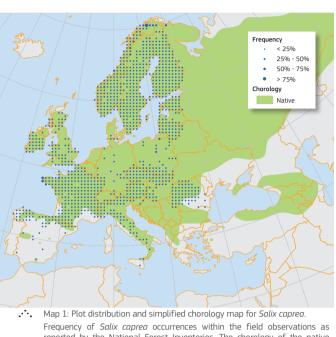
Salix caprea in Europe: distribution, habitat, usage and threats

C. M. Enescu, T. Houston Durrant, D. de Rigo, G. Caudullo

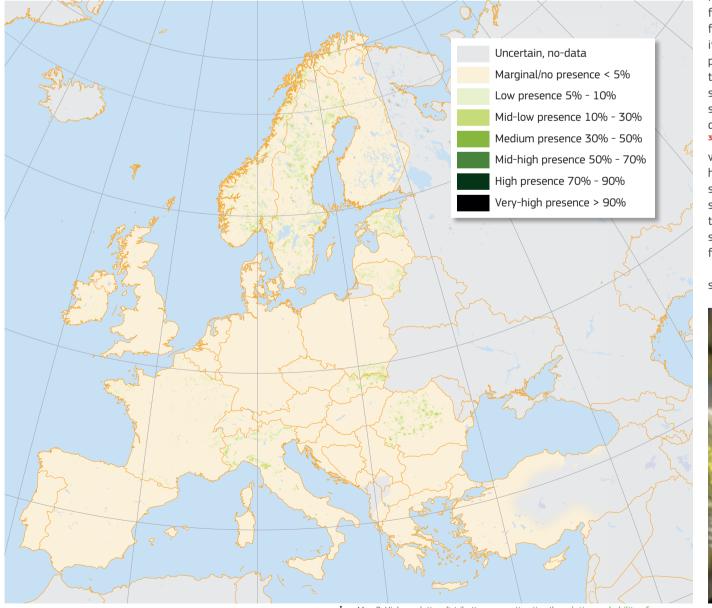
Salix caprea L., commonly known as goat willow, is a pioneer and a fast-growing plant, which has a wide distributional area across Europe and Asia in the boreal and temperate zones. The scientific name caprea means goat, which probably derives from the fact that its leaves were used as goat fodder. Due to its wide distribution range and its high ecological amplitude, goat willow represents a very valuable multi-purpose species, used principally for biomass plantation and for gardening and hedges.


The goat willow (Salix caprea L.) is a deciduous small to medium-size tree or shrub with heights up to 10m^{1, 2}, reaching only exceptionally 15 m³. It has a far-reaching and especially well-developed fibrous root system¹. The trunks are small, occasionally reaching a diameter of 40 cm⁴. The bark is smooth at the beginning, forming a thin rhytidome, irregularly cracked². The twigs are greenish, thick and with grey hairs. The leaves are alternate, broadly elliptic and up to 5-12 cm long. The upper side of the leaf is green and glossy, while the underside is covered by densely and softy white-downy hairs^{1, 5}. The goat willow is a dioecious species and catkins appear in early spring (usually in March or April, depending on the site conditions). Male catkins have spreading yellow stamens, while female catkins are greenish and insect-pollinated. The catkins are erect, with approximately 100-200 flowers in each female catkin and 200-300 flowers in each male catkin, respectively. Catkins are produced abundantly and they appear before the leaves³. This willow naturally hybridises with a number of other *Salix* species, producing fertile descendants with intermediate characteristics. Hence, this makes it difficult to determinate taxonomical limits and to assign individuals to a particular species within the Salix genus^{6, 7}.

Distribution

This species is native to cool temperate and boreal regions of Europe and Asia, occurring in a large range of habitats across Europe and Asia⁸. Its wide distribution spreads from Spain to China, from Turkey and northern Iran to Fennoscandia and Siberia reaching up to 70° north latitude^{1, 9-11}. It has been also introduced in eastern North America and is now naturalised¹².

Habitat and Ecology


The goat willow is a pioneer¹³ and a fast-growing plant¹⁴, tolerating a wide variety of **edaphic** and climatic conditions¹. It shows a high adaptability to different habitat conditions¹⁵, such as dry or wet sites¹⁶, usually growing in mesic to moist stands⁴. It prefers the calcareous sites, but it grows on almost all soil

reported by the National Forest Inventories. The chorology of the native spatial range for *S. capreg* is derived after several sources⁹

types¹⁷. Compared with other willow species, the goat willow is more sensitive to continuous flooding¹⁸, avoiding the saturated soils of wetlands¹⁹. Regarding its demand for light, it is a very shade intolerant species, occurring in open areas with full sun¹, but it is one of the few willow species able to grow in forest understories⁸. Unlike almost all other willows, the goat willow can only occasionally be propagated vegetatively by cuttings^{8, 20}.

In boreal forests, it is found in the dominant Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and birch (Betula spp.) forests, in admixture with other deciduous species such as aspen (Populus tremula) and rowan (Sorbus aucuparia)^{21, 22}, favoured by disturbances which create open areas²³. In temperate forests dominated by oaks (Quercus spp.), European beech (Fagus

sylvatica) and Norway spruce, it is present with other understorey species such as hazel (Corylus avellana), elder (Sambucus nigra) and bramble shrubs of the genus Rubus, occurring principally in forest clearings and open areas²⁴⁻²⁶.

. Goat Willow in Hesse, Germany Copyright Willow, commons.wikimedia.org: CC-BY

Importance and Usage

This species has a wide variety of uses. The scientific name caprea actually means goat, which probably derives from the fact that its leaves are used as fodder²⁷. In northern Europe, it is a common species in the agricultural landscape, used as a windbreak and hedge²⁸, and its foliage is used as fodder for cattle and goats^{29, 30}. In traditional medicine, goat willow extracts are used as a painkiller, astringent, antiseptic, eye tonic²⁸, or even to treat malaria, gout, neuralgia and intestinal diseases³¹. As is also the case with other willows, a good charcoal can be obtained from its burnt wood, which in the past was used for gunpowder and for drawing pencils^{32, 33}. The goat willow is particularly valuable for its high biomass production in short rotation plantations and its role in landscape restoration^{34,} as it is able to tolerate even polluted land^{35.} Worldwide, this willow is also used for its ability to extract heavy metals, such as Cd and Zn, (i.e. phyto-extraction strategy) from polluted sites³⁴⁻³⁶. During spring holidays, in several places across Europe, its flowering branches are in high demand³⁷. It is also appreciated as a melliferous plant species³⁸, ³⁹, supplying a honey production of 150-200 kg/ha⁴⁰. The goat willow distribution range overlaps with many areas in Europe with high erosion rates, including European boreal areas and moist slopes with high drainage-area within the European mountain systems⁴¹. In these critically erosion-prone areas, it contributes to key ecosystem services such as watershed protection and soil stabilisation⁴². As for other willows and poplars, it is also useful for ecosystem restoration and phytoremediation^{43,44}.

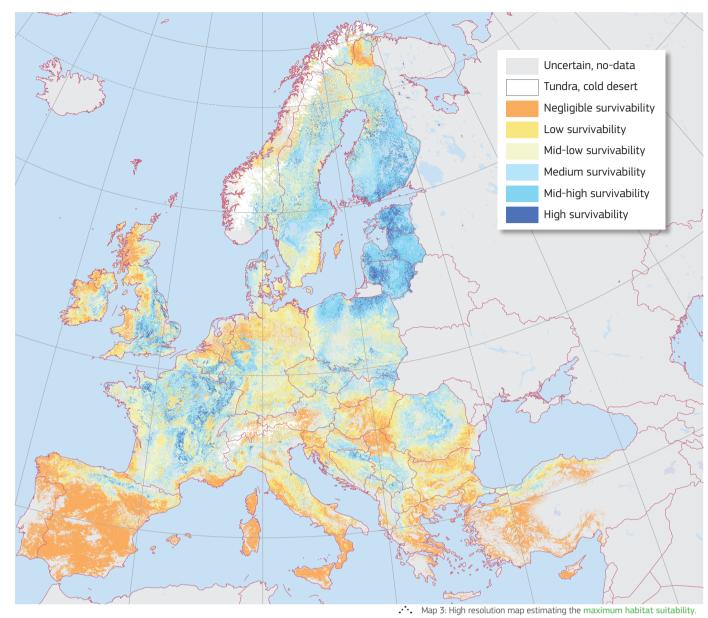
Finally, the goat willow plays an important role in maintaining species diversity, by being the host of several lichen species^{4, 37}.

. Map 2: High resolution distribution map estimating the relative probability of pres

Male catkins turn yellow when the pollen is ready for rel (Copyright AnRoOOO2, commons.wikimedia.org: CCO)

Salix caprea

This willow is among the first flowering plants in the spring, the catkins providing a high quantity of pollen and nectar as a food source, to bees, insects or birds, such as Eurasian blue tits (Cyanistes caeruleus)³.



 Female catkins are insect pollinated. (Copyright AnRo0002, commons.wikimedia.org: CCO)

Threats and Diseases

The goat willow is a short-living plant and has no severe threatening diseases in its natural habitats. Pests are reported to result in economic loss only in biomass coppice plantations. The fungus Rhytisma salicinum, the leaf-galler sawfly Pontania pedunculi and the leaf-folder sawfly of genus Phyllocolpa may cause damage to individuals, by affecting the leaves⁴⁵. The rust fungus Melampsora capaearum may infect the goat willow and its hybrids, raising dusty orange spots or pustules on the leaves, resulting in lower photosynthetic performance and eventually defoliating the trees. Breeding programmes have been promoted for selecting rust resistant willows in biomass plantations and

gardening plants^{46, 47}. The goat willow is susceptible to attacks from the Asian longhorned beetle (Anoplophora glabripennis), despite showing noticeable resistance and thus potentially acting as overwintering reservoir of the beetle^{48, 49}. It is also vulnerable to the gypsy moth (Lymantria dispar)^{48, 50, 51}. Nematus miliaris can completely defoliate the goat willow, which in Poland has been reported to be preferentially attacked (along with Salix

References

- F. Clinovschi, *Dendrologie* (Editura Universitatii Suceava, 2005). [1]
- I. D. Trava, G. F. Borlea, W. Hollerbach [2] Journal of Horticulture, Forestry and Biotechnology **18**, 209 (2014).
- [3] Q. O. N. Kay, Bird Study 32, 40 (1985). M. Kuusinen, *Mitt. Eidgenoss. Forsch. anst.* Wald. Schnee. Landsch. **70**, 125 (1995). [4]
- B. Eversham, A key to lowland willows. [5]
- sallows and osiers (2006). V. 1.6. M. Aránzazu Prada, D. Arizpe, Riparian [6] Tree and Shrub Propagation Handbook
- An Aid to Riverine Restoration in the Mediterranean Region (Generalitat Valenciana, Valencia, 2008).
- A. E. Palme, V. Semerikov, M. Lascoux Heredity **91**, 465 (2003).
- H. Neuner, R. Beiderbeck, Silvae Genetica [8] 42, 308 (1993).
- H. Meusel, E. Jager, S. Rauschert, E. Weinert, *Vergleichende Chorologie der* Zentraleuropäischen Flora (Gustav Fischer Verlag Jena, 1978).

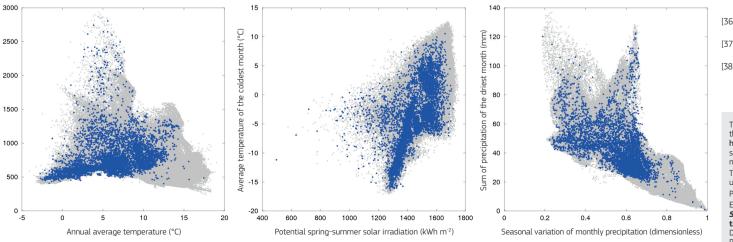
- [11] J. Jalas, J. Suominen, Atlas Florae Europaeae: distribution of vascular plants in Europe Vol. 3 Salicaceae to Balanophoraceae (Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanario, Helsinki, 1976).
- [12] G. W. Argus, *Flora of North America North of Mexico*, Flora of North America Editorial Committee, ed. (New York and Oxford, 2010), vol. 7.
- [13] A. Bobiec, Polish Journal of Ecology 55, 441 (2007).
 - [14] J. B. Faliński, Journal of Vegetation Science 9, 57 (1998).
 - [15] J. Dušek, J. Květ, Biologia 61, 441 (2006). [16] T. F. Marshall, *Section 5: Salicaceae* (willows & poplars) (Prestwood Nature
 - [17] S. Lowe, N. Repper, L. Miles, S. G. Wallace, Notes on tree planting and the use of native species in North East England
 - fields and forests, medical, economical, and agricultural (Walker, Evans & (Wildlife Trusts, Northumberland, UK Cogswell, Charleston, South Carolina, U.S. 1869) [18] R. J. Talbot, J. R. Etherington, J. A. Bryant,

- [20] M. Liesebach, G. Naujoks, *Plant Cell, Tissue* [39] A. C. Băloi, I. Csosz, S. C. Martin, A. Bogluț, *and Organ Culture* **79**, 239 (2004).
 [21] E. Lähde, T. Eskelinen, A. Väänänen, 241 (2013).
 - [40] D. C. Popovici, E. Crăiniceanu, D. S. Bistrean, O. Colibar, *Lucrări Științifice* Medicină Veterinară **40**, 46 (2007).
 - [41] C. Bosco, D. de Rigo, O. Dewitte, J. Poesen P. Panagos, *Natural Hazards and Earth System Science* **15**, 225 (2015).
 - [42] J. E. Norris, A. Di Iorio, A. Stokes, B. C. Nicoll, A. Achim, Slope Stability and Erosion Control: Ecotechnological Solutions, J. E. Norris, et al., eds. (Springer Netherlands, 2008), pp. 167-210.
 - [43] Y. Kuzovkina, M. Quigley, Water, Air, and Soil Pollution 162, 183 (2005).
 - [44] J. Ball, J. Carle, A. Del Lungo, Unasylva 56, 3 (2005)
 - [45] J. Hjältén, L. Ericson, H. Roininen, *Ecoscience* **7**, 51 (2000).
 - [46] B. Bubner, et al., Fungal Biology 118, 910 (2014).
 - [47] M. H. Pei, T. Hunter, D. J. Royle, New Phytologist **141**, 155 (1999)
 - [48] D. de Rigo, et al., Scientific Topics Focus 2, mri10a15+ (2016).
 - [49] V. de Tillesse, L. Nef, J. Charles, A. Hopkin, S. Augustin, *Damaging poplar Insects* Internationally important species (International Poplar Commission, FAO,
 - Rome, 2007). [50] M. J. Lechowicz, Y. Mauffette, Revue
 - d'Entomologie du Quebec **31**, 43 (1986). [51] E. M. Andreeva, Russian Journal of Ecology 33, 342 (2002).
 - [52] Botanical Society of Britain & Ireland, *BSBI big database* (2015). http://bsbidb.org.uk

The leaves are broader than those of many other willow (Copyright AnRoOOO2, commons.wikimedia.org; CCO)

Field data in Europe (including absences)
Observed presences in Europe

Annual precipitation (mm


E. Hultén, M. Fries, Atlas of North European vascular plants (North of the Tropic of Cancer), Vols. I-III. (Koeltz scientific books, 1986).

New Phytologist 105, 563 (1987). [19] J. G. Isebrands, J. Richardson, Poplars and willows: trees for society and the environment (CABI : FAO, 2014).

•..• Autoecology diagrams based on harmonised field observations from forest plots.

2014).

2012).

[33] W. Withering, A botanical arrangement of all the vegetables naturally growing in Great Britain, vol. 2 (Cadel and Elmsley, London, 1776).

[21] E. Lähde, T. Eskelinen, A. Väänänen,

[22] T. Kuuluvainen, Silva Fennica 36 (2002).

[23] O. Engelmark, Boreal forest disturbances

[24] M. Budzáková, D. Galvánek, P. Littera, J. Šibik, Acta Societatis Botanicorum

[25] R. Van Couwenberghe, C. Collet, E. Lacombe, J.-C. Pierrat, J.-C. Gégou

[26] T. Degen, F. Devillez, A.-L. Jacquema

[27] J. E. Smith. The Enalish Flora Vol. 4

[28] A. Ahmed, W. A. Shah, S. Akbar,

Pharmacology **1**, 17 (2011).

[30] J. Smith. The History of Temperate Agroforestry (The Organic Research Centre, Elm Farm, Newbury, Berkshire,

[31] A. Ahmed, et al., Journal of Pharmacy Research **4**, 1067 (2011).

[32] F. P. Porcher, Resources of the southern

(Elsevir, 1999), chap. 6, pp. 161–186.

Forest Ecology and Management 260,

Annals of Forest Science 62, 429 (2005)

(Longman, Rees, Orme, Brown and Green London, 1830), second edn.

M. Younis, D. Kumar, International Journal of Research in Phytochemistry &

[29] A. Popp, K.-M. Scheibe, *Agriculture* **3**, 147 (2013).

Forestry 75, 395 (2002)

Poloniae 82, 13 (2013).

146 (2010).

UK. 2010).

- [34] M. Vaculìk, et al., Environmental Pollution **163**, 117 (2012).
- [35] C. Varga, M. Marian, L. Mihaly-Cozmuta, A. Mihaly-Cozmuta, L. Mihalescu, Analele Universității din Oradea, Fascicula Biologie **16**, 141 (2009).
- [36] M. Kuffner, et al., Journal of Applied Microbiology 108, 1471 (2010).
- [37] W.-D. Gu. M. Kuusinen, T. Konttinen I. Hanski, *Ecography* **24**, 139 (2001).
- [38] N. Ion, International Scientific Symposium (University of Agronomical Sciences and Veterinary Medicine of Iaşi, Romania, 2008).
- [53] B. Jonsell, ed., Flora Nordica, Vol 1: Lycopodiaceae - polygonaceae (The Royal Swedish Academy of Sciences, Stockholm 2000).
- [54] A. K. Skvortsov, Willows of Russia and Adjacent Countries: Taxonomical and Geographical Revision (English translation of 1968 Russian edition) (University of Joensuu, Finland, 1999).
- [55] Anthos, Information System of the plants of Spain (Real Jardin Botánico. CSIC -Fundación Biodiversidad. 2015). http://www.anthos.es.
- [56] Tela Botanica, eFlore (2015). http://www.tela-botanica.org

This is an extended summary of the chapter. The full version of this chapter (revised and peer-reviewed) will be published online at https://w3id.org/mtv/FISE-Comm/v01/e01322d. The purpose of this summary is to provide an accessible dissemination of the related main topics.

This QR code points to the full online version, where the most updated content may be freely accessed.

Please, cite as:

Enescu, C. M., Houston Durrant, T., de Rigo, D., Caudullo, G., 2016. Salix caprea in Europe: distribution, habitat, usage and **threats**. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), *European Atlas of Forest Tree Species*. Publ. Off. EU, Luxembourg, pp. e01322d+

