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Abstract

In continuation of our previous efforts for the development of potent small molecules against brain 

cancer, herein we synthesized seventeen new compounds and tested their anti-gliomapotential 

against established glioblastoma cell lines, namely, D54MG, U251, and LN-229 as well as patient 

derived cell lines (DB70 and DB93). Among them, the carboxamide derivatives, BT-851 and 

BT-892 were found to be the most active leads in comparison to our established hit compound 

BT#9.The SAR studies of our hit BT#9 compound resulted in the development of two new lead 

compounds by hit to lead strategy. The detailed biological studies are currently underway. The 

active compounds could possibly act as template for the future development of newer anti-glioma 

agents.
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Introduction

Glioblastoma (GBM) is a fatal aggressive brain tumor, which has a severe prognosis in 

spite of the first line chemotherapeutic drugs, surgery and radiation therapies.1,2 There is 

no effective second-line treatment at the time of recurrence. The patients’ survival is one to 

two years, with less than 5–10% of people living longer than five years.3,4 If the cancer is 

left untreated, survival is classically about three months. The failure of current therapies has 

multiple causes, including dysfunctional blood brain barrier, heterogeneous cell populations 

(including glioblastoma stem cells) which leads to treatment resistance and the risk of 

toxicity to the normal brain3. Consequently, there is an urgent need for the development of 

newer anti-glioblastoma agents because of dysfunctional blood brain barrier, development of 

treatment resistance and lack of effective treatment at the time of recurrence.5–7

Magmas is a J-like protein found in the mitochondrial matrix. It has been shown to be 

upregulated in several cancers including glioblastoma (GBM) and increasedexpressionhas 

been observed to have a protective effect against reactive oxygen species (ROS) mediated 

apoptosis in different cancers.8,9 In mammals, Magmas can form complexes with DnaJC19 

and DnaJC15, J-protein subunits of the TIM23 (translocase of the inner membrane) 

trafficking complex.10 Magmas plays a crucial role in the survival of glioma and 

consequently Magmas inhibition may possibly be a prominent tool in the treatment of GBM 

patients.

Previously, we have synthesized a series of small molecule inhibitors and tested their anti-

glioma potential.8,11 Delightfully, one of our hit compound BT#9, significantly exerted anti-

cancer effect in glioma in vitro by inhibiting cell division, stimulating apoptosis, obstructing 

cell migration and invasion. Our outcomes also revealed that our hit compound BT#9, could 

probably cross the blood brain barrier and has a remarkable potential to be developed as a 

therapeutic lead.5,12

Inspired by having a promising hit (BT#9) in hand(Fig. 1), and in continuance of our efforts 

towards the development of small molecule inhibitors,13–15 we were prompted to synthesize 

new lead compounds by hit to lead strategy using Lipinski rule of five and other preclinical 

criteria.16–18 Consequently, the authors of this manuscript report the hit-to-lead optimization 

of BT#9 by synthesizing new BT#9 analogs and exploring the structure activity relationship 

(SAR) studies (Fig. 1). The guanidine part of BT#9 was interchanged by carboxamides, 

oxadiazoles and/or oxadiazaboroles. Herein, we have synthesized seventeen compounds and 

evaluated their anticancer effect on different GBM cell lines.

The synthesis of acid (5) is represented in Scheme 1. It was prepared according to our 

previous reported procedures.19,20 Initially, β-cyclocitral (1) was subjected to Grignard 

reaction by treating with methyl magnesium bromide with dry THF to yield alcohol 

(2) as yellow oil (Scheme 1). The alcohol gave satisfactory spectral data and was 

directly converted to wittig salt (3) by treatment with triphenylphosphinehy-drobromide in 

acetonitrile at 90 °C for 12 h. Recrystallization of (3) from hexane gave a white crystalline 

solid. Next, the witting salt was treated with methyl 4-formylbenzoate in DMF in the 

presence of Sodium tertbutoxide at room temperature for 24 h to furnish the precursor acid 
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(5). Finally, the desired carboxamides were prepared in good yields by treating the acid (5) 

with corresponding amines in the presence of CDI, DMAP in Dimethylformamide at 90 °C 

for 16 h.

Next, our goal was to synthesize oxadiazole derivatives from the acid (5) The synthesis of 

oxadiazole derivatives was accomplished by a known protocol21,10 is illustrated in Scheme 

2. These compounds were synthesized by an amide coupling strategy by heating substituted 

commercially available amidoximes 8(a-e) and acid (5) in the presence of CDI in DMF 

for 20 h. After purification by silica-gel chromatography (Hexanes/EtOAc: 3:1) oxadiazole 

derivatives were obtained as solids in good yields.

Consequently, we were prompted to replace the acid functionality with cyano, amidoxime 

and oxadiazaborole to study the SAR. The synthetic Scheme is illustrated in Scheme 3. 

The witting salt (3) was treated with 4-cyanobenzaldehyde (10) in DMF in the presence of 

Sodium tertiarybutoxide at room temperature for 24 h to furnish BT-852.14 Next, the cyano 

compound, BT-852 was straightforwardly converted to amidoxime derivative, BT-853, by 

heating it with Hydroxylamine Hydrochloride in the presence of a base (DIPEA) in ethanol 

for 18 h.13 The next step, boron insertion was accomplished by heating BT-853 with phenyl 

boronic acid (13) in dry toluene in the presence of molecular sieves for 20 h at 110 °C 

to obtain the desired oxadiazoborole derivative, BT-854.22 All the synthesized compounds 

were confirmed by 1H NMR, 13C NMR and HRMS data.

The synthesized compounds were screened against established glioblastoma cell lines, 

namely, D54MG, U251, and LN-229 as well as patient derived cell lines (DB70 and DB93) 

to assess cell viability using MTT assay and XTT assays.23 IC50 value of the synthesized 

compounds are represented in Table 1. In addition partition coefficient values (log P and C 

logP) have been calculated theoretically and are represented in Table 1.

Among all the tested compounds, amide derivatives, BT-851 containing benzothiazole motif 

and BT-892 containing trifluoromethyl (-CF3) substitution exhibited significant cytotoxicity 

withIC50 values of 6.6 μM and 3.8 μM, respectively, against D54MG cellline (Table 1). In 

addition, BT-892 showed significant cytotoxicity with IC50value of 6.0 μM against U251 

cell line in comparison BT#9 (IC50value of 5.0 μm). Moreover, BT-892 demonstrated 

significant cytotoxicity displaying IC50value of 5.9 μM against LN-229 cells, superior to our 

previous hit compound BT#9 with IC50value of 6.5 μm (Table 1; Fig. 2).Fascinatingly, one 

of the active compounds (BT-851) exhibited potent activity with IC50value of 6.6 μM and 

3.5 μM against patient-derived cell lines DB70 and DB93, respectively (Table 1; Fig. 2).

The biological results revealed that BT-851 containing benzothiazole motif and BT-892 
containing (-CF3) substitution emerged as the most active lead compounds against glioma 

cell lines. Motivating results in patient-derived cell lines provided useful insight about their 

clinical implications for therapeutic use. The detailed biological studies are under progress.

In conclusion, we have synthesized seventeen-17 new compounds and tested their anticancer 

effect in comparison to our previously identified hit compound BT#9 against established 

glioblastomacell lines, namely, D54MG, U251, and LN-229 as well as patient-derived cell 

Das et al. Page 3

Bioorg Med Chem Lett. Author manuscript; available in PMC 2023 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lines (DB70 and DB93). Among them, BT-851 and BT-892 emerged as potential lead 

compounds in D54MG and U251 cell lines. Gratifyingly, BT-851 demonstrated potent 

activity against patient derived cell lines (DB70 and DB93) supporting their clinical 

applications in the future. The detailed biological studies are currently underway. The SAR 

studies of our hit BT#9 compound resulted in the development of two new lead compounds 

by hit to lead strategy. The active compounds could possibly act as template for the future 

development of newer anti-glioma agents.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
SAR studies of BT#9 and identification of two lead compounds BT-851 and BT892.
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Fig. 2. 
Cell viability of established and primary patient GBM cells after inhibitor treatment. Cells 

were seeded overnight and treated the following day with indicated inhibitors for 3 days.
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Scheme 1. 
Synthesis of carboxamide derivatives.

Das et al. Page 8

Bioorg Med Chem Lett. Author manuscript; available in PMC 2023 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 2. 
Synthesis of oxadiazole derivatives (BT-859, BT-860, BT-861, BT-894 and BT-895).
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Scheme 3. 
Synthesis of BT-852, BT-853 and BT-854.
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