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An outer approximation bi‑level framework for mixed categorical 
structural optimization problems

Pierre‑Jean Barjhoux1 · Youssef Diouane2  · Stéphane Grihon3 · Joseph Morlier4

Abstract
In this paper, mixed categorical structural optimization problems are investigated. The aim is to minimize the weight of a truss 
structure with respect to cross-section areas, materials, and cross-section type. The proposed methodology consists of using 
a bi-level decomposition involving two problems: master and slave. The master problem is formulated as a mixed-integer 
linear problem where the linear constraints are incrementally augmented using outer approximations of the slave problem 
solution. The slave problem addresses the continuous variables of the optimization problem. The proposed methodology is 
tested on three different structural optimization test cases with increasing complexity. The comparison to state-of-the-art 
algorithms emphasizes the efficiency of the proposed methodology in terms of the optimum quality, computation cost, as 
well as its scalability with respect to the problem dimension. A challenging 120-bar dome truss optimization problem with 
90 categorical choices per bar is also tested. The obtained results showed that our method is able to solve efficiently large-
scale mixed categorical structural optimization problems.

1 Introduction

In this paper, we investigate a class of structural optimi-
zation problems with a fixed topology (for the structure) 
but involving mixed categorical design variables (Barjhoux 
et al. 2020; Grihon 2012, 2018). Typically, in the context 
of structural optimization, the choices of material prop-
erties or cross-section types are depicted by categorical 
variables. The thicknesses or cross-section areas belong to 
the set of continuous design variables. Many optimization 
algorithms are designed to solve such problems. For exam-
ple, metaphor-based metaheuristics and swarm intelligence 
algorithms (Liao et al. 2014; Goldberg 1989; Nouaouria and 

Boukadoum 2011) natively handle discrete variables. How-
ever, these methods are not suitable for solving large-scale 
optimization problems (Sigmund 2011; Stolpe 2011).

Various surrogate-based optimization strategies have 
been extended to solve mixed categorical structural optimi-
zation problems (Filomeno Coelho 2014; Müller et al. 2013; 
Herrera et al. 2014; Roy et al. 2017, 2019; Garrido-Merchán 
and Hernández-Lobato 2018; Pelamatti et al. 2019; Saves 
et al. 2022; Rufato et al. 2022). One of the main challenges 
of such approaches is related to their inefficiency when han-
dling large dimension categorical design space. Other exist-
ing works propose new formulations of the original optimi-
zation problem by reducing the dimension of a structural 
optimization problem or by using continuous relaxation of 
the design variables (Gao et al. 2018; Stegmann and Lund 
2005; Krogh et al. 2017). For all these existing approaches, 
there is no guarantee that the optimization will retrieve the 
best categorical choices.

By converting categorical variables to integers in the 
structural optimization problems, classical mixed-integer 
programming approaches can also be used to solve such 
problems. In this context, many existing approaches are 
based on branch-and-bound. For instance, Achtziger and 
Stolpe (2007), Stolpe (2007) proposed to rewrite the relaxed 
problem within their branch-and-bound algorithms as a con-
vex problem which helps to reach easily the global minimum 
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of the relaxed problem. Other existing approaches are based 
on decomposition strategies to transform the original prob-
lem into a sequence of easy-to-solve subproblems, e.g., 
Bender decomposition (Benders 1962; Geoffrion 1972) and 
outer approximation (Duran and Grossmann 1986; Fletcher 
and Leyffer 1994; Hijazi et al. 2014). Several variants based 
on outer approximation algorithm have been implemented 
(Stolpe 2015) and successfully applied on mixed-integer 
structural optimization problems. In the context of continu-
ous structural optimization, decomposition schemes have 
been widely used, e.g., StiffOpt (Samuelides et al. 2009), 
Quasi Separable Decomposition (Haftka et al. 2006; Schutte 
et al. 2004).

In an industrial context, practical methodologies have 
emerged to tackle the curse of dimensionality when dealing 
with categorical variables in large-scale structural optimi-
zation. For instance, Grihon (2018) uses a bi-step strategy 
involving massively parallel element-wise optimizations. 
In fact, by assuming that the main optimization problem 
is separable with respect to design variables, the approach 
reduces to a set of optimization problems at the element 
(subsystem) level, with fixed internal loads. This, in particu-
lar, simplifies the impact of each categorical choice on the 
overall optimal internal loads distribution. This approach is 
industrially recognized at Airbus. The approach has a com-
putational complexity that depends linearly with respect to 
the number of structural elements and categorical values. 
Although this existing approach is scalable, it cannot handle 
system-level behavior (optimum internal load distribution) 
nor system-level constraints (e.g., flutter, modal or displace-
ment constraints). The absence of such constraints in the 
problem formulation is not representative of aircraft struc-
ture design problems, in a multidisciplinary design optimiza-
tion for instance.

The proposed methodology in this paper relies on previ-
ous works in Barjhoux et al. (2018a, b, 2020) where a bi-
level methodology was initially proposed. The framework 
is based on master and slave problems. In Barjhoux et al. 
(2018b), it has been shown that the hybrid branch-and-bound 
based approach (for the master problem) can be costly in 
terms of the number of calls to the finite elements model. 
The exploration cost was shown to grow exponentially with 
the number of elements and categorical choices, prevent-
ing from using this algorithm to solve large-scale problem 
instances. The computational cost of the Bi-level method-
ology as proposed in Barjhoux et al. (2020) is quasi-linear 
with respect to the number of structural elements. In particu-
lar it permits to solve medium to large-scale structural opti-
mization problems (up to two hundred mixed variables). The 
latter approach offered an interesting compromise between 
the quality of the solution and the computational cost, pro-
vided the simplicity of the methodology.

In this study, we propose a new Bi-level methodology 
that leverages the use of linearizations of the subproblems 
in an Outer Approximation (OA) framework (Fletcher and 
Leyffer 1994). This leads to a more significant computa-
tional cost reduction. In our proposed formulation, the 
mixed categorical-continuous problem is first formulated 
as a mixed-integer-continuous problem with relaxable inte-
ger design variables. The continuous design variables are 
handled by the slave problem, while the integer variables 
are governed by the master problem. The latter consists of 
solving a mixed-integer linear problem built iteratively by 
concatenating linear approximations of the slave problem 
solutions. This approach is different from the OA framework 
originally presented in Fletcher and Leyffer (1994) in the 
sense that only a linear approximation of the slave problem 
is used to define the master problem approximation. The 
derivatives used to build the linear approximations of our 
subproblems are constructed using post-optimal sensitivities 
(Fiacco 1976). Under a convexity assumption, we will show 
that the proposed approach converges to the optimal solu-
tion. Although the convexity assumptions cannot be verified 
for structural optimization problems in general, the obtained 
numerical results show that our proposed method is perform-
ing very well compared to state-of-the-art methods.

This paper is organized as follows. In Sect. 2, the for-
mulation of the mixed categorical-continuous optimization 
problem is presented. In Sect. 3, the proposed methodol-
ogy is presented. The performance and the scalability of our 
approach are compared with state-of-the-art algorithms in 
Sect. 4. The section is concluded with the obtained results 
on a structural problem of 120 structural elements with 90 
categorical choices for each of element. Conclusion and per-
spectives are drawn in Sect. 5.

2  Problem statement

2.1  Design space

In this work, our goal is to minimize the weight of a struc-
ture, at fixed topology, by exploring the internal geometry as 
well as material description of all the structural elements of 
the problem. Two kinds of design variables are thus involved 
when handling these kinds of problems.

Firstly, categorical choices are involved as design 
variables during the optimization process. Indeed, in 
this work, the possible choices of material and member 
profiles (e.g., “I”, “C”, “T”) for each element will be 
regarded as a part of the design variables and that have 
to be explored. The categorical choices will be described 
by a matrix B that has n × p binary coefficients, where p 
is the possible number of choices per structural element 
n. In this paper, we will often refer to the set possible 



choices by the set of catalogs. We specify here that the p 
available catalogs are the same for all the structural ele-
ments. In this context, during the optimization, we assign 
to each element a choice of material and cross-section 
type, all described by one categorical design variable. Let 
C
n×p be the enumerated set that contains the pn choices of 

materials and member profiles for each element of the 
structure, so that 

where Xij represents the element at the ith row and jth col-
umn of the matrix X. Xij is a binary choice variable among 
the existing p choices per structural element, with Xij = 1 
if for the ith element the jth categorical option is chosen 
and Xij = 0 otherwise. We note that, each row of the matrix 
X ∈ C

n×p describes the catalog choices composition of a 
given element. For example, if B ∈ C

10×4 and B42 = 1 , then 
the categorical choice associated to the 4th structural ele-
ment is the choice 2, corresponding to a given combination 
of profile and material among the 4 available choices.

In a second time, we treat the member profiles areas 
as continuous design variables. Formally, the areas can 
be represented as a vector a ∈ ℝ

n where the number of 
components n corresponds to the number of structural 
elements. For a given choice of member profile, the areas 
scale the internal shape of the structural elements (Bar-
jhoux et al. 2018a, b). The description of the internal 
cross-section parameters (with respect to areas ai ) is given 
by

where Bi,∶ represents the ith row of the matrix B and x0(Bi,∶) 
is the reference detailed geometry of the profile driven by 
the choice Bi,∶ . This way, the parameters x(i) are estimated 
as latent variables that depend on the areas ai . This descrip-
tion of the internal member profile geometry is inspired 
from existing approaches like, for example, the PRESTO 
methodology in Grihon (2012), Gao et al. (2018). Figure 1 
shows how internal parameters (and so the area moments of 
inertia) can be scaled using the area of the cross-section. The 
proposed scaling allows to handle any profile type as far as 
we can add new member profiles depending on the design 
space we want to explore.

2.2  Objective and constraints functions

The objective function and the constraints as presented in 
Barjhoux et al. (2020) are reformulated in this article in par-
ticular for the sake of clarity. First, the categorical variable 

C
n×p ∶=

{
X ∈ ℝ

n×p ∶ Xij ∈ {0, 1} and

p∑
j=1

Xij = 1

}
,

(1)x
(i)(ai) ∶=

√
ai

a0(Bi,∶)
x0(Bi,∶),

is coded as a binary variable. Second, we use continuous 
definitions of objective and constraints functions. The binary 
variables are introduced as continuous weighting factors in 
these functions. This means that, each of the objective and 
constraints functions can be evaluated at intermediate values 
of B , even if the outputs have no physical meaning.

First, we need to define the space on which the functions 
are defined. Let C̃

n×p
 be the set of matrices B of real coef-

ficients such as 

In other terms, C̃
n×p

 is the continuous relaxation of Cn×p on 
[0, 1]. Of course, there is no underlying physical meaning 
when B takes intermediate (real) values in [0, 1]. The values 
of B in C̃

n×p
 will serve as weighting factors in the objective 

and constraints functions.
In this problem, the objective is the weight function, 

given by 

with �(c) refers the density of the material that corresponds 
to the choice c. It is computed as the sum of the p available 
densities weighted by the continuous choices B . The con-
stant �i denotes the length of element i.

The constraints � on displacements u ensure that on d 
given nodes of the truss, the displacements will not exceed 
predefined upper bounds ū ∈ ℝ

d . With P a projector that 
select the elements on which the displacement constraint 
will apply, the definition of � function is given as follows :

C̃
n×p

∶=

{
X ∈ ℝ

n×p ∶ Xij ∈ [0, 1] and

p∑
j=1

Xij = 1

}
.

(2)
w̃ ∶ ℝ

n × C̃
n×p

→ ℝ

(a,B) ↦

n∑
i=1

p∑
c=1

�(c)�iBicai,

Fig. 1  Scaling of a bar section. Example with “T”-profile



The stress constraints s̃ij are defined such as 

where sij is given by 

and is of the form, for every choice c among the categorical 
set {1,… , p}

The element constraint sij is defined as the difference 
between the structural member stress constraints value and 
a limit stress. In particular, if the members constraint stress 
exceeds the limit stress, then sij will take negative values 
and the constraints will be violated. Practical expressions of 
these optimization constraints are provided in the numerical 
section [see (11, 12, 13 and 14)].

In the context of this work, there is no change in the 
topology of the structure. Internal forces � and dis-
placements u will be computed using the direct stiffness 
method, introduced in Turner (1959), Turner et al. (1964). 
Structural elements are considered as truss elements with 
pin-jointed connections. This means that the bars will only 
carry axial forces. The cross-section shapes will be only 
involved through the Euler and local constraints defini-
tion (see Sect. 4). The stiffness matrix of the structure is 
not impacted by the cross-section shapes. At each node, 
displacements are allowed along the global axes. Each 
element i is defined by the elementary stiffness matrix 
Ke

i
(ai,Bi,∶) ∈ ℝ

q,q , with q the number of free nodes mul-
tiplied by the number of physical space dimensions. The 
global stiffness of the whole truss is given by the matrix 
K(a,B) ∈ ℝ

q,q in global coordinates. Such matrix can be 
computed as the sum of each element stiffness matrix 
expressed after its transformation with the ith element 
rotation matrix Ti , i.e., (Turner 1959; Turner et al. 1964):

Given a vector f ∈ ℝ
q of external loads applied on each 

of the free nodes in the global coordinates, the vector of 

(3)
�� ∶ ℝ

n × �C
n×p

→ ℝ
d

(a,B) ↦ Pu(a,B) − ū.

(4)
s̃ij ∶ ℝ

n × C̃
n×p

→ ℝ

(a,B) ↦

p∑
c=1

Bicsij(ai, c,�i(a,B))

s ∶ ℝ
n × C̃

n×p
→ ℝ

n×m

⎛⎜⎜⎜⎝

s11(a1, c,�1(a,B)) … s1m(a1, c,�1(a,B))

s21(a2, c,�2(a,B)) … s2m(a2, c,�2(a,B))

⋮ ⋱ ⋮

sn1(an, c,�n(a,B)) … snm(an, c,�n(a,B))

⎞⎟⎟⎟⎠
.

K(a,B) ∶=

n∑
i=1

[T⊤
i
Ke

i
(ai,Bi,∶)Ti].

displacements u ∈ ℝ
q can be obtained by solving the fol-

lowing equation:

The vector of internal forces � ∈ ℝ
n is then given by

∀i ∈ {1,… , n},

where �i is the axial force through element i and ui its dis-
placement vector.

2.3  Optimization problem

As formulated in Barjhoux et  al. (2020), the problem 
involves categorical non-ordered and non-relaxable design 
variables. The formulation prevents from using algorithms 
that exploit the gradient of the functions with respect to all 
the design variables. This is why, objective and constraints 
have been introduced as continuous functions in Sect. 2.2. 
The categorical optimization problem is a mixed categor-
ical-continuous optimization problem, formulated as a 
mixed-integer non-linear programming (MINLP) problem. 
The optimization problem consists of a structural weight 
minimization with respect to stress and displacements con-
straints :

where a ∈ ℝ
n and ā ∈ ℝ

n are the lower and upper bounds on 
areas, respectively. It is worth to note that the design space 
is Cn×p , such that the solution B is binary. The methodology 
presented in the Sect. 3 will take advantage of the continu-
ous property of the objective and constraints functions. In 
the next section, we will describe our proposed methodology 
to solve (P).

3  Methodology

In what comes next, for the sake of clarity, we will consider 
B and s̃  as vectors instead of matrices. Namely, Cn×p ⊂ ℝ

np 
and ℝn×m ∼ ℝ

nm . The identification between the vector and 
matrix space can be trivially obtained, for instance, for any 
A ∈ ℝ

n×p one can use

to consider it as an element of ℝnp as well. We note that 
in our optimization setting, the topology will be kept 

(5)K(a,B)u(a,B) = f .

�i(a,B) ∶= Ke
i
(ai,Bi,∶)Tiui(a,B),

(P)

minimize
(a,B)∈ℝn×Cn×p

�w(a,B)

subject to �s(a,B) ≤ 0n,m

��(a,B) ≤ 0d

a ≤ a ≤ ā

[A11,… ,A1p,A21,… ,A2p,… ,An1,… ,Anp]
⊤



unchanged. Handling the change in the topology of the 
structure will not be covered by our approach. The reason 
behind this restriction will be explained in Sect. 3.2.1.

3.1  A bi‑level framework

The proposed bi-level decomposition of the problem (P) is 
presented in this section.

For a given B ∈ C
n×p , let 𝛺(B) ⊂ ℝ

n be the set of feasible 
constraints of the problem (P) given by

An efficient way to solve pure continuous optimization prob-
lems is by taking advantage of gradient-based algorithms. 
In the problem introduced in Section 2, it can be seen that 
by fixing (temporarily) design variables B in (P) at integer 
values, the optimization problem becomes a continuous one 
parameterized with B , and where integrity constraints on B 
can be removed. This means that at a given B , the weight w̃ 
can be minimized with respect to the remaining continuous 
design variables that are the areas a ∈ �(B) . This leads to 
the following slave problem (sP(B)), that reduces to a struc-
tural sizing optimization problem:

The structure of the problem is such that this remaining 
optimization problem becomes more tractable. In fact, the 
decomposition leverages the use of the gradients (with 
respect to a ) of the objective and constraints to solve the 
problem (sP(B)). This is the main motivation in handling the 
continuous variables separately from the integer ones. In this 
approach, the integer (binary) variables will be handled by a 
master problem (mP) of the form

with � (B) is the result of the slave Problem (sP(B)). The 
slave problem (sP(B)) takes these complicating variables 
B as parameters, while optimizing with respect to continu-
ous design variables. This means that during the slave opti-
mization, the choices of materials and cross-section types 
for all elements remain fixed. This slave problem will be 
solved using a gradient-based method. The obtained solu-
tion can be seen as a function � (B) which is parameterized 
by the categorical choices through the continuous coding 
B . Namely, � (B) corresponds to the optimal weight of the 
slave problem knowing the variables B . This function is then 
taken as the objective of the master optimization problem 
(sP(B)). Although the slave problem can be easy to handle 
using gradient-based algorithms, the difficult part remains 
in the master problem. In fact, the problem (mP) is still a 
large-scale pure integer non-linear optimization problem, 

𝛺(B) ∶= {a ≤ a ≤ ā ∶ �s(a,B) ≤ 0mn and ��(a,B) ≤ 0d}.

� (B) ∶= minimize
a∈�(B)

w̃(a,B). (sP(B))

(mP)minimize
B∈Cn×p

� (B),

that usual combinatorial optimization solvers fail to solve 
efficiently. However, unlike the problem presented in Bar-
jhoux et al. (2020), the integer variable B is relaxable and 
the functions are defined at intermediate non 0–1 values of 
B . Moreover, all the functions of the optimization problem 
are continuously differentiable. This is a basic requirement 
to compute the sensitivity of the slave problem solution 
parameterized in B.

3.2  On the minimization of �

In this paper, we suggest to solve the master problem (mP) 
by means of outer approximation (OA) cuts that are built 
using the gradient information on � . We propose to consider 
at the master level the minimization of an approximated 
problem P instead of (mP), so that the computational com-
plexity of the master problem can be significantly reduced. 
For that, the following iterative scheme is implemented. 
Given an iteration k, the master problem (mP) of the bi-
level formulation is reduced to a problem P(k) easier to solve.

The slave optimization problem is defined by fixing the 
binary variables B(k) in the problem (mP). Due to the set 
of constraints, the problem (mP) can be seen as a full inte-
ger optimization problem. The slave problem reduces to an 
evaluation of the objective � (B(k)) which represents the opti-
mal weight solution of (sP(B)) given for a fixed categorical 
choice B(k) . Assuming that there is at least one feasible solu-
tion depending on the fixed point B(k) , the optimal objective 
value of the slave problem is an upper bound of the solution 
to (P).

A definition of the master problem is given as follows. 
In fact, under the assumption that the function �  is convex, 
using (Fletcher and Leyffer 1994, Theorem 1), one deduces 
that solving the problem (mP) is equivalent to solving the 
following mixed-integer linear program (MILP) given by

 We note that in the problem (6), the function �  is replaced 
by an hyperplane that is also its linear support at B̃ ∈ Cn×p.

Solving the MILP problem (6) directly may be out of 
reach as it would require pn evaluations of �  corresponding 
to all integer vectors B̃ ∈ Cn×p . In our case, it would require 
evaluations of the sizing problem (sP(B)) taken at every pn 
combinations of materials and cross-section types available 
in {1,… , p}n . The number of constraints pn related to the 
problem (6) can be also extremely large for reasonable val-
ues of p and n. For this reason, instead of considering the 
problem (6), the OA algorithm involves a sequence of less 

(6)

minimize
B∈Cn×p,𝜂∈ℝ

𝜂

s. t. 𝜂 ≥ 𝛹 (�B) +
d𝛹

dB

|||||

⊤

�B

(B − �B), ∀�B ∈ Cn×p



expensive relaxed variant of the MILP problem (6), i.e., for 
a given iteration (k) one solves

 with K(k) a set of k elements in Cn×p , such that K(k) ⊂ C
n×p. 

We note that, under the convexity assumption of � , the prob-
lem (7) yields a lower bound to the solution of the Problem 
(6). At each iteration of the OA algorithm, the problem (7) 
can be geometrically interpreted as an exploration of the 
effects of the outer approximations (i.e., the linear supports) 
on the objective �  . The set K(k) will be updated recursively 
as follows K(k)

← K(k−1)
⋃

{B(k)} where B(k) is the solution 
of the MILP problem (7) at a fixed iteration (k). Hence, the 
MILP problem (7) for the iteration (k) is obtained just by 
adding to the problem (7) (related with the iteration (k − 1) ) 
the linear constraint

A key ingredient for setting the latter constraint is the esti-
mation of the derivative d�

dB

|||B(k)
 . Under reasonable assump-

tions, the next subsection details how post-optimal sensitivi-
ties can be useful on estimating the gradient of �  at B(k).

3.2.1  Computing the gradient of �  at B(k) : d�
dB

|||B(k)
The estimation of the gradient of �  with respect to the 
parameters B is a key ingredient in setting the constraint (8). 
On that way, the estimated gradient will provide information 
on the behavior of the optimal weight, solution of (sP(B)), 
subject to a small perturbation of B(k) . In this case, the gradi-
ent of �  is known as post-optimal sensitivity (Fiacco 1976). 
It can be noted that such perturbation has no physical mean-
ing since B describes categorical choices in a continuous 
manner. The efficient computation of the gradient of �  at a 
given B(k) will be a key feature of our proposed methodology. 
Indeed, if the gradient is estimated by finite differences, its 
computational cost is growing proportionally to np (i.e., the 
number of parameters B ). This would typically require to 
solve n(p − 1) optimization problems instances. Hence, for 
large-scale optimization problems, using finite differences 
may be out of reach. In the context of large-scale optimiza-
tion problems, estimating the gradient using post-optimal 
sensitivity analysis can be very helpful. In Appendix 1, we 
give the details of deriving the derivatives d�

dB

|||B(k)
.

The post-optimal sensitivity analysis is derived using the 
Karush–Kuhn–Tucker (KKT) conditions where, particularly, 

(7)

minimize
B∈Cn×p,𝜂∈ℝ

𝜂

s. t. 𝜂 ≥ 𝛹 (�B) +
d𝛹

dB

|||||

⊤

�B

(B − �B), ∀�B ∈ K(k)

(8)𝜂 ≥ 𝛹 (B(k)) +
d𝛹

dB

|||||

⊤

B
(k)

(B − B
(k)).

we require the constraint qualification (i.e., the gradients of 
the constraint functions of active constraints being linearly 
independent). Such assumption is reasonable in the context 
of structural optimization problems with a fixed topology. 
But, it might not be guaranteed for problems where a change 
in topology is allowed, mainly due to the presence of the so-
called vanishing constraints. For this reason, in this work, 
we consider that the topology of the structure is unchanged 
during the optimization process.

3.2.2  An outer approximation bi‑level framework

The proposed algorithm consists of solving an alternating 
sequence of slave and master problems, as defined previ-
ously. The post-optimal sensitivities of the slave problem 
(sizing) are involved in the definition of the master problem. 
Let (k) be the current outer iteration of the algorithm. The 
algorithm workflow is illustrated in Fig. 2.

First, the slave problem, reduced to an evaluation of �  , 
is solved at B(k) . This means that as a first step, the slave 
continuous optimization problem (sP(B)) aiming at mini-
mizing the weight while satisfying stress and displacements 
constraints is solved. The problem (sP(B(k) )) is solved and 
yields a solution a(k) such that 

An upper bound U(k) to the solution of (P) is defined by 

The best current solution of the original problem (P) is thus 
given by the best upper bound returned during the (k) outer 
iterations :

Second, the relaxed MILP problem (7) can be set up. Its 
definition relies on the linearizations of �  taken at the solu-
tions yielded during the (k) previous iterations. While the 
linearizations from the previous iterates (l) < (k) remain 
unchanged, the linearization of �  at the current iteration (k) 
has to be computed. More precisely, the gradient of �  taken 
at B(k) has to be evaluated.

Once the linearization of �  has been computed, it is 
added as constraint in the problem (7). Furthermore, since in 
practice the problem (P) does not need to be solved exactly, 
it is sufficient to generate the new ( B(k+1) ) by adding a toler-
ance � on the upper bound U(k)

min
 as an additional constraint 

to the MILP master problem. The resulting mixed-integer 
linear integer problem (MILP(k)) is thus given by

(9)a
(k) ∶= argmin

a∈�(B(k))

w̃(a,B(k)).

U(k) ∶= w̃(a(k),B(k)) = � (B(k)),

(10)U
(k)

min
∶= min{U(1),… ,U(k)}.



 with K(k) such that

and K(k−1) the set of the k − 1 previous B(k−1) . The prob-
lem (MILP(k)) is built iteration per iteration by adding, as 

minimize
B∈Cn×p,𝜂∈ℝ

𝜂

s. t. 𝜂 ≤ U
(k)

min
− 𝜖

𝜂 ≥ 𝛹 (B̂) +
d𝛹

dB

|||||

⊤

B̂

(B − B̂), ∀B̂ ∈ K(k−1)

𝜂 ≥ 𝛹 (B(k)) +
d𝛹

dB

|||||

⊤

B
(k)

(B − B
(k))

(MILP(k))

K(k) ∶= K(k−1) ∪ {B(k)},

constraints, linearization of the functions � taken at the cur-
rent solution (B(k)) . The optimality of the algorithm relies 
on the convexity of �  , ensuring that the linearizations are 
underestimators of �  . Once built, the problem (MILP(k)) 
is solved and provides a lower bound of (P). Iteratively, the 
number of constraints within the problem (MILP(k)) is get-
ting higher. This ensures a monotonic increase in the lower 
bound over the iterations (i.e., �(k) ≤ �(k+1)).

The algorithm will be declared as convergent when 
the feasible domain of the problem (MILP(k)) is getting 
empty. This particularly means that the numerical solu-
tions B(k+1) and �(k+1) of (MILP(k)) are getting unfeasible. 

Fig. 2  Illustration of the 
proposed methodology (see 
Algorithm 1)



The bi-level procedure is detailed in Algorithm 1 (see 
Appendix 3), and illustrated as a workflow in Fig. 2.

The proposed algorithm leverages the use of post-optimal 
sensitivities by using them to define supporting hyperplanes 
of �  . These hyperplanes bound the convex hull of the slave 
problem. It is worth to note that the number of constraints 
involved in the master problem (mP) reduces to the k lineari-
zations of �  from the (k) outer iterations, in addition to the 
(k) linear equality constraints involved in the definition of 
Cn×p . Indeed, the OA algorithm is used to solve the master 
problem (mP), so that all the structural sizing constraints 
are handled by the slave problem (sP(B)). Hence, the MILP 
problem (MILP(k)) counts only k + n linear constraints 
(including equality constraints from Cn×p ), compared to the 
k × (n × m + d + n) (constraints s , � and equality constraints 
from Cn×p).

In industrial cases, where the number of structural ele-
ments n can reach 5000 elements (e.g., for a fuselage), and 
the number of constraints m per structural element is about 
10. The problem (MILP(k)) can thus involve several millions 
of constraints. This could induce high computation time 
(Benson and Horst 1991; Stolpe and Sandal 2018) when 
solving the problem (MILP(k)).

Furthermore, two interesting properties about the OA 
algorithm efficiency have been introduced in Fletcher and 
Leyffer (1994). These properties also apply to the proposed 
methodology, that falls in the theoretical frame of the OA 
algorithm. The first property [see Fletcher and Leyffer 
(1994, Theorem 2)] states that if �  is convex, then Algo-
rithm 1 converges, in a finite number of steps, at an optimal 
solution of (mP). If �  is linear, then Algorithm 1 trivially 
converges to the solution of (mP) in one iteration. We note 
that, although, the convexity assumption cannot be verified 
for general structural optimization, the proposed algorithm 
can be used independently of such assumption. In the next 
section, we will show the performance of the proposed 
method on practical structural optimization test cases.

4  Numerical results

In the present section, the proposed methodology will be 
applied to three different test cases: (i) the well-known 
10-bar truss structure (Haftka and Gürdal 1992) adapted in 
Merval (2008), (ii) a 2D scalable cantilever structure (Sha-
habsafa et al. 2018), and (iii) a 120-bar dome truss structure 
(Saka and Ulker 1992). The third test case aims at dem-
onstrating the efficiency of our methodology on complex 
structures with large number of categorical choices.

In this paper, we will consider problems with four differ-
ent structural constraints per element (i.e., m = 4 ). In this 

case, one has two constraints in tension and compression, 
given by, respectively, 

 with �t(c) ∈ ℝ the stress limit in tension and �c(c) ∈ ℝ 
the stress limit in compression, for a material choice 
c ∈ {1,… , p} . The two other constraints are the Euler and 
local buckling constraints, respectively, given by

 with E(c), I(ai, c) , and �(c) are, respectively, the Young’s 
modulus, the quadratic moment of inertia, and the Pois-
son’s ratio of the material for element i, given the choice 
c ∈ {1,… , p} . The ratio between cross-section internal 
sizes, depending on the stiffener profile, is given by K(c) . 
�i denotes the length of element i. The local buckling con-
straint is introduced to prevent buckling of plate-like ele-
ments in the cross-section. It compares the stress value in the 
considered member with the elastic critical stress value for 
plate buckling. The derivatives of the weight function and 
the constraints (with respect to the areas a ) are obtained by 
applying the chain-rule theorem (see Appendix 2 for more 
details).

4.1  Implementation details

Algorithm 1 was implemented using the Generic Engine for 
MDO Scenarios (GEMSEO) (Gallard et al. 2018) in Python. 
The continuous non-linear optimization problems (i.e., 
evaluations of �  ) are solved with the Method of Moving 
Asymptotes (MMA) (Svanberg 2002) as implemented in the 
non-linear-optimization (NLOPT) package (Johnson 2008). 
The MMA solver is capable of handling non-linear continu-
ous optimization problems with inequality constraints. The 
mixed-integer linear optimization problems are solved with 
a branch and cut implemented as the coin-or branch and 
cut (coin-or/Cbc) in Forrest et al. (2018). All the default 
parameters are kept unchanged except the tolerance on the 
objective function which is set to 10−6 kg . In what comes 
next, the resulting implementation of Algorithm 1 will be 
called Bi-level OA.

(11)si1(ai, c,�i(a,B)) ∶=
�i(a,B)

ai

− �t(c)

(12)si2(ai, c,�i(a,B)) ∶= −
�i(a,B)

ai

− �c(c)

(13)si3(ai, c,�i(a,B)) ∶= −
�i(a,B)

ai

−
�2E(c)I(ai, c)

aiL
2
i

(14)si4(ai, c,�i(a,B)) ∶= −
�i(a,B)

ai

−
4�2E(c)K2(c)

12(1 − �2(c))
,



Four solvers will be compared to Bi-level OA. The 
first solver is a baseline solver where we proceed with 
a full enumeration of continuous optimizations w.r.t. a ; 
see problem (sP(B)). At each iteration, all the available 
choice in C(n,p) is tested. The resulting solution will be 
denoted as Baseline. The second solver in the com-
parison is a hybrid branch-and-bound (Barjhoux et al. 
2018a) and will be noted h-B &B. This solver is based on 
the usual branch-and-bound algorithm where a specific 
bound method is adapted to tackle the mixed categorical 
problem. The procedure involves a continuous relaxation 
problem formulation to compute lower bounds. In the 
case where these problems are convex with respect to 
the sizing variables, the solvers Baseline and h-B &B 
are ensured to return the global optimum of the overall 
problem. The third solver used in the comparison (will 
be referred as Genetic) is a genetic algorithm (Deb and 
Goyal 1998) where we used the implementation given by 
Distributed Evolutionary Algorithms in Python (DEAP) 
toolbox (Fortin et al. 2012). Due to the stochastic nature 
of Genetic, we run ten times the optimizer and keep only 
the obtained results of the best run. The fourth solver will 
be noted Bi-level, it is the bi-level algorithm proposed 
by Barjhoux et al. (2020). The Bi-level solver is based 
on a similar bi-level paradigm as used in Bi-level OA. 
The main difference lies in the master problem formula-
tion where, in the Bi-level, we minimize a first-order-like 
approximation. For all the solvers Bi-level, h-B &B and 
Bi-level OA, we use the MMA method from NLOPT to 
solve the slave problem.

The computation effort of a given solver will be meas-
ured by counting the number of structural analyses (noted 
#FEM) including those required by the computation of the 
gradients (when needed). The obtained optimal weights 
(by each solver) will be noted w∗ , the latter will allow us to 
evaluate the quality of the optima found by each optimizer. 
We note also that in our setting, the Baseline solution can 
be seen as the best known categorical choices for the cor-
responding problem instance. We note that the quality of 
the Baseline solutions (being global optima or just local 
ones) is depending on the practical capabilities of the NLP 
solver to find a global optimal solution to the problem 
(sP(B)). For this reason, in cases where (sP(B)) is not con-
vex, the Baseline solver may not guarantee to provide the 
global optimum. However, in all our numerical tests, we 
observe that the Baseline results (when available) give the 
best weight values. For that reason, we decided to evalu-
ate how far the categorical choices are from the Baseline 
optimal choices. This information is displayed using the 
Hamming distance (noted dh ) where we will count the 
number of structural elements that have an optimal choice 
different to the Baseline categorical choices, i.e.,

where copt is the the optimal Baseline catalogs and c∗ is the 
optimal catalogs found by the other solvers.

4.2  An illustrative example: a 2‑bar truss structure

To illustrate how the Bi-level method works, we will now 
describe in details its application to a 2-bar truss structure 
(see Fig. 3). For this problem, each element can take a 
value among three possible choices that, respectively, point 
to materials AL2139, TA6V and the same “I”-profile (see 
Fig. 4). The materials properties are listed in Appendix 4. 
For this simple case, one has n = 2 , p = 2 , and B ∈ C2×2 . 
For all elements, the lower and upper bounds on areas are, 
respectively, fixed to 300mm2 and 2000mm2 . A maximum 
downward displacement equal to ū = 7mm is allowed on the 
only free node of the structure:

 
The Bi-level OA method is initialized with

The element 1 is thus made of TA6V, element 2 of AL2139.

– First iteration (k = 0)The first iteration k = 0 starts by 
solving the primal problem, that reduces to an evaluation 
of �̃  (by solving (sP(B))) at the current guess B(0) : 

 Then, the gradient d�
dB

|||B(0)
 is computed. To that purpose, 

the active constraints of the problem (sP(B)) at (a(0),B(0)) 
are the lower bound constraint on the area of structural 

dh ∶= cardinal
{
i ∈ {1,… , n} ∣ [c∗]i ≠ [copt ]i

}
,

�𝛿 ∶ ℝ
2 × �C

2,2
→ ℝ

(a,B) ↦ Pu(a, �E(B)) − ū.

B
(0) = vec

(
0 1

1 0

)
and � = 1e−3 kg.

U(0) = 5.6 kg, a(0) = [300.0, 942.8]mm2

Fig. 3  A 2-bar truss structure where a downward and leftward load 
equal to 100 kN is applied on the free node



element 1, and the stress constraint in tension on the sec-
ond structural element, i.e., 

 Hence, the sets of active constraints indices are 

 The gradients of the weight and active constraints w.r.t. 
a are computed, respectively, 

 where z(0) = (a(0),B(0)) and I
A

(0)
a

=

(
1

0

)⊤

 . One can see 

that the gradients of the active constraints are linearly 
independent. Equation (16) leads to the following linear 
system (with 2 equations and 2 unknown Lagrange 
multipliers): 

 Then, as the gradients values are substituted by their 
value, one deduces the Lagrange multipliers value: 

 As a remark, these multipliers illustrate the optimal 
weight (of the slave problem (sP(B))) sensitivity with 
respect to a perturbation of the constraint on the area 
lower bound or stress constraint in tension, respectively.

  The gradients of the weight and the stress constraints 
w.r.t. B are computed, respectively, 

a1 − a
(0)

1
= 0, s11(a

(0),B(0)) = 0.

A
(0)
a

= {1},A(0)
s

= {5}, and A
(0)

𝛿
= A

(0)
ā

= {�}.

𝜕�w

𝜕a

|||||z(0)
=

(
6.26e−3

3.96e−3

)⊤

,
𝜕�s

A
(0)
s

𝜕a

|||||z(0)
=

(
0.

−0.16

)⊤

,

�w̃

�a

|||||z(0)
+

[
�
(0)

A
(0)
s

]�s̃
A

(0)
s

�a

|||||z(0)
+

[
�
(0)

A
(0)
a

]
I
A

(0)
a

= 0.

�
(0)

A
(0)
s

= 2.49m.s2 and �
(0)

A
(0)
a

= 6.26e−3 kg∕mm2.

 Thus, using Eq. 17, one deduces the gradient of �  : 

 Physically, the values seem to indicate that the optimal 
weight (of the slave problem (sP(B))) is more sensitive to 
the choices of materials on the second structural element, 
when compared to the other one. Indeed, these sensitivi-
ties are only valid in a (close enough) neighborhood of 
B
(0) . A change in the active constraint set could occur at 

intermediate values of B.
  The history of the previous iterations is updated with 

B
(0) such that 

 The MILP problem (MILP(k)) can now be set up. The 
solution of this problem provides the new integer candi-
date solution given by 

 The optimal objective value is 

 meaning that the difference between the best known 
guess U(0) and the relaxed problem optimal objective 
value �(0) is lower than the given tolerance � . Figure 5a 
shows the supporting hyperplane that provides the fea-
sible set of the MILP problem at the first iteration. The 

�w̃

�B

|||||z(0)
= [1.2, 1.9, 3.7, 5.9],

�s̃
A

(0)
s

�B

|||||z(0)
=
[
0., 0., 0.,−9.5e2

]
.

d𝛹

dB

|||||B(0)

=
𝜕�w

𝜕B

|||||z(0)
+

[
�
(0)

A
(0)
s

]⊤ 𝜕�s
A

(0)
s

𝜕B

|||||z(0)
=[1.2, 1.9, 3.7,−17.7].

K(0) = {B(0)}.

B
(1) = vec

(
1 0

0 1

)
.

�(0) = −38.71,

(a) Example of an “I”-profile described by
3 geometrical variables.

(b) Example of an “T”-profile, described
by 3 geometrical variables.

(c) Example of an “C”-profile, described
by 3 geometrical variables.

Fig. 4  Examples of commonly used member profiles in aircraft structural design. The internal geometrical variables are latent variables, scaled 
by the area of the cross-section



plotted supporting hyperplane, defined over [0, 1] × [0, 1] , 
corresponds to the curve surface of the function 

 We note that one has U(0) = � (B(0)).
– Second iteration (k = 1)

  The second iteration starts by solving primal prob-
lem, that reduces to an evaluation of �  (by solving 
(sP(B))) at the current guess B(1) : 

 Then, similarly to the first iteration of the algorithm, we 
estimate the gradient of �  with respect to B : 

 The history of the previous iterations is updated with 
B
(1) i.e., K(1) = K(0) ∪ {B(1)} and the MILP problem 

(MILP(k)) can now be set up, as follows: 

�
B11

B21

�
→ 𝛹 (B(0)) +

d𝛹

dB

�����

⊤

B
(0)

⎡⎢⎢⎢⎣

⎛⎜⎜⎜⎝

B11

1 − B11

B21

1 − B21

⎞⎟⎟⎟⎠
− B

(0)

⎤⎥⎥⎥⎦
.

U(1) = 3.07 kg, a(1) = [300., 300.]mm2

d�

dB

|||||B(1)

= [1.19, 1.88, 1.19, 1.88].

 Figure 5b depicts the result U(1) of the NLP problem 
(sP(B)) solved at B(1) , and the associated new hyperplane 
behaves as an additional constraint for the new MILP 
problem. The optimal objective value is 

 that is equal to the best known guess U(1) . This means 
that the current lower bound of the problem solution is 
now equal to its current upper bound. The problem (15) 
is thus infeasible, due to the first constraint violation. 
The solution found during this second iteration is the 
optimal solution.

  The algorithm then stops, and the solution is such that 

(15)

min
B∈C2×2

𝜂

subject to 𝜂 ≤ U(1) − 𝜖

𝜂 ≥ 𝛹 (B(1)) +
d𝛹

dB

|||||

⊤

B
(1)

(B − B
(1))

𝜂 ≥ 𝛹 (B(0)) +
d𝛹

dB

|||||

⊤

B
(0)

(B − B
(0))

�(1) = 3.07,

(a) (b) (c)

Fig. 5  Iterations of a 2-bar truss structure optimization example. The supporting hyperplanes at � (B
(0)
) (resp., � (B

(1)
) ) are built using the slope 

d�

dB
 taken at B(0) (resp., B(1))



 In other words, the optimal material for elements 1 and 
2 is AL2139 and TA6V, respectively.

Figure 5c depicts the landscape of the function �  with 
respect to B ∈ C2×2 . One can see that the admissible solu-
tions of the problem P applied to the 2-bar truss example 
are the four points at the boundary of �  where B11 and B21 
take integer values. The optimal solution then corresponds 
to the point with the lowest value.

Remark 1 At the end of the optimization process, the optimal 
values for � coincides with the optimal value of �  . How-
ever, during the minimization process, the obtained values 
of � do not have necessarily a physical meaning; their values 
depends on the quality of the approximation provided by the 
convex hull based on the hyperplanes. For instance, the value 
for � is negative because the supporting hyperplane is not a 
good approximation for the function �  . The convex hull is 

w̃∗ = U(1) = 3.07 kg

a
∗ = a

(1) = [300, 300]mm2,

B
∗ = B

(1) = vec

(
1 0

0 1

)
.

then refined iteratively (by including new hyperplanes) until 
� corresponds to the value of �  at the final solution.

Remark 2 For the Bi-level OA solver, the total computa-
tional cost is reduced to the computational effort required 
to solve 2 NLP problems and 2 MILP problems. Solving 
the same illustrative problem by enumeration (Baseline) 
would have require 22 NLP optimization problems. The Bi-
level algorithm as proposed in Barjhoux et al. (2020) would 
required solving 6 NLP optimization problems.

4.3  A 10‑bar truss structure

The 10-bar truss problem (Haftka and Gürdal 1992) is used 
to solve the mixed categorical-continuous optimization prob-
lem by enumeration, Bi-level or hybrid branch-and-bound 
(h-B &B) (Barjhoux et al. 2018b).

The 10-bar truss problem is illustrated in Fig. 6. A down-
ward load F = 100 kN is applied vertically on node N� . A 
constraint on displacements is applied on the same node. 
Five cases with different bounds values ū on displacements 
are considered. For each of these cases, the displacements 
constraint is applied on node N� . Each structural element 
is also subjected to the stress constraints given by (11, 12, 
13, and 14). The lower bounds, the upper bounds, and the 
initial areas are fixed to 100mm2 , 1300mm2 and 1300mm2 , 
respectively. Catalogs 1 and 2 point to materials AL2139 
and TA6V, respectively. Materials properties are listed in 
Appendix 4. For this simple case, one has n = 10 , p = 2 , 
and B ∈ C

10,2.
Table 1 depicts the obtained results on a 10-bar truss 

mixed optimization using 5 different values of constraint 
on displacements. In all these cases, as shown by the Ham-
ming distance dh and the optimal weights w∗ , the solutions 
found by Baseline, h-B &B, Bi-level, and Bi-level OA 
solvers are identical. The optimal solutions returned by the 
Genetic solver are not as good as the optimal weights found 
by the the rest of the solvers. In fact, although sometimes 
the Genetic solver is able to find the optimal catalogs (since 
dh = 0 ), the continuous variables are not well handled (since 

Fig. 6  10-bar truss seen as a scalable 2D cantilever problem with 2 
blocks

Table 1  Results of the 10-bar 
truss testcase with 5 different 
values of constraint on 
displacements

Comparison between the Bi-level OA, Bi-level, the Baseline solutions obtained by enumeration of the 
2
10 continuous optimizations, h-B &B, and the Genetic algorithm. The catalog 1 corresponds to material 

AL2139 and catalog 2 to TA6V

ū (mm) Baseline h-B &B Genetic Bi-level Bi-level OA

c∗ = B� w
∗(kg) d

h
w
∗(kg) d

h
w
∗(kg) d

h
w
∗(kg) d

h
w
∗(kg)

-22 [2,2,1,1,1,2,2,1,2,1] 12.988 0 12.988 0 13.283 0 12.988 0 12.988
-20 [2,1,1,1,1,1,2,1,1,1] 13.996 0 13.996 0 14.423 0 13.996 0 13.996
-19 [2,1,1,1,1,1,2,1,1,1] 14.570 0 14.570 0 14.802 0 14.570 0 14.570
-18 [1,1,1,1,1,1,1,1,1,1] 15.175 0 15.175 2 15.642 0 15.174 0 15.174
-17 [1,1,1,1,1,1,1,1,1,1] 15.912 0 15.912 3 16.258 0 15.912 0 15.912



w∗ is higher compared to the other solvers). The displace-
ment constraint is active in all the cases; as far as the dis-
placement constraint becomes more stringent, the material 
choice goes to the stiffest one despite of its high density. In 
our experiments, the optimal solutions of cases with maxi-
mum displacements equal to 18 mm and 17 mm contain 
indeed only TA6V material. Regarding the other constraints, 
the Euler buckling constraints were active on elements 10 
and 8 for both test cases with a maximum displacement of 
20 mm and 22 mm. The constraints were also active in all 
cases, but on different elements depending on the bound 
value on displacements. Namely, for the cases with a maxi-
mum displacement equals to 19 mm, 20 mm, and 22 mm, 
the stress constraints were active for the elements 2, 6, and 
9. For the case 18 mm, the same constraint was active for the 
elements 1, 2, 6, 7, and 9; for the case 17 mm, the constraint 
was active for elements 1 and 7. Unlike the displacement 
constraints, in the provided examples, the local buckling 
constraints were not active at the solution. It seems that in 
our setting, such constraints do not have a significant role in 
the optimization process.

4.4  Scalability of our algorithm

4.4.1  Scalability with respect to the number of elements

The objective of this test case is to describe the evolu-
tion of the computational cost with respect to the number 
of structural elements. It has been used in the literature to 
demonstrate the scalability of algorithms, see for instance 
Shahabsafa et al. (2018). Each block is composed of 4 nodes 
that are linked by 5 bars. An example of a parametric 2D 
cantilever structure with 3 blocks is given in Fig. 7. Table 2 
presents the results obtained with structures composed of 1 
to 10 blocks. In all cases, a force load F = 30 kN is applied 
on the node N� . The lower bounds, the upper bounds, and the 
initial areas are fixed to 100mm2 , 2000mm2 and 2000mm2 , 
respectively. No constraint on displacements is considered 
and each structural element is subjected to the stress con-
straints given by (11, 12, 13, and 14).

For each of the 10 cases, the results obtained by the Bi-
level OA are compared to those obtained with reference 
solutions (Baseline, h-B &B) and Bi-level when available. 
First, for the three cases with 5 to 15 elements where a ref-
erence solution is available, it can be observed the global 
solution is found by the Bi-level OA. In these three cases, 
for all the tested solvers, the optimal categorical variable 
values are identical, excepted for the Genetic solver (based 
on the dh values). For cases with more than 15 elements, 
the optima found by the Bi-level OA are slightly better 
than those obtained by the Genetic algorithm. The h-B 
&B solutions are noted with (*) since they are intermedi-
ate solutions: the solver was stopped after 24 h. The Bi-
level OA solutions are very close (difference of 10−2 kg) 
to those obtained by the h-B &B. For cases with 40 and 45 
elements, the Bi-level OA solutions are slightly lighter than Fig. 7  An example of 2D cantilever problem with 3 blocks

Table 2  A comparison of the obtained solutions for 10 instances of the scalable 2D cantilever problem, with a varying number of bars (from 5 to 
50 bars)

We note that when optimizations last more than 24 h, the solver (Baseline, h-B &B) is stopped and the current solution (if exists) is marked by 
(∗)

#bars Baseline h-B &B Genetic Bi-level Bi-level OA

w
∗(kg) d

h
w
∗(kg) #iter #FEM d

h
w
∗(kg) #iter #FEM d

h
w
∗(kg) #iter #FEM d

h
w
∗(kg) #iter #FEM

5 2.56 0 2.56 10 1004 0 2.57 32 32300 0 2.56 2 400 0 2.56 2 96
10 6.06 0 6.06 26 3097 1 6.14 54 54500 0 6.06 2 792 0 6.06 2 181
15 10.23 0 10.23 95 10907 2 10.27 65 65200 0 10.23 4 1955 0 10.23 6 967
20 * * 15.33 135 10315 * 15.59 73 73100 * 15.33 2 1659 * 15.33 7 1023
25 * * 21.36 1199 610347 * 22.06 98 97700 * 21.36 3 3142 * 21.36 13 2312
30 * * 28,30 4432 723388 * 28.84 129 128800 * 28.30 8 10522 * 28.30 13 2991
35 * * 36, 17(∗) 5793(∗) 1096968(∗) * 37.00 189 189400 * 36.19 3 5830 * 36.19 6 1496
40 * * 44, 97(∗) 5570(∗) 939726(∗) * 45.64 270 269800 * 44.97 7 13577 * 44.96 40 11578
45 * * 54, 70(∗) 4181(∗) 818455(∗) * 55.98 347 346800 * 54.71 4 8531 * 54.67 20 6789
50 * * 65, 35(∗) 4316(∗) 717627(∗) * 67.48 561 561200 * 65.34 6 14487 * 65.34 42 13290



the Bi-level. Furthermore, the number of analyses required 
by Bi-level OA is always lower than the number needed by 
the compared approaches, including Bi-level. The trends in 
terms of computational cost with respect to the number of 
elements are graphically represented in Fig. 8. The cost of 
the Genetic algorithm dominates the cost of h-B &B Bi-
level and Bi-level OA. As with the Bi-level, the scaling of 
the Bi-level OA approach is nearly linear when compared to 
the h-B &B and Genetic approach. The trends in terms of 
Bi-level OA computational cost with respect to the number 
of elements are similar to the Bi-level computation cost. The 
observed efficiency makes the proposed approach relevant 
for higher dimensional problems.

4.4.2  Scalability with respect to the number of catalogs

The objective of this test case is to describe the computa-
tional cost scaling with respect to the number of categorical 
choices. The test case is the same 10-bar truss case presented 
in Sect. 4.3, with a constraint on displacements such that 
ū = 10mm . For this simple case, one has the number of 
structural elements fixed to n = 10 , but p is varying from 5 
to 90 catalogs. Each catalog is defined as a combination of 
different materials among AL2139, AL2024 and TA6V, with 
the member profiles I, T and C. For each member profile we 
consider using 10 different sizes. The material properties, 
the catalogs and the member profiles are listed in Appen-
dix 4 (see, Tables 4, 6, and 7). Thus, by scaling the number 
of catalog choices, the full number of available categorical 
choices will range from 104 to 1090.

Table 3 presents the results obtained by Bi-level OA and 
Bi-level. The h-B &B failed to solve the problem instances 
in 24 h. The optimal weight, the number of iterations (#ite), 
non-linear problems (#NLP) solved, and the number of 
individual calls to the structural solver (#FEM) are com-
pared. First, in terms of #FEM and #NLP, the computa-
tional cost of Bi-level OA reveals to be almost linear with 
respect to the number of categorical values when compared 
to Bi-level. Furthermore, it is shown that for each case, the 

Fig. 8  Scalability of the Bi-level OA w.r.t. the number of structural 
elements. The computational cost’s scaling of Bi-level OA and Bi-
level with respect to the number of bars is almost linear, compared to 
the exponential computational cost of the h-B &B and Genetic solv-
ers shown (a). The high computational cost of the h-B &B prevents 
from obtaining a solution for cases greater than 25 elements. The plot 
on (b) focuses on a comparison between the computational cost of 
Bi-level and Bi-level OA only. The computation cost is always lower 
than the Bi-level 

Table 3  A comparison of 
the obtained solutions for 9 
instances of the 10-bar truss 
problem, with a varying number 
of catalogs (from 4 to 90 
catalogs)

#Catalogs Bi-level Bi-level OA

w
∗(kg) #iter #NLP #FEM w

∗(kg) #iter #NLP #FEM

4 12.99 3 98 29245 12.99 84 84 8400
9 12.39 4 334 98871 12.39 89 89 3772
12 12.39 4 445 131358 12.39 61 61 2583
15 12.39 4 573 170407 12.39 45 45 1955
18 12.39 4 708 209201 12.39 65 65 2877
36 12.39 4 1404 416662 12.39 57 57 2232
45 12.15 3 1348 399172 12.15 69 69 2489
72 12.15 3 1864 551042 12.15 64 64 2898
90 12.15 3 2704 799166 12.15 86 86 3952



optimal weights obtained by both solvers are close (the gap 
is less than 10−3kg ). This shows that the Bi-level is able to 
return good quality solutions even in cases with a large-scale 
categorical design space. Independently from the solver, it 
can be remarked that the optimal weights are identical from 
cases 4 to 36, and 45 to 90. This is due to the fact that the 
categorical values introduced in the design space from case 
4 to 36 (or from 45 to 90) do not lead to any significant 
improvement for the optimal weight; the improvement is 
only observed from case 45 to 72. The computational cost 
with respect to the number of catalogs for all the tested solv-
ers is depicted in Fig. 9.

4.5  120‑bar truss

In this example, the structure of a 120-bar dome truss (Saka 
and Ulker 1992) detailed in Fig. 10 is considered. For each 
element, the categorical variable can take a value among 90 
catalogs. With n = 120 and p = 90 , the binary design space 
is C120×90 . The number of available categorical choices is 
thus equal to 90120 . Each catalog is defined as a combina-
tion of materials among AL2139, AL2024, and TA6V, with 
profiles I, T, and C (with 10 different sizes for each profile). 
The material properties are listed in Table 4 in Appendix 4. 
The catalogs are listed in Table 6 and the profiles in Table 7, 
in Appendix 4. The structure is subjected to a constraint 
on displacements: a maximum downward displacement of 
10mm is allowed on node 1 (i.e., the top of the dome). A 
downward load of 60 kN is applied on this same node, while 
12 downward loads of 30 kN are applied on nodes 2 to 13 
(i.e., inner ring) and 10 kN on nodes 14 to 37 (i.e., outer 
ring). For this test case, the lower bounds, the upper bounds, 
and the initial areas are fixed to 100mm2 , 6000mm2 and 

6000mm2 , respectively. As for the previous tested problems, 
the areas of all the structural elements are handled as con-
tinuous design variables and each element is subjected to the 
stress constraints (11, 12, 13, and 14). The stress constraints 
will assess the structural integrity of the truss and avoid 
buckling in the members.

For this test problem, all the previously tested 
approaches (i.e., Genetic, h-B &B, and Bi-level) were 
unable to provide an optimum in a reasonable time (we 
could not converge to a competitive solution in 24 h). Only 
the Bi-level OA solver was able to converge to a com-
petitive solution in approximately 2 h; the optimal weight 
returned by Bi-level OA is 1506 kg . Both the maximum 
displacement and the Euler buckling constraints interfere 
at the optimal solution. The Euler buckling constraints 
were active for all the structural elements, excepted the 
elements on the outer ring. Similarly to the previous test 
case, the local buckling constraints were not active at the 
solution. The optimal truss is pictured in Fig. 11. The cat-
egorical and continuous solution is provided in Table 5 
in Appendix 4. We observe that only 3 choices have been 

Fig. 9  Scalability of the Bi-level OA w.r.t. the number of catalogs. 
The computational cost’s scaling of Bi-level OA with respect to the 
number of catalogs is nearly independent from the number of cata-
logs, compared to the quasi-linear computational cost of the Bi-level 

Fig. 10  Top and side view a 120-bar truss structure. Downward loads 
with three different magnitudes are applied



selected over a total of 90 . The material “TA6V” has been 
selected for members 13 to 24 (inner circle, in green), and 
“AL2024” for the rest of the structure. The profile “T8” 
has been selected for members 25 to 48 (outer circle, in 
orange), while “I1” is selected for the rest of the structure. 
The convergence history of �(k) (i.e., the lower bound) and 
U(k) (i.e., the upper bound) is depicted in Fig. 12. One can 
see that the optimization process is converging within 3 

iterations. This means that it required to solve only 3 NLP 
(primal problems), within a total of 35339 calls to FEM.

5  Conclusion

In this paper, we solved a mixed categorical-continuous 
structural optimization problem with categorical variables, 
i.e., non-relaxable and non-ordered. The proposed algo-
rithm used a bi-level decomposition of (P), and solved 
a sequence of master and slave problems. The resulting 
algorithm, named Bi-level OA, relied on the theory of the 
OA algorithm (Fletcher and Leyffer 1994; Bonami et al. 
2008; Grossmann 2009) where the derivatives are esti-
mated using a post-optimal sensitivity analysis (Fiacco 
1976). Under a convexity assumption, we were able to 
guarantee the convergence of our proposed approach.

The numerical tests showed that the proposed method 
is capable of handling large-scale instances of the mixed 
categorical-continuous problem. The scalability in terms 
of computational cost has been tested with respect to the 
number of structural elements and number of categorical 
choices per element. Our convergence proof of the Bi-level 
OA relies on the convexity assumption with respect to the 
design variables, such assumption cannot be verified in the 
context of structural optimization problems. A further work 
could consist in studying convergence of the proposed strat-
egy when non-convex cases occur.

Appendix 1. On the computation of d�
dB

|||B(k)
 

using post‑optimal sensitivities

Gradient estimation, using post-optimal sensitivities, was 
introduced by (Fiacco 1976) using penalty approach. In the 
context of our structural optimization problem, the estima-
tion of the gradient can be derived as follows. The Lagran-
gian of the problem (sP(B)) is given by

where �
s
,�

�
,�

a
, and �

ā
 are the Lagrange multipliers (col-

umn vectors) associated to the constraints s̃  , �̃ , a , and ā , 
respectively.

For a given (k) iteration, let a(k) be the solution of the of 
problem (sP(B)) evaluated at B(k) and define A(k)

s
 , A(k)

�
 , and 

A
(k)
a

 , A(k)
ā

 as the sets of active constraints, i.e.,

L(a,B) ∶= �w(a,B) + �
⊤
s
�s(a,B) + �

⊤
�
��(a,B)

+ �
⊤
a
(a − a) + �

⊤
ā
(a − ā),

Fig. 11  Top view of the 120-bar truss mixed categorical-continuous 
optimization result

Fig. 12  History of the convergence of �(k) (i.e., the lower bound) and 
U

(k) (i.e., the upper bound) during the application of the Bi-level OA 
method to solve the 120-bar truss problem



The active components of the constraints s̃  and �̃ will be 
noted by s(k)

A
(k)
s

 and �(k)
A

(k)

�

 , respectively. The components of a(k) 

whose indices belong to A(k)
a

 (resp. A(k)
ā

 ) will be noted by a(k)
A

 
(resp. a(k)

Ā
 ). Similarly, the Lagrange multipliers at the opti-

mum will be denoted by �(k)
s
, �

(k)

�
, �(k)

a
 , and �(k)

ā
 . Again, the 

Lagrange multipliers at the optimum related to the active 
constraints of s̃  , �̃ , and bounds constraints on a will be des-
ignated by noted �(k)

A
(k)
s

 , �(k)

A
(k)

�

 , �(k)

A
(k)
a

 , and �(k)

A
(k)
ā

 , respectively.

Assuming that the objective and the constraints functions 
of (sP(B)) are continuously differentiable at a(k) and that the 
gradients of active constraints at a(k) are linearly independ-
ent. Then, by using the Karush–Kuhn–Tucker (KKT) opti-
mality conditions applied to (sP(B)) at B(k) , one gets

 where z(k) ∶= (a(k),B(k)) and the notation g|
z
 is used to 

denote the value of the function g at the point z. The matri-
ces I

A
(k)
ā

∈ ℝ
|A(k)

ā
|×n and I

A
(k)
a

∈ ℝ
|A(k)

a
|×n are such that 

∀j ∈ [[1, n]] , one has

 with �ij being the Kronecker symbol.
Consequently, once the problem (sP(B)) is solved for a 

given choice of B(k) , the Lagrange multipliers corresponding 
to active constraints can be obtained by solving the linear 
system given by (16). We note that, according to the KKT 
conditions, the computed values of the Lagrange multipliers 
have to be non-negative.

Now, under appropriate assumptions and by using (Fiacco 
1976, Theorem 2.1), one can deduce that the function �  is 
continuously differentiable at B(k) . In fact, assuming that at 
each iteration (k) of our optimization process, one has

– The functions w̃ , s̃  , and �̃ are twice continuously dif-
ferentiable w.r.t. a.

– �w̃

�a
 , �s̃
�a

 , ��̃
�a

 are once continuously differentiable w.r.t. B 
in a neighborhood of z(k),

A
(k)
s

=
{
∀i |�si

(
a
(k)
)
= 0

}
,A(k)

a
=
{
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}
,
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�
=
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∀i |��i
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)
= 0

}
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=
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i
= āi

}
.
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– The second-order sufficient KKT conditions related with 
the problem (sP(B)) hold at z(k),

– A strict complementary holds, i.e., in the example of the 
displacements constraints : 

In this case, by using (Fiacco 1976, Theorem 2.1), we con-
clude that the function �  is continuously differentiable, and 
its derivative taken in B(k) is given by

 where we used the fact that bound constraints on the areas 
do not depend on B in order to eliminate the terms related to 
the bounds in the right hand side of Eq. (17).

In this section, we have detailed the mathematical theory 
of the post-optimality sensitivity analysis as stated in Fiacco 
(1976), and applied to the problem (sP(B)). Hence, for a 
given a(k) , the gradient of the function �  taken at B(k) can be 
estimated in five main steps :

– Build the set of active constraints A(k)
s

 , A(k)

�
 , A(k)

a
 , and A(k)

ā
.

– Compute the gradients of the objective and active con-
straints w.r.t. a at the point (a(k),B(k)).

– Compute the Lagrange multipliers �(k)

A
(k)
s

 and �(k)

A
(k)

�

 by solv-

ing the linear system (16).
– Compute the gradients of the objective and active con-

straints w.r.t. B at the point (a(k),B(k)).
– Compute the post-optimal sensitivity d�

dB
 at B(k) using Eq. 

(17).

For all our optimization test cases, we did not get any numerical 
issue while deriving the post-optimality sensitivities. We thus 
believe that those assumptions are not strong on practical truss 
optimization.

Appendix 2. Derivatives of the weight 
and the constraint functions

The derivatives of the weight function and the constraints 
(with respect to the areas a) are obtained by applying the 
chain-rule theorem. Namely, the gradient analytic expres-
sion of the weight function (2) with respect to the areas a 
is given by

(𝜆
(k)

�
)i = 0 ⟺ �i(z

(k)) < 0 ∀i ∈ A
(k)

�
.
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.

The gradient of the constraints are obtained as follows

The derivative of the internal axial force in each member of 
the structure 

��i

�a
(a,B) is given by

 where K̃
e

i
(ai,Bi,∶) =

�Ke
i

�a
(ai,Bi,∶) . The derivative of the dis-

placements 
�ui

�a
(a,B) is obtained, after derivation of (5), by

Appendix 3. The proposed Bi‑level algorithm

Appendix 4. Test cases data

See Tables 4, 5, 6, and 7.
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Table 4  Numerical details on materials attributes for the test cases

AL2139 AL2024 TA6V

Density [kg∕mm3] 2.8e−6 2.77e−6 4.43e−6

Young modulus [MPa] 7.1e4 7.4e4 11.0e4

Poisson coefficient [−] 0.3 0.33 0.33
Tension allowable [MPa] 1.5e2 1.6e2 11.0e2

Compression allowable [MPa] 2.0e2 2.1e2 8.6e2

Table 5  The obtained solution 
for the 120-bar truss problem

Elements Catalog a[mm2]

1 … 12 62 1100
13 … 24 32 695
25 … 47 89 379
48 … 72 62 773
73 … 96 62 799
97 … 108 62 799
109… 120 62 1195

Table 6  A description of the categorical design space related to the 
120-bar truss problem ( c ∈ {1,… , 90})

c Cross section Material

1 … 10 I1 … I10 AL2139
11 … 20 C1 …C10 AL2139
21 … 30 T1 …T10 AL2139
31 … 40 I1 … I10 TA6V
41 … 50 C1 …C10 TA6V
51 … 60 T1 …T10 TA6V
61 … 70 I1 … I10 AL2024
71 … 80 C1 …C10 AL2024
81 … 90 T1 …T10 AL2024

Table 7  Definition of the profiles I, C and T reference detailed geom-
etry of the 120-bar truss problem

x0[1] [mm] x0[2] [mm] x0[3] [mm]

I1,C1,T1 5 50 40
I2,C2,T2 10 110 40
I3,C3,T3 10 90 40
I4,C4,T4 10 100 40
I5,C5,T5 5 100 40
I6,C6,T6 10 60 40
I7,C7,T7 15 100 40
I8,C8,T8 10 70 35
I9,C9,T9 10 80 40
I10,C10,T10 10 90 45
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