}, y_{0}) of the grid dividing up the rectangle, we can use the centraldifference formula

$$
\begin{equation*}
(\delta x)^{2} \partial^{2} f_{0} / \partial x^{2}=\left(\delta_{x}^{2}-\frac{1}{12} \delta_{x}^{4}+\frac{1}{90} \delta_{x}^{6}-\ldots\right) f_{0} \tag{23}
\end{equation*}
$$

the suffix x denoting, as before, 'differencing in the x-direction'. A similar formula holds for the second derivative in the y-direction. As in the corresponding solution of ordinary differential equations of boundaryvalue type we replace the leading terms in the derivative formulae by their expressions in terms of pirotal values, given by

$$
\begin{equation*}
\delta_{x}^{2} f_{0}=\left(f_{1}-2 f_{0}+f_{-1}\right)_{x}, \quad \delta_{y}^{2} f_{0}=\left(f_{1}-2 f_{0}+f_{-1}\right)_{y}, \tag{24}
\end{equation*}
$$

where the ralues $f_{t, x}$ and $f_{-x} x$ belong to the parotal points $x_{0}+\delta x, x_{0}-\delta x$, mith similar meanings for $f_{i, v}$ and $f_{1 y}$ We can then replace the differ ential equation by the dafference equation

$$
\left.U_{1}-2 f_{0}+f_{-1}\right)_{x}+8^{2}\left(f_{1}-2 f_{0}+f_{-1}\right)_{y}+C f_{0}=0,
$$

where $a=\delta x / \delta y$ and $C f_{0}$ ts the difference carrection In the mast common caso, in wheh $\delta x=\delta y=h$ equation (25) becomes

$$
\left.\begin{array}{c}
\left\{f_{1}+f_{-1}\right)_{x}+\left(f_{1}+f_{-2}\right)_{y}-4 f_{0}+C f_{0}=0, \tag{}\\
C-\left(-\frac{1}{1} \delta^{2} \delta^{2}+\frac{1}{10} \delta^{4}-\right)_{2}+\left(-\frac{1}{13} \delta^{4}+\frac{1}{010} \delta^{8}-\right)_{y}
\end{array}\right\}
$$

The differential equation (22) Ieads to the anme finte-difference equa tion, with the addition of the term $h^{2} g\left(x_{0}, y_{0}\right)$ on the nght of the firct of (26)

14 If the boundary ralues are known, an equation of type (26) is to be satisfied at erery internal point of the mesh, and the number of unknowns is the same as the number of equations Thas may he farrly large but each equation contams at most fire unknowns and the set is farrly well condrioned They can usually be solved quate consemently on an automatic computer either by drect methods or by the iterative nethods described in Chapter 4 and on desh machines by direct methods or relaration

15 'The dreet methods are exemplafied by Porsson's equation with a rectangular boundary which leads to algebrace equations which can be represented by the matrix equation

$$
\begin{equation*}
A f=b_{i} \tag{27}
\end{equation*}
$$

in which A has the folloning special form in partitioned matrix notation

$$
A=\left[\begin{array}{lllll}
B & 1 & 0 & 0 & 0 \tag{28}\\
1 & B & 1 & 0 & 0 \\
0 & 1 & B & 1 & 0
\end{array}\right]
$$

1 is a unit matrix and B a band matrix given by

$$
B=\left[\begin{array}{rrrrr}
-4 & 1 & 0 & 0 & 0 \tag{29}\\
1 & -4 & 1 & 0 & 0 \\
0 & 1 & -4 & 1 & 0
\end{array}\right]
$$

The order of A is the total number of anteraal mesh points, while the order of I and B_{18} the number of miternal mesh ponts in one durectron

Descriptions of methoda of solving (27) in theso crrcumstances bave been given by Karlqrist [110] sud Cornock [111] with extensions to fonrth order equations of biharmonic type (see \& 19)

16 As wath ordinary differential equations our general procedure is to choose s reasonably large interval, to heep the number of algebrac equations as small as possible In a first approximation the difference
correction is neglected and a solution $f^{(1)}$ produced. A few values ean be found at external points by a step-by-step process, enough to enable the significant central differences of $f^{(1)}$ to be obtained at all internal pirotal points, and $C f^{(1)}$ ean then be caleulated at all these points. Insertion of Of ${ }^{(1)}$ in the first of (26), with all constant terms suppressed, then provides a correction $\delta f^{(1)}$, and the process can be repeated if necessary.

When an automatie computer is used, it is customary to choose an interval for which the difference correction is expected to prove negligible. If the differences of the solution so obtained show that this is not so, then, eren if storage limitations prevent the choice of a smaller interval, the difference corrections ean be ineorporated fairly readily. In such a ease direct methods of solution of the algebraic equations hare the adrantage that the triangular decomposition of \mathbf{A} does not have to be repeated.

BOUNDARY CONDITIONS INVOLVING A DERIVATIVE

17. If the boundary condition involves a derivative on the reetangular boundary, the procedure is rery similar to that for ordinary differential equations. The finite-difference equation (26) is now used at a boundary point also, and the external value so introduced is eliminated by use of the finite-difference form of the boundary condition, involving a difference correction of new type at a boundary point.

A nerr problem is presented if the boundary is curved. Few boundary points are now mesh points, and the simple formula (26) eannot be used at points like O in Figure 2, since point 1 is outside the boundary. The boundary value (x) is known, so that using an interpolation formula we can express the value f_{1} in terms of the boundary value and values at internal points, thereby eliminating f_{1} from the basie finite-difference equation.

If the normal derivative is involved in the condition at a curved boundary the problem is much more difficult, since the direction of the normal does not coincide with that of either set of nesh lines.

Figure 2

MORF ACCURATE FINITE-DIFFERENCE REPRESENTATION

18. For equations involving the Laplace operator we can construet more accurate but more complicated finite-difference expressions for the quantity $\nabla^{2} f$. In the notation of Figure 3 we find, neglecting sixth and
higher differences, the formula

$$
\begin{equation*}
6 h^{2} \Gamma^{2} f_{0}+\frac{1}{2} h^{4} \nabla^{3} f_{0}=4\left(f_{1}+f_{2}+f_{3}+f_{4}\right)+\left(f_{3}+f_{4}+f_{7}+f_{\mathrm{k}}\right)-20 f_{0} \tag{30}
\end{equation*}
$$

Here both terms on the left hand ande are known, $\Gamma^{4} f_{0}$ being replaced br zero for Laplace's equation sund by 「'2 $^{2} g_{0}$ for Porson's equation (2s) Other formulae and their method of derivition have been given by Bichlev [101]

Figure 3
For more general equations such as

$$
\begin{equation*}
g_{1} \frac{\varepsilon^{2} f}{\varepsilon x^{2}}+g_{3} \frac{c^{2} f}{c y^{i}}+g_{3} \frac{\partial f}{i z}+g_{6} \frac{c f}{c y}+g_{5} f=g_{4} \tag{3l}
\end{equation*}
$$

Where the y, are hooun functions of x and y, the replacement of all the denvatives by their central difference equivalents and the expression of tber first terms by pivotal ralues will lead to a five term formula lhe (28), though all the coefficients may be dufferent More accurate simplo formulae libe (30) are unilele to enst in the general case
OTHER PROEEEMS OF ELLIPTYC TYRE

19 The fourth-order equation

$$
\begin{equation*}
\Gamma^{2} f=\frac{2 f}{\partial x^{4}}+2 \frac{\omega^{d} f}{c x^{2} \hat{0} y^{2}}+\frac{\sigma^{d} f}{c y^{d}}=g(x y) \tag{3}
\end{equation*}
$$

is an elliptic equation of frequent occurrence in problems of elastic atress analysis When $g=0$ it is called the biharmonic equation Associated with the differentral equation we now meed two conditions at each boundary point, the most common conditions specufying boundary values of both f and 1 ts normal derivative $\boldsymbol{f f} \boldsymbol{f}$ form of $\mathrm{V}^{\mathbf{4}} \mathrm{f} \mathrm{is}^{\mathrm{s}}$ given by

$$
\begin{equation*}
h^{4} \nabla^{4} f_{0}=20 f_{0}-8 \sum_{1}^{4} f_{r}+2 \sum_{5}^{8} f_{r}+\sum_{7}^{18} f_{r n} \tag{33}
\end{equation*}
$$

in the notation of Figare 3 and the two boandary conditions again permut the production of a set of algebrare equations, equal in number to the number of internal mesh ponts

The general equation contains thirteen unknown pivotal values. Iterative solution of the equations is more difficult than in the secondorder case, mainly due to ill-conditioning, but direct methods [110], [111] based on matrix operations are quite practicable.
The problem of curved boundaries is in a sense less difficult in this case than for second-order equations. This is associated with the fact that a knowledge of both f and $\partial f / \partial v$ at the boundary implies a knowledge of both $\partial f / \partial x$ and $\partial f / \partial y$, the derivatives in the directions of the mesh lines.
20. Problems in elasticity may also involve the solution of two simultaneous second-order equations of the form

$$
\left.\begin{array}{l}
A \frac{\hat{\partial}^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial y^{2}}+C \frac{\partial^{2} v}{\partial x \partial y}=0, \\
B \frac{\partial^{2} v}{\partial x^{2}}+A \frac{\partial^{2} v}{\partial y^{2}}+C \frac{\partial^{2} u}{\partial x \partial y}=0, \tag{34}
\end{array}\right\}
$$

with u and v, or some equivalent conditions, imposed at all points of a closed boundary. By replacing derivatives by finite differences, in the usual way, we produce a set of algebraic equations in the unknown pirotal values of u and v. The only new feature is contained in the approximate equation

$$
\begin{equation*}
4 h^{2} \frac{\partial^{2} u_{0}}{\partial x \partial y}=u_{5}-u_{6}+u_{7}-u_{8} . \tag{35}
\end{equation*}
$$

in the notation of Figure 3.
In all these problems the diffcrence corrections have a known form, and can be introduced at a later stage to correct a first approximation.
21. Some elliptic equations, such as

$$
\begin{equation*}
\nabla^{2} f+\lambda f=0, \tag{36}
\end{equation*}
$$

are of eigenvalue type, and lead to the solution of the algebraic problem

$$
\begin{equation*}
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{f}=0, \tag{37}
\end{equation*}
$$

already discussed in Chapter 3.
22. Finally, in some problems, notably in fluid motion and in plasticity, the position of part of the boundary is not known in advance, and an extra condition is imposed at this boundary to fix its position. The usual method is one of iteration: the problem is solved for guessed boundary positions, and the true position estimated to fit the extra condition.

13

EVALUATION OF LIMITS, USE OF RECURRENCE RELATIONS

1 In thes chapter we discuss the avaluation of timits of sequences slowly convergent series and contmued fractrons and the use of securrence relations The emphasis is on numencal procedures of wide applicability rather than mathematical transformations relevant only to specialized problems

RICRARDSOV \mathcal{A} DEFERRED APPROACH TO THE LIMET

2 This method man often be used to mprove approximate resulta obtaned by finte-differeace methods mithout the explict use of a differ ence correetion The approvimation f_{1} sas obtaned with the neglect of the difference correction differs from the true talue of f by an amount depending on the interval h_{1} Let us suppose that for small h_{1} the approxt mation $f_{1}{ }^{13}$ of the form

$$
\begin{equation*}
f_{1}=f+A h_{1}^{t}+B h_{1}^{t+1}+ \tag{1}
\end{equation*}
$$

where A and B are unbnown constants If we caloulate two approxma toons f_{1} and f_{2} usung different mitervals h_{1} and h_{2} we have two equatrong of the form (I) from which we can climinate A In thus way we obtain a new approximation
which may be termed the h^{k} extrapolation formula In particular if $h-2$ and $h_{2}-\frac{1}{2} h_{1}$ equation (2) becomes

$$
\begin{equation*}
\left.f=f_{2}+\frac{f}{\left(f_{2}-f_{2}\right.}\right) \tag{3}
\end{equation*}
$$

with an ecror $\frac{1878}{6}+\quad$ The method can clearl be extended to obtan formulae wheh tahe account of further terms in the expanszon (1) An investigation of the conditions under whech the particular form (3) 19 vald in the solution of diferental equations by finite dafference methods 3s reported un [119]

Generally speabing h^{k} extrapolation is applicable whenever a k th order process $2 s$ used to compute for example approximations to an integral or the solution of a differential equation prosided that there aie no
singularities in the range of integration. In practice it is usually desirable to employ at least three different intervals in order to allow comparison between the results of two or more applications of (2); this will help to ensure that the f_{τ} have been computed to sufficient accuracy, that the intervals used are sufficiently small and that the correct value of k has been chosen. If the exponent is not known, it can be determined numerically (provided that an expansion of the form (1) is known to exist) from the approximate formula

$$
2^{k} \fallingdotseq \frac{f_{2}-f_{1}}{f_{3}-f_{2}}
$$

where the intervals corresponding to f_{1}, f_{2}, f_{3} satisfy the relations $h_{3}=\frac{1}{2} h_{2}=\frac{1}{4} h_{1}$.

As an example, let us evaluate the integral $\int_{0}^{\frac{1}{2} \pi} \sin x d x=1$ by applying h^{2}-extrapolation to approximations obtained with the use of the trapezoidal rule (Chapter 7, §11). Using intervals of $\frac{1}{4} \pi, \frac{1}{6} \pi$ and $\frac{1}{8} \pi$, we obtain $0.94806,0.97705,0.98712$ respectively; applying formula (2) to the first and last and also to the last two of these approximations, we derive the values 1.00014 and 1.00007 respectively, from which the correct value can be inferred to within a unit of the fourth decimal. The excellence of this result is due to the fact that the coefficient of h^{3} in (1) (with $k=2$) is in this case zero, while that of h^{4} is small compared with A; these favourable circumstances are quite common in practice.

EXPONENTIAL EXTRAPOLATION

3. This device, which is also known as Aithen's δ^{2}-process [39], can often be used to accelerate the convergence of an infinite sequence or iterative process. If x_{r-1}, x_{r}, x_{r+1} are three successive approximations to a quantity x, and if the errors $x-x_{r}$ are approximately in geometric progression, a better approximation is provided by the expression

$$
\begin{equation*}
x_{r}^{\prime}=\frac{x_{r-1} x_{r+1}-x_{r}^{2}}{x_{r+1}-2 x_{r}+x_{r-1}}=x_{r+1}-\frac{\left(x_{r+1}-x_{r}\right)^{2}}{x_{r+1}-2 x_{r}+x_{r-1}} . \tag{4}
\end{equation*}
$$

The two forms are equivalent; the second is often more convenient computationally as the limit is approached (see [2], §3.4). The formula may also be used with x_{r-1}, x_{r+1} replaced by x_{r-p}, x_{r+p}, where p is an integer greater than unity.

The process can be extended by forming the sequence $x_{r}^{\prime}, x_{r+1}^{\prime}, \ldots$, applying (4) again to produce a further sequence $x_{r+1}^{\prime \prime}, x_{r+2}^{\prime \prime}, \ldots$, and so on.

In the special case when the form of the relation between each iterate x_{r} and its predecessor is independent of r, it is usually better to proceed as follows. For a given x_{0} we perform two iterations to produce x_{1} and x_{2}, and calculate x_{1}^{\prime} according to (4). The cycle is then repeated with x_{0} replaced by x_{1}^{\prime}, and so on. Because of the symmetry of formula (4), a meaningfui result corresponding to $r=-\infty$ may sometimes be obtained in this way eren if the given sequence diverges as $r \rightarrow+\infty$.

Example
4 The smallest positis e root of the equation $\tan x=e^{x}$ can be computed iteratively using $x_{r+3}=\tan ^{-1}\left(e^{x_{0}}\right)$, with $x_{0}=0$, but the convergence is rather slow The first three aterates derired in this way are

$$
078540, \quad 114302, \quad 126213
$$

Applying formula (4) to thes tried and performang tro more iterations we obtann

$$
132161, \quad 131016 \quad 130729
$$

and a further appheation of (4) yelds the value 130633 , wheh is alreqdy correct to five decimal places

SUAMATIOW OF SLOWLX COAVEROENT SERIES

5 This problem is closely related to that of evaluating the limit of a sequence, indeed the two are mathematically equivalent Many spectal transformations have been deveed to deal with particular types of semes, but most of the compiter \& practical needs are hinely, to be met either hy applying the method of $\$ 3$ to the sequence of partal sums or by using one or other of the trausformations of Euler and van Wifngaarden described in $\S(8) 6$ to Il below

It must he assumed that the terms in the minite remes ultimately conform to a regular pattern, for otherwise the value of the sum of the infinte sentes could not be inferred by considenng only a finte number of terms If, as frequently happens, the early terms are urregular or decrease faurly rapidly, they can be summed drectly and the selected method of extrapolation applied to the remaming series $17 e$ may also observe in passing that a given senes can sometimes be brought to a more tractahle form by a simple rearrangement or regroupung of ita terms

THE EULER TRABSFORMATIOK

6 Thus transformation, given by

$$
\begin{equation*}
\sum_{r=0}^{\infty}(-)^{\varepsilon} u_{d}=\sum_{d=0}^{D} \frac{(-)^{N}}{\mathcal{S}^{s+1}} \Delta^{*} w_{0} \tag{5}
\end{equation*}
$$

is chiefly used to sum series whoce tems alternate in sign It is vahid [51] whenever both senes converge, and may be demonstrated by symbohe methods as follows

$$
\begin{equation*}
\sum_{s=0}^{\infty}(-)^{r} u_{s}=\sum_{s=0}^{\infty}(-E)^{r} u_{0}=(1+E)^{-1} u_{0}=\frac{1}{2}\left(1+\frac{1}{2} \Delta\right)^{1} u_{0}=\frac{1}{2} \sum_{j=0}^{\infty}\left(-\frac{1}{2} \Delta\right)^{0} u_{0} \tag{6}
\end{equation*}
$$

7 As an example consider the senes

$$
\begin{equation*}
1-\frac{1}{3}+\frac{1}{6}-\frac{1}{2}+\quad=\frac{1}{4} \pi=078540 \tag{7}
\end{equation*}
$$

Workng to five decimal places, we find by straightforward addition that the sum of the first six terms 13074401 Let the remameng series be
denoted by $\sum_{s=0}^{\infty}(-)^{s} u_{s}$. Then the terms in the transformed series (5) may be evaluated as follows:

s	u_{s}	Δ	Δ^{2}	Δ^{3}	Δ^{4}	$(-)^{s} \Delta^{s} u_{0} / 2^{s+1}$
0	$+0.07692$					$+0.03846$
		-1025				
1	-06667		$+240$			-00256
		785		-74		
2	-058s2		166		$+26$	-00030
		619		-48		
3	-05263		$+118$			-00005
4	+ $\cdot 0 \pm 762$	-501				-00001
						$=+0.04138$

For the complete sum we have

$$
0.74401+0.04138=0.78539
$$

8. The application of Euler's transformation is not restricted to convergent series; meaningful results can sometimes be obtained even when the original series diverges, and the method is widely used in the summation of asymptotic series. In such cases, however, the reliability of the results should, if possible, be tested by applying an independent numerical check.
9. A more general form of the transformation, given by

$$
\begin{equation*}
\sum_{s=0}^{\infty}(-x)^{s} u_{s}=\sum_{s=0}^{\infty} \frac{(-x)^{s}}{(1+x)^{s+1}} \Delta^{s} u_{0} \tag{8}
\end{equation*}
$$

is useful in summing power series for various values of x. Further, by substituting $x=e^{i \theta}$ we can derive formulae for transforming sine and cosine series.
10. A modification of the procedure of $\S \S 6$ and 7 , due to van Wijngaarden, is ideal for automatic computation. We express Euler's transformation in the form

$$
\begin{equation*}
S \equiv \sum_{s=0}^{\infty} v_{s}=v_{0}+v_{1}+\ldots+v_{n-1}+\frac{1}{2} \sum_{s=0}^{\infty} M I^{s} v_{n}, \tag{9}
\end{equation*}
$$

where $M=\frac{1}{2}(1+E)$ is the forvard mean operator defined by

$$
\begin{equation*}
M v_{s}=\frac{1}{2}\left(v_{s}+v_{s+1}\right) . \tag{10}
\end{equation*}
$$

The equivalence of (5) and (9), with $v_{n+s}=(-)^{s} u_{s}$, may easily be verified. We denote by $S_{n, p}$ the approximation to S obtained when the upper limit on the right of (9) is replaced by p.

Starting with $S_{0,0}=\frac{1}{\frac{1}{2}} v_{0}$, we take as our next approximation $S_{0,1}=\frac{1}{2}\left(v_{0}+\lambda\left[v_{0}\right)\right.$ or $S_{1,0}=v_{0}+\frac{1}{2} v_{1}$, according as $\frac{1}{2} M v_{0}$ or $\frac{1}{2} v_{1}$ is smaller; to obtain $S_{0,1}$ or $S_{1,0}$ we add either $\frac{1}{2 I I} v_{0}$ or $M v_{0}$ to $S_{0,0}$. In general, either p or n is increased by unity at each step, according as $M^{p+1} v_{n}$ or $M^{p} v_{n+1}$
is the smaller, and a new partial sum S_{n+1} or $S_{n+1, p}$ obtamed by addeng $\frac{1}{\frac{1}{2}} \mathcal{f}^{p+1} v_{n}$ or $\mathcal{A}^{p+1} v_{n}$ to S_{n} A useful practical criterion for terminating the calculation is the neghgibilty of the added term in two (or more) consecutive cyeles

An important feature of the method is the economy of storage wheh it permits At any stage it is necessary to retain only a single row of backward means, typuied by

$$
\begin{equation*}
v_{n+p}, M v_{n+p-1} \quad H^{2} v_{n+p-2 v} \quad, M^{p} v_{n} \tag{1I}
\end{equation*}
$$

During the cycle which follows the caleulation of S_{n} p, the row is replaced hy

$$
\begin{equation*}
v_{n+p+1}, \Delta / v_{n+p} \quad 3 I^{2} v_{n+p-1}, \quad, \quad N^{p+1} v_{n}, \tag{I2}
\end{equation*}
$$

If n, and not p, is mereased, the last term is subsequently dropped As soon as the k th member of (11) bas contributed to formung the $(1+1)$ tb member of (12), it can be overwntten by the λ th member of (12)

Fan wrjnoamaden's transformation

11 The powerful Euler technuque as not dreetly applecable to sernes of positive terms Howerer, hy means of a transformation due to ran Wjugaarden, given by

$$
\begin{equation*}
S=\sum_{r=1}^{\infty} i_{r}=\sum_{r=1}^{\infty}(-)^{r-1} v_{\gamma} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{p}=t_{1}+2 v_{2,}+4 v_{4}+8 v_{\text {ar }}+\quad, \tag{14}
\end{equation*}
$$

we can convert a sentes of positive terms into an alternating semes, to whech Euler's transformation can then be sppled

From (14) we deduce the relation

$$
\begin{equation*}
2 w_{2}=w_{p}-v_{p} \tag{15}
\end{equation*}
$$

which can be used to compute the w_{g} of even sufinx It also provides the basts for a sumple proof of (13) thus

$$
\begin{align*}
v_{1}+i_{2}+v_{3}+ & =\left(u_{1}-2 w_{2}\right)+\left(u_{2}-2 w_{4}\right)+\left(w_{3}-2 u_{6}\right)+ \\
& =w_{1}-w_{2}+w_{3}-w_{4}+ \tag{18}
\end{align*}
$$

The conditions needed to justufy the rearrangement and misure the convergence of (14) are very mild, for example, it 18 suffielent that either $\left|v_{r+1}\right| \leqslant\left|v_{r}\right|$ and $\Sigma_{v_{T}}$ converges, or that $v_{v_{p}} \mid \leqslant K_{r}{ }^{-c-1}$, where K and c ate poothre constants

As an example, if $v_{\mathrm{r}}=r^{-\infty}(c>0)$, we have

$$
\begin{aligned}
w_{r} & =r^{-1}+2(2 r)^{-6}-4(4 r)^{-c} 1+ \\
& =r^{-\infty-1}\left(1+2^{-c}+4^{-c}+\quad\right)=r^{--1} /\left(1-2^{-c}\right)
\end{aligned}
$$

Hence

$$
S=\frac{1}{1-2^{-0}}\left(\frac{1}{1^{1+e}}-\frac{1}{2^{1+e}}+\frac{1}{3^{1+c}}-\right)
$$

12. If v_{r} is the ralue at $x=r$ of a function $v(x)$ whose integral is known, an integration formula can be used to sum the series. For example, we may employ the central-difference quadrature formula (25) of Chapter 7 in the form

$$
\begin{equation*}
\frac{1}{2} v_{n}+\sum_{r=n+1}^{\infty} v_{r}=\int_{n}^{\infty} v(x) d x-\left(\frac{1}{12} \mu \delta-\frac{11}{r^{2} 0} \mu \delta^{3}+\ldots\right) v_{n} \tag{17}
\end{equation*}
$$

or the Euler-Maclaurin formula

$$
\begin{equation*}
\frac{1}{2} v_{n}+\sum_{r=n+1}^{\infty} v_{r}=\int_{n}^{\infty} v(x) d x-\left\{\frac{1}{12} v^{\prime}(n)-\frac{1}{\gamma^{2} \mathbf{0}} v^{\prime \prime}(n)+\ldots\right\} . \tag{18}
\end{equation*}
$$

Even if the given series cannot immediately be dealt with in this way, it may yet be possible to subtract from each term v_{r} a quantity v_{r}^{*} which approaches v_{r} asymptotically for large r and is such that $\int_{n}^{\infty} v^{*}(x) d x$ can be easily evaluated or found from tables. The residual series $\Sigma\left(v_{r}-v_{r}^{*}\right)$ then converges more rapidly than the original series and it may be practicable to sum it directly.

EVALUATION OF CONTINUED FRACTIONS

13. Another type of limiting expression of fairly common occurrence is the infinite continued fraction, obtained by letting n tend to infinity in the expression

$$
\begin{equation*}
b_{0}+\frac{a_{1}}{b_{1}+} \frac{a_{2}}{b_{2}+} \cdots \frac{a_{n}}{b_{n}} . \tag{19}
\end{equation*}
$$

(For a discussion of convergence and an account of the general theory, see [125] or [126].)

The expression (19) is known as the nth approximant or convergent. It can be calculated directly by alternate division and addition, working backwards from the right; in this case a check must be applied to ensure that the value of n chosen is sufficiently large. Alternatively, the successive approximants A_{n} / B_{n} may be generated by means of the recurrence relations

$$
\begin{equation*}
A_{n+1}=b_{n+1} A_{n}+a_{n+1} A_{n-1}, \quad B_{n+1}=b_{n+1} B_{n}+a_{n+1} B_{n-1}, \tag{20}
\end{equation*}
$$

with $A_{0}=b_{0}, \quad A_{1}=b_{0} b_{1}+a_{1}, \quad B_{0}=1, \quad B_{1}=b_{1}$,
or by use of the summation formula

$$
\begin{equation*}
\frac{A_{n}}{B_{n}}=b_{0}+\sum_{i=1}^{n} \rho_{1} \rho_{2} \ldots \rho_{i} \tag{21}
\end{equation*}
$$

where the ρ_{i} are giren by

$$
\begin{equation*}
r_{i}=\frac{a_{i}}{b_{i-1} b_{i}}, \quad \rho_{1}=\frac{a_{1}}{b_{1}}, \quad 1+\rho_{2}=\frac{1}{1+r_{2}} . \quad 1+\rho_{i}=\frac{1}{1+r_{i}\left(1+\rho_{i-1}\right)} \quad(i \geqslant 3) . \tag{22}
\end{equation*}
$$

In autonatie worl, the seeond method bas the slught cisaduantage that the numbers A_{n} and B_{n} are apt to grow largo By contrast, the number of figures in the p_{i} can actually be neduced as the terms in the sum (21) decrease, but the recurrence (22) requres modification if any of the b_{i} vansh or are very small

THE USE OF HECURRENCE RELATIOVS

I4 Recurrence relations are citon of asastance in the computation of mathematical functions, for example, the recurrence relations astisfied hy Bessel functions were widely used in the tabulation of these functions They gire nse to a very economical form of computing, ance each step in the computation yelds one requred value of the functron

Careful at tention should begiven to the possibility of error buld up when recurrenco relations are used The dependence of the error in esch newly computed value on those of its immediate predecessors is usually apparent by mispection, hut smee these errors are interrelated the overall pattern $1 s$ not inmediately oh mous In the case of a Linear recurrence relation, the most common in practice, the errors themselves represent a solation, the way in whuch they are propagated can then be easily determued hy applying the recurrence with arhitrary starting vilues and observing the rate at wheh the resulting solution mereases

15 Consider the relation

$$
\begin{equation*}
f_{n+1}-\frac{2 n}{x} f_{n}+f_{n-1}=0 \tag{23}
\end{equation*}
$$

antisfied hy the Bessel functions J_{n} and Y_{n} If J_{0} end J_{2} are known, (23) can be used to calculate $J_{2} J_{3}$ successuvely all for the same argument x The process is accurate however only so long as n does not exceed x thereafter there is a rapid build up of error This is because the solntion obtaned reventahly contans a small multiple of the unwanted solution Y_{n} which increases exponentally with n when $n>x$ whereas the wanted function J_{n} decreases On the other hand if we caleulnte I_{n} hy the same procedure, wnth Y_{a} and \boldsymbol{Y}_{1} gren, the wanted function uncreases as fast as the error and there is no loss of esgnufeant figures

16 An alternative method for ealculating J_{n} when $n>x$ is to choose N so large that J_{N} us neghgible and recur backrards tahing as matal conds tions $f_{V+1}=0 f_{N}=1$ In this case Y_{n} decreases whule J_{n} merenses and the unwanted part of the solution decays Thus the values obtaned are effee tively those of J_{n} multipled by a constant factor, this ean finally be determined from some known value of J for example $J_{0}(x)$ or indepen dently by using the relation

$$
J_{0}+2 I_{2}+2 I_{3}+=1
$$

The same pancople is employed in the method for calculating Chebyshev coefficients described un Chapter $9 \$ 23$

17 Useful information can sometimes be obtained by considening the limuting form of the recurrence relation for large n For example, when $n \rightarrow \infty$ the equation

$$
\begin{equation*}
(n+1) f_{n+1}-(2 n+1) x f_{n}+\pi f_{n-1}=0 \tag{24}
\end{equation*}
$$

satisfied by the Legendre functions $P_{n}(x)$ and $Q_{n}(x)$, assumes the limiting form

$$
\begin{equation*}
f_{n+1}-2 x f_{n}+f_{n-1}=0 \tag{25}
\end{equation*}
$$

This is a difference equation with constant coefficients with the general solution
or (ii) $\quad A e^{n \alpha}+B e^{-n \alpha}$ with $\alpha=\cosh ^{-1} x$,
according as x is less than or greater than unity; for simplicity we consider only positive values of x.

In case (i) all solutions of (25) are bounded as $n \rightarrow \infty$. This suggests that in the evaluation of any particular solution of (24) by recurrence there is scarcely any tendency for the error to grow. (We disregard the mere accumulation of rounding errors, which is usually of secondary significance.) In case (ii), however, the solution (27) indicates that equation (24) possesses solutions of exponential type for large n; by analogy with the computation of J_{n} and Y_{n} discussed in $\S \S 15$ and 16 , the direction in which the recurrence should proceed will thus depend on whether the required solution increases or decreases with n.

14

EVALUATION OF INTEGRALS

GEVIRAL METHODS

1 The numencal evaluation of an integral on desh machznes is ustually carted out using one of the finute difference quadrature formula of Chapter 7 These formulae are particularly well suted to the evaluation of an indefinte mitegral at soveral successive tabular ponnts Indeed ther use is often preferred even when as cloced expression is avalable for the integral

2 As an example consider the untegral

$$
\begin{equation*}
\int_{0}^{2} \frac{t}{a^{3}+b^{3}} d t-\frac{1}{6 a} \log \frac{x^{2}-a x+a^{2}}{(x+a)^{2}}+\frac{1}{a \sqrt{3}} \tan 3 \frac{a \sqrt{3}}{a} \frac{x}{x}(-a<z<2 a) \tag{1}
\end{equation*}
$$

If this is required for a single value of x comptitation of the analytical expression is a sutable method For a sequence of values of x however it 15 much easier to compute the integral by quadrature using for example formula (27) of Chapter 7 The analytical formula will nevertheless still be used to provide spot checks for one or more ralues of z

3 In automatic uorh the more complicated finte difference formulae are usnally discarded in favour of Simpson a rule (Chapter 7 equation (34))

In the oase of definite integration the result of repeatedly applyng this formula may be expressed in the form

$$
\begin{equation*}
\left.\int_{0}^{\mathrm{T}} y d x-\frac{1}{3} h_{[y}(0)+y(1)+2 S_{A}+4 T_{n}\right\} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& S_{h}-y(2 h)+y(4 h)+\quad+y\{(n-y) h\} \\
& T_{h}=y(h)+y(3 k)+\quad+y\{(n \quad 1) h\}
\end{aligned}
$$

and $n=1 / h$ is an even positive meger The interval h must be sufficiently small to ensure that the troncation error is meghgihle A convement aute matio procedure is to apply the formula with a conrse interval mutially then to halve it repeatedly until the results of two (or more) successive applications agree Only alternate ordmates have to be computed and summed each tume the interval is halved $S_{i n}$ is obtained by adding S_{s} and T_{k} both of which are avalable from the previous stage

For indefinte integration unless an interval size whech is both safe and economical can be determined beforehund it is desirable to test at every step whether the current interval should be halved or mav be doubled

For further details of the methods of this and the following two sections, see [134].
4. Another suitable method, described in Chapter 8 , §19, is the termwise integration of the Chebyshev expansion of the integrand; this is particularly valuable for indefinite integration.
5. A third general method which is well suited to the automatic evaluation of definite integrals is the use of the Gauss quadrature formula. The transformation

$$
x=\frac{1}{2}(a+b)+\frac{1}{2}(b-a) X
$$

yields the standard form

$$
\begin{equation*}
\int_{a}^{b} y d x=\frac{1}{2}(b-a) \int_{-1}^{1} y d X=\frac{1}{2}(b-a) \sum_{r=1}^{n} w_{r}^{(n)} y\left(X_{r}^{(n)}\right), \tag{3}
\end{equation*}
$$

where the points $X_{r}^{(n)}$ and the weights $w_{r}^{(n)}$ are chosen so that the formula is exact when y is any polynomial of degree less than $2 n$. Thus by the use of n points the Gauss formula achieves an accuracy comparable with that of an equal-interval formula using $2 n$ points.

This adrantage is to some extent offset by the increased difficulty of checking. In order to ensure that the error associated with a particular value of n is negligible, it may be nocessary to repeat the calculation using a different n, and this entails the evaluation of a completely new set of ordinates. For this reason, the method achieres the greatest economy when applied to a batoh of similar integrals for which a suitable value of n can be determined by examining one or two test cases.

Extensive tables of $X_{r}^{(n)}$ and $w_{r}^{(n)}$ are given in [137], [138] and [139].

INFINITE INTEGRALS

6. When the upper limit of integration is infinite, the finite-difference formula (25) of Chapter 7 yields

$$
\begin{equation*}
\int_{x_{0}}^{\infty} y d x=h\left(\frac{1}{2} y_{0}+\sum_{r=1}^{\infty} y_{r}+C y_{0}\right), \tag{4}
\end{equation*}
$$

where $y_{r}=y\left(x_{0}+r h\right)$ and

$$
\begin{equation*}
C y_{0}=\left(\frac{1}{12} \mu \delta-\frac{11}{820} \mu \delta^{3}+\ldots\right) y_{0} . \tag{5}
\end{equation*}
$$

If the couvergence of the integral is rapid, the expression (4) is readily evaluated and no new problent arises. As with finite integrals, it will usually be conrenient to choose h so small that only a few terms in the difference correction (5) are needed. In the special case when the mean odd differences at x_{0} (and hence $C y_{0}$) vanish, howerer, it is practicable to use a comparatively large interval. This happens, for example, when $x_{0}=-\infty$, in thich case (4) reduces to the trapezoidal rule:

$$
\begin{equation*}
\int_{-\infty}^{\infty} y d x=h \sum_{r=-\infty}^{\infty} y(r h) . \tag{6}
\end{equation*}
$$

The accuracy of a result obtained from (6) can, as a rule, be checked br repetition using a different h, the use of differences of y being thus altogether avoided. The fornula is not, of course, exact; its asymptotic
nature is discussed and bounds for the crror determuned by Goodwni [141] in the case of integrands of the form $e^{x^{*}} f(x)$ Sce also [14*]

7 The Laguerre-Gauss and Hermite-Gause formulae
$\int_{0}^{\infty} e^{x} y(x) d x=\sum_{r=1}^{n} \alpha_{r}^{(n)} y\left(x_{r}^{(n)}\right) \quad \int_{\infty}^{\infty} e^{x^{*}} y(x) d x=\sum_{r=1}^{n} \alpha_{r}^{(n)} y\left(x_{r}^{(n)}\right)$
are sometumes useful when the arbitrary function $y(x)$ approxumates to a polynonual of low or moderste degree For tables of the requiste abscissae and weights see [137] and [140]

8 In cons derng the problem of the evaluation of slouly contergent infegrals two principal cases may bo distingurshed (a) the integrand $y(x)$ decreases steaduly to zero as $x \rightarrow \infty$ (b) $y(x)$ oscillates in a regular manner about zeto as $x \rightarrow \infty$ Both cases may often bo dealt with hy first expressing the integral as an infinite senes of ordinates togetiker with a difference correction as in equation (4) and then applyng one of the methods for sumanig slowly convergent senes deseribed in Chapter 13

9 In case (a) the methods of Athen and van 1 mugaarden (Chapter 13 \$\$ 3 and 11) are directly applicable to the senes $\sum_{=-1}^{\infty} y$

In caso (b) let us puppose that for sufficsently large r the sign of $y_{\text {r }}$ changes appronmately erery m terms We first group the torma in the form

$$
\begin{align*}
\sum_{r=1}^{\infty} y_{r} & =\left(y_{1}++y_{m}\right)+\left(y_{m+1}+\quad+y_{2 m}\right)+\left(y_{t m+1}+\quad+y_{m m}\right)+ \\
& =z_{1}+z_{2}+z_{2}+\quad \text { eas } \tag{8}
\end{align*}
$$

and then spply Euler a transformation (Chapter 13 §§ 8 to 10) Aummencal example is presented in $\$ 12$ below

10 This method is sumple and effective hut may requre a large number of ordinates y, An alternative procedure for evalunting oscillatory integrals which demands the computation of fewer ordinates is as follows First consider integrals of the form $\int_{m \pi}^{\infty} f(x) \sin x d x$ whers $f(x)$ is a steadely decreasing function whose dufferences at the interval π are well behaved in the range of integration Substatuting for f in the sub range $5 \pi \leqslant x<(r+1) \pi$ in terms of Ererett B formula (Chapter 7 §7) and integrating term by term we denve an expansion of the form

$$
\begin{equation*}
\int_{f \pi}^{(r+1) \pi} f(x) \sin x d x=(-)\left(1+a_{1} \delta^{2}+a_{2} \delta^{4}+\right)\left(f_{r}+f_{r+1}\right) \tag{9}
\end{equation*}
$$

where $f_{e}-f(r \pi)$ Hence summing from $r-n$ to $r=\infty$ wo obtain

$$
\begin{equation*}
\int_{n \pi}^{\infty} f(x) \sin x d x=(-)^{n}\left(1+a_{1} \delta^{2}+a_{2} \delta^{4}+\quad f_{n}\right. \tag{10}
\end{equation*}
$$

The first fer coefficients a_{f} obtaned by expanding the operator $\left\{1+(\log E)^{2} / \pi^{2}\right\}^{2}$ m powers of δ^{2} (Chapter 7 §3) are

$$
\begin{array}{ll}
a_{1}--010139118 & a_{2}=001870941 \\
a_{3}=-000387695 & a_{4}=000054579
\end{array}
$$

11. The method is readily extended to the case in which the integrand is expressible in the form $M \sin \theta$, where the modulus M varies slowly and the phase θ increases steadily with x. We then take θ as a new variable of integration and write

$$
\begin{equation*}
\int_{x_{0}}^{\infty} M \sin \theta d x=\int_{0_{0}}^{\infty} \frac{M \sin \theta}{d \theta / d x} d \theta, \tag{11}
\end{equation*}
$$

which is amenable to the treatment described.

Example

12. Let us apply the methods of $\S 9$ to 11 to evaluate

$$
\int_{x_{0}}^{\infty} J_{0}(x) d x .
$$

Taking $x_{0}=0, h=1$ and $m=3$, and using the first tlirty ordinates, we obtain for the series (8)

$$
\begin{aligned}
\sum_{r=1}^{\infty} z_{\mathrm{r}}=0.72904-0.42410 & +0.38140-0.36944+0.36378-0.35811 \\
& +0.35023-0.33929+0.32501-0.30738+\ldots .
\end{aligned}
$$

Summing the first three terms directly and applying Euler's transformation to the remainder, we obtain $\sum_{r=1}^{\infty} z_{r}=0.50001$. Application of formula (4), with $y_{0}=1, C y_{0}=0$, then yields for the integral the value $1 \cdot 00001$, in virtual agreement with the true value, unity.

The modulus-phase representation required for the application of the second method is here given by

$$
\begin{equation*}
J_{0}(x)=M \cos \psi, \quad M^{2}=J_{0}^{2}+Y_{0}^{2}, \quad M^{2} \frac{d \psi}{d x}=\frac{2}{\pi x} \tag{12}
\end{equation*}
$$

(compare Chapter 15, §20). Hence taking $x_{0}=j_{0, n}$, the nth zero of $J_{0}(x)$, we obtain

$$
\int_{j_{0, n}}^{\infty} J_{0}(x) d x=\int_{(n-1) \pi}^{\infty} \frac{M \cos \psi}{d \psi / d x} d \psi=\int_{n \pi}^{\infty}\left(\frac{1}{2} \pi x M M^{3}\right) \sin \theta d \theta
$$

where $\theta=\psi+\frac{1}{2} \pi$. Hence from (10)

$$
\begin{equation*}
\int_{j_{0, n}}^{\infty} J_{0}(x) d x=(-)^{n}\left(1+a_{1} \delta^{2}+a_{2} \delta^{4}+\ldots\right)\left(\frac{1}{2} \pi x M M^{3}\right)_{n} \tag{13}
\end{equation*}
$$

where the differences are those of $\frac{1}{2} \pi x M^{3}$ tabulated at an interval π in ψ, and the suffix n refers to the point $\psi=\left(n-\frac{1}{2}\right) \pi$, corresponding to $x=j_{0, n}$. With $n=5$, for example, application of (13) yields, with the use of seven ordinates,

$$
\int_{J_{0,5}}^{\infty} J_{0}(x) d x=-0 \cdot 20565
$$

which is correct to five decimal places.

13 Many types of engularity can be removed hy a suitable change of varable For example integrals of the fornss

$$
\int_{0}^{1} f(x) x-1 d x, \quad \int_{0}^{1} f(x) \ln x d x, \quad \int_{-1}^{1} f(x)\left(1-x^{2}\right)^{-1} d x
$$

in which $f(x)$ is well behaved become non singular with the transforma trons

$$
x=t^{t} \quad x=e^{-t} \quad x=\sin t
$$

respectively In the seoond ease one limit of integration becomes unfinite but the convergence of the transformed integral as rapid For the thurd integral an alternative is to spint the range at x m 0 and apply the algebraic transformations $x= \pm\left(1-\psi^{*}\right)$ to the upper and lower parts respecturely

14 Another approach is to employ a formula of the type

$$
\begin{equation*}
\int_{a}^{b} f(x) t(x) d x=\Sigma e_{p} f\left(x_{f}\right) \tag{14}
\end{equation*}
$$

14 which $f(x) 13$ agarn an arbitrers well behared function tha points z_{r} are prescnbed and the coeffitments depend on tbe grven function $x(x)$ (which may bo singular in $a \leqslant x \leqslant b$) and on the Irmits a, b

When the pounts x, aro equally spaced, the formala is sard to be of Neuton-Cotes lype (compare Chapter $7 \mathrm{\xi} 16$), the cuse $u(x)=\ln x$ is treated in [143] and the three cases $t(x)=x=1$ and $\ln x$ in [144], sec also [188]

If the absctaste are chosen to secure the manmum accuracy consistent whth a given order of formula we have a formula of Gauts type (compare §g 5 and 7) examples are the Chebysheq-Gauss and Jacobi-Gauss quadra fure formthae corresponding to the meight functions

$$
\left.\mu(x)=\left(1-x^{2}\right) \quad \text { and } \quad u(x)=(1-x)^{\alpha}(1+x)^{A} \quad \mid \alpha>-1 \beta>-1\right)
$$

respectively, and Limits of integration $a=-1 \quad b=1$ For detals see [4] and [5]

15 The method of the extraction of a angular part may be illustrated by considering the integral

$$
\begin{equation*}
I(x)=\int_{0}^{x} \frac{e^{-u}}{1-u} d u \tag{15}
\end{equation*}
$$

We note that the integrand has is pole at $u=1$ and that $J(1)=\infty$ In the neighbourhood of $u=1$ the ntegrand behaves hke $e^{-3}(1-v){ }^{1}$, accord ingly we express $I f x$ in the form

$$
I(x)=e^{1} \int_{0}^{x} \frac{d t}{1-t}+\int_{0}^{x} \frac{e^{-1}-e^{1}}{1-u^{-}} d u
$$

The first term on the right is equal to $-e^{1} \mathbf{I n} \mid \mathbf{1}-\boldsymbol{x}$; while the second has no singulanty at $x=1$ and can be evzluated quife easily by numencal quadrature If $x>1$ the value obtamed in thes way is the Cauchy pronctpal talue of $I(x)$
16. While the discussion of methods of a purely mathematical character is beyond the scope of this manual, mention may be made of a few basic mathematical procedures which frequently facilitate the numerical evaluation of integrals. Further details are given in [135].
17. A fairly common requirement is the integration for $n=0,1,2, \ldots$ of a function containing a factor such as $x^{n}, \cos n x$ or $J_{n}(x)$. Integrals of these types may satisfy a linear recurrence relation.

A simple example is afforded by the generalized exponential integral $E_{n}(x)$. Integrating by parts we obtain

$$
\begin{align*}
E_{n}(x)=\int_{1}^{\infty} \frac{e^{-x u}}{u^{n}} d u & =\left[\frac{-e^{-x u}}{(n-1) u^{n-1}}\right]_{1}^{\infty}-\frac{x}{n-1} \int_{1}^{\infty} \frac{e^{-x t}}{u^{n-1}} d u \\
& =\frac{1}{n-1}\left\{e^{-x}-x E_{n-1}(x)\right\} . \tag{16}
\end{align*}
$$

From the values of the exponential integral $E_{1}(x)=-\operatorname{Ei}(-x)$, we can compute $E_{2}(x), E_{3}(x), \ldots$ in succession by means of (16); many guarding figures are needed, however, when x is large (see Chapter 13, § 14).
18. If a function defned by a definite integral satisfies a differential equation with respect to a parameter, the most convenient way of evaluating the integral for a range of parameter values is often provided by the numerical integration of the differential equation. A value of the integral is thereby obtained at each step of the process of solution.

For example, the function

$$
\begin{equation*}
F(x)=\int_{0}^{\infty} \frac{e^{-u^{2}}}{u+x} d u \tag{17}
\end{equation*}
$$

satisfies the differential equation

$$
\begin{equation*}
F^{\prime}(x)+2 x F(x)=\sqrt{\pi}-(1 / x) . \tag{18}
\end{equation*}
$$

This equation was used by Goodwin and Staton [136] to compute $F(x)$ on desk machines. For automatic work, (18) could be used to derive Chebysher expansions of $F(x)$ by the method of Chapter $9, \S 23$.
19. Although an integral may be amenable to expansion in a variety of ways, it is generally advisable to consider a purely numerical approach before undertaking a lengthy mathematical investigation. Nevertheless, a series expansion will often afford a convenient means of computation, particularly in the neighbourhood of a singularity. For example, the integral (17) can be computed for small values of x by means of the ascending series

$$
\begin{equation*}
F(x)=-e^{-x^{2}} \ln x+e^{-x^{2}}\left[\sqrt{ } \pi \sum_{n=0}^{\infty} \frac{x^{2 n+1}}{n!(2 n+1)}-\sum_{n=1}^{\infty} \frac{x^{2 n}}{n!2 n}-\frac{\gamma}{2}\right], \tag{19}
\end{equation*}
$$

where $\gamma=0.577 \ldots$ is Euler's constant.
20. Asymptotic expansions are frcquently used in computing integrals. If the given integral can be reduced to the form

$$
\begin{equation*}
\int_{0}^{\infty} e^{-x t} \phi(t) d t \tag{20}
\end{equation*}
$$

then an expansion in descending powers of x mar be obtained by expand ing $\phi(t)$ in ascending powers of t and integrating formally term by term Precise condtions justufing the procedure aro given for example in [145] Thus for the integral (17) we have

$$
\begin{align*}
F(x) & =\frac{1}{2} \int_{0}^{\infty} \frac{e^{-t}}{t^{1}+x} \frac{d t}{t^{3}} \\
& =\frac{1}{2} \int_{0}^{\infty} \sum_{t-\infty}^{\infty} \frac{(-)^{t^{j}-1}}{x^{n+1}} e^{-t} d t \sim \sum_{2}^{1} \sum_{r=0}^{\infty} \frac{(-) r \Gamma\left(\frac{t}{2} r+i\right)}{x^{2+1}} \tag{2I}
\end{align*}
$$

The useful computational ragog of thes expansion may be increased by application of the Euler transformation (Chapter 13 § 8) see [136]

15

TABULATION OF MATHEMATICAL FUNCTIONS

INTRODUCTION

1. The preparation of a new numerical table of a mathematical function takes place in several stages. For convenience we may separate these into two main groups.

First, there is the mathematical and numerical investigation of the properties of the function to determine the most convenient method or methods of computation, and the computation itself.

Second, there is the checking, subtabulation (if required), preparation of interpolation aids, preparation of final copy and printing. These matters, which may be termed principles of table-making, form the main subject of this chapter.

Before discussing these topics, however, we consider a most important question confronting the table-maker: has the right choice of tabular functions been made? A type of difficulty encountered in making the correct choice is described in the next two sections.

CHOIOE OF SOLUTIONS OF DIFFERENVIAI EQUATIONS

2. Consider, for example, the equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=y \tag{1}
\end{equation*}
$$

This has the general solution

$$
\begin{equation*}
y=A e^{x}+B e^{-x} \tag{2}
\end{equation*}
$$

where A, B are arbitrary constants. Another form of the general solution is

$$
\begin{equation*}
y=A \cosh x+B \sinh x . \tag{3}
\end{equation*}
$$

Given tables of e^{x} and e^{-x} having a prescribed number of figures, we can evaluate the expression (2) to a certain accuracy for any values of A, B and x. This accuracy is not attainable for large values of x if we use instead tables of $\cosh x$ and $\sinh x$ and the expression (3), because the leading figures of the corresponding values of these functions are the same, and this results in severe cancellation when A is approximately equal to $-B$.

For thrs reason e^{x} and e^{x} are sad to be a numerically satisfaciory parr of solutions of equation (1) for large values of x The parr $\cosh x$ and $\sinh x$ are not numerically satisfactory even though they are hnearls independent in the mathematical sense

Thus hind of difficulty is assocrated with differential equations whose solutions are of exponential type for large valnes of the independent variable or are unbounded an the nenghbourhood of a smgularity The choice between oscillatory solutions is itsually far less critical

3 A less simple exaraple is provided hy Bessel a equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}+y=0 \tag{4}
\end{equation*}
$$

In the neghbourhood of the singularity $x=0$ the solution $J_{0}(x)$ is bounded and the solution $Y_{0}(x)$ unbounded both functions oscallate for large posituve x Accordmgly $J_{0}(x)$ and $I_{0}(x)$ comprise a numencally satisfactory parir of solutions for all real positive values of 2

In the complex plane however this is no longer true both $J_{0}(z)$ and $x_{0}(z)$ become exponentially large as z tends to infinity along any ray not parallel to the real axis A numerically satisfactory pair of solutions in the upper half of the complex plane botb in the neighbourhood of the ongm and at infinity is $J_{0}(z)$ and the Hankel function $H_{0}^{(1)}(t)$

PREPARATION OF PRINTED TABLES

4 When the function values have been computed they must be checked systematioully This us usually performed by differencing using either an accounting machine with several regsters or if the values are already punched on cards a punched eard tabulating machine Any blunders that have been made in the computation will then be revealed Small end figure errors of a unit or so will not alwys be found in this way, so that the orignal computations and the differencing are per formed with the retention of one or more guarding decrmals and subse quently counded mechanically to the number of decimals reguured in the final table

5 At this stage any subtabulation wheh is necessary will be carned out If an automatic computer has been used for the calculations it is probable that every value requred in the final table wall have been evaluated directly On desk machnes however it is usually economic to perform the orignal calculations at the largest convement interval in the argument at whech the fumction has convergent dufferences The antermediate values can then be filled un by systematic interpolation, the whole process being cursed out mechanically by punched card or account ing machine

6 The final stages in the preparation of the table depend on the method of reproduction in the past tables were uvarably set in type by com positors and printed in the usnal way hy letterpress Thus necessitates careful and taborrous checkng of proofs to ensure that the correct figures have been printed The proof reading is carried out by comparison with the computed values and by differeneng the latter method being mucb the sounder

At present, increasing numbers of tables are reproduced photographically. This has the advantages of being slightly cheaper and reducing the amount of necessary proof-reading. Good copy can be prepared directly from the computer output or from puncled cards by means of an automatic typewriter or line printer. Letterpress, however, has greater flexibility in arrangement and a more pleasing appearance, and many fundamental tables are still printed in this way.

INTERPOLATION AIDS

7. Many tables of elementary functions, such as logarithms and sines and cosines, are produced with an interval in the argument sufficiently small to ensure that linear interpolation is accurate. The compiler need then make no special provision for interpolation, except possibly to proride a table of mean first differences or proportional parts.

In the case of tables of higher mathematical functions, with more than three or four figures, economic and other limitations on space may be too stringent to permit provision of a linearly interpolable table. In this case the user must perform the interpolation by means of a more complicated formula, and it is incumbent on the compiler to ease the labour of interpolation by providing quantities in the table in addition to the function values. These quantities are known as interpolation aids.

Differences

8. The commonest aids are the central differences of the function, for use either with Bessel's formula

$$
\begin{equation*}
f_{p}=f_{0}+p \delta_{1}+B_{2}\left(\delta_{0}^{2}+\delta_{1}^{2}\right)+B_{3} \delta_{1}^{3}+B_{4}\left(\delta_{0}^{4}+\delta_{1}^{4}\right)+\ldots \tag{5}
\end{equation*}
$$

or with Everett's formula

$$
\begin{equation*}
f_{p}=(1-p) f_{0}+p f_{1}+E_{2} \delta_{0}^{2}+F_{2} \delta_{1}^{2}+E_{4} \delta_{0}^{4}+F_{4} \delta_{1}^{4}+\ldots ; \tag{6}
\end{equation*}
$$

see Chapter 7, $\S \S 7,8$. Everett's formula has the advantage that it does not use differences of odd order, and in consequence only those of even order need be given in the table.

The routine application of (5) or (6) requires tables of the interpolation coefficients $B_{2}, B_{3}, E_{2}, F_{2}, \ldots$. Interpolation and allied tables [167] gives these and other coefficients and a detailed explanation of their use.

Modified differences

9. The power of differences is greatly increased by use of a device known as the throw-back, the basis of which is as follows. An examination of numerical tables of the interpolation coefficients $B_{4}(p)$ and $B_{2}(p)$ reveals that their ratio varies over the comparatively small range $\left(-\frac{1}{6},-\frac{3}{16}\right)$ when $0 \leqslant p \leqslant l$. This suggests that we may allow for most of the effect of fourth differences by forming a modified second difference

$$
\begin{equation*}
\delta_{m}^{2}=\delta^{2}-C \delta^{4}, \tag{7}
\end{equation*}
$$

where C is a constant. Neglecting differences of the fifth and higher orders, we can then write (5) in the form

$$
\begin{equation*}
f_{p}=f_{0}+p \delta_{1}+B_{2}\left(\delta_{m 0}^{2}+\delta_{m 1}^{2}\right)+B_{3} \delta_{\underline{1}}^{3}, \tag{8}
\end{equation*}
$$

with a residual error of amount

$$
\begin{equation*}
e=\left\{B_{4}+C B_{2}\right)\left(\delta_{0}^{x}+\delta_{1}^{1}\right\} \tag{9}
\end{equation*}
$$

The constant C is chosen so that the coefficient in (9) has the smallest mammom numencal value in the range $0 \leqslant p \leqslant 1$. Te find the apprommate value 0184 for C, and the mixumum value of $\left|B_{1}+0181 B_{2}\right|$ does not exceed 000023 Therefore if fourth differences do not exceed 1100 the error of this approximation is less thas half a unt in the last decimal

Beause of the equivalence of Beasel's and Everett's formulae we can replace (8) in the same circumstances by

$$
\begin{equation*}
f_{p}=(1-p) f_{0}+p f_{1}+E_{2} \delta_{m 0}^{2}+F_{3} \delta_{m 1}^{2} \tag{10}
\end{equation*}
$$

Thus the effect of fourth differenees which are less than 1100 ean be allowed for by giving δ_{m}^{2} in place of δ^{2} in the table The modified difference is treated in the ame way as an ordmary difference in carrying out the interpolation This devee helps the compler by removing the need to tabulate fourth differences, and the user by providung a simpler formula

10 The idea can be extended The formula

$$
\begin{equation*}
f_{0}=(1-p) f_{0}+p f_{1}+E_{2} \delta_{m 0}^{2}+F_{2} \delta_{n, 1}^{2}+M_{4} \gamma_{0}^{4}+N_{1} \gamma_{1}^{4} \tag{11}
\end{equation*}
$$

in which

$$
\left.\begin{array}{rl}
\delta_{m}^{2} & =\delta^{2}-0184 \delta^{4}+0038082 \delta^{6}-000830 \delta^{8}+00019 \delta^{10}- \tag{12}\\
\gamma^{4} & =0001 \delta^{4}-00002783 \delta^{6}+0000068 \delta^{8}-000002 \delta^{10}+\quad
\end{array}\right\}
$$

and

$$
\begin{equation*}
M_{4}=1000\left(E_{4}+018 \pm E_{8}\right) \quad \lambda_{4}=1000\left(F_{4}+0184 F_{2}\right) \tag{13}
\end{equation*}
$$

allows for the effect of all differences pronded that

$$
\left|\mu \delta^{8}\right|<300000 \text { and }\left|\delta^{3}\right|<27,000
$$

These conditions ensure that the truncation error does not exceed one half unit of the last figure given provided of course, that the differences do not diverge (Chapter $7 \$ 17$)

The full theory of throw back' interpolation is given in [150]

Reduced dernatıves

11 If we define

$$
\begin{equation*}
s^{\prime}=h^{f(s)}(a) / s^{1} \quad(x=12) \tag{14}
\end{equation*}
$$

where f is the tabulated fuction and h the argument interval, then the Tayior series nt the tabular point $x=a$ may be written in the form

$$
\begin{equation*}
f(a+p h)=f(a)+p r+p^{2} \tau^{2}+p^{2} \tau^{2}+ \tag{15}
\end{equation*}
$$

In thrs method the ards to merpolation are the quantities τ, τ^{2}, known as the reduced derintrues of f, they are a by product of the Taylor series method for integratug differential equations (Chapter 9, 欧 4-6) As many of them as are signuficant in (15) are tabulated side by side with f The process of interpolation ts the evaluation of the nght hand side of (15) for the ralue of p in question, and can be performed erther with the we of a table of powers or hy treatugg the curtated sentes as a polynomal
in p and building it up on a desk machine by nested multiplication (Chapter 6, § 1).

These aids occupy considerable space in a printed table and are not often given.
Economized polynomials
12. In this method the tabulated function $f(x)$ is represented in the interval $a \leqslant x \leqslant a+h$ by a polynomial of the form

$$
\begin{equation*}
f(a+p h)=f(a)+c_{1} p+c_{2} p^{2}+c_{3} p^{3}+\ldots+c_{n} p^{n} \tag{16}
\end{equation*}
$$

the degree of which is chosen to be as small as possible subject to the condition that the error of the representation shall not exceed half a unit in the last decimal. The coefficients $c_{1}, c_{2}, \ldots, c_{n}$ are tabulated side by side with f, and the interpolation is carried out by direct evaluation of the polynomial on the right of (16).

From the standpoint of the user the method resembles the use of reduced derivatives; the essential difference is that the latter requires more terms.

The coefficients $c_{1}, c_{2}, \ldots, c_{n}$ may be determined from the expansion of $f(a+p h)$ in Chebyshev polynomials (Chapter 8) for the range $0 \leqslant p \leqslant 1$. In this way expansions for the coefficients can be derived in series of central differences similar to (12); see [151].
13. The effect of rounding errors in the use of (16) may be minimized by the following device, due to D. B. Gillies. The function values and the coefficients are evaluated with guarding figures. Then f, c_{1}, c_{2}, \ldots are rounded in succession in such a way that, with primes denoting the values to be tabulated, $f^{\prime}, f^{\prime}+c_{1}^{\prime}, f^{\prime}+c_{1}^{\prime}+c_{2}^{\prime}, \ldots$ are the correctly rounded values of $f, f+c_{1}, f+c_{1}+c_{2}, \ldots$, respectively. The consequent error in an unrounded interpolate cannot then exceed one half. For

$$
\begin{equation*}
f=f^{\prime}+\epsilon_{0}, \quad f+c_{1}=f^{\prime}+c_{1}^{\prime}+\epsilon_{1}, \quad f+c_{1}+c_{2}=f^{\prime}+c_{1}^{\prime}+c_{2}^{\prime}+\epsilon_{2}, \quad \ldots \tag{17}
\end{equation*}
$$

where $\left|\epsilon_{s}\right| \leqslant \frac{1}{2}$. Hence

$$
c_{s}=c_{s}^{\prime}+\epsilon_{s}-\epsilon_{s-1} .
$$

The error in an interpolate is accordingly

$$
\begin{aligned}
\mid \epsilon_{0}+ & \left(\epsilon_{1}-\epsilon_{0}\right) p+\ldots+\left(\epsilon_{n}-\epsilon_{n-1}\right) p^{n} \mid \\
& =\left|\epsilon_{0}(1-p)+\epsilon_{1}\left(p-p^{2}\right)+\ldots+\epsilon_{n-1}\left(p^{n-1}-p^{n}\right)+\epsilon_{n} p^{n}\right| \\
& \leqslant \frac{1}{2}\left\{(1-p)+\left(p-p^{2}\right)+\ldots+\left(p^{n-1}-p^{n}\right)+p^{n}\right\}=\frac{1}{2} .
\end{aligned}
$$

14. The advantage of this method is the speed and convenience with which an interpolation may be carried out. For the same interval, the coefficients c_{s} require more space than the modified differences, but it is often worthwhile to increase the interval and use a polynomial of higher degree.
15. Another form of economized interpolation polynomial is obtained by rearranging (11) in the form

$$
f_{p}=q f_{0}+q\left(1-q^{2}\right) d_{2,0}+q^{3}\left(1-q^{2}\right) d_{4,0}+p f_{1}+p\left(1-p^{2}\right) d_{2,1}+p^{3}\left(1-p^{2}\right) d_{4,1}
$$

where $q=1-p$ and

$$
\begin{equation*}
d_{2}=\frac{1}{6}\left(-\delta_{m}^{2}+16 \gamma^{4}\right), \quad d_{4}=-\frac{25}{3} \gamma^{4} . \tag{20}
\end{equation*}
$$

This has the same type of symmetry as the Eserett formulae (6) and (11), hut lias the advantage that it can be evaluated easily without the and of tables of interpolation coefficients

Using a derice simular to that of § 13, we can ensure that the accumulated error in an unrounded interpolate never exceeds one half This compares favourahly with the maximum error of 11 units associated mith (11), see [150]

Examples of tahles which have ads for use with (16) and (19) are given in [215]

Lagrange's method

16 Here the interpolate f_{p} is computed from s number of consecutive tabular values eurrounding the desired valuo of the argument With an odd number ($2 n+1$) of points Lagrange's formula may he written as

$$
\begin{equation*}
f_{p}=L_{-n}(p) f_{-n}+L_{-n+1}(p) f_{-n+1}+\quad+L_{n}(p) f_{n}, \tag{21}
\end{equation*}
$$

and with an even number ($2 n$) as

$$
\begin{equation*}
f_{p}=L_{-n+1}(p) f_{-n+1}+L_{-n+2}(p) f_{-n+p}+\quad+L_{n}(p) f_{n} \tag{22}
\end{equation*}
$$

The advantages of thas method are wholly on the erde of the compler, no interpolation ads are given From the etandpoint of the user there are esveral drawhacks The cslculation is latornous, bulky tables of the Lagrange coefficiento $L_{s}(p)$ are required, there is duffloulty in deciding how many points to use, partieularly if the full accuracy of the table ie not requured, and interpolation near the ends of a table may be troubleaome
It is true that by omitting interpolation ads, space ie made available which could be filled with additional funetion values, thus permitting a reduction of the interval This would hare the effect of reducing the degree of the Lagrange polynomal needed for unterpolation Novertheless, the more pozerful aids at the unreduced unterval are almost myanably faeter to use than the Lagrange formula at the smaller intervel

USE OF ATXILIARY VARTABLES

17 We have aseumed, in effect, that for the purpose of interpolation the tabulated function en be represented reasonably as a polynomal It may not always be possible to do thes durectly and the compuler must then untroduce new ramshles, dependent or undependent or even both We mention here some of the crrcumstances m which thas need may arise

Singularties

18 Suppose, for example, that near $x=0$ wo have

$$
\begin{equation*}
f(x)=x^{-1}+\phi(x) \tag{23}
\end{equation*}
$$

where $\phi(x)$ is a well hehaved function Clearly $f(x)$ cannot be interpolated directly hy a polynomal near $x=0$, but we raay tabulate enther $f(x)-x^{-1}$ or $x f(x)$, hoth of which are well behated there

A common form of sugulanty meolves the loganthme function For example, near $x=0$ the exponential integral

$$
\begin{equation*}
-\mathrm{E}(-x)=\int_{x}^{\infty} \frac{e^{-t}}{t} d t \tag{24}
\end{equation*}
$$

has the series expansion

$$
\begin{equation*}
-\operatorname{Ei}(-x)=-\gamma-\ln x+\sum_{1}^{\infty}(-)^{n-1} \frac{x^{n}}{n \cdot n!} \quad(x>0), \tag{25}
\end{equation*}
$$

where $\gamma=0.577 \ldots$ is Euler's constant. Accordingly, for interpolation purposes, near $x=0$ we tabulate $-\mathrm{Ei}(-x)+\ln x$ rather than $-\mathrm{Ei}(-x)$ itself.

Singularities at infinity

19. In order to make a table which can be used for indefinitely large values of the argument x, we must take a new argument such as x^{-1}.

For example, for large x the exponential integral has the asymptotic expansion

$$
\begin{equation*}
-\operatorname{Ei}(-x) \sim \frac{e^{-x}}{x}\left(1-\frac{1!}{x}+\frac{2!}{x^{2}}-\cdots\right)=\frac{e^{-x}}{x} S(x) \text {, say. } \tag{26}
\end{equation*}
$$

With argument $z \equiv x^{-1}$ the function S can be computed for values of z between 0.0 and 0.1 , say, and it is easily interpolable to about seven decimals at the interval $0.01 \mathrm{in} z$. The required function is then obtainable by multiplication by e^{-x} / x, readily determined from exponential tables.
20. As a second example, for large x the Bessel functions $J_{0}(x)$ and $Y_{0}(x)$ are oscillatory functions with period approximately equal to 2π. This can be seen from the asymptotic expansions

$$
\begin{equation*}
J_{0}(x)=\left(\frac{2}{\pi x}\right)^{\frac{1}{2}}(P \cos \theta-Q \sin \theta), \quad Y_{0}(x)=\left(\frac{2}{\pi x}\right)^{\frac{1}{2}}(P \sin \theta+Q \cos \theta), \tag{27}
\end{equation*}
$$

where $\theta=x-\frac{1}{4} \pi$ and

$$
\begin{equation*}
P \sim 1-\frac{1^{2} \cdot 3^{2}}{2!(8 x)^{2}}+\frac{1^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}}{4!(8 x)^{4}}-\ldots, \quad Q \sim-\frac{1^{2}}{1!(8 x)}+\frac{1^{2} \cdot 3^{2} \cdot 5^{2}}{3!(8 x)^{3}}-\ldots \tag{28}
\end{equation*}
$$

For large x we can tabulate P and Q as functions of x^{-1}. Then $J_{0}(x)$ and $Y_{0}(x)$ can be found with the aid of tables of the trigonometric functions.

Another pair of auxiliary functions which vary slowly and are well beliaved at $x^{-1}=0$ is $\left(\frac{1}{2} \pi x\right)^{\ddagger} M$ and $\psi-x$, where M and ψ are defined by

$$
\begin{equation*}
J_{0}(x)=M \cos \psi, \quad Y_{0}(x)=M \sin \psi \tag{29}
\end{equation*}
$$

M and ψ are sometimes called the modulus function and phase function respectively.
21. Besides being necessary for satisfactory interpolation, auxiliary functions are often easier to compute than the original functions.

For example, if we substitute

$$
\begin{equation*}
y=M e^{i \psi} \tag{30}
\end{equation*}
$$

in the differential equation (4) satisfied by $J_{0}(x)$ and $Y_{0}(x)$, divide throughout by $e^{i \psi}$ and separate real and imaginary parts, we obtain

$$
\begin{equation*}
M^{\prime \prime}-M \psi^{2}+x^{-1} M^{\prime}+M=0, \quad M \psi^{\prime \prime}+2 M^{\prime} \psi^{\prime}+x^{-1} M \psi^{\prime}=0 . \tag{31}
\end{equation*}
$$

The second of these equations can be re-expressed as

$$
\begin{equation*}
2 \frac{M^{\prime}}{M}+\frac{\psi^{\prime \prime}}{\psi^{\prime}}+\frac{1}{x}=0 \tag{32}
\end{equation*}
$$

and then integrated mmediately to give

$$
\begin{equation*}
M^{2} \psi^{\prime}=\alpha x^{-1} \tag{33}
\end{equation*}
$$

where c is a constant Substitution of (33) m the first of (31) now gwes a differential equation for M

$$
\begin{equation*}
M^{*}+\frac{1}{x} y^{\prime}+u-\frac{c^{2}}{x^{2} M^{3}}=0 \tag{34}
\end{equation*}
$$

The value of c depends on the nomalization of the solutions, for the choree (29) we have $c=2 / \pi$

The equation (34) can be megrated numerically for M, for example by the method of $\$ 21$ of Chapter 9 , and ψ subsequently evaluated by quadrature of $c /\left(x x^{3)^{2}}\right.$) Although non linear, equation (34) is easser to integrato than the onginal eqnation (4) because the rapid oscillations present in the solutions of (4) have effectively been removed Accordingly, the integration can be carried out at a much larger interval

This procedure is of general appheability to modulus and phase functions assoctated with oscillatory colutions of linear second-order differential equations

TABLES POE AUTOMATIC COMPUTERS

22 The conventional type of mathematical table 18 inconvement to use with an automatio computer because of the oxcessire amount of atorage required The storage requrement can be reduced only at the expense of having an elaborate interpolation routine

In the case of elementary functions sumple properties can often be used to evaluato them directly, and the need for tables avorded The processes used molude jteration, recurrence aummation of pormer senzes, evalustion of continued fractions and even the solution of differential equations

23 It 13 not almays possible or convement to use theso methods A general method is to represent the wanted function $f(x)$ over o large range $a \leqslant x<\delta$ by an expansion in Chebyshov sentes

$$
\begin{equation*}
f(x)=\frac{1}{1} a_{0}+a_{1} T_{1}(l)+a_{z} T_{z}(l)+ \tag{35}
\end{equation*}
$$

where

$$
\begin{equation*}
t=\frac{2 x-a-b}{b-a} \tag{36}
\end{equation*}
$$

The values of the coefficients $a_{4} a_{1} a_{2}$ then comprise a compret machume table from which $f(x)$ can be evaluated with the atd of a sub routine based on the algonthm given in Chapter 8, § 16 Machune tables of thes kand for elementary functions and certain higher functions of a single variable are green in [165] and [214] Table I of Chapter 8 pro vides a typical example

24 In plannung future mathemstical tables first consideration should be given to a machuno form Thus form can then be used to generate the orthodox table and might often, with advantage be published together with it Indeed, as more automatic computers become arailable, it is lihely that for many functions machme tables will supplant the conven tional form This is particularly true of functions of several variables orthodox tables of which generally do not fulfil merpolation require ments satisfactorily

BIBLIOGRAPHY

INTRODUCTION

Is should be emphasized at the outset that facility in computation can only be gained by practice; reading alone is not sufficient. This is true of both desk-machine and automatic work. In the latter case moreover, programmers must be acquainted with the fundamentals of good desk-machine practice before they can be efficient and reliable.

The books and papers given in this Bibliography are mainly in the English language and have been selected to provide amplification of the subject matter of this manual, and suitable introductions to more advanced work. The list is divided into sections corresponding to the subjects of the previous chapters. In addition, there are sections at the end on tables, facts and formulae, curve-fitting and smoothing, harmonic aurlysis, integral equations, miscellanea, computing machines, nomography, and journals and reviews. There is, of course, considerable overlap between some of the sections; for example, the theory of finite-difference processes and the theory of linear equations and matrices are both required in the solution of ordinary and partial differential equations and integral equations.

GENERAL

1. Bucennghan, R. A. 1957 Numerical methods. London: Pitman.
2. Habtree, D. R. 1958 Numerical analysis. Second edition (first edition 1952). Oxford University Press.
3. Konz, K. S. 1957 Numerical analysis. New York and London: McGraw-Hill.

Although intended primarily for desk-machine users, these three books all serve as excellent introductions to the practical aspects of modern computation. Each is clearly written and contains a wealth of information.

Of the three, the longest and most complete treatment is that of Buckingham. Almost all branches of numerical analysis are covered, and little of practical importance in the literature has escaped the author's attention.

Hartree's book is much shorter. The basic processes of numerical calculus are fully treated; the shortening is at the expense of more advanced topics. For example, only twenty pages are allotted to partial differential equations, and none at all to integral equations.

The scope of Kunz's book is similar to that of Buckingham. A defect is the inadequate treatment of latent root (eigenvalue) problems. Other omissions concern some contributions by British workers: 'throwback' interpolation (Comrie and others), interpolation by cross means (Aitken), and implicit methods for parabolic partial differential equations (Crank and Nicolson). The student may perhaps be in greater need of assistance from his supervisor with this book than with the other two.
4. Hedebrand, F. B. 1956 Introduction to numerical analysis. New York and London: McGraw-Hill.
Gives an excellent and detailed account of the theory and practice of interpolation, numerical differentiation, numerical integration, and many kinds of approximation methods, including the use of orthogonal polynomials. The numerical solution of ordinary differential equations, polynomial equations, and simultaneous algebraic equations is deliberately treated in less detail. This book is intended for the serious student of numerical analysis rather than the occasional computer.

5 Kofal, 21955 Aumerical analym Nes York and London John Wiley
Concentrates on the appliestron of numencal technuques to problems of infintesims] caleulus in a single varsable Covera much of the mame grounit as Hildebrand in interpolation, differentiation and integration, with extra material on ordinary differentusl equations, iachuding boundary alae problems, and integral equations There is. deliberately, nothing on the solution of algebraie or transcendental equations "Throwback" interpolation is checussed in some detail, and there is an unterrating histoncel mtroduction
6 Lanczos, C 1957 Appled amalyese New Iork Prentice Hall, London Pitman
A verf readable bool on practical computeng methods, with good chapters on polynomial equations, matrices and hatent root problems, data aralyses, and quadra ture, but including no oytermatic account of methods for the solution of differential and integral equations Some of the maternal is not readily avasiable elsenhere. partieularly the chapters on harmonte analyss and Chebyshev eeries. but much standard material is not included
7 Hocsehonime, A 8 1503 Praneqplen of mumerical analyess New York and London McGraw Eill
Contann chapters on error analysts, polution of linear equations, miversion of matrices and the determination of thér latent roots and zectors, aolotion of poly nomain equitions, interpolation and numencal differentiation and integration This is a zontbernatical text book rather than an entroduction to computing practices
8 Alt, F L 1958 Electronic digntal computert New York and London Academie Fress
Thus appears to he the first aubetential general treatment of the practical problema of numerieg analysis from the stendpont of automatie computation, almost half the book being devoted te this aubject It covers linear equations, datent roots differentuation, quadrature, polynomial end transcendental quations, and ordinary and partal differentul equations See also [209] and [210]

- Scarbonoter, J B 1953 Numericol mathematicel analyout Fourth edition (first edition 1930) Baltumorn The Johns Hophins Press, Oxford Universty Press

 edition (first edition 1924) London Blackte
These three works are among the older text books They eontan useful chaptern en finite-dufference theory, interpolation, difierentiation, quadrature, proseseing of obervationsl data, end, in the case of the first iwt, amoltameous hneer equations Zeros of polynomans and the wolution of differental equationa are also treated, bun rather ancompletely

12 Fonsytie. O E and Rosembloom, P O 1958 Numerteal amalyme and garteal differentwal equatore New York and London John Whley
The titie is maleading The book conssata of two porta the first, by Forsythe, is a brief sur ey of the contemporary atate of numencal analysis the second and greater part, by Rosenbloom, is eoncerned with exatence theory in abstract spaces of solis thong of partial differnitial equations Forsythe a earvey includes information not readuly as asiable elfewherv on Rusaten contributwod to numerical amaly sis

LINEAR EQUATIONB, MAMRICES, LATEAT ROOTB A,D VEOTORG
(ceafteis 1-6)
 w the following menegraph
1s Artexy, A C 1956 Determinants and matrices Ninth edition (first edition 1939) Edinburgh OLiver and Boyd, New York Interscience

From the more advanced mathematical treatises, the following book and [212] may be selectcd for meeting the requirements of the modern numerical analyst.

14. Bellman, R. 1960 Introduction to matrix analysis. New York and London:

 McGraw-Hill.
Solution of linear equations and inversion of matrices

Suitable introductions are included in [1], [2], [3] and in the following book.
15. Crandall, S. H. 1956 Engineering analysis. New York and London:McGraw-Hill.
16. Fox, L. 1954 Practical solution of linear equations and inversion of matrices. Appl. Math. Ser. U.S. Bur. Stand. 39, 1-54. Washington: Government Printing Office.
A comprehensive account of modern methods from the standpoint of the desk-machine user. See also [212].
17. Fox, L. and Hayes, J. G. 1951 More practical methods for the inversion of matrices. J. R. Statist. Soc. B, 13, 83-91.
Describes, with full practical details, some good dcsk-machine methods for inverting matrices.
18. Householder, A. S. 1957 A survey of some closed methods for inverting matrices. J. Soc. Indust. Appl. Math. 5, 155-169.
In this more advanced paper the equivalence of various direct methods is investigated.

Large matrices having a high proportion of zero elements occur in the solution of elliptic partial differential equations by finite-difference methods. The indirect solution of the corresponding linear equations is the subject of [112] to [116].

Latent roots (eigenvalues) and latent vectors (eigenvectors)

Introductions to the practical side are given in [1] and [212], and a comprehensive treatinent in [216]. See also [7].
19. Wiminson, J. H. 1954 The calculation of the latent roots and vectors of matrices on the pilot model of the ACE. Proc. Camb. Phil. Soc. 50, 536-566.
A comprehensive and detailed account of the practical aspects of iteration and matrix powering, written from the standpoint of automatic computation. The treatment of complex roots and root-removal processes is particularly thorough.
20. Whrte, P. A. 1958 The computation of eigenvalues and eigenvectors of a matrix. J. Soc. Indust, Appl. Math. 6, 393-437.

A useful survey.
21. Grvens, W. 1954 Numerical computation of the characteristic values of a real symmetric matrix. Oak Ridge National Laboratory, ORNL-1574.
This rather inaccessible reference appears to be the only one giving a full account of the rotations method described in Chapter 3, § 16. An extensive error analysis of the process is included.
22. Wilininson, J. H. 1958 The calculation of the eigenvectors of codiagonal matrices. Computer J. 1, 90-96.
Supplements the method of the preceding paper for computing latent roots, by a practical procedure for computing accurately the latent vectors.
23. Givens, W. 1958 Computation of plane unitary rotations transforming a general matrix to triangular form. J. Soc. Indust. Appl. Math. 6, 26-50.
The method described in [21] is applied to unsymmetric matrices, reducing them to almost triangular (Hessenberg) form. A further transformation is then applied to achieve reduction to triple-diagonal form, but this is numerically unstable.

What so
, J H 1959 Stablity of the reduction of n matrix to almost triangular and triancular forms by elementary smulants transformations J Ass Comp Lath 6, 336-359
bhow how to overcome the numerical instability associated with the method of the preceding reference
25 Wmensov, J H 1960 Householder'a method for the solution of the algebrate elgenproblem Computer J 3, 23-27
Deseribes the practical epplueation of a pouerful method for transforming a eyrametric matrix to triple diagonal form by orthogonal transformations This method, which has adventages over Givens methed, wres first describedin in [28] below
26. Lanczos, C 1950 An iterstion method for tha solution of the eigenvalue problem of linear differential and antegral operatora I Res Nai Bur Stand 45, $205-289$
Describes the eo called method of minimized sterations, which is another direct. method for the transformation of n matrix, aymmetne or unsymmetroc, in to torplediagonal form
27 Wilenson, J H 1958 The calculation of engenvectors by the method of Lanczos Computer J 1, 148-13*
Supplements the preceding piper by showng how to overcome practical duffeulties in the eccurate computation of the latent vectors
28 Houstronder A 8 and Bxtek, F L. 1953 On certem methods for expanding the characteristio polypomal Numerucke Maih 1, 29-37
A survey of methods for reducing matnces to Hessenberg form by amulanty transformatons, that 1s, tranaformations of the form II ${ }^{1} \mathrm{AH}$

29 Rumshataer, H 1958 Solution of engemalue probletres with the LR trangformation App! Mofh Ser US Bur Stand 49, 47-81
This 14 a recently discovered iterative method appltcable to aymmetruc and imay mumetric matrices but particularly useful for band matmces and Hespenberg matricea It yelds the latent roote in order, etarting with the emalleat

30 Gryevs, 5 * 1953 A method of computung ergenvalues and eigen vectors euggerted by clagacal resulta on svmmetne matrices Appl Math Str $0 . S$ Bur Siand 23, 117-122
31 Ortega, if Mf 1900 On Sturm sequences for trdirgonal metricem Appladi Yatherbattes and Statistim Laboratories, Stanford Ưfulereity, Tech Rep No 4
These two references between them establuh the futi form of the Eturm sequence theorem requured for the method of bisections (Chapter 3, \oint 18)

Error analyris
Sea [19] and [2I]
34 WHigvsov, J H 1960 Founding errurs in algebraic procesees Information Procestmg, 4453 Farm UNESCO, Munch Oldenbourg, London Butter worths
 algebreac equations using fixed point anthmetic Its new approach is the most powetful one avalable for asaessing errors arwang in practical matrix problems A book on the subject by the eame author is in course of preparation See also [213]
33 Hocsenoxder, A $\$ 1958$ The apprownate eolution of matrix problems
Defines matrix norms, nivestugates their properties and opplies the resulta to error assessment A more elementary mintroducthon to matrix norms is given in [212]
34. Turna, A. M. 1948 Rounding-off errors in matrix processes. Quart. J. Mech. 1, 287-308.
35. von Neumann, J. and Goldstine, H. H. 1947 Numerical inverting of matrices of high order. Bull. Amer. Math. Soc. 53, 1021-1099.
These two earlier references derive theoretical upper bounds for the errors.

zeros of polynomials (Chapter 6)

Suitable introductions are included in [1] to [4]; [1] is particularly good.
36. Wminnson, J. H. 1959 The evaluation of the zeros of ill-conditioned polynomials. Numerische Math. 1, 150-180.
A complete account of modern automatic procedures. It includes an assessment of the ill-conditioned nature of the problem and of iterative tecliniques.
37. Olfer, F. W. J. 1952 The evaluation of zeros of high-degree polynomials. Phil. Trans. A, 244, 385-415.
A survey from the standpoint of desk computation, including iterative methods, root-squaring, and the Aitken-Bernoulli method.
38. Mulner, D. E. 1956 A method for solving algebraic equations using an automatic computer. Math. Tab., Wash. 10, 208-215.
Describes a powerful iterative process which is often used in automatic work.
39. Atteen, A. C. 1926 On Bernoulli's numerical solution of algebraic equations. Proc. Roy. Soc. Edinb. 46, 289-305.
Gives an elegant generalization of Bernoulli's method, though this method is seldom used in practice. Also includes an algorithm, the ' δ '-process' (Chapter 13, §3), for accelerating the convergence of sequences.

Equations of low degree

40. Porter, A. and Maci, C. 1949 New methods for the numerical solution of algebraic equations. Phil. Mag. 40, 578-585.
Describes a method of successive approximation applicable when the degree does not exceed six. Also refers to a war-time RRDE report which gives charts (nomograms) for the solution of cubics and quartics. Charts for the solution of cubics and quartics are also given in [160].
41. Salzer, H. E., Richards, C. H. and Arsham, I. 1958 Table for the solution of cubic equations. New York and London: McGraw-Hill.
The most comprehensive table of its kind.

THE CALCOLUS OF FINITE DIFFERENCES (CHAPTER 7)
See [1] to [5]. Sound accounts of the practical processes of interpolation, quadrature and numerical differentiation are given in [167], [159], and in a chapter of the following book.
42. Jeffreys, H. and Jeffreys, B. S. 1956 Methods of mathematical physics. Third edition (first edition 1946). Cambridge University Press.
43. Freeman, H. 1960 Finite differences for actuarial students. Second edition (first edition 1939, published as Mathematics for actuarial students, Part II). Cambridge University Press.
An elementary and readable book.
44. Jordan, C. 1950 Calculus of finite differences. Second edition (first edition 1939). New York: Chelsea.
A very full treatment which also includes a chapter on elementary statistics.

45 Minegr, H 1952 Techriques de calcal numeraque Paris and Laege Librama Polytechnique Ch Béranger
Includes a detailed treatment of interpolation, numerical differentiation and quadrature, with much mformition on the handing of aingularities Other material on zeros of polynomuls and ordinaty differential equations is eomewhat outh of date

46 Kertzysvy; J 1959 Wéhodes muquéroques Pans Dunod
Entirely devoted to interpolation and numencal dufferentiation, a very detated treatment
47 Biceisey, if 1943 Dhfference and anscelated operators, with nome appheations J Uath Phyt 27, 183-192
48 Mrcmil, J G L. 1946 Central-difference formulae obtamed by meana of operator expeneions J 7nat Actur 72, 170-480
These two papers give clear expoations of the operational method for deriving trute differenco formulae
49 Brcerey, W G 1939 Formulae for numerical integration Math Gaz 23, 352-359
An extenave collection of fimte defferenco quadratare formulae There is a sumar collection for dufterentiation (Math Gaz 25 19-26, 1041)
50 SexpraRd, W F 1906 On the accuracy of interpolation by finito dufferencea Proc Lond Math Soc 4, 320-341
This oxaminea the rounding errors astociated with tho use of varioun firute differenca formulae
51 Minve Thoxsov L 31 1951 The colculus of fintediferences Eeprint (first edition 1033) London Macrullen

62 Sterpensiv, J F 1950 Fnterpolation second edition filist English edition 1827) New York Chelsea

33 Forlond, N E 1924 Vorkestugen uber Diffrensenrechnung Berlan Springer
These three excellent treatisea discux the aubject from a more theoretical and mathematically rggorots itandpomt

CHEHYBAEV ABRIES (CHMYTER 8)
Sce [6] and [214] Other readable expositions ara conteined in
54 Appl Nath Ser US Bur Stand 9, 1952 Tabke of Cheby*hev polynomals Washungton Government Printing Office
and
55 Laskezos, C 1933 Fhgonondetre interpolation of empirical and analyieal functions J Math Phys 17, 123-199

56 Bervsteiv, $\mathcal{S} 1920$ Lepons ent les proprteths extrenales des fonctions analyteques Parts Gauther-Yilhars
A treatise on the fundamentel problems of approzimation by polynomala
57 Clevsisw, C W 1955 A note on the fummertion of Chebyshev mernes Afath T'ab, Wash 9, 118-120
Derises an algonthm for esaluating the amm of the serzes, and investigates the possibulty of error build up in epplications
58 Honnecker, G 1958 Evalistion approchde da la melle polynomiale d ordre n de $f(x)$ nur up eegment fizm [a,b] Chaffres l, 157-168
The coefficients of the polynomal of beat fit', that is, of leeat maximum devastion from $f(x)$, are axpressed approsinately in terms of the Chebyshev coefficients
59. Muraaghan, F. D. and Wrezcey, J. W. 1959 The determination of the Chebyshev approximating polynomial for a differentiable function. Math. Tab., Wash. 13, 185-193.
This is representative of a number of recent papers giving iterative procedures for computing the polynomial of best fit.
ordinary differential equations (chapters 9, 10)
General
See [1], [2], [3].
60. Colwatz, L. 1960 The numerical treatment of differential equations. (Translated by P. G. Williams.) Third edition (first edition 1951). Berlin: Springer.
Probably the most thorough single account of solving both ordinary and partial differential equations of all kinds.
61. Fox, L. 1954 A note on the numerical integration of first-order differential equations. Quart. J. Mech. 7, 367-378.
Examines general aspects of the numerical solution of first-order equations, linear or otherwise.

Taylor-series method

See [1] to [5].
62. Wrison, E. M. 1949 A note on the numerical integration of differential equations. Quart.J. Mech. 2, 208-211.
Gives a refinement of the method applicable in certain cases.

Predictor-corrector mathods

See [3], [4], [10].
63. Mrnae, W. E. 1953 Numerical solution of differential equations. New York and London: John Wiley.
64. Hannasg, R. W. 1959 Stable predictor-corrector methods for ordinary differential equations. J. Ass. Comp. Mach. 6, 37-47.

Central-difficrence methods

See [2], [42], [167].

Deferred-correction methods

65. Fox, L. and Goodwns, E. T. 1949 Some new methods for the numerical integration of ordinary differential equations. Proc. Camb. Phil. Soc. 45, 373-3S8.
66. Ccenshaw, C. W. and Olver, F. W. J. 1951 Solution of differential equations by recurrence relations. Math. Tab., Wash. 5, 34-39.
See also [1].
Runge-Kutta methods
See [3], [4], [5], [60].
67. Kurta, W. 1901 Beitrag zur nåherungsweisen Integration totaler Differentialgleichungen. Z. Math. Phys. 46, 435-453.
Includes many formulae.
68. GHL, S. 1951 A process for the step-by-step integration of differential equations in an automatic digital computing machine. Proc. Camb. Phil. Soc. 47, 96-108.
Describes an efficient modification in which the intermediate points are chosen to minimize the storage requirements and the effect of rounding error. on high speed dugtal eqmputerf Computer 7 1. 118-123
Deseribes further modificstrons with a view to a gam in epeed
70 DE Vocelaers, $72 \mathbf{2 9 5}$ A method for the numencal integration of differential equations of second ardier mithout exphent first derivatives J Fies Mat But Sland 54, 110-125
A hybrd method uselul for equations of the forme $y^{*}=f(x, y)$

Chetryshet-sertei mathod

The " 7 method" of Lancaos is deseribed in [67 and the introdisction to [54]
 in Chebyshev efres Proc Gamb Phit Sac $53,134-149$
The method deserbed and andutrated by examples in thi paper has advantages over the τ method

Buiking up errort teabilty
See $[4],[5]_{4}[60]_{2}[64],[65]$
72 Shmanx, T Ex 1953 The aceuracy of numerical colutions of ordunary duffential equations Moth Tab. Wesh 7, 159-164
 ordingry diferential equetmons Mach Scand A, 33-53
74 Dafigciar, 01959 Stablity and error bounds in the numemcel integration of ordanary duferential equations \mathbb{K} Tekn Figgh Hand 130

75 Cars, J IF 1958 Error bounds for the Runge-Kutts sungle step mitegration procens: Alt Comp Jfach 5,39-14

Bouvalary value problem:

See [60], [4]

76 Fox, L 195 The numencal polutuon of tue pown boundary probleme in ordanary differentual equatione Oriord Druversaty Press

Thus comprehenave work covers direct matrix methocis, relagation, usa of anstial value technques, and engernalue problean Nomerous examplea bre goven
77 Fox, 1949 The solution by relaxstion methods of ordinary difforential equations Proc Camb Phat Soc 45, 50-68
Flelaxation methods are also deccribed m [105]
The application of motiat valas technuques to boundary value problems is dysensged in [1] to [5] [67], and m the following paper
7s Warviek, Fi J 1957 On the eolohom of "jury' problems cith meny degrees of froedank Mrath Tab. Wiash 11.268-271

The computation of eigenvalues is treated in many of the forgoing references Bee also the following treatime
 Becker and Erler

PAKTIAL DITFEKEVTHAZ EQUATIONE (CHAPTERE 1 1, 12)
Short introductions are given in [1], [Z], [3] For more extensive treatmenta ace [60] and [217]
80 LowAN, A N 1957 The ogerator epproach to problems of ntobuluty and contrerqence of solutions of difference equations and the contergence of varous teration
procedures. New York: Scripta Mathematica; Washington: Office of Teclnical Services.
A connected account of the solution of stability and convergence problems by use of matrix theory. All three kinds of partial difference equation are treated.

Hyperbolic equations

See [15], [60] and [210].
81. Hartree, D. R. 1953 Some practical methods of using characteristics in the calculation of non-steady compressible flow. Harvard University, Dept. of Maths. Rcp. No. LA-HU-1.
A good readable introduction, though rather inaccessible.
82. Courant, R. and Hmbert, D. 1937 Methoden der Mathematischen Physik II. Berlin: Springer.
83. Courant, R. and Friedrichs, K. O. 1948 Supersonic flow and shock waves. New York and London: Interscience.
These tro references give information on the physics of common problcms, as well as on numerical methods of solution.
84. Courant, R., Isascson, E. and Rees, M. 1952 On the solution of nonlincar lyperbolic differential equations by finite differences. Commun. Pure Appl. Math. 5, 243-255.
See also [89].
85. Dovglas, J. 1956 On the relation between stability and convergence in the numerical solution of linear parabolic and hyperbolic differential equations. J. Soc. Indust. Appl. Math. 4, 20-37.

This aspect is also treated in [80].
86. yon Neunann, J. and Richthyer, R. D. 1950 A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232-237.
87. Fox, P. and Ralston, A. 1956 On the numerical solution of the equations for spherical traves of finite amplitude, I. J. Math. Phys. 35, 313-328.
88. Roberts, L. 1956 On the numerical solution of the equations for spherical waves of finite amplitude, II. J. Math. Phys. 35, 329-337.
These three papers examine difficulties in carrying out numerical work in the neighbourhood of \mathfrak{a} shock wave.

Parabolic equations

See [60].
89. Richtmyer, R. D. 1957 Difference methods for initial-value problems. New York and London: Interscience.
90. Carslaw, H. S. and Jaeger, J. C. 1959 Conduction of heat in solids. Second edition (first edition 1946). Oxford University Press.
A standard work of reference on analytical solutions of the heat-conduction equation. Numerical methods are treated very briefly in the final chapter.
91. Crank, J. 1950 The mathematics of diffusion. Oxford University Press.

A text-book on analytical and numerical mothods of solving diffusion problems.
92. Eyres, N. R., Hartree, D. R., Inghait, J., Jageson, R., Sarjant, R. J. and Wagstaff, J. B. 1946 The calculation of variable heat flow in solids. Phil. Trans. A, 240, 1-57.
93. Crank, J. and Nicolson. P. 1947 A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proc. Camb. Phil. Soc. 43, 50-67.
The original reference to the Crank-Nícolson method. Comparison is made with methods given in the preceding reference.

94 Todd, $J 1956$ A direct approach to the problem of atabulty in tho numencal solution of partial differential equations Commun Pure Appl Nath B, 597-612
Stablity in mestigated by mairak theory The paper contans an extenaive bibliogrephy See also [80]
95 O Brient G G, Hyman. it A and Kartax, S 1951 A study of the numencal molution of partial differential equations J Math Phy 29, 293-251
Investigates stability by the method of vart Neumann See also [85]
96 Atmasint, E L 1960 On the numencal golutron of a cylndrical hent conduction problem Quart J Afech 13, 374-384
Includea an inventigatian of the effect of neglecting angulanitica in the bouodary conditions in aetting up the fimite difference equations Singulantiea are elso treated in [91] end the following reference
97 Canse, J 1857 Two methods for the numerical aolution of moving boundery problems in diffision and heat flon Quare J Neeh 10, 220-231

98 Covie, 5 D 1957 A steble umplicit finte difference approximation to a fourthorder parabotie equation J As" Comp Mach 4, 18-23

93 Pexceman, D W and Ehenford H H 1055 The mumeneal asoluthon of paraholic and elliptic dufferentat equations J Soc Indust Appl AFath S, 29-41
Guses a modification of the mphet method for eolving the heat conduction equetion with two apoce vertables The method can be used to find the oteady state aolution hence solv ing Laplace's equation, see also [116]
100 Dovozas, J 1955 On the numerichl integration of $\frac{\partial^{2} u}{\partial x^{1}}+\frac{\partial^{2} u}{\partial y^{4}}=\frac{\delta_{2}}{C!}$ by umplent methode J Soc Indust Appl Math 3,4265
Elliptic equations relaxation methods for desk machines
Sce [3], [60]
101 Bickigy, W $G 1948$ Finate difference formulas for the square lattice Quart J Nech 1, 35-42

102 Skaty, F S 1958 An introduction to relaration methody Second edtion (firat edztion 1953, New York Dover, London Coneteble
103 Altar, D N DE G 1954 Relaxation method: New York and London MeGrew Fill
These two booh s teach the besse compatatumal proecses of the zelexation thethod
104 Soctrwici, R 1946 and 1956 Relazation methods in theorefical phymer Volume 1 \{1946\}, Volume 2 (1950) Oxford University Press
Contans examples of the application of the relaxation process to physucel problems, Volume 1 covers second erder equations and Volume 2 fourth ordef equations, in two independent, vanables Sice also [15]
105 Fox, $L 1547$ Some miprovements in the uae of relaxetion methods for the
 190. 3159

Gives s full treatment of the'differenco correction' techaque
106 Fox, L 1950 The numerrical solution of elliptic differental equetions when the boundary conditions mvolve a deritative Phil Tran* A, 242, 345-378
107 Viswavatias, R V 1057 Solution of Porssor's equation by relaxation methou-normal gradient epecifitd on curved bounderies Math Tab, Wash 11,67-75
108. Motz, H. 1946 The treatment of singularities of partial differential equations by relaxation methods. Quart. Appl. Math. 4, 371-377.
109. Woons, L. C. 1953 The relaxation treatment of singular points in Poisson's equation. Quart. J. Mcch.6, 163-185.
Singularities are also treated in [42].
Elliptic equations: methods for automatic computers
110. Karlqvist, O. 1952 Numerical solution of elliptic difference equations by matrix methods. Tellus 4, 374-384.
111. Connoce, A. F. 1954 The numerical solution of Poisson's and the bi-harmonic equations by matrices. Proc. Camb. Phil. Soc. 50, 524-535.
These two papers describe direct methods for solving the algebraic equations which represent the partial differential equation.
112. Engeli, M., Ginsburg, Th., Rutishauser, H. and Stiefel, E. 1959 Refined iterative methods for computation of the solution and the eigenvalues of selfadjoint boundary-value problems. Basle: Birkhäuser.
A detailed study of theoretical and practical aspects of iterative methods, including gradient methods and successive overrelaxation, containing valuable basic material.
113. Carret, B. A. 1961 The determination of the optimum accelerating factor for successive overrelaxation. Computer J. (In press.)
Describes an automatic process for solving equations with Property A (Chapter 4, § 9).
114. Young, D. M. 1955 ORDVAC solutions of the Dirichlet problem. J. Ass. Comp. Mach. 2, 137-161.
An account of practical experience of using the method of successivc overrelaxation.
115. Keller, H. B. 1958 On some iterative methods for solving elliptic difference equations. Quart. Appl. Math. 16, 209-226.
Classifies some of the iterative processes and compares their efficiencies.
116. Conte, S. D. and Danies, R. T. 1960 On an alternating direction method for solving the plate problem with mixed boundary conditions. J. Ass. Comp. Mach. 7, 264-273.
Describes the solution of the biharmonic equation by the method of [99], and contains references to other applications of this method.

EVALUATION OF LIMITS (CHAPTER 13)
General theory of iterative processes
See [7].
117. Hartree, D. R. 1949 Notes on iterative processes. Proc. Camb. Phil. Soc. 45, 230-236.
Defines and classifies the various types of process.
118. Ostrowshx, A. M. 1958 A method of speeding up iterations with super-linear convergence. J. Math. Mech. 7, 117-120.

Sums of series; limits of sequenccs
Brief treatments are given in [1], [2], [3], [4].
119. Richardson, L. F. and Gaunt, J. A. 1926 The deferred approach to the limit. Phil. Trans. A, 226, 299-361.

120 Sherxs, D 1955 Nom linear transformations of divergent and slowly convergent sequences I Math Phys 34, 1-42
Surveys earlier work and gives a generntization, the $e_{m}\left(S_{n}\right)$ transformation, of the δ^{1} process of Altken [39]

121 Wriv, $P 1956$ On a device for computing the $\varepsilon_{\boldsymbol{a}}\left(S_{\omega}\right)$ transformation Maih Tab, Tosh 10,91-96

122 Satzes, H E 1954 A smple method for summung certain slowiy convergent series J Math Phys 33, 356-359
Describes a numerical method applicable when the nth partual sum behaves like a polynomal in $1 / n$

123 Bickley, if G and Aftrier, J C P 1336 Tha numerical ammation of elowly convergent seriea of prositive terms Phal .1fag 22, 754-767

154 Atmex, J if 1937 The 'convergmg factor' un asymptotip gertes and the caloulation of Beasel, Lagucrre and other futtetions Phil Mfog 24, 521-552
These two referencea n a among many which deseribe methods based on particular asymptotio forms of the hugher terms of the sence In these two papers expansions are derived in dexcending powers of in for tbo conterging factor, defined as

$$
\left(v_{n+1}+v_{n+2}+\quad\right) / v_{*}
$$

where v_{n} is the $n t h$ tema of the verses

Continued fractions

Elementary properties are exven in [4] and [51]
125 Ward. H 81948 Analyte theory of contunted froctions New lork Vin Nostrand

126 Perrov, 01954 Die Lehre $o n$ den hettenbruchen Third edition (first edition 1913) Stuttgart Teubner

These two references ars standard works on the genexal theory of contrinud frections

127 Teichroen, D 1952 Lse of contmued fraction in high speed computing Math Tab, \boldsymbol{H} ash 6127133
 evaluetion of contmued frections J Aet Comp Mach 3 109-202

199 IIsy P 1959 Converging factors for contmued fractions Nuznerarthe Math 1, 272-320

The cuolvent difference alporrthon
The quotient diffcrence (QD) algonthm as essentially a procedure for transforming a power teries into a contmued fraction but it has applicationa in other branches of numerical analysia

130 Rutishavses, II 19\%4 Der Quotienten Duferenzen Algorithmus Z angew Math Phys 5, 233-251
Describes the slgorithm and epplics it to the evaluation of zeros of polynomaly, obtainug a generalization of Bersoull a method, easentually the anme as that given u1 [39]

131 Retisiacset, H 1954 Anwemhungen dea Quotienten Differenzen Algorith mus Z angew Wath Phys 5,496-508
Derves an alternative form of the algonthm, called the 'progressive' form, and considets applications to the trensformation of aeries into continued fractions and agam to the evaluation of zeros of polynomals
132. Henrici, P. 1958 The quotient-difference algorithm. Appl. Math. Ser. U.S. Bur. Stand. 49, 23-46.
A self-contained introduction to the algoxithm, which uses an approach different from that of the two preceding references. Applications are made to latent roots of matrices, zeros of polynomials and expansions in continued fractions.
133. WYNN, P. 1959 A sufficient condition for the instability of the $q-d$ algorithm. Numerische Math. 1, 203-207.

EVALUATION OF INTEGRALS (CHAPTER 14)

Finite-difference methods of quadrature are treated in most of the references given in the sections entitled General and The Calculus of Finite Differences. Gauss-type formulae are also discussed in many of these references; in particular, see [4] and [5].
134. Clenshaw, C. W. and Curtis, A. R. 1960 A method for numerical integration on an automatic computer. Numerische Math. 2, 197-205.
Discusses the basic problems of numerical quadrature from the standpoint of automatic computation, and proposes a new method based on the termwise integration of expansions in Chebyshev polynomials.
135. Abramowitz, M. 1954 On the practical evaluation of integrals. J. Soc. Indust. Appl. Math. 2, 20-35.
Describes many methods and artifices, mainly of an analytical character.
136. Goodivin, E. T. and Staton, J. 1948 Table of $\int_{0}^{\infty} \frac{e^{-u^{2}}}{u+x} d u$. Quart.J. Mech. 1,
319-326.

Describes methods that were used in the evaluation of this integral on desk machines. This example has been used as a 'guinea pig' by some later writers.
137. Appl. Math. Ser. U.S. Bur. Stand. 371954 Tables of functions and of zeros of functions. Washington: Government Printing Office.
Includes a 15 -decimal table of the zeros of the first 16 Legendre polynomials and the corresponding weight factors for use in Gauss's quadrature formula, and also a similar 12 -decimal table for use with the Laguerre-Gauss quadrature formula.
138. Davis, P. and Rabinowitz, P. 1956 Abscissas and weights for Gaussian quadratures of high order. J. Res. Nat. Bur. Stand. 56, 35-37.
Gives 2l-decimal values of the zeros of the Legendre polynomials, and the corresponding weights, for degrees $2,4,8,16,20,24,32,40,48$.
139. Davis, P. and Rabinowitz, P. 1958 Additional abscissas and weights for Gaussian quadratures of high order: values for $n=64,80$ and $96 . J$. Res. Nat. Bur. Stand. 60, 613-614.
140. Salzer, H. E., Zucher, R. and Capuano, R. 1952 Table of the zeros and weight factors of the first twenty Hermite polynomials. J. Res. Nat. Bur. Stand. 48, 111-116.
141. Goodivin, E. T. 1949 The evaluation of integrals of the form $\int_{-\infty}^{\infty} f(x) e^{-x^{x}} d x$. Proc. Camb. Phil. Soc. 45, 241-245.
Slows that many integrals of this type can be evaluated to high accuracy by use of the trapezoidal rule applied with a large interval. An expression for the error of the representation is determined by means of contour integration.
142. Fetris, H. E. 1955 Numerical calculation of certain definite integrals by Poisson's summation formula. Math. Tab., Wash. 9, 85-92.
An alternative treatment of the problem considered in the preceding reference. The results apply to infinite integrals and integrals of periodic functions taken over a whole number of periods.

143 Loxe, Y L 1956 Evaluatron of an integral arising in numencal integration near a logarithme angulanty Mrath Tab, Wiesh 10, 14-21
144 Kapmax, E L 1052 Numencal miegration near a aingularty I Math Phys 31, 1-28
Contains tables for facilitatimg integration near angularities of the forms $x^{\text {th }}$ and $\ln x$

Sugziar integrands are also disenesed in [4] [5], [45] and [188]
145 Watgov, O N 1944 Theory of Bearal functiont Second edition (first edition 1922) Cambindge University Preas
$\$ 83$ of the book containg a lemme (Whtan is lemmes) which stated precise conditions for denving the aymmptotic expanaion of an antegral of the form $\int_{0}^{\infty} e^{n f} F^{\prime}(t) d t b y$ the termwne antegration of the expansion of $F(b)$ in ascending powera of t
146 Mricte, \boldsymbol{J} P 1960 Aumerical quadrature over a nectangular domain in twa or more dumensions Part 1 Quadrature oser a equare, using up to sixteen equally fanced pount Maik Compufotion, 14, 13-20
One of the more practical papere on the evaluation of double integrala
fabtLation of hathematical fonctions (oEafter 15)
147 Mifekh, J C P 1049 The construction of mathematical tables Set $J R$ Coll Scs $30,1-11$
Thas readable parnphiet gives a bref account of t be basie prinerples of table makng
148 Mrmiss, J C P 1950 Checking by dufferenee-I Math Tab, Fooh 4, 3-11
Examptes the thance of a dfference of a given order, wheh is entuely compessd of rounding errora, ezceeding a certoun aze
149 Fox, L and Hrinirs, J C P 1951 Table making for large argumente Tha exponental integral Math Tob, Fash 5, 163-167
Gives an ox mple of the uso of aunluary varnables for large values of the argument
Useful metricution on methode of compilation and checlong can siso be geined from the introdactions to publushed mathematical tables particulatly the series of tables of the Britugh Association the Royal Soctety and the National Bureau of Standurds

Interpolation ords

3fuch practical information is eontaned in [167]
150 Fox $L 1 \$ 56$ The use and eonstruction of mathematieal tables Math Tab Nat Phys Lab 1 London H,s1 Ststionery Office
Dewcribes in detsil the samons interpolation ands particularly modified differences and economzed polynomala The analysis of error is very thorough Also included ut a brief sursey of the varions standard proceosea for computing mathematicn
 approximation edited by R E Langer and published by the Upiversity of Wisconsin Press, Madison (1923)

[^2]152. Woodward, P. M. and Woodward, A. M. 1946 Four-figure tables of the Airy function in the complex plane. Phil. Mag. 37, 236-261.
Discusses the use of modified differences as aids for the interpolation of analytic functions tabulated at points of a square grid in the complex plane.

Subtabulation

The 'end-figure' method is described in [2] and [51].
153. Nautical Almanac Office 1958 Subtabulation. London: H.M. Stationery Office.
This comprehensive manual, which is a companion to [167], describes three types of method in order of increasing power and complexity: direct methods, the method of precalculated second differences, and the method of bridging differences. Worked examples and necessary tables are included.
154. Woolletr, E. R. 1958 Subtabulation with special reference to a high-speed computer. Quart. J. Mech. 11, 185-195.

TABLES

Tables for desk-machine work
The following books are among the best collected tables of the common functions.
155. Barlow's tables 1947 (Edited by L. J. Comris). Fourth edition (first edition 1814). London: Spon.

These well-known tables give principally squares, cubes, square roots, cube roots and reciprocals of all integers up to 12,500.
156. Coarate, L. J. 1947 Chambers's four-figure mathematical tables. Edinburgh: Chambers.
This compact volume includes logarithms, square roots, cube roots, reciprocals, trigonometric, exponential and hyperbolic functions and the error function.
157. Milne-Thomson, L. M. and Comme, L. J. 1948 Standard four-figure mathematical tables. Second edition (first cdition 1931). London: Macmillan.
Covers the same ground as the previous reference, but is a larger book because of the use of finer intervals of tabulation. A table of the gamma function is also included.
158. Daise, J. B. 1949 Five-figure tables of mathematical functions. Second edition (first edition 1905). London: Arnold.
A compact collection of elementary functions and many higher transcendents, including the gamma and error functions; Bessel functions; and sine, cosine, exponential and elliptic integrals.
159. Coarrie, L. J. 1948 and 1949 Chambers's six-figure mathematical tables (Two volumes). Edinburgh: Chambers; New York: Van Nostrand.
Covers similar ground to [156] and [157], with of course the extra two-figure accuracy. There are explanations of basic desk-machine practices, similar to those in [167]. Volume I gives logarithmic values, and the more widely-used Volume II gives natural values. An abridged version also exists.
160. Empe, F. 1959 Tables of elementary functions. Third edition (first edition 1940). Leipzig: Teubner.

Contains tables of powers, reciprocals and factors, and of trigonometric, exponential and hyperbolic functions with both real and complex arguments. The accuracy is generally $4-5$ significant figures. There are many graphs, relief maps, formulae and notes concerning these and other functions, and also a collection of nomograms, formulae and tables for solving quadratic, cubic and quartic equations. edition 1909) Leipzf ${ }^{5}$ Teabner
A well tnown and valuable collection of shart tables, formulae, graphs and relief maps of the hipher transcendental functionis of frequent ofeurrence in numerieal work A new edition, revised by F Losch, has just been published

A larpe IIandbod of functoons is beng eompaled by the National Burean of Standards, Washington It will contam extename collections of formulae, tables and graphs for both eleventary and bugher functioos
16s Fleicher, A, Mnler, J C P and Rosevhean, $\mathbf{L} 1946$ An index of mathe motical tatles (Steond edition im press) London Sclentifie Computing Serviea
An excellent index containugg a vast amount of information The second edition covers all tablee publushed before 1955 and major tables in the period 1955-1959 Other mformation on recent tables is contamed th the followang Russian index

163 Lemedey, A V and Feporova, it il 1956 Sprayochnih pomatematucheakom tablitsam (An undex of mathematical tables) Moncon Izdatelstvo Abviemu Nauk SSSR,
and its first supplement
 Dopolnene No 1 Moscow Izdntel etso Akademn Nauk SSSR

Tables for automatic work

165 Cuevshaty, © 31954 Polynomal approximations to elementary functions Math Tab, Fask 8, 143-147
Gives Indermal velues of the coefficuents ut the Chebyshev expansion for trigonometric, exponential and logarithme functions, and for the gamma function and the Bessel functions J_{4} and J_{1} An extension of thesa tables, giving more functions and an accuracy of generally 20 argmificant figures is in preparation for the N PL Mathematical Tables series, beo [214]
166 Hattinas, O 1957 Approximations for digutal computere Seeond edition first edition 1985) Princeton Umversty Preas
Includea approtumations, usually in rational or expleet polynomal form, for trigonometric, exponential and logarthrouc functions, the garmma and error functions, the exponential integral and the complete elliptic integrals The accuracy of the approximations 1310 emguficant figures for soma functions, but for most of theyn tit is tese

> FACTS AND FORMELAE

Biany books of tables contan collections of mathematical formules The presenta tion of suck information te a promary purpose of the followmg references
167 Navitcal Ammanac Ofyter 1956 Interpolation and alled tables London H M Stationery Office
This valuable workung mannal contams tables of untexpolation and other coefficients, a large collection of finute dufference formulate for interpolation, differentiation, untegration, the solution of ordurary differential equations and extmation of error, and an nccomit of the central difference method for untegrating ordinary differential equations
168 Dmaet, FI B 1957 Tables of ensegral and other mathematical data Third edition (firet editan 1931) New \mathbf{I} ork Mseralian
A useftil small collection of definute and mdefinte integrals and beries
169 Apens, E $P 1939$ Smuthsonan mathemarical formulice ard tables of elliptic functions Weshungtorg Smathsoman Instutution
Contems a usefis eollection of elementary formuliee for algebra, irigonometry, geometry, infinite series and some hagher transcendental functions
170. Ryshif, I. M. and Gradstein, I. S. 1957 Tables of series, products and integrals. First edition in English. Berlin: Deutscher Verlag der Wissenschaften.
A large collection of formulae for series, indefinite and definite integrals, elementary functions and higher transcendental functions.
Integrals and integral transforms
See [168] and [170].
171. Meyer zur Capelien, W. 1950 Integraltafeln. Berlin: Springer.

Gives indefinite integrals of elementary functions.
172. Grobner, W. and Hofreiter, N. 1957 and 1958 Integraltafcln (Two Parts). Second edition (first edition 1949). Vienna: Springer.
Part I (1957) and Part II (1958) give respectively indefinite and definite integrals of elementary functions.
173. Erdélyi, A., Magnus, W., Oberhettinger, F. and Triconi, F. G. 1954 Tables of integral transforms (Two volumes). New York and London: MeGraw-Hill.
A vast collection of integral transforms of the higher transcendental functions.
174. Byrd, P. F. and Friedman, M. D. 1954 Handbook of elliptic integrals for engineers and physicists. Berlin: Springer.
175. Kanike, E. Differentialgleichungen, Lösungsmethoden und Lösungen. Part I, 1956 (fifth edition). Leipzig: Becker and Erler. Part II, 1959 (fourth edition). Leipzig: Akademische Verlagsgesellschaft.
Gives analytic solutions of various differential equations. Part I deals with ordinary and Part II with partial differential equations.

CURVE-FITTING AND SMOOTHING

This subject is not easy and has pitfalls for the unwary. Good introductions to the practical side are contained in [2] and [6], both of which illustrate some of the dangers in the process. Sound theoretical accounts of least-square approximations and the use of orthogonal polynomials are contained in [4] and [1]. See also [11] and [44].
176. Fisher, R. A. and Yates, F. 1957 Statistical tables for biological, agricultural and medical research. Fifth edition (first edition 1938). Edinburgh: Oliver and Boyd.
Table XXIII gives values of orthogonal polynomials up to degree 5 to facilitate the fitting of equispaced data at up to 75 points.
177. DeLury, D. B. 1950 Values and integrals of the orthogonal polynomials up to $n=26$. Toronto University Press.
Extends the tables mentioned in the preceding reference, when the number of points does not exceed 26, by giving the values of all the orthogonal polynomials.
178. Hayes, J. G. and Vickers, T. 1951 The fitting of polynomials to unequallyspaced data. Phil. Mag. 42, 1387-1400.
Describes good desk-machine procedures for fitting unequally-spaced data.
179. Forsythe, G. E. 1957 Generation and use of orthogonal polynomials for data-fitting with a digital computer. J. Soc. Indust. Appl. Math. 5, 74-88.
180. Ascher, M. and Forsythe, G. E. 1958 SWAC experiments on the use of orthogonal polynomials for data fitting. J. Ass. Comp. Mach. 5, 9-21.
These two papers examine the problem of fitting unequally-spaced data from the standpoint of automatic computation.
181. Clenshatw, C. W. 1960 Curve fitting with a digital computer. Computer J. 2, 170-173.
Describes a refinement of the method given in the two preceding references which makes lower demands on the store and achieves a more concise form of output.

See [11. [2] [4] [11] and, especislly, [6]

182 Drcit, D 1932 The combnation of obvervations Second exition (first exition 1923) Cambradge Cruveraty Press

183 PoLisy, L 7 Geophymeal publicationg 1947 and 1949 Folume 1 (1947) Harmone ansly ans end synthesus achedules for 3 to 100 equidistant values of empinc fonctions tolurne 2 [1949) All term guide for harmone analysis and aynthess Drabin Stathonery Office

Numencal trentments are meluded in [1], [3], [5]
 New York Dover
An elementary introductson to analytical theory
186 Tricostr, F G 1957 Integral equations New Iork and London Interscience
A compact aceotint of the analytical theory
187 Fox, L and Goobtror E T 1953 The numerical solution of non-8ingular Linear integral equations Phit Trans $A, * 55,301534$
A comprehensirs account of thas solution of equetions of Fredholm and Volterrs typer by finte dufterence methods

188 Iouvg, A $193 *$ Apprommate product inlegration Proe Roy Soc A 224 552-551

Thus is a preliminary to the followng paper
189 Yousc, A 1984 The apphcetson of product mitepretion to the numencal solution of integral equations Proc Roy Soc A, 2:4 \$61-573
Applucable to cestein types of angular or near angular equatione

MIBCELLAVEOUS

 Indust Appl Woth 1 20t-219
134 Fomythe, © E 1953 Smgulanty and mear sunguarity in numencal analven Amer Math Mon 65 229-240

COSHETIBA MACHIVES

Desk machanes
Brief introductions ore given in [1] and [2] Fuller treatments on use are gisen in the followng two references and [157] below
192 Sapielay, H 193s Modem machune calculation London Seientife Computing Service

193 Varver, IV it 1957 Compuang weth deek eakcukdors. New Yorh Runehart
Punched-card machrnes
194 Smify, J S 1960 Puhehed earts London Maodonsld and Evars
Contans a readable account of the vanuus types of punched-eard machunco and discusses ther applications particulariv to accountancy
195. Casey, R. S., Perry, J. W., Berry, M. M. and Kent, A. (Editors) 1959 Punched cards: their applications to science and industry. Second edition (first edition 1951). New York: Reinhold; London: Chapman and Hall.
Contains an extensive bibliography.
See also [197].
Automatic digital computers
See [S], [209], [210], and [211].
196. Grabbe, E. M., Ramo, S. and Woomoridge, D. E. (Editors) 1959 Handbook of automation, computation, and control. Volume 2: Computers and data processing. New York and London: John Wiley.
This reference work of some 1000 pages also includes chapters on analogue computers.
197. Montgonerne, G. A. 1956 Digital calculating machines. Glasgow: Blackie.

Provides a short introduction: desk machines and punched-card machines are also treated.
198. Hollngdane, S. H. 1959 High speed computing: methods and applications. London: English Universities Press.
An introduction aimed at the general scientific reader.
199. WHEEs, M. V. 1956 Automatic digital computers. London: Methuen.

Concentrates on logical design and programming.
Analoguc computers
See [196].
200. Soroka, W. W. 1954 Analog methods in computation and simulation. New York and London: McGrarr-Hill.
A good introduction, which describes all types of analogue machines and discusses their applications.
201. Hartree, D. R. 1949 Calculating instruments and machines. Urbana: University of Illinois Press.
The first part describes the application of the differential analyser and similar machines. The second part similarly treats automatic digital computers, but it is now somewhat out of date.
202. Johnson, C. L. 1956 Analog computer techniques. New York and London: MeGraw-Hill.
Devoted to the electronic differential analyser.
205. Karplos, W. J. 1958 Analog sinulation. New York and London: McGraw-Hill.

Devoted to machines for solving partial differential equations. Applications are treated in considerable detail.

FOATOGRAPHI

204. Brodetsky, S. 1938 A first course in nomography. London: Bell.

An elcmentary account of the construction of alignment nomograms for equations containing up to four variables.
205. Allcoce, H. J., Jones, J. R. and Mhchel, J. G. L. 1950 The nomogram. Fourth edition (first edition 1932). London: Pitman.
A readable book containing all the computor really requires about the subject.
206. d'Ocagne, M. 1921 Traité de nomographic. Paris: Gauthier-Villars.

This is an outstanding account of the theory of nomography.

A good eummary with lablographes of modern Rusa an developmenta in the subject meluding the empurcal construction of nomograms is contaned in I ych mitiel naja Matematua No 4 [1909)

JOTHNAES ANTEEVIENS

The volume of hierature on numerical analysis has increased very rapidiy in the last two deesdes and papers sppear mineny periodicals. Joumals which are largely devoted to the subject inelude
Journal of the Assocnatuon for Comprating Mrachanery (American)
The Computer Journal (Rritnsh)
IFathematies of Computation (formexly Mathematinal Tables and other Ards to Computation) (Amencan)
Aumerwale Mathemank (Germen)
Journal of the Society for Inditetral and Appised Ifotl ematics (American)
Chaffres (French)
I ycl tsl lel naja Vatematila (finssuan)

Reveve of papers on numencal analysus appear in

Mat emaheal Perieve
Appl at Iechanice Rewere
Computing Reczets (aty present meorporated in tha Communnoations of the Assoctation for Computing Machinery)
Referatienys Zhurnal Matembltika (Ruseman)
Beation may also be made of the
International Joumal of Abstracts Statiotical Theory and Afthod wheh nues a complete coverage in the field of atatustical theory and new contributions to utatistical method as published after October lst 1058

ITESB ADDEDIN PROOF

Gives an account of methods of numencal analyan wheh are suitable for auto matie work Subjects unclude evaluation of functione testrax agebre ordinary end partial differential equations zeros of polynomiala contanued fractions and quadrature
 computers New I ork tand London John lisley
Gires some selected methods with flow duagrams The subjects treated are sumular to those of the preceding reference
211 Alt F L (Editor) 1960 Adrances in computers Volume 1 New York and London Academe Prens
Surveys feent progress in busueas applecathons weather preduction language translation games appheations and word recognition Further volurnea on thene and other applecations melnding numencal analysis aro in preparation
212 Faddeeva $V \times 19 a 9$ Computationel methode of hnear algebra (Translated by C D Eenster) New 3 ork Dover London Constable
The first part of the book is a useful eummaty of the parts of matrix theory which are mportant in numerical analyans The second part provides an account of some of the more ssportant methoda durect and herative for solving hnear equa tions and mevering matrices The thind and final part treats methods for computmg Latent roots and vectors but is lesa satwable than the other parta because of rapid advanees which have been made in tha field suce the oniganal Russian edition wes written
213. Wilkinson, J. H. 1960 Error analysis of floating-point computation. Numerische Math. 2, 319-340.
Gives the fundamental inequalities satisfied by the rounding crrors in the basic arithmetical operations. Applies the results to the analysis of a number of related techniques for computing latent roots.
214. Clenshaw, C. W. Chebyshev series for mathematical functions. Math. Tab. Nat. Phys. Lab. 5, London: H.M. Stationery Office. (In press.)
Gives 20 -decimal values of the coefficients in the Chebyshev expansions for the trigonometric, exponential, logarithmic, gamma and error functions, the exponcntial integral, and Bessel functions J, Y, I, K of orders 0 and l. The Introduction gives a comprehensive account of the use of Chebyshev series in numerical analysis.
215. Olver, F. W. J. Tables for Bessel functions of moderate or large orders. Math. Tab. Nat. Phys. Lab. G, London: H.M. Stationery Office. (In press.)
Provides interpolation aids based on economized polynomials (Chapter 15, §§ 12-15).
216. Wilkinson, J. H. The algebraic eigenvalue problem. Oxford University Press. (In press.)
A critical assessment of methods from the standpoint of automatic computation, with emphasis on numerical stability.
217. Forsythe, G. E. and Wasow, W. R. 1960 Finite-difference methods for partial differential equations. New York and London: John Wiley.
A comprehensive account of modern finite-difference procedures, with special emphasis on automatic computation. All three kinds of partial differential equation are considered, though naturally the most extensive treatment is that of elliptic equations.

INDEX

Acceleration of convergence, 123, 155-156, see also Aitien's δ°-process, Extrapolation, Summation of series
Adams-Bashforth method, 83
Aitken's δ^{2}-process, $40,123,132,149,156$
Algebraic equations, see Linear algebraic equations, Zeros of polynomials
Alternating-direction method, 155
Analogue computers, 163
Analytio solution of differential equations: ordinary, 161 ; partial, 153, 161
Asymptotic expansions, asymptotio series, $125,135,158$
Automatic computers, 13-14, 163; tables for, 144,160

Back-substitution, 5, 15; error analysis of, 46-48
Bairstow's process, 57-61
Bessel functions, computation by recurrence, 128
Bessel's interpolation formula, 67, 139
'Best'or 'best fit' polynomial approximation, 72-74
Biharmonic equation, 120-121, 154-155
Bisection, method of, 31-32
Boundary-value problems in ordinary differential equations, $81,93-100,152$
-_, methods for solving: Chebyshev series, 99; direct finite-difference, 93-97; initial-value techniques, 98-99; relaxation, 152
Building-up errors: in solution of ordinary differential equations, 90,152 ; in the use of recurrence relations, 128-129

Central-difference methods for ordinary differential equations, S3-S5, 151
Characteristic equation, characteristic polynomial, 23
Characteristic strip, 103
Characteristics: definition of, 103; method of, 105-10S, 153
Chebyshev polynomials, 71-75; explicit expressions for, 75; properties of, 74-75
Chebyshev series, 71-79, 150-151; calcule. tion of coefficionts in, 75-76; differentiation of, 79; evaluation of, 76-77; integration of, 78; methods for solving ordinary differential equations, $88-90,99$, 100; summation of, 76-77

Computing machines, 162-163
Continued fractions, 127-128, 156
Converging factor, 156
Crank-Nicolson method, 116, 153
Crout's method, 8
Cubic equations, 54, 149
Curve-fitting, 161
Deferred approach to the limit, 122-123
Deferred-correction methods, 85-87
Desk machines, 162
Determinant, 3
Difference correction, 85, 122
Difference.correction techniques for solving differential equations: ordinary, 85-87, 154; partial, 116, 118, 154
Difforences, see Finite differences
Differential equations, see Ordinary, Partial
Differentiation, numerical: by Chebyshev series, 79 ; finite-difference formulae for, 67-68
Doolittle's method, 7, 11
Double integrals, 158
Economized polynomials, 141
Eigenvalues: of matrices, see Latent roots; of ordinary differential equations, 100 ; of partial differential equations, 121
Eigenvectors, see Latent vectors
Elimination, 5-6; compact methods for, 7; see also Grussian elimination
Elliptic partial differential equations, 103, 111, 117-121, 154-155; eigenvalue problems in, 121; stability of methods for, 152-153; treatment of singularities, 155; with curved boundaries, 119, 154; with free boundaries, 121
Error analysis: of linear algebraic processes, 41-52, 148-149; of back substitution, 46-48; of floating-point computations, 50-51; of Gaussian elimination, 42-48; of ill-conditioned equations, 51 ; of interpolation, 141-142; of polynomial equations, 59; of triangular decomposition, 48-50
Errors: building-up, 90, 128, 152; detection by differences, 63, 13S, 158
Euler-Maclaurin formula, 127
Euler's transformation of series, 124, 132, 133, 136; van Wijngaarden's modified procedure for, 125

Everetta interpolation formale 46, 132 139
Extrapalation exponential 1^{173} 13** are alop Altiken 8^{8} precess \boldsymbol{A}^{n} 12) 123

Furute difference formulat for interpolation 60-87 for numerieal differentiation 07 68 for namerical integration, 6s-70 for ordunary different al equations sa-87 93-97 far paztiel dfferential equations 113-121
Finte difference operators 64-70
Fints differentes en 63 interpolation aids 139 calculus of 64-70 149-1.50 checking by 63 divergence of 70 effeet of erroer on 63 I5S notation for 6.1 symbol c relations between of
Fixed pount anthmetse 14-15 20
Floanng point anthrnetic 1420 50-51
Foumer seriea $73-74125163$

Qaunsian olimanation b-e error enalysia of 4"-48 vananta of 1417 with inter changen $18-17$
Gaunsian quadrature 131-132 13\% 157
Clauss-Sendel method 36-39
Cull es method for redueing rounding arrore 141
Givena method 50-31 147
Gregory a integration formula 69
K.extrapolat on 12* 123

Harmando analyan 162
Hessenberg matix 141148
Householder a method 33
Hyperbolic partial different al equations 101-111 153 fos compromablo gow $103-$ 111 discontinuity of solutsons of 103 mimultarieous 110 stablity of methods for 152153 for vibrating string $104-106$

III conditionugg of matrices and Ithenk equations 5711 19-21 error nnalysas of 51 of polyramial equations 59
Indurect methode for tinear algebrace equa twons 34-40 155 Gavsw-Siesdel 36-39 Jacobls 3, -38 Lebimanns 3639 relaxation 34 munflaneoves displace ments 35 aueceasuve displacements 36 euccesave overrelamation 59-40
In tial value problems in andinary difforen tial eqnations 80-0y ace also Ordmary different al equations
Integral equations 162
Integral iransforma 161
Integrala $\quad 130-136 \quad 157158$ analytical evaluetion of $135 \quad 161$ doable 458 evaluztion by Chebyebey gence 78

Integration formular for finite-diflerence 68-70 Gauza type 131-132 134 15" Gregory a 69 awton-Cotes $70 \quad 134$ Sumpona 69-0 91, 130 trapezoidal $88123 \quad 131$
Integration of difforentia! equations see Orderary difermotial equations Partial dufferential equations
Interchangea in Gausian elmination IS12 in trangular decomposition is-10 48
Interpotatieg polynormel 65
Interpolation suds 139-142 158-159 auxhary vanables for $15^{\circ} 143$ by comomized polymomala 141 by finte Gifienences, 139 in two vanables 159 noveres of Dearemgularition 142 pucces sive thent 5350 tablen for 160 , taing reducod derivatives 140 sec alko Inter polation formalime Subtabulation
Interpolation formula $85-67$ 139-14* Eespela 67139 Everetta 66132139 Lagrange a 142 Neutoma B5
Invere enterpolation 67
Iterative procektos acebleration of sted Accelaration of coriergence clasuitica thon of 155 ior latent roota and vectore 24-26 for luner algebraic equations sta Indreet method for seros of poly nomalls, 53-81 oreter of convergenst of $562^{2 \%}$

Jecobt a method for latent roots and vectors $29-30$ for linear algobrato equa tuons 38-38

Eagrange a intorpolation formula 112
Lapleces equategn 117120
Latent roots and veetorn $22-33 \quad 147-149$ linear indopendence of 2337 sub dombeant 28-29

- methods for evaluating busection 3132 Giveay 30-31 147 Householder: 33 ateration 24-26 Japabia 29-30 LR transformation 148 minimizediteratrons 148 QD Rigorithm 157
Teast squares approximationis 181
Hehmannamethod 3639
Lamita evaluation of $129-129 \quad 155-157$
Lamear algebruic equations I :1 34-40 147 sutomat e molution of $13-21$ error analys 3 of 41-5 148-149 itl condition sng of 5711 19-21
- methods for Crouta 8 Doolittles 7 11 triangralar reaplution or dacomposi tron 8-12 18-19 48-50 see also Gaussian elmunation Indireet rnethods
Linear mendependence $423 \quad 37198$
LR transformation 148

Machine tables, 77, 144, 160
Tathematical tables: interpolation aids for, $130-142$; of elementary functions, $159-$ 160; preparation and printing of, 137, 138
Matrix, 1; addition of, 2; band or codiagonal, 31, $94,97,99$; charactcristic equation of, 23; Hessenberg, 147, 14S; identity, 2 : inversion of, 2-5, 11-12, 17, 147; mathematical theory of, 146-147; methods for elliptic partial differential equations, 118; multiplication of, 1-3,9; norms, 14 S ; orthogonal, 29 ; positive definite, 9, 23; property ' A ', 38-39; quadratic form associated with, 23 ; reciprocal, 2 ; rotation of, 30 ; similarity transformation of, 148; singular, 4; symmetric, 3; traco of, 30; transposed, 3; triangular, 8; triangular resolution of, 8-12, 18-19, 4S-50; tri- or triple-diagonal, 31, 94, 97-98; unit 2 ; see also Latent roots and vectors
Minor, 3-4; leading principal, 9
Modified differences, 139-140
Modulus function, 133, 143
Nested multiplication, 53, 76
Nerrton-Cotes integration formulae, 70, 134
Nerton's interpolation focmulae, 65
Newton's rule, 55-57, 60
Nomography, 163-164
Numerically satisfactory solutions of differential equations, 137-138

Oporators, in finite-difference theory, 64-70
Order of convergence of approximate formulae, 56, 122
Ordinary differential equations, $80-100$, 151-152; analytic solution of, 161; building-up errors in, 90,152 ; choice of solutions of, 137-13S; eigenvalue problems in, 100,152
--, methods for solving: Adams-Bashforth, 83; central-difference, 83-85, 151; Chebyshev series, SS-90, 99-100; de-ferred-correction, 85-87; predictor-corrector, S2-83, 151; Runge-Kutta, 84-8S, 151-152; Taylor-series, 81-82, 151; de Vogclaere's, 88; stability of, $90-92$, $1 \overline{5}$; see also Boundary-value problems, methods for solving
Orthogonal polynomials, 73
Overrelaxation parameter, 39-40
Parabolic partial differential equations, 103, $112-117,153-154$; analytic solution of, 153 ; non-lincar, 116 ; treatment of singularities, 116: with moving boundaries, 154 -, methods for solving: Crank-Nicolson, 116, 153; explicit, 115; implicit, 116 ; Richardson's, 115; Runge-Kutta, 114115; stability of, 115-116, 154

Partial differential equations: analytic solution of, 153,161 ; boundary conditions for, 111, 112; classification of, 101-103; discontinuity of solutions of, 103 ; quasilinear, 101, 109 ; see also Elliptic, Hyperbolic and Parabolic partial differential equations
Phase function, 133, 143
Pivotal condensation, 5, see also Gaussian elimination
Polynomials: division by linear factor, $\mathbf{5 3}$; division by quadratic factor, 57 ; economized, 141 ; evaluation of, 53,57 ; evaluation of zeros of, sce Zeros of polynomials; of best approximation or fit, 72-74; see also Chebyshev polynomials
Predictor-corrector methods, S2-S3, 151
Proof-reading, 138
Property" 'A', 38-39
Punched-card machines, 162-163
Quadratic convergence, 55
Quadrature, sec Integration, formulae for
Quartic equations, 54-55, 149
Quasi-linear partial differential equations, 101, 109
Quotient-difference ('QD') algorithm, 156157

Recurrence relations, 128-129, 135
Reduced derivatives, 82, 140
Reducing cubic, 54
Relaxation methods: for linear algebraic equations, 34 ; for ordinary differential equations, 100; for partial differential equations, 118, 154-155; see also Successive overrelaration
Richardson's method: for h^{2}-extrapolation, 122-123; for parabolic equations, 115
Rounding errors: in an interpolate, 141; in the solution of linear algebraic equations, $14,19,41-51,148-149$, polymomial equations, 59-60; see also Error analysis, Errors
Runge-Kutta method, 87-88, 91-92, 151152; used to solve parabolic partial differential equations, 114-115

Scalar product, 3; exact accumulation of, $14,15,19-21$
Simpson's rule, 69-70, 91, 130
Singular integrals, $134,150,158$
Singularities: in interpolation, 142-143; in numerical analysis generally, 162; in partial differential equations, 103, 116117, 154, 155
Smoothing, 161
Stability of methods : for ordinary differential equations, $90-92,152$; for partial differential equations, $115-116,154$; for zeros of polynomials, 59-60

Subtabulat on 139159
Suceesenve overreterat on 39-40
Surnmat on of serlet 124-127 155-186
Table makng 137139158
Tables res Msebine ishlea Xisthemat enl tables
Tajlor series 7172
Taglor senaa methad g1 82 151
Taglor atheorem operational form of 65
Thtow back 139
Trapeza dal rule $68 \quad 123131$
Truabgular decompon tion \& -12 errorenaly

bector 1 blorthogensl 24 duplncement 35 error 35-39 normalized $2 \rightarrow$ princs pat 3739 remdual 49
de Fogelaere a method 88

Weaght factors for numerical integrst on 131 157
van Whagamien a modified procedure for Euler a tranoformat on 195
van theprguarden a transformation of ber es 126 13*

Zenos of polynomuls 53-61 149 effect of changes ut the coeffic ents on 59 ill cond t onung of 59 tault ple 59 of 3 rd or 4th degree 54149
—.. methoda for evaluating Banstow \% $54-61$ Bercorall a 149 cho ce of $5460-$ 61 convergeaco of $55-57$ Yuller. 149 Vawton a $55-57 \quad 60$ QD algonthri $150-$ 157 moot equanng 61149 atab thy of Co nuceest ve junenr interpolation 63 66

[^0]: * Numbers in square brackets refer to the Bibliography on pages 145 to 165.

[^1]: * Another proof is given in [1].

[^2]: 151 ClevsHaw, C Wy and Onver F W 1955 Tho use of economized polynomuals Hi mathernatical tablea Proc Camb Phil Soc 51, 614-628
 Derives expansions in scnes of central differemes for the coefficients of the econormized interpolation polynomials, and comparea theas ands with existmg ones The method given for reducing the rounding error is superseded by that of Chapter 15, \$ 13 See aloo [215]

