Solution to Assignment 04: Supersaturation and crystal growth October 17, 2019

Exercise 01: Estimation of growth kinetics by desupersaturation of a solution Supersaturation

1. It is assumed that sample 7 is fully equilibrated. Hence, the solubility of the given compound at the given temperature corresponds to the concentration of sample 7. Hence, the concentration of the compound (g/g), c_i and hence the supersaturation can be calculated as follows:

$$c_i = \frac{M_{2,i}}{M_{1,i} - M_{2,i}} \tag{1a}$$

$$S_i = \frac{c_i}{c_i^*} \tag{1b}$$

The summary of the experimental data and the results is given in Table 1.

Table 1. Summary of the experimental data and the results.							
\mathbf{t} $[\mathbf{s}]$	m_1 [g]	m_2 [g]	c ~[g/g ~solvent]	S [-]	$m_{\rm cry}$ [kg]	L [m]	G [m/s]
0	12.4815	5.8143	0.872	1.015	0.075	0.00055	5.20E-07
60	12.4532	5.7841	0.867	1.010	0.088	0.00058	2.77 E-07
120	12.5106	5.8006	0.864	1.007	0.095	0.00060	1.65 E-07
180	12.4251	5.7546	0.863	1.005	0.100	0.00061	1.41E-07
240	12.4805	5.7746	0.861	1.003	0.104	0.00061	3.65E-08
300	12.4857	5.7755	0.861	1.002	0.105	0.00062	1.10E-08
1200	12.4700	5.7614	0.859	1.000	0.110	0.00063	-

Table 1: Summary of the experimental data and the results

Mass balance

2. The mass balance for the system with the solute and the solvent and its differential form are given as follows:

$$m_{\rm cry} + c_i m_{\rm sol} = k \tag{2a}$$

$$\frac{dm_{\rm cry}}{dt} = -m_{\rm sol}\frac{dc}{dt} \tag{2b}$$

3. With the assumption that all crystals are cubes of identical size, the surface area, A and mass, M of a single crystal can be written as functions of L, as follows:

$$A = k_A L^2 \tag{3a}$$

$$M = \rho_C k_V L^3 \tag{3b}$$

For crystals which are cubic, the surface (k_A) and volume (k_V) shape factors are 6 and 1, respectively.

Ramona Achermann ramona.achermann@ipe.mavt.ethz.ch

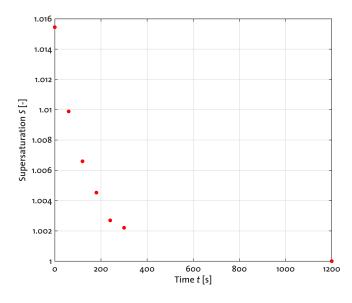


Figure 1: Time-resolved evolution of supersaturation.

4. From Equation 3b, the number of crystals can be calculated as follows.

$$m_{\rm cry} (L) = N \rho_c k_{\rm V} L^3$$
$$N = \frac{m_{\rm cry} (L)}{\rho_c k_{\rm V} L^3} = \frac{0.075 \,\rm kg}{1769 \,\rm \frac{kg}{m^3} \cdot 1 \cdot (0.00055 \,\rm m)^3} = 254827$$

By using the mass balance given in Equation 2a, the length of the average length of the crystals for each sample can be calculated as follows

$$L_i = \left(\frac{m_{\rm cry,i}}{N\rho_c k_{\rm V}}\right)^{\frac{1}{3}} \tag{5}$$

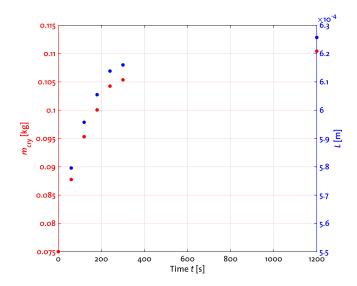


Figure 2: Time-resolved evolution of mass of crystals and average length of crystals.

Growth rate

5. The expression for growth rate can be derived as follows:

$$\frac{dm_{\rm cry}}{dt} = -m_{\rm sol}\frac{dc}{dt} = \frac{dm_{\rm cry}}{dL}\frac{dL}{dt} = 3N\rho_c k_{\rm V}L^2\frac{dL}{dt}$$
$$G = \frac{dL}{dt} = -\frac{m_{\rm sol}}{3N\rho_c k_{\rm V}L^2}\frac{dc}{dt}$$
$$G = \frac{dL}{dt} \approx \frac{m_{\rm sol}}{3N\rho_c k_{\rm V}L^2}\frac{c_i - c_{i+1}}{t_{i+1} - t_i}$$

6. The growth rate G can be expressed as a function of the supersaturation S as follows:

$$G(S) = k_G (S-1)^g \tag{7}$$

Upon linearizing the equation by taking the logarithm, the following equation is obtained,

$$\log G(S) = \log k_G + g \log(S - 1) \tag{8}$$

Upon performing a linear fit on the growth rate and the supersaturation, we obtain

$$g = 1.79$$
 $k_G = 1.19 \times 10^{-3} \mathrm{ms}^{-1}$

Hence, the growth rate equation for the given compound is given as follows,

$$G(S) = 1.19 \times 10^{-3} (S-1)^{1.79} \text{ms}^{-1}$$

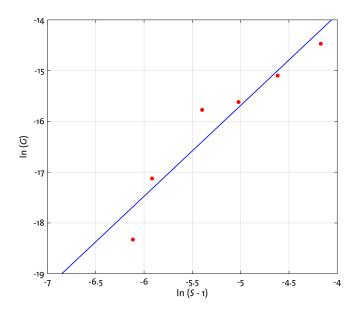


Figure 3: Growth rate vs. supersaturation for the estimation of growth rate parameters.