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Abstract 

Background:  Cholangiocarcinoma (CCA) is still a deadly tumour. Histological and molecular aspects of thioaceta‑
mide (TAA)-induced intrahepatic CCA (iCCA) in rats mimic those of human iCCA. Carcinogenic changes and therapeu‑
tic vulnerabilities in CCA may be captured by molecular investigations in bile, where we performed bile proteomic 
and metabolomic analyses that help discovery yet unknown pathways relevant to human iCCA.

Methods:  Cholangiocarcinogenesis was induced in rats (TAA) and mice (JnkΔhepa + CCl4 + DEN model). We per‑
formed proteomic and metabolomic analyses in bile from control and CCA-bearing rats. Differential expression was 
validated in rat and human CCAs. Mechanisms were addressed in human CCA cells, including Huh28-KRASG12D cells. 
Cell signaling, growth, gene regulation and [U-13C]-D-glucose-serine fluxomics analyses were performed. In vivo stud‑
ies were performed in the clinically-relevant iCCA mouse model.

Results:  Pathways related to inflammation, oxidative stress and glucose metabolism were identified by proteomic 
analysis. Oxidative stress and high amounts of the oncogenesis-supporting amino acids serine and glycine were 
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Background
Cholangiocarcinoma (CCA) is the most common cancer 
of the biliary tract and the second most frequent hepatic 
malignancy [1]. Regardless of its anatomical origin, intra-
hepatic (iCCA), perihilar or distal (extrahepatic CCA, 
eCCA), this neoplasia is a devastating disease. Its diag-
nosis is often made at an advanced stage when surgery, 
the only potentially curative intervention, often cannot 
be performed whereas systemic therapies are mainly 
palliative [1, 2]. CCAs are molecularly heterogeneous 
tumors, and this characteristic extends beyond their ana-
tomical classification. Recent transcriptomic, genomic, 
proteogenomic and epigenomic analyses have identified 
different molecular subclasses indicative of potential car-
cinogenic mechanisms leading to CCA development [3, 
4]. The complex molecular profile of CCAs may under-
lie their high resistance to chemotherapy, targeted agents 
and immunotherapy. Therefore a better understanding of 
the cellular and molecular mechanisms of cholangiocar-
cinogenesis is needed to identify key targets and leverage 
therapeutic efficacy [5–8].

Diagnosis of CCA varies with anatomical location, and 
is usually based on clinical and biochemical analyses in 
combination with radiologic evaluation that requires a 
pathologic assessment in most patients [1]. The use of 
liver biopsies is limited since their sensitivity depends on 
size and location and patients physical status [9]. Several 
diagnostic tools are used to detect biliary malignancies 
including imaging techniques as well as endoscopic ret-
rograde cholangiopancreatography (ERCP) [1, 10, 11]. 
However, in spite of recent improvements in cholangios-
copy and biopsy acquisition, early and accurate diagnosis 
of CCA remains a challenge [2, 9, 11]. In view of this situ-
ation great efforts are being made for the identification of 

reliable blood-borne biomarkers for CCA detection [12–
14]. Some commonly used diagnostic procedures such as 
ERCP also enable bile collection. In principle, molecules 
released into bile from tumor cells within the biliary tract 
would be more concentrated than in blood. For instance, 
bile cell-free DNA (cfDNA) may include DNA from pre-
malignant or malignant cells located along in the biliary 
tract, and its analysis can have robust diagnostic poten-
tial as recently demonstrated by us and others [15–17]. 
Similarly, bile metabolomic and proteomic studies may 
also detect tumour-related or tumour-elicited molecules 
with diagnostic implications [18–20]. However, molecu-
lar analyses of bile may not only be potentially useful for 
CCA detection, but also for the identification of carci-
nogenic mechanisms, therapeutic vulnerabilities and a 
better understanding of CCA biology. Under these prem-
ises, we have performed a comprehensive proteomic 
analysis of bile in the thioacetamide (TAA) rat model of 
cholangiocarcinogenesis, which mimics the multi-step 
development of human iCCA in a context of chronic 
liver damage, inflammation and desmoplastic reaction, 
reproducing the histological progression of human CCA 
from biliary dysplasia to carcinoma. Importantly, the rat 
TAA model of CCA also captures key molecular altera-
tions observed in human CCA [21]. These analyses led 
us to uncover novel mechanisms behind the production 
of key tumorigenic inflammatory mediators for CCA 
such as interleukin 6 (IL6) [22, 23], or mediating pro-
carcinogenic metabolic reprogramming [24], involving 
the activation of KRAS-mitogen activated protein kinase 
(MAPK) signaling, a central event in cholangiocarcino-
genesis [25, 26]. We also identified new KRAS tumo-
rigenic pathways in CCA cells implicating epigenetic 
mechanisms, and confirmed the therapeutic potential of 
their pharmacological targeting.

discovered by metabolomic studies. Most relevant hits were confirmed in rat and human CCAs (TCGA). Activation of 
interleukin-6 (IL6) and epidermal growth factor receptor (EGFR) pathways, and key genes in cancer-related glucose 
metabolic reprogramming, were validated in TAA-CCAs. In TAA-CCAs, G9a, an epigenetic pro-tumorigenic writer, 
was also increased. We show that EGFR signaling and mutant KRASG12D can both activate IL6 production in CCA 
cells. Furthermore, phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in serine-glycine pathway, 
was upregulated in human iCCA correlating with G9a expression. In a G9a activity-dependent manner, KRASG12D 
promoted PHGDH expression, glucose flow towards serine synthesis, and increased CCA cell viability. KRASG12D CAA 
cells were more sensitive to PHGDH and G9a inhibition than controls. In mouse iCCA, G9a pharmacological targeting 
reduced PHGDH expression.

Conclusions:  In CCA, we identified new pro-tumorigenic mechanisms: Activation of EGFR signaling or KRAS muta‑
tion drives IL6 expression in tumour cells; Glucose metabolism reprogramming in iCCA includes activation of the 
serine-glycine pathway; Mutant KRAS drives PHGDH expression in a G9a-dependent manner; PHGDH and G9a 
emerge as therapeutic targets in iCCA.

Keywords:  Cholangiocarcinoma, Bile, Inflammation, Interleukin-6, KRAS, G9a histone methyl-transferase, Serine-
glycine pathway, Metabolic reprogramming
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Methods
Thioacetamide (TAA) model of cholangiocarcinogenesis 
in rats
Eight-week-old male Sprague-Dawley rats (~ 250 g) 
(Envigo, Barcelona, Spain) were used. Rats were housed 
in a 12:12 hours light-dark cycle at an ambient tempera-
ture of 22 °C with food and water available ad  libitum. 
TAA administration was as previously reported with 
some adaptations [21]. Briefly, TAA (Sigma, St. Louis 
MO, USA) was administered in sweetened drinking 
water (sucrose solution 50 g/L) for 30 weeks in a concen-
tration range escalating from 300 to 500 mg/L (n  = 6). 
Control animals (n = 4) were given sweetened drinking 
water. The dose of TAA was progressively increased from 
300 to 500 mg/L depending on the weight loss associated 
with administration of TAA as shown in Fig. 1a. At the 
end of the treatment rats were anesthetized, abdominal 
laparotomy was performed and the common bile duct 
was cannulated for bile collection as previously described 
[27]. Blood was drawn from the retro orbital plexus, and 

then animals were sacrificed by cervical dislocation. Liver 
samples were collected, and snap frozen in liquid nitro-
gen or formalin-fixed and paraffin embedded (FFPE) for 
histological analyses.

Mouse CCA model and treatments
The JnkΔhepa mice, in a C57BL/6 J background, were gen-
erated as previously described [28, 29]. At 14 days of 
age mice received 25 mg/kg (i.p.) of diethyl-nitrosamine 
(DEN) and from week 8 until week 22 were treated with 
CCl4 (0.5 mL/kg, i.p.) twice per week. From week 18 until 
week 22 one group of mice (n  = 6) were treated with 
CM272 (5 mg/kg, i.p.) daily, control mice received the 
same volume of PBS, as described [30]. All mice were 
sibling littermates. Animals were housed and fed a chow 
diet (Envigo, Valencia, Spain) under standard conditions.

Tissue staining and immunohistochemistry
Sections obtained from FFPE rat liver tissues were used 
for H&E and Picro-Sirius Red staining as previously 

Fig. 1  Proteomic analysis of bile in the rat TAA model of CCA development. a Schematic representation of the rat TAA model of CAA implemented 
in this study. c Pie chart showing the classification of proteins identified as differentially represented in bile from control and CCA bearing rats 
(30 weeks) according to their cellular localization. b Volcano plot (−log10 [p-value] and log2 [fold-change]) of the proteins found in bile from rats 
with CCA compared with control animals. d Principal component analysis (PCA) of bile proteomic data from control (Veh-1-4) and TTA (TAA-1-4) 
treated rats. e Ingenuity pathway analysis (IPA) of the differentially represented proteins between control and CCA bile samples identifying the top 
enriched categories of canonical pathways. Created with BioRe​nder.​com

http://biorender.com
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reported [31]. Mouse liver tissues were obtained and 
processed for immunohistochemical analyses as we 
described [30]. Human CCA tissue samples were 
obtained from patients with iCCA (n = 41) that under-
went surgical resection at San Raffaele Hospital, Milan, 
Italy. Immunostainings were performed as we described 
[30, 31] using the antibodies listed in Supplementary 
Table  1. Quantitative evaluation was performed essen-
tially as previously described using histological criteria in 
a blinded manner [31]. Intensity of the signal was scored 
as: 0 = no expression; 1 = weak expression; 2 = intermedi-
ate expression; 3 = high expression, and scores according 
to percentage of cells stained were: 0 (0–9% cells stain-
ing), 1 (10–40%), 2 (41–60%) and 3 (61–100%). The final 
score was obtained by the multiplication of the intensity 
score by the percentage score. Tumor grade was estab-
lished upon anatomopathological examination of tis-
sue sections according to the WHO Classification of 
Tumours, Digestive System Tumours, 5th edition.

Bile proteomic analyses
Bile samples (30 μl, n = 4 control and 4 TAA-treated rats) 
were processed and prepared for analysis as we described 
[32]. Proteomic analyses and data processing were per-
formed essentially as we previously reported [20, 33]. 
Functional analyses were performed with Ingenuity Path-
way Analysis, IPA (Quiagen, Hilden, Germany).

Cell lines and in vitro studies
The characteristics and origin of the CCA cell lines used 
in this study have been described before [34]. Cells were 
grown as reported [30]. Huh28 cells expressing mutant 
KRAS (KRASG12D), and control Huh28 cells (Lac-Z), 
were generated by infection with lentiviral vectors from 
OriGene Technologies (Rockville, MD, USA) produced 
by Genscript Biotech (Piscataway, NJ, USA) as we previ-
ously described [35]. For serine deprivation experiments 
cells were cultured as described [36]. Calculation of 
growth inhibitory 50 (GI50) concentrations of NCT-503 
(Sigma), synergistic growth inhibitory effects between 
CM-272 and NCT-503, cell proliferation studies, soft 
agar (anchorage-independent) cell growth experiments 
and colony formation analyses were performed as we 
previously reported [30, 31]. For quantification of col-
ony formation analyses at the end of treatments plates 
were washed once with PBS, fixed with 3.7% formalde-
hyde and stained with Crystal violet. Stained wells were 
de-stained with 10% acetic acid and absorbances were 
read in a spectrophotometer at 570 nm wavelength. For 
IL6 gene expression and IL6 protein analyses CCA cells 
were treated with HB-EGF (#E4643, Sigma). IL6 con-
centrations in cells’ conditioned media were analyzed 
with the BD OptEIA™ human IL6 ELISA set from BD 

Biosciences (#555220, Franklin Lakes, NJ, USA). Where 
indicated, MutKRAS cells were treated with the phos-
phatidyl kinase 3 (PI3K) inhibitor LY294002 (20 μM) 
or the mitogen-activated protein kinase kinase (MEK) 
inhibitor PD98059 (20 μM) (both from Calbiochem, San 
Diego, CA, USA) for 6 h. PHGDH gene expression was 
knocked-down in CCA cells by transfection with spe-
cific siRNAs (siPHGDH) (Sigma) as previously described 
[30]. Subcellular fractionation analyses were performed 
using the NE-PERTM nuclear and Cytoplasmic Extrac-
tion Reagents (#78833) from ThermoFisher (Waltham, 
MA, USA) as we described [31]. The patient’s derived 
organoids obtained from an advanced iCCA used in this 
study have been described before [37]. Organoids (30 μL 
of growth factor reduced matrigel containing 6000 cells) 
were seeded in 96-well cell culture plates; after matrigel 
solidified it was overlaid with 70 μL of complete human 
organoid medium. Complete medium was refreshed 
once after 24 h. Treatments with CM-272 [31] was added 
3 days later and compound-containing medium was fur-
ther refreshed every 2 days. After 11 days medium was 
removed and replaced with 100 μL of complete human 
organoid medium containing 10% CellTiter-Blue Cell 
Viability Assay (Promega).

Flux analysis
For glucose flux analyses control and MutKRAS Huh28 
cells (7 × 105 cells/plate) were cultured in regular medium 
(DMEM, 10% FBS plus glutamine and antibiotics) with 
or without CM-272 (100 nM) for 66 h. Then cells were 
washed with PBS and transferred to DMEM without glu-
cose (#11966–025, Gibco-ThermoFisher) supplemented 
with 10% dialyzed FBS (#A338200, Gibco-ThermoFisher) 
and 4.5 g/L [U-13C] D-glucose (#389374, Sigma) for 7 h 
before metabolite extraction. Sample processing and 
ultra-performance liquid chromatography (UPLC)-
time-of-flight mass spectrometry (ToF-MS) analysis are 
described in Additional file 1.

Image analysis
Colonies grown in soft-agar were quantified by image 
analysis. Images (n = 5 per condition) were captured at 
10X magnification (Leica microscope, Wetzlar, Ger-
many). Area was calculated by image analysis tools in 
Fiji/ImageJ software (http://​fiji.​sc/).

Statistical analyses
Statistical analysis was performed using GraphPad 
Prism-v5 software. For comparison between two groups, 
two-sided unpaired Student’s t-test or Mann–Whitney 
U-test were used according to sample distribution. All 
reported P values were two-tailed and differences were 
considered significant when P < 0.05.

http://fiji.sc/
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Additional methodological information is provided as 
supplementary material.

Results
TAA rat model and bile analyses
Rats were administered TAA in drinking water up to 
30 weeks (Fig.  1a). Increased liver index, accompa-
nied by hyperbilirubinemia and hypercholanemia was 
observed as TAA treatment progressed (Supplementary 
Fig. 1a and b). At 30 weeks, and consistent with the lit-
erature [21, 38], all animals developed visible tumors, 
liver fibrosis and multifocal cytokeratin 19 (CK19)-
positive mass forming lesions with a strong desmo-
plastic reaction (Supplementary Fig. 1c and d). At this 
end-point bile was collected from control and TAA-
treated rats and proteomic analyses were performed 
(Supplementary Fig.  1e). We identified 212 proteins 

differentially expressed, of which 111 were upregulated 
and 101 downregulated in CCA-harboring rats vs con-
trols (Fig. 1b). Most of these proteins corresponded to 
extracellular or cytoplasmic locations (Fig.  1c). Unsu-
pervised principal component analysis (PCA) of these 
data clearly discriminated the two groups of samples 
(Fig. 1d). Ingenuity pathway analysis (IPA) of the differ-
entially represented proteins allowed their preferential 
classification in certain biological processes, overlap-
ping to a great extent with previous proteomic stud-
ies, including ours, on human bile from patients with 
benign and malignant (CCA) biliary stenoses [33]. The 
canonical pathways enriched in our IPA analysis iden-
tified categories such as inflammation (complement, 
acute phase response, coagulation), metabolic regu-
lation by nuclear sterols and bile acids receptors, glu-
cose metabolism, oxidative stress, cell signaling and cell 

Fig. 2  Most relevant proteins and metabolites differentially represented in bile from control and CCA bearing rats. a Identity of proteins showing 
significantly increased concentrations (Fold change > 0.9) in bile from TAA-treated rats vs controls (Vehicle). The expression of the corresponding 
genes as reported in the TCGA database is shown. AC: accession number. b Metabolites showing significantly altered concentrations in bile from 
TAA-treated rats vs controls (Vehicle). *p < 0.05, **p < 0.01, ***p < 0.001



Page 6 of 18Colyn et al. J Exp Clin Cancer Res          (2022) 41:183 

cycle/DNA damage response (Fig. 1e). Proteins identi-
fied in bile from CCA-harboring rats with a fold-change 
above 0.9 are shown in Fig.  2a. Based on data from 
TCGA (https://​www.​cancer.​gov/​tcga), the expression 
of all the corresponding genes (n = 29) is significantly 
upregulated in human CCA (Fig. 2a). Gene expression 
changes in a broad selection of these proteins were vali-
dated by RT-qPCR, and for some of them also by immu-
nohistochemistry, in healthy, peritumoral and tumoral 
rat CCA tissues (Supplementary Fig. 2a and b). Marked 
upregulation was observed in CCA tissues for carcino-
genic genes, including lipocalin 2 (LCN2), mesothelin 
(MSLN), deleted in malignant brain tumors 1 (DMBT1), 
Mac-2-binding protein or L-galectin-3-binding protein 
(LGALS3BP), secreted phosphoprotein 1 or osteopon-
tin (SPP1), vimentin (VIM), cluster of differentiation 
44 (CD44), S100 calcium binding protein A1 (S100A1), 
annexin A2 (ANXA2), Fc gamma binding protein 
(FCGBP), and members of the 14–3-3 family of intra-
cellular signaling proteins such as 14–3-3σ or stratifin 
(SFN, YWHAS) and 14–3-3θ (YWHAQ). The expression 
of other genes frequently upregulated in human iCCA, 
such as Sox9, Klf5, Ctgf and Jag1 among others, was 
also significantly upregulated in TAA-induced CCA tis-
sues (Supplementary Fig. 3).

To further characterize the molecular alterations of 
the CCA microenvironment that can have a reflection 
detectable in bile we performed an untargeted CE-MS-
based metabolite screening. Interestingly, in CCA-associ-
ated bile we observed increased levels of the aminoacids 
L-serine, glycine, L-arginine, L-ornithine, DL-citrulline, 
L-lysine and L-cystine (Fig.  2b). On the other hand, in 
spite of the increased levels of the glutathione precur-
sors L-serine, glycine and L-cystine, we found elevated 
concentrations of ophthalmic acid, a biomarker of glu-
tathione depletion [39], and of oxidized glutathione 
(GSSG) (Fig. 2b).

Identification of new mechanisms involving inflammatory 
and growth factor crosstalks in CCA​
Our bile proteomic analysis consistently captured the 
inflammatory milieu in which CCA develops in the TAA 
model. Complement activation and acute phase response 
signaling were among the top categories in the IPA anal-
ysis. Recent studies have described the presence and 
pro-tumorigenic role of bacteria and bacterial products 
in human CCA tissues [4, 40]. This driving factor was 
also present in our model, as we were able to detect sig-
nificantly increased bacterial DNA levels in liver tissues 
from TAA-treated rats (Fig.  3a). Interleukin 6 (IL6) is a 
key inflammatory mediator driving cholangiocarcino-
genesis [22, 41] to a great extent through the activation 
of the signal transducer and activator or transcription-3 

(STAT3) pathway in CCA tissues [25]. We detected a 
remarkable upregulation of Il6 gene expression in rat 
tumors (Fig.  3b), and a robust staining for phosphoryl-
ated STAT3 (p-STAT3) in the nuclei of tumoral cells 
(Fig.  3c). Within the CCA microenvironment IL6 can 
be produced by Kupffer cells, tumor-associated mac-
rophages, cancer-associated fibroblasts (CAFs) and also 
by tumor cells [23, 25]. Noteworthy, previous works 
in other tumor types identified the RAS pathway as an 
essential driver of IL6 expression [42, 43]. Besides the 
frequent oncogenic mutations in KRAS found in CCA, 
the RAS-MAPK pathway can be triggered by additional 
mechanisms such as the epidermal growth factor recep-
tor (EGFR) signaling system, which is also activated and 
contributes to cholangiocarcinogenesis [22, 25]. Under 
these premises, we observed a strong nuclear staining for 
p-ERK1/2, a read-out of the RAS-MAPK pathway, in rat 
iCCA tissues (Fig.  3d). Moreover, the expression of the 
EGFR ligands heparin-binding EGF (Hbegf), amphiregu-
lin (Areg) and epiregulin (Ereg) was also markedly ele-
vated in tumor tissues (Fig.  3b). These observations led 
us to directly assess the effect of EGFR activation on IL6 
expression in human CCA cells. We found that treat-
ment of Huh28 and HuCCT-1 human iCCA cell lines 
with recombinant HB-EGF resulted in a dose-dependent 
expression and secretion of IL6 (Fig. 4a). Next, to directly 
evaluate the role of oncogenic KRAS in IL6 expression by 
CCA cells we developed a KRASG12D expressing CCA cell 
line using human Huh28 cells (MutKRAS), which har-
bor wild type KRAS alleles [44]. As expected, MutKRAS 
cells displayed increased levels of p-MEK and p-ERK1/2, 
and most interestingly also of p-STAT3 (Fig. 4b). Impor-
tantly, MutKRAS expression resulted in increased IL6 
up-regulation and subsequent enhanced release of IL6 
to the culture medium (Fig.  4c). To gain further insight 
into the mechanisms downstream of KRAS involved in 
IL6 up-regulation we treated MutKRAS cells with inhibi-
tors of PI3K, MEK, p38 MAPK and JNK and evaluated 
IL6 mRNA levels. As shown in Fig. 4d, inhibition of PI3K 
or MEK resulted in reduced basal levels of IL6 mRNA, 
suggesting that different pathways could be involved in 
IL6 expression in KRAS mutated cells. Together, these 
observations identify the RAS-MAPK pathway, and 
KRAS oncogenic mutation, as drivers for IL6 production 
in CCA cells.

Oncogenic metabolic reprogramming in CCA​
Another insight from our proteomic study was the iden-
tification by IPA of several categories related to glucose 
metabolism (Fig.  1e). Metabolic rewiring is a hallmark 
of cancer cells, and glucose metabolic reprogramming 
is increasingly recognized to occur in CCA [45]. We 
observed the upregulation of glycolytic genes such as 

https://www.cancer.gov/tcga
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hexokinase-1 and -2 (Hk1 and Hk2), 6-phosphofructo-
2-kinase/fructose-2,6-bisphosphatase 3 (Pfkfb3) (Fig. 5a) 
and aldolase-A (AldoA) (Supplementary Fig.  2a), along 
with the downregulation of the gluconeogenesis rate-
limiting gene fructose-1,6-bisphosphatase-1 (Fbp1), in 
chronically-injured liver tissues and in tumours (Fig. 5a). 
As shown in Fig.  2b, we detected increased concentra-
tions of L-serine and glycine in bile from tumour bear-
ing rats, ascribable to the activity of the serine-glycine 
synthesis pathway, a glycolytic side-branch frequently 
triggered in cancer cells in which phosphoglycerate dehy-
drogenase (Phgdh) catalyzes the first and rate-limiting 
step [24]. We observed increased mRNA levels of Phgdh 
in chronically-injured liver and CCA tissues (Fig.  5a), 

and PHGDH protein was predominantly detected in 
both fibrogenic cells in non-tumoural tissues and in the 
tumour cellular compartment (Fig. 5b). In view of these 
findings we evaluated PHGDH expression in human 
CCA. Immunohistochemical analyses revealed that 
PHGDH was readily detected in most iCCA samples, 
with very few cases of zero score (Fig. 5c). Interestingly, 
cases with higher scores for PHGDH expression were 
more represented among higher grade tumors (Fig. 5c ). 
From a functional perspective, we observed that when 
PHGDH expression was knocked-down by transfection 
with specific siRNAs cell growth was reduced (Supple-
mentary Fig. 4).

Fig. 3  Inflammatory and growth factor-related signaling activation in the TAA rat model of CCA. a Quantification of bacterial DNA levels in the 
livers of control (Veh) and TAA treated rats. *p < 0.05. b mRNA levels of Il6 and the EGFR ligands heparin-binding EGF (Hbegf), amphiregulin (Areg) 
and epiregulin (Ereg) in liver tissue samples from control rats (Vehicle), peritumour liver tissues and tumour tissues. *p < 0.05, **p < 0.01, ***p < 0.001. 
d Immunohistochemical analysis of p-ERK1/2 in liver tissue samples from control rats (Vehicle), peritumour liver tissues and tumour tissues. 
Representative images are shown. c Immunohistochemical analysis of p-STAT3 in liver tissue samples from control rats (Vehicle), peritumour liver 
tissues and tumour tissues. Representative images are shown
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In cancer cells PHGDH upregulation could be driven 
by KRAS activating mutations, thus we tested whether 
such mechanism would also take place in CCA cells. To 
this end, we examined the expression of PHGDH in our 
control and MutKRAS Huh28 CCA cells. We found that 
PHGDH expression was indeed higher in MutKRAS cells, 
and that this difference became exacerbated when serine 
was removed from the culture medium (Fig.  6a and b). 
This response was accompanied by an enhanced capac-
ity of MutKRAS cells to grow in serine-depleted medium 
compared to control cells (Fig. 6c). Taken together, these 
findings further validated the occurrence of glucose met-
abolic reprogramming in CCA and identified the pres-
ence of KRAS mutations as candidate drivers for the 
activation of the serine-glycine pathway in this type of 
tumour.

Mechanisms and targeting of KRASG12D‑mediated PHGDH 
expression and growth of CCA cells
We recently showed that pharmacological targeting of 
the histone methyltransferase (HMT) G9a with CM-272 
downregulated the basal expression levels of PHGDH in 
different CCA cell lines [30]. We confirmed the potent 
growth inhibitory effects of CM-272 in a tumor orga-
noid derived from the liver biopsy of a chemoresistant 
iCCA patient [37] (Supplementary Fig.  5). Moreover, 
we also observed a positive correlation between G9a 

and PHGDH gene expression in human iCCA tissues 
(Supplementary Fig.  6). Therefore, we tested whether 
KRASG12D-driven PHGDH expression could also involve 
G9a activity. For this, control and MutKRAS Huh28 cells 
were pre-treated or not with CM-272 and then incu-
bated in serine-depleted medium. As shown in Fig.  7a 
and b, CM-272 markedly reduced KRASG12D-driven 
basal PHGDH expression and blunted its upregulation 
upon serine reduction in the context of KRAS mutation. 
We also analyzed the activity of the serine biosynthetic 
pathway by [U-13C] glucose flux analysis using UPLC-
ToF-MS. We observed that under basal conditions Mut-
KRAS Huh28 showed increased incorporation of [U-13C] 
glucose into serine compared to control Huh28 cells, and 
that treatment with CM-272 decreased glucose flux into 
serine in both cell lines (Fig. 7c). KRAS-driven metabolic 
rewiring may implicate different pathways and mecha-
nisms such as the regulation of PHGDH by the activat-
ing transcription factor 4 (ATF4) [46, 47]. We found that 
the robust induction of ATF4 protein levels observed 
in MutKRAS Huh28 cells during serine depletion was 
attenuated by CM-272 (Fig. 7d). Together, these findings 
indicate that G9a participates in KRAS-mediated meta-
bolic rewiring in CCA cells.

We recently described and validated a model in which 
mice with hepatocellular c-Jun N-terminal kinase 1/2 
(Jnk1/2) deletion (JnkΔhepa) treated with CCl4 and DEN 

Fig. 4  EGFR-KRAS signaling triggers IL6 expression in CCA cells. a Effect of HB-EGF on IL6 mRNA expression (12 h treatment) and IL6 protein release 
(24 h treatment) in HuCCT-1 and Huh28 cells. *p < 0.05, **p < 0.01. b Characterization of control and KRASG12D (MutKRAS) Huh28 cells. Images show 
representative western blot analyses of KRASG12D, p-MEK1/2, p-ERK1/2, p-STAT3, STAT3 levels, as well as GAPDH levels, as loading control, in both cell 
lines. c Expression levels of IL6 mRNA and IL6 protein concentrations in the conditioned media (24 h culture) of control and MutKRAS Huh28 cells. 
**p < 0.01. d Expression levels of IL6 mRNA in MutKRAS cells treated with PI3K (LY294002) or MEK (PD98059) inhibitors for 6 h. *p < 0.05
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(JnkΔhepa  + CCl4  + DEN model) develop transplant-
able CCAs in a context of inflammation, fibrosis and 
robust MAPK activation in tumoral tissues [28, 48] 
(Fig.  8a). We also demonstrated high G9a expression in 
CCA cells and a potent antitumoural effect of CM-272 
in this model [30]. Now, we examined hepatic Phgdh 
expression in wild type, JnkΔhepa, JnkΔhepa + CCl4 + DEN 
and JnkΔhepa  + CCl4  + DEN mice treated with CM-272 
as indicated in Fig.  8a. A significant transcriptional 
upregulation of Phgdh was observed in tumour bearing 

mice, and immunohistochemical analyses detected 
PHGDH in parenchymal cells and also in CCA lesions 
(Fig.  8b and c). Noteworthy, the antitumoral effect of 
CM-272 was accompanied by a marked reduction of 
Phgdh mRNA levels and PHGDH staining in regress-
ing biliary cancer cells (Fig.  8c). The overexpression 
of PHGDH in JnkΔhepa  + CCl4  + DEN mice confirmed 
our findings in the rat TAA model (Fig.  5b), in which 
we also observed upregulated G9a expression in CCA 
(Supplementary Fig.  7). Therefore, both CCA models 

Fig. 5  Metabolic reprogramming in experimental CAA (rat TAA model) and human iCCA. a Expression of glucose metabolism-related genes in liver 
tissue samples from control rats (Vehicle), peritumour liver tissues and tumour tissues. *p < 0.05, **p < 0.01, ***p < 0.001. b Immunohistochemical 
analysis of PHGDH in liver tissue samples from control rats (Vehicle), peritumoural liver tissues and tumoural tissues. Representative images are 
shown. c Immunohistochemical analysis of PHGDH in human iCCA tissue samples. Representative images of tumours with 9, 6–4 and 0 PHGDH 
immunostaining scores are shown. Graphs show the distribution of PHGDH scores among all iCCA tissue samples and according to tumor grade 
(G1-G3)

Fig. 6  Expression of PHGDH in wild type (control) and KRASG12D expressing (MutKRAS) Huh28 cells, response to L-serine availability. a PHGDH 
mRNA levels in control and MutKRAS Huh28 cells grown in complete medium (t = 0) and at the indicated time-points after L-serine depletion. 
*p < 0.05 vs control. b PHGDH protein levels were analyzed by western blotting in same samples described in A. Representative blots, including 
HSP90 analysis as loading control, are shown. c Growth of control and MutKRAS Huh28 cells in L-serine depleted medium referenced to cell growth 
in complete medium. *p < 0.05, **p < 0.01
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reproduced the upregulation of PHGDH expression 
found in human iCCA (Fig. 5c). The effects of CM-272 in 
JnkΔhepa + CCl4 + DEN mice identified a pharmacologi-
cal strategy to revert this pro-tumorigenic metabolic trait 
in vivo.

Since cancer cells which become dependent on KRAS-
driven metabolic adaptations also become sensitive to the 
inhibition of these routes [46], we tested the sensitivity of 
control and MutKRAS Huh28 cells to the PHGDH inhib-
itor NCT-503 [49] and found that KRASG12D express-
ing cells were indeed more sensitive to this drug (GI50 
230 ± 5 vs 175 ± 4 μM, p < 0.05). Moreover, we observed 
that control Huh28 cells hardly grew under anchorage-
independent conditions whereas MutKRAS Huh28 
cells readily formed colonies in soft agar (Fig.  9a). We 
assessed the effect of CM-272 in this context and found 
a robust inhibitory activity (Fig.  9a). Next, we exam-
ined the response of control and MutKRAS Huh28 cells 
to CM-272 in a colony formation assay. In line with the 

enhanced response of MutKRAS Huh28 cells to NCT-
503, we observed that KRASG12D expressing cells were 
significantly more sensitive to CM-272 (Fig.  9b). Inter-
estingly, in HuCCT-1 cells, which are KRAS mutant, 
combined treatment with CM-272 and NCT-503 had 
a synergistic growth inhibitory effect (Supplementary 
Fig. 8).

Together these findings indicated that in spite of hav-
ing a more aggressive phenotype, MutKRAS Huh28 
cells were more vulnerable to PHGDH and G9a inhibi-
tion than control Huh28 cells. In view of these results, we 
further explored the crosstalk between KRAS G12D and 
G9a in CCA cells. We previously described that cellular 
signaling systems involving G9a in their transcriptional 
responses, such as that of transforming growth factor 1β 
(TGF1β), promote the association of nuclear G9a with 
the nuclear chromatin subfraction (CF) [31]. We tested 
the distribution of G9a between soluble nuclear fraction 
(SF) and CF, observing that MutKRAS tended to have 

Fig. 7  G9a inhibition blunts the adaptive upregulation of PHGDH expression to L-serine availability in CCA cells. a Control and KRASG12D expressing 
(MutKRAS) Huh28 cells were grown in complete medium for 60 h with or without CM-272 (200 nM) and then maintained in complete medium or 
without L-serine for another 20 h. At this point PHGDH mRNA expression was analyzed. *p < 0.05. b PHGDH protein levels were analyzed by western 
blotting in same samples described in a. Representative blots, including HSP90 analysis as loading control, are shown. c UPLC-ToF-MS analysis of 
[U-13C] glucose flux into serine in control and MutKRAS Huh28 cells treated of not with CM-272 ( 200 nM, 66 h). *p < 0.05. d ATF4 protein levels were 
analyzed by western blotting in same samples described in a. Representative blots, including HSP90 analysis as loading control, are shown
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increased levels of CF bound G9a than control Huh28 
cells (Fig. 10a). Most interestingly, when we evaluated the 
effect of CM-272 on the subnuclear distribution of G9a in 
both cell lines we found that G9a inhibition resulted in an 
enhanced dissociation of G9a from the CF in MutKRAS 
Huh28 cells (Fig. 10b). Besides methylating H3K9, G9a is 
also capable of automethylating its N-terminal domain, 
and this modification is functionally involved in G9a 
interactions with chromatin, chromatin binding proteins 
such as heterochromatin protein 1γ (HP1γ) and other 
transcriptional regulators [50]. Therefore, we evaluated 
G9a methylation levels in control and MutKRAS Huh28 
cells under basal conditions and upon CM-272 treatment 
by immunoprecipitation assays using a pan-methyllysine 

antibody followed by G9a immunoblotting. Remarkably, 
we observed that G9a automethylation was significantly 
reduced in MutKRAS Huh28 cells while under these con-
ditions G9a methylation status in control cells remained 
unaffected (Fig. 10c). Of note, CM-272 inhibition of G9a 
automethylation was related to a reduced association 
with HP1γ (Fig. 10c). The effects of CM-272 on G9a auto-
methylation and association with HP1γ were reproduced 
in the iCCA cell line HuCCT-1 (Fig. 10d).

Discussion
In this study we investigated the bile proteome and 
hydrophilic metabolome as a proxy of the molecular and 
metabolic alterations taking place in transformed biliary 

Fig. 8  G9a inhibition reduces PHGDH expression in a mouse model of CCA. a Diagram showing the experimental model and the treatments 
applied (n = 6 mice per group). b Phgdh mRNA levels in the liver of wild type mice, JnkΔhepa mice, JnkΔhepa mice treated with CCl4 and 
diethylnitrosamine (DEN) (JnkΔhepa + CCl4 + DEN mice) and JnkΔhepa + CCl4 + DEN mice treated with CM-272 as indicated. **p < 0.01. c 
Immunohistochemical detection of PHGDH in liver tissue sections from mice treated as described in b. Representative images are shown. Created 
with BioRe​nder.​com

Fig. 9  G9a targeting inhibits KRASG12D induced malignant traits in CCA cells: identification of G9a as a therapeutically relevant vulnerability in 
KRASG12D expressing CCA cells. a Anchorage-independent growth of control and KRASG12D expressing (MutKRAS) Huh28 cells treated or not with 
CM-272 (200 nM). Representative images of colonies formed at the end of experiments (3 weeks) and quantification of the area occupied by 
colonies are shown. ***p < 0.001. b Colony formation assay in control and MutKRAS Huh28 cells treated with CM-272 as indicated. Representative 
images of crystal violet-stained colonies and the corresponding quantification are shown. *p < 0.05, **p < 0.01

http://biorender.com


Page 12 of 18Colyn et al. J Exp Clin Cancer Res          (2022) 41:183 

cells in a model of TAA-induced iCCA in rats. Consist-
ent with observations in human iCCA, we found marked 
changes in bile proteins related to inflammatory path-
ways, including the complement and coagulation cas-
cades and cytokine driven-pathways [51]. The biological 
functions of these proteins were consistent with the most 
relevant categories identified in our IPA analysis, and are 
associated with CCA development [22, 41, 45].

Among these pathways, and playing a well-recognized 
role in cholangiocarcinogenesis, is the cytokine IL6 [22]. 
IL6 levels were markedly upregulated in TAA-induced 
tumors, and CCA cells showed strong STAT3 activa-
tion. Within the tumor microenvironment CAFs are 
considered a major source of IL6, driving CCA growth 
in a paracrine manner [25, 51]. In addition, cancer cells 
can also produce IL6 [23, 52]. However, the mecha-
nisms leading to IL6 upregulation in CCA cells are only 

partially known. CAFs and CCA cells engage in an exten-
sive pro-tumorigenic crosstalk which to a great extent 
is mediated by the activation of EGFR signaling in CCA 
cells [25, 41]. We observed that the expression of EGFR 
ligands was also markedly upregulated in TAA-induced 
tumors, which also displayed significant ERK1/2 acti-
vation. In human CCA CAFs produce the EGFR ligand 
HB-EGF which triggers the secretion of TGFβ from CCA 
cells [25]. Now we demonstrate that HB-EGF can also 
stimulate the expression and release of IL6 from CCA 
cells. Moreover, in agreement with previous findings in 
other tumor types harboring oncogenic KRAS mutations 
[42, 43], we also found that KRASG12D can promote IL6 
expression in CCA cells. Together our data suggest that 
the frequently observed activation of the EGFR signal-
ing system, and/or the presence of KRAS mutations, may 

Fig. 10  Pharmacological targeting of G9a activity in CCA cells. a Western blot analysis of the distribution of G9a between nuclear chromatin faction 
(CF) and soluble nuclear fraction (SF) in control and KRASG12D expressing (MutKRAS) Huh28 cells. Representative blots, including C23 (nucleolin) 
analysis as loading control, are shown. b Effect of G9a inhibition on the distribution of G9a between CF and SF in control and MutKRAS Huh28 cells. 
Cells were treated with CM-272 (200 nM) for 72 h before fractionation and western blot analyses. Representative blots, including C23 (nucleolin) 
analysis as loading control, are shown. c Effect of CM-272 on G9a methylation status and interaction with HP1γ in control and MutKRAS Huh28 
cells. Cells were treated with CM-272 (200 nM) for 72 h before immunoprecipitations with an anti-G9a antibody, an anti-pan-methyllysine antibody 
(Methyl-K) or with an anti-HP1γ antibody, and subsequent western blot analyses to detect G9a. Corresponding immunoprecipitation controls using 
normal rabbit IgG are included. Representative blots are shown. d Effect of CM-272 on G9a methylation and interaction with HP1γ in HuCCT-1 
cells. Cells were treated or not with CM272 (200 nM) for 72 h before immunoprecipitations were carried out as described in c. Corresponding 
immunoprecipitation controls using normal rabbit IgG are included. Representative blots, including levels of HP1γ in total cell lysates are shown
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represent new mechanisms underlying the prevalent 
expression of IL6 in CCA tissues [23].

Other insights provided by our analysis of bile in 
the TAA model was the detection of ongoing oxi-
dative stress. This prooxidant context is consistent 
with histological evidences of reactive oxygen species 
accumulation in human iCCA tissues and their pro-
carcinogenic role. Perhaps more compelling was the 
detection of increased concentrations of the amino 
acids serine and glycine in bile from CCA bearing 
rats. Elevated levels of serine and glycine have been 
reported in a number of human cancers tissues [53], 
and these amino acids are considered as oncogenesis-
supportive metabolites [24, 54]. Increased production 
of serine and glycine may result from the metabolic 
rewiring of glycolysis observed in cancer cells, the 
Warburg effect, and the activation of the serine-gly-
cine pathway which branches off the glycolytic route. 
Interestingly, the majority of iCCA patients show 
increased tumor glucose uptake (18F-FDG) [45], indi-
cating a strong dependence of these tumours on glu-
cose metabolism, a feature also present in the rat TAA 
model [55]. Accordingly, in TAA-elicited tumours we 
found marked elevations not only in the expression of 
key genes driving glycolysis but also of PHGDH [24, 
54]. Conversely, expression of the gluconeogenic gene 
FBP1, a recognized tumour suppressor gene also in 
CCA [56], was downregulated. We found high PHGDH 
expression levels in human iCCA tissues in association 
with more advanced disease. Interestingly, the expres-
sion of serine hydroxymethyltransferase-2 (SHMT2), a 
downstream enzyme in the serine-glycine pathway [24, 
54], was recently reported to be overexpressed in iCCA 
patients with poor prognosis [57]. Different mecha-
nisms leading to upregulation of PHGDH expression 
have been identified in cancer cells, including gene 
amplification, loss of TP53 and KRAS mutations [24, 
54]. In pancreatic cancer KRAS mutation reprograms 
glucose metabolism, upregulating the expression of 
serine-glycine pathway enzymes and sustaining tumor 
cells grow under serine starvation [46]. Our observa-
tions indicate that in CCA cells mutant KRAS can also 
drive PHGDH expression, increase glucose metabolic 
flux through the serine pathway, and improve survival 
under serine starvation. Nevertheless, other mecha-
nisms frequently present in CCA such as c-Myc over-
expression, could also participate in the activation of 
the serine-glycine pathway and deserve further con-
sideration [54]. Interestingly, CCA cells expressing 
mutant KRAS were more sensitive to pharmacological 
PHGDH inhibition than those harboring the wild type 
allele, a situation that may open new therapeutic ave-
nues for KRAS mutant CCAs.

Recent observations in mice with specific deletion of 
G9a in pancreatic cells evidenced the fundamental role 
of this epigenetic effector in KRAS-driven pancreatic car-
cinogenesis [58, 59]. In view of these compelling findings, 
of our previous description of the antitumor potential of 
G9a targeting in CCA [30], and our present observation 
of a direct correlation between G9a and PHGDH expres-
sion in iCCAs, we explored the crosstalk between KRAS 
and this HMT in CCA cells. Using the G9a inhibitor 
CM-272 we could demonstrate that G9a activity was nec-
essary for mutant KRAS-mediated PHGDH activation. 
Previous reports, including ours, showed that enhanced 
ATF4 expression and G9a-mediated monomethyla-
tion of H3K9 at the PHGDH promoter could stimulate 
the transcription of this gene [31, 36]. While these pro-
cesses are likely to be involved in the observed responses 
to G9a inhibition, here we decided to explore additional 
mechanisms and examine whether G9a nuclear distri-
bution and methylation status could be modified in the 
context of KRAS mutation. At variance with the response 
to other signals (i.e. TGFβ pathway activation) [31] we 
did not consistently find an increased association of G9a 
with nuclear CF in KRAS mutant cells. However, inhibi-
tion of G9a activity by CM-272 resulted in enhanced dis-
sociation of this HMT from chromatin compared with 
cells expressing wild type KRAS. As mentioned, H3K9 
is methylated by G9a and this chromatin mark is recog-
nized and bound by G9a itself leading to the recruitment 
of other gene regulators [50]. However, G9a can also 
automethylate in lysine residues within its N-terminal 
domain, a modification that is essential for G9a interac-
tion with other transcriptional regulators [50]. Remark-
ably, we found that G9a methylation status was much 
more sensitive to the inhibition of G9a catalytic activity 
in KRAS mutant cells, suggesting a faster turnover of this 
covalent modification in cells expressing the oncogene, 
a mechanism that certainly deserves further explora-
tion. Noteworthy, MutKRAS Huh28 cells were also more 
sensitive than control Huh28 cells to CM-272 growth 
inhibition. Among the transcriptional regulators inter-
acting with methylated G9a are the HP1 proteins such 
as HP1γ (also known as CBX3) [60]. Moreover, a recent 
study demonstrated that G9a binding to HP1 proteins 
is dependent in part on its automethylation, and that in 
HP1-deficient cells G9a is released from chromatin [61]. 
HP1γ has been involved in both gene repression and acti-
vation [60, 62], and it is upregulated in a broad range of 
tumors contributing to cancer progression [63]. Interest-
ingly, HP1γ is overexpressed in lung adenocarcinoma, 
and it plays a main role in KRASG12D-driven lung tumori-
genesis through its interaction with G9a-generated H3K9 
methylation marks [64]. Here, we observed that inhibi-
tion of G9a automethylation reduced its interaction with 
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HP1γ. Although the involvement of G9a-HP1γ interac-
tion in PHGDH expression needs to be directly evalu-
ated, it has been recently demonstrated that HP1γ can 
promote aerobic glycolysis in pancreatic cancer cells [62].

Conclusions
Starting from an unconventional analysis of a clinically 
relevant model of iCCA we have identified new pro-
cesses that may be relevant to the human disease. We dis-
covered that the EGFR signaling pathway, as well as the 
existence of KRAS mutations, can cause the pro-carci-
nogenic cytokine IL6 to be produced. Paracrine or auto-
crine EGFR-RAS-MAPK activation in CCA cells leading 
to IL6 production is a previously undiscovered mecha-
nism in iCCA. In human iCCA, we also described that 
PHGDH was upregulated, and that mutant KRAS can 
drive PHGDH expression and glucose flux towards serine 
production. Functionally, PHGDH expression conferred a 
growth advantage to KRAS-mutant CCA cells, which also 
became more vulnerable to PHGDH inhibitors, a condi-
tion that may be exploited therapeutically. Finally, we pro-
vided pharmacological evidence that G9a is a component 
of KRAS-mediated glucose metabolism via the serine-gly-
cine pathway. Most of these data were also depicted in our 

rat TAA model, as they were for many other histological, 
cellular, and molecular features. However, due to the size 
of the animals, conducting pharmacological experiments 
is difficult. The inclusion of a mouse model of human 
CCA pathogenesis in our study confirmed that PHGDH 
expression expression is activated in CCA and that G9a 
inhibition has therapeutic potential. These findings sug-
gest that interference with G9a activity could be particu-
larly useful for the treatment of KRAS mutant CCAs, 
further supporting the potential of epigenetic therapies 
for this devastating disease. The most relevant findings of 
this study are summarized in Fig. 11.
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