
HAL Id: tel-04418723
https://hal.science/tel-04418723

Submitted on 26 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Navigation Among Movable Obstacles (NAMO)
Extended to Social and Multi-Robot Constraints

Benoit Renault

To cite this version:
Benoit Renault. Navigation Among Movable Obstacles (NAMO) Extended to Social and Multi-Robot
Constraints. Robotics [cs.RO]. Insa Lyon, 2023. English. �NNT : 2023ISAL0105�. �tel-04418723�

https://hal.science/tel-04418723
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

N°d’ordre NNT : 2023ISAL0105

THESE de DOCTORAT DE L’INSA LYON,
membre de l’Université de Lyon

Ecole Doctorale N° 512
Informatique et Mathématiques

Spécialité/ discipline de doctorat :

Informatique

Soutenue publiquement le 19/12/2023, par :
Benoit RENAULT

NAvigation en milieu MOdifiable
(NAMO) étendue à des contraintes

sociales et multi-robots

Devant le jury composé de :

Dugdale, Julie Professeur des Universités Université de Grenoble, LIG Président.e

Mathieu, Philippe Professeur des Universités Université de Lille, CRISTAL Rapporteur
Michel, Fabien Maître de Conférences HDR Université Montpellier 2, LIRMM Rapporteur
Alami, Rachid Directeur de Recherche émérite CNRS, Toulouse, LAAS Examinateur

Simonin, Olivier Professeur des Universités INSA-Lyon, CITI Directeur de thèse
Saraydaryan, Jacques Enseignant Chercheur CPE Lyon, CITI Co-encadrant

Département de la Formation par la Recherche
et des Études Doctorales (FEDORA)

Bâtiment INSA direction, 1er étage
37, av. J. Capelle
69621 Villeurbanne Cédex
fedora@insa-lyon.fr

Référence : TH1046_RENAULT Benoit

L’INSA Lyon a mis en place une procédure de contrôle systématique via un outil de
détection de similitudes (logiciel Compilatio). Après le dépôt du manuscrit de thèse,
celui-ci est analysé par l’outil. Pour tout taux de similarité supérieur à 10%, le manuscrit
est vérifié par l’équipe de FEDORA. Il s’agit notamment d’exclure les auto-citations, à
condition qu’elles soient correctement référencées avec citation expresse dans le
manuscrit.

Par ce document, il est attesté que ce manuscrit, dans la forme communiquée par la
personne doctorante à l’INSA Lyon, satisfait aux exigences de l’Etablissement concernant
le taux maximal de similitude admissible.

Département FEDORA – INSA Lyon - Ecoles Doctorales

SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE

CHIMIE CHIMIE DE LYON

https://www.edchimie-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
secretariat@edchimie-lyon.fr

M. Stéphane DANIELE
C2P2-CPE LYON-UMR 5265
Bâtiment F308, BP 2077
43 Boulevard du 11 novembre 1918
69616 Villeurbanne
directeur@edchimie-lyon.fr

E.E.A. ÉLECTRONIQUE, ÉLECTROTECHNIQUE,

AUTOMATIQUE

https://edeea.universite-lyon.fr
Sec. : Stéphanie CAUVIN
Bâtiment Direction INSA Lyon
Tél : 04.72.43.71.70
secretariat.edeea@insa-lyon.fr

M. Philippe DELACHARTRE
INSA LYON
Laboratoire CREATIS
Bâtiment Blaise Pascal, 7 avenue Jean Capelle
69621 Villeurbanne CEDEX
Tél : 04.72.43.88.63
philippe.delachartre@insa-lyon.fr

E2M2 ÉVOLUTION, ÉCOSYSTÈME,

MICROBIOLOGIE, MODÉLISATION

http://e2m2.universite-lyon.fr
Sec. : Bénédicte LANZA
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
secretariat.e2m2@univ-lyon1.fr

Mme Sandrine CHARLES
Université Claude Bernard Lyon 1
UFR Biosciences
Bâtiment Mendel
43, boulevard du 11 Novembre 1918
69622 Villeurbanne CEDEX
sandrine.charles@univ-lyon1.fr

EDISS INTERDISCIPLINAIRE SCIENCES-SANTÉ

http://ediss.universite-lyon.fr
Sec. : Bénédicte LANZA
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
secretariat.ediss@univ-lyon1.fr

Mme Sylvie RICARD-BLUM
Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
(ICBMS) - UMR 5246 CNRS - Université Lyon 1
Bâtiment Raulin - 2ème étage Nord
43 Boulevard du 11 novembre 1918
69622 Villeurbanne Cedex
Tél : +33(0)4 72 44 82 32
sylvie.ricard-blum@univ-lyon1.fr

INFOMATHS INFORMATIQUE ET MATHÉMATIQUES

http://edinfomaths.universite-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
Tél : 04.72.43.80.46
infomaths@univ-lyon1.fr

M. Hamamache KHEDDOUCI
Université Claude Bernard Lyon 1
Bât. Nautibus
43, Boulevard du 11 novembre 1918
69 622 Villeurbanne Cedex France
Tél : 04.72.44.83.69
hamamache.kheddouci@univ-lyon1.fr

Matériaux

MATÉRIAUX DE LYON

http://ed34.universite-lyon.fr
Sec. : Yann DE ORDENANA
Tél : 04.72.18.62.44
yann.de-ordenana@ec-lyon.fr

M. Stéphane BENAYOUN
Ecole Centrale de Lyon
Laboratoire LTDS
36 avenue Guy de Collongue
69134 Ecully CEDEX
Tél : 04.72.18.64.37
stephane.benayoun@ec-lyon.fr

MEGA MÉCANIQUE, ÉNERGÉTIQUE,

GÉNIE CIVIL, ACOUSTIQUE

http://edmega.universite-lyon.fr
Sec. : Stéphanie CAUVIN
Tél : 04.72.43.71.70
Bâtiment Direction INSA Lyon
mega@insa-lyon.fr

M. Jocelyn BONJOUR
INSA Lyon
Laboratoire CETHIL
Bâtiment Sadi-Carnot
9, rue de la Physique
69621 Villeurbanne CEDEX
jocelyn.bonjour@insa-lyon.fr

ScSo ScSo*

https://edsciencessociales.universite-lyon.fr
Sec. : Mélina FAVETON
INSA : J.Y. TOUSSAINT
Tél : 04.78.69.77.79
melina.faveton@univ-lyon2.fr

M. Bruno MILLY
Université Lumière Lyon 2
86 Rue Pasteur
69365 Lyon CEDEX 07
bruno.milly@univ-lyon2.fr

*ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie

PHD THESIS

Navigation Among Movable Obstacles
(NAMO) Extended to

Social and Multi-Robot Constraints

Presented before
L’Institut National des Sciences
Appliquées de Lyon

For
The grade of Doctor

By
Benoit RENAULT

Doctoral School
Infomaths

Advisors
Olivier SIMONIN

Jacques SARAYDARYAN

Thesis Committee
Julie DUGDALE (President)

Philippe MATHIEU (Reviewer)
Fabien MICHEL (Reviewer)
Rachid ALAMI (Examiner)

Defended on December 19th, 2023

http://www.insa-lyon.fr/
http://www.insa-lyon.fr/
http://littleroot.net
http://edinfomaths.universite-lyon.fr/

i

Abstract
Navigation Among Movable Obstacles (NAMO) Extended to

Social and Multi-Robot Constraints

Benoit RENAULT

As robots become ever more commonplace in human environments, taking care of ever
more tasks such as cleaning, security or food service, their current limitations only become
more apparent. One such limitation is of their navigation capability in the presence of obstacles:
they always avoid them, and freeze in place when avoidance is impossible.

This is what brought about the creation of Navigation Among Movable Obstacles (NAMO)
algorithms, expected to allow robots to manipulate obstacles as to facilitate their own move-
ment. However, these algorithms were designed under the hypothesis of a single robot per
environment, biasing NAMO algorithms into only optimizing the single robot’s displacement
cost - without any consideration for humans or other robots. While it is desirable to endow
robots with the human capability of moving obstacles, they must however do so while respect-
ing social norms and rules of humans.

We have thus extended the NAMO problem as to take into account these new social and
multi-robots aspects. By relying on the concept of affordance spaces, we have developed a so-
cial occupation cost model allowing the evaluation of the impact of moved objects on the envi-
ronment’s navigability. We implemented (and improved) reference NAMO algorithms, in our
open source simulation tool, and modified them so that they may plan compromises between
robot displacement cost and social occupation cost of moved obstacles - resulting in improved
navigability. We also developed an implicit coordination strategy allowing the concurrent exe-
cution of these same algorithms by multiple robots as is, without any explicit communication
requirements, while preserving the no-collision guarantee; verifying the relevance of our social
occupation cost model in the actual presence of other robots. As such, this work constitutes the
first steps towards a Social and Multi-Robot NAMO.

ii

Acknowledgements
I am grateful to my advisors, Olivier Simonin and Jacques Saraydaryan, for their unwavering
support and guidance throughout the five years of this thesis. Their balanced input and con-
tinuous encouragements have definitely brought me further on my path as a scientist, and as a
person. It is firstly thanks to them that I could pursue this thesis, and finally bring it to fruition,
despite the many obstacles they have helped me push through.

I also thank my colleagues from the CITI Laboratory and Chroma Team, for all the good
moments and discussions we shared together. You all have made this travel in the world of
research that much more passionating. These thanks also extend to all INSA Lyon personnel
that have accompanied me in the ten years I have spent on the Doua Campus.

I would also like to express my gratefulness to the teachers, professors and mentors who
guided me throughout my youth, for teaching me - and all of their students- to strive for truth,
understanding, and knowledge. Their impact is far greater than any of us could imagine.

My final thanks go to my friends and family, without whom I simply would not have gone
this far. Thank you for being there for me, during good or bad times, and for bringing joy in
my life. I shall always strive to return the same faithfulness and joy. It is a privilege to have all
of you in my existence, and I am forever thankful to all of you.

iii

Contents

Abstract i

Acknowledgements ii

LIST OF FIGURES vi

LIST OF TABLES x

LIST OF ALGORITHMS xi

ABBREVIATIONS xii

I Introduction 1
I. 1 Motivation . 1
I. 2 Challenges . 3
I. 3 Approach . 4
I. 4 Thesis overview . 5

I. 4.1 Summary of Contributions . 5
I. 4.2 Document Outline . 6

II State of the Art 7
II. 1 Navigation Among Movable Obstacles (NAMO): 7

II. 1.1 “Motion planning in the presence of movable obstacles” 7
II. 1.2 The first NAMO planning algorithm . 8
II. 1.3 Task-level planning for LP1 NAMO Problems 10
II. 1.4 Reverse-search planning for Lk M NAMO Problems 13
II. 1.5 Sampling-based NAMO planning in continuous configuration space . . . 14
II. 1.6 NAMO planning in unknown environments 17
II. 1.7 NAMO planning under action and sensing uncertainty 20
II. 1.8 Kinodynamic NAMO planning . 22
II. 1.9 NAMO research since 2014 . 24
II. 1.10 Conclusion . 27

II. 2 Social & Multi-Robot considerations in NAMO-related problems 32
II. 2.1 Socially-aware robot navigation, task and motion planning 32

II. 2.1.1 Socially-aware robot navigation 32
II. 2.1.2 Socially-aware robot task and motion planning 38

iv

II. 2.2 Multi-Robot coordination . 39
II. 2.2.1 Definitions . 39
II. 2.2.2 Multi-Robot works with movable obstacles 42

III Revising and simulating reference NAMO algorithms 47
III. 1 Our NAMO Problem Formalization . 47

III. 1.1 Workspace . 48
III. 1.2 Actions and Action spaces . 49

III. 1.2.1 Actions . 49
III. 1.2.2 Action sequences (Plans) . 50
III. 1.2.3 Manipulation Action Spaces . 50

III. 1.3 Sensing . 51
III. 1.4 Domain Restrictions . 52
III. 1.5 Cost & Optimality . 53
III. 1.6 Space Components and Openings . 55

III. 1.6.1 Space Components . 55
III. 1.6.2 Openings . 55

III. 1.7 NAMO Problems . 56
III. 2 Baseline NAMO Algorithms . 56

III. 2.1 (Wu&Levihn, 2014)’s Algorithm . 56
III. 2.1.1 Algorithm outline . 57
III. 2.1.2 Generalization to larger action spaces, continuous environments

& edge cases . 63
III. 2.1.3 When more knowledge becomes an issue 69

III. 2.2 (Stilman, 2005)’s Algorithm . 71
III. 2.2.1 Algorithm outline . 71
III. 2.2.2 Generalization to larger action spaces & edge cases 74

III. 3 A new NAMO simulator . 79
III. 3.1 Overview of the simulator . 79
III. 3.2 World representations . 81
III. 3.3 Main simulation module . 87

III. 4 Conclusion . 89

IV Socially-aware NAMO 90
IV. 1 Introduction - the General Socially-Aware NAMO Problem 90
IV. 2 A first naive, local and binary constraint model . 91
IV. 3 Object placement & affordance spaces in the literature 93
IV. 4 The Social Placement Choice NAMO Problem . 97
IV. 5 The Social Occupation Cost Model . 98

IV. 5.1 Heuristic hypotheses . 98
IV. 5.2 Computation steps overview . 99
IV. 5.3 Skeleton & Space Allowance . 100

v

IV. 5.4 From Space Allowance to Social Occupation Cost 101
IV. 5.5 Propagation . 103

IV. 6 Integrating the social occupation cost to NAMO Algorithms 104
IV. 6.1 Relevant algorithms for this integration . 104
IV. 6.2 A heuristic compromise cost . 105

IV. 7 Experiments . 106
IV. 7.1 Simulation parameters . 107
IV. 7.2 Evaluation criteria . 107
IV. 7.3 Results . 109

IV. 7.3.1 Short-term experiments . 109
IV. 7.3.2 Long-term experiments . 112

IV. 8 Conclusions . 116

V Multi-Robot NAMO 117
V. 1 MR-NAMO Problem definition . 118

V. 1.1 General MR-NAMO problem . 118
V. 1.2 Additional hypotheses for our study . 119

V. 2 Implicit Coordination in MR-NAMO . 121
V. 2.1 Potential conflict detection . 121
V. 2.2 Conflict avoidance: a timing-based strategy 126

V. 2.2.1 Postponement . 129
V. 2.2.2 NAMO planning in a dynamic environment 129

V. 2.3 Deadlock evasion . 131
V. 2.3.1 Detecting potential deadlocks . 131
V. 2.3.2 Evading potential deadlocks . 132

V. 3 Experiments . 139
V. 3.1 Experimental context . 139
V. 3.2 Evaluation criteria . 140
V. 3.3 Results . 141

V. 4 Conclusions . 146

VI Conclusion 147
VI. 1 Perspectives . 148
VI. 2 Beyond planning, experimenting in the real world 150

A A* Algorithm 151

B Original (Wu&Levihn, 2014)’s Algorithm 152

C Original (Stilman, 2005)’s Algorithm 157

D Original Efficient Opening Detection Algorithm 162

vi

List of Figures

I.1 Example of a cluttered space hampering a cleaning robot’s task 1
I.2 A real-world NAMO experiment in a controlled lab environment, showcasing

the results of Stilman’s research . 2
I.3 Virtual home scenario snapshots from our Robocup@Home 2021 competition

participation . 3

II.1 A NAMO problem used by Wilfong in their NP-hardness demonstration 8
II.2 A representation of complexity classes . 8
II.3 Example NAMO problem resolution by Chen&Hwang’s algorithm [1] 9
II.4 Unsolvable NAMO cases for Chen&Hwang’s algorithm [1]. 9
II.5 Example NAMO problem resolution by Okada et al.’s algorithm [2] 11
II.6 Example LP1 NAMO problem resolution by Stilman&Kuffner’s algorithm [3] . . 12
II.7 Capabilities and limitations of Stilman&Kuffner’s algorithm [3] 12
II.8 A slightly modified version of Fig.II.7c into an L2 problem 13
II.9 Example L1 NAMO problem solved by Nieuwenhuisen et al.’s algorithm [4] . . . 15
II.10 NAMO problem examples solved by Van den Berg et al.’s algorithm [5] 16
II.11 Example NAMO problem resolution by Kakiuchi et al.’s algorithm [6] 17
II.12 Example NAMO problem resolutions by Wu&Levihn’s algorithm [7]. 19
II.13 Example NAMO problem resolution by Levihn, Scholz and Stilman’s decision

theoretic algorithm [8] . 20
II.14 Simulated NAMO problem solved by Levihn et al.’s BHPN-based algorithm [9]. 22
II.15 Example NAMO problem resolution by Levihn et al.’s kinodynamic & decision

theoretic algorithm [10] . 23
II.16 Example NAMO problem resolution by Scholz et al.’s kinodynamic & decision

theoretic algorithm [11], in a real-world setting . 24
II.17 Demonstration of Mueggler et al.’s heterogeneous drone + manipulator robot

Multi-Robot NAMO system [12]. 25
II.18 Figure from Rios-Martinez et al.’s survey [13], depicting “The most important

components of a socially-aware navigation system” 33
II.19 Illustrations from Rios-Martinez et al.’s survey [13], depicting a variety of social

space types and their variations. 34
II.20 Figure from Kruse et al.’s survey [14], roughly visualizing costmaps for different

social spaces . 36

vii

II.21 Actually implemented discretized social costmap models in the standard ROS
Navigation Stack [15] . 36

II.22 Illustration of the two main situations addressed in the socially-aware variants
of NAMO-related problems other than Social Navigation 38

II.23 Multi-Robot Systems (abb. MRS) Taxonomy proposed by Verma & Ranga in 2021
[16] . 39

II.24 Multi-Robot Coordination Taxonomy proposed by Verma & Ranga in 2021 [16] . 41
II.25 (A) C-MAPF problem from Bellusci et al.’s paper [17], (B) MAPF and correspond-

ing TF-MAPF problem from Vainshtain et al.’s paper [18] 43
II.26 Example environments in the Multi-Robot Rearrangement Planning literature . . 44
II.27 Example environments in the Multi-Robot combined Task and Motion Planning

literature . 45

III.1 Example solutions of algorithms implemented in our simulator 47
III.2 Illustration of the different grasping configuration restrictions for (Stilman, 2005)

and (Wu&Levihn, 2014)’s problem formulations 53
III.3 Illustration of obstacle discovery and subsequent re-planning 57
III.4 The task planner steps that yield the plan seen in Fig.III.3b at the same Wt1 world

state . 58
III.5 Obstacle manipulation three-step NAMO plan - detailed notations 59
III.6 VALID-GRASPS(M3) in purple dots, euclidean distance cost underestimate Ce

heur 59
III.7 Step-by-step resolution of a NAMO problem by (Wu&Levihn, 2014)’s algorithm 60
III.8 Step by step manipulation planning for movable obstacle M3, computed at t1 . . 61
III.9 Local Opening Detection example . 62
III.10Example edge case scenarios where the original algorithm formalization would

enter infinite loops . 64
III.11Original environments examples used by Wu&Levihn in their experiments . . . 66
III.12Examples of our experimentation environments in the following chapters 66
III.13Zoomed-in sample situations that may occur in Fig.III.12, where the relevance of

rotation is shown. 67
III.14Zoomed-in sample situations that may occur in Fig.III.12, where the robot needs

to move an obstacle over the goal. 68
III.15(Wu&Levihn, 2014)’s algorithm : Unsolvable problem using full prior knowl-

edge (A), but solvable using a limited (clear blue) circular field of view (B, C). . . 70
III.16Example showcasing how even partial prior environment knowledge may neg-

atively affect the ability of (Wu&Levihn, 2014)’s algorithm 70
III.17Unsolvable case for (Wu&Levihn, 2014)’s algorithm - whatever its sensing capa-

bilities, and solution provided by (Stilman, 2005)’s algorithm. 71
III.18LP1 problem example copied from [19] . 72
III.19Example NAMO scenario showcasing the obstacle selection routine 74
III.20Live simulator view in Rviz in a map of our CITI laboratory 79
III.21Simplified Simulator Architecture Diagram . 80

viii

III.22UML Diagram of our main world representation 82
III.23Valid and invalid examples of GEOS Linear Ring (non-self-intersecting polygon) 82
III.24A large, constrained object requiring manipulation motions that consider dy-

namics (copied from [3]) . 85
III.25A circular robot (red) manipulates a polygonal obstacle (blue), sweeping an area

delimited with a (black) line that needs to be free of obstacles. 86
III.26(Stilman, 2005)’s incremental binary occupancy grid model 87
III.27AABBTree example . 87
III.28Main simulation module . 88
III.29Detailed Simulator Architecture Diagram . 89

IV.1 Basic socially-pathological NAMO problem . 90
IV.2 Simulation of a two-goals scenario with NAMO vs. S-NAMO 92
IV.3 Figures from [20] illustrating their affordance space decomposition 93
IV.4 Illustration of Lindner & Eschenbach’s lab robot experiment from [21] 94
IV.5 Figures from [22] showing Limosani et al.’s affordance space model in their cof-

fee lounge test environment . 95
IV.6 Illustrations of Jiang et al.’s affordance space model and its application to place-

ment choice in a robotic rearrangement planning problem 95
IV.7 Figure from [23], showcasing Jiang et al.’s real-world robot experiment where

the robot must place a given computer mouse in the best possible placement . . 96
IV.8 Illustrations of the AVOID-MIDDLE and AVOID-NARROW heuristic hypotheses 99
IV.9 Illustration of the 4-steps computation based on the basic pathological example

presented in Fig.IV.1 . 100
IV.10Reference human diameter dh in the literature . 101
IV.11Minimal distance from obstacle to social cost conversion function for skeleton cells102
IV.12Illustration of the wave-propagation procedure of the social occupation cost . . . 103
IV.13Illustration of the Compromise cost (CC) computation steps based on Fig.IV.1 . . 106
IV.14Grid representation of Wt inflated by the reference human radius rh 108
IV.15Experimental scenarios & NAMO vs. S-NAMO results 111
IV.16Illustration of one of the 200 randomized experiments with a single robot in the

"Intersections" environment. 113
IV.17Averaged evaluation criteria graphs (with standard deviation) of the 200 ran-

domized experiments in the "Intersections" environment presented in Fig.IV.16 . 115

V.1 Simple Multi-Robot scenario derived from Fig.IV.1, and resolution by our Im-
plicit Coordination Strategy . 117

V.2 Abstract representation of potential conflict types 121
V.3 Detection of a Simultaneous Space Access potential conflict 122
V.4 Detection of a Simultaneous Grab potential conflict 123
V.5 Detection of an Object In Path potential conflict . 124
V.6 Detection of a Stealing Object potential conflict . 124

ix

V.7 Detection of a Stolen Object potential conflict . 125
V.8 Detection of a Robot-Robot potential conflict . 125
V.9 Implicit coordination strategy decision graph for potential conflict resolution . . 128
V.10 Example deadlock situation between two robots facing one another 130
V.11 Example situation where the blue robot takes a huge detour, caused by the sys-

tematic consideration of the other robot as a static obstacle. 130
V.12 Example deadlock situation where the two robots face each other while occupy-

ing their respective goals . 130
V.13 Two robots in a deadlock, because both detect a Robot-Robot potential conflict

involving the other. 131
V.14 Illustration of the blue robot’s deadlock evasion planning process after detection

in Fig.V.13 . 133
V.15 Complete deadlock resolution of Fig.V.13’s scenario. 134
V.16 Three-robot scenario showcasing successive deadlock situations 135
V.17 MR-NAMO scenario showcasing successive deadlock situations 136
V.18 Implicit coordination strategy decision graph augmented with potential dead-

lock resolution, equivalent to Algorithm 11, C-NAMO+ 137
V.19 Base environments for scenarios. Static obstacles in black, movable in yellow. . . 139
V.20 Example of a 4-robot scenario, with 25 goals per robot. 140
V.21 Several snapshots of the simulation of the 4-robot scenario presented in Fig.V.20,

assuming the use of Coordinated NAMO without using our social occupation
model. 142

V.22 Resulting obstacle placements after the simulation of the 4-robot scenario pre-
sented in Fig.V.20 without using our social placement cost model (A) and with it
(B). 143

VI.1 CITI Laboratory second floor . 148

x

List of Tables

II.1 Synthesis table with main differentiating criteria 30

IV.1 S-NAMO algorithm parameters values for the experiments 107
IV.2 Short-term single-robot experiments performance criteria comparison table . . . 110

V.1 Coordination algorithm parameters values for the experiments 140
V.2 C-NAMO vs. SC-NAMO: World-dependent performance criteria comparison

table, at world initial and end states . 144
V.3 C-NAMO vs. SC-NAMO: Agent-dependent performance criteria comparison

table, cumulated over time . 145

B.1 Variables table for Algorithm 13 . 152
B.2 Operators/Functions table for Algorithm 13 . 153
B.3 Variables table for Algorithm 14 . 153
B.4 Operators/Functions table for Algorithm 14 . 153
B.5 Variables table for Algorithm 15 . 153
B.6 Operators/Functions table for Algorithm 15 . 154

C.1 Variables table for Algorithm 16 . 157
C.2 Operators/Functions table for Algorithm 16 . 159
C.3 Variables table for Algorithm 17 . 159
C.4 Operators/Functions table for Algorithm 17 . 160

D.1 Variables table for Algorithm 19 . 162
D.2 Operators/Functions table for Algorithm 19 . 163
D.3 Variables table for Algorithm 20 . 163
D.4 Operators/Functions table for Algorithm 20 . 163
D.5 Variables table for Algorithm 21 . 163
D.6 Variables table for Algorithm 22 . 164
D.7 Operators/Functions table for Algorithm 22 . 164

xi

List of Algorithms

1 Plan execution routine (EXECUTE) of our improved (Wu&Levihn, 2014) algo-
rithm - Cf. logic description page 57 . 64

2 Task-level plan computation routine (PLAN) of our improved (Wu&Levihn, 2014)
algorithm - Cf. logic description page 58. 65

3 Obstacle selection routine (SELECT-OBSTACLE) of our improved (Wu&Levihn,
2014) algorithm - Cf. logic description page 59 . 65

4 Obstacle manipulation planning routine (PLAN-FOR-OBSTACLE) of our improved
(Wu&Levihn, 2014) algorithm - Cf. logic description page 59 68

5 New opening detection routine (CHECK-NEW-OPENING) for continuous ge-
ometries - Cf. logic description page 62 . 69

6 Top-level plan computation routine (PLAN) of our improved (Stilman, 2005) al-
gorithm . 76

7 Task-level plan computation routine (SELECT-CONNECT) of our improved (Stil-
man, 2005) algorithm - Cf. logic description page 71 76

8 Obstacle selection routine (RCH) of our improved (Stilman, 2005) algorithm -
Cf. logic description page 73 . 77

9 Obstacle manipulation planning routine (MANIP-SEARCH) of our improved (Stil-
man, 2005) algorithm - Cf. logic description page 74 78

10 Coordination NAMO (C-NAMO) Algorithm . 127
11 Improved Coordination NAMO (C-NAMO+) to evade deadlocks 138

12 Generic A* Algorithm . 151

13 Original (Wu&Levihn, 2014) main robot control routine 154
14 Original (Wu&Levihn, 2014) obstacle selection routine 155
15 Original (Wu&Levihn, 2014) 3-components path planning routine 156

16 Original (Stilman, 2005) Obstacle Choice heuristic. 158
17 Original (Stilman, 2005) Obstacle Choice heuristic 158
18 (Interpreted) original (Stilman, 2005) obstacle manipulation/transfer search routine161

19 Original Efficient Opening Detection Algorithm . 164
20 Blocking Areas detection subroutine . 165
21 Blocking Area index assignment and overwrite subroutine 165
22 Blocking Areas intersection computation routine 165

xii

List of Abbreviations

AABBTree Axis-Aligned Bounding Box Tree
BA Blocking Areas
BHPN Belief Hierarchical Planner in the Now
B(est)-FS Best-First Search
B(readth)-FS Breadth-First Search
CBS Conflict-Based Search
CITO Contact-Implicit Trajectory Optimization
C-NAMO Coordinated Navigation Among Movable Obstacles
CSV Convex Swept Volume
DFS Depth-First Search
DOF Degree(s) Of Freedom
LP Linear Rearrangement Planning Problem class of Ben Shahar & Rivlin [24]
L(P)n Linear NAMO (Problem) of class n
L(P)n M Linear and Monotone NAMO (Problem) of class n
GDAL Geospatial Data Abstraction Library
GEOS Geometry Engine, Open Source
HRI Human-Robot Interaction
KDRRT Kino-Dynamic Rapidly Exploring Random Tree
KPIECE Kinodynamic Planning by Interior-Exterior Cell Exploration
MAPF Multi-Agent Path Finding
MCMC Markov Chain Monte Carlo
MCTS Monte Carlo Tree Search
MDP Markov Decision Process
MRCR Multi-Robot Clutter Removal
MR-NAMO Multi-Robot Navigation Among Movable Obstacles
MRS Multi-Robot System
MuJoCo Multi-Joint dynamics with Contact (physics engine)
NAMO Navigation Among Movable Obstacles
NL Non-Linear NAMO problem
NM Non-Monotone NAMO problem
NP-hard(ness) Non-deterministic Polynomial-time hard(ness)
OInP Object In Path potential conflict type
PedSim Pedestrian Simulator
PLR Path of Least Resistance

xiii

POMDP Partially-Observable Markov Decision Process
PRM Probabilistic Road-Map
PYPL PopularitY of Programming Language Index
QGIS Quantum Geographic Information System
RGB-D Red Green Blue - Depth
ROS Robot Operating System
R-R Robot-Robot potential conflict type
RRT Rapidly-exploring Random Tree
SAN Socially-Aware Navigation
SC-NAMO Social Coordinated Navigation Among Movable Obstacles
SCVX Successive ConVeXification
SGrab Simultaneous Grab potential conflict type
SingO Stealing Object potential conflict type
S-NAMO Social Navigation Among Movable Obstacles
SO Stolen Object potential conflict type
SPC Social Placement Choice NAMO Problem
SSA Simultaneous Space Access potential conflict type
T(A)MP Integrated Task (And) Motion Planning
VG Visibility Graph

xiv

Dedicated to my parents.

1

Chapter I

Introduction

I. 1 Motivation

Service robotics are steadily becoming more common within households, with almost 18.5 mil-
lion new consumer service robots being sold in 2020 (+6% compared to 2019), with most no-
tably autonomous cleaning robots representing more than 92% of these numbers (17.2 million
units) [25]. As robots become more commonplace, their current limits get more visible: one
such limit is the matter of how robots deal with movable obstacles when navigating. By that,
we mean any object that does not define the very layout of the environment and is thus meant
to be frequently manipulated by humans: chairs, bags, boxes, or smaller clutter such as toys,
plushes, etc. by opposition to walls, tables, shelves, and any other piece of heavy furniture
that isn’t fitted with wheels. Upon reading this, you may have immediately pictured a messy
bedroom in your mind (more likely so if you have lively children at home), such as the one in
Fig.I.1. Current household robots only know to avoid such clutter - when they do detect it (they
otherwise hazardously run through it). In the case presented in Fig.I.1, avoidance is arguably
safest, it would also mean failure of the cleaning mission altogether, since the robot would sim-
ply never enter the space to be cleaned; and mindlessly going through would damage the robot
or objects.

FIGURE I.1: Example of a cluttered space hampering a cleaning robot’s task
(Credit: Nate Smith - https://youtu.be/cXdg3OO-2tE)

https://youtu.be/cXdg3OO-2tE

Chapter I. Introduction 2

One can easily extrapolate this situation to any navigation scenario in other human envi-
ronments such as offices, storage rooms, or even industrial environments such as workshops.
In any case, carefully moving the blocking objects aside and resuming navigation rather than
failing whatever mission the robot is required to accomplish would be considered a better out-
come. That is why even major robotics companies consider it to be one of the necessary next
advancements for household robots [26].

Similar considerations are what led Stilman et al. [3], in 2005, to the formulation of the Navi-
gation Among Movable Obstacles (NAMO) problem: computing a single robot’s collision-free
plan from a start to a goal configuration, allowing the manipulation of movable obstacles to
minimize a displacement cost function (generally expressed as an estimate of traversed dis-
tance, elapsed time, or expended energy), as illustrated in Fig.I.2. This problem extends the
fundamental “Piano Mover” problem, only adding this manipulation capability. Since then, in
order to make and reliably use NAMO plans in the real world, the study of NAMO has most
notably been expanded to account for state/action uncertainties and realistic kinematic and
dynamic considerations, with the work of Levihn and Scholz [27, 28].

(A) Start configuration (B) After 45s (C) After 180s

FIGURE I.2: A real-world NAMO experiment in a controlled lab environment, showcasing
the results of Stilman’s research. The robot autonomously identifies the surrounding objects,

and determines that it needs to move the chair to reach its goal, and does so.

However, until now, to the best of our knowledge, has never been considered in NAMO
problems the presence of more agents (i.e. humans and robots) than the robot executing the
NAMO plan itself. That is the case although agents are the main reason clutter appears1; and
robotics applications imply ever more robots operating in a shared environment, even for home
cleaning scenarios [29]. As a consequence, existing NAMO approaches only optimize the dis-
placement cost of the robot and thus tend to move obstacles to the closest available configu-
ration that allows them to pass [30]. This can result in disputable behavior like in Fig.I.3: the
robot picks up a toy and releases it behind itself, as to free its path forward, but blocking the
way again for any other agent that may come after - or even its future self! While it did help the
robot achieve its required goal, robots should arguably execute NAMO plans without causing
such trouble to humans or robots.

It is this lack of study of NAMO algorithms’ effects in human environments or in the pres-
ence of other agents that primarily motivates our present work. The concrete observation of

1beyond catastrophic events such as a shelf breaking or an earthquake shaking

Chapter I. Introduction 3

such self-centered behavior of existing NAMO algorithms, and its evident inadequacy in hu-
man environments meant to be shared, further affirm the need to explore the social and multi-
agent implications of NAMO.

FIGURE I.3: Virtual home scenario snapshots from our Robocup@Home 2021 competition participa-
tion. The robot had to execute a household task in each room, but small objects would hamper passage
in-between, and were thought to be avoided. We however interpreted and solved this as a NAMO
problem, whereas other teams would simply be blocked due to the difficulty of circumventing the
objects without touching them involuntarily. Our performance was rewarded with a specific “Best

Cleanup Award”, in addition to our placing second in our league.

I. 2 Challenges

As we have just discussed, executing NAMO algorithms in human environments or in the pres-
ence of other agents presents non-trivial open challenges. Among these, we will not discuss
sensing&action uncertainty nor kinodynamic physical interactions, as they have already been well-
covered in previous already cited literature [27, 28]. It makes more sense to try and address the
specific challenges brought by our new focus on human environments and agent plurality:

Social Acceptability One can not simply introduce robots in human living spaces expecting
everything to work out from the get-go. Humans are social beings, relying on social norms and

Chapter I. Introduction 4

rules to interact with one another, be it directly or through their environment. It is a widely-
recognized fact that robots are expected to follow these same norms and rules, if they are to
ever be welcomed in human spaces [13]. Finding, modeling and having robots follow them
is in itself a huge field in robotics research [31] - and we will need to study how this applies
to our NAMO context of navigating and manipulating obstacles, especially when it comes to
their placement in the environment.

Coordination Multiple robots planning and concurrently executing plans in a shared envi-
ronment requires coordination in order to guarantee the absence of collisions, as clearly stated
in the overwhelming literature on the matter [16]. It opens a myriad of questions as to how
robots may or not interact with one another: do they communicate ? How ? What information
do they share, if at all ? Can they manipulate a same obstacle together ? How to predict the
behavior of another robot if it cannot explicitly communicate what it wants to do ? ... We must
thus study these implications in our NAMO context too.

Dimensionality The most fundamental challenge of both NAMO and Multi-Robot coordina-
tion is the curse of dimensionality. To better understand what we mean by this, let us consider
the complexity of planning for multiple agents (robots) among multiple movable obstacles. The
full configuration space2 for M robots and N obstacles respectively with dr and do degrees of
freedom is the product of each individual robot and obstacle’s configuration space:

Cr1 × Cr2 × ...× CrM × Co1 × Co2 × ...× CoN ∈ RMdr+Ndo

In a discretized search space of resolution r for each dimension, this yields a number of
configurations exponential in the number of obstacles and robots, asymptotically noted as
O(rMdr+Ndo). In a simple square grid of side 10 cells, with just 2 robots and 2 obstacles able
to move in both axes, this would already mean a hundred million configurations to search
through, obviously making brute-force search unthinkable. To solve such problems, with the
additional requirements of respecting social norms and rules, we will need to carefully consider
computation optimization strategies and heuristics.

I. 3 Approach

By now, the very title of this thesis and the previous sections should have made rather clear
which direction, or bias, we choose to study this problem of having multiple agents navigate
in a shared human environment: we extend existing NAMO research so that it can operate in
this new context. This comes with the main benefit of already partly addressing the aforemen-
tioned Dimensionality challenge, thanks to it being profusely addressed in the existing NAMO
literature. This approach makes sense, since the application scenarios we are aiming for contain
far more movable obstacles than robots.

2The configuration of a robot/object can be understood as its coordinates in euclidean space. The configuration
space refers to the mathematical space of all possible configurations of all the robots and obstacles.

Chapter I. Introduction 5

We thus first explore said NAMO literature in most detail, in order to select relevant algo-
rithms to serve as base for extensions that will address the Social Acceptability and Coordination
challenges. They also serve as a baseline to compare against their extended versions in our
experiments, through our open source ad-hoc NAMO simulation tool and datasets.

To specifically address the Social Acceptability challenge, we rely on the social navigation
concept of Affordance Spaces [32], and first propose a naive social model of “taboo zones”, or
forbidden affordance spaces. We then propose a second more general and scalable Social Oc-
cupation Cost model representing an affordance space of accessibility/navigability based on two
heuristic hypotheses: avoiding narrow spaces, and not leaving objects in the middle of space.
We show how to modify existing NAMO algorithms to use these models to affect the placement
of manipulated obstacles, as to help avoid non socially-acceptable environment modifications
such as previously shown in Fig.I.3.

To address the challenge of Coordination, we propose an implicit coordination algorithm
to allow concurrent use of existing NAMO algorithms by multiple robots, while still guaran-
teeing the absence of collisions - without any explicit communication requirement, ensuring
maximum robustness regarding the possibility of individual robot or communication failure.
We also show how our Social Occupation Cost model can help resolve deadlocks in this no-
explicit communication allowed context - and also improve navigation for all robots in the
environment.

I. 4 Thesis overview

I. 4.1 Summary of Contributions

The contributions of this thesis are summarized as follows, in order of appearance:

• An extensive survey of NAMO literature — the first such survey, chronologically cover-
ing NAMO from its roots and inception, to its various extensions and applications.

• Improvements of existing reference NAMO Algorithms — namely (Stilman, 2005)[3, 19]
and (Wu&Levihn, 2014)’s [33, 34, 35, 7] algorithms. We define a common formalism to
serve this rewrite and provide a basis for our problem extensions.

• Open simulator and data — development of an open simulation tool with implementa-
tions of the aforementioned algorithms and their extensions discussed below, with open
experiment input and output data.

• S-NAMO — the general Socially-aware NAMO problem, extending NAMO with social
constraints, to also allow a robot to reason about its decisions’ impact on the environ-
ment’s accessibility for humans.

• Social Placement Cost Model — definition of a generic model of the accessibility/navigability
affordance offered by free space in human environments, and as a corollary, of the distur-
bance to humans caused by movable obstacles. This low-requirement model solely relies
on the analysis of the environment’s binary occupancy grid of fixed obstacles.

Chapter I. Introduction 6

• S-NAMO Algorithm — a focused variant of (Stilman, 2005)’s NAMO Algorithm towards
the best compromise solution between robot displacement cost and social occupation cost
discussed above.

• MR-NAMO — definition of the general Multi-Robot NAMO problem, generalizing the
NAMO domain to also allow a robot to reason about other robots.

• C-NAMO — an implicit coordination strategy that can leverage existing NAMO algo-
rithms as is, without requiring explicit communication between robots, to provide solu-
tions to MR-NAMO problems, including deadlock situations.

I. 4.2 Document Outline

This thesis is structured as follows:

• Chapter II - State of the Art provides an in-depth survey of existing NAMO literature, as
well as an overview of Social Navigation and Multi-Robot Coordination problems with a
discussion of their relation to NAMO.

• Chapter III - Revising and simulating reference NAMO algorithms provides a common
formalism for the two baseline NAMO algorithms of (Stilman, 2005) and (Wu&Levihn,
2014) we build upon in the following chapters, revisions of said algorithms, and a descrip-
tion of their implementation in our open simulator and data, as well as a presentation of
this simulator we developed.

• Chapter IV - Socially-aware NAMO introduces the novel problem of Socially-Aware
NAMO (S-NAMO), our new Social Placement Cost Model and S-NAMO algorithm that
makes use of it, as well as experiments in increasingly complex environments to measure
its impact on the environment’s accessibility for humans.

• Chapter V - Multi-Robot NAMO introduces the new problem of Multi-Robot NAMO
(MR-NAMO), and the local coordination approach we devised to solve MR-NAMO prob-
lems, including deadlocks. We conclude by measuring the synergy between our S-NAMO
and MR-NAMO contributions in another set of experiments.

• Chapter VI - Conclusion provides a synthesis of this work and outlines research perspec-
tives from there.

7

Chapter II

State of the Art

In this chapter, we first provide a chronological and detailed overview of the NAMO litera-
ture, as it is the core of our thesis work. From even before the definition of the actual NAMO
problem, to its latest applications, we discuss how NAMO has been addressed and extended
through the years, along with relevant applicable vocabulary. This extensive overview allows
us to conclude as to the characteristics and limitations of the existing body of work, with the
noteworthy conclusion that Social and Multi-Robot considerations have yet to be applied to the
NAMO problem. As we present the NAMO literature, we also introduce the most-closely re-
lated problems to NAMO: Navigation Planning, Manipulation Planning, Rearrangement Plan-
ning, Assembly Planning, and the overarching domain of combined Task and Motion Planning.
In the second section, we provide an overview of existing Social and Multi-Robot extensions
to these similar problems, and introduce relevant associated concepts. These concepts help us
clarify our vision of the Social and Multi-Robot NAMO problem we address in this thesis, and
shall be used in our own algorithmic extensions in the following chapters. The present chapter
is meant to be read linearly, as one would a story: hence, for the sake of simplicity and under-
standing, the use of mathematical notations, formulas and abbreviations is voluntarily kept to
a minimum.

II. 1 Navigation Among Movable Obstacles (NAMO):

II. 1.1 “Motion planning in the presence of movable obstacles”

In 1988, 17 years before Stilman coined the term of NAMO, Gordon Wilfong was the first to
introduce the problem of “finding collision-free motions in a changeable workspace” [36, 37]1

- that is, to compute the motion of a robot to a goal position that is allowed to move obsta-
cles (their final positions being or not part of the goal). Their paper demonstrated that, what
Wilfong then called “the movable-obstacle problem”, was PSPACE-hard when the final posi-
tions of the obstacles were specified (i.e. Rearrangement Planning), and otherwise NP-hard
(i.e. NAMO) - Fig.II.2 provides a reminder of the various complexity classes in computational
complexity theory. This demonstration was done using a simplified world representation of

1Several approaches/algorithms presented in this NAMO literature overview have been published in different
conferences/journals/thesis documents, with slightly variable content such as new figures or explanations. For
each such instance, we first cite all publications, then refer to the algorithm with the reference we have found to be
most relevant among these, for the sake of readability.

Chapter II. State of the Art 8

FIGURE II.1: A NAMO problem used by
Wilfong in their NP-hardness demonstration.
Static obstacles are dashed, movable ones are
annotated with a B. Several cases are studied,
hence why the robot start can be either of
the arrowed circles, and goal either of the

arrows.

FIGURE II.2: A representation of complexity
classes - from the Wikipedia article on Com-

putational complexity theory

the problem (without loss of generality), where the robot is considered as a square, all planar
obstacles as rectangles of four sizes or “L-Shaped”, parallel to the x- or y-axis, as illustrated in
Fig.II.1. Crudely put, this demonstration showed that complete planning for the full NAMO
domain is computationally infeasible.

The same paper included a resolution algorithm for the specific case of the manipulation of
a single convex polygonal movable obstacle blocking the way of a convex polygonal robot, in
a world composed of not necessarily convex polygons. Robot motion was restricted to trans-
lations, and grasping the obstacle was assumed possible only when the robot entered in edge
contact with the obstacle (in their words: “share a common wall”) - common interaction hy-
potheses in subsequent papers, as we shall see in the next paragraphs. To the best of our
knowledge, this algorithm has however not been implemented nor experimentally verified, as
the author did not provide any resolved scenario with it, nor experimental results. This, with
the algorithm’s fundamental limitation to single-obstacle problems, explain why it cannot
be considered as the first NAMO algorithm in the literature.

II. 1.2 The first NAMO planning algorithm

In 1991, Chen and Hwang introduced the first planner with the ability to manipulate multi-
ple movable obstacles to reach a goal robot configuration [1, 38]. This planner was designed to
work for a circular robot in an environment where obstacles are represented by unions of con-
vex polygons (e.g. a concave L-shape obstacle such as B1 or B5 in Fig.II.1 would be represented
by the union of two rectangles), and associated with a positive mass value, used to estimate
the required work to move them. Both the robot and obstacles may be translated or rotated,
and the robot is supposed to possess an invisible arm capable of moving any obstacle in any
direction, on the condition that the robot gets in contact with the object first (Cf. Fig.II.3b). In
contrast with the later NAMO literature, the planner accounts for movement transfer from the
manipulated object to other objects, allowing the robot to “plow” through obstacles (i.e. using
one obstacle to push others).

https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Computational_complexity_theory

Chapter II. State of the Art 9

(A) (B) (C) (D) (E) (F)

FIGURE II.3: Example NAMO problem resolution by Chen&Hwang’s algorithm [1]. Robot is
black circle, goal is white circle with a “G”, movable obstacles are polygons. In (A), the global
planner path is shown as white circles. The local planner verification sequence is shown in (B)
to (F). In (B), the robot first “slides” to the configuration neighboring the square and L-shaped
obstacles, then “shoves aside” both obstacles in (C), to clear the path to the next configuration
shown in (D), where they are “shoved aside” again in (E) so that the robot may “slide” to the goal

in (F).

Their planner can be summarized as a search for a Path of Least Resistance (abb. PLR). A
global planner randomly samples robot configurations in a grid decomposition of the space
(circles in Fig.II.3a), then computes heuristic work underestimates of clearing obstacles from
these configurations. The global planner then searches the graph of neighboring configurations
using Dijkstra’s algorithm to find a path of least cost, that may pass through obstacles. This
path is verified by a local planner, that applies primitive operators to connect two neighboring
configurations. These operators either “slide” the robot from a free configuration to another,
or “shove aside” obstructing objects to clear the heuristic path (that is, use its invisible arm to
move the objects)2.

(A) To clear the shortest path (dashed line)
computed by the global planner, the robot

“shoves aside” Object A right, blocking object B.
A different algorithm is needed to find the
solution sequence: (A, left), (B, top) using a

detour by the top (solid line).

(B) To clear the shortest path (curved arrow)
computed by the global planner, the robot

“shoves aside” Object 1 left, resulting in Object 4
blocking the path in reaction. A different
algorithm is needed to find the solution

sequence: (1, right), (4, bottom), (3, right), (2,
top), (1, left).

FIGURE II.4: Unsolvable NAMO cases for Chen&Hwang’s algorithm [1].

While this heuristic approach is effective on some examples like Fig.II.3, it suffers from a
lack of backtracking - that is, the algorithm only considers a single path per reachable robot con-
figuration. In Fig.II.4a, this prevents the computation of a detour around the top (solid line),

2When failing to clear obstacles from a configuration after calling these operators a fixed maximum number of
times, the configurations graph and the Dijkstra path search tree are dynamically updated to remove said configu-
ration. The search is then resumed from the last valid configuration.

Chapter II. State of the Art 10

after first considering the shortest path (dashed line). This results in algorithmic incomplete-
ness (no guarantee to find a solution if one exists), and the authors suggest that a symbolic
task-level planner would be required to solve such cases. Finally, the local nature of obsta-
cle manipulations to join neighboring robot configurations, and the hypothesis of movement
transfer from the manipulated object to others, both limit the robot’s planning capabilities to
“plowing” paths. That is, paths where all obstacles are greedily pushed away from the robot
as it moves forward, without proper consideration for the (positive or negative) effects it may
have in distant portions of the environment (as illustrated in both Fig.II.4a and II.4b, where
the robot’s focus on the first accessible obstacle prevents it from considering the movement of
other obstacles that should have been moved first).

II. 1.3 Task-level planning for LP1 NAMO Problems

The movable-obstacle problem gained renewed interest in 2004, with the publication of two
new planners by Okada [2] and Stilman [39, 3, 19], each with their own task-level hierarchiza-
tion. Both were inspired by Alami et al.’s task-level decomposition strategy for manipulation
planning [40, 41], consisting in building a sequence of transit (navigation) and transfer (ma-
nipulation) paths, where the robot respectively navigates alone or while holding an obstacle,
separated by rigid grasp and ungrasp operations.

Assuming a fully known simulated 3D world model with predefined grasping points and
associated manipulation methods (Cf. Fig.II.5.A), Okada et al. [2] chose to build a task graph
(Cf. Fig.II.5.B) where nodes are movable obstacles, and edges represent lowest-cost naviga-
tion paths between valid robot standing configurations near movables obstacles that allow
grasping (Cf. Fig.II.5.B.5). While the exact navigation planning algorithm (Cf. Fig.II.5.B.3) is
not specified beyond its 3-dimensional search space - x, y, θ, it is stated that the manipulation
planner (Cf. Fig.II.5.B.4) uses a Rapidly-exploring Random Tree (abb. RRT) that samples con-
figurations over the full body joint space, assuming the obstacle is fully constrained by the
robot’s grasp. The RRT manipulation search is given a final obstacle configuration as goal,
which is obtained by sampling candidate obstacle configurations in a grid space decomposi-
tion (Cf. Fig.II.5.B.6.Right), until one is found that does not intersect with a heuristic navigation
path from the start to the goal location ignoring the movable obstacle (Cf. Fig.II.5.B.5.Left). The
manipulation planner yields a work cost estimate for the task graph nodes, and the full motion
plan is computed through a “standard graph search” algorithm (most likely Dijkstra’s), using
either this work estimate (Cf. Fig.II.5.B.1) or the navigation planner’s distance cost estimate
(Cf. Fig.II.5.B.2). While seemingly actionable at least in simulation, as the figure shows, this ap-
proach is however not provably complete nor optimal. Also, it is very computationally inefficient, as
it requires the computation of the full task graph - thus also the computation of all navigation
and manipulation sequences, even for objects that are very unlikely to open a path to the goal.

In parallel, Stilman and Kuffner [39, 3, 19] first introduced a formal definition for the now
widely used term of Navigation Among Movable Obstacles (abb. NAMO). As for their task-
level decomposition, they went with a somewhat opposite task graph structure, where edges
are movable obstacles and nodes are components of the robot’s free configuration space (syn. free

Chapter II. State of the Art 11

G

3

1S

2

0

4

8
6
0
8

2100

25356

2100

5270

6185
6617

2
1
0
0

8440

9416 14010

G

3

1S

2

0

4
2000

500

2000

1000

3000

C. Environment
Manipulation Motions

Manip

4. Manipulation Planner3. Navigation Planner

B. Environment Manipulation
Planner (Task Graph)

1. Distance cost or 2. Work cost

5. Standing Location Search

(Left) Reachable volumes, yellow
for left arm, green for right arm

(Right) Sampled robot postures to
grab obstacle, corresponding to
goal for navigation planner and
start for manipulation planner

(Left) Heuristic navigation path
ignoring the movable obstacle
(Right) Sampled obstacle final

configurations, corresponding to
goal of the manipulation planner.

6. Displacing Obstacle
Location Search

{
{{

A. Environment
Manipulation Task

pulation Tas(3D obstacle models +
Grasping Points & Manipulation
method for movable obstacles)

Start Goal

Movable Obstacles

Carry/Release

Push/Pull

Grasp. Points

Grasp. Points

FIGURE II.5: Example NAMO problem resolution by Okada et al.’s algorithm [2]. On the
left, the world model description, in the middle, the planner and its subcomponents, on the

right, the planned motion sequence to solve the problem.

space components). Simply put, a free space component can be understood as an area where
the robot may navigate from any point to another without having to manipulate any obsta-
cle, as illustrated in Fig.II.6a. It is actually this task graph model that allowed them to devise
a fundamental subclass of NAMO problems called Linear Problems (abb. LP), by analogy to
rearrangement planning [24]. By their definition, a problem belongs to the LP class, if it can
be decomposed into a sequence of independent sub-problems, that each consist in connecting
two components of free space by moving one or more objects (such a sub-problem being called
a “keyhole”). Here, “Independent” means that any action used in solving a keyhole does not
interfere with the actions needed to solve any subsequent keyhole. Correspondingly, LP1 (also
written L1), refers to the class of problems for which disconnected components of free-space
can be connected independently by moving a single obstacle, as is the case with the exam-
ple of Fig.II.6 we will be discussing. Conversely, by definition, Non-linear NAMO problems
(abb. NL) cannot be decomposed in a sequence of keyholes that can be solved independently3.

Stilman & Kuffner made use of this task-level decomposition to devise (but not implement)
a theoretical resolution-optimal planning algorithm, and implement an efficient resolution-
complete (but not optimal) algorithm, for this class of LP1 problems4. Stilman & Kuffner’s

3One example of such a problem is provided later in Fig.II.10a.
4The term “resolution”-optimal/complete is used here to underline the use of purely graph-based navigation

and manipulation search methods (respectively A∗ and Breadth-First Search), on a 2D grid graph with a specific
square side-length resolution. It also refers to the fixed number, for each obstacle, of grasping points and corre-
sponding robot grasping configurations (grid cells) from which they can be reached (Cf. Fig.II.6b).

Chapter II. State of the Art 12

(A) Initial world state with
color-filled free space

components
{C1, C2, C3, C4, C5}

(B) Blue dots are grasping
points, green dots are
corresponding robot

configurations. Red dots
are the heuristic path
traversing obstacles.

(C) Task-level Best-First
Search tree, with obstacles
as edges and components

as nodes

(D) Solution motion
sequence yielded by
Stilman&Kuffner’s

algorithm [3]

FIGURE II.6: Example LP1 NAMO problem resolution by Stilman&Kuffner’s algorithm
[3]. The robot navigates in C1 to transfer the Table 1 to fuse C1 with C2, then navigates to the

Couch to fuse C2 with C4 in order to finally navigate to its goal.

resolution-optimal theoretical algorithm is structurally similar to Okada et al.’s algorithm [2],
making it no more computationally efficient because of the exact same requirement of com-
puting the full task graph. That is why they rather devised and implemented a resolution-
complete greedy variant, that instead of the full task graph, recursively computes a Best-First
Search task tree (Cf. Fig.II.6c). In order to select the “best” obstacle/component pair to con-
nect, they used an additional relaxed-constraint navigation planner based on the A∗ algo-
rithm, that was allowed to pass through movable obstacles for an additional heuristic traver-
sal cost (Cf. Fig.II.6b)5. This allowed them to compute solutions within seconds, such as the
one in Fig.II.6d, or to the previously unsolvable problem for Chen&Hwang’s algorithm [1]
(Cf. Fig.II.7a).

(A) Unsolvable L1 problem for
Chen&Hwang’s algorithm [1]

(Cf. Fig.II.4a), solved by
Stilman&Kuffner’s algorithm [3]

(B) Strongly coupled L2 problem -
The two obstacles need to be
repeatedly and alternatively

manipulated, or grabbed together

(C) L4 problem - The couch’s
movement is constrained by the

table’s, which is also constrained by
the chairs’.

FIGURE II.7: Capabilities and limitations of Stilman&Kuffner’s algorithm [3]. (A) is a previ-
ously unsolved problem resolved by Stilman&Kuffner’s algorithm, while (B) and (C) cannot

be solved by it (and most likely neither Okada et al.’s algorithm [2]).

Both Okada et al. [42] and Stilman & Kuffner [43, 44, 19] eventually bridged the gap to
a real-world experiment with an HRP-2 humanoid robot , but where the robot only moves a

5We provide an in-depth explanation and revisited pseudocode formalization in the next chapter, Section III.
2.2.

Chapter II. State of the Art 13

single obstacle over a very short distance to minimize action uncertainty, and robot sensing
capabilities are augmented with external sensors. While these experiments make them both ac-
tionable algorithms for solving real-world NAMO problems, the completeness guarantee and
the capacity of Stilman & Kuffner’s algorithm to larger scale environments of experimentally
up to 90 obstacles, make it an overall better NAMO algorithm6. In any case, neither of these
algorithms could solve the problems illustrated in Fig.II.7 [B, C], as they are not of L1 class.

II. 1.4 Reverse-search planning for Lk M NAMO Problems

Actually, the problem in Fig.II.7c could be solved by moving each blocking obstacle only once
- if only they were moved in the right order. Inspired by the literature of Assembly Planning7

[45], Stilman & Kuffner described such problems as Monotone (abb. M) [46, 47, 19]. Conversely,
they defined situations like in Fig.II.7b as Non-Monotone (abb. NMi) problems, that need to
be expressed as i monotone problems with intermediate states to be solved. In the linear and
monotone problem illustrated in Fig.II.7c, it clearly appears that first reasoning about the ob-
stacles closest to the goal (the couch), allows to then choose placements for other obstacles that
would not interfere with the couch’s displacement. It is this consideration that lead Stilman
& Kuffner to the formulation of a new reverse-planning algorithm for solving Monotone Linear
problems of k obstacles (abb. Lk M). Here, reverse-planning means that the robot plans from its goal
to its start configuration, and from the last obstacle to move to the first. This contrasts heavily
with all the NAMO planners presented until now, that conversely used a forward-planning strat-
egy, that is: planning from the start to the goal robot configuration, and from the first obstacle
to move to the last.

(A) Initial world state. The robot
tries to reach the left corridor.

(B) The movement of the last
obstacle to move (couch) is planned

for first, with the subsequent
navigation sequence to the goal.

(C) The area swept by the couch’s
movement and navigation to the

goal (black area) is cleared by
computing the table’s movement.

FIGURE II.8: A slightly modified version of Fig.II.7c into an L2 problem, showcasing Stilman
& Kuffner’s reverse-planning NAMO algorithm [46]. Read left to right for the planning

process, right to left for execution.

6Also, Okada et al.’s algorithm is very likely to be unable to solve any problem that is not in the LP1 class, be-
cause of its graph structure akin to that of Stilman & Kuffner’s. We say “likely”, as, to the best of our knowledge,
there is no sufficient documentation nor reference implementation available to ascertain this with absolute cer-
tainty.

7Assembly Planning can be considered a further constrained sub-problem of Rearrangement Planning, where
one needs to consider the force of gravity and its impact on the assembled system’s stability, and sometimes pre-
specified order constraints. This problem often assumes that unassembled parts can be removed to “infinity”, to
reduce the amount of constraints to be taken into account and allow solutions to be found [45]. These problems
typically also ignore the constraints of the robot/manipulator.

Chapter II. State of the Art 14

The last obstacle to be manipulated is selected using a heuristic A∗-based search similar to
their previous algorithm [3], with a euclidean cost estimate, and affecting an extra one-time cost
when traversing an obstacle8. While ignoring all other obstacles, a navigation path to a valid
grasping configuration is found by means of an A∗ search from the robot start configuration.
Then, a manipulation sequence is computed by means of a Best-First Search that displaces
this last obstacle, until a navigation path from the final robot grasping configuration to the
goal is found by means of an A∗ search (Cf. Fig.II.8a and II.8b). Logically, any obstacle that
moved before this last one cannot be left in the area swept by the last obstacle in this process.
Thus, the planner recursively plans manipulation and navigation motion in the same fashion
as previously described, so that swept areas remain clear of obstacles, as illustrated by the
table being cleared from the couch’s swept area in Fig.II.8c. When the swept areas cannot be
cleared at some point during the search, the recursive loop backtracks to select another obstacle
manipulation order. This whole process (obstacle selection - recursive clearing of swept areas)
is repeated until the goal is reached or all obstacle manipulation orders are considered.

While Stilman & Kuffner’s new algorithm opened the door to solving harder problems in
the new Lk M class, it has not been proved Lk M-complete nor Lk M-optimal. The main reason
for this being, that while the algorithm does consider all obstacle orderings, it does not consider
all possible final configurations for each obstacle. The authors however precise that the algorithm
could be Lk M-resolution-complete, under the condition that it were modified so that it back-
tracks not only over object orderings, but also over choices of grasps and manipulation paths
(which would be a significant additional computational cost).

II. 1.5 Sampling-based NAMO planning in continuous configuration space

In the previously mentioned papers, the computational infeasibility of complete planning for
the full NAMO domain has lead to either not providing completeness guarantees [38, 2], or
focusing efforts on sub-problem classes where algorithms based on graph search may guaran-
tee resolution-completeness, within a reasonable amount of computation time [3, 46]. That is
why in 2006 Nieuwenhuisen et al. [4, 48, 49], and in 2009 Van den Berg et al. [5, 50] explored
probabilistic completeness - a weaker form of completeness that guarantees to find a solution if
one exists, but under the condition that the allotted planning time is infinite.

The first algorithm proposed by Nieuwenhuisen et al. [4] consisted in building what they
called an “action tree”, where nodes represent either “grasp” or “manipulate” actions and their
associated resulting world state (Cf. Fig.II.9). “Grasp” actions (round nodes in Fig.II.9) are
equivalent to transit/navigation paths in the previous literature, and are computed using an
A∗ graph search over a Probabilistic Road-Map (abb. PRM). Correspondingly, “Manipulate”
actions (triangle nodes in Fig.II.9) are equivalent to transfer/manipulation paths, and are com-
puted using an RRT search (with a bounded number of node expansions). The children “ma-
nipulate” (triangle) nodes of a “grasp” (round) node each correspond to an individual node of

8Whereas the previously presented algorithm of Stilman’s [3] added an extra cost for each traversed obstacle-
colliding configuration (multiplying the cost by the number of robot configurations needed to pass through the
obstacle). Also, this new heuristic allows collisions with more than one obstacle at once.

Chapter II. State of the Art 15

the RRT manipulation search of the grasped obstacle. One could say that the RRT manipula-
tion search tree is “flattened” into action tree nodes (e.g. in the second action tree of Fig.II.9,
the triangles directly under circle 1 are each a node of the RRT launched from the world state
in circle 1). Only leaf nodes are expanded and only once, according to a priority determined
by a probability of success. This probability heuristically evolves as the planning process pro-
gresses, and as the probability of a node is updated, its siblings’ probabilities are adjusted too,
and back-propagated to parents. This process firstly depends on whether the obstacle is directly
blocking the shortest path to the goal computed on the PRM while ignoring obstacles. It also
depends on whether the obstacle is indirectly blocking another obstacle’s movement, which is
known during the RRT planing of “manipulate” actions. The euclidean distance to the goal
also affects the probability associated with a node.

Notably, and similarly to Chen & Hwang algorithm’s [1], re-grasps of a same obstacle are
allowed, as illustrated in the third action tree of Fig.II.9, where a second grasp (gray circle)
node of obstacle 1 is a descendant of another (red circle). Re-grasp allows the robot to better
maneuver around the obstacle as it manipulates it. This brings us to the authors’ statement that
the planner is capable of solving LP problems. Please note the difference in writing here, as
it does not refer to Stilman’s component-based definition given previously, but to the original
rearrangement planning problem class definition of Ben Shahar & Rivlin [24] (that also inspired
Stilman). Here, this class refers to “the set of problems that can be solved by a sequence of
manipulations”9. The authors conjecture that the planner is probabilistically complete (for
the LP class) if robot motion constraints are holonomic [49], but do not prove it, as quite a
few following papers misleadingly conclude (e.g. [51, 52]).

4 31 3

2 3 1

4 31 3

2 3 1

3

4

2

1

R
G

41 3 3
4 3 31

4 31 3

2 3 1

3

4

2

G

1

3

4

2

G
1

3

4

2

G
1

3

4

2

G
1

3

4

2

1

FIGURE II.9: Example L1 NAMO problem solved by Nieuwenhuisen et al.’s algorithm
[4]. From left to right, the vignettes depict the initial world state, then the alternating
“grasp”/“manipulate” sequence for obstacles 1 then 2, before a direct navigation path to
the goal can be found in the last vignette. Under each vignette is the “action tree”, where
round nodes are “grasp” nodes with the associated obstacle’s number, and triangle nodes
are “manipulate” nodes. The yellow squares represent the initial and goal states, and the red

nodes are the selected nodes branch represented in the vignettes.

9To be understood as all problems that do not require simultaneous movement of more than one obstacle.

Chapter II. State of the Art 16

Actually, the subsequent paper of Van den Berg et al. [5] argues that the previously men-
tioned bounding of the search trees (necessary for proper backtracking over alternative ob-
stacle grasps) is a cause for (probabilistic) incompleteness for Nieuwenhuisen’s algorithm
[4]10. Consequently, they devised a new sampling-based algorithm and provided a proof of its
probabilistic completeness for the entire NAMO domain. This proof actually only holds true
if the NAMO domain is considered to be strictly restricted to Stilman’s first definition, where
the robot can only manipulate one obstacle at a time, and assuming any obstacle can be grabbed from
any configuration where the robot touches its envelope11. However, they could only prove its applica-
bility for simplified axis-aligned environments where the robot and obstacles are limited to translations
(Cf. Fig.II.10). This limitation is due to their random tree-based algorithm requiring a cus-
tom memory-compact explicit representation of the robot’s configuration space and free space
components, that is to be computed and saved for every obstacle movement during planning.
While we shall not delve into the details of this custom representation, its main point is that
it allows to decouple the computation of the obstacles’ movements from the explicit compu-
tation of the corresponding robot movements. That is, their custom representation allows the
algorithm to first compute all the obstacles’ movements regardless of the robot’s, and only then
infers the robot’s movements from the planned obstacles’ movements.

(A) (B)

FIGURE II.10: NAMO problem examples solved by Van den Berg et al.’s algorithm [5]. (A)
NLNM problem where the robot must pass by M2, then move it to the right, then move
M3 to the left, navigate through the bottom U-turn, move M3 again but to the right, to fi-
nally move M1 in the space left by moving M2. (B) Axis-aligned version of an Lk M problem
initially solved by Stilman & Kuffner’s reverse-planning algorithm [46], where the smaller

obstacles must be moved first to allow the necessary manipulation of M1.

While this approach cleverly allows to address any of the previously described classes
of problem mentioned before (such as the hard non-linear and non-monotone problem of
Fig.II.10a), it still heavily relies on the two emphasized above hypotheses, and is definitely

10Van den Berg was a colleague of Nieuwenhuisen, and although not identified as a co-author of [4], is men-
tioned in the Acknowledgements section of the paper.

11These hypotheses actually fit a lot with Nieuwenhuisen’s NAMO interpretation of Ben Shahar’s LP rear-
rangement planning class.

Chapter II. State of the Art 17

not trivially generalizable to more complex world geometries, which would come with a non-
negligible time and memory cost (if at all mathematically computable). Finally, while this ap-
proach is probabilistically complete, its randomized nature produces very suboptimal plans,
with respectively 214 and 23 899 obstacle movements (grasps) for Fig.II.10a and II.10b, while
it took only 6 such movements for Stilman & Kuffner Lk M-planning algorithm [46] for the
original scenario of Fig.II.10b.

II. 1.6 NAMO planning in unknown environments

All the previously described planners were designed under the assumption that the robot has,
at any time, an accurate knowledge of the entire environment (obstacle position, geometry,
type, mass, ...), and were thus mostly experimentally applicable in computer simulations. As
mentioned earlier, the real world experiments of Okada et al. and Stilman & Kuffner [42, 44]
relied on very precise and all-encompassing external sensors, human-made 3D models of the
environment, in highly simplified experimental settings, to ensure that computed plans could
actually be executed without failure. But for NAMO algorithms to be applicable in real-world
settings, without prior knowledge of the environment, where the robot’s main sources of infor-
mation are its limited-view onboard sensors, these algorithms need to be able to use any partial
information available to efficiently devise and update their plan.

Detect
objects

Goal

No path
to goal

Start

Move
object

Yes

No

No

Path to goal
exists?

Movable object
exists?Yes

(A) NAMO plan task computation
and execution routine

G

1

2

3

S

(B) Simulated view of the problem’s
initial state

(C) Sensor-data view of the
problem’s initial state

(D) Initial real world state (E) The robot fails to push
the table (t=119s)

(F) The robot then pushes
the chair (t=286s)

(G) The robot navigates to
the goal (t=384s)

FIGURE II.11: Example NAMO problem resolution by Kakiuchi et al.’s algorithm [6]. In (C), the
sensor’s point cloud is segmented into prisms (obstacles) and floor points (bright green areas).

With this in mind, Kakiuchi et al. [6] published a first (reactive) approach under this sens-
ing constraint in 2010. Their algorithm can be summarized as having the robot try to push
the nearest detected obstacle in a single direction, until it either succeeds at some point in

Chapter II. State of the Art 18

computing a collision-free navigation path (with a bounded RRT) to the goal, or fails the ma-
nipulation / eventually bumps into another obstacle (Cf. Fig.II.11a). This reactive decision loop
successfully solved the simple problem described in Fig.II.11b to Fig.II.11g, by segmenting real
sensing data from the HRP-2 robot’s color range sensor into primitive geometric shapes and
their associated relevant grasping points (Cf. Fig.II.11c), and verifying movability using the
robot’s force-torque sensors as it manipulated obstacles. While they provide the first holis-
tic approach to NAMO in unknown environments (from sensing, to planning, to execution in
the real world), their planning algorithm is arguably naive and computationally inefficient.
Indeed, the greediness of their nearest-obstacle choice heuristic, and the bounded RRT nav-
igation search preclude any completeness or optimality guarantees, while limiting resolution
capabilities to “one-manipulation” plans. Also, as a new RRT navigation search is called to ver-
ify goal reachability at every obstacle manipulation step, reasonable computation times are in fact
only achieved thanks to the drastic robot action space restriction, at the cost of lower problem
resolution capabilities.

While Kakiuchi et al. prioritized providing solutions to realistic sensing problems encoun-
tered while experimenting in a single real-world proof-of-concept setting, Wu&Levihn et al.
devoted their efforts into designing a more efficient, and locally-optimal planning algorithm
over several publications [33, 34, 35, 7] from 2011 to 2014, in multiple simulated environments.
In contrast with Kakiuchi et al.’s algorithm that mindlessly pushes obstacles first to only then
verify if a path to the goal appears, this new algorithm carefully selects and computes the full mo-
tion for both the robot and obstacle to be manipulated ahead of execution, similarly to the previous
planners in the literature [3, 46]. This new algorithm relies on four essential hypotheses:

1. the robot can only compute plans with a single continuous obstacle manipulation12;

2. unobserved space is to be considered free until discovered otherwise;

3. all obstacles are movable until manipulating them fails;

4. the robot is the single autonomous agent evolving in the environment.

The planner uses graph-search algorithms (A∗, D∗Lite, Breadth-First Search) over a grid
discretization of the space, to compute the optimal navigation-only plan that avoids all obsta-
cles, and plans each involving the manipulation of a single obstacle. The planner compares all
these plans to guarantee that it will always choose the best-cost plan at any time during execu-
tion with its currently available environment information, under the hypotheses above - hence
local optimality. As it tries to execute its computed plan, the robot discovers new obstacles and
updates its knowledge about their shape or movability. When this new information invalidates
the currently executed plan (future collision or failed manipulation because the obstacle was
not movable), it repeats the previously described planning process to replace the invalidated plan.
This process is illustrated in Fig.II.12a, where (Left) the robot executes a first plan trying to
circumvent detected obstacles 1&2, but (Right) comes to face obstacle 3, and replans its course

12As the robot discovers the environment and computes new plans, it may manipulate multiple obstacles dur-
ing execution.

Chapter II. State of the Art 19

only to realize that avoiding it will be costlier than moving obstacle 1 - but eventually fails as it
is a static obstacle, and finally replans to move obstacle 2 to reach its goal13.

The first version of Wu&Levihn’s algorithm [33] was actually not locally optimal, and it is
the later publications of Levihn [34, 35, 7] that provided this guarantee, along with an exten-
sion to arbitrary-shaped obstacles, and a larger action space allowing obstacle manipulations in
all axis-aligned directions instead of only single-direction pushes. These changes are reflected
in Fig.II.12b, where the initial world state is overlaid with the path followed by the robot (i.e.
the result of multiple replannings) in the left figure; the right figure shows the world percep-
tion after it pulled a first green couch to the right14 (the next two couches are moved down).
Importantly, one big contribution of this improved version is their efficient local opening de-
tection algorithm [35] that can be used to reduce motion planner calls to verify the creation of
a new path after manipulation (greatly improving computational efficiency)15. Still, the local
optimality guarantee and computational efficiency of this algorithm come at the cost of prob-
lem resolution capability: while the algorithm is not a priori theoretically limited to a specific
NAMO problem class, it can still be quite easily defeated with simple problems such as the
one illustrated in Fig.II.12c. Depending on the algorithm’s implementation (more precisely, the
default order of manipulation directions), it may either choose to move the small brown sofa
up (2nd subfigure) or down (3rd subfigure), respectively succeeding or failing the problem res-
olution, as obstacle ordering cannot be considered by the algorithm due to the one-obstacle per
plan hypothesis.

(A) NAMO problem solved by the first version of
Wu&Levihn’s algorithm [33]. Robot in green, static

obstacles in blue and black, movable obstacles in
yellow, goal in red, explored space in gray, traversed

path in black lines.

(B) NAMO problem solved by the final version of
Wu&Levihn’s algorithm [34, 35, 7]. Static obstacles in

gray, movable obstacles in color, robot in gray and blue,
goal as red cross, traversed path in red with yellow

sections for manipulations.

(C) Hard L2 problem for Wu&Levihn’s algorithm. Please note that the brown sofa blocks the robot from seeing the
green couch until the brown sofa is released.

FIGURE II.12: Example NAMO problem resolutions by Wu&Levihn’s algorithm [7].

13The whole process is best understood with the associated video: https://youtu.be/oQZLbJHYrl8
14The whole process is best understood with the associated video: https://youtu.be/3AvfPVzBb-s
15We provide an in-depth explanation and revised pseudocode formalization of Wu&Levihn’s algorithm in the

next chapter, Section III. 2.1.

https://youtu.be/oQZLbJHYrl8
https://youtu.be/3AvfPVzBb-s

Chapter II. State of the Art 20

II. 1.7 NAMO planning under action and sensing uncertainty

Even while using only onboard sensors, the previously mentioned algorithms of Kakiuchi et al.
and Wu&Levihn [6, 7] still operated under a deterministic world and action model. That is,
like the rest of the NAMO planners before them, they assumed that sensor data was perfectly
accurate, and that their planned actions would unfold exactly as expected. Only if an action
were to actually fail to yield the expected world state during execution, would the world model
be updated to forbid said action before re-planning would occur.

In 2013, Levihn, Scholz and Stilman proposed a framework to deal with uncertainty in
NAMO problems at the planning level [8, 27], in order to bias decisions at plan time to choose
policies (i.e. plans) that are likely to succeed. They cast the NAMO problem as a two-level hi-
erarchy of Markov Decision Processes (abb. MDP), with a High Level MDP and a Low Level
MDP. The High-Level MDP is built upon the adjacency graph of Stilman’s first planner’s paper
[3] we previously presented, where nodes are free space components and edges are abstract
actions that “create an opening to neighboring free-space” by manipulating an adjacent ob-
stacle (Cf. Fig.II.13b). The Low-Level MDP’s states are expressed in terms of robot & obstacles
configurations, while actions are discrete axis-aligned translations (Cf. red arrows in Fig.II.13a).

(A) Initial world state with overlaid policies:
High-Level in text, and Low-Level in red arrows

indicating locally dominant directions

(B) Adjacency graph - Nodes are free space
components, edges are neighboring obstacle(s) that

may connect the components if moved.

FIGURE II.13: Example NAMO problem resolution by Levihn, Scholz and Stilman’s decision
theoretic algorithm [8]. In subfigure (A), the A value is the best action to execute (e.g. the
best first action is to move O3 right, then down, to connect F1 to F6); The V value is the
value-iteration algorithm’s long-term expected reward for the state (i.e. the reward of pass-
ing through the connected component). Only low level policies corresponding to obstacles

chosen by the high-level policy are shown for the sake of readability.

This structure only explicitly models action uncertainty, as perception uncertainty is incor-
porated through the use of object categories (e.g. “table”, “table with locked wheel casters”,
. . .), each associated with a probabilistic action model. That is, uncertainty is represented by
both a probability distribution for an object to belong to a category, and by a probability dis-
tribution of 2D object displacements indexed by action and object category16. The task-level
algorithm for solving the high-level MDP is a combination of the standard Dijkstra graph

16They chose not to model the problem with the usual approach of Partially-Observable MDP (abb. POMDP) to
handle perception uncertainty, as they collapse this uncertainty in the Transition Model of the MDP for the sake of
computational efficiency.

Chapter II. State of the Art 21

search algorithm to create the adjacency graph, with the stochastic MAX-Q Value Iteration
Algorithm [53],while the motion-level algorithm for solving the low-level MDP is a Monte
Carlo Tree Search (abb. MCTS) [54], that either terminates when an opening is achieved, or the
pre-determined maximum search depth is reached. The algorithm alternates between compu-
tation of the high-level policy and low-level policies, using the reward values of the high-level
search of the MAX-Q Value Iteration algorithm to dynamically bound the low-level MCTS’s
search depth, and the reward values of the MCTS to update the reward values of the high-level
search. This two-way influence between the high and low-level policies searches allows the
algorithm to focus computations on relevant high-level tasks (connecting components likely
“useful” in reaching the goal), and their relevant portions, achieving linear time complexity
in the number of obstacles. However, this planner is not complete nor optimal for any kind
of NAMO problem class defined until now, and is limited to the resolution of L1 problem
because of its hierarchical decomposition of the problem.

Levihn, with the help of Leslie Pack Kaelbling and Tomás Lozano-Pérez, ultimately ad-
dressed both action and perception uncertainty (including the absence of information) [9,
27], by applying their generic Belief Hierarchical Planner in the Now (abb. BHPN) [55, 56],
an algorithm meant to solve the overarching problem of combined Task & Motion Planning
(abb. TMP or TAMP). Citing a recent survey on the matter [57], combined Task and Motion
Planning is “the problem of planning for a robot that operates in environments containing a
large number of objects, taking actions to move itself through the world as well as to change
the state of the objects” - and is thus a superset of the NAMO problem. BHPN is an online al-
gorithm, based on a backward planning task-level planning routine (similar to Stilman’s Lk M
planning algorithm [46]), and time-bound RRT calls for motion-level planning. It relies on a
belief-based world model reflecting the history of observations and actions made by the robot,
explicitly modeling perception uncertainty using ϵ-shadows [56] (akin to “fog of war” in video
games) and probability contours [56] (volumetric overestimates of actual object geometries), as
shown in Fig.II.14a. This model is used at plan time to bias plan decisions in order to minimize
the risk of failure. This even includes explicitly planning for deliberate observation actions,
so that the planner is guaranteed to have sufficiently reduced its uncertainty concerning the
spaces where it is supposed to act. The planner relies on the main concepts of “Foresight”
(leveraging of knowledge of future subgoals and beliefs about future observations to maintain
correctness and improve optimality, illustrated in Fig.II.14b) and “Reconsideration” (deciding
when to replan based on opportunity for plan improvement and computational cost of replan-
ning, illustrated in Fig.II.14c). Levihn’s work [9] mainly consisted in characterizing these two
concepts for the NAMO problem, resulting in a planning-time efficient “selective replanning”
strategy that allowed the algorithm to solve many NAMO problems of varying complexity,
both in simulated and real-world environments17. The planner does however not offer guar-
antees of completeness or optimality, but is theoretically not limited to any previously de-
fined specific class of NAMO problem.

17As shown in multiple videos available at https://lis.csail.mit.edu/bhpnNAMO/

https://lis.csail.mit.edu/bhpnNAMO/

Chapter II. State of the Art 22

(A) Initial simulated problem state.
Brown boxes are ϵ-shadows
marking unobserved areas.

Transparent purple boxes are
probability contours representing

observation uncertainty of obstacles.

(B) The robot uses “Foresight” to
choose a plan passing through the

bottom corridor, because of the
lower uncertainty, even though the

distance is slightly longer.

(C) As the robot executes the plan,
the obstacle’s probability contour is

updated, and after
“Reconsideration”, a shorter plan

closer to the obstacle is chosen (old
plan in gray, new in green).

FIGURE II.14: Simulated NAMO problem solved by Levihn et al.’s BHPN-based algorithm [9].

II. 1.8 Kinodynamic NAMO planning

Almost all the algorithms presented until now did not consider obstacle kinodynamics at
plan time, and were solely built on geometrical world models. These models relied on the
significant hypothesis that the robot’s contact with the object would completely constrain its
movement, so that, for instance, when the robot translated 10 cm forward, the obstacle would
too - thus facilitating the study of the problem. All algorithms but one, actually: in his first L1

planner [3], Stilman assumed a world model where obstacles were endowed with mass, mo-
ment of inertia and friction parameters. These parameters allowed obstacles to slip rotationally
around the grasping point, as the robot would apply translational accelerations in any direc-
tions to its center of mass, allowing for complex movements. However, the difficulty for a real
robot to sense and reason about the actual kinodynamic parameters of obstacles during exe-
cution easily explains why Stilman, and most of the following literature, fell back to a simpler
world model.

Kinodynamic considerations were re-introduced in the NAMO problem by Levihn and
Scholz in 2013 [10, 27], by extending their previously presented decision theoretic algorithm
[8] to continuous configuration (state) and action (control) spaces. They kept the two-level hi-
erarchical MDP problem decomposition, and the same task-level resolution algorithm, but to
build the adjacency graph, they had to approximate the free space components in continuous
space using Probabilistic Road-Maps (abb. PRM)[58] (illustrated as grey graphs in Fig.II.15), as
the configuration space was no longer discrete18. Also, instead of using vanilla Monte Carlo
Tree Search over discrete push actions, they used a Monte-Carlo simulation of Kino-Dynamic
Rapidly Exploring Random Trees (abb. KDRRT) [59]. Instead of probability distributions over
discrete push actions, they used probability distributions over obstacle kinodynamic param-
eters, such as mass, friction coefficient, position and orientation. That is, once an obstacle is
selected for evaluation by the task-level routine, the Monte Carlo method is used to sample

18The state space is sampled randomly and biased to always include valid grasping poses around the movable
objects: at the end of the PRM process, sampled grasping poses of a same obstacle that belong to different sub-
graphs of the PRM allow to detect that the obstacle is disconnecting free spaces components, and to create the
relevant action edge in the adjacency graph (Cf. Fig.II.13b).

Chapter II. State of the Art 23

sets of kinodynamic parameters for this obstacle, and for each, a KDRRT search is run in a
physics simulation, until an opening is created19, or a maximum number of search nodes is
reached. The planning-time physics-based simulation also allowed rewards to be more clearly
expressed as functions of execution time and energy. The final novelty of this new algorithm
is that the probability distributions over the obstacles’ dynamics parameters (mass, friction
coefficient, etc.) are updated as the plan is executed20. In the implementation they make of
the algorithm, this “learning” step is however limited to updates of rotational parameters in
case of rotation-only events, as illustrated in Fig.II.15. The authors provided theoretical and
experimental evidence that despite the added complexity of this extension, the problem de-
composition still keeps the algorithm’s computational cost linear with respect to the number
of obstacles, while retaining the same resolution capability limitation to L1 problems.

(A) Initial configuration.
The robot selects the

lighter table for
manipulation.

(B) Expected outcome:
table has low probability

of being constrained.

(C) Actual behavior: table
rotates but does not

translate. Robot increases
probability of table being

rotationally constrained to
98%.

(D) Based on the new
information, the robot

decides to move the couch.

FIGURE II.15: Example NAMO problem resolution by Levihn et al.’s kinodynamic & deci-
sion theoretic algorithm [10], showcasing a nonholonomic robot with 5 Degrees of Freedom

(3DOF base and 2DOF arm).

Finally, in [11, 28], Scholz proposed a last iteration on the same decision theoretic algorithm
[8, 10], that eventually allowed the algorithm to be used on a real robot, in an environment
with complex object dynamics21, as shown in Fig.II.16. To do so, this final version of the algo-
rithm introduced two improvements. Firstly, a whole-body manipulation controller providing
an abstraction of the robot’s body into a low-dimensional action space (5 dimensions: 2 for
the grasp point on the object, 2 for the desired object velocity, and 1 for the duration of the
action). Secondly, they introduced a heuristic model-dependent manipulation policy, which
constrained the set of achievable velocities and grasp points as a function of object dynamics.
This heuristic model-dependent policy was based on anisotropic friction, a velocity constraint
that allows separate friction coefficients in the x and y directions and an angular term. This
is what allowed the authors to convincingly model the dynamics of the objects considered in
their experiments: large objects such as chairs and tables, with or without wheel casters that

19Opening detection is done using a lower-dimensional RRT-connect search [60], that only considers the robot
footprint, and is bound by a maximum number of nodes from the robot’s configuration to a random configuration
in the road map of the free space component to connect.

20The whole process is best understood with the associated videos:
https://youtu.be/SFJbxUbuCO8 and https://youtu.be/cQDpo9yxrCI.
21The whole process is best understood with the associated videos:
https://www.youtube.com/@toomanyquestion/videos

https://youtu.be/SFJbxUbuCO8
https://youtu.be/cQDpo9yxrCI
https://www.youtube.com/@toomanyquestion/videos

Chapter II. State of the Art 24

may or not be blocked individually. While the algorithm allowed adaptive behavior for pre-
viously unmanageable NAMO cases, they recon that it was frequently faced with a number
of points of failure, mainly due to the randomness of many of the subroutines that the PRM,
the RRTs, the Markov Chain Monte Carlo (abb.MCMC)[61] used instead of the Monte Carlo
KDRRT previously used in [10].

(A) Initial configuration.
The goal is to reach the top

right corner of the room.

(B) Expected solution:
push the square table; but

it is stuck - constraint
learned.

(C) Expected solution: pull
the long table; but it rotates

unexpectedly because a
wheel caster is locked -

constraint learned.

(D) Expected solution:
rotate long table: rotated
successfully and opening

found.

FIGURE II.16: Example NAMO problem resolution by Scholz et al.’s kinodynamic & deci-
sion theoretic algorithm [11], in a real-world setting. The robot has a differential drive base
and two arms, totaling 17 Degrees of Freedom. Perception is provided by six overhead cam-

eras tracking AR-tags[62].

II. 1.9 NAMO research since 2014

Mike Stilman disappeared in 2014, and with him, the GOLEMS research team he led at Georgia
Tech22, that spearheaded research about the NAMO problem, among other subjects. After
the thesis defenses in 2015 of both his PhD students, Martin Levihn [27] and Jonathan Scholz
[28], while the NAMO problem has continued to draw research interest, new algorithms rarely
demonstrated new or superior theoretical properties, as we will present shortly. In a way, one
could say that since then, research has shifted away from studying the NAMO problem itself,
to using it more as a showcase context for other research.

A relevant first instance of this observation is the 2014 paper of Mueggler et al. [12], a
demonstration of a guide quadcopter drone and ground manipulator robot, that needed to
move small obstacles on a children’s carpet to get to a goal configuration. The drone first
scans the work area to find a ground target and map obstacle positions, then computes and
sends the NAMO plan as high-level direction commands to the ground manipulator robot23

(Cf. Fig.II.17). While they did link their experiment with the NAMO problem, they however
admitted to dodging most of its inherent difficulty by only using one type of movable obsta-
cle that could trivially be picked and placed without affecting the robot’s 2D footprint. Thus,
instead of using one of the previously described NAMO algorithms, they made an ad-hoc for-
ward planning task-level algorithm derived from the A∗ graph search algorithm, and used
Dijkstra’s algorithm as motion-level planning on a grid, with a custom path-smoothing pro-
cedure. Their algorithm is inherently limited to Lk M NAMO problems, as it only plans one

22The team website still exists at the following URL, and is a treasure trove of NAMO-related resources:
http://www.golems.org/oldindex.html
23Videos available at https://youtu.be/C5I190lzDdQ and https://youtu.be/OFPv3BegbFg.

http://www.golems.org/oldindex.html
https://youtu.be/C5I190lzDdQ
https://youtu.be/OFPv3BegbFg

Chapter II. State of the Art 25

manipulation for each blocking obstacle at most. Also, although it seeks to minimize the exe-
cution time, the algorithm is not complete nor optimal for any of the previously defined NAMO
problem classes, mainly because, contrary to Stilman’s Lk M problem-solving algorithm [46], it
does not consider interactions between obstacle manipulations.

(A) Drone mapping procedure uses
AprilTags for obstacle identification

and localization [63]

(B) Plan computed by drone viewed
in Rviz before it flies back to the

ground robot

(C) Drone follows the robot during
execution, helps with localization

FIGURE II.17: Demonstration of Mueggler et al.’s heterogeneous drone + manipulator robot
Multi-Robot NAMO system [12].

In 2016, Castaman et al. also proposed a new NAMO algorithm [64, 65] that did not build
on any of the previous literature. Their algorithm is comparable in its approach to Chen &
Hwang algorithm’s [1], in that it used a global path planner that combined ideas from both the
A∗ the KPIECE [66] algorithms to produce an overall navigation plan, which was then locally
modified by a custom manipulation planning routine in the places it intersected with movable
obstacles. Incidentally, although it makes the algorithm’s computational complexity indepen-
dent of the number of obstacles, but also severely limits its resolution capabilities (as for Chen
& Hwang’s algorithm); it also makes it impossible to prove completeness or optimality for any
of the previously mentioned NAMO problem classes.

The same year, Moghaddam & Masehian published [51] a NAMO algorithm that built a
similar backward-planning task-level structure to Stilman’s Lk M problem-solving algorithm
[46], extending it to non-monotonous and non-linear problems (abb. NL, NM). They provide a
theoretical proof for completeness, under the hypotheses that (1) the robot only is allowed transla-
tion movements, (2) all obstacles are convex polygons and are priorly known, (3) the robot can grasp the
obstacle at any point on their edges, (4) obstacles can only be manipulated by the robot, (5) there are no
kinodynamic constraints on either the robot or obstacles. This completeness only applies however
to Lk M problems, and NL or NM problems that can be solved under the condition that “once
an object is planned for, further planning for the same object is prohibited unless the robot
displaces it to its pre-planned configuration”. Beyond the above cited hypotheses, the fun-
damental algorithmic choice that allows the algorithm to maintain computational efficiency
despite its larger problem resolution capabilities, is the fact that robot movement are computed
on a visibility graph (abb. VG) that highly restrains the solution space. Since 2014, it is still
the only new NAMO algorithm with novel theoretically demonstrated properties. However,
these hypotheses and algorithmic choice make the algorithm hardly applicable or extensible to
real-world NAMO problems, hence the authors only verified it in simulations.

In 2017 and 2018, Sun & Meng published a new sampling-based NAMO algorithm to show-
case their real-time semantic mapping pipeline [67, 52]. Their algorithm drew some inspiration

Chapter II. State of the Art 26

from Wu & Levihn’s [7] and Stilman’s Lk M algorithm [46], but did not refer to the previous
sampling-based NAMO literature cited above. Their backward-search task-level planner’s
structure, and their use of bounded RRT* [68] calls in it restrict the algorithm’s solving capa-
bilities to Lk M problems, and preclude probabilistic completeness for this problem class. But
the whole point Sun & Meng’s approach was to experiment in real-world scenarios, with real-
world sensor data, assuming the robot only knows static obstacles beforehand. Their semantic
mapping framework allowed them to detect object types (e.g. chair, table, etc.) and geome-
try, and choose the most appropriate manipulation strategy for each - including appropriate
grasping points: pick&place24 for likely lightweight ones, or planar holonomic push/pull on
the floor for others. Finally, they proposed a new local opening detection algorithm as an alter-
native to using a motion planner call to verify the existence of a path, but do not evaluate its
computational efficiency, nor compare it to Wu & Levihn’s [35].

Finally, in 2020 - at the time of our publications25 [30, 69], the latest NAMO algorithm we
could find was Wang et al.’s [70], based on the theory of affordances26 and contact-implicit
motion planning. All in all, their task-level planning routine is very similar to Kakiuchi et al.’s
[6] (although they do not refer to it), with the same limited resolution capability and lack of
completeness or optimality guarantees, but differs in two main ways. The first difference
is that, while Kakiuchi’s method only allows planar pushing/pulling, Wang et al. also allow
for pick&place and planar pushing (same as Castaman et al. [64, 65] and Sun et al. [67, 52]).
Both Castaman et al. and Sun et al.’s approaches relied solely on visual information for the
manipulation strategy choice; Castaman et al. deriving the manipulation method to use from
the object’s point cloud size, Sun et al. deriving it from the object’s semantic category deduced
by image recognition. In contrast, Wang et al.’s algorithm used a modeling method [72] that
derives affordances, first through visual detection, then by validating the expectation through
physical interaction. The second difference with the naive approach of Kakiuchi et al., is that
Wang et al.’s algorithm reasons about the final placement of the obstacle before starting the
manipulation, as in the rest of the literature. The manipulation path is computed using an al-
gorithm called Contact-Implicit Trajectory Optimization (abb.CITO) [73], simulating the inter-
action in the MuJoCo physics simulator [74], and using the Successive ConVeXification (SCVX)
algorithm [75]. In contrast to this complex manipulation computation, navigation paths are
simply computed using the A∗ algorithm on a grid decomposition of the space (assuming the
map of static objects is known beforehand). They validated their algorithm with two real-world
experiments.

24Final placement of these small picked obstacles was planned not only for the floor plane, but every other
reachable stable plane (tables and such) - to the best of our knowledge, their NAMO algorithm was the first to
offer this capability.

25Whose contents shall be discussed in Chapter IV
26Affordances are possible interactions offered by the object to their user, as defined in the Theory of Affordance

of J.J. Gibson [71]

Chapter II. State of the Art 27

II. 1.10 Conclusion

We synthesized the most relevant characteristics of the studied NAMO algorithms27 in table
II.1:

1. The first column reminds all relevant references associated with each algorithm.

2. The second column summarizes the various forms of prior knowledge that each algo-
rithm requires as either Full, Partial or None. Most approaches require full prior knowl-
edge of the environment, for some others a partial prior suffices (such as an occupancy
grid of static obstacles), while only two algorithms rely solely on the robot’s sensors:
(Wu&Levihn, 2014) and (Kakiuchi, 2010).

3. The third column synthesizes the different ways the NAMO algorithm is informed of the
obstacles’ movability: it is either Given as prior knowledge, Recognized through seman-
tic segmentation of RGB(-D) sensors’ data, or obtained through Manipulation attempts.
Unsurprisingly, most algorithms requiring full prior knowledge rely on being given that
information, and most others rely on object recognition rather than only manipulation
tentatives (likely because it is safer to move obstacles that appear movable than to move
anything and everything).

4. The fourth column highlights that only the works of Levihn & Scholz - (Levihn, 2013-1 to
3) and (Scholz, 2016) - accounted for State and Action uncertainty at the planning level,
while all other planners operate with deterministic state and action models.

5. The fifth column summarizes our previous comments on the problem resolution capabil-
ities of each algorithm. Only (Wu&Levihn, 2014) provides local optimality guarantees,
and only (Stilman, 2005), (Van den Berg, 2009) and (Moghaddam, 2016) provide com-
pleteness guarantees. All other algorithms surrender such guarantees in the name of
computational efficiency.

6. The sixth column provides information about the cost(s) being optimized by each algo-
rithm - something that has not been discussed much until now in the detailed descriptions
of the algorithms. Among them, we find various estimates of the usual Distance, Time
and Energy, but also more complex composite costs made from several of the previous
ones for (Levihn, 2013-3) (Wang, 2020). Three algorithms - (Stilman, 2005), (Stilman, 2008)
and (Kakiuchi, 2010) - first minimize the Number of Moved Obstacles before considering
the previously mentioned costs. In order to handle uncertainty, the planning algorithms
of Levihn & Scholz’s works - (Levihn, 2013-1 to 3) and (Scholz, 2016) also optimize the
Probability of Success of their plans. The exception among all NAMO algorithms is (Van
den Berg, 2009), that does not optimize any cost - resulting in very inefficient plans in
terms of distance, time, energy or number of moved obstacles, as previously discussed.

7. The seventh column specifies whether a NAMO algorithm plans in Discrete or Continuous
configuration space - or both, in the cases of (Okada, 2004) and (Wang, 2020).

27Together with the algorithms developed in this thesis, for reference.

Chapter II. State of the Art 28

8. The eight column reminds the wide variety of existing algorithms used as subroutines of
the NAMO algorithms: when abbreviated, the corresponding full names can be found in
the Abbreviations glossary at the beginning of this thesis, or in the algorithms’ descrip-
tions above. Unsurprisingly, Random Tree-based algorithms are the most common, as
they deal best with high-dimensional search spaces such as the ones found in NAMO
problems.

9. The ninth column synthesizes the various assumptions made about the robot’s object
manipulation abilities. Most algorithms assume a fully-constraining Grasp of objects
preventing any form of slipping, while some others constrain the robot’s motion to solely
Pushing the objects: (Kakiuchi, 2010), (Wu&Levihn, 2014), (Castaman, 2016), (Sun&Meng,
2018) and (Wang, 2020). Finally, some algorithms assume more complex models with spe-
cific Motion Primitives computed through kinodynamic physics simulations, that may
allow more freedom to the object’s motion28: (Stilman, 2005), (Levihn, 2013-2), (Scholz,
2016). Most NAMO planners assume that the robot may only grasp an obstacle once
during a plan, and only (Chen, 1991), (Nieuwenhuisen, 2008), (Van den Berg, 2009) and
(Moghaddam, 2016) allow for regrasp. Finally, only (Chen, 1991) allows the robot to use
an obstacle to move other obstacles, while all other NAMO planners assume this forbid-
den, likely for safety reasons.

10. Finally, the tenth column shows that most NAMO algorithms have only been experi-
mented in simulations, but not in the real-world - which we shall comment more upon in
the next paragraphs.

Beyond this summary, the first most relevant observation of this in-depth survey of NAMO
algorithms is the complete lack of reference implementations of all these algorithms, and
severe lack of associated data for experimental environments, their initial parameters or raw
statistics. The current literature only provides human-readable illustrations and a select few
heterogeneous aggregated statistics. The first consequence of this state of things is that study-
ing and re-implementing any of these algorithms is a very arduous task. This likely mostly
explains why, despite the existence of algorithms with relevant theoretical properties in the lit-
erature - such as (Stilman, 2005), (Stilman, 2008), (Van den Berg, 2009), (Wu&Levihn, 2014) -, no
author ever experimentally compares their approach with previous work, although they some-
times draw some inspiration from these pre-existing algorithms. Another consequence of this
difficult reproducibility, is that there is little to no verification of the claims made in the papers
by other authors, leading, as we’ve discussed sooner, to sometimes misleading interpretations
in the following literature. We try to address this reproducibility problematic in Chapter III.

The second relevant observation of this survey, is the complete lack of social or multi-
agent considerations (be it other robots, humans, or anything else) before our study. These
algorithms never consider the consequences of the robot’s choices, beyond its interest to reach
its goal while minimizing its displacement cost (be it execution distance, time, or energy). At
best, only Stilman et al. [3] & Kakiuchi et al. [6] suggested in a single sentence each the idea of

28We discuss these notions in more details in Section III. 1.2.3.

Chapter II. State of the Art 29

taking object fragility into account, but have not applied it. This is why in the following Section
II. 2 and Chapters IV and V, we explore the idea of a Social and Multi-Robot NAMO problem.

The third relevant observation, is that despite most algorithms presented here having the
capability to move several obstacles in a same experiment, almost all real-world experiments
of NAMO algorithms to this day only ever required the movement of one obstacle to con-
nect free space components. Among those presented, the algorithms that study problems
requiring complex obstacle manipulation ordering requirements to be solved - such as (Stil-
man, 2008) (Nieuwenhuisen, 2008), (Van den Berg, 2009) and (Moghaddam2016) - have only
ever been experimented in simulation. This is true except for (Levihn, 2013-3)’s BHPN-based
planner, where a single real-world experiment consisted in the manipulation of two obstacles
to reach the next component. After almost two decades of study of the NAMO problem, this
either means that robot sensing and manipulation capabilities are still insufficiently accurate to
confidently solve bigger real-world NAMO problems, or maybe that real-world NAMO prob-
lems rarely exceed the complexity of the L1 problem class. Maybe, the real challenge today
is to better solve and integrate the solutions to all other upstream difficulties regarding world
sensing and modeling, so that the algorithms may be used in real-world applications in human
environments. While this thesis could also have addressed this third observation, we chose to
focus our efforts on addressing the two other observations in the two previous paragraphs.

Finally, some other theoretical challenges are left open, such as creating:

• an actually resolution-complete algorithm for Lk M problems from (Stilman, 2008),

• a probabilistically complete algorithm for the full NAMO domain that is not restricted to
the axis-aligned world model of (Van den Berg, 2009),

• or a better planner with actual theoretical guarantees that allows the manipulation of
more than one obstacle at a time like in (Chen, 1991).

C
hapter

II.
State

ofthe
A

rt
30

TABLE II.1: Synthesis table with main differentiating criteria

Reference Prior Movability Uncertainty Resolution capabilities Cost C-Space Algorithms Manipulations Real-World

(Chen, 1991)
[1, 38]

Full Given - Limited to “plowing”
paths

E Disc. Dijkstra (Re)Grasp (with
movement
transfer)

No

(Okada, 2004)
[2, 42]

Full Given - Likely limited to L1 prob-
lems

D or E Disc.
(Transit)
and Cont.
(Transfer)

RRT, Graph-
Search Algo-
rithms

Grasp Yes

(Stilman, 2005)
[39, 3, 43, 44, 19]

Full Given - L1-Complete, can be
made L1-Optimal

NMO
then E

Disc. A*, Best-FS,
Breadth-FS,
DFS

Prim. Yes

(Stilman, 2008)
[46, 47, 19]

Full Given - Limited to Lk M prob-
lems, can be made Lk M-
complete

NMO
then D

Disc. A*, Best-FS,
Breadth-FS,
DFS

Grasp No

(Nieuwenhuisen, 2008)
[4, 48, 49]

Full Given - Limited to LP problems D Cont. A*, PRM, RRT (Re)Grasp No

(Van den Berg, 2009)
[5, 50]

Full Given - LP- Probabilistically
Complete, limited to
axis-aligned environ-
ments

None Cont. RRT (Re)Grasp No

(Kakiuchi, 2010)
[6]

None Manip. - Limited to “one-
manipulation” plans

NMO
then D

Cont. RRT Push Yes

(Wu&Levihn, 2014)
[33, 34, 35, 7]

None Manip. - Locally-Optimal for
“one-manipulation”
plans

D or T or
E

Disc. A*, D*Lite,
Breadth-FS

Push, Grasp No

(Levihn, 2013-1)
[8, 27]

Full Given Action Limited to L1 problems PS Disc. Dijkstra, MAX-
Q Value Itera-
tion, MCTS

Grasp No

(Levihn, 2013-2)
[10, 27]

Full Given Action Limited to L1 problems PS from
T and E

Cont. MCTS, PRM,
KDRRT, RRT-
Connect

Prim. No

C
hapter

II.
State

ofthe
A

rt
31

(Levihn, 2013-3)
[9, 27]

Partial Recog. State,
Action

No clear limit, no guar-
antees

Combined
cost

Cont. BHPN, RRT Grasp Yes

(Mueggler, 2014)
[12]

Partial Recog. - Limited to Lk M prob-
lems, MR

T Disc. A*, Dijkstra Grasp
(Pick&Place)

Yes

(Castaman, 2016)
[64, 65]

Partial Recog. - No clear limit, no guar-
antees

T Disc. KPIECE, A* Grasp
(Pick&Place)
or Push

No

(Moghaddam, 2016)
[51]

Full Given - Lk M-complete under
other hypotheses, but not
limited to Lk M problems

E Cont. DFS, Dijkstra,
VG

(Re)Grasp No

(Scholz, 2016)
[11, 28]

Partial Recog. Action Limited to L1 problems PS from
T and E

Cont. MCMC, PRM,
RRT

Prim. Yes

(Sun & Meng, 2018)
[67, 52]

Partial Recog. - Limited to Lk M prob-
lems, Multi-Plane

D Cont. RRT* Grasp
(Pick&Place)
or Push

Yes

(Wang, 2020)
[70]

Partial Recog.
and Ma-
nip.

- Limited to “one-
manipulation” plans

Combined
cost

Disc. (Tran-
sit) and
Cont.
(Transfer)

A*, CITO,
SCVX

Grasp
(Pick&Place)
or Push

Yes

(Renault et al., 2019)
[30] (Chapter IV)

Partial Manip. - Locally-Optimal for
“one-manipulation”
plans, with social taboos

D or T or
E

Disc. (Wu&Levihn,
2014)

Push, Grasp No

S-NAMO
[69] (Chapter IV)

Full Given - L1-Complete NMO
then E
and S

Disc. (Stilman, 2005) Grasp No

(S)C-NAMO
(Chapter V)

Full Given - MR NMO
then E
(and S)

Disc. (Stilman, 2005) Grasp No

Legend: Manip. = Found through manipulation; Recog. = Found through visual recognition; ’-’ = No uncertainty management in planning;
D = Distance; E = Energy; T = Time; NMO = Number of Moved Obstacles; PS = Probability of Success; Disc. = Discrete; Cont. = Continuous;

Prim. = Motion Primitives; MR = Multi-Robot

Chapter II. State of the Art 32

II. 2 Social & Multi-Robot considerations in NAMO-related prob-
lems

In the previous Section II. 1, our thorough review of NAMO research has revealed a lack of con-
cern for social or multi-robot considerations in the existing literature. However, Social Robotics
and Multi-Robot coordination are far larger and more abstract problem domains, with thou-
sands of papers addressing them in a huge variety of ways. Thus, the goal here is certainly
not to provide as exhaustive a review of existing work as we did for NAMO. As we presented
our review of NAMO algorithms, we also mentioned other robotics problems closely related
to NAMO: Navigation Planning, Manipulation Planning, Rearrangement Planning, Assembly
Planning, and the overarching domain of combined Task and Motion Planning. Thus, we will
instead focus on providing examples of how social and multi-robot constraints have been ac-
counted for in these neighboring problems, as a way to introduce relevant concepts for the next
chapters and to better situate our work.

II. 2.1 Socially-aware robot navigation, task and motion planning

The official webpage of The International Journal of Social Robotics defines Social Robotics
as “the study of robots that are able to interact and communicate among themselves, with
humans, and with the environment, within the social and cultural structure attached to its
role” [31]. This same page provides a long list of topics of interest to the field of Social Robotics,
starting from “Affective and cognitive sciences for socially interactive robots”, and ending with
“Socially-aware robot navigation, task and motion planning”.

Given the list of NAMO-related problems above, it is naturally the particular topic of Socially-
aware robot navigation, task and motion planning that is most closely related to our own
topic of interest of NAMO. Let us first start by discussing Socially-aware robot navigation,
specifically.

II. 2.1.1 Socially-aware robot navigation

Socially-aware robot navigation, is synonymously called Human-aware navigation or Social
Navigation in the multiple surveys addressing it [14, 13, 76, 77, 78, 79, 80]. To the best of our
knowledge, none of the papers cited in these surveys ever considered having the robot operate
in modifiable environments with movable obstacles, and planning obstacle manipulations to
create a path or improve the cost of an existing path. Although we could not find any traces
of the NAMO problem in existing Social Navigation literature, said literature remains very
relevant to our subject of study. Hence, in this section, we shall cherry-pick useful notions and
definitions from the first (and most cited) two surveys [14, 13], that will eventually serve us in
Chapter IV.

Social navigation has been loosely defined in a first survey by Kruse et al. as “the inter-
section between research on human-robot interaction (HRI) and robot motion planning” [14].

Chapter II. State of the Art 33

From this definition, the survey identified the three following three main challenges of social
navigation:

• comfort: “the absence of annoyance and stress for humans in interaction with robots”;

• naturalness: “the similarity between robots and humans in low level behavior patterns”;

• sociability: “the adherence to explicit high-level cultural conventions”.

Of course, the fundamental safety requirement of “classic” navigation (guarantee of no colli-
sion) remains. The three main challenges listed above can actually be understood as perceived
safety: beyond guaranteeing the impossibility of harm to humans, social navigation introduces
the idea that the robot must not feel threatening, hence the three aforementioned challenges.

In a second survey [13], Rios-Martinez et al. made the observation that “concerning the field
of robot navigation, proxemics is the most investigated tool to improve the robot’s sociality”.
The term of Proxemics was first coined in 1963 by Edward T. Hall, a cultural anthropologist,
defining it as “the interrelated observations and theories of humans use of space as a special-
ized elaboration of culture” [81]. In their survey, Rios-Martinez et al. defined the term as “the
study of spatial distances individuals maintain in various social and interpersonal situations -
these distances vary depending on environmental or cultural factors”. This resulted in a new
definition of social navigation focused on the notion of space, that shall serve as a basis for this
thesis : “A socially-aware navigation is the strategy exhibited by a social robot which identi-
fies and follows social conventions (in terms of management of space) in order to preserve a
comfortable interaction with humans. The resulting behavior is predictable, adaptable and
easily understood by humans”. This definition is reflected in their abstract illustration of the
structure of a socially-aware navigation system (Fig.II.18).

FIGURE II.18: Figure from Rios-Martinez et al.’s survey [13], depicting “The most important
components of a socially-aware navigation system”, a composite system with a social layer

applied upon “classic” navigation elements.

Rios-Martinez et al. have classified social spaces relevant to robot navigation into four
main categories: (1) the ones related to a single person, (2) to groups of people interacting, (3)
to human-object interaction and (4) to human-robot interaction. Let us first present these four

Chapter II. State of the Art 34

categories, so that we may discuss whether they raise questions specific to a Social Navigation
Among Movable Obstacles context.

According to Rios Martinez et al., within the first category (1), personal spaces, is “the most
popular proxemics model used in robotics”, which they define as “the region around humans
that they actively maintain into which others cannot intrude without causing discomfort” [13].
As illustrated in Fig.II.19a and II.19b, there are many formulations of these spaces, varying in
shape, size, that may eventually change depending on a variety of parameters such as con-
text, speed (either of the human or of other surrounding agents), nature of other agents, etc.
These spaces are human-centered, and are generally mainly derived from human position and
orientation and social cues such as gaze direction and body posture.

(A) Real-world example of
people respecting each other’s

personal space (blue discs)

(B) A non-exhaustive illustration of different personal spaces definitions in the
literature. From left to right, concentric circles, egg shape (bigger in the front),

ellipse shape, smaller shape on the dominant side.

(C) Real-world situation of the Information Process
Space

(D) Real-world example of social spaces created by a
group: the interaction area (O-space, white disc), and

area of human placement(P-space, red ring)

(E) Real-world example of an activity space. A human
taking a picture creates a zone that should not be

penetrated: the field of view between the camera and
the object.

(F) Real-world example of an affordance space. The bus
schedule offers a reading affordance to humans,
creating a reading affordance space in front of it.

FIGURE II.19: Illustrations from Rios-Martinez et al.’s survey [13], depicting a variety of
social space types and their variations.

Chapter II. State of the Art 35

The first social space category (1) also includes the notion of Information Process Spaces
(abb. IPS), defined as “the space within which all objects are considered as potential obsta-
cles when a pedestrian is planning future trajectories”, illustrated in Fig.II.19c. Unless a robot
wishes to engage interaction with a walking human, like for Personal space, it should avoid
penetrating this zone so as not to affect the human’s trajectory.

The second category of Social spaces for groups of interacting people (2) requires to first
distinguish two types of interaction: focused and unfocused. Rios-Martinez et al. define Fo-
cused interaction as the situation “when individuals agree to sustain a single focus of cognitive
and visual attention”, while Unfocused interaction can be understood as the opposite situa-
tion of “an individual [simply] being in another’s presence”. A human, or a robot avoiding the
previously presented Personal Space or Information Process Space of other humans while nav-
igating is a perfect example of unfocused interaction, for instance. Focused interaction between
humans, such as conversations, creates new social spaces, that grow beyond the addition of in-
dividual Personal Space, as illustrated in Fig.II.19d. Again, unless a robot wishes to engage in
the focused interaction, it should avoid penetrating these zones so as not to bother implicated
humans.

The third category of Social spaces for human-object interaction (3) is divided by Rios-
Martinez et al. into two - in fact tightly related - categories: Activity and Affordance Spaces.
An Activity Space is defined as a space “linked to actions performed by agents” (illustrated in
Fig.II.19e), and is a term proposed by the roboticists Lindner & Eschenbach [82], derived from
the term of “activity footprint” proposed by geographers Ostermann & Timpf [83]. Similarly,
they defined an Affordance Space as a space “related to a potential activity provided by the
environment” (illustrated in Fig.II.19f), following the previously mentioned Theory of Affor-
dances of J.J. Gibson [71]. In their words, an Affordance Space can be considered a potential
Activity Space. Like Personal Spaces, Affordance and Activity Space can be defined with a
variety of shapes, sizes depending mainly on the action(s) they are related to, but also the ob-
jects they are derived from, their type, geometry, possible states (e.g. on/off for a light switch).
While navigating through an Activity Space is to be avoided unless the robot needs to trigger
a focused interaction with the human(s), an affordance space can generally be crossed without
causing any disturbance - blocking it indefinitely would however not be socially accepted.

Finally, the last and fourth category of Social Spaces for human-robot interaction (4) can be
synthesized with the observation that “it seems that the behavior of people sharing spaces with
robots is not so different from the way they behave with other people” [13]. As humans expect
social robots to behave like humans, one could consider that the social spaces presented until
now also apply for robots.

Social Spaces are often represented using cost functions, that associate a value to all com-
binations of robot actions and action contexts, as shown in Kruse et al.’s survey [14]. Rather
than strictly forbidding robot navigation in any part of the Social Spaces, using a cost function
allows social navigation algorithms to ponder the movement cost of the robot against a cost
of entering the Social Spaces. As a general rule, the more the robot’s path penetrates into any
social space, the higher the cost: this can be seen in the various cost function examples given in

Chapter II. State of the Art 36

Fig.II.20. These cost functions are oftentimes discretized into cost maps (Cf. Fig.II.21), generally
square grids, associating each cell with a temporary occupancy cost. This facilitates the com-
bination of the wide variety of cost functions for the different Social Spaces that may overlap
one another, and allows for faster computations and simple visualizations, but as a drawback,
may significantly oversimplify the problem, while raising a new problem of choosing proper
weights to ponder costs with one another.

FIGURE II.20: Figure from Kruse et al.’s survey [14], roughly visualizing costmaps for dif-
ferent social spaces, represented as gray gradients (the darker, the higher the cost and need
to avoid the space). Obstacles are in black, robot is a square (in b), human is an oval shape.
Costmaps respectively represent, (a) object padding, (b) object occlusion, (c) hidden zones, (d)
basic comfort distance, (e) visibility, (f) activity space, (g) pass on their left, (h) space ahead for
moving (the human is moving towards the bottom-left corner). Shapes, size and cost distribu-

tion vary depending on the cost function, and can be straightforwardly combined.

(A) Obstacle costmap with
object padding
(Cf. Fig.II.20.a)

(B) Basic comfort distance
increases cell costs around

stationary human
(Cf. Fig.II.20.d)

(C) Space ahead moving
human increases cell costs

in the movement’s
direction (Cf. Fig.II.20.h)

(D) Cell costs are increased
on the human’s right side
to encourage robot to pass
on the left (Cf. Fig.II.20.g)

FIGURE II.21: Actually implemented discretized social costmap models in the standard ROS
Navigation Stack [15]. Layers can be combined through addition (bound with a maximum value).

Chapter II. State of the Art 37

Now, how would these Social Spaces designed for “classic” navigation, apply to a hypo-
thetical Social Navigation Among Movable Obstacles ? NAMO is still first and foremost a
navigation problem, which main focus is going from a start to a goal configuration. As such,
like for “classic” navigation, a social NAMO planner should seek to avoid computing robot
motion paths that cross the various social spaces mentioned above, as to not disturb humans,
unless some focused interaction with a human being is required.

As explained in the previous section, where NAMO actually differs from “classic” naviga-
tion is in the fact that it may displace obstacles in the environment: obstacles that will then
occupy a new space indefinitely. If a robot momentarily passing through any of the previously
mentioned social spaces is already considered to be a disturbance in an unfocused interaction
context, an obstacle being indefinitely placed in the same social spaces is bound to be consid-
ered an even greater disturbance. Imagine talking to someone or watching the television, and
a robot suddenly left some cardboard box or chair in between: surely, you would feel far more
bothered than if it quickly passed and left. Similarly, in the same way robots are expected to go
to specific zones in social spaces when engaging in focused interaction, one could expect that
moved objects may need to be placed in specific spaces.

Personal Spaces, Information Process Spaces and Activity Spaces are all human-centered
social spaces. That is, not only do they require the actual presence of human beings in the en-
vironment to exist, they are inherently spatially tied to the humans’ position in space. As such,
when humans move, these spaces will move along with them, and may eventually disappear
when their associated activity is over. Affordance spaces do however not disappear, as long
as the objects that generate them remain in the environment. Any time these spaces would be
used by a human (thus temporarily becoming activity spaces), the disturbance caused by an ob-
stacle left in an inappropriate affordance space by the robot would add on, over and over again
- until it became so uncomfortable the human would bother to move the obstacle elsewhere.

According to all the surveys on social navigation we have cited here, experimenting and
evaluating human-centered models is hard. For real-world experiments, finding human partic-
ipants and setting up the lab and robot for meaningful experiments is extremely time-consuming
and requires minute consideration of biases such as participants fatigue or adaptation to the ex-
periment. For simulated experiments, the difficulty lies in properly simulating relevant human
behaviors, which is already not a trivial endeavor when assuming “classic” navigation tasks
only, even with existing tools such as PedSim [84]: simulating a convincing social NAMO ex-
periment with humans would require to simulate their capability to interact with obstacles too.

These two observations, with the conclusion in the previous section that the core dif-
ference between NAMO and adjacent problems lies in the choice of obstacles to move and
their placement choice, motivate our study of a Social NAMO through the lens of affordance
spaces in Chapter IV. We believe that the first - and most relevant - consideration towards a
socially-aware NAMO is to ensure that even in the absence of humans at the time of NAMO
plan execution, the robot should carefully select obstacle placements so as not to disturb
humans when they will inevitably enter the space.

Chapter II. State of the Art 38

II. 2.1.2 Socially-aware robot task and motion planning

In contrast with the abundant Social Navigation literature, we could only find a few papers
describing Social/Human-aware variations of the other problems related to NAMO (Manipu-
lation Planning, Rearrangement Planning, Assembly Planning, and combined Task and Motion
Planning). All of these papers only addressed situations of direct/focused human-robot inter-
action, making it all the more relevant to explore the unfocused interaction that is caused by
the disturbance created by obstacle manipulations in NAMO.

More precisely, a lot of the socially-aware Manipulation Planning literature focuses on the
specific task of computing and proper hand-over motion sequences [85, 86, 87, 88, 89, 90, 91,
92, 93] - that is, the task where the robot must give a human a small object currently in its grasp
(Cf. Fig.II.22a). The presented situations and solutions do not quite fit a NAMO setting, as
NAMO is mainly concerned with obstacles that block the robot’s way, and generally of sizes
comparable to that of the robot, requiring the robot to carefully compute not only it’s body’s
path, but the obstacle’s too. Still, the model of the human interaction space may be useful to
address the concern of collaborative manipulation of obstacles in a NAMO problem. The rest
of the research focuses on collaborative manipulation in close proximity / a shared workspace
(e.g. moving individual objects on a table without colliding/interfering with each other’s ac-
tion, Cf. Fig.II.22b), mainly through prediction of the human’s actions [94, 95]. This last focus is
shared with the socially-aware Assembly Planning literature [96, 97, 98], and the socially-aware
Combined Task/Motion Planning literature [99, 100]. Again the presented situations and al-
gorithms do not fit a NAMO setting either as the workspace is fairly small, in contrast with
the much larger environments considered in the NAMO literature. None of these works ad-
dress the choice of obstacles to move and subsequent placement choice necessary in a NAMO
problem.

(A) Example handover task from [90]. (B) Example collaborative assembly planning task from
[96].

FIGURE II.22: Illustration of the two main situations addressed in the socially-aware vari-
ants of NAMO-related problems other than Social Navigation

Chapter II. State of the Art 39

II. 2.2 Multi-Robot coordination

In the same way that we needed to define, in the previous Section II. 2.1, specific vocabu-
lary and terms related to Social Robotics and Socially-aware robot navigation, task and mo-
tion planning, we will need to summarize relevant vocabulary for Multi-Robot coordination.
Hence, Section II. 2.2.1 will introduce these necessary terms, which will help us discuss existing
Multi-Robot works that somewhat resemble NAMO, and conclude as to how we will formulate
the Multi-Robot NAMO problem studied in this thesis in Section II. 2.2.2. The reader already
accustomed to the vocabulary may thus want to skip through the first section.

II. 2.2.1 Definitions

Let us start by clarifying an essential term that will be used throughout this section and the-
sis: we call a Multi-Robot System (abb. MRS), a group of several robots acting in a common
environment, also called workspace. In their recent 2021 survey [16], Verma & Ranga (which
we will refer to as “they” in this section) propose an up-to-date classification of such systems,
derived from previous surveys in the literature and most recently published works, in order
to situate existing MRS on a continuum between opposite terms. These terms are summarized
in Fig.II.23, and clarified below (unless stated otherwise, quoted text comes from [16]). Before
continuing further, we shall emphasize on the notion of continuum: a Multi-Robot System
rarely only fits a single one of the opposing terms we are about to present. More often than
not, according to the survey, actual systems in the literature are in an in-between, that may fit
with one term in some aspects, while some other aspects may be qualified as the opposite. Still,
many systems fit more with one term than with its opposite, and may be categorized as such -
while still bearing in mind that all is not black or white.

FIGURE II.23: Multi-Robot Systems (abb. MRS) Taxonomy proposed by Verma & Ranga in
2021 [16]

Chapter II. State of the Art 40

Coordinated/Non-Coordinated MRS: Multi-Robot Systems are generally Coordinated in that
they aware of each other - through sensing, active communication, or by operating with a
shared set of pre-determined rules [101]. This property is essential if the robots share common
resources, such as space for navigation, in order to prevent conflicts: concurrent access to a
same resource (e.g. in navigation: a collision, in NAMO: trying to manipulate a same obstacle).
Conversely, Non-Coordinated MRS are not aware of each other.

Homogeneous/Heterogeneous MRS: Verma & Ranga state that most MRS in the literature
are Homogeneous: with the same hardware and software. However, they underline that inter-
est in studying Heterogeneous MRS, with varying degrees of dissimilarity in either software,
hardware, or both, is growing, as robotics grow more popular and an ever-increasing variety or
robotics systems are released. Heterogeneity brings more versatility (increasing the diversity
of executable tasks), but at the cost of higher coordination complexity and difficulty compared
to homogeneous systems.

Cooperative/Competitive MRS: MRS exhibit collective behavior similar to that of human so-
ciety, that can either be Competitive or Cooperative [102]. Verma & Ranga define Cooperative
behavior as “interaction among robots to execute a task along with increasing the system’s
overall utility”, and inversely, Competitive behavior as “the case in which multiple robots
compete among themselves in order to satisfy their own interest”.

Communicating (Explicit/Implicit)/Non-Communicating MRS: A Cooperative behavior im-
plies Communication, that is, any way robots can exchange or sense some information about
each other. In a Non-Communicating MRS, “there is no information available about another
robot to any other one”, making coordination only possible through a shared set of pre-determined
rules (e.g. follow a line on the ground, always turn right, etc.). In Communicating MRS, the
way information can be shared is either classified as Explicit (syn. Direct), that is, using “addi-
tional communication hardware, a dedicated device for signals that can be understood by other
team members”, or Implicit (syn. Indirect), that is when “robots obtain information about other
member robots through the environment”. This notion is comparable to how Social Robotics
differentiate between Focused and Unfocused interaction, as discussed in Section II. 2.1.1.

Reactive/Deliberative MRS: Finally, MRS can be classified according to the way they deal
with changes in the environment as they execute their tasks [103], similarly to the domain of
navigation in unknown environments mentioned in Section II. 1.6. An MRS is called Delibera-
tive “if robots can cope up with any change in the environment by some approach to restructure
the overall team behaviors” - that is, reconsidering the global plan for all robots through ex-
plicit communication. Conversely, an MRS is called Reactive if “every single robot copes with
the changes in the environment by giving a robust solution to re-organize its own task with the
purpose of completing its initially given goal” - that is, locally adapting the individual robot’s
plan to deal with the change.

Chapter II. State of the Art 41

Preliminary conclusion: Unless robots were explicitly bound to strictly separate spaces, a
Multi-Robot NAMO problem inherently needs to be coordinated to some degree as to preserve
the fundamental NAMO guarantee of a lack of collisions. According to Verma & Ranga’s sur-
vey, Coordination has been defined in multiple ways in the literature, sometimes as a synonym
of Cooperation, and sometimes not. We shall retain the following definitions in this thesis: Coor-
dination is “the mechanism used for cooperation”[16], and Cooperation is the action by which
agents take into account the other agents’ actions so that “there is an increase in the total utility
of the system” [104]. Coordination approaches can be categorized based on various parame-
ters, of which we shall introduce below the most relevant ones according to Verma & Ranga,
that are summarized in Fig.II.24.

FIGURE II.24: Multi-Robot Coordination Taxonomy proposed by Verma & Ranga in 2021 [16]

Static/Dynamic Coordination: As mentioned previously, robots can be coordinated simply
using pre-determined rules or conventions that will ensure no conflicts may occur during nav-
igation (e.g. follow a line on the ground, respect automated signal lights, etc.): this type of
coordination is referred to as static [105]. All other coordination strategies are classified as dy-
namic, as they are adapted on the fly during execution, depending on the system’s state and
the perception the robot has of it.

Weak/Strong Coordination: Coordination can also be broadly described as Strong (syn. Tight),
“a method of coordination that is based on a coordination protocol” [103]. The more informa-
tion and discussion/negotiation are needed to achieve the coordination strategy, the stronger
the coordination. That is why Static coordination is conversely always qualified as Weak
(syn. Loose), while Dynamic coordination strategies that require the robots to share more than
their current state or goal, that is, up to their entire plan and/or decision process, are qualified
as strong.

Chapter II. State of the Art 42

Implicit/Explicit Coordination: Coordination can also be classified in the same way as MRS
on the basis of their means of communication. Implicit coordination uses perceptions of en-
vironmental changes, including observations of other robots (i.e. implicit communication), to
create emergent behaviors that allow to avoid conflicts. Explicit coordination uses intentional
communication (i.e. explicit communication) to achieve cooperation through a more or less
democratic consensus. Implicit coordination is more robust to communication systems failure
or unavailability, and scales better with growing number of robots in terms of computational re-
quirements, but cannot guarantee optimality alone, and may fail in solving tightly constrained
problems (e.g. many robots in comparatively little space) [16].

Centralized/Decentralized/Hybrid Coordination: The burden of coordination can be com-
pletely left to a single robot (the leader) which is referred to as Centralized, or shared among
the robots, in a word, Decentralized. Some coordination processes can have both centralized
and decentralized components, in which case they are referred to as Hybrid. Centralized co-
ordination approaches can be either classified as Strongly Centralized, as they use a single
pre-defined leader for the entire mission, or Weakly Centralized, where the leader may change
during the mission based on some criteria (e.g. communication signal strength, available com-
putational capability, etc.). Decentralized coordination approaches can be either classified as
Distributed, when all robots equally share the burden of coordination, or Hierarchical, that
is, with local leaders, for example each commanding a team of robots. Any of these coordi-
nation behaviors can be achieved regardless of communication being implicit or explicit, but
not necessarily in all coordination contexts, which is why they appear twice in Fig.II.24 to con-
vey this idea. Weak coordination is more robust to communication failure/unavailability than
strong coordination, as it does not rely on an unchanging single leader, although it is more
computationally demanding and complex to implement [16].

II. 2.2.2 Multi-Robot works with movable obstacles

As previously presented in Section II. 1.9, Multi-Robot NAMO has not been studied yet, be-
yond the heterogeneous drone and manipulator robot system of Mueggler et al. [12]. While
being a relevant use case, their system dodges the difficulty of a shared space, and the asso-
ciated explicit and strongly centralized algorithm can not scale beyond the two robots, as it was
never meant to deal with conflicts. Hence, in this section, similarly to Section II. 2.1, we shall
present works that somewhat resemble NAMO, in multi-robot variations of the robotics prob-
lems closely related to NAMO (as a reminder: Navigation Planning, Manipulation Planning,
Rearrangement Planning, Assembly Planning, and combined Task and Motion Planning).

Navigation Planning: Interestingly, multi-robot considerations, similarly to social ones, have
been most studied for the Navigation Planning problem [16]. Most of the work on Multi Robot
Navigation Planning can be found under the name of Multi-Agent Path Finding (abb. MAPF),
extending the Piano Mover’s problem of computing paths for each agent (i.e. robot) to their
respective destinations, that can be concurrently executed while guaranteeing the absence of

Chapter II. State of the Art 43

a collision [106, 107]. MAPF surveys [106][105] show that until 2019, the MAPF literature has
been focused on static grid environments where the agents are generally cell-sized, but also
most importantly, the only entities allowed to move: in MAPF, agents can not move obstacles.
The same surveys cite Conflict-Based Search (abb. CBS) [108] as the now most popular algo-
rithm to solve MAPF. It is only very recently, in a time period (2020-2022) coincidentally over-
lapping with that of the present thesis, that the MAPF literature started considering the possi-
bility of movable obstacles, proposing extensions of CBS to this context [17, 18]. Bellusci et al.
[17] introduced Configurable MAPF (abb. C-MAPF), which consists in computing both an envi-
ronment configuration that helps improve robot circulation and a solution to a MAPF problem
in said environment configuration. The problem formulation does authorize robots to move
the obstacles themselves as they execute their motion, but rather assumes that humans will
arrange the environment following the solver’s solution prior to having the robots navigate, so
that they may circulate more efficiently (Cf. Fig.II.25a showing two environment configurations
between which the solver should select the one that permits to solve the MAPF problem better).
In their simulated experiments, they actually had the solver remove rather than move obsta-
cles from the environment, further distancing the problem from NAMO, where obstacles can
only be moved. In contrast, Vainshtain et al. [18]’s extension to MAPF, “Terraforming MAPF”
(abb. TF-MAPF), is formulated under the hypothesis that actual agents move obstacle during
execution. However, as shown in Fig.II.25b, while this problem is much closer to NAMO, it
still differs greatly in that: only specific robots may manipulate objects (they do not have a nav-
igation goal themselves), and they can only manipulate shelve-like objects by passing under
them and lifting them.

(A) A warehouse where blue shelves can be put in two configurations
by humans before robot motion execution, and n = 10 agents need to

move from cell si to cell gi

(B) (Left) MAPF problem: agents a1 & a2
must circumvent obstacles to reach goals

g1 and g2. (Right) TF-MAPF problem:
robot am

1 passes under o4 to lift o3 and
open a shorter path for a1 & a2.

FIGURE II.25: (A) C-MAPF problem from Bellusci et al.’s paper [17], (B) MAPF and cor-
responding TF-MAPF problem from Vainshtain et al.’s paper [18]. Both consist in having
robots navigate in a warehouse with movable shelves. Vainshtain et al.’s approach is even

better understood with its accompanying video: https://bit.ly/3ImgfAw.

In both cases, these approaches remain firmly limited to cell-sized robots and movable
obstacles, in contrast with the evolution of NAMO towards more realistic world models
shown in Section II. 1. While MAPF is mostly studied and solved in a centralized fashion
with explicit communication (CBS), the larger problem of multi-robot navigation coordination
is generally approached in a decentralized fashion with explicit communication, in order to share
the computational costs between the robots, according to Verma & Ranga [16]. To this date

https://bit.ly/3ImgfAw

Chapter II. State of the Art 44

(2023), we could not find other mentions of movable obstacle use in the larger multi-robot
navigation literature.

Manipulation Planning: From a recent survey of collaborative manipulation in MRS [109],
Verma & Ranga [16] drew the conclusion that most research under the umbrella of Multi-Robot
Manipulation Planning focuses on the Multi-Agent Object-Pushing Problem (e.g. [110]). In this
problem, robots must move a single object together to a given position, focusing on coopera-
tive manipulation of a same obstacle, at the same time. A large portion of works in this domain
again rely on explicit communication and dynamic coordination, regardless of other characteris-
tics. Incorporating this collaborative manipulation ability of individual obstacles may be very
useful in NAMO problems, especially so for larger/heavier objects, that would be either im-
possible or too complex to confidently move them alone. However, this ability would only
be useful on specific occasions; before delving into this widely studied specific subproblem, it
appears to us that it is more pressing to address the Multi-Robot NAMO problem under its
original hypothesis that a single robot may manipulate a single movable obstacle at once.

Rearrangement/Assembly Planning: Interestingly, Levihn, with Igarashi and Stilman (the
founder of the NAMO problem), explored in 2012 the problem of Multi-Robot Rearrange-
ment/Assembly Planning [111], instead of Multi-Robot NAMO. In stark contrast with typical
NAMO problems presented in Section II. 1, robots are not blocked by movable obstacles in
[111], and there are no free space components to be joined. Movable obstacles all have final
position constraints that do not affect the environment’s topology significantly (Cf. Fig.II.26).

(A) Levihn et al.’s example environment from [111].
Robots are annotated with R, movable obstacles with
O, and corresponding goal configurations in empty

color-matching circles.

(B) Oyama et al.’s example environment from
[112, 113]. Robots are annotated with R, initial obstacle

configurations are red, goal configurations in green.

FIGURE II.26: Example environments in the Multi-Robot Rearrangement Planning litera-
ture: the initial and goal obstacle configurations do not really hamper robot motion to the

point of dividing free space into separate components.

All other works we could find with multiple robots navigating in a shared plane to rear-
range objects ([114, 112, 113]) were prior to Levihn et al.’s work, and shared the same afore-
mentioned characteristics differentiating them from NAMO. These prior works and Levihn
et al.’s were all strongly centralized, and required explicit communication. Later works under
the name of “Multi-Robot Rearrangement Planning” focused on experiments with multi-robot
arms fixed on a table [115, 116, 117], mainly consisting in Assembly Planning problems (with
priority constraints in object placement to assemble the goal construct), making them much

Chapter II. State of the Art 45

less relevant to our subject of study. Both rearrangement planning and assembly planning ar-
guably greatly differ from the NAMO problem, since the final position constraints they assume
for each movable object drastically reduce the search space. In none of these papers do the
robots need to choose which obstacles to move and where to leave them, which is actually
where a great part of the NAMO problem’s difficulty lies.

Combined Task and Motion Planning (TMP/TAMP): Finally, let us discuss Multi-Robot
TMP, as TMP is a super-set of the NAMO problem and all the aforementioned related prob-
lems, according to the recent survey of Garrett et al. [57]. The same survey shows that, while
problems that can be qualified as TAMP have existed for at least as long as robotics have been
studied, it is only recently, in the last decade, that the term has emerged and gained trac-
tion. In the first and only survey we could find on Multi-Robot Task and Motion Planning
by Antonyshyn et al. [118] (2023), we could not find Multi-Robot NAMO problems per se. In
cited papers focused on 2D navigation problems associated with manipulation of objects, such
as Motes et al.’s and Thomas et al.’s papers [119, 120], the objects either do not occupy physical
space that would hamper the robots’ navigation, or are not actually manipulated by the robot
itself (Cf. Fig.II.27a and II.27b).

(A) Motes et al.’s
example

environment from
[119].

(B) Thomas et al.’s example environment from
[120].

(C) Tang et al.’s example environment
from [121].

FIGURE II.27: Example environments in the Multi-Robot combined Task and Motion Planning
literature. In (A), trucks and boats exchange loads that don’t occupy space beyond the agent’s
geometrical footprint. In (B), room have doors that can be closed or opened during execution,
but by “deus ex machina”-like actions where a human would instantaneously change the

door’s state, not by the robot. In (C) the robots must remove all obstacles from the room.

Interestingly, the survey underlines the lack of real-world experimentations and validation,
similar to our own conclusion about the NAMO domain (Section II. 1.10), and in contrast to
existing conclusions on the Socially-aware robot navigation, task and motion planning domain
[14, 13]. It also makes the conclusion that comparatively fewer approaches are based on decen-
tralized than centralized coordination, and further research on decentralized coordination would
be welcome to improve the applicability of TAMP algorithms to environments with either a
large number of robots, or where individual robot failure is likely, or where communication
capabilities are limited. Beyond this survey, the Multi Robot combined Task and Motion Plan-
ning paper closest to the NAMO we could find was Tang et al.’s [121], discussing the problem
of Multi-Robot Clutter Removal (abb. MRCR), consisting in emptying a specified space from
all obstacles occupying it. While similar to NAMO in appearance, this problem assumes the

Chapter II. State of the Art 46

possibility of removal to infinity, and requires all objects to be moved, regardless on their im-
pact on robot navigation efficiency (Cf. Fig.II.27c). As underlined in the previous paragraph,
choosing which obstacles to move and relevant placements are characteristic subproblems
of NAMO, and need to be properly addressed.

Conclusion: In the end, similarly to Socially-Aware concerns, it is apparent that none of the
closest Multi-Robot problem formulations we could find actually address what we aim for:
having multiple agents efficiently navigate in cluttered human indoor environments, where
they need to also plan the manipulation of obstacles as needed to reach their goals. As such,
we are free to formulate Multi-Robot NAMO as a new problem, which we do in Chapter V.
For a first formulation, it would make most sense to start off with a fully homogeneous Multi-
Robot System, as it is simpler to devise. In order to ensure maximum robustness regarding the
possibility of individual robot or communication failure, we consider that the first approach
to Multi-Robot NAMO should be under the assumption of a Multi-Robot System that only al-
lows implicit communication, and use a fully distributed coordination strategy. That way, more
complex future Multi-Robot NAMO systems that would rely on explicit communication to co-
ordinate in more efficient manners, would always have a backup solution in case of aforemen-
tioned failure. Under this hypothesis we make of no explicit communication, robots would not
be able to communicate their individual navigation goals to each other: as such the system we
are envisioning for this thesis could be considered mostly competitive, although we shall see in
Chapter V how we may still create cooperative behaviors under these assumptions.

47

Chapter III

Revising and simulating reference
NAMO algorithms

From the previous state of the art, we have identified two relevant baseline algorithms upon
which we will build social and multi-robot extensions to NAMO in the following chapters:
(Wu&Levihn, 2014) [7] and (Stilman, 2005)’s [3] algorithms. In this chapter, we argue these
choices and present an upgraded version of these algorithms. Indeed, we found limitations
(e.g. action space restrictions, edge cases and sensing requirements) that we consequently
addressed, while preserving the original theoretical properties, under a more coherent and
generic formalization. All these improvements facilitate experimentation in the following chap-
ters. These algorithms (illustrated in Fig.III.1) have been implemented, and tested, in the open
simulator and datasets we created to fill the gap left by the lack of tools targeted at the study
of NAMO problems. This simulator is presented in the second part of this chapter, setting the
stage for our extensions to the NAMO problem in subsequent chapters.

Robot Goal Movable Obstacle Static Obstacle Path Past configurations

(A) Initial world state - the robot is
assumed to know all about it at t0

(B) (Wu&Levihn, 2014)’s algorithm
is only capable of moving the big

trapezoid, taking the
longest-distance path

(C) (Stilman, 2005)’s algorithm
moves the two top-most obstacles,

taking a shorter-distance path

FIGURE III.1: Example solutions of algorithms implemented in our simulator. Neither algo-
rithm is capable of planning through the middle obstacles because manipulating the big one

requires to first manipulate the small one.

III. 1 Our NAMO Problem Formalization

Before discussing our two chosen algorithms, let us first lay down some notations and vo-
cabulary from both (Wu&Levihn, 2014) [7] and (Stilman, 2005)’s[3] algorithms, as to create a

Chapter III. Revising and simulating reference NAMO algorithms 48

common and coherent problem formulation for both. For this, we fuse the formalisms of Stil-
man’s PhD thesis for Navigation Among Movable Obstacles [19], and of Levihn’s Master thesis
for Navigation Among Movable Obstacles in Unknown Environments [34].

III. 1.1 Workspace

The NAMO problem has been originally formulated by Stilman [19] as an instance of geometric
motion planning [122]. As such, the problem can be defined in a workspace W (syn. world, or
environment), that is modeled as a 2D or 3D Euclidean space, containing a set of distinct entities
E =< E1, . . . , Ee > |E ∈W that are unambiguously separated into the following:

• a single manipulator robot R ∈ E with n degrees of freedom,

• a set of obstacles (syn. objects) O =< O1, ..., Oo >⊂ E that are either:

– fixed (syn. static) obstacles F =< F1, ..., Ff >⊂ O, that cannot be moved by the robot,

– movable (syn. manipulable) obstacles M =< M1, ..., Mm >⊂ O, s.t. F ∩ M = ∅ that
can be moved by the robot (note that O = F ∪M).

While the robot may be articulated (as in Stilman’s original definition and some of the im-
plementations presented in our NAMO State of the Art in Section II. 1), and thus composed of
several links (syn. rigid geometries), obstacles are represented using a single rigid geometry.
In the literature, such geometries are defined as polyhedrons (3D) or polygons (2D), but this is
more a matter of implementation than definition. For the sake of simplicity, and without loss
of generality, we assume that each entity Ei ∈ E is a non-self-intersecting polygon in the rest of
this thesis, as illustrated in Fig.III.1.

The space occupied by an entity at a time t is written Et
i ; more concretely, assuming any

entity is an undeformable polygon, Et
i designates its vertices’ coordinates at time t, and the

volume (i.e. the set of points) they encompass. Since the entities are assumed to be rigid bodies,
an entity’s state (syn. configuration) qt

Ei
at time t can be reduced to its position and orientation;

more concretely, for rigid polygons, qt
Ei
= (xt

Ei
∈ R, yt

Ei
∈ R, θt

Ei
∈ [0, 2π]).

The NAMO problem consists in having the robot reach a final configuration (syn. goal config-
uration) qg

R. This final configuration only constrains what the last robot state must be in terms
of chronological order, but does not specify a specific time for it to be reached.

A world state (syn. world configuration) at time t may thus be defined as the set of entity
configurations Wt =< qt

E1
, ..., qt

Ee
>. Actually, since only the robot and movable obstacles

may have different configurations depending on time, we can further reduce a world state
to Wt =< qt

R, qt
M1

, ..., qt
Mm

>. The initial world state can be referred to as Wt0 . Similarly, we
may refer to the state of all obstacles at time t as Ot, all movables obstacles as Mt, and all
static obstacles as Ft. We write Wt

/Ei
the state of the world without considering entity Ei (this

is particularly relevant to represent that intersections should be ignored with the obstacle Mi

selected for manipulation during some planning computations). Similarly, we write Wt
∪Ei

the
state of the world considering an extra entity Ei.

Chapter III. Revising and simulating reference NAMO algorithms 49

We write as CW the abstract space of all possible configurations/states (also referred to as config-
uration space) of Wt. The dimension of this abstract space is equal to the number of variables in
Wt, multiplied by the number of admissible values they may have; concretely, assuming rigid
polygons with 3 degrees of freedom, assuming n admissible values sampled for each variable,
that is n3×(m+1) (the number of states grows exponentially with the number of obstacles).

In Stilman’s original NAMO problem formulation [19], it was assumed that not only ge-
ometric, but also kinematic and dynamic parameters of every entity were part of the world
model, such as object mass, center of mass, moment of inertia, or friction parameters - as these
parameters were directly available to the robot through their simulation tool. While this allows
more physically realistic estimation of obstacle movement and energy consumption, it arguably
greatly complexifies the model, making it that much harder to implement, write test scenarios
and overall reliably experiment with. Also, in the real world, accessing such parameters for ob-
stacles is non-trivial, even for human beings - hence we shall assume a purely geometric world
model in this thesis, a choice shared by Wu&Levihn’s model.

III. 1.2 Actions and Action spaces

III. 1.2.1 Actions

Any state “changes”, that is, transitions between world states, are expressed as actions (syn. op-
erators) between time steps t and t + 1, written as A(t, t + 1) or At for short. Actions describe
continuous motion between these time steps: an action can thus be interpreted as following a
path or trajectory τ(qt

R, qt+1
R)1. Following this path implies covering a swept volume (eq. swept

area in 2D) S(qt
R, qt+1

R) =
⋃

ta∈[t,t+1]
Rta , corresponding to all point in space that are occupied by

the robot within t and t + 1. S(At) can be used as an abstract notation of the swept volume
for any action At. NAMO distinguishes between two primitive (voluntarily abstract) opera-
tors/actions:

• Navigate, which refers to the contact-free transit paths of defined by Alami et al. [40]
we mentioned in Section II. 1.3. More precisely, the robot may be in sliding contact with
obstacles, but its motion must not displace any obstacles:

Navigate : (Wt, τ(qt
R, qt+1

R))→Wt+1,

s.t. S(qt
R, qt+1

R) ∩Ot = ∅

• Manipulate, which refers to the manipulation of an object Oi, or its transfer [40], again
without collision of neither robot nor manipulated obstacle with other obstacles. Natu-
rally, in addition to the robot’s path τ(qt

R, qt+1
R), the Manipulate operator also implies a

path τ(qt
Mi

, qt+1
Mi

), covering a swept volume S(qt
Mi

, qt+1
Mi

) =
⋃

ta∈[t,t+1]
Mta

i . The operator is

however not directly parameterized by the manipulated obstacle’s path: instead it is pa-
rameterized by the initial contact (syn. grasp) Gj ∈ G(Mi), G(Mi) being the set of relative

1It is important to note here that while paths may not be explicitly parameterized by time, we use the variable t
to refer to a chronological ordering on states and operations.

Chapter III. Revising and simulating reference NAMO algorithms 50

transformation functions, mapping and constraining the obstacle’s motion to the robot’s,
where grasping the obstacle is possible through contact. Distinct initial contacts or grasps
Gj yield distinct obstacle motion given the same robot trajectory τ(qt

R, qt+1
R):

Manipulate : (Wt, Oi, Gj, τ(qt
R, qt+1

R))→Wt+1,

s.t. S(qt
R, qt+1

R) ∩Ot = ∅ and S(qt
Mi

, qt+1
Mi

) ∩Ot/Mi = ∅

Action and state validity not only depend on the absence of collision with other objects, but
also on actual robot capabilities. The exact formulation (also called action space A) of Navigate
and Manipulate abstract actions depends on implementation, which we shall discuss in Section
III. 3.2. Instantiated actions of the Navigate abstract action are denoted as AN ∈ AN , and as
AM ∈ AM for Manipulate.

III. 1.2.2 Action sequences (Plans)

A Plan (syn. Action Sequence), denoted P , is a continuous succession of actions indexed from Ats

to Ate , where the resulting configuration of affected entities for one action is equal to the starting
configuration of the same entities for the next action. The way actions have been previously
defined, a plan, or a subsequence of a plan (also called a plan component), consisting of only
continuous successive Navigate actions can be reduced to a single Navigate action. Similarly,
this is also true for continuous successive Manipulate actions under the condition that they are
applied on the same movable obstacle Mi, with the same grasp Gj.

The swept volume of the entire plan can be defined as the union of the swept volumes of
its individual actions:

S(P) =
⋃

t∈[ts,te]

S(At)

A plan can only be valid as long as its swept volume S(P) does not intersect with other obstacles
than the ones being manipulated. The set of all valid plans is written P(t). In this set, the subset
of plans consisting purely of Navigate actions is noted PNav(t).

III. 1.2.3 Manipulation Action Spaces

Stilman distinguished three main abstract action spaces, also called manipulation classes, for the
Manipulate operator, derived from the robot grasping literature. Let us provide a summary of
said manipulation classes, with a summary of their respective advantages and disadvantages,
in order of increasing generality and decreasing reliability:

• Grasping (Constrained Contact): This refers to a rigid grasp of the object by the robot,
fully constraining its degrees of freedom, creating a fixed transform relative to the robot’s
grasping link. This manipulation class has minimal modeling and computational require-
ments, and only requires an accurate geometric model to ensure reliable manipulation
execution. However, this class lacks generalizability, as it typically requires the contact
between the robot and the object to satisfy “form closure”, in other words, that any robot’s

Chapter III. Revising and simulating reference NAMO algorithms 51

motion should not cause involuntary object release [123]. Depending on robot capabili-
ties, some objects such as large boxes without handles may to be too difficult or impossi-
ble to grasp.

• Pushing (Constrained Motion): This refers to non-prehensile [123] manipulation, which
can only partially constrain the object’s degrees of freedom. By restricting the robot’s
motion instead of the obstacle’s, it is possible to guarantee a fixed transform relative to
the robot’s pushing link and the obstacle, thanks to the static friction that prevents the ob-
jects from unexpectedly slipping [124, 125]. While more general than grasping in terms of
number of manipulable obstacles, it either requires extra modeling or additional hypothe-
ses as to friction properties. Any deviation from the friction model may cause unreliable
plan execution because of obstacle slip.

• Manipulation Primitives: Refers to the use of forward physics simulation to predict the
transformation between robot and object motion, for both grasping/pushing and other
modes of interaction that allow translational or rotational slip [126, 127], with various
degrees of constraint in both grasp and motion. This allows for non-fixed transforms
relative to the robot, yielding motion solutions that the other two manipulation classes
can not. This generality comes at the cost of even more modeling of dynamic properties
of the obstacle (e.g. mass, center of mass, moment of inertia, . . .), which leaves even more
space for unreliable plan execution caused by any errors in estimating these parameters.

In conclusion, the more constraint in contact or motion, the fewer parameters need to be
modeled, and the more reliable the plan execution is, at the cost of generality. As stated earlier,
the choice of a manipulation class, or combination thereof, depends on actual robot’s capa-
bilities and the actual environment being modeled. For instance, Stilman used Manipulation
Primitives in their algorithm’s implementation [3], while Wu & Levihn first used Pushing then
Grasping in their algorithm’s implementations [33, 7]. We shall discuss our specific choice of
implementation later in Section III. 3.2.

III. 1.3 Sensing

In Stilman’s original NAMO problem formulation [19], it was assumed that the geometric,
kinematic and dynamic parameters of every entity were known to the robot, without uncer-
tainty in sensing or as to the effect of robot actions on these parameters, at any time. Basically,
the robot was assumed to be omniscient, meaning there was no difference to be made between
the robot’s world model, and the actual world (real or simulated) - a very strong, though con-
venient assumption.

Wu&Levihn’s problem formulation extended NAMO to Unknown Environments, and by
doing so, created a need to differentiate between the actual world (syn. reference world) where
actions are executed, which we shall refer to as Wre f , and the world as perceived by the robot
WR. In their formulation, it is assumed that the robot senses its environment in between each
action execution, collecting partial information as to obstacles’ geometry only, resulting in three
possible types of incoherence between Wre f and WR at any time t:

Chapter III. Revising and simulating reference NAMO algorithms 52

• The sets of static or movable obstacles F, M ⊂WR are erroneous: the robot may have mis-
classified an obstacle as movable or static, by assuming its movability before interaction.

• The sets of obstacles O, F, M ⊂ WR are incomplete: in other words, the robot may have
not detected all obstacles yet,

• The geometry model of an obstacle Ot
i ⊂ WR is incomplete: the obstacle may not have

been fully observed yet.

This new formulation requires two extra hypotheses in order to handle these possible in-
consistencies:

• Obstacles are assumed movable by default: Detected obstacles belong to M ⊂ WR un-
less a Manipulate operator has failed (eq. the resulting manipulated obstacle’s state is not
as expected). This allows to handle erroneous classification.

• Unknown space is free space: Space that has yet to be observed is assumed to be free.
This allows to handle both incompleteness of obstacle sets and geometry models.

Under these same sensing hypotheses, it is possible for Stilman’s algorithm (or any other
existing offline NAMO planning algorithm, for that matter) to be applied to unknown environ-
ments too, as long as its plans are recomputed when newly available data becomes available.
This may however be computationally costly, as Stilman’s algorithm explores a much greater
part of the search space, and also because the algorithm is not dynamic, in that it does not reuse
previously computed plans to hasten new computations.

III. 1.4 Domain Restrictions

Stilman’s and Wu&Levihn’s formulations share some additional restrictions, beyond the ele-
ments that have been defined so far:

One obstacle at a time The robot may only manipulate a single obstacle at once, which may
not interact with other obstacles during this process (in other words, a second or more obsta-
cle(s) cannot be pushed through contact with the manipulated obstacle). This hypothesis shall
be preserved, motivated by the previously made observation that our state of the art (Cf. Sec-
tion II. 1) shows that the entire NAMO literature operates under this hypothesis (except for the
“pre-NAMO” era paper of Chen&Hwang [38]).

Grasping configurations The robot may only grasp the obstacle at specific sampled grasping
points along the obstacle’s edges, requiring the robot to be in specific grasping configurations to
reach them. More precisely, Stilman’s formalization assumed an even distribution of the grasp-
ing points (with an arbitrary spacing distance), and derived one robot grasping configuration
for each at a radius distance from the grasping point (Cf. Fig.III.2a). Wu&Levihn’s formal-
ization reduced Stilman’s set of valid grasping points to the center of the axis-parallel sides
(Cf. Fig.III.2b). On one hand, this choice significantly reduces the search space and makes it

Chapter III. Revising and simulating reference NAMO algorithms 53

more independent of obstacle size (at most 4 grasping points instead of as many as one can
fit on the obstacle’s sides at a fixed distance), making it less computationally costly. On the
other hand, it correspondingly reduces the solution space, constraining the number of solvable
problems (i.e. generality). This reduction however physically makes sense, as it is far easier to
constrain an object’s movement by grabbing it closest to its geometric center (which we as hu-
mans naturally do). In this thesis, we shall restrict grasping points similarly to Wu&Levihn,
but to the center of all obstacle sides instead of only axis-aligned sides, as to not be restricted
to an axis-aligned world model. In any case, our new algorithmic formulations for both algo-
rithms allow for any method of computation of valid grasping configurations, as long as it
yields a finite set of such configurations.

(A) In blue, valid grasping points sampled along the
table’s edge, in green, corresponding robot

configurations, in (Stilman, 2005)’s formulation.

q
R

manip

O1

O2

M 3

M 1

M 2

(B) In purple, valid robot grasping configurations for
obstacle M3, for (Wu&Levihn, 2014)’s formulation.

FIGURE III.2: Illustration of the different grasping configuration restrictions for (Stilman,
2005) and (Wu&Levihn, 2014)’s problem formulations

Goal is always free Both Stilman’s and Wu&Levihn’s formulations (and subsequent algo-
rithms) suppose that the robot goal configuration qg

R must remain free of obstacles for the en-
tire plan’s duration. In the following section, we generalize their two algorithms to remove this
constraint when a single movable obstacle Mi intersects with qg

R.

Action space restrictions Wu&Levihn’s formulation only allowed axis-aligned translational
manipulations of obstacles. In the following section, we show that this restriction is not actually
a fundamental requirement of the problem definition, and can be dropped by generalizing the
algorithm to a continuous world model instead of a grid-discretization of it.

III. 1.5 Cost & Optimality

As mentioned in Chapter II, Navigation Among Movable Obstacles being fundamentally a
Navigation problem, it seeks to minimize the robot displacement cost associated with each action
At, of an estimation function C(At) of distance, time or energy, depending on the implemen-
tation hypotheses as to the robot capabilities and the physical characteristics of obstacles. As
such, we can write the cost of a plan P as the cumulated sum of each of its actions:

C(P) = ∑
t∈[ts,te]

C(At)

Chapter III. Revising and simulating reference NAMO algorithms 54

The exact computation method of this cost is mainly implementation-dependent, according
to what the user wishes to optimize. Still, as we’ve noted in our state of the art (Cf. Section II.
1.10, it is relevant in NAMO to differentiate the cost of Navigate and Manipulate operators,
generally through an approximation of energy (syn. work), to account for the additional diffi-
culty of displacing an obstacle in addition to the robot’s body.

On one hand, since Stilman’s omniscient world and sensing model assumed knowledge
of kinematic and dynamic parameters in addition to geometry, for every entity in the world,
the work cost could be trivially accurately estimated as the product of Force and Traversed
Distance for both the robot and the obstacle. On the other hand, since Wu&Levihn’s world and
sensing model did not offer kinodynamic data, they chose to operate with a simplified model
of weighted distance similar to that of Chen&Hwang [38], assuming a constant force estimate
for Navigate and Manipulate operators, respectively written CN and CM under the constraint
that:

CM > CN ≥ 0

As Wu&Levihn’s problem formulation also assumed uniform action cost as actions were
limited to axis-aligned unit translations, assuming a number of n navigation actions and m
manipulation actions, the plan cost could easily be computed as:

C(P) = n× CN + m× CM

Given that, as argumented in Section III. 1.3, we opted for the fully geometric world repre-
sentation of Wu&Levihn, we also opted for their constant-force cost model, albeit generalized to
allow rotations and non-uniform costs (for instance, to properly reflect the additional energy
consumption of a diagonal movement in a square grid). In this generalized model, two addi-
tional constant moment estimates for Navigate and Manipulate actions are needed, respectively
Cθ

N and Cθ
M, to weigh the angular distance due to rotational movement. Similarly, the force

constants CN and CM are used to weigh the euclidean distance due to translational movement.
These two products yield a generic energy cost estimate that can be added to obtain the actual
action cost for Navigate and Manipulate actions respectively2:

C(AN(t, t + 1)) = CN ×
√
(xt+1

R − xt
R)

2 + (yt+1
R − yt

R)
2 + Cθ

N × (θt+1
R − θt

R)

C(AM(t, t + 1)) = CM ×
√
(xt+1

R − xt
R)

2 + (yt+1
R − yt

R)
2 + Cθ

M × (θt+1
R − θt

R)

We note as P∗ the plan with minimal cost:

P∗ = argminP∈P(t)(C(P))
2More concretely, in all our experiments, we choose parameter values so that the cost of a unit rotation action is

equal to the cost of a unit translation action in axis-aligned directions, and manipulations actions are twice the cost
of equivalent navigation actions.

Chapter III. Revising and simulating reference NAMO algorithms 55

III. 1.6 Space Components and Openings

III. 1.6.1 Space Components

In Section III. 1.1, we defined the configuration space CW as the abstract space of all possible
configurations/states of the world Wt. We write the slice (syn. subspace or space component) of all
robot configurations CR(Wt). This subspace can be further cut into more specific spaces that
will extensively be used in the next sections:

• the space of all collision-free robot configurations:

C f ree
R (Wt) = {qR ∈ CR(Wt)|R ∩Ot = ∅}

• the space of all accessible robot configurations, more precisely, all the collision-free robot
configurations that can be reached from the current robot configuration using only Navigate
actions:

Cacc
R (Wt) = {qR ∈ C f ree

R (Wt)|∃τ(qt
R, qR) s.t. S(qt

R, qR) ∩Ot = ∅}

• the space of all colliding robot configurations with a movable obstacle Mi, noted:

χMi
R = {qR ∈ CR(Wt)|R ∩Mi ̸= ∅}

• the space of all robot configurations that exclusively collide with a specific movable ob-
stacle, noted:

exc χMi
R = {qR ∈ χMi

R (Wt)|R ∩Ot
/Mi

= ∅}

The space of all collision-free robot configurations, C f ree
R (Wt), can also be expressed as the

union of all free space components, the disjoint sets of robot configurations where the robot may
Navigate from any one configuration to another without ever having to use a Manipulate op-
erator:

C f ree
R (Wt) = {C1, . . . Cd} with Ci = {qR ∈ C f ree

R (Wt)|∃τ(q1
R, q2

R) s.t. S(q1
R, q2

R) ∩Ot = ∅}

III. 1.6.2 Openings

Another fundamental notion to Stilman and Wu&Levihn’s formulations (and arguably, to the
whole NAMO domain), is the concept of new opening. When a robot moves obstacles in a
NAMO problem, it is for the purpose of finding a lower-cost path to its goal configuration - or
finding a path at all. When the robot considers possible motions for an obstacle, it must thus
determine when a new - ideally lower-cost - path to the goal has been indeed been created by
a specific motion sequence, as to decide whether it is worth considering or not: this is, in broad
words, checking for the existence of a new opening. Let us now formally define this concept of
new opening, using the notion of homotopic plans, that needs to be defined first, derived from
the definition of Igarashi & Stilman [128]:

Chapter III. Revising and simulating reference NAMO algorithms 56

Homotopic plan: Two pure navigation plans P1, P2 ∈ PNav(t) are homotopic if and only if
there exists no known obstacle in the area enclosed by the paths that the robot traverses if
executing the plans. Otherwise, they are ahomotopic.

New opening: A Manipulate action created a new opening if the set PNav(t′) at time t′ after
the execution of the Manipulate action has at least one plan P that is ahomotopic to all the plans
in the set PNav(t) at time t prior to the execution of the manipulation action.

III. 1.7 NAMO Problems

Having properly formalized the context, we can formulate a generic definition of the NAMO
problem:

General NAMO Problem: Given an initial workspace configuration Wt0 , the NAMO prob-
lem consists in computing, if it exists, a plan P for a manipulator robot R from its initial con-
figuration qt0

R to a goal configuration qg
R, while being allowed to Manipulate movable obstacles

Mi ∈ M as necessary, guaranteeing the absence of any collisions between the robot R and
manipulated obstacles with any other obstacles Oi ∈ O.

Optimal NAMO Problem The optimal NAMO problem further constrains the General NAMO
Problem to computing the minimum-cost plan P∗ under the same otherwise stated constraints.

III. 2 Baseline NAMO Algorithms

In this section, we first present and illustrate the original algorithms’ logic, then provide and
explain our improved pseudocode formalization. The original pseudocode formalization of
these algorithms is provided in Appendices B, C and D. Hence, if you wish to have a better
understanding of the originals, we invite you to keep the Appendices pages at hand while
reading this chapter for easier reference - this is however not necessary if you only wish to
understand the algorithms themselves. Still, this section does assume a basic understanding
of standard graph search algorithms (Breadth-First Search, Dijkstra and A∗). Appendix A con-
veniently provides a reminder about these algorithms - and, more importantly, a pseudocode
formalization that fits with the one used in this entire document. If you are unfamiliar with
these algorithms, please do consult this appendix first before continuing.

III. 2.1 (Wu&Levihn, 2014)’s Algorithm

One of the original ambitions of our work as it started in 2018, was to execute NAMO (with
our social & multi-robot extensions or not) on a humanoid Pepper robot, using only its onboard
sensors, with only a map of static obstacles (like walls and such) as prior knowledge. Hence,
our attention quickly turned to the corpus of work of Wu&Levihn [33, 34, 35, 7], as it met this
requirement of limited prior environment knowledge (Cf. Table II.1), while providing a local
optimality guarantee.

Chapter III. Revising and simulating reference NAMO algorithms 57

The other great advantage of this algorithm, is that one could arguably call it the “simplest”
or “most straightforward” NAMO algorithm out there. Indeed, as it only generates plans
where a single obstacle will be manipulated at most, it completely ignores the fundamental
NAMO challenge of object manipulation ordering in order to focus on the object selection. By
focusing on this single problem, the algorithm drastically reduces the search space, resulting in
computationally-efficient planning in an environment that is discovered as the robot navigates.
It also makes it a very relevant entry point to understand more complex NAMO algorithms,
like (Stilman, 2005)’s algorithm we will present in Section III. 2.2.

III. 2.1.1 Algorithm outline

In this section, we present the original structure of (Wu&Levihn, 2014)’s algorithm. Our im-
provements will be subsequently highlighted in the next section, facilitating their understand-
ing since the algorithm will have been thoroughly presented by then.

(Wu&Levihn, 2014)’s algorithm computes and executes locally optimal plansP∗ from a robot
start configuration qt

R to a goal configuration qg
R (Cf. Fig.III.3a). A plan is a sequence of discrete

actions, that are either part of the robot’s manipulation action spaceAM, or its navigation action
space AN , depending on whether the robot is manipulating an obstacle or not. A function C
maps each action to a positive displacement cost that approximates the real distance, time or
energy expense, depending on the application. When used on a plan as C(P), the function is to
be understood as the sum of the individual action costs - an optimal plan minimizes this cost
function.

R

M1

M2

P*

q
R
g

O1

O2

M3

(A) Perceived world Wt0 -
Onew = {M1, M2}

O1

O2

M3

M1

M2

P*

(B) Perceived world Wt1 -
Onew = {O1, O2, M3}

FIGURE III.3: Illustration of obstacle discovery and subsequent re-planning.
Robot field of view voluntarily not shown for the sake of simplicity - it is as-

sumed that O1, O2 and M3 are suddenly discovered at t1.

Plan execution (Wu&Levihn, 2014)’s algorithm is meant to be used with a limited robot per-
ception - its plan changes as new obstacles are discovered. As an online planning algorithm,
its formulation thus not only covers plan computation, but also its execution - checking for
plan validity at each time step and triggering re-computation when necessary. As the algo-
rithm supposes that the environment does not change beyond the robot’s own actions, it

Chapter III. Revising and simulating reference NAMO algorithms 58

only needs to re-plan if the currently executed optimal plan P∗’s remaining actions intersects
with the set Onew of newly discovered or updated obstacles. This re-planning process is illus-
trated in Fig.III.3: the robot initially executes a purely navigational plan, since M1 & M2 do not
block the way (Fig.III.3a). Upon discovering obstacles O1, O2 & M3, the robot updates its plan
to manipulate M3 and reach the goal.

Task-level planner As we explained in Chapter II, NAMO algorithms are generally hierar-
chized with a task-level planning routine at the top, that interleaves obstacle selection and
motion-level planning routines calls, in order to create the NAMO plan. (Wu&Levihn, 2014)’s
algorithm follows this same structure. For this algorithm, the high-level task-planning routine
consists in:

• Trying to compute an optimal navigation path P∗ from its current configuration qt
R to its

goal configuration qg
R, while avoiding all obstacles (Fig. III.4a),

• Then, iterating over movable obstacles, trying to compute a lower-cost three-step plan
P∗Mi

to replace P∗ consisting in the manipulation of a single obstacle Mi (Fig.III.4b). We
will refer to this process as “evaluating” obstacles.

O1

O2

M3

M1

M2

P*

q
R
g

(A) First, the optimal plan avoiding
all obstacles is computed,

C(P∗) = 16

O1

O2

M3

M1

M2

P* = P*M3

(B) Then, the optimal plan
manipulating M3 is computed,

C(P∗M3
) = 12

FIGURE III.4: The task planner steps that yield the plan seen in Fig.III.3b at the
same Wt1 world state. P∗ is replaced by P∗M3

as it has a lower cost.

The three-step NAMO plan Before we delve into the obstacle selection routine, we need to
further characterize the three-step NAMO plan. This plan always follows the same structure
(illustrated in Fig.III.5):

• Step 1: navigation/transit path Pto_obstacle from current robot configuration qt
R, to a con-

figuration near the obstacle qmanip
R that allows interaction,

• Step 2: manipulation/transfer path Pmanip from the previous configuration qmanip
R to the

configuration at which the robot leaves the obstacle qcur
R so that it creates a new opening

(Cf. Section III. 1.6.2),

• Step 3: navigation/transit path Pto_goal from the previous configuration qcur
R at which the

robot leaves the obstacle, to the robot goal configuration qg
R.

Chapter III. Revising and simulating reference NAMO algorithms 59

Pto_obstacle

Pmanip Pto_goal

O1

O2

M3

M1

M2

q
R
manip

q
R
g

q
R
t

q
R
cur

FIGURE III.5: Obstacle manipulation three-step
NAMO plan - detailed notations

q
R
manip

C
heur

e

O1

O2

M3

M1

M2

FIGURE III.6: VALID-GRASPS(M3) in purple
dots, euclidean distance cost underestimate Ce

heur

Obstacle selection We previously mentioned that the task planner iterates over movable ob-
stacles to find a lower cost NAMO plan than avoiding all obstacles. However, so far, we have
only shown the three-step NAMO plan for M3 - not for M1 nor M2. These obstacles are ac-
tually never evaluated by the algorithm, as they cannot yield a better plan than M3. This is
because the obstacle selection routine prioritizes the evaluation of movable obstacles that are
most likely to yield a lower-cost plan.

This prioritization of obstacles to evaluate is done through two ordered lists of obstacle and
cost underestimate tuples (Oi, Cheur): eList and mList (Represented as tables in Fig.III.7, a
figure detailing the step by step resolution of a NAMO problem by the algorithm). Each list
uses a different cost underestimate Cheur of the cost of the three-step plan that would manipulate
the associated obstacle. For eList, the underestimate is the euclidean distance between the
goal and its nearest manipulation configuration Ce

heur = min(|qg
R − qmanip

R |, ∀qmanip
R ∈ VALID-

GRASPS(Mi)3) (Cf. Fig.III.6). This underestimate is always valid, as it is fully updated at each
re-planning. For mList, the underestimate is the sum of the transfer path cost and the transit
path cost to the goal Cheur = C(Pmanip) + C(Pto_goal), only updated when the obstacle has been
evaluated (Fig.III.7c)4. When available, the underestimate in mList is always prioritized, as it
is more informed. The plan search is exited early if the best underestimate for the currently
considered obstacle exceeds the cost of the best plan computed so far C(P∗) - hence why M1

and M2 are not evaluated. Otherwise, the plan search is stopped when all obstacles have been
evaluated. This process is illustrated and explained step-by-step in Fig.III.7.

Obstacle manipulation planning So far, we have presented the high-level task planning rou-
tine and the obstacle selection routine, but we have yet to explain the three-step plan motion-
planning routine itself (Pto_obstacle, Pmanip, Pto_goal). Once an obstacle is selected for evaluation
by the task planner, the motion planning routine iterates over the valid grasp robot configu-
rations qmanip

R ∈ VALID-GRASPS(Mi) (Cf. Fig.III.6), to try and compute a three-step plan for
each (Fig.III.8 provides a step-by-step overview of the process for one). Only if a transit path
Pto_obstacle to the grasp robot configuration qmanip

R can be found (Fig.III.8b), does the algorithm

3The valid grasp robot configurations are implementation dependent. In our case, these configurations are the
ones where the robot’s front’s midpoint coincides with the obstacle’s sides midpoints (Cf. Fig.III.6).

4This underestimate is only proven valid as long as no obstacle is moved - hence the reset of mList upon a ma-
nipulation action.

Chapter III. Revising and simulating reference NAMO algorithms 60

eList mList

C(P*)
R

M1

M2

P*

q
R
g

O1

O2

M3

M1
M2

14
16

15

(A) At t0: M1 & M2 detected, no manipulation
computed as they are non-blocking, optimal navigation

plan P∗ is executed - eList is updated

O1

O2

M3

M1

M2

eList mList

C(P*)
P*

q
R
g

M1
M2

M3
14
16

16

4

(B) At t1: O1, O2 & M3 detected, M3 invalidates plan P∗
- a new plan P∗ avoiding all obstacles is computed to

obtain an initial cost estimate C(P∗) and the lists’
traversal pointers eIndex & mIndex are initialized.

Pto_obstacle

Pmanip Pto_goal

O1

O2

M3

M1

M2

eList mList

C(P*)

M1
M3

M2

M3
14
16

4 9

12

q
R
manip

q
R
g

q
R
t

q
R
cur

(C) Still at t1: M3 is evaluated because smallest entry of
both lists and not yet in mList. Once evaluation is done,

mList and the upper bound C(P∗) are updated.

O1

O2

M3

M1

M2

eList mList

C(P*)

M1
M3

M2

M3
14
16

4 9

12

P* = P*M3

(D) Still at t1: Optimal plan P∗ is set to the three-step
manipulation plan P∗M3

, as M3 is skipped in mList as
already evaluated, and now smallest entry in eList is
M1 with cost 14 > 12 (cost of P∗). Evaluation is thus

stopped, and M2 & M1 are not evaluated.

FIGURE III.7: Step-by-step resolution of a NAMO problem by (Wu&Levihn, 2014)’s algo-
rithm. The blue arrows in the tables represent the traversal indexes eIndex and mIndex for

eList and mList respectively.

attempt to compute, for this grasp robot configuration qmanip
R , the other two plan steps Pmanip

& Pto_goal . While Pto_obstacle is computed by using a simple A∗ graph search over the robot’s
navigation action space AN , Pmanip & Pto_goal are computed by means of a special breadth-first
search we discuss below.

This breadth-first search explores the robot’s manipulation action space AM. Starting from
the grasp robot configuration qmanip

R , actions AM ∈ AM are simulated to yield neighbor-
ing robot-obstacle configurations (qnext

R , qnext
Mi

) - this tuple constitute the search tree node
(Fig.III.8c). Within this breadth-first search of the robot’s manipulation action space, an A∗

search over the robot navigation action space AN is used to compute the third step Pto_goal . If
Pto_goal exists, then a global opening to the goal exists (Cf. definition in Section III. 1.6.2), and
the full three-step obstacle manipulation plan, P∗Mi

, can be updated (Fig.III.8d). However, this
costly A∗ search is not executed for every simulated action of the encompassing breadth-first
search: a preemptive local opening detection subroutine (described further below) ensures this.
Now is a good opportunity to remind the reader, that when the full three-step obstacle manip-
ulation plan P∗Mi

gets computed, the associated plan cost underestimate used by mList (of the
obstacle choice evaluation routine) is updated too.

Chapter III. Revising and simulating reference NAMO algorithms 61

O1

O2

M3

M1

M2

P*

q
R
g

(A) For reference: the optimal plan
P∗ avoiding all obstacles,

C(P∗) = 16

Pto_obstacle

O1

O2

M 3

M 1

M 2

q
R

manip

q
R

g

q
R

t

(B) The transit path Pto_obstacle to the
first grasp robot configuration

qmanip
R

O1

O2

M 3

M 1

M 2

q
R

g

q
R

t

(C) Breadth-first search start: valid
neighbors configurations of qmanip

R
are computed by iterating over

actions AM ∈ AM

O1

O2

M 3

M 1

M 2

P *
M3

(D) New local opening detected:
third plan step Pto_goal is computed,

providing a first full obstacle
manipulation plan P∗Mi

O1

O2M

M 3

1

M 2

(E) Collision detected: search tree
branch is cut

O1

O2M

M 3

1

M 2

(F) Cest > C(P∗Mi
): search tree

branch is cut and search is stopped,
P∗ is set to P∗Mi

as C(P∗Mi
) < C(P∗)

FIGURE III.8: Step by step manipulation planning for movable obstacle M3,
computed at t1. Manipulation action space AM simplified to axis-aligned pushes for the

sake of readability.

But before being added to the breadth-first search tree, neighboring configurations must
meet several conditions: The most significant one - but also the most computationally intensive,
hence executed last - is the collision check5 between the next robot-obstacle state and the rest
of the world representation Wt

/Mi ,R. While this first condition is a fundamental constraint,
the other two are computational performance improvements. The first verifies that the action
does not reverse-traverse the search tree early, to avoid unnecessary costly collision checks.
The second is more specific to this algorithm, and verifies whether pursuing evaluation of
the neighbor (and consequentially - its successors) can actually lead to a better plan. This is
achieved by underestimating the cost of the third plan step Pto_goal as the euclidean distance
|qg

R − qnext
R | between this neighbor configuration qnext

R and the goal qg
R. If this underestimated

plan cost Cest = C(Pto_obstacle) + C(Pmanip) + |q
g
R − qnext

R | surpasses the cost of the current best
plan C(P∗Mi

), or the plan avoiding all obstacles P∗, then the search branch is cut, considerably
limiting the search tree expansion (Fig.III.8e and III.8f).

5The exact operation depends on the world representation being used - more on this in III. 3.2

Chapter III. Revising and simulating reference NAMO algorithms 62

New Opening detection Computing the third plan step Pto_goal is by far the most computa-
tionally expensive instruction in the neighbor configuration computation loop we previously
described. In the worst case (no path/opening to the goal), a full accessible configuration space
search needs to be conducted - requiring correspondingly many additional costly robot colli-
sion checks6. In order to avoid a majority of these worst-case scenarios, a local new opening
detection search algorithm is used.

The local opening detection algorithm basically relies on the idea that when evaluating the
movement of a single obstacle, it can only create a new opening in its own close vicinity. This
“close vicinity” is defined as the area occupied by the movable obstacle’s footprint inflated by
the robot’s diameter (not radius !). This area is computed for the initial state and final state after
the manipulation action applied on obstacle Mi, and respectively written as M∗ti (Fig.III.9a) and
M∗t+1

i (Fig.III.9b)7. The algorithm then computes the Blocking Areas for each state: the geo-
metric intersections between the inflated obstacle and the other obstacles in the environment
(Fig.[III.9a, III.9b]). Finally, these Blocking Areas are compared: if at least one of the initial
Blocking Areas ∈ BAt does not intersect with any of the final Blocking Areas ∈ BAt+1, then
it means this initial Blocking Area has been freed, and a local new opening has been created
(Fig.III.9c).

This local opening detection algorithm guarantees the absence of false negatives - that is,
not detecting a local opening when one exists. Otherwise, the full plan would not get computed
when it should, making the whole (Wu&Levihn, 2014) algorithm lose its completeness and
optimality properties. It may however false positives (detecting a local opening when there
is no global opening), which does not affect the overall algorithm’s properties, as they will be
verified by the full Pto_goal A∗ search.

(A) Obstacle M3 inflated by robot
inscribed circle’s diameter at time t

(M∗t3) and associated Blocking Areas
BAt (intersections with O1 & O2)

(B) Obstacle M3 inflated by robot
inscribed circle’s diameter at time

t + 1 (M∗t+1
3 - blue dots) and

associated Blocking Areas BAt+1

(intersections with O1 & outer wall -
red dots rectangles)

(C) The three intersection cases
between the Blocking Areas:

(i) unblocked area - new local
opening detected,

(ii) area still blocked,
(iii) newly blocked area

FIGURE III.9: Local Opening Detection example - O2 no longer blocks the local area around
M3 at t + 1: new local opening detected

6The A Star algorithm has linear time complexity of O(|E|), E being the number of edges in the graph.
7If the robot is not represented by a circle but by a polygon, the circumscribed circle’s diameter is used for the

initial state inflation, and the inscribed circle’s diameter for the final state one - this, as to avoid any false nega-
tives.

Chapter III. Revising and simulating reference NAMO algorithms 63

III. 2.1.2 Generalization to larger action spaces, continuous environments & edge cases

As we implemented and tested the original algorithm described previously, we realized its
limitations and ambiguities in formalization. Thus, we endeavored to completely rewrite the
pseudocode formalization, while:

• generalizing the algorithm to larger action spaces with arbitrary positive action costs,
and to continuous environments representations,

• properly addressing edge cases where the original formalization would either fail to find
a solution, or enter an infinite loop,

• unifying notations in a coherent manner (e.g. multiple assignation operators⇐, = or←
were unified to← to avoid confusions).

Note for the reader The full rewritten algorithms are given here for reference. In these algo-
rithms, we will denote the relevant modifications discussed here with blue text. Thus, it is not
necessary to read the full algorithms to understand the modifications discussed in this section.
Although they were completely rewritten because of the original formalization’s8 ambigui-
ties, the original logic textually described in the previous section III. 2.1.1 remains completely
relevant, and has been fully preserved. Hence, page numbers to the appropriate textual expla-
nations given in the previous section are provided in the algorithm’s headers, should you wish
to read them fully.

Solving infinite looping edge cases This re-formalization of (Wu&Levihn, 2014)’s algorithm
started by properly separating the online plan execution logic from the plan computation
logic9. We respectively rewrote them as Algorithms 1 (EXECUTE) and 2 (PLAN). This sepa-
ration actually allowed us to fix a first infinite loop that occurred in the original algorithm, in
the edge case where no plan avoiding all obstacles and no plan manipulating any of the ob-
stacles were found. This would trivially happen for example, if only static obstacles blocked
access to the goal (Fig.III.10a). Now, the once-affected loop (Alg.1, l.5) is properly terminated
by returning failure in this case where absolutely no plan could be found (Alg.1, l.10,15).

This same situation where only static obstacles were to block the way to the goal, was ac-
tually causing another loop (Alg.2, l.8) to cycle indefinitely. Actually, even if a plan avoiding
all obstacles was found, but could not be replaced by a better plan manipulating a movable
obstacle (Fig.III.10b), the loop would cycle indefinitely too. This was because the original ob-
stacle routine10 did not explicitly formalize these cases, which is why we completely rewrote it
as Algorithm 3 (SELECT-OBSTACLE). These edge cases now trigger the unambiguous return
of a NULL value (Alg.3, l.2-4), that allows the calling loop (Alg.2, l.8) to properly terminate.

8Original formalization available in Appendices B and D.
9The plan execution and computation logic were originally formalized as a single function called “OPTI-

MIZED” (Appendix B, Alg.13).
10The obstacle choice logic was originally formalized as a function called “GET-NEXT” (Appendix B, Alg.14) + a

single-line condition in the calling function “OPTIMIZED” (Appendix B, Alg.13, l.14).

Chapter III. Revising and simulating reference NAMO algorithms 64

O1

O2

O3

M 1

M 2

q
R

g

(A) The way to the goal is blocked by static obstacles

O1

O2

O3

M 1

M 2

P*

q
R

g

(B) A plan avoiding all obstacles exists, but no better
plan can be found by manipulating M1 or M2

FIGURE III.10: Example edge case scenarios where the original algorithm formalization
would enter infinite loops

Algorithm 1: Plan execution routine (EXECUTE) of our improved (Wu&Levihn,
2014) algorithm - Cf. logic description page 57

Data: Robot current configuration qt
R, Robot goal configuration qg

R
Result: Success if goal reached, Failure otherwise.

1 EXECUTE(qt
R, qg

R)
2 mList, eList← ∅, ∅ // variables used for obstacle selection in Alg.3
3 P∗ ← ∅

4 PLAN(P∗, qs
R, qg

R)

5 while qt
R ̸= qg

R do
6 Onew ← Onew∪ GET-NEW-INFORMATION() // if failed manipulation → then

the manipulated obstacle is updated in Onew as static
7 if P∗ ∩Onew ̸= ∅ then
8 PLAN(P∗, qt

R, qg
R)

9 Onew ← ∅

10 if P∗ ̸= ∅ then
11 nextAction← GET-NEXT-ACTION(P∗)
12 if nextAction ∈ AM then
13 mList← ∅
14 EXECUTE(nextAction)

15 else return Failure

For reference, here are the details of the other changes in the Obstacle Choice routine (Alg.3):

• The now recursive nature of the routine serves to properly integrate an originally mis-
placed condition relative to obstacle choice, that used to be in the calling function “OPTI-
MIZED” (Appendix B, Alg.13, l.14), and causing an infinite loop when the condition was
not verified. It is now expressed as lines 8 & 9 in Algorithm 3, properly ensuring that,
when an obstacle Mi is listed in both lists mList and eList, the entry in eList is skipped (as
the heuristic cost is less accurate) and return the entry of mList, as intended.

• Once an obstacle Mi has been evaluated and thus added or updated in mList, we also add
it to a new separate list called evaluated (Alg.3, l.11-13, initialization in Alg.2, l.3). This

Chapter III. Revising and simulating reference NAMO algorithms 65

guarantees that the obstacle will not be evaluated twice in the evaluation loop (which
could happen in the original formalization).

Algorithm 2: Task-level plan computation routine (PLAN) of our improved
(Wu&Levihn, 2014) algorithm - Cf. logic description page 58. Static obstacles are im-
plicitly removed from eList and mList.

Data: Current optimal plan P∗, Robot current configuration qt
R, Robot goal configuration qg

R

1 PLAN(P∗, qt
R, qg

R)
2 eIndex, mIndex ← 0, 0
3 evaluated← ∅
4 for Mi ∈ Onew do
5 UPDATE(eList, Mi)

6 P∗ ← A∗(Wt, qt
R, qg

R)
7 Mi, Cheur ← SELECT-OBSTACLE(eList, mList, eIndex, mIndex, evaluated)
8 while C(P∗) ≥ Cheur and Mi ̸= NULL do
9 P , Cl(Mi) = PLAN-FOR-OBSTACLE(Mi, P∗, qt

R, qg
R)

10 UPDATE(mList, (Mi, Cl(Mi)))
11 if C(P∗Mi

) < C(P∗) then P∗ ← P∗Mi

12 Mi, Cheur ← SELECT-OBSTACLE(eList, mList, eIndex, mIndex, evaluated)

Algorithm 3: Obstacle selection routine (SELECT-OBSTACLE) of our improved
(Wu&Levihn, 2014) algorithm - Cf. logic description page 59

Data: Heuristic obstacle lists mList and eList, corresponding indexes mIndex and eIndex, list of
evaluated obstacles evaluated

Result: Selected obstacle Mi, corresponding heuristic cost Cheur

1 SELECT-OBSTACLE(mList, eList, mIndex, eIndex, evaluated)
2 Mi, Cheur ← mList[mIndex] // Mi, Cheur ← NULL, ∞ if index out of range
3 Me

i , Ce
heur ← eList[eIndex] // Me

i , Ce
heur ← NULL, ∞ if index out of range

4 if Cheur = Ce
heur = ∞ then return NULL, ∞

5 if Cheur ≤ Ce
heur then mIndex ++

6 else
7 eIndex ++

8 if Me
i ∈ mList then

9 return SELECT-OBSTACLE(mList, eList, mIndex, eIndex, evaluated)
10 Mi, Cheur ← Me

i , Ce
heur

11 if Mi /∈ evaluated then
12 APPEND(evaluated, Mi)
13 return Mi, Cheur

14 else return SELECT-OBSTACLE(mList, eList, mIndex, eIndex, evaluated)

World representation & Robot action space The original algorithm formalization was de-
signed under the following closely coupled hypotheses:

• world representation as a 2D binary occupancy square grid,

• the robot manipulation action space AM was restricted to axis-aligned cell-sized transla-
tions, with constant action costs C(AM) = CM ∈ R∗+, ∀AM ∈ AM.

Chapter III. Revising and simulating reference NAMO algorithms 66

While these hypotheses fit the artificial environments used by Wu&Levihn in their experi-
ments (Fig.III.11), they do not fit with challenging (Fig.III.12a) and/or more realistic (Fig.III.12b)
environments of our own dataset that is used for experiments in the next chapters (where we
discuss the relevance of these scenarios). Fig.III.13 showcases how important rotations are for
maneuverability, by “zooming in” on sample situations that may occur in our environments
(Fig.III.12). Fig.III.13a illustrates a trivial case where the robot simply cannot find a solution
without rotating. On the other hand, Fig.III.13b shows how not allowing rotation would make
the algorithm severely less relevant for nonholonomic robots. Indeed, if rotations are forbid-
den, the only solution is to translate sideways while holding the obstacle. Any robot with
nonholonomic drive models, such as differential, Reeds-Shepp or Dubins drives, could only
drive in a straight line, thus failing to find a solution.

(A) Environment from [33]. Blue obstacles are static,
yellow ones are movable, robot is green, goal is red.

(B) Environment from [7]. Grey obstacles are static,
colored ones are movable, robot is blue, goal is red.

FIGURE III.11: Original environments examples used by Wu&Levihn in their experiments.
These environments are all artificial, obstacles are placed randomly in axis-aligned directions.

(A) “Intersections” (B) “CITI Laboratory”

FIGURE III.12: Examples of our experimentation environments in the following chapters:
for quite a few obstacles, it is difficult, if not completely impossible for the robot to maneu-

ver while holding them to find relevant manipulation paths.

Chapter III. Revising and simulating reference NAMO algorithms 67

(A) (Left) Even if the robot is omnidirectional, it cannot
pass without rotation. (Right) The robot successfully

reaches the goal by rotating the obstacle
counter-clockwise.

(B) (Left) A nonholonomic robot cannot solve this
problem without rotation. (Right) An omnidirectional
robot may however solve it by translating sideways

with the obstacle.

FIGURE III.13: Zoomed-in sample situations that may occur in Fig.III.12, where the rele-
vance of rotation is shown.

As mentioned in the previous section III. 2.1.1 (page 59), the original obstacle manipulation
planning routine used a customized breadth-first search algorithm11, but over a limited set of
four axis-aligned, cell-sized translations. We generalized this search, by first rewriting it as a
standard Dijkstra algorithm call (Alg.4, l.7). We parameterized the search with a method that
computes the valid neighbor robot configurations from the current one by exploring a generic
manipulation action space AM (Alg.4, l.11-12). The only constraint for this action space AM,
is to yield a finite configuration space - that is, a finite graph12. All the customized logic from
the original breadth-first search has been extracted and encapsulated in this function13. Using
Dijkstra’s algorithm allows actions to have arbitrary positive costs, which are more relevant
than constant costs for a generic action space. As a side note, this rewrite also allowed us to
properly formalize the iteration over grasping configurations (Alg.4, l.4).

We also wrote the continuous geometry equivalent (Alg.5) to the efficient local opening
detection algorithm14 originally written for a discrete regular 2D binary occupancy grid. By
doing so, we have generalized the original algorithm to continuous geometry spaces, where,
among other possibilities, computing rotations can be done without geometrical information
loss. In other words, rasterizing obstacles is no longer a necessity for the algorithm to be used.

Solving Obstacle-on-Goal problems In [34], Levihn emitted the hypothesis that the algo-
rithm only works under the assumption that the goal configuration is completely “free of ob-
stacles”. However, this was not further discussed leaving it to the reader to understand why
the algorithm could not deal with situations as shown in Fig.III.14 - cases that very often oc-
curred in our multi-Robot experiments in Chapter V. Actually, we discovered it all came down
to the original efficient opening detection algorithm14 that would not detect a new local open-
ing in these cases, resulting in the algorithm not finding a plan. Thus, as we rewrote it (Alg.5),
we solved this by simply adding the goal configuration geometry as an obstacle in the function
call (Alg.4, l.25, noted as Wt

∪Rg/Mi ,R
).

11This customized breadth-first search algorithm was originally formalized as a function called “OPT-
EVALUATE-ACTION” (Appendix B, Alg.15).

12This is a precondition for Dijkstra’s algorithm to be complete and optimal (and thus, the overall algorithm to
remain optimal too).

13The main difference between breadth-first search and Dijkstra’s algorithm is the use of a more computation-
ally demanding priority queue instead of a queue. Our implementation automatically detects if action costs are
constant in which case, the queue types are transparently switched - making it computationally equivalent.

14Formalized in [35], formalization copied in Appendix D.

Chapter III. Revising and simulating reference NAMO algorithms 68

(A) (Left) The original algorithm can not find a solution,
as the goal is covered by an obstacle. (Right) Our

modified algorithm successfully clears the goal by
translating the obstacle further.

(B) (Left) The original algorithm can not find a solution,
as the goal would be covered during manipulation.

(Right) Our modified algorithm successfully clears the
goal by translating the obstacle further.

FIGURE III.14: Zoomed-in sample situations that may occur in Fig.III.12, where the robot
needs to move an obstacle over the goal.

Algorithm 4: Obstacle manipulation planning routine (PLAN-FOR-OBSTACLE) of
our improved (Wu&Levihn, 2014) algorithm - Cf. logic description page 59

Data: Obstacle to evaluate Mi, current optimal plan P∗, current robot configuration qt
R, goal

robot configuration qg
R

Result: Optimal manipulation plan for the evaluated obstacle P∗Mi
, corresponding heuristic

cost Cl(Mi)

1 PLAN-FOR-OBSTACLE(Mi, P∗, qt
R, qg

R)
2 P∗Mi

← ∅

3 Cl(Mi)← ∞

4 for qmanip
R ∈ VALID-GRASPS(Mi) do

5 Pto_obstacle ← A∗(Wt, qt
R, qmanip

R)
6 if Pto_obstacle = ∅ then skip

7 DIJKSTRA(qmanip
R , qg

R, GET-NEIGHBORS-MANIP)

8 return P∗Mi
, Cl(Mi)

9 GET-NEIGHBORS-MANIP(qcur
R)

10 neighbors← ∅
11 for AM ∈ AM do
12 qnext

R , qnext
Mi
← APPLY-ACTION((qcur

R , qcur
Mi

), AM)

13 if qnext
R ∈ closedList then skip

14 C(Pmanip)← gScore[qcur
R]+ C(AM)

15 Cest ← C(Pto_obstacle) + C(Pmanip) + |q
g
R − qnext

R |
16 if Cest ≥ C(P∗Mi

) or Cest ≥ C(P∗) then skip

17 if qnext
R ∩Wt

/Mi ,R ̸= ∅ or qnext
Mi
∩Wt

/Mi ,R ̸= ∅ then skip

18 APPEND(neighbors, qnext
R)

19 if CHECK-NEW-OPENING(Wt
∪Rg/Mi ,R

, Mcur
i , Mnext

i) then
20 Pto_goal ← A∗(Wnext, qnext

R , qg
R)

21 if Pto_goal ̸= ∅ then
22 if C(Pmanip) + C(Pto_goal) < Cl(Mi) then
23 Cl(Mi)← C(Pmanip) + C(Pto_goal)

24 if C(Pto_obstacle) + C(Pmanip) + C(Pto_goal) < C(P∗Mi
) then

25 Pmanip ← RECONSTRUCT-PATH(cameFrom, qmanip
R , qcur

R)

26 P ← Pto_obstacle + Pmanip + Pto_goal

27 P∗Mi
← P

28 return neighbors

Chapter III. Revising and simulating reference NAMO algorithms 69

Algorithm 5: New opening detection routine (CHECK-NEW-OPENING) for continu-
ous geometries - Cf. logic description page 62

Data: Current world state without the polygons of the robot and the obstacle to evaluate, but
with the polygon of the robot if it were on the goal Wt

∪Rg/Mi ,R
, Current state of the

obstacle to evaluate Mt
i , next state of the obstacle to evaluate after action Mt+1

i
Result: True if new local opening detected, False otherwise

1 CHECK-NEW-OPENING(Wt
∪Rg/Mi ,R

, Mt
i , Mt+1

i)
2 M∗ti ← INFLATE-BY-ROBOT-CIRCUMSCRIBED-CIRCLE-DIAMETER(Mt

i)

3 M∗t+1
i ← INFLATE-BY-ROBOT-INSCRIBED-CIRCLE-DIAMETER(Mt+1

i)

4 BAt ←Wt
/Mi ,R

∩M∗ti

5 BAt+1 ←Wt
/Mi ,R

∩M∗t+1
i

6 for BAt
i ∈ BAt do

7 if not IS-STILL-BLOCKED(BAt
i , BAt+1) then return True

8 return False

9 IS-STILL-BLOCKED(BAt
i , BAt+1)

10 for BAt+1
j ∈ BAt+1 do

11 if BAt
i ∩ BAt+1

j then return True

12 return False

As a concluding remark, we underline our improvements constitute a generalization, and
not just a different interpretation of the algorithm. This being because our formalization is
also capable of planning under the same original constraints with equivalent computational
requirements.

III. 2.1.3 When more knowledge becomes an issue

As we have seen in the previous sections, (Wu&Levihn, 2014)’s algorithm can only generate
plans manipulating at most a single obstacle (Cf. page 58). For instance, in the scenario illustrated
in Fig.III.15a, the algorithm’s task-level planner can not compute a plan that would contain the
transfer paths necessary to manipulate the two movable obstacles. That is why the algorithm
was designed by Wu&Levihn under the hypotheses that, as illustrated in Fig.III.15b:

• the robot can only acquire knowledge through its own limited sensing capabilities,

• all space not yet observed is free space,

• and obstacles are to be considered movable until manipulating them fails.

This way, the algorithm does not have to globally consider a NAMO problem, but can locally
solve smaller one-obstacle problems, as it discovers them (Fig.III.15c).

This approach however makes the algorithm’s resolution capabilities extremely dependent
on the robot’s sensing capabilities, such as the field of view’s size and shape. For instance,
in the previous example, if the field of view’s radius (Fig.III.15b) were big enough to cover
both movable obstacles, the algorithm would not be able to solve the problem. With such an
approach, more knowledge or better sensing capabilities do not necessarily lead to better results, and
may even prevent the algorithm from finding a solution.

Chapter III. Revising and simulating reference NAMO algorithms 70

(A) Problem full view - The
algorithm can’t solve it as is, as it
requires two transfers in a plan.

(B) Without any prior knowledge,
the robot only perceives obstacles

within its field of view

(C) The problem can thus be solved
as new plans are computed as

obstacles are discovered.

FIGURE III.15: (Wu&Levihn, 2014)’s algorithm : Unsolvable problem using full prior knowl-
edge (A), but solvable using a limited (clear blue) circular field of view (B, C).

Upon reading this first example (Fig.III.15), one may be tempted to think that if we only
provided prior information on static obstacles, the algorithm would still find a solution ? The
answer is no, as shown in the counter-example of Fig.III.16.

(A) Initial world state
(ground truth)

(B) Initial world
perception - No prior

world knowledge
provided

(C) First plan
circumvents the

perceived movable
obstacles

(D) Plan is updated
as obstacles are

discovered, until
failure to move the

top one.

(E) Plan is updated to
move the middle

obstacle and goal is
finally reached.

(F) Initial world perception - But
this time, knowledge about static
obstacles is provided beforehand

(G) The robot tries to plan while
avoiding the obstacles, but fails to

find a non-colliding plan.

(H) The robot tries to plan a plan by
moving the middle obstacle, but
fails as the robot’s body would

collide with the bottom obstacle.

FIGURE III.16: Example showcasing how even partial prior environment knowledge may
negatively affect the ability of (Wu&Levihn, 2014)’s algorithm - [B, C, D, E] assume no prior
knowledge, while [F, G, H] assume static obstacles are prior knowledge. The example as-
sumes that the robot manipulation action space is limited to forward translations (pushes).

The conclusion of this observation however is not that using prior knowledge is completely
irrelevant. Rather, it is that if planning first using prior knowledge fails (Fig.III.16 [F, G, H]),
then planning a second time only with sensed data may still succeed (Fig.III.16 [B, C, D, E])15.
But still, these limitations can very easily lead to bad planning choices that end up blocking
the robot, as illustrated in Fig.III.17. This thus calls for an alternative algorithm that can pro-
duce plans with multiple transfer paths, without having to forego prior knowledge when it is
available: this is what we shall discuss in the next section with (Stilman, 2005)’s algorithm.

15The provided pseudocode can be trivially modified for this by calling the PLAN function (after Alg.1 line
7) a second time if P∗ = ∅, but this time stripping the world representation Wt of any prior knowledge / only
keeping the accumulated sensed data.

Chapter III. Revising and simulating reference NAMO algorithms 71

(A) Initial world state (ground
truth) - As in Fig.III.15a,

(Wu&Levihn, 2014)’s algorithm
cannot find a solution with full prior

knowledge.

(B) Without prior knowledge,
(Wu&Levihn, 2014)’s algorithm

ends up blocking itself.

(C) (Stilman, 2005)’s solves the
problem with full prior knowledge

(Cf. following section).

FIGURE III.17: Unsolvable case for (Wu&Levihn, 2014)’s algorithm - whatever its sensing
capabilities, and solution provided by (Stilman, 2005)’s algorithm.

III. 2.2 (Stilman, 2005)’s Algorithm

As presented in Chapter II, Stilman proposed the first - and still the only - resolution complete
algorithm for a class of problems called LP1 [3]. As discussed in Chapter II, an LP1 problem
is a NAMO problem that can be decomposed in 1-obstacle NAMO sub-problems (keyholes),
where the solution to each sub-problem does not interfere with the solution of the other sub-
problems. This means that a NAMO plan solving a Linear Problem of type 1 (LP1) may contain
several obstacle manipulations.

In these terms, (Wu&Levihn, 2014)’s algorithm guarantees completeness and optimality for
a subclass of LP1 problems, where the sequence of sub-problems is actually a single problem
(one obstacle manipulation). Comparatively, we could say that (Stilman, 2005)’s algorithm thus
(partially) drops optimality in exchange for completeness for the entire class of LP1 problems -
the reason why we chose to use it as a base in the next chapters.

III. 2.2.1 Algorithm outline

In this section, we present the original structure of (Stilman, 2005)’s algorithm, as we did with
(Wu&Levihn, 2014)’s algorithm. Again, our improvements will be subsequently highlighted in
the next section.

Task-level planner (Stilman, 2005)’s algorithm was designed as an offline planning algo-
rithm. Hence, it does not provide a plan execution routine, but only a task-level planner and
its obstacle selection and motion planning subroutines. Thus, (Stilman, 2005)’s algorithm can
be used as is only under the assumption of omniscient knowledge about the environment (ob-
stacles’ geometry, type and position are known with no uncertainty)16. The task-level planner
either yields:

• a transit path to the goal qg
R if one exists (by means of an A∗ star search over the navigation

action space),

16It is however possible to use (Stilman, 2005)’s algorithm under the same perception hypotheses as
(Wu&Levihn, 2014)’s algorithm. This can be achieved by using the same improved execution routine (Alg. 1) we
previously formalized.

Chapter III. Revising and simulating reference NAMO algorithms 72

• or a sequence of alternating transit and transfer paths until a transit path to the goal qg
R

can be computed (illustrated by Fig.III.18).

As such, in contrast with (Wu&Levihn, 2014)’s algorithm, (Stilman, 2005)’s algorithm will not
even try to find a plan moving obstacles if a direct transit path to the goal exists. This is the main reason
why it can not be proven to be displacement-cost optimal.

(A) Initial world state with color-filled Components
C f ree

R = {C1, C2, C3, C4, C5}
(B) Red dots are a path traversing obstacles, produced

by the heuristic obstacle selection planner. Blue dots are
grasping points, green dots are corresponding robot

manipulation configurations.

(C) Solution yielded by (Stilman, 2005)’s algorithm (D) Task-level search tree, with obstacles as edges and
components as nodes

FIGURE III.18: LP1 problem example copied from [19]. The robot navigates in C1 to transfer
the Table 1 to fuse C1 with C2, then navigates to the Couch to fuse C2 with C4 in order to

finally navigate to its goal.

In order to decompose LP1 NAMO problems into independent 1-obstacle sub-problems,
the algorithm relies on the underlying structure of space, expressed as Components of free
space, shown as colored areas in Fig.III.18a. The general idea of the algorithm is thus to try
and fuse the component where the robot originally is (C1 in fig.), to the one where its goal
configuration qg

R is (C4 in fig.) and every relevant intermediate component in between (C2

in fig.), by each time moving a single obstacle (here, the Table 1 then the Couch). Since the
algorithm was proven complete in the resolution of LP1 problems [3, 19], failure to find a plan
would mean the problem was of a harder class than LP1 - or that no solution exists.

Structurally, the task-level planner is formulated as a recursive forward best-first search of
the best tuple (obstacle to move MF, component to fuse with CF) - e.g. (MF = Table 1, CF = C2)
in Fig.III.18. Once the pair is selected by using the obstacle selection routine (described a bit

Chapter III. Revising and simulating reference NAMO algorithms 73

further below), a transfer path Pmanip is computed, by searching over the robot’s manipulation
action space AM until an opening is created - similarly to (Wu&Levihn, 2014)’s algorithm. If
so, then the obstacle selection and manipulation planning sequence is recursively executed
until a transit path Pto_goal to the goal qg

R is reached or deemed unreachable. As the recursive
loop backtracks after reaching the goal, the intermediate transit path to the selected obstacle
Pto_obstacle is computed, and both paths are added to the overall plan. This process results in the
final sequence of alternating transit/transfer paths leading to the goal: the NAMO plan.

Obstacle selection Stilman’s obstacle selection routine inspired many of the subsequent works
(in particular, but not only [46, 4, 51]) and is a core element of the algorithm. This routine selects
the next obstacle to move/component to fuse with (MF, CF) pair, by using a relaxed-constraint
path planner (A∗ variant) that is allowed to plan through obstacles. This planner returns the first
obstacle MF and component CF it encountered in the search branch that reached the goal first,
following the 4 allowed transitions below, illustrated in Fig.III.19:

1. Free space to free space: from a collision-free robot configuration to another (formally:
qcur

R , qnext
R ∈ C f ree

R);

2. Free space to obstacle space: from a collision-free robot configuration to a robot config-
uration that intersects exclusively with a single movable obstacle Mi (formally: qcur

R ∈ C f ree
R

and qnext
R ∈ exc χMi

R);

3. Obstacle space to obstacle space: from a robot configuration that intersects with a single
movable obstacle Mi to a robot configuration that intersects with the same single movable
obstacle Mi (formally: qcur

R , qnext
R ∈ exc χMi

R);

4. Obstacle space to free space: from a robot configuration that intersects with a single
movable obstacle Mi to a collision-free robot configuration (formally: qcur

R ∈ exc χMi
R and

qnext
R ∈ C f ree

R).

In Fig.III.19b, we can see how the search tree is cut short as it tries to traverse M2 after M1,
as it would violate transition 3 (obstacle space to obstacle space). That is why the tree is ex-
tended to pass through M3, eventually reaching the goal in component C3. However, there is
not enough room around M3 to manipulate it successfully to connect C3 with C1: the manip-
ulation planner fails to move M3 resulting in a second call of the obstacle selection routine in
Fig.III.19c. In order for this second call and any subsequent ones to not indefinitely return the
same obstacle/component pair (MF, CF), a list of these pairs is kept track of in the task-level
planner (see17 for a detailed explanation).

17The obstacle selection routine then uses this list to forbid transitions from an obstacle to free space (4.) when
the following conditions are met:

• the traversed obstacle Mi is the first one to be traversed (formally: MF = Mi ̸= 0),

• and no other component than the initial one has been traversed yet (formally: CF = 0),

• and the neighbor robot configuration belongs to a component Ci so that the pair (Mi, Ci) is not in the list of
evaluated pairs,

• and Ci has not previously been fused by the task planner.

Chapter III. Revising and simulating reference NAMO algorithms 74

This is why during the second call to the obstacle selection routine, the search tree is cut
short after traversing M3, resulting in the tree being grown through M4 and M5, eventually
leading to a solution to the problem showcased in III.19. If we go back to Fig.III.18b, an actual
path produced by the obstacle selection routine can be seen. This path first traverses MF =

Table 1 to enter CF = C2. The selection routine is called again, starting from intermediate robot
configuration qt1

R , returning MF = Couch to enter CF = C4 (not illustrated). This is how the full
plan shown in Fig.III.18c and III.18d is found.

1. Free space to free space

3. Obstacle space to obstacle space

2. Free space to obstacle space

4. Obstacle space to free space
Forbidden transition

M4 M5

M3

M1 M2

O2

O1

C1 C3

C2

(A) Initial state: 3 components
separated by 5 movable obstacles

(B) First obstacle selection routine
call: (MF = M3, CF = C3)

(C) Second obstacle selection
routine calls: (MF = M4, CF = C2)

FIGURE III.19: Example NAMO scenario showcasing the obstacle selection routine. The
four types of allowed transitions are shown as brown lines and markers. For the sake of
simplicity, only axis-aligned translations are allowed and only the relevant branches of the

A∗ search are shown instead of the full tree.

Obstacle manipulation planning Once the obstacle selection subroutine returns the obstacle
/ component pair (MF, CF) to evaluate to the task-level planner, it is passed along to the obsta-
cle manipulation planning routine. This routine is a breadth-first search over the robot’s ma-
nipulation action space AM, starting from the valid manipulation configurations qmanip

R where
the robot can grasp the obstacle (Fig.III.18b). The search is stopped as soon as an opening is
created - that is, when an A∗ call over the robot’s navigation action space AN returns a valid
path Pto_CF , from the currently evaluated configuration qcur

R , to an arbitrary configuration qCF
R

in the component to fuse with (CF). The search prioritizes configurations in the free space com-
ponent the robot comes from Cacc

R , as to avoid interfering with a future obstacle manipulation
in the target component CF (hence why the robot pulls the obstacles back in Fig III.18c).

III. 2.2.2 Generalization to larger action spaces & edge cases

Like we did for (Wu&Levihn, 2014)’s algorithm, we similarly completely rewrote the pseu-
docode formalization of (Stilman, 2005)’s algorithm in a more generic fashion. This was done
with the same goals of generalizing the algorithm to larger action spaces with arbitrary pos-
itive action costs, properly addressing the obstacle-on-goal edge case where the original for-
malization would fail to find a solution, and unifying notations in a coherent manner with

Chapter III. Revising and simulating reference NAMO algorithms 75

those of (Wu&Levihn, 2014)’s algorithm. Additionally, we also improved overall computa-
tional performance, by applying the local new opening detection algorithm previously de-
scribed (Section III. 2.2.2, Alg.5).

Note for the reader Again, as for (Wu&Levihn, 2014)’s algorithm, The full rewritten algo-
rithms are given here for reference. In these algorithms, we will denote the relevant modifications
discussed here with blue text. Thus, it is not necessary to read the full algorithms to understand
the modifications discussed in this section. Although they were completely rewritten because
of the original formalization’s18 ambiguities, the original logic textually described in the previ-
ous section III. 2.2.1 remains completely relevant, and has been fully preserved. Hence, page
numbers to the appropriate textual explanations given in the previous section are provided in
the algorithm’s headers, should you wish to read them fully.

Computing the free space components How the nodes (free space components) of the task-
level search tree illustrated in Fig.III.18d19 are determined is actually not addressed by Stilman.
However, as presented in the previous section III. 2.2.1, knowing which free space component
Ci contains a given robot configuration is essential, as this is how obstacles are selected for
manipulation evaluation. In the absence of specification, we can only suppose that free space
components are initialized before the task-level planning routine is executed. We consequently
wrote Algorithm 6, which first executes a recursive Breadth-First Search over the robot navi-
gation action space AN , that creates a search tree for each free space component Ci and each
space component where the robot would intersect with a single movable obstacle χ

Mj
R

20. Only
then is the task-level planner (Alg.7) executed.

Solving Obstacle-on-Goal problems Just like the original (Wu&Levihn, 2014) algorithm,
(Stilman, 2005)’s algorithm originally only works under the assumption that the goal config-
uration is completely free of obstacles. While this choice is perfectly justified, as it facilitated
their demonstration of completeness for LP1 problems (requiring, by definition, the goal robot
configuration to belong to a free space component), it prevented the algorithm from solving
the same simplistic examples as described in Fig.III.14a.

This obstacle-on-goal problem was solved by rewriting the obstacle selection routine as
Algorithm 8. It is now formulated as a generic A∗ call (l.3), moving the extra logic of the
original customized A∗21 in a separate method, as we did for (Wu&Levihn, 2014)’s algorithm
(Alg.4). In this extra logic, we removed a condition that returned a NIL value in the original
formalization for both the following cases:

18Original formalization available in Appendix C.
19This search tree is named Free Components Tree abb. FCT by Stilman in his thesis [19].
20As each search tree only covers its associated free space component or movable obstacle, the overall computa-

tional cost is equivalent to that of a regular Breadth-First Search over the robot navigation action space AN , under
the same assumption of being allowed to traverse a single obstacle at once. In other words, each tree is basically
just a branch of the regular Breadth-First Search.

21The original obstacle selection routine is available in Appendix B, Alg.17.

Chapter III. Revising and simulating reference NAMO algorithms 76

Algorithm 6: Top-level plan computation routine (PLAN) of our improved (Stilman,
2005) algorithm

Data: Current world state Wt, goal configuration qg
R

Result: A valid NAMO Plan P or empty plan ∅

1 PLAN(Wt, qg
R)

2 if Rg ∩Wt
/R,M ̸= ∅ or (qg

R /∈ C f ree
R and qg

R /∈ exc χ
Mj
R) then return ∅

3 i, Cti
R ← 0, {Ci : NULL}

4 Ct0
R [Ci]← GET-CLOSED-SET(BREADTH-FS(Wt, GET-NEIGHBORS-CC))}

5 return SELECT-CONNECT(Wt, [C0], qg
R, Ct0

R)

6 GET-NEIGHBORS-CC(qcur
R)

7 neighbors← ∅
8 for AN ∈ AN do
9 qnext

R ← APPLY-ACTION(qcur
R , AN)

10 if qnext
R ∈ closedList or qnext

R ∩Wt
/R,M then skip

11 if qcur
R , qnext

R ∈ C f ree
R or qcur

R , qnext
R ∈ exc χ

Mj
R then APPEND(neighbors, qnext

R)

12 else if qcur
R ∈ C f ree

R and qnext
R ∈ exc χ

Mj
R and χ

Mj
R /∈ Ct0

R then

13 Ct0
R [χ

Mj
R]← NULL

14 Ct0
R [χ

Mj
R]← GET-CLOSED-SET(BREADTH-FS(Wt, GET-NEIGHBORS-CC))}

15 else if qcur
R ∈ exc χ

Mj
R and qnext

R ∈ C f ree
R and Ci /∈ Ct0

R then
16 i, Ct0

R [Ci]← i + 1, NULL

17 Ct0
R [Ci]← GET-CLOSED-SET(BREADTH-FS(Wt, GET-NEIGHBORS-CC))}

18 return neighbors

Algorithm 7: Task-level plan computation routine (SELECT-CONNECT) of our im-
proved (Stilman, 2005) algorithm - Cf. logic description page 71

Data: Current world state Wt, components fused in previous recursions FusedComponents,
goal configuration qg

R, initial connected components Ct0
R

Result: A valid NAMO Plan P or empty plan ∅

1 SELECT-CONNECT(Wt, FusedComponents, qg
R, Ct0

R)
2 EvaluatedPairs← ∅

3 if Pto_goal ← A∗(Wt, qt
R, qg

R) ̸= ∅ then return (Pto_goal)

4 while MF, CF ← RCH(Wt, EvaluatedPairs, FusedComponents, qg
R, Ct0

R) ̸= (0, 0) do
5 Wt+2,Pmanip ←MANIP-SEARCH(Wt, MF, CF, Ct0

R)

6 if Pmanip ̸= ∅ then
7 FuturePlan← SELECT-CONNECT(Wt+2, FusedComponents + [CF], qg

R, Ct0
R)

8 if FuturePlan ̸= ∅ then
9 Pto_obstacle ← A∗(Wt, qt

R,Pmanip[0])

10 return (Pto_obstacle + Pmanip + FuturePlan)

11 EvaluatedPairs append (MF, CF)

12 return ∅

Chapter III. Revising and simulating reference NAMO algorithms 77

• when a single obstacle MF intersects with the goal configuration qg
R (as in Fig.III.14a),

now the function returns a (MF, 0) tuple,

• when more than one movable obstacle intersects with the goal configuration qg
R, or when

the goal is unreachable, now the function returns a (0, 0) tuple, so that planning failure
only occurs in this case - (Alg.7, l.4)22.

Algorithm 8: Obstacle selection routine (RCH) of our improved (Stilman, 2005) algo-
rithm - Cf. logic description page 73

Data: World state Wt, previously evaluated (Mi, Ci) pairs EvaluatedPairs, components fused in
previous recursions FusedComponents, goal configuration qg

R, initial connected
components Ct0

R
Result: Relevant obstacle to consider for manipulation OF, Connected Component CF to be

joined with currently accessible cells Cacc
R

1 RCH(Wt, EvaluatedPairs, FusedComponents, qg
R, Ct0

R)
2 MC ← {qt

R : (0, 0)}
3 qcur

R ← A∗(qt
R, qg

R, GET-NEIGHBORS-RCH)

4 if qcur
R = qg

R then return MC[qcur
R]

5 else return (0, 0)

6 GET-NEIGHBORS-RCH(qcur
R)

7 neighbors← ∅
8 MF, CF ← MC[qcur

R]

9 for AN ∈ AN do
10 qnext

R ← APPLY-ACTION((qcur
R), AN)

11 if qnext
R ∈ closedList then skip

12 if S(qcur
R , qnext

R) ∩Wt
/R,M or (qnext

R /∈ C f ree
R and qnext

R /∈ exc χ
Mi
R) then skip

13 if (CF ̸= 0) then MC[qnext
R]← (MF, CF)

14 else if (MF ̸= 0 and qnext
R exc χMF

R) then MC[qnext
R]← (MF, 0)

15 else if (MF ̸= 0 and qnext
R ∈ Ci s.t. Ci /∈ FusedComponents and

(MF, Ci) /∈ EvaluatedPairs) then
16 MC[qnext

R]← (MF, Ci)

17 else if (MF = 0 and qnext
R ∈ C f ree

R) then MC[qnext
R]← (0, 0)

18 else if (MF = 0 and qnext
R ∈ exc χ

Mi
R) then MC[qnext

R]← (Mi, 0)

19 if qnext
R ∈ MC then APPEND(neighbors, qnext

R)

20 return neighbors

Formalizing MANIP-SEARCH The main source of ambiguity of (Stilman, 2005)’s original
work was the absence of a pseudocode formalization of the obstacle manipulation planning
routine “MANIP-SEARCH”. From the various textual observations, we formalized it as true
to the original descriptions as possible, in Appendix C (Alg.18). The version provided in this
section has been improved similarly to (Wu&Levihn, 2014)’s algorithm to use a Dijkstra search

22The manipulation search procedure has correspondingly been adapted (Alg.9, l.19-20) to manage this goal-
over-obstacle case, by having the exit condition be the reachability of the robot goal configuration qg

R instead of a
random robot configuration in CF, since in this case CF = 0

Chapter III. Revising and simulating reference NAMO algorithms 78

(Alg.9, l.2) instead of a Breadth-First Search23, allowing for actions to have any positive cost
instead of a constant cost. Also, we incorporated the local new opening detection algorithm
from (Wu&Levihn, 2014)’s algorithm (Cf. page 62). Now the A∗ search to verify if a global
opening has been created is only executed if a new local opening is found (Alg.9, l.18).

Algorithm 9: Obstacle manipulation planning routine (MANIP-SEARCH) of our im-
proved (Stilman, 2005) algorithm - Cf. logic description page 74

Data: Current world state Wt, Relevant obstacle to consider for manipulation OF, Connected
Component CF to be joined with currently accessible cells Cacc

R , initial connected
components Ct0

R

Result: Evaluated world state after manipulation Wt+2, Manipulation plan τM

1 MANIP-SEARCH(Wt, OF, CF, Ct0
R)

2 τM ← DIJKSTRA((∅, ∅), GET-NEIGHBORS, EXIT-CONDITION)

3 Wt+2 ← COPY-AND-UPDATE(Wt, τM)

4 return Wt+2, τM

5 GET-NEIGHBORS((qmanip
R , qcur

R))
6 neighbors← ∅

7 if (qmanip
R , qcur

R) = (∅, ∅) then
8 for qmanip

R ∈ VALID-GRASPS(Mi) do
9 APPEND(neighbors, (qmanip

R , qmanip
R))

10 return neighbors
11 for AM ∈ AM do
12 Rnext, Mnext

i ← APPLY-ACTION((Rcur, Mcur
i), AM)

13 if qnext
R ∈ closedList then skip

14 if S(AM) ∩Wt
/Mi ,R ̸= ∅ then skip

15 APPEND(neighbors, qnext
R)

16 return neighbors
17 EXIT-CONDITION(qcur

R)
18 if CHECK-NEW-OPENING(Wt

∪Rg/Mi ,R
, Mi, AM) then

19 qCF
R ← qg

R

20 if qg
R /∈ CF and CF ̸= 0 then qCF

R ← RANDOM-FREE-CONFIGURATION(Wt, CF)

21 Pto_CF ← A∗(qcur
R , qCF

R)
22 if Pto_CF ̸= ∅ then return True

23 return False

In this section, we have presented both of our revised algorithms. Let us now present the
new simulation tool we have written to implement and experiment with NAMO algorithms,
and build upon them in the next chapters.

23Using the same implementation mentioned in Section III. 2.1.2, that seamlessly falls back to a Breadth-First
Search if a constant cost action space is detected.

Chapter III. Revising and simulating reference NAMO algorithms 79

III. 3 A new NAMO simulator

Now that we have introduced NAMO in Chapter II, and more specifically, the algorithms we
build upon, their requirements, and the improvements we have added over them in the previ-
ous sections, it is now time to discuss their execution context. As mentioned at the beginning
of this chapter, while the NAMO literature is rather well-endowed in terms of algorithms, no
simulation tooling (e.g. source code or binaries) nor data (e.g. computer-readable environment
description, parameters values, or raw unaggregated performance metrics) are ever provided.
We had to derive our open implementations and datasets from the pseudocode when available,
textual observations, images and occasional video footage. The required efforts encouraged us
to design our simulator in accordance to three main principles: interoperability, reproducibil-
ity and flexibility. As a first step in this direction, we have made this simulator (and associated
data) we will discuss in this section freely available at:

https://gitlab.inria.fr/brenault/s-namo-sim

III. 3.1 Overview of the simulator

FIGURE III.20: Live simulator view in Rviz in a map of our CITI laboratory. The robot (blue
disc) reached its goal (dark blue circle) after moving a movable obstacle (outlined yellow
rectangle with blue circle marking the robot configuration at release time) in a low-cost zone
(coloured background is the combined costmap described in Chapter IV). Black shapes
are static obstacles, and the path followed by the robot is traced as a blue (transit) and red

(transfer) line. Pink cells are unaccessible (inflated obstacles).

Our state of the art in Chapter II revealed that NAMO is first and foremost treated as a
2D motion planning problem; although, the world’s physical models used in NAMO literature
still vary wildly from one approach to another. From various grid definitions to continuous

https://gitlab.inria.fr/brenault/s-namo-sim

Chapter III. Revising and simulating reference NAMO algorithms 80

geometries, and with different modeling approaches for robot-to-obstacle motion dynamics,
the need for a custom-tailored and flexible simulation tool naturally arose, in order to be able
to experiment with even just the two algorithms described in this chapter. Figure III.20 gives
you a small glimpse at how both these continuous and grid-based world models can cohabit in
our simulation tool.

Before delving deeper into the design of this simulator, we would like to draw your at-
tention to the following simplified Architecture Diagram in Fig.III.21, highlighting its main
modules and data flows, from left to right. As can be seen in this diagram, world models
(comprising both physical - mostly geometrical - and semantic data such as obstacle type) and
simulation parameters (e.g. random number generator seed, NAMO algorithms parameters, ...)
are loaded from data files through the data import interface into the main simulation module.

FIGURE III.21: Simplified Simulator Architecture Diagram - Solid colored boxes are simula-
tor elements

This main simulation module is in charge of initializing the reference simulated world rep-
resentation from the imported data, and depending on the simulation parameters, associating
each robot representation in the world with an individual behavior. Each behavior is basically
an object that keeps track of the perceived world knowledge of its associated robot, calls for
planning algorithms to reach the goals that are given to it and executes the plans they yield,
to try and actually reach said goals. Once the main simulation module is done initializing, it
enters the main simulation loop.

Each loop consists in first informing all the behaviors (i.e. robots) of the reference simulated
world state (and the behavior updates its perceived world knowledge according to its sensing
parameters). Then all behaviors are asked for their next discrete action. Finally, the main
simulator loop updates its simulated world model according to its constraints (e.g. refusing
to apply a robot manipulation action if the obstacle is not actually movable for the robot),
guaranteeing the world state to remain valid.

Until all behaviors return that they have finished executing all their goals, the main sim-
ulation loop collects and saves raw execution data (e.g. actions, their results, changes to the
reference world state, ...). Once the loop is exited, the main simulation module hands the raw

Chapter III. Revising and simulating reference NAMO algorithms 81

execution data to the statistics module, that generates relevant statistics either relative to the
overall world state or to each robot. These statistics are exported to a file, as well as the final
world state in another file (that may be reused as an input world model for another simulation)
through the data export interface.

Both statistics file and world state file can be visualized as is, using external visualization
tools (e.g. any Web Browser, Inkscape, the system’s default image viewer, any text editor...).
The statistics file can also be handed over to the Results Aggregation and Graphing Module
(in purple), that will, as its name suggests, summarize the data into paper-printable LaTeX
tables, and generate interactive HTML graphs that allow to explore the evolution of the various
collected statistics in depth. A Robot Operating System (abb. ROS) export layer is also available
to allow live visualization of the world & behavior state (as shown in Fig.III.20).

As a final general comment on the simulator’s architecture, it should be mentioned that
it was fully written using the Python programming language. This choice was motivated by
the widespread use of the language both in the robotics community24 and the general public25 -
which facilitates both its reuse by third-parties and our use of high-quality community libraries.
The code was written as to accommodate both Python 2 and 3, ROS1 and ROS2, in order to
make it usable on both legacy and new systems26.

Now that an overview of the simulator’s architecture has been given, the following sub-
sections will serve to provide further insight into specific components. These details are them-
selves synthesized at the end of this section in a more elaborate Architecture Diagram (Fig.III.29).

III. 3.2 World representations

Let us first clarify what we mean by “world representation”: it is first and foremost a data
structure storing physical (in our case, essentially geometrical) and semantic information about
the environment’s state. This data structure is constrained by a set of rules (functions) that
define valid states and transitions between these states.

The simulator was designed to allow flexibility as to the world representation used either
as the reference simulated world Wre f or the individual perceived world associated with each
behavior < WR1 , . . . , WRi >. This flexibility allows for trade-offs between computational per-
formance and expressivity27 of the experiments.

Baseline Data Structure In all the scenarios presented in the figures that appeared until
now, and in all the experiments described in the following chapters, both the reference sim-
ulated world Wre f model and the individual perceived world associated with each behavior

24Largely due to it being officially supported by the de facto standard Robot Operating System.
25Python is the most popular programming language since the last quarter of 2021 according to the TIOBE in-

dex [129] and second quarter of 2018 according to the PYPL index [130].
26Despite the official deprecation of Python 2 since January 1, [131], legacy systems such as the many robots

available in our lab (e.g. Pepper, Turtlebots 2, ...) are still tightly bound to Python 2 / ROS 1 because of a lack of
constructor-backed support.

27By expressivity, we mean the ease of creation of new scenarios/problems that are relevant to our subjects of
study in the following chapters.

Chapter III. Revising and simulating reference NAMO algorithms 82

< WR1 , . . . , WRi >, rely on a polygonal world representation like (Stilman, 2005)’s original pa-
per [3]. As shown in Fig.III.22, this world representation is defined by a set of Entities, abstract
objects with a unique identifier and a non-deformable continuous geometry - a polygon.

FIGURE III.22: UML Diagram of our main world representation, showing the attributes,
operators and relations between the different data structures involved

This polygonal representation is provided by an external library called Shapely: a Python
wrapper around the standard GEOS C/C++ library for computational geometry, that solely
implements non-curved geometries28. More exactly, we use a subset of polygons: linear rings
(non-self-intersecting polygons, illustrated in Fig.III.23), which can be either convex or concave.

(A) Valid Linear Ring (B) Invalid Linear Ring

FIGURE III.23: Valid and invalid examples of GEOS Linear Ring
(non-self-intersecting polygon)

28The GEOS library implements the OGC Simple Features geometry model and provides all the spatial func-
tions in that standard as well as many others. GEOS is at the core of widely used geospatial software like PostGIS,
QGIS and GDAL.

Chapter III. Revising and simulating reference NAMO algorithms 83

Entities are divided into subclasses corresponding to the original model described in Sec-
tion III. 1.1 : Robot, Movable Obstacle and Static Obstacle. This allows to unambiguously
classify any entity at planning time, which is essential for NAMO algorithms.

Navigation Action Space AN & Operators In Section III. 1.2.1, we reminded the two most
primitive operators that can be applied to solve a NAMO problem: Navigate and Manipulate.
We implemented Navigate as two distinct operators:

• Translations of any direction and any norm:

T (Wt, Ri, xo f f set, yo f f set) = Wt+1 with translation vector xo f f set, yo f f set ∈ R2

• Rotations of any angle around the robot’s geometric centroid (xt
Ri

, yt
Ri
):

R(Wt, Ri, θo f f set) = Wt+1 with rotation angle θ ∈ [−2π, 2π]

Actual actions AN ∈ AN are instantiated Translate and Rotate operators with fixed trans-
lation and rotation parameter values. These values must be chosen so that the action space
yields a finite robot configuration space, so that the underlying graph search algorithms (A∗,
Dijkstra) may keep their completeness and optimality properties. In all experiments so far and
in the next chapters, we use two discrete action spaces that yield navigation movements on a
2D square grid (of resolution r = 0.1m), including diagonal movement:

• One supposes the robot has an omnidirectional drive robot base:

Aomni
N =

∀T with (xo f f set, yo f f set) ∈ {(0, r), (0,−r), (r, 0), (−r, 0), (
√

2r,
√

2r),

(−
√

2r,
√

2r), (−
√

2r,−
√

2r, (
√

2r,−
√

2r)}

∀R with θo f f set ∈ {π
4 , −π

4 }

• The other supposes a differential drive robot base:

Adi f f
N =

∀T with (xo f f set, yo f f set) ∈

{(r, 0), (−r, 0)} if θt
R ∈ {0, π}

{(0, r), (0,−r)} if θt
R ∈ {π

2 , −π
2 }

{(
√

2r,
√

2r), (−
√

2r,−
√

2r)} if θt
R ∈ {π

4 , −3π
4 }

{(−
√

2r,
√

2r), (
√

2r,−
√

2r)} if θt
R ∈ {−π

4 , 3π
4 }

∀R with θo f f set ∈ {π
4 , −π

4 }

Chapter III. Revising and simulating reference NAMO algorithms 84

Manipulation Action Space AM & Operators In Section III. 1.2.3, we reminded the three
main manipulation action space classes used in NAMO: Grasping, Pushing and Manipulation
Primitives. We only implemented the Grasping class manipulation action space for the primitive
Manipulate NAMO operator. More specifically, we defined our action space AM with four
generic operators:

• A Grasp operator that fully constrains the obstacle’s movement (i.e. robot and obstacle
“become one”, and all translations and rotations are applied at the center of the robot), by
creating a static transform between the grabbing robot Ri and a single grabbed obstacle
Mj at the grasping point Gk (Cf. Fig.III.2b) - which can of course only happen if neither
the robot nor the obstacle are already respectively grabbing or being grabbed by another
entity:

Grasp(Wt, Ri, Mj, Gk) = Wt+1

• A Release operator that removes the static transform between the grabbing robot Ri and
its grabbed obstacle Mj at the grasping point Gk (only valid if the transform exists in Wt,
of course):

Release(Wt, Ri, Mj, Gk) = Wt+1

• Similarly to the navigation action spaceAN , Translations of any direction and any norm:

T (Wt, Ri, Mj, Gk, xo f f set, yo f f set) = Wt+1 with xo f f set, yo f f set ∈ R2

• And again, similarly to the navigation action space AN , Rotations of any angle around
the robot’s geometric centroid (xt

R, yt
R):

R(Wt, Ri, Mj, Gk, θo f f set) = Wt+1 with θ ∈ [−2π, 2π]

In all the experiments so far and in the next chapters, the parameterized translation and rotation
operators are slightly different for the manipulation action spaces Aomni

M and Adi f f
M , as they

assume 60◦ rather than 45◦ rotations - this is done to reduce the manipulation search space
to accelerate computations, while maintaining good maneuverability. Also, in order to allow
the robot to start planning when grasping an obstacle (which is useful if its plan is interrupted
while manipulating), the Release operator is added to the navigation action space AN .
We chose to only implement a Grasping class action space for two main reasons:

• since we preserve the original hypothesis from both (Stilman, 2005) and (Wu&Levihn,
2014)’s algorithms that, a single robot may only move a single obstacle at the same
time, the Grab and Release operators it requires for the robot allow for non-ambiguous
modeling of movable obstacle reservation (Cf. Robot and Movable Obstacle in Fig.III.22);

• the static transform created by the grasp between the robot and the obstacle’s motions
makes it easy to guarantee that the robot action space will yield a finite configuration
space for both the robot and the obstacle. As explained before, having a finite (robot,

Chapter III. Revising and simulating reference NAMO algorithms 85

obstacle) configuration space guarantees a finite manipulation search graph for the algo-
rithms used for motion planning (A∗, Dijkstra), which is a requirement for them to keep
their completeness and optimality properties.

The original implementation of (Stilman, 2005)’s algorithm [3] actually used Manipulation
Primitives based on forward-simulation of obstacle dynamics through force application upon a
single grasp point on the obstacle. In this original action space, while the robot was constrained
to translational accelerations during manipulation, the obstacle could rotate around the grasp
point. This rotational slip made it possible to solve cases such as the one in Fig.III.24. However,
this model required additional physical data for each movable obstacle (center of mass, mass, mo-
ment of inertia and viscous friction parameters), which was not actually provided and disputably
acquirable by a robot in a real world environment. As this model also did not yield a finite
configuration space that would preserve the completeness of the algorithm, we chose not to
implement it.

FIGURE III.24: A large, constrained object requiring manipulation motions that consider
dynamics (copied from [3]). Red cross is the goal, blue circle and arrow are the grasping

point and the force vector.

On the other hand the first implementation of (Wu&Levihn, 2014)’s algorithm used a Push-
ing class action space where the robot’s motions were limited to axis-aligned translations in
the direction of the pushed obstacle. The later improved implementations of this algorithm
[34, 7] however dropped this action space in favor of a Grasping action space still limited to
axis-aligned translations, but that already allowed the resolution of a much wider array of
problems. This comforts our own choice to only study a Grasping class action space.

Continuous Collision Detection In order to keep the simulation’s and the robots’ world
representations valid as they compute and execute plans, these operators must be valid non-
colliding actions. As specified in Section III. 1.2.1, these operators describe a continuous contact-
free motion of the object. Then, for these operators to be valid, no other entity may intersect
with the swept area S(qt

R, qt+1
R) of the robot’s shape as it translates or rotates between times t

and t + 1:
S(qt

R, qt+1
R) ∩Wt

/R = ∅

Efficiently computing this swept area for polygons is non-trivial, especially in the case of
rotations, as the vertices’ curved trajectories create a non-polygonal area (Cf. Fig.III.25). In
order to approximate this area, we implemented Foisy et al.’s “Safe Swept Volume Method

Chapter III. Revising and simulating reference NAMO algorithms 86

for Collision Detection” [132] used by Stilman in his thesis work [19]. As the name suggests,
this model is collision-safe, as it either finds the exact swept area (Fig.III.25a) or an overesti-
mate (Fig.III.25b): thus making it impossible to fail collision detection (false negatives). False
positives are however possible, although they can be reduced by decomposing the considered
action into smaller ones, yielding a tighter estimate of the swept area.

(A) Arbitrary direction & norm translation. Real swept
area needs not be approximated (Cf. Appendix A).

(B) Counter-clockwise 90◦ rotation. Black line is real
swept area, dotted line is Foisy’s approximation.

FIGURE III.25: A circular robot (red) manipulates a polygonal obstacle (blue), sweeping an
area delimited with a (black) line that needs to be free of obstacles.

As efficient as this continuous collision detection strategy may be, it would still be compu-
tationally expensive to use it at every planned or executed movement, for both the robot and
obstacle geometries. Also, checking for intersections with every other entity in the environ-
ment, regardless of their proximity to the action would remain too expensive. Hence, we use
two data structures representing the world’s geometry, in order to minimize the number of full
continuous collision checks using Foisy’s method:

• Incremental Binary Occupancy Grid We implemented a grid model that Stilman created
for his algorithm [3], in order to accelerate robot collision detection in particular. This
model consists first in creating an integer 2D matrix - or planar grid - originally filled
with zeros. Then all the world’s entities polygonal perimeters are rasterized, after being
inflated by the robot’s circumscribed circle’s radius, and each cell of the rasterized poly-
gons is incremented by one in the grid (Cf. Fig.III.26a). Upon movement of an entity, the
initial state rasterized cells are decremented by one in the grid, while the new state cells
are incremented by one (Cf. Fig.III.26b) - allowing for fast updates of the grid keeping its
memory footprint reasonable. Thanks to this grid, robot collision checks can be done by
verifying whether the center cell of the robot has a 0-value in the grid, and only if it is
non-zero, then use Foisy’s method to complete the check. This drastically accelerates all
searches, and in particular, searches over the navigation action space AN .

• AABBTree As to avoid checking for intersections with every single other entity in the
world, we applied a common technique used in state-of-the-art physics libraries: an Axis-
Aligned Bounding Boxes Tree [133]. It basically consists in simplifying and grouping
the world’s geometries as axis-aligned rectangles in a tree structure. Leaves are actual

Chapter III. Revising and simulating reference NAMO algorithms 87

entities’ bounding boxes, and branch nodes are encompassing bounding boxes that do
not overlap within the same tree depth. This allows to quickly assess which entities are
close enough from the swept area geometry we want to check for intersection with, and
require a collision check with the actual entity’s geometry instead of its bounding box.

1 1 1 1 1 1 1 1 1 1 1 1
1
1
1
1
1
1 1 1 1 1 1 1 1 1 1 1 1

1
1
1
1
11 11

1
1
1
1
1
1

(A)

1 1 1 2 1 1 1 1 1 1 1 1
1
1
1
2
1
1 1 1 1 1 1 1 1 1 1 1

1
1
1
1
1

1
1
1

1
1
1
1
1

11 11111

1

(B)

FIGURE III.26: (Stilman, 2005)’s incremental binary occupancy grid model. (A) Initial state,
(B) State after the rounded obstacle is moved to the right and bottom.

FIGURE III.27: AABBTree example - Axis-Aligned Bounding Boxes on the right,
tree structure on the left. Leaves are numbered by insertion order.

All in all, collision detection is assured with these three complementary data structures for
efficient and precise collision detection: polygonal overestimates of swept areas, the AABBTree
and the incremental binary occupancy grid.

III. 3.3 Main simulation module

As stated in the previous chapters, and in the very title of this thesis work, one of the end goals
is to have multiple robots solve NAMO problems in a common environment. The main simu-
lation module is tasked with the job of initializing both the reference simulated world model
Wre f , and the individual robot behaviors that interact with it (and their individual perceived
world models WRi) as illustrated on the left in Fig.III.28.

As shown in Chapter II, existing NAMO algorithms are only designed to compute valid ac-
tions (that is, discrete physical movements) to execute for a single robot. Hence, when it comes
to executing the individual actions produced by each robot’s behavior in each simulation loop,
a problem arises: how do we execute these multiple actions? For the sake of reproducibility
and ease of implementation & debugging, we chose to build our simulation loop so that:

Chapter III. Revising and simulating reference NAMO algorithms 88

FIGURE III.28: Main simulation module

• all robots are synchronized with the simulator’s clock: that is, at each simulation time
step t, each robot is informed of the reference world state Wt and asked to compute and
execute a discrete action for this time step29.

• actions are applied following Jacques Ferber’s influence-reaction model [134]: that is,
the simulator considers these actions returned by each robot’s algorithm to be influences
(i.e. action attempts) instead of unquestionable orders. These influences need to be in-
tegrated by the reference simulated world representation, according to its internal con-
straints, into a reaction that will synthesize the actual change to be applied to transition
the world state from Wt to Wt+1. Basically, if two robots were to try to exert two incom-
patible influences (e.g. manipulate the same obstacle at the same time), the reaction would
prevent the execution for both and inform the two robots of the failure - while executing
all other compatible influences. This way, the world model can be kept consistent, while
allowing multiple actions to happen simultaneously, and guaranteeing an outcome that
remains independent of the order in which robot computes its action first.

This simulation loop is illustrated in Fig.III.28. It should be noted that in the same way
that influences are computed for all robot behaviors (Think), before integrating them all at
once in the reference simulated world (Act) following the pre-named influence-reaction model,
we apply the same concept for sensing (Sense). This leaves room to implement the sharing
and integration of the robots’ perceived worlds, in a way that guarantees consistency at the
planning (Think) stage.

29In a real world setting, this hypothesis would be verified as long as the constant time step for each discrete
action is big enough to compensate for internal clock error and drift - and the robot’s planning algorithm is guar-
anteed to yield an action that will yield the next world state Wt+1.

C
hapter

III.
R

evising
and

sim
ulating

reference
N

A
M

O
algorithm

s
89

III. 4 Conclusion

Having presented our formalism in Section III. 1, the algorithms we will base our subsequent work on in Section III. 2, and their implemen-
tation in our open source simulation tool in Section III. 3, we synthesized all these elements in a Detailed Simulator Architecture Diagram in
Fig.III.29. This figure summarizes the contribution that is our simulation tool itself, and provides the necessary context to understand how
we formulated our Social and Multi-Robot extensions to the NAMO problem, as well as the solutions we propose in each case, which shall be
presented in following chapters.

FIGURE III.29: Detailed Simulator Architecture Diagram - Solid colored boxes are simulator elements; transparent boxes are external
tools. To facilitate reading, we recommend going back to the description of its simplified counterpart in Section III. 3.1.

90

Chapter IV

Socially-aware NAMO

IV. 1 Introduction - the General Socially-Aware NAMO Problem

We concluded our NAMO state of the art in Section II. 1.10 with the observation that social
concerns have never been addressed in NAMO problems; although human environments are
a clear target application for NAMO algorithms in the literature. Another important conclusion
of this state of the art, is the highlighting of obstacle placement choice as a characteristic sub-
problem of NAMO, compared to neighboring problems1. We have found that the only obstacle
placement heuristic until now was to move the object just enough to make an opening for
the robot. However, only minimizing the robot’s displacement cost, without regards for other
(potential) agents or its future self is bound to cause socially undesirable situations. One such
situation is illustrated in Fig.IV.1a and IV.1b, using (Stilman, 2005)’s algorithm2 presented in
Section III. 2.2. Here, the robot’s selfish choice would cause a human coming from the topmost
doorway to get blocked; even in the absence of a human, the robot would still have hampered
any future navigation towards the topmost or rightmost entryways for itself.

(A)

?!

(B) (C) (D)
Fixed
obstacle

Movable
obstacle

Robot Goal Transfer
path

Transit
path

10 Social Cost
Scale

FIGURE IV.1: Basic socially-pathological NAMO problem. (A) The robot’s goal is in the adja-
cent room but unreachable due to a movable obstacle. (B) (Stilman, 2005)’s NAMO algorithm
solution. (C) Our social (S-NAMO) approach’s solution. (D) Our social occupation costmap
used by our S-NAMO approach to bias obstacle transfer to a more socially-acceptable location.

1As a reminder, NAMO neighboring problems are: Navigation Planning, Manipulation Planning, Rearrange-
ment Planning, Assembly Planning, and combined Task and Motion Planning.

2(Wu&Levihn, 2014)’s algorithm, presented in Section III. 2.1, would generate the exact same resolution-
optimal solution, as would all other NAMO algorithms, because of the same sole optimization of displacement
cost.

Chapter IV. Socially-aware NAMO 91

Our exploration of Social Navigation (Cf. Section II. 2.1.1) reminded the need to have the
robot’s path planning respect social rules and conventions, as to improve not only safety, but
also comfort, naturalness and sociability. The example scenario above goes to show that sim-
ilar constraints must exist and be respected in the resolution of NAMO problems. From this
observation, and our NAMO problem definition, we can now propose a general definition of
the Socially-Aware NAMO problem:

General Socially-Aware NAMO Problem (abb. S-NAMO): The Socially-Aware NAMO prob-
lem adds to the General NAMO Problem (Cf. Section III. 1.7) a set of social constraints
C that can forbid certain actions At or affect their cost function C(At), depending on the
workspace’s state Wt.

We also discussed in our Social Navigation exploration how these constraints are often ex-
pressed through the notion of social spaces. We then underlined how all these social spaces are
only temporary, and only exist in the actual presence of humans at the time of plan computation
and execution, at the exception of affordance spaces, that are generated by the potential activity
offered by objects. In Social Navigation, adapting the robot’s path planning only matters in the
actual presence of humans in the environment. However, in a NAMO problem, since moved
obstacles stay in place after they are manipulated, it is essential to find and apply social con-
straints (i.e. social spaces) that exist even in the absence of humans. Otherwise, as illustrated in
the above scenario, humans will eventually be disturbed when they appear in the environment.
That is why, in this chapter, we focus on expressing social constraints for S-NAMO based on
the concept of affordance spaces.

In the following sections, we first present a naive local and binary affordance space model
and discuss its application to (Wu&Levihn, 2014)’s algorithm. We then explore more complex
affordance space and constraints models from the literature that could be applied to S-NAMO.
This exploration leads us to the formulation of the “Social Placement Choice NAMO Problem”,
and our own affordance space model we call “Social Occupation Cost” (illustrated in Fig.IV.1d),
and its application to (Stilman, 2005)’s algorithm (illustrated in Fig.IV.1c).

IV. 2 A first naive, local and binary constraint model

Our first approach to modeling a constraint based on the idea of affordance spaces was a naive,
binary and local model of taboo zones, that we introduced in our first published paper in the
2019 Robocup Symposium [30]; that is, a set of user-drawn polygonal areas T, representing
areas of interest to humans (e.g. display space, carpet, corridor, crossing, . . .). When planning,
the robot is required to ensure that the final state Mg

i of any manipulated obstacle Mi during
the execution of plan P does not intersect with any of the taboo zones, formally:

∀Mi ∈ P , Mg
i ∩ T = ∅

Chapter IV. Socially-aware NAMO 92

(A) (B) (C) (D) (E)

FIGURE IV.2: Simulation of a two-goals scenario with NAMO (A, B) vs. S-NAMO (C, D, E).
Initial world state (A, C). Robot as blue disc with conical Field of View, movable obstacles
in yellow, unmovable walls in black, goal as dark blue circle, taboo zones in red. Blue line is

transit path to obstacle, red line is transfer path, orange line is transit path to goal.

We implemented this simple model into (Wu&Levihn, 2014)’s algorithm, presented in Sec-
tion III. 2.1, by adding the above constraint to its obstacle manipulation planning routine (Algo-
rithm 4, l.19), and ran experiments to explore the concept. For instance, take the simple scenario
illustrated in Fig.IV.2a: two rooms separated by a corridor, each doorway being blocked by a
movable obstacle. The robot with a conical limited field of view must first reach a goal in the
right part of the corridor, to then be informed of a second goal in the top room once the first one
has been reached. At the initial state shown in Fig.IV.2a, the robot has already been informed
of the walls and can only sense the first obstacle. Using (Wu&Levihn, 2014)’s algorithm, the
robot reaches the first goal by pushing the obstacle forward as it advances toward the goal,
only seeking to minimize its own displacement cost, discovering part of the top-room obstacle
along the way, as illustrated in Fig.IV.2b. By doing so, however, the robot cannot compute a
plan to its second goal using (Wu&Levihn, 2014)’s algorithm, as it does not allow the manip-
ulation of more than one obstacle per plan (and here, the plan would require two). In Figure
IV.2c, the same initial situation is exposed, but manually adding two taboo zones: a big one to
indicate the doorways, and a small one to indicate the presence of a screen on the wall. These
taboo zones force the robot to move the bottom movable obstacle to the right rather than push
it along (Cf. Figure IV.2d), making it possible for the second plan to be computed and goal to
be reached (Cf. Figure IV.2e).

While this simple approach is indeed capable of yielding some useful results, as we have
just seen, it however showcases some non-negligible drawbacks:

• Manually inputted data: As previously stated, the method currently needs manual user
input to draw taboo zones in relevant spaces, which simply does not scale. The whole
point of a robotics algorithm is to have the robot autonomously take decisions for itself
using its own sensing data - thus it should determine affordance spaces by itself;

• Solution Space Destruction: By completely forbidding the robot from placing obstacles
in the taboo zones, the problem’s search space is artificially reduced (with the positive
side effect of reducing computations), but so is the solution space. In a human environment,
there could be many objects creating relevant affordance spaces around them: modelling

Chapter IV. Socially-aware NAMO 93

them all as taboo zones may very well cover the entire space with forbidden areas, mak-
ing it simply impossible to solve NAMO problems at all. Also, each space may not be as
important as the other to respect: affordance spaces should be represented in a way that
allows to prioritize not invading some area over some less important area.

IV. 3 Object placement & affordance spaces in the literature

As we have just concluded in the previous section, a finer, more generalizable and scalable
constraint model is needed for Social NAMO problems. Rather than diving head-first in the
specification of a new and more complex model, let us take the time to review existing work.

As mentioned in Section II. 2.1.1, Lindner & Eschenbach were the first roboticists to for-
malize the concept of Affordance Space in [82], completing this formalization in later work
[21, 32, 135, 20]. As a reminder, affordance spaces are defined as spaces related to a poten-
tial activity provided by the environment - in resonance with the concept of Activity Space,
spaces associated with actions being performed by agents. Lindner & Eschenbach further de-
composed affordance spaces (syn. “Affordance Regions”) into sub-spaces (smaller “regions”)
as illustrated in Fig.IV.3. An object (here a picture on a wall) that provides an affordance to
potential agents is called an affordant: the space occupied by the object is thus called the Affor-
dant Region, while the space occupied by the potential agent(s) is called Potential Agent Region.
The space between these two regions that connects them and allows for the potential interac-
tion to exist is called Potential Transactional Region. Together, the potential agent region and the
potential transactional region are called the Potential Core Region.

(A) (B)

FIGURE IV.3: Figures from [20] illustrating their affordance space decomposition. (A) A pic-
ture with a viewability affordance, generating two affordance spaces: an unused one (dotted
lines), and one being used (dashed lines) by a human (orange circle), i.e. an activity space.
(B) Taxonomy of an affordance space’s components. “P” indicates parthood while “C” indi-
cates connection. If a region is part of another region, then these regions are also connected.

The geometry of these regions depends mainly on the afforded activity type, the spatial
structure of the affordant object(s), and the abilities of the agent(s). That is why, while Lind-
ner & Eschenbach did provide a solid theoretical foundation in their aforementioned works,
notably in terms of taxonomy, they impart very few examples of actual affordance space ge-
ometries.

In [21], Lindner & Eschenbach presented a lab experiment with a PR2 robot, where its task
was to find and navigate to a socially best placement for recharging in a room (Cf. Fig.IV.4a), using

Chapter IV. Socially-aware NAMO 94

manually designed affordance space models relevant to the experiment - designated as affor-
dance map (Cf. Fig.IV.4b). Using this knowledge, the robot would sample candidate charging
affordance spaces, and rank them using the concept of “socio-spatial reason”. This concept
associates each affordance with a positive or negative rank of entering it, with three degrees
of strength (Strong, Medium or Weak). They finally use a pre-programmed decision rule to
synthesize the social adequacy of intersecting multiple affordance spaces (Cf. Fig.IV.4c). This
overall model addresses to some extent both drawbacks discussed in the previous section: af-
fordance space instances are generated from pre-programmed models rather than manually
drawn, and social reasons allow ranking between different possible choices instead of ab-
solutely forbidding space invasion. However, the affordance space models themselves are
manually programmed, and are not trivially generalizable. Also, regardless of the amount of
overlap, the social adequacy is deemed to be the same: the ranking of social adequacy is not
proportional to the penetrated area.

(A) (B) (C)

FIGURE IV.4: Illustration of Lindner & Eschenbach’s lab robot experiment from [21]. (A)
Initial state of the experiment’s environment. (B) Affordance spaces corresponding to each
affordant object in A. (C) Charging affordance spaces - the lighter, the higher social ade-

quacy of using it. Checkered space is selected as best charging space for the robot.

Rather than inferring affordance space instances from the objects layout and manually pro-
grammed affordance models, Limosani et al. [22] learned their affordance map from long-
term real-world human activity observation, using only an onboard 2D laser scanner. Said
affordance map consists in a grid where each cell is associated with a probability of human
presence, as illustrated in Fig.IV.5. While this allows for fully autonomous discovery of affor-
dance spaces, Limosani et al.’s map is limited to the modeling of Potential Agent Regions, but
not the Potential Transactional Regions nor the Affordant Regions. Also, generated affordance
knowledge cannot be generalized to new environments; given how time-costly it is to generate
it (70 days of cumulated observation time over a span of 4 months in their experiment), this is
a significant drawback. Indeed, in a real world setting, the robot may not have the opportunity
to observe that long, because of other tasks’ timing requirements or privacy concerns.

Rather than using real-world activity observation data to map affordance spaces, Jiang et
al. learned affordance spaces through the analysis of manually-designed 3D environments and
real-world 3D point clouds datasets [136, 137, 138, 139, 23] without actual humans in said en-
vironments. To do so, they have the robot “hallucinate humans”, that is, randomly sampling
simulated humans in the environment so that they could “interact” with existing objects in the

Chapter IV. Socially-aware NAMO 95

(A) (B) (C)

FIGURE IV.5: Figures from [22] showing Limosani et al.’s affordance space model in their
coffee lounge test environment. (A) Test environment in which furniture may be moved by
humans during the 4-month experiment. (B) Autonomous navigation waypoints for the ob-
servation sequence. (C) Cumulated affordance map after 4 months of daily observation, but
only using the data corresponding to the days when the environment was in configuration

A - the yellower, the higher the probability of human presence.

environment. This sampling is guided with pre-programmed constraints based on knowledge
of how humans interact with objects and potential functions that model how a human pose
is related to an object (e.g. no sitting on the top of a shelf, sitting at a certain distance from a
television, . . .) - in other words, Potential Agent Regions models (Cf. Fig.IV.6a). Contrary to
Lindner & Eschenbach, Jiang et al. assume that one object type only yields one affordance,
and that only one hallucinated human may use each object (one hallucinated human can still
use multiple objects). Once relevant human poses have been sampled in the training environ-
ments, probability distributions of object poses around humans can be learned, producing a
model of Affordant Regions (Cf. Fig.IV.6b) - Transactional Regions are again not modeled in
this approach. In their latest paper [23], they further improve this concept by iteratively repeat-
ing the process, adapting their affordance models to sample ever more semantically relevant
human poses in the scenario(s) at hand, yielding ever better Affordant Region models3.

(A) (B) (C)

FIGURE IV.6: Illustrations of Jiang et al.’s affordance space model and its application to place-
ment choice in a robotic rearrangement planning problem. (A) Sampled human poses based
on objects’ affordances - the potential function of the TV shown as a heatmap causes the sit-
ting human pose to be sampled with high probability. (B) Examples of learned object-human
affordant spaces, projected from top and side views for different object classes. The heatmap
represents the distribution of the object in a 5 m × 5 m × 3 m space given a human pose facing
right. (C) Examples of learned object-object affordant spaces, the heatmap for each object pair

“obj1-obj2” shows the distribution of obj1 given obj2 at the center facing right.

3It is to be noted that the code and data used to be hosted on their now unavailable website
http://pr.cs.cornell.edu/hallucinatinghumans/, but can still be accessed through the Internet Archive.

https://web.archive.org/web/20200219080401/http://pr.cs.cornell.edu/hallucinatinghumans/data.php

Chapter IV. Socially-aware NAMO 96

Coincidentally, one of the three main use cases of their model is to find the best placement
for a given object in an existing environment, a variation of the rearrangement planning prob-
lem. Thus, the authors also show how ideal placements of objects can be determined with
a similar process of sampling imaginary humans in the test environment, then sampling rel-
evant placements of the object from the learned affordant region models relatively to these
hallucinated humans (Cf. Fig.IV.7). The two other use cases of Jiang et al.’s models were scene
understanding - the classification of pre-segmented 3D RGB-D point clouds, and indoor scene
synthesis - populating empty 3D models of rooms with objects.

(A) (B) (C) (D)

FIGURE IV.7: Figure from [23], showcasing Jiang et al.’s real-world robot experiment where
the robot must place a given computer mouse in the best possible placement. (A) RGB-
D point-cloud of the environment. (B) Semantic segmentation using their algorithm. (C)
Sampling of possible human poses (red heatmaps) and possible object placements (blue

heatmaps).(D) The robot successfully places the mouse in the best location.

While Jiang et al. observe, even in their latest state of the art (2016, [23]), that the problem
of computing relevant object placements has been barely addressed in the robotics literature,
it is a core subject in the field of indoor scene synthesis - as shown in one of the latest surveys
of the domain [140]. In order to generate realistic indoor environments, synthesis algorithms
similarly need implicit or explicit rules to help decide of meaningful object placements. For
example, the reference work of Yu et al. [141] derived a set of rules from expert knowledge
found in the interior design literature [142, 143], and learned sensible parameter values from
automated analysis of a set of human-designed environments. More recently, the popular work
of Qi et al. [144], yielded consistently more accurate and realistic results than Yu et al.’s state-
of-the art. They achieved this notably by borrowing Jiang et al.’s human-centric affordance
modeling, and using a much larger human-designed indoor scene dataset as learning material.

Conclusion: The works we have discussed until now, and the wider indoor environment
synthesis literature - that we shall not delve into here, certainly provide very relevant models
for object placement constraints and space affordances, that could be used to guide our Social
NAMO algorithms. However, they all rely on the hypothesis that extensive and trustwor-
thy semantic knowledge about the environment is readily available, or that it is possible
to observe real-world human activity long enough in the environment to derive affordance
space knowledge. However, acquiring such semantic knowledge in situ is no easy task for
a robot, as the active work in semantic mapping capabilities shows [76]. Also, all these affor-
dance space models we could find are inherently local: the spaces they generate only cover

Chapter IV. Socially-aware NAMO 97

limited regions of the environment (as can be clearly seen in Fig.IV.4b, IV.5c and IV.7c). For
environments with a low number of semantically identifiable objects, or when the robot fails to
detect such objects, it would become impossible to reliably leverage such models to guide the
robot in choosing good placements for manipulated obstacles in NAMO problems. Finally, we
must insist that in NAMO, the main robot purpose remains navigation, that is, to reach the goal
while optimizing the robot’s displacement cost. To reach such compromise, the robot needs
to be able to evaluate the social relevance of manipulating the obstacle to any configuration
that helps with the robot’s navigation - not just to find the best placement for the moved obsta-
cle. All these reasons bring us to the conclusion that a less object semantics-dependent, more
global model of social adequacy for obstacle placement is needed.

IV. 4 The Social Placement Choice NAMO Problem

Our exploration of the Social Navigation literature (Cf. Section II. 2.1.1) reminded that a com-
mon way to approach social space modeling is through the use of costmaps - grids where each
cell is associated with a cost of entering it. The higher the cost, the higher the disturbance to hu-
mans. According to the surveys we have discussed, while this approach may oversimplify the
problem, it allows for simple search, representation, and combination of many types of social
considerations. Hence, we choose to formulate our Social Placement Choice NAMO problem
using a global costmap that covers the entire environment.

For this, let us first define notations and structures of the problem, in the continuity of those
given in Section III. 1:

• a discrete representation (syn. raster) G(Wt) of workspace Wt as a 2D binary occupancy
square grid, without loss of generality. Cells are addressed by tuples of coordinates
(x, y) ∈N2.

• another 2D grid GSC built from G(Wt) (thus sharing the same dimensions, position,
orientation and resolution), where each cell is associated with a social occupation cost
SC(x, y) ∈ R+.

We write Cells(Et
i) the cells occupied by any entity Ei at time t. The social occupation cost

SC(Mt
i) is written as the sum SC(x, y) of each cell occupied by a movable obstacle Mi at time t:

SC(Mt
i) = ∑

∀(x,y)∈Cells(Mt
i)

SC(x, y) (IV.1)

Finally, we define the total social occupation cost of the NAMO plan P as the sum of the social
occupation cost of all manipulated obstacles in their final configuration Mg

i :

SC(P) = ∑
∀Mi∈P

SC(Mg
i) (IV.2)

With this formalization, we can now fully define the problem we shall address in this chap-
ter as a multi-objective optimization problem:

Chapter IV. Socially-aware NAMO 98

The Social Placement Choice NAMO Problem (abb. SPC): Given an initial workspace con-
figuration Wt0 , the Social Placement Choice NAMO problem consists in computing, if it exists,
a plan P for a manipulator robot R from its initial configuration qt0

R to a goal configuration qg
R,

while being allowed to Manipulate movable obstacles Mi ∈ M as necessary, guaranteeing the
absence of any collisions between the robot R and manipulated obstacles with any other obsta-
cles Oi ∈ O, while minimizing both the resulting displacement cost4 C(P) and total social
occupation cost SC(P) caused by the final configurations Mg

i of obstacles it moves.

IV. 5 The Social Occupation Cost Model

As we concluded in Section IV. 3, it is no trivial matter to acquire enough semantic knowledge
about objects in the environment, their affordances and associated affordance spaces, to inform
every cell in our social cost grid. Fortunately, we have found a very relevant insight in the field
of interior design, that is well-summarized in the following quote:

“Providing adequate space for movement is essential and requires careful consideration of ergonomics,
scale, and organizational flow” Mitton and Nystuen, 2016 [142]

That is, the layout of human space is very much deliberate: as such, any free space in a
human environment has, in and of itself, a strong semantic meaning we can use of accessibility
and circulation. Free floor space, by offering an affordance of Navigability/Accessibility arguably
generates an affordance space that spans its entirety. That is, in the terms of Lindner & Eschen-
bach [82], the entire free floor space is at the same time an affordant region, potential agent
region and transactional region.

Incidentally, binary occupancy grids of fixed obstacles are common prerequisites of widely-
used navigation frameworks like the ROS Navigation Stack [145], and most importantly, not
only do they model the occupied space of fixed obstacles, they also do in fact model free space.
Building such grids from real world observation is a straightforward and arguably mastered
field, and they can even alternatively be obtained through fire evacuation maps almost system-
atically available in modern buildings [146].

IV. 5.1 Heuristic hypotheses

Following our argumentation above, let us assume that all free space in human environments
can be considered as passageways that are designed to offer space for a certain number of people
to walk abreast, which we will call space allowance (which holds especially true in public build-
ings [147]). Since we only assume to have the binary occupancy grid of static obstacles as prior
knowledge, our focus can only be the preservation of the environment’s original topology and
space allowances.

To better understand how to do so, let us consider the schematized version in Fig.IV.8 of
the basic pathological case previously introduced in Fig.IV.1 (repeated in Fig.IV.8a), where the

4typically expressed as energy, time, or distance

Chapter IV. Socially-aware NAMO 99

(A) (B)

FIGURE IV.8: Illustrations of the AVOID-MIDDLE and AVOID-NARROW heuristic hy-
potheses (B) based on a schematized version of the basic pathological case presented in

Fig.IV.1 (repeated in A).

human-sized grid decomposition highlights the impact of different object placement choices
on the space allowance. When empty, the top corridor allows a minimum space allowance of
2 humans walking abreast (eq. 2 human units), while the bottom room allows for 4 people.
As illustrated in the left-most figure of Fig.IV.8b, even leaving the obstacle closest to the wall
would still halve the corridor’s space allowance to a single human unit. On the other hand, as
illustrated in the rightmost figures, leaving the obstacle in the room would either reduce the
room’s space allowance by half if left in the middle (2 over 4 human units), or by 25% if left
closest to the wall (3 over 4 human units). Furthermore, in the “middle-of-the-room” case, the
room is in fact split into two passageways, each only allowing a single human to pass abreast,
instead of the initial 4, so the actual loss of initial space allowance could be considered to be of
75% in this case. Clearly, out of all options, leaving the obstacle in the largest space, and as far
away from the middle of space as possible, appears to be the best choice to preserve the initial
space allowance.

Thus, we propose the following two heuristic hypotheses:

1. AVOID-MIDDLE: The original free space allowance must be the least divided: thus, the
cells in the “middle of the space” must have the highest local costs;

2. AVOID-NARROW: The narrower a passageway, the higher the relative loss of space al-
lowance that can be caused by an object: thus, narrow spaces must have higher costs than
wide spaces.

In the remainder of this Section IV. 5, we shall translate these hypotheses into mathematical
operations, that will allow us to build a coherent social occupation costmap from the binary
occupancy grid of fixed obstacles G(F).

IV. 5.2 Computation steps overview

The algorithm we create to translate the above heuristic hypotheses can be summarized with
the following four steps (which we shall delve further into in the following subsections):

Chapter IV. Socially-aware NAMO 100

1. Identify the middle of space cells, noted SK(G(F)) - that is, the thinnest discrete version
(one cell wide) of the environment’s shape equidistant to the obstacles boundaries, also
called “skeleton” (Cf. Fig.IV.9.A.Top);

2. Measure the space allowance for each cell in SK(G(F)) - that is, the minimal distance
from each cell to the fixed obstacles ∈ F as to differentiate narrow and wide spaces
(Cf. Fig.IV.9.A.Bottom);

3. Convert the previously determined minimal distance from obstacles into a social cost
for each cell in the skeleton SK(G(F)), using a function fconv that relates the distance to
appropriate human-sized constants to ensure high costs in narrow spaces and low costs
in wide ones (Fig.IV.9.B);

4. Propagate the social cost values from the skeleton cells in SK(G(F)) in a decreasing
wave defined by a function fprop, to ensure local highest costs in the middle of space
(Fig.IV.9.C.).

FIGURE IV.9: Illustration of the 4-steps computation based on the basic pathological ex-
ample presented in Fig.IV.1: skeletonization & distance transform (A), conversion of space

allowance into Social Cost (B) and decreasing wave propagation (C)

IV. 5.3 Skeleton & Space Allowance

Determining the skeleton of a binary occupancy grid and the minimal distance to obstacle cells
are well-known problems in the literature, and can respectively be done using skeletonization
[148] and distance transform [149] algorithms.

Given the tremendous amount of choice of skeletonization algorithms in the literature,
we focused our choice on three of the most popular: Zhang-Suen [150], Guo-Hall [151] and
Medial-Axis [152]. We ended up choosing the Guo-Hall algorithm, because, it has a very
good contour noise immunity, and does not produce end-of-edge artifacts like Zhang-Suen.

Chapter IV. Socially-aware NAMO 101

Just like the Medial-Axis method, it guarantees the preservation of components, which is
paramount to properly represent passageways. An example of such skeletonization is avail-
able in Fig.IV.9A.Top.

To express the original space allowance of passageways (i.e. their “broadness”/“narrow-
ness”), we must measure the minimum euclidean distance from fixed obstacles (in contrast to
taxicab or chessboard distance), since passageways do not necessarily follow perfect diagonals
or straight lines in the grid. We thus use the Euclidean Distance Transform [149] on the binary
occupancy grid of fixed obstacles, resulting in a costmap where each cell contains the euclidean
distance to the nearest obstacle (in meters), as illustrated in Fig.IV.9A.Bottom. The minimum
distance value dmin(x, y) in a cell belonging to the skeleton SK(G(F)) corresponds to half the
space allowance associated with this cell. For example, the left-most cell in the corridor has a
minimum distance of 0.45 m from the closest wall, offering a space allowance of 0.9 m (i.e. an
entity/group of entities 0.9 m wide could stand in this cell).

IV. 5.4 From Space Allowance to Social Occupation Cost

To transform the previously computed minimum distance dmin(x, y) in each skeleton cell (x, y) ∈
SK(G(F)) into a meaningful social cost that expresses the AVOID-NARROW rule, we must use
real-world measurements that define what is narrow or wide for humans. Basically, we want
the cost to be maximal for any space allowance that is below a reference human diameter dh,
that is, any minimum distance value dmin(x, y) below a reference human radius rh = dh

2 , then
decrease as the space allowance increases.

(A) (B)

FIGURE IV.10: Reference human diameter dh in the literature. (A) Illustration from Mitton
and Nystuen’s book on interior design we use as reference in this chapter [142] showing
their “average adult space clearance for ambulatory human movement”. (B) Screenshot of

the DINED database interface showing our measurement.

Chapter IV. Socially-aware NAMO 102

To find a convincing dh value, we turn to anthropometrics, and use the DINED database,
the largest freely accessible resource of human body measurements [153]. We derive the value
of dh from standing breadth over the elbows, which is the widest measurement in a standing
posture with arms at rest (Cf. Fig.IV.10b). According to the most recent 2004 data for Dutch
adults between the age of 20 to 60, we can reasonably cover about 95% of the population by
setting dh = 0.55m (i.e. rh = 0.275m). This value is coherent with the average adult space
clearance for ambulatory human movement of 0.559 m provided by Mitton and Nystuen [142]
(Cf. Fig.IV.10a).

Then, to determine a relevant decrease profile, we turn to a commonly used law-defined
measurement in French construction [147]: “UP” or “Unités de Passage” (litt. “Passage Units”).
UPs describe the minimal space allowance between obstacles/walls for the passageway to al-
low proper emergency evacuation for n persons: 1UP = 0.90m (meant to comply with standard
wheelchair width), 2UP = 1.40m, and for three and beyond nUP = n ∗ 0.60m (Cf. Fig.IV.11b).
An indoor passageway is rarely more than 5UP = 3m large because the same law recommends
increasing the number of passageways rather than create ones that are more than 5UPs large:
therefore, we choose to keep the social cost constant beyond 5UP.

0 rh 1
2 UP
0.45

2
2 UP
0.7

3
2 UP
0.9

4
2 UP
1.2

5
2 UP
1.5

1.01.0

0.9

0.8

0.7

0.6

0.5

Minimal distance from obstacles dmin(x, y)[m]

So
ci

al
O

cc
up

at
io

n
C

os
tS

C
(x

,y
)

(A) (B)

FIGURE IV.11: (A) Social occupation cost as a function of the minimal distance from obsta-
cles: ∀(x, y) ∈ SK(G(F)), SC(x, y) = fconv(dmin(x, y)). (B) Illustration of the concept of

“Unités de Passage” (litt. “Passage Units”).

For the sake of keeping social occupation cost values comparable, we reduce the interval
of acceptable values to [0, 1]. The cost values associated with each UP between 1 and 5 can
be adjusted depending on the relative importance users give to preserving space allowance.
Fig.IV.11a shows a set of values we have found to yield a reasonably convincing social occu-
pation cost representation in our experiments discussed in Section IV. 7. Intermediate values
are determined by simple linear interpolation, resulting in the social cost conversion function
in Equation IV.3. Again, the most relevant properties of this function are its decreasing nature
and plateaux; beyond this, one may simplify or complexify the curve as they see fit for their
own purposes.

Chapter IV. Socially-aware NAMO 103

∀(x, y) ∈ SK(G(F))

fconv : R+ → R[0, 1]

fconv(x, y) =

1 if dmin(x, y) ∈ [0, rh[

−4
7 · dmin(x, y) + 81

70 if dmin(x, y) ∈ [rh, 1
2 UP[

−0.48 · dmin(x, y) + 1.116 if dmin(x, y) ∈ [1
2 UP, 2

2 UP[

−0.4 · dmin(x, y) + 1.06 if dmin(x, y) ∈ [2
2 UP, 3

2 UP[
−1
3 · dmin(x, y) + 1 if dmin(x, y) ∈ [3

2 UP, 4
2 UP[

−1
3 · dmin(x, y) + 1 if dmin(x, y) ∈ [4

2 UP, 5
2 UP[

0.5 if dmin(x, y) ∈ [5
2 UP,+∞[

(IV.3)

IV. 5.5 Propagation

As explained in the introduction of Section IV. 5, we need a propagation procedure that guar-
antees a decreasing cost from the skeleton values, in order to guarantee the benefit of getting
the obstacle away from the “middle of space”.

For this, we use a variant of the Wavefront Propagation algorithm [154] where we start
from the skeleton’s set of cells SK. We then iteratively mark all unlabeled 4-neighbors cells
with the λ-decayed minimum value of their own neighbor cells from the previous iteration,
with λ ∈]0, 1[, as described in equation IV.4. Since the choice of λ value depends on the grid
resolution, we will discuss it in Section IV. 7.

Fixed
obstacle

Movable
obstacle

Robot Goal Transfer
path

Transit
path

10 Social Cost
Scale

FIGURE IV.12: Illustration of the wave-propagation procedure of the social occupation cost
based on the basic pathological case introduced in Fig.IV.1. First row is top view, second
row is a 3-dimensional view of the costmap - the robot, movable obstacle and goal are only
shown for the sake of readability, but do not affect the social occupation costmap computa-

tion.

Chapter IV. Socially-aware NAMO 104

fprop : W → R[0, 1]

fprop(x, y) =

 fconv(x, y) if (x, y) ∈ SK

λ ·min(Neighbors(x, y)) if (x, y) /∈ SK

(IV.4)

The process and resulting costmap are illustrated in Figure IV.12. As expected, the middle
of space is populated by ridges created by local social occupation cost maxima, and the nar-
rowest spaces are associated with the highest costs, encouraging placement choices outside the
corridor and away from the room’s center, especially in front of the opening.

IV. 6 Integrating the social occupation cost to NAMO Algorithms

IV. 6.1 Relevant algorithms for this integration

As stated at the end of our problem definition in Section IV. 4, minimizing both the displace-
ment cost of existing NAMO algorithms and our social occupation cost is a typical multi-
objective optimization problem. Such a problem is generally solved using the concept of
Pareto optimality, and more precisely by finding the Pareto front. By definition, finding the Pareto
Front of our problem would require computing the set of all valid plans Ppareto for which there
is no action to be added that could decrease the robot displacement cost C(P), without increas-
ing the total social occupation cost SC(P). Then, we would need to select one plan to execute
among the ones in the Pareto front Ppareto: to do so, we would have to favor either the robot
displacement cost C(P) or the total social occupation cost SC(P).

As the above definition suggests, computing the Pareto front Ppareto would require the
computation of all valid NAMO plans - although, the literature we have summarized in our
NAMO state of the art in Section II. 1 clearly states that such an exploration is unrealistic for
all NAMO problems. Even when considering only a subset of NAMO problems, as (Stilman,
2005) and (Wu&Levihn, 2014)’s algorithms do, systematically computing the corresponding
subset of all valid NAMO plans is still difficult, and should only ever happen when the
problem is in itself difficult for the algorithms - certainly not every time the algorithm is
called.

In the case of (Wu&Levihn, 2014)’s algorithm, trying to replace the displacement cost op-
timality by a Pareto optimality would require dropping two search space reduction strategies:
the entire obstacle selection routine (Cf. Section III. 2.1.1 and Alg. 3) and the obstacle manip-
ulation planning bound (Cf. Section III. 2.1.1 and Alg. 4, l.24). As these two strategies rely on
the property that individual action’s displacement cost positively accumulate, they would sim-
ply not apply in this multi-objective optimization setting. Both cited functions would need to
be rewritten so that all obstacles would be evaluated, and all valid plans would be computed
for each obstacle. The problem is that, according to Levihn [34], these two strategies are each

Chapter IV. Socially-aware NAMO 105

individually responsible for an 80 to ∼98% reduction in computational requirements of the al-
gorithm. Thus, even if it is possible to adapt (Wu&Levihn, 2014)’s algorithm while keeping
its optimality property, it would simply cripple the algorithm’s computational efficiency.

On the other hand, (Stilman, 2005)’s algorithm already surrendered optimality, to rather
guarantee completeness for solving L1 problems in reasonable time [3], which they achieved
through their obstacle choice heuristic (Cf. Section III. 2.2.1 and Alg. 8). If there is no need to
maintain an optimality proof, then there is no need to compute all valid plans, to find the Pareto
front and picking “the” best plan. Rather, we can focus on formulating a useful heuristic to
find a good compromise. This heuristic will thus be applicable to any other NAMO algorithm
that does not require an optimality proof, which is the case for most of the literature, according
to our NAMO literature survey in Section II. 1. This is why we shall base all our experiments
until the end of this thesis upon (Stilman, 2005)’s algorithm.

IV. 6.2 A heuristic compromise cost

We thus propose to compute and use a heuristic compromise cost CC(x, y) in the transfer plan-
ner (syn. obstacle manipulation planner) of NAMO algorithms, for the set of potentially reach-
able cells to move the selected obstacle at. We do that with the following process, illustrated in
Fig.IV.13:

1. Temporarily remove the selected obstacle Mi from the robot’s binary occupancy grid.

2. Inflate the grid by the inscribed circle radius of Mi. This operation allows to find a subset
of potentially acceptable cells for Mi.

3. Compute a goal-less Dijkstra search from Mi’s center cell. The set of potentially reachable
cells for moving Mi is thus obtained, with an underestimate of the distance dMi(x, y) to
reach them5.

4. Compute the compromise cost CC for each potentially reachable cell with a weighted
sum of the following normalized costs: occupation cost (SC(x, y)), distance dMi(x, y) and
a heuristic euclidean distance to NAMO goal dgoal(x, y):

CC(x, y) =
wMi ∗ d′Mi + wgoal ∗ d′goal + wSC ∗ SC′

wMi + wgoal + wSC
(IV.5)

where SC′, d′Mi , and d′goal are respectively normalized versions of SC, dMi , and dgoal in
[0, 1].

The obtained Comprise Cost grid can then be used in the transfer planner of NAMO algo-
rithms in two non-exclusive ways:

1. it can be used to bound the action space exploration, modifying the search exit condition,
so the search is stopped early when a solution leaves the evaluated obstacle’s center in

5The goal cells are filtered out of this set afterwards so that the robot can’t put the obstacle on it.

Chapter IV. Socially-aware NAMO 106

FIGURE IV.13: Illustration of the Compromise cost (CC) computation steps based on Fig.IV.1

one of the cells within the top n percent best CC cost. This is similar to how (Wu&Levihn,
2014)’s algorithm bounded their search with a cost estimate of the currently evaluated
obstacle manipulation plan (Alg. 4, l.24), albeit without guaranteeing optimality, as pre-
viously discussed.

2. before starting the search, it can be used to select the obstacle cell with the least combined
cost as target cell, and focus the search towards it. Even if the cell may not be reachable,
the previously discussed bound allows exit if a cell with a close-enough compromise cost
is reached.

These two modifications preserve the algorithm’s completeness, as they do not prevent
the search to explore all reachable transfer configurations if none of the top n percent best CC
cost cells can be reached. Thus, any problem that can be solved by the baseline algorithm is
guaranteed to be solvable by the modified social version - which is significant to make a fair
comparison between the two.

We applied both modifications to our (Stilman, 2005) improved algorithm presented in Sec-
tion III. 2.2.2, using an A∗ search instead of the Dijkstra search to focus on the best compromise
cell for the S-NAMO variant6 (Cf. Alg.9, l.2).

IV. 7 Experiments

Now that we have defined a social cost model that does not demand complex semantic knowl-
edge, found a way to combine it with existing NAMO Algorithms’ transfer planners, and cho-
sen a relevant NAMO algorithm as a baseline to compare against, let us experimentally explore
its effects. All experiments were run on an Intel Core i7-8850H CPU @2.60GHz with 16 GB of
RAM.

6The accompanying video shows how both algorithms unfold:
https://team.inria.fr/chroma/files/2020/07/iros_2020_Renault.mp4

https://team.inria.fr/chroma/files/2020/07/iros_2020_Renault.mp4

Chapter IV. Socially-aware NAMO 107

IV. 7.1 Simulation parameters

Before going any further, let us first define the algorithm’s parameters values for the exper-
iments: these are summarized in Table IV.1. The choice of values has been manually tuned
across the four different experiment environments illustrated in Fig.IV.15:

• The grid resolution of 0.1 m we have adopted is a common choice in the NAMO literature,
as it can represent details of many objects in human environments while not needlessly
multiplying the number of cells and thus computational requirements;

• The decay factor λ is mainly tied to the grid resolution choice, and has been decided
upon so that the decrease profile was not too steep in the 4 environments. The chosen
value of 0.97 can reasonably be expected to generalize well with other human indoor
environments, supposing the same grid resolution. The finer the resolution, the lower
the decay factor value should be to get a similar social costmap;

• For the Compromise Cost weights wMi , wgoal and wSC, we started out with a 50/50 dis-
tribution between social and distance-related weights (that is, wMi + wgoal = wSC). We
quickly favored the obstacle movement distance estimate over the distance-to-goal esti-
mate (more precisely, wMi = 10 and wgoal = 2), as obstacle transfers are inherently costlier
than navigation. In the end, we chose to slightly favor social cost further (wSC = 15 >

wMi + wgoal), as we wanted our algorithm to slightly favor socially-relevant choices over
displacement-minimizing ones.

• The compromise cost search bound n is set to 1% of the selected best compromise cost.
We have found this to be a good compromise between bringing the obstacle close enough
to the selected cell, while not wasting further computational time trying to reach the one
specific chosen cell.

Square grid resolution for GSC 0.1 m
Decay factor for social cost propagation λ 0.97

Compromise cost weight for obstacle movement distance estimate wMi 10
Compromise cost weight for distance-to-goal estimate wgoal 2

Compromise cost weight for social cost estimate wSC 15
Compromise cost search bound n 1%

TABLE IV.1: S-NAMO algorithm parameters values for the experiments

IV. 7.2 Evaluation criteria

We now need criteria for measuring both the displacement cost efficiency and social accept-
ability of solutions. For displacement cost efficiency, as in all of NAMO literature, we use
the total euclidean distance for transfer and transit paths, respectively Ltransit and Ltrans f er

(Ltransit + Ltrans f er = Ltotal) - rather than using the algorithm’s specific displacement cost defini-
tion.

Chapter IV. Socially-aware NAMO 108

As for social acceptability, we define the following criteria:

• Total Social Occupation Cost ST : Derived from our model, it is the sum of SC for all
movable obstacles at time t. It represents the global space accessibility disturbance for
humans within a single criterion.

ST(Wt) = ∑
∀Mi∈M

SC(Mt
i) (IV.6)

• Number of components Nc : In the grid representation of Wt inflated by the reference
human radius rh defined in Section IV. 5, it is the number of interconnected sets of cells
Ci

h(W
t) that make up the global set of accessible cells for humans Cacc

h (Wt), as illustrated
in Fig.IV.14. Free space components are as much of an essential topological characteristic
of space for humans, as they are for robots: disconnecting (i.e. adding) space components
for humans can arguably be considered the worst navigability/accessibility affordance
violation - hence why it is essential to measure it.

Nc(Wt) = |{Ci
h(W

t)}| (IV.7)

(A) Initial state of our basic
scenario of Fig.IV.1a

(B) Initial two free space
components for humans (two-cells

small red component left to the
robot)

(C) Final state, with three space
components for humans after the
NAMO resolution of Fig.IV.1b

FIGURE IV.14: Grid representation of Wt inflated by the reference human radius rh.
Pink cells are inaccessible cells for humans, other cell colors each correspond to a sepa-

rate free space component for humans.

• Space fragmentation percentage f rag : In the same grid as before, it relates the size of the
biggest free space component Cmax

h (Wt) to the total size of free space Cacc
h (Wt). It allows

to measure the accessible proportion of space for a human if it were present in the biggest
free space component, relativizing the previous criterion of number of components. For
example, if an environment were only 5% fragmented, but had dozens of very small free
space components, it would arguably remain very much navigable for a human without
having to resort to manipulation. Conversely, if the same environment were to be split
into three equal components, resulting in a ∼ 33% fragmentation, the likelihood of the
human having to resort to manipulation to navigate the environment between any two

Chapter IV. Socially-aware NAMO 109

points would conceivably be higher.

f rag(Wt) = 1−
|Cmax

h (Wt)|
|Cacc

h (Wt)| (IV.8)

A plan improves social acceptability by lowering any of these criteria between Wtstart and
Wtend , tend being the time at which the robot has executed all its actions. Finally, we also provide
the total planning time Tplanning to represent the computational cost of each plan; this value
is averaged (and provided with standard deviation), as it may vary across multiple runs of a
same experiment.

IV. 7.3 Results

IV. 7.3.1 Short-term experiments

We first evaluated our approach with four short-term scenarios of increasing complexity, each
shown in a line of Fig.IV.15. “Short-term” refers to the low number of successively executed
goals in these scenarios (mainly 1 per scenario), comparatively to our second set of experiments
in the following Section IV. 7.3.2 (100 per scenario). These “short” and “long”-term designations
are thus not used as strictly opposite terms, but designate a spectrum, where one-goal scenarios
are however definitely considered short-term. Since, the current NAMO literature only covers
short-term, one-goal scenarios, it makes sense to first study such scenarios.

In Fig.IV.15, scenario [A] represents the same corridor&room scenario we have been study-
ing since the beginning of this chapter (Cf. Fig.IV.1). Scenario [B] showcases 4 rooms joined
by corridors, each containing a goal, which are executed counter-clockwise starting from the
right (for the sake of readability, only the state after the first goal is shown in the third and
fourth columns). Scenario [C] exhibits a room filled with unmovable tables (black squares) and
miscellaneous movable obstacles “after a party”. Finally, scenario [D] is a real-world represen-
tation of our lab’s second floor, obtained from a 3D scan - a first goal lies in the second room
from the left at the top, while a second goal is in the first room from the right at the bottom.
It must be reminded for proper understanding that the free space components represented
in the last three columns are computed using the reference human radius rh, and not the
(smaller) robot radius. Thus, even if the robot successfully connected two components to pass,
the components may still be disconnected for humans, as can be seen in the 6th column for
scenarios [A], [B] and [D].

Table IV.2 compares the values of the previously presented evaluation criteria (Cf. Section
IV. 7.2), obtained in these 4 scenarios between the baseline (Stilman, 2005) NAMO algorithm
and its S-NAMO counterpart. Since scenarios [B] and [D] consist of multiple goals, displace-
ment and computation costs for are cumulated over goals. Each scenario is run 50 times in
order to obtain a meaningful average of planning time Tplanning. We further comment these
results hereafter.

Chapter IV. Socially-aware NAMO 110

Ltransit + ST(Wtstart)→ Nc(Wtstart)→ f rag(Wtstart)→ Tplanning
Ltrans f er ST(Wtend) Nc(Wtend) f rag(Wtend) ±σ

[m] + [m] [%→ %] [s]
[A]

Baseline 4. + 1.1 46.8→ 43.0 2→ 3 0.4→ 12.6 0.5 ± 0.2
S-NAMO 2.5 + 2.8 46.8→ 15.0 2→ 1 0.4→ 0 1.1 ± 0.2

[B]
Baseline 33.0 + 1.2 61.0→ 44.9 3→ 4 23.6→ 74.3 13.8 ± 1.6

S-NAMO 35.7 + 3.4 61.0→ 23.7 3→ 1 23.6→ 0. 2.0 ± 0.3
[C]

Baseline 11.2 + 0.6 559.0→ 556.5 4→ 3 45.5→ 28.5 1.3 ± 0.2
S-NAMO 13.0 + 2.5 559.0→ 545.9 4→ 3 45.5→ 28.6 3.1 ± 0.4

[D]
Baseline 31.8 + 1.0 105.4→ 116.7 14→ 15 47.2→ 45.5 28.1 ± 1.8

S-NAMO 35.4 + 4.5 105.4→ 79.3 14→ 13 47.2→ 5.0 26.5 ± 1.7

TABLE IV.2: Short-term single-robot experiments performance criteria com-
parison table. As a reminder: displacement and computation costs for [B] and
[D] are cumulated over goals, ST and Nc have no units and Tplanning is given as

average with standard deviation σ over 50 runs.

Scenario [A] shows the same typical pathological case scenario we have studied along this
chapter, where (Stilman, 2005)’s algorithm, or any of the other current NAMO algorithms,
would cause unintentional connectivity loss - as we have already stated in Section IV. 1. At
the cost of little extra computation (although twice as long, it only adds 0.6 seconds in abso-
lute) and further displacement of the obstacle (the total traversed distance is only 4% greater),
the S-NAMO approach results in complete defragmentation - when baseline NAMO further
fragments the environment in the eyes of our reference human of radius rh, as can be seen
in Fig.IV.15’s 6th column. Unsurprisingly, since our social approach considers obstacle place-
ments other than the nearest ones that open its way, the transfers get longer and costlier.

Scenario [B] similarly tends to show that our social approach is - at least in the short term
- costlier in terms of displacement cost: here the total traversed distance is 14% greater for S-
NAMO compared to the baseline, and the transfer distance is almost twice as big (although,
only 2.2 m longer in absolute). But more importantly, this scenario also allows to highlight an
interesting phenomenon: NAMO algorithms, when faced with a movable obstacle blocking a
tight intersection branch they need to pass, will naturally tend to block another branch because
of the sole focus on displacement cost, as illustrated in Fig.IV.15’s 3rd column. In baseline
NAMO, as the robot gets from one room to the next, it repeatedly blocks another corridor
and systematically induces an additional computation cost, that after 4 goals is already almost
7 times greater than our S-NAMO approach - because computing a NAMO plan is costlier
than a pure navigation plan. Our S-NAMO approach quickly evacuates the obstacle from the
intersection into the left room on the first goal, greatly facilitating any future navigation.

C
hapter

IV.
Socially-aw

are
N

A
M

O
111

Social
Occupation

Costmap GSC

State after
NAMO

Initial
State

State after
S-NAMO

[A]

[B]

[C]

[D]

Initial
Connected

Components

Connected
Components
after NAMO

Connected
Components

after S-NAMO

FIGURE IV.15: Experimental scenarios & NAMO vs. S-NAMO results. [A] “Corridor And Room” (Fig.IV.1), [B] “Crossing”, [C] “Intersec-
tions” and [D] Real-world map of our “CITI Laboratory”. In [A] and [C], the robot is only required to reach one goal, while in [B] and [D],
it has to sequentially reach respectively 4 (counter-clockwise, starting from the right room in [B]) and 2 goals (top-left then bottom-right

rooms in [D]). In the 3rd and 4th columns, only the final state after these multiple goals is shown.

Chapter IV. Socially-aware NAMO 112

In scenario [C], the same phenomenon observed in [B] occurs: the NAMO approach blocks
another intersection branch while the S-NAMO approach drives the obstacle to the environ-
ment’s periphery. This reinforces the evidence that a better obstacle placement from a social
point of view comes at the price of an increase in traversed distance - here, a 31% overall in-
crease, with a 4 times longer transfer distance. But more importantly, this scenario shows that,
out of the three criteria we propose to evaluate social acceptability, only the one based on our
social cost computation ST allows us to differentiate the quality of solutions that produce al-
most the same change in number of components (4 → 3) and space fragmentation (∼45% →
∼28%).

Finally, Scenario [D] shows that our approach is capable of growing up to scale in big re-
alistic environments. Indeed, despite the environment size and complex topology, corridors
around the middle obstacle and tight passages between desks in the surroundings, the offices’
passageways are properly detected as less appropriate for obstacle placement than the wider
areas like office corners, the entry hall on the left and the big intersection on the right. The
results in Table IV.2 show that despite this increase in complexity compared to the other sce-
narios, our approach still succeeds in achieving more socially acceptable solutions than the
baseline approach7, for a similar computational cost.

Preliminary Conclusion: This last scenario, together with the results of scenario [B], go to
show that while our approach may incur higher displacement costs (which was to be expected),
it does not necessarily increase computational costs. These experiment tend to show that using our
social cost model seems to systematically yield better results social-wise, not only from the
perspective of our own model-dependent criterion (ST), but also with independent topology
and geometry-based criteria (Nc and f rag).

IV. 7.3.2 Long-term experiments

We observed in our previous experiments, notably in the “Crossing” [B] scenario, that our so-
cial cost model could not only achieve better social adequacy, but could also positively affect
other evaluation criteria such as computation time in longer-term experiments. In scenario [B],
if the robot were asked to repeat several times the four-goal sequence of the scenario, at some
point, the NAMO baseline would inevitably become costlier in terms of traversed distance than
the S-NAMO alternative, because of the repetitive additional transfer actions between the in-
tersection’s branches. Rather than studying further this simple scenario, let us explore whether
S-NAMO can positively affect non-social evaluation criteria in the more complex environment
of “Intersections” [C].

To do so, we executed 200 experiments in this environment, randomizing the start robot
configuration and a sequence of 100 goals each time, but not randomizing the position of mov-
able obstacles, since they need to be put in relevant places (keyholes) to create actual NAMO

7The high amount of detected components is due to the chosen reference human radius rh: in the offices, space
is considered fragmented between some desks because of this. This does however not make the comparison any
less relevant.

Chapter IV. Socially-aware NAMO 113

problems. We again compare the NAMO baseline with our S-NAMO approach: an example
of such an experiment is shown in Fig.IV.16. In order to compare the baseline NAMO with
the S-NAMO approach, we compute the average and standard deviation of each evaluation
criterion over the 200 experiments, and study their evolution over time in the graphs shown in
Fig.IV.17 - which we discuss hereafter.

(A) Initial configuration with the 100
goal-sequence

(B) Initial configuration without the
goals (for the sake of readability)

(C) After 100 random goals with
NAMO

(D) After the same goals with S-NAMO

FIGURE IV.16: Illustration of one of the 200 randomized experiments with a single robot in
the "Intersections" environment.

The first conclusion is that S-NAMO still significantly improves the environment’s state,
making it significantly clearer and tidier. This is qualitatively supported by the observable
difference between the environments yielded by NAMO and S-NAMO, in Fig.IV.16c and IV.16d
respectively. While NAMO fundamentally connects the environment (as shown by the fast
reduction in number of components in Fig.IV.17b), S-NAMO goes a step further and “tidies” it
up, eventually almost fully defragmenting it, as shown by Fig.IV.17c. By the end, the average
fragmentation reaches near 0% with a standard deviation below 1% for S-NAMO, while it
converges around 5% with a standard deviation of about 10% for NAMO. Since S-NAMO is
encouraged to leave moved obstacles closer to static obstacles, it also increases the number of
human-traversable free cells by almost 8% (Cf. Fig.IV.17d), while decreasing the total social cost

Chapter IV. Socially-aware NAMO 114

by more than 40%, according to Fig.IV.17a.
The second conclusion derives from the first one: a more accessible space for humans is

also a more accessible space for the robot8. Improvements to the environment’s state are also
reflected by a reduction of the total path length (Cf. Fig.IV.17h, IV.17e) leading to faster goal
completion than baseline NAMO. Indeed, as shown in Fig.IV.17g, after around 20 goals, S-
NAMO starts to visibly allow the robot to accomplish its goals faster in terms of simulated time
steps (i.e. number of executed actions), reaching a plateau about 25% steps sooner at around 90
successful goals on average. As NAMO eventually reaches its plateau of successful goals, its
accumulated traversed distance is more than 20% than that of S-NAMO. The number of trans-
fer operations (the number of continuous Manipulate operator sequences) is also reduced by
around 25%, which is a net positive, since manipulations present an additional failure risk in
real-world applications. The reason why both NAMO and S-NAMO however do not system-
atically succeed in completing 100% of their goals is due to resolution failure of the underlying
improved (Stilman, 2005) algorithm, that cannot solve NAMO problems where more than one
obstacle cover the goal configuration.

It is to be reminded that (Stilman, 2005)’s algorithm is not optimal, and more exactly, it
simply won’t try to compute a plan including obstacle manipulations if it can reach its goal
with a pure navigation plan. That is why the curvature of the number of transfers graph
(Cf. Fig.IV.17h) becomes less steep as soon as most components have been connected (Cf. Fig.IV.17b),
after about a dozen goals on average. The reason why transfers still occur after that is because
some goals are still covered by obstacles, and trigger a transfer plan computation. This also
explains why the computation time of S-NAMO remains consistently higher (Cf. IV.17f) com-
pared to NAMO in this scenario.

8Here, this is particularly true for robots smaller than humans due to our use of a human-size reference radius
rh; if robots were larger than humans, then we could simply adjust the reference radius and skeleton conversion
function fconv to be coherent with the robot’s size, resulting in a similar conclusion.

Chapter IV. Socially-aware NAMO 115

FIGURE IV.17: Averaged evaluation criteria graphs (with standard deviation) of the 200
randomized experiments in the "Intersections" environment presented in Fig.IV.16, baseline
NAMO in blue, S-NAMO in green. Ordinate (y-axis): values for the criterion given in cap-

tion. Abscissa (x-axis): number of elapsed simulation time steps.

(A) Total Social Occupation Cost ST(Wt) [UA] (B) Number of free space components Nc(Wt)

(C) Space fragmentation f rag(Wt) [%] (D) Number of free cells Cacc
h (Wt)

(E) Total robot traversed distance Ltotal [m] (F) Computation time Tplanning [s]

(G) Number of successful goals (H) Number of obstacle transfers

Chapter IV. Socially-aware NAMO 116

IV. 8 Conclusions

This chapter first introduced the new problem of General Socially-Aware Navigation Among
Movable Obstacles. Inspired by our Social Navigation literature exploration (Cf. Section II.
2.1.1), we proposed a first naive social constraint of “taboo zones”, or forbidden affordance
spaces, to express this problem. While this simple approach does not affect optimality of al-
gorithms, it does not scale nor generalize well to any NAMO scenario. After consulting the
literature on Affordance Spaces, we realized that a new model was needed that did not require
extensive semantic data and could cover the entirety of the environment. Hence, we introduced a
new social occupation cost model representing an affordance space of accessibility/navigability
based on two heuristic hypotheses: avoiding narrow spaces, and not leaving objects in the mid-
dle of space. This model relies solely on the analysis of the environment’s binary occupancy
grid of fixed obstacles. Then, we showed how to extend NAMO to S-NAMO algorithms that
result in plans with better social acceptability. To the best of our knowledge, this is the first
approach to propose an answer to social concerns in NAMO problems.

Experimental results on scenarios of increasing complexity have shown the scaling and
generalization capabilities of our method. The same results tend to show that in the short-
term, improving social adequacy of obstacle placement comes at the cost of increased robot
movement, but that in the longer term, the displacement cost may become lower especially in
initially cluttered environments, by tidying them up. It is to be noted that, to the best of our
knowledge, we are the first to explore long-term NAMO experiments. In our experiments,
the computation time of socially-aware obstacle transfers was systematically higher than that
of non-aware ones, mainly due to the cost of exploring more robot-obstacle configurations.
We however attribute this mainly to the choice of A∗ as transfer planning algorithm, which
does not focus the search too much for the sake of completeness and optimality. In future
experiments, algorithms such as Jump Point Search [155] or RRT* [68] could be used to focus
this search more towards the selected best compromise cost cell, likely resulting in reduced
transfer planning computation time.

Our model could certainly still be improved, notably in regard to its parametrization. As
with any parameterized model of human preference, finding good -or best- parameter values
for our social cost model that hold relevance beyond the eye of the experimenter would require
feedback from a large and diverse-enough group of humans - which we did not have access
to in the context of this work. In the future, it may be relevant to set up a social experiment
where humans could rank social costmaps and corresponding S-NAMO robot plans with a
larger dataset of indoor environments.

Finally, our adoption of a costmap-based social constraint model leaves the door open to
straightforwardly integrating local object semantics-based affordance space models such as
those of Jiang et al.[23], or human observation-based ones such as the one of Limosani et al. [22],
that we both mentioned in Section IV. 3. This would also require tuning weighting parameters
to integrate the different costs into one, but the resulting model would certainly yield even
more meaningful and relevant obstacle choice placements.

117

Chapter V

Multi-Robot NAMO
In addition to the conclusion of our state of the art in Chapter II that social concerns had never
been addressed in the NAMO literature, we also remarked that actual Multi-Robot NAMO
had never been addressed either: that is, having several robots share the same space, concur-
rently navigating while moving obstacles out of their way without colliding. In the previous
chapter, we developed a social model for robots to make NAMO plans that take into account
the potential navigation needs of all agents (in other words, the accessibility affordance for hu-
mans and other robots), even if they are not within the environment at the moment of plan
execution. In this chapter, we actually introduce other robots in the environment, and define
the Multi-Robot NAMO (abb. MR-NAMO) problem. We then present an implicit coordina-
tion framework for existing NAMO and S-NAMO algorithms, allowing us to explore this new
context, as shown in Fig.V.1. This figure illustrates the same basic pathological scenario intro-
duced in Chapter IV, but with an additional robot whose movement gets more or less hindered
depending on the first robot’s plan choice - motivating our discussion in the present chapter on
the relevance of our previously presented Social Cost Model in the presence of actual agents.

(A) Initial configuration (B) NAMO plans at start (C) Pink robot changed
plan to avoid collision

(D) NAMO plans at end
(101 steps)

(E) Social Occupation Cost (F) S-NAMO plans at start (G) Pink robot changed
plan to avoid collision

(H) S-NAMO plans at end
(81 steps)

Fixed
obstacle

Movable
obstacle

Robot Goal Transfer
path

Transit
path

10 Social Cost
Scale

FIGURE V.1: Simple Multi-Robot scenario derived from Fig.IV.1, and resolution by our Im-
plicit Coordination Strategy, without (1st line) and with (2nd line) the Social Cost Model
presented in Chapter IV. The blue robot chooses a more appropriate placement for the obsta-
cle using S-NAMO than NAMO, allowing the pink robot to reach its goal without having to

move the obstacle again, reducing overall execution time (makespan) by almost 20%.

Chapter V. Multi-Robot NAMO 118

V. 1 MR-NAMO Problem definition

We build the General MR-NAMO problem in the continuity of the General NAMO problem
definition given in Section III. 1. As the name indicates, the purpose of the following section V.
1.1 is to express a definition that is as general as possible; the subsequent section V. 1.2 presents
the additional hypotheses we use to constrain the scope of problems covered by this definition
as to facilitate implementation and experimentation in the rest of the chapter.

V. 1.1 General MR-NAMO problem

Instead of a single robot, we define R =< R1, ..., Rr >⊂ E as a set of robots (part of the world’s
entities E). Similarly to how R was previously defined as a separate element from the set
of obstacles (syn. objects) O, we keep this separation R ∩O = ∅: as per this equation, it is
hypothesized that a robot cannot Manipulate another robot as if it were a manipulable obstacle.

Each robot Ri is assumed to have its own sensing capabilities. As such as we did in Section
III. 1.3, we differentiate the actual world (syn. reference world) Wre f , where actions are executed,
and the individual world perception of each robot WRi . The notations FRi and MRi respectively refer
to the sets of obstacles perceived to be either fixed or movable by robot Ri.

Each robot Ri has its own action spaceARi , that may or may not include Manipulate opera-
tors: in the general case we aim to model here, not all robots possess a manipulation capability.
This heterogeneity of capabilities means that categorization of obstacles as movable or fixed
may not necessarily be the same for each robot. As such, in the reference world Wre f , the sets
of movable and static obstacles must be written as subsets specific to each robot: Fre f ,Ri and
Mre f ,Ri . These notations respectively refer to the sets of obstacles that are actually fixed or mov-
able for robot Ri.

We explained in Section II. 2.2.1 that a coordination problem’s main concern is to prevent
conflicts - that is, incompatible concurrent access to a same resource. The fundamental conflict
type of Multi-Robot coordination problems is of Space conflict - in other words, physical colli-
sions. In our formalism, such a conflict occurs if, at a time t within the time of execution of both
plans (written as [min(PRi , PRj), max(PRi , PRj)]), the swept area S of a robot’s action ARi(t, t+ 1)
intersects either with the swept area of another robot’s action, or with the space occupied by
any obstacle ∈ Ot that is not manipulated by current said action (written as Mk ∈ ARi(t, t + 1)):

∃Ri, Rj ∈ R, ∃t ∈ [min(PRi , PRj), max(PRi , PRj)],

S(ARi(t, t + 1)) ∩ S(ARj(t, t + 1)) ̸= ∅

or S(ARi(t, t + 1)) ∩Ot
/Mk∈ARi (t,t+1) ̸= ∅

or S(ARj(t, t + 1)) ∩Ot
/Mk∈ARj (t,t+1) ̸= ∅

(V.1)

In a multi-robot setting, multiple robots may manipulate a same obstacle at the same or at a
different time, which can result in another type of conflict beyond Space Conflicts, that we call
Movable Obstacle Conflict. In our formalism, such a conflict occurs if:

Chapter V. Multi-Robot NAMO 119

• at the same time t, two robots Ri and Rj want to Manipulate a same obstacle Mk (at re-
specting grasps Gn, Gm) and have it follow different expected trajectories τ(qt

Mk ,Ri
, qt+1

Mk ,Ri
)

and τ(qt
Mk ,Rj

, qt+1
Mk ,Rj

):

∃Ri, Rj ∈ R, ∃t ∈ [min(PRi , PRj), max(PRi , PRj)] s.t.

ARi(t, t + 1) = ManipulateRi(W
t, Mk, Gm, τ(qt

Ri
, qt+1

Ri
))

and ARj(t, t + 1) = ManipulateRj(W
t, Mk, Gn, τ(qt

Rj
, qt+1

Rj
))

and τ(qt
Mk ,Ri

, qt+1
Mk ,Ri

) ̸= τ(qt
Mk ,Rj

, qt+1
Mk ,Rj

)

(V.2)

• a robot Ri wants to Manipulate an obstacle Mk at expected configuration qt
Mk ,Ri

, but an-
other robot’s plan would result in the obstacle being in a different configuration qt

Mk
:

∃Ri ∈ R, ∃t ∈ PRi s.t.

ARi(t, t + 1) = ManipulateRi(W
t, Mk, Gi, τ(qt

Ri
, qt+1

Ri
))

and qt
Mk
̸= qt

Mk ,Ri

(V.3)

This being said, and with the inspiration of the MAPF problem definition given in Section
II. 2.2.2, we can now formulate our problem:

General MR-NAMO Problem: Given an initial workspace configuration Wt0 with a set of
robots R =< R1, ..., Rr >, the MR-NAMO problem consists in computing, if they exist, for each
robot Ri with an action space ARi that may or not allow manipulation of movable obstacles
Mi ∈ Mre f ,Ri , a plan PRi from its initial configuration qt0

Ri
to a goal configuration qg

Ri
, that can

be concurrently executed while guaranteeing the absence of conflicts between the robots, their
manipulated obstacles, and any other obstacles Ok ∈ O.

V. 1.2 Additional hypotheses for our study

In order to explore MR-NAMO for the first time, we need hypotheses that will allow us to suf-
ficiently simplify the problem as to make it possible to experiment within reasonable research
time. We ended our state of the art in Section II. 2.2.2 with an argumentation as to how and why
we should simplify the General MR-NAMO problem formulated above; let us now formalize
this argumentation here:

Homogeneous & Omniscient Multi-Robot System: We shall assume all robots share the
same action space A (that necessarily includes at least one Manipulate operator) and sens-
ing capabilities - meaning that fixed (F) and movable obstacles (M) will be the same for all
manipulator robots. Since we want to experiment with our social cost model again, we will be
experimenting using (Stilman, 2005)’s algorithm for the same reasons described in Section IV.
6.1. As such, all robots will operate under the same assumption of omniscient perception that

Chapter V. Multi-Robot NAMO 120

(Stilman, 2005)’s algorithm does, for the sake of simplicity:

∀Ri ∈ R, WRi = Wre f and ARi = A

∀Ri ∈ R, Fre f ,Ri = Fre f = F and Mre f ,Ri = Mre f = M

Implicit Communicating Multi-Robot System: We will also assume that only implicit (syn. In-
direct) communication is allowed between the robots - that is, they can only obtain information
about each other through environment observation and cannot directly send signals to one
another. As discussed in Section II. 2.2.2, we consider that the first approach to Multi-Robot
NAMO should ensure maximum robustness regarding the possibility of individual robot or
communication failure. Consequently, the NAMO coordination strategy we propose in this
chapter will thus need to be fully implicit.

One-to-one robot-obstacle relationship: We assume that movable obstacles may not be con-
currently manipulated. At any given time t, an obstacle may only be manipulated by a single
robot, in the same way that a robot may only manipulate one obstacle at once, which simplifies
Equation V.2 by removing its last line:

∃Ri, Rj ∈ R, ∃t ∈ [min(PRi , PRj), max(PRi , PRj)] s.t.

ARi(t, t + 1) = ManipulateRi(W
t, Mk, Gm, τ(qt

Ri
, qt+1

Ri
))

and ARj(t, t + 1) = ManipulateRj(W
t, Mk, Gn, τ(qt

Rj
, qt+1

Rj
))

(V.4)

This hypothesis strengthens the “One obstacle at a time” hypothesis of the NAMO literature,
discussed in Section III. 1.4. As explained in Section II. 2.2.2, this hypothesis allows us to tem-
porarily dodge the non-negligible difficulty of the Multi-Agent Object-Pushing Problem, no-
tably making physics simulation simpler since we don’t have to compute interactions on a
same obstacle.

Synchronized discrete-time clocks: We assume time is discretized into simulation steps (as
we have done until now), that are synchronized across robots (akin to a shared clock). Planning
time is assumed to always fit within a simulation step, so that regardless of actual computation
time, determinism of solutions is not affected.

It is to be underlined that the hypotheses of “Synchronized discrete-time clocks” and “Robot
Omniscience” are compatible with that of a fully “Implicit Communicating Multi-Robot Sys-
tem”. Actually, the omniscient hypothesis could be relaxed if we were to use (Wu&Levihn,
2014)’s algorithm instead of (Stilman, 2005)’s algorithm, so long as the robot sensing capa-
bilities allowed it a field of view wide enough capable of guaranteeing absence of collisions.
(Wu&Levihn, 2014)’s algorithm would also require a slight modification to its execution rou-
tine to trigger replanning not only when an obstacle intersects with the current plan, but also
anytime an opening is observed, as to keep the local optimality guarantee. In any case, now

Chapter V. Multi-Robot NAMO 121

that our problem has been properly defined, let us now present our resolution proposition in
the next section.

V. 2 Implicit Coordination in MR-NAMO

V. 2.1 Potential conflict detection

According to the problem definition in the previous section, a solution cannot allow conflicts.
Thus, our algorithm must provide a means of detecting them; only then can robot adjust its plan
as to avoid them. As stated in the same definition, conflicts can be straightforwarldy detected
by comparing the plans of each robot that is part of the Multi-Robot System, and listing any
action verifying any of the Equations V.1, V.3 or V.4. However, comparing plans would require
explicit communication for the robots to share their plans [156] - which we do not allow.

As such, our robots may only predict Potential Conflicts, by comparing their remaining ac-
tions with the observed world state Wt

Ri
. Our problem definition requires that potential conflict

detection is to guarantee that it cannot fail to identify a situation as a potential conflict that will
turn into an actual conflict (i.e. detection false negative). Identifying a situation as a potential
conflict although it will not turn into an actual conflict (i.e. detection false positive) is however
compatible with the problem definition. Still, potential conflict detection should minimize false
positives, as they may imply subsequent planning, and thus computational overhead. That is
why, in the following lines, we further differentiate our two main conflicts types, into 6 sub-
types (abstractly synthesized in Fig.V.2 and discussed further in the following paragraphs) as
to devise relevant detection strategies for each, that both guarantee absence of false negatives
and reasonably limit false positives.

FIGURE V.2: Abstract representation of potential conflict types

Detecting potential conflicts consists in iterating over the remaining actions of the robot’s
plan after the current time t, and estimating whether executing each action at its planned time
is likely to generate an actual conflict. Our hypothesis of “Synchronized discrete-time clocks”
implies that it is first and foremost imperative to ensure that no conflict may happen between

Chapter V. Multi-Robot NAMO 122

the current time t and the next time step t + 1. This is why we first define the following two
potential conflict subtypes:

Simultaneous Space Access (abb. SSA) potential conflicts: the situations where two or more
robots (or their eventual currently manipulated obstacles) could collide (i.e. try to access the
same space) in between the current and next time step [t, t + 1], potentially verifying equation
V.1. Without access to the other robots’ plans, each robot Ri would need to compute the po-
tential swept area for all possible actions for each other robot in their action space ARj within
[t, t+ 1], written as S(ARj(t, t+ 1)). Computing the exact potential swept area is feasible under
our “Homogeneous & Omniscient Multi-Robot System” hypothesis, since all robots share the
same action spaceA. However, we don’t want our approach to be strongly tied to this hypothe-
sis, nor spend the computation time it would require to simulate all possible actions for all other
robots, at each time step. That is why we opt for a circular overestimate of S(ARj(t, t + 1)), as
illustrated in Fig.V.3, accounting for any rotation or translation of each robot Rj that may occur
within [t, t + 1]. To guarantee this, the circle’s radius must be at least equal to the radius of the
circle circumscribing the robot Rj’s polygon, plus the maximum translation expected in A. If
the robot RJ is currently manipulating an obstacle Mk, the radius of the circle circumscribing the robot
Rj’s polygon and Mk’s polygon is used instead (Cf. Fig.V.3c).

(A) Initial state Wt (B) After one step, Wt+1, blue’s
view

(C) Wt+1, pink’s view

Static obstacles Movable obstacles Robot Goal Transfer marker
Blue robot's potential action swept areaBlue robot's action swept area

Pink robot's potential action swept areaPink robot's action swept area

FIGURE V.3: Detection of a Simultaneous Space Access potential conflict. In (A), both robots
compute plans. In (B) and (C), they have executed their first step: blue grabbed the obstacle
(illustrated by transfer marker), while pink translated up. (B) and (C) respectively show the
SSA potential conflicts detected by blue and pink, caused by the intersection of their next

action’s swept area with their circular overestimates of each other’s next action.

Simultaneous Grab (abb. SGrab) potential conflicts: the situations where two or more robots
could grab a same obstacle in between the current and next time step [t, t + 1], potentially
verifying equation V.4. Again, each robot Ri can only predict whether another robot Rj is likely
to grab the same obstacle Mk within [t, t + 1]. We thus detect such potential conflicts under the
following two conditions:

Chapter V. Multi-Robot NAMO 123

• Rj is not already transferring another movable obstacle Ml (it is otherwise formally im-
possible for Rj to grab Mk within [t, t + 1], because of the “One-to-one robot-obstacle
relationship” hypothesis);

• Rj is within grabbing distance of Mk, which according to our NAMO problem defini-
tion in Section III. 1.4, is equal to the radius of the circle circumscribing the robot Rj’s
polygon, as illustrated in Fig.V.4. Again, according to our “Homogeneous & Omniscient
Multi-Robot System” hypothesis, each robot Ri could compute the exact potential grasp-
ing configurations for each other robot Rj around obstacle Mk, but for the same reasons
as for Simultaneous Space Access (abb. SSA) potential conflicts detection, we don’t spe-
cialize our approach that much.

Grabbing distance-inflated polygon of obstacle to be moved by blue robot

FIGURE V.4: Detection of a Simultaneous Grab potential conflict. The center of each robot’s
is within the grabbing distance-inflated polygon of the movable obstacle, having them both

consider that the other can instantaneously grab it within the next time step.

Detecting the above two subtypes of potential conflicts still is not sufficient to guarantee
the absence of actual conflicts/collisions. For this, the three following situations also need to
be detected:

Object In Path potential conflicts (abb. OInP): situations where a movable obstacle has been
transferred (but is no longer being manipulated) on a robot Ri’s path (Cf. Fig.V.5), potentially
verifying equation V.1. Only movable obstacles that are not being transferred by a robot at time
t need to be checked for intersection with the remaining plan steps.

Stealing Object potential conflicts (abb. SingO): situations where a movable obstacle Mk that
was planned for movement by a robot Ri is being transferred (Stealing) by another robot Rj

before Ri (Cf. Fig.V.6), potentially verifying equation V.2. Under our hypothesis of an “Omni-
scient Multi-Robot System”, we can directly check the grab status of the obstacle and detect the
Stealing Object potential conflict type even before the obstacle is moved by the other robot Rj.
Without this hypothesis, detecting Stealing Object potential conflicts could be done by observ-
ing the geometrical closeness between the other robot Rj and obstacle Mk and/or their speed
vectors.

Chapter V. Multi-Robot NAMO 124

(A) Initial state Wt (B) After 5 steps, Wt+5

Blue robot's plan swept area

FIGURE V.5: Detection of an Object In Path potential conflict. (A) Both robots compute plans
(pink’s goal being partially covered by the robot and the movable obstacle). In (B), after 5
steps, pink reached its goal and released the obstacle, while blue translated right, causing

blue to detect an Object In Path potential conflict.

(A) Initial state Wt (B) After 2 steps, Wt+2

Blue robot's plan swept area

FIGURE V.6: Detection of a Stealing Object potential conflict. (A) Both robots compute plans.
In (B), after 2 steps, pink grabbed the movable obstacle, while blue translated right wanting

to grab the same obstacle, causing blue to detect a Stealing Object potential conflict.

Stolen Object potential conflicts (abb. SO): situations where a movable obstacle Mk that was
planned for movement by a robot Ri has been transferred (Stolen) - but is not being transferred -
by another robot Rj before Ri (Cf. Fig.V.7), potentially verifying equation V.2. Detection could
be achieved simply by checking the grab status and whether the current movable obstacle
configuration qt

Mk
differs from the expected start configuration for the planned transfer path of

robot Ri.
Since a movable obstacle cannot move by itself, these three subtypes of potential conflicts

are very unlikely to solve themselves without the robot Ri taking appropriate action. Thus, the
robot should detect these potential conflicts beyond the very short horizon of the next action to
be executed within [t, t + 1], up until the current plan’s end time tend, similarly to (Wu&Levihn,
2014)’s execution routine (Alg.1). This discussion about the detection horizon brings us to our
last subtype of potential conflict:

Robot-Robot potential conflicts (abb. R-R): situations where, in between [t, t+ h], h > 1 being
a given time horizon, the plan of one robot Ri geometrically intersects with another robot Rj

or their eventual currently manipulated obstacle (Cf. Fig.V.8), potentially verifying equation

Chapter V. Multi-Robot NAMO 125

(A) Initial state Wt (B) After 15 steps, Wt+15

FIGURE V.7: Detection of a Stolen Object potential conflict. (A) Same initial situation as
Fig.V.6a, both robots compute plans. In (B), after 15 steps, pink transferred and released the
movable obstacle, while blue translated right wanting to grab the same obstacle, causing
blue to detect a Stolen Object potential conflict. This scenario happens under the assumption
that the robot does not react subsequently to the detection of previously detected Stealing

Object potential conflicts.

V.1. They can be understood as an extension of Simultaneous Space Access potential conflicts
beyond the next time step t+ 1, allowing the robot to react sooner than at the last step. It would
be however be counter-productive to have the robot react every time another robot temporarily
crosses its plan so far away that by the time the robot gets there, the other one is already long
gone - hence the introduction of the check horizon h. The smaller h, the less often the robot
needs to react to other robot’s movements, but the later it can react thus uselessly augmenting
the robot displacement cost to the goal.

(A) Initial state Wt (B) After 7 steps, Wt+7

Blue robot's plan swept area (borders outline actions within horizon)

FIGURE V.8: Detection of a Robot-Robot potential conflict. (A) Both robots compute plans,
but for readability, only blue’s plan is shown with the swept area of its next 10 actions. In
(B), after 7 steps, pink is transferring the movable obstacle, while blue translated right,
causing blue to detect a Robot-Robot potential conflict as pink and its movable obstacle’s

footprints intersect with blue’s horizon.

There as many potential conflicts to a robot’s plan P in a world state Wt as there are
intersections with the collision geometries we just presented. Even a single action’s swept
area may intersect with multiple other entities, generating a potential conflict detection for
each. The whole point of detecting these potential conflicts is to allow the robot to take a
decision as to what to do in these crucial moments, in order to prevent these potential conflicts

Chapter V. Multi-Robot NAMO 126

from becoming actual conflicts. We shall discuss this decision process in the following sections.

V. 2.2 Conflict avoidance: a timing-based strategy

In order to prevent these previously defined potential conflicts from actually happening, we
drew inspiration from the Fixed-path Coordination described by S. Lavalle in his reference
book on Motion Planning [154]. It consists in planning for each robot using a single-robot
algorithm, then schedule the motion of the robots along the plans so that they do not collide by
tuning execution speed, or introducing waiting times if speed is constant, as is our case. Thus,
once a robot has computed its NAMO plan, we broadly coordinate the execution as follows,
at each time step (formalized as pseudocode in Algorithm 10, and alternatively, as a decision
graph in Fig.V.9):

1. Potential conflicts are detected at a variable horizon depending on potential conflict type
(Alg. 10, l.7): the DETECT-POTENTIAL-CONFLICTS function returns a list of potential
conflicts, since there are as many potential conflicts as there are intersections with colli-
sion geometries, as explained in the previous section;

2. If a potential conflict is detected, the current plan is postponed for a random time within
a pre-decided interval (Alg. 10, l.9);

• if potential conflicts persist until the postponement’s end, re-planning is triggered
(Alg. 10, l.10),

• otherwise, plan execution is resumed if they disappear during the postponement
(Alg. 10, l.8).

3. If a Stolen Object (SO) or Object In Path (OInP) potential conflict is among the detected
potential conflicts, re-planning is immediately triggered (Alg. 10, l.10), as they are very
unlikely to disappear simply by having the robot wait, since movable obstacles can’t
move by themselves.

This straightforward and fully-implicit strategy constitutes a first approach to solving MR-
NAMO problems without explicit communication. We discuss and argument the components
of this strategy in the following subsections.

Chapter V. Multi-Robot NAMO 127

Algorithm 10: Coordination NAMO (C-NAMO) Algorithm

Data: World state Wt, Goal qg
R, Current plan P , Minimum and maximum number of steps for

timer [tmin, tmax], Maximum number of NAMO-PLAN calls ntry, Robot-Robot Conflict
detection horizon h

Result: Action At to execute between t and t + 1, Current plan P
1 while At is not SUCCESS or FAILURE do
2 Wt ← GET-NEW-INFORMATION();

3 At,P ← C-NAMO(Wt, qg
R, P , tmin, tmax, ntry, h);

4 TRY-TO-EXECUTE(At)

5 C-NAMO(Wt, qg
R, P , tmin, tmax, ntry, h)

6 if qt
R = qg

R then return SUCCESS, P ;

7 C ← DETECT-POTENTIAL-CONFLICTS(P , Wt, h)
8 if P ̸= ∅ and C = ∅ then return NEXT-STEP(P), P ;
9 else if P ̸= ∅ and C ̸= ∅ and SO or OInP conflict /∈ C then return POSTPONE(P , tmin,

tmax) ;

10 else return REPLAN(P , Wt, qg
R, tmin, tmax, ntry, h) ;

11 REPLAN(P , Wt, qg
R, tmin, tmax, ntry, h)

12 if TRIES-LEFT(P , ntry) then
13 Wt

noD = {∀Et
i ∈Wt|Et

i /∈ R, M∗};
14 P ← NAMO-PLAN(Wt

noD, qg
R);

15 C ← DETECT-CONFLICTS(P , Wt, h);
16 if P ̸= ∅ and C = ∅ then return NEXT-STEP(P), P ;
17 else if P ̸= ∅ and C ̸= ∅ and TRIES-LEFT(P , ntry) then
18 Wt

D = Wt
noD ∪ {conflicting entities in C};

19 P ′ ← NAMO-PLAN(Wt
D, qg

R);

20 C ← DETECT-CONFLICTS(P ′, Wt, h);
21 if P ′ ̸= ∅ and C = ∅ then
22 P ← P ′;
23 return NEXT-STEP(P), P ;

24 else return POSTPONE(P , tmin, tmax);

25 return FAILURE, P

26 POSTPONE(P , tmin, tmax)
27 if IS-TIMER-OFF(P) then START-RANDOM-DURATION-TIMER(P , tmin, tmax) ;

28 else if IS-TIMER-OVER(P) then return REPLAN(P , Wt, qg
R, tmin, tmax, ntry, h) ;

29 return WAIT-ACTION, P ;

Chapter V. Multi-Robot NAMO 128

FIGURE V.9: Implicit coordination strategy decision graph for potential conflict
resolution, equivalent to Algorithm 10, C-NAMO.

Chapter V. Multi-Robot NAMO 129

V. 2.2.1 Postponement

Upon potential conflict detection, the robot only has two options: updating the plan (Alg. 10,
l.10) or waiting in hope that the potential conflicts disappear on their own (Alg. 10, l.9). The
latter consists in starting a timer for a random duration uniformly selected within a reasonable
interval [tmin, tmax] (Alg. 10, l.27). This timer is preempted (and thus, reset) if the potential
conflicts disappear (Alg. 10, l.8), otherwise, a re-planning is triggered once the timer is over
(Alg. 10, l.28 - the timer is also reset upon the IS-TIMER-OVER function returning True). It is to
be noted that, as the formal writing suggests in Alg. 10, the timer is plan-dependent: once the
plan is updated, the timer is reset too.

The randomness allows to break the symmetry in potential conflicts like Simultaneous
Space Access (Cf. Fig.V.3) and Simultaneous Grab (Cf. Fig.V.4), or mutual Robot-Robot poten-
tial conflicts where two robots are progressing towards one another and would cause potential
conflicts detections at every step. With a random duration, one robot will almost always wait
a shorter amount of time, re-plan before the other and seize the space or obstacle first.

Lastly, Object in Path (OInP) and Stolen Object (SO) potential conflicts are very unlikely to
disappear simply by having the robot wait, since movable obstacles can’t move by themselves.
That is why we immediately re-plan whenever they are detected (Alg. 10, l.9). One could
expect we would do the same for Stealing Object conflicts, but it actually makes more sense to
not immediately re-plan, but rather wait so that re-planning occurs once the obstacle has been
cleared by another robot.

Finally, in order to guarantee that the algorithm terminates, the number of calls to the
NAMO-PLAN function is limited to a ceiling value ntry by the TRIES-LEFT function (Alg. 10,
l.12, 17). This value is chosen as to balance experiment time and experiment resolution capabil-
ity: ideally the robot needs sufficient tries to solve the given problem within the time available
to the experimenter.

V. 2.2.2 NAMO planning in a dynamic environment

Existing NAMO planners assume that there can only be two types of entities in the environ-
ment beyond the single robot manipulator: movable and static obstacles. Hence, when using
such planners as-is in a dynamic environment with other agents such as robots (i.e. dynamic
obstacles), one needs to decide how to identify these new entities as per the NAMO classi-
fication. Since we made the hypothesis that a robot cannot be manipulated by another as a
movable obstacle, we are left with only two choices: either ignore dynamic obstacles when
using an existing NAMO planner, or classify them as static obstacles.

On the one hand, always ignoring dynamic obstacles all the time would lead to the robot
desperately trying to compute the same plan going through another robot’s footprint over and
over again, ignoring other obvious but slightly more convoluted possibilities that may lead to
the goal (Cf. Fig.V.10). On the other hand, always considering dynamic obstacles as static ob-
stacles during the NAMO planning procedure may lead to unnecessary detours (Cf. Fig.V.11),
or unsolvable situations (Cf. Fig.V.12).

Chapter V. Multi-Robot NAMO 130

(A) Initial state Wt (B) Robot plans ignoring each other’s footprint

FIGURE V.10: Example deadlock situation between two robots facing one another, caused by
their systematically ignoring each other during planning, even though an alternative path is

available.

(A) Initial state Wt (B) Inefficient plan when dynamic
obstacles are always considered

static

(C) Ideal plan if robot just waited a
bit longer

FIGURE V.11: Example situation where the blue robot takes a huge detour, caused by the
systematic consideration of the other robot as a static obstacle.

In order to try to avoid most of these situations without having to fundamentally change the
NAMO planner used in the coordination strategy, we have the robot do both. Upon REPLAN
(Alg. 10, l.11-25), a NAMO plan is first computed by ignoring all dynamic obstacles (Alg. 10,
l.13-14). If no plan is found, we assume then that the goal must fail because the NAMO problem
is just too complex for the NAMO planner. If we detect potential conflicts with this first plan
(Alg. 10, l.15-16), we try to recompute a plan by considering the conflicting dynamic obstacles
as static obstacles (Alg. 10, l.18-19). If no valid plan is then found, the plan that ignored dynamic
obstacles is postponed (Alg. 10, l.24), in the hope that the conflicts resolve themselves while the
robot waits.

(A) Initial state Wt (B) The ideal solution

FIGURE V.12: Example deadlock situation where the two robots face each other while
occupying their respective goals, never succeeding in computing a plan as they both system-

atically consider each other to be static obstacles.

Chapter V. Multi-Robot NAMO 131

V. 2.3 Deadlock evasion

V. 2.3.1 Detecting potential deadlocks

While the previously formulated coordination strategy guarantees that the problem’s con-
straints cannot ever be violated, it may result in deadlocks - that is, dependency cycles be-
tween robots’ actions [156]. Deadlocks are intrinsic problems of decentralized algorithms, as
they emerge from the dependency cycles that appear in the merging process of independently
computed decision trees. For Multi-Robot Systems, they can either cause the Robot Freezing
Problem (i.e. the robots involved in the deadlock can not move) or oscillations (i.e. the robots
involved in the deadlock indefinitely alternate between the same configurations). In an explic-
itly communicating multi-robot system, deadlocks can be straightforwardly solved by sharing
robot plans, detecting the cycles in the shared dependency graph of robot actions and centrally
planning a resolution for all robots.

Without explicit communication, in the same way we explained in Section V. 2.1 that robots
could only detect potential conflicts, they can also only detect Potential Deadlocks. However,
while our problem definition requires that no conflict actually occur, it does not require the
non-occurrence of deadlocks. As such our potential deadlock detection strategy is allowed
both false negatives or positives, but should still minimize both.

While the actual dependency cycles between plans cannot be observed, it is still possible for
each robot to observe and remember the occurrence of potential conflict detections, as defined
in Section V. 2.1. We thus define a potential deadlock as the redundancy of a potential conflict
over time: that is, if a robot in the execution process of reaching a same goal encounters a same-
type potential conflict, occurring at the same configuration of all robots involved, a potential
deadlock is detected, as shown in Fig.V.13.

(A) Initial state Wt (B) Robot plans

FIGURE V.13: Two robots in a deadlock, because both detect a Robot-Robot potential conflict
involving the other.

If the time period to consider a recurring potential conflict is too small, then false positives
may be too frequent and result in the robots trying to avoid deadlocks that do not exist. Since
we assume that all robots run with the same algorithm and parameters, we wait for the max-
imum duration of a postponement to pass before considering a recurring conflict to be a
deadlock. Under a different hypothesis, one may have to more carefully consider what a good
time span would be depending on the hypothesis.

Chapter V. Multi-Robot NAMO 132

V. 2.3.2 Evading potential deadlocks

Once a potential deadlock has been detected by a robot, it must decide whether to move or not,
and if so, where to, in order to try and resolve the situation. As explicit communications are
forbidden in our problem, the robot could for example randomly decide to move or not, just as
it could try to reach a random pose in the environment or try to drive backward in a straight
line, and rinse and repeat until maybe the deadlock gets resolved. That would of course be
woefully naive and inefficient, both in terms of displacement and computational costs, if at all
useful.

But when you think about it, in a deadlock situation, the robot itself is a (dynamic) ob-
stacle in the other involved robot(s)’ view; and deciding whether to give way and how best
to do so, does sound a lot like a social navigation problem. Then, in the same way our Social
Occupation Cost model highlights relevant positions for movable obstacles that improve space
accessibility, it could help robots decide if and where to go to in these situations. The broad
steps of this procedure are as follows:

1. Potential deadlocks are detected as exposed in the previous section;

2. If a potential deadlock is detected, the robot computes an “evasion plan” for itself; the
destination of which being the configuration with least combined social and distance
cost;

3. To decide whether to use this evasion plan:

(a) The robot also computes the “potential evasion plans” of the other robots involved
in the deadlock;

(b) If the robot’s evasion configuration social occupation cost is the highest among all
the computed evasion plans (i.e. most unlikely to solve the deadlock), the robot post-
pones its current plan (waiting for the others to move), otherwise, it executes its own
evasion plan. This way, only one robot should wait while the others evade.

This process, which we will further discuss and illustrate in the following lines, is integrated
into the previously discussed coordination strategy, as shown in Fig.V.18 and Algorithm 11,
obtained within our simulator.

Evasion plans are each computed using Dijkstra’s algorithm on the grid inflated by the
robot’s circumscribed circle radius. The evasion configuration is chosen similarly to the obsta-
cle placement in the previous chapter, by combining the displacement cost obtained using the
Dijkstra search and the social occupation cost, but not the displacement cost estimate to the
goal (since the robots do not share their respective goals). The path is then straightforwardly
constructed from this evasion configuration by traversing the Dijkstra search tree. This process
is illustrated in Figures V.14 A to C.

We choose to assume that robots will drop their transferred obstacle before executing the
evasion plan, if they choose to evade, for the sake of simplicity. Otherwise, each robot would
not only need to compute their plans while accounting for collisions for transferred obstacles,

Chapter V. Multi-Robot NAMO 133

(A) (B)

(C) (D)

FIGURE V.14: Illustration of the blue robot’s deadlock evasion planning process after de-
tection in Fig.V.13. (A) The corresponding social occupation costmap. (B) The combined
costmap of the blue robot’s evasion plan, which corresponds to Dijkstra search tree - the
greener, the higher the cost. (C) Same illustration for the green robot’s potential evasion plan
computed by the blue robot. (D) The resulting evasion plan for blue, while green chooses to
wait for blue to move; the number of steps of the blue robot’s evasion plan (13) and of the
green robot’s would-be plan to reach the blue robot’s current configuration (20) are added as

wait time after evasion for the blue robot to let green pass before resuming.

but it would also need to consider the social occupation cost of the obstacles, resulting in com-
putational overhead.

Upon reaching the evasion configuration, the robot needs to wait for a moment so that the
other robots involved in the potential deadlock may have time to move themselves, hopefully
in a way that will solve the deadlock. Carefully choosing this waiting time is essential in order
to augment the chances for the robot to solve the deadlock. For this purpose, we consider the
time it would take for the other involved robot that is furthest from the evading robot to reach
the same evasion configuration. This time is the sum of the evading robot’s evasion plan time,
and the time of a navigation plan from its current position’s to the furthest robot. The first one
has already been computed, and the second one can be obtained by A-Star searches towards
the other involved robots’ current positions. The computation is illustrated in Figure V.14d,
and the full evasion process including the wait is showcased in Figure V.15.

This extra waiting time upon evasion completion is applied by executing WAIT steps that
are directly appended to the evasion plan: this makes sure that the wait is not preempted as
soon as conflicts disappear, triggering re-planning too early and causing deadlocks all over
again. Because deadlocks are worst-case scenarios for plan execution that can lead to goal
failure, full evasion completion takes full priority.

Chapter V. Multi-Robot NAMO 134

(A) Initial plans - deadlock detected (B) Blue evades, Green waits

(C) Blue re-plans once its mandatory wait has passed (D) Final state - deadlock solved

FIGURE V.15: Complete deadlock resolution of Fig.V.13’s scenario.

Again, we remind that our coordination only guarantees that potential conflicts never actu-
ally become actual one, but our deadlock evasion strategy does not guarantee resolution: such
a guarantee would either require explicit communication or artificial restrictions to specific sce-
narios. While our method works best under our hypothesis of Homogeneous & Omniscient
Multi-Robot System, it is not a fundamental requirement. Indeed, since our method relies
on predicting the other robot’s behavior, the more accurate the prediction, the higher chance of
deadlock resolution.

In order to qualitatively showcase this deadlock evasion strategy, we added snapshots
of the different stages of a three-robots scenario illustrated in Figure V.16, and a two-robots
NAMO scenario with a single movable obstacle, illustrated in Figure V.17. We did not have the
opportunity to use this deadlock evasion strategy in the large-scale quantitative experiments
showcased in the following Section V. 3.

In the three-robots scenario (Cf. Fig.V.16), the robots need to go from one room to the other
through narrow corridors, which results in the creation of multiple successive deadlocks. As
the robots sometimes underestimate the wait time after evading to let other robots pass, they
resume their plans slightly too soon (Cf. Fig.V.16g & V.16h), resulting in the reappearance of a
similar deadlock, needing evasion again. However, this process eventually converges, as we
forbid the robot to use the same evasion configuration twice for the same goal, in order to
prevent oscillation; this can be observed with the purple robot between Fig.V.16d to Fig.V.16j.

In the two-robots NAMO scenario (Fig.V.17), the robots again need to go from one room
to the other through a narrow corridor, but this one is blocked by a movable obstacle. As the
blue robot grabs the obstacle first, the green robot abandons its initial NAMO plan for a pure

Chapter V. Multi-Robot NAMO 135

navigation plan, eventually blocking the rightmost room’s entrance (Cf. Fig.V.17a to V.17e).
This results in a deadlock, which the green robot evades several times as to finally free the blue
robot’s path (Cf. Fig.V.17f to V.17j). The blue robot finally resumes its NAMO plan, leaving the
obstacle in an arguably not so good position(Cf. Fig.V.17k to V.17l), as the green robot blocked
the way to the “recesses” of the rightmost room’s walls at the time of the blue robot’s planning.
The green robot thus has to move the obstacle again to get to its goal (Cf. Fig.V.17m to V.17o).
Had the robots been allowed to communicate their goals and plans, maybe a better obstacle
choice could have been selected in regard to their respective objectives, such as the top-left
room corner. While showcasing the resolution capabilities of our approach, this example also
shows a limit of a fully-implicit coordination strategy in solving MR-NAMO problems.

(A) Initial world state (B) First plan of all robots (C) Blue-purple deadlock

(D) Purple evades (E) Blue-green deadlock (F) Green evades

(G) Blue-purple deadlock (wait too
short)

(H) Purple evades (I) Blue-green deadlock

(J) Green evades (K) Purple resumes first (L) Green resumes, problem solved

FIGURE V.16: Three-robot scenario showcasing successive deadlock situations. This exam-
ple showcases how even if the first deadlock is not solved “in one go”, our evasion strategy

still makes relevant decisions that quickly converge to a resolution.

Chapter V. Multi-Robot NAMO 136

(A) Initial world state (B) Blue robot first plan (C) Green robot first plan

(D) R-R potential conflict detected
by green, which replans

(E) R-R potential conflict detected
by blue, which replans, but

deadlock

(F) Green evades

(G) Green resumes plan after
evasion, but deadlock is not solved

(H) Green evades again (I) Again, green resumes plan after
evasion, but deadlock is not solved

(J) Green finally evades far enough (K) Blue executes its plan while
green waits

(L) Blue releases the obstacle

(M) Green replans (N) Blue reaches its goal (O) Green reaches its goal

FIGURE V.17: MR-NAMO scenario showcasing successive deadlock situations. As in
Fig.V.16, this example also showcases how the deadlock is progressively solved.

Chapter V. Multi-Robot NAMO 137

FIGURE V.18: Implicit coordination strategy decision graph augmented with
potential deadlock resolution, equivalent to Algorithm 11, C-NAMO+

Chapter V. Multi-Robot NAMO 138

Algorithm 11: Improved Coordination NAMO (C-NAMO+) to evade deadlocks

Data: World state Wt, Goal qg
R, Current plan P , Minimum and maximum number of steps for

timer [tmin, tmax], Maximum number of NAMO-PLAN and EVASION-PLAN calls ntry,
Conflict detection horizon h

Result: Action At to execute between t and t + 1, Current plan P
1 C-NAMO+(Wt, qg

R, P , tmin, tmax, ntry, h)
2 if qt

R = qg
R then return SUCCESS, P ;

3 if P = ∅ or IS-EVASION-OVER() then return REPLAN(P , Wt, qg
R, tmin, tmax, ntry, h);

4 C ← DETECT-POTENTIAL-CONFLICTS(P , Wt, h);
5 D ← DETECT-DEADLOCKS(P , C);
6 if C = ∅ then return NEXT-STEP(P), P ;
7 if D = ∅ then
8 if SO or OInP conflict /∈ C then return POSTPONE(P , tmin, tmax) ;

9 else return REPLAN(P , Wt, qg
R, tmin, tmax, ntry, h) ;

10 else
11 if IS-TIMER-OFF(P) OR IS-TIMER-OVER(P) then
12 if TRIES-LEFT(P , ntry) then
13 P ′ ← EVASION-PLAN(Wt);
14 if P ′ ̸= ∅ then
15 P ← P ′;
16 return NEXT-STEP(P), P ;

17 else return POSTPONE(P , tmin, tmax);

18 else return FAILURE, P ;

19 else return WAIT-ACTION, P ;

Chapter V. Multi-Robot NAMO 139

V. 3 Experiments

In the previous section, we explained the challenges of using existing NAMO algorithms in
a Multi-Agent environment, discussed an implicit coordination strategy to address them, and
qualitatively justified our choices with simple and specific problem examples. This section
aims to:

• study the scalability of our approach as the number of robots grows;

• measure the impact of our Social Occupation Cost Model in a multi-robot NAMO context.

V. 3.1 Experimental context

(A) Intersections
(abb. Int, env. 9.5x9.5 m)

(B) CITI Laboratory
(abb. CITI, env. 22.5x22.5 m)

FIGURE V.19: Base environments for scenarios. Static obstacles in black, mov-
able in yellow.

We reused the two large-scale environments introduced in Chapter IV, re-illustrated in
Fig.V.19: “Intersections” and “CITI Laboratory”. On the one hand, the “Intersections” sce-
nario is fully handcrafted to offer multiple intersections next to each other, since we previously
identified that they are especially challenging for NAMO algorithms. On the other hand, the
“CITI Laboratory”’ scenario is a real world occupancy grid of our lab, with a greater area and
where intersections are further away from one another.

We generated 200 scenarios for 2 robots in each of these environments (abb. Int-2 and
CITI-2), and 200 scenarios for 4, 5 and 10 robots (abb. Int-4, Int-5, Int-10) in the “Intersec-
tions” environment (for a grand total of 1000 scenarios). Similarly to Section IV. 7.3.2, each
scenario consists in randomizing the initial robots’ poses and their respective goal sequence.
The number of goals for a given scenario is fixed at 100, evenly distributed among the num-
ber of robots (e.g. 2 robots will each have 50 goals, 4 robots 25 goals, etc.), in order to keep
measurements such as planning time comparable across the different number of robots. Figure
V.20 illustrates one of the 4-robot scenarios, with its randomly generated initial and goal robot
configurations.

Chapter V. Multi-Robot NAMO 140

(A) Initial robot configurations only (B) All 100 goals (C) First goal of each robot only

FIGURE V.20: Example of a 4-robot scenario, with 25 goals per robot.

The values of the parameters that are specific to the implicit coordination strategy are syn-
thesized in the table below. All other parameters related to Stilman’s algorithm, and to the
social occupation cost model used for obstacle placement choice or robot evasion configuration
choice stay the same as in the experimental section of Chapter IV.

Maximum number of NAMO/Evasion planners calls ntry 10
Random timer duration interval [tmin, tmax] [5, 20]

R-R Conflict detection horizon h 10

TABLE V.1: Coordination algorithm parameters values for the experiments

The scenarios executions were distributed across 64 machines with Intel Core i7-4790 CPUs
(3.60GHz - 4 cores/8 threads) and 8 GB of RAM as individual processes, one process per thread.
The different runs occur within similar CPU usage at all times, keeping planning times com-
parisons relevant. Also, since simulation time steps are synchronized across robots, varying
plan computation times depending on machine CPU usage will not affect the determinism of
the plan’s computations. The random seed used for the random durations timers generation is
saved as a scenario parameter also to guarantee determinism and experiment reproducibility.

V. 3.2 Evaluation criteria

Now that we are considering several robots instead of one, robot-dependent evaluation criteria
need to be aggregated together in a meaningful fashion, and separated from world-dependent
(i.e. robot-independent) criteria that don’t need to be aggregated. The social-aware criteria
presented in Chapter IV are unaffected by the multi-robot nature of the problem, and are world-
dependent criteria. When it comes to robot-dependent criteria, according to Stern et al.’s survey
[106], the two most frequent objective functions that Multi-Agent Path Finding algorithms try
to minimize are the Makespan (the cost of the costliest individual robot plan) and the Sum
of Costs (of all the individual robots’ plans); which is why we use the following evaluation
criteria:

Chapter V. Multi-Robot NAMO 141

• Execution time Makespan tmax [steps]: the number of simulation steps for all robots to
traverse their individual goal sequences; since time is the cost measure of choice in Multi-
Agent problems, because of the possibility for the robots to have to vary speed or wait to
prevent collisions and deadlocks (which does not affect the traversed distance).

• Sum of Traversed Distances Lsum [m] the sum of costs for the traversed euclidean dis-
tance of each robot, expressed in meters; for the sake of physical interpretability, since
simulation time steps are arbitrary in that they do not relate to an absolute time clock in
seconds.

Since NAMO literature differentiates transfer from transit path components, we keep this
differentiation and also compute the Sum of Transfer Distances Ltrans f er. We will also differ-
entiate wait steps for the time-related criteria as to better understand how much time robots
“waste” waiting to execute their plans.

We also keep track of several other relevant counters (which are summed across robots):

• the number of postponements and replannings (the initial plan for a goal is not counted
as a replanning), so that coordination efficiency can be compared regardless of the time
cost of actions in terms of steps,

• the number of obstacle transfers, since each obstacle grab would carry some risk of fail-
ure in itself in the real world and should happen as little as possible.

• the number of successfully reached goals, since as covered at the end of the experi-
ments in Chapter IV, and reminded in the discussion of our coordination strategy, the
robots may fail to meet some goals. While previously, failure could only be caused by the
incapacity of the NAMO algorithm to solve the NAMO problem, it may now also occur
because of the exhaustion of the maximum number of authorized planner calls.

As in Chapter IV we still measure the plan computation time (in seconds) as a measure of
computation cost efficiency. In the result tables discussed in the next section, each criterion is
averaged over the 200 scenarios of each experiment set presented in the previous section, and
provided with the standard deviation.

V. 3.3 Results

Each of the 5 sets of 200 scenarios is run using our coordination algorithm, with and without
using our social placement cost model for choosing obstacle placements, respectively referred
to as Coordinated NAMO (abb. C-NAMO) and Social Coordinated NAMO (abb. C-NAMO).
Robot-dependent criteria are grouped in Table V.3, while world-dependent ones are grouped
in table V.2. For each set of scenarios, the presented values are averages over the 200 scenarios
of the set, with corresponding standard deviation.

Plan improvement through Social & Coordinated NAMO (abb. SC-NAMO) The most rel-
evant observation is that our social cost model reduces the number of postponements and re-
plans by about 40% to 10% in the ’Intersections’ scenario as the number of robots increases, as

Chapter V. Multi-Robot NAMO 142

(A) First plan for all robots (after 1
step)

(B) Red reaches its first goal, blue
and purple replanned (after 38

steps)

(C) Red plans to its second goal
(after 41 steps)

(D) Red reaches its second goal,
purple, green and blue replanned

(after 135 steps)

(E) Red plans to its third goal (after
144 steps)

(F) Blue reaches its first goal, red
and green replanned (after 170

steps)

(G) Blue planned to its second goal
(after 182 steps)

(H) Green reaches its first goal (after
197 steps)

(I) Green plans to its second goal
(after 204 steps)

FIGURE V.21: Several snapshots of the simulation of the 4-robot scenario presented in
Fig.V.20, assuming the use of Coordinated NAMO without using our social occupation

model.

Chapter V. Multi-Robot NAMO 143

(A) Coordinated NAMO
(abb. C-NAMO)

(B) Social Coordinated NAMO
(abb. SC-NAMO)

FIGURE V.22: Resulting obstacle placements after the simulation of the 4-robot scenario
presented in Fig.V.20 without using our social placement cost model (A) and with it (B).

can be seen in Table V.3. This results in a slightly lower number of wait steps, but that alone
does not explain the significant drop in total number of steps to execute the goals (up to a fifth
of the baseline). This drop can rather be explained by the reduction in total distance traveled
Lsum as obstacles are mostly cleared from the intersections, resulting in significantly shorter
transit paths. Fig.V.21 shows how, without social awareness, robots executing NAMO algo-
rithms can quickly and badly affect one another’s plans, as highlighted by the red robot’s plan
elongation between subfigures E and F. Though our social-awareness may come at the cost of
almost up to 3 times longer transfer distances Ltrans f er, the number of transferred obstacles is
reduced by a third or quarter in SC-NAMO. As stated in Section IV. 7.3.2, we remind that since
Stilman’s algorithm does not seek optimality, once most components are connected after a few
goals, it only moves obstacles when goals are under them. For the CITI case, the ring config-
uration of the environment in between the rooms explains why results are not as outstanding:
intersections are too far from each other.

Stable planning time As we had hoped, the Tplanning column in Table V.3 shows that opt-
ing for an implicit coordination approach prevented exponential explosion of planning time.
SC-NAMO is, as previously observed in our mono-robot experiments (Cf. Section IV. 7.3.2) be-
tween 2 and 3 times more costly in terms of computation time due to the greater exploration
of the robot’s action space during transfer planning, which could be alleviated by using more
aggressive heuristics, lazy intersection verification. However, our social cost model did not
compensate the impact of an implicit coordination strategy on the goal success rate, which is
similar between C-NAMO and SC-NAMO, ranging from 86% of success with 2 agents to 60%
with 10 agents.

World State rearrangement Table V.2 clearly shows that whatever the number of robots, us-
ing our social cost model will still converge to a similar better space rearrangement: the total
social cost drops by a third, accessible cells are always significantly more numerous and the

Chapter V. Multi-Robot NAMO 144

number of components only slightly lower (since NAMO still must connect components to
operate). This better rearrangement can still be qualitatively observed in Fig.V.22.

Detailed and interactive graphs showing the aggregated criteria’s evolution over time are
available on our git repository (https://gitlab.inria.fr/brenault/s-namo-sim), with raw
statistical data and end state snapshots for all runs.

Scenario Number Accessible Social Cost
Alg. of components cells

Initial conditions Wtinit 9 2606 636
Int - 2 Wtend

C-NAMO 2.1 ± 1.1 2549 ± 86 636 ± 22
SC-NAMO 1.4 ± 0.8 2800 ± 73 402 ± 47
Int - 4 Wtend

C-NAMO 2.0 ± 1.0 2534 ± 86 631 ± 24
SC-NAMO 1.4 ± 0.6 2785 ± 91 424 ± 41
Int - 5 Wtend

C-NAMO 2.0 ± 1.0 2548 ± 76 633 ± 26
SC-NAMO 1.4 ± 0.8 2774 ± 91 434 ± 46

Int - 10 Wtend

C-NAMO 1.8 ± 0.9 2545 ± 89 639 ± 34
SC-NAMO 1.6 ± 0.8 2761 ± 96 464 ± 44

Initial conditions Wtinit 40 7078 951
CITI - 2 Wtend

C-NAMO 28.8 ± 5.2 7018 ± 81 929 ± 23
SC-NAMO 26.6 ± 6.8 7209 ± 94 760 ± 99

TABLE V.2: C-NAMO vs. SC-NAMO: World-dependent performance criteria
comparison table, at world initial and end states. Values are averaged across 200
runs and provided with standard deviation. Number of robots is indicated in

the first column with scenario name.

https://gitlab.inria.fr/brenault/s-namo-sim

C
hapter

V.
M

ulti-R
obotN

A
M

O
145

Scenario Postponements Replans Wait Steps Makespan tmax (total steps) Successes Ltrans f er Lsum Transfers Tplanning
/ Goals (m) (m) (s)

Int - 2
C-NAMO 38 ± 61 27 ± 55 337 ± 672 5061 ± 875 43 ± 8 / 50 12.9 ± 4.0 425.2 ± 93.0 24 ± 6 83.4 ± 141.0

SC-NAMO 24 ± 51 16 ± 46 215 ± 561 4196 ± 727 43 ± 8 / 50 31.9 ± 11.0 359.2 ± 72.6 16 ± 4 170.1 ± 336.6
Int - 4

C-NAMO 47 ± 27 30 ± 24 400 ± 281 2940 ± 686 21 ± 4 / 25 7.3 ± 2.9 228.6 ± 57.2 13 ± 4 65.3 ± 117.7
SC-NAMO 36 ± 28 24 ± 25 332 ± 303 2415 ± 635 20 ± 5 / 25 16.1 ± 7.1 188.2 ± 52.5 8 ± 3 154.0 ± 316.6

Int - 5
C-NAMO 50 ± 24 32 ± 19 430 ± 250 2550 ± 740 16 ± 3 / 20 5.6 ± 2.4 191.0 ± 59.1 10 ± 3 60.5 ± 157.3

SC-NAMO 39 ± 25 25 ± 21 351 ± 263 2065 ± 571 16 ± 4 / 20 13.4 ± 6.3 154.8 ± 43.8 7 ± 3 150.6 ± 204.0
Int - 10

C-NAMO 61 ± 22 40 ± 17 535 ± 223 1479 ± 480 6 ± 2 / 10 2.6 ± 1.7 84.5 ± 32.8 4 ± 2 46.6 ± 53.8
SC-NAMO 51 ± 22 35 ± 17 475 ± 224 1302 ± 422 6 ± 2 / 10 6.1 ± 4.3 74.3 ± 28.2 3 ± 2 155.8 ± 187.8

CITI - 2
C-NAMO 20 ± 30 17 ± 27 220 ± 363 4985 ± 3980 23 ± 17 / 50 17.8 ± 14.4 434.2 ± 349.4 25 ± 20 205.2 ± 191.2

SC-NAMO 19 ± 30 14 ± 26 194 ± 360 5799 ± 4543 25 ± 19 / 50 43.5 ± 35.7 521.5 ± 411.7 13 ± 10 541.2 ± 480.2

TABLE V.3: C-NAMO vs. SC-NAMO: Agent-dependent performance criteria comparison table, cumulated over time. Values are
averaged across 200 runs and provided with standard deviation. Unless specified otherwise in the first row, the unit is the number
of occurrences. Number of robots is indicated in the first column with scenario name. Number of goals per robot is indicated in the

’Successes/Goals’ column.

Chapter V. Multi-Robot NAMO 146

V. 4 Conclusions

This chapter first introduced the new problem of General Multi-Robot Navigation Among
Movable Obstacles. We selected relevant additional hypotheses from the Multi-Robot Co-
ordination literature (Cf. Section II. 2.2) to facilitate our exploration, and devised an implicit
coordination algorithm. This algorithm has been designed to allow concurrent use of existing
NAMO algorithms as is, while keeping the no-collision guarantee, without requiring explicit
communication. We reused our social occupation cost model previously defined in Chapter
IV as a heuristic to help solve the fundamental sub-problem of deadlocks, that arises in dis-
tributed multi-robot systems, which is especially harder to do when explicit communication is
not allowed.

Experimental results on scenarios of increasing complexity with growing number of robots
have shown that in a multi-robot setting, the space rearranging properties of our social occu-
pation cost model remain, resulting in an overall improved navigation for all robots in the long
term in close-intersections environments (lower traversed distance, waiting time and replan-
ning calls). In the absence of explicit communication, our fully-implicit coordination strategy
scales well computation-timewise at the cost of a decreasing success-rate, as the number of
robots grows.

It is to be noted that, to the best of our knowledge, we are the first to ever explore Multi-
Robot NAMO, setting a baseline for future work to compare against. We have opened the way,
but our model could certainly be improved, again in particular in regard to its parametrization
(postponement time, maximum umber of replans, Robot-Robot conflict detection horizon).
Some variations to the proposed coordination algorithms could be studied, for instance not
abandoning the current goal when no NAMO plan could be found when ignoring all obstacles.
Indeed, counting on other robots to improve the environment arrangement, so that the waiting
robot could try planning again later, when the NAMO problem became simpler, could have
possibly improved the goal success rate too. Also, maybe not assuming the transported obsta-
cle should be released before evading a deadlock could also yield interesting results. Finally,
our additional study hypotheses could be relaxed to open an entirely new realm of usable algo-
rithms and passionating experimentations, with heterogeneous, non-omniscient and explicitly
communicating robots. Our open simulation tool, algorithms and data provide a solid base
to dive deeper in the study of this new problem.

147

Chapter VI

Conclusion

In this thesis, we have made the first steps in bringing together the Navigation Among Movable
Obstacles (abb. NAMO) Problem with the larger domains of Social Robotics and Multi-Robot
Coordination. This marks a milestone in the process of bringing NAMO closer to real-world
applicability in human environments.

We lowered the barrier of entry into NAMO research, with our extensive NAMO state of the
art (Cf. Chapter II), open source simulation tool and datasets, all made from scratch. This, with
our revision and implementation of two fundamental NAMO algorithms, (Wu&Levihn, 2014)
and (Stilman, 2005), provides a stepping stone for reproducible and comparable NAMO exper-
iments, with a common formalism (Cf. Chapter III). Our choice of standard, human-readable
and well-supported formats such as SVG and JSON, for sharing our scenario datasets and out-
put data, should also help with reproducibility and comparability. As of today, we have seen
our implementation of (Wu&Levihn, 2014)’s algorithm already been reused by other scientists
(e.g. [157]).

Our state of the art showed how, until now, that the only existing obstacle placement heuris-
tic in NAMO was to minimize the robot’s displacement cost, regardless of its impact on the
environment’s accessibility and navigability. We thus introduced and defined the problem of
Socially-Aware NAMO, and proposed a social occupation cost model, based on two heuris-
tic hypotheses as to the significance of free space in human environments: avoiding narrow
spaces, and not leaving objects in the middle of space (Cf. Chapter IV). This model relies solely
on the analysis of the environment’s binary occupancy grid of fixed obstacles; a very low re-
quirement both in terms of prior knowledge and computations, as this analysis only needs to
be done once for a given environment. Using this model, we showed how to extend NAMO
to S-NAMO algorithms that can compute plans resulting in more connected, less fragmented,
and overall better arranged environments; thus improving social acceptability. Experimental
results on scenarios of increasing complexity showed the scaling and generalization capabilities
of our method; from a simple scenario with a single corridor and room, to a huge room with
multiple crossings with many obstacles, to a real-world scan of our laboratory (Cf. Fig.VI.1).
To the best of our knowledge, this is the first approach to propose an answer to social con-
cerns in NAMO problems, and is the first study of the long-term impact of the use of NAMO
algorithms. This model has recently been reused by other scientists as well [158].

Chapter VI. Conclusion 148

(A) (B)

FIGURE VI.1: CITI Laboratory second floor. (A) Top-down view of the laboratory’s 3D scan.
(B) 3D-view of the social occupation costmap produced by our model. Blue costs are lower

costs, red costs are high costs.

Finally, we defined the problem of Multi-Robot NAMO, and provided an implicit coordina-
tion algorithm that allows the concurrent use of existing NAMO algorithms in a Multi-Robot
System while keeping the absence of collision guarantee - without explicit communication
(Cf. Chapter V). Not requiring explicit communication for this first approach ensures maxi-
mum robustness regarding the possibility of individual robot or communication failure. We
have also shown how our social occupation cost model can be used to decide suitable place-
ment of robots in the same way as movable obstacles, providing a relevant heuristic to solve
a number of deadlock situations. This coordination algorithm allowed us to verify the preser-
vation of positive environment rearrangement properties of our social occupation cost model
observed in mono-robot NAMO experiments. More importantly, we have witnessed the ap-
pearance of positive effects of this rearrangement, reducing parasite interactions between the
robots that require replanning or waiting. Again, to the best of our knowledge, this is the
first approach to propose an answer to multi-robot concerns in NAMO problems, which will
provide a baseline for future works to build upon or compare against.

VI. 1 Perspectives

In a way, one of the main contributions of this thesis has been to introduce the two open prob-
lems of Socially-Aware and Multi-Robot NAMO. NAMO itself still being an open problem,
we could only but scratch the surface of their multiple implications, and much remains to be
explored.

Consolidating existing NAMO research While we extensively studied the current NAMO
state of the art in Chapter II, we could only study in details and implement the two most in-
fluential existing algorithms (Cf. Chapter III). Implementing the rest of these algorithms, even-
tually leading to an actual robust computer library people can pick their preferred algorithm

Chapter VI. Conclusion 149

from, remains a very relevant challenge today. Of course, the logical corollary would be to
augment our current dataset, with new NAMO environments and scenarios that would best
showcase these others algorithms’ advantages and drawbacks. Finally, benchmarking said al-
gorithms with said augmented dataset within a same experimental context (i.e. same machines
with same characteristics) would also help in choosing which algorithm to use depending on
context.

Incorporating human feedback and knowledge As mentioned in the conclusion of Chapter
IV, improving our social occupation cost model would mainly require larger and more diverse
human input, in order to tune its parametrization and validate its social acceptability with
actual human feedback. Setting up appropriate experiments requiring human participation
would also require the input of social sciences experts, that would ensure their adherence to
established experiment design guidelines. While the potential extension of our model with
any of the other models presented in Section II. 2 or IV. 3 would be technically straightfor-
ward thanks to the commonplace nature of our grid-based approach, the appropriate choice
of weight parameters and validation would also require the input of more humans and social
sciences experts. While non-trivial, the resulting model would certainly yield more meaning-
ful and relevant obstacle placements (and maybe robot placements in MR-NAMO deadlock
situations).

Relaxing our additional Multi-Robot hypotheses The ultimate conclusion of Chapter V was
that there is a lot of interesting new research to be done by simply relaxing some, or all of our
additional Multi-Robot work hypotheses presented in Section V. 1.2. We thus identified the
following four main exploration axes:

• Heterogeneous Multi-Robot System: Allowing heterogeneous robots with varying ac-
tion spaces would for instance allow the exploration of new cooperative algorithms, that
would encourage stronger robots to open the way for weaker robots by moving objects
they can’t manipulate, even if these objects don’t impede the strong robot’s path. Con-
versely, small robots could use our social occupation cost model to open a larger way
than they need to pass, in prevision for larger robots to pass later.

• Explicit Communicating Multi-Robot System: Allowing robots to explicitly communi-
cate about their plans would certainly further improve such cooperative behaviors. It
would also provide significant improvements and guarantees in terms of problem res-
olution capabilities, compared to any fully implicit approach (e.g. deadlock resolution
guarantee, resolution completeness, ...). This would hold more or less true depending on
the exact type of coordination (centralized or decentralized, local or global, ...). Similarly,
communicating their sensing data/maps would also facilitate NAMO planning under
limited sensing constraints (in opposition to an omniscient view of the world). It would
most notably allow all robots to keep track of both other robots and their manipulated
obstacles, resulting in fewer replanning due to bad estimates of the world state.

Chapter VI. Conclusion 150

• Many-to-one robot-obstacle relationship: If the one-robot-per-obstacle hypothesis were
relaxed, it could allow the coordinated manipulation of hard-to-move obstacles that a sin-
gle robot could not move alone, be it because of geometry, or more elaborate kinodynamic
characteristics. Of course, assuming explicit communication about plans or sensing data
would facilitate the development of such coordination.

• Human Agents: One could even go as far as imagining the collaborative resolution of
a NAMO problem between robots and humans. This study could go both ways: robots
helping humans navigate among obstacles, and vice versa. In both cases, explicit commu-
nication (e.g. through vocal recognition and speech synthesis) would likely be beneficial
in achieving better planning outcomes.

VI. 2 Beyond planning, experimenting in the real world

Beyond our contributions, and the research perspectives mentioned above, there is much to be
done outside path planning for NAMO research to enter our daily lives. Applied NAMO research
needs to move beyond controlled laboratory environments. For this, much work still needs to
be done in terms of sensing, mapping, and tracking of movable obstacles to allow the applica-
tion of existing algorithms in a useful and trustworthy manner. In the real world, robots need
to accurately evaluate the semantics, geometry and kinodynamics of obstacles in a coherent
manner over time, as to provide a trustworthy-enough world model that NAMO planners can
rely upon to generate successful NAMO plans. To this end, and in order to bring this thesis’
contributions closer to real-world application, a research engineer has been recruited by INRIA.
We hope this work contributes in kindling renewed interest in NAMO, and may serve new ad-
vances in the field, as we believe that autonomously manipulating obstacles is an essential skill
for robots to properly operate in human environments.

151

Appendix A

A* Algorithm

Algorithm 12: Generic A* Algorithm

Data: Start configuration start, Goal configuration goal, graph dependent subfunctions
EXIT-CONDITION, GET-NEIGHBORS, HEURISTIC, COST

Result: Whether a path was found, last evaluated configuration current, precedence dictionary
cameFrom, set of evaluated configurations closeSet, dictionary of scores gscore, queue of
configurations to evaluate openQueue;

1 cameFrom← empty map;
2 current← NULL;
3 openQueue←MAKE-PRIORITY-QUEUE(HEURISTIC(start, goal), start);
4 closedSet← ∅;
5 gscore← {start : 0};
6 while openQueue ̸= ∅ do
7 current← POP(openQueue);
8 if EXIT-CONDITION(current, goal) then
9 return True, current, cameFrom, closeSet, gscore, openQueue;

10 if current ∈ closeSet then continue;
11 else add current to closeSet;
12 for neighbor in GET-NEIGHBORS(current) do
13 tentativeGscore← gscore[current]+ C(current, neighbor);
14 if neighbor /∈ gscore or tentativeGscore < gscore[neighbor] then
15 cameFrom[neighbor]← current;
16 gscore[neighbor]← tentativeGscore;
17 PUSH(openQueue, (tentativeGscore + HEURISTIC(neighbor, goal), neighbor));

18 return False, current, cameFrom, closeSet, gscore, openQueue;

152

Appendix B

Original (Wu&Levihn, 2014)’s
Algorithm

For the sake of readability, end of bloc statements (e.g. end if) were removed in favor of lined
indentations - otherwise, the code remains completely unchanged from the original [34]. The
algorithms are meant to be read successively - the associated tables only describe the variables,
operators and functions once.

Variable Description
R qt

r Current robot configuration
qs

r Start robot configuration
qg

r Goal robot configuration
Onew All newly detected or updated obstacles since the last plan

computation
minCost Heuristic list of obstacles, ordered by increasing cost to

move the obstacle + cost to go from the obstacle to the goal
after move

euclidianCost Heuristic list of obstacles, ordered by increasing euclidean
distance from the obstacle to the goal

mC_pt Traversal index for minCost, always points to the next best
unevaluated obstacle manipulation partial plan in the list

eC_pt Traversal index for euclidianCost, always points to the
next best unevaluated obstacle manipulation partial plan
in the list

mC Variable from GET_NEXT function, indicates if the re-
turned partial Pnext plan is associated with an obstacle
from minCost or not

Mi Currently evaluated obstacle
P∗ Current best Plan
Pnext Next best partial plan to the goal
P Full plan for currently evaluated obstacle Mi

TABLE B.1: Variables table for Algorithm 13

Appendix B. Original (Wu&Levihn, 2014)’s Algorithm 153

Operator/Function Description
⇐ = Assignment operator (= also used for equality check)

A∗ A* search Algorithm described in Appendix A
∪ Set update union
∩ Geometric intersection
∈ Element of
/∈ Not element of
S Swept area of a plan
C Cost of a plan
[] Create tuple

Costl Heuristic cost used by minCost (move the obstacle + move
from the obstacle to goal)

≡ AM Check if step is a manipulation action
GET-NEW-INFORMATION Returns the list of newly detected or updated obstacles

UPDATE Inserts or modifies the element in the heuristic list, re-
specting the list’s order

TABLE B.2: Operators/Functions table for Algorithm 13

Variable Description
PmC Next best partial plan to the goal
PeC Full plan for currently evaluated obstacle Mi

TABLE B.3: Variables table for Algorithm 14

Operator/Function Description
++ Unit increment operator

TABLE B.4: Operators/Functions table for Algorithm 14

Variable Description
d Unit movement vector in an axis-aligned direction in

{le f t, right, up, down}
qtmp

Mi
Currently evaluated Robot configuration while moving
obstacle Mi

qt
Mi

Robot configuration at the obstacle’s side before move
closedList List of fully evaluated configurations
Q Queue of configurations to evaluate

Pto_obstacle Path to reach the obstacle
Px Path to move the obstacle
Pto_goal Path from the obstacle to the goal
P∗Mi

Next best partial plan to the goal
P Currently evaluated full plan

TABLE B.5: Variables table for Algorithm 15

Appendix B. Original (Wu&Levihn, 2014)’s Algorithm 154

Operator/Function Description
Cl Equivalent to Costl described in table B.2
Cest Estimation of the current estimated plan cost (cost to ob-

stacle + cost of manipulation so far + euclidean distance to
goal cost estimate)

is valid path found check
new opening was created Local opening detection algorithm call (see Appendix D)

APPEND Add unit movement vector to plan
HAS_ELEMENT element of set check
GET_POSITION get robot configuration at the currently evaluated plan

step
POP returns queue’s next element

! Would be logical NOT, but is actually a typo at line 14 (the
robot would only add fully evaluated nodes to the queue,
which is the opposite of what is needed).

skip immediately start next loop

TABLE B.6: Operators/Functions table for Algorithm 15

Algorithm 13: Original (Wu&Levihn, 2014) main robot control routine

Data: Robot start configuration qs
r, Robot goal configuration qg

r

1 OPTIMIZED(qs
r, qg

r)
2 R⇐ qs

r

3 minCost, euclidianCost⇐ ∅
4 mC_pt, eC_pt = 0

5 P∗ ⇐ A∗(qs
r, qg

r)

6 while R ̸= qg
r do

7 Onew ⇐ Onew∪ GET-NEW-INFORMATION()
8 if S(P∗) ∩Onew ̸= ∅ then
9 P∗ ⇐ A∗(qt

r, qg
r)

10 for each Mi ∈ Onew do
11 UPDATE(euclidianCost, Mi)
12 Pnext = GET-NEXT(mC_pt, eC_pt)
13 while C(P∗) ≥ C(Pnext) do
14 if mC = true or Pnext /∈ minCost then
15 P = OPT-EVALUATE-ACTION(Pnext,P∗)
16 UPDATE(minCost, [Mi, Costl(Mi)])
17 if C(P) < C(P∗) then
18 P∗ = P
19 Pnext = GET-NEXT(mC_pt, eC_pt)
20 Onew ⇐ ∅

21 mC_pt, eC_pt = 0
22 if Next step in P∗ ≡ AM then
23 minCost⇐ ∅
24 R⇐ Next step in P∗

Appendix B. Original (Wu&Levihn, 2014)’s Algorithm 155

Algorithm 14: Original (Wu&Levihn, 2014) obstacle selection routine

Data: Respective obstacle heuristic lists (minCost, euclidianCost) traversal indexes mC_pt,
eC_pt

Result: indicator mC (of whether the returned partial plan is associated with an obstacle from
minCost or not), Next best partial plan to the goal Pnext

1 GET-NEXT(mC_pt, eC_pt)
2 mC = false
3 PmC = minCost(mC_p)
4 PeC = euclidianCost(eC_p)
5 if C(PmC) ≤ C(PeC) then
6 Pnext = PmC

7 mC_pt ++

8 mC = true

9 else
10 Pnext = PeC

11 eC_pt ++

12 mC = false

13 return (mC,Pnext)

Appendix B. Original (Wu&Levihn, 2014)’s Algorithm 156

Algorithm 15: Original (Wu&Levihn, 2014) 3-components path planning routine

Data: Obstacle to evaluate for movement Mi, current best plan P∗

Result: Next best partial plan to the goal P∗Mi
, associated heuristic cost Cl(Mi)

1 OPT-EVALUATE-ACTION(Mi, P∗)
2 P∗Mi

, Q, closedList⇐ ∅

3 Cl(Mi)← ∞

4 Pto_obstacle = A∗(qt
r, qt

Mi
)

5 if Pto_obstacle NOT valid then
6 return f ailure
7 C(P∗Mi

) = ∞

8 INSERT(Q,P∗Mi
))

9 INSERT(closedList, qs
Mi

)

10 while Q ̸= ∅ do
11 Px ⇐ POP(Q)
12 for d in {le f t, right, up, down} do
13 qtmp

Mi
⇐ GET_POSITION(Mi,Px) + d

14 if !HAS_ELEMENT(closedList, qtmp
Mi

) then
15 skip

16 INSERT(closedList, qtmp
Mi

)

17 if qtmp
Mi

causing robot or obstacle collision then
18 skip
19 APPEND(Px, d)
20 if Cest(Px) ≥ C(P∗Mi

) or Cest(Px) ≥ C(P∗) then
21 skip
22 if new opening was created then
23 Pto_goal = A∗(qtmp

Mi
, qg

r)

24 if Pto_goal is valid then
25 P = Pto_obstacle + Px + Pto_goal

26 if C(Px) + C(Pto_goal) < Cl(Mi) then
27 Cl(Mi)← C(Px) + C(Pto_goal)

28 if C(P) < C(P∗Mi
) then

29 P∗Mi
= P

30 INSERT(Q,Px)

31 if P∗Mi
was set then

32 return (P∗Mi
, Cl(Mi))

33 else
34 return ∅

157

Appendix C

Original (Stilman, 2005)’s Algorithm

The code remains completely unchanged from [19].
Variable Description

Wt Physical world representation at the planning time t
Wt+2 Physical world representation after navigation to an obsta-

cle (+1) and manipulation of said obstacle(+2)
r f Goal robot configuration
x f Goal robot cell

PrevList Best-First Search list of evaluated (obstacle, free space
component) pairs

AvoidList Optional list keeping track of the free space components
traversed in the search branch - prevents the heuristic
RCH search from returning in them

Cacc
R Set of accessible cells for the robot from its current config-

uration / Current connected component of the free space
of the robot

τM Manipulation/Transfer path (sequence of robot configu-
rations while holding the obstacle at a chosen grasping
point)

τN Navigation/Transit path (sequence of robot configurations
without holding an obstacle)

FuturePlan List of all subsequent transit and transfer paths required to
reach the goal, coming from the deeper recursions

c Cost of the Manipulation/Transfer path
∅ Empty set

NIL Empty path / plan
O1 Obstacle to evaluate movement for, in order to connect

the current robot accessible space with another free space
component

C1 Free space component to connect to the current robot ac-
cessible space in the current obstacle manipulation evalua-
tion

TABLE C.1: Variables table for Algorithm 16

Appendix C. Original (Stilman, 2005)’s Algorithm 158

Algorithm 16: Original (Stilman, 2005) Obstacle Choice heuristic.

Data: Current world state Wt, free space components to avoid PrevList, goal configuration r f

Result: A valid NAMO Plan P or NIL
1 SELECT-CONNECT(Wt, PrevList, r f)
2 AvoidList← ∅

3 if x f ∈ Cacc
R (Wt) then

4 return (FIND-PATH(Wt, x f))

5 while (O1, C1)← RCH(Wt, AvoidList, PrevList, r f) ̸= NIL do
6 (Wt+2, τM, c)←MANIP-SEARCH(Wt, O1, C1)
7 if τM ̸= NIL then
8 FuturePlan← SELECT-CONNECT(Wt+2, PrevList append C1, r f)
9 if FuturePlan ̸= NIL then

10 τN ← FIND-PATH(Wt, τM[0])
11 return ((τN , τM) append FuturePlan)

12 AvoidList append (O1, C1)

13 return NIL

Algorithm 17: Original (Stilman, 2005) Obstacle Choice heuristic

Data: Current world state Wt, (Oi, Ci) pairs to avoid AvoidList, free space components to avoid
PrevList, goal configuration r f

Result: Relevant obstacle to consider for manipulation O1, initial free space component C1 to
be joined with current accessible cells Cacc

R

1 RCH(Wt, AvoidList, PrevList, r f)
2 Closed← ∅

3 Q←MAKE-PRIORITY-QUEUE(rt, 0, 0)
4 while Q ̸= empty do
5 x1 = (r1, OF, CF) = REMOVE-FIRST(Q)
6 if x1 ∈ Closed then continue

7 if (r1 = r f and OF ̸= 0 and CF ̸= 0) then return (OF, CF)
8 Closed append (x1)
9 for each r2 ∈ ADJACENT(r1) do

10 if (CF ̸= 0) then ENQUEUE(Q, (r2, OF, CF)); continue

11 if (OF ̸= 0 and r2 ∈ C f ree
R) then ENQUEUE(Q, (r2, OF, 0))

12 if (OF ̸= 0 and r2 exc χOF
R) then ENQUEUE(Q, (r2, OF, 0))

13 if (OF ̸= 0 and r2 ∈ Ci s.t. Ci /∈ PrevList and (OF, Ci) /∈ AvoidList) then
14 ENQUEUE(Q, (r2, OF, Ci))

15 if (OF = 0 and r2 ∈ C f ree
R) then ENQUEUE(Q, (r2, 0, 0))

16 if (OF = 0 and r2 ∈ exc χ
Oi
R) then ENQUEUE(Q, (r2, Oi, 0))

17 return NIL

Appendix C. Original (Stilman, 2005)’s Algorithm 159

Operator/Function Description
gets Assignation operator
∈ Element of

FIND-PATH Navigation/Transit path planner call (A* call on the dis-
cretized grid of Wt)

MANIP-SEARCH Manipulation/Transfer path planner call (Breadth-First
search call assuming uniform action costs)

append Inserts elements from the right list at the end of the left list
[] Get list element at index between

TABLE C.2: Operators/Functions table for Algorithm 16

Variable Description
Closed Set of fully evaluated configurations

∅ empty Empty set
Q Priority queue of configurations to evaluate (ordered by

increasing cost + heuristic distance cost to goal (e.g. eu-
clidean distance))

rt Robot start configuration at the function’s call
x1 Currently evaluated state (r1, OF, CF)
r1 Current robot configuration (e.g. currently evaluated grid

cell)
r2 Neighbor robot configuration from r1 (accessible with a

single action)
OF First traversed obstacle in path to cell (0 if no traversed

obstacle yet)
CF First traversed component in path to cell (0 if no traversed

component other than current robot component yet)
Oi Obstacle exclusively colliding with the robot at configura-

tion r2

Ci Free space at robot configuration r2

NIL Failure to find a relevant obstacle/free space component
to connect

TABLE C.3: Variables table for Algorithm 17

Appendix C. Original (Stilman, 2005)’s Algorithm 160

Operator/Function Description
MAKE-PRIORITY-QUEUE Returns a new priority queue with its first element

= ̸= Inequality check
REMOVE-FIRST Pop first (lowest cost) element in queue

∈/∈ (Not) Element of
continue Immediately start next loop

ADJACENT Returns the set of all accessible robot configurations
from the current one r1

C f ree
R Set of all collision-free robot configurations (union of

all free space components)
ENQUEUE Inserts element in the priority queue

exc χR Checks if robot configuration is exclusively colliding
with a single obstacle

s.t. So that

TABLE C.4: Operators/Functions table for Algorithm 17

Appendix C. Original (Stilman, 2005)’s Algorithm 161

The following algorithm is our own formalization of the obstacle transfer/manipulation
subroutine described in [3, 19] (MANIP-SEARCH), derived from their textual statements.

Algorithm 18: (Interpreted) original (Stilman, 2005) obstacle manipulation/transfer
search routine

Data: Current world state Wt, Relevant obstacle to consider for manipulation O1, Connected
Component C1 to be joined with currently accessible cells Cacc

R

Result: Evaluated world state after manipulation Wt+2, Manipulation plan τM

1 MANIP-SEARCH(Wt, O1, C1)
2 τM ← BREADTH-FS((∅, ∅, ∅), GET-NEIGHBORS, EXIT-CONDITION)

3 Wt+2 ← COPY-AND-UPDATE(Wt, τM)

4 return Wt+2, τM

5 GET-NEIGHBORS((p, qmanip
R , qcur

R))
6 neighbors← ∅

7 if p, (qmanip
R , qcur

R) = (∅, ∅, ∅) then
8 for (p, qmanip

R) ∈ AReach(O1) do
9 APPEND(neighbors, (p, qmanip

R , qmanip
R))

10 return neighbors
11 for AM ∈ AM do
12 Rnext, Onext

1 ← APPLY-ACTION((Rcur, Ocur
1), AM)

13 if (p, qmanip
R , qnext

R) ∈ closedList then skip

14 if Rnext ∩Wt
/O1,R or Onext

1 ∩Wt
/O1,R then skip

15 APPEND(neighbors, (p, qmanip
R , qnext

R))

16 return neighbors

17 EXIT-CONDITION((p, qmanip
R , qcur

R))
18 qC1

R ← qg
R

19 if qg
R /∈ C1 then qC1

R ← RANDOM-FREE-CONFIGURATION(Wt, C1)

20 Pto_C1 ← A∗(qcur
R , qC1

R)
21 if Pto_C1 ̸= ∅ then return True
22 return False

162

Appendix D

Original Efficient Opening Detection
Algorithm

Variables, operators and functions that do not change meaning depending on the algorithm are
not relisted in the later tables.

Variable Description
G 2D binary occupancy grid
Mi The obstacle being moved
AM The manipulation action applied on Mi
M The subgrid of G encompassing the inflated

footprint of Mi by the robot’s diameter
x_o f f set y_o f f set Subgrid Upper-left corner coordinates in the

global grid G
BA Initial state Blocking Areas matrix (shape of

M, non-zero values where other obstacles in
G intersect with the inflated footprint of Mi by
the robot’s diameter)

BAs Final state (after Mi is moved with action AM)
Blocking Areas matrix

BA∗s Shifted BAs matrix in the direction of AM
(e.g. if Mi is moved one cell to the right, BAs’s
columns are shifted one column to the right
(thus the last/rightmost column is dropped),
and the first/leftmost column is filled with ze-
ros)

i j Traversal indexes of the shifted BAs matrix
x y Shifted coordinates in BA∗s from BAs
Z Buffer variable to store the result of the COM-

PARE call

TABLE D.1: Variables table for Algorithm 19

Appendix D. Original Efficient Opening Detection Algorithm 163

Operator/Function Description
= Assignment and equality check operator

GET-M′i-MATRIX Returns the subgrid of G encompassing the inflated foot-
print of the given obstacle by the robot’s diameter

.x .y Returns the subgrid Upper-left corner coordinates in the
global grid G

GET-BLOCKING-AREAS Returns a new matrix the shape of M, with non-zero val-
ues where other obstacles in G intersect with the inflated
footprint of Mi by the robot’s diameter

GET-NEW-X-POS GET-NEW-Y-POS Returns the subgrid upper-left corner coordinates in the
global grid G

[0][0] ; {0-Matrix; dim()=dim(M)} Returns a zero matrix with the shape of M
→ Returns the range of integers from left operand to right

operand
|| Returns the length of the operand
[] Returns element at index
≡ Equality check for matrices

TABLE D.2: Operators/Functions table for Algorithm 19

Variable Description
BA Currently built Blocking Areas matrix (shape of M, non-

zero values where other obstacles in G intersect with the
inflated footprint of Mi by the robot’s diameter)

x_o f f y_o f f BA matrix upper-left corner coordinates in global grid G
index Arbitrary unique identifier for each blocking area

x y Traversal indexes of M

TABLE D.3: Variables table for Algorithm 20

Operator/Function Description
̸= Inequality check

TABLE D.4: Operators/Functions table for Algorithm 20

Variable Description
BA Same currently built Blocking Areas matrix as in Table D.3
x y Coordinates in BA of the cell to set the index for

index Same index as in Table D.3
i j Traversal indexes for the chessboard (3× 3) neighborhood

of the (x, y) cell

TABLE D.5: Variables table for Algorithm 21

Appendix D. Original Efficient Opening Detection Algorithm 164

Variable Description
BA Same Initial state Blocking Areas matrix as in Table D.1
BA∗s Same Final state Blocking Areas matrix as in Table D.1

del_num Set of Indexes/Arbitrary identifiers of the blocking areas
in BA that intersect with blocking areas in BA∗s

∅ Empty set
BS Initially a copy of BA, should be the returned variable for

the pseudocode to actually be valid
x y Traversal indexes of the BS matrix

TABLE D.6: Variables table for Algorithm 22

Operator/Function Description
:= Assignment operator
∈ Element of
∪ Set union update

TABLE D.7: Operators/Functions table for Algorithm 22

Algorithm 19: Original Efficient Opening Detection Algorithm

Data: Binary occupancy grid G, Manipulated obstacle Mi, Manipulation action AM

Result: True if new local opening detected, False otherwise
1 CHECK-NEW-OPENING(G, Mi, AM)
2 M = GET-M′i-MATRIX(Mi)
3 x_o f f set = Mi.x
4 y_o f f set = Mi.y
5 BA = GET-BLOCKING-AREAS(x_o f f set, y_o f f set)
6 x_o f f set = GET-NEW-X-POS(Am, Mi)
7 y_o f f set = GET-NEW-Y-POS(Am, Mi)
8 BAs = GET-BLOCKING-AREAS(x_o f f set, y_o f f set)
9 BA∗s = [0][0] ; {0-Matrix; dim()=dim(M)}

10 for i = 0→ |BA∗s | do
11 for j = 0→ |BA∗s [i]| do
12 x = (x_o f f set−Mi.x) + i
13 y = (y_o f f set−Mi.y) + j
14 if 0 < x < |BA∗s | AND 0 < y < |BA∗s [x]| then
15 BA∗s [x][y] = BAs[i][j]
16 Z = COMPARE(BA, BA∗s)
17 if Z ≡ [0][0] then
18 return f alse
19 return true

Appendix D. Original Efficient Opening Detection Algorithm 165

Algorithm 20: Blocking Areas detection subroutine

Data: Origin coordinates of the inflated obstacle grid x_o f f , y_o f f
Result: Blocking areas BA

1 GET-BLOCKING-AREAS(x_o f f , y_o f f)
2 index = 1
3 BA = [0][0] ; {0-Matrix; dim()=dim(M)}
4 for x = 0→ |M| do
5 for y = 0→ |M[x]| do
6 if M[x][y] ̸= 0 AND G[x + x_o f f][y + y_o f f] ̸= 0 then
7 ASSIGN-NR(BA, x, y, index)

8 return BA

Algorithm 21: Blocking Area index assignment and overwrite subroutine

Data: Blocking Areas matrix BA, Coordinates x, y of cell to assign the index to, Current
Blocking Area index

1 ASSIGN-NR(BA, x, y, index)
2 for i = −1→ 1 do
3 for j = −1→ 1 do
4 if BA[x + i][y + j] ̸= 0 then
5 BA[x][y] = BA[x + i][y + j]
6 return

7 BA[x][y] = index
8 index = index + 1
9 return

Algorithm 22: Blocking Areas intersection computation routine

Data: Initial state Blocking Areas matrix BA, Final state Blocking Areas matrix BA∗s
Data: Comparison matrix BA

1 COMPARE(BA, BA∗s)
2 del_num := ∅
3 for x = 0→ |BS| do
4 for y = 0→ |BS[x]| do
5 if BA[x][y] ∈ del_num then
6 BS[x][y] = 0
7 if BA[x][y] ̸= 0 AND BA∗s [x][y] ̸= 0 then
8 del_num = del_num ∪ BS[x][y]
9 BS[x][y] = 0

10 return BA

166

Bibliography

[1] P. C. Chen and Y. K. Hwang, “Practical path planning among movable obstacles,” Sandia
National Labs., Albuquerque, NM (USA), Tech. Rep. SAND-90-2383C; CONF-910451-7,
1990.

[2] K. Okada, A. Haneda, H. Nakai, M. Inaba, and H. Inoue, “Environment manipula-
tion planner for humanoid robots using task graph that generates action sequence,” in
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 2, Sept. 2004, pp. 1174–1179 vol.2.

[3] M. Stilman and J. J. Kuffner, “Navigation among movable obstacles: real-time reasoning
in complex environments,” International Journal of Humanoid Robotics, vol. 02, no. 4, pp.
479–503, 2005.

[4] D. Nieuwenhuisen, A. F. Van Der Stappen, and M. H. Overmars, “An Effective
Framework for Path Planning Amidst Movable Obstacles,” in Algorithmic Foundation of
Robotics VII, ser. Springer Tracts in Advanced Robotics. Springer, Berlin, Heidelberg,
2008, pp. 87–102.

[5] J. Van Den Berg, M. Stilman, J. Kuffner, M. Lin, and D. Manocha, “Path Planning among
Movable Obstacles: A Probabilistically Complete Approach,” in Algorithmic Foundation
of Robotics VIII, ser. Springer Tracts in Advanced Robotics. Springer, Berlin, Heidelberg,
2009, pp. 599–614.

[6] Y. Kakiuchi, R. Ueda, K. Kobayashi, K. Okada, and M. Inaba, “Working with movable
obstacles using on-line environment perception reconstruction using active sensing and
color range sensor,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, Oct. 2010, pp. 1696–1701.

[7] M. Levihn, M. Stilman, and H. Christensen, “Locally optimal navigation among mov-
able obstacles in unknown environments,” in 2014 IEEE-RAS International Conference on
Humanoid Robots, Nov. 2014, pp. 86–91.

[8] M. Levihn, J. Scholz, and M. Stilman, “Hierarchical Decision Theoretic Planning for
Navigation Among Movable Obstacles,” in Algorithmic Foundations of Robotics X, ser.
Springer Tracts in Advanced Robotics. Springer, Berlin, Heidelberg, 2013, pp. 19–35.

[9] M. Levihn, L. P. Kaelbling, T. Lozano-Pérez, and M. Stilman, “Foresight and reconsidera-
tion in hierarchical planning and execution,” in 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Nov. 2013, pp. 224–231.

BIBLIOGRAPHY 167

[10] M. Levihn, J. Scholz, and M. Stilman, “Planning with movable obstacles in continuous
environments with uncertain dynamics,” in 2013 IEEE International Conference on Robotics
and Automation, May 2013, pp. 3832–3838.

[11] J. Scholz, N. Jindal, M. Levihn, C. L. Isbell, and H. I. Christensen, “Navigation Among
Movable Obstacles with learned dynamic constraints,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct. 2016, pp. 3706–3713.

[12] E. Mueggler, M. Faessler, F. Fontana, and D. Scaramuzza, “Aerial-guided navigation of a
ground robot among movable obstacles,” in 2014 IEEE International Symposium on Safety,
Security, and Rescue Robotics (2014), Oct. 2014, pp. 1–8.

[13] J. Rios-Martinez, A. Spalanzani, and C. Laugier, “From Proxemics Theory to Socially-
Aware Navigation: A Survey,” International Journal of Social Robotics, vol. 7, no. 2, pp.
137–153, Apr. 2015.

[14] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware robot navigation: A
survey,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1726–1743, Dec. 2013.

[15] D. V. Lu, “Social navigation layers - ROS Wiki,” available at:
http://wiki.ros.org/social_navigation_layers, last edited: 2014-11-10, last viewed:
2024-01-25.

[16] J. K. Verma and V. Ranga, “Multi-Robot Coordination Analysis, Taxonomy, Challenges
and Future Scope,” Journal of Intelligent & Robotic Systems, vol. 102, no. 1, p. 10, Apr.
2021.

[17] M. Bellusci, N. Basilico, and F. Amigoni, “Multi-Agent Path Finding in Configurable En-
vironments,” in Proceedings of the 19th International Conference on Autonomous Agents and
MultiAgent Systems. Richland, SC: International Foundation for Autonomous Agents
and Multiagent Systems, May 2020, pp. 159–167.

[18] D. Vainshtain and O. Salzman, “Multi-agent terraforming: Efficient multi-agent path
finding via environment manipulation,” Proceedings of the International Symposium on
Combinatorial Search, vol. 12, no. 1, pp. 239–241, 2021.

[19] M. Stilman, “Navigation Among Movable Obstacles,” Ph.D. dissertation, Carnegie
Mellon University, Pittsburgh, PA, Oct. 2007.

[20] F. Lindner and C. Eschenbach, “An Affordance-Based Conceptual Framework for Spatial
Behavior of Social Robots,” in Sociality and Normativity for Robots, R. Hakli and J. Seibt,
Eds. Cham: Springer International Publishing, 2017, pp. 137–158.

[21] ——, “Affordance-Based Activity Placement in Human-Robot Shared Environments,”
in Social Robotics Series Title: Lecture Notes in Computer Science, D. Hutchison, T. Kanade,
J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,

http://wiki.ros.org/social_navigation_layers

BIBLIOGRAPHY 168

C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi,
G. Weikum, G. Herrmann, M. J. Pearson, A. Lenz, P. Bremner, A. Spiers, and
U. Leonards, Eds., vol. 8239. Cham: Springer International Publishing, 2013, pp.
94–103.

[22] R. Limosani, L. Y. Morales, J. Even, F. Ferreri, A. Watanabe, F. Cavallo, P. Dario, and
N. Hagita, “Long-term human affordance maps,” in 2015 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), Sept. 2015, pp. 5748–5754.

[23] Y. Jiang, H. S. Koppula, and A. Saxena, “Modeling 3D Environments through Hidden
Human Context,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38,
no. 10, pp. 2040–2053, Oct. 2016.

[24] O. Ben-Shahar and E. Rivlin, “Practical pushing planning for rearrangement tasks,” IEEE
Transactions on Robotics and Automation, vol. 14, no. 4, pp. 549–565, Aug. 1998.

[25] International Federation of Robotics, “World Robotics 2021,” International Federation of
Robotics, Tech. Rep., 2021.

[26] E. Ackerman, “With New Roomba j7, iRobot Wants to Understand Our Homes,” IEEE
Spectrum, Sept. 2021.

[27] M. Levihn, “Autonomous environment manipulation to facilitate task completion,” PhD
Thesis, Georgia Institute of Technology, Atlanta, Georgia, Mar. 2015.

[28] J. Scholz, “Physics-based reinforcement learning for autonomous manipulation,” Ph.D.
dissertation, Georgia Institute of Technology, Aug. 2015.

[29] E. Ackerman, “iRobot Completely Redesigns Its Floor Care Robots With New m6 and
s9,” IEEE Spectrum, May 2019.

[30] Benoit Renault, Jacques Saraydaryan, and Olivier Simonin, “Towards S-NAMO: Socially-
aware Navigation Among Movable Obstacles,” in RoboCup 2019: Robot World Cup XXIII,
ser. Lecture Notes in Computer Science. Sydney: Springer International Publishing,
2019.

[31] A. Wykowska, I. Serena, S. Sam Ge, O. Khatib, J. Perez-Osorio, and
S. Anzalone, “International Journal of Social Robotics,” available at:
https://web.archive.org/web/20230912072607/https://www.springer.com/journal/12369,
last viewed: 2023-09-12.

[32] F. Lindner and C. Eschenbach, “Affordances and Affordance Space: A Conceptual
Framework for Application in Social Robotics,” in Sociable Robots and the Future of Social
Relations. IOS Press, 2014, pp. 35–45.

[33] H. Wu, M. Levihn, and M. Stilman, “Navigation Among Movable Obstacles in unknown
environments,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Oct. 2010, pp. 1433–1438.

https://web.archive.org/web/20230912072607/https://www.springer.com/journal/12369

BIBLIOGRAPHY 169

[34] M. Levihn, “Navigation Among Movable Obstacles in unknown environments,”
Master’s thesis, Georgia Institute of Technology, Atlanta, Georgia, May 2011.

[35] M. Levihn and M. Stilman, “Efficient Opening Detection,” Georgia Institute of
Technology,” Technical Report, 2011.

[36] G. Wilfong, “Motion planning in the presence of movable obstacles,” in Proceedings
of the fourth annual symposium on Computational geometry, ser. SCG ’88. Association for
Computing Machinery, 1988, pp. 279–288.

[37] ——, “Motion planning in the presence of movable obstacles,” Annals of Mathematics and
Artificial Intelligence, vol. 3, no. 1, pp. 131–150, 1991.

[38] P. C. Chen and Y. K. Hwang, “Practical path planning among movable obstacles,” in
1991 IEEE International Conference on Robotics and Automation Proceedings, Apr. 1991, pp.
444–449 vol.1.

[39] M. Stilman and J. Kuffner, “Navigation among movable obstacles: real-time reasoning
in complex environments,” in 4th IEEE/RAS International Conference on Humanoid Robots,
2004., vol. 1, 2004, pp. 322–341 Vol. 1.

[40] R. Alami, T. Siméon, and J.-P. Laumond, “A geometrical approach to planning
manipulation tasks. The case of discrete placements and grasps,” in The fifth international
symposium on Robotics research, H. Miura, Ed. MIT Press, 1990, pp. 453–463.

[41] R. Alami, J.-P. Laumond, and T. Simeon, “Two manipulation planning algorithms,”
in WAFR Proceedings of the workshop on Algorithmic foundations of robotics, K. Goldberg,
D. Halperin, J.-C. Latombe, and R. Wilson, Eds. A. K. Peters, Ltd. Natick, MA, USA,
1994, pp. 109–125.

[42] K. Okada, T. Ogura, A. Haneda, J. Fujimoto, F. Gravot, and M. Inaba, “Humanoid mo-
tion generation system on HRP2-JSK for daily life environment,” in IEEE International
Conference Mechatronics and Automation, 2005, vol. 4, July 2005, pp. 1772–1777 Vol. 4.

[43] M. Stilman, K. Nishiwaki, S. Kagami, and J. J. Kuffner, “Planning and executing
navigation among movable obstacles,” in 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2006, pp. 820–826.

[44] ——, “Planning and executing navigation among movable obstacles,” Advanced Robotics,
vol. 21, no. 14, pp. 1617–1634, 2007.

[45] R. H. Wilson, “On Geometric Assembly Planning,” Ph.D. dissertation, Stanford
University, Mar. 1992.

[46] M. Stilman and J. Kuffner, “Planning among movable obstacles with artificial
constraints,” The International Journal of Robotics Research, vol. 27, no. 11, pp. 1295–1307,
2008.

BIBLIOGRAPHY 170

[47] M. Stilman and J. J. Kuffner, “Planning among movable obstacles with artificial
constraints,” in Algorithmic Foundation of Robotics VII: Selected Contributions of the Seventh
International Workshop on the Algorithmic Foundations of Robotics, ser. Springer Tracts in
Advanced Robotics, S. Akella, N. M. Amato, W. H. Huang, and B. Mishra, Eds.
Springer, 2008, pp. 119–135.

[48] D. Nieuwenhuisen, A. F. v. d. Stappen, and M. H. Overmars, “An effective framework for
path planning amidst movable obstacles,” Department of Information and Computing
Sciences, Utrecht University, Tech. Rep. UU-CS-2006-035, 2006.

[49] D. Nieuwenhuisen, “Path Planning in Changeable Environments,” Ph.D. dissertation,
Universiteit Utrech, 2007.

[50] J. P. Van den Berg, “Path Planning in Dynamic Environments,” Ph.D. dissertation, Uni-
versiteit Utrech, 2007.

[51] S. K. Moghaddam and E. Masehian, “Planning Robot Navigation among Movable
Obstacles (NAMO) through a Recursive Approach,” Journal of Intelligent & Robotic
Systems, vol. 83, no. 3, pp. 603–634, Sept. 2016.

[52] Z. Meng, H. Sun, K. B. H. Teo, and M. H. Ang, “Active Path Clearing Navigation through
Environment Reconfiguration in Presence of Movable Obstacles,” in 2018 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM), July 2018, pp. 156–163.

[53] T. G. Dietterich, “An Overview of MAXQ Hierarchical Reinforcement Learning,” in Ab-
straction, Reformulation, and Approximation, ser. Lecture Notes in Computer Science, B. Y.
Choueiry and T. Walsh, Eds. Berlin, Heidelberg: Springer, 2000, pp. 26–44.

[54] M. Kearns, Y. Mansour, and A. Y. Ng, “A Sparse Sampling Algorithm for Near-Optimal
Planning in Large Markov Decision Processes,” Machine Learning, vol. 49, no. 2, pp.
193–208, Nov. 2002.

[55] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion planning in the now,”
in 2011 IEEE International Conference on Robotics and Automation, May 2011, pp. 1470–1477.

[56] ——, “Integrated task and motion planning in belief space,” The International Journal of
Robotics Research, vol. 32, no. 9-10, pp. 1194–1227, Aug. 2013.

[57] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and
T. Lozano-Pérez, “Integrated task and motion planning,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 4, no. 1, pp. 265–293, 2021.

[58] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic roadmaps for path
planning in high-dimensional configuration spaces,” IEEE Transactions on Robotics and
Automation, vol. 12, no. 4, pp. 566–580, Aug. 1996.

[59] S. M. LaValle and J. J. Kuffner, “Randomized Kinodynamic Planning,” The International
Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, May 2001.

BIBLIOGRAPHY 171

[60] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to single-query path plan-
ning,” in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on
Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 2, Apr. 2000, pp.
995–1001 vol.2.

[61] R. M. Neal, “MCMC Using Hamiltonian Dynamics,” in Handbook of Markov Chain Monte
Carlo. Chapman and Hall/CRC, 2011.

[62] M. Fiala, “ARTag, a fiducial marker system using digital techniques,” in 2005 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, June
2005, pp. 590–596 vol. 2.

[63] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in 2011 IEEE Interna-
tional Conference on Robotics and Automation, May 2011, pp. 3400–3407.

[64] N. Castaman, “A Sampling-Based Tree Planner for Robot Navigation Among Movable
Obstacles,” Master’s thesis, University of Padova, Padova, Italy, July 2016.

[65] N. Cstaman, E. Tosello, and E. Pagello, “A Sampling-Based Tree Planner for Navigation
Among Movable Obstacles,” in Proceedings of ISR 2016: 47st International Symposium on
Robotics, June 2016, pp. 1–8.

[66] I. A. Şucan and L. E. Kavraki, “Kinodynamic Motion Planning by Interior-Exterior
Cell Exploration,” in Algorithmic Foundation of Robotics VIII: Selected Contributions of the
Eight International Workshop on the Algorithmic Foundations of Robotics, ser. Springer Tracts
in Advanced Robotics, G. S. Chirikjian, H. Choset, M. Morales, and T. Murphey, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 449–464.

[67] H. Sun, Z. Meng, and M. H. Ang, “Semantic mapping and semantics-boosted navigation
with path creation on a mobile robot,” in 2017 IEEE International Conference on Cybernetics
and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics
(RAM), Nov. 2017, pp. 207–212.

[68] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,”
The International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894, June 2011.

[69] B. Renault, J. Saraydaryan, and O. Simonin, “Modeling a Social Placement Cost to
Extend Navigation Among Movable Obstacles (NAMO) Algorithms,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Las Vegas, United States,
Oct. 2020, pp. 11 345–11 351.

[70] M. Wang, R. Luo, A. O. Onol, and T. Padir, “Affordance-based mobile robot navigation
among movable obstacles,” in 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2020, pp. 2734–2740.

[71] J. J. Gibson, The Ecological Approach to Visual Perception. New York: Routledge, Oct. 1986.

BIBLIOGRAPHY 172

[72] P. Kaiser, M. Grotz, E. E. Aksoy, M. Do, N. Vahrenkamp, and T. Asfour, “Validation of
whole-body loco-manipulation affordances for pushability and liftability,” in 2015 IEEE-
RAS 15th International Conference on Humanoid Robots (Humanoids), Nov. 2015, pp. 920–
927.

[73] A. O. Onol, P. Long, and T. Padır, “Contact-Implicit Trajectory Optimization Based on
a Variable Smooth Contact Model and Successive Convexification,” in 2019 International
Conference on Robotics and Automation (ICRA), May 2019, pp. 2447–2453.

[74] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for model-based
control,” 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 5026–5033, Oct. 2012.

[75] Y. Mao, D. Dueri, M. Szmuk, and B. Açıkmeşe, “Successive Convexification of
Non-Convex Optimal Control Problems with State Constraints,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 4063–4069, July 2017.

[76] K. Charalampous, I. Kostavelis, and A. Gasteratos, “Recent trends in social aware robot
navigation: A survey,” Robotics and Autonomous Systems, vol. 93, pp. 85–104, July 2017.

[77] S. F. Chik, C. F. Yeong, E. L. M. Su, T. Y. Lim, Y. Subramaniam, and P. J. H. Chin, “A
Review of Social-Aware Navigation Frameworks for Service Robot in Dynamic Human
Environments,” Journal of Telecommunication, Electronic and Computer Engineering (JTEC),
vol. 8, no. 11, pp. 41–50–50, Dec. 2016.

[78] J. Cheng, H. Cheng, M. Q.-H. Meng, and H. Zhang, “Autonomous Navigation by Mobile
Robots in Human Environments: A Survey,” in 2018 IEEE International Conference on
Robotics and Biomimetics (ROBIO), Dec. 2018, pp. 1981–1986.

[79] R. Möller, A. Furnari, S. Battiato, A. Härmä, and G. M. Farinella, “A survey on
human-aware robot navigation,” Robotics and Autonomous Systems, vol. 145, p. 103837,
Nov. 2021.

[80] C. Mavrogiannis, F. Baldini, A. Wang, D. Zhao, P. Trautman, A. Steinfeld, and
J. Oh, “Core Challenges of Social Robot Navigation: A Survey,” ACM Transactions on
Human-Robot Interaction, Feb. 2023.

[81] E. T. Hall, The hidden dimension : man’s use of space in public and private. London : Bodley
Head, 1966.

[82] F. Lindner and C. Eschenbach, “Towards a Formalization of Social Spaces for Socially
Aware Robots,” in Spatial Information Theory, ser. Lecture Notes in Computer Science,
M. Egenhofer, N. Giudice, R. Moratz, and M. Worboys, Eds. Springer Berlin Heidelberg,
2011, pp. 283–303.

[83] F. Ostermann and S. Timpf, “Modelling space appropriation in public parks,” in
Ostermann, F; Timpf, S (2007). Modelling space appropriation in public parks. In: Wachowicz,

BIBLIOGRAPHY 173

M. Proceedings of 10th AGILE International Conference on Geographic Information Science.
Aalborg, DK: Aalborg University, 1-7., M. Wachowicz, Ed. Aalborg, DK: Aalborg
University, 2007, pp. 1–7.

[84] B. Okal and T. Linder, “Pedestrian Simulator,” available at: https://github.com/srl-
freiburg/pedsim_ros, last viewed: 2024-01-25.

[85] E. A. Sisbot, L. F. Marin, and R. Alami, “Spatial reasoning for human robot interaction,”
in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2007, pp.
2281–2287.

[86] K. L. Koay, E. A. Sisbot, D. S. Syrdal, M. L. Walters, K. Dautenhahn, and R. Alami, “Ex-
ploratory Study of a Robot Approaching a Person in the Context of Handing Over an
Object,” in AAAI Spring Symposium: Multidisciplinary Collaboration for Socially Assistive
Robotics, 2007.

[87] E. A. Sisbot, L. F. Marin-Urias, X. Broquère, D. Sidobre, and R. Alami, “Synthesizing
Robot Motions Adapted to Human Presence,” International Journal of Social Robotics,
vol. 2, no. 3, pp. 329–343, Sept. 2010.

[88] J. Mainprice, E. A. Sisbot, T. Simeon, and R. Alami, “Planning Safe and Legible
Hand-over Motions for Human-Robot Interaction,” in Proceedings of the IARP/IEEE-
RAS/EURON workshop on technical challenges for dependable robots in human environments,
2010.

[89] J. Mainprice, E. Akin Sisbot, L. Jaillet, J. Cortés, R. Alami, and T. Siméon, “Planning
human-aware motions using a sampling-based costmap planner,” in 2011 IEEE
International Conference on Robotics and Automation, 2011, pp. 5012–5017.

[90] E. A. Sisbot and R. Alami, “A Human-Aware Manipulation Planner,” IEEE Transactions
on Robotics, vol. 28, no. 5, pp. 1045 – 1057, Oct. 2012.

[91] J. Mainprice, M. Gharbi, T. Siméon, and R. Alami, “Sharing effort in planning human-
robot handover tasks,” in 2012 IEEE RO-MAN: The 21st IEEE International Symposium on
Robot and Human Interactive Communication, Sept. 2012, pp. 764–770.

[92] M. Gharbi, S. Lemaignan, J. Mainprice, and R. Alami, “Natural interaction for object
hand-over,” in 2013 8th ACM/IEEE International Conference on Human-Robot Interaction
(HRI), 2013, pp. 401–401.

[93] J. Waldhart, M. Gharbi, and R. Alami, “Planning handovers involving humans and
robots in constrained environment,” in 2015 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), Sept. 2015, pp. 6473–6478.

[94] J. Mainprice and D. Berenson, “Human-Robot Collaborative Manipulation Planning Us-
ing Early Prediction of Human Motion,” in IEEE International Conference on Intelligent
Robots and Systems, Nov. 2013.

https://github.com/srl-freiburg/pedsim_ros
https://github.com/srl-freiburg/pedsim_ros

BIBLIOGRAPHY 174

[95] P. A. Lasota and J. A. Shah, “Analyzing the Effects of Human-Aware Motion Planning
on Close-Proximity Human–Robot Collaboration,” Human Factors, vol. 57, no. 1, pp.
21–33, Feb. 2015.

[96] S. Pellegrinelli, F. L. Moro, N. Pedrocchi, L. Molinari Tosatti, and T. Tolio, “A probabilistic
approach to workspace sharing for human–robot cooperation in assembly tasks,” CIRP
Annals, vol. 65, no. 1, pp. 57–60, Jan. 2016.

[97] S. Pellegrinelli, A. Orlandini, N. Pedrocchi, A. Umbrico, and T. Tolio, “Motion planning
and scheduling for human and industrial-robot collaboration,” CIRP Annals, vol. 66,
no. 1, pp. 1–4, Jan. 2017.

[98] V. V. Unhelkar, P. A. Lasota, Q. Tyroller, R.-D. Buhai, L. Marceau, B. Deml, and J. A.
Shah, “Human-Aware Robotic Assistant for Collaborative Assembly: Integrating Human
Motion Prediction With Planning in Time,” IEEE Robotics and Automation Letters, vol. 3,
no. 3, pp. 2394–2401, July 2018.

[99] R. Alami, M. Gharbi, B. Vadant, R. Lallement, and A. Suarez, “On human-aware task
and motion planning abilities for a teammate robot,” in Human-Robot Collaboration for
Industrial Manufacturing Workshop, RSS 2014, UC Berkeley, United States, July 2014.

[100] M. Faroni, M. Beschi, S. Ghidini, N. Pedrocchi, A. Umbrico, A. Orlandini, and
A. Cesta, “A Layered Control Approach to Human-Aware Task and Motion Planning
for Human-Robot Collaboration,” in 2020 29th IEEE International Conference on Robot
and Human Interactive Communication (RO-MAN). Naples, Italy: IEEE, Aug. 2020, pp.
1204–1210.

[101] A. Farinelli, L. Iocchi, and D. Nardi, “Multirobot systems: a classification focused on
coordination,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 34, no. 5, pp. 2015–2028, Oct. 2004.

[102] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Global Edition, 3rd ed.
Pearson, 2016.

[103] L. Iocchi, D. Nardi, and M. Salerno, “Reactivity and Deliberation: A Survey on Multi-
Robot Systems,” in Balancing Reactivity and Social Deliberation in Multi-Agent Systems, ser.
Lecture Notes in Computer Science, M. Hannebauer, J. Wendler, and E. Pagello, Eds.
Berlin, Heidelberg: Springer, 2001, pp. 9–32.

[104] Y. U. Cao, A. S. Fukunaga, and A. Kahng, “Cooperative Mobile Robotics: Antecedents
and Directions,” Autonomous Robots, vol. 4, no. 1, pp. 7–27, Mar. 1997.

[105] Z. Yan, N. Jouandeau, and A. A. Cherif, “A Survey and Analysis of Multi-Robot
Coordination,” International Journal of Advanced Robotic Systems, vol. 10, no. 12, p. 399,
Dec. 2013.

BIBLIOGRAPHY 175

[106] R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li, D. Atzmon, L. Co-
hen, T. K. Kumar, E. Boyarski, and R. Barták, “Multi-Agent Pathfinding: Definitions,
Variants, and Benchmarks,” SOCS, 2019.

[107] S. Koenig, “mapf.info,” available at: http://mapf.info/, last viewed: 2024-01-25.

[108] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based search for optimal
multi-agent pathfinding,” Artificial Intelligence, vol. 219, pp. 40–66, Feb. 2015.

[109] Z. Feng, G. Hu, Y. Sun, and J. Soon, “An overview of collaborative robotic manipulation
in multi-robot systems,” Annual Reviews in Control, vol. 49, pp. 113–127, Jan. 2020.

[110] L. Lindzey, R. A. Knepper, H. Choset, and S. S. Srinivasa, “The Feasible Transition
Graph: Encoding Topology and Manipulation Constraints for Multirobot Push-
Planning,” in Algorithmic Foundations of Robotics XI: Selected Contributions of the Eleventh
International Workshop on the Algorithmic Foundations of Robotics, ser. Springer Tracts in
Advanced Robotics, H. L. Akin, N. M. Amato, V. Isler, and A. F. van der Stappen, Eds.
Cham: Springer International Publishing, 2015, pp. 301–318.

[111] M. Levihn, T. Igarashi, and M. Stilman, “Multi-robot multi-object rearrangement in as-
signment space,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, Oct. 2012, pp. 5255–5261.

[112] N. Oyama, Z. Liu, L. B. Gueta, and J. Ota, “Rearrangement task of multiple robots using
task assignment applicable to different environments,” in 2010 IEEE International Confer-
ence on Robotics and Biomimetics, Dec. 2010, pp. 300–305.

[113] ——, “Task apportionment in a rearrangement problem of multiple mobile robots,”
Advanced Robotics, vol. 27, no. 2, pp. 93–107, Feb. 2013.

[114] R. Inoue, N. Fujii, R. Takano, and J. Ota, “Rearrangement of multiple objects by a robot
group having a multi-task function,” in 2008 IEEE International Conference on Robotics and
Biomimetics, Feb. 2009, pp. 2013–2018.

[115] R. Shome and K. E. Bekris, “Synchronized multi-arm rearrangement guided by mode
graphs with capacity constraints,” in Algorithmic Foundations of Robotics XIV, ser. Springer
Proceedings in Advanced Robotics, S. M. LaValle, M. Lin, T. Ojala, D. Shell, and J. Yu, Eds.
Springer International Publishing, 2021, pp. 243–260.

[116] V. N. Hartmann, A. Orthey, D. Driess, O. S. Oguz, and M. Toussaint, “Long-horizon
multi-robot rearrangement planning for construction assembly,” IEEE Transactions on
Robotics, vol. 39, no. 1, pp. 239–252, 2023.

[117] J. Motes, T. Chen, T. Bretl, M. M. Aguirre, and N. M. Amato, “Hypergraph-based
multi-robot task and motion planning,” IEEE Transactions on Robotics, 2023.

http://mapf.info/

BIBLIOGRAPHY 176

[118] L. Antonyshyn, J. Silveira, S. Givigi, and J. Marshall, “Multiple Mobile Robot Task and
Motion Planning: A Survey,” ACM Computing Surveys, vol. 55, no. 10, pp. 213:1–213:35,
Feb. 2023.

[119] J. Motes, R. Sandström, H. Lee, S. Thomas, and N. M. Amato, “Multi-Robot Task and Mo-
tion Planning With Subtask Dependencies,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 3338–3345, Apr. 2020.

[120] A. Thomas, F. Mastrogiovanni, and M. Baglietto, “Towards Multi-Robot Task-Motion
Planning for Navigation in Belief Space,” ECAI-STAIRS 2020, Oct. 2020.

[121] W. N. Tang, S. D. Han, and J. Yu, “Computing high-quality clutter removal solutions
for multiple robots,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2020, pp. 7963–7970.

[122] J.-C. Latombe, Robot Motion Planning, ser. The Springer International Series in
Engineering and Computer Science. Springer US, 1991.

[123] M. T. Mason, Mechanics of Robotic Manipulation. Cambridge, Mass: A Bradford Book,
Aug. 2001.

[124] K. M. Lynch and M. T. Mason, “Stable Pushing: Mechanics, Controllability, and
Planning,” The International Journal of Robotics Research, vol. 15, no. 6, pp. 533–556, Dec.
1996.

[125] M. Erdmann, “An Exploration of Nonprehensile Two-Palm Manipulation,” The
International Journal of Robotics Research, vol. 17, no. 5, pp. 485–503, May 1998.

[126] G. Morris and L. Haynes, “Robotic assembly by constraints,” in 1987 IEEE International
Conference on Robotics and Automation Proceedings, vol. 4, Mar. 1987, pp. 1507–1515.

[127] J. Morrow and P. Khosla, “Manipulation task primitives for composing robot skills,” in
Proceedings of International Conference on Robotics and Automation, vol. 4, Apr. 1997, pp.
3354–3359 vol.4.

[128] T. Igarashi and M. Stilman, “Homotopic Path Planning on Manifolds for Cabled Mobile
Robots,” in Algorithmic Foundations of Robotics IX, ser. Springer Tracts in Advanced
Robotics, B. Siciliano, O. Khatib, F. Groen, D. Hsu, V. Isler, J.-C. Latombe, and M. C. Lin,
Eds., vol. 68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 1–18.

[129] P. Jansen, R. Goud, and M. Wener, “TIOBE Index,” available at
https://www.tiobe.com/tiobe-index/, last viewed: 2024-01-25.

[130] P. Carbonnelle, “PYPL PopularitY of Programming Language index,” available at
https://pypl.github.io/PYPL.html, last viewed: 2024-01-25.

[131] P. S. Foundation, “Sunsetting Python 2,” available at
https://www.python.org/doc/sunset-python-2/, last viewed: 2024-01-25.

https://www.tiobe.com/tiobe-index/
https://pypl.github.io/PYPL.html
https://www.python.org/doc/sunset-python-2/

BIBLIOGRAPHY 177

[132] A. Foisy and V. Hayward, “A safe swept volume method for collision detection,” Inter-
national Journal of Robotic Research - IJRR, Jan. 1994.

[133] K. A. Hart and J. J. Rimoli, “Generation of statistically representative microstruc-
tures with direct grain geometry control,” Computer Methods in Applied Mechanics and
Engineering, vol. 370, 2020.

[134] J. Ferber, LES SYSTEMES MULTI-AGENTS. Vers une intelligence collective. Paris: Dunod,
1995.

[135] F. Lindner, “A conceptual model of personal space for human-aware robot activity place-
ment,” 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
5770–5775, Sept. 2015.

[136] Y. Jiang, M. Lim, and A. Saxena, “Learning object arrangements in 3d scenes using hu-
man context,” in Proceedings of the 29th International Coference on International Conference
on Machine Learning, ser. ICML’12. Omnipress, 2012, pp. 907–914.

[137] Y. Jiang and A. Saxena, “Hallucinating Humans for Learning Robotic Placement
of Objects,” in Experimental Robotics: The 13th International Symposium on Experimental
Robotics, ser. Springer Tracts in Advanced Robotics, J. P. Desai, G. Dudek, O. Khatib, and
V. Kumar, Eds. Heidelberg: Springer International Publishing, 2013, pp. 921–937.

[138] Y. Jiang, H. Koppula, and A. Saxena, “Hallucinated humans as the hidden context for
labeling 3d scenes,” in 2013 IEEE Conference on Computer Vision and Pattern Recognition,
2013, pp. 2993–3000.

[139] Y. Jiang and A. Saxena, “Infinite latent conditional random fields for modeling
environments through humans,” in Robotics: Science and Systems IX. Robotics: Science
and Systems Foundation, 2013.

[140] S.-H. Zhang, S.-K. Zhang, Y. Liang, and P. Hall, “A Survey of 3D Indoor Scene
Synthesis,” Journal of Computer Science and Technology, vol. 34, no. 3, pp. 594–608, May
2019.

[141] L.-F. Yu, S. K. Yeung, C.-K. Tang, D. Terzopoulos, T. F. Chan, and S. Osher, “Make it
home: automatic optimization of furniture arrangement,” ACM Trans. Graph., vol. 30,
p. 86, 2011.

[142] M. Mitton and C. Nystuen, Residential Interior Design: A Guide to Planning Spaces, 3rd ed.
New York, NY: Wiley, Apr. 2016.

[143] F. D. Ching and C. Binggeli, Interior Design Illustrated, 4th ed. New York, NY: Wiley, Feb.
2018.

[144] S. Qi, Y. Zhu, S. Huang, C. Jiang, and S.-C. Zhu, “Human-centric indoor scene synthesis
using stochastic grammar,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018, pp. 5899–5908.

BIBLIOGRAPHY 178

[145] D. V. Lu, D. Hershberger, and W. D. Smart, “Layered costmaps for context-sensitive nav-
igation,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sept.
2014, pp. 709–715.

[146] M. Mielle, M. Magnusson, H. Andreasson, and A. J. Lilienthal, “SLAM auto-complete:
Completing a robot map using an emergency map,” in 2017 IEEE International Symposium
on Safety, Security and Rescue Robotics (SSRR), Oct. 2017, pp. 35–40.

[147] French Interior Ministry, “Arrete du 25 juin 1980 portant approbation
des dispositions generales du reglement de securite contre les risques
d’incendie et de panique dans les etablissements recevant du public (ERP).”
Sept. 2019, livre II, Section 9, Sous-section 1, Article CO 36. Available at
https://www.legifrance.gouv.fr/loda/id/LEGITEXT000020303557, last viewed: 2024-
01-25.

[148] P. K. Saha, G. Borgefors, and G. S. d. Baja, Skeletonization: Theory, Methods and Applications.
Academic Press, June 2017.

[149] R. Fabbri, L. D. F. Costa, J. C. Torelli, and O. M. Bruno, “2D Euclidean Distance
Transform Algorithms: A Comparative Survey,” ACM Comput. Surv., vol. 40, no. 1, pp.
2:1–2:44, Feb. 2008.

[150] T. Y. Zhang and C. Y. Suen, “A Fast Parallel Algorithm for Thinning Digital Patterns,”
Commun. ACM, vol. 27, no. 3, pp. 236–239, Mar. 1984.

[151] Z. Guo and R. W. Hall, “Parallel thinning with two-subiteration algorithms,”
Communications of the ACM, vol. 32, no. 3, pp. 359–373, Mar. 1989.

[152] H. Blum, “A Transformation for Extracting New Descriptors of Shape,” in Models for the
perception of speech and visual form, W. Wathen-Dunn, Ed. Cambridge: MIT Press, 1967,
pp. 362–380.

[153] M. J.F.M. Johan, “DINED - anthropometric database,” 4TU.Centre for Research Data, 2018.

[154] S. M. LaValle, “Planning Algorithms,” May 2006.

[155] D. Harabor and A. Grastien, “Online graph pruning for pathfinding on grid maps,”
in Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, ser. AAAI’11.
AAAI Press, 2011, pp. 1114–1119.

[156] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, 1st ed.
Addison-Wesley Longman Publishing Co., Inc., 1999.

[157] K. Ellis, H. Zhang, D. Stoyanov, and D. Kanoulas, “Navigation Among Movable Obsta-
cles with Object Localization using Photorealistic Simulation,” in 2022 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), Oct. 2022, pp. 1711–1716.

https://www.legifrance.gouv.fr/loda/id/LEGITEXT000020303557

BIBLIOGRAPHY 179

[158] Z. Kai, E. Lucet, J. Alexandre dit Sandretto, and D. Filliat, “Navigation among movable
obstacles using machine learning based total time cost optimization,” in 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2023.

FOLIO ADMINISTRATIF

THESE DE L’INSA LYON, MEMBRE DE L’UNIVERSITE DE LYON

NOM : RENAULT DATE de SOUTENANCE : 19/12/2023

Prénoms : Benoit Louis Robert

TITRE : NAvigation en milieu MOdifiable (NAMO) étendue à des contraintes sociales et multi-robots

NATURE : Doctorat Numéro d'ordre : 2023ISAL0105

Ecole doctorale : INFORMATIQUE ET MATHEMATIQUES DE LYON (InfoMaths)

Spécialité : Informatique

RESUME :

Alors que les robots deviennent toujours plus présents dans les environnements humains, endossant toujours plus
de tâches telles que le nettoyage, la surveillance ou encore le service en salle, leurs limites actuelles n’en
deviennent que plus évidentes. Une de ces limites concerne leur capacité à naviguer en présence d’obstacles: ils
chercheront systématiquement à les éviter, et resteront bloqués à défaut.
Ce constat a mené à la création d’algorithmes de NAvigation en milieu MOdifiable (NAMO), devant permettre aux
robots de manipuler les obstacles pour faciliter leurs déplacements. Néanmoins, ces algorithmes ont été conçus
sous l’hypothèse qu’un seul robot agîsse dans l’environnement, biaisant les algorithmes à n’optimiser que son seul
coût de déplacement – sans considération pour les humains ou d’autres robots. S’il est souhaitable que les robots
puissent bénéficier de la capacité humaine à déplacer des obstacles, ils doivent néamoins le faire dans le respect
des normes et règles sociales humaines.
Nous avons donc étendu le problème de NAMO pour prendre en compte ces nouveaux aspects sociaux et multi-
robots. En nous basant sur le concept d’espaces d’affordance, nous avons développé un modèle de coût
d’occupation sociale permettant d’évaluer l’impact des objets déplacés sur la navigabilité de l’environnement. Nous
avons implémenté (et amélioré) des algorithmes NAMO de référence, dans notre outil de simulation open source,
puis les avons modifiés afin qu’ils puissent trouver un compromis entre coût de déplacement et coût d’occupation
des obstacles manipulés – résultant en une amélioration de la navigabilité. Nous avons également développé une
stratégie de coordination permettant d’exécuter ces mêmes algorithmes tels quels, sur plusieurs robots en
parallèle, en absence de communication explicite, tout en préservant la garantie d’absence de collisions; vérifiant
la pertinence de notre modèle de coût social en présence effective d’autres robots. Ces travaux constituent les
premiers pas d’une NAMO Sociale et Multi-Robots.

MOTS-CLÉS : NAMO, Navigation Among Movable Obstacles, Multi-Robot Systems, Multi-Agent Systems, Social Robotics,
Path Planning, Task and Motion Planning

Laboratoire (s) de recherche : CITI (INRIA – INSA Lyon)

Directeur de thèse: SIMONIN Olivier, Jacques SARAYDARYAN (co-encadrant)

Président de jury :

Dugdale, Julie Professeur des Universités Université de Grenoble, LIG

Composition du jury :

Mathieu, Philippe Professeur des Universités Université de Lille, CRISTAL Rapporteur
Michel, Fabien Maître de Conférences HDR Université Montpellier 2, LIRMM Rapporteur
Alami, Rachid Directeur de Recherche émérite CNRS Toulouse, LAAS Examinateur
Simonin, Olivier Professeur des Universités INSA-Lyon, CITI Directeur de thèse
Saraydaryan, Jacques Enseignant Chercheur CPE Lyon, CITI Co-encadrant

	Abstract
	Acknowledgements
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ABBREVIATIONS
	Introduction
	Motivation
	Challenges
	Approach
	Thesis overview
	Summary of Contributions
	Document Outline

	State of the Art
	Navigation Among Movable Obstacles (NAMO):
	"Motion planning in the presence of movable obstacles"
	The first NAMO planning algorithm
	Task-level planning for LP1 NAMO Problems
	Reverse-search planning for LkM NAMO Problems
	Sampling-based NAMO planning in continuous configuration space
	NAMO planning in unknown environments
	NAMO planning under action and sensing uncertainty
	Kinodynamic NAMO planning
	NAMO research since 2014
	Conclusion

	Social & Multi-Robot considerations in NAMO-related problems
	Socially-aware robot navigation, task and motion planning
	Socially-aware robot navigation
	Socially-aware robot task and motion planning

	Multi-Robot coordination
	Definitions
	Multi-Robot works with movable obstacles

	Revising and simulating reference NAMO algorithms
	Our NAMO Problem Formalization
	Workspace
	Actions and Action spaces
	Actions
	Action sequences (Plans)
	Manipulation Action Spaces

	Sensing
	Domain Restrictions
	Cost & Optimality
	Space Components and Openings
	Space Components
	Openings

	NAMO Problems

	Baseline NAMO Algorithms
	(Wu&Levihn, 2014)'s Algorithm
	Algorithm outline
	Generalization to larger action spaces, continuous environments & edge cases
	When more knowledge becomes an issue

	(Stilman, 2005)'s Algorithm
	Algorithm outline
	Generalization to larger action spaces & edge cases

	A new NAMO simulator
	Overview of the simulator
	World representations
	Main simulation module

	Conclusion

	Socially-aware NAMO
	Introduction - the General Socially-Aware NAMO Problem
	A first naive, local and binary constraint model
	Object placement & affordance spaces in the literature
	The Social Placement Choice NAMO Problem
	The Social Occupation Cost Model
	Heuristic hypotheses
	Computation steps overview
	Skeleton & Space Allowance
	From Space Allowance to Social Occupation Cost
	Propagation

	Integrating the social occupation cost to NAMO Algorithms
	Relevant algorithms for this integration
	A heuristic compromise cost

	Experiments
	Simulation parameters
	Evaluation criteria
	Results
	Short-term experiments
	Long-term experiments

	Conclusions

	Multi-Robot NAMO
	MR-NAMO Problem definition
	General MR-NAMO problem
	Additional hypotheses for our study

	Implicit Coordination in MR-NAMO
	Potential conflict detection
	Conflict avoidance: a timing-based strategy
	Postponement
	NAMO planning in a dynamic environment

	Deadlock evasion
	Detecting potential deadlocks
	Evading potential deadlocks

	Experiments
	Experimental context
	Evaluation criteria
	Results

	Conclusions

	Conclusion
	Perspectives
	Beyond planning, experimenting in the real world

	A* Algorithm
	Original (Wu&Levihn, 2014)'s Algorithm
	Original (Stilman, 2005)'s Algorithm
	Original Efficient Opening Detection Algorithm

