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Abstract

Fullerenes and their clusters exhibit a diverse range of interesting electronic,

magnetic, structural and chemical properties. This work looks at using an an-

alytical model to give a sound physiochemical description of multiply charged

fullerene clusters. Using the model introduced by Lindgren et al. in 2018,

based upon the solution proposed by Bichoutskaia et al. in 2010, with added

considerations of the dispersion effects, we can better understand the mech-

anisms of fullerene aggregate behaviour in a less computationally expensive

manner. We provide an insight into the aggregation and fragmentation pro-

cesses occurring in experiment and reproduce the results for minimum stable

cluster sizes that have been seen experimentally. Finally, we draw predictions

on clusters with charges not yet modelled computationally.

Alongside fullerene clusters, the assembly of nanoparticles of two different

materials into Binary Nanoparticle Superlattices (BNSL) has been proven to

be a cheap and effective route to producing a wide variety of materials with

properties desirable for use in novel applications. Experiments have shown

that the presence of charge is integral to the formation of ordered arrays.

However, analysis of the forces responsible have been limited to pairwise in-

teractions. To control the structure and morphology of novel BNSL struc-

tures, an in depth understanding of the forces responsible for long-range order

are required. Here, our many-body electrostatic solution has been applied to

seven frequently observed superlattice structures and has shown that multi-

polar interactions contribute significantly to lattice energy and thus stability.

Additionally, a combination of AB and AB2 BNSL structures, which have not

been observed experimentally, are modelled in order to investigate whether

many-body electrostatic interactions are sufficient to stabilise such structures.

Coulombic and multipolar contributions to the interaction energy are inves-
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tigated as a function of component ratio, allowing a comparison between the

value of the minimum electrostatic energy to that found at the maximum pack-

ing fraction in hard-sphere theory.

Ultimately, nanoparticle lattices and endohedral fullerenes have both been

identified as potential building blocks for future electronic, magnetic and op-

tical devices. Here it is proposed that it could be possible to combine those

concepts and design stable nanoparticle lattices composed of binary collec-

tions of endohedral fullerenes. The inclusion of an atom, for example Ca or

F, within a fullerene cage is known to be accompanied by a redistribution of

surface charge, whereby the cage can acquire either a negative (Ca) or positive

(F) charge. It is predicted that certain binary combinations could result in

the formation of stable nanoparticle lattices with the familiar AB and AB2

stoichiometries. Much of the stability is due to Coulomb interactions, how-

ever, charge-induced and van der Waals interactions, which always enhance

stability, are found to extend the range of charge on a cage over which lattices

are stable. An extension of the calculations to the fabrication of structures

involving endohedral C84 is also discussed.
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Chapter 1

Introduction

From huge flashes of lightning that illuminate the sky around them, to the

crackling sound that takes you by surprise when you take off your jumper, and

your TV screen which collects dust a little quicker than other items —these

are all phenomena caused by electrostatics, one of the four fundamental forces

in our, sometimes discretely, electromagnetic world. The other three are grav-

itational, weak and strong. The latter two are especially short-range due to

being restricted to the nuclei of atoms and thus only become centre stage in

the study of nuclear physics. The gravitational force is familiar to us all from

a young age. We witness it constantly - from apples falling from trees onto

heads, the governing of our planets, stars and galaxies and the fact we aren’t

floating around but instead bound to the ground. Although it may become

blindingly obvious when we see lightning bolts emerge from the clouds, the ex-

tent of phenomena that we can thank electromagnetism for may not be known

to the uninformed person right away.

1
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1.1 The History of Electrostatics

The electromagnetic force is the physical interaction between electrically charged

particles and is known to be significant even when only small quantities of

charge are involved. Of all fundamental forces, the electromagnetic is the only

one which is fully understood at present, being fully described by the branch

of physics named electromagnetism[10]. The electromagnetic theory was grad-

ually developed through the work of iconic scientists, including Coulomb,

Ampère, Faraday and Ørsted. It was Maxwell, in the 19th century, that pre-

sented a unified form of the theory. Although nowadays many of us have a very

unconsciously reliant relationship with electricity, unconsciously that is until

there is a power cut, electric phenomena have been the cause of wonder for

millennia. A classic example is the vast build-up of charge in clouds leading to

thunder and lightning, which was interpreted by many as being caused by the

weapons of angry gods such as Zeus’s sending down his thunderbolt to punish

the ancient Greeks.

It all started with amber. The word electricity comes from the Latin term elec-

trum, which is derived from the Ancient Greek word for amber, elecktron. The

first electrical experiments in 600 B.C were based on amber, where Thales

of Miletus noticed that amber which had been rubbed with wool, attracted

lighter objects. This is because amber gained electric charge by rubbing and

this was the first documentation of the effects of static electricity[11, 12]. For

a long time after this, the Greeks thought that this phenomenon was unique

to amber but, as we now know, when one object is rubbed with another, they

both become charged. In a normal state, all atoms in an object contain an

equal number of electrons and protons but, when one object is rubbed with

another, electrons from one object will move to the other causing it to have

more electrons than protons and thus become negatively charged. Similarly,

the object that donates electrons will now be positively charged. The interac-
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tion between these electrically charged particles, alongside gravity, governs a

broad number of the interactions of everyday life. Although electrostatically

induced forces may seem weak - the electrostatic force between an electron

and proton in a hydrogen atom is over 40 times stronger than the gravita-

tional force between them.

Fast forward to 1600 AD and Englishman William Gilbert, the court physi-

cian to James VI, I and Elizabeth I, is looking into these electric phenomena.

Although there is no evidence that he was able to describe electricity, he was

able to prove that there are differences between electricity and magnetism[13].

Until this point, it was commonly thought that magnetism and electricity were

variations of the same thing but Gilbert was the first to indicate that they were

separate things. He stated, for example, that a magnet always behaved like a

magnet and didn’t require rubbing. Amber, however, didn’t show any electric

effect without rubbing.

After this began the Franklin era. Most notably, he conducted an experi-

ment to prove that lightning was electrical. He decided to fly a kite during a

thunderstorm in order to collect electrical charge in Leyden jars[14]. Franklin

developed what he called a ‘single fluid’ model of electric charge which states

that an object with an excess of fluid would have one charge, whereas a deficit

would lead to the opposite charge. The other proposed model at the time

involved two fluids, one positive and one negative. The debate eventually was

settled to agree with Franklin just over a century later[15]. We can also thank

Franklin for a range of electrical terms still in use today such as charge, con-

ductor, battery, positively and negatively. Additionally, his model led to what

we now know as the Law of Conservation of Charge where the net amount

of electric charge produced in any process is zero. In other words, the under-

standing that we can move charges around but cannot create nor destroy them.



Chapter 1. The History of Electrostatics 4

When we charge an object by rubbing we notice that the charge only lasts a

while. But if it can’t be destroyed, where does it go? Most of the charge will

disappear off into thin air. Well, kind of. It will dissipate into water molecules

in the air. The polarity of water means that it has a side that is more nega-

tive and another which is more positive and this positive end can temporarily

grab electrons. This is why we tend to see more static electricity in the colder

months as the air is drier and so electrons aren’t picked up as frequently.

Scientists created sensitive devices for detecting “electrification”, also known as

electrostatic charge imbalance, in the late eighteenth century. The phenomena

of contact electrification, often known as contact tension, was quickly discov-

ered. When two objects were touched together, the objects sometimes became

charged spontaneously. One object developed a net negative charge, whereas

the other developed a positive charge of equal magnitude. Scientists sought

to explain how electricity is generated in an electric battery, or the Voltaic

pile as it was then known, based on the observation of contact electrification.

This idea was subsequently superseded by the present electrochemistry the-

ory, which states that electricity is generated by chemistry and the exchange

of electrons between the atoms that make up the battery. The finding that

corrosion, or chemical degradation of the battery, seemed unavoidable with its

usage, and that the more electricity was pulled from the battery, the faster the

corrosion progressed, led to the rejection of the idea of contact tension.

The Volta effect corresponds to a weak electric potential that is created by

the interaction of various metals. Alessandro Volta was the first to discover

this effect, which may be measured with a capacitance electroscope made up of

several metals. The actual effect, however, is insufficient to account for the op-

eration of electric batteries. Between the early 1800s and the 1830s, a number

of high voltage dry piles were developed in an attempt to explain static elec-

tricity, specifically to support Volta’s contact tension hypothesis. One example
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is the Oxford Electric Bell. Physicists assumed static electricity was different

from other types of electricity until 1832. It was then that Michael Faraday

reported the findings of an experiment demonstrating that magnet-induced

electricity, voltaic electricity produced by a battery, and static electricity were

all the same. The history of static electricity has since fused with the study of

electricity in general since Faraday’s result.

The principles of electrostatics play a leading role in a vast number of technolo-

gies, namely batteries, fuel cells, thermocouples, electroplating, photocells and

light-emitting diodes (LEDs). However, if not managed, electrostatic interac-

tions can lead to an undesirable accumulation of charge, which can damage

some electronic components during manufacture.

1.2 Basics of Electrostatic Theory and Polar-

isation of Matter

The study of electrostatics begins with Coulomb’s law. It has now been 236

years since Coulomb published his famous law which states that the force

exerted by a point charge on another is directly proportional to the product

of their magnitudes and inversely proportional to the square of the distance

separating them[10]:

|F|= K
|q1q2|
r2

, (1.1)

K is the constant of proportionality in Coulomb’s law, known as Coulomb’s

constant and is equal to 1/(4πε0), where ε0 is the electric permittivity of free

space and K ≈ 8.987 551 792 × 109 N m2 C−2[10]. While this gives only

the magnitude of the interaction, taking the sign of the product q1q2 reveals

whether the interaction is attractive (q1q2 < 0) or repulsive (q1q2 > 0). In
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vector form, a system with 2 point charges (i = 1, 2) in a vacuum, each with

their own charge qi and position ri, experiences an electrostatic force F1 on

point charge 1 equal to

F1 =
q1q2
4πε0

r1 − r2

|r1 − r2|3
=

q1q2
4πε0

r̂12

|r12|2
(1.2)

where r12 = r1 − r2 and r̂12 =
r12
|r12| , a unit vector from point charge 2 to point

charge 1. The force between two charges acts along the vector between the

two and, obeying Newton’s third law of motion, is equal in magnitude and in

opposite directions on each charge (F2 = −F1).

The Coulomb force F on any charged particle can also be seen as being equal

to the product of the electric field E and the charge of the particle q, and is

given as

F = qE. (1.3)

The electric field Ei generated at an arbitrary position r0 by point charge qi

at position ri is given by

Ei(r0) = K
qi

|r0 − ri|2
r̂0i. (1.4)

Coulomb’s law, however, cannot generally describe interactions involving a

charged particle of finite-size such as a system with unbalanced negative and

positive charges. This is because in the presence of an electric field generated

by an external source, charges in a finite sized particle might be redistributed

before they assume a static, equilibrium position. It is only when, and if,

the static charge positioning is known that Coulomb’s law can be effectively

applied. The response of a material to an external electric field, E, such as

that created by a point charge(s) in a charged object, depends on the nature

of the specific material. Most matter in nature can be classified as either a
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conductor or a dielectric - each category with its own set of distinct properties.

A material is considered an electrical conductor when there are charge carriers

within the material that are free to move in one or more directions through

the bulk of the material when exposed to an electric field. An example of

this would be a metal. When placed in an electric field electrons, which are

only loosely bound to the atoms, will move until the whole material is an

equipotential with no value of E in its interior. Dielectrics have a much more

dilute reaction to an electric field. Dielectrics have their charges bound to

the atoms within the material, meaning that they are electrically insulating

and poor conductors of electric charge. In a dielectric material, the charge

is split into two types of charges, “free” and “bound”. Free charge is the

charge that is present in excess and can move into electrostatic equilibrium

but remains immobile during interaction; the latter assumption is justified by

the zero mobility of free charge carriers. This condition also implies an absence

of free charge inside the particle, so that only charge on the surface needs to

be considered. Bound charge, on the other hand, is due to the polarisation

of atoms or the reorientation of polar molecules to create a series of dipoles

aligned within a field, as shown in Figure 1.1.

Figure 1.1: An exaggerated visualisation of a particle composed of a polar molecule
in the absence of an electric field (left) and exposed to an electric field (right).

The polarisabilty, α, of an atom or molecule is the tendency of the charge

density of the atom to be distorted from its natural shape due to influence
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from an electric field, and is defined by the strength of the electric dipole

moment, p, induced by an external electric field, E, as defined by:

p = αE (1.5)

In polar molecules there are additional contributions to polarisability including

their intrinsic dipole from the arrangement and electronegativity differences

in the constituent atoms. When a dielectric material is placed under the

influence of an external electric field, each atom is polarised in this way. Every

corresponding small induced dipole created across the bulk and extending to

the material’s surface accumulates so that the object in its entirety becomes

polarised, resulting in the production of bound charges at the surface as shown

in Figure 1.2.

Figure 1.2: a) Illustration of a neutral, unperturbed dielectric material. b) The
same object, polarised by an external electric field E. Note that although in the bulk
(shaded in a lighter colour) the charges of opposite sign due to adjacent dipoles
cancel, this does not occur at the surfaces. This leads to the accumulation of bound
charges.

This effect can be described in terms of the polarisation, P, defined as dipole

moment per unit volume, related to a moderate applied field, E, as defined as:

P = ε0χeE, (1.6)

where χe is the electric susceptibility which is a dimensionless constant of

proportionality that implies the degree of polarisation in a material under the
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influence of an electric field, E. The electric susceptibility is more commonly

expressed in terms of the relative permittivity, also known as the dielectric

constant, k, of the material as such:

k = χe + 1, (1.7)

where k is the ratio of the absolute permittivity of the material (ε) and the

permittivity of free space (ε0) as defined as:

k =
ε

ε0
, (1.8)

By substituting k = 1 in Equations 1.7 and 1.6, respectively, we can note that

a material with a dielectric constant of 1 will not become polarised by an exter-

nal electric field. If a non-polarisable material is neutral, and so has an equal

number of negative and positive charges, it will be completely unresponsive to

an applied electric field - an example of this would be air. This is because in

a neutral non-polarisable material, no bound charges can be induced meaning

that the electric field can pass through the material completely unperturbed.

Many common materials with low dielectric constants are also non-polar, such

as wood, oils and plastic and when placed in an electric field, we would see

that these materials become weakly polarised. Water has a significantly higher

dielectric constant, as well as some ceramics and some nitrogen-substituted

compounds such as ammonia. Whilst under the influence of an electric field,

the dipoles in the material are enhanced and align with the field, polarising the

material. The material is then able to better counterbalance the magnitude of

the field strength through the extent of the material itself.
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The dielectric constant value is a bulk property. This means that when we use

it out of this context, it loses its integrity. In the description of a small particle,

it is more appropriate to use a parameter, as given by the Clausis-Mossotti

relation in

α =

(
k − 1

k + 2

)
4πε0a

3 (1.9)

Equation 1.9[16]. This parameter, α, reflects the total polarisability of the

particle by treating it as a sphere of dielectric constant k and radius a.

1.2.1 Method of Image Charges

A solution to the complex problem of how charged dielectric particles inter-

act with each other has been the focus of discussion for many years. Early

models created to describe the interaction between charged particles used rel-

atively simple boundary conditions and were mainly aimed towards conducting

spheres, stemming from the studies by Thomson (a.k.a Lord Kelvin)[17, 18]. It

wasn’t until 1964 when Davis published a bispherical coordinate system to de-

rive an expression for the electrostatic force[19] that a complete solution for the

the interaction between two conducting spheres was established. Such a model

is still in use today in areas such as cloud physics, where it is highly effective

due to the high polarisability of water. However, many situations such as dust

particles in space, [20] suspensions of colloidal spheres,[21] the behaviour of vol-

canic ash[22] and charge scavenging in coal-fired power stations[23] all involve

non-conducting particles and so cannot be modelled by Davis’ model, high-

lighting the significant benefits to research that would be presented by finding

a general, convergent solution to the problem of interacting dielectric particles.

A number of novel and more sophisticated approaches to computing the elec-

trostatic interactions between charged particles, whether dielectric or conduct-

ing, have recently been published in the literature. Many of the proposed solu-
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tions for the dielectric particle interaction problem, in particular, have relied on

the early conducting sphere solution and utilised Lord Kelvin’s image charge

approach[17, 18]. The image charges technique is a mathematical methodol-

ogy for solving differential equations that gets its name from the domain of

the sought function (Φ) being extended by adding its mirror image across the

interface[10]. The image theory states that a given charge configuration above

an infinite grounded perfect conducting plane may be replaced by the charge

configuration itself, its image, and an equipotential surface in the place of the

conducting plane as seen in Figure 1.3.

Figure 1.3: a) Point charge and grounded conducting plane. b) Image configuration
and field lines. Q is a point charge and the electric field at arbitrary point P can
now be calculated using Coulomb’s law.

This results in the problem being solvable by Coulomb’s law instead of having

to solve Poission or Laplaces’s equations. In applying the image method, two

conditions must always be satisfied. The first is that the image charges must

be located in the conducting region. Secondly, the image charges must be

located such that the electric field on the surface of the conductor is zero or

constant.

When the plane is dielectric rather than conducting, it can be treated nearly

identically with minor changes. In this scenario, the charge of the image q’
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formed by a point charge Q is no longer -Q, but is instead governed by the per-

mittivity of both the plane k1 and the medium that includes the point charge

k0, as given by the relationship:

q′ =
k0 − k1
k0 + k1

Q. (1.10)

We may determine that there are three possible interactions based on this re-

lationship. An attractive interaction occurs when the plate is more polarisable

than the medium (k1 > k0), resulting in an opposite-charge interaction. If the

medium is more polarisable than the plate (k0 > k1), the image charge q’ takes

on the same sign as the source charge q, and the interaction with the plate is

repulsive. When the medium’s and plate’s polarisabilities are equal (k0 = k1),

q’ becomes 0 and there is no interaction with the plate.

For basic systems with one polarisable boundary, the approach of image charges

works exceedingly well, but when the complexity is increased to even two po-

larisable boundaries, an unlimited number of image charges are required to

compute. This means that escalating the complexity to many-body interac-

tions becomes progressively more computationally costly.



Chapter 2

Theory

2.1 Electrostatic Interactions between Two Charged

Particles of Dielectric Materials

In 2010, Bichoutskaia et al.[24] introduced a general solution to the problem

of two interacting spherical particles of arbitrary size, dielectric constant and

electrical charge, covering a full range of separation distances including the

point of contact. The particles are assumed to be electrically non-conducting,

where the definition of electrical conductivity is defined as the product of car-

rier mobility and charge density[10]. This said, a non-conducting case carries

the implication of the absence of free charge carriers in the system or if free

charge is present that there is no mobility for the carriers.

The model is a general solution for calculating the electrostatic force between

charged spheres composed from a dielectric material. The model in its simplest

form, shown in Figure 2.1 presents the electrostatic interaction between a pair

of suspended dielectric particles (i = 1, 2), with arbitrary net charge of qi, radii

ai, dielectric constant ki, in a surrounding dielectric medium with constant km.

The spheres are separated by a surface-to-surface separation of s and a centre-

to-centre separation of h.

13
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Figure 2.1: A geometric description of two suspended, dissimilar dielectric spheres
interacting in vacuum. Sphere 1 and sphere 2 each have their own radii (a), dielectric
constants (k) and charges (q) and are separated by a surface-to-surface separation
of s. r denotes the vector for a physical position relative to particles 1 and 2, β is
the angle that vector r makes with the vector from 1 and 2, vector z.

It is assumed that the free charge is uniformly distributed on the surface of

a charged dielectric particle, which corresponds to the lowest-energy config-

uration, and remains immobile during interaction; the latter assumption is

justified by the zero mobility of free charge carriers. This condition also im-

plies an absence of free charge inside the particle, so that only charge on the

surface needs to be considered:

σf =
q

4πa2
(2.1)

where there is no charge present in the volume of the sphere. The total surface

charge density (σ) on a particle can then be written as a sum of the contribu-

tions from the bound charge density (σb) and the free surface charge density

(σf ) as such:

σ = σb + σf (2.2)

where the bound surface charge density is a dynamic quantity that varies with

the separation between the interacting particles.
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In addition to the condition that the electric potential (Φ) vanishes at infin-

ity, there are three additional boundary conditions applied in the model. The

electric potential (Φ) created by the free charge residing on the surface of each

particle satisfies the standard boundary conditions in electrostatics:

i. The continuity of the electric potential on the surface of each sphere due to

the continuity of the tangential component of the electric field.

n̂× (EB − EA) = 0 (2.3)

ii. The discontinuity of the normal component of the electric field due to the

presence of the permanent charge on the surface of each sphere.

n̂ · (EB − EA) =
σ

ε0
(2.4)

iii. The discontinuity of the normal component of the dielectric displacement

field due to the presence of a free charge on the surface of each sphere.

n̂ · (DB −DA) = σf (2.5)

Where n̂ is a unit vector perpendicular to a point of interest on the surface

of each sphere, the subscripts ‘A’ and ‘B’ denote radial positions just below

and above the sphere’s surface, respectively, and ε0 is the permittivity of free

space. The electric displacement field D is by definition related to the electric

field E as:

D = kiε0E. (2.6)

The electrostatic force between two spheres F12 with the presence of surface

charge on each is calculated from a generalisation of Equation (1.2) and is
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given by

F12 = K

∫
dq1(r1)

∫
dq2(r2)

r̂12

|r1 − r2|2
, (2.7)

where r1 and r2 are position vectors at the surface of spheres 1 and 2 respec-

tively, K is Coulomb’s constant, and dq1(r1) and dq2(r2) are the corresponding

charge elements. The first term
∫
dq1(r1) accounts for the charge on sphere

1, whereas the rest of the equation accounts for the electric field generated by

the charge on sphere 2, similar to Equation (1.4). From this, the electrostatic

force F12 is evaluated using a Legendre polynomial expansion of the electric

potential (Φ) generated by each sphere as they interact. The total surface

charge distribution is evaluated as a function of h. Integrating the charge over

the surface leads to an analytical expression for the force in the form:

F12 = − 1

K

∞∑
l=0

A1,lA1,l+1
(k1 + 1)(l + 1) + 1

(k1 − 1)a2l+3
1

, (2.8)

where a negative value for F12 indicates attraction, and repulsion for positive

values. The multipole moment coefficients A1,l account for the dependence

of F12 on h, and also describe the mutual polarisation of interacting spheres

as a function of their charges (q1/q2), dielectric constants (k1/k2) and radii

(a1/a2), with the equations describing A1,l deduced in Bichoutskaia et al.[24],

and leading to the force being expressed as:

F12 = K
q1q2
h2

− q1

∞∑
m=1

∞∑
l=0

A1,l
(k2 − 1)m(m+ 1)

(k2 + 1)m+ 1

× (l +m)!

l!m!

a2m+1
2

h2m+l+3
− 1

K

∞∑
l=1

A1,lA1,l+1
(k1 + 1)(l + 1) + 1

(k1 − 1)a2l+3
1

.

(2.9)

The first term in Equation (2.9) accounts for the monopole-monopole interac-

tion, which is functionally equivalent to Coulomb’s law with the interaction be-

tween point charges at the centre of each particle. The second and third terms

account for the mutual polarisation of the charge densities of the particles, and
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is always attractive in vacuum, with the magnitude of the interaction being

a function of the dielectric constant, k. In the case of like-charged particles,

particular combinations of q, a, and k can cause attractive polarisation inter-

actions that overcome the repulsion of the coulombic interactions sufficiently

enough that the overall force is attractive between like-charged particles.

2.2 Many-Body Electrostatic Interactions

A two-body electrostatic interaction can provide an adequate description of

many underlying physical phenomena in the theoretical study of charged par-

ticles. The behaviour of volcanic ash[25], the stability of colloidal particles in

dilute solutions[26] and parts of the cloud formation process[22] are just some of

the systems accurately characterised by models that give electrostatic solutions

for charged materials and can be applied to the interpretation of experimental

findings. That being said, there are numerous cases that involve interactions

between more than two charged particles and a description of two-body inter-

actions is not sufficient for a quantitative description of the processes. Under

these circumstances, a solution to model more complex systems where multi-

ple particles are interacting would be required. Examples include but are not

limited to: fullerene clusters[27], Coulombic crystals[28], concentrated colloidal

systems[29], electrostatic self-assembly[30] and as of recently, superlattices[31].

Generally, a two-body interaction arises when the presence of electric energy

in one of the particles creates an electric field, which induces a redistribution

of surface charge and/or the polarisation of bound charge on a second particle

that, in turn, generates its own electric field, thus prompting the same effect

back on the first particle. This iterative process results in an equilibrium state

where both of the particles acquire a static configuration that can either be

attractive or repulsive. If a third particle is introduced into a two-body sys-
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tem, the aforementioned iterative process is now taking place between all three

particles, altering the equilibrium state of the system.

A number of solutions to calculate the electrostatic interactions in many-body

systems can be found in the literature[32, 33], with most being dependent

on image-charge methods. Describing the electrostatic interactions in many-

body systems is an intrinsically more complicated problem, with an accurate

description of problems by such methods becoming limited in regard to compu-

tational time. This is particularly the case when the system being considered

requires a large number of corresponding “images” or multipole terms[34]. Ad-

ditional complications to be considered for the many-body problem are that

simplifications based on symmetry assumptions can no longer be allowed if

three or more particles are involved, and the induction of bound charges due

to polarisation effects in a particle, coupled with the same process in all parti-

cles, means that pairwise interactions can no longer be resolved independently.

In this work, a general solution based on an integral equation approach to

the problem of calculating electrostatic interactions between many dielectric

spherical particles by Lindgren et al.[34] is presented. The solution can pro-

vide an accurate, quantitative description of the physical characteristics of the

electrostatic problem, with an important feature of being very computationally

efficient. The theory has been published[34] and proven to produce an effective

generalisation of Bichoutskaia’s[24] two-body solution, showing agreement of

numerical results for any calculated physical quantity and converging up to

the point where the particles touch. Therefore, it can be utilised as a force

field for particle dynamics simulations, as presented elsewhere[35].

The solution is able to treat a number, M, of particles with arbitrary size,

charge, dielectric constant and position in three-dimensional space, embedded
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in a homogeneous medium of an arbitrary dielectric constant.

Figure 2.2: Geometric representation of the system comprised of M non-
overlapping spherical particles Ω1, . . . ,ΩM with radius ai, dielectric constant ki, and
centred at xi, surrounded by a homogeneous medium of dielectric constant k0.

The considered system, illustrated in Figure 2.2, can be described in terms of

the collection of M non-overlapping spherical particles Ω1, . . . ,ΩM in a three-

dimensional space, whereby each Ωi(i = 1, 2, . . . ,M) has a radius, ai, and

position ri = (ri,x, ri,y, ri,z). The dielectric constant within each particle Ωi is

denoted by ki ≥ 1. For the purpose of this work, we will look at the system at a

particular snapshot in time so that, in effect, the physical system is considered

to be at rest. Particles are often described as hollow spheres ({Ωi}Mi=1) with

surfaces {Γi}Mi=1. The surfaces of the dielectric particles represent the boundary

Γ between the interior Ω− and the exterior Ω+ of the particles. Note that the

global values for both the boundaries are defined as:

Γ0 = Γ1 ∪ . . . ∪ ΓM ,

Ω0 = Ω1 ∪ . . . ∪ ΩM .

(2.10)
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Each particle carries a free charge, qi uniformly distributed over its surface

and represented by a surface charge density σf,i = qi/(4πr
2
i ) that is completely

supported at its boundary, Γi such that a global function can be defined:

σf (x) =


σf,i at all boundaries

0 otherwise.

(2.11)

The electrostatic force due to the presence of a total charge on the surface of

each particle is calculated from a generalisation of Coulomb’s law for point

charges and is given by:

F12 = K

∫
dq1(r1)

∫
dq2(r2)

r̂12

|r1 − r2|2
, (2.12)

where r1 and r2 are position vectors at the surface of spheres 1 and 2 respec-

tively, K is Coulomb’s constant, and dq1(r1) and dq2(r2) are the corresponding

charge elements. If the electric potential (Φ) created by a free charge (σf,i),

residing on each particle can be determined, then the electrostatic energy U

follows directly from[10, 36].

U(Φ, σf ) =
1

2

∫
Γ0

σf (s)Φ(s)ds. (2.13)

where exclusively for this use, s denotes a point on the surface of a parti-

cle and not the surface-to-surface separation. Equation 2.13 gives the total

electrostatic energy of the system, and the net electrostatic force on each par-

ticle, Ωi, is obtained as the gradient of the energy with respect to changes in x.

More information on the enhancement of the electrostatic solution and the

formation of the many-body problem is included in Section A.1. Since the

original publication of the two-body electrostatic solution, the theory has had
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continuous development to the point where now there is a huge and versatile

range of applications - some of which are highlighted in Table 2.1.

2.2.1 Fast Multipole Method

The model benefits from the implementation of a modified Fast Multipole

Method (FMM), which renders an algorithm into linear complexity with re-

spect to the number of particles in the calculation. FMM reduces the number

of calculations needed for each particle by creating a grid where the electro-

static potential for particles within an individual cell in the grid is averaged

to a single point. This means that any particle outside the cell only has to

to interact with the single averaged point charge instead of every particle in-

side each grid. This drastically reduces the number of calculations required

and makes the computation of large lattice structures more computationally

efficient. If no FMM is used, the complexity of a general three-dimensional

particle configuration scales with the fourth power of the degree of spherical

harmonics utilised in the underlying expansions, and it scales with the third

power with the more efficient FMM-embedding. Further details on the FMM

implementation can be found in [34, 37].
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Table 2.1: Applications of the electrostatic solution.

Application Description Reference
Highly Charged
Fullerene Clusters

Computational predictions of the fragmentation pathways for multiply charged
fullerene clusters using many-body theory and PPR dispersion considerations.

Miller et al.(in prep.)[5]

Binary Nanoparticle
Superlattices

Modelling seven frequently experimentally observed superlattice structures. Calcula-
tions show us that the induced multipole interactions can contribute up to ∼ 90% of
the lattice energy.

Lindgren et al.[38]

Endohedral Fullerene
Superlattice Stability

A series of studies looking at the many-body polarisation effects in endohedral fullerene
superlattices. The first investigates the electrostatic interaction energy for varying
particle charge combinations for a range of structures of AB-type to AB2-type.

Miller et al. [31]

Excess Charge in
BNSL Structures

In BNSLs, growth accompanied by an accumulation of non-compensated charge has al-
ways been considered as self-limiting and it will ultimately lead to instability, thus hin-
dering the formation of extended lattices. This work shows how adding small amounts
of excess charge can increase electrostatic stability in multiple lattice types.

Lindgren et al.(in prep.)

Polyoxometalate
(POM) Adsorption

A study into the effect of the solvent on the interaction between a neutral POM and a
charged plane. Solvents with high polarisability lead to repulsive polarisation interac-
tions between charged and neutral species.

Lindgren et al.[39]

Aerosol Aggregation
on Titan

The aggregation of negatively-charged particles in the atmosphere of Titan, one of
Saturn’s moons. The energy barriers for polar molecules are determined to be kT for
asymmetric systems, and the aggregation of polar and non-polar materials is compared.

Lindgren et al.[40]

Cloud Microphysics The coalescence of like-charged dust and ice particles in the upper mesosphere and
lower thermosphere of the atmosphere has been studied.

Baptiste et al.[41]
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2.3 The Addition of van der Waals Interac-

tions

In an attempt to explain why real gases didn’t obey the ideal gas law (PV =

nRT, where P is pressure, V is volume, n is the number of moles, R is the gas

constant and T is the temperature), physicist J.D. van der Waals investigated

the effect of attractive interactions between molecules. At this time, 1873, he

arrived at the famous equation of state for gases and liquids[16],

(
P +

a

V 2

)(
V − b

)
= RT, (2.14)

in which he subtracted the term b from the volume in order to account for the

finite size of the molecules. The addition of term a
V 2 to the pressure was to

account for the attractive intermolecular force we now know as van der Waals.

This simple equation gave a remarkably good account of the condensation of

gases into liquids, with the values of a and b corresponding well to properties

of molecules as we now understand them. By the beginning of the twenti-

eth century it was acknowledged that intermolecular forces weren’t of simple

nature and in 1903 Mie[42] proposed an interaction pair potential of the form:

w(r) = −A

rn
+

B

rm
(2.15)

where A and B are parameters are related to the constants a and b in the van

der Waals equation and r is the distance of separation between both particles

(measured from the centre of one particle to the centre of the other particle).

This was the first inclusion of a repulsive term as well as the attractive term.

Although this approach has since been superseded, the forces of attraction and

repulsion between molecules are still often named ‘van der Waals’ interactions.

The Lennard-Jones potential is a variation of Mie’s work and was adopted by

Lennard-Jones in the 1920s. It sets the n in Equation 2.15 to 12, m to 6 and
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has values of A = 4εσ12 and B = 4εσ6. ε is the well depth and so is a measure

of how strongly the two particles attract each other, σ is the distance at which

the intermolecular potential surpasses zero and it gives a measurement of how

close two non-bonding particles can get and is thus referred to as the van der

Waals radius. It is equal to one-half of the internuclear distance between non-

bonding particles. req is the equilibrium distance of separation between both

particles (measured from the centre of one particle to the centre of the other

particle).

Figure 2.3: A typical intermolecular potential energy function. ε is the well depth
and so is a measure of how strongly the two particles attract each other, σ is the dis-
tance at which the intermolecular potential surpasses zero and req is the equilibrium
distance of separation between both particles.

Figure 2.3 shows the interaction energy as a function of the distance between

particles. The general features of the interaction potential remain as seen in

Figure 2.3 but the precise form of the function is dependent on the chemical
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species involved.

The van der Waals (vdW) forces involve momentary attraction between par-

ticles (atoms or molecules) and their origin lies at the atomic level. Although

vdW forces are the weakest of all intermolecular attractions they are om-

nipresent, and, in instances where contribution from van der Waals forces is

significant, the interaction can be very strong, playing a vital role in aggre-

gation of molecules. If we consider the full picture of interaction between

many-body systems, electrostatics alone is not enough.

2.3.1 Hamaker’s Solution

The original form of vdW interactions implemented in the electrostatic solution

was a variation of Hamaker’s non-retarded van der Waals interactions which

was developed to calculate the vdW interaction energy in vacuo between two

bodies with simple geometries. It makes the assumptions that the interaction

is additive as well as non-retarded. Equation 2.16 gives the interaction energy

between spherical bodies of smooth surfaces of radii a1 and a2 and was first

approximated by Hamaker[43] in 1937.

W (s) = −A

6

(
2a1a2

(2a1 + 2a2 + s)s
+

2a1a2
(2a1 + s)(2a2 + s)

+ ln
(2a1 + 2a2 + s)s

(2a1 + s)(2a2 + s)

)
(2.16)

Equation 2.16 considers a vdW interaction between two clusters (radii a1 and

a2) which are separated by a surface-to-surface separation of s. The total

energy of all interacting pairs is calculated and integrated over the total volume

of the object. A, the Hamaker constant is defined as:

A = π2 × C × ρ1 × ρ2 (2.17)
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ρ1 and ρ2 are number densities of the two interacting particles and C is the

coefficient in the particle-particle interaction.

Hamaker’s equation was added to the many-body code to give interaction en-

ergies which are a sum of the electrostatic and vdW interactions. In this work,

the first system tested was that of the simple neutral fullerene dimer. The

electrostatic interactions were calculated with the addition of Hamaker’s form

of the vdW interaction to produce an energy profile. As can be noted from

Equation 2.16, there is an inversely proportional relationship between the vdW

energy and the surface-to-surface separation, s. This means that as s tends

towards zero and the particles get closer to touching, the vdW energy tends

to negative infinity. This ultimately always leads to aggregation regardless of

the system as the vdW contribution overpowers all other effects. At first, a

limitation was added to Hamaker’s vdW equation in order to cap the mag-

nitude of the vdW interaction below an arbitrary minimum separation smin.

The issue arises here of accuracy. Although setting a limit solves the issue of

infinite attraction at short separations, smin is arbitrary.

The next step in reducing the magnitude of the vdW interactions at short

separations was to dampen the energy using a modified dampening function

presented by Mason et al [44]. The function shown in Equation 2.18 originated

from studying empirical corrections in DFT-D methods. The dampening func-

tion inherent in this correction has been modified to also include a description

of repulsion at small distances and has the form:

fdamp = 1− e
−β(

a1+a2+s
a1+a2

)−1
, (2.18)

where s is the surface-to-surface separation and β is a variable. Using this

dampening function gives similar results (Figure 2.4) to the original form at
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larger separations but provides a more realistic representation of dispersion at

short separations due to the additional consideration of repulsion.

Figure 2.4: The difference between Hamaker’s non-retarded vdW interactions alone
(red) and with the dampening function applied (blue) for a neutral fullerene C60

dimer.

As can been seen from Figure 2.4, application of the dampening function means

that when the surface-to-surface separation is zero the interaction energy be-

comes significantly smaller at ∼7 kcalmol−1. In order to test the validity of

continuing use of the dampened Hamaker, the results from Figure 2.4 were

compared to those from multiple well-known computational techniques. The

model was tested from intermolecular distances of 0 Å to 4 Å as it assumes

the particles to be hard spheres. However, for the computational techniques

referenced, data for overlapping atomic distances can be found[7]. With the

addition of the dampening correction, and so the addition of a repulsive con-

tribution at small distances, a much more suitable curve is seen in Figure 2.5.

The dampened dispersion is seen to give results that fit amongst those of the

techniques referenced at short separations and gives a much better fit that

when Hamaker’s equation is implemented.
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Figure 2.5: The difference in interfullerene potential between Hamaker’s non-
retarded vdW interactions alone (red) and with the dampening function applied (blue)
alongside different quantum approaches[7].

The calculations in Figure 2.5 were also repeated at significantly larger (s =

100 nm) separation distances to ensure that the interaction plateaued to zero

and there were no interaction at large separations, confirming the short-range

nature of the interaction was still present.

Although created to calculate the vdW interaction energy in vacuo between

two bodies with simple geometries, which is seemingly universal, there are

many drawbacks of the Hamaker model that make it an unideal fit. As men-

tioned, it is based upon some assumptions, two of which assume additivity

as well as the interaction being non-retarded. The neglect of the retardation

effect is not such an issue in this work. The retardation effect becomes impor-

tant when dealing with a liquid medium, so limits the breadth of theory this

code is relevant for. Hamaker’s equations are based on the assumption that

summation of all interacting pairs can be replaced by integration. For this to
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be valid, the separation between the two bodies must be large enough that all

interacting materials can be treated as continuous media. Therefore, at separa-

tions less than a few molecular diameters the ‘graininess of matter’ can become

an important factor. Additionally, pairwise additivity ignores the influence of

neighbour molecules on the interaction between a pair of molecules which we

know is present. Although this can be overcome, albeit through complicated

calculations, there are many other versions of treating dispersion interactions

which are more fitting. In addition, the dampening function introduced to

limit the infinite value of dispersion, although presenting results comparable

to other quantum-mechanic methods, was not designed to be used in the way

it has been in this research.

2.3.2 Pacheco and Prates-Ramahlo’s Approach

Before the work published by Pacheco and Prates-Ramahlo[5], most of the the-

oretical work carried out took the interfullerene interaction as that resulting

from the superposition of carbon atom-atom classical interactions[5]. In spite

of their success, these approaches have several drawbacks. Firstly, the inter-

fullerene interaction is basically taken as a two-fullerene interaction only. Fur-

thermore, each fullerene is usually treated as a superposition of non-interacting

carbon atoms, disregarding their individual character and the high stability of

the system. These are undesirable features which highlighted the need for a

more sound theoretical scheme to determine the interfullerene interaction. An

accurate calculation of the interaction specifically between C60 molecules was

performed by Pacheco and Praters-Ramalho[5], which from hereon out shall be

referred to as PPR. By application of first principles local-density approxima-

tion (LDA), the short-range part of the interaction potential is calculated. It

is recognised that LDA cannot describe the long-range forces accurately and so

the time-dependent-local-density-approximation (TDLDA) is used to evaluate

the long-range part of the interaction potential. More detail on the princi-
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Table 2.2: Coefficients implemented in the PPR potential for intermolecular inter-
action between two C60 cages.

C6(eV Å−6) C8(eV Å−8) C10(eV Å−10) C12(eV Å−12) CAT (eV Å−9)
21 N2

at 2534 N2
at 2.09 × 108 7.78 × 1010 21 N3

at

M0(eV) τ d0(Å) µ(Å) σ(Å)
0.3 9.75 10.3 10.05 1.04

ples of both LDA and TDLDA and their applications to cluster science are

described in a review by Calvayrac et al.[45]. The results of PPR were fitted

analytically in the following manner. The interaction potential is comprised

of two parts, a long-range and short range one.

The former is written as:

W (r) =
C6

r6
− C8

r8
− C10

r10
− C12

r12
, (2.19)

where the coefficients C6, C8, C10, C12 are computed using the TDLDA and r

is the distance between the particles. The values of the coefficients are listed

in Table 2.2 where NAT is the number of atoms in a single fullerene (60) and

CAT gives the magnitude of the Axilrod-Teller term.

The short-range part is written in the form of the Morse potential:

M(r) = M0exp

[
τ

(
1− r

d0

)]{
exp

[
τ

(
1− r

d0

)]
− 2

}
(2.20)

whereM0, d0 and τ are the Morse parameters (also in Table 2.2). The short and

long-range parts of the potential can be combined using a switching function

F (r). The two body parts of the potential can be written as follows:

V2(r) = F (r)×M(r) + (1− F (r))×W (r). (2.21)

Function F (r) is given by the expression:
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F (r) =
1

1 + exp[(r − µ)/σ]
(2.22)

So F (r) −→ 1 for r −→ ∞ and F (r) −→ 0 for r −→ 0.

The PPR potential includes not only a two-body part of the potential. but

a three-body consideration. This three-body term is called the Axilrod-Teller

interaction and is written as:

V3(r) = CAT

(
1 + 3cosγicosγjcosγk

rij3rjk3rki3

)
, (2.23)

where

rij is the distance between molecule i and j

γi is the angle between rij and rjk

and CAT gives the magnitude of the Axilrod-Teller term.

The contribution of the three-body force amounts to 6% of that of the two-

body interaction at the maximum - sometimes enough to change the global

minimum of structures of clusters[46].

Once the potential functions, two-body term V2, and three-body term V3, are

given, the total potential energy of the system can be written as:

Vtot =
∑
i,j

V2(rij) +
∑
i,j,k

V3(rij, rjk, rki) (2.24)

The three-body term of the PPR potential considers the interaction between

all possible combinations of three particles. When these three particles are

close to one another there is significant vdW energy but when they are further
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apart, there is minimal vdW contribution as can be seen in Figure 2.6.

Figure 2.6: Graph showing the PPR potential.

Originally, the PPR implemented in the code was rather computationally ex-

pensive as they were testing all combinations of three particles in the system

(systems now tested include over 4000 particles in this work). I have imple-

mented a cut-off for consideration of the interaction such as in Figure 2.7. It

is currently set to 25 Å, which is equivalent to 2.5 times the cage diameter

and is shown in Figure 2.7b. This has very significantly improved calculation

time and has made negligible difference to the energies calculated as seen in

Figure 2.8b.

Figure 2.8a shows the validation of the PPR potential implemented in MAT-

LAB. As PPR has been specifically developed as an interfullerene potential, we

know it is the best fit for investigating C60s in our model. In order to test the

implementation of the PPR potential into the many-body solution, the vdW
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(a) (b)

Figure 2.7: Figure (a) shows an example of a large distance cut-off distance for
3-body interactions. Figure (b) shows an example of the cut-off distance currently
used in MATLAB of 25 Å.

energy was calculated for fullerene clusters ranging from 3 to 150 fullerenes.

This was then compared to the energies listed in the Cambridge Landscape

Energy Database for the same cluster sizes using the PPR potential. As seen

in Figure 2.8a the values for the vdW energy at each size are the same.

(a) (b)

Figure 2.8: (a) The vdW energy for fullerene clusters of sizes 3-150 outputted from
the PPR potential in MATLAB (red circles) using a three-body radial cut-off distance
of 1000 Å and those values listed in the Cambridge Landscape Energy Database (black
line). (b) The vdW energy for fullerene clusters of sizes 3-150 outputted from the
PPR potential in MATLAB when the Axilrod Teller cut-off was set to 25 Å (red
circles) and 1000Å (black line).

Additionally, the difference in energy for setting the Axilrod Teller cut off to

1000 Å and 25 Å was investigated and illustrated in Figure 2.8b. It was found

that there is a negligible difference between a large and current cut-offs for

the Axilrod Teller term independent of structure size. Therefore the smaller
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cut-off can be implemented to reduce computational cost without impacting

accuracy.

2.3.3 Girifalco’s Potential

An expression for determining an appropriate interaction potential between

two Cx molecules was proposed by Girifalco[9]. The expression has been widely

used, like PPR, due to its considerable accuracy and simplicity. However,

unlike PPR, the Girifalco potential does not consider three-body interactions.

It assumes that the fullerene-fullerene interaction is the sum of the pairwise

interactions between the carbon atom of one fullerene molecule and that of

the other molecule. For each carbon-carbon interaction, the Lennard-Jones

potential is assumed and the interaction is averaged over the orientation of the

molecules. The Girifalco potential has the following form:

V = −α

(
1

s(s− 1)3
+

1

s(s+ 1)3
− 2

s4

)
+β

(
1

s(s− 1)9
+

1

s(s+ 1)9
− 2

s10

)
(2.25)

where s= r
2a

is the distance between the centres of the fullerene molecules di-

vided by the diameter of a single fullerene molecule so that the value of 2a is

7.1 Å for buckminsterfullerene[46]. Additionally:

α =
A(n2)

12(2a)6
(2.26)

and

β =
B(n2)

90(2a)12
(2.27)

where n is the number of carbons in the fullerene and the parameters A and

B were fitted to experimental data for the lattice constant and heat of subli-

mation.
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An advantage of Girifalco over potentials such as PPR is that it has not only

already been used in order to calculate several bulk properties of C60 and

C70[9, 47], but also for the determination of the liquid–vapor and liquid–solid

coexistence lines of C60, C70, C76 and C84 (see Ref[48] and references therein).

We note that a spherical representation of fullerene particles has also been

proposed by other authors[49–51] who, on the basis of simple topological con-

siderations, assume an average molecular diameter proportional to the square

root of the surface area of the molecule. Support for a spherical shape assump-

tion also comes from experimental determinations of the gyration radii of C60,

C70 and C84[52]. Work involved in this thesis considers the encapsulation of

metals into C60 fullerenes. However, in order to maximise charge transfer in

these systems, the encapsulation of molecules would be interesting to investi-

gate. This would ultimately require fullerenes larger than that of C60 and so

the Girifalco potential is also implemented into the electrostatic solution for

some of the work seen later on in Chapter 5. The difference in the Girifalco

intermolecular potential between C60-C60, C60-C84 and C84-C84 is plotted in

Figure 2.9 and shows that due to the larger cage size, interactions between C84

cages happen at a larger value of h and also have a more significant interaction

energy, implying that interactions between C84s are likely to be stronger than

those between C60 cages.
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Figure 2.9: The Girifalco intermolecular potential energy function for a C60-C60

interaction, a C60-C84 interaction and a C84-C84 interaction.

2.3.4 Theory Development

The many-body electrostatic theory described in Section 2.2 was coded into

MATLAB by Lindgren prior to his publication in 2018[34]. The code included

a van der Waal switch connected to Hamaker’s equation for dispersion that

had not yet been validated. As discussed in this work, Hamaker’s equation is

insufficient at accurately representing dispersion in large fullerene structures.

To account for this, I added both the PPR and Girifalco equations to the elec-

trostatic code. This meant that, depending on the system, one of these can

be switched on in the many-body electrostatics code. The calculated van der

Waal energy of the structure gets added to the Coulomb and polarisation en-

ergies to give a new total interaction energy. Additionally to this, I included a

radial limit on the three-body Axilrod-Teller term to reduce the computational

cost of these calculations.



Chapter 3

Investigating the Stability of

Multiply Charged Fullerene

Clusters

3.1 The Discovery of Buckminsterfullerene

Fullerene C60 was first discovered in 1985 by Kroto and colleagues[53] whilst

they were attempting to study the formation mechanisms of long-chain carbon

molecules in interstellar space. It is a nanostructured allotrope of carbon, along

with graphite, diamond, amorphous carbon, nanotubes and graphene, and has

significant interest in various science and engineering specialties. “Fullerene”

is the umbrella term for closed-caged structures of carbon which form large

spheroidal molecules consisting of a hollow cage and entirely pentagonal and

hexagonal plane structures, as shown in Figure 3.1. Although carbon clusters

of all sizes are referred to as fullerenes or “buckyballs”, the specific type of

fullerene referenced in this Chapter is the C60, or football-like molecule with

icosahedral symmetry.

A single fullerene has a closed-shell electronic structure and strong chemi-

cal bonds between the carbon atoms. Just like most atoms and molecules,

37
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Figure 3.1: Buckminsterfullerene, C60.

fullerenes can form clusters – referred to as “clusters of clusters”[46]. Fullerene

aggregates are abundant in nature in many different forms and have many po-

tential uses. For example, their interactions with graphene have been reported

to have exciting potential uses in nanotechnology such as in hydrogen fuel

cells[54]. Specifically, charged fullerene systems have been noted to have ap-

plications inclusive of biomedicine and molecular electronics[55] —provoking

considerable interest in the properties of such clusters.

The first experimental research undertaken on clusters of fullerenes was in 1993

by Martinet al. [56], who produced clusters of fullerenes (both C60 and C70) by

using a low-pressure, low temperature helium gas atmosphere to prompt the

condensation of fullerene vapour. This produced neutral clusters which were

then subsequently ionised by an excimer laser before time-of-flight (TOF) mass

spectrometry was used to produce a mass spectrum. The strong peaks seen in

the photofragmentation mass spectra of singly ionised fullerene clusters were

noted to be similar to those seen in rare-gas clusters, bearing significant resem-

blance to a charged (Xe)n spectrum and indicating the presence of structures

based upon Mackay icosahedra up to size n = 55. However, computational sim-

ulations have not reached the same conclusion, with many predicting that past

a certain size threshold (n) clusters should have a decahedral or close-packed

structure, with the value of n varies from 13-16 depending on the computa-
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tional model [57, 58]. It has been proposed by Rey et al.[59] that the transition

seen from icosahedral to the decahedral or close-packing structures is the result

of the short range interaction between single fullerenes, in comparison with its

diameter. This is also the proposed mechanism acting behind some of the more

peculiar behaviours of bulk C60, such as the limited temperature range for the

existence of the liquid phase[60].

In Martin’s first experiment, it was not only singly charged, but also doubly

and triply charged, clusters of fullerenes that were observed. For multiply

charged clusters, the values of n were very similar to the singly charged clus-

ter, giving the indication that the structure of the fullerene clusters is not

reliant on charge[46]. However, this was then contradicted by the aforemen-

tioned computational investigations which present a theory proposing[56] the

difference in experimental and theoretical results of the C60 structures can be

attributed, in part, to the fact that experimental work inferred conclusions for

only positively charged clusters whereas theoretical calculations have focused

on neutral clusters. A seemingly plausible explanation, is due to the large

polarisabilty of the C60 molecule, the addition of a long-range Coulomb term

could influence the structure of the clusters —favouring icosahedral configura-

tions.

This appeared a valid mechanism, but one which was disproven by Branz et

al.[61] when they conducted experiments on both charged and neutral C60

clusters. Their investigation included heating the clusters to definite tempera-

tures in a helium bath heating cell with subsequent characterisation by a TOF

mass spectrometer and found a 35% increase in binding energy of the charged

dimer compared to that of the neutral value. However, they also found that

this increase had no impact on the structure of the clusters and concluded that

the structure of C60
(n+1) clusters is insensitive to their charge state. The gen-

eral proposed reason for the rapid disappearance of the icosahedral structures
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therefore is charge independent and due to the short-ranged intermolecular po-

tential. With decreasing range of the potential, structures with high internal

strain, such as the icosahedra, are energetically less favourable as they involve

nearest-neighbour distances that deviate from the ideal pair separation.

3.2 Are Fullerenes Dielectric or Metallic?

There has been much debate[27, 62, 63] in the scientific community as to

whether or not fullerenes should be treated as dielectric or metallic in nature.

It is important to know how to model such particles in a range of applica-

tions such as descriptions of cluster polarisabilities, charge transfer processes

of fullerenes (and other spherical molecules) and force calculations between

spheres with varying sizes and dielectric constants. The debate centres around

whether or not it is possible to assign macroscopic properties to isolated C60

molecules and, if so, what is the permittivity value that best describes the

electronic response of C60 due to external electric fields. There is also little

known on whether this property would translate to a large cluster.

For our calculations, we suggest that fullerenes can be accurately represented

as dielectric particles[27]. Icosahedral C60 from experiment has a very large

HOMO-LUMO gap of 1.57 ± 0.03 eV[64]. As we cannot physically incorporate

a fullerene into an electric circuit, there are other characteristics that need to

be assessed to determine if it behaves as a dielectric or a conductor. The static

and dynamic polarisabilities of C60 have been calculated using experimental

data on the photoabsorption cross section[65]. It showed that C60 in a static

electric field behaves not as a conducting sphere, but as a collection of individ-

ual carbon atoms and that its static polarisability way exceeds that expected

of a conductive sphere[65]. These properties could be unique to C60 and may

not apply to fullerenes in general. As an example, Fowler and Pisanski[66]

indicate in their work that C20 represents the opposite extreme to that of C60
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as it has almost a zero HOMO-LUMO gap.

The value for the dielectric constant of a C60 fullerene cluster used in this work,

3.46, was taken from a publication by Nakamura et al.[4]. It was calculated

using the Clausius-Mossotti formula:

ki − 1

ki + 2
=

4π

3
ρα (3.1)

Where ρ = 1/σ3 and is the density of the fullerenes within the cluster and α

is the static polarisability of an isolated fullerene taken as 76.5 Å3, measured

by means of a molecular beam deflection technique[67], giving a corresponding

dielectric constant of 3.459. However, there have been varying accounts of

the value, with the most striking coming from experiment at a larger value of

4.4[68].

In order to assess whether or not larger fullerene clusters maintain the dielectric

nature of a single C60, we investigate a basic linear chain. Modelling a dielectric

five-body linear fullerene chain with two charges has numerous combinations of

charge placements. As Table 3.1 shows, the system is most stable when charges

are placed on the first and last fullerenes in the chain (p1=1 and p2=5 ). This

is unsurprising as Coulomb’s law shows that maximising the distance between

charges will minimise repulsion.

Table 3.1: The interaction Energy, Eint, Coulombic energy (ECou), polarisation
energy (EPol) and van der Waals energy (EvdW ) for a dielectric linear chain of C60 for
varying charge placements. p1 and p2 are positions of the charges and q1 = q2 = +1

p1 p2 EInt / eV ECou / eV EPol / eV EvdW / eV
1 2 -0.04 1.41 -0.20 -1.25
1 3 -0.67 0.71 -0.13 -1.25
1 4 -0.92 0.47 -0.15 -1.25
1 5 -0.99 0.35 -0.10 -1.25
2 3 -0.13 1.41 -0.29 -1.25
2 4 -0.74 0.71 -0.19 -1.25
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In terms of polarisation energy, we see that the maximum separation at po-

sitions 1,5 gives the lowest interaction energy as the reduction in Coulomb

repulsion is so great. When the charges are placed adjacent and centred, there

is the highest polarisation contribution to stability which would be expected

as when the charges are touching, negative surface charge will build up on one

sphere and positive on the other, leading to an attractive force. This induces

a build-up of charge where spheres touch one another, producing significant

polarisation. As the distance between the charges is increased, the polarisation

effect between them is decreased, hence the lowest polarisation energy is seen

in the (1,5) configuration.

Now that the most stable charge placement for the chain has been confirmed,

the fragmentation of the chain can be investigated in two ways as seen in

Equations 3.2 and 3.3. Clusters, and in this case chains, have limited spatial

extension with charges tending to move away from one another due to Coulomb

repulsion; consequently there will come a point where the attractive binding

energy is overcome. This phenomenon is called Coulomb fragmentation, or

Coulomb decay, named after the driving force for the effect occurring. For a

dielectric linear chain of five fullerenes with charges placed in positions with

the maximum separation, there are two main pathways for fragmentation as

can be seen in Figure 3.2.

(C60)
2+
5 → (C60)

+
4 + (C60)

+ (3.2)

(C60)
2+
5 → (C60)

+
3 + (C60)

+
2 (3.3)

Figure 3.3 is an energy profile of the fragmentation process of a linear fullerene

chain via the two differing pathways shown in Figure 3.2. The interaction en-

ergy Eint is the energy of the system relative to that of the linear chain (s = 0).
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Figure 3.2: Energy profiles for fragmentations in (C60)
2+
5 → (C60)

+
4 +(C60)

+ [red]
and (C60)

2+
5 → (C60)

+
3 + (C60)

+
2 [blue].

As the fragmentation begins to occur and the separation between the two

fragments increases, energy barriers arise for the two processes. The energy

barrier for the more symmetrical fragmentation (3.3), is seen to be noticeably

smaller (∼ 0.05 eV) than that shown by the emission in (3.2) making the more

symmetrical fragmentation the more energetically favourable and most likely

fragmentation pathway. In addition to this, the interaction energy of the frag-

ments is significantly lower than that of the chain and lower than that of the

fragments for fragmentation pathway 1, again confirming it to be the most

likely mechanism and confirming the instability of the chain conformation.

However, it cannot be stated that this is the only fragmentation occurring.

Pathway 1 sees the fragments becoming more stable than the chain, only to a

lower degree than that of pathway 2, indicating this fragmentation could also

occur, just less likely or less often than the more symmetrical splitting of the

chain.

In order to investigate the claims discussed above regarding the metallic be-

haviour of C60[62, 63], then we would assume the charge is delocalised across

the chain and does not reside on specific spheres like the results above. The
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Figure 3.3: Figure showing fragmentation of a dielectric linear chain by two dif-
ferent pathways as a function of the separation. Pathway 1: (C60)

+
4 + (C60)

+ [red].
Pathway 2: (C60)

2+
5 → (C60)

+
3 + (C60)

+
2 [blue]. The colour bar denotes the values of

surface charge density present on the particles.

model is based upon simulating spherical, dielectric particles but still has the

capability to model a system as either metallic or dielectric by varying the

value of the dielectric constant and the charge distribution. In this work,

when referred to as being modelled in a ‘metallic’ nature it is implicit of con-

ditions including uniform charge distribution over all spheres and a dielectric

constant of 3000. Fragmentation of the chain was then modelled in the same

way as in the dielectric, following pathways (3.2) and (3.3).

Much like its dielectric counterpart, the metallic model favours a more symmet-

rical fragmentation pathway with pathway 4 showing a smaller energy barrier

as well as fragments which are lower in energy, when compared to pathway 3.

However, unlike Figure 3.2, the main driving force for this difference is unlikely

to be solely the polarisation energy. Although it can be noted that as sepa-

ration increases, the asymmetric split sees an increase in polarisation energy
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comparative to the symmetric split which has higher polarisation energy at

smaller separations.

Figure 3.4: Graphic showing fragmentation of a metallic linear chain by two differ-
ent pathways. Pathway 3 (purple) shows fragmentation of a single fullerene. Path-
way 4 shows a more symmetrical fragmentation (black).

This can also be seen from the graphic in Figure 3.4, where pathway 4 results

in polarisation occurring within both the fragments, unlike pathway 3 where

polarisation is only in effect in the larger fragment.

The main contribution to the symmetric fragmentation in this case is the

Coulomb repulsion. As can be seen from Figure 3.5, there is minimal vari-

ation in the plot for the different fragmentations at small separations from

the attractive contributions of vdW and polarisation energies. However, as

the separation increases between the fragments, the plots differ significantly

as Coulomb forces dominate at long-range. In our metallic model, the charge

is equally distributed across each fullerene meaning they are all positively

charged. When they are in the chain with no separation distance, the repul-

sion is likely to be high between the charges. Either fragmentation pathway

will see a reduction in this repulsion but it will be more apparent in pathway 4.

For the dielectric, the reactions are thermodynamically allowed but kinetically
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Figure 3.5: Figure showing fragmentation of a metallic linear chain by two differ-
ent pathways as a function of the log of the separation. Pathway 3 (purple) shows
fragmentation of a single fullerene. Pathway 4 shows a more symmetrical fragmen-
tation (black). The colour bar denotes the values of surface charge density present
on the particles.

unfavorable. However, for the metallic case the pathways are both thermo-

dynamically and kinetically unfavorable. The energy barriers for the metallic

configuration, 0.8210 eV (3) and 0.8449 eV (4), are significantly larger than

those for the dielectric case, 0.2575 eV (1) and 0.3020 eV (2).

The value for the dielectric constant of 3.46, found by using an experimen-

tal static polarisabilty value in the Clausis-Mossotti equation, indicates that

fullerenes would act as poor conductors. As we know that metallic species

can hold high amounts of charge, and so have very high values for k, a value

of 3.46 indicates that a fullerene molecule has more dielectric than metallic

properties. This section has proven that the many-body theory can model

both metallic and dielectric systems but it is when the linear fullerene chain

is modelled as the latter that the system is more stable. With a relatively low
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dielectric constant value and a stable system with charges found at large sep-

aration distances such as seen in Figure 3.2, the system is found to be stable.

If the system were to act more metallic, with delocalised charge, the energy

barriers to fragmentation are significantly larger, meaning significant energy

would be needed for fragmentation. Therefore, we conclude agreement with

Stace et al.[27] that fullerene systems can be treated as dielectric in nature,

with charge localised to fullerene cages.

3.3 The Structure of (C60)N Clusters

As the structures of charged fullerene clusters were found to be independent of

charge[61], the structures of the clusters are taken from the Cambridge Energy

Landscape Database made available by Wales and Doye. They locate putative

global minima for (C60)N clusters modelled by the potential of Pacheco and

Prates-Ramalho up to N=105. These minima are based on icosahedral packing

up to N=15, but above this size the lowest-energy structures are decahedral or

close-packed[69]. To locate global minima for PPR potential basin hopping[70]

(Monte Carlo plus minimisation[71]) was used as it has been found to be a very

effective method for a variety of cluster systems.

3.4 Position of Charges in the Fullerene Clus-

ter

As experimental techniques such as TOF mass spectroscopy cannot provide

details on where the charged fullerenes may sit in the cluster, we investigate as

many different charge placements as are computationally feasible. The ener-

gies of all possible charge placements were calculated for clusters with charges

2≥q≤4 and stability with respect to fragmentation was investigated. As the

amount of charge on a cluster increases, even by one, there is a dramatic

increase in the number of fullerenes involved. This presents a significant com-



Chapter 3. Calculating Minimum Stable Cluster Sizes 48

putational challenge. Taking as an example, the experimentally found cluster

size for q=+4 is only stabilised by 21 fullerenes. There are 5985 viable ways

to arrange the charges on the cluster.

3.5 Calculating Minimum Stable Cluster Sizes

Following Martin’s[56] 1993 experiment which detected the existence of doubly

and triply charged clusters and concluded that the mass distribution of these

multiply charged clusters were similar to that of the singly charged, there

has been further investigation into multiply charged fullerene clusters —more

specifically, the minimum stable size for charges (q) from 2 to 7[4]. The most

plausible channel of decay for multiply charged clusters is the emission of a

monomer ion in the form:

C60
q+
n → C60

q−1
n−1 + C60

+ (3.4)

Which has been proven by Nakamura et al.[4] to be the lowest dissociation

channel up to z equal or less than 7. It was previously proposed by Zetter-

gren et al.[3] that fragmentation would involve a symmetric or near symmetric

separation of charge due to complete delocalisation across a dimer of conduct-

ing spheres. It is plausible that the reason this is not the case, and emission

of a singly charged fullerene occurs, is that the high charge density on the

larger fragment will strongly polarise the C60
+ fragment and this strong at-

traction will lower the magnitude of the outward reaction barrier. This results

in Coulomb repulsion being seen at larger fragment separations and a reduced

kinetic energy release. This was modelled previously by Stace et al.[27] us-

ing a two-body dielectric particle model which was a first as, although there

are many models to analyse data on Coulomb fission from fullerenes and such

molecules, the dielectric particle model recognises them as dielectric materials.

For each value of q+, n was varied until C60
q−1
n−1 + C60

+ became attractive at
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short distances and this value of n was taken as minimum stable size. Due to

the discussion upon the accurate value of the dielectric constant of fullerene,

they used values of both 3 and 5 as shown in Table 3.2.

Table 3.2: Minimum stable size structures of C(60)
z+
n with respect to the process

Cq+
60 n → C60

q−1
n−1 + C60

+ from Stace’s[1] two-body model using values for the dielec-
tric constant of 3 and 5, experimental values[2, 3], another two-body theory[4] and
results from the many-body electrostatic theory presented in this work.

Two-body model (n)[1] Theory[4]
q ki = 3 ki = 5 Expt.[2, 3] ki = 3.46 This work
2 8 6 5 7 6
3 18 11 10 13 14
4 33 20 21 23 22
5 50 33 33 31 36
6 71 45 - 35
7 96 56 - 38

In previous calculations[27] using two-body theory[24] the size of one sphere

was calculated using a liquid drop approach, a2(n) = r0n
1/3, where r0 is the

radius of a single C60 molecule and minimum stable sizes were calculated.

As Table 3.2 shows, the results are very sensitive to the value of ki chosen,

but with a value of 5 the experimental values were reproduced very closely.

The experimental data[2, 3] has also been the focus of theoretical analysis

by Zettergren et al.[3] who accounted for stable (C60)
q+
n structures by using

a nearest-neighbour model that localised charge on individual C60 molecules

in order to minimise Coulomb repulsion. Similarly, Nakamura et al.[4] used

a contact sphere model to calculate the energy barrier for the loss of one or

more charged fullerenes but didn’t consider the dielectric nature of C60 outside

of the repulsive Coulomb contribution to the total energy of a charged cluster

of fullerenes. These models have one thing in common; they all model large

fullerene clusters using two-body solutions.

However, a knowledge of two-body forces is often not sufficient for a quan-

titative description of processes that involve interactions between more than

two charged particles and, under these circumstances, a solution to the more
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complex problem of multiple particles interaction is required. The calcula-

tions presented here improve upon work from the previous publication shown

in Table 3.2[24] by implementing the recently developed integral equation[34]

approach introduced in Chapter 2 to calculate many-body electrostatic in-

teractions in charged fullerene clusters. Van der Waals interactions are calcu-

lated using the Pacheco and Prates-Ramalho (PPR) intermolecular potential[5]

based on first-principles determination of the dispersion interaction between

fullerenes, using time dependent density functional theory.

Interaction energies, which are a summation of Coulombic, multipolar and

vdW energies, were compared before and after the loss of a charged fragment.

A lower interaction energy before fragmentation can imply that the cluster will

not fragment and so we can classify the structure as stable. Such interaction

energies are shown in Table 3.3. Previous work[24] using a two-body solution

looked at fullerene clusters using multiple dielectric constants. However, using

the Clausius-Mossoti formula in equation 3.1, we can now confidently use the

3.46 value [4]. The minimum stable sizes using this approach are shown in the

final column of Table 3.2 and are depicted in Figure 3.6, which shows the stable

structures for clusters with charges of +2, +3 and +4 where clusters of 6, 14

and 22 fullerenes are required to stabilise the respective charges. Additionally

Figure 3.7 shows a stable 36-body cluster with 5 charges shown from different

angles in order to see the placements of all the charges.

Table 3.3: Interaction energies of minimum stable size clusters (n) before and after
fragmentation of a charged C60 for q=2,3,4 and 5.

q Cluster Size Eint of (C60)
q
n (eV) Eint of (C60)

q−1
n−1 + (C60)

+ (eV)

2 6 -2.5162 -2.3345
3 14 -9.3731 -9.2339
4 22 -16.366 -16.307
5 36 –31.207 -30.933
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Figure 3.6: Figures of the clusters of minimum stable size for a) 2 charges (6
fullerenes), b) 3 charges (14 fullerenes) and c) 4 charges (22 fullerenes). Shading
on each particle depicts the calculated surface charge as being either negative (blue)
or positive (red). Regions of more intense colouration correspond to enhanced charge
due to the polarisation of bound charge.

Figure 3.7: Figure of the minimum stable size of 36 fullerenes for 5 charges, shown
from two angles to indicate placement of all charges.

Figure 3.8 shows the interaction energy as a function of fragmentation of a

charged fullerene away from the cluster for clusters with 3, 4 and 5 charges

respectively (doubly charged clusters are discussed in-depth later). Apparent

from all three graphs is the high energy required to get to a distance of about

10 Å before a step energy decrease where long-range repulsive interactions take
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(a) (b)

(c)

Figure 3.8: Energy barriers for the fragmentation of a C+
60 from a (a) 14 body

cluster with 3 charges, (b) a 22 body cluster with 4 charges and (c) a 36 body cluster
with 5 charges.
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over.

The location of the peak of the separation graph appears at a distance equiv-

alent to the diameter of one fullerene. In this range, short-range attractive

interactions are dominant, requiring sufficient energy to overcome the barrier.

What is unique is that in the q=+5 case we see a small peak appears before the

large energy barrier, which is shifted to a larger separation distance than the

other minimum stable size clusters examined here. This is due to the position

of the charge, with it being on the surface but embedded as seen in Figure 3.7.

The geometries of the smaller clusters led to less closely packed C60 on the

surface, meaning the charged species was able to fragment with less force. The

dip in the energy barrier seen in Figure 3.8(c) at ≤ 10 Å corresponds to the

fullerene being pushed forward out of it’s tightly fitting space in the cluster’s

face.

Table 3.4: Energy barriers of minimum stable size fullerene clusters with charges 2
to 5.

Cluster Size Charge Energy Barrier(eV)

6 2 0.8686
14 3 1.2271
22 4 1.7400
36 5 2.2050

The energy barrier to fragmentation increases with the size of the cluster and

the number of charges, from 0.8686 eV in a 6-body system to 2.2050 eV in

a 36-body system as seen in Table 3.4. Although Coulomb repulsion will be

larger in those systems with higher charge, the drastically increasing size of

the clusters comes with significant vdW stability. This, in turn, requires more

energy to remove a fullerene from the cluster leading to heightened energy

barriers.
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It was previously found[27] that the fragmentation step of a doubly charged

dimer had K.E release values of 1.60 eV or 1.68 eV depending on the dielectric

constant used (3 or 5, respectively). This was vastly different from that found

from the experimental work of Zettergren[3], where a value of 0.44 ± 0.02 eV

was established. In the same paper as the quoted experimental data[3], the

authors also presented some theoretical calculations of the K.E release values

for multiply charged clusters. Their image charge calculations concluded a K.E

release value of 1.1 eV for a doubly charged cluster, a value that sits inbetween

their 0.44 eV experimental value and the 1.6 eV found using a two-body model

[24]. Zettergren et al.[3] suggest that their lack of agreement in experimental

and theoretical values are due to high levels of internal excitement in the re-

action products.

Figure 3.9: Kinetic Energy release values for dimers with charges 2≥q≤7 for ex-
perimental values (black), values using two-body theory (blue) and many-body theory
(red).
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For values of q up to 6, many-body theory more closely matches experimental

values of kinetic energy release than the pairwise potentials. However, the

values are still consistently larger due to significant errors associated with the

experimental results[3]. With a charge of +6, our calculations are only 0.19

eV different to Zettergren’s calculations, as can be seen where the black and

red lines cross on Figure 3.9. At the highest charge, q=7, we see two-body

theory appearing to give better predictions but this cannot be stated with

much certainty as the error of ± 1.6 eV associated with this value means that

the calculated value of 6.2 eV here is still in the accepted range.

3.6 Fragmentation Pathways

Whilst we acknowledge the high energy barriers present in some of these clus-

ter fragmentations, as we explored in Figure 3.8, we are aware that there are

numerous possible mechanisms of how the charge could be expelled and that

some of those will be lower in energy than the way seen above. For a doubly

charged cluster, we have established that at least 6 fullerenes will be required

to stabilise such charge. Below, we explore possible fragmentation of doubly

charged clusters of sizes 4≤n≤6.

Table 3.5: Kinetic energy release values for doubly charged clusters of 4, 5 and 6
fullerenes

Cluster Size No. of Fragmentation Steps KE (eV) Energy Barrier (eV)

4 2 -0.5981 0.1661
5 1 -0.6062 0.1727
5 2 -0.6071 0.1726
6 2 -0.5992 0.1763

Table 3.5 shows the kinetic energy release values for doubly charged clusters

where 4≤n≤ 6. It is assumed that fragmentation is an over-the-barrier pro-

cess and that kinetic energy is determined from a maximum in potential energy

with respect to infinite separation of the parent cluster and the fragment. It
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is clear from the fragmentation graphs and Table 3.3 that 6 fullerenes are re-

quired in the cluster to stabilise two positive charges, as this is the smallest

cluster where the interaction energy is lower before than after fragmentation

of a charge.

The kinetic energy release for different size clusters, and also for different frag-

mentation pathways, is always similar as seen in Table 3.5. The average K.E

release being -0.60265 eV. With two-body modelling, employing a two-body

model [24], multiple fragmentation steps were considered, however it has since

been established that the emission of a single, charged fullerene is the lowest

in energy as proven by Nakamura’s calculations on clusters with charges et

al.[4] up to q = 7. This is due to the fact that emission of a singular particle

results in a smaller reduction in attractive vdW energy but the same reduction

in repulsive Coulombic energy than if multiple fullerenes were to be emitted

at once as can be seen from Figures 3.4 and 3.2.

To confirm the conclusion of Nakamura’s work[4], that emission of a singular,

charged fullerene is the most likely fragmentation pathway, we calculated the

kinetic energy release values for this pathway alongside fragmentation path-

ways involving emission of multiple fullerenes. In large fullerene systems, we

expect substantial stabilisation from vdW interactions, as discussed in Chap-

ter 2. Emission of a charged fullerene and its charge neutral neighbours from

a cluster results in the same reduction in Coulomb repulsion as just fragment-

ing the charged fullerene alone, but with an additional reduction in attractive

vdW energy as the remaining cluster now has less charge neutral fullerenes to

stabilise the remaining charges. In smaller, less close-packed structures such

as the 5-body linear chains discussed earlier in this Chapter, there are signif-

icantly less stabilising vdW interactions and so a more symmetrical split is

energetically favourable.
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Figure 3.10 shows that a 4-body structure begins as a tetrahedron, with two

charged and two neutral components. Here, at Phase 0, we see a stable struc-

ture with an interaction energy around -0.5 eV; stabilised by significant vdW

and multipolar interactions, despite significant Coulombic repulsion from the

charges in contact. This repulsion drives a rearrangement where we see the

rotation of the charge, seen on top of the trigonal base in the image for Phase

0, rotated around the y and z axes to rest at the point furthest from the other

charged particle. We can see, Phase I, that the two charges are now separated

by the two neutral C60. As Figure 3.10 suggests, this creates a new interac-

tion energy minimum as the reduction in repulsion outweighs the minor loss of

vdWs and multipolar interactions in this less closely packed diamond configu-

ration. From here, the charge rotates until it is in line with the other charge

and the central neutral particle as seen at Phase II. In this position, the charge

can fragment to infinity (Phase III); it only has to break a single vdW con-

nection, meaning a much lower energy barrier to overcome than fragmentation

from, for example, the Phase 0 configuration where the charge was in contact

with all three other fullerenes. At the end of this pathway, we are left with

a 3-body, singularly charged cluster that is more energetically stable than the

4-body, doubly charged cluster - implicit of an unstable starting structure.

A doubly-charged trigonal bipyramidal structure (n=5) will separate the charges

in order to minimise Coulombic repulsion. This is what we see at Phase 0 of

Figure 3.11. This is the furthest charge separation possible and hence the most

stable configuration for 5 spheres, due to minimised repulsion and significant

attractive interactions that come with closely packed structures. However, as

we have seen, the removal of a charge from this shape comes with a high energy

barrier to overcome. Much like that discussed for the tetrahedron configura-

tion in Figure 3.10, we see the charged spheres in contact with three other

fullerenes - three interactions to break at once if the charge were to fragment

from here. That is why we propose the rotation of the top charge to the side
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Figure 3.10: Graph showing the fragmentation pathway for a 4 body cluster with
2 charges. The solid blue line represents the total interaction energy of the process
with the dashed lines representing the contributions to that energy. Red is Coulomb,
yellow is polarisation and purple is vdWs.

of the structure at Phase I. The transition from Phase 0 to Phase I breaks two

of the three vdW interactions, losing about -0.5 eV of attractive energy. Then

when we see fragmentation to Phase II, there is less of an energy barrier as

there is only one more vdW connection remaining. Although we still see lower

interaction energy at Phase II than Phase 0, there is much less difference than

that of a 4-body, implying that 5 fullerenes was nearly sufficient to stabilise

the two +1 charges.

Similar to Figure 3.11, in Figure 3.12 we explore the same pathway but with

an extra step so there is only the loss of one vdW bond at a time instead of

the double break we saw at Phase I of Figure 3.11. Depending on the time-

frame of the Coulomb fission, it is possible that the pathway could be that of

either Figure 3.11 or Figure 3.12. The final step gives the same energy barrier
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Figure 3.11: Graph showing the one-step fragmentation pathway of a 5 body cluster
with 2 charges. The solid blue line represents the total interaction energy of the
process with the dashed lines representing the contributions to that energy. Red is
Coulomb, yellow is polarisation and purple is vdWs.

for both as shown in Table 3.5, but we see a smoother energy profile in the

three-step process with minimal change in vdWs and Coulomb energies until

the emission of the charge.

As established in Table 3.4, 6 fullerenes are required in a cluster to stabilise

two positive charges. The values in this table for charges from 2 to 7 were

found by comparing energies before and after fragmentation. The fragmenta-

tion being direct removal of the charged C60 from the cluster in the direction

of the force acting upon it due to the other charge in the system as seen in P1

in Figure 3.13.
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Figure 3.12: Graph showing the two-step fragmentation pathway of a 5 body cluster
with 2 charges. The solid blue line represents the total interaction energy of the
process with the dashed lines representing the contributions to that energy. Red is
Coulomb, yellow is polarisation and purple is vdWs.

Figure 3.13: P1: Fragmentation of charge from a doubly charged 6-body cluster,
in the direction of force, from cluster in one step process.

The separation graph for this fragmentation is shown as the red line on Fig-

ure 3.14. There is a significant energy barrier as the charge is removed and

multiple vdWs connections are broken.
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Figure 3.14: Graph showing the three-step fragmentation pathway of a 6 body
cluster with 2 charges (P2) in comparison to straight repulsion of the fullerene from
the cluster (P1).

Figure 3.15: P2: Fragmentation of charge from a doubly charged 6-body cluster in
4 phases. At phase 0, the cluster is in complete. By phase 1, the charge has rotated
from the center of the tetrahedral base to now only have 2 connections. By phase II
the charge is now only touching one neutral sphere and from here it fragments as
seen in the final phase, III.

We have found that a cluster of 6 fullerenes, such as that shown at Phase 0 of

Figure 3.14, is required to stabilise two charged fullerenes, with the four and

five-body structures discussed above being too small to sufficiently spread out

the Coulombic force between the charges. The energy barrier for the 6-body

structure was concluded to be 0.8686 eV in Table 3.4, if the charge were to be

emitted by breaking all vdW connections instantaneously, which is unlikely.
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The pathway shown in Figure 3.15 is proposed to be the most energetically

favoured way of fragmentation, lowering the energy barrier to just 0.1763 eV.

This case study of doubly charged clusters of sizes 4≤n≤6 acts to suggest that

the energy barriers stated in Table 3.4 are overestimates of the fragmentation

process. By breaking down the pathway we can conclude that the energy

barrier for a n=6 cluster is actually nearly 5 times less. This finding can be

carried over to all the values in Table 3.4, giving much more achievable energy

barriers for the process to overcome.

3.7 Predictions for +6 and +7 Charged Clus-

ters

The complexity of calculation and the computational cost of exploring many-

body interactions in large, multiply charged clusters is exponential. As men-

tioned beforehand in the discussion of charge placements, an increase of even

one more charge in a cluster can substantially increase the number of neutral

fullerenes needed to facilitate overall stability. The results presented so far

cover multiply charged clusters where the charge ranges from 2 to 5, with a

cluster size of 36 being found to be the minimum stable size required for a

charge of 5. There are 376,992 ways that 5 charges can be placed on a 36-body

cluster - testing that many charge placements and removing one charge at a

time to monitor the change in interaction energy begins to require drastic com-

putational time. Although we were able to investigate all charge placements

and the removal of all included charges from the cluster for charges +2, +3

and +4, the jump in size to accommodate a +5 charge means modelling of the

most stable charge placements, and those within kT of the minimum, could

be investigated.
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When the charge increases to +6 and +7, where there are only predictions

from two-body computational methods[27], we can see predictions of clus-

ter sizes rising to 96. At this point there are 1.19 x 1010 different ways to

place charge. Trying to investigate the stability before and after fragmenta-

tion for this many different clusters would be computationally unfeasible with

the current level of theory development. Further enhancement of the FMM is

currently in progress[72], meaning that in the near future it will be achievable

to produce a quantitative answer for clusters with charges ≥ +6.

Previously, Bichoutskaia[24] predicted a minimum stable size of between 45 to

71 for a +6 charged cluster, with dielectric constants of 3 and 5, respectively.

The dielectric constant of 3.46[4] used in this work sits between these values

and so we would assume that we would find a minimum stable size in this

range. We found a 71-body cluster with 6 charges to be stable with respect

to fragmentation by implementation of the many-body electrostatic theory.

Figure 3.16 shows a figure of the stable structure with its 6 charges spread

across the surface.

Figure 3.16: Figure of the minimum stable size of 71 fullerenes for 6 charges,
shown from two angles to indicate placement of all charges.
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The structure in Figure 3.16 was found to have a more negative interaction

energy before fragmentation, as is shown in Table 3.6, than after it loses a

charge - implying it would rather keep that charge than fragment and so we

can call it a stable structure with respect to fragmentation.

Table 3.6: Total, Coulomb, Polarisation and vdW energy for a 71-body fullerene
cluster with 6 charges before and after fragmentation of a C+

60.

Fragmentation Interaction Coulomb Polarisation vdW
Distance (nm) Energy (eV) Energy (eV) Energy (eV) Energy (eV)

0 -74.3819 9.1379 -2.923 -80.5967

1e6 -74.2779 6.4693 -2.525 -78.2221

The loss of a C+
60 results in a reduction in the stabilising vdW interactions

as is the case here, as seen in Table 3.6. However, as we investigate larger

and larger cluster sizes, the loss of a single fullerene has less and less impact

relative to the substantial vdWs that stabilise large clusters. This loss, along-

side a reduction of 0.398 eV in attractive multipolar interactions, outways the

reduction in Coulomb repulsion that comes from the loss of a charge, making

fragmentation of this charge energetically unfavourable overall.

This prediction is only based on the fragmentation of one specific charge. We

found that if any another charged particle were to leave then the system would

be lower in energy after emission of the charge and so then the starting cluster

would be unstable with respect to fragmentation of the charge.

The charge we have investigated the fragmentation for in Table 3.6 is shown

below in Figure 3.17, and although it is still on the surface of the cluster and

not central, it is well-embedded. Additionally, it is in contact with multiple

other fullerenes meaning that in order for it to fragment away from the clus-

ter, multiple vdW interactions would have to be broken. This is likely why

the structure is stable with respect to the fragmentation of this charge and

not others. Removal of other charges, with fewer contacts to neutral neigh-
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Figure 3.17: Figure of the minimum stable size of 71 fullerenes with just the
fragmenting charge shown.

bours, will give the same reduction in Coulombic repulsion but with a smaller

decrease in vdW energy. As we have investigated above, the emission of a

charge by breaking of all vdW interactions at once is not the most energeti-

cally favourable way to fragment and a slower, step by step fragmentation is

more likely.



Chapter 4

The Significance of Induced

Electrostatic Interactions for

the Controlled Fabrication and

Stability of Binary Nanoparticle

Superlattices (BNSLs)

4.1 The Self-Assembly of Binary Nanoparticle

Superlattices

The ‘bottom up’ assembly of small building blocks into macroscopic struc-

tures is a process commonly seen throughout chemistry, biology and material

science[73]. Self-assembly of binary components of large and small colloidal

particles was the centre of much attention in material science in the 1980s.

Chemical methods developed over the past two decades have enabled these

colloidal components for self-assembly to be extended from micrometer-sized

such as silica[74] to nanometer sized nanoparticles which can be of differing

intrinsic properties. The assembly of nanoparticles of two different materials

66
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into a binary nanoparticle superlattice (BNSL) can provide an inexpensive

mechanism which leads to a large range of materials with precisely controlled

chemical compositions and thus unique bulk properties. Binary sphere mix-

tures often pack more densely than a single component alone, for example, by

filling the voids in a close-packed lattice with smaller spheres.

BNSLs form through an inexpensive self assembly process. Self-assembly of

ordered arrangements was first investigated using micrometer-sized spherical

beads with a silica core and organic stabilising layer[75, 76]. Progression from

here has seen the self-assembly of different colloidal particles of varied sizes

become widely studied for purpose in many areas including in solar cells and

thermoelectric devices[73]. Simply confining the colloidal particles in a small

amount of solvent will lead the particles to form ordered arrays, without any

other external stimuli. This is driven by the increase in translational entropy of

the particles which arises from maximising the free volume that is available to

each particle[73]. This entropy driven crystallisation favours the most densely

packed arrangements, as has been shown in many studies[77, 78].

The beauty of BNSLs is that you can combine materials with any desired

property. It is possible to combine metals, semi-conductors, ferroelectric, mag-

netic, dielectric and other materials. This, alongside the relative size of the

component nanoparticles, are the primary parameters for fabricating arrays

of particles. The creation of new materials[79] with a wide variety of unique

and novel electronic[80], optical[81] and magnetic[82] properties, together with

lattices shown to possess new thermoelectric[83] and chemical[84] characteris-

tics can all come from the controlled formation of ordered arrays into BNSLs.

Since nanoparticle superlattices can perform functionalities that their individ-

ual component atoms or molecules cannot, they have proven themselves as a

new type of material which has novel and potentially revolutionary applica-

tions in areas including but not limited to metamaterials, catalysis and novel
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energy sources.

Directing the outcome of the self-assembly process can also be achieved through

templating, using interactions with a structure or electric field in order to ma-

nipulate the arrangement of the crystal[85, 86] and the resulting superlattice

can be manipulated with ligands, including DNA[87]. The self-assembly pro-

cess is reversible with the addition of solvent causing the superlattice to break

down into its constituent particles[88]. Therefore, the stability of self-assembly

of a superlattice is directed by the forces at play in the structure. Generating

stable equilibrium structures relies on achieving a minimum in the Helmholtz

free energy (F ),[89] which can be expressed in terms of an internal energy

(U),[90] together with the system’s entropy (S) and temperature (T ):

F = U − TS (4.1)

where contributions to U come from a combination of van der Waals and elec-

trostatic (permanent and induced) interactions[90]. The presence of capping

layers on polymer chains present an extra intricacy as they can often soften

particle-particle contact. This is quantified by a softness parameter which is

discussed further in 4.2.2. In all cases, entropy will only make a favourable

change to the free energy if that of the binary lattice is higher than the sum

of the entropies of separate lattices formed from the individual components.

In close-packed, single component structures, such as face centered cubic or

hexagonal close packed, the maximum packing fraction is ρ=0.7405. Bi-

nary mixtures of different-sized particles can be characterised by a size ratio,

γ = asmall/alarge. where a is the particles radius. In some ABn, values of

ρ > 0.7405, can be achieved where vacancies generated within a close-packed

structure of large particles can accommodate the smaller particles[89, 91]. Su-

perlattices that are isostructural with NaCl and AlB2 and composed of hard-
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spheres are stabilised through favourable changes in entropy[77, 92, 93] and

so produce these high packing fractions. There is, however, a diverse range

of BNSL structures with packing fractions that are significantly less than this

0.7405 value. For these lattices, entropy alone is not sufficient to account for

their stability, meaning that other factors must be taken into account when

discussing favourable changes in free energy[73, 90, 91]. Of the contributing

forces to the internal energy, the long-range Coulomb interactions between

oppositely charged particles are particularly influential[73, 90], whereas the

contribution to U from van der Waals interactions are insufficient to solely

account for the stability of low density structures[90].

4.2 Computational Parameters

The systems used in this body of work use the packing of frequently observed

lattice types —such as NaCl. The particles in such a lattice, however, do not

have the chemical properties of such atoms. I.e. in a NaCl lattice type, the

particles in the positions of Na and Cl are dielectric spheres with given sizes

and dielectric constants which are in the same 3D space of the lattice-type

being investigated. The types of particles that could be included in the model

are concentrated colloidal solutions, Coulombic crystals, fullerenes and hard

spheres as discussed in Chapter 2.

In this chapter, systems have been investigated as a function of their size ra-

tio, γ = a1/a2, where the radius of the smaller particle (a1) is varied during

the calculations, and a2 = 5 is a fixed radius assigned to the larger particle,

meaning that γ varies from 0.05 to 1. Each particle is given a nominal charge,

q, of one or a fraction thereof in accordance with the repeat formula unit of the

isostructural crystal in order to ensure overall neutrality of the charge in each

superlattice structure. Take for example an AB-type superlattice, here, each

particle would be given a nominal charge of q1 = 1 and q2 = −1 respectively.
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In an AB2-type superlattice, particles in position B were assigned a nominal

charge of 0.5 whereas particles in position A had a charge of -1.

For each system discussed in this work, the electrostatic interaction energy,

Eint has been calculated as a function of the radius ratio, γ, between the

two constituent particles. Eint is defined as the difference between the total

interaction energy for the system and the sum of the individual self-energies,

i.e.:

Eint = Esystem − Eself (4.2)

which gives the relative gain in energy that arises from the particles adopting a

specific superlattice structure with respect to them being separated to infinity,

as is discussed in more detail in Chapter 2. Actual energies are not reported in

this chapter as instead the focus is on finding the more electrostatically stable

structures out of those investigated here to use in future applications including

those discussed in Chapter 5. Units are not used for energies or lengths in this

chapter but energies (in eV) associated with the equivalent absolute charges

used in this chapter can be recovered using the scaling relationship: E =

1.4366q1q2/r, where r is a measure of the lattice cell size in nm.

4.2.1 Dielectric Constant

The results discussed in this work are for a medium which has a dielectric

constant set to 1, which is representative of a vacuum, and a dielectric con-

stant of 20 for all particles. This was chosen as a value that is a compromise

between materials which are strongly polarisable, such as water, metals and

some inorganic solids and those which are more weakly polarisable, for exam-

ple, polymers and hydrocarbons. The consequences of employing a higher or

lower value for the dielectric constant on lattice energy are shown in Figure 4.1.
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(a) (b)

(c)

Figure 4.1: Plots of interaction energy (Eint) in eV as a function of size ratio (γ)
showing the effect of varying dielectric constant for a NaCl BNSL structure. Dielec-
tric constant values of 1 (black), 20 (blue) and 50 (red) were used and the effect on
(a) the total (Coulomb and multipolar) interaction energy, (b) Coulomb component
and (c) % contribution from multipolar effects to total electrostatic energy. The
dashed line is at a value of γelectrostatic for NaCl of 0.41.

Figure 4.1 (b) shows the independent nature of Coulombic effects to changing

dielectric constant. As might be expected, with the smaller dielectric constant,

the energy curve is shifted towards higher (more positive) values whereas the

significantly higher dielectric constant shows strong multipole contributions

that increase the stability of the superlattice. There are no multipolar contri-

butions when the dielectric constant is equal to unity as its absolute permittiv-

ity is equal to that of the medium; meaning, no polarisation of bound charges

takes place. Such effects are going to be particularly noticeable for any lattice

structures found to have a high contribution from polarisation to their stability.

Figure 4.1 is for a NaCl lattice structure whose size ratio at the electrostatic
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minimum (γelectrostatic) is already established at 0.414[73], which as the graphs

show is not changed by dielectric constant. As the dielectric constant is a mea-

sure of particles’ polarisability, the structures which have higher contributions

to stability from multipolar contribution will see a more significant increase in

stability with increasing values for the dielectric constant.

4.2.2 Softness Parameter

An added complication for any interaction stems from the presence of capping

layers of polymer chains, which can soften particle-particle contact and is quan-

tified in terms of a softness parameter (s). Recent experiments have shown that

a judicious choice of polymer chain can be used to fine-tune particle-particle

length scales[94]. In many lattice structures composed of nanoparticles in the

form of a BNSL, the particles generally consist of a solid spherical core cov-

ered by surface ligands that form the capping layer. Each particle then has

an effective radius formed by the sum of the two components, the core radius

(a) and the ligand length (l). Together, these characterise the softness param-

eter, s = l/a. Typically, s ∼ 0.01 for micron-sized colloids, while s ∼ 1 for

nanocrystals.

While the ligands have a contribution to the interaction between particles, they

also mechanically prevent any contact between cores. The main objective of

this work is to consider the electrostatic interactions between hard particles,

which in the case of colloids, is solely equivalent to the core. As it is desirable

to consider the consequences of varying the softness parameter in terms of

interpreting experimental data, calculations have been performed on a basic

NaCl superlattice structure with s = 0, 0.5 and 1.
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(a) (b)

(c)

Figure 4.2: The effect of varying softness parameter for a NaCl BNSL structure.
Softness parameter values of 0 (black), 0.5 (blue) and 1 (red) were used and the
effect on (a) the total (Coulomb and multipolar) interaction energy, (b) Coulomb
component and (c) % contribution from multipolar effects to total electrostatic en-
ergy. The dashed line is at a value of γelectrostatic for NaCl of 0.41.

As expected, Figure 4.2 shows that with decreasing softness parameter there is

increased Coulombic and multipolar (and thus total) interaction energy. With

a softness parameter ∼ 1, there is minimal contribution to stability from polar-

isation effects due to the short range nature of polarisation and the increased

core to core distance provided by the longer ligand causing the higher softness

parameter. As found for dielectric constant, with varying softness parameter,

the γelectrostatic, where a2 remains fixed in size and a1 varies, remains unchanged.
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4.3 Computational Calculations on Experimen-

tally Observed BNSLs

The binary superlattices selected for this initial work have been taken from

lattice types which are commonly observed in experiment, which are: AB,

AB2, AB3, AB4, AB5 and AB6[73, 90]. As input geometry for the calculations,

the relative position of each particle in the lattice was obtained through ac-

cessing the Crystallographic Information File (CIF), made available through

the Materials Project database[95].

Figure 4.3: The convergence of the interaction energy of the system dependent
on the size of the structure for experimentally observed BNSLs. 1000 particles was
chosen as a suitable minimum structure size for all lattice-types based on these energy
profiles.

For this work, the positions of equivalent atoms in a crystal with 1000 parti-

cles were used as input coordinates. This was decided because, as Figure 4.3

shows, at this size we can see that the energy of all the lattice types we wish to

investigated have converged. Using lattice sizes smaller than 1000 wouldn’t en-

sure the energy of all lattice-types had converged yet. Using lattice structures

larger than 1000 particles would increase energy by ∼ 0.012% (based on 1000

and 2744 particle NaCl structures) but 1000 particles is a compromise between

accuracy of data and computational cost. Investigation into the significance
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of induced electrostatic interactions in the controlled fabrication and stability

of these systems will be discussed here but is described in detail in work by

Lindgren et al.[38].

Table 4.1: Data on lattice types including giving atomic environment, γpacking cor-
responding to the radius ratio at which the maximum packing fraction taken from
hard sphere studies and theγelectrostatic, where calculations have found each lattice
type to have a minimum in electrostatic energy. The last column gives the radius
ratios, electrostatic, where calculations show each lattice-type to have a minimum
electrostatic energy. Values in parentheses refer to the presence of local energy
minima.

Atomic Environment[96] Space Group[96]γpacking γelectrostatic

NaCl
Na6- octahedron Fm3m (225) 0.41[90] 0.41

Cl6- octahedron

CsCl
Cl8Cs6- rhombic dodecahedron Pm3m (221) 0.74[89] 0.73

Cs8Cl6- rhombic dodecahedron

CuAu
Au8Cu4- cuboctahedron

P4/mmm (123) 1.0[89] 0.91
Cu8Au4- cuboctahedron

AlB2
B12 - hexagonal prism P6/mmm (191) 0.53[89]/

0.58[90] 0.58
B3 - coplanar triangle

MgZn2

Zn12Mg4 - 16-vertex
Frank-Kasper P63/mmc (194) 0.82[89]/

0.81[90] 0.81
Zn6 Mg6-icosahedron

Cu3Au
Cu8Au4- cuboctahedron Pm3m (221) 1.0[89] 1.0

Cu12 - cuboctahedron

Fe4C
C - single atom P43m (215) - 0.32

Fe4 - tetrahedron

CaCu5
Cu18 - sixcapped hexagonal prism P6/mmm (191) 0.65[89] 0.46 (0.73)

Cu8Ca4 - cuboctahedron

CaB6
B24 - truncated cube (dice) Pm3m (221) 0.41[97] 0.40

B5 - square pyramid

Nine examples of frequently observed superlattices recorded from experiment

are recorded in Table 4.1 along with the size ratios which have been calculated

to give stable structures at their energy minima. The results correspond to

hard particles (s = 0) where it can be seen that for each system there is a

clearly defined value of γ where the energy is at a global minima. From a

comparison of the calculated results with the radius ratios found at the max-
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imum packing fractions, which were determined from experiment, it can be

noted that, for almost every lattice type there is good agreement between

γpacking and γelectrostatic. As a high packing fraction indicates that particles are

generally closer to one another, favouring opposite charge interactions, this

agreement would be expected.

Images showing the unit cells of the BNSL isostructural with those in Table 4.1

are shown in Figure 4.4. Similarities between structures with the same space

group, such as CsCl and Cu3Au or AlB2 and CaCu5, can be seen from the

images in Figure 4.4.

Figure 4.4: Images showing the BNSL isostructural with a) NaCl, b) CsCl, c)
CuAu, d) AlB2, e) MgZn2, f) Cu3Au, g) Fe4C, h) CaCu5 and i) CaB6 at the radius
ratio at which the structure is at a minimum in electrostatic energy.

For hard particles (s = 0), the results of varying the value of γ are shown in

Figure 4.5, where it can be seen that for all lattice types there is a clearly

defined value of γ at which the energy passes through a global minimum, with

the exception being Fe4C. As the size of the formula unit is not constant for

every lattice-type, the systems have been split into four graphs so that the

energy per formula unit are comparable.
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(a) (b)

(c) (d)

Figure 4.5: Interaction energy as a function of radius ratio, γ, for all lattice-types,
split into number of formula units in the lattice so that energies can be directly
compared. (a) The ABx stoichemietries where x =4,5,6 Fe4C, CaCu5 and CaB6

contain 216 unit formula in their lattice structures, (b) AlB2 and Cu3 contain 343
unit formulae, (c) NaCl and MgZn2 are composed of 500 unit formula and (d) CsCl
and CuAu pack 512 formula unit into their ∼1000 particle lattice structures.

Figure 4.6 shows the percentage contribution to stability from Coulombic (a)

and multipolar (b) interactions. In their percentage forms, all systems can be

directly compared. Of the forces contributing to the internal energy, long-range

Coulomb interactions between oppositely charged particles are considered to

be particularly influential[73, 90] and it is also acknowledged that contributions

to U from van der Waals interactions are not, in themselves, sufficient to ac-

count for the stability of low-density structures.[90] Therefore only Coulombic
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and multipolar interactions contribute to the total interaction energy, hence

why the percentage values for each system in Figures 4.6 (a) and (b) sum to

100%. The Coulombic contribution to the total energy is shown in Figure 4.6

(a). We would assume that for each system the Coulombic energy would re-

main fixed after γ dips below the value which corresponds to the global energy

minima as the particles are in contact and so after this unique value of γ the

interaction energy is driven by changing multipolar interactions. This is seen

in Figure 4.6 (b), which gives the percentage contributions to the total energy

that charge-induced multipolar interactions are responsible for. Where s=0,

the particles are positioned in the closest packed form for each lattice-type,

maximising contributions from these short-range forces. For structures such

as Fe4C lattices, this contribution is a massive ∼ 90%, but then just ∼ 15%

for a NaCl lattice. Comparison of Figure 4.6 (a) and (b) highlights the signifi-

cance of including multipolar interactions. It can be seen that the true minima

for electrostatic energy at unique values of γ in Figure 4.5, only appears when

the effects of polarisation are included as, in many cases seen in Figure 4.6,

multipolar contributions contribute over 50% to the interaction energy.

NaCl is seen, from Figure 4.5, to be the most stable of the lattices investigated

despite its relatively low multipolar contribution. Figure 4.7 shows the effect

of changing the smaller particle in a NaCl-type lattice. Below a size ratio value

of 0.41, we see all of the larger particles (Cl in this case) are touching each

other. Any value of γ > 0.41 will be met with a constant Coulomb energy. By

increasing the size of the smaller particle past γ < 0.41 distance between the

larger spheres will appear as gaps in the lattice structure, ultimately lowering

stability as seen in Figure 4.5. As discussed in Chapter 2, uniform distribution

of charge on a particle is electrostatically equivalent to a point charge - or

having the charge concentrated at a point localised to the centre.
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(a) (b)

Figure 4.6: Percentage that (a) Coulombic interactions and (b) Multipolar inter-
actions contribute to total lattice stability for all lattice-types.

For this NaCl-type lattice, the radius ratio γ = 0.41 corresponds to the perfect

fit of the smaller particles in the octahedral gaps defined by the position of the

larger particles. Below this value of γ the small particle is free to move in the

gaps and, although the structure could technically keep a negative interaction

energy, it is possible that the structure would destabilise. Calculations have,

however, shown that here lattices can stabilise from an increase in free-volume

entropy. We see in this work that in structures such as NaCl, which has been

highlighted here, unique energy minima must be achieved through such inter-

actions as the stabilisation through polarisation is only small.

In other AB-type lattices, there are stronger contributions from multipolar in-

teractions. In the cases of CsCl and CuAu, energy minima for the lattices were

found to be γ = 0.73, 0.91 as seen in Figure 4.5 (d) and match experimental

values of γ = 0.74, 1.0 well. Studies[83, 98] have shown that AB structures

can undergo a structural phase change depending on the ionic strength of the

suspension medium or the temperature of the system[98]. However, in these

studies the switch in structure only occurs when γ is much larger than that for
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Figure 4.7: NaCl-type lattice at selected values of the radius ratio, γ, where γ
= 0.21, 0.41 and 0.61. The central representation corresponds to the electrostatic
energy minimum.

a highly stable NaCl lattice. As the size ratio approaches 1 in Figure 4.5 (a), we

can see that both CsCl and CuAu benefit from advanced stability from many-

body contributions and, as the size ratio approaches 1, they are comparable

in energy. At this higher packing fraction, switching between the AB-type

lattices becomes more likely as it becomes more energetically favourable than

at smaller values of γ. However, as the transition requires a large size ratio,

it isn’t seen in this work where we find that NaCl is always the most stable

AB structure in Figure 4.5 and no transition from NaCl-type lattice to either

CsCl or CuAu would be seen.

A CaB6 structure, as seen in Figure 4.5 (a), is dominated by Coulomb in-

teractions and if the structure interacted only by Coulombic forces, the total

energy would be positive for all size ratios and the structure would be never be

electrostatically stable. It is only through significant multipolar interactions

of up to 70% up to the point of γelectrostatic that the lattice is stabilised. Such a

structure is likely to be electrostatically unstable with a wide range of ligands.

The effect of increasing the softness parameter was shown in Figure 4.2 where

we see a reduction in multipolar interactions in response to the addition of



Chapter 4. Experimentally Observed BNSL Structures 81

ligands. It can therefore be concluded that structures such as CaB6 would be

entropy driven and electrically neutral, as found in the work by Ye et al.[97]

on CaB6 nanocrystal superlattices.

After CaB6, Fe4C had the highest Coulombic contribution, although unlike its

AB6 comparison it remained negative in sign. Overall, Fe4C could be seen to

be one of the more stable structures - particularly apparent at small size ratios

in Figure 4.5a. This is because of the extreme contribution to stability that

comes from the multipolar component. Over 90% of the interaction energy

is due to attractive multipolar interactions. Although seen experimentally by

Shevchenko[73], calculations using electrostatic pair potentials and van der

Waal interactions by Ben-Simon et al.[99] failed to find a stable structure for a

Fe4C lattice. This work finds that with the significant inclusion of many-body

multipolar interactions, a Fe4C lattice structure is comparable in energy with

the other eight structures investigated, highlighting the importance of consid-

ering dispersion as a many-body problem.

For CaCu5 there is also evidence of secondary stable minima. The gradual

increase of the size of the smaller particle leads to a reduction in the interac-

tion energy as the gaps in the lattice are continuously filled until the global

energy minimum is achieved at a value of γ = 0.46. This value of γ will, un-

coincidentally, be consistent with a structure where each particle is in contact

with a neighbour of opposite charge. Continuing to increase the size of the

smaller particle beyond γ = 0.46 we would expect to see the energy increase

initially. Then at γ = 0.76 the system reaches a local minimum. It can be seen

in Figure 4.5 (a), that the configuration at γ = 0.76 is where the system sees

the peak contribution from multipolar interactions. At about half of the total

interaction energy, this is highly significant but remains insufficient to shift the

global minima in Figure 4.5 (a) from γ = 0.46 to 0.73. However, if we com-

puted the multipolar interactions as a sum of the pairwise interactions instead
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of a complete many-body treatment, the energy would be overestimated and

the multipolar contribution peak at γ = 0.73 would shift this to be the global

minimum. Again highlighting the importance of investigating these systems

with many-body theory.

Figure 4.8: Images of particles in a CaCu5-type lattice for selected values of the
radius ratio, γ. Particles representing Ca are shown in blue and have a fixed radius
a = 5, increased areas of polarisation are visible with regions of darker red and blue
at the interface of the oppositely charged particles.

As can be seen from Figure 4.8, the particles do not always starting from

touching one another. This is due to the scaling up of the structures from the

unit cells taken from the Materials Project Database. The unit cells themselves

are for the atomic unit cell structures. In this work, these same unit cells are

used as the coordinates for larger arbitrary particles which can be assigned

their own chemical properties. The size of the particles are varied in this

work and the distance between the particles is scaled up accordingly. This

means that the particles may not be at equilibrium distance for the structures

that they are isostructural with. The results concluded using the many-body

model in this work cannot be directly transferred to the atomic unit cells as

the values for interaction energy are likely to be different. Some structures

will be more affected that others, specifically those where the scaling up of

the unit cell leaves the particles at a great distance from each other such

as CaCu5. This is a possible cause for the difference between γpacking and

γelectrostatic seen in Table 4.1, but still serves to highlight the important role

that many-body consideration has in determining an accurate size ratio for a

minimum in electrostatic energy.
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4.4 Predicting Novel BNSL Structures

As an extension to this study, we predict the stability of novel superlattice

structures where there is currently a lack of experimental data thus, γ are

compared to those found from hard-sphere modelling[100, 101] as seen in Ta-

ble 4.2. The five AB-type lattices investigated where CoAs, CrB, γ-CuTi, FeB

and α-IrV. For each system, each component particle has been varied in size

and plotted as a function of (a) varying the size of particle A and (b) vary-

ing the size of particle B, in systems of hard particles (s=0). Both versions

were calculated to highlight the difference in data obtained due to the lattice

structures.

Table 4.2: Data on lattice types including giving atomic environment, γpacking cor-
responding to the radius ratio at which the maximum packing fraction taken from
hard sphere studies and theγelectrostatic, where calculations have found each lattice
type to have a minimum in electrostatic energy. (1) follows the particle which is
varied in size while the other remains fixed.

Atomic Environment[96] Space Group[96] γpacking γelectrostatic

Ag2(1)Se
Ag- Metabidiminished P212121(19) 0.820[100] 0.76

icosahedron

Ag2Se(1)
Ag- Bicapped square prism 0.34

Se– square-face

bicapped trigonal prism

AuTe2(1)
Au- Octahedron C2/m(12) 0.528[100] 0.32

Au(1)Te2
Te- Octahedron 0.74

CoAs(1)
Co- Trigonal-face

bicapped square antiprism Pnma(62) 0.414[101] 0.69

Co(1)As
As- Bicapped octahedron 0.57

CrB(1)
Cr- Pentagonal-face capped

pentagonal antiprism Cmcm(63) 0.414[100] 0.64

CrB(1)
B- Tricapped 1.00

triangular prism

γ-CuTi(1)
Cu - Octahedron P4/nmm (129) 0.414[100] 1.00

γ-Cu(1)Ti
Ti - Tricapped triangular prism 0.89

FeB(1)
Fe- Square-face capped

hexagonal prism Pnma(62) 0.414[101] 0.64

Fe(1)B
B- Tricapped 0.64

triangular prism

HgBr2(1)
Hg- Octahedron Cmc21(36) 0.528[100] 0.15

Hg(1)Br2
Br- Triangular 0.24
non-coplanar

IrV(1)
Ir - Cuboctahedron Cmmm(65) 1.00[100] 0.85

Ir(1)V
V- Cuboctahedron 0.97
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The local environments describe the shape formed by the arrangement of one

particle around a central atom of the other particle. Previously, investigation

into varying both would not have been as appropriate as in lattices such as

NaCl, both Na and Cl possess the same atomic environment and the lattice

has a perfectly cubic structure (space group Fm3m (225)). This implies that

the energies observed would be independent of which particle was varied in

size. As can be see in Table 4.2, IrV is the only AB lattice investigated in this

work to have identical atomic environments for Ir and V which should imply

less variance would be observed with varying both particles. However, it is not

a perfectly cubic structure so it is unlikely to provide exactly identical energies.

The unit cells of those structures listed in Table 4.2 are shown in Figure 4.9

at a value of γ=1 as the value of γelectrostatic was found to differ depending on

whether particle A or B was varied.

Figure 4.9: Images showing the BNSL isostructural with a) CoAs, b) CrB, c)
γCuTi, d) FeB, e) IrV, f ) Ag2Se, g) AuTe2 and h) HgBr2 at the radius ratio γ=1.
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4.4.1 AB Stoichiometries

There are two general trends observed from the (a) and (b) graphs in Fig-

ure 4.10. Firstly, the difference in electrostatic energy observed between the

different structures is due to the different space group and atomic environments

of the particles within. Closer packed structures will experience stronger in-

teractions and thus a lower interaction energy. Varying one particle in size

compared to the other will result in different γelectrostatic due to the different

atomic environments; meaning in cases like IrV, where the atomic environ-

ments are the same, the γelectrostatic are similar.

Figures 4.10 (c) and (d) show that up until the electrostatic minima noted in

the graphs showing electrostatic energy, (a) and (b), if just the Coulomb con-

tribution was taken into account, that any value of γ up until the γelectrostatic

would give the same minimum energy. This is due to the fact that when the

radius ratio is below γelectrostatic, each particle is now in contact with a next

nearest large particle meaning displacement of their core by any additional

decrease in γ is constrained.

Figures 4.10 (e) and (f) show the percentage multipolar contribution to the

total electrostatic energy. γ−CuTi has a significant contribution regardless of

which particle is varied in size due to its symmetrical tetragonal P4/nmm space

group as seen in Figure 4.9c. The stabilisation due to polarisation is shown

to be dependent on which particle is varied when looking at less symmetrical

space groups, as we see that Co(1)As has a higher contribution than CoAs(1)

and Fe(1)B experiences less polarisation effects than FeB(1). Both CrB(1)

and FeB(1) have multipolar peaks at γ=0.64 corresponding to the minimum

electrostatic energy. The energy then begins to gradually increase until it

reaches a local minimum at γ = 0.7, due to there still being a high contribution
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: (a),(b) The total (Coulombic+multipolar) interaction energy, (c),(d)
individual Coulombic component and (e),(f) the percentage contribution to the total
energy from multipolar forces plotted as a function of radius ratio, γ, for s=0. For
the solid line graphs, (a),(c),(e),the particle being varied in size from 0.1 to 5 being
As(purple), B(red), Ti(yellow), B(green) and V(blue). For dashed graphs (b),(d),(f)
the particle being varied in size being Co(purple), Cr(red), Cu(yellow), Fe(green) and
Ir(blue).
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from multipolar interactions. Then, past γ=0.7, the polarisation contribution

decreases and Coulomb dominates and thus the total energy decreases.

4.4.2 AB2 Stoichiometries

Three AB2 systems have also been tested to see if the observations made about

AB systems hold true. The three lattice types are Ag2Se, AuTe2 and HgBr2.

Just as the AB systems, these systems have been plotted as a size ratio of both

A and of B. Although in actuality, when self assembling into a BNSL the B2

particles will be the one varying in size, growing in size until they fit inside

the voids left in the close-packed structure of the larger A particle.

As a general trend, the AB2 stoichiometries appear to give a γ value corre-

sponding to less dense packing fractions than the AB systems as can be noted

by observing the γelectrostatic in Figure 4.11 and more clearly in Table 4.2. Of

interest is the vast difference in the two HgBr2 systems. When presented as a

function of varying Hg size, the total electrostatic energy drops significantly at

small values of γ. Figure 4.11 (b) shows that a gradual increase in the Hg par-

ticle leads to a gradual decline in the electrostatic energy until the γelectrostatic

at 0.24. After this, a sharp increase ensues, where at high size ratios Hg(1)Br2

and Au(1)Te2 share similar electrostatic energy values.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: (a),(b) The total (Coulombic+multipolar) interaction energy, (c),(d)
individual Coulombic component and (e),(f) the percentage contribution to the total
energy from multipolar forces plotted as a function of radius ratio, γ, for s=0. For
the solid line graphs, (a),(c),(e),the particle being varied in size being Ag(black),
Te(blue) and Br(cyan). For dashed graphs (b),(d),(f) the particle being varied in
size being Se(black), Au(blue) and Br(cyan).
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The AB2(1) systems see larger contributions to the interaction energy from

Coulomb interactions as shown in Figure 4.11 (c) and (d). It is unsurprising

that in Figure 4.11 (e), AuTe2(1) has the highest percentage contribution as

it is one of the densest binary sphere packings. However, when the graphs are

reversed to be as a function of Hg, Hg(1)Br2 experiences a significant stabili-

sation at γ=0.24 corresponding to a nearly 60 % contribution from multipole

effects. As illustrated in Figure 4.12 (a), when Hg particles are assigned to a1

and are small enough to mimic behaviour of a point charge there are twice as

many larger Br, leading to more areas of polarisation than would be present if

the Br were the smaller particle.

(a)

(b)

Figure 4.12: HgBr2 structure for (a) HgBr2(1) and (b) Hg(1)Br2.

For Ag2Se, constant pressure calculations[100] have found that it can trans-

form into MgCu2 at pressures where more symmetric MgCu2 is predicted to

be more stable. Thus, Ag2Se can be looked at as a high-pressure distortion

of MgCu2, likely explaining the difference between γelectrostatic and γpacking for

this case.

Generally, there is a significant variance in the values listed in Table 4.2 for

γelectrostatic obtained from the discussed calculations and for γpacking produced

from hard-sphere models. In the hard-sphere crystal structure[100] a genetic
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algorithm and Monte Carlo simulations are used to find the stability of such

structures and if unstable, to identify the relaxed geometry the system would

adopt. The identified space groups and atomic environments for the individual

lattice structures, as seen in Table 4.2, are not studied in energy calculations.

Instead, this work concluds that all AB-lattice structures would collapse to

the same basic cubic structure of that of NaCl, as it is of lower overall energy.

This is why the γpacking for all AB systems in Table 4.2 is 0.414 - the γpacking

established for a NaCl superlattice. In order to conduct a meaningful com-

parison between the results discussed in this work and the hard sphere theory,

the only other published work on these structures, energy minimisation would

need to implemented going forth in order to agree or disagree with the γpacking

of 0.414.

4.5 Increasing Stability in BNSL Structures

by the Addition of Excess Charge

Without entropic contributions, a system which is made up of charged parti-

cles, yet remaining overall neutral, will aggregate[16]. In BNSLs, growth that

is accompanied by the accumulation of a non-compensated charge has always

been considered self-limiting on the basis that it will result in instability and

thus hinder the formation of extended lattices[73, 90]. Successful attempts to

add small amounts of uncompensated charge to such superlattice structures

as those discussed throughout this study would result in BNSLs being com-

posed of constituent particles of different charge magnitudes and increase their

scope as devices such as capacitors. Not only this but being able to tune the

charge state of constituent nanoparticles would provide another way to vary

the BNSL structure by directing the self-assembly process[73].
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The key to electrostatic stability will be in balancing the attractive and repul-

sive interactions. An increase in charge of the system is met with heightened

multipolar interactions but also significant Coulomb repulsion which, if it is

more dominant, will ultimately lead to the breakdown of the lattice. In order

to review the impact of this finding on BNSL stability, the experimental mech-

anism for the addition of charge to superlattices needs to be understood. The

addition of excess charge onto superlattices can be experimentally achieved

via a couple of methods. Bartlett et al.[98] specify using the concentration of

bromide to modify the charges on particles in solution. They use two PMMA

particles of similar radii (777 nm and 720 nm), labelled each with differing

cationic fluorescent dyes and placed them in a mixed solvent of cycloheptyl

bromide and cis-declin. The low polarity solvent induced a small positive sur-

face charge on the PMMA spheres. The bromide ions can either be produced

by irradiating the suspension or by introducing a ferromagnetic wire which

acts as a site for decomposition of the cycloheptyl bromide. By leaving the

length of ferromagnetic wire in the solution for longer, Bartlett was able to

increase the concentration of bromide ions to a point where the charge on the

particles was negative.

The point at which each particle reached zero charge differed and so the par-

ticles could have different magnitudes of charge - meaning that there would

be a point where whilst one particle had negative charge, the other remained

positive. Charge as a function of the volume fraction as well as a function of

contact between solution and metal was investigated and it was found that dif-

ferent structures were found based upon the amount of charge that was present.

Additionally, the choice of ligand can increase the quantity of negative and

positive charges. This has been seen by use of carboxyl, trioctylphosphine ox-

ide (TOPO) or dodecylamine ligands[73]. Addition of tetrabutyl ammonium

bromide (TBAB) salt has also been investigated as a method for modulating
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charge on particles by tuning the range of the electrostatic interactions.

Work by Leunissen et al.[102] included the application of an external electric

field to ′melt′ the crystals and confirmed that the constituent particles must

be charged. A method to measure and locate the charge on the particles is

studying the electrophoretic mobility of the nanocrystals in addition with laser

Doppler velocimetry[73]. Electrophoresis facilitates the controlled movement

of the charged particles in a solvent in the presence of an electric field and laser

Doppler velocimetry then uses the Doppler shift of a laser beam to record the

velocity. The combination of the two techniques allows for the quantitative

calculation of charge on constituent nanoparticles.

In the following calculations the same γ that resulted in a minimum in the elec-

trostatic energy was used. Excess charge was then introduced on the smaller

and larger particle in turn, to observe the effect on the electrostatic energy.

The dielectric constant remained at 20, an intermediate between materials

which are strongly and weakly polarisable. Other studies also used a higher

dielectric constant of 15 in their studies[103].

Figure 4.13 shows how the electrostatic interaction energy varies with respect

to addition of excess charge in NaCl lattices of varying sizes. Excess charge

has been introduced by fixing the amount of charge on the negative particles,

while varying the amount of charge on those that are positive. As can be noted

from Figure 4.13, energy minima can be identified for lattices that are not net

neutral and even when we only consider Coulomb interactions between free

charges (dashed lines in Figure 4.13).

By application of Coulomb’s law to elements of charge (free and bound) on

the surfaces of the particles, it can be seen that a small amount of excess

charge will in fact enhance the interactions between each negatively charged
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Figure 4.13: Plot of the electrostatic energy (solid lines) and the contribution from
point charge interactions (dashed line) as a function of the excess charge per formula
unit for each of the different sized unit cells.

neighbour and close positively charged neighbours, resulting in the lattice be-

coming more negative in energy. The inclusion of charge-induced multipolar

interactions acts to further enhance this effect. However, this initial gain is

short lived as the addition of further uncompensated charge leads to repulsive

interactions becoming dominant. The maximum excess charge per particle de-

creases rapidly as a function of lattice size as seen in Figure 4.13 and is also

the case if we consider the absolute excess charge on each size of BNSL. For

example, a unit cell (8 particles) achieves an energy minimum with an excess

charge of -3.38 and can hold -7.41 uncompensated before the lattice energy

switches sign be but when the lattice size increases to 5x5x5 unit cells (1000

particles) these values decrease to -0.0233 and -0.288, respectively.



Chapter 5

Designing a Stable Binary

X@C60 Superlattice

5.1 Endohedral Fullerenes

The fabrication of both nanoparticles[104–106] and molecular fullerenes[107–

109] into functional materials has advanced significantly to a point where some

of their unique properties are becoming fully characterised and leading to the

development of future electronic, magnetic and optical devices. For fullerenes,

these advances have come about because of a dramatic increase in the abil-

ity of synthetic techniques to prepare a wide range of endohedral fullerenes,

X@Cn, where n usually starts at 60, and for X as a metal, a significant frac-

tion of the periodic table has been accessed.[107–109] Particular attention has

been paid to the encapsulation of rare-earth metals as these may have applica-

tions in optics and could form new magnetic and electronic materials.[107–109]

For example, Gd@C82 has been shown to display gate-controlled switching be-

tween electronic states in the presence of an external electric field.[110] Recent

work has also demonstrated that other metals, such as encapsulated lithium,

Li@C60, have the potential to act as molecular switches,[111, 112] and calcula-

tions on Ca@C60 have identified internal motion on the part of the metal atom

94
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as a mechanism for switching charge polarisation on the cage[113].

Parallel to work on fullerenes in Chapter 3, has been the fabrication of nanopar-

ticle crystals with compositions varying from polymers through semiconductors

to metal-centred particles,[104–106] and where self-assembly frequently leads

to the formation of ordered lattices with regular structures resembling those

adopted by crystalline atomic materials, e.g. NaCl, CsCl, AlB2 etc. as seen in

Chapter 4. Depending on the nature of the particles used in the fabrication

process, the lattices have been identified as materials which could have a range

of unique properties.[104–106]

The purpose of this work is to use the recent development in many-body

electrostatic theory to explore some of the known characteristics of endohe-

dral fullerenes with a view to determining if they could form new and novel

nanolattice structures[31]. As a consequence, some of the optical and electrical

properties previously identified for fullerenes[110, 111] could be incorporated

into new materials fabricated into the regular lattice structures known to be

adopted by nanoparticles[104–106].

The literature on nanoparticle lattices[104–106] shows there to be a certain

degree of ambiguity in the nature of the constituent particles: they are often

charged in isolation, but there is uncertainty as to whether or not any charge

remains in the lattice once the particles have assembled. Additionally, there

is often some dispersion in particle size; and the particles are frequently deco-

rated with ligands which could influence both van der Waals interactions and

the dielectric constant of, for example, a particle that has a metallic core. In

contrast, much of this uncertainty disappears with fullerenes, Cn: their exact

size is known and shows no dispersion for a fixed value of n;[5] a value for the

dielectric constant has been published;[114] an accurate van der Waals poten-

tial is available;[5, 58, 115] and finally, whilst the particles are overall neutral,
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a charge of either sign can be induced on the cage through the judicious se-

lection of X, the encapsulated species in X@Cn.[107–109].Thus, interacting

particles will experience a combination of electrostatic and van der Waals in-

teractions that can be fully characterised to define a lattice structure and a

lattice energy. Several stable endohedral fullerene complexes involving Li@C60

have already been prepared,[116–118] and of these, Li+@C60.SbCl
−
6 ,[116] and

Li+@C60.PF
−
6 , [117] are probably the most fully characterised. The stability of

such complexes relies on electron transfer between the two constituents lead-

ing to the formation of an ionic solid, and attempts to form similar complexes

involving other metallofullerenes have not been successful[109]. In part, this

problem appears due to the extreme reactivity of X@C60 fullerenes;[109] how-

ever, samples of crystalline C60 metallofullerenes have been prepared through

functionalisation, which has been shown to increase the HOMO-LUMO gap

thereby reducing reactivity[119]. Issues with the reactivity of endohedral C60

metallofullerenes would clearly present difficulties with fabricating the types

of lattices envisaged here; however, C60 is the most fully characterised of the

fullerenes and those features of the molecule are used to underpin the calcula-

tions.

The ideas discussed here are equally applicable to any quasi-spherical fullerene,

such as C84, and recent work on electrostatic interactions between spheroids

offers the potential to extend this type of study to ellipsoid structures, such as

C70.[120]

In the analysis that follows, each endohedral fullerene in the form of X@C60

remains overall neutral, but because many of the interactions could involve

fractional amounts of charge, it is possible to explore the participation of met-

allofullerenes that may not be susceptible to reactivity or the donation or

acceptance of integer numbers of electrons.
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5.2 Computational Parameters

The van der Waals interactions between C60 fullerene molecules were described

using two- and three-body potentials given by Pacheco and Prates-Ramalho

(PPR), discussed in Chapter 2[5]. For C84 fullerenes, a two-body van der

Waals potential due to Girifalco has been used[9] together with parameters

taken from Micali et al.,[6] which are summarised in Table 5.1.

Table 5.1: Parameters used to describe van der Waals interactions: PPR potential
[5] for C60, and the Girifalco Potential[6] for C84.

C60 Parameters
Radius 0.5025 nm
Dielectric Constant 3.46

C84 Parameters
d 0.8401 nm
α 5.356 ×10−14 erg
β 3.542 ×10−10 erg
R0 1.1357 nm
−ε/KB 4081.5 K
Dielectric Constant 4.24

Density functional theory was used to optimise the geometry of endohedral

fullerenes using the wB97X-D/6-311G* level of theory, as provided by the

Q-Chem 5.0 quantum chemistry software package.[121] For the prediction of

partial charges, the density-derived electrostatic and chemical (DDEC) method

[122–124] has been selected as it reproduces reference ion states and provides

an approximately spherical atomic electron distribution, thus combining the

advantages of both the Hirshfeld [125] and iterative stockholder atom [126]

methods.

Much like in Chapter 4, the size of all different lattice types were investigated

as a function of interaction energy to ensure energy convergence of the system.

Lattices of 1000 particles can continue to be used as Figure 5.1 indicates, we

see a plateau of energy as the lattice increases in size past this point.
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Figure 5.1: Interaction energy per formula unit in eV for 6 different superlattice
structures made up of endohedral fullerenes, shown as a function of lattice size. We
can confer that systems with 1000 or more particles can be used.

Five of the six systems, namely NaCl, CsCl, AlB2, MgZn2 and Ag2Se have

been investigated in this work previously as BNSL structures. In addition

to these ZnS, Zincblende with the space group F43m (216) was included and

presents a very similar energy convergence to AlB2. It is interesting to note

from Figure 5.1 that incorporating properties of fullerenes into the constituent

particles does not influence the convergence of the energy profile.

5.3 Analysis of Lattice Types

The energetics of lattices consisting of two frequently observed binary nanopar-

ticle stoichiometries,[104–106] AB and AB2, have been explored as a function

of the ratio of charge residing on cages associated with separate A and B endo-

hedral X@C60 fullerenes (how charge appears on the fullerenes is the subject

of a detailed discussion below). The total interaction energy of each lattice

type has been determined from calculations combining van der Waals (vdW),

Coulomb and charge induced multipolar interactions. The vdW interactions
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are described following the work of Doye, Wales and co-workers,[58, 115] who

have demonstrated that expressions due to Pacheco and Prates-Ramalho[5]

can be used to determine minimum energy structures for large clusters of C60

molecules. The electrostatic contributions to the stability of collections of en-

dohedral fullerene cages have been calculated using a recently developed theory

of many-body electrostatic interactions, described in Chapter 2,[34] which pro-

vides quantitatively accurate descriptions of the large number of Coulomb and

charge-induced multipole interactions that may be present in an ordered lattice

of charged particles. Batista et al.[127] have previously recognised the signifi-

cance of non additive interactions in the treatment of nanoparticle structures.

Figure 5.2: Section of each lattice type: a) NaCl; b) CsCl; c) ZnS; d) AlB2; e)
MgZn2; f) SeAg2. Shading on each particle depicts the calculated surface charge as
being either negative (blue) or positive (red). Regions of more intense colouration
correspond to enhanced charge due to the polarisation of bound charge and are shown
in the enlarged images

Figure 5.2 shows small sections of each of the lattice types examined. In addi-

tion to the obvious colour difference between negatively and positively charged

particles, there are also regions of more intense colour showing enhanced charge
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due to polarisation. This is particularly evident in, for example, structure b

where there is a large contribution from charge-induced polarisation (illus-

trated in the expanded image and see Figure 5.2). Also evident in some of the

AB2 structures, for example, (d) and (e), is the presence of negative charge

(shown in blue) between two adjacent positively charged particles (shown as

red). This latter effect is highlighted in the expanded image and has been

discussed previously,[24, 128] where it has been shown that such mutual po-

larisation can ultimately lead to like-charge attraction.

The formation of a binary lattice requires there to be two types of particle,

which is not immediately obvious in the case of fullerenes; however, calcula-

tions show that changes in the nature of the encapsulated species can utilise

electron affinity to create a positive or negative charge on the former. Table 5.2

summarises the results of calculations showing the consequences of introducing

different atoms into the C60 cage[129–132]. The presence of a metal atom, such

as calcium or lithium, generally has the effect of ionising the atom and at the

same time adding electron density to the cage, and resident metals and metal

complexes have been classified as being either mono, di, or trivalent[107–109]

depending on the number of electrons assumed to be transferred to the cage.

Table 5.2: Summary of calculated charge populations on the C60 cage following the
encapsulation of metal and halogen atoms. The numbers quoted are dependent on
the methods used to calculate the populations, details of which can be found in the
cited articles. Values in bold indicate results produced in this work.

Endohedral species Calculated charge on the cage (e)

Mg -0.10[130]
Na -0.88[130]
K -0.95[130]
Al -0.89[130]
La -1.07[130]
Lr -0.77[131]

Au-Au6 -0.1 to -2.0[132]
Ca -1.27[130]; -1.33; -1.44
Li -0.68[129]; -0.91[130]; -0.55[131]; -0.94
F 0.4[129]; 0.38;
Cl 0.58;
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The wide range of metal atoms that have been (or could be) encapsulated

in fullerenes means that, for the examples shown in Table 5.2, the calculated

charge on the cage can vary between -0.1 e and -2.0 e[129–132]. In contrast,

the introduction of a fluorine or chlorine atom removes electron density from

the cage and adds negative charge to the endohedral F or Cl atom[129]. Since

chlorine has the higher atomic electron affinity, the calculated charge on a

cage induced by its presence is an upper limit to what can be achieved with

a single atom. Experimental confirmation of the anticipated charge transfer

when metal atoms are encapsulated in fullerenes, can be seen from studies of

Li@C60[133, 134], where it has been shown that in isolation, Li@C60 takes the

form Li+C@.−
60. However, in the condensed phase, the endohedral complex has

been shown to form a dimer Li@C60 - Li@C60[133, 134].

The limitations discussed above regarding the amount of positive or negative

charge that can be transferred to a fullerene cage could be relaxed with the in-

clusion of species more complex than simple atoms. The presence of both Sc3N

and Ti3C3 in a fullerene are thought to result in the transfer of up to 6 electrons

to the cage;[135, 136] likewise, recent calculations have shown that a series of

superhalogens, including AlF4, MgF3 and LiF2,[137] together with PtCl9 and

Pt2Cl9,[138] and Mg3F7[139] all have electron affinities higher than that of

chlorine, and in some cases, calculations have already shown these molecules

to be capable of removing electron density from the C60 cage.[135, 137].

Finally, experiment and theory have identified molecules capable of form-

ing stable dianions with first and second electron affinities above that of

the single electron affinity of chlorine. These species include ZrF6[140] and

B12(CN)12,[141–143] which can form stable dianions when the second electron

becomes trapped behind a Coulomb barrier; as such, their inclusion in an endo-

hedral fullerene, could result in the cage losing up to 2 electrons and acquiring

a charge of +2. Many of these molecular examples would obviously require
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accommodation in fullerenes larger than C60;[144] however, they do offer the

possibility for generating a wider range of lattice structures.

A large number of metal-containing endohedral fullerenes that have, to date,

been synthesised are readily available[107–109]. What is less obvious are routes

to the synthesis of the required counter ion, and although recent experiments

have identified the formation of stable F@C60,[145] that aspect of the work

will require further experimental investigation. It is encouraging to note, how-

ever, that thermally stable quantities of the non-metallic endohedral fullerenes

N@C60 and P@C60 have been prepared, although calculations show there to be

no electron transfer from or to the cage[146]. What all of the examples given

in Table 5.2 do demonstrate, is that there is some flexibility in the amount

of charge, either negative or positive, that could be induced to reside on the

surface of a fullerene cage. For the purposes of the theory, it is assumed, to

start, that in the examples discussed below the cage has a uniform distribution

of charge; this in turn implies that X in X@C60 resides at the centre of the

cage, which is not always necessarily the case.[107–109, 116–118, 129–132]

5.4 Stability of Structures as a Function of

Charge Ratio

In principle each AB pair should experience three separate electrostatic inter-

actions, which are: i) the charged core of A interacting with the charged core

of B; ii) an interaction between the charged cores and the charged cages; and

iii) an interaction between the charged cage of A and the charged cage of B

as can be seen in Figure 5.3. However, a range of experimental and theoreti-

cal studies have shown that fullerene molecules act as Faraday cages,[147–154]

which means that entities (other cores and cages) external to a given cage are

shielded from any charge contained within the cage, i.e. the metal or halogen
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core. Therefore, electrostatic interactions in AB and AB2 systems will be dom-

inated by iii, namely interactions between the charges on each A and B cage.

Thus, each lattice with, for example, an AB pair in the form of A@Cq+
60 .B@Cq−

60 ,

is treated as a collection of charged, dielectric spheres, for which theory is very

well established.[24, 34]

Figure 5.3: Three possible interactions between endohedral fullerenes i) the charged
core of A interacting with the charged core of B; ii) an interaction between the
charged cores and the charged cages; and iii) an interaction between the charged
cage of A and the charged cage of B. Figures from publication by Halstead[8].

Two lattice stoichiometries have been the subject of this study, and these are

AB and AB2. For AB systems the calculations discussed below have focussed

on nominal charges of qA = -1 e and qB = +1 e on the cage, but with the

negative charge allowed to vary by ± 0.5 e; thus, reflecting the fact that an

exact equal and opposite match of charge on the cages will probably not be
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possible. For AB2 systems the nominal charges are qA = -2 e and qB = +1 e,

but with a negative charge variation of ± 1.0 e. For AB combinations where

the absolute charge on each cage is different to what is considered here, the

Coulomb energies quoted below can be scaled using the product qAqB.[155]

It should again be emphasised that each X@C60 and each final nanolattice

remains charge neutral. An example of a potential lattice would be an AB

structure consisting of unit cells containing Li@C60 paired with Cl@C60.

Lattice stabilities have been calculated as a function of the charge ratios qA/qB

and qA/2qB, respectively. The intention here is to explore a range of lattice

types to see which might be best suited to form a stable crystalline structure.

For AB structures, initial calculations were undertaken on the rock salt cubic

lattice, which experiment has identified as stable for both pure C60 above

249K[156] and for endohedral fullerenes of the form Li+@C60(Y), where Y

is PF−
6 or ClO−

4 [116–118] (although Table 5.2 shows the cage in Li@C60 is

calculated to be negatively charged,[129–131] the cage in Li+@C60 is predicted

to carry a charge of +0.1e[130]).

5.4.1 AB Stoichiometries

Figure 5.4(a) shows the results of calculations on a lattice composed of neg-

atively and positively charged C60 cages arranged in the form of an NaCl

face-centered cubic (FCC) crystal. What is immediately obvious from the cal-

culated total energy is that this lattice is very stable over a wide range in

the charge ratio, with each of the separate interactions making a contribution

to overall stability. For this example, the dominant interactions are Coulomb

and van der Waals, with the latter remaining constant across the charge ra-

tio range as it is not sensitive to charge. Where the vdW interaction becomes

particularly significant for stabilising the lattice is at those charge ratios where

the Coulomb energy becomes positive; also, at these ratios, the contribution
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from charge-induced interactions, which although small, is always negative and

therefore helps to extend the range of charge over which the lattice remains

stable.

Figure 5.4(b) shows the result of calculations on an CsCl body-centered cubic

lattice composed of X@C60 molecules. Across the charge ratio shown, the

lattice is almost as stable as that seen for the FCC lattice; however, in contrast

to the FCC lattice, the Coulomb contribution is comparatively small and it

is the van der Waals and charge-induced interactions that make significant

contributions to overall stability. What is significant for both lattice types is

that stability is not restricted to charge ratios close to one; thus, allowing mis-

matches of the type seen in Table 5.2 to still result in a stable lattice. Finally,

for the AB lattices, Figure 5.4(c) shows results for a ZnS lattice, which at

charge ratios close to 1, has dominant contributions from Coulomb and vdW

interactions, but is less stable than the other two lattice types.
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Figure 5.4: Individual contributions to the total energy per formula unit for lattice
structures of the type a) NaCl; b) CsCl; and c) ZnS, each consisting of equal numbers
of positively and negatively charged X@C60 fullerene cages
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5.4.2 AB2 Stoichiometries

Figure 5.5 show the results of calculations on three AB2 lattice types, namely,

AlB2 MgZn2 and Ag2Se. For the AlB2 lattice, there is very little stability to

be gained from Coulomb interactions away from qA/q2B ∼ 1, and it is only the

presence of vdW and polarisation interactions that extend stability over what

is still a narrow range of charge ratios. In contrast, the stabilities of both the

MgZn2 and Ag2Se fullerene lattices rely almost entirely on Coulomb interac-

tions, which, again, over a very narrow charge ratio, renders both lattices to

be far more stable than any of those examined thus far.

Figure 5.5: Energy per formula unit for lattice structures of the type a) AlB2; b)
MgZn2; and c) SeAg2, each consisting of two positively and one negatively charged
X@C60 fullerene cage
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Table 5.3 summarises data on the charge range over which each of the lattice

types is calculated to be stable, which given that exact equal and opposite

charges on the X@C60 constituents of a lattice may not be possible, increases

the opportunity to form a stable structure. Taking as a guide to stability,

existing data on the neutral C60 FCC lattice, where just vdW interactions are

present, then a CsCl lattice could be 1.5 to 2 times more stable than its neutral

counterpart. However, if it becomes possible to closely match the positively

and negatively charged components, then a SeAg2-type lattice looks to be ex-

tremely stable.
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Table 5.3: Total interaction energies (in eV per unit formula) for endohedral fullerenes arranged in the lattice types NaCl, CsCl, ZnS, AlB2, MgZn2,
SeAg2 at charge ratios between -0.5 and -1.5. Negative interaction energies are shown in bold to highlight the stable structures

qA/qB -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5

System Interaction Energies in eV per Formula Unit

NaCl 9.83 4.61 0.61 -2.18 -3.75 -4.11 -3.25 -1.18 2.11 6.11 12.33

CsCl 12.30 6.47 1.97 -1.21 -3.06 -3.59 -2.79 -0.67 2.77 7.54 13.63

ZnS 10.04 5.36 1.76 -0.77 -2.23 -2.60 -1.90 -0.13 2.72 6.65 12.54

AlB2 31.15 18.78 9.23 2.50 -1.41 -2.49 -0.76 3.79 11.17 21.37 34.38

MgZn2 40.83 23.06 9.37 -0.22 -5.72 -7.12 -4.44 2.34 13.21 28.17 47.22

SeAg2 40.77 22.68 8.71 -1.16 -6.91 -8.55 -6.08 0.50 11.19 25.99 44.90
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Figure 5.6 summarises the contribution the three separate interactions, Coulomb,

charge-induced, and vdWmake to the overall stability of each lattice type when

the charge ratio, qA/qB, is one. There does not appear to be a unique pre-

scription for creating a lattice that is both strongly bound and stable across

a wide charge ratio. In three examples, a large Coulomb contribution gives a

lattice that, within its class, is strongly bound, but at the same time, vdW

and charge-induced interactions could have a significant role in the fabrication

of a stable endohedral fullerene lattice. The total energies calculated for all

the AB and AB2 structures are very clearly >> kT, which means that they

should remain stable at room temperature and most likely under the operating

conditions of any application.

Figure 5.6: For each AB and AB2 lattice type where the charge ratio is one,
the percentage contribution to the total energy is shown for each of the following
interactions: Coulombic (blue); charge-induced (red); and vdW (green)

Since there is the potential for generating endohedral fullerenes with charges

outside the range considered above for AB structures, two further calculations

have been undertaken. Figure 5.7 examines how, for the situation where qa=-

qb in X@C60, the stability of NaCl and CsCl lattices varies as the charge q on

each cage increase from 0 to 2. As can be seen, the stability of both lattice
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types increases significantly beyond q = 1.0; however, there is also an inter-

esting switch in stability at q ∼ 0.7 between the FCC lattice of NaCl and the

cubic lattice of CsCl, which clearly arises when the large contribution from van

der Waals and charge-induced interactions to the stability of the CsCl lattice is

superseded by the higher Coulomb contribution to the NaCl lattice that varies

as q2 and can be seen in Figures 5.4(a) and 5.6. The fact that fractional

charges, less than 1 e, on a pair of endohedral fullerenes in an AB structure

will form a stable lattice, could help to reduce the possibility of reactivity.[109]

Figure 5.7: Variation in the stability of NaCl and CsCl lattice types for the situ-
ation where qa = qb, and the charge q on each cage is increased from 0 to 2. The
various interactions are shown as follows: van der Waals - dashed lines; polarisation
- dot-dashed lines; Coulomb – dotted lines; total energy – solid lines. For CsCl the
contributions from Coulomb and polarisation interactions are almost identical

The calculated results given in Figure 5.7 predict that at zero charge on the

particles, the CsCl BCC lattice structure should be more stable than that of

the NaCl FCC lattice. If the BCC lattice could be viewed as two interlocking

simple cubic lattices, then this result would be consistent with the simple cubic

structure observed for pure C60 at low temperatures[156].



Chapter 5. Charged Structures with Neutral Layers 112

5.5 Charged Structures with Neutral Layers

Experiments on multiply-charged clusters, (C60)
q+
n [3], would suggest that a

single-component X@C60 nanolattice, where each endohedral fullerene cage

carries a charge of the same sign will not be stable, but that a lattice of the

form (X@C60)n(C60)m which is interspersed with non-endohedral fullerenes

with m > n might be. Some examples of the superlattice structures investi-

gated above were taken and explored with alternating layers of charged endo-

hedral fullerenes and neutral, hollow C60 molecules. The interaction energy

of different system sizes was explored as a function of the magnitude of the

charge on the X@C60.

(a) (b)

Figure 5.8: X@(C60)n(C60)m BNSL structures as a function of charge on the
X@C60 for (a) NaCl-type lattice and (b) CsCl-type lattice. The dashed line is where
the interaction energy is 0 eV.

In the AB systems seen in Figure 5.8 there is one neutral C60 to each positively

charged X@C60. Thus far, NaCl has been seen to be a highly stable structure

and this remains the case here where we can see that in a single unit cell, as

shown by the black line on Figure 5.8(a), each endohedral cage can have a

charge of almost +1 with the cell remaining stable. We see this trend regress

with respect to size of the structure as with an increasing number of endohe-

dral fullerene cages being charged, significant uncompensated charge is added
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to the lattice overall. The interaction energy profile for an 16 particle CsCl has

a much steeper gradient yet can still hold a charge of ∼ 0.8 eV in each charged

particle whilst remaining net stable. For the 1000 particle lattices, at least a

charge of ∼ 0.15 eV can be added to each endohedral fullerene cage and the

system will remain stable. This presents the prospect that either Mg or Au

could be suitable encapsulated metals in such X@(C60)n(C60)m structures as

Table 5.2 shows that these both induce a charge of -0.1 eV on the fullerene cage.

(a) (b)

Figure 5.9: X@C60)n(C60)m BNSL structures as a function of charge on the X@C60

for (a) AlB2-type lattice and (b) MgZn2-type lattice.

AlB2 and MgZn2 lattices would be expected to stabilise a higher amount of

charge on each X@C60 as for each charge there will be two neutral fullerenes.

Although we can see in Figure 5.9 that it isn’t by much - a 1029 particle AlB2

seems to be able to hold as much charge as both NaCl and CsCl - this is be-

cause although charges are further separated when placed on A in AB2 this

is met with diminishing attractive polarisation contributions. Of the two AB2

systems in Figure 5.9, MgZn2 is the most stable allowing 0.2 eV per X@C60

in its 5x5x5 unit cell structure. This however consists of 1500 particles and

so larger than the other three systems discussed, meaning it cannot be di-

rectly compared and only discussed in isolation. Its 12 particle unit cell can

hold a singular charge on each charged particle implying that for this small
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structure any of the metals in Table 5.2 could be encapsulated and a stable

(X@C60)n(C60)m could then be produced.

Table 5.4: Maximum charge held per cage and percentage of charged cages on the
surface of the different size structures seen in the NaCl and CsCl-type lattices seen
in Figure 5.8.

Lattice
Type

No. of Percentage of Charged Max Charge per
Particles Particles on the Surface Charged Particle

NaCl

8 100 0.80
64 87.50 0.39
216 70.37 0.26
512 57.81 0.20
1000 49.80 0.16

CsCl

16 87.50 0.62
128 57.81 0.34
250 49.8 0.28
686 37.03 0.21
1024 33.01 0.18

The distance between two fullerene cages in bulk is recorded as being 10.08Å

[157], this represents surface-to-surface separation of 0 in calculations where

the diameter used for the cage is 10.0511Å. The lattice constant for fullerite

is recorded as 14.17Å[158], I record 14.2143.Å for the NaCl type lattice. My

lattice constant for CsCl is 11.6060 Å, very comparable to what is expected

from the equation:

4× 5.025Å

30.5
= 11.6047 (5.1)

Figure 5.10 and 5.11 show how many like and opposite charges are present

in a 3x3x3 NaCl lattice and a CsCl lattice with 250 particles, respectively. It

shows trends expected from a FCC and BCC packing comparison comparison

with nearest like charge closer together in a CsCl-type lattice due to its more

closely packed structure.
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This is likely the reason we see that a CsCl-type lattice can hold less charge per

endohedral fullerene than a NaCl-type lattice as Table 5.4 shows that they can

hold 0.62 and 0.8 eV, respectively. The closer packing of the BCC structure

leads to a sharper increase in repulsion between the charges.

(a) (b)

Figure 5.10: Distances to like and opposite charges in a 216 particle FCC NaCl
lattice for (a) fullerenes in the centre of the lattice and (b) fullerenes on the surface.

(a) (b)

Figure 5.11: Distances to like and opposite charges in a 250 particle BCC CsCl
lattice for (a) fullerenes in the centre of the lattice and (b) fullerenes on the surface.
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5.6 Stability of C84 Endohedral Fullerene Su-

perlattice Structures

The availability of a suitable van der Waals potential for C84 has made it pos-

sible to extend the above calculations to explore the consequences of utilising

larger fullerenes, which would then allow the accommodation of many of the

more complex species discussed previously. However, there is the possibility

that the inclusion of species other than atoms may change the shape of the

fullerene cage.[144] For the purposes of these calculations on C84, the van der

Waals potential constructed by Girifalco[9] has been used together with the

many-body electrostatic theory discussed above. There are a number of pa-

rameter sets available for the C84 Girifalco potential,[6] and those chosen for

these calculations are given in Table 5.1. In addition, the dielectric constant

has been increased from 3.46 used for C60 to 4.24[159].

Figure 5.12: Comparison between the stabilities of lattice structures composed of
X@C60 and X@C84 fullerene cages. Individual contributions to the total energy per
formula unit for lattice structures of the type: (a) NaCl and (b) CsCl, each consisting
of equal numbers of positively and negatively charged X@Cn fullerene cages. The
solid lines are for C60 and the dashed lines C84. Coulomb interactions are shown
in black, many-body polarisation interactions in red, and vdW interactions in green.
The total interaction energies are shown as blue. For C60 the vdW contribution has
been calculated using the PPR potential[5], and for C84 the Girifalco potential has
been used[6, 9]
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Figure 5.12 shows the results, where the individual contributions to total lat-

tice stability are compared for X@C60 and X@C84. For the individual lattice

types, NaCl and CsCl, there are competing contributions to the relative sta-

bility. The slightly larger size of C84 will lower surface charge density, which,

in turn, will reduce both the Coulomb (most noticeable for the NaCl lattice)

and polarisation interactions; however, the larger sphere will also be more po-

larisable. As can be seen from Figure 5.12, changes to the electrostatic inter-

actions are marginal, with X@C60 appearing as the more stable; however, it is

mainly through the van der Waals interaction that X@C84 acquires additional

stability and for a CsCl lattice type this amounts to ∼ 0.5 eV per formula unit.

5.7 Stability of C60-C84 Endohedral Fullerene

Superlattice Structures

While there has been a lot of work done on homogeneous fullerene interac-

tions, there has been a lot less work done on non homogeneous interactions.

Although binary clusters, which include two types of particles, have received

some attention[160], still the general level of understanding remains far be-

hind that of homogeneous clusters due to the huge parameter space. Bubnis et

al.[161] investigated these clusters of composition (C60)n(C84)N−n up to N≤ 24

using the Girifalco potential and a basin-hopping method and concluded that

their results suggest that further studies of larger clusters, and perhaps other

fullerene species, could be fruitful in exploring how noncovalent interactions

between fullerenes can control the self-assembly of supramolecular structures

containing fullerene derivatives. However, because fullerenes come in a wide

range of sizes, there appears to be a natural region in which mixed clusters

with components of various sizes might be studied experimentally. There has

been interest displayed in investigating mixtures of the fullerites[162, 163].
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For the theoretical study of their thermodynamic properties, it is important to

know the intermolecular forces acting between molecules of different fullerenes.

Similarly to Girifalco[9], averaging the atom-atom interactions (Chapter 2) of

the two Cm and Cn molecules with effective radii am and an over all their

orientations, we obtain the intermolecular potential:

V = −α

s

( 1

s(s− 1)3
+

1

s(s+ 1)3
− 1

s(s− σ)3
+

1

s(s+ σ)3

)
=

β

s

( 1

s(s− 1)9
− 1

s(s+ 1)9
− 1

s(s− σ)9
− 1

s(s+ σ)9

) (5.2)

Here s= r
Dmn

where Dmn = (am + an) and am and an are the effective radii

σ = (am−an)
(am+An

) and the coefficients α and β are defined by the formulae:

α =
mnA

48aman(aman)4
, (5.3)

β =
mnB

360aman(aman)10
(5.4)

Therefore we can note that when m=n, the potential in Equation 5.2 trans-

forms to the Girifalco potential for two Cn molecules. The coefficients for α

and β are known for C60 molecules interacting with both smaller fullerenes[164]

such as C36 and larger ones including C84 which we have looked into already

using the Girifalco potential.

Table 5.5: Parameters used to describe van der Waals interactions using the Giri-
falco Potential[6] between C60-C84.

C60-C84 Parameters
d 0.7750 nm
α 6.245 ×10−14 erg
β 6.695 ×10−17 erg
R0 1.0705 nm
−ε/KB 3616 K
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Table 5.5 lists the parameters needed for implementing the Girifalco poten-

tial alongside many-body theory to investigate the stabilities of C60-C84 lattice

structures. The same six lattice-types that were modelled for purely C60 struc-

tures were investigated, again as a function of charge as displayed in Figure 5.13

at their size ratio corresponding to a minimum in electrostatic energy, and so

a maximum packing fraction.

(a) AB systems (b) AB2 systems

Figure 5.13: 1000 particle superlattice structures comprised of C60 and C84

fullerenes. For AB stoichiometries (a) and AB2 stoichiometries where A is C60

and B is C84.

It is clear that just like in the singular fullerene superlattices investigated pre-

viously, these binary arrays are also highly stable over a wide range of charges.

We can see in Figure 5.13 that their trends are comparable too with a NaCl-

type structure being the lowest in interaction energy at ∼ -3.5 eV, followed

by CsCl and ZnS, respectively. The actual energy is slightly less than in the

homogeneous C60 systems as the larger A, C84 particle will distort packing and

reduce Coulomb interactions. Hence, this is why we see the biggest reduction

in energy in those systems that were found to have the least stabilisation due to

polarisation such as NaCl and MgZn2 whereas the change in those structures

whose stability was due to a majority in multipolar interactions vary less, such

as AlB2.
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5.8 Surface Charge Distributions of Non-Central

Encapsulated Metal Atoms

In previous publications, an analytical solution for the distribution of charge

on a dielectric sphere due to the presence of an external point charge has been

presented. This describes how we see charge on the surface being polarised by

an electric field into regions of positive and negative charge[165]. The solution

assumes that the polarisable charge lies on the interface of the dielectric sphere

and not inside the sphere and additionally, the outside of the sphere where the

charge resides is in vacuum. This analytical solution was made in house by

G. Raggi and was compared to partial atomic charges from quantum chemical

calculations of C60 molecules using the same charge density assumptions. The

results were published[165] as they found the analytical solution to be in good

agreement with the DFT calculations. The assumption was made that it is

possible to invert the model to account for an ′empty′ cavity with point charge

moving inside and a dielectric medium meaning that the polarisable charge is

on the interface between the dielectric and spherical empty cavity.

The majority of electrostatic solutions for a point charge and a particle on

dielectrics, as well as conductors, are for situations where the point charge is

outside the sphere, which is not the case in metallofullerenes. In addition to a

previous theory handled by an infinite series of spherical harmonics and solved

in terms of image line and point sources on a point charge placed inside and

out, Sten et al.[166] offered one of only a few solutions for a particle inside a

dielectric. This cannot be used as a direct comparison as we model the parti-

cles with their characteristic hollow centres.

There are a slew of additional scenarios in which being able to model charges

inside the cage would be useful, ranging from biological structural research to

physical applications[167]. Other physical uses of charge exisiting inside the
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cage have been employed for molecular switching purposes such as Ca@C60

and Li@C60 endofullerenes based on charge-transfer excitation.

Until this point, the work in this Chapter has assumed a uniform distribution

of charge across the surface of the fullerene cages - of equal magnitude and

opposite sign to the encapsulated metal atom. This in turn implies that X

in X@C60 resides at the centre of the cage, which is not always necessarily

the case[107–109, 116–118, 129–132]. An off-centre encapsulated atom would

have the effect of redistributing the surface charge to facilitate a build-up of

opposite charge on the portion of the cage that is nearest the atom. This now

non-uniform surface charge on each cage would interact differently to the uni-

form cases investigated previously, affecting the stability of some of the lattice

structures. Table 5.6 shows the equilibrium position of four atoms inside a C60

as calculated by DFT. It can be seen that chlorine is almost exactly central in-

side the cage and therefore would experience a uniform spread of surface charge

on the cage after encapsulation. For calcium, lithium and fluorine, however,

they are significantly closer to the side of the cage thus have a critical influence

on the polarisation of the C60 cage.

The position of a trapped charge inside the cage is accompanied by large

changes in electron density on the surrounding carbon cage, producing hemi-

spheres of positive and negative charge with placements dependent on the

position of the central charge.

Encapsulated atom Distance from the centre (Å)
Ca 1.1886
Li 1.3551
Cl 0.0008
F 0.8875

Table 5.6: The distance from centre for four different atoms encapsulated inside a
C60 in angstroms, as determined by DFT.
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As chlorine is positioned centrally inside the fullerene, the cage would have

energies comparable to those discussed previously with the uniform spread.

Implying that, for the AB and AB2 lattice types investigated, it is likely that

their energies would be noted experimentally, with chlorine encapsulation pro-

viding positively charged C60 cages. It is important to note that the position

of some metal atoms often remains unclear, even when the cage structure has

been determined by single-crystal X-ray diffraction because there can be many

possible metal positions with close energies and low barriers of interconversion.

Many structures of endohedral metallofullerenes, especially those of mono- and

dimetallofullerenes, remain unknown.[168]

Figure 5.14: Illustration of different orientations of off-centre atoms in C60 cages:
(1) where the atoms are towards the side of the cages closest to one another, (2)
when the atoms are both towards the same side of their respective cages, (3) atoms
are towards opposite directions, (4) a more centrally positioned atom and a off-centre
atom facing towards each other, (5) a centrally positioned atom and an off-centre
atom positioned closest to each other, (6) a more centrally positioned atom and a
off-centre atom facing opposite directions.

Figure 5.14 shows three (1-3) orientations we could see in dimers with off-centre

encapsulated atoms (Li, Ca or F for reference to Table 5.6) and three (4-6) ways

we could find an off-centre encapsulated atom neighbouring a more centrally,

uniformly distributed atom such as chlorine. In order to explore the effect

that non-central encapsulation has on the stability of lattice structures, such

as those previously investigated, we need to understand the multiple ways we

could find dimers with non-uniform surface charge density. In a BNSL struc-
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ture of ∼ 1000 atoms, there is a multitude of ways that cages with non-uniform

surface charge distributions will neighbour each other. Take a dimer of two

Ca@C60 in isolation for example. A less central position is accompanied by an

electron transfer from calcium to the fullerene cage - inducing a concentrated

area of negative charge on the cage at the point nearest the atom and a higher

concentration of positive charge everywhere else. Energetically, it is favourable

for the neighbouring Ca@C60 to be a mirror image with the calcium off centre

the same amount but in the opposite direction. This means that the induced

charges on the cage contributed significantly to lowering the interaction en-

ergy. This is only the answer to the two-body problem. As soon as a third

particle is introduced the equilibrium is redistributed as the iterative process

happens across the whole structure meaning we are likely to see all different

combinations of neighbours such as seen in Figure 5.14.

In order to model the non-uniform equilibrium surface charge distributions of

X@C60 cages where X is non-central (i.e. Ca, Li or F), partial charges were ob-

tained using the density-derived electrostatic and chemical (DDEC) method,

converted to a surface charge density function using Mathematica and finally,

introduced in place of uniform charge spread in the electrostatic solution.

In Figure 5.15 we can see the difference this orientation of neighbouring charges

can have on interaction energy. To start, the dielectric constant was set to unity

to model the non-polarisable case. This can be seen in Figure 5.15(a) where

the uniform surface charge density, represented by the magenta line, was -

1.5976 eV. This was used to obtain trends in different encapsulated atoms and

their positions before the dielectric constant was changed to 3.46, that of a

fullerene cage and compared to the non-polarisable case. This was to ensure

that we weren’t seeing a significant change in the surface charge distributions

from the central atom due to the neighbouring cage’s charge. In the polaris-

able case of Figure 5.15(b), we see that the interaction energy for a uniform
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(a) (b)

Figure 5.15: Interaction energy for a (a) non-polarisable and (b) polarisable
X@C60X@C60 dimer where X=Ca, Li, Cl or F, for orientations 1-3 in Figure 5.14of
the encapsulated atom and a dielectric constant of 3.46.

cage is now -1.850 eV and the Cl@C60.Cl@C60 dimer doesn’t vary much from

this value, due to its equilibrium position in the middle. For cases (1) and

(2), we see increased stabilisation compared to the uniform case with (1) being

the most stable. In this case, the atoms are closest to one another leading to

significant stabilisation due to the polarisation of surface charge on the cages.

(2) only comes with a minor change to interaction energy, unsurprising as the

separation of the middle atoms in this placement isn’t much different from the

uniform case. Case (3) leads to a decline in the stability of all bar the chlorine

dimers due to increase distance between the charges and therefore lowering

their effect on one another.

The cases discussed above involved dimers with the same encapsulated metal

in both C60 cages. This is less applicable to the work done in this study of

endohedral fullerene superlattices where we see cages of alternating charges.

Figure 5.16 show dimers composed of one fullerene cage with a centrally po-

sitioned encapsulated atom and a fullerene cage with an off-centre internal

atom. The chlorine doesn’t sit perfectly (but very nearly) symmetrical and so
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Figure 5.16: Interaction energy for a polarisable X@C60Cl@C60 dimer where
X=Ca, Li, Cl or F, for orientations 4-6 in Figure 5.14 of the encapsulated atom
and a dielectric constant of 3.46.

the side of the cage that it lies nearer to will see increase interactions due to

a redistribution of surface charge. Figure 5.16 shows the interaction between

a dimer where one has a centrally encapsulated atom, chlorine, and the other

ranges in position within the cavity (Li, Ca, Cl and F).

The dielectric constant used here for the medium was 3.46, that corresponding

to bulk C60[4]. However, as we are keeping the cage empty (aka vacuum, k=1)

this value no longer holds its specific significance. The dielectric constant of

fullerene, as determined by the Clausius-Mossotti equation, is for the molecule

as a whole. This includes the carbon cage and the cavity. In fact, as the

dielectric doesn’t begin until the cage in this model we propose that the value

of k should match that of graphene more closely than buckminsterfullerene.

Therefore the same polarisable calculations as discussed in Figure 5.15 and Fig-

ure 5.16 have been repeated with a dielectric constant of 6.9 for the medium.
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(a) (b)

Figure 5.17: Interaction energy for a polarisable (a)X@C60X@C60 dimer and (b)
X@C60Cl@C60 dimer where X=Ca, Li, Cl or F, for orientations 1-3 in Figure 5.14of
the encapsulated atom and a dielectric constant of 6.90.

A higher dielectric constant is a description of a material that is more highly

polarisable. That is why, although we see the same trends for the binary dimer

in Figure 5.17(a) and Figure 5.15(b), the magnitude of the interaction has in-

creased. When k=3.46, we can see that the interaction energy between two

cages with encapsulated Li was just over 2 eV. This has increased by nearly

25% to ∼ -2.5 eV when the cage is modelled as having a polarisbaility of

graphene. The same trends are witnessed between Figure 5.17(b) and Fig-

ure 5.16 where in charge facing orientations the interaction is stronger whilst

central sitting chlorine means that the cage remains comparable to uniform

distribution.

This finding is integral to gaining a better understanding of the intermolecular

forces responsible for stabilisation between endohedral fullerene cages. If we

wish to test the robustness of our findings for stable superlattice structures,

made of only uniform charge distributions over the fullerene cages, we need to

be able to successfully model the disruption to surface charge that an off-centre

encapsulated metal atom will have. The work discussed here begins the de-
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scription of how charge on the surface of the sphere is polarised into regions of

positive and negative charge density when the separation between the sphere

and the point charge varies. This classical electrostatic analysis of charge for a

sphere and internal, and an external, point charge have been validated against

quantum chemical calculations based on DFT by Raggi et al.[165].

The polarisation effect due through the motion of the trapped charge inside the

cavity could show potential as a polarisable nanoswtich. However, analysing

the point charge inside a fullerene just by polarisation is not practical as it

is predicted that the motion of a charge inside a cage would be accompanied

by a large change in the electron density on the surrounding cage. Previous

calculations have found that in Ca@C60, the valence 4s electrons of the encap-

sulated Ca atom are energetically close to the LUMO of C60, thus allowing for

the prospect that none, one or both of the 4s electrons could be transferred to

the C60 shell[169]. Although the C60 can officially accept one or two electrons

donated from encapsulated electropositive atoms, the true amount of charged

transferred is usually less.

In their minimum energy configurations, Ca, Li and F assume an off-centre

position and the X@C60 complex is stabilised by polarisation of the cage.

Nonetheless, this gain in stabilisation from polarisation energy is partially off-

set by a simultaneous rise in repulsive interactions between the encapsulated

charge and the wall of the dielectric cage[170]. That being said, the polarity

of the embedded atom could be manipulated in order to control its position

and therefore manipulate the magnetic moment - allowing for the use of a

magnetoelectric nanoswitch.
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5.9 Conclusions on Stable Structures

The proposal is that nanoparticle structures could be fabricated from combi-

nations of appropriate endohedral fullerenes that are capable of forming stable

lattices. From the results of calculations present here, it has been shown that

stability is derived, in part, from electrostatic interactions between fullerenes,

where the presence of certain endohedral atoms can induce either a negative

or positive charge to reside on the cage. For AB and AB2 structures, vary-

ing combinations of Coulomb, charge-induced and van der Waals interactions

contribute to overall stability, and because the latter two interactions always

enhance stability, their presence has been shown to extend the range of charges

over which lattices are stable.

The proposed lattice structures differ from those previously identified by ex-

periment for Li@C60, in that their formation does not require electron transfer

to a counter anion[116–118]. In addition to applications in the form of devices,

recent calculations have also shown that arrays of M@C60 (M = Na, K, Rb,

Cs, Sc, Ti, Mn, Fe) could act as catalysts for the activation of hydrogen,[171]

and that embedded metal clusters in the form Mn@C60 (M = Mn, Co, Ni,

Cu; n = 2–5) could stimulate the oxygen reduction reaction[172]. Both these

processes are promoted by the presence of a negative charge on the fullerene

cage, and since arrays of these materials alone might not be stable, the results

presented above may offer a route to their fabrication.
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Conclusions and Future Work

6.1 Conclusions

The work in this thesis has evaluated the strength and demonstrated the versa-

tility of the many-body polarisable electrostatic solution proposed by Lindgren

et al.[34] in 2018, and in addition, included an accurate description of disper-

sion effects. This allows a complete understanding of fullerene clusters and

BNSLs with the goal of computationally designing electrostatically stable en-

dohedral fullerene superlattices.

Chapter 3 investigates the nature of fullerene cluster stability via Coulomb

fragmentation. The preceding two-body model had already been used to con-

duct similar research[27], modelling clusters by a large sphere (representing

multiple fullerenes) and a fragment; producing results similar to, but not in

exact concurrence with, experiment and other theoretical models. With the

many-body consideration we are able to build a more accurate view of the

processes occurring and so provide results that are more closely matched to

experimental results. However, it presented the extra consideration of dis-

persion forces. Cluster stabilities were assessed by the emission of a single,

charged fullerene from a parent cluster and the interaction energies, a sum

of the Coulomb, polarisation and vdW contributions, before and after frag-

129
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mentation were compared. A lower interaction energy before fragmentation

implies a stable cluster. However, if the energy is lower at large separations

then the parent cluster can be said to be unstable or metastable. For clusters

with charges 2≤ q ≥5, minimum stable sizes were found to much more closely

match those found in experiment compared to work using Bichoutskaia’s two-

body theory. The dispersion effects discussed and implemented in this work

are adaptations of Hamaker’s vdW equation, PPR and Girifalco.

Chapter 4 focuses on the flexibility of superlattice composition which sug-

gests that controlled nanocrystal self-assembly could be an important enabler

in next generation material design. The many-body electrostatic theory has

been employed to investigate the significance of Coulombic and multipolar

contributions to structural stability in novel AB and AB2 binary nanoparticle

superlattice structures. The calculations found that, in some lattice struc-

tures, 60% of the electrostatic energy comes from many-body polarisation

effects, highlighting the importance in the consideration of the additive na-

ture of polarisation rather than the use of pair-wise interactions. Without this

many-body consideration the characterisation of true and local minima could

be blurred. The atomic environment of a crystal structure was found to be sig-

nificant with all AB structures having different contributions from Coulombic

and multipolar effects. The constituent particles in a crystal having different

atomic environments produced significantly different electrostatic stabilisation

as was found by plotting lattice energy as functions of both AB(1) and A(1)B

where (1) indicates the particle which is varying in size.

Chapter 5 marries these findings together. The proposal is that nanoparticle

structures could be fabricated from combinations of appropriate endohedral

fullerenes that are capable of forming stable lattices. From the results of cal-

culations present here, it has been shown that stability is derived, in part,

from electrostatic interactions between fullerenes, where the presence of cer-
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tain endohedral atoms can induce either a negative or positive charge to reside

on the cage. For AB and AB2 structures, varying combinations of Coulomb,

charge-induced and van der Waals interactions contribute to overall stability,

and because the latter two interactions always enhance stability, their pres-

ence has been shown to extend the range of charges over which lattices are

stable. The proposed lattice structures differ from those previously identified

by experiment for Li@C60, in that their formation does not require electron

transfer to a counter anion[116–118]. In addition to applications in the form

of devices, recent calculations have also shown that arrays of M@C60 (M =

Na, K, Rb, Cs, Sc, Ti, Mn, Fe) could act as catalysts for the activation of

hydrogen,[171] and that embedded metal clusters in the form Mn@C60 (M =

Mn, Co, Ni, Cu; n = 2–5) could stimulate the oxygen reduction reaction[172].

Both these processes are promoted by the presence of a negative charge on the

fullerene cage, and since arrays of these materials alone might not be stable,

the results presented above may offer a route to their fabrication.

6.2 Limitations and Suggestions for Further

Improvements

The work in Chapter 3 can be extended to include predictions for minimum

stable cluster size, charge placements and fragmentation energies for clusters

with charges of +6 and +7, if not higher. Further enhancement of the FMM is

currently in progress[72], meaning that in the near future it will be achievable

to produce a quantitative answer for clusters with these charges.

In order to have confidence in the prediction of the existence of the super-

lattices discussed in Chapter 4 going forward, energy minimisation will be

implemented. This will inform if the electrostatic contribution to some space

groups is sufficient orif all AB structures collapse down to the cubic NaCl
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type lattice; ultimately providing a better data set to be able to compare to

published hard-sphere theory. As mentioned, in order to definitively conclude

that BNSL structures are stable, it is pertinent to conduct energy minimisa-

tion calculations. In order to continue with theory development, current work

is focused on implementing a free energy minimisation function in MATLAB.

Such an addition would also be of great use to other projects within the group,

including the work on fullerene clusters.

As we are aware that most encapsulated metal atoms do not sit centrally in

the fullerene cage, and as we have now quantifiably defined that this is likely to

increase interaction between cages, it would therefore be very useful to be able

to implement each cage in the superlattice structures to have non-uniform sur-

face charge distributions. This would require implementation of the dynamics

code as discussed[35]. Many-body theory tells us that the redistribution of the

surface charge between a pair of endohedral C60 cages to their new equilib-

rium configuration, is not the same when they are in the presence of another

charged cage. This is what makes modelling the large lattices structures using

static, single-point calculations complicated. Using dynamics we can observe

the redistribution of surface charge on each cage in the lattice in real time un-

til they settle to their equilibrium orientation of surface charge, based on the

position of neighbouring cages. This would ultimately allow us to calculate the

interaction energy of these structures and draw conclusions on their stability

for a wider range of encapsulated atoms, not just those that sit more centrally

inside the cage.
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Appendix A

Theory

A.1 Formulation of the Problem

To account for the point-charge contribution to the surface free charge, the

free charge σf is split into two contributions

σf = σs + σp. (A.1)

Here σs corresponds to the square-integrable part of the surface charge, whereas

σp is the point-charge contribution to the free charge represented by a linear

combination of np Dirac delta distributions δ per particle:

σp =
M∑
i=1

np,i∑
j=1

qi,jδzi,j , where zi,j ∈ Γi and for all j = 1, . . . , np,i. (A.2)

Next, we define an external potential Φext with associated external electric

field Eext := −∇Φext, and we do not impose the constraint that Φext(x) → 0 as

|x|→ ∞. We consider the external potential to be harmonic, i.e. ∆Φext = 0,

so that we do not describe the charges creating the external field within the

considered system but we do not restrict the external electric field Eext to be

uniform. Finally, we assume that the system of dielectric particles does not

affect the external field Eext, for instance, through polarisation, which justifies
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the use of our terminology external.

Our aim is to now to determine the net surface charge on each dielectric particle

after taking into account both the free charge σf as well as the bound charges

resulting from polarisation effects due to the presence of charged neighbouring

particles and the effect of the external electric field. Using the net surface

charge, we will be able to deduce the other physical quantities of interest,

namely, the electrostatic forces and energy resulting from the interaction of

the M charged dielectric spheres both with each other and with the external

electric field.

In order to determine the net surface charge, we will first derive governing

equations for the net electrostatic potential. As we shall see, the net elec-

trostatic potential can be used to deduce the required net surface charge as

well as the subsequent physical quantities of interest. The main challenges in

achieving our aim are to work with the singular nature of the point-charges

σp and the external potential Φext which does not necessarily decay to zero at

infinity.

A.1.1 Formulation of the many-body problem based on

a partial differential equation (PDE)

The problem of electrostatic interaction between M charged dielectric spheres

can be described by a PDE-based transmission problem. Here, we define the

total potential Φtot = Φext+Φ and the corresponding total electric field Etot :=

Eext+E, where E is the perturbation of Eext due to the presence of the dielectric

charged spheres, and Φ is the corresponding perturbation potential so that

E = −∇Φ. Standard arguments from the theory of electrostatics in dielectric

media imply that the total potential Φtot satisfies the following conditions:
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∆Φtot = 0 in each Ωi, (A.3)

Φtot = 0 on Γ0, (A.4)

k∇Φtot = σf on Γ0. (A.5)

Here, Ω+ denotes the space outside the particles, k is the dielectric function

which takes value ki on the ball Ωi and value k0 on Ω+, and Φtot and k∇Φtot

are jump discontinuities defined by

Φtot|Γi
(z) :=Φtot(z)|Ωi

η(z)− Φtot(z)|Ω+η(z), (A.6)

k∇Φtot|Ωi
(z) :=ki∇Φtot(z)|Ωi

·η(z)− k0∇Φtot(z)|Ω+·η(z), (A.7)

where η(z) is the normal unit vector at z ∈ Γ0 pointing towards the exterior

of the particles.

In general, Equations (A.3)-(A.5) are ill-posed as can be seen, for instance,

by observing that if σf ≡ 0, then any constant function Φtot will satisfy this

equation. In order to obtain the correct total potential Φtot, we make use

of the relation Φtot = Φext + Φ and first derive a well-posed equation for the

electrostatic potential Φ. Using decomposition (A.1), elementary algebra yields

Φ that satisfies the following transmission problem

∆Φ = 0 in each Ωi, (A.8)

Φ = 0 on Γ0, (A.9)

k∇Φ = σs + σp − (k − k0)∂nΦext on Γ0, (A.10)

|Φ| → 0 as |x|→ ∞, (A.11)

where ∂nΦext denotes the normal derivative of Φext on the boundary Γ0. PDEs

similar to the transmission problem (A.8)-(A.11) have been previously con-
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sidered in the literature (see, e.g., [34, 37]), however the key novelty of Equa-

tions (A.8)-(A.11) is in the addition of contributions due to the external electric

field and the presence of point-charges on the surface of the dielectric parti-

cles. These additional terms require a significant modification of the earlier

definitions [37] of the electrostatic forces and interaction energy for the M -

body charged dielectric spheres, and they present additional challenges in the

efficient numerical implementation.

In addition to the presence of the highly non-regular point-charge term σp,

another difficulty in solving the transmission problem (A.8)-(A.11) is the fact

that the equation is posed on the entire space R3. Indeed, since the potential

Φ a priori decays only as |x|–1, a naive truncation of the computational domain

in an effort to use classical algorithms such as the finite element method leads

to significant errors. The usual approach to circumventing this problem is to

appeal to the theory of integral equations and reformulate the transmission

problem (A.8)-(A.11) as a so-called boundary integral equation (BIE) posed

on the interface Γ0. This is the subject of the next subsection.

A.1.2 Based on an integral equation

In order to describe the integral equation-based approach to the problem of

electrostatic interaction between M charged dielectric spheres we require some

additional notions. First, we define the single layer potential of σ, denoted Sσ,

as the mapping with the property that

(Sσ)(x) :=
∫
Γ

σ(y)

4π|x− y|
dy, ∀x ∈ Ω0 ∧ x ̸= y, (A.12)

which also satisfies the following conditions

Sσ = 0; ∇Sσ = σ.
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As a consequence, it is possible to consider the restriction of the single layer

potential defined through Equation (A.12) on the boundary Γ and thereby

define the so-called single layer boundary operator, denoted V as the improper

integral

(Vσ)(z) :=
∫
Γ

σ(z′)

4π|z− z′|
dz′, ∀ z ∈ Γ0 ∧ z ̸= z′.

Note, that occasionally it will be necessary to consider the “local” single layer

potential and boundary operators defined on an individual sphere Ωi. We will

denote these as Si and Vi respectively.

The surface electrostatic potential λ is now described by the following bound-

ary integral equation:

λ− V
(
k0 − k

k0
DtNλ

)
=

1

k0
V(σs + σp) +

k0 − k

k0
V(∂nΦext). (A.13)

Here, the notation DtN is used to denote the local Dirichlet-to-Neumann (DtN)

map on the surface Γ (see Appendix A.1.1 for further details).

An equivalent reformulation of the BIE (A.13) for the induced surface charge

can be achieved by applying V−1 to both sides of the equation, and defining

σ := V−1λ which yields the following BIE

σ − k0 − k

k0
DtNVσ =

1

k0
(σs + σp) +

k0 − k

k0
(∂nΦext). (A.14)

In Equation (A.14), the quantity of interest σ, which we often call the induced

surface charge, represents (up to a scaling factor) the total surface charge on

each dielectric particle after taking into account both the free charge σf as well

as the bound charges resulting from polarisation effects due to the presence of

charged neighbouring particles and the effect of the external electric field.
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More precisely,

• σf represents the free charge on each particle;

• σb := (k0 − k)(DtNVσ + ∂nΦext) represents the bound charge on each
particle;

• k0σ = σf + σb represents the total charge on each particle.

A simple manipulation of Equation (A.14) yields the following relation between

the surface charge σ and the surface electrostatic potential λ:

σ =
k0 − k

k0
DtNλ+

1

k0
(σs + σp) +

k0 − k

k0
(∂nΦext). (A.15)

Equation (A.15) implies that once λ is known, the charge distribution σ can

be computed using the purely local DtN map.

We also remark here that the relation between the PDE (A.8)-(A.11) and the

BIE (A.13) representations of the electrostatic potential can be clearly estab-

lished since λ is simply the restriction (more precisely the Dirichlet trace)

of the electrostatic potential Φ on the boundary Γ. Thus, for any point

x ∈ Ω, we have Φ(x) = (SV−1λ)(x) = (Sσ)(x), and we therefore also have

Φtot(x) = Φext(x) + (Sσ)(x).

As emphasised above, an important technical difficulty in the analysis of Equa-

tion (A.13) is the presence of the low-regularity point-charge term σp, which

requires special treatment in the design of efficient numerical methods. Previ-

ously, the BIE (A.13) has been the subject of extensive analysis in the much

simpler case when both point-charges and the external field are absent, i.e.,

when σp ≡ 0 and Φext ≡ 0. We first briefly summarise the existing methodology

and explain how the BIE (A.13) can be solved in this simple case before turn-

ing attention to the more complex problem of describing surface point-charges

and an external electric field.
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