

National Grid

M. Wallace and Son, Inc. Scrapyard Site Cobleskill, New York Site No. 4-48-003

January 2008

2007 OM&M Report

nationalgrid

January 29, 2008

Mr. Daniel Lightsey, P.E. New York State Department of Environmental Conservation Office of Environmental Quality, Region 4 1150 North Westcott Road Schenectady, NY 12306-2014

Re:

National Grid

M. Wallace and Son, Inc. Scrapyard Site, Cobleskill, New York

Site No. 4-48-003

Dear Mr. Lightsey:

Enclosed are one hard copy and one CD electronic copy of the 2007 OM&M Report for the M. Wallace and Son, Inc. Scrapyard Site, Cobleskill, NY (#4-48-003).

Within the document is the Biota Sampling & Analysis letter report from ARCADIS to National Grid regarding the October 2007 event. National Grid anticipates conducting the next event in the fall of 2009.

National Grid has evaluated the temporary water treatment system (300 gpm system) and determined it to be inadequate for further site use. As discussed previously, National Grid has made operational and specific system modifications to the permanent water treatment system that will meet site goals satisfactorily. National Grid plans to decommission the temporary water treatment system in 2008.

If you have any questions, don't hesitate to call me at 315-428-5652.

Matthew D. Millian for SPS

Steven P. Stucker, P.G.

Senior Environmental Engineer

National Grid

Enclosures

Cc:

Matthew Millias - CDM Timothy Beaumont - CDM

Contents

Section 1		Introduction	
1	1.1	Introduction	1-1
1	1.2	Site Background	1-1
1	1.3	OM&M Overview	1-2
Section 2		Discharge Water Monitoring	
2	2.1	General	2-1
2	2.2	Discharge Water Sampling Analytical Results	2-1
Section 3		Groundwater Monitoring	
3	3.1	General	3-1
3	3.2	Groundwater Sampling Analytical Results	3-1
3	3.3	Analytical Results Data Validation	3-1
Section 4		NAPL Monitoring	
4	1.1	LNAPL Recovery Systems O&M	4-1
4	1.1	LNAPL Recovery	4-1
Section 5		Operation and Maintenance Activities	
5	5.1	2007 O&M Activities	5-1
5	5.2	January 2007 Operations and Maintenance Activities	5-2
5	5.3	February 2007 Operations and Maintenance Activities	5-3
5	5.4	March 2007 Operations and Maintenance Activities	5-3
5	5.5	April 2007 Operations and Maintenance Activities	5-4
5	5.6	May 2007 Operations and Maintenance Activities	5-4
5	5.7	June 2007 Operations and Maintenance Activities	5-5
5	5.8	July 2007 Operations and Maintenance Activities	5-5
5	5.9	August 2007 Operations and Maintenance Activities	5-7
5	5.10	September 2007 Operations and Maintenance Activities	5-7
5	5.11	October 2007 Operations and Maintenance Activities	5-9
5	5.12	November 2007 Operations and Maintenance Activities	5-9
5	5.13	December 2007 Operations and Maintenance Activities5	-10
5	5.14	Completed O&M Recommendations5	-10
5	5.15	Recommendations5	-11
Section 6		References	

Tables

Table 1 2007 System Operations

Figures

Figure 1 Site Location Map Figure 2 Structure Location Map

Appendices

Appendix A
 Appendix B
 Appendix C
 Appendix C
 Appendix D
 Appendix E
 Appendix E
 Appendix F
 Biota Sampling and Analysis Program

Section 1 Introduction

1.1 Introduction

In July of 2006, the duties of operation, maintenance and monitoring (OM&M) of the M. Wallace and Son, Inc. Scrapyard Site in Cobleskill, New York were transferred by National Grid to Camp, Dresser & McKee (CDM). This report compiles the OM&M activities completed in 2007. The OM&M activities currently being conducted are based on the *Operation, Maintenance and Monitoring Plan* (OM&M Plan) submitted by National Grid to the New York State Department of Environmental Conservation (NYSDEC) in June 2004, with revisions submitted in January 2007 and approved by NYSDEC in February 2007.

1.2 Site Background

The Site is located at the intersection of New York State Route 10 (Elm Street) and Settles Mountain Road (formerly West Street) in the Village of Cobleskill, Schoharie County, New York (see Figure 1 – Site Location Map). The portion of the Wallace property located north of Route 10 is the "Site" and encompasses approximately 6 acres. The Site is bordered by Settles Mountain Road to the west; Route 10 to the south; several apartments and residential housing to the east; and a high school athletic field to the north. A site plan showing the location of features at the Site is presented on Figure 2 – Structure Location Map.

M. Wallace and Son, Inc. is an active salvage business that recovers and resells mechanical parts and materials. During the 1950s through the early 1980s, electrical transformers were purchased by the Site operator and transported to the scrapyard. The transformers were disassembled in the electrical equipment gut area to recover copper components, which were then resold. During these scrapping operations, dielectric fluid, some of which contained polychlorinated biphenyls (PCBs) was released to the ground surface. In June 1983, personnel from NYSDEC Bureau of Enforcement and Criminal Investigation (BECI) collected samples of soil in the electrical equipment gut area, sediment and water from the quarry pond, and sediment from the quarry pond outlet channel. The analytical results of the samples collected by BECI indicated that PCBs were present in soil, sediment, and surface water at the Site. In response to BECI's investigation, Schoharie County Department of Health (SCDH) sampled eight residential water supply wells near the Site. Results of this groundwater sampling indicated that purgeable aromatics, purgeable hydrocarbons, and PCBs were not detected in any of the residential water supplies sampled.

Due to the presence of PCBs at the Site, as identified by BECI's sampling, the Site was listed by the NYSDEC as a Class 2 Inactive Hazardous Waste Site (Site No. 4-48-003). In response to a lawsuit filed by the State of New York Attorney General, Niagara Mohawk Power Corporation and M. Wallace and Son, Inc., entered into an Interim Consent Order (Case No. 85-CV-219) in December 1987 to address the presence of

PCBs and other chemical constituents in environmental media at the Site. In March 1994, a permanent 100 gpm water treatment system, housed in a prefabricated building with concrete foundation located in the southwest corner of the property, was installed to fulfill the NYSDOL and NYSDEC's long-term treatment requirement. A temporary 300 gpm water treatment system, that is trailer mounted and housed in a sprung structure located in the lower section of the Site, was installed in March 1995 for use during periods when the recharge rate into the quarry pond exceeds the 100 gpm treatment capacity of the permanent system. The permanent 100 gpm and temporary 300 gpm water treatment systems are operated and maintained to prevent discharge of quarry pond water containing PCBs in excess of 65 ppt into the offsite stormwater drainage system. The 100 gpm treatment system is generally operated remotely through a computer telemetry system; and operation of the 300 gpm system requires manual manipulation of equipment by a fulltime onsite operator.

It should be noted that due to freeze/thaw damage over the years, the 300 gpm system is only capable of handling 90 gpm at most. CDM has been authorized to upgrade the permanent system so that the 300 gpm system can be dismantled. Several operational modifications to the permanent 100 gpm system have been completed to make the 300 gpm system unnecessary.

1.3 OM&M Overview

At this time, the following activities are conducted at the site on a routine basis:

- Discharge water from the primary water treatment system is sampled on a monthly basis and sent to a lab to be analyzed for PCB's by EPA Method 608.
- Influent water to the primary water treatment system is sampled semiannually and sent to a lab to be analyzed for PCB's by EPA Method 608.
- Semi-annual groundwater sampling is conducted at three off-site monitoring wells (C-20, C-21 and C-22). The samples are sent to a lab to be analyzed for PCB's by EPA Method 608 and the analytical results are sent for validation.
- LNAPL recovery systems are maintained on a monthly basis to collect any product present in monitoring wells/core holes C-3/MW-8 and C-4.
- General maintenance of the site grounds and all collection, treatment and recovery systems and visual inspection and documentation of the vegetative soil cover twice per year.

The following sections detail the activities listed above.

Section 2 Discharge Water Monitoring

2.1 General

During the reporting period, the permanent primary water treatment system was sampled. The sample locations are:

- NTS-BCW, located between carbon vessels A and B (also called the interim system water sample), sampled monthly;
- NTS-IW, located at the influent sampling port prior to the equalization tank (also called the influent water sample), sampled semi-annually; and
- NTS-EW, located prior to discharge into the backwash surge tank (also called the effluent water sample), sampled monthly.

The monthly sample NTS-BCW was discontinued starting in May 2007. For each sampling event, a set of duplicate samples is also collected and analyzed if PCB's are detected in excess of the 0.065 detection limit in the first sample. When the temporary secondary water treatment system is run in conjunction with the primary system, samples from additional sample points are collected. During 2007, the two systems were never run in conjunction; therefore no additional samples were collected.

2.2 Discharge Water Sampling Analytical Results

Samples collected each month of 2007 were processed by Test America (formerly STL) for PCB's using USEPA Method 608. All samples analyzed indicated that PCB's were not detected above the laboratory quantitation limit (see summary table on next page). Laboratory analytical results are included in Appendix B. Data validation is not required for these sample locations.

Discharge Water Analytical Results Summary

Month	Sample Location NTS-BCW PCB Result	Sample Location NTS-IW PCB Result	Sample Location NTS-EW PCB Result
January 2007	Non-Detect	No Sample	Non-Detect
February 2007	Non-Detect	Non-Detect	Non-Detect
March 2007	Non-Detect	No Sample	Non-Detect
April 2007	Non-Detect	No Sample	Non-Detect
May 2007	No Sample	No Sample	Non-Detect
June 2007	No Sample	No Sample	Non-Detect
July 2007	No Sample	No Sample	Non-Detect
August 2007	No Sample	Non-Detect*	Non-Detect*
September 2007	No Sample	No Sample	Non-Detect
October 2007	No Sample	No Sample	Non-Detect
November 2007	No Sample	No Sample	Non-Detect
December 2007	No Sample	No Sample	Non-Detect

^{*} PCB's were detected in the first sample analyzed; therefore the duplicates were also analyzed. There were no PCB's detected in the duplicate sample or in the second sample that was collected. Test America confirmed that it was a laboratory error by cross-contamination.

Section 3 Groundwater Monitoring

3.1 General

The spring semi-annual groundwater sampling event was conducted on April 10, 2007 and the fall semi-annual groundwater sampling event was conducted on October 2, 2007. Monitoring wells C-20, C-21 and C-22, located off-site on the west side of Settles Mountain Road, were sampled during each event and sent to Test America for PCB analysis. Duplicates of each sample (including the field duplicate) were also taken to be analyzed in case PCB's were detected in the initial sample. Static water levels of each well, purging data for the wells and the chain of custody for the samples are included in Appendix A.

3.2 Groundwater Sampling Analytical Results

Three aqueous samples and a field duplicate were processed for each event by Test America for low level TCL PCB's by USEPA CFR 136 Method 608, with additional QC requirements of the NYSDEC ASP. All samples analyzed indicated that PCB's were not detected above the laboratory quantitation limit. Due to the lack of PCB's contained in the first sample, the duplicate samples were not analyzed. Laboratory analytical results are included in Appendix B.

3.3 Analytical Results Data Validation

For the spring event, in summary, sample analyte values/reporting limits are usable as reported. All holding times were met and surrogate recoveries were within the required limits. Blanks showed no contamination. The matrix spikes of Aroclors 1016 and 1260 in C-20-0407 showed acceptable recoveries and duplicate correlations. The blind field duplicate correlations of C-21-0407 were also within guidance limits. An outlying surrogate calibration standard response was observed did not negatively impact the results of the samples. The confirmation column calibration standards responses fell well outside acceptable limits. However, the samples report no detection based upon acceptable primary column performance, and the confirmation column data are therefore no necessary. Also, although required of the laboratory deliverables, raw data are not identified with the client ID.

For the fall event, in summary, sample analyte values/reporting limits are usable, with reporting limits edited upward to reflect the processing. The reporting limits for the non-detected Aroclors have been raised to 0.10 ug/L from 0.065 ug/L, to reflect the lowest concentration supported by the instrument calibration range. All holding times were met and surrogate recoveries were within the required limits. Blanks showed no contamination. The matrix spikes of Aroclors 1016 and 1260 in C-20-1007 showed acceptable recoveries and duplicate correlations. The blind field duplicate correlations of C-21-1007 were also within guidance limits. An outlying surrogate calibration standard response was observed did not negatively impact the results of the samples. Both analytical columns show elevated responses for Aroclor 1260 in one

of the calibration standards. The samples results report no detection and are therefore not affected. Other confirmation column calibration standards responses fall outside acceptable limits. However, the non-detected results are based upon acceptable primary column performance, and the confirmation column data are therefore not necessary. The chromatograms are not scaled according to ASP requirements, but are normalized to a solvent peak. Therefore, independent verification of the reported non-detected results is not possible.

The data validation summary reports, as well as qualified report forms, are included in Appendix C.

Section 4 NAPL Monitoring

4.1 LNAPL Recovery Systems O&M

The LNAPL recovery systems (Abanaki Belt Skimmers) present in the monitoring wells/core holes C-3/MW-8 and C-4 were maintained on a monthly basis. See Appendix D for the monthly inspection spreadsheets. Minimal monthly maintenance was performed on the LNAPL recovery systems and is summarized below.

■ The recovery belt and pulley on C-3/MW-8 were replaced.

4.2 LNAPL Recovery

During 2007, one gallon of LNAPL was collected in C-3/MW-8. No LNAPL was detected in C-4. A summary of LNAPL recovery since 2004 is presented in the table below, with the next table presenting the combined amount of LNAPL for each reporting period and the total amount collected over the duration of the program.

Monthly LNAPL Recovery

Date	C-3	?/MW-8	C-4				
Date	Inches in Drum	Gallons in Drum	Inches in Drum	Gallons in Drum			
2004	1.5	1.50	0.75	0.75			
1/2005-6/2006	2.75	2.75	0.75	0.75			
7/2006-12/2006	2.75	2.75	0.875	0.88			
1/30/2007	3.00	3.00	0.875	0.88			
2/21/2007	3.00	3.00	0.875	0.88			
3/13/2007	3.00	3.00	0.875	0.88			
4/2/2007	3.00	3.00	0.875	0.88			
5/9/2007	3.00	3.00	0.875	0.88			
6/13/2007	3.00	3.00	0.875	0.88			
7/19/2007	3.00	3.00	0.875	0.88			
8/13/2007	3.00	3.00	0.875	0.88			
9/17/2007	3.00	3.00	0.875	0.88			
10/2/2007	3.00	3.00	0.875	0.88			
11/15/2007	3.75	3.75	0.875	0.88			
12/5/2007	3.75	3.75	0.875	0.88			

Yearly (Reporting Period) LNAPL Recovery

Year	Combined Totals (gallons)
2004	2.25
1/2005-6/2006	1.25
7/2006-12/2006	0.13
2007	1.00
Total	4.63

CDM is currently coordinating disposal of the 4.63 gallons of LNAPL recovered since 2004, according to the drum within a drum procedures related to secondary containment. Going forward, National Grid plans to dispose of LNAPL on an annual basis.

Section 5 Operation and Maintenance Activities

5.1 2007 O&M Activities

A monthly site inspection was conducted and documented (including maintenance/inspection of the LNAPL recovery system). Discharge water sampling was conducted monthly as well. The primary water treatment system was operated as needed to maintain a quarry water level 6-8 ft above the bottom. A system operations table, Table 1, was complied for the site and includes the following information for each day readings were obtained:

- Date;
- Time;
- quarry level;
- coagulant tank level;
- back wash tank level;
- treated water flow;
- back wash flow;
- Influent pressure;
- MMF supply pressure;
- MMF discharge pressure;
- GAC filter discharge pressure;
- back wash supply pressure;
- influent water temperature;
- WTF room temperature;
- MMF effluent turbidity;
- GAC filter effluent turbidity;
- effluent Ph;
- MMF A elapsed run time; and
- MMF B elapsed run time.

The monthly averages for key information are summarized in the table below.

2007 Month	Days system operating	Average quarry level (feet)	Average gallons per minute	Total effluent (gallons)	Average effluent turbidity (NTU)	Average effluent PH
January	25	7.11	146.88	5,287,680.00	2.97	7.56
February	9	7.16	145.71	1,888,401.60	1.61	7.59
March	31	8.30	164.30	7,334,352.00	0.80	6.79
April	30	8.81	184.78	7,982,496.00	0.70	6.63
May	30	6.59	116.64	5,038,848.00	3.22	6.42
June	30	5.88	55.89	2,414,448.00	3.09	6.26
July	31	5.37	44.89	2,003,889.60	0.32	6.24
August	11	6.07	67.00	1,061,280.00	0.21	6.21
September	10	5.08	55.50	799,200.00	0.37	6.24
October	12	6.39	107.14	1,851,379.20	0.88	6.29
November	30	6.70	90.14	3,894,048.00	1.59	6.75
December	31	6.31	110.44	4,930,041.60	1.16	6.73
Totals	280	6.65	107.44	44,486,064.00	1.41	6.64

The general O&M activities completed by CDM are organized by month in the following sections.

5.2 January 2007 Operations and Maintenance Activities

During the month of January, the following OM&M activities were conducted by CDM:

Brady Fence installed approximately 210 feet of six foot high chain-link fence along the eastern property line on January 18 and 22, 2007. Brady Fence also removed the old fence panels and disposed of them offsite.

Fence Installation

Wiring was repaired on three of the four heaters within the LNAPL system buildings. The electrical connection wiring burned at the heater over time and shorted out the heaters. One heater unit was not repairable and a new heater was ordered.

A meeting was held with ASPLUNDH to discuss vegetation removal needs for 2007.

5.3 February 2007 Operations and Maintenance Activities

During the month of February, the following OM&M activities were conducted by CDM:

- During February the system was put into recirculation mode. This kept the submersible pumps from freezing. The water was pumped into the building and then back into the quarry. However, the effluent discharge piping then froze. CDM cut, removed, thawed, and replaced the piping.
- Received three new automatic control heads for KV-15, KV-16 & KV-17.
- Met with Mike Gray, the owner of Mike's Electric, to discuss the electrical needs at the site and setting up an MSA.
- Prepared a sketch of the current booster pump configuration for evaluation by CDM's constructor group.
- Replaced the heater within the LNAPL system buildings that was not repairable.
- Performed snow removal several times after the severe weather events.

5.4 March 2007 Operations and Maintenance Activities

During the month of March, the following OM&M activities were conducted by CDM:

- The system computer (purchased in 2002) utilized to operate the primary water treatment system was replaced on March 19, 2007 due to an irrecoverable hard drive failure. Environation obtained a new computer that could operate the system (the PLC system is operated by Allen Bradley software that does not recognize Windows Vista operating systems). Environation downloaded all the needed software and installed the computer on site. CDM re-installed the GoToMYPC software to remotely operate the system.
- The submersible quarry pump (P3; 10 HP purchased in February 2006; serviced by CDM in fall 2006) failed on March 27, 2007. CDM and Mike's Electric replaced P3 with a rental submersible pump (11 HP) while P3 was evaluated.
- Subcontracted Mike's Electric to provide services at the Cobleskill, NY site. Met with Mike's Electric to evaluate the primary water treatment system modifications. A quote for installing a variable frequency drive (VFD) for the submersible pump was issued.
- Performed snow removal several times after the severe weather events.

5.5 April 2007 Operations and Maintenance Activities

During the month of April, the following OM&M activities were conducted by CDM:

- CDM purchased and installed a new iTT Flygt submersible pump (P3; 15 HP) on April 25, 2007. The rental pump was removed.
- CDM removed one booster pump (P5; 5 HP) and installed a 4 inch bypass line to test the new submersible pump without a booster pump. The primary water treatment system was operated at flows up to 225 gpm without a booster pump.

Removed Booster; Installed 4" Bypass

■ Installed the control heads on three actuated valves KV-15, KV-16 and KV-17 within the primary water treatment building. There are still some programming issues to be resolved to finalize operation.

5.6 May 2007 Operations and Maintenance Activities

During the month of May, the following OM&M activities were conducted by CDM:

- A crew from Joanne Crum, L.S. was on-site to conduct surveying. They primarily verified elevations along the top of quarry to confirm the operational level sensor set points.
- Four drums of coagulant from Slack Chemical were delivered.
- Installed "No Trespassing" signs every 500-600 ft along the fence line.
- Installed new Vamein valves at KV-15, KV-16 and KV-17.
- Vegetation removal was performed as needed.

5.7 June 2007 Operations and Maintenance Activities

During the month of June, the following OM&M activities were conducted by CDM:

- NYSDEC has agreed with NG/CDM recommendation to eliminate the
 - "between carbon vessel" sample. The effluent sample remains as the required sampling point for compliance.
- Confirmed the quarry water level with the surveying data received from Joanne Crum, L.S.
- Vegetation removal was performed as needed.

Vegetation Removal

5.8 July 2007 Operations and Maintenance Activities

During the month of July, the following OM&M activities were conducted by CDM:

- Received quote on a new 10HP booster pump (P6). Both 5 HP booster pumps (P4 and P5) have failed and are out of service. They will not be needed with the new system setup. They have been removed and the piping is now straight through the system. All 3 pumps are the original booster pumps installed in 1993.
- Replaced existing paddle wheel

Failed Booster Pumps

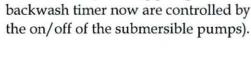
flow meter (range 0-199 gpm) with a new magnetic flow meter (range 0-450 gpm). It has only been installed; Environation will be programming it in August. This is necessary to monitor flows above 199 gpm at the influent of the primary water treatment system.

Flow Meter

Repaired and stained/painted the outside pump house.

Repaired/Painted Pump House

 ASPLUNDH on-site to complete vegetation removal and spraying. Crushed stone was installed along the east side of the building and the main walkway.



Crushed Stone Walkways

5.9 August 2007 Operations and Maintenance Activities

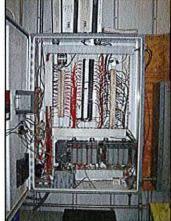
During the month of August, the following OM&M activities were conducted by CDM:

■ Fred Wilson of Environation programmed the new VFD on P3. Finished the installation and programming of the new magnetic flow meter. Necessary modifications to the PLC program also conducted. (i.e. co-ag pump and MM

- Running various test with the new VFD and flow meter to optimize the system. With the quarry at a low level of ~ 5 feet the testing will continue into next month.
- Sprayed a weather protection sealant on the safety railing and painted the bollards by the overhead door.

Bollards Painted Near Overhead Door

5.10 September 2007 Operations and Maintenance Activities


During the month of September, the following OM&M activities were conducted by CDM:

■ Received monthly influent and effluent water sample analysis from previous month. Detections were reported in each sample. Per the OM&M plan the

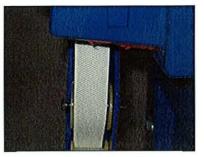
duplicate samples were then analyzed. No detections of PCBs were reported in the duplicate samples. Also as part of the plan weekly system sampling will occur. Weekly samples were collected on 9/18/2007 and 9/25/2007. No detection of PCBs was reported. CDM suspected a lab error with the detections. Test America (formerly STL Labs) confirmed a lab error. They will

issue a letter stating that during a batch run including the Cobleskill samples, there was laboratory cross contamination which impacted the results. Thus, there was no discharge compliance issue.

- The skimmer belt on C-3/MW-8 was coming apart and needed replacement. A new skimmer belt and pulley was put on order.
- Based on Environation's last site visit, Fred
 Wilson provided a quote to update the Allen
 Bradley PLC. The PLC power system is over
 extended and the backup battery needs replacement.

PLC System

- Running various tests with the new VFD and flow meter to optimize the system. With the quarry at a low level of ~ 5 feet the testing will continue into next month.
- Conducted a site visit with Steve Stucker on 9/14/2007. Gave an overview of the system upgrades that have happened to date and discussed the possibility of decommissioning the secondary (300 gpm) water treatment system due to its poor condition and nonuse.
- Tested the heat cable and controls that is used around the submersible pump culverts. This cable was not functioning properly last year. With keeping the quarry at levels of 5-9 feet it was decided that this cable needed to be replaced to keep the quarry from freezing around the culverts and heaving them up. Last year we used tank heaters inside the culverts with the pumps. We will continue to use them.


Heat Cable in Culvert

- Received a quote from Gartner Equipment for a new replacement 10 hp booster pump to replace P6.
- Renewed the GoToMyPC remote communication system software. Since this software has been used (1 year) CDM has had continuous remote communication with the system.

5.11 October 2007 Operations and Maintenance Activities

During the month of October, the following OM&M activities were conducted by CDM:

- The new skimmer belt and pulley was installed on C-3/MW-8.
- Running various test with the new VFD and flow meter to optimize the system.
 Let the quarry level rise over ~ 7 feet to allow for more head pressure and water flow inside the submersible culvert pipe.

Skimmer Belt Replacement

- Ordered and partially installed a new replacement 10 HP booster pump to replace P6. The new pump has a larger discharge and a new flange is being assembled and will be installed next month.
- Replaced the heat cable around the pump culvert pipe of P3.Tank heaters will also be used again inside the culverts with the pumps.
- ARCADIS performed biota sampling and analysis on October 22, 2007. Refer to Appendix F for the report.
- On October 22, 2007, CDM shadowed ARCADIS during the fall 2007 Fish Sampling Event. Mr. Brian Bennett (CDM biologist) served as the on-site field personnel during the one-day event at the Cobleskill Creek. CDM submitted a daily field report and photographic documentation of the event to NG.

5.12 November 2007 Operations and Maintenance Activities

During the month of November, the following OM&M activities were conducted by CDM:

- Completed the installation of the upgraded flange on the new 10 HP booster pump (P6)
- Installed a new heavy duty four inch discharge hose (with heat tape/foam insulation) on P3.
- Turned the heaters and heat tape on in the secondary treatment building.
- Coordinated with Environation regarding the performance of P3 along with the new VFD and flow meter. P3 the main submersible pump (15 HP) was taken to the ITT-Flygt service center in Rochester and serviced. Everything

was within specifications. The backup submersible pump (2 HP) operated during this period. Environation and ITT-Flygt are working together to resolve why the pump is not pumping the rated volume of the performance curve. The pump (P3) is back in service and operating while discussions occur.

Met with Mike's Electric on-site to discuss the new upgrades as well as the potential decommissioning of the secondary Water Treatment System.

Secondary Water Treatment System

5.13 December 2007 Operations and Maintenance Activities

During the month of December, the following OM&M activities were conducted by CDM:

Mike's Electric rebuilt 2 of the 3 non working heaters in the main treatment building. We now have 5 working heaters. They also repaired an outside security light and cleaned the roof gutters.

Primary Water Treatment Building

- Covered the fresh air vents in the LNAPL buildings to allow the electric heaters to cycle.
- Snow removal was performed at the site.
- Submitted SOW and RFQ to Calgon, TIGG and Carbtrol for carbon/multi-media replacement and disposal within the primary and secondary water treatment systems (disposal only).

Snow Removal

5.14 Completed O&M Recommendations

In the 2006 report, several recommendations were made for the site. The items completed are listed below.

- Only 7 drums of Slack co-ag were used to achieve 1.41 NTU's.
- The requirement to sample between Granular Carbon Activated (GAC) units within the primary system was eliminated.
- In accordance with the 2007 OM&M Plan, the site biota sampling/analysis was completed on October 22, 2007 (see Appendix F).
- The effluent sample location was relocated from the end of the discharge pipe located across Route 10 (an unsafe location) to a port within the water treatment building.
- The phasing out the Secondary Treatment System was evaluated. During 2007, the system was never used. Its capacity is less than 90 gpm and worsening with time and extreme weather conditions. NG has evaluated and determined dismantling is appropriate in 2008.
- The backflow prevention device test (DOH-form 1031) is no longer the responsibility of NG per the DEC letter to NG dated April 14, 2006 approving the "Maintenance and Monitoring Plan for the Northwest Portion of the M. Wallace and Son, Inc. Scrapyard Site".

5.15 Recommendations

CDM has the following recommendations for 2008:

- Keep the quarry level at approximately six feet to allow for the storage of more water during severe weather events.
- Continue to optimize the primary system.
 - Use 15hp submersible pump with VFD control.
 - Use GoToMyPC to keep daily control of the system.
 - Only use the 10hp booster pump when flows need to exceed 200 gpm.
 - O Decommission the temporary 300 gpm system as the capacity is now only at 90 gpm after the evaluation and repairs completed in 2005.
 - Use the 2hp submersible pump during the summer months (flows less than 50 gpm) to keep water flowing through the system and prevent biogrowth from clogging the system due to lack of flow.

The primary water treatment system can now be operated up to 190 gpm with the 15hp submersible pump and up to approximately 280 gpm when the 10hp booster pump is on to supplement the 15hp submersible pump.

- Dispose of recovered LNAPL on an annual basis.
- Based on the OM&M plan approved in February 2007, the next biota sampling event will be scheduled to occur in 2009.

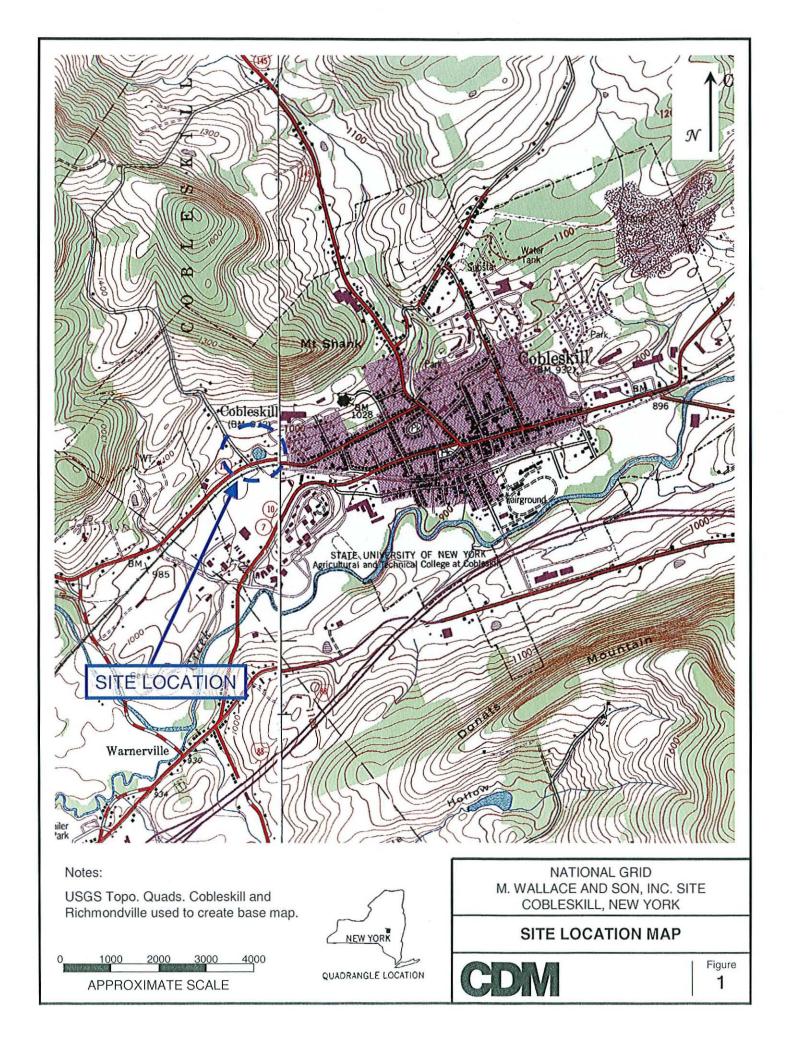
Section 6 References

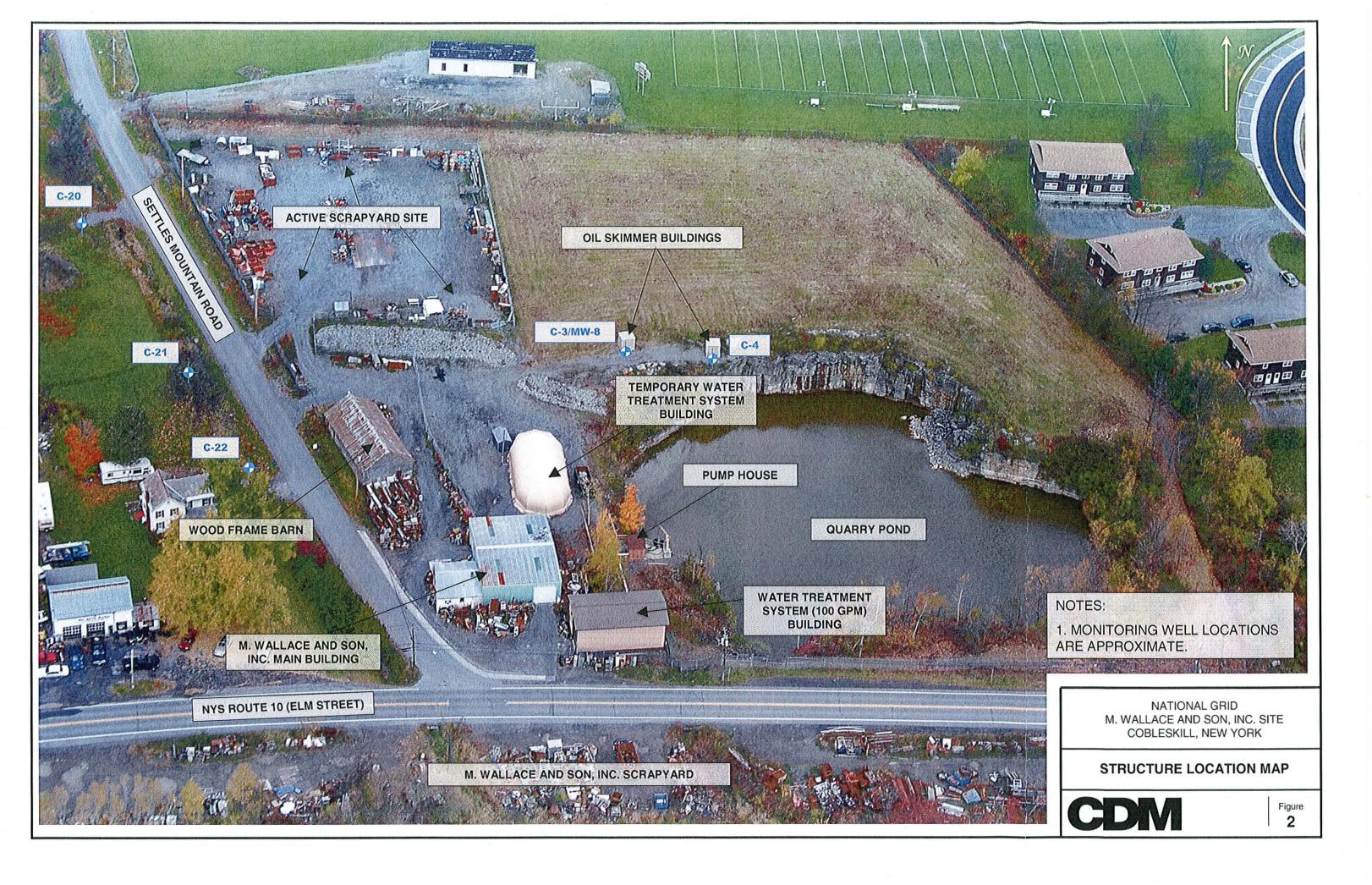
ARCADIS BBL. 2004. *Operation, Monitoring and Maintenance Plan*. M. Wallace and Son, Inc. Scrapyard Site, Cobleskill, New York. Prepared for and submitted by National Grid, Syracuse, New York.

ARCADIS BBL. Revised January 2007. *Operation, Monitoring and Maintenance Plan.* M. Wallace and Son, Inc. Scrapyard Site, Cobleskill, New York. Prepared for and submitted by National Grid, Syracuse, New York.

CDM. March 2007. *July 2006 to December 2006 OM&M Report*. M. Wallace and Son, Inc. Scrapyard Site, Cobleskill, New York. Prepared for and submitted by National Grid, Syracuse, New York.

Table 1 - 2007 System Operations


D A	T I	Quarry Level	Coag Tank Level	Back Wash Tank Level	Treated Water Flow	Back Wash Flow	Influent Pressure	MMF Supply Pressure	MMF Discharge Pressure	GAC Filter Discharge Pressure	Back Wash Supply Pressure	Influent Water Temp	WTF Room Temp	MMF Effluent Turbidity	GAC Filter Effluent Turbidity	Effluent pH	MMF A Elapsed	MMF B Elapsed
T	M			Level				Tressure	Tressure	Tressure	Tressure	Temp	remp	Turblany	Tello City		Run Time	Run Time
E	E	FEET	INCHES	FEET	GPNI	GPM	GPM	PSI	PSI	PSI	PSI	* F	° F	NTU	NTU		2.027	1411
		LT1	LT2	LT4	FT1	FT2	PT1	PT2	PT3	PT4	PT5	TT1	TT2	MT1	MT2	pН	MIN	MIN
1/1/2008	1130	6.75	22.5	10.6	118		33.1	31.2	27.8	6.1	3.8	40.0	66.3	1.91	0.83	6.65	188	378
12/31/2007	1900	6.80	22.7	10.6	118	n/a	32.9	30.9	27.4	6.2	3.8	40.0	65.8	2.01	0.89	6.64	363	163
12/31/2007	1130	6.83	22.8	10.6	118	n/a	32.8	30.7	27,2	6.2	3.8	40.0	66.4	2.10	0.86	6.65	302	102
12/29/2007	1315	6.70	23.5	10.6	121	n/a	31.6	29.6	26.3	6.2	3.8	40.0	67.9	2.20	0.89	6.71	256	56
12/27/2007	915	6.60	24.3	10.6	106	n/a	24.6	23.0	20.2	5.9	3.8	40.0	65.9	2.81	1.14	6.65	258	58
12/25/2007	1645	6.86	24.9	10.6	154	n/a	37.0	33.5	28.8	7.1	3.8	40.0	65.9	3.20	1.21	6.67	173	363
12/24/2007	2140	6.90	25.2	10.6	142	n/a	33.5	30.5	26.2	6.8	3.8	40.0	66.1	3.20	1.14	6.69	196	386
12/23/2007	815	5.81			76	n/a												
12/20/2007	1300	5.84	26.8	10.6	76	n/a	15.8	14.8	12.9	5.4	3.8	39.0	66.3	1.81	0.93	6.83	163	354
12/17/2007	1545	6.04	27.9	10.6	102	n/a	18.3	16.7	13.9	5.8	3.8	38.0	65.8	2.20	1.51	6.71	291	91
12/17/2007	1420	5.98	14,2	10.2	121	n/a	27.9	25.7	22.4	6.2	3.4	39.0	65.5	2.49	1.18	6.75	242	42
12/15/2007	1500	6.11	14.9	10.6	120	n/a	26.7	24.4	20.9	6.2	3.8	40.0	63.7	3.00	1:40	6.71	134	324
12/14/2007	830	6.32	15.4	10.6	121	n/a	26.2	23.9	20.6	6.2	3.8	39.0	65.1	2.91	1.36	6.78	258	58
12/12/2007	815	6.17	16.1	10.6	75	n/a	16.1	15.2	13.4	5.3	3.8	38.0	66.1	2.39	1.11	6.90	91	281
12/7/2007	800	6.03	17.8	10.5	78	n/a	15.2	14.0	11.9	5.4	3.8	39.0	54.3	1.91	1.25	6.49	288	88
12/6/2007	700	6.07	18.2	10.5	79	n/a	15.2	13.8	11.2	5.4	3.8	39.0	52.3	1.40	1.00	6.51	351	151
12/5/2007	1120	6.03	17.4	10.6	95	n/a	22.9	21.4	18.9	5.6	3.8	39.0	56.5	1.60	1.04	6.87	76	266
12/4/2007	1300	6.07	18.2	10.6	126	n/a	31.1	28.6	24.2	6.3	3.8	38.0	55.9	1.60	1.18	6.89	293	127
12/2/2007	1240	6.35	20.1	10.6	160	n/a	38.2	34.5	28.6	7.2	3.8	38.0	54.5	2.59	1.70	6.94	119	309
11/29/2007	700	7.49	23.0	10.6	180	n/a	37.0	32.8	26.1	7.8	3.8	40.0	58.8	3.51	2.10	6.86	147	337
11/28/2007	2000	7.61	23.4	10.6	182	n/a	36.4	31.9	25.9	8.0	3.8	40.0	60.0	3.20	1.99	6.84	256	56
11/27/2007	1030	7.70	24.7	10.6	184	n/a	35.0	29.9	23.9	8.1	3.8	41.0	61.6	6.40	3.27	6.77	346	156
11/27/2007	745	8.00	n/a	10.5	69	n/a	12.0	11.0	9.5	5.3	3.8	41.0	61.2	3.98	1.88	6.77	177	377
11/26/2007	1250	7.44	n/a	10.5	63	n/a	12.7	11.8	10.6	5.2	3.8	40.0	60.9	2.81	1.47	6.81	293	94
11/24/2007	1300	7.34	n/a	10.6	64	n/a	12.3	11.4	10.1	5.2	3.8	40.0	60.8	3.10	1.59	6,84	146	336
11/19/2007	1100	6.71	n/a	10.0	62	n/a	11.1	10.3	9.0	5.2	3.4	41.0	60.9	3.10	1.66	6.78	274	84
11/18/2007	1300	6.65	n/a	10.6	63	n/a	11.0	10.3	8.9	5.2	3.8	42.0	62.9	3.51	1.88	6.76	127	327
11/16/2007	1152	6.40	n/a	10.6	64	n/a	10.5	9.6	8.3	5.2	3.8	44.0	63.1	5.59	2.94	6.68	298	108
11/15/2007	810	5.39	27.6	10.6	61	n/a	10.9	10.0	8.7	5.2	3.8	45.0	60.1	2.10	1.04	6.77	289	95
11/12/2007	830	5.33	30.7	10.6	64	n/a	10.9	10.0	8.5	5.2	3.8	43.0	56.2	1.69	1.08	6.85	278	84
11/8/2007	815	5.54	30.8	10.7	61	n/a	11.2	10.4	9.1	5.2	3.8	46.0	59.4	0.83	0.41	6.68	131	296
11/4/2007	1010	5.87	30.4	10.6	7.1	n/a	12,4	11.5	9.2	5.3	3.8	49.0	62.3	0.90	0.40	6.58	344	119
11/1/2007	1900	6.33	30.5	10.7	74		11.4	10.4	8.8	5.4	3.8	52.0	64.8	1.04	0.51	6.48	389	164
10/31/2007	900	6.32	6.4	6.4	49	n/a	14.1	12.6	8.2	5.4	2.0	52.0	50.4	0.86	0.51	6.34	57	250
10/31/2007	1300	6.36	7.2	10.7	143	n/a n/a	22.3	19.3	15.8	6.8	3.8	55.0	58.0	1.96	1.01	6.32	264	67
10/27/2007	1725	6.42	7.4	10.7	90		13.6	12.2	10.3	5.6	3.8	57.0	59.8	1.55	1.01	6.34	261	64
10/26/2007	1407	6.05	7.4	10.6	148	n/a n/a	22.5	19.4	15.5	6.9	3.8	57.0	59.6	2.06	1.02	6.35	184	377
10/22/2007	700	7.76	7.0	10,7	140	11/ d	22.3	17.4	13.3	0.9	3.0	37.0	39.0	2.00	1.02	0.00	104	311
10/21/2007	1730	7.70																
		7.72			Total Control of													
10/19/2007	815																	
10/17/2007	800	7.40																
10/12/2007	845	6.86																
10/7/2007	1800	5.41	0.0	10.0			0.0	0.1	7.1		2.0	(10	(/ 2	1.01	0.00	640	161	257
10/3/2007	650	4.87	8.8	10.6	56	n/a	8.8	8.1	7.1	5.2	3.8	64.0	66.2	1.81	0.83	6.19	161	357
10/2/2007	1020	5.06	9.0	10.7	132	n/a	18.5	15.9	12.5	6.5	3.9	63.0	65.2	2.11	1.14	6.21	102	297
10/1/2007	1445	5.37	9.3	10.7	132	n/a	18.4	15.7	12.1	6.4	3.8	66.0	70.8	1.02	0.61	6.28	107	302
9/30/2007	1900	5.54													SCHOOL S			
9/27/2007	1040	4.70	0.7	10.								***		0.00			100	201
9/25/2007	2030	4.47	9.3	10.6	57	n/a	8.3	7.6	6.7	5.2	3.8	69.0	71.6	0.80	0.36	6.18	108	281
9/25/2007	800	4.48	9.3	10.6	56	n/a	9.2	8.5	7.5	5.2	3.8	65.0	67.1	0.48	0.25	6.22	167	371


D A T	T I M	Quarry Level	Coag Tank Level	Back Wash Tank Level	Treated Water Flow	Back Wash Flow	Influent Pressure	MMF Supply Pressure	MMF Discharge Pressure	GAC Filter Discharge Pressure	Back Wash Supply Pressure	Influent Water Temp	WTF Room Temp	MMF Effluent Turbidity	GAC Filter Effluent Turbidity	Effluent pH	MMF A Elapsed Run Time	MMF B Elapsed Run Time
E	E	FEET LT1	INCHES LT2	FEET LT4	GPNF FF1	GPM FT2	GPM PT1	PSI PT2	PSI PT3	PSI PT4	PSI PT5	*F	TT2	NTU MT1	MT2	pН	MIN	MIN
9/21/2007	1325	4.93	10.2	10.6	56	n/a	8.9	8.2	7.2	5.2	3.8	66.0	68.9	0.91	0.47	6.25	194	388
9/18/2007	700	5.34	10.8	10.6	56	n/a	9.2	8.4	7.0	5.1	3.8	62.0	64.0	1.02	0.71	6.23	171	365
9/17/2007	1100	5.66														AND SERVICE OF		
9/15/2007	1400	5.58																
9/14/2007	1230	5.45																
9/10/2007	700 1130	5.07 4.96																
9/7/2007 9/3/2007	1100	4.73	11.2	10.6	53	0	11.2	10.4	7.0	5.2	3.8	72.0	73.2	0.41	0.22	6.29	131	325
9/1/2007	938	5.14	12.0	10.6	55	0	10.3	9.7	6.9	5.2	3.8	72.0	72.6	0.41	0.22	6.28	288	92
8/29/2007	650	5.73	13.3	10.7	56	0	10.1	9.3	6.7	5.2	3.8	72.0	73.0	0.21	0.14	6.29	99	293
8/28/2007	650	5.90	13.8	10.7	56	0	9.5	8.9	7.5	5.2	3.8	74.0	69.5	0.21	0.13	6.15	310	114
8/24/2007	815	6.10	17.8	10.0	56	0	9.2	8.5	7.3	5.2	3.5	69.0	71.5	0.21	0.17	6.19	95	289
8/22/2007	641	6.27	19.9	5.8	57	0	9.1	8.4	7.3	5.2	1.7	68.0	69.9	0.21	0.21	6.23	541	45
8/21/2007	730	6.40	21.0	10.7	90	0	13.8	12.3	9.5	5.6	3.8	69.0	65.0	0.41	0.40	6.12	356	281
8/20/2007	2000	6.70			99													
8/20/2007	655	6.70																
8/16/2007	735	6.60																
8/13/2007	1036	6.53			BOLDACTOR													
8/9/2007	720	5.72			1000000													
8/2/2007	645 730	5.56	_												Harris and the last			
8/1/2007 7/31/2007	1930	5.55 5.54	21.2	3.7	45	-5	14.2	7.9	7.5	5.1	1.1	78.0	80.4	0.41	0.28	6.17	232	26
7/30/2007	1300	5.58	21,2	.5.7		-5	14,2	7.9	7.5	3.1	1.1	70.0	00.4	0.41	V=0	Jacob Letter	204	20
7/29/2007	1348	5.57	23.4	10.3	55	-5	14.4	8.2	7.6	5.1	3.8	74.0	77.0	0.31	0.17	6.23	132	316
7/25/2007	750	5.53	27.6	5.0	45	-5	12.7	7.7	7.2	5.0	1.3	70.0	71.4	0.31	0.17	6.17	255	49
7/23/2007	1000	5.36													Par Ashedi	HUANNESS		
7/20/2007	900	5.39	29.9	10.7	60	-5	11.2	8.7	7.7	5.1	3.8	71.0	73.6	0.41	0.29	6.22	158	342
7/19/2007	645	5.20	3.7	10.7	65	-5	10.0	9.2	7.9	5.2	3.8	71.0	73.5	0.51	0.39	6.26	139	323
7/18/2007	700	5.29																
7/17/2007	1040	5.13	5.0	8.2	35	-5	13.1	13.7	12.7	5.1	2.7	73.0	75.4	0.51	0.29	6.28	302	96
7/16/2007	1235	5.15	5.7	10.7	32	-5	10.3	14.4	13.3	5.1	3.8	74.0	76.2	0.80	0.29	6.32	379	123
7/11/2007	1117	5.28	9.8	10.7	32	-5	11.4	13.2	12.4	5.1	3.7	77.0	79.2	1.21	0.50	6.28	124	308
7/7/2007	1315	5,40	12.8	10.7	35	-5	12.0	13.0	12.1	5.1	3.8	73.0	75.9	1.11	0.53	6.27	325	119
6/30/2007	2145	5.60	17.7	10.7	32	-5	12.4	12.0	11.2	5.1	3.8	73.0	74.9	1.81	1.10	6.23	123 152	307 336
6/29/2007 6/27/2007	715 720	5.68 5.76	18.8 12.4	7.5	32 31	-5 -5	12.5 13.1	12.0 13.0	11.1	5.1 5.2	3.8	73.0 73.0	75.9 75.5	2.20	1.65	6.22	9	193
6/22/2007	1130	5.84	15.8	8.9	42	-5 -5	13.1	11.3	10.5	5.1	3.0	69.0	73.5	2.59	2.20	6.28	87	271
6/14/2007	730	5.84	22.8	3.8	43	-5	14.0	10.4	9.7	5.2	1.1	70.0	74.1	2.30	3.11	6.16	28	212
6/13/2007	830	5.84	23.5	10.7	82	-5	12.0	12.0	10.7	5.3	3.8	72.0	75.3	3.98	3.91	6.28	201	385
6/10/2007	1200	5.98	25.1	10.7	79	-5	11.8	11.4	10.1	5.3	3.8	71.0	74.5	4.88	4.41	6.29	381	175
6/7/2007	815	6.15	27.3	10.7	82	-5	11.9	11.3	10.2	5.3	3.8	61.0	65.7	5.09	4.92	6.35	129	313
6/4/2007	820	6,21	29.4	10.7	80	-5	12.0	10.8	9.7	5.3	3.8	68.0	72.8	5.70	4.92	6.32	106	290
5/31/2007	2200	6.08	32.0	5.4	85	-5	12.1	10.2	9.3	5.3	1.4	73.0	74.0	4.51	2.23	6.37	238	32
5/29/2007	1305	6.12	12,4	10.7	105	-5	7.4	12.6	10.8	5.6	3.8	69.0	71.4	5.50	4.41	6.32	336	130
5/25/2007	715	6,42	16.4	10.7	109	-5	8.0	11.7	10.2	5.6	3.8	65.0	68.7	4.79	4.17	6.38	79	263
5/23/2007	745	6.55	18.3	10.7	105	-5	8.1	11.7	10.0	5.6	3.8	59.0	63.1	5.19	4.62	6.44	345	139
5/19/2007	915	6.43	22.7	10.7	108	-5	8.7	11.1	9.4	5.5	3.8	57.0	61.9	5.15	4.70	6.51	142 185	326 369
5/17/2007	1230	6.50	24.8	10.6	105	-5 E	8.6	10.7	8.9	5.5	3.8	60.0 59.0	58.1	4.89 6.35	4.62 5.40	6.45	323	117
5/17/2007	750 750	6.52	25.1 29.0	10.7	147	-5 -5	13.4	17.0 16.5	14.2	6.3	3.8	59.0	62.8	2.80	2.52	6.54	295	89
5/14/2007	710	7.07	30.2	10.7	151	-5 -5	14.1	18.5	13.9	6.4	3.8	62.0	66.7	2.85	2.71	6.54	230	24
5/11/2007	715	6.64	30.2	5.5	155	-5	13.9	15.6	13.2	6.5	1.5	62.0	69.0	2.59	2.74	6,65	42	226
5/9/2007	1700	6.64	50.0	5.5	103	-5	13.7	15.0	13.2	0.0	1.0	VaiV	07.0	07			-	
0/ // 400/			0.0	10.7		-	9.9	11.7	10.3	5.5	3.8	61.0	69.9	1.30	0.79	6.39	140	324
5/8/2007	1530	6.54	0.9	10.7	103	-5	9.9	11./	10.5	3.3	0.0	01.0	09.9	1.50	0,2		1.10	

D A T	T I M	Quarry Level	Coag Tank Level	Back Wash Tank Level	Treated Water Flow	Back Wash Flow	Influent Pressure	MMF Supply Pressure	MMF Discharge Pressure		Back Wash Supply Pressure	Influent Water Temp	WTF Room Temp	MMF Effluent Turbidity	GAC Filter Effluent Turbidity	Effluent pH	MMF A Elapsed Run Time	MMF B Elapsed Run Time
E	E	FEET	INCHES	FEET	CPM	GPM	GPM	PSI	PSI	PSI	PSI	* F	*F	NTU	NTO	pH	MIN	MIN
5/1/2007	2146	LT1 6.90	7.4	LT4 10.7	FF1 103	FT2 -5	PT1 10.1	PT2 11.5	PT3 9.8	PT4 5.5	PT5 3.8	TT1 53.0	TT2 64.2	MT1 1.50	MT2 1.37	6.28	190	374
4/30/2007	1400	6.96	9.2	4.9	100	-5	9.9	11.2	9.5	5.6	1.3	53.0	69.2	1.60	1.88	6.42	229	23
4/30/2007	745	6.90	10.1	10.7	197	-5	10.2	44.5	38.4	10.7	3.8	50.0	69.1	1.50	1.22	6.62	175	360
4/29/2007	1040	7.29	11.2	10.7	197	-5	10.2	43.4	37.9	10.8	3.8	51.0	70.1	1.31	1.04	6.56	83	267
4/27/2007	700	8.18	13.7	10.8	197	-5	10.0	42.3	36.7	10.9	3.8	51.0	69.1	1.02	0.75	6.54	101	285
4/26/2007	900	8.55	14.8	10.8	197	-5	10.1	41.4	35.1	11.0	3.8	49.0	66.9	1.02	0.71	6.54	339	133
4/25/2007	1000	8.78	15.7	10.7	197	-5	8.7	36.5	30.8	10.3	3.8	51.0	70.0	1.02	0.60	6.51	367	161
4/24/2007	920	9.17	16.9	10.7	197	-5	8.8	35.7	30.4	10.4	3.8	50.0	70.1	1.02	0.61	6.48	52	236
4/23/2007	2100	9.33	17.5	10.7	197	-5	8.8	35.9	30.4	10.6	3.8	50.0	71.7	1.02	0.64	6.52	91	275
4/21/2007 4/20/2007	1248 1350	10.12 10.32	20.3	8.3	197	-5	9.8	31.6	26.6	10.0	2.8	44.0	66.2	1.02	0.79	6.62	230	24
4/20/2007	630	10.35	21.8	10.6	197	-5	9.6	30.8	25.0	10.0	3.8	42.0	61.2	1.02	0.61	6.54	359	153
4/19/2007	1530	10.41		10.0	Name In Str		7.0	50.0	25.0	10.0	5.0	42.0	01.2	1.02	0.01	THE REAL PROPERTY.	007	155
4/19/2007	645	10.22																
4/18/2007	1930	10.03													FELDE			
4/18/2007	730	9.80	23.6	10.6	197	-5	9.1	28.8	23.2	10.1	3.8	41.0	60.7	1.02	0.65	6.72	120	304
4/17/2007	2130	9.64														The same of the		
4/17/2007	730	9.10	24.8	10.6	197	-5	8.6	28.0	22.3	10.1	3.8	39.0	59.7	1.01	0.65	6.79	262	56
4/16/2007	2015	8.64													Barrier .			
4/16/2007	1500	8.14	25.6	10.6	197	-5	8.2	26.8	21.7	10.3	3.8	39.0	63.5	1.02	0.68	6.77	63 372	247
4/16/2007 4/15/2007	710 830	7.43 6.78	26.0 27.2	10.6 10.6	158 152	-5 -5	12.2 12.1	17.5 16.9	13.9 13.5	7.2 7.2	3.8	38.0 41.0	61.6	1.02	0.58	6.88	192	166 376
4/14/2007	930	6.87	28.3	10.6	157	-5	12.1	17.0	13.4	7.2	3.8	41.0	61.7	1.02	0.61	6.76	376	170
4/12/2007	2000	6.93	30.3	10.6	135	-5	13.3	13.6	11.2	6.6	3.8	41.0	62.0	1.02	0.54	6.79	60	244
4/10/2007	1400	7.12	30.5	4.6	150	-5	12.6	15.1	12.1	7.2	1.2	40.0	55.8	1.04	1.02	6.77	36	220
4/10/2007	900	7.17	25.5	10.6	197	-5	9.2	43.2	38.2	9.8	3.8	40.0	60.7	1.02	0.54	6.75	104	288
4/8/2007	1138	7.91	27.8	10.6	197	-5	9.1	42.0	36.6	10.2	3.8	40.0	61.5	1.03	0.55	6.67	115	299
4/6/2007	730	8.70	30.6	10.6	197	-5	9.1	39.5	34.0	10.5	3.8	42.0	61.0	1.02	0.51	6.58	104	288
4/5/2007	700	9.00	31.8	10.7	197	-5	9.1	38.6	32.4	10.7	3.8	44.0	63.9	1.02	0.50	6.57	194	378
4/4/2007	1900	9.10	29.6	10.7	197	-5	9.0	37.4	31.8	10.9	3.8	45.0	65.5	1.02	0.54	6.58	250	44
4/3/2007	730	9.61	10.9	10.7	197	-5	8.9	35.7	29.6	11.0	3.8	44.0	64.7	1.02	0.50	6.51	79	263
4/2/2007	1500	9.86	11.6	10.7	197	-5	9.0	34.1	28.2	11.2	3.8	43.0	58.4	1.02	0.75	6.48	259 179	52 363
4/2/2007 4/1/2007	1300 2200	9.86	11.8	10.7	197	-5	10.8	46.8	41.7	9.2	3.8	43.0	65.0	1.02	0.47	0.70	1/9	303
4/1/2007	1415	10.02			AT BURE OF STREET													-
4/1/2007	730	10.15	13.1	10.6	197	-5	11.1	45.9	40.5	9.3	3.8	42.0	60.9	0.51	0.44	6.61	369	163
3/31/2007	2230	10.25	10.12	10.0	Variation in			20.7	10,0	7.0								
3/31/2007	815	10.40	14.2	10.6	197	-5	10.9	45.0	39.8	9.5	3.8	41.0	60.6	1.02	0.50	6.62	134	319
3/30/2007	1830	10.54																
3/30/2007	930	10.62	15.3	10.6	197	-5	10.9	43.8	38.2	9.6	3.8	41.0	61.4	1.02	0.54	6:65	333	127
3/29/2007	1630	10.76			198 80 83									1	BERRY	Terran de la company		
3/29/2007	500	10.82	16.6	10.6	197	-5	10.6	41.6	35.7	8.9	3.8	41.0	61.5	1.02	0.58	6.59	190	374
3/28/2007	2100	10.88			ENERGY PARTY													\vdash
3/28/2007	1030 845	10.91	17.6	10.7	107	-	10.4	20.2	22.2	10.1	20	41.0	62.4	1.03	0.50	6.70	140	324
3/28/2007	1900	10.91	18.2	10.7	197 197	-5 -5	10.4	39.3 36.7	33.3 31.1	10.1	3.8	41.0 41.0	62.4 67.8	1.03	0.58	6.52	116	300
3/27/2007	1730	10.91	10,2	10.7	ake personal	-5	10.2	30.7	31.1	10.5	3.0	41.0	07.0	1.02		DEL NO CONTRACTOR	110	500
3/27/2007	1330	10.75													RESERVAN	DEVENTOR OF		
3/27/2007	845	10.61	18.3	10.7	197	-5	36.1	31.6	27.0	9.5	3.8	40.0	66.8	0.92	1.80	6.46	70	254
3/26/2007	2230	10.16	-0.0	- 40	Reside													
3/26/2007	1430	10.03	18.7	10.6	197	-5	35.7	31.2	26.4	9.7	3.8	40.0	61.0	1.02	0.65	6.62	256	50
3/26/2007	945	9.96	18.8	10.6	173	-5	37.2	34.5	30.9	8.1	3.8	40.0	59.6	1.02	0.50	6,58	48	232
3/25/2007	1845	9.90			2.050													
3/25/2007	745	9.83	20.1	10.6	175	-5	37.2	33.9	30.2	8.3	3.8	40.0	59.1	0.92	0,51	6.62	52	236
3/24/2007	2200	9.65				5												

3/22/2007	MMF aent A	MMF B
E	H Elapsed Run Time	Elapsed Run Time
173 172 173 172 173 173 171 172 173 171 173 171 172 173		
\$\frac{3}{3}2\rightarrow{2}{2}000\rightarrow{7}{2}100\rightarrow{8}{2}\frac{3}{2}200\rightarrow{9}{2}\frac{3}{2}00\rightarrow{9}{2}\frac{3}{2}00\rightarrow{9}{2}\frac{3}{2}00\rightarrow{9}{2}\frac{3}{2}00\rightarrow{9}{2}\frac{3}{2}00\rightarrow{9}{2}\frac{3}{2}00\rightarrow{9}{2}\frac{3}{2}00\rightarrow{9}{2}\frac{3}{2}00\rightarrow{9}{2}\frac{3}{2}00\rightarrow{9}{2}\frac{3}{2}\frac{3}{2}\frac{1}{2}\frac{3}{2}\frac{1}{2}\frac{3}{2}\frac{1}{2}\frac{3}{2}\frac{1}{2}\frac{3}{2}\frac{1}{2}\frac{3}{2}\frac{1}{2}\frac{3}{2}\frac{1}{2}\frac{3}{2}\frac{1}{2}\frac{3}{2}\frac{1}{2}\fr	MIN	MIN
3/20/2007 2130 8.66 251 10.6 195 5 36.2 32.2 27.8 8.9 3.8 37.0 55.5 10.2 0.65 3/19/2007 1615 9.01 26.5 10.6 197 5 36.2 31.9 27.3 9.1 3.8 37.0 55.5 10.2 0.65 3/19/2007 700 9.00 10.7 18.8 5 34.0 38.5 35.1 7.7 3.8 38.3 1.02 0.95 3/19/2007 1800 9.10 10.7 18.8 5 34.0 38.5 35.1 7.7 3.8 38.3 1.02 0.95 3/14/2007 1800 9.10 10.7 18.8 5 34.0 38.5 35.1 7.7 3.8 38.3 1.02 0.95 3/14/2007 1800 5.7 2 3.1 10.6 88 1.0 1	8 117	301
3/20/2007 800 882 258 106 197 5 362 31.9 273 9.1 3.8 37.0 56.5 1.02 80.5 3/19/2007 700 9.00 10.7 198 5 35.4 31.3 26.8 37.0 39.5 9.5 9.2 10.3 3/19/2007 700 9.00 10.7 198 5 33.4 31.3 26.8 35.1 7.7 3.8 38.3 37.0 39.5 10.2 0.51 3/14/2007 1000 10 10 10 10 10 10	206	389
3/19/2007 1615 9.01 26.5 10.6 197 -5 35.4 31.3 26.8 9.4 3.8 37.0 59.5 0.92 10.4	309	103
3/19/2007 700 900 900 107 188 5 34.0 38.5 35.1 77 3.8 38.3 1.02 05.1	36 274	68
3/18/2007 1800 9.10 10	110	294
\$\frac{3}{3}\frac{1}{2}\text{2007}\$ 1000 \$\frac{1}{3}\frac{1}{1}\frac{1}{2}\text{2007}\$ 1600 \$\frac{1}{2}\text{30.1}\$ 10.6 168 \$\frac{1}{8}\text{30.1}\$ 1.7 2007 2100 5.68 \$\frac{1}{8}\text{30.1}\$ 1.800 5.66 \$\frac{1}{8}\text{31}\text{12}\text{2007}\$ 1.800 5.66 \$\frac{1}{8}\text{31}\text{12}\text{2007}\$ 1.800 5.79 \$\frac{1}{8}\text{31}\text{20207}\$ 1.800 5.79 \$\frac{1}{8}\text{31}\text{20207}\$ 1.800 6.24 31.6 10.5 164 -5 24.6 27.9 24.0 7.8 3.8 35.0 53.8 1.02 0.98 3/3/2/2007 810 6.64 6.7 4.4 89 -5 10.2 10.1 9.6 5.0 1.1 36.0 57.4 0.92 0.93 3/4/2007 810 6.64 6.7 4.4 89 -5 10.2 10.1 9.6 5.0 1.1 36.0 57.4 0.92 0.93 3/4/2007 1.800 6.62 \$\frac{1}{8}\text{31}\text{30.2}\$ 1.80 6.62 \$\frac{1}{8}\text{31}\text{30.2}\$ 1.80 6.62 \$\frac{1}{8}\text{31}\text{30.2}\$ 1.80 6.62 \$\frac{1}{8}\text{31}\text{30.2}\$ 1.80 6.65 \$\frac{1}{8}\text{31}\text{30.2}\$ 1.80 1.05 99 -5 10.0 14.6 13.0 5.6 3.8 36.0 61.5 1.11 1.18 3.3 3/2/2007 1.900 6.61 11.0 10.3 86 -5 10.2 13.8 12.5 5.6 3.8 36.0 61.5 1.11 1.18 3.3 3/2/2007 2.000 6.24 3.18 10.6 99 -5 10.5 13.3 11.8 5.7 3.8 35.0 58.7 1.31 1.8 3/2/2007 7.15 3.82 3/2/2007 7.15 3.82 3/2/2007 7.15 3.82 3/2/2007 8.15 0.6 0.0 12 14.8 10.6 99 -5 10.5 13.3 11.8 5.7 3.8 35.0 58.7 1.31 1.32 3/2/2007 7.15 3.82 3/2/2007 8.15 0.6 0.0 12 14.8 10.6 138 -5 19.3 29.8 26.3 7.2 3.8 35.0 58.7 1.31 1.32 8/2/2/2007 8.0 6.5 7.5 16.7 10.6 138 -5 19.3 29.8 26.3 7.2 3.8 35.0 58.7 1.31 1.32 8/2/2/2007 7.00 8.0 0.2 14.8 10.6 138 -5 20.0 27.7 24.7 7.2 3.8 35.0 56.8 1.41 1.53 3/2/2007 7.00 8.0 0.2 14.8 10.6 138 -5 19.3 29.8 26.3 7.2 3.8 35.0 58.7 1.30 1.59 2/2/2/2007 7.00 5.0 6.2 14.8 10.6 138 -5 19.3 29.8 26.3 7.2 3.8 35.0 58.0 1.50 1.50 1.53 2/2/2/2007 7.00 8.0 8.0 21.6 10.6 138 -5 20.0 27.7 24.7 7.2 3.8 35.0 56.8 1.41 1.53 3.2 2/2/2/2007 7.00 8.0 6.2 14.8 10.6 138 -5 20.0 27.7 24.7 7.2 3.8 35.0 55.0 1.50 1.50 1.53 2/2/2/2007 7.00 8.0 6.3 8.0 21.6 10.6 138 -5	55	
3/11/2007 1800 5.72 30.1 10.6 1888	72	-
\$\frac{3}{3}\frac{1}{2}\text{2007}\$ \text{830}\$ \text{5.72} \text{30.1} \text{10.6} \text{888} \text{888} \text{888} \text{880} \qq \		_
\$\frac{3}{11/2007}\$\frac{7}{20}\$\frac{5}{5}9\$\frac{1}{8}\$\$ \$\frac{3}{11/2007}\$\frac{1}{200}\$\frac{5}{5}88\$\$ \$\frac{3}{11/2007}\$\frac{1}{120}\$\frac{5}{5}88\$\$ \$\frac{3}{11/2007}\$\frac{1}{120}\$\frac{5}{5}88\$\$ \$\frac{3}{11/2007}\$\frac{1}{120}\$\frac{5}{5}88\$\$ \$\frac{3}{3}/11/2007\$\frac{1}{120}\$\frac{5}{5}88\$\$ \$\frac{3}{3}/11/2007\$\frac{1}{120}\$\frac{5}{5}88\$\$ \$\frac{3}{3}/11/2007\$\frac{1}{120}\$\frac{5}{5}88\$\$ \$\frac{3}{3}/11/2007\$\frac{1}{120}\$\frac{5}{5}88\$\$ \$\frac{3}{3}/11/2007\$\frac{1}{120}\$\frac{5}{5}88\$\$ \$\frac{3}{3}/11/2007\$\frac{1}{120}\$\frac{5}{5}88\$\$ \$\frac{3}{3}/11/2007\$\frac{1}{120}\$\frac{5}{5}88\$\$ \$\frac{1}{3}/11/2007\$\frac{1}{120}\$\frac{5}{5}88\$\$ \$\frac{1}{3}/11/2007\$\frac{5}{15}88\$\$ \$\frac{1}{3}/11/2007\$\frac{5}{15}89\$\$ \$\frac{1}{10}\$\frac{1}{12}\$\frac{5}{5}\$\frac{1}{13}\$\frac{1}{18}\$\frac{5}{5}\$\frac{1}{13}\$\frac{1}{18}\$\frac{1}{13}\$\frac{5}{5}\$\frac{1}{13}\$\frac{1}{13}\$\frac{1}{13}\$\frac{1}{13}\$\frac{1}{13}\$\frac{1}{13}\$\frac{1}{13}\$\frac{1}{13}\$\frac{1}{13}\$\frac{1}{13}\$\frac{1}{13}\$\frac{1}{13}\$\frac{1}{13}\$\frac{1}{13}\$\frac{1}{13}\$\frac{1}{13}\$\f		_
3/11/2007 1800 5.68		_
3/11/2007 1800 5.66	366	
3/10/2007 1800 5.59	(Compa	
3/10/2007 1300 5.86	500 E	
3/11/2007 900 5.90		
3/9/2007 1810 6.10	READ TO THE READ THE READ TO T	
3/9/2007		
3/8/2007 810 6.64 6.7 4.4 59 -5 10.2 10.1 9.6 5.0 1.1 36.0 57.4 0.92 0.93 3/6/2007 830 6.54 8.9 10.5 99 -5 10.0 14.6 13.0 5.6 3.8 36.0 55.0 1.02 0.91 3/4/2007 1200 6.61 11.0 10.3 96 -5 10.0 14.0 12.7 5.6 3.7 36.0 61.4 1.11 1.08 3/3/3/2007 1900 6.55 11.8 10.6 96 -5 10.2 13.8 12.5 5.6 3.8 36.0 61.5 1.11 1.18 3/2/2007 2000 6.24 3.7 3.9 3.8 3.8 3.8 3.8 3.0 61.5 1.11 1.18 3/2/2007 1540 6.10 3.7 3.9 7.3 9.3 -5 9.8 13.8 12.5 5.7 2.4 35.0 56.8 1.41 1.53 3/1/2007 2030 5.83 3.1/2007 3.0 6.02 14.8 10.6 99 -5 10.5 13.3 11.8 5.7 3.8 35.0 58.7 1.31 1.78 2/27/2007 1500 6.02 14.8 10.6 318 -5 19.3 29.8 26.4 7.1 3.8 35.0 58.7 1.30 1.34 2/2/23/2007 800 7.35 19.3 8.4 153 -5 24.4 35.8 24.7 7.2 37.2 35.0 58.0 1.50 1.50 2/2/2/2007 700 8.00 2.1.6 10.6 138 -5 20.0 27.7 24.7 7.2 3.8 35.0 57.5 1.60 1.67 2/2/2/2007 1800 8.17 22.2 10.7 160 -5 13.2 23.9 21.3 7.3 3.8 35.0 75.7 2/14/2007 730 7.77 9.7 9.7 9.7 2/14/2007 730 7.77 9.7 9.7 9.7 2/16/2007 730 7.77 9.7 9.7 9.7 2/16/2007 730 7.77 9.7 9.7 9.7 9.7 2/16/2007 735 6.76 9.7 9.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	388	312
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	118	42 316
3/4/2007 1200 6.61 11.0 10.3 96 -5 10.0 14.0 12.7 5.6 3.7 36.0 61.4 1.11 1.08	383	316
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 61	383
3/2/2007 1540 6.10	21 200	132
3/2/2007 1540 6.10	200	102
3/2/2007	100	
3/1/2007 845 5.77 13.9 7.3 93 -5 9.8 13.8 12.5 5.7 2.4 35.0 56.8 1.41 153 2/27/2007 1500 6.02 15.9 10.6 99 -5 10.5 13.3 11.8 5.7 3.8 35.0 58.7 1.31 178 2/27/2007 900 6.02 14.8 10.6 148 -5 19.3 29.8 26.4 7.1 3.8 35.0 58.7 1.30 149 2/25/2007 1535 6.57 16.7 10.6 147 -5 19.7 29.3 26.3 7.2 3.8 35.0 58.7 1.30 149 2/25/2007 1535 6.57 16.7 10.6 147 -5 19.7 29.3 26.3 7.2 3.8 35.0 58.0 1.50 1.50 1.53 2.22/2007 635 7.67 20.5 10.6 158 -5 20.0 <td< td=""><td>A STATE OF THE STA</td><td></td></td<>	A STATE OF THE STA	
2/27/2007 1500 6.02 15.9 10.6 99 -5 10.5 13.3 11.8 5.7 3.8 35.0 58.7 1.31 1.78 2/27/2007 900 6.02 14.8 10.6 148 -5 19.3 29.8 26.4 7.1 3.8 35.0 58.7 1.30 1.49 2/25/2007 1535 6.57 16.7 10.6 147 -5 19.7 29.3 26.3 7.2 3.8 35.0 59.6 1.50 1.62 2/23/2007 800 7.35 19.3 8.4 153 -5 24.4 35.8 24.7 7.2 37.2 35.0 58.0 1.50 1.53 2/22/2007 635 7.67 20.5 10.6 158 -5 20.0 27.7 24.7 7.2 38.8 35.0 57.5 1.60 1.53 2/21/2007 700 8.00 21.6 10.6 155 -5 13.8	R. C.	
2/27/2007 900 6.02 14.8 10.6 148 -5 19.3 29.8 26.4 7.1 3.8 35.0 58.7 1.30 149 2/25/2007 1535 6.57 16.7 10.6 147 -5 19.7 29.3 26.3 7.2 3.8 35.0 59.6 1.50 1.62 2/23/2007 800 7.35 19.3 8.4 153 -5 24.4 35.8 24.7 7.2 37.2 35.0 58.0 1.50 1.53 2/22/2007 635 7.67 20.5 10.6 158 -5 20.0 27.7 24.7 7.2 38.8 35.0 57.5 1.60 1.53 2/21/2007 700 8.00 21.6 10.6 155 -5 13.8 26.3 23.3 7.1 3.8 35.0 57.5 1.60 1.67 2/20/2007 1800 8.17 22.2 10.7 160 -5 13.2	38 37	359
2/25/2007 1535 6.57 16.7 10.6 147 -5 19.7 29.3 26.3 7.2 3.8 35.0 59.6 1.50 1.62 2/23/2007 800 7.35 19.3 8.4 153 -5 24.4 35.8 24.7 7.2 37.2 35.0 58.0 1.50 1.53 2/22/2007 635 7.67 20.5 10.6 158 -5 20.0 27.7 24.7 7.2 38.8 35.0 57.5 1.60 1.67 2/21/2007 700 8.00 21.6 10.6 158 -5 13.8 26.3 23.3 7.1 3.8 35.0 57.5 1.60 1.67 2/20/2007 1800 8.17 22.2 10.7 160 -5 13.2 23.9 21.3 7.3 3.8 35.0 73.6 2.20 1.55 2/18/2007 1615 7.99 9.7 9.7 35.0 75.0 35.0	262	194
2/23/2007 800 7.35 19.3 8.4 153 -5 24.4 35.8 24.7 7.2 37.2 35.0 58.0 1.50 1.53 2/22/2007 635 7.67 20.5 10.6 158 -5 20.0 27.7 24.7 7.2 3.8 35.0 57.5 1.60 1.67 2/21/2007 700 8.00 21.6 10.6 155 -5 13.8 26.3 23.3 7.1 3.8 35.0 61.3 3.10 1.66 2/20/2007 1800 8.17 22.2 10.7 460 -5 13.2 23.9 21.3 7.3 3.8 35.0 73.6 2.20 1.55 2/20/2007 80 8.14 9.7 9.7 35.0 75.4 2.0 1.55 2/18/2007 76.15 7.99 9.7 35.0 75.7 35.0 75.7 36.0 76.4 36.0 76.4 36.0 74.8 2/1/20/20/20	366	298
2/22/2007 635 7.67 20.5 10.6 158 -5 20.0 27.7 24.7 7.2 3.8 35.0 57.5 1.60 1.67 2/21/2007 700 8.00 21.6 10.6 155 -5 13.8 26.3 23.3 7.1 3.8 35.0 61.3 3.10 1.66 2/20/2007 1800 8.17 22.2 10.7 160 -5 13.2 23.9 21.3 7.3 3.8 35.0 73.6 2.20 1.55 2/20/2007 800 8.14 9.7 9.7 35.0 75.4 2.20 1.55 2/18/2007 730 7.77 9.7 9.7 35.0 75.0 35.0 75.7 2/14/2007 36.0 76.4 36.0 76.4 36.0 74.8 2/18/2007 745 6.76 9.7 36.0 74.8 36.0 75.0 36.0 75.0 36.0 74.8 36.0 74.8 36.0 7	75 227	160
2/21/2007 700 8.00 21.6 10.6 155 -5 13.8 26.3 23.3 7.1 3.8 35.0 61.3 3.10 1.66 2/20/2007 1800 8.17 22.2 10.7 160 -5 13.2 23.9 21.3 7.3 3.8 35.0 73.6 2.20 1.55 2/20/2007 800 8.14 9.7 9.7 35.0 75.4 35.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.7 75.0 75.7 75.0 75.7 75.0 75.7 75.0 75.7 75.0 75.7 75.0 75.7 75.0 75.7 75.0	10	332
2/20/2007 1800 8.17 22.2 10.7 168 -5 13.2 23.9 21.3 7.3 3.8 35.0 73.6 2.20 1.55 2/20/2007 800 8.14 9.7 35.0 75.4 35.0 75.0 <td< td=""><td>49</td><td>371</td></td<>	49	371
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35 231 19 222	163 154
2/18/2007 1615 7.99 9.7 2/16/2007 730 7.77 9.7 2/14/2007 850 7.41 9.7 2/11/2007 1715 7.09 9.7 2/8/2007 745 6.76 9.7 2/4/2007 1530 6.38 9.7 2/1/2007 820 6.00	244	154
2/16/2007 730 7.77 9.7 2/14/2007 850 7.41 9.7 36.0 76.4 2/11/2007 1715 7.09 9.7 36.0 74.8 2/8/2007 745 6.76 9.7 36.0 75.0 2/4/2007 1530 6.38 9.7 36.0 74.8 2/1/2007 820 6.00 36.0 74.8		
2/14/2007 850 7.41 9.7 36.0 76.4 2/11/2007 1715 7.09 9.7 36.0 74.8 2/8/2007 745 6.76 9.7 36.0 75.0 2/4/2007 1530 6.38 9.7 36.0 74.8 2/1/2007 820 6.00 36.0 74.8	ID SOL	
2/11/2007 1715 7.09 9.7 2/8/2007 745 6.76 9.7 2/4/2007 1530 6.38 9.7 2/1/2007 820 6.00	9/10	
2/8/2007 745 6.76 9.7 2/4/2007 1530 6.38 9.7 2/1/2007 820 6.00		
2/1/2007 820 6.00		
1/31/2007 708 5.88		
	C(2)	
TO THE COURSE OF THE PROPERTY	59 173	105
	64	386
A CONTRACTOR OF THE PARTY OF TH	290	222
	113	45
	17 148 19 183	80 115
	163	151
	219	178
	146	78
	70 64	386

D A T	T I M	Quarry Level	Coag Tank Level	Back Wash Tank Level	Treated Water Flow	Back Wash Flow	Influent Pressure	MMF Supply Pressure	MMF Discharge Pressure	GAC Filter Discharge Pressure		Influent Water Temp	WTF Room Temp	MMF Effluent Turbidity	GAC Filter Effluent Turbidity	Effluent pH	MMF A Elapsed Run Time	MMF B Elapsed Run Time
E	E	FEET	INCHES	FEET	GPM	GPM	GPM	PSI	PSI	PSI	PSI	° F	* F	NTU	NTU	На	MIN	MIN
		LT1	LT2	LT4	FT1	FT2	PT1	PT2	PT3	PT4	PT5	TT1	TT2	MT1	MT2		WIIIV	WIIIN
1/11/2007	745	7.62	6.6	10.6	165	-5	21.2	30.6	27.5	7.7	3.8	39.0	61.0	3.00	2.87	7.58	213	145
1/10/2007	730	7.64	7.2	10.6	161	-5	20.2	29.1	25.7	7.7	3.8	40.0	60.9	2.81	2.90	7.48	309	232
1/9/2007	1250	7.68	7.8	9.7	145	-5	22.1	37.5	35.0	6.9	3.4	41.0	60.1	3.00	2.84	7.54	40	353
1/8/2007	1030	7.34	8.9	7.7	136	-5	22.3	36.5	34.2	7.0	2.6	42.0	61.4	3.10	2.91	7.61	30	343
1/6/2007	1040	7.14	10.9	10.6	151	-5	22.3	35.9	33.2	7.0	3.8	42.0	63.1	2.91	2.84	7.69	303	226
1/5/2007	835	7.15	12,1	10.7	154	-5	22,1	34.0	31.2	7.1	3.8	39.0	71.5	4.20	3.89	7.58	310	233

Offsite Well Inspection Forms April Semi-Annual Sampling Event

Vell ID.	Sample?	Well Size	DTW	DTP	DTB	Comments
C-20	yes	4"	31.60		70.22	Installed a modified 4" cap.
C-21	yes	4"	17.50		64.20	
C-22	yes	4"	11.80		50.95	

								ويطنان والتسميرين
Sampling Pe	ersonnel: Ti	m Beaumont			Date:	4/10/07		
ಾ Number	: 36380.51170)	·		Weather:	Pantly	Cloudy 30	<u> </u>
Well Id.	C-20				Time In:	0900	Time Out	: 1021_
Well in	formation	_		 _				
			TOC	Other	Well Type		ushmount 🔀 📑	Stick-Up
Depth to Wa		(feet)	31.60		Well Lock		Yes	No X
Depth to Bot		(feet)	70.22		-	Point Marked:		No X
Depth to Pro	duct: ater Column:	(feet)	2017		Well Mate Well Diam			her: steel her: 4"
	ater Column: Vater in Well:	(feet) (gal)	38.62 25.49		Comment			uer: ———
Three Well V		(gal)	76.47				modifi <u>e</u> d 4" <u>ca</u> p)
	Information				- 🖂		Conversion F	Factors
Purging Meth Tubing/Baile		Baile: Teflor	-	_	ethylene	gal/ft	1" ID 2" ID	14 10 10 12
Sampling Me		Baile			etnylene os Pump	of wate	r 0.04 0.16	0.66 1.47
Average Pun			250		אייאן אייווא פי		llon=3.785L=3785n	
Duration of F		(min)	30			<u> </u>	1017	
Total Volume				Did well go dry?	Yes No	X		
riba U-22	Water Quality	Meter Used?	Ye	s No			of the water colum	n 51 ft.
Time	DTW	Amount	рН	Conductivity	Turbidity	DO	Temp	ORP
	(feet)	purged (gal)		(mS/cm)	(NTU)	(mg/L)	·c	(mV)
930	33.72		6.92	,660	52.6	8.30	/0.28	-88
935	34.00	ļ	6.83	1657	61.0	6.60	10.25	-90
940	34.35		6.81	1625	61.2	650	10.30	-89
950	37.37	 	6.82	023.	62.1	6.81	10.31	-87
755	36.00	 	6.87	.649	59.2	6.72	10.34	-75
1000	36.52	 	6.81	.649	58.6	6.57	10.36	-74
1_0		 	7.6.7	1	40.0	<u> </u>	70.00	
			<u> </u>					
							<u></u>	
=		<u> </u>						
Sampling In	formation:							
EPA SW-846 EPA SW-846		PCB's "Hold" PC (Lab filter "	CB's Low	detection limit of detection limit of d analyze only if the	0.05 ppb	6 - 1 liter amb 3 - 1 liter amb the primary samp	ber Yes	No No
mple ID:	<u> </u>		•	Yes No		Shipped:	Drop-off STL Sy	
			JIVIOD !	Yes No No			Fed-Ex	UPS

	rsonnel: Ti	m Beaumont			Date:	4/10/07		
1	36380.51170)	Weather:	Par Hy	Cloudy 3	0'5		
Well Id. C-21					Time In:	1030	Time Out	
VVCII IG.	<u> </u>							
Well In	formation	··········						
		- 	TOC	Other	Well Type	: Flu	shmount	Stick-Up
		17.50	Well Locked: Yes		No			
Depth to Bottom: (feet)		64.20	Measuring Point Marked: Yes		No			
Depth to Product: (feet)			<u> </u>	TO MAINTENANCE OF THE PARTY OF				
		76.70		Well Diameter: 1" 2" Other: 4"				
		30.82 92.46		Comment	S :			
Inree Well V	olumes:	(gal)	72.76			·		
							· · · · · · · · · · · · · · · · · · ·	
Puraina I	nformation							
1 419119	THO THE CONTRACT OF THE CONTRA	•					Conversion I	Factors
Purging Meth	nod:	Bailer	Peristalt	tic Grundfo	s Pump	gal/ft.	1	
					thylene	of		
Sampling Me		Bailer	Peristalt	tic Grundfor	s Pump	water	0.04 0.16	0.66 1.47
Average Pun	nping Rate:	(ml/min)	250			1 gal	ion=3.785L=3785r	nL= <u>1337cu.</u> feet
Duration of P		(min)	30					
Total Volume	Removed:	(gal) 🔽	4.0	Did well go dry?	Yes No	\boxtimes		
riba U-22	Water Quality	Meter Used?	Ye	es No	Pump was pla	ice in the middle	of the water colum	ın <u>40 f</u> t.
Time	DTW	Amount	рН	Conductivity	Turbidity	DO	Temp	ORP
	(feet)	purged (gal)		(mS/cm)	(NTU)	(mg/L)	,C	(mV)
1035	19.20		6.43	.489	66.0	8.01	9.89	42
		1	6.42	.486	63.6	7.81	9.95	46
1040	19.75	 					1 =	
1045	20,10	<u> </u>	6.44	.486	65.6	7.78	7.52	46
1045	20.10 20.75		6.94	.486	57.4	7.64	9.10	48
1050 1055	20.10 20.75 21.00		6.94 6.94	.487	57.4 54.0	7.64	9.10 8.88	48
1050 1055 1045	20.10 20.75 21.00 21.55		6.94 6.94 6.94	.486 .487 .487	27.0 27.0	7.64 7.54 7.50	9.10 8.88 7.88	48 48 49
1045 1050 1055	20.10 20.75 21.00		6.94 6.94	.487	57.4 54.0	7.64	9.10 8.88	48
1045 1050 1055 1100	20.10 20.75 21.00 21.55		6.94 6.94 6.94	.486 .487 .487	27.0 27.0	7.64 7.54 7.50	9.10 8.88 7.88	48 48 49
1045 1050 1055 1100	20.10 20.75 21.00 21.55		6.94 6.94 6.94	.486 .487 .487	27.0 27.0	7.64 7.54 7.50	9.10 8.88 7.88	48 48 49
1045 1050 1055 1100	20.10 20.75 21.00 21.55		6.94 6.94 6.94	.486 .487 .487	27.0 27.0	7.64 7.54 7.50	9.10 8.88 7.88	48 48 49
1045 1050 1055 1100	20.10 20.75 21.00 21.55		6.94 6.94 6.94	.486 .487 .487	27.0 27.0	7.64 7.54 7.50	9.10 8.88 7.88	48 48 49
1050 1055 1100 1105	20.10 20.75 21.00 21.55 22.04		6.94 6.94 6.94	.486 .487 .487	27.0 27.0	7.64 7.54 7.50	9.10 8.88 7.88	48 48 49
1045 1050 1055 1100	20.10 20.75 21.00 21.55 22.04		6.94 6.94 6.94	.486 .487 .487	27.0 27.0	7.64 7.54 7.50	9.10 8.88 7.88	48 48 49
/045 /050 /055 /100 /105 Sampling In	20.10 20.75 21.00 21.55 22.04	DODI-	6.94 6.94 6.95 6.95	.486 .487 .487 .487	57.4 54.0 52.6 51.4	7.64 7.54 7.50 7.46	9.10 8.88 4.88 8.88	48 48 49 49
/045 /050 /055 /100 /105 Sampling In	20.10 20.75 21.00 21.55 22.04 formation:	PCB's	6.94 6.94 6.95 6.95	.487 .487 .487 .487	57.4 54.0 52.6 51.4	7.64 7.54 7.50 7.46	9.10 8.83 1.83 1.83 2.84	\(\frac{\q_{\text{8}}}{\q_{\text{9}}}\)
/045 /050 /055 /100 /105 Sampling In	20.10 20.75 21.00 21.55 22.04 formation:	"Hold" PC	6.94 6.94 6.95 6.95 Low	y detection limit of 0	57.4 54.0 52.6 51.4 5.05 ppb	7.64 7.50 7.46 4 - 1 liter amb 2 - 1 liter amb	9.10 8.83 7.53 8.28 Per Yes	\(\frac{\q_{\text{8}}}{\q_{\text{9}}}\)
1050 1055 1100 1105	20.10 20.75 21.00 21.55 22.04 formation:	"Hold" PC	6.94 6.94 6.95 6.95 Low	.487 .487 .487 .487	57.4 54.0 52.6 51.4 5.05 ppb	7.64 7.50 7.46 4 - 1 liter amb 2 - 1 liter amb	9.10 8.83 7.53 8.28 Per Yes	98 98 99 99 99
/045 /050 /055 /100 /105 Sampling In EPA SW-846 I	20.10 20.75 21.00 21.55 22.04 formation:	"Hold" PC (Lab filter "	Low B's Low	detection limit of 0 detection limit of 0 analyze only if ther	57.4 51.0 52.6 51.4 51.9 50.05 ppb 50.05 ppb 6 is detection in	7.64 7.54 7.50 7.46 4 - 1 liter amb 2 - 1 liter amb	per Yes ole.)	98 99 99 99 No
/045 /050 /055 /100 /105 Sampling In: EPA SW-846 I	20.10 20.75 21.00 21.55 22.04 formation: Method 8082 Method 8082	"Hold" PC (Lab filter "	Low Hold" sample an plicate?	detection limit of of detection limit of of analyze only if there	57.4 54.0 52.6 51.4 5.05 ppb	7.64 7.50 7.46 4 - 1 liter amb 2 - 1 liter amb	per Yes per Yes ple.)	V8 V9
/045 /050 /055 /100 /105 Sampling In EPA SW-846 I	20.10 20.75 21.00 21.55 22.04 formation:	"Hold" PC (Lab filter "	Low B's Low	detection limit of 0 detection limit of 0 analyze only if ther	57.4 51.0 52.6 51.4 51.9 50.05 ppb 50.05 ppb 6 is detection in	7.64 7.54 7.50 7.46 4 - 1 liter amb 2 - 1 liter amb	per Yes ole.)	98 99 99 99 No
/045 /050 /055 //00 //05 Sampling In: EPA SW-846 I	20.10 20.75 21.00 21.53 22.04 formation: Method 8082 Method 8082	"Hold" PC (Lab filter "	Low Hold" sample an plicate?	detection limit of of detection limit of of analyze only if there	57.4 54.0 52.6 51.4 50.05 ppb 60.05 ppb 70.05 ppb 80.05 ppb 10.05 ppb	7.64 7.54 7.50 7.46 4 - 1 liter amb 2 - 1 liter amb	per Yes per Yes ple.)	V8 Y8 Y9 Y9 V9

		···								
Sampling Pe	ersonnel: Ti	m Beaumont			Date:	4/10/0	7			
- b Number	: 36380,51170				Weather:	Partly	Cloudy	30'S		
Well Id.	C-22				Time In:	1/20		: /220		
TVOII IG.					11110 1111					
Well In	formation									
		•	TOC	Other	Well Type	e: Flo	ushmount	Stick-Up		
Depth to Wa	iter:	(feet)	11.80		Well Lock		Yes	No		
Depth to Bot		(feet)	50.95		Measuring	Point Marked:	Yes	No		
Depth to Pro	duct:	(feet)			Well Mate	erial: PV	c ss o	ther: steel		
	ater Column:		39.15		Well Dian	neter: 1	1" 2"0	her: 4"		
	/ater in Well:		25.84		Comment	ts:				
Three Well V	/olumes:	(gal)	77.52				 			
										
Purging I	Information	_				<u> </u>				
					5 3		Conversion			
Purging Meti		Baile	 		s Pump	gal/fi	t 1" ID 2" ID	4" ID 6" ID		
Tubing/Baile		Teflo			ethylene	of				
Sampling Me		Baile		ic Grundfo	s Pump	wate		0.66 1.47		
Average Pun			<u>-600</u>			1 ga	llon=3.785L=3785i	mL=1337cu. feet		
Duration of F		(min)	30		. —	K-21				
Total Volume	e Removed:	(gal)		Did well go dry?	Yes No	M				
ີ່າriba U-22	े प्रांba U-22 Water Quality Meter Used? Yes No Pump was place in the middle of the water column 32 ft.									
	<u></u>									
Time	T DTW	Amount	pН	Conductivity	Turbidity	DO	Temp	ORP		
	(feet)	purged (gal)	· ·	(mS/cm)	(NTU)	(mg/L)	°C	(mV)		
1/25	11.80		7.98	,337	196	12.22	8.03	. 32		
1130	1		7.75	.335	152	11.65	7.70	,3L		
1135			7.44	.333	/23	11.47	7.67	.37		
1140			7.46	.332	72.4	11.44	7.42	.30		
1145			7.49	.370	67.5	11.42	7.32	.28		
1150			7.50	,330	65.1	11.31	7.30	124		
1155			7.50	.330	57.2	11.24	7.29	.22		
							1			
								1		
<u></u>										
Sampling In	formation:									
	······································									
EPA SW-846 I	Method 8082	PCB's	. Low	detection limit of	0.05 npb	2 - 1 liter am	her Ves			
EPA SW-846 Method 8082 PCB's Low detection limit of 0.05 ppb 2 - 1 liter amber Yes No EPA SW-846 Method 8082 "Hold" PCB's Low detection limit of 0.05 ppb 1 - 1 liter amber Yes No										
				d analyze only if the	• •			ا الاست		
		(200(0)	warripre att			pinnaiy vain	P.V.)			
∩mple ID:	C-22-040	7 Di	uplicate?	Yes No		Shipped:	Drop-off STL S	vracuse 🔀 📗		
nple Time:	1200		S/MSD?	Yes No		S.uppou.	Fed-Ex	UPS		
Comments/N	والأطنسسينيسين					Laboratory:	Severn Trent	Laboratory		
8 A A A	or no sh	een					Amherst, Nev	Vork		

ic 4123 (090h). Sient CDA (ddress	Eroječt Mariagi Telepticire Nur	Hatt Halligs iberilara Codella akkulimber 1906 - St. 146	Eab Nom	7,7 2 25	1776
Project Name and Location (State)	ZipiCode SieComacu, TILK Ba	Lab Contact Place Contact Number	Altalysis (Att.) Altalysis (Att.) Microspacells	Rage	
Contagers for each sample may be combined on one		Matrix Containers & Containers & Pris Britainers & Containers & Contai	P.C. SCAL		ecial Instructions/ nditions of Receipt
C20-0407 MS/MSB 20-0407 DOP MS/MS	##//o/o7 #50.00 \$			Ck Ho	the timet of Owe opla
21-0407 -21-0407 -21-0407					
12 0407 1009" FD 0407 "D0P"	3239 . 2 				Poplas I
Cossible Hazard identification (22) Secondarial (22) Elaminable (22) Skin imitar Urin Around Time Regulted			ACASSAS ASSAS A	(A fee may be assessed) San Jonger than Ismonth (ples are retained.
24 Hours: A 48 Hours . Dr Days & Else Reinguished By	14 Days		15 2011	Dale 2//2 pale	Triple 5 (
1 Relinquished By Comments	Date	Times 3 35 Received By		Parel	Inne
HOLD TOLD SOMPLANTISTER	OCH CANABY SIAVSWIID DE SAMBIE PL	<u>† IAME IN DETA</u> Vik Field Cook	chea in the Air	ray serrove	A A CONTRACTOR OF THE STATE OF

Offsite Well Inspection Forms October Semi-Annual Sampling Event Niagara Mohawk, a National Grid Company M. Wallace and Son, Onc. Cobleskill, New York

Well ID.	Sample?	Well Size	DTW	DTP	DTB	Comments
C-20	yes_	4"	34.02		70.22	
C-21	yes_	4"	21.00		64.20	
C-22	yes	4"	17.32		50.95	

Sustody Record			Severn Tre	int Laboratories, Inc.	
(L4124 (0901)) Tient		Project Manager		Page 1999	Chambridestody:Number/
CV) JUS.		Hat UL Telephone Number (Area: Code) Fax. Nijn	iber of Aller - Target	1e/2/67	358109
Weekel &	CTOES DAYER	Str. (1343257 3)	146355760	Agalysis (Attachilist it	Bage Sof Sof
Supplies (FET of V&	<u> </u>	Tip Recorded		more space (sineeded):	\$\frac{\partial \text{Sign}}{\partial \text{Sign}} \text{Sign} \te
The Hiller accord	S.E. The Collegemy	Awar of Lynn & Co	aux Ca. L. jag **		Special Instructions/
contract/Pujchase/Order/Quoje No.;		Marix J	oritainiersia reservatives		Gonditions of Receipt
Sample I.D. No. and Desc Containers for each sample may be goon b	ription Dinection one line) Date	Time: \$ \$ 5. 5. 5.	100 A A A A A A A A A A A A A A A A A A		
C-20+1007	Luco logica in		X		descinulator outgab
(-}6-1007; #90F!		<i>10</i>			
<u>(* 21 - 1007.</u> - 21 - 1007 * βαβ ^α		130 80 2			
- 21 Aug Jan					9/4
C-22 TOOT " DUR		n en y			
<u>[-10-1007] </u>					C-29 Laboricati
<u> Foriou7 '' 197</u>	-46-				C211 CUpitopia
Possible Hazard/Igentification		Sample Pisosal			
KINON Hazerd Flammable Turn Around Time Required	Skin (ff(fart) 🗸 🖾 Poison B 🔻 🔲	and the state of t	isposal Bylėsb 🔠 Archiveli Reguvernents (Specify)	(Asfeemay be For Mogits Florider than st	assessed framples are retained month)
☑ 24.Hours	pays. □ a pays. □ 21. bays.		eat B		
Reinguished By LULY ARA Relinguished By 1. Relinguished By	\mathcal{F}	10j3/67 75 30	* CASA	\$4474c	10/03/07 25/50
		The state of the s	eceived:By	180	Date
3. Reinquished By		Date Time 3 R	acalved By		Oate Time
Comments.	Complex , Challe	and without	MALL .	he wan and	4
VISTRIBUTION: WHITE Returned to C	lient With Report: CANARY - Stays With	ine Sample, PINK Held Copy			

				··· ·					
Sampling Pe	rsonnel: Ti	m Beaumont			Date:	10/2/07			
o Number:	: 36380.51170				Weather:	Sunny	2.03		
Well Id.	C-20				Time In:	1030	Time Out	: 1138	
									
Well In	formation	•	T00	O# 4 -	184-31 To	Fl		Cataly Lin	
Dareth to Ma		/5A	TOC 34.02	Other	Well Type Well Lock		shmount Yes	Stick-Up No	
Depth to Wa		(feet)	70.22			Point Marked:	Yes	No X	
Depth to Bot		(feet)	10.22		Well Mate			her: steel	
Depth to Pro- Length of Wa		(feet)	36.20		Well Dian			her: 4"	
Volume of W		(feet) (gal)	23.81		Commen	-			
Three Well V			71.68		Common				
Tillee vveli v	olumes.	(gar)	11.00						
Duraina I	Information					<u> </u>	=		
Fulging i	momaton	•					Conversion F	actors	
Purging Meth	od.	Baile	r Peristalt	ic Grundfo	s Pump	gal/ft.	1" ID 2" ID		
Tubing/Bailer		Teflor			ethylene	of			
Sampling Me		Baile	 		s Pump	water	0.04 0.16	0.66 1.47	
Average Pun				west to main	· —		on=3.785L=3785n		
Duration of P		(min)	30			<u> </u>			
Total Volume		(gal)		Did well go dry?	Yes No	\boxtimes			
				s No			-Est		
oriba U-22	Water Quality	Meter Used?	Ye	S NO L	Pump was pi	ice in the middle (of the water colum	n <u>52 ft.</u>	
Time	DTW	Amount	pH	Conductivity	Turbidity	DO	Temp	ORP	
	(feet)	purged (gal)		(mS/cm)	(NTU)	(mg/L)	°C	(mV)	
1050	37.70	1 3 3 7	7.05	1.02	66.2	216	/3.85	111	
1055	38.35		689	1.88	56.7	1.49	/3.43	85	
lloo	38.75	<u> </u>	6:25	4.16	43.0	1.46	15.00	76	
1105	39.30		6.85	5.05	46.2	1.36	14.98	67	
1110	39.78	***************************************	6.95	6.71	47.1	1.37	15.02	73	
un	40.15		6.85	5.40	47.5	1.38	15.07	62	
1120	40.82	·	6.85	5.94	47.2	1.35	15:05	58	
			 						
					*				
	<u> </u>								
Sampling In	formation:					•			
Company at	omagor.			•					
EPA SW-846 I	Mothod 9099	DADI-	1	dotostian limit cf	0 05 pph	R 414	v. l	No	
		PCB's		detection limit of (6 - 1 liter amb			
EPA 347-846 [EPA SW-846 Method 8082 "Hold" PCB's Low detection limit of 0.05 ppb 3 - 1 liter amber Yes No liter "Hold" sample and analyze only if there is detection in the primary sample.)								
		(Lab filter '	molo" sample an	o analyze only if thei	e is detection in	tne primary samp	ie.)		
Camania ID	(+20.100T	B.	unlineda.O	v. 🗀 🖂	<u>^</u>	: ··		🔽	
^¬mple ID:	C-20-1007		plicate?	Yes No	Sh		Syracuse Service		
mple Time:	1120	MS	S/MSD?	Yes No No		F	ed-Ex	UPS	
Comments/N	otes:					Laboratory:	Test Am	erica	
سينا كالمنا		iheen.					Amherst, No		
736 (0 DOT \\ \V \\ \\	mer.			IP				

*···								
Sampling Pe	ersonnel: Ti	m Beaumont			Date:	10/2/07		
ا الله الله الله الله الله الله الله ال	: 36380.51170)	·	 	Weather	Sonny	60.5	
Well Id.	C-21				Time In:	1157	Time Out	: १२५८
Well In	formation							
		-	TOC	Other	Well Typ	e: Flu:	shmount	Stick-Up
Depth to Wa	ter:	(feet)	Z1.00		Well Loc		Yes	No
Depth to Bot		(feet)	64.20			Point Marked:	Yes	No
Depth to Pro		(feet)			Well Mat			her: steel
	ater Column:		43.20		Well Diar		Ot	her:4"
	later in Well:	(gal)	28.51		Commen	ts:		
Three Well \	/olumes:	(gal)	82-23				· · · · · · · · · · · · · · · · · · ·	
								
Duraina	Information		- 					
Purging	Information	_					Conversion	Factors
Purging Meti	hod:	Baile	r Peristalt	io Grundfr	s Pump		1" ID 2" ID	
Tubing/Baile		Teflor			ethylene	gal/ft. of	1 10 2 10	
Sampling Me		Baile			s Pump	water	0.04 0.16	0.66 1.47
Average Pur					ten flui		on=3.785L=3785r	
Duration of F		(min)	30		1-000 1-000	, <u>, , , , , , , , , , , , , , , , , , </u>	J. C. 1002 5.00.	
Total Volume		(gal) •		Did well go dry?	Yes No			
								nn 43 ft.
mba U-22	Water Quality	Meter Usea?	Ye	s No	Pump was pi	ace in the middle	of the water colum	nn <u>43 ft.</u>
Time	DTW	Amount	pH	Conductivity	Turbidity	DO	Temp	ORP
1	(feet)	purged (gal)	J -	(mS/cm)	(NTU)	(mg/L)	င်	(mV)
1200	22.80	1	7.02	1.34	37.3	1.95	11.70	WO
1205	24.00		7,00	(.75	40.1	1.87	11.26	86
1210	28:70		6.59	1.78	22.9	2.79	13.10	60
1215	30.10		72.00	(47)	21.9	3.17	15.88	56
1220	31.07		7.00	1.78	19,4	3.3 %	12.91	53
1225	32.24		7.01	1.79	20.2	3,41	1294	57
1230	33.71		7.01	1.82	19.0	345	12.98	50
<u></u>								
			<u> </u>	<u> </u>				
ļ								
<u></u>	<u> </u>	<u> </u>	<u> </u>		~ 			
								
Sampling In	formation:							
	<u>_</u>							_
EPA SW-846 I	Method 8082	PCB's	Low	detection limit of	0.05 ppb	4 - 1 liter amb	er Yes	No
EPA SW-846 I	Method 8082	"Hold" PC	CB's Low	detection limit of	0.05 ppb	2 - 1 liter amb		7 1 7
		(Lab filter '	'Hold" sample an	d analyze only if the	re is detection in	the primary samp	le.)	
								
`mple ID:	mple ID: <u>C-21-6007</u> Duplicate? Yes No FD-1007 Shipped: Drop-off Syracuse Service Center							
Jample Time:	1230	MS	S/MSD?	Yes No				UPS 🔲
Comments/N	lotes:					Laboratory:	Test Am	
	No OBA	nasheen			į	Laboratory.		
	NO FIRM	I I D J E DI I			#		Amherst, N	CW TOTK

Sampling Pe	rsonnel: Ti	m Beaumont		Date:	10/2/07				
1	36380.51170				Weather.		60.2		
Well Id.	C-22				Time In:	1250	Time Out:	1350	
			:						
Weil In	formation	_			1 A F - 17 TC			Stick-Up	
D-10-10-10-10-10-10-10-10-10-10-10-10-10-	4		TOC	Other	Well Type Well Lock		hmount S	No No	
Depth to Wa		(feet)	17・3 と 50.95			eu. Point Marked:	Yes	No	
Depth to Bot Depth to Pro		(feet)	30.95		Well Mate			<u> </u>	
Length of Wa		(feet)	33.63		Well Dian		2" Oth		
Volume of W		(gal)	22.20		Commen			···	
Three Well \		(gai)	46.60		00//////				
Purging Information									
				r1			Conversion F		
Purging Meth		Baile	 	}	os Pump	gai/ft.	1" ID 2" ID	4" ID 6" ID	
Tubing/Baile		Teflo	—		ethylene	of	ا مدا مما	0.00 4.47	
Sampling Me		Baile			os Pump	water		0.66 1.47	
Average Pun				pur to main	new Has	1 gall	on=3.785L=3785m	L=1337cu. feet	
	Duration of Pumping: (min) 30								
Total Volume Removed: (gal) - 5.0 Did well go dry? Yes No									
່ 'oriba U-22	Water Quality	Meter Used?	Ye	s No	Pump was pla	ace in the middle	of the water column	1 34 ft.	
Time	DTW	Amount	рН	Conductivity	Turbidity	DO	Temp	ORP	
	(feet)	purged (gal))	(mS/cm)	(NTU)	(mg/L)	.c	(mV)	
1522	18.80	<u> </u>	7.11	.15	61.9	7.03	1221	112	
1300	19.42	<u> </u>	7.05	1.62	48.2	(57	12.49	83	
1305	20.15	 	7.04	3.72	45.3	1.34	13.19	64	
1310	20.50	<u> </u>	6.59	4.84	48.5	1.54	13.42	45	
1315	20.84		6.55	1003	42.6	673	1393	41	
1320	20.42	 	6.59	5.00	46.2	2.07	(3.55	37	
1325	21.00	<u> </u>	7,00	5.04	46.0	2.15	13.97	36	
	<u> </u>		 	-			 		
		<u> </u>	ļ	ļ		_ -			
ļ	 	 	-	 	·· ·				
<u></u>	<u></u>	<u></u>	<u> </u>	1				<u> l</u>	
								 -i	
Sampling In	formation:							Ì	
					•		-		
EPA SW-846 I		PCB's		detection limit of	• •	2 - 1 liter amb		No _	
EPA SW-846 Method 8082 "Hold" PCB's Low detection limit of 0.05 ppb 1 - 1 liter amber Yes No									
(Lab filter "Hold" sample and analyze only if there is detection in the primary sample.)									
-	C-22-100.		uplicate?	Yes No	Sh	•	Syracuse Service	1 Pre-1	
.mple Time:	1352	MS	S/MSD?	Yes No X		Fe	ed-Ex U	PS []	
Comments/N	Comments/Notes: Laboratory: Test America								
تحبيب كالمستا	OAA AO	Shen.		•		,.	Amherst, Ne	li li	
, ,,	- 101 - 100	At 1.							

Analytical Report January Sampling Event

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: A07-1038, A07-1040

STL Project#: NY7A9595

SDG#: 1Q07CO

Site Name: Niagara Mohawk O & M

Task: Wallace & Sons Scrapyard

Timothy Beaumont CDM One General Motors Dr. STE 2 Syracuse, NY 13206

STL Buffalo

Jason R. Kacalski Project Manager

02/13/2007

STL Buffalo Current Certifications

As of 9/28/2006

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NYÖ44
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA,ASP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA, RCRA	68-00281
South Carolina	RCRA	. 91013
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

Sample Data Summary Package

SAMPLE SUMMARY

			SAMPI	LED	RECEIVED	
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX		TIME		TIME
A7103801	NTS-BCW-0107	WATER	01/30/2007	09:00	02/01/2007	09:10
A7104001	NTS-BCW-0107 DUP	WATER	01/30/2007	09:00	02/01/2007	09:10
A7103802	NTS-EW-0107	WATER	01/30/2007	09:05	02/01/2007	09:10
A7104002	NTS-EW-0107 DUP	WATER	01/30/2007	09:05	02/01/2007	09:10

METHODS SUMMARY

Job#: <u>A07-1038, A07-1040</u>

STL Project#: NY7A9595

SDG#: 100700

Site Name: Niagara Mohawk O & M

ANALYTICAL

PARAMETER

METHOD

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

NON-CONFORMANCE SUMMARY

Job#: <u>A07-1038, A07-1040</u>

STL Project#: NY7A9595

SDG#: 1007CO

Site Name: Niagara Mohawk O & M

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-1038

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

A07-1040

Sample Cooler(s) were received at the following temperature(s); $2.0 \, ^{\circ}$ C Please filter samples prior to the extraction.

One sample bottle was received broken for sample NTS-BCW-0107 for PCB analysis by method 608. Sufficient volume remained to complete the analysis.

GC Extractable Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID	ANALYTICAL REQUIREMENTS						
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
NTS-BCW-0107	A7103801		-	-	CFR136	-	-	-
NTS-BCW-0107 DUP	A7104001	-		<u>-</u>	CFR136	<u>.</u>	-	-
NTS-EW-0107	A7103802	-	· -	<u>-</u>	CFR136	-	<u>-</u>	-
NTS-EW-0107 DUP	A7104002	-	-	-	CFR136	-	-	

NYSDEC-1

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
NTS-BCW-0107	WATER	01/30/2007	02/01/2007	02/05/2007	02/06/2007
NTS-BCW-0107 DUP	WATER	01/30/2007	02/01/2007	02/05/2007	02/06/2007
NTS-EW-0107	WATER	01/30/2007	02/01/2007	02/05/2007	02/06/2007
NTS-EW-0107 DUP	WATER	01/30/2007	02/01/2007	02/05/2007	02/06/2007

NYSDEC-4

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
NTS-BCW-0107	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NTS-BCW-0107 DUP	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NTS-EW-0107	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NTS-EW-0107 DUP	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED

NYSDEC-6

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product,
- Indicates coelution.
- * Indicates analysis is not within the quality control limits,

INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit,
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

ct:
SDG No.: 100700
Lab Sample ID: A7103801
Lab File ID: <u>12A70066.TX0</u>
Date Samp/Recv: <u>01/30/2007</u> <u>02/01/2007</u>
Date Extracted: <u>02/05/2007</u>
Date Analyzed: 02/06/2007
Dilution Factor:1.00
Sulfur Cleanup: (Y/N) N
CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
0.094 U
0.094 U 0.094 U
0.094 U
0.094 U
0.094 U
0.094 U
0.094 U
yls0.094 U

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M MEIHOD 608 - POLYCHIORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS WATER SURROGATE RECOVERY

Lab Name: STL Buffalo		Contract:		
Lab Code: RECNY	Case No.:	SAS No.:	SDG No.:	<u>1007co</u>
GC Column(1): <u>ZB-35</u>	ID: 0.53 (mm)) · · · · · · · · · · · · · · · · · · ·		

·	Client Sample ID	Lab Sample ID		TCMX %REC #							TOT OUT
	=======================================	=========	======	======	======	======	======	======	======	======	===
1	Matrix Spike Blank	A780168101	98	86	}	\ 1				[0
2	Matrix Spike Blk Dup	A7B0168102	90	105				İ		1	0
3	Method Blank	A7B0168103	96	77							0
4	NTS-BCW-0107	A7103801	70	89							0
5	NTS-EW-0107	A7103802	74	94							0
j											

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene

(30-135) (22-132)

- # Column to be used to flag recovery values
 * Values outside of contract required QC limits
 D Surrogates diluted out

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M

METHOD 608 - POLYCHLORINATED BIPHENYLS

WATER MATRIX SPIKE BLANK/MATRIX SPIKE BLANK DUPLICATE RECOVERY

Lab Name: <u>STL Buffalo</u>		Contract:		Lab S	amp ID	: <u>A7B0168103</u>
Lab Code: <u>RECNY</u> Case No	.:	SAS No.:		S	DG No.	: 100700
Matrix Spike - Client Sampl	e No.: <u>Method B</u>	<u>lank</u>				
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.		
Aroclor 1260Aroclor 1016	0.500 0.500	0.517 0.473	104	40 - 136 38 - 130	6	
COMPOUND	SPIKE ADDED UG/L	MSBD CONCENTRATION UG/L	MSBD % REC #	1		C LIMITS REC.
Aroclor 1260 Aroclor 1016	0.500 0.500	0.510 0.469	102 94	2	50 50	40 - 136 38 - 130
# Column to be used to flag * Values outside of QC limit RPD:0 out of2 outs Spike recovery:0 out of	side limits		n asteris	ζ		
Comments:		· · · · · · · · · · · · · · · · · · ·				

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS METHOD BLANK SUMMARY

Client No.

Lab Name: <u>ST</u>	<u>L Buffalo</u>		Method Blank		
Lab Code: <u>RE</u>	CCNY Case No.:	SAS No.	: S	DG No.: 1007CO	
Cab Sample I	D: <u>A7B0168103</u>	Lab :	File ID: <u>12A7</u>	0056.TX0	
Matrix: (soi	l/water) <u>WATER</u>	Extr	action:	<u>SEPF</u>	
Sulfur Clean	up: (Y/N): <u>Y</u>	Date	Extracted:	02/05/2007	±
Date Analyze	d (1): <u>02/06/2007</u>	Date	Analyzed (2)	:	
Time Analyze	d (1): <u>12:59</u>	Time	Analyzed (2)	:	
instrument I	D (1): <u>HP5890-12</u>	Inst	rument ID (2)	•	
C Column (1): <u>ZB-35</u> Dia: <u>0</u> .	53 (mm) GC Co	olumn (2):	Dia: _	(mm)
THI	S METHOD BLANK APPLIE	S TO THE FOLI	LOWING SAMPLE	S, MS AND MSD:	
	į	LAB SAMPLE ID	DATE ANALYZED 1	DATE ANALYZED 2	
1 M 2 M 3 N	atrix Spike Blank atrix Spike Blk Dup TS-BCW-0107		02/06/2007 02/06/2007 02/06/2007		
Comments:				<u> </u>	

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M MEIHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

Lab Name: STL Buffalo Contrad	Method Blank
Colleta	
Lab Code: <u>RECNY</u> Case No.: SAS No.	: SDG No.: <u>1007CO</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7B0168103</u>
Sample wt/vol: 1000.00 (g/mL) ML	Lab File ID: <u>12A70056.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv:
Extraction: (SepF/Cont/Sonc/Soxh): <u>SEPF</u>	Date Extracted: 02/05/2007
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 02/06/2007
Injection Volume: 1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) \underline{Y}
·	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016	0.10 U
11104-28-2Aroclor 1221	0.10 U
11141-16-5Aroclor 1232	0.10 U
53469-21-9Aroclor 1242	0.10 U
12672-29-6Aroclor 1248	0.10 U
11097-69-1Aroclor 1254	0.10 U
11096-82-5Aroclor 1260	0.10 U
Total Polychlorinated Biphen	ylsU 0.10 U

Sample Data Package

SDG Narrative

SAMPLE SUMMARY

			SAMPI	ED.	RECEIVE	ΞD
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7103801	NTS-BCW-0107	WATER	01/30/2007	09:00	02/01/2007	09:10
A7104001	NTS-BCW-0107 DUP	WATER	01/30/2007	09:00	02/01/2007	09:10
A7103802	NTS-EW-0107	WATER	01/30/2007	09:05	02/01/2007	09:10
A7104002	NTS-EW-0107 DUP	WATER	01/30/2007	09:05	02/01/2007	09:10

METHODS SUMMARY

Job#: A07-1038, A07-1040

STL Project#: NY7A9595

SDG#: 1007CO

Site Name: Niagara Mohawk O & M

ANALYTICAL METHOD

PARAMETER

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

NON-CONFORMANCE SUMMARY

Job#: <u>A07-1038, A07-1040</u>

STL Project#: NY7A9595

SDG#: 100700

Site Name: Niagara Mohawk O & M

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-1038

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

A07-1040

Sample Cooler(s) were received at the following temperature(s); $2.0\ ^{\circ}\text{C}$ Please filter samples prior to the extraction.

One sample bottle was received broken for sample NTS-BCW-0107 for PCB analysis by method 608. Sufficient volume remained to complete the analysis.

GC Extractable Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Chain Of Custody Documentation

Chain of Custody Record

STL-4124 (0901)					
Client P DAI	Project	Manager 111	* Millias	Date //30	Chain of Custody Number 138708
Address / Occasion / 143 450 /	Telepho	one Number (Area Code	a)/FaX Number	Lab Number	138708
City (State / Zip Code	VC Site Co	5 434 3	256 315463 Lab Contact	3 5700) - Analysis (Attach li	Page of
City Shawft State Zip Code 1320		brownut	Lab ourract	more space is need	ded)
Project Name and Location (State) MUCHULLIAND SM Enc Cabbille	Carrier	Waybill Number	1	- THE S	Special Instructions/
Contract/Purchase Order/Quote No.	<i>[[[]</i>	1 100	Containers &	600	Conditions of Receipt
		Matrix	Preservatives	1 1 1 1 1 1 1 1	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	ate Time	Air Aqueous Sed. Soil	Unpres. HZSO4 HNO3 HCI NaOH NaOH	55	
NTS-BCW-0107 1/30	107 09W	X	2	X	detected limit of 0.05 pp
WITS- BCW-0107(DUP)	0900	X	2		
NR-8W-0107	0905	X	2	X	
NTT-9U-0107 (NVP) -	- 0905	V	2		
				┤·┞·┼·┤·┤ · ┠·┠	
				╫	
				 	
Rossible Hazard Identification		Sample Disposal			
Non-Hazard	on B 🔲 Unknown	1 ' '	Disposal By Lab	(A : Archive For Months lon	fee may be assessed if samples are retained iger than 1 month)
Turn Around Time Required.	1		QC Requirements (Specif		
24 Hours 48 Hours 7 Days 14 Days 1. Relinquished By	21 Days Date	erSD	1. Réceived By	M1 15	, Date / , Time
Holling A		07 1945	Huke C	AS	01/31/07 09:45
Relinquished By	Date	Time	2 Received By		Date Time
3. Relinquished By	Date	Time	3. Recaived By		Date Time
Comments		1			
	ralize in	DIE PINK - Freid Copy	her is dite	etu i nyni	1 Suple. 2.0°C
DISTRIBUTION: WHITE - Returned to Client with Report; CANARY	- Stays with the Samp	ple: PINK - Aleld Copy			/

ite: 02/01/2007 me: 12:58:28 STL Buffalo Sample Inventory

Page: 1 Rept: ANO383

Job No: A07-1: Client: Camp Project: NY7A9 SDG: Case: SMO No: No. Samps: 2	Dresser and Mckee			Chain of Cus Sample Sample Tag Num SMO F	Seal: YES tody: YES Tags: NO	Cooler Temperature:	2.0°C		
Sample	Receive	Client Sample ID	Lab ID	Condition	Bottles	Parameters	Lab	Pres	s log
01/30/2007 09:00	02/01/2007 09:10 02/01/2007 09:10	NTS-BCW-0107	A7103801 A7103802	Good	2-11GA 2-11GA	PCB	RECNY	0100 0100	

. 1	2		
ple Custodian: NV	L1 (1200)	Analytical Services Coordinator:	 /20

te: 02/01/2007 me: 13:12:01

STL Buffalo Sample Inventory

Page:

Rept: ANO383

Job No: A07-1040 Client: Camp Dresser and Mckee Project: NY7A9595 SDG: Case: SMO No: No. Samps: 2		Radiation Check: YES Custody Seal: YES Chain of Custody: YES Sample Tags: NO Sample Tag Numbers: NO SMO Forms: NO CLSIS: NO		Cooler Temperature: 2.0°C					
Sample	Receive	Client Sample ID	Lab ID	Condition	Bottles	Pärameters	Lab	Pres Code	log PH
	02/01/2007 09:10 02/01/2007 09:10		A7104001 A7104002	Good Good	1-11GA 2-11GA	PCB 608 (HOLD) PCB 608 (HOLD)	RECNY RECNY	0100 0100	

	mple Custodian:	mn	2, (1200)	Analytical Services Coordinator:		/20
--	-----------------	----	------------	----------------------------------	--	-----

Analytical Report February Sampling Event

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: <u>A07-1901</u>

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

Task: Wallace & Sons Scrapyard

Timothy Beaumont CDM One General Motors Dr. STE 2 Syracuse, NY 13206

STL Buffalo

Jasón R. Kacalski Project Manager

03/16/2007

STL Buffalo Current Certifications

As of 9/28/2006

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL.	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA,ASP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
South Carolina	RCRA	91013
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

Sample Data Summary Package

SAMPLE SUMMARY

			SAMPI	SAMPLED		EID
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7190101	NTS-BCW-0207	WATER	02/27/2007	13:00	03/01/2007	09:15
A7190102	NIS-BCW-0207 (DUP)	WATER	02/27/2007	13:00	03/01/2007	09:15
A7190103	NTS-EW-0207	WATER	02/27/2007	13:10	03/01/2007	09:15
A7190104	NTS-EW-0207 (DUP)	WATER	02/27/2007	13:10	03/01/2007	09:15

METHODS SUMMARY

Job#: A07-1901

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

ANALYTICAL PARAMETER METHOD CFR136 608PCB

METHOD 608 - POLYCHLORINATED BIPHENYLS

References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

NON-CONFORMANCE SUMMARY

Job#: A07-1901

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-1901

Sample Cooler(s) were received at the following temperature(s); 202.0 °C All Dup samples are to be extracted and held. Please filter prior to extraction.

GC Extractable Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Date: 03/16/2007

Requested Detection Limits < STL's PQL

r,a tõr i

Page: 1 Rept: AN1520

Time: 10:31:12

The requested project specific reporting limits listed below were learned quantitation limits. It must be noted that results report

The requested project specific reporting limits listed below were less than STL's standard quantitation limits. It must be noted that results reported below STL's standard quantitation limit (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

<u>Method</u>	Parameter	<u>Unit</u>	Client DL	STL POL
608PCB	Total Polychlorinated Biphenyls	UG/L	0.10	0.12

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID		ANALYTICAL REQUIREMENTS						
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY	
NTS-BCW-0207	A7190101	- -	-	_	CFR136	-	•	-	
NTS-BCW-0207(DUP)	A7190102		-	-	CFR136		•		
NTS-EW-0207	A7190103	<u>.</u>	-	-	CFR136			<u> </u>	
NTS-EW-0207(DUP)	A7190104			<u> </u>	CFR136		-		

SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
NTS-BCW-0207	WATER	02/27/2007	03/01/2007	03/02/2007	03/05/2007
NTS-BCW-0207(DUP)	WATER	02/27/2007	03/01/2007	03/02/2007	03/05/2007
NTS-EW-0207	WATER	02/27/2007	03/01/2007	03/02/2007	03/05/2007
NTS-EW-0207(DUP)	WATER	02/27/2007	03/01/2007	03/02/2007	03/05/2007

SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
NTS-BCW-0207	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NTS-BCW-0207(DUP)	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NTS-EW-0207	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NTS-EW-0207(DUP)	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U. Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

Lab Name: STL Buffalo Contrad	NTS-BCW-020	7
the Name: bill building Concrat	CC:	
Lab Code: RECNY Case No.: SAS No.	: SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A7190101	
Sample wt/vol: 1060.00 (g/mL) ML	Lab File ID: <u>12A74133.TX</u>	<u>:0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 02/27/2007	03/01/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: <u>03/02/2007</u>	
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 03/05/2007	
Injection Volume:1.00(uL)	Dilution Factor:1.00	
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y/N) N	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>UG/L</u> Q	
12674-11-2Aroclor 1016	0.061 U	
11104-28-2Aroclor 1221	0.061 U	
11141-16-5Aroclor 1232	0.061 U	
53469-21-9Aroclor 1242	0.061 U	
12672-29-6Aroclor	0.061 U	
11097-69-1Aroclor 1254	0.061 ען	
11096-82-5Aroclor 1260	0.061 U	
Total Polychlorinated Bipher	nyls 0.061 U	
Total Polychlorinated Bipher	nyls 0.061 U	

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

Lab Name: STL Buffalo Contra	ect:	l l	VIS-EW-02	207
Lab Code: <u>RECNY</u> Case No.: SAS No.	.: SDG No.:		•	
Matrix: (soil/water) <u>WATER</u>	Lab Samp	le ID: 1	A7190103	
Sample wt/vol: <u>1060.00</u> (g/mL) <u>ML</u>	Lab File	ID:]	12A74134	.TX0
% Moisture: decanted: (Y/N) N	Date Sam	p/Recv: (02/27/200	03/01/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Ext	racted: <u>(</u>	03/02/200	<u>07</u>
Concentrated Extract Volume:1000(uL)	Date Ana	lyzed: 🤇	03/05/200	<u>07</u>
Injection Volume:1.00(uL)	Dilution	Factor:	1.00	
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur C	leanup:	(Y/N) <u>N</u>	
CAS NO. COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg) <u>UG</u>		Q	
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260		0.061 0.061 0.061 0.061 0.061 0.061	0 0 0 0	
Total Polychlorinated Biphe	TIYIS	0.061	U	

CAMP DRESSER AND MCKEE MIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS WATER SURROGATE RECOVERY

Lab Name: STL Buffalo		Contract	:		
Lab Code: RECNY	Case No.:	SAS No.	:	SDG No.:	
GC Column(1): <u>ZB-35</u>	ID: <u>0.</u>	00 (mm)			

	Client Sample ID	Lab Sample ID		TCMX %REC #							TOT
		==========	======	555555	======	200000	#######	======	222222	======	===
1	Matrix Spike Blank	A7B0292601	67	95						1	0
	Matrix Spike Blk Dup	A780292602	68	102							0
3	Method Blank	A7B0292603	120	96				1			0
4	NTS-BCW-0207(DUP)	A7190102	68	99	,	ļ					0
5	NTS-EW-0207(DUP)	A7190104	64	92							0
2	N (S-EW-UZU/(DUP)	A7 190104	D4	72				Ĺ. <u></u>		[·	Ĺ

QC LIMITS

(30-135) (22-132) (DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-Xylene

- # Column to be used to flag recovery values
 * Values outside of contract required QC limits
 D Surrogates diluted out

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M

METHOD 608 - POLYCHLORINATED BIPHENYLS

WATER MATRIX SPIKE BLANK/MATRIX SPIKE BLANK DUPLICATE RECOVERY

Lab Name: STL Buffalo	-	Contract:		Lab Samp ID: <u>A780292603</u>			
Lab Code: <u>RECNY</u> Case N	0.:	SAS No.:		SI	og No.	:	
Matrix Spike - Client Samp	le No.: <u>Method B</u>	lank					
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.	+		
Aroclor 1260Aroclor 1016	0.500 0.500	0.463 0.434	93 87	40 - 136 38 - 130	5		
COMPOUND	SPIKE ADDED UG/L	MSBD CONCENTRATION UG/L	MSBD % REC #	% RPD #	RPD	C LIMITS REC.	
Aroclor 1260 Aroclor 1016	0.500 0.500	0.499 0.461	100 92	7	50 50	40 - 136 38 - 130	
# Column to be used to fla * Values outside of QC lim	-	PD values with an	n asteris	k			
RPD:0 out of2 out Spike recovery:0 out Comments:		limits					

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS METHOD BLANK SUMMARY

Client No.

Lab Name:	STL Buffalo	Contract:	<u> </u>	Method Blank	
Lab Code:	RECNY Case No.:	SAS 1	vo.:	SDG No.:	_
Lab Sample	: ID: <u>A7B0292603</u>	La	ab File ID: 124	74130.TX0	
Matrix: (s	soil/water) <u>WATER</u>	Ex	traction:	SEPF	
Sulfur Cle	eanup: (Y/N): N	Da	ate Extracted:	03/02/2007	
Date Analy	rzed (1): <u>03/05/2007</u>	Dā	ate Analyzed (2	:):	
Time Analy	zed (1): <u>18:13</u>	Ti	ime Analyzed (2	:):	
Instrument	ID (1): <u>HP5890-12</u>	Ir	nstrument ID (2	:):	_
GC Column	(1): <u>ZB-35</u> Dia: <u>0</u> .	<u>.53</u> (mm) GC	Column (2): _	Dia:	(mm)
I	THIS METHOD BLANK APPLIE	es to the i	FOLLOWING SAMPI	ES, MS AND MSD	•
	CLIENT SAMPLE NO.	LAB SAMPLE II	· ·	ANALYZED 2	
1 2 3 4	Matrix Spike Blank Matrix Spike Blk Dup NTS-BCW-0207 NTS-EW-0207	A7B029260 A7190101			
Comments:					

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

Inh Name Cur Diffele	Method Blank
Lab Name: <u>STL Buffalo</u> Contrac	CC:
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7B0292603</u>
Sample wt/vol: 1000.00 (g/mL) ML	Lab File ID: <u>12A74130.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv:
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 03/02/2007
Concentrated Extract Volume:1000(uL)	Date Analyzed: 03/05/2007
Injection Volume: 1.00 (uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Clearup: (Y/N) N
CAS NO. COMPOUND	CONCENIRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016	0.065 U
11104-28-2Aroclor 1221	
11141-16-5Aroclor 1232	0.065 U
53469-21-9Aroclor 1242	0.065 U
12672-29-6Aroclor 1248	0.065 U
11097-69-1Aroclor 1254	0,065 U
11096-82-5Aroclor 1260	0.065 U
Total Polychlorinated Bipher	yls0.065 U

Sample Data Package

SDG Narrative

SAMPLE SUMMARY

			SAMPI	ED	RECEIV	Œ)
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX		TIME		TIME
A7190101	NTS-BCW-0207				03/01/2007	
A7190102	NTS-BCW-0207 (DUP)				03/01/2007	
A7190103	NTS-EW-0207	WATER	02/27/2007	13:10	03/01/2007	09:15
A7190104	NTS-EW-0207 (DUP)	WATER	02/27/2007	13:10	03/01/2007	09:15

METHODS SUMMARY

Job#: A07-1901

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

PARAMETER ANALYTICAL METHOD

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

NON-CONFORMANCE SUMMARY

Job#: <u>A07-1901</u>

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-1901

Sample Cooler(s) were received at the following temperature(s); 202.0 °C All Dup samples are to be extracted and held. Please filter prior to extraction.

GC Extractable Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Chain Of Custody Documentation

Chain of Custody Record

Address Cernell Metrs Drive Stelephone Number (Area Code) Fax Number Lab Contact Lab Contac	STL-4124 (0901)																						
Temporal Mutric Orive Taliphone Namber (And Cook) Fax Anabor Taliphone (Anabor Taliphone Namber Taliphone (Anabor Taliphone Taliphone (Anabor Taliphone Namber Taliphone (Anabor Taliphone Namber Taliphone (Anabor Taliphone Taliphone (Anabor Taliphone Namber Taliphone Namber Taliphone (Anabor Taliphone Namber Taliphone Namber Taliphone (Anabor Taliphone Namber	Client C AA		Project Ma		12	7	IJ	//-	Λ						Date	رددا	67		Chain c	1 2 Q	<i>Number</i> 7 ∩ 7	•	
SINGLE SIDE STOCKS STATE STOC			Telephone	Numbo	(Area	Code	VEar I	//AL	. J .								0/	_	 	<u> </u>	101		
Project Name and Location (State) Mischild Laboration State) Mischild Connection (State) Matrix Connection State) Matrix Connection State) Connection State) Matrix Connection State) Connection State Connection State) Connection State) Connection State) Connection State) Connection State) Connection State) Connection State Connec	1 General Motors Drive	2	3/52	134	32	56	, ,	3/1	14	63	578	00			<u> </u>				Page .		of		<u>.</u>
Project Williams and Location (Salation) Mall LLO CAM) Sep Enc. London Williams Containers & Containers & Conditions of Receipt	City State Zip Code	06				a.	Lab C	ontac	t				_	An mo	alysis (A e space	ttach lis is need	st if led)						
Sample LD. No. and Description Oate Time	Project Name and Location (State)	-00				1					-	┩ ̄	7		_			1 [
Contract/Purchase Order/Quole No. Matrix Sample 1.D. No. and Description Containers of each sample may be continued on one line) Date Time \$\frac{1}{2} \frac{1}{2} \frac	Maladay and Son Don Coble	1000 AY				11						00	14				! [Snaaia	Inotruoti	one/	
Sample LD. No. and Description Containers for each sample may be combined on one limit Date Time	Contract/Purchase Order/Quote No.	ALLEN TE		-/-	V	0		Co	otain	ers &		ーシ	I - I		- } })						
Containers for each sample may be combined on one king Date Time				Má	etrix 							'	8	11				1 1				•	
NTS - BCW - 02.07	Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date 1	ime ই	Aqueous	Soil Sed		Unpres.	HNO3	Ę	NaOH ZnAc/	Na OF	12	Risi										
NTS - EW - O207	NTS-BCW-0207 21	13/07 130	20_	χ			_					X							de	techu	limity	0.05	- dag
Possible Hazard Identification Possible Hazard Identification Non-Hazard Flammable Skin Imitant Poison B Unknown Return To Client Disposal By Lab Archive For Months Immortal Immorphy Immo	NTS-BCW-0207(DUP)	1 13	00	X			1						X										
Possible Hazard Identification Non-Hazard Sample Disposal Sample Disposal Afee may be assessed if samples are retained Non-Hazard Flammable Skin Imitant Poison 8 Unknown Return To Client Disposal 8 Lab Archive For Months Indiana Non-Hazard Afee may be assessed if samples are retained Non-Hazard Flammable Skin Imitant Poison 8 Unknown Return To Client Disposal 8 Lab Archive For Months Indiana Non-Hazard Non	WTS-EW-0207	13	10	X			2					X											
Non-Hazard Flammable Skin Irritant Poison B Unknown Return To Client Disposal By Lab Archive For Months longer than 1 month	NIS-EW-0207(DUP) -	13	10	X			1						X								<u> </u>		
Non-Hazard Flammable Skin Irritant Poison B Unknown Return To Client Disposal By Lab Archive For Months longer than 1 month			_						1_													_	
Non-Hazard Flammable Skin Irritant Poison B Unknown Return To Client Disposal By Lab Archive For Months longer than 1 month																						<u></u>	
Non-Hazard Flammable Skin Irritant Poison B Unknown Return To Client Disposal By Lab Archive For Months longer than 1 month												1											
Non-Hazard Flammable Skin Irritant Poison B Unknown Return To Client Disposal By Lab Archive For Months longer than 1 month				1	_	T		┪	 		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	+-				 -		1					
Non-Hazard Flammable Skin Irritant Poison B Unknown Return To Client Disposal By Lab Archive For Months longer than 1 month				† †	†	†-1	_	+	\dagger		\top	+-		+		_ _	-	1					
Non-Hazard Flammable Skin Irritant Poison B Unknown Return To Client Disposal By Lab Archive For Months longer than 1 month				+-+	+	+	-	┪	╅┈	+	╅	+-	\vdash	\dashv	1-1	-	 	+					
Non-Hazard Flammable Skin Irritant Poison B Unknown Return To Client Disposal By Lab Archive For Months longer than 1 month				++	┪	+	_	+	+-	╁┼┼	+		\vdash	+	-	-		╫					
Non-Hazard Flammable Skin Irritant Poison B Unknown Return To Client Disposal By Lab Archive For Months longer than 1 month				╁	+	╀╢	+	+	+	$\vdash \vdash$		+	\vdash	-	-	- -	 	+					
Non-Hazard Flammable Skin Irritant Poison B Unknown Return To Client Disposal By Lab Archive For Months longer than 1 month	Besoible Harrard Identification			Samula	Dicoo				1	$\perp \perp$					لبلل		<u> </u>	1 1					
24 Hours		Poison B 🔲 U		•	•							Arch	nive Fo		Mon					amples ar	e retained		
1. Felinguished By Date Date Time 2. Received By Date Time 2. Received By Date Time 3. Received By	• ***		<u> </u>		<u>'7</u>		1	C Re	quirer	ments (Speci	(V)	0										
22867 1530 2. Relinquished By 2. Relinquished By Date Date Date Time 3. Received By Date Date Date Date Date Date Date Time Date		21 Days										4 1	<u> </u>										
2. Relinquished By Date 1/25/07 1830 2. Received By 3. Received By Date Time 3. Received By Date Time 3. Received By	1. Relinguistiful By		2/28/0	7		30		. Hec	aived	By 1		l Georgi	T la						Date	28/17	15	30	2
3. Relinquished By Date Time 3. Received By Date Time	2. Relinquished By		Date	/			7	Rec	eived	BY								<u>-2.~~</u> _	Dale	105	_	/ <	\$
HOLD "DVP" Samples analyze only y there is detection in original Sample. 2=50°C							Ву		_							Date			<u></u>	4			
HOLD "DVP" Samples analyze only of there of detection in augural Sample. 20200			L				<u> </u>			····													-
	HOLD "DVP" Samples	analyz	in	y	4	1/2	lu	<u></u>	1 C	des	ke	hi	<u>ı_</u>	w	a	ijir	i)	<u>S</u>	akp	6.	2e.	<u> 20</u>	.°C_

Date: 03/01/2007 Time: 12:00:24

STL Buffalo Sample Inventory

Page:

Rept: AN0383

Job No: A07-1901 Client: Camp Dresser and Mckee Project: NY7A9595 SDG: Case: SMO No: No. Samps: 4				Chain of Cus Sample Sample Tag Num SMO F	Seal: YES tody: YES Tags: NO	Cooler Temperature: 202.0°C			
Sample	Receive	Client Sample ID	Lab ID	Condition	Bottles	Parameters	Lab	Pres Code	log PH
02/27/2007 13:00 02/27/2007 13:00 02/27/2007 13:10 02/27/2007 13:10	03/01/2007 09:15 03/01/2007 09:15	NTS-BCW-0207(DUP) NTS-EW-0207	A7190101 A7190102 A7190103 A7190104	Good Good Good	2-1LGA 1-1LGA 2-1LGA 1-1LGA	PCBS PCBS (EXTRACT/HOLD) PCBS PCBS (EXTRACT/HOLD)	RECNY RECNY RECNY RECNY	0100 0100 0100 0100	

ample Custodian:	De	Ž,	1 /20 0	· <
			, ,	-/
				-

Analytical Services Coordinator: _____

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: A07-1903

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

Task: Wallace & Sons Scrapyard

Timothy Beaumont CDM One General Motors Dr. STE 2 Syracuse, NY 13206

SIL Buffalo

Jason R. Kacalski Project Manager

03/16/2007

STL Buffalo Current Certifications

As of 9/28/2006

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA, NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA,ASP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
South Carolina	RCRA	91013
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

Sample Data Summary Package

SAMPLE SUMMARY

			SAMPI	ED)	RECEIV	ŒD
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7190301	INFLUENT-0207	WATER	02/27/2007	12:50	03/01/2007	09:15

METHODS SUMMARY

Job#: A07-1903

STL Project#: NY7A9595 Site Name: Niagara Mohawk O & M

ANALYTICAL METHOD

PARAMETER

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

NON-CONFORMANCE SUMMARY

Job#: A07-1903

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-1903

Sample Cooler(s) were received at the following temperature(s); 2@2.0 °C All samples were received in good condition.

GC Extractable Data_

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Date: 03/16/2007

Requested Detection Limits < STL's PQL

Page:

Time: 10:19:42

Rept: AN1520

The requested project specific reporting limits listed below were less than STL's standard quantitation limits. It must be noted that results reported below STL's standard quantitation limit (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	<u>Parameter</u>	<u>Unit</u>	Client <u>DL</u>	STL <u>PO</u> L
608PCB	Total Polychlorinated Biphenyls	UG/L	0.10	0.12

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID	ANALYTICAL REQUIREMENTS						
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
INFLUENT-0207	A7190301		-	<u>-</u>	CFR136	-	-	-

SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
INFLUENT-0207	WATER	02/27/2007	03/01/2007	03/02/2007	03/05/2007

SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE	MATRIX	ANALYTICAL	EXTRACTION	AUXILIARY	DIL/CONC
IDENTIFICATION		PROTOCOL	METHOD	CLEAN UP	FACTOR
INFLUENT-0207	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U. Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYIS ANALYSIS DATA SHEET

Client No.

	INFLUENT-0207
Lab Name: <u>STL Buffalo</u> Contra	ct:
Lab Code: RECNY Case No.: SAS No.	: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7190301</u>
Sample wt/vol: <u>1060.00</u> (g/mL) ML	Lab File ID: <u>12A74135.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 02/27/2007 03/01/200
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 03/02/2007
Concentrated Extract Volume:1000(uL)	Date Analyzed: 03/05/2007
Injection Volume: 1.00(uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016	0.061 U
11104-28-2Aroclor 1221	0.061 U
11141-16-5Aroclor 1232	0.061 U
53469-21-9Aroclor 1242	0.061 U
12672-29-6Aroclor 1248	0.044 J
11097-69-1Aroclor 1254	0.061 U
11096-82-5Aroclor 1260	0.061 U
Total Polychlorinated Bipher	nyls0.060 J

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS WATER SURROGATE RECOVERY

Lab Name: STL Buffalo Contract: __ SAS No.: _____ Lab Code: RECNY Case No.: _ SDG No.: _

GC Column(1): ZB-35____ ID: 0.53 (mm)

	Client Sample ID	Lab Sample ID		TCMX %REC #	 ======	 		TOT OUT
3	INFLUENT-0207 Matrix Spike Blank Matrix Spike Blk Dup Method Blank		82 67 68 120	100 95 102 96				0 0 0

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene

(30-135) (22-132)

- # Column to be used to flag recovery values* Values outside of contract required QC limits
- D Surrogates diluted out

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M

METHOD 608 - POLYCHLORINATED BIPHENYLS

WATER MATRIX SPIKE BLANK/MATRIX SPIKE BLANK DUPLICATE RECOVERY

Lab Name: <u>STL Buffalo</u>		Contract:		Lab S	ampo ID	: <u>A7B0292603</u>
Lab Code: <u>RECNY</u> Case No	».:	SAS No.:		SI	og No.	:
Matrix Spike - Client Sampl	e No.: <u>Method B</u>	lank				
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.		
Aroclor 1260Aroclor 1016	0.500 0.500	0.463 0.434	93 87	40 - 136 38 - 136	6	
COMPOUND	SPIKE ADDED UG/L	MSBD CONCENTRATION UG/L	MSBD % REC #	1	. ~	C LIMITS REC.
Aroclor 1260 Aroclor 1016	0.500 0.500	0.499 0.461	100 92	7	50 50	40 - 136 38 - 130
# Column to be used to flag * Values outside of QC limi	-	PD values with an	n asteris	k		
RPD: 0 out of 2 out Spike recovery: 0 out o		limits	٠			
Comments:						

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS METHOD BLANK SUMMARY

Client No.

Lab Name:	STL Buffalo	Contract: _		Method Blank	
Lab Code:	RECNY Case No.:	_ SAS No.	: SI	OG No.:	
Lab Sample	e ID: <u>A7B0292603</u>	Lab I	File ID: <u>12A7</u>	4130.TX0	
Matrix: (s	soil/water) <u>WATER</u>	Extra	action:	<u>SEPF</u>	
Sulfur Cle	eanup: (Y/N): <u>N</u>	Date	Extracted:	03/02/2007	
Date Analy	zed (1): <u>03/05/2007</u>	Date	Analyzed (2)		
Time Analy	zed (1): <u>18:13</u>	Time	Analyzed (2)		
Instrument	ID (1): <u>HP5890-12</u>	Insti	rument ID (2)	<u> </u>	
GC Column	(1): <u>ZB-35</u> Dia: <u>0</u> .	. <u>53</u> (mm) GC Co	olumn (2):	Dia:	(mm)
T	THIS METHOD BLANK APPLIE	s to the foli	LOWING SAMPLES	S, MS AND MSD:	
	CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED 1	DATE ANALYZED 2	
1 2 3			03/05/2007		
Comments:					·

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

Lab Name: STL Buffalo Contrad	Method Blank
THE NAME. DIT BUTTATO	···
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7B0292603</u>
Sample wt/vol:1000.00 (g/mL) ML	Lab File ID: <u>12A74130.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv:
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 03/02/2007
Concentrated Extract Volume:1000(uL)	Date Analyzed: 03/05/2007
Injection Volume:1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260	0.065 U 0.065 U 0.065 U 0.065 U 0.065 U 0.065 U
_ ·	· —— · · -

Sample Data Package

SDG Narrative

SAMPLE SUMMARY

 LAB SAMPLE ID
 CLIENT SAMPLE ID
 MATRIX
 DATE
 TIME
 DATE
 TIME

 A7190301
 INFLUENT-0207
 WATER
 02/27/2007
 12:50
 03/01/2007
 09:15

METHODS SUMMARY

Job#: A07-1903

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

ANALYTICAL

METHOD

PARAMETER

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

NON-CONFORMANCE SUMMARY

Job#: A07-1903

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-1903

Sample Cooler(s) were received at the following temperature(s); 2@2.0 °C All samples were received in good condition.

GC Extractable Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Chain Of Custody Documentation

Chain of Custody Record

STL-4124 (0901)		r= ·														-				,		1 -		
Client		Projec			M	HIT	L	lell	la.	ſ							Date	2/	17/	lo -	7	C	hain of Custody Nul 2984	57
Address / Company of Markets O.		Telepi	hone I	Numb	er (Are	эа Сос	ie)/Fa	x Nur	mber			. ว		7.9.1	·		Lab N	umbe	r			1	T	1
Ochual Motors Dri	<u></u>				<u> 3</u>	25				1	76	<i>1</i>	7	700								F	age	of 1
City State Zip	Code 3206	Site C	iontac M	\sim	z/14	uT	Lai	-Con	tact				\perp	 -		Anai more	ysis (/ space	Attac ∋ is n	n list eede	rf d)		τ_		
Project Name and Location (State) Y. Wallace on Sn Enc. Cobb	Kell AY	Carrie				בארט	,						\prod_{\sim}										0	
Contract/Purchase Order/Quote No.		<u> </u>	Τ.,			-6-6	╙		Cont	aine	rs &		$\dashv \beta$	3		ļ							Conditions	structions/ of Receipt
				N.	latrix					ervat			_ `									1	1	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Air	Aqueous	Sed	Sof	Unpres	H2SO4	HNO3	ĘĊ	NaOH Zaaci	NaOH	270	3										
Influent- 0207	2/27/07	1250	L	Х			2						X										detectu	int of 0.05
		<u></u>	_		\perp		_			_	_	_		\perp							1			
			ļ				_	Ш		_	_		_	$oxed{oxed}$		\perp	<u> </u>					<u> </u>		
			<u> </u>		\perp		┺			_	_		\perp	$oldsymbol{\perp}$		_			\perp		$oldsymbol{\perp}$	<u> </u>		
			<u> </u>		\perp	\bot	Ļ			\perp	_ _	\perp	┸	igspace	1	\downarrow			\perp			<u> </u>	ļ	
			<u> </u>								_	╧												
							Ŀ	Ш													<u> </u>	<u> </u>		· · · · · · · · · · · · · · · · · · ·
							L					_		\perp								L		
		ļ	1_		_		<u> </u>				\bot	\perp	\perp			<u> </u>			-					
			↓_				$oldsymbol{\perp}$	Ш			\perp		\perp		Ш				\perp			L	<u> </u>	
					\perp		L				\perp		\perp					Ш	\perp		上		<u></u>	<u> </u>
																						1		
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	☐ Poison B	☐ Unknow		Sample		osal o Clie		DXO:)inna	aal (1)	. lab			thive f		1	_ Mon	***	(A fee				sed if samples are re	etained
Turn Around Time Required	LI FOISOII B	LI CHAIDA				U CHE						(Spec		anve r	<u> </u>		_ NION	igi IS	luige	i Iriaii	7 1110	1417		
24 Hours 48 Hours 7 Days 14 Da	ys 🗌 21 Da	ys 🛈 O	ther_		D_						_C	at-	B											
1. Relinguistifed By		Date 2/2	8/0	7	Time /3	3 ₀		1. A	leceiv	ved B	W.	aus	14	R.							*		2/28/07	Time 1530
2. Helinquished By		Date 2/a	28/	07	, Time			2. F	recein	ved B	۲											.	0 S (0)	Time ()S/S
3. Refinquished By		Date	 t-		Time			3. F	lecen	ved B	У					·		=		.		 	Date	Time
Comments					<u></u>			1															<u> </u>	
																			2	<u> </u>	<u>٧. ८</u>	<u>ഗ</u>	• (

Date: 03/01/2007 Time: 12:04:04 STL Buffalo Sample Inventory

Page: 1 Rept: AN0383

Job No: A07-1 Client: Camp Project: NY7A9 SDG: Case: SMO No: No. Samps: 1	Dresser and Mckee			Chain of Cus Sample Sample Tag Num SMO F	Seal: YES tody: YES Tags: NO	Cooler Temperature:	2a2.0°C		
								Pres	log
Sample	Receive	Client Sample ID	Lab ID	Condition	Bottles	Parameters	Lab	Code	PH
02/27/2007 12:50	03/01/2007 09:15	INFLUENT-0207	A7190301	Good	2-11GA	PCBS	RECNY	0100	

		多 C	>	(**
Sample	Custodian:		<u> </u>	<u>(/20 ぢ</u> >

Method 608 Data

Analytical Report March Sampling Event

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: A07-2607

STL Project#: NY7A9595

Site Name: <u>Niagara Mohawk O & M</u>

Task: Wallace & Sons Scrapyard

Timothy Beaumont CDM One General Motors Dr. STE 2 Syracuse, NY 13206

STL Buffalo

Jason R. Kacalsk Project Manager

04/05/2007

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

STL Buffalo Current Certifications

As of 9/28/2006

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA,ASP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
South Carolina	RCRA	91013
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

Sample Data Summary Package

SAMPLE SUMMARY

			SAMPI	LED	RECEIVI	Œ
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7260701	NTS-BCW-0307		03/19/2007			
A7260702	NTS-BCW-0307 (DUP)	WATER	03/19/2007	07:30	03/20/2007	19:45
A7260703	NIS-EW-0307	WATER	03/19/2007	07:40	03/20/2007	19:45
A7260704	NTS-EW-0307 (DUP)	WATER	03/19/2007	07:40	03/20/2007	19:45

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

METHODS SUMMARY

Job#: <u>A07-2607</u>

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

ANALYTICAL

METHOD

PARAMETER

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

SDG NARRATIVE

Job#: <u>A07-2607</u>

SIL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-2607

Sample Cooler(s) were received at the following temperature(s); 2.0 °C OP:Please filter DUP samples prior to extraction.

GC Extractable Data

For method 8082, Aroclor 1260 and Decachlorobiphenyl exhibited positive bias and a % difference result slightly greater than 15% in an associated ending continuing calibration verification. No corrective action was taken; all field samples were non-detect for this analyte and all surrogate recoveries are within control limits.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R. Kacalski

Project Manager

Date

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Date: 04/05/2007

Requested Detection Limits < STL's PQL

Page:

Rept: AN1520

Time: 08:53:33

The requested project specific reporting limits listed below were less than STL's standard quantitation limits. It must be noted that results reported below STL's standard quantitation limit (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	<u>Parameter</u>	Unit	Client DL	STL POL
608PCB	Total Polychlorinated Biphenyls	UG/L	0.10	0.12

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID			ANALY	TICAL REQ	UIREMENTS	3	
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
NTS-BCW-0307	A7260701	•	_	•	CFR136	-	-	-
NTS-BCW-0307(DUP)	A7260702	-	-	•	CFR136	-	-	•
NTS-EW-0307	A7260703	•	-	•	CFR136	-	•	-
NTS-EW-0307(DUP)	A7260704		-	-	CFR136	-	-	

NYSDEC-1

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
NTS-BCW-0307	WATER	03/19/2007	03/20/2007	03/21/2007	03/22/2007
NTS-BCW-0307(DUP)	WATER	03/19/2007	03/20/2007	03/21/2007	<u>-</u>
NTS-EW-0307	WATER	03/19/2007	03/20/2007	03/21/2007	03/22/2007
NTS-EW-0307(DUP)	WATER	03/19/2007	03/20/2007	03/21/2007	• • • • • • • • • • • • • • • • • • •

NYSDEC-4

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
NTS-BCW-0307	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NTS-BCW-0307(DUP)	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NTS-EW-0307	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NTS-EW-0307(DUP)	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED

NYSDEC-6

STL

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0,995.

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

Lab Name: STL Buffalo Co	ontract.		NTS-BCW-03	07
Lab Maile: Sin Buildio	Officiact:	<u>.</u>		
Lab Code: RECNY Case No.: SA	S No.: SDG	No.::		
Matrix: (soil/water) <u>WATER</u>	Lab	Sample ID:	A7260701	
Sample wt/vol: 1060.00 (g/mL) ML	Lab	File ID:	12A76150.T	<u>xo</u>
% Moisture: decanted: (Y/N) N	Dat	e Samp/Recv:	03/19/2007	03/20/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Dat	e Extracted:	03/21/2007	
Concentrated Extract Volume: 2000 (uL)	Dat	e Analyzed:	03/22/2007	
Injection Volume:1.00(uL)	Dil	ution Factor:	1.00	
GPC Cleanup: (Y/N) N pH: 5.00	Sul	fur Cleanup:	(Y/N) <u>Y</u>	
CAS NO. COMPOUND	CONCENTRATION (ug/L or ug/K	UNITS: g) <u>UG/L</u>	Q	
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242		0.061 0.061 0.061 0.061	ט ט	
12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260 Total Polychlorinated I		0.061 0.061 0.061	ן ט	
	KIDDETIVIS I	0.094	וט ו	

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

Lab Name: STL Buffalo Contract:	NIS-EW-0307
Lab Code: <u>RECNY</u> Case No.: SAS No.: _	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A7260703
Sample wt/vol: 1060.00 (g/mL) ML	Lab File ID: <u>12A76151.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 03/19/2007 03/20/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: <u>03/21/2007</u>
Concentrated Extract Volume: 2000 (uL)	Date Analyzed: 03/22/2007
Injection Volume: 1.00 (uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) N
- -	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260	0.061 U 0.061 U 0.061 U 0.061 U 0.061 U 0.061 U 0.061 U
Total Polychlorinated Biphenyls	

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS WATER SURROGATE RECOVERY

Lab Name: <u>STL Buffalo</u>				Contract:		
Lab Code: RECNY	Case	No.:		SAS No.:	 SDG No.:	
GC Column(1): <u>ZB-35</u>	_	ID: <u>0</u>	.53 (mm)			

	Client Sample ID	Lab Sample ID		TCMX %REC #	======	### # #####	282222	=======	22027#2	======	TOT OUT
2	Matrix Spike Blank Matrix Spike Blk Dup		106 89	120 100		. :					0
4	Method Blank NTS-BCW-0307	A780392303 A7260701	88 118	86 110							0
5	NTS-EW-0307	A7260703	112	104							0

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene (50-150) (50-150)

Column to be used to flag recovery values
 * Values outside of contract required QC limits
 D Surrogates diluted out

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M

METHOD 608 - POLYCHLORINATED BIPHENYLS WATER MATRIX SPIKE BLANK/MATRIX SPIKE BLANK DUPLICATE RECOVERY

Lab Name: <u>STL Buffalo</u>			Lab Samp ID: <u>A7B0392303</u>				
Lab Code: RECNY Case No.:				SDG No.:			
le No.: <u>Method B</u>	lank						
SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	1 1		+			
1.00 1.00	1.02 1.19	102 120		1 1			
SPIKE ADDED UG/L	MSBD CONCENTRATION UG/L			RPD	REC.	1	
1.00	0.975 1.15	98 116	4 3	30 30	50 - 150 50 - 150		
its tside limits		n asteris	k		·		
	SPIKE ADDED UG/L 1.00 1.00 SPIKE ADDED UG/L 1.00 1.00 g recovery and R hits	SAS No.: SAS No.: SPIKE ADDED UG/L 1.00 1.02 1.00 1.19 SPIKE ADDED CONCENTRATION UG/L SPIKE ADDED UG/L 1.00 1.19 SPIKE ADDED UG/L 1.00 0.975 1.15 Grecovery and RPD values with and the state of the state o	SAS No.:	SAS No.: SI	SPIKE ADDED CONCENTRATION REC # REC. SPIKE ADDED 1.00 1.19 120 50 - 150 1.00 1.19 120 50 - 150 1.00 1.15 116 3 30 g recovery and RPD values with an asterisk sitside limits	SPIKE ADDED CONCENTRATION WSB CC	

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS METHOD BLANK SUMMARY

Client No.

Lab Name: <u>STL Buffalo</u>	Contract:		Method Blank	
Lab Code: <u>RECNY</u> Case No.:	_ SAS No.:	: SI	OG No.:	
Lab Sample ID: <u>A7B0392303</u>	Lab H	File ID: <u>12A76</u>	5147.TX0	
Matrix: (soil/water) <u>WATER</u>	Extra	action:	SEPF	
Sulfur Cleanup: (Y/N) : \underline{Y}	Date	Extracted:	03/21/2007	-
Date Analyzed (1): 03/22/2007	Date	Analyzed (2):	·	
Time Analyzed (1): <u>12:22</u>	Time	Analyzed (2):		
Instrument ID (1): <u>HP5890-12</u>	Instr	rument ID (2):	·	
GC Column (1): <u>ZB-35</u> Dia: <u>0.</u>	53 (mm) GC Cc	olumn (2):	Dia: _	(mm)
THIS METHOD BLANK APPLIE	S TO THE FOLI	LOWING SAMPLES	, MS AND MSD:	
CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED 1	ANALYZED 2	
1 Matrix Spike Blank 2 Matrix Spike Blk Dup 3 NTS-BCW-0307	A7B0392301 A7B0392302	03/22/2007 03/22/2007 03/22/2007		
Comments:			<u> </u>	

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

Lab Name: STL Buffalo Contra	Method Blank
The Name, Sin Burgato	ECC:
Lab Code: RECNY Case No.: SAS No.	: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Iab Sample ID: <u>A7B0392303</u>
Sample wt/vol: 1000.00 (g/mL) ML	Lab File ID: 12A76147.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv:
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 03/21/2007
Concentrated Extract Volume: 2000 (uL)	Date Analyzed: 03/22/2007
Injection Volume:1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: _5.00	Sulfur Cleanup: (Y/N) Y
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260 	0.065 U 0.065 U 0.065 U 0.065 U

Sample Data Package

SDG Narrative

SAMPLE SUMMARY

	•		SAMPLED		RECEIVI	ED .
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7260701	NTS-BCW-0307	WATER	03/19/2007	07:30	03/20/2007	19:45
A7260702	NTS-BCW-0307 (DUP)	WATER	03/19/2007	07:30	03/20/2007	19:45
A7260703	NTS-EW-0307	WATER	03/19/2007	07:40	03/20/2007	19:45
A7260704	NTS-EW-0307 (DUP)	WATER	03/19/2007	07:40	03/20/2007	19:45

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

METHODS SUMMARY

Job#: <u>A07-2607</u>

SIL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

ANALYTICAL

PARAMETER

METHOD

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

SDG NARRATIVE

Job#: <u>A07-2607</u>

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-2607

Sample Cooler(s) were received at the following temperature(s); $2.0~^{\circ}$ C OP:Please filter DUP samples prior to extraction.

GC Extractable Data

For method 8082, Aroclor 1260 and Decachlorobiphenyl exhibited positive bias and a % difference result slightly greater than 15% in an associated ending continuing calibration verification. No corrective action was taken; all field samples were non-detect for this analyte and all surrogate recoveries are within control limits.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R./Kacalski

Project Manager

Data

Chain of Custody Documentation

Chain of Custody Record

STL-4124 (0901)				
CAU	Project Manager	MATE Mallias	Date 2/19/07	Chain of Custody Number 298483
Address / Ceneral Motors Drive	Telephone Number (Area Co	de)/Fax Number 2 315 403 57 N	L& Number	Page of
Swacuse State y Zip Code NY 13206	Site Contact IIM Behaved	Lab Contact	Analysis (Attach list if more space is needed)	
Project Name and Location (State) Wallace acl Su Fac Oblighell!		777 005		Special Instructions/
Contract/Purchase Order/Quote No.	Matrix	Containers & Conta		Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Time Aqueous	Unpress HISOGA HOI NAOH NAOH NAOH NAOH NAOH NAOH NAOH NAOH		
WTS-BCW-0307 3/19/0		Ζ Χ		debetralimet of 0.01
NTS-RCW-0307 (DUP)	073U K	<u>Z</u>		
NR-EW-0307	0740 X	2		
WIB- EN-0307(DDD) -1	0740 4	14		
	1 1111			
	+			
				
Possible Hazard Identification Non-Hazard	Sample Disposal Unknown Return To Clie	ant Sisposal By Lab Archive F	(A fee may be ass	ressed if samples are retained
Turn Around Time Required 24 Hours 48 Hours 7 Days 14 Days 21		QC Requirements (Specify)	4rB	
1. Relinquished by	Date 3/20/07 Time 1 144	1. Received By	STZ PUR	3/50/07 Time
2. Relinquistified By	3/30/07 Time	2. Received B	SIL	Date 1.07 19:45
3. Relinquished By	Dete Time	3. Received by		Date Time
Comments " D)P" Samala	Chaluse ale	11 there is do	Letin a di sin	D Sangles
DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Sta	ays with the Sample. PINK - Field Co.	by 0	,	30,

STL Buffalo

Doc. Login/ARRF - Side A Rev 3

10/17/2005

SAMPLE LOGIN	JOB# 2607				
Shipment ID	Strict Internal COC: YES NO				
•	Residual Chlorine Check:				
	Radiation Check < 0.02 mR/hr: YES / NO				
ACProject / Task	M7A9595 11				
TATCD # OF SAMPLE	ESTRIP BLANK Y(N) #				
SHIPPED BY DEU VERED	ATTACH SHIPPING TAGS				
RECEIVED DATE / TIME:	3,20,07 19:45				
COOLER TEMP 2 - 0 °C (4+/-2	°C) OK NO				
Cooler Custody Seal intact? YES/NO NON	SEAL#				
If NO to cooler temp or seal, PM notified? YES	(PM Name)				
SUBCONTRACT YES/NO LAB	SM#				
COMMENTS: SAMPLE TIME ACTUAL	+1HR +2 HR +3 HR NONE				
Sample received outside hold time					
Headspace in VOA vials					
Problems with bottle labels					
OTHER SAMPLE RECEIPT COMMENTS (Fill	out ARRF, see reverse)				
TAT AS PER JRY.	· · · · · · · · · · · · · · · · · · ·				
ARE SAMPLE DATES AND TIMES CORRECT?	Initials <u>U</u> }				
WERE ALL THE APPROPRIATE TESTS ASSIGN	ED? Initials <u>B</u>				
Temp.Cert.Loss: New York Potable Water: Nitrate b Carbaryl by Method 531.1 Massachusetts Drinking V					

Date: 03/21/2007 Time: 08:20:10

STL Buffalo Sample Inventory Page:

Rept: AN0383

Job No: A07-2607 Client: Camp Dresser and Mckee Project: NY7A9595 SDG: Case: SMO No: No. Samps: 4			Radiation Check: YES Custody Seal: NO Chain of Custody: YES Sample Tags: NO Sample Tag Numbers: NO SMO Forms: NO CLSIS: NO		Cooler Temperature: 2.0°C				
Sample	Receive	Client Sample ID	Lab ID	Condition	Bottles	Parameters	Lab	Pres Code	l og
03/19/2007 07:30 03/19/2007 07:30 03/19/2007 07:40 03/19/2007 07:40	03/20/2007 19:45 03/20/2007 19:45	NTS-BCW-0307(DUP) NTS-EW-0307	A7260701 A7260702 A7260703 A7260704	Good Good Good	2-11GA 2-11GA 2-11GA 2-11GA	PCBS PCBS(EXTRACT AND HOLD) PCBS PCBS(EXTRACT AND HOLD)	RECNY RECNY RECNY RECNY	0100 0100 0100 0100	-

ample Custodian: <u>(3 3 / 21 /2007</u>	Analytical Services Coordinator:
---	----------------------------------

608 Data

Analytical Report April Sampling Event

STL Buffalo

10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: <u>A07-4396</u>

STL Project#: NY7A9595

Site Name: <u>Niagara Mohawk O & M</u>
Task: Wallace & Sons Scrapyard

Timothy Beaumont CDM One General Motors Dr. STE 2 Syracuse, NY 13206

STL Buffalo

Jason R. Kacalski Project Manager

05/16/2007

STL Buffalo Current Certifications

As of 5/8/2007

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CŴA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA,ASP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

Sample Data Summary Package

SAMPLE SUMMARY

			SAMPI	ED	RECEIVE	ŒD.
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7439601	NTS-BCW-0407	WATER	04/25/2007	10:00	04/26/2007	16:30
A7439602	NTS-BCW-0407 (DUP)	WATER	04/25/2007	10:00	04/26/2007	16:30
A7439603	NTS-EW-0407	WATER	04/25/2007	10:10	04/26/2007	16:30
A7439604	NTS-EW-0407 (DUP)	WATER	04/25/2007	10:10	04/26/2007	16:30

METHODS SUMMARY

Job#: A07-4396

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

ANALYTICAL

METHOD

PARAMETER
METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

SDG NARRATIVE

Job#: <u>A07-4396</u>

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-4396

Sample Cooler(s) were received at the following temperature(s); $4.0\,^{\circ}$ C Lab to filter samples 02 & 04 prior to extraction.

GC Extractable Data

For method 8082, the associated calibration verifications demonstrated an increased instrument response, >15% difference, for the surrogate Decachlorobiphenyl. The theoretical consequence of these would be a high bias in the calculated surrogate recoveries. The associated sample surrogate recoveries are well within the quality control limits. In the technical judgment of the laboratory, the sample data has not been impacted and no corrective action is required.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R./Kacalski Project Manager

Date

Date: 05/16/2007

Requested Detection Limits < STL's PQL

Page: Rept: AN1520

Time: 08:36:11

The requested project specific reporting limits listed below were less than STL's standard quantitation limits. It must be noted that results reported below STL's standard quantitation limit (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not

indicate corrective action for detections below the laboratory's PQL.

Method	<u>Parameter</u>	Unit	Client DL	STL POL
608PCB	Total Polychlorinated Biphenyls	UG/L	0.10	0.12

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID	ANALYTICAL REQUIREMENTS						
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
NTS-BCW-0407	A7439601	-	-	-	CFR136	-	-	-
NTS-EW-0407	A7439603	-	-		CFR136	-	-	-

NYSDEC-1

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
NTS-BCW-0407	WATER	04/25/2007	04/26/2007	04/27/2007	04/29/2007
NTS-EW-0407	WATER	04/25/2007	04/26/2007	04/27/2007	04/29/2007

NYSDEC-4

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
NTS-BCW-0407	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NTS-EW-0407	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED

NYSDEC-6

STL

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aidol-condensation product.
- Indicates coelution.
- Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- Indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

Lab Name: STL Buffalo Contrac	t:
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7439601</u>
Sample wt/vol: <u>1060.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>19A96057.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 04/25/2007 04/26/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 04/27/2007
Concentrated Extract Volume:2000(uL)	Date Analyzed: 04/29/2007
Injection Volume: 1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260 	0.061 U

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

Lab Name: <u>STL Buffalo</u> Contract	NTS-EW-0407
-	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A7439603
Sample wt/vol: <u>1060.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>19A96058.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 04/25/2007 04/26/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 04/27/2007
Concentrated Extract Volume:2000(uL)	Date Analyzed: 04/29/2007
Injection Volume:1.00(uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) N
	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260	0.061 U 0.061 U 0.061 U 0.061 U 0.061 U
IIOFAL POLYCOLOGIDATED RIDDENV	ris I 0.094 lii I

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS WATER SURROGATE RECOVERY

Lab Name:	STL Buffalo				Contract:			
Lab Code:	RECNY	Case	No.:		SAS No.:		SDG No.:	
GC Column(1): <u>ZB-35</u>	_	10: <u>0</u>	.53 (mm)				

	Client Sample ID	Lab Sample ID		TCMX %REC #		======	 	807 <i>52</i>		TOT OUT
2 3 4	Matrix Spike Blank Matrix Spike Blk Dup Method Blank NTS-BCW-0407 NTS-EW-0407	A780626101 A780626102 A780626103 A7439601 A7439603	82 80 71 93 88	106 97 83 108 111					·	0000

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene (26-145) (25-152)

- # Column to be used to flag recovery values* Values outside of contract required QC limitsD Surrogates diluted out

1

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M

METHOD 608 - POLYCHLORINATED BIPHENYLS

WATER MATRIX SPIKE BLANK/MATRIX SPIKE BLANK DUPLICATE RECOVERY

Lab Name: <u>STL Buffalo</u>		Contract:		Lab Samp ID: <u>A7B0626103</u>					
Lab Code: <u>RECNY</u> Case No).:	SAS No.:		SI	og No.	:			
Matrix Spike - Client Sampl	e No.: <u>Method B</u>	<u>lank</u>							
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.	+				
Aroclor 1016 Aroclor 1260	1.00	1.02 1.00	102 100	58 - 141 56 - 144					
COMPOUND	SPIKE ADDED UG/L	MSED CONCENTRATION UG/L		% RPD #	RPD	1			
Aroclor 1016_ Aroclor 1260_	1.00	0.982 1.06	98	. 4 7	30	58 - 141 56 - 144			
Column to be used to flag recovery and RPD values with an asterisk Values outside of QC limits									
RPD: <u>0</u> out of <u>2</u> out Spike recovery: <u>0</u> out o		limits				ı			
Comments:		·							

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS METHOD BLANK SUMMARY

Client No.

Lab Name:	STL Buffalo		Method Blank					
Lab Code:	RECNY Case No.:	SAS No.	: SI	DG No.:				
Lab Sample	ID: <u>A7B0626103</u>	Lab	Lab File ID: <u>19A96055.TX0</u>					
Matrix: (s	soil/water) <u>WATER</u>	Extr	action:	SEPF				
Sulfur Cle	eanup: (Y/N): <u>Y</u>	Date	Extracted:	04/27/2007				
Date Analy	zed (1): <u>04/29/2007</u>	Date	Date Analyzed (2):					
Time Analy	rzed (1): <u>12:47</u>	Time	Analyzed (2)	:				
Instrument	ID (1): <u>HP5890-19</u>	Inst	rument ID (2)	:				
GC Column	(1): <u>ZB-35</u> Dia: <u>0</u>	<u>.53</u> (mm) GC C	olumn (2):	Dia: _	(mm)			
٦ . ټه	THIS METHOD BLANK APPLIE	ES TO THE FOL	LOWING SAMPLES	S, MS AND MSD:				
· · · · · · · · · · · · · · · · · · ·	CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED 1	DATE ANALYZED 2				
1 2 3 4		A7B0626101						
Comments:								

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

Lab Name: <u>STL Buffalo</u> Contra	Method Blank
Lab Name: SIL Bullaro Concre	act:
Lab Code: RECNY Case No.: SAS No.	: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7B0626103</u>
Sample wt/vol: 1000.00 (g/mL) ML	Iab File ID: <u>19A96055.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv:
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 04/27/2007
Concentrated Extract Volume:2000(uL)	Date Analyzed: 04/29/2007
Injection Volume:1.00(uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) Y
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260	0.065 U 0.065 U 0.065 U 0.065 U 0.065 U 0.065 U
Total Polychlorinated Biphe	myls 0.10 U

Sample Data Package

SDG Narrative

SAMPLE SUMMARY

			SAMPI	SAMPLED		ED CE
LAB SAMPLE ID	CLIENT SAMPLE ID	<u>MATRIX</u>	DATE	TIME	DATE	TIME
A7439601	NTS-BCW-0407	WATER	04/25/2007	10:00	04/26/2007	16:30
A7439602	NTS-BCW-0407 (DUP)	WATER	04/25/2007	10:00	04/26/2007	16:30
A7439603	NTS-EW-0407	WATER	04/25/2007	10:10	04/26/2007	16:30
A7439604	NTS-EW-0407 (DUP)	WATER	04/25/2007	10:10	04/26/2007	16:30

METHODS SUMMARY

Job#: <u>A07-4396</u>

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

PARAMETER

ANALYTICAL

METHOD

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

SDG NARRATIVE

Job#: A07-4396

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-4396

Sample Cooler(s) were received at the following temperature(s); 4.0 °C Lab to filter samples 02 & 04 prior to extraction.

GC Extractable Data

For method 8082, the associated calibration verifications demonstrated an increased instrument response, >15% difference, for the surrogate Decachlorobiphenyl. The theoretical consequence of these would be a high bias in the calculated surrogate recoveries. The associated sample surrogate recoveries are well within the quality control limits. In the technical judgment of the laboratory, the sample data has not been impacted and no corrective action is required.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R. Kacalski Project Manager

Date

Chain of Custody Documentation

Chain of Custody Record

STL-4124 (0901)																								
Client CDM	·	Projec	t Man	ager	1	ATT	-	ΙĬ	11:	c							Date 4/	/ ₂	67	,		Chain of Custody No. 2517	imber 7 0	
Address		Telepi	hone f	Numbe	r (Are	a Cod	e)/Fa	x Nui	mber								Zab Ni		0 /			<u> </u>	7	
1 Correcal Motors Drive		3	15	43	13	25	2		71	5	46	3 9	576	טיי]						Page	of/	
State Zip White Ny 1	Code 1206	Site C	ontaci M	Bea	ut	1	Lab	Con	täct						<u></u>		rsis (A space				17			
Project Name and Location (State)		Carrie	r/Way	bill Nu	mber									100										
MWallace and Son fre Cablesh	el / 17.		Т		<u>u</u>	p-	ЧU	,			0		13									Special I.	nstructions/ s of Receipt	
Ostalada diamase orden/adole to.				M	atrix					aine ervat				1 ~								Condition	o or ribcolpt	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Ąį	Aqueous	Sed.	jo N	Unpres.	H2SO4	HNO3	HC	NaOH	NaOH	9	1 4									· · · · · · · · · · · · · · · · · · ·	
NTS-BCW-0407	4/25/07	1000		X			2						Х	<u> </u>								detection	limit of 6	2,05
WFS-BCW-0407(NUP)	1	1000		x			2							X										
NB- EW-0407		1010		x			2	1					χ											
WB-EW-0407 (EUP)		1010		x	\perp		2							X		\perp								_
			1_		1		<u> </u>						_	1_		_ _	Ш	\perp		_				_
							<u> </u>														Ш			
																				_				_
						Ì					•													
		·											7	1	П					T				_
																							<u></u>	_
					1																			_
		-	1	\sqcap			1					\dashv	\top	\top		<u> </u>		1						_
Possible Hazard Identification	1		15	Sample	Disp	osal				Ł	<u>+</u>	i_						L	(A fee	mayl	he asse	essed if samples are i	retained	_
Non-Hazard	Poison B	Unknow	m E	Ret	um T	o Clier	nt ,			sal B		(Spec		chive	For		_ Mon				1 mont			
24 Hours 48 Hours 7 Days 14 Days	ıys 🗌 21 Days	ÌX o	ther	5)	カ		_	1	Hequ	urem	ents	(Spec	Jily)											
1. Reliaguished by	<u> </u>	Bate/	25/0	77	Time	818		1. F	Recei	ved E		ens	de	De	•							Date 0.	Gime 19:18	_
2. Relinquished By		Date/	3/0	17	Time	30		2. F	Reco	yed 5			Me		ø <u>C_</u>		•		,	<u></u>	٦,	Date 0426-67	Time 16:30 Time	_ 26
3. Relinquished By		Date	•		Time	,	-	3.7	Réceir	veft E	· V		/				• • • • • • • • • • • • • • • • • • • •			_=		Date	Time	1276
Comments HTSCO "NOP" SCIMPLES DISTRIBUTION: WHITE - Returned to Client with Report:	. ana	las		m	24	ı			L	ell.		l')	di	2fa	H	in.	in	n	i.	i. Chc_	O Saus	6.	_ •`
DISTRIBUTION: WHITE - Returned to Client with Report:	CANARY - Stays w	ith the San	mple:	PINK	Field	і Сор	7	دعي						•			U	.0		1		D Sairp		

STL Buffalo

Doc. Login/ARRF - Side A Rev 3

SAMPLE LOGIN	JOB#		0/17/2003
Shipment ID	Strict Intern	al COC:	YES / NO
	Residual Ch	lorine Check:	
ACProject / Task _	A I	neck <0.02 mR/i	r: YES/NO
TATBD/CD # OF SAMPLE			
SHIPPED BY	ATT	ACH SHIPPING	TAGS
RECEIVED DATE / TIME:	04	26,07	16:30
COOLER TEMP °C (4 +/- 2 '	°C)	ок	NO
Cooler Custody Seal intact? YES/NO NON	IE SEAL	#	
If NO to cooler temp or seal, PM notified? YES		(PM N	lame)
SUBCONTRACT YES/NO LAB		SM#_	
COMMENTS: SAMPLE TIME ACTUAL	+1HR +2	HR +3 HR	NONE
Sample received outside hold time	<u> </u>		
Headspace in VOA vials			**
Problems with bottle labels			
OTHER SAMPLE RECEIPT COMMENTS (Fill	out ARRF, se	ee reverse)	
ARE SAMPLE DATES AND TIMES CORRECT?		Init	ials <u>h)</u>
WERE ALL THE APPROPRIATE TESTS ASSIGN	ED?	Init	ials <u>B</u>
Temp.Cert.Loss:			· · · · · · · · · · · · · · · · · · ·

Date: 04/26/2007 Time: 21:14:50

STL Buffalo Sample Inventory Page: Rept: AN0383

Job No: A07-4396 Client: Camp Dresser and Mckee Project: NY7A9595 SDG: Case: SMO No: No. Samps: 4			Chain of Cus Sample Sample Tag Num SMO F	Seal: YES tody: YES Tags: NO	Cooler Temperature: 4.0°C				
Sample	Receive	Client Sample ID	Lab ID	Condition	Bottles	Parameters	Lab	Pres Code	log PH
04/25/2007 10:00 04/25/2007 10:10	04/26/2007 16:30 04/26/2007 16:30 04/26/2007 16:30 04/26/2007 16:30	NTS-BCW-0407(DUP) NTS-EW-0407	A7439601 A7439602 A7439603 A7439604	Good Good Good Good	2-11GA 2-11GA 2-11GA 2-11GA	PCB PCB PCB	RECNY RECNY RECNY RECNY	0100 0100 0100 0100	

ample	Custodian:	 Spanande	00/26	/20 C
-	•	///	•	

First Digit: Sample Filtration; 1=Filtered, 0=Unfiltered

Second Digit: Sample Requires Cooling; (4°) 1=Cooled, O=Not Cooled

Analytical Services Coordinator:		//20
----------------------------------	--	------

8082 Data

Analytical Report May Sampling Event

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: <u>A07-5757</u>

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

Task: Wallace & Sons Scrapyard

Timothy Beaumont CDM One General Motors Dr. STE 2 Syracuse, NY 13206

STL Buffalo

Jason R. Kacalski Project Manager

06/19/2007

STL Buffalo Current Certifications

As of 5/16/2007

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	NELAP SDWA, CWA, RCRA	NY455
New York	NELAP AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

Sample Data Summary Package

SAMPLE SUMMARY

			SAMPI	ED	RECEIVE	⊡D
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	
A7575701	NIS-EW-0507	WATER	05/23/2007	08:00	05/25/2007	08:45
A7575702	NTS-EW-0507 (DUP)	WATER	05/23/2007	08:00	05/25/2007	08:45

1000

METHODS SUMMARY

Job#: A07-5757

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

ANALYTICAL METHOD

PARAMETER

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

SDG NARRATIVE

Job#: A07-5757

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-5757

Sample Cooler(s) were received at the following temperature(s); 202.0 °C Filter sample 02 prior to extraction.

GC Extractable Data

No deviations from protocol were encountered during the analytical procedures.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R. Kacalski Project Manager

Date

Date: 06/19/2007

Requested Detection Limits < STL's PQL

Page: Rept: AN1520

Time: 10:57:00

The requested project specific reporting limits listed below were less than STL's standard quantitation limits but greater than or equal to STL's MDL. It must be noted that results reported below STL's standard quantitation limit (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

<u>Method</u>	Parameter	<u>Unit</u>	Client <u>DL</u>	STL POL
608PCB	Total Polychlorinated Biphenyls	UG/L	0.10	0.54

 $x = x \in \mathbb{Q}_{p^{n-1}}(\mathbb{Q}_p) = \mathbb{Q}_p = \frac{x}{p^{n-1}}$

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID			ANALY	TICAL REQ	UIREMENT	S	
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
NTS-EW-0507	A7575701		-		CFR136	-	-	
NTS-EW-0507 (DUP)	A7575702	-	-	-	CFR136		-	

NYSDEC-1

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME; SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
NTS-EW-0507	WATER	05/23/2007	05/25/2007	05/30/2007	05/31/2007
NTS-EW-0507 (DUP)	WATER	05/23/2007	05/25/2007	05/30/2007	05/31/2007

NYSDEC-4

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
NTS-EW-0507	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NTS-EW-0507 (DUP)	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED

NYSDEC-6

STL

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the callbration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate,
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

Tab Name . OW D. C	NTS-EW-0507
Lab Name: STL Buffalo Contrac	
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A7575701
Sample wt/vol: 1060.00 (g/mL) ML	Lab File ID: <u>12A86075.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: <u>05/23/2007</u> <u>05/25/2007</u>
Extraction: (SepF/Cont/Sonc/Soxh): <u>SEPF</u>	Date Extracted: 05/30/2007
Concentrated Extract Volume: 2000 (uL)	Date Analyzed: 05/31/2007
Injection Volume:1.00(uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242	0.061 U 0.061 U
12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260	0.061 U 0.061 U 0.061 U
Total Polychlorinated Bipher	

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS WATER SURROGATE RECOVERY

Lab Name: STL Buffalo				Contract:		
Lab Code: <u>RECNY</u>	Case	No.:		SAS No.:	 SDG No.:	
GC Column(1): <u>ZB-35</u>	_	ID: 0	<u>.53</u> (mm)			

	Client Sample ID	Lab Sample 1D	-	TCMX %REC #							TOT
	***************	526229222222	222222	222222	=======	======	2222322	======	======	======	[===
1	Matrix Spike Blank	A7B0824301	65	99	İ	1			ļ	1	0
2	Matrix Spike Blk Dup	A7B0824302	55	100	ļ					·	0
	Method Blank	A7B0824303	60	89	ĺ	,	l .		1	1	0
4	NTS-EW-0507	A7575701	88	84					'		0
			L	ļ .					L 1		

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene

(26-145) (25-152)

Column to be used to flag recovery values
 * Values outside of contract required QC limits
 D Surrogates diluted out

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M

METHOD 608 - POLYCHLORINATED BIPHENYLS

WATER MATRIX SPIKE BLANK/MATRIX SPIKE BLANK DUPLICATE RECOVERY

Lab Name: STL Buffalo	Contract:		Lab Samp ID: <u>A7B0824303</u>				
Lab Code: <u>RECNY</u> Case No	SAS No.:		SDG No.:				
Matrix Spike - Client Sampl	e No.: <u>Method B</u>	<u>lank</u>					
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.	+		
Aroclor 1016 Aroclor 1260	1.00 1.00	0.841 0.942	84 94	58 - 141 56 - 144	1 1		
COMPOUND	SPIKE ADDED UG/L	MSBD CONCENTRATION UG/L	MSBD % REC #	1		l .	+
Aroclor 1016 Aroclor 1260	1.00 1.00	0.878 0.981	88 98	5 4	30 30	58 - 141 56 - 144	=
# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits							
RPD: 0 out of 2 out of 5 out of 0 out of 0		limits					
Comments:						<u> </u>	

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS METHOD BLANK SUMMARY

Client No.

I.ah Name.	CTT. Buffalo	Contrañt.		Method Blank			
Dab Mame:	STL Buffalo	Contract: _			•		
Lab Code:	RECNY Case No.:	SAS No.	: S	DG No.:			
Lab Sample	■ ID: <u>A7B0824303</u>	Lab	File ID: <u>12A8</u>	6074.TX0			
Matrix: (s	soil/water) <u>WATER</u>	Extr	action:	SEPF			
Sulfur Cle	eanup: (Y/N): <u>N</u>	Date	Extracted:	05/30/2007			
Date Analy	yzed (1): <u>05/31/2007</u>	Date	Analyzed (2)	:			
Time Analy	yzed (1): <u>15:31</u>	Time	Time Analyzed (2):				
Instrument	ID (1): <u>HP5890-12</u>	Inst	rument ID (2)	:			
GC Column	(1): <u>ZB-35</u> Dia: <u>0</u>	<u>.53</u> (mm) GC C	olumn (2):	Dia:	(mm)		
	THIS METHOD BLANK APPLIE	es to the fol	LOWING SAMPLES	s, ms and msd:	t		
	CLIENT SAMPLE NO.	ľ	DATE ANALYZED 1		·		
1 2 3	Matrix Spike Blank Matrix Spike Blk Dup	A7B0824301 A7B0824302	05/31/2007				
Comments:							

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

Lab Name: <u>STL Buffalo</u> Contrac	Method Blank
TED MANE: SILI BULLATO CONCIA	ct:
Lab Code: RECNY Case No.: SAS No.	: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7B0824303</u>
Sample wt/vol:1000.00 (g/mL) ML	Lab File ID: <u>12A86074.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv:
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 05/30/2007
Concentrated Extract Volume:2000(uL)	Date Analyzed: 05/31/2007
Injection Volume:1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016	0.065 U
11104-28-2Aroclor 1221	0.065 U
11141-16-5Aroclor 1232	0.065 U
153469-21-9Aroctor 1242	I 0.065 IU I
12672-29-6Aroclor 1248	0.065 U
11097-69-1Aroctor 1254	0.065 U
11096-82-5Aroclor 1260	0.065 Ü
Total Polychlorinated Bipher	nyls 0.10 U

Sample Data Package

SDG Narrative

SAMPLE SUMMARY

			ŞAMPI	FD	RECEIVED		
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME	
A7575701	NTS-EW-0507		05/23/2007				
A7575702	NTS-EW-0507 (DUP)	WATER	05/23/2007	00:80	05/25/2007	08:45	

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

METHODS SUMMARY

Job#: <u>A07-5757</u>

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

ANALYTICAL METHOD

PARAMETER
METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

SDG NARRATIVE

Job#: A07-5757

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-5757

Sample Cooler(s) were received at the following temperature(s); 2@2.0 °C Filter sample 02 prior to extraction.

GC Extractable Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R/Kacalski Project Manager

Date

Chain of Custody

Chain of Custody Record

STL-4124 (0901)																												_
COM		Project			,,,	-a-	,,	.,									Date 🖍	10	3/0	_		Ch	rain of	Cusiodi O 1	<i>የ</i> ምየ	er)		
		Telepho	A	lumb a	MA		MI	///A	<u>e s</u>								Lab N							J T	1 1 0	_		-
Address / Clause O 11-lane	Davie.	relepin		1						/1~	47	2~	70	c)			Lau IV	Diribe	71			۾	age_	1		1 /	/	
City State Zip	Code	Site Co	ntact		, , ,		Lab	Conta	act	•	19	<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>	<u>~_</u>		Analy	rsis (r	Attac	:h list	if								=
	3206	170	ш	Bu	acres	I							<u> </u>	<u> </u>		nore	space	is r	ieede	<u>ed)</u>	- 	~J	ł					
Project Name and Location (State)		Carrier	Way	bill Nu	mber								7.	100					1	ł	1							
M-Wallace and Son The Cubles. Contract/Purchase Order/Quote No.	w NY			du	sp i	150	<u> </u>						830	أجزا							ł			Specia				
Contract/Purchase Order/Quote No.	•			Ma	itrix				Conta Prese					া	1									Conditi	ons c	of Hed	eipt	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Αï	Aqueous	Soit		Unpres.	H2SO4	HNO3	ğ	NaOH	NaOH	Pcs	Prb (_
NTS-EW-0507	5/23/07	800		X			2						X										de	hech	mli	rit c	6 0.05	ام
NB- EW-0507 (DUP)	5/23/07	800		X			2							X										11		10	<i></i>	
						L_																						_
																												-
																												•
				$\neg \top$													\top							•				•
								T							十		\top			十				-		• • • • • • • • • • • • • • • • • • • •		•
				_		 		1			7	1	 	\Box		-	1			十	\top	+-						-
				+		 	\vdash	1	十	\dashv	十	十	\dagger	Н	\dashv	\top	+			\top	+	+		•				•
		 	H	_	+	-			+	+	\dashv	\dashv	╁╴	-	\dashv	+	+		-	+	+	╁╌						-
			Н	\dashv	_	-				\dashv	\dashv	+	╁╴			_	+			\dagger	+	+-	<u> </u>					-
				_	+	\vdash	H		\dashv	\dagger	+	╅	+-	1	+	+-	+			+	+	+-	\vdash				-	-
Possible Hazard Identification			Цs	ample	Dispos	L sal	Щ.								- 1		т	ш	40.6	1			<u> </u>					-
Non-Hazard	Poison B	☐ Unknown	, [[Reto	urn To	Clien	,)	X D	ispos	ai By	/ Lab		Arci	hive F	or		_ Mon	ths			r be as n 1 mc		aa n sa	mples a	re reta	ınea		
Turn Around Time Required		Ar .			STD		1					(Speci	(y)		···········	<u> </u>		-										-
24 Hours 48 Hours 7 Days 14 Da	iys 📋 21 Days	S 🔼 Ott	ner		Time			1 8	eceiy	A R		">	10		-/	Ŋ	,						Date /	, .	Ti	те		-
The Co		8/2	40-	2		30			,	<	5	لم			1	<u>K</u>								અ/9			30 A	m
2. Relinquistred By		Date	U/	27	Time	/3	a	2. R	eceiv	ed B	3	<u>, </u>	• 1								,		Date	s de	$\sqrt{\frac{n}{\ell}}$	me ```} \$3	حال	12/
3. Relinquished By		Date	7/-		Time			3. Re	eceiv	ea B	У				***		•						Dale			me	-1-3	72/
Comments HUL "DV/" Sample DISTRIBUTION: WHITE - Returned to Client with Report.	s. On	aluz c		h	 كد	· 4	du		·		u t	cct	in.			د ۱	n c	9	5	, h.r.	مام	<u>_</u>	-	2	کے آء	 ک.ر	 ح ک	. ⁻
DISTRIBUTION: WHITE - Returned to Client with Report;	CANARY - Stavs w	ith the Sam	pie:	PINK -	Field	Сору										- / /		<u></u>										

Doc. Login/ARRF - Side A Rev 4

May 11, 2007

SAMPLE LOGIN	JOB# 5)5)	
Shipment ID	Strict Internal COC: YES	/(100)
	Residual Chlorine Check:]
	Radiation Check < 0.02 mR/hr: YES	/ NO
ACProject / Task	NY)ASSS 1	
TAT / SBD/CD # OF SAMPL	ESTRIP BLANK Y(N)#	
SHIPPED BY Fedex	ATTACH SHIPPING TAGS	
RECEIVED DATE / TIME:	5,25,03 08:4	
COOLER TEMP うe え. Oc (4+1-2°C	OK NO	
Cooler Custody Seal intact? YES/NO NON	IE SEAL#	
If NO to cooler temp or seal, PM notified? YES	(PM Name)	
SUBCONTRACT YES NO LAB	SM#	<u>_</u>
COMMENTS: SAMPLE TIME ACTUAL	+1HR +2 HR +3 HR NON	1E
Sample received outside hold time		
Headspace in VOA vials		
Problems with bottle labels		
OTHER SAMPLE RECEIPT COMMENTS (Fill out	ARRF, see reverse)	
		 -
PRESERVATION CHECKED YES	NO NA Initials_	
ARE SAMPLE DATES AND TIMES CORRECT?	Initials	
WERE ALL THE APPROPRIATE TESTS ASSIGN	ED? Initials	7 C

Date: 05/25/2007 Time: 15:57:25 STL Buffalo Sample Inventory

Page: 1 Rept: ANO383

Job No: A07-5757 Radiation Check: YES Cooler Temperature: 202.0°C Client: Camp Dresser and Mckee Custody Seal: YES Project: NY7A9595 Chain of Custody: YES SDG: Sample Tags: NO Case: Sample Tag Numbers: NO SMO No: SMO Forms: NO CLSIS: NO No. Samps: 2 Pres log Client Sample ID Lab 10 Condition Code PH Sample Receive **Bottles Parameters** Lab A7575701 05/23/2007 08:00 05/25/2007 08:45 NTS-EW-0507 Good 2-1LGA **PCBS** RECNY 0100 05/23/2007 08:00 05/25/2007 08:45 NTS-EW-0507 (DUP) A7575702 Good 2-1LGA PCBS (EXTR+HOLD) RECNY 0100

	C 25 0		
Sample Custodian:	S 12/3/200/	Analytical Services Coordinator:	 /20

Analytical Report June Sampling Event

STL

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: A07-7243

Project#: NY7A9595

Site Name: <u>Niagara Mohawk O & M</u>
Task: Wallace & Sons Scrapyard

Timothy Beaumont CDM One General Motors Dr. STE 2 Syracuse, NY 13206

STL Buffalo

Jason R. Kacalski Project Manager

07/18/2007

STL Buffalo Current Certifications

As of 5/16/2007

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	NELAP SDWA, CWA, RCRA	NY455
New York	NELAP AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

Sample Data Summary Package

SAMPLE SUMMARY

			SAMP	LED	RECEIVI	∄D
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7724301	NTS-EW-0607	WATER	06/27/2007	08:15	06/28/2007	08:40
A7724302	NIS-EW-0607 (DUP)	WATER	06/27/2007	08:15	06/28/2007	08:40

METHODS SUMMARY

Job#: A07-7243

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

ANALYTICAL

PARAMETER

METHOD

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

SDG NARRATIVE

Job#: <u>A07-7243</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-7243

Sample Cooler(s) were received at the following temperature(s); 2@2.0 °C Lab to filter "DUP" sample prior to extraction.

GC Extractable Data

No deviations from protocol were encountered during the analytical procedures.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R. Kacalski Project Manager

Date

Date: 07/18/2007

Requested Detection Limits < Lab PQL

Page:

Time: 08:35:12

Rept: AN1520

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to lab MDL. It must be noted that results reported below lab standard quantitation limit (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

<u>Method</u>	Parameter	<u>Unit</u>	Client DL	Lab POL
608PCB	Total Polychlorinated Biphenyls	UG/L	0.10	0.54

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID	ANALYTICAL REQUIREMENTS										
	VOA GC/MS		BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY				
NTS-EW-0607	A7724301	•	-	•	CFR136	-	•	. -				
NTS-EW-0607(DUP)	A7724302	-	-	-	CFR136	-	-	•				

SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
NTS-EW-0607	WATER	06/27/2007	06/28/2007	07/02/2007	07/05/2007
NTS-EW-0607(DUP)	WATER	06/27/2007	06/28/2007	07/02/2007	-

SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
NTS-EW-0607	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NTS-EW-0607(DUP)	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED

STL

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- Indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

Lab Name: <u>STL Buffalo</u> Contrac	NTS-EW-0607
concrac	· ·
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A7724301
Sample wt/vol: <u>1060.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>12A92145.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 06/27/2007 06/28/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 07/02/2007
Concentrated Extract Volume:2000(uL)	Date Analyzed: <u>07/05/2007</u>
Injection Volume:1.00(uL)	Dilution Factor:1.00
GPC Clearup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260	0.061 U 0.061 U 0.061 U 0.061 U 0.061 U 0.061 U 0.061 U
Total Polychlorinated Biphen	vls 0.094 Ŭ

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS WATER SURROGATE RECOVERY

Lab Name: <u>STL Buffalo</u>		Contract:	
Lab Code: RECNY	Case No.:	SAS No.:	SDG No.:
GC Column(1): <u>28-35</u>	ID: <u>0.53</u> (mm)		

	Client Sample ID	Lab Sample ID	i e	TCMX %REC #						TOT OUT
	2=6x=5x6==x=2x6E26ccc	======================================	======	3352222	======	#######	 ======	****	=======	===
1	Matrix Spike Blank	A7B1032601	58	102				•		0
2	Matrix Spike Blk Dup	A7B1032602	60	102		1		}		0
3	Method Blank	A781032603	62	106				'		0
4	NTS-EN-0607	A7724301	70	86				l		0
				1			 			L

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene (26-145) (25-152)

Ser Gr

- # Column to be used to flag recovery values
 * Values outside of contract required QC limits
 D Surrogates diluted out

FORM II - GC EXT

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M

METHOD 608 - POLYCHLORINATED BIPHENYLS

WATER MATRIX SPIKE BLANK/MATRIX SPIKE BLANK DUPLICATE RECOVERY

Lab Name: STL Buffalo		Contract:	 	Lab Samp ID: <u>A7B1032603</u>								
Lab Code: <u>RECNY</u> Case N	o.:	SAS No.:		SDG No.:								
Matrix Spike - Client Samp	le No.: Method B	lank										
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.	+							
Aroclor 1016Aroclor 1260	1.00 1.00	0.925 0.881	92 88	58 - 141 56 - 144								
COMPOUND	SPIKE ADDED UG/L	MSBD CONCENTRATION UG/L	MSBD % REC #	% RPD #		C LIMITS REC.						
Aroclor 1016_Aroclor 1260_	1.00 1.00	0.940 0.948	94 95	2 8	30 30	58 - 141 56 - 144						
# Column to be used to flag * Values outside of QC lim	-	PD values with ar	n asteris	k								
RPD:0 out of2 out of2 out of0 out of0 out of2 out of0 out of0 out of0 out of2 out of0 out of0 out of0 out of2 out of0 out of2 out of0 out of2 out of0 out of2 out of0 out of2 out of0 out of2 out of0 out of2 out of0 out of2 out of0 out of0 out of2 out of0 out of2 out of0 out of2 out of0 out of		limits										
Comments:												

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS METHOD BLANK SUMMARY

Client No.

Lab Name:	STL Buffalo	Contract: _		Method Blank						
Lab Code:	RECNY Case No.:	SAS No.	S No.: SDG No.:							
Lab Sample	ID: <u>A7B1032603</u>	Lab 1	Lab File ID: <u>12A92141.TX0</u>							
Matrix: (s	soil/water) <u>WATER</u>	Extr	action:	SEPF						
Sulfur Cle	eanup: (Y/N): <u>Y</u>	Date	Extracted:	07/02/2007						
Date Analy	zed (1): 07/05/2007	Date	Analyzed (2)							
Time Analy	zed (1): <u>12:16</u>	Time	Time Analyzed (2):							
Instrument	ID (1): <u>HP5890-12</u>	Inst	rument ID (2)		•					
GC Column	(1): <u>ZB-35</u> Dia: <u>0</u>	.53 (mm) GC Co	olumn (2):	Dia:	(mm)					
I	HIS METHOD BLANK APPLIE	ES TO THE FOLI	LOWING SAMPLES	, MS AND MSD:						
	CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED 1	DATE ANALYZED 2						
1 2 3	Matrix Spike Blank Matrix Spike Blk Dup NTS-EW-0607	A7B1032601 A7B1032602 A7724301								
Comments:										

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

Tab Name (WW D.EE.)	Method Blank
Lab Name: STL Buffalo Contrad	
Lab Code: RECNY Case No.: SAS No.:	: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7B1032603</u>
Sample wt/vol: 1000.00 (g/mL) ML	Lab File ID: <u>12A92141.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv:
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: <u>07/02/2007</u>
Concentrated Extract Volume:2000(uL)	Date Analyzed: 07/05/2007
Injection Volume:1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) Y
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016	0.065 U
11104-28-2Aroclor 1221	
11141-16-5Aroclor 1232	0.065 Ŭ
53469-21-9Aroclor 1242	0.065 U
112672-29-6Amaion 1248	1 0.065 111 1
11097-69-1Aroclor 1254 11096-82-5Aroclor 1260	0.065 U
12200 02 3 1200202 2200	0,000
Total Polychlorinated Bipher	rylsU

Sample Data Package

SDG Narrative

SAMPLE SUMMARY

			SAMPI	LEID	RECETV	EID	
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME	
A7724301	NTS-EW-0607	WATER	06/27/2007	08:15	06/28/2007	08:40	
A7724302	NTS-EW-0607 (DUP)	WATER	06/27/2007	08:15	06/28/2007	08:40	

METHODS SUMMARY

Job#: <u>A07-7243</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

ANALYTICAL

PARAMETER

METHOD

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

 $\frac{\mathcal{L}_{\mathcal{A}}^{(i)}}{\mathcal{L}_{\mathcal{A}}^{(i)}} = \frac{1}{2^{N_{\mathcal{A}}^{(i)}} \mathcal{L}_{\mathcal{A}}^{(i)}} = \frac{1}{2^{N_{\mathcal{A}}^{(i)}}} = \frac{1}{2^{N_{\mathcal{A}^{(i)}}}} = \frac{1}{2^{N_{\mathcal{A}^{(i)}}}} = \frac{1}{2^{N_{\mathcal{A}^{(i)}}}} = \frac{1}{2^{N_{\mathcal{$

SDG NARRATIVE

Job#: <u>A07-7243</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-7243

Sample Cooler(s) were received at the following temperature(s); 202.0 °C Lab to filter "DUP" sample prior to extraction.

GC Extractable Data

No deviations from protocol were encountered during the analytical procedures.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R. Kacalski

Project Manager

Date

Chain Of Custody Documentation

Chain of Custody Record

STL-4124 (0901)	,																					
COM		Project Ma	nager		45	K	1	11	lic.	1				D	ate G	/27	10-	7	Chai	in of Custody Nu. 25177	nber ! 1	
Addross	<u> </u>	Telephone	Numb	er (Are	a Coo	e)/Fax	Numi	ber				· · · · · · · · · · · · · · · · · · ·		L	ab Nun			-		<u> </u>		7
1 General Metris A	rive	30		34	13				511	-40	<u>کو</u>	570	<u>U</u>						Pag	ge <u> </u>	of	
Sity Suracest State Zip	code 13206	Site Conta	Kea	vir	t_	Lab	Conta	cf				E		Analys nore s	is (Attoace is T	tach lis s need	st if ied)	1 1	_			
	tele 14	Carrier/Wa		umber 1	Syr	ac	אנ	Sin	VLc.	Citi	- 9	000 4" 009								Special In	structions	/
Contract/Purchase Order/Quote No.			M	atrix		L <u>-</u>	C	ontaii	ners e vative	ያ		93	}							Conditions	of Receip	ot
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time ₹	Aqueous	Sed.	Š	Unpres.	HZSO4	F S	NaOH	ZnAc/ NaOH	00	72										·
NTS-EW-0607	6/27/07	rin	X			2					λ							11	4	Setectus les	ity 0	10501
NTS-EW-0607 DUP)	6/27/07 1	715	X			2	_	\bot	Ц_			K	\perp	Ш		_		\perp	\perp			
			$\downarrow \downarrow$	\perp			_	_		<u> </u>		44						11	\bot			
			-				\perp	4	1		-	11	_}_			1		4-4	\rightarrow			
			1		-		_	_	1	\sqcup		44	_		_	_		$\perp \downarrow$	\dashv			
			-	_ _		Ш	_	\perp	1			\perp	\perp		\perp	_			4			
			-	\perp			\perp	\bot	\bot		_	$\dashv \dashv$	_	\perp		\bot		11	4			
			+	_ _			_	\perp	4		_	11	\perp			\bot		44	4			
			+				+	4	_		+	- -	4	-		+	\sqcup					
			╁	-	┿-		+		-	-		+	\perp			+		+				
			+-1		+-				+-	\vdash	+	+	+					-	-			
Possible Hazard Identification			Sample	o Disni	nsal_				1_							Д			Щ.			
Non-Hazard	Poison B	I	□ Re	•		, }	D is	sposa	l By La	ab l	□ A	rchive Fo	or		Month			be ass		if samples are r	atained	
Turn Around Time Required				5/72	7					s (Spec												
	ays 🔲 21 Days	ther_				_	f	<u>121</u>		CA	[7]	151										
1. Relinquished By A A			67	Time /(50		_ {	pelve	Sec.		2	IJ	<u>e</u>							177/07	Time /550	
2. Helinty stigd By		Date 7	ha	Time	2:3		2: Re	ceiye S		5	<u>/</u>			_					. [/	ate 28/8	Time つる	40%
3. Relinquished By		Date		Time			3. Re	ceive	d By			<u>v</u>								ale	Time	263
comments hold "Dup" Same	h. anc	1			1	<u> </u>	ne	- نو		4.	La	hu			•	- 1	1 5	6 44		. 6	~~~~? ?e \$.	_
DISTRIBUTION: WHITE - Returned to Client with Report:	CANARY - Stays with	n the sample	: PINK	Field	DPY	, ,	-ce	. <u> </u>	, (<u>47</u>	rec:	- L - C			<u>rşt</u>	مد.	<u>, , , , , , , , , , , , , , , , , , , </u>		A Q			

Doc. Login/ARRF - Side A Rev 4 May 11, 2007

SAMPLE LOGIN	JOB# >> 2 √ ?
Shipment ID	Strict Internal COC: YES NO
	Residual Chlorine Check:
	Radiation Check < 0.02 mR/hr: YES / NO
ACProject / Task	1429555
TATCD # OF SAMPLE	ESTRIP BLANK W #
SHIPPED BY FELEX	ATTACH SHIPPING TAGS
RECEIVED DATE / TIME:	<u>C,28,0)</u> D8:40
COOLER TEMP 2 € 5.6°C (4+1-2°C	OK NO
Cooler Custody Seal intact YESANO NON	IE SEAL#
If NO to cooler temp or seal, PM notified? YES	(PM Name)
SUBCONTRACT YES NO LAB_ :	SM #
COMMENTS: SAMPLE TIME	+1HR +2 HR +3 HR NONE
Sample received outside hold time	
Headspace in VOA vials	
Problems with bottle labels	·
OTHER SAMPLE RECEIPT COMMENTS (Fill out a	ARRF, see reverse)
▼	
PRESERVATION CHECKED YES	NO NA Initials
ARE SAMPLE DATES AND TIMES CORRECT?	Initials
WERE ALL THE APPROPRIATE TESTS ASSIGN	ED? Initials

Date: 06/28/2007 Time: 12:07:15 STL Buffalo Sample Inventory

Page: 1 Rept: ANO383

Job No: A07-7243 Client: Camp Dresser and Mckee Project: NY7A9595 SDG: Case: SMO No: No. Samps: 2			Radiation Check: YES Cooler Temperature: 202.0°C Custody Seal: YES Chain of Custody: YES Sample Tags: NO Sample Tag Numbers: NO SMO Forms: NO CLSIS: NO			2.0°C			
								Pres	log
Sample	Receive	Client Sample ID	Lab ID	Condition	Bottles	Parameters	Lab	Code	PH
	06/28/2007 08:40 06/28/2007 08:40		A7724301 A7724302	Good Good	2-11GA 2-11GA	PCBS 608		0100 0100	

			- 4
	\)		
Sample Custodian:	-		12 (2000)
sample custouran:		<u> </u>	/ ~ /20 /

Analytical Report July Sampling Event

STL

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: <u>A07-8384</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M
Task: Wallace & Sons Scrapyard

Timothy Beaumont CDM One General Motors Dr. STE 2 Syracuse, NY 13206

STL Buffalo

Jason R. Kacalski Project Manager

08/15/2007

STL Buffalo Current Certifications

As of 5/16/2007

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	NELAP SDWA, CWA, RCRA	NY455
New York	NELAP AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

Sample Data Summary Package

SAMPLE SUMMARY

			SAMPLE	D	RECEIVED		
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE T	TME_	DATE	TIME	
A7838401	NTS-EW-0707	WATER	07/25/2007 1	4:30	07/26/2007	08:45	
A7838402	NTS-EW-0707 (DUP)	WATER	07/25/2007 1	4:30	07/26/2007	08:45	

METHODS SUMMARY

Job#: <u>A07-8384</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

PARAMETER ANALYTICAL PARAMETER METHOD

METHOD 608 - POLYCHLORINATED BIPHENYLS CFR136 608PCB

References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

SDG NARRATIVE

Job#: A07-8384

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-8384

Sample Cooler(s) were received at the following temperature(s); 6@2.0 °C All samples were received in good condition.

GC Extractable Data

For method 608, the associated calibration verifications demonstrated an increased instrument response, >15% difference, for the surrogate Tetrachloro-m-xylene. The theoretical consequence of these would be a high bias in the calculated surrogate recoveries. The associated sample surrogate recoveries are well within the quality control limits. In the technical judgment of the laboratory, the sample data has not been impacted and no corrective action is required.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R/ Kacalski

Project Manager

Date

Date: 08/15/2007

Requested Detection Limits < Lab PQL

Time: 16:10:07

Page: 1 Rept: AN1520

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to lab MDL. It must be noted that results reported below lab standard quantitation limit (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Parameter	<u>Unit</u>	Client DL	Lab POL
<u>Organics</u>				
608PCB	Aroclor 1016	UG/L	0.050	0.060
608PCB	Aroclor 1221	UG/L	0.050	0.060
608PCB	Aroclor 1232	UG/L	0.050	0.060
608PCB	Aroclor 1242	UG/L	0.050	0.060
608PCB	Aroclor 1248	UG/L	0.050	0.060
608PCB	Aroclor 1254	$\mathbf{UG/L}$	0.050	0.060
608PCB	Aroclor 1260	UG/L	0.050	0.060
608PCB	Total Polychlorinated Biphenyls	UG/L	0.50	0.54

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID		ANALYTICAL REQUIREMENTS							
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY		
NTS-EW-0707	A7838401	-	~	-	CFR136	-	-	-		
NTS-EW-0707 (DUP)	A7838402	-	-	-	CFR136	-	-	-		

SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
NTS-EW-0707	WATER	07/25/2007	07/26/2007	07/28/2007	07/30/2007
NTS-EW-0707 (DUP)	WATER	07/25/2007	07/26/2007	07/28/200 7	-

SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
NTS-EW-0707	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NTS-EW-0707 (DUP)	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED

STL

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- Indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

		NTS-EW-0707
Lab Name: <u>STL Buffalo</u> Contrac	t:	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A7838401</u>
Sample wt/vol: 1060.00 (g/mL) ML	Lab File ID:	19A06133.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv:	07/25/2007 07/26/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted:	07/28/2007
Concentrated Extract Volume:2000(uL)	Date Analyzed:	<u>07/30/2007</u>
Injection Volume:1.00(uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup:	(Y/N) <u>N</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>	Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221	0.047 0.047	U
11141-16-5Aroclor 1232	0.047	⁻
53469-21-9Aroclor 1242	0.047	U
12672-29-6Aroclor 1248 11097-69-1Aroclor 1254	0.047 0.047	U U
11097-69-1Aroctor 1254 11096-82-5Aroctor 1260	0.047	1 1
Total Polychlorinated Biphen		ū
	·, V····	1 - 1

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS WATER SURROGATE RECOVERY

Lab	Name:	STL Buffalo		Contract:		
Lab	Code:	RECNY	Case No.:	 SAS No.:	 SDG No.:	

GC Column(1): <u>ZB-35</u> ID: <u>0.53</u> (mm)

	Client Sample ID	Lab Sample ID		TCMX %REC #							TOT
	3#2627 4== 222777222	========	======	======	======	==23=22	3##=# = =	======	======	======	322
1	Matrix Spike Blank	A7B1175301	106	62							0
	Matrix Spike Blk Dup	A7B1175302	56	90	j						0
	Method Blank	A7B1175303	72	72		-			i 1		0
4	NTS-EH-0707	A7838401	80	60		1				ľ	0
	L	l		l	L	L		Ĺ			

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene (26-145) (25-152)

- # Column to be used to flag recovery values
 * Values outside of contract required QC limits
 D Surrogates diluted out

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M

METHOD 608 - POLYCHLORINATED BIPHENYLS

WATER MATRIX SPIKE BLANK/MATRIX SPIKE BLANK DUPLICATE RECOVERY

Lab Name: <u>STL Buffalo</u>		Contract:		Lab Sa	amp ID	: <u>A7B11753</u> (<u>)3</u>
Lab Code: <u>RECNY</u> Case 1	<i>No.</i> :	SAS No.:		SI	Œ No.	:	
Matrix Spike - Client Sam	ple No.: <u>Method F</u>	Blank					
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.			
Aroclor 1016 Aroclor 1260	1.00 1.00	0.696 1.14	70 114	58 - 141 56 - 144	1	·	
COMPOUND	SPIKE ADDED UG/L	MSBD CONCENTRATION UG/L	MSBD % REC #	1	RPD	C LIMITS REC.	1
Aroclor 1016 Aroclor 1260	1.00 1.00	0.782	78 93	11 20	30 30	58 - 141 56 - 144	
# Column to be used to flat * Values outside of QC lin RPD:0 out of2 or Spike recovery:0 out	mits utside limits		n asteris	k			_1_
Comments:							

CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M

METHOD 608 - POLYCHLORINATED BIPHENYLS METHOD BLANK SUMMARY

Client No. Method Blank Lab Name: <u>STL Buffalo</u> Contract: Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: Lab Sample ID: A7B1175303 Lab File ID: 19A06126.TX0 Matrix: (soil/water) WATER Extraction: SEPF Sulfur Cleanup: (Y/N): Y Date Extracted: <u>07/28/2007</u> Date Analyzed (2): Date Analyzed (1): <u>07/30/2007</u> Time Analyzed (1): <u>13:02</u> Time Analyzed (2): _____ Instrument ID (1): <u>HP5890-19</u> Instrument ID (2): GC Column (1): <u>ZB-35</u> Dia: <u>0.53</u>(mm) GC Column (2): _____ Dia: ____(mm) THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD: CLIENT LAB DATE DATE ANALYZED 2 SAMPLE NO. SAMPLE ID ANALYZED 1 1 Matrix Spike Blank A7B1175301 07/30/2007 2 Matrix Spike Blk Dup A7B1175302 07/30/2007 3 NTS-EW-0707 A7838401 07/30/2007

Comments:			•
	 	 	

CAMP DRESSER AND MCKEE NIACARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Tab Name, CTT Diffelo	Method Blank
Lab Name: <u>STL Buffalo</u> Contrac	il:
Lab Code: RECNY Case No.: SAS No.:	: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A7B1175303
Sample wt/vol: 1000.00 (g/mL) ML	Lab File ID: 19A06126.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv:
Extraction: (SepF/Cont/Sonc/Soxh): <u>SEPF</u>	Date Extracted: <u>07/28/2007</u>
Concentrated Extract Volume:2000(uL)	Date Analyzed: <u>07/30/2007</u>
Injection Volume:1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) Y
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260 	0.050 U 0.050 U 0.050 U 0.050 U 0.050 U
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Sample Data Package

SDG Narrative

## SAMPLE SUMMARY

			SAMPL	ED	RECEIVE	ED .
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7838401	NTS-EW-0707	WATER	07/25/2007	14:30	07/26/2007	08:45
A7838402	NTS-EW-0707 (DUP)	WATER	07/25/2007	14:30	07/26/2007	08:45

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

## METHODS SUMMARY

Job#: <u>A07-8384</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

ANALYTICAL METHOD

PARAMETER

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

### References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

### SDG NARRATIVE

Job#: A07-8384

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

### General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

## Sample Receipt Comments

#### A07-8384

Sample Cooler(s) were received at the following temperature(s); 602.0 °C All samples were received in good condition.

## GC Extractable Data

For method 608, the associated calibration verifications demonstrated an increased instrument response, >15% difference, for the surrogate Tetrachloro-m-xylene. The theoretical consequence of these would be a high bias in the calculated surrogate recoveries. The associated sample surrogate recoveries are well within the quality control limits. In the technical judgment of the laboratory, the sample data has not been impacted and no corrective action is required.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R. Kacalski Project Manager

Date

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Chain Of Custody Documentation

# Chain of Custody Record



STL-4124 (0901)															*			
COM		Project N	fanager	M	×XI	r L	11	les	1				Date_	7/2 1	107	C	hain of Custody Au 2987	62
Address / Beneral Motres 1	Onie	Telephor		er (Area				?( )	-46	33	Ster	 ')	Lab N		<del></del>		Page	of
Silvarise Signer Zip	13206	Site Con	act ()	e dec		Lab Cor	ntact				<b>3</b>	An:	alysis (/ e space	ttach li is nee	st if ded)			
Michaelace and Sa Copletice		CarrierM	/aybill Ni	umber 1	Ċ	GLUS	$\mathcal{L}$	ldice	ati	<u>م</u>	事;						Special In	nstructions/
Contract/Purchase Order/Quote No.			<i>N</i>	fatrix		_	Conta Prese	ainer: ervati	es Ves	800	800						Condition:	s of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Aqueous	Sed.		Unpres. H2SO4	HNO3	Ę.	ZPAC/ NBOH		47							
NTS- 2W-0707	7/25/07 1	Y30	X		_	2				Χ	1					$\bot$	detection	limity, os
NTS-EW-0707 (DUP)	7/25/07 /	730	4	-		2			++	+-	X	+	-		+++		_	7
			+	-	H	+	$\left\{ \cdot \right\}$	+	++	+	$\vdash \vdash$	+				+		
			++	+		+		$\top$	$\dagger \dagger$	+-	++			_		1	<u> </u>	
																丄		
			-	_	_	4	$\sqcup$					$\perp$	_			_ _		
			$\dashv$					+		+		-			<del>                                     </del>	+	<u> </u>	
			++		$\Box$	+				$\dashv$						+		
Possible Hazard Identification  Non-Hazard	☐ Poison B ☐	Unknown		e Dispos turn To		<u> </u>	r Diamar	sal By	ا جه،	٦ ،	hive Fo				fee may be nger than 1 i		sed if samples are r	etained
Turn Around Time Required		CIRTIOWI	ILL NO	4 -					nts (Spec		nive ro	<u> </u>	IVION	ins ioi	igoi (nari i i	namy		
24 Hours 48 Hours 7 Days 14 Da	ys 🗌 21 Days	M_Othe	r	STP	<u> </u>				ASV.	<u> </u>	by T	7/2					·	
1. Relinquished 6)	·	Date	07	Time	35	(	Pecejv Z	$\propto$	W							]	7 45 OT	1635
2. Relinguistifa Bud		Date   7/2%	107	178	73	o 🗋	Receiv	¥		/(/	<i></i> _			·			Date 326/05	7 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7
3. Relinquished By	-	Pate	/ <del></del>	Time		3.	Recēiv	ved By	'			• 5	ۍ د	· ·			Date	Time
Hold "DIP" Sample	analuza	anle	10	1 f	hu	è	0	le	hech	`	/n	an	SIM	e)	San	26		
DISTRIBUTION: WHITE - Returned to Client with Report:	CANARY - Stays wil	th the Sampl	e; PINK	✓ Field (	Сору								/			/		



STL Buffalo

Doc. Login/ARRF - Side A

Rev 3 10/17/2005

SAMPLE LOGIN	JOB#	8384						
Shipment ID	Strict Internal COC:	YES (NO						
	Residual Chlorine Check	: 🗆						
	Radiation Check <0.02 m	R/hr: YES / NO						
ACProject / Task	NYJAS595							
TAT SBD/CD # OF SAMPL		$\sim$						
SHIPPED BY Fedor	ATTACH SHIPPIN	NG TAGS						
RECEIVED DATE / TIME:	) 120,07	08:45						
		<del>-</del>						
COOLER TEMP <u>60 5.</u> ℃ (4+/-2	°C) OK	NO						
Cooler Custody Seal intact? YES/NO NONE SEAL#								
If NO to cooler temp or seal, PM notified? YES	(PN	/I Name)						
SUBCONTRACT YES NO LAB	SM#							
COMMENTS: SAMPLE TIME ACTUAL	+1HR +2 HR +3 H	R NONE						
Sample received outside hold time								
Headspace in VOA vials	<u> </u>							
Problems with bottle labels								
OTHER SAMPLE RECEIPT COMMENTS (Fill out ARRF, see reverse)								
ARE SAMPLE DATES AND TIMES CORRECT?	I	nitials						
WERE ALL THE APPROPRIATE TESTS ASSIGN	IED?	nitials						
Temp.Cert.Loss: Massachusetts Drinking Water: Ni	trate by Method 353.2							

Temp. Cert.Loss: New York State Drinking Water: Orthophosphate by Method 365.2

Date: 07/26/2007 Time: 15:20:34

STL Buffalo Sample Inventory

Page: Rept: AN0383

Job No: A07-8384 Cooler Temperature: 602.0°C Radiation Check: YES Client: Camp Dresser and Mckee Custody Seal: YES Project: NY7A9595 Chain of Custody: YES Sample Tags: NO SDG: Sample Tag Numbers: NO Case: SMO No: SMO Forms: NO No. Samps: 2 CLSIS: NO Pres tog Code PН Receive Client Sample ID Lab ID Condition **Bottles** Parameters Lab Sample 07/25/2007 14:30 07/26/2007 08:45 NTS-EW-0707 A7838401 608 PCBS RECNY 0100 Good 2-1LGA 608 PCBS (EXTR+HOLD) 0100

Good

2-11GA

	N.	100 KM		
Sample Custodian:		2/2/07/287	Analytical Services Coordinator:	 /20

A7838402

07/25/2007 14:30 07/26/2007 08:45 NTS-EW-0707 (DUP)

RECNY

Analytical Report August Sampling Event

# STL

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

### ANALYTICAL REPORT

Job#: A07-9767

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

Task: Wallace & Sons Scrapyard

Timothy Beaumont CDM One General Motors Dr. STE 2 Syracuse, NY 13206

STL Buffalo

Jason R. Kacalski Project Manager

10/01/2007

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

# STL Buffalo Current Certifications

# As of 5/16/2007

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	NELAP SDWA, CWA, RCRA	NY455
New York	NELAP AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

Sample Data Summary Package

## SAMPLE SUMMARY

				SAMPI	ED	RECEIVE	<b>I</b> D
LAB SAMPLE ID	CLIENT SAMP	LE ID	<u>MATRIX</u>		TIME		TIME
A7976703	NTS-EW-0807		WATER	08/29/2007	07:10	08/30/2007	10:30
A7976704	NTS-EW-0807 (	(DUP)	WATER	08/29/2007	07:10	08/30/2007	10:30
A7976701	NTS-IW-0807		WATER	08/29/2007	07:00	08/30/2007	10:30
A7976702	NTS-IW-0807 (	(DUP)	WATER	08/29/2007	07:00	08/30/2007	10:30

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

### METHODS SUMMARY

Job#: A07-9767

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

ANALYTICAL

PARAMETER

METHOD

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

### References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

#### SDG NARRATIVE

Job#: A07-9767

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

## General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

### Sample Receipt Comments

### A07-9767

Sample Cooler(s) were received at the following temperature(s); 2.0 °C LAB: Please filter samples 02 and 04 prior to extraction.

### GC Extractable Data

For method 608, the relative percent difference between batch A7B13783 Matrix Spike Blank and the Matrix Spike Blank duplicate exceed quality control limits for Aroclor 1016, though all individual analyte recoveries are compliant, no action necessary.

For method 608, the associated calibration verifications demonstrated an increased instrument response, >15% difference, for the surrogate Tetrachloro-m-xylene. The theoretical consequence of these would be a high bias in the calculated surrogate recoveries. The associated sample surrogate recoveries are well within the quality control limits. In the technical judgment of the laboratory, the sample data has not been impacted and no corrective action is required.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

For method 608, Aroclor 1260 exhibited a dcreased bias and a % difference result greater than 15% in an associated initial continuing calibration verification on the primary quantification channel (B). No corrective action was taken, the confirmatory column continuing calibration verification response is 2.6% D, and all field samples are non-detect for this analyte.

Due to the earlier extraction of several samples demonstrating high level PCB concentrations, low level laboratory cantamination of both the samples and blanks was evident in the chromatograms for the initial extraction of samples 01 and 03 reported in this data package. Re-extraction was performed and provided non-detect PCB results for both the samples and blanks.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R. Kacalski Project Manager

10/1/07

Date

Date: 10/01/2007

Requested Reporting Limits < Lab PQL

Page: Rept: AN1520

Time: 09:13:00

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to lab MDL. It must be noted that results reported below lab standard quantitation limit (PQL) may

result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections

below the laboratory's PQL.

Method	Parameter	Unit_	Client RL	Lab POL
Organics				
608PCB 608PCB 608PCB 608PCB 608PCB 608PCB 608PCB	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	UG/L UG/L UG/L UG/L UG/L UG/L UG/L	0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.060 0.060 0.060 0.060 0.060 0.060

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

# SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID	ANALYTICAL REQUIREMENTS							
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY	
NTS-EW-0807	A7976703	-	-	<u>-</u>	CFR136	-		<u>-</u>	
NTS-EW-0807 (DUP)	A7976704	-	_	-	CFR136	-		-	
NTS-IW-0807	A7976701	-	_	<u>-</u>	CFR136	-		_	
NTS-IW-0807 (DUP)	A7976702	-	~	-	CFR136		•		

NYSDEC-1

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

# SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
NTS-EW-0807	WATER	08/29/2007	08/30/2007	09/04/2007	09/05/2007
NTS-EW-0807 (DUP)	WATER	08/29/2007	08/30/2007	09/04-19/2007	09/05-21/2007
NTS-IW-0807	WATER	08/29/2007	08/30/2007	09/04/2007	09/05/2007
NTS-IW-0807 (DUP)	WATER	08/29/2007	08/30/2007	09/04-19/2007	09/05-21/2007

NYSDEC-4

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

# SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
NTS-EW-0807	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NTS-EW-0807 (DUP)	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NTS-IW-0807	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NTS-IW-0807 (DUP)	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED

**NYSDEC-6** 

# STL

# DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

#### ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search, it is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Arcclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- Indicates analysis is not within the quality control limits.

## **INORGANIC DATA QUALIFIERS**

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the Instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S indicates value determined by the Method of Standard Addition.
- E indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995,

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Tab Name (CDI D. 65-1)	NTS-EW-0807
Lab Name: STL Buffalo Contra	ACC:
Lab Code: RECNY Case No.: SAS No.	: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7976703</u>
Sample wt/vol: <u>1060.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>7B40093.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 08/29/2007 08/30/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 09/04/2007
Concentrated Extract Volume: 2000 (uL)	Date Analyzed: 09/05/2007
Injection Volume: 1.00 (uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016	0.047 U
11104-28-2Aroclor 1221	0.047 U 0.047 U
11141-16-5Aroclor 1232 53469-21-9Aroclor 1242	0.047
12672-29-6Aroclor 1248	0.047 U
11097-69-1Aroclor 1254	
11096-82-5Aroclor 1260	0.047 U
Total Polychlorinated Biphe	nvls 0.47 U

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS

ANALYSIS DATA SHEET

Lab Name: STL Buffalo Contrac	t:
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7976704</u>
Sample wt/vol: <u>1060.00</u> (g/mL) <u>ML</u>	Lab File ID: 7840095.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv: <u>08/29/2007</u> <u>08/30/2007</u>
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 09/04/2007
Concentrated Extract Volume:2000(uL)	Date Analyzed: 09/05/2007
Injection Volume:1.00(uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260	0.047 U 0.047 U 0.047 U 0.047 U 0.047 U 0.047 U 0.047 U
Total Polychlorinated Biphen	<del>, , , _ , _ , _ , _ , _ , _ , _ , _ , _</del>

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M MEIHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

NIS-EW-0807 (DUP) Lab Name: STL Buffalo Contract: _____ Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____ Lab Sample ID: A7976704RE Matrix: (soil/water) WATER Sample wt/vol: 1060.00 (g/mL) ML Lab File ID: 7B41120.TX0 % Moisture: ____ decanted: (Y/N) N Date Samp/Recv: 08/29/2007 08/30/2007 Date Extracted: 09/19/2007 Extraction: (SepF/Cont/Sonc/Soxh): SEPF Concentrated Extract Volume: 2000 (uL) Date Analyzed: 09/21/2007 Injection Volume: 1.00 (uL) Dilution Factor: ____1.00 GPC Cleanup: (Y/N) N pH: 7.00 Sulfur Cleanup: (Y/N) N CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/L</u> 0 12674-11-2----Aroclor 1016 0.047 U 11104-28-2----Aroclor 1221 U 0.047 11141-16-5----Aroclor 1232 0.047 U 53469-21-9----Aroclor 1242 0.047 U 12672-29-6----Aroclor 1248 0.047 U 11097-69-1----Aroclor 1254 U 0.047 11096-82-5----Aroclor 1260 0.047 U -----Total Polychlorinated Biphenyls Ψ 0.47

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

	NTS-IW-0807 [
Lab Name: <u>STL Buffalo</u> Contrac	t:
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7976701</u>
Sample wt/vol: <u>1060.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>7B40092.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 08/29/2007 08/30/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 09/04/2007
Concentrated Extract Volume:2000(uL)	Date Analyzed: 09/05/2007
Injection Volume: 1.00 (uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260	0.047 U 0.047 U 0.15 0.047 U 0.047 U 0.047 U
Total Polychlorinated Biphen	ylsU 0.47 U

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Lab Name: STL Buffalo Contract	t:
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7976702</u>
Sample wt/vol: 1060.00 (g/mL) ML	Lab File ID: 7B40094.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 08/29/2007 08/30/200
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 09/04/2007
Concentrated Extract Volume: 2000 (uL)	Date Analyzed: 09/05/2007
Injection Volume:1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) N
	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260	0.047 U 0.047 U 0.047 U
Total Polychlorinated Bipheny	ylsU

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS

ANALYSIS DATA SHEET

NTS-IW-0807 (DUP)	
_ SDG No.:	
Lab Sample ID: A7976702RE	
Lab File ID: <u>7B41119.TX0</u>	
Date Samp/Recv: 08/29/2007 08/30/	2007
Date Extracted: 09/19/2007	
Date Analyzed: 09/21/2007	
Dilution Factor:1.00	
Sulfur Cleanup: (Y/N) N	
ENIRATION UNITS: /L or ug/Kg) <u>UG/L</u> Q	
0.047 U 0.047 U 0.047 U 0.047 U 0.047 U 0.047 U 0.047 U	
	SDG No.:     Lab Sample ID: A7976702RE     Lab File ID: 7B41119.TX0     Date Samp/Recv: 08/29/2007 08/30/   Date Extracted: 09/19/2007     Date Analyzed: 09/21/2007     Dilution Factor: 1.00     Sulfur Cleanup: (Y/N) N     SWIRATION UNITS: //L or ug/Kg) UG/L

#### CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS WATER SURROGATE RECOVERY

Lab Name: ST	<u>L Buffalo</u>		Contract: _		
Lab Code: <u>RE</u>	CNY Cas	e No.:	SAS No.:	 SDG No.:	
GC Column(1)	: <u>Z8-35 30</u>	ID: <u>0.53</u> (mm)			

	Client Sample ID	Lab Sample ID		TCMX %REC #							TOT
	**=====================================	=======================================	======	#25###	*=====	=======	33222F	======	=======	222222	===
1	Matrix Spike Blank	A7B1378301	64	79	{						0
2	Matrix Spike Blank	A7B1458401	66	110							0
3	Matrix Spike Blk Dup	A7B1378302	74	101							0
4	Matrix Spike Blk Dup	A7B145B402	62	105							0
5	Method Blank	A7B1378303	67	82							0
6	Method Blank	A7B1458403	69	103							0
7	NTS-EW-0807	A7976703	78	82							0
8	NTS-EW-0807 (DUP)	A7976704	72	78							0
9	NTS-EW-0807 (DUP)	A7976704RE	90	112							0
10	NTS-IW-0807	A7976701	72	85							0
11	NTS-IW-0807 (DUP)	A7976702	60	77							0
12	NTS-IW-0807 (DUP)	A7976702RE	64	101							0

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene

(26-145) (25-152)

- # Column to be used to flag recovery values
  * Values outside of contract required QC limits
  D Surrogates diluted out

## CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M

# METHOD 608 - POLYCHLORINATED BIPHENYLS

# WATER MATRIX SPIKE BLANK/MATRIX SPIKE BLANK DUPLICATE RECOVERY

Lab Name: <u>STL Buffalo</u>		Contract:		Lab Sa	amp ID	: <u>A7B1378303</u>
Lab Code: <u>RECNY</u> Case N	o.:	SAS No.:		SI	Œ No.	:
Matrix Spike - Client Samp	le No.: <u>Method B</u>	<u>llank</u>				
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.	+	
Aroclor 1016 Aroclor 1260	1.00 1.00	0.793 0.826	79 83	58 - 141 56 - 144	.	
COMPOUND	SPIKE ADDED UG/L	MSBD CONCENTRATION UG/L	MSBD % REC #		RPD	C LIMITS REC.
Aroclor 1016 Aroclor 1260	1.00 1.00	1.21 0.965	122 96	43 *	30 30	58 - 141 56 - 144
# Column to be used to flag * Values outside of QC lim  RPD:1 out of2 out  Spike recovery:0 out of	its tside limits		n asteris	k		
Cormonta						

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M

# METHOD 608 - POLYCHLORINATED BIPHENYLS WATER MATRIX SPIKE BLANK/MATRIX SPIKE BLANK DUPLICATE RECOVERY

Lab Name: STL Buffalo		Contract:		Lab Sa	amp ID	: <u>A7B14584</u>	<u>03</u>
Lab Code: RECNY Case No	D.:	SAS No.:	<del>.</del>	SI	ж.	:	
Matrix Spike - Client Samp	le No.: <u>Method B</u>	lank					
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #		+		
Aroclor 1016 Aroclor 1260	1.00	1.28 0.764	128 76	58 - 141 56 - 144	.		
COMPOUND	SPIKE ADDED UG/L	MSBD CONCENTRATION UG/L	MSBD % REC #	1	RPD	C LIMITS	+
Aroclor 1016 Aroclor 1260	1.00 1.00	1.02 0.830	102 83	23 9		58 - 141 56 - 144	
# Column to be used to flag  * Values outside of QC lim  RPD:0 out of2 out  Spike recovery:0 out of	its :side limits		n asteris	k			

Comments:

Client No.

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M

METHOD 608 - POLYCHLORINATED BIPHENYLS METHOD BLANK SUMMARY

Method Blank Lab Name: STL Buffalo Contract: _____ Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ____ Lab Sample ID: <u>A7B1378303</u> Lab File ID: 7B40088.TX0 Matrix: (soil/water) WATER Extraction: <u>SEPF</u> Sulfur Cleanup: (Y/N): Y Date Extracted: 09/04/2007 Date Analyzed (1): <u>09/05/2007</u> Date Analyzed (2): _____ Time Analyzed (2): ____ Time Analyzed (1): <u>11:27</u> Instrument ID (1): <u>HP6890-7</u>____ Instrument ID (2): _____ GC Column (1): ZB-35 30 Dia: 0.53 (mm) GC Column (2): _____ Dia: ____ (mm) THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD: CLIENT LAB DATE DATE SAMPLE NO. SAMPLE ID ANALYZED 1 ANALYZED 2 Matrix Spike Blank 09/05/2007 1 A7B1378301 Matrix Spike Blk Dup 09/05/2007 2 A7B1378302 09/05/2007 3 NTS-EW-0807 A7976703 4 NTS-EW-0807 (DUP) A7976704 09/05/2007 09/05/2007 5 NTS-IW-0807 A7976701 6 09/05/2007 NTS-IW-0807 (DUP) A7976702

Comments:	

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Method Blank
t:
SDG No.:
Lab Sample ID: <u>A7B1378303</u>
Lab File ID: <u>7B40088.TX0</u>
Date Samp/Recv:
Date Extracted: 09/04/2007
Date Analyzed: 09/05/2007
Dilution Factor:1.00
Sulfur Cleanup: (Y/N) Y
CONCENIRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U

## CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M

METHOD 608 - POLYCHLORINATED BIPHENYLS METHOD BLANK SUMMARY

Lab Name:	STL Buffalo	Contract: _	•	wethod Blank	
Lab Code:	RECNY Case No.:	SAS No.	: SI	DG No.:	
Lab Sample	ID: <u>A7B1458403</u>	Lab	File ID: <u>7B41</u>	118.TX0	
Matrix: (s	oil/water) <u>WATER</u>	Extr	action:	SEPF	
Sulfur Cle	eanup: (Y/N): <u>Y</u>	Date	Extracted:	09/19/2007	
Date Analy	zed (1): <u>09/21/2007</u>	Date	Analyzed (2)	•	
Time Analy	zed (1): <u>10:45</u>	Time	Analyzed (2)	•	
Instrument	ID (1): <u>HP6890-7</u>	Inst	rument ID (2)		
GC Column	(1): <u>ZB-35 30</u> Dia: <u>0</u>	. <u>53</u> (mm) GC C	olumn (2):	Dia:	(mm)
I	HIS METHOD BLANK APPLIE	ES TO THE FOL	LOWING SAMPLES	S, MS AND MSD:	
	CLIENT SAMPLE NO.	LAB SAMPLE ID		ANALYZED 2	
1 2 3 4	Matrix Spike Blank Matrix Spike Blk Dup	A7B1458401 A7B1458402 A7976704RE	09/21/2007 09/21/2007 09/21/2007		
Comments:		·		· · · · · · · · · · · · · · · · · · ·	

## CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS

ANALYSIS DATA SHEET

Method Blank
••
SDG No.:
Lab Sample ID: <u>A7B1458403</u>
Lab File ID: <u>7B41118.TX0</u>
Date Samp/Recv:
Date Extracted: 09/19/2007
Date Analyzed: 09/21/2007
Dilution Factor:1.00
Sulfur Cleanup: $(Y/N)$ $\underline{Y}$
CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.50 U 0.050 U 0

Sample Data Package

SDG Narrative

#### SAMPLE SUMMARY

				SAMPI	ED	RECEIVED		
LAB SAMPLE ID	CLIENT SAM	PLE ID	MATRIX	DATE	TIME	DATE	TIME	
A7976703	NTS-EW-0807		WATER	08/29/2007	07:10	08/30/2007	10:30	
A7976704	NTS-EW-0807	(DUP)	WATER	08/29/2007	07:10	08/30/2007	10:30	
A7976701	NTS-IW-0807		WATER	08/29/2007	07:00	08/30/2007	10:30	
A7976702	NTS-IW-0807	(DUP)	WATER	08/29/2007	07:00	08/30/2007	10:30	

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

#### METHODS SUMMARY

Job#: A07-9767

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

ANALYTICAL

PARAMETER

METHOD

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

#### References:

**CFR136** 

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

#### SDG NARRATIVE

Job#: <u>A07-9767</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

#### General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

#### Sample Receipt Comments

#### A07-9767

Sample Cooler(s) were received at the following temperature(s); 2.0 °C IAB: Please filter samples 02 and 04 prior to extraction.

#### GC Extractable Data

For method 608, the relative percent difference between batch A7B13783 Matrix Spike Blank and the Matrix Spike Blank duplicate exceed quality control limits for Aroclor 1016, though all individual analyte recoveries are compliant, no action necessary.

For method 608, the associated calibration verifications demonstrated an increased instrument response, >15% difference, for the surrogate Tetrachloro-m-xylene. The theoretical consequence of these would be a high bias in the calculated surrogate recoveries. The associated sample surrogate recoveries are well within the quality control limits. In the technical judgment of the laboratory, the sample data has not been impacted and no corrective action is required.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

For method 608, Aroclor 1260 exhibited a dcreased bias and a % difference result greater than 15% in an associated initial continuing calibration verification on the primary quantification channel (B). No corrective action was taken, the confirmatory column continuing calibration verification response is 2.6% D, and all field samples are non-detect for this analyte.

Due to the earlier extraction of several samples demonstrating high level PCB concentrations, low level laboratory cantamination of both the samples and blanks was evident in the chromatograms for the initial extraction of samples 01 and 03 reported in this data package. Re-extraction was performed and provided non-detect PCB results for both the samples and blanks.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jagon R. Kacalski Project Manager

Date

Rept: AN1520

Page:

Date: 10/01/2007 Time: 09:13:15

Requested Reporting Limits < Lab PQL

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to lab MDL. It must be noted that results reported below lab standard quantitation limit (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	<u>Parameter</u>	<u> Unit</u>	Client RL	Lab POL
Organics				
608PCB	Aroclor 1016	UG/L	0.050	0.060
608PCB	Aroclor 1221	UG/L	0.050	0.060
608PCB	Aroclor 1232	UG/L	0.050	0.060
608PCB	Aroclor 1242	UG/L	0.050	0.060
608PCB	Aroclor 1248	UG/L	0.050	0.060
608PCB	Aroclor 1254	UG/L	0.050	0.060
608PCB	Aroclor 1260	UG/L	0.050	0.060

Chain Of Custody Documentation

### Chain of Custody Record



STL-4124 (0901)																						<u>.                                    </u>		·	
Client	Projec	t Man	ager	11	, <del></del>		, , ,	_									le la		/			CI	hain of Custody N	Imber	
СОМ	<del>-  </del>			MX	17/		<u>elle</u>	<u> </u>									8/2		0 7			_	<u> 2987</u>	<u>63</u>	
Address 1 Cenual Motors Price	3	15	43		ea Co	7	•	3	<b>7</b> 5	-46	63-	-57	00			La	b Nun	nber				P	age	of	
City State Zip Code	Site C	ontac	<i>t</i>			Lab	Con	tact				T			A	nalys	s (At	ach	list if	7					<del></del>
Syracue 14. 14206	Carrie	<u>n B</u>	equ.	ريم	48	Ш.						_}	Т	9	<u></u>	re sp	ace i.	s nee	eaea T	<del>'</del>	1	$\overline{}$	1		
Project Name and Location (State)	Carrie	r/Way	bill No	umbe	r		$\cap$	,		1	4		_	4	Ì										
VG Millace and Son Free Cobleskell, N.	1. chi	70	$\mathcal{U}_{-}$	14	ITEL	NR	11	VVIC	e (	_(_	<u>(4</u>	_	-	ŀ			- [							nstructions/	
Contract/Purchase Order/Quote No.			M	latrix	•			Cont Pres					608	3									Condition	s of Receipt	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)  Date	Time	₹:	Aqueous	Sed.	Soil	Unpres.	H2S04	HNO3	HC.	NaOH	NaOH NaOH		20,	RA									l		
NTS-1W-0307 8/29/07	0700	$oldsymbol{\perp}$	X	$\bot$		2					_	$\downarrow$	X						<u> </u>		L		detection 1	wit of o.	05ppl
NTS-1W-0807 (OUP)	0700		X			2								X					1	L					
NTS EW- 0807	0710		X			2							X												
NR-EW-0807 (DUP)	0710		Y			2								X											
												- {	_					1.			١.				
			Π			T					Ţ			П			$\top$	$\top$		T		-			
	1	T		寸		$\top$					_			十			十	十		1	<del>                                     </del>	厂		<del></del>	
	ļ	$\top$	┞╼╂	$\dashv$	-	+	†			1		$\dashv$	$\dashv$	+	+	H	-	+-	十	╁	┼─	┢			
	1	+	┞╌╾╽	┥	+	┿	<del>  -  </del>			$\dashv$	-+	<del>-</del> +	+	╅	╁	╀┯┥	+	+-	+	╁	$\vdash$	├		<del></del>	_ <del></del>
	<del> </del>	-					├	Н						1	+	-	+	+	+-	-	$\vdash$	├-			
	ļ. <u>.</u> .	╄	<u> </u>	_		╄-	-	_		_			_	_	4				_	╄-	<u> </u>	ــــ	<del></del>	<del></del>	
		_					L					_		┵				$\perp$		⊥_	L	L			
		1				-								-								1			
Possible Hazard Identification		15	ampl	e Dis	posal										-				foe.	mayl	- <del>)</del>		ed if samples are	retained	
( - · · · · · · · · · · · · · · · · · ·	Unknow	m [	] Re	turn	To Clie	ent		Dispo					Archi	ve Fo			Vonth	s lo	nger	than	1 moi	nth)	os ir sampres are		
Turn Around Time Required	ref .			Sπ	١		ac	Requ	_		_	cify)													
24 Hours 48 Hours 7 Days 14 Days 21 Da	ys X,O	ther	==:	Tim		==-	.,	Recei		ή_	<b>₽</b>	<del>\ .</del>										<u> </u>	Date	Time	
Ithm 1 Beaunt	8	29/	7	C	1.1	0		_}	7	الله	$\searrow$	4	W	10									8/29/0	9110	ယူ
2. Relinquisped By 1.	Date 8/	29/	67	Tim	81	30	2. F	Rede	Ved		<b>^)</b>	1/2	1									Į	Date 68-30-07	Time 10:30	4/3
3. Relinquished By	Date		<u>~_</u>	Tim	16	<del></del>		Recei	196	9y /													Date	Time	8
Comments 11 4 0 . 0 . 5	w			1			مل <i>السا</i>							<i>f</i>		<del>.,</del>				-/	7	$\overline{C}$	mp6.	7.0	<u>ー</u> 、 こ
DISTRIBUTION: WHITE - Returned to Client with Report CANARY - Stays	with the \$a.	ple;	<u>i</u> ∿ PINK	س ا <u>ن</u> ۲۰ Fid	ld Cop	<del>\$</del> -	<u> </u>	عد	, ,	`	_0	L	<u>c. e.</u>	.776	<u> </u>	rn		<u> </u>	in	رن		10	mpo.	٧٠٠	



Doc. Login/ARRF - Side A Rev 4 May 11, 2007

SAMPLE LOGIN	JOB# 5>6>								
Shipment ID	Strict Internal COC: YES NO								
	Residual Chlorine Check:								
	Radiation Check < 0.02 mR/hr: YES / NO								
ACProject / Task	N/3A95951								
TAT   S BD/ CD # OF SAMPLES TRIP BLANK Y/N #									
SHIPPED BY	ATTACH SHIPPING TAGS								
RECEIVED DATE / TIME:	02:01 (0,02,8								
COOLER TEMP 2. O °C (4+/-2°C) OK NO									
Cooler Custody Seal intact? KES/NO NO	NE SEAL#								
If NO to cooler temp or seal, PM notified? YES	(PM Name)								
SUBCONTRACT YESINO LAB	SM#								
	+1HR +2 HR +3 HR NONE								
Sample received outside hold time									
Headspace in VOA vials									
Problems with bottle labels									
OTHER SAMPLE RECEIPT COMMENTS (Fill out ARRF, see reverse)									
•									
PRESERVATION CHECKED YES	NO NA Initials								
ARE SAMPLE DATES AND TIMES CORRECT?	Initials								
WERE ALL THE APPROPRIATE TESTS ASSIGN	IED? Initials								

Date: 08/30/2007

STL Buffalo Sample Inventory Page:

Rept: ANO383

Job No: A07-9767 Client: Camp Dresser and Mckee Project: NY7A9595 SDG: Case: SMO No: No. Samps: 4				Chain of Cus Sample Sample Tag Num SMO F	Seal: YES tody: YES Tags: NO	Cooler Temperature: 2.0°C				
Sample	Receive	Client Sample ID	Lab ID	Condition	Bottles	Parameters	Lab	Pres Code	l og PH	
08/29/2007 07:00 08/29/2007 07:10	08/30/2007 10:30	NTS-1W-0807 (DUP)	A7976701 A7976702 A7976703 A7976704	Good Good Good Good	2-11GA 2-11GA 2-11GA 2-11GA	PCBS 608 PCBS (EXTRACT AND HOLD) PCBS 608 PCBS (EXTRACT AND HOLD)	RECNY RECNY RECNY RECNY	0100 0100 0100 0100	-	

		2	65	(S)
Sample	Custodian:	$\subseteq$	/-> /20	

608 PCB Data

Analytical Report September Sampling Event

## STL

**STL Buffalo** 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

#### ANALYTICAL REPORT

Job#: A07-A557

Project#: NY7A9595

Site Name: <u>Niagara Mohawk O & M</u>
Task: Wallace & Sons Scrapyard

Timothy Beaumont CDM One General Motors Dr. STE 2 Syracuse, NY 13206

STL Buffalo

Jason R. Kacalski Project Manager

09/27/2007

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

### STL Buffalo Current Certifications

#### As of 5/16/2007

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	NELAP SDWA, CWA, RCRA	NY455
New York	NELAP AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

Sample Data Summary Package

#### SAMPLE SUMMARY

			SAMPLED		RECEIVI	ED CE
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7A55701	NB-EW-0907	WATER	09/18/2007	07:00	09/19/2007	16:30
A7A55702	NB-EW-0907 (DUP)	WATER	09/18/2007	07:00	09/19/2007	16:30

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

#### METHODS SUMMARY

Job#: <u>A07-A557</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

PARAMETER METHOD

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

#### References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

#### SDG NARRATIVE

Job#: A07-A557

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

#### General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

#### Sample Receipt Comments

#### A07-A557

Sample Cooler(s) were received at the following temperature(s);  $2.0~^{\circ}$ C Please hold DUP samples for analysis.

#### GC Extractable Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R. Kacalski Project Manager

Date

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Date: 09/27/2007 Time: 14:36:57

Requested Reporting Limits < Lab PQL

Page:

Rept: AN1520

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to lab MDL. It must be noted that results reported below lab standard quantitation limit (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Parameter	<u>Unit</u>	Client RL	Lab POL
Organics				
608PCB 608PCB 608PCB 608PCB 608PCB	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	UG/L UG/L UG/L UG/L UG/L UG/L	0.050 0.050 0.050 0.050 0.050 0.050	0.060 0.060 0.060 0.060 0.060
608PCB	Aroclor 1260	UG/L	0.050	0.060

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

#### SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID	ANALYTICAL REQUIREMENTS						
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
NB-EW-0907	A7A55701	-	-	·	CFR136	_		-
NB-EW-0907(DUP)	A7A55702		-		CFR136	-	_	-

NYSDEC-1

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

## SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
NB-EW-0907	WATER	09/18/2007	09/19/2007	09/22/2007	09/24/2007
NB-EW-0907(DUP)	WATER	09/18/2007	09/19/2007	09/22/2007	09/24/2007

NYSDEC-4

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

## SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
NB-EW-0907	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NB-EW-0907(DUP)	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED

NYSDEC-6

## STL

#### DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

#### ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Arocior target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aidol-condensation product.
- Indicates coelution.
- Indicates analysis is not within the quality control limits.

#### **INORGANIC DATA QUALIFIERS**

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Lab Name: STL Buffalo Contrac	ot:
Lab Code: RECNY Case No.: SAS No.	: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A7A55701
Sample wt/vol: <u>1060.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>12A05192.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 09/18/2007 09/19/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 09/22/2007
Concentrated Extract Volume:2000(uL)	Date Analyzed: 09/24/2007
Injection Volume: 1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260	0.047 U 0.047 U 0.047 U 0.047 U 0.047 U 0.047 U 0.047 U
Total Polychlorinated Bipher	nvls 0.47 U

### CAMP DRESSER AND MCKEE NIAGARA MOHANK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS WATER SURROGATE RECOVERY

Lab Name: <u>STL Buffalo</u>				Contract:	<del></del>		
Lab Code: <u>RECNY</u>	Case	No.:		SAS No.:	******	SDG No.:	
GC Column(1): <u>ZB-35</u>	_	1D: 0	.53 (mm)				

	Client Sample ID	Lab Sample ID		TCMX %REC #							TOT TUO
	******	=========	======	======	======	225555	##=####	=====	======	222222	===
1	Matrix Spike Blank	A7B1482801	75	103						l	0
2	Matrix Spike Blk Dup	A7B1482802	82	98							1 0 l
	Method Blank	A7B1482803	82	80		i				} .	101
4	NB-EW-0907	A7A55701	93	74							o
			1	'							1

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene

(26-145) (25-152)

- # Column to be used to flag recovery values
  * Values outside of contract required QC limits
  D Surrogates diluted out

#### CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M

#### METHOD 608 - POLYCHLORINATED BIPHENYLS

WATER MATRIX SPIKE BLANK/MATRIX SPIKE BLANK DUPLICATE RECOVERY

Lab Name: SIL Buffalo	Contract:		Lab Samp ID: <u>A7B1482803</u>				
Lab Code: RECNY Case No	SAS No.:	SDG No.:					
Matrix Spike - Client Sampl	e No.: <u>Method B</u>	lank					
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.			
Aroclor 1016 Aroclor 1260	1.00	0.974 1.01	97 101	58 - 141 56 - 144	i		
COMPOUND	SPIKE ADDED UG/L	MSBD CONCENTRATION UG/L	MSBD % REC #	% RPD #	RPD	C LIMITS REC.	+
Aroclor 1016 Aroclor 1260	1.00 1.00	1.21	121 101	22 0	30 30	58 - 141 56 - 144	-
# Column to be used to flag * Values outside of QC limi	-	PD values with ar	n asteris	k			•
RPD:0 out of2 out of0 out of0 out of0 out of0	side limits of <u>4</u> outside	limits			•		

## CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS

METHOD 608 - POLYCHLORINATED BIPHENYLS

METHOD BLANK SUMMARY

Client No.

Lab Name:	STL Buffalo	Contract:		Method Blank	
				DG N-	
Lab Code:	RECNY Case No.:	SAS No.	: Si	DG No.:	
Lab Sample	: ID: <u>A7B1482803</u>	Lab	File ID: <u>12A0</u>	5191.TX0	
Matrix: (s	oil/water) <u>WATER</u>	Extr	action:	<u>SEPF</u>	
Sulfur Cle	eanup: (Y/N): <u>Y</u>	Date	Extracted:	09/22/2007	
Date Analy	zed (1): <u>09/24/2007</u>	Date	Analyzed (2)	:	
Time Analy	zed (1): <u>14:08</u>	Time	Analyzed (2)	:	
Instrument	: ID (1): <u>HP5890-12</u>	Inst	rument ID (2)	:	
GC Column	(1): <u>ZB-35</u> Dia: <u>0</u>	<u>.53</u> (mm) GC C	olumn (2):	Dia: _	(mm)
r	THIS METHOD BLANK APPLIE	ES TO THE FOL	LOWING SAMPLES	s, ms and msd:	
	CLIENT SAMPLE NO.	LAB SAMPLE ID	1	DATE ANALYZED 2	
1 2 3	Matrix Spike Blank Matrix Spike Blk Dup NB-EW-0907		09/24/2007		
Comments:					

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Lab Name: STL Buffalo Contrac	Method Blank
Contract Contract	•••
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A781482803</u>
Sample wt/vol: <u>1000.00</u> (g/mL) <u>ML</u>	Lab File ID: 12A05191.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv:
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 09/22/2007
Concentrated Extract Volume:2000(uL)	Date Analyzed: 09/24/2007
Injection Volume: 1.00 (uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: $(Y/N)$ $\underline{Y}$
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254	0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U
11096-82-5Aroclor 1260Total Polychlorinated Biphen	0.050 U

Sample Data Package

SDG Narrative

#### SAMPLE SUMMARY

			SAMPLED		RECEIV	3D
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7A55701	NB-EW-0907	WATER	09/18/2007	07:00	09/19/2007	16:30
A7A55702	NB-EW-0907 (DUP)	WATER	09/18/2007	07:00	09/19/2007	16:30

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

#### METHODS SUMMARY

Job#: A07-A557

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

ANALYTICAL

PARAMETER METHOD

METHOD 608 - POLYCHLORINATED BIPHENYLS CFR136 608PCB

## References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

#### SDG NARRATIVE

Job#: <u>A07-A557</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

## General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

## Sample Receipt Comments

#### A07-A557

Sample Cooler(s) were received at the following temperature(s); 2.0 °C Please hold DUP samples for analysis.

#### GC Extractable Data

No deviations from protocol were encountered during the analytical procedures.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R. Kacalski Project Manager

nate

Chain Of Custody Documentation

# Chain of Custody Record



STL-4124 (0901)																		<del></del>			<del></del>	
Client G A . I		Project								•					Date				Ch.	ain of Custody I 298	64	
COM				14-73 lumber	_ <u></u>	<u>tal</u>	<u>(L.)</u>									78		7.		230	04	<del></del>
Addrage	2.50														Lab	Vumbe	r			1	. ,	
1 Cenual Motas d	1100			<u>34 3.</u>	776				7	63	-5/0	<u>ဘု</u>				/ 4 4 4	6 B-A 7		_   Pa	ge	_ 01	
Surgery State Zip of 19. 13		Site Co	_		4-	. ['	Lab Co	mtact					<b>.</b>	Ai ma	nalysis re spac	Aπac θ is n	n ust it eeded,	)	ĺ	•		
	3206	(64	<u>/a</u> .	a.Jvv.	24				-		<del></del>		TS				T	Т				
Project Name and Location (State)	-d- 00 0V	Carner	vvayı	oni Num	Der I a	Ր.		. C.		1	4.		3	-		] ]	- 1		1 ]			,
16 M. Wallace and Sm. Tine Coll. Contract/Purchase Order/Quote No.	eskell N.J.		$\alpha$	up c	<del>176 ·</del>	<u> 144</u>	ZCLY	<u> </u>	.UIL	<u>e (4</u>	<u> </u>	–  જૂ	ᆟᇪ					1 1	1	Special Conditio	Instructions ns of Receip	i/ nt
Contract/Futchase Order/Quote No.			}	Mat	rix	1		Cor Pre:	ntain serva	ers & atives	í S	6.7		į		1 1	<u>፡</u>	1 1	1 1	OUNGILIO	is of Floody	<i>-</i> 1
	<del> </del>			w T	т-т	-+	8 3					$\dashv$ $_{J}$	1 1			1 1	-	] ]	1 1			
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	₹	Aqueou Sed.	Į į		Unpres. H2SO4	HWO3	Ş	NaOH	₹2 2	Dr.A	12	-								
	0/1/-		<del>  `  </del>		+ %		<del>]   [</del>	+-	-		NZ		+=	+	<del>                                     </del>	╅┪	<del></del>	+ +	╅	111		<del></del>
NB-EW-0907	9/18/07	סטרט		X			<u>   -</u>		<u> </u>	Щ		X				11			$\perp$	detecten	Sunt of	105/
NB-EW-0907 (DUP)	9/18/07 0	TW		$\mathbf{x}$		1	2						X						1 1			• • •
10.13 CID 010 1 (DOI)	-7-07	77.0	$\vdash$	/-	1-1		_	_	$\dagger$	1 1		<del></del>	╁	<del></del>	$\vdash$	1-1	十	<del> </del>  -	1 1			_ <del></del>
	<u> </u>				1		<b>-</b>  -	<del></del>	┼	$\sqcup$			$\perp$			╀╼┽	-	<b>├</b> ─├	+	·		
Į.					1 1	- [			1			ì								•		
					1 -		$\neg \vdash$	1	<del>                                     </del>		$\neg +$		✝┪			1	┰		77			
				+	+-1	-+		╁	┼—	┦			<del>  _  </del>		$\vdash$	+	-	+-	-			
}				- }								ŀ		-				1 1			٠	
								T	Τ~		$\neg$ †		1	$\top$		$\Box$			1 1			
			Н		╁╌╏	-+	-	┿	+-	<del>                                     </del>	-+	+	+		-	┨	-	<del>                                     </del>	4 1			<del></del>
				- 1			- 1					Ì	1 1			1 1	.		1			
									T .									1				
			Н	<del>   </del>	1-1		+	┿	╁╌			+	┽┵	+	├	╅		<del>}  </del>	╅╾┩			
			Ш		$\perp \perp$			$\perp$								<u> </u>		<u> </u>				
	į							1.						- 1	,		- 1	}				
			H	<del>'  </del>	╁┤		$\dashv$	+-	十一		-	+	╁╌		$\vdash$	† †	┿	╅╌╁╴	+	<del></del>		
		<u></u>	Щ	بال	$oldsymbol{\perp}$	لــلـ		ļ	<u> </u>		$oxdot oldsymbol{oxed}$		لــــــــــــــــــــــــــــــــــــــ			┸┸					<del></del>	
Possible Hazard Identification	,	-	ı	ample C	•			_		-										d if samples are	retained	
Non-Hazard Flammable Skin Irritant C	Poison B	Unknown	<u>,  </u>	Retur	n To C	lient	<u>برا</u>	Disp	osal l	By La	<u> </u>	☐ Arc	hive F	or	Mo	nths.	longer	than 1 m	onth)			
		\d		SP	מ		⁰	C He	quirer		(Spec	oity) 1		_								_
24 Hours 48 Hours 7 Days 14 Day	s 🗌 21 Days		10r				-   -	Rece		<u>Ca</u>	<u> </u>	( <del>)</del> )	7	///	1				<del></del>	Date (	T:	<del></del>
- Charles I King to		Date 9	8/o	7 (	ime 29:	<u>30</u>		(	_	$\leq$		$\mathcal{L}$	//	<u> </u>						7/18/07		0
2. Relinquisher By		9/11			ime 18	32	,  2:	Rece	air gold	2		1								Dalle 3 <i>9-19-</i> 07	Time 16:30	2 2
3. Relinquished By		Date	,	1	ime		3.	Rece	ived	3/		/			(7.	1)0	( )		1	Date	Time	ŏ
				L						_/	/				16.		۷	:				<del></del>
Lord "Dr" Sampl	s - 01	ralin	. <i>l</i>	01	li	1 _~	щ	_}	her	ر	ù	C	lit	tel	<u>.                                    </u>	<u> </u>	ay	the	0	Samo (	, 	<u>.                                    </u>
DISTRIBUTION: WHITE - Returned to Client with Report: C	ANARY - Stays wi	th the Sam	e:	PINK - F	iela C	ору	U										7	:		7		



Doc. Login/ARRF - Side A Rev 4 May 11, 2007

SAMPLE LOGIN	JOB # A 557
Shipment ID	Strict Internal COC: YES / NO
	Residual Chlorine Check:
	Radiation Check <0.02 mR/hr: YES / NO
ACProject / Task	
TAT 15 BD/CD # OF SAMPLE	ES Z TRIP BLANK YIN #
SHIPPED BY COURTER	ATTACH SHIPPING TAGS
RECEIVED DATE / TIME:	9,19,11 16:50
COOLER TEMP 2 °C (4+/-2°C	OK NO
Cooler Custody Seal intact? YES/NO NON	SEAL#
If NO to cooler temp or seal, PM notified? YES	(PM Name)
SUBCONTRACT YES/NO LAB	SM#
COMMENTS: SAMPLE TIME ACTUAL	+1HR +2 HR +3 HR NONE
Sample received outside hold time	
Headspace in VOA vials	
Problems with bottle labels	
OTHER SAMPLE RECEIPT COMMENTS (Fill out	ARRF, see reverse)
PRESERVATION CHECKED YES	NO NA/ Initials
ARE SAMPLE DATES AND TIMES CORRECT?	Initials
WERE ALL THE APPROPRIATE TESTS ASSIGN	ED? Initials
Temp.Cert.Loss:	

ate: 09/19/2007 ime: 20:13:55

STL Buffalo Sample Inventory Page: 1 Rept: AN0383

Job No: AO7-A Client: Camp Project: NY7A9 SDG: Case: SMO No: No. Samps: 2	Dresser and Mckee			Chain of Cus Sample Sample Tag Num SMO F	Seal: NO tody: YES Tags: NO	Cooler Temperature:	2.0°C		
	]		<b> </b> .					Pres	log
Sample	Receive	Client Sample ID	Lab ID	Condition	Bottles	Parameters	Lab	Code	PH
	09/19/2007 16:30 09/19/2007 16:30		A7A55701 A7A55702	Good Good	2-11GA 2-11GA	PCBS PCB (EX AND HOLD)		0100 0100	

	M	919	8
ple Custodian:_	 	1/1/	/20 <i>U/</i>

Analytical Services Coordinator: ______/ _/20

# $\mathsf{STL}$

**STL Buffalo** 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

## ANALYTICAL REPORT

Job#: <u>A07-A871</u>

Project#: NY7A9595

Site Name: <u>Niagara Mohawk O & M</u>
Task: Wallace & Sons Scrapyard

Timothy Beaumont
CDM
One General Motors Dr. STE 2
Syracuse, NY 13206

09/28/2007

Project Manager

STL Buffalo

# STL Buffalo Current Certifications

# As of 5/16/2007

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	NELAP SDWA, CWA, RCRA	NY455
New York	NELAP AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

Sample Data Summary Package

## SAMPLE SUMMARY

			SAMPI	ED	RECEIV	ŒD
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7A87101	NIS-EW-0907-A	WATER	09/25/2007	08:00	09/26/2007	09:15
A7A87102	NTS-EW-0907-A (DUP)	WATER	09/25/2007	08:00	09/26/2007	09:15

## METHODS SUMMARY

Job#: <u>A07-A871</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

PARAMETER ANALYTICAL
PARAMETER METHOD

METHOD 608 - POLYCHLORINATED BIPHENYLS CFR136 608PCB

## References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

#### SDG NARRATIVE

Job#: <u>A07-A871</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

## General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

# Sample Receipt Comments

#### A07-A871

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

## GC Extractable Data

No deviations from protocol were encountered during the analytical procedures.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Iaboratory Manager or his/her designee, as verified by the following signature."

Jason/R. Kacalski Project Manager

Date

Date: 09/28/2007 Time: 13:32:26

Requested Reporting Limits < Lab PQL

Page: 1 Rept: AN1520

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to lab MDL. It must be noted that results reported below lab standard quantitation limit (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Parameter	<u>Unit</u>	Client RL	Lab POL
Organics				
608PCB	Aroclor 1016	UG/L	0.050	0.060
608PCB	Aroclor 1221	UG/L	0.050	0.060
608PCB	Aroclor 1232	UG/L	0.050	0.060
608PCB	Aroclor 1242	UG/L	0.050	0.060
608PCB	Aroclor 1248	UG/L	0.050	0.060
608PCB	Aroclor 1254	UG/L	0.050	0.060
608PCB	Aroclor 1260	UG/L	0.050	0.060

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

# SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID			ANALY	TICAL REQ	UIREMENT	3	
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
NTS-EW-0907-A	A7A87101	-	-	<u>-</u>	CFR136		-	<u>-</u>
NTS-EW-0907-A (DU	A7A87102	-	-	-	CFR136	_	<u>-</u>	-

NYSDEC-1

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

# SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
NTS-EW-0907-A	WATER	09/25/2007	09/26/2007	09/26/2007	09/27/2007
NTS-EW-0907-A (DUP)	WATER	09/25/2007	09/26/2007	09/26/2007	09/27/2007

NYSDEC-4

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

# SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
NTS-EW-0907-A	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NTS-EW-0907-A (DUP)	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED

**NYSDEC-6** 

# STL

## DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

## ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a *P".
- A This flag indicates that a TiC is a suspected aidol-condensation product.
- Indicates coelution.
- indicates analysis is not within the quality control limits.

#### **INORGANIC DATA QUALIFIERS**

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit,
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS WATER SURROGATE RECOVERY

Lab Name: <u>STL Buffalo</u>		Contract:	
Lab Code: RECNY Case	No.:	SAS No.:	SDG No.:
GC Column(1): ZB-35	ID: <u>0.53</u> (mm)		

Clie	ent Sample ID	Lab Sample ID		TCMX %REC #		<b>120776</b> 2	 ******	******	TOT OUT
2 Matri 3 Metho	x Spike Blank x Spike Blk Dup d Blank W-0907-A	A7B1510901 A7B1510902 A7B1510903 A7AB7101	76 78 100 117	88 87 82 62		,			0 0 0

QC LIMITS

(26-145) (25-152)

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene

- # Column to be used to flag recovery values
   * Values outside of contract required QC limits
   D Surrogates diluted out

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS WATER SURROGATE RECOVERY

Lab Name: <u>STL Buffalo</u>		Contract:		
Lab Code: RECNY	Case No.:	SAS No.:	SDG No.:	
GC Column(1): ZB-35	ID: <u>0.53</u> (mm)			
			<del></del>	
Client Comple In 1	ah Camala ID DCGD	TOUV		

Client Sample ID	•			!						TOT 0UT
<u> </u>		======		======	======	======	======	======	#22055#	===
Matrix Spike Blank	A7B1510901	76	88							0
Matrix Spike Blk Dup	A7B1510902	78	87		<b>[</b>					O
Method Blank	A7B1510903	100	82		1 1	'				0
NTS-EW-0907-A (DUP)	A7A87102	120	64							0
	Matrix Spike Blank Matrix Spike Blk Dup Method Blank	Matrix Spike Blank A781510901 Matrix Spike Blk Dup A781510902 Method Blank A781510903	### ##################################	### ### ##############################	### ##################################	### ##################################	### ##################################	XREC #   XREC #	XREC #   XREC #	XREC #   XREC #

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene

(26-145) (25-152)

# Column to be used to flag recovery values* Values outside of contract required QC limitsD Surrogates diluted out

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M

# METHOD 608 - POLYCHLORINATED BIPHENYLS

# WATER MATRIX SPIKE BLANK/MATRIX SPIKE BLANK DUPLICATE RECOVERY

Lab Name: <u>STL Buffalo</u>		Contract:		Lab Samp ID: <u>A7B1510903</u>							
Lab Code: REKNY Case N	o.:	SAS No.:		SDG No.:							
Matrix Spike - Client Samp	le No.: <u>Method B</u>	lank									
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.	+						
Aroclor 1016 Aroclor 1260	1.00 1.00	0.913 0.958	91 96	58 - 141 56 - 144	.						
COMPOUND	SPIKE ADDED UG/L	MSBD CONCENTRATION UG/L	MSBD % REC #	1 - 1	Q( RPD	C LIMITS REC.					
Aroclor 1016Aroclor 1260	1.00 1.00	0.925 0.974	92 97	1 1	30 30	58 <b>-</b> 141 56 - 144					
# Column to be used to flag * Values outside of QC lim  RPD:0 out of2 out Spike recovery:0 out	its tside limits		n asteris	k							
Comments.											

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M

# METHOD 608 - POLYCHLORINATED BIPHENYLS

WATER MATRIX SPIKE BLANK/MATRIX SPIKE BLANK DUPLICATE RECOVERY

Lab Name: <u>STL Buffalo</u>		Contract:	<del></del>	A7B1510903						
Lab Code: <u>RECNY</u> Case No	· · ·	SAS No.:		S	DG No.	:				
Matrix Spike - Client Sampl	Spike - Client Sample No.: <u>Method Blank</u>									
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.	+					
Total Polychlorinated(1)	2.00	1.87	93	50 - 150						
COMPOUND	SPIKE ADDED UG/L	MSBD CONCENTRATION UG/L	MSBD % REC #	% RPD #		C LIMITS REC.				
Total Polychlorinated Bi	2.00	1.90	94	1	50	50 - 150				
(1) Total Polychlorinated Biphenyls # Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits										
RPD: 0 out of 1 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out of 5 out o		limits								

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

Lab Name: <u>STL Buffalo</u>	Contract:		NTS-EW-C	907 <b>-A</b>
naic. bil barrary	CORCIACC.			
Lab Code: RECNY Case No.:	SAS No.:S	SDG No.:		
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	<u>A7A87101</u>	<u>.                                      </u>
Sample wt/vol: 1060.00 (g/mL) ML		Lab File ID:	12A06050	.TXO
% Moisture: decanted: (Y/N)	<u>N</u>	Date Samp/Recv:	09/25/20	07 <u>09/26/200</u> 7
Extraction: (SepF/Cont/Sonc/Soxh): <u>SEP</u>	<u>F</u>	Date Extracted:	09/26/20	<u>07</u>
Concentrated Extract Volume:2000(uL	.)	Date Analyzed:	09/27/20	07
Injection Volume:1.00(uL)		Dilution Factor:	1.00	
GPC Cleanup: (Y/N) N pH: 6.00		Sulfur Cleanup:	(Y/N) <u>N</u>	
CAS NO. COMPOUND	CONCENTRATI (ug/L or u	ON UNITS: g/Kg) <u>UG/L</u>	Q	
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260		0.047 0.047 0.047 0.047 0.047 0.047 0.047	ם מ מ מ	
Total Polychlorinate	a Biphenyis	0.47	U	

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS

HOD 608 - POLYCHLORINATED BIPHENYLS

METHOD BLANK SUMMARY

Client No.

Lah Name. G	STL Buffalo	<b>.</b> -	Method Blank							
Bab Name: <u>s</u>	SID BULLATO	Contract:								
Lab Code: RECNY Case No.: SAS No.: SDG No.:										
ab Sample ID: <u>A7B1510903</u> Lab File ID: <u>12A06049.TX0</u>										
Matrix: (so	oil/water) <u>WATER</u>	Extra	Extraction: <u>SEPF</u>							
Sulfur Clea	anup: (Y/N): <u>N</u>	Date	Extracted:	09/26/2007						
Date Analyz	zed (1): <u>09/27/2007</u>	Date	Analyzed (2)							
Time Analyzed (1): 12:04 Time Analyzed (2):										
Instrument	ID (1): <u>HP5890-12</u>	Insti	rument ID (2)	:						
GC Column (	(1): <u>ZB-35</u> Dia: <u>0</u> .	.53 (mm) GC Cc	olumn (2):	Dia: _	(mm)					
TH	HIS METHOD BLANK APPLIE	ES TO THE FOLI	LOWING SAMPLES	s, Ms AND MSD:						
	CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED 1	1						
1	Matrix Spike Blank Matrix Spike Blk Dup NTS-EW-0907-A	A7B1510901	09/27/2007 09/27/2007							
Comments: _		•								

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS METHOD BLANK SUMMARY

Client No.

Lah Name.	STL Buffalo	Contract -		Method Blank					
nan Mame:	SIN DOLLAIO	CONTRACT:							
Lab Code:	RECNY Case No.:	SAS No.	: SI	OG No.:					
Lab Sample	E ID: <u>A7B1510903</u>	Lab 1	File ID: <u>12A0</u>	5049.TX0					
Matrix: (s	soil/water) <u>WATER</u>	Extra	action:	SEPF					
Sulfur Cle	eanup: (Y/N): <u>N</u>	Date	Extracted:	09/26/2007					
Date Analy	zed (1): <u>09/27/2007</u>	Date	Analyzed (2)	·					
Time Analy	vzed (1): <u>12:04</u>	Time	Analyzed (2)	:					
Instrument	ID (1): <u>HP5890-12</u>	Inst	rument ID (2)	<u> </u>					
GC Column	(1): <u>ZB-35</u> Dia: <u>0</u>	. <u>53</u> (mm) GC Co	olumn (2):	Dia:	(mm)				
1	THIS METHOD BLANK APPLIE	es to the foll	LOWING SAMPLES	S, MS AND MSD:					
	CLIENT SAMPLE NO.	LAB SAMPLE ID		DATE ANALYZED 2					
1 2 3	Matrix Spike Blank Matrix Spike Blk Dup NTS-EW-0907-A (DUP)	A7B1510901 A7B1510902	09/27/2007	1					
Comments:									

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

Tale Name COT D. SS. 1	Method Blank
Lab Name: STL Buffalo Contrac	zt:
Lab Code: RECNY Case No.: SAS No.:	: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7B1510903</u>
Sample wt/vol: 1000.00 (g/mL) ML	Lab File ID: <u>12A06049.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv:
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 09/26/2007
Concentrated Extract Volume:2000(uL)	Date Analyzed: 09/27/2007
Injection Volume:1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260 	0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U

Sample Data Package

SDG Narrative

#### SAMPLE SUMMARY

			SAMPI	ĿD	RECEIV	ED
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7A87101	NTS-EW-0907-A	WATER	09/25/2007	08:00	09/26/2007	09:15
A7A87102	NTS-EW-0907-A (DUP)	WATER	09/25/2007	08:00	09/26/2007	09:15

## METHODS SUMMARY

Job#: <u>A07-A871</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

ANALYTICAL

PARAMETER

METHOD

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

## References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

## SDG NARRATIVE

Job#: A07-A871

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

## General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

## Sample Receipt Comments

## A07-A871

Sample Cooler(s) were received at the following temperature(s);  $2.0\ ^{\circ}$ C All samples were received in good condition.

#### GC Extractable Data

No deviations from protocol were encountered during the analytical procedures.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R. Kacalski Project Manager

Date

Chain Of Custody Documentation

# Chain of Custody Record





TL-4124 (0901)																													
Client		Project			U	, ₃	_	,,	7				·				0	ate 9	15	1			C	Chain of	Custo	Odv.N	imber		
COM		Telepho			<u> </u>	1-00	1	<u> </u>	114	1				Lab Number							Chain of Custody Number 298765								
Address / Cenual Motus Priv	٠	315	- (	134			7		<b>?</b> /]		H.	35	700	700							<u></u>	Page _		<u>/_</u>	of .				
City State   Zip Ci	206	Site Co			1	✓—	La	sb Cor	ntact	٩						A	nalys ore si	is (A pace	ttaci is ne	i list ede	if d)								
Project Name and Location (State)		7 IM	<u>/a</u> Wavi	bill No	ımber	1								T	<u>\$</u>	T		7	- 1	T	Ť	Т	T	7					
6 MWallace ad Su Coblinel	1.4.	,	ho										1	- (				1	ı	İ		-		ł	Sne	cial li	nstruc	tions/	
Contract/Purchase Order/Quote No.			_		atrix		$\top$			ntain				( <u>a</u>	200	1			1	- {	1	-	1	1 (	Con	lition	s of R	eceipt	
			<u> </u>	, ivi	auix		$\bot$		Pres	serva	ative	s		- 1		1	[ '		- {		- [			1					
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Air	Aqueous	Sed.	NO.	,	HZSO4	HNO3	Ž	NaOH	ZnAc/ NaOH	6	<u> </u>	20														
NTS-EW-0907-A	1/25/07	800		x			_	2	L					×										de	tech	u li	uty	0.05	eeb
NTS-EW-0907-A (OUP)	9/25/07	800		х	$\downarrow$	_	Ż	<u>'</u>		<u> </u>		Щ			¥	$\perp$						$\perp$	$\perp$	<u> </u>		_	<u> </u>		
				_	4	_	_		<u> </u>	<u> </u>			_	1	4	_		_	_	_	_	4	_	<u> </u>					_
		<u>-</u>			4	4	4	-	_	_	_		_	4	4	1	_	_	_	_	4	4	$\bot$	-					
				_	_	┵	1	_	L	<u> </u>			_	1	$\perp$	$\perp$			4	_	_		$\perp$						
									<u> </u>											_		ᆚ	上				_		_
													_ :														_		
	-			7																T		7							
						$\top$	T				1			7		1	1			$\top$	$\top$	_	7						_
·					_	十	1			1	T	П		Ť	1	†	<del>                                     </del>		7	_	寸	1	$\top$	1 -					
						$\dagger$	7	$\top$		†				1	+	1	†-		1	_†	7	-	十				_		
						1	十		1	$\top$					T				$\dashv$	$\neg$		$\top$	十				<del></del>		_
Possible Hazard Identification			<u> Т</u>	ampi	e Disp	osal		<del></del> _	ــــــــــــــــــــــــــــــــــــــ	т	1.—	ш				خلہ							L_				retained		_
	Poison B	Unknown	, [[	] Re	turn T	o Clie	ent			osai l				rchiv	e Foi		<u></u>	Mont					nonth)		ampie	rs are	etaineu		
Turn Around Time Required  24 Hours 48 Hours 7 Days 14 Day	Паса	<b>⊠</b> /ou		R.	day			100	Rec	quirer		S (Spe	ecify)	0										- 1		7			
24 Hours 48 Hours 7 Days 14 Day 1. Relinquished By	s 🗀 21 Days	Date			, Time			4	Rece	ived		C/P	7	<u> </u>		<u></u>								Date		+	Time	<del></del>	
Ith 1 Bu I		Slag	./:	2	10	90	<	1	<u>"</u>	<u>ر</u> د	L								<u></u> .					L	2ر_	(0)	0	9/1	_
2. Relinquished By		Date			Time	9		2: 1	Rece	eived	Ву													Date			Time		<u>ح</u> ر
3. Relinquished By		Date Time 3. Received By 2.0°C Date					•	Time		— ;																			
Hold " Dup" Samples.	Clarlys	<u> </u>	nl	 ን	1	Ý	K.	u	'n	)	d	ste	ich					inc	9	J	Sa	n.s	6.	·	<u> </u>		·		
NSTRIBUTION: WHITE - Returned to Client with Report; Co.	ANARY - Stays wi	ith the Sam	ple:	PINK	- Fiel	d Cop	ру										7					. –							



Doc. Login/ARRF - Side A Rev 4

Rev 4 May 11, 2007

SAMPLE LOGIN	JOB# P 8 >/
Shipment ID	Strict Internal COC: YES / NO
	Residual Chlorine Check:
	Radiation Check <0.02 mR/hr: YES / NO
ACProject / Task	1474959511
TATSBD/CD # OF SAMPLE	S TRIP BLANK YN #
SHIPPED BY Feder	ATTACH SHIPPING TAGS
RECEIVED DATE / TIME:	9 120 105:15
COOLER TEMP Q C (4 +/- 2 °C	) QK NÖ
Cooler Custody Seal intact? (YES)NO NON	E SEAL#
If NO to cooler temp or seal, PM notified? YES	(PM Name)
SUBCONTRACT YESINO LAB	SM#
COMMENTS: SAMPLE TIME ACTUAL	+1HR +2 HR +3 HR NONE
Sample received outside hold time	
Headspace in VOA vials	
Problems with bottle labels	
OTHER SAMPLE RECEIPT COMMENTS (Fill out A	ARRF, see reverse)
PRESERVATION CHECKED YES	NO NA Initials
ARE SAMPLE DATES AND TIMES CORRECT?	Initials 5
WERE ALL THE APPROPRIATE TESTS ASSIGNI	ED? Initials
Temp.Cert.Loss:	

e: 09/26/2007 ie: 13:14:40 STL Buffalo Sample Inventory Page: 1 Rept: ANO383

Job No: A07-A0 Client: Camp   Project: NY7A9 SDG: Case: SMO No: No. Samps: 2	Dresser and Mckee			Sample Tag Num SMO F	Seal: NO tody: YES Tags: NO	Cooler Temperature: 2.0	°C		
								Pres	log
Sample	Receive	Client Sample ID	Lab ID	Condition	Bottles	Parameters	Lab	Code	PH
	09/26/2007 09:15 09/26/2007 09:15	NTS-EW-0907-A NTS-EW-0907-A (DUP)	A7A87101 A7A87102	Good Good	2-11GA 2-11GA	PCBS 608 PCBS 608 (EXTRACT AND HOL	RECNY RECNY	0100 0100	

ple Custodian:	/20
----------------	-----

608 Data

Analytical Report October Sampling Event



### ANALYTICAL REPORT

Job#: A07-C734

Project#: NY7A9595

Site Name: Niagara Mohawk O & M
Task: Wallace & Sons Scrapyard

Timothy Beaumont CDM One General Motors Dr. STE 2 Syracuse, NY 13206

TestAmerica Laboratories Inc.

Jason R. Kacalski Project Manager

11/21/2007

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.



# TestAmerica Buffalo Current Certifications

# As of 6/15/2007

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	NELAP,SDWA, CWA, RCRA,	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

Sample Data Summary Package

## SAMPLE SUMMARY

			SAMP1	ED	RECEIVI	<b>3</b> D
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7C73401	NTS-EW-1007	WATER	10/31/2007	08:40	11/02/2007	16:45
A7C73402	NTS-EW-1007 (DUP).	WATER	10/31/2007	08:40	11/02/2007	16:45

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

### METHODS SUMMARY

Job#: A07-C734

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

ANALYTICAL AMETER METHOD

PARAMETER _____

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

# References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

### SDG NARRATIVE

Job#: <u>A07-C734</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

## General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

## Sample Receipt Comments

# A07-C734

Sample Cooler(s) were received at the following temperature(s); 2.0 °C Hold "DUP" samples. Analyze only if there is a detection in original sample.

## GC Extractable Data

No deviations from protocol were encountered during the analytical procedures.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R. Kacalski Project Manager

Date

Date: 11/21/2007 Time: 14:55:39 Requested Reporting Limits < Lab PQL

Page: 1 Rept: AN1520

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to lab MDL. It must be noted that results reported below lab standard quantitation limit (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Para	meter	Unit	Client RL	Lab POL	_
Organics						
608PCB	Aroclor 1016	٠ . ر	JG/L	0.050	0.060	
608PCB	Aroclor 1221	·	JG/L	0.050	0.060	
608PCB	Aroclor 1232	τ	JG/L	0.050	0.060	
608PCB	Aroclor 1242	τ	JG/L	0.050	0.060	
608PCB	Aroclor 1248	J ·	Œ/L	0.050	0.060	
608PCB	Aroclor 1254	Ţ	JG/L	0.050	0.060	٠
608PCB	Aroclor 1260	τ	$\mathbf{G}/\mathbf{L}$	0.050	0.060	

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

# SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: TESTAMERICA LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID			ANALY	TICAL REQ	UIREMENT	S			
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY		
NTS-EW-1007	A7C73401	-	-	_	CFR136	-	•	<b>.</b>		
NTS-EW-1007(DUP).	A7C73402	-	-	**	CFR136	-	-	-		

NYSDEC-1

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

# SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: TESTAMERICA LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
NTS-EW-1007	WATER	10/31/2007	11/02/2007	11/06/2007	11/07/2007
NTS-EW-1007(DUP).	WATER	10/31/2007	11/02/2007	11/06/2007	11/07/2007

NYSDEC-4

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

# SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: TESTAMERICA LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
NTS-EW-1007	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NTS-EW-1007(DUP).	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED

**NYSDEC-6** 



# DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

#### ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- Indicates analysis is not within the quality control limits.

## INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

Lab Name: TestAmerica Laboratories       Contract:         Lab Code: RECNY       Case No.:       SAS No.:       SDG No.:         Watrix: (soil/water)       WATER       Lab Sample ID:       A7C73401         Sample wt/vol:       1060.00 (g/mL) ML       Lab File ID:       19814176.TX0         Sample wt/vol:       decanted:       (Y/N) N       Date Samp/Recv:       10/31/2007 11/02/2007         Extraction:       (SepF/Cont/Sonc/Soxh):       SEPF       Date Extracted:       11/06/2007         Concentrated Extract Volume:       2000 (uL)       Date Analyzed:       11/07/2007         Injection Volume:       1.00 (uL)       Dilution Factor:       1.00         SPC Cleanup:       (Y/N) N pH:       6.00       Sulfur Cleanup:       (Y/N) N         CAS ND.       COMPOIND       (ug/L or ug/Kg) UG/L       Q         1104-28-2Arcolor 1016       0.047 U       U         11104-28-2	ration on the first of the court of		NTS-EW-1007
Matrix: (soil/water) WATER  Lab Sample ID: A7C73401  Lab File ID: 19B14176.TX0  Moisture: decanted: (Y/N) N  Date Samp/Recv: 10/31/2007 11/02/2007  Extraction: (SepF/Cont/Sonc/Soxh): SEPF  Date Extracted: 11/06/2007  Concentrated Extract Volume:2000 (uL)  Date Analyzed: 11/07/2007  Injection Volume:1.00 (uL)  Dilution Factor:1.00  GPC Cleanup: (Y/N) N pH: _6.00  CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L  Q  12674-11-2Aroclor 1016	Lab Name: <u>TestAmerica Laboratories</u> Contract	·	
Sample wt/vol: 1060.00 (g/mL) ML	Lab Code: RECNY Case No.: SAS No.: _	SDG No.:	
# Moisture: decanted: (Y/N) N	Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A7C73401
Extraction: (SepF/Cont/Sonc/Soxh): SEPF Date Extracted: 11/06/2007  Concentrated Extract Volume:2000 (uL) Date Analyzed: 11/07/2007  Injection Volume:1.00 (uL) Dilution Factor:1.00  SPC Cleanup: (Y/N) N pH: _6.00 Sulfur Cleanup: (Y/N) N  CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q  12674-11-2Aroclor 1016 0.047 U 11104-28-2Aroclor 1221 0.047 U	Sample wt/vol: <u>1060.00</u> (g/mL) <u>ML</u>	Lab File ID:	19B14176.TX0
Concentrated Extract Volume:2000 (uL) Date Analyzed:11/07/2007  Injection Volume:1.00 (uL) Dilution Factor:1.00  SPC Cleanup: (Y/N) N pH: _6.00 Sulfur Cleanup: (Y/N) N  CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q  12674-11-2Aroclor 1016 0.047 U  11104-28-2Aroclor 1221 0.047 U	Moisture: decanted: (Y/N) N	Date Samp/Recv:	10/31/2007 11/02/2007
Injection Volume: 1.00 (uL) Dilution Factor: 1.00  GPC Cleanup: (Y/N) N pH: 6.00 Sulfur Cleanup: (Y/N) N  CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q  12674-11-2Aroclor 1016 0.047 U 11104-28-2Aroclor 1221 0.047 U	Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted:	11/06/2007
CONCENTRATION UNITS:  CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q  12674-11-2Aroclor 1016 0.047 U 11104-28-2Aroclor 1221 0.047 U	Concentrated Extract Volume:2000(uL)	Date Analyzed:	11/07/2007
CONCENTRATION UNITS:  (AS NO. COMPOUND (ug/L or ug/Kg) <u>UG/L</u> Q  12674-11-2Aroclor 1016 0.047 U  11104-28-2Aroclor 1221 0.047 U	Injection Volume: 1.00(uL)	Dilution Factor:	1.00
CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/L</u> Q  12674-11-2Aroclor 1016 0.047 U  11104-28-2Aroclor 1221 0.047 U	GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup:	(Y/N) <u>N</u>
11104-28-2Aroclor 1221		<del></del>	Q
53469-21-9Aroclor 1242 0.047 U 12672-29-6Aroclor 1248 0.047 U 11097-69-1Aroclor 1254 0.047 U 11096-82-5Aroclor 1260 0.047 U	11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260	0.047 0.047 0.047 0.047 0.047 0.047	ប ប ប ប ប

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS WATER SURROGATE RECOVERY

Lab Name: <u>TestAmerica Labor</u>	atories Inc.	Contract:			
Lab Code: RECNY Case	No.:	SAS No.:	SDG No.:	<del></del>	
GC Column(1): <u>28-5</u>	ID: <u>0.53</u> (mm)				

	Client Sample ID	Lab Sample ID		TCMX %REC #	 				TOT OUT
4	Matrix Spike Blank	A7B1775001	68	81	 		 		
									, ,
	Matrix Spike Blk Dup		82	86	1	'	\     '		וטו
3	Method Blank	A7B1775003	73	79					0
4	NTS-E4-1007	A7C73401	76	88					0
					 L		 L		

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene (26-145) (25-152)

- # Column to be used to flag recovery values
  * Values outside of contract required QC limits
  D Surrogates diluted out

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M

# METHOD 608 - POLYCHLORINATED BIPHENYLS

# WATER MATRIX SPIKE BLANK/MATRIX SPIKE BLANK DUPLICATE RECOVERY

Lab Name: <u>TestAmerica Labor</u>	atories Inc.	Contract:		Lab Sa	amp ID	: <u>A7B1775003</u>
Lab Code: <u>RECNY</u> Case No	).:	SAS No.:	<u>-</u>	SI	ж.	:
Matrix <u>Sp</u> ike - Client Sampl	e No.: <u>Method B</u>	lank				٠.
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.	+	
Aroclor 1016 Aroclor 1260	1.00 1.00	0.963 0.914	96 91	58 - 141 56 - 144	1 6	
COMPOUND	SPIKE ADDED UG/L	MSBD CONCENTRATION UG/L	MSBD % REC #	% RPD #	RPD	C LIMITS REC.
Aroclor 1016 Aroclor 1260	1.00 1.00	0.947 0.989	95 99	1 8	30 30	58 - 141 56 - 144
# Column to be used to flag  * Values outside of QC limi  RPD:0 out of2 out  Spike recovery:0 out of	ts side limits		n asteris	k ·		

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS

Client No. METHOD BLANK SUMMARY

Lab Name: <u>TestAmerica Laborat</u>	Contract: _		Method Blank	
Lab Code: RECNY Case No.:	_ SAS No.:	: SI	DG No.:	-
Lab Sample ID: <u>A7B1775003</u>	Lab I	File ID: <u>19B1</u>	4174.TX0	
Matrix: (soil/water) WATER	Extra	action:	SEPF	
Sulfur Cleanup: (Y/N): N	Date	Extracted:	11/06/2007	
Date Analyzed (1): <u>11/07/2007</u>	Date	Analyzed (2)		
Fime Analyzed (1): 11:13	Time	Analyzed (2)		
Instrument ID (1): <u>HP5890-19</u>	Instr	rument ID (2)	<u> </u>	
GC Column (1): <u>ZB-5</u> Dia: <u>0</u> .	53 (mm) GC Cc	olumn (2):	Dia: _	(mm)
THIS METHOD BLANK APPLIE	S TO THE FOLI	OWING SAMPLES	, MS AND MSD:	
CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED 1	i	
1 Matrix Spike Blank 2 Matrix Spike Blk Dup	A7B1775001 A7B1775002 A7C73401	11/07/2007		
Comments:				· · · · · · · · · · · · · · · · · · ·

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHIORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

Lab Name: TestAmerica Laboratories Contract:	Method Blank
Lab Code: RECNY Case No.: SAS No.:	
Matrix: (soil/water) WATER	Lab Sample ID: <u>A7B1775003</u>
Sample wt/vol:1000.00 (g/mL) ML	Lab File ID: 19B14174.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv:
Extraction: (SepF/Cont/Sonc/Soxh): <u>SEPF</u>	Date Extracted: <u>11/06/2007</u>
Concentrated Extract Volume:2000(uL)	Date Analyzed: <u>11/07/2007</u>
Injection Volume:1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) N
•	TION UNITS: ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260 	0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U

608 PCB Data

Sample Data Package

SDG Narrative

## SAMPLE SUMMARY

			SAMPLED		RECEIVE	<b>⊈</b> D
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7C73401	NIS-EW-1007				11/02/2007	
A7C73402	NTS-EW-1007(DUP).	WATER	10/31/2007	08:40	11/02/2007	16:45

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

## METHODS SUMMARY

Job#: <u>A07-C734</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

ANALYTICAL

PARAMETER

METHOD

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

## References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

#### SDG NARRATIVE

Job#: <u>A07-C734</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

# General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

# Sample Receipt Comments

#### A07-C734

Sample Cooler(s) were received at the following temperature(s); 2.0 °C Hold "DUP" samples. Analyze only if there is a detection in original sample.

#### GC Extractable Data

No deviations from protocol were encountered during the analytical procedures.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R. Kacalski Project Manager

Date

Date: 11/21/2007 Time: 14:55:57

Requested Reporting Limits < Lab PQL

Page:

Rept: AN1520

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to lab MDL. It must be noted that results reported below lab standard quantitation limit (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's POL.

Method	<u>Parameter</u>	<u>Unit</u>	Client RL	Lab POL
Organics				
608PCB 608PCB 608PCB 608PCB	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248	UG/L UG/L UG/L	0.050 0.050 0.050 0.050	0.060 0.060 0.060 0.060 0.060
608PCB 608PCB	Aroclor 1248 Aroclor 1254 Aroclor 1260	UG/L UG/L	0.050 0.050 0.050	0.060

Chain Of Custody Documentation

Chain of Custody Record



# Severn Trent Laboratories, Inc.

S1L-4124 (0901)	j																								
Client	1		Project l	Manag	er M	13	T	10	de	,,				- ::-			Date	•	1/0	. 7		٩	Chain of Custody Nu	mber   08	•
Addense		0.	Telepho		,	Area	Code,	)/Fax I	Ňumb	er							Lab I	vumb	er er	<u> </u>		$\dagger$		/	-
City	ual Motors	Code	Site Cor		34	32		Lab C	3 Contac	<u>15</u>		163	<u> 5</u>	100	<u>ソ</u>	Δηρ	lysis	Δtto	ch lie	t if			Page/	of	=
Syracus	14/	3206	Tim	Be	avu	at	-							70	я —	more	spac	e is i	neede	ed)	- 1	$\overline{\mathbf{T}}$	4		
Project Name and Location		101 14.	CarrierA	-			ura	CUS	د ح	l rvi	u (	enti	3	100 th 100									Special Ir	nstructions/	
Contract/Purchase Order/O				•	Mat				Co	ntair	ners a	g.								Ì			Conditions	of Receipt	
	o. and Description may be combined on one line)	Date	Time	₹	Sed.	Soil		Unpres.	HXO3	Ž Š	NaOH	ZnAc/ NaOH	- ع	₹ 2 2	3										
NTS-EW-	1007	10/3/107	140	ر				2					<b>\</b>	<b>C</b>									detectuli	ust of 0.05	
NTS-EW-	1007 (DUP)	10/31/07	840	;	<u> </u>			2					$\perp$	X		Ш		<u> </u>				$\perp$		L	
					$\perp$								_		ļ	Ш	$\perp$	L		_	_ _				
				1	4	<b> </b>		1	1	$\bot$	_	$\sqcup$	_	$\perp$	<u> </u>	Ш	$\bot$	<u> </u>		_	_			<del></del>	
				_	4			_	$\perp$	_	_			_				_			ļ	ļ	<del> </del>	·	
					┿-	<del> </del>		_	$\downarrow$	$\bot$	╄-			_	1_	-	$\bot$	_		.				·	
					$\bot$	1		_	$\bot$	1	+			_		-		<del> </del>			_ _	_			
				_	1	1		$\perp$	+	$\bot$	┿		$\perp$	$\bot$	ļ_		-	_		4	$\perp$	$\downarrow$			
				+	+	-		+	+	+	-		$\perp$	-		╁	+	-		}		-			
					+-		$\vdash$	-	-		-	$\vdash$	$\dashv$	$\dashv$	$\vdash$		+	<del> </del>	-	_	+	┿			
				-	┿				+	-	┼	╂┼	+	+	╀	$\vdash$	+	├-	-	$\dashv$	-	+	<u> </u>		
Possible Hazard Identificati	on		<u>  </u>	Sar	nple C	ispos	al								<u> </u>		1		(4 %		<u> </u>		sed if samples are re	ata in a d	-
Non-Hazard		Poison 8	Unknown		Retur	n To C	Client				Ву Ц	ab s (Spe		chive .	For .		_ Mo	nths			an 1 mo			лапе <b>с</b>	
24 Hours 48 Hg		ays 🗌 21 Days	s Oth	er	SP	<u>D</u>		_   ິ	ne A	squire	Ce	s (Spe	B	-										. • •	
1 Alalinguished (8) R	A		Date	07	1	_{јте} 7 2	<u>5</u> 2	14	Ffed F	eiveo	Ü	Z	N	en							·		Date 11/1/07	150/1 ²⁵	1
2. Relinquisped By	1154			10=	2 /	ime   9	<u>′3</u>		Rec	eigeo			M	1	2						1	1_	11-02-07	Time 16:45	. 6
3. Relinquished By	· · · · · · · · · · · · · · · · · · ·		Date			ime	-	3	. Red	eive	IJEV							(.	2,	0	,	<i></i>	Date	Time	
Comments (	Pup " Sample.	s. Ana	lyze	n	ly_	4	79	here	`	1	0	W	cel	u .	In	a	314		7	<b>ζ</b> 4.	pl	<u>, .</u>			-
DISTRIBUTION: WHITE	Returned to Client with Report:	CANARÝ - Stays v	vi <b>th tfle S</b> amp	ole; Pi	NK - I	ield C	Ору										•								



Doc. Login/ARRF - Side A Rev 4 May 11, 2007

SAMPLE LOGIN	JOB# C734
Shipment ID	Strict Internal COC: YES NO  Residual Chlorine Check:
ACProject / Task _	Radiation Check <0.02 mR/hr: YES / NO
TAT 15 BD/ CD # OF SAMPLE	
SHIPPED BY COUPLER	ATTACH SHIPPING TAGS
RECEIVED DATE / TIME:	111 210 18:45
COOLER TEMP Z-0°C (4+/-2°C	OK NO
Cooler Custody Seal intact? YES/NO	SEAL#
If NO to cooler temp or seal, PM notified? YES	(PM Name)
SUBCONTRACT YES NO LAB	SM#
COMMENTS: SAMPLE TIME ACTUAL	+1HR +2 HR +3 HR NONE
Sample received outside hold time	
Headspace in VOA vials	
Problems with bottle labels	
OTHER SAMPLE RECEIPT COMMENTS (Fill out A	ARRF, see reverse)
	NO NA Initials
ARE SAMPLE DATES AND TIMES CORRECT?	Initials
WERE ALL THE APPROPRIATE TESTS ASSIGNI	ED? Initials
Temp.Cert.Loss:	

e: 11/02/2007 e: 19:31:34 TestAmerica Laboratories Inc.
Sample Inventory

Page: 1 Rept: ANO383

Job No Client: Project SDG Case: SMO No No. Samps:	Camp D NY7A95	resser and Mckee			Sample Tag Num SMO F	Seal: NO tody: YES Tags: NO	Cooler Temperature:	2.0°C		
Samu		Receive	Client Sample ID	Lab ID	Condition	Bottles	Parameters	Lab	Pres Code	log
Sampl	-	Receive	Ct lent Sample 10	Cap ID	Condition	bottles	raialleteis	Lab	Code	<u> </u>
		11/02/2007 16:45 11/02/2007 16:45	NTS-EW-1007 NTS-EW-1007(DUP).	A7C73401 A7C73402	Good Good	2-11GA 2-11GA	PCBS PCBS(EXTRACT&HOLD)		0100 0100	

		$a \rightarrow A \hat{\Omega}$		
le Custodian:	<u> </u>	11/ - /20 0 1	Analytical Services Coordinator:	/ /20

Analytical Report November Sampling Event



### ANALYTICAL REPORT

Job#: <u>A07-D562</u>

Project#: NY7A9595

Site Name: <u>Niagara Mohawk O & M</u>

Task: Wallace & Sons Scrapyard

Timothy Beaumont CDM One General Motors Dr. STE 2 Syracuse, NY 13206

<u>TestAmerica Laboratories Inc.</u>

Jason R. Kacalski. Project Manager

12/05/2007

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.



# TestAmerica Buffalo Current Certifications

# As of 6/15/2007

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	NELAP,SDWA, CWA, RCRA,	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA,CLP	. 10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970.
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

Sample Data Summary Package

#### SAMPLE SUMMARY

			Sampi	LED	RECEIVI	<u>3</u> D
LAB SAMPLE ID	CLIENT SAMPLE ID	<u>MATRIX</u>	DATE	TIME	DATE	TIME
A7D56201	NTS-EW-1107	WATER	11/19/2007	11:00	11/21/2007	09:45
A7D56202	NTS-EW-1107 (DUP)	WATER	11/19/2007	11:00	11/21/2007	09:45

#### METHODS SUMMARY

Job#; <u>A07-D562</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

ANALYTICAL

PARAMETER

ER METHOD

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608FCB

#### References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

#### SDG NARRATIVE

Job#: <u>A07-D562</u>

Project#: NY7A9595

Site Name: <u>Niagara Mohawk O & M</u>

#### General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

#### Sample Receipt Comments

#### A07-D562

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

#### GC Extractable Data

For method 608, Arcclor 1260 exhibited a percent difference greater than 15% from the expected amount in the opening continuing calibration while Arcclor 1016 exhibited a decreased response in the closing continuing calibration. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R. Kacalski

Project Manager

Date

Date: 12/05/2007 Time: 12:31:55 Requested Reporting Limits < Lab PQL

Page: 1 Rept: AN1520

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to lab MDL. It must be noted that results reported below lab standard quantitation limit (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

<u>Method</u>		rameter	_Unit_	Client RL	Lab POL
Organics	•				
608PCB	Aroclor 1016		UG/L	0.050	0.060
608PCB	Arcclor 1221		UG/L	0.050	0.060
608PCB	Arcelor 1232		UG/L	0.050	0.060
608PCB	Arcelor 1242		UG/L	0.050	0.060
608PCB	Aroclor 1248		UG/L	0.050	0.060
608PCB	Aroclor 1254		UG/L	0.050	0.060
608PCB	Aroclor 1260		UG/L	0.050	0.060

# NEW YORK STATE DEFARTMENT OF ENVIRONMENTAL CONSERVATION

#### SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME; TESTAMERICA LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID		ANALYTICAL REQUIREMENTS					
		VÓA GC/M\$	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HBRB	WATER QUALITY
NTS-EW-1107	A7D56201	-	_		CFR136			•
NTS-EW-1107 (DUP)	A7D56202	-	-	•	CFR136	•	•	-

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

## SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: TESTAMERICA LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
NTS-EW-1107	WATER	11/19/2007	11/21/2007	11/23/2007	11/25/2007
NTS-EW-1107 (DUP)	WATER	11/19/2007	11/21/2007	11/23/2007	•

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

## SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: TESTAMERICA LABORATORIES, INC.,

SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
NTS-EW-1107	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NTS-EW-1107 (DUP)	WATER	CFR136	SEPF	AS REQUIRED	as required



#### DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

#### ORGANIC DATA QUALIFIERS

ND or U indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the zample.
- E. This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- ¹ Indicates coelution.
- Indicates analysis is not within the quality control limits.

#### **INORGANIC DATA QUALIFIERS**

- ND or U. Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation simit
- Indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Client No.

Tak Mare. TrackArawica Inharatonia. Gustonat	NTS-EW-1107
Lab Name: TestAmerica Laboratories Contract:	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A7D56201
Sample wt/vol: <u>1060.00</u> (g/mL) ML	Lab File ID: <u>7845156.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 11/19/2007 11/21/200
Extraction: (SepF/Cont/Sonc/Soxh); SEPF	Date Extracted: <u>11/23/2007</u>
Concentrated Extract Volume:2000(uL)	Date Analyzed: <u>11/25/2007</u>
Injection Volume: 1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Clearup: (Y/N) N
	RATION UNITS: or ug/kg) <u>UG/L</u> Q
12674-11-2Arcelor 1016 11104-28-2Arcelor 1221	0.047 U 0.047 U
11141-16-5Aroclor 1232	0.047 U
53469-21-9Aroclor 1242	0.047 U
12672-29-6Aroclor 1248	0.047 U
11097-69-1Aroclor 1254	0.047 U
11096-82-5Aroclor 1260	0.047 U
Total Polychlorinated Biphenyls (7 Ar	coclor 0.47 U

## CAMP DRESSER AND MCKEE MIAGARA MOHAMK O & M METHOD 608 - POLYCHLORIMATED BIPHENYLS WATER SURROGATE RECOVERY

Lab Name:	<u>lestAmerica</u>	Labora	tories Inc.	Contract:		
Lab Code:	<u>rechy</u>	Case	Ho.:	SAS No.:	 SDG No.:	
GC Column	(1): <u>28-35                                    </u>	<u>30</u>	ID: <u>0.53</u> (mm)			

	Client Sample ID			TCMX XREC #					TOT OUT
2 3	Matrix Spike Blank Matrix Spike Blk Dup Method Blank NTS-EW-1107	A781874801	86 86 87 65	102 106 104 92		,		,	0 0

**QC LIKITS** 

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene

(26-145) (25-152)

- # Column to be used to flag recovery values
  * Values outside of contract required QC limits
  D Surrogates diluted out

#### CAMP DRESSER AND MCKEE NIAGARA MCHAWK O & M

#### METHOD 608 - POLYCHLORINATED BIPHENYLS

#### WATER MATRIX SPIKE BLANK/MATRIX SPIKE BLANK DUPLICATE RECOVERY

atrix Spike – Client Sam	ole No.: <u>Method I</u>	<u>lank</u>					
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #				
Aroclor 1016 Aroclor 1260	1.00 1.00	1.16 0.965	116 96	58 - 14 56 - 14	ւ		
COMPOUND	SPIKE ADDED UG/L	MSBD CONCENTRATION UG/L	MSRID % REC #	"	RPD		+
Aroclor 1016 Aroclor 1260	1.00 1.00	1.15 1.10	116 111	0 14		58 - 141 56 - 144	.

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS METHOD BLANK SUMMARY

Client No.

Lab Name:	TestAmerica Laborat	Contract:		Method Blank	
Lab Code:	RECNY Case No.:	SAS No.	: S1	OG No.:	
Lab Sample	: ID: <u>A7B1874803</u>	Lab l	File ID: <u>7B45</u>	155,TX0	
Matrix: (s	oil/water) <u>WATER</u>	Extra	action:	SEPF	
Sulfur Cle	eanup: (Y/N): Y	Date	Extracted:	11/23/2007	
Date Analy	rzed (1): <u>11/25/2007</u>	Date	Analyzed (2)	<u></u>	
Time Analy	zed (1): <u>11:28</u>	Time	Analyzed (2):		
Instrument	ID (1): <u>HP6890-7</u>	Insti	rument ID (2):		
GC Column	(1): <u>ZB-35 30</u> Dia: <u>0</u> .	<u>.53</u> (mm) GC Cc	olumn (2):	Dia:	(mm)
ם	THIS METHOD BLANK APPLIE	S TO THE FOLI	OWING SAMPLES	G, MS AND MSD:	
	CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED I	DATE ANALYZED 2	
1 2 3	Matrix Spike Blank Matrix Spike Blk Dup NTS-EW-1107	A7B1874801	11/25/2007 11/25/2007		
Comments:					

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M. METHOD 608 - POLYCHLORINATED BIPHENYIS ANALYSIS DATA SHEKT

Client No.

Lab Name: <u>TestAmerica Laboratories</u> Contract:	Method Blank
THE SAME TRANSPORTER CONTRACT.	
Lab Code: RECNY Case No.; SAS No.;	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7B1874803</u>
Sample wt/vol: <u>1000.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>7B45155.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv:
Extraction: (SepF/Cont/Sonc/Soxh): <u>SEPF</u>	Date Extracted: <u>11/23/2007</u>
Concentrated Extract Volume:2000(vL)	Date Analyzed: <u>11/25/2007</u>
Injection Volume:1.00(uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) Y
— — — — — — — — — — — — — — — — — — —	CENTRATION UNITS: g/L or ug/kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260 	0.050 U U 0.050 U U 0.050 U U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U
1	, , , , , , , , , , , , , , , , , , ,

Sample Data Package

SDG Narrative

#### SAMPLE SUMMARY

			SAMP	LED	RECEIV	<b>3</b> D
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7D56201	NIS-EW-1107	WATER	11/19/2007	11:00	11/21/2007	09:45
A7D56202	MTS-EW-1107 (DUP)	WATER	11/19/2007	11:00	11/21/2007	09:45

#### METHODS SUMMARY

Job#: <u>A07-D562</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

PARAMETER METHOD
METHOD 608 - POLYCHLORINATED BIPHENYLS CFR136 608PCB

#### References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

#### SDG NARRATIVE

Job#: <u>A07-D562</u>

Project#: NY7A9595

Site Name: <u>Niagara Mohawk O & M</u>

#### General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

#### Sample Receipt Comments

#### A07-D562

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

#### GC Extractable Data

For method 608, Arcclor 1260 exhibited a percent difference greater than 15% from the expected amount in the opening continuing calibration while Arcclor 1016 exhibited a decreased response in the closing continuing calibration. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R. Kacalski Project Manager

Date

Chain Of Custody Documentation

### Chain of Custody Record



STL-4124 (0901)																						
CAM		Project &	lanag.	ar	Ma	)	<u>ښ</u>	4.11	105					Date	11/11	1/07	,	Chair o	325	9 / Num	5	
	1	Telephon	a Nur	100r U					<u> </u>					Lab No		707		<del></del>	<u>,                                    </u>	<del>,                                    </del>	<u> </u>	
/ Jesual Motors L	rive_		15	4	34.				15	46.	<u> 5</u>	700		<u> </u>				Page		<u></u> _	or <u>/</u>	<u> </u>
	^{Code} 3204	Site Con	11	2 40	nod)	1	sie Con	Hact				- <u>-</u>	An. mai	alysis (/ e space	itach is nai	list if eded)	1"-	_				
Project Marie and Location (State)	11/	Carrier/M	vayou	Munic	ær		ر ۾	A WYCA	Cz.	<i>t.</i>		, Fui		1					Speci	ial Ins	tructions	s/
Contract/Purchase Order/Quote No.	· /·—			Matr	7	T		Contai Presen	nevs a	<u> </u>	78	608					} }		Condit	tions	of Recei	<b>p</b> f
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	₹ \$	598,	3	į		50 OF	Media	SPAC REOH		74 10										
NTS-EU-1107		100		<b>κ</b>		5					×							de	koh	alia	100	05 pob
NTS-EU-1107 NTS-EU-1107 (DUP)	11/15/07	100	_ \			2	-			<u> </u>	_	X	11			1.	<u></u>				=	
			+	<u> </u>		+	+	-	╬┩	-	╁	$\vdash$	╉┤	-{-{	+	++	-	<del></del>	<del></del>			
		}	╬	╁	$\vdash$	_	-		+	-		╀┼	╂┪	$\dashv$	+	+	╅┤					
			+	+		十	+		+		╁	╁┼	╁┩	+		+	+++					
	·	_	十	+		十			┤┤		1		11	-1-1	_	††	11	+	·		· · · · · · · · · · · · · · · · · · ·	
				$\top$		┪	1		<del>                                     </del>		$\top$		11			<b>†</b> †	17					
			$\perp$			$\prod$					$\prod$											
i			1	_			_						Ц									
			<u>_</u>	ļ_	$\sqcup$	_	1	-	<u> </u>				11			1						
FOSHING Hazard Monthibation			1000	<u>  .</u>	الجودون	Д.	<u>.</u>						1									
3 F 1	☐ Paison B	Unknown			to Ci		Q(	Disposa	i By La	ь [	Arc	ive Far				i fee ma nger iha	y be ass n 1 mon	assed if s In)	amples	arė rėl	ained	
Turn Around Time Required  24 Hours  48 Hours  7 Days  14 Days	<del>-</del>			51	ń		CC	Plequire	amente	(Spec	ily)							·			`	
1. Relinquished By	he Parnska	Date,	<del>,</del>	- 17	ma		3. 1	Rocay-9	p By									Dale			ine	
2 (Reippfüshed By	· <del></del> _	[[[to	<u> </u>	. 73	10 ! L		23	Racerval	<u>(                                    </u>	7	11.5	4,	14					il f	10/0/	_	10,0 s	<u>:</u> {}
Naud Ull		11/20/	27	1/	834	<u>)                                    </u>		<u>\i}</u>								·····		11 1	21/0	2	<u> </u>	3-2
3. Rejinquished By		Date '		"	ma		3.1	Receive	d By	•			$\Rightarrow$	. ბ	۲,			Date	1	<b> </b>	line	•
Comments    10   0	a · and	alyze		nd,	<u></u>		Lu		7	de	ho	4.	11	au	- /m c	0	Sae	sle.	<u></u>	<del></del>		
DISTRIBUTION: WHITE - Returned to Client with Report;	CANARY - Stays wi	n Iné Sémp	le: Pi	NK - F	ieu Co	יעם,						•		,				•				



Doc. Login/ARRF - Side A

Rev 4 May 11, 2007 SAMPLE LOGIN JOB# YES (NO Shipment iD ____ Strict Internal COC: Residual Chlorine Check: Radiation Check < 0.02 mR/hr: YES / NO AC _____Project / Task _ _TRIP BLANK Y(N)# TAT / SD/ CD # OF SAMPLES SHIPPED BY ATTACH SHIPPING TAGS 1/ 12( 16) 05:45 RECEIVED DATE / TIME: COOLER TEMP 5. ○ °C (4+/-2°C) OK NO Cooler Custody Seal intact? (YESINO NONE SEAL#_ If NO to cooler temp or seal, PM notified? YES (PM Name) YES(NO) SUBCONTRACT LAB SM# **ACTUAL** ) +1HR NONE COMMENTS: SAMPLE TIME +2 HR +3 HR Sample received outside hold time Headspace in VOA vials_____ Problems with bottle labels_____ OTHER SAMPLE RECEIPT COMMENTS (Fill out ARRF, see reverse) NO A-Initials 3 YES PRESERVATION CHECKED ARE SAMPLE DATES AND TIMES CORRECT? WERE ALL THE APPROPRIATE TESTS ASSIGNED?

Temp.Cert.Loss:

te: 11/21/2007 se: 13:26:37

#### TestAmerica Laboratories Inc. Sample Inventory

Page: 1 Rept: AN0383

Job No: A07-D562 Client: Camp Dresger and Mckee Project: NY7A9595 SDG: Case: SNO No: No. Samps: 2				Chain of Cus Sample Sample Tag Hum SMO F	Sen(: YES tody: YES Tags: NO	Cooler Temperature: 2.0°C			
								Pres	
Sample	Receive	Client Sample ID	Lab ID	Condition	Bottles	Parameters	Lab	Code	PH
	11/21/2007 09:45 11/21/2007 09:45	MTS-EW-1107 MTS-EW-1107 (DUP)	A7056201 A7056202	Good Good	2-11GA 2-11GA	PCBS 608 PCBS HOLD		0100 0100	

nple Custodian:		/20
-----------------	--	-----

Analytical Report December Sampling Event



#### ANALYTICAL REPORT

Job#: A07-E421

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

Task: Wallace & Sons Scrapyard

Timothy Beaumont CDM One General Motors Dr. STE 2 Syracuse, NY 13206

TestAmerica Laboratories Inc.

Jason R. Kacalski Project Manager

12/28/2007



## TestAmerica Buffalo Current Certifications

### As of 6/15/2007

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	NELAP,SDWA, CWA, RCRA,	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

Sample Data Summary Package

#### SAMPLE SUMMARY

			SAMPLED		RECEIVED
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE TIME
A7E42101					12/13/2007 08:45
A7E42102	NTS-EW-1207 (DUP)	WATER	12/12/2007	08:15	12/13/2007 08:45

#### METHODS SUMMARY

Job#: A07-E421

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

ANALYTICAL

PARAMETER

METHOD 608 - POLYCHLORINATED BIPHENYLS

METHOD CFR136 608PCB

#### References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

#### SDG NARRATIVE

Job#: <u>A07-E421</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

#### General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

#### Sample Receipt Comments

#### A07-E421

Sample Cooler(s) were received at the following temperature(s); 4@2.0 °C All samples were received in good condition.

#### GC Extractable Data

For method 608, Aroclor 1260 exhibited a percent difference greater than 15% from the expected amount in the closing continuing calibration. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

For method 608, all sample extracts and associated quality control required treatment with Copper prior to analysis due to the presence of elemental Sulfur.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R. Kacaiski Project Manager

Date

Date: 12/28/2007 Time: 16:05:08

Requested Reporting Limits < Lab PQL

Page: 1 Rept: AN1520

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to lab MDL. It must be noted that results reported below lab standard quantitation limit (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method_	Parameter	Unit	Client RL	Lab POL
<u>Organics</u>				
608PCB 608PCB 608PCB 608PCB 608PCB 608PCB	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	UG/L UG/L UG/L UG/L UG/L UG/L	0.050 0.050 0.050 0.050 0.050 0.050	0.060 0.060 0.060 0.060 0.060 0.060

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

#### SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: TESTAMERICA LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID	ANALYTICAL REQUIREMENTS							
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY	
NTS-EW-1207	A7E42101	•	-	_	CFR136	-			
NTS-EW-1207 (DUP)	A7E42102	•	-	_	CFR136	-	-	<u> </u>	

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

## SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: TESTAMERICA LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
NTS-EW-1207	WATER	12/12/2007	12/13/2007	12/14/2007	12/15/2007
NTS-EW-1207 (DUP)	WATER	12/12/2007	12/13/2007	12/14/2007	•

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

## SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: TESTAMERICA LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
NTS-EW-1207	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
NTS-EW-1207 (DUP)	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED



### DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

#### ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected,

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroctor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- Indicates analysis is not within the quality control limits.

### INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences,
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- Indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Lab Name: <u>TestAmerica Laboratories</u> Con	NTS-EW-1207
Lab Code: RECNY Case No.: SAS	No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A7E42101
Sample wt/vol: <u>1060.00</u> (g/mL) <u>ML</u>	Iab File ID: <u>12A12098.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: <u>12/12/2007</u> <u>12/13/2007</u>
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: <u>12/14/2007</u>
Concentrated Extract Volume:2000(uL)	Date Analyzed: <u>12/15/2007</u>
Injection Volume: 1.00 (uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 7.00	Sulfur Cleanup: (Y/N) Y
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016	0.047 Ü
11104-28-2Aroclor 1221	0.047 U
11141-16-5Aroclor 1232	0.047 Ü
53469-21-9Aroclor 1242	0.047 U
12672-29-6Aroclor 1248	0.047 U
11097-69-1Aroclor 1254	0.047 U
11096-82-5Aroclor 1260	0.047 U
	ohemvis (7 Aroclor) 0.47 iii

### CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS WATER SURROGATE RECOVERY

Lab Name:	TestAmerica Labo	ratories Inc.	Contract:	<u> </u>		
Lab Code:	DECNY Cac	e No.:	SAS No.:		SDG NO	entre de la compte N∎anta de la compte
Ean Code.	KECHI CAS	e no.:	ana ku.:		300 110	•
GC Columnic	(1): ZB-5	ID: 0.53 cm	7)			

			* * <u>*                                  </u>	·, `			 		
 Client Sample ID	Lab Sample ID		TCMX			7.7			TOT
		%REC #	%REC #		 			(	OUT
Natrix Spike Blank		56	86						0
Matrix Spike Blk Dup Method Blank	A7B1994502 A7B1994503	56 56	90						0
NTS-EN-1207	A7E42101	56	79						ŏ

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene

(26-145) (25-152)

- # Column to be used to flag recovery values
  * Values outside of contract required QC limits
  D Surrogates diluted out

### CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M

### METHOD 608 - POLYCHLORINATED BIPHENYLS

### WATER MATRIX SPIKE BLANK/MATRIX SPIKE BLANK DUPLICATE RECOVERY

Lab Name: <u>TestAmerica Labora</u>	tories Inc.	Contract:		Lab Samp ID: <u>A7B19945</u>						
Lab Code: <u>RECNY</u> Case No.	:	SAS No.:		SI	og No.	o (1865) 11 (1865) 1• 1 <u>6 (1865) 14</u> 46 (18 14 (1865) 146 (1865)				
Matrix Spike - Client Sample	No.: Method B	<u>lank</u>								
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.	+					
Aroclor 1016 Aroclor 1260	1.00 1.00	0.919 1.00	92 101	58 - 141 56 - 144	4.177					
COMPOUND	SPIKE ADDED UG/L	MSED CONCENTRATION UG/L	MSBD % REC #	% RPD #		C LIMITS				
Aroclor 1016 Aroclor 1260	1.00 1.00	0.940 1.03	94 104	2	30 30	58 - 141 56 - 144				
# Column to be used to flag :		PD values with a	n asteris	k						
RPD: <u>0</u> out of <u>2</u> outsi Spike recovery: <u>0</u> out of		limits								
Comments:										

Client No.

### CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS

METHOD BLANK SUMMARY

Method Blank Lab Name: TestAmerica Laborat Contract: SAS No.: ____SDG No.: Lab Code: RECNY Case No.: Lab Sample ID: <u>A7B1994503</u> Lab File ID: 12A12094.TX0 Matrix: (soil/water) WATER Extraction: SEPF Date Extracted: 12/14/2007 Sulfur Cleanup: (Y/N): Y Date Analyzed (1): 12/15/2007 Date Analyzed (2): Time Analyzed (1): 11:46 Time Analyzed (2): _ Instrument ID (2): Instrument ID (1): HP5890-12 GC Column (1): <u>ZB-5</u> Dia: <u>0.53</u> (mm) GC Column (2): ______ Dia: ____ (mm) THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD: LAB CLIENT DATE DATE SAMPLE NO. SAMPLE ID ANALYZED 1 ANALYZED 2 Matrix Spike Blank 12/15/2007 A7B1994501 1 . Matrix Spike Blk Dup 12/15/2007 A7B1994502 NTS-EW-1207 A7E42101 12/15/2007 Comments:

# CAMP DRESSER AND MCKEE NIACARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Lab Name: <u>TestAmerica Laboratories</u> Contr	ract:
Lab Code: RECONY Case No.: SAS No	o.:SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7B1994503</u>
Sample wt/vol: <u>1000.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>12A12094.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv:
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: <u>12/14/2007</u>
Concentrated Extract Volume:2000(uL)	Date Analyzed: <u>12/15/2007</u>
Injection Volume: 1.00 (uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) Y
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5	0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050

Sample Data Package

SDG Narrative

#### SAMPLE SUMMARY

			SAMPLED	RECEIVED
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE TIME	
A7E42101	NTS-EW-1207	WATER	12/12/2007 08	15 12/13/2007 08:45
A7E42102	NTS-EW-1207 (DUP)	WATER	12/12/2007 08:	15 12/13/2007 08:45

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

#### METHODS SUMMARY

Job#: <u>A07-E421</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

ANALYTICAL

PARAMETER

METHOD

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

### References:

**CFR136** 

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

#### SDG NARRATIVE

Job#: A07-E421

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

#### General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

### Sample Receipt Comments

#### A07-E421

Sample Cooler(s) were received at the following temperature(s); 4@2.0 °C All samples were received in good condition.

### GC Extractable Data

For method 608, Aroclor 1260 exhibited a percent difference greater than 15% from the expected amount in the closing continuing calibration. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

For method 608, all sample extracts and associated quality control required treatment with Copper prior to analysis due to the presence of elemental Sulfur.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R. Kacalski Project Manager

12/3/107

Date

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Chain Of Custody Documentation

### Chain of Custody Record



iTL-4124 (0901)																		·							
COM		Project I	Manag	17		4,	<i>[][</i>	<u>ና</u>	1								ate /2	10	رار	7		ç	hain of Custody Nu 3262	30	<u></u>
Address / Copyed Moths	Drive	Telepho 3/ Y	- 4	mber     3 <b>4</b>		Code,	7		3/	7	4	43	57	100	)	1	ab Né		•			,	age	of _	1
Syracuse My Zig	3206	Site Cor	Ī	Zai	M	đ	Lab (	Conta	ct	•				4	A	nalys ore s	is (A pace	is n	h list eede	if id)	· · · · ·	T			
Project Name and Location (State)  N. Wallace and Sm. Cobk Contract/Purchase Order/Quote No.	KUNY	Carrier	Vaybi  }	VIII	ber	iya.	US					I	3	Tan .									Special II Condition	nstruct	ions/
Contract/Purchase Order/Guote No.				Mat	rix				ontai eser					3						1			Condition	s OI ME	ғсеірі
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Aë	Aqueous Sed.	POS.		Unpres.	H2SO4	HN03	3	MaOH ZnAc/	NaOH	828	A2											
NTS-EW-1207	12/12/07	815		C			X						2		·								detectulu	ulo	0.05 006
NT3-EW-1207 (DUP)	14/2/07	815	1	C			X.	4	4.	1	4	┦_		2	$\bot$		$\sqcup \downarrow$	_	$\downarrow$	_	_	$oldsymbol{\perp}$	-	千	
			-	-	<del> </del>		$\dashv$	-	-	- -	+		<u> </u>			+-			4			-	ļ		
· · · · · · · · · · · · · · · · · · ·			$\dashv$	+	┼		$\dashv$		+	+	+	+	_	-	+	-		-		+	+-	╬			
			+	+	╁	Н	$\dashv$	+	+	+	+	-		$\vdash$	+		$\vdash$	_	+	_	┪┈	╫			
			$\dashv$	+	$\dagger$	-	$\dashv$	+	+	+	+	+			+	1	H	$\dashv$	+	┪		+	-		
			$\top$	+-	<del> -</del>		1	$\top$	$\dagger$	+	+	1			+-	+		7	$\top$	$\top$	+	$\dagger$	·		
			$\top$	_	+		$\neg$	1	+	1	$\top$	+			$\top$		-		1		+	+	1		
								1																	
	·			$oldsymbol{\perp}$								<u> </u>													
Possible Hazard Identification  Non-Hazard  Flammable  Skin Irritant	Poison B	] Unknown		nple C Retur	•		1	<b>d</b> Di	soosa	ı Bv	Lab .	. 🗖	Arct	nive Fo	r		Mont	hs .	(A fe	e may er tha	y be as n 1 mo	ssess onth)	ed if samples are r	etained	
Turn Around Time Required  24 Hours 48 Hours 7 Days 14 D		s <b>L</b> om		ST		:						Specify													
1. Reliefuistpd By		Date	107		ime	0		1. Re	ceirle		_	191	<i>/</i> ;.	s h		TAI		54	ıĸ			·.	Date 15/13/07	Time	1/0
Relinquit 1960 By		Date /	10	7/	ime 173	U		2. Re	Be	d By	<i>y</i>		7	TAL	<del></del>	BU	_	-7					Date 12/13/07	Time 08	45
3. Relinquished By		Date			ime			3. Re	ceive	d By	7						· .		٠.		:		Date	Time	
Comments " Pul Sample an	elmial	4 cd	41	m	v	)	di	He	Lu	— h	v		-	~10	<u>.0</u>	. (	ar	<b>ر</b> ما	l	<u>,</u> .					
NSTRIBUTION: WHITE - Returned to Client with Report:	CANAFIY - Stays w	ith the Strop	le; P	INK - I	ield (	Сору								T				Ū	_	7		<u>\</u> 3	<u> </u>		



Doc. Login/ARRF - Side A Rev 4 May 11, 2007

SAMPLE LOGIN	JOB# E45(
Shipment ID	Strict Internal COC: YES /NO
	Residual Chlorine Check:
	Radiation Check <0.02 mR/hr: YES / NO
ACProject / Task _	NUSA 555511
TAT / SBD/CD # OF SAMPLE	ESTRIP BLANK VIN #
SHIPPED BY	ATTACH SHIPPING TAGS
RECEIVED DATE / TIME:	11/13/0) 08:45
COOLER TEMP 4-5.0°C (4+/-2°C	) OK NO
Cooler Custody Seal intact? VES/NO NON	
If NO to cooler temp or seal, PM notified? YES	(PM Name)
SUBCONTRACT YES NO LAB	SM #
COMMENTS: SAMPLE TIME ACTUAL	+1HR +2 HR +3 HR NONE
Sample received outside hold time	
Headspace in VOA vials	
Problems with bottle labels	
OTHER SAMPLE RECEIPT COMMENTS (Fill out	ARRF, see reverse)
PRESERVATION CHECKED YES	NO NA Initials
ARE SAMPLE DATES AND TIMES CORRECT?	Initials & C
WERE ALL THE APPROPRIATE TESTS ASSIGN	ED? Initials
Town Cart Lass	

te: 12/13/2007 me: 12:30:37

TestAmerica Laboratories Inc. Sample Inventory Page: 1 Rept: ANO383

Job No: A07-E Client: Camp Project: NY7A9 SDG: Case: SMO No: No. Samps: 2	Dresser and Mckee			Radiation Check Custody Seal Chain of Custody Sample Tags Sample Tag Numbers SMO Forms CLSIS	YES YES NO NO NO	Cooler Temperature: 40	2.0°C		
								Pres	log
Sample	Receive	Client Sample ID	Lab ID	Condition Bo	ttles	Parameters	Lab	Code	PH
	12/13/2007 08:45 12/13/2007 08:45	NTS-EW-1207 NTS-EW-1207 (DUP)	A7E42101 A7E42102		1 LGA 1 LGA	608 PCBS (EXTR+HOLD)		0100 0100	<del>;                                      </del>

and the second second			
. 1_	3C _	12 (3	* >
ple Custodian:		/	

nalytical Services	Coordinator:		/20

## DUSR & Analytical Report April Semi-Annual Sampling Event

### **Data Validation Services**

120 Cobble Creek Road P. O. Box 208

North Creek, N. Y. 12853

Phone 518-251-4429

Facsimile 518-251-4428

**September 24, 2007** 

Matthew Millias CDM One General Motors Dr. Suite 2 Syracuse, NY 13206

RE: Data Usability Summary Report for NMPC O&M, Wallace & Sons-Cobleskill site STL-Buffalo Job No. A07-3736

Dear Mr. Millias:

Review has been completed for the data package generated by Severn Trent Laboratories, Inc. that pertains to samples collected 4/10/07 at the NMPC Cobleskill site. Three aqueous samples and a field duplicate were processed for low level TCL PCBs by USEPA CFR 136 method 608, with additional QC requirements of the NYSDEC ASP.

The data package submitted contains full deliverables for validation, but this usability report is generated from review of the summary form information, with review of sample raw data, and limited review of associated QC raw data. Full validation has not been performed. However, the reported summary forms have been reviewed for application of validation qualifiers, using guidance from the NMPC generic QAPP, USEPA Region 2 validation SOPs, the USEPA National Functional Guidelines for Data Review, and professional judgment, as affects the usability of the data. The following items were reviewed:

- * Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times
- * Surrogate Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlations
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrument IDLs
- * Sample Quantitation and Identification

The items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review.

In summary, sample analyte values/reporting limits are usable as reported.

Copies of the laboratory case narratives and the sample identification summary forms are attached to this text, and should be reviewed in conjunction with this report. Also included with this narrative are sample result forms.

### TCL PCBs by EPA 608

Holding times were met, and surrogate recoveries are within required limits. Blanks show no contamination.

The matrix spikes of Aroclors 1016 and 1260 in C-20-0407 show acceptable recoveries and duplicate correlations. Blind field duplicate correlations of C-21-0407 were also with within guidance limits.

An outlying surrogate calibration standard response that was observed does not negatively impact the results of the samples.

The confirmation column calibration standards responses fall well outside acceptable limits. However, the samples report no detection based upon acceptable primary column performance, and the confirmation column data are therefore not necessary.

### **Data Completeness**

Although required of the laboratory deliverables, raw data are not identified with the client ID.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Very truly yours,

Judy Harry

## VALIDATION QUALIFIER DEFINITIONS

### DATA QUALIFIER DEFINITIONS

The following definitions provide brief explanations of the national qualifiers assigned to results in the data review process. If the Regions choose to use additional qualifiers, a complete explanation of those qualifiers should accompany the data review.

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- N The analysis indicates the present of an analyte for which there is presumptive evidence to make a "tentative identification".
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

## LABORATORY SAMPLE IDs AND CASE NARRATIVES

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

### SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID											
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY				
C-20-0407	A7373601	•		-	CFR136	-						
C-20-0407 DUP	A7373602	-	-	-	CFR136		•	• · · · · · · · · · · · · · · · · · · ·				
C-21-0407	A7373603	_	-	•	CFR136	-	_	-				
C-21-0407 DUP	A7373604	_	-	•	CFR136	-	-	<u>-</u>				
C-22-0407	A7373605	-		• .	CFR136	-	-					
C-22-0407 DUP	A7373606	<b>-</b> .	-		CFR136	-	•					
FD-0407	A7373607	•	-	•	CFR136	-		-				
FD-0407 DUP	A7373608	-	-	•	CFR136	-	•	•				

NYSDEC-1

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason R. Kacalski Project Manager

Date

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

### **QUALIFIED REPORT FORMS**

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

	C-20-0407
Lab Name: <u>STL Buffalo</u> Contr	act:
Lab Code: RECNY Case No.: SAS No	.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: A7373601
Sample wt/vol: 1060.00 (g/mL) ML	Lab File ID: <u>7A28180.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 04/10/2007 04/13/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: <u>04/15/2007</u>
Concentrated Extract Volume:2000(uL)	Date Analyzed: 04/16/2007
Injection Volume: 1.00 (uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCEMIRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016	0.061 U
11104-28-2Amodor 1221	0.061 U
11141-16-5Aroclor 1232	0.061 U
53469-21-9Aroclor 1242	0.061 U
12672-29-6Aroclor 1248	0.061 U
11097-69-1Aroclor 1254	0.061 U
11096-82-5Aroclor 1260	0.061 U
Total Polychlorinated Biphe	enyls 0.094 U

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHIORINATED BIPHENYLS ANALYSIS DATA SHEET

Tab Name CAT Distrale		21-0407
Lab Name: STL Buffalo Contract:		
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) WATER	Lab Sample ID: A73	373603
Sample wt/vol: <u>1060.00</u> (g/mL) <u>ML</u>	Lab File ID: 7A2	8182.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 04/	<u> 10/2007 04/13/2007</u>
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 04/	15/2007
Concentrated Extract Volume:2000(uL)	Date Analyzed: 04/	16/2007
Injection Volume: 1.00 (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y/	и) <u>й</u>
	ONCENIRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>	Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260 	0.061 U 0.061 U 0.061 U 0.061 U 0.061 U 0.061 U	
1	. )	1

## CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

v *, 0 7,

Lab Name: STL Buffalo Contra	C-22-0407
Teb Watte. Sin Durtaro Colicia	CC:
Lab Code: RECNY Case No.: SAS No.	: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A7373605</u>
Sample wt/vol: <u>1060.00</u> (g/mL) ML	Lab File ID: <u>7A28183.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 04/10/2007 04/13/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 04/15/2007
Concentrated Extract Volume: 2000 (uL)	Date Analyzed: 04/16/2007
Injection Volume: 1.00 (uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: $(Y/N)$ N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260 	0.061 U 0.061 U 0.061 U 0.061 U 0.061 U 0.061 U

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M MEIHOD 608 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

N 77 91 17 6

Lab Name: <u>STL Buffalo</u> Contrac		D-0407
concrate	CC:	
Lab Code: <u>RECONY</u> Case No.: SAS No.	: SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A	7373607
Sample wt/vol: <u>1060.00</u> (g/mL) <u>ML</u>	Lab File ID: 7	A28184.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 04	<u>4/10/2007</u> <u>04/13/2007</u>
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 04	<u>4/15/2007</u>
Concentrated Extract Volume:2000(uL)	Date Analyzed: 04	<u>4/16/2007</u>
Injection Volume: 1.00 (uL)	Dilution Factor: _	1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: (	A\N) Й
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>	Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260 	0.061 0.061 0.061 0.061 0.061 0.061	บ บ บ บ บ บ บ

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: <u>A07-3736</u>

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

Task: Wallace & Sons Scrapyard

Timothy Beaumont CDM One General Motors Dr. STE 2 Syracuse, NY 13206

STL Buffalo

Jason R. Kacalski Project Manager

05/03/2007

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

### STL Buffalo Current Certifications

### As of 9/28/2006

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RGRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA,ASP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
South Carolina	RCRA	91013
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

Sample Data Summary Package

### SAMPLE SUMMARY

			SAMPI	ED	RECEIVE	₃D
LAB SAMPLE ID	CLIENT SAMPLE ID	MAIRIX	DATE	TIME	DATE	TIME
A7373601	C-20-0407	WATER	04/10/2007	10:00	04/13/2007	09:30
A7373602	C-20-0407 DUP	WATER			04/13/2007	
A7373602MS	C-20-0407 DUP	WATER			04/13/2007	
A7373602SD	C-20-0407 DUP	WATER			04/13/2007	
A7373601MS	C-20-0407 MS	WATER			04/13/2007	
A7373601SD	C-20-0407 SD	WATER			04/13/2007	
A7373603	C-21-0407	WATER			04/13/2007	
A7373604	C-21-0407 DUP	WATER	04/10/2007	11:05	04/13/2007	09:30
A7373605	C-22-0407	WATER	04/10/2007	12:00	04/13/2007	09:30
A7373606	C-22-0407 DUP	WATER	04/10/2007	12:00	04/13/2007	09:30
A7373607	FD-0407	WATER	04/10/2007		04/13/2007	09:30
A7373608	FD-0407 DUP	WATER	04/10/2007		04/13/2007	09:30

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

### METHODS SUMMARY

Job#: A07-3736

SIL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

ANALYTICAL

PARAMETER

METHOD

METHOD 608 - POLYCHLORINATED BIPHENYLS

CFR136 608PCB

### References:

**CFR136** 

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

## SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
C-20-0407	WATER	04/10/2007	04/13/2007	04/15/2007	04/16/2007
C-20-0407 DUP	WATER	04/10/2007	04/13/2007	04/15/2007	04/16/2007
C-21-0407	WATER	04/10/2007	04/13/2007	04/15/2007	04/16/2007
C-21-0407 DUP	WATER	04/10/2007	04/13/2007	04/15/2007	04/16/2007
C-22-0407	WATER	04/10/2007	04/13/2007	04/15/2007	04/16/2007
C-22-0407 DUP	WATER	04/10/2007	04/13/2007	04/15/2007	04/16/2007
FD-0407	WATER	04/10/2007	04/13/2007	04/15/2007	04/16/2007
FD-0407 DUP	WATER	04/10/2007	04/13/2007	04/15/2007	04/16/2007

NYSDEC-4

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

## SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
C-20-0407	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
C-20-0407 DUP	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
C-21-0407	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
C-21-0407 DUP	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
C-22-0407	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
C-22-0407 DUP	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
FD-0407	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED
FD-0407 DUP	WATER	CFR136	SEPF	AS REQUIRED	AS REQUIRED

NYSDEC-6

#### SDG NARRATIVE

Job#: A07-3736

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

#### General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

#### Sample Receipt Comments

#### A07-3736

Sample Cooler(s) were received at the following temperature(s); 404.0 °C Lab: Please filter the "DUP" volume prior to extraction.

#### GC Extractable Data

For method 608, the associated calibration verifications demonstrated an increased instrument response, >15% difference, for the surrogate Tetrachloro-m-xylene. The theoretical consequence of these would be a high bias in the calculated surrogate recoveries. The associated sample surrogate recoveries are well within the quality control limits. In the technical judgment of the laboratory, the sample data has not been impacted and no corrective action is required.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the laboratory Manager or his/her designee, as verified by the following signature."

Jason R. Kacalski

Project Manager

Date

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

### NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

### SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID	ANALYTICAL REQUIREMENTS									
	·	VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY			
C-20-0407	A7373601		-	-	CFR136		-				
C-20-0407 DUP	A7373602	-	-	_	CFR136	-	_	<u> </u>			
C-21-0407	A7373603	-	-	-	CFR136		-				
C-21-0407 DUP	A7373604	-	-		CFR136	-	<u>.</u>	•			
C-22-0407	A7373605	-	_	_	CFR136	-	-	-			
C-22-0407 DUP	A7373606	•	,	-	CFR136	-	<del>-</del>	-			
FD-0407	A7373607	-	-	-	CFR136	-		-			
FD-0407 DUP	A7373608	-	-	•	CFR136	-	-	•			

NYSDEC-1



#### DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

#### ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aidol-condensation product.
- Indicates coelution.
- Indicates analysis is not within the quality control limits.

#### INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate,
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0,995.

Lab Name: STL Buffalo Contrac	t:
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A7373601
Sample wt/vol: <u>1060.00</u> (g/mL) ML	Lab File ID: <u>7A28180.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 04/10/2007 04/13/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 04/15/2007
Concentrated Extract Volume:2000(uL)	Date Analyzed: 04/16/2007
Injection Volume:1.00(uL)	Dilution Factor: 1.00
GPC Clearup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260 	0.061 U 0.061 U 0.061 U 0.061 U

ct:
····
SDG No.:
Lab Sample ID: <u>A7373603</u>
Lab File ID: <u>7A28182.TX0</u>
Date Samp/Recv: 04/10/2007 04/13/2007
Date Extracted: 04/15/2007
Date Analyzed: 04/16/2007
Dilution Factor:1.00
Sulfur Cleanup: (Y/N) N
CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
0.061 U 0.061 U 0.061 U 0.061 U 0.061 U 0.061 U 0.061 U 0.061 U 0.061 U 0.061 U

C-22-0407   Cabo Name: STL Buffalo   Contract:     C-22-0407   Cabo No.:   SDG No.:   SDG No.:   SDG No.:     SDG No.:     SDG No.:     SDG No.:     SDG No.:     SDG No.:     SDG No.:     SDG No.:     SDG No.:     SDG No.:     SDG No.:     SDG No.:     SDG No.:     SDG No.:     SDG No.:     SDG No.:     SDG No.:     SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:   SDG No.:	
Matrix: (soil/water) WATER  Lab Sample ID: A7373605  Sample wt/vol: 1060.00 (g/mL) ML  & Moisture: decanted: (Y/N) N  Extraction: (SepF/Cont/Sonc/Soxh): SEPF  Date Samp/Recv: 04/10/2007 04/13  Extraction: (SepF/Cont/Sonc/Soxh): SEPF  Date Extracted: 04/15/2007  Concentrated Extract Volume: 2000 (uL)  Date Analyzed: 04/16/2007  Injection Volume: 1.00 (uL)  Dilution Factor: 1.00  GPC Cleanup: (Y/N) N pH: 6.00  Sulfur Cleanup: (Y/N) N  CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L  Q  12674-11-2Aroclor 1016 0.061 U 11104-28-2Aroclor 1221 0.061 U 11141-16-5Aroclor 1232 0.061 U	Lab Name: <u>STL Buffalo</u>
Sample wt/vol:	Lab Code: <u>RECNY</u> Case No.:
% Moisture:	Matrix: (soil/water) <u>WATER</u>
Extraction: (SepF/Cont/Sonc/Soxh): SEPF Date Extracted: 04/15/2007  Concentrated Extract Volume:2000 (uL) Date Analyzed: 04/16/2007  Injection Volume:1.00 (uL) Dilution Factor:1.00  GPC Cleanup: (Y/N) N pH: _6.00 Sulfur Cleanup: (Y/N) N  CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q  12674-11-2Aroclor 1016 0.061 U 11104-28-2Aroclor 1221 0.061 U 11141-16-5Aroclor 1232 0.061 U	Sample wt/vol: <u>1060.00</u> (g/m
Concentrated Extract Volume:2000 (uL) Date Analyzed:04/16/2007  Injection Volume:1.00 (uL) Dilution Factor:1.00  GPC Cleanup: (Y/N) N pH:6.00 Sulfur Cleanup: (Y/N) N  CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q  12674-11-2Aroclor 1016	% Moisture: decanted:
Injection Volume:1.00 (uL) Dilution Factor:1.00  GPC Cleanup: (Y/N) N pH: _6.00 Sulfur Cleanup: (Y/N) N  CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q  12674-11-2Aroclor 1016 0.061 U 11104-28-2Aroclor 1221 0.061 U 11141-16-5Aroclor 1232 0.061 U	Extraction: (SepF/Cont/Sonc/Soxh
GPC Cleanup: (Y/N) N pH: 6.00 Sulfur Cleanup: (Y/N) N CONCENTRATION UNITS:  CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q  12674-11-2Aroclor 1016 0.061 U 11104-28-2Aroclor 1221 0.061 U 11141-16-5Aroclor 1232 0.061 U	Concentrated Extract Volume:2
CONCENTRATION UNITS: (ug/L or ug/kg) UG/L Q  12674-11-2Aroclor 1016 0.061 U 11104-28-2Aroclor 1221 0.061 U 11141-16-5Aroclor 1232 0.061 U	Injection Volume:1.00(uL)
CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q  12674-11-2Aroclor 1016 0.061 U 11104-28-2Aroclor 1221 0.061 U 11141-16-5Aroclor 1232 0.061 U	GPC Cleanup: (Y/N) N pH: 6.00
11104-28-2Aroclor 1221 0.061 U 11141-16-5Aroclor 1232 0.061 U	CAS NO. COMPOUND
12672-29-6Aroclor 1248 0.061 U 11097-69-1Aroclor 1254 0.061 U 11096-82-5Aroclor 1260 0.061 UTotal Polychlorinated Biphenyls 0.094 U	11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260

Inh Name. CTT Diffele	FD-0407
Lab Name: STL Buffalo Con	tract:
Lab Code: RECNY Case No.: SAS	No.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A7373607
Sample wt/vol: 1060.00 (g/mL) ML	Lab File ID: 7A28184.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 04/10/2007 04/13/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 04/15/2007
Concentrated Extract Volume:2000(uL)	Date Analyzed: 04/16/2007
Injection Volume:1.00(uL)	Dilution Factor:1.00
GPC Clearup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260	0.061 U 0.061 U 0.061 U 0.061 U
Total Polychlorinated Bi	phenyls 0.094 U

### CAMP DRESSER AND MCKEE NIAGARA MOHANK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS WATER SURROGATE RECOVERY

Lab Name: <u>STL Buffalo</u>			Contract:		
Lab Code: RECNY	Case	No.:	SAS No.:	 SDG No.:	
GC Column(1): <u>28-5</u>	<u> 30</u>	1D: <u>0.53</u> (mm)			

	Client Sample ID	Lab Sample ID		TCMX %REC #							TOT OUT
		=======================================	======	222222	======	======	======		2222222	======	===
1	C-20-0407	A7373601	77	99		[ .				[	0
2	C-20-0407 MS	A7373601MS	76	102	'	'		]		<b>!</b>	0
3	C-20-0407 SD	A7373601SD	75	100						[ ]	0
4	C-21-0407	A7373603	86	104							0
-	C-22-0407	A7373605	84	96					[		0
- ,	FD-0407	A7373607	83	97		'		ĺ			0
	Matrix Spike Blank	A7B0531601	75	100							0
8	Method Blank	A7B0531602	66	90							0

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene

(26-145) (25-152)

# Column to be used to flag recovery values
 * Values outside of contract required QC limits
 D Surrogates diluted out

#### CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M

#### METHOD 608 - POLYCHLORINATED BIPHENYLS WATER MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Code: <u>RECNY</u> Case No.: Matrix Spike - Client Sample N		SAS No.: _		S	EDG No.	·
Matrix Spike - Client Sample N	,	7				
	SPTKE					
COMPOUND	ADDED UG/L	SAMPLE CONCENTRATION UG/L	MA CONCENTA UG/	RATION	MS % REC #	QC LIMITS REC.
Aroclor 1016 Aroclor 1260	0.943 0.943	0 0		L.02 D.848	109 90	58 - 141 56 - 144
COMPOUND	SPIKE ADDED UG/L	MSD CONCENTRATION UG/L	MSD % REC #		RPD	C LIMITS REC.
Aroclor 1016 Aroclor 1260	0.943 0.943	0.998	106 94	3 4	1	58 - 141 56 - 144
# Column to be used to flag re * Values outside of QC limits  RPD:0 out of2 outside  Spike recovery:0 out of  Comments:	e limits		ı asteris	5	<u> </u>	

#### CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS

WATER MATRIX SPIKE BLANK RECOVERY

Lab Name: STL Buffalo		Contract:		_ Lab Samp ID: <u>A780531602</u>								
Lab Code: RECNY Case No	.:	SAS No.:	<del></del>	SDG No.:								
Matrix Spike - Client Sampl	e No.: <u>Method B</u>	<u>lank</u>										
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #		+							
Aroclor 1016Aroclor 1260	1.00 1.00	1.08 1.07	109 108	58 - 141 56 - 144	=							
# Column to be used to flag * Values outside of QC limi	_	PD values with ar	n asteris	sk								
Spike recovery:0 out o	f <u>        2</u> outside	limits										

# CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 608 - POLYCHLORINATED BIPHENYLS METHOD BLANK SUMMARY

Tab Mama	CET Duffalo		Method Blank						
Lab Name:	STL Buffalo	contract: _							
Lab Code:	RECNY Case No.:	_ SAS No.	: S	SDG No.:					
Lab Sample	D: A7B0531602	Lab	File ID: <u>7A28</u>	178.TX0					
Matrix: (s	soil/water) <u>WATER</u>	Extr	action:	SEPF					
Sulfur Cle	eanup: (Y/N): <u>N</u>	Date	Extracted:	04/15/2007					
Date Analy	zed (1): <u>04/16/2007</u>	Date	Analyzed (2)	:					
Time Analy	zed (1): <u>19:48</u>	Time	Analyzed (2)	(2):					
Instrument	ID (1): <u>HP6890-7</u>	Inst	;	-					
GC Column	(1): <u>ZB-5</u> 30 Dia: <u>0</u> .	<u>53</u> (mm) GC C	olumn (2):	Dia:	(mm)				
7	THIS METHOD BLANK APPLIE	S TO THE FOL	LOWING SAMPLES	S, MS AND MSD:					
·	}	LAB SAMPLE ID	DATE ANALYZED 1	DATE ANALYZED 2					
1 2 3 4 5 6 7	C-20-0407 C-20-0407 MS C-20-0407 SD C-21-0407 C-22-0407 FD-0407 Matrix Spike Blank	A7373601 A7373601MS A7373601SD A7373603 A7373605 A7373607 A7B0531601	04/16/2007 04/16/2007 04/16/2007						
Comments:									

Lab Name: STL Buffalo Contra	Method Blank
ran rane: <u>Sth Burraro</u> Colleis	iuu;
Lab Code: REXINY Case No.: SAS No	SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: <u>A7B0531602</u>
Sample wt/vol: 1000.00 (g/mL) ML	Lab File ID: 7A28178.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv:
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 04/15/2007
Concentrated Extract Volume:2000(uL)	Date Analyzed: 04/16/2007
Injection Volume: 1.00 (uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016	0.065 U
11104-28-2Aroclor 1221 11141-16-5Aroclor 1232	0.065 U 0.065 U
53469-21-9Aroclor 1242	0.065 U
12672-29-6Aroclor 1248	0.065 U
11097-69-1Aroclor 1254	
11096-82-5Aroclor 1260	0.065 U
Total Polychlorinated Biphe	enyls 0.10 U

### Chain of Custody Record



STL-4124 (0901)																								
Client		Proje	ct Mana	ager		11	71 3	, _							Dat		1	-	- {	Chain of C	ustody N	umber 7 C		
CDM			ohone N	<u></u>	ath		<u>i NiÇ</u>	2								TĮ IC Numi	/o-	<u>/</u>			<u> </u>	10		
1 General Motors DA	ra el.	1 SI	5-4	iumber スピー	(Area	Coae)/	rax ivi	umbei マバ		463	3.57	ഗവ			Lab	Nume	er			Page	l	ot (		
City State Zip	Code	Site	Contact	<u>-1</u>	سعر	1	ab Co	ntact		1		Ť	ğ	A	nalysis	(Atta	ch list	if		1				
Syracuse Myl 1	3206	Ti	u B.	بالانديا	wut							-	4	me	ore spa	ce is	neede	d)						
Project Name and Location (State)												٦.	£			-	1			1				
Marallace and Son the Cohler	reel n	<i>.</i> 7	<u>qli</u>	70-C	11							27	l ∞(l			1						Instructio		
Contract/Purchase Order/Quote No.				/ Ma		ĺ			taine erva	ers & tives		200	2808	ĺ	1 1				11		ondition	s of Red	ceipt	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Ji.	Aqueous	Soil Se		Unpres. H2SO4	HNO3	HC!	NaOH	NaOH	P. S.												
C-20-0407 MS/MSD	4/10/07	1000	$\uparrow$	X			6					×		†		1	1	7		cle ha	tus li	mit ch	0.05	pok
C.20.0407"DOP" MS / MSD	1	1000		Х			3						x									1		.,
C-21-0407		1105		X		ĺ	2					Х												
C-21-0467 " DOP"		1105		Х			i _						X						Ш		i			
C-22-0407		1200		Х			2					X		$\perp$		$oldsymbol{\perp}$	Ш				<u>-</u>			
C-22-0407 " DUP"		1200	$\perp$	X	$\perp$		<u> </u>						X	1										
FD-0407				X			2					X		L		$\perp$								
FD-0407 "AUP"				Х			<u> </u>						X					_	<u> </u>			<u>└</u>		
					┵			$\bot$				<u> </u>		1								_		
		<u> </u>												$\perp$										
														$\perp$										
			!																					
Possible Hazard Identification	_	_	L	ample i	•		_	-				_					(A fe	e may t	e asse.	ssed if san	npies are	retained		
Non-Hazard	Poison B	Unkno	wn L	Retu	rn To	Client				y Lab	(Speci		ive Fo	_	M	onins	longe	er than	1 month	"				
24 Hours 48 Hours 7 Days 14 Da	ays 🗌 21 t	Days 💢	Other	27.	7		_   "	o neq		CA	7	F	, >											
1. Flelinguished By		Date W	1/2/0	7	Time /	30	1.	Rece	ived t	By /	1 un 1	1	h							Date /	2/47	Time /	0	
2. Reingdished By		Date		07	Time	. 36	2	Rece	ivod	βγ										Date	2/05	Time	3 &	29/ _/
3. Relinquished By	.,	Dale			Time			Rece	ived E	Ву									•	Dale	<del>' </del>	Time		296
Comments	<i>O</i> 1						Щ.						<del></del>				<del>*</del> .			<u></u>		<u>- d</u>	~ ·	
DISTRIBUTION: WHITE Returned to Client with Report:	CANARY SH	t (M) ys with the Sa	Minole:	U PINK -	Field (	<u>Kiri</u> Copy	<u>د د</u>	U	<u>CL</u>	te	i H	u	4	M	2 <i>p</i> 2	1/1	any	. 52	amp	24 r		e4.	<u>U</u>	<u> </u>

Chain Of Custody Documentation

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the laboratory Manager or his/her designee, as verified by the following signature."

Jason R. Kacalski Project Manager

Date

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

#### SDG NARRATIVE

Job#: A07-3736

SIL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

#### General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

#### Sample Receipt Comments

#### A07-3736

Sample Cooler(s) were received at the following temperature(s); 4@4.0 °C Lab: Please filter the "DUP" volume prior to extraction.

#### GC Extractable Data

For method 608, the associated calibration verifications demonstrated an increased instrument response, >15% difference, for the surrogate Tetrachloro-m-xylene. The theoretical consequence of these would be a high bias in the calculated surrogate recoveries. The associated sample surrogate recoveries are well within the quality control limits. In the technical judgment of the laboratory, the sample data has not been impacted and no corrective action is required.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

#### METHODS SUMMARY

Job#: <u>A07-3736</u>

STL Project#: NY7A9595

Site Name: Niagara Mohawk O & M

PARAMETER ANALYTICAL METHOD

METHOD 608 - POLYCHLORINATED BIPHENYLS CFR136 608PCB

#### References:

CFR136

Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, and Appendix A-C; 40 CFR Part 136, USEPA Office of Water.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

#### SAMPLE SUMMARY

			SAMP!	LED	RECEIVI	<u> </u>
LAB SAMPLE ID	CLIENT SAMPLE ID	<u>MATRIX</u>	DATE	TIME	DATE	TIME
A7373601	C-20-0407	WATER	04/10/2007	10:00	04/13/2007	09:30
A7373602	C-20-0407 DUP	WATER	04/10/2007	10:00	04/13/2007	09:30
A7373602MS	C-20-0407 DUP	WATER	04/10/2007	10:00	04/13/2007	09:30
A7373602 <i>S</i> D	C-20-0407 DUP	WATER	04/10/2007	10:00	04/13/2007	09:30
A7373601MS	C-20-0407 MS	WATER	04/10/2007	10:00	04/13/2007	09:30
A7373601 <i>S</i> D	C-20-0407 SD	WATER	04/10/2007	10:00	04/13/2007	09:30
A7373603	C-21-0407	WATER	04/10/2007	11:05	04/13/2007	09:30
A7373604	C-21-0407 DUP	WATER	04/10/2007	11:05	04/13/2007	09:30
A7373605	C-22-0407	WATER	04/10/2007	12:00	04/13/2007	09:30
A7373606	C-22-0407 DUP	WATER	04/10/2007	12:00	04/13/2007	09:30
A7373607	FD-0407	WATER	04/10/2007		04/13/2007	09:30
A7373608	FD-0407 DUP	WATER	04/10/2007		04/13/2007	09:30

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

SDG Narrative

Sample Data Package

STL Buffalo

Doc. Login/ARRF - Side A

Rev 3

		/2005				
SAMPLE LOGIN	JOB# ?>3	6				
Shipment ID	Strict Internal COC:	YES NO				
	Residual Chlorine Check:					
	Radiation Check < 0.02 mR/hr:	YES / NO				
AC 71530 Project / Task	Ny 749 595 1					
TAT SD/ CD # OF SAMPLES TRIP BLANK WIN #						
SHIPPED BY Feder	ATTACH SHIPPING TA	GS				
RECEIVED DATE / TIME:	4,130> 00	2:30				
COOLER TEMP 404.0°C (4+/-2°C) OK NO						
Cooler Custody Seal intact? YES/NO NONE SEAL#						
If NO to cooler temp or seal, PM notified? YES (PM Name)						
SUBCONTRACT YES/NO LAB SM#						
COMMENTS: SAMPLE TIME ACTUAL +1HR +2 HR +3 HR NONE						
Sample received outside hold time						
Headspace in VOA vials						
Problems with bottle labels						
OTHER SAMPLE RECEIPT COMMENTS (Fill out ARRF, see reverse)						
ARE SAMPLE DATES AND TIMES CORRECT?  Initials						
WERE ALL THE APPROPRIATE TESTS ASSIGNED?  Initials						
Temp.Cert.Loss:						

Date: 04/13/2007 Time: 11:55:02 STL Buffalo Sample Inventory Page: 1 Rept: AN0383

Job No: A07-3736

Client: Camp Dresser and Mckee

Project: NY7A9595

SDG:
Case:
SMO No:
No. Samps: 1

Radiation Check: YES
Custody Seal: YES
Chain of Custody: YES
Sample Tags: NO
Sample Tag Numbers: NO
SMO Forms: NO
CLSIS: NO

	}							Pres	log
Sample	Receive	Client Sample ID	Lab ID	Condition	Bottles	Parameters	Lab	Code	PH
	4/13/2007 09:30 4/13/2007 09:30 4/13/2007 09:30 4/13/2007 09:30 4/13/2007 09:30 4/13/2007 09:30 4/13/2007 09:30 4/13/2007 09:30	C-20-0407 C-20-0407 C-20-0407 DUP C-20-0407 DUP C-20-0407 DUP C-21-0407 C-21-0407 DUP C-22-0407 C-22-0407 DUP FD-0407	A7373601MS A7373601SD A7373602 A7373602MS A7373602SD A7373603 A7373604 A7373605 A7373606 A7373607	Good Good Good	2-11GA 2-11GA 2-11GA 1-11GA 1-11GA 2-11GA 2-11GA 2-11GA 2-11GA 2-11GA 1-11GA	PCBS PCBS PCBS PCBS (EXTRACT+HOLD) PCBS (EXTRACT+HOLD) PCBS (EXTRACT+HOLD) PCBS PCBS (EXTRACT+HOLD) PCBS PCBS (EXTRACT+HOLD) PCBS PCBS (EXTRACT+HOLD) PCBS PCBS (EXTRACT+HOLD)	RECNY RECNY RECNY RECNY	0100 0100 0100 0100 0100 0100 0100 010	

cample Custodian:	ample Custodian: 4/3/2005	Analytical Services Coordinator:	/20
-------------------	---------------------------	----------------------------------	-----

#### Preservation Code References:

DUSR & Analytical Report October Semi-Annual Sampling Event

### **Data Validation Services**

120 Cobble Creek Road P.O. Box 208 North Creek, NY 12853

> Phone 518-251-4429 Facsimile 518-251-4428

December 18, 2007

Matthew Millias CDM One General Motors Dr. Suite 2 Syracuse, NY 13206

RE:

Data Usability Summary Report for NMPC O&M, Wallace & Sons-Cobleskill site

STL-Buffalo Job No. A07-B339

Dear Mr. Millias:

Review has been completed for the data package generated by Test America Laboratories, Inc. that pertains to samples collected 10/02/07 at the NMPC Cobleskill site. Three aqueous samples and a field duplicate were processed for low level TCL PCBs by USEPA SW846 method 8082, with additional QC requirements of the NYSDEC ASP.

The data package submitted contains full deliverables for validation, but this usability report is generated from review of the summary form information, with review of sample raw data, and limited review of associated QC raw data. Full validation has not been performed. However, the reported summary forms have been reviewed for application of validation qualifiers, using guidance from the NMPC generic QAPP, USEPA Region 2 validation SOPs, the USEPA National Functional Guidelines for Data Review, and professional judgment, as affects the usability of the data. The following items were reviewed:

- * Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times
- * Surrogate Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlations
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrument IDLs
- * Sample Quantitation and Identification

The items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review.

In summary, sample analyte values/reporting limits are usable, with reporting limits edited upward to reflect the processing.

Copies of the laboratory case narrative and the sample identification summary forms are attached to this text, and should be reviewed in conjunction with this report. Also included with this narrative are sample result forms, reflecting the reporting limit adjustment.

#### TCL PCBs by EPA 608

The reporting limits for the non-detected Aroclors have been raised to 0.10 ug/L from 0.065 ug/L, to reflect the lowest concentration supported by the instrument calibration range.

Holding times were met, and surrogate recoveries are within required limits. Blanks show no contamination.

The matrix spikes of Aroclors 1016 and 1260 in C-20-1007 show acceptable recoveries and duplicate correlations. Blind field duplicate correlations of C-21-1007 were also with within guidance limits.

An outlying surrogate calibration standard response that was observed does not negatively impact the results of the samples.

Both analytical columns show elevated responses for Aroclor 1260 in one of the calibration standards. The sample results report no detection, and are therefore not affected. Other confirmation column calibration standards responses fall outside acceptable limits. However, the non-detected results are based upon acceptable primary column performance, and the confirmation column data are therefore not necessary.

The chromatograms are not scaled according to ASP requirements, but are normalized to a solvent peak. Therefore, independent verification of the reported non-detected results is not possible.

#### Data Package Completeness

Although required of the laboratory deliverables, raw data are not identified with the client ID.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Very truly yours,

Judy Harry

### VALIDATION QUALIFIER DEFINITIONS

#### DATA QUALIFIER DEFINITIONS

The following definitions provide brief explanations of the national qualifiers assigned to results in the data review process. If the Regions choose to use additional qualifiers, a complete explanation of those qualifiers should accompany the data review.

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- N The analysis indicates the present of an analyte for which there is presumptive evidence to make a "tentative identification."
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The analyte was not detected above the reported sample quantitation limit.

  However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

4

### LABORATORY SAMPLE IDs AND CASE NARRATIVES

### NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

The second second

### SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID	ANÂLYTICAL REQUIREMENTS						
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
C-20-1007	A7B33901	-	1 V4 3 C		SW8463	_	-	-
C-20-1007"DUP"	A7B33902	•	-	<b>-</b>	SW8463	-	-	
C-21-1007	A7B33903	. 1	-	•	SW8463	-		
C-21-1007"DUP"	A7B33904	-	•	_	SW8463			-
C-22-1007	A7B33905	•	•	_	SW8463	-	-	<u>-</u>
C-22-1007"DUP"	A7B33906	-	-		SW8463	-	_	-
FD-1007	A7B33907		-	-	SW8463	-	-	-
FD-1007"DUP"	A7B33908		-	-	SW8463	-	-	

NYSDEC-1

#### SDG NARRATIVE

Job#: <u>A07-B339</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

#### General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

#### Sample Receipt Comments

#### A07-B339

Sample Cooler(s) were received at the following temperature(s);  $2.0\,^{\circ}$ C All samples were received in good condition.

#### GC Extractable Data

For method 8082, several compounds exhibited a percent difference greater than 15% from the expected amount in the ending continuing calibration. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

with the agency cally to

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason/R. Kacalski Project Manager

Date

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

### **QUALIFIED REPORT FORMS**

### STL

#### DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

#### ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- Indicates analysis is not within the quality control limits.

#### **INORGANIC DATA QUALIFIERS**

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit,
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- * indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

	C-20-1007
Lab Name: <u>SIL Buffalo</u> Contrac	it:
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A7833901
Sample wt/vol: <u>1060.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>12A07069.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 10/02/2007 10/04/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 10/07/2007
Concentrated Extract Volume:2000(uL)	Date Analyzed: 10/08/2007
Injection Volume: 1.00 (uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y/N) Y
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260 1336-36-3Total Polychlorinated Bipher	0.047 U 0.047 U 0.047 U 0.047 U 0.047 U 0.047 U

I oh Name (CIIII Treffole	C-21-1007
Lab Name: STL Buffalo Contract:	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A7B33903
Sample wt/vol: 1060.00 (g/mL) ML	Lab File ID: <u>12A07074.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: <u>10/02/2007</u> <u>10/04/200</u>
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: <u>10/07/2007</u>
Concentrated Extract Volume:2000(uL)	Date Analyzed: <u>10/08/2007</u>
Injection Volume: 1.00 (uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y/N) N
	ONCENIRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260 1336-36-3Total Polychlorinated Biphenyls	0.047 U 0.047 U 0.047 U 0.047 U 0.047 U

## CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 8082 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Lab Name: STL Buffalo Contrac	t:
was. <u>Dir ration</u>	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A7B33905
Sample wt/vol:1060.00 (g/mL) ML	Lab File ID: <u>12A07075.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: <u>10/02/2007</u> <u>10/04/2007</u>
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 10/07/2007
Concentrated Extract Volume:2000(uL)	Date Analyzed: 10/08/2007
Injection Volume: 1.00 (uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y/N) Y
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260 1336-36-3Total Polychlorinated Biphem	0.047 U 0.047 U 0.047 U 0.047 U 0.047 U

## CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 8082 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Lab Name: STL Buffalo Contrac	FD-1007
Tab Nate: SIL Burraro Contrac	il:
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: A7B33907
Sample wt/vol: <u>1060.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>12A07076.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 10/02/2007 10/04/2007
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: <u>10/07/2007</u>
Concentrated Extract Volume:2000(uL)	Date Analyzed: <u>10/08/2007</u>
Injection Volume: 1.00 (uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: $(Y/N)$ N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260 1336-36-3Total Polychlorinated Biphen	0.047 U 0.047 U 0.047 U 0.047 U 0.047 U 0.047 U

### CAMP DRESSER AND MCKEE NIAGARA MOHANK O & M METHOD 8082 - POLYCHLORINATED BIPHENYLS WATER SURROGATE RECOVERY

Lab Name: STL Buffalo		Contract:	_
Lab Code: RECNY	Case No.:	SAS No.:	SDG No.:
GC Column(1): <u>ZB-35</u>	1D: <u>0.53</u> (m	n)	

	Client Sample ID	Lab Sample ID		TCMX %REC #	342222		======	=======		222222	TOT
1	C-20-1007	A7833901	64	92	}				ĺ	( ·	0
2	C-20-1007 MS	A7B33901MS	54	104	i	}			{	(	0
3	C-20-1007 SD	A7833901SD	59	112	1	1			}	[	0
4	C-21-1007	A7B33903	100	118	1	•			,	<b>[</b>	0
5	C-22-1007	A7B33905	78	104	·						0
6	FD-1007	A7833907	74	114	j '						0
7	Matrix Spike Blank	A781572501	82	109	)						0
8	Method Blank	A781572502	96	110	)	j '					0

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene

(26-145)

(25-152)

# Column to be used to flag recovery values
 * Values outside of contract required QC limits
 D Surrogates diluted out

### STL

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.sti-inc.com

#### ANALYTICAL REPORT

Job#: A07-B339

Project#: NY7A9595

Site Name: <u>Niagara Mohawk O & M</u>
Task: Wallace & Sons Scrapyard

Timothy Beaumont CDM One General Motors Dr. STE 2 Syracuse, NY 13206

SIL Buffalo

Jason R. Kacalski Project Manager

10/17/2007

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

### STL Buffalo Current Certifications

### As of 5/16/2007

STATE	Program	Gert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	. 90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	NELAP SDWA, CWA, RCRA	NY455
New York	NELAP AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

Sample Data Summary Package

### SAMPLE SUMMARY

			SAMPI	ED	RECEIVI	<b>ED</b>
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7B33901	C-20-1007	WATER	10/02/2007	11:20	10/04/2007	13:00
A7B33901MS	C-20-1007 MS	WATER	10/02/2007	11:20	10/04/2007	13:00
A7B33901SD	C-20-1007 SD	WATER	10/02/2007	11:20	10/04/2007	13:00
A7B33902	C-20-1007"DUP"	WATER			10/04/2007	
A7B33902MS	C-20-1007"DUP" MS	WATER	10/02/2007	11:20	10/04/2007	13:00
A7B33902SD	C-20-1007"DUP" SD	WATER	10/02/2007	11:20	10/04/2007	13:00
A7B33903	C-21-1007	WATER	10/02/2007	12:30	10/04/2007	13:00
A7B33904	C-21-1007"DUP"	WATER	10/02/2007	12:30	10/04/2007	13:00
A7B33905	C-22-1007	WATER	10/02/2007	13:25	10/04/2007	13:00
A7B33906	C-22-1007"DUP"	WATER	10/02/2007	13:25	10/04/2007	13:00
A7B33907	FD-1007	WATER	10/02/2007		10/04/2007	13:00
A7B33908	FD-1007"DUP"	WATER	10/02/2007		10/04/2007	13:00

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

### METHODS SUMMARY

Job#: A07-B339

Project#: NY7A9595

Site Name: <u>Niagara Mohawk O & M</u>

	ANALYTICAL
PARAMETER	METHOD
METHOD 8082 - PCB	SW8463 8082LOW
METHOD 8082 - POLYCHLORINATED BIPHENYLS	SW8463 8082LOW

### References:

SW8463

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

#### SDG NARRATIVE

Job#: A07-B339

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

### General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

### Sample Receipt Comments

### A07-B339

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

#### GC Extractable Data

For method 8082, several compounds exhibited a percent difference greater than 15% from the expected amount in the ending continuing calibration. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jason/R. Kacalski Project Manager

Date

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Date: 10/17/2007 Time: 11:31:35

Requested Reporting Limits < Lab PQL

Page:

Rept: AN1520

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to lab MDL. It must be noted that results reported below lab standard quantitation limit (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	<u>Parameter</u>	Unit	Client RL	Lab POL
Organics		•		
8082LOW	Aroclor 1016	UG/L	0.050	0.060
8082LOW	Aroclor 1221	UG/L	0.050	0.060
8082LOW	Aroclor 1232	UG/L	0.050	0.060
8082LOW	Aroclor 1242	UG/L	0.050	0.060
8082LOW	Aroclor 1248	UG/L	0.050	0.060
8082LOW	Aroclor 1254	UG/L	0.050	0.060
8082LOW	Aroclor 1260	UG/L	0.050	0.060

### NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

### SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID			ANALY	TICAL REQ	UIREMENTS	3	
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
C-20-1007	A7B33901	-	-	_	SW8463		<u>.</u>	<u>-</u>
C-20-1007"DUP"	A7B33902	_		-	SW8463	-	-	-
C-21-1007	A7B33903	-	-	-	SW8463	-	-	-
C-21-1007"DUP"	A7B33904	-	-	-	SW8463	-	-	<u>-</u>
C-22-1007	A7B33905				SW8463	-	<u>-</u>	<u>-</u>
C-22-1007"DUP"	A7B33906	-	-	<u>-</u>	SW8463		<u> </u>	-
FD-1007	A7B33907			-	SW8463		-	_
FD-1007"DUP"	A7B33908	-		_	SW8463	-	-	

NYSDEC-1

### NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

### SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

LAD NAME, SEVERN TREE	T. LA LOCICIA	OTCLEO, HIC.			
SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
C-20-1007	WATER	10/02/2007	10/04/2007	10/07/2007	10/08/2007
. C-20-1007"DUP"	WATER	10/02/2007	10/04/2007	10/07/2007	10/08/2007
C-21-1007	WATER	10/02/2007	10/04/2007	10/07/2007	10/08/2007
C-21-1007"DUP"	WATER	10/02/2007	10/04/2007	10/07/2007	10/08/2007
C-22-1007	WATER	10/02/2007	10/04/2007	10/07/2007	10/08/2007
C-22-1007"DUP"	WATER	10/02/2007	10/04/2007	10/07/2007	10/08/2007
FD-1007	WATER	10/02/2007	10/04/2007	10/07/2007	10/08/2007
FD-1007"DUP"	WATER	10/02/2007	10/04/2007	10/07/2007	10/08/2007

NYSDEC-4

### NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

### SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CAB WAIVIE. SEVERIVIRE	T DI ID OIG II C	January, 1110.			
SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
C-20-1007	WATER	SW8463	SEPF	AS REQUIRED	AS REQUIRED
C-20-1007"DUP"	WATER	SW8463	SEPF	AS REQUIRED	AS REQUIRED
C-21-1007	WATER	SW8463	SEPF	AS REQUIRED	AS REQUIRED
C-21-1007"DUP"	WATER	SW8463	SEPF	AS REQUIRED	AS REQUIRED
C-22-1007	WATER	SW8463	SEPF	AS REQUIRED	AS REQUIRED
C-22-1007"DUP"	WATER	SW8463	SEPF	AS REQUIRED	AS REQUIRED
FD-1007	WATER	SW8463	SEPF	AS REQUIRED	AS REQUIRED
FD-1007"DUP"	WATER	SW8463	SEPF	AS REQUIRED	AS REQUIRED

NYSDEC-6

## STL

### DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

#### ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This figg identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aidol-condensation product.
- Indicates coelution.
- Indicates analysis is not within the quality control limits.

### **INORGANIC DATA QUALIFIERS**

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

## CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 8082 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

T 1. 37	C-20-1007
Lab Name: SIL Buffalo Contrac	t:
Lab Code: RECNY Case No.: SAS No.:	: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A7B33901
Sample wt/vol: <u>1060.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>12A07069.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: <u>10/02/2007</u> <u>10/04/2007</u>
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: <u>10/07/2007</u>
Concentrated Extract Volume:2000(uL)	Date Analyzed: <u>10/08/2007</u>
Injection Volume: 1.00 (uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y/N) Y
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260 1336-36-3Total Polychlorinated Biphen	0.047 U U 0.047 U U 0.047 U 0.047 U 0.047 U 0.047 U 0.047 U 0.047 U 0.047 U 0.047 U 0.047 U

## CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 8082 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

### CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 8082 - POLYCHLORINATED BIPHENYLS

ANALYSIS DATA SHEET

C-22-1007

Lab Name: STL Buffalo Contra	act:	
· <del></del> ·		
Lab Code: RECNY Case No.: SAS No.	.: SLG NO.:	
Matrix: (soil/water) WATER	Lab Sample ID: A7	/B33905
Sample wt/vol: 1060.00 (g/mL) ML	Lab File ID: 12	A07075.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 10	)/02/2007 <u>10/04/2007</u>
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 10	)/07/2007
Concentrated Extract Volume:2000(uL)	Date Analyzed: <u>10</u>	0/08/2007
Injection Volume:1.00(uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y	//n) <u>Y</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>	Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5	0.047 0.047 0.047 0.047 0.047 0.047	บ บ บ บ บ บ
1336-36-3Total Polychlorinated Riphe	emv7g-8082 (7 AR) √ 0 066	17

## CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 8082 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA CHETT

ANALYSIS DATA SHEET

Client No.

	FD-1007
Lab Name: <u>STL Buffalo</u> Contrac	t:
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: A7B33907
Sample wt/vol: 1060.00 (g/mL) ML	Lab File ID: <u>12A07076.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 10/02/2007 10/04/2007
Extraction: (SepF/Cont/Sonc/Soxh): <u>SEPF</u>	Date Extracted: <u>10/07/2007</u>
Concentrated Extract Volume:2000(uL)	Date Analyzed: <u>10/08/2007</u>
Injection Volume: 1,00 (uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260 1336-36-3Total Polychlorinated Biphen	0.047 U 0.047 U 0.047 U 0.047 U 0.047 U 0.047 U
1220-20-2Torat kotacimortuaced gibuen	ΥΤΡ-000ς (\ WK  \ Λ.000 (Ω

### CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 8082 - POLYCHLORINATED BIPHENYLS WATER SURROGATE RECOVERY

Lab Name: <u>STL Buffalo</u>		Contract:	
Lab Code: RECNY Ca	se No.:	SAS No.:	SDG No.:
GC Column(1): ZB-35	1D: <u>0.53</u> (mm)		

	Client Sample ID	Lab Sample ID		TCMX %REC #							TOT
	=======================================	-#==========	2=22==	222222	#EEEEE	======	=====	2222565	=#22222	======	===
1	C-20-1007	A7B33901	64	92					•		0
2	C-20-1007 MS	A7B33901MS	54	104	1		'				0
3	C-20-1007 SD	A7B33901SD	59	112					<b> </b>	1	0
4	C-21-1007	A7833903	100	118	1			1	ļ	}	0
5	C-22-1007	A7B33905	78	104	!		İ				0
6	FD-1007	A7B33907	74	114		1			}		0
7	Matrix Spike Blank	A781572501	82	109		'		'	\	ì '	0
8	Method Blank	A7B1572502	96	110						1	0

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene

(26-145) (25-152)

- # Column to be used to flag recovery values* Values outside of contract required QC limitsD Surrogates diluted out

## CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 8082 - POLYCHLORINATED BIPHENYLS WATER MATRIX SPIKE BLANK RECOVERY

Lab Name: STL Buffalo		Contract:			p ID: <u>A7B1572502</u>
Lab Code: <u>RECNY</u> Case No	).:	SAS No.: _	<del></del>	SDG	No.:
Matrix Spike - Client Sampl	.e No.: <u>Method B</u>	<u>lank</u>			
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.	+
Aroclor 1016 Aroclor 1260	1.00	1.04 1.08	105 108	58 - 141 56 - 144	
# Column to be used to flag	g recovery and Ri	PD values with ar	n asteris	зk	-
* Values outside of QC limi	ts				
Spike recovery: 0 out o	of 2 outside	limita			

Comments:

### CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M

### METHOD 8082 - POLYCHLORINATED BIPHENYLS WATER MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	STL Buffa	<u>lo</u>	Contract:	Lab Samp ID: <u>A7B33901</u>
Lab Code:	RECNY	Case No.:	SAS No.:	SDG No.:
Matrix Sp:	ike - Clier	nt Sample No.: <u>C-20-1007</u>		

COMPOUND	SPIKE ADDED UG/L	SAMPLE CONCENTRATION UG/L	MS CONCENTRATION UG/L	MS % REC #	QC LIMITS REC.	+
Aroclor 1016 Aroclor 1260	0.943 0.943	0 .	0.967 0.845	102 90	58 - 141 56 - 144	

COMPOUND	SPIKE ADDED UG/L	MSD CONCENTRATION UG/L	MSD % REC #	% RPD #	QQ RPD	C LIMITS	+
Aroclor 1016Aroclor 1260	0.943 0.943	1.06 1.02	113 109	10 19	30 30	58 - 141 56 - 144	

# Column to be used to flag recovery and RPD values with an asterisk

RPD:0 out of2 outside limits Spike recovery:0 out of4 outside	limits
Comments:	

^{*} Values outside of QC limits

## CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 8082 - POLYCHLORINATED BIPHENYLS METHOD BLANK SUMMARY

Tab Mama	cmi Puffala	Cantunat		Method Blank	
пчр муше:	STL Buffalo	contract: _	······································		<u>,</u>
Lab Code:	RECNY Case No.:	SAS No.	·: 5	DG No.:	
Lab Sample	≥ ID: <u>A7B1572502</u>	Lab	File ID: <u>12A</u> 0	7061.TX0	
Matrix: (s	soil/water) <u>WATER</u>	Ext	caction:	SEPF	
Sulfur Cle	eanup: (Y/N): <u>Y</u>	Date	Extracted:	10/07/2007	
Date Analy	yzed (1): <u>10/08/2007</u>	Date	Analyzed (2)	:	
Time Analy	zed (1): <u>11:22</u>	Time	Analyzed (2)	:	
Instrument	ID (1): <u>HP5890-12</u>	Inst	rument ID (2)	:	
GC Column	(1): <u>ZB-35</u> Dia: <u>0</u>	.53 (mm) GC (	Column (2):	Dia:	(mm)
7	THIS METHOD BLANK APPLIE	s to the foi	LOWING SAMPLE	ES, MS AND MSD:	
	CLIENT SAMPLE NO.	LAB SAMPLE ID		DATE ANALYZED 2	
	C-20-1007 C-20-1007 MS	A7B33901 A7B33901MS A7B33901SD A7B33903 A7B33905	10/08/2007 10/08/2007 10/08/2007 10/08/2007 10/08/2007 10/08/2007		
Comments:				<del></del>	

## CAMP DRESSER AND MCKEE NIAGARA MOHAWK O & M METHOD 8082 - POLYCHLORINATED BIPHENYLS ANALYSIS DATA SHEET

Lab Name: STL Buffalo Contract:	3	Method Blank
	<del></del>	
Lab Code: RECNY Case No.: SAS No.: SDG	No.:	
Matrix: (soil/water) WATER Lai	b Sample ID:	A7B1572502
Sample wt/vol:1000.00 (g/mL) ML	b File ID:	12A07061.TX0
% Moisture: decanted: (Y/N) N Date	te Samp/Recv:	
Extraction: (SepF/Cont/Sonc/Soxh): SEPF Date	te Extracted:	10/07/2007
Concentrated Extract Volume:2000(uL) Date	te Analyzed:	10/08/2007
Injection Volume:1.00(uL) Di	lution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 5.00	lfur Cleanup:	(Y/N) <u>Y</u>
CONCENTRATION CAS NO. COMPOUND (ug/L or ug/l	UNITS: Kg) <u>UG/L</u>	Q
12674-11-2Aroclor 1016 11104-28-2Aroclor 1221 11141-16-5Aroclor 1232 53469-21-9Aroclor 1242 12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260 1336-36-3Total Polychlorinated Biphenyls-8082 (7 AR	0.050 0.050 0.050 0.050 0.050 0.050 0.050	บ บ บ บ บ

Sample Data Package

SDG Narrative

### SAMPLE SUMMARY

			SAMPI	SAMPLED		ED CE
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7B33901	C-20-1007	WATER	10/02/2007	11:20	10/04/2007	13:00
A7B33901MS	C-20-1007 MS	WATER			10/04/2007	
A7B33901SD	C-20-1007 SD	WATER	10/02/2007	11:20	10/04/2007	13:00
A7B33902	C-20-1007"DUP"	WATER	10/02/2007	11:20	10/04/2007	13:00
A7B33902MS	C-20-1007"DUP" MS	WATER	10/02/2007	11:20	10/04/2007	13:00
A7B33902SD	C-20-1007"DUP" SD	WATER	10/02/2007			
A7B33903	C-21-1007	WATER	10/02/2007	12:30	10/04/2007	13:00
A7B33904	C-21-1007"DUP"	WATER	10/02/2007	12:30	10/04/2007	13:00
A7B33905	C-22-1007	WATER	10/02/2007	13:25	10/04/2007	13:00
A7B33906	C-22-1007"DUP"	WATER	10/02/2007	13:25	10/04/2007	13:00
A7B33907	FD-1007	WATER	10/02/2007		10/04/2007	13:00
A7B33908	FD-1007"DUP"	WATER	10/02/2007		10/04/2007	13:00

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

#### METHODS SUMMARY

Job#: <u>A07-B339</u>

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

	ANALYTICAL
PARAMETER	METHOD
METHOD 8082 - PCB	SW8463 8082LOW
METHOD 8082 - POLYCHLORINATED BIPHENYLS	SW8463 8082LOW

### References:

SW8463

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

#### SDG NARRATIVE

Job#: A07-B339

Project#: NY7A9595

Site Name: Niagara Mohawk O & M

### General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

### Sample Receipt Comments

### A07-B339

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

### GC Extractable Data

For method 8082, several compounds exhibited a percent difference greater than 15% from the expected amount in the ending continuing calibration. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Jasop R. Kacalski Project Manager

Date

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Chain Of Custody Documentation

### Chain of Custody Record



STL-4124 (0901)									<del></del>								15				·	Obaia -f	C	6 h	
COM			Project	Mana	ger I	11.	x1	,	01	1							Date	•	10	<b>7</b> .		Chain of	358		
Address			Telepho	one Ni	mber	(Area	VI Codé	1/Fax	Num	ber							Lab I	Vumo	<u>-/0</u>			<u> </u>	<u>ه د د</u>	102	
1 Cennal Motors D	πίνε	<u></u>	315	- 43	4-	325	7	-	<u>3/</u>	-4	6	357	100									Page_		_ of/_	==
City State Zip	Code		Site Co	ntact \(\O\)		4	.	Lab (	Conta	ict						Ana mort	alysis i e spac	(Attad :e is i	ch list needs	tif ∍d)				•	
Project Name and Location (State)	<u>32c</u>	عاد	Carrier	Mayb.	UNU	nner									3	TT	7	T		T		7			
N6 Mwallace and Son Inc	بالم	odra00 W		م دهد	M	֟֝֟֝֟֟֟֟	:66	أمد	C.,	1111 Cd	G	<u>"h</u>	- [		<u> </u>	1 1	- }	1	{ }	- {	1		Snecial	Instructions/	
Contract/Purchase Order/Quote No.	-Ent	الم مياران	1	7/-1	VV				,	ontai			{	2000	3037	{	- {				\ \	1 6	onditio	ns of Receipt	
				<u> </u>	Ма	trix ———			P	reser	vativ	es .		$\infty$	얾		ļ	1		- [		<b>\</b>			
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	1	Date	Time	Air	Aqueous	Soil		Unpres.	H2S04	HNO3		ZnAc/ NaOH		8	8			_							
C-20-1007 MS/USD	10/2	407	1120		ΧŢ			6			J			X								deire	tulia	ity oos	طوه
(-20-1007 "DUP" AUSINSM		<u>i</u>	1120		(			3							X									υ '	<i>'</i>
(-21-1007	·		1230		X.			2			$\prod$			X							$\prod$			- · <del></del>	
C-21-1007 " NOP"			1230	1	¢			$\overline{I}$							X								T		
C-22-1007			1325	•	٧_			2					. ;	X											
C-22-1007 " DUP"			1325		c			1				$\top$		7	X	T		Τ							
FD-1007			)	'	4			2			T			X											
FD-1007 " PUP"			}		<b>X</b>						$\prod$	Ţ_]			X		$\int$						$\Box$		
· · · · · · · · · · · · · · · · · · ·												7 ]	Π			T					T				
						1			7		1		$\sqcap$				_	$\top$		$\neg$	1				
	<del> </del> -		<del></del>		$\top$	+			7	1	+			$\exists$	+	1-1	+	<del>                                     </del>	† †	+	++	+		<del></del>	
	-			$\dagger$	+	_		$\dashv$	+	$\dashv$	+	+	$\vdash$	1		++	+	┪-	† †	+-	+	+-			
Possible Hazard Identification	<b></b>			Sa	mple	l Dispos	LL_J al				丄		<b>L_</b> _L			11		Ц.,	40.45		<u></u>				
Non-Hazard	Poi	ison B	Unknown		Retu	rn To C	Client		X Di	sposa	l By	Lab		vchi	ve For		Мо	nths			1 mont	essed if sa h)	mpies are	retaineo	
Turn Around Time Required								1	OC F	Requir	eme	nts (Spe		- 1											
24 Hours 48 Hours 7 Days 14 D	ays	☐ 21 Day		ner	<u>≥ĭ</u>			=-		<del></del> -	==		AT	<u></u>										<u> </u>	
1. Relinguished By			Date 10	3/07		Time /\$.	150	2		ceive	<u> </u>	FIX	E GI	/	1/5	4		74	ti				3/07	15/50	
2. Relinquished By		<del></del>	Date		Ī	Time			2. Re	ceive	d By			1			. —			$\Lambda^{-}$	_	Date	4-07	13:00	כ ו
3. Relinquished By			Date		<u> </u>	Time		7	3. Re	ceive	Tol		7	1		==	7	0	,0	*		Date		Time	(
Comments										//			_				$\stackrel{\sim}{-}$		_						
huld " DOY" Samples DISTRIBUTION; WHITE - Returned to Client with Report;	• (	anal	431 0	nl	<b>7</b>	4	H	ne	is	0	lu	16h	۷.	4	44	e f	rim	ous	٠,	um	14.				
DISTRIBUTION: WHITE - Returned to Client with Report:	CANAF	RY - Stays	Nit#the Sam	ple: P	ìNK -	Ffeia C	Сору								."	/				f					



Doc. Login/ARRF - Side A Rev 4 May 11, 2007

SAMPLE LOGIN	JOB # B379							
Shipment ID	Strict Internal COC: YES NO							
	Residual Chlorine Check:							
	Radiation Check < 0.02 mR/hr: YES / NO							
ACProject / Task _	N77A9595							
TAT 15 BD/ CD # OF SAMPLE	TRIP BLANK VIN #							
SHIPPED BY COLDER	ATTACH SHIPPING TAGS							
RECEIVED DATE / TIME:	101 4101 13:00							
COOLER TEMP 2-0 °C (4+/-2°C	) OK NO							
Cooler Custody Seal intact? YES/NO NON	SEAL#							
If NO to cooler temp or seal, PM notified? YES	(PM Name)							
SUBCONTRACT YES/NO LAB	SM#							
COMMENTS: SAMPLE TIME ACTUAL	+1HR +2 HR +3 HR NONE							
Sample received outside hold time								
Headspace in VOA vials								
Problems with bottle labels								
OTHER SAMPLE RECEIPT COMMENTS (Fill out ARRF, see reverse)								
PRESERVATION CHECKED YES	NONA Initials							
PRESERVATION CHECKED YES NO NA_X Initials  ARE SAMPLE DATES AND TIMES CORRECT? Initials								
WERE ALL THE APPROPRIATE TESTS ASSIGNE								
Temp.Cert,Loss:								

ite: 10/04/2007 me: 16:28:32

STL Buffalo Sample Inventory

Page:

Rept: AN0383

Job No: A07-B3 Client: Camp D Project: NY7A95 SDG: Case: SMO No: No. Samps: 8	resser and Mckee			Chain of Cus Sample Sample Tag Num SMO F	Seal: NO tody: YES Tags: NO	Cooler Temperature: 2.0	)°C		
								Pres	log
Sample	Receive	Client Sample ID	Lab ID	Condition	Bottles	Parameters	Lab	Code	PH
10/02/2007 11:20 10/02/2007 11:20			A7B33901 A7B33901MS	Good	2-1lGA 2-1lGA	PCB 8082 PCB 8082	RECNY	0100 0100	
10/02/2007 11:20	10/04/2007 13:00	C-20-1007	A7B33901SD	Good	2-11GA	PCB 8082	RECNY	0100	
10/02/2007 11:20 10/02/2007 11:20	10/04/2007 13:00	C-20-1007"DUP"	A7833902 A7B33902MS		1-11GA 1-11GA	PCB 8082(EXT&HOLD) PCB 8082(EXT&HOLD)	RECNY	0100	
10/02/2007 11:20 10/02/2007 12:30			A7B33902SD A7B33903	Good Good	1-11GA 2-11GA	PCB 8082(EXT&HOLD)	RECNY	0100	
10/02/2007 12:30 10/02/2007 13:25			A7B33904 A7B33905	Good Good	1-11GA 2-11GA	PCB 8082(EXT&HOLD) PCB 8082	RECNY	0100 0100	
10/02/2007 13:25	10/04/2007 13:00	C-22-1007"DUP"	A7833906	Good	1-11GA	PCB 8082(EXT&HOLD)	RECNY	0100	
10/02/2007 10/02/2007	10/04/2007 13:00 10/04/2007 13:00		A7833907 A7833908	Good Good	2-11GA 1-11GA	PCB 8082 PCB 8082(EXT&HOLD)	RECNY	0100	i

mple Custodian:

Analytical Services Coordinator:

### LNAPL Recovery Totals M.Wallace and Son, Inc. Cobleskill, New York

	C-3/I	/W-8	C-4				
į	Inches in Drum	Gallons in Drum	Inches in Drum	Gallons in Drum			
2004	1.5	1.50	0.75	0.75			
1/2005-6/2006	2.75	2.75	0.75	0.75			
7/25/2006	2.75	2.75	0.75	0.75			
8/23/2006	2.75	2.75	0.875	0.88			
9/14/2006	2.75	2.75	0.875	0.88			
10/11/2006	2.75	2.75	0.875	0.88			
11/13/2006	2.75	2.75	0.875	0.88			
12/6/2006	2.75	2.75	0.875	0.88			
1/30/2007	3.00	3.00	0.875	0.88			
2/21/2007	3.00	3.00	0.875	0.88			
3/13/2007	3.00	3.00	0.875	0.88			
4/2/2007	3.00	3.00	0.875	0.88			
5/9/2007	3.00	3.00	0.875	0.88			
6/13/2007	3.00	3.00	0.875	0.88			
7/19/2007	3.00	3.00	0.875	0.88			
8/13/2007	3.00	3.00	0.875	0.88			
9/17/2007	3.00	3.00	0.875	0.88			
10/2/2007	3.00	3.00	0.875	0.88			
11/15/2007	3.75	3.75	0.875	0.88			
12/5/2007	3.75	3.75	0.875	0.88			

Year	Combined Totals (gallons)
2004	2.25
1/2005-6/2006	1.25
	! 
	- 1-
7/2006-12/2006	0.13
	<del></del>
1/2007-12/2007	1.00

# LNAPL Recovery System Operation and Maintenance Site Maintenance and Monitoring M. Wallace and Son, Inc. Scrapyard Site Cobleskill, New York

Date: 1/30/2007	_			Tech	nician: TJ	В			
Time: 1030	_			Wea	ther: Cold	10.			
	<u>LNA</u>	PL WEL	L C-3/MW-8	<u>L</u>	NAPL V	VELL C-4			
Inches of product in the drum		3.0	<u> </u>	0.875					
Conversion factor		1" = 1.0	gals.		1" = 1.0	0 gals.			
Total product in gallons		3.0	0		0.8	88			
	<u>CIR</u>	<u>CLE</u>	COMMENTS:	CIR	CLE	COMMENTS:			
Check for LNAPL in well?	YES	NO _	None	YES	NO	None			
inspect the head pulley	YES	NO _		YES	NO .				
Clean the head pulleys	YES	NO _		YES	NO				
Clean the wipers and trough	YES	NO _		YES	NO				
Inspect the discharge hose	YES	NO _		YES	NO				
Inspect the drum	YES	NO _		YES	NO				
Inspect the drum containment	YES	NO _		YES	NO				
spect the timer	YES	NO _		YES	NO				
Run the system	YES	NO _		YES	NO				
Timer set at?	System rur	ns 30 minutes	s every 3 hours.	System rur	ns 15 minute	es every 12 hours.			
Inspect the building exterior	YES	NO _		YES	NO				
Building secure?	YES	NO _		· YES	NO				
Inspect the building interior	YES	NO _		YES	NO				
Is heater on?	YES	NO _		YES	NO				
Heater set at?	60	°F		60	°F				
Is exhaust fan on?	YES	NO		YES	NO				

### Comments:

Main Gate secure

Heaters were turned on but working correctly. The wires were burn at the heater connections. Replaced wire. Both Heaters now working fine in Building LNAPL WELL C-3/MW-8. Only 1 heater in Building LNAPL WELL C-4 is working. The other heater needs replacement and a new heater is on order.

Site Conditions

Vegetative Cover in place and competent Perimeter fencing secure

YES	NO	Comments:
YES	NO	Comments:
YES	NO	Comments:

On 1/18 and 1/22 Brady Fence installed a new 6 foot fence on the SW side of the property. The old fence panels were removed and taken off site by Brady Fence.

LNAPL Wells and Site OM 013007

Technician: TJB Date: 2/21/2007 Time: 1000 Weather: Partly Cloudy 20's LNAPL WELL C-4 LNAPL WELL C-3/MW-8 Inches of product in the drum 3.0 0.875 Conversion factor 1" = 1.0 gals. 1" = 1.0 gals. Total product in gallons 3.00 0.88 **CIRCLE COMMENTS: CIRCLE COMMENTS:** YES YES Check for LNAPL in well? NO None NO None YES YES Inspect the head pulley NO NO YES YES Clean the head pulleys NO NO Clean the wipers and trough YES NO YES NO Inspect the discharge hose YES NO YES NO YES YES Inspect the drum NO NO YES Inspect the drum containment YES NO NO YES NO YES NO ...spect the timer YES NO YES NO Run the system Timer set at? System runs 30 minutes every 3 hours. System runs 15 minutes every 12 hours. YES Inspect the building exterior YES NO NO YES NO **Building secure?** YES NO YES YES inspect the building interior NO NO Is heater on? YES NO YES NO 60 °F Heater set at? 60 °F

#### Comments:

Is exhaust fan on?

Installed new heater in Building LNAPL WELL C-4.

<u> </u>	<b>Site Conditions</b>					
Vegetative Cover in place and competent	YES	NO	Comm			
Perimeter fencing secure	YES	NO	Comm			
*fain Gate secure	YES	NO	Comm			

YES

NO

Over ~30" of snow has fallen within the last week. Use snowblower and shovel to clear driveway and around system.

Comments:

Comments:

Comments:

YES

NO

			,			
Date: 3/13/2007	P			Tech	nician: TJ	В
Time: 900	_			Weat	her: Partly	/ Cloudy 40's
	<u>LNA</u>	PL WELI	<u>L C-3/MW-8</u>	LNAPL WELL C-4		
Inches of product in the drum		3.0	<u>)                                     </u>	0.875		75
Conversion factor		1" = 1.0	gals.		1" = 1.0	0 gals.
Total product in gallons		3.0	0		0.8	38
	CIR	<u>CLE</u>	COMMENTS:	CIRC	CLE	COMMENTS:
Check for LNAPL in well?	YES	NO _	None	YES	NO _	None
nspect the head pulley	YES	NO _		YES	NO	
Clean the head pulleys	YES	NO _		YES	NO	
Clean the wipers and trough	YES	NO _		YES	NO	
nspect the discharge hose	YES	NO _		YES	NO	
nspect the drum	YES	NO _		YES	NO _	
nspect the drum containment	YES	NO _		YES	NO	
ispect the timer	YES	NO _		YES	NO	
Run the system	YES	NO _		YES	NO	
Timer set at?	System run	s 30 minutes	every 3 hours.	System run	s 15 minute	s every 12 hours.
nspect the building exterior	YES	NO _		YES	NO	
Building secure?	YES	NO _		YES	NO	
nspect the building interior	YES	NO _		YES	NO	
s heater on?	YES	NO _		YES	NO	
Heater set at?	60	°F		60	°F	
ls exhaust fan on?	YES	NO		YES	NO	

### Comments:

Vegetative Cover in place and competent Perimeter fencing secure

~ain Gate secure

YES NO Comments: YES NO Comments: YES NO Comments:

**Site Conditions** 

Snow is melting at a good rate.

		Cobies	KIII, NEW TOTK			
Date: 4/2/2007				<u>Tect</u>	nician: TJ	В
Time: 1500	_			Wea	ther: Sunn	y 50's
	<u>LNA</u>	PL WEL	L C-3/MW-8	Ţ	.NAPL И	/ELL C-4
Inches of product in the drum		3.	0	0.875		
Conversion factor		1" = 1.0	gals.		1" = 1.0	0 gals.
Total product in gallons		3.0	00	0.88		38
	CIR	CLE	COMMENTS:	<u>CIR</u>	<u>CLE</u>	COMMENTS:
Check for LNAPL in well?	YES	NO _	None	YES	NO .	None
Inspect the head pulley	YES	NO _		YES	NO .	
Clean the head pulleys	YES	NO		YES	NO	
Clean the wipers and trough	YES	NO _		YES	NO	
Inspect the discharge hose	YES	NO _		YES	NO	
Inspect the drum	YES	NO _		YES	NO .	
Inspect the drum containment	YES	NO _		YES	NO	<del></del>
ispect the timer	YES	NO _		YES	NO	
Run the system	YES	NO _		YES	NO	
Timer set at?	System rur	s 30 minute	s every 3 hours.	System rui	ns 15 minute	s every 12 hours.
Inspect the building exterior	YES	NO _		YES	NO	
Building secure?	YES	NO _		YES	NO	
Inspect the building interior	YES	NO _		YES	NO	
Is heater on?	YES	NO _		YES	NO	
Heater set at?	60	°F		60	°F	
Is exhaust fan on?	YES	NO		YES	NO	

	<u>Site</u>	Condit	ions
Vegetative Cover in place and competent	YES	NO	Comments:
Perimeter fencing secure	YES	NO	Comments:
^M ain Gate secure	YES	NO	Comments:

Date: 5/9/2007			-	Tech	nician: T	JB
Time: 1500	_			Weat	her: Sun	ny 70's
	<u>LNAI</u>	PL WEL	L C-3/MW-8	<u>L</u> .	NAPL V	VELL C-4
Inches of product in the drum		3	.0		0.	875
Conversion factor		1" = 1.	0 gals.		1" = 1	.0 gals.
Total product in gallons		3.	00		0	.88
	CIRC	LE	COMMENTS:	<u>CIR</u>	<u>CLE</u>	COMMENTS:
Check for LNAPL in well?	YES	NO	None	YES	NO	None
inspect the head pulley	YES	NO		YES	NO	
Clean the head pulleys	YES	NO		YES	NO	
Clean the wipers and trough	YES	NO		YES	NO	
Inspect the discharge hose	YES	NO		YES	NO	
Inspect the drum	YES	NO		YES	NO	
Inspect the drum containment	YES	NO		YES	NO	
aspect the timer	YES	NO		YES	NO	
Run the system	YES	NO		YES	NO	
Timer set at?	System runs	s 30 minute	es every 3 hours.	System run	s 15 minut	es every 12 hours.
Inspect the building exterior	YES	NO		YES	NO	
Building secure?	YES	NO		YES	NO	
Inspect the building interior	YES	NO		YES	NO	
Is heater on?	YES	NO		YES	NO	
Heater set at?	n/a	<u>F</u>		n/a	°F_	
Is exhaust fan on?	YES	NO	set to come on at 75°F	YES	NO	set to come on at 75°F
<u>Comments:</u>						
Vegetative Cover in place and co	ompetent	Site	Conditions  NO Comments	:		

NO

NO

Comments:

Comments: Installed "no trespassing" signs on the perimeter fencing.

YES

YES

Perimeter fencing secure

**ain Gate secure

Date: 6/13/2007	Technician: TJB					
Time: 900	_	Weather: Sunny 70's				
	LNA	PL WEL	.L C-3/MW-8	<u>L</u>	.NAPL V	VELL C-4
Inches of product in the drum		3	.0		0.8	375
Conversion factor		1" = 1.	0 gals.		1" = 1.	0 gals.
Total product in gallons		3.	00		0.	88
	CIRC	<u>CLE</u>	COMMENTS:	CIR	<u>CLE</u>	COMMENTS:
Check for LNAPL in well?	YES	NO	None	YES	NO	None
Inspect the head pulley	YES	NO		YÉS	NO	
Clean the head pulleys	YES	NO		YES	NO	
Clean the wipers and trough	YES	NO		YES	NO	<u> </u>
Inspect the discharge hose	YES	NO		YES	NO	
Inspect the drum	YES	NO		YES	NO	
Inspect the drum containment	YES	NO		YES	NO	
.aspect the timer	YES	NO		YES	NO	
Run the system	YES	NO		YES	NO	
Timer set at?	System run	s 30 minute	es every 3 hours.	System rur	ns 15 minute	es every 12 hours.
Inspect the building exterior	YES	NO	<u> </u>	YES	NO	
Building secure?	YES	NO		YES	NO	
Inspect the building interior	YES	NO		YES	NO	
Is heater on?	YES	NO		YES	NO	
Heater set at?	n/a	<u>°F</u>	<u></u> _	n/a	'F	
Is exhaust fan on?	YES	NO	set to come on at 75°F	YES	NO	set to come on at 75°F

	Site Conditions				
Vegetative Cover in place and competent	YES	NO	Comments:		
Perimeter fencing secure	YES	NO	Comments:		
-⁴ain Gate secure	YES	NO	Comments:		

Cobleskill, New York Date: 7/19/2007 Technician: TJB Time: 1100 Weather: Overcast 60's LNAPL WELL C-3/MW-8 LNAPL WELL C-4 Inches of product in the drum 0.875 3.0 1" = 1.0 gals. 1" = 1.0 gals. Conversion factor Total product in gallons 3.00 0.88 **CIRCLE CIRCLE COMMENTS: COMMENTS:** Check for LNAPL in well? YES NO YES NO None None YES YES Inspect the head pulley NO NO Clean the head pulleys YES NO YES NO Clean the wipers and trough YES YES NO NO Inspect the discharge hose YES NO YES NO Inspect the drum YES NO YES NO Inspect the drum containment YES NO YES NO inspect the timer YES NO YES NO Run the system YES NO YES NO Timer set at? System runs 30 minutes every 3 hours. System runs 15 minutes every 12 hours. YES YES Inspect the building exterior NO NO **Building secure?** YES NO YES NO Inspect the building interior YES NO YES NO YES NO Is heater on? YES NO Heater set at? n/a °F n/a °F YES NO Is exhaust fan on? YES

#### Comments:

	Site Conditions				
Vegetative Cover in place and competent	YES	NO	Comments:		
Perimeter fencing secure	YES	NO	Comments:		
*lain Gate secure	YES	NO	Comments:		

Asplundh completed the site vegetation removal and installed crusher run on the east side of the main treatment building. Installed rip-rap stone around the backwash line back to the quarry.

set to come on at 75°F

NO

set to come on at 75°F

			•			
Date: 8/13/2007	<del>-</del>			Tech	nnician: T.	IB
Time: 1100	_	Weather: Sunny 70's				
	<u>LNA</u>	PL WE	LL C-3/MW-8	<u>L</u>	NAPL V	VELL C-4
Inches of product in the drum		<u> </u>	3.0		0.8	375
Conversion factor		1" = 1	1.0 gals		1" = 1.	.0 gals
Total product in gallons		3	3.00		0.	88
	CIR	<u>CLE</u>	COMMENTS:	<u>CIR</u>	CLE	COMMENTS:
Check for LNAPL in well?	YES	NO	None	YES	NO	None
inspect the head pulley	YES	NO		YES	NO	
Clean the head pulleys	YES	NO		YES	NO	
Clean the wipers and trough	YES	NO		YES	NO	
Inspect the discharge hose	YES	NO		YES	NO	
Inspect the drum	YES	NO		YES	NO	
Inspect the drum containment	YES	NO		YES	NO	
spect the timer	YES	NO		YES	NO	
Run the system	YES	NO		YES	NO	
Timer set at?	System rui	ns 30 minu	tes every 3 hours.	System rur	ns 15 minute	es every 12 hours.
Inspect the building exterior	YES	NO		YES	NO	
Building secure?	YES	NO		YES	NO	
Inspect the building interior	YES	NO		YES	NO	
Is heater on?	YES	NO		YES	NO	
Heater set at?	n/a	°F		n/a	ı °F	
Is exhaust fan on?	YES	NO	set to come on at 75°F	YES	NO	set to come on at 75°F

### Comments:

Site Conditions

Vegetative Cover in place and competent Perimeter fencing secure

Main Gate secure

		<del></del>
YES	NO	Comments:
YES	NO	Comments:
YES	NO	Comments:

Asplundh applied weed killer to the perimeter fenceline(minus the north which borders the school), around the treatment buildings and any gravel areas.

Date: 9/17/2007	Technician: TJB					
Time: 1115	Weather: Sunny 70's					ny 70's
	<u>LNA</u>	PL WEI	LL C-3/MW-8	NELL C-4		
Inches of product in the drum		3	3.0		0.	875
Conversion factor		1" = 1	.0 gals.		<u>1" = 1</u>	.0 gals.
Total product in gallons		3	.00		0	.88
	CIR	<u>CLE</u>	COMMENTS:	CIR	CLE	COMMENTS:
Check for LNAPL in well?	YES	NO	None	YES	NO	None
Inspect the head pulley	YES	NO		YES	NO	
Clean the head pulleys	YES	NO		YES	NO	
Clean the wipers and trough	YEŚ	NO		YES	NO	
Inspect the discharge hose	YES	NO		YES	NO	
Inspect the drum	YES	NO		YES	NO	
'nspect the drum containment	YES	NO		YES	NO	
inspect the timer	YES	NO		YES	NO	
Run the system	YES	NO		YES	NO	
Timer set at?	System run	s 30 minut	es every 3 hours.	System rur	is 15 minu	tes every 12 hours.
Inspect the building exterior	YES	NO		YES	NO	
Building secure?	YES	NO		YES	NO	
Inspect the building interior	YES	NO		YES	NO	
Is heater on?	YES	NO		YES	NO	
Heater set at?	n/a	°F		n/a	°F	
ls exhaust fan on?	YES	NO	set to come on at 75°F	YES	NO	set to come on at 75°F
<u>Comments:</u>						

The belt on C-3/MW-8 was getting caught on bottom pulley. Pulled belt and pulley out of well. Inspection of the belt showed wear and needs replacement. The pulley was also worn and will also be replaced. Ordered a new belt and pulley assembly.

	Site Conditions				
Vegetative Cover in place and competent	YES	NO	Comments:		
Perimeter fencing secure	YES	NO	Comments:		
¹ain Gate secure	YES	NO	Comments:		

Date: 10/02/2007				<u>Tech</u>	nician: T	JB
Time: 1415	_			Weat	her: Sun	ny 60's
	LNA	PL WE	LL C-3/MW-8	<u>L</u>	NAPL V	VELL C-4
Inches of product in the drum		;	3.0		0.	875
Conversion factor		1" = 1	I.0 gals.		1" = 1	.0 gals
Total product in gallons		3	3.00		0	.88
	<u>CIR</u> (	CLE	COMMENTS:	CIR	<u>CLE</u>	COMMENTS:
Check for LNAPL in well?	YES	NO	None	YES	NO	None
Inspect the head pulley	YES	NO		YES	NO	
Clean the head pulleys	YES	NO	•	YES	NO	
Clean the wipers and trough	YES	NO		YES	NO	
Inspect the discharge hose	YES	NO		YES	NO	
Inspect the drum	YES	NO		YES	NO	
'nspect the drum containment	YES	NO		YES	NO	
inspect the timer	YES	NO		YES	NO	
Run the system	YES	NO		YES	NO	
Timer set at?	System runs	s 30 minut	tes every 6 hours.	System run	s 15 minut	es every 12 hours.
Inspect the building exterior	YES	NO		YES	NO	
Building secure?	YES	NO		YES	NO	
Inspect the building interior	YES	NO		YES	NO	
Is heater on?	YES	NO		YES	NO	
Heater set at?	40	°F		40	<u>°F</u>	
Is exhaust fan on?	YES	NO	set to come on at 75°F	YES	NO	set to come on at 75°F

### Comments:

Replaced the belt and bottom pulley assembly and adjusted the timer on C-3/MW-8.

<u>Site</u>	<u>Condit</u>	<u>ions</u>
 VEC	NO.	•

Vegetative Cover in place and competent Perimeter fencing secure

"ain Gate secure

<u> </u>	Orto Conditions				
YES	NO	Comments:			
YES	NO	Comments:			
YES	NO	Comments:			

Date: 11/15/2007 Technician: TJB Time: 0900 Weather: Sunny 60's **LNAPL WELL C-4** LNAPL WELL C-3/MW-8 Inches of product in the drum 3.75 0.875 Conversion factor 1" = 1.0 gals. 1" = 1.0 gals. Total product in gallons 3.75 0.88 **CIRCLE CIRCLE COMMENTS: COMMENTS:** Check for LNAPL in well? YES NO None YES NO None inspect the head pulley YES NO YES NO Clean the head pulleys YES NO YES NO Clean the wipers and trough YES NO YES NO Inspect the discharge hose YES NO YES NO YES YES Inspect the drum NO NO YES Inspect the drum containment NO YES NO YES NO YES inspect the timer NO Run the system YES NO YES NO Timer set at? System runs 30 minutes every 6 hours. System runs 15 minutes every 12 hours. YES Inspect the building exterior NO YES NO **Building secure?** YES NO YES NO Inspect the building interior YES NO YES NO Is heater on? YES NO YES NO Heater set at? 55 °F 55 °F Is exhaust fan on? YES NO YES set to come on at 75°F NO set to come on at 75°F

	Site Condition		
Vegetative Cover in place and competent	YES	NO	Comments:
Perimeter fencing secure	YES	NO	Comments:
*fain Gate secure	YES	NO	Comments:

Date: 12/5/2007	Technician: TJB					
Time: 1400				Weat	her: Parti	ly Cloudy 20's
	LNAF	PL WEI	LL C-3/MW-8	<u>L</u>	NAPL V	VELL C-4
Inches of product in the drum		3	.75		0.8	875
Conversion factor		1" = 1	.0 gals.		<u>1" = 1</u>	.0 gals.
Total product in gallons		3	.75		0	.88
	CIRC	<u>LE</u>	COMMENTS:	<u>CIR</u> (	CLE	COMMENTS:
Check for LNAPL in well?	YES	NO	None	YES	NO	None
inspect the head pulley	YES	NO		YES	NO	
Clean the head pulleys	YES	NO		YES	NO	
Clean the wipers and trough	YES	NO		YES	NO	
Inspect the discharge hose	YES	NO		YES	NO	
Inspect the drum	YES	NO	<u></u>	YES	NO	
Inspect the drum containment	YES	NO		YES	NO	
.∧spect the timer	YES	NO		YES	NO	
Run the system	YES	NO		YES	NO	
Timer set at?	System runs	30 minut	es every 6 hours.	System run	s 15 minut	es every 12 hours.
Inspect the building exterior	YES	NO		YES	NO	
Building secure?	YES	NO		YES	NO	
Inspect the building interior	YES	NO	<u></u>	YES	NO	
Is heater on?	YES	NO		YES	NO	
Heater set at?	55 °	<u>F</u>		55	<u>F</u>	
Is exhaust fan on?	YES	NO	set to come on at 75°F	YES	NO	set to come on at 75°F
Comments:		ŕ				
Covered the fresh air vents in each	n building to try	and redu	ıce heat lose.			
	<b>-</b>	<u>Site</u>	<u>Conditions</u>			

Vegetative Cover in place and competent

Perimeter fencing secure

*fain Gate secure

YES NO Comments:
YES NO Comments:
YES NO Comments:

Sample ID.	Date	Time	Turbidity (NTU)
NTS-BCW-0107	1/30/2007	900	3.70
NTS-BCW-0107 (DUP)	1/30/2007	900	3.70
NTS-EW-0107	1/30/2007	905	2.28
NTS-EW-0107 (DUP)	1/30/2007	905	2.28

Sample NTS-BCW is located between carbon vessels A and B.

Sample NTS-EW is located prior to discharge into the backwash surge tank.

(DUP) = In the event that PCB's are detected in a sample, the duplicate (DUP) sample will be analyzed.

Samples are analyzed for PCB's using EPA Method 608.

System Re	adings:
Quarry Level (ft.)	5,74
Flow Rate (gpm)	127
PH	7.59

Weather: Cold 10°

Sampled By: TJB

Sample ID.	Date	Time	<b>Turbidity</b> (ΝΤυ)
NTS-BCW-0207	2/27/2007	1300	1.31
NTS-BCW-0207 (DUP)	2/27/2007	1300	1.31
NTS-EW-0207	2/27/2007	1310	1.57
NTS-EW-0207 (DUP)	2/27/2007	1310	1.57

Sample NTS-BCW is located between carbon vessels A and B.

Sample NTS-EW is located prior to discharge into the backwash surge tank.

(DUP) = In the event that PCB's are detected in a sample, the duplicate (DUP) sample will be analyzed.

Samples are analyzed for PCB's using EPA Method 608.

System Readings:					
Quarry Level (ft.)	6.01				
Flow Rate (gpm)	85				
PH	7.62				

Weather: Cold 27°

Sampled By: TJB

#### Comments:

Also sampled the influent (Influent 0207).

Sample ID.	Date	Time	Turbidity (NTU)
NTS-BCW-0307	3/19/2007	730	0.99
NTS-BCW-0307 (DUP)	3/19/2007	730	0.99
NTS-EW-0307	3/19/2007	740	0.54
NTS-EW-0307 (DUP)	3/19/2007	740	0.54

Sample NTS-BCW is located between carbon vessels A and B.

Sample NTS-EW is located prior to discharge into the backwash surge tank.

(DUP) = In the event that PCB's are detected in a sample, the duplicate (DUP) sample will be analyzed.

Samples are analyzed for PCB's using EPA Method 608.

System Re	adings:
Quarry Level (ft.)	9.01
Flow Rate (gpm)	163
PH	6.55

Weather: Sunny 31°

Sampled By: TJB

Sample ID.	Date	Time	<b>Turbidity</b> (NTU)
NTS-BCW-0407	4/25/2007	1000	1.02
NTS-BCW-0407 (DUP)	4/25/2007	1000	1.02
NTS-EW-0407	4/25/2007	1010	0.60
NTS-EW-0407 (DUP)	4/25/2007	1010	0.60

Sample NTS-BCW is located between carbon vessels A and B.

Sample NTS-EW is located prior to discharge into the backwash surge tank.

(DUP) = In the event that PCB's are detected in a sample, the duplicate (DUP) sample will be analyzed. Samples are analyzed for PCB's using EPA Method 608.

System Readings:			
Quarry Level (ft.)	8.78		
Flow Rate (gpm)	218		
PH	6.51		

Weather: Cloudy 45°

Sampled By: TJB

Comments:

Flow rate taken from PLC panel.

Sample ID.	Date	Time	<b>Turbidity</b> (мти)
NTS-BCW-0507	n/a	n/a	n/a
NTS-BCW-0507 (DUP)	n/a	n/a	n/a
NTS-EW-0507	5/23/2007	800	4.62
NTS-EW-0507 (DUP)	5/23/2007	800	4.62

Sample NTS-BCW is located between carbon vessels A and B.

Sample NTS-EW is located prior to discharge into the backwash surge tank.

(DUP) = In the event that PCB's are detected in a sample, the duplicate (DUP) sample will be analyzed.

Samples are analyzed for PCB's using EPA Method 608.

System Readings:			
Quarry Level (ft.)	6.55		
Flow Rate (gpm)	105		
PH	6.43		

Weather: Sunny 52°

Sampled By: TJB

#### Comments:

Per NYSDEC's approval will no longer sample between carbon vessels A and B.

Sample ID.	Date	Time	Turbidity (ΝΤυ)
NTS-IW-	n/a	n/a	n/a
NTS-IW- (DUP)	n/a	n/a	n/a
NTS-EW-0607	6/27/2007	815	1.47
NTS-EW-0607 (DUP)	6/27/2007	815	1.47

Sample NTS-IW is located prior to the booster pumps. Sampled in February and August only. Sample NTS-EW is located prior to discharge into the backwash surge tank. (DUP) = In the event that PCB's are detected in a sample, the duplicate (DUP) sample will be analyzed. Samples are analyzed for PCB's using EPA Method 608.

System Readings:		
Quarry Level (ft.)	5.76	
Flow Rate (gpm)	35	
PH	6.23	

Weather: Sunny 70°

Sampled By: TJB

Sample ID.	Date	Time	Turbidity (ΝΤυ)
NTS-IW-	n/a	n/a	n/a
NTS-IW- (DUP)	n/a	n/a	n/a
NTS-EW-0707	7/25/2007	1430	0.17
NTS-EW-0707 (DUP)	7/25/2007	1430	0.17

Sample NTS-IW is located prior to the booster pumps. Sampled in February and August only.

Sample NTS-EW is located prior to discharge into the backwash surge tank.

(DUP) = In the event that PCB's are detected in a sample, the duplicate (DUP) sample will be analyzed.

Samples are analyzed for PCB's using EPA Method 608.

System Readings:			
Quarry Level (ft.)	5.53		
Flow Rate (gpm)	52		
PH	6.17		

Weather: Sunny 75°

Sampled By: TJB

Sample ID.	Date	Time	<b>Turbidity</b> (NTU)
NTS-IW-0807	8/29/2007	700	0.21
NTS-IW-0807 (DUP)	8/29/2007	700	0,21
NTS-EW-0807	8/29/2007	710	0.14
NTS-EW-0807 (DUP)	8/29/2007	710	0.14

Sample NTS-IW is located prior to the booster pumps. Sampled in February and August only.

Sample NTS-EW is located prior to discharge into the backwash surge tank.

(DUP) = In the event that PCB's are detected in a sample, the duplicate (DUP) sample will be analyzed.

Samples are analyzed for PCB's using EPA Method 608.

System Readings:			
Quarry Level (ft.) 5.73			
Flow Rate (gpm)	56		
PH	6.29		

Weather: Sunny 60's

Sampled By: TJB

Sample ID.	Date	Time	<b>Turbidity</b> (мти)
NTS-IW-	n/a	n/a	n/a
NTS-IW- (DUP)	n/a	n/a	n/a
NTS-EW-0907	9/18/2007	700	0.71
NTS-EW-0907 (DUP)	9/18/2007	700	0.71

Sample NTS-IW is located prior to the booster pumps. Sampled in February and August only.

Sample NTS-EW is located prior to discharge into the backwash surge tank.

(DUP) = In the event that PCB's are detected in a sample, the duplicate (DUP) sample will be analyzed.

Samples are analyzed for PCB's using EPA Method 608.

System Readings:			
Quarry Level (ft.) 5.34			
Flow Rate (gpm)	56		
PH 6.23			

Weather: Sunny 40's

Sampled By: TJB

Sample ID.	Date	Time	<b>Turbidity</b> (NTU)
NTS-IW-	n/a	n/a	n/a
NTS-IW- (DUP)	n/a	n/a	n/a
NTS-EW-0907-A	9/25/2007	800	0.25
NTS-EW-0907-A (DUP)	9/25/2007	800	0.25

Sample NTS-IW is located prior to the booster pumps. Sampled in February and August only.

Sample NTS-EW is located prior to discharge into the backwash surge tank.

(DUP) = In the event that PCB's are detected in a sample, the duplicate (DUP) sample will be analyzed.

Samples are analyzed for PCB's using EPA Method 608.

System Readings:					
Quarry Level (ft.) 4.48					
Flow Rate (gpm)	56				
PH 6.22					

Weather: Sunny 50's

Sampled By: TJB

Comments:

Second weekly sample

Sample ID. Date		Time	<b>Turbidity</b> (ΝΤυ)
NTS-IW-	NTS-IW- n/a		n/a
NTS-IW- (DUP) n/a		n/a	n/a
NTS-EW-1007 10/31/2007		840	0.51
NTS-EW-1007 (DUP)	10/31/2007	840	0.51

Sample NTS-IW is located prior to the booster pumps. Sampled in February and August only.

Sample NTS-EW is located prior to discharge into the backwash surge tank.

(DUP) = In the event that PCB's are detected in a sample, the duplicate (DUP) sample will be analyzed.

Samples are analyzed for PCB's using EPA Method 608.

System Readings:					
Quarry Level (ft.) 6.32					
Flow Rate (gpm)	49				
PH	6.34				

Weather: Sunny 40's

Sampled By: TJB

Sample ID.	Sample ID. Date		<b>Turbidity</b> (ΝΤυ)		
NTS-IW- n/a		n/a	n/a		
NTS-IW- (DUP) n/a		n/a	n/a		
NTS-EW-1107 11/19/2007		1100	1.66		
NTS-EW-1107 (DUP)	11/19/2007	1100	1.66		

Sample NTS-IW is located prior to the booster pumps. Sampled in February and August only.

Sample NTS-EW is located prior to discharge into the backwash surge tank.

(DUP) = In the event that PCB's are detected in a sample, the duplicate (DUP) sample will be analyzed.

Samples are analyzed for PCB's using EPA Method 608.

System Readings:					
Quarry Level (ft.) 6.71					
Flow Rate (gpm) 62					
PH	6.78				

Weather: Cloudy 30's

Sampled By: TJB

Sample ID. Date		Time	Turbidity (טדא)		
NTS-IW- n/a		n/a	n/a		
NTS-IW- (DUP) n/a		n/a	n/a		
NTS-EW-1207 12/12/2007		815	1.11		
NTS-EW-1207 (DUP) 12/12/2007		815	1.11		

Sample NTS-IW is located prior to the booster pumps. Sampled in February and August only. Sample NTS-EW is located prior to discharge into the backwash surge tank. (DUP) = In the event that PCB's are detected in a sample, the duplicate (DUP) sample will be analyzed. Samples are analyzed for PCB's using EPA Method 608.

System Readings:					
Quarry Level (ft.)	6.17				
Flow Rate (gpm)	75				
PH	6.90				

Weather: Rain 30's

Sampled By: TJB



Mr. James F. Morgan National Grid 300 Erie Boulevard West Syracuse, New York 13202 ARCADIS 6723 Towpath Road P.O. Box 66 Syracuse New York 13214-0066 Tel 315.446.9120 Fax 315.449.4111 www.arcadis-us.com

Subject:

M. Wallace and Son, Inc. Scrapyard Site Cobleskill, New York Site Number 4-48-003 Biota Sampling and Analysis Program

Dear Mr. Morgan:

The purpose of this letter is to transmit the polychlorinated biphenyl (PCB) analytical results for fish samples collected on October 22, 2007 from Cobleskill Creek and the unnamed tributary to Cobleskill Creek in Cobleskill, New York (Figure 1). The fish sampling and analysis activities were conducted in conformance with the New York State Department of Environmental Conservation (NYSDEC)-approved Operation, Maintenance and Monitoring Plan (OMM Plan) (ARCADIS BBL, Revised January 2007) for the M. Wallace and Son, Inc. Scrapyard Site in Cobleskill, New York.

A brief description of the fish sampling activities and a summary of the analytical results are presented below.

#### Description of Fish Sampling Activities

On October 22, 2007, ARCADIS collected fish from the same two general locations that were sampled in 1994 and 2002. Electrofishing was used to collect forage-size fish and edible-size fish from both Cobleskill Creek and the unnamed tributary. The sample reach for the unnamed tributary extended from the box culvert downstream to the culvert under Schoharie Parkway South, a distance of approximately 200 yards. The sample reach for Cobleskill Creek was from its confluence with the unnamed tributary to a point approximately 300 yards downstream. The sampling reaches are shown in Figure 1.

Three composite forage fish samples and three edible-size fish samples were collected from each reach. For the unnamed tributary, the forage fish samples included one creek chub (*Couesius plumbeus*) sample and two fathead minnow

Environmental

Date: January 7, 2008

Contact:
Gunther J. Schnorr

Phone: 315.671,9428

Email: gunther.schnorr@ arcadis-us.com

Our ref: B0036417 (Pimephales promelas) samples. Edible-size fish samples included one creek chub sample and two white sucker (Catostomus commersoni) samples. For Cobleskill Creek, the forage fish samples included one sample each of common shiner (Notropis cornutus), central stoneroller (Campostoma anomalum), and cutlips minnow (Exoglossum maxillingua). Edible-size fish included two smallmouth bass (Micropterus dolomieui) samples and one northern hog sucker (Hypentelium nigricans) sample. Forage fish were processed as whole-body composite samples, and larger (edible-size) fish were processed as individual fillet samples or two-fish composite fillet samples.

The length and weight of each fish was recorded in the field log prior to packaging the fish samples for shipment to the laboratory. Samples were sent to Pace Analytical, Inc. in Green Bay, WI for analysis of polychlorinated biphenyls (PCBs) and percent lipids.

#### Summary of Analytical Results

The analytical results were validated by ARCADIS. The data validation did not indicate any problems associated with overall data quality. The data validation report is provided as Attachment A.

PCBs were not detected above the laboratory quantitation limit of 0.05 mg/kg (parts per million [ppm]) in five of the twelve fish samples. The PCB concentrations that were detected in the remaining seven samples were all relatively low (less than 0.5 mg/kg wet weight). Consistent with the previous biota monitoring conducted in 1994 and 2002, PCB concentrations were lower for fish samples from Cobleskill Creek than the unnamed tributary.

For Cobleskill Creek, PCBs were only detected in the common shiner whole-body composite sample (0.18 mg/kg) and the cutlips minnow whole-body composite sample (0.15 mg/kg). PCBs were non-detect (at the reporting limit of 0.050 mg/kg) for the remaining Cobleskill Creek fish samples.

For the unnamed tributary, PCB concentrations were highest in the creek chub whole-body composite sample (0.49 mg/kg) and the two whole-body composite samples of fathead minnows (0.42 and 0.43 mg/kg). PCB concentrations in the two white sucker fillet samples were 0.057 and 0.17 mg/kg. PCBs were non-detect in the creek chub fillet composite sample.

### Summary

Overall, fish tissue PCB concentrations are relatively low (less than 0.5 mg/kg) for all forage fish samples and edible-size fish samples for both locations. PCB concentrations are generally lower than concentrations reported in similar fish tissue samples collected previously in 1994 and in 2002 (Table 1).

The next scheduled biota sampling and analysis program activities are anticipated to be conducted during fall 2009. If you have any questions regarding the data or require additional information, please contact me at 315.671.9428 or Dave Rigg at 518.452.7826.

Sincerely,

**ARCADIS** 

Gunther J. Schnorr Project Manager

Copies:

Matthew D. Millias, P.E., CDM David K. Rigg, ARCADIS Jason C. Vogel, ARCADIS

### **ARCADIS**

Table 1

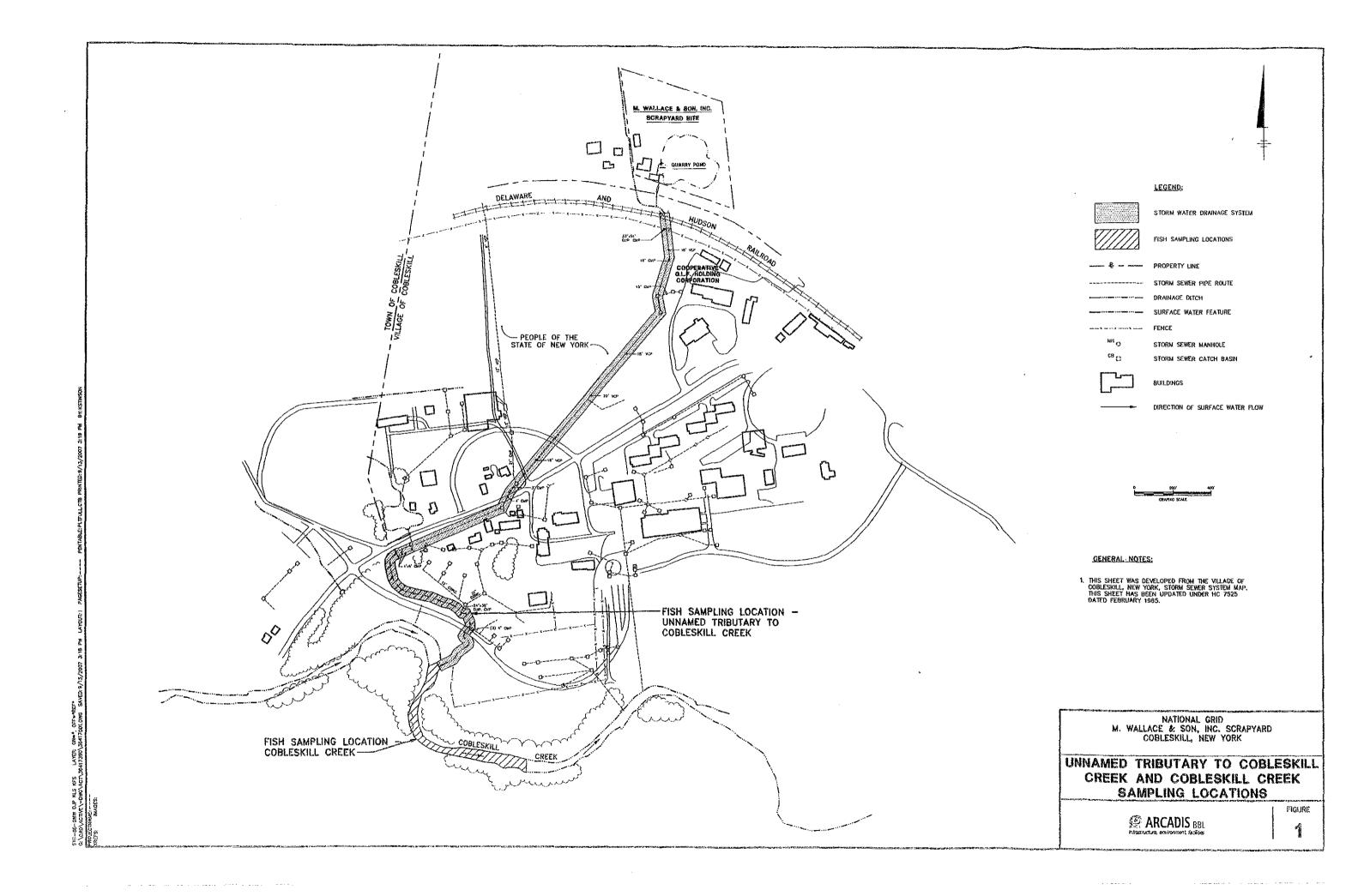
Resident Fish Data Summary

Table 1

#### **National Grid** M. Wallace and Son, Inc. Scrapyard Site Cobleskill, NY

### Operation, Maintenance and Monitoring Activities

#### Resident Fish Data Summary


F									
	ाण/ए		नेशवाम् वस्त्रहरू	श्वातानुष	៤០មេ	Weight	विविधि	ાતમાં જો	ा कियोज का अभवेषा ।
Simple 10	Toolbaied.	ा अस्ति। अन्				(game)	整份實		PGES meller rich
2007 Fish Tissue Data									
Cobleskill Cr	eek								
CC-CM-01	10/22/2007	Cutlips minnow	5	wbc	10.5	74.0	4.14	0.15	3,6
CC-CS-06	10/22/2007	Common shiner	8	wbc	7.4	29.4	3.12	0.18	5.8
CC-SR-02	10/22/2007	Stoneroller	10	wbc	8.0	58.6	5.72	ND (0.050)	0.87
CC-SB-05	10/22/2007	Smallmouth bass	1	sf	27.0	284	1.42	ND (0.050)	3.5
CC-SB-06	10/22/2007	Smallmouth bass	1	sf	23.0	178	1.68	ND (0.050)	3.0
CC-HS-02	10/22/2007	Northern hog sucker	1	sf	39.0	783	0.70	ND (0.050)	7.1
Stormwater I	Orainage Sys	tem (Unnamed Tribu	tary)						
UT-CC-01	10/22/2007	Creek chub	15	wbc	6.2	38.0	2.84	0.49	17
UT-FM-06	10/22/2007	Fathead minnow	13	wbc	6.0	30.0	3.92	0.42	11
UT-FM-07	10/22/2007	Fathead minnow	10	wbc	6.7	34.0	4.00	0.43	11
UT-WS-07	10/22/2007	White sucker	1	sf	27.0	212	1.95	0.17	8.7
UT-WS-08	10/22/2007	White sucker	2	sf	19.0	133	0.88	0.057	6,5
UT-CC-02	10/22/2007	Creek chub	2	sf	20.9	201	1.03	ND (0.050)	4.9
II			2002 F	ish Tissu	ie Data				
Cobleskill Cr	eek		-		_				
CC-CS-04	10/30/2002	Common shiner	6	wbc	8.5	33.1	1.96	0.086	4.4
CC-CS-05	10/30/2002	Common shiner	9	wbc	5.7	14.0	2.39	0.12	5.0
CC-SR-01	10/30/2002	Stoneroller	16	wbc	7.1	58.5	4.42	0.075	1.7
CC-SB-04	10/30/2002	Smallmouth bass	1	sf	29.8	380	1.96	0.094	4.8
CC-WS-01	10/30/2002	White sucker	11	sf	30.9	307	0.91	ND (0.050)	2.7
CC-HS-01	10/30/2002	Northern hog sucker	1	sf	36.8	624	1.27	0.065	5.1
Stormwater I	Drainage Sys	tem (Unnamed Tribu	tary)						
UT-FM-04	10/30/2002	Fathead minnow	16	wbc	6.1	39.0	3.67	0.92	25
UT-FM-05	10/30/2002	Fathead minnow	16	WDC	5.8	33.0	3.17	0.98	31
UT-SR-01	10/30/2002	Stoneroller	5	wbc	8.8	35.8	3.48	0.72	21
UT-WS-04	10/30/2002	White sucker	1	sf	24.6	144	1.27	0.18	14
UT-WS-05	10/30/2002	White sucker	1	sf	21.7	109	1.49	0.12	8.1
UT-WS-06	10/30/2002	White sucker	1.	sf	20.1	80.0	0.69	0.18	26
			1994 F	ish Tissu	re Data				
Cobleskill Cr	reek								
CC-CS-01	10/11/1994	Common shiner	3	wbc	NA	33.5	3.65	0.41	11
CC-CS-02	10/11/1994	Common shiner	3	wbc	NA	37.5	1.80	0.32	18
CC-CS-03	10/11/1994	Common shiner	3	wbc	NA	29.4	4.01	0.29	7.2
CC-SB-01	10/11/1994	Smallmouth bass	1	sf	19.5	115	1.52	0.15	9.9
CC-SB-02	10/11/1994	Smallmouth bass	1	sf	24.5	230	1.75	0.08	4.6
CC-SB-03	10/11/1994	Smallmouth bass	1	sf	20.5	95	1.37	0.06	4.4
Stormwater	Drainage Sys	tem (Unnamed Tribu	tary)						
UT-FM-01	10/11/1994	Fathead minnow	4	wbc	NA-	11.5	4.08	1.7	42
UT-FM-02	10/11/1994	Fathead minnow	6	wbc	NA	11.7	5.18	1.5	29
UT-FM-03	10/11/1994	Fathead minnow	14	wbc	NA	18.6	4.12	1.1	27
UT-WS-01	10/11/1994	White sucker	11	sf	21.5	115	1.97	0.19	9.6
UT-WS-02	10/11/1994	White sucker	1	sf	23	140	1.90	0.09	4.7
UT-WS-03	10/11/1994	White sucker	1	sf	23	140	1.24	ND (0.050)	2.0

- Whole-body fish composite sample lengths are represented by the average of individuals.
   Non-detected (ND) total PCBs values are shown with the sample detection limit within brackets.
   sf = skin-on fillet sample.
- 4. wbc = whole-body composite sample.
- 5. NA = not available.

### **ARCADIS**

Figure 1

Sampling Locations



### **ARCADIS**

Attachment A

Data Validation Report

### DATA USABILITY SUMMARY REPORT

### NATIONAL GRID M. WALLACE AND SON, INC. SCRAPYARD SITE

### COBLESKILL, NEW YORK

SDG #890029

PCB ANALYSES

Analyses performed by:

Pace Analytical Services, Inc. Green bay, Wisconsin

Review performed by:



Syracuse, New York Report #7673R

#### Summary

The following is an assessment of the data package for sample delivery group (SDG) #890029 for sampling activities associated with the M. Wallace and Son, Inc. Scrapyard Site located in Cobleskill, NY (site number 4-48-003). Included with this assessment are the data review check sheets used in the review of the package and corrected sample results. Analyses were performed on the following samples:

Sample ID	Lab ID	Matrix	Sample Date	Analysis				
				voc	svoc	PCB	MET	MISC
UT-CC-01	890029-001	Biota	10/22/2007			Х		Х
UT-FM-06	890029-002	Biota	10/22/2007			Х		X_
UT-FM-07	890029-003	Biota	10/22/2007			X		Х
UT-WS-07	890029-004	Biota	10/22/2007			X		Х
UT-WS-08	890029-005	Biota	10/22/2007			Х		Х
UT-CC-02	890029-006	Biota	10/22/2007			Х		Χ
CC-CM-01	890029-007	Biota	10/22/2007			X		Х
CC-CS-06	890029-008	Biota	10/22/2007			X		Х
CC-SR-02	890029-009	Biota	10/22/2007			X		Х
CC-HS-02	890029-010	Biota	10/22/2007			Х		Х
CC-SB-05	890029-011	Biota	10/22/2007			Х		Х
CC-SB-06	890029-012	Biota	10/22/2007			X		Х
							_	
· · · · · · ·								
					İ			
				·-				
				-	<u> </u>			
		1						
· · · · · · · · · · · · · · · · · · ·	<u> </u>							i

#### Notes:

- 1. Matrix spike/matrix spike duplicate (MS/MSD) analyses performed on sample location CC-HS-02.
- 2. Miscellaneous analysis included percent lipids.

### POLYCHLORINATED BIPHENYLS (PCBs) ANALYSES

#### Introduction

Analyses were performed according to (United Stated Environmental Protection Agency) USEPA SW-846 Method 8082 as referenced in NYSDEC-ASP. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
- J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
- B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
- JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
- E The compound was quantitated above the calibration range.
- D Concentration is based on a diluted sample analysis.
- C Identification confirmed by GC/MS.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
- R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

#### Data Assessment

### 1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260	Biota	14 days from collection to extraction and 40 days from extraction to analysis	Cooled @ 4 °C or Freeze

All samples were stored frozen until preparation. All samples were analyzed within the specified holding times.

#### 2. Blank Contamination

Quality assurance blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

No compounds were detected in the associated blanks.

#### 3. System Performance

System performance and column resolution were acceptable.

### 4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

### 4.1 Initial Calibration

A maximum RSD of 20% is allowed or a correlation coefficient greater than 0.99. Multiple-point calibrations were performed for Aroclor 1016 and 1260 only. Single-point calibrations were performed for the remaining Aroclors.

### 4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less then the control limit (15%).

#### 5. Surrogates / System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. PCB analysis requires that one of the two PCB surrogate compounds exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries reported were within control limits.

#### 6. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations were the compound's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

### 7. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

### 8. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate.

A field duplicate was not included with this data set.

#### 9. Compound Identification

The retention times of all quantitated peaks must fall within the calculated retention time windows for both the primary and confirmation columns. When dual column analysis is performed the percent difference (%D) of detected sample results must less than 25%.

All identified compounds met the specified criteria.

### 10. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

**Data Validation Checklist** 

### **PCB Data Validation Checklist**

	YES	NO	NA
Data Completeness and Deliverables			
Have any missing deliverables been received and added to the data package?		<u> X</u>	
Is there a narrative or cover letter present?	<u>X</u>		
Are the sample numbers included in the narrative?	<u> X</u>		
Are the sample chain-of-custodies present?	_X_		
Do the chain-of-custodies indicate any problems with sample receipt or sample condition?		X	<del></del>
Holding Times			
Have any holding times been exceeded?		X	
Surrogate Recovery			
Are the surrogate recovery forms present?		<u> </u>	
Are all the samples listed on the appropriate surrogate recovery form?			X
Were recoveries of any surrogate outside of specified limits for any sample or blank?		_X_	
If yes, were the samples reanalyzed?			_X_
Are there any transcription/calculation errors between the raw data and the summary form?		X	
Matrix Spikes			
Is there a matrix spike recovery form present?	<u>X</u>		
Were matrix spikes analyzed at the required frequency?	<u>X</u>		
How many spike recoveries were outside of QC limits?			
<u>0</u> out of <u>2</u>			
How many RPDs for matrix spike and matrix spike duplicate were outside of QC limits?	f		
<u>0</u> out of <u>1</u>			
Blanks			
Is a method blank summary form present?	<u>X</u>		
Has a method blank been analyzed for each set of samples or for each 20 samples, whichever is more frequent?	X		
Do any method/reagent/instrument blanks have positive results?		X	
Do any field/rinse/equipment blanks have positive results?			_X
Are there field/rinse/equipment blanks associated with every sample?		<u>X</u>	
Calibration and GC Performance			
Are the following chromatograms and integration reports present?			
peak resolution check			<u>X</u>

	YES	NO	NA
Aroclor 1016/1260	X		
Aroclors 1221, 1232, 1242, 1248, and 1254	<u>X</u>		
Is a calibration summary form present and complete for each analytical sequence?	X		
Are there any transcription/calculation errors between the raw data and the forms?		_X_	
Are the %RSD for the initial calibration within specified limits for all analytes?	<u>X</u>	·	
Is the resolution between any two adjacent peaks in the resolution check mixture > 60%?			X_
Have all samples been injected within a 12 hour period beginning with the injection of a calibration standard?	_X_		
Is a continuing calibration summary form present and complete for each continuing standard analyzed?	x		
Are there any transcription/calculation errors between the raw data and the form?		X	
Are all the percent difference (%D) values for all continuing calibration standards within specified limits?	_X_		
Analytical Sequence			
Is Form VIII present and complete for each column and each period of analyses?	X		
Was the proper analytical sequence followed?	X		
Cleanup Efficiency Verification			
Are percent recoveries of the compounds used to check the efficiency of the cleanup procedure within QC limits?	X		
PCB Identification			
Are RT of sample compounds within the established RT windows?	<u>X</u>		
Were all positively identified compounds confirmed on a second column?	<u>X</u>		
Was GC/MS confirmation provided when required?	_X_		
Were there any false negatives?		<u>X</u>	
Compound Quantitation and Reported Detection Limits			
Are there any transcription/calculation errors in the Form 1 results?		<u>X</u>	
Are the reporting limits adjusted to reflect sample dilutions and, for soils, sample moisture?	<del></del>	<u></u>	X_
Chromatogram Quality			
Were the baselines stable?	X		
Were any electronegative displacement (negative peaks) or unusual peaks detected?		X	
·			

	YES	NO	NA NA
Field Duplicates			
Were field duplicates submitted with the samples?		X	

## **CORRECTED SAMPLE ANALYSIS DATA SHEETS**

## **Analytical Report Number: 890029**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: ARCADIS BBL

Project Name: WALLACE SITE Project Number:

Field ID: UT-CC-01

Matrix Type: BIOTA Collection Date: 10/22/07

Report Date: 11/14/07 Lab Sample Number: 890029-001

INORGANICS										
Test		Result	E	QL	Dilution	Units	Code	Ani Date/Time	Prep Method	Ani Method
Percent Lipids		2.84			1	%	Dran	10/31/07 Date/Time: 10/31/0	Pace Lipid	Pace Lipid nl By: nbie
PCB			<del></del> -	<del></del> -	<del>-</del>	<del></del>	<u> </u>	Date/Time: 10/30/0		nt By: CAH
Analyte		Result	Е	QL	Dilution	Units	Code	Anl Date/Time	Prep Method	Ani Method
Aroclor 1016	<	50	5	0	1	ug/Kg wet		11/06/07 3:38 AM	SW846 3540C	SW846 8082
Aroclor 1221	· <	50	5	0	1	ug/Kg wet		11/06/07 3:38 AM	SW846 35400	SW846 8082
Aroclor 1232	<	50	5	0	1	ug/Kg wet		11/06/07 3:38 AM	SW846 35400	SW846 8082
Aroclor 1242	<	50	5	0	1	ug/Kg wet		11/06/07 3:38 AM	SW846 35400	SW846 8082
Aroclor 1248	<	50	5	0	1	ug/Kg wet		11/06/07 3:38 AM	SW846 35400	SW846 8082
Aroclor 1254		310	5	0	1	ug/Kg wet		11/06/07 3:38 AM	SW846 3540C	SW846 8082
Arodor 1260		180	5	0	1	ug/Kg wet		11/06/07 3:38 AM	SW846 35400	SW846 8082
Total PCBs		490	5	0	1	ug/Kg wet		11/06/07 3:38 AM	SW846 35400	SW846 8082
Surrogate			LCL	UCL						
Tetrachloro-m-xylene		93	40	136	1	%		11/06/07	SW846 3540C	SW846 8082
Decachlorobiphenyl		96	47	145	1	%		11/06/07	SW846 35400	SW846 8082

## **Analytical Report Number: 890029**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: ARCADIS BBL Project Name: WALLACE SITE

Project Number:

Field ID: UT-FM-06

Matrix Type: BIOTA Collection Date: 10/22/07 Report Date: 11/14/07

INORGANICS							
Test		Result	EQ	L Dilution	Units	Code Ani Date/Time	Prep Method Ani Method
Percent Lipids		3.92		1	%	10/31/07 Prep Date/Time: 10/31/0	Pace Lipid Pace Lipid 07 Anl By: nbie
РСВ						Prep Date/Time: 10/30/0	07 9:29 AM Anl By: CAH
Analyte		Result	EQ	L Dilution	Units	Code Ani Date/Time	Prep Method Ani Method
Aroclor 1016	<	95	95	1	ug/Kg wet	11/06/07 4:08 AM	SW846 3540C SW846 8082
Aroclor 1221	<	95	95	1	ug/Kg wet	11/06/07 4:08 AM	SW846 3540C SW846 8082
Aroclor 1232	<	95	95	1	ug/Kg wet	11/06/07 4:08 AM	SW846 3540C SW846 8082
Aroclor 1242	<	95	95	1	ug/Kg wet	11/06/07 4:08 AM	SW846 3540C SW846 8082
Aroclor 1248	<	95	95	1	ug/Kg wet	11/06/07 4:08 AM	SW846 3540C SW846 8082
Aroclor 1254		190	95	1	ug/Kg wet	11/06/07 4:08 AM	SW846 3540C SW846 8082
Aroclor 1260		230	95	1	ug/Kg wet	11/06/07 4:08 AM	SW846 3540C SW846 8082
Total PCBs		420	95	1	ug/Kg wet	11/06/07 4:08 AM	SW846 3540C SW846 8082
Surrogate			LCL U	CL			
Tetrachloro-m-xylene		92	40 13	36 1	%	11/06/07	SW846 3540C SW846 8082
Decachlorobiphenyl		103	47 14	45 1	%	11/06/07	SW846 3540C SW846 8082

## Analytical Report Number: 890029

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: ARCADIS BBL
Project Name: WALLACE SITE

Project Number:

Field ID: UT-FM-07

Matrix Type: BIOTA
Collection Date: 10/22/07
Report Date: 11/14/07

INORGANICS							
Test		Result	EQ	L Dilution	Units	Code Anl Date/Time	Prep Method Anl Method
Percent Lipids	*	4.00		1	%	10/31/07	Pace Lipid Pace Lipid
	<del> </del>					Prep Date/Time: 10/31/0	07 Ani By: nbie
PCB						Prep Date/Time: 10/30/0	07 9:29 AM Ani By: CAH
Analyte		Result	EQ	L Dilution	Units	Code Ani Date/Time	Prep Method Anl Method
Aroclor 1016	<	56	56	1	ug/Kg wet	11/06/07 4:38 AM	SW846 3540C SW846 8082
Arodor 1221	<	56	56	1	ug/Kg wet	11/06/07 4:38 AM	SW846 3540C SW846 8082
Aroclor 1232	<	56	56	1	ug/Kg wet	11/06/07 4:38 AM	SW846 3540C SW846 8082
Aroclor 1242	<	56	56	1	ug/Kg wet	11/06/07 4:38 AM	SW846 3540C SW846 8082
Aroclor 1248	<	56	56	1	ug/Kg wet	11/06/07 4:38 AM	SW846 3540C SW846 8082
Aroclor 1254		190	56	1	ug/Kg wet	11/06/07 4:38 AM	SW846 3540C SW846 8082
Aroclor 1260		240	56	1	ug/Kg wet	11/06/07 4:38 AM	SW846 3540C SW846 8082
Total PCBs		430	56	1	ug/Kg wet	11/06/07 4:38 AM	SW846 3540C SW846 8082
Surrogate			LCL U	CL			
Tetrachloro-m-xylene		93	40 13	36 1	%	11/06/07	SW846 3540C SW846 8082
Decachlorobiphenyl		102	47 14	<b>1</b> 5 1	%	11/06/07	SW846 3540C SW846 8082

## Analytical Report Number: 890029

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: ARCADIS BBL

Project Name: WALLACE SITE

Project Number :

Field ID: UT-WS-07

Matrix Type: BIOTA
Collection Date: 10/22/07

Collection Date: 10/22/07 Report Date: 11/14/07

INORGANICS										
Test		Result	1	EQL	Dilution	Units	Code	Anl Date/Time	Prep Method	Ani Method
Percent Lipids		1,95	-		1	%		10/31/07	Pace Lipid	Pace Lipid
							Prep	Date/Time: 10/31/0	07 Ai	nl By: nbie
PCB							Prép	Date/Time: 10/30/0	07 9:29 AM A	nl By: CAH
Analyte		Result	i	EQL	Dilution	Units	Code	Ani Date/Time	Prep Method	Ant Method
Aroclor 1016	<	50		50	1	ug/Kg wet		11/06/07 5:09 AM	SW846 3540C	SW846 8082
Arocior 1221	<	50		50	1	ug/Kg wet		11/06/07 5:09 AM	SW846 3540C	SW846 8082
Arodor 1232	<	50		50	1	ug/Kg wet		11/06/07 5:09 AM	'SW846 3540C	SW846 8082
Aroclor 1242	<	50		50	1	ug/Kg wet		11/06/07 5:09 AM	SW846 3540C	SW846 8082
Aroclor 1248	<	50		50	1	ug/Kg wet		11/06/07 5:09 AM	SW846 3540C	SW846 8082
Aroclor 1254		100		50	1	ug/Kg wet		11/06/07 5:09 AM	SW846 3540C	SW846 8082
Aroclor 1260		71		50	1	ug/Kg wet		11/06/07 5:09 AM	SW846 3540C	SW846 8082
Total PCBs		170		50	1	ug/Kg wet		11/06/07 5:09 AM	SW846 3540C	SW846 8082
Surrogate			LCL	UCL					•	
Tetrachloro-m-xylene		93	40	136	1	%		11/06/07	SW846 3540C	SW846 8082
Decachlorobiphenyl		101	47	145	1	%		11/06/07	SW846 3540C	SW846 8082

**Analytical Report Number: 890029** 

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: ARCADIS BBL
Project Name: WALLACE SITE

Project Number :

Field ID: UT-WS-08

Matrix Type: BIOTA
Collection Date: 10/22/07
Report Date: 11/14/07
Lab Sample Number: 890029-005

INORGANICS										
Test		Result		EQL	Dilution	Units	Code	Anl Date/Time	Prep Method	Anl Method
Percent Lipids		0.88			1	%	Prep	10/31/07 Date/Time: 10/31/0	Pace Lipid 07 A	Pace Lipid .nl By: nbie
PCB							Prep	Date/Time: 10/30/0	7 9:29 AM A	nl By: CAH
Analyte		Result		EQL	Dilution	Units	Code	Anl Date/Time	Prep Method	Ani Method
Aroclor 1016	<	50		50	1	ug/Kg wet		11/06/07 5:39 AM	SW846 35400	SW846 8082
Aroctor 1221	<	50	:	50	1	ug/Kg wet		11/06/07 5:39 AM	SW846 35400	SW846 8082
Aroclor 1232	<	50	:	50	1	ug/Kg wet		11/06/07 5:39 AM	SW846 35400	SW846 8082
Aroclor 1242	<	50		50	1	ug/Kg wet		11/06/07 5:39 AM	SW846 35400	SW846 8082
Aroctor 1248	<	50		50	1	ug/Kg wet		11/06/07 5:39 AM	SW846 35400	SW846 8082
Aroclor 1254		57	;	50	1	ug/Kg wet		11/06/07 5:39 AM	SW846 35400	SW846 8082
Aroclor 1260	<	50	:	50	1	ug/Kg wet		11/06/07 5:39 AM	SW846 35400	SW846 8082
Total PCBs		57		50	1	ug/Kg wet		11/06/07 5:39 AM	SW846 35400	SW846 8082
Surrogate			LCL	UCL						
Tetrachloro-m-xylene	-	100	40	136	1	%		11/06/07	SW846 3540C	SW846 8082
Decachlorobiphenyl		106	47	145	1	%		11/06/07	SW846 3540C	SW846 8082

Analytical Report Number: 890029

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: ARCADIS BBL
Project Name: WALLACE SITE

Project Number :

Field ID: UT-CC-02

Matrix Type: BIOTA
Collection Date: 10/22/07
Report Date: 11/14/07
Lab Sample Number: 890029-006

INORGANICS							
Test		Result	EQL	Dilution	Units	Code Ani Date/Time	Prep Method Ani Method
Percent Lipids		1.03		1	%	10/31/07 Prep Date/Time: 10/31/0	Pace Lipid Pace Lipid O7 Anl By: nbie
PCB						Prep Date/Time: 10/30/0	07 9:29 AM Ani By: CAH
Analyte		Result	EQL.	Dilution	Units	Code Anl Date/Time	Prep Method Ani Method
Aroclor 1016	<	50	50	1	ug/Kg wet	11/06/07 6:09 AM	SW846 3540C SW846 8082
Aroclor 1221	<	50	50	1	ug/Kg wet	11/06/07 6:09 AM	SW846 3540C SW846 8082
Aroclor 1232	<	50	50	1	ug/Kg wet	11/06/07 6:09 AM	SW846 3540C SW846 8082
Aroclor 1242	<	50	50	1	ug/Kg wet	11/06/07 6:09 AM	SW846 3540C SW846 8082
Aroclor 1248	<	50	50	1	ug/Kg wet	11/06/07 6:09 AM	SW846 3540C SW846 8082
Aroclor 1254	<	50	50	1	ug/Kg wet	11/06/07 6:09 AM	SW846 3540C SW846 8082
Aroclor 1260	<	50	50	1	ug/Kg wet	11/06/07 6:09 AM	SW846 3540C SW846 8082
Total PCBs	<	50	50	1	ug/Kg wet	11/06/07 6:09 AM	SW846 3540C SW846 8082
Surrogate			LCL UCL				
Tetrachloro-m-xylene		92	40 136	1	%	11/06/07	SW846 3540C SW846 8082
Decachiorobiphenyl		97	47 145	1	%	11/06/07	SW846 3540C SW846 8082

Analytical Report Number: 890029

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: ARCADIS BBL Project Name: WALLACE SITE

Project Name: WALLACE SITE Project Number:

Field ID: CC-CM-01

Matrix Type: BIOTA
Collection Date: 10/22/07
Report Date: 11/14/07

INORGANICS										
Test		Result	f	EQL	Dilution	Units	Code	Ani Date/Time	Prep Method	Anl Method
Percent Lipids		4.14		-	1	%	Prep	10/31/07 Date/Time: 10/31/0	Pace Lipid 07 A	Pace Lipid nl By: nbie
РСВ							Prep	Date/Time: 10/30/0	7 9:29 AM A	nl By: CAH
Analyte		Result	ŧ	EQL	Dilution	Units	Code	Ani Date/Time	Prep Method	Ani Method
Aroclor 1016	<	50		50	1	ug/Kg wet		11/06/07 6:39 AM	SW846 3540C	SW846 8082
Aroclor 1221	<	50	5	50	1	ug/Kg wet		11/06/07 6:39 AM	SW846 3540C	SW846 8082
Aroclor 1232	<	50	5	50	1	ug/Kg wet		11/06/07 6:39 AM	SW846 3540C	SW846 8082
Arocior 1242	<	50	5	50	1	ug/Kg wet		11/06/07 6:39 AM	SW846 3540C	SW846 8082
Aroclor 1248	<	50	5	50	1	ug/Kg wet		11/06/07 6:39 AM	SW846 3540C	SW846 8082
Aroclor 1254		61	5	50	1	ug/Kg wet		11/06/07 6:39 AM	SW846 3540C	SW846 8082
Arocior 1260		86	5	50	1	ug/Kg wet		11/06/07 6:39 AM	SW846 3540C	SW846 8082
Total PCBs		150	5	50	1	ug/Kg wet		11/06/07 6:39 AM	SW846 3540C	SW846 8082
Surrogate			LCL	UCL						
Tetrachloro-m-xylene		78	40	136	1 ,	%		11/06/07	SW846 3540C	SW846 8082
Decachlorobiphenyl		96	47	145	1	%		11/06/07	SW846 3540C	SW846 8082

## **Analytical Report Number: 890029**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: ARCADIS BBL
Project Name: WALLACE SITE

Project Number:

Field ID: CC-CS-06

Matrix Type: BIOTA
Collection Date: 10/22/07
Report Date: 11/14/07

INORGANICS						. •	
Test		Result	EQL	Dilution	Units	Code Anl Date/Time	Prep Method Ani Method
Percent Lipids		3,12	***	1	%	10/31/07 Prep Date/Time: 10/31/0	Pace Lipid Pace Lipid D7 Anl By: nbie
PCB						Prep Date/Time: 10/30/0	07 9:29 AM Ani By: CAH
Analyte		Result	EQL	Dilution	Units	Code Ani Date/Time	Prep Method Anl Method
Aroclor 1016	<	62	62	1	ug/Kg wet	11/06/07 7:09 AM	SW846 3540C SW846 8082
Aroclor 1221	<	62	62	1	ug/Kg wet	11/06/07 7:09 AM	SW846 3540C SW846 8082
Aroclor 1232	<	62	62	1	ug/Kg wet	11/06/07 7:09 AM	SW846 3540C SW846 8082
Aroclor 1242	<	62	62	1	ug/Kg wet	11/06/07 7:09 AM	SW846 3540C SW846 8082
Aroclor 1248	<	62	62	1	ug/Kg wet	11/06/07 7:09 AM	SW846 3540C SW846 8082
Aroclor 1254		110	62	1	ug/Kg wet	11/06/07 7:09 AM	SW846 3540C SW846 8082
Aroclor 1260		77	62	1	ug/Kg wet	11/06/07 7:09 AM	SW846 3540C SW846 8082
Total PCBs		180	62	1	ug/Kg wet	11/06/07 7:09 AM	SW846 3540C SW846 8082
Surrogate			LCL UCL				
Tetrachloro-m-xylene	<u> </u>	95	40 136	1	%	11/06/07	SW846 3540C SW846 8082
Decachlorobiphenyl		104	47 145	1	%	11/06/07	SW846 3540C SW846 8082

Analytical Report Number: 890029

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: ARCADIS BBL

Project Name: WALLACE SITE

Project Number:

Field ID: CC-SR-02

Matrix Type: BIOTA

Collection Date: 10/22/07 Report Date: 11/14/07

INORGANICS										
Test		Result	E	QL	Dilution	Units	Code	Ani Date/Time	Prep Method	Ani Method
Percent Lipids		5.72			1	%		10/31/07	Pace Lipid	Pace Lipid
							Prep	Date/Time: 10/31/0	)7 Aı	nl By: nbie
РСВ							Prep	Date/Time: 10/30/0	07 9:29 AM A	nt By: CAH
Analyte		Result	E	QL	Dilution	Units	Code	Ani Date/Time	Prep Method	Ani Method
Arodor 1016	<	50	5	0	1	ug/Kg wet		11/06/07 7:40 AM	SW846 3540C	SW846 8082
Aroclor 1221	<	50	5	0	1	ug/Kg wet		11/06/07 7:40 AM	SW846 3540C	SW846 8082
Aroclor 1232	<	50	5	0	1	ug/Kg wet		11/06/07 7:40 AM	SW846 3540C	SW846 8082
Aroclor 1242	<	50	5	0	1	ug/Kg wet		11/06/07 7:40 AM	SW846 3540C	SW846 8082
Arocior 1248	<	50	5	0	1	ug/Kg wet		11/06/07 7:40 AM	SW846 3540C	SW846 8082
Aroclor 1254	<	50	5	0	1	ug/Kg wet		11/06/07 7:40 AM	SW846 3540C	SW846 8082
Aroclor 1260	<	50	5	0	1	ug/Kg wet		11/06/07 7:40 AM	SW846 3540C	SW846 8082
Total PCBs	<	50	5	0	1	ug/Kg wet		11/06/07 7:40 AM	SW846 3540C	SW846 8082
Surrogate			LCL	UCL						
Tetrachloro-m-xylene		97	40	136	1	%		11/06/07	SW846 3540C	SW846 8082
Decachlorobiphenyl		106	47	145	1	%		11/06/07	SW846 3540C	SW846 8082

### Analytical Report Number: 890029

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

SW846 3540C SW846 8082

Client: ARCADIS BBL

Project Name: WALLACE SITE

Project Number:

Decachlorobiphenyl

Field ID: CC-HS-02

Matrix Type: BIOTA

Lab Sample Number: 890029-010

Collection Date: 10/22/07

Report Date: 11/14/07

**INORGANICS** Ani Method **EQL** Code Anl Date/Time Prep Method Test Result **Dilution Units** 0.70 1 % 10/31/07 Pace Lipid Pace Lipid Percent Lipids Prep Date/Time: 10/31/07 Anl By: nbie Ant By: CAH Prep Date/Time: 10/30/07 9:29 AM **PCB Dilution Units** Code Anl Date/Time Prep Method Anl Method Analyte Result EQL 50 50 1 ug/Kg wet 11/06/07 8:10 AM SW846 3540C SW846 8082 Aroclor 1016 < 11/06/07 8:10 AM SW846 3540C SW846 8082 Aroclor 1221 < 50 50 1 ug/Kg wet SW846 3540C SW846 8082 50 50 1 Aroclor 1232 < ug/Kg wet 11/06/07 8:10 AM SW846 3540C SW846 8082 Aroclor 1242 < 50 50 1 ug/Kg wet 11/06/07 8:10 AM SW846 3540C SW846 8082 Aroclor 1248 < 50 50 1 ug/Kg wet 11/06/07 8:10 AM 50 50 11/06/07 8:10 AM SW846 3540C SW846 8082 < 1 ug/Kg wet Aroclor 1254 SW846 3540C SW846 8082 Aroclor 1260 < 50 50 1 ug/Kg wet 11/06/07 8:10 AM SW846 3540C SW846 8082 < 50 50 11/06/07 8:10 AM 1 ug/Kg wet **Total PCBs** LCL UCL Surrogate SW846 3540C SW846 8082 % 11/06/07 Tetrachloro-m-xylene 84 40 136 1

%

11/06/07

1

94

47

145

## **Analytical Report Number: 890029**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: ARCADIS BBL

Project Name: WALLACE SITE

Project Number:

Field ID: CC-SB-05

Matrix Type: BIOTA
Collection Date: 10/22/07

Report Date: 11/14/07 Lab Sample Number: 890029-011

INORGANICS							
Test		Result	EQL	Dilution	Units	Code Anl Date/Time	Prep Method Ani Method
Percent Lipids		1.42		1	%	10/31/07	Pace Lipid Pace Lipid
						Prep Date/Time: 10/31/	07 Ani By: nbie
PCB						Prep Date/Time: 10/30/6	07 9:29 AM Ant By: CAH
Analyte		Result	EQL	Dilution	Units	Code Anl Date/Time	Prep Method Anl Method
Aroclor 1016	<	50	50	1	ug/Kg wet	11/06/07 9:41 AM	SW846 3540C SW846 8082
Aroclor 1221	<	50	50	1	ug/Kg wet	11/06/07 9:41 AM	SW846 3540C SW846 8082
Aroclor 1232	<	50	50	1	ug/Kg wet	11/06/07 9:41 AM	SW846 3540C SW846 8082
Aroclor 1242	<	50	50	1	ug/Kg wet	11/06/07 9:41 AM	SW846 3540C SW846 8082
Aroclor 1248	<	50	50	1	ug/Kg wet	11/06/07 9:41 AM	SW846 3540C SW846 8082
Aroclor 1254	<	50	50	1	ug/Kg wet	11/06/07 9:41 AM	SW846 3540C SW846 8082
Aroctor 1260	<	50	50	1	ug/Kg wet	11/06/07 9:41 AM	SW846 3540C SW846 8082
Total PCBs	<	50	50	1	ug/Kg wet	11/06/07 9:41 AM	SW846 3540C SW846 8082
Surrogate			LCL UC	L			
Tetrachloro-m-xylene		97	40 136	1	%	11/06/07	SW846 3540C SW846 8082
Decachlorobiphenyl		96	47 145	1	%	11/06/07	SW846 3540C SW846 8082

Analytical Report Number: 890029

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client : ARCADIS BBL

Project Name: WALLACE SITE

Project Number : Field ID : CC-SB-06

Matrix Type: BIOTA Collection Date: 10/22/07 Report Date: 11/14/07

INORGANICS							
Test		Result	EC	L. Dilution	Units	Code Ani Date/Time	Prep Method Ani Method
Percent Lipids		1.68		1	%	10/31/07 Prep Date/Time: 10/31/0	Pace Lipid Pace Lipid D7 Ant By: nbie
РСВ					·	Prep Date/Time: 10/30/0	07 9:29 AM Ani By: CAH
Analyte		Result	EC	L Dilution	Units	Code Anl Date/Time	Prep Method Anl Method
Aroclor 1016	<	50	50	1	ug/Kg wet	11/06/07 10:11 AM	SW846 3540C SW846 8082
Aroclor 1221	<	50	50	1	ug/Kg wet	11/06/07 10:11 AM	SW846 3540C SW846 8082
Aroclor 1232	<	50	50	1	ug/Kg wet	11/06/07 10:11 AM	SW846 3540C SW846 8082
Aroclor 1242	<	50	50	1	ug/Kg wet	11/06/07 10:11 AM	SW846 3540C SW846 8082
Aroclor 1248	<	50	50	1	ug/Kg wet	11/06/07 10:11 AM	SW846 3540C SW846 8082
Aroclor 1254	<	50	50	1	ug/Kg wet	11/06/07 10:11 AM	SW846 3540C SW846 8082
Aroclor 1260	<	50	50	1	ug/Kg wet	11/06/07 10:11 AM	SW846 3540C SW846 8082
Total PCBs	<	50	50	1	ug/Kg wet	11/06/07 10:11 AM	SW846 3540C SW846 8082
Surrogate			LCL U	CL			
Tetrachloro-m-xylene	··· <u> </u>	96	40 1	36 1	%	11/06/07	SW846 3540C SW846 8082
Decachiorobiohenvi		99	47 1	45 1	%	11/06/07	SW846 3540C SW846 8082

## LABORATORY NARRATIVE



### CASE NARRATIVE - PCB ANALYSIS

Lab Report Number (SDG): 890029

Client: ARCADIS BBL

Project Name: WALLACE SITE

Project Number: N/A

### 1. RECEIPT

Samples were received on ice and remained frozen until time of preparation.

#### 2. HOLDING TIMES

- A. Sample Preparation: All extraction holding times were met.
- B. Sample Analysis: All method holding times were met.

#### 3. METHOD

A. Preparation: SW-846 3540CB. Analysis: SW-846 8082

#### 4. PREPARATION

Sample preparation proceeded normally.

#### 5. ANALYSIS

- A. Calibration:
  - 1. Initial verification: All method acceptance criteria were met for both the quantitation and confirmation columns.
  - Continuing verification: All method acceptance criteria were met. In the cases where an
    individual peak did not meet the 15% D criteria, no corrective action was taken because the
    average of all Aroclor peaks was less than 15%.
- B. Method Blank: All in-house acceptance criteria were met for method blank SVG2253-053PCBMB.
- **C. Surrogates:** All in-house surrogate recovery acceptance criteria were met. The surrogates are only evaluated on the quantitation column.
- D. Spikes:
  - 1. Lab Control Spike (LCS): Control spike SVG2253-053PCBLCS was fortified with Aroclor 1254 and met the in-house accuracy criteria.
  - 2. Matrix Spike / Matrix Spike Duplicate (MS/MSD): Sample CC-HS-02 was designated as the parent sample of the MS/MSD for this SDG and two portions of the sample were fortified with Aroclor 1254. The MS/MSD required a 1:4 dilution to bring the fortified Aroclor within instrument calibration range. The in-house accuracy and precision criteria were met
- **E. Samples:** Sample analyses proceeded normally. RTX-CLP is the quantitation column. RTX-CLP ii is the confirmation column.
- **F. Sample Duplicate:** A sample duplicate was not performed with this SDG.
- G. Dilutions: None required.
- H. Reanalysis: None required.
- 1. **Comments:** Due to rounding differences in the software programs used, the values found on the quantitation reports may not match the values found on the sample Form 1s.

I certify that this data package is in compliance with the terms and conditions agreed to by **Pace Analytical Services, Inc.** and by the client, both technically and for completeness, except for the conditions detailed above. The Laboratory Manager or his designee, as verified by the following signature, has authorized release of the data contained in this hard copy data package and in the computer-readable data submitted on diskette:

Signed:	Mate Elirans	Date:	11/14/07
Name:	Kate E. Grams	Position:	Quality Assurance Auditor

## SAMPLE COMPLIANCE REPORT

### SAMPLE COMPLIANCE REPORT

Sample						C	ompliand	Noncompliance		
Delivery Group	Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	РСВ	MET	MISC	
890029	10/22/2007	SW-846 8082	UT-CC-01	Biota			Yes			
890029	10/22/2007	SW-846 8082	UT-FM-06	Biota			Yes			
890029	10/22/2007	SW-846 8082	UT-FM-07	Biota			Yes			
890029	10/22/2007	SW-846 8082	UT-WS-07	Biota			Yes			
890029	10/22/2007	SW-846 8082	UT-WS-08	Biota		1	Yes	ı		
890029	10/22/2007	SW-846 8082	UT-CC-02	Biota			Yes			
890029	10/22/2007	SW-846 8082	CC-CM-01	Biota		+-	Yes			
890029	10/22/2007	SW-846 8082	CC-CS-06	Biota		ť	Yes	•		
890029	10/22/2007	SW-846 8082	CC-SR-02	Biota		ł	Yes	-		
890029	10/22/2007	SW-846 8082	CC-HS-02	Biota			Yes	-		
890029	10/22/2007	SW-846 8082	CC-SB-05	Biota		-	Yes			
890029	10/22/2007	SW-846 8082	CC-SB-06	Biota		<b></b>	Yes			

Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

