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We were pleased to receive a total of thirty-nine submissions
to the special issue on “Recent advances in biometric
systems: a signal processing perspective.” The Guest Editors
divided up the responsibility for the submissions, and each
submission was reviewed by a minimum of two experts in
the relevant area of biometrics. Following the first round of
reviews, some of the submissions were revised by the authors
and then underwent a second round of review. The final
result of the process is the set of fifteen papers that appear
in this special issue.

The first six papers all deal with face recognition in
some respect. Then we have one paper dealing with iris
biometrics and one dealing with recognition by gait. The
topic of the next two papers is fingerprint image analysis and
the following paper addresses the related topic of palmprint
analysis. The next two papers cover issues in signature
verification. Lastly, there is one paper on retinal verification
and one on using electrocardiogram signals as a biometric.
The broad variety of topics in this special issue represents the
dynamism and breadth of biometrics.

In “Recognition of faces in unconstrained environments:
a comparative study,” Ruiz-del-Solar, Verschae and Correa
present the results of a comparative study of existing face
recognition methods in the context of unconstrained envi-
ronments. The recognition approaches considered include
two local-matching methods, histograms of LBP features and
Gabor Jet descriptors, one holistic method, generalized PCA,
and two novel image-matching methods, SIFT-based and
ERCF-based. The FERET, LFW, UCHFaceHRI, and FRGC

face databases are used in the evaluation. Two conclusions
are that there is a large dependence of the methods on the
amount of face and background information in the image,
and that outdoor illumination results in a large decrease in
the performance of all of the methods.

In “Facial expression biometrics using statistical shape
models,” Shark et al. perform face recognition by combining
3D range images and expression. The authors’ method is
based on a shape space vector derived from a statistical
shape model for 3D range data. Experimental results are
reported on the SUNY Binghamton BU-3DFE dataset of the
3D face images. Results are reported for both recognition and
expression classification.

In “Evolutionary discriminant feature extraction with
application to face recognition,” Lu et al. present a tech-
nique that searches for subspaces to represent faces. The
search technique is based on evolutionary computing and is
designed to be efficient. One reason the algorithm is efficient
is because the search space is confined to discriminatory
subspaces.

In “Comparison of spectral-only and spectral/spatial face
recognition for personal identity verification,” Pan et al.
compare the performance of single-band, multiband, and
combined spectral/spatial approaches to face recognition.
They use the eigenface algorithm from the CSU Face
Identification Evaluation System for the basic recognition
engine. Multiband eigenface methods in which the multiple
bands are processed independently are shown to improve
face recognition performance relative to single-band results.



2 EURASIP Journal on Advances in Signal Processing

The new spectral-face approach is proposed to preserve both
spectral and spatial properties and shown to provide even
better performance.

In “Talking-face identity verification, audiovisual forgery
and robustness issues,” Karam et al. develop an interesting
multimodal approach involving face appearance and speaker
recognition. They emphasize the aspect of robustness to
imposter attacks. Using audio conversion and an MPEG-
4 compliant face animation system, they also demonstrate
the production of audio-visual forgeries that substantially
increase the equal-error rate of an identify verification
system.

Protecting the privacy of biometric samples has become
an active area of research in biometrics. In “Sorted index
numbers for privacy preserving face recognition,” Wang and
Hatzinakos introduce the concept of sorted index numbers
to protect privacy. The sorted index numbers technique
converts a feature vector into an ordered set of indices.
The authors show the effectiveness of this technique for
protecting the privacy of biometric samples.

In “A new user-dependent iris recognition system based
on an area preserving pointwise level set segmentation
approach”, Barzegar and Moin compare their new approach
to iris recognition with other methods. A level set approach
is used in finding the papillary and limbic boundaries. The
approach is claimed to have advantages in cases where the
iris is partly occluded. Results of the comparison to five other
approaches using three different iris image datasets indicate
an improvement in accuracy and speed of processing.

In “Gait recognition using wearable motion recording
sensors,” Gafurov and Snekkenes investigate the use of
wearable motion recording sensors for gait-based person
recognition. Such wearable sensors record motion of the
body parts during walking. This paper analyzes acceleration
signals from the foot, hip, pocket, and arm. The authors also
analyze the robustness of the proposed recognition method
under three distinct security attacks including a minimal
effort-mimicry, knowing the closest person in the database in
terms of gait similarity, and knowing the gender of the user
in the database.

In fingerprint recognition, there has been debate about
the existence of biometric “goats.” A biometric goat is
a person who consistently has an unusually high false
nonmatch rate. In “Inter-subject differences in false non-
match rates for a fingerprint-based authentication system,”
Kelkboom et al. look for the existence of goats. In their study
of fingerprint performance, the authors find that 10% of the
subjects account for a large portion of the false nonmatches
and are classified as biometric goats.

Many applications would benefit from the implemen-
tation of biometric authentication with smart cards. In
“Integrating the fingerprint verification into the smart card-
based healthcare information system” by Pan et al. a typical
fingerprint verification algorithm is integrated in a smart
card and smart card reader where various designs are
compared in terms of real-time execution and security and
privacy tradeoffs.

In “Development of a new cryptographic construct
using palmprint based fuzzy vault” by Amioy Kumar and

Ajay Kumar, this research focuses on a combination of bio-
metrics and cryptography to create a “fuzzy vault” for secure
authentication. Asymmetric approaches typically have high
security but require high computation. This paper uses the
combination of symmetric and asymmetric cryptography in
a palmprint authentication system to alleviate the drawbacks
of a symmetric-only system.

This special issue presents two novel methods for
recognition of individuals based on sample signatures. In
“A novel criterion for writer enrolment based on a time-
normalized signature sample entropy measure,” Garcia-
Salicetti et al. promote time-normalized sample entropy as
a novel criterion for writer enrollment. They also propose
a novel criterion for writer enrollment targeting enhanced
signature verification. In “On-line signature verification
using fourier descriptors,” Yanikoglu and Khomatov involve
Fourier descriptors in the process of feature extraction
and template formation. The application of Fast Fourier
Transform results in a compact representation with a fixed
number of coefficients. The main challenge that the authors
address in their paper is the design of matching algorithms.
The improved performance is achieved through a fusion of
the proposed system with a state-of-the-art Dynamic Time
Warping (DTW) system.

In their work “Retinal verification using a feature points
based biometric pattern,” Rouco et al. present a novel
approach to the selection of landmark points in the retinal
vessel tree. The approach is based on extracting a set of
landmarks (bifurcations and crossovers of retinal vessel tree).
However, the use of reference structures is avoided, which
allows the system to cope with a wider range of images and
users. Together with new set of features a new similarity
metric is introduced, and a careful analysis of the proposed
method is performed using a large and diverse database of
retinal images.

In “A sequential procedure for individual identity verifi-
cation using ECG,” Irvine and Israel tackle an intriguing bio-
metrics modality that has received relatively little attention to
date. They are interested in identity verification that uses the
minimum number of heartbeats of electrocardiogram data
for verification. Initial experiments on datasets representing
twenty-nine and seventy-five persons indicate that fifteen or
fewer heartbeats of data are sufficient in nearly all instances.

We hope that you enjoy reading this selection of papers
that samples the variety of modalities and themes in current
biometrics research.

Natalia A. Schmid
Stephanie Schuckers

Jonathon Phillips
Kevin Bowyer
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The aim of this work is to carry out a comparative study of face recognition methods that are suitable to work in unconstrained
environments. The analyzed methods are selected by considering their performance in former comparative studies, in addition to
be real-time, to require just one image per person, and to be fully online. In the study two local-matching methods, histograms
of LBP features and Gabor Jet descriptors, one holistic method, generalized PCA, and two image-matching methods, SIFT-
based and ERCF-based, are analyzed. The methods are compared using the FERET, LFW, UCHFaceHRI, and FRGC databases,
which allows evaluating them in real-world conditions that include variations in scale, pose, lighting, focus, resolution, facial
expression, accessories, makeup, occlusions, background and photographic quality. Main conclusions of this study are: there is
a large dependence of the methods on the amount of face and background information that is included in the face’s images,
and the performance of all methods decreases largely with outdoor-illumination. The analyzed methods are robust to inaccurate
alignment, face occlusions, and variations in expressions, to a large degree. LBP-based methods are an excellent election if we need
real-time operation as well as high recognition rates.

Copyright © 2009 Javier Ruiz-del-Solar et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Many different face-recognition approaches have been devel-
oped in the last few years [1–4], ranging from classical
Eigenspace-based methods (see, e.g., eigenfaces [5]), to
sophisticated systems based on thermal’s information, high-
resolution images, or 3D models (see, e.g., [4, 6, 7]). How-
ever, the recognition of faces in unconstrained environments
has not been completely solved [8]. In addition, some time-
demanding applications, such as searching faces in nonanno-
tated or partially annotated databases (i.e., news databases,
the Internet, etc.) and HRI (Human-Robot Interaction),
impose extra requirements of real-time operation, just one
image per person and fully on-line operation (no off-line
enrollment), which are difficult to achieve.

In this general context, the aim of this article is to
carry out a comparative study of face-recognition methods
by considering these requirements. The main motivation
is the lack of direct and detailed comparisons of this kind
of methods under the same conditions. The results of

this comparative study are a guide for developers of face-
recognition systems. As aforementioned, we concentrate
ourselves on methods that fulfill the following requirements:
(i) full on-line operation: no off-line enrollment stages. All
processes must run on-line. The system has to be able to
build the face database incrementally from scratch; (ii) real-
time operation: the recognition process should be fast enough
to allow real-time interaction in case of HRI or to search
large databases in reasonable time (a few seconds or a couple
of minutes depending on the application and the size of the
database); (iii) one single image per person problem: one two-
dimensional face image of an individual should be enough
for his/her later identification. Databases containing just
one face image per person should be considered. The main
reasons are savings in storage and computational costs and
the impossibility of obtaining more than one face image from
a given individual in certain situations. In addition, we want
to consider standard 2D images, and not high-resolution,
3D or thermal images that are not always available and that
can slow down the recognition process; (iv) unconstrained
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environments: no restrictions over environmental condi-
tions such as scale, pose, lighting, focus, resolution, facial
expression, accessories, makeup, occlusions, background,
and photographic quality are required.

Thus, in this study two local-matching, one holis-
tic, and two novel image-matching methods are selected
by considering their fulfillment of the aforementioned
requirements and their performance in former comparative
studies of face-recognition methods [2, 9–12]. The two
local-matching methods, namely, histograms of LBP (Local
Binary Patterns) features [13] and Gabor-Jet features with
Borda count classifiers [10] are selected considering their
performance in the studies reported in [2, 10]. Among the
holistic methods, a member of the eigenspace-based family
of face-recognition methods is included, generalized PCA
(Principal Component Analysis) with Euclidian distance and
modified LBP features to achieve illumination invariance
[11] (the restriction of one single image per person does
not allow to include easily other members of the family).
In addition, two novel face-recognition methods based on
advanced image-matching methods are also considered: SIFT
(Scale-Invariant Feature Transform) descriptors with local
and global matching methods [12] and ERCF (Extremely
Randomized Clustering Forest) of SIFT Descriptors used
together with linear classifiers [14]. This last method,
although not being real-time, is included for comparison
purposes, because of the excellent results it has obtained in
the LFW database [15].

The comparative study is carried out using the FERET
[10], LFW (Labeled Faces in the Wild) [8], UCHFaceHRI
[12], and FRGC (Face Recognition Grand Challenge)
databases [16, 17]. We choose to use the very well-known
FERET database, because it is one of the most employed face
databases, and therefore it allows comparing results to other
studies. In addition, we think that robustness when using a
large database is also important and FERET contains more
than 1,000 individuals. We include the LFW database because
it is specially designed to study the problem of unconstrained
face recognition. It corresponds to a set of more than
13,000 images of faces collected from the web, images which
exhibit natural variability in pose, lighting, focus, resolution,
facial expression, age, gender, race, accessories, make-up,
occlusions, background, and photographic quality. The only
constraint on these faces is that they were detected using
the Viola-Jones face detector [18]; therefore, they correspond
to frontal and quasifrontal faces. We also include in this
study the new UCHFaceHRI, which is especially designed
to compare face analysis methods for HRI. This database
contains 30 individuals and includes images with natural
variations in illumination (indoor and outdoor), scale, pose,
and expressions. Finally, we consider experiments using
the FRGC dataset, whose data corpus consists of 50,000
recordings, divided into training and validation partitions.
We used FRGC’s experiments 1 and 4, designed to measure
progress on recognition from controlled and uncontrolled
frontal face images. Thus, the comparative study includes
4 stages. (1) In the first stage all methods (except ERCF)
are compared using the FERET database. Aspects such
as variable illumination, alignment’s accuracy, occlusions,

and dependence on the database’s size are measured, and
the results are analyzed in terms of recognition rate and
computational costs. (2) Some selected methods are further
analyzed using the more challenging conditions defined by
LFW. In addition to all the variability expressed in the
LFW images, we analyze the dependence of the methods
on the alignment’s accuracy as well as on the amount
of background and face’s information considered in the
analysis of the images. (3) The best variants of each of these
methods (including selected distance’s metrics and cropping-
size for each case) are further analyzed using the natural
requirements defined in the UCHFaceHRI database. (4)
Finally, the best performing methods in all tests are analyzed
and compared to state-of-the-art methods using the FRGC
database. This study corresponds to an extended version of
the one presented in [19].

This paper is structured as follows. The methods under
analysis are described in Section 2. In Sections 3–6 the
comparative analysis of these methods is presented. Finally,
in Section 7 results are discussed, and conclusions are given.

2. Methods under Comparison

As mentioned above, the algorithms’ selection criteria are
their fulfillment of the defined requirements, and their per-
formance in former comparative studies of face-recognition
methods [2, 9–12]. In the comparison we decided to con-
sider local-matching, holistic, and advanced image-matching
methods.

Local-matching methods behave well when just one
image per person is available [2], and some of them have
presented very good results in standard databases such as
FERET [10]. Thus, taking into account the results of [10],
and our requirements of high-speed operation, we selected
two methods to be analyzed. The first one is based on the use
of histograms of LBP features, and the second one is based
on the use of Gabor filters and Borda count classifiers.

When analyzing which holistic methods to include, the
first idea was to consider methods based on eigenspace-
decompositions (see a basic categorization in [9]). However,
these methods normally fail when just one image per
person is available, mainly because they have difficulties to
build the required representation models. This difficulty can
be overcome if a generalized face representation is built.
Such representation can be built using a generalized PCA
model. Thus, we incorporated to the study a face-recognition
method based on a generalized PCA model.

We also decided to consider in this study advanced
image-matching methods, which are not very popular in
the face-recognition community, but which have been
successfully applied in other computer vision contexts. Thus,
taking into account that local interest points and descriptors
(see, e.g., SIFT [20]) have been already used to solve success-
fully some other biometric problems (see, e.g., fingerprint
verification [21] and off-line signature verification [22]),
and as a first stage of complex face-recognition systems
[6], we decided to test the suitability of a SIFT-based face-
recognition system in this study. Finally, we also included
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Figure 1: (a) Spectrum of the eigenvalues in the employed generalized PCA representation. Training set of size 2,152. (b) RMSE of the
employed representation.

the recently proposed ERCF [14], a tree-based classification
method designed to verify if a pair of images corresponds to
the same object or not. The reason to include this last method
in the comparison is the excellent results that have been
obtained in recognizing faces in the LFW database [15]. The
use of SIFT features for face authentication was investigated
in [23] for the first time; however, no comparisons with other
methods were presented.

The aforementioned selected methods are described in
the next sections.

2.1. Generalized PCA. We implemented a face-recognition
method that uses generalized PCA as projection algorithm,
the Euclidian distance as similarity measure, and modified
LBP features [24]. We used a generalized PCA approach,
which consists on building a PCA representation in which
the model does not depend on the individuals to be included
in the final database, that is, on their face’s images, because
the PCA projection model is built using face’s images that
belong to a different set of persons. This allows applying this
method in the case when just one single image per person is
available. Our PCA model was built using 2,152 face images
obtained from different face databases and the Internet. For
compatibility with the results presented in [9], the model was
built using face images scaled and cropped to 100×185 pixels
and was aligned using eye’s information. Using a similar
approach to the one described in [16], we analyzed the valid-
ity of this generalized PCA representation by verifying that
the main part of the eigenspectrum, that is, the spectrum of
the ordered eigenvalues, is approximately linear between the
10th and 1,500th components, using a logarithmic scale for
the components (see Figure 1(a)). The RMSE [9] was used as
a criterion to select the appropriate number of components
to be used. To achieve a RMSE between 0.9 and 0.5, the
number of employed PCA components has to be in the
range of 200 to 1,050 (see Figure 1(b)). Taking into account
these results as well as the tradeoff between number of
components and speed, we choose to implement two flavors

of our system, one with 200 components and one with 500.
Modified LBP features were used because according to the
study presented in [11], this feature-space transformation
(together with SQI) is one of the most suitable algorithms
to achieve illumination compensation and normalization in
eigenspace-based face-recognition systems.

2.2. LBP Histograms. Face recognition using histograms of
LBP features was originally proposed in [13] and used by
many groups since then. In the original approach, three
different levels of locality are defined: pixel level, regional
level, and holistic level. The first two levels of locality are
realized by dividing the face image into small regions from
which LBP features are extracted and histograms are used
for efficient texture information representation. The holistic
level of locality, that is, the global description of the face,
is obtained by concatenating the regional LBP extracted
features. The recognition is performed using a nearest
neighbor classifier in the computed feature space using
one of the three following similarity measures: histogram
intersection, log-likelihood statistic, and Chi square. We
implemented this recognition system, without considering
preprocessing (cropping using an elliptical mask and his-
togram equalization are used in [13]), and by choosing the
following parameters: (i) images divided in 10 (2 × 5), 40
(4× 10), or 80 (4× 20) regions, instead of using the original
divisions which range from 16 (4 × 4) to 256 (16 × 16), and
(ii) the mean square error as similarity measure, instead of
the log-likelihood statistic. We also carried out preliminary
experiments for replacing the LBP features by modified LBP
features, but better results were always obtained by using the
original LBP features. Thus, considering the 3 different image
divisions and the 3 different similarity measures, we get 9
flavors of this face-recognition method.

2.3. Gabor Jets Descriptors. Local-matching approaches for
face recognition are compared in [10]. The study analyzes
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several local feature representations, classification methods,
and combinations of classifier alternatives. Taking into
account the results of their study, the authors implemented
a system that integrates the best possible choice at each step.
That system uses Gabor jets descriptors as local features,
which are uniformly distributed over the images, one wave-
length apart. In each grid position of the test and gallery
image and at each scale (multiscale analysis), the Gabor jets
are compared using normalized inner products, and these
results are combined using the Borda count method. In the
Gabor feature representation, only Gabor magnitudes are
used, and 5 scales and 8 orientations of the Gabor filters are
adopted. We implemented this system using all parameters
described in [10] (filter frequencies and orientations, grid
positions, face image size).

2.4. SIFT Descriptors. Wide-baseline matching approaches
based on local interest points and descriptors have become
increasingly popular and have experienced an impressive
development in recent years. Typically, local interest points
are extracted independently from both a test and a reference
image and then characterized by invariant descriptors, and
finally the descriptors are matched until a given transfor-
mation between the two images is obtained. Lowe’s system
[20] using SIFT descriptors and a probabilistic hypothesis
rejection-stage is a popular choice for implementing object-
recognition systems, given its recognition capabilities, and
near real-time operation. However, Lowe’s system’s main
drawback is the large number of false positive detections.
This drawback can be overcome by the use of several
hypothesis rejection stages as, for example, in the L&R system
[21]. This system has already been used in the construction
of robust fingerprint verification systems [21] and for off-line
signature verification [22]. Here, we use the L&R system to
build a face-recognition system, with three different flavors.
In the first one, Full, all verification stages defined in [21] are
used, while in the second one, Simple, just the probabilistic
hypothesis rejection stages are employed. In the third one,
Matches, the number of matching key points without using
any rejection stages is considered.

2.5. ERCF: Extremely Randomized Clustering Forest. In [14]
a robust method to learn a similarity measure is proposed,
which allows to discriminate whether a pair of object’s
images corresponds to the same object or not (the objects
could be faces). The method is especially designed to be
used in object recognition problems and makes use of ERCF
and SIFT descriptors. The learning is done for specific
object classes, such as frontal faces or specific views of
cars. The method basically consists of three stages. In the
first stage, pairs of similar patches, measured in terms of
a normalized cross-correlation, are selected. In the second
stage, each pair of patches is coded (quantized) by means
of an ERCF of SIFT descriptors. ERCF is a sparse represen-
tation of the image that is built using classification trees.
Each classification tree is generated using SIFT descriptors
and used for vector quantization. In the third stage, the
quantized pairs of patches are used to build a feature

vector, which is finally used to evaluate the similarity of
the image pair using a linear classifier. In this study we use
the author’s implementation of the method, available on
http://lear.inrialpes.fr/people/nowak/similarity/index.html.

2.6. Notation: Methods and Variants. We use the following
notation to refer to the methods and their variations: A,
B, and C. (i) A describes the name of the face-recognition
algorithm: H is Histogram of LBP features, PCA is gener-
alized PCA with modified LBP features, GJD is Gabor Jets
Descriptors, SD is L&R system with SIFT descriptors, and
ERCF is Extremely Randomized Clustering Forest; (ii) B
denotes the similarity measure: HI is Histogram Intersection,
MSE is Mean square error, XS is Chi square, BC is Borda
Count, and EU is Euclidian Distance, except for the case
of SD and ERCF, which do not use any explicit distance’s
measure; (iii) C describes additional parameters: number
of divisions in the case of the LBP-based method, number
of principal components in the case of PCA, size of the
reference-set for the GJD case (see explanation in Section 4),
and flavor (Full, Simple, or Matches) in the case of SD.

3. Comparative Study Using the
FERET Database

Face images are scaled and cropped to 100 × 185 pixels
and 203 × 251 (for compatibility with former studies [9,
10]), except for the case of the PCA method in which, for
simplicity, just one image size (100×185) was employed (the
generalized PCA model depends on the image cropping).
In all cases, faces are aligned by centering the eyes in the
same relative positions, at a fixed distance between the eyes,
which was 62 pixels for the 100 × 185 size images and
68 pixels for the 203 × 251 size images. The amount of
face information and background contained in the cropped
images can be measured using the normalized width (nw)
and height (nh), defined as the image width/height divided
by the distance between eyes. This means that the nw/nh
of the analyzed images are 1.6/3.0 for images of 100 × 185
pixels and 3.0/3.7 for images of 201× 253 pixels. To compare
the methods we used the FERET evaluation procedure [25],
which established a common data set and a common testing
protocol for evaluating semiautomated and automated face-
recognition algorithms. We used the following sets: (i) fa set
(1,196 images), used as gallery set (contains frontal faces of
1,196 people); (ii) fb set (1,195 images), used as test set 1 (in
fb subjects were asked for a different facial expression than in
fa); (iii) fc set (194 images,) used as test set 2 (in fc pictures
were taken under different lighting conditions). In all cases
the information about the eyes’ position provided by FERET
was used for the face alignment.

In addition, we carried out extra experiments by adding
noise to the position of the eyes in the fb set, and also by
adding artificial occlusions in these images. The goal was to
test the robustness of the different methods. Finally, we also
compared the computational performance of the methods.
ERCF was not considered in this first comparison, neither
in the FRGC experiments, because the method is not real-
time and, to carry out all the experiments, it takes a very
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Table 1: FERET fa-fb and fa-fc tests. Top-1 recognition rate. Noise in eye positions and face occlusion is tested in the fa-fb test. OR: Original.
OC: Original plus Occlusion. The best results for each condition are presented in bold. Methods that have differenc

Method

100× 185 203× 251

fa-fb fa-fb

OR
Noise in eye positions

OC
fa-fc

OR
Noise in eye positions

OC
fa-fc

2.5% 5% 10% 2.5% 5% 10%

H-HI-10 95.6 95.0 91.3 81.8 93.6 12.9 95.1 23.7 22.4 16.4 93.4 50.0

H-MSE-10 95.6 95.0 91.3 81.8 93.6 12.9 95.1 23.7 22.4 16.4 93.4 50.0

H-XS-10 95.7 94.7 92.3 82.2 78.4 14.9 95.1 41.3 39.4 31.0 86.1 60.8

H-HI-40 96.5 96.0 89.7 70.9 95.1 57.2 96.5 41.0 39.7 27.5 95.2 85.1

H-MSE-40 96.5 96.0 89.7 70.9 95.1 57.2 96.5 41.0 39.7 27.5 95.2 85.1

H-XS-40 95.5 93.6 87.0 67.4 92.1 47.4 97.4 76.6 71.4 53.8 95.0 88.1

H-HI-80 97.2 95.6 90.1 71.5 96.7 71.1 96.9 61.1 55.7 40.6 96.6 91.8

H-MSE-H-MSE-80 97.2 95.6 90.1 71.5 96.7 71.1 96.9 61.1 55.7 40.6 96.6 91.8

H-XS-80 96.3 94.1 88.3 68.0 94.4 62.9 97.4 87.8 83.9 64.9 96.7 92.8

PCA-MSE-200 73.1 55.9 40.7 16.2 63.6 52.1 — — — — — —

PCA-MSE-500 76.1 60.3 42.9 16.0 64.9 57.2 — — — — — —

GJD-BC 91.4 89.6 85.0 63.1 74.5 79.9 98.5 95.0 93.6 73.9 97.7 99.0

SD-FULL 74.3 75.7 73.5 71.5 67.3 7.7 97.1 96.2 95.7 95.3 95.6 67.5

SD-SIMPLE 73.1 75.3 73.1 71.0 68.6 5.7 97.5 96.7 96.4 96.2 95.3 63.9

SD-MATCHES 70.3 70.3 67.6 66.7 58.6 4.7 93.9 93.7 94.6 92.3 90.1 44.0

long time. However, the method is considered in the LFW
and UCHFaceHRI experiments.

Original fa-fb Test. Table 1 shows top-1 RR (Recognition
Rate) achieved by the different methods under comparison
in the original fa-fb test, which corresponds to a test with few
variations in the acquisition process (uniform illumination,
no occlusions). We use the information of the annotated
eyes, without adding any noise. From the experiments the
following can be observed.

(i) The results obtained with our own implementation
of the methods are consistent with those of other
studies. The best H-X-X flavors achieved in the 203×
251 face images a similar performance (97.4% versus
97%) than the one reported in the original work
[13]. GJD-BC achieved a slightly lower performance
(98.5% versus 99.5%) than in the original work
[10]. When comparing these results to the ones
obtained by other authors using more complex
systems based on hybrid Gabor-LBP [26], Gabor-
Fisher [27], or Fisher-Gabor-LBP [28]—98%, 99%
and 99.6%, respectively, we observe that those results
are similar or slightly better than ours; however, our
systems are much simpler. There are no reports of the
use of the generalized PCA or SIFT methods in these
datasets.

(ii) The best results (∼ 98.5%) are obtained by GJD-BC,
followed by the SD and H-X-80 variants, all using
203×251 images. Nevertheless, other H-X-X variants
also get very good results. Interestingly, some H-X-X
variants get ∼ 97% even using 100× 185 size images.
The results obtained by the PCA methods are the
lowest.

(iii) The performance of the GJD-X-X and SD-X methods
depends largely on the normalized size of the cropped
images, probably because the methods use informa-
tion about face shape and contour, which does not
appear in the 100× 185 images.

Eye Detection Accuracy. Most of the face-recognition meth-
ods are very sensitive to face alignment, which depends
directly on the accuracy of the eye detection process;
eye position is usually the primary, and sometimes the
only, source of information for face alignment. For ana-
lyzing the sensitivity of the different methods on the eye
position’s accuracy, we added white noise to the position
of the annotated eyes in the fb images (see example in
Figure 2(a)). The noise was added independently to the x
and y eye positions. Table 1 shows the top-1 RR achieved
by the different methods. Our main conclusions are the
following.

(i) SD-X methods are almost invariant to the position of
the eyes in the case of using 203 × 251 face images.
With 10% error in the position of the eyes, the top-
1 RR decreases in just ∼2%. The invariance is due
to the fact that this method aligns test and gallery
images by itself.

(ii) In all other cases the performance of the methods
decreases largely with the error in the eye position,
probably because they are based on the matching
between holistic or feature-based representations of
the images. However, if the eye position error is
bounded to 5%, the results obtained by some H-X-
X variants using 100 × 185 face images (∼90%) are
still acceptable.
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Partial Face Occlusions. To analyze the behavior of the
different methods in response to partial occlusions on the
face area, fb face images were divided into 10 different areas
(2 columns and 5 rows). One of these areas was randomly
selected and its pixels set to 0 (black). See example in
Figure 2(b). Thus, in this test each face image of fb has
one tenth of its area occluded. Table 1 shows the top-1 RR
achieved by the different methods. The main conclusions are
as follows.

(i) GJD-BC and H-XS-80 achieve the highest top-1 RR
in the 203× 251 case, 97.7% and 96.7%, respectively.

(ii) Some H-X-X variants are very robust to face occlu-
sions (e.g., H-HI-10, H-MSE-10, H-X-80) indepen-
dently of using face images of 100× 185 or 203× 251
pixels.

(iii) SD-X variants are also robust to occlusions in the
203× 251 case.

(iv) PCA is not robust to occlusions; its performance
decreases in about 10% compared to the nonoc-
cluded case.

Variable Illumination. Variable illumination is one of the
factors with strong influence in the performance of face-
recognition methods. Although there are some specialized
face databases for testing algorithm invariance against vari-
able illumination (e.g., PIE, YaleB), we choose to use the
fa-fc test set, because (i) it considers a large number of
individuals (394 versus 10 in Yale B and 68 in PIE), and (ii)
the illumination conditions are more natural in the fc images.
Table 1 shows the top-1 RR achieved by the different methods
in this test. The main conclusions are as follows.

(i) The results obtained with our own implementation
of the methods are consistent with those of other
studies. The best H-X-X flavors achieve in the 203 ×
251 case a higher performance (92.8% versus 79%)
than the one reported in the original work [13],
probably due to the different image’s partitions that
we use in our implementation. The best GJD-BC
flavors achieve a slightly lower performance (99%
versus 99.5%) than the original implementation
[10]. When comparing these results to the ones
obtained by other authors using more complex
systems based on hybrid Gabor-LBP [26], Gabor-
Fisher [27], or Fisher-Gabor-LBP [28]—98%, 97%
and 99%, respectively—we observe that those results
are similar to ours; however, our systems are much
simpler. There are no reports of the use of the
generalized PCA or SIFT methods in the same
database.

(ii) Best performance is achieved by GJD-BC (99%), and
second best by H-XS-80 (∼93%). In both cases using
images cropped to 203× 251 pixels.

(iii) In all cases much better results were obtained using
larger face images (203× 251).

(iv) PCA-X-X and SD-X methods show a low perfor-
mance in this dataset.

(v) H-X-X methods with a large number of partitions
show better performance than variants with a small
number of partitions (∼93% versus∼50% in the case
of using 203×251 images and∼71% versus∼13% in
the case of 100× 185 images).

Computational Performance. As aforementioned one of the
requirements imposed to the methods under comparison is
real-time operation. In addition, the memory required by
the different methods is very important in some applications
where memory could be an expensive resource. Table 2
shows the computational and memory costs of the different
methods under comparison, when images of 100 × 185 are
considered. For the case of measuring the computational
costs, we considered the feature-extraction time (FET) and
the matching time (MT). In the case of measuring memory
costs, we considered the database memory (DM), which is
the required amount of memory to have the whole database
(features) in memory, and the model memory (MM), which
is the required amount of memory to have the method
model, if any, in memory (PCA matrices for the PCA
case and filter bank for the Gabor method). We show the
results for databases of 1, 10, 100, and 1,000 individuals
(face images). If we consider that in many applications the
database size is in the range 10–100 persons, the fastest
methods are the H-X-X ones. The second fastest methods
are the GJD-BC ones. To achieve real-time operation with
a database of 100 or fewer elements, all methods are
suitable, except PCA-based methods. In databases of 10–100
individuals, H-X-X and GJD-X-X require less than 8 MBytes
of memory (they do not need to keep a model in memory). In
the case of H-X-X methods, the required memory increases
linearly with the number of partitions.

Summary. As a result of all these experiments we decided to
further test these methods in more demanding conditions
using the LWF and UCHFaceHRI databases. In this stage we
discarded the PCA method, because in all tests it turns to be
the weakest one, getting always the lowest scores.

4. Comparative Study Using the LFW Database

The LFW database [8] consists of 13,233 images faces of
5,749 different persons, obtained from news images by means
of a face detector (Viola-Jones detector [18]). There are no
eyes/fiducial point annotations; the faces were just aligned
using the output of the face detector. The faces aligned
using the funneling algorithm [29] are also available. The
images of the LFW database have a very large degree of
variability in the face’s expression, age, race, background,
and illumination conditions (see Figure 3). Also, unlike other
databases, the recognition is only to be done by comparing
pairs of images, instead of searching for the most similar
face in the database. The idea is that the algorithm being
evaluated is given a pair of images, and it has to output
whether the two images correspond to the same person or
not. There are two evaluation settings already defined by
the authors of the LFW: the image restricted setting and the
image unrestricted setting. The image restricted setting is the
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(a) (b)

Figure 2: Face image of 203 × 251 pixels. (a) Image with eye position (red dot) and square showing a 10% error in the eye position. (b)
Image with partial occlusion.

Table 2: Computational and memory costs. FET: Feature Extraction Time. MT: Matching Time. PT: Processing Time. DM: Database
Memory. MM: Model Memory. TM: Total Memory. Time measures are in milliseconds; memory measures are in Kbytes. DB sizes of 1,
10, 100, and 1,000 faces are considered. An image size of 100× 185 pixels is considered.

Method FET MT
PT (FET + MT)

DM MM
TM (DM + MM)

1 10 100 1000 1 10 100 1000

H-X-10 15 0.11 15 16 26 120 11 0 11 110 1100 11000

H-X-40 15 0.29 15 18 44 305 41 0 41 410 4100 41000

H-X-80 15 0.42 15 19 57 435 80 0 80 800 8000 80000

PCA-MSE-200 170 0.02 170 170 172 190 0,8 137800 137801 137808 137878 138585

PCA-MSE-500 360 0.02 360 360 362 380 2 137800 137802 137820 137996 139757

GJD-BC 50 0.25 50 53 75 300 33 1240 1273 1572 4559 34427

SD-X 4.7 1.03 6 15 108 1036 428 0 428 4284 42845 428451

most difficult one, and it is the one considered here. Under
this setting the only information that the algorithm can use
is the image pair; no information of the identity of the faces
in the images can be used, that is, the algorithm is restricted
to work only using the image pair at hand. The systems are
trained (if required) and evaluated using a 10-fold validation
procedure, where the folds are symmetric in the sense that
the number of matching pairs and nonmatching pairs is the
same. See [8] for details.

In the first experiments (Sections 4.1 and 4.2) images
were cropped to 100× 185 pixels (see Figures 4(a) and 4(b)).
Given that the mean distance between eyes is 42 pixels, the
normalized width and height are nw = 2.4 and nh = 4.4. We
analyze and compare two cases, unaligned and aligned. In the
unaligned case, face images have a coarse alignment, which is
the one produced by the face detector that was used to obtain
the images. In the aligned case, the funnelling algorithm is
used to obtain a more accurate alignment. Afterwards, in
Section 4.3, all methods are analyzed, considering different
region sizes, where the face’s images are cropped considering
larger and smaller bounding boxes. These experiments ana-
lyze the effect of using different amounts of background and
face’s information in the recognition process (see Figure 4).

Given that the LFW database only requires comparing
pairs of faces, and that an important part of the GJD method

is the ranking done using Borda count, we had to adapt
it to this condition. To accomplish this, we first define a
reference set of faces, which is built by randomly selecting
face images (e.g., 50) of the same characteristics than the
ones under comparison. Then, we take one of the two face
images under comparison, and we compare it against the
images of the reference set plus the second image under
comparison. The relative ranking, computed using Borda
count, obtained by the second face image is considered as
a measure of the similarity between the pair of images.
To obtain a symmetric similarity measure, we repeated the
same procedure by switching the roles of the two images,
and then averaging the two obtained rankings. The average
value was taken as the final similarity measure of the pair of
images. We considered three different sizes for the reference
set: 10, 50, and 100 faces. To show the importance of using
Borda count method, results using the Euclidean distance
between the GJD descriptors are also given for comparative
purposes.

SD-Full does not work properly in this database, and
consequently its results are omitted. In addition, when
using the LBP-based methods, HI and MSE always obtained
the same recognition results, and therefore the HI case is
also omitted. The results corresponding to ERCF consider
complete images (250 × 250), and they correspond to those
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Figure 3: Examples of faces from the LFW, randomly selected from people with name starting with A.

2.4 / 4.4

(a)

2.4 / 4.4

(b)

1.9 / 3.6

(c)

2.9 / 5.4

(d)

3 / 3

(e)

6 / 6

(f)

Figure 4: Examples of faces with different cropping (LFW database). (a) 100× 185, unaligned; (b) 100× 185, aligned; (c) 81× 150, aligned;
(d) 122× 225, aligned; (e) 125× 125, aligned; (f) 250× 250, aligned. The last row shows the normalized image’s width and height (nw/nh).
The images are shown maintaining their relative sizes.

presented in [15]. We use the original results although in our
own experiments we got very similar results.

4.1. Experiments Using Unaligned Faces. Table 3 (second and
third columns) shows the results for all methods under
comparison in the unaligned LFW database. It should be
remembered that in the unaligned LFW, all images have a
coarse alignment. In all cases (except for ERCF), regions

of 100 × 185 pixels containing the centered face in the
250 × 250 image were cropped (nw = 2.4 and nh = 4.4).
As it can be observed, the results obtained with our own
implementation of the methods are consistent with those
of other studies results (in terms of the relative order of
the classification accuracy). However the accuracies are low,
going form 60% to 72%, values that show the difficulty of
the database at hand. In the case of the H-X-X methods,
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Figure 5: Effect of the image’s region size on the performance of the H-XS-40. (a) Faces aligned using funneling; (b) unaligned faces.

best results are obtained with H-X-80, that is, when using
the largest number of divisions. The difference between
using the Chi-Square and the Mean Square Error is not
significant, although the Chi-Square measure gives slightly
better results in all cases. For the method based on the GJD,
best results are obtained when using the proposed Borda
count methodology (it increases the performance in circa
2% over the Euclidean distance); 100 reference images gives
slightly better results than 10 or 50. Both methods based
on SD got the lowest performance (about 60%–62%). The
performance of ERCF is quite good, being ∼ 4% larger than
the second best method (GJD-BC-100).

4.2. Experiments Using Aligned Faces. The faces were aligned
using the funneling algorithm [29]. Funneling is an unsuper-
vised algorithm for object alignment based on the concept
of congealing. Congealing basically consists of searching a
sequence of transformations (in this case affine transforms
and translations) that are applied to a set of images in order
to minimize an entropy measure on the set of images. After
having built the congealing model, the transformations can
be applied to an unseen image (funneling it) to obtain an
aligned image. The main advantage of this method is that it
can work in complex objects and that it does not require any
labeling during training.

Table 3 (last two columns) shows the results for all
methods under comparison using aligned faces. As in the
case of unaligned faces (except for ERCF); the face region was
cropped considering a region of 100× 185 pixels centered in
the 250 × 250 image (nw = 2.4 and nh = 4.4). Compared

to the case of unaligned faces, all methods, but GJD-X-X and
SD-Simple, improve or maintain their performance. The H-
X-X methods obtain the largest improvement, 2% to 3%,
depending on the variant being considered. Again, in the
case of LBP based methods, best results are obtained with
H-X-80, that is, when using the largest number of divisions,
and the Chi-Square distance’s measure, with a performance
similar to GJD. For the variants based on the GJD, best results
are obtained when Borda Count is used (it increases the
performance in circa 3% over the Euclidean distance), and
100 reference images gives slightly better results than 10 or
50. However, in this case, the results were slightly worse than
the ones obtained for the case of unaligned faces. Again, best
results are obtained by ERCF, but this time being about 5%
over the second best method.

4.3. Experiments Using Different Windows Sizes. In this
section we analyze the effect of using different region sizes
in the performance of the analyzed methods. Note that
increasing the size of the regions corresponds to adding or
removing different amounts of background to the region
being analyzed, given that we are not decreasing the scale
of the faces. The experiments were performed considering
squared image regions, ranging from 50 × 50 to 250 × 250,
with a step of 25 pixels, and considering regions of ratio
1 : 1.85 (as in the previous section), ranging from 41 × 75
to 135 × 250, with a step of 25 pixels. Results are presented
in Figures 5–8 in form of ROC curves. By observing the
results, the first thing we can see is the importance of the
relative size of the region, that is, the amount of face and
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Figure 6: Effect of the image’s region size on the performance of the GJD-BC-50 method. (a) Faces aligned using funneling; (b) unaligned
faces.
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Figure 7: Effect of the image’s region size on the performance of SD-MATCHES method. (a) Faces aligned using funneling, (b) unaligned
faces.
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Figure 8: Comparison of the best working flavors of each
method when funneling is used: (a) H-X-X, (b) GJD-BC, (c) SD-
MATCHES.
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Figure 9: ROC curves of the best working variant of each method.
Experiments were performed on faces aligned using funneling.

background information being analyzed on the performance
of all algorithms. In Figure 4, the different amounts of face
and background information that each image’s size includes
can be observed. The second thing is that in all cases
(independently of the distance’s measure and the method’s
parameters), small region sizes present the worst results,
followed by the largest region sizes. Best results are obtained
using medium-size regions.

Figure 5 shows the results for HI-XS-40. Best results
are obtained for aligned images of size 81 × 150 (see also
Figure 8(a)), which contains some background, but not very
much (see Figure 4(c)). In the case of unaligned images, best
results are obtained for images of size 95×175. Similar results
were obtained when using 10 and 80 image divisions. For
a fixed number of divisions, the Chi-Square measure works
better than the mean square error (results not shown for
space reasons).

Figure 6 shows the results for GJD-BC-50. Best results
are obtained for aligned images of size 122 × 225 (see
Figure 4(d)). In the case of unaligned images, best results are
obtained for images of size 95 × 175. The most important
thing that must be noticed here (see also Figure 8(b)) is
that when the optimal image size is used and aligned faces
are considered, using 10, 50, or 100 reference images; very
similar results are given (in terms of MCA 0.6838, 0.6838,
and 0.6847, resp.). This also holds when unaligned faces are
used, but the difference is slightly larger (in terms of MCA
0.6752, 0.6780, and 0.6808, resp.). The experiments with
reference sets of 10 and 100 images are not shown for space
reasons.

Figures 7 and 8(c) show the results for SD-MATCHES.
Best results are obtained again for aligned images; in this case
a size of 125 × 125 gives better results (see Figure 4(e)). In
the case of unaligned images, best results are obtained for
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Table 3: Correct classification rates (LFW database, restricted setting). Experiments were performed on cropped regions of size 100 × 185
(nw = 2.4 and nh = 4.4), except for ERCF that considers the full image. MCA: Mean classification accuracy. SME: Standard error of the mean.
In bold are the best results of each method.

Without alignment With alignment (funneling)

Method MCA SME MCA SME

H-MSE-10 0.6375 0.0049 0.6585 0.0046

H-XS-10 0.6500 0.0043 0.6668 0.0044

H-MSE-40 0.6217 0.0055 0.6527 0.0057

H-XS-40 0.6383 0.0064 0.6650 0.0059

H-MSE-80 0.6527 0.0047 0.6725 0.0032

H-XS-80 0.6532 0.0053 0.6785 0.0055

GJD-EU 0.6410 0.0084 0.6375 0.0071

GJD-BC-10 0.6777 0.0080 0.6753 0.0082

GJD-BC-50 0.6770 0.0075 0.6742 0.0061

GJD-BC-100 0.6798 0.0065 0.6762 0.0069

SD-MATCHES 0.6015 0.0049 0.6215 0.0036

SD-SIMPLE 0.6295 0.0071 0.6288 0.0051

ERCF (from [15]) 0.7245 0.0040 0.7333 0.0060

Table 4: Correct classification rates of the best methods (LFW database, restricted setting). MCA: Mean Classification Accuracy. SME:
Standard Error of the Mean.

Method Region Size MCA SME

SD-MATCHES, aligned faces 125× 125 0.6410 0.0062

H-XS-40, aligned faces 81× 150 0.6945 0.0048

GJD-BC-100, aligned faces 122× 225 0.6847 0.0065

ERCF aligned faces (from [15]) 250× 250 0.7333 0.0060

Table 5: Processing Time. Time measures are in milliseconds. We carried out the experiments on a computer running Linux with an Intel
Core 2 Duo E6750 2.66 GHz (2 GB RAM). FET/MT: Feature Extraction/Matching Time.

Method H H H GJD GJD GJD GJD SD ERCF

Parameters X-10 X-40 X-80 BC-1 BC-10 BC-50 BC-100 X From [14]

FET (ms) 2.45 2.45 2.45 62 62 62 62 4.7 —

MT (ms) 0.033 0.118 0.230 0.37 2.63 5.59 15.55 64.7 2000

Image size 81× 150 122× 225 125× 125 100× 185

8

1

11

10

12

9

7

6

4

5

2

3
x

y

(a)

18

16

19

17

15

13

14

20

12 θρ

(b)

Figure 10: Experimental setup for image acquisition at different (a) distances and (b) angles. Arrows indicate the angular pose of the subjects.
(a) Cartesian coordinates of acquisition points (in centimetres) relative to the camera’s focus: P1 (1088,90), P2 (906,−180), P3 (785,0), P4
(755,151), P5 (665,−51), P6 (574,30), P7 (514,181), P8 (423,−181), P9 (332,−61), P10 (272,30), P11 (181,−61), and P12 (90,0). (b) Polar
coordinates of acquisition points (radius in centimetres and angles in degrees) relative to the camera’s focus: P16 (90,90◦), P15 (90,45◦), P14
(90,30◦), P13 (90,15◦), P20 (90,−15◦), P19 (90,−30◦), P18 (90,−45◦), and P17 (90,−90◦).
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images of size 100×100. In all cases, best results are obtained
with the SD-Matches variant. Very low performance results
are obtained by the SD-Simple variant.

Finally, Figure 9 shows the ROC curves of the best variant
of each method.

4.4. Discussion. If one analyzes the performance obtained
by the different methods, ERCF obtains clearly the best
results (see Table 4). Best LBP-based method (H-XS-40) is
almost 3.9% below ERCF, and about 1% over GJD’s best
method (GJD-BC-100). However, if one now analyzes the
processing speed of the methods, the best variant of LBP-
based methods (H-XS-40) is at least 400 times faster than
ERCF (see Table 5), and 30 times faster than the best Gabor
method (GJD-BC-100). The high processing time of ERCF
and GJD can be too restrictive for some applications, in
particular in the ones that require real-time operation (e.g.,
HRI) as well in applications where very large amounts of data
are being analyzed (e.g., search in a very large multimedia
database). The Borda count ranking of each of the features
is the slowest operation of GJD, while the slowest part of
ERCF corresponds to the computation of the normalized
cross-correlation in the selection of pairs of regions to be
quantized using ERCF. However, it should be noted that in
a face identification scenario, as the one reported for the
FERET case, it is not required that GJD use a reference set.
In this case (GJD-BC-1 in Table 5), the method needs about
63 milliseconds to analyze a face image.

It is also interesting to analyze which kind of information
uses each method by looking at the optimal regions they use.
The regions are shown in Figure 4 as well as the normalized
width and height of the face images (last row). SD methods,
specifically SD-Matches that has an optimal region size of
125 × 125 (see Figure 4(e)), show better performance when
there is the fewest possible background in the image, but
without removing any part of the face. The methods need
as much as possible face information to obtain a correct
matching. However, the background disturbs the matching
process (a face keypoint could be matched to a background
keypoint). In the case of LBP-based methods, specifically for
H-XS-40 that has an optimal region size of 81 × 150 (see
Figure 4(c)), it seems that some background but not much
helps. Probably, this additional information about the face’s
contour helps the recognition process. Finally, in the case
of the GJD methods, specifically GJD-BC-100 that has an
optimal region size of 122× 225 (see Figure 4(d)), the image
contains much more background. The reason is twofolds: (i)
the Gabor-filters encode information about the contour of
the face, and (ii) large regions allow the use of large filters,
which encoded large-scale information.

It is important to compare the optimal region sizes of
the methods in the LWF, with the sizes used in the FERET
experiments. However, it should be noted that the images in
both databases have different resolutions. Therefore, instead
of comparing region sizes, normalized image’s width (nw)
and height (nh) need to be used. In our FERET experiments,
the nw/nh values are 1.6/3.0 for the 100 × 185 case, and
3.0/3.7 for the 203 × 251 case. The nw and nh values of
the optimal region sizes, in the LWF case, are shown in

Figure 4. By comparing these normalized values we observe
that there is a concordance. (i) SD and GJD methods behave
much better when normalized sizes of 3.0/3.7 are used in
FERET, and in LFW behave better with values of 3.0/3.0
for the case of the SD method, and 2.9/5.4 for the case of
the GJD method. (ii) In the case of the H-XS-40 method,
similar results are obtained in FERET with 1.6/3.0 or 3.0/3.7,
which is concordant with the selected values of 2.4/4.4 in
LWF. Naturally, the normalized values in both databases are
not the same, because in the FERET case we decided to use
just two, fixed image’s sizes, while in the LWF we allow the
methods to choose the best values.

Finally, it is interesting to analyze how much the
methods’ performance depends on the alignment’s accuracy.
By observing Table 3, it can be seen that the methods with
the largest dependence on the alignment’s accuracy are the
H-X-X. These results are consistent with the one obtained
in the FERET database. On the opposite site, SD methods
are very robust to alignment errors, which is also consistent
with the results obtained in the FERET case. As it can be
noticed, GJD performs worse when alignment is used. We
think this is related with the way in which the used alignment
method (funneling) works. Funneling aligns the whole face
(shape), and not the eyes. As observed in the results obtained
for FERET, GJD seems to be very sensible to good eyes’
alignment.

5. Comparative Study Using Real HRI Database

The UCHFaceHRI database was built with the goal of
allowing the study of face analysis methods in tasks such
as detection, recognition, and relative pose determination
of humans using face information, for HRI (Human-Robot
Interaction) applications. The database contains images
from 30 individuals, which were taken in 20 different
relative camera-individual poses (see acquisition points in
Figure 10), in outdoor and in indoor settings, at a resolution
of 1024 × 768 pixels. Five different face expressions were
considered for the case of the frontal face (P12 acquisition
point): neutral expression, surprised, angry, sad, and happy.
Thus, the database contains 48 images for each individual.
Each of these 48 face images is specified as Fjkl, where j
indicates that the image was taken at the acquisition point Pj
and k indicates which expression is associated to this image
(neutral: k = a, surprised: k = b, angry: k = c, sad:
k = d, happy: k = e). This index is valid only in the case of
images taken in the acquisition point P12. Finally, l indicates
if the image was taken in an indoor (l = i) or an outdoor
(l = o) environment. Figure 11 shows the 24 indoor images
corresponding to a given individual. The database can be
downloaded in [30].

In all experiments the F12ai face images composed the
gallery set. We define 14 specific and global test sets, to
analyze the methods’ invariance to the scale, orientation,
and expression of the faces, considering indoor and outdoor
illumination conditions as follows.

(i) Scale test sets. S-I: Scale Indoor (images F10i-F11i),
S-O: Scale Outdoor (images F10o-F12o).
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(ii) Expression test sets. E-I: Expression-Indoor (images
F12bi-F12ei), E-O: Expression-Indoor (images
F12bo-F12eo).

(iii) Rotation test sets. R-I: Rotation-Indoor (images F13i,
F14i, F19i, F20i), R-I/15: Rotation-Indoor in 15
degrees (images F13i, F20i), R-I/30: Rotation-Indoor
in 30 degrees (images F14i, F19i), R-O: Rotation-
Outdoor (images F13o, F14o, F19o, F20o), R-O/15:
Rotation-Outdoor in 15 degrees (images F13o, F20o),
R-O/30: Rotation-Outdoor in 30 degrees (images
F14o, F19o).

(iv) Global test sets. Scale: S = S-I + S-O, Expression: E =
E-I + E-O, Rotation: R = R-I + R-O, Global Indoor:
G-I = S-I + E-I + R-I, Global Outdoor: G-O = S-O +
E-O + R-O, and Global: G = D + E + R = G-I + G-O.

In the experiments we considered the best working
variants (distance’s measure and region’s size) of each
method (H, GJD-BC, SD, and ERCF), according to the
results obtained in LFW. To have the same conditions than
in the LWF experiments, the faces were aligned using the
annotated eyes, and the cropping was done without using
funnelling, but using the estimated bounding box that would
have been obtained if funnelling was used. This estimation
was obtained by measuring the eyes positions of a subset of
20 LWF-funnelled images. As in the case of LWF, the distance
between eyes was 42 pixels.

For the evaluation of ERCF, we trained a system
using the implementation of the author (available on
http://lear.inrialpes.fr/people/nowak/similarity/index.html)
of ERCF and the same parameters used to obtain the
results presented in [15], which were obtained by a direct
communication with the authors of the LFW database. For
ERCF we are presenting results for four cases, each one
corresponding to a different value of C when training the
SVM classifier. The results presented in the previous section
for ERCF correspond to C = 1. Here we used as training set,
the complete test set of LFW (6000 pairs of images).

Table 6 shows the top-1 recognition rates obtained in
these tests. Main conclusions are as follows.

(i) Comments on indoor/outdoor tests are as follows.

(a) For all methods, much better results are
obtained for indoor faces than for outdoor
faces. This is a clear indication that the analyzed
methods are not robust to outdoor illumina-
tion. Some improvement may be achieved if
preprocessing stages are added.

(b) H-X-X methods obtain the highest recognition
rate with outdoor faces, followed by GJD and
ERCF.

(c) SD performance is strongly affected by outdoor
illumination.

(ii) Comments about Scale tests are as follows.

(a) The best performing method is H-X-X, fol-
lowed by GJD, ERCF, and SD, in that order.

However, if we consider only indoor images (S-I
set), the best performing methods are H-XS-40
and ERCF, followed by the SD-variants. GJD got
the lowest top-1 RR.

(b) In the case of outdoor images all methods have
a very low performance, with the best ones (H-
HI-40 and H-MSE-40) achieving only a 50%
top-1 RR.

(iii) Comments about Expression tests:

(a) HI-X-X shows the best performance followed
by ERCF. In the third place comes GJD followed
by SD. The same holds if we consider only
indoor images (E-I).

(b) In the case of outdoor images, all methods have
a very low performance, with the best one (H-
XS-40) achieving only a 50.7% top-1 RR.

(iv) Comments about rotation tests are as follows.

(a) Which methods is the best depends on the
amount of rotation in the images and on
the illuminations conditions. In case of low
rotations (15 degrees) with indoor or outdoor
illumination, HI-X-X got the highest top-1
RR. In case of higher rotations (30 degrees)
and indoor illumination, the same happens.
However, in case of 30 degrees rotation and
outdoor illumination, ERCF got the top-1 RR.

(b) In indoor conditions, SD is more robust to
rotations than GJD. Moreover, SD-Matches and
SD-Simple present the second best results in
some indoor image cases. However, in outdoor
conditions their performance is quite low.

(c) In general terms, the performance of some
methods in indoor images with 15 degrees
rotation is acceptable (∼76%). However, no
method gives acceptable results for outdoor
images with low rotation (15 degrees), or for
rotations in 30 degrees.

(v) Comments about global results are as follows.

(a) Overall, best results are obtained in most of
the cases by one of the HI-X-X variants (7
out of 8 subset test, S-I, S-O, E-I, E-O, R-I/15,
R-I/30, R-O/15). The second best method is
ERCR (being the best in R-O/30 and the second
best in most of the cases). If we consider only
indoor conditions, GJD and SD got a similar
performance, with one of the SD variants (SD-
Simple) obtaining slightly better results than
GJD. However, if both indoor and outdoor
images are considered, the third best method is
GJD.
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Table 6: UCHFaceHRI tests. Top-1 recognition rate. Experiments are performed with detected eyes. In bold are the best results for each
condition. Methods that have differences of 1% or less are considered as having the same performance. See main text for a description about
the different experiments.

Method S-I S-O S E-I E-O E R-I/15 R-I/30 RI R-O/15 R-O/30 RO R G-I G-O G

H-HI-40 95.0 50.0 68.0 92.5 48.7 68.1 75.9 32.8 54.3 53.4 24.1 38.8 46.6 78.0 45.8 60.4

H-MSE-40 95.0 50.0 68.0 92.5 48.7 68.1 75.9 32.8 54.3 53.4 24.1 38.8 46.6 78.0 45.8 60.4

H-XS-40 98.3 45.6 66.7 89.2 50.7 67.8 69.0 27.6 48.3 51.7 24.1 37.9 43.1 75.0 45.2 58.7

GJD-BC-F 85.0 38.9 57.3 73.3 48.0 59.3 43.1 10.3 26.7 36.2 15.5 25.9 26.3 57.4 38.5 47.1

SD-SIMPLE 91.7 11.1 43.3 61.7 9.3 32.6 56.9 15.5 36.2 5.2 3.4 4.3 20.3 57.8 8.1 30.7

SD-FULL 86.7 6.7 38.7 63.3 8.0 32.6 34.5 6.9 20.7 5.2 5.2 5.2 12.9 51.4 6.7 27.0

SD-MATCHES 88.3 12.2 42.7 51.7 8.0 27.4 46.6 27.6 37.1 10.3 6.9 8.6 22.8 53.4 9.3 29.3

ERCF C = 1e-06 96.7 35.6 60.0 76.7 40.0 56.3 36.2 29.3 32.8 46.6 27.6 37.1 34.9 63.5 37.9 49.5

ERCF C = 0.0001 96.7 42.2 64.0 80.0 42.0 58.9 46.6 31.0 38.8 43.1 27.6 35.3 37.1 67.2 39.9 52.3

ERCF C = 0.1 98.3 24.4 54.0 74.2 30.0 49.6 56.9 20.7 38.8 34.5 15.5 25.0 31.9 65.2 27.0 44.3

ERCF C = 1 98.3 24.4 54.0 74.2 30.0 49.6 56.9 20.7 38.8 34.5 15.5 25.0 31.9 65.2 27.0 44.3

6. Comparative Study Using FRGC

From the reported experiments it can be observed that the
methods that perform better in our experiments are the LBP-
based (H-X-X) and Gabor-based (GJD) ones. These methods
are further analyzed using the FRGC ver2.0 database [17].
This database consists of 50,000 face images divided into
training and validation partitions. In our experiments the
training partition was not used, because one of our main
requirements is that methods under comparison should be
fully on-line. The validation partition consists of data from
4,003 subject sessions. A subject session consists of controlled
and uncontrolled images. The controlled images were taken
in a studio setting, and they are full frontal facial images
taken under two lighting conditions and with two facial
expressions (smiling and neutral), while the uncontrolled
images were taken in varying illumination conditions [17].
Each set of uncontrolled images contains two expressions,
smiling and neutral. In our analysis we will focus on two
FRGC tests: Experiment 1, which corresponds to a control
experiment where the gallery and the probe sets consist of
controlled still images, and Experiment 4, which measures
recognition performance from uncontrolled images (the
probe set consist of single uncontrolled still images; the
gallery is composed by controlled still images).

Figure 12 shows the ROC curve obtained in experiment
1 by the best methods under comparison. It should be
stressed that in our test we have used all possible image
pair comparisons that can be carried out in experiment
1 (16, 028 × 16, 028), and not the image pairs defined
by the ROC I–ROC III FRGC subexperiments that some
papers report. As it can be observed the obtained results are
concordant with the ones of similar reported approaches ,
for instance in [31, 32]. But, if we compare these methods
with recent kernel-based approaches, as the ones proposed
by Liu [33] (Gabor-Multiclass-KFDA) or Zhao et al. (LBP
KFDA) [31], we observe that kernel approaches obtain much
higher results than LBP- or Gabor-based approaches, about
10% higher verification rate for a given FAR. However, it

should be remembered that the kernel approaches need
to be trained in the database, and they are much slower
than the methods under comparison. From Figure 12 it
is also interesting to note the dependency of the LBP-
based methods’ performance on the number of partitions.
Methods using a larger number of partitions get better results
than methods using a smaller number of partitions. This
phenomenon although being logic was not clearly observed
in the other databases. Probably with very large database
the number of partitions is an important parameter to be
considered.

We also analyzed the methods under comparison using
the FRGC, experiment 4. By analyzing the results, similar
conclusions were obtained: (i) the results are concordant
with the ones of similar approaches reported in the literature
(see, e.g., [26]), (ii) kernel approaches get much better
results, and (iii) the performance of the LBP-based methods
depends on the number of partitions.

7. Discussion and Conclusions

In this article, a comparative study among face-recognition
methods in unconstrained environments was presented. The
analyzed methods were selected by considering their suit-
ability for the defined requirements—real-time operation,
just one image per person, fully on-line (no training),
robust behavior in unconstrained environments, and their
performance in former studies. The comparative study
was carried out using three databases: FERET, LFW, and
UCHFaceHRI. The well-known FERET database was used as
a baseline for comparison, and experiments were carried out
in different subsets that include variations in illumination,
nonaccurate eye’s annotations, and occlusions. The LFW
database implicitly includes aspects such as scale, pose, light-
ing, focus, resolution, facial expression, accessories, makeup,
occlusions, background, and photographic quality, while
the UCHFaceHRI explicitly includes aspects such as scale
(distance to the camera), expressions (neutral, surprised,
angry, sad, and happy), pose (0, ±15 , and ±30 degrees of
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Figure 11: UCHFaceHRI database. Examples of 24 indoor images corresponding to an individual. The face-image Fjki corresponds to an
image taken acquisition point j (see Figure 10). i stands for indoor. In the case of the F12ki images, the k index means: (a) Neutral expression,
(b) Surprised, (c) Angry, (d) Sad, and (e) Happy.

out-of-plane rotation), and illumination (indoor/outdoor).
The methods under comparison are generalized-PCA, LBP
histograms, Gabor Jets descriptors, SIFT descriptors, and
ERCF. We will comment about the main results of this study,
and we will draw some conclusions of this work.

Comments on the Size of the Face Region. What was very
surprising to us is the large dependence of the methods to the
amount of face and background information that is included
in the face’s images. This effect was clearly seen in our
FERET and LFW experiments. For instance, in the FERET
case, SD increases its recognition rate in more than 20%
depending on the size of the face images. In the LWF case
where experimental conditions are much harder, LBP-based
methods and SD increase their recognition rates in ∼4%,
depending on the size of the face images. We also observe
that the different methods have different requirements. LBP-
based methods concentrate themselves mostly in the face
area, but it seems that additional information about the
face’s chin, which is only observed if some background is
included in the images, helps the recognition process. On the
other hand, GJD methods need much more background. The

reason is twofolds: (i) the Gabor filters encode information
about the contour of the face, and (ii) large regions allow the
use of large filters, which encoded large-scale information.
SD methods show better performance when there is the
fewest possible background in the image, but without
removing any part of the face. The methods needs as much
as possible face information to obtain a correct matching, but
the background disturbs this process (a face keypoint could
be matched to a background keypoint).

Comments on the Illumination Conditions. Most of the
methods behave very well in natural, indoor illumination
conditions, the exception being SD. This can be clearly seen
in the FERET experiments (fa-fc). However, this situation
changes drastically with outdoor illumination conditions.
The performance of all methods decreases largely with
outdoor illumination. Clearly, face recognition in outdoor
conditions is still a nonsolved problem.

Comments on Pose Variations. Invariance against pose vari-
ations is a second main problem in face recognition. In
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Figure 12: ROC curves of the best methods under comparison in
FRGC, experiment 1.

the UCHFaceHRI experiments it can be observed that yaw
rotations in 15 degrees affect largely the performance of
all methods; the recognition rates decrease in more than
20%. In the 30-degrees case the situation is even worse, the
recognition rates fall in more than 60%. In relation, we also
believe that the main reason for the low results that are
obtained in the LFW database is due to the variations in the
faces’ pose.

Comments on Alignment, Occlusions, and Expressions. From
our experiments we conclude that the analyzed methods
are robust to inaccurate alignment, face occlusions, and
variations in expressions, to a large degree. Accepting
that these factors affect the face-recognition process, their
influence in the algorithms’ performance is much lower than
outdoor illumination or pose’s variations.

Conclusions about the Performance of Methods. The question
of which method is the best is a very difficult one. However,
we could say that LBP-based methods are an excellent
election if we need real-time operation as well as high
recognition rates. In the UCHFaceHRI experiments some of
the LBP variants got the best results, while in the LWF case
they got the second best results.

Gabor-based methods are also an adequate election.
Although they got a lower performance in UCHFaceHRI
than LBP-based methods, they got a similar performance in
LFW, and slightly better results in FERET. However, Gabor-
based methods are slower than LBP ones. Probably some
work can be done to develop strategies that select which

filters to use (some research in this direction has been
reported in [10]). A last interesting aspect to be mentioned is
that the proposed strategy of using a reference set of images
in the case of comparing pairs of images was successful and
better than using the Euclidian distance.

ERCF is a novel and promising matching method.
However, it has some drawbacks, the first one being its
low processing speed, which does not allow its application
in real-time conditions. Moreover, the method has several
parameters, and it seems that its performance depends on
the correct selection of them. Thus, although the method
achieves the best results in the LFW database, being clearly
superior to the others, it got the second place in the
UCHFaceHRI experiments. In these experiments LBP-based
methods work better than ERCF, in particular in difficult
cases such as outdoor images, out-of-plane rotation, and
facial expressions. This may be due to the fact that the
learning done by ERCF does not generalize as the results
reported for LFW seem to indicate. This may be due to
the fact that the images from LFW were obtained from
news images, which in general are taken by professional
photographers, and therefore are obtained under good
illumination, and because they are also taken in indoor
conditions, which are the cases where ERCF works best.

SD methods performed very well in some of our
experiments, achieving similar recognition rates than LBP-
based and Gabor-based methods. However, SD methods
have a large dependence to illuminations conditions. This
is especially true for the case of outdoor illumination, were
the methods’ performance decrease largely. It is interesting
to note that the large dependence of SD methods to
illumination conditions is not clearly reported in the SIFT-
related literature.

The generalized PCA method got the worse results in
the FERET experiments and was not further analyzed in this
study. We believe that under the main requirements of this
study (real-time operation, just one image per person, and
no training stages), eigenspace-based holistic methods are
not competitive against the other methods.

When the best methods under analysis are compared
against novel kernel-based approaches [31, 33] (e.g., in the
FRGC database), they obtain a lower performance. However,
it should be noted that kernel-based methods are intended to
be used in other kinds of applications, which do not have the
requirements of real-time and full on-line operation.

Future Work . We believe that still there are many aspects that
can be improved in the recognition of faces in unconstrained
environments. However, in the medium term, we will
concentrate on: (i) the analysis of pre-processing algorithms
and other strategies to achieve invariance against outdoor
illumination conditions, (ii) the combined use of methods
(e.g., ERCF and LBP-based or kernel-based and LBP) that
can allow achieving, at the same time, high recognition rates
and processing speed, (iii) the study of the influence of face’s
resolution in the recognition process, and (iv) a more deep
analysis of the facial expression effect in the recognition of
faces.



18 EURASIP Journal on Advances in Signal Processing

References

[1] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face
recognition: a literature survey,” ACM Computing Surveys, vol.
35, no. 4, pp. 399–458, 2003.

[2] X. Tan, S. Chen, Z.-H. Zhou, and F. Zhang, “Face recognition
from a single image per person: a survey,” Pattern Recognition,
vol. 39, no. 9, pp. 1725–1745, 2006.

[3] R. Chellappa, C. L. Wilson, and S. Sirohey, “Human and
machine recognition of faces: a survey,” Proceedings of the
IEEE, vol. 83, no. 5, pp. 705–740, 1995.

[4] A. F. Abate, M. Nappi, D. Riccio, and G. Sabatino, “2D and 3D
face recognition: a survey,” Pattern Recognition Letters, vol. 28,
no. 14, pp. 1885–1906, 2007.

[5] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal
of Cognitive Neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[6] A. S. Mian, M. Bennamoun, and R. Owens, “An efficient
multimodal 2D-3D hybrid approach to automatic face recog-
nition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 29, no. 11, pp. 1927–1943, 2007.

[7] R. Singh, M. Vatsa, and A. Noore, “Integrated multilevel image
fusion and match score fusion of visible and infrared face
images for robust face recognition,” Pattern Recognition, vol.
41, no. 3, pp. 880–893, 2008.

[8] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller,
“Labeled faces in the wild: a database for studying face
recognition in unconstrained environments,” Tech. Rep. 07-
49, University of Massachusetts, Amherst, Mass, USA, October
2007.

[9] J. Ruiz-del-Solar and P. Navarrete, “Eigenspace-based face
recognition: a comparative study of different approaches,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C,
vol. 35, no. 3, pp. 315–325, 2005.

[10] J. Zou, Q. Ji, and G. Nagy, “A comparative study of local
matching approach for face recognition,” IEEE Transactions on
Image Processing, vol. 16, no. 10, pp. 2617–2628, 2007.

[11] J. Ruiz-del-Solar and J. Quinteros, “Illumination compensa-
tion and normalization in eigenspace-based face recognition:
a comparative study of different pre-processing approaches,”
Pattern Recognition Letters, vol. 29, no. 14, pp. 1966–1979,
2008.

[12] M. Correa, J. Ruiz-del-Solar, and F. Bernuy, “Face recognition
for human-robot interaction applications: a comparative
study,” in Proceedings of the RoboCup International Symposium,
Lecture Notes in Computer Science, Suzhou, China, July 2008.

[13] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face description
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1. Introduction

Facial expressions provide important information in com-
munication between people and can be used to enable
communication with computers in a more natural way.
Recent advances in imaging technology and ever increasing
computing power have opened up a possibility of automatic
facial expression recognition. Up till now some research
efforts have been exploited in applications such as human-
computer interaction (HCI) systems [1], video conferenc-
ing [2], and augmented reality [3]. From the biometric
perspective, the automatic expression recognition has been
investigated in the context of patients’ monitoring in the
intensive care and neonatal units [4] for signs of pain
and anxiety, behavioural research on children’s ability to
learn emotions by interacting with adults in different social
contexts [5], identifying level of concentration [6], that
is, for detecting drivers’ tiredness, and finally in aiding
face recognition. Facial expression representation, which
forms one of the most important elements in the facial
expression recognition system, is concerned with extraction
of facial features for representing variations of expressions.
Good features for representing the facial expressions should
enable interpretation of various face articulations without
any limitation of race, gender, and age. Furthermore, it

should also have the capability of reducing the complexity
of classification algorithms.

Generally, facial expressions can be represented in two
forms, namely, holistic representation and local representa-
tion [7]. For the holistic representation, the face is processed
as a single entity. Wang and Yin [8] introduced a holistic
representation method for representing facial expressions,
which is named the topographic context (TC). In this
method a grey-scale facial image is treated as a topographic
terrain surface in a 3D space with the height of the terrain
represented by the image intensity at each pixel. As the
result of the topographic analysis, each pixel of the image
is described by one of the topographic labels: peak, ridge,
saddle, hill, flat, ravine, and pit. The topographic context
has been also extended for 3D facial surfaces by Wang et al.
[9], where it is referred to as the primitive surface feature
method. Huang et al. [10] proposed a method for expression
representation based on the local binary pattern, which is
originally designed for the texture description. The local
binary pattern is calculated by encoding the information of
depth difference of a 3D facial surface. Active appearance
model (AAM) is a statistical model of shape and grey level
of object of interest and mainly used for 2D facial images.
For the facial expression representation, the AAM is built
on the facial images which are manually selected with a set
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of landmarks localised around the facial features such as
eyebrows, eyes, mouth, and nose [11]. As an extension of the
AAM, the 3D morphable model was developed by Blanz and
Vetter [12]. Instead of using manually selected sparse facial
landmarks, the 3D morphable model uses all the data points
of 3D facial scans to represent the geometrical information.
This model has been used to control 3D facial surfaces from
a 2D image, across variations in pose, ranging from frontal
to profile view, and a wide range of illuminations. B-spline is
a parametric model which is often used to describe surfaces.
When used with 3D facial data, a large number of data points
can be efficiently modelled by a small number of B-spline’s
control points [13]. When combined with the facial action
coding system (FACS) [14], the control points are placed in
areas that correspond to action units, and the expression of
a face can be generated automatically by adjusting the B-
spline’s control points.

In contrast to the holistic approaches, the local repre-
sentation methods focus on the local features or areas that
are prone to change with facial expressions. Saxena et al.
[15] introduced the localised geometric model to locally
represent facial expressions. Their method uses the classical
edge detectors with colour analysis for extracting the local
appearances of a face such as eyebrows, lips, and nose.
Subsequently a feature vector containing measurements of
the facial appearances, such as the height of eyebrows, brow
distance, mouth height, mouth width, and lip curvature,
is created for the facial expression classification. A local
parameterised model proposed by Black and Yacoob [16]
is developed based on image motion which is calculated
using the optical flow of facial image sequences. The image
motion not only accurately models a nonrigid facial motion
but also provides a concise description that is related to the
motion of local facial features to recognise facial expressions.
Kobayashi et al. [17] used a point-based geometric model
for the facial expression representation. The model contains
30 facial characteristic points in the frontal-view of the face.
These facial characteristic points are around the areas that
are the most affected by change of facial expressions, such as
eyes, nose, brows, and mouth.

In this paper, a novel method for representing facial
expressions is proposed based on the authors’ previous
work [18–20], which postulates that the shape space vectors
constitute a significant feature space for the recognition of
facial expressions. The proposed method uses only 3D shape
information, with the texture not being used at all. The
method is therefore inherently invariant to variations in
scene illumination conditions, background clutter, and to
some extent angle of view. This is in a striking contrast to
the methods based on texture where these factors severely
limit their practical applicability. Additionally as the texture
is not being used, it does not have to be captured; hence
fast full frame 3D acquisition techniques based on the time-
of-fly principle [21] can be used (3D scanners capturing
in excess of 40 frames/sec are commercially available)
instead of more computationally intensive, and therefore
slower, stereovision scanning systems. The shape space vector
(SSV) is the key element in the statistical shape model
(SSM), which models the high-dimensional shape variations

observed in the training data set using projections on a low-
dimensional shape space. In order to obtain the SSV two
consecutive stages are necessary, namely, (i) model building
stage and (ii) model fitting stage. In the model building
stage, the correspondences of points between all faces present
in the training data set are established first so that the
training data set can be aligned into a common reference
face. Subsequently the principal component analysis (PCA)
technique is applied to the aligned training data set to obtain
the SSM of the shape variations. In the model fitting stage,
an iterative algorithm based on a modified iterative closest
point (ICP) method is used to gradually adjust the pose
parameters and optimise the shape parameters in order to
match the model to the newly observed facial data. The
pose parameters consist of a translation vector, a rotation
matrix, and a scaling factor, whereas the shape parameters are
embedded in the SSV. In order to validate the discriminatory
ability of the SSV, 3D synthetic faces generated from the
FaceGen Modeller [22] and real 3D facial scans from the BU-
3DFE database [23] are used for the separability analysis in
the SSV domain. The experiments on recognition of facial
expressions using a selection of standard classification tools
are also presented.

The remainder of this paper is organised as follows.
Section 2 introduces the details of construction of the
SSM. Section 3 describes the procedure used for fitting the
model to the facial data that has not been included in the
training data set. Section 4 provides results of qualitative and
quantitative separability analysis. Results of facial expression
recognition using some popular classification algorithms
operating on the SSV feature space are presented in Section 5.
Finally, concluding remarks are given in Section 6, and
a potential improvement of the expression representation
using the SSV constructed for dynamic 3D data is briefly
discussed in Section 7.

2. Statistical Shape Model

The statistical shape model (SSM) is developed based on
the point distribution model (PDM) which was proposed
by Cootes et al. [24], and it is one of the most widely
used techniques for the model-based data representation
and registration. The model describes shape variations
based on the statistic calculated from the position of the
corresponding points in the training data set. In order
to build an SSM, the correspondence of points between
different 3D faces in the training data set must be estab-
lished first. Subsequently the principal component analysis
(PCA) is applied to the mutually aligned training data
set.

2.1. Estimating Point Correspondence. The knowledge of
the correspondence of points between 3D faces in the
training data set is essential, because the incorrect cor-
respondence can either introduce too much variations or
lead to illegal instance of the model [24]. In the case of
the data used in this paper the correspondence of points
for the database generated using the FaceGen Modeller
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Figure 1: Example of point correspondence estimation in the training data set, with example images from the BU-3DFE.

is explicitly provided by the software, whereas the dense
correspondence of points for the faces in the BU-3DFE
database is estimated based on a set of facial landmarks
included in the database.

In this work, the estimation of the correspondence is
achieved in three steps: (i) facial landmark determination,
(ii) thin-plate spline (TPS) warping, and (iii) closest point
matching. The first step is to identify the corresponding facial
landmarks on the reference and training faces. The second
step is to warp the reference face to different training face
using TPS transformation that is calculated based on the
selected facial landmarks as control points [25]. The last
step is to estimate the point correspondence between the
warped reference face and different training faces based on
the closest distance metric. Figure 1 shows the framework
of computing the dense point correspondence of different
training faces from the BU-3DFE database. The reference
face is usually selected as a face containing neutral expression
with the mouth closed. Such selection of the reference
face helps to avoid wrong correspondences in the case of
matching between closed-mouth and open-mouth shapes.
If the reference face were selected with the mouth open,
after dense correspondence estimation, each point in the
open-mouth area of the reference face will find an incorrect
corresponding point in the training face within the closed-
mouth region even though those corresponding points of
the open-mouth area do not exist in the training faces with
mouth closed.

2.1.1. Thin-Plate-Spline Warping. The TPS warping tech-
nique is a point-based registration method which was first

proposed by Bookstein [26]. The TPS warping can be used
for interpolation as well as approximation. For the TPS
interpolation, the positions of corresponding landmarks
are assumed to be known exactly and the corresponding
landmarks are forced to match exactly each other after
warping [25, 27]. For the TPS approximation, the landmark
position errors are taken into account, implying that the
corresponding landmarks are not forced to match exactly
after warping is applied. It can be shown that the solution
of the approximation problem is equivalent to inclusion
of a regularisation term in the cost function along with
a fidelity term which is exactly the same as used in the
definition of the interpolation problem [28]. In this work, the
corresponding facial landmarks are manually labeled on the
3D face scans, and their positions are always prone to some
errors. Therefore, the TPS approximation model is more
suitable for our application.

Given sparse corresponding facial landmarks in the
reference face and one of the training faces, repre-

sented, respectively, by ˜P = (p̃1, p̃2, . . . , p̃L)T and ˜Q =
(q̃1, q̃2, . . . , q̃L)T , where p̃k = (x̃pk, ỹpk, z̃pk)T and q̃k =
(x̃qk, ỹqk, z̃qk)T denote x, y, and z coordinates of the kth cor-
responding pair and L is the total number of corresponding
facial landmarks, the objective is to find the TPS warping
function that warps the reference face to the training face.
The interpolating warping function, F, has to fulfill the

following constraint for all the landmarks in ˜P and ˜Q:

F
(

p̃i
) = q̃i, i = 1, 2, . . . ,L, (1)
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where the deformation model is defined in terms of warping
function F(p j) with
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where p j = (xp j , yp j , zp j)
T is a point on the reference face and

the warping functions for x, y, and z coordinates are defined
as follows
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Function U is a radial basis function of the form

U(r) = r2 log r2, (6)

where r is a distance between two points. According to
Bookstein [26], the coefficients of the TPS interpolation
model can be calculated from

KcWc + PcAc = ˜Q, (7)

and

PT
c Wc = 0, (8)

where ˜Q is a L×3 matrix which contains facial landmarks on
the target face and written as
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⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x̃q1 ỹq1 z̃q1
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Wc and Ac are the matrices containing coefficients of the TPS
interpolation and defined as
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whereas matrix Kc that contains the radial basis functions is
defined as

Kc =
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and the radial basis function U(ri j) is
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Pc is the matrix including all corresponding landmarks of the
reference face and defined as

Pc =
[

1˜P
]

, (13)

and matrix ˜P is defined as
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In the TPS approximation model, the interpolation
condition has to be weakened since the landmark localisation
errors have to be taken into account. The regularisation
term needs to be added into the TPS interpolation model
in order to control smoothness of the transformation.
The coefficients of the TPS approximation model can be
calculated as

(Kc + λcI)Wc + PcAc = ˜Q, (15)

where λc > 0 is a relative weighting factor between the
interpolating behavior and the smoothness of the transfor-
mation. For small λc, the TPS warping maintains a good
approximation of the landmarks. For large λc, the TPS
warping function becomes very smooth and adopts very little
to the local structures present in the data.

2.1.2. Closest Point Matching. After the TPS approximation,
the shape of the reference face is warped to match the training
face. Since the shape of the reference face is close to the shape
of the training face, the dense point correspondence of the
reference face for the training face can be computed using the
closest distance metric. With the Euclidean distance d(p, q)
between two points p = (xp, yp, zp)T and q = (xq, yq, zq)T

are defined as

d
(

p, q
) =

√

(

xp − xq
)2

+
(

yp − yq
)2

+
(

zp − zq
)2
. (16)

Denoting a set of points of the training face by {qi, i ∈
[1,N]}, the closest distance between a point p = (xp, yp, zp)T

of the reference face and the training face is defined as

d
(

p,
{

qi, i ∈ [1,N]
}) = arg min

i

(

d
(

p, qi
))

. (17)
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Using the TPS approximation and closest point match-
ing, the dense point correspondence between the reference
face and a training face can be established. This process
is applied to all the training faces such that all of them
are in correspondence. The training faces from the BU-
3DFE database contain between 13 000 and 20 000 mesh
polygons with 8711 to 9325 vertices. The reference face
used in this paper has 15 687 mesh polygons and 8925
vertices. After performing the TPS approximation and closest
point matching, it is likely that there will be multi-to-one
correspondences between a training face and the reference
face. It is impossible to avoid this completely due to the
nature of the closest point matching technique. In order to
reduce the number of such correspondences, a subdivision
surface method has been used to increase the number of
vertices in the training faces [29].

2.2. Principal Component Analysis. Using the standard prin-
cipal component analysis (PCA), each 3D face in the
training data set can be approximately represented in a low-
dimensional shape vector space [30] instead of the original
high-dimensional data vector space. Given a training data
set of M faces, Qi(i = 1, 2, . . . ,M), each containing N
corresponding data points Qi ∈ R3N , where Qi contains all
the data points of the ith face encoded as a 3N-dimensional
vector. The first step of the PCA is to calculate the mean
vector Q (representing the mean 3D face):

Q = 1
M

M
∑

i=1

Qi. (18)

Let C be defined as the covariance matrix calculated from the
training data set:

C = 1
M

M
∑

i=1

(

Qi −Q
)(

Qi −Q
)T
. (19)

By building a matrix X of “centered” data vectors with Qi−Q
as the ith column of matrix X, covariance matrix C can be
calculated as

C = XXT , (20)

where matrix C has 3N rows and columns. Since the
number of faces, M, in the training data set is smaller
than the number of data points, the eigen decomposition
of matrix C

′ = XTX is performed first [31]. The first M
largest eigenvalues λi(i = 1, . . . ,M) and eigenvectors ui(i =
1, . . . ,M) of the original covariance matrix, C, are then
determined, respectively, from

λi = λ′i , (21)

ui = Xu′i
∥

∥Xu′i
∥

∥

, (22)

where λ′i and u′i are eigenvalues and eigenvectors of matrix
C
′
, respectively. By using these eigenvalues and eigenvectors,

the data points on any 3D face in the training data set can be
approximately represented using a linear model of the form

̂Q = Wb + Q, (23)

where W = [u1, . . . , ui, . . . , uK ] is a 3N × K so-called
“Shape Matrix” of K eigenvectors, or “modes of variation”,
which correspond to the K largest eigenvalues, and b =
[b1, . . . , bi, . . . , bK ] is the shape space vector (SSV), which
controls contribution of each eigenvector, ui, in the approx-
imated surface ̂Q [12]. The shape matrix W is database-
dependent. In a case when new faces are added to the existing
database, this shape matrix needs to be recalculated. Most
of the surface variations can usually be modelled by a small
number of modes K . Equation (23) can be used to generate
new examples of faces by changing the SSV, b, with suitable
limits [24]. According to the work proposed by Edwards et
al. [11], the suitable limits of the SSM are typically defined as

−3
√

λi ≤ bi ≤ 3
√

λi. (24)

Figure 2 shows the effect of varying the first three largest
principal components of the two models. These models were
built using 450 training faces from the FaceGen and BU-
3DFE database, respectively.

3. Model Fitting

Provided that the faces in the database are representative
of the faces in the population, a new face from the same
population, which has not been included in the training
data, can be represented using the derived SSM. In the
proposed method, the model fitting is treated as a surface
registration problem, which includes the estimation of the
pose parameters and shape parameters of the model. Whilst
the pose parameters include a translation vector, a rotation
matrix, and a scaling factor, the shape parameters are defined
by the SSV. As described in the following subsection, the
algorithm starts by aligning a new face with the mean face
of the model using similarity transformation. Subsequently
the model continues to be refined by iteratively estimating
the SSV and pose parameters.

3.1. Similarity Registration. The iterative closest point (ICP)
method can be used to achieve similarity registration
between the model mean face and a new face. The ICP [32]
is a widely used point-based surface matching algorithm.
This procedure iteratively refines the alignment by alternately
estimating points correspondence and finding the best
similarity transformation that minimises a cost function
between the corresponding points. In this work the cost
function is defined using Euclidean distance:

E =
N
∑

i=1

∥

∥q′i − (sRqi + t)
∥

∥
2, (25)

where q′i and qi(i = 1, . . . ,N) are, respectively, the corre-
sponding vertices from the model and the data face. R is a
3× 3 rotation matrix, t is a 3× 1 translation vector, and s is a
scaling factor. Following the algorithms in [33, 34], R, t, and
s are calculated as follows.



6 EURASIP Journal on Advances in Signal Processing

−3
√

λ1 −1.5
√

λ1 0 1.5
√

λ1 3
√

λ1

−3
√

λ2 −1.5
√

λ2 0 3
√

λ21.5
√

λ2

−3
√

λ3 −1.5
√

λ3 0 3
√

λ31.5
√

λ3

b1

b2

b3

̂Q = u1b1 +Q

̂Q = u2b2 +Q

̂Q = u3b3 +Q

Mean face

(a) From top to bottom: superposition of the mean face and weighted first three principal components calculated
from the FaceGen synthetic database. In each case the principal component weights vary between ±3

√

λi

−3
√

λ1 −1.5
√

λ1 0 1.5
√

λ1 3
√

λ1

−3
√

λ2 −1.5
√

λ2 0 3
√

λ21.5
√

λ2

−3
√

λ3 −1.5
√

λ3 0 3
√

λ31.5
√

λ3

b1

b2

b3

̂Q = u1b1 +Q

̂Q = u2b2 +Q

̂Q = u3b3 +Q

Mean face

(b) From top to bottom: superposition of the mean face and weighted first three principal components calculated
from the BU-3DFE database. In each case the principal component weights vary between ±3

√

λi
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the FaceGen and BU-3DFE data sets.
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Initial state Final state

(a) Example of intermediate results obtained during iterations of the
similarity registration

Model face New face

(b) Example of the model deformations during refinement iterations

Figure 3: An example of the model fitting.

(1) From the point sets, {qi} and {q′i}(i = 1, . . . ,N),
compute the mean vectors, q and q′:

q = 1
N

N
∑

i=1

qi, (26)

q′ = 1
N

N
∑

i=1

q′i . (27)

(2) Calculate pi and p′i (i = 1, . . . ,N):

pi = qi − q, (28)

p′i = q′i − q′. (29)

(3) Calculate the matrix H:

H =
N
∑

i=1

p′ip
T
i . (30)

(4) Find the SVD of H:

H = UΣVT . (31)

(5) Compute the rotation matrix:

R = UDVT , (32)

D =
⎧

⎨

⎩

I, if det
(

UVT
) = +1,

diag(1, 1,−1), if det
(

UVT
) = −1.

(33)

(6) Find the translation vector and scaling factor:

s = tr
(

PP
′TR
)

tr(PPT)
, (34)

t = q′ − sRq, (35)

where P = [p1, . . . , pN ] and P
′ = [p′1, . . . , p′N ] are 3×

N matrices.

In (32), matrix D is used as a “safeguard” making
sure that the calculated matrix R is a rotation matrix and
not a reflection in 3D space. The outline of the similarity
registration procedure is given in Algorithm 1. The criterion
used to terminate the iteration of the algorithm is based on
the variation of the distance between the two surfaces at two
successive iterations. According to the experimental results,
the iteration of similarity registration is terminated when the
variation, τ, is below 0.1 mm. Figure 3(a) shows an example
of the results obtained by the similarity registration. The
position of the model is fixed and the new face is transformed
to align to the model. Although there are noticeable local
misalignments, that is, around the mouth and eyes, due to
different facial expressions, they are globally well matched.

3.2. Model Refinement. With the data registered to the
current model using similarity transformation, the objective
of the model refinement is to deform the model so that it is
better aligned to the transformed data points. To estimate the
optimal pose and shape parameters the whole process has to
iterate. This can be seen as a superposition of the ICP method
and the least squares projection onto the shape space. The
least squares projection onto the shape space provides the

SSV, ̂b, which controls the deformations of the model. It
is also postulated here that at the convergence point this
vector can be used as a feature for interpretation of the face
articulation. The SSV, ̂b, for an observed face is calculated
from

̂b = WT
(

Qc −Q
)

, (36)
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Input: points Q from the new face and points Q
′

from the current
model.

Output: transformed points Q using estimated similarity
transformation.

Initialisation:
set threshold τ(τ > 0) for terminating the iteration, k = 0,
d0 = inf , e = τ;
while e ≥ τ do
k = k + 1;
Compute correspondence qi ↔ q′j(i) with
j(i) = arg min j∈1:N‖qi − q′j‖;
Compute pose parameters : R, T, and s using Equations (26)–
(35);
Transform the points from set Q using similarity
transformation qi = sRqi + T and update set Q accordingly;
Measure misalignment dk between corresponding points in the
point set of new face Q and the point set of the model Q

′
;

e = dk−1 − dk ;
End

Algorithm 1: Similarity registration.

Input: points Q of a new face, and the face model: W,Q.

Output: Estimation of the SSV, ̂b.
Initialization:

set threshold σ(σ > 0) for terminating the iteration, ̂b0 = 0,
k = 0;

while ‖̂bk − ̂bk−1‖ ≥ σ do
Calculate points from the deformed model: ̂Q = Ŵbk + Q;
Register points sets ̂Q and Q using Algorithm 1 and obtain the
corresponding points Qc for the transformed new face;
k = k + 1;
Project corresponding points Qc onto the shape space
̂bk = WT(Qc −Q);

end

Algorithm 2: Model refinement.

where Qc ∈ R3N is a vector which contains N corresponding
data points representing the new face. The mean vector
of data points Q and shape matrix W are obtained from
(18) and (22), respectively. The details of the algorithm are
explained in Algorithm 2. The criterion used to terminate
the iteration of the model refinement is based on the
change of the SSVs at two successive iterations. According
to the experimental results, the iteration of the algorithm is
terminated when the change of the SSVs, σ , is below 5. For
most cases, it is seen that the shape variation of the model
during the model refinement is negligible when the change
of the SSVs is smaller that this preset threshold.

An example of the results obtained from the model
refinement is shown in Figure 3(b). In this case the model
is matched to a face with a strong fear expression. The inter-
mediate states illustrate how the model is being deformed to
match the new face during the refinement iterations.

4. Separability Analysis

To assess if the SSV can be used as a feature space for the
facial expression analysis and recognition, the separability of
the SSV-based features has been analysed, using qualitative
and quantitative methods. In the qualitative analysis, the
separability of the SSV-based features is examined visually
in a low-dimensional SSV space. The quantitative analysis
is carried out using one of the numerical separability
criteria. Four types of data sets have been used in the
separability analysis; they are 3D synthetic faces generated
from the FaceGen Modeller, manually selected 3D facial
landmarks from the BU-3DFE database, 3D face scans from
the BU-3DFE database, and automatically detected 3D facial
landmarks from the BU-3DFE database. All these data sets
cover a wide variety of ethnicity, age range, as well as gender.
Face samples from the FaceGen and BU-3DFE data sets
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Anger

Disgust

Fear

Happiness

(a) Face samples from the FaceGen database

Anger

Disgust

Fear

Happiness

(b) Face samples from the BU-3DFE database

Figure 4: Face samples showing four different subjects and expressions with four levels of expression intensity.

showing different individuals and different expressions are
shown in Figure 4. The faces used for testing are not included
in the training data sets used for building the SSM.

4.1. Qualitative Evaluation. Since the high-dimensional SSV-
based features are hard to visualise, only the first three
elements of the SSV are used for qualitative analysis. For
different types of data, the first three principal compo-
nents retain different levels of variability present in the
training data set. With the retained variability defined as
∑3

i=1 λi/
∑M

i=1 λi, where λi and M are given in Section 2.2, the
first three principal components retain around 51% of the
total data variability for the model built using 450 synthetic
faces. For the model built from the facial landmarks the
first three principal components retain around 42% data
shape variability, whereas for the model built using dense set
of facial points the first three principal components retain
35% of the variability. The last two models were built using
the same 450 faces randomly selected from the BU-3DFE
database.

4.1.1. 3-D Synthetic Faces. Firstly, the 3D synthetic faces
generated from the FaceGen Modeller are used to show the
separability of the SSV-based features. The FaceGen Modeller
is a commercial software designed to create realistic faces
with controllable type and level of expressions for subjects
of any ethnic origin or gender. Since the correspondence
information is provided for all the face vertices (3428 vertices
are used to represent all the synthetic faces), the SSM can
be built directly without correspondence search. However,
it needs to be stressed that the priori knowledge about
the correspondence, for the faces in the training data set,

was only used in the model building stage. In the model
fitting stage the information about the data correspondence
was ignored and the correspondence search was included in
finding the SSV representation of the faces from the test sets.

For the evaluation, a training data set of 450 3D synthetic
faces from 18 subjects was used to build the SSM. A
sample of faces from the training data set is shown in
Figure 4(a). Another 450 synthetic faces of 18 subjects were
used for testing. The training and testing faces are mutually
exclusive. First, for clarity of the presentation, Figure 5 shows
the separability of the synthetic faces’ SSVs for selected
expression pairs with five different subjects and varying
expression’s intensity. The SSVs of the same subject and
representing the same expression with various expression’s
intensity are linked together. Considering the expression’s
intensity as only variable the corresponding SSVs are aligned
on the same line segment. It can be observed that the
SSV-based features corresponding to different subjects and
different facial expressions are well separated; furthermore
the orientation of each line seems to define a type of the
expression. Figure 6 shows the separability of the synthetic
faces’ SSVs for all six basic expressions and five subjects
shown in different colours. It can be seen that the SSVs
representing different expressions for the same subject are
clustered together and the SSVs representing the same
expression are located on the line segments having the same
orientation which is independent of the subject.

From the obtained results, showing clustered lines in the
SSV space, it seems reasonable to postulate that the FaceGen
Modeller uses a linear shape space model for face generation,
whereby different eigen subspaces represent different face
expressions as well as different face types. Such an approach
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Figure 5: Visualization of the synthetic faces separability using first
three elements of the SSV and five different subjects.

for face generation was previously proposed in computer
graphics literature [35]. From the presented results, it can
be concluded that the proposed face registration method
is able to recover the facial expression and subject con-
trol parameters used in the face generation model (e.g.,
orientations of the clustered lines in the SSV space define
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Figure 6: Visualization of the synthetic faces separability for six
expressions and five subjects.

(a) Neutral. (b) Surprise.

Figure 7: Example of manually selected landmarks in two different
faces from the BU-3DFE database.

eigen faces responsible for generating different expressions
in the FaceGen shape space model, whereas positions of
the clustered lines define the subject’s identity, as shown in
Figures 5 and 6).

4.1.2. Manually Selected Facial Landmarks. To test that the
SSV feature space can be used for classification of expressions
present in real faces and in the same time to circumvent any
potential problems caused by wrong data correspondence,
tests were carried out on the SSM derived from manually
selected landmarks on faces from the BU-3DFE database.
Each set of 3D facial landmarks provided in the database con-
tains 83 facial points, which are manually labeled around the
areas that are most affected by changes of facial expressions
including eyes, nose, brows, and mouth. Figure 7 illustrates
positions of the landmarks on two different faces. The BU-
3DFE database contains 100 subjects; for each subject, 25
various expressions are included, which can be categorised
into neutral, happy, disgust, fear, angry, surprise, and sad
[23]. The SSM was built using landmarks from 450 faces
belonging to 18 randomly selected subjects. Another set of
landmarks from a different set of 450 faces from 18 different
subjects was used as a test set.



EURASIP Journal on Advances in Signal Processing 11

−20
−15
−10
−5

0
5

10
15
20

b3

−40

−20
0

20
40

b2 −60
−40

−20
0

20
40

b1

Happiness
Sadness

(a) Happy versus sad

−20

−10

0

10

20

30

b3

40
20

0
−20

−40
b2 −80

−60
−40

−20 0
20

40

b1

Anger
Disgust

(b) Angry versus disgust

−30

−20

−10

0

10

20

30

b3

−40
−20

0
20

40
b2 −40

−20
0

20

40

b1

Anger
Fear

(c) Angry versus fear

Figure 8: Separability analysis for manually selected landmarks
using first three principal components.

Figure 8 demonstrates the separability of the SSV feature
space, derived using manually selected landmarks. The first
three elements of the SSV were used with five types of
facial expressions. Figure 8(a) shows that facial expressions
of happy and sad can be easily separated even in a low-
dimensional SSV feature space. This is in agreement with
the general consensus that the expressions of sadness and

happiness are the most recognisable human expressions as
confirmed by a number of psychophysical test. Some of
the expressions are not as well separated in the feature
space as, for example, “angry” and “fear”, as shown in
Figure 8(c). Although they are partly “mixed” together in the
low-dimensional shape space, it is still possible to separate
the majority of these facial expressions. Again this result
reflects findings of psychophysical tests, which confirm that
expressions such as anger and fear can be easily misclassified
by a human observer [36].

4.1.3. Full 3D Face Scans. The results from the previous
section show that with the use of the SSV feature space it
is possible to discriminate facial expressions on real facial
scans. Unfortunately, although the SSM built from manually
selected landmarks uses real faces, the correspondence
is established manually. This approach would not be a
satisfactory solution for most applications as the manual
landmark selection is too tedious and time consuming. In
this section discriminatory characteristics of the SSV feature
space constructed using a dense set of facial points, as
described in Section 3, are examined. As explained there, the
correspondence is estimated automatically during the pose
estimation stage of the model fitting process. It should be
noted here that as the dense correspondence is not given
in the training data set, the correspondence between points
on different training facial scans is also estimated during the
model building phase as explained in Section 2.1.

Figure 9 illustrates the separability of the facial expres-
sions in the feature space of the first three principal
components of the SSV built from the full facial scans. As
in the previous section five different facial expressions were
used. Similarly to the results shown for the manually selected
facial landmarks the results demonstrate again that the SSV
feature space offers a good expression separability.

4.1.4. Automatically Selected Facial Landmarks. As shown
in the previous section, the SSV feature space built from
full facial scans, using dense facial points, provides good
separability of expressions. Additionally this approach is
more practical as the correspondence is estimated auto-
matically. Intuitively discriminatory characteristics of the
SSV feature space can be further improved by using only
information from the facial regions which are articulated the
most during different expressions. In the “full facial scan”
approach, all the points contribute to the SSM, but some
points, that is, on a forehead, carry very little information
about face expression. These points would still contribute
to the variations of the SSM model as they would represent
variability of facial shape for different subjects. Evaluation
was therefore carried out to use the “full facial scan” SSM first
to establish the correspondence between the model and the
data and subsequently used the SSM built from predefined
facial landmarks on the model for the facial expression
representation.

This approach is in principle very similar to using
the SSV representing variations of the manually selected
landmarks, with the difference that landmark selection
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Figure 9: Separability of the facial expressions in the feature space
of first three principal components of the SSV built from the full
facial scans.

is automated, where the automation is achieved through
registration of the “full facial scan” SSM with a new face.
Since the corresponding indices of the facial landmarks
on the model are already known, the positions of the
corresponding landmarks on a new face scan can be directly
estimated when the model is matched to the new face scan.
In this case the surface registration error may introduce

variability in the position of the landmarks which in turn
may have negative effects on the classification performance.
To examine registration accuracy of the proposed method
tests were carried with the synthetic and real faces. In the
experiments, for each data type, the model has been matched
to 450 faces which were not used for the model building.
Subsequently the Euclidean distance between corresponding
landmarks on the deformed model and the test faces was
calculated. The average distance between corresponding
landmarks on the synthetic faces and the model, calculated
from all the 450 test faces, was 1.49 mm with maximum
error of 3.95 mm, whereas corresponding distances obtained
for the real faces were 3.56 mm and 7.64 mm, respectively.
The bigger registration errors obtained for the real faces
are mainly thought to be due to the errors in the manual
selection of the facial landmarks. Indeed it is believed that
the errors in the manual landmark selection, used in the
model building stage, have more influence on the method
performance than the registration error.

Similar to the previous experiments, the model is built
using 450 face scans from 18 randomly selected subjects,
and another 450 face scans from 18 subjects are used for
testing. Figure 10 shows the separability test for the proposed
method. As before the first three principal components
are used to represent five facial expressions. Compared
to the case with the manually selected facial landmarks,
the SSV feature space offers a comparable performance on
separability of expressions.

4.2. Quantitative Evaluation. The separability of the SSV-
based features has been demonstrated qualitatively in the
preceding section. This qualitative analysis shows that the
SSV feature space exhibits good facial expressions separabil-
ity. Due to the way the synthetic data is generated, the SSV-
based features in that case were seen to form very distinctive
linear patterns with different line directions responsible
for different expressions. From experiments with real facial
scans from the BU-3DFE database, the best performance is
achieved when landmarks are used to build the SSM.

In order to further investigate the separability of the SSV-
based features, a quantitative evaluation was carried out. For
this analysis, only the SSM which was generated using the
data from the real scans was included in the test. The data sets
included (i) manually selected facial landmarks, (ii) full face
scans, and (iii) automatically selected facial landmarks. In
this quantitative evaluation, a computable criterion based on
the within-class and between-class distances [37] was used to
measure the separability of expressions in the corresponding
SSV feature spaces. A similar criterion has been used by
Wang and Yin [8] to evaluate the separability of topographic
context (TC) and intensity-based features for the facial
expression analysis and recognition. The criterion relies on
the average between-class distance in the case of multiple
categories, which is defined as follows:

J1(x) = 1
2

Nc
∑

i=1

Pi

Nc
∑

j=1

Pj
1

MiMj

Mi
∑

k=1

Mj
∑

l=1

δ
(

xik, x
j
l

)

, (37)
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Figure 10: Separability analysis for automatically selected land-
marks using first three principal components.

whereMi andMj are the number of samples in classes μi, and

μj , xik, and x
j
l are the K-dimensional feature vectors (SSV)

with labels μi and μj . Nc is the number of distinct classes.

Pi and Pj are the class-prior probabilities, and δ(xik, x
j
l )

denotes the distance between two samples, which is usually

calculated using Euclidean distance. J1(x) can be represented
in a compact form by using the so-called within-class scatter
matrix SW and between-class scatter matrix SB [38], which
are defined as follows:

SW =
Nc
∑

i=1

Pi
1
Mi

Mi
∑

k=1

(

xik −mi

)(

xik −mi

)T
,

SB =
Nc
∑

i=1

Pi(mi −m)(mi −m)T ,

(38)

where mi is the mean of samples in the ith class:

mi = 1
Mi

Mi
∑

k=1

xik, (39)

and m is the mean for all of the samples:

m =
Nc
∑

i=1

Pimi. (40)

Using (38), J1(x) can be rewritten in the following form:

J1(x) = tr(SW + SB). (41)

Although J1(x) is an efficient and computable separability
criterion for feature selection, it is not appropriate for
comparing two or more features since the calculated value of
J1(x) depends on the scale and dimensionality of the feature
space. In order to compare two or more features which lie in
different spaces with different scales and dimensionalities, a
new criterion, J2(x), similar to J1(x), is used (as in [8]) based
on a natural logarithm of the ratio of the determinant of the
within-class scatter matrix and between-class scatter matrix.
The new metric is defined as

J2(x) = ln
|(SW + SB)|

smax
, (42)

where smax is the entry which contains the maximum value in
matrix Σ, and matrix Σ is obtained using the singular value
decomposition (SVD) of matrix SW :

SW = UΣVT . (43)

The larger the value of J2(x), the better the samples
are separated. For comparison, the models using manu-
ally selected landmarks, full face scans, and automatically
selected landmarks are built using the same 450 face scans
as described in the previous sections. As shown in Figure 11,
for the same ratio of retained variability in the model training
data, J2(x) calculated for the SSV feature space of manually
selected landmarks is always the highest. It is not though
significantly different from J2(x) calculated for automatically
selected landmarks when the retained variability is within the
most commonly used range of 70% to 90%. As expected the
separability based on J2(x) is the worst for the SSV computed
from the full face scans.
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Table 1: Recognition rate.

Feature type/classifier LDA (%± SD) QDC (%± SD) NNC (%± SD)

Synthetic faces 98.00± 1.33 100.00± 0.00 70.89± 2.52

Real faces 81.89± 6.96 80.11± 6.87 79.00± 7.09

Manually selected landmarks 84.67± 4.12 82.44± 5.48 83.22± 6.42

Automatically selected landmarks 82.78± 4.64 80.34± 5.03 81.78± 5.28

SD: Standard Deviation.
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Figure 11: Quantitative evaluation of facial expression separability
in the SSV feature spaces.

Table 2: Confusion matrix of the LDA classifier for the synthetic
faces.

Input/output Anger Disgust Fear Happy Sad Surprise

(%) (%) (%) (%) (%) (%)

Anger 94.00 2.00 2.00 2.00 0.00 0.00

Disgust 0.00 100.00 0.00 0.00 0.00 0.00

Fear 0.00 2.00 98.00 0.00 0.00 0.00

Happy 0.00 0.00 0.00 96.00 2.00 2.00

Sad 0.00 0.00 0.00 0.00 100.00 0.00

Surprise 0.00 0.00 0.00 0.00 0.00 100.00

5. Experiments on Facial
Expression Recognition

The separability analyses performed in the previous section
indicate that the SSV feature space can be used in principle
for classification of facial expressions. In this section, the
person-independent facial expression recognition experi-
ments using the high-dimensional SSV are conducted to
further validate discriminatory properties of the SSV feature
space. Again, four different types of facial data were used in
the experiments. For each type of facial data, 900 faces from

Table 3: Confusion matrix of the LDA classifier the real faces.

Input/output Anger Disgust Fear Happy Sad Surprise

(%) (%) (%) (%) (%) (%)

Anger 82.64 3.48 4.17 3.47 4.86 1.39

Disgust 7.64 78.47 3.48 5.56 2.08 2.78

Fear 4.17 3.47 72.59 12.50 5.56 1.39

Happy 2.78 5.56 8.33 83.33 0.00 0.00

Sad 4.17 3.47 11.11 0.00 81.25 0.00

Surprise 0.00 0.00 4.17 2.78 0.00 93.06

Table 4: Confusion matrix of the LDA classifier for the manually
selected landmarks.

Input/output Anger Disgust Fear Happy Sad Surprise

(%) (%) (%) (%) (%) (%)

Anger 90.97 4.17 0.00 0.00 4.86 0.00

Disgust 2.08 89.58 2.78 3.47 0.69 1.39

Fear 0.00 4.86 70.14 4.86 14.58 5.56

Happy 1.38 3.47 6.94 88.19 0.00 0.00

Sad 9.72 0.00 11.81 5.56 72.92 0.00

Surprise 2.08 0.00 1.39 0.00 0.00 96.52

Table 5: Confusion matrix of the LDA classifier for the automati-
cally selected landmarks.

Input/output Anger Disgust Fear Happy Sad Surprise

(%) (%) (%) (%) (%) (%)

Anger 90.28 0.00 2.08 3.47 4.17 0.00

Disgust 4.16 81.94 4.16 2.78 1.40 5.56

Fear 2.78 4.16 65.97 8.18 11.81 5.56

Happy 5.56 0.00 6.94 87.50 0.00 0.00

Sad 3.47 5.56 10.42 3.47 77.08 0.00

Surprise 2.08 0.00 3.47 0.00 0.00 94.44

36 subjects are used containing six basic facial expressions
of anger, disgust, fear, happiness, sadness, and surprise.
These faces are divided into six subsets. Each subset contains
six subjects with 25 faces per subject representing different
expressions. During algorithm evaluation one of the subset
is selected as the test subset while the remaining sets are
used to construct the training database. Such experiment
is repeated six times, with the different subsets selected as
the test subset each time. As the focus of this paper is
on the feature extraction and not on design of the best
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Table 6: Confidence confusion matrix for the human observers using 2D video sequences.

Input/output Anger Disgust Fear Happiness Sadness Surprise Pain

(%) (%) (%) (%) (%) (%) (%)

Anger 55.39 26.03 5.19 0.00 5.13 5.31 2.94

Disgust 7.70 68.86 5.22 0.00 8.47 4.59 5.16

Fear 3.80 9.02 46.90 0.00 7.13 23.90 9.26

Happiness 0.27 0.98 0.71 92.95 1.15 2.35 1.59

Sadness 4.07 5.87 3.63 0.71 74.15 3.22 8.33

Surprise 0.60 7.54 21.84 1.04 2.46 64.64 1.88

Pain 4.94 9.45 9.46 2.30 18.96 3.85 51.04

possible classification algorithm, three well-know (off-the-
shelf) classification methods have been used, namely; linear
discriminant analysis (LDA) [39], quadratic discriminant
classifier (QDC) [40], and nearest neighbor classifier (NNC)
[37]. The detailed description of these methods is beyond
the scope of this paper but can be found in most of the
textbooks on pattern recognition. The average recognition
rates as well as standard deviations, calculated from all the
six experiments using different subsets of faces, for the four
different types of facial data, are give in Table 1. To have a fair
comparison, the size of the SSV for each data type has been
selected in such a way that the retained variability in each
corresponding SSM is as similar as possible. For the results
presented below, SSV for the synthetic data has 27 elements
corresponding to 95.31% of retained variability, SSV for the
full facial scans has 39 elements corresponding to 94.77%,
whereas the SSV for the facial landmarks (both manually and
automatically selected landmarks are using the same model)
has 18 elements corresponding to 95.12%.

As shown in Table 1, all the classifiers achieve a similar
recognition rate for the same data type with the extremely
hight rates achieved for the synthetic faces for all the
classifiers but the NNC classifier. For the facial data from the
BU-3DFE database, the manually selected landmarks’ SSVs
always reach the highest recognition rate, whereas the real
faces’ SSVs always achieve the lowest rate. Tables 2 to 5 show
LDA classifier confusion matrices for all the different data
types used in the experiments.

The presented results show that the SSV-based features
can be used for recognition of facial expressions. The results
for the manually selected landmarks are included only for
a reference as using this data type is not practical due to
lengthy process of landmarks’ selection. From the presented
results it can be seen that the best recognition rate of
82.78% obtained for the automatically selected landmarks
is comparable with the best recognition rate of 84.67%
obtained for the manually selected landmarks. This shows
that the deformable surface registration method described
in Section 3 is able to recover correct correspondences. An
interesting insight into classification performance can be
gained by looking at the confusion matrices. From Table 5
showing the confusion matrix of the LDA classifier for
the automatically selected landmarks, it can be concluded
that the anger and surprise expressions are all classified
with above 90% accuracy, whereas the fear expression is

only classified correctly in 65%. This can lead to the
question about adequacy of the ground truth data. This
is a difficult problem as the human expressions are very
subjective by their nature. To demonstrate this Table 6 shows
the confidence confusion matrix obtained for the human
observers. This data has been obtained as a part of the project
aiming to build and validate a 3D dynamic human facial
expression database [41]. The specific results shown in the
table are based on 10 observers asked to rank their confidence
about recognising 7 facial expressions represented in 210
video clips and each video clip lasts 3 seconds. As it can be
seen in the table the observers were very confident about
recognising the happy expression whereas the fear expression
was often confused with the surprise expression. This shows
a “subjective” nature of the ground truth data. Although
recognition rate of 65% for the fear expression in Table 5
seems to be quite low, when taking into account results
presented in Table 6, they can be considered as reasonable.

6. Conclusions

A novel method for facial expression representation has been
presented in this paper. It uses only 3D shape information,
and therefore, in contrast to most of the methods using
texture, our method is invariant to changes in the illumi-
nation, background, and to some extent viewing angle. The
proposed method assumes that the SSV efficiently encodes
facial expressions, and this encoding can be separated from
the SSV variations caused by observing different faces. The
performed tests indeed confirmed this hypothesis showing
that the proposed representation is, at least partially, invari-
ant to changes of the face ethnicity, gender, or age. A number
of different configurations of the SSM have been tested.
These include the SSM built from facial landmarks as well
as full facial scans of real as well as simulated data. A fully
automatic method has also been proposed for estimation of
the SSV, with an iterative procedure which in turn estimates
correspondence and shape parameters.

7. Future Work

In the method described in this paper the statistical shape
model is built using a single database. In the case of the
multiple databases which are subsequently integrated or
combined together, a further improvement of the method
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Figure 12: An example of the dynamic 3D face sequence.
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Figure 13: Trajectories of the first three principal components of
the SSV-based feature on dynamic face sequences.

would include construction of a hierarchical system, where
firstly the face type is decided upon, and subsequently the
facial expression is recognized using shape model built from
the facial expression database constructed for that specific
face type detected in the previous step.

The separability results presented in the paper show that
the SSV feature space can offer generally good separation
for different expressions. For some expressions though such
as angry and fear, the method provides only a limited
separation, at least for the data used in the experiments. As a
result, these expressions can be easily confused. One way to
improve the separation of these “difficult” expressions is to
provide more information to the model. From the reported
psychophysical test it can be concluded that temporal infor-
mation of the expression articulation provides important
cues for human observers and helps them to correctly read
expressions. Following this observation some simple tests
were conducted with dynamic 3D facial scans. The dynamic
face sequences are captured by the 3dMD scanner [42] in

ADSIP research centre, and the facial landmarks set on each
face in the sequence were manually labeled subsequently.
An example of face sequence is shown in Figure 12. Using
the face sequences, the trajectory of each specified facial
expression is recorded and displayed in the 3D feature space.
Figure 13 shows two trajectories plotted in the SSV domain
for sequences representing fear and angry expressions. It can
be seen that these trajectories are well separated in the SSV
domain, thereby illustrating the potential usefulness of the
temporal information of the face articulation for automatic
expression classification.
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1. Introduction

Biometrics has become a promising technique for personal
authentication. It recognizes persons based on various traits,
such as face, fingerprint, palmprint, voice, and gait. Most
biometric systems use the images of those traits as inputs
[1]. For example, 2D face recognition systems capture facial
images from persons and then recognize them. However,
there are many challenges in implementing a real-world face
recognition system [2–4]. A well-known challenge is the
“curse of dimensionality,” which is also a general problem
in pattern recognition [5]. It refers to the fact that as
the dimension of data increases, the number of samples
required for estimating the accurate representation of the
data grows exponentially. Usually, the spatial resolution of
a face image is at least hundreds of pixels and usually
will be tens of thousands. From the statistical viewpoint,
it will require tens of thousands of face samples to deal
with the face recognition problem. However, it is often
very difficult, even impossible, to collect so many samples.
The dimensionality reduction techniques, including feature

selection and extraction, are therefore widely used in face
recognition systems to solve or alleviate this problem. In this
paper, we will present a novel evolutionary computation-
based approach to dimensionality reduction.

The necessity of applying feature extraction and selec-
tion before classification has been well demonstrated by
researchers in the realm of pattern recognition [5, 6]. The
original data are often contaminated by noise or contain
much redundant information. Direct analysis on them
could then be biased and result in unsatisfied classification
accuracy. On the other hand, the raw data are usually
of very high dimensionality. Not only does this lead to
expensive computational cost but also causes the “curse
of dimensionality.” This may lead to poor performance in
applications such as face recognition.

Feature extraction and selection are slightly different.
Feature selection seeks for a subset of the original features.
It does not transform the features but prunes some of them.
Feature extraction, on the other hand, tries to acquire a
new feature subset to represent the data by transforming
the original data. Mathematically, given an n × N sample
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Figure 1: Linear feature extraction: from the subspace viewpoint.

matrix X = [x1x2 · · · xN ] (n is the original dimension of
samples, and N is the number of samples), a linear feature
extraction algorithm could use an n × m transform matrix
W to transform the data as Y = WTX = [y1y2 · · · yN ],
where “T” is the transpose operator. Here, 0 < m � n is
the dimension of the transformed feature subspace. Figure 1
illustrates this process. Suppose that the original data lie in
the n-dimensional spaceV0. Feature extraction is then to find
out one of its subspaces which has the best discriminability
and is called feature subspace, say the m-dimensional space
V1. In linear cases, an optimal projection basis of the feature
subspace, {w1,w2, . . . ,wm ∈ Rn}, can be calculated such that
certain criterion is optimized. These basis vectors compose
the column vectors in the transform matrix W .

Feature extraction is essentially a kind of optimization
problem, and several criteria have been proposed to steer
the optimization, for example, minimizing reconstruction
error, maximizing reserved variance while reducing redun-
dancy, and minimizing the within-class scatterance while
maximizing the between-class scatterance, and so forth.
Using such criteria, many feature extraction algorithms have
been developed. Two well-known examples are Principal
Component Analysis (PCA) [7] and Linear Discriminant
Analysis (LDA) [5]. They represent two categories of sub-
space feature extraction methods [8] that are widely used in
face recognition [3, 9–17]. In the context of face recognition,
various feature subspaces have been studied [16, 17], for
example, the range space of Sb and the null space of Sw.
Here, Sb and Sw are the between-class and within-class scatter
matrixes, defined as Sb = (1/N)

∑L
j=1 Nj(Mj − M)(Mj −

M)T and Sw = (1/N)
∑L

j=1

∑
i∈I j (xi −Mj)(xi −Mj)

T , where

M = ∑N
i=1 xi/N is the mean of all the N training samples,

and Mj =
∑

i∈I j xi/Nj is the mean of samples in the jth
class ( j = 1, 2, . . . ,L). A significant issue involved in these
methods is how to determine m, that is, the dimension of
the feature subspace. Unfortunately, neither PCA nor LDA
gives systematic ways to determine the optimal dimension in
the sense of classification accuracy. Currently, people usually
choose the dimension by experience [9, 10, 18]. For example,
the dimensionality of PCA-transformed space is set to 20
or 30 or (N − 1), where “N” is the number of samples,
and the dimensionality of LDA-transformed space is set to
(L − 1), where “L” is the number of classes. However, such
method does not necessarily guarantee the best classification
performance as we will show in our experiments. In addition,
it is impractical or too expensive to search the whole solution

space blindly in real applications such as face recognition
because of the very high dimensionality of the original data.

Recently, some researchers [18–32] have explored the
use of evolutionary computation (EC) methods [28] for
feature selection and extraction. In these methods, the
solution space is searched in guided random way, and
the dimensionality of the feature subspace is automatically
determined. Although these methods successfully avoid the
manual selection of feature subspace dimensionality and
good results have been reported on both synthetic and real-
world datasets, most of them have very high space complexity
and are often not applicable for high dimensional or large
scale datasets [29]. In this paper, by using genetic algorithms
(GA) [30], we will propose an evolutionary approach to
extracting discriminant features for classification, namely,
evolutionary discriminant feature extraction (EDFE). The
EDFE algorithm has low space complexity and high search
efficiency. We will further improve it by using the bagging
technique. Comprehensive face recognition experiments
have been performed on the ORL and AR face databases.
The experimental results demonstrated the success of the
proposed algorithms in reducing the space complexity and
enhancing the recognition performance. In addition, the
proposed method provides a way to experimentally compare
the discriminability of different subspaces. This will benefit
both researchers and engineers in analyzing and determining
the best feature subspaces.

The rest of this paper is organized as follows. Sections
2 and 3 introduce in detail the proposed EDFE and bagging
EDFE (BEDFE) algorithms. Section 4 shows the face recogni-
tion experimental results on the ORL and AR face databases.
Section 5 gives some discussion on the relation between the
proposed approach and relevant methods. Finally, Section 6
concludes the paper.

2. Evolutionary Discriminant
Feature Extraction (EDFE)

This section presents the proposed EDFE algorithm, which is
based on GA and subspace analysis. Algorithm 1 shows the
procedures of EDFE.

2.1. Data Preprocessing: Centralization and Whitening. All
the data are firstly preprocessed by centralization, that is, the
total mean is subtracted from them:

xi = xi −M, i = 1, 2, . . . ,N. (1)

The centralization applies a translational transformation to
the data so that their mean is moved to the origin. This helps
to simplify subsequent processing without loss of accuracy.

Generally, the components of data could span various
ranges of values and could be of high order of magnitude. If
we calculate distance-based measures like scatterance directly
on the data, the resulting values can be of various orders of
magnitude. As a result, it will be difficult to combine such
measures with others. This is particularly serious in defining
fitness for GA-based methods. Therefore, we further whiten
the centralized data to normalize their variance to unity.
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Step 1.
Preprocess the data using whitened principal component analysis (WPCA).

- Centralization
- Whitening

Step 2.
Calculate a search space for the genetic algorithm (GA).

- For example, the null space of Sw and the range space of Sb
- Heuristic knowledge can be used in defining search spaces

Step 3.
Use GA to search for an optimal projection basis in the search space defined in Step 2.
3.1. Randomly generate a population of candidate projection bases.
3.2. Evaluate all individuals in the population using a predefined fitness function.
3.3. Generate a new population using selection, crossover and mutation according to the

fitness of current individuals.
3.4. If the stopping criterion is met, retrieve the optimal projection basis from the fittest

individual and proceed to Step 4; otherwise, go back to 3.2 to repeat the evolution loop.
Step 4.
Use a classifier to classify new samples in the feature subspace obtained in Step 3.

- For example, Nearest Mean Classifier (NMC)

Algorithm 1: Procedures of the proposed EDFE algorithm.

This is done by the eigenvalue decomposition (EVD) on the
covariance matrix of data. Let λ1 ≥ λ2 ≥ · · · ≥ λn(≥ 0)
be the eigenvalues of St = (1/N)

∑N
i=1(xi −M)(xi −M)T and

α1,α2, . . . ,αn the corresponding eigenvectors. The whitening
transformation matrix is then

WWPCA =
[

α1√
λ1

α2√
λ2
· · · αN−1√

λN−1

]

. (2)

Here, we set the dimensionality of the whitened space to
(N−1), the rank of the covariance matrix. This means that we
keep all the directions with nonzero variances, which ensures
that no potential discriminative information is discarded
from the data in whitening. Let X and X̃ be the centralized
and whitened data, then we have

X̃ =WT
WPCAX. (3)

It can be easily proven that S̃t = (1/N)X̃X̃T = IN−1,
where IN−1 is the (N − 1) dimensional identity matrix. In
addition to normalizing the data variance, this whitening
process also decorrelates the data components. For simplic-
ity, we denote the preprocessed data in the whitened space
still by X , omitting the tildes.

2.2. Calculating the Constrained Search Space. Unlike existing
GA-based feature extraction algorithms, the proposed EDFE
algorithm imposes some constraints on the search space so
that the GA can search more efficiently in the constrained
space. This idea originates from the fact that guided search,
given correct guidance, is always better than blind search. It
is widely accepted that heuristic knowledge, if properly used,
could significantly improve the performance of systems.
Keeping this in mind, we combine the EDFE algorithm with
a scheme of constraining the search space as follows.

According to the Fisher criterion

WLDA = arg max
W

{

JLDA(W) = WTSbW

WTSwW

}

, (4)

the most discriminative directions are most probably lying
in the subspaces generated from Sw and Sb. Researchers
[16, 17] have investigated the null space of Sw, denoted by
null(Sw), and the range space of Sb, denoted by range(Sb),
using analytical methods. It can be proved that the solution
to (4) lies in these subspaces. We will use the EDFE algorithm
to search for discriminant projection directions in null(Sw),
range(Sw), and range(Sb), respectively, and compare their
discriminability in recognizing faces. In this section, we
present a method to calculate these three spaces. If some
other subspace is considered, it is only needed to take its basis
as the original basis of the search space.

Before proceeding to the detailed method of calculating
the basis for null(Sw), range(Sw), and range(Sb), we first give
the definitions of these three subspaces as follows

null(Sw) = {v | Swv = 0, Sw ∈ Rn×n, v ∈ Rn
}

, (5)

range(Sw) = {v | Swv /= 0, Sw ∈ Rn×n, v ∈ Rn
}

, (6)

range(Sb) = {v | Sbv /= 0, Sb ∈ Rn×n, v ∈ Rn
}
. (7)

According to the definitions of Sw and Sb, the ranks of them
are, respectively,

rank(Sw) = min{n,N − L}, rank(Sb) = min{n,L− 1}.
(8)

These ranks determine the numbers of vectors in the bases
of range(Sw), null(Sw), and range(Sb). Next, we introduce an
efficient method to calculate the basis.

To get a basis of range(Sw), we use the EVD again.
However, in real applications of image recognition, the
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dimensionality of data, n, is often very high. This makes
it computationally infeasible to conduct EVD directly on
Sw ∈ Rn×n. Instead, we calculate the eigenvectors of Sw from
another N ×N matrix S′w [9]. Let

Hw = [x1x2 · · · xN ] ∈ Rn×N , (9)

then

Sw = 1
N
HwH

T
w . (10)

Note that the data have already been centralized and
whitened. Let

S′w =
1
N
HT

wHw, (11)

and suppose (λ,α′) to be an eigenvalue and the associated
eigenvector of S′w, that is,

S′wα
′ = λα′. (12)

Substituting (7) into (8) gives

1
N
HT

wHwα
′ = λα′. (13)

Multiplying both sides of (9) with Hw, we have

1
N
HwH

T
wHwα

′ = λHwα
′. (14)

With (10) and (6), there is

Sw · (Hwα
′) = λ · (Hwα

′), (15)

which proves that (λ,Hwα′) are the eigenvalue and eigenvec-
tor of Sw. Therefore, we first calculate the rank(Sw) dominant
eigenvectors of S′w, (α′1,α′2, . . . ,α′rank(Sw)), which have largest
positive associated eigenvalues. A basis of range(Sw) is then
given by

Brange(Sw) = {αi = Hwα
′
i | i = 1, 2, . . . , rank(Sw)

}
. (16)

The basis of range(Sb) can be calculated in a similar way.
Suppose that the N column vectors of Hb ∈ Rn×N consist of
Mj ( j = 1, 2, . . . ,L) with Nj entries, then Sb = (1/N)HbH

T
b .

Let S′b = (1/N)HT
b Hb and {β′i | i = 1, 2, . . . , rank(Sb)} be

its rank(Sb) dominant eigenvectors. The basis of range(Sb) is
then

Brange(Sb) = {βi = Hbβ
′
i | i = 1, 2, . . . , rank(Sb)

}
. (17)

Based on the basis of range(Sw), it is easy to get the basis
of null(Sw) through calculating the orthogonal complement
space of range(Sw).

2.3. Searching: An Evolutionary Approach

2.3.1. Encoding Individuals. Binary individuals are widely
used owing to their simplicity; however, the specific def-
inition is problem dependent. As for feature extraction,

a1 b1 b2 bn−1ana2

Coefficients Selection bits

··· ···

Figure 2: The individual defined in EDFE. Each coefficient is
represented by 11 bits.

it depends on how the projection basis is constructed.
The construction of projection basis vectors is to generate
candidate transformation matrixes for the GA algorithm.
Usually, the whole set of candidate projection basis vectors
are encoded in an individual. This is the reason why the
space complexity of existing GA-based feature extraction
algorithms is so high. For example, in EP [18], one individual
has (5n2−4n) bits, where n is the dimensionality of the search
space. In order to reduce the space complexity and make
the algorithm more applicable for high dimensional data, we
propose to construct projection basis vectors using the linear
combination of the basis of search space and the orthogonal
complement technique. As a result, only one vector is needed
to encode for each individual.

First, we generate one vector via linearly combining the
basis of the search space. Suppose that the search space is Rn

and let {ei ∈ Rn | i = 1, 2, . . . ,n} be a basis of it, and let {ai ∈
R | i = 1, 2, . . . ,n} be the linear combination coefficients.
Then we can have a vector as follows:

v =
n∑

i=1

aiei. (18)

Second, we calculate a basis of the orthogonal complement
space in Rn of V = span{v}, the space expanded by v. Let
{ui ∈ Rn | i = 1, 2, . . . ,n − 1} be the basis, and U =
span{u1,u2, . . . ,un−1}, then

Rn = V ⊕U , (19)

where “⊕” represents the direct sum of vector spaces, and

U = V⊥, (20)

where “⊥” denotes the orthogonal complement space.
Finally, we randomly choose part of this basis as the
projection basis vectors.

According to the above method of generating projection
basis vectors, the information encoded in an individual
includes the n combination coefficients and (n− 1) selection
bits. Each coefficient is represented by 11 bits with the
leftmost bit denoting its sign (“0” means negative and “1”
positive) and the remaining 10 bits representing its value as a
binary decimal. Figure 2 shows such an individual, in which
the selection bits b1, b2, . . . , bn−1, taking a value of “0” or “1,”
indicate whether the corresponding basis vector is chosen
as a projection basis vector or not. The individual under
such definition has (12n − 1) bits. Apparently, it is much
shorter than that by existing GA-based feature extraction
algorithms (such as EP), and consequently the proposed
EDFE algorithm has a much lower space complexity.
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2.3.2. Evaluating Individuals. We evaluate individuals from
two perspectives, pattern recognition and machine learning.
Our ultimate goal is to accurately classify data. Therefore,
from the perspective of pattern recognition, an obvious
measure is the classification accuracy in the obtained feature
subspace. In fact, almost all existing GA-based feature extrac-
tion algorithms use this measure in their fitness functions.
They calculate this measure based on the training samples or
a subset of them. However, after preprocessing the data using
WPCA, the classification accuracy on the training samples
is always almost 100%. In [26], Zheng et al. also pointed
this out when they used PCA to process the training data.
They then simply ignored its role in evaluating individuals.
Different from their method, we keep this classification term
in the fitness function but use a validation set, instead
of the training set. Specifically, we randomly choose from
the Nva samples to create a validation set Ωva and use the
remaining Ntr = (N − L × Nva) samples as the training
set Ωtr. Assume that Nc

va(D) samples in the validation set
are correctly classified in the feature subspace defined by
the individual D on the training set Ωtr; the classification
accuracy term for this individual is then defined as

ζa(D) = Nc
va(D)
Nva

. (21)

From the machine learning perspective, the general-
ization ability is an important index of machine learning
systems. In previous methods, the between-class scatter is
widely used in fitness functions. However, according to the
Fisher criterion, it is better to simultaneously minimize the
within-class scatter and maximize the between-class scatter.
Thus, we use the following between-class and within-class
scatter distances of samples in the feature subspace:

db(D) = 1
N

L∑

j=1

Nj

(
Mj −M

)T(
Mj −M

)
,

dw(D) = 1
L

L∑

j=1

1
Nj

∑

i∈I j
(yi −Mj)

T
(
yi −Mj

)
(22)

to measure the generalization ability as

ζg(D) = db(D)− dw(D). (23)

Here, M and Mj , j = 1, 2, . . . ,L, are calculated based on {yi |
i = 1, 2, . . . ,N} in the feature subspace.

Finally we define the fitness function as the weighted sum
of the above two terms:

ζ(D) = πaζa(D) + (1− πa)ζg(D), (24)

where πa ∈ [0, 1] is the weight. The accuracy term ζa in this
fitness function lies in interval [0, 1]. Thus, it is reasonable to
make the value of the second generalization term ζg be of a
similar magnitude order to ζa. This verifies the motivation of
data preprocessing by centralizing and whitening.

2.3.3. Generating New Individuals. To generate new indi-
viduals from the current generation, we use three genetic

operators, selection, crossover, and mutation. The selection
is based on the relative fitness of individuals. Specifically, the
ratio of the fitness of an individual to the total fitness of
the population determines how many times the individual
will be selected as parent individuals. After evaluating all
individuals in the current population, we select (S− 1) pairs
of parent individuals from them, where S is the size of the
GA population. Then the population of the next generation
consists of the individual with the highest fitness in the
current generation and the (S−1) new individuals generated
from these parent individuals.

The crossover operator is conducted under a given
probability. If two parent individuals are not subjected to
crossover, the one having higher fitness will be chosen into
the next generation. Otherwise, two crossover points are
randomly chosen, one of which is within the coefficient
bits and the other is within the selection bits. These two
points divide both parent individuals into three parts, and
the second part is then exchanged between them to form
two new individuals, one of which is randomly chosen as an
individual in the next generation.

At last, each bit in the (S−1) new individuals is subjected
to mutation from “0” to “1” or reversely under a specific
probability. After applying all the three genetic operators, we
have a new population for the next GA iteration.

2.3.4. Imposing Constraints on Searching. As discussed be-
fore, to further improve the search efficiency and the
performance of the obtained projection basis vectors, some
constraints are necessary for the search space. Thanks to the
linear combination mechanism used by the proposed EDFE
algorithm, it is very easy to force the GA to search in a
constrained space. Our method is to construct vectors by
linearly combining the basis of the constrained search space,
instead of the original space. Take null(Sw), the null space
of Sw, as an example. Suppose that we want to constrain the
GA to search in null(Sw). Let {αi ∈ Rn | i = 1, 2, . . . ,m}
be the eigenvectors of Sw associated with zero eigenvalues.
They form a basis of null(Sw). After obtaining a vector v
via linearly combining the above basis, we have to calculate
the basis of the orthogonal complement space of V =
span{v} in the constrained search space null(Sw), but not
the original space Rn (referring to Section 2.1). For this
purpose, we first calculate the isomorphic space of V in Rm,
denoted by V̂ = span{PTv}, where P = [α1α2 · · ·αm] is
an isomorphic mapping. We then calculate a basis of the

orthogonal complement space of V̂ in Rm. Let {β̂i ∈ Rm |
i = 1, 2, . . . ,m − 1} be the obtained basis. Finally, we map

this basis back into null(Sw) through {βi = Pβ̂i ∈ Rn | i =
1, 2, . . . ,m− 1}.

The following theorem demonstrates that {βi | i =
1, 2, . . . ,m − 1} comprise a basis of the orthogonal comple-
ment space of V in null(Sw).

Theorem 1. Assume that A ⊂ Rn is an m-dimensional space,
and P = [α1α2 · · ·αm] is an identity orthogonal basis of A,
where αi ∈ Rn, i = 1, 2, . . . ,m. For any v ∈ A, suppose that

V̂ = span{PTv} ⊂ Rm. Let {β̂i ∈ Rm | i = 1, 2, . . . ,m − 1}
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be an identity orthogonal basis of the orthogonally complement

space of V̂ in Rm, then {βi = Pβ̂i ∈ Rn | i = 1, 2, . . . ,m− 1} is
a basis of the orthogonally complement space of V = span{v}
in A.

Proof. See Appendix 6.

3. Bagging EDFE

The EDFE algorithm proposed above is very applicable to
high-dimensional data because of its low space complexity.
However, since it is based on the idea of subspace methods
like LDA, it could suffer from the outlier and over-fitting
problems when the training set is large. Moreover, when
there are many training samples, the null(Sw) becomes small,
resulting in poor discrimination performance in the space.
Wang and Tang [33] proposed to solve this problem using
two random sampling techniques, random subspace and
bagging. To improve the performance of the EDFE algorithm
on large scale datasets, we propose to incorporate the bagging
technique into the EDFE algorithm and hence develop
the bagging evolutionary discriminant feature extraction
(BEDFE) algorithm.

Bagging (acronym for Bootstrap AGGregatING), pro-
posed by Breiman [34], uses resampling to generate several
random subsets (called random bootstrap replicates) from
the whole training set. From each replicate, one classifier is
constructed. The results by these classifiers are integrated
using some fusion scheme to give the final result. Since
these classifiers are trained from relatively small bootstrap
replicates, the outlier and over-fitting problems for them are
expected to be alleviated. In addition, the stability of the
overall classifier system can be improved by integration of
several (weak) classifiers.

Like Wang and Tang’s method, we randomly choose some
classes from all the classes in the training set. The training
samples belonging to these classes compose a bootstrap
replicate. Usually, the unchosen samples become useless in
the learning process. Instead, we do not overlook these
data, but rather use them for validation and calculate the
classification accuracy term in the fitness function. Below are
the primary steps of the BEDFE algorithm.

(1) Preprocess the data using centralizing and whitening.

(2) Randomly choose some classes, say L̂ classes, from
all the L classes in the training set. The samples
belonging to the L̂ classes compose a bootstrap
replicate used for training, and those belonging to
the other (L − L̂) classes are used for validation.
Totally, K replicates are created (different replicates
could have different classes).

(3) Run the EDFE algorithm on each replicate to learn
a feature subspace. In all, K feature subspaces are
obtained.

(4) Classify each new sample using a classifier in the
K feature subspaces, respectively. The resulting K
results are combined by a fusion scheme to give the
final result.

There are two key steps in the BEDFE algorithm: how to
do validation and classification, and how to fuse the results
from different replicates. In the following we present our
solutions to these two problems.

3.1. Validation and Classification. As shown above, a training
replicate is created from the chosen L̂ classes. Based on this
training replicate, an individual in the EDFE population
generates a candidate projection basis of feature subspace.
All the samples in the training replicate are projected into
this feature subspace. The generalization term in the fitness
function is then calculated from these projections. To obtain
the value of the classification accuracy term, we again
randomly choose some samples from all the samples of each
class in the (L − L̂) validation classes to form the validation
set. We then project the remaining samples in these classes to
the feature subspace and calculate the mean as the prototype
for each validation class according to the projections. Finally,
the chosen samples are classified based on these prototypes
using a classifier. The classification rate is used as the value of
the classification accuracy term in the fitness function.

After running the EDFE algorithm on all the replicates,
we get K feature subspaces as well as one projection basis
for each of them. For each feature subspace, all the training
samples (including the samples in training replicates and
validation classes) are projected into the feature subspace,
and the means of all classes are calculated as the prototypes
of them. To classify a new sample, we first classify it in each of
the K feature subspaces based on the class prototypes in that
space and then fuse the K results to give the final decision,
which is introduced in the following part.

3.2. The Majority Voting Fusion Scheme. A number of fusion
schemes [35, 36] have been proposed in literature of multiple
classifiers and information fusion. In the present paper,
we only focus on Majority Voting for its intuitiveness and
simplicity. Let {Mk

j ∈ Rlk | j = 1, 2, . . . ,L; k = 1, 2, . . . ,K}
be the prototype of class j in the kth feature subspace,
whose dimensionality is lk. Given a new sample (represented
as a vector), we first preprocess it by centralization and
whitening; that is, the mean of all the training samples is
subtracted from it, and the resulting vector is projected into
the whitened PCA space learned from the training samples.
Denote by xt the preprocessed sample. It is projected into
each of the K feature subspaces, resulting in ykt in the kth
feature subspace, and classified in these feature subspaces,
respectively. Finally, the Majority Voting scheme is employed
to fuse the classification results obtained in the K feature
subspaces.

Majority Voting is one of the simplest and most popular
classifier fusion schemes. Take the Nearest Mean Classifier
(NMC) and the kth feature subspace as an example. The
NMC assigns xt to the class ck ∈ {1, 2, . . . ,L} such that

∥
∥
∥ykt −Mk

ck

∥
∥
∥ = min

j∈{1,2,...,L}

∥
∥
∥ykt −Mk

j

∥
∥
∥. (25)

In other words, it votes for the class whose prototype
is closest to ykt . After classifying xt in all the K feature
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Table 1: General information and settings of the used databases.

Database Sub number Size number Image/Sub number Train number Validation number Test number

ORL 40 92× 112 10 4(2) 1(3) 5

AR 120 80× 100 14 6(3) 1(4) 7
a

From the first column to the last column: the name of the database, the number of subjects, the size of images, the number of images per subject, the number
of training samples per subject, the number of validation samples per subject, and the number of test samples per subject.
bThe numbers in parentheses are the numbers of samples per validation subject used by BEDFE to calculate the class prototypes and to evaluate the training
performance.

subspaces, we get K results {ck | k = 1, 2, . . . ,K}. Let Votes(i)
be the number of votes obtained by class i, that is,

Votes(i) = #
{
ck = i | k = 1, 2, . . . ,K

}
, (26)

where “#” denotes the cardinality of a set. The final class label
of xt is determined to be c if

Votes(c) = max
i∈{1,2,...,L}

Votes(i). (27)

4. Face Recognition Experiments

Face recognition experiments have been performed on the
ORL and AR face databases. Due to the high dimensionality
of the data, conventional GA-based feature extraction meth-
ods like EP [18] and EDA [37] cannot be directly applied
to these two databases unless reducing the dimensionality
in advance. By contraries, the EDFE and BEDFE algorithms
proposed in this paper can still work very well with them.
As an application of the algorithms, we will use them to
investigate the discriminative ability of the three subspaces,
null(Sw), range(Sw), and range(Sb). We will experimen-
tally demonstrate the necessity of carefully choosing the
dimension of feature subspace. Finally, we will compare the
proposed algorithms with some state-of-the-art methods in
the literature, that is, Eigenfaces [9], Fisherfaces [10], Null-
space LDA [16], EP [18], and EDA+Full-space LDA [32].

4.1. The Face Databases and Parameter Settings. The ORL
database of faces [38] contains 400 face images of 40 distinct
subjects. Each subject has 10 different images, which were
taken at different times. These face images have variant
lighting, facial expressions (open/closed eyes, smiling/not
smiling) and facial details (glasses/no glasses). They also
display slight pose changes. The size of each image is 92 ×
112 pixels, with 256 gray levels per pixel. The AR face
database [39] has much larger scale than the ORL database.
It has over 4000 color images of 126 people (70 men
and 56 women), which have different facial expressions,
illumination conditions, and occlusions (wearing sun-glasses
and scarf). In our experiments, we randomly chose some
images of 120 subjects and discarded the samples of wearing
sun-glasses and scarf. In the resulting dataset, there are 14
face images for each chosen subject, totally 1680 images. All
these images were converted to gray scale images, and the
face portion on them was manually cropped and resized
to 80 × 100 pixels. For both databases, all images were
preprocessed by histogram equalization. Table 1 lists some

(a)

(b)

Figure 3: Some sample images in the (a) ORL and (b) AR face
databases.

general information of the two databases, and Figure 3 shows
some sample images of them.

In the GA algorithm, we set the probability of crossover
to 0.8, the probability of mutation to 0.01, the size of
population to 50, and the number of generations to 100. For
the weight of the classification accuracy term in the fitness
function, we considered the following choices for EDFE:
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. After finding
the weight which gives the best classification accuracy for a
dataset, we adopted it in BEDFE on the dataset. Regarding
the number of bagging replicates in BEDFE, we conducted
experiments for four cases, that is, using 3, 5, 7, and 9
replicates, and then chose the best one among them. The
results will be presented in the following parts.

To create an evaluation face image set, all the sample
images in each database were randomly divided into three
parts: the training set, the validation set, and the test set.
In the experiments on the ORL database, four images were
randomly chosen from the samples of each subject for
training, one image for validation and the remaining five
images for test. In the experiments on the AR database, six
images were randomly chosen for training from the samples
of each subject, one image for validation, and the rest seven
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Table 2: Recognition accuracy of EDFE in different subspaces.

Database Null(Sw) Range(Sw) Range(Sb)

ORL 90.3% 78.1% 79.5%

AR 95.33% 80.95% 81.67%

Table 3: Recognition accuracy of BEDFE in different subspaces.

Database Null(Sw) Range(Sw) Range(Sb)

ORL 91.3% 80.02% 81.14%

AR 96.86% 83.1% 83.38%

Table 4: The mean and standard deviation of recognition accuracy
(%) of the proposed EDFE and BEDFE methods and some other
state-of-the-art methods on the ORL and AR face databases.

Method ORL face database AR face database

Eigenfaces 90.15± 3.2 82.68± 0.9

Fisherfaces 91.6± 1.51 96.99± 0.7

Null-space LDA 89.75± 1.21 96.71± 0.59

EP 80.31± 3.5 N/A

EDA+Full-space LDA 92.5± 2.1 97.02± 0.8

EDFE+Full-space(Sw) 93± 1.8 97.9± 0.7

BEDFE+Full-space(Sw) 95.5± 1.12 98.55± 0.46

images for test. For the methods Eigenfaces, Fisherfaces,
Null-space LDA, and EP, no validation set is required. Thus
we combined the training images and validation images
to form the training set for them. The case was a little
bit different for the experiments with BEDFE, where the
division of samples is on the class level (each subject is
a class). Specifically, we first randomly chose five (seven)
images from each subject to compose the test set of the ORL
(AR) database. Among the remaining images, a subset of
classes was randomly chosen. The samples belonging to these
classes were used for training whereas those belonging to the
other classes composed the validation set. From each class
in the validation set, some samples were randomly chosen
to calculate the prototype of the class, and the remaining
ones were used for evaluation. On the ORL database, two
images of each validation class were randomly chosen for
class prototype calculation, and the other three images of
the class were used to evaluate the training performance. On
the AR database, three images were randomly chosen from
each validation class for computing the class prototype, and
the other four images of the class were used for training
performance evaluation. The last three columns in Table 1
summarize these settings.

Totally, we created 10 evaluation sets from each of the two
databases and ran algorithms over them one by one. We will
use the mean and standard deviation of recognition accuracy
over the 10 evaluation sets to evaluate the performance of
different methods. When applying EP to the ORL databases,
the dimensionality of the data should be reduced in advance
due to the high space complexity of EP. We reduced the data
to a dimension of the number of training samples minus one
using WPCA (note that the role of WPCA here is different

from that in the proposed EDFE algorithm). To evaluate the
performance of Eigenfaces on the databases, we tested all
possible dimensions of PCA-transformed subspace (between
1 andN−1) and found out the one with the best classification
accuracy. As for Fisherfaces, we set the dimension of PCA-
transformed subspace to the rank of St and tried all possible
dimensions of LDA-transformed subspace (between 1 and
L− 1).

4.2. Investigation on Different Subspaces. Three subspaces,
null(Sw), range(Sw), and range(Sb), are thought to contain
rich discriminative information within data [16, 17]. As
mentioned above, the algorithms proposed in this paper pro-
vide a method to constrain the search in a specific subspace.
Hence, we can restrict the algorithms to search for a solution
within that subspace. Here we report our experimental
results in investigating the above three subspaces using the
EDFE and BEDFE algorithms on the ORL and AR databases.

Table 2 shows the average recognition accuracy of EDFE
in the three different subspaces on the ten evaluation sets
of ORL and AR databases. The presented classification
accuracies are the best ones among those obtained using
different weights. On all the ten evaluation sets of both ORL
and AR databases, null(Sw) gives the best results, which are
significant better than the other two subspaces. On the other
hand, there is no big difference between the performance
of range(Sw) and range(Sb). This is not surprising because
in the null space of Sw, if exists, samples in the same class
will be condensed to one point. Then if a projection basis
in it can be found to make the samples of different classes
separable from each other, the classification performance
on these samples will be surely the best. However, for new
samples unseen in the training set, the classification accuracy
on them depends on the accuracy of the estimation of Sw.
Another problem with null(Sw) is that its dimensionality is
bounded by the minimum of the dimensionality of the data
and the difference between the number of samples and the
number of classes. Consequently, as the number of training
samples increases, this null space could become too small to
contain sufficient discriminant information. In this case, we
propose to incorporate the bagging technique to the EDFE
algorithm to enhance its performance. The results of BEDFE
are given in Table 3, from which similar conclusion can be
drawn.

4.3. Investigation on Dimensionality of Feature Subspaces.
In order to show the importance of carefully choosing
the dimensionality of feature subspaces, we calculated the
average recognition accuracy of Eigenfaces and Fisherfaces
on the ten evaluation sets taken from the ORL and AR face
databases when different numbers of features were chosen for
the feature subspaces. The possible dimension of the feature
subspace obtained by Eigenfaces on the ORL evaluation sets
is between 1 and 199 (i.e., the number of samples minus
one), whereas that on the AR evaluation sets is between 1 and
839. As for Fisherfaces, we set the dimension of PCA-reduced
feature subspace to 720 (i.e., the number of samples minus
the number of classes) and tested all the possible dimension
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Figure 4: The curves of the average recognition accuracy of (a) Eigenfaces and (b) Fisherfaces on the ORL face database versus the number
of features or the dimension of feature subspaces. (c) and (d) are the corresponding enlarged last parts of the curves.

of LDA-reduced feature subspace from 1 to 119 (i.e., the
number of classes minus one). According to the experimental
results, the overall trend of recognition accuracy is increasing
as the number of features (i.e., the dimension of feature
subspace) increases. However, the best accuracy is often
obtained not at the largest possible dimension (i.e., the
number of samples minus one in case of Eigenfaces and the
number of classes minus one in case of Fisherfaces). Figures
4 and 5 show the curves of the average recognition accuracy
of Eigenfaces and Fisherfaces on ORL and AR face databases
versus the dimension of feature subspaces (to clearly show
that the best accuracy is achieved not necessarily at the largest
possible dimension, we also display the last part of the curves
in an enlarged view). From these results, we can see that
the dimension at which the best recognition accuracy is
achieved varies with respect to the datasets. Therefore, using
a systematic method like the ones proposed in this paper to
automatically determine the dimension of feature subspaces
is very helpful to a subspace-based recognition system.

4.4. Performance Comparison. Finally, we compared the
proposed algorithms with some state-of-the-art methods in
literature, including Eigenfaces [9], Fisherfaces [10], Null-
space LDA [16], EP [18], and EDA+Full-space LDA [32].
Considering that both null(Sw) and range(Sw) have useful

discriminative information, we ran our proposed EDFE
and BEDFE methods in both null(Sw) and range(Sw) and
then employed the same fusion method used by [32] to
fuse the results obtained in these two subspaces. We called
them EDFE+Full-space(Sw) and BEDFE+Full-space(Sw). We
implemented these methods by using Matlab and evaluated
their performance on the ten evaluation sets of ORL and
AR face databases. But as for the EP method, it is too
computationally complex to be applicable (N/A) on the AR
face database (in Matlab an error of ‘out of memory’ will
be reported to the EP method). We calculated the mean
and standard deviation of the recognition rates for all the
methods. The results are listed in Table 4 (the results of
Eigenfaces and Fisherfaces are according to the best results
obtained in the last subsection).

It can be seen from the results that the proposed
EDFE and BEDFE methods overwhelm their counterpart
methods in the average recognition accuracy. Moreover, by
using the bagging technique, the BEDFE method performs
much more stable than EDFE, and it has the smallest
deviation of recognition accuracy among all the methods.
A possible reason for such improvement on the stability
is that by using smaller training sets and multiple feature
subspace fusion, the outlier and over-fitting problems of
conventional machine learning and pattern recognition
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Figure 5: The curves of the average recognition accuracy of (a) Eigenfaces and (b) Fisherfaces on the AR face database versus the number of
features or the dimension of feature subspaces. (c) and (d) are the corresponding enlarged last parts of the curves.

systems could be alleviated. Moreover, the improvement
on recognition accuracy made by the proposed EDFE and
BEDFE compared with the other methods could be due to
their better generalization ability. In Eigenfaces, Fisherfaces,
Null-space LDA, and EDA+Full-space LDA, the projection
basis used for dimension reduction is directly calculated
from certain covariance or scatter matrix of the training
data. Instead, the methods proposed in this paper begin
the search of optimal projection basis from these directly
calculated ones and iteratively approach the best one via the
linear combination of them. The linear combination not only
ensures that the resulting projection basis still lies in the
feature subspace but also enhances the generalization ability
of the obtained projection basis by adjusting them according
to the recognition accuracy on some validation data.

5. Discussion

In the proposed EDFE and BEDFE algorithms, we take the
classification accuracy term as a part of the fitness function of
the GA. It is then naturally optimized as the GA population
evolves. Unlike existing evolutionary computation-based
feature extraction methods like EP [18], we define this term
on a randomly chosen validation sample set, but not the
training set. Since the validation set’s role is to simulate

new test samples, the performance of the resulting feature
subspace is supposed to be more reliable. We also set up a
Fisher criterion-like term as another part of the GA’s fitness
function and optimize it in an iterative way, avoiding the
matrix inverse operation required by the conventional LDA
method. As a result, the proposed algorithms could alleviate
the small sample size (SSS) problem of LDA.

Current PCA- and LDA-based subspace methods such as
Eigenfaces and Fisherfaces require setting the dimensionality
for the feature subspace in advance. They fail to provide sys-
tematic way to automatically determine the dimensionality
from the classification viewpoint. Since the optimal dimen-
sionality of feature subspace in terms of recognition rates
will vary across datasets, it is desired to select automatically
the optimal dimensionality for specific datasets, instead of
using a predefined one. The proposed EDFE and BEDFE
algorithms provide such a way by employing the stochastic
optimization scheme of GA.

Some other GA-based feature selection/extraction meth-
ods have been also proposed in literature. Although these
GA-based feature selection methods, such as EDA+Full-
space LDA [32], GA-PCA and GA-Fisher [26], have the
advantage in lower space and time requirement, they are
limited in the ability of searching discriminative features. On
the other hand, those GA-based feature extraction methods
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have high space complexity and are thus not applicable to
high dimensional and large scale datasets. For example, in
EP [18], an individual has (5n2 − 4n) bits. In the recently
proposed EDA algorithm [37], the individual has to encode
(n × m) weights, which are between −0.5 and 0.5 (here, n
is the dimension of the original data space, and m is the
dimension of the feature subspace). On the contrary, the
individual in the proposed algorithms has only (12n − 1)
bits (note that in face recognition applications, m is usually
much larger than 12 and a number of bits have to be used
to represent a decimal weight used by EDA). As a result, the
space complexity is significantly reduced in our proposed
methods. After incorporating the bagging technique with
the proposed EDFE algorithm, it becomes more stable by
eliminating possible outliers and fusing different feature
subspaces, and hence more suitable for high-dimensional
and large scale datasets.

Another problem with existing GA-based feature extrac-
tion methods lies in their blind search strategy. Using the
linear combination and orthogonal complement techniques,
the EDFE successfully provides a way to impose constraints
on the search space of GA. This also enables EDFE to
effectively make use of the heuristic information of the dis-
criminative feature subspace to improve its search efficiency
and classification performance. In addition, the proposed
algorithms make it possible to investigate the discriminative
ability of different feature subspaces.

6. Conclusions

In this paper, we proposed an evolutionary approach to
extracting discriminative features, namely, evolutionary dis-
criminant feature extraction (EDFE) as well as its bagging
version (BEDFE). The basic idea underlying the EDFE
algorithm is to use the genetic algorithm (GA) to search for
an optimal discriminative projection basis in a constrained
subspace with the goal of making the data in different clusters
much easier to be separated. The primary contribution of
this paper includes (1) reducing the space complexity of
GA-based feature extraction algorithms; (2) enhancing the
search efficiency, stability, as well as recognition accuracy;
(3) providing an effective way to investigate different feature
subspaces. Experiments on the ORL and AR databases have
been performed to validate the proposed methods.

There are still some issues worthy further study on the
proposed approach. Firstly, it is a supervised linear feature
extraction method. Therefore, how to extend it to nonlinear
cases deserves further study. Secondly, the latest progress in
the research on GA, for example, how to set up an initial
population and how to choose proper GA parameters, could
give us some useful hints on further improving the proposed
methods. Thirdly, more promising results could be obtained
by exploring other criteria to evaluate the feature subspaces
and incorporating them into the evolutionary approach,
for instance, those of recently proposed manifold learning
algorithms [40, 41]. Finally, it could be very interesting to
investigate the discriminability of other subspaces using the
proposed EDFE and BEDFE algorithms.

Appendix

Proof of Theorem 1

Proof. First it can be easily proved that for all i ∈
{1, 2, . . . ,m − 1}, βi ∈ A. Since βi = Pβ̂i =

∑m
j=1 βi jαj , βi

can be represented by a basis of A. Thus βi ∈ A.
Secondly, let us prove A = U ⊕ V , where U = span{β1,

β2, . . . ,βm−1}. This is to prove that {β1,β2, . . . ,βm−1, v} is a

linear independent bundle. Since βi = Pβ̂i and PTP = Em,
which is an m-dimensional identity matrix, we have βTi βj =
β̂Ti β̂ j . However, {β̂i | i = 1, 2, . . . ,m − 1} is an identity
orthogonal basis. Thus, β1,β2, . . . ,βm−1 are orthogonal to
each other.

Furthermore, for all i ∈ {1, 2, . . . ,m − 1}, βTi v =
(Pβ̂i)

Tv = β̂Ti P
Tv. Because {β̂i | i = 1, 2, . . . ,m − 1} is

an identity orthogonal basis of the orthogonal complement

space of V̂ = span{PTv} in Rm, β̂Ti (PTv) should be zero.
Therefore, βTi v = 0, that is, βi is also orthogonal to v.

To sum up, we get that {β1,β2, . . . ,βm−1, v} is a linear
independent bundle containing m orthogonal vectors in the
m dimensional space A. Thus A = U ⊕V .
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1. Introduction

Automatic personal identity authentication is an important
problem in security and surveillance applications, where
physical or logical access to locations, documents, and
services must be restricted to authorized persons. Passwords
or personal identification numbers (PINs) are often assigned
to individuals for authentication. However, the password
or PIN is vulnerable to unauthorized exploitation and can
be forgotten. Biometrics, on the other hand, use personal
intrinsic characteristics which are harder to compromise and
more convenient to use. Consequently, the use of biometrics
has been gaining acceptance for various applications. Many
different sensing modalities have been developed to verify
personal identities. Fingerprints are a widely used biometric.
Iris recognition is an emerging technique for personal
identification which is an active area of research. There are
also studies to use voice and gait as primary or auxiliary
means to verify personal identities.

Face recognition has been studied for many years for
human identification and personal identity authentication
and is increasingly used for its convenience and noncontact
measurements. Most modern face recognition systems are
based on the geometric characteristics of human faces in

an image [1–4]. Accurate verification and identification
performance has been demonstrated for these algorithms
based on mug shot type photographic databases of thou-
sands of human subjects under controlled environments
[5, 6]. Various 3D face models [7, 8] and illumination
models [9, 10] have been studied for pose and illumination-
invariant face recognition. In addition to methods based on
gray-scale and color face images over the visible spectrum,
thermal infrared face images [11, 12] and hyperspectral
face images [13] have also been used for face recognition
experiments. An evaluation of different face recognition
algorithms using a common dataset has been of general
interest. This approach provides a solid basis to draw con-
clusions on the performance of different methods. The Face
Recognition Technology (FERET) program [5] and the Face
Recognition Vendor Test (FRVT) [6] are two programs which
provided independent government evaluations for various
face recognition algorithms and commercially available face
recognition systems.

Most biometric methods, including face recognition
methods, are subject to possible false acceptance or rejection.
Although biometric information is difficult to duplicate,
these methods are not immune to forgery, or so-called
spoofing. This is a concern for automatic personal identity
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authentication since intruders can use artificial materials
or objects to gain unauthorized access. There are reports
showing that fingerprint sensor devices have been deceived
by Gummi fingers in Japan [14] and fake latex fingerprints
in Germany [15]. Face and iris recognition systems can
also be compromised since they use external observables
[16]. To counter this vulnerability, many biometric systems
employ a liveness detection function to foil attempts at
biometric forgery [17, 18]. To improve system accuracy,
there is strong interest in research to combine multiple
biometric characteristics for multimodal personal identity
authentication [19, 20]. Since hyperspectral sensors capture
spectral and spatial information they provide the potential
for improved personal identity verification.

Methods that have been developed consider the use of
representations for visible wavelength color images for face
recognition [21, 22] as well as the combination of color and
3D information [23]. In this work, we examine the use of
combined spectral/spatial information for face recognition
over the near-infrared (NIR) spectral range. We show that
the use of spatial information can be used to improve on the
performance of spectral-only methods [13]. We also use a
large NIR hyperspectral dataset to show that the choice of
spectral band over the NIR does not have a significant effect
on the performance of single-band eigenface methods. On
the other hand, we show that band selection does have a
significant effect on the performance of multiband methods.
In this paper we develop a new representation called the
spectral-face which preserves both high-spectral and high-
spatial resolution. We show that the spectral eigenface
representation outperforms single-band eigenface methods
and has performance that is comparable to multiband
eigenface methods but at a lower computational cost.

2. Face Recognition in Single-Band Images

A hyperspectral image provides spectral information, nor-
mally in radiance or reflectance, at each pixel. Thus, there
is a vector of values for each pixel corresponding to different
wavelengths within the sensor spectral range. The reflectance
spectrum of a material remains constant in different images
while different materials exhibit distinctive reflectance prop-
erties due to different absorbing and scattering characteris-
tics as a function of wavelength. In the spatial domain, there
are several gray-scale images that represent the hyperspectral
imager responses of all pixels for a single spectral band. In
a previous study [24], seven hyperspectral face images were
collected for each of 200 human subjects. These images have
a spatial resolution of 468 × 494 and 31 bands with band
centers separated by 0.01 μm over the near-infrared (0.7 μm–
1.0 μm). Figure 1 shows calibrated hyperspectral face images
of two subjects at seven selected bands which are separated
by 0.06 μm over 0.7 μm–1.0 μm. We see that the ratios of
pixel values on skin or hair between different bands are
dissimilar for the two subjects. That is, they have unique
hyperspectral signatures for each tissue type. Based on these
spectral signatures, a Mahalanobis distance-based method
was applied for face recognition tests and accurate face

Figure 1: Selected single-band images of two subjects.

Figure 2: Example of eigenfaces in one single-band.

recognition rates were achieved. However, the performance
was not compared with classic face recognition methods
using the same dataset.

The CSU Face Identification Evaluation System [25]
provides a standard set of well-known algorithms and estab-
lished experimental protocols for evaluating face recognition
algorithms. We selected the Principal Components Analysis
(PCA) Eigenfaces [26] algorithm and used cumulative
match scores as in the FERET study [5] for performance
comparisons. To prepare for the face recognition tests, a
gray-scale image was extracted for each of the 31 bands
from a hyperspectral image. The coordinates of both eyes
were manually positioned before processing by the CSU
evaluation programs. In the CSU evaluation system all
images were transformed and normalized so that they have
a fixed spatial resolution of 130 × 150 pixels and the eye
coordinates are the same. Masks were used to void nonfacial
features. Histogram equalization was also performed on all
images before the face recognition tests were conducted.
For each of the 200 human subjects, there are three front-
view images with the first two (fg and fa) having neutral
expression and the other (fb) having a smile. All 600
images were used to generate the eigenfaces. Figure 2 shows
one single-band image before and after the normalization,
and the first 10 eigenfaces for the dataset. The number
of eigenfaces used for face recognition was determined by
selecting the set of most significant eigenfaces which account
for 90% of the total energy.

Given the wth band of hyperspectral images U and V ,
the Mahalanobis Cosine distance [27] is used to measure
the similarity of the two images. Let uw,i be the projection
of the wth band of U onto the ith eigenface and let σw,i

be the standard deviation of the projections from all of the
wth band images onto the ith eigenface. The Mahalanobis
projection ofUw isMw = (mw,1,mw,2, . . . ,mw,I) wheremw,i =
uw,i/σw,i. Let Nw be the similarly computed Mahalanobis
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Figure 3: Cumulative match scores of single-band images at
different wavelengths.

projection of Vw. The Mahalanobis Cosine distance between
U and V for the wth band is defined by

DU ,V (w) = − Mw ·Nw

|Mw||Nw| , (1)

which is the negative of the cosine between the two vectors.
For the 200 subjects, the fg images were grouped in the
gallery set and the fa and fb images were used as probes
[5]. The experiments follow the closed universe model where
the subject in every image in the probe set is included
in the gallery. For each probe image, the Mahalanobis
Cosine distance between the probe and all gallery images
is computed. If the correct match is included in the group
of gallery images with the N smallest distances, we say that
the probe is correctly matched in the top N . The cumulative
match score for a given N is defined as the fraction of correct
matches in the top N from all probes. The cumulative match
score for N = 1 is called the recognition rate. Figure 3 plots
the cumulative match scores forN = 1, 5, and 10 respectively.
Band 1 refers to the image acquired at 700 nm and band
31 refers to the image acquired at 1000 nm. We see that
all bands provide high recognition rates, with more than
96% of the probes correctly identified for N = 1 and over
99% for N = 10. It is important to consider the statistical
significance of the results. For this purpose, we model the
fraction of the probes that are correctly identified by a
binomial distribution with a mean given by the measured
identification rate p. The variance σ2 of p is given by
400p(1− p) where 400 is the number of probes [28]. For an
identification rate of 0.97 we have σ = 3.4 which corresponds
to a standard deviation in the identification rate of 0.009 and
for an identification rate of 0.99 we have σ = 1.99 which
corresponds to a standard deviation in the identification rate
of 0.005. Thus, for each of the three curves plotted in Figure 3
the variation in performance across bands is not statistically
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Figure 4: Cumulative match scores of spectral signature method
and the best single-band eigenface method.

significant. Figure 4 compares the cumulative match scores
using the spectral signature method [13] and the single-band
eigenface method using the most effective band. We see that
the spectral signature method performs well but somewhat
worse than the best single-band method for matches with N
less than 8. For N = 1, a recognition rate of 0.92 corresponds
to a standard deviation in the recognition rate of 0.014
which indicates that the difference between the two methods
in Figure 4 is statistically significant. The advantage of the
spectral methods is pose invariance which was discussed in a
previous work [13] but which is not considered in this paper.

3. Face Recognition in Multiband Images

We have shown that both spatial and spectral features in
hyperspectral face images provide useful discriminants for
recognition. Thus, we can consider the extent of performance
improvements when both features are utilized. We define a
distance between images U and V using

DU ,V =

√
√
√
√
√

W
∑

w=1

(1 +DU ,V (w))2, (2)

where the index w takes values over a group of W-selected
bands that are not necessarily contiguous. Note that the
additive 1 is to ensure a nonnegative value before the square.

Redundancy in a hyperspectral image can be reduced
by a Principal Component Transformation (PCT) [29]. For
a hyperspectral image U = (U1,U2, . . . ,UW ), the PCT
generates U

′ = (U ′
1,U ′

2, . . . ,U ′
W ), where U

′
i = ∑

j εi jUj .
The principal components U ′

1,U ′
2, . . . ,U ′

W are orthogonal
to each other and sorted in order of decreasing modeled
variance. Figure 5 shows a single-band image at 700 nm and
the first five principal components that are extracted from
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Figure 5: Five principal band images of one subject after PCT.
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Figure 6: Recognition rate of multiband eigenface methods.

the corresponding hyperspectral image. We see that the first
principal component image resembles the single-band image
while the second and third component images highlight
features of the lips and eyes. We also see that there are few
visible features remaining in the fourth and fifth principal
components.

Figure 6 plots the recognition rates for different multi-
band eigenface methods. First we selected the bands in order
of increasing center wavelength and performed eigenface
recognition tests for the first one band, two bands and up
to 31 bands, respectively. We also sorted all 31 bands in
descending order of recognition rate and performed the same
procedure for the face recognition tests. From Figure 6 we
see that both methods reach a maximum recognition rate
of 98% when using multiple bands. However, when the
number of bands is less than 16, the multiband method
performs better if the bands are sorted in advance from
the highest recognition rate to the lowest. We also used the
leading principal components for multiband recognition. We
see in Figure 6 that over 99% of the probes were correctly
recognized when using the first three principal bands.
Increasing the number of principal bands beyond 3 causes
performance degradation. The original-order algorithm in
Figure 6 achieves a recognition rate of approximately 0.965
for less than ten bands which corresponds to a standard
deviation in recognition rate of 0.009. Thus, the performance
difference between this method and the PCT-based method
is significant between 3 and 9 bands. Note that the PCT was
performed on each hyperspectral image individually with
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Figure 7: Cumulative match scores of multiband eigenface meth-
ods.

different sets of εi j . The PCT can also be implemented using
the same coefficients for faster computation.

Figure 7 also compares the recognition performance of
the three multiband methods discussed in the previous
paragraph where each algorithm uses only the first three
bands. It is interesting that sorting the bands according to
performance improves the recognition rate for N = 1 but
worsens the performance somewhat for larger values ofN . In
either case, the multiband method based on the PCT has the
best performance for N < 7 and is equivalent to the original-
order method for larger values of N .

4. Face Recognition Using Spectral Eigenfaces

We showed in Section 3 that multiband eigenface methods
can improve face recognition rates. In these algorithms, the
multiple bands are processed independently. A more general
approach is to consider the full spectral/spatial structure
of the data. One way to do this is to apply the eigenface
method to large composite images that are generated by
concatenating the 31 single-band images. This approach,
however, will significantly increase the computational cost
of the process. An alternative is to subsample each band of
the hyperspectral image before concatenation into the large
composite image. For example, Figure 8 shows a 31-band
image after subsampling so that the total number of pixels is
equivalent to the number of pixels in a 130×150 pixel single-
band image. We see that significant spatial detail is lost due
to the subsampling.

A new representation, called spectral-face, is proposed to
preserve both spectral and spatial properties. The spectral-
face has the same spatial resolution as a single-band image
so the spatial features are largely preserved. In the spectral
domain, the pixel values in the spectral-face are extracted
sequentially from band 1 to band 31 then from band 1
again. For example, the value of pixel i in spectral-face equals
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Figure 8: A sample image composed from 31 bands with low-
spatial resolution.

the value of pixel i in band w where w is the remainder
of i divided by 31. Figure 9 shows an original single-band
image together with the normalized spectral-face image in
the left column. Spectral-face has improved spatial detail as
compared with Figure 8. The pattern on the face in Figure 9
demonstrates the variation in the spectral domain. With
the spectral-face images, the same eigenface technique is
applied for face recognition. The first 10 spectral eigenfaces
are shown on the right side of Figure 9. It is interesting to
observe that the eighth spectral eigenface highlights the teeth
feature in smiling faces.

The spectral eigenface method was applied to the same
dataset as the single-band and multiband methods. The
cumulative match scores for N = 1 to 20 are shown in
Figure 10. The best of the single-band methods, which cor-
responds to band 19 (880 nm), is included for performance
comparison with the spectral eigenface method. We see
that the spectral eigenface method has better performance
for all ranks. The best of the multiband methods, which
combines the first three principal bands, is also considered.
The multiband method performs better than the spectral
eigenface method for small values of the rank, but performs
worse for larger values of the rank. For this case, an iden-
tification rate of 0.99 corresponds to a standard deviation
in identification rate of 0.005. Thus, the two multiple-band
methods have a statistically significant advantage over the
single-band eigenface method for ranks between 3 and 10.
Note that the multiple principal band method requires more
computation than the spectral eigenface method.

5. Conclusion

Multimodal personal identity authentication systems have
gained popularity. Hyperspectral imaging systems capture
both spectral and spatial information. The previous work
[24] has shown that spectral signatures are powerful discrim-
inants for face recognition in hyperspectral images. In this
work, various methods that utilize spectral and/or spatial
features were evaluated using a hyperspectral face image
dataset. The single-band eigenface method uses spatial fea-
tures exclusively and performed better than the pure spectral

Figure 9: One sample spectral-face and the first 10 spectral
eigenfaces.
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Figure 10: Comparison of spectral eigenface method with single-
band and multiband methods.

method. However, the computational requirements increase
significantly for eigenface generation and projection. The
recognition rate was further improved by using multiband
eigenface methods which require more computation. The
best performance was achieved with the highest compu-
tational complexity by using principal component bands.
The spectral eigenface method transforms a multiband
hyperspectral image to a spectral-face image which samples
from all of the bands while preserving spatial resolution. We
showed that this method performs as well as the PCT-based
multiband method but with a much lower computational
requirement.
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1. Introduction

With the emergence of smart phones and third and
fourth generation mobile and communication devices, and
the appearance of a “first generation” type of mobile
PC/PDA/phones with biometric identity verification, there
has been recently a greater attention to secure commu-
nication and to guarantee the robustness of embedded
multimodal biometric systems. The robustness of such
systems promises the viability of newer technologies that
involve e-voice signatures, e-contracts that have legal values,
and secure and trusted data transfer regardless of the under-
lying communication protocol. Realizing such technologies
require reliable and error-free biometric identity verification
systems.

Biometric identity verification (IV) systems are starting
to appear on the market in various commercial applications.
However, these systems are still operating with a certain
measurable error rate that prevents them from being used in
a full automatic mode and still require human intervention
and further authentication. This is primarily due to the

variability of the biometric traits of humans over time
because of growth, aging, injury, appearance, physical state,
and so forth. Impostors attempting to be authenticated by
an IV system to gain access to privileged resources could
take advantage of the non-zero error rate of the system by
imitating, as closely as possible, the biometric features of a
genuine client.

The purpose of this paper is threefold. (1) It evalu-
ates the performance of IV systems by monitoring their
behavior under impostor attacks. Such attacks may include
the transformation of one, many, or all of the biometric
modalities, such as face or voice. This paper provides a
brief review of IV techniques and corresponding evaluations
and focuses on a statistical approach (GMM). (2) It also
introduces MixTrans, a novel mixture-structure bias voice
transformation technique in the cepstral domain, which
allows a transformed audio signal to be estimated and
reconstructed in the temporal domain. (3) It proposes a face
transformation technique that allows a 2D face image of
the client to be animated. This technique employs principal
warps to deform defined MPEG-4 facial feature points based
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on determined facial animation parameters (FAPs). The
BANCA database is used to test the effects of voice and face
transformation on the IV system.

The rest of the paper is organized as follows. Section 2
introduces the performance evaluation, protocols, and the
BANCA database. Section 3 is a discussion of audiovisual
identity verification techniques based on Gaussian Mixture
Models. Section 4 describes the imposture techniques used,
including MixTrans, a novel voice transformation technique,
and face transformation based on an MPEG-4 face anima-
tion with thin-plate spline warping. Section 5 discusses the
experimental results on the BANCA audiovisual database.
Section 6 wraps up with a conclusion.

2. Evaluation Protocols

Evaluation of audiovisual IV systems and the comparison
of their performances require the creation of a reproducible
evaluation framework. Several experimental databases have
been set up for this purpose. These databases consist of a
large collection of biometric samples in different scenarios
and quality conditions. Such databases include BANCA [1],
XM2VTS [2], BT-DAVID [3], BIOMET [4], and PDAtabase
[5].

2.1. The BANCA Database. In this work, audiovisual verifi-
cation experiments and imposture were primarily conducted
on the BANCA Database [1]. BANCA is designed for testing
multimodal identity verification systems. It consists of video
and speech data for 52 subjects (26 males, 26 females) in
four different European languages (English, French, Italian,
and Spanish). Each language set and gender was divided into
two independent groups of 13 subjects (denoted g1 and g2).
Each subject recorded a total of 12 sessions, for a total of
208 recordings. Each session contains two recordings: a true
client access and an informed impostor attack (the client
proclaims in his own words to be someone else). Each subject
was prompted to say 12 random number digits, his or her
name, address, and date of birth.

The 12 sessions are divided into three different scenarios.

(i) Scenario c (controlled). Uniform blue background
behind the subject with a quiet environment (no
background noise). The camera and microphone
used are of good quality (sessions 1–4).

(ii) Scenario d (degraded). Low quality camera and
microphone in an “adverse” environment (sessions
5–8).

(iii) Scenario a (adverse). Cafeteria-like atmosphere with
activities in the background (people walking or talk-
ing behind the subject). The camera and microphone
used are also of good quality (sessions 9–12).

BANCA has also a world model of 30 other subjects, 15
males and 15 females.

Figure 1 shows example images from the English
database for two subjects in all three scenarios.

The BANCA evaluation protocol defines seven distinct
training/test configurations, depending on the actual
conditions corresponding to training and testing. These
experimental configurations are Matched Controlled
(MC), Matched Degraded (MD), Matched Adverse (MA),
Unmatched Degraded (UD), Unmatched Adverse (UA),
Pooled Test (P), and Grand Test (G) (Table 1).

The results reported in this work reflect experiments on
the “Pooled test,” also known as the “P” protocol, which
is BANCA’s most “difficult” evaluation protocol: world and
client models are trained on session 1 only (controlled
environment), while tests are performed in all different
environments (Table 1).

2.2. Performance Evaluation. The evaluation of a biometric
system performance and its robustness to imposture is mea-
sured by the rate of errors it makes during the recognition
process. Typically, a recognition system is a “comparator”
that compares the biometric features of a user with a given
biometric reference and gives a “score of likelihood.” A
decision is then taken based on that score and an adjustable
defined acceptance “threshold.” Two types of error rates are
traditionally used.

(i) False Acceptance Rate (FAR). The FAR is the fre-
quency that an impostor is accepted as a genuine
client. The FAR for a certain enrolled person n is
measured as

FAR(n)

= Number of successful haox attempts against a person n

Number of all haox attempts against a person n
,

(1)

and for a population of N persons, FAR =
(1/n)

∑N
n=1FAR(n).

(ii) False Rejection Rate (FRR). The FRR is the frequency
that a genuine client is rejected as an impostor:

FRR(n) = Number of rejected verification attempts a genuine person n

Number of all verification attempts a genuine person n
,

FRR = 1
N

N∑

n=1

FRR(n).

(2)
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Table 1: Summary of the 7 training/testing configurations of
BANCA.

Test Sessions
Train Sessions

1 5 9 1, 5, 9

Client 2–4
MC

Impostor 1–4

Client 6–8
UD MD

Impostor 5–8

Client 10–12
UA MA

Impostor 9–12

Client 2–4, 6–8, 10–12
P G

Impostor 1–12

To assess visually the performance of the authentication
system, several curves are used: the Receiver Operating
Characteristic (ROC) curve [6, 7], the Expected Performance
Curve (EPC) [8], and the Detection error trade-off (DET)
curve [9]. The ROC curve plots the sensitivity (fraction of
true positives) of the binary classifier system versus specificity
(fraction of false positives) as a function of the threshold.
The closer the curve to 1 is, the better the performance of
the system is.

While ROC curves use a biased measure of performance
(EER), the EPC introduced in [8] provides an unbiased
estimate of performance at various operating points.

The DET curve is a log-deviate scale graph of FRR versus
FAR as the threshold changes. The EER value is normally
reported on the DET curve: the closer EER to the origin
is, the better the performance of the system is. The results
reported in this work are in the form of DET curves.

3. Multimodal Identity Verification

3.1. Identification Versus Verification. Identity recognition
can be divided into two major areas: authentication and
Identification. Authentication, also referred to as verification,
attempts to verify a person’s identity based on a claim. On
the other hand, identification attempts to find the identity
of an unknown person in a set of a number of persons.
Verification can be though of as being a one-to-one match
where the person’s biometric traits are matched against
one template (or a template of a general “world model”)
whereas identification is a one-to-many match process where
biometric traits are matched against many templates.

Identity verification is normally the target of applications
that entail a secure access to a resource. It is managed
with the client’s knowledge and normally requires his/her
cooperation. As an example, a person’s access to a bank
account at an automatic teller machine (ATM) may be
asked to verify his fingerprint or look at a camera for
face verification or speak into a microphone for voice
authentication. Another example is the fingerprint readers
of most modern laptop computers that allow access to the
system only after fingerprint verification.

Person identification systems are more likely to operate
covertly without the knowledge of the client. This can be

used, for example, to identify speakers in a recorded group
conversation, or a criminal’s fingerprint or voice is cross
checked against a database of voices and fingerprints looking
for a match.

Recognition systems have typically two phases: enroll-
ment and test. During the enrollment phase, the client
deliberately registers on the system one or more biometric
traits. The system derives a number of features for these
traits to form a client print, template, or model. During the
test phase, whether identification or verification, the client is
biometrically matched against the model(s).

This paper is solely concerned with the identity verifica-
tion task. Thus, the two terms verification and recognition
referred to herein are used interchangeably to indicate
verification.

3.2. Biometric Modalities. Identity verification systems rely
on multiple biometric modalities to match clients. These
modalities include voice, facial geometry, fingerprint, sig-
nature, iris, retina, and hand geometry. Each one of these
modalities has been extensively researched in literature. This
paper focuses on the voice and the face modalities.

It has been established that multimodal identity verifica-
tion systems outperform verification systems that rely on a
single biometric modality [10, 11]. Such performance gain is
more apparent in noisy environments; identity verification
systems that rely solely on speech are affected greatly by
the microphone type, the level of background noise (street
noise, cafeteria atmosphere, . . .), and the physical state of
the speaker (sickness, mental state, . . .). Identity verification
systems based on the face modality is dependent on the
video camera quality, the face brightness, and the physical
appearance of the subject (hair style, beard, makeup, . . .).

3.2.1. Voice. Voice verification, also known as speaker
recognition, is a biometric modality that relies on features
influenced by both the structure of a person’s vocal tract and
the speech behavioral characteristics. The voice is a widely
acceptable modality for person verification and has been a
subject for research for decades. There are two forms of
speaker verification: text dependent (constrained mode), and
text independent (unconstrained mode). Speaker verifica-
tion is treated in Section 3.3.

3.2.2. Face. The face modality is a widely acceptable modality
for person recognition and has been extensively researched.
The face recognition process has matured into a science
of sophisticated mathematical representations and matching
processes. There are two predominant approaches to the face
recognition problem: holistic methods and feature-based
techniques. Face verification is described in Section 3.4.

3.3. Speaker Verification. The speech signal is an important
biometric modality used in the audiovisual verification
system. To process this signal a feature extraction module
calculates relevant feature vectors from the speech waveform.
On a signal window that is shifted at a regular rate a
feature vector is calculated. Generally, cepstral-based feature
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Figure 1: Screenshots from the BANCA database for two subjects in all three scenarios:Controlled (left), degraded (middle), and adverse
(right).

vectors are used. A stochastic model is then applied to
represent the feature vectors from a given speaker. To verify a
claimed identity, new utterance feature vectors are generally
matched against the claimed speaker model and against a
general model of speech that may be uttered by any speaker,
called the world model. The most likely model identifies
if the claimed speaker has uttered the signal or not. In
text independent speaker verification, the model should not
reflect a specific speech structure, that is, a specific sequence
of words. State-of-the art systems use Gaussian Mixture
Models (GMMs) as stochastic models in text-independent
mode. A tutorial on speaker verification is provided in [12].

3.3.1. Feature Extraction. The first part of the speaker
verification process is the speech signal analysis. Speech
is inherently a nonstationary signal. Consequently, speech
analysis is normally performed on short fragments of speech
where the signal is presumed stationary. To compensate for
the signal truncation, a weighting signal is applied on each
window.

Coding the truncated speech windows is achieved
through variable resolution spectral analysis [13]. The most
common technique employed is filter-bank analysis; it is a
conventional spectral analysis technique that represents the
signal spectrum with the log-energies using a filter-bank of
overlapping band-pass filters.

The next step is cepstral analysis. The cepstrum is
the inverse Fourier transform of the logarithm of the
Fourier transform of the signal. A determined number of
mel frequency cepstral coefficients (MFCCs) are used to
represent the spectral envelope of the speech signal. They
are derived from the filter-bank energies. To reduce the
effects of signals recorded in different conditions, Cepstral
mean subtraction and feature variance normalization is used.
First- and second-order derivatives of extracted features are

appended to the feature vectors to account for the dynamic
nature of speech.

3.3.2. Silence Detection. It is well known that the silence
part of the signal alters largely the performance of a speaker
verification system. Actually, silence does not carry any useful
information about the speaker, and its presence introduces
a bias in the score calculated, which deteriorates the system
performance. Therefore, most of the speaker recognition
systems remove the silence parts from the signal before start-
ing the recognition process. Several techniques have been
used successfully for silence removal. In our experiments, we
suppose that the energy in the signal is a random process that
follows a bi-Gaussian model, a first Gaussian modeling the
energy of the silence part and the other modeling the energy
of the speech part. Given an utterance and more specifically
the computed energy coefficients, the bi-Gaussian model
parameters are estimated using the EM algorithm. Then, the
signal is divided into speech parts and silence parts based
on a maximum likelihood criterion. Treatment of silence
detection can be found in [14, 15].

3.3.3. Speaker Classification and Modeling. Each speaker
possesses a unique vocal signature that provides him with
a distinct identity. The purpose of speaker classification is
to exploit such distinctions in order to verify the identity of
a speaker. Such classification is accomplished by modeling
speakers using a Gaussian Mixture Model (GMM).

Gaussian Mixture Models. A mixture of Gaussians is a
weighted sum of M Gaussian densities

P(xλ) =
∑

i=1:M

αi fi(x), (3)

where x is an MFCC vector, fi(x) is a Gaussian density
function, and αi is the corresponding weights. Each Gaussian
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is characterized by its mean μi and a covariance matrix
∑

i.
A speaker model λ is characterized by the set of parameters
(αi,μi,

∑
i)i=1:M .

For each client, two GMMs are used: the first corresponds
to the distribution of the training set of speech feature vectors
of that client, and the second represents the distribution of
the training vectors of a defined “world model.”

To formulate the classification concept, assume that a
speaker is presented along with an identity claim C. The

feature vectors V = {−→vi}Ni=1 are extracted. The average log
likelihood of the speaker having identity C is calculated as

L(X | λc) = 1
N

N∑

i=1

log p
(−→xi | λc

)
, (4)

where p(−→xi | λc) =
∑NG

j=1mjN (−→x ;−→μj ,
∑

j), λ = {mj
−→μj ,
∑

j}NG

j=1
,

and N (−→x ;−→μj ,
∑

j) = (1/(2π)D/2|∑ j|1/2)e(1/2)(−→x−−→μj )T
∑

j (
−→x−−→μj )

is a multivariate Gaussian function with mean −→μi and
diagonal covariance matrix

∑
, and D is the dimension of

the feature space, λc is the parameter set for person C, NG

is the number of Gaussians, mj = weight for Gaussian j, and
∑Nj

j=1mj = 1, mj ≥ 0 ∀ j.
With a world model of w persons, the average log

likelihood of a speaker being an impostor is found as

L(X | λw) = 1
N

NW∑

i=1

log p
(−→xi | λw

)
. (5)

An opinion on the claim is then found: O(X) = log L(X |
λc)− log L(X | λw).

As a final decision to whether the face belongs to the
claimed identity, and given a certain threshold t, the claim
is accepted when O(X) ≥ t and rejected when O(X) < t.

To estimate the GMM parameters λ of each speaker,
the world model is adapted using a Maximum a Posteriori
(MAP) adaptation [16]. The world model parameters are
estimated using the Expectation Maximization (EM) algo-
rithm [17].

GMM client training and testing is performed on the
speaker verification toolkit BECARS [18]. BECARS imple-
ments GMMs with several adaptation techniques, for exam-
ple, Bayesian adaptation, MAP, maximum likelihood linear
regression (MLLR), and the unified adaptation technique
defined in [19].

3.4. Face Verification. Face verification is a biometric person
recognition technique used to verify (confirm or deny) a
claimed identity based on a face image or a set of faces (or
a video sequence). The process of automatic face recognition
can be thought of as being comprised of four stages:

(i) face detection, localization and segmentation;

(ii) normalization;

(iii) facial Feature extraction and tracking;

(iv) classification (identification and/or verification).

These subtasks have been independently researched and
surveyed in literature and are briefed next.

3.4.1. Face Detection. Face detection is an essential part
of any face recognition technique. Given an image, face
detection algorithms try to answer the following questions.

(i) Is there a face in the image?

(ii) If there is a face in the image, where is it located?

(iii) What are the size and the orientation of the face?

Face detection techniques are surveyed in [20, 21].
The face detection algorithm used in this work has

been introduced initially by Viola and Jones [22] and later
developed further by Lienhart and Maydt [23]. It is a
machine learning approach based on a boosted cascade
of simple and rotated haar-like features for visual object
detection.

3.4.2. Face Tracking in a Video Sequence. Face tracking
in a video sequence is a direct extension of still image
face detection techniques. However, the coherent use of
both spatial and temporal information of faces makes the
detection techniques more unique.

The technique used in this work employs the algorithm
developed by Lienhart on every frame in the video sequence.
However, three types of tracking errors are identified in a
talking face video.

(i) More than one face is detected, but only one actually
exists in a frame.

(ii) A wrong object is detected as a face.

(iii) No faces are detected.

Figure 2 shows an example detection from the BANCA
database [1], where two faces have been detected, one for the
actual talking-face subject, and a false alarm.

The correction of these errors is done through the
exploitation of spatial and temporal information in the video
sequence as the face detection algorithm is run on every
subsequent frame. The correction algorithm is summarized
as follows.

(a) More than one face area detected. The intersections of
these areas with the area of the face of the previous
frame are calculated. The area that corresponds to the
largest calculated intersection is assigned as the face
of the current frame. If the video frame in question is
the first one in the video sequence, then the decision
to select the proper face for that frame is delayed until
a single face is detected at a later frame and verified
with a series of subsequent face detections.

(b) No faces detected. The face area of the previous frame
is assigned as the face of the current frame. If the
video frame in question is the first one in the video
sequence, then the decision is delayed as explained in
part (a).

(c) A wrong object detected as a face. The intersection area
with the previous frame face area is calculated. If this
intersection ratio to the area of the previous face is
less than a certain threshold, for example, 80%, the
previous face is assigned as the face of the current
frame.
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3.4.3. Face Normalization. Normalizing face images is a
required preprocessing step that aims at reducing the
variability of different aspects in the face image such
as contrast and illumination, scale, translation, rotation,
and face masking. Many works in literature [24–26] have
normalized face images with respect to translation, scale, and
in-plane rotation, while others [27, 28] have also included
masking and affine warping to properly align the faces.
Craw and Cameron in [28] have used manually annotated
points around shapes to warp the images to the mean shape,
leading to shape-free representation of images useful in PCA
classification.

The preprocessing stage in this work includes four steps.

(i) Scaling the face image to a predetermined size (w f ,
h f ).

(ii) Cropping the face image to an inner-face, thus
disregarding any background visual data.

(iii) Disregarding color information by converting the
face image to grayscale.

(iv) Histogram equalization of the face image to compen-
sate for illumination changes.

Figure 3 shows an example of the four steps.

3.4.4. Feature Extraction. The facial feature extraction tech-
nique used in this work uses DCT-mod2 proposed by Sander-
son and Paliwal in [29]. This technique is used in this work
for its simplicity and performance in terms of computational
speed and robustness to illumination changes.

A face image is divided into overlapping N × N blocks.
Each block is decomposed in terms of orthogonal 2D DCT
basis functions and is represented by an ordered vector of
DCT coefficients:

[
c(b,a)

0 c(b,a)
1 · · · c(b,a)

M−1

]T
, (6)

where (b, a) represent the location of the block, and M is
the number of the most significant retained coefficients. To
minimize the effects of illumination changes, horizontal and
vertical delta coefficients for blocks at (b, a) are defined as
first-order orthogonal polynomial coefficients, as described
in [29].

The first three coefficients c0, c1, and c2 are replaced in (6)
by their corresponding deltas to form a feature vector of size
M + 3 for a block at (b, a):

[
Δhc0Δ

vc0Δ
hc1Δ

vc1Δ
hc2Δ

vc2c3c4 · · · cM−1

]T
. (7)

3.4.5. Face Classification. Face verification can be seen as
a two-class classification problem. The first class is the
case when a given face corresponds to the claimed identity
(client), and the second is the case when a face belongs to an
impostor. In a similar way to speaker verification, a GMM is
used to model the distribution of face feature vectors for each
person.

3.5. Fusion. It has been shown that biometric verification
systems that combine different modalities outperform single
modality systems [30]. A final decision on the claimed
identity of a person relies on both the speech-based and the
face-based verification systems. To combine both modalities,
a fusion scheme is needed.

Various fusion techniques have been proposed and
investigated in literature. Ben-Yacoub et al. [10] evaluated
different binary classification approaches for data fusion,
namely, Support Vector Machine (SVM), minimum cost
Bayesian classifier, Fisher’s linear discriminant analysis, C4.5
decision classifier, and multilayer perceptron (MLP) classi-
fier. The use of these techniques is motivated by the fact
that biometric verification is merely a binary classification
problem. An overview of fusion techniques for audio-visual
identity verification is provided in [31].

Other fusion techniques used include the weighted sum
rule and the weighted product rule. It has been shown that
the sum rule and support vector machines are superior when
compared to other fusion schemes [10, 32, 33].

The weighted sum rule fusion technique is used in this
study. The sum rule computes the audiovisual score s by
weight averaging: s = wsss+wf s f , wherews andwf are speech
and face score weights computed so as to optimize the equal
error rate (EER) on the training set. The speech and face
scores must be in the same range (e.g., μ = 0, σ = 1) for
the fusion to be meaningful. This is achieved by normalizing
the scores as follows:

snorm(s) = ss − μs
σs

, snorm( f ) =
s f − μ f
σ f

. (8)

4. Audiovisual Imposture

Audiovisual imposture is the deliberate modification of both
speech and face of a person so as to make him sound
and look like someone else. The goal of such an effort is
to analyze the robustness of biometric identity verification
systems to forgery attacks. An attempt is made to increase
the acceptance rate of an impostor. Transformations of both
modalities are treated separately below.

4.1. Speaker Transformation. Speaker transformation, also
referred to as voice transformation, voice conversion, or
speaker forgery, is the process of altering an utterance from
a speaker (impostor) to make it sound as if it was articulated
by a target speaker (client). Such transformation can be
effectively used to replace the client’s voice in a video to
impersonate that client and break an identity verification
system.

Speaker transformation techniques might involve modi-
fications of different aspects of the speech signal that carries
the speaker’s identity such as the formant spectra, that is,
the coarse spectral structure associated with the different
phones in the speech signal [34], the excitation function,
that is, the “fine” spectral detail [35], the prosodic features,
that is, aspects of the speech that occur over timescales
larger than individual phonemes, and the mannerisms such
as particular word choice or preferred phrases, or all kinds
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Figure 2: Face detection and tracking.

of other high-level behavioral characteristics. The formant
structure and the vocal tract are represented by the overall
spectral envelope shape of the signal, and thus they are major
features to be considered in voice transformation [36].

Several voice transformation techniques have been pro-
posed in literature. These techniques can be classified as
text-dependent methods and text independent methods. In
text-dependent methods, training procedures are based on
parallel corpora, that is, training data have the source and the
target speakers uttering the same text. Such methods include
vector quantization [37, 38], linear transformation [36, 39],
formant transformation [40], probabilistic transformation
[41], vocal tract length normalization (VTLN) [42], and
prosodic transformation [38]. In text-independent voice
conversion techniques, the system trains on source and target
speakers uttering different text. Techniques include text-
independent VTLN [42], maximum likelihood constrained
adaptation [43], and client memory indexation [44, 45].

The analysis part of a voice conversion algorithm focuses
on the extraction of the speaker’s identity. Next, a trans-
formation function is estimated. At last, a synthesis step
is achieved to replace the source speaker characteristics by
those of the target speaker.

Consider a sequence of spectral vectors uttered by the
source speaker (impostor) Xs = [x1, x2, . . . , xn], and a
sequence pronounced by the target speaker comprising the
same words Yt = [y1, y2, . . . , yn]. Voice conversion is based
on the estimation of a conversion function F that minimizes
the mean square error εmse = E�‖y −F (x)‖2�, where E is
the expectation.

Two steps are useful to build a conversion system:
training and conversion. In the training phase, speech
samples from the source and the target speakers are analyzed
to extract the main features. These features are then time
aligned, and a conversion function is estimated to map the
source and the target characteristics (Figure 4).

The aim of the conversion is to apply the estimated
transformation rule to an original speech pronounced by
the source speaker. The new utterance sounds like the same
speech pronounced by the target speaker, that is, pronounced
by replacing the source characteristics by those of the target
voice. The last step is the resynthesis of the signal to
reconstruct the source speech voice (Figure 5).

Voice conversion can be effectively used by an impostor
to impersonate a target person and hide his identity in an
attempt to increase the acceptance rate of the impostor by
the identity verification system.

In this paper, MixTrans, a new mixture-structured bias
voice transformation, is proposed and is described next.

4.1.1. MixTrans. A linear time-invariant transformation in
the temporal domain is equivalent to a bias in the cepstral
domain. However, speaker transformation may not be seen
as a simple linear time-invariant transformation. It is more
accurate to consider the speaker transformation as several
linear time-invariant filters, each of them operating in a part
of the acoustical space. This leads to the following form for
the transformation:

Tθ(X) =
∑

k

∏

k

(X + bk) =
∑

k

∏

k

X +
∑

k

∏

k

bk = X +
∑

k

∏

k

bk,

(9)

where bk represents the kth bias, and
∏

k is the probability
of being in the kth part of the acoustical space given the
observation vector X.

∏
k is calculated using a universal

GMM modeling the acoustic space.
Once the transformation is defined, its parameters have

to be estimated. We suppose that speech samples are available
for both the source and the target speakers but do not
correspond to the same text. Let λ be the stochastic model
for a target client. λ is a GMM of the client. Let X represent
the sequence of observation vectors for an impostor (a source
client). Our aim is to define a transformation Tθ(X) that
makes the source client vector resemble the target client.
In other words, we would like to have the source vectors
be best represented by the target client model λ through
the application of the transformation Tθ(X). In this context
the Maximum likelihood criterion is used to estimate the
transformation parameters:

θ̂ = argmax
θ

L(Tθ(X) | λ). (10)

Since λ is a GMM, Tθ(X) is a transform of the source
vectors X, and Tθ(X) depends on another model λw, then
L(Tθ(X) | λ) in (10) can be written as

L(Tθ(X | λ)

=
T∏

t=1

L(Tθ(Xt) | λ)

=
T∏

t=1

M∑

m=1

1

(2π)D/2
∣
∣∑

m

∣
∣1/2 e

−(1/2)(Tθ(Xt)−μm)T
∑−1
m (Tθ(Xt)−μm)

=
T∏

t=1

M∑

m=1

1

(2π)D/2
∣
∣∑

m

∣
∣1/2

× e−(1/2)(Xt+
∑K
k=1

∏
ktbk−μm)

T∑−1
m (Xt+

∑K
k=1

∏
ktbk−μm)).

(11)
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(a) (b) (c) (d)

Figure 3: Preprocessing face images. (a) Detected face. (b) Cropped face (inner face). (c) Grayscale face. (d) Histogram-equalized face.
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Finding {bk} such that (11) is maximized is
found through the use of the EM algorithm. In the
expectation “E” step, the probability αmt of component
m is calculated. Then, at the maximization “M” step, the
log-likelihood is optimized dimension by dimension for a
GMM with a diagonal covariance matrix:

ll =
T∑

t=1

M∑

m=1

αmt

⎡

⎢
⎣log

1
σm
√

2π
− 1

2

(
Xt +

∑K
k=1

∏
ktbk − μm

)2

σ2
m

⎤

⎥
⎦.

(12)

Maximizing

∂ll

∂bl
= 0 =⇒ −

T∑

t=1

M∑

m=1

αmt

(
Xt +

∑K
k=1

∏
ktbk − μm

)∏
lt

σ2
m

= 0,

for l = 1 · · ·K ,
(13)

then,

T∑

t=1

M∑

m=1

αmtPlt
σ2
m

(
Xt − μm

) = −
T∑

t=1

M∑

m=1

K∑

k=1

αmt
∏

kt

∏
ltbk

σ2
m

,

for l = 1 · · ·K ,

T∑

t=1

M∑

m=1

αmt
∏

lt

σ2
m

(
Xt − μm

) = −
K∑

k=1

bk
M∑

m=1

T∑

t=1

αmt
∏

lt

∏
kt

σ2
m

,

for l = 1 · · ·K ,
(14)

and finally, in matrix notation,

−
(
∑

m

∑

t

αmt
∏

lt

∏
kt

σ2
m

)

(bk) =
(
∑

m

∑

t

αmt
∏

lt

(
Xt − μm

)

σ2
m

)

.

(15)

This matrix equation is solved at every iteration of the EM
algorithm.

4.1.2. Speech Signal Reconstruction. It is known that the
cepstral domain is appropriate for classification due to the
physical significance of the Euclidean distance in this space
[13]. However, the extraction of cepstral coefficients from
the temporal signal is a nonlinear process, and the inversion
of this process is not uniquely defined. Therefore, a solution
has to be found in order to take the advantage of the
good characteristics of the cepstral space while applying the
transformation in the temporal domain.

Several techniques have been proposed to overcome this
problem. In [46], harmonic plus noise analysis has been used
for this purpose. Instead of trying to find a transformation
allowing the passage from the cepstral domain to the
temporal domain, a different strategy is adopted. Suppose
that an intermediate space exists where transformation
could be directly transposed to the temporal domain.
Figure 6 shows the process where the temporal signal goes
through a two-step feature extraction process leading to
the cepstral coefficients that may be easily transformed
into target speaker-like cepstral coefficients by applying the
transformation function Tθ(X) as discussed previously.

The transformation trained on the cepstral domain
cannot be directly projected to the temporal domain since
the feature extraction module (F2 ◦ F1) is highly nonlinear.
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Figure 6: Steps from signal to transformed cepstral coefficients.
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Figure 7: Steps from signal to transformed cepstral coefficients when transformation is applied in a signal-equivalent space.

However, a speaker transformation determined in the B
space may be directly projected in the signal space, for
example, B space may be the spectral domain. But, for
physical significance it is better to train the transformation
in the cepstral domain. Therefore, we suppose that another
transformation T ′

θ (X) exists in the B space leading to
the same transformation in the cepstral domain satisfying
thereby the two objectives: transformation of the signal and
distance measurement in the cepstral domain. This is shown
in Figure 7.

This being defined, the remaining issue is how to estimate
the parameters θ of the transformation T ′

θ (X) in order to
get the same transformation result as in the cepstral domain.
This is detailed next.

4.1.3. Estimating Signal Transformation Equivalent to a
Calculated Cepstral Transformation. The transformation in
the cepstral domain is presumably determined; the idea is to
establish a transformation in the B space leading to cepstral
coefficients similar to the one resulting from the cepstral
transformation.

Let Ĉ
(t)

represent the cepstral vector obtained after the
application of the transformation in the B domain, and let
C(t) represent the cepstral vector obtained when applying
the transformation in the cepstral domain. The difference
defines an error vector:

e = C(t) − Ĉ(t)
. (16)

The quadratic error can be written as

E = |e|2 = eTe. (17)

Starting from a set of parameters for T ′
θ , the gradient

algorithm may be applied in order to minimize the quadratic
error E. For every iteration of the algorithm the parameter θ
is updated using

θ(i+1) = θ(i) − μ∂E
∂θ

, (18)

where μ is the gradient step.
The gradient of the error with respect to parameter θ is

given by

∂E

∂θ
= −2eT

∂Ĉ
(t)

∂θ
. (19)

Finally, the derivative of the estimated transformed cepstral
coefficient with respect to θ can be obtained using a gradient
descent

∂Ĉ
(t)

∂θ
= ∂Ĉ

(t)T

∂B(t)

∂B(t)

∂θ
. (20)

In order to illustrate this principle, let us consider the case
of MFCC analysis leading to the cepstral coefficients. In this
case, F1 is just the Fast Fourier Transform (FFT) followed
by the power spectral calculation (the phase being kept
constant). F2 is the filterbank integration in the logarithm
scale followed by the inverse DCT transform. We can write

Ĉ(t)
l =

K∑

k=1

log

⎛

⎝
N∑

i=1

a(k)
i B(k)

i

⎞

⎠ cos

(

2πl
fk
F

)

,

B(t)
i = Bi · θi,

(21)

where {ai} are the filter-bank coefficients, fk the central
frequencies of the filter-bank, and θi is the transfer function
at frequency bin i of the transformation T ′

θ (X).
Using (21), it is straightforward to compute the deriva-

tives in (20):

∂Ĉ(t)
i

∂B(t)
j

=
K∑

k=1

a(k)
j

∑N
i=1a

(k)B(t)
i

i

cos

(

2πl
fk
F

)

,

∂B(t)
i

∂θj
= Bjδi j .

(22)

Equations (19), (20), and (22) allow the implementation
of this algorithm in the case of MFCC.

Once T ′
θ (X) completely defined, the transformed signal

may be determined by applying an inverse FFT to B(t) and
using the original phase to recompose the signal window. In
order to consider the overlapping between adjacent windows,
the Overlap and Add (OLA) algorithm is used [47].

4.1.4. Initializing the Gradient Algorithm. The previous
approach is computationally expensive. Actually, for each
signal window, that is, from 10 milliseconds to 16 mil-
liseconds, a gradient algorithm is to be applied. In order
to alleviate this high computational algorithm, a solution
consists in finding a good initialization of the gradient
algorithm. This may be obtained by using an initial value for
the transformation T ′

θ (X), the transformation obtained for
the previous signal window.
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+Ĉ

(t)

e = C(t) − Ĉ(t)
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4.2. Face Animation. To complete the scenario of audiovisual
imposture, speaker transformation is coupled with face
transformation. It is meant to produce synthetically an
“animated” face of a target person, given a still photo of
his face and some animation parameters defined by a source
video sequence. Figure 10 depicts the concept.

The face animation technique used in this paper is
MPEG-4 compliant, which uses a very simple thin-plane
spline warping function defined by a set of reference points
on the target image, driven by a set of corresponding points
on the source image face. This technique is described next.

4.2.1. MPEG-4 2D Face Animation. MPEG-4 is an object-
based multimedia compression standard, which defines a
standard for face animation [48]. It specifies 84 feature points
(Figure 11) that are used as references for Facial Animation
Parameters (FAPs). 68 FAPs allow the representation of facial
expressions and actions such as head motion and mouth and

eye movements. Two FAP groups are defined, visemes (FAP
group 1) and expressions (FAP group 2). Visemes (FAP1)
are visually associated with phonemes of speech; expressions
(FAP2) are joy, sadness, anger, fear, disgust, and surprise.

An MPEG-4 compliant system decodes an FAP stream
and animates a face model that has all feature points properly
determined. In this paper, the animation of the feature points
is accomplished using a simple thin-plate spline warping
technique and is briefly described next.

4.2.2. Thin-Plate Spline Warping. The thin-plate spline
(TPS), initially introduced by Duchon [49], is a geometric
mathematical formulation that can be applied to the problem
of 2D coordinate transformation. The name thin-plate spline
indicates a physical analogy to bending a thin sheet of metal
in the vertical z direction, thus displacing x and y coordinates
on the horizontal plane.

Given a set of data points {wi, i = 1, 2, . . . ,K} in a 2D
plane—for our case, MPEG-4 facial feature points—a radial
basis function is defined as a spatial mapping that maps a
location x in space to a new location f (x) = ∑K

i=1ciφ(‖x −
wi‖), where {ci} is a set of mapping coefficients, and the
kernel function φ(r) = r2 ln r is the thin-plate spline [50].
The mapping function f (x) is fit between corresponding sets
of points {xi} and {yi} by minimizing the “bending energy”
I, defined as the sum of squares of the second derivatives:

I
[
f
(
x, y

)]=
∫∫

R2

⎡

⎣

(
∂2 f

∂x2

)2

+2

(
∂2 f

∂xy

)2

+

(
∂2 f

∂y2

)2
⎤

⎦dx dy.

(23)
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Figure 11: MPEG-4 feature points.

(a) Original sample video frame ( BANCA
client number 9055)

(b) Annotated face

Figure 12: Feature point annotation on the BANCA database.

5. Effects of Imposture on Verification—
Experimental Results

To test the robustness of IV systems, a state-of-the-art
baseline audio-visual IV system is built. This system follows
the BANCA “P” protocol and is based on a classical GMM
approach for both speech and face modalities. It is com-
pletely independent from the voice and face transformations
described above.

5.1. Verification Experiments

5.1.1. Speaker Verification. For speech, feature extraction
and silence detection is first performed, as described in
Sections 3.3.1 and 3.3.2. Then GMM speaker classification is
performed with 256 Gaussians. The world model of BANCA
is adapted using MAP adaptation, and its parameters esti-
mated using the EM algorithm, as discussed in Section 3.3.3

above. The world model is used as a Universal Background
Model (UBM) for training to amplify the variability between
different speakers. In fact, to improve the performance of the
IV system, we use a larger UBM by combining BANCA world
model and g2 when training and testing is performed on g1
and vice versa. This is possible because g1 and g2 of BANCA
are totally independent. Client models are then adapted from
the UBM using speech features from the enrollment set
of BANCA. To verify a claimed identity of a test speaker,
his/her features are extracted and compared to both the
UBM and the GMM of the client. The average log likelihood
is calculated, and an acceptance or a rejection decision is
taken as described in Section 3.3.3. A total of 234 true client
tests and 312 impostor tests (per group) were performed in
compliance with BANCA’s “P” protocol. Figure 14(a) shows
the DET curves for speaker verification on g1 and g2, with an
EER of 4.38% and 4.22%, respectively.
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(a) Neutral face (b) Joy expression (c) Sad expression (d) Right eye wink (e) Left eye wink

Figure 13: Selected frames from an animated face with various expressions.

5.1.2. Face Verification Experiments. Face verification is
based on extracting facial features from a video sequence
as described in Section 3.4. First, the face tracking module
extracts faces in all frames and retains only 5 of them for
training and/or testing. The 5 frames selected are equally
distributed across the video sequence so as to have a good
sample of faces. These faces are then resized to 48× 64, gray-
scaled, cropped to 36 × 40, and then histogram-equalized.
Then DCT feature extraction follows. Neighboring blocks
of 8 × 8 with an overlap of 50% is used. M, the number
of retained coefficients, is fixed at 15 [29]. In a similar
way to speaker verification, GMMs are used to model the
distribution of face feature vectors for each person.

For the same BANCA “P” protocol, and a total of 234
true clients and 312 impostor tests (per group per frame—
5 frames per video) the DET curves for face verification are
shown in Figure 14(b) with an EER of 23.5% and 22.2% for
g1 and g2, respectively.

5.1.3. Score Fusion. Figure 14(c) shows an improvement of
the verification by score fusion of both modalities, with
an EER of 4.22% for g1 and 3.47% for g2. The optimized
weights ws and wf are integers 8 and 3, respectively, as
described in Section 3.5.

5.2. Transformation Experiments. BANCA defines in its pro-
tocols imposture attempts during which a speaker proclaims
in his/her own voice and face to be someone else. This “zero-
effort” imposture is unrealistic, and any text-independent
verification system should be able to detect easily the forgery
by contrasting the impostor model against the claimed
identity model. To make the verification more difficult,
transformation of both voice and face is performed.

5.2.1. Voice Conversion Experiments. BANCA has total of 312
impostor attacks per group in which the speaker claims in his
own words to be someone else. These attempts are replaced
by the transformed voices as described in Section 4.1. For
each attempt, MFCC analysis is performed, and transfor-
mation coefficients are calculated in the cepstral domain
using the EM algorithm. Then the signal transformation
parameters are estimated using a gradient descent algorithm.
The transformed voice signal is then reconstructed with an

inverse FFT and OLA as described in Section 4.1.3. The
pitch of the transformed voice had to be adjusted to match
better the target speaker’ pitch. Verification experiments
are repeated with the transformed voices. The result is an
increase of the EER from 4.38% to 10.6% on g1 and from
4.22% to 12.1% on g2 (Figure 14(a)).

5.2.2. Face Conversion Experiments. Given a still picture of
the face of a target person, the MPEG-4 facial feature points
are first manually annotated as shown in Figure 12. A total
of 61 feature points out of 83 specified by MPEG-4 are
annotated, the majority of which belong to the eyes and the
mouth regions. Others have less impact on FAPs or do not
affect them at all.

The FAPs used in the experiments correspond to a
subset of 33 out of the 68 FAPs defined by MPEG-4.
Facial actions related to head movement, tongue, nose,
ears, and jaws are not used. The FAPs used corre-
spond to mouth, eye, and eyebrow movements, for exam-
ple, horizontal displacement of right outer lip corner
(stretch r cornerlip o), vertical displacement of top
right eyelid (close t r eyelid), and vertical displacement
of left outer eyebrow (raise l o eyebrow). Figure 13
shows animated frames simulating the noted expressions.

A synthesized video sequence is generated by deforming
a face from its neutral state according to determined FAP
values at a rate of 25 frames per second. For the experiments
presented in this work, these FAPs are selected so as to
produce a realistic talking head that is not necessarily
synchronized with the associated transformed speech. The
only association with speech is the duration of the video
sequence, which corresponds to the total time of speech. The
detection and the measure of the level of audiovisual speech
synchrony is not treated in this work but has been reported
in [51–53] to improve the verification performance.

BANCA has total of 312 impostor attacks per group
in which the speaker claims in his own words and facial
expressions to be someone else. These are replaced by
the synthetically animated videos with the transformed
speech. The experiments have shown a deterioration of
the performance from an EER from (23.5%, 22.2%) on
(g1, g2) to (37.6%, 33.0%) (Figure 14(b)) for face, and
from (4.22%, 3.47%) to (11.0%, 16.1%) for the audio-visual
system (Figure 14(c)).
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Figure 14: Audiovisual verification and imposture results on BANCA.

6. Conclusion

This paper provides a review of biometric identity ver-
ification techniques and describes their evaluation and
robustness to imposture. It proposes MixTrans, a mixture-
structured bias voice transformation technique in the cep-
stral domain, which allows a transformed audio signal to be
estimated and reconstructed in the temporal domain. It also
couples the audio conversion with an MPEG-4 compliant

face animation system that warps facial feature points using
a simple thin-plate spline. The proposed audiovisual forgery
is completely independent from the baseline audiovisual IV
system and can be used to attack any other audiovisual
IV system. The Results drawn from the experiments show
that state-of-the-art verification systems are vulnerable to
forgery, with an EER average increase from 3.8% to 13.5%.
This increase clearly shows that such attacks represent a
serious challenge and a security threat to audio-visual IV
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systems. The results show that state-of-the-art IV systems are
vulnerable to forgery attacks, which indicate more impostor
acceptance, and, for the same threshold, more genuine client
denial. This should drive more research towards more robust
IV systems.
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1. Introduction

Biometric recognition has been an active research area in
the past two decades. Biometrics-based recognition systems
determine or confirm the identity of an individual based
on the physiological and/or behavioral characteristics [1]. A
wide variety of biometric modalities have been investigated
in the past. Examples of these biometrics include physio-
logical traits such as fingerprint, face, iris, and behavioral
characteristics such as gait and keystroke. Each biometric
has its strengths and weaknesses. The choice of a biometric
is dependent on the properties of the biometric and the
requirements of the specific application. Depending on
different application context, a biometric system can operate
in identification mode or verification mode [1]. Figure 1
depicts the general block diagram of biometric recognition
systems.

During enrolment, a feature vector gi, i = 1, 2, . . . ,N ,
where N is the total number of users, is extracted from
the biometric data of each user and stored in the system
database as templates. Biometric identification is a one-
to-many comparison to find an individual’s identity. In
identification mode, given an input feature vector p, if the
identity of p, Ip, is known to be in the system database,
that is, Ip ∈ {I1, I2, . . . , IN}, then Ip can be determined by

Ip = Ik = mink{S(p, gk)}, k = 1, 2, . . . ,N , where S denotes
the similarity measure. The performance of a biometric
identification system is usually evaluated in terms of correct
recognition rate (CRR).

A biometric verification system is a one-to-one match
that determines whether the claim of an individual is true.
At the verification stage, a feature vector p is extracted from
the biometric signal of the authentication individual Ip,
and compared with the stored template gk of the claimed
identity Ik through a similarity function S. The evaluation of
a verification system can be performed in terms of hypothesis
testing [2], H0: Ip = Ik, the claimed identity is correct;
H1: Ip /= Ik, the claimed identity is not correct. The decision
is made based on the system threshold τ, H0 is decided if
S(p, gk) ≤ τ, and H1 is decided if S(p, gk) > τ. A verification
system makes two types of errors: false accept (deciding H0

when H1 is true), and false reject (deciding H1 when H0 is
true). The performance of a biometric verification system is
usually evaluated in terms of false accept rate (FAR, P(H0 |
H1)), false reject rate (FRR, P(H1 | H0)), and equal error
rate (EER, operating point where FAR and FRR are equal).
The FAR and FRR are closely related functions of the system
decision threshold τ.

While biometric technology provides various advantages,
there exist some problems. In the first place, biometric data
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reflects the user’s physiological/behavior characteristics. If
the storage device of biometric templates is obtained by
an adversary, the user’s privacy may be compromised. The
biometric templates should be stored in a format such that
the user’s privacy is preserved even when the storage device
is attacked. Secondly, biometrics cannot be easily changed
and reissued if compromised due to the limited number
of biometric traits that a human has. This is of particular
importance in biometric verification scenarios. Ideally, just
like password, the biometrics should be changeable. The
users may use different biometric representation for different
applications. When the biometric template in one applica-
tion is compromised, the biometric signal itself is not lost
forever and a new biometric template can be issued.

A number of research works have been proposed in
the recent years to address the changeability and privacy
preserving problems of biometric systems. One approach is
to combine the biometric technology with cryptographic sys-
tems [3]. In a biometric cryptosystem, a randomly generated
cryptographic key is bound with the biometric features in a
secure way such that both the key and the biometric features
cannot be revealed if the stored template is compromised.
The cryptographic key can be retrieved if sufficiently similar
biometric features are presented. Error correction algorithms
are usually employed to tolerate errors. Due to the binary
nature of cryptographic keys, such systems usually require
discrete representation of biometric data, such as minutia
points for fingerprints and iris code. However, the feature
vectors of many other biometrics, such as face, are usually
represented in continuous domain. Therefore, to apply such
a scheme, the continuous features need to be discretized first.
It should be noted that such methods produce changeable
cryptographic keys, while the biometric data is not change-
able. Furthermore, the security level of such methods still
needs to be further investigated [4, 5].

An alternative and effective solution is to apply repeatable
and noninvertible transformations on the biometric features
[2]. With this method, every enrollment (or application)
can use a different transform. When a biometric template

is compromised, a new one can be generated using a
new transform. In mathematical language, the recognition
problem can be formulated as follows. Given a biometric
feature vector u, the biometric template g is generated
through a generation function g = Gen(u, k). Different
templates can be generated by varying the control factor k.
During verification, the same transformation is applied to
the authentication feature vector, g

′ = Gen(u
′
, k), and the

matching is based on similarity measure in the transformed
domain, that is, S(g, g

′
). The major challenge here lies in

the difficulty of preserving the similarity measure in the
transformed domain, that is, S(g, g′) ≈ S(u, u

′
). Further,

to ensure the property of privacy protection, the generation
function Gen(u, k) should be nonfinvertible such that û =
Rec(g, k) /=u, where Rec(g, k) is the reconstruction function
when both the template g and control factor k are known.

Among various biometrics, face recognition has been
one of the most passive, natural, and noninvasive types of
biometrics. Such characteristics of face recognition make
it a good choice for some surveillance and monitoring
applications. It can also be used in supporting video
search and indexing, video-conferencing, interactive games,
physical access control, computer network login, and ATM.
Many face recognition methods have been proposed in the
literature, which can be roughly categorized into holistic
template matching-based system, geometrical local feature-
based system, and hybrid systems [6]. Promising results
have also been reported under controlled condition [7].
In general, the selection of a face recognition scheme is
dependent on the specific requirements of a given task [6].
Appearance-based approaches (such as principal component
analysis (PCA) and linear discriminant analysis (LDA)) that
treat the face image as a holistic pattern are among the most
successful methods [6, 8]. In this paper, we first introduce
a novel method for face recognition based on sorted index
numbers (SINs) of appearance-based facial features. Unlike
traditional face recognition methods which store either the
original image or facial features as templates, the proposed
method stores the SIN vectors only. A matching algorithm
is introduced to measure the similarity between two SIN
vectors. Because it is impossible to recover the exact values
of the original features based on the index numbers, the
SIN method is noninvertible. To further enhance the security
and address the irrevocable problem, intentional random
projection (RP) is applied prior to the sorting operation such
that the generated biometrics template is both changeable
and privacy preserving. Experimental results on a large data
set demonstrate the effectiveness of the proposed solution.

The remainder of this paper is organized as follows.
Section 2 provides a review of related works. Section 3
introduces the proposed method. Experimental results along
with detailed discussion are presented in Section 4. Finally,
conclusions are provided in Section 5.

2. Related Works

To address the privacy and irrevocability problem of biomet-
ric systems, many tentative solutions have been introduced
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in the literature using various biometrics. Among the
earliest efforts, Soutar et al. [9] presented a correlation-
based method for fingerprint-based biometric verification,
and Davida et al. [10] proposed to store a set of user
specific error correction parameters as template for an iris-
based system. However, both of these two works are lack
of practical implementation and cannot provide rigorous
security guarantees [3].

Juels and Wattenberg [11] introduced a fuzzy commit-
ment scheme, which generalized and improved Davida’s
methods. The fuzzy commitment scheme assumes binary
representation of biometric features, and error correction
algorithms are used to tolerate errors due to the noisy
nature of biometric data. Hao et al. [12] presented a similar
scheme on an iris-based problem using a two-level error
correction mechanism. Later, a polynomial reconstruction-
based scheme, fuzzy vault, is proposed by Juels and Sudan
[13]. The fuzzy vault scheme assumes the biometric data
being represented by discrete features (e.g., minutia points
in fingerprints). In this scheme, error tolerance is achieved
by using the property of secret sharing, while the security is
obtained by hiding genuine points into randomly generated
chaff points. A few implementation works of fuzzy vault have
been reported in [14, 15] based on fingerprints. Although the
paper proves that this scheme is secure in an information-
theoretic sense, it is clear that it is vulnerable to attacks via
record multiplicity [5]. Further drawbacks of the method
include high computational complexity and high error rate
[14, 15].

Dodis et al. [16] presented a theoretical work, fuzzy
extractor, for generation of cryptographic keys from noisy
biometric data using error correction code and hash func-
tions. Their paper also assumes the biometric features in
discrete domain. Different constructions for three metric
spaces: Hamming distance, set difference, and edit distance
are introduced. Yagiz et al. [17] introduced a quantization-
based method for mapping of continuous face features to
discrete form and utilized a known secure construction for
secure key generation. However, Boyen [18] showed that the
fuzzy extractor may be not secure for multiple use of the
same biometrics data.

Kevenaar et al. [19] proposed a helper data system
for generation of renewable and privacy preserving binary
template. A set of fiducial points is first identified from six
key objects of human face, and Gabor filters are applied
to extract features from a small patch centered around
every fiducial point. The extracted features are discretized
by a thresholding method, and the reliability of each bit is
measured based on statistical analysis. The binary template
is generated by combining the extracted reliable bit with
a randomly generated key through an XOR operation, and
BCH code is applied for error correction. The indexes of the
selected reliable bit, the mean vector for feature thresholding,
the binary template, and the hash of the key are stored
for verification. Their experiments demonstrate that the
performance of the binary feature vectors is only degraded
slightly comparing with the original features. However, the
performance of their system depends on accurate localization
of key object and fiducial points.

Savvides et al. [20, 21] proposed an approach for cance-
lable biometric authentication in the encrypted domain. The
training face images are convolved with a random kernel first;
the transformed images are then used to synthesize a single
minimum average correlation energy filter. At the point of
verification, query face image is convolved with the same
random kernel and then correlates with the stored filer to
examine the similarity. If the storage card is ever attacked,
a new random kernel may be applied. They show that the
performance is not affected by the random kernel. However,
it is not clear how the system preserves privacy if the random
kernel is known by an adversary. The original biometrics may
be retrieved through deconvolution if the random kernel is
known.

Boult [22] introduced a method for face-based revocable
biometrics based on robust distance measures. In this
scheme, the face features are first transformed through scal-
ing and translation, and the resulting values are partitioned
into two parts, the integer part and the fractional part. The
integer part is encrypted using Public Key (PK) algorithms,
and the fractional part is retained for local approxima-
tion. A user-specific passcode is included to address the
revocation problem. In a subsequent paper [23], a similar
scheme is applied on a fingerprint problem, and detailed
security analysis is provided. Their methods demonstrate
both improvement in accuracy and privacy. However, it is
assumed that the private key cannot be obtained by an
imposter. In the case of known private key and transform
parameters, the biometrics features can be exactly recovered.

Teoh et al. [24] introduced a two-factor scheme, Bio-
Hashing method, which produces changeable non-invertible
biometric template, and also claimed good performance,
near zero EER. In BioHashing, a feature vector u ∈ Rn is
first extracted from the user’s biometric data. For each user,
a user-specific transformation matrix R ∈ Rn×m,m ≤ n, is
generated randomly (associated with a key or token), and
the Gram-Schmidt orthonormalization method is applied
to R, such that all the columns of R are orthonormal. The
extracted feature vector u is then transformed by x = RTu,
and the resulting vector x is quantized by bi = 0, if xi < t,
and bi = 1, if xi ≥ t, i = 1, 2, . . . ,m, where t is a predefined
threshold value and usually set to 0. The binary vector b
is stored as the template. The technique has been applied
on various biometric traits [25, 26] and demonstrates zero
or near zero equal error rate in ideal case; that is, both
the biometric data and the key are legitimate. In the stolen
key scenario, the BioHashing method usually degrades the
verification accuracy. Lumini and Nanni [27] introduce some
ideas to improve the performance of BioHashing in case of
stolen key by utilizing different threshold values and fuse the
scores. However, as shown in [28], as well as the experimental
results in this paper, even in the both legitimate scenario, the
performance of BioHashing technique is highly dependent
on the characteristics and dimensionality of the extracted
features.

In summary, existing works either can not provide robust
privacy protection, or sacrifice recognition accuracy for
privacy preservation. In this paper, we propose a new method
for changeable and privacy preserving template generation



4 EURASIP Journal on Advances in Signal Processing

using random projection and sorted index numbers. As
it will be shown, the proposed method is also capable of
improving the recognition accuracy.

3. Methodology

This section presents the proposed method for privacy
preserving face recognition. An overview of the sorted index
numbers (SINs) method as well as the similarity measure
algorithm is first introduced. Next, the analysis of the SIN
algorithm is provided in detail. The random projection-
based changeable biometrics scheme is then described.
Finally, privacy analysis of the proposed method is presented.

3.1. Overview of SIN Method. The proposed method utilizes
sorted index numbers instead of the original facial features
as templates for recognition. The procedure of creating the
proposed SIN feature vector is as follows.

(1) Extract feature vector w ∈ Rn from the input face
image z.

(2) Compute u = w − w, where w is the mean feature
vector calculated from the training data.

(3) Sort the feature vector u in descending order, and
store the corresponding index numbers in a new
vector g.

(4) The generated vector g ∈ Zn that contains the sorted
index numbers is stored as template for recognition.

For example, given u = {u1,u2,u3,u4,u5,u6}, the sorted
vector in descending order is ĝ = {u4,u6,u2,u1,u3,u5}, then
the template is g = {4, 6, 2, 1, 3, 5}.

The method for computing the similarity between two
SIN vectors is as follows.

(1) Given two SIN feature vectors g ∈ Zn and p ∈ Zn,
where g denotes the template vector, and p denotes
the probe vector. Start from the first element g1 of g.

(2) Search for the corresponding element in p, that is,
pj = g1. Record d1 = j − 1, where j is the index
number in p.

(3) Eliminate the obtained pj in the previous step from
p, and obtain p1 = {p1, p2, . . . , pj−1, pj+1, . . . , pn}.

(4) Repeat steps 2 and 3 on the following elements of g
until gn−1. Record d2,d3, . . . ,dn−1.

(5) The similarity measure of g and p is computed as
S(g, p) =∑n−1

i=1 di.

Illustration Example.

(1) For two SIN feature vectors g = {4, 6, 2, 1, 3, 5} and
p = {2, 5, 3, 6, 1, 4}, we first search the 1st element
g1 = 4, and find that p6 = 4. Therefore d1 = 6− 1 =
5. Eliminate p6 from p and we form a new vector of
p1 = {2, 5, 3, 6, 1}.

(2) Search the 2nd element g2 = 6, and find that p1
4 = 6.

Therefore d2 = 4 − 1 = 3. Eliminate p1
4 from p1 and

form a new vector of p2 = {2, 5, 3, 1}.

(3) Search the 3rd element g3 = 2, and find that p2
1 = 2.

Therefore d3 = 1 − 1 = 0. Eliminate p2
1 from p2 and

form a new vector of p3 = {5, 3, 1}.
(4) Search the 4th element g4 = 1, and find that p3

3 = 1.
Therefore d4 = 3 − 1 = 2. Eliminate p3

3 from p3 and
form a new vector of p4 = {5, 3}.

(5) Search the 5th element g5 = 3, and find that p4
2 = 1.

Therefore d5 = 2− 1 = 1.

(6) Compute S(g, p) =∑n−1
i=1 di = 5 + 3 + 0 + 2 + 1 = 11.

3.2. Methodology Analysis. To understand the underlying
rationale of the proposed algorithm, we first look into
an alternative presentation of the method, named Pairwise
Relational Discretization (PRD). The relative relation of
different bins has been used to represent histogram shape
in [29]. Here, the pairwise relative relation of features is
used for Euclidean distance approximation. The procedure
of producing the PRD feature vector is as follows.

(1) Extract feature vector w ∈ Rn from the input face
image z.

(2) Compute u = w − w, where w is the mean feature
vector calculated from the training data.

(3) Compute binary representation of u by comparing
the pairwise relation of all the elements in u accord-
ing to

bi j =
⎧

⎨

⎩

1, ui ≥ uj ,

0, ui < uj .
(1)

(4) Concatenate all the generated binary bits into one
vector b = {b12, . . . , b1n, b23, . . . , b2n, b34, . . . , bn−1,n}.
Store the binary vector b as template for recognition.

The similarity measure of the PRD method is based
on Hamming distance. Unlike traditional discretization
method, which quantizes individual elements based on some
predefined quantization levels, the proposed method takes
the global characteristics of the feature vectors into consider-
ation. This is interpreted by comparing the pairwise relation
of all groups of two elements in the vector. The intuition
behind the idea is to consider an n-dimensional space as
combinations of 2-dimensional planes. In n-dimensional
subspace, when the similarity of two vectors is evaluated by
Euclidean distance, each element of the vectors is treated
as coordinates in the corresponding basis {h1, h2, . . . , hn},
and the similarity is based on the spatial closeness. The
elements are essentially the projection coefficients of the
vector onto each basis (i.e., lines). Here, instead of projecting
onto lines, we explore the projection onto 2D planes. Figure 2
offers a diagrammatic illustration of the PRD method.
For two points in n-dimensional subspace, if they are
spatially close to each other, then in large number of 2D
planes, their projection location should be close to each
other, that is, small Hamming distance, and vise versa.
Therefore, the Euclidean distance between two vectors can
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Figure 2: Diagram of Pairwise Relational Discretization (PRD) method.

be approximated by the Hamming distance between the
corresponding PRD vectors. The mean centralization step
is to leverage the significance of each element such that no
single dimension will overwhelm others. The discretization
step partitions a plane into two regions by comparing the
pairwise relation. It reduces the sensitivity of the variation
of individual elements and therefore possibly provides better
error tolerance. Figure 3 shows the intra-class and inter-class
distribution of 100 PCA coefficients based on 1000 randomly
selected images from the experimental data set. The PCA
vectors are normalized to unit length, and Euclidean distance
and SIN distance are used as dissimilarity measure. Note that
the size of the overlapping area of the intra-class and inter-
class distributions indicates the recognition error. It can be
observed that the SIN method produces smaller error than
the original features, therefore will possibly provide better
recognition performance.

A major drawback of the PRD method is the high
dimensionality of the generated binary PRD vector. For an
n-dimensional vector, the generated binary vector b will
have a size of n(n − 1)/2. For example, for a feature vector
with n = 100, the PRD vector will have a size of 4950.
This problem introduces high storage and computational
requirements. This is particularly important for applications
with high processing speed demand. To improve this, we note
that the PRD method is based on pairwise relation of all the
vector elements, and the same information can be exactly
preserved from the sorted index numbers of the vector; that
is, any single bit in b can be derived from the SIN vector.

Let g and p denote the SIN vector of template and probe
images, respectively, bg and bp represent the corresponding
PRD vectors, then we have

H
(

bg , bp

)

= S
(

g, p
) =

n−1
∑

i=1

di, (2)

where H(bg , bp) and S(g, p) denote the Hamming distance
and SIN distance, respectively, and di, i = 1, . . . ,n, represents
the Hamming distance associated with every single element
in g.
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Proof of (2). Since g and bg are derived from the same feature
vector, in bg , there are n − 1 bits that are associated with
the first element of g, g1. If pj = g1, where j is the index
number of the corresponding element in p, then all the index
numbers to the left of pj will have different bit values in
bp, that is, d1 = j − 1. It should be noted that since the
Hamming distance for all the bits associated with pj = g1 has
been computed, the pj element should be removed for the
calculation of next iteration. After the Hamming distances
for all the elements in g and p are computed, the sum of them
will correspond to the Hamming distance of bg and bp, that

is, H(bg , bp) = S(g, p) =∑n−1
i=1 di.

Equation (2) shows that the proposed SIN and PRD
methods produce exactly the same results. To test the
effectiveness of SIN over PRD in computational complexity,
we performed experiments on a computer with Intel Core2
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CPU 2.66 GHz. With an original feature vector of dimension-
ality 100, the average time for PRD feature extraction and
matching is 26.2 milliseconds, while the SIN method only
consumes less than 0.9 milliseconds.

3.3. Changeable Biometrics. To address the changeability
problem in biometric verification systems, one solution is
to scramble the order of the features before the sorting
operation. However, the security of such method is the same
as the encryption/decryption key method, where the original
SIN vectors will be obtained if the scrambling rule is compro-
mised. In this paper, for the purpose of comparative study, we
adopt the random projection-(RP-) based scheme as in [24].

Depending on the requirements of the application, the
changeable biometric system can be implemented in two
scenarios: user-independent projection and user-dependent
projection. In the user-independent scenario, all the users
use the same matrix for projection. This matrix can be
controlled by the application provider, and therefore the
users do not need to carry the matrix (or equivalently
a key for matrix generation) for verification. The user-
dependent scenario is a two-factor authentication scheme,
and requires the presentation of both the biometrics data and
projection matrix at the time and point of verification. In
both scenarios, the biometric template can be regenerated by
changing the projection matrix.

The theory of random projection is first introduced by
the Johnson-Lindenstrauss lemma [30].

Lemma 1 (J-L lemma). For any 0 < ε < 1, and an integer s,
let m be a positive integer such thatm ≥ m0 = O(ε−2logs). For
any set B of s points in Rn, there exists a map f:Rn → Rm such
that for all u, v ∈ B,

(1− ε)‖u− v‖2 ≤ ∥∥ f (u)− f (v)
∥

∥
2 ≤ (1− ε)‖u− v‖2.

(3)

This lemma states that the pairwise distance between any
two vectors in the Euclidean space can be preserved up to
a factor of ε, when projected onto a random m-dimension
subspace. Random projection has been used as a dimension
reduction tool in face recognition [31], image processing
[32], and a privacy preserving tool in data mining [33] and
biometrics [24]. The implementation of random projection
can be carried out by generating a matrix of size n×m,m ≤ n,
with each entry an independent and identically distributed
(i.i.d.) random variable, and applying the Gram-Schmidt
method for orthonormalization. Note that when m = n, it
becomes the random orthonormal transformation (ROT).
In user-independent scenario, for two facial feature vectors
u ∈ Rn and v ∈ Rn, since the same ROT matrix R ∈ Rn×n is
applied, we have the well-known property of ROT:

∥

∥

∥RTu− RTv
∥

∥

∥

2 =
∥

∥

∥RTu
∥

∥

∥

2
+
∥

∥

∥RTv
∥

∥

∥

2 − 2uTRRTv

= ‖u‖2 + ‖v‖2 − 2uTv

= ‖u− v‖2.

(4)

It can be seen that the ROT transform exactly preserves the
Euclidean distance of original features. When the projected

dimensionality is m < n, although exact preservation can
not be obtained, the pairwise distance can be approximately
preserved. The larger them, the better the preservation. Since
the SIN method also approximates the Euclidean distance,
the SIN vectors obtained after RP can also approximately
preserve the similarity between two original vectors.

In the user-dependent scenario, different users are associ-
ated with distinct projection matrices. The FAR corresponds
to the probability of deciding H0 when H1 is true, P(H0 |
H1), and the FRR corresponds to P(H1 | H0). Note that for
the FRR, even in case of a user-dependent scenario, the same
orthogonal matrix R is used for the same user, and hence
the situation is the same as the user-independent scenario.
Therefore we only need to analyze the influence of different
projection matrix over the FAR.

Let Ru and Rv represent the RP matrices for feature
vectors u and v, respectively. Let x = RTuu and y = RTv v,
and g and p denote the SIN vectors for x and y, respectively.
Due to the randomness of RP, the total number of possible
outputs for g and p is equal to the number of permutations
m!. Let γ denote the number of index permutations that have
a distance of less than τ to the vector g, then the probability
of p being falsely identified by g is P(H0 | H1) = γ/m!.
It can be seen that the probability of false accept depends
on the characteristics and dimensionality of the features. If
the features are well separated, that is, smaller γ value, with
relatively higher dimensionality, the false accept rate will be
small. The above analysis in user-dependent scenario also
applies if the biometrics data is stolen by an adversary, since
the v vector can be exactly the same as u. This also explains
the changeability of the method.

Figure 4 shows the distribution of the distance between
two feature vectors using user-independent and user-
dependent random projections. We randomly selected two
PCA features vectors (n = 100) of the same subject from
the employed data set, performed the same key and different
key scenario 2000 times, and plotted the distribution of
the Euclidean distance and SIN distance, respectively, at
different projection dimensions. The PCA feature vectors are
normalized to unit length, and the distances are normalized
by dividing the largest value, respectively, 2 for Euclidean
distance and m(m − 1)/2 for SIN. It can be observed
that by applying the same key, the mean of the Euclidean
distance in the projected domain is centered around the
original Euclidean distance, and the variance of the distances
decreases as the projected dimensionality increases. This
demonstrates better distance preservation at higher projec-
tion dimension. When different keys are applied, the mean
of the distance distribution shifts to the right, that is larger
distance. The clear separation of the distribution indicates
the changeability of the proposed method.

3.4. Privacy Analysis. Since the SIN method only stores
the index numbers of the sorted feature vector u, the
transformation from u to the corresponding SIN vector g
is non-invertible. There is no effective reconstruction being
possible to recover the exact values of u from g. The most an
adversary can do is to estimate the values of u based on some
statistics or his/her own features. By using such method, an
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Figure 4: Gaussian approximation of the distribution of (a) normalized Euclidean distance (NED), (c) normalized SIN distance (NSD),
with n = 100, m = 80. Distribution of (b) NED, and (d) NSD, at different projection dimensionality in same key and different key scenarios.

adversary can only produce an approximation of the original
features. For RP, when the projected dimensionality m is
smaller than the dimensionality n of the original features,
even the worst case that the projection matrix is known by an
adversary, an estimation will produce an approximation of
the original features with variance inverse proportional to m,
that is, the smaller the m, the larger the estimation variance
[33]. Since both the RP and SIN methods are non-invertible
transformations, the combination of these two is expected to
produce stronger privacy protection.

To analyze the privacy preserving properties of the pro-
posed method, we introduce the following privacy measures:

Definition 1. A feature vector u ∈ Rn is called privacy
protected at element-wise level α, where α is computed as

α = 1
n

n
∑

i=1

1− [1− xi]h(1− xi), xi = Var(ui − ûi)
Var(ui)

, (5)

where var(·) denotes variance, ûi is the estimated value of
element ui, and h(x) is unit step function, that is, h(x) = 1 if
x ≥ 0 and h(x) = 0 otherwise. The function h(x) is utilized
to regulate the significance of all the elements, such that the
variance ratio of any element is maximum 1.

Using the variance of difference between the actual and
perturbed values has been widely adopted as a privacy
measure for individual attributes in data mining [34].
Similarly, here we take the variance of difference between
the original and estimated values as a measure of the privacy
protection of individual elements. When the variance ratio
of any attribute is greater or equal to 1, that is, Var(ui −
ûi) ≥ Var(ui), then the estimation of that attribute essentially
provides no useful information, and the attribute is strongly
protected. The element-wise privacy level α measures the
average privacy protection of individual elements. The
greater the α value, the better the privacy protection.
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Besides measuring the privacy protection of the indi-
vidual elements, it is also important to measure the global
characteristics of the feature vectors such that the estimated
vector is not close to the original one up to certain similarity
functions. In [35], it is shown that any arbitrary distance
functions can be approximately mapped to Euclidean dis-
tance domain through certain algorithms. In this paper, we
take the squared Euclidean distance between the estimated
and original feature vectors as a measure of privacy.

Definition 2. A feature vector u ∈ Rn is called privacy
protected at vector-wise level β, where β is computed as:

β =
E
(
∥

∥û− u
∥

∥
2
)

E
(

‖r− u‖2
) , (6)

where E(·) denotes expectation, ‖ · ‖ denotes the squared
Euclidean distance, and r is any random vector in the
estimation feature space. If the average distance between
the estimated and original vector is approaching the average
distance between any random vector and the original vector,
then the estimated vector essentially exhibits randomness,
and therefore does not disclose information about u; that is,
the larger the β, the better privacy. Without loss of generality,
we assume that all the vectors have unit length. Since the
vectors are centralized to zero mean, the average distance
between any randomly selected vector r and the original
vector u is

E
(

‖r− u‖2
)

= E
(

‖r‖2 + ‖u‖2 − 2rTu
)

= 2− 2E
(

rTu
)

= 2,
(7)

where we use the fact that E(rTu) = E(
∑n

i=1 riui) =
∑n

i=1 E(riui) =
∑n

i=1 E(ri)E(ui) = 0, since ri is independent
of ui and has zero mean. Therefore, for unit length vectors,
(6) can be written as

β =
E
(
∥

∥û− u
∥

∥
2
)

2
. (8)

Figure 5 shows the privacy measures α and β as functions
of projected dimension m, with the original dimensionality
n = 100. Figure 5(a) plots the results generated from 1000
random unit vectors, and Figure 5(b) is obtained from 1000
randomly selected PCA feature vectors in the experimental
data set. The random vectors are generated with each element
an i.i.d. Gaussian random variable, followed by normaliza-
tion to unit length. The PCA vectors are normalized to have
the same variance and unit length. The estimation û of an
original vector u is performed as follows. For an original
vector u with RP matrix R, we obtain the SIN vector g
by g = sort(RTu), where sort denotes the operation of
getting the sorted index numbers. Given the worst case that
an adversary obtains g and R, he can estimate u by using
a randomly generated unit vector e according to an i.i.d.
Gaussian distribution, mapping to the estimated vector ê
based on g, then computing û = RRT ê, and normalizing to
unit length. It can be observed from Figure 5 that both the
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Figure 5: Privacy measure as a function of dimensionality. (a)
random vectors, (b) PCA feature vectors.

element-wise and vector-wise privacy levels improve as the
projected dimension decreases.

To provide some insight into the privacy protection prop-
erty of the proposed method, we compare the reconstructed
image with the original image through different methods in
Figure 6. The images are randomly selected from the FERET
database [36, 37]. A PCA vector u is first extracted from
image z (Figure 6(a)). A new vector is then generated by
x = RTuu, where Ru is a random projection matrix, and
the sorted index numbers of x are stored in a SIN vector
g. Here the dimensionality of PCA is selected as n = 100,
and the projection dimension is m = 50. Assuming the
worst case that g and Ru are all compromised, an adversary
can only reconstruct the original image based on a vector v,
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which is either a PCA feature vector of some other subjects,
or a randomly generated vector. The reconstruction can
be performed by first sorting and mapping v to another
vector ṽ based on g, and followed by ẑ = Ψ(Ruṽ + ΨTz).
Figure 6(a) shows an original image z and Figure 6(b) is
the reconstructed image from its first 100 PCA coefficients
u. The reconstruction is performed by ẑ = Ψ(u + ΨTz),
where Ψ is the PCA projection matrix, and z is the mean
image obtained from the training set. It is obvious that the
PCA approach cannot preserve privacy since the original
visual information is very well approximated. Figures 6(d)
and 6(f) are the reconstructed images from the features of
images, Figures 6(c) and 6(d), respectively, while Figure 6(g)
and Figure 6(h) are reconstructed from randomly generated
vectors, all using the SIN vector g of image Figure 6(a). All
the reconstructed images demonstrate large distortion from
the original image. The results in Figure 6 are meant to
provide some insight into the privacy preserving property
of the proposed method. It can be seen that the original
values of the feature vectors can not be recovered, and
an estimation can only produce a distorted version of the
original image, which has a significant visual difference from
the original one. The above analysis, although not exact in
the mathematical sense, illustrates that the privacy of the user
can be protected by using the proposed method.

4. Experimental Results

To evaluate the performance of the proposed method, we
conducted experiments on a generic data set that consists
of face images from several well-known databases [38]. In
this section, we first give a description of the employed
data set. The adopted feature extraction methods are then
briefly discussed. Finally, the experimental results along with
detailed discussion are presented.

4.1. Generic Data Set. To approach more realistic face
recognition applications, this paper tests the effectiveness
of the proposed method using a generic data set, in which
the intrinsic properties of the human subjects are trained
from subjects other than those to be recognized. The
generic database was initially organized for the purpose
of demonstrating the effectiveness of the generic learning
framework [38]. It originally contains 5676 images of 1020
subjects from 5 well-known databases, FERET [36, 37], PIE
[39], AR [40], Aging [41], and BioID [42]. All images are
aligned and normalized based on the coordinate information
of some facial feature points. The details of image selection
can be found in [38].

For preprocessing, the color images are first transformed
to gray-scale images by taking the luminance component in
YCbCr color space. All images are preprocessed according
to the recommendation of the FERET protocol, which
includes: (1) images are rotated and scaled so that the
centers of the eyes are placed on specific pixels and the
image size is 150 × 130; (2) a standard mask is applied
to remove non-face portions; (3) histogram equalized and
image normalized to have zero mean and unit standard
deviation. After preprocessing, the face images are converted

Table 1: Generic data set configuration.

Database No. of No. of No. of

subjects images per subject images

FERET 750 ≥3 3881

AR 119 4 476

Aging 63 ≥3 276

BioID 20 ≥6 227

PIE 68 12 816

Total 1020 ≥3 5676

to an image vector of dimension J = 17154. Table 1 illustrates
the configuration of the whole data set. Figure 7 shows some
example images from the generic data set.

4.2. Feature Extraction. To study the effects of different
feature extractors on the performance of proposed methods,
we compare Principal Component Analysis (PCA) and
Kernel Direct Discriminant Analysis (KDDA). PCA is an
unsupervised learning technique which provides an optimal,
in the least mean square error sense, representation of
the input in a lower-dimensional space. In the Eigenfaces
method [43], given a training set Z = {Zi}Ci=1, containing C
classes with each class Zi = {zi j}Cij=1 consisting of a number

of face images zi j , a total of M = ∑C
i=1 Ci images, the PCA is

applied to the training set Z to find theM eigenvectors of the
covariance matrix

Scov = 1
M

C
∑

i=1

Ci
∑

j=1

(

zi j − z
)(

zi j − z
)T

, (9)

where z = (1/M)
∑C

i=1

∑Ci
j=1 zi j is the average of the

ensemble. The Eigenfaces are the first N(≤ M) eigenvectors
corresponding to the largest eigenvalues, denoted as Ψ. The
original image is transformed to the N-dimension face space
by a linear mapping

yi j = ΨT
(

zi j − z
)

. (10)

PCA produces the most expressive subspace for face
representation but is not necessarily the most discriminating
one. This is due to the fact that the underlying class
structure of the data is not considered in the PCA technique.
Linear Discriminant Analysis (LDA) is a supervised learning
technique that provides a class specific solution. It produces
the optimal feature subspace in such a way that the ratio of
between-class scatter and within-class scatter is maximized.
Although LDA-based algorithms are superior to PCA-based
methods in some cases, it is shown in [44] that PCA
outperforms LDA when the training sample size is small
and the training images is less representative of the testing
subjects. This is confirmed in [38] that PCA performs much
better than LDA in a generic learning scenario, where the
image samples of the human subjects are not available for
training. It was also shown in [38] that KDDA outperforms
other techniques in most of the cases. Therefore we also
adopt KDDA in this paper.



10 EURASIP Journal on Advances in Signal Processing
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Figure 6: Comparison of original image with reconstructed images.

Figure 7: Example images for identification (top row) and verification (bottom row).

KDDA was proposed by Lu et al. [45] to address the non-
linearities in complex face patterns. Kernel-based solution
find a nonlinear transform from the original image space
RJ to a high-dimensional feature space F using a nonlinear
function φ(·). In the transformed high-dimensional feature
space F , the convexity of the distribution is expected to be
retained so that traditional linear methodologies such as PCA
and LDA can be applied. The optimal nonlinear discriminant
feature representation of z can be obtained by

y = Θ · ν
(

φ(z)
)

, (11)

where Θ is a matrix representing the found kernel discrimi-
nant subspace, and ν(φ(z)) is the kernel vector of the input
z. The detailed implementation algorithm of KDDA can be
found in [45].

4.3. Experimental Results on Face Identification. For face
identification, we use all the 5676 images in the data set for
experiments. A set of 2836 images from 520 human subjects
was randomly selected for training, and the rest of 2840

images from 500 subjects for testing. There is no overlap
between the training and testing subjects and images. The
test is performed on an exhaustive basis, such that each time,
one image is taken from the test set as probe image, while
the rest of the images in the test set as gallery images. This is
repeated until all the images in the test set were used as the
probe once. The classification is based on nearest neighbor.

Table 2 compares the correct recognition rate (CRR) of
SIN method with Euclidean and Cosine distance measures
at different dimensions. It can be observed that at higher
dimensionality, the SIN method may boost the recognition
accuracy of PCA significantly, while maintain the good per-
formance of the stronger feature extractor KDDA. The PCA
method projects images to directions with highest variance,
but not the discriminant ones. This will become more severe
in large image variations due to illumination, expression,
pose, and aging. When computing the similarity between
two PCA vectors, the distance measure is sensitive to the
variation of individual element, particularly those directions
corresponding to noise. The SIN method, on the other hand,
reduces this sensitivity by simply comparing the relative
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Table 2: Face identification results (in %).

PCA KDDA

Dim. Euc. Cos. SIN Euc. Cos. SIN

20 56.30 56.31 52.32 40.04 41.09 34.86

40 60.09 61.09 61.94 61.44 65.28 61.94

60 63.52 62.96 66.06 71.73 74.86 74.68

80 64.37 64.44 68.84 81.76 83.27 81.76

100 65.14 65.18 71.27 79.05 80.42 80.07

Table 3: Verification data set configuration.

Database No. of No. of No. of

subjects images per subject images

FERET 750 ≥2 3029

AR 119 4 476

Aging 63 ≥3 276

BioID 20 ≥6 227

PIE 68 ≥8 658

Total 1020 ≥2 4666

Table 4: Obtained EER (in %) for face verification.

PCA KDDA

Dim. Euc. Cos. SIN Euc. Cos. SIN

20 20.05 19.23 13.78 25.22 20.42 20.97

40 19.09 17.81 11.46 21.49 16.22 14.54

60 18.52 17.42 10.28 18.80 13.41 10.97

80 18.50 17.15 9.72 10.96 9.90 7.19

100 18.20 16.94 9.46 10.41 8.84 6.52

relation of the projections, and therefore possibly provides
better error tolerance. In the case of strong extractors such
as KDDA, the SIN method will approximate the distance
between two vectors and hence preserves the recognition
accuracy.

4.4. Experimental Results on Face Verification. For face verifi-
cation, we exclude image samples with large pose variation
(>15◦) and select 4666 images from 1020 subjects for our
experiments. Table 3 illustrates the detailed configuration of
the verification data set. In our experiments, we randomly
select 2388 images from 520 subjects as the training set, and
2278 images of the rest 500 subjects as the testing set. There is
no overlap between the training and the testing subjects and
images. The evaluation was also performed on an exhaustive
basis, where every single image is used as a template once,
and the rest of the images in the test set as the probe images.

Table 4 compares the obtained equal error rate (EER)
of SIN with Euclidean and Cosine distance at different
dimensions when PCA and KDDA are used as feature
extractors. In general, the Cosine metric outperforms the
Euclidean distance measure, and the proposed SIN method
improves both the verification accuracy of PCA and KDDA
at almost all dimensions. This further demonstrates that the

sorted index numbers indeed offer better error tolerance and
provide more discriminant representation.

4.5. Changeable Face Verification. To enhance the privacy
protection level as well as addressing the irrevocable problem
of biometric verification systems, this paper adopts the
random projection method. For the purpose of comparative
study, we compared the performance of the proposed
method with that of the BioHashing (BH) technique in this
paper. For the BH method, as illustrated in [24], each of the
generated BH code should have a probability of 50% to be 1
or 0. To achieve this, we centralize all the feature vectors by
subtracting the mean, and then compare with the threshold
value t = 0.

In the experiments, the same data set as the one for face
verification is employed. The images for training and testing
are also exactly the same as those for face verification. To
minimize the effect of randomness, all the experiments were
performed 5 times, and the average of the results is reported.
Table 5 gives the obtained EER of BH and SIN methods
in both user-independent and user-dependent scenarios at
different projected dimension m, with the dimensionality of
the original features set to n = 100.

In the user-independent scenario, all the users apply the
same RP matrix. In the user-dependent scenario, different
users have distinct RP matrices. The user-dependent scenario
is essentially a two-factor scheme, and it requires correct
presentation of both the RP matrix (or a generation key)
and biometrics data. The proposed user-dependent scheme
assumes that the RP matrix and the biometrics data can
not be stolen at the same time. If the RP matrix is stolen,
the evaluation can be performed by considering the worst
case that the key of all the users is stolen by others. This is
equivalent to use the same random projection matrix for all
the users. Therefore, the performance of stolen key case will
be the same as the user-independent scenario. If only the
biometric data is stolen, then the performance will be the
same as the both-legitimate case due to the randomness of
the transformation, as discussed in Section 3.3.

The experimental results in Table 5 show that the
proposed SIN method outperforms the BH method in
both user-dependent and user-independent scenarios, at all
dimensions, when PCA and KDDA are used as feature
extractors. Although the previous works on BH demonstrate
near zero EER in both-legitimate cases, the performance of
it depends on the characteristics of the data and feature
extractors. For an m bit BioHash code b, assume that each
bit in b is independent, let τ be the threshold value in terms
of Hamming distance, then the probability of false accept

P(H0 | H1) = ∑τ
i=0

(m

i

)

/2n. This probability depends on
two factors, the system threshold τ and dimension m, which
reflect the separability and characteristics of the data and
feature extractors. Figure 8 shows the intra-class and inter-
class distribution of the generic data set. It can be observed
that the SIN method provides better distribution separation
than the BH method, in both user-independent and user-
dependent scenarios, with both PCA and KDDA feature
extractors. This demonstrates that the proposed SIN method
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Figure 8: Intra-class and inter-class distributions of SIN and BH, using PCA and KDDA feature extractors, in both user-independent and
user-dependent scenarios.

Table 5: Obtained EER (in %) for changeable face verification.

PCA KDDA

User-dependent User-independent User-dependent User-independent

Dim. BH SIN BH SIN BH SIN BH SIN

20 22.13 16.92 25.25 20.82 18.77 12.96 18.63 13.58

40 17.80 13.44 21.43 18.69 13.03 7.70 13.96 9.23

60 15.54 11.76 19.24 17.63 9.85 5.68 10.92 7.38

80 14.38 10.76 18.34 17.18 7.97 4.54 9.37 6.64

100 12.98 9.89 17.79 16.83 6.84 3.83 8.63 6.05
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Figure 9: Obtained EER and ROC plots for PCA and KDDA (UI: user-independent, UD: user-dependent).

provides more discriminant representation than the simple
thresholding method in BioHashing.

For a complete comparison, Figure 9 plots the EER of all
verification scenarios as well as the Receiver Operating Curve
(ROC) for both feature extractors at dimensionality of 100.
The ROC curve is plotted by Genuine Acceptance Rate (GAR,
complement of FRR) against FAR, and the axes are log scaled
for better visualization. When the SIN method is applied on
facial features directly, it improves the verification accuracy
for both feature extractors. In the user-independent scenario

of PCA, the verification accuracy is degraded compared to
apply SIN directly on PCA features. This is possibly due
to the randomness of RP changes the inherent pairwise
relations of original PCA features, and therefore the SIN
method can not produce more discriminant representation,
but approximate the Euclidean distance only. In spite of this,
it can be observed that by integrating the RP transform, the
proposed SIN method introduces changeability, enhances
privacy protection, and achieves better performance than
original features, as well as existing work.
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Figure 10: Experimental results based on reconstructed images.

4.6. Experimental Results on Reconstructed Images. To fur-
ther study the privacy preserving property of the pro-
posed method, we performed experiments on reconstructed
images from the estimated PCA coefficients. The original
n-dimensional PCA features are projected onto an m-
dimensional vector, and the resulting SIN vector is stored as
templates. Considering the worst case that the SIN vector, the
random projection matrix, the PCA transformation matrix,
and the mean image are all obtained, an adversary can
reconstruct the original image using the method discussed
in Section 3.4. The adversary may then try to compromise
the user using the reconstructed image. Figure 10 reports the
false acceptance rate obtained when the reconstructed images
are utilized to compromise the original PCA-based system.
The dimensionality of the PCA vectors is n = 100. All the
PCA vectors are normalized to unit length, and Euclidean
distance is adopted as dissimilarity measure. The system
threshold values are selected based on the FAR of the original
system. It can be observed that the false acceptance rate
decreases as the projection dimension m decreases. This is
consistent with our analysis in Section 3.4 that the privacy
preserving level increases as m decreases. It can be also
seen that the security level is also dependent on the system
threshold of the original system, which is closely related to
the requirement of the application. In general, applications
that require a higher level of security will have a smaller
threshold, that is, smaller FAR. In such, the proposed method
can provide stronger privacy protection even at a relatively
higher projected dimension. On the other hand, when the τ
is large, it requires smaller projected dimension m to achieve
higher level of security. However, as shown in Figure 9, since
the recognition accuracy also degrades as the m getting
smaller, the proposed method has a tradeoff between privacy
and accuracy. The balancing point of these two is dependent
on the requirement of the application.

5. Conclusion

This paper introduced a novel approach for addressing
the challenging problem of changeable and privacy pre-
serving face recognition. The proposed method is based
on random projection (RP) in conjunction with a sorted
index numbers (SINs) approach. A similarity measure is
introduced for computing the distance between two SIN
vectors. Two different scenarios, namely, user-independent
and user-dependent transformation are discussed. In the
user-independent scenario, all the users apply the same
RP matrix for transformation. Due to the distance pre-
serving property of RP, the similarity of features in the
transformed domain can be approximately preserved. The
user-dependent scenario is a two-factor authenticator that
utilizes user-specific RP matrix for transformation. In both
scenarios, the biometrics template can be changed by varying
the RP matrix.

Experimental results on a large database demonstrate
that the SIN method may improve the recognition accuracy
of the original features in both identification and verifica-
tion scenarios. The combination of RP and SIN method
outperforms comparable existing works for all scenarios and
feature extractors. In conclusion, the proposed method may
improve recognition accuracy, preserve the user’s privacy,
and generate changeable biometric template. Although we
focus on face recognition problem in this paper, the proposed
method is general for continuous domain features, and it
is expected that such method can also be applied to other
biometrics.
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1. Introduction

The demand for high-confidence authentication of human
identity has grown steadily since the beginning of organized
society. The identification systems using unique factors
of human irises play an important role in this field. In
comparison with other biometrics, iris recognition systems
have many advantages. Since the degree of freedom of iris
textures is extremely high, the probability of finding two
identical irises is close to zero; therefore, the iris recognition
systems are very reliable and could be used in most secure
places [1–3].

A regular iris recognition system consists of different
major steps, including image acquisition, iris localization,
feature extraction, and matching and classification. In this
paper, we have used standard iris datasets; therefore, we have
not focused on the image acquisition phase. Other parts of
an iris recognition system will be discussed later.

One of the most important steps in iris recognition
systems is iris localization, which is related to the detection of
the exact location and contour of iris in an image. Obviously,
the performance of the identification system is closely related
to the precision of the iris localization step [1, 2]. For

iris localization, existing methods mainly use circular edge
detectors or other standard image processing techniques, to
detect the iris location based on derivative operators, which
calculate the sum of gray level differences on the vertical arc.
It must be mentioned that, since the upper and lower parts
of the outer iris boundary are usually obstructed by eyelids,
it could be impossible to use a complete circle, instead of
two vertical arcs, to represent the iris boundaries. In these
methods, the result of localization algorithm depends on
the tilt angle of the iris and the quality of the boundaries
[1, 2, 4]. For example, if some parts of boundaries are
occluded by the eyelid and eyelashes, performance of these
algorithms reduces considerably and even in some cases, they
fail. Another source of error is the presence of other parts of
face in input image.

In [1], Daugman introduces a circular edge detection
operator for iris localization, which tries to find a circle
in the image with maximum gray level differences with its
neighbors. In its method, thanks to a significant contrast
between iris and purple regions, the inner boundary is
localized. Then, outer boundary is detected using the same
operator with different radii and parameters. In order to
remove eyelids, Daugman changes the curve of integral to
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find an arc which accurately detects iris boundaries. As
features, he uses the sign of real and imaginary parts of
Gabor Wavelet coefficients of iris image. In matching phase,
Hamming distance between binary codes of the query iris
and irises in database is calculated. In his recent work [5],
Daugman proposed four modifications in his algorithm,
including (1) using active contour models (Snake model)
for iris localization, (2) handling off-axes gaze samples using
Fourier-based methods, (3) using statistical methods for
detecting eyelashes, and (4) score normalization in large
number databases.

An alternative for iris segmentation and localization has
been proposed by Camus and Wildes [3], which is based
on edge detection operator, followed by Hough transform.
This method has a high computational cost, since it searches
among all of the potential candidates. For eyelid detection,
Wildes uses some constrains to locate the true edge points.

Snake approach has been used for iris localization in [6].
Using this technique, the boundary of the irises is located
without any circularity constraint. In [7], an easy to difficult
method has been used for iris localization by, first, deter-
mining high-contrast parts of boundary, and then, detecting
outer boundary and eyelids. It is obvious that, because of
their lower SNR, each step is more challenging than previous
ones. For exact inner boundary detection, authors used Harr
Wavelet transform followed by modified Hough transform.
In the next step, outer boundary is localized with integral
differential operators. Since the search space for determining
the center and radius of inner boundaries could be limited,
the speed of the algorithm is considerably improved. In the
last step, for detecting eyelids in the image, a method is
utilized based on texture segmentation.

Sun et al. [8] proposed iris localization using texture seg-
mentation. First, they use the information of low frequency
of Wavelet transform of iris image for pupil segmentation
and also localize the iris with a different integral operator.
Then, they detect the upper eyelid next to eyelash segmen-
tation. Finally, the lower eyelid is localized using parabolic
curve fitting, based on gray level segmentation.

Huang et al. [9] used a new noise removing approach
based on the fusion of edge and region information. The
whole procedure includes three steps: rough localization
and normalization, edge information extraction based on
phase congruency, and the infusion of edge and region
information. They proceeded to iris segmentation by simple
filtering, edge detection, and Hough transform. This method
is specifically proposed for removing eyelash and pupil
noises. Boles and Boashah [10] and Lim et al. [11] mainly
focused on the iris image representation and feature match-
ing without introducing a new method for segmentation.

Tisse et al. [12] proposed a segmentation method based
on integro-differential operators with Hough transform.
This approach reduces the computation time and excludes
potential centers outside of the eye image. Eyelash and pupil
noise have not been considered in this method neither.

Kong and Zhang in [13] presented a method for eyelash
detection. Separable and multiple eyelashes are detected
using 1D Gabor filters and the variance of intensity, respec-
tively. In this work, specular reflection regions in the eye

image are localized using a predetermined threshold value.
Thornton et al. [14] used a general probabilistic framework
for matching patterns of irises, which improves pattern
matching performance, when the iris tissue is subject to in-
plane wrapping.

Monro et al. in [15] present a novel iris coding algorithms
based on differences of Discrete Cosine Transform (DCT)
coefficients of overlapped angular patches with normalized
iris image. Iris localization is done using the circularity shape
of iris boundaries.

Other methods exist for iris localization, including [12,
16]. However the above mentioned techniques are much
more cited in literature. There are also a few papers which
survey literature in iris recognition subject; amongst them,
Bowyer et al. [2] is one of the best.

We have used active contour based-localization method
in [4]. In this paper, we improve our method and test its
performance on three famous databases, namely, CASIA-
IrisV3 [17], Bath [18], and Proença and Alexandre [19].
The results show the superiority of our proposed method
in comparison with other methods, including the method
proposed in [6], which is also based on geodesic active
contour for iris localization. The details will be discussed in
Section 2.

In [19], new approaches for localization have been
introduced. In their paper, they use a dataset of irises with
heterogeneous characteristics, simulating the dynamics of a
noncooperative environment. Their method builds a feature
set from pixel position (x, y) and pixel intensity z. They
apply a fuzzy clustering algorithm to cluster the pixels. In
Section 4 we compare our proposed method to their results.

Considering the above mentioned methods, we can state
the following important remarks and drawbacks of existing
methods.

(1) Usually, the iris inner and outer boundaries are
detected using circle fitting techniques (except the
recent works of Daugman [5] and Ross and Shah [6]).
This is a source of error, since the iris boundaries are
not exactly circles.

(2) In almost all of these methods, inner and outer
boundaries, eyelashes, and eyelid are detected in
different steps, causing a considerable increase in
processing time of the system.

(3) The results of the circle fitting method are sensitive
to the image rotation, particularly if the angular
rotation of the input image is more than 10 degrees.

(4) In noisy situations, the outer boundary of iris does
not have sharp edges.

(5) After detecting iris boundaries, the resulted iris area
is mapped into a size independent rectangular shape
area.

(6) None of these methods take into account the user
specifications.

Considering these remarks, we propose a new user specific
iris recognition system with the following contributions.
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(i) We use a pointwise area preserving level set approach
for iris localization, which guarantees the correct
segmentation of iris, even in noisy environment and
regardless of the head tilt and occlusion. Although
active contours for localization have been also used
in [5, 6], our proposed method has many advantages
compared to those approaches (we will discuss these
advantages in details in Section 2).

(ii) We propose a new user dependent method which
improves the system recognition performance.

In [4], we explained how to use pointwise level set
with area preserving capability for iris localization purposes.
We have also introduced a method for mapping the initial
coordinates to polar space based on the estimated location
of the center of pupil. In this paper, in order to reduce the
complexity of the polar mapping calculations, we propose
the improved version of the above mentioned method, which
is based on the point trajectory of moving contours. We show
the results of the new method on CASIA-IrisV3, Bath, and
Ubiris datasets.

The rest of the paper is organized as follows. Section 2
briefly describes the theory of pointwise level set approach
with area preserving capability. Section 3 is dedicated to the
user dependency in iris recognition systems. Experimental
results are presented in Section 4 and Section 5 concludes the
paper.

2. Iris Localization with Pointwise
Level Set Approach

In this approach, the moving front is defined as a zero level of
a higher dimensional potential function [20]. Consequently,
the curve corresponding to the zero level set of this potential
function is enabled to handle topological changes, such as
splitting and merging. Furthermore, it is not necessary to
initialize the algorithm very close to the final contours, which
is the case of Snakes model. According to the level set model,
the initial curve is deformed using the following evolutionary
equation:

dC

dt
= V �N , (1)

where V is any intrinsic quantity and does not depend on
parameters, N is the normal vector, and C, as the implicit
representation of the curve, is defined as

C = {(x, y
)

: ϕ
(
x, y

) = 0
}

: ϕ
(
x, y

)
: R2 −→ R. (2)

A distance measure can be used for initializing the
potential function ϕ. It means that each point of the
three-dimensional potential function is initialized with the
minimum distance of that point to the contours. More details
on this subject are available in [20]. The evolution of ϕ is such
that its zero levels movement corresponds to deformation
of the initial curve. This evolution may be described by the
following equation:

dϕ

dt
= V

∣
∣∇ϕ∣∣. (3)

This equation shows that the rate of changes of the
potential function ϕ in time depends on the speed parameter
V and the magnitude of the gradient of ϕ. The speed
V has three components: balloon force (which cause all
part of contour to move), curvature-based speed, and
gradient-based speed [20]. Due to the high performance
of active contour-based models for localization purposes,
some references in literature are based on these models
[4–6]. As we mentioned briefly in Section 1, Daugman,
in [5], proposed a method for iris segmentation using
Snake model [21]. Despite of the Snakes advantages over
the traditional object recognition algorithms, it has some
important drawbacks, due to its Lagrangian-based formulas.
In Snake model, contour initialization is a crucial point;
thus, if the initial contour is far from the target, it may
not reach the target. Another important disadvantage of
this model is its performance reduction: due to point-based
structure of the contour, some unwanted pixels can cause
misjudgment of localization results. In order to solve these
drawbacks, new models have been introduced based on Euler
equations [20]. These models consider moving contours as
a level set of a higher dimensional function, which reshape
during the different iterations. Very briefly speaking, Euler
equations connect the differentiations in time and space
together [20]. Because of this capability, if noisy pixels cause
some parts of contour to stop, other moving parts prevent the
whole contour to stop. Another advantage of this approach
is its robustness to contour initialization. Because of the
combination of different forces, which cause movement in
this approach, almost all kinds of initialization, lead to the
same result (Figure 1).

Another related work is Ross and Shah in [6], who use
geodesic active contour models for iris segmentation. The
structures of geodesic active contour and level set methods
are similar; therefore, both can handle noisy situations
and initialization problems properly. The major difference
between Ross’s method and the method proposed in this
paper is as follows. Due to the geodesic active contour’s
structure, it lacks the point correspondence property. There-
fore, it is impossible to find the correspondent points in
initial and final contours. We used point correspondent level
set approach [22], which, in addition to level set’s regular
abilities, keeps point correspondence during the iterations
[4]. This ability enables us to perform both localization
and mapping to the dimensionless coordination phases in
a single phase, an interesting property which improves the
performance of the whole system. Another advantage of
our proposed method, in comparison with Ross’s work, is
that, here, we use an area preserving method [23] for our
level set methods, which make our method robust in case
of blurred images. If the boundaries of an iris image are
blurred, level set method is not able to determine the exact
location of blurred parts of the boundaries to stop moving;
whilst, in our proposed method, thanks to its area preserving
property, even if some parts of boundaries are blurred, the
whole contour prevents the unwanted local movement of
the contour in blurred image. This property leads us to
determine the exact target boundaries (Figure 2). This could
be done by defining the application specific normal motion,
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Figure 1: (a) Three-dimensional function of level set approach, (b) Result of application of the zero level set method to an iris image taken
from CASIA-IrisV3.
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Figure 2: Iris segmentation with noisy samples (a) without and (b) with area preserving capability.
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Figure 3: Real and imaginary axes and related binary codes.

combining with adequate tangential speed. More details are
available in [23]

3. Template Generating with User Dependency

According to Hallingsworth et al. in [24], it is possible to use
weighted iris codes during the Hamming distance estimation
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Figure 4: Iris features in the real/imaginary plane. The features near
the axes are more inconsistent than others.

phase. This means that different bits in an iris code do not
have the same importance. Based on this idea, we propose
a new user dependent method for iris recognition. After
mapping the segmented area of the iris to the dimensionless
polar coordinates, as it has been explained in Section 2,
iris texture is transformed into a binary code, using the
sign of real and imaginary parts of log Gabor Wavelet
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Figure 6: Three samples of masks used for choosing consistent
bits in iris codes. Two upper masks are related to two subjects in
CASIA-IrisV3, and the last one corresponds to a subject in Bath iris
database.

coefficients of the iris image. As it can be seen in Figure 3,
considering the quarter of the log Gabor coefficient in the
real-imaginary axes, a two-bit binary code can be assigned to
each coefficient.

Gabor filters are traditional choices for obtaining local-
ized frequency information, and thanks to their similarity
to the human vision system [1], these filters are vastly used
in iris feature extraction phase. However, they suffer from
two major drawbacks: (1) the maximum bandwidth of a
Gabor filter is limited to approximately one octave, and (2)
Gabor filters are not optimal, if one is seeking broad spectral
information with maximal spatial localization. Considering
these points, we used log Gabor filters [25] for feature
extraction. Equation (4) shows this filter:

G(w) = e(− log (w/w0)2)/(2(log (k/w0)2)), (4)

where w0 is the filter’s center frequency. To obtain constant
shape ratio filters, the term k/w0 must also be held constant
for different w0s.

It must be mentioned that using these filters is not an
originality of this work (see [26]). Considering the real and
imaginary parts of filters, texture of iris could be mapped
to the iris codes, and as mentioned in [24], regarding to
the distance of bits from axes, it is possible to choose some
probability of bit consistency. For each user, the iris code of
different samples is calculated, and by comparing these iris
codes, the probability of changing each bit is determined. By
choosing a threshold, it could be possible to judge about the
consistency of each bit. Details about the consistency of bits
in the iris codes can be found in [27].

In [27], existence of fragile bits in iris code has been
theoretically proved, and the effect of applying filters, image
rotation, and iris alignment has been discussed in details. In
our work, we used their idea about the bit consistency in iris
code and developed an applied method for iris recognition
systems. In Figure 5, the performance of proposed method
has been shown with different thresholds for using only the
consistent bits in the iris code generation phase. As it can be
seen, the best results have been obtained with threshold T =
35%. In addition, the comparison between performances of
our system considering all bits of iris code with the same
systems considering only consistent bits shows the positive
effect of masking fragile bits. For each user the proper
rectangular calculated and features inside this rectangular are
eliminated from iris code generation process.

For being rotation invariant, in this phase, like Daug-
man’s method [4], the enrolled iris code will be compared
with different shifted test iris codes to find the best match.

Figure 6 shows the calculated masks for three persons
using samples in CASIA-IrisV3 and Bath iris databases. In
this figure, black and white points show consistent and
inconsistent bits, respectively.

4. Experimental Results

In our experimentations, we have used all samples of
three famous iris databases, that is, CASIA-IrisV3, Bath,
and Ubiris. CASIA-IrisV3 includes three subsets which
are labeled as CASIA-IrisV3-Interval, CASIA-IrisV3-Lamp,
and CASIA-IrisV3-Twins. CASIA-IrisV3 contains a total
of 22 051 iris images from more than 700 subjects. All
iris images are 8-bit gray-level JPEG files, collected under
near infrared illumination. Almost all subjects are Chinese
except a few ones in CASIA-IrisV3-Interval. Since these three
datasets were collected in different times, CASIA-IrisV3-
Interval and CASIA-IrisV3-Lamp have a small overlap in
subjects. Some samples from this database have been shown
in Figure 7(a). Bath iris database includes 20 samples from
each eye of 25 subjects. The images are of a very high
quality taken with a professional machine vision camera with
infrared illumination. Some of these images have been shown
in Figure 7(b).

Ubiris iris database version 1 is composed of 1877
images collected from 241 subjects taken in two sessions
(Figure 7(c)). Unlike the CASIA-IrisV3 database, it includes
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Figure 7: Some samples taken from (a) CASIA-IrisV3 database, (b) Bath database, and (c) Ubiris Version 1 database.

×104

8.5
8

7.5
7

6.5
6

5.5
5

4.5
4

0 50 100 150 200 250

(a)

×104

6.5

6

5.5

5

4.5

4
0 50 100 150 200 250 300

(b)

3000
2500
2000
1500
1000

500
0 0

50

100

150

200

250

(c) (d)

Figure 8: (a) Horizontal histogram, (b) Vertical Histogram, (c) Overall Histogram of the image, and (d) Estimated center.

Figure 9: Inner and outer boundaries detection using pointwise level set approach done in one step and related iris codes.
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(a) (b)

Figure 10: Performance of proposed algorithm in presence of Gaussian noise. For both images we have added a Gaussian white noise with
mean = 0 and variance = 0.007.

(a) (b)

Figure 11: Performance of the proposed algorithm to iris images with (a) 10 percent and (b) 15 percent of salt and pepper noise.

images in different noisy situations, which permits to evalu-
ate the robustness of iris recognition methods in presence of
noise [19].

To evaluate the performance of our algorithm, we have
used the K-fold cross validation technique. For CASIA-
IrisV3 database, for each subject, three-iris samples have
been utilized, to extract the user dependent iris code, and the
rest of samples to test the algorithm. For Bath database, the
number of samples used to extract the code is five. We have
repeated this technique in a way that all of the iris images
have been used in K-fold cross validation strategy.

In this work, the precise location of an iris is determined
using pointwise level set approach with area preserving capa-
bility. Generally speaking, active contour models have been
used previously in iris recognition systems [6]. Although
active contour refers to a family of moving contour methods,
in some papers, it corresponds to the Snake techniques
[5]. In previous sections, we have described the drawbacks
of the Snake model. Geodesic active contours with point
correspondence have been used for iris segmentation in [4].
In this paper, we propose a method based on pointwise level
set approach with area preserving capability.

We calculate the approximate center of inner boundary
of irises using vertical and horizontal histograms (Figure 8).
Using this technique, the initial point of a contour is
determined, and the starting point for tracing the contour
is selected (for coordinate mapping to dimensionless polar
space).

The vertical histogram is calculated as follows: size of the
vertical histogram is equal to image’s height, and the value of

each histogram bin is equal to the sum of gray levels of a row
of the image. The minimum of this histogram corresponds
approximately to the vertical location of the center of inner
boundary circle (almost circle). Indeed, pixels located in
the pupil region are always dark; therefore, their values are
close to 0. Thus, the minimum of the histogram shows the
line that has the lowest number of dark pixels, that is, the
diameter of the inner boundary circle. The intersection of
this line with the output of the horizontal histogram shows
the approximate location of the center point (Figure 8). Our
experimental results show that we can locate the center of
pupil in a point inside the pupil, even for difficult samples
having other dark areas in the eye image. For image samples
of datasets used in this paper, all pupils are placed almost in
the center of the image.

In order to make the correct contour initialization
(X , Y), the estimated center of pupil (x, y) is determined
using (5) (Figure 9). In this equation, the contour starts to
evolve from this point and is expected to find the whole iris
location.

For calculating d from the approximate center, one
dimensional derivation in the right horizontal axes has been
calculated. d is equal to the length of line between the
approximate center and some pixels after the found edge
(in our experienced d could be an integer between 10 and
30):

X = x + d,

Y = y.
(5)



8 EURASIP Journal on Advances in Signal Processing
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Figure 12: Localization of two samples from Ubiris database with proposed method.
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Figure 13: Error comparison between circle-based method and proposed method in noisy situation (salt and pepper noise).
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Figure 14: Response times of (a) Proposed, (b) Daugman [5], (c) Monro et al. [15], and (d) Ma et al. [7] methods using CASIA-IrisV3
database.
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Figure 15: Response times of (a) Proposed, (b) Daugman [5], (c) Monro et al. [15], and (d) Ma et al. [7] methods using Bath iris database.
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Figure 16: Hamming distance of match (blue,bottom), nearest nonmatch (red, middle), and average nonmatch (black, top) of (a) Daugman
[5], (b) Monro et al. [15], (c) Ma et al. [7], and (d) proposed method using CASIA-IrisV3 interval database.
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Figure 17: Hamming distance of match (blue, bottom), nearest nonmatch (red, middle), and average nonmatch (black, top) of (a) Daugman
[5], (b) Monro et al. [15], (c) Ma et al. [7], and (d) proposed method using Bath iris database.
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Table 1: Comparing localization accuracy of different methods using Ubiris database. The whole table entries are taken from reference [19],
excluding the last row which contains the results obtained using our approach.

Methodology Parameters Session 1, % Session 2, % Degradation

Daugman Original methodology 95.22 ± 0.015 88.23 ± 0.032 6.99

Daugman Histogram equalization
preprocessing

95.79 ± 0.028 91.10 ± 0.028 4.69

Daugman Threshold preprocessing
(128)

96.54 ± 0.013 95.32 ± 0.021 1.22

Wildes Original methodology 98.68 ± 0.008 96.68 ± 0.017 2.00

Wildes Shen and Castan edge
detector

96.29 ± 0.013 95.47 ± 0.020 0.82

Wileds Zero crossing edge detector 94.64 ± 0.016 92.76 ± 0.025 1.88

Caumus and Wileds Original methodology,
number of directions = 8

96.78 ± 0.013 89.29 ± 0.030 7.49

Martin-Roche et al. Original methodology 77.18 ± 0.030 71.19 ± 0.045 5.99

Tuceryan Total clusters = 5 90.28 ± 0.021 86.72 ± 0.033 3.56

Proenca et al. Fuzzy K-means + (x, y) =
position, z = intensity

98.02 ± 0.010 97.88 ± 0.015 0.14

Our Proposed method
Pointwise level set
approach with area
preserving capability

99.1 ± 0.01 98.98 ± 0.013 0.1

The proposed one step segmentation approach improves
the speed of the whole process in comparison with regular
two-step boundary detection methods.

This method is robust in noisy situations. A noisy pixel
causes a sudden variation in gray levels and can stop the
moving front. However, in this situation, other contour
points continue to move and avoid the curve to stop.
Figure 10 shows the results of applying our method to an
iris image with Gaussian white noise (despite that encoding
the iris texture is almost impossible in this image). During
the detection process, some parts of the iris boundaries may
have low gray level contrast, which may lead the algorithm to
inaccurate edge detection results. For solving this problem,
we have used a topology preserving algorithm [23], which
guarantees the correct iris segmentation. Figure 11 shows the
result of applying our algorithm to iris images with 10 and 15
percent salt and pepper noises.

In general, the effect of noncooperative iris images
causes serious performance degradation. We used Ubiris
iris database version 1 [28] for testing our localization
ability dealing with noncooperative iris images. Our exper-
imental results showed that our method is able to handle
blurred, occluded images, localizing iris boundaries properly
(Figure 12 and Table 1).

We tested our localization algorithm on Ubiris dataset
and compared the results with the results published in [19].
The results in [19] were obtained by visual inspection of
each segmented image. Although this is not the best for
meaningful comparison, we did the same for localization
evaluation in our system. Table 1 shows these results that are
the proof of performance of our algorithm even for poor
quality images. Indeed, in term of the degradation, the lowest
accuracy degradation in the presence of noise belongs to

our method, depicting low sensitivity of our approach to the
image condition.

4.1. Error Definition. In order to measure the error of our
method, we compared the points of the detected boundaries
with those of the real boundaries. First, the exact boundary
contours for inner and outer parts of irises are determined
point to point manually. Then, the sum of the distance
between the interface points and their nearest point in the
correct boundary is calculated. Total error of localization is
estimated using

E =
∑N

n=0 min (dis(In,C))
N

, (6)

where C is the correct boundary, dis(In,C) means the set
of distances between nth point of interface and all of the
points of correct curve, andN is the total number of interface
points. Although a global system performance measure such
as ROC curve could be a better measure of performance,
by introducing this error measure, we intend to evaluate
our segmentation module performance exclusively. Figure 13
shows the localization errors (according to (5)), for proposed
method and traditional circular based method, using some
samples of CASIA-IrisV3 and Bath iris databases, in noisy
situations.

4.2. Response Time. Figures 14 and 15 show the response
times of proposed method using CASIA-IrisV3 and Bath iris
databases. We implemented Daugman [5], Ma et al. [7], and
Monro et al. [15] methods for comparing their results with
the results of our proposed method. Our method’s average
response time in the same situation is less than others. In
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Figure 18: ROC curves of proposed method in comparison with (a) Boles and Boashash [10], Daugman [5], Ma et al. [7], and (b) Monro
et al. [15], Halligswroth et al. [27] methods using CASIA-IrisV3 iris database.
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Figure 19: ROC curves of proposed method in comparison with (a) Boles and Boashash [10], Daugman [5], Ma et al. [7], and (b) Monro
et al. [15], Halligswroth et al. [27] methods using Bath iris database.

addition, small standard deviation of our method is a proof
of its performance for real time applications.

4.3. Hamming Distance. After generating the iris code, the
result is compared with iris codes in databases using Ham-
ming distance operators. Depending on the user dependent
consistent bits, only the important bits of each iris code are
involved in the matching process. Figures 16 and 17 show the
calculated Hamming distances for Daugman’s [5], Ma et al.

[7], Monro et al. [15], and proposed methods, for CASIA-
IrisV3 interval and Bath iris datasetss, respectively.

4.4. ROC Curves. ROC curves of proposed method have
been compared with those of five different methods, tested
on CASIA-IrisV3 and Bath iris databases, respectively, in
Figures 18 and 19. The results show the superiority of our
method compared to other methods. Figure 20 shows the
performance of our method using the iris samples with
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Figure 20: ROC curves of proposed method in comparison with best results of Boles and Boashash [10], Daugman [5], Ma et al. [7], Monro
et al. [15] and Sun et al. [29] methods with iris rotations (5, 15, and 25 degrees clockwise) using (a) CASIA-IrisV3 and (b) Bath iris database.

5, 15, and 25 degrees rotation, compared to Boles and
Boashash [10], Daugman [5], Ma et al. [7], Monro et
al. [15], and Sun et al. [29] methods, tested on CASIA-
IrisV3 and Bath iris databases. One of the curves belongs
to the proposed method, and in each of the other curves,
each point corresponds to the best result obtained from
these four methods, for 5, 15, and 25 degrees rotations,
respectively. Indeed, we showed only one curve for different
rotations applied to our proposed method, which is a proof
of robustness of this method against rotation. Concerning
the other three curves in Figure 20, as it has been mentioned,
each curve is a pointwise combination of the best of the four
other methods.

As it can be seen, our method is robust against rotation,
while rotation degrades the performance of other methods
considerably, due to their circular edge detection nature. In
general, circular edge detection process is based on determin-
ing the location of the circle with maximum differences of
pixel gray levels for two adjacent circular curves. In practice,
these differences are calculated using two arches, instead
of a whole circle. The performance of the iris localization
depends on the location and angle of these arches in relation
with the iris axis, and, as a consequence, rotating the image
degrades the results of circular edge detection, mainly due to
wrong arches used in the process and presence of eyelid and
eyelashes. In contrast with these conventional methods, the
iris localization in the proposed method is based on geodesic
active contour model, which calculates the iris boundaries
independently to any geometric shape, including circles and
arches; therefore, it is robust to the image rotation problem.

5. Conclusions

We have proposed a new user-dependent iris recognition
method. Using a specific mask for each user, inconsistent

bits of iris code are omitted during the Hamming distance
comparison phase. As the experimental results show, using
this approach, the performance of the whole system is
improved considerably. Another contribution of this paper
is the utilization of pointwise level set approach with area
preserving capability for iris segmentation and localization.
In this algorithm, the exact location of the iris can be detected
using an iterative algorithm based on the active contour
model. Comparing our algorithm with other methods, we
showed that the new approach is able to solve some of
the previous method’s drawbacks. For instance, using our
method, the iris location can be detected regardless to its
angular position and shape, and this is done in only one step.
Also, previous methods usually detect iris boundaries using
circular edge. One of the disadvantages of this approximation
is its sensitivity to the rotation of the iris images. In recent
years, active contour model have been used for iris detection
purposes. However, our method has some advantages over
other methods. Indeed, an area preserving algorithm is
used to compensate the problem of incorrect iris boundary
detection in presence of noise. Furthermore, even when
eyelids occlude some part of iris, our algorithm localizes iris
area properly [4]. The experimental results show that our
method outperforms the current methods both in terms of
accuracy and response time.
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1. Introduction

Biometric recognition uses humans anatomical and behav-
ioral characteristics. Conventional human characteristics
that are used as biometrics include fingerprint, iris, face,
voice, and so forth. Recently, new types of human char-
acteristics have been proposed to be used as a biometric
modality, such as typing rhythm [1], mouse usage [2], brain
activity signal [3], cardiac sounds [4], and gait (walking style)
[5]. The main motivation behind new biometrics is that
they are better suited in some applications compared to the
traditional ones, and/or complement them for improving
security and usability. For example, gait biometric can be
captured from a distance by a video camera while the other
biometrics (e.g., fingerprint or iris) is difficult or impossible
to acquire.

Recently, identifying individuals based on their gait
became an attractive research topic in biometrics. Besides
being captured from a distance, another advantage of gait
is to enable an unobtrusive way of data collection, that is,
it does not require explicit action/input from the user side.
From the way how gait is collected, gait recognition can be
categorized into three approaches:

(i) Video Sensor- (VS-) based,

(ii) Floor Sensor- (FS-) based,

(iii) Wearable Sensor- (WS-) based.

In the VS-based approach, gait is captured from a dis-
tance using a video-camera and then image/video processing
techniques are applied to extract gait features for recognition
(see Figure 1). Earlier works on VS-based gait recognition
showed promising results, usually analyzing small data-sets
[6, 7]. For example, Hayfron-Acquah et al. [7] with the
database of 16 gait samples from 4 subjects and 42 gait
samples from 6 subjects achieved correct classification rates
of 100% and 97%, respectively. However, more recent studies
with larger sample sizes confirm that gait has distinctive
patterns from which individuals can be recognized [8–10].
For instance, Sarkar et al. [8] with a data-set consisting
of 1870 gait sequences from 122 subjects obtained 78%
identification rate at rank 1 (experiment B). A significant
amount of research in the area of gait recognition is focused
on VS-based gait recognition [10]. One reason for much
interest in VS-based gait category is availability of large
public gait databases, such as that provided by University
of South Florida [8], University of Southampton [11] and
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Table 1: Summary of some VS-based gait recognitions.

Study EER, % #S

Seely et al. [12] 4.3–9.5 103

Zhao et al. [13] 11.17 —

Hong et al. [14] 9.9–13.6 20

BenAbdelkader et al. [15] 11 17

Wang et al. [16] 3.8–9 124

Wang et al. [17] 8–14 20

Wang et al. [18] (without fusion) 8–10 20

Bazin et al. [19] (without fusion) 7–23 115

(a) Original image

(b) Background

(c) Silhouette

(a) Using video-camera [5] (b) Using floor sensor [20]

(c) Using wearable sensor on the body [21]

Figure 1: Examples of collecting gait.

Chinese Academy of Sciences [22]. Performance in terms of
EER for some VS-based gait recognitions is given in Table 1.
In this table (and also in Tables 2 and 3) the column #S
indicates the number of subjects in the experiment. It is
worth noting that the direct comparison of the performances
in Table 1 (and also in Tables 2 and 3) may not be adequate
mainly due to the differences among the data-sets. The
purpose of these tables is to give some impression of the
recognition performances.

In the FS-based approach, a set of sensors are installed in
the floor (see Figure 1), and gait-related data are measured

Table 2: Summary of several FS-based gait recognitions.

Study Recognition rate, % #S

Nakajima et al. [23] 85 10

Suutala and Röning [24] 65.8–70.2 11

Suutala and Röning [25] 79.2–98.2 11

Suutala and Röning [26] 92 10

Middleton et al. [20] 80 15

Orr and Abowd [27] 93 15

Jenkins and Ellis [28] 39 62

when people walk on them [20, 24, 27, 28]. The FS-based
approach enables capturing gait features that are difficult or
impossible to collect in VS-based approach, such as Ground
Reaction Force (GRF) [27], heel to toe ratio [20], and so
forth. A brief performance overview of several FS-based gait
recognition works (in terms of recognition rate) is presented
in Table 2.

The WS-based gait recognition is relatively recent com-
pared to the other two mentioned approaches. In this
approach, so-called motion recording sensors are worn or
attached to various places on the body of the person such
as shoe and waist, (see Figure 1). [21, 29–34]. Examples of
the recording sensor can be accelerometer, gyro sensors, force
sensors, bend sensors, and so on that can measure various
characteristics of walking. The movement signal recorded
by such sensors is then utilized for person recognition
purposes. Previously, the WS-based gait analysis has been
used successfully in clinical and medical settings to study
and monitor patients with different locomotion disorders
[35]. In medical settings, such approach is considered to be
cheap and portable, compared to the stationary vision based
systems [36]. Despite successful application of WS-based
gait analysis in clinical settings, only recently the approach
has been applied for person recognition. Consequently, so
far not much has been published in the area of person
recognition using WS-based gait analysis. A short summary
of the current WS-based gait recognition studies is presented
in Table 3. In this table, the column “Reg.” is the recognition
rate.

This paper reports our research in gait recognition using
the WS-based approach. The main contributions of the
paper are on identifying several body parts whose motion
can provide some identity information during gait; and on
analyzing uniqueness and security per se (robustness against
attacks) of gait biometric. In other words, the three main
research questions addressed in this paper are as follows.

(1) What are the performances of recognition methods
that are based on the motion of body parts during
gait?

(2) How robust is the gait-based user authentication
against attacks?

(3) What aspects do influence the uniqueness of human
gait?
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Table 3: Summary of the current WS-based gait recognitions.

Study Sensor(s) location
Performance, %

#S
EER Reg.

Morris [29] shoe — 97.4 10

Huang et al. [32] shoe — 96.93 9

Ailisto et al. [21] waist 6.4 — 36

Mäntyjärvi et al. [30] waist 7–19 — 36

Rong et al. [34] waist 6.7 — 35

Rong et al. [33] waist 5.6, 21.1 — 21

Vildjiounaite et al. [31]
(without fusion)

hand 17.2, 14.3 — 31

Vildjiounaite et al. [31]
(without fusion)

hip pocket 14.1, 16.8 — 31

Vildjiounaite et al. [31]
(without fusion)

breast pocket 14.8, 13.7 — 31

The rest of the paper is structured as follow. Section 2
presents our approach and results on WS-based gait recog-
nition (research question (1)). Section 3 contains secu-
rity evaluations of gait biometric (research question (2)).
Section 4 provides some uniqueness assessment of gait bio-
metric (research question (3)). Section 5 discusses possible
application domains and limitations of the WS-based gait
recognition. Section 6 concludes the paper.

2. WS-Based Gait Recognition

2.1. Motion Recording Sensor. For collecting gait, we used
so called Motion Recording Sensors (MRSs) as shown in
Figure 2. The attachment of the MRS to various places on
the body is shown in Figure 3. These sensors were designed
and developed at Gjøvik University College. The main com-
ponent of these sensors was an accelerometer which records
acceleration of the motion in three orthogonal directions
that is up-down, forward-backward, and sideways. From the
output of the MRS, we obtained acceleration in terms of
g(g = 9.8 m/s2) (see Figure 5). The sampling frequencies
of the accelerometers were 16 Hz (first prototype) and
100 Hz. The other main components of the sensors were a
memory for storing acceleration data, communication ports
for transferring data, and a battery.

2.2. Recognition Method. We applied various methods to
analyze the acceleration signals, which were collected using
MRS, from several body segments: foot, hip, trousers pocket,
and arm (see Figure 3 for sensor placements). A general
structure of our gait recognition methods is visualized in
Figure 4. The recognition methods essentially consisted of
the following steps.

2.2.1. Preprocessing. In this step, we applied moving average
filters to reduce the level of noise in the signals. Then, we
computed a resultant acceleration, which is combination

of acceleration from three directions of the motion. It was
computed as follows:

Ri =
√
X2
i + Y 2

i + Z2
i , i = 1, ...,m, (1)

where Ri is the resultant acceleration at time i, Xi, Yi, and
Zi are vertical, forward-backward, and sideway acceleration
value at time i, respectively, and m is the number of
recorded samples. In most of our analysis, we used resultant
acceleration rather than considering 3 signals separately.

2.2.2. Motion Detection. Usually, recorded acceleration sig-
nals contained some standing still intervals in the beginning
and ending of the signal (Figure 5(a)). Therefore, first we
separated the actual walking from the standing still parts.
We empirically found that the motion occurs around some
specific acceleration value (the value varies for different body
locations). We searched for the first such acceleration value
and used it as the start of the movement (see Figure 5(a)).
A similar procedure could be applied to detect when the
motion stops. Thus, the signal between these two points was
considered as a walking part and investigated for identity
recognition.

2.2.3. Feature Extraction. The feature extraction module
analyses motion signals in time or frequency domains. In
the time domain, gait cycles (equivalent to two steps) were
detected and normalized in time. The normalized cycles
were combined to create an average cycle of the person.
Then, the averaged cycle was used as a feature vector. Before
averaging, some cycles at the beginning and ending of the
motion signal were omitted, since the first and last few
seconds may not adequately represent the natural gait of
the person [35]. An example of selected cycles is given
in color in Figure 5(b). In the frequency domain, using
Fourier coefficients an amplitude of the acceleration signal is
calculated. Then, maximum amplitudes in some frequency
ranges are used as a feature vector [37]. We analysed arm
signal in frequency domain and the rest of them in time
domain.
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Figure 2: Motion recording sensors (MRS).

(a) Ankle (b) Hip (c) Arm

Figure 3: The placement of the MRS on the body.

2.2.4. Similarity Computation. For computing similarity
score between the template and test samples we applied a
distance metric (e.g., Euclidean distance). Then, a decision
(i.e., accept or reject) was based on similarity of samples with
respect to the specified threshold.

More detailed descriptions of the applied methods on
acceleration signals from different body segments can be
found in [37–40].

2.3. Experiments and Results. Unlike VS-based gait biomet-
ric, no public data-set on WS-based gait is available (perhaps
due to the recency of this approach). Therefore, we have
conducted four sets of experiments to verify the feasibility
of recognizing individuals based on their foot, hip, pocket,
and arm motions. The placements of the MRS in those
experiments are shown in Figure 3. In case of the pocket
experiment, the MRS was put in the trousers pocket of the
subjects. All the experiments (foot, hip, pocket, and arm)
were conducted separately in an indoor environment. In the
experiments, subjects were asked to walk using their natural
gait on a level surface. The metadata of the 4 experiments
are shown in Table 4. In this table, the column Experiment
represents the body segment (sensor location) whose motion

was collected. The columns #S, Gender (M + F), Age range,
#N , and #T indicate the number of subjects in experiment,
the number of male and female subjects, the age range of
subjects, the number of gait samples (sequences) per subject,
and the total number of gait samples, respectively.

For evaluating performance in verification (one-to-one
comparison) and identification (one-to-many comparisons)
modes we adopted DET and CMC curves [41], respectively.
Although we used several methods (features) on acceleration
signals, we only report the best performances for each body
segment. The performances of the foot-, hip-, pocket- and
arm-based identity recognition in verification and identifi-
cation modes are given in Figures 6(a) and 6(b), respectively.
Performances in terms of the EER and identification rates at
rank 1 are also presented in Table 5.

3. Security of Gait Biometric

In spite of many works devoted to the gait biometric,
gait security per se (i.e., robustness or vulnerability against
attacks) has not received much attention. In many previous
works, impostor scores for estimating FAR were generated by
matching the normal gait samples of the impostors against
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Table 4: Summary of experiments.

Experiment #S Gender (M + F) Age range #N #T

Ankle 21 12 + 9 20–40 2 42

Hip 100 70 + 30 19–62 4 400

Pocket 50 33 + 17 17–62 4 200

Arm 30 23 + 7 19–47 4 120

Feature extraction

Template sample

Pre-processing

Motion detection

Time domain Frequency domain

Similarity
computation 

Decision

Input
ankle, hip, pocket, arm

Figure 4: A general structure of recognition methods.

Table 5: Summary of performances of our approaches.

MRS placement
Performance, %

#S
EER P1 at rank 1

Ankle 5 85.7 21

Hip 13 73.2 100

Trousers pocket 7.3 86.3 50

Arm 10 71.7 30

the normal gait samples of the genuine users [15, 17–19, 21,
30]. We will refer to such scenario as a “friendly” testing.
However, the “friendly” testing is not adequate for expressing
the security strength of gait biometric against motivated
attackers, who can perform some action (e.g., mimic) or
possess some vulnerability knowledge on the authentication
technique.

3.1. Attack Scenarios. In order to assess the robustness of gait
biometric in case of hip-based authentication, we tested 3
attack scenarios:

(1) minimal-effort mimicking [39],

(2) knowing the closest person in the database [39],

(3) knowing the gender of users in the database [42].

The minimal-effort mimicking refers to the scenario
where the attacker tried to walk as someone else by delib-
erately changing his walking style. The attacker had limited
time and number of attempts to mimic (impersonate) the
target person’s gait. For estimating FAR, the mimicked gait
samples of the attacker were matched against the target
person’s gait. In the second scenario, we assumed that the
attackers knew the identity of person in the database who
had the most similar gait to the attacker’s gait. For estimating
FAR, the attacker’s gait was matched only to this nearest
person’s gait. Afterwards, the performances of mimicking
and knowing closest person scenarios were compared to the
performance of the “friendly” scenario. In the third scenario,
it was assumed that attackers knew the genders of the users in
the database. Then, we compared performance of two cases,
so called same- and different-gender matching. In the first
case, attackers’ gait was matched to the same gender users
and in the second case attackers’ gait was matched to the
different gender users.It is worth noting that in second and
third attack scenarios, attackers were not mimicking (i.e.,
their natural gait were matched to the natural gait of the
victims) but rather possessed some knowledge about genuine
users (their gait and gender).

3.2. Experimental Data and Results. We analyzed the afore-
mentioned security scenarios in case of the hip-based
authentication where the MRS was attached to the belt of
subjects around hip as in Figure 3(b). For investigating the
first attack scenario (i.e., minimal-effort mimicking), we
conducted an experiment where 90 subjects participated, 62
male and 28 female. Every subject was paired with another
one (45 pairs). The paired subjects were friends, classmates
or colleagues (i.e., they knew each other). Everyone was told
to study his partner’s walking style and try to imitate him
or her. One subject from the pair acted as an attacker, the
other one as a target, and then the roles were exchanged.
The genders of the attacker and the target were the same.
In addition, the age and physical characteristics (height and
weight) of the attacker and target were not significantly
different. All attackers were amateurs and did not have a
special training for the purpose of the mimicking. They only
studied the target person visually, which can also easily be
done in a real-life situation as gait cannot be hidden. The
only information about the gait authentication they knew
was that the acceleration of normal walking was used. Every
attacker made 4 mimicking attempts.

As it was mentioned previously in the second and third
attack scenarios (i.e., knowing the closest person and gender
of users), the impostors were not mimicking. In these
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Figure 5: An example of acceleration signal from foot: (a) motion detection and (b) cycle detection.

EER

100806040200

FAR (%)

Pocket
Hip

Arm
Ankle

0

10

20

30

40

50

60

FR
R

(%
)

(a) Decision error trade-off (DET) cuves

302520151050

Rank

Pocket
Hip

Arm
Ankle

0.75

0.8

0.85

0.9

0.95

1

Id
en

ti
fi

ca
ti

on
pr

ob
ab

ili
ty

(b) Cumulative match characteristics (CMC) curves

Figure 6: Performances in terms of DET and CMC curves.

two attack scenarios, the hip data-set from Section 2.3 was
used.

In general, the recognition procedure follows the same
structure as in Figure 4, and involves preprocessing, motion
detection, cycles detection, and computation of the averaged
cycle. For calculating a similarity score between two persons’
averaged cycle, the Euclidean distance was applied. A more
detailed description of the method can be found in [39].
Performance evaluation under attacking scenarios are given
in terms of FAR curves (versus threshold) and shown in
Figure 7. Figure 7(a) shows the results of the minimal-effort
mimicking and knowing the closest person scenarios as well
as “friendly” scenario. Figure 7(b) represents the results of
security scenario where attackers knew the gender of the
victims. In Figures 7(a) and 7(b), the dashed black curve is
FRR and its purpose is merely to show the region of EER. In
order to get robust picture of comparison, we also computed
confidence intervals (CI) for FAR. The CI were com-
puted using nonparametric (subset bootstrap) in Figure 7(a)

and parametric in Figure 7(b) techniques as described in
[43].

As can been seen from Figure 7(a), the minimal effort
mimicking and “friendly testing” FAR are similar (i.e., black
and red curves). This indicates that mimicking does not help
to improve the acceptance chances of impostors. However,
impostors who know their closest person in the database
(green FAR curve) can pose a serious threat to the gait-based
user authentication. The FAR curves in Figure 7(b) suggest
that impostor attempts, which are matched against the same
gender have higher chances of being wrongfully accepted by
the system compared to the different sex matching.

4. Uniqueness of Gait Biometric

In the third research question, we investigated some aspects
relating or influencing the uniqueness of gait biometric
in case of ankle/foot motion [44]. The following three
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aspects were studied: footwear characteristics, directions of
the motion, and gait cycle parts.

4.1. Experimental Data and Recognition Method. The num-
ber of subjects who participated in this experiment was 30.
All of them were male, since only men footwears were used.
Each subject walked with 4 specific types of footwear, labeled
as A, B, C, and D. The photos of these shoe types are given in
Figure 8. The footwear types were selected such that people
wear them on different occasions. Each subject walked 4
times with every shoe type and the MRS was attached to
the ankle as shown in the Figure 3(a). In each of the walking
trials, subjects walked using their natural gait for the distance
of about 20 m. The number of gait samples per subject was
16 (= 4 × 4) and the total number of walking samples was
480 (= 4× 4× 30).

The gait recognition method applied here follows the
architecture depicted in Figure 4. The difference is that in
preprocessing stage we did not compute resultant accel-
eration but rather analyzed the three acceleration signals
separately. In the analyses, we used the averaged cycle as a
feature vector and applied an ordinary Euclidean distance
(except in Section 4.4), see (2), for computing similarity
scores

s =
√√√√

n∑

i=1

(ai − bi)2, n = 100. (2)

In this formula, ai and bi are acceleration values in two
averaged gait cycles (i.e., test and template). The s is a
similarity score between these two gait cycles.

4.2. Footwear Characteristic. Shoe or footwear is an impor-
tant factor that affects the gait of the person. Studies show
that when the test and template gait samples of the person
are collected using different shoe types, performance can
significantly decrease [45]. In many previous gait recognition
experiments, subjects were walking with their own footwear
“random footwear.” In such settings, a system authenticates
person plus shoe rather than the person per se. In our
experimental setting, all participants walked with the same
types of footwear which enables to eliminate the noise
introduced by the footwear variability. Furthermore, subjects
walked with several types of specified footwear. This allows
investigating the relationship of the shoe property (e.g.,
weight) on recognition performance without the effect of
“random footwear.”

The resulting DET curves with different shoe types
in each directions of the motion are given in Figure 9.
The EERs of the curves are depicted in the legend of
the figures and also presented in Table 6. In this table,
the last two columns, FAR and FRR, indicate the EERs’
margin of errors (i.e., 95% confidence intervals) for FAR and
FRR, respectively. Confidence intervals were computed using
parametric approach as in [43].

Although some previous studies reported performance
decrease when the test and template samples of the person’s
walking were obtained using different shoe types [45],
there was no attempt to verify any relationship between
the shoe attributes and recognition performance. Several
characteristics of the footwear can significantly effect gait of
the person. One of such attributes is the weight of the shoe.
One of the primary physical differences among shoes was in
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Figure 8: The footwear types A, B, C, and D.

their weight. The shoe types A/B were lighter and smaller
than the shoe types C/D. As can be observed from the curves
in Figure 9, in general performance is better with the light
shoes (i.e., A and B) compared to the heavy shoes (i.e., C and
D) in all directions. This suggests that the distinctiveness of
gait (i.e., ankle motion) can diminish when wearing heavy
footwear.

4.3. Directions of the Motion. Human motion occurs in 3
dimensions (3D): up-down (X), forward-backwards (Y),
and sideway (Z). The MRS enables to measure acceleration
in 3D. We analyzed performance of each direction of the
motion separately to find out which direction provides the
most discrimination.

The resulting DET curves for each direction of the
motion for every footwear type are given in Figure 10.
The EERs of the curves are depicted in the legend of the
figures and also presented in Table 6. From Figure 10 one
can observe that performance of the sideway acceleration
(blue dashed curve) is the best compared to performances of
the up-down (black solid curve) or forward-backward (red
dotted curve) for all footwear types.

In addition, we also present performance for each
direction of the motion regardless of the shoe type. In this
case, we conducted comparisons of gait samples by not
taking into account with which shoe type it was collected.
For example, gait sample with shoe type A was compared
to gait samples with shoe types B, C, and D (in addition
to other gait samples with shoe type A). These DET curves
are depicted in Figure 11 (EERs are also presented in Table 6,
last three rows). This figure also clearly indicates that the
discriminative performance of the sideway motion is the best
compared to the other two.

Algorithms in VS-based gait recognition usually use
frontal images of the person, where only up-down and
forward-backward motions are available but not the sideway
motion. In addition, in some previous WS-based studies [21,
30, 34], authors were focusing only on two directions of the
motion: up-down and forward-backward. This is perhaps
due to the fact that their accelerometer sensor was attached to
the waist (see Figure 1) and there is less sideways movement
of the waist compared to the foot. However, our analysis
of ankle/foot motion revealed that the sideway direction
of the motion provides more discrimination compared to
the other two directions of the motion. Interestingly from
biomechanical research, Cavanagh [46] also observed that

the runners express their individuality characteristics in
medio-lateral (i.e., sideway) shear force.

4.4. Gait Cycle Parts. The natural gait of the person is a peri-
odic process and consists of cycles. Based on the foot motion,
a gait cycle can be decomposed into several subevents, such
as initial contact, loading response, midstance, initial swing
and so on [47]. To investigate how various gait cycle parts
contribute to recognition, we introduced a technique for
analyzing contribution from each acceleration sample in the
gait cycle.

Let the

d =

∣∣∣∣∣∣∣∣∣∣∣∣

d11 . . . d1n

d21 . . . d2n

. . . . . . . . .

dm1 . . . dmn

∣∣∣∣∣∣∣∣∣∣∣∣

,

δ =

∣∣∣∣∣∣∣∣∣∣∣∣

δ11 . . . δ1n

δ21 . . . δ2n

. . . . . . . . .

δk1 . . . δkn

∣∣∣∣∣∣∣∣∣∣∣∣

(3)

be genuine and impostor matrices, respectively, (m < k,
since usually the number of genuine comparisons is less
than number of impostor comparisons). Each row in the
matrices is a difference vector between two averaged cycles.
For instance, assume R = r1, . . . , rn and P = p1, . . . , pn two
feature vectors (i.e., averaged cycles) then values di j and δi j
in row i in above matrices equal to

(i) di j = |r j − pj|, if S and P from the same person (i.e.,
genuine),

(ii) δi j = |r j − pj|, if S and P from different person (i.e.,
impostor), where j = 1, . . . ,n.

Based on matrices 2 and 3, we define weights wi as
follows:

wi = Mean
(
δ(i)
)

Mean
(
d(i)
) , (4)

where Mean(δ(i)) and Mean(d(i)) are the means of columns
i in matrices δ and d, respectively. Then, instead of the
ordinary Euclidean distance as in (2), we used a weighted
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Figure 9: Authentication with respect to footwear types for each direction.

version of it as follows:

s =
√√√√

n∑

i=1

(wi − 1)∗ (ai − bi)2, n = 100, (5)

where wi are from (4). We subtracted 1 from wi’s because if
the Mean(δ(i)) and Mean(d(i)) are equal than one can assume
that there is no much discriminative information in that
particular point.

We used gait samples from one shoe type (type B) to
estimate weights and then tested them on gait samples from
the other shoe types (i.e., types A, C, and D). The estimated
weights are shown in Figure 12. The resulting DET curves are
presented in Figure 13 and their EER are also given in Table 7.
The DET curves indicate that performance of the weighted
approach (red dotted curve) is better than the unweighted
one (black solid curve), at least in terms of EER. This is in
its turn may suggest that various gait cycle parts (or gait
subevents) contribute differently to the recognition.
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Figure 10: Authentication with respect to directions for shoe types A, B, C, and D.

5. Application and Limitation

5.1. Application. A primary advantage of the WS-based
gait recognition is on its application domain. Using small,
low-power, and low-cost sensors it can enable a periodic
(dynamic) reverification of user identity in personal elec-
tronics. Unlike one time (static) authentication, periodic
reverification can ensure the correct identity of the user all

the time by reassuring the (previously authenticated) iden-
tity. An important aspect of periodic identity reverification is
unobtrusiveness which means not to be annoying, not to dis-
tract user attention, and to be user friendly and convenient in
frequent use. Consequently, not all authentication methods
are unobtrusive and suitable for periodic reverification.

In our experiments, the main reason for selecting places
on the body was driven by application perspectives. For
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Table 6: EERs of the methods. Numbers are given in %.

Shoe type Motion direction EER FAR FRR

Shoe type A X (up-down) 10.6 ± 0.7 ± 4.5

Shoe type B X (up-down) 10 ± 0.7 ± 4.4

Shoe type C X (up-down) 18.3 ± 0.9 ± 5.6

Shoe type D X (up-down) 16.1 ± 0.9 ± 5.4

Shoe type A Y (forw.-backw.) 10.6 ± 0.7 ± 4.5

Shoe type B Y (forw.-backw.) 10.6 ± 0.7 ± 4.5

Shoe type C Y (forw.-backw.) 17.8 ± 0.9 ± 5.6

Shoe type D Y (forw.-backw.) 13.3 ± 0.8 ± 5

Shoe type A Z (sideway) 7.2 ± 0.6 ± 3.8

Shoe type B Z (sideway) 5.6 ± 0.5 ± 3.4

Shoe type C Z (sideway) 15 ± 0.8 ± 5.2

Shoe type D Z (sideway) 8.3 ± 0.6 ± 4

— X (up-down) 30.5 ± 0.3 ± 1.5

— Y (forw.-backw.) 29.9 ± 0.3 ± 1.5

— Z (sideway) 23 ± 0.2 ± 1.4
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Figure 11: Authentication regardless of the shoe types.

Table 7: The unweighted (EER) and weighted distances (EERw).

Shoe type Motion direction EER, % EERw , %

Shoe type A Z (sideway) 7.2 5

Shoe type C Z (sideway) 15 12.8

Shoe type D Z (sideway) 8.3 7.8

example, people can carry mobile phone in similar position
on the hip or in the pocket. Some models of the mobile
phones already equipped with accelerometer sensor, for
example, Apple’s iPhone [50] has the accelerometer for
detecting orientation of the phone. Nowadays the mobile
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Figure 12: The estimated weights.

phone services go beyond mere voice communication, for
example, users can store their private data (text, images,
videos, etc.) and use it in high security applications such as
mobile banking or commerce [51, 52]. All of these increase
the risk of being the target of an attack not only because of the
phone value per se but also because of the stored information
and provided services. User authentication in mobile phones
is static, that is, users authenticated once and authentication
remains all the time (until the phone explicitly is turned
off). In addition, surveys indicate high crimes associated with
mobile phones [53] and also suggest that users do not follow
the relevant security guidelines, for example, use the same
code for multiple services [54].

For combating crimes and improving security in mobile
phones, a periodic reverification of the authenticated user
is highly desirable. The PIN-based authentication of mobile
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Figure 14: Examples of smart shoes with integrated accelerometer.

phones is difficult or impossible to adapt for periodic
reauthentication because of its obtrusiveness. Indeed, the
process of frequently entering the PIN code into a mobile
phone is explicit, requires user cooperation, and can be very
inconvenient and annoying. Therefore, the WS gait-based
analysis can offer better opportunities for periodic identity
reverification using MRS embedded in phone hardware or
user’s clothes (e.g., shoes). Whenever a user makes a few steps
his identity is re-verified in a background, without requiring
an explicit action or input from the user.
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Figure 15: Examples of the glove like input devices with built-in accelerometer.

Besides the mobile phones and thanks to the rapid minia-
turization of electronics, the motion recording/detecting
sensors can be found in a wide range of other consumer
electronics, gadgets, and clothes. For example,

(i) laptops use accelerometer sensors for drop protection
of their hard drive [58];

(ii) various intelligent shoes with integrated sensors are
developed (see Figure 14), for example, for detecting
abnormal gaits [48], for providing foot motion to the
PC as an alternative way of input [49]; Apple and
Nike jointly developed a smart shoes that enables the
Nike+ footwear to communicate with iPod to provide
pedometer functions [59];

(iii) glove like devices with built-in accelerometer (see
Figure 15) can detect and translate finger and hand
motions as an input to the computer [55–57];

(iv) watches or watch like electronics are equipped with
built-in accelerometer sensor [60]. Motion detecting
and recording sensors can be built-in even in some
exotic applications like tooth brushing [61] or wear-
able e-textile [62]; and many others.

As the values and services provided by such electronics
grow, their risk of being stolen increases as well. Although the
motion recording/detecting sensors in the aforementioned
products and prototypes are mainly intended for other
purposes, it is possible to extend their functionality for
periodic re-verification of identity too. Depending on the
computing resources, the motion signal can either be ana-
lyzed locally (e.g., in case of mobile phones) or remotely in
the other surrounding electronics to which data is transferred
wirelessly. For instance, a shoe system can transfer the foot
motion to the user’s computer via wireless network (e.g.,
Bluetooth).

Furthermore, it is foreseen that such sensors will become
a standard feature in many kind of consumer products
[63, 64] which implies that WS-based approach will not
require an extra hardware. However, it is worth noting
that we do not propose the WS-based authentication as a
sole or replacement, but rather a complementary one to

the traditional authentication techniques (i.e., PIN-code,
fingerprint, etc.).

5.2. Limitation. Like the other biometrics, the WS-based gait
recognition also possesses its own limitations and challenges.
Although the WS-based approach lacks difficulties associated
with VS-based approach like noisy background, lighting
conditions, and viewing angles, it shares the common factors
that influence gait such as walking speed, surface conditions,
and foot/leg injuries.

An important challenge related to the WS-based gait
recognition includes distinguishing various patterns of walk-
ing. Although our methods can differentiate the actual
normal walking from the standing still, usually daily activity
of an ordinary user involves different types of gait (running,
walking fast/slow, walking on stairs up/down, walking with
busy hands, etc.). Consequently, advanced techniques are
needed for classifying among various complex patterns of
daily motion.

The main limitation of the behavioral biometrics includ-
ing gait is a relatively low performance. Usually, performance
of the behavioral biometrics (e.g., voice, handwriting, gait,
etc.) is not as accurate as the biometrics like fingerprint or
iris. Some ways to improve accuracy can be combining WS-
based gait with the other biometrics (e.g., voice [31]), fusing
motion from different places (e.g., foot and hip), and/or
sensor types (e.g., accelerometer, gyro, etc.). Nevertheless,
despite low accuracy of the WS-based gait recognition, it
can still be useful as a supplementary method for increas-
ing security by unobtrusive and periodic reverification of
the identity. For instance, to reduce inconvenience for a
genuine user, one can select a decision threshold where
the FRR is low or zero but the FAR is medium to high.
In such setting, although the system cannot completely
remove impostors of being accepted, it can reduce such risk
significantly.

Due to the lack of processing unit in the current
prototype of the MRS, our analyses were conducted offline,
that is, after walking with MRS, the recorded accelerations
were transferred to the computer for processing. However,
with computing resources available in some of current
electronics we believe it is feasible to analyze motion signals
online (i.e., localy) too.
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6. Conclusion

In this paper, we presented gait recognition approach which
is significantly different from most of current gait biometric
research. Our approach was based on analyzing motion
signals of the body segments, which were collected by
using wearable sensors. Acceleration signals from ankle,
hip, trousers pocket, and arm were utilized for person
recognition. Analyses of the acceleration signals from these
body segments indicated some promising performances.
Such gait analysis offers an unobtrusive and periodic
(re-)verification of user identity in personal electronics (e.g.,
mobile phone).

Furthermore, we reported our results on security assess-
ment of gait-based authentication in the case of hip motion.
We studied security of the gait-based user authentication
under three attack scenarios which were minimal effort-
mimicry, knowing the closest person in the database (in
terms of gait similarity), and knowing the gender of the user
in the database. The findings revealed that the minimal effort
mimicking does not help to improve the acceptance chances
of impostors. However, impostors who knew their closest
person in the database or the gender of the users in the
database could pose a threat to the gait-based authentication
approach.

In addition, we provided some new insights toward
understanding the uniqueness of the gait in case of ankle/foot
motion with respect to the shoe attribute, axis of the motion,
and gait cycle parts. In particular, our analysis showed
that heavy footwear tends to diminish gait’s discriminative
power and the sideway motion of the foot provides the
most discrimination compared to the up-down or forward-
backward direction of the motion. Our analysis also revealed
that various gait cycle parts (i.e., subevents) contribute
differently toward recognition performance.
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trusive multimodal biometrics for ensuring privacy and
information security with personal devices,” in Proceedings
of the 4th International Conference on Pervasive Computing
(Pervasive ’06), Lecture Notes in Computer Science, pp. 187–
201, Dublin, Ireland, May 2006.

[32] B. Huang, M. Chen, P. Huang, and Y. Xu, “Gait modeling
for human identification,” in Proceedings of IEEE International
Conference on Robotics and Automation (ICRA ’07), pp. 4833–
4838, Rome, Italy, April 2007.

[33] L. Rong, Z. Jianzhong, L. Ming, and H. Xiangfeng, “A wearable
acceleration sensor system for gait recognition,” in Proceedings
of the 2nd IEEE Conference on Industrial Electronics and
Applications (ICIEA ’07), Harbin, China, May 2007.

[34] L. Rong, D. Zhiguo, Z. Jianzhong, and L. Ming, “Identification
of individual walking patterns using gait acceleration,” in Pro-
ceedings of the 1st International Conference on Bioinformatics
and Biomedical Engineering, 2007.

[35] M. Sekine, Y. Abe, M. Sekimoto, et al., “Assessment of
gait parameter in hemiplegic patients by accelerometry,” in
Proceedings of the 22nd Annual International Conference of the
IEEE on Engineering in Medicine and Biology Society, vol. 3, pp.
1879–1882, 2000.

[36] D. Alvarez, R. C. Gonzalez, A. Lopez, and J. C. Alvarez, “Com-
parison of step length estimators from weareable accelerom-
eter devices,” in Proceedings of the 28th Annual International
Conference of the IEEE on Engineering in Medicine and Biology
Society (EMBS ’06), pp. 5964–5967, New York, NY, USA,
August 2006.

[37] D. Gafurov and E. Snekkenes, “Arm swing as a weak biometric
for unobtrusive user authentication,” in Proceedings of IEEE
International Conference on Intelligent Information Hiding and
Multimedia Signal Processing, 2008.

[38] D. Gafurov, K. Helkala, and T. Sondrol, “Gait recognition
using acceleration from MEMS,” in Proceedings of the 1st Inter-
national Conference on Availability, Reliability and Security
(ARES ’06), pp. 432–437, Vienna, Austria, April 2006.

[39] D. Gafurov, E. Snekkenes, and P. Bours, “Spoof attacks on
gait authentication system,” IEEE Transactions on Information
Forensics and Security, vol. 2, no. 3, 2007.

[40] D. Gafurov, E. Snekkenes, and P. Bours, “Gait authentication
and identification using wearable accelerometer sensor,” in
Proceedings of the 5th IEEE Workshop on Automatic Iden-
tification Advanced Technologies (AutoID ’07), pp. 220–225,
Alghero, Italy, June 2007.

[41] ISO/IEC IS 19795-1, Information technology, biometric
performance testing and reporting—part 1: principles and
framework, 2006.

[42] D. Gafurov, “Security analysis of impostor attempts with
respect to gender in gait biometrics,” in Proceedings of IEEE
International Conference on Biometrics: Theory, Applications
and Systems (BTAS ’07), Washington, DC, USA, September
2007.

[43] R. M. Bolle, N. K. Ratha, and S. Pankati, “Error analysis of pat-
tern recognition systems—the subsets bootstrap,” Computer
Vision and Image Understanding, 2004.

[44] D. Gafurov and E. Snekkenes, “Towards understanding the
uniqueness of gait biometric,” in Proceedings of the 8th
IEEE International Conference Automatic Face and Gesture
Recognition, Amsterdam, The Netherlands, September 2008.

[45] S. Enokida, R. Shimomoto, T. Wada, and T. Ejima, “A
predictive model for gait recognition,” in Proceedings of the
Biometric Consortium Conference (BCC ’06), Baltimore, Md,
USA, September 2006.

[46] Cavanagh, “The shoe-ground interface in running,” in The
Foot and Leg in Running Sports, R. P. Mack, Ed., pp. 30–44,
1982.

[47] C. Vaughan, B. Davis, and J. O’Cononor, Dynamics of Human
Gait, Kiboho, 1999.

[48] M. Chen, B. Huang, and Y. Xu, “Intelligent shoes for abnormal
gait detection,” in Proceedings of IEEE International Conference
on Robotics and Automation (ICRA ’08), pp. 2019–2024,
Pasadena, Calif, USA, May 2008.

[49] T. Yamamoto, M. Tsukamoto, and T. Yoshihisa, “Foot-
step input method for operating information devices while
jogging,” in Proceedings of the International Symposium on



16 EURASIP Journal on Advances in Signal Processing

Applications and the Internet (SAINT ’08), pp. 173–176, Turku,
Finland, August 2008.

[50] Apple’s iphone with integrated accelerometer, April 2008,
http://www.apple.com/iphone/features/index.html.

[51] K. Pousttchi and M. Schurig, “Assessment of today’s mobile
banking applications from the view of customer require-
ments,” in Proceedings of the 37th Annual Hawaii International
Conference on System Sciences (HICSS ’04), vol. 37, pp. 2875–
2884, Big Island, Hawaii, USA, January 2004.
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1. Introduction

The use of biometric characteristics for identity verification
has been described as security enhancement on top of
something one has (e.g., a card) and/or something one
knows (e.g., a password) in many publications. The main
reason for biometrics-enhanced identity management in
such two or three-factor authentication approach is to reduce
the risk of identity theft by increasing the difficulty of
impersonation. In less critical applications, biometrics have
also been proposed as replacement for passwords. With
the ever-increasing number of login codes, passwords, and
personal identification numbers (PINs), there is a strong
need to reduce the amount of information that individuals
have to memorize. Biometrics could provide a convenient
solution for this increasing memory burden.

The use of biometrics in forensic context exists for a very
long time. Around 1880, Dr. Henry Faulds recognized the
importance of fingerprints for identification. In the 1890s,
Alphonse Bertillon, a French anthropologist and police desk

clerk used multiple body measurements to identify convicted
criminals. Later Richard Edward Henry of Scotland Yard
started to use fingerprints for the same purpose. These
early methods all employed manual measurement and
comparison for identification. Only during the last few
decades, automated biometric identity verification systems
have been introduced and have been subject to extensive
research. One of the leitmotifs in biometrics research is the
verification performance, expressed in average performance
characteristics such as false acceptance rates (FARs), false
rejection rates (FRR), and equal error rates (EERs). In most
applications, the FAR and FRR are subject to a tradeoff; by
modifying a comparison threshold value, security (expressed
by the FAR) can be enhanced at the expense of a decreased
convenience (expressed by the FRR) and vice versa, result-
ing in a detection error tradeoff (DET) curve. Similarly,
performance tests on a subpopulation (excluding failures to
acquire or to enroll) are expressed in terms of false match
rates (FMRs) and false nonmatch rates (FNMR). In many
cases, a biometric verification performance is characterized
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by an FRR (or FNMR) at a specific FAR (or FMR) which is
typically 0.01 or 0.001. These performance measures heavily
depend on the biometric modality, the sensor type, the type
of processing, and the corpus that is being used. As examples,
various systems for face and iris recognition report an FRR
in the range of 0.005–0.05 at an FAR of 0.001 [1–3]; however,
significantly worse performance is also reported [4, 5]. For
fingerprints, best-in-class solutions typically provide an FRR
of approximately 0.04 at an FAR of 0.001 and about 0.03 for
an FAR of 0.01 [6, 7].

Although the DET curve provides very meaningful
information on the average performance of a biometric
verification system given a certain population or corpus,
it does not describe possible intersubject dependencies in
verification performance. Subjects of a biometric system
have been categorized into “sheep,” “goats,” “lambs” and
“wolves,” depending on their average (intrasubject) genuine
and imposter scores [8]. This menagerie has been extended
with “worms,” “chameleons,” “phantoms,” and “doves” [9].
There is evidence that a number of these types indeed
exist for certain biometric modalities and corpora [8–11]
although the presence of “goats” in fingerprint corpora seems
subject to debate [12].

The “goats” represent subjects that are difficult to
recognize. They account for a disproportionate share of
false nonmatches. These false nonmatches may cause these
subjects to experience the system as being “inconvenient”
possibly resulting in a decreased trust in a certain application
which may also have negative consequences for their trust
in biometrics in general. As an example, it has been shown
that the age band has an effect on the performance of a
fingerprint-based biometric system [3, 13] which suggests
that elderly people may more often be associated with “goats”
than younger people.

Failures to enroll or acquire may also pose challenges
on biometric verification systems with regard to conve-
nience. Subjects may have unreliable or absent biometric
characteristics or body parts. It has often been assumed that
between one and three percent of the general public does not
have suitable biometric characteristics (cf. [2, 4]). A further
challenge is caused by subjects that refuse to enroll. Subjects
have in particular circumstances the right to object against
the processing of biometric data on compelling legitimate
grounds such as privacy concerns [14]. Other concerns may
comprise health effects induced by biometric measurements,
hygiene issues, the risk of stolen body parts containing a
biometric, or negative associations such as fingerprints and
crime. Surveys held in the US between 2001 and 2005
indicated that about 6–10% of the Americans found the use
of finger and hand scan biometrics for law enforcement and
governmental applications not acceptable [15, 16]. In the
commercial sector, a similar proportion of the population
found it not acceptable to use biometrics for credit card
transactions or Automated Teller Machines (ATMs). In
Europe, a majority of consumers (92%) now believe that a
fingerprint is more secure than a signature, and 84% believes
that biometrics are more secure than Chip and PIN [17].

Summarizing, failure of correct authentication in a
biometric system may be associated with subjects that do

not want to enroll, that cannot enroll, or that experience
problems during verification. It is rather obvious that sub-
jects belonging to the first two groups require an alternative
means for authentication that is not based on biometrics. For
the third group, the “goats,” the situation is somewhat more
subtle. This type is not easily detectable during enrollment
if only a single measurement is available. Depending on the
application, the difficulty to detect “goats” in an initial stage
may jeopardize the success of a biometric verification system.
For example, consider the case of biometrics-enabled ATMs.
With billions of ATM transactions per month, a typical false
nonmatch rate of 0.01 will result in a tremendous number
of complaints, help desk calls, and service costs. Hence an
FNMR of 0.01 will most likely not be acceptable for such
an application and it will be crucial to understand and
to mitigate the risk of false nonmatches. In conventional
ATMs based on PIN authentication, a subject has multiple
(typically 3) authentication attempts to resolve problems
related with erroneously entered PINs. It is of interest to
investigate the effect of such multiple verification attempts in
a biometric authentication scheme and its influence on the
resulting FNMR and FMR.

2. FNMR Analysis

Subject dependencies of FNMR have been found for speaker
recognition [8], face recognition [11], and fingerprint recog-
nition [9, 10, 12]. However, it has been argued that “hard-
to-match” fingerprints are resulting from properties of a
certain (low-quality) measurement, rather than resulting
from individual biometric characteristics themselves [12].
Furthermore, although the existence of subject interdepen-
dencies has been shown by statistical inference tests, most
studies do not provide a clear insight in the distribution of
intersubject FNMRs.

2.1. Fingerprint Corpus. An analysis of intersubject FNMRs
was carried out based on the Ministerio de Ciencia y
Tecnologı́a (MCYT) baseline fingerprint corpus [18]. This
database contains 12 images of all 10 fingers from 330
subjects that were located in four different institutions. All
combinations of image number, finger, and subject have been
measured using two acquisition devices: one optical sensor
(UareU from Digital Persona) and one capacitive sensor
(model 100SC from Precise Biometrics). Both sensors were
operating at a resolution of 500 dpi. All fingerprint capturing
was accomplished by the supervision of an operator using
three levels of control by the subject that differed in the
amount of visual feedback with respect to finger placement
provided on a computer screen. In a subjective quality assess-
ment on a subset of the data, 5% of the images was found to
be of very bad quality, 20% of low quality, 55% of medium
quality, and 20% of high quality (see [18] for details).

The total amount of fingerprint images amounts thus
330 × 10 × 12 × 2 = 79, 200 images. Since 12 measurements
are available for each subject, finger, and sensor, the
maximum number of unique genuine comparisons per
subject, finger, and sensor equals 66 (under the assumption
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that for all images a suitable minutiae template could be
established). Hence for each finger and sensor, 66 × 330 =
21 780 genuine comparisons can in principle be obtained,
resulting in a total number of genuine comparisons per
sensor of 217 800, and 435 600 in total.

All 79 200 images were converted to minutiae templates
using a state-of-the-art commercially available minutiae-
extractor and comparator solution. The minutiae-extractor
also provides image quality ratings; the corresponding
comparator solution operates symmetrically, that is, a com-
parison score of A with B is equal to B with A. Some of
the images could not be converted to minutiae templates
either due to a failure to acquire or a failure to enroll. Since
the employed solution does not indicate whether a failure
was due to acquisition or enrollment difficulties, we will
refer to such failures as failures to enroll in the remainder
of this paper. For the capacitive sensor, the system could
not enroll one image for one finger of one subject. For four
other subjects, none of the images from any finger could be
enrolled. Hence out of the 39.600 images, 1 + 4 × 12 × 10 =
481 images resulted in a failure to enroll, corresponding to
a failure to enroll rate in terms of the number of images
of 0.0121. For the optical sensor, 4 subjects could not be
enrolled for one finger and one image. One subject could
not enroll one image from two fingers. One subject could
not enroll any image from any finger. Hence, in total, 4 +
2 + 120 = 126 images resulted in a failure to enroll, which
corresponds to a rate of 0.0032.

From these data, two databases containing comparison
scores were constructed described as follows.

(1) A full database, containing all genuine comparison
scores within the same sensor, resulting in 435 600
genuine comparison scores in total (217 800 for each
sensor). Comparisons that involved an image that
caused a failure to enroll were set to a similarity score
of zero to ensure a reject irrespective of the (positive)
comparison threshold. The imposter comparisons
comprised a subset of 792 000 combinations. Tests
on this database describe the FAR-FRR tradeoff (i.e.,
including the effect of failure to enroll).

(2) A balanced database containing only subjects for
which all images could be enrolled. Hence the result-
ing database is fully balanced (i.e., the same number
of fingers and measurements per finger for each
subject). This process resulted in 214 500 genuine
comparisons for the capacitive sensor (325 subjects),
and 213 840 genuine comparisons for the optical
sensor (324 subjects). The number of imposter
comparisons amounted to 384 000 and 381 720,
for the capacitive and optical sensors, respectively.
Performance tests on this database are more closely
related to FMRs and FNMRs, while minimizing the
effect of low-quality data that could result in failure
to enroll.

2.2. DET Curves. Separate DET curves were constructed
for the optical and capacitive sensors from the genuine
and imposter comparison scores. The results are visualized

Table 1: Error rates for the two sensors and the two databases (the
full database providing FRRs and the balanced database providing
FNMRs).

Sensor EER (full) EER (bal) FRR@0.001 (full) FNMR@0.001
(bal)

Capacitive 0.0240 0.0138 0.0295 0.0181

Optical 0.0064 0.0034 0.0075 0.0040

in Figure 1 for the full database. The solid line represents
the capacitive sensor, the dashed line represents the optical
sensor. The EER for the capacitive sensor amounts to 0.024;
the EER for the optical sensor amounts to 0.0064. At a FAR of
0.001, the FRR for the capacitive and optical sensors amounts
to 0.0295 and 0.0075, respectively. As can be observed,
the optical sensor performs significantly better than the
capacitive sensor: across the full DET curve, the FRR for the
optical sensor is almost 4 times smaller than the FRR of the
capacitive sensor for the same FAR. These results confirm
earlier statement on quality differences between optical and
capacitive sensors [19]. A similar analysis was performed for
the balanced database. A comparison between the full and
balanced database error rates is provided in Table 1. As can
be observed, the EERs and FNMRs for the balanced database
are about twice as low as for the full database (FRRs).

2.3. Statistical Inferences. The existence of “goat-” like behav-
ior is investigated using statistical inference tests. The data is
tested to support the null-hypothesis that the genuine com-
parison scores do not depend on the subject or finger indices.
A nonparametric (Kruskal-Wallis) test was employed on the
genuine comparison scores from the balanced database. The
Kruskal-Wallis test can only be employed to investigate one
factor; hence, the test was performed four times to cover all
combinations of the two sensors and the two effects under
test (subject index and finger index). The results are provided
in Table 2. All null hypotheses that the subject or finger index
did not have any effect on the comparison scores are rejected
based on the observed χ2 values. Hence, it is concluded that
the false nonmatch rates are subject to “goat-” like behavior.

The comparison scores were also subjected to a two-
way analysis of variance (including interaction) with the
finger index and subject as main effects, and the comparison
score as dependent variable. The resulting F values and
the corresponding probability of falsely rejecting the null
hypothesis, that is, none of the effects or interactions is
significant, are provided in the last two columns of Table 2.
In line with the results obtained from the Kruskal-Wallis
test, both factors and their interaction were found to have
a significant effect on the comparison scores. The same
analyses were also carried out on the full database which gave
the same qualitative result.

2.4. Intersubject Distribution of FNMR. The presence of
significant effects of subject and finger index on the com-
parison scores for both sensors does not provide any insight
in the actual distribution of FNMRs across subjects or
fingers. To investigate the range of FNMRs between subjects,
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Table 2: Results for the Kruskal-Wallis test and analysis of variance (ANOVA) test for the optical and capacitive sensors. The factors that
were taken into account were the subject index and the finger index. Tests were performed on the balanced database.

Sensor Effect df χ2 p > χ2 F p > F

Capacitive Subject 324 68276.05 0 510.08 0

Capacitive Finger 9 5813.31 0 1621.18 0

Capacitive Interaction 2916 n/a n/a 44.62 0

Optical Subject 323 66894.26 0 552.18 0

Optical Finger 9 17047.04 0 5116.24 0

Optical Interaction 2907 n/a n/a 42.15 0

the number of false nonmatches within the set of all 66
genuine comparisons was computed for a threshold value
that resulted in a global FMR of 0.001. The threshold
was determined separately for each of the two sensors to
compensate for performance differences between the sensors
and was carried out on the balanced database.

In the following, the number of false nonmatches at a
false match rate φi within a set of N genuine comparisons
is given by xi, j,k[φi] for sensor i, subject j, finger k. If one
assumes that each of the N genuine comparisons for a given
sensor i has a constant probability for a false nonmatch that
only depends on the false match rate φi, the expected number
μi[φi] of false nonmatches within a set of N = 66 genuine
comparisons would be given by

μi
[
φi
] = Nψi

[
φi
]
, (1)

with ψi[φi] the estimate of the probability of a false
nonmatch ψi[φi] for a false match rate φi, given by

ψi
[
φi
] =

∑

j

∑

k
xi, j,k

[
φi
]

JKN
. (2)

In the absence of any intersubject or finger index
dependencies, the variable xi, j,k[φi] is then expected to follow
a binomial distribution with mean Nψi[φi] and variance
Nψi[φi](1 − ψi[φi]). This expected distribution is visualized
in Figure 2 by the solid lines. Figure 2(a) represents the
capacitive sensor; the lower panel represents the optical
sensor. In both the upper and lower panels, the horizontal
axes indicate the number of nonmatches (in 66 attempts),
the vertical axes represent the population proportion. The
numbers inbetween the upper and lower panels represent the
FNMR corresponding to the number of false nonmatches
in 66 attempts. The capacitive sensor (Figure 2(a)) has a
maximum at one nonmatch out of 66 which corresponds
to the FNMR of 0.0181 at an FMR of 0.001 that was also
provided in Table 1. The optical sensor (Fihure 2(b)) has a
maximum at zero nonmatches which is caused by the smaller
overall FNMR of 0.0040. The far-most right point on the
curves represents 9 or more nonmatches out of 66. For the
capacitive sensor, the probability of finding 9 or more false
nonmatches out of 66 according to the binomial distribution
equals 3.01e − 6; for the optical sensor this value equals to
7.7e − 12 (not shown in the figure).

The observed FNMRs per subject based on an individual
comparison threshold for each sensor to result in an overall
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Figure 1: DET curves for the capacitive (solid line) and optical
(dashed line) sensors based on the full database (including failures
to enroll).

FMR of 0.001 are given by the dashed lines in Figure 2.
These curves represent the genuine comparisons for all
subjects and fingers, that is, different fingers of one subject
can be interpreted as additional subjects. All number of
observations are normalized to sum to +1 to allow direct
comparison with the binomial distribution given by the
solid line. Interestingly, the curve for the observed number
of false nonmatches is quite different from the binomial
distributions, for both the capacitive and optical sensors.
Two trends can be observed: (1) the number of subjects
with zero false nonmatches is larger than expected based
on a binomial distribution, and (2) the number of subjects
with 9 or more false nonmatches is also significantly larger
than expected. The proportion of subjects that obtained 9 or
more false nonmatches (which corresponds to an FNMR of
0.136 or more) equals 0.0505 and 0.0145, for the capacitive
and optical sensors, respectively. The proportion of subjects
with 23 or more nonmatches (an FNMR of 0.33 or larger)
amounted 0.0120 and 0.0006, for the capacitive and optical
sensors. Hence, the observed frequencies of finding 23 or
more nonmatches in a trial of 66 is 3 to 7 orders of magnitude
larger than is expected based on a binomial distribution.
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Figure 2: Distribution of the expected (solid lines) and observed
(dashed lines) number of false nonmatches across subjects and
fingers for the capacitive sensor (a) and the optical sensor (b).
The numbers in between panels represent the corresponding false
nonmatch rates.
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Figure 3: Distribution of expected (solid lines) and observed
(dotted and dashed lines) number of false nonmatches across
subjects for the capacitive sensor (dashed line) and the optical
sensor (dotted line) based on a threshold to result in a mean FNMR
of 0.02.

One possible reason for finding a relatively large pop-
ulation of subjects with a high FNMR is that these could
be resulting from “weak” fingers that more often causes
nonmatches. To investigate the distribution of interclass
FNMRs when excluding the effect of different FNMRs per
finger, a separate comparison threshold was estimated for
each finger index and sensor such that across all subjects, the
FNMR was equal to a fixed value of 0.02 when measured for

one finger and sensor across all subjects. The distribution of
false nonmatches in a set of 66 attempts is shown in Figure 3.
The expected values based on the binomial distribution with
mean probability of 0.02 are given by the solid line; the
observed distributions for the capacitive and optical sensors
are shown by the dashed and dotted lines, respectively.
Interestingly, using a separate threshold for each sensor and
finger to result in the same mean FNMR, the observed
distributions of FNMRs across subjects are very similar.
Furthermore, there is a significant discrepancy between
the expected (binomial) distribution and the observed
distribution. More than 5% of the population obtained 9 or
more false nonmatches, which is significantly larger than the
expected value of 5.8e − 6. Another interesting observation
is that for both sensors, about 90% of the subjects has an
FNMR which is smaller than the population average of 0.02,
while only 10% has an FNMR which is (significantly) larger.

2.5. Multiple Verification Attempts. If multiple verification
attempts are allowed in a verification system, the expected
number of false matches will typically increase if the
comparison threshold is kept constant (e.g., assuming that
an imposter will use a different finger during each attempt
to maximize the false match probability). If the false match
probability of the nth trial out of N using sensor i is assumed
to be constant across subjects and fingers and given by
φi[n,N], the probability that at least one of N attempts will
give a false match Φi[N] is given by

Φi[N] = 1−
N∏

n=1

(
1− φi[n,N]

)
. (3)

If one also assumes that the probability φi[n,N] is inde-
pendent of trial number n and φi[n,N] � 1, this can be
approximated quite accurately by

Φi[N] ≈ Nφi. (4)

Said differently, the false match probability increases approx-
imately linearly with the number of attempts if the compari-
son threshold is kept constant.

The number of false nonmatches will typically decrease
with the increasing number of attempts. If the false
nonmatch probability for attempt n out of N given by
ψi[Φi[N],n,N], the probability that allN attempts will result
in, a false nonmatch is given by

Ψi[Φi[N],N] =
N∏

n=1

(
ψi[Φi[N],n,N]

)
. (5)

If one assumes the probabilities ψi[Φi[N],n,N] to be
independent on trial n, this would result in

Ψi[Φi[N],N] = ψi
[
φi
]N
. (6)

Hence, an important consequence of the dependency of
both FMR and FNMR on the number of attempts is that the
comparison threshold should be dependent on the number
of allowed attempts if a fixed FMR is desired.
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Figure 4: DET curve for the capacitive sensor (a) and the
optical sensor (b) based on the balanced database. The solid line
represents the FMR/FNMR tradeoff for a single attempt. The
dashed lines represent the performance based on the maximum
comparison score of 2 attempts (max2); the dash-dotted lines
represent the performance for the mean comparison score across
2 attempts (mean2). The dotted curve represents the expected
FMR/FNMR tradeoff assuming constant false nonmatch and false
match probabilities for each trial.

To investigate the effect of multiple verification attempts,
a two and three trial case was simulated by taking the
maximum comparison similarity score across two or three
genuine comparisons, respectively. The same process was
employed for the imposter scores using fingerprints from
different subjects across the attempts. The resulting DET
curves are visualized in Figures 4 and 5 for the balanced
database. Figures 4(a) and 5(a) represent the capacitive
sensor, Figures 4(b) and 5(b) represent the optical sensor.
The solid, dashed, and dash-dotted lines represent a single
trial, the maximum comparison, and the mean comparison
scores across multiple attempts, respectively.

As can be observed from Figures 4 and 5, the possibility
of multiple verification attempts has a positive influence on
the verification performance. For the capacitive sensor, the
FNMR of 0.018 at an FMR of 0.001 for a single verification
attempt decreases to 0.011 and 0.010 for two attempts
according to a “mean” and “max” rule, respectively. For the
three-trial case, the respective FNMRs are equal to 0.0096
and 0.0075. The optical sensor shows a similar trend. The
FNMRs for a single trial at an FMR of 0.001 correspond to
0.0040. For two attempts, the FNMRs are equal to 0.0026
and 0.0024 (for the “mean” and “max” rules, resp.). For three
attempts, these rates are equal to 0.0020 and 0.0018.

100

FN
M

R

FMR

Capacitive

10−7
10−6
10−5
10−4
10−3
10−2
10−1

100

10−8

10−110−210−310−4

(a)

FN
M

R

Optical

FMR

10−7
10−6
10−5
10−4
10−3
10−2
10−1

100

10−8

10010−110−210−310−4

Single
Max3

Mean3
Expected

(b)

Figure 5: DET curve for the capacitive sensor (a) and the
optical sensor (b) based on the balanced database. The solid line
represents the FMR/FNMR tradeoff for a single attempt. The
dashed lines represent the performance based on the maximum
comparison score of 3 attempts (max3); the dash-dotted lines
represent the performance for the mean comparison score across
3 attempts (mean3). The dotted curve represents the expected
FMR/FNMR tradeoff assuming constant false nonmatch and false
match probabilities for each trial.

For both sensors, the “max” rule provides the lowest
FNMR at a given FMR. The ratios of FNMRs at a fixed
FMR of 0.001 for two attempts compared to one trial equal
to 0.55 and 0.60 (for the capacitive and optical sensors,
resp.). For three attempts, these ratios are equal to 0.42
and 0.45, respectively, when compared to the single-attempt
case. However, these improvements are significantly smaller
than the expected DET curve based on the independence
assumption of FNMR and FMR rates for each trial, which
is represented by the dotted curves in Figures 4 and 5. This
curve was created by transforming the single-attempt curve
to a multiple-attempt curve using (6) and (3).

2.6. Discussion. When attempting to enroll the 79,200
images, the failure to enroll rate amounted about 0.012 for
the capacitive and 0.003 for the optical sensors, respectively.
For the capacitive sensor, the value of 0.012 is quite in line
with the assumption that between 1 and 3 % of a population
has difficulties or failures to enroll. The value of 0.003 for the
optical sensor is relatively low in this respect.

The DET curves based on the full database shown in
Figure 1 indicate that the two sensors employed in the test
differ considerably in terms of verification performance.



EURASIP Journal on Advances in Signal Processing 7

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r = 0.44104

Minimum image quality

G
en

u
in

e 
co

m
pa

ri
so

n
 s

co
re

Capacitive sensor

(a)

0

0.2

0.4

0.6

0.8

1

G
en

u
in

e 
co

m
pa

ri
so

n
 s

co
re

0 20 40 60 80 100

r = −0.12245

Number of minutiae

Capacitive sensor

(b)

0 0.2 0.4 0.6 0.8 1

Minimum image quality

0

0.2

0.4

0.6

0.8

1

G
en

u
in

e 
co

m
pa

ri
so

n
 s

co
re

r = 0.41983

Optical sensor

(c)

0

0.2

0.4

0.6

0.8

1

G
en

u
in

e 
co

m
pa

ri
so

n
 s

co
re

0 20 40 60 80 100

Number of minutiae

r = −0.016101

Optical sensor

(d)

Figure 6: Genuine comparison scores as a function of the lowest image quality of the two images under test (a, c) and the number of detected
minutiae (b, d). However, (a, b) represent the capacitive sensor; (c, d) represent the optical sensor.

Similar to the ratio of a factor of 4 in terms of failures to
enroll, the capacitive sensor has an FRR which is also about 4
times larger than the optical sensor for the same FAR.

When images that caused a failure to enroll are not taken
into account in the performance evaluation, the error rates
improve by almost a factor of two for both sensors (see
Table 1). This indicates that the number of failures to enroll,
and the number of false nonmatches is about the same for
the current database.

A further analysis on the balanced database revealed
statistically significant differences in false nonmatch rates
between subjects and fingers. When the thresholds for
the capacitive and optical sensors were set to individually
achieve an FMR of 0.001 between 1.45% (optical) and 5.05%
(capacitive) of the subjects experienced an FNMR of 0.136
or larger. Moreover, when differences between sensors and
fingers are accounted for by setting a separate threshold
for each finger index and sensor to obtain an average

FNMR across the population of 0.02, more than 5% of the
population achieved an FNMR of at least 0.136, which is
more than 6 times larger than the population mean, and 4
orders of magnitude larger than expected based on subject-
independent false nonmatch probabilities. Last but not least,
90% of the population has an FNMR which is smaller than
the population average. Said differently, it seems that for this
corpus and threshold setting, only 10% of the population is
responsible for the majority of the false nonmatches.

In an attempt to explain high false nonmatch rates
for certain individuals, the image quality reported by the
template extraction algorithm and the number of extracted
minutiae were investigated. These experiments were per-
formed on the balanced database. First, for each combination
of sensor, subject, and finger, the FNMR (derived from
all 66 comparisons) was correlated with the average image
quality and average number of extracted minutiae across
all 12 measurements. This correlation thus reflects the
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relation between average properties across all observations
of a certain subject and finger, and the average FNMR. No
significant first-order relations were found. The resulting
Pearson correlations between FNMR and image quality, and
between FNMR and the number of minutiae were lower than
0.075 for both sensors.

In a second attempt, the individual comparison scores of
all genuine template pairs were correlated with the minimum
image quality of the two images under test. This test thus
aims at discovering a relation between the comparison score
and attributes of the individual images. A scatter plot of
comparison score versus image quality for the capacitive
sensor is shown in Figure 6(a); the scatter plot for the optical
sensor is provided in Figure 6(c). Both the comparison scores
and image quality data are normalized to an interval between
zero and +1. The Pearson correlation coefficients (r) are
provided in each panel. As can be observed, there is only
a weak correlation between image quality and comparison
score (r = 0.44 and 0.42, for the capacitive and optical
sensors, resp.). Figures 6(b) and 6(d) demonstrate the
relation between the number of detected minutiae (as mean
value of the two templates under test) and the comparison
scores. Given the very low Pearson correlation coefficients
(r = 0.12 and 0.02), no relation seems to exist between the
number of minutiae and genuine comparison score.

When multiple verification attempts are allowed, the
number of false nonmatches reduces by a factor of about 1.7
to 1.8 for two attempts and about 2.2 to 2.4 for three attempts
(provided that the FMR is kept constant). This increase in
performance is roughly in line with results by others (cf.
[4]) and is significantly smaller than what would be expected
based on independent probabilities for false nonmatches and
false matches for each attempt (cf. (3)–(6)). This observation
suggests that the false nonmatch probability for a second
or third attempt depends on the outcome of the earlier
attempts. If we denote the conditional probability for a false
nonmatch during the Nth attempt given false nonmatches
in all N − 1 previous attempts by ψ[Φ[N],N ,N], we find
the following relation between the overall false nonmatch
probability for N and N − 1 attempts:

Ψ[Φ[N],N] = ψ[Φ[N],N ,N]Ψ[Φ[N − 1],N − 1,N − 1].
(7)

If one assumes that the false match rates Φ[N] are set to a
constant value Φ for every N , this results in

ψ[Φ,N ,N] = Ψ[Φ,N]
Ψ[Φ,N − 1,N − 1]

. (8)

In other words, the conditional probability for a false
nonmatch at trial N given false nonmatches during all
earlier attempts can be derived from the ratio of the DET
curves for N and N − 1 attempts. For the current database,
in which the relative improvement equals to a factor of
approximately 1.75, this means that the probability of a false
nonmatch during the second trial equals approximately 0.57.
Analogously, the conditional probability of a false nonmatch
during the third trial, given a false nonmatch during the first
and second trial, amounts to approximately 0.75.

It should be noted that these conditional probabilities
describe the average probability for a second or third
false nonmatch (i.e., provided that earlier attempts also
resulted in a false nonmatch). This result may erroneously
be interpreted as an FNMR that depends on the attempt
number for a given subject. Most likely, the FNMR rate for
a given subject is more or less constant across attempts. The
increase in the conditional probability on a system level is
presumably caused by an increase in the probability that
the current subject is associated with a high (but constant)
FNMR, and hence subsequent attempts will (most likely)
also have a high probability of a false nonmatch and hence
represents a “goat.”

3. Conclusions

The MCYT fingerprint corpus under test, in combination
with a state-of-the-art commercially-available fingerprint-
matching algorithm, gives rise to subject-dependent false
nonmatch rates if single enrollment and verification mea-
surements are used. This result was observed for a capacitive
as well as an optical sensor. From the distribution of false
nonmatch rates across subjects, it seems that for a threshold
setting resulting in an average false nonmatch rate of 0.02, a
vast majority of 90% of the population has a probability for
a false nonmatch that is smaller than the population average.
The average false nonmatch rate seems to be dominated
by a small group of subjects that are associated with a
disproportionately large number of false nonmatches. When
adjusting comparison thresholds as a function of sensor type
and finger to result in an average FNMR of 0.02 across the
population, at least 5% of all subjects experienced an FNMR
of 0.136.

In an attempt to predict which images were associated
with high false nonmatch rates, fingerprint image quality, the
number of detected minutiae, and the genuine comparison
scores were compared. Only a weak correlation (Pearson cor-
relation around 0.4) was observed between image quality and
comparison score, and no significant correlation was found
between the number of minutiae and comparison score. This
indicates that for the system and corpus under test, these
measures cannot reliably indicate images associated with
high false nonmatch rates.

The consistency in the false nonmatch probability for
certain subjects was expressed as conditional false nonmatch
rate. It was observed that for the system under test, the condi-
tional probability of a false nonmatch given 2 earlier attempts
amounts to approximately 0.75. Hence, for the system and
fingerprint database under test, the number of verification
attempts is best limited to two, and an alternative biometric
modality or authentication method should be provided in
case a subject experiences two subsequent false nonmatches.
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1. Introduction

A smart card is a credit-card-sized plastic card with an
embedded chip that can be memory or may include a
microprocessor [1]. A microprocessor chip in a smart card
can add, delete, or manipulate information in its memory
and hence offer complex data security functionalities. These
smart cards have been used in many applications such as
health cards, e-passport, and e-ID cards for more than
10 years [2–4]. In this paper, we describe an example
where a smart card is applied in the healthcare information
system. One of the most popular smart card solutions is
Gemalto Cryptoflex JavaCard [5], equipped with a 16-bit
microcontroller (Infineon SLE66CX322P, compatible with
standard SAB 8051 processor) and an additional crypto
processor for RSA and DES computations. The card has
ROM, EEPROM, and RAM. A Java Applet implements the
Chip Authentication Program.

The usual way of obtaining relevant patient data is
connecting to the hospital database. However, we may expe-
rience the situation where no network connection facility
(e.g., ambulance) is available. Also, hospitals cannot open
the patient data stored in the hospital database via Internet
because of the security/privacy of the patient and/or different
network environments. These problems can be solved by
using portable storage devices such as smart cards. That is,
a doctor may take patient information from the smart card
at the time of consultation.

Because of the advantage of the smart card, using the
smart card in healthcare becomes popular in such countries
as France, Germany, and Taiwan. Also, several solutions are
already implemented [5–10]. For example, Taiwan was the
first country introducing the nationwide smart card-based
healthcare information system in 2003. Over 22 million
patient health cards have been issued, as well as over 345 000
health professional cards giving the doctor access to medical



2 EURASIP Journal on Advances in Signal Processing

information. In EU, several projects about smart card-
based healthcare service have been performed such as Sesam
Vitale in France, DENTcard in Germany [7], Transcards [8],
NETLINK [9], and NETC@RDS project [10].

Deployed as of 1998, SESAM-Vitale currently links more
than 223 000 healthcare professionals with the Health Insur-
ance System, for the benefit of millions of insured persons
who have the Vitale card. The NETC@RDS initiative is
devoted to establish new improved healthcare administration
services for mobile citizens across EU. The actual phase
aims at deploying e-health services via the European Health
Insurance Card through a wide trans-European network
simplifying healthcare access procedures. NETC@RDS suc-
cessfully tested the electronic version of the European Health
Insurance Card (EHIC) during its first and second Market
Validation phases in 85 pilot sites of the 10 EU member states.
The Initial Deployment phase of the project—launched on
June 1, 2007—will deploy operational services in all targeted
sites, to total of 305 service sites serving 566 service points
across the 15 participating countries.

NETLINK is a project of the fourth framework pro-
gramme on research and development of European com-
mission HC 4016. Countries involved in the NETLINK
consortium (France, Germany, Italy, and the Province of
Québec) have set up or are in the process of setting up
new nationwide information systems in the healthcare sector
based on the use of modern technologies: smart cards (used
by health professionals and patients), computers (used by
health professionals, hospitals, health Insurance funds), large
networks, trusted third parties (for security purpose).

In the security and the privacy terms, several issues
should be considered in developing the smart card-based
healthcare information system; the ways to certify differ-
ent devices (card, card reader, terminal), the methods to
authenticate users (health professionals and patients), and
the amount of information about a patient to be stored in
the smart card, for example, patient personal information
and emergency contact information. There are many other
issues to consider and the details of other issues can be
found in [11, 12]. In this paper, we consider the methods
to authenticate the cardholder, especially patients in a large-
scale hospital database.

In general, the visible information on the health card
may contain the cardholder’s name, identification number,
birth date, photo, and the card serial number. The contents
inside the card can be divided into four segments: basic
data, health insurance data, medical data, and public health
administration data [13, 14]. The basic data segment stores
the identification information for both the cardholder and
the card itself. The contact person information in case of
emergency and the cryptographic key for security can also
be stored. The health insurance data segment is comprised
of the cardholder’s insurance information and service data
for insurance claims. The medical data segment contains the
information for important physician orders, prescriptions,
and drug allergies. With the advance in the smart card
technology, more medical information can be stored in the
card. Finally, the public health administration data segment
is used for recording personal data pertaining to public

health such as vaccination records and organ donation
notes. Additionally, a separate smart card can be used as an
identification card for a medical staff.

As more information is stored in the smart card, it
becomes important to protect the information it contains.
However, the current card holder verification method in the
healthcare services is based on the password/PIN such as
SESAME-VITALE. Most of people set their passwords/PINs
based on words or numbers that they can easily remember.
Thus, the passwords are easy to crack by guessing or a
simple brute force dictionary attack. Although it is possible
and even advisable to keep different passwords for different
applications, most of people use the same password across
different applications. If a single password is compromised,
it may open many doors. “Long and random” passwords
are more secure but harder to remember, which prompts
some users to write them down in accessible locations. Such
passwords also result in more system help desk calls for being
forgotten or expired. Cryptographic techniques such as PKI
[15, 16] can provide very long passwords that need not to be
remembered but are in turn protected by simple passwords,
thus defeating their original purpose.

In recent years, there is an increasing trend of using bio-
metrics, which refers to the personal biological or behavioral
characteristics used for verification or identification [17, 18].
It relies on “something that you are,” and can inherently
differentiate between a verified person and a fraudulent
imposter. The problem of resolving the identity of a person
can be categorized into two distinct types, verification
and identification. Verification matches a person’s claimed
identity to his/her previously enrolled pattern (i.e., “one-
to-one” comparison). However, identification identifies a
person from the entire enrolled population by searching
a database for match (i.e., “one-to-many” comparison). In
this paper, we focus on fingerprint because it is relatively
mature and its scanning unit is cheaper than other biometrics
such as iris [18]. Also, we will focus on verification only
because we assume each patient or medical staff holds
his/her smart card. (Note that, however, fingerprints can
also be applied to healthcare services without the smart
card.)

Since fingerprints cannot be lost or forgotten like
passwords, fingerprints have the potential to offer higher
security and more convenience for user authentication [18].
For example, fingerprints are significantly more difficult to
copy, share, and distribute than passwords. That is, the
main advantage of a fingerprint recognition solution is the
convenience while maintaining sufficiently high security. In
general, security with large data is regarded as higher than
that with small data although this does depend greatly on
the way it is implemented. Fingerprint data size is typically
70 KB for images and 500 B for features, much larger than
that of the password with 10B. Furthermore, large fingerprint
data need not to be memorized. Especially in healthcare
services, fingerprints have additional advantage over the
password. The emergency data set such as his/her blood type
and contact person information can be accessed from the
smart card by using his/her finger in the emergency medical
situation when the patient is unconscious.
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However, fingerprint-based recognition has some dis-
advantages as well [19, 20]. A compromised password can
be canceled and a new password can be issued as often as
desired, whereas people have only 10 fingers. If a fingerprint
is compromised repeatedly, it cannot be replaced eventually
[18]. Finally, in principle, a fingerprint template stolen from
one application may be used in another application. These
issues are especially important in pervasive computing where
the fingerprint data must be carefully protected because
of privacy concerns. Also, we need more computation
to authenticate users with the fingerprint data than the
password.

In large-scale healthcare services, the computational
overhead caused by the deployment of the fingerprint as
well as the protection of the fingerprint data should be
considered. However, only limited research has been carried
out in this direction [21, 22]. In this paper, we consider
the possible scenarios to integrate fingerprints into smart
cards and evaluate each scenario in terms of security,
privacy, and computational overhead (i.e., cost of the smart
card). Also, for the cheapest scenario (i.e., the fingerprint
data is transmitted to a remote server for verification),
the collective performance of fingerprint verification and
the authentication protocol on the client-server model is
analyzed.

The rest of the paper is structured as follows. Section 2
explains the overview of typical fingerprint verification and
three strategies for integrating fingerprints into the smart
card. Sections 3 and 4 describe the fingerprint verification
scenarios for the fingerprint smart card and the client-server
environments, respectively. The results of the performance
evaluation are described in Section 5, and the conclusions are
given in Section 6.

2. Background

2.1. Biometric-Based User Authentication for Healthcare. The
healthcare industry is confronted with solving the legal
requirement to protect medical information of patients.
Medical information is available in the computer network,
thus could be used illegally. Laws call for the protection of
patient privacy and also for standardization of medical data.
Biometrics are expected to be chosen as possible means for
user authentication for healthcare, since biometrics provide
a secure method for patient identification and extracting
personal data for treatment. In a large hospital, there may
occur the following three types of healthcare services that are
related to biometric information.

Access to Personal Medical Information. The largest part of
biometric usage in healthcare industry may be enhancing
individuals’ access to their personal information. It seems
likely that patients will demand access to their information,
while demanding that such information be kept secure.
Medical information may be stored on smart cards or on
networks; in either case, the biometric is a gateway to
personal information.

Emergency Patient Identification. In emergency medical sit-
uations, correct and immediate patient authentication is
critical. For individuals without identification and unable
to communicate, biometric information provides a unique
form of authentication. Developing this type of biometric
identification system includes enrolling a sufficient number
of users to achieve critical mass and the availability of
biometric devices in emergency situations and locations. In
this paper, we assume each patient holds his/her smart card
and the emergency dataset such as his/her blood type and
contact person information can be accessed from the smart
card by using his/her finger in emergency medical situations.

2.2. Fingerprint Verification. The fingerprint is chosen for
verification and for identification in this paper. It is more
mature in terms of the algorithm availability and feasibility.
Fingerprint verification and identification algorithms can
be classified into two categories: image-based and minutiae-
based [17, 18].

A minutiae-based fingerprint verification system has two
phases: enrollment and verification. In the off-line enrollment
phase, an enrolling fingerprint image for each user is
processed, and the features called minutiae are extracted
and stored in a server. In the online verification phase, the
minutiae extracted from an input image is compared to the
stored template, and the result of the comparison is returned.

In general, there are six logical modules involved in the
fingerprint verification system [18]: Fingerprint Acquisition
module, Feature Extraction module, Matching module, Storage
module, Decision module, and Transmission module.

The Fingerprint Acquisition module contains an input
device or a sensor that captures the fingerprint information
from the user. It first refines the fingerprint image against
the image distortion obtained from the fingerprint sensor. A
typical process consists of three stages. The binary conversion
stage applies a lowpass filter to smooth the high frequency
regions of the image and threshold to each subsegment
of the image. The thinning operation generates a one-
pixel-width skeleton image by considering each pixel with
its neighbors. In the positioning operation, the skeleton
obtained is transformed and/or is rotated such that valid
minutiae information can be extracted.

The Feature Extraction module refers to the extraction of
features in the fingerprint image. After this step, some of the
minutiae are detected and stored into a pattern file, which
includes the position, the orientation, and the type (ridge
ending or bifurcation) of the minutiae.

Based on the minutiae, the input fingerprint is compared
with the enrolled fingerprint retrieved from the Storage
module. Actually, the Matching module is composed of the
alignment operation and the matching operation. In order
to match two fingerprints captured with unknown direction
and position, the differences of direction and position
between two fingerprints are detected, and the alignment
between them needs to be accomplished. Therefore, in this
alignment operation, transformations such as translation
and rotation between two fingerprints are estimated, and two
minutiae are aligned according to the estimated parameters.
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If the alignment is performed accurately, the following
matching operation can be regarded as a simple point pattern
matching. In the matching operation, two minutiae are
compared based on their position, orientation, and type.
Then, a matching score is computed. The Decision module
receives the score from the matching module and, using a
confidence value based on the security risks and the risk
policy, interprets the result of the score, thus reaching a
verification decision. The Transmission module provides the
system with the ability to exchange information between all
other modules.

2.3. Integrating Fingerprint into the Smart Card. Fingerprint
technologies have been proposed to strengthen the verifica-
tion mechanisms in general by matching a stored fingerprint
template to a live fingerprint features [17, 18]. In the case
of verification using a smart card, intuition suggests that the
match should be performed by the smart card. However,
this is not always possible because of the complexity of
the fingerprint information, and because of the limited
computational resources available to current smart cards.
In general, three strategies of fingerprint verification can be
identified as follows [23–26].

Store-on-Card. The fingerprint template is stored on a smart
card. It must be retrieved and transmitted to a card reader
that matches it to the live template acquired from the user by
the fingerprint sensor. Cheap memory cards with no or small
operating systems are generally sufficient for this purpose.

Match-on-Card. The fingerprint template is stored on a
smart card, which also performs the matching with the live
template. Therefore, a microprocessor on the smart card is
necessary. The smart card must contain an operating system
running a suitable match application. It is not possible to
steal information stored in the card since a successful match
enables the use of the certificates on the card without the
need of stored PINs or passwords. Even in the unlikely event
that a card is tampered with; only limited damage is caused
since only that specific user’s credentials are hacked. An
attack on multiple users means that the attacker must get
hold of all users’ cards. In this strategy, the templates are
never exposed to a nontamper proof environment and the
user carries his/her own templates.

System-on-Card. This is a combination of the two previous
strategies. The fingerprint template is stored on a smart
card, which also performs the matching with the live
template, and includes the fingerprint sensor to acquire,
select, and process the live template. This strategy is the
best in terms of the security as everything takes place on
the smart card. Embedding a fingerprint acquisition on a
smart card provides all the privacy and security solutions
but, unfortunately, it is expensive and presents more than
one realization problem.

The benefits derived from the Match-on-Card are valu-
able in themselves: using its own processing capabilities, the
smart card decides if the live template matches the stored

template closely enough to grant the access to its private
data. Nevertheless this scheme presents a danger: we have
no certainty that a fingerprint acquisition has been collected
through live-scan and there is the risk of an attacker’s sniffing
the fingerprint data and later using it to unlock the card in a
replay attack.

3. Fingerprint Verification Scenarios for
the Smart Card-Reader Model

First, simplifying the scenarios between the smart card and
the card reader considered, we assume that the symmetric
and/or asymmetric keys are distributed to the smart card and
the card reader when the system is installed and no further
key exchange is required.

We explained three strategies for integrating the finger-
prints into the smart card in the previous section. In this
section, we consider five different scenarios [20–26, 28, 29].
As shown in Figure 1, SCENARIO 1 and SCENARIO 2 are
Store-on-Card strategies because the smart card stores the
fingerprint template. Also, as shown in Figure 2, SCENARIO
3 and SCENARIO 4 are Match-on-Card strategies because
the matching module takes place on the smart card. Finally,
SCENARIO 5 is the System-on-Card strategy (Figure 3).
Within the Store-on-Card and the Match-on-Card scenarios,
we can differentiate those in which the fingerprint sensor is
built into the smart card (SCENARIO 2 and SCENARIO 4)
and those where it is in the card reader (SCENARIO 1 and
SCENARIO 3).

Store-on-Card: SCENARIO 1 and SCENARIO 2. In SCE-
NARIO 1, the fingerprint sensor is built into the card reader.
The user template is transferred from the card to the reader.
The reader takes the fingerprint image provided by its built-
in fingerprint sensor, performs the feature extraction, and
also matches the features to the template provided by the
card. The reader then informs the card whether verification
has been successful or not.

On the other hand, the fingerprint sensor in SCENARIO
2 is built into the card. The fingerprint image and the user
template are transferred from the card to the reader. The
reader performs feature extraction and matches the features
to the template. The reader then informs the card whether
verification has been successful or not.

Match-on-Card: SCENARIO 3 and SCENARIO 4. In SCE-
NARIO 3, the fingerprint sensor is built into the card
reader. The reader takes the image provided by the built-
in fingerprint sensor and performs feature extraction. The
extracted features are sent to the card, which then performs
the matching module and reaches the verification decision
module.

The fingerprint sensor in SCENARIO 4 is built into the
card. The fingerprint image is transferred from the card
to the reader. The reader performs the feature extraction
module only, and transfers the extracted features back to the
card. The card then performs the matching module.



EURASIP Journal on Advances in Signal Processing 5

Storage

EAES(template)‖
SigECC (SHA1(template))

EAES (yes/no)

Fingerprint
acquisition

Feature
extraction

Matching
& decision

Fingerprint
acquisition

Storage

EAES (raw data)‖
SigECC (SHA1(raw data))

EAES (template)‖
SigECC (SHA1(template))

EAES (yes/no)

Feature
extraction

Matching
& decision

Raw data

Features

Features

Card Reader Card Reader

Scenario 1 Scenario 2

Figure 1: Illustration of the integrating scenarios [23–26] for store-on-card and the corresponding X9.84 [27] implementations.
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System-on-Card: SCENARIO 5. SCENARIO 5 is System-on-
Card: that is, all fingerprint verification modules take place
on the card.

4. Fingerprint Verification Scenarios for
the Large-Scale Client-Server Model

As we explained in Section 1, we also consider the client-
server model for remote user authentication using finger-
print. Especially, we consider the healthcare information
system using the cheapest fingerprint-based smart cards,
that is, SCENARIO 1. In spite of guaranteeing higher
security level than SCENARIO 1, other scenarios may not
be right choices for large-scale applications such as national
healthcare services or large hospitals having millions of
patients due to the high implementation cost.

The client-server model for remote user authentication
using the SCENARIO 1-based fingerprint card must guar-
antee the security/privacy as well as the real-time execution
requirements. To satisfy those requirements, we first consider
possible scenarios for remote fingerprint verification in terms
of assigning the tasks of the fingerprint verification to
each entity (i.e., client and server). Then, we evaluate the
performance of each scenario.

Note that, to provide higher security level in the remote
healthcare service, we assume the three-way verification
method among the smart card fingerprint data, the live
fingerprint data and the fingerprint data stored in the central
DB. Also, we denote the three possible fingerprint verifica-
tion scenarios for the client-server model as SCENARIO 1 1,
SCENARIO 1 2, and SCENARIO 1 3, respectively.

Following assumptions are made to simplify the explana-
tion.

(1) Between the client and the server, the same master key
is shared when the system is installed.

(2) Entity authentication is completed using proper
methods such as trusted Certificate Authority (CA).

(3) The user authentication service is assumed to be
requested by the client at which the board control
investigator is working.

(4) The execution time to perform some cryptography
mechanisms to protect the fingerprint features stored
in the smart card and in the server’s database is not
considered because this research focuses only on the
protection of the fingerprint data transmitted.

In fact, these assumptions are reasonable, since the master
key sharing operation (described in Assumption 1) needs to
be executed only once, and the time for protecting the stored
fingerprint data (described in Assumption 4) is negligible.
For the purpose of explanation, we define first the following
notations:

N: a nonce generated randomly in the client and used
as a “challenge;”

Km: a master key shared by both the sensor and the
client;

f (N): a simple function to generate a “response” for
N;

Ks: a shared session key generated for each transmis-
sion;

C Fe: a fingerprint feature stored in the biometric
health card;

L Fe: a fingerprint feature extracted from the live
fingerprint image;

S Fe: a fingerprint feature stored in the DB;

L Fi: a live fingerprint image;

Mat CL: a matching result between C Fe and L Fe;

Mat CS: a matching result between C Fe and S Fe.

SCENARIO 1 1, Store-on-Card/the Server Does Everything.
In SCENARIO 1 1 as shown in Figure 4, the sensor attached
to the client captures a live fingerprint image, and the client
extracts some features from the image. Then, the client sends
L Fe and C Fe to the server after applying the encryption and
digital signature with the same key received from the server.

After verifying the signature for L Fe and C Fe and
decrypting these fingerprint features, the server performs
two comparisons with C Fe – S Fe and C Fe – L Fe. After
checking the two matching results, the server returns a final
result to the client. Note that this is a typical scenario of
assigning the fingerprint verification tasks to the client-server
model and requires five sets of communications for data
transmission. This scenario can improve the security level
of the fingerprint authentication system because the server
can be more secure than the client. A server should be
protected by the security experts, while a client maintained
by an individual user may be more vulnerable to several
attacks such as Trojan Horse [12–14]. On the other hand,
the computational workload of the server in this scenario
increases as the number of clients increases.

SCENARIO 1 2, Store-on-Card/Extraction by the Client and
Matching by the Server. Unlike SCENARIO 1 1, in SCE-
NARIO 1 2 as shown in Figure 5, the comparison with C Fe –
L Fe and C Fe – S Fe is executed in the client and the server,
respectively. In this scenario, the client sends only C Fe to
the server and calculates the matching score between Mat CS
received from the server and Mat CL resulted in the client.

SCENARIO 1 3, Store-on-Card/The Client Does Everything.
In SCENARIO 1 3 as shown in Figure 6, all the tasks except
fingerprint acquisition are executed in the client. After
encrypting the fingerprint features of the requested user
stored in the server’s database, the server only transmits it to
the client. Thus, this scenario can reduce the workload of the
server significantly by distributing the fingerprint authenti-
cation tasks into the clients. However, the security level of the
fingerprint authentication system can be degraded because
the client, which is more vulnerable to several attacks than
the server, executes most of the tasks and the system depends
on the security of keys stored in the client.
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Figure 4: Illustration of SCENARIO 1 1.
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Figure 5: Illustration of SCENARIO 1 2.

Table 1: Number of instructions required for fingerprint verifica-
tion [25].

Number of Instructions

Feature Extraction 451 739 250

Feature Matching 21 164 578

Table 2: Number of instructions and estimated time for fingerprint
verification.

Step Estimated time on
ARM7TDMI

Estimated time on
8051

Feature Extraction 7.5 seconds 195 seconds

Feature Matching 0.3 seconds 7.8 seconds

5. Performance Evaluation

5.1. Evaluation of Fingerprint Verification and the Cryp-
tographic Modules. A fingerprint-based smart card system
for user verification must guarantee the user’s privacy and
provide sufficient authentication for access to patient data as
well as the real-time execution requirements. To satisfy the
requirements, we first evaluate the logical modules involved

in the fingerprint verification system and the cryptographic
modules for guaranteeing the integrity and confidentiality of
the sensitive fingerprint data transmitted between the smart
card and the card reader (see Section 3).

For secure transmission of the fingerprint data, we
consider ANSI X.9.84, which is the security standard for
fingerprint systems. The ANSI X.9.84 Fingerprint Informa-
tion Management and Security standard [22] covers the
requirements for managing and securing biometric data
(fingerprint, iris, voiceprint, etc.) for customer identification
and employee verification, mainly in the financial industry.
In addition, this standard identifies the digital signature
and encryption to provide both integrity and privacy of
the fingerprint data. Specifically, 128-bit Advanced Encryp-
tion Standard (AES) and Elliptic Curve Digital Signature
Algorithm (EDCSA) [8, 9] are considered as our symmet-
ric encryption algorithm and digital signature and hash
algorithm, respectively (see Figures 1–3). ECDSA is the
elliptic curve analogue of the Digital Signature Algorithm
(DSA). It is the most widely standardized elliptic curve-based
signature scheme, appearing in ANSI X9.62, FIPS 186-2,
IEEE 1363-2000, and the ISO/IEC 15946-2 standards as well
as several draft standards. Because the most time consuming
operations of ECDSA are ECC and the hash operation, we
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Table 3: Number of Instructions and Cycles Required for AES.

AES (128-bit)

Encryption Decryption

No. of instructions No. of cycles No. of instructions No. of cycles

ARM7TDMI
140 KB 292 889 168 485 763 071 406 011 432 690 034 743

1 KB 2 131 620 3 535 199 2 952 268 5 017 575

confine our evaluation to them. Here, SHA1 is used as the
hash algorithm.

Table 1 shows the number of instructions of each task
in fingerprint verification measured on an instruction sim-
ulator, SimpleScalar [30]. Based on Table 1, we can compute
the estimated execution time of each task on each processor.
Finally, the time to acquire a fingerprint image through the
fingerprint sensor is assumed to be about 1 second. Note
that the feature extraction module requires a lot of integer
operations for image processing, and the computational
workload of this module occupies 96% of the total workload
of fingerprint verification.

In order to show the performance requirement of the in-
card processor, the number of instructions and the estimated
execution time on the 8-bit Intel-8051 and 32-bit ARM7-
based smart cards are summarized in Table 2. According to
Table 2, it is impossible to assign the feature extraction or the
matching step as well as the preprocessing to the 8051 chip.
This is because the computation using the fingerprint data
requires a large amount of memory and time. Thus, we adopt
ARM7 to realize the Match-on-Card [25], which shows an
improved result. Actually, the 32-bit smart card is somewhat
expensive to be applied for the ordinary system. Nevertheless,
it can be a good solution for the system that should guarantee
very high level of security such as in E-Health, E-Business,
and E-Government.

Because of the limited processing power of the in-card
processor, all of the three steps above cannot be assigned to
the in-card processor. Instead, we consider assigning only
the third step, matching, to the in-card processor. This is
because the first two steps involve rigid image processing
computation, which is too exhaustive to be executed in the
in-card processor. These computation steps can be easily
carried out in real-time by a fingerprint capture device or

a card reader equipped with at least a 500 MIPS processor.
Therefore, all of the computational steps can be performed in
real-time, and the smart card can encapsulate the fingerprint
data and perform the comparison securely inside the card.

Also, Table 3 and 4 show the number of instructions
of the cryptography modules measured on the simula-
tor ARMulator [31]. The cryptographic modules need to
guarantee the privacy of the fingerprint data transmitted
between the smart card and the card reader. The sizes
of the fingerprint image and the features are 140 KB and
about 1 KB, respectively. As shown in Table 3, the time to
require to encrypt and decrypt the fingerprint image using
the AES algorithm are about 9.7 seconds and 13.8 seconds
in the ARM7TDMI core, respectively. By comparison, the
features require only 0.06 second (encryption) and 0.1
second (decryption). Also, as shown in Table 4, SHA1, and
ECC for the digital signature can be executed in real-time
for the fingerprint image and the features. If a core of the
smart card is the 8051 chip, it is impossible to execute
the AES algorithm for the fingerprint image in real-time.
Furthermore, the digital signature cannot be executed in
real-time because the time to require for the ECC algorithm
is about 8 seconds.

Finally, the following configuration is assumed to eval-
uate the performance of each scenario of the client-server
model (see Section 4). First, the client and the server have
Pentium 4 (2 GHz) processor and Xeon (3 GHz) processor,
respectively. The transmission speed of the Internet is
assumed to be 10 Mbps. 128-bit AES, 1024-bit ECC, and
SHA1 [15, 16] are used as symmetric encryption algorithm,
digital signature algorithm, and hash algorithm, respectively,
in order to guarantee both the integrity and the confiden-
tiality of the transmitted information. Also, we examined
each scenario on the fingerprint images captured with an
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Table 4: Number of instructions and cycles required for the digital signature.

SHA1 ECC (1024-bit)

No. of instruction No. of cycle No. of instruction No. of cycle

ARM7TDMI
140 KB 3 091 169 4 709 469 12 528 848 20 327 978

1 KB 26 990 42 165 12 528 848 20 327 978

Table 5: Evaluation data of cryptography algorithms (Byte, milisecond).

Generate signature Verify signature Size of signature AES encrypt AES decrypt

Pentium 4
1 KB 6.359 33.656 48 3.0 4.0

140 KB 74.703 98.922 47 234.0 328.0

Xeon
1 KB 3.656 19.797 48 1.0 2.0

140 KB 42.844 59.046 47 125.0 218.0

optical scanner manufactured by NitGen [32]. The size of
the fingerprint image and the fingerprint feature is about
140 KByte and 1 KByte, respectively. Finally, the disk access
time of the fingerprint data stored in the server is assumed to
be 50 miliseconds.

Table 5 shows the measured execution time of several
cryptography algorithms used in our evaluation. These data
are measured by arithmetic mean of 1 000 executions on each
platform.

5.2. Performance Evaluation Results for the Smart Card-
Reader Model. As explained earlier, in the case of the smart
card with the 8051 chip, secure transmission of both the
fingerprint image and the features for all scenarios cannot
be guaranteed because ECDSA, especially the ECC and the
SHA1 algorithms, cannot be executed in real time.

When the smart card employs the ARM7TDMI core [29],
the performance of each of five scenarios is evaluated as
follows.

In SCENARIO 1, the cryptographic processes for guar-
anteeing the integrity and confidentiality of the sensitive
fingerprint data transmitted between the smart card and
the card reader can be executed in real-time because only
the template stored in the smart card is transferred. It is,
however, the Store-on-Card strategy that all the fingerprint
verification modules except the storage module are executed
in the card reader. Therefore, the fingerprint template stored
in the smart card needs to be insecurely released into an
external card reader in order to be compared with an input
fingerprint.

SCENARIO 2 has the lowest security level because it is
also the Store-on-Card strategies that the smart card only
stores the fingerprint template. Furthermore, in SCENARIO
2, secure transmission of the fingerprint image captured
by the fingerprint sensor within the smart card cannot be
guaranteed since the fingerprint sensor is built into the smart
card. In this case, ECDSA, especially the ECC and the SHA1
algorithms, cannot be executed in real-time.

On the other hand, SCENARIO 3 is the most proper
one to integrate fingerprint verification with the smart card
because it guarantees higher security level than with the
Store-on-Card. It also executes the cryptographic modules

for secure transmission in real time because of transferring
only the fingerprint features extracted in the card reader.

SCENARIO 4, like SCENARIO 2 cannot guarantee the
security and real-time transmission of the fingerprint image
captured by the fingerprint sensor within the smart card.

SCENARIO 5 is the System-on-Card that all the fin-
gerprint verification modules take place on the card. This
scenario is the best in terms of security as everything takes
place on the smart card. As explained in Section 2.3, it is
expensive and presents more than one realization problem.
Even if the smart card employs the ARM7TDMI core,
SCENARIO 5 cannot be executed in real-time because the
feature extraction module of fingerprint verification is time
consuming as shown in Table 2.

5.3. Performance Evaluation Results for the Client-Server
Model. For each of the fingerprint authentication scenarios
described in the previous section, we assume that the
response time must be less than 5 seconds for real-time
execution. As we expect, the server processes most of
the time-consuming tasks in SCENARIO 1 1, whereas the
clients have the heavy workload in SCENARIO 1 2. The
extreme case is SCENARIO 1 3 where the clients do almost
everything. However, the security of SCENARIO 1 3 is
weaker.

In this section, we will evaluate the three scenarios in
terms of the response time versus workloads imposed on
the server. In other words, we will investigate the maximum
workload that the server can handle with less than 5 seconds
response time, or system time in queueing theory of each
scenario. We adopt M/D/1 queueing results assuming that
the clients request services to the server in random fashion,
but the server processes the jobs in deterministic fashion.

In an M/D/1 system, the response time is given by

w = 1
μ

+
λ

2μ
(
μ− λ) , (1)

where W is the response time (or the system time), μ is the
service rate, and λ is the arrival rate. Here, λ is the job request
rate to the server by the clients, and λ is assumed to increase
as the number of clients increases.
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In SCENARIO 1 1, fingerprint acquiring (1 000 mil-
liseconds) is done by the sensor, whereas feature extraction
(225 milliseconds), generation of signature for feature
(6.359 milliseconds), and encryption (3.0 milliseconds)
tasks are done by the client. Additionally, we consider the
communication setup time for sending and receiving data
from the server as st and the data transmission time to be
1.6 milliseconds: that is, 2 × 0.8 milliseconds or 2 times of
1 KB by 10 Mbps Internet transmission. Thus, the total sums
to 1 235.959 + 5 st milliseconds. We take values for st of 1,
5, or 50 millisecond(s) depending on the communication
environments. On the server side, decryption for live feature
(2.0 milliseconds), decryption for smart card feature (2.0
milliseconds), verifying the signs for live feature and smart
card feature (2 × 19.797 milliseconds), matching twice (2
× 6.5 milliseconds), and data transmission time of 1.6
milliseconds and the communication setup time (5 st) sum
to 58.194 + 5 st, which equal the service time (1/μ). Thus, we
may build the response time (W) in the M/D/1 system as

w = 1235.959 + 5 st +
1
μ

+
λ

2μ
(
μ− λ) < 5000. (2)

If we take st be 1 millisecond in (2), we have λ being less
than 0.01569 in order to meet the total response time being
less than 5 seconds. Here, the workload can be interpreted as
the number of job requests by the clients to the server in unit
time (millisecond).

A similar approach can be applied to SCENARIO 1 2:
fingerprint acquiring (1000 milliseconds) is done by the
sensor, whereas live feature extraction (225 milliseconds),
decryption for smart card feature (4.0 milliseconds), veri-
fying sign for smart card feature (33.656 milliseconds), and
matching smart card versus live feature (10 milliseconds)
tasks are done by the client. Additionally, we consider the
communication setup time for sending and receiving data
from the server as st and the data transmission time (0.8
millisecond, 1 time of 1 KB by 10 Mbps Internet transmis-
sion). Thus, the total sums to 1 273.456 + 4 st milliseconds.
We take values for st of 1, 5, or 50 millisecond(s) depending
on the communication environments. On the server side,
decryption for smart card feature (2.0 milliseconds), verify
the sign for smart card feature (19.797 milliseconds),
matching once (6.5 milliseconds) and data transmission
time of 0.8 millisecond, and the communication setup time
(4 st) sum to 29.097 + 4 st, which plays the service time (1/μ).
Thus, we may build the response time (W) in the M/D/1
system as

w = 1273.456 + 4st +
1
μ

+
λ

2μ
(
μ− λ) < 5000. (3)

If we take st to be 1 millisecond in (3), μ must be less
than 0.03008 in order to meet the total response time being
less than 5 seconds.

In SCENARIO 1 3, the server is doing practically nothing
except encrypting the stored template and sending the
encrypted data to the clients. Fingerprint acquiring (1000
milliseconds) is done by the sensor, whereas decryption for
DB feature (4.0 milliseconds), verifying signature for DB

Table 6: Summary of performance evaluation 1 (st = 1 ms).

SCENARIO 1 1 1 2 1 3

Maximum workload 0.01569 0.03008 0.15010

Relative workload 1 1.92 9.57

Table 7: Summary of performance evaluation 2 (st = 5 millisec-
onds).

SCENARIO 1 1 1 2 1 3

Maximum workload 0.01188 0.02023 0.06810

Relative workload 1 1.70 5.73

Table 8: Summary of performance evaluation 3 (st = 50 millisec-
onds).

SCENARIO 1 1 1 2 1 3

Maximum workload 0.00310 0.00422 0.00942

Relative workload 1 1.36 3.04

feature (33.656 milliseconds), decryption for smart card
feature (4.0 milliseconds), verifying sign for smart card
feature (33.656 milliseconds), live feature extraction (225
milliseconds) and 2 times of matching (2 × 10 milliseconds)
tasks are done by the client. Additionally, we consider
the communication setup time for sending and receiving
signals from the server as st. Thus, the total sums to
1 320.312 + 2 st milliseconds. We take values for st of 1,
5, or 50 millisecond(s) depending on the communication
environments. On the server side, encryption for DB feature
(1.0 millisecond), generating signature for DB feature (3.656
millisecond(s)), and the communication setup time (2 st)
sum to 4.656 + 2 st, which plays the service time (1/μ). Thus,
we may build the response time (W) in the M/D/1 system as

w = 1320.312 + 2 st +
1
μ

+
λ

2μ
(
μ− λ) < 5000. (4)

Fixing st be 1 millisecond in (4), we have λ being less
than 0.1501 in order to meet the total response time being
less than 5 seconds.

Summarizing the results obtained in this section is
depicted in Tables 6–8. As we see in Table 6, the server can
handle the lowest level of workload with SCENARIO 1 1,
whereas the server can handle 9.57 times heavier workload
with SCENARIO 1 3. In most reasonable case of SCENARIO
1 2, the server can handle 1.92 times heavier workload
compared to the case of SCENARIO 1 1.

Another interesting result comes when we vary the
communication setup time from 1 ms to 5 ms and 50 ms,
as shown in Tables 7 and 8. As we notice in Tables 7
and 8, the workload that the server can handle within the
specified time constraint of 5 seconds changes dramatically
as the communication setup time increases. When the
communication setup time becomes 5 milliseconds, the
server can handle only 5.73 times heavier workload with
SCENARIO 1 3 compared to those with SCENARIO 1 1. It
becomes worse with the communication setup time being
50 milliseconds, where the server can handle only 3.04
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times heavier workload with SCENARIO 1 3 compared to
those with SCENARIO 1 1 even though almost everything is
performed in the clients with SCENARIO 1 3.

6. Conclusions

We focus on examining which strategies are most appro-
priate to guarantee the privacy as well as the real time
execution requirements for smart card with client-server
based fingerprint verification in healthcare information
systems. First, five scenarios with three different strategies
for integrating fingerprints into a smart card system were
examined. Then, three scenarios for implementing of the
fingerprint authentication service for large-scale applications
were examined with increasing numbers of clients.

Typical task assignment scenarios for fingerprint verifica-
tion were considered to protect the fingerprint information
transmitted and to guarantee both the integrity and the
confidentiality of the fingerprint data. The workload char-
acteristics of fingerprint verification and the authentication
protocol were obtained by measuring the performance of the
primitive operations on an ARM7TDMI-based smart card, a
Pentium4-based PC, and a Xeon-based server, respectively.
Based on these measured performance, the workload of
each scenario of the task assignment was computed and
was applied to the smart card reader model. Then, the
collective performance of each scenario was analyzed using
the workload computed for each scenario.

The analysis results showed that the scenario where the
match operation is performed on the smart card with the
fingerprint sensor being built into the card reader is the
most beneficial in the smart card-card reader model. For
large-scale applications, however, this scenario may not be
applicable due to the high implementation cost. In the
client-server model, the server could handle the lowest
level of workload when it does decryption, verification
and matching. By comparison, the server can handle 9.57
times heavier workload when the clients do decryption,
verification, and matching.

Acknowledgments

This research was supported by The Ministry of Knowledge
Economy (MKE), South Korea, under the Home Network
Research Center (HNRC) Information Technology Research
Center (ITRC) support program supervised by the National
IT Industry Promotion Agency (NIPA), (NIPA -2009-C1090-
0902-0035).

References

[1] H. Dreifus and T. Monk, Smart Cards, John Wiley & Sons, New
York, NY, USA, 1997.

[2] A. Alkhateeb, T. Takahashi, S. Mandil, and Y. Sekita, “The
changing role of health care IC card systems,” Computer
Methods & Programs in Biomedicine, vol. 60, no. 2, pp. 83–92,
1999.

[3] G. Kardas and E. T. Tunali, “Design and implementation of
a smart card based healthcare information system,” Computer

Methods & Programs in Biomedicine, vol. 81, no. 1, pp. 66–78,
2006.

[4] M. Marschollek and E. Demirbilek, “Providing longitudinal
health care information with the new German Health Card—a
pilot system to track patient pathways,” Computer Methods &
Programs in Biomedicine, vol. 81, no. 3, pp. 266–271, 2006.

[5] Gemalto, http://www.gemalto.com/.
[6] Health Smart Card, http://www.healthsmartcard.net/.
[7] C. Pagetti, et al., “A European health card,” Final Report, Euro-

pean Parliament, Directorate General for Research, Document
for STOA Panel, 2001.

[8] Transcards Project, http://www.sesamvitale.fr/programme/
programme eng.asp.

[9] Netlink Project, http://www.sesam-vitale.fr/netlink/netlk pres
.htm.

[10] Netcards, Trans-European Healthcare Facility Service for
Mobile Citizens, http://netcards-project.com/web/frontpage.

[11] G. Kardas and E. T. Tunali, “Design and implementation of
a smart card based healthcare information system,” Computer
Methods & Programs in Biomedicine, vol. 81, no. 1, pp. 66–78,
2006.

[12] O. Rienhoff, Integrated Circuit Health Data Cards (Smart
Cards): A Primer for Health Professionals, PAHO, Washington,
DC, USA, 2003.

[13] Health Insurance Portability and Accountability Act of 1996
(U.S.), Public Law no. 104-191, 110 Stat. 1936, HIPAA.

[14] B. Barber, “Patient data and security: an overview,” Interna-
tional Journal of Medical Informatics, vol. 49, no. 1, pp. 19–30,
1998.

[15] W. Stallings, Cryptography and Network Security: Principles
and Practice, Prentice-Hall, Upper Saddle River, NJ, USA,
2003.

[16] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic
Curve Cryptography, Springer, New York, NY, USA, 2003.

[17] S. Nanavati, M. Thieme, and R. Nanavati, Biometrics: Identity
Verification in a Networked World, John Wiley & Sons, New
York, NY, USA, 2002.

[18] D. Maltoni, D. Maio, A. Jain, and S. Prabhakar, Handbook of
Fingerprint Recognition, Springer, New York, NY, USA, 2003.

[19] R. M. Bolle, J. H. Connell, and N. K. Ratha, “Biometric perils
and patches,” Pattern Recognition, vol. 35, no. 12, pp. 2727–
2738, 2002.

[20] B. Schneier, “The uses and abuses of biometrics,” Communica-
tions of the ACM, vol. 42, no. 8, p. 136, 1999.

[21] S. Prabhakar, S. Pankanti, and A. K. Jain, “Biometric recog-
nition: security and privacy concerns,” IEEE Security and
Privacy, vol. 1, no. 2, pp. 33–42, 2003.

[22] S. de Lusignan, T. Chan, A. Theadom, and N. Dhoul,
“The roles of policy and professionalism in the protection
of processed clinical data: a literature review,” International
Journal of Medical Informatics, vol. 76, no. 4, pp. 261–268,
2007.

[23] Y. S. Moon, H. C. Ho, K. L. Ng, S. F. Wan, and S. T. Wong,
“Collaborative fingerprint authentication by smart card and
a trusted host,” in Proceedings of the Canadian Conference on
Electrical and Computer Engineering, vol. 1, pp. 108–112, 2000.

[24] L. Rila and C. Mitchell, “Security analysis of smartcard
to card reader communications for biometric cardholder
authentication,” in Proceedings of the 5th Smart Card Research
and Advanced Application Conference (CARDIS ’02), pp. 19–
28, 2002.

[25] D. Moon, et al., “Performance analysis of the Match-on-Card
system for the fingerprint verification,” in Proceedings of the



12 EURASIP Journal on Advances in Signal Processing

International Workshop on Information Security Applications,
pp. 449–459, 2001.

[26] Y. Chung, D. Moon, T. Kim, and J.-W. Park, “Workload
dispatch planning for real-time fingerprint authentication
on a sensor-client-server model,” in Proceedings of the 5th
International Conference on Parallel and Distributed Comput-
ing: Applications and Technologies (PDCAT ’04), vol. 3320 of
Lecture Notes in Computer Science, pp. 833–838, 2004.

[27] X.9.84, http://www.x9.org/home.
[28] A. D. Boyd, C. Hosner, D. A. Hunscher, B. D. Athey, D. J.

Clauw, and L. A. Green, “An ‘Honest Broker’ mechanism
to maintain privacy for patient care and academic medical
research,” International Journal of Medical Informatics, vol. 76,
no. 5-6, pp. 407–411, 2007.

[29] C. Quantin, O. Cohen, B. Riandey, and F.-A. Allaert, “Unique
Patient Concept: a key choice for European epidemiology,”
International Journal of Medical Informatics, vol. 76, no. 5-6,
pp. 419–426, 2007.

[30] D. Burger and T. Austin, “The simplescalar tool set, version
2.0,” Tech. Rep., University of Wisconsin, Madison, Wis, USA,
1997.

[31] ARM, http://www.arm.com/.
[32] Nitgen, http://www.nitgen.com/.



Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2009, Article ID 967046, 11 pages
doi:10.1155/2009/967046

Research Article

Development of a New Cryptographic Construct Using
Palmprint-Based Fuzzy Vault

Amioy Kumar1 and Ajay Kumar1, 2

1 Biometrics Research Laboratory, Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas,
New Delhi 110 016, India

2 Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Correspondence should be addressed to Ajay Kumar, ajaykr@ieee.org

Received 7 October 2008; Accepted 16 July 2009

Recommended by Stephanie Schuckers

The combination of cryptology and biometrics has emerged as promising component of information security. Despite the current
popularity of palmprint biometric, there has not been any attempt to investigate its usage for the fuzzy vault. This paper therefore
investigates the possible usage of palmprint in fuzzy vault to develop a user friendly and reliable crypto system. We suggest the
use of both symmetric and asymmetric approach for the encryption. The ciphertext of any document is generated by symmetric
cryptosystem; the symmetric key is then encrypted by asymmetric approach. Further, Reed and Solomon codes are used on the
generated asymmetric key to provide some error tolerance while decryption. The experimental results from the proposed approach
on the palmprint images suggest its possible usage in an automated palmprint-based key generation system.

Copyright © 2009 A. Kumar and A. Kumar. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Hacking of the information is widely considered as one
of the potential attacks on any secure system. Authen-
tication systems should be designed to withstand such
attacks when deployed for critical security applications such
as e-commerce and accesses to restricted data/buildings.
Biometric-based authentication is considered as one of the
most secured systems whenever high privacy is demanded.
However, such authentication systems itself follow stepwise
procedural algorithms, like feature extraction, matching,
classification, and so forth, for authentication/verification
purposes [1]. As biometric templates are required at each
step, it increases the possibilities of intrusion at every
step and requires additional security management [2].
For instance, even a most secure authentication system is
not reliable if it cannot defy the attacks on the stored
database, or if an intruder can intercept the template features
generated from the biometric traits. Recent research efforts
have developed some promising ideas to resist attacks on
biometric authentication system. One of such proposed
solutions is to cancel the tainted biometric features and

regenerate the new one for authentication purposes (also
known as cancelable biometric [3]). BioHashing technique
is frequently used to transform (noninvertible) biometric
template into some other representations using one-way
hash functions. This reissuance of the biometric templates
can withstand the attacks on stored templates and widely
accepted as a solution to the intrusion in extracted features.
The most acknowledgeable work in this area is to provide
cryptography-based security at different stages of biometric
authentication. Cryptography is one of the most effective
ways to enhance the security of the information system
via its encryption and decryption modules [4]. Even so,
the weakest link of cryptography-based security systems is
the associated secret key. While the simple memorized key
can be easily intercepted, a long and complex key needs
extra storage management like tokens, smart cards, and so
forth. Consequently, the smart card-based solutions came in
existence. To provide an aid to security, the cryptographic
keys are now stored somewhere (e.g., in a computer or
on a smart card) and released based on some alternative
authentication mechanism. The most popular mechanism
used for this purpose is password-based security [5], which
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is again a long string and difficult to make secure, as now the
whole security depends upon the password given, used for
authentication.

As a solution, a secure encryption key can be associated
with a biometric signature to ensure the integrity and
confidentiality of communication in distributed systems.
Many of the limitations of the password and PIN-based
encryption schemes can be alleviated by using biometric
features, which are unique and can be conveniently extracted
from every user. The biometric-based encryption requires
physical presence of persons to be authenticated and is
therefore reliable, convenient, and efficient. The encryption
keys can be generated using low-level combination of
biometric features and cryptology. Jules and Sudan [6] have
proposed the generation of a secure vault using an unordered
set, to lock any secret inside and referred it as fuzzy vault.
The concept of fuzzy vault has been further explored by
Uludag et al. [7], where they used fingerprint templates as
an unordered set to create the vault around the secret. They
further utilizes error correcting codes, such as Reed and
Solomon code to produce some error tolerance in the input
biometric templates, while decryption module.

However, the motivation to protect secret key involved
in cryptographic modules using biometric based fuzzy vault
can have several drawbacks due to different cryptographic
approaches. While the symmetric cryptographic approaches
suffered authentication problems, asymmetric approaches
are computationally intensive (as further discussed in
Section 3). We, therefore, proposed the combination of
both symmetric and asymmetric cryptographic approaches
(which is referred to as double encryption in this paper) into
the fuzzy vault to meet high-security standard and utilize the
advantages of both approaches in a common domain. In the
recent years, biometric features such as face, iris, fingerprint,
hand geometry, palmprint, and signature have been sug-
gested for the security in access control. Most of the current
research in biometrics has been focused on fingerprint and
face. The recent research on face recognition has shown
some thorny problems regarding pose, lighting, orientation,
and gesture which made it less reliable as compared to
other biometrics. Fingerprint identification has successfully
implemented and widely accepted in most of the cases
for recognition purposes. However, it also has difficulties
regarding feature extraction. The fingerprint features are very
difficult to extract from the elderly, laborer, and handicapped
users. As a result, other biometric characteristics are receiv-
ing increasing attention. Moreover, additional biometric
features, such as palmprint and hand geometry, can be easily
integrated with the existing authentication system to provide
enhanced level of confidence in personal authentication.
We explored the usage of palmprint biometric to create
fuzzy vault. The prior works in this area is summarized
in Section 2, while the detail of the earlier cryptographic
approaches is presented in Section 3. Double encryption
is explored in Section 4. The proposed system is discussed
in Section 5. The experimental results from the performed
approach are summarized in Section 6. This section also
includes a summary of related prior work. Finally, the main
conclusions from this paper are summarized in Section 7.

2. Prior Work

The issue of nonrevocable biometric has been investigated
by Ratha et al. [3] by introducing the concept of cancelable
biometrics. Davida et al. [8] proposed majority decoding
and error correcting codes-based technique to generate the
cancelable biometric features. The approach is further uti-
lized using optical computation techniques in [9] and using
keystroke dynamics in [10]. Sautar et al. [9] were the first to
commercialize the concept in to their product bioscrypt. They
applied Fourier transform and majority coding to reduce
the feature variation. A predefined random key is locked by
biometric sample using phase angle product, and this prod-
uct can be further unlocked by other genuine biometrics.
The performance analysis is however not reported. Connie
et al. [11] used the concept of BioHashing by calculating
fisherprojections. However, the results shown by them are
based on the assumption that the generated token or keys
will be never stolen or shared. This is quite unrealistic and
creates doubts about real evaluation. The study of such
unrealistic evaluation has been presented by Kong et al. in
[12]. One of the innovative works proposed in this area is
by [2], where the authors utilized random orientation field
into the feature extractor to generate cancelable competitive
codes. The authors further considered all the three attacks
possible (template reissuance, replay attacks, and database
attacks) to provide a complete secure system. To protect
the generated cancelable competitive codes (replay attacks)
[2], the idea of one-time pad (OTP) ciphers is explored.
The OTP [13] is a symmetric cipher (same key is used for
both encryption and decryption) generated by applying XOR
between the randomly generated key and the plaintext. The
decryption can be done using the matched OTP and the
key (used for encryption). The advantage with OTP is that
each encryption is independent to the next encryption, and
random key can be used only once for encryption. Hence,
theoretically there is no way to break such encryption just by
analyzing a sequence of message. Although OTP encryption
has advantages over other encryption algorithms, still it has
some open issues like (i) the key involved for decryption
should be identical to encryption once and hence required
safe communication of key to the decrypting party [13]; (ii)
the number of bits in the key is same as in the plaintext
which makes the algorithm computationally inefficient for
encrypting bulk data; (iii) one of the major requirements of
the algorithm is that not part or bit of the key should be
ever reused in any other encryption; otherwise it is easy to
break it [14]. ( Synchronized OTP generator can be employed
to counter such problems.) Authors in [15] proposed a new
cryptosystem by generating 1024 bits binary string, extracted
from the differential operations. The string is then mapped to
128 bits encryption key using a Hash function. The approach
is novel and secure in many respects but still has issues to
resist against attack on generated encrypting key using Hash
function, as raised by Kong et al. in [12].

In most of the works proposed in literature of cancelable
biometrics, security of system depends upon the generated
unique code from a particular one-way hash functions. Thus
the system is secure till the unique code is not compromised
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and hence requires extra security management. Juels and
Sudan [6] have presented a promising model which was
an improvement on the prior study by Juel and Wttenberg
in [16]. They have produced a significant improvement
by modifying the Scheme of Davida et al. (in using error
correcting code size) [8] by introducing Reed and Solomon
error correcting coding theory in their fuzzy vault. Their
contribution is to hide any secret in fuzzy vault using
polynomial construction under unordered set. The secret
can be retrieved back by polynomial reconstruction, if
certain points of the unordered set can be known at
receiving end. The security of the scheme mainly depends
upon polynomial construction and reconstruction problem.
Uludag et al. [7] have combined the concept of fuzzy vault
with biometrics (fingerprint) by using biometric template
as an unordered set. Uludag and Jain [17] proposed to use
minutiae-based features from the fingerprints for locking
and unlocking the vault. However, this approach is limited
to its usage due to its inability to eliminate the inherent
variability in minutiae feature. Nandakumar et al. [18]
have attempted to eliminate such variability using helper
data and illustrated promising results. Hao et al. [19]
use iris biometric for generating cryptographic keys and a
combination of Reed and Solomon and Hadamard error
correcting theories for error tolerance. Calancy et al. [20]
proposed a smart card-based fuzzy vault that employed
fingerprints for locking and unlocking. The presumption
that acquired fingerprint images are prealigned is not realistic
and could be the possible reason for high false rejection
rate (30.0%) reported in the paper. Lin and Lai [21] have
done remarkable work in order to prevent repudiation but
their work still required smart card and password for better
implementation and hence reduces its usability. Recently,
a modified fuzzy vault scheme is proposed in [19] using
asymmetric cryptosystem. Having generated RSA public and
private keys, authors have used Reed-Solomon coding to
convert the keys in to codes. Further they used two grids,
one for codes and the other for biometric features. The
elements in the corresponding grids are in same positions.
The unlocking of vault only requires the knowledge of
the correct positions of the numbers in any of the grids.
However, this approach utilizes the asymmetric cryptosystem
and has all the problems associated with such systems.
Moreover, the database used for the experimental evaluation
is too small (9 users) to generate any reliable conclusion on
the performance. In summary, a different range of biometrics
has been used for fuzzy vaults in literature. However, with
few notable exceptions, for example, [15, 19], with small
false rejection rates, the average FAR of 15% has been
cited.

In contrast to prior work in this area, we proposed [22]
fuzzy vault-based security to withstand the attacks on secret
key employing palmprint. The secret document/information
can be first encrypted using double encryption. The sym-
metric key approach can be easily employed to encrypt bulk
data. The attacks on security of symmetric key (secure com-
munication, authentication, as detailed in Sections 3.1.1 and
3.1.2 in this paper) are reduced by encrypting it again using
asymmetric cryptographic approach. Finally, the private key

of asymmetric approach (at the end of double encryption) is
protected by creating fuzzy vault around it. The approach is
to firstly employ double encryption to strengthen the security
system and reduce the shortcomings associated with both
symmetric and asymmetric cryptographic approaches and
finally to utilize the palmprint features to create fuzzy vault
around the key at the end of double encryption.

The main contributions of this paper can be summarized
as follows. Firstly, this paper investigates a new approach
for fuzzy vault using palmprint biometric. Secondly, unlike
prior work in literature, this paper proposes a combined
cryptosystem which successfully exhibits the advantage of
both symmetric and asymmetric cryptography. It may be
noted that the asymmetric approach (RSA, named as initials
of Ron Rivest, Adi Shamir, and Leonard Adleman) for
encryption has been estimated to be very slow as compared to
traditional symmetric approach (Data Encryption Standard,
abbreviated as DES) [4]. Therefore the proposed approach
is to use symmetric cryptography to encrypt the entire
document and then we encrypted symmetric key using
asymmetric (RSA) approach. The palmprint-based fuzzy
vault is then constructed around decryption key. Finally,
we investigate the performance of the palmprint-based
cryptosystem on a large dataset and achieve promising
results.

3. Cryptographic Approaches

The objective of this work is to incorporate both symmetric
and asymmetric cryptographic approaches into the fuzzy
vault in order to ensure higher security and utilize the
advantages of both systems in a common domain. This
is referred to as double encryption. The approach is to
use symmetric key approach (DES) for encrypting the
secret document, and the generated symmetric key is again
encrypted by asymmetric approach (RSA). In the next
subsections, both symmetric and asymmetric approaches are
briefly introduced, and then the proposed approach utilizing
the combination of both approaches is discussed.

3.1. The Symmetric Cryptosystem. The symmetric approach
is most commonly used cryptosystem, as the system is
easy to implement and more importantly it has very fast
encryption speed [4]. Symmetric algorithms, such as, DES,
Triple DES, and Rijndael [4], provide efficient and powerful
cryptographic solutions, especially for encrypting bulk data.
Let X = [x1, x2, x3, . . . , xm] be the secret message required
to be hidden by source A (Lucie). The m letters of message
are alphabets. The message is intended to B (Bryan). Lucie
generates its symmetric key, say KSim, and uses this key to
lock secret message X:

Y = KSim(X). (1)

She then sends the encrypted (locked) message and the
respective symmetric key (KSim) to B (Bryan). Receiver B
(Bryan) used the symmetric key to decrypt the message:

X = Ksim(Y). (2)
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In the presented work we have used advance encryption
standard (AES) as a symmetric cryptosystem, which is
advanced version of data encryption standard (DES). The
AES is symmetric key-based cryptosystem which is based
on the principle of block and substitution cipher. The AES
algorithm uses substitution boxes, polynomial matrices, and
symmetric key to convert a plain text to cipher text. These
are the parameter for AES cryptosystem and required to be
generated first before the encryption module [4]. Although
symmetric key algorithm is very fast and efficient in bulk
data encryption, it can sometimes fail to ensure high-security
requirements. There are few shortcomings with the usage of
symmetric key cryptography. We now detail the problems
associated with symmetric key algorithms.

3.1.1. The Problems behind Authentication. Ensuring the
integrity of received data and verifying the identity of the
source of that data is of major concern to ensure the security
in data communication. A symmetric key can be used to
check the identity of the individual, as it requires the presence
of symmetric key, but this authentication scheme can have
some problems involving trust. The problem is that this
scheme cannot discriminate between the two individuals
who know the shared key. For example, any person having
control on Lucie’s private particulars can make any fraud
message to her pals by pretending himself as Lucie. This
not only allows intruder to do any unauthorized work in
place of Lucie but also creates problems for other related
persons. This uncertainty with symmetric approaches made
them useless whenever high confidentiality required in the
communication system. The above discussed issues can lead
to the position where there is no stand to deny if the disputes
were to arise. The relevant example is of repudiation when
Lucie’s friend renews the contract signed by Lucie without
telling her and repudiates from the fact by claiming that
someone else might have stolen the key from Lucie to sign
the contract. This concludes the key point that the com-
munication system must present nonrepudiation between
communicating parties. The major weakness with symmetric
approach is that they sometimes fail to authenticate persons
in communication.

3.1.2. The Problems behind Security of Key. The other
problem associated with this system is to ensure the security
of the involved symmetric key and how to exchange it safely.
The security of a signed document depends upon the secret
key involved as only secret key can ensure the decryption
of this document. Thus for a secure communication system
the secret key should be exchanged safely. One of the
shortcomings of the cryptographic approaches is that they do
not emphasize on key exchange problems. The asymmetric
approaches such as RSA, DSA, and ECC are very good
substitution of symmetric approach as it eliminates many of
its shortcomings. Both of the above discussed problems can
be alleviate by using asymmetric approach.

3.2. The Asymmetric Cryptosystem. The conventional sym-
metric cryptosystem is similar to a lockbox with a combi-
nation lock. This combination lock opens and closes with

one and the single combination, that is, the key that can
be used for both opening and closing the box. However,
the asymmetric approach uses a single lock that has two
distinct combinations, one for opening and one for losing.
This approach allows effective control over who can place
or remove the contents in lockbox by assigning one of the
combinations as the secret and the other one as public. This
added flexibility offers two distinct advantages: confidential-
ity without prior key exchange and the enforcement of data
integrity. Now for this approach, B generates a related pair
of keys: a public key Kpub and a private key Kpri. The Kpri

is known only to B, whereas Kpub is publicly available to
everyone and therefore accessible byA also. With the message
X and the encryption key Kpub as input, A forms the cipher
text, denoted as Y , as follows:

Y= Kpub(X),

Y = [y1, y2, y3, . . . , ym
]
.

(3)

The intended receiver in the position to matching is able to
invert above using the following transformation:

X = Kpri(Y). (4)

In this work, we have used RSA cryptosystem which is the
most commonly used asymmetric approach. A traditional
RSA algorithm [23] requires two randomly generated prime
numbers [24]. For the security of RSA algorithm, the prime
numbers should be bigger (512 bit in our case) and randomly
chosen. Any secret encrypted using public key can only be
decrypted by using private key and vice versa. The main
points involved in encryption and decryption are as follows.

Lucie does the following:

(1) obtains the recipient Bryan’s public key,

(2) represents the plaintext message as a positive integer,

(3) computes the ciphertext,

(4) sends the ciphertext to Bryan.

Recipient Bryan does the following:

(1) uses his private key to compute positive integer,

(2) extracts the plaintext from the integer representative.

Using RSA algorithm, asymmetric cryptosystem can be
employed to solve a number of problems regarding symmet-
ric cryptographic approach. But as compared to symmetric
approach, asymmetric approach also has few drawbacks.

3.2.1. The Problems behind RSA. The private and public key
approach of RSA cryptosystem can be substitute of the key
exchange problem involved with symmetric approaches, but
the major problem regarding this approach is the distri-
bution of public keys. Having signed the secret document
with Bryan’s secret key, Alice must ensure that the public
key available is really Bryan’s key but not of intruder Carol.
The management and security of private key is also a major
concern. The other important problem with asymmetric
cryptography is that the processing requires intense use of
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the central processing unit as it is computationally intensive
and requires a lot of mathematical computations. This may
be a real problem when several simultaneous sessions are
required. The asymmetric approaches like RSA, DSA, and
so forth are generally known to be slower (about 100
times slower) [4] than symmetric approaches like DES,
AES, and so forth. As a conclusion one can argue that the
symmetric cryptography is highly suitable for encrypting
and decrypting the bulk of messages on data lines. However,
the associated problem of providing all the recipients with an
advanced copy of secret key can be expensive and hazardous.
The insecurity associated with the distribution of all the
necessary secret keys to all the recipients on a regular basis
is very high. In summary, working with RSA cryptosystem
can certainly eliminate several drawbacks associated with
symmetric approaches. However, this cryptosystem still has
some problems regarding complexity of algorithm as it works
very slowly (whenever a bulk data encryption is required)
due to the fact that it is mathematically intensive and requires
extra management for public keys.

4. Double Encryption

One way to alleviate above discussed problems associated
with the symmetric and asymmetric cryptographic appro-
aches is to use double encryption. A secret message is
encrypted using fast symmetric algorithm; the secret key
is then encrypted using asymmetric cryptography; the
Ciphertext (encrypted message) and the encrypted keys
are finally sent to the recipient. Asymmetric cryptography
is slow (computationally intensive), but not too slow to
encrypt such a small (as compared to secret message) bits
as a symmetric encryption key. Upon receipt, the recipient
can easily use his/her private asymmetric key to decrypt
the symmetric key. Further that symmetric key can be
used to quickly decrypt the message file. This idea not only
resolves the problem using both approaches but is also more
computationally sound.

4.1. Why Double Encryption? Most of the problems re-
garding symmetric/asymmetric approaches can be re-
medied using double encryption. The advantages of the
symmetric approaches are utilized to encrypt bulk of the
data, while asymmetric approaches are used to provide
authentication/verification to secure communication (as
discussed in Sections 3.1.1 and 3.1.2 symmetric approaches
are sometimes fail in authentication purposes). Using
double encryption, a message (may be bulk data) can
be encrypted by symmetric key approach, while the key
is again encrypted by public/private keys of asymmetric
approach. Once the message is encrypted by public key of
recipients, it can only be decrypted by its private key. This
ensures a safe communication between the source and the
verified/authenticated recipient. On the other hand, if the
message is encrypted by private key of the recipient, it can
only be decrypted by corresponding public key (which is
publicly available). This process authenticates the source of
encryption and therefore prevents any possible repudiation
or denial from the message generator.

4.2. Prior Work in Double Encryption. The concept of double
encryption is not new in cryptographic literature [25–27].
However, most of the related work is centered on the
implementation of cryptographic encryption and decryption
modules [28–30]. Some of these notable efforts can now
be outlined. Nishimura et al. [25] in their recent European
patent have detailed the concept of encrypting symmetric key
with public and private keys of asymmetric approach. Their
developed approach ensures that when a doubly-encrypted
message is received, it is sent by a particular/authenticated
user; also the recipient of this message is a specific/verified
user(s). Doh et al. [31] have presented double encryption-
based optical security system. They have utilized the facial
images by using random-phase patterns in the spatial
plane and the Fourier plane and a personal information
image consisting of a personal identification number (PIN).
With the recognition of PIN, the authentication of the
encrypted personal identification card has done by primary
classification and recognition of the PIN with the proposed
multiplexed MACE phase-encrypted filter. In this technique,
the possibility of spoofing is significantly decreased using
the double-identification process. Z. Liu and S. Liu [32]
proposed Double image encryption based on iterative frac-
tional Fourier transform. They used to encrypt two different
images into a single one simultaneously by their amplitudes
of fractional Fourier transform with different orders.

In contrast to proposed double encryption schemes,
we explored this concept for fuzzy vault. The combina-
tion of cryptographic algorithms with biometrics has been
presented in several prior publications, for example, [2,
15, 17–19]. Some of these attempts have been focused to
hide the secret information in biometric-based fuzzy vault
[17, 18] while others used to generate cryptographic keys
using biometrics ([15, 19]) to hide the secret information.
Our contribution to literature is that we attempt to hide
secret information using double encryption (via symmetric
and asymmetric cryptographic approaches). In order to
strengthen the cryptographic approaches, we closed the
asymmetric key (at the end of double encryption) by creating
palmprint-based fuzzy vault around it. Our scheme is quite
unique in the sense that, it overcomes any dependency on
generated secret key (like [11, 33]) in cryptographic approaches
and utilized the unique palmprint features to create the fuzzy
vault.

4.3. Motivation to Fuzzy Vault. One of the most important
applications of double encryption is that it can overcome
many of the problems associated with the symmetric key
approach (as the symmetric key is again encrypted by
asymmetric approach). In addition, the level of security
offered by the resulting asymmetric key, at the end of double
encryption, is very high and desired to secure the entire
system. In the cryptographic literature, security of asymmetric
key (at the end of double encryption) is generally questioned as
the main/key weakness of the double encryption [28]. In the
proposed approach, we have utilized the concept of fuzzy
vault to overcome this shortcoming of double encryption
by locking the private key in the vault. This combination
of double encryption with biometrics (fuzzy vault) can
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overcome most of the weaknesses regarding symmetric and
asymmetric cryptographic approaches.

5. Proposed System

Let X denote the dummy message to be encrypted and let
Ksim be the symmetric key, used to encrypt the document.
In order to encrypt the message X, the symmetric key can
be generated using AES algorithm. Let the symmetric key
be denoted by Ksim. Now for making system more secure
and overcome the difficulties of symmetric key approach,
(key exchange problem, confidentiality, etc.) the generated
symmetric key again is encrypted by asymmetric approach
using RSA algorithm. Let the public and private keys
associated with the RSA cryptosystem are denoted by Kpub

and Kpri. We will use this generated public key Kpub for
encryption and the generated private key Kpri for decryption.
Equation (5) summarize the complete procedure:

Y = Ksim(X),

T = Kpub(Y),

Y = Kpri(T),

X = Ksim(Y).

(5)

Figure 1 illustrates the complete block diagram and includes
all the key steps in the double encryption algorithm. For
the traditional RSA cryptosystem, the public key has made
publicly available while private key has kept private. The
cipher text has been generated with the publicly available
encryption key while it is decrypted with the private key kept
private. The security of the system depends upon the secrecy
of private key.

5.1. Palmprint-Based Fuzzy Vault. One of the key objectives
of this work is to investigate the usage of palmprint
biometric in the development of a cryptographic construct.
The palmprint-based cryptosystem can have higher user
acceptance and performance. Despite the recent popularity
of palmprint-based systems [34–36], there has not been
any attempt to investigate its usage for the fuzzy vault.
The palmprint literature has cited number of advantages
of palmprint biometric: (i) due to large surface area, the
region of interest for palmprint is larger as compared to
fingerprint and hence more features can be extracted, (ii) the
chances of damaged hand are less than damage fingerprint
for a person, (iii) even the presence of very less amount
of dirt or grease can affect the performance of fingerprint
verification, but having little effect in case of palmprint, and
importantly (iv) higher user acceptance for palmprint mainly
due to the stigma of fingerprints is associated with criminal
investigations.

The double encryption method detailed in previous
section incorporates both the ideas of symmetric and
asymmetric cryptosystem efficiently and minimizes most
of the shortcomings associated with both approaches. The
other important concern of the system is the management
of private key, as at the end of double encryption security

of the entire system depends upon the security of private
decryption key. The security to private key can be ensured
by the use of well-known concept fuzzy vault detailed in
[6]. Using the concept of fuzzy vault, our main goal is to
hide this decryption key using biometric features to provide
some security to the decryption key and make the whole
system tailored for its practical usage. The combination of
cryptographic keys with biometric offers several advantages
including the fact that this removes the extra key manage-
ment efforts required by the user and ensures that it is
nontransferable. This method of protecting the private key
not only makes the usage of smart cards redundant but also
makes the user self dependent for its key. The difficulties lie
in the fact that the cryptographic algorithm expects that the
keys should be highly similar for every attempt for successful
access, but it is clearly not the case with a typical biometric.
The key is to use suitable coding theory scheme which can
tolerate errors. We have used Reed and Solomon (RS) coding
scheme for providing some error tolerance while decryption.
This error tolerance is essentially required to handle inherent
variations in palmprint (biometric) features from the same
user during decryption. These variations can be attributed to
the scale, orientation, and translational variations in the user
palmprint due to peg-free imaging. The RS coding scheme
has error correcting capacity of (n − k)/2, where n is the
length of code and k is the length of message, and used to
encode decryption key Kpri.

We can easily vary (k,n) during the training stage/phase
and achieve the best possible combination for minimum
false acceptance and rejection rates. The proposed design
of palmprint vault is quite similar as for the fingerprint
[37]. Let the codes generated by R-S coding theory be of
size b. Then we generate a grid of size b × 3 such that
ith row of grid contains ith place. The rest two places are
filled by random numbers generated during encoding. We
designate this grid as grid F. Further, a grid of same size
is generated, and the biometric features are placed at the
same position as in the case of RS codes. The rest of the
two places are filled with numbers such that each row is
maintained in the arithmetic progression. Let us designate
these numbers as tolerance value. These points are actually
the chaff points making the grid fuzzy. We called this grid
as grid G. To unlock the vault we only need to know the
correct positions of the elements in grid G, which can be
achieved by comparing the input palmprint features with
all the numbers in the corresponding row. Taking minimum
of the distance, we can conveniently locate the positions of
actual biometrics from grid F and hence the corresponding
positions for the codes in grid G. The idea of generating such
random numbers to combine with biometric templates is
somewhat similar to as discussed in [2]. However, in contrast
to [2], our approach is to add the tolerance value to the
feature vectors. Out of the three places on the grid G, only
one place is filled by original feature, and the rest two places
are filled by original features added with tolerance value.
The work presented in [2] has been motivated from the
random orientation field, which is inserted into the feature
extractor to generate noise-like feature codes. The inverse
Reed and Solomon codes are used to decode the codes. One
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Figure 2: Block diagram for locking of the vault.

can select the suitable values for n and k to control the error
occurred due to the variability in palmprint features. The
motivation behind choosing the tolerance for the palmprint
features is to make them fuzzy such that an imposter is not
able to predict the feature vector just at random. The block
diagram for locking the vault using palmprint features is
shown in Figure 2. The corresponding unlocking mechanism
is illustrated in Figure 3. Once the procedure for the locking
and unlocking of vault is determined, we fix the criteria
for the genuine users to successfully open the vault while
rejecting the imposter attempts. The vault is said to open
successfully, if the codes retrieved from grid F (created by R-S
codes) using the query palmprint features will be identically
equal to the codes used at the time of locking. The inverse R-
S codes can be applied to the retrieved codes to get back the
original symmetric decryption key. Finally, this decryption
key should successfully decrypt the secret private RSA key.

5.2. Feature Extraction and Normalization. The palmprint
features employed in this work were extracted from the
palmprint images acquired from the digital camera using
unconstrained peg-free setup in indoor environment. The
extraction of region of interest, that is, palmprint, from the
acquired images is similar as detailed in [38]. The Discrete
Cosine Transform (DCT) is used for the characterization
of unique palmprint texture. The DCT is highly compu-
tationally efficient and therefore suitable for any online
cryptosystem. ( DCT is the basis of JPEG and several other
standards (MPEG-1, MPEG-2 for TV/video, and H-263 for
video-phones).) As illustrated in Figure 4, each of the 300 ×
300 pixels palmprint image is divided into 24 × 24 pixels
overlapping blocks. The extent of this overlapping has been
empirically selected as 6 pixels. Thus we obtain 144 separate
blocks from each palmprint image. The DCT coefficients
from each of these N square block pixels, that is, f (x, y), are
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Figure 4: Localization of 144 overlapping palmprint image subblocks for feature extraction.

obtained as follows:

C(u, v) = ε(u)ε(v)
N−1∑

x=0

N−1∑

y=0

f
(
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)
cos
[

πu

2 ·N (2x + 1)
]

,

× cos
[

πv

2 ·N
(
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)
]
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where u, v = 0, 1, . . . ,N − 1,
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⎪⎪⎪⎪⎩

√
2
N

for u /= 0,
√

1
N

for u = 0.

(6)

The standard deviation of DCT coefficients, obtained from
each of the overlapping blocks, is used to characterize the
region. Thus we obtain a feature vector of 144 values. High
degree of intraclass variability in the palmprint features,
mainly due to peg-free imaging, poses serious problems
in the unlocking of the constructed vault by the genuine.
The variability in feature vectors has been reduced with
the help of Z-rule normalization. Corresponding to each

feature vector, the training images are normalized, and then
their mean and standard deviations are used for feature
normalization in the test phase. This normalization reduces
the interclass variability of the extracted features and very
much helpful in fixing the tolerance for fuzzy vault.

6. Experimental Results

The implementation of the system consists of generation
of RSA cryptosystem. A dummy document is then double
encrypted using symmetric and asymmetric keys. After
double encryption, fuzzy vault is created around the private
key by generating grids using R-S codes and palmprint
features. The evaluation is based on varying tolerance value
over the range, and the corresponding false acceptance rate
(FAR) and false rejection rate (FRR) are then computed.
The palmprint database consisted of the left-hand images
from the 85 users, and two images from each of the users
are employed. The first enrolled palmprint image from each
of the users was employed to lock the vault. The successful
opening with the second enrolled palmprint image of the
same user was considered as genuine match while opening
with all the other enrolled test images from other enrolled
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Table 1: Summary of experimental results.

Key length EER (%) Tolerance

306 0.905 1.060

307 0.375 0.995

308 0.752 1.065

309 2.134 1.118

users (i.e., 84 users) was considered as imposter matches.
Thus our performance estimation, that is, FAR and FRR,
is based on 84 × 85 imposter and 85 respective genuine
attempts. The decisions from the FAR and FRR depend upon
choice of tolerance. We performed several experiments to
select the best value of this tolerance. Figure 5 illustrates
the performance of the proposed palmprint-based vault.
Figure 5(a) illustrates the variation of FAR and FRR scores
with the tolerance while Figure 5(b) illustrates the receiver
operating characteristics (ROC). The RSA cryptosystem used
in our program has some variations in key length [39].
The RSA implementation has utilized the string format to
generate the RSA keys, and its length varies from 306 to
309 (detailed in Section 6.1) [26]. As cryptographic keys are
supposed to be same at each application, authentication rates
can vary with each length size of the generated key. Table 1
illustrates the variation in experimental results (equal error
rate) with the key length and the corresponding tolerance
value.

6.1. Discussion. While the idea of incorporating biometrics
within cryptographic constructs has shown promising results
than password-based authentication, the system still has
open issues. The biometric modalities investigated for the
experimental evaluation has been quite limited and most of
the prior work is focused on fingerprint. Recently, iris [19],
face [33], and signature [40] have also been investigated and
yielded promising results. However, summary of prior work
presented in Table 2 suggests that much of the work has been
simulated on a small dataset, such as [37] has used 9 users,
[41] has used 10 users, and [9] has used 20 users, which is
quite small to generate a reliable conclusion on performance.

Despite the current popularity of palmprint biometric,
there has not been any attempt to investigate its usage for
the fuzzy vault. This paper [22] therefore investigated the
possible usage of palmprint in fuzzy vault to develop a
user friendly and reliable crypto system. The image dataset
used for the experiments (85 users) was acquired from
unconstrained peg-free setup as such images are more
realistic and expected to show large variations.

Our experimental results illustrated the EER up to about
0.3% while achieving the FRR of 0% at 0.35% FAR. However,
these results may be less convincing as other approaches
[2, 15]; our system is more reliable and robust, as far as
attacks on secret key are concerned. The experimental results
in BioHashing are dependent upon security of tokenized
(pseudo)random number, as reported in [12] and have to put
additional efforts to secure these numbers. In contrast, our
emphasis is to strengthen the cryptographic approaches for
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Figure 5: (a) The variations of the FAR and FRR characteristics
with the tolerance for the palmprint-based cryptosystem, and (b)
corresponding receiver operating characteristics.

encryption (the problems with symmetric and asymmetric
approach have been discussed earlier in Sections 3.1.1-3.1.2)
and withstand the attacks on secret key. Any secret docu-
ment/information (of any length) can be encrypted by sym-
metric cryptographic approach (as symmetric approaches
such as, DES, and AES are very efficient for the encryption of
bulk data) and the secret symmetric key is again encrypted
using asymmetric approach (to overcome dependency on
secret symmetric key). Finally, the palmprint-based fuzzy
vault is created around the private asymmetric key to prevent
unauthorized disclosure of the key. At the decryption end,
if the input palmprint template is able to open the vault
(using matching criteria), the access to private key is granted.
The rest is the conventional cryptographic mechanism as the
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Table 2: Summary of related prior work.

Biometric Feature Error Correction Code FRR (%) FAR (%) Reference Database Size

fingerprint Minutiae Points RS Code 5 0 [42] 9 Users

Voice Cepstrum coefficient Discretization 20 NA∗ [41] 10 Users

Signature Dynamic time wrapping Feature coding 28 1.2 [40] 25 Users

Iris Gabor Feature RS code and Hadamard Codes 0.47 0 [19] 70 Users

Fingerprint Fourier transform Majority code 12 35 [33] 20 Users

Fingerprint Minutiae point RS code 30 NA [17] NA∗

Fingerprint Minutiae points and helper data RS code 3 0.24 [18] 100 Users (FVC ’02)

Palmprint DCT features RS code 0 0.4 — 85
∗NA—Not Available.

private key is used to decrypt symmetric key and finally the
secret document. In fact, we propose a mixed cryptosystem
which has advantage over both symmetric and asymmetric
cryptography. The advantage of the proposed system lies
in that it not only attempts to alleviate the shortcomings
of symmetric key-based cryptosystem but also solves the
problems involved in asymmetric key-based approach. The
approach minifies dependency on secret key involved and
alternatively investigates a more secure and promising sys-
tem, as compared to BioHashing-based techniques.

Performance of the proposed system depends upon
choice of tolerance chosen for grid of palmprint features.
The increase in tolerance could lead to wrong positions in
grid, and hence even the genuine user cannot open the vault,
which can result in unacceptably high false rejection rate.
The low tolerance value could diminish the fuzziness of grid
which can cause the imposters to be accepted and hence
increase in false acceptance rate. The optimal range for toler-
ance value is dependent on the range of palmprint features.

The main consideration is on the construction of
palmprint-based fuzzy vault around the private key. The
private and public keys are generated on publicly available
RSA toolbox [26]. The bit length of modulus m = k ∗ l,
where m, k, and l are prime numbers (Section 3.1.5), is
chosen as 1024 bits, and length of the encryption exponent
n is 64 bit. The two large primes are chosen to be 512 bits,
so that 1024 bit RSA modulus m can be generated. The RSA
implementation has utilized the string format to generate
the RSA keys and its length varies from 306 to 309 which is
equivalent to 1015 to 1024 in binary bits. For the used RSA
cryptosystem, the private key sc should be chosen such that
it satisfies the following equation:

n∗ sc ≡ 1 (mod si), where 1 < sc < si. (7)

It can be observed from the above equation that more than
one value of n can satisfy the congruence, and hence the
length of the generated string (key) can vary. The prime
numbers are randomly chosen and so are the values of si
and n, and therefore the variations in length of keys are
not controlled. In our experiments we have observed and
accounted for this variation. Our implementation stores
the fixed length key and loads it at the time of generating
grids to construct the vault. Therefore Table 1 illustrated all
the possible variations in key length and the corresponding

performance (EER) with the tolerance value. It can be
observed from this table that as the key length varies (in
the range 306 to 309), the system has different equal error
rates at different tolerances. The minimum equal error rate is
achieved when the key length is 307.

7. Conclusions

This paper has investigated a new approach to construct
the cryptographic vault using palmprint features. In order
to combine cryptography with palmprint features we have
also incorporated the implementation of double encryp-
tion. This can efficiently reduce the possibility of hacking
within a cryptosystem. The experimental results presented
in Section 6 illustrate that the palmprint-based cryptosystem
can operate at low EER (0.375%). The summary of the prior
work, presented in Table 2, suggests that the palmprint can
be used as a promising biometric in the construction of a
cryptosystem. However, the work presented in Table 2 is not
directly comparable; our motivation is to mere outline the
effectiveness of the proposed work. The cryptosystem investi-
gated in this paper employed localized spectral features from
the palmprint. The multiple feature representation, such as
detailed in [34], can offer more reliable characterization
of features, and therefore cryptosystem based on multiple-
palmprint representation can be considered for the extension
of this work.

Acknowledgment

This work was partially supported by the research Grant from
the Department of Science and Technology, Government of
India (Grant no. 100/IFD/1275/2006-2007).

References

[1] A. K. Jain, A. Ross, and S. Prabhakar, “An introduction to
biometric recognition,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 14, no. 1, pp. 4–20, 2004.

[2] A. Kong, D. Zhang, and M. Kamel, “Three measures for secure
palmprint identification,” Pattern Recognition, vol. 41, no. 4,
pp. 1329–1337, 2008.

[3] N. K. Ratha, J. H. Connell, and R. M. Bolle, “Enhancing secu-
rity and privacy in biometrics-based authentication systems,”
IBM Systems Journal, vol. 40, no. 3, pp. 614–634, 2001.



EURASIP Journal on Advances in Signal Processing 11

[4] W. Stallings, Cryptology and Network Security: Principles and
Practices, Prentice Hall, Upper Saddle River, NJ, USA, 3rd
edition, 2003.

[5] J. Nam, Y. Lee, S. Kim, and D. Won, “Security weakness in
a three-party pairing-based protocol for password authenti-
cated key exchange,” Information Sciences, vol. 177, no. 6, pp.
1364–1375, 2007.

[6] A. Juels and M. Sudan, “A fuzzy vault scheme,” in Proceedings
of the IEEE International Symposium on Information Theory, p.
408, Lausanne, Switzerland, June-July 2002.

[7] U. Uludag, S. Pankanti, and A. K. Jain, “Fuzzy vault for
fingerprints,” in Proceedings of the 5th Audio- and Video-
Based Biometric Person Authentication (AVBPA ’05), vol. 3546
of Lecture Notes in Computer Science, pp. 310–319, Springer,
Hilton Rye Town, NY, USA, July 2005.

[8] G. I. Davida, Y. Frankel, and B. J. Matt, “On enabling
secure applications through off-line biometric identification,”
in Proceedings of the IEEE Computer Society Symposium on
Research in Security and Privacy, pp. 148–157, Oakland, Calif,
USA, May 1998.

[9] C. Sautar, D. Roberge, A. Stoianov, R. Gilroy, and B. V. K.
Vijaya Kumar, “Biometric encryption,” Information Manage-
ment and Computer Security, vol. 9, no. 5, pp. 205–212, 2001.

[10] F. Monrose, M. K. Reiter, and S. Wetzel, “Password hardening
based on keystroke dynamics,” in Proceedings of the 6th ACM
Conference on Computer and Communications Security, pp. 73–
82, 1999.

[11] T. Connie, A. Teoh, M. Goh, and D. Ngo, “PalmHashing:
a novel approach for cancelable biometrics,” Information
Processing Letters, vol. 93, no. 1, pp. 1–5, 2005.

[12] A. Kong, K.-H. Cheung, D. Zhang, M. Kamel, and J. You, “An
analysis of BioHashing and its variants,” Pattern Recognition,
vol. 39, no. 7, pp. 1359–1368, 2006.

[13] http://searchsecurity.techtarget.com/sDefinition/0,,sid14
gci213673,00.html.

[14] http://world.std.com/∼franl/crypto/one-time-pad.html.

[15] X. Wu, D. Zhang, and K. Wang, “A palmprint cryptosystem,”
in Proceedings of IAPR/IEEE International Conference on
Biometrics (ICB ’07), vol. 4642 of Lecture Notes in Computer
Science, pp. 1035–1042, August 2007.

[16] A. Juel and M. Wttenberg, “A fuzzy vault commitment
scheme,” in Proceedings of the 6th ACM Conference on Com-
puter and Communications Security, G. Tsudik, Ed., pp. 408–
412, 2002.

[17] U. Uludag and A. K. Jain, “Fuzzy fingerprint vault,” in
Proceedings of Biometrics: Challenges Arising from Theory and
Practice, pp. 13–16, Cambridge, UK, August 2004.

[18] K. Nandakumar, A. K. Jain, and S. Pankanti, “Fingerprint-
based fuzzy vault: implementation and performance,” IEEE
Transactions on Information Forensics and Security, vol. 2, no.
4, pp. 744–757, 2007.

[19] F. Hao, R. Anderson, and J. Daugman, “Combining crypto
with biometrics effectively,” IEEE Transactions on Computers,
vol. 55, no. 9, pp. 1081–1088, 2006.

[20] T. C. Calancy, N. Kiyavash, and D. J. Lin, “Secure smartcard-
based fingerprint authentication,” in Proceedings of the ACM
SIGMM Multimedia Workshop on Biometrics Methods and
Applications, pp. 45–52, Berkeley, Calif, USA, 2003.

[21] C.-H. Lin and Y.-Y. Lai, “A flexible biometrics remote user
authentication scheme,” Computer Standards and Interfaces,
vol. 27, no. 1, pp. 19–23, 2004.

[22] A. Kumar and A. Kumar, “A palmprint-based cryptosystem
using double encryption,” in Biometric Technology for Human
Identification V, vol. 6944 of Proceedings of SPIE, pp. 1–9,
Orlando, Fla, USA, March 2008.

[23] RSA algorithm, http://www.di-mgt.com.au/rsa alg.html.
[24] http://pajhome.org.uk/crypt/rsa/maths.html.
[25] K. A. Nishimura, S. J. Wenstrand, and G. Panotopoulos, “Bio-

metric identification device,” European patent EP1760667,
July 2007.

[26] http://www.wipo.int/pctdb/en/wo.jsp?wo=2001092994&IA;
=WO2001092994&DISPLAY;=DESC.

[27] P. W. Dent, “Cryptographic method and system for double
encryption of messages,” US patent no. 6904150, June 2005.

[28] M. J. Fischer, “Cryptography and computer security,”
Lecture Note-5 CPSC 467a, Department Of Computer
Science, Yale University, http://zoo.cs.yale.edu/classes/cs467/
2006f/attach/ln05.html.

[29] H. Ng, “Simple pseudorandom number generator with
strengthened double encryption (Cilia),” http://eprint.iacr
.org/2005/086.pdf.

[30] G. Immega, T. Vlaar, G. Vanderkooy, and K. Tucker, “Method
for biometric encryption of email,” European patent no.
EP1290534, December 2003.

[31] Y.-H. Doh, J.-S. Yoon, K.-H. Choi, and M. S. Alam, “Optical
security system for the protection of personal identification
information,” Applied Optics, vol. 44, no. 5, pp. 742–750, 2005.

[32] Z. Liu and S. Liu, “Double image encryption based on iterative
fractional Fourier transform,” Optics Communications, vol.
275, no. 2, pp. 324–329, 2007.

[33] A. Goh and D. C. L. Ngo, “Computation of cryptographic keys
from face biometrics,” in Communications and Multimedia
Security, vol. 2828 of Lecture Notes in Computer Science, pp.
1–13, Springer, Berlin, Germany, 2003.

[34] A. Kumar and D. Zhang, “Personal authentication using
multiple palmprint representation,” Pattern Recognition, vol.
38, no. 10, pp. 1695–1704, 2005.

[35] A. Kong and D. Zhang, “Compititive coding scheme for
palmprint verification,” in Proceedings of the International
Conference on Pattern Recognition (ICPR ’04), vol. 1, pp. 520–
523, August 2004.

[36] A. Kumar, “Incorporating cohort information for reliable
palmprint authentication,” in Proceedings of the 6th Indian
Conference on Computer Vision, Graphics and Image Processing
(ICVGIP ’08), pp. 583–590, Bhubaneswar, India, December
2008.

[37] A. Nagar and S. Chaudhury, “Biometrics based asymmetric
cryptosystem design using modified fuzzy vault scheme,” in
Proceedings of the 18th International Conference on Pattern
Recognition (ICPR ’06), vol. 4, pp. 537–540, Hong Kong,
August 2006.

[38] A. Kumar, D. C. M. Wong, H. C. Shen, and A. K. Jain, “Per-
sonal authentication using hand images,” Pattern Recognition
Letters, vol. 27, no. 13, pp. 1478–1486, 2006.

[39] http://islab.oregonstate.edu/koc/ece575/02Project/Kie+Raj/.
[40] H. Feng and C. C. Wah, “Private key generation from on-

line handwritten signatures,” Information Management and
Computer Security, vol. 10, no. 4, pp. 159–164, 2002.

[41] F. Monrose, M. K. Reiter, Q. Li, and S. Wetzel, “Cryptographic
key generation from voice,” in Proceedings of the IEEE Com-
puter Society Symposium on Research in Security and Privacy,
pp. 202–213, May 2001.

[42] F. Monrose, M. K. Reiter, and R. Wetzel, “Password hardening
based on keystroke dynamics,” International Journal of Infor-
mation and Computer Security, vol. 1, no. 2, pp. 69–83, 1999.



Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2009, Article ID 964746, 12 pages
doi:10.1155/2009/964746

Research Article

A Novel Criterion for Writer Enrolment Based on
a Time-Normalized Signature Sample Entropy Measure

Sonia Garcia-Salicetti, Nesma Houmani, and Bernadette Dorizzi

Department of EPH, Institut TELECOM, TELECOM & Management SudParis, 91011 Evry, France

Correspondence should be addressed to Nesma Houmani, nesma.houmani@it-sudparis.eu

Received 15 October 2008; Revised 8 March 2009; Accepted 9 June 2009

Recommended by Natalia A. Schmid

This paper proposes a novel criterion for an improved writer enrolment based on an entropy measure for online genuine
signatures. As online signature is a temporal signal, we measure the time-normalized entropy of each genuine signature, namely,
its average entropy per second. Entropy is computed locally, on portions of a genuine signature, based on local density estimation
by a Client-Hidden Markov Model. The average time-normalized entropy computed on a set of genuine signatures allows then
categorizing writers in an unsupervised way, using a K-Means algorithm. Linearly separable and visually coherent classes of writers
are obtained on MCYT-100 database and on a subset of BioSecure DS2 containing 104 persons (DS2-104). These categories can
be analyzed in terms of variability and complexity measures that we have defined in this work. Moreover, as each category can be
associated with a signature prototype inherited from the K-Means procedure, we can generalize the writer categorization process
on the large subset DS2-382 from the same DS2 database, containing 382 persons. Performance assessment shows that one category
of signatures is significantly more reliable in the recognition phase, and given the fact that our categorization can be used online,
we propose a novel criterion for enhanced writer enrolment.

Copyright © 2009 Sonia Garcia-Salicetti et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Handwritten signature is a behavioural biometric modality
showing high variability from one instance to another of
a same writer. This high variability explains indeed that
the best verification approaches, as particularly reflected for
Online Signature in the results of the First International
Signature Verification Competition SVC2004 [1] and the
Signature Evaluation carried out in the framework of BioSe-
cure Multimodal Evaluation Campaign BMEC2007 [2], are
those tolerating random local variations of the signature,
as elastic matching techniques (Dynamic Time Warping [3–
5] or statistical models, as Hidden Markov Models (HMM)
[3, 6–13] and Gaussian Mixture Models (GMMs) [14,
15]. Nevertheless, the amount of this variability is writer
dependent, in the sense that some writers have a signature
by far more variable from one instance to the next than other
writers.

An automatic signature verification system involves two
steps: the enrolment step and the verification step. In order

to provide a given level of security to an individual signer,
writer enrolment must guarantee that enrolment signatures
are stable and complex enough. Indeed, as studied in [16],
when enrolling a writer, his/her signature will be acceptable
as a reference signature, or as part of a reference set, for any
verification system, only if it is complex enough. In [16], a
“difficulty coefficient” estimates the difficulty to reproduce
a given signature as a function of the rate of geometric
modifications (length and direction of strokes) per unit of
time, in other words as a function of complexity of the hand
draw. Such study concludes that “problematic” signers in
terms of performance of Automatic Verification Systems are
those with signatures which have a low “difficulty coefficient”
(not complex enough signatures).

On the other hand, when enrolling a writer, his/her
signature will be suitable as reference or as part of a
reference set for any verification system only if it is not too
variable; in [16], enrolment signatures are selected by using
a comparison algorithm that computes the spatiotemporal
difference between two signatures (elastic matching). By this
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way, a “dissimilarity index” is proposed to quantify intraclass
variability between different signature samples of a same
writer. In [17], a procedure relying on a correlation-based
criterion detecting local distortions of the hand draw is
proposed to select the reference signatures for a signature
verification system. Such correlation criterion measures how
much local stability values, computed on different signatures
when being matched by elastic matching techniques, are
correlated. Finally, the subset of signatures with highest
correlation is selected as reference set. Alternatively, in
[18], the stability criterion is based on the lowest intraclass
Euclidean distance between feature vectors representing
globally the candidate reference signatures. Finally, in [19],
both complexity and variability criteria were proposed for
offline signature verification by a human expert. A human
operator labels signatures according to both criteria and their
impact on performance is studied. Also in [20], signature
analysis by means of fractal geometry led to the emergence
of a complexity criterion to categorize writers.

All these works suggest the strong impact of complexity
and variability criteria on the classifier performing signature
verification. Indeed, stability is required in genuine signa-
tures in order to be able to characterize a given writer, since
the less stable a signature is, the more likely it is that a forgery
gets dangerously close to genuine signatures in terms of the
metric of any classifier. Also, complex enough signatures are
required at the enrolment step to generate a certain level of
security.

In this work, we propose to exploit for writer enrolment
a time-normalized entropy measure that allows quantifying
both the stability and the complexity of a writer’s genuine
signatures. This entropy, measured in bits per second, is
computed on portions of the signature, and averaged over
such portions. As the entropy of a random variable only
depends on its probability density values, a good estimation
of this probability density is important [21]. As in online
signatures there are local time dependencies in the dynamics
of the hand-draw, a local paradigm for density estimation is
natural.

In the previous works [22, 23], we proposed to estimate
the probability density of a writer’s dynamics locally, by
a Hidden Markov Model (HMM) trained on a set of ten
genuine signatures, to extract a Personal Entropy measure
globally from such set. In this work, we follow the same local
paradigm, but we compute the time-normalized entropy of
a signature sample “Sample Entropy”, namely, the average
entropy per second of such sample, therefore quantified in
bits per second. It is worth noticing that the above mentioned
Hidden Markov Model, whose complexity (topology) is
related to the length of the genuine signatures of a writer, is
only used in our work as a local refined density estimator,
devoted to compute the time-normalized entropy of a
signature sample, and not as a classifier.

Based on the “Sample Entropy”, we then propose to gen-
erate for each writer a “Personal Entropy measure” value, by
averaging the “Sample Entropy” associated to each of his/her
genuine signatures. We show in this work that this measure
allows categorizing writers in linearly separable and visually
coherent categories, by a K-Means procedure [24]. Moreover,

we related this categorisation to variability and complexity
measures, this way showing quantitatively the link between
our new Personal Entropy measure and some behavioural
characteristics of the signature. Our previous performance
assessment study [23], carried out only on random forgeries,
with different classifiers, showed that system performance
changes in function of the different writer categories. In
this work, we first extend our performance assessment
study to skilled forgeries and confirm this interesting result:
there is one category of users, which can be detected by
their Personal Entropy, and are “problematic”, since their
signatures are vulnerable because of their strong variability
and low complexity. At the opposite, there is a category of
“safer” signatures, highly complex and stable, that can also
be detected by their associated writer’s Personal Entropy. Our
aim in this work is to exploit this entropy measure in order
to enhance enrolment in the following ways.

(i) To inform the user of the intrinsic risk related to
his/her signature.

(ii) In case of a “problematic” signature, to leave the
possibility to the signer of choosing between deciding
to pursue enrolment knowing the intrinsic risk of
his/her signature, or alternatively to change his/her
signature for security purposes.

(iii) To adjust the quality of enrolment data according to
the level of security required by the application.

As previously mentioned, writer categories emerge from
our entropy measure, by means of a K-means procedure.
Given this fact, each writer category is naturally associated
to a signature “prototype” or Entropy-Prototype (EP), which
corresponds to the mean of the class. We propose in this work
to exploit such Entropy-Prototypes to identify beforehand
“problematic” signers. We show indeed that after having
generated prototypes on a given reduced data set of 104
writers from the complete DS2 database [25], it is possible to
generalize the writer categorization process on other writers
belonging to the same database. Given the fact that our writer
categorization process is totally automatic, independent
of any classifier (it only relies on our proposed Personal
Entropy measure), and besides can be generalized to new
writers acquired in similar conditions (same digitizer, same
acquisition protocol, similar sampling frequency, similar
resolution), we propose a novel criterion for a better writer
enrolment process targeting enhanced signature verification.
Indeed, our writer categorization process gives as outputs
one Entropy-Prototype per category, which combined to a
Nearest Neighbour Rule [24], naturally allows classifying a
signature sample during the enrolment step. This classifica-
tion allows therefore measuring the intrinsic level of security
of a user’s signature at the enrolment step.

This paper is organized as follows. The next section
describes how the “Sample Entropy” measure associated to
each genuine signature sample is computed by means of a
Writer-HMM, and the resulting “Personal Entropy” value
of each writer. Also, we present the automatically generated
categories of writers, obtained when performing a K-Means
procedure on such “Personal Entropy measure” of each



EURASIP Journal on Advances in Signal Processing 3

writer, on a subset of the BioSecure Data Set 2 (DS2-104)
and on MCYT-100 database, both captured on a digitizer. In
order to give a quantitative interpretation of these categories,
we have defined complexity and variability measures, and we
have shown the strong relationship between our Personal-
Entropy measure and both the complexity and the variability
in signatures. Section 3 presents performance assessment
across such writer categories, by means of two statistical clas-
sifiers of same complexity (number of parameters), namely,
a Hidden Markov Model (HMM) and a Gaussian Mixture
Model (GMM), on DS2-104 and MCYT-100 databases.
Such statistical approaches gave indeed the best signature
verification results in the last Signature Evaluation campaign
in the framework of BioSecure Multimodal Evaluation Cam-
paign BMEC’2007 [2]. Section 4 describes the generalization
of the writer categorization process, relying on Entropy-
Prototypes built on a subset of Data Set 2 (DS2-104) and
evaluated on the large data set DS2-382 of 382 persons;
the resulting global performance on DS2-382 are compared
with performance on each category. Finally, the proposed
enhanced writer enrolment procedure relying on Personal-
Entropy is described in detail.

2. Time-Normalized Sample Entropy and
Writer Categories

2.1. Measuring Time-Normalized Sample Entropy with a Hid-
den Markov Model. We consider in this work a signature as a
sequence of two time functions, namely, its raw coordinates
(x, y). Indeed, raw coordinates are the only time functions
available on all sorts of databases, whether acquired on fixed
platforms (as digitizing tablets) or on mobile platforms (as
Personal Digital Assistants).

The entropy of a random variable only depends on
its probability density values; therefore a good estimation
of this probability density must be performed to compute
reliably an entropy value. As the online signature is piecewise
stationary, it is natural to estimate the probability den-
sity locally, namely, on portions of the signature. In this
framework, Hidden Markov Models [3] (HMM) appear as
a natural tool as they both allow performing a segmentation
of the signature into portions and a local estimation of the
probability density on each portion.

We thus consider each genuine signature of a given writer
as a succession of portions, generated by its segmentation via
such writer’s Hidden Markov Model (HMM). Therefore, we
obtain as many portions in each signature as there are states
in the Writer-HMM. Then we consider each point (x, y) in
a given portion Si as the outcome of one random variable Zi
(see the top of Figure 1) that follows a given probability mass
function pi(z) = Pr(Zi = z), where z belongs to the Alphabet
A of ordered pairs (x, y). Such random variable associated to
a given portion of the signature is discrete since its alphabet
A has a finite number of values, thus its entropy in bits is
defined as

H(Zi) = −
∑

z∈Si
p(z) · log2

(
p(z)

)
. (1)

HMM

1 2 i N

Entropy per portion

AVG

Time normalization

Time Normalized Sample Entropy

Signature length T

H(Z1) H(Zi) H(ZN )

H(Z) = 1
N

N∑

i=1

H(Zi)

H∗(Z) = H(Z)
T

(bits per second)

Figure 1: The Time-Normalized Sample Entropy computation.

Nevertheless, the hand-drawing as a time function is
a continuous process from which we retrieve a sequence
of discrete values via a digitizer. For this reason, although
Z = (x, y) is discrete, we take advantage of the continuous
emission probability law estimated on each portion by
the Writer-HMM. Such density function is modelled as a
mixture of Gaussian components.

To compute the Time-Normalized Sample Entropy of
a signature sample, we first train the Writer-HMM on
10 genuine signatures of such writer, after computing a
personalized number of states, as follows:

N = TTotal

M ∗ 30
, (2)

whereTTotal is the total number of sampled points available in
the genuine signatures, andM = 4 is the number of Gaussian
components per state. We ensure this way that the number
of sample points per state is at least 120, in order to obtain a
good estimation of the Gaussian Mixture in each state (four
Gaussian components).

Then we exploit the Writer-HMM to generate by the
Viterbi algorithm [3] the portions on which the entropy
is computed for each genuine signature. On each portion,
we consider the probability density estimated by the Writer-
HMM to compute locally this entropy. We then average the
entropy over all the portions of a signature and normalize
the result by the signing time of the signature sample
(see Figure 1). This measure is a Time-Normalized Sample
Entropy, expressed in bits per second. Our experiments show
that in order to get a good estimation of Personal Entropy, it
is necessary to have at least 10 signatures of each writer.
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Averaging this measure across the 10 genuine signatures
on which the local probability densities were estimated
by the HMM allows generating a measure of Personal
Time-Normalized Entropy, denoted “Personal Entropy” in
the following of this paper. Time normalization allows
comparing users between them in terms of entropy; indeed,
without such time normalization, due to the great difference
in length between signatures of different persons, entropy
tends to be higher on longer signatures.

2.2. Databases Description. We used three databases in this
work: the freely available and the widely used MCYT
subset of 100 persons [26], and two subsets from the
online signature database acquired in the framework of the
BioSecure Network of Excellence [25]: DS2 (for Second Data
Set of the whole data collection), acquired on a digitizer. The
first subset DS2-104 contains data of 104 persons, and the
second subset DS2-382 contains data of 382 persons. The
whole BioSecure Signature Subcorpus DS2 [25], acquired
on several sites in Europe, is the first online signature
multisession database acquired in a digitizer.

DS2 contains data from 667 persons acquired in a PC-
based offline supervised scenario and the digitizing tablet
WACOM INTUOS 3 A6. The pen tablet resolution is 5080
lines per inch, and the precision is 0.25 mm. The maximum
detection height is 13 mm, and the capture area is 270 mm
(width) × 216 mm (height). Signatures are captured on
paper using an inking pen. At each sampled point of the
signature, the digitizer captures at 100 Hz sampling rate
the pen coordinates, pen pressure (1024 pressure levels),
and pen inclination angles (azimuth and altitude angles of
the pen with respect to the tablet). This database contains
two sessions, acquired two weeks apart, each containing
15 genuine signatures. The donor was asked to perform,
alternatively, three times five genuine signatures and twice
five forgeries. Indeed, for skilled forgeries, at each session,
a donor is asked to imitate five times the signature of two
other persons after several minutes of practice and with the
knowledge of the signature dynamics.

2.3. Writer Categories with Personal Entropy Measure. We
performed on the two databases described in Section 2.2
(DS2-104 and MCYT-100), containing around 100 persons,
a K-Means procedure [24] on Personal Entropy values
for different values of K . We reached a good separation
of signatures with K = 3 on both databases, as shown
in Figure 2 for some signatures in DS2, whose owners
authorized their publication.

Figure 3 shows that the obtained three categories are
actually linearly separable, as represented by indicative lines
reporting the automatic classification results given by the K-
Means procedure.

As mentioned before, time normalization allows compar-
ing users between them in terms of entropy since there is
a great difference in length between signatures of different
persons.

We notice that on the two databases, the first category
of signatures, those having the highest Personal Entropy

(a)

(b)

(c)

Figure 2: Examples of signatures from DS2-104 of (a) high, (b)
medium, and (c) low Personal Entropy (with authorization of the
writers).

(Figure 2(a)), contains short simply drawn and not legible
signatures, often with the shape of a simple flourish. At the
opposite, signatures in the third category, those of lowest
Personal Entropy (Figure 2(c)), are the longest and their
appearance is rather that of handwriting, some being even
legible. In between, we notice that signatures with medium
Personal Entropy (second category, Figure 2(b)) are longer
than those of the first category, often showing the aspect of a
complex flourish.

Categories of signatures seem at this step visually related
to complexity and variability criteria. We therefore propose
quantitative measures of complexity and variability, with
which we will analyze the obtained Entropy-based categories.

2.4. Relation between Our Personal Entropy and Complexity
and Variability Measures. In order to measure complexity,
we consider a vector of seven components related to the
shape of handwriting: numbers of local extrema in both x
and y directions, changes of pen direction in both x and y
directions, cusps points, crossing points, and “star points”
[27]. We consider the Euclidean norm of the vector as the
indicator of complexity for each signature. We then average
such measure on the 10 genuine signatures in order to
generate a complexity measure for a given person.

In order to measure the variability of a client’s signature,
we use Dynamic Time Warping [3], which relies on a local
paradigm to quantify distortions. We compute the distances
between all the possible couples of genuine signatures (45 as
we consider 10 genuine signatures) and average the obtained
distances to get the indicator of signature variability. Four
features are extracted locally per point: absolute speed, the
angle between the absolute speed vector and the horizontal
axis, curvature radius of the signature, and the length to
width ratio on a sliding window of size 5.

Figure 4 shows Personal Entropy versus Complexity and
Variability indicators, per category on DS2-104 and MCYT-
100. We see that signatures of highest Personal Entropy are
highly variable and of rather low complexity. At the opposite,
signatures of lowest Personal Entropy are by far more
complex and more stable (show low variability). We noticed
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Figure 3: Personal Entropy values on data from DS2-104 (a) and from MCYT-100 (b) across the 3 writer categories. Two indicative lines
report the separation between categories obtained by the K-Means procedure.

that this behaviour is verified for all the databases considered
in this work. We therefore conclude that our Personal
Entropy measure allows quantifying both the complexity and
variability of a writer’s signatures simultaneously.

3. Verification Performance

In this section, we study the relationship between Personal
Entropy-based categories and performance of two different
automatic signature verification systems, on two different
databases: DS2-104 and MCYT-100.

3.1. Score Computation by the Two Classifiers. Two classifiers
are used in this study considering only the raw coordinates
description of signatures as input data: a Hidden Markov
Model [3] and a Gaussian Mixture Model [14].

For performance assessment, both skilled and random
forgeries are considered. Ten random samplings are carried
out on genuine and impostor signatures in the following
way: each sampling contains five genuine signatures used
as the training set for both statistical classifiers. For test
purposes, the remaining 25 genuine signatures and 20 skilled
forgeries (belonging to two sessions) are used for DS2-104.
For MCYT-100, we tested on the remaining 20 genuine sig-
natures and 25 skilled forgeries. Also, 30 impostor signatures
randomly sampled in equal number in each Personal Entropy
category (10 random forgeries per category) are considered
for both databases. The False Acceptance and False Rejection
Rates are computed relying on the total number of False
Rejections and False Acceptances obtained on the whole ten
random samplings.

Concerning the topology of the two statistical models,
we used a GMM and a left-to-right HMM of the same
complexity in terms of Gaussian components. It is worth
noticing that the HMM classifier differs from the HMM used
for Personal Entropy computation. Indeed, the former is
devoted to classification, while the latter only performs local
density estimation. We considered for the HMM classifier a
6 states and 4 Gaussian components per state, as a tradeoff
in complexity between the signatures of the two extreme
categories. For the GMM, accordingly, we considered 24
Gaussians to model a person’s signatures. The dissimilarity
matching score for both statistical models is

Score = |LL− LLBA|, (3)

where LL is the Log-Likelihood of the test signature (nor-
malized by the length of the test signature), and LLBA is
the corresponding average Log-Likelihood of the training
signatures.

3.2. Performance Assessment on DS2-104 and MCYT-100 with
the Two Classifiers. In our experiments, both HMM and
GMM classifiers were intentionally not optimized, since our
aim is not to improve absolute system performance but to
analyze the relative differences in classifiers’ performance
between writer categories.

We notice on Figures 5 and 6 corresponding to DS2-
104, and on Figures 7 and 8 corresponding to MCYT-100,
that the results lead to different behaviours in terms of
performance according to the category of Personal Entropy
that we consider.
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Figure 4: Personal Entropy versus complexity (left) and Personal Entropy versus variability (right) on MCYT-100 and DS2-104 databases,
for Personal Entropy-based categories.

There is a significant difference in classifiers’ perfor-
mance between the two extreme categories, for both skilled
and random forgeries: GMM and HMM classifiers give the
best performance on writers belonging to the category of
lowest Personal Entropy, that is, those having the longest
most complex and most stable signatures, as those shown
in Figure 2(c). At the opposite, HMM and GMM classifiers
give the worst performance on writers belonging to the
highest Personal Entropy, those having the shortest simplest
and most unstable signatures, as those shown in Figure 2(a).
We also notice that performance values for the category of
writers with medium Personal Entropy are in between those
of the two extreme writer categories.

As shown in Tables 1 and 2, for the two classifiers,
at the Equal Error Rate functioning point, performance
is roughly improved by a factor around 2 for skilled and
random forgeries when switching from the highest entropy

category to the lowest one, on both DS2-104 and MCYT-
100. Confidence Intervals at 95% are given to show the
significance of results. At other functioning points, this
gap in performance between the two extreme categories is
maintained for the two classifiers, as shown in Figures 5, 6, 7,
and 8.

For a better insight on the impact of high and medium
Personal Entropy categories on system performance, we
ordered, in a decreasing way, users from such categories
according to their Personal Entropy. Then, we compute when
removing the top x% of such users, the relative improvement
Δ(x) of the Equal Error Rate with regard to the average EER
on the whole DS2-104 database (denoted by EER) defined as
follows:

Δ(x) = EER− EER(x)
EER

, (4)
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DS2-104: skilled forgeries with GMM classifier

High Personal Entropy EER = 32.28%
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Low Personal Entropy EER = 18.24%
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DS2-104: random forgeries with GMM classifier

High Personal Entropy EER = 25.61%
Medium Personal Entropy EER = 20.34%
Low Personal Entropy EER = 15.27%
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Figure 5: DET-curves considering skilled forgeries (a) and random forgeries (b), on each writer category on DS2-104 subset with the GMM
classifier.

0.1 0.2 0.5 1 2 5 10 20

False acceptance rate (%)

0.1

0.2

0.5

1

2

5

10

20

40

Fa
ls

e
re

je
ct

io
n

ra
te

(%
)

DS2-104: skilled forgeries with HMM classifier

High Personal Entropy EER = 30.26%
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Low Personal Entropy EER = 14.9%

(a)

0.05 0.1 0.2 0.5 1 2 5 10 20

False acceptance rate (%)

0.1

0.2

0.5

1

2

5

10

20

40

Fa
ls

e
re

je
ct

io
n

ra
te

(%
)
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High Personal Entropy EER = 21.44%
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Figure 6: DET-curves considering skilled forgeries (a) and random forgeries (b), on each category on DS2-104 subset with the HMM
classifier.
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MCYT-100: skilled forgeries with GMM classifier

High Personal Entropy EER = 33.42%
Medium Personal Entropy EER = 26.59%
Low Personal Entropy EER = 22.64%
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MCYT-100: random forgeries with GMM classifier

High Personal Entropy EER = 19.58%
Medium Personal Entropy EER = 12.84%
Low Personal Entropy EER = 9.33%

(b)

Figure 7: DET-curves considering skilled forgeries (a) and random forgeries (b), on each writer category on MCYT-100 database with the
GMM classifier.
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MCYT-100: skilled forgeries with HMM classifier

High Personal Entropy EER = 30.08%
Medium Personal Entropy EER = 20.62%
Low Personal Entropy EER = 15.19%
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MCYT-100: random forgeries with HMM classifier

High Personal Entropy EER = 10.41%
Medium Personal Entropy EER = 7.72%
Low Personal Entropy EER = 3.38%

(b)

Figure 8: DET-curves considering skilled forgeries (a) and random forgeries (b), on each category on MCYT-100 database with the HMM
classifier.
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Table 1: Equal Error Rate and Confidence Interval in each writer category on DS2-104 subset, with HMM and GMM classifiers considering
skilled and random forgeries.

DS2-104 subset

GMM classifier HMM classifier

Skilled forgeries Random forgeries Skilled forgeries Random forgeries

EER (%) CI (95%) EER (%) CI (95%) EER (%) CI (95%) EER (%) CI (95%)

High entropy 32.28 ±0.100 25.61 ±0.057 30.26 ±0.100 21.44 ±0.080

Medium entropy 26.09 ±0.040 20.34 ±0.026 23.29 ±0.027 13.65 ±0.018

Low entropy 18.24 ±0.010 15.27 ±0.007 14.90 ±0.009 8.29 ±0.001

Table 2: Equal Error Rate and Confidence Interval in each writer category on MCYT-100 database, with HMM and GMM classifiers
considering skilled and random forgeries.

MCYT-100 database

GMM classifier HMM classifier

Skilled forgeries Random forgeries Skilled forgeries Random forgeries

EER (%) CI (95%) EER (%) CI (95%) EER (%) CI (95%) EER (%) CI (95%)

High entropy 33.42 ±0.170 19.58 ±0.160 30.08 ±0.200 10.76 ±0.120

Medium entropy 26.59 ±0.050 12.84 ±0.028 20.62 ±0.042 7.56 ±0.023

Low entropy 22.64 ±0.018 9.33 ±0.006 15.74 ±0.010 4.13 ±0.003
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Figure 9: The relative improvement Δ(x) of the average EER on
DS2-104 subset when removing x% of users from high and medium
Personal Entropy categories.

where EER(x) represents the average Equal Error Rate on the
whole DS2-104 database after removing x% of users from
high and medium Personal Entropy categories.

We notice in Figure 9 that for both the GMM and HMM
classifiers, and both random and skilled forgeries, when
removing progressively an increasing percentage x of users
from high and medium Personal Entropy categories (accord-
ing to their Personal Entropy measure),Δ(x) increases. When

Table 3: The relative improvementΔ(x) of the average EER on DS2-
104 subset when removing all users from high and medium Personal
Entropy categories.

Classifier Type of forgeries EER Δ (100%)

GMM
Skilled forgeries 21.57% 15.43%

Random forgeries 18.19% 16.06%

HMM
Skilled forgeries 18.43% 19.16%

Random forgeries 10.90% 23.94%

all users from high and medium Personal Entropy categories
are removed (x = 100%), this relative improvement Δ(x)
reaches in all cases more than 15%, as reported in detail in
Table 3. Moreover, given that the first 21% of users belong
to the high Personal Entropy category (7 users), and the
remaining 79% belong to the medium Personal Entropy
category (26 users), we conclude that the main improvement
is obtained when the first 60% of users are removed (that is
all users from the high Personal Entropy category and 50%
of users from the medium Personal Entropy category).

4. Generalizing Writer Categorization

4.1. On Categorizing New Writers Relying on Entropy-
Prototypes Obtained Offline. We have this far shown that
there is one category of users which are much easier to
recognize than others, and much easier to discriminate from
skilled and random forgeries, those having a low Personal
Entropy value. Alternatively, there is another category of
users which are extremely difficult to recognize, those having
a high Personal Entropy value.
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DS2-382: skilled forgeries with HMM (generalization)

High Personal Entropy EER = 15.67%
Medium Personal Entropy EER = 13.4%
Global performance EER = 13.34%
Low Personal Entropy EER = 11.42%

(a)

0.05 0.1 0.2 0.5 1 2 5 10 20

False acceptance rate (%)

0.1

0.2

0.5

1

2

5

10

20

40

Fa
ls

e
re

je
ct

io
n

ra
te

(%
)

DS2-382: random forgeries with HMM (generalization)

High Personal Entropy EER = 6.99%
Medium Personal Entropy EER = 4.07%
Global performance EER = 4.28%
Low Personal Entropy EER = 3.07%

(b)

Figure 10: DET-curves considering skilled forgeries (a) and random forgeries (b), on each writer category and globally on DS2-382 database
with the HMM classifier, after computing entropy-prototypes on DS2-104.

Table 4: Equal Error Rate and Confidence Interval in each writer category on DS2-382 database, with the HMM classifier considering skilled
and random forgeries.

DS2-382 with HMM classifier

Skilled forgeries Random forgeries

EER (%) CI (95%) EER (%) CI (95%)

High entropy 15.67 ±0.025 6.99 ±0.015

Medium entropy 13.4 ±0.012 4.07 ±0.006

Low entropy 11.42 ±0.014 3.07 ±0.005

Global performance 13.34 ±0.003 4.28 ±0.003

Each writer category is naturally associated to an
Entropy-Prototype (EP) inherited from the K-Means pro-
cedure used to “cluster” writers. Our aim in this section is
to study the possibility of categorizing new writers based on
previously generated Entropy-Prototypes (EPs), on a data set
of limited size. We carry out this study by generating three
Entropy-Prototypes on DS2-104, and using such prototypes
to categorize writers from another data set: DS2-382.

Indeed, we categorize a writer belonging to such data set
as follows:

(1) computing the writer’s Personal Entropy with 10
genuine signatures of such writer from DS2-382;

(2) retrieving the three Entropy-Prototypes (one per
category) computed offline on DS2-104 database;

(3) associating to such writer from DS2-382 the category
of closest Entropy-Prototype by the Nearest Neighbor
Rule [24].

In order to study the relevance of the previous protocol,
we study performance on the obtained categories after
generalization. In order to carry out this study, we only
consider in the following an HMM classifier, since the same
results are obtained with a GMM classifier.

4.2. Generalization on the Same Database from DS2-104
to DS2-382. Figure 10 and Table 4 show the performance
obtained on DS2-382 with an HMM classifier on each of
the obtained categories after computing Entropy-Prototypes
on DS2-104, with skilled and random forgeries respectively.
We also compare results per category to global results on the
complete DS2-382 database.



EURASIP Journal on Advances in Signal Processing 11

As on DS2-104, on which the Entropy-Prototypes have
been computed originally, we notice that also on DS2-
382 there is a difference in classifiers’ performance between
the two extreme categories, for both skilled and random
forgeries: the HMM classifier gives the best performance
on writers belonging to the category of lowest Personal
Entropy. At the opposite, the HMM classifier gives the worst
performance on writers belonging to the highest Personal
Entropy.

As shown in Table 4, at the Equal Error Rate functioning
point, performance is roughly improved by a factor 2 for
skilled forgeries and 1.4 for random forgeries when switching
from the highest entropy category to the lowest one. We also
notice that performance values for the category of writers
with medium Personal Entropy are in between those of the
two extreme writer categories.

Moreover, the global performance on the whole data
set DS2-382 is degraded compared to performance on the
category of writers with lowest Personal Entropy.

4.3. Our Proposed Criterion for Writer Enrolment. We have
shown that Entropy-Prototypes generated offline on a
database of limited size (104 persons) can be used to perform
writer categorization on new writers from the same database.
We thus propose to exploit such Entropy-Prototypes, which
are totally independent of the verification system, to identify
beforehand signatures that are not secure in terms of
performance. The enrolment procedure that we propose has
the following steps.

(1) Ten genuine signatures are requested from the writer
to be enrolled.

(2) A Writer-HMM is built for such writer by training the
HMM on such ten genuine signatures.

(3) The Personal Entropy of such writer is computed.

(4) The three Entropy-Prototypes computed offline are
retrieved.

(5) The category of the closest Entropy-Prototype by the
Nearest Neighbor Rule [24] is associated to the writer.

(6) When a writer is classified as belonging to the
highest Personal Entropy category, he/she should
be informed of the intrinsic risk related to his/her
signature. Indeed, this category of writers gives
unreliable results relatively to other Personal Entropy
categories; we thus propose to the user either to
pursue enrolment knowing the intrinsic risk of
his/her signature, or alternatively to change his/her
signature for security purposes.

(7) When a writer belongs to the category of lowest
Personal Entropy, the writer is enrolled.

(8) When a writer belongs to the category of middle
Personal Entropy, we recommend to the writer to do
a more complex and less variable signature, but still
can retain his/her signature.

Based on our experiments, we can assert that the more
Personal Entropy lowers, the more reliable is the signature in

terms of security. This should be to take into account when
using online signature in practical applications.

5. Conclusion

We have proposed a novel criterion for writer enrolment
that allows guaranteeing a higher level of security to the
individual writer, regardless of the verification system that
is used. Such criterion relies on an unsupervised auto-
matic writer categorization process, carried out on a Time-
Normalized Personal Entropy measure, quantified in bits per
second. We first introduce in this work a “Sample Entropy”
measure associated to each enrolment signature sample,
computed locally by means of a Writer-HMM trained on
ten enrolment signatures. Then we explain how the resulting
“Time-Normalized Personal Entropy” value of each writer is
retrieved.

We show that a writer can be categorized according to
this measure and to Entropy-Prototypes computed offline,
into one of three categories of writers. This categorization
process is crucial because verification systems’ performance
is significantly different between the extreme categories of
highest and lowest Personal Entropy. Indeed, we show across
two data sets that our Personal Entropy measure allows
classifying writers automatically into three visually coherent
and linearly separable categories, opposing long, complex
and stable signatures to short, strongly variable and simple
signatures. Moreover, we have quantified the behaviour
of the signature in terms of complexity and variability,
and we have linked these values to our Personal Entropy
measure.

We have shown that Entropy-Prototypes, naturally inher-
ited from the K-Means procedure and performed to generate
writer categories, can be generated offline on a data set of
limited size (around 100 persons) and be used to perform
writer categorization on new writers of another data subset,
providing the same acquisition conditions. More generally,
a database of roughly 100 persons is enough to generate
the categories, then allowing the online categorization of
any new user whose signatures are acquired in similar
conditions (same digitizer, similar tablet resolution, and
same acquisition protocol).

Based on this result, we propose an enrolment writer
criterion related to such Entropy-Prototypes, totally inde-
pendent of the verification system, to identify beforehand
signatures which are not secure in terms of performance.
Indeed, a Nearest Neighbour Rule on Entropy-Prototypes
generated offline, on a database of roughly 100 persons,
allows categorizing a writer after requesting from him ten
instances of his/her signature. A stable and reliable result
emerges of our study: the more Personal Entropy lowers,
the more reliable is the signature in terms of security. This
statement allows adapting the quality of the enrolment data
to the level of security requested by the application.
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1. Introduction

Signature verification is the task of authenticating a person
based on his/her signature. Online (dynamic) signatures are
signed on pressure sensitive tablets that capture dynamic
properties of a signature in addition to its shape, while offline
(static) signatures consist of only the shape information.
Dynamic features, such as the coordinates and the pen
pressure at each point along the signature’s trajectory, make
online signatures more unique and more difficult to forge
compared to offline signatures.

In online signature verification systems, like in any other
biometric verification system, users are first enrolled to the
system by providing reference samples. Later, when a user
presents a signature claiming to be a particular individual,
the query signature is compared with the reference signatures
of the claimed individual. If the dissimilarity is above a
certain fixed threshold, the user is rejected.

As a behavioral biometric, online signatures typically
show more intrapersonal variations compared to physical

biometrics (e.g., iris, fingerprint). Furthermore, forging a
signature may be relatively easy if the signature is simple
and its timing can be guessed from its static image (e.g.,
short signature showing a strictly left to right progression).
Despite these shortcomings, signature is a well-accepted
biometric and has potential niche applications such as
identity verification during credit card purchases. Also,
forging the shape and timing at the same time proves to be
difficult in reality, as evidenced by the success of automatic
verification algorithms [1].

In this work, we present an online signature verification
system based on the spectral analysis of the signature using
the Fast Fourier Transform (FFT). The advantage of using
the Fourier domain is the ability to compactly represent
an online signature using a fixed number of coefficients,
which leads to fast matching algorithms. More importantly,
the fixed-length is better suited or even necessary in certain
applications related to information theory and biometric
cryptosystems. For instance, the template protection scheme
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by Tuyls et al. [2] requires a fixed-length feature representa-
tion of the biometric signal. Similarly, an earlier version of
the proposed system was used for assessing the individuality
of online signatures, where the fixed-length representation
was important for simplifying the analysis [3]. Approaches
using global and local features are called feature-based and
function-based in literature, respectively. In this work, we
also refer to them shortly as global and local approaches.

The challenge of using the Fourier domain representa-
tion, on the other hand, is to find the right preprocessing
steps and matching algorithm for this representation. We
report on the effectiveness of the proposed method, along
with the effects of individual preprocessing and normal-
ization steps, on the overall system performance, based on
comprehensive tests over two public signature databases.
While the current error rates are higher than state-of-the-
art results for the used databases, this is to be expected
since approaches based on global features of the signature
normally underperform those using local information. On
the other hand, in addition to the aforementioned advan-
tages, global approaches are good complements to local
approaches such as Dynamic Time Warping (DTW) or
Hidden Markov Models (HMMs). In fact, we show that the
fusion of the proposed system improves the performance
of our DTW system by up to about 25%. With regard to
the preprocessing, we show that the proposed incorporation
of the pen-up durations significantly improves verification
performance, while subsampling which is commonly used
to obtain equal-length signatures, has the opposite effect.
Finally, we discuss potential improvements and conclude that
the proposed system has potential both as a stand-alone
system and especially in combination with approaches that
are based on local features.

This paper is organized as follows. Section 2 describes
the previous work in the general area of online signature
verification problem, along with some specific work that are
more closely related to ours. Section 3 describes the proposed
method, including preprocessing, feature extraction, and
matching steps. Sections 4 and 5 present and discuss the
experimental results using the SUSIG and MCYT databases.
Finally Section 6 mentions future work to improve the
current performance.

2. Previous Work

Signature verification systems differ both in their feature
selection and in their decision methodologies. In fact, more
than 70 different feature types have been used for signature
verification [4–7]. These features can be classified in two
types: global and local. Global features are those related to
the signature as a whole, including the signature bounding
box dimensions, average signing speed, and signing duration.
Fourier Descriptors studied in this work are also examples of
global features. Genuine signatures of a person often differ
in length due to the natural variations in signing speed.
The advantage of global features is that there are a fixed
number of measurements (features) per signature, regardless
of the signature length; this makes the comparison of two

signatures a relatively straightforward task. The fixed-length
representation is also better suited or even necessary in
certain applications. Xu et al. use the Fourier transform to
obtain a fixed-length representation of fingerprint minutiae
[8]. Similarly, Yi et al. use the phase information of the
Gabor filter to align online signatures and use the temporal
shift and the shape dissimilarity measures to represent online
signatures using a fixed-length feature vector [9].

In contrast to global features, local features are measured
or extracted at each point along the trajectory of the
signature and thus vary in number even among genuine
signatures. Examples of local features include position,
speed, curvature, and pressure at each point on the signature
trajectory. In [5, 10], some of these features are compared in
order to find the more robust ones for signature verification
purposes. When local features are used, one needs to use
methods which are suitable to compare feature vectors of
different lengths: for instance, the Dynamic Time Warping
algorithm [4, 5, 11–13] or Hidden Markov Models [14–
19]. These methods are more complicated compared to the
relatively simple metrics used with global features but they
are generally more successful as well. Methods using global
and local features are called feature-based and function-
based approaches in literature [7]. Comprehensive surveys of
the research on signature verification, including a recent one,
can be found in [20–22].

The performance of biometric verification systems are
evaluated in terms of false reject rate (FRR) of genuine
samples, false accept rate (FAR) of impostors, and equal
error rate (EER), where the two types of errors are equal.
Due to the differences in databases and forgery quali-
ties, comparing reported performance results is difficult.
The First International Signature Verification Competition
(SVC2004), organized in 2004, provided a common test set
and tested more than 15 online signature verification systems
from industry and academia. The results of this competition
indicate state-of-the-art results of 2.6% equal error rate
in skilled forgery detection and 1.85% equal error rate in
random forgery detection tasks, using only position sequence
(x, y) of a signature [1]. Our DTW-based system using only
positional information, later described in [13], was declared
as the winning system (Team 6) for its performance in the
skilled forgery tests. We will refer to this system as our DTW
system from now on.

Many different features and matching algorithms have
been used to compare two signatures but the use of the
Fourier Transform has not been widely explored [23–25].
In the work by Lam et al. [23], the signature is first
resampled to a fixed-length vector of 1024 complex numbers
consisting of the x- and y-coordinates of the points on the
signature trajectory. This complex signal then undergoes
various preprocessing steps, some of which are suggested by
Sato and Kogure [24], including normalization for duration,
drift, rotation, and translation, prior to the application of the
Fast Fourier Transform (FFT). Feature extraction involves
calculating the Fourier Descriptors of the normalized signa-
ture and selecting the 15 Fourier Descriptors with the highest
magnitudes, normalized by sample variances. Discriminant
analysis is then used with the real and imaginary parts of
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the 15 selected harmonics, to find the most useful features
and their weights. The proposed system was tested using a
very small signature dataset (8 genuine signatures of the same
user and 152 forgeries provided by 19 forgers), achieving
a 0% FRR and 2.5% FAR. In a similar work, Quan et al.
[25] use windowed FFT to avoid the discontinuities in the
signal, also using discriminant analysis to pick the important
FFT coefficients. The authors show that windowing improves
performance, resulting in an EER of 7% EER on the MCYT-
100 database, using 15 reference signatures.

Similar to the Fourier transform, the Discrete Wavelet
Transform (DWT) is recently used for online signature
verification by Nanni and Lumini [26]. The results of this
system on the MCYT-100 database are 11.5% equal error
rate on skilled forgeries, when using only the coordinate
information (x- and y-coordinates as a function of time) of
the signature. The DWT is also used by Nakanishi et al. [27],
with about 4% EER on a small private database.

Recent research on signature verification has concen-
trated on the fusion of multiple experts [7, 26, 28]. These
systems typically combine new methods with proven ones
such as DTW and HMMs (e.g., [13, 19] which received
the first and second place in the SVC2004 competition).
Fusion systems have some of the best results obtained for
their respective databases; this is not very surprising because
online signature is a complex signal of several dimensions
and one method may concentrate on one aspect of the signal
(e.g., shape), while another method may focus on another
(e.g., timing).

In this paper, we present a novel online signature
verification system based on the Fast Fourier Transform.
Our work differs from previous work using Fourier analysis
[23–25] in preprocessing and normalization steps as well
as the matching algorithm. Furthermore, the results of the
proposed algorithm and the individual preprocessing steps
are comprehensively tested on two large, public databases.
The results show the potential of the proposed system and
also highlight the importance of the timing information for
online signatures, in contrast to previous work where the
timing information was discarded to a large extent [23–25].

3. Proposed Method

3.1. Input Signal. An online signature S, collected using
a pressure-sensitive tablet, can be represented as a time
sequence:

S(n) =
[
x(n) y(n) p(n) t(n)

]T
(1)

for n = 1, 2, . . . ,N , where N is the number of points sampled
along the signature’s trajectory; x(n) and y(n) denote the
coordinates of the points on the signature trajectory, while
p(n) and t(n) indicate the pen pressure and timestamp, at
sample point n. A pressure-sensitive tablet typically samples
100 points in a second (100 HZ) and captures samples
only during the interaction of the pen tip with the tablet.
Depending on the tablet capabilities, pen azimuth (az(n))
and pen altitude (al(n)), indicating the angle of the pen
with respect to the writing surface, can also be collected.

Other features such as local velocity and acceleration may
be calculated using the above features, as done by many
signature verification systems [5–7, 12, 14].

The positional information consisting of x(n) and y(n)
is important because it describes the shape of the signature
and it is common to all tablets. The pressure information,
on the other hand, had not seem very useful in some
previous studies [10, 13, 26], while others have found it
useful [29]. In particular, our DTW system [13] using just
the positional information achieved the lowest error rates
in the skilled forgery tasks of SVC2004, including the task
where pressure, azimuth, and altitude were available to
participating systems [1]. On the other hand, Muramatsu
and Matsumoto [29] tested the discriminative power of the
component signals of an online signature both alone and
in groups and achieved 10.4% EER when they included
the pressure and azimuth information, compared to 12.7%
without them, using the SVC2004 database. In the current
work, we have also observed that the pressure, azimuth, and
altitude information improves the performance, although
not drastically. In addition, we propose to use the timestamp
information to identify and use the pen-up periods in
identifying forgeries.

In the remainder of the paper, we use the sequence index
n as if it refers to time (see Section 3.2.1) and describe the
methodology concentrating on the positional information,
denoted as s(t), while the other input components are used
as available.

3.2. Preprocessing. Preprocessing of online signatures is
commonly done to remove variations that are thought to
be irrelevant to the verification performance. Resampling,
size, and rotation normalization are among the common
preprocessing steps. While useful in object recognition, our
previous research [13] had suggested that preprocessing may
decrease biometric authentication performance by removing
individual characteristics of the user. Therefore, we keep the
amount of preprocessing done to a minimum, preserving
as much of the discriminatory biometric information as
possible.

In the previous work on online signature verification
using FFT [23–25], the signature undergoes various prepro-
cessing steps, consisting of spike and minor element removal
to remove noise and extraneous segments; adding ligatures
to connect consecutive strokes to reduce discontinuities
that would affect FFT results; equi-time subsampling to
obtain a fixed-length signature; drift removal; and rotation,
translation, and scale normalization. In [23], the effects
of drift removal and ligature processing are analyzed and
authors report that drift removal significantly improves
verification performance, while ligature processing only
brings a marginal improvement. They guess that ligature
processing that is done to reduce discontinuities is not very
helpful because the high-frequency components affected by
the discontinuities are discarded in the matching process.

We tested the individual effects of the preprocessing steps
found to be important in [23], using two large databases. The
results described in Section 4.4 show that subsampling which
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is commonly done to normalize the length of a signature
significantly reduces verification performance by removing
most of the timing information. This was also confirmed
in our previous research. On the other hand, mean and
drift removal are found to be useful, while scale removal
is not needed since our features (Fourier Descriptors) are
normalized to be invariant to translation, rotation, and scale
changes.

In addition to the steps described above, we propose
to use the timestamp information to identify and use the
pen-up periods in identifying forgeries. The next sections
describe the preprocessing steps used in this work.

3.2.1. Pen-up Durations. Pen-up periods indicate the times
when the pen is not in contact with the tablet. These
periods may be detected using discontinuities between the
timestamps of consecutive points (t(n) and t(n + 1)) and
actual pen-up durations can be calculated using the sampling
rate of the tablet and the difference between timestamps.

Forgery signatures often have longer pauses between
strokes, compared to genuine signatures, which may help
in identifying forgeries. Thus, while the pen-up durations
can be useful for verification, such as in detecting a forger’s
hesitation or recomposition, it is often discarded, keeping
just the order of the sampled points. In fact, the timing
information is discarded to a large extent by many systems
that use resampling to obtain a fixed-length signature,
including the previous work using FFT [23–25]. Note that
resampling results in keeping only the relative order of the
points on the trajectory, while other timing information is
discarded.

We propose to fill the pen-up durations with imaginary
points, which has a twofold benefit: (i) it incorporates pen-
up durations directly into the signature trajectory; (ii) it
reduces trajectory discontinuities, which enhances the FFT
analysis. For example, if there is a 50 ms wait between two
consecutive points of the trajectory using a 100 Hz tablet
(corresponding to 10 ms between consecutive samples), we
add 4 imaginary points. Imaginary points can be generated
through (a) interpolation between the last and first points
of the two strokes corresponding to the pen-up event or (b)
as if the pen was actually left on the tablet after the stroke
prior to the pen-up event. In order for the pen-up events not
to dominate the signal, we place imaginary points sparingly
(every 30 ms for the 100 Hz tablet). Both methods of adding
imaginary points improve the system performance, though
the more sophisticated method of interpolation obtains
better results, as expected.

Note that after this process, the timestamp information
(t(n)) itself is basically redundant and discarded. We use the
sequence index n and time t interchangeably in the rest of the
paper.

3.2.2. Drift and Mean Removal. In signatures that go from
left to right, x(t) has a significant drift as time increases
and the same can be said for signatures being signed top
to bottom and y(t). Drift removal step aims to remove the
baseline drift component of a signal, so as to keep only

the important information in the signal. We use a linear
regression using least squares fit to estimate the drift. Given
a discrete time signal y of length n, the drift removed version
y′ can be computed as

y′ = y − β × (t − t), (2)

where

β = Σyt − nyt
Σt2 − nt2

. (3)

Mean removal on the other hand is simply achieved by
subtracting the mean of the signal from itself: y′ = y − y.

3.3. Feature Extraction. We use the Fourier Transform to
analyze the spectral content of an online signature. The
details of the Fourier transform are out of the scope of this
paper but can be found in many references (e.g., [30]). Below
we give the basic idea and necessary definitions.

3.3.1. Fourier Transform. Any periodic function can be
expressed as a series of sinusoids of varying amplitudes,
called the Fourier Series. If the signal is periodic with
fundamental frequency ω, the frequencies of the sinusoids
that compose the signal are integer multiples of ω and are
called the harmonics. The Fourier Transform is used to find
the amplitude of each of the harmonic component, which is
called the frequency spectrum of the signal. It thus converts a
signal from the time domain into the frequency domain.

The Discrete Fourier Transform discrete time signal f (t)
is defined as follows:

Ck = 1
N

N−1∑

t=0

f (t)e−i2πkt/N k = 0, 1, . . . ,N − 1, (4)

where f (t) is the input signal; N is the number of points
in the signature; k indicates the frequency of the particular
harmonic; eix = cos(x) + i sin(x).

The amplitude of the kth harmonic found by the Fourier
transform is referred to as the kth Fourier Coefficient. Given
a complex Fourier coefficient Ck = ak + ibk, the magnitude
and phase corresponding to the kth harmonic are given by

|Ck| =
√
a2
k + b2

k and tan−1(bk/ak), respectively.
The Fourier coefficients are normalized to obtain the

Fourier Descriptors which are the features used in this study,
as described in Section 3.3.3.

The Inverse Fourier Transform is similarly defined as

f (t) =
N−1∑

k=0

Cke
i2πkt/N t = 0, 1, . . . ,N − 1. (5)

The Fourier transform has many uses in signal processing.
For instance, reconstructing a time signal using the inverse
Fourier transform by discarding the high-frequency compo-
nents of a signal can be done for noise removal.

3.3.2. Input Signal Components. An online signature consist-
ing of x- and y-coordinates can be represented as a complex
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Figure 1: The y-coordinate (a) and x-coordinate (b) profiles belonging to genuine signatures of 3 different subjects from the SUSIG database.

signal s(t) = x(t)+ iy(t) where x(t) and y(t) are the x- and y-
coordinates of the sampled points. The Fourier transform of
the signature trajectory can then be directly computed using
the complex signal s(t) as the input, as described in (4).

In signatures which are signed from left to right or right
to left, x(t) is a monotonic function for the most part and
carries little information, as shown in Figure 1. Based on this
observation, we first evaluated the discriminative power of
y(t) alone, discarding x(t) for simplicity. Later, we also did
the reverse and used only x(t) for completeness. Similarly, we
assessed the contribution of other input signal components
to the verification performance, by concatenating features
extracted from individual component signals (e.g., x(t), y(t),
p(t)), to obtain the final feature vector. We denote these
feature vectors by indicating the individual source signals
used in feature extraction: for instance, x | y | p denotes
a feature vector obtained from the x-, y-coordinates and
pressure component, respectively. The input signal f (t) in
(4) can be any one of these signals (s(t), y(t), x(t), p(t),
etc.).

3.3.3. Fourier Descriptors. The extracted Fourier coefficients
are normalized to obtain the Fourier Descriptors, using
normalization steps similar to the ones used in 2D shape
recognition. In particular, the Fourier coefficients obtained
by applying the Fourier Transform to the object contour
(x(t), y(t)) can be normalized to achieve invariance against

translation, rotation, and scaling of the original shape [30].
Specifically, translation of a shape corresponds to adding a
constant term to each point of the original shape and affects
(only) the first Fourier coefficient. By discarding C0, defined
in (4), one obtains translation invariance in the remaining
coefficients. Rotation of a shape results in a phase change
in each of the Fourier coefficients; rotation invariance is
automatically obtained when one uses only the magnitude
information of the Fourier Transform. Alternatively, each
coefficient can be normalized such that the phase of one
of the coefficients (e.g., C1) is zero; this is equivalent to
assuming a canonical rotation that gives a zero phase to
C1. Finally, scaling of a shape corresponds to multiplying
all coordinate values of the shape by a constant factor and
results in each of the Fourier coefficients being multiplied by
the same factor. Therefore, scale normalization is achieved
by dividing each coefficient by the magnitude of one of the
components, typically |C1|.

An online signature must show adequate match to the
reference signatures of the claimed identity in both shape
and dynamic properties, in order to be accepted. As with the
above normalization steps, it is easy to see that by discarding
C0 and using the magnitudes of the remaining coefficients
as features, we obtain invariance to translation (position of
the signature on the tablet) and rotation (orientation relative
to the tablet). Scale invariance is more complicated, due
to the additional dimension of time. If a signature is only
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Figure 2: A verification case is shown for illustration, using only the y-profile. From left to right: (a) Genuine signature, its y-profile and
its Fourier Descriptors. (b) Forgery signature, its y-profile and its Fourier Descriptors. The Fourier Descriptors of genuine and forgery
signatures (shown as dots) are overlaid on top of the envelope showing the min and max values of the reference signatures’ descriptors, while
the line in the middle denotes the mean reference feature.

scaled in space, while keeping the signing duration the same,
dividing each coefficient’s magnitude by |C1| achieves scale
normalization. However for the more general case involving
both scale and time variations, we have found that a more
robust approach is to divide each coefficient by the total
magnitude of the Fourier spectrum:

m =
N−1∑

k=0

|Ck| =
N−1∑

k=0

√
Ck ∗ C∗k , (6)

where N is the length of the signature; |Ck| is the magnitude
of the complex coefficient Ck; C∗k is the complex conjugate of
Ck.

The total energy of the Fourier spectrum is also com-
monly used for normalization of the Fourier coefficients:

e =
N−1∑

k=0

|Ck|2. (7)

In our experiments, we have found that the normaliza-
tion by the total amplitude has outperformed normalization
done either by dividing each component by |C1| or by the
total energy of the Fourier Transform (about 3% and 1%
percent points less error, resp.).

Using (7), our final features or the Fourier Descriptors Fk
are thus obtained as

Fk = |Ck|
m

k = 1, . . . ,
N

2
. (8)

Notice here that k goes from 1 to N/2 since we discard half of
the coefficients due to the symmetry of the Fourier transform
spectrum.

3.3.4. Zero-Padding. Due to the natural variation in the
signing process, genuine signatures of the same user almost

never have equal lengths. The length variation results in
Fourier domain representation with varying number of
components, hence feature vectors of varying lengths. While
one can cut out the high-frequency components, leaving only
the first k Fourier coefficients, when the signatures are of
different lengths, these components do not correspond to the
same frequencies.

In order to obtain an equal number of Fourier Descrip-
tors which correspond to the same frequencies, we pad each
signature to be compared (reference set + query) with zeros,
to match the length of the longest signature in the set, prior
to the application of the Fourier Transform. This process is
called zero-padding and does not affect the amplitudes of the
Fourier coefficients but changes the frequency resolution.

3.3.5. Smoothing. We smooth the computed Fourier descrip-
tors Fk by averaging two consecutive descriptors, to account
for the normal timing variations between genuine signatures
that would result in energy seeping into the neighboring
harmonics. The smoothing is found to have a significant
effect (roughly 2% point) in overall system performance in
both tested databases.

Sample signatures and their forgeries, along with the
resultant Fourier descriptors, are shown in Figure 2, using
only the y-dimension for simplicity. The figure shows the
envelope of the reference set descriptors to indicate the
difference between query and reference signature descriptors,
while in matching we only use the distance to the mean.
The difference in the Fourier descriptors of the reference
signatures for the genuine and forgery queries is due to zero-
padding used in this example. As explained before, zero-
padding does not change the frequency content of a signal
but increases the frequency resolution (here note that the
forgery signature that is used in determining the padding
amount is much longer than the references).
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Table 1: The summarizing characteristics of the public databases used in this study. In both of them, the genuine signatures are collected in
multiple sessions and there are 5 reference signatures per user.

Dataset Subjects Genuine Skilled forgeries Input

SUSIG-Visual 100 2000 1000 x, y, p, timestamp

MCYT-100 100 2500 2500 x, y, p, az, al

Table 2: Equal error rates obtained using different components of the input signal. The timestamp is discarded after incorporating the
pen-up durations into the trajectory, for the SUSIG database.

Dataset x + iy y x x | y x | y | p x | y | p | az x | y | p | az | al
SUSIG-Visual 8.37% 9.90% 8.42% 6.20% — — —

MCYT-100 17.62% 17.38% 17.42% 14.53% 12.99% 12.61% 12.11%

3.4. Matching. When a query signature is input to the
system along with a claimed ID, the dissimilarity of its
Fourier Descriptors from those of the reference signatures
of the claimed person is calculated. Then, this distance is
normalized using the reference set statistics of the user, and
the query signature is accepted as genuine if this normalized
distance is not too large. These steps are explained in detail
in the following subsections.

3.4.1. Distance Between Query and Reference Set. During
enrollment to the system, the user supplies a number of
reference signatures that are used in accepting or rejecting
a query signature. To find the dissimilarity between a query
signature q and the reference set Ri of the claimed user i, we
compute the Euclidian distance between the query features
Fq obtained from q and the vector FRi which is the mean of
the feature vectors of the reference signatures in Ri:

d
(
q,Ri

) =
∥∥∥Fq − FRi

∥∥∥. (9)

We have also evaluated different matching algorithms,
such as the number of matching Fourier Descriptors between
the compared signatures but the presented matching algo-
rithm gave the best results. Ideally, one can apply machine
learning algorithms to find the most important descriptors
or to decide whether the query is genuine or forgery given
the Fourier descriptors of the query and reference set.

3.4.2. User-Dependent Distance Normalization. In order to
decide whether the query is genuine or forgery, the distance
computed in (9) should be normalized, in order to take
into account the variability within the user’s signatures.
We use a normalization factor computed only from the
reference signatures of the user. The normalization factor Di

which is separately calculated for each user i, is the average
dissimilarity of a reference signature r to the rest of the
reference signatures:

Di = meanr∈Rid(r,Ri/r), (10)

where Ri/r indicate the set Ri without the element r. The
normalization factor Di is calculated by putting a reference
signature aside as query and calculating its dissimilarity d

to the remaining reference signatures (Ri/r). The resulting
normalized distance d(x,Ri)/Di is compared to a fixed, user-
independent threshold.

We have previously found that this normalization is
quite robust in the absence of training data [13]. Results
of similar methods of normalization using slightly different
statistics of the reference signatures are shown in Table 5.
More conventional normalization techniques using client
and impostor score distributions can be used when training
data is available [31] and are expected to perform better.

3.4.3. Removing Outliers. Often, there are some important
differences (in timing or shape) among the reference sig-
natures of a user. In this work, we experimented with
the removal of outliers from the reference set. While the
template selection is a research area by itself, we found
that eliminating up to one of the outlier from the reference
set in a conservative fashion brings some improvement.
For this, we sort the reference set distances of a user, as
calculated using (9), and discard the last one (the one with
the highest distance to the remaining references) if there is a
big difference between the last two.

4. Experimental Results

4.1. Databases. The system performance is evaluated using
the base protocols of the SUSIG [32] and MCYT [33]
databases. The SUSIG database is a new, public database
consisting of real-life signatures of the subjects and including
“highly skilled” forgeries that were signed by the authors
attempting to break the system. It consists of two parts: the
Visual subcorpus obtained using a tablet with a built-in LCD
display providing visual feedback and the Blind Subcorpus
collected using a tablet without visual feedback. The Visual
subcorpus used in this study contains a total of 2000 genuine
signatures and 1000 skilled (half are highly skilled) forgeries
collected in two sessions from 100 people. The data in SUSIG
consists of x, y, and timestamp, collected at 100 Hz.

The MCYT database is a 330-people database of which
a 100-user subcorpus is made public and is widely used
for evaluation purposes. The database contains 25 genuine
signatures and 25 skilled forgeries signed by 5 different
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forgers, for each user. The data in MCYT database consists of
consists of x, y, pressure, azimuth, and altitude, collected at
100 Hz. Table 1 summarizes these datasets, while the details
can be found in their respective references.

4.2. Results of the Proposed System. We evaluated the use-
fulness of various preprocessing steps and the different
components of the input signal, on the overall verification
performance. The results obtained using the best set of
preprocessing steps, while varying the input signal, are sum-
marized in Table 2. As can be seen in this table, using only
the coordinate information of the signature, we obtained
minimum equal error rates of 6.20% and 14.53% for SUSIG
and MCYT databases, respectively. These results are obtained
using the concatenation of the Fourier descriptors obtained
from y(t) and x(t). The pressure, azimuth, and altitude
information available in the MCYT-100 database further
reduced the EER to 12.11% EER. In addition to the EER
results, the DET curves showing how FAR and FRR values
change according to changing acceptance thresholds are
given for the databases used in the evaluation, in Figure 3.

These results are obtained using 30 normalized Fourier
descriptors per signal component (i.e., 30 for y(t), 60 for
y(t) | x(t), etc.) and the preprocessing steps described in
Section 4.4. However, very similar results were obtained with
20 and 25 descriptors. As described in Section 4.4, up to
one reference signature was removed from the reference set,
if deemed as an outlier. Timestamp information was not
available for the MCYT database, and subsequently the pen-
up durations were not used for this database.

Considering the effects of the different input signal
components, we see that each information source brings
the error rate down, from 14.53% using x | y to 12.11%
using x | y | p | az | al, for the MCYT database. Notice
that the diminishing improvement is not necessarily and
indication of the value of an input signal by itself. As for
the positional information, we observe that the signature
encoded as a complex signal (i.e., s(t) = x(t) + iy(t))
which was used in [23] gave significantly worse results
compared to the concatenation of the features obtained from
the x- and y-components separately (i.e., x | y). Another
interesting observation is that our initial assumption about
the x-component being mostly useless was not reflected in
the results. While the x-component indeed contains little
information in signatures signed strictly from left to right,
the results show that it contains enough discriminative
information to separate genuine and forgery signatures to a
large extent, for the particular databases used.

In order to see the variation of the overall performance
with respect to different sets of reference signatures, we ran
25 tests using the proposed method with different sets of
5 reference signatures, on the MCYT database. The mean
EER for these tests was 10.89%, while standard deviation was
0.59. In fact, the worst performance was with the original
set of references (genuine signatures [0–4]). The better
performance with other reference sets can be explained by
the fact that reference signatures collected over a wider time
span better represent the time variation in the data.
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Figure 3: DET curves show how FAR (x-axis) and FRR (y-axis)
values change according to changing acceptance threshold, for the
tested databases.

The proposed FFT system is very fast: it can process 4500
queries in the MCYT-100 database in 69 seconds of CPU
time.

4.3. Effects of Preprocessing Steps. The best results reported in
Table 2 were obtained using few preprocessing steps, namely,
pen-up duration encoding and drift and mean removal.
Some of the other preprocessing steps used in previous
work based on FFT [23, 25] were just not useful due to
our normalized features (e.g., rotation and scale normal-
ization), while resampling worsened results by removing
discriminative information (30.02% versus 6.20% EER for
the SUSIG database and 17.82% versus 12.11% EER for the
MCYT database). On the other hand, removal of the drift
(especially significant in the x-component) was found to
improve performance in both our work and in previous work
[23], by a few percent points. The effects of drift and mean
removal are most apparent when they are used together.
Note that mean removal is normally not necessary, since
translation invariance is provided when the first Fourier
coefficient is discarded; however mean removal affects the
outcome due to zero padding.

The proposed incorporation of the pen-up duration is
also found to help increase performance (9.09% EER versus
6.20% EER for the SUSIG database).

4.4. Effects of Distance Normalization. Normalization of the
query distance, prior to using a fixed threshold across all
users, has been found to make a significant difference
on verification performance, as shown in Table 4. Here,
AvgN refers to dividing the distance between the query and
the mean descriptor vector by the average distance of the
reference signatures. This average is obtained by using a
leave-1-out method whereby one of the reference signature
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Table 3: Effects of various preprocessing steps on the best configuration. The bold face shows the results of the proposed system, while the
last column shows the results if resampling was added to the proposed preprocessing steps (drift and mean removal and pen-up duration
incorporation when available).

Dataset Feature Raw Drift Mean Drift + Mean Proposed = Drift +
Mean + PenUp

Proposed if resampled

SUSIG-Visual y | x 8.18% 7.34% 11.52% 9.09% 6.20% 30.02%

MCYT-100 y | x | p | az | al 20.31% 20.38% 13.51% 12.11% — 17.82%

Table 4: Different methods for user-dependent distance normaliza-
tion using only the reference data.

Dataset Feature AvgN MinN MaxN None

MCYT-100 y | x | p | az | al 12.11% 13.2% 14.3% 21.5%

SUSIG-Visual y | x 6.20% 8.1% 5.8% 14.1%

is treated as query, while the others are used as reference,
as described in Section 3.4.2. Similarly, MinN and MaxN
refer to dividing the distance between the query and the
mean descriptor vector by the minimum and maximum of
the reference signature distances (again using the leave-one-
out method), respectively. All three of these normalization
methods are better than not doing any normalization at all.

Notice that while AvgN gives the best results for the
MCYT-100 dataset, MaxN has given the best results for the
SUSIG database. This difference highlights an important
aspect of the current work, which is the fact that the exact
same system is used in testing both databases, without any
adjustment. In all of the presented results, we use the AvgN
normalization method.

4.5. Results of the Fusion with the DTW System. It has been
shown in the last couple of years that the combination
of several experts improves verification performance in
biometrics [7, 28, 34, 35]. Some of the results, especially
as related to the work described here, are summarized in
Section 4.6.

In order to show that the proposed FFT system may com-
plement an approach based on local features, we combined
the FFT system with a slightly modified implementation of
the DTW system described in [13]. The distribution of the
DTW and FFT scores in Figure 4 shows that the two systems’
scores show a loose correlation, which is an important factor
in classifier combination systems. The combination is done
using the sum rule, after normalizing the scores of the two
systems. The score normalization factor is selected separately
for each database, so as to equalize the mean scores of the
two systems, as computed over the reference signatures in that
database. A better selection of the normalization factor can
be made when training data is available. Note that using the
sum rule with score normalization is equivalent to separating
the genuine and forgery classes using a straight line with a
fixed slope, where the y-intercept is adjusted to find the equal
error rate.

The results given in Table 5 show that the FFT system
improves the performance of the DTW system significantly,
by 8% or 26% depending on the database. Furthermore, the
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Figure 4: The distribution of the DTW and FFT scores for the
MCYT-100 database.

improvement brings the EER rates to state-of-the-art levels
given in Table 6 for both databases (3.03% for SUSIG and
7.22% for MCYT-100).

The proposed FFT system is very fast: it can process 4500
queries in the MCYT-100 database in 69 seconds of CPU
time. In comparison, the DTW system takes 36 800 seconds
for the same task, which corresponds to a factor of more
than 500. Theoretically, the time complexity of the DTW
system is O(N × M), where N and M are the lengths of
the two signatures being compared, while that of the FFT is
O(N logN) for a signature of length N . Hence, even though
using the FFT system in addition to the DTW system results
in negligeable time overhead, Figure 4 shows that the systems
can also be called in a serial fashion to eliminate the more
obvious forgeries using the FFT system and calling the DTW
system only for the less certain cases. Using this test with a
threshold of 4, the same reported results were obtained while
gaining around 10% speed overall.

The DTW approach is probably the most commonly
used technique in online signature verification, while quite
successful overall and in particular in aligning two signatures,
the basic DTW approach has some shortcomings, such as
assigning low distance scores to short dissimilar signatures.
One such example is shown in Figure 5, along with all of the
genuine signatures of the claimed user. As an approach using
global features, the FFT-based system is expected to be useful
in eliminating some of these errors, when used in fusion with
DTW or other local approaches.

4.6. Comparison with Previous Work. Results of previous
work tested on the MCYT database are given in Table 6 for
comparison. Since SUSIG is a new database, we concentrated
on previous work reporting results on the MCYT database.
Even with this database, comparing different results is
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Table 5: Results of the fusion of the FFT system with our Dynamic Time Warping system.

Dataset y | x y | x | p | az | al DTW DTW + y | x DTW + y | x | p | az | al Improvement

SUSIG-Visual 6.20% — 3.30% 3.03% — 8%

MCYT-100 14.53% 12.11% 9.81% 7.8% 7.22% 26%

Table 6: State-of-the-art results on the MCYT database using a priori normalization techniques. Unless otherwise indicated, all dimensions
of the input signal are used.

Reference Dataset Method Features Performance

Garcia-Salicetti et al. [35] MCYT-280

HMM [18] 5.73%

HMM [31] 8.39%

String Matching [36] 15.89%

Fusion of [18, 31] 3.40%

Faundez-Zanuy [28] MCYT-280
VQ 11.8%

DTW 8.9%

VQ-DTW 5.4% (DCF)

Vivaracho-Pascual et al. [37] MCYT-280 Length normaliz./p-norm 6.8% (DCF)

Nanni and Lumini [34] MCYT-100∗
SVM

100 global features
17.0%

SVM-DTW [13] 7.6%

Nanni and Lumini [26] MCYT-100
Wavelet-DCT

x, y
x, y, az

11.4%

Wavelet-DCT 9.8%

Wavelet-DCT fused
w/DTW, HMM, GM

5.2%

Quan et al. [25] MCYT-100∗ STFT 7%

This work MCYT-100
Proposed FFT

x, y
12.11%

DTW [13] 9.81%

FFT-DTW 7.22%

difficult due to varying experimental setups. In particular, we
have (i) the subset of the MCYT database used: MCYT-280
is the test subset of the full database of 330 people where a
50-people portion is used for training, while MCYT-100 is
the publicly available part consisting of 100 people and no
allocated training subset; (ii) the number of reference signa-
tures used (most systems use the first 5 genuine signatures
as suggested, while others use more, as necessitated by their
verification algorithm); (iii) number of available component
signals used, such as coordinate sequence, pressure, and
azimuth (not counting derived features); and (iv) whether
a priori or a posteriori normalization is used for score
normalization, as defined in [31].

In general, the higher the number of references, the better
one would expect the results to be, due to having more
information about the genuine signatures of a user. Similarly,
higher number of signal components normally give better
results. Finally, score normalization affects the performance
significantly, since the a posteriori normalization results are
intended to give the best possible results, if all genuine and/or
forger statistics in the database were known ahead of time.
For this comparison, we tried to included recent results on
the MCYT database, using 5 reference signatures as suggested
and a priori score normalization methods, to the best of our
knowledge.

Given the various factors affecting performance and the
difficulty in assessing the exact experimental setups of others’
work, an exact comparison of different systems is not very
easy. Nonetheless, we give the following as indicative results.
The best results obtained with the MCYT-100 database is
reported by Nanni and Lumini, with 5.2% EER using 3
measured signals (x, y, azimuth) using four experts including
Wavelet, DTW and HMM approaches [26]. In that work, the
Wavelet based system itself achieves 9.8% EER. The other
system developed by the same authors which uses Support
Vector Machines (SVMs) with 100 global features obtains
17.0% on the MCYT-100 database (using a 20-people subset
for training), while the combination of SVM and DTW
(based on our DTW system used in the fusion part of this
work [13]) achieves 7.6% [34]. Quan et al. report 7% EER of
using windowed FFT on the MCYT-100 but using 15 genuine
signatures as reference (instead of 5 which is the suggested
number).

On the MCYT-280 database, Garcia-Salicetti et al. evalu-
ates 3 individual systems in a study of complementarity; the
individual systems’ performance are given as 5.73%, 8.39%,
and 15.89%, while the best fusion system obtains 3.40% EER
on skilled forgeries [35]. Faundez-Zanuy reports 11.8% and
5.4% using Vector Quantization (VQ) and VQ combined
with DTW respectively [28]. However, instead of EER, they
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User: 0098 Query(red): f06

Figure 5: A forgery signature (shown on top) that was misclassified using the DTW system while it was correctly classified using the
combined system.

report the main results using the Detection Cost Function
(DCF) with 5 genuine and 25 forgery signatures per person.
Similarly, Vivaracho-Pascual et al. report a DCF of 6.8%,
using the same experimental setup.

The most apparent factor in these results is the effect
of classifier combination. Classifier combination or fusion
systems are found to be useful in many pattern recognition
problems, so the improvement of the results is not surprising
and is parallelled in our current results as well. The other
important factor affecting performance is the dimensionality
of the input signal. In some databases, x- and y-coordinates
are the only available dimensions, while pressure, azimuth,
and altitude are also available in others. Increasing the
number of dimensions generally increases the verification
performance, as more relevant information is available to the
classifier. One interesting note is that the DTW appears as a
component in each of the listed fusion systems.

The performance of the proposed FFT system is lower
than the state-of-the-art fusion systems, while it seems to
be in par with single engine systems on the same database
(12.11% versus 9.8% [26], 17.0% [34], and 9.81% with our
DTW approach, on the MCYT database). Approaches using
global features typically underperform compared to those
using local features. On the other hand, global approaches
are necessary in certain applications. Furthermore, due to
their speed and complementarity, they are expected to be
useful in fusion systems to increase the performance and/or
the speed.

We also have to underline the fact that when reporting
results on a database, researchers typically report the results
of the optimal set of features and algorithm steps, which
introduces bias to the results. In fact, often a particular
step of an algorithm improves the results on one database,
while degrading it on another (e.g., different distance
normalization methods gave the best results in SUSIG and
MCYT databases, as shown in Table 5). Therefore, the fact
that our results are obtained by testing the same exact system
on two different databases with different characteristics (e.g.,
signature types, sensors, measured signals, forgery skills) is
important.

As for comparison with previous work using FFT, the
system developed by Lam et al. [23] is reported to have
2.5% error rate, however the dataset in their work is very

small (8 genuine signatures of the same user and 152
forgeries provided by 19 forgers) and old, making a direct
comparison impossible. Similarly, while the improvement
of using windowed FFT, suggested by Quan et al. [25] is
reasonable, their results are not readily comparable to ours:
they report an EER of 7% on the MCYT-100, using 15
genuine signatures as reference instead of 5, presumably
necessitated by their use of the Mahalanobis distance. As
mentioned before, increased number of reference signatures
are expected to increase performance and the resulting
test set in their case is significantly different than ours.
Furthermore, we have also shown that resampling step used
in both of these works significantly degrades verification
performance for the proposed method by removing some
of the timing information which is useful in discriminating
forgery and genuine signatures.

5. Future Work

In the current system, we use only the magnitude of the
Fourier coefficients, discarding the phase information for
simplicity, while phase information is actually a fundamental
part of the signal. We expect that the use of the phase
information can improve the system performance. Similarly,
other extracted features, such as local velocity, can easily
be used and would be expected to improve the system
performance based on others’ work [35].

Another improvement may be the use of windowed
or Short Term Fourier Transform. The STFT aims to give
more information about the timing as well as the frequency
component of the signal, by breaking the input signal into
a number of small segments by a windowing signal prior
to the application of the Fourier transform. The size of the
window used for this operation is an issue in general but
for online signature verification, separate strokes or high
curvature points can be used for this purpose.

An analysis of the errors shows that large portion of the
errors is due to simple signatures, composed of simple or
easily reproducible trajectories. While not much may be done
to reduce errors on these types of signatures, one could at
least envision a system alerting users when they use simple
signatures at enrollment time.
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6. Summary and Discussions

We presented a novel approach for online signature verifica-
tion using global features consisting of Fourier Descriptors
that provide a compact and fixed-length representation of an
online signature. Our approach is significantly different in
preprocessing, feature extraction, normalization and match-
ing steps, compared to previous online signature verification
systems that are based on FFT. These steps are carefully
designed to retain the full discriminatory information avail-
able in the signature; in particular the incorporation of the
timestamp information for representing pen-up durations is
novel and had significant effects on performance.

The proposed system is extensively tested using two large
public databases, both in terms of overall performance and
the effects of individual preprocessing steps. The results are
inferior to the best results obtained by fusion systems but
the system shows potential as a stand-alone system to be
used wherever fixed-length representation is needed, and
in complementing an approach based on local features.
The latter is supported experimentally by the fact the
combination of the proposed FFT system improved the
results of our state-of-the-art DTW system, resulting in EER
of 3.03% for the SUSIG database and 7.22% for the MCYT-
100 database. Furthermore, given the previously mentioned
factors affecting performance and the difficulty in assessing
the exact experimental setups of others’ work, an exact
comparison of EER results is not always meaningful. This
is especially true since the proposed system is tested with
exactly the same parameters on two different databases
with different characteristics (e.g., signature types, sensors,
measured signals, forgery skills).

As for overall speed, the proposed system is very
fast, about 500 times faster than a dynamic programming
approach on the same database. The speed is thus one of
the advantages of the proposed system and is especially
important in fusion systems and identification problems as
well as quickly testing new algorithms or preprocessing steps.

The main aspects of the developed FFT system can thus
be summarized as follows:

(i) it is very fast in training, feature extraction, and
matching (about 2-3 orders of magnitude faster than
the DTW system);

(ii) it uses a fixed-length feature vector comprised of
global features of the signature, which is required in
certain applications;

(iii) its performance is lower than state-of-the-art results
obtained by fusion systems; however its advantages
and potential improvements make it a useful alter-
native in online signature verification, especially in
complementing more complex but slower methods
based on local features, such as the DTW or HMM
approaches.

Given its merits as a global approach and the suggested
improvements, we believe that the proposed FFT-based
system has potential as a stand-alone system but especially
in complementing an approach based on local features.

Furthermore, we would expect to have a lower EER by adding
more features that are found useful in other studies, such as
local velocity or acceleration; this would be done by simply
concatenating the new features to the ones used in this work.
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1. Introduction

Reliable authentication of persons is a growing demanding
service in many fields, not only in police or military
environments but also in civilian applications, such as access
control or financial transactions. Traditional authentication
systems are based on knowledge (a password, a pin) or
possession (a card, a key). But these systems are not reliable
enough for many environments, due to their common
inability to differentiate between a true-authorised user
and a user who fraudulently acquired the privilege of the
authorised user. A solution to these problems has been
found in the biometric-based authentication technologies.
A biometric system is a pattern recognition system that
establishes the authenticity of a specific physiological or
behavioural characteristic. Authentication is usually used in
the form of verification (checking the validity of a claimed
identity) or identification (determination of an identity
from a database of known people, this is, determining who
a person is without knowledge of his/her name).

Many authentication technologies can be found in the
literature, some of them already implemented in com-
mercial authentication packages [1–3]. Other methods are

the fingerprint authentication [4, 5] (perhaps the oldest
of all the biometric techniques), hand geometry [6], face
[7, 8], or speech recognition [9]. Nowadays, the most
of the efforts in authentication systems tend to develop
more secure environments, where it is harder, or ideally
impossible, to create a copy of the properties used by the
system to discriminate between authorised and unauthorised
individuals. [10–12].

This paper proposes a biometric system for authentica-
tion that uses the retina blood vessel pattern. This is a unique
pattern in each individual and it is almost impossible to
forge that pattern in a false individual. Of course, the pattern
does not change through the individual’s life, unless a serious
pathology appears in the eye. Most common diseases like
diabetes do not change the pattern in a way that its topology
is affected. Some lesions (points or small regions) can
appear but they are easily avoided in the vessels extraction
method that will be discussed later. Thus, retinal vessel tree
pattern has been proved a valid biometric trait for personal
authentication as it is unique, time invariant and very hard
to forge, as showed by Mariño et al. [13, 14], who introduced
a novel authentication system based on this trait. In that
work, the whole arterial-venous tree structure was used as
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the feature pattern for individuals. The results showed a
high confidence band in the authentication process but the
database included only 6 individuals with 2 images for each
of them. One of the weak points of the proposed system
was the necessity of storing and handling a whole image as
the biometric pattern. This greatly facilitates the storing of
the pattern in databases and even in different devices with
memory restrictions like cards or mobile devices. In [15] a
pattern is defined using the optic disc as reference structure
and using multi scale analysis to compute a feature vector
around it. Good results were obtained using an artificial
scenario created by randomly rotating one image per user
for different users. The dataset size is 60 images, rotated 5
times each. The performance of the system is about a 99%
accuracy. However, the experimental results do not offer
error measures in a real-case scenario where different images
from the same individual are compared.

Based on the idea of fingerprint minutiae [4, 16], a
robust pattern was first introduced in [17] where a set of
landmarks (bifurcations and crossovers of retinal vessel tree)
were extracted and used as feature points. In this scenario,
the pattern matching problem is reduced to a point pattern
matching problem and the similarity metric has to be defined
in terms of matched points. A common problem in previous
approaches is that the optic disc is used as a reference
structure in the image. The detection of the optic disc is a
complex problem and in some individuals with eye diseases
this cannot be achieved correctly. In this work, the use of
reference structures is avoided to allow the system to cope
with a wider range of images and users.

The paper is organised as follows: in Section 2 a descrip-
tion of the authentication system is presented, specially the
feature points extraction and the matching stages. Section 3
deals with the analysis of some similarity metrics. Section 4
shows the effectiveness results obtained by the previously
described metrics running a test images set. Finally, Section 5
provides some discussion and conclusions.

2. Authentication System Process

In this work, the retinal vessel pattern for every person is
ultimately defined by a set of landmarks, or feature points,
in the vessel tree. For the system to perform properly, a
good representation of the retinal vessel tree is needed. The
extraction of the retinal vessel tree is explained in Section 2.1.
Next, the biometric pattern for an individual is obtained via
the feature points extracted from the vessel tree (Section 2.2).
The last stage in the authentication process is the matching
between the reference stored pattern for an individual and
the pattern from the acquired image (Section 2.3).

2.1. Retinal Vessel Tree Extraction. Following the idea that
vessels can be thought of as creases (ridges or valleys) when
images are seen as landscapes (Figure 1), curvature level
curves are employed to calculate the creases (crest and valley
lines).

Among the many definitions of a crease, the one based
on level set extrinsic curvature or LSEC, (1), has useful

Figure 1: Representation of a region in the image as a landscape.
Left side shows the retinal image with the region of interest marked
with a white rectangle. In the right side, the zoomed image over the
region of interest and the same region represented as a landscape,
showing the creaseness feature.

invariance properties. Given a function L : Rd → R, the level
set for a constant l consists of the set of points {x | L(x) = l}.
For 2D images, L can be considered as a topographic relief
or landscape and the level sets as its level curves. Negative
minima of the level curve curvature κ, level by level, form
valley curves, and positive maxima form ridge curves:

κ = (2LxLyLxy − L2
yLxx − L2

xLyy)(L2
x + L2

y)
−3/2. (1)

However, the usual discretization of LSEC is ill-defined in
a number of cases, giving rise to unexpected discontinuities
at the centre of elongated objects. Due to this, theMLSEC-ST
operator, defined in [18, 19] for 3D landmark extraction of
CT and MRI volumes, is used. This alternative definition is
based on the divergence of the normalised vector field w:

κ = −div(w). (2)

Although (1) and (2) are equivalent in the continuous
domain, in the discrete domain, when the derivatives are
approximated by finite-centred differences of the Gaussian-
smoothed image, (2) provides much better results. The
creaseness measure κ is improved by prefiltering the image
gradient vector field using a Gaussian function.

Figure 2 shows the result of the creases extraction
algorithm for an input digital retinal image. Once the creases
image is calculated, the retinal vessel tree is extracted and
can be used as a valid biometric pattern. However, using
the whole creases image as biometric pattern has a major
problem in the codification and storage of the pattern as
we need to store and handle the whole image. To solve this,
similarly to the fingerprint minutiae, a set of landmarks is
extracted as the biometric pattern in the creases image. These
landmarks are representative enough for each individual
while consisting of a very reduced set of structures in the
retinal tree. In the next subsection, the extraction process of
this pattern is described.

2.2. Feature Points Extraction. The goal in this stage is to
obtain a robust and consistent biometric pattern easy to
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(a) (b)

Figure 2: Example of digital retinal images showing the vessel tree. (a) Input retinal image. (b) Creases image from the input representing
the main vessels in the retina.

code and store. To perform this task, a set of landmarks
are extracted. The most prominent landmarks in retinal
vessel tree are crossovers (between two different vessels) and
bifurcation points (one vessel coming out of another one)
and they will be used in this work as the set of feature
points constituting the biometric pattern for characterising
individuals. Thus, the biometric pattern can be stored as a
set of feature points.

The creases image will be used to extract the landmarks,
as it is a good representation of the vessels in the retinal
tree as explained earlier. The landmarks of interest are points
where two different vessels are connected. Therefore, it is
necessary to study the existing relationships between vessels
in the image. The first step is to track and label the vessels to
be able to establish those relationships between them.

In Figure 3, it can be observed that creases images show
discontinuities in the crossovers and bifurcations points.
This occurs because of the two different vessels (valleys
or ridges) coming together into a region where the crease
direction cannot be set. Moreover, due to some illumination
or intensity loss issues, creases images can also show some
discontinuities along a vessel (Figure 3). This issue require a
process of joining segments to build the whole vessels prior
to the bifurcation/crossover analysis.

Once the relationships between segments are established,
a final stage will take place to remove some possible spurious
feature points. Thus, the four main stages in the feature
points extraction process are

(1) labelling of the vessels segments,

(2) establishing the joint or union relationships between
vessels,

(3) establishing crossover and bifurcation relationships
between vessels,

(4) filtering of the crossovers and bifurcations.

2.2.1. Tracking and Labelling of Vessel Segments. To detect
and label the vessel segments, an image-tracking process
is performed. As the creases images eliminate background
information, any nonnull pixel (intensity greater than zero)
belongs to a vessel segment. Taking this into account, each
row in the image is tracked (from top to bottom) and when a

Figure 3: Example of discontinuities in the creases of the retinal
vessels. Discontinuities in bifurcations and crossovers are due to
two creases with different directions joining in the same region.
Also, some other discontinuities along a vessel can happen due to
illumination and contrast variations in the image.

nonnull pixel is found, the segment tracking process takes
place. The aim is to label the vessel segment found, as a
line of 1 pixel width. That is, every pixel will have only two
neighbours (previous and next) avoiding ambiguity to track
the resulting segment in further processes.

To start the tracking process, the configuration of the 4
pixels which have not been analysed by the initially detected
pixel is calculated. This leads to 16 possible configurations
depending on whether there is a segment pixel or not in each
one of the 4 positions. If the initial pixel has no neighbours,
it is discarded and the image tracking continues. In the
other cases there are two main possibilities: either the initial
pixel is an endpoint for the segment, and this is tracked
in one way only or the initial pixel is a middle point and
the segment is tracked in two ways from it. Figure 4 shows
the 16 possible neighbourhood configurations and how the
tracking directions are established in any case.

Once the segment tracking process has started, in every
step a neighbour of the last pixel flagged as segment is
chosen to be the next. This choice is made using the
following criterion: the best neighbour is the one with
most nonflagged yet neighbours belonging to the segment.
This heuristic contains the idea of keeping the 1pixel width
segment to track along the middle of the crease (where
pixels have more segment pixels neighbours), keeping also
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4: Initial tracking process for a segment depending on the neighbours pixels surrounding the first pixel found for the new segment
in a 8-neighbourhood. As there are 4 neighbours not tracked yet (the bottom row and the one to the right), there are a total of 16 possible
configurations. Gray squares represent crease (vessel) pixels and white ones background pixels. The upper row neighbours and the left one
are ignored as they have already been tracked due to the image tracking direction. Arrows point to the next pixels to track while crosses flag
pixels to be ignored. In (d), (g), (j) and (n) the forked arrows mean that only the best of the pointed pixels (i.e., the one with more new
vessel pixels neighbours) is selected for continuing the tracking. Arrows starting with a black circle flag the central pixel as an endpoint for
the segment ((b), (c), (d), (e), (g), (i), (j)).
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Figure 5: Examples of union relationships. Some of the vessels
present discontinuities leading to different segments. These discon-
tinuities are detected in the union relationships detection process.

the original orientations in every step. When the whole
image tracking process finishes, every segment is a 1pixel-
width line with its endpoints defined. The endpoints are very
useful to establish relationships between segments as those
relationships can always be detected in the surroundings of
a segment endpoint. This avoids the analysis of every pixel
belonging to a vessel, considerably reducing the complexity
of the algorithm and, therefore, the running time. Finally,
to avoid some spurious segments or noise to appear, small
segments are removed using a length threshold.

2.2.2. Union Relationships. As stated before, unions detec-
tion is needed to build the vessels out of their segments.
Aside the segments from the creases image, no additional
information is required and therefore is the first kind
of relationship to be detected in the image. An union
or joint between two segments exists when one of the
segments is the continuation of the other in the same retinal
vessel. Figure 5 shows some examples of union relationships
between segments.

To find these relationships, the developed algorithm
uses the segment endpoints calculated and labelled in the
previous subsection. The main idea is to analyse pairs of
close endpoints from different segments and quantify the
likelihood of one being the prolongation of the other. The
proposed algorithm connects both endpoints and measures
the smoothness of the connection.

An efficient approach to connect the segments is using
a straight line between both endpoints. In Figure 6(a), a
graphical description of the detection process for an union is
showed. The smoothness measurement is obtained from the
angles between the straight line and the segment direction.
The segment direction is calculated by the endpoint direc-
tion. The maximum smoothness occurs when both angles
are π rad., that is, both segments are parallel and belong
to the straight line connecting it. The smoothness decreases
as both angles decrease. A criterion to accept the candidate
relationship must be established. A minimum angle θmin is
set as the threshold for both angles. This way, the criterion to
accept an union relationship is defined as

Union(r, s) = (α > θmin)∧ (β > θmin), (3)

where r, s are the segments involved in the union and α, β
their respective endpoints directions. It has been observed
that for values of θmin close to (3/4)π rad. the algorithm
delivers good results in all cases.

2.2.3. Bifurcation/Crossover Relationships. Bifurcations and
crossovers are the feature interest points in this work for
characterising individuals by a biometric pattern. A crossover
is an intersection between two segments. A bifurcation is a
point in a segment where another one starts from. While
unions allow to build the vessels, bifurcations allow to build
the vessel tree by establishing relationships between them.
Using both types the retinal vessel tree can be reconstructed
by joining all segments. An example of this is shown in
Figure 6(b).

A crossover can be seen in the segments image, as
two bifurcations between a segment and two others related
by an union. Therefore, finding bifurcation and crossover
relationships between segments can be reduced to find only
bifurcations. Crossovers can then be detected analysing close
bifurcations.

In order to find bifurcations in the image, an idea similar
to the union algorithm is followed: search the bifurcations
from the segments endpoints. The criterion in this case is
finding a segment close to an endpoint whose segment can
be assumed to start in the found one. This way, the algorithm
does not require to track the whole segments, bounding
complexity to the number of segments and not to their
length.

For every endpoint in the image, the process is as follows
(Figure 6(c)):

(1) compute the endpoint direction,

(2) extend the segment in that direction a fixed length
lmax,

(3) analyse the points in and nearby the prolongation
segment to find candidate segments,

(4) if a point of a different segment is found, compute the
angle (α) associated to that bifurcation, defined by
the direction of this point and the extreme direction
from step 1.

To avoid undefined prolongation of the segments, a new
parameter lmax is inserted in the model. If it follows that
l ≤ lmax, the segments will be joined and a bifurcation will
be detected, being l the distance from the endpoint of the
segment to the other segment.

Figure 7 shows one example of results after this stage.
Feature points are marked. Also, spurious detected points are
identified in the image. These spurious points may occur for
different reasons such as wrongly detected segments. In the
image test set used (over 100 images) the approximate mean
number of feature points detected per image was 28. The
mean of spurious points corresponded to 5 points per image.
To improve the performance of the matching process is
convenient to eliminate as spurious points as possible. Thus,
the last stage in the biometric pattern extraction process
will be the filtering of spurious points in order to obtain an
accurate biometric pattern for an individual.
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Figure 6: (a) Union of creases segments r and s. The angles between the new segment AB and the creases segments r (α) and s (β) are near
π rad. so they are above the required threshold ((3/4)π) and the union is finally accepted. (b) Retinal Vessel Tree reconstruction by unions
(t,u) and bifurcations (r, s) and (r, t). (c) Bifurcation between segment r and s. The endpoint of r is prolonged a maximum distance lmax and
eventually a point of segment s is found.

(a) (b)

Figure 7: Example of feature points extracted from original image after the bifurcation/crossover stage. (a) Original Image. (b) Feature
points marked over the segment image. Spurious points are signalled. Circles surrounding spurious points due to false segments extracted
from the image borders and squares surrounding pairs of points corresponding to the same crossover (detected as two bifurcations).

2.2.4. Filtering of Feature Points. As showed in Figure 7(b),
the highest feature point detected comes from a bifurcation
involving an spurious segment. This segment appears in the
creases extraction stage as this algorithm can make some false
creases to appear in the image borders.

To avoid these situations, feature points very close to
image borders are removed as the vast majority of them
correspond to bifurcations involving false segments. A
minimum distance to the border threshold of approximately
3% of the width/height of the image is enough to avoid these
false features.

A segment filtering process takes place in the tracking
stage, filtering detected segments by their length. This leads
to images with minimum false segments and with only
important segments in the vessel tree.

Finally, as crossover points are detected as two bifurca-
tion points, Figure 7(b), these are merged into an unique
feature point.

Figure 8 shows an example of the filtering process result,
that is, the biometric pattern obtained from an individual.
In resume, the average of 5 spurious points per image
was reduced to 2 per image after the filtering process.
These points are derived from bad extracted regions in the
creases stage. The removal of non spurious points with this
technique is almost null (around 0.2 points per image in the
average).

2.3. Biometric Pattern Matching. In the matching stage,
the stored reference pattern, ν, for the claimed identity is
compared to the pattern extracted, ν′, during the previous
stage. Due to the eye movement during the image acquisition
stage, it is necessary to align β with α in order to be matched
[20–22]. This fact is illustrated in Figure 9 where two images
from the same individual, Figures 9(a) and 9(c), and the
obtained results in each case, Figures 9(b) and 9(d), are
showed.

Depending on several factors, such as the eye location
in the objective, patterns may suffer some deformations. A
reliable and efficient model is necessary to deal with these
deformations allowing to transform the candidate pattern
in order to get a pattern similar to the reference one.
The movement of the eye in the image acquisition process
basically consists in translation in both axis, rotation and
sometimes a very small change in scale. It is also important
to note that both patterns ν and ν′ could have a different
number of points as seen in Figure 9 where, from the same
individual, two patterns are extracted with 24 and 19 points.
This is due to the different conditions of illumination and
orientation in the image acquisition stage.

The transformation considered in this work is the
similarity transformation (ST), which is a special case of
the global affine transformation (GAT). ST can model
translation, rotation and isotropic scaling using 4 parameters
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(a) (b)

Figure 8: Example of the result after the feature points filtering. (a) Image containing feature points before filtering. (b) Image containing
feature points after filtering. Spurious points from image borders and duplicate crossover points have been eliminated.

(a) (b)

(c) (d)

Figure 9: Examples of feature points obtained from images of the same individual acquired in different times. (a) (c) Original images. (b)
Feature points image from (a). A total of 24 points are obtained. (d) Feature points image from (c). A total of 19 points are obtained.

[23]. The ST works fine with this kind of images as the
rotation angle is moderate. It has also been observed that
the scaling, due to eye proximity to the camera, is nearly
constant for all the images. Also, the rotations are very slight
as the eye orientation when facing the camera is very similar.
Under these circumstances, the ST model appears to be very
suitable.

The ultimate goal is to achieve a final value indicating
the similarity between the two feature points set, in order to
decide about the acceptance or the rejection of the hypothesis
that both images correspond to the same individual. To
develop this task the matching pairings between both images
must be determined. A transformation has to be applied to
the candidate image in order to register its feature points with
respect to the corresponding points in the reference image.
The set of possible transformations is built based on some

restrictions and a matching process is performed for each one
of these. The transformation with the highest matching score
will be accepted as the best transformation.

To obtain the four parameters of a concrete ST, two
pairs of feature points between the reference and candidate
patterns are considered. If M is the total number of feature
points in the reference pattern and N the total number of
points in the candidate one, the size of the set T of possible
transformations is computed using (4):

T = (M2 −M)(N2 −N)
2

, (4)

where M and N represent the cardinality of ν and ν′,
respectively.

Since T represents a high number of transformations,
some restrictions must be applied in order to reduce it. As



8 EURASIP Journal on Advances in Signal Processing

the scale factor between patterns is always very small in this
acquisition process, a constraint can be set to the pairs of
points to be associated. In this scenario, the distance between
both points in each pattern has to be very similar. As it
cannot be assumed that it will be the same, two thresholds
are defined, Smin and Smax, to bound the scale factor. This
way, elements from T are removed where the scale factor is
greater or lower than the respective thresholds Smin and Smax.
However, (5) formalises this restriction:

Smin <
distance(p, q)

distance(p′, q′)
< Smax, (5)

where p, q are points from ν pattern, and p′, q′ are the
matched points from the ν pattern. Using this technique,
the number of possible matches greatly decrease and, in
consequence, the set of possible transformations decreases
accordingly. The mean percentage of not considered trans-
formations by these restrictions is around 70%.

In order to check feature points, a similarity value
between points (SIM) is defined which indicates how similar
two points are. The distance between these two points will
be used to compute that value. For two points A and B, their
similarity value is defined by

SIM(A,B) = 1− distance(A,B)
Dmax

, (6)

where Dmax is a threshold that stands for the maximum
distance allowed for those points to be considered a possible
match. If distance(A,B) > Dmax, then SIM(A,B) = 0. Dmax

is a threshold introduced in order to consider the quality
loss and discontinuities during the creases extraction process
leading to mislocation of feature points by some pixels.

In some cases, two points B1, B2 could have both a
good value of similarity with one point A in the reference
pattern. This happens because B1 and B2 are close to each
other in the candidate pattern. To identify the most suitable
matching pair, the possibility of correspondence is defined
comparing the similarity value between those points to the
rest of similarity values of each one of them:

P(Ai,Bj)

= SIM(Ai,Bj)
2

(
∑M

i′=1SIM(Ai′ ,Bj)+
∑N

j′=1SIM(Ai,Bj′)−SIM(Ai,Bj))
.

(7)

An M × N matrix Q is constructed such that position
(i, j) holds P(Ai,Bj). Note that if the similarity value is 0,
the possibility value is also 0. This means that only valid
matchings will have a non-zero value in Q. The desired set C
of matching feature points is obtained from P using a greedy
algorithm. The element (i, j) inserted in C is the position in
Q where the maximum value is stored. Then, to prevent the
selection of the same point in one of the images again, the
row (i) and the column( j) associated to that pair are set to 0.
The algorithm finishes when no more non-zero elements can
be selected from Q.

The final set of matched points between patterns is
C. Using this information, a similarity metric must be
established to obtain a final criterion of comparison between
patterns. Performance of several metrics using matched
points information is analysed in Section 3.

3. Similarity Metrics Analysis

The goal in this stage of the process is to define similarity
measures on the aligned patterns to correctly classify authen-
tications in both classes: attacks (unauthorised accesses),
when the two matched patterns are from different individuals
and clients (authorised accesses) when both patterns belong
to the same person.

For the metric analysis, a set of 150 images (100 images,
2 images per individual, and 50 different images more) from
VARIA database [24] were used. The rest of the images will be
used for testing in Section 4. The images from the database
have been acquired with a TopCon nonmydriatic camera
NW-100 model and are optic disc centred with a resolution
of 768 × 584. There are 60 individuals with two or more
images acquired in a time span of 6 years. These images have
a high variability in contrast and illumination allowing the
system to be tested in quite hard conditions. In order to
build the training set of matchings, all images are matched
versus all the images (a total of 150 × 150 matchings) for
each metric. The matchings are classified into attacks or
clients accesses depending if the images belong to the same
individual or not. Distributions of similarity values for both
classes are compared in order to analyse the classification
capabilities of the metrics.

The main information to measure similarity between two
patterns is the number of feature points successfully matched
between them. Figure 10(a) shows the histogram of matched
points for both classes of authentications in the training
set. As it can be observed, matched points information is
by itself quite significative but insufficient to completely
separate both populations as in the interval [10, 13] there is
overlapping between them.

This overlapping is caused by the variability of the
patterns size in the training set because of the different
illumination and contrast conditions in the acquisition stage.
Figure 10(b) shows the histogram for the biometric pattern
size, that is, the number of feature points detected. A high
variability can be observed, as some patterns have more than
twice the number of feature points of other patterns. As a
result of this, some patterns have a small size, capping the
possible number of matched points (Figure 11). Also, using
the matched points information alone lacks a well bounded
and normalised metric space.

To combine information of patterns size and normalise
the metric, a function f will be used. Normalised metrics
are very common as they make easier to compare class sep-
arability or establishing valid thresholds [25]. The similarity
measure (S) between two patterns will be defined by

S = C

f (M,N)
, (8)
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Figure 10: (a) Matched points histogram in the attacks (unauthorised) and clients (authorised) authentications cases. In the interval [10, 13]
both distributions overlap. (b) histogram of detected points for the patterns extracted from the training set.

(a) (b)

Figure 11: Example of matching between two samples from the same individual in VARIA database. White circles mark the matched points
between both images while crosses mark the unmatched points. In (b) the illumination conditions of the image lead to miss some features
from left region of the image. Therefore, a small amount of detected feature points is obtained capping the total amount of matched points.

where C is the number of matched points between patterns,
and M and N are the matching patterns sizes. The first f
function defined and tested is:

f (M,N) = min(M,N). (9)

The min function is the less conservative one as it
allows to obtain a maximum similarity even in cases of
different sized patterns. Figure 12(a) shows the distributions
of similarity scores for clients and attacks classes in the
training set using the normalisation function defined in (9),
and Figure 12(b) shows the FAR and FRR curves versus the
decision threshold.

Although the results are good when using the normalisa-
tion function defined in (9), a few cases of attacks show high
similarity values, overlapping with the clients class. This is
caused by matchings involving patterns with a low number of
feature points as min(M,N) will be very small, needing only
a few points to match in order to get a high similarity value.

This suggests, as it will be reviewed in Section 4, that some
minimum quality constraint in terms of detected points
would improve performance for this metric.

To improve the class separability, a new normalisation
function f is defined:

f (M,N) =
√
MN. (10)

Figure 13(a) shows the distributions of similarity scores
for clients and attacks classes in the training set using the
normalisation function defined in (10) and Figure 13(b)
shows the FAR and FRR curves versus the decision threshold.

Function defined in (10) combines both pattern sizes in
a more conservative way, preventing the system to obtain a
high similarity value if one pattern in the matching process
contains a low number of points. This allows to reduce the
attacks class variability and, moreover, to separate its values
away from the clients class as this class remains in a similar
values range. As a result of the new attacks class boundaries,
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Figure 12: (a) Similarity values distribution for authorised and unauthorised accesses using f = min(M,N) as normalisation function for
the metric. (b) False accept rate (FAR) and false rejection rate (FRR) for the same metric.

a decision threshold can be safely established where FAR =
FRR = 0 in the interval [0.38, 0.5] as Figure 13(b) clearly
exposes. Although this metric shows good results, it also
has some issues due to the normalisation process which
can be corrected to improve the results as showed in next
subsection.

3.1. Confidence Band Improvement. Normalising the metric
has the side effect of reducing the similarity between patterns
of the same individual where one of them had a much greater
number of points than the other, even in cases with a high
number of matched points. This means that some cases easily
distinguishable based on the number of matched points are
now near the confidence band borders. To take a closer look
at this region surrounding the confidence band, the cases of
unauthorised accesses with the highest similarity values (S)
and authorised accesses with the lowest ones are evaluated.
Figure 14 shows the histogram of matched points for cases
in the marked region of Figure 13(b). It can be observed
that there is an overlapping but both histograms are highly
distinguishable.

To correct this situation, the influence of the number of
matched points and the patterns size have to be balanced.
A correction parameter (γ) is introduced in the similarity
measure to control this. The new metric is defined as

Sγ = S · Cγ−1 = Cγ√
MN

(11)

with S, C, M, and N the same parameters from (10). The γ
correction parameter allows to improve the similarity values
when a high number of matched points is obtained, specially
in cases of patterns with a high number of points.

Using the gamma parameter, values can be higher than
1. In order to normalise the metric back into a [0, 1] values
space, a sigmoid transference function, T(x), is used:

T(x) = 1
1 + es·(x−0.5)

, (12)

where s is a scale factor to adjust the function to the correct
domain as Sγ does not return negatives or much higher than
1 values when a typical γ ∈ [1, 2] is used. In this work, s =
6 was chosen empirically. The normalised gamma-corrected
metric, S′γ(x), is defined by

S′γ = T(Sγ). (13)

Finally, to choose a good γ parameter, the confidence
band improvement has been evaluated for different values of
γ (Figure 15(a)). The maximum improvement is achieved at
γ = 1.12 with a confidence band of 0.3288, much higher than
the original from previous section. The distribution of the
whole training set (using γ = 1.12) is showed in Figure 15(b)
where the wide separation between classes can be observed.

4. Results

A set of 90 images, 83 different from the training set, and
7 from the previous set with the highest number of points,
has been built in order to test the metrics performance once
their parameters have been fixed with the training set. To
test the metrics performance, the false acceptance rate and
false rejection rate were calculated for each of them (the
metrics normalised by (9), (10) and the gamma-corrected
normalised metric defined in (13).

A usual error measure is the equal error rate (EER) that
indicates the error rate where FAR curve and FRR curve
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Figure 13: (a) Similarity values distribution for authorised and unauthorised accesses using f = √MN as normalisation function for the
metric. (b) False accept rate (FAR) and false rejection rate (FRR) for the same metric. Dotted lines delimit the interest zone surrounding the
confidence band which will be used for further analysis.
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Figure 14: Histogram of matched points in the populations of
attacks whose similarity is higher than 0.3 and clients accesses whose
similarity is lower than 0.6.

intersect. Figure 16(a) shows the FAR and FRR curves for
the three previously specified metrics. The EER is 0 for
the normalised by geometrical mean (mean) and gamma
corrected (gamma) metrics as it was the same case in the
training set, and, again, the gamma corrected metric shows
the highest confidence band in the test set 0.2337.

The establishment of a wide confidence band is specially
important in this scenario of different images from users

acquired on different times and with different configurations
of the capture hardware.

Finally, to evaluate the influence of the image quality,
in terms of feature points detected per image, a test is run
where images with a biometric pattern size below a threshold
are removed for the set and the confidence band obtained
with the rest of the images is evaluated. Figure 16(b) shows
the evolution of the confidence band versus the minimum
detected points constraint. The confidence band does not
grow significatively until a fairly high threshold is set. Taking
as threshold the mean value of detected points for all the test
set, 25.2, the confidence band grows from 0.2337 to 0.3317.
So removing half of the images, the band is increased only
by 0.098 suggesting that the gamma-corrected metric is very
robust to low quality images.

The mean execution time on a 2.4 Ghz. Intel Core Duo
desktop PC for the authentication process, implemented in
C++, was 155 milliseconds: 105 milliseconds in the feature
extraction stage and 50 milliseconds in the registration and
similarity measure estimation, so that the method is very well
fitted to be employed in a real verification system.

5. Conclusions and Future Work

In this work, a complete identity verification method has
been introduced. Following the same idea as the fingerprint
minutiae-based methods, a set of feature points is extracted
from digital retinal images. This unique pattern will allow
for the reliable authentication of authorised users. To get the
set of feature points, a creases-based extraction algorithm
is used. After that, a recursive algorithm gets the point
features by tracking the creases from the localised optic
disc. Finally, a registration process is necessary in order
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distributions using the normalised metric with γ = 1.12.
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Figure 16: (a) FAR and FRR curves for the normalised similarity metrics (min: normalised by minimum points, mean: normalised by
geometrical mean, and gamma: gamma corrected metric). The best confidence band is the one belonging to the gamma corrected metric
corresponding to 0.2337.(b) Evolution of the confidence band using a threshold of minimum detected points per pattern.

to match the reference pattern from the database and the
acquired one. With the patterns aligned, it is possible to
measure the degree of similarity by means of a similarity
metric. Normalised metrics have been defined and analysed
in order to test the classification capabilities of the system.
The results are very good and prove that the defined
authentication process is suitable and reliable for the task.
The use of feature points to characterise individuals is a

robust biometric pattern allowing to define metrics that offer
a good confidence band even in unconstrained environments
when the image quality variance can be very high in terms of
distortion, illumination, or definition. This is also possible
as this methodology does not rely on the localisation or
segmentation of some reference structures, as it might be
the optic disc. Thus, if the the user suffers some structure-
distorting pathology and this structure cannot be detected,
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the system works the same with the only problem being a
possible loss of feature points constrained to that region.

Future work includes the use of some high-level infor-
mation of points to complement metrics performance and
new ways of codification of the biometric pattern allowing to
perform faster matches.
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1. Introduction

The biometric verification process can be broken into five
major functional blocks: data collection, signal process-
ing, feature extraction, comparison (database lookup), and
returning a decision (Figure 1). Verification systems have
two competing requirements: (1) quickly processing samples
and returning a decision to minimize the user time, and (2)
operate at very high probability of detections (Pds) with low
false alarm rates (FARs). With the advances in computing,
the longest duration function in Figure 1’s critical path is the
data collection. This paper presents a method for quantifying
the minimum number of heartbeats required for verifying
the identity of an individual from the electrocardiogram
(ECG) signal. The minimum number of heartbeats required
provides a user-centric measure of performance for an
identity verification system. The outcome of our research
forms the basis for selecting elements of an operational ECG
verification system.

Since 2001, researchers have identified unique character-
istics of the ECG trace for biometric verification, particularly
with respect to access control [1–14]. To illustrate, consider
the heartbeats from several different individuals (Figure 2).
Although each heartbeat follows the same general pattern,
differences in the detailed shape of the heartbeat are evident.
We exploit these shape differences across individuals to per-
form identity verification. The last 30 years have witnessed
substantial research into the collection and processing of
digital ECG signals [15–17]. In addition, a special issue of
this journal was devoted to “Advances in electrocardiogram
signal processing and analysis” in 2007. We build on this
wealth of information and apply it to the development of an
ECG verification system.

Hawkins [18] revealed that the traditional biometrics of
face, fingerprints, and iris can be forged. The traditional
biometrics cited above contain no inherent measure of
liveness. The ECG, however, is inherently an indication of
liveness and, consequently, is difficult to falsify. Israel et al.
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Figure 1: Simplified architecture for an authentication system.

[6] analyzed other cardiovascular modalities and found ECG
data most discriminating for human identification.

This paper illustrates a methodology and minimum
heartbeat performance metric using data and processing
from our previously published research [1–7]. This work
extends previous results in two ways. First, it focuses
on the identity verification problem, such as would be
appropriate for portal access. Second, the method developed
here quantifies the minimum number of heartbeats needed
for identity verification, thereby fixing the time needed to
collect user data. The next section summarizes the utility of
applying ECG information as a biometric. The following two
sections present the actual methodology, first discussing the
processing of the ECG signal and then deriving the actual
test statistic used for identity verification. We present results
from two data sets to illustrate performance. The final section
discusses a number of practical issues related to ECG as a
biometric and suggests avenues for further investigation.

2. Background

This paper presents a new approach for processing the ECG
for identity verification based on sequential procedures. A
major challenge for developing biometric systems based on
circulatory function is the dynamic nature of the raw data.
Heartrate varies with the subject’s physical, mental, and
emotional state, yet a robust biometric must be invariant
across time and state of anxiety. The heartbeat maintains
its structure with changes in heartrate (Figure 2). Irvine
et al. [1–3, 5], Israel et al. [4, 6], and Biel et al. [8]
identified individuals based upon features extracted from
individual heartbeats. Wang et al. [9] followed a similar
approach using fiducial features, but then extended the
analysis based on a discrete cosine transform (DCT) of the
autocorrelation function. Shen et al. [10] and Wubbeler et al.
[14] employed a template matching approaches. Additional
nonfiducial techniques have exploited principal components
analysis (PCA) [19–27] in the same manner as [28] applied
to face. Recently, a number of researchers have explored
improvements to representations of the ECG signal for
human identification [5, 9, 29]. In each case, the extracted
ECG attributes performed well for identifying individuals.

Early studies of ECG feature extraction used spectral
features to characterize the heartbeat [17]. Later, Biel et al.
[8] performed ECG feature extraction by estimating location
and magnitude information. Irvine et al. [2] showed that the
relative electrode position caused changes in the magnitude
of the ECG traces and used only temporal features. To these
ends, Israel et al. [4] identified additional fiducial positions
to characterize the relative intervals of the heartbeat and
performed quantitative feature extraction using radius of
curvature features.

Initial experiments for human identification from ECG
identified some important challenges to overcome. First,
approaches that rely on fiducial attributes, that is, features
obtained by identifying specific landmarks from the pro-
cessed signal have difficulty handling nonstandard heartbeats
and high noise floors. Agrafioti and Hatzinakos [30] applied
signal processing methods to address common cardiac
irregularities. A second challenge is to insure that the
identification procedure is robust to changes in the heartrate
arising from varying mental and emotional states. Irvine et
al. [1–3] and Israel et al. [4, 6] addressed this issue through an
experimental protocol that varied the tasks performed by the
subjects during data collection. Third, PCA type algorithms
must sample a sufficiently wide population to ensure the best
generalization of their eigen features.

The ECG measures the electrical potential at the surface
of the body as it relates to the activation of the heart. Many
excellent references describe the functioning of the heart and
the factors affecting the ECG signal [15, 31, 32]. Because the
ECG consists of repeated heartbeats, the natural period of
the signal is amenable to a wealth of techniques for statistical
modeling. We exploit this periodic structure, treating the
heartbeat as the basic sampling unit for constructing the
sequential method.

3. Signal Processing

We segmented the data into two nonoverlapping, block
segmented by time, groups. Group 1 is the training data,
where labeled heartbeats are used to generate statistics about
each enrolled individual. Group 2 is the test data, which
contain heartbeats from the sensor and have known a
posteriori labels. The computational decision from the system
is either a confirmation that the individual is who they say
they are; or a rejection that the individual is not who they say
they are.

Processing of the ECG signal includes noise reduction,
segmentation of the heartbeats, and extraction of the features
from each heartbeat (Figure 3). Because the objective is to
minimize the data acquisition time for identity verification,
the enrollment time was not constrained. Two minutes of
data were used for enrollment and to train the verification
functions for each individual. Two additional minutes of
test data were available to quantify the required number
of heartbeats. For our concept of operations, however,
the individuals seeking authentication would only need
to present the minimum number of heartbeats, which is
expected to be on the order of second(s).
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Figure 2: Segmented heartbeats from six individuals.

Extract fiducials

Filter, extract
fiducials Compute

sequential test
statistic

Accept
H0

Accept
H1

Decision?Continue sampling

Segmented

800700600500

Filtered ECGRaw ECG trace

Enrollment

Test

Collect a heartbeat

4003002001000
0

20
40
60
80

100

−40
−20

RT
RS’

RP’

RL’

S’P’L’ T’

RS
RQ

RP

P Q
R

S T

8 8.5 9 109.5

0
20
40
60
80

−40
−20

8 8.5 9 109.5

−700

−600

−550

−500

−650
Time

RT’

P

Q

R

S
P-Q

interval
Q-T

interval

S-T

segment

Ventricular
 depolarization

Ventricular
 repolarization

Atrial
 depolarization

T

S’P’L’ T’

Stored credentials
μ,Σ

Figure 3: Signal processing for the sequential procedure.



4 EURASIP Journal on Advances in Signal Processing

0 2 4 6 8 10 12 14 16 18 20

Time (seconds)

(a)

−750

−700

−650

−600

−550

−500

−450

R
el

at
iv

e
el

ec
tr

ic
al

po
te

n
ti

al

8 8.5 9 9.5 10

Time (seconds)

(b)

−700

−650

−600

−550

−500

R
el

at
iv

e
el

ec
tr

ic
al

po
te

n
ti

al

Figure 4: Raw ECG data 1000 Hz (a) 20 seconds (b) 2 seconds.

Figures 4(a) and 4(b) show a sample of high reso-
lution ECG data. The raw data contain both high and
low frequency noise components. These noise components
alter the expression of the ECG trace from its ideal struc-
ture. The low frequency noise is expressed as the slope
of the overall signal across multiple heartbeat traces in
Figure 4(a). The low frequency noise is generally associated
with changes in baseline electrical potential of the device
and is slowly varying. Over this 20-second segment, the
ECG can exhibit a slowly varying cyclical pattern, associated
with respiration, that is known as sinus arrhythmia [15].
The high frequency noise is expressed as the intrabeat
noise shown in Figure 4(b). The high frequency noise is
associated with electric/magnetic field of the building power
(electrical noise) and the digitization of the analog potential
signal (A/D noise). Additionally, evidence of subject motion
and muscle flexure must be removed from the raw traces
[33].

Multiple filtering techniques have been applied to the
raw ECG traces: heartbeat averaging [34, 35], wavelet [36,
37], least squares modeling [38, 39] and Fourier bandpass
filtering [40–42]. For any filtering technique, the design
constraints are to maintain as much of the subject-dependent
information (signal) as possible and design a stable filter
across all subjects.

As previously reported [4], the raw ECG traces were
bandpass filtered between 0.2 and 40 Hz. The filter was
written with a lower order polynomial to reduce edge effects.
Figure 5(a) illustrates the power spectra from a typical
1000 Hz ECG trace. The noise sources were identified, and
our notional bandpass filter overlays the power spectrum.
Figure 5(b) shows the power spectrum after the bandpass
filtering. Figure 6 contains the processed data for heartbeat
segmentation and feature extraction.

Commonly, heartbeat segmentation is performed by first
locating the R complex. Next, the R position is estimated for
the following heartbeats [43, 44]. Our R peak locator used a

simple technique of looking at the maximum variance over
a 0.2 second interval. The 0.2-seconds represent ventricular
depolarization. The metric was computed in overlapping
windows to insure that the true R peaks were recovered
[4]. The remainder of the heartbeat was realized by locating
the P and the T peaks relative to the R position. For
the enrollment data, we used autocorrelation techniques
to develop an initial estimate of the R-R interval. In the
autocorrelation function, the lag for the maximum peak
generally corresponds to the mean length of the heartbeat,
giving an initial value to guide the heartbeat segmenta-
tion.

ECG data are commonly collected by contact sensors at
multiple positions around the heart. The change in ECG
electrode position provides different information because of
the relative position to the heart’s plane of zero potential.
For nearly all individuals and all electrode locations, the
ECG trace of a heartbeat produces three complexes (wave
forms). The medical community has defined the complexes
by their peaks: P, R, and T (Figure 7). The R-R interval,
the time between two successive R peaks, indicates the
duration of a heartbeat. Two other fiducials, Q and S, are
also identified at the base of the R complex. Israel et al.
[4] identified four additional fiducials at the base of the
P and T complexes. These are noted with a prime (′)
symbol (Figure 7). We employ the single channel feature
extraction method developed by Israel et al. [4]. The nine
features derived from the fiducials are the feature vector
used to illustrate the sequential procedure and the minimum
number of heartbeats metric.

4. The Sequential Procedure

Abraham Wald developed the sequential procedure for for-
mal statistical testing of hypotheses in situations where data
can be collected incrementally [45, 46]. In many instances,
the sequential method arrives at a decision based on relatively
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Figure 5: Power spectra of frequency filtering: (a) bandpass filter of raw data (b) frequency response of filtered data. (a) shows the noise
source spikes at 0.06 and 60 Hz and the information spikes between 1.10 and 35 Hz. (b) shows the filtered data with the noise spikes removed
and the subject specific information sources retained. The X-axis is frequency in Hz, and the Y-axis is squared electrical potential.
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Figure 6: Bandpass filtered ECG trace (a) entire range of data (b) segment of data. The results of applying the filter (Figure 5) to the raw
(Figure 4) data are shown.

few observations. Consider a sequence of independent and
identically distributed random variables {X1,X2, . . .} and
suppose we wish to test the hypothesis H0 : Xi ∼ f (X , θ0)
against the alternative H1 : Xi ∼ f (X , θ1). The general
approach is to construct the sequential probability ratio
statistic for the first T observations:

S(T) = P[X1, . . . ,XT | H1]
P[X1, . . . ,XT | H0]

=
∏T

t=1 f (Xt, θ1)
∏T

t=1 f (Xt, θ0)
. (1)

At each step in the sequential procedure, that is, for each
value of T = 1, 2, . . . , the computed value of S(T) is
compared to the decision thresholds A and B, where 0 < A <
1 < B < ∞. The values of A and B depend on the acceptable

level of error in the test of hypothesis. The decision procedure
is

If S(T) < A, accept H0,

If S(T) > B, accept H1,

If A < S(T) < B, continue sampling,

(2)

S(T) is known as the sequential probability ratio statistic. It is
often convenient to formulate the procedure in terms of the
log of the test statistic:

S∗(T) = log [S(T)]

=
T∑

t=1

log
[
f (Xt, θ1)

]−
T∑

t=1

log
[
f (Xt, θ0)

]
.

(3)
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Figure 7: Fiducial features in the heartbeat.

To develop the sequential procedure for our application, we
treat identity verification as a test of hypotheses. The two
hypotheses are

H0 : The subject is who (s)he says

H1 : The subject is not who (s)he says.
(4)

The data for testing the hypotheses is the series of observed
heartbeats presented in the test data. From each test heart-
beat the fiducial features are extracted, forming a feature
vector. Denote these feature vectors from each heartbeat
by {H(1),H(2), . . .}. If the person says (s)he is subject i,
then {H(t) : t = 1, . . . ,T} are drawn from the statistical
distribution corresponding to subject i. If (s)he is not who
(s)he claims to be, then {H(t) : t = 1, . . . ,T} are drawn from
a population with a statistical distribution corresponding to
subject j, where i /= j. To simplify the procedure, we assume
that the feature vectors {H(t)} are independent with a K-
variate Gaussian distribution, where K is the number of
features extracted from each heartbeat. The mean vectors
and covariance matrices are estimated from the enrollment
data. Using this model for the test data, the hypotheses are
restated in statistical terms:

H0 : H(t) ∼ N (Yi,Σ) for {H(t) : t = 1, . . . ,T},

H1 : H(t) ∼ N
(

Yj,Σ
)

where i /= j for {H(t) : t = 1, . . . ,T},

(5)

where Yi is the mean feature vector for subject i, and Yj is
the mean feature vector for subject j. The covariance matrix
Σ is assumed to be the same across subjects. Implicit in this
formulation is the assumption that the Yi /=Yj , whenever
i /= j, which is a necessary condition for ECG to provide a
unique biometric signature. The distance between Yi and
Yj sets the trade space for selecting ECG attributes and
verification algorithms, as it affects the required number
of heartbeats needed for making a decision whether the
individual is an authentic user or an intruder.

To test the hypotheses H0 and H1, we calculate the log of
the likelihood ratio statistic for whether the first T heartbeats

for subject i come from the jth subject. In the classical
Neyman-Pearson formulation of hypothesis testing, T would
be fixed [47]. In the sequential procedure, we calculate the
test statistic for values of T until a decision is reached. Note
that the verification methods depend on the Mahalanobis
distance, and Y is composed the 9-attribute feature vector.
The test statistic as a function of T , the number of heartbeats
is:

S∗(T) =
T∑

t=1

log
(
f1(H(t))

)− log
(
f0(H(t))

)
, (6)

where

f0(H(t)) = [2π]−K/2|Σ|−1/2

× exp
[

−1
2

(H(t)− Yi)
TΣ−1(H(t)− Yi)

]

,

f1(H(t)) = [2π]−K/2|Σ|−1/2

× exp
[

−1
2

(
H(t)− Yj

)T
Σ−1

(
H(t)− Yj

)]

,

(7)

where K = 9 is the dimensionality of the vectors, and
Yj is the mean for the alternative hypothesis. In principle,
we would calculate the statistic S∗(T) for each value of T ,
starting at T = 1. For ECG analysis, at least two heartbeats
are required. The features are the distances between fiducial
points, normalized by the length of the heartbeat. This
normalization insures that the verification procedure is
tolerant to changes in overall heartrate attributable to
varying physical, mental, or emotional state.

Computing S∗(T) requires calculating (7) for each
heartbeat, multiplying, and taking logs to compute the value
defined in (6). Computationally, this can be simplified. The
term [2π]−k/2 |Σ|−1/2 is a constant that gets added and
subtracted, so it can be ignored. The test procedure simplifies
to calculate the quadratic forms (8) and (9):

f0(H(t)) ∝ −1
2

(H(t)− Yi)
TΣ−1(H(t)− Yi),

f1(H(t)) ∝ −1
2

(
H(t)− Yj

)T
Σ−1

(
H(t)− Yj

)
.

(8)

Sum up values to compute S∗(T) for each value of T , that is,

S(T) =
T∑

t=1

log
[
f1(H(t))

]− log
[
f0(H(t))

]
. (9)

The result of all this is a series of values for S∗(T) for
T = 1, 2, 3, . . .. Because the feature vector H(t) depends on
the estimated R-R interval, a minimum of two heartbeats
is needed. Thus, in practice, the “0th” heartbeat must be
acquired, and S∗(1) is computed from the 0th and 1st
heartbeats and S∗(T) for T ≥ 2 are computed sequentially
as each heartbeat is added to the sample.
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Comparing S∗(T) to the critical values determines which
hypothesis to accept. We define the errors α and β as follows:

α = Pr
{

Rejecting H0 | H0 is true
}

= Pr
{
S∗(T) > log(B)

}
,

β = Pr
{

Rejecting H1 | H1 is true
}

= Pr
{
S∗(T) < log(A)

}
.

(10)

For a test of simple hypothesis, it has been shown [46] that
(11)

log(A) = log

[
β

1− α

]

,

log(B) = log

[
1− β

α

]

.

(11)

To illustrate the application of the sequential procedure to
the ECG signal, consider the example shown in Figure 8.
Suppose the person presenting his/her credentials claims to
be person i. Then the enrollment data for the ith subject
gives the estimated mean Yi under H0. If the true identity
is j, where j /= i, then one could use Yj for the mean
value under H1. We consider 5 cases in which H0 is false
and the data come from five different individuals, labeled
1–5 in Figure 8(a). In all cases, the test statistic quickly
exceeds the decision threshold log(B) for α = β = 0.01.
Comparing the behavior of the test statistics (Figure 8(a)) to
the distance between the mean vector for the true identity
and the mean vector for the declared identity (Figure 8(b))
reveals a direct correspondence. Note that these distances
are computed from the training/enrollment data, while the
test statistic depends on the enrolled means and the actual
heartbeats observed in the test data. As one might expect, a
large difference between the enrolled means for the true and
declared identities corresponds to a large value of S∗(T) and
a rapid acceptance of H1. When the true mean is close to the
mean of the declared identity, S∗(T) increases more slowly.

This leads to the final step in the formulation of the
sequential procedure, namely, the selection of i and j for
constructing the test statistic. The choice of i is clear—it
always corresponds to the declared identity of the individual
presenting the credentials. To select j, we use the “closest
imposter,” that is, the enrolled individual with credentials
closest to the declared individual. In other words, we select
j such that as

∥
∥
∥Yi − Yj

∥
∥
∥ = min{k � k /= i : ‖Yi − Yk‖}, (12)

where ‖Yi − Yj‖ is distance defined by

∥
∥
∥Yi − Yj

∥
∥
∥ =

(
Yi − Yj

)T
Σ−1

(
Yi − Yj

)
, (13)

and Σ is the pooled covariance matrix. When H0 is true, we
use the nearest imposter to calculate the test statistic shown
in Figure 8. The procedure determines that the S∗(T) falls
below the decision boundary, and H0 is accepted.

5. Results

We present performance results for two data sets. The first
data set, consisting of 29 subjects, was acquired under a strict
protocol documented previously [1–4]. The second data set
merges recordings from two data acquisitions discussed by
Israel et al. [6]. Both datasets are single channel collections.
Together, these data sets suggest the performance that can
be expected for a moderate size population. In practice,
however, a range of issues require further investigation: the
effects of varying mental and emotional states on the ECG
signal, the sensor placement and efficient data acquisition,
generalization to larger populations, and the long-term
stability of the ECG credentials. These issues are explored in
the next section.

5.1. First Data Set. The ECG data analyzed in the work of
Israel et al. [4] and Irvine et al. [5] provides a target perfor-
mance for the sequential procedure. For this experiment, the
single channel ECG data were collected at the base of the neck
at a sampling rate of 1000 Hz with an 11-bit dynamic range.
The population consisted of 29 males and females between
the ages of 18 and 48, with no known cardiac anomalies.
During each session, the subject’s ECG was recorded while
performing seven 2-minute tasks. The tasks were designed to
elicit varying stress levels and to understand stress/recovery
cycles. The results shown here used data from the subject’s
low stress tasks. The next section presents results for one of
the high-stress tasks.

Setting the decision threshold based on α = β = 0.01,
all 29 subjects were analyzed using the sequential procedure.
When H0 is true, that is, the test data comes from the subject
who is declared to be subject i, the results show that H0 is
accepted in all cases (Figure 9). We stopped processing at 15
heartbeats. In all cases, the decision was reached within that
time span, and usually much sooner.

Similarly, when H1 is true, the correct decision is
generally reached in fewer than 15 heartbeats (Figure 10). In
this set of results, the true identity for the test data is, in fact,
the closest imposter. In only one case did the test procedure
fail to reject an imposter within 15 heartbeats. In addition,
we have computed the sequential tests when data for other
subjects are used for the test set and the correct decision
is always made in fewer heartbeats. Essentially, Figure 10
represents a worst case in which the subject trying to pose
as someone else has a heartbeat that is fairly similar to the
declared identity.

The sequential procedure performs well for the test data.
An important practical issue is the number of heartbeats
required to reach a decision. Figure 11 depicts the number
of heartbeats required for a decision when H0 is true
(Figure 11, left side) and when H1 is true (Figure 11, right
side). In both cases, most of the individuals were identified
using only 2 or 3 heartbeats. In cases where there is some
ambiguity, however, additional heartbeats are needed to
resolve the differences.

The number of heartbeats needed to reach a decision
depends on the level of acceptable error. The results pre-
sented in Figures 9, 10 and 11 assume α = β = 0.01.
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Figure 8: Example of a sequential procedure. (a) Sequential test statistic for a single declared identity when H0 is true and for five imposters.
(b) The distance of the declared identity to the five imposters.
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Figure 9: Sequential test statistics for all subjects when H0 is true.
The test data are from the declared individual.
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Figure 10: Sequential test statistics for all subjects when H1 is true.
The test data are from the subject closest to the declared individual,
that is, the nearest imposter.

An inverse relationship exists between acceptable error
rate and required number of heartbeats. Smaller levels of
acceptable error will drive the decision process to require
more data. Table 1 summarizes the performance for α =
β ranging from 0.1 to 0.0001. More stringent constraints
on α and β, for example, α = β = 0.001or α =

β = 0.0001, generally require more heartbeats. As the
acceptable error reduces, a decision is not always realized
within 15 heartbeats. For the case of α = β = 0.0001,
the procedure was run until a decision was reached for
all subjects. When H0 is true, the maximum number of
heartbeats needed was 33. When H1 was true, the maximum
was 37 heartbeats. In all cases, the correct decision was
reached.

5.2. Second Data Set. Two additional ECG data collection
campaigns used a simplified protocol and a standard, FDA
approved ECG device. The clinical instrument recorded the
ECG data at 256 Hz and quantized it to 7 bits. These data
were acquired from two studies: one which collected single
channel data from 28 subjects with the sensor placement at
the wrist and one which collected single lead data from 47
subjects using a wearable sensor. The result is an additional
75 subjects.

The analysis followed the same procedure as with the
first data set. Application of the sequential procedure for all
75 subjects was performed under both H0 and H1. Table 2
summarizes the results for the two cases α = β = 0.05 and
α = β = 0.01, where the procedure ran for a maximum of 24
heartbeats. The results show that in a few instances a decision
is not reached within the 24 heartbeats. For α = β = 0.05,
when H0 is true the procedure fails to decide for 2 subjects
and 2 additional subjects are classified incorrectly. When
H1 is true, the procedure failed to decide for 1 subject and
decided incorrectly for 1 subject.

A comparison of the results from the two data sets
shows good consistency. A statistical comparison reveals no
significant difference. Consider, for example, performance
when α = β = 0.05. Under H0, a statistical comparison
of the correct acceptance rates yields a t-statistic of 1.39.
The corresponding t-statistic under H1 is 0.58. In short,
performance for the two experiments is statistically indistin-
guishable.
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Figure 11: Histograms showing the number of heartbeats needed to reach a decision where the acceptable level of error is α = β = 0.01.

Table 1: Summary statistics for the number of heartbeats needed to reach a decision for varying levels of the acceptable error.

H0 is true H1 is true

Allowable
error (α,β)

Mean no.
of

heartbeats

Minimum
no. of

heartbeats

Maximum
no. of

heartbeats

Percent
resulting

in decision

Allowable
error (α,β)

Mean no.
of

heartbeats

Minimum
no. of

heartbeats

Maximum
no. of

heartbeats

Percent
resulting

in decision

0.1 3.38 2 8 100 0.1 3.655 2 11 100

0.05 4.24 2 9 100 0.05 4.621 2 14 100

0.01 6.07 2 15 100 0.01 6.500 2 15 96.6

0.005 6.68 3 14 96.6 0.005 7.000 2 14 93.1

0.001 7.28 3 13 86.2 0.001 7.792 3 15 82.8

0.0005 7.96 4 15 86.2 0.0005 8.174 3 15 79.3

0.0001 7.55 4 15 69.0 0.0001 7.647 4 14 58.6

6. Issues and Concerns

The results presented in the previous section, while promis-
ing, were obtained from modest data sets collected under
controlled conditions. To be operationally viable, a system
must address performance across a range of conditions. Key
issues to consider are

(i) heartrate variability, including changes in mental and
emotional states,

(ii) sensor placement and data collection,

(iii) scalability to larger populations,

(iv) long-term viability of the ECG credentials.

Heartrate Variability. Heartrate, of course, varies with a
person’s mental or emotional state. Excitement or arousal
from any number of stimuli can elevate the heartrate.
Under the experimental protocol employed to collect the
first data set, subjects performed a series of tasks designed
to elicit varying mental and emotional states [1–4]. The
subjects exhibited changes in heartrate associated with these
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Figure 12: Aligned heartbeats from high stress and low stress tasks.

tasks. The fiducial features, however, show relatively small
differences due to the variation in heartrate. To illustrate,
consider Figure 12. For a single subject, Figure 12 presents
6 heartbeats from the baseline task in which the subject is
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Table 2: Analysis of second data set.

(a) Heartbeats required to reach a decision

H0 is true H1 is true

Allowable
error (α,β)

Mean no.
of

heartbeats

Minimum
no. of

heartbeats

Maximum
no. of

heartbeats

Percent
resulting

in decision

Allowable
error (α,β)

Mean no.
of

heartbeats

Minimum
no. of

heartbeats

Maximum
no. of

heartbeats

Percent
resulting

in decision

0.05 3.04 2 22 97.3 0.05 3.10 2 22 98.7

0.01 4.93 2 24 92.0 0.01 4.99 2 24 92.0

(b) Correct decision rates

H0 is true H1 is true

Allowable error
(α,β)

Percent resulting in
correct decision

Allowable error
(α,β)

Percent resulting in
correct decision

0.05 94.7 0.05 97.3

0.01 89.3 0.01 90.7
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Figure 13: Comparison of variance attributable to subject and task.

seated at rest. In addition, 6 heartbeats from a high stress
task (a virtual reality driving simulation) were temporally
rescaled and overlaid on the same graph. For this particular
subject, the mean R-R interval for the baseline task was 0.715
seconds and for the high stress task it was 0.580 seconds.
However, by a linear rescaling, the high-stress heartbeats
align well with the baseline heartbeats. A difference in the
height of the T wave is evident but the fiducial features
depend on the relative positions of the peaks, not the
heights.

Delving deeper than the visual evidence for a single
subject, we conducted a systematic analysis of the sources
of variance in the fiducial features using a multivariate
analysis of variance (MANOVA). The 29 subjects performed
all seven tasks in the experimental protocol eliciting a
range of stimulation. The MANOVA shows that there
are small, but statistically significant, differences in the
fiducials across the various tasks, indicating that there
are subtle differences in the ECG signal that are more
complex than a linear rescaling. This source of variance,
however, is typically one or two orders of magnitude

smaller than the variance across subjects. Figure 13 shows
the relationships between the two mean square errors for
each fiducial, and the variation across subjects is far more
pronounced than the variation due to task. This relationship
is why the fiducial-based features are likely to provide good
information about a subject’s identity across a range of
conditions.

To verify this hypothesis, we explored the effect of varying
the level of arousal of the subject. The protocol used for
collecting Dataset 1 included a set of tasks designed to
elicit varying levels of stimulation or arousal [1–4]. Using
the baseline, low stress task for training, we processed data
from one of the high-stress tasks for testing. Specifically,
the subjects performed an arithmetic task designed to affect
both stress and cognitive loads. The effectiveness of the task
is evident in that the mean R-R interval decreased from
a baseline of 0.83 to 0.76 for this task. Nevertheless, the
sequential procedure yielded good performance on these
data (Table 3).

If alternative attributes are evaluated in the trade space,
such as wavelets [35] or Legendre coefficients [48], then their
sensitivity must also be evaluated in the same manner as
above. Likewise, incorporating other verification algorithms
such as PCA [5, 49] or Gaussian modeling [50] will
require substituting their characteristics into the sequential
process. Regardless, the minimum number of heartbeats is
appropriate for comparing systems.

Sensor Placement. Dataset 1 collected ECG traces from the
base of the neck. Dataset 2 collected ECG traces on the
forearms. Both collections used medical quality single use
electrodes. However, any operational system must design
a more robust collection method. This method must have
reusable electrodes, a concept of employment for locating
electrodes on normally exposed skin, and other human
factors. These issues are outside the scope of this paper.
However, the concept of employment does raise significant
concerns about the noise floor for an operational system. As
the noise floor increases the separability between the subject
and the nearest imposter reduces.
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Table 3: Effects of varying levels of stimulation.

H0 is true H1 is true

Allowable
error (α,β)

Mean no.
of

heartbeats

Minimum
no. of

heartbeats

Maximum
no. of

heartbeats

Percent
correct

decision

Allowable
error (α,β)

Mean no.
of

heartbeats

Minimum
no. of

heartbeats

Maximum
no. of

heartbeats

Percent
correct

decision

0.01 5.57 2 17 96.6 0.01 4.41 2 10 93.1

Scalability. Depending on the application, an ECG-based
identity verification system may need to store credentials for
hundreds or thousands of individuals. The recent experi-
ments lack the sample sizes needed to determine large-scale
performance, and the next step is to assess performance over
much larger data sets. Because our approach compares the
credentials for the declared subject to the nearest imposter,
the separability among members of the training set is
critical. By always choosing j to be the closest imposter, we
guard against accepting a person’s credentials too readily.
Fortunately, determining the closest imposter is performed
using training data, offline, which greatly improves the
processing efficiency and system usability. It does, however,
raise a concern about extending these methods to appli-
cations involving large enrolled populations. An alternative
approach is to select j based on the features extracted from
the first heartbeat. One could select j to be the member of the
enrollment set closest to the first heartbeat from the test data,
where j /= i. In terms of the statistical formulation, H1 is no
longer a simple hypothesis, since j is chosen to minimize a
criterion over the full enrollment set. A simple experiment
on a subset of the data revealed mean decision times of
approximately 8 heartbeats for α = β = 0.01, compared to
6.5 using the nearest imposter. Further investigation of this
issue is still needed.

Long-Term Viability. Characteristics of an individual’s ECG
can change for a variety of medical reasons, including car-
diovascular disease and changes in medication. Research has
examined these issues from a clinical perspective, but further
investigation is needed to understand how these factors affect
ECG as a biometric for identification. For the data analyzed
in this paper, the time difference between the training and
test sets ranged from minutes to months, but no truly long-
term differences have been studied. Such a study needs to be
conducted, and existing clinical measurements are likely to
be the most readily available source of data. Depending on
the concept of employment, however, periodic re-enrollment
may be one strategy for addressing long-term changes in an
individual’s ECG signal.

7. Discussion

This research builds on previous investigations into the
viability of ECG as a biometric for human identification.
We focus specifically on a procedure for exploiting the ECG
signal for identity verification, with the optimization metric
being the number of heartbeats needed for the system to
make a decision. By using a method based on a sequential
procedure for statistical hypothesis testing, data acquisition

time is minimized. For the two data sets analyzed here, the
approach generally yields the correct decision given enough
heartbeats.

For modest levels of acceptable risk (α = β = 0.01 or
0.05), the decision is often made after only 3 or 4 heartbeats
and is almost always made within 15 heartbeats. In practice,
this implies a data acquisition time of approximately 5 to 15
seconds. Lower risk tolerance (e.g., α = β = 0.0001) could
require 30 seconds or more to reach a decision for some
individuals.

Whether the data acquisition time is acceptable in
practice will depend, of course, on the specific application.
One attractive approach is to use ECG in conjunction with
other biometrics, such as fingerprint and hand geometry.
This multimodality approach could support less demanding
performance limits for the ECG (e.g., α = β = 0.01), while
providing a high level of security that will be very difficult to
forge or circumvent.

Further investigations are still needed to refine and
validate the methods presented here. Specific avenues for
future research include the following.

(i) Assessment of performance over a much larger
population of test subjects: larger data sets, including
data collected at greater time intervals, are necessary
to characterize the behavior of these methods.

(ii) Investigation of robustness to physical, mental, and
emotional states and longer baselines between visits:
heartrate will vary with a variety of stimuli. Irvine
et al. [3] and Israel et al. [4] demonstrated that with
proper normalization, the fiducial-based features
are robust to mental and emotional states. Further
validation that similar results hold for the sequential
procedures would be useful.

(iii) Exploration of alternative feature extraction meth-
ods and verification algorithms: researchers have
proposed a variety of alternative feature extrac-
tion methods, including variations on the fiducial
features, principal component analysis, template
matching, and frequency-domain approaches. These
methods can be integrated into the sequential pro-
cedure framework, and a comparison of different
approaches could prove enlightening.
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