## **Blood Type Punnett Square Practice**

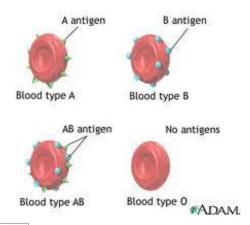
There are four major blood groups determined by the presence or absence of two antigens (proteins) – A and B – on the surface of red blood cells:

**Group A** – has only the A antigen on red cells (and B antibody in the plasma)

**Group B** – has only the B antigen on red cells (and A antibody in the plasma)

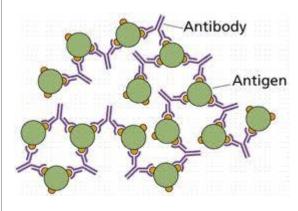
**Group AB** – has both A and B antigens on red cells (but neither A nor B antibody in the plasma)

**Group O** – has neither A nor B antigens on red cells (but both A and B antibody are in the plasma)


Since foreign antigens can trigger a patient's immune system to attack the transfused blood with antibodies, safe blood transfusions depend on careful blood typing and cross-matching.

There are 3 alleles of the gene that controls blood type:  $I^A$ ,  $I^B$ , i The I stands for immunoglobin, or the type of white blood cell that would be triggered to attack.

 $I^A$  and  $I^B$  are Co-Dominant genes, meaning when inherited together, they are both fully expressed, not blended, as in Incomplete Dominance. "i" is the recessive form of the allele.


Possible genotypes are as follows:

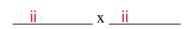
| Genotypes                              | Blood Type |  |
|----------------------------------------|------------|--|
| $\overline{I^A I^A \text{ or } I^A}$ i | A          |  |
| $I^BI^B$ or $I^Bi$                     | В          |  |
| $I^AI^B$                               | AB         |  |
| ii                                     | O          |  |



| Blood<br>Type | Antigen<br>(RBC membrane) | Antibody<br>(plasma)              | Can receive blood from | Can donate blood to |
|---------------|---------------------------|-----------------------------------|------------------------|---------------------|
| A<br>(40%)    | A antigen                 | Anti-B<br>antibodies              | A, O                   | A, AB               |
| B<br>(10%)    | B antigen                 | Anti-A<br>antibodies              | В, О                   | B, AB               |
| AB<br>(4%)    | A antigen<br>B antigen    | No<br>antibodies                  | A, B, AB, O            | АВ                  |
| O<br>(46%)    | No antigen                | Both Anti-A and Anti-B antibodies | 0                      | O, A, B, AB         |

## Agglutination

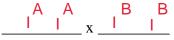



Copyright © 2006, 2003 by Mosby, Inc. an affiliate of Elsevier Inc.

An additional complication in blood typing is that there is a third major antigen called the Rh factor. If you have the Rh antigen as well, we say you are Rh + . No Rh antigen, you are Rh - . Each of the four A, B, AB, O blood types can come with or without the Rh factor. We will not deal with the Rh factor in the following genetics problems.

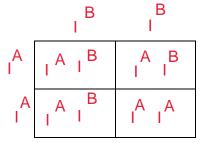

## **Assignment:**

Show the punnett square and phenotypic ratios for the following crosses:


1) Both the father and mother have type O blood.



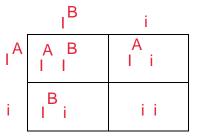
Phenotypic Ratio:



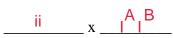

2) The father is type A homozygous, the mother is type B homozygous.



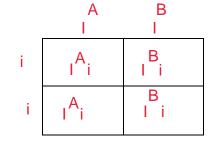

Phenotypic Ratio:


A:B:AB:O 0:0:4:0




3) The father is type A heterozygous, the mother is type B heterozygous.



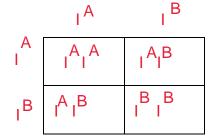

Phenotypic Ratio:
A:B:AB:O



4) The father has type O blood, the mother has type AB blood.



1:1:1:1

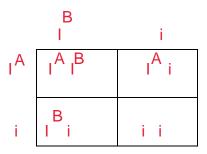



Phenotypic Ratio:

A : B : AB : O

2:2:0:0

|          | father and mother have type AB blood | • |
|----------|--------------------------------------|---|
| AB       | A B                                  |   |
| <u> </u> | x IAIB                               |   |




Phenotypic Ratio:

6) Alice has type A blood and her husband Mark has type B blood. Their first child, Amanda, has type O blood. Their second child, Alex, has type AB blood.

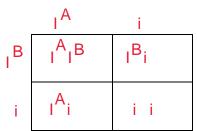
|                           | .Α. |    |
|---------------------------|-----|----|
| What is Alice's genotype? | 1 1 | R  |
| What is Mark's genotype?  |     | ΙĬ |

Show how you found the answer by completing the Punnett square(s) below:



7) Candace has type B blood. Her husband Dan has type AB blood.

Is it possible for Candace and Dan to have a child that has O blood?


Why not (use a Punnett square to help).

Explain why or

| B<br>I | A B      | B B              |
|--------|----------|------------------|
| i      | A<br>I i | I <sup>B</sup> i |

8) Ralph has type B blood and his wife Rachel has type A blood. They are very shocked to hear that their baby has type O blood, and think that a switch might have been made at the hospital. Can this baby be theirs? \_\_\_\_\_YES\_\_\_\_ Explain why or why not (use a Punnett square to help).

possible phenotypes: A, B, AB or O

