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The scattering of dark matter (DM) particles to excite collective vibrational modes known

as phonons in crystal targets is a motivated method of observing DM with masses mχ < 1

MeV. This is due to the matching between the typical energy and momentum imparted into

the target and those of the phonons. For heavier dark matter particles with masses mχ ≳ 1

GeV, the scattering is instead point-like off of the individual nuclei in the crystal, rather than

collective scattering from many atoms. While the single phonon and nuclear recoil responses are

understood, the transition between the two is not. An understanding of this intermediate regime

requires a consideration of multiphonon processes, in particular as higher-order corrections that

increasingly contribute to the total scattering rate as the typical energy depositions increase. We
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utilize several simplifying approximations to arrive at analytic descriptions for multiphonon

excitation, allowing us to fully characterize the crystal’s phonon response across the relevant

mass spectrum for incident DM. Our results allow us to identify the dominant signals to look

for in experimental DM searches with cubic crystal targets as a function of the detector energy

thresholds.
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Chapter 1

Intro to Dark Matter

1.1 Background and Context

Historically, the first inklings of the existence of dark matter came from the observations

of Fritz Zwicky in the early 1930s on the velocity dispersion of galaxies in the Coma Cluster [8].

From the observed velocity dispersion profile, by assuming the galaxies are virialized one can

then infer the mass of the cluster. Another way to infer the mass of the galaxies (and thus

the cluster) however is through measurements of their luminosities, since the mass should be

almost entirely comprised of stars within the galaxies. Zwicky found a large discrepancy in these

two calculations, however—the galaxies were rotating too quickly for the apparent observable

mass to bind them gravitationally, and the velocity measurements implied much more mass was

present than visible. Zwicky referred to this apparently non-luminous mass as ,,dunkle Materie“,

i.e. “dark matter”.

Similar conclusions came later in the 1970s from Vera Rubin and her collaborators’

measurements of the velocity profiles within the galaxies themselves [9, 10]. Again assuming the

galaxies are comprised of virialized matter, mostly in the form of stars, one expects the velocity

of stars further from the center to drop after reaching a maximum. Instead, measurements showed

a flattening of the velocity profiles, in which they became relatively independent of distance

from the galactic center, as shown in Fig. 1.1.
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Figure 1.1. Cartoon depicting the type of observed velocity dispersion in galaxies (red) to the
expected answer with only luminous matter (blue). Without the presence of extra mass or some
other force, the outer stars shouldn’t remain gravitationally bounded and would be flung away
from the galaxy.

The problem is in analogue to Zwicky’s measurements; there seemingly is more mass

than is visible contributing to the gravitational binding of the galaxies. Rubin and company

concluded that the extra matter (if present) would be in the form of a “halo” centered around the

galactic center and would contain ∼ 5 times the mass of the luminous ordinary matter.

These original hints into the existence of dark matter are similar in how they manifest,

and one might be tempted to solve the problem through another route, e.g. by modifying

gravity [11, 12]. We have since however amassed many otherwise unexplained signals and

phenomena from independent probes, such as the imprints on the CMB [13, 14], gravitational

lensing measurements [15], and the formation of large scale structure in the universe [16, 17].

One of the most compelling pieces of modern evidence (in the form of the aforementioned

gravitational lensing) comes from observations of the Bullet Cluster, two colliding clusters of

galaxies.

Superimposed images of the Bullet Cluster are shown in Fig. 1.2. We see that most of the

mass of the clusters in the form of highly interacting hot gas (captured via x-rays, in magenta)

has been disrupted from their collision. If this were to account for most of the mass of the

clusters as one might originally expect, we would then expect most of the gravitational lensing to

follow them, even in a theory of modified gravity. We instead observe, however, most of the mass
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Figure 1.2. Superimposed image of the Bullet Cluster taken in x-rays (magenta) over a visible
light photo. The areas highlighted in blue correspond to the matter distribution as sourced
by gravitational lensing, which is notably unperturbed from the collision in comparison to
the diffused visible matter. Credit: NASA/CXC/CfA/M. Markevitch et al.; NASA/STScI;
Magellan/U.Arizona/D. Clowe et al.; NASA/STScI; ESO WFI.

causing the lensing (blue) to have not been strongly displaced from the collision. The presence

of dark matter in the clusters, which would not interact strongly during such a collision and

therefore pass through mostly unabated, provides a simple explanation as in previous examples.

Given the large amounts of independent indirect observational evidence we have, although

we have not directly observed what comprises dark matter, it is consensus among modern

physicists that dark matter exists. Our current working cosmological model, ΛCDM, includes

the existence of dark matter to help drive the evolution of the universe and is extremely accurate

on large scales. Having accepted the existence of dark matter as a concept, the issue at hand then

is discovering what thing(s) it actually consists of, and so we must study potential avenues for its

formation and properties to inform our experiments to detect it.

1.2 Dark Matter Candidates and Production Mechanisms

It may seem simple to posit e.g. a new particle beyond the standard model (BSM), or

even ordinary large composite SM objects like rogue planets or black holes as an explanation

for dark matter. One is heavily constrained however by observational evidence (such as those
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mentioned in the previous section) that limit the exact masses, interactions, and abundance of a

given potential DM candidate. These constraints take form in several properties we know our

dark matter candidates must have:

i) Dark matter must be stable, with a lifetime larger than the age of the universe. CMB power

spectrum measurements strongly constrain the amount of DM that could have decayed

after matter-radiation equality due to the imprints extra e.g. dark radiation would leave.

ii) Dark matter must be cold (non-relativistic) over the history of most galaxy formation. The

typical DM velocity around us today is v ∼ 10−3.

iii) Dark matter must not interact very strongly (either with itself or with SM particles) in

order to limit its friend, and probably deserves an honorary PhD of her own at this point.
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in Physics University of California San Diego, 2022 Professor Tongyan Lin, Chair The

scattering of dark matter (DM) particles to excite collective vibrational modes known as

phonons in crystal targets is a motivated method of observing DM with masses m ¡ 1

MeV. This is due to the matching between the typical energy and momentum imparted

into the target and those of the phonons. For heavier dark matter particles with masses

m 1 GeV, the scattering is instead point-like off of the individual nuclei in the crystal,

rather than collective scattering from many atoms. While the single phonon and nuclear

recoil responses are understood, the transition between the two is not. An understanding of

this intermediate regime requires a consideration of multiphonon processes, in particular

as higher-order corrections that increasingly contribute to the total scattering rate as the

typical energy depositions increase. We xix utilize several simplifying approximations to

arrive at analytic descriptions for multiphonon excitation, allowing us to fully characterize

the crystal’s phonon response across the relevant mass spectrum for incident DM. Our

results allow us to identify the dominant signals to look for in experimental DM searches

with cubic crystal targets as a function of the detector energy thresholds. xx Chapter 1

Intro to Dark Matter 1.1 Background and Context Historically, the first inklings of the

existence of dark matter came from the observations of Fritz Zwicky in the early 1930s on

the velocity dispersion of galaxies in the Coma Cluster [ 8]. From the observed velocity

dispersion profile, by assuming the galaxies are virialized one can then infer the mass of

the cluster. Another way to infer the mass of the galaxies (and thus the cluster) however

is through measurements of their luminosities, since the mass should be almost entirely

comprised of stars within the galaxies. Zwicky found a large discrepancy in these two

calculations, however—the galaxies were rotating too quickly for the apparent observable

mass to bind them gravitationally, and the velocity measurements implied much more

mass was present than visible. Zwicky referred to this apparently non-luminous mass

as ,,dunkle Materie“, i.e. “dark matter”. Similar conclusions came later in the 1970s

from Vera Rubin and her collaborators’ measurements of the velocity profiles within the
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galaxies themselves [9 , 10 ]. Again assuming the galaxies are comprised of virialized

matter, mostly in the form of stars, one expects the velocity of stars further from the

center to drop after reaching a maximum. Instead, measurements showed a flattening

of the velocity profiles, in which they became relatively independent of distance from

the galactic center, as shown in Fig. 1.1. 1 Figure 1.1. Cartoon depicting the type of

observed velocity dispersion in galaxies (red) to the expected answer with only luminous

matter (blue). Without the presence of extra mass or some other force, the outer stars

shouldn’t remain gravitationally bounded and would be flung away from the galaxy. The

problem is in analogue to Zwicky’s measurements; there seemingly is more mass than

is visible contributing to the gravitational binding of the galaxies. Rubin and company

concluded that the extra matter (if present) would be in the form of a “halo” centered

around the galactic center and would contain 5 times the mass of the luminous ordinary

matter. These original hints into the existence of dark matter are similar in how they

manifest, and one might be tempted to solve the problem through another route, e.g. by

modifying gravity [11, 12]. We have since however amassed many otherwise unexplained

signals and phenomena from independent probes, such as the imprints on the CMB [13,

14], gravitational lensing measurements [15], and the formation of large scale structure

in the universe [16, 17 ]. One of the most compelling pieces of modern evidence (in

the form of the aforementioned gravitational lensing) comes from observations of the

Bullet Cluster, two colliding clusters of galaxies. Superimposed images of the Bullet

Cluster are shown in Fig. 1.2. We see that most of the mass of the clusters in the form

of highly interacting hot gas (captured via x-rays, in magenta) has been disrupted from

their collision. If this were to account for most of the mass of the clusters as one might

originally expect, we would then expect most of the gravitational lensing to follow them,

even in a theory of modified gravity. We instead observe, however, most of the mass 2

Figure 1.2. Superimposed image of the Bullet Cluster taken in x-rays (magenta) over a

visible light photo. The areas highlighted in blue correspond to the matter distribution
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as sourced by gravitational lensing, which is notably unperturbed from the collision in

comparison to the diffused visible matter. Credit: NASA/CXC/CfA/M. Markevitch et al.;

NASA/STScI; Magellan/U.Arizona/D. Clowe et al.; NASA/STScI; ESO WFI. causing

the lensing (blue) to have not been strongly displaced from the collision. The presence

of dark matter in the clusters, which would not interact strongly during such a collision

and therefore pass through mostly unabated, provides a simple explanation as in previous

examples. Given the large amounts of independent indirect observational evidence we

have, although we have not directly observed what comprises dark matter, it is consensus

among modern physicists that dark matter exists. Our current working cosmological model,

CDM , includes the existence of dark matter to help drive the evolution of the universe and

is extremely accurate on large scales. Having accepted the existence of dark matter as a

concept, the issue at hand then is discovering what thing(s) it actually consists of, and so

we must study potential avenues for its formation and properties to inform our experiments

to detect it. 1.2 Dark Matter Candidates and Production Mechanisms It may seem simple

to posit e.g. a new particle beyond the standard model (BSM), or even ordinary large

composite SM objects like rogue planets or black holes as an explanation for dark matter.

One is heavily constrained however by observational evidence (such as those 3 effects on

early-universe evolution and maintain the distribution and structure we observe today.

These constraints nevertheless leave an enormous range of possible masses—around 80

orders of magnitude, as shown in Fig. 1.3—of different dark matter candidates corresponding to

various production mechanisms and detection signatures. The mass bounds are not extremely

hard-and-fast numbers, but each come roughly from arguments about structure formation. As

the low end, the DM has an astrophysical-scale de Broglie wavelength, around the size of

dwarf galaxies. At smaller masses, such light DM could not saturate the total abundance as

DM-dominated dwarf galaxies would not be able to form [18, 19]. More recent astrophysical

data bounds on the density profiles of dwarf galaxies are in accordance with this bound, and
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Figure 1.3. An illustrative picture of the wide mass range of possible dark matter particles,
corresponding to different categories of dark matter and relevant production mechanisms.

possibly even an order of magnitude more strict [20]. On the high end, beyond 103 solar masses

(M⊙ = 1066 eV) or more, the DM becomes too coarsely grained and the time-dependence of the

gravitational potential disrupts e.g. globular cluster formation [21].

One may be tempted to try and simultaneously solve other open problems in the SM

with a dark matter candidate; the QCD axion, for example, arose as a potential solution to

the strong-CP problem, and was thereafter found to be a viable dark matter candidate [22].

Similar ultralight axion-like particles (ALPs) can also fall out as more generic predictions of

string theories [23] and in turn address other problems, e.g. small scale structure via fuzzy

DM [18]. Another example comes from the hierarchy problem, which concerns the apparent

largely “fine-tuned” cancellations needed to achieve such a large discrepancy between the Higgs

mass and a natural mass scale like MPl. The problem can be addressed if new weak-scale physics

exists around 10 GeV-Tev; this motivates WIMP candidates [24] (blue in Fig. 1.3), which will be

discussed in more detail shortly.

Being momentarily more agnostic to whether another problem may be simultaneously

solved, the simplest type of origin for dark matter one might consider could be DM thermally

produced in the early universe in analogy to ordinary matter. We observe ordinary matter relics—

photons, neutrinos, baryons, etc.—which were at one point all in thermal equilibrium. If we

assume dark matter was also in thermal equilibrium with the SM at this time, then when precisely

it leaves equilibrium will influence the amount of dark matter left that we observe today. Once it

has left thermal equilibrium, the amount or DM in the universe will be primarily driven by how

often it is annihilating back into SM particles, but this will quickly become inefficient. When
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χ̄ f̄

χ f

Figure 1.4. Illustration of generic annihilation of dark matter particles χ, χ̄ into SM particles
f , f̄ . After the DM has cooled sufficiently to leave thermal equilibrium with the SM, the evolution
of the amount of DM in the universe is primarily driven by annihilation into SM particles, which
depletes the density until freezeout occurs. The blob in the middle represents some interaction(s),
whose identities (as well as those of the precise particles involved) is left unspecified.

the DM can no longer efficiently annihilate with itself, the amount will essentially stay fixed,

with the number density simply scaling with expansion; this process of leaving equilibrium and

becoming “stuck” in number is known as thermal freezeout. By using the observed local dark

matter density today, we could then use this to inform when freezeout occurred. Additionally,

the original assumption of thermal equilibrium necessitates some type of interaction(s) between

the DM and SM we could potentially probe today, such as signatures in the other SM relics, e.g.

the CMB power spectrum.

Following this motivation, one can do simple estimates for a general picture of what

thermal freezeout to produce the observed relic abundance would look like [25]. As discussed

earlier, freezeout occurs quickly once dark matter leaves thermal equilibirum with the SM

and can no longer annihilate into SM particles. This condition is realized then when the DM

annihilation rate Γ drops below the Hubble rate H

Γ = neq
χ ⟨σv⟩= H (1.1)

as the DM can no longer efficiently find partners to annihilate with. Here, ⟨σv⟩ is the thermally

averaged annihilation cross-section times velocity.

A helpful quantity to consider now is the abundance Yχ = nχ/sγ , where nχ is the dark
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matter number density and sγ is the entropy density of relic (CMB) photons. In the absence of

sufficient number-changing processes in comparison to the expansion of the universe, as we have

once freezeout occurs, this number remains essentially constant from freezeout onward. Matching

the dark matter energy density observed today ρχ gives a simple benchmark requirement for the

abundance at freezeout: Yχ, fo ∼ eV/mχ .

Combining this condition with the abundance benchmark Yχ = nχ/sγ allows one to

estimate nχ at freezeout; we may in turn finally from (1.1) arrive at a benchmark annihilation

cross-section [24]:

⟨σv⟩ ≈ 2×10−26cm3/s ≈ α2
w

1TeV2 (1.2)

This is of particular historical significance, as the cross-section arrived at through this calculation

appears to match onto the the annihilation cross-section one would expect for a new weak-scale

weakly-interacting particle, as shown in the right-hand side of (1.2) for a coupling strength

αw ∼ O(10−2). Such particles of masses few GeV ≲ mχ ≲ few TeV came to be referred to as

Weakly Interacting Massive Particles, or WIMPs, and the apparent coincidence between the

cross-sections came to be known as the “WIMP miracle”.

1.3 Toward the WIMP Paradigm...

We began agnostic to whether a thermal DM candidate had other motivations, but have

arrived at the potential for WIMPs as viable DM candidates amidst this WIMP miracle. Moreover,

WIMPS are readily produced from e.g. SM extensions [26, 27], adding to the apparent miracle.

This has motivated many searches for WIMP DM around this mass range—although there

were (and are) many experiments and analyses searching for DM of other types, the prevailing

candidate of choice in the community became WIMPs.

This brings our discussion to the channels for how one might actually go about observing

dark matter in an experiment, which are depicted succinctly in Fig. 1.5 by following the Feynman

diagram in different directions. For example, left-to-right involves direct production of DM
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Figure 1.5. Cartoon depicting the three channels of observing dark matter, as determined by
which way you follow the interaction.

by SM particles in a collider experiment, i.e. making new DM particles to study rather than

observing those that already exist today. Running the figure in reverse instead involves looking

for the SM signatures (e.g. excesses in gamma rays) from the annihilation of dark matter into

SM particles, known as indirect detection as we observe only the byproducts of the DM. It is

the remaining channel, running the figure from bottom-to-top, that we are interested in for the

remaining discussion of this Thesis. This channel is known as direct detection, in which dark

matter enters our lab and interacts directly with our experiment and detectors (which are made of

SM particles) leaving behind signatures of its presence. From the type of interaction, energy and

momentum deposited, etc., we can reconstruct properties of the dark matter particle(s) involved,

if observed, or instead place constraints on those types of particles and properties if not observed.

More explicit aspects and an example of WIMP searches are discussed in Chapter 2,

but from considering these types of interactions we can already imagine what WIMP searches

might look like. For example, the LHC runs at TeV scale energies looking to produce new

particles, and so it is already naturally looking in the window where one might expect a WIMP

to appear. In direct detection experiments would could instead build targets (e.g. crystals or

heavier liquids) for the WIMPs to scatter off of, depositing their energy and momentum that we
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collect. In these experiments, heavy nuclei are chosen for their similar mass scale to the WIMP

candidates so that there is kinematic matching, with typical energy depositions ∼ mχv2 around

the keV scale–energies that are (were) already very realistic to meet. There is an additional

enhancement from coherent scattering leading to the cross section scaling with the square of the

nucleon number, further favoring heavier target nuclei.

1.4 ...And away from the WIMP Paradigm

Only in somewhat recent years has this interest begun to shift, as the phase space for

potential WIMP DM has been continually and increasingly squeezed through observational

constraints [28, 29]. The motivation behind WIMPs and limits of the detectors used are discussed

in more detail in Chapter 2, however the operating energies of the LHC and keV thresholds

in direct detection experiments mean that these exclusions are primarily for DM with mχ > 1

GeV. It is worth considering what the overall mass range for thermal candidates are, however, as

WIMPs are not the sole candidate of this type. At the high end, thermal candidates are limited to

masses of around ∼ 100 TeV due to the unitarity limit [30], beyond which thermal candidates

would overclose the amount of DM present in the universe today. The lower bound is well

below WIMP masses, however, at around ∼ few keV. Here the limit is placed by “warm DM”

bounds—thermal candidates below keV masses that were in thermal equilibrium do not satisfy

the cold requirement of Sec. 1.2. They are instead produced too relativistic, and would dampen

the matter power spectrum beyond what is observed. The warm DM bound means a viable

thermal candidate with mχ ≳ 1 keV must be able to have Yfo ≪ 1 according to the abundance

benchmark in Sec. 1.2. This is readily obtained however for a non-relativistic species (in a

self-consistent way) as the equilibrium number density neq
χ ∝ e−mχ/T is Boltzmann suppressed.

This leaves a region keV ≲ mχ ≲ GeV of viable thermal DM candidates which has not been

historically probed to nearly the extent as that of WIMPs. These candidates of masses keV

≲ mχ ≲ GeV are known as light dark matter (LDM).
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Light dark matter will generically invoke e.g. new light mediators (as opposed to weak

mediators for WIMPs) in order to have a sufficiently large annihilation cross section to reduce

the DM population to the correct amount at freezeout [31]. These new mediators present the

possibility for new physics, and in particular could act as “portals” to a new “dark sector”

potentially populated by multiple species [32, 33]. Such new mediators and the possibility dark

sectors including thermal LDM present interesting new experimental signatures in a regime that

was previously unexplored in favor of WIMP searches. For example, the mediators could be

bosons presenting a different type of interaction than a weak mediator; the lower mass of LDM

also enforces different kinematic constraints than that of WIMP nuclear recoils, as those nuclei

would be much heavier than the DM and mediators. Rather than ∼keV recoil energies, they

instead would be as low as ∼meV, and the interactions would instead be with multiple atoms

as the wavelength of the deposited momentum begins exceeding the typical atomic spacing.

These lower energy scales and collective interactions would necessarily present themselves with

different signatures in the experiments.

So, rather than necessarily being motivated by solving another outstanding problem in

physics or exploring models out of intellectual interest, we can be driven by searches and data

that are achievable within the next decade but may not have been addressed yet. It is toward

these appeals that we will begin discussing potential mechanisms and signatures that may be

used to detect LDM experimentally. With our interest in LDM suitably piqued, and knowing

that the experimental signatures will differ from those already sought by WIMP experiments,

our goal now is to investigate the interaction mechanisms and experiments that would be able to

probe the direct detection of LDM.
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Chapter 2

Intro to Direct Detection

In this Chapter, we now move toward a description of the actual direct detection frontier

and experiments in more detail. We begin with a short discussion of the direct detection

background and experimental side of the WIMP paradigm as an illustrative example. We will

then work toward uncovering phonon excitation as a motivated method of directly detecting

sub-GeV DM, following our motivation to look for non-WIMP thermal candidates. We finally

conclude with an example of a proposed sub-GeV phonon experiment to contextualize the

discussion of phonons.

2.1 Direct Detection with WIMP Example

In considering a weakly-interacting GeV-TeV scale particle (typically also a fermion) the

natural target to consider are atomic nuclei, which are of a somewhat similar mass and whose

nucleons interact via the weak force. It is sufficient to discuss the scattering at a macroscopic

level, characterizing the cross section generally in terms of spin-dependent and spin-independent

form factors that encode the more precise structure of the nucleus and the interaction itself. We

begin by writing down the differential cross section for the scattering with respect to the nuclear

recoil energy ENR [34] :

dσ

dENR
=

mN

2v2µn2

(
σSIFSI

2(ENR)+σSDFSD
2(ENR)

)
(2.1)
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Here, mN is the mass of the nucleus, µn is the DM-nucleon reduced mass, and the Fi functions

are the aforementioned form factors for the Spin Independent and Spin Dependent interactions,

respectively. As an example, a typical SI form factor taken is the classic nuclear-scattering Helm

form factor, meant to model the substructure of the nucleus for WIMPs heavy enough to probe

those length scales.

From the differential cross section, we could construct the total scattering event rate R by

considering the DM velocity distribution f (v) and integrating over allowed velocities and energy

transfers in the volume of the target. For most NR analyses, the discussion is usually instead

about the differential scattering rate, also called the (recoil) spectrum:

dR
dENR

=
ρχ

mχ

1
mN

∫
d3vv f (v)

dσ

dENR
Θ(v− vmin(ENR)) (2.2)

Specifically, this is the differential scattering rate per unit exposure, and can be converted to the

total differential scattering rate by multiplying by the total mass of the target and time elapsed (i.e.

the total exposure). The bounds of the velocity integral are determined below by the minimum

velocity vmin that can induce a recoil of energy ENR and above by the escape velocity vesc of the

dark matter in the lab frame, which typically truncates the velocity distribution.

Conservation of energy between an incident DM particle of velocity v on a free nucleus

of mass mN requires

q2

2mN
=

1
2

mχv2 −
(
mχv−q

)2

2mχ

(2.3)

−→ q2

2µN
= q ·v (2.4)

with q the momentum transfer to the nucleus and µN ≡ mχ mN
mχ+mN

the DM-nucleus reduced mass.

The righthand side of (2.4) is maximized when q and v are aligned, i.e. q ·v = qv, and thus the

maximum momentum transfer is given by qmax = 2µNv. With some example masses mχ , mN

in the neighborhood of 10− 100 GeV and a typical DM velocity of v ∼ 10−3, we see the
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typical recoil energy is around 10-100 keV given that ENR ≡ q2/2mN . It is for this reason NR

detectors push for energy thresholds down to ∼few keV. We may also derive the form of vmin(ER)

from (2.4) and the definition of ER:

ER =
q2

2mN
=

(2µNvmin)
2

2mN
(2.5)

−→ vmin =

√
mNER

2µ2
N

(2.6)

For WIMP direct detection searches, there are a few leading types of general experimental

setups, however the dominant type (currently pressing the highest exclusion sensitivity, at least

for SI nuclear recoils) are noble liquid detectors. These detectors involve large tanks of liquid

noble gases (usually Xenon or Argon) cooled to cryogenic temperatures acting as a sizable,

dense target for the DM to interact with. Examples of leading noble liquid detectors are (were)

LZ and XENON1T (now running as XENONnT). In these experiments, many steps are taken to

reduce backgrounds, such as operating deep underground, being shielded, repeatedly filtering the

liquids, and special care taken to build the setup out of materials that are not cosmogenic or (too)

radioactive. When a dark matter particle scatters inside of these detectors, scintillation light is

produced, which is captured by PMTs; in single-phase detectors, this is the only signal measured.

If a strong electric field is applied, ionization electrons may be prevented from recombining and

instead measured as secondary, separate signal (S2) in addition to the scintillation light (S1), as

is performed in time-projection chambers.

Having discussed the squeeze on WIMP parameter space several times by now, we may

finally see example limits placed by WIMP experiments on the spin-independent nucleon cross

section in Fig. 2.1. Through lack of observation, the size of the nucleon cross sections may be

bounded with some statistical confidence (90% C.L. in Fig. 2.1), eliminating those cross sections

and above1 to that degree of certainty. In this figure, we observe the difficulty in exclusions

1Eventually, for very large cross sections above the bounds, they may not actually be ruled out since they would
scatter in the Earth before reaching the detector.
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Figure 2.1. A comparison of current limits on the spin-independent WIMP-nucleon cross section
from WIMP searches, reproduced from [1]. The solid black line represents the 90% confidence
limit, while the green and yellow areas represent 1σ and 2σ sensitivity bands, respectively.

beginning below 10 GeV masses; as the typical WIMP energy depositions drop below ∼10 keV,

the experimental energy thresholds begin limiting the sensitivity and the curves sharply rise. The

frontier of observed bounds is now edging very near the neutrino floor (not pictured in Fig. 2.1)

and to date no WIMPs have been detected2. These bounds have pushed e.g. Z mediated scattering

with expected coupling strengths off of the precipice, requiring instead smaller couplings or new

other new mediators [25]. Reducing the coupling strengths cannot be done arbitrarily however,

as this also reduces the annihilation cross-section and causes freezeout to occur earlier meaning

we run into problems obtaining the relic abundance. This gradual reduction in the types of

masses, mediators, and/or coupling strengths the witnesses of the WIMP miracle may have been

previously expecting to comprise DM has thus begun to drive the consensus away from the

WIMP paradigm in favor of other possibilities.

2DAMA observed annual signal modulation that would be expected from the Earth’s revolution around the sun
relative to the DM wind; the results are however widely disputed and have not been reproduced elsewhere.
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2.2 Introducing: Phonons

We now move on toward a description of an alternative process from nuclear recoil that is

relevant for LDM: excitation of phonons. A precise mathematical description and derivation of

the nature of phonons is contained in the next Chapter; we instead begin here to first understand

what phonons are more qualitatively. One is most likely familiar with vibrations in a medium that

propagate as waves, e.g. sound in air; phonons are the quantized excitations of these vibrations,

particularly in our case in a crystal. That is to say, the collective effect of the motion of the atoms

in the lattice may be understood in more familiar particle language (mode expansion in terms of

operators, carrying energy and momentum, etc.) where the “particles” are the phonons.

Figure 2.2. Visualization of the two types of phonons in a 1D crystal with two types of atoms.
For the acoustic phonon, the neighboring atoms move in phase; for the optical, they move
oppositely to one another. Credit: University of Warwick Department of Physics.

To visualize the phonons, let us consider a simple 1D crystal (a chain of atoms) with two

distinct alternating types of atoms, as shown in Fig. 2.2. The distinction allows us to characterize

the two types of phonons that emerge; the acoustic phonons are those shown in the top of the

figure, in which neighboring atoms move together in the same direction. The optical phonons

are instead those in which the differing atoms move oppositely to one another. The “optical”
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nomenclature comes historically from the ease of exciting these phonons in certain crystals

optically, in particular those in which the two atoms have opposite charges. Had we considered

a crystal of only one type of atom, we would then lose the distinction, and instead have only

acoustic phonons. Generalizing this picture to a 3D crystal, we gain the further distinction of

polarizations for the phonons; the atoms may oscillate in the direction of the phonon’s momentum

(longitudinal polarization) or perpendicular to it (transverse polarization, of which there are two

distinct possibilities).

Figure 2.3. An example of the phonon band structure in a crystal with two distinct atoms,
gallium arsenide (GaAs) [2]. The origin of the Brillouin zone (BZ) is the point Γ, where q = 0,
with the other points on the axes being various directions in the first BZ. The labels indicate first
the polarization (longitudinal or transverse) followed by the type (acoustic or optical).

We typically denote the spacing between atoms (or between unit cells, if multiple different

atoms are present) with the lattice constant a. The spatial structure of the crystal lattice has a

corresponding reciprocal lattice in momentum space. The primitive cell centered at the origin of

this reciprocal lattice space is known as the first Brillouin zone and in the isotropic case would

have a size qBZ = 2π/a. The origin of the first BZ is denoted by the symbol Γ, with different

directions toward the edges of the first BZ denoted by various other symbols depending on the

precise symmetry structure of the lattice.

We may now consider what the actual dispersion relations in an example crystal look
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like; Fig. 2.3 features the band structure in GaAs. Here, we may see the low-momentum features

of the phonons, in which the dispersion relation for acoustic phonons is approximately linear

ων = cν |k| (2.7)

with cν being the speed of sound of that particular acoustic phonon ν carrying a momentum k.

Physically, because the acoustic phonons involve the atoms moving together in the same direction,

the acoustic phonons with no momentum also carry no energy (i.e. there is no motion). This

can also be understood as representative of the fact that the acoustic phonons are the Goldstone

bosons generated by the broken continuous translational symmetry of the crystal, and so the

linear dispersion tending to zero energy at zero momentum is expected. The optical phonons

however are gapped and have ≳ 10 meV of energy at arbitrarily low momentum transfer; their

dispersions are also generally less momentum dependent, allowing us to usually treat them as

being effectively flat.

2.3 Direct Detection with Phonons

For kinematic reasons, the sub-GeV regime is especially challenging for DM which

primarily couples to hadronic matter. For a DM mass mχ below 1 GeV with a typical nucleus

mass mN ≳ few GeV, we have µN ≈mχ , and we therefore see from (2.4) that the energy sub-GeV

DM can deposit in an elastic collision with a nucleus is bounded by

EN ≤ qmax
2

2mN
=

2v2m2
χ

mN
. (2.8)

For mχ ≪ mN this is only a small fraction of the total available DM kinetic energy, which can

make it very difficult to detect. This problem can be mitigated to some extent by choosing

light element targets such as H [35], He [36, 37, 38], or diamond [39] and by pushing for lower

thresholds.
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For masses below 1 MeV, however, DM-nucleus scattering is no longer subject to (2.8);

the reason is that its de Broglie wavelength exceeds the interparticle spacing in typical materials,

and it becomes necessary to transition to a different effective theory by integrating out the nuclei

and electron clouds and instead treat it as a collective mode of many atoms rather than a single

nucleus. The collective modes of interest are the aforementioned phonons. We saw previously in

Fig. 2.3 some typical phonon energies for GaAs; we can see that these indeed match onto the

kinematics of sub-MeV DM, as shown in the phase space plot of Fig. 2.4.

Figure 2.4. Phase space plot in (q,ω) with sample DM masses of mχ = 10 keV, 1 MeV, and
100 MeV with v = 10−3 reproduced from [3]. The lines represent the allowed curve in phase
space along which that DM mass satisfies its kinematic conditions. The superimposed regions
denote regimes of typical response signals. Below q ∼ keV, the matching signals are those of
single optical and acoustic phonons (described more explicitly in Chapter 3). Above the typical
displacement energy Ed the response is the standard nuclear recoil dicussed for WIMPs. In
between these two regions, the nuclear recoil response broadens and is more aptly described as
excitation of multiple phonons, displaying physically how the two extremes are connected.

In this figure, we precisely see this aforementioned breakdown of the nuclear recoil

description into a regime where phonons are relevant. Our nuclear recoil cross sections are no

longer the relevant description in the case of LDM; we must instead obtain the DM-nucleon
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cross section involving phonon excitation. This differential cross section instead looks like

dσ

d3qdω
=

b2
p

µp2
1
v
|F̃(q)|2S(q,ω)δ (ω −ωq) (2.9)

where bp is the DM-proton scattering length (connected to the DM-proton cross section via

σp = 4πbp
2), |F̃(q)|2 is a form factor that depends on the mass limit of the mediator, and S(q,ω)

is the structure factor. We leave a derivation and discussion of the full form of the identity of the

structure factor until Chapter 3, so now we may treat it in a similar way as the previous nuclear

form factors in that it encodes the DM-crystal interaction and phonon response. The final delta

function in this form is merely there to enforce kinematic matching of the energy deposited ω

matching onto ωq = q ·v−q2/2mχ .

As before, this naturally connects to the total event rate by integrating over the DM

velocity distribution and allowed momentum and energy transfers in the target. The result in this

case is instead

R =
σp

∑d Admp

ρχ

mχ

∫
d3vi f (vi)

∫
ω+

ω−
dω

∫ q+

q−
dq

q
2pimχ

|F̃(q)|2S(q,ω) (2.10)

where pi = mχv is the incident DM momentum and ρχ ∼ 0.3GeV/cm3 is the local DM energy

density. Whereas the WIMP limits were bounds placed by experimental observation, we here

instead take zero background to place expected confidence limits through assumed lack of

observation. The standard rate in the field used is 3 events/kg-yr to allow for comparison of

results, which corresponds to a 95% confidence level for 1 kg-yr of exposure with 0 events

observed. This leaves the theoretical work of understanding the phonon response one can expect

in a crystal target as being able to compute the rest of the righthand side of (2.10), in particular

the structure factor.
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2.4 What’s Next?

The dynamics of single phonon excitation via scattering of dark matter below masses

of 1 MeV has been investigated thoroughly, and is included in Chapter 3 as an example for

cubic crystal targets. The nuclear recoil description has also long since been understood,

and as previously mentioned has already been probed extensively by WIMP searches. In the

intermediate mass regime between the two (MeV ≲ mχ ≲ GeV) however neither description

is correct. There must reasonably be some transition between the two, however, and it is here

where the multiphonons shown in Fig. 2.4 enter. If we understand single phonon excitation as

the lowest order term in the DM-nucleus interaction at low energies, the multiphonons are the

higher-order terms which become more relevant at increasing energy depositions en route to the

full nuclear recoil description at high energies. In order to connect the single phonon and nuclear

recoil responses to fully flesh out our understanding of the DM interaction with our crystal

target, these multiphonon processes must be understood. Moreover, if our detectors do not have

the resolution to probe single phonon excitations, then multiphonons will necessarily be the

leading signal, even in low-mass ranges where single phonons would otherwise be the dominant

scattering process. These reasons motivate the work of this Thesis: we must understand the

multiphonon response in order to have a full description of DM scattering in a crystal target.

The rest of the Thesis is organized accordingly. Chapter 3 derives the specific mathematical

nature of the phonons and structure factor and gives the (known) single phonon results as an

example. Chapter 4 then bridges into an analytic description of two-phonon excitation as the

next step away from the single phonon. Chapter 5 finally works towards explicitly evaluating the

structure factor for n phonons under the incoherent approximation to finish describing the entire

multiphonon regime.
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2.5 A Phonon Experiment

We conclude this Chapter with a brief discussion of what a planned phonon experiment to

directly detect sub-GeV DM would look like as an illustrative example for the theory discussed

previously.

Figure 2.5. Cartoon of two of the relevant detector schemes of the planned SPICE experiment
of the TESSERACT project [4]. The experiment will feature many identical copies of these
∼few gram size sapphire and GaAs crystals, each totalling around 0.1−1 kg total target mass.
The phonons will be measured through athermal phonon detectors. Not shown is the setup for
HeRALD, TESSERACT’s liquid He phonon experiment.

TESSERACT is a proposed project to push the frontier of the sub-GeV DM search [4].

This project is comprised of two experiments utilizing phonon signals to observe sub-GeV DM;

one is HeRALD, a liquid helium experiment, but the other more relevant experiment is SPICE,

involving two types of solid crystal targets. These experiments are planned in tandem for their

complementarity, but we will focus on SPICE here as it relates to the crystal lattice phonons

discussed in this Thesis rather than the phonons and rotons found in liquid Helium.

A schematic of the experimental setup for SPICE is shown in Fig. 2.5. The experiment

will feature many identical cm3-sized crystal targets of sapphire (Al2O3) and gallium arsenide

27



(GaAs), respectively, each totalling between 0.1−1 kg. Each crystal target will be fitted with

an individual cm2-sized athermal phonon sensor array, either on a silicon substrate (GaAs) or

directly on the crystal (sapphire).

The athermal phonon detectors will operate through a two-step process. The supercon-

ducting aluminum fins (blue in Fig. 2.5) will first collect the phonons, where their energy will

break Cooper pairs and be converted into quasiparticle energy. These quasiparticles will then

diffuse into the Transition Edge Sensors (TES, purple in the figure) where their energy will be

measured after thermalization. Unlike the TPCs discussed in Sec. 2.1, these will feature no

applied electric field as that introduces extra “dark count” backgrounds. The silicon substrate

(above the GaAs in the figure) serves as the photodetector for scintillation light, a separate signal

from phonons.

The SPICE experiment has a planned 0.1-1 kg-yr exposure for nuclear recoil and electron

recoils, respectively; the projected reaches are sensitive to DM masses of 1-10 MeV across the

interaction types, and potentially even lower for more optimistic energy resolutions. This will

be an exciting foray into the sub-GeV frontier, and is motivated at least in part by the reasons

discussed in the prior sections. Knowing that these types of phonon experiments are not only

possible, but planned, in turn further motivates us to study the phonon response in these types of

crystal targets. We will proceed to do so in more rigorous detail, beginning with a mathematical

derivation of phonons in Chapter 3.
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Chapter 3

Phonon Phormalism

In this Chapter, we introduce the origin of the structure factor S(q,ω), which appeared

in (2.9) and (2.10), and its connection to the phonon response of the crystal target. We then

discuss understanding the structure factor in terms of a coherent piece and incoherent piece in

preparation for deriving our multiphonon expressions in Chapters 4 and 5. We conclude the

Chapter by evaluating the structure factor explicitly for single phonon excitation, as discussed

previously, with example reach curves for sub-MeV dark matter.

3.1 Dynamic structure factor

Our starting point will be a general potential for spin-independent DM-nucleus interac-

tions, although the formalism below could also be applied to spin-dependent interactions. For

a DM particle of mass mχ incident on a crystal with N unit cells and n ions per unit cell, the

potential in Fourier space is given by

Ṽ (q) =
2πbp

µχ

F̃(q)
N

∑
ℓ

n

∑
d=1

fℓdeiq·rℓd . (3.1)

Here, we sum over the N unit cells, labeled by lattice vectors ℓ, and inequivalent atoms within

the unit cell, labeled with the index d, such that all atoms in the crystal with positions rℓd are

summed over. The DM-proton scattering length bp is defined by the DM-proton scattering cross

section σp ≡ 4πb2
p at some reference momentum, and µχ is the DM-proton reduced mass. We
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first consider a general coupling strength fℓd of the nucleus labeled by ℓ,d relative to that of a

single proton. fℓd is specified for various interactions in Section 5.4, such as nucleon number for

scalar mediators and the effective electric charge for scattering via a dark photon mediator. In

the latter case fℓd is q dependent when accounting for screening effects.

We consider two form factors in (3.1) representing limiting cases of interactions: scat-

tering via a heavy mediator, where F̃(q) = 1; and scattering via a massless mediator, where

F̃(q) = q2
0/q2 with a model-dependent reference momentum q0.

Collecting the overall factor 2πbpF̃(q)/µχ out front, we arrive at the form shown in (2.9)

by inputting this potential into Fermi’s golden rule to relate the transition rate of exciting some

number of phonons to the scattering cross section. We then define the structure factor so that the

differential cross section is, as before,

dσ

d3qdω
=

b2
p

µ2
χ

1
v
|F̃(q)|2S(q,ω)δ (ω −ωq) (3.2)

where v is the initial velocity of the dark matter (incident on a target at rest), and ωq = q ·v−

q2/2mχ is the kinematic constraint on the momentum and energy transfers to the crystal q and

ω . We therefore defined the dynamic structure factor as

S(q,ω)≡ 1
N ∑

f

∣∣∣∣∣
N

∑
ℓ

n

∑
d=1

〈
Φ f
∣∣ fℓdeiq·rℓd ∣∣0

〉
∣∣∣∣∣

2

δ
(
E f −ω

)
. (3.3)

We assume the system is initially in its ground state |0⟩ prior to the collision, corresponding

to a zero temperature system. We sum over final states with energies E f , such that each term

represents the probability to excite the final state
∣∣Φ f
〉
. Note that this form makes the structure

factor’s encoding of the material’s phonon response manifest.

30



3.1.1 Coherent and incoherent structure factors

For a given crystal there are many possible configurations of interaction strengths fℓd

which may vary even for different samples of the same material, e.g. the exact distribution of

spins or isotopes in the material for spin-dependent1 or mass-dependent interactions, respectively.

This can be accounted for by averaging over a large collection of target samples. With a large

number of nuclei in the crystal, we expect the exact distribution of interaction strengths in a

given sample to be inconsequential relative to the result averaged over many samples. We can

keep track of fluctuations away from the average configuration by splitting the scattering rate

into a coherent and incoherent contribution, as explained below.

We follow the procedure of Refs. [40, 41] and first re-express (3.3) by expanding the

square and Fourier transforming the δ -function, giving

S(q,ω) =
Ωc

2π

N

∑
ℓ,ℓ′

n

∑
d,d′

fℓd f ∗ℓ′d′ Cℓ′d′ℓd (3.4)

where Ωc =V/N is the volume of a unit cell and Cℓ′d′ℓd is the time-dependent two-point function:

Cℓ′d′ℓd ≡ 1
V

∞∫

−∞

dt ∑
f

〈
0
∣∣e−iq·rℓ′d′(0)

∣∣Φ f
〉 〈

Φ f
∣∣eiq·rℓd(t)∣∣0

〉
e−iωt

≡ 1
V

∞∫

−∞

dt ⟨e−iq·rℓ′d′(0)eiq·rℓd(t)⟩e−iωt . (3.5)

In the second line we used the completeness of the basis of states. The appearance of the Ωc/2π

prefactor is due differences in normalization conventions, described in more detail in Chapter 5.

It will also be advantageous to define a shorthand notation for the auto-correlation function for

1For spin-dependent interactions, fℓd is an operator rather than a parameter, but otherwise the analysis proceeds
analogously.
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an atom with itself as

Cℓd ≡ Cℓdℓd

≡ 1
V

∞∫

−∞

dt ⟨e−iq·rℓd(0)eiq·rℓd(t)⟩e−iωt . (3.6)

We assume that the fℓd are random throughout the crystal, implying that there are no long-range

correlations in spin alignment or isotope distribution for example. Under these assumptions, the

average of fℓd f ∗
ℓ′d′ over target configurations, fd f ∗d′ , must be independent of the lattice sites ℓ,ℓ′.

Making this replacement in (3.4) gives

S(q,ω) =
Ωc

2π

N

∑
ℓ,ℓ′

n

∑
d,d′

fd f ∗d′ Cℓ′d′ℓd (3.7)

where the averages may be written as

d ̸= d′ : fd f ∗d′ = fd f ∗d′,

d = d′ : fd f ∗d′ = f 2
d .

For the d ̸= d′ case we assumed that the expectation values of the fd for different atoms in the

unit cell are uncorrelated. This allows one to split the structure factor into two contributions:

S(q,ω) =
Ωc

2π

N

∑
ℓ̸=ℓ′

n

∑
d ̸=d′

fd f ∗d′ Cℓ′d′ℓd +
Ωc

2π

N

∑
ℓ

n

∑
d

f 2
d Cℓd (3.8)

=
Ωc

2π

N

∑
ℓ,ℓ′

n

∑
d,d′

fd f ∗d′ Cℓ′d′ℓd +
Ωc

2π

N

∑
ℓ

n

∑
d

(
f 2
d − ( fd)

2
)

Cℓd (3.9)

≡S(coh)(q,ω)+S(inc)(q,ω) (3.10)

where the second line is obtained by adding and subtracting the term proportional to ( fd)
2 and

regrouping. The first and second term in (3.10) are usually referred to as the coherent and
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incoherent structure factors in the neutron scattering literature.

The coherent structure factor relays the scattering rate if the interaction strengths of

all atoms in equivalent lattice sites are equal to a common value fd . For example, one can

consider low energy, spin-independent neutron scattering in a very pure crystal with only a

single isotope. This implies fd = fℓd = Ad , with Ad the atomic mass number, such that the

incoherent contribution in (3.10) vanishes exactly. The sum in (3.9) then crucially includes

position correlators between differing nuclei, which capture the interference between different

lattice sites. In practice, this interference leads to a coherence condition, which demands that

the momentum in the scattering process must be conserved up to a reciprocal lattice vector. In

particular, the 0th order term in a low q expansion of (3.5) corresponds to Bragg diffraction.

The incoherent structure factor on the other hand accounts for the statistical variations in

interaction strengths between different scattering centers in the lattice. The second sum in (3.9)

contains no cross terms and thus does not include interference between different lattice sites.

There is therefore no corresponding coherence condition and the incoherent structure does not

enforce momentum conservation.2 For most earlier DM direct detection calculations the focus

has been on spin-independent scattering in high purity crystals where f 2
d − ( fd)

2 = 0, implying

that only the coherent scattering contributes. This is the scenario we first focus on in Chapter 3.

The coherent structure factors are however more difficult to evaluate, due to the conservation of

crystal momentum that is built into (3.5). This results in increasingly complicated phase space

integrals for multiphonon processes [42]. We address this in Chapter 5, wherein the utility of

studying the incoherent structure factor will be that the auto-correlation function can be used

to obtain a reasonable and more manageable approximation of the coherent structure factor at

sufficiently high momenta.

Before venturing further into this approximation and its validity, we must first develop

2An alternative but equivalent point of view is that for coherent scattering, translation symmetry is broken up
to a shift symmetry, since all unit cells are identical. For incoherent scattering the scattering centers are treated
as independent and translation invariance is therefore fully broken, resulting in the complete loss of momentum
conservation.
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the structure factors into a form which lends itself to a direct calculation. In order to evaluate

the structure factors in (3.3)–(3.7), the position vector of each atom may be decomposed in

terms of the equilibrium lattice positions and displacement vectors, rℓd = ℓ+ r0
d +uℓd . Here

r0
d is the equilibrium location of atom d relative to the origin of the primitive cell and uℓd is

the displacement relative to that equilibrium. Following this decomposition, we quantize the

displacement vector in the harmonic approximation with a phonon mode expansion

uℓd(t) =
3n

∑
ν

∑
k

1√
2Nmdων ,k

(
eν ,d,kâν ,keik·(ℓ+r0

d)−iων ,kt

+ e∗ν ,d,kâ†
ν ,ke−ik·(ℓ+r0

d)+iων ,kt
)

(3.11)

The index ν denotes the phonon branches, of which there are 3n, and k labels the phonon

momentum in the first Brillouin Zone (BZ). The â†
ν ,k and âν ,k are the creation and annihilation

operators for the phonons, ων ,k is the energy of the phonon, eν ,d,k is the phonon eigenvector for

atom d normalized within a unit cell, ∑d e∗
ν ,d,k · eµ,d,k′ = δµνδk,k′ , and md is the mass of atom d.

The structure factor in (3.7) can then be explicitly evaluated by applying (3.11) to (3.5).

For a pure crystal with f 2
d = ( fd)

2, this is given by [42]

S(coh)(q,ω) =
1
N ∑

f

∣∣∣∣∣
N

∑
ℓ

n

∑
d

fd e−Wd(q)Mℓd

∣∣∣∣∣

2

δ
(
E f −ω

)
(3.12)

where

Mℓd ≡ eiq·(ℓ+r0
d)
〈
Φ f
∣∣exp

[
i∑

k,ν

q · e∗
ν ,k,d√

2Nmdων ,k
â†

ν ,ke−ik·(ℓ+r0
d)

]
|0⟩ (3.13)

is the matrix element for scattering into the final state of the crystal denoted by f . The Debye-

Waller factor e−Wd(q) is given in terms of the function Wd(q)≡ 1
2⟨(q ·uℓd(0))

2⟩. We may Taylor

expand the inner exponential in powers of q where the nth term can excite a final state consisting

of n phonons. The phonon eigenvectors and energies may be obtained numerically using Density

Functional Theory (DFT) (see e.g. [43]); using these, the leading single phonon structure factor
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has been calculated [44, 45, 46]. These DFT-based calculations quickly become cumbersome,

however, and have not yet been performed for generic n-phonon terms. Analytic calculations may

be performed more easily, and have been carried out for the single- and two-phonon terms [42],

but are only tractable when assuming an isotropic crystal and that |q| is small relative to the size

of the first Brillouin zone. Such analytic calculations likewise lack scalability for higher order

phonon terms.

3.2 Illustrative Example: Analytic Single Phonon

For the final state consisting of a single phonon with polarization ν and momentum k,

the leading result for the matrix element is

M
(1−ph)
f ,q,d = ∑

G
δG,q−k

i
√

Nq · e∗
ν ,d,q√

2mdων ,q
ei(q−k)·r0

d , (3.14)

where G are the reciprocal lattice vectors, which satisfy ∑ℓ eiℓ·(q−k) = N ∑G δG,q−k, with the

Kronecker-δ enforcing momentum conservation in the crystal. Here we also used that phonon

observables such as ων ,q are invariant under q → q+G. While there can be anharmonic

corrections to the above matrix element, they are negligible in the low q limit.

Summing over all possible single-phonon final states, this gives a structure factor identical

to the result in Ref. [44]. For sub-MeV DM scattering, where q is typically well within the first

Brillouin zone, it is a good approximation to neglect the sum over G as well as the Debye-Waller

factors. Then the result simplifies to

S(1−ph)(q,ω) = ∑
ν

1
2ων ,q

∣∣∣∣∣
n

∑
d

Ad√
md

q · e∗ν ,d,q

∣∣∣∣∣

2

δ (ω −ων ,q) . (3.15)

In the long wavelength (low q) limit, we can moreover approximate the acoustic modes

as having real eigenvectors with magnitudes
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eLA,k,d ≈
√

Ad√
∑d′ Ad′

k̂; (3.16)

note that this form is valid for generic crystal targets and not limited to GaAs. For the LO phonon,

we use the following eigenvectors, which are only valid for diatomic lattices [42]

eLO,k,1 ≈
√

A2√
A1 +A2

k̂, (3.17)

eLO,k,2 ≈−
√

A1√
A1 +A2

e−ik·r0
2 k̂ (3.18)

where the first atom is taken to be at the origin of the primitive cell, and the second atom is

taken to be at the coordinate r0
2 = (a/4, a/4, a/4) for GaAs. The acoustic and optical transverse

eigenvectors are orthogonal to these, but do not contribute to the scattering into a single phonon.

As can be seen from (3.14), transverse polarizations cannot contribute to the single

phonon rate. With these approximations, the analytic expressions for the single phonon contribu-

tions to the structure factor are [42]

Sn=1,LA(q,ω)≈ (∑d′ Ad′)q2

2mpωLA,q
δ (ω −ωLA,q)Θ(ωLO −ω) (3.19)

Sn=1,LO(q,ω)≈ q4a2

32ωLO

A1A2

mp(A1 +A2)
δ (ω −ωLO) (3.20)

Here we have introduced a cut-off of ω = ωLO to the longitudinal acoustic branch to avoid

overestimating the scattering rate with the LA mode near the edge of the Brillouin zone. The

q4 scaling and appearance of the lattice constant a in the optical structure factor comes from

averaging over angles with the eigenvectors, giving (q · r0
2)

2 ≈ q2a2/16 [47]. As an example,

projected reaches using these analytic single phonon structure factors in GaAs are shown in

Fig. 3.1.

In this figure, we assume 3 events with 1 kg-yr of exposure. The massless mediator limit

is taken (as discussed previously, letting F(q) = (mχv0/q)4 in (2.9)). The massless mediator’s
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Figure 3.1. Example cross section limits for an exposure of 1 kg-year in a GaAs crystal target
in the massless mediator limit [5]. The (lower) acoustic phonon line assumes a threshold of 1
meV, while the (upper) optical phonon line assumes only a threshold sufficient to see the optical
phonon, ωLO ≈ 33 meV.

scaling in q implies favoring smaller momenta transfer, however nevertheless around mχ ∼ 1

MeV sufficiently large momenta outside of the first BZ are kinematically available and the single

phonon approximations begin breaking down. In order to investigate what happens at larger

energy and momentum transfers, we must now move beyond this example toward deriving the

full multiphonon response of the crystal.
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Chapter 4

Toward Two Phonons

4.1 Introduction

In this Chapter, we begin our pursuit of understanding multiphonon excitations by

computing analytic results for processes involving two phonons in the final state, also referred to

as diphonon excitations. We perform these calculations of the structure factors and rates for cubic

crystals such as Ge, Si, GaAs and diamond in the isotropic approximation. We also make use of

the long-wavelength (low q) approximation, which allows us to characterize the anharmonicity

of the crystal through an interaction Hamiltonian. There are therefore two processes which

contribute to the total scattering into two phonons, which are depicted in Fig. 4.1: the contact

interaction, in which two phonons are directly excited; and the anharmonic interaction, which

involves an off-shell phonon mediator. We focus primarily on two acoustic phonons in the

final state, for which there is a well-known effective theory, and briefly comment on diphonon
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Figure 4.1. Diagrams representing the contact (left) and anharmonic (right) contributions to the
DM scattering rate into two phonons (dashed lines).

38



excitations involving optical phonons. Due to the breakdown of the anharmonic interaction

Hamiltonian beyond the first BZ, as well as our use of a linear extrapolation of the acoustic

dispersions, we limit the results to sub-MeV dark matter masses. A discussion of phonon

excitation for 3 or more phonons, as well as phonon excitation beyond mχ > 1 MeV, is instead

discussed in the following Chapter.

The main object we are computing is the structure factor S(q,ω), which receives con-

tributions from each of the processes depicted in Fig. 4.1. The contact term more precisely

arises from expanding the exponential in (3.13) to second order, while the anharmonic phonon

interactions in the material give rise to the anharmonic term. We define δH as the leading order

anharmonic phonon interaction Hamiltonian; its precise definition we defer to Sec. 4.2.1. At

leading order, the 2-phonon matrix element is then

M
(2-ph)
f ,q,d = M

(cont)
f ,q,d +M

(anh)
f ,q,d , (4.1)

with

M
(cont)
f ,q,d = ∑

ℓ

−1
2

〈
ν1,k1;ν2,k2

∣∣∣
[
∑
ν ,k

q · e∗
ν ,d,k√

2Nmdων ,k
â†

ν ,ke−ik·(ℓ+r0
d)

]2 ∣∣∣0
〉

eiq·(ℓ+r0
d)

= s1,2 ∑
G
−
(q · e∗

ν1,d,k1
)(q · e∗

ν2,d,k2
)

2md
√

ων1,k1ων2,k2

ei(q−k1−k2)·r0
d δG,q−k1−k2 , (4.2)

M
(anh)
f ,q,d = i ∑

G,k,ν

√
N

2mdων ,k

( q · e∗
ν ,d,k⟨ν1,k1;ν2,k2|δH|ν ,k⟩

ων1,k1 +ων2,k2 −ων ,k + iΓν ,k/2
ei(q−k)·r0

d δG,q−k

+
q · eν ,d,k⟨ν ,k;ν1,k1;ν2,k2|δH|0⟩
−(ων1,k1 +ων2,k2)−ων ,k + iΓν ,k/2

ei(q+k)·r0
d δG,q+k

)
, (4.3)

where the factor s1,2 ≡ (δν1,ν2δk1,k2 + 1)−1/2 accounts for Bose statistics. We refer to the

contributions in (4.2) and (4.3) as the contact term and the anharmonic term, respectively.

Anharmonic phonon interactions also lead to a non-zero phonon width, Γν ,k. This has been

resummed in the phonon propagator in (4.3) and becomes relevant when the intermediate
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phonon goes on-shell. Details regarding the derivation of the above matrix elements are given in

Appendix 4.A.

In the long wavelength limit, we can again consider only the G = 0 contribution to the

matrix elements and drop the Debye-Waller factors. It will then be convenient to express the

three-phonon matrix element as

⟨ν1,k1;ν2,k2|δH|ν ,q⟩= V
(2(∑d md)N)3/2

M̃ (q,ki,νi)√
ων ,qων1,k1ων2,k2

δq,k1+k2 , (4.4)

As we show in Sec. 4.2.1, in the long wavelength limit M̃ (q,ki,νi) is a function only of the

momenta, long-wavelength polarization tensors and elastic constants of the material. In addition,

eigenvectors are real in this limit, such that the matrix element M̃ (q,ki,νi) is real as well. The

two terms in (4.1) therefore do not interfere to leading order in the small q expansion, when

neglecting terms higher order in Γν ,k. Using the long-wavelength polarization vectors defined in

(3.16), the two-phonon structure factor can be simplified to

S(q,ω) = S(cont)(q,ω)+S(anh)(q,ω) , (4.5)

S(cont)(q,ω) =
1
8

∑d Ad

mpρ
∑

ν1,ν2

∫ d3k1

(2π)3

∣∣(q · eν1,k1)(q · eν2,q−k1)
∣∣2

ων1,k1ων2,q−k1

×δ (ω −ων1,k1 −ων2,q−k1) , (4.6)

S(anh)(q,ω) =
1

16
∑d Ad

mpρ3 ∑
ν1,ν2

∫ d3k1

(2π)3

∣∣∣∣∣
qM̃ (q,ki,νi)

ωLA,q
√

ων1,k1ων2,q−k1

(
1

ω −ωLA,q + iΓLA,q/2

+
1

−ω −ωLA,q + iΓLA,q/2

)∣∣∣∣∣

2

δ (ω −ων1,k1 −ων2,q−k1) , (4.7)

where we took the continuum limit by substituting ∑k1 → V
∫ d3k1
(2π)3 . ρ = Nmp ∑d Ad/V is the

mass density of the material. Similar to the single-phonon structure factor, the overall factor of

∑d Ad will drop out in the expression of the rate per unit target mass, so that the rate to excite two

phonons depends only on bulk properties such as sound speeds, density, and elastic constants.
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While the anharmonic interaction only relies on the DM coupling to a single phonon, and

therefore appears to be lower order in the expansion parameter q/
√

mNω , there is an additional

suppression in q from the insertion of the phonon self-interaction. We will see in Sec. 4.2 that in

the low-momentum regime, the self-interactions of acoustic phonons are governed by multiple

dimensionful parameters that are related to the elastic constants of the crystal. The sense in

which the self-interactions are “small” can be most easily seen from the fact that the typical

width of the longitudinal acoustic phonon, Γ, is very small compared to its energy,1 in other

words Γ/ω ≪ 1.

Following this observation, it is instructive to consider the leading order scaling in q for

each of these processes. This allows for a qualitative comparison between different channels and

materials before getting into the precise details of evaluating the structure factors. The resulting

scaling is represented schematically in Table 4.1. For a single acoustic mode in the final state,

S(q,ω) scales linearly with q but requires a very low threshold. For the single optical mode3 and

the two-phonon processes, S(q,ω) scales as ∼ q4. Finally, it is interesting to compare crystals

with superfluid helium, where the diphonon rate also scales as ∼ q4 (as discussed further in

Sec. 4.4.2).
1Note this is different from superfluid He, where the phonon-roton self-interactions are much larger, but where

the phonon decay is kinematically forbidden for part of the dispersion curve.
3The single optical mode scales as q4 for dark matter that couples proportional to mass [47], which is the

situation considered here; otherwise, it scales as q2.

Table 4.1. Leading scaling of the structure factor S(q,ω) in the low q (low mDM) limit for
different channels, and required approximate thresholds to observe them. It is assumed that the
DM couples proportional to the mass of the atoms. The # indicates that this channel vanishes in
the limit where the (material dependent) phonon self-couplings are taken to zero.

channel low-q scaling typical threshold needed Ref.
single acoustic phonon q 1 meV [48, 44, 49]
single optical phonon q4 25 meV [48, 44, 49, 47]
two-phonon (contact) q4 5-10 meV this work
two-phonon (anharmonic) #q4 5-10 meV this work
two-phonon (helium) #q4 1 meV2 [50, 51, 52, 53]
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4.2 Evaluation of the structure factor

In this section we provide explicit results and analytic formulae for the two contributions

to the two-phonon structure factor, Eqs. (4.6)-(4.7). Even in the long-wavelength limit, the

dispersions and anharmonic couplings are in general direction-dependent, substantially compli-

cating the calculations. For cubic crystals, the isotropic limit is however known to be in excellent

agreement with the general result for scattering to single phonons [44]. In this Chapter we will

therefore restrict ourselves to cubic crystals such as GaAs, Ge, Si and diamond, and approximate

them as isotropic. We leave a fully general calculation of the multiphonon rate with Density

Functional Theory (DFT) for future work, but we do not expect that accounting for anisotropy

would qualitatively change our conclusions.

For the diphonon contribution, a description of the phonon self-interactions is needed, and

this is where the isotropic approximation is most advantageous: as we will see in Sec. 4.2.1, the

effective Hamiltonian is relatively simple in the isotropic and long-wavelength limit, containing

5 independent operators (this number grows to 9 if instead cubic symmetry is assumed). The

coefficients of these operators can moreover be extracted from the elastic properties of the

material. Each coefficient maps directly to a linear combination of the second order elastic

constants (related to the bulk modulus and Young’s modulus) and third order elastic constants;

these quantities can either be measured or computed with ab initio methods.

4.2.1 Anharmonic term

To compute the anharmonic contribution, we use a low-momentum effective description

of the phonon self-interactions. As for any effective theory, we first constrain the form of the

Hamiltonian using the symmetries of the theory and subsequently fix the Wilson coefficients

from measured observables, or by matching on to the full UV theory. It is hereby convenient to

introduce a “long-wavelength displacement operator”, in analogy to the long wavelength polar-

ization tensors defined in (3.16). Replacing the polarization tensors with their long-wavelength
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versions and averaging over the atoms in a unit cell, we can define

u(r)≡
3

∑
ν

∑
k

√
1

2N(∑d md)ων ,k

(
eν ,kâν ,keik·r + e∗ν ,kâ†

ν ,ke−ik·r
)
, (4.8)

where now we only sum over acoustic polarizations ν and we have replaced the individual atomic

position vectors ℓ+ r0
d with the continuous position vector r. Once again, the long-wavelength

displacement operators u can be distinguished from their more general counterparts uℓ,d by the

index labels.

Assuming isotropy, there are only 5 independent operators to third order in the effective

Hamiltonian [54, 55]:

δH =
∫

d3r
1
2
(β +λ )uiiu jku jk +(γ +µ)ui jukiuk j +

α

3!
uiiu j jukk +

β

2
uiiu jkuk j +

γ

3
ui ju jkuki ,

(4.9)

with ui j ≡ ∂iu j and the i, j running over the three spatial coordinates. Repeated indices are

summed over. The coefficients α,β ,γ,λ and µ can be determined from the measured or

calculated elastic constants of the crystal. In particular, the parameters µ and λ are the Lamé

parameters of the crystal and related to the bulk and Young’s moduli. The parameters α , β and γ

can be calculated from the third order elastic constants, as described in Appendix 4.B. All five

parameters have units of pressure and are reported in units of Giga-Pascal (GPa) in Tab. 4.2 for

the crystals we consider.

Using (4.8)-(4.9), the anharmonic three-phonon matrix element can be written in the
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form of (4.4), where the function M̃ is given by:

M̃ = (β +λ )
[
(q · e)(k1 ·k2)(e1 · e2)+(k1 · e1)(q ·k2)(e · e2)+(k2 · e2)(k1 ·q)(e1 · e)

]

+(γ +µ)
[
(q ·k1)

[
(k2 · e1)(e2 · e)+(k2 · e)(e2 · e1)

]

+(k2 ·k1)
[
(q · e1)(e2 · e)+(q · e2)(e · e1)

]

+(q ·k2)
[
(k1 · e2)(e1 · e)+(k1 · e)(e1 · e2)

]]

+α(q · e)(k1 · e1)(k2 · e2)

+β

[
(k1 · e1)(q · e2)(k2 · e)+(q · e)(k1 · e2)(k2 · e1)+(k2 · e2)(q · e1)(k1 · e)

]

+ γ

[
(q · e1)(k1 · e2)(k2 · e)+(q · e2)(k1 · e)(k2 · e1)

]
, (4.10)

and we introduced the shorthand notation e = eν ,q, e1 = eν1,k1 etc. From (4.3) it follows that

only the longitudinal polarization of the off-shell, intermediate phonon contributes. Depending

on the polarizations of the outgoing phonons, different terms in (4.10) contribute. Concretely,

there are four distinct combinations for which the matrix element is non-zero:

• LA-LA

• TA-TA with both phonons polarized in the plane spanned by the momenta

• TA-TA with both phonons polarized orthogonal to the plane spanned by the momenta

• LA-TA with the TA phonon polarized in the plane spanned by the momenta.

In the isotropic limit, the structure factor in (4.7) reduces to

S(anh)(q,ω) =
1
4

∑d Ad q2

ρ3mp[(ω2 − (cLAq)2)2 +(cLAq)2Γ2
LA,q]

× ∑
ν1,ν2

∫ d3k1

(2π)3
|M̃ |2

cν1cν2k1|q−k1|
δ (ω − k1cν1 −|q−k1|cν2) . (4.11)
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The anharmonic matrix element given in (4.10) can also be used to compute ΓLA,q, which we

provide explicitly in Appendix 4.C.1.

The phase space integrals above can be evaluated analytically. Given that the different

polarizations in the final states do not interfere, we can separately evaluate all four channels:

S(anh)
LALA(q,ω) =

(
∑d Ad q4 ω4)(g(anh)

LALA

(qcLA
ω

))

16π2c7
LAmpρ3[(ω2 − (cLAq)2)2 +(cLAq)2Γ2

LA,q]
θ(ω − cLAq) , (4.12)

S(anh)
TATAout(q,ω) =

(
∑d Ad q4 ω4)(g(anh)

TATAout

(qcTA
ω

))

16π2c7
TAmpρ3[(ω2 − (cLAq)2)2 +(cLAq)2Γ2

LA,q]
θ(ω − cTAq) , (4.13)

S(anh)
TATAin(q,ω) =

(
∑d Ad q4 ω4)(g(anh)

TATAin

(qcTA
ω

))

16π2c7
TAmpρ3[(ω2 − (cLAq)2)2 +(cLAq)2Γ2

LA,q]
θ(ω − cTAq) , (4.14)

S(anh)
LATA(q,ω) =

(
∑d Ad q4 ω4)(g(anh)

LATA

(qcTA
ω

))

16π2c7
TAmpρ3[(ω2 − (cLAq)2)2 +(cLAq)2Γ2

LA,q]
θ(ω − cTAq) , (4.15)

where “TATAin” and “TATAout” subscripts refer to TA-TA channels with polarizations in and

orthogonal to the plane spanned by the phonon momenta. θ(x) is the Heaviside function. The

g(anh)(x) functions all approach a constant in the x → 0 limit, specifically

g(anh)
LALA (x)≈

1
240

(
15α

2 +10α(10β +8γ +5λ +6µ)+188β
2 +4β (88γ +47λ +66µ)

+192γ
2 +176γλ +288γµ +47λ

2 +132λ µ +108µ
2)+O

(
x2) , (4.16)

g(anh)
TATAout (x)≈

1
240

(
15β

2 +10β (2γ +3λ +2µ)+12γ
2 +4γ(5λ +6µ)

+15λ
2 +20λ µ +12µ

2)+O
(
x2) , (4.17)

g(anh)
TATAin (x)≈

1
16
(
β +2γ +λ +2µ

)2
+O

(
x2) , (4.18)

g(anh)
LATA (x)≈

8
15δ (δ +1)5 (2β +4γ +λ +3µ)2 +O

(
x2) , (4.19)

where we defined δ ≡ cLA/cTA. The O(q4) scaling of this contribution, as advertised in the

Introduction, is therefore manifest in (4.12), (4.13), (4.14) and (4.15). For our numerical results,

45



we use the full, unexpanded expressions, as given in Appendix 4.C.1.

4.2.2 Contact term

With the definition of the long-wavelength polarization tensors in (3.16), the structure

factor for the contact term in (4.6) reduces to

S(cont)(q,ω) =
1
4

∑d Ad

mpρ
∑

ν1,ν2

∫ d3k1

(2π)3

∣∣(q · eν1,k1)(q · eν2,q−k1)
∣∣2

cν1cν2k1|q−k1|
δ (ω − k1cν1 −|q−k1|cν2) ,

(4.20)

which can also be evaluated analytically. Concretely, there are three final-state polarization

configurations (LA-LA, TA-TA and LA-TA) which can contribute, where the TA modes must be

polarized in the plane spanned by the momenta:

S(cont)
LALA (q,ω) =

(∑d Ad)

64π2c3
LAmpρ

q4 g(cont)
LALA

(cLAq
ω

)
θ(ω − cLAq) , (4.21)

S(cont)
TATA (q,ω) =

(∑d Ad)

64π2c3
TAmpρ

q4 g(cont)
TATA

(cTAq
ω

)
θ(ω − cTAq) , (4.22)

S(cont)
LATA (q,ω) =

(∑d Ad)

64π2cLAcTA(cLA + cTA)mpρ
q4 g(cont)

LATA

(cTAq
ω

)
θ(ω − cTAq) , (4.23)

with

g(cont)
LALA (x)≈ 2

5
− 16

21
x2 +

16
15

x4 +O(x6) , (4.24)

g(cont)
TATA (x)≈ 16

15
− 64

35
x2 +

64
105

x4 +O(x6) , (4.25)

g(cont)
LATA (x)≈

16
15

+
16
105

(
12δ

2 +17δ +5
)

x2 − 16
105

(
7δ

3 +11δ
2 +4δ

)
x4 +O(x6) , (4.26)

where we again used δ = cLA
cTA

. Note that the expansion in (4.26) assumes x≪ 1
δ

. The exact expres-

sions for g(cont)
LALA , g(cont)

TATA and g(cont)
LATA were used for all our numerical results (see Appendix 4.C.2).

Note that the O(q4) scaling discussed in the Introduction is manifest in (4.21), (4.22) and (4.23).
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Figure 4.2. Left: Structure factors at ω = 10 meV for each of the anharmonic and contact
channels, evaluated numerically for GaAs with the parameters listed in Tab. 4.2. The inset
shows the low-momentum regime on a log-log scale. Right: Dispersion relations for GaAs
obtained with DFT methods [6], in two example directions around the origin of the Brillouin
zone, indicated by “Γ”. (Γ in this context is not to be confused with the phonon width.) The
dashed lines indicate the long wavelength, isotropic approximation, and the light and dark gray
regions show q > qcut and q > 2qcut respectively.

4.2.3 Numerical comparison

The left-hand panel of Fig. 4.2 shows the different contributions to S(q,ω) for the

example of GaAs, where we summed the different TATA contributions. We show the full

kinematic range, where the most striking feature is the resonance at x = 1/δ for the anharmonic

contributions, indicating that the intermediate LA phonon goes on-shell. Whenever the resonance

is kinematically accessible, it dominates the rate to the extent that the off-shell diphonon

contribution is completely negligible. The LALA channel also cuts off for x > 1/δ , since in

this regime it is not possible to simultaneously conserve energy and momentum. Except for the

region near the resonance, all contributions scale as ω4 with respect to our 10 meV reference

value. The inset zooms in on the low momentum region and shows the ∼ q4 scaling of both

diphonon contributions.

The long wavelength approximation necessarily breaks down at momenta approaching

the edge of the Brillouin zone for two reasons: the dispersion relations of the acoustic phonons

cease to be linear, and the description of the phonon self-couplings in terms of the elasticity
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parameters (Sec. 4.2.1) starts to break down. We show the dispersions in the right-hand panel

of Fig. 4.2 for the example of GaAs, where the full dispersion relations [6] are compared with

those in the long wavelength, isotropic approximation. To ensure that the calculation is not

extrapolated beyond its regime of validity, we impose a maximum momentum cutoff of qcut = 0.7

keV for GaAs and Ge, qcut = 0.8 keV for Si, and qcut = 1.2 keV for diamond. This corresponds

roughly to qcut ≈ qBZ/3, where qBZ ≡ 2π/a is the approximate boundary of the first Brillouin

zone and a is the lattice spacing. The cut is indicated by the light gray shading in Fig. 4.2, and

below this value the dispersions of the acoustic phonons in all four materials is close to linear.

We also enforce this momentum cut on the final state phonons by imposing an upper bound on

the total deposited energy of ωcut = (c1 + c2)qcut where c1,2 stand for the sound speeds of the

final state phonons under consideration, e.g. for the LATA channel c1 = cLA and c2 = cTA etc.

The resulting values are summarized in Tab. 4.3.

Due to the relatively low sound speeds in GaAs and Ge, the phase space is substantially

restricted by these consistency conditions. In this sense, our calculations should be viewed as

a conservative estimate. The choice of qcut is to some degree arbitrary, and therefore we also

compute all rates with a qcut that is twice the values reported in Tab. 4.3. This provides a measure

of the sensitivity of our results to qcut. We expect that the long wavelength formulas overestimate

the structure factor when extrapolated beyond their regime of validity because of the strong

growth in q and ω , and because the isotropic linear dispersions overestimate the mode energies

at large momenta. In this sense we anticipate that the true answer is bracketed by the two cutoff

choices. Numerically, we find that integrating fully out to the edge of the Brillouin zone does not

change the rates appreciably in comparison to our upper choice of 2qcut ∼ 2qBZ/3.

48



4.3 Results

Folding in the DM velocity distribution, the total rate per unit exposure is given by

R =
σn

∑d Admp

ρχ

mDM

∫
d3vi f (vi)

∫
ω+

ω−
dω

∫ q+

q−
dq

q
2pimDM

|F̃(q)|2S(q,ω) , (4.27)

where F̃(q) indicates a form factor whose functional form is determined by the properties of the

particle mediating the DM-nucleon scattering process. The most common, limiting cases are

F̃(q) = 1 if the mediator is heavier than the DM, and F̃(q) = v2
0m2

DM/q2 for a mediator which

can be treated as massless in the scattering process. In addition, ω− is the energy threshold of

the experiment, and

q− ≡ |pi − p f |, q+ ≡ Min
[
pi + p f ,qcut

]
, and ω+ ≡ Min

[
v2

i mDM

2
,ωcut

]
, (4.28)

where pi ≡ mDMvi and p f ≡ mDM

√
v2

i −2ω/mDM are the magnitudes of the initial and final DM

momenta respectively. The cuts involving qcut and ωcut ensure that the integral is not evaluated

in a regime where the long wavelength approximation is invalid, as discussed in Sec. 4.2.3. For

the DM velocity distribution f (vi) we use the standard truncated Maxwellian distribution in the

Earth’s frame:

f (v) =
1

N0
exp

[
−(v+ve)

2

v2
0

]
Θ(vesc −|v+ve|) , (4.29)

N0 = π
3/2v3

0

[
erf
(

vesc

v0

)
−2

vesc

v0
exp
(
−v2

esc

v2
0

)]
, (4.30)

and we take v0 = 220 km/s, vesc = 500 km/s, and the Earth’s average velocity to be ve = 240

km/s.

Fig. 4.3 shows the differential scattering rate as a function of the deposited energy,

assuming a massless mediator. All curves are cut off when the momenta of the final state
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Figure 4.3. The differential rate for the different channels in GaAs. The dotted lines indicate
the ω cuts for each respective channel from Tab. 4.3; the dashed lines show the cuts if we
extrapolate the long wavelength approximation all the way to the edge of the Brillouin zone, and
the spectra in this case should be understood as upper bounds on the true rate. The right-hand
panel demonstrates the single-phonon resonance at small values of ω .

phonons are outside the first Brillouin zone. The dotted vertical lines indicate values of ωcut,

above which we expect that the long wavelength approximation starts to break down. Integrating

the rate beyond ωcut to the edge of the Brillouin zone is likely to overshoot the true answer. For

the mDM = 10 keV benchmark (left-hand panel), the single phonon resonance occurs for ω < 1

meV, while its enormous contribution to the scattering rate is visible for ω < 5 meV for the 50

keV benchmark (right-hand panel).

Fig. 4.4 shows the cross sections needed to obtain 3 events with a kg-year exposure,

again assuming a massless mediator.4 The most striking feature in Fig. 4.4 is the enormous

enhancement of the reach once the single acoustic phonon becomes accessible. In this regime,

integrating the diphonon structure factor matches onto the single phonon scattering rate (see

Appendix 4.A) and we can simply use the single phonon structure factor. For a given experimental

threshold ω−, the mass m∗
DM at which the single-phonon resonance appears may be analytically

derived by requiring that the maximum momentum transfer supplied by the DM suffices to create

4The massive mediator scenario is disfavored by BBN bounds, while the massless mediator case is in tension
with stellar cooling constraints and DM self-interactions [56, 57, 58]. The latter are relaxed if the particle in question
is a subcomponent of the full DM abundance.
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an on-shell LA phonon above the threshold, or in other words: 2m∗
DM (vesc + ve)≈ ω−/cLA or

m∗
DM ≈ 1

2
ω−
cLA

1
(vesc + ve)

. (4.31)

Using the sound speed for GaAs and a 1 meV threshold as an example, the single-phonon

resonance will appear at m∗
DM ≈ 12 keV, as can be seen in Fig. 4.4. The very high sound speed

of diamond then explains why this material maintains sensitivity to the single acoustic mode for

most of the mass range, even for a threshold as high as ∼ 10 meV. (See [39] for a detailed study

of diamond as a dark matter detector.)

No backgrounds or experimental efficiencies have been included in Fig. 4.4, which is

meant to both illustrate the most optimistic reach possible, as well as the relative importance of

the various channels, rather than provide an accurate projection of the absolute reach. The single

optical phonon channel is computed using an analytic approximation given in Sec. 4.4.1, with

the (dispersionless) optical mode energy given in the figure labels. We see that the two-phonon

channel is always subleading to the single optical, except at low mDM for Si and diamond. The

reason is that the longitudinal optical mode in both these materials is relatively high energy,

60 meV and 140 meV respectively, and is not kinematically accessible in the low mDM region.

For comparison, multiphonon production in superfluid helium is also shown in Fig. 4.4; in an

idealized setting where all experimental effects aside from the threshold are neglected, it always

outperforms both the single optical and two-phonon modes in crystals.

The shaded bands in Fig. 4.4 indicate the estimated uncertainty from taking the long

wavelength approximation, by displaying the calculated rates using two choices for the momen-

tum cutoff, as explained in Sec. 4.2.3. Concretely, the upper edge of the band corresponds to the

values reported in Tab. 4.3, whereas the lower curves assume twice these values. This source of

uncertainty is negligible once the single LA channel is accessible, as this contribution is peaked

at low ω (see right-hand panel of Fig. 4.3), and moreover it does not rely on the validity of

Eq. (4.9). The size of the band is larger in GaAs and Ge because of the lower sound speeds and
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Figure 4.4. Minimum accessible cross sections for different crystals, channels and thresholds,
assuming 3 events with a kg-year exposure. All curves are computed in the isotropic and
long-wavelength approximations. The shaded bands indicate diphonon rates computed with the
cuts in Tab. 4.3 (upper edge) and twice those values (lower edge). The curves for the single
optical channel are computed with the approximation in Sec. 4.4.1. For comparison, we show the
multiphonon reach in superfluid helium with the same exposure and a threshold of 1 meV [51].
The dotted line in the upper right corner indicates roughly where the DM would lose a significant
fraction of its initial kinetic energy within 1 km in the Earth’s crust. The gray shading for
mDM < 10 keV indicates the region where stellar cooling and warm dark matter limits likely
apply.

ωcut (Tab. 4.3). This source of uncertainty is also more severe as the experimental threshold

is increased, since this reduces the available phase space in Fig. 4.3, which leads to greater

dependence on ωcut. For a 10 meV threshold, the lower value of ωcut severely restricts the phase

space for the TATA channel, especially for GaAs and Ge. Meanwhile, for diamond ωcut has no

effect on the rate, since it is always larger than the initial DM kinetic energy when mDM < m∗
DM.
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We therefore expect the long wavelength limit be an excellent approximation in this case.

Other sources of uncertainty are the values for the elasticity parameters, as to the best of

our knowledge they have not yet all been measured at ultra low temperatures. As explained in

Appendix 4.B, we instead rely on ab initio calculations of these parameters, which in some cases

carry O(1) uncertainties. This propagates to a small uncertainty on the overall diphonon rate,

regardless of the DM mass. In addition, we expect corrections to the isotropic approximation

once the detailed crystal structure is accounted for. These uncertainties are not included in

the band in Fig. 4.4. Given the current experimental unknowns, we consider the uncertainties

acceptable at this stage, especially given that diphonon processes typically have a much lower

rate than the single optical mode.

To conclude, we briefly comment on stellar cooling constraints, warm dark matter bounds

and the material overburden. For millicharged particles with mass ≲ 10 keV, there are strong

constraints from the cooling of white dwarfs, red giants and horizontal branch stars [59, 60].

To our knowledge, the analogous computation has not yet been performed for light DM with

a coupling to nuclei, but we expect that similar constraints should apply for mDM ≲ 10 keV. In

this mass range, the DM is also generally considered as warm and there are constraints from

structure formation, although these are alleviated if this candidate doesn’t provide the entire DM

abundance. The likely existence of both bounds is suggested by the gray shading in Fig. 4.4.

Finally, for sufficiently large σn, the DM is likely to scatter in the Earth’s crust before reaching

an underground detector. To determine roughly where this occurs, we estimated the mean free

path for DM scattering off phonons in a crystalline silicon crust where the DM loses at least 1%

of its typical initial kinetic energy. (While this is an idealized model, a similar result is obtained

if we model DM interactions in the crust as nuclear recoils off free silicon atoms.) The dotted

line in Fig. 4.4 indicates where the mean free path is 1 km. Numerically, we find this to be where

σn ≳ 5×10−28 cm2 × (MeV/mDM) .
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4.4 Other channels

4.4.1 Diphonon excitations involving optical branches

As discussed in the introduction, the rate for scattering that excites a single optical phonon

is suppressed when the DM coupling is proportional to the mass of the atom. Nevertheless, as

seen in the previous section, processes involving optical phonons are still important, particularly

for higher experimental thresholds. A discussion of the single (longitudinal) optical phonon in

Chapter 3 led to the LO structure factor given by (3.20). We therefore move onto a description

of two-phonon processes involving optical phonons.

There are two kinds of two-phonon processes involving optical phonons to consider:

optical-acoustic, and optical-optical. We begin with the former, since they are the most relevant

for light DM. Optical-acoustic scattering also has both contact and anharmonic contributions.

For all of the materials we consider, there is a suppression of the contact contribution at low q

when DM couples proportional to atomic mass. This can be seen from the expressions for the

structure factor and matrix element in eqs. (3.12) and (4.2). When q= 0, momentum conservation

requires k1 =−k2 and the sum over the unit cell in (3.12) vanishes due to the orthogonality of the

eigenvectors. Using the low-q approximation for the LO eigenvector (3.17), one can explicitly

see that the leading term in the small q expansion of the structure factor vanishes; the contact

term then scales as q6 and is negligibly small. Note that this result does not hold for general

lattices, since with more complicated unit cells there can be mixed longitudinal-transverse optical

modes which may only be orthogonal to the acoustic modes after also contracting the Lorentz

indices of the eigenvectors.

The anharmonic contribution is more difficult to reliably calculate. It could be obtained

from a first principles calculation of the anharmonic corrections to the lattice potential using

Density Functional Theory, however this goes beyond the scope of the present work. Here, we

adopt a simpler method in order to obtain an estimate of the size of this contribution. We follow

an approach that has been used in the literature to calculate the lifetime of LO phonons and
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describe the anharmonic three-phonon interactions via the Hamiltonian [61],

δH =
1
3!

γG

c̄

√
1

2Nmp(A1 +A2)
∑

ν ,ν ′,ν ′′
∑

k,k′,k′′

√
ωνων ′ων ′′ δk+k′+k′′

×
(

a†
ν ,k −aν ,k

)(
a†

ν ′,k′ −aν ′,k′
)(

a†
ν ′′,k′′ −aν ′′,k′′

)
, (4.32)

where γG ≈ 1 is the mode-averaged Grüneisen constant and c̄ is the average of the LA and TA

sound speeds. The above Hamiltonian can be obtained starting from eqs. (4.8)-(4.10) and then

averaging over phonon modes and angles (see Ref. [61]). Since this model treats the lattice as an

isotropic continuum it does not actually contain optical modes; nevertheless, eq. (4.32) has been

used in the calculation of optical phonon lifetimes (e.g. [62, 63]).

The dominant anharmonic contribution is that mediated by an off-shell LA phonon,

since the LO mediated process has the same suppression as single optical scattering. Using the

Hamiltonian (4.32) in eq. (4.3) we obtain the structure factors,

S(anh)
LOLA(q,ω) =

γ2
G

2π2
ωLO(A1 +A2)

c̄2cLAρmp

q4(ω −ωLO)
3

(ω2 − (cLAq)2)2 θ(ω −ωLO) , (4.33)

S(anh)
LOTA(q,ω) =

γ2
G

π2
ωLO(A1 +A2)

c̄2cTAρmp

c2
LA

c2
TA

q4(ω −ωLO)
3

(ω2 − (cLAq)2)2 θ(ω −ωLO) , (4.34)

where we have again assumed a flat dispersion relation for the optical mode. The expressions for

the TO-LA and TO-TA processes can be obtained by the substitution ωLO →ωTO and multiplying

by a factor of two. Integrating the structure factor to obtain the total rate we find that, for all the

materials we consider, the LO-LA scattering rate is four to five orders of magnitude smaller than

the single optical rate, where we again impose the qcut values in Tab. 4.3 on the acoustic phonons

(relaxing this cut increases the LO-LA rate, but it always remains negligible). The LO-TA

process is enhanced by the smaller TA sound speed, but is still significantly suppressed compared

to the single optical. A similar conclusion holds for optical-acoustic scattering involving TO

phonons, although these processes could be relevant in a narrow range of DM masses that are
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above the threshold to excite a TO phonon but below the LO threshold. While eqs. (4.33) and

(4.34) should only be considered as an estimate of the two phonon optical-acoustic rate, we do

not expect a detailed DFT calculation to change the qualitative conclusion that it is sub-leading

compared to single optical scattering.

Next, we briefly discuss scattering into two optical phonons. This process only becomes

kinematically accessible for heavier DM masses due to the higher energy threshold to excite

two optical phonons. Unlike optical-acoustic scattering, there is no additional suppression of

the contact contribution for DM that couples proportional to atomic mass. The LO-LO structure

factor is then proportional to q4/(mpωLO)
2. On the other hand, the single optical structure factor

scales as q4a2µ/(m2
pωLO), where µ is the reduced mass of the primitive cell. The two optical

phonon contact contribution is then expected to be significantly smaller than the single optical.

The anharmonic contribution is again challenging to reliably estimate; however, based on our

above estimate for optical-acoustic scattering, where it was found to be sub-leading, we do

not expect it to give a significant contribution. In summary, two phonon scattering processes

involving optical phonons are expected to give only a sub-leading contribution to the total

scattering rate.

4.4.2 Diphonons in superfluid helium

Here we briefly compare our results with similar calculations of diphonon production in

superfluid helium. While the symmetries of the systems are different, in both cases the structure

factor scales as q4 in the limit q ≪ ω . Crystals spontaneously break both translation and rotation

invariance, but since the rotation operators are linearly dependent on the translation operators,

there are only 3, rather than 6, Goldstone modes [64]. These are the 1 LA and 2 TA modes we

have encountered throughout our discussion. Since translations are broken spontaneously, all

amplitudes must vanish in the limit where one of the external (spatial) momenta go to zero. This

symmetry principle explains the form of the amplitude in (4.10) and its scaling in the low q limit.

Combined with the q-dependent DM-phonon coupling, the resulting matrix element goes as
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|M |2 ∼ q4.

Superfluid helium on the other hand does not break translation and rotation invariance,

though the Bose-Einstein condensate breaks boost invariance as well as a linear combination

of the time translation and particle number operators. All four broken operators are linearly

dependent, such that there only exists a single Goldstone mode [64], which is the phonon-roton

branch. Here the same q4 dependence of the structure factor can be argued from an effective

field theory treatment [52, 53]. Although translation invariance is unbroken, the Ward identity

associated with the U(1) particle number symmetry still enforces that the two-phonon amplitude

vanishes in the q → 0 limit [65]. Bose symmetry on the final state momenta then implies that in

the low q limit, the amplitude must be proportional to

|MHe|2 ∼ |q ·k1 +q ·k2|2 ∼ q4 , (4.35)

where the second ∼ follows from momentum conservation (q = k1+k2). Despite the differences

in symmetries, the scaling of the dynamic structure factor for phonons in superfluid helium is

the same as for longitudinal acoustic phonons in crystals. However, the multiphonon rate in

helium exceeds that in the crystals we considered (see Fig. 4.4), due to the stronger phonon

self-couplings in helium.

4.5 Conclusions and outlook

In this Chapter, we evaluated the rate for production of two acoustic phonons in crystals

from scattering of sub-MeV DM. We considered cubic crystals such as GaAs, Ge, Si and diamond

and worked in the isotropic and long wavelength approximations. In addition, we focused on

DM which couples proportional to atomic mass, since in this case the rate for single optical

phonon excitations is suppressed and two-phonon production is most relevant. However, for

all four crystals, we found that the two-phonon rate is smaller than the single optical phonon

rate whenever the optical mode is kinematically accessible. Similarly, the rate to excite a single
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acoustic phonon dominates whenever that mode is kinematically accessible. In diamond and Si

there is, however, a range of DM masses between 10 keV and 100 keV for which the diphonon

process could be the only detectable channel, depending on the experimental threshold. We

have also estimated the diphonon rate with optical phonons and expect it to be sub-leading. In

idealized experimental conditions, the multiphonon rate in superfluid helium exceeds that in all

the crystals we have considered.

For GaAs and Ge, our approach here in taking the long-wavelength approximation

has a limited regime of validity, leading to appreciable uncertainties in the scattering rate. A

more precise evaluation with Density Functional Theory methods would be desirable for these

materials, which would additionally allow one to consider anisotropy’s daily signal modulation.

Another description is required for multiphonons in higher energy and momentum regimes,

which we perform in the next Chapter by employing the incoherent approximation.
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Table 4.3. Upper bounds on q and ω used in the calculations, to ensure the validity of the long
wavelength approximation. qcut is roughly 2π/3a with a the lattice spacing, and the energy cuts
are calculated by imposing the momentum cut on the final state phonons. We also consider cuts
that are twice the values shown here.

a
(
Å
)

qcut (keV) ωcut, TATA (meV) ωcut, LATA (meV) ωcut, LALA (meV)
Si 5.47 0.8 26 35 44

GaAs 5.65 0.7 15 20 25
Ge 5.66 0.7 16 21 26

Diamond 3.57 1.2 94 117 139
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Appendices

4.A Derivation of scattering rates

In this appendix we show how the matrix elements in Sec. 4.1 are derived using time-

dependent perturbation theory, including a resummation of the phonon width.

We begin by rewriting the Hamiltonian as

H =
p2

DM
2mDM

+∑
ν ,k

(
ων ,k −

i
2

Γν ,k

)
a†

ν ,kaν ,k +H ′ , (4.36)

with

H ′ = V (r)+δH +∑
ν ,k

i
2

Γν ,ka†
ν ,kaν ,k , (4.37)

where V and δH are given in eqs. (3.1) and (4.9) respectively, and we have introduced the

phonon width, Γν ,k ∼O(δH2). In the following, H ′ will be treated as a perturbation. Introducing

the phonon width in this way is purely a reorganisation of the perturbation series as the full

Hamiltonian remains independent of Γν ,k. This approach is similar to the complex mass scheme

in QFT [66] and allows for a systematic inclusion of the width at higher perturbative orders,

although is not strictly necessary here since we consider only the leading corrections from δH.

Using the above Hamiltonian, we calculate the dark matter scattering rate using time-

dependent perturbation theory. We assume that the system is initially described by the H ′ = 0

Hamiltonian at t0 →−∞, and adiabatically turn on the perturbation by replacing H ′ → eεt H ′,

where we eventually take the limit ε → 0. Specifically, we take the initial state to be |pi;0⟩,

where pi is the dark matter momentum and the phonons are in the ground state.
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4.A.1 Single phonon

For scattering into a single phonon, the anharmonic correction is negligible and it is

sufficient to consider only the leading order contribution. The transition probability to scatter

and be in the state |p f ;ν ,k⟩ at some time t is

|
〈

p f ;ν ,k
∣∣U(t,−∞)

∣∣pi;0
〉
|2 =

∣∣〈p f ;ν ,k
∣∣V (r)

∣∣pi;0
〉∣∣2

(ων ,k −ω)2 +(Γν ,k/2+ ε)2 e2εt , (4.38)

where U(t,−∞) is the time evolution operator in the Schrödinger picture, and |p f ;ν ,k⟩ is an

eigenstate of the H ′ = 0 Hamiltonian. For scattering into stable final states (Γν ,k = 0) the

transition rate is just Fermi’s Golden Rule:

wi→ f ≡ lim
ε→0

d
dt
|
〈

p f ;ν ,k
∣∣U(t,−∞)

∣∣pi;0
〉
|2 = 2πδ (ων ,k−ω)|

〈
p f ;ν ,k

∣∣V (r)
∣∣pi;0

〉
|2 . (4.39)

Substituting in Eqs. (3.1) & (3.11) this becomes

wi→ f = 2πδ (ων ,k −ω)

(
2πbn

mDMV

)2 ∣∣F̃(q)
∣∣2
∣∣∣∣∣
n

∑
d

Ade−Wd(0)M
(1−ph)
|ν ,k⟩,q,d

∣∣∣∣∣

2

, (4.40)

where M (1−ph) is defined in Eq. (3.14), and V is a volume factor from the normalisation of

the DM momentum eigenstates. The transition rate is directly related to the structure factor in

Eq. (3.12) up to overall factors.

Note that for unstable final states (Γν ,k ̸= 0) wi→ f vanishes. In this case the transition

probability in Eq. (4.38) does not grow with time (it is constant when ε → 0), since due to the

exponential decay of the state only the last ∆t ∼ Γ
−1
ν ,k contributes significantly.

4.A.2 Two phonon

Next, consider scattering into the two phonon state |p f ;ν1,k1;ν2,k2⟩ (with Γν1,k1 =

Γν2,k2 = 0). In this case anharmonic effects enter at second (mixed) order in perturbation theory
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and can have a significant impact on the scattering rate. The transition rate is

wi→ f = 2πδ (ων1,k1 +ων2,k2 −ω)

×
∣∣∣∣
〈

p f ;ν1,k1;ν2,k2
∣∣V (r)

∣∣pi;0
〉
+∑

ν ,k

( 〈
p f ;ν ,k

∣∣V (r)
∣∣pi;0

〉
⟨ν1,k1;ν2,k2|δH|ν ,k⟩

ω −ων ,k + iΓν ,k/2

+
⟨ν ,k;ν1,k1;ν2,k2|δH|0⟩

〈
p f ;0

∣∣V (r)
∣∣pi;ν ,k

〉

−ω −ων ,k + iΓν ,k/2

)∣∣∣∣
2

(4.41)

= 2πδ (ων1,k1 +ων2,k2 −ω)

(
2πbn

mDMV

)2 ∣∣F̃(q)
∣∣2

×
∣∣∣∣∣
n

∑
d

Ade−Wd(0)
(
M

(cont)
|ν1,k1;ν2,k2⟩,q,d +M

(anh)
|ν1,k1;ν2,k2⟩,q,d

)∣∣∣∣∣

2

. (4.42)

The contact and anharmonic contributions are shown diagrammatically in Fig. 4.1, with the

matrix elements given in eqs. (4.2) & (4.3), and the δH matrix element discussed in Sec. 4.2.1.

In the narrow width limit (Γν ,k/ων ,k → 0), and neglecting the interference terms, the anhar-

monic contribution reduces to the single phonon rate times the branching ratio to |ν1,k1;ν2,k2⟩.

Similarly, while eq. (4.41) is strictly only valid for scattering into stable final states, the narrow

width approximation applied to diphonon scattering justifies its use for final states with non-zero

width.

4.B Elasticity theory

4.B.1 The three-phonon Hamiltonian

In this appendix we briefly review how the leading anharmonic correction to the phonon

Hamiltonian can be written in terms of the elasticity parameters, following Refs. [67, 54]. In

elasticity theory, the measure of the size of an infinitesimal deformation of an object is

dx2 −da2 =

(
∂xk

∂ai
dai

)(
∂xk

∂a j
da j

)
−daida j = 2ηi jdaida j , (4.43)
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with x and a the coordinates of a piece of the deformed and undeformed material respectively.

We defined the Green - St-Venant strain tensor

ηi j ≡
1
2

(
∂xk

∂ai

∂xk

∂a j
−δi j

)
, (4.44)

which measures how a material responds under stress. Since xi = ui +ai by definition, we can

use
∂xi

∂a j
=

∂ui

∂a j
+δi j (4.45)

to rewrite the strain tensor as

ηi j =
1
2

(
∂u j

∂ai
+

∂ui

∂a j
+

∂uk

∂ai

∂uk

∂a j

)
(4.46)

=
1
2
(
ui j +u ji +ukiuk j

)
, (4.47)

with ui j ≡ ∂iu j. Note that ηi j is manifestly symmetric.

The generalization of Hooke’s law is [67]

σi j =Ci jkℓηkℓ , (4.48)

with Ci jkℓ the elastic constants and σi j the stress tensor. This relation can be written in Hamilto-

nian form

H =
1
2

Ci jkℓηi jηkℓ−σi jηi j , (4.49)

where the stress tensor σi j acts as a source for the ηi j. (4.48) is then just the equation of motion

of ηi j given by this Hamiltonian. Dropping the source term, the Hamiltonian in (4.49) can be

further generalized to include the cubic response

H =
1
2

Ci jkℓηi jηkℓ+
1
3!

Ci jkℓmnηi jηkℓηmn , (4.50)
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where the Ci jkℓmn are the third order elasticity constants. Ci jkℓ is invariant under i ↔ j, k ↔ ℓ

and (i j)↔ (kℓ), Ci jkℓmn is invariant under i ↔ j, k ↔ ℓ, m ↔ n and the permutations of the (i j),

(kℓ) and (mn) pairs. In the most general case, Ci jkℓ and Ci jkℓmn have therefore respectively 21

and 56 independent components.

In the isotropic limit, both tensors simplify substantially: Ci jkℓ has only 2 independent

second order elastic constants, the Lamé parameters µ and λ , which can be related directly to the

shear modulus and Young’s modulus. The Ci jkℓmn has 3 independent components, parametrized

by the third order elastic constants, α,β and γ . Concretely, we can write

C(iso)
i jkℓ = λ δi jδkℓ+µ

(
δikδ jℓ+δiℓδ jk

)
, (4.51)

C(iso)
i jkℓmn = α δi jδkℓδmn

+β

[
δi j (δkmδℓn +δknδℓm)+δkℓ

(
δimδ jn +δinδ jm

)
+δmn

(
δikδ jℓ+δiℓδ jk

)]

+ γ

[
δn j (δikδℓm +δiℓδkm)+δni

(
δ jkδℓm +δ jℓδkm

)
+δm j (δikδℓn +δiℓδkn)

+δmi
(
δ jkδℓn +δ jℓδkn

)]
, (4.52)

where the δi j etc. are Kronecker-δ symbols. Inserting (4.47), (4.51) and (4.52) back into (4.50)

gives the Hamiltonian in (4.9).

4.B.2 The isotropic approximation

The cubic crystals we consider in this Chapter are not completely isotropic but instead

are only invariant under permutations of the x, y and z axes and parity transformations such

as x → −x etc. The latter imply that all components of C(cub)
i jkℓ and C(cub)

i jkℓmn for which a value

of an index occurs an odd number of times must vanish (e.g. C(cub)
1222 = 0 etc). One can show

that imposing these symmetries reduces the general elasticity tensors to 3 independent second

order elastic constants, and 6 independent third order elastic constants. In order to express the 5

isotropic elasticity parameters µ,λ ,α,β and γ in terms of these 9 measured elasticity parameters
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for the cubic crystals of interest an averaging procedure is needed.

Given that a 6-tensor such C(cub)
i jkℓmn can be rather unwieldy, much of the literature has

chosen to adhere to the Voigt convention, where each pair of double indices (i j), (kℓ) and (mn)

is replaced with a single index running from 1 to 6 through the mapping

η11 → η1, η22 → η2, η33 → η3, η23 →
1
2

η4, η13 →
1
2

η5, η12 →
1
2

η6. (4.53)

This maps C(cub)
i jkℓ and C(cub)

i jkℓmn to a 2-tensor (c(cub)
i j ) and a 3-tensor (c(cub)

i jk ) respectively, where we

have used lowercase c for components of the elasticity tensors in Voigt notation. The independent

elasticity parameters for a cubic crystal, as typically reported in the literature, are c11, c12 and

c44 for the second order elastic tensor and c111, c112, c123, c144, c166 and c456 for the third

order elastic tensor5, where we have dropped the (cub) superscript going forward. All other

components either vanish or can be obtained by applying one of the symmetries listed above. An

explicit representation of ci j and ci jk can be found in e.g. [68].

To obtain the elasticity parameters in the isotropic approximation an averaging procedure

must be performed, introducing a certain degree of arbitrariness. We follow the prescription in

[55], and define the quantities

f2 = ∑
i, j,k,ℓ

(
C(cub)

i jkℓ −C(iso)
i jkℓ

)2
, (4.54)

f3 = ∑
i, j,k,ℓ,m,n

(
C(cub)

i jkℓmn −C(iso)
i jkℓmn

)2
, (4.55)

which provide a measure of the deviation of the isotropic approximation from the cubic case.

5In certain references c155 is reported instead of c166; for cubic symmetry c155 = c166.
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Minimizing both f2 and f3 leads to the definitions

µ ≡ 1
5
(c11 − c12 +3c44) , (4.56)

λ ≡ 1
5
(c11 +4c12 −2c44) , (4.57)

α ≡ 1
35

(c111 +18c112 +16c123 −30c144 −12c166 +16c456) , (4.58)

β ≡ 1
35

(c111 +4c112 −5c123 +19c144 +2c166 −12c456) , (4.59)

γ ≡ 1
35

(c111 −3c112 +2c123 −9c144 +9c166 +9c456) , (4.60)

in agreement with [55]. In the isotropic approximation, the averaged sound speeds of the acoustic

phonon modes may also be expressed in terms of λ , µ , and the mass density ρ as

cLA =

√
λ +2µ

ρ
and cTA =

√
µ

ρ
. (4.61)

Both measurements and ab initio calculations of the third-order elastic constants are

considered rather challenging, and no complete set of experimental results is currently available

at close-to-zero temperature. The temperature dependence is mild between room temperature

and liquid Nitrogen temperature, but can be large for lower temperatures. For instance, for Ge

the combination of c123 +6c144 +8c456 shows a O(100%) variation between 77K and 3K and

even changes sign [69]. Similarly, the discrepancy between experiment and theory for diamond

is also large for c123, c144 and c456 [70], presumably due to this temperature dependence. We

therefore choose to use the values calculated with Density Functional Theory methods, which are

inherently at zero temperature. The values that were used to compute the parameters in Tab. 4.2

are listed in Tab. 4.B.1.
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Table 4.B.1. Elasticity parameters at T = 0K, in units of GPa.

Si6 GaAs7 Ge8 Diamond9

c11 153 126 129.86 1051
c12 65 55 47.39 125
c44 73 61 65.73 560
c111 -698 -600 -708 -7611
c112 -451 -401 -346 -1637
c123 -112 -94 -26 604
c144 74 10 -10 -199
c166 -253 -305 -279 -2799
c456 -57 -43 -40 -1148

4.C Exact expressions for long-wavelength structure factors

4.C.1 Anharmonic contributions

All expressions below are valid on the domain 0 < x < 1, as specified by the Heavi-

side functions in (4.12), (4.13), (4.14) and (4.15). We further defined δ ≡ cLA/cTA. The full

expression for the phase space integral for the LA-LA contribution in (4.12) of Sec. 4.2.1 is then

g(anh)
LALA (x)≡ (2β +4γ +λ +3µ)2

(
x2 −1

)3

2x5

(
x6 +3x4 +7x2 +5

)(
tanh−1(x)− x3

3
− x
)

+a10x10 +a8x8 +a6x6 +a4x4 +a2x2 +a0 , (4.62)

with

a10 ≡
1
6
(2β +4γ +λ +3µ)2 , (4.63)

a8 ≡
1
2
(2β +4γ +λ +3µ)2 , (4.64)

a6 ≡−1
3
(2β +4γ +λ +3µ)2 , (4.65)

a4 ≡
1

240

(
3α

2 +2α(106β +200γ +53λ +150µ)+332β
2 +4β (120γ +83λ +90µ)

−320γ
2 +240γλ −480γµ +83λ

2 +180λ µ −180µ
2
)
, (4.66)
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a2 ≡− 1
120

(
5α

2 +2α(54β +88γ +27λ +66µ)+516β
2 +12β (136γ +43λ +102µ)

+1280γ
2 +816γλ +1920γµ +129λ

2 +612λ µ +720µ
2
)
, (4.67)

a0 ≡
1

240

(
15α

2 +10α(10β +8γ +5λ +6µ)+668β
2 +4β (568γ +167λ +426µ)

+2112γ
2 +1136γλ +3168γµ +167λ

2 +852λ µ +1188µ
2
)
. (4.68)

The out-of-plane TA-TA contribution in (4.13) is given by

g(anh)
TATAout (x)≡ b4x4 +b2x2 +b0 , (4.69)

with

b4 ≡
43β 2 +2β (50γ +43λ +50µ)+60γ2 +20γ(5λ +6µ)+43λ 2 +100λ µ +60µ2

240
,

(4.70)

b2 ≡−25β 2 +44βγ +50βλ +44β µ +20γ2 +44γλ +40γµ +25λ 2 +44λ µ +20µ2

120
,

(4.71)

b0 ≡
15β 2 +10β (2γ +3λ +2µ)+12γ2 +4γ(5λ +6µ)+15λ 2 +20λ µ +12µ2

240
. (4.72)

The in-plane TA-TA contribution in (4.14) is

g(anh)
TATAin (x)≡

1
2
(2β +4γ +λ +3µ)2

(
x2 −1

)3 (x2 +3
)

x

(
tanh−1(x)− x3

3
− x
)

+ c10x10 + c8x8 + c6x6 + c4x4 + c2x2 + c0 , (4.73)

with

c10 ≡
1
6
(2β +4γ +λ +3µ)2 , (4.74)

70



c8 ≡
1
2
(2β +4γ +λ +3µ)2 , (4.75)

c6 ≡−3
2
(2β +4γ +λ +3µ)2 , (4.76)

c4 ≡
1

240
(
963β

2 +3852βγ +1046βλ +2972β µ +3852γ
2 +2092γλ

+5944γµ +283λ
2 +1612λ µ +2292µ

2) , (4.77)

c2 ≡− 1
24
(
17β

2 +68βγ +26βλ +60β µ +68γ
2 +52γλ

+120γµ +9λ
2 +44λ µ +52µ

2) , (4.78)

c0 ≡
1

16
(β +2γ +λ +2µ)2 . (4.79)

Finally, the LA-TA contribution is given by the piecewise function

g(anh)
LATA(x)≡





g(anh)
LATA,1(x) if 0 < x < 1

δ
,

g(anh)
LATA,2(x) if 1

δ
< x < 1 ,

(4.80)

where

g(anh)
LATA,1(x)≡

(2β +4γ +λ +3µ)2

2(δ +1)5

[
− (δ +1)5

(
x2 −1

)3 (x2 +3
)

x

(
tanh−1(x)− x3

3
− x
)

− (δ +1)5

δ 12

(
δ 2x2 −1

)3 (
δ 6x6 +3δ 4x4 +7δ 2x2 +5

)

x5

(
tanh−1(δx)− 1

3
δ

3x3 −δx
)

+d10x10 +d8x8 +d6x6 +d4x4 +d2x2 +d0

]
, (4.81)

with

d10 ≡−1
3
(δ +1)6 (

δ
2 −δ +1

)
, (4.82)

d8 ≡−(δ +1)6 , (4.83)

d6 ≡
1

3δ
(δ +1)5(9δ +2) , (4.84)
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d4 ≡− 1
315δ 3

(
189δ

8 +945δ
7 +2706δ

6 +5340δ
5 +5779δ

4

+1505δ
3 −2460δ

2 −1870δ −374
)
, (4.85)

d2 ≡
1

105δ 5

(
−32δ

6 +365δ
5 +1057δ

4 +930δ
3 +930δ

2 +465δ +93
)
, (4.86)

d0 ≡− 1
15δ 7

(
−16δ

6 +15δ
5 +75δ

4 +150δ
3 +150δ

2 +75δ +15
)
, (4.87)

and

g(anh)
LATA,2(x)≡

(2β +4γ +λ +3µ)2

2δ 12 (δ 2 −1)5 x5

[
−
(
δ

2 −1
)5 (

δ
2x2 −1

)3
(

δ
6x6 +3δ

4x4 +7δ
2x2 +5

)

× coth−1(δx)+
(
δ

2 −1
)5 [(

6δ
12 +δ

8)x8 −8(δ 12 +δ
6)x6 +3

(
δ

12 +δ
4)x4

+8δ
2x2 −5

]
coth−1(δ )+

11

∑
i=1

eixi

]
, (4.88)

with

e11 ≡ δ
11 (

δ
2 −1

)5
, (4.89)

e10 ≡ 0 , (4.90)

e9 ≡
δ 9

315

(
105δ

10 −861δ
8 +3066δ

6 −4266δ
4 +525δ

2 +151
)
, (4.91)

e8 ≡
δ 9

3

(
−18δ

12 +84δ
10 −147δ

8 +74δ
6 +82δ

4 −14δ
2 +3

)
, (4.92)

e7 ≡−2δ 7

105

(
105δ

10 −1645δ
8 +5474δ

6 −2914δ
4 +1605δ

2 −321
)
, (4.93)

e6 ≡
8δ 7

3

(
3δ

14 −14δ
12 +26δ

10 −29δ
8 +43δ

6 −24δ
4 +14δ

2 −3
)
, (4.94)

e5 ≡−2δ 5

15

(
5δ

10 +255δ
8 −342δ

6 +350δ
4 −175δ

2 +35
)
, (4.95)

e4 ≡
δ 5

15
(
−45δ

16 +210δ
14 −384δ

12 +334δ
10 +16δ

8 −350δ
6

+384δ
4 −210δ

2 +45
)
, (4.96)

e3 ≡
19δ 3

3
(
δ

2 −1
)5

, (4.97)
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e2 ≡−8δ 3

105

(
34δ

10 −329δ
8 +790δ

6 −896δ
4 +490δ

2 −105
)
, (4.98)

e1 ≡−5δ
(
δ

2 −1
)5

, (4.99)

e0 ≡
64δ 11

35
− 965δ 9

63
+

790δ 7

21
− 128δ 5

3
+

70δ 3

3
−5δ . (4.100)

From the matrix element in Eq. (4.10), the widths for each anharmonic channel may be

calculated explicitly, giving

ΓLA→LALA (q) =
q5

960πcLA
4ρ3 (α +6β +8γ +3λ +6µ)2 , (4.101)

and

ΓLA→TATAin (q) =
q5

7680πcLA
4ρ3

(
f1
(
δ

2 −1
)3 (

1+3δ
2)coth−1 (δ )+

i=4

∑
i=1

fiδ
2i−1

)
,

(4.102)

with

f4 ≡ 15(97β
2 +388βγ +388γ

2 +98βγ +196γλ +25λ
2

+4µ (73(β +2γ)+37λ )+220µ
2) , (4.103)

f3 ≡−10(353β
2 +1412γ

2 +724γλ +93λ
2 +2136γµ +548λ µ

+808µ
2 +2β (706γ +181λ +534µ)) , (4.104)

f2 ≡ 2563β
2 +10252γ

2 +5292γλ +683λ
2 +15544γµ +4012λ µ

+5892µ
2 +2β (5126γ +1323λ +3886µ) , (4.105)

f1 ≡−120(2β +4γ +λ +3µ)2 , (4.106)
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and

ΓLA→TATAout (q) =
q5

7680πcLA
4ρ3

i=4

∑
i=1

giδ
2i−1 , (4.107)

with

g4 ≡ 15β
2 +20βγ +12γ

2 +30βλ +20γλ +15λ
2

+4µ (5β +6γ +5λ )+12µ
2 , (4.108)

g3 ≡−2(25β
2 +20γ

2 +44γλ +25λ
2 +40γµ +44λ µ

+20µ
2 +β (44γ +50λ +44µ)) , (4.109)

g2 ≡ 43β
2 +100βγ +60γ

2 +86βλ +100γλ +43λ
2

+20µ (5β +6γ +5λ )+60µ
2 , (4.110)

g1 ≡ 0 , (4.111)

and finally

ΓLA→LATA (q) =
h12q5

64πcLA
4ρ3

(
(
δ

2 −1
)3 (

1+3δ
2)coth−1 (δ )+

(1−δ )

315(1+δ )5

i=11

∑
i=0

hiδ
i

)
,

(4.112)

with

h12 ≡ (2β +4γ +λ +3µ)2 , (4.113)

h11 ≡ 945 , (4.114)

h10 ≡ 5670 , (4.115)

h9 ≡ 12915 , (4.116)

h8 ≡ 11340 , (4.117)
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h7 ≡−4746 , (4.118)

h6 ≡−19656 , (4.119)

h5 ≡−18030 , (4.120)

h4 ≡−6540 , (4.121)

h3 ≡ 793 , (4.122)

h2 ≡ 2658 , (4.123)

h1 ≡ 1083 , (4.124)

h0 ≡ 128 . (4.125)

4.C.2 Contact contributions

The functions parametrizing the phase space integrals in Sec. 4.2.2 can be expressed as

g(cont)
LALA (x)≡ −x(x6 + x4 − x2 −3)+(x8 +2x4 −3) tanh−1(x)

x5 , (4.126)

g(cont)
TATA (x)≡ (1− x2)2

x5

(
x(3− x2)+(x4 +2x2 −3) tanh−1(x)

)
. (4.127)

The LA-TA mode is given by the piecewise function

g(cont)
LATA (x)≡





g(cont)
LATA,1(x) if 0 < x < 1

δ
,

g(cont)
LATA,2(x) if 1

δ
< x < 1 ,

(4.128)

with

g(cont)
LATA,1 (x)≡−δ (δ +1)

x5

[(
x2 +3

)(
x2 −1

)3
tanh−1(x)+

(
x8 +

2x4

δ 4 − 3
δ 8

)
tanh−1(δx)

]

+
1

15δ 6x4

[
15(δ +1)2

δ
6x6 +

(
−59δ

4 −59δ
3 +16δ

2 +21δ +21
)

δ
4x4

+15
(

7δ
6 +7δ

5 −δ −1
)

δ
2x2 −45

(
δ

8 +δ
7 +δ +1

)]
, (4.129)
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g(cont)
LATA,2 (x)≡−δ (δ +1)

x5

[(
8x2 −

(
2

δ 4 +6
)

x4 −3+
3

δ 8

)
coth−1(δ )

+

(
x8 +

2x4

δ 4 − 3
δ 8

)
coth−1(δx)

]
+

1
15δ 7(δ −1)x5

[
15δ

7 (
δ

2 −1
)

x7

+δ
5 (5δ

2 −21
)

x5 +30δ
5 (−3δ

4 +2δ
2 +1

)
x4 −15δ

3 (
δ

2 −1
)

x3

+40δ
7 (3δ

2 −2
)

x2 −45δ
(
δ

2 −1
)

x−45δ
9 +30δ

7 +6δ
5 +30δ

3 −45δ

]
.

(4.130)

All functions are only to be evaluated for 0 < x < 1, as enforced by the Heaviside functions in

(4.21), (4.22) and (4.23).
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Chapter 5

Many Phonons and the Incoherent Ap-
proximation

5.1 Introduction

In this Chapter, we follow a generalization of the previous Chapter from the excitation

of two phonons to n phonons in order to complete the multiphonon description. We employ

the incoherent approximation, along with the harmonic approximation, to arrive at an analytic

form of the coherent structure factor in terms of the simpler incoherent structure factor, whose

differences were discussed in Chapter 3. We utilize the result of the incoherent approximation for

phase space regimes where q is large (q > qBZ) or when the energy deposition requires at least

two phonons to be excited. We follow by showing a matching of the single phonon result to DFT

calculations, and making a comparison of the two phonon result to those of Chapter 4 applied

to a toy model. We also show a matching onto the known impulse approximation and nuclear

recoil results whose descriptions are valid at even larger energies and masses. We conclude

by incorporating the n phonon description from the incoherent approximation to calculate DM-

nucleon cross sections across the entire keV ≲ mχ ≲ GeV mass ranges for both scalar and dark

photon mediators. This completes the description of DM scattering in cubic crystal targets.

The relevant approximations are set primarily by the momentum transfer q. For single

phonon excitations and q < 2π/a, where a is typical atomic lattice spacing, we use a long-
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wavelength approximation used earlier in the literature [48, 44, 47, 42]1. For q > 2π/a, we

employ the incoherent approximation, which neglects interference effects between the response

of neighboring atoms. This allows us to organize the calculation as a systematic expansion in the

number of final state phonons, where each additional phonon comes with a factor of q/
√

2mdω̄d .

Here, md and ω̄d are the mass and average oscillation frequency of the atom in the position

indexed by d. For q <
√

2mdω̄d it is numerically practical to compute the rate order-by-order in

terms of the phonon density of states of the material. For q ≫√
2mdω̄d , scattering into many

phonons dominates and the perturbation series requires increasingly large orders in q/
√

2mdω̄d

to converge. It can however be resummed by making use of the impulse approximation, which

in turn smoothly matches onto the free nuclear recoil regime. A similar expansion in number

of modes has been performed previously for the integrable toy model that is the harmonic

oscillator [73]. Here we have generalized the approach to a harmonic crystal, analogous to the

procedure followed in [74] and [75], in calculations of the Migdal effect and X-ray backgrounds,

respectively. Fig. 5.1.1 illustrates our results from applying these approximations. All of our

calculations are implemented as part of the DarkELF public code [76].2

In analogue to the normalization used in the literature for DM-electron discussions, we

normalize the structure factor slightly differently than in the previous Chapter. Using the unit

cell volume Ωc introduced in Chapter 3, we extract a factor in the differential cross section such

that (2.9) instead reads

dσ

d3qdω
=

b2
p

µ2
χ

1
v

Ωc

2π
|F̃(q)|2S(q,ω)δ (ω −ωq) (5.1)

which likewise propagates through to multiplying the base normalization of S(q,ω) inversely

by the factor 2π/Ωc. This is only a difference in convention and has no effect on the predicted

scattering rates or conclusions, as the two factors cancel.

1The bulk of Reference [42] is included in this Thesis in Chapter 4, however we leave the citations to the full
paper when appropriate.

2https://github.com/tongylin/DarkELF
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Figure 5.1.1. Cross sections needed for 3 events/kg-year for various target materials and
threshold energies. A massive hadrophilic mediator is assumed.
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5.2 Incoherent approximation

The incoherent approximation amounts to dropping the cross terms in (ℓ ̸= ℓ′ or d ̸= d′)

from the sum in (3.9), thus neglecting the interference between non-identical atoms. In other

words, one approximates the coherent structure factor by

S(coh)(q,ω)≈
N

∑
ℓ

n

∑
d
( fd)

2Cℓd. (5.2)

This is a good approximation when the momentum transfer is larger than 2π/a with a the

inter-particle spacing. Then the phase factors associated with the interference terms are expected

to add up to a small correction compared to the ℓ= ℓ′,d = d′ terms in the sum. For an argument

justifying (5.2) we refer to [40, 77].

For momentum transfers within the first Brillouin zone, single phonon scattering always

dominates the inclusive scattering rate. It is however possible that the detector threshold is such

that single phonon processes cannot be accessed but the double or multiphonon processes can.

In this case the incoherent approximation cannot a priori be taken for granted. We nevertheless

use it, but verify the results against our earlier two-phonon calculations [42] whenever possible

(Sec. 5.3.2), finding satisfactory agreement. The accuracy of the calculations in this part of phase

space is however less well understood and further work is needed.

To evaluate the auto-correlation function, we first replace the atomic positions rℓd in

(3.10) with their displacement operator decomposition, noting that the ℓ+ r0
d constant cancels,

amounting to a simple substitution of rℓd → uℓd:

Cℓd =
1
V

∞∫

−∞

dt ⟨e−iq·uℓd(0)eiq·uℓd(t)⟩e−iωt (5.3)

The expectation value may be rewritten with an application of the Baker–Campbell–Hausdorff
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formula, Bloch’s identity ⟨eÂ⟩= e
1
2⟨Â2⟩, and some matrix algebra [44] giving:

Cℓd =
1
V

∞∫

−∞

dt e−2Wd(q)e⟨q·uℓd(0)q·uℓd(t)⟩e−iωt . (5.4)

When we deployed Bloch’s identity, we implicitly used the harmonic approximation, by only

considering displacement operators of the form in (3.11). The correlator ⟨q ·uℓd(0)q ·uℓd(t)⟩

may be evaluated with the form of the displacement operator in (3.11), wherein the ℓ dependence

cancels. This gives

⟨q ·ud(0)q ·ud(t)⟩= ∑
ν

∑
k

∣∣q · eν ,k,d
∣∣2

2Nmdων ,k
eiων ,kt (5.5)

which can be simplified further by averaging over the direction of momentum vector q

⟨q ·ud(0)q ·ud(t)⟩ ≈
q2

3 ∑
ν

∑
k

|eν ,k,d|2
2Nmdων ,k

eiων ,kt (5.6)

=
q2

2md

+∞∫

−∞

dω
′Dd(ω

′)
ω ′ eiω ′t (5.7)

where we defined the partial density of states for each atom in the primitive cell as

Dd(ω)≡ 1
3N ∑

ν

∑
k
|eν ,k,d|2δ (ω −ων ,k). (5.8)

The partial density of states was normalized to satisfy
∫+∞

−∞
dωDd(ω) = 1. This can be shown by

using the eigenvector completeness condition, which imposes ∑ν e∗
ν ,k,d,ieν ,k,d, j = δi j for fixed

k,d, where i, j are spatial indices. In addition, the total density of states of the material is defined

by

D(ω)≡ ∑
d

Dd(ω) =
1

3N ∑
ν

∑
k

δ (ω −ων ,k), (5.9)
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which satisfies
∫+∞

−∞
dωD(ω) = n with n the number of atoms in the unit cell.3 In materials

such as Ge, Si, or GaAs all atoms in the primitive cell have the same or similar mass and as

such contribute roughly equally to the density of states, see Fig. 5.2.1. One could therefore

approximate Dd(ω)≈ D(ω)/n in (5.7) for these materials. We however choose to keep track of

the partial density of states, to keep the calculations as general as possible.

For mono-atomic lattices, the density of states can be extracted directly from neutron

scattering data through the incoherent structure factor. This is not always possible for multi-

atomic lattices, since the scattering is only sensitive to the combination ∑d | fd|2Dd(ω)/md . To

infer the individual Dd(ω) as well as D(ω), one therefore needs a set of scattering techniques

which allows one to effectively vary the fd . This is not available for all materials, and it is

therefore often most convenient to extract the Dd(ω) from DFT calculations. A comprehensive

library of results has been made available by the materials project [6].

Returning now to the calculation of the autocorrelation function, we can expand the

exponential term in (5.4) using the form of the correlator in (5.7). This yields an explicit

representation of the incoherent correlator as an expansion in number of phonons n being

excited:

Cℓd =
2π

V
e−2Wd(q)∑

n

1
n!

(
q2

2md

)n
(

n

∏
i=1

∫
dωi

Dd(ωi)

ωi

)
δ

(
∑

j
ω j −ω

)
(5.10)

where the delta function arises from the time integral 1
2π

∫
dt ei(∑ωi)te−iωt and ensures energy

conservation. Here, by using (5.7), the Debye-Waller function takes the form of

Wd(q) =
q2

4md

∫
dω

′Dd(ω
′)

ω ′ . (5.11)

Thus, in comparison to the difficulties discussed surrounding (3.12), inputting this form of the

correlator into (5.2) gives an analytic approximation for all phonon terms in the appropriate

3In the literature, the density of states is also sometimes normalized to 3na, where na is the atomic density.
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Figure 5.2.1. Partial and total density of states for GaAs [6]. Labels indicate the regions in
which a particular phonon branch dominates.

regime of validity.

In this Chapter, we utilize the incoherent approximation to calculate the contributions

from higher-order phonon terms to an arbitrary degree in a simple and fast manner. This allow

us to make rate predictions for the entire relevant mass range, going from the low-mass (mχ ≳

keV) single phonon regime to the high-mass (mχ ≳ 50 MeV) nuclear recoil regime.

5.3 Processes

Using the autocorrelation function, (5.10), for the coherent structure factor, we can

estimate the scale at which a generic n-phonon term starts becoming a relevant contribution to

scattering. To organize the multiphonon expansion, it is useful to define an average phonon

energy

ωd ≡
∫

dω
′
ω

′Dd(ω
′). (5.12)

While ωd technically depends on the atom d, this just gives an O(1) dependence in the phonon

scale. Since n! ∝ nn at large n, we see that the nth term of the series (5.10) will roughly begin
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giving an O(1) contribution when

q2

2mdωd
∼ n. (5.13)

This means that for a given q (or consequently, mχ ) one can determine the dominant scattering

processes. When q2

2mdωd
≲ 1, single phonon excitations will be the primary channel; for md ∼ 30

GeV and ωd ∼ 30 meV, this corresponds to q ≲ 30 keV. Conversely, when q2

2mdωd
≫ 1, phonons

are no longer a suitable description and the scattering is instead well modeled by the recoil of a

single nucleus. This transition occurs roughly at q ≳ 2
√

2mdω̄d . In between these two extremes,

we have n ∼ few, indicating multiphonon excitations as the primary process. The precise nature

of the dominant process for a given mχ will vary based on the mediator mass and experimental

threshold.

In this section, we describe analytic approaches for characterizing the structure factor in

crystal targets, broken into subsections corresponding to the previously mentioned processes.

Secs. 5.3.1 and 5.3.2 deal with single phonon and two phonon excitations. Here we can also

compare calculations of the full coherent structure factor with the incoherent approximation.

Sec. 5.3.3 deals with many phonon excitations, and Sec. 5.3.4 describes the impulse approx-

imation, which gives a good approximation to the structure factor for momenta approaching

the nuclear recoil limit. For all numerical results in this section, we will assume a coupling to

nucleons (replacing the generic average interaction strength fd with the nucleon number Ad) for

both massive and massless mediators, and take a GaAs target as a typical example of a cubic

crystal of interest.

5.3.1 Single phonon production

As discussed in Sec. 3.1, DFT-based calculations for both single acoustic and single

optical phonon excitations have been performed across a large dark matter mass range (∼keV to

GeV) [44, 45, 46]. Meanwhile analytic calculations so far have been limited q ≲ 1 keV, which
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corresponds to mχ ≲ MeV [42, 48]. Although the DFT-based calculations span the entire mass

range of interest and can provide information such as directional dependence, the numerics are

more intensive; the phonon band structure, eigenvectors and structure factors must be calculated

from first principles for each material. For high q, the sum over the reciprocal lattice must also

be accounted for [49, 78]. Here we extend the analytic calculations to the high q regime by using

the incoherent approximation. The comparison with the DFT results of [44] will also serve as a

validation of the incoherent approximation.

To organize the calculations, it is useful to define a momentum scale (qBZ) which

approximately reflects the size of the first Brillouin zone. We take qBZ = 2π

a ≈ 2 keV, where a is

the lattice constant. We first review the single phonon response for q < qBZ. In this regime, we

compute the structure factors in the isotropic approximation and in the limit q ≪ qBZ. For this

purpose we assume linear dispersions ω = csq for the longitudinal acoustic (LA) and transverse

accoustic (TA) modes, with cs replaced by cLA and cTA for the longitudinal and transverse sound

speeds, respectively. The optical modes are assumed to have flat (constant) dispersions for the

longitudinal optical (LO) and transverse optical (TO) phonon energies ωLO and ωTO. The sound

speeds and optical phonon energies are taken to be their long-wavelength values (q = 0). We

will refer to this set of assumptions as the long-wavelength approximation.

The matrix element is given by the leading non-trivial term in the small q expansion of

(3.13). The only relevant contributions for q ≪ qBZ are those of the single LA and LO phonons.

Following the derivation of the single LA and LO phonon structure factors in (3.19)-(3.20), the

total structure factor for q < qBZ (following the normalization convention of this Chapter) is then

S(q<qBZ)
n=1 (q,ω) =

2π

Ωc
Sn=1,LA(q,ω)+

2π

Ωc
Sn=1,LO(q,ω) (5.14)

with Ωc =V/N the volume of the primitive cell.

For dark matter with a standard velocity dispersion v ∼ 10−3, the typical momentum

transfer begins to fall outside the first Brillouin zone for mχ ≳ 1 MeV. Physically, this corresponds
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to the wavelength becoming smaller than the interatomic spacing, and the long-wave length

formulas from (3.16) to (3.20) are no longer valid. We can however utilize the incoherent

approximation in (5.2) and (5.10), which yields

S(q>qBZ)
n=1 (q,ω)≈ 2π

Ωc

n

∑
d

e−2Wd(q)( fd)
2 q2

2md

Dd(ω)

ω
. (5.15)

The forms of the structure factor are qualitatively quite different in the two q regimes. In

the coherent regime q < qBZ, summing over the response of multiple atoms with constructive

interference leads to a resonant response in (5.14). The impact of the interference is greatly

reduced for q > qBZ, such that the incoherent approximation becomes a viable description.

While the sharp transition in the structure factor is an artifact of our approximations,

(5.14)-(5.15) can accurately describe the integrated structure factor above or below qBZ. Fig. 5.3.1

compares our combined analytic single phonon description with numerical DFT calculations.

For the DFT result we follow [44], computing the dynamical matrix and phonon dispersions

with respectively VASP [79] and phonopy [43] (see also [45]), and take the angular average of

S(q,ω) over all q directions for comparison with the isotropic approximation. The top panels

show the structure factors in (5.14) as a function of q, integrated over ω . The top left panel shows

S(q,ω) integrated over ω ∈ [1meV,27meV] to select the acoustic phonon branches only and

the top right panel shows the integral over ω ∈ [27meV,40meV] for optical phonon branches.

The analytic approximations are in good agreement with the DFT result in their respective

regimes of validity. For q < qBZ, integrating (5.14) leads to respectively ∼ q and ∼ q4 scaling,

while the incoherent approximation in (5.15) always scales as ∼ q2. As discussed above, the

ω-dependence of the analytic structure factors is quite different in the two regimes, with the

coherent structure factor giving a resonant response around the single-phonon dispersion while

the incoherent approximation is continuous in ω . However, the integrated result matches the full

DFT calculation of the coherent structure factor well, indicating that the analytic approach will

be useful in calculating integrated quantities such as rates. Furthermore, the analytic approach
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Figure 5.3.1. Single phonon production.
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provides physical insight into the change in the q-scaling of the structure factor in Fig. 5.3.1a.

The plots in Fig. 5.3.1b show single phonon integrated rates for both massive and massless

scalar mediators. For the massless mediator, scattering into the acoustic phonon specifically

favors small q due to the ∝ q−4 contribution of the mediator form factor. The analytic result

of (3.19) therefore applies across the entire DM mass range, as the large q contributions are

negligible. For all other cases the structure factor scales with a positive power of q so that large q

contributions are the most important. We therefore see a change in slope of the σp reach around

mχ ∼ MeV, when q ≳ qBZ becomes kinematically accessible. These features are captured by the

q > qBZ analytic description from the incoherent approximation, and again agree with the DFT

results.

5.3.2 Two-phonon production (q < qBZ)

We next turn to the use and accuracy of the incoherent approximation for two-phonon

production, in particular for q < qBZ. Single phonon production always dominates in this regime

if above threshold [42]. It is however expected that there will be a phase in the experimental

program for which the energy threshold will still be too high to access single optical and accoustic

phonons, such that the formally subleading double phonon production can be relevant.

While the incoherent approximation is expected to be the least accurate for q < qBZ, it

is still useful to compare it with existing analytical results for the structure factor. The analytic

results are obtained in the long-wavelength approximation, as defined in Sec. 5.3.1. In this limit,

the Wilson coefficients of the self-interaction operators for the acoustic modes can be extracted

from the measured or calculated elasticity parameters. With these assumptions, one can explicitly

evaluate (3.12) to second order in q/
√

mdω [42].

In this Section, we will extend the long-wavelength calculations to all possible final states

(see Appendix 5.A) and compare them with the incoherent approximation. For this purpose

we extrapolate the results of Ref. [42] to higher q values and make a number of additional

assumptions to model the self-interactions of the optical modes, thus giving the complete
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structure factor. For these reasons the calculations in this section should however be considered

only a toy model of a GaAs-like crystal. We will show below that for this toy model and in

the limit of small momentum transfer, the incoherent and long-wavelength approximations give

qualitatively similar DM scattering rates.

As described in the previous Chapter, the two-phonon structure factor can be written as

S(q,ω) = S(harm)(q,ω)+S(anh)(q,ω) (5.16)

in the long-wavelength limit. The first term is the structure factor in the harmonic limit (also

referred to as the contact piece in [42]), where anharmonic corrections to the atomic potentials

are neglected. It can be obtained by expanding (3.13) to second order, and evaluated analytically

in the long-wavelength limit. The second term contains contributions to the structure factor from

anharmonic interactions. In order to evaluate this, one needs to include a phonon self-interaction

Hamiltonian in computing (3.13), as described in detail in [42]. The interactions of acoustic

phonons are based on an effective three-phonon Hamiltonian valid in the long-wavelength limit,

but to obtain a more complete picture we include a highly approximate three-phonon Hamiltonian

for interactions involving optical phonons. These calculations are summarized in Appendix 5.A.

To perform the most meaningful comparison between the incoherent and long-wavelength

approximations, we assume the following Debye model for the partial density of states for a

diatomic crystal

D1,2(ω) =
1

q3
BZ

1
A1 +A2

(
A1,2

ω2

c3
LA

Θ(cLAqBZ −ω)Θ(ω)+A1,2
2ω2

c3
TA

Θ(cTAqBZ −ω)Θ(ω)

+A2,1
q3

BZ
3

δ (ω −ωLO)+A2,1
2q3

BZ
3

δ (ω −ωTO)

)
. (5.17)

which is derived from the long-wavelength approximation as described in Sec. 5.3.1.4 The

4Here the maximum momentum of the modes is determined by requiring that the sum over all momentum
modes is equal to the total number of degrees of freedom. For the GaAs crystal structure and making an isotropic
approximation, the momentum cutoff is strictly speaking about 2% different from qBZ = 2π/a. This error is
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Figure 5.3.2. Two phonon production. Top: Comparison of the two-phonon structure factor
calculated with various approximations, where the toy model assumes the long-wavelength
approximation. Optical-optical channels give a δ -function and are not plotted. Bottom: Cross
sections for producing two phonons at a rate of 3 events/kg-year using the same approximations
as above. We restrict the mass range to mχ ≲ 1 MeV so that typical q values are below qBZ,
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explicit structure factor from using this toy density of states in (5.10) is given in Appendix 5.A,

which for simplicity we evaluate with A1 = A2 for GaAs.

The top panel of Fig. 5.3.2 compares the calculations of the two-phonon structure factor

in the incoherent and long-wavelength approximations. For the incoherent approximation, we

show the result with the toy density of states in (5.17) as well as with the true density of states

from Fig. 5.2.1. The dashed line shows the harmonic limit, meaning that S(anh) is neglected. This

is the case that is most directly comparable to the incoherent approximation, which assumes the

harmonic mode expansion in (3.11). For the dotted line, the leading phonon self-interactions

were included.

In the harmonic limit, all modes scale as ∼ q4 except for optical-acoustic final state, which

scales as ∼ q6. The incoherent approximation naturally misses these more subtle destructive

interference effects, but still captures the correct q4 scaling for most of the modes. We see in

Fig. 5.3.2 that the incoherent approximation is within a factor of ∼ 5 of the long-wavelength

approximation for all ω > ωLO, for both the toy model and true density of states. The difference

at smaller ω is not experimentally relevant, as the single phonon rate will completely dominate

in this region. There are also delta-function terms from the optical-optical branches which do

not appear in the plot; their contributions to the overall scattering rate are comparable for the

incoherent and long-wavelength approximations as well. See Appendix 5.A for details. These

terms dominate the scattering rate at higher energies, and overall we see in Fig. 5.3.2 that the

incoherent approximation reproduces the structure factor in the harmonic limit to within a factor

of few.

When anharmonic interactions are included, the difference becomes larger and the

incoherent approximation may under-predict the rate by up to an order of magnitude in our

estimate. However, as discussed above, the anharmonic Hamiltonian used is itself also only valid

at the order of magnitude level, particularly for optical modes. We expect that our approach can

model the rate in this regime at the order-of-magnitude level, but a proper DFT calculation is

negligible compared to the uncertainties on the other assumptions we have made in this section.
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needed for it to be rigorously validated.

Finally, we show in the bottom panel of Fig. 5.3.2 a comparison of the cross sections

corresponding to a rate of 3 events/kg year, with the different approximations for the two-phonon

structure factor. We assume ω > 40 meV, since for lower thresholds the rate is dominated

by single-phonon production [42]. We emphasize that here we are only illustrating that the

incoherent approximation is within a factor of few of the full structure factor, as long as the

same assumptions are made for the phonon dispersion relations. Therefore, we restrict our

comparison to mχ < MeV such that we can restrict to q < qBZ. The incoherent approximation

underestimates the rate by a factor of few in the harmonic limit, and up to an order of magnitude

when anharmonic interactions are included. Using the true density of states slightly improves

the agreement. Though this comparison only applies to a limited q range, our result suggests

that the incoherent approximation should give a reasonable, order-of-magnitude estimate for

multiphonon production even at low q. We expect this uncertainty to decrease for larger q where

the incoherent approximation is most justified, and in particular we will see that the incoherent

approximation reproduces the expected rate in the free nuclear recoil limit, as discussed in the

next sections.

5.3.3 Multiphonon production

In the previous section, where we dealt with q < qBZ, the incoherent approximation

should be viewed as an order-of-magnitude estimate only. For q > qBZ, it is however on firm

ground [40, 77] and is used routinely to measure the density of states from neutron scattering

data [40]. Moreover, in the q ≫ qBZ regime multiphonon processes become important. This

follows from the form of the structure factor, obtained by inserting (5.10) into the incoherent

approximation (5.2):

S(q,ω)≈ 2π

Ωc

n

∑
d
( fd)

2e−2Wd(q)∑
n

(
q2

2md

)n 1
n!

(
n

∏
i=1

∫
dωi

Dd(ωi)

ωi

)
δ

(
∑

j
ω j −ω

)
. (5.18)
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From the discussion around (5.13), the typical number of phonons is n ∼ q2

2mdωd
. With ωd ≳ 30

meV and md ≳ 30 GeV for most crystals, the self-consistency condition for the incoherent

approximation (q ≳ qBZ) is therefore always satisfied for n > 2 processes. The evolution of

(5.18) for increasingly large q is shown in Fig. 5.3.3a.

We can obtain an approximate scaling for (5.18) by separating each term in the sum over

n into q-dependent and ω-dependent parts. The ω-dependent part is given by the second line of

the equation, which is only non-zero at ω ≲ nωLO in order to satisfy the delta function. This part

of the structure factor can be estimated to have at most the value of 1/(n! ω̄
n+1
d ); this is illustrated

in Fig. 5.C.1 of Appendix 5.C, where we plot the numerical result. For q ≲
√

2mdωd (left and

center panels of Fig. 5.3.3a), the Debye-Waller factor can be neglected and the structure factor

then scales as S(q,ω) ∝ ∑n
1
n!

(
q2

2mdωd

)n
. For q2/(2mdωd) ≲ 1, the structure factor therefore

scales as S(q,ω) ∼ q2m, with m the lowest number of phonons that is kinematically allowed.

This scaling will be useful in Sec. 5.4, where we use it to extract the approximate scaling

behavior of the DM cross section curves. It no longer holds for q ≳
√

2mdωd (right-hand panel

of Fig. 5.3.3a), where many modes contribute equally. This regime however can be understood

in the impulse approximation, which is the subject of the next section.

5.3.4 The impulse approximation (q ≫ qBZ)

For q ≫ qBZ the sum of the multiphonon terms asymptotes to an approximately Gaussian

envelope, as can be seen most clearly from the rightmost panel in Fig. 5.3.3a. This asymptotic

form can be derived directly with a steepest descent approximation, also known as the impulse

approximation. It is valid whenever the interaction with the probe particle happens on a time

scale short compared to that of the phonon modes.

To derive this, it is most insightful to take a step back from (5.18) and return to using
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Figure 5.3.3. Multiphonon transition into the nuclear recoil regime.
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(5.7) in (5.4). The auto-correlation function is then

Cℓd =
1
V

e−2Wd(q)
∞∫

−∞

dt e
q2

2md

∫
dω ′ Dd (ω

′)
ω ′ eiω ′t

e−iωt . (5.19)

When q ≫√
2mdω̄d , the exponent involving the density of states integral will be highly oscil-

latory in t, and the integral may be approximated by expanding about t = 0 through a steepest

descent method. (See Appendix 5.B). Doing so gives

Cℓd ≈ 1
V

√
2π

∆2
d

exp


−

(
ω − q2

2md

)2

2∆2
d


 (5.20)

where ∆2
d ≡ q2ω̄d

2md
. This approximation is referred to as the impulse approximation since the

saddle-point around t = 0 dominates the rate.

From (5.20), we see that the structure factor in the impulse approximation is

SIA(q,ω) =
n

∑
d

( fd)
2

Ωc

√
2π

∆2
d

exp


−

(
ω − q2

2md

)2

2∆2
d


 (5.21)

which is a sum of Gaussians peaked around q =
√

2mdω , one for each atom in the unit cell. In

Fig. 5.3.3a we see that (5.21) is a reasonable approximation for q ≈ √
2mdωd and converges

rapidly to the full result in (5.18) for q ≳ 2
√

2mdωd . As expected, it does not capture the features

in the structure factor for q ≲
√

2mdωd . In our final results, we use (5.21) for q > 2
√

2mdω̄d , as

it is numerically much faster than (5.18). For crystals composed of multiple inequivalent atoms,

we define the boundary as maxd
[
2
√

2mdω̄d
]
. At this scale, the average number of phonons is

about four, and it is sufficient to truncate the sum at n = 10 for all smaller q.

As we consider larger DM masses which access larger q and ω , the Gaussian becomes

more sharply peaked. This can be seen by comparing the width ∆d to the peak value ω = q2/2md .
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In the large-q limit, we have

lim
q→∞

∆d

ω
≈
√

ω̄d

ω
(5.22)

so the Gaussian becomes narrow for ω well above the typical phonon energy. Then the narrow

width limit exactly reproduces the expected free nuclear recoil delta function response:

lim
q,ω→∞

Cℓd =
2π

V
δ

(
ω − q2

2md

)
(5.23)

SFR(q,ω) = ∑
d

2π

Ωc
( fd)

2
δ

(
ω − q2

2md

)
. (5.24)

We therefore recover the familiar free nuclear recoil response for each individual atom in the

unit cell.

In Fig. 5.3.3b we show cross section curves with a GaAs target, for both massive and

massless scalar mediators. We compare the reach obtained with the full structure factor (in the

incoherent approximation), the impulse approximation, and the free nuclear recoil limit. For

mχ ≲ 20−40 MeV, the full structure factor must be used to capture the rate, depending on the

mediator mass and threshold. For mχ ≳ 20−40 MeV, the q values compatible with the impulse

approximation start to dominate, and we see that it reproduces the full result very closely. At

even higher masses, the free nuclear recoil response becomes an excellent approximation, as

expected.

A particular feature to notice from Fig. 5.3.3b is that the free nuclear recoil rate agrees

with the impulse approximation result even in regions of the q, ω phase space where the Gaussian

is not narrow. For example, for the massive mediator and mχ = 50 MeV, the rate will be

dominated by momentum transfers q ∼ 2mχv ∼ 100 keV, corresponding most closely to the

rightmost panel of Fig. 5.3.3a. From (5.22) this gives ∆d/ω ≈ 0.5 which is not particularly small.

The nuclear recoil approximation nevertheless works remarkably well. The reason is that phase

space integral in (2.9) has a trivial ω dependence aside from the S(q,ω) factor, since the delta

function in ω just determines the region of phase space that is integrated over. Therefore, as long
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as the energy threshold is small compared to the peak in ω , the phase space integral over (5.21)

and (5.24) yields similar answers.

5.3.5 Summary

Fig. 5.3.4 schematically illustrates the various approximations for the structure factor

discussed in this section. The dotted gray parabola represents the phase space boundary for a

given mχ and v (see Sec. 5.4). This parabola extends upwards and rightwards as mχ is increased,

such that multiple different regimes are sampled for high enough mχ .

For the single phonon excitations (n = 1) described in Sec. 5.3.1, we use the long-

wavelength and incoherent approximations for q < qBZ and q > qBZ, respectively. This combina-

tion gives good agreement with a full DFT calculation of the scattering rate, at least for a cubic

crystal such as GaAs. For multiphonon excitations (n ≥ 2), we use the incoherent approximation

for the structure factor for all q below maxd[2
√

2mdωd]. This is motivated by Sec. 5.3.2, where

we argued that the incoherent approximation can serve as an order-of-magnitude estimate even

for q ≪ qBZ. Given the limitations of the long-wavelength approximation, a dedicated DFT
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Figure 5.3.6. Cross section plots corresponding to a rate of 3 events/kg-yr for massive and
massless scalar mediators in GaAs for various thresholds. The structure factors used are the
analytic results demarcated in Fig. 5.3.4 for each corresponding regime in the (q,ω) phase space.
For the massive mediator, we see the dominance of the single acoustic phonon at low masses and
low thresholds, and of the optical phonon for intermediate thresholds. Eventually, for sufficiently
high masses the process becomes dominated by the free nuclear recoil response. For the massless
mediator, the q−4 form factor favors small momenta, and the rate is dominated by the lowest
accessible mode for a given threshold.

calculation is needed in this regime. For multiphonon excitations, we sum terms in (5.18) until

we achieve convergence, as explained in Sec. 5.3.3. Finally, for q ≥ maxd[2
√

2mdωd] we make

use of the impulse approximation, which ultimately transitions into the well-known free nuclear

recoil regime. This was explained in Sec. 5.3.4.

Fig. 5.3.5 shows our full calculation of the structure factor for GaAs, overlaid with

the phase space boundaries for a few representative DM masses. In the low q, single phonon

regime, the response is given by a set of δ -functions on the LO and LA phonon dispersions,

represented by the orange curves. At intermediate and high q, the structure function is modeled

by a continuous function, where the layered structure for ω ≲ 50 meV reflects the various single

and multiphonon contributions. At higher q and ω the individual resonances cease to be visible

and one transitions into the smooth S(q,ω) predicted by the impulse approximation. At very

high ω the structure function converges towards its free nuclear recoil form, which is represented

by the black dashed line.
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5.4 Results

In this section we convert our newly-gained understanding of the structure factor into

concrete predictions for the DM scattering rate in a crystal target. The event rate per unit of

target mass is

R =
1

∑d md

ρχ

mχ

∫
d3vv f (v)

∫
d3qdω

dσ

dqdω
(5.25)

where the experimental energy threshold is implicit in the boundary of the ω integral. f (v) is the

DM velocity distribution, which we take to be

f (v) =
1

N0
exp

[
−(v+ve)

2

v2
0

]
Θ(vesc −|v+ve|) ,

N0 = π
3/2v3

0

[
erf
(

vesc

v0

)
−2

vesc

v0
exp
(
−v2

esc

v2
0

)]
, (5.26)

with v0 = 220 km/s, the Earth’s average velocity ve = 240 km/s, and vesc = 500 km/s the

approximate local escape velocity of the Milky Way. The scattering rate can be further simplified

in the isotropic limit; using (2.9),

R =
1

4πρT

ρχ

mχ

σp

µ2
χ

∫
d3v

f (v)
v

q+∫

q−

dq

ω+∫

ωth

dω q |F̃(q)|2S(q,ω) (5.27)

where ωth is the energy threshold of the experiment, and the other integration limits5 are

q± ≡ mχv

(
1±
√

1− 2ωth

mχv2

)
(5.28)

ω+ ≡ qv− q2

2mχ

. (5.29)

5In numerical implementations of (5.27), as done in DarkELF, it is beneficial to change the order of integrating
by first carrying out the v integral, followed by the q integral and finally the ω integral.
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Note (5.29) defines the phase space boundary shown in Fig. 5.3.4 for a given mχ and v. Finally,

ρT is the mass density of the target material and we have recast the rate in terms of the DM-proton

scattering cross section σp ≡ 4πb2
p.

5.4.1 Massive hadrophilic mediator

In the case of a massive mediator coupling to baryon number, we calculate the scattering

rate by taking fd = Ad and F̃(q) = 1. The cross sections corresponding to a rate of 3 events/kg-

year exposure are shown in the left panel of Fig. 5.3.6, assuming a GaAs target and for different

energy thresholds. The same figures for Si, Ge and diamond can be found in Appendix 5.D.

We can understand the numerical results in Fig. 5.3.6 analytically using the scaling of

the structure factor discussed in Secs. 5.3.1–5.3.4. First, from (5.27), the mχ dependence of the

rate is contained in

R ∝
σp

mχ µ2
χ

q+∫

q−
dq

ω+∫

ωth

dω qS(q,ω). (5.30)

The structure factor only contains positive powers of q across the entire phase space, so for a

massive mediator, the integral (5.30) will be dominated by the largest kinematically accessible

momentum transfers.

For mχ ≫ 30 MeV, the kinematically allowed phase space is extended to q and ω where

the free nuclear recoil approximation can be used. The rate therefore approximately scales as

R ∼ 1/mχ for mp ≳ mχ ≫ 30 MeV. For low enough thresholds, this scaling holds even as the

dark matter mass comes within O(few) of 30 MeV, where the structure factor is relatively broad

in ω . The reason is that the kinematically allowed phase space is wide enough in ω that the

integral over the Gaussian in the impulse approximation gives within a factor of few of the

integral over the delta function in (5.24), as discussed earlier in Sec. 5.3.4.

For dark matter masses of 1 to 30 MeV, the allowed phase space is restricted to values of

q <
√

2mdω̄ . Here the structure factor can be expanded in powers of q/
√

2mdω̄ and favors small

ω . As noted in Sec. 5.3.3 the structure factor scales as ∼ q2m, with m the smallest number of
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phonons whose total energy is above the energy threshold. We see there is significant threshold

dependence: the single phonon final state strongly dominates the rate if it is above the energy

threshold, while for higher thresholds only multiphonons contribute. The rate integral now scales

as

R ∝
σp

m3
χ

2mχ v∫
dqq2m+1

∫

ωth

dω ∝ σp m2m−1
χ , (5.31)

where q was evaluated at its maximum q ∼ 2mχv. The ω integral does not contribute to the mχ

scaling of the rate, since the integrand is peaked in ω somewhere near the energy threshold ωth.

This expression then gives the approximate scaling R ∝ m2m−1
χ . Since m is dependent on the

energy threshold, this explains why different thresholds in Fig. 5.3.6 result in a different scaling

as a function of mχ .

At even lower dark matter masses (mχ < 1 MeV), the phase space is restricted to q values

within the first Brillouin zone, which is dominated by single phonon production in the long

wavelength regime. If the threshold is low enough to access a single phonon, the scaling further

depends on whether the threshold captures an appreciable part of the LA branch. If so, the

leading contribution comes from the acoustic mode (3.19), which gives

R ∝
σp

m3
χ

2mχ v∫
dqq2

∫
dω δ (ω − cLAq) ∝ σp, (5.32)

approximately independent of mχ . This behavior is clearly reproduced in Fig. 5.3.6 for the

1 meV threshold, for which the acoustic branch is always accessible. If the threshold is too

high to access the acoustic branch, but can detect the optical branch, the structure factor has an

extra q3 scaling and we find R ∝ m3
χ . This case occurs for mχ ≲ 0.3 MeV on the 20 meV curve

in Fig. 5.3.6. For mχ ≳ 0.3 MeV the DM can excite the acoustic branch, resulting in a sharp

enhancement of the rate.
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5.4.2 Massless hadrophilic mediator

If we instead have a massless mediator that couples to baryon number, then by convention,

the mediator form factor is taken to be |F̃(q)|2 =
(mχ v0

q

)4 with v0 = 220 km/s. The cross section

curves for this scenario are given in the right panel of Fig. 5.3.6 again for different thresholds.

As in Sec. 5.4.1, we can analytically explain the scaling of the different curves across

the DM mass range. The main difference with the massive mediator case is that for a massless

mediator, there is a 1/q4 scaling in the form factor, which leads to a scattering rate that generally

favors low q and ω . The main contribution to the rate will therefore be much more threshold

dependent across all DM masses. If the threshold is small enough to access single acoustic

phonon excitations, then this will be the dominant contribution to the rate at all masses. Again

from (5.27) and using the analytic acoustic structure factor, the rate for thresholds that are

sensitive to a single acoustic phonon scales as

R ∝ σp mχ

∫

ωth/cLA

dq
1
q2

∫
dω δ (ω − cLAq). (5.33)

The integrand is largest at the smallest q, so we estimate the q integral by evaluating the integrand

at q ≈ ωth/cLA in (5.28). The integrand therefore has no mχ dependence and gives the scaling

R ∝ mχ for the ω > 1 meV curve in Fig. 5.3.6. Note however that this scaling behavior is

sensitive to our convention for the reference momentum in F̃(q). For example, in models with

both electron and nucleon couplings one often chooses to normalize the form factor with the

reference momentum q0 = αme, which would yield R ∝ m−3
χ .

If the LA branch is not accessible but the LO branch is, the production of a single LO

mode will generally dominate. This introduces a different mχ dependence, which can be seen

in Fig. 5.3.6 by comparing the 1 meV and 20 meV curves in the region with mχ ≲ 30 MeV. If
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mχ < 1 MeV, using the expression in (3.20) gives

R ∝ σpmχ

2mχ v∫
dqq

∫
dω δ (ω −ωLO). (5.34)

Unlike for the acoustic phonon, the structure factor favors high q so that the largest contribution

is near q ∼ 2mχv, giving R ∝ m3
χ . If mχ > 1 MeV, the rate integrand is dominated by momentum

transfers q ∼ qBZ. This is because when q > qBZ and ω ≤ ωLO we are using the incoherent

approximation for single phonon production, where the q integrand drops as q−1. Thus, we

estimate the rate by integrating up to qBZ only:

R ∝ σpmχ

qBZ∫
dqq

∫
dω δ (ω −ωLO), (5.35)

and find that R ∝ mχ . This is the reason why the 20 meV curve in Fig. 5.3.6 changes slope

around mχ ∼ 1 MeV.

We next turn to the intermediate mass range (1−30 MeV) with ωth > ωLO, such that

n ≥ 2 phonons. In Fig. 5.3.6 this corresponds to the curves with thresholds of 40 meV and above.

As in Sec. 5.4.1, we again notice that the leading contribution to the structure factor will be given

by the smallest number of phonons, m, that can exceed the threshold energy. In this regime,

the integrand ∝ S(q,ω)/q3 scales with positive powers of q for m ≥ 2 phonons, since (5.10)

grows faster than q3. The analysis for multiphonons then follows exactly the same logic as the

discussion in the previous section and we find that R ∝ m2m−1
χ .

For large dark matter masses (≫ 30 MeV), again if the threshold is well above the single

phonon energy, we can apply the free nuclear recoil approximation to obtain the scaling. Using

the free nuclear structure factor gives

R ∝
σp

m3
χ

∫

√
2mdωth

dqq
(mχv0

q

)4 ∫
dω δ

(
ω − q2

2md

)
. (5.36)

104



The q-integral is dominated by low-momentum transfers along the free nuclear recoil dispersion,

so we evaluate the integral at the intersection of ω = ωth and ω = q2

2md
, or q =

√
2mdωth. Then,

the approximate scaling in this regime is R ∝ mχ/ωth, which we verify numerically in Fig. 5.3.6.

5.4.3 Dark photon mediators

The defining feature of a dark photon mediator is that it couples to the electric charge of

the SM particles. In the regime where phonons are the relevant degrees of freedom, the charge

of the nucleus is (partially) screened by the electrons. This means that we need a notion of an

effective charge, as seen by the DM, which is momentum dependent. For individual atoms, this

effective charge interpolates between zero in the low momentum, fully screened regime and the

nuclear charge in the high momentum regime. We use the calculations from Brown et. al. [7] of

the effective charge for individual atoms, as shown in Fig. 5.4.1. We expect this approximation

to hold only for q ≳ qBZ, since additional many-body effects should be relevant for q < qBZ.

This is particularly true for a polar material such as GaAs, where the Born effective charge of

the Ga and As atoms is non-zero in the q → 0 limit. In this regime a full DFT calculation of

the momentum dependence of the effective charge is needed, which we do not attempt here. In

this Section, we will therefore focus on the momentum regime q ≳ qBZ, which corresponds to

mχ ≳ MeV. In this case we can use the incoherent approximation and take f̄d = Zd(q), with

Zd(q) the atomic effective charges in Fig. 5.4.1. This allows us to compute scattering rates with

dark photon mediators for the production of two or more phonons, which is dominated by the

highest kinematically accessible momentum transfers.

The regime q < qBZ is relevant primarily for massless dark photon mediators. (For

massive dark photon mediators, there are strong BBN constraints that severely limit the scattering

rate for sub-MeV dark matter, see e.g. [58].) In this regime, there are substantial deviations

from the atomic effective charges due to the delocalized nature of the valence electrons. For

instance, a polar material such as GaAs, SiC and sapphire can have a residual dipole moment

associated with atomic displacements even for q → 0. The effective couplings f̄d in this limit
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Figure 5.4.1. Momentum dependence of the effective ion charge for atomic elements, as
computed in [7].
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Figure 5.4.2. Cross section plots for a rate of 3 events/kg-year in GaAs, for massive and massless
dark photon mediators. For comparison, the dashed black lines represent the cross sections
required for DM-electron scattering with a 2e− ionization threshold with the same exposure, as
computed using DarkELF [76].
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are given by Z∗
d/ε∞, where Z∗

d is the Born effective charge and ε∞ is a screening due to valence

electrons; the Born effective charges can be calculated with DFT methods [44, 45, 78]. This

was treated in previous studies of single-phonon production through a massless dark photon

mediator [48, 44, 49, 47, 45, 80, 78, 46]. For non-polar materials such as Si, Ge and diamond, the

Born effective charges vanish and instead multiphonon production is expected to dominate. This

can be estimated with the energy loss function [76], at least for sub-MeV dark matter. Since this

q < qBZ regime is already included in DarkELF [76], we restrict our results here to multiphonon

processes with q > qBZ and ω > ωLO.

Our results are shown in Fig. 5.4.2 for GaAs; the results for Ge, Si and diamond are

deferred to Appendix 5.D. As is conventional for dark photon mediators, we choose the reference

momentum for the massless mediator to be q0 = αme and present the results in terms of the

effective DM-electron cross section σ̄e [81], with

σ̄e =
µ2

χe

µ2
χ

σp (5.37)

and µχe the DM-electron reduced mass. In our calculations using the atomic effective charges,

we impose q > qBZ to ensure we are not sampling the area of phase space for which these

charges are clearly invalid. This means that our rate calculations for mχ ≲ 10 MeV are a slight

underestimate of the true result.

5.5 Conclusions and outlook

It is well-known that DM scattering in crystals can lead to one or more phonons being

produced if DM has MeV-scale mass, as well as a recoiling nucleus if DM has GeV or higher

mass. These processes are two sides of the same coin, depending on whether the momentum

transfer is comparable to the inverse of the interparticle spacing and whether the energy deposition

is comparable to the typical phonon energy ∼ ω̄ . When both momentum and energy scales are

small, single phonon production dominates, and when both are large, nuclear recoils dominate.

107



Here we studied the intermediate regime which is dominated by many phonons, which allows us

to smoothly interpolate between single phonon production and nuclear recoils (see Fig. 5.3.6).

To make the multiphonon calculation tractable, we relied on the isotropic, incoherent,

and harmonic crystal approximations. This allowed us to obtain analytic results for the scattering

rate in terms of the phonon density of states in the crystal. These approximations are expected to

be very good for q ≫ qBZ (mχ ≫ 1 MeV), as they explicitly reproduce the nuclear recoil limit

when q ≫√
2mNω̄ . For q ≲ qBZ (mχ ≲ 1 MeV) the experimental threshold determines which

theoretical treatment is most appropriate: for single phonon production, one can obtain analytic

formulas by instead using a long wavelength, isotropic approximation. These results are currently

only valid for cubic crystals such GaAs, Si, Ge and diamond. For strongly anisotropic materials

such as sapphire, one must find a way to generalize them further or rely on DFT calculations. For

multiphonon production and q ≲ qBZ, the situation is more complicated: in this case it cannot

be taken for granted that anharmonic corrections to the various multiphonon channels can be

neglected. The anharmonic multiphonon contributions involving optical modes are particularly

difficult to model analytically, and at the moment we perform a simple estimate in a toy model to

justify extrapolating the incoherent and harmonic approximations to q ≲ qBZ. A dedicated DFT

calculation is needed to improve their accuracy.

Our approach provides a smooth description of sub-GeV dark matter scattering down

to keV masses for hadrophilic mediators. For dark photon mediators, a DFT calculation of the

momentum-dependent couplings in the q ∼ qBZ regime is needed to complete the interpolation.

For both mediators, we have provided results for multiple direct detection materials of interest,

and also included our calculation as part of the DarkELF public code package. These will be

essential to interpret direct detection results as experimental thresholds for calorimetric detectors

reach the eV scale and lower.
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Appendices

5.A Two phonon analytic structure factors

In Sec. 5.3.2 we compared the long-wavelength and incoherent approximations for the

two-phonon final states, for q within the first BZ. In this appendix we provide the analytic

expressions for both approximations.

5.A.1 Long-wavelength approximation

Here we discuss how we extend the analytic calculations from [42] for the coherent two-

phonon structure factor to additional combinations of final state phonon pairs. As in Sec. 5.3.2,

we assume a hadrophilic mediator with fd = Ad throughout this appendix. It was shown in [42]

that the structure factor separates into harmonic and anharmonic contributions

S(q,ω) = S(harm)(q,ω)+S(anh)(q,ω) (5.38)

which do not interfere at leading order in the long wavelength limit. The first term involves

expanding (3.12) to second order; note that it was referred to as the contact term in [42]. The

anharmonic term is computed using an anharmonic phonon interaction Hamiltonian to first order.

The specific matrix elements to be used are given in equations (12) and (13) of [42]. We take the

long-wavelength approximation for the phonon modes, as described in Sec. 5.3.1. For a crystal
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with two atoms in the unit cell, the longitudinal eigenvectors can be approximated by

eLA,k,1 ≈
√

A1√
A1 +A2

k̂, (5.39)

eLA,k,2 ≈
√

A2√
A1 +A2

e−ik·r0
2k̂ (5.40)

eLO,k,1 ≈
√

A2√
A1 +A2

k̂, (5.41)

eLO,k,2 ≈−
√

A1√
A1 +A2

e−ik·r0
2k̂. (5.42)

with k̂ the unit vector along the phonon propagation direction. Note that the r0
2 dependence was

neglected in the LA eigenvector in (3.16) and in [42]; here we have kept this additional phase

so that the acoustic and optical eigenvectors are explicitly orthogonal across a unit cell. This

additional phase factor will only be relevant in cases where there is a destructive interference in

the leading coupling to acoustic phonons, which occurs for some final states [47]. The transverse

eigenvectors lay in the plane perpendicular to k̂ and have analogous normalizations.

Analytic expressions for the harmonic structure factor were provided in Ref. [42] for

acoustic-acoustic final states only. We require expressions for the optical-optical and optical-

acoustic final states as well to perform the comparison with the incoherent approximation. A

straightforward application of (16) in [42] to the lowest order in q gives

S(harm)
LOLO =

2π

Ωc

π q4

120m2
pω2

LO
δ (ω −2ωLO)

S(harm)
LOTO =

2π

Ωc

π q4

90m2
pωLOωTO

δ (ω − (ωLO +ωTO))

S(harm)
TOTO =

2π

Ωc

π q4

45m2
pω2

TO
δ (ω −2ωTO) (5.43)

for the optical-optical modes.

For the optical-acoustic modes, the harmonic structure factors are of the form
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S(harm)
LOLA =

2π

Ωc

a5

2304π2c2
LAm2

pωLO

A1A2

(A1 +A2)2

(
ω −ωLO

cLA

)7

g(harm)
LOLA (x)Θ(cLAqBZ − (ω −ωLO)),

where x ≡ cLAq
ω−ωLO

. The other structure factors for optical-acoustic final states are given by

relabelings LO → TO, LA → TA, where the expressions g expanded at small q are

g(harm)
LOLA (x ≪ 1)≈ 3

10
x6 − 1

7
x8 +

1
15

x10

g(harm)
LOTA (x ≪ 1)≈ 1

5
x6 +

12
35

x8 − 4
105

x10

g(harm)
TOLA (x ≪ 1)≈ 1

5
x6 +

1
7

x8 − 1
15

x10

g(harm)
TOTA (x ≪ 1)≈ 4

5
x6 − 12

35
x8 +

4
105

x10. (5.44)

We see that at leading order in small q, the optical-acoustic structure factors are all suppressed

by an additional factor of q2 relative to the optical-optical modes, which is due to destructive

interference. Since we will be comparing with the incoherent approximation at small q, we can

effectively neglect these final states.

We would also like to compute the anharmonic contributions to the 2-phonon structure

factor, which we do with the inclusion of an anharmonic interaction Hamiltonian. For acoustic

phonons in the long-wavelength limit, we have an effective Hamiltonian for acoustic phonons

where the interactions are given in terms of macroscopic properties of the crystal through the

Lamé parameters, as described in [42]. For the interactions of optical phonons, however, it is

more difficult to write down a reliable analytic Hamiltonian. In this case we use (45) of Ref. [42],

which comes from [82]. This Hamiltonian should be taken only at the order-of-magnitude level.

We restrict the use of both effective Hamiltonians to the first BZ. The analytic expressions for

the acoustic-acoustic and acoustic-optical final states are given already, so we complete this by
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calculating the optical-optical terms. At leading order in q, this gives

S(anh)
LOLO =

2π

Ωc

π

6m2
p

c2
LA
c2

ω2
LOq4

((2ωLO)2 − (cLAq)2)2

×δ (ω −2ωLO)

S(anh)
LOTO =

2π

Ωc

2π

3m2
p

c2
LA
c2

ωLOωTOq4

((ωLO +ωTO)2 − (cLAq)2)2

×δ (ω −ωLO −ωTO)

S(anh)
TOTO =

2π

Ωc

2π

3m2
p

c2
LA
c2

ω2
TOq4

((2ωTO)2 − (cLAq)2)2

×δ (ω −2ωTO), (5.45)

where c ≡ (cLA + cTA)/2. We have also assumed that the Grüneisen constant γG ≈ 1.

5.A.2 Incoherent approximation

The second result needed for the comparison in Sec. 5.3.2 is the two-phonon structure

factor for GaAs in the incoherent approximation. To calculate this, we use the simplified density

of states in (5.17) corresponding to the long-wavelength limit. Performing the n = 2 integral in

(5.10) gives

Sn=2(q,ω) = SLALA +SLATA + . . . (5.46)

where each S is a contribution to the n = 2 structure factor from the part of the density of states

associated with the subscripted modes, and the ellipsis indicates we sum over all combinations
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of modes. The first term of the sum in (5.46) is

SLALA =
2π

Ωc

q4

96c6
LAq6

BZm2
p

(
ω

3
Θ(cLAqBZ −ω)

−
(
4c3

LAq3
BZ −6c2

LAq2
BZω +ω

3)

×Θ(ω − cLAqBZ)Θ(2cLAqBZ −ω)

)
, (5.47)

and STATA is given by SLALA with the replacement LA → TA and an additional overal factor of

4. The same procedure gives the LATA term as

SLATA =
2π

Ωc

q4

24c3
LAq6

BZm2
p

(
ω3

c3
TA

Θ(cTAqBZ −ω)

+
−2cTAq3

BZ +3ωq2
BZ

cTA
Θ(ω − cTAqBZ)Θ(cLAqBZ −ω)

+
−2(c3

LA + c3
TA)q

3
BZ +3(c2

LA + c2
TA)q

2
BZω −ω3

c3
TA

×Θ(ω − cLAqBZ)Θ((cLA + cTA)qBZ −ω)

)
. (5.48)

as well as the LOLA term,

SLOLA =
2π

Ωc

a5 (q2
BZq4)

768π5c3
LAm2

pωLO
(ω −ωLO)

×Θ(ω −ωLO)Θ((cLAqBZ +ωLO)−ω). (5.49)

Again we may find SLOTA, STOLA, and STOTA by relabelings and inserting relevant factors of

two for polarizations. Note that, since the incoherent approximation does not recover the q6

scaling resulting from interference, we have written the structure factor here using qBZ = 2π/a

to make the comparison more explicit. At lowest order in x and for A1 ≈ A2, such a comparison

of (5.44) and (5.49) shows a relative factor of 40/π3 ≈ 1 for the LOLA channel. Lastly, for the
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remaining optical-optical channels we find

SLOLO =
2π

Ωc

q4

144m2
pω2

LO
δ (ω −2ωLO)

SLOTO =
2π

Ωc

q4

36m2
pωLOωTO

δ (ω − (ωLO +ωTO))

STOTO =
2π

Ωc

q4

36m2
pω2

TO
δ (ω −2ωTO). (5.50)

A comparison now of (5.43) and (5.50) shows the incoherent approximation gives a

smaller structure factor by factors of 2π/5 – 6π/5 ≈ 2 – 4.

5.B Impulse approximation

In this section we discuss how to obtain the impulse approximation form of the structure

factor, (5.21) in Sec. 5.3.4. To achieve this we must approximate the t integral in (5.19) for large

q. The expression in (5.19) can be written as

Cℓd =
1
V

e−2Wd(q)
∞∫

−∞

dt e f (t). (5.51)

with

Re[ f (t)]≡ q2

2md

∫
dω

′Dd(ω
′)

ω ′ cos
(
ω

′t
)

Im[ f (t)]≡ q2

2md

∫
dω

′Dd(ω
′)

ω ′ sin
(
ω

′t
)
−ωt. (5.52)

From this, we see there is a global maximum in the real part and a global minimum in the

modulus of the imaginary part at t = 0. This allows us to perform a steepest-descent expansion

about t = 0, giving

Cℓd ≈ 1
V

∞∫

−∞

dt eit( q2
2md

−ω)− t2
2

q2ω̄d
2md , (5.53)

115



where again ω̄d =
∫

dω ′ω ′Dd(ω
′). Note that the leading term in the expansion about t = 0

cancelled the Debye Waller factor, assuming the form given in (5.11). Evaluating the above gives

Cℓd ≈ 1
V

√
2π

∆2
d

e
−

(
ω− q2

2md

)2

2∆2
d , (5.54)

which is the impulse approximation result.

In obtaining this form, we have assumed that any other local maxima in t gives a

subdominant contribution to the t = 0 maximum. In particular, aside from the t = 0 point, which

is a global maximum in Re[ f (t)], there are local maxima in the real part which will generally be

near integer multiples of 2π/ω̄d . The leading order contribution from each additional maxima

tmax is given by evaluating the real part in the exponential at the location of the maxima.

This must necessarily be smaller than the t = 0 contribution since the following inequality

is always satisfied
∫

dω
′Dd(ω

′)
ω ′ cos

(
ω

′tmax
)
<
∫

dω
′Dd(ω

′)
ω ′ . (5.55)

Since tmax ∼ 2π/ω̄d , the left hand side will be suppressed by an O(1) amount due to presence of

the cos(ω ′tmax). Then, the contribution from the local maxima will be exponentially suppressed:

e
q2

2md

∫
dω ′ Dd (ω

′)
ω ′ cos(ω ′tmax) ≪ e

q2
2md

∫
dω ′ Dd (ω

′)
ω ′ (5.56)

as long as the following condition is satisfied

q2

2md
≫ 1
∫

dω ′ Dd(ω ′)
ω ′

∼ ω̄d. (5.57)

Here we have taken
∫

dω ′ Dd(ω
′)

ω ′ ∼ 1/ω̄d as a typical scale for this integral, although it will

differ by an O(1) factor. Therefore, as long as the free nuclear recoil energy ω = q2/(2md) is

well above the typical phonon energy ω̄d for a scattering off of atom d, the t = 0 maximum is

dominant and the impulse approximation should be accurate.
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In the regime where q2/2md is comparable to ω̄d , the contributions from the additional

maxima in t can become important.

Nevertheless, the impulse approximation is still accurate at large ω even in this case

because of cancellations from the rapidly changing phase in Im[ f (t)]. When ω ≫ ω̄d , then

Im[ f (t)]≈−ωt for t around tmax ∼ 2π/ω̄d . This implies large oscillations of f (t) around tmax,

which suppresses the contribution from these local maxima. On the other hand, if ω ≲ ω̄d , there

may be large corrections to the impulse approximation due to these additional maxima.

These effects were shown in Fig. 5.3.3a when comparing the multiphonon expansion

result to the impulse approximation. The middle panel showed the result if q =
√

2mdω̄d , in the

mGa ≈ mAs approximation. For ω ≳ ω̄d the structure factor falls smoothly and can be reasonably

captured by the impulse approximation, while for ω ≲ ω̄d ≈ 22 meV or at the optical phonon

energies 31 and 33 meV there are sharp peaks in the multiphonon response that are not captured

by the impulse approximation. For q = 2
√

2mdω̄d the many multiphonon peaks merge and add

up to a shape similar to the impulse approximation over the whole ω range. Practically, for our

calculations, we use the impulse approximation for the structure factor at q > 2
√

2mdω̄d . Though

the approximation has small differences with the exact result when q ∼ 2
√

2mdω̄d , integrating

over the allowed phase space for the rate largely washes out these differences.

5.C Implementation in DarkELF

In the main text, we presented the formulas in the manner which is most clear from the

point of view of the various approximations and their regimes of validity. These formulas were

not always suitable however for an efficient numerical implementation, which we address in this

section. We also provide details on their implementation in the DarkELF package [76].

In the main text we gave the rate in the isotropic limit, (5.27). In order to calculate the

rate for any mediator and to obtain the differential rate dR/dω , it is convenient to perform the
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Figure 5.C.1. Here we have plotted ω̄nFn(ω), where Fn(ω) is the ω-dependent part of the
structure factor in the incoherent approximation and given explicitly in (5.62). At fixed q, the
structure factor decreases quickly with increasing ω .
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v-integral first and rewrite the rate as:

R =
1

4πρT

ρχ

mχ

σp

µ2
χ

ω+∫

ωth

dω

q+∫

q−

dqq |F̃(q)|2S(q,ω)η(vmin(q,ω)) (5.58)

where now the integration limits are given by

q± = mχ

(
vmax ±

√
v2

max −
2ω

mχ

)
(5.59)

ω+ =
1
2

mχv2
max (5.60)

with vmax = vesc + ve the maximum DM speed in the lab frame. The η function is given by

η(vmin) =
∫

d3v
f (v)

v
Θ(v− vmin) (5.61)

with vmin(q,ω) = q
2mχ

+ ω

q .

To evaluate the rate using incoherent approximation, we provide look-up tables for the

structure factor. At each n for the sum in (5.18), the q and ω parts of the integral are separable,

so we can capture the ω-dependent part with the family of functions

Fn,d(ω)≡ 1
n!

(
n

∏
i=1

∫
dωi

Dd(ωi)

ωi

)
δ

(
∑

i
ωi −ω

)
, (5.62)

and calculate the rate in terms of functions Fn,d . These functions are simple to calculate

numerically up to n ≤ 10, which we have tabulated and provided in DarkELF as look-up tables

to speed up the calculation. The combination ω̄nFn(ω) is shown in Fig. 5.C.1 for GaAs in the

mGa ≈ mAs approximation. For increasingly high n, the Fn,d become increasingly smooth.

We have added several additional functions to DarkELF for the differential and integrated

rate calculations from the single phonon to the nuclear recoil regime. Tab. 5.C.1 describes some

of the new relevant functions. These functions currently work for materials with up to two atoms
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per unit cell. We have included the necessary data files for the multiphonon calculation for GaN,

Al, ZnS, GaAs, Si, and Ge from a combination of DFT and experimental sources. We also

allow the user to input their own calculations or extractions of the (partial) density of states, as

well as momentum-dependent dark matter-nucleon couplings. Before calculating multiphonon

scattering rates in DarkELF, it is necessary to tabulate the auxiliary function (5.62) for each atom.

This is done using the DarkELF function create Fn omega. This step is the most time consuming

part of the calculation, so we provide these pre-tabulated for the aforementioned materials. For

calculations with a user-supplied (partial) density of states, these tables must first be updated by

running create Fn omega. DarkELF will save these new look-up tables for future computations,

such that this step only need to be performed once. Next we describe the functions that return

important results. All of the following straightforwardly apply equations (5.58-5.61).

R single phonon: This function takes the energy threshold and DM-nucleon cross sec-

tions and outputs the rate in the long-wavelength single phonon regime using the analytic

functions (3.19-3.20).

R multiphonons no single: This function takes the energy threshold and DM-nucleon

cross section as inputs and calculates the total integrated rate, excluding the single phonon

processes at long wavelengths q < qBZ. In other words, this calculation includes only the purple

(multiphonon expansion) and red (impulse approximation) phase space regions in Fig. 5.3.4.

sigma multiphonons: This takes the energy threshold as input and returns the necessary

DM-nucleon cross section to produce three events per kg-year for any number of phonons. In

order to return this cross section, this function first calculates the total rate by summing the

outputs of R single phonon and R multiphonons no single, so it includes the entire calculation

scheme depicted in Fig. 5.3.4.

dR domega multiphonons no single: This function takes the energy transfer ω and

DM-nucleon cross section and returns the differential rate dR
dω

at that energy excluding single

phonons in the long wavelength regime. This comes from equation (5.58) without evaluating the

ω integral. We exclude the single coherent phonon here since the long-wavelength approximation
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has delta functions in energy in the differential rate.

5.D Additional results

Here, we provide additional results for Ge, Si, and diamond. Concretely, Fig. 5.D.1

shows the density of states for these three materials, as extracted from [6]. Fig. 5.D.2 shows the

differential scattering rate via a massive scalar mediator for two example DM masses in GaAs,

Ge and Si targets. Finally, Figs. 5.D.3, 5.D.4, and 5.D.5 are the cross section plots corresponding

to an integrated rate of 3 events/kg-year for Ge, Si, and diamond, respectively.
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Figure 5.D.1. Densities of states for germanium, silicon, and diamond [6].

122



0 50 100 150 200
ω [meV]

0

1

2

3

4

d
R d
ω

[E
ve

n
ts
/k

g
/y

r/
eV

]

×108 mχ = 10 MeV

0 50 100 150 200
ω [meV]

0.0

0.5

1.0

1.5

2.0

2.5
×107 mχ = 100 MeV

Total Differential Rate

Nuclear Recoil Approximation

GaAs, Massive Scalar Mediator, σp = 10−38 cm2

0 50 100 150 200
ω [meV]

0

1

2

3

4

d
R d
ω

[E
ve

n
ts
/k

g
/y

r/
eV

]

×108 mχ = 10 MeV

0 50 100 150 200
ω [meV]

0.0

0.5

1.0

1.5

2.0

2.5
×107 mχ = 100 MeV

Total Differential Rate

Nuclear Recoil Approximation

Ge, Massive Scalar Mediator, σp = 10−38 cm2

0 50 100 150 200
ω [meV]

0.0

0.2

0.4

0.6

0.8

1.0

d
R d
ω

[E
ve

n
ts
/k

g
/y

r/
eV

]

×108 mχ = 10 MeV

0 50 100 150 200
ω [meV]

0

1

2

3

4

5
×106 mχ = 100 MeV

Total Differential Rate

Nuclear Recoil Approximation

Si, Massive Scalar Mediator, σp = 10−38 cm2

Figure 5.D.2. Differential rate for various materials and a massive scalar mediator, compared
with the nuclear recoil approximation. The single phonon contribution from the long wavelength
regime is not shown, since it gives a delta function contribution.

123



10−2 10−1 100 101 102 103

mχ [MeV]

10−47

10−45

10−43

10−41

10−39

10−37

σ
p

[c
m

2
]

3 events/kg-yr

Ge, Massive Scalar Mediator

Threshold Energy
1 meV

20 meV

40 meV

60 meV

80 meV

100 meV

200 meV

1 eV

10−2 10−1 100 101 102 103

mχ [MeV]

10−47

10−45

10−43

10−41

10−39

10−37

σ
p

[c
m

2
]

3 events/kg-yr

Ge, Massless Scalar Mediator

Threshold Energy
1 meV

20 meV

40 meV

60 meV

80 meV

100 meV

200 meV

1 eV

100 101 102 103

mχ [MeV]

10−51

10−49

10−47

10−45

10−43

10−41

10−39

10−37

σ̄
e

[c
m

2
]

3 events/kg-yr

2e −

Ge, Massive Dark Photon

Threshold Energy
40 meV

120 meV

200 meV

1 eV

100 101 102 103

mχ [MeV]

10−43

10−42

10−41

10−40

10−39

10−38

σ̄
e

[c
m

2
]

3 events/kg-yr

2e −

Ge, Massless Dark Photon

Threshold Energy
40 meV

120 meV

200 meV

1 eV

Figure 5.D.3. Cross section plots for a rate of 3 events/kg-year exposure for different thresholds
in Ge.

124



10−2 10−1 100 101 102 103

mχ [MeV]

10−47

10−45

10−43

10−41

10−39

10−37

σ
p

[c
m

2
]

3 events/kg-yr

Si, Massive Scalar Mediator

Threshold Energy
1 meV

20 meV

40 meV

60 meV

80 meV

100 meV

200 meV

1 eV

10−2 10−1 100 101 102 103

mχ [MeV]

10−47

10−45

10−43

10−41

10−39

10−37

σ
p

[c
m

2
]

3 events/kg-yr

Si, Massless Scalar Mediator

Threshold Energy
1 meV

20 meV

40 meV

60 meV

80 meV

100 meV

200 meV

1 eV

100 101 102 103

mχ [MeV]

10−51

10−49

10−47

10−45

10−43

10−41

10−39

10−37

σ̄
e

[c
m

2
]

3 events/kg-yr

2e−

Si, Massive Dark Photon

Threshold Energy
80 meV

120 meV

200 meV

1 eV

100 101 102 103

mχ [MeV]

10−43

10−42

10−41

10−40

10−39

10−38

σ̄
e

[c
m

2
]

3 events/kg-yr

2e −

Si, Massless Dark Photon

Threshold Energy
80 meV

120 meV

200 meV

1 eV

Figure 5.D.4. Cross section plots for a rate of 3 events/kg-year exposure for different thresholds
in Si.

125



10−2 10−1 100 101 102 103

mχ [MeV]

10−47

10−45

10−43

10−41

10−39

10−37

σ
p

[c
m

2
]

3 events/kg-yr

Diamond, Massive Scalar Mediator

Threshold Energy
1 meV

20 meV

40 meV

60 meV

80 meV

100 meV

200 meV

1 eV

10−2 10−1 100 101 102 103

mχ [MeV]

10−47

10−45

10−43

10−41

10−39

10−37

σ
p

[c
m

2
]

3 events/kg-yr

Diamond, Massless Scalar Mediator

Threshold Energy
1 meV

20 meV

40 meV

60 meV

80 meV

100 meV

200 meV

1 eV

100 101 102 103

mχ [MeV]

10−51

10−49

10−47

10−45

10−43

10−41

10−39

10−37

σ̄
e

[c
m

2
]

3 events/kg-yr

2e−

Diamond, Massive Dark Photon

Threshold Energy
200 meV

400 meV

600 meV

1 eV

100 101 102 103

mχ [MeV]

10−43

10−42

10−41

10−40

10−39

10−38

σ̄
e

[c
m

2
]

3 events/kg-yr
2e
−

Diamond, Massless Dark Photon

Threshold Energy
200 meV

400 meV

600 meV

1 eV

Figure 5.D.5. Cross section plots for a rate of 3 events/kg-year exposure for different thresholds
in diamond.

126



Ta
bl

e
5.

C
.1

.L
is

to
fp

ub
lic

fu
nc

tio
ns

in
D
a
r
k
E
L
F

re
la

te
d

to
m

ul
tip

ho
no

n
ex

ci
ta

tio
ns

fr
om

D
M

sc
at

te
ri

ng
.O

nl
y

m
an

da
to

ry
ar

gu
m

en
ts

ar
e

sh
ow

n;
fo

ro
pt

io
na

la
rg

um
en

ts
an

d
fla

gs
,s

ee
te

xt
an

d
th

e
do

cu
m

en
ta

tio
n

in
re

po
si

to
ry

.S
om

e
fu

nc
tio

ns
ar

e
on

ly
av

ai
la

bl
e

fo
rs

el
ec

t
m

at
er

ia
ls

,a
s

in
di

ca
te

d
in

th
e

ri
gh

th
an

d
co

lu
m

n.

D
M

-m
ul

tip
ho

no
n

sc
at

te
ri

ng
fu

nc
tio

n
de

sc
ri

pt
io

n
av

ai
la

bl
e

fo
r

d
R
d
o
m
e
g
a
_
m
u
l
t
i
p
h
o
n
o
n
s
_
n
o
_
s
i
n
g
l
e
(
o
m
e
g
a
)

D
iff

er
en

tia
lr

at
e

dR
/

dω
in

1/
kg

/y
r/

eV
al

le
xc

ep
tS

iO
2,

A
l 2

O
3

ex
cl

ud
in

g
lo

ng
-w

av
el

en
gt

h
si

ng
le

ph
on

on
s

R
_
m
u
l
t
i
p
h
o
n
o
n
s
_
n
o
_
s
i
n
g
l
e
(
o
m
e
g
a
)

To
ta

lp
ho

no
n

ra
te

in
1/

kg
-y

r
al

le
xc

ep
tS

iO
2,

A
l 2

O
3

ex
cl

ud
in

g
lo

ng
-w

av
el

en
gt

h
si

ng
le

ph
on

on
s

s
i
g
m
a
_
m
u
l
t
i
p
h
o
n
o
n
s
(
o
m
e
g
a
)

N
uc

le
on

cr
os

ss
ec

tio
n

to
pr

od
uc

e
3

ev
en

ts
/k

g-
yr

al
le

xc
ep

tS
iO

2,
A

l 2
O

3

127



Chapter 6

Wrap-up and Outlook

DM candidates in the keV ≲ mχ ≲ GeV mass regime have historically been underex-

plored, however experiments are in development to begin probing this parameter space through

e.g. the phonon excitation described in this Thesis. With the diphonon results of Chapter 4 and

the generic n phonon results of Chapter 5, we have a full, analytic description of the multiphonon

response in cubic crystal targets. Given the prior known results for single phonon excitations

at low energies, and nuclear recoil at high energies, these altogether provide a description

across the entire phase space depicted in Fig. 2.4. The theoretical work for sub-GeV thermal

candidates is not yet complete, however. For example, the isotropic approximation and crystal

structures assumed do not apply for anisotropic crystal targets, like sapphire. Additionally,

further numerical investigation of the validity of the incoherent and harmonic approximations

is required. Our results nevertheless provide the first estimate of scattering rates up to O(1)

theoretical uncertainties in the intermediate mass regime, informing experimental development.

With the community turning toward other motivated candidates and searches amidst the WIMP

parameter squeeze, our results provide an understanding of LDM signals which may be probed

experimentally within the next decade. Continued experimental improvement to decrease energy

thresholds may yet even foray into the single phonon regime, covering the entire mass range of

sub-GeV thermal DM candidates.
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Martinelli, M., Martı́nez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meerburg,
P. D., Meinhold, P. R., Melchiorri, A., Mennella, A., Migliaccio, M., Millea, M., Mitra,
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