Physical properties of the trans-Neptunian binary 2000 YW134 Mónica Vara-Lubiano¹ Estela Fernández-Valenzuela² Mike Kretlow¹ Nicolás Morales¹ Gustavo Benedetti-Rossi³ Flavia Rommel⁴ José Luis Ortiz¹ Bruno Sicardy⁵ Pablo Santos-Sanz¹ Roberto Vieira-Martins⁴ Felipe Braga-Ribas⁵ Julio Camargo⁴ Yucel Kilic⁶ Bruno Morgado⁴ Altair Gomes³ Alvaro Alvarez-Candal¹ Jean Lecacheux⁵ Marcelo Assafin⁴ Rene Duffard¹ Damya Souami⁵ Josselin Desmars⁷ Stefano Mottola⁸ Alfredo Sota¹ Andras Pal⁹ Róbert Szakáts⁹ Csaba Kiss⁹ Cs. Kalup⁹ Aliz Derekas⁹ Michal Zejmo¹⁰ Anna Marciniak¹⁰ Waldemar Ogloza¹¹ Gerhard Dangl¹² Albino Carbognani¹³ Giovanna Stirpe¹³ Ivan Bruni¹² István Csányi¹⁴ Jure Skvarč¹⁵ Herman Mikuz¹⁶ Stefan Meister¹⁷ Matthieu Conjat¹⁸ Fabrizio Ciabattari¹⁹ Gregor Krannich²⁰ ¹Instituto de Astrofísica de Andalucía (IAA-CSIC), ²Florida Space Institute, University of Central Florida, Orlando, FL, ³UNESP- São Paulo State University. ⁴Laboratório Interinstitucional de e-Astronomia - LineA & INCT, ⁵LESIA, Observatoire de Paris, ⁶TÜBITAK National Observatory, Akdeniz University Campus, ⁷Institut Polytechnique des Sciences Avancées IPSA, ⁸DLR-German Aerospace Center, ⁹Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Eötvös Loránd Research Network (ELKH), $^{^{10}}$ Adam Mickiewicz University, 11 MT. Suhora Observatory, Pedagogical University of Cracow, **Published on:** Oct 20, 2022 **URL:** https://baas.aas.org/pub/2022n8i413p01 License: Creative Commons Attribution 4.0 International License (CC-BY 4.0) ¹²Loiano Astronomical Park, INAF - Observatorio di Astrofisica e Scienza dello Spazio di Bologna, ¹³INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, ¹⁴Baja Astronomical Observatory, ¹⁵Isaac Newton Group of Telescopes, ¹⁶Crni Vrh Observatory, ¹⁷Bülach Observatory, ¹⁸Association AQUILA, ¹⁹Osservatorio Astronomico di Monte Agliale, ²⁰Roof Observatory Kaufering The study of trans-Neptunian binaries (TNBs) remains one of the most active areas of progress in understanding the solar system beyond Neptune. TNBs have been found in every dynamical population of the trans-Neptunian region (Noll et al. 2020), with proportions ranging from 29 % in the cold classical population to 5.5 % for the remaining classes combined (Brunini 2020). The formation of the contact TNB Arrokoth is one of the challenges that formation models face nowadays. The current angular momentum of Arrokoth is too low and the current binary formation scenarios, by either rotational fission or streaming instability (Nesvorný et al. 2019), require also loss of angular momentum (McKinnon et al. 2020). Additionally, formation mechanisms of close binaries may be distinct from those for the wider pairs. As the angular momentum of a system approaches that of an object spinning near its critical rotation period, rotational fission is the most likely explanation for their formation (Descamps et al. 2008), which is thought to be the case for the proposed satellites of Varuna and 2002 TC₃₀₂ systems (Fernández-Valenzuela et al. 2019; Ortiz et al. 2020). If close TNBs turn out to be common for objects rotating close to the breakup limit, that could reveal important clues about angular momentum evolution during accretion for TNOs (Petit et al. 2011). However, characterizing binary systems at such distances is challenging. From the ~120 known TNBs, only around 40 have their mutual orbit fully determined, let alone physical characterization. 2000 YW $_{134}$ is a TNB in a 3:8 resonance with an orbital semi-major axis of 57.4 au (a rare occurrence). On February 23rd, 2022, it occulted the Gaia EDR3 star 627356458358636544 (V = 17.1 mag). The stellar occultation was initially predicted using the JPL orbit solution #24, and updated using data from the 1.5-m and 1.23-m telescopes at Sierra Nevada and Calar Alto Observatories, using the same methodology as explained in Ortiz et al (2020). From the 17 observatories involved, seven reported positive chords, with five of them corresponding to the main body and the other two chords corresponding to its satellite. We are currently working on the analysis of these data in order to obtain the physical properties that characterize the system. Preliminary results show that the lower limit for the equivalent projected diameter of the satellite is twice the previously estimated size from HST observations (Stephens et al. 2006). We will also compare our results with the area-equivalent diameter and albedo obtained using thermal data from Herschel and Spitzer observations (Farkas-Takács et al. 2020).