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Abstract. Monitoring the atmospheric concentrations of greenhouse gases (GHGs) is crucial in order to improve our under-

standing of their climate impact. However, there are no long-term profile data sets of important GHGs that can be used to gain a

better insight into the processes controlling their variations in the atmosphere. Here, we merge chemical transport model (CTM)

output and profile measurements from two solar occultation instruments, the HALogen Occultation Experiment (HALOE) and

the Atmospheric Chemistry Experiment - Fourier Transform Spectrometer (ACE-FTS), to construct long-term (1991-2021),5

gap-free stratospheric profile data sets (hereafter, TCOM) for two important GHGs. The Extreme Gradient Boosting (XG-

Boost) regression model is used to estimate the corrections needed to apply to the CTM profiles. For methane (TCOM-CH4),

we use both HALOE and ACE satellite profile measurements (1992-2018) to train the XGBoost model while profiles from

three later years (2019-2021) are used as an independent evaluation data set. As there are no nitrous oxide (N2O) profile mea-

surements for earlier years, XGBoost-derived correction terms to construct TCOM-N2O profiles are derived using only ACE-10

FTS profiles for the 2004-2018 time period, with profiles from 2019-2021 again being used for the independent evaluation.

Overall, both TCOM-CH4 and TCOM-N2O profiles show excellent agreement with the available satellite measurement-based

data sets. We find that compared to evaluation profiles, biases in TCOM-CH4 and TCOM-N2O are generally less than 10%

and 50%, respectively, throughout the stratosphere. Daily zonal mean profile data sets on altitude (15–60 km) and pressure

(300–0.1 hPa) levels are publicly available via https://doi.org/10.5281/zenodo.7293740 for TCOM-CH4 (Dhomse, 2022a) and15

https://doi.org/10.5281/zenodo.7386001 for TCOM-N2O (Dhomse, 2022b).

1 Introduction

After carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are currently the two most important anthropogeni-

cally emitted greenhouse gases (GHGs) and their concentrations in the atmosphere are increasing at substantial rates (e.g.

Meinshausen et al., 2020). Primary natural sources of CH4 are wetlands, decay of organic waste and livestock whereas anthro-20

pogenic sources include landfills and production and transport of coal, natural gas and oil (e.g. Saunois et al., 2016; Lan et al.,

2021). The primary emission sources for N2O are agricultural practices, industrial activities, combustion of fossil fuels and
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treatment of solid/liquid waste (e.g. Tian et al., 2020). Importantly, as measured by the global warming potential (GWP), CH4

is about 25 times and N2O is about 300 times more potent as GHGs compared to CO2.

The lifetime of CH4 in the troposphere is about 9 years (e.g. Lelieveld et al., 1998), and it is primarily removed through25

oxidation by OH. However, in the stratosphere CH4 destruction is much slower, hence its local lifetime increases to about

150 years (Chipperfield et al., 2013). CH4 oxidation is also an important source of water vapour in the stratosphere which

plays a key role in ozone chemistry via HOx cycles, thereby it also influences the radiative balance in the middle stratosphere.

The primary atmospheric sink for N2O is photolysis (producing N2 + O) in the stratosphere/mesosphere, therefore it is also a

long-lived species (lifetime about 120 years (Chipperfield et al., 2013)). A secondary sink for N2O is reaction with O(1D) to30

produce NO that plays a key role in the middle atmosphere O3 budget via the NOx cycle. An important aspect is that increases

in both OH and NO can have also have positive impact on ozone especially in the lower stratosphere, as they help to convert

reactive species to long-lived reservoir species. For example, OH + NO2 (+ M) leads to HNO3 formation while CH4 + Cl leads

to HCl formation, reducing concentrations of reactive NO2 and Cl. Additionally, as both CH4 and N2O are long-lived in the

stratosphere, monitoring their concentrations also help us to understand changes in stratospheric chemistry and dynamics.35

However, despite their importance, there are only a few satellite instrument that provide global stratospheric profiles of CH4

or N2O. Relatively long-term and high quality data records are available from two solar occultation instruments, the HALogen

Occultation Experiment (HALOE) and the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS),

and limb sounding instruments such as the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the

Microwave Limb Sounder (MLS). However, each instrument has different spatial and temporal coverage and they use different40

measurement techniques and retrieval algorithms. Hence merging these satellite data to construct a single long-term data set

for a given species is quite challenging.

Therefore, although stratospheric CH4 and N2O profile data sets were released recently by Hegglin et al. (2021), they did not

attempt to merge data from different satellite instruments. Briefly, these data sets were released as part of the Stratospheric and

Tropospheric Processes And their Role in Climate (SPARC) Data Initiative, and contain monthly mean zonal mean profiles45

in volume mixing ratio units on pressure levels. Data from individual satellite instruments are averaged at 36 latitude bins

(2.5◦ latitudinal resolution) and provided on 26 pressure levels ranging from 300 hPa to 0.1 hPa. SPARC CH4 profile data is

constructed using ACE-FTS (2004–2019), HALOE (1991–2005) and MIPAS (2002–2012) satellite instrument measurements

(Hegglin et al., 2020). For N2O there is no data set for the 1990s but for later periods SPARC N2O data contains monthly mean

values from Aura-MLS, MIPAS, the Sub-Millimetre Radiometer (SMR), and ACE-FTS measurements. Monthly means values50

are available only if there are more than five valid profiles for a given latitude/altitude range. Monthly mean files are available

for individual instruments and there is no merging or adjustment for different data sets.

To our knowledge, until now no attempt has been made to merge satellite data records to construct long-term stratospheric

CH4 and N2O profile data sets. Here, we do this by constructing correction terms for the stratospheric CH4 and N2O profiles

from a chemical transport model by analysing the difference between the model and available satellite observations. Then,55

the correction terms (i.e. difference needed to adjust TOMCAT CH4/N2O profiles) are calculated for all the model grid points

to construct a long-term, gap-free stratospheric profile data set. Details of the satellite data and model set up used here are
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described in Sections 2 and 3, respectively. The methodology used to estimate correction terms is described in Section 4.

Evaluation of the newly constructed data set for CH4 and N2O is presented in Section 5, followed by Summary and Conclusions

in Section 6.60

2 Satellite data and model setup

Being potent GHGs and primary sources of stratospheric water vapour and NOx, stratospheric CH4 and N2O measurements

gained scientific attention even before the discovery of the Antarctic ozone hole (Farman et al., 1985). Initial measurements

were performed by the Stratospheric and Mesospheric Sounder (SAMS) instruments on Nimbus 7 satellite that was launched

in 1978 (Drummond et al. (1980); Jones and Pyle (1984)). Similarly, the Atmospheric Trace Molecule Spectroscopy (ATMOS)65

instrument (Gunson et al., 1990) provided about 350 profiles during four space shuttle missions (in 1985, 1992, 1993 and

1994). Later, the Improved Stratospheric and Mesospheric Sounder (ISAMS) was able to provide about 2600 profiles/day for

about 180 days between 1991-1992, but retrieval was feasible only for the upper stratospheric/mesospheric altitude range (e.g.

Remedios et al., 1996).

A step-change in the number of stratospheric CH4 measurements occurred with the deployment of HALOE on the Upper70

Atmosphere Research Satellite (UARS) in September 1991, followed by ACE-FTS in August 2003. Both instruments provided

about 30 profiles per day (discussed below). Two additional instruments, SCIAMACHY (SCanning Imaging Absorption spec-

troMeter for Atmospheric CHartographY) and MIPAS on the Envisat satellite platform also provided useful stratospheric CH4

profiles over the 2003–2012 time period (e.g. Noël et al., 2016, 2018). For N2O, the Cryogenic Limb Array Etalon Spectrom-

eter (CLAES) on the UARS satellite platform provided about one year of profile measurements (October 1991 to July 1992).75

Later, the Sub-Millimetre Radiometer (SMR) on Odin, launched in 2001 (e.g. Urban et al., 2005), MIPAS, and the Microwave

Limb Sounder (MLS) on the Aura satellite (Waters et al., 2006) also provided very useful N2O profile measurements. However,

to avoid inter-instrument biases likely due to differences in the measurement techniques, we decided here to use only HALOE

and ACE-FTS data.

2.1 HALOE80

HALOE was launched aboard UARS in September 1991 (Russell III et al., 1993). The spacecraft was in a 57◦ inclined orbit

at an altitude of ∼585 km that allowed for observations from 80◦S to 80◦N. The HALOE instrument used a combination of

broadband radiometry and gas filter correlation techniques to observe several trace gas species in the spectral range of 2.4–10.4

µm (or 963–4140 cm−1). HALOE provided about 30 measurements (15 sunrise and 15 sunset) per day with near-global

coverage in approximately one month. In general, daily measurements are provided at two nearly fixed latitudes (sunrise85

and sunset) with near equal longitude spacing. For CH4 the retrieval algorithm uses a 2855–2915 cm−1 spectral window

(channel 6) and profiles are retrieved for the 15 km to 90 km range. The algorithm uses an onion-peel scheme with 1.5 km

thick tangent layer to calculate the transmission using a forward model thereby achieving about 1.5 km vertical resolution.
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Here we use HALOE v19 data that is available for October 1991 to November 2005 time period and is obtained via https:

//acdisc.gesdisc.eosdis.nasa.gov/data//UARS_HALOE_Level2/.90

2.2 ACE-FTS

ACE-FTS was launched aboard the SciSat-1 spacecraft in August 2003 (Bernath, 2002). The spacecraft was launched in a

drifting orbit at an inclination of 74◦ which allows for observations from to 85◦S to 85◦N. The ACE-FTS instrument has

very high spectral resolution (0.02 cm−1) and covers the spectral range between 750 and 4400 cm−1 (Bernath et al., 2005).

Similar to HALOE, ACE-FTS uses the solar occultation technique (30 measurements per day). Global latitude coverage is95

obtained over a period of 3 months and is almost exactly periodic from year to year. The CH4 profile retrieval uses about 60

microwindows between 1244–3087 cm−1 while the N2O retrieval uses 69 microwindows between 1120—2600 cm−1 (Strong

et al., 2008). Retrieval is performed at 1 km resolution from about 5 km to 70 km (Boone et al., 2020). Here we use ACE v4.2

data that is obtained via http://www.ace.uwaterloo.ca/data.php

3 TOMCAT CTM100

As both CH4 and N2O are long-lived tracers in the stratosphere, their stratospheric distributions are largely determined by

transport process. Hence, we decided to use profiles simulated by TOMCAT CTM as it is forced with most up-to-date meteoro-

logical reanalysis data set. Briefly, TOMCAT is an off-line three-dimensional CTM that includes a comprehensive stratospheric

chemistry scheme but, in the version used here, with a simple tropospheric chemical scheme (Chipperfield, 2006). This means

concentrations of long-lived ozone depleting substances (ODSs) and GHGs are prescribed as surface mixing ratio boundary105

conditions (e.g. WMO, 2018) and are assumed to be well mixed throughout the troposphere. For CH4 the model uses observed

monthly mean global surface concentrations from the National Oceanic and Atmospheric Administration (NOAA) network.

The CTM setup is therefore similar to the control simulations used in our recent studies such as Dhomse et al. (2022) and Li

et al. (2022). The model simulation is performed at a 2.8◦ × 2.8◦ horizontal resolution with 32 hybrid sigma-pressure levels

(surface to about 60 km) and is forced with ERA5 (and ERA5.1) reanalysis meteorology (Hersbach et al., 2020). The effects of110

time-varying solar flux changes and volcanically enhanced stratospheric aerosol are included by using separate time-varying

forcing files (e.g. Dhomse et al., 2015, 2016).

4 Methodology

For stratospheric ozone various methodologies have been adopted to merge different types of data to construct homogenised

data sets. They include both simple and complex methodologies for adjusting biases for overlapping time periods (e.g. Hassler115

et al., 2008, 2018; Arosio et al., 2018), use of multivariate linear model (e.g. Randel and Wu, 2007) and data assimilation

(Inness et al., 2015). However, we are not aware of any attempt to construct long-term stratospheric CH4 and N2O profile data

sets using different satellite data sets.
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Here, our approach is similar to that of Dhomse et al. (2021) for ozone who used CTM profiles as a transfer function and

estimated model-observation biases using machine learning. However, they used observation-based monthly mean zonal mean120

ozone values from SWOOSH data set rather than individual satellite data products. As there are a number of satellite instru-

ments that provide ozone profile measurements, monthly mean zonal mean values in merged ozone data sets are considered to

be well constrained. However, as noted in Section 2, there are very few satellite instruments that provide CH4 profile measure-

ments (largely two occultation instruments providing 30 profiles per day), so we decided to use individual data points to train a

machine learning algorithm. Similarly, for N2O (among occulatation instruments) only ACE-FTS provides a long profile data125

record, but again it has limited spatial coverage hence calculation of monthly mean zonal mean profiles are subject to sampling

errors.

Overall, there are 6 steps in our approach. First, TOMCAT output fields are sampled for HALOE and ACE measurement

collocations. There are about 95,000 HALOE profiles and over 106,000 ACE profiles in the 1991-2021 time period. Second,

as ACE profiles are available at 1 km vertical resolution, HALOE profiles are also binned at 1 km vertical resolution and130

TOMCAT profiles (surface to 60 km) are interpolated to the same grid.

Third, we calculate observation-TOMCAT profile differences for each 1 km grid and satellite measurements are included

only if retrieval errors are less than 100%. As there are distinct dynamical (and chemical) regimes in the stratosphere in

terms of processes controlling distribution of these two GHGs, we divide global measurements into five latitude bins: southern

hemisphere (SH) polar (SHpol, 50◦S-90◦S), SH mid-latitude (SHmid, 20◦S-70◦S), tropical (40◦S-40◦N), northern hemisphere135

(NH) mid-latitude (NHmid, 20◦N-70◦N) and NH polar (NHPol, 50◦N-90◦N). A 10◦ latitudinal overlap between the bins is

allowed to include possible extreme variations in the training data set. Estimated differences for overlapping grids are averaged

in order to avoid possible sharp edges near the latitude bin boundaries.

Fourth, we train the XGBoost regression model for TOMCAT-observation differences of CH4 or N2O for each vertical

level. This means there is a separate model for each vertical level (46 for 15-60 km) for each of the 5 latitudinal bins. Briefly,140

XGBoost is a supervised machine learning algorithm that uses an ensemble of decision trees (e.g. Chen and Guestrin, 2016).

XGBoost applies the principle of boosting weak learners using the gradient descent architecture (Gradient Boosting) with

some additional components such as L1 and L2 (Lasso and Ridge) regularization that helps to prevent over-fitting. There

are 13 explanatory variables (or features) in our XGBoost regression model taken from TOMCAT output fields or the ERA5

reanalyses used to force the model. For example, the XGBoost regression model for CH4 can be represented as:145

dCH4 = β1CH4 + β2O3 + β3N2O + β4HNO3 + β5HCl + β6H2O + β7HF + β8NO2 + β9ClONO2+

β10temperature+ β11PV + β12latitude+ β13time + errors (1)

where potential vorticity (PV) and temperature are from ERA5 at co-located TOMCAT grid points. Latitude and time vari-

ables are included to represent temporal/spatial variations in the measurements. Variables β1 to β13 can be considered as the150

contribution coefficient for a given explanatory variable. For CH4, we include an additional (14th) step-function-like term in

the XGBoost model that is set to 0 for the HALOE time period and 1 for the ACE-FTS time period. Our approach here is

to assume that nearly all differences in the TOMCAT CH4 or N2O profiles with respect to HALOE and ACE data arise from
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the incorrect representation of the chemical and dynamical processes in the CTM (including inhomogeneities in ERA5 data

that are used to drive TOMCAT transport). Our aim is to find correction terms for the TOMCAT CH4 or N2O profiles so that155

they match observational profiles for a particular distribution of model tracers and dynamical set up. Hence, we include nine

tracers of varied lifetimes (i.e. CH4, O3, N2O, HNO3, HCl, H2O, HF , N2O, ClONO2) from TOMCAT. We are aware that

some tracers are correlated as all the variables are from a TOMCAT simulation (or forcing meteorology), hence we use Lasso

(L1) regularisation option to remove less important variables in case one or some of them are highly correlated at a particular

level. We use Python package XGBoost (https://xgboost.readthedocs.io/en/stable/python/python_intro.html) for the analysis160

with following options: n_estimators=1000, max_depth=4, alpha=0.3, learning_rate=0.1, min_child_weight=6. As mentioned

earlier, profiles prior to 2018 are used for training (70%) and testing (30%) XGBoost for individual vertical levels. As an

additional check, we use the last three years (2019–2021) of data points for the evaluation.

Fifth, we sample daily TOMCAT output at 1.30 am and 1.30 pm equatorial crossing times (day and night time sampling).

TOMCAT 3D fields are then re-gridded at 1 km vertical resolution before dividing them into five latitude bins (see above).165

Trained XGBoost regression models are then used to calculate correction terms for all twice-daily 3D output profiles.

Sixth, correction terms for individual model grid points are merged to construct twice daily (day/night time) correction

terms. As mentioned above, we use use simple averaging for the overlapping grid points to avoid sharp boundaries, followed

by simple 2-dimensional (latitude-longitude) smoothing using 3-point boxcar smoothing. These twice daily correction terms

are then added to the original TOMCAT CH4 and N2O profiles to produce TCOM-CH4 and TCOM-N2O profiles.170

5 Results

As noted in the Introduction, CH4 and N2O concentrations in the lower stratosphere are largely controlled by dynamical

processes. The reanalysis data sets used to drive transport in the CTM can be considered as our best knowledge of the past

atmosphere as they attempt to incorporate most of the available high quality meteorological observations using data assimila-

tion. However, they are prone to issues related to changes in the number and type of observations assimilated in the reanalysis175

system, which might introduce homogeneities in the data sets produced. On the other hand, although chemical models are ideal

tools for simulating and understanding past changes in these two greenhouse gases using consistent chemical schemes, they are

also prone to deficiencies. For example, some computationally expensive processes (e.g. vertical mixing in the troposphere) are

represented by somewhat simplified parameterisations. Additionally, most of the chemical reaction rates (loss rates) calculated

in the model scheme can also have large uncertainties. Hence, chemical-transport-model-simulated profiles often show some180

kind of bias with respect to observational data sets. Similarly, although occultation-technique-based instruments measure at-

mospheric spectra at relatively high resolution, they also include simplified parameterisations for complex radiative processes

(e.g. scattering, contribution from interfering gases) and so retrieval errors are also sensitive to changes in stratospheric con-

ditions. Hence, here we assume that some of the differences between TOMCAT and observations could be attributed to the

distribution of other TOMCAT tracers. We use XGBoost to identify possible interconnection patterns between TOMCAT CH4185

or N2O differences and other tracers using available data points so that corrections can be estimated for all model grid points.
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Figure 1 shows vertical profiles of estimated variance (R2) and feature (explanatory variable) importances for the SHpol

(50◦S-90◦S) latitude bin for the XGBoost regression model. Feature importance can be considered as a regression coefficient

indicating how much a given variable contributes towards the CH4 or N2O bias-correction prediction. Variance and feature

importances for SHmid, tropics, NHmid and NHpol are shown in Supplementary Figures S1 to S4, respectively. For SHpol,190

XGBoost seems to show excellent performance for both species throughout the stratosphere with R2 values ranging from 0.6

to 0.8. This also validates our approach of using different long-lived tracers as variables in the regression model. As expected,

concentrations of long-lived tracers seem to show close relationships to the biases seen in CH4 and N2O profiles. However,

supplementary Figures S1 to S4 show that R2 for other latitude bins are somewhat smaller (near 0.5) indicating regions with

less dynamical variability (e.g. mid-latitudes) might need some additional features that are not included in this set up.195

In Figure 1 dynamical variables such as potential vorticity show the largest feature (variable) importance in the lower

stratosphere (near 18 km) where fast isentropic transport seems to be somewhat overestimated in the TOMCAT setup. It is

also important to note that 50◦S-90◦S covers a relatively large part of the high-latitude stratosphere and includes the strong

wintertime polar vortex as well as tracer variations near edge of the vortex. Hence attributing a single variable or a single

processes is not possible. For example, around 35 to 40 km, temperature variations seem to explain a large part of the CH4200

biases but, just below 35 km the ClONO2 feature importance is largest (about 0.3). On the other hand, HNO3 seems to explain

a large part of N2O biases in the mid-upper stratosphere. This indicates that although there is a strong relationship between

temperature potential vorticity and chlorine activation, CH4 and N2O biases in the stratosphere cannot be linked to a single

process or variable.

For CH4, additional features showing significant importances are water vapour, CH4 and N2O. As CH4 is the largest in-situ205

source of stratospheric water vapour, their alternating importances in the lower mesosphere (above 55 km) indicate issues with

HOx-related CH4 loss in the lower mesosphere. On the other hand, in the lower stratosphere, a strong winter-time dehydration

inside the polar vortex leads to significant drying. Hence, the somewhat larger importance for water vapour near 15 km and

23 km suggests that XGBoost is able to identify and attribute possible biases in TOMCAT setup to downward transport of CH4

as well as the parameterised dehydration scheme. Similarly, the peaks in N2O importance near the stratopause (∼48km) and210

near 21 km indicate issues in the representation of the downward transport of the long-lived tracers from the mesosphere into

the stratosphere in the polar vortex. Note that in our simulations the TOMCAT top model level is located near 60 km.

Next we compare vertical CH4 profiles from TOMCAT, TCOM-CH4 and collocated HALOE/ACE for the SHpol latitude

bin (Figure 2). Overall, we have have about 40,000 profiles of which around 30,000 fall in the XGBoost training period and

about 10,000 profiles in the 2019-2021 evaluation period. Overall, TCOM-CH4 profiles show excellent agreement with satellite215

profiles and median lines seems to follow each other very closely. In contrast the TOMCAT profiles show good agreement with

observational data between 20-30 km but exhibit positive biases at upper and lower levels. This distinct feature indicates a

clear separation in the importance of dynamical and chemical processes controlling CH4 concentrations. As mentioned earlier,

positive biases in TOMCAT CH4 in the lower stratosphere could be due to faster CH4 transport from the tropics to high-

latitudes. Positive biases in the upper stratosphere/lower mesosphere are most probably due to slower CH4 loss via HOx and220

ClOx chemistry. Another important characteristic in Figure 2 is that variability in observational profiles (shaded region shows
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10 and 90 percentiles) is much larger than TOMCAT (or TCOM) profiles. A possible explanation for differences in variability

would be model output is sampled at the longitude/latitude recorded at 30 km tangent height, but in reality collocations at

different altitudes are a few degrees apart. Additionally, the onion peeling algorithm used for solar occultation measurements

assumes observations at different tangent height are independent, hence retrieved profiles show larger fluctuations.225

Vertical profiles of the absolute (in ppm) and percentage (%) CH4 differences between the three data sets are also shown

in Figure 2 for both the training (1992-2018) and evaluation (2019-2021) time periods. As expected, the median TCOM-CH4

profiles show very little difference with respect to collocated median satellite profiles whereas the TOMCAT profile differences

range from -0.22 ppm (16 km) to -0.05 (near 28 km). In terms of relative differences, again TCOM-observation differences

are close to 0%, whereas for the evaluation period differences are up to 10% in the lower and middle stratosphere. A possible230

explanation for somewhat larger differences for 2019-2021 time period is that there has been rapid increase in atmospheric

CH4 over last few years (e.g. Nisbet et al., 2019). As the rapid CH4 increase period is outside XGBoost training values, the

estimated correction terms seem to be too small, but there are still significant improvements compared to TOMCAT profiles.

Median profile comparisons for training and evaluation periods, and subsequent differences (in ppm and %) for other latitude

bins, are shown in Supplementary Figures S5 to S8.235

Similarly for N2O, Figure 3 compares median profiles from ACE-FTS N2O, TCOM-N2O and TOMCAT and their differ-

ences (absolute and percentage) for SH polar latitudes. Again, TCOM-N2O and ACE-FTS profiles show excellent agreement

for all stratospheric altitudes. Interestingly, TOMCAT N2O profiles are high-biased only in the lower stratosphere (up to

25 km) and have negligible biases in the mid-upper stratosphere. So, in the lower stratosphere TOMCAT profiles show positive

biases of up to ±50 ppb, while TCOM-N2O biases are close to zero for the training period (2004–2010) but show a slight240

increase (up to ±10 ppb) for the evaluation period (2019–2021). Although TCOM-N2O biases are much smaller throughout

the stratosphere, in percentage terms biases can reach up to 100% near 40 km as changes in the small values can translate

into much larger changes in relative differences. However, even with those large relative differences, significantly reduced

biases in TCOM-N2O profiles are visible for all the levels. Median profile comparisons and differences between ACE-FTS,

TCOM-N2O, TOMCAT profiles (in ppb and %) for other latitude bins are shown in Supplementary Figures S9 to S12.245

Improvements in CH4 and N2O profiles are clearly visible in time series comparison shown in Figures 4 and 5 which

compare CH4 and N2O evaluation at 20, 30, 40 and 50 km for the SHpol latitude bin. For clarity the figure shows every 10th

profile (10% of data points). Similar comparisons for SHmid, tropics, NHmid and NHpol are shown in Supplementary Figures

S13 to S20. TCOM-CH4 data points show excellent agreement with the HALOE and ACE data points (Figure 4). Uneven

data density before and after 2004 reflect differences in viewing techniques between these two satellite instruments. Basically,250

HALOE was designed to provide near global coverage whereas ACE-FTS was designed to provide denser coverage at high

latitudes. Even with these uneven sampling frequencies, we do not observe any abrupt changes in TCOM-CH4 data points.

However, we do note some unusual data points in 2004 in the HALOE data record but we are not sure of the exact causes

of these variations. An inspection of HALOE documentation (http://haloe.gats-inc.com/user_docs/index.php, last access: 10

November 2022) does not mention any outstanding issues regarding HALOE CH4 retrievals.255
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Similarly for N2O, Figure 5 also shows excellent agreement between TCOM-N2O and ACE-FTS data points. Again the

largest corrections are observed in the lower stratosphere (15 to 25 km) where TOMCAT profiles are about 30 ppb high-biased.

Similar to CH4, a seasonal minima occurs just after the break-up of Antarctic polar vortex (October), transporting N2O-depleted

air to lower altitudes. As N2O mixing ratios decrease rapidly with increasing altitude, a large number of ACE-FTS data points

show negligible N2O values which is reflected in TCOM-N2O data points. However, it is also important to note that both CH4260

and N2O mixing ratios decrease rapidly with increasing altitude (especially during SH winter/fall). As the ACE-FTS retrieval

algorithm uses multiple micro-windows, there may be a seasonal shift in averaging kernels causing fluctuations in the retrieved

profiles. We also find that the number of negative values in ACE-FTS data increase with increasing altitude. As we use only

positive data points for XGBoost training, correction terms used here might be influenced by these seasonal cycle effects in

CH4 and N2O concentrations.265

An important aspect seen in Figures 4 and 5 is that the seasonal cycles in TCOM-CH4 and TCOM-N2O data points seem

to be more synchronised with observational data sets than TOMCAT, especially at 20 km. As shown above, TOMCAT profiles

show positive biases throughout the stratosphere and largest corrections seem to be in the summertime maximum values that

must arise from transport from mid-high latitudes. Interestingly, near 30 km points from all three data sets seem to be closer to

each other for both CH4 and N2O. Finally, an interesting aspect in both Figures 4 and 5 is that in the upper stratosphere both270

species show wintertime minima near 40 to 50 km that are close to zero throughout the data record. Even with long-term trends

in tropospheric concentrations, a casual inspection does not show any significant trends in either species. We aim to explore

this aspect of CH4 and N2O trends in future studies.

Next we compare TCOM-CH4 profiles with the latest SPARC CH4 data set Hegglin et al. (2021). Figure 6 show daily mean

zonal mean CH4 time series from TCOM-CH4 and monthly mean values from three SPARC (S-HALOE-CH4, S-MIPAS-275

CH4 and S-ACE-CH4) CH4 data records. Unsurprisingly, with some exceptions (near 32.5◦S and N), TCOM-CH4 shows

best agreement with S-ACE-CH4 data at all pressure levels and latitude bins. At 50 hPa, TCOM-CH4 values show somewhat

positive biases with respect to S-HALOE-CH4 near subtropical latitudes, but relatively better agreement in the middle (5 hPa)

and upper (0.5 hPa) stratosphere. On the other hand, S-MIPAS-CH4 data points show significant positive biases with respect

to all other data records with qualitative agreement in the upper stratosphere. Additionally, as expected, positive growth rates280

observed in the tropospheric CH4 concentrations are also distinguishable in both observations (ACE + HALOE) and TCOM-

CH4 data especially near tropical and subtropical latitudes at 50 hPa.

Figure 6 also compares the CH4 evolution at 67.5◦ S and 67.5◦ N. As expected, wintertime CH4 concentrations in the SH

high latitudes are somewhat larger compared to the NH high-latitudes (e.g. Remsberg, 2015). This is because a stronger Brewer-

Dobson (BD) circulation in the NH causes faster downward propagation of the CH4-poor air from the upper stratosphere to the285

lower-middle stratosphere. Interestingly, all the SPARC CH4 data records show less CH4 in the SH at 50 hPa than TCOM. At

5 hPa, TCOM-CH4 data show relatively better agreement with S-HALOE-CH4 data in both hemispheres and with S-ACE-CH4

data only in the NH. The exact causes of unusually low CH4 values in S-MIPAS-CH4 and S-ACE-CH4 data files are unclear.

Again, S-MIPAS-CH4 data points indicate a much larger magnitude of seasonal cycle compared to other data sets. In the upper

stratosphere (0.5 hPa), there seems to better agreement among all the data in both hemispheres. Overall, we find that compared290
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to the TCOM-CH4 data set, SPARC CH4 data records have some inconsistent characteristics and largest disagreement is found

to be at NH high latitudes.

Figure 7 compares the evolution of TCOM-N2O and SPARC data sets based on MIPAS, Aura-MLS, SMR and ACE mea-

surements for five latitude grids (67.5◦S, 32.5◦S, 2.5◦N, 32.5◦N, and 67.5◦N) and three pressure levels (50 hPa, 5 hPa, and

0.5 hPa). The lack of satellite measurements during the 1990s makes it difficult to compare the long-term N2O evolution but295

significant differences between various satellite data records also complicate the more straightforward evaluation. Overall,

TCOM-N2O shows best agreement with SPARC ACE-FTS (S-ACE-N2O) data and poorest agreement with SPARC MIPAS

(S-MIPAS-N2O) data. Interestingly, SPARC SMR (S-SMR-N2O) show N2O variations that are very similar to the S-MIPAS-

N2O data set whereas SPARC-Aura-MLS (S-AMLS-N2O) agrees better with S-ACE-N2O with some exceptions in the later

few years that are related to a drift in MLS N2O measurement (190 GHz) channel (Livesey et al., 2021), especially in the lower300

stratosphere. Hence, for the earlier period TCOM-N2O also shows good agreement with S-AMLS-N2O data until 2014 and

then slight drifts are distinguishable at low-mid latitudes. On the other hand, close agreement between S-SMR-N2O and S-

MIPAS-N2O means that both data sets exhibit high biases in the lower stratosphere and again agreement is weakest at low-mid

latitudes.

Another important aspect in Figure 7 is that at high latitudes, as well as for mid-upper stratospheric altitudes, all the SPARC305

data sets agree quite well with each other and there are no long-term drift and systematic biases between them. The good

agreement of TCOM-N2O with all the SPARC N2O data sets at 5 and 0.5 hPa provides additional evidence of the usefulness of

the TCOM-N2O data set. Additionally, similar to TCOM-CH4, casual inspection of TCOM-N2O does not show any long-term

trends at mid-upper stratospheric pressure levels; we aim to investigate this further in future studies.

Next we analyse differences between TCOM-CH4 and TOMCAT CH4 profiles through the time evolution of corrections310

estimated by the XGBoost regression model. First we look at the differences in zonal mean CH4 at different levels. Figure

8 shows TCOM-CH4 minus TOMCAT CH4 differences (in %) at four vertical levels (15 to 45 km with 10 km spacing). An

important aspect regarding 15 km and 25 km differences is that although median CH4 differences shown in Figure 2 indicate

TOMCAT profiles show positive biases (up to 10%), the latitude slice indicates significant variations between two. Differences

are even positive close to polar latitudes indicating stronger downward transport of CH4-poor air and/or weaker mixing near315

the Antarctic polar vortex region in TOMCAT simulation. Similar characteristics are observed at NH high latitudes. These

biases are even more distinctive at 25 km, especially in the SH high latitudes, though this region can be considered to be a

boundary region where dynamical processes control CH4 concentration at lower altitude and chemical processes dominate at

higher altitudes. Inter-hemispheric asymmetry in the CH4 bias correction also indicates significant differences in representation

of BD circulation in ERA5 data (e.g. Li et al., 2022).320

Additionally, some uneven differences for 1991-1993 at 15 and 25 km in Figure 8 could be due to a combination of various

chemical and dynamical processes. For example, volcanically enhanced stratospheric aerosol following the Mt. Pinatubo erup-

tion in June 1991, might have altered stratospheric transport pathways as larger aerosols absorb outgoing long-wave radiation

(Free and Lanzante, 2009; Dhomse et al., 2020). Such heating can also enhance tropical upwelling as well as horizontal mixing

on isentropic surfaces (e.g. Poberaj et al., 2011; Dhomse et al., 2015; Bittner et al., 2016). Volcanically enhanced stratospheric325
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aerosol can also alter OH radical concentrations either by modulating the amount of incoming solar radiation or by altering

chemical pathways (e.g. Bândă et al., 2013, 2016). It is also well known that increases in stratospheric aerosol concentration

also affected HALOE retrievals (e.g. Remsberg, 2008). ERA5 data assimilation does not include these atmospheric effects

of volcanically enhanced stratospheric aerosol (e.g. Hersbach et al., 2020), hence we are not sure about the unusual CH4

differences in the lower stratosphere.330

On the other hand, differences at 35 km in Figure 8 seem to be dominated by the QBO-induced meridional circulation

patterns Baldwin et al. (2001), that are underestimated in TOMCAT. Even though ACE provides limited observational data

points in the tropics, XGBoost is able to identify this discrepancy. On the temporal scale, differences are largest until 1996,

reaching polar latitudes, followed by gradual decrease in the NH sub-tropics and remain larger in the SH sub-tropics. A similar

type of uneven evolution for later periods can also be seen, suggesting issues in ERA5 data towards the representation of QBO-335

induced circulation, especially for years with an unusual QBO evolution such as 2016 and 2020 (e.g. Newman et al., 2016;

Osprey et al., 2016; Diallo et al., 2022).

Another notable feature in Figure 8 is that at 45 km, for some years CH4 differences are clearly distinguishable. Both

HALOE and ACE have much smaller retrieval errors at higher altitude and, assuming there were no abrupt changes in these

two satellite instruments (or retrieval algorithms), the unusual differences seen at 45 km can be attributed to inhomogeneities340

or issues in ERA5 data. These distinctive periods include the first halves of years 1993, 1997, 2001, 2004 and the latter half of

2019.

6 Summary and Conclusions

Even though CH4 and N2O are very important greenhouse gases, as well as the sources for key stratospheric species, there

are limited stratospheric profile data sets that extend for more than a decade. Due to their long lifetimes, CH4 and N2O are345

also very useful dynamical tracers, that can used to evaluate stratospheric transport processes. Also, for the accurate retrieval

of tropospheric CH4 using satellite instruments, realistic stratospheric CH4 profiles provide a useful constraint. However, until

now no attempt has been made to construct long-term CH4 and N2O profile data sets. Furthermore, although chemical models

are able to simulate long-term profile data sets of these species, they are highly dependent on the dynamical scheme used to

simulate stratospheric transport processes as well as chemical loss rates/processes used in a particular model.350

Here we have used CH4 and N2O profiles from the TOMCAT CTM, two solar occultation instrument measurements and the

eXtreme Gradient Boost (XGBoost) regression model to construct daily, gap-free stratospheric profile data sets (TCOM-CH4

and TCOM-N2O) for the 1991-2021 time period. The XGBoost regression model is trained for the CH4 or N2O difference

between TOMCAT and satellite measurements (HALOE and ACE). These differences are used to estimate corrections that are

added to the TOMCAT profiles to derive TCOM-CH4 and TCOM-N2O profiles. The regression algorithm uses 13 features355

(or variables) based on TOMCAT tracers as well as four additional features such as temperature, potential vorticity, latitude

and date of the measurement. As atmospheric CH4 and N2O concentrations vary under different dynamical and chemical
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regimes, the global measurements are sub-divided in five latitude bins (two polar, two mid-latitude and the tropics) within

which regression parameters are derived for each 1 km vertical grid (15 to 60 km).

For both the gases, XGBoost shows good performance (R2 >0.5 to 0.8) throughout the stratosphere, except for lower strato-360

sphere which can be attributed to the limited training measurements. Measurements from the final three years (2019-2021) are

used evaluate TCOM-CH4 and TCOM-N2O profiles. Overall, TCOM-CH4 show excellent agreement with the evaluation pro-

files and median differences are less than 10%. Additionally, comparison with SPARC-CH4 data suggests that SPARC-MIPAS

profiles show some unrealistic behaviour and SPARC-ACE and SPARC-HALOE do not show expected inter-hemispheric

differences in lower stratospheric CH4 differences (less CH4 in the NH).365

For TCOM-N2O, better agreement is again seen with respect to S-ACE-N2O data set and weaker agreement is observed

against MIPAS data. TCOM-N2O also confirms the drift in Aura-MLS (as used in SPARC data set) especially at lower lati-

tudes and altitudes. A simple inspection of TCOM-CH4 and TCOM-N2O plots also suggests that despite increasing surface

values there are near-negligible long-term trends in the upper stratosphere/lower mesosphere which is consistent with Minganti

et al. (2022). A possible explanation would be strengthening of the stratospheric circulation which would have caused faster370

photochemical loss thereby reducing the lifetime of these GHGs (e.g. Prather et al., 2022). Finally, analysis of TCOM-CH4

and TOMCAT CH4 profiles suggests that the representation of QBO-induced secondary circulation is not adequate in the CTM

and differences also reveal some temporal inhomogeneities in ERA5 reanalysis data.

Presently, the TCOM-CH4 and TCOM-N2O V1.0 data set is ideally suited for the evaluation of CH4 and N2O chemistry

and stratospheric transport processes in models. The TCOM-CH4 data set can also be used as realistic stratospheric profiles375

in a CH4 profile/total column retrievals. Daily mean zonal mean TCOM-CH4 and TCOM-N2O profile data on pressure and

altitude levels in mixing ratio units are publicly available via https://doi.org/10.5281/zenodo.7293740 (Dhomse, 2022a) and

https://doi.org/10.5281/zenodo.7386001 (Dhomse, 2022b), respectively.

7 Data availability

HALOE V19 are from https://acdisc.gesdisc.eosdis.nasa.gov/data//UARS_HALOE_Level2/, ACE-FTS v4.2 is obtained via380

http://www.ace.uwaterloo.ca/data.php. SPARC climatological data can be obtained via doi:10.5281/zenodo.4265393 (Hegglin

et al., 2021). TCOM-CH4 and TCO-N2O data are publicly available at https://doi.org/10.5281/zenodo.7293740 (Dhomse,

2022a) and https://doi.org/10.5281/zenodo.7386001 (Dhomse, 2022b), respectively.
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Bândă, N., Krol, M., van Weele, M., van Noije, T., Le Sager, P., and Röckmann, T.: Can we explain the observed methane variability after

the Mount Pinatubo eruption?, Atmospheric Chemistry and Physics, 16, 195–214, https://doi.org/10.5194/acp-16-195-2016, 2016.

Bernath, P.: Atmospheric Chemistry Experiment (ACE): An overview, IEEE International Geoscience and Remote Sensing Symposium, 2,400

147–160, http://eprints.whiterose.ac.uk/68898/, 2002.

Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P.-F., Colin, R.,

DeCola, P., DeMazière, M., Drummond, J. R., Dufour, D., Evans, W. F. J., Fast, H., Fussen, D., Gilbert, K., Jennings, D. E., Llewellyn,

E. J., Lowe, R. P., Mahieu, E., McConnell, J. C., McHugh, M., McLeod, S. D., Michaud, R., Midwinter, C., Nassar, R., Nichitiu, F.,

Nowlan, C., Rinsland, C. P., Rochon, Y. J., Rowlands, N., Semeniuk, K., Simon, P., Skelton, R., Sloan, J. J., Soucy, M.-A., Strong,405

K., Tremblay, P., Turnbull, D., Walker, K. A., Walkty, I., Wardle, D. A., Wehrle, V., Zander, R., and Zou, J.: Atmospheric Chemistry

Experiment (ACE): Mission overview, Geophysical Research Letters, 32, https://doi.org/https://doi.org/10.1029/2005GL022386, 2005.

Bittner, M., Schmidt, H., Timmreck, C., and Sienz, F.: Using a large ensemble of simulations to assess the Northern Hemisphere

stratospheric dynamical response to tropical volcanic eruptions and its uncertainty, Geophysical Research Letters, 43, 9324–9332,

https://doi.org/10.1002/2016GL070587, 2016.410

Boone, C., Bernath, P., Cok, D., Jones, S., and Steffen, J.: Version 4 retrievals for the atmospheric chemistry experiment Fourier

transform spectrometer (ACE-FTS) and imagers, Journal of Quantitative Spectroscopy and Radiative Transfer, 247, 106 939,

https://doi.org/https://doi.org/10.1016/j.jqsrt.2020.106939, 2020.

Chen, T. and Guestrin, C.: Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd acm sigkdd international conference on

knowledge discovery and data mining, pp. 785–794, 2016.415

Chipperfield, M., Liang, Q., Abraham, L., Bekki, S., Braesicke, P., Dhomse, S., Genova, G. D., Fleming, E., Hardiman,

S. C., Iachettii, D., Jackman, C. H., Kinnison, D. E., Marchand, M., Pitari, G., Rozanov, E., Stenke, A., and Tummon,

F.: Lifetimes of Stratospheric Ozone-Depleting Substances, Their Replacements, and Related Species, Tech. rep., SPARC,

http://www.sparc-climate.org/fileadmin/customer/6{_}Publications/SPARC{_}reports{_}PDF/6{_}LifetimeReport{_}Ch5.pdfhttp:

//www.sparc-climate.org/publications/sparc-reports/sparc-report-no6/, 2013.420

Chipperfield, M. P.: New version of the TOMCAT/SLIMCAT off-line chemical transport model: Intercomparison of stratospheric tracer

experiments, Quarterly Journal of the Royal Meteorological Society, 132, 1179–1203, https://doi.org/10.1256/qj.05.51, 2006.

Dhomse, S.: TCOM-CH4: TOMCAT CTM and Occultation Measurements based daily zonal stratospheric methane profile dataset [1991-

2021] constructed using machine- learning, https://doi.org/10.5281/zenodo.7293740, 2022a.

Dhomse, S.: TCOM-N2O: TOMCAT CTM and Occultation Measurements based daily zonal stratospheric nitrous oxide profile dataset425

[1991-2021] constructed using machine-learning, https://doi.org/10.5281/zenodo.7386001, 2022b.

14

https://doi.org/10.5194/essd-2023-47
Preprint. Discussion started: 29 March 2023
c© Author(s) 2023. CC BY 4.0 License.



Dhomse, S. S., Chipperfield, M. P., Feng, W., Hossaini, R., Mann, G. W., and Santee, M. L.: Revisiting the hemispheric asymmetry in

midlatitude ozone changes following the Mount Pinatubo eruption: A 3-D model study, Geophysical Research Letters, 42, 3038–3047,

https://doi.org/10.1002/2015GL063052, 2015.

Dhomse, S. S., Chipperfield, M. P., Damadeo, R. P., Zawodny, J. M., Ball, W. T., Feng, W., Hossaini, R., Mann, G. W., and Haigh, J. D.:430

On the ambiguous nature of the 11-year solar cycle signal in upper stratospheric ozone, Geophysical Research Letters, 43, 7241–7249,

https://doi.org/10.1002/2016GL069958, 2016.

Dhomse, S. S., Mann, G. W., Antuña Marrero, J. C., Shallcross, S. E., Chipperfield, M. P., Carslaw, K. S., Marshall, L., Abraham,

N. L., and Johnson, C. E.: Evaluating the simulated radiative forcings, aerosol properties, and stratospheric warmings from the 1963

Mt Agung, 1982 El Chichón, and 1991 Mt Pinatubo volcanic aerosol clouds, Atmospheric Chemistry and Physics, 20, 13 627–13 654,435

https://doi.org/10.5194/acp-20-13627-2020, 2020.

Dhomse, S. S., Arosio, C., Feng, W., Rozanov, A., Weber, M., and Chipperfield, M. P.: ML-TOMCAT: machine-learning-based satellite-

corrected global stratospheric ozone profile data set from a chemical transport model, Earth System Science Data, 13, 5711–5729,

https://doi.org/10.5194/essd-13-5711-2021, 2021.

Dhomse, S. S., Chipperfield, M. P., Feng, W., Hossaini, R., Mann, G. W., Santee, M. L., and Weber, M.: A single-peak-structured solar440

cycle signal in stratospheric ozone based on Microwave Limb Sounder observations and model simulations, Atmospheric Chemistry and

Physics, 22, 903–916, 2022.

Diallo, M. A., Ploeger, F., Hegglin, M. I., Ern, M., Grooß, J.-U., Khaykin, S., and Riese, M.: Stratospheric water vapour and ozone

response to the quasi-biennial oscillation disruptions in 2016 and 2020, Atmospheric Chemistry and Physics, 22, 14 303–14 321,

https://doi.org/10.5194/acp-22-14303-2022, 2022.445

Drummond, J., Houghton, J. T., Peskett, G., Rodgers, C., Wale, M., Whitney, J., and Williamson, E.: The stratospheric and mesospheric

sounder on Nimbus 7, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 296,

219–241, 1980.

Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total ozone in Antarctica reveal seasonal ClO x/NO x interaction, Nature,

315, 207–210, 1985.450

Free, M. and Lanzante, J.: Effect of Volcanic Eruptions on the Vertical Temperature Profile in Radiosonde Data and Climate Models, Journal

of Climate, 22, 2925–2939, https://doi.org/10.1175/2008JCLI2562.1, 2009.

Gunson, M., Farmer, C. B., Norton, R., Zander, R., Rinsland, C. P., Shaw, J., and Gao, B.-C.: Measurements of CH4, N2O, CO, H2O, and O3

in the middle atmosphere by the Atmospheric Trace Molecule Spectroscopy Experiment on Spacelab 3, Journal of Geophysical Research:

Atmospheres, 95, 13 867–13 882, 1990.455

Hassler, B., Bodeker, G., and Dameris, M.: A new global database of trace gases and aerosols from multiple sources of high vertical resolution

measurements, Atmospheric Chemistry and Physics, 8, 5403–5421, 2008.

Hassler, B., Kremser, S., Bodeker, G. E., Lewis, J., Nesbit, K., Davis, S. M., Chipperfield, M. P., Dhomse, S. S., and Dameris, M.: An updated

version of a gap-free monthly mean zonal mean ozone database, Earth System Science Data, 10, 1473–1490, 2018.

Hegglin, M. I., Tegtmeier, S., Anderson, J., Bourassa, A. E., Brohede, S., Degenstein, D., Froidevaux, L., Funke, B., Gille, J., Kasai, Y.,460

Kyrölä, E., Lumpe, J., Murtagh, D., Neu, J. L., Pérot, K., Remsberg, E., Rozanov, A., Toohey, M., von Clarmann, T., Walker, K. A.,

Wang, H. J., Damadeo, R., Fuller, R., Lingenfelser, G., Roth, C., Ryan, N. J., Sioris, C., Smith, L., and Weigel, K.: SPARC Data Initiative

monthly zonal mean composition measurements from stratospheric limb sounders (1978-2018), https://doi.org/10.5281/zenodo.4265393,

2020.

15

https://doi.org/10.5194/essd-2023-47
Preprint. Discussion started: 29 March 2023
c© Author(s) 2023. CC BY 4.0 License.



Hegglin, M. I., Tegtmeier, S., Anderson, J., Bourassa, A. E., Brohede, S., Degenstein, D., Froidevaux, L., Funke, B., Gille, J., Kasai, Y.,465

Kyrölä, E. T., Lumpe, J., Murtagh, D., Neu, J. L., Pérot, K., Remsberg, E. E., Rozanov, A., Toohey, M., Urban, J., von Clarmann, T.,

Walker, K. A., Wang, H.-J., Arosio, C., Damadeo, R., Fuller, R. A., Lingenfelser, G., McLinden, C., Pendlebury, D., Roth, C., Ryan,

N. J., Sioris, C., Smith, L., and Weigel, K.: Overview and update of the SPARC Data Initiative: comparison of stratospheric composition

measurements from satellite limb sounders, Earth System Science Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, 2021.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Sim-470

mons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren,

P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J.,

Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Vil-

laume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049,

https://doi.org/https://doi.org/10.1002/qj.3803, 2020.475

Inness, A., Blechschmidt, A.-M., Bouarar, I., Chabrillat, S., Crepulja, M., Engelen, R. J., Eskes, H., Flemming, J., Gaudel, A., Hendrick, F.,

Huijnen, V., Jones, L., Kapsomenakis, J., Katragkou, E., Keppens, A., Langerock, B., de Mazière, M., Melas, D., Parrington, M., Peuch,

V. H., Razinger, M., Richter, A., Schultz, M. G., Suttie, M., Thouret, V., Vrekoussis, M., Wagner, A., and Zerefos, C.: Data assimilation of

satellite-retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF’s Composition-IFS, Atmospheric Chemistry and Physics,

15, 5275–5303, https://doi.org/10.5194/acp-15-5275-2015, 2015.480

Jones, R. and Pyle, J.: Observations of CH4 and N2O by the Nimbus 7 SAMS: A comparison with in situ data and two-dimensional numerical

model calculations, Journal of Geophysical Research: Atmospheres, 89, 5263–5279, 1984.

Lan, X., Nisbet, E. G., Dlugokencky, E. J., and Michel, S. E.: What do we know about the global methane budget? Results from four decades

of atmospheric CH<sub>4</sub> observations and the way forward, Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 379, 20200 440, https://doi.org/10.1098/rsta.2020.0440, 2021.485

Lelieveld, J., Crutzen, P. J., and Dentener, F. J.: Changing concentration, lifetime and climate forcing of atmospheric methane, Tellus B, 50,

128–150, 1998.

Li, Y., Dhomse, S. S., Chipperfield, M. P., Feng, W., Chrysanthou, A., Xia, Y., and Guo, D.: Effects of reanalysis forcing fields on ozone trends

and age of air from a chemical transport model, Atmospheric Chemistry and Physics, 22, 10 635–10 656, https://doi.org/10.5194/acp-22-

10635-2022, 2022.490

Livesey, N. J., Read, W. G., Froidevaux, L., Lambert, A., Santee, M. L., Schwartz, M. J., Millán, L. F., Jarnot, R. F., Wagner, P. A., Hurst,

D. F., Walker, K. A., Sheese, P. E., and Nedoluha, G. E.: Investigation and amelioration of long-term instrumental drifts in water vapor and

nitrous oxide measurements from the Aura Microwave Limb Sounder (MLS) and their implications for studies of variability and trends,

Atmospheric Chemistry and Physics, 21, 15 409–15 430, https://doi.org/10.5194/acp-21-15409-2021, 2021.

Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell,495

J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den

Berg, M., Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared socio-economic pathway (SSP) greenhouse gas concentrations

and their extensions to 2500, Geoscientific Model Development, 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, 2020.

Minganti, D., Chabrillat, S., Errera, Q., Prignon, M., Kinnison, D. E., Garcia, R. R., Abalos, M., Alsing, J., Schneider, M.,

Smale, D., Jones, N., and Mahieu, E.: Evaluation of the N2O Rate of Change to Understand the Stratospheric Brewer-500

Dobson Circulation in a Chemistry-Climate Model, Journal of Geophysical Research: Atmospheres, 127, e2021JD036 390,

https://doi.org/https://doi.org/10.1029/2021JD036390, e2021JD036390 2021JD036390, 2022.

16

https://doi.org/10.5194/essd-2023-47
Preprint. Discussion started: 29 March 2023
c© Author(s) 2023. CC BY 4.0 License.



Newman, P., Coy, L., Pawson, S., and Lait, L.: The anomalous change in the QBO in 2015–2016, Geophysical Research Letters, 43, 8791–

8797, 2016.

Nisbet, E. G., Manning, M., Dlugokencky, E., Fisher, R., Lowry, D., Michel, S., Myhre, C. L., Platt, S. M., Allen, G., Bousquet, P., et al.:505

Very strong atmospheric methane growth in the 4 years 2014–2017: Implications for the Paris Agreement, Global Biogeochemical Cycles,

33, 318–342, 2019.

Noël, S., Bramstedt, K., Hilker, M., Liebing, P., Plieninger, J., Reuter, M., Rozanov, A., Sioris, C. E., Bovensmann, H., and Burrows, J. P.:

Stratospheric CH4 and CO2 profiles derived from SCIAMACHY solar occultation measurements, Atmospheric Measurement Techniques,

9, 1485–1503, 2016.510

Noël, S., Weigel, K., Bramstedt, K., Rozanov, A., Weber, M., Bovensmann, H., and Burrows, J. P.: Water vapour and methane coupling in the

stratosphere observed using SCIAMACHY solar occultation measurements, Atmospheric Chemistry and Physics, 18, 4463–4476, 2018.

Osprey, S. M., Butchart, N., Knight, J. R., Scaife, A. A., Hamilton, K., Anstey, J. A., Schenzinger, V., and Zhang, C.: An unexpected

disruption of the atmospheric quasi-biennial oscillation, Science, https://doi.org/10.1126/science.aah4156, 2016.

Poberaj, C. S., Staehelin, J., and Brunner, D.: Missing Stratospheric Ozone Decrease at Southern Hemisphere Middle Latitudes after Mt.515

Pinatubo: A Dynamical Perspective, Journal of the Atmospheric Sciences, 68, 1922–1945, https://doi.org/10.1175/JAS-D-10-05004.1,

2011.

Prather, M. J., Froidevaux, L., and Livesey, N. J.: Observed changes in stratospheric circulation: Decreasing lifetime of N2O, 2005–2021,

Atmospheric Chemistry and Physics Discussions, 2022, 1–13, https://doi.org/10.5194/acp-2022-650, 2022.

Randel, W. J. and Wu, F.: A stratospheric ozone profile data set for 1979–2005: Variability, trends, and comparisons with column ozone data,520

Journal of Geophysical Research: Atmospheres, 112, 2007.

Remedios, J., Ruth, S., Rodgers, C., Taylor, F., Roche, A., Gille, J., Gunson, M., Russell III, J., Park, J., and Zipf, E.: Measurements of

methane and nitrous oxide distributions by the improved stratospheric and mesospheric sounder: Retrieval and validation, Journal of

Geophysical Research: Atmospheres, 101, 9843–9871, 1996.

Remsberg, E.: On the response of Halogen Occultation Experiment (HALOE) stratospheric ozone and temperature to the 11-year solar cycle525

forcing, Journal of Geophysical Research: Atmospheres . . . , http://onlinelibrary.wiley.com/doi/10.1029/2008JD010189/full, 2008.

Remsberg, E. E.: Methane as a diagnostic tracer of changes in the Brewer–Dobson circulation of the stratosphere, Atmospheric Chemistry

and Physics, 15, 3739–3754, https://doi.org/10.5194/acp-15-3739-2015, 2015.

Russell III, J. M., Gordley, L. L., Park, J. H., Drayson, S. R., Hesketh, W. D., Cicerone, R. J., Tuck, A. F., Frederick, J. E., Harries, J. E., and

Crutzen, P. J.: The halogen occultation experiment, Journal of Geophysical Research: Atmospheres, 98, 10 777–10 797, 1993.530

Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., Dlugokencky, E. J., Etiope, G., Bastviken, D., Houweling, S.,

et al.: The global methane budget 2000–2012, Earth System Science Data, 8, 697–751, 2016.

Strong, K., Wolff, M. A., Kerzenmacher, T. E., Walker, K. A., Bernath, P. F., Blumenstock, T., Boone, C., Catoire, V., Coffey, M., De Mazière,

M., Demoulin, P., Duchatelet, P., Dupuy, E., Hannigan, J., Höpfner, M., Glatthor, N., Griffith, D. W. T., Jin, J. J., Jones, N., Jucks, K.,

Kuellmann, H., Kuttippurath, J., Lambert, A., Mahieu, E., McConnell, J. C., Mellqvist, J., Mikuteit, S., Murtagh, D. P., Notholt, J., Piccolo,535

C., Raspollini, P., Ridolfi, M., Robert, C., Schneider, M., Schrems, O., Semeniuk, K., Senten, C., Stiller, G. P., Strandberg, A., Taylor, J.,

Tétard, C., Toohey, M., Urban, J., Warneke, T., and Wood, S.: Validation of ACE-FTS N2O measurements, Atmospheric Chemistry and

Physics, 8, 4759–4786, https://doi.org/10.5194/acp-8-4759-2008, 2008.

Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., Davidson, E. A., Ciais, P., Jackson, R. B., Janssens-

Maenhout, G., Prather, M. J., Regnier, P., Pan, N., Pan, S., Peters, G. P., Shi, H., Tubiello, F. N., Zaehle, S., Zhou, F., Arneth, A., Battaglia,540

17

https://doi.org/10.5194/essd-2023-47
Preprint. Discussion started: 29 March 2023
c© Author(s) 2023. CC BY 4.0 License.



G., Berthet, S., Bopp, L., Bouwman, A. F., Buitenhuis, E. T., Chang, J., Chipperfield, M. P., Dangal, S. R. S., Dlugokencky, E., Elkins,

J. W., Eyre, B. D., Fu, B., Hall, B., Ito, A., Joos, F., Krummel, P. B., Landolfi, A., Laruelle, G. G., Lauerwald, R., Li, W., Lienert, S.,

Maavara, T., MacLeod, M., Millet, D. B., Olin, S., Patra, P. K., Prinn, R. G., Raymond, P. A., Ruiz, D. J., van der Werf, G. R., Vuichard,

N., Wang, J., Weiss, R. F., Wells, K. C., Wilson, C., Yang, J., and Yao, Y.: A comprehensive quantification of global nitrous oxide sources

and sinks, Nature, 586, 248–256, 2020.545

Urban, J., Lautié, N., Le Flochmoën, E., Jiménez, C., Eriksson, P., de La Noë, J., Dupuy, E., El Amraoui, L., Frisk, U., Jégou, F., Murtagh,

D., Olberg, M., Ricaud, P., Camy-Peyret, C., Dufour, G., Payan, S., Huret, N., Pirre, M., Robinson, A. D., Harris, N. R. P., Bremer,

H., Kleinböhl, A., Küllmann, K., Künzi, K., Kuttippurath, J., Ejiri, M. K., Nakajima, H., Sasano, Y., Sugita, T., Yokota, T., Piccolo, C.,

Raspollini, P., and Ridolfi, M.: Odin/SMR limb observations of stratospheric trace gases: Validation of N2O, Journal of Geophysical

Research: Atmospheres, 110, https://doi.org/https://doi.org/10.1029/2004JD005394, 2005.550

Waters, J. W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett, H. M., Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., Flower,

D. A., et al.: The earth observing system microwave limb sounder (EOS MLS) on the Aura satellite, IEEE transactions on geoscience and

remote sensing, 44, 1075–1092, 2006.

WMO: Scientific Assessment of Ozone Depletion:2018, Tech. rep., World Meteorological Organization, Global Ozone Research and Moni-

toring Project, Report No. 58, Geneva, Switzerland, https://www.wmo.int/pages/prog/arep/gaw/ozone{_}2018/, 2018.555

18

https://doi.org/10.5194/essd-2023-47
Preprint. Discussion started: 29 March 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 1. Vertical profiles of the variance (R2) and feature importances estimated by XGBoost regression models for the TOMCAT-

observation differences for (a) CH4 (1991-2018) and (b) N2O (2004-2018, ACE only) for the SHpol (50◦S–90◦S) latitude bin. See equation

1 and subsequent information about the features (total 13) or variables used in the XGBoost regression model.
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Figure 2. Panels (a) and (b). Comparison between TOMCAT (blue), TCOM-CH4 (orange) and satellite measurement-based (black) CH4

profiles for SHpol (50◦S–90◦S) latitude band. Solid lines indicate median profiles while shaded regions show 10th and 90th percentile range.

Comparisons are shown for training (1992-2018) and evaluation (2019-2021) periods in panels (a, left) and (b, right), respectively. Panels (c)

- (f). Differences between TOMCAT and TCOM-CH4 w. r. t. satellite data sets in absolute units (ppm) and percent. Right (c and e) and left

(d and f) panels show differences for the training (1992-2018) and evaluation (2019-2021) periods.
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Figure 3. Same as Figure 2, but for N2O. The training period includes data for 2004–2018.
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Figure 4. Time evolution (1992-2021) of CH4 from TOMCAT (blue crosses), TCOM-CH4 (orange diamonds) and satellite data (black dots)

for SHpol (50◦S–90◦S) at 20, 30, 40 and 50 km. Note that for clarity only 10% (every 10th) of data points are shown. Due to sharp gradient

in vertical distribution, the y axis range varies between the panels.
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Figure 5. Same as Figure 4, but for N2O. The comparison is shown for the 2004-2021 time period.
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Figure 6. Comparison between TCOM-CH4 (dark line) and three (ACE (black line), HALOE (magenta line) and MIPAS (aqua line)) satellite

instrument-based SPARC-CH4 data set (for details see Hegglin et al. (2021)). Time series of monthly mean values from SPARC-CH4 and

TCOM-CH4 data set are shown for 0.5 hPa (top), 5 hPa (middle), and 50 hPa (bottom) for five latitude bins: 67.5◦ and 32.5◦ in both the

hemispheres as well as 2.5◦N (middle).
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Figure 7. Same as Figure 6 but for N2O. SPARC data from the four satellite instruments ACE, Aura-MLS, MIPAS and SMR are shown with

black, green, aqua and pink coloured lines, respectively.
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Figure 8. Latitude-time cross section of the differences between TCOM-CH4 and TOMCAT CTM CH4 profiles (in %) at 15 km (bottom),

25 km, 35 km and 45 km (top).
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