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Abstract Continual learning remains an unsolved problem in artificial neural networks. The brain

has evolved mechanisms to prevent catastrophic forgetting of old knowledge during new training.

Building upon data suggesting the importance of sleep in learning and memory, we tested a

hypothesis that sleep protects old memories from being forgotten after new learning. In the

thalamocortical model, training a new memory interfered with previously learned old memories

leading to degradation and forgetting of the old memory traces. Simulating sleep after new

learning reversed the damage and enhanced old and new memories. We found that when a new

memory competed for previously allocated neuronal/synaptic resources, sleep replay changed the

synaptic footprint of the old memory to allow overlapping neuronal populations to store multiple

memories. Our study predicts that memory storage is dynamic, and sleep enables continual

learning by combining consolidation of new memory traces with reconsolidation of old memory

traces to minimize interference.

Introduction
Animals and humans are capable of continuous, sequential learning. In contrast, modern artificial

neural networks suffer from the inability to perform continual learning (Ratcliff, 1990; French, 1999;

Hassabis et al., 2017; Hasselmo, 2017; Kirkpatrick et al., 2017). Training a new task results in

interference and catastrophic forgetting of old memories (Ratcliff, 1990; McClelland et al., 1995;

French, 1999; Hasselmo, 2017). Several attempts have been made to overcome this problem

including (a) explicit retraining of all previously learned memories – interleaved training (Has-

selmo, 2017), (b) using generative models to reactivate previous inputs (Kemker and Kanan, 2017),

or (c) artificially ‘freezing’ subsets of synapses important for the old memories (Kirkpatrick et al.,

2017). These solutions help prevent new memories from interfering with previously stored old mem-

ories, however they either require explicit retraining of all past memories using the original data or

have limitations on the types of trainable new memories and network architectures (Kemker and

Kanan, 2017). How biological systems avoid catastrophic forgetting remains to be understood. In

this paper, we propose a mechanism for how sleep modifies network synaptic connectivity to mini-

mize interference of competing memory traces enabling continual learning.

Sleep has been suggested to play an important role in learning and memory (Paller and Voss,

2004; Walker and Stickgold, 2004; Oudiette et al., 2013; Rasch and Born, 2013; Stickgold, 2013;

Weigenand et al., 2016; Wei et al., 2018). Specifically, the role of stage 2 (N2) and stage 3 (N3) of

Non-Rapid Eye Movement (NREM) sleep has been shown to help with the consolidation of newly

encoded memories (Paller and Voss, 2004; Walker and Stickgold, 2004; Rasch and Born, 2013;

Stickgold, 2013). The mechanism by which memory consolidation is influenced by sleep is still

debated, however, a number of hypotheses have been put forward. Sleep may enable memory con-

solidation through repeated reactivation or replay of specific memory traces during characteristic
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sleep rhythms such as spindles and slow oscillations (Paller and Voss, 2004; Clemens et al., 2005;

Marshall et al., 2006; Oudiette et al., 2013; Rasch and Born, 2013; Weigenand et al., 2016;

Ladenbauer et al., 2017; Wei et al., 2018; Xu et al., 2019). Memory replay during NREM sleep

could help strengthen previously stored memories and map memory traces between brain struc-

tures. Previous work using electrical (Marshall et al., 2004; Marshall et al., 2006;

Ladenbauer et al., 2017) or auditory (Ngo et al., 2013) stimulation showed that increasing neocorti-

cal oscillations during NREM sleep resulted in improved consolidation of declarative memories. Simi-

larly, spatial memory consolidation has been shown to improve following cued reactivation of

memory traces during NREM sleep (Paller and Voss, 2004; Oudiette et al., 2013; Oudiette and

Paller, 2013; Papalambros et al., 2017). Our recent computational studies found that sleep dynam-

ics can lead to replay and strengthening of recently learned memory traces (Wei et al., 2016;

Wei et al., 2018; Wei et al., 2020). These studies point to the critical role of sleep in memory

consolidation.

Can neuroscience inspired ideas help solve the catastrophic forgetting problem in artificial neuro-

nal networks? The most common machine learning training algorithm – backpropagation

(Rumelhart et al., 1986; Werbos, 1990; Kriegeskorte, 2015) – is very different from plasticity rules

utilized by brain networks. Nevertheless, we have recently seen a number of successful attempts to

implement high level principles of biological learning in artificial network designs, including imple-

mentation of the ideas from ‘Complementary Learning System Theory’ (McClelland et al., 1995),

according to which the hippocampus is responsible for the fast acquisition of new information, while

the neocortex would more gradually learn a generalized and distributed representation. These ideas

led to interesting attempts of solving the catastrophic forgetting problem in artificial neural networks

(Kemker and Kanan, 2017). While few attempts have been made to implement sleep in artificial

networks, one study suggested that sleep-like activity can increase storage capacity in artificial net-

works (Fachechi et al., 2019). We recently found that implementation of a sleep-like phase in artifi-

cial networks trained using backpropagation can dramatically reduce catastrophic forgetting, as well

as improve generalization performance and transfer of knowledge (Krishnan et al.,

2019; Tadros et al., 2020). However, despite this progress, we are still lacking a basic understand-

ing of the mechanisms by which sleep replay affects memories, especially when new learning inter-

feres with old knowledge.

The ability to store and retrieve sequentially related information is arguably the foundation of

intelligent behavior. It allows us to predict the outcomes of sensory situations, to achieve goals by

generating sequences of motor actions, to ‘mentally’ explore the possible outcomes of different nav-

igational or motor choices, and ultimately to communicate through complex verbal sequences gen-

erated by flexibly chaining simpler elemental sequences learned in childhood. In our new study, we

trained a network, capable of transitioning between sleep-like and wake-like states, to learn spike

sequences in order to identify mechanisms by which sleep allows consolidation of newly encoded

memory sequences and prevents damage to old memories. Our study predicts that during a period

of sleep, following training of a new memory sequence in awake, both old and new memory traces

are spontaneously replayed, preventing forgetting and increasing recall performance. We found that

sleep replay results in fine tuning of the synaptic connectivity matrix encoding the interfering mem-

ory sequences to allow overlapping populations of neurons to store multiple competing memories.

Results
The network model, used in our study, represents a minimal thalamocortical architecture implement-

ing one cortical layer (consisting of excitatory pyramidal (PY) and inhibitory (IN) neurons) and one

thalamic layer (consisting of excitatory thalamic relay (TC) and inhibitory reticular thalamic (RE) neu-

rons) – with all neurons simulated by Hodgkin-Huxley models (Figure 1A). These models were built

upon neuron models we used in our earlier work (Krishnan et al., 2016; Wei et al., 2016;

Wei et al., 2018). This model exhibits two primary dynamical states of the thalamocortical system –

awake, characterized by random asynchronous firing of all cortical neurons, and slow-wave sleep

(SWS), characterized by slow (<1 Hz) oscillations between Up (active) and Down (silent) states

(Blake and Gerard, 1937; Steriade et al., 1993; Steriade et al., 2001). Transitions between sleep

and awake (Figure 1B/C) were simulated by changing network parameters to model effect of neuro-

modulators (Krishnan et al., 2016). While the thalamic population was part of the network, its role
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Figure 1. Network architecture and baseline dynamics. (A) Basic network architecture (PY: excitatory pyramidal neurons; IN: inhibitory interneurons; TC:

excitatory thalamocortical neurons; RE: inhibitory thalamic reticular neurons). Excitatory synapses are represented by lines terminating in a dot, while

inhibitory synapses are represented by lines terminating in bars. Arrows indicate the direction of the connection. (B) Behavior of a control network

exhibiting wake-sleep transitions. Cortical PY neurons are shown. Color represents the voltage of a neuron at a given time during the simulation (dark

blue – hyperpolarized potential; light blue / yellow – depolarized potential; red - spike). (C) Zoom-in of a subset of neurons from the network in B (time

is indicated by arrows). Left and right panels show spontaneous activity during awake-like state before and after sleep, respectively. Middle panel shows

example of activity during sleep. (D) Left panel shows the initial weighted adjacency matrix for the network in B. The color in this plot represents the

strength of the AMPA connections between PY neurons, with white indicating the lack of synaptic connection. Right panel shows the initial weighted

adjacency matrix for the subregion indicated on the left.
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was limited to help simulate realistic Up and Down state activity (Bazhenov et al., 2002), as all syn-

aptic changes occurred in the cortical population. The initial strength of the synaptic connections

between cortical PY neurons was Gaussian distributed (Figure 1D).

We set probabilistic connectivity (p=0.6) between excitatory cortical neurons within a defined

radius (RAMPA(PY-PY)=20). Only cortical PY-PY connections were plastic and regulated by spike-timing

dependent plasticity (STDP). During initial training, STDP was biased for potentiation to simulate ele-

vated levels of acetylcholine (Blokland, 1995; Shinoe et al., 2005; Sugisaki et al., 2016). During

testing/retrieval, STDP was balanced (LTD/LTP = 1). STDP remained balanced during both sleep and

interleaved training (except for few selected simulations where we tested effect of unbalancing

STDP) to allow side by side comparisons. For details, please see Methods and Materials.

Temporally structured sequences of events are a common type of information we learn, and they

are believed to be represented in the brain by sequences of neuronal firing. Therefore, in this study

we represent each memory pattern as an ordered sequence, S, of activations of populations of corti-

cal neurons (e.g., A!B!. . .), where each ‘letter’ (e.g., A) labels a population of neurons, so each

memory could be labeled by a unique ‘word’ of such ‘letters’. We considered memory patterns rep-

resented by non-overlapping populations of neurons as well as memory patterns sharing neurons

but with a different activation order, for example, A!B!C vs. C!B!A. This setup can mimic,

for example, in vivo experiments with a rat learning a track, including: (a) running in one direction on

a linear track (Mehta et al., 1997) would be equivalent to a sequence training

(‘A!B!C’, ’A!B!C’,. . .); (b) forwards and backwards running on a linear track (Navratilova et al.,

2012) would be equivalent to interleaved sequences training (‘A!B!C’, ’C!B!A’, ’A!B!C’,. . .);

(c) running on a belt track first only in one direction and then in reverse one (e.g., using Virtual Real-

ity (VR) apparatus) would be equivalent to first learning a sequence (‘A!B!C’, ’A!B!C’,. . .) and

then the opposite one (‘C!B!A’, ’C!B!A’,. . .).

In our model, training always occurred in the awake state and no input was delivered to the net-

work in the sleep state. Testing was also done in the awake state; during test sessions, the model

was only presented with input to the first group (e.g., A) to test for pattern completion for the

trained sequence (e.g., A!B!C!. . .). Performance was calculated based on the distance between

the trained pattern (template) and the response during testing. The awake state included multiple

testing sessions: before training, after training/before sleep, and after sleep. For details, please see

Methods and Materials.

The paper is organized as follows. We first consider the scenario of two memory sequences

trained at different (non-overlapping) network locations. We show that SWS-like activity after train-

ing leads to sequence replay, synaptic weight changes, and performance increases during testing

after sleep. Next, we focus on the case of two sequences trained in opposite directions over the

same population of neurons. We show that in such a case training a new sequence in awake would

‘erase’ an old memory. However, if a sleep phase is implemented before complete destruction of

the old memory, both memory sequences are spontaneously replayed during sleep. As a result of

replay, each sequence allocates its own subset of neurons/synapses, and performance increases for

both sequences during testing after sleep. We complete the study with a detailed analysis of synap-

tic weight changes and replay dynamics during the sleep state to identify mechanisms of memory

consolidation and performance increase. In supplementary figures, we compare sleep replay with

interleaved training and show that sleep achieves similar or better performance but without explicit

access to the training data.

Training of spatially separated memory sequences does not lead to
interference
First, we trained two memory patterns, S1 and S2, sequentially (first S1 and then S2) in spatially dis-

tinct regions of the network as shown in Figure 2A. Each memory sequence was represented by the

spatio-temporal pattern of 5 sequentially activated groups of 10 neurons per group. A 5 ms delay

was included between stimulations of subsequent groups within a sequence. S1 was trained in the

population of cortical neurons 200–249 (Figure 2B, top). Training S1 resulted in an increase of syn-

aptic weights between participating neurons (Figure 2D, left) and an increase in performance on

sequence completion (Figure 2B/C, top). When the strength of the synapses in the direction of S1

increased, synapses in the opposite direction showed a reduction consistent with the STDP rule (see

Methods and Materials). The second sequence, S2, was trained for an equal amount of time as S1
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Figure 2. Two spatially separated memory sequences show no interference during training and both are strengthened by subsequent sleep. (A)

Network activity during periods of testing (T), training of two spatially separated memory sequences (S1/S2), and sleep (N3). Cortical PY neurons are

shown. Color indicates voltage of neurons at a given time. (B) Left panels show an example of training sequence 1 (S1, top) and sequence 2 (S2,

bottom). Middle panels show examples of testing both sequences prior to sleep. Right panels show examples of testing after sleep. Note, after sleep,

Figure 2 continued on next page
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but in a different population of neurons 350–399 (W-V-X-Y-Z, Figure 2B, bottom). Training of S2

also resulted in synaptic weight changes (Figure 2D, middle) and improvement in performance

(Figure 2B/C, bottom). Importantly, training of S2 did not interfere with the weight changes encod-

ing S1 because both sequences involved spatially distinct populations of neurons (compare

Figure 2D, left and middle). It should be noted that though testing resulted in reactivation of mem-

ory traces, there was little change in synaptic weights during testing periods because of a relatively

small number of pre/post spike events. (Simulations where STDP was explicitly turned off during all

testing periods exhibited similar results to those presented here.)

We next calculated the net sum of synaptic weights each neuron received from all neurons

belonging to its left vs right neighboring populations (e.g., total input to a neuron Bi, belonging to

group B, that it received from all the neurons in group A vs all the neurons in group C) and we ana-

lyzed the difference of these net weights. The initial distribution was symmetric reflecting the initial

state of the network (Figure 2E, left). After training, it became asymmetric, indicating stronger input

from the left groups (i.e., total input to Bi from all the neurons in group A was larger than that from

all the neurons in group C) (Figure 2E, middle). These results are consistent with in vivo recordings

from a rat running in one direction on a linear track (Mehta et al., 1997), where this phenomenon

was called ‘receptive field backwards expansion’, i.e., neurons representing locations along the track

became asymmetrically coupled such that activity in one group of neurons (one location) led to

activation of the next group of neurons (new location) even before the corresponding input occurred

(before the animal moved to the new location).

After successful training of both sequences, the network went through a period of sleep (N3 in

Figure 2A) when no stimulation was applied. After sleep, synaptic weights for both memory sequen-

ces revealed strong increases in the direction of their respective activation patterns and further

decreases in the opposing directions (Figure 2D, right). In line with our previous work (Wei et al.,

2018), these changes were a result of sequence replay during the Up states of slow oscillation (see

next section for details). Synaptic strengthening increased the performance on sequence completion

after sleep (Figure 2B, right; 2C, red bar). Analysis of the net synaptic input to each neuron from its

left vs right neighboring groups, revealed further shift of the synaptic weight distribution (Figure 2E,

right). This predicts that SWS following linear track training would lead to further receptive field

backwards expansion in the cortical neurons. To quantify this asymmetry we calculated a ‘directional-

ity index’, I, for synaptic weights (similar to Navratilova et al., 2012 but using synaptic weights),

based on synaptic input to each neuron from its left vs right neighboring populations (‘Directionality

Index’=0 if all the neurons receive the same input from its left vs right neighboring groups and

‘Directionality Index’=1 if all the neurons receive input from one ‘side’ only; see Methods and Mate-

rials for details). This analysis showed an increase in the directionality index from naive to trained cor-

tical networks and further increase after sleep (Figure 2F). Note, that the backwards expansion of

the place fields was reset between sessions in CA1 (Mehta et al., 1997), but not in CA3 (Roth et al.,

2012), where the backward shift gradually diminished across days, possibly as memories became

hippocampus independent (see Discussion).

The goal of this study was to reveal basic mechanisms of replay and therefore we focus on the

‘simple’ linear (e.g., S1) memory sequences. Our results, however, can be generalized to much more

complex non-linear sequences (see Figure 2—figure supplement 1). In simulations from Figure 2—

figure supplement 1, training a sequence in awake was not long enough to ensure reliable

pattern completion, however, performance was significantly improved after replay during SWS.

Figure 2 continued

both sequences show better completion. (C) Performance of S1 and S2 completion before any training (baseline), after S1 training, after S2 training, and

after sleep (red). (D) Synaptic weight matrices show changes of synaptic weights in the regions trained for S1 and S2. Left panel shows weights after

training S1; middle panel shows weights after training S2; right panel shows weights after sleep. Color indicates strength of AMPA synaptic

connections. (E) Distributions of the net sum of synaptic weights each neuron receives from all the neurons belonging to its left neighboring group (S1

direction) vs its right neighboring group (opposite direction, defined as S1* direction below) within a trained region at baseline (left), after S1 training

(middle) and after sleep (right). (F) Synaptic weight-based directionality index before/after training (gray bars) and after sleep (red bar).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Sleep replay improves performance for complex non-linear sequences.
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Sleep replay improves pattern completion performance for memory
sequencies
Why do SWS dynamics lead to improvement in memory performance? The hypothesis is that mem-

ory patterns trained in awake are spontaneously replayed during sleep. With this in mind, we next

analyzed the network firing patterns during Up states of the slow oscillation to identify replay. We

focused our analysis on pairs of neurons (as opposed to the longer sequences) because (a) having

different elementary units of a sequence (neuronal pairs) replayed independently would still be suffi-

cient to strengthen the entire sequence; (b) in vivo data suggest that memory sequence replay often

involves random subsets of the entire sequence (e.g., Euston et al., 2007; Roumis and Frank,

2015; Joo and Frank, 2018; Swanson et al., 2020); (c) we want to compare results in this section to

the analysis of the overlapping opposite sequences in the following sections, however, we could not

reliably detect replay of the full sequences in the latter case possibly because of highly overlapping

spiking between sequences.

For each synapse in direction S1 (we refer to it below as S1 synapse) and each Up state, we (a)

calculated the time delay between nearest pre/post spikes; (b) transformed this time delay through

an STDP-like function to obtain a value characterizing its effect on synaptic weight; and (c) calculated

the total net effect of all such spike events. This gave us a net weight change for a given synapse

during a given Up state. If we observed a net weight increase, we labeled this S1 synapse as being

preferentially replayed during a given Up state. Finally, we counted all the Up states where a given

synapse was replayed as defined above. This procedure is similar to off-line STDP, however, instead

of weight change over entire sleep, we obtained the number of Up states where a synapse in the

direction of S1 was (preferentially) replayed.

Figure 3A shows, for each synapse in the direction of S1, the total change of its synaptic strength

across entire sleep (Y-axis) vs number of Up states when that synapse was replayed (X-axis). As

expected, it shows a strong positive correlation. Synaptic weight changes became negative

when the number of Up states where an S1 synapse was replayed dropped below half of the total

number of Up states (blue vertical line in Figure 3A). In Figure 3B we plotted only those S1 synapses

which were replayed reliably – for more that 66% of all Up states (dotted line in Figure 3A). We

found such synapses between all neuronal groups (gray boxes in Figure 3B) as well as between neu-

rons within groups.

In Figure 3C, we illustrated all the synapses identified in the analysis in Figure 3B, that is, synap-

ses that were replayed reliably (in more than 66% of all Up states) in direction of S1. We also colored

in blue neurons receiving at least one of these synapses as identified in Figure 3B. We concluded

that there were multiple direct and indirect synaptic pathways connecting the first (A) and last (E)

groups of neurons that were replayed reliably during sleep. These synapses increased their strength

which explains reliable memory recall during testing after sleep.

Sequential training of overlapping memory sequences results in
interference
We next tested whether our network model shows interference during awake when a new sequence

(S1*) (Figure 4A) is trained in the same population of neurons as the earlier old sequence (S1). S1*

included the same exact groups of neurons as S1, but the order of activation was reversed, that is,

the stimulation order was E-D-C-B-A (Figure 4B). S2 was once again trained in a spatially distinct

region of the network (Figure 4A/B). Testing for sequence completion was performed immediately

after each training period. This protocol can represent two somewhat different training scenarios: (a)

two competing memory traces (S1 and S1*) are trained sequentially before sleep; (b) the first (old)

memory S1 is trained and then consolidated during sleep followed by training of the second (new)

memory S1* followed by another episode of sleep. We explicitly tested both scenarios and they

behaved similarly, so in the following we discuss the simpler case of two sequentially trained memo-

ries followed by sleep. This setup can simulate in vivo experiments with a rat running on a belt in a

VR apparatus, first in one direction only (learning S1) and then in the opposite direction (learning

S1*). An example of the second scenario is presented in Figure 5—figure supplement 1 and dis-

cussed below.

In the model, training S1 increased performance of S1 completion (Figure 4C, top/left). It also

led to decrease in performance for S1* below its baseline level in the ‘naive’ network (Figure 4C,
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bottom/left). (Note that even a naive network displayed some above zero probability to complete a

sequence depending on the initial strength of synapses and spontaneous network activity). Training

S2 led to an increase in S2 performance (S1 performance also increased, most-likely due to the ran-

dom reactivation of S1 in awake). Subsequent training of S1* resulted in both a significant increase

in S1* performance and a significant reduction of S1 performance (Figure 4C). To evaluate the

impact of S1* training on S1 performance, we varied the duration of S1* (later memory) training

(Figure 4D). Increasing the duration of S1* training correlated with a reduction of S1 performance

Figure 3. Sleep replay strengthens synapses to improve memory recall. (A) Change in synaptic weight over entire sleep period as a function of

the number of Up states where a given synapse was replayed. Each star represents a synapse in the direction of S1. Dashed line indicates the threshold

(66% of Up states) used to identify synapses that are replayed reliably for analysis in B; purple line indicates the maximum number of Up states; blue

line demarcates the 50% mark of the total number of Up states. (B) Thresholded connectivity matrix indicating synaptic connections (blue) showing

reliable replays in the trained region. Grey boxes highlight between group connections. (C) Network’s graph showing between group (top) and within

group (bottom) connections. Edges shown here are those synapses which revealed reliable replays of S1 as shown in B. Nodes are colored blue if they

receive at least one of the synapses identified in panel B.
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Figure 4. Training of overlapping memory sequences results in catastrophic interference. (A) Network activity (PY neurons) during training and testing

periods for three memory sequences in awake-like state. Note, sequence 1 (S1) and sequence 1* (S1*) are trained over the same population of neurons.

Color indicates the voltage of the neurons at a given time. (B) Examples of sequence training protocol for S1 (left), S2 (middle), and S1* (right). (C)

Performances for the three sequences at baseline, and after S1, S2 and S1* training. Training of S1* leads to reduction of S1 performance. (D)

Performance of S1 (black) and S1* (red) as a function of S1* training duration. Note that longer S1* training increases degradation of S1 performance.

Figure 4 continued on next page
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up to the point when S1 performance was reduced to its baseline level (Figures 4D and 400 sec

training duration of S1*). This suggests that sequential training of two memories competing for the

same population of neurons results in memory interference and catastrophic forgetting of the earlier

memory sequence.

The model predicts that in experiments with a rat running on a belt in a VR apparatus, training

the backward direction after training the forward one would ‘erase’ the effect of the forward train-

ing. While we are not aware of such experiments, studies done with a rat running forward and back-

ward on a liner track (Navratilova et al., 2012), which would be equivalent to interleaved training

S1! S1*! S1! S1*. . .., revealed that, in the hippocampus, spatial sequences of opposite direction

are rapidly orthogonalized, largely on the basis of differential head direction system input, to accom-

modate both trainings. Thus, at each location, some neurons had their receptive field expanded in

one direction and others in the opposite direction (Navratilova et al., 2012). To compare our model

with these data, we tested interleaved training of S1 and S1* (Figure 4—figure supplement 1) and

found performance increase for both sequences. Importantly, in agreement with in vivo data, differ-

ent neurons became specific for S1 vs S1* as reflected in the overall increase of the directionality

index (Figure 4—figure supplement 1F). In the next section we test if sleep can achieve the same

goal.

Sleep prevents interference and leads to performance improvement for
overlapping memories
So far we found that when a single sequence was trained, it replayed spontaneously during sleep

resulting in improvement in performance (Figures 2 and 3). For two opposite sequences trained in

the same network location we found competition and interference during sequential training in

awake (Figure 4). However, when the same two sequences were trained using alternating protocol

(interleaved training), both increased in performance (Figure 4—figure supplement 1C). We next

tested the effect of SWS following sequential training of two opposite sequences in awake. Two out-

comes are possible: (a) the stronger sequence could dominate replay and eventually suppress the

weaker one, or (b) both sequences can be replayed during sleep and increase in performance after

sleep. To test these possibilities, we simulated SWS (N3) after the sequences S1/S2/S1* were trained

sequentially in the awake state (S1! S1!. . .! S2! S2!. . .! S1*! S1*!. . .) (Figure 5A), as

described in the previous sections (Figures 2 and 4). We stopped training the new memory S1*

before the old memory trace S1 was completely erased (300 sec of S1* training, see Figure 4D).

Since we biased STDP towards LTP during awake, both memories S1 and S1* showed above base-

line performance after training.

We found that sleep improves sequence completion performance for all three memories, includ-

ing competing memory traces – S1 and S1*. Figure 5B shows raster plots of the spiking activity

before vs after sleep, which revealed significant improvements in sequence completion. These

results are summarized in (Figure 5C). Thus, we predict that sleep replay is not only able to reverse

the damage caused to the old memory (S1) following S1* training, but it can enhance S1 perfor-

mance at the same time as it enhances performance of S1*.

As for a single sequence, we next calculated the net sum of synaptic weights each neuron

received from all the neurons belonging to its left vs right neighboring groups, and we analyzed the

difference of these net weights. The initial distribution was symmetric reflecting the initial state of

the network (Figure 5D, left). After S1 training, the distribution became asymmetric, indicating

stronger input from the left (Figure 5D, middle/left). Training the opposite sequence, S1*, reversed

the process and the distribution became more symmetric again, however, it also became wider with

some neurons in each population preferring sequence S1 (i.e., for some group B neurons, Bi, input

from group A was stronger than input from group C) and others preferring S1* (i.e., for other group

B neurons, Bj, input from group C was stronger than input from group A) (Figure 5D, middle/right).

Figure 4 continued

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Interleaved training of the old and new memory sequences prevents the old sequence from forgetting and improves

performance for both memories.
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Figure 5. Sleep prevents the old memory sequence from forgetting and improves performance for all memories. (A) Network activity (PY neurons)

during sequential training of sequencies S1/S2/S1* (blue bars) followed by N3 sleep (red bar). No stimulation was applied during sleep. (B) Examples of

testing for each trained memory at different times. The top row corresponds to the testing of S1, middle is testing of S2, and bottom is testing of S1*.

Heatmap shows characteristic cortical Up state during SWS. (C) Testing of S1, S2, and S1* shows damage to S1 after training S1*, and increase in

Figure 5 continued on next page
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After SWS, the width of the distribution further increased indicating that sleep, similar to interleaved

training, changes the network connectivity to develop neurons which become strongly specific for

one sequence or another (Figure 5D, right). The synaptic weight-based directionality index that

summarizes these changes (see above and Methods and Materials for details) also increased after

sleep (Figure 5E).

Our study predicts that in experiments with a rat running on a belt in a VR apparatus, training the

backward direction after training the forward one can damage (erase) the effect of forward training,

however, SWS following training can reverse the damage. Additionally, similar to interleaved training

(Navratilova et al., 2012), directionality index should increase after SWS.

As we mentioned previously, the training protocol we have focused on in this study was of two

memories trained sequentially before sleep. We have also tested the scenario where the first (old)

memory is trained and consolidated during sleep before the second (new) memory is trained and

then consolidated during a second period of sleep (Figure 5—figure supplement 1). The main

results from both training protocols remain the same. Thus, performance for S1 improved after first

episode of sleep (initial consolidation) (Figure 5—figure supplement 1B,C). Training new memory

S1* in the same population of neurons damaged S1 and led to improvement of S1*. Consistent with

empirical results on proactive interference (McDevitt et al., 2015), training S1* took longer in that

scenario to achieve a high level of performance. Note, that even longer training of S1*

further improved its performance but could also completely erase S1 (Figure 5—figure supplement

1D). Finally, both S1 and S1* showed an improvement after a subsequent episode of sleep (Fig-

ure 5—figure supplement 1B,C). Thus, the training paradigm ‘S1! sleep! S1*! sleep’ shows

qualitatively similar results to the ‘S1! S1*! sleep’ paradigm. This result is also consistent with the

‘Complementary Learning Systems Theory’ prediction that the old memories interfering with new

learning have to be replayed during new phase of memory consolidation to avoid forgetting

(McClelland et al., 2020).

Competing memories are replayed spontaneously during Up states of
slow oscillation
In this section we focus our analysis on the competing sequences S1 and S1*. We asked the follow-

ing questions: (a) What kind of network dynamics during Up states of SWS allows for replay and

improvement of both memory traces S1 and S1*? (b) Do the same neurons participate in replay of

both sequences or do different subsets of neurons uniquely represent each memory? (c) Do both

memory sequences replay during the same Up state or do different Up states become biased for

replay of one memory or the other?

We performed spike timing analysis similar to what we did for S1 alone (Figure 3), but we now

analyzed separately synaptic connections in direction of S1 and S1*. Figure 6A plots, for each syn-

apse in direction of S1 (left) and S1* (right), the net change in synaptic strength across the entire

sleep period vs total number of Up states (slow-waves) where that synapse was preferentially

replayed. As before, we found a strong positive correlation. We next plotted only those synapses

which replayed reliably – more that 66% of all Up states (Figure 6B). We found that such synapses

exist between all neuronal groups and for both sequences (in Figure 6B blue color indicates synap-

ses in the direction of S1 and red in the direction of S1*). This analysis revealed two important prop-

erties. First, after sleep, each pair of neurons preferentially supported only one sequence, S1 or S1*

(note that the connectivity matrix in Figure 6B is strictly asymmetric). Second, individual neurons can

be divided into two groups - those participating reliably in only one sequence replay (either S1 or

Figure 5 continued

performance for all three sequences after sleep (red bars). (D) Distributions of the net sum of synaptic weights each neuron receives from all the

neurons belonging to its left vs right neighboring groups within a trained region at baseline (left), after training S1 (middle/left), after training S1*

(middle/right), and after sleep (right). Wider distribution indicates presence of neurons that are strongly biased to one sequence or the other. (E)

Synaptic weight-based directionality index before/after training (gray bars) and after sleep (red bar).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Training of a new memory that interferes with previously consolidated old memory leads to forgetting that can be reversed by

subsequent sleep.
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Figure 6. Sleep promotes replay of both overlapping memory sequences during each Up state. (A) Change in synaptic weight over entire sleep period

as a function of the number of Up states where a given synapse was preferentially replayed. Each star represents a synapse in the direction of S1 (left)

or S1* (right). Dashed line indicates the threshold (66% of Up states) used to identify synapses that are replayed reliably for analysis in (B); purple line

indicates the maximum number of Up states; blue line demarcates the 50% mark of the total number of Up states. (B) Thresholded connectivity matrix

indicating synaptic connections showing reliable replays for S1 (blue) or S1* (red). Grey boxes highlight between group connections. (C) Number

of replay events for inter-group synapses per Up state across all Up states (left) and a subset of Up states (right) for S1 (blue) and S1* (red). Note that

Figure 6 continued on next page
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S1*) and those participating in both sequences replays (see Figure 6B, where some target neurons

(X-axis) receive input from source neurons (Y-axis) in only one network ‘direction’, left (blue) or right

(red), and others receive input from both ‘directions’).

To confirm that both memories are replayed within the same Up state (i.e., some synapses replay

S1 and others replay S1* during a given Up state), we counted, for each Up state, the total number

of individual replay events across all synapses that were identified to replay S1 and

S1* reliably (Figure 6C). This revealed fluctuations from one Up state to another, but the count

remained high for both S1 and S1* confirming our prediction that partial replays of both sequences

occur during the same Up state, that is, any given Up state participates in replay of both memories.

Still, zoom-in to the replay count diagram (Figure 6C, right) revealed an antiphase oscillation, that is,

one Up state would replay more S1 synapses, while another one (commonly next one) would replay

more S1* synapses. Note, our model predicts that partial sequences (specifically spike doubles) of

both memories can be replayed during the same Up state and not that both are replayed simulta-

neously (at the same exact time). Comparing replays during first vs second half of an Up state, we

found that more replay events happened during the first half of any given Up state (particularly near

the Down to Up transition) compared to the second half (not shown). This result is consistent with

electrophysiological data suggesting that memory replay is strongest at the Down to Up state transi-

tion (Johnson et al., 2010).

Finally, in Figure 6D, we plotted all the synapses identified by the analysis in Figure 6B, that is,

those involved in reliable (in more than 66% of all Up states) replay during sleep: top plot shows syn-

apses in S1 direction (in blue) and bottom one shows synapses in S1* direction (in red). For each neu-

ron we compared the number of such synapses it received from its left (S1 direction) vs right (S1*

direction) neighboring population (e.g., for a neuron in group B, we compared if it received more

synapses demonstrating reliable replay from group A or from group C). We then colored in blue

(red) neurons receiving more synapses demonstrating reliable replay from its left (right) neighbors

(Figure 6D). In green we colored neurons receiving the same number of ‘replayed’ synapses from

left and right. While we found that many neurons (blue or red) participated reliably in only one

sequence replay, S1 or S1*, a few neurons (green) participated equally in replay of both sequences,

creating ‘network hubs’.

Sleep replay leads to competition between synapses
In order to further understand how sleep replay affects S1 and S1* memory traces to allow enhance-

ment of both memories, we next analyzed the dynamics of individual synaptic weights within the

population of neurons containing the overlapping memory sequences (i.e. neurons 200–249).

Figure 7A shows distributions of synaptic weights for synapses in the direction of S1 (top row) and

in the direction of S1* (bottom row) before (blue) and after (red) specific events. Different columns

correspond to different events, i.e. after S1 training (Figure 7A, left), after S1* training (Figure 7A,

middle), after sleep (Figure 7C, right). Prior to any training, synaptic weights in the direction of

either memory sequence were Gaussian distributed (Figure 7A, blue histogram, left). After S1 train-

ing, the weights for S1 strengthened (shifted to the right), while the weights for S1* weakened

(shifted to the left). As expected, this trend was reversed when S1* was trained (Figure 7A, middle).

After sleep, for each sequence (S1 or S1*) there was a subset of synapses that were further strength-

ened, while the rest of synapses were weakened (Figure 7A, right). This suggests that sleep pro-

motes competition between synapses, so that specific subsets of synapses uniquely representing

each memory trace can reach the upper bound to maximize recall performance while other synapses

would become extinct to minimize interference.

Because of the random ‘anatomical’ connectivity, the cortical network model included two classes

of synapses: recurrent/bidirectional, when a pair of neurons (e.g., n1 and n2) are connected by

Figure 6 continued

both sequences show similar high number of replays across all Up states, suggesting that both sequences are replayed during each Up state. (D)

Network’s graphs showing between group (top/middle) and within group (bottom) connections after sleep. Edges shown here are those which revealed

reliable replays of S1 (blue) and S1* (red) as shown in B (right). Nodes are colored blue (red) if more than 50% of their incoming connections show

reliable replay in direction of S1 (S1*). Green nodes indicate neurons with high in-degrees, receiving the same number of ‘replayed’ synapses from left

and right, and black indicates that none of these conditions are met.
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Figure 7. Sleep promotes unidirectional synaptic connectivity with different subsets of synapses becoming specific to the old or new memory

sequences. (A) Dynamics of synaptic weight distributions from the trained region. Top row shows strength of synapses in direction of S1. Bottom row

shows strength of synapses in direction of S1*. Blue shows the starting points for weights, and red shows new weights after different specific events,

for example, S1 training, S1* training, sleep. (B) Scatter plots show synaptic weights for all reciprocally connected pairs of neurons before and after

training (left/middle) and after sleep (right). For each pair of neurons (e.g., n1-n2), the X-coordinate shows the strength of Wn1!n2 synapse and the

Y-coordinate shows the strength of Wn2!n1 synapse. The green (K01) and purple (K10) boxes show the locations in the scatter plot representing synaptic

pairs with strong preference for S1* (green) or S1 (purple). (C) The evolution of the mean synaptic strength (solid line) and the standard deviation

(dashed line) of recurrent connections in S1 (blue) and S1* (red) direction. Note the large standard deviation after sleep indicating strong synaptic

weight separation, so each recurrent neuronal pair supports preferentially either S1 or S1*. (D) The evolution of the mean synaptic weight (solid line)

and the standard deviation (dashed line) of unidirectional connections in S1 (blue) and S1* (red) direction. Note the overall increase in synaptic strength

after sleep. (E) The number of functionally recurrent and unidirectional connections in the trained region of the network as a function of time, obtained

after thresholding the network connectivity matrix with threshold 0.065 (which is smaller than the initial mean synaptic strength). Note the decrease of

functionally recurrent connections and increase of functionally unidirectional connections after sleep.

Figure 7 continued on next page
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opposite synapses (n1! n2 and n2! n1) and unidirectional (n1! n2 or n2! n1). In the following we

looked separately at these two classes. We also compared synaptic weights dynamics during sleep

(Figure 7) vs interleaved training (Figure 7—figure supplement 1).

In the scatter plots of synaptic weights for the recurrent synapses (Figure 7B), for each pair of

neurons (e.g., n1-n2), we plotted a point with the X-coordinate representing the weight of n1! n2

synapse and the Y-coordinate representing the weight of n2! n1 synapse. Any point with X- (Y-)

coordinate close to zero would, therefore, indicate a pair of neurons with functionally unidirectional

coupling in S1* (S1) direction. The initial Gaussian distribution of weights (Figure 7B, left) was

pushed towards the bottom right corner of the plot (K10, purple box), indicating increases in S1

weights and relative decrease of S1* weights in response to S1 training (Figure 7B, middle/left). It

should be noted that a small subset of synaptic weights increased in the direction of S1* during S1

training. Analysis of this population of synaptic weights revealed that these connections were com-

prised solely of ‘within group’ connections. It is important to note that these synapses did not impair

the consolidation of the trained memory but instead helped to increase activity within each group

regardless of which sequence was recalled.

Training of S1* caused an upward/left shift representing strengthening of S1* weights and weak-

ening of S1 weights (Figure 7B, middle/right). For very long S1* training (not shown) almost all the

weights would be pushed to the upper left corner (K01, green box). Sleep appears to have taken

most of the weights located in the center of the plot (i.e., strongly bidirectional synapses) and sepa-

rated them by pushing them to the opposite corners (K01, green box, and K10, purple box)

(Figure 7B, right). In doing so, sleep effectively converted recurrent connections into unidirectional

connections which preferentially contributed to one memory sequence or another. It should be

noted that interleaved training resulted in similar separation of weights such that some previously

recurrent synapses became functionally unidirectional (Figure 7—figure supplement 1A, B). Inter-

leaved training, however, retained more recurrent weights than sleep likely contributing to the

smaller improvement in performance during post-interleaved training testing (Figure 4—figure sup-

plement 1C).

Sleep-dependent synaptic weight dynamics are further illustrated in Figure 7 panels C-E. The

mean strength of all recurrent connections in the trained region decreased slightly during sleep

(Figure 7C), however the standard deviation increased significantly (see dashed lines in Figure 7C).

The last reflected strong asymmetry of the connection strength for recurrent pairs after sleep, again

indicating that sleep effectively converts recurrent connections into unidirectional ones. Indeed, the

mean strength of all unidirectional connections increased during sleep (Figure 7D, blue and red

lines). We next counted the total number of functionally recurrent and unidirectional connections

after training and after sleep (Figure 7E). In this analysis if one branch of a recurrent pair reduced in

strength below the threshold, it was counted as unidirectional. After sleep, the number of recurrent

connections dropped to just about 15% of what it was after training. Interleaved training resulted in

similar but smaller changes to unidirectional and bidirectional connections (Figure 7—figure supple-

ment 1C, D, E). Together these results suggest that sleep decreases the density of recurrent con-

nections and increases the density of unidirectional connections, both by increasing the strength of

anatomical unidirectional connections and by converting anatomical recurrent connections to func-

tionally unidirectional connections. This allows the assignment of individual neurons to unique mem-

ories, that is, orthogonalization of memory representations, so that multiple memories could replay

without interference during the same Up states of slow oscillations and can be recalled successfully

after sleep.

Figure 7 continued

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Interleaved training revealed synaptic weight dynamics that are similar to sleep but result in less segregation of synaptic

weights.

Figure supplement 2. Synaptic plasticity that is biased towards LTP or LTD also results in memory orthogonalization during sleep .
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LTP or LTD biased synaptic plasticity still leads to orthogonalization of
memory representations during sleep
In all previous simulations, LTP and LTD were balanced during sleep and interleaved training. To test

that the orthogonalization of the memory traces during sleep is independent of the specific balance

of LTP/LTD (A+/A-, see Methods and Materials), we performed additional simulations biasing the

LTP/LTD ratio during sleep towards either LTD (Figure 7—figure supplement 2A; A+/A-=0.0019/

0.002) or LTP (Figure 7—figure supplement 2B; A+/A-=0.0021/0.002). We found that in both cases,

sleep resulted in the orthogonalization of memory representations. Scatter plots of bidirectional syn-

aptic connections (the same analysis as in Figure 7B) revealed that sleep formed strongly memory

specific configurations of weights by pushing some of the recurrent connections to either the top

left (S1* preferential) or bottom right (S1 preferential) corners of the plot. The red lines on these

plots depict the threshold used to identify neuronal pairs that are either strongly preferential for S1

(bottom right corner) or S1* (top left corner). The number of synapses above these thresholds were

quantified in the bar plots below showing that sleep increases the density of the memory specific

connections between neurons regardless of the LTP/LTD ratio (Figure 7—figure supplement 2, bot-

tom panels). The vector field plots (Figure 7—figure supplement 2, middle panels) provide

a summary of the average synaptic weight dynamics during training (left and middle plots) and dur-

ing sleep (right plot). It revealed convergence towards the corners (note arrows pointing to the cor-

ners during sleep phase) which represent cell pairs being strongly enrolled either to sequence S1 or

sequence S1* encoding.

It should be noted that because our model does not have homeostatic mechanisms to regulate

‘average’ synaptic strength during sleep, the case of LTD biased sleep revealed a net reduction of

synaptic strengths, while the LTP biased condition showed a net increase. For LTD biased sleep,

many recurrent synapses decreased the strength while a fraction of synapses kept or even increased

the strength. These synapses became memory specific after sleep. This observation may be in line

with ideas from Tononi and colleagues showing net reductions of synaptic weights during sleep

(Tononi and Cirelli, 2014) however, more analysis of the model including additional homeostatic

rules is need to make this conclusion based on model simulations.

Neurons participating in sleep replay are the same as those responding
earlier during memory recall
In the previous sections, we found that for overlapping memories sleep leads to segregation of the

entire population of neurons into two subsets based on (a) asymmetric synaptic input from left/right

neighboring groups (e.g., subset Bi of neurons from group B receives stronger total synaptic input

from group A compare with total input from group C; subset Bj of neurons from group B receives

stronger input from C than from A) (Figure 5D,E); (b) preference to participate reliably in only one

specific sequence replay during sleep (e.g., subset Bk of neurons from group B receives more synap-

ses demonstrating reliable replay from group A than from group C; this is reversed for subset Bl of

neurons from group B) (Figure 6D). Here we tested if these groups of neurons, identified by synaptic

strength and replay, overlap. We also compared them to the subset of neurons responding earliest

within each group during memory recall.

Instead of stimulating only groups A or E, here we stimulated independently every single group -

A, B, C, D, E (Figure 8A). We then obtained the response delay for each neuron in groups B, C, D

when its respective left vs right neighboring groups were stimulated, and we calculated the differ-

ence of delays. Thus, for example, we measured a difference of response delays for each neuron in

group B when either group A or group C was stimulated. This analysis is similar to what was done in

(Navratilova et al., 2012), where the difference of place cell responses at a specific location on a lin-

ear track was calculated when a rat was approaching that location from one direction vs the other.

Figure 8B shows the distribution of delays at different times. As expected, it became asymmetric

after S1 training (e.g., in group B more neurons responded earlier upon stimulation of group A vs

stimulation of group C), symmetric again after S1* training, and finally symmetric but wider after

sleep. The last suggests that sleep increases segregation of neurons into two groups specific to each

memory based on response delay (e.g., in group B some neurons, Bn, responded earlier upon stimu-

lation of group A vs stimulation of group C; while other neurons, Bm, responded earlier upon stimu-

lation of group C vs stimulation of group A). Indeed, the directionality index based on delays

González et al. eLife 2020;9:e51005. DOI: https://doi.org/10.7554/eLife.51005 17 of 31

Research article Neuroscience

https://doi.org/10.7554/eLife.51005


Figure 8. Population of neurons participating in reliable replay during sleep overlaps with the early responders during memory recall. (A) Characteristic

examples of the network activity showing spiking events during stimulations of each individual ‘letter’ of a memory sequence in awake. (B) Distributions

of the differences in response delay for all neurons from the trained region when the respective left vs right neighboring groups are stimulated, as

shown in A. (C) Response delay-based directionality index before/after training of each sequence (S1/S1*) in gray, and after sleep (red). (D) 3-D surface

plot showing, for each neuron from a trained region, the number of incoming synapses demonstrating reliable replays during sleep (z-axis), mean

Figure 8 continued on next page

González et al. eLife 2020;9:e51005. DOI: https://doi.org/10.7554/eLife.51005 18 of 31

Research article Neuroscience

https://doi.org/10.7554/eLife.51005


(Figure 8C) revealed an increase after S1 training, drop after S1* training, and increase again after

sleep.

In Figure 8D, we summarized our results by putting together three main characteristics we dis-

cussed in this study: Mean response delay of a neuron during stimulation of its neighboring group,

Total synaptic input a neuron receives from that neighboring group, and Number of connections to

a neuron from that neighboring group that are replayed reliably during sleep. We found a strong

correlation between these three measures, that is, the neurons who responded with a shortest delay

during a given sequence recall after sleep are the same neurons who received strongest synaptic

input in that sequence direction after sleep and were involved in most of that sequence replays dur-

ing sleep.

Together, our study proposes the following network connectivity dynamics during learning and

sleep (Figure 8E). Initial training allocates all available neuronal/synaptic resources to a single mem-

ory (S1) (Figure 8E, top); some neurons contribute stronger than others (light vs dart colors in

Figure 8E; based on Figure 7B). Subsequent training of a competing memory (S1*) progressively

erases the initial memory trace by reallocating synaptic resources to the new memory; an initial seg-

regation of neurons is formed (Figure 8E, middle/top). Continuing training of a competing memory

(S1*) leads to complete and irreversible damage to the old memory (S1) – catastrophic forgetting

(Figure 8E, middle/bottom). A sleep phase implemented before the old memory is erased allows

replay of both old and new memory traces; this divides resources between competing memories

leading to the formation of the orthogonal memory representations which allows the co-existence of

multiple memories within overlapping populations of neurons (Figure 8E, bottom).

Discussion
We report here that sleep can reverse catastrophic forgetting of previously learned (old) memories

after damage by new training. Sleep is able to accomplish this task through spontaneous reactivation

(replay) of both old and new memory traces, leading to reorganization and fine-tuning of synaptic

connectivity. As a result, sleep creates unique orthogonal representations of the competing memo-

ries that allow their co-existence without interference within overlapping ensembles of neurons.

Thus, if without competition, a memory is represented by the entire available population of neurons

and synapses, in the presence of competition, its representation is reduced to a subset of neurons/

synapses which selectively encode a given memory trace. Our study predicts that memory represen-

tations in the brain are dynamic; after each new episode of training followed by sleep, the synaptic

representations of the old memories, sharing resources with the new task, may change to achieve an

optimal separation among the memory traces occupying overlapping ensembles of neurons. Our

study suggests that sleep, by being able to directly reactivate memory traces encoded in synaptic

weight patterns, provides a powerful mechanism to prevent catastrophic forgetting and enable con-

tinual learning.

Catastrophic forgetting and continual learning
The work on catastrophic forgetting and interference in connectionist networks was pioneered by

Mccloskey and Cohen, 1989 and Ratcliff, 1990. Catastrophic interference is observed when a pre-

viously trained network is required to learn new data, e.g., a new set of patterns. When learning new

Figure 8 continued

response delay during testing (as in panel A) after sleep (y-axis), and total synaptic input to a neuron after sleep (x-axis). Note that neurons receiving

highest total synaptic inputs in specific network direction after sleep are also those who respond with shortest delay during testing recall in that

direction after sleep and also those who receive the highest number of synapses demonstrating reliable replay during sleep. (E) Simplified cartoon of

the network connectivity after different training phases followed by sleep. Arrows indicate connections between neurons (nodes) with blue arrows being

connections strong for S1 and red for S1*. Blue and red nodes represent neurons that contribute (weakly - light colors; strongly - dark colors) to recall of

S1 and S1*, respectively. Top, network configuration after S1 training – all nodes and connections are allocated to S1. Middle/Top, network

configuration after initial S1* training – nodes/connections start to learn S1* and ‘unlearn’ S1. The information about the old memory S1 is still available.

Middle/Bottom, network configuration after continuing S1* training – all nodes/connections are allocated to S1*. All information about S1 is lost.

Bottom, network configuration when initial S1* training is followed by sleep – orthogonalization of memory traces, some nodes/connection are

allocated to S1 and others to S1*.
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data, the network can suddenly erase the memory of the old, previously learned inputs

(French, 1999; Hasselmo, 2017; Kirkpatrick et al., 2017). Catastrophic interference is thought to

be related to the so-called ‘plasticity-stability’ problem. This problem comes from the difficulty of

creating a network with connections which are plastic enough to learn new data, while stable enough

to prevent damage to the old memories. Due to the inherent trade-off between plasticity and mem-

ory stability, catastrophic interference and forgetting remains to be a difficult problem to overcome

in connectionist networks (French, 1999; Hasselmo, 2017; Kirkpatrick et al., 2017).

A number of attempts have been made to overcome catastrophic interference (French, 1999;

Hasselmo, 2017; Kirkpatrick et al., 2017). Early attempts included changes to the backpropagation

algorithm, implementations of a ‘sharpening algorithm’ in which a decrease in the overlap of internal

representations was achieved by making hidden-layer representations sparse, or changes to the

internal structure of the network (French, 1999; Hasselmo, 2017; Kirkpatrick et al., 2017). These

attempts were able to reduce the severity of catastrophic interference in specific cases but could not

provide a complete and generic solution to the problem. Another popular method for preventing

interference and forgetting is to explicitly retrain or rehearse all the previously learned inputs while

training the network on the new data – interleaved training (Hasselmo, 2017). This idea recently led

to a number of successful algorithms to constrain the catastrophic forgetting problem, including

interleaved training focusing on the previously known items overlapping with new training data

(McClelland et al., 2020), generative algorithms to generate previously experienced stimuli during

the next training period (Zz and Hoiem, 2018; van de Ven and Tolias, 2018) and generative mod-

els of the hippocampus and cortex to generate examples from a distribution of previously learned

tasks in order to retrain (replay) these tasks during a sleep phase (Kemker and Kanan, 2017).

In agreement with these previous studies, we show that interleaved training can prevent cata-

strophic forgetting resulted from sequential training of the overlapping spike patterns. This method,

however, does not necessarily achieve optimal separation between old and new overlapping mem-

ory traces. Indeed, interleaved training requires repetitive activation of the entire memory patterns,

so if different memory patterns compete for synaptic resources (as for the opposite sequences stud-

ied here) each phase of interleaved training will enhance one memory trace but damage the others.

This is in contrast to replay during sleep when only memory specific subsets of neurons and synapses

may be involved in each replay episode. Another primary concern with interleaved training is that it

becomes increasingly difficult/cumbersome to retrain all the memories as the number of stored

memories continues to increase and access to the earlier training data may no longer be available.

As previously mentioned, biological systems have evolved a mechanism to prevent this form of for-

getting without the need to explicitly retrain the network on all previously encoded memories.

Studying how biological systems overcome catastrophic forgetting can provide insights into novel

techniques to combat this problem in artificial neural networks.

Sleep and memory consolidation
Though a variety of sleep functions remain to be understood, there is growing evidence for the role

of sleep in consolidation of newly encoded memories (Paller and Voss, 2004; Walker and Stick-

gold, 2004; Oudiette et al., 2013; Rasch and Born, 2013; Stickgold, 2013; Weigenand et al.,

2016; Wei et al., 2018). The mechanism by which memory consolidation is influenced by sleep is still

debated, however a number of hypotheses have been put forward. One such hypothesis is the

‘Active System Consolidation Hypothesis’ (Rasch and Born, 2013). Central to this hypothesis is the

idea of repeated memory reactivation (Wilson and McNaughton, 1994; Skaggs and McNaughton,

1996; Paller and Voss, 2004; Mednick et al., 2013; Oudiette et al., 2013; Oudiette and Paller,

2013; Rasch and Born, 2013; Stickgold, 2013; Weigenand et al., 2016). Although NREM sleep

was shown to be particularly important for reactivation of declarative (hippocampus-dependent)

memories (Marshall et al., 2006; Mednick et al., 2013), human studies suggest that NREM sleep

may be also involved in the consolidation of the procedural (hippocampus-independent) memories.

This includes, for example simple motor tasks (Fogel and Smith, 2006), or finger-sequence tapping

tasks (Walker et al., 2002; Laventure et al., 2016). Selective deprivation of NREM sleep, but not

REM sleep, reduced memory improvement for the rotor pursuit task (Smith and MacNeill, 1994).

Following a period of motor task learning, the duration of NREM sleep (Fogel and Smith, 2006) and

the number of sleep spindles (Morin et al., 2008) increased. The amount of performance increase in

the finger tapping task correlated with the amount of NREM sleep (Walker et al., 2002), spindle
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density (Nishida and Walker, 2007) and delta power (Tamaki et al., 2013). In a recent animal study

(Ramanathan et al., 2015), consolidation of the procedural (skilled upper-limb) memory depended

on bursts of spindle activity and slow oscillations during NREM sleep.

Model predictions
The model of awake training and sleep consolidation presented in our new study was designed to

simulate learning and consolidation of procedural memory tasks. Indeed, in our model, training a

new task directly impacts cortical synaptic connectivity that may be already allocated to other (old)

memories. We found that as long as damage to the old memory is not sufficient to completely erase

its synaptic footprint, sleep can enable replay of both old and newer memory traces and reverse the

damage while improving performance. Thus, to avoid irreversible damage, new learning in our

model is assumed to be slow which may correspond to learning a procedural task, for example, new

motor skill, over multiple days allowing sleep to recover old memory traces that are damaged by

each new episodes of learning.

Nevertheless, we suggest that our model predictions, at least at the synaptic level, are not limited

to a specific type of memory (declarative vs procedural) or specific type of sleep (NREM vs REM).

Replay during REM sleep (Louie and Wilson, 2001) may trigger synaptic weight dynamics similar to

that we described here. Though REM is characterized by less synchronized spiking activity, the

occurrence of memory replay during REM is supported by place cell recordings (Louie and Wilson,

2001) and electroencephalography studies in humans (Atienza and Cantero, 2001). While synchro-

nized activity is helpful for replay and may allow (because of high spike precision) for replay to occur

at compressed time scales, as observed during NREM sleep (Euston et al., 2007), the crucial com-

ponent of replay is the defined spike ordering which may be happening during REM sleep even

when the overall network synchronization is low. Indeed, we observed similar synaptic weight

dynamics and orthogonalization of memory representations when periodic Up/Down state oscilla-

tions were replaced by continuous REM-like spiking activity. While our model lacks hippocampal

input, we showed previously (Wei et al., 2016; Sanda et al., 2019) that sharp wave-ripple (SWR) like

input to the cortical network would trigger replay of previously learned cortical sequences during

SWS. This suggests, in agreement with (Skelin et al., 2019), that replay driven by hippocampal

inputs may reorganize the cortical synaptic connectivity in a matter similar to spontaneous replay we

described here.

Our model predicts the possibility of the partial sequence replays, that is, when short snippets of

a sequence are replayed independently, within the cortex. Furthermore, we showed that reliable

partial replays of overlapping memory traces can occur during the same cortical Up state. That is to

say, during an Up state rather than replaying the entire sequence A-B-C-D-E, we observed replay of

individual transitions (e.g. A-B, D-E, C-D). We can speculate that for strongly overlapping sequences,

as we modeled in this study, such partial replay would allow to replay snippets of both sequences

with less interference during the same Up state. Indeed, recent data (Ghandour et al., 2019) have

shown evidence for partial memory replay during NREM sleep (also see Swanson et al., 2020).

Importantly, our model of sleep consolidation predicts that the critical synaptic weight informa-

tion from previous episodes of learning is still preserved after new training even if recall performance

for the older task is significantly reduced. Because of this, spontaneous activity during sleep

combined with unsupervised plasticity can trigger reactivation of the previously learned memory pat-

terns and modify synaptic weights reversing damage from the new learning. It further suggests that

the apparent loss of performance for older tasks in the artificial neuronal networks after new training

– catastrophic forgetting – may not imply irreversible loss of information as it is generally assumed.

Indeed, our recent work (Krishnan et al., 2019) revealed that simulating a sleep-like phase in feed-

forward artificial networks trained using backpropagation can provide a solution for the catastrophic

forgetting problem in agreement with our results from the biophysical model presented here. Few

changes to the network properties, normally associated with transition to sleep, were critical to

accomplish this goal: relative hyperpolarization of the pyramidal neurons and increasing strength of

excitatory synaptic connectivity. Both are associated with known effects of neuromodulators during

wake-sleep transitions (McCormick, 1992) and were previously implemented in the thalamocortical

model (Krishnan et al., 2016) that we used in our new study. Interestingly, these changes would

make neurons relatively less excitable and, at the same time, increase contribution of the strongest

synapses, effectively enhancing the dynamical range for the trained synaptic patterns and reducing
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contribution of synaptic noise; together this would promote replay of the previously learned

memories.

The ‘Sleep Homeostasis Hypothesis’ (Tononi and Cirelli, 2014) suggests that homeostatic mecha-

nisms active during sleep should result in a net synaptic depression to renormalize synaptic weights

and to stabilize network dynamics. In our model, LTP and LTD were generally balanced during sleep

and no homeostatic mechanisms were implemented to control net synaptic dynamics. However,

when synaptic plasticity during sleep was explicitly biased towards LTD, sleep was still able to selec-

tively increase a subset of synaptic weights, thus making them memory specific, while reducing the

strength of other synapses. We predict that this mechanism may aid in increasing the memory capac-

ity of the network by only strengthening the minimal number of connections required for the preser-

vation of memories and resetting other synapses towards baseline strength during sleep. The

network would then be able to use these synapses to encode new memories thus potentially facili-

tating continual learning without the consequence of retroactive interference.

Comparison to experimental data and model limitations
There are evidences that memory replay during SWS occurs predominantly near the Down to Up

state transitions (Johnson et al., 2010). This observation comes from in vivo studies in which multi-

ple brain regions, including the hippocampus and cortex, are in continual communication during

SWS. It has been shown that sharp-wave ripples tend to occur at the Down to Up state transition

(Sanda et al., 2019; Skelin et al., 2019), which may explain the predomiance of the hippocampus

driven replay at the beginning of cortical Up states. We did not explicitly model the hippocampus or

hippocampal inputs in our study. Rather, we assumed that memory traces are already embedded to

the cortical connectivity matrix either because of the earlier hippocampal-dependent consolidation

or because these memories are hippocampal-independent (as for procedural memories). We found

that such cortical memory traces also tend to replay more during the initial phase of an Up state,

possibly because of the higher firing rate, but replay continues throughout the entire Up state dura-

tion. This predicts that hippocampal dependent replay of new memories, that are not yet encoded

in the cortex, may occur earlier in the Up state compared to the spontaneous replay of the old mem-

ory traces, which may occur later in the Up state.

Our results are consistent with in vivo experiments with rats running on a linear track and we

make several specific predictions for future experiments. Specifically, our model predicts: (a) running

in one direction on a linear track would lead to backwards receptive field expansion (confirmed for

hippocampus [Mehta et al., 1997]); (b) forwards and backwards running on a linear track would lead

to developing asymmetric receptive fields for different neurons (confirmed for hippocampus

[Navratilova et al., 2012]); (c) running on a belt track in a VR apparatus first only in one direction

and then in reverse one could damage the learning associated with first task; (d) SWS implemented

after training would reverse damage and further enhance task specificity of neurons.

It is important to note that (Mehta et al., 1997) found that backwards expansion of the place

fields was reset between sessions. Later, (Roth et al., 2012) found that the resetting of the back-

wards expanded place fields between sessions was a phenomenon specific to the CA1 and place

fields did not reset in CA3. These results suggest that synapses in CA3 vs CA1 may have different

plasticity properties. Furthermore, the neocortex may have entirely different synaptic dynamics since

its goal is long term storage as opposed to temporal memory encoding. With successive sleep peri-

ods, cortical memories become hippocampal independent (Lehmann and McNamara, 2011) and

this may explain why resetting of the place fields was observed in CA1 (Mehta et al., 1997). Our

study predicts that the cortical (such as associate cortex) representations of the sequence memories

undergo a similar form of backwards expansion as it was observed in CA1. This form of backwards

expansion, however, persists and even increases after sleep.

The phenomena of backwards memory replay and decrease in number of memory replays over

time have been observed in rat hippocampus for recent memories. Within the hippocampus, back-

wards replay is predominantly observed during a post-task awake resting period (Foster and Wil-

son, 2006). The studies of hippocampal replay (O’Neill et al., 2008; Giri et al., 2019) found

decreases in replay of familiar sequences over time, which may occur because of the hippocampal

SWRs inducing persistent synaptic depression within the hippocampus (Norimoto et al., 2018). We

did not observe backwards replay; rather, forward replay in the model persisted during sleep. How-

ever, we believe there is no definitive evidence for either backwards replay or decrease in memory
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replays in the cortex. The opposite, in fact, may be true. Cortical replay of recently formed memories

results in a tagging of synapses involved in consolidation of those memories by increasing their syn-

aptic efficacy (Langille, 2019). These tagged synapses may likely be reactivated throughout sleep

thereby resulting in more cortical replay during both NREM and REM sleep (Diekelmann and Born,

2010; Langille, 2019).

To summarize, our study predicts that sleep could prevent catastrophic forgetting and reverse

memory damage through replay of old and new memory traces. By selectively replaying new and

competing old memories, sleep dynamics not only achieve consolidation of new memories but also

provide a mechanism for reorganizing the synaptic connectivity responsible for previously learned

memories – re-consolidation of old memory traces – to maximize separation between memory repre-

sentations. By assigning different subsets of neurons and synapses to primarily represent different

memory traces, sleep effectively orthogonalizes memory representations to allow for overlapping

populations of neurons to store competing memories and to enable continual learning.

Materials and methods

Thalamocortical network model
Network architecture
The thalamocortical network model used in this study has been previously described in detail

(Krishnan et al., 2016; Wei et al., 2016; Wei et al., 2018) and the code is available in (https://

github.com/o2gonzalez/sequenceLearningSleepCode; copy archived at https://github.com/elifes-

ciences-publications/sequenceLearningSleepCode; González, 2020b). Briefly, the network was com-

prised of a thalamus which contained 100 thalamocortical relay neurons (TC) and 100 reticular

neurons (RE), and a cortex containing 500 pyramidal neurons (PY) and 100 inhibitory interneurons

(IN). The model contained only local network connectivity as described in Figure 1. Excitatory synap-

tic connections were mediated by AMPA and NMDA connections, while inhibitory synapses were

mediated through GABAA and GABAB. Starting with the thalamus, TC neurons formed AMPA con-

nections onto RE neurons with a connection radius of 8 (RAMPA(TC-RE)=8). RE neurons then projected

inhibitory GABAA and GABAB connections onto TC neurons with RGABA-A(RE-TC)=8 and RGABA-B(RE-

TC)=8. Inhibitory connections between RE-RE neurons were mediated by GABAA connections with

RGABA-A(RE-RE)=5. Within the cortex, PY neurons formed AMPA and NMDA connections onto PYs and

INs with RAMPA(PY-PY)=20, RNMDA(PY-PY)=5, RAMPA(PY-IN)=1, and RNMDA(PY-IN)=1. PY-PY AMPA connec-

tions had a 60% connection probability, while all other connections were deterministic. Cortical

inhibitory IN-PY connections were mediated by GABAA with RGABA-A(IN-PY)=5. Finally, connections

between thalamus and cortex were mediated by AMPA connections with RAMPA(TC-PY)=15, RAMPA(TC-

IN)=3, RAMPA(PY-TC)=10, and RAMPA(PY-RE)=8.

Wake - Sleep transition
To model the transitions between wake and sleep states the model included synaptic and intrinsic

mechanisms which reflect the changes in neuromodulatory tone during these different arousal states

as previously described in Krishnan et al., 2016. We included the effects of acetylcholine (ACh), his-

tamine (HA), and GABA. ACh modulated potassium leak currents in all neuron types and excitatory

AMPA connections within the cortex only. HA modulated the activation of the hyperpolarization-acti-

vated mixed cation current in TC neurons only, and GABA modulated the strength of inhibitory

GABAergic synapses in both cortex and thalamus. As compared to the awake state, the levels of

ACh and HA were reduced during NREM slow wave sleep, while the level of GABA was increased.

This was done to reflect experimental observations of changes in the relative concentrations of ACh,

HA, and GABA during different sleep stages (Vanini et al., 2012).

Intrinsic currents
All neurons were modeled with Hodgkin-Huxley kinetics. Cortical PY and IN neurons contained den-

dritic and axo-somatic compartments as previously described (Wei et al., 2018). The membrane

potential dynamics were modeled by the following equation:
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Cm

dVD

dt
¼ �INaD � INaPD � IKmD � IKCaD �AChgklI

KL
D � IHVAD � ILD� g VD�VSð Þ� Isyn;

g VD�VSð Þ ¼�INaS � INaPS � IKS ;

where Cm is the membrane capacitance, VD;S are the dendritic and axo-somatic membrane voltages

respectively, INa is the fast sodium (Na+) current, INaP is the persistent Na+ current, IKm is the slow

voltage-dependent non-inactivating potassium (K+) current, IKCa is the slow calcium (Ca2+)-depen-

dent K+ current, AChgkl represents the change in K+ leak current IKL which is dependent on the level

of acetylcholine (ACh) during the different stages of wake and sleep, IHVA is the high-threshold Ca2+

current, IL is the chloride (Cl-) leak current, g is the conductance between the dendritic and axo-

somatic compartments, and Isyn is the total synaptic current input to the neuron (see next section for

details). IN neurons contained all intrinsic currents present in PY with the exception of the INaP. All

intrinsic ionic currents (I j) were modeled in a similar form:

I j ¼ gjm
MhN V �Ej

� �

where gj is the maximal conductance, m (activation) and h (inactivation) are the gating variables, V is

the voltage of the corresponding compartment, and Ej is the reversal potential of the ionic current.

The gating variable dynamics are described as follows:

dx

dt
¼�

x� x¥

t x

;

t x ¼
1= axþbxð Þð Þ

QT

;

x¥ ¼
ax

axþbxð Þ
;

where x¼m or h, t is the time constant, QT is the temperature related term,

QT ¼ Q T�23ð Þ=10ð Þ ¼ 2:9529, with Q¼ 2:3 and T ¼ 36:

Thalamic neurons (TC and RE) were modeled as single compartment neurons with membrane

potential dynamics mediated by the following equation:

Cm

dVD

dt
¼ �INa� IK �AChgklI

KL� IT � Ih� IL� Isyn;

where INa is the fast Na+ current, IK is the fast K+ current, IKL is the K+ leak current, IT is the low-

threshold Ca2+ current, Ih is the hyperpolarization-activated mixed cation current, IL is the Cl- leak

current, and Isyn is the total synaptic current input to the neurons (see next section for details). The Ih

was only expressed in the TC neurons and not the RE neurons. The influence of histamine (HA) on Ih

was implemented as a shift in the activation curve by HAgh as described by:

m¥ ¼
1

1þ exp
Vþ75þHAgh

5:5

� � :

A detailed description of the individual currents can be found in our previous studies

(Krishnan et al., 2016; Wei et al., 2018).

Synaptic currents and spike-timing dependent plasticity (STDP)
AMPA, NMDA, and GABAA synaptic current equations were described in detail in our previous stud-

ies (Krishnan et al., 2016; Wei et al., 2018). The effects of ACh on GABAA and AMPA synaptic cur-

rents in our model are described by the following equations:

IGABAsyn ¼ gGABAA
gsyn O½ � V �Esyn

� �

;
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IAMPA
syn ¼ AChAMPA gsyn O½ � V �Esyn

� �

;

where gsyn is the maximal conductance at the synapse, O½ � is the fraction of open channels, and Esyn is

the channel reversal potential (EGABA-A = -70 mV, EAMPA = 0 mV, and ENMDA = 0 mv). Parameter

gGABAA
modulates the GABA synaptic currents for IN-PY, RE-RE, and RE-TC connections. For IN neu-

rons gGABAA
was 0.22 and 0.44 for awake and N3 sleep, respectively; gGABAA

for RE was 0.6 and 1.2

for awake and N3 sleep. AChAMPA defines the influence of ACh levels on AMPA synaptic currents for

PY-PY, TC-PY, and TC-IN. AChAMPA for PY was 0.133 and 0.4332 for awake and N3 sleep. AChAMPA

for TC is 0.6 and1.2 for awake and N3 sleep.

Spontaneous miniature excitatory post-synaptic potentials (EPSPs) and inhibitory post-synaptic

potentials (IPSPs) were implemented for PY-PY, PY-IN, and IN-PY connections. The synaptic dynam-

ics were similar to regular post-synaptic potentials (PSPs) described above and their arrival times

were modeled by a Poisson process with time-dependent mean rate, with next release time trelease

given by:

trelease ¼ 2= 1 þ exp � t� t0ð Þ=�ð Þð Þ� 1ð Þ=250 ;

where t0 is the time of the last presynaptic spike. The maximal conductances for miniature PSPs

were gAMPA
mini PY�PYð Þ ¼ 0:03 �S, gAMPA

mini PY�INð Þ ¼ 0:02 �S, and gGABA
mini IN�PYð Þ ¼ 0:02 �S. � is the mini PSP frequency:

�AMPA
mini PY�PYð Þ ¼ 30, �AMPA

mini PY�INð Þ ¼ 30, and �GABA
mini IN�PYð Þ ¼ 30. Short-term depression of intracortical AMPA

synapses was included. The maximal synaptic conductance was multiplied by a depression variable

(D� 1), which represents the amount of available ’synaptic resources’ as described in

Bazhenov et al., 2002. This short-term depression was modeled as follows:

D¼ 1� 1�Di 1�Uð Þð Þexp �
t� ti

t

� �

where Di is the value of D immediately before the ith event, t� tið Þ is the time after the i th event,

U ¼ 0:073 is the fraction of synaptic resources used per action potential, and t ¼ 700ms is time con-

stant of recovery of synaptic resources.

Potentiation and depression of synaptic weights between PY neurons were regulated by spike-

timing dependent plasticity (STDP). The changes in synaptic strength (gAMPA) and the amplitude of

miniature EPSPs (AmEPSP) have been described previously (Wei et al., 2018):

gAMPA  gAMPAþ gmax F Dtð Þ;

AmEPSP  AmEPSPþ fAPY�PY F Dtð Þ;

where gmax is the maximal conductance of gAMPA, and f = 0.01 represents the slower change of STDP

on AmEPSP as compared to gAMPA. The STDP function F is dependent on the relative timing (Dt) of the

pre- and post-synaptic spikes and is defined by:

F Dtð Þ ¼ Aþ e� Dtj j=t þ ; if Dt>0

�A� e� Dtj j=t � ; if Dt<0

�

where A+/- set the maximum amplitude of synaptic change. A+/- = 0.002 and t+/- = 20 ms. A- was

reduced to 0.001 during training to reflect the effects of changes in acetylcholine concentration dur-

ing focused attention on synaptic depression during task learning observed experimentally (Blok-

land, 1995; Shinoe et al., 2005; Sugisaki et al., 2016).

Sequence training and testing
Training and testing of memory sequences was performed similar to our previous study (Wei et al.,

2018). Briefly, trained sequences were comprised of 5 groups of 10 sequential PY neurons. Each

group of 10 were sequentially activated by a 10 ms DC pulse with 5 ms delay between subsequent

group pulses. This activation scheme was applied every 1 s throughout the duration of the training

period. Sequence 1 (S1) consisted of PY groups (in order of activation): A(200-209), B(210-219), C

(220-229), D(230-239), E(240-249). Sequence 2 (S2) consisted of PY groups (in order of activation): W
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(360-369), V(350-359), X(370-379), Y(380-389), Z(390-399) and can be referred as non-linear due to

the non-spatially sequential activations of group W, V, and X. Sequence 1* (S1*) was trained over the

same population of neurons trained on S1 but in the reverse activation order (i.e. E-D-C-B-A). During

testing, the network was presented with only the activation of the first group of a given sequence (A

for S1, W for S2, and E for S1*). Performance was measured based on the network’s ability to recall/

complete the remainder of the sequence (i.e. A-B-C-D-E for S1) within a 350 ms time window. Similar

to training, test activation pulses were applied every 1 s throughout the testing period. Training and

testing of the sequences occurred sequentially as opposed to simultaneously as in our previous

study (Wei et al., 2018).

Data analysis
All analyses were performed with standard MatLab and Python functions. Data are presented as

mean ± standard error of the mean (SEM) unless otherwise stated. For each experiment a total of 10

simulations with different random seeds were used for statistical analysis.

Sequence performance measure
A detailed description of the performance measure used during testing can be found in Wei et al.,

2018 and the code is available in (https://github.com/o2gonzalez/sequencePerformanceAnalysis;

copy archived at https://github.com/elifesciences-publications/

sequencePerformanceAnalysis; González, 2020a). Briefly, the performance of the network on recall-

ing a given sequence following activation of the first group of that sequence (see Methods and

Materials: Sequence training and testing) was measured by the percent of successful sequence

recalls. We first detected all spikes within the predefined 350 ms time window for all 5 groups of

neurons in a sequence. The firing rate of each group was then smoothed by convolving the average

instantaneous firing rate of the group’s 10 neurons with a Gaussian kernel with window size of 50

ms. We then sorted the peaks of the smoothed firing rates during the 350 ms window to determine

the ordering of group activations. Next, we applied a string match (SM) method to determine the

similarity between the detected sequences and an ideal sequence (ie. A-B-C-D-E for S1). SM was cal-

culated using the following equation:

SM ¼ 2 �N�
X

N

i¼1

L Stest;Ssub i½ �ð Þ� ij j;

where N is the sequence length of Stest, Stest is the test sequence generated by the network during

testing, Ssub is a subset of the ideal sequence that only contains the same elements of Stest, and

L Stest;Ssub i½ �ð Þ is the location of the element Ssub[i] in sequence Stest. SM was then normalized by dou-

ble the length of the ideal sequence. Finally, the performance was calculated as the percent of

recalled sequences with SM�Th, where Th is the selected threshold (here, Th = 0.8) indicating that

the recalled sequence must be at least 80% similar to the ideal sequence to be counted as a success-

ful recall as previously done in Wei et al., 2018.

Sequence replay during N3 sleep
To find out whether a trained sequence is replayed in the trained region of the network during the

Up state of a slow-wave in N3 sleep, we first identified the beginning and the end of each Up state

by considering sorted spike times of neurons in each group. For each group, the time instances of

consecutive spikes that occur within a 15 ms window were considered as candidate members of an

Up state, where the window size was determined to decrease the chance of two spikes of the same

neuron within the window. To eliminate spontaneous spiking activity of a group that satisfies the

above condition but is not part of an Up state, we additionally required that the period between

two upstate was at least 300 ms, which corresponds to a cortical Down state. The values for window

durations reported above were identified to maximize the performance of the Up state search

algorithm.

Once all Up states were determined, we defined the time instances when groups were active in

each Up state. A group was defined as active if the number of neurons from the group that spikes

during 15 ms exceeded the activation threshold, and the instance when the group is active was

defined as the average over spike times of a subgroup of neurons with the size equals to the
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activation threshold within the 15 ms window. In our study the activation threshold was selected to

be half of a group size (i.e. five neurons). Using sorted time instances when groups are active, we

counted the number of times a possible transition between arbitrary groups, and if all four transi-

tions of a sequence were observed sequentially in the right order then we counted that as a replay

of the sequence.

Analysis of total sequence specific synaptic input
For every neuron from a group we computed the total synaptic weight ‘from left’ and ‘to right’, by

considering the sum of all weights of synapses projecting to the neuron from neurons in preceding

group, with respect to propagation of activity within a memory sequence if such a group exists, and

the sum of all weights of synaptic connections from the neuron to the following group, if there is

such a group. We omitted all synaptic connections within the group to which the neuron, for which

the total synaptic weight is computed, belongs.

Weight directionality index
To see how learning recruits neurons in encoding one of the competing sequences, we looked at

the evolution of deviation from the center of unit square in a two dimensional subspace of total syn-

aptic input from left and right neighboring neuronal groups. For this, we first found the total synap-

tic input from both sides, embedded it into a unit square, and computed Euclidean distance from

the center of the square.

Weight directionality index¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

li� 0:5ð Þ2þ ri� 0:5ð Þ2
q

;

where li (ri) is the total synaptic input to a neuron from its left (right) neighboring neuronal group.

Delay directionality index
To see whether neurons respond preferentially to one of the sequences, we evaluated signed

(Figure 8B) and unsigned (Figure 8C, D) delay directionality indices, which are defined as follows.

For each neuron, we found its response delays, tS1 and tS1�, after corresponding left and right neigh-

boring neuronal groups were stimulated, respectively. Using these quantities, we computed the indi-

ces as

signeddirectionality index¼
DtS1��DtS1

DtS1�þDtS1
;

unsigned directionality index¼
jDtS1��DtS1j

DtS1�þDtS1
:
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Clemens Z, Fabó D, Halász P. 2005. Overnight verbal memory retention correlates with the number of sleep
spindles. Neuroscience 132:529–535. DOI: https://doi.org/10.1016/j.neuroscience.2005.01.011, PMID: 15
802203

Diekelmann S, Born J. 2010. The memory function of sleep. Nature Reviews Neuroscience 11:114–126.
DOI: https://doi.org/10.1038/nrn2762, PMID: 20046194

Euston DR, Tatsuno M, McNaughton BL. 2007. Fast-forward playback of recent memory sequences in prefrontal
cortex during sleep. Science 318:1147–1150. DOI: https://doi.org/10.1126/science.1148979, PMID: 18006749

Fachechi A, Agliari E, Barra A. 2019. Dreaming neural networks: forgetting spurious memories and reinforcing
pure ones. Neural Networks 112:24–40. DOI: https://doi.org/10.1016/j.neunet.2019.01.006, PMID: 30735914

Fogel SM, Smith CT. 2006. Learning-dependent changes in sleep spindles and stage 2 sleep. Journal of Sleep
Research 15:250–255. DOI: https://doi.org/10.1111/j.1365-2869.2006.00522.x, PMID: 16911026

Foster DJ, Wilson MA. 2006. Reverse replay of behavioural sequences in hippocampal place cells during the
awake state. Nature 440:680–683. DOI: https://doi.org/10.1038/nature04587, PMID: 16474382

French RM. 1999. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences 3:128–135.
DOI: https://doi.org/10.1016/S1364-6613(99)01294-2, PMID: 10322466
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