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Abstract—This study investigates the performance of 

transformer-based machine learning models, specifically BERT, 

RoBERTa, and ALBERT, in multiclass text classification within 

the context of the Universal Access to Quality Tertiary Education 

(UAQTE) program. The aim is to systematically categorize and 

analyze qualitative responses to uncover domain-specific patterns 

in students' experiences. Through rigorous evaluation of various 

hyperparameter configurations, consistent enhancements in 

model performance are observed with smaller batch sizes and 

increased epochs, while optimal learning rates further boost 

accuracy. However, achieving an optimal balance between 

sequence length and model efficacy presents nuanced challenges, 

with instances of overfitting emerging after a certain number of 

epochs. Notably, the findings underscore the effectiveness of the 

UAQTE program in addressing student needs, particularly 

evident in categories such as "Family Support" and "Financial 

Support," with RoBERTa emerging as a standout choice due to 

its stable performance during training. Future research should 

focus on fine-tuning hyperparameter values and adopting 

continuous monitoring mechanisms to reduce overfitting. 

Furthermore, ongoing review and modification of educational 

efforts, informed by evidence-based decision-making and 

stakeholder feedback, is critical to fulfill students' changing 

needs effectively. 
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I. INTRODUCTION 

The free tertiary education program, referred to as the 
Universal Access to Quality Tertiary Education (UAQTE) 
program, was initiated in the Philippines as a significant 
development in educational policy. The objective of this 
initiative is to increase access to tertiary education for all 
eligible Filipino students [1]. As the program progresses, 
understanding students' diverse experiences becomes crucial 
for evaluating its impact [2]. While qualitative responses offer 
rich narratives [3], manual categorization of these diverse 
accounts can be overwhelming. Therefore, this study employs 
transformer-based machine learning models like BERT, 
RoBERTa, and ALBERT to automate text classification [4]. 

By systematically analyzing student responses, the research 
aims to uncover nuanced perceptions of the UAQTE program's 
impact. The objective is to gain valuable insights into each 

student's distinctive experiences within the UAQTE 
framework. Leveraging prominent models for automated 
multiclass text classification [5], the study seeks to categorize 
student responses and unveil domain-specific insights 
systematically. This involves aligning experiences with 
predefined classes identified through collaboration with 
domain experts, ensuring a nuanced and contextualized 
understanding [6] of the diverse impacts of the UAQTE 
program on students. 

Furthermore, the research evaluates the performance of 
these models in accurately categorizing qualitative responses, 
contributing to the advancement of machine learning 
techniques in educational research. This assessment ensures the 
reliability and effectiveness of the machine learning models [7] 
employed in the study. The primary research contribution lies 
in developing and applying advanced machine learning 
methods to analyze qualitative data in educational contexts [8], 
providing a novel approach to understanding the effects of 
educational policies like the UAQTE program. Ultimately, this 
research aims to contribute to informed policymaking and 
enhance educational initiatives for the benefit of Filipino 
students, thereby advancing the objectives of the UAQTE 
program. 

II. RELATED WORKS 

This section delves into the literature surrounding machine 
learning applications, particularly those relevant to 
implementing transformer-based models. 

A. Machine Learning in Educational Policy 

The integration of machine learning (ML) into educational 
policy signifies an innovative strategy for shaping the course of 
education [9], [10], [11], specifically in the context of 
revolutionary endeavors such as the Philippines' Universal 
Access to Quality Tertiary Education (UAQTE) program. 
Machine learning algorithms are highly effective tools for 
managing large data sets, presenting an opportunity to reform 
how policymakers understand, assess, and improve educational 
initiatives [12], [13]. 

Conventional assessment techniques might find capturing 
the intricacies and varied nature of student experiences 
challenging, underscoring the importance of adopting advanced 
data-driven methodologies. ML algorithms excel in uncovering 
patterns and trends within extensive datasets, offering a depth 
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of analysis that traditional methods might overlook [14], [15]. 
This capability becomes invaluable when assessing the 
effectiveness of educational programs, including initiatives like 
UAQTE. 

The integration of ML into educational policy represents a 
significant leap forward. It facilitates a more thorough, 
dynamic, and nuanced assessment, providing policymakers 
with actionable insights into what aspects of the program are 
succeeding and where improvements are needed [16], [17]. As 
education systems worldwide navigate the complexities of 
providing equitable and quality education, the synergy between 
ML and educational policy becomes a pivotal force in shaping 
a more responsive and effective future for education. 

B. Transformer-based Models 

Transformer-based models, harnessing contextual 
relationships and language patterns through an architecture 
emphasizing parallel processing and self-attention mechanisms 
[18], [19], [20] represent a groundbreaking advancement in 
natural language processing (NLP). Unlike conventional 
recurrent neural networks (RNNs) or convolutional neural 
networks (CNNs), transformers operate simultaneously, 
enabling a holistic assessment of the entire context. This 
parallelized architecture enhances the model's ability to 
effectively capture long-range dependencies and subtle 
contextual nuances within the input sequence [21], [22]. 

Transformer-based models undergo initial pre-training on 
extensive corpora, enabling them to comprehensively 
understand language structures and patterns [23], [23], [24]. 
This foundational pre-training phase equips the models with a 
wealth of linguistic understanding. Following this, the models 
demonstrate adaptability by undergoing fine-tuning on domain-
specific datasets, allowing them to tailor their knowledge to 
specific applications [25], [26]. This inherent adaptability 
renders them versatile across various tasks and domains, 
showcasing their efficacy in diverse applications [27], [28]. 

One notable application of transformer-based models is in 
qualitative data analysis, especially in domains like education 
policy. The models can perform multiclass text classification, 
categorizing and extracting insights from qualitative responses 
systematically. This capability becomes particularly valuable 
when evaluating the impact of programs like the UAQTE 
initiative, providing a data-driven lens to understand the 
diverse experiences of student beneficiaries. 

C. Multiclass Text Classification 

Leveraging advanced capabilities in natural language 
processing, transformer-based models exhibit remarkable 
proficiency in multiclass text classification, surpassing 
traditional text classification tasks [29], [30], [31]. This 
competence is deeply rooted in the objective of categorizing 
textual data into more than two predefined classes or 
categories. In multiclass text classification, each document or 
piece of text is precisely assigned to one specific class from a 
set of multiple classes, a task crucial for accurately discerning 
the most appropriate category or label based on the input text's 
content, themes, or characteristics [32], [33]. 

The adeptness of transformer-based models in this research 
facilitates a systematic understanding and categorization of 

qualitative responses [34], [35] from student beneficiaries 
within the UAQTE initiative. This structured approach 
guarantees precision in assigning text to relevant categories and 
serves as an effective tool for extracting insights into the 
diverse nature of students' experiences. Fortified with attention 
mechanisms and contextual understanding, the models capture 
subtle distinctions in qualitative data, providing a 
comprehensive and nuanced understanding of its impact [36], 
[37]. 

The proficiency in multiclass text classification offered by 
transformer-based models elevates their role as invaluable 
assets in navigating the complexities of education policy 
analysis, especially when seeking to comprehend the 
multifaceted dimensions of student experiences within specific 
programs like UAQTE. Ultimately, this capability empowers 
policymakers with nuanced, data-driven perspectives, 
facilitating well-informed choices in the dynamic landscape of 
education policy. 

D. Role of Domain Experts 

The involvement of domain experts in crafting and refining 
predefined categories is a well-established practice [38], [39], 
[40]. Their expertise ensures that the categories encapsulate the 
diverse dimensions of qualitative responses [41], [42]. This 
proactive role positions domain experts as key architects in 
aligning the model with the intricacies of the specific research 
domain, contributing significantly to ensuring that class labels 
are accurate and contextually relevant [43], [44]. 

Moreover, domain experts continue to play a critical role in 
the ongoing validation of machine learning models [45], [46]. 
As these models generate predictions on new or unseen data, 
domain experts validate the accuracy of these predictions 
against the true labels they provide. This validation process is a 
robust quality control mechanism, ensuring the alignment of 
model predictions with the ground truth. Establishing a 
feedback loop between domain experts and machine learning 
models contributes to the continual enhancement of the 
classification system [47], [48]. 

This iterative collaboration bolsters the accuracy of 
machine learning models and cultivates a dynamic 
understanding of qualitative data within the specific research 
domain. By actively participating in providing true labels and 
validating model predictions, domain experts ensure that 
multiclass text classification models are not only accurate but 
also ethically sound [49], [50]. Their dual role as architects of 
the categorization framework and validators of model 
predictions positions them as indispensable contributors to the 
success of the entire machine learning process within the field 
of education policy analysis. 

E. BERT, RoBERTa, and ALBERT 

In the broader context of natural language processing and 
machine learning, the integration of advanced models such as 
Bidirectional Encoder Representations from Transformers 
(BERT), Robustly optimized BERT approach (RoBERTa), and 
A Lite BERT (ALBERT) has become a focal point of research, 
particularly in the domain of multiclass text classification. 
These models demonstrate exceptional proficiency in 
achieving fine-grained categorization objectives, allowing for 
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systematically classifying qualitative responses into multiple 
predefined classes [51]. The emphasis is on their ability to 
capture nuanced distinctions, going beyond traditional 
categorization methods. 

BERT pioneered bidirectional training, considering both 
left and right contexts in all layers [52], [53]. In refining this 
approach, RoBERTa removed the next sentence prediction 
objective and integrated dynamic masking during training [54], 
[55]. ALBERT, addressing computational challenges, 
implemented cross-layer parameter sharing and a factorized 
embedding parameterization, enhancing efficiency [56], [57]. 

Recognized for its general applicability, BERT's larger 
model size may pose computational intensity [58]. RoBERTa, 
optimized for larger mini-batches, showcases improved 
efficiency [59]. ALBERT, designed for parameter efficiency, 
strikes a balance between reduced parameters and competitive 
performance [60]. These distinctions significantly impact their 
versatility in categorizing information, spanning various 
themes or topics with potential applications across diverse 
domains. 

The bidirectional attention mechanisms and extensive pre-
training of BERT, RoBERTa, and ALBERT equip them with a 
profound understanding of context and relationships within the 
text [61]. This comprehensive comprehension positions them 
as valuable tools for many multiclass text classification 
applications. They provide insights crucial for refining models, 
enhancing accuracy, and facilitating informed decision-
making. Furthermore, the iterative nature of machine learning 
emphasizes ongoing feedback loops, allowing continuous 
adjustments for enhanced model performance. This iterative 
refinement ensures that multiclass text classification models, 
whether BERT, RoBERTa, or ALBERT, progressively excel in 
handling diverse textual data [62]. 

F. Evaluation Metrics for Text Classification 

Evaluation metrics are essential benchmarks for assessing 
the effectiveness of text classification models, providing 
valuable insights into their performance and generalization 
capabilities [63]. In the domain of text classification, various 
metrics are utilized to measure accuracy and reliability. 
Training accuracy assesses the model's proficiency in 
classifying instances within the training dataset, while 
validation accuracy evaluates its ability to generalize to new 
data without overfitting. Test accuracy offers a final evaluation 
of the model's performance on unseen data [64], [65]. 
Precision, recall, and F1-score provide nuanced assessments of 
its ability to correctly classify positive instances and balance 
false positives and false negatives [66], [67]. 

The confusion matrix visually represents the model's 
predictions, facilitating a detailed analysis of its performance 
across different classes. Additionally, the involvement of 
domain experts is crucial in providing true labels and 
validating the model's predictions against ground truth, thereby 
enhancing the reliability and credibility of the text 
classification process [68], [69]. 

These models, through the utilization of data-driven 
techniques, provide a comprehensive understanding of 
initiatives like the Universal Access to Quality Tertiary 

Education (UAQTE) program, revealing valuable insights 
derived from student experiences. The collaboration between 
machine learning algorithms and domain experts not only 
verifies model predictions but also ensures the precision of 
classifications, thereby reinforcing the credibility of the 
analysis. As these models evolve, they offer the potential to 
influence the development of more adaptive and efficient 
education policies in the future. 

III. METHODOLOGY 

The methodology employed is outlined in this section. Fig. 
1 presents the information processing phases and delineates the 
steps, encompassing data preparation, tokenization and 
formatting, model training, model evaluation, hyperparameter 
tuning, and inference. 

 

Fig. 1. Information processing phases. 

A. Data Preparation 

The "Boses Ko" or "My Voice" is a toolkit developed, with 
its grassroots approach that is instrumental in gathering data 
directly from student beneficiaries of the UAQTE program. 
This prioritization of perspectives from those directly involved 
ensures the authenticity and relevance of the collected data. 
The qualitative question guiding the study, "Write your 
experiences as one of the beneficiaries of the UAQTE 
program," further focuses the data collection process on 
soliciting responses specifically tailored to understanding 
student experiences within the program. 

The sample size of 3,325 student responses, selected from 
State Universities and Colleges (SUCs), provides a diverse 
representation necessary for comprehensive examination across 
various institutional contexts. Data cleaning involves removing 
non-English, duplicate, non-grantee, and blank responses, 
which helps ensure the dataset's quality and consistency. Text 
standardization techniques, such as converting the cleaned 
dataset to lowercase and eliminating special characters, 
punctuation marks, and digits, further streamline the text 
representation, reducing noise and interference with the 
modeling process. These steps enhance the dataset's suitability 
for subsequent analysis and modeling tasks. Tokenization and 
removal of stopwords by implementing the Natural Language 
Toolkit (NLTK) library were necessary pre-processing steps. 
Responses were tokenized into individual words or tokens, 
making analyzing and processing text data easier. Stopwords 
like "as," "one," "of," "the," "it," "me," "a," and "in" are 
common in the responses but typically lack significant 
meaning alone. Eliminating these enhanced the quality, 
interpretability, and efficiency of the generated topics within 
the UAQTE framework by reducing noise and emphasizing 
content words that conveyed the core themes. 

Furthermore, domain experts play a key role in 
collaborating on crafting and refining predefined categories for 
qualitative responses. Leveraging their expertise ensures that 
the categories accurately represent the diverse dimensions of 
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student experiences within the framework of the UAQTE 
program. Through close collaboration with domain experts, the 
study ensures that the labeling of the dataset reflects the 
nuanced perspectives relevant to the research domain. Table I 
presents the categories derived through this collaborative 
effort. 

TABLE I. DOMAIN-EXPERTS IDENTIFIED CATEGORIES 

Categories Description 

Financial 
Support 

Responses that refer to the financial assistance provided, 

alleviation of financial burdens, and support with tuition 

fees, allowances, and other expenses. 

Educational 
Opportunity 

Responses that describe students' gratitude towards the 

program, enabling them to pursue their preferred courses, 

continue their studies, and access to quality education. 

Family 

Support 

Responses express families' gratitude for the support 

provided by the program and the ease it brings to their lives, 

as it relieves financial burdens, allowing them to save money 
and allocate resources to other expenses. 

Academic 

Focus and 
Personal 

Development 

Responses describe students being more focused on 

studying, becoming more responsible, and having more 

chances to invest in school projects due to the financial 
support received. They also attribute personal growth, 

increased enthusiasm, and improved class standings to being 

part of the program. 

Program 

Implementati

on 

Responses encompass a range of perspectives regarding the 

implementation of the program, reflecting both positive and 

negative viewpoints. 

For data splitting, an 80-20 train-validation split is 
implemented. 80% of the entire dataset is allocated for training, 
with 80% of this training set used for actual model training and 
the remaining 20% reserved for validation. This partitioning 
strategy ensures that the model is trained on a sufficiently large 
portion of the dataset while allowing validation to monitor 
model performance and prevent overfitting. The remaining 
20% of the entire dataset is held out for testing the model's 
performance, providing an independent evaluation of its 
generalization capabilities. 

B. Tokenization and Formatting 

Tokenization and formatting play crucial roles in preparing 
text data for transformer-based machine learning models such 
as BERT, RoBERTa, and ALBERT. These models rely on 
specific input structures to effectively process textual 
information. In the context of multiclass text classification 
using the UAQTE student responses dataset, tokenization 
involves breaking down the text into smaller units, typically 
words or subword units. This task is simplified by specialized 
tokenizers available in the Hugging Face's transformers library. 
For instance, the BERT tokenizer utilizes a WordPiece 
tokenizer to decompose words into subword units based on a 
predetermined vocabulary. Similarly, RoBERTa and ALBERT 
leverage WordPiece tokenization for the same purpose. 

Once tokenization is completed, the tokenized text data 
needs to be formatted into an appropriate input structure for the 
transformer models. This formatting process includes adding 
special tokens like [CLS] (classification token) at the beginning 
of each sentence and [SEP] (separator token) between 
sentences. Additionally, sequences are padded to a fixed 
length, and attention masks are created to differentiate actual 
words from padding tokens. These formatting steps ensure 

uniform input lengths and assist the model in focusing on 
relevant tokens during the training and inference phases. 

C. Model Training 

Model training with BERT, RoBERTa, and ALBERT 
involves several steps to adapt these transformer-based models 
for multiclass text classification tasks using the UAQTE 
student responses dataset. Pre-trained BERT, RoBERTa, and 
ALBERT models are initially loaded from the Hugging Face's 
transformers library. These models possess an extensive 
contextual understanding of language, making them suitable 
for diverse natural language processing tasks, including 
multiclass text classification. 

Subsequently, defining an optimizer and a loss function is 
crucial for training efficiency. Optimizers like Adam or SGD 
and loss functions such as Cross Entropy Loss are commonly 
employed. These components contribute to the model's ability 
to adjust parameters and minimize the loss during training, 
ensuring convergence towards accurate predictions. Data 
loaders are then created to handle the pre-processed text data 
efficiently, converting it into PyTorch or TensorFlow datasets. 
These loaders manage tasks like shuffling, batching, and 
loading data onto the GPU, streamlining the training process 
by optimizing resource utilization. 

The training loop iterates through batches of data from the 
training set. The input data is passed through the BERT, 
RoBERTa, or ALBERT model to obtain predictions in each 
iteration. Subsequently, the loss is calculated by comparing the 
model's predictions with the true labels, followed by a 
backward pass to compute gradients and update model 
parameters using the chosen optimizer. This iterative process 
continues for multiple epochs, with the model's weights 
adjusted iteratively to improve performance. 

D. Model Evaluation 

The model evaluation phase is critical to comprehensively 
assess the performance of the trained multiclass text 
classification models. This evaluation encompasses a range of 
metrics to gauge different aspects of the model's effectiveness 
in handling the UAQTE student responses dataset. Initially, the 
evaluation considers training accuracy, which reflects how well 
the models have learned from the training data by measuring 
the proportion of correctly classified instances within this 
dataset. Subsequently, validation accuracy is examined to 
understand the models' generalization performance on unseen 
data, offering insights into their ability to perform accurately 
on examples beyond the training set. In addition, test accuracy 
serves as a critical metric in evaluating the overall performance 
of the models on entirely novel and unobserved instances, 
thereby offering a practical indication of their efficacy. 

Furthermore, the evaluation procedure includes precision, 
recall, and F1-score metrics to offer a more comprehensive 
assessment of the models' performance with respect to the 
accuracy of classification by class. Precision quantifies the 
proportion of true positive predictions among all positive 
predictions made by the model, while recall calculates the 
proportion of true positive predictions among all actual positive 
instances. By calculating the harmonic mean of precision and 
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recall, the F1-score provides an equitable evaluation of the 
performance of the models in all classes. 

In summary, the confusion matrix provides a 
comprehensive breakdown of the errors committed by the 
models. It serves as a tabular representation of the 
discrepancies between the predicted and actual class labels. 
This aids in identifying particular domains that require 
enhancement within the UAQTE program context. 

E. Hyperparameter Tunning 

Tuning hyperparameters is a crucial component in 
maximizing the efficiency of a model. By conducting 
experiments involving hyperparameters such as learning rate, 
sample size, and number of epochs, it is possible to attain 
optimal performance. Additionally, monitoring model 
performance on a validation set during training facilitates the 
adjustment of hyperparameters to ensure convergence toward 
accurate predictions. The following are the hyper-parameters 
used: 

1) Batch Size. Determines the number of training examples 

processed in one iteration during training. By experimenting 

with batch sizes ranging from 16 to 64, the impact of different 

batch sizes on training dynamics and model convergence was 

observed. A larger batch size could accelerate the training 

process but could lead to memory constraints, while a smaller 

batch size could result in more noise during optimization. 

2) Epochs. The number of epochs denoted how often the 

model iterated through the training dataset. Altering the 

number of epochs, ranging from 1 to 15, impacted the training 

duration and the model's evaluation. Increasing the number of 

epochs enabled the model to extract more insights from the 

data, yet excessive epochs could lead to overfitting on the 

training set. 

3) Learning Rates. Controls the size of the step taken 

during optimization. Adjusting learning rates from 1e-5 to 5e-5 

allowed for the evaluation of the sensitivity of the model's 

performance. A higher learning rate might have led to faster 

convergence but risked overshooting the optimal solution, 

while a lower learning rate could have resulted in slower 

convergence but more stable training. 

4) Epsilon. It is a small value added to the denominator of 

the AdamW optimizer to prevent division by zero. A default 

value 1e-8 was typically used to ensure numerical stability 

during training. However, exploring the impact of adjusting 

epsilon to a value of 8 allowed for observing any changes in 

training dynamics or model performance. 

5) Max-length. Refers to the maximum number of tokens 

allowed in each input sequence. By varying the max-length 

between 128 and 256, the effect of considering different 

amounts of context on model performance could be 

investigated. A larger max-length allowed the model to capture 

more contextual information but might have required more 

computational resources and memory. 

Hyperparameter tuning involves systematically adjusting 
these parameters and evaluating their impact on the model's 
performance metrics, such as accuracy, precision, recall, and 

F1-score. This process can determine the optimal configuration 
of hyperparameters to improve the model's generalization and 
performance on unseen data. 

F. Inference 

In the final inference phase, domain experts validate 
predictions made by trained models and provide the predicted 
dataset's true labels. Their role is crucial in ensuring the 
accuracy and reliability of the model's predictions, as they 
verify the alignment of these predictions with the ground truth 
they have provided. This validation process is a robust quality 
control mechanism, guaranteeing that the model's predictions 
accurately reflect the qualitative responses within the UAQTE 
program context. 

Moreover, domain experts' involvement fosters a 
collaborative environment for continuous improvement and 
refinement of the classification system. Valuable insights and 
feedback are exchanged through a feedback loop between 
domain experts and machine learning models based on domain 
knowledge and expertise. Experts guide the iterative 
optimization of the models' performance, enhancing their 
predictive capabilities. 

During the inference phase, fine-tuned models like BERT, 
RoBERTa, and ALBERT classify qualitative responses from 
the UAQTE dataset, with domain experts providing true labels 
as the validation benchmark. Predictions are generated 
automatically, and the predictions made by the models and the 
true labels are saved for future reference or analysis. This 
collaborative effort between domain experts and machine 
learning models ensures that the insights derived from the 
predictions are accurate and trustworthy, contributing to 
informed decision-making in education policy analysis. 

Additionally, the inference phase evaluates models' 
performance on new data, validating their generalization 
capabilities. Deployment in real-world applications may 
require integrating existing systems, ensuring compatibility, 
and addressing technical challenges. Overall, domain experts' 
involvement, who validate predictions and provide true labels 
and fine-tuned models, advances natural language processing 
techniques and facilitates informed decision-making in 
education policy analysis. 

IV. RESULTS AND DISCUSSION 

The multiclass text classification task employing BERT, 
RoBERTa, and ALBERT architectures provided insights into 
their performance dynamics across various hyperparameter 
configurations. Both BERT and RoBERTa consistently 
exhibited improved accuracy with smaller batch sizes and 
higher numbers of epochs, as seen in Table II and Table III, 
suggesting the importance of detailed updates during training. 
Optimal learning rates, particularly 1e-5 and 3e-5, consistently 
yielded superior accuracy across different experimental 
settings, indicating their significance in facilitating effective 
model learning. 

However, it is noteworthy that larger maximum sequence 
lengths did not consistently enhance accuracy, revealing 
complexities in balancing sequence length and model 
performance. 
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Similarly, as seen in Table IV, ALBERT demonstrated 
consistent performance trends with smaller batch sizes and 
increased epochs, improving accuracy metrics. Notably, the 
impact of maximum sequence length on model performance 
varied across experiments, suggesting the need for careful 
consideration in adjusting sequence length for optimal 
accuracy. 

Instances of overfitting were observed beginning in five 
epochs, where training accuracy exceedingly surpassed 
validation and test accuracy, emphasizing the importance of 
early stopping or regularization techniques to prevent 
performance degradation. Overall, RoBERTa emerges as a 
strong choice due to its balanced performance, stability, and 
efficiency in training, making it a recommended option for 
practitioners aiming for reliable results. 

TABLE II. BERT HYPERPARAMETERS AND ACCURACY SCORES 

Batch 

Size 
Epoch 

Learning 

rate 

Max-

length 

Training 

Accuracy 

Validation 

Accuracy 

Test 

Accuracy 

16 3 1e-5 128 73% 72% 66% 

16 3 1e-5 256 77% 73% 68% 

32 3 1e-5 128 65% 65% 65% 

32 3 1e-5 256 70% 70% 67% 

16 5 1e-5 128 84% 73% 71% 

16 5 1e-5 256 85% 75% 70% 

32 5 1e-5 128 76% 72% 68% 

32 5 1e-5 256 79% 72% 69% 

16 3 3e-5 128 85% 76% 73% 

16 3 3e-5 256 87% 75% 71% 

32 3 3e-5 128 82% 75% 71% 

32 3 3e-5 256 81% 75% 70% 

16 5 3e-5 128 95% 75% 73% 

16 5 3e-5 256 96% 75% 73% 

32 5 3e-5 128 93% 74% 72% 

32 5 3e-5 256 92% 74% 72% 

16 3 5e-5 128 89% 76% 73% 

16 3 5e-5 256 88% 76% 72% 

32 3 5e-5 128 85% 76% 72% 

32 3 5e-5 256 85% 76% 73% 

16 5 5e-5 128 93% 74% 72% 

16 5 5e-5 256 97% 76% 73% 

32 5 5e-5 128 96% 75% 73% 

32 5 5e-5 256 96% 74% 72% 

TABLE III. ROBERTA HYPERPARAMETERS AND ACCURACY SCORES 

Batch 

Size 
Epoch 

Learning 

rate 

Max-

length 

Training 

Accuracy 

Validation 

Accuracy 

Test 

Accuracy 

16 3 1e-5 128 80% 75% 72% 

16 3 1e-5 256 79% 75% 71% 

32 3 1e-5 128 75% 73% 68% 

32 3 1e-5 256 76% 74% 71% 

16 5 1e-5 128 86% 76% 73% 

16 5 1e-5 256 86% 74% 72% 

32 5 1e-5 128 82% 73% 70% 

32 5 1e-5 256 83% 74% 72% 

16 3 3e-5 128 84% 75% 72% 

16 3 3e-5 256 85% 76% 72% 

32 3 3e-5 128 83% 75% 73% 

32 3 3e-5 256 82% 75% 72% 

16 5 3e-5 128 92% 76% 74% 

16 5 3e-5 256 93% 76% 72% 

32 5 3e-5 128 90% 75% 72% 

32 5 3e-5 256 91% 75% 73% 

16 3 5e-5 128 84% 76% 74% 

16 3 5e-5 256 87% 76% 71% 

32 3 5e-5 128 85% 76% 74% 

32 3 5e-5 256 84% 76% 73% 

16 5 5e-5 128 93% 76% 72% 

16 5 5e-5 256 93% 76% 73% 

32 5 5e-5 128 91% 75% 73% 

32 5 5e-5 256 91% 76% 73% 

TABLE IV. ALBERT HYPERPARAMETERS AND ACCURACY SCORES 

Batch 

Size 
Epoch 

Learning 

rate 

Max-

length 

Training 

Accuracy 

Validation 

Accuracy 

Test 

Accuracy 

16 3 1e-5 128 77% 72% 71% 

16 3 1e-5 256 75% 72% 69% 

32 3 1e-5 128 50% 42% 44% 

32 3 1e-5 256 68% 69% 63% 

16 5 1e-5 128 87% 73% 72% 

16 5 1e-5 256 83% 74% 70% 

32 5 1e-5 128 77% 68% 65% 

32 5 1e-5 256 77% 70% 66% 

16 3 3e-5 128 30% 33% 28% 

16 3 3e-5 256 83% 75% 72% 

32 3 3e-5 128 67% 70% 64% 

32 3 3e-5 256 76% 73% 70% 

16 5 3e-5 128 85% 74% 72% 

16 5 3e-5 256 94% 75% 74% 

32 5 3e-5 128 90% 74% 72% 

32 5 3e-5 256 85% 72% 71% 

16 3 5e-5 128 22% 19% 21% 

16 3 5e-5 256 74% 73% 70% 

32 3 5e-5 128 71% 72% 67% 

32 3 5e-5 256 70% 70% 68% 

16 5 5e-5 128 84% 73% 72% 

16 5 5e-5 256 68% 69% 63% 

32 5 5e-5 128 89% 72% 72% 

32 5 5e-5 256 86% 74% 73% 
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The performance metrics of BERT, RoBERTa, and 
ALBERT, outlined in Table V, provided insights into their 
effectiveness across different categories. BERT demonstrated 
strong precision, recall, and F1-score for "Family Support," 
while "Financial Support" also performed well, albeit with 
room for precision improvement. Similarly, "Academic Focus 
& Personal Development" showed balanced precision-recall 
metrics, while "Educational Opportunity" and "Program 
Implementation" exhibited lower scores, particularly in the 
recall. 

TABLE V. PERFORMANCE METRICS BY ARCHITECTURE AND CATEGORY 

Categories (BERT) Precision Recall F1-Score 

Academic Focus & Personal Development 70% 78% 74% 

Educational Opportunity 54% 60% 57% 

Family Support 95% 96% 96% 

Financial Support 73% 77% 75% 

Program Implementation 80% 55% 65% 

Weighted Average 74% 73% 73% 

Categories (RoBERTa) Precision Recall 
F1-

Score 

Academic Focus & Personal Development 71% 76% 74% 

Educational Opportunity 53% 59% 56% 

Family Support 95% 98% 97% 

Financial Support 75% 83% 79% 

Program Implementation 79% 52% 63% 

Weighted Average 74% 74% 74% 

Categories (ALBERT) Precision Recall 
F1-

Score 

Academic Focus & Personal Development 69% 77% 72% 

Educational Opportunity 53% 59% 55% 

Family Support 95% 95% 95% 

Financial Support 74% 78% 76% 

Program Implementation 74% 52% 61% 

Weighted Average 73% 72% 72% 

RoBERTa consistently performed well across categories, 
with outstanding performance in "Family Support" and 
"Financial Support." However, "Educational Opportunity" and 
"Program Implementation" still showed room for 
improvement, mirroring BERT's findings. While competitive, 
ALBERT showed slightly lower scores than BERT and 
RoBERTa. "Family Support" and "Financial Support" 
demonstrated strong performance, yet "Educational 
Opportunity" and "Program Implementation" again presented 
areas for refinement, particularly in recall. 

Overall, while all models showed effectiveness in specific 
categories, improvements were needed, especially in those with 
lower recall scores. Analyzing misclassified instances and 
adjusting model parameters could enhance performance across 
all categories. Addressing the classification of similar terms 
into multiple categories was also crucial to improve overall 
accuracy and mitigate confusion. 

The heatmap visualization of the confusion matrix, 
depicted in Fig. 2, provided nuanced insights into the 
classification performance of BERT, complementing the 
precision, recall, and F1-score metrics. In the "Academic Focus 
& Personal Development" (AF&PD) category, for instance, 
BERT accurately classified 103 instances (true positives), with 
17 instances misclassified (false negatives), aligning with its 
recall of 78%. Similar observations were made across other 
categories such as "Educational Opportunity" (EO), "Family 
Support" (FaS), "Financial Support" (FiS), and "Program 
Implementation" (PI). Notably, categories with lower recall 
scores, like PI, exhibited a higher number of false negatives, 
indicating potential areas for improvement. Conversely, 
categories with high precision and recall, like FaS, 
demonstrated fewer misclassifications. This in-depth analysis, 
in conjunction with precision, recall, and F1-score metrics, 
provided a comprehensive understanding of BERT's 
classification performance across diverse categories, thereby 
guiding optimization strategies for enhanced accuracy. 

 

Fig. 2. BERT confusion matrix heatmap. 

Similarly, the confusion matrix heatmap for RoBERTa, 
shown in Fig. 3, confirmed its accuracy, recall, and F1-score 
metrics across several categories. For example, in the 
"Academic Focus & Personal Development" (AF&PD) 
category, RoBERTa correctly categorized 100 occurrences 
(true positives) and misclassified 17 instances (false negatives), 
corresponding to a recall of 76%. Similar trends were seen in 
other categories, including "Educational Opportunity" (EO), 
"Family Support" (FaS), "Financial Support" (FiS), and 
"Program Implementation" (PI). 

 

Fig. 3. RoBERTa confusion matrix heatmap. 
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Categories with higher recall scores, like FaS, exhibited 
fewer false negatives, indicating robust classification 
performance. Conversely, categories with lower recall scores, 
such as PI, demonstrated a higher number of false negatives, 
suggesting potential areas for improvement. This detailed 
examination, combined with precision, recall, and F1-score 
metrics, facilitated a comprehensive evaluation of RoBERTa's 
classification performance, guiding targeted enhancements for 
optimal accuracy. 

Finally, Fig. 4 shows the confusion matrix heatmap for 
ALBERT, which provides insights into its accuracy, recall, and 
F1-score metrics across several categories. In the "Academic 
Focus & Personal Development" (AF&PD) category, for 
example, ALBERT accurately categorized 101 occurrences 
(true positives) while misclassifying 13 instances (false 
negatives), resulting in a 77% recall. This pattern continued in 
other areas, including "Educational Opportunity" (EO), 
"Family Support" (FaS), "Financial Support" (FiS), and 
"Program Implementation" (PI). Categories with greater recall 
scores, such as FS, produced fewer false negatives, suggesting 
strong categorization ability. Conversely, categories with lower 
recall scores, such as PI, had a larger incidence of false 
negatives, indicating possible areas for improvement. By 
integrating precision, recall, and F1-score metrics with the 
confusion matrix, a comprehensive assessment of ALBERT's 
classification performance was achieved, facilitating targeted 
enhancements for optimal accuracy. 

 

Fig. 4. ALBERT confusion matrix heatmap. 

Our findings are consistent with several prior investigations 
highlighting the effectiveness of transformer-based models in 
multiclass text classification tasks. For example, using pre-
trained language models, Lee et al. [70] conducted a 
comparative study on multiclass text classification within 
research proposals. Their research demonstrated exceptional 
performance in natural language understanding (NLU) tasks, 
showcasing the robust capabilities of transformer-based models 
in handling complex textual data. Similarly, Prabhu et al. [70] 
applied a BERT-based active learning approach to classify 
customer transactions into multiple categories, aiming to 
discern market needs across diverse customer segments. 
Furthermore, the study conducted by Chen et al. [71] observed 
significant enhancements in long-text classification 
performance when employing transformer-based models 
compared to traditional methods such as Convolutional Neural 
Networks (CNNs). 

In terms of model performance, RoBERTa consistently 
demonstrates superior performance compared to BERT and 
ALBERT in multiclass text classification tasks, a trend also 
observed in other studies. This aligns with the research 
conducted by Zhao et al. [72], who leveraged the RoBERTa 
base model to conduct financial text mining and public opinion 
analysis within social media contexts. The enhanced 
performance of RoBERTa can be attributed to its more 
extensive pre-training and modifications to the architecture, 
enabling it to capture more nuanced linguistic features and 
contextual information. Moreover, the investigation by Angin 
et al. [73] underscores the efficacy of fine-tuned RoBERTa-
based classification models for automating the processing of 
large document collections to detect relevance. Fine-tuning 
RoBERTa involves adjusting model parameters and 
hyperparameters to adapt the pre-trained RoBERTa model to 
specific tasks or datasets, enhancing its performance for the 
targeted classification task. This process allows the model to 
learn domain-specific features and nuances [73], [74], 
improving classification accuracy and relevance detection. 

While the study provided valuable insights into the 
performance of BERT, RoBERTa, and ALBERT in multiclass 
text classification, several constraints were encountered. 
Achieving an optimal balance between sequence length and 
model efficacy posed challenges, with inconsistencies in the 
impact of maximum sequence length on accuracy across 
different experiments. Additionally, addressing the 
classification of similar terms into multiple categories 
remained a limit, impacting overall accuracy and potentially 
leading to confusion in classification. These underscore the 
need for further research and refinement to enhance the 
effectiveness of transformer-based models in multiclass text 
classification tasks. 

The research has several limitations and deficiencies that 
should be acknowledged. Firstly, its narrow focus solely on 
evaluating transformer-based machine learning models (BERT, 
RoBERTa, and ALBERT) within the context of multiclass text 
classification in the Universal Access to Quality Tertiary 
Education (UAQTE) program restricts the generalizability of 
the findings beyond this specific domain. Secondly, while the 
research explores various hyperparameter configurations for 
model training, it may not comprehensively cover all possible 
combinations or consider other factors, such as optimization 
algorithms or regularization techniques. This limitation could 
be partly attributed to hardware requirements, as exhaustive 
exploration of hyperparameters may be computationally 
intensive. 

Lastly, while the results offer actionable recommendations, 
it is crucial to acknowledge that these suggestions serve as 
guidance rather than mandates, potentially limiting their 
enforceability and practical implementation within educational 
policy. Overcoming these limitations and deficiencies would 
strengthen the reliability and practical relevance of the research 
findings, providing a more thorough understanding of the 
performance of transformer-based machine learning models in 
educational settings. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

The study's comprehensive evaluation of BERT, 
RoBERTa, and ALBERT in multiclass text classification tasks 
revealed nuanced insights into their performance dynamics. 
Hyperparameter configurations played a crucial role, with 
smaller batch sizes and increased epochs consistently 
enhancing model accuracy. Optimal learning rates, particularly 
in the range of 1e-5 to 3e-5, significantly contributed to 
superior accuracy across experimental settings. However, the 
impact of larger maximum sequence lengths on accuracy was 
inconsistent, indicating the complexity of balancing sequence 
length and model performance. Moreover, instances of 
overfitting, particularly observed beyond five epochs, 
underscored the necessity of early stopping or regularization 
techniques to prevent performance degradation. 

Interpreting the classification results provided valuable 
insights into students' experiences within the UAQTE program. 
Categories like "Family Support" and "Financial Support" 
demonstrated high precision, recall, and F1 scores, indicative 
of the program's effectiveness in addressing student needs in 
these areas. Conversely, categories such as "Educational 
Opportunity" and "Program Implementation" exhibited lower 
scores, suggesting potential areas for improvement. The study's 
findings highlight the importance of selecting appropriate 
model architectures and hyperparameters tailored to the 
specific classification task. RoBERTa emerged as a robust 
choice due to its balanced performance, stability, and 
efficiency in training, making it a recommended option for 
similar classification tasks in educational contexts. 

For future works, researchers are encouraged to delve 
deeper into hyperparameter tuning, exploring alternative 
configurations to optimize model performance further. 
Addressing overfitting remains a critical concern, necessitating 
ongoing monitoring of training processes and fine-tuning 
regularization strategies. Continuous review and refining of 
educational programs, guided by evidence-based decision-
making and stakeholder feedback, is critical for effectively 
fulfilling students' changing needs. 

Future research approaches may also include looking into 
the interpretability of model predictions and researching socio-
cultural aspects that influence students' experiences to 
understand educational interventions' effectiveness better. By 
embracing these recommendations, researchers and 
practitioners can advance the multiclass text classification field 
and contribute to enhancing educational programs to support 
student success. 
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