
 0415msdn_CoverTip_8x10.75.indd 1 3/11/15 10:52 AM

www.devexpress.com/try

 0415msdn_CoverTip_8x10.75.indd 2 3/11/15 10:52 AM

www.devexpress.com/try

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS APRIL 2015 VOL 30 NO 4

Azure Notification Hubs: Best Practices
for Managing Devices
Sara Silva . 20

Event Hubs for Analytics and Visualization
Bruno Terkaly . 30

Automate Creating, Developing and
Deploying Azure Websites
Gyan Jadal . 34

Visualize Streaming Data the Easy Way
with OData
Louis Ross . 46

2D Drawing Techniques and Libraries
for Web Games
Michael Oneppo . 56

Authoring Desired State Configuration
Custom Resources
Ritesh Modi . 62

COLUMNS
CUTTING EDGE
Queryable Services
Dino Esposito, page 6

WINDOWS WITH C++
Visual C++ 2015 Brings
Modern C++ to Legacy Code
Kenny Kerr, page 10

DATA POINTS
EF6 Code First Migrations
for Multiple Models
Julie Lerman, page 16

TEST RUN
Multi-Class Logistic
Regression Classification
James McCaffrey, page 70

MODERN APPS
A Mobile-First Approach to
Modern App Development
Rachel Appel, page 76

DON’T GET ME STARTED
Siri and Cortana
David Platt, page 80

Azure Notification
and Event Hubs.............20, 30

0415msdn_C1_v1.indd 1 3/11/15 8:17 AM

Untitled-1 2 2/3/15 10:46 AM

www.axosoft.com/msdn

Untitled-1 3 2/3/15 10:46 AM

www.axosoft.com/msdn

msdn magazine2

ID STATEMENT MSDN Magazine (ISSN 1528-4859) is
published monthly by 1105 Media, Inc., 9201 Oakdale
Avenue, Ste. 101, Chatsworth, CA 91311. Periodicals
postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offices. Annual subscription rates
payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in
U.S. funds are: U.S. $25.00, International $25.00. Single
copies/back issues: U.S. $10, all others $12. Send orders
with payment to: MSDN Magazine, P.O. Box 3167, Carol
Stream, IL 60132, email MSDNmag@1105service.com
or call (847) 763-9560. POSTMASTER: Send address
changes to MSDN Magazine, P.O. Box 2166, Skokie,
IL 60076. Canada Publications Mail Agreement No:
40612608. Return Undeliverable Canadian Addresses
to Circulation Dept. or XPO Returns: P.O. Box 201,
Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part
prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 4 Venture,
Suite 150, Irvine, CA 92618.

LEGAL DISCLAIMER The information in this magazine
has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed
or implied. Implementation or use of any information
contained herein is the reader ’s sole responsibility. While
the information has been reviewed for accuracy, there
is no guarantee that the same or similar results may be
achieved in all environments. Technical inaccuracies may
result from printing errors and/or new developments
in the industry.

CORPORATE ADDRESS 1105 Media, 9201 Oakdale Ave.
Ste 101, Chatsworth, CA 91311 www.1105media.com

MEDIA KITS Direct your Media Kit requests to Chief
Revenue Officer Dan LaBianca, 972-687-6702 (phone),
972-687-6799 (fax), dlabianca@1105media.com

REPRINTS For single article reprints (in minimum
quantities of 250-500), e-prints, plaques and posters
contact: PARS International Phone: 212-221-9595.
E-mail: 1105reprints@parsintl.com.
www.magreprints.com/QuickQuote.asp

LIST RENTAL This publication’s subscriber list, as well as
other lists from 1105 Media, Inc., is available for rental.
For more information, please contact our list manager,
Jane Long, Merit Direct. Phone: 913-685-1301;
E-mail: jlong@meritdirect.com;
Web: www.meritdirect.com/1105

Reaching the Staff
Staff may be reached via e-mail, telephone, fax, or mail.
A list of editors and contact information is also available
online at Redmondmag.com.
E-mail: To e-mail any member of the staff, please use the
following form: FirstinitialLastname@1105media.com
Irvine Office (weekdays, 9:00 a.m. – 5:00 p.m. PT)
Telephone 949-265-1520; Fax 949-265-1528
4 Venture, Suite 150, Irvine, CA 92618
Corporate Office (weekdays, 8:30 a.m. – 5:30 p.m. PT)
Telephone 818-814-5200; Fax 818-734-1522
9201 Oakdale Avenue, Suite 101, Chatsworth, CA 91311
The opinions expressed within the articles and other
contentsherein do not necessarily express those of
the publisher.

President
Henry Allain

Chief Revenue Officer
Dan LaBianca

Chief Marketing Officer
Carmel McDonagh

ART STAFF
Creative Director Jeffrey Langkau
Associate Creative Director Scott Rovin
Senior Art Director Deirdre Hoffman
Art Director Michele Singh
Assistant Art Director Dragutin Cvijanovic
Graphic Designer Erin Horlacher
Senior Graphic Designer Alan Tao
Senior Web Designer Martin Peace

PRODUCTION STAFF
Director, Print Production David Seymour
Print Production Coordinator Anna Lyn Bayaua

ADVERTISING AND SALES
Chief Revenue Officer Dan LaBianca
Regional Sales Manager Christopher Kourtoglou
Account Executive Caroline Stover
Advertising Sales Associate Tanya Egenolf

ONLINE/DIGITAL MEDIA
Vice President, Digital Strategy Becky Nagel
Senior Site Producer, News Kurt Mackie
Senior Site Producer Gladys Rama
Site Producer Chris Paoli
Site Producer, News David Ramel
Senior Site Administrator Shane Lee
Site Administrator Biswarup Bhattacharjee
Senior Front-End Developer Rodrigo Munoz
Junior Front-End Developer Anya Smolinski
Executive Producer, New Media Michael Domingo
Office Manager & Site Assoc. James Bowling

LEAD SERVICES
Vice President, Lead Services Michele Imgrund
Senior Director, Audience Development
& Data Procurement Annette Levee
Director, Audience Development
& Lead Generation Marketing Irene Fincher
Director, Client Services & Webinar
Production Tracy Cook
Director, Lead Generation Marketing Eric Yoshizuru
Director, Custom Assets & Client Services
Mallory Bundy
Editorial Director, Custom Content Lee Pender
Senior Program Manager, Client Services
& Webinar Production Chris Flack
Project Manager, Lead Generation Marketing
Mahal Ramos
Coordinator, Lead Generation Marketing
Obum Ukabam

MARKETING
Chief Marketing Officer Carmel McDonagh
Vice President, Marketing Emily Jacobs
Senior Manager, Marketing Christopher Morales

ENTERPRISE COMPUTING GROUP EVENTS
Senior Director, Events Brent Sutton
Senior Director, Operations Sara Ross
Director, Event Marketing Merikay Marzoni
Events Sponsorship Sales Danna Vedder
Senior Manager, Events Danielle Potts
Coordinator, Event Marketing Michelle Cheng
Coordinator, Event Marketing Chantelle Wallace

Chief Executive Officer
Rajeev Kapur

Chief Operating Officer
Henry Allain

Senior Vice President & Chief Financial Officer
Richard Vitale

Executive Vice President
Michael J. Valenti

Vice President, Information Technology
& Application Development
Erik A. Lindgren

Chairman of the Board
Jeffrey S. Klein

Director Keith Boyd
Editorial Director Mohammad Al-Sabt mmeditor@microsoft.com
Site Manager Kent Sharkey
Editorial Director, Enterprise Computing Group Scott Bekker
Editor in Chief Michael Desmond
Features Editor Lafe Low
Features Editor Sharon Terdeman
Group Managing Editor Wendy Hernandez
Senior Contributing Editor Dr. James McCaffrey
Contributing Editors Rachel Appel, Dino Esposito, Kenny Kerr, Julie Lerman, Ted Neward,
David S. Platt, Bruno Terkaly, Ricardo Villalobos
Vice President, Art and Brand Design Scott Shultz
Art Director Joshua Gould

APRIL 2015 VOLUME 30 NUMBER 4

magazine

0415msdn_Masthead_v1_2.indd 2 3/11/15 8:17 AM

mailto:mmeditor@microsoft.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:dlabianca@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/QuickQuote.asp
mailto:jlong@meritdirect.com
http://www.meritdirect.com/1105
mailto:FirstinitialLastname@1105media.com

Untitled-5 1 3/9/15 3:24 PM

www.leadtools.com

msdn magazine4

I remember one of the first IT articles I ever wrote. I was living
in Chicago, writing occasional freelance articles for a weekly
computing tabloid while working a temp job for a marketing outfit
that shilled cigarettes in bars. Good times. The article was about a
floppy disk-borne virus outbreak, which in itself was hardly news.
Most malware at the time got onto PCs via the 5.25- or 3.5-inch
floppy disks used to move data and install applications. What was
newsworthy was that the virus showed up on new diskettes sold
by a local electronics store.

A quarter-century ago, malware-infected media was a byproduct
of regrettable negligence by a manufacturer. Today, manufacturers
infect hard drives for fun and profit.

Take the (rather egregious) example of computer maker Lenovo.
The company had been outfitting its consumer line of Yoga laptops
and convertibles with a pernicious bit of software called Superfish,
which Lenovo has described as “visual discovery software,” what-
ever the heck that’s supposed to mean. In point of fact, Superfish
was a man-in-the-middle (MITM) exploit used to monitor Lenovo
users’ Web searches and inject its own ads into the results as they
were returned back by the remote server. But with many searches
now conducted over secure HTTPS links, Superfish had a problem.
It needed a way into those encrypted conversations.

Which is when things went seriously off the rails at Lenovo. As
part of the bundling deal, Lenovo pre-installed into the Windows
trusted root store of each of its systems a self-signed, private root
certificate from Superfish, essentially imbuing Superfish with all the
powers of a certificate authority. The SSL certificates that Superfish
presented to intercept traffic were chained to this root certificate,
causing the browser to fully trust the certificates Superfish presented.

As Rick Andrews, senior technical director for Trust Services
at Symantec, wrote in a blog soon after the Superfish deal blew
up: “Pre-installing any root that does not belong to an audited
Certificate Authority and marking it as trusted undermines the
trust model created and maintained by platform vendors, browser
vendors and Certificate Authorities.”

It sure does. Worse, the associated private key set up on each
computer was encrypted using the same dead-simple password—
komodia—which is literally the name of the company that provided
the ad injection software for Superfish. I am not making this up. Robert
Graham in his Errata Security blog (bit.ly/18mAiO0) describes how he
was able to quickly extract the Superfish certificate and crack the
private key password. Keep in mind, that password is the same for
all affected Lenovo systems. Any PC with the Superfish certificate
installed is vulnerable to having its Web communications intercepted.

Microsoft stepped in quickly, updating its Defender and
Security Essentials tools to spot and remove Superfish installa-
tions, and Lenovo came to its senses a bit later with a removal tool
of its own. None of which resolves the truly galling part of this
episode. According to a Forbes report (onforb.es/1ErfZeR), Lenovo
probably earned between $200,000 and $250,000 in the bundling
deal—barely a rounding error on Lenovo’s $14.1 billion in revenue
in the third quarter. Yet that was enough to motivate a first-line
computer manufacturer to completely undermine the root-level
security of its paying customers.

OK, so forget the profit. Maybe manufacturers are infecting hard
drives just for the fun of it at
this point.

Fished Out

© 2015 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodified form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affiliated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specific environments and configurations. These recommendations or guidelines may not apply to dissimilar configurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

MICHAEL DESMONDEditor’s NotE

 But with many searches now
conducted over secure HTTPS
links, Superfish had a problem.

It needed a way into those
encrypted conversations.

0415msdn_DesmondEdNote_v4_4.indd 4 3/11/15 8:21 AM

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine
www.bit.ly/18mAiO0
www.onforb.es/1ErfZeR

Untitled-1 1 12/2/14 4:42 PM

www.appdynamics.com

msdn magazine6

It’s getting more common for companies to expose their back-end
business services as plain old HTTP endpoints. This type of
architecture requires no information about databases and physi-
cal data models. Client applications don’t even need references to
database-specific libraries such as Entity Framework. The physical
location of the services is irrelevant and you can keep the back end
on-premises or transparently move it to the cloud.

As a solution architect or lead developer, there are two scenarios
you should be prepared to face when adopting this strategy. The first
is when you have no access whatsoever to the internal workings of the
services. In that case, you aren’t even in a condition of asking for more
or less data to fine-tune the performance of your client application.

The second scenario is when you’re also responsible for main-
taining those back-end services and can influence the public API to a
certain extent. In this article, I’ll focus primarily on the latter scenario.
I’ll discuss the role of specific technologies to implement queryable
services in a flexible way. The technology I’ll use is OData services on
top of ASP.NET Web API. Nearly everything discussed in this article
applies to existing ASP.NET platforms and ASP.NET 5 vNext, as well.

Sealed Back-End Services
Before getting into queryable service design, I’ll briefly
explore that first scenario in which you have no con-
trol over available services. You’re given all the details
you need to make calls to those services, but have no
way to modify the amount and shape of the response.

Such sealed services are sealed for a reason. They’re
part of the official IT back end of your company.
Those services are part of the overall architecture
and aren’t going to change lightheartedly. As more
client applications depend on those services, chances
are your company is considering versioning.
Generally speaking, though, there has to be a
compelling reason before any new release of those
services is implemented.

If the sealed API is a problem for the client application you’re
developing, the only thing you can do is wrap the original services
in an additional proxy layer. Then you can use any tricks that serve
your purposes, including caching, new data aggregates and inserting
additional data. From an architectural standpoint, the resulting
set of services then shifts from the infrastructure layer up to the
domain services layer. It may even be higher at the application
layer (see Figure 1).

The Read Side of an API
Modern Web applications are built around an internal API. In
some cases, this API becomes public. It’s remarkable to consider
that ASP.NET 5 vNext pushes an architecture in which ASP.NET
MVC and the Razor engine provide the necessary infrastructure
for generating HTML views.

ASP.NET Web API represents the ideal infrastructure for handling
client requests coming from clients other than browsers and HTML
pages. In other words, a new ASP.NET site is ideally devised as a thin
layer of HTML around a possibly sealed set of back-end services. The
team in charge of the Web application, though, is now also the owner
of the back-end API, instead of the consumer. If anyone has an issue
with that, you’ll hear his complaints or suggestions.

Most consumer API issues concern the quantity and quality of
the data returned. The query side of an API is typically the trickiest
to create because you never know which way your data is being
requested and used in the long run. The command side of an API
is usually a lot more stable because it depends on the business

domain and services. Domain services do some-
times change, but at least they maintain a different
and often slower pace.

Typically, you have a model behind an API. The query
side of the API tends to reflect the model whether
the API has a REST or an RPC flavor. Ultimately, the
sore point of a read API is the format of the data it
returns and the data aggregates it supports. This issue
has a friendly name—data transfer objects (DTOs).

When you create an API service, you build it from
an existing data model and expose it to the outside
world through the same native or custom model.
For years, software architects devised applications
in a bottom-up manner. They always started from
the bottom of a typically relational data model. This
model traveled all the way up to the presentation layer.

Queryable Services

Cutting EdgE DINO ESPOSITO

Figure 1 From Sealed
Services to More Flexible
Application Services

Domain

Infrastructure

Application

Presentation

Ad Hoc
Services

Sealed
Services

Most consumer API issues
concern the quantity and quality

of the data returned.

0415msdn_EspositoCEdge_v5_6-9.indd 6 3/11/15 10:41 AM

Move from finger-pointing blame to data-driven accountability.
Find the truth with a single source of data from multiple views.

newrelic.com/truth

©2008-15 New Relic, Inc. All rights reserved.

Mobile Developers
End-to-end visibility,
24/7 alerting, and
crash analysis.

Front-end Developers
Deep insights into
your browser-side
app’s engine.

IT Operations
Faster delivery.
Fewer bottlenecks.
More stability.

App Owners
Track engagement.
Pinpoint issues.
Optimize usability.

One source of truth
See all your data. Boost performance. Drive accountability for everyone.

Untitled-3 1 1/13/15 11:56 AM

www.newrelic.com/truth

msdn magazine8 Cutting Edge

Depending on the needs of the various client
applications, some DTO classes were created along
the way to ensure that presentation could deal with
the right data in the right format. This aspect of
software architecture and development is changing
today under the effect of the growing role of client
applications. While building the command side of
a back-end API is still a relatively easy job, devising
a single and general enough data model that suits all
possible clients is a much harder job. The flexibility
of the read API is a winning factor today because
you never know which client applications your API
will ever face.

Queryable Services
In the latest edition of the book, “Microsoft .NET: Architecting
Applications for the Enterprise” (Microsoft Press, 2014), Andrea
Saltarello and I formalized a concept we call layered expression
trees (LET). The idea behind LET is application layer and domain
services exchange IQueryable<T> objects whenever possible. This
usually happens whenever the layers live in the same process space
and don’t require serialization. By exchanging IQueryable<T>,
you can defer any required query results from filter composition
and data projection to the last minute. You can have these adapted
on a per-application basis, instead of some hardcoded form of
domain-level API.

The idea of LET goes hand-in-hand with the emerging CQRS
pattern. This pushes the separation of the read stack from the com-
mand stack. Figure 2 illustrates the points of having an LET pattern
and a bunch of queryable services in your architecture.

The primary benefit of LET is you don’t need any DTOs to carry
data across layers. You still need to have view model classes at some
point, but that’s a different story. You have to deal with view model
classes as long as you have a UI to fill out with data. View model
classes express the desired data layout your users expect. That’s the
only set of DTO classes you’re going to have. Everything else from
the level at which you physically query for data and up is served
through IQueryable references.

Another benefit of LET and queryable services is the resulting
queries are application-level queries. Their logic closely follows
domain expert language. This makes it easier to map requirements to
code and discuss alleged bugs or misunderstandings with customers.
Most of the time, a quick look at the code helps you explain the logic.
As an example, here’s what an LET query may look like:

var model = from i in db.Invoices
 .ForBusinessUnit(buId)
 .UnpaidInLast(30.Days)
 orderby i.PaymentDueDate
 select new UnpaidViewModel
 {
 ...
 };

From the database context of an Entity Framework root object,
you query for all inbound invoices and select those relevant to a
given business unit. Among those, you find those still unpaid a
number of days past due terms.

The nice thing is IQueryable references are not real data. The
query executes against the data source only when you exchange

IQueryable for some IList. Filters you add along the
way are simply WHERE clauses added to the actual
query being run at some point. As long as you’re in
the same process space, the amount of data trans-
ferred and held in memory is the bare minimum.

How does this affect scalability? The emerging
trend for which the vNext platform has been opti-
mized is you keep your Web back end as compact as
possible. It will ideally be a single tier. You achieve
scalability by replicating the unique tier through a
variety of Microsoft Azure Web Roles. Having a sin-
gle tier for the Web back end lets you use IQueryable
everywhere and save yourself a bunch of DTO classes.

Implement Queryable Services
In the previous code snippet, I assumed your services are imple-
mented as a layer around some Entity Framework database context.
That’s just an example, though. You can also fully encapsulate the
actual data provider under an ASP.NET Web API façade. That way,
you have the benefit of an API that expresses the domain services
capabilities and can still reach over HTTP, thus decoupling clients
from a specific platform and technology.

Then you can create a Web API class library and host it in some
ASP.NET MVC site, Windows service or even some custom host
application. In the Web API project, you create controller classes
that derive from ApiController and expose methods that return
IQueryable<T>. Finally, you decorate each IQueryable method
with the EnableQuery attribute. The now obsolete Queryable
attribute works, as well. The key factor here is the EnableQuery
attribute lets you append OData queries to the requested URL—
something like this:

[EnableQuery]
public IQueryable<Customer> Get()
{
 return (from c in db.Customers select c);
}

This basic piece of code represents the beating heart of your API.
It returns no data by itself. It lets clients shape up any return data
they want. Look at the code in Figure 3 and consider it to be code
in a client application.

The $select convention in the URL determines the data projection
the client receives. You can use the power of OData query syntax to
shape up the query. For more on this, see bit.ly/15PVBXv.

For example, one client may only request a small subset of col-
umns. Another client or a different screen in the same client may

Figure 2 Queryable
Objects Are Queried at
the Last Minute

Presentation

IQueryableIQueryable

API

When you create an API service,
you build it from an existing

data model and expose it to the
outside world through the same

native or custom model.

0415msdn_EspositoCEdge_v5_6-9.indd 8 3/11/15 10:41 AM

www.bit.ly/15PVBXv

msdnmagazine.com

beta

query a larger chunk of data. All this can happen without touching
the API and creating tons of DTOs along the way. All you need
is an OData queryable Web API service and the final view model
classes to be consumed. Transferred data is kept to a minimum as
only filtered fields are returned.

There are a couple of remarkable aspects to this. First, OData is a
verbose protocol and couldn’t otherwise be given the role it plays.
This means when you apply a $select projection, the JSON pay-
load will still list all fields in the original IQueryable<T> (all fields
of the original Customer class in the Get method). However, only
the specified fields will hold a value.

Another point to consider is case sensitivity. This affects
the $filter query element you use to add a WHERE clause to the
query. You might want to call tolower or toupper OData functions
(if supported by the OData client library you’re using) to normalize
comparisons between strings.

Wrapping Up
Quite frankly, I never felt OData was worthy of serious consider-
ation until I found myself—as the owner of a back-end API—in the
middle of a storm of requests for different DTOs being returned
from the same data model. Every request seemed legitimate and
placed for a very noble cause—performance improvement.

At some point, it seemed all those clients wanted to do was
“query” the back end in much the same way they would query a
regular database table. Then I updated the back-end service to
expose OData endpoints, thus giving each client the flexibility to
download only the fields in which they were interested.

The type T of each IQueryable method is the key. It may or may
not be the same type T you have in the physical model. It can match
a plain database table or result from data aggregations done on the
server-side and transparent to clients. When you apply OData,
though, you let clients query on datasets of a known single entity,
T, so why not give it a try? n

Dino Esposito is the coauthor of “Microsoft .NET: Architecting Applications for
the Enterprise” (Microsoft Press, 2014) and “Programming ASP.NET MVC 5”
(Microsoft Press, 2014). A technical evangelist for the Microsoft .NET Framework
and Android platforms at JetBrains and a frequent speaker at industry events
worldwide, Esposito shares his vision of software at software2cents.wordpress.com
and on Twitter at twitter.com/despos.

thanks to the following technical expert for reviewing this article:
Jon Arne Saeteras

var api = "api/customers?$select=LastName";
var request = new HttpRequestMessage()
{
 RequestUri = new Uri(api)),
 Method = HttpMethod.Get,
};
var client = new HttpClient();
var response = client.SendAsync(request).Result;
if (response.IsSuccessStatusCode)
{
 var list = await
 response.Content.ReadAsAsync<IEnumerable<Customer>>();
 // Build view model object here
}

Figure 3 Client Apps Can Shape the Data Returned

0415msdn_EspositoCEdge_v5_6-9.indd 9 3/11/15 10:41 AM

www.dtsearch.com
http://software2cents.wordpress.com
www.witter.com/despos
www.msdnmagazine.com

msdn magazine10

Systems programming with Windows relies heavily on opaque
handles that represent objects hidden behind C-style APIs. Unless
you’re programming at a fairly high level, chances are you’ll be in
the business of managing handles of various kinds. The concept
of a handle exists in many libraries and platforms and is certainly
not unique to the Windows OS. I first wrote about a smart handle
class template back in 2011 (msdn.microsoft.com/ magazine/hh288076)
when Visual C++ started introducing some initial C++11 language
features. Visual C++ 2010 made it possible to write convenient and
semantically correct handle wrappers, but its support for C++11
was minimal and a lot of effort was still required to write such a
class correctly. With the introduction of Visual C++ 2015 this year, I
thought I’d revisit this topic and share some more ideas about how
to use modern C++ to liven up some old C-style libraries.

The best libraries don’t allocate any resources and, thus, require
minimal wrapping. My favorite example is the Windows slim
reader/writer (SRW) lock. Here’s all it takes to create and initialize
an SRW lock that’s ready to use:

SRWLOCK lock = {};

The SRW lock structure contains just a single void * pointer and
there’s nothing to clean up! It must be initialized prior to use and
the only limitation is that it can’t be moved or copied. Obviously,
any modernization has more to do with exception safety while the
lock is held, rather than resource management. Still, modern C++
can help to ensure these simple requirements are met. First, I can
use the ability to initialize non-static data members where they’re
declared to prepare the SRW lock for use:

class Lock
{
 SRWLOCK m_lock = {};
};

That takes care of initialization, but the lock can still be copied
and moved. For that I need to delete the default copy constructor
and copy assignment operator:

class Lock
{
 SRWLOCK m_lock = {};

public:

 Lock(Lock const &) = delete;
 Lock & operator=(Lock const &) = delete;
};

This prevents both copies and moves. Declaring these in the public
part of the class tends to produce better compiler error messages.
Of course, now I need to provide a default constructor because
one is no longer assumed:

class Lock
{
 SRWLOCK m_lock = {};

public:

 Lock() noexcept = default;
 Lock(Lock const &) = delete;
 Lock & operator=(Lock const &) = delete;
};

Despite the fact that I haven’t written any code, per se—the
compiler is generating everything for me—I can now create a lock
quite simply:

Lock lock;

The compiler will forbid any attempts to copy or move the lock:
Lock lock2 = lock; // Error: no copy!
Lock lock3 = std::move(lock); // Error: no move!

I can then simply add methods for acquiring and releasing the
lock in various ways. The SRW lock, as its name suggests, provides
both shared reader and exclusive writer locking semantics. Figure
1 provides a minimal set of methods for simple exclusive locking.

Check out “The Evolution of Synchronization in Windows and
C++” (msdn.microsoft.com/ magazine/jj721588) for more information on
the magic behind this incredible little locking primitive. All that
remains is to provide a bit of exception safety around lock owner-
ship. I certainly wouldn’t want to write something like this:

lock.Enter();
// Protected code
lock.Exit();

Instead, I’d like a lock guard to take care of acquiring and releasing
the lock for a given scope:

Lock lock;

{
 LockGuard guard(lock);
 // Protected code
}

Such a lock guard can simply hold onto a reference to the under-
lying lock:

class LockGuard
{
 Lock & m_lock;
};

Like the Lock class itself, it’s best that the guard class not allow
copies or moves, either:

class LockGuard
{
 Lock & m_lock;

public:

 LockGuard(LockGuard const &) = delete;
 LockGuard & operator=(LockGuard const &) = delete;
};

Visual C++ 2015 Brings Modern C++
to Legacy Code

WindoWs With C++ KENNY KERR

0415msdn_KerrCPP_v4_10-14.indd 10 3/11/15 8:27 AM

http://msdn.microsoft.com/ magazine/hh288076
http://msdn.microsoft.com/ magazine/jj721588

Untitled-3 1 3/9/15 4:52 PM

www.aspose.com

msdn magazine12 Windows with C++

All that remains is for a constructor to
enter the lock and the destructor to exit
the lock. Figure 2 wraps up that example.

To be fair, the Windows SRW lock is
quite a unique little gem and most librar-
ies will require a bit of storage or some
kind of resource that must be explicitly
managed. I’ve already shown how best
to manage COM interface pointers
in “COM Smart Pointers Revisited”
(msdn.microsoft.com/magazine/dn904668), so
now I’ll focus on the more general case
of opaque handles. As I wrote previ-
ously, a handle class template must
provide a way to parameterize not only
the type of the handle, but also the way
in which the handle is closed, and even what exactly represents an
invalid handle. Not all libraries use a null or zero value to represent
invalid handles. My original handle class template assumed the
caller would provide a handle traits class that gives the necessary
semantics and type information. Having written many, many
traits classes in the intervening years, I came to realize that the vast
majority of these follow a similar pattern. And, as any C++ developer
will tell you, patterns are what templates are adept at describing.
So, along with a handle class template, I now employ a handle traits
class template. The handle traits class template isn’t required, but
does simplify most definitions. Here’s its definition:

template <typename T>
struct HandleTraits
{
 using Type = T;

 static Type Invalid() noexcept
 {
 return nullptr;
 }

 // Static void Close(Type value) noexcept;
};

Notice what the HandleTraits class template provides and what it
specifically does not provide. I’ve written so many Invalid methods
that returned nullptr values that this seemed like an obvious default.
On the other hand, each concrete traits class must provide its own
Close method for obvious reasons. The comment lives on merely as
a pattern to follow. The type alias is likewise optional and is merely
a convenience for defining my own traits classes derived from this
template. Therefore, I can define a traits class for file handles returned
by the Windows CreateFile function, as shown here:

struct FileTraits
{
 static HANDLE Invalid() noexcept
 {
 return INVALID_HANDLE_VALUE;
 }

 static void Close(HANDLE value) noexcept
 {
 VERIFY(CloseHandle(value));
 }
};

The CreateFile function returns the INVALID_HANDLE_VALUE
value if the function fails. Otherwise, the resulting handle must be
closed using the CloseHandle function. This is admittedly unusual.

The Windows CreateThreadpoolWork function returns a PTP_
WORK handle to represent the work object. This is just an opaque
pointer and a nullptr value is naturally returned on failure. As
a result, a traits class for work objects can take advantage of the
HandleTraits class template, which saves me a bit of typing:

struct ThreadPoolWorkTraits : HandleTraits<PTP_WORK>
{
 static void Close(Type value) noexcept
 {
 CloseThreadpoolWork(value);
 }
};

So what does the actual Handle class template look like? Well, it
can simply rely on the given traits class, infer the type of the han-
dle and call the Close method, as needed. The inference takes the
form of a decltype expression to determine the type of the handle:

template <typename Traits>
class Handle
{
 using Type = decltype(Traits::Invalid());

 Type m_value;
};

This approach keeps the author of the traits class from having
to include a type alias or typedef to provide the type explicitly and
redundantly. Closing the handle is the first order of business and
a safe Close helper method is tucked into the private part of the
Handle class template:

void Close() noexcept
{
 if (*this) // operator bool
 {
 Traits::Close(m_value);
 }
}

This Close method relies on an explicit Boolean operator to determine
whether the handle needs to be closed before calling the traits class to
actually perform the operation. The public explicit Boolean operator
is another improvement over my handle class template from 2011 in
that it can simply be implemented as an explicit conversion operator:

explicit operator bool() const noexcept
{
 return m_value != Traits::Invalid();
}

This solves all kinds of problems and is certainly a lot easier to
define than traditional approaches that implement a Boolean-like
operator while avoiding the dreaded implicit conversions the

class Lock
{
 SRWLOCK m_lock = {};

public:

 Lock() noexcept = default;
 Lock(Lock const &) = delete;
 Lock & operator=(Lock const &) = delete;

 void Enter() noexcept
 {
 AcquireSRWLockExclusive(&m_lock);
 }

 void Exit() noexcept
 {
 ReleaseSRWLockExclusive(&m_lock);
 }
};

Figure 1 A Simple and Efficient SRW Lock

class LockGuard
{
 Lock & m_lock;

public:

 LockGuard(LockGuard const &) = delete;
 LockGuard & operator=(LockGuard const &) = delete;

 explicit LockGuard(Lock & lock) noexcept :
 m_lock(lock)
 {
 m_lock.Enter();
 }

 ~LockGuard() noexcept
 {
 m_lock.Exit();
 }
};

Figure 2 A Simple Lock Guard

0415msdn_KerrCPP_v4_10-14.indd 12 3/11/15 8:27 AM

http://msdn.microsoft.com/magazine/dn904668

Untitled-3 1 3/9/15 4:52 PM

www.groupdocs.com

msdn magazine14 Windows with C++

compiler would otherwise permit. Another language improvement,
which I’ve already made use of in this article, is the ability to
explicitly delete special members, and I’ll do that now for the copy
constructor and copy assignment operator:

Handle(Handle const &) = delete;
Handle & operator=(Handle const &) = delete;

A default constructor can rely on the traits class to initialize the
handle in a predictable manner:

explicit Handle(Type value = Traits::Invalid()) noexcept :
 m_value(value)
{}

And the destructor can simply rely on the Close helper:
~Handle() noexcept
{
 Close();
}

So, copies aren’t permitted, but apart from the SRW lock, I can’t
think of a handle resource that doesn’t permit moving its handle
around in memory. The ability to move handles is tremendously
convenient. Moving handles involves two individual operations that
I might refer to as detach and attach, or perhaps detach and reset.
Detach involves releasing the ownership of the handle to the caller:

Type Detach() noexcept
{
 Type value = m_value;
 m_value = Traits::Invalid();
 return value;
}

The handle value is returned to the caller and the handle
object’s copy is invalidated to ensure that its destructor doesn’t call
the Close method provided by the traits class. The complementary
attach or reset operation involves closing any existing handle and
then assuming ownership of a new handle value:

bool Reset(Type value = Traits::Invalid()) noexcept
{
 Close();
 m_value = value;
 return static_cast<bool>(*this);
}

The Reset method defaults to the handle’s invalid value and
becomes a simple way to close a handle prematurely. It also returns
the result of the explicit Boolean operator as a convenience. I found
myself writing the following pattern quite regularly:

work.Reset(CreateThreadpoolWork(...));

if (work)
{
 // Work object created successfully
}

Here, I’m relying on the explicit Boolean operator to check the
validity of the handle after the fact. Being able to condense this into
a single expression can be quite convenient:

if (work.Reset(CreateThreadpoolWork(...)))
{
 // Work object created successfully
}

Now that I have this handshake in place I can implement the
move operations quite simply, beginning with the move constructor:

Handle(Handle && other) noexcept :
 m_value(other.Detach())
{}

The Detach method is called on the rvalue reference and the
newly constructed Handle effectively steals ownership away from
the other Handle object. The move assignment operator is only
slightly more complicated:

Handle & operator=(Handle && other) noexcept
{
 if (this != &other)
 {
 Reset(other.Detach());
 }

 return *this;
}

An identity check is first performed to avoid attaching a closed
handle. The underlying Reset method doesn’t bother to perform
this kind of check as that would involve two additional branches
for every move assignment. One is prudent. Two is redundant. Of
course, move semantics are grand, but swap semantics are even
better, especially if you’ll be storing handles in standard containers:

void Swap(Handle<Traits> & other) noexcept
{
 Type temp = m_value;
 m_value = other.m_value;
 other.m_value = temp;
}

Naturally, a non-member and lowercase swap function is required
for genericity:

template <typename Traits>
void swap(Handle<Traits> & left, Handle<Traits> & right) noexcept
{
 left.Swap(right);
}

The final touches to the Handle class template come in the form
of a pair of Get and Set methods. Get is obvious:

Type Get() const noexcept
{
 return m_value;
}

It simply returns the underlying handle value, which may be needed
to pass to various library functions. The Set is perhaps less obvious:

Type * Set() noexcept
{
 ASSERT(!*this);
 return &m_value;
}

This is an indirect set operation. The assertion underscores this fact.
I have in the past called this GetAddressOf, but that name disguises or
contradicts its true purpose. Such an indirect set operation is needed
in cases where the library returns a handle as an out parameter. The
WindowsCreateString function is just one example out of many:

HSTRING string = nullptr;

HRESULT hr = WindowsCreateString(... , &string);

I could call WindowsCreateString in this way and then attach
the resulting handle to a Handle object, or I can simply use the Set
method to assume ownership directly:

Handle<StringTraits> string;

HRESULT hr = WindowsCreateString(... , string.Set());

That’s much more reliable and clearly states the direction in which
the data is flowing. The Handle class template also provides the usual
comparison operators, but thanks to the language’s support for
explicit conversion operators, these are no longer necessary for avoid-
ing implicit conversion. They just come in handy, but I’ll leave that
for you to explore. The Handle class template is just another example
from Modern C++ for the Windows Runtime (moderncpp.com). n

Kenny Kerr is a computer programmer based in Canada, as well as an author
for Pluralsight and a Microsoft MVP. He blogs at kennykerr.ca and you can
follow him on Twitter at twitter.com/kennykerr.

0415msdn_KerrCPP_v4_10-14.indd 14 3/11/15 8:27 AM

www.moderncpp.com
www.twitter.com/kennykerr

Untitled-1 1 10/13/11 11:25 AM

www.nsoftware.com

msdn magazine16

Entity Framework 6 introduced support for Code First Migrations
to better handle storing data for multiple models in a single data­
base. But the support is very specific and may not be what you
imagine. In this article, you’ll learn about this feature, what it does
and doesn’t do, and see how to use it.

Distinct Models, Distinct Tables, Distinct Data:
Same Database
EF6 migrations supports migration of multiple models that are
completely independent of one another. Both implementations
of this feature—using a key to identify a set of migrations or using
database schema to group migration histories with the tables for a
single model—allow you to store separate, distinct models in the
same database.

Not for Sharing Data Across Models
or for Multi-Tenant Databases
It’s easy to misinterpret the benefits of this feature, so I want to be
clear right away on what is not supported.

This new multi­model support isn’t designed to replicate a single
model and across multiple schemas to have a multi­tenant database.

The other pattern many of us hope for when we see this feature is
the ability to share a common entity (and its data) across multiple
models and map the entity to a single database. That’s a very differ­
ent kind of problem, however, and not one that’s easily solved with
Entity Framework. I used to try but gave up. I’ve written previous
articles on sharing data across databases in this column (see “A
Pattern for Sharing Data Across Domain­Driven Design Bounded
Contexts, Part 2” at bit.ly/1817XNT). I also presented a session at
TechEd Europe called “Entity Framework Model Partitioning in
Domain­Driven Design Bounded Contexts,” which was recorded
and is available at bit.ly/1AI6xPa.

Pattern One: ContextKey Is the Key
One of the new tools EF6 provides to enable this feature is the
ContextKey. This is a new field in the MigrationHistory table of
the database that keeps track of every migration. It’s partnered
with a new property of the same name in the DbMigrations­
Configuration<TContext> class.

By default, the ContextKey will inherit the strongly typed name
of the DbMigrationsConfiguration associated with that context.
As an example, here’s a DbContext class that works with Doctor
and Episode types:

namespace ModelOne.Context
{
 public class ModelOneContext:DbContext
 {
 public DbSet<Doctor> Doctors { get; set; }
 public DbSet<Episode> Episodes { get; set; }
 }
}

As always, the default behavior of the enable­migrations com­
mand is to create a DbMigrationsConfiguration class that has the
name [YourNamespace].Migrations.Configuration.

When I apply a particular migration (that is, when I call Update­
Database in the Visual Studio Package Manager Console), Entity
Framework will not only apply the migration, it will also add a new
row to the __MigrationHistory table. Here’s the SQL for that action:

INSERT [dbo].[__MigrationHistory]([MigrationId], [ContextKey], [Model],
 [ProductVersion])
VALUES (N'201501131737236_InitialModelOne',
 N'ModelOne.Context.Migrations.Configuration',
 [hash of the model], N'6.1.2-31219')

Notice that the value going into the ContextKey field is Model­
One.Context.Migrations.Configuration, which is the strongly
typed name of my DbMigrationsConfiguration<TContext> class.

You can control the ContextKey name by specifying the Context­
Key property of the DbMigrationsConfiguration class in the class
constructor. I’ll rename it to ModelOne:

public Configuration()
{
 AutomaticMigrationsEnabled = false;
 ContextKey = "ModelOne";
}

Now executing migrations will use ModelOne for the Context­
Key field of the Migration table. However, if you’ve already executed
migrations with the default, this will not go well. EF will attempt
to reapply all of the migrations, including those that created
tables and other database objects, causing the database to throw
errors because of the duplicate objects. So my advice is to change
that value prior to applying any migrations, otherwise you’ll

EF6 Code First Migrations
for Multiple Models

Data Points JULIE LERMAN

EF6 migrations supports
migration of multiple models

that are completely independent
of one another.

0415msdn_LermanDPts_v4_16-18.indd 16 3/11/15 8:28 AM

www.bit.ly/1817XNT
www.bit.ly/1AI6xPa

17April 2015msdnmagazine.com

have to manually update the data in the
__MigrationsHistory table.

I’ve made sure my DbContext type points
to a connection string that I’ve named
MultipleModelDb. Rather than rely on the
Code First convention to locate a connection
string with the same name as the context, I
want to have a single connection string I can
use for any model that targets this database.
I did this by specifying that the context con­
structor inherit the DbContext overload,
which takes a connection string name. Here’s
the constructor for ModelOneContext:

public ModelOneContext()
 : base("MultipleModelDb") {
}

Both add­migration and update­data­
base will be able to find the connection
string, so I’m assured of migrating the cor­
rect database.

Two Contexts, Two ContextKeys
Now that you see how the ContextKey
works, let’s add in another model with its
own ContextKey. I put this model in a
separate project. The pattern for doing this when you have mul­
tiple models in the same project is a bit different; I’ll demonstrate
that further along in this article. Here’s my new model, ModelTwo:

namespace ModelTwo.Context
{
 public class ModelTwoContext:DbContext
 {
 public DbSet<BBCEmployee> BbcEmployees { get; set; }
 public DbSet<HiringHistory> HiringHistories { get; set; }
 }
}

ModelTwoContext works with completely different domain
classes. Here’s its DbConfiguration class, where I specified that the
ContextKey be called ModelTwo:

internal sealed class Configuration :
DbMigrationsConfiguration<ModelTwoContext>
 {
 public Configuration()
 {
 AutomaticMigrationsEnabled = false;
 ContextKey = "ModelTwo";
 }

When I call update­database against the project that contains
ModelTwoContext, the new tables are created in the same database
and a new row is added to the __MigrationHistory table. This time
the ContextKey value is ModelTwo, as you can see in the snippet
of SQL that was run by the migration:

INSERT [dbo].[__MigrationHistory]([MigrationId], [ContextKey], [Model],
[ProductVersion])
VALUES (N'201501132001186_InitialModelTwo', N'ModelTwo', [hash of the
model], N'6.1.2-31219')

As I evolve my domain, my DbContext and my database, EF
Migrations will always check back to the relevant set of executed
migrations in the __MigrationHistory table using the appropriate
ContextKey. That way it will be able to determine what changes
to make to the database given the changes I made to the model.
This allows EF to correctly manage the migrations for multiple

DbContext models that are stored in the
database. But remember, it’s only able to work
because there’s no overlap with respect to the
database tables to which the two models map.

Pattern Two: Database Schemas
Separate Models and Migrations
The other pattern you can use to allow migra­
tions to work with multiple models in a single
database is to separate the migrations and the

relevant tables with database schemas. This
is as close to simply targeting separate
databases as you can get, without some of
the resource overhead (such as mainte­
nance and expense) you might incur with
multiple databases.

EF6 makes it much easier to define
a database schema for a single model
by configuring it with a new DbModel­
Builder.HasSchema mapping. This will
override the default schema name, which,
for SQL Server, is dbo.

Remember that even if you don’t spec­
ify the context key, a default name will be

used. So there’s no point in removing the context key properties I
set to demonstrate how the HasSchema property affects migrations.

I’ll set the schema for each of my two context classes in the On­
ModelCreating method. Here’s the relevant code for ModelTwo­
Context, which I’ve specified to have a schema named ModelTwo:

protected override void OnModelCreating(DbModelBuilder modelBuilder) {
 modelBuilder.HasDefaultSchema("ModelTwo");
 }

The other context will get the schema name ModelOne.
The result is that all of the database objects to which the Model­

TwoContext maps will be in the ModelTwo schema. Additionally,
EF will put the __MigrationHistory table for this model in the
ModelTwo schema, as well.

To demo this in a clean way, I’m pointing to a different database
than I did in the previous examples and applying all of the migra­
tions. Keep in mind that setting the HasDefaultSchema method
is a mapping change and requires that you add a new migration to
apply that change to the database. Figure 1 shows the migration
and data tables in their separate schemas.

Going forward, whenever you interact with migrations for either
context, because they’re relegated to their individual schemas, EF
won’t have a problem maintaining them separately. As a reminder,
pay attention to the critical pattern here, which is that there’s no
overlap with the tables mapped to the two models.

Multiple Models in a Single Project
The two examples you’ve seen thus far—using the ContextKey or
the database schema to separate the model migrations—were set
up with each model encapsulated in its own project. This is the
way I prefer to architect my solutions. But it’s also possible and, in
many cases, completely reasonable to have your models in the same

Figure 1 Migrations and Tables
Grouped into Database Schemas

Figure 2 Placing Multiple DbContext
Classes in a Single Project

0415msdn_LermanDPts_v4_16-18.indd 17 3/11/15 8:28 AM

www.msdnmagazine.com

msdn magazine18 Data Points

project. Whether you use the Context­
Key or the database schema to keep the
migrations sorted out, you can achieve
this with the addition of only a few extra
parameters to the NuGet commands.

For clean separation of these exam­
ples, I’ll create a new solution with the
same classes. I’ll keep the domain classes
in separate projects, but both models in
the same project, as shown in Figure 2.

As you know, by default, enable­
migrations will create a folder called
Migrations for a discovered DbContext
in your solution. If you have multiple Db­
Contexts as I do now, enable­migrations
will not just randomly select a DbContext
for creating migrations; instead, it will return a very helpful
message instructing you to use the ContextTypeName parameter
to indicate which DbContext to use. The message is so nice that
you can just copy and paste from the message to run the necessary
commands. Here’s the message returned for my project:

PM> enable-migrations
More than one context type was found in the assembly 'ModelOne.Context'.
To enable migrations for 'ModelOne.Context.ModelOneContext', use
 Enable-Migrations -ContextTypeName ModelOne.Context.ModelOneContext.
To enable migrations for 'ModelTwo.Context.ModelTwoContext', use
 Enable-Migrations -ContextTypeName ModelTwo.Context.ModelTwoContext.

In addition to the –ContextTypeName parameter, I’ll add in
the MigrationsDirctory parameter to explicitly name the folder to
make it easier for me to manage the project assets:

Enable-Migrations
-ContextTypeName ModelOne.Context.ModelOneContext
-MigrationsDirectory ModelOneMigrations

Figure 3 shows the new folders with their Configuration classes
that were created for each migration.

Running Enable­Migrations also adds the code to the DbCon­
figuration classes, which makes them aware of the directory name.
Here’s the configuration class for ModelOneContext as an example
(the DbConfiguraton file for ModelTwoContext will set its directory
name to ModelTwoMigrations, as designated):

internal sealed class Configuration : DbMigrationsConfiguration<ModelOne.
Context.ModelOneContext>
 {
 public Configuration()
 {
 AutomaticMigrationsEnabled = false;
 MigrationsDirectory = @"ModelOneMigrations";
 }

Because I now have two classes named Configuration, I’ll
be forced to fully qualify them any time I want to use them. So
I’ll rename the first to ModelOneDbConfig (as shown in the
following code) and the second to ModelTwoDbConfig:

internal sealed class ModelOneDbConfig :
DbMigrationsConfiguration<ModelOneContext>
 {
 public ModelOneDbConfig()
 {
 AutomaticMigrationsEnabled = false;
 MigrationsDirectory = @"ModelOneMigrations";
 }
 }

You can also specify a ContextKey if you want to override the
default, but I’ll leave that alone. Remember that I did specify the

HasDefaultSchema mapping method in
my DbContext classes, so the migration
history tables and other database objects
will be housed in their own schemas.

Now it’s time to add migrations for
both models and apply them to my data­
base. Again, I have to direct EF to which
model and migration to use. By pointing
to the migration configuration file, EF will
know which model to use and in which
directory to store the migration files.

Here’s my command for adding a
migration for ContextOne (remember
that I changed the configuration class
name so I don’t have to use its fully quali­
fied name for ConfigurationTypeName):

add-migration Initial
 -ConfigurationTypeName ModelOneDbConfig

The resulting migration file gets created in the ModelOne­
Migrations directory. After I do the same for ModelTwo, I also have
a migration file in the ModelTwoMigrations directory.

Now it’s time to apply these migrations. I’ll need to specify the
ConfigurationTypeName again so that EF knows which migration
to use. Here’s the command for ModelOne:

update-database
 -ConfigurationTypeName ModelOneDbConfig

I’ll run that and then the relevant command for ModelTwo:
update-database
 -ConfigurationTypeName ModelTwoDbConfig

After running these commands, my database looks just the same
as it did in Figure 1.

As I modify my models and add and apply migrations, I just
need to remember to specify the correct configuration class as a
parameter in each of the commands.

Nice Fit with Domain-Driven Design Modeling
In a recent two­part Data Points column called “A Pattern for Sharing
Data Across Domain­Driven Design Bounded Contexts,” I wrote
about sharing data across domains that are persisted to separate
databases. Part One is at bit.ly/1wolxz2 and Part Two is at bit.ly/1817XNT.
A number of developers have pointed out that maintaining a sepa­
rate database on­premises can be a burden and paying for separate
databases that are hosted in the cloud can be expensive. The tech­
niques you learned in this article for hosting the tables and data
for multiple models in a single database can help you to emulate
complete database separation. This new support in EF6 migrations
provides a nice solution for those developers. n

Julie lerman is a Microsoft MVP, .NET mentor and consultant who lives in the
hills of Vermont. You can find her presenting on data access and other.NET topics
at user groups and conferences around the world. She blogs at thedatafarm.com/
blog and is the author of “Programming Entity Framework” (2010), as well as
a Code First edition (2011) and a DbContext edition (2012), all from O’Reilly
Media. Follow her on Twitter at twitter.com/julielerman and see her Pluralsight
courses at juliel.me/PS-Videos.

Thanks to the following Microsoft technical expert for reviewing this article:
Rowan Miller

Figure 3 Result of Specifying the DbContext and
Directory Name When Enabling Migrations

0415msdn_LermanDPts_v4_16-18.indd 18 3/11/15 8:28 AM

www.bit.ly/1wolxz2
www.bit.ly/1817XNT
www.thedatafarm.com/blog
www.thedatafarm.com/blog
www.twitter.com/julielerman
http://juliel.me/PS-Videos

Untitled-6 1 5/28/14 4:02 PM

www.amyuni.com

msdn magazine20

The mobile applications market is growing faster and
faster, and improving the UX of any application is crucial because
it increases user loyalty. One of the most important features of
modern applications is that they can be kept alive, which means
keeping the user informed about the latest events that have occurred
in the application, even when it’s not being used. This is possible
through push notifications.

Each mobile platform has its own push notification service (PNS)
responsible for pushing the notifications—short messages—to
the device. Windows applications allow apps to receive different
push notification types that represent different ways to display the
message: toast, tile, raw and badge. For Android applications, on

the other hand, only a key/value message is sent to the device and
the layout is defined in the application by the class responsible
for managing push notifications. In Apple iOS applications, the
process is a mix of these approaches.

The PNS delivers the notifications, though each application needs
a back end or a Web or desktop application to define the message
and to connect to the push notification provider to send it.

Azure Notification Hubs is a Microsoft Azure service that
provides an easy-to-use infrastructure for sending push notifica-
tions from any back end to any mobile platform. Actually, there are
two main patterns and two models for managing devices in
Notification Hubs. In this article I’ll show how each pattern should

MICRO SOF T A ZUR E

Azure Notification
Hubs: Best Practices for
Managing Devices
Sara Silva

This article discusses:
•	The	push	notification	lifecycle

•	Using	Notification	Hubs

•	The	two	main	patterns	and	two	models	for	managing	devices	in	
Notification	Hubs

•	Using	Notification	Hubs	in	Azure	Mobile	Services

Technologies discussed:
Microsoft	Azure,	Azure	Notificaton	Hubs

Code download available at:
github.com/saramgsilva/NotificationHubs

Azure Notification Hubs is
a Microsoft Azure service

that provides an easy-to-use
infrastructure for sending push
notifications from any back end

to any mobile platform.

0415msdn_SilvaHubs_v3_20-28.indd 20 3/11/15 8:19 AM

www.github.com/saramgsilva/NotificationHubs

21April 2015msdnmagazine.com

be used; discuss the advantages, disadvantages and possible
scenarios for each; and describe the different models that can be
used. I’ll focus on best practices for sending cross-platform and
customized push notifications using Notification Hubs,
and also show how Notification Hubs is integrated into Azure
Mobile Services.

The Push Notification Lifecycle
The push notification lifecycle consists of three main steps:

1. The application makes a request for the push notification
service handle, which can be a token, channel URI or a
registrationId, depending on the mobile platform.

2. The application sends the PNS handle to the back end
to store it.

3. The back end sends a request to the PNS, which then
delivers the push notification.

Conceptually this process is very simple, but in practice it’s not
so easy because the infrastructure required to implement this flow
is complex. If an application is provided for different client plat-
forms, it requires an implementation for each one (in reality, it will
represent an implementation for each interface provided by each
platform). Moreover, the format for each push notification has its
own platform specifications and, in the end, these can be hard to
maintain. And that’s not all: The back end needs to be able to scale
some push notification services that don’t support broadcasting
to multiple devices; to target push notifications to different inter-
est groups; and monitor the push notifications for delivery status.
These issues must be handled in the
back end and, consequently, this
requires a complex infrastructure.

Using Notification Hubs
As I noted, Azure Notification Hubs
makes it easy to send mobile push
notifications from any back end to
any mobile platform, and it sup-
ports sending push notifications for
different interest groups and pro-
viding monitoring, telemetry and
scheduling of push notifications.
In this way, Notification Hubs is a

third-party service that helps send cross-platform and personalized
push notifications to applications and implements all the needs of
a push notification infrastructure.

To integrate Notification Hubs in an application requires config-
uration in the Azure Portal; the connection between Notification
Hubs and the PNS should be configured in the Configuration
separator of the respective Notification Hub. Without these con-
figurations, push notifications can’t be sent and an error will
occur. (If you’re ever in doubt about which push notification
services are supported by Notification Hubs, the Configuration
separator is the best place to check.) To use Notification Hubs,
you’ll need to understand tags, templates and the different ways
Notification Hubs can be used.

In general, a tag represents an interest group, which allows you
to send push notifications to specific targets. For example, a sports
news application could define tags for each sport: cycling, football,
tennis and so forth, allowing the user to select what he wants to
receive based on his interests. For cases where authentication is
required and the focus is the user, the user id can be used as the tag.
In practice, a tag is no more than a simple string value (like “cycling,”
“football” or “tennis”), and it’s also useful for localization (for different
languages there’s a pattern like “en_cycling” or “pt_cycling,” which
represents tags in English or Portuguese, respectively).

Templates aren’t a new concept, but Notification Hubs creates
an abstraction that allows you to define either platform-specific
templates or generic templates, which means you can specify key/
value pairs for each push notification defined when the device is
registered. The registration will then provide a native notification
(toast, payload or message) that contains expressions (such as
$(message)) with a value the back end or application will define
when the push notification is sent.

var toast = new XElement("toast",
 new XElement("visual",
 new XElement("binding",
 new XAttribute("template", "ToastText01"),
 new XElement("text",
 new XAttribute("id", "1"),
 "$(message)")))).ToString(SaveOptions.DisableFormatting);

var alert = new JObject(
 new JProperty("aps", new JObject(new JProperty("alert", "$(message)"))),
 new JProperty("inAppMessage", notificationText))
 .ToString(Newtonsoft.Json.Formatting.None);

var payload = new JObject(
 new JProperty("data", new JObject(new JProperty("message", "$(message)"))))
 .ToString(Newtonsoft.Json.Formatting.None);

Figure	1	Generic Templates

Figure	2	Sending a Platform-Independent Message

Push Notification
Service

Back End

Application or

Windows

iOS

<toast>
 <visual>
 <binding template=\"ToastText01\">
 <text id=\"1\">$(message)</text>
 </binding>
 </visual>
</toast>

aps: {
 alert: “$(message)”
}

Notification
Hub

Devices

In general, a tag represents an
interest group, which allows you

to send push notifications to
specific targets.

0415msdn_SilvaHubs_v3_20-28.indd 21 3/11/15 8:19 AM

www.msdnmagazine.com

msdn magazine22 Microsoft Azure

Figure 1 shows examples of the generic template (for Windows,
iOS and Android) using expressions.

The back end or application will fill the value when it sends the
key/value (Figure 2 illustrates the process):

{"message", "Message here!"}

Registering Devices
In mobile development using Notification Hubs, there are two
patterns for managing devices and sending push notifications,
which can use two different models. In general, the patterns can
be described as follows:

Case 1: Devices connect directly to Notification Hubs
• The client application connects directly to Notification

Hubs to register the device.
• The back end or a Web or desktop application connects to

Notification Hubs to send the push notification.
• The PNS will deliver the mobile push notification.

Case 2: The back end manages devices in Notification Hubs
• The client application connects to the back end.
• The back end connects with Notification Hubs to

register the devices.
• The back end defines the push notification, which will be

sent by Notification Hubs.
• The PNS will distribute the mobile push notification.

Both patterns allow you to use either the Registration model
or the Installation model; these models describe the way a device
sends the required information to the notification hub. The
Installation model was introduced recently and is recommended
for new applications or even for current applications. This new
model doesn’t make the Registration model obsolete. Here’s a
general description of each model:

Registration model: In this model, the application sends a
registration request to the Notification Hub, providing the PNS
handler and tags, and the hub returns a registration id. For each
registration you can choose a native template or a generic template,
which will define the message.

Installation model: In this model, the application sends an
installation request to the Notification Hub, providing all infor-
mation required for the process: InstallationId (for example, a
GUID), tags, PNS handler, templates and secondary templates
(for Windows apps).

Although both models are currently available for use, the Installa-
tion model was introduced for certain technical reasons, including:

• The installation model is easier to implement and maintain.
• The installation model allows partial updates to modify,

add or remove tags, PNS handlers, templates, and so forth,
without sending the Installation object; in contrast, the
registration model requires the entire registration object.

• The registration model introduces the possibility of duplicate
registrations in the back end for the same device.

• The registration model creates complexities in maintaining
the list of registrations.

• No matter which pattern you use, the flow will be the same.

The Installation model can be used in any .NET or Java back end
with the Notification Hubs .NET and Java SDKs. For client applica-
tions, you can use the REST API with this model, until the new NuGet
package that will support the installation model is released. You’ll
find the current NuGet package with support for the registration
model, WindowsAzure.Messaging.Managed, available at bit.ly/1ArIiIK.

Now, let’s take a look at the two patterns.

Case 1: Devices Connect Directly to Notification Hubs
I’m going to discuss what happens when devices connect directly
to Notification Hubs as this is the pattern most frequently used by
developers. To describe this, I’ll use the registration model.

Registering and unregistering a device in Notification
Hubs: The device requests a PNS handle from the PNS, then it
connects to a Notification Hub to register, using the PNS handle.
The Notification Hub uses this value in the PNS connection.

In practice, for example with Universal Applications, the appli-
cation starts by requesting the channel from the Windows push
notification service (WNS) with the following code:

// Get the channel from the application

var pushNotificationChannel =
 await PushNotificationChannelManager.
 CreatePushNotificationChannelForApplicationAsync();

For Android, Google Cloud Messaging provides a registrationId,
and for iOS, the Apple Push Notification Service provides a token.

A Notification Hub object should be created using the hub
name, defined in the Azure Portal, and the connection string (more
specifically, the DefaultListenSharedAccessSignature key):

// Create the notification hub object
var hub = new NotificationHub(HubName, ConnectionString);

Note that the NotificationHub class is provided by the Windows-
Azure.Messaging.Managed NuGet package (bit.ly/1ArIiIK).

The installation model was
introduced recently and
is recommended for new

applications or for adding an
event to current applications.

In mobile development
using Notification Hubs, there
are two patterns for managing

devices and sending push
notifications, which can use

two different models.

0415msdn_SilvaHubs_v3_20-28.indd 22 3/11/15 8:19 AM

www.bit.ly/1ArIiIK
www.bit.ly/1ArIiIK

Untitled-1 1 12/8/14 11:11 AM

www.devexpress.com

msdn magazine24 Microsoft Azure

Now the application can be registered with the Notification Hub:
// Register the device in Notification Hubs
var result =
 await hub.RegisterNativeAsync(pushNotificationChannel.Uri, Tags);

When you register a device in Notification Hubs, you don’t have
to provide a list of tags, but if the application needs to define inter-
est groups, those tags should be stored in the device to use them
in a registration update.

Note that the result.RegistrationId received is the id of the regis-
tration in Notification Hubs and should not be confused with the
registrationId used in Android applications (the id from Google
Cloud Messaging).

Sending the push notification: The back end (or an applica-
tion) connects to the Notification Hub to send the push notification,
which can be sent to specific tags (or not) using a specific or
generic template.

In this case, it’s not important who will connect to the Notification
Hub, the back end or a Web or desktop application to send the
notification. In practice, a NotificationHubClient object should
be created and it will require the hub name, defined in the Azure
Portal, and the connection string (more specifically, the Default-
FullSharedAccessSignature key):

// Create the Notification Hub client object
var hub = NotificationHubClient.CreateClientFromConnectionString(
 HubName, ConnectionString);

Next, the native push notification must be defined, for example,
as shown in Figure 3.

And then the push notification can be sent:
var googleResult =
 await hub.SendGcmNativeNotificationAsync(payload, tags);
var windowsResult =
 await hub.SendWindowsNativeNotificationAsync(toast, tags;
var appleResult =
 await hub.SendAppleNativeNotificationAsync(alert, tags);

Whenever a mobile push notification is sent, a list of tags can be pro-
vided, but this is optional (it depends on the application requirements).

Distributing the push notification: To finish the process,
the PNS delivers the notification to devices. The service will try
to push the notification during a limited period of time, which
varies for each service.

One of the advantages of this scenario is that it doesn’t require a
back end, but there’s a disadvantage when a user uses more than one

device: The tags aren’t shared among devices and the user needs to
redefine the tags for each one. The mobile application depends on
the Notification Hub, and it’s needed each time to update the tags in
the application, which can be a problem if the user doesn’t update
to the latest version (a common problem with mobile applications).

Possible scenarios for this case can include:
• The mobile application doesn’t require a back end, such as

when push notifications are sent by a desktop application
with this capacity or by the back office (the admin Web site).
For example, consider an application based on an online
tech event’s news feed that has a settings page where users
can subscribe to their interests, such as Developer Events,
IT Pro Events and so on. Once the interests are selected,
the user will receive push notifications for those interests.
Instead of requiring a back end to trigger push notifications,
a desktop application or back office can talk directly to the
Notification Hub whenever a new event is created to trig-
ger push notifications to all devices that have subscribed
to the specific interest.

• The mobile application uses a back end, but the push noti-
fications, for some reason, are not integrated in the services
and are sent by a desktop application or by the back office.
An example might be a client that has a service that provides
information to show in the application, but doesn’t allow
changes to the service (which can be used by different
applications). However, to support push notifications, the
client can send notifications using the back office, or even
a desktop application.

Case 2: The Back End Manages Devices
in Notification Hubs
To describe this pattern I’ll use the new approach based on the installa-
tion model, introduced recently by the Notification Hubs team.

The application connects to the back end: In this case, the
application connects to the back end to create or update the instal-
lation object, which will be stored locally.

The device requests the PNS handle from the PNS and gets the
last Installation from the Notification Hub, stored on the device.
The device then connects to the back end to create or update the
installation, from the device, in the Notification Hub. (A new
Installation object will be created the first time, but it should be

// Define template for Windows
var toast =
 new XElement("toast",
 new XElement("visual",
 new XElement("binding",
 new XAttribute("template", "ToastText01"),
 new XElement("text",
 new XAttribute("id", "1"),
 notificationText)))).ToString(SaveOptions.DisableFormatting);

// Define template for iOS
var alert = new JObject(
 new JProperty("aps", new JObject(new JProperty("alert", notificationText))),
 new JProperty("inAppMessage", notificationText))
 .ToString(Newtonsoft.Json.Formatting.None);

// Define template for Android
var payload = new JObject(
 new JProperty("data", new JObject(new JProperty("message", notificationText)))
 .ToString(Newtonsoft.Json.Formatting.None);

Figure	3	Defining the Native Push Notification

public static IPushMessage GetWindowsPushMessageForToastText01(string message)
{
 var payload = new XElement("toast",
 new XElement("visual",
 new XElement("binding",
 new XAttribute("template", "ToastText01"),
 new XElement("text",
 new XAttribute("id", "1"), message))))
 .ToString(SaveOptions.DisableFormatting);

 return new WindowsPushMessage
 {
 XmlPayload = payload
 };
}

Figure	4	Defining a WindowsPushMessage Based on the
ToastText01 Template

0415msdn_SilvaHubs_v3_20-28.indd 24 3/11/15 8:19 AM

Untitled-1 1 1/6/15 10:47 AM

www.devexpress.com

msdn magazine26 Microsoft Azure

reused each time the back end connects with the Notification Hub
for the same device.)

For example, in Universal Applications, the application will start
by requesting the channel URI from the WNS, with the following:

// Get the channel from the application
var pushNotificationChannel =
 await PushNotificationChannelManager.
CreatePushNotificationChannelForApplicationAsync();

Before making the request to the back end to create or update
the installation, the Installation object must be defined:

// Retrieve installation from local storage and
// create new one if it does not exist
var installation = SettingsHelper.Installation;
if (installation == null)
{
 installation = new Installation
 {
 InstallationId = Guid.NewGuid().ToString(),
 Platform = NotificationPlatform.Wns,
 PushChannel = pushNotificationChannel.ToString(),
 Tags = new List<string> {“news", "sports"}
 };
}

The installation class used in the client application is created
from the JSON provided in the documentation.

At this point, you can request the registration with code like this:
// Create a client to send the HTTP registration request
var client = new HttpClient();
var request = new HttpRequestMessage(HttpMethod.Post, new Uri(_registerUri))
{
 Content = new StringContent(JsonConvert.SerializeObject(installation),
 Encoding.UTF8, "application/json")
};
var response = await client.SendAsync(request);

The back end creates or updates the installation from the
device, in the Notification Hub: When the back end receives a
request to register the device using the installation model, it connects
with the Notification Hub to create or update the installation. For
example, in ASP.NET Web API, you can create a NotificationHub-
Controller to define the services to manage devices in Notification
Hubs. The implementation requires a Notification Hub client
object, which can be defined in the constructor, as follows:

public class NotificationHubController : ApiController
{
 private readonly NotificationHubClient _notificationHubClient;
 private const string HubName = "<define the notification hub name>";
 private const string ConnectionString = "<define the connection string>"
 public NotificationHubController()
 {
 _notificationHubClient =
 NotificationHubClient.CreateClientFromConnectionString(
 ConnectionString, HubName);
 }

Now you can write the method that will create or update the instal-
lation, which will receive as input the installation object, like so:

[HttpPost]
[Route("api/NH/CreateOrUpdate")]
public async Task CreateOrUpdateAsync(Installation installation)
{
 // Before creating or updating the installation is possible,
 // you must change the tags to have secure tags
 await _notificationHubClient.
 CreateOrUpdateInstallationAsync(installation);
}

Note that the tags can be defined and stored in the back end
(in both models). The mobile application isn’t required to store
them or even know about them. For example, consider a bank
application that defines tags for each account for a client. When an
operation is done for an account, a push notification is sent to the

device for that account. In this case, the tags must be secure and
only the back end will know them.

In the Installation model, the installation will be stored in the Notifi-
cation Hub, which means it can be retrieved based on the InstallationId.

The back end defines the push notification, which will be
sent by the Notification Hub: The back end is responsible for
sending the push notification to the Notification Hub, and you
can provide tags and define the template for each platform (when
a generic template isn’t defined).

The implementation is similar to the scenario in Case 1, where
the back end or an application connects to the Notification Hub
to send the push notification, so I won’t provide any additional
code for this case.

By the way, in the installation model, it’s possible to send a push
notification to a specific installation. This is a new feature only
for registrations based on the Installation model. Here’s the code
to do that:

_notificationHubClient.SendWindowsNativeNotificationAsync(
 payload, "$InstallationId:{" + installationId + "}");

The push notification service will distribute the push
notification: To finish the process, the PNS will deliver the push
notifications to the devices, during a limited period.

One of the advantages of this case is that tags can be static or
dynamic, which means they can change anytime without changing
or affecting the mobile applications; tags are secure because each
user can only be registered for a tag if he is authenticated; tags can
be shared among different devices for the same user; the mobile
application is completely independent of Notification Hubs. The
disadvantage of this case is the fact the process is more complex
than the first case, if the registration model is used.

Possible scenarios for this include:
• A mobile application that connects to a back end and the

tags must be secure. A good example for this case is an
application related to bank accounts, which supports push
notifications to keep users informed about transactions in
their accounts.

• A mobile application that connects to a back end and tags
must be dynamic. Consider an application that provides
information for different music events, using tags to define
different events, and for each event users can subscribe to
be updated about all related information. The lifecycle for
each tag is short and each time a new event is created, a new
tag is created for that event. Tags, therefore, are dynamic
and can be managed by the back end, keeping the process
independent of the mobile application.

In both scenarios, tags should be stored in the back end, but that
doesn’t mean the mobile client isn’t aware of them.

Note that the tags can be
defined and stored in the back

end (in both models).

0415msdn_SilvaHubs_v3_20-28.indd 26 3/11/15 8:19 AM

(888) 850-9911
Sales Hotline - US & Canada:

/update/2015/04

Help & Manual Professional from $583.10
Easily create documentation for Windows, the Web and iPad.

• Powerful features in an easy accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to HTML, WebHelp, CHM, PDF, ePUB, RTF, e-book or print

• Styles and Templates give you full design control

BEST SELLER

Aspose.Total for .NET from $2,449.02
Every Aspose .NET component in one package.

• Programmatically manage popular � le formats including Word, Excel, PowerPoint and PDF

• Work with charts, diagrams, images, project plans, emails, barcodes, OCR and OneNote � les
alongside many more document management features in .NET applications

• Common uses also include mail merging, adding barcodes to documents, building dynamic
reports on the � y and extracting text from most document types

BEST SELLER

LEADTOOLS Medical Imaging SDKs V19 from $4,995.00 SRP

Powerful DICOM, PACS and HL7 functionality.

• Load, save, edit, annotate and display DICOM Data Sets with support for 2014 specifi cations

• High-level PACS Client and Server components and frameworks

• OEM-ready HTML5 Zero-footprint Viewer and DICOM Storage Server apps with source code

• Medical-specifi c image processing functions for enhancing 16-bit grayscale images

• Native libraries for .NET, C/C++, HTML5, JavaScript, WinRT, iOS, OS X, Android, Linux & more

NEW RELEASE

GrapeCity ComponentOne Studio 2015 V1 from $1,315.60
.NET Tools for Professional Developers.

• Solutions for Data Visualization, Data Management, Reporting and Business Intelligence

• Hundreds of .NET UI controls for all Visual Studio platforms

• Built-in themes and an array of designers for custom styling

• Adaptive, mobile-friendly and touch-enabled controls

NEW RELEASE

Untitled-5 1 3/9/15 2:54 PM

www.componentsource.com

msdn magazine28 Microsoft Azure

Updating Registrations
With the registration model, each time you want to update any-
thing related to the registration, such as the tags being used, you
must redo the registration; this is required to complete the update.
But in the Installation model, you can update just specific details.
This means if the application needs to update one tag, the templates
or other details, it’s possible to do a partial update. Here’s the code
for updating a tag:

// Define the partial update
PartialUpdateOperation replaceTagsOperation =
 new PartialUpdateOperation();
replaceTagsOperation.Operation = UpdateOperationType.Replace;
replaceTagsOperation.Path = "/tags/tennis";
replaceTagsOperation.Value = "cycling";
partialUpdates.Add(replaceTagsOperation);
// Send the partial update
_notificationHubClient.PatchInstallation(
 installationId, partialUpdates);

Using Notification Hubs in Azure Mobile Services
Azure Mobile Services allows you to develop an application with a
scalable and secure back end (using the Microsoft .NET Framework
or Node.js) hosted in Azure. With the focus on mobile applications,
Azure Mobile Services provides the main features a mobile
application needs, such as CRUD operations, social network
authentication, offline support, push notifications and more.

Push notifications are provided in Azure Mobile Services by
Notification Hubs, and each time an Azure Mobile Service is cre-
ated, a Notification Hub is created and associated with the Azure
Mobile Service.

Mobile applications that use Azure Mobile Services can imple-
ment push notifications in a quick and easy way, because the Azure
Mobile Services SDK provides APIs for:

• Client applications to register devices using the back end.
• A back end to manage the devices in a Notification Hub;

to modify requests from devices, which means the back
end can add, modify or delete tags from the request made
by mobile applications, or even cancel the registration; to
send push notifications (using a specific template and, if
tags are required, provide them).

The implementation in the .NET back end will be something
similar to:

await Services.Push.SendAsync(
 GetWindowsPushMessageForToastText01(
 "My push notification message", tags));

The method GetWindowsPushMessageForToastText01 defines
the template for the push notification based on a message, and can
be implemented as shown in Figure 4.

In the client application, for example in Universal Apps, you
must request the channel from WNS:

// Get the channel
var channel =
 await PushNotificationChannelManager.
 CreatePushNotificationChannelForApplicationAsync();

Then the mobile service client should be created, and it will
allow interaction with the back end:

// Create the MobileServiceClient using the
// AzureEndpoint and admin key
var mobileServiceClient =
 new Microsoft.WindowsAzure.MobileServices.MobileServiceClient(
 AzureEndPoint, AzureMobileServiceApplicationKey);

The AzureEndPoint should be something like https://my-
mobileservice.azure-mobile.net/ and the AzureMobileService-
ApplicationKey is a string that represents the application key
defined in the Azure Portal.

You can use the method RegisterNativeAsync to register a device,
as follows:

// Register the device
await MobileServiceClient.Client.GetPush().RegisterNativeAsync(
 channel.Uri, tags);

But if you’re going to register the device using a generic template,
use the RegisterTemplateAsync method.

In Azure Mobile Services (.NET back end), to extend, modify or
cancel the registration for Azure Notification Hubs, the INotification-
Handler interface should be implemented. By doing so, you can, for
example, have secure tags.

Wrapping Up
Notification Hubs provides an abstraction to send push notifications
from any back end to any mobile platform, and the new model
allows you to define a unique installation that contains the essen-
tial information required by Notification Hubs. That installation
can be reused, avoiding duplicate registration and complexity, for
new applications or even in current applications, the installation
model is recommended. There are two main patterns for registering
devices to Notifications Hubs, which should be chosen according
to the application requirements.

This model lets you send messages focused on specific interest
groups using tags, and it’s also possible to define generic or specific
templates and to scale and monitor the service according to the
needs of the application. Finally, easy-to-use SDKs are provided
in several languages for both the mobile apps and the back end.

 Notification Hubs integrated by default, which is a plus for de-
velopers because it enables implementation of the push notifica-
tion feature in a quick and easy way. n

Sara Silva is a mathematics graduate and Microsoft MVP. Nowadays, she works
as a mobile developer in Portugal, with a main focus on Windows applications,
Xamarin and Microsoft Azure. She blogs at saramgsilva.com and can be followed
on Twitter at twitter.com/saramgsilva.

ThankS to	the	following	Microsoft	technical	experts	for	reviewing	this	article:	
Piyush Joshi, Paulo Morgado and Chris Risner

Azure Mobile Services
allows you to develop an

application with a scalable and
secure back end (using the

Microsoft .NET Framework or
Node.js) hosted in Azure.

0415msdn_SilvaHubs_v3_20-28.indd 28 3/11/15 8:19 AM

www.twitter.com/saramgsilva
www.saramgsilva.com

Untitled-2 1 5/31/13 10:57 AM

www.rssbus.com

msdn magazine30

There are countless examples of companies that are building
solutions based on analytics and visualization. There are many sce-
narios requiring large-scale data ingestion and analytics. Nobody
can deny the huge growth in the social networking space, where
tweets from Twitter, posts from Facebook, and Web content from
blogs are analyzed in real time and used to provide company’s brand
awareness. This is the first part of a multi-part series around real-time
analytics and visualization, focusing on hyper-scale data flows.

This level of data analysis is big business for companies such
as Networked Insights, which helps brands make faster, smarter
and more audience-centric decisions. Its marketing solution
analyzes and organizes real-time consumer data from the social
Web to produce strategic, actionable insights that inform better
audience segmentation, content strategy, media investment and

brand health. What differentiates its approach is the company’s
ability to simplify the use of social media data by proactively clas-
sifying it across 15,000 consumer-interest dimensions in real time,
leveraging computational linguistics, machine learning and other
techniques. Some of those consumer interest dimensions include
the use of 46 emotional classifiers that go deeper than the roots of
positive and negative sentiment and into the nuances of hate, love,
desire and fear so marketers understand not only how consumers
feel about a product, but what to do next.

For this level of analysis, the first thing you need is large-scale
data ingestion. Using the social media example again, consider
that Twitter has hundreds of millions of active users and hundreds
of millions of tweets per day. Facebook has an active user base of
890 million. Building the capability to ingest this amount of data
in real time is a daunting task.

Once the data is ingested, there’s still more work to do. You need
to have the data parsed and placed in a permanent data store. In
many scenarios, the incoming data flows through a Complex Event
Processing (CEP) system, such as Azure Stream Analytics or Storm.
That type of system does stream analytics on the incoming data by
running standing queries. This might generate alerts or transform
the data to a different format. You may then opt to have the data
(or part of it) persisted to a permanent store or have it discarded.

That permanent data store is often a JSON-based document
database or even a relational database like SQL Server. Prior to
being placed into permanent storage, data is often aggregated,

A ZURE I NS IDER

Event Hubs for Analytics
and Visualization
Bruno Terkaly

This article discusses:
•	Data analysis and visualization techniques
•	Using the AMQP transmission protocol
•	Configuring	Azure	Event	Hubs

Technologies discussed:
Microsoft	Azure,	Azure	Event	Hubs,	Visual	Studio	2013,	
Ubuntu	Linux	14.02

Code	download	available	at:
github.com/brunoterkaly/msdneventhubs

0415msdn_TerkAzure_v3_30-33.indd 30 3/11/15 8:19 AM

www.github.com/brunoterkaly/msdneventhubs

31April 2015msdnmagazine.com

coalesced or tagged with additional attributes. In more sophisti-
cated scenarios, the data might be processed by machine learning
algorithms to facilitate making predictions.

Ultimately, the data must be visualized so users can get a deeper
understanding of context and meaning. Visualization often takes
place on a Web-based dashboard or in a mobile application. This
typically introduces the need for a middle tier or Web service, which
can expose data from permanent storage and make it available to
these dashboards and mobile applications.

This article, and subsequent installments, will take a more straight-
forward example. Imagine you have thousands of devices in the
field measuring rainfall in cities across the United States. The goal
is to visualize rainfall data from a mobile device. Figure 1 demon-
strates some of the technologies that might bring this solution to life.

There are several components to this architecture. First is the
event producer, which could be the Raspberry Pi devices with
attached rainfall sensors. These devices can use a lightweight proto-
col such as Advanced Message Queuing Protocol (AMQP) to send
high volumes of rainfall data into Microsoft Azure Event Hubs.
Once Azure has ingested that data, the next tier in the architecture
involves reading the events from Azure Event Hubs and persist-
ing the events to a permanent data store, such as SQL Server or
DocumentDB (or some other JSON-based store). It might also
mean aggregating events or messages. Another layer in the archi-
tecture typically involves a Web tier, which makes permanently
stored data available to Web-based clients, such as a mobile device.
The mobile application or even a Web dashboard then provides the
data visualization. This article will focus on the first component.

Event Producer
Because I’m sure most of you typically don’t own thousands of
Internet of Things (IoT) devices, I’ve made some simplifications
to the example relating to the event producer in Figure 1. In this

article, I’ll simulate the Raspberry Pi devices with Linux-based
virtual machines (VMs) running in Azure.

I need to have a C program running on a Linux machine, specifi-
cally Ubuntu 14.02. I also need to use AMQP, which was developed
in the financial industry to overcome some of the inefficiencies
found in HTTP. You can still use HTTP as your transport pro-
tocol, but AMQP is much more efficient in terms of latency and
throughput. This is a protocol built upon TCP and has excellent
performance on Linux.

The whole point in simulating the Raspberry Pi on a Linux VM
is you can copy most, if not all, of the code to the Raspberry Pi,
which supports many Linux distributions. So instead of reading
data from an attached rainfall sensor, the event producer will read
from a text file that contains 12 months of rainfall data for a few
hundred cities in the United States.

The core technology for high-scale data ingestion in Azure
is called Event Hubs. Azure Event Hubs provide hyper-scalable
stream ingestion, which lets tens of thousands of Raspberry Pi
devices (event producers) send continuous streams of data without
interruption. You can scale Azure Event Hubs by defining through-
put units (Tus), whereby each throughput unit can handle write
operations of 1,000 events per second or 1MB per second (2MB/s
for read operations). Azure Event Hubs can handle up to 1 million
producers exceeding 1GB/s aggregate throughput.

Sending Events
Sending events to Azure Event Hubs is simple. An entity that sends an
event, as you can see in Figure 1, is called an event publisher. You can use
HTTPS or AMQP for transfer. I’ll use Shared Access Signatures (SAS)
to provide authentication. An SAS is a time-stamped unique identity
providing Send and Receive access to event publishers.

To send the data in C#, create an instance of EventData, which
you can send via the Send method. For higher throughput, you

Figure	1	Overall Architecture of the Rainfall Analysis System

Event Publisher

loT Uploads Temperature Data

Raspberry Pi

Ubuntu Linux

C Program

AMQP

Raspberry Pi

Ubuntu Linux

C Program

AMQP

Simulation for This Article

Text File w/ Rainfall Data

Azure Datacenter

Azure Web Sites

Node.js
Application

(Web Server)

SQL Server/Database

DocumentDB

Event Consumer

C# Program
w/ Event Hub SDK

Event Consumer

C# Program
w/ Event Hub SDK

Azure Event Hubs

Raspberry Pi

Ubuntu Linux

C Program

AMQP

Raspberry Pi

Ubuntu Linux

C Program

AMQP

0415msdn_TerkAzure_v3_30-33.indd 31 3/11/15 8:19 AM

www.msdnmagazine.com

msdn magazine32 Azure Insider

can use the SendBatch method. In C, AMQP provides a number
of methods to provide a similar capability.

Partition Keys
One of the core concepts in Azure Event Hubs is partitions. Partition
Keys are values used to map the incoming event data into specific
partitions. Partitions are simply an ordered system in which events are

held at Event Hubs. As new events are sent, they’re added at the end
of the partition. You can think of each partition as a separate commit
log in the relational database world and work in a similar fashion.

By default, each Azure Event Hub contains eight partitions. You
can go beyond 32 partitions, but that requires a few extra steps. You’d
only need to do that based on the degree of downstream parallel-
ism required for consuming applications. When publishing events,
you can target specific partition keys, but that doesn’t scale well and
introduces coupling into the architecture.

A better approach is to let the internal hashing function use
a round robin event partition mapping capability. If you specify
a PartitionKey, the hashing function will assign it to a partition
(same PartitionKey always assigns to same partition). The round
robin assignment happens only when no partition key is specified.

Get Started
A great place to start is to go through the tutorial at bit.ly/1F2gp9H.
You can choose your programming language: C, Java or C#. The
code for this article is based on C. Remember, I’m simulating the
Raspberry Pi devices by reading from a text file that contains
rainfall data. That said, it should be easy to port all this code to a
Raspberry Pi device.

Perhaps the best place to start is to provision Azure Event Hubs
at the portal. Click on App Services | Service Bus | Event Hub |
Quick Create. Part of the provisioning process involves obtaining
a shared access signature, which is the security mechanism used
by your C program to let it write events into Azure Event Hubs.

Figure	3	Source Code in C to Send Message to Azure Event Hubs

int main(int argc, char** argv)
{
 printf("Press Ctrl-C to stop the sender process\n");
 FILE * fp;
 char line[512];
 size_t len = 0;
 size_t read = 0;
 int i = 0;
 int curr_field = 0;
 int trg_col = 0;
 pn_messenger_t *messenger = pn_messenger(NULL);
 pn_messenger_set_outgoing_window(messenger, 1);
 pn_messenger_start(messenger);

 fp = fopen("weatherdata.csv", "r");
 if (fp == NULL)
 exit(EXIT_FAILURE);

 while (fgets(line, 512, fp)!=NULL)
 {
 for (i = 0; line[i] != '\0'; i++)
 {
 if (line[i] == ',')
 {
 fields[curr_field][trg_col] = '\0';
 trg_col = 0;
 curr_field += 1;
 }
 else
 {
 fields[curr_field][trg_col] = line[i];
 trg_col += 1;
 }
 }
 trg_col = 0;
 curr_field = 0;
 for (i = 1; i < 13; i++)
 {

 sendMessage(messenger, i, fields[0], fields[i]);
 printf("%s -> %s\n", fields[0], fields[i]);
 }

 printf("\n");
 }
 fclose(fp);

 // Release messenger resources
 pn_messenger_stop(messenger);
 pn_messenger_free(messenger);

 return 0;
}

int sendMessage(pn_messenger_t * messenger, int month, char *f1, char *f2)
{
 char * address = (char *) "amqps://SendRule:
 [secret key]@temperatureeventhub-ns.servicebus.windows.net/temperatureeventhub";

 int n = sprintf (msgbuffer, "%s,%d,%s", f1, month, f2);
 pn_message_t * message;
 pn_data_t * body;
 message = pn_message();
 pn_message_set_address(message, address);
 pn_message_set_content_type(message, (char*) "application/octect-stream");
 pn_message_set_inferred(message, true);

 body = pn_message_body(message);
 pn_data_put_binary(body, pn_bytes(strlen(msgbuffer), msgbuffer));

 pn_messenger_put(messenger, message);
 check(messenger);
 pn_messenger_send(messenger, 1);
 check(messenger);

 pn_message_free(message);
}

Figure	2	Use PuTTY to Remote in to the Ubuntu Linux VM

0415msdn_TerkAzure_v3_30-33.indd 32 3/11/15 8:19 AM

www.bit.ly/1F2gp9H

JUNE 1-4
HYATT REGENCY, AUSTIN, TX

DON’T MESS
WITH CODE

Reg�ter by April 29
and Save $200

PRODUCED BY

magazine

SUPPORTED BYGOLD SPONSOR

TRACKS INCLUDE:

FLIP OVER FOR
DETAILS ON

VISUAL STUDIO LIVE!
SAN FRANCISCO!

Untitled-4 1 3/11/15 12:08 PM

www.vslive.com/austin

TRACKS INCLUDE:

THE FAIRMONT, SAN FRANCISCO, CA

JUNE
15 - 18

vslive.com/sf

CODE BY
THE BAY

Reg�ter by April 15
and Save $300!

Untitled-4 2 3/11/15 11:58 AM

www.vslive.com/sf

33April 2015msdnmagazine.com

Once you provision in Azure Event Hubs, you’ll also get a URL
you’ll use to point to your specific instance of Azure Event Hubs
inside the Azure datacenter. Because the SAS key contains special
characters, you’ll need to encode the URL, as directed at bit.ly/1z82c9j.

Provision an Azure VM and Install AMQP
Because this exercise will simulate the IoT scenario by provisioning
a Linux-based VM in Azure, it makes sense to do most of your work
on a full-featured VM in the cloud. The development and testing en-
vironment on a Raspberry Pi is limited. Once you get your code up
and running in the VM, you can simply repeat this process and copy
the binaries to the Raspberry Pi device. You can find additional guid-
ance on provisioning the Linux-based VM on Azure at bit.ly/1o6mrST.
The code base I have used is based on an Ubuntu Linux image.

Now that you’ve provisioned Azure Event Hubs and a VM hosting
Linux, you’re ready to install the binaries for the AMQP. As I men-
tioned earlier, AMQP is a high-performance, lightweight messaging
library that supports a wide range of messaging applications such as
brokers, client libraries, routers, bridges, proxies and so on. To install
AMQP, you’ll need to remote into the Ubuntu Linux machine and
install the AMQP Messenger Library from bit.ly/1BudbhA.

 Because I do most of my work from a Windows machine, I use
PuTTY to remote into the Ubuntu image running in Azure. You can
download Putty at putty.org. To use PuTTY, you’ll need to get your VM
URL from the Azure Management Portal. Developers using OS X
can simply use SSH to remote in from the Mac terminal.

You might find it easier to install AMQP on CentOS instead of
Ubuntu as directed at bit.ly/1F2k47z. Running Linux-based work-
loads in Azure is a popular tactic. If you’re already accustomed to
Windows development, you should get familiar with program-
ming in the Linux world. Notice in Figure 2 that I’m pointing to
my Ubuntu VM (vmeventsender.cloudapp.net).

Send.c
Once you’ve installed AMQP on
your Ubuntu VM, you can take
advantage of the example pro-
vided by the AMQP installation
process. On my particular deploy-
ment, here’s where you’ll find the
send.c file: /home/azureuser/
dev/qpid-proton-0.8/examples/

messenger/c/send.c. (The code download for this article includes
my edited version of send.c.)

You’ll essentially replace the default example installed by AMQP
with my revised version. You should be able to run it as is, except
for the URL pointing to Azure Event Hubs and the encoded shared
access signature. The modifications I made to send.c include
reading the rainfall data from weatherdata.csv, also included in
the code download for this article. The code in Figure 3 is fairly
clear. The main entry method starts by opening the text file,
reading one line at a time and parsing the rainfall data into 12 sep-
arate pieces—one for each month.

Figure 4 gives you a partial view of the text file with the rainfall
data. The C code will connect to the Azure Event Hubs instance
you provisioned earlier, using the URL and the encoded shared
access signature. Once connected, the rainfall data will load into
the message data structure and be sent to Azure Event Hubs using
pn_messenger_send. You can get a complete description of these
methods at bit.ly/1DzYuud.

There are only two steps remaining at this point. The first is to
actually compile the code, which simply involves changing a direct-
ory and issuing the make install command. The final step is to
actually run the application you just created (see Figure 5):

// Part 1 – Compiling the code
cd /home/azureuser/dev/qpid-proton-0.8/build/examples/messenger/c
make install
// Part 2 – Running the code
cd /home/azureuser/dev/qpid-proton-0.8/build/examples/messenger/c
./send

Wrapping Up
In the next installment, I’ll show what it takes to consume the
events from Azure Event Hubs and Azure Stream Analytics, and
store the data in a SQL database and a JSON-based data store
known as Azure DocumentDB. Subsequent articles will delve into
exposing this data to mobile applications. In the final article of this
series, I’ll build a mobile application that provides a visualization
of the rainfall data. n

Bruno Terkaly is a principal software engineer at Microsoft with the objective of
enabling development of industry-leading applications and services across devices.
He’s responsible for driving the top cloud and mobile opportunities across the
United States and beyond from a technology-enablement perspective. He helps
partners bring their applications to market by providing architectural guidance
and deep technical engagement during the ISV’s evaluation, development and
deployment. Terkaly also works closely with the cloud and mobile engineering
groups, providing feedback and influencing the roadmap.

Thanks to	the	following	Microsoft	technical	experts	for	reviewing	this	article:	
James Birdsall, Pradeep Chellappan, Juan Perez, Dan RosanovaFigure	5	Output from the Running Code

Figure	4	Partial View of Text File with Rainfall Data

0415msdn_TerkAzure_v3_30-33.indd 33 3/11/15 8:19 AM

www.bit.ly/1z82c9j
www.bit.ly/1o6mrST
www.bit.ly/1BudbhA
www.putty.org
www.bit.ly/1F2k47z
www.bit.ly/1DzYuud
www.msdnmagazine.com

msdn magazine34

Microsoft Azure is a quick and easy way to create and deploy
Web sites or APIs for your cloud consumers. Much has been written
on different aspects of Azure Websites, including security, deploy-
ment and so on. It’s always a challenge to bring this information
into a real-life implementation. In this article, I’ve pulled together
these various facets to help you quickly create a production-ready
Azure Website. I’ll walk you through the end-to-end lifecycle of
creating, deploying, configuring and monitoring an Azure Website.

I’ll start by creating a Web site with Visual Studio 2013 and deploy
it to Azure. Then I’ll set up continuous integration from my source
code repository to Azure, establishing authentication using the
API key or certificates. Finally, I’ll show how to create and deploy
the site to a production environment using Windows PowerShell.

Create an Azure Web Site
This is the simplest step of the whole process. I’ll create an Azure
Website and add a controller, skipping the business logic inside
it to illustrate the key points. To start, I need the Windows Azure
SDK for .NET 2.5, which can be downloaded from bit.ly/1GlhJpu.

Using Visual Studio 2013, I’ll create a new ASP.NET Web appli-
cation by choosing empty template. You can select WebAPI if you
want to expose an interface using the same Web site. I select the
AppInsights and Hosted in Azure checkboxes. I don’t choose any
Authentication for now because I’ll add it later. I’ll also configure
Application Insights for deploying to different environments.

When it prompts for Azure Website details, as shown in Figure
1, I enter the Site name, select a Region and click OK.

This will set up an empty Web site and publish it to Azure. Now,
I’ll add some content to the site and use the Open Web Interface
for .NET (OWIN) as the middleware. To enable OWIN, I add the
following NugGet Packages: Microsoft.Owin.Host.SystemWeb
and Microsoft.AspNet.WebApi.Owin.

MICRO SOF T A ZUR E

Automate Creating,
Developing and
Deploying Azure Websites
Gyan Jadal

This article discusses:
•	Creating	and	configuring	an	Azure	Website

•	Setting up authentication

•	Setting up automatic deployment for various environments

Technologies discussed:
Microsoft	Azure,	Visual	Studio	2013,	Application	Insights

Code	download	available	at:
	msdn.microsoft.com/magazine/msdnmag0415	

Figure	1	Configure Microsoft Azure Website Details

0415msdn_JadalAzure_v5_34-40.indd 34 3/11/15 8:25 AM

http://msdn.microsoft.com/magazine/msdnmag0415
www.bit.ly/1GlhJpu

35April 2015msdnmagazine.com

After installing the NuGet packages, I right-click on the Project
and select Add OWIN startup class. I’ll name the class Startup and
add the following code to the Configuration method, which sets
up the controller routing:

public void Configuration(IAppBuilder app) {
 var config = new HttpConfiguration();
 config.Routes.MapHttpRoute("default", "{controller}/{id}",
 new { id = RouteParameter.Optional});
 app.UseWebApi(config);
}

Next, I’ll add a controller to provide an API by right-clicking the
Project and clicking Add Web API Controller class. I’ll name the
class MyWebController and leave the generated code alone. Next,
I right-click the Project and Publish. In the publish dialog under
the Settings tab, I choose the Debug configuration so the site can
be debugged remotely. Then I click Next and Publish.

When I navigate to my Azure Website, the controller Get method is
invoked by default, which returns a JSON string as [“value1”,“value2”].
My Web site is up and running on Azure. So far, so good.

Now, I’ll add a Client application to invoke the Web site API I just
exposed on the cloud. I create a new Console application called My-
ConsoleClient and add the ASP.NET Web API 2.2 Cient Libraries
NuGet Package. This package provides the HttpClient object I’ll use
to invoke the API. The following code is added to the main method:

var httpClient = new HttpClient();
var requestMineType = new MediaTypeWithQualityHeaderValue("application/json");
httpClient.DefaultRequestHeaders.Accept.Add(requestMineType);
var httpResponse =
 httpClient.GetAsync(
 "https://MyAzureWebsiteSample.azurewebsites.net/MyWeb").Result;
Console.WriteLine(httpResponse.Content.ReadAsStringAsync().Result);
Console.ReadLine();

Now I’ll run the client and see how the controller Get method
is invoked and the [“value1”,“value2”] is printed on the console.
I published Debug configuration for my Web site. Although you
can debug the site locally, sometimes it’s helpful to remotely
debug the published Web site while it’s still in development. To
debug the published site, I go to its Configure tab on the portal and
turn on remote debugging, selecting the version of Visual Studio
being used (see Figure 2).

To debug the Web site remotely and debug my console client, I put
a break on the GetAsync line. Next, I open Server Explorer, right-
click the Web site and select Attach Debugger, as shown in Figure 3.

Now I can step into the code and debug the site remotely from
my machine and commit my changes to the source repository.

Set up Continuous Integration
Now I’ll work through integrating my site with the Source
Repository for Continuous Integration (CI). How cool it would
be that, when you check in code to your repository, the Web site
project is built and automatically deployed to Azure? The Integrate
Source Control feature of Azure Websites gives you an easy way to
link your source repository to the Azure Website for continuous
integration. On the Azure portal, I navigate to the home tab of the
Web site and click on Set up deployment from source control, as
shown in Figure 4.

Depending on what you’re using as your source control provider,
you have options to choose from Visual Studio Online, local Git
repository, GitHub and so on. As my code is in the Visual Studio

Online repository, I choose it on the next screen. Next, I enter my
Visual Studio Online account name and authorize my account.
I have to provide consent to allow the connection request from
Azure to my Visual Studio Online account. Then I choose the
Repository name, which is my team project name. After I click Next,
the link is established between my Azure Website and Visual Studio
Online team project.

In the Builds option in Team Explorer in Visual Studio, I should now
see the build definition created for me as MyAzureWebsite Sample_
CD so I can right-click and edit the definition. The queue processing
is disabled by default on the general tab, so I’ll set it to Enabled. In
the process parameters under Build/Projects, I browse and select
the solution to build.

At this point, I’ll make any other changes to the process param-
eters in the Process tab. While on the Process tab, take a look at the
Deployment parameter. This is where integration is set up for the
build definition to the Azure service. If you have multiple projects
in the repository, the first Web site as alphabetically ordered will
be deployed. To avoid this, ensure you have a separate solution for
each Web site for which you have CI enabled. Check in your code
or right-click and queue a build. You should see the Web site being
built and published to Azure.

You can verify whether continuous integration is working by
clicking on the Deployments tab of the Web site, as shown in
Figure 5. Here, you’ll see the last time a successful deployment
took place from the CI build.

Configure Authentication
The Azure Website is now ready for development, adding business
functionality and reaping the benefits of CI. You’ll want to set up
authentication for the site so you can authenticate and authorize
consumers. There are different scenarios for this setup, details of
which you’ll find at bit.ly/1CHVni3.

Figure	2	Enabling Remote Debugging for
Microsoft Azure Websites

Although you can debug
the site locally, sometimes it’s
helpful to remotely debug the
published Web site while it’s still

in development.

0415msdn_JadalAzure_v5_34-40.indd 35 3/11/15 8:25 AM

www.bit.ly/1CHVni3
www.msdnmagazine.com

msdn magazine36 Microsoft Azure

Before I set up my Azure Website for authentication, I’ll add
Authorize attribute to my controller and publish the site. Running
the client to access the site will return the following message:

 {"Message": "Authorization has been denied for this request."}

Here, I’ll enable authentication on my Azure Website and update the
console client to provide either the API key or certificate credentials
for authentication. Authentication and token generation is delegated
to Azure Active Directory (AAD). Figure 6 shows the authentication
workflow between the client, AAD and the service.

For AAD Authentication, both the client and Web site should
have corresponding application entries registered on AAD. To do
this, I navigate to the Active Directory tab on the portal and select
the org. directory and click Applications. Next, I select Add an
application/Add an application my org. is developing, and enter
the name of the Website.

In my case, I enter MyAzureWebsiteSample, then select the Web
application or Web API option and click Next. On the next screen, I
enter the address to open my site at MyAzureWebsiteSample.azurewebsites.net
for the Sign on URL and [mydomain].onmicrosoft.com/MyAzureWebsiteSample
as the App ID URI and click OK. This will create an AAD application
for the Web site. Next, I add the Client application entry to the AAD,
repeating the same steps. For the Sign on URL and App ID URI, I
enter http://myconsoleclient.

Because this is a client app, it doesn’t have to be a physical URL;
a valid URI is sufficient. Now I want to let the client access the
MyAzureWebsiteSample application once it has been authenti-
cated. For this, on the Configure tab,
in the Permissions to other applica-
tions section, I click Add Application,
which will open a pop-up window.
I select Show Other and search for
MyAzureWebsiteSample, then select
it and click OK. Back on the Config-
ure tab, in Delegated Permissions is a
permission to access MyAzureWeb-
siteSample (see Figure 7). I check it
and then click Add application.

Also, I’ll note the ClientId for the
Client application entry because
I’ll need it soon. If you want to use
API Key for authentication, then a
key would be created on this con-
figuration page. Because I’m using

certificate authentication, I need to associate my certificate with
the Client application entry in AAD. To do this, I’ll use the Azure
AD Module for Windows PowerShell to automate the process. You
can download this at bit.ly/1D4gt8j.

I run the following Windows PowerShell commands to import
a .cer file from the local machine and upload the certificate to the
client application entry:

Connect-msolservice
$cer = New-Object System.Security.Cryptography.X509Certificates.X509Certificate
$cer.Import("$pwd\MyConsoleClientCert.cer")
$binCert = $cer.GetRawCertData()
$credValue = [System.Convert]::ToBase64String($binCert);
New-MsolServicePrincipalCredential -AppPrincipalId "<client id>" -Type
asymmetric -Value $credValue -StartDate $cer.GetEffectiveDateString()
-EndDate $cer.GetExpirationDateString() -Usage verify

The clientid in this command is the one I copied in the previ-
ous step. To verify the certificate uploaded successfully, I run the
following cmdlet providing the clientid:

Get-MsolServicePrincipalCredential -AppPrincipalId "<clientid>" -ReturnKeyValues 1

This will display all certificates associated with the clientid. In this
case, it should display one. I’m done setting up my apps in AAD. The
next step is to enable the Web site and client for which I’ll use AAD
for authentication. First, I’ll update MyAzureWebsiteSample project
to be set up for AAD. I’ll add the following OWIN security NuGet
packages related to authentication: Microsoft.Owin.Security and
Microsoft.Owin.Security.ActiveDirectory.

In the Startup class of the MyAzureWebsiteSample, I add the
following code to the Configuration method:

app.UseWindowsAzureActiveDirectoryBearerAuthentication(
 new WindowsAzureActiveDirectoryBearerAuthenticationOptions {
 TokenValidationParameters = new TokenValidationParameters
 {
 ValidAudience = "https://[mydomain].onmicrosoft.com/MyAzureWebsiteSample",
 ValidateAudience = true,
 },
 Tenant = "[mydomain].onmicrosoft.com"
});

You’ll replace [mydomain] with the name of your AAD directory
domain. This will tell the Web site to use AAD authentication for the
specified audience URI. Clients accessing the service will need to pro-
vide this URI for getting a token from AAD. On the client console, I
use the Active Directory Authentication Library, also called ADAL,
for authentication logic and add the MyConsoleClient NuGet pack-

age to the console application.

ADAL
In the client, I’ll use APIs provided by
ADAL to acquire a token from AAD
by providing the certificate creden-
tials. I replace the previously added
code with the code in Figure 8, which
includes authentication.

You’ll replace the clientid and the
name of my certificate with your own.
I’ve abstracted the certificate retriev-
al code into the GetX509CertObject
method, which reads the certificate
store and creates the X509Certificate
object. If you use the APIKey instead
of certificate authentication, then Figure	3	Attach Debugger to the Published Web site

How cool would it be that,
when you check in code to your
repository, the Web site project

is built and automatically
deployed to Azure?

0415msdn_JadalAzure_v5_34-40.indd 36 3/11/15 8:25 AM

http://myconsoleclient
http://MyAzureWebsiteSample.azurewebsites.net
http://mydomain].onmicrosoft.com/MyAzureWebsiteSample
www.bit.ly/1D4gt8j

Untitled-5 1 3/9/15 2:53 PM

www.alachisoft.com

msdn magazine38 Microsoft Azure

you’ll construct a ClientCredential object passing in the clientId and
the APIKey noted down from the portal, instead of passing the Cli-
entAssertionCertificate object. If no client credentials are provided to
acquire the token, you’ll be prompted for AAD tenant user credentials.

I run the code in Figure 8 to authenticate the client and invoke
the MyAzureWebsiteSample controller method and print [“value1”,
“value2”]. The controller will be presented with the Claims of the
client I can use to further authorize the client.

Automate Deployment
So far, I’ve worked with a development environment to deploy the
Azure Website. I just check in the code and the site is deployed, or
right-click and it’s published—it’s that easy.

However, that’s not the case for QA or production environments.
It may not be feasible to deploy from Visual Studio. Now I’ll show
you how to automate deployment to any environment using
Windows PowerShell. I can perform all these steps from the
Portal, as well, but that will involve many manual steps.

Azure PowerShell provides cmdlets to create Azure resources
such as Web sites, storage and so on. I’ll go over a few of the import-
ant aspects of my automation script. The full script is available in
the source code download accompanying this article. The resource
manager mode in Azure PowerShell lets you logically group multi-
ple resources like Web site, redis cache, SQL Azure and others into
a resource group. I use the Switch-AzureMode cmdlet to switch my
Azure PowerShell environment between ResourceManager mode
and ServiceManagement mode.

The following code illustrates a few noteworthy points from the
script. First, the Add-AzureAccount displays an interactive window
prompting me to sign in to my Azure account. The Select-Azure-
Subscription sets the current Subscription. Then I switch modes to
ResourceManager and create a new ResourceGroup and add my
Web site as a new resource:

$SubscriptionId = "<subscriptionid>"

Add-AzureAccount
Select-AzureSubscription -SubscriptionId $SubscriptionId -Current
Switch-AzureMode -Name AzureResourceManager

$myResourceGroup = New-AzureResourceGroup -Name "MyResourceGroup"
-Location "West US"

$mywebsite = New-AzureResource -Name "MyAzureWebsiteSample"
 -ResourceType "Microsoft.Web/sites" -ResourceGroupName "MyResourceGroup"
 -Location "West US" -ApiVersion "2014-04-01" -PropertyObject @{}

I use the resourcetype as Microsoft.Web/sites. There are other
resourcetypes such as Microsoft.Sql/servers/databases you can
create with the New-resource cmdlet. In this snippet, I’ll create an
AzureStorageAccount to associate it to my Web site for storing
diagnostics tracing. Here I am not using ResourceManager cmdlets.
I created the AzureStorageAccount outside my ResourceGroup. At
this time, adding storage accounts to ResourceGroups is not yet sup-
ported. To create a table in the storage, I need to obtain the context.
I get the context by passing in the storageAccountKey. The storage-
AccountKey is passed from one cmdlet to another without the user
having to know specifics:

$myStorage = New-AzureStorageAccount -StorageAccountName "MyStorageAccount"
 -Location "West US"
$storageAccountKey = Get-AzureStorageKey -StorageAccountName "MyStorageAccount"
$context = New-AzureStorageContext -StorageAccountName "MyStorageAccount"
 -StorageAccountKey $storageAccountKey.Primary
$logTable = New-AzureStorageTable -Name $MyStorageTableName -Context $context

The Enable-AzureWebsiteApplicationDiagnostic cmdlet will
enable the diagnostics using the storage account I provided:

Enable-AzureWebsiteApplicationDiagnostic -Name "MyAzureWebsiteSample"
 -Verbose -LogLevel Information -TableStorage
 -StorageAccountName "MyStorageAccount" –StorageTableName $MyStorageTableName

For any Web site, there are some settings in the AppSettings of
the web.config that are environment-specific. The following snippet
shows how to replace Appsettings for an Azure Web site based on

Figure	5	Deployment History with Continuous Integration

Figure	4	Set up Deployment from Source Control

Azure PowerShell provides
cmdlets to create Azure resources.

Figure	6	Azure Active Directory Authentication Workflow

AAD

Client MyAzureWebsiteSample

4. Authenticate Token4. Authenticate Token

2. Return Token2. Return Token

1. Request Token
(Provide Certificate/

Key Credentials)

1. Request Token
(Provide Certificate/

Key Credentials)

3. API Call with Token3. API Call with Token

0415msdn_JadalAzure_v5_34-40.indd 38 3/11/15 8:25 AM

Untitled-5 1 3/9/15 2:58 PM

www.nevron.com

msdn magazine40 Microsoft Azure

the environment to which it’s being deployed. These settings will
override the values present in the Web site’s web.config:

$appSettings = @{
 "CurrentEnv" = “Test”;
 "ida:Audience" = “https://[mydomain].onmicrosoft.com/MyAzureWebsiteSample”;
 "ida:ClientId" = "8845acba-0820-4ed5-8926-5652s5353s662";
 "ida:Tenant" = "[mydomain].onmicrosoft.com";
 "any:other" = "some other setting";

}

Set-AzureWebsite -Name “MyAzureWebsiteSample” -AppSettings $appSettings

A collection of key values are created and set on the Web site by
invoking Set-AzureWebsite. This will override the settings in the
web.config. You can also change this from the portal later.

So far, I’ve set up my Web site’s infrastructure. Now, I want the
application logic in my service to be published. I’ll use the Publish-
AzureWebsiteProject cmdlet to do this job. I have to provide my
sitename and the package produced as part of the build output
for my project:

Publish-AzureWebsiteProject -Package "<packagepath>" -Name "MyAzureWebsiteSample"

I took the package path from my build output:
drop_PublishedWebsites\MyAzureWebsiteSample_Package\MyAzureWebsiteSample.zip

The script also uploads the certificate to AAD. You can download
the full script from the code download accompanying this article.
You can also check bit.ly/1zTBeQo to learn more about the feature-rich
experiences the Azure Websites portal provides for managing Web
site settings and secrets as you move from development to integra-
tion to production deployment environments.

Enable Application Insights
Once your site is in production, you can get the telemetry to
understand how the site is behaving in terms of scaling and perfor-
mance needs. Application Insights provides a telemetry solution
for Azure deployed resources. To enable Application Insights, I
had to select it as part of the site template. This adds the necessary
NuGet packages and an ApplicationInsights.config file (which
contains the instrumentation key) to the project. Now when the
site is published, the ApplicationInsights resource is created and
linked with the key in the config file.

For production environments, create an ApplicationInsights
resource on the new portal. At this time, there are no Azure
PowerShell cmdlets available to set up the AppInsights on the portal.
From the properties, make a note of the Instrumentation key. You
need to add this key to the ApplicationInsights.config file before
the Web site is published to ensure it’s deployed with the site.

However, there’s no way to update this file during site publishing.
You can get around this issue by not relying on the key from the
ApplicationInsights.config file. Instead, add the key to appsettings.
This way, you can override it for each environment. How does the

site know to use this key? For that, I updated the startup code in
my Web site to read the key from the web.config and set it in the
App Insights configuration object:

Microsoft.ApplicationInsights.Extensibility.
 TelemetryConfiguration.Active.InstrumentationKey = "<read key from appsettings>";

I also removed the key from my ApplicationInsights.config file
because it’s no longer required. Now I pass the key to my automation
Azure PowerShell script. This updates the appsettings during site
deployment. Once you’ve set up Application Insights, you can view
performance data on the portal or by installing monitoring agents.

Wrapping up
This is a basic step-by-step article for taking an Azure Website
from a development environment and setting up authentication
and automating deployment in Azure, all the way to a production
environment. Azure has come a long way in providing rich and
powerful APIs using Azure PowerShell and the new enhanced
portal at portal.azure.com.

You can extend this setup to add your own resources such as
SQL Azure or additional storage resources. Using the techniques
mentioned here, you should be able to quickly spin up a new Azure
Website and set up authentication and automation for deployments
to any environment. n

Gyan Jadal is a software engineer working for Microsoft. He has extensive
experience designing and developing solutions for applications based on Azure and
enterprise on-premises systems. Reach him at gjadal@microsoft.com.

Thanks to the following Microsoft technical expert for reviewing this article:
Mani Sengodan

var httpClient = new HttpClient();
var requestMineType = new MediaTypeWithQualityHeaderValue("application/json");
 httpClient.DefaultRequestHeaders.Accept.Add(requestMineType);

var authContext = new AuthenticationContext(
 "https://login.windows.net/[mydomain].onmicrosoft.com");

var clientAssertionCertificate = new
ClientAssertionCertificate("<clientId>",
 GetX509CertObject("CN=MyClientConsoleCert"));

var authResult = authContext.AcquireTokenAsync(
 "https://[mydomain].onmicrosoft.com/MyAzureWebsiteSample",
 clientAssertionCertificate).Result;

httpClient.DefaultRequestHeaders.Authorization =
 new AuthenticationHeaderValue("Bearer", authResult.AccessToken);

var httpResponse =
 httpClient.GetAsync(
 "https://MyAzureWebsiteSample.azurewebsites.net/MyWeb").Result;

Console.WriteLine(httpResponse.Content.ReadAsStringAsync().Result);
Console.ReadLine();

Figure	8	Add Authentication to the API

Figure	7	Setting Permissions on Client Application to Access
the Azure Website in Azure Active Directory

Azure has come a long way in
providing rich and powerful APIs
using Azure PowerShell and the

new enhanced portal.

0415msdn_JadalAzure_v5_34-40.indd 40 3/11/15 8:25 AM

mailto:gjadal@microsoft.com
www.bit.ly/1zTBeQo
http://portal.azure.com

TURN THE PAGE FOR
MORE EVENT DETAILS.

Join us on the Ultimate Code Trip in 2015!

Austin
JUNE 1 - 4
HYATT REGENCY

vslive.com/austin

San Franc�co
JUNE 15 - 18
THE FAIRMONT

vslive.com/sf

Redmond
AUGUST 10 - 14
MICROSOFT HEADQUARTERS

vslive.com/redmond

New York
SEPTEMBER 28 - OCTOBER 1
NY MARRIOTT AT BROOKLYN BRIDGE

vslive.com/newyork

Orlando
NOVEMBER 16 - 20
LOEWS ROYAL PACIFIC RESORT

Untitled-1 1 3/10/15 12:52 PM

www.vslive.com
www.vslive.com/austin
www.vslive.com/sf
www.vslive.com/redmond
www.vslive.com/newyork
www.vslive.com/
www.twitter.com/vslive
www.facebook.com/vsliveevents
www.linkedin.com

magazine

DEVELOPMENT
TRACKS INCLUDE:
➤

➤

➤

➤

➤

➤

➤

DON’T MESS
WITH CODE

Register by
 April 29 and
 Save $200!

Use promo code VSLAPR5

Austin JUNE 1-4
HYATT REGENCY, AUSTIN, TX

Untitled-1 2 3/10/15 12:48 PM

www.vslive.com/austin

AGENDA AT-A-GLANCEAustin

VSL15_5-pg_ad_April_final.indd 3 3/5/15 12:23 PMUntitled-1 3 3/10/15 12:48 PM

www.vslive.com/austin
www.vslive.com/austin

CODE BY
THE BAY

magazine

vslive.com/sf

REGISTER BY
APRIL 15 AND
SAVE $300!

THE FAIRMONT, SAN FRANCISCO, CA

vslive.com/sf

San Franc�co JUNE
15 - 18

➤

➤

➤

➤

➤

➤

Untitled-1 4 3/10/15 12:49 PM

http://www.vslive.com/sf

AGENDA AT-A-GLANCESan Franc�co

VSL15_5-pg_ad_April_final.indd 5 3/5/15 12:23 PMUntitled-1 5 3/10/15 12:49 PM

http://www.vslive.com/sf
http://www.vslive.com/sf

msdn magazine46

The Open Data Protocol (OData) is a RESTful protocol
designed to allow powerful query and modification operations on
data in a backing store, typically a SQL database. Both resource
expressions and queries are formed through the URL of an HTTP
request, with results returned in the HTTP response. Sophisticated
support for queries that can shape, order, filter and page data
requests is built in through a query language. Because OData is an
OASIS standard, it’s widely implemented and can be consumed
across all popular client platforms, such as Web browsers, as well as
phones and devices based on iOS, Android and Windows. OData
is frequently viewed as a good way to provide a standards-based
service that can be consumed across multiple platforms easily. For
some starter links, see “Additional References.”

In this article, I’ll demonstrate why the semantics of OData make it
the perfect vehicle for exposing near-real-time time-series streaming

data, as well as data from SQL backing stores. (I’ll use the term
time-series to differentiate from static backing stores. This avoids the
use of real-time, which has different meanings in different contexts.)

This article will demonstrate a sample implementation of an
industrial automation time-series data streaming capability using
an OData service. Figure 1 shows a sample test client, written in C#
using Windows Presentation Foundation (WPF), that connects to
the service and uses simple LINQ queries to process the time-series
data stream. I’ll discuss this in more detail shortly. As I mentioned,
many possible clients exist, including browser-based and device apps.

The client connects with an OData service to manage multiple
items and subscriptions. The membership of items in each subscrip-
tion, the subscription update interval and the dynamic monitoring
of subscriptions can all be managed through the test client. I’ll
cover the concepts of items and subscriptions in more detail later.
Figure 2 shows another window of the test client, with time-series
data being streamed from one of the subscriptions.

This technique can be extended to any time-series data from
devices on the Internet of Things (IoT). As the IoT continues to
build out, devices from rain sensors to point-of-sale terminals are
becoming available directly over the Internet. The further this pro-
cess goes, the greater the need for a simple, consistent way to access
and manage all of the data. The technique I show here is ideally
suited to traverse the Internet, allowing data from IoT devices to
be consumed by computers and other devices, making the infor-
mation accessible and meaningful.

My example is for demonstration purposes only, and is scoped
in capability for purposes of clarity: all of the items it exposes
are of the same integer type; the “device” providing the data is a

O DATA

Visualize Streaming Data
the Easy Way with OData
Louis Ross

This article discusses:
•	Designing the entity model for an OData service

•	Implementing a sample OData service using WCF Data Services

•	Creating an OData client in Visual Studio

•	Writing a simple Windows Presentation Foundation OData
test client

Technologies discussed:
OData, WCF Data Services, LINQ, Visual Studio

Code download available at:
msdn.microsoft.com/magazine/msdnmag0415

0415msdn_RossOData_v5_46-54.indd 46 3/11/15 8:35 AM

http://msdn.microsoft.com/magazine/msdnmag0415

47April 2015msdnmagazine.com

simulation; and no attempt is made to authenticate a user or pro-
vide a user identity and per-user session. All these things would
be necessary for a production service, but have been eliminated
for illustration purposes.

Design the Entity Model
The first step in defining an OData service is designing the
entity model. An OData service is exposed at a specific base URL,
such as http://localhost:10001/TimeSeriesData.svc, and each URL seg-
ment below this base URL represents a different kind of resource
within the entity model. The base URL may change, depending
on how the OData service is deployed, but the entity model will
dictate a fixed set of resource URL segments under it.

With typical OData services that are backed by a database,
resources can be modeled using an automated tool such as ADO.NET
Entity Framework. My time-series OData service, on the other
hand, exposes resources as in-memory structures, so I generated the
entity model by hand. A reasonable set of resources for a time-series
data streaming service might be Items, Subscriptions and Samples:

Get All Items: http://localhost:10001/TimeSeriesData.svc/Items should
return all the items available in the device for which the service sup-
plies data. Each item should have properties such as id, name, type,
state, read-write capabilities, current value and so on.

Get All Subscriptions: http://localhost:10001/TimeSeriesData.svc/
Subscriptions should return all the subscriptions that have been creat-
ed and persisted by previous calls to the service. A subscription is a
mechanism to group items into collections. An additional feature
of a subscription is that the items grouped into each subscription
are sampled together at a specific rate. Each subscription should
have properties such as id, subscription interval, its collection of
items, and its collection of samples for those items.

Get All Samples: http://localhost:10001/TimeSeriesData.svc/Samples
should return all the samples exposed globally by the service. For
this article, this query never returns anything, because in real-life
scenarios it’s a meaningless query. Samples are always associated
with a subscription, so should not be queried at the root. However,
for WCF Data Services to expose samples as entities, the root query
must be valid.

In addition to the three basic entities, I added associations
between them. The Subscription resource is associated one-to-many
with both Samples and Items.

Get All Samples Within a Subscription: http://localhost:10001/
TimeSeriesData.svc/Subscriptions(25)/Samples should return all the samples
available for subscription 25. This assumes the client has previously
created a subscription entity with SubscriptionId = 25. Each sample
should have properties such as id; the id of the item that was sampled;
and the value, time and quality of the item when it was sampled.

Get All Items Within a Subscription: http://localhost:10001/
TimeSeriesData.svc/Subscriptions(25)/Items should return the collection
of items currently associated with subscription 25. This assumes
that the client previously created a subscription entity with
SubscriptionId = 25 and associated items with it.

Figure 3 shows the entity model of the time-series OData service.
Items are physical entities in the device, usually addressable through
a string name or numeric id. Items typically contain a value exposed
by the device, such as temperature or pressure, along with metadata
such as the timestamp of the most recent sample and quality of
the measurement. As Figure 3 shows, they’re exposed as OData
entities by their numeric ItemId.

As an entity, the Subscription is a fiction invented to group subsets
of device items together, and to collect samples from
that subset at a fixed period. Because subscriptions
don’t really exist, there must be some mechanism
in the service to generate the entities in such a way
that they appear to be backed by a store.

Sample entities are even more ephemeral than
Subscriptions. The sample entity is invented to
capture the value and metadata of a single item at
a specific time. When a subscription is operating,
it typically accumulates Sample entities as needed
to capture the recent samples of items associated
with that subscription. The fiction with Sample
entities is that a vast table of entities exists to ful-
fill OData requests. In reality, Sample entities are
deleted from storage as fast as they are returned
to the client. Because clients are typically not
interested in obtaining the same sample more
than once, this is not an issue.Figure	2	Time-Series Data Streaming from a Subscription in the OData Service

Figure	1	A Sample OData Test Client Written in C# Using
Windows Presentation Foundation

0415msdn_RossOData_v5_46-54.indd 47 3/11/15 8:35 AM

http://localhost:10001/TimeSeriesData.svc
http://localhost:10001/TimeSeriesData.svc/Items
http://localhost:10001/TimeSeriesData.svc/Subscriptions
http://localhost:10001/TimeSeriesData.svc/Samples
http://localhost:10001/TimeSeriesData.svc/Subscriptions(25)/Samples
http://localhost:10001/TimeSeriesData.svc/Subscriptions(25)/Items
http://localhost:10001/TimeSeriesData.svc/Subscriptions
http://localhost:10001/TimeSeriesData.svc/Subscriptions(25)/Samples
http://localhost:10001/TimeSeriesData.svc/Subscriptions(25)/Items
www.msdnmagazine.com

msdn magazine48 OData

Dealing with these in-memory
abstractions in a manner that removes
statefulness from the service runtime
is the crux of a solution that allows an
OData service to scale—sequential calls
from a client shouldn’t depend on the
service remembering details about the
processing of subscriptions or samples
in previous calls.

This means abstract entities such
as Subscriptions and Samples must
never be remembered as state in the
OData service. Instead, they must be
considered part of the backing ser-
vice or device. In my example OData
service, I implemented a simulation
layer to remove any dependency on
real hardware. The entities are pro-
vided by the simulated hardware,
and simply exposed by the OData
service. In particular, Item and Sub-
scription entities are persisted by the
simulation layer to an XML file.

The Sample entity is a special case. Samples are virtual in the sense
that no Sample entity exists in the simulated hardware, but Samples are
also ephemeral. Typical time-series clients—as opposed to historical
clients—are interested only in the most recent Samples. Once those
Samples are read, they can be discarded in the service. In my sample
code, I provide each Sample entity with a unique Id, and maintain
the fiction that the OData client might at any time ask for really old
Samples. However, older Samples are forgotten by the simulated hard-
ware layer, so any client that actually did this would be disappointed.

Implement the Sample OData Service
Using WCF Data Services
Now that the entity model is defined, the next step is to implement
an OData service. The ASP.NET Web API framework is a powerful
modern choice, but I fell back on the older WCF Data Services for
its simpler implementation of the basics.

The class TimeSeriesDataService exposes the service by deriving
from the template class DataService:

public class TimeSeriesDataService : DataService<TimeSeriesEntities>
{
 public static void InitializeService(DataServiceConfiguration config)
 {
 // Initialize the service here...
 }
}

The template parameter of the DataService base class specifies
the class that defines the entity model for this service, TimeSeries-
Entities. To allow for the queries shown in the earlier design section,
the TimeSeriesEntities class exposes the Sample, Item and Sub-
scription entities as queryable collections, as shown in Figure 4.

By providing public properties that return IQueryable<T> collec-
tions, you enable the WCF Data Services framework to process all
the powerful OData queries that can be expressed as HTTP URLs.
Your code provides the queryable collections, and the framework

performs the actual filtering, sorting,
pattern matching and so forth.

Make the OData Service Writable
To allow entities to be modified in the
service, you have to add a little more code.
This code will be called by the WCF Data
Services framework in response to modifi-
cation commands sent by the HTTP client
using POST, PUT or DELETE verbs. A typ-
ical time-series data service allows the client
to modify the state of the service in various
ways: write the values of items; create and
delete subscriptions; add and remove items
from subscriptions; and more.

When using WCF Data Services, this mod-
ification ability is provided by implementing
the IUpdatable interface. When a client sends
an HTTP POST with a description of an
entity to create, the Data Services framework
handles the request, passing requests to the
12 IUpdatable interface methods, as needed.

My first service modification code allows the creation and dele-
tion of subscriptions. You’ll need to implement other IUpdatable
interface methods to support other modification capabilities, such
as writing a value to an item.

I enable creation and deletion of subscriptions by implementing
the CreateResource and DeleteResource IUpdatable methods, as
shown in Figure 5.

The WCF Data Services framework manages the bulk of the POST,
PUT, and DELETE client calls, and simply needs my code to deal with

public partial class TimeSeriesEntities
{
 public IQueryable<Sample> Samples
 {
 get { return (new List<Sample>()).AsQueryable<Sample>(); }
 }

 public IQueryable<Item> Items
 {
 get
 {
 return (from item in ItemRegistry.Items
 select new Item(item.Id,
 item.Name,
 item.Value,
 item.Time,
 (int)item.Quality))
 .AsQueryable<Item>();
 }
 }

 public IQueryable<Subscription> Subscriptions
 {
 get
 {
 return (from subscription in SubscriptionRegistry.Subscriptions
 select new Subscription() { SubscriptionId =
 subscription.Id })
 .AsQueryable<Subscription>();
 }
 }
}

Figure	4	The Entity Model in Code

Figure	3	The Entity Model Exposed by the
Time-Series OData Service

0415msdn_RossOData_v5_46-54.indd 48 3/11/15 8:35 AM

Untitled-1 1 1/6/15 10:48 AM

www.textcontrol.com/html5

msdn magazine50 OData

any types specific to my internal implementation. You can choose
to implement static factory methods, or use reflection to create new
instances, as shown in Figure 5. My choice of mechanisms to delete
resource objects relies on an implementation detail—my resource
objects all expose a method called Delete, which can be called from
DeleteResource. You can choose other implementations as desired.

OData Client Made Easy with LINQ
No matter how a time-series OData service is implemented and
exposed, its power lies in what a consuming client can do with it.
This is especially true with the Microsoft .NET Framework, because
LINQ has a set of extensions that directly interface to OData ser-
vices, passing as much of a query to the service as possible. The use
of LINQ makes it easier for client code to manage complex queries,
including filters, sorts and others with relative ease.

Create an OData Client in Visual Studio
With my sample OData service running, I started Visual Studio and
pointed the Add Service Reference tool to the base URL of the OData
service. The tool examined the OData metadata and created a class
derived from System.Data.Services.Client.DataServiceContext, and
called it TimeSeriesEntities. This class is customized for the OData
service, and includes properties that return typed
DataServiceQuery<TElement> objects, cus-
tomized for each of the IQueryable<TElement>
collections in the WCF Data Services code:

public DataServiceQuery<Sample> Samples { get; }
public DataServiceQuery<Item> Items { get; }
public DataServiceQuery<Subscription> Subscriptions { get; }

Each of these DataServiceQuery<TElement>
instances implements IEnumerable, so each is a
target for LINQ queries. Where possible, LINQ
queries formed against DataServiceQuery<TEle-
ment> objects will translate into OData queries,
allowing much of the filtering, sorting and pat-
tern matching to occur at the service.

In the examples that follow, I’ll be using
the service base URL http://localhost:10001/
TimeSeriesData.svc, contained in the vari-
able dataAddress. For all the query examples
that follow, a TimeSeriesEntities object named

dataContext is assumed to exist, and to have been initialized with
the service base URL:

TimeSeriesDataFeed.TimeSeriesEntities dataContext =
 new TimeSeriesDataFeed.TimeSeriesEntities(dataAddress);

As a starter example, the OData URL http://localhost:10001/
TimeSeriesData.svc/Items is generated by the following LINQ query:

var serviceQuery = from item in dataContext.Items
 select item;

The returned LINQ query can be executed with:
serverItemsList = serviceQuery.ToList();

sending the URL and receiving and parsing the OData response,
resulting in an enumeration of all Item entity objects available at
the root service level.

public partial class TimeSeriesEntities : IUpdatable
{
 object IUpdatable.CreateResource(string containerName,
 string fullTypeName)
 {
 Type t = Type.GetType(fullTypeName, true);
 return Activator.CreateInstance(t);
 }

 void IUpdatable.DeleteResource(object targetResource)
 {
 MethodInfo deleteMethod =
 targetResource.GetType().GetMethod("Delete");
 if (deleteMethod != null && deleteMethod.IsPublic)
 {
 deleteMethod.Invoke(targetResource, null);
 }
 }
}

Figure	5	Creating and Deleting Subscriptions

Figure	7	A Subscription Is Selected

Figure	6	The OData Test Client Main Window

Figure	8	Monitoring a Single Subscription

0415msdn_RossOData_v5_46-54.indd 50 3/11/15 8:35 AM

ement1); areaSeries Add(seriesElement2); areaSeries Add(seriesElement3); // Add series to the plot area plotArea Series Add(areaSeries); //page Elements Add(new LayoutGrid()); // Add the page elements to the page AddEAement1); areaSerieies.AAdd(se(s rriesElement2t2); a) reaSeries.AdA d(seriesElement3); // Add series to the plot area plotArea.Series.Add(areaSeries); //page.Elemenem ts.Add(ddd(new ne LaLayyoutGrid()); // A/ dd the page elements to the page AddEA

s, 240, 0); AddEAN1AN 3SupSup5(pa5(p ge.Elemeentnts, 480, 0); AdddUPCVersionA(page.Elemene ts, 0, 135); AddUPCVersionASup2(page.Elements, 240, 135); AdddUPCddUPCd CVerssionAionAo Sup5((page.Elemennts, t 480, 135); AddEAN8(page.Elements, 0,

.Elements, 480, 2270);; AddddUUPCVersionE(papage.Elementts, 0, 405); AddUPCVersionESuE p2(page.Elements, 240, 405); AddUPCVersionESup5(pageage.Ele.Elelemmments, 4s, 48800, 4405); // AAdd the page toe t the document document.Pages.Add(pa

CaptionAndRectanga lee(elemeements, “EAN/JA/JAN 13 Bar Codde”, x, y, 204, 99); BarCode barCode = new Ean13(“123456789012”, x, y + 21); barCode.ode.X +=X +X +=X + ((2004 -4 - baarCoode.GettSymbolWidth()h) / 2; elements.Add(barCode); } private vovo

dRectangle(elemente s,, “EANEAN/JAN 13 Bar Car Code, 2 digit supplement”, x, y, 204, 99); BarCode barCode = new Ean13Sup2(“12 234556789678 0121212”, 2”, x, yy + 2+ 211); 1); barCoode.XX += (204 - barCode.GetSymbolWidth()) / 2; elements.Add((barC

ts, float x, float yy) { A{ AddCaCaptionAndRectanangle(elements, “EAN/JAN 13 Bar Code, 5 5 digit supplement”, x, y, 204, 99); BaB rrCodee barrCode == new Ean13SupS 5(“12345678901212345”, x, y + 21); ba

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onA(Group elements, float x, float y) {Add{ CaptionAndRectangle(elements, “, UPC VersVersVersVersion ionoi A Baar Cr Coode”, x, y,y, 204, 99);; BarCoode barCode = new UpcVersionA(“12345678901”, xx, y +

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onASup2(Group elements, float x, floato y) { AddCaptionAndRectangle(elementm ““UPCC Version E Bar Code, 2 digit supplement”, x, y, 204, 94 9); BarCoode od

21) ; barCode.X ++= (2= (04 - barba Code.GeetSymbymbolWidth()) / 2; elements.Add(barCode); e } private void AddUPCVersionASSSSuup5(up5(u Group elements,n float x, flfloaflo t VV

digit supplement”,t” xx, y, 22004, 99); BarCodeCode bbarCode = new UUpcVep rsionASuAS p5(“12343 567890112345”, x, y + 21); bbarCarCode.Xde.X += (204 - barCode.GetSymboom lWidth()) / 22; eelele

t x, float y) { AddCapdCaptionnAndRAnd ectangle(eleelemments, “EAN/JANN 88 Bar Code”,de”, xx, y, 204, 0 99); BarCode barCode = nnew Eew Ean8(an8(n8n8 “1 2345670”, x, y + 21); OpenFileileDiala og fileDie aloogoglo =

g.Filter = “Adobeob PDPDF fileess (*.pdf)|*.pdf|Alll FileFiles (*.*)|*.*”; if (fileDieD alog.SShowDiialog() == DialogResult.OK) { { pdfVpdfVf ieweewer.OpOpr.OpOpen (fifileDialogalog.FilleName, “”); } SaveveFileDialog saveFaveFileileDDialoog = neneww Sav

Dialog.Filter == “AdoAdobe PPDF fiDF files (*.pdff)|*.pdpdf|A|All Files (*.*)|*.*”;”; iff (saveFFileDialolog.Showh Dialog() ==DialoalogResgResRee ult..OK)OK) OK) { pdfVfVView .SSaveAsve (sav(saveFieFileDia

printer = pdfViewViewer.Per rinterr; pprinter.PriintWiW thDialog(); } elsee { MesssageBox.SShoww(“Please opeopen a n a fifile to pto p rintrinrint”)”); }OpenFin le DDialoog fileDieD alogalog = new OpenFileDDialog(); fileDiaDialog.og Tittle = e e = e “Opepen File Dl

les (*.*)|*.*|Addobe Pe PDF files es (*.p*.pdf)|*.pdddf”; if i (fifileDialog.ShowwDialalog() === DialogResult.ult OK) { { DynaDynamicPDFVDFVDFVDFViewiewewerClass test e = neew DynammiccPDFViewerClass((); PPDFPrinter ter pprinp ter er r = te= ttet st.OpenFFileFo

= File.ReadAAllByteBytes(@”C:\M:\MyDyDoc.pdff””); //u// sing System.Runntimme.Inttent ropServicces;GCHaGCHandlendledd gch=GCH= CHaananddla e.Aloc(conteents, GCHandleTTypee.Pinnedd);) IIntntPtrPtr cooncontentsIntPtr = g

tents.Lengthh, “”);“”); A AddCaCaptioonAndReReectanglan ee(pageElementts, “BBBookkmark k Pagee E Elemelemeent:”nt:”, x,, y);; pa pagaapageEeEleemeents.Add(newtesw t Bookmookmaark(“Bookmarked TextTextt”, x + 55, y , y, yy ++ 2+ 20+ , pap rentre OutlO ine)); p) a

215, 10, Fonnt.TTimemesRomanma , 1010)); } prprrriivate vooid AddCiirclercle(GGro(G up paageElemeennnts,nts floafloat x,x floafloat yt y)t y) { / { /////Add/Add/A ss a circlt to the pap ge Eleemenmentenents AddCapdCapCaCadCaptiont AndRdRectae

Add(new Cirrcle(x e(x ++ 112.5f5f, y ++ 50f, 1007.5f, 300f, RgbColoolor.RRRed, RgbbbColor.Bor.Bluee,lue 2, LineL eStyylylly e.DaDae shLaLs rge))); } pprivate void AdA d FormatteeddTexxtAreea(Groupp paageElements, flofl aat x, fl float yy)) {) // A// AAdds dds a fofoa rmatted textte a

mic</i>PDFPDF/b>&tm; GGenerator vvv666.0 6 for ..NETNET has has a forrmattted ttetext arrea pea paaage a “ + “ “ele“ele“eleeeemmmentm . ThThis prroviddes rich fororm m atting ssuppupport for texext that appap eears in the doocumment. You have “ + “+ “compcompletlete conco trolol ove ovevever 8 r paragraph

left indentattionn, rigrighht indenentation, aligliggnnment, allollowing orphaaan linnes, aand whwhite ite “ + “spa“spaacece ppce pprereservata ion; 6 foont propropeerties: e <fonont fat f ce=’=’Timemes’>s’>font facece, <//fontt>font “ + “s+ “size, ont><fonont cocoocoot lor=lor=’FF0000’00’>c

 2 line prpropertieses: le leading, ag ndd leaddinngg type.ype. TText can also be rootateeed.</d.</< p>”;p> FFororo mattmattmm edeedTeedTeTeextArx ea fformaormattedTTextAreArea = nnew FormattedTextTex Areare (formattat edHHtmll, x + 5, yy + 20, 215, 60, FonttFammily.Helveelvetictica, 9, fffalalsse);se);se);sssse) // // Sets the i

ddCaptionAAndReRectanct gle(e(pagepageElemeenntsnts, “F, “Fororrmarmattedtte TextT Areeae Page ElElemenement:”,t:”,,, x, y); y); y)y AddCAdddCddCA aptionAnAndReectangnglele(pageElements, “Formatm tedTextAx rea OverOv flflow TText:”, x x + 2279, y); pageElementments.Add(foormarmattedTTTextAxttAAtArea)r ; // CrCrer ate

tArea overflowFoowFormatrm tedTdTextAArea == foormamatteddTdt extArea.GettOveerflowwwFormatmatteddTTexextAxx rea(rerea(re x + x 28284, y +y 200); pageElements.Add(overflowFormattedTextAArea)); } pprivate vooid AddImage(Group p pagpageElementsents, float t x, flo, at yy) {) { // // A/ dd

ents, “Imagee PagePage Elementen :”, xx, y); IImmagemage imaaage =ge new Imaage(SServvever.Mr.MapPattatth(“.h(“.“ ./I./Im./ agesages/DPDDFLogL o..png”), x + 112.5f, y + 50f, 0.24f); // Image is ssizzed and centeredd inn the rectangle immage.age SetBoundunds(21s(215, 5, 65 0); 0) image.VAVAAlign

ge); } privatte void oid AAddLabela (Group pp ppageageElememments, float x, flfloat y) { /// A/ Adds as aa llabel tel t to tht e pappap gegeElemenementts AddCaptionAndRectangle(pageElemenm ts, “LabLa el & PPageNummbeeringLabel Page EElemments:”, x,x, y); y) striing g laabelTextxt = = “= ““Lab

aain page numbumberinering: %%CP%%CP%%% ofof %%%T%%TP%%% pages.”; LLabel le abbel = nnew LLLew Laabel(labbelTeelTeeelTexxt, x + 5, y5 ++ 12, 220, 80, Font.TimesRoman, 12, Texe tAlign.C.Centter); label.Annglee = 8; PageNumbeeringgLabel pagepageNumLNumLabelab = nnnewew Pw Page

, 12, TeextAlxtAligign.CentC er); paga eEleementntntss.Ad.Addd(paageNumLabel));); p paggeElemenments.Addddd(d(label)); } } privprpp ate voidoid A AddLine(Group pageElements, float x, floao t y) { /// Addds aa line to thethe pageElements AdddCCaptionAndRAndRRectanngleglen (pagpag(a eeElemments

+ 5,+ y ++ 20, x + 220, y + 8080, , 3, RRgbbColor.Gr.G eeen)); pageElemmementss.n Add(d(d new w Linee(x ++ 22 2200, yy ++ 20, x + 5,+ 5, y + 80, 3, RgbColor.Green)); } private void AdddLLink((Grouup pageEElemments, float x, floaat yy) { // Adds ads a link toto thethhe pagp eEleEleemen

ynynamicPDF.com.m ”; AAddCaddCaptioptionAAnddnAndRectanglan e((pageElementts, “LLink PaPagege Elemment:nt:”, xx, y);y); LLabel llabela = new Label(text, x + 5, y + 20, 215, 80, font, 12,2 RggbCoolor.Blue)e); laabel.Underline = true;rue Link link =k = newnew LLinnk(x k(x ++ 5,5, y y ++ 20,

on(o “httpp://www.dynnamicppddf.coomm””))); pageEeElemments..Add(Ad labbeel);l); ppagepagpageElementsnts.AAdd(link); k) } prp ivatee void AddPath(Group pageElements, float x, float y) { // AAdds a path to the pageElemeents ceeTe.DynamicamicicPPDPDF.PagegeElemlemlements.PatP h

20,0 RgbgbbColor.Blue, RgbCRgbCoolor.RRedd, 22, LineStyeS lee.Solidd, true); pathhh.Su.SubbPaths.A.Adddd(new Lw LineSineSubPaubPath(x + 215, y + 40)); path.SubPaths.Add(new CurveToSToSubPPathh(x + 1+ 08, y + 80, x + 160,, y ++ 800)); path.SubSubPSubPathssssh .AAAd.Add(new(ne CurveS

ectecctanglangle(pageElemeents, “P“Path Ph Paage ge Element:””, x, yy);) pageEEleEleEE meentss.AdAdd(pad(path));th } pprivaate ve vooid AAddRectangle(Group pageElements, float x, float y) ororderede ddList = ordeo redLedList.GetOverFlowLo List((xx + x 5, y + 2+ 22000); AddCddCCCA aptiapa oonAndRect

2222 55, 1110); page.Eleements.Ats.Add(odd(ordrdrderr edList); x == 0; 0; y +=y ++=y + 118881 ; // CCCreaate e aan unorrderede lisist UnUnordderedList unorderedList = new Unoro deredList(x + 5, y +y + 220, 4400, 900, Font.Ht.Helvetica, 10); uuunoorderredListst.Itte.I ms.Amms Am dd(“ddd(“FruiFruFFFrFruF tss”); unorder

eree ies(); pieSeries.DaataLababel = da; plotArea.Seeriesess.AAd.Add(pieSSSeriesss);es ppieSeries.Elemelementss.AddAdd(27,7, “Website A”); pieSeries.Elements.Add.Ad (19, “Website e B”)); pieSerrieses.Elementmen s.Add(21, “WWebssite CC”); pieSpieSSerieeririees.Elemeneemmee ts[0s[0].Color = a

sess.Elemments[2].Color = auttogradient3;”unoro derreder ddSubLList2 == unoorderedList.Items[ms 1].SubLubLissts.AAddUnorderedSubList(); unorderedSubLu ist2.Items.Add(“dd(“Pottato”); unu ordeeredSubList2.Itemmms.A.Add(d(“Beaansansea ”);;; UUUnorU dereree dSubSu List subU

dSuedd bList(); subUnoUnorderedSubList.Items.As.AAdd(““d Lime”); subUUnorddereedSubList.Itemtems.Ads.Add(“Od(“Orangrange”);e” Unorderd edSubList sus bUnorderd edSue bList2 = unnorddereedSubLisLi t.Items[ms 1].SubLists.s.AddUAAddUd norrdereddeddSubLSubLbList(st); ssubUnbUnu oorderedSe ub

na”aa); UUnorderederedSubList subUnordo erededSubLSu ist3st3 = uunnorderredSubLSubList2.Itet ms[00].Su.SubLisLists.As.AddUnd orderedSSubList(); subUnoU rderedSudSubList3.Items.AAdd((“Swweet Potao to”)); UUnorderedSredSubLubLiL st sst ubUUnordrdeeredSdSredSdSubList4 st4st = ununorderedSu

ubLSuSu ist444.Ite.Items.Am dd(“String Bean”n”); s; subUnbUnordeereedSubbList4..Itemms.Addd(“Lima BeanBean”); subUsubUnnorderedSubList4.Items.Add(“Kidney Bean”e); x += 279; pagpage.EElemenntts.Addd(unorderedListst); u); ; nordno eredreddLisst = = uunordn ereddreddLisst..GetG Overv Flo

e.e.Elemeentsen , “Unordered List Page Ege Elemment On verflverflow:””, x, y,, 2255, 110); page.Elemementsents.AddAdd(un(unorderedList); } private void AddTextFt ield(Group pageEeElemlemennts, flfloaat x, flooatt y) { TextFFielddield txt = new Tew extFextFieldeld(“txtfnafnaaame”,meme”,me”, x +x + 20, 20, y + y +

tteaa dTeextArea(formattedHtml, x ++ 5, 5 y ++ 20, 202 215,15 60, FontFFamilyy.Heelvetica, 9, ffalse)se ; /// SetSets ths the ine dent property formattedTextArea.Style.Paragraph.IndeIn nnt = 1188; AddCaptCap ionAndRendRectanaa gle(eg pagepageep ElemElemE ents, “FFormamormattedttedtedtedTeTextArearea P

atteatat dTeextArea Overflow TeeText:”, x + 27 9, y9, y); p; pageEgeElements.AAdd(formformattedTextAArea); a) // CCreatea ee an overflow formatted text area for the overflow text FoFormmattedTtedTextAxt reaMMaxaxLeLengthngth = 9 = 9= 9; txtxtxtxxt1.B1.Bordeded rCorColor =r = RgbCololoColoor.Br.BBlaack; txttxt1.Ba1 Ba

MaMMM ximuum Lengthgth”; p; ageEEgeEElemeements.nts.Add(Add(txttxt1); TTextFex ieldd txt2 = neew TeextField(“txxtf2namename”, xx + 3+ 30, y + 30, 150, 40); txt2.DefaultValue = “This is a TexxtFtFieldd whiichh goees tototot the nexxt lit liline ine iif thff t e text et et xceexceeds wds wididth”; ”; ttxt2.xt2.xt2xt2 MMMultMu iLinLine = e =

RgRR bCooolor.AliceBlueBluee; txt2.T2. oolTip == “M“Multiline”; ppageEElemennts.AAdd(ttxt2); AddCapCaptiont AndRAndRecctangle(pageElements, “TextField Form Page Element:”, x, x, y, 50450444, 8585); }; } prri vate voioidd AddComCCC boFibo eld(Group pap pageElgeElemeemenene ttts, ts float x, fl

, , y + 4000, 150,, 20 20)20); c; cb.Boro derCd olor = RgbColorr.BBlack; cb.BaackggrounndColor = RgbCRgbColoro .AliAliceBceBlue; cb.Font = Font.Helvetica; cb.FontSize = 12; cb.Itemsem .AAdd(“(“It((em 1m 1”); ; ccb.IItemste .Add(“It““Item 2em 2”); ”); cb.Icb.Itemsems.Add(“Item 3em 3”)); cb.IItems

aaabbble”b].SSeSeSeleleclected = true; cb.Edb itable = true; cb.ToToololTip = “Editable Coe Combo Box””; pa; pageElgeE emements.Add(cb); ComboBox cb1 = new ComboBox(“cmb1namame”, x + 303,030 y +y + 4440 40, 150, 200); c); cb1.Bb1.Bb1 ordeorderColrColoor = Rgbg Coloor.Blr.Br Br B ack;ack cb1.Bac

.F..FFFontontSize = 12; cb1.Items.Add(“Item 1”); cb1.Items.AAdd(“Item 2em 2”); ccb1.Items.Add((“Itemem 3”); cb1.Items.Add(“Item 4”); cb1.Items.Add(“Non-Editable”);”); cb111.Items[“NNon-Eon-Editable”].Selecteccc ed =ed = tru true; ce; cb1 Eb1.EEditable e = fa= f lse;se cb1.ToolT

eerrter.Coonvert(“http://www.google.com”, “Output.pdf”));Convverteer.Coonvert(GetDocD PathPath(“Do(“D cumentA.rtf”), “Output.pdf”);System.Diagnostics.Process..s SStartt(“Ot(“ uutpuutpuutputt.pdf”);”); AsyncCoConvernverrtter t aConaConvertverter =e newe AsyncCncConnverter(); aC

vveerted); aConverter.ConversionError += new ConversiionErroorEvventHHandler(aConveerteer_ConversionError); aConverter.Convert(@”C:\temp\DocumentA.rtA f””””, f , f @”C:C \temte p\OuO tputtputA.pdA.pdf”);f”); aCo aCoa nverter.Convert(ert @”C:\teme p\Dop\D cumentB

\Doc\D ummentC.rtf”, @”C :\temp\OutputC.pdf”); aConverrter.Coonverrt(“hhttp://www.yahoo.coo.com”, @”C:\Temp\yahoo.pdf”); ConvC ersionOptions ops optiontions = nneewnew new ew Conversise onOpOptiontionoo s(72s(720, 70, 720, 72, 7 true); ceTe.DynaDynamicPm DF.CDF.Conveon rsiorsion Con.Co

outpou ut.pdf”, optionso); ceTe.DynamicPDF.Conversion.CConveerter.ConvCon ert(“C:\\temp\\\Documocument2.docx”, “C:\\temp\\op\ utput.pdf”, optiptoptioptiop ons)ons); s; stringing sampleHple tml m = “<“<htmlhtml><bo><bob dydy><p>This is s a very simplee HTMLHTMLHTHT strstrs ing iningin inclincincincludinud ng a g a g TT

(g[] g)

{{

pp

gg g (p p)

[]

[]

pp y y yyp

HighhSecuSec rity securiturity y new w HighhSecuurityy(“OOwnerPassword”, “U“ serPassword”)

yy ppy

ees y yy

p

(p p)

pag p (p pp)

p ()

}

Untitled-1 1 9/8/11 11:56 AM

www.dynamicpdf.com

msdn magazine52 OData

Note that this query is similar to browsing all items in the device
namespace. In other protocols, the ability to browse like this is an
added feature, and much effort is expended to define and imple-
ment the capability. With OData, it comes for free!

A more nuanced query might be to enumerate all items currently
associated with a specific subscription, for example, the subscrip-
tion with SubscriptionId = 25. The LINQ query:

var subscriptionQuery =
 (from subscription in dataContext.Subscriptions.Expand("Items")
 where subscription.SubscriptionId == 25
 select subscription).FirstOrDefault();

generates the OData URL:
http://localhost:10001/TimeSeriesData.svc/Subscriptions(25)/?$expand=Items

The call to FirstOrDefault dereferences the returned LINQ
query and executes it, sending the URL and receiving and parsing
the response. This time, the result is a single Subscription entity
object with all Item entity objects associated with the subscription.
The subscription items can be enumerated with:

serverItemsList = serverSubscription.Items.ToList();

Client code pulls published samples from a subscription using
a LINQ query like this:

var subscriptionWithSamplesQuery =
 (from subscription in dataContext.Subscriptions.Expand("Samples")
 where subscription.SubscriptionId == 25
 select subscription).FirstOrDefault();

which generates the OData URL:
http://localhost:10001/TimeSeriesData.svc/Subscriptions(25)/?$expand=Samples

In this case, Sample entities associated with the Subscription entity
contain sampled values for many Item entities, possibly one or more
sample for each item associated with the subscription. As long as I’m
using LINQ, I’ll group samples by item with a local LINQ query operating
on the IEnumerable collection returned by the previous LINQ query:

var samplesInSubs = from sample in subscriptionWithSamplesQuery.Samples
 group sample by sample.ItemIdSampled into sampleSubs
 select sampleSubs;

This example is the basic-course use case of time-series data
acquisition. It demonstrates how naturally LINQ queries that gen-
erate OData transactions can segue into in-memory LINQ que-
ries that manipulate local data. At this point, samplesInSubs is an
IEnumerable of IEnumerable, a collection of groups of samples,

grouped by ItemId. It’s natural for the client to process the
data in this form.

These examples of OData queries don’t even begin to
touch the expressiveness of OData. Much more filtering,
sorting and sampling is possible. See“Additional References”
for links to more examples.

A Simple WPF OData Test Client
Putting everything together, I wrote a small WPF applica-
tion to showcase the concept of time-series process data
from an OData service. The OData Test Client shown in
Figures 6-10 uses the LINQ queries I explored earlier,
plus a few others, to read data from and write data to a
sample OData service.

When the main screen first comes up (see Figure 6), it
makes several OData queries, allowing it to fill in the list
boxes with all subscriptions in the service, as well as names
and Ids of all items in the service.

In Figure 7, you see that selecting a subscription in the left
list box reads the item names and Ids of the items in that subscription
into the right list box, which allows you to read and set the
update interval of that subscription, and enables several command
buttons for that subscription, which I’ll describe as I go.

No discussion of time-series streaming data is complete with-
out a strip-chart recorder, so I found the excellent Dynamic
Data Display project at CodePlex, and used it to build a multi-
pen dynamic display. (Note that the Dynamic Data Display for
Silverlight library is a Microsoft Research product and its license
states that the library is for non-commercial use only.) Data for all
items in a single subscription roll as expected from right to left. You
get a subscription monitor dialog like the one in Figure 8 every
time you select a subscription and press Monitor.

In addition to monitoring time-series data from many items,
the same OData queries can be used to perform item browsing,
as shown in Figure 9. All the items from either a single subscrip-
tion or the service as a whole are displayed in the list box on the
right, but browsing also means choosing which items to include
in a subscription. To get a browsing window, select a subscription

Figure	9	Browsing Items to be Included in a Subscription

OData Web Site: odata.org

OASIS OData Standard: bit.ly/163s1gZ

OData Query Language: See the canonical description at
bit.ly/15PVBXv or Microsoft’s take, including limitations of using
LINQ to generate the queries, at bit.ly/1zZYMqq.

OData, CKAN AND Microsoft Azure: How OData typically
provides access to large data sets (bit.ly/1LrzmYp).

LINQ Queries Mapped to OData Queries: There are other
third-party extensions that extend LINQ beyond the WCF Data
Services Client Library. The basic WCF LINQ queries, and how
they map to OData queries, are detailed at bit.ly/1zf8Gp7.

Dynamic Data Display: I found this really excellent set of controls
for dynamic data display at bit.ly/1CI73B2. Using it for strip-chart
recorders barely scratches the surface of its capabilities.

Additional References

0415msdn_RossOData_v5_46-54.indd 52 3/11/15 8:35 AM

www.odata.org
www.bit.ly/163s1gZ
www.bit.ly/15PVBXv
www.bit.ly/1zZYMqq
www.bit.ly/1LrzmYp
www.bit.ly/1zf8Gp7
www.bit.ly/1CI73B2

Untitled-9 1 2/2/15 2:13 PM

www.docuvieware.com

msdn magazine54 OData

on the left and press the Browse button. The changes made to that
subscription by moving items left (out of the subscription) or right
(into the subscription) are updated in the service and persisted each
time a service call is made, so no Save button is needed.

Finally, many subscriptions can be monitored at once, as shown
in Figure 10.

Challenges and Limitations of OData
for Time-Series Streaming Data
Although my company specializes in high-density, high-throughput
time-series streaming services and clients, no attempt has been made
(yet) to quantify the performance of OData for this use. As I compare
my OData approach against other approaches common in my indus-
try, I see potential for some downsides:

• No data acquisition mechanism can be safely used in
today’s networking environment without security, including
mandatory user authentication and optional encryption.
The obvious way to provide these features is to shift from
HTTP to HTTPS. The additional burden of public key
infrastructure (PKI) administration and loading of both
CPU and bandwidth resources may make this approach
unworkable for some applications.

• The approach detailed in this article requires that the ser-
vice persist some state, such as the definition of multiple
subscriptions. When combined with user authentication,
this means some state must be persisted at the service side
for each user. For scalability reasons, care must be taken to
ensure any required state information will be incorporated
into the entity model, and not be implemented as part
of the service itself. As long as statelessness in the service
itself is carefully preserved, the service should scale linear-
ly with added clients, and multi-tenant cloud hosting and
server farms should be possible.

• Caching responses for clients that make rapid repeated ser-
vice requests could be a performance enhancement. This
issue comes in two flavors: the Subscriptions(x)/Samples
entity set and everything else. Samples from a specific sub-
scription are likely to be the most common request by far,
because that’s how streaming data is acquired. This works
well with the service design, because subscription samples
are by definition always in-memory. If other request types
occur with enough frequency to be a problem, additional
caching might need to be considered.

• OData wire performance may limit its effective item
density or throughput. At my company, we haven’t yet made
measurements to determine this, and it’s only a possibili-
ty. When compared to SOAP-based transports, the JSON
payload from OData may compare favorably to SOAP
envelope overhead.

• OData and other REST-based services provide no mech-
anism to report by exception, or to push notifications of
important events to the client. All data transfers must be
requested by the client, so only a pull model is possible.
This limitation is comparable to most other protocols used
by the industry that are capable of traversing the Internet.
For example, OPC-UA is an industry-standard SOAP-
based protocol, and requires notifications to be pumped
using a publish-request loop driven by the client. A valu-
able exploration for future development of this technique
would be to explore the use of server-side push technolo-
gies such as SignalR.

From the examples in this article, it seems clear that OData is a
feasible approach with several benefits:

• Client code is easier to manage and deploy.
• Multiple client platforms—from phones to desktops—can

consume the same data.
• OData is a viable approach for

densities of a few dozen to a few
hundred items, and throughputs
up to a few hundred samples
per second, but is untested for
high performance.

In my next article, I’ll follow
up with an exploration of how
to consume “data in flight” from
OData services with Reactive
Extensions (Rx). n

Louis Ross is a multi-technology architect for
Wonderware by Schneider Electric, where he
has been developing device-integration tech-
nologies for 17 years. Previously, he freelanced
as a designer of embedded controls, special-
izing in hardware and firmware design.

Thanks to the following technical
experts for reviewing this article and
providing valuable feedback:
Ming Fong (Schneider Electric) and
Jason Young (Microsoft)Figure	10	Monitoring Four Subscriptions at Once

0415msdn_RossOData_v5_46-54.indd 54 3/11/15 8:35 AM

Untitled-1 1 1/6/15 10:43 AM

www.lightningchart.com

msdn magazine56

For a long time, there was really only one way to make inter­
active Web games: Flash. Like it or not, Flash had a fast drawing
system. Everyone used it to create animations, point­and­click
adventures and all sorts of other experiences.

When browsers aligned on Web standards with HTML5, there
was a veritable explosion of options for developing fast, high­quality
graphics—without needing plug­ins. This article will present a small
sample of drawing methods, as well as the underlying technolo­
gies and some libraries for making them easier to use. I won’t be
covering libraries specifically meant for games. There are so many
of those I’m going to save that discussion for another article.

Drawing Standards
With the onset of HTML5, three common ways for drawing in 2D
emerged: the Document Object Model (DOM), the canvas and the
Scalable Vector Graphics (SVG) format. Before jumping into the
survey of libraries that use these technologies, I’ll review how each
works to better understand the tradeoffs of each method.

Not surprisingly, the most basic way to draw graphics in HTML is
indeed with HTML. By creating a number of image or background

elements and using a library like jQuery, you can quickly make sprites
you can move around without redrawing the scene. The browser
will do it for you. This kind of structure is often called a scene graph.
In the case of HTML, the scene graph is the DOM. Because you’ll
use CSS to style your sprites, you can also use CSS transitions and
animations to add some smooth motion to your scene.

The key issue with this method is that it’s dependent on the
DOM renderer. This can slow things down when you have a com­
plex scene. I wouldn’t recommend using more than a few hundred
elements. So anything more complex than a match­three or a plat­
form game might have performance issues. And a sudden increase
in the number of elements, like in a particle system, can cause
hiccups in the animation.

Another issue with this method is you need to use CSS to style
elements. Depending on how you write CSS, it can be decently
fast or pretty slow. Finally, writing code targeted for HTML can
be difficult to move to a different system, like native C++. This
is important if you want to port your game to something like a
console. Here’s a summary of the pros:

• Builds on the basic structure of a Web page
• jQuery and other libraries make it easy to move things around
• Sprites are relatively easy to set up
• Built-in animation system with CSS transitions

and animations
And a summary of the cons:

• Many small elements can slow you down
• Need to use CSS to style elements
• No vector images
• Can be difficult to port to other platforms

V IS UAL ST UD IO

2D Drawing Techniques
and Libraries for
Web Games
Michael Oneppo

This article discusses:
•	Graphics	standards	for	2D	drawing

•	How	to	incorporate	libraries	to	simplify	the	process

•	Pros and cons of different methods

Technologies discussed:
HTML5,	Visual	Studio	Pro	2013,	Visual	Studio	Community,	ASP.NET

0415msdn_OneppoGame_v4_56-59.indd 56 3/11/15 8:29 AM

57April 2015msdnmagazine.com

HTML5 Canvas
The canvas element addresses a lot of the cons. It provides an
immediate­mode rendering environment—a flat swath of pixels.
You tell it what to draw in JavaScript and it draws immediately.
Because it’s converting your drawing commands to pixels, you can
quickly pile up a long list of drawing commands without bogging
down the system. You can draw geometry, text, images, gradients
and other elements. To read more about using canvas for games,
check out David Catuhe’s article at bit.ly/1fquBuo.

So what’s the downside? Because the canvas forgets what it drew
the moment it’s done, you have to redraw the scene yourself each
time you want it to change. And if you want to modify a shape in
a complex way, like bending or animating, you have to do the cal­
culations and redraw the item. This means you need to maintain a
lot of data about your scene in your own data structures. That’s not
really a huge deal, considering there are libraries that make this easier.
If you really want to do something customized, be aware that the
canvas doesn’t retain information for you. Finally, canvas doesn’t
include animations. You have to draw your scene in successive
steps to make a smooth animation. Here’s a summary of the pros:

• Draws directly—scenes can be more complex
• Supports lots of different visual elements

And a summary of the cons:
• No inherent memory of the scene; you need to build it yourself
• Complex transforms and animations have to be done manually
• No animation system

SVG: Scalable Vector Graphics
As an XML­based markup for describing 2D visuals, SVG is similar
to HTML. The key difference is SVG is meant for drawing, while
HTML is primarily designed for text and layout. As such, SVG
has some powerful drawing capabilities such as smooth shapes,
complex animations, deformations and even image filters like
blurring. Like HTML, SVG has a scene graph structure, so you
can peruse SVG elements, add shapes, change their properties and

not worry about redrawing everything. The browser will do it for
you. The video, “Working with SVG in HTML5,” from Channel 9
(bit.ly/1DEAWmh) explains more.

Like HTML, complex scenes can bog down SVG. SVG can handle
some complexity, but it can’t quite match the complexity afforded
by using canvas. Furthermore, the tools for manipulating SVG can
be complex, although there are other tools to simplify the process.
Here’s a summary of the pros:

• Many drawing options like curved surfaces and complex shapes
• Structured with no need to redraw

And a summary of the cons:
• Complexity can bog it down
• Difficult to manipulate

2D Drawing Libraries
Now that you know about the standards available to draw on the
Web, I’ll take a look at some libraries that can make your drawing
and animation easier. It’s worth noting that rarely do you draw
without doing something else with the drawing. For example, you
often need graphics to react to input. Libraries help make common
tasks associated with drawing easier.

KineticJS Want a scene graph for the canvas? KineticJS is an
extremely powerful canvas library that starts with a scene graph
and adds more functionality. At the baseline, KineticJS lets you
define layers in the canvas that contain shapes to draw. For example,
Figure 1 shows how to draw a simple red circle using KineticJS.

You’ll need to call the final line of Figure 1 every time you want
the scene to redraw. KineticJS will do the rest by remembering the
layout of the scene and ensuring everything is drawn correctly.

There are some interesting things in KineticJS that make it quite
powerful. For example, the fill property for an object can be quite
a number of things, including a gradient:

fill: {
 start: {x: 0, y: 0},
 end: {x: 0, y: 200},
 colorStops: [0, '#FF0000', 1, '#00FF00']
},

Or an image:
// The "Image" object is built into JavaScript and
// Kinetic knows how to use it
fillPatternImage: new Image('path/to/an/awesome/image.png'),

KineticJS has an animation system, as well, which lets you move
things around by creating an Animation object or by using a Tween
object to transition properties on the shapes in your scene. Figure
2 shows both types of animations.

KineticJS is powerful and widely used, especially for games.
Check out the code, samples and documentation at kineticjs.com.

Paper.js Paper.js provides more than just a library for simplifying
drawing to the canvas. It provides a slightly modified version of JavaScript

// Points to a canvas element in your HTML with id "myCanvas"
var myCanvas = $('#myCanvas');
var stage = new Kinetic.Stage({
 // get(0) returns the first element found by jQuery,
 // which should be the only canvas element
 container: myCanvas.get(0),
 width: 800,
 height: 500
 });

var myLayer = new Kinetic.Layer({id: “myLayer”});
stage.add(myLayer);
var circle = new Kinetic.Ellipse({
 // Set the position of the circle
 x: 100,
 y: 100,

 // Set the size of the circle
 radius: {x: 200, y: 200},

 // Set the color to red
 fill: '#FF0000'
});

myLayer.add(circle);
stage.draw();

Figure	1	Drawing a Circle with KineticJS

Because the canvas forgets what
it drew the moment it’s done, you
have to redraw the scene yourself
each time you want it to change.

0415msdn_OneppoGame_v4_56-59.indd 57 3/11/15 8:29 AM

www.bit.ly/1fquBuo
www.bit.ly/1DEAWmh
www.kineticjs.com
www.msdnmagazine.com

msdn magazine58 Visual Studio

called PaperScript to simplify common drawing tasks. When
including PaperScript in your project, link to it just like you would
a regular script, just with a different type of code:

<script type=“text/paperscript" src=“mypaperscript.js”>

This lets Paper.js interpret the code slightly differently. There are
really only two pieces to this. First, PaperScript has two built­in
objects called Point and Size. PaperScript includes these objects for

common use in its functions and provides the ability to directly
add, subtract and multiply these types. For example, to move an
object about in PaperScript, you could do this:

var offset = new Point(10, 10);

var myCircle = new Path.Circle({
 center: new Point(300, 300),
 radius: 60
});

// Direct addition of Point objects!
myCircle.position += offset;

The second thing Paper.js interprets differently is responding to
events. Consider that you write the following code in JavaScript:

function onMouseDown(event) {
 alert("Hello!");
}

This will do nothing because the function isn’t bound to any
element’s events. However, writing the same code in PaperScript,
Paper.js will automatically detect this function and bind it to the
mouse down event. Learn more about this at paperjs.org.

Fabric.js Fabric.js is a feature­packed canvas library, with the
ability to mix a number of advanced effects and shapes into a Web
page without a lot of code. Some notable features include image fil­
ters such as background removal, custom classes for making your
own compound objects and “free drawing” support where you can
just draw on the canvas in a number of styles. Fabric.js is similar to
KineticJS in that it has a scene graph, except with a more concise

structure, which some people prefer. For instance, you don’t need
to ever redraw the scene:

var canvas = new fabric.Canvas('myCanvas');
var circle = new fabric.Circle({
 radius: 200,
 fill: '#FF0000',
 left: 100,
 top: 100
});

// The circle will become immediately visible
canvas.add(circle);

That’s not a huge difference, but Fabric.js provides fine­grained
rendering controls that mix automatic redraw and manual redraw.
To give an example, scaling up a circle in Fabric.js looks like this:

circle.animate(
 // Property to animate
 'scale',
 // Amount to change it to
 3,
 {
 // Time to animate in milliseconds
 duration: 3000,
 // What's this?
 onChange: canvas.renderAll.bind(canvas)
 });

When animating something in Fabric.js, you have to tell it what
to do when it changes a value. For the most part, you want it to
redraw the scene. That’s what canvas.renderAll.bind(canvas)
references. That code returns a function that will render the whole
scene. If you’re animating a lot of objects in this way, though,
the scene would be unnecessarily redrawn once for each object.
Instead, you can suppress redrawing the whole scene, and redraw
the animations yourself. Figure 3 demonstrates this approach.

Fabric.js provides a lot of customization, so you can optimize
your drawing only when you need to. For some, that can be dif­
ficult to handle. For many complex games, though, this can be a
critical feature. Check out more at fabricjs.com.

Raphaël Raphaël is a useful SVG library that eliminates most of the
complexity in dealing with SVG. Raphaël uses SVG when available.
When it isn’t, Raphaël implements SVG in JavaScript using whatever
technologies are available in the browser. Every graphical object
created in Raphaël is also a DOM object, with all the capabilities
DOM objects enjoy, such as binding event handlers and jQuery
access. Raphaël also has an animation system that lets you define
animations independent of the objects drawn, enabling heavy reuse:

var raphael = Raphael(0, 0, 800, 600);

var circle = raphael.circle(100, 100, 200);
circle.attr("fill", "red");
circle.animate({r: 600}, 3000);

// Or make a custom animation
var myAnimation = Raphael.animation(
 {r: 600},
 3000);
circle.animate(myAnimation);

In this code, instead of drawing a circle, Raphaël will place an
SVG document on the page with a circle element. Oddly, Raphaël
doesn’t natively support loading SVG files. Raphaël does have a rich
community, so there’s a plug­in for that available at bit.ly/1AX9n7q.

Snap.svg Snap.svg looks quite a bit like Raphaël:
var snap = Snap("#myCanvas"); // Add an SVG area to the myCanvas element
var circle = snap.circle(100, 100, 200);
circle.attr("fill", "#FF0000");
circle.animate({r: 600}, 1000);

// Slowly move the circle to the right forever
var myAnimation = new Kinetic.Animation(
 function(frame) {
 circle.setX(myCircle.getX() + 1);
 },
 myLayer);

// The animation can be started and stopped whenever
myAnimation.start();
// Increase the size of the circle by 3x over 3 seconds
var myTween = new Kinetic.Tween({
 node: circle,
 duration: 3,
 scaleX: 3.0,
 scaleY: 3.0
});

// You also have to initiate tweens
myTween.play();

Figure	2	Animations Using KineticJS

Libraries help make
common tasks associated with

drawing easier.

0415msdn_OneppoGame_v4_56-59.indd 58 3/11/15 8:29 AM

www.paperjs.org
www.fabricjs.com
www.bit.ly/1AX9n7q

59April 2015msdnmagazine.com

One of the key differences is Snap.svg includes seamless SVG
importing:

Snap.load("myAwesomeSVG.svg");

The second key difference is Snap.svg provides powerful built­
in tools to search and edit the SVG structure in­place, if you know
the structure of the SVG with which you’re working. For example,
imagine you wanted to make all groups (“g” tags) in your SVG
invisible. After SVG loads, you have to add this functionality in a
callback to the load method:

Snap.load("myAwesomeSVG.svg", function(mySVG) {
 mySVG.select("g").attr("opacity", 0);
});

The select method works a lot like the jQuery “$” selector, and
it’s quite powerful. Check out Snap.svg at snapsvg.io.

A Little More: p5.js
A lot of these libraries provide a little extra for common tasks.
This creates a spectrum of technologies to address a wide range of
applications, from simple drawing to interactive media and com­
plex gaming experiences. What else is out there in the middle of
the spectrum—something more than simple drawing solutions,
but not quite a full game engine?

One project worth noting is p5.js, which is built from the
popular Processing programming language (see processing.org). This
JavaScript library provides an interactive media environment by
implementing Processing in the browser. p5.js consolidates the
most common tasks into a set of functions you have to define to
respond to events in the system, like redrawing the scene or mouse
input. It’s a lot like Paper.js, but with multimedia libraries, as well.
Here’s an example, which demonstrates how this approach results
in more concise graphics code:

float size = 20;
function setup() {
 createCanvas(600, 600);
}

function draw() {
 ellipse(300, 300, size, size);
 size = size + .1;
}

This program makes a circle that grows in size until it fills the
screen. Check out p5.js at p5js.org.

So What to Use?
There are clearly pros and cons to canvas and SVG. There are also
libraries that significantly reduce many of the downsides to either
approach. So what should you use? I generally wouldn’t recom­
mend using vanilla HTML. Chances are that a modern game will
exceed the graphical complexity it can support. So that brings us
to a choice between SVG and the canvas, which is difficult.

For highly distinctive game genres, the answer gets a little easier.
If you’re building a game with hundreds of thousands of particles,

you’ll want to use the canvas. If you’re building a point­and­click
adventure game with a comic book style, you might want to
consider SVG.

For most games, it doesn’t come down to performance, as
many would have you believe. You can spend hours belaboring
which library to use. In the end, though, that’s time you could be
writing the game.

My recommendation is to make a selection based on your art
assets. If you’re making your character animations in Adobe Illustrator
or Inkscape, why convert each frame of your animations down
to pixels? Use the vector art natively. Don’t waste all that work by
cramming your art into the canvas.

Conversely, if your art is mostly pixel­based, or you’re going to
be generating complex effects on a pixel­by­pixel basis, the canvas
is a perfect option.

One More Option
If you’re looking for the best performance possible, and you’re
willing to deal with a little more complexity to make it happen, I
strongly recommend you consider Pixi.js. Unlike anything else I’ve
shown you in this article, Pixi.js uses WebGL for 2D rendering. This
provides some major performance improvements.

The API isn’t quite as straightforward as the others described
here, but it’s not a huge difference. Furthermore, WebGL isn’t sup­
ported on as many browsers as the other technologies. So on older
systems Pixi.js has no performance advantage. Either way, make
your choice and enjoy the process. n

Michael OneppO is a creative technologist and former program manager at
Microsoft on the Direct3D team. His recent endeavors include working as CTO
at the technology nonprofit Library for All and exploring a master’s degree at the
NYU Interactive Telecommunications Program.

Thanks to	the	following	Microsoft	technical	expert	for	reviewing	this	article:	
Shai Hinitz

var needRedraw = true;

// Do things like this a lot, say hundreds of times
circle.animate(
 'scale',
 3,
 {
 duration: 3000,

 // This function will be called when the animation is complete
 onComplete: function() {
 needRedraw = false;
 }
 });

// This function will redraw the whole scene, and schedule the
// next redraw only if there are animations going
function drawAnimations() {
 canvas.renderAll();
 if (needRedraw) {
 requestAnimationFrame(drawAnimations);
 }
}

// Now draw the scene to show the animations
requestAnimationFrame(drawAnimations);

Figure	3	Tighter Redraw Control in Fabric.js

There are clearly pros and cons
to canvas and SVG.

0415msdn_OneppoGame_v4_56-59.indd 59 3/11/15 8:29 AM

www.snapsvg.io
www.processing.org
www.p5js.org
www.msdnmagazine.com

magazine

MICROSOFT HEADQUARTERS, REDMOND, WA

AUGUST 10 - 14

vslive.com/redmond

Redmond

CODE HOME

Untitled-1 2 3/10/15 12:13 PM

www.vslive.com/redmond

➤

➤

➤

➤

➤

➤

➤

➤

Join us on the Ultimate Code Trip in 2015!

CONNECT WITH VISUAL STUDIO LIVE!

vslive.com/redmond

REGISTER NOW
AND SAVE $400!

Untitled-1 3 3/10/15 12:06 PM

www.vslive.com/redmond
www.vslive.com
www.vslive.com/redmond
www.twitter.com/vslive
www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine62

Desired State Configuration (DSC) is a new configu-
ration management and deployment platform from Microsoft. It’s
built on Common Information Model (CIM), Web Services for
Management (WSMAN) industry standards and is an extension
to Windows PowerShell.

You can declaratively write DSC scripts within any Windows
PowerShell console, generate DSC objects and execute them on
target servers. DSC lets you configure, monitor and ensure server
compliance using these configuration documents.

Writing a configuration is like defining a policy for a target server.
The policy contains a group of resources along with their desired
state and those are applied to the target server. DSC ensures each
server complies with the policy. Read more about DSC at bit.ly/1iDeRcF.

Resources are the basic building blocks of DSC. They’re the most
granular, reusable, distributable and shareable component of the
DSC infrastructure. They also provide the lowest level of control
within DSC and are used to author DSC documents to configure
infrastructure. DSC resources can perform anything possible

using Windows PowerShell, such as configuring and managing
IIS, Windows Remote Management (WinRM), registry, Windows
features and services.

What good is a technology these days if it doesn’t allow for
extension? DSC follows the Open Closed Principle. It’s open for
extension, but closed for modification. It provides the necessary
extension hooks for authoring new resources.

In this article, I’ll show you how to develop a DSC custom
resource and use it in a sample DSC configuration. The custom
resource is named TrustedHosts. This resource will manage the
WinRM trusted host configuration—adding or removing computer
names to the WinRM TrustedHosts property.

Workgroup servers (not part of any domain) that want to com-
municate using Windows PowerShell remoting will need additional
WinRM configuration. Specifically, I’ll add the names of client

CO N F IG UR AT ION MANAGEM E NT

Authoring Desired
State Configuration
Custom Resources
Ritesh Modi

This article discusses:
• Desired State Configuration (DSC) management

• How to write DSC scripts

• Customizing DSC scripts

Technologies discussed:
Windows PowerShell

You can declaratively write DSC
scripts within any Windows

PowerShell console, generate
DSC objects and execute them

on target servers.

0415msdn_ModiDSC_v3_62-67.indd 62 3/11/15 8:18 AM

www.bit.ly/1iDeRcF

63April 2015msdnmagazine.com

machines to the WinRM TrustedHosts list to allow remoting from
those machines.

This resource would be responsible for managing a single
computer name in the TrustedHosts list. However, if you need
multiple computer names, you can add multiple resource sections
using this resource within the configuration document. You could
also modify the accompanied resource.

You can view the Trusted Hosts configuration by executing
Get-Item command and using WSMAN provider:

Get-Item WSMan:\localhost\client\TrustedHosts

Similarly, you can modify the TrustedHosts property by executing
the following command through the Windows PowerShell console:

Set-Item WSMan:\localhost\client\TrustedHosts –Value "*.contoso.com" –force

It’s important to know the building blocks and concepts required
to build a custom resource. The concepts related to CIM, Managed
Object Format (MOF), Windows PowerShell and its modules, and
WinRM are the primary technologies upon which DSC resources
are built.

DSC Resources
Before getting into implementing the custom resource, it’s import-
ant to know how to package and deploy it on your servers. DSC
resources are contained within Windows PowerShell modules,
which let you reuse and distribute code. You can implement mod-
ules either as Windows PowerShell scripts or compiled binaries
using languages such as C#.

DSC uses the module infrastructure to host its resources.
Windows PowerShell modules should reside at pre-determined
folder locations on the file system. You can view these locations by
dereferencing the Windows PowerShell variable $env:ModulePath
from any Windows PowerShell console. Windows PowerShell
installs all out-of-box modules at C:\Windows\System32\Windows-
PowerShell\v1.0\modules. You should deploy all custom modules at
C:\Program Files\WindowsPowerShell\modules. For the Trusted-
Hosts custom resource, use C:\Program Files\WindowsPowerShell\
Modules as the module base path and hosting container for the
WinRM Windows PowerShell module. You’ll create a new folder
named WinRM within this folder.

DSC expects resources to follow rules related to file and fold-
er structure within a Windows PowerShell module. All DSC re-
sources should be placed within the DSCResources folder in the

module. This is the root folder containing all the related resources.
Within the WinRM folder, create another folder called DSCResources.
This folder hosts all DSC resources. Create one folder for each
resource within this folder. In this case, you’re creating a single resource
and, therefore, just one folder named TrustedHosts. The folder and
resource should have the same name. This resource-specific folder
TrustedHosts contains files specific to the resource. The Folder
structure for the TrustedHosts resource is shown in Figure 1.

The files that define and provide resource implementation are:
1. <<ResourceName>>.psm1—This is the resource imple-

mentation file. In this case, it’s TrustedHosts.psm1.
2. <<ResourceName>>.psd1—This is the resource metadata

file. In this case, it’s TrustedHosts.psd1. You don’t need this
file if you export mandatory functions from .psm1 script file.

3. <<ResourceName>>.Schema.mof—This is the resource
definition. In this case, it’s TrustedHosts.Schema.mof.

Every Windows PowerShell module has a module manifest
file with the same name as the module itself. Generate a module
manifest file using New-ModuleManifest cmdlet from the Windows
PowerShell console using elevated privileges, like so:

New-ModuleManifest -Path "C:\Program Files\WindowsPowerShell\Modules\
WinRM\WinRM.psd1"

Now that you understand the folder and file structure rules for
packaging a DSC resource, I’ll focus on the implementation files.

TrustedHosts.Schema.mof
You’ll use MOF files to define classes CIM/WMI uses to generate
their instances for enabling management information exchange
within datacenters. The MOF class defines a DSC resource along
with its properties. The properties can include Read-Write, ReadOnly
and required attributes. There should always be a Key property
for CIM/WMI to uniquely identify the objects. Properties are
assigned values and they eventually become the desired state of
the resource to be monitored and maintained. You can generate
MOF files through an MOF designer or author them through any
text editor such as Notepad because they’re essentially text files.

Before creating the MOF class, analyze the information you need
to manage in the TrustedHosts configuration on any machine.
For managing TrustedHosts on a server, you need three proper-
ties: ComputerName to add to the TrustedHosts list; the Ensure
property to determine whether ComputerName should be added
or removed; and credentials to access and manage the WinRM
TrustedHosts configuration.

Figure 1 Windows PowerShell Desired State Configuration
Resource Folder and File Specification

$env:PSModulePath {folder} C:\Program Files\WindowsPowershell\Modules

WinRM (folder)

DSCResources (folder)

DSCResource1 {folder}
WinRM.psd1

TrustedHosts.psm1 TrustedHosts.Schema.mof

Resources are the basic building
blocks of DSC. They’re the most
granular, reusable, distributable
and shareable component of the

DSC infrastructure.

0415msdn_ModiDSC_v3_62-67.indd 63 3/11/15 8:18 AM

www.msdnmagazine.com

msdn magazine64 Configuration Management

Then an MOF class for TrustedHosts DSC resource is created,
as shown here:

[ClassVersion ("1.0.0"), FriendlyName ("TrustedHosts")]
Class TrustedHosts: OMI_BaseResource
{
 [Key, Description ("Name of the host")] String ComputerName;
 [Write, ValueMap {"Present", "Absent"}, Values {"Present", "Absent"}]
string Ensure;
 [Write, EmbeddedInstance ("MSFT_Credential")] string Credential;
};

It’s important to know how the MOF class fits into the overall
CIM ecosystem. All DSC resources are derived from the OMI_
BaseResource abstract CIM class. This base class is defined at the
root\Microsoft\Windows\DesiredStateConfiguration namespace
and provides common properties required for all DSC resources.

These properties are ResourceID, SourceInfo, ModuleName,
ModuleVersion and DependsOn. During MOF file generation, you’ll
add these properties to all resource properties. These are DSC-specific
internal properties and used only by DSC. The Class TrustedHosts
would also become part of the root\Microsoft\Windows\Desired-
StateConfiguration namespace. All three properties are of type string
and they represent the WinRM TrustedHosts resource definition.

The ComputerName property has additional metadata—Key
and Description. Key is a type qualifier and indicates this property
is mandatory and the value of this property should be unique
across all instances. There should be at least one property with key
metadata within the MOF class. There can be multiple properties
with Key metadata. This would create a composite key and they
should both be unique across all instances. I made this property
as Key because otherwise, I can’t determine whether the computer
name already exists in TrustedHosts list.

Description provides textual meaning to the property. The Ensure
property is annotated with ValueMap. ValueMap is a set of values the
property can accept and is synonymous to an Enumeration. In this
case, Ensure can accept either “Present” or “Absent” as its legal value.
Both the Ensure and Credential properties are decorated with the
write attribute. That means you can write into and modify this
property when using the custom resource in a configuration script.

The class TrustedHosts also has metadata—ClassVersion and
FriendlyName. The class version is helpful for maintaining multiple
versions of the same MOF class. FriendlyName is important meta-
data because configuration scripts use it to refer to resources. The
configuration scripts recognize the resources through their friendly
name. In case of the TrustedHosts class, both the class name and
friendly name are the same. You can read more about MOF file
definition and its metadata at bit.ly/1AEHLTj.

After defining the MOF class, persist it as ASCII or Unicode for-
mat on the file system with the file name TrustedHosts.Schema.mof
within the TrustedHostsfolder created earlier. When you use this

custom resource in a DSC configuration, you’ll be assigning val-
ues to these properties to indicate the desired configuration state.

TrustedHosts.psm1
Now I’ll cover the most crucial aspect of a custom DSC resource—the
resource module script. This contains the custom resource implemen-
tation and determines how it will work. It also manages the resource by
keeping it aligned to the expected configuration. Every DSC resource
script module must implement three functions. These are mandatory
and each function has rules governing their implementation.

Get-TargetResource: This function must declare and accept
all properties in the MOF class marked as Key as parameters. It can
also accept required and write properties as parameters. The Key
and required parameters should be marked as mandatory while
declaring the parameter.

Function Get-TargetResource
{
 param(
 # Computer name to be checked within TrustedHosts List
 [parameter(mandatory)]
 [string] $ComputerName,

 # This property determines whether computer name
 # should be added or removed from TrustedHosts
 [parameter(mandatory)]
 [string] $Ensure,

 # Credentials needed to manage WinRM TrustedHosts configuration
 [parameter(mandatory)]
 [PSCredential] $Credential
)

 # Hashtable containing values is returned from this function
 $retval = @{}
 $retval.Add("Ensure","")
 $retval.Add("ComputerName", "")

 try{

 # Get current TrustedHosts comma-separated list using supplied credentials
 $TH = $(Get-Item WSMan:\localhost\Client\TrustedHosts `
 -credential $Credential).value
 Write-Verbose "Current TrustedHosts Configuration has $TH"
 if($TH.Length -gt 0){
 $temp = $TH -split ","
 [string] $newNode = ""

 # Check if value in TrustedHosts list already have few computer names
 if($temp.Length -gt 0) {
 for($i = 0; $i -lt $temp.Length; $i++){
 if($temp[$i].Trim() -eq $ComputerName.Trim())
 {
 $retval.Ensure = "Present" # Found computer name
 $retval.ComputerName = $ComputerName
 break;
 } else {
 $retval.Ensure = "Absent" # Computer name is not in the list
 $retval.ComputerName = $ComputerName
 }
 }
 }
 } else {
 # TrustedHosts list is empty
 $retval.Ensure = "Absent"
 $retval.ComputerName = $ComputerName
 }
 } catch {
 Write-Verbose " Error executing Get-TargetResource function"
 Write-Verbose $Error[0].Exception.ToString()
 }
}

Figure 2 Get-TargetResource Function for TrustedHosts Resource

ValueMap is a set of values the
property can accept and is

synonymous to an Enumeration.

0415msdn_ModiDSC_v3_62-67.indd 64 3/11/15 8:18 AM

www.bit.ly/1AEHLTj

65April 2015msdnmagazine.com

The Get-TargetResource function should implement script to
retrieve the current state of resource using the Key property values.
It should return a hashtable containing all properties defined in the
MOF class with values as the current state of resource.

Set-TargetResource: This function must declare and accept
all properties in the MOF class marked as Key, required and write
properties as parameters. The Key and required parameters should
be marked as mandatory while declaring the parameter. The
Set-TargetResource function should implement script that should
use all resource property values provided as parameters to get the
resource instance and perform one of the these actions:

• Create a new resource instance.
• Update an existing resource instance.
• Delete an existing resource instance.

The Set-TargetResource function shouldn’t return any value.
Test-TargetResource: The Test-TargetResource function is

similar to the Set-TargetResource function, but it doesn’t return the
current resource state. Instead, it returns a true or false Boolean
value depending on whether the current resource state matches
the expected resource state as specified in the configuration script.
If there’s a complete match between the two states, this function
returns true. It will return false if there’s a mismatch on any Key,
required or write property.

These three functions are invoked by the Local Configuration
Manager (LCM) component of DSC. LCM is the agent running
on all computers running Windows Management Framework 4.0.
Think of LCM as the DSC client available on all servers within
a network. DSC can communicate with this client and provide
necessary configuration information. It is the responsibility of

the LCM (DSC client) to manage, monitor and ensure configura-
tion compliance on the target machines. To do its job, it invokes
DSC resource functions. It first invokes the Test-TargetResource
function to determine whether the resource configuration is
matching the expected configuration. If the value returned is
true, it means that current state of resource is the same as that
of the expected configuration. However, it should return false if
the state doesn’t match.

If LCM gets false as the return value, it invokes the Set-Target-
Resource, which does the following:

1. If the resource doesn’t exist and the ensure property
is set to Present, it will create a new instance of the
resource and assign the property values it gets from
the configuration script.

2. If the resource exists and the ensure property is set to
Present, but some of its property values don’t match the
property values authored in configuration scripts, this
function should update only these resource properties.

3. If the resource exists and the ensure property is set to Present
and all property values match the property values authored
in configuration scripts, this function should do nothing.

4. If the resource exists and the ensure property is set to
Absent, then it should be removed.

5. If the resource doesn’t exists and the ensure property is set
to Absent, then it should do nothing.

Now it’s time to implement these three functions related to the
TrustedHosts custom resource. Open Windows PowerShell ISE,
implement these three functions and save it in the WinRM\DSC-
Resources\TrustedHosts Directory with the name TrustedHosts.psm1.

Figure 3 Set-TargetResource Function for TrustedHosts Resource

Function Set-TargetResource
{
 param(
 # Computer name to be added within TrustedHosts List
 [parameter(mandatory)]
 [string] $ComputerName,

 # This property determines whether computer name should be
 # added or removed from TrustedHosts
 [parameter(mandatory)]
 [string] $Ensure,

 # Credentials needed to manage WinRM TrustedHosts configuration
 [parameter(mandatory)]
 [PSCredential] $Credential
)

 try {
 # Get current TrustedHosts comma-separated list
 # using supplied credentials
 $TH = (Get-Item WSMan:\localhost\Client\TrustedHosts `
 -credential $Credential).value

 # Computer name should be added to the TrustedHosts list
 if($Ensure -eq "Present") {
 Write-Verbose "The current value is $TH"
 if($TH.Length -gt 0)
 {
 # Adding Computer name when the TrustedHosts list
 # configuration is not empty
 $TH += ",$ComputerName"
 Set-Item WSMan:\localhost\Client\TrustedHosts `
 -Value $TH -credential $Credential -FORCE
 } else {
 # Adding Computer name when the TrustedHosts list

 # configuration is empty
 $TH += "$ComputerName"
 Set-Item WSMan:\localhost\Client\TrustedHosts `
 -Value $TH -credential $Credential -FORCE
 }
 Write-Verbose "The New value is $TH"
 } else {
 # Computer name should be removed from TrustedHosts list
 Write-Verbose "The current value is $TH"
 if($TH.Length -gt 0) {
 $temp = $TH -split ","
 [string] $newNode = ""

 if($temp.Length -gt 0)
 {
 for($i = 0; $i -lt $temp.Length; $i++){
 if($temp[$i].Trim() -ne $ComputerName.Trim())
 {
 $newNode += $temp[$i] + ","
 }
 }
 $newNode = $newNode.TrimEnd(",")

 # Updating list after removing the Computer name
 Set-Item WSMan:\localhost\Client\TrustedHosts -Value $newNode
 -credential $Credential -Force
 Write-Verbose "The New value is $TH"
 }
 }
 }
 } catch {
 Write-Verbose " Error executing Set-TargetResource function"
 Write-Verbose $Error[0].Exception.ToString()
 }
}

0415msdn_ModiDSC_v3_62-67.indd 65 3/11/15 8:18 AM

www.msdnmagazine.com

msdn magazine66 Configuration Management

Get-TargetResource for
TrustedHosts Custom Resource
This function takes all properties defined in an MOF file as param-
eters. The credential parameter is of type PSCredential. This is a
Microsoft .NET Framework class exposed by Windows PowerShell
for capturing and storing username and password. The rest of the
parameters are of type string.

Within this function, create a hashtable for returning current
resource properties, as shown in Figure 2. It uses the WSMAN
provider to read the current TrustedHosts configuration list. The
script checks to see if there are any computer names available in the
list. If there are, it loops through and matches them to the provided
computer names. If it finds an exact match, it updates the Ensure
property with value Present or with value Absent. It also adds the
same computer name to the returning hashtable.

Set-TargetResource for
TrustedHosts Custom Resource
This function also takes the same set of parameters as Get-Target-
Resource. In this function, you get the current computer names
using WSMAN provided from TrustedHosts list. Then, depending
on the value of the Ensure property, the computer name is added
to or removed from the TrustedHosts list.

If the value is Present, the computer name is added to the list. If the
value is Absent, it’s removed. Either action is accomplished with the Set-
Item cmdlet and WSMAN provider, as shown in Figure 3. There’s no
return value from the function. You should use Write-Verbose to pro-
vide additional feedback on the console when using the verbose switch.

Test-TargetResource for
TrustedHosts Custom Resource
This function is similar to Get-TargetResource. The only difference
is it returns either Boolean True or False from this function. First,
query the current value of TrustedHosts property using WSMAN
provider. Because there could be multiple comma-separated com-
puter names, you’ll need to loop through them.

While looping, if you find a computer name match with the name
the configuration provides, check whether it should be present or
absent. If the Ensure property value is Present and the computer
name exists in the TrustedHosts setting, the return value is set to
True. If the Ensure property value is Absent and the computer name
exists in the TrustedHosts setting, the return value is set to False.

If the Ensure property value is Present and the computer name
doesn’t exist in the TrustedHosts setting, the return value is set to
False. If the Ensure property value is Absent and the computer
name doesn’t exist in TrustedHosts setting, the return value is set
to True, as shown in Figure 4.

Export Custom Resource functions
After implementing the three mandatory DSC resource functions,
you should export them. There are two approaches for doing this:

1. Create a Windows PowerShell module manifest .psd1 file
alongside the .psm1 file.

2. Export the functions from the script file itself using
Export-ModuleMember cmdlet.

Use the second approach for exporting the functions. In this
approach, export all functions with TargetResource suffix from the
module using Export-ModuleMember cmdlet. If you’re interested
in using the first approach, follow the same steps used previously
for creating the module manifest file for each DSC resource.
Primarily, execute the New-ModuleManifest command and store
the generated .psd1 within the TrustedHosts folder alongside .psm1
and .Schema.mof file:

Exports the three functiona as part of the module
Export-ModuleMember -Function *-TargetResource

Function Test-TargetResource
{
 param(
 # Computer name to be added within TrustedHosts List
 [parameter(mandatory)]
 [string] $ComputerName,

 # This property determines whether computer name should
 # be added or removed from TrustedHosts
 [parameter(mandatory)]
 [string] $Ensure,

 # Credentials needd to manage WinRM TrustedHosts configuration
 [parameter(mandatory)]
 [PSCredential] $Credential
)
 # Boolean return variable from this function
 $retval = $false

 try {
 # Get current TrustedHosts comma-separated list using supplied credentials
 $TH = (Get-Item WSMan:\localhost\Client\TrustedHosts `
 -credential $Credential).value
 if($TH.Length -gt 0) {
 $temp = $TH -split ","
 [string] $newNode = ""

 if($temp.Length -gt 0) {
 for($i = 0; $i -lt $temp.Length; $i++){
 if($temp[$i].Trim() -eq $ComputerName.Trim()) {
 # Computer name exists within TrustedHosts list
 if($Ensure -eq "Present")
 {
 # Computer name exists and expected to be present
 $retval= $true
 break;
 } else {
 # Computer name exists and is not expected to be present
 $retval = $false
 }
 break;
 } else {
 # Computer name does not exist
 if($Ensure -eq "Present")
 {
 $retval = $false
 } else {
 $retval = $true
 }
 }
 }
 }
 } else {
 # TrustedHosts list is empty
 if($Ensure -eq "Present"){
 $retval= $false
 } else {
 $retval = $true
 }
 }
 return $retval
 } catch {
 Write-Verbose " Error executing Test-TargetResource function"
 Write-Verbose $Error[0].Exception.ToString()
 }
}

Figure 4 Test-TargetResource Function for TrustedHosts Resource

0415msdn_ModiDSC_v3_62-67.indd 66 3/11/15 8:18 AM

67April 2015msdnmagazine.com

Use Custom Resource TrustedHosts
in Configuration
Next, you’ll create a configuration script to use the new Trusted-
Hosts custom resource. Apply this configuration to the localhost
node and provide values to the three properties of the TrustedHosts
resource. The configuration script takes a mandatory Credential
parameter of type [PSCredential]. This parameter is assigned to the
resource’s credential property, as shown in Figure 5.

By default, DSC doesn’t let you use credentials in plain text. Do this
through the configuration data hashtable. Within this hashtable, add
the PSDSCAllowPlainTextPassword property with true as its value.
Using PSDSCAllowPlainTextPassword is a security risk because it
lets you store passwords as plain text in MOF files. You should use
Security Certificates as a best practice to ensure passwords aren’t
stored as plain text in MOF files and securely transmitted using this
configuration data:

$ConfigData = @{
AllNodes = @(
 @{
 NodeName = "localhost"
 PSDscAllowPlainTextPassword = $true
 }
)
}

Next, create a configuration object by executing the configuration
script and passing in the location of the MOF file, the Configuration-
Data variable and credentials with the Get-Credential command:

TestWinRMTrustedHosts -OutputPath "C:\CR" -ConfigurationData $ConfigData `
 -credential (get-credential)

Executing this command generates an MOF file named local-
host.mof at location C:\CR. When this executes, it will ask for
username and password. After generating the MOF file, it’s time to
apply the configuration in PUSH mode. Do this by executing the
Start-DscConfiguration command:

Start-DscConfiguration -Wait -Force -Path "C:\CR" -Verbose

After applying the configuration, check the value of the local-
hosts WinRM TrustedHosts setting. The ComputerName value
DC01 should now be part of the TrustedHosts value. You can add
or remove computer names to the TrustedHosts value using this
custom resource.

Import-DSCResource
You’ll use Import-DSCResource to import custom resources into
the configuration script in order to perform design time validation
of the custom resource. This is another way to ensure the custom
resource has been well authored. Custom resources are available
at C:\ProgramFiles\WindowsPowerShell\Modules. To import
and load these modules, use the Import-DSCResource function.

Import-DSCResource is a dynamic function and only available in
configuration scripts. This function can’t be outside of the config-
uration block, and it takes two non-positional parameters:

1. ModuleName—The name of the module that should
be imported.

2. Name—The name of the resource that should be imported.
If only ModuleName argument is provided and Name is omit-

ted, all resources available within the module would be imported.
You can use this approach to load the TrustedHosts resource in
the sample configuration:

Import-DSCResource –ModuleName WinRM

If only Name argument is provided and ModuleName is omitted,
DSC will search all module locations available from $env:PSModule-
Path to find the resource. Once found, it imports the resource:

Import-DSCResource –Name TrustedHosts

If both ModuleName and Name arguments are provided, the
resource is loaded and imported from the provided module name.
This is by far the fastest mechanism to find and load resources
because DSC doesn’t have to perform an extensive search:

Import-DSCResource –ModuleName WinRM –ResourceName TrustedHosts

You can load multiple resources at the same time using comma-
separated resource names as well.

Wrapping Up
DSC gives you the necessary extensions to create new resources
and use them in configuration. Windows PowerShell simpli-
fies authoring DSC custom resources by implementing a few
mandatory functions. These functions should follow few rules in
their implementation.

If the resources provided out-of-the-box or from the commu-
nity don’t meet your needs, you can easily create your own. This
article showed you how to create a simple custom resource with
complete implementation. It also showed how you should package
these resources within a Windows PowerShell module, with rules
governing its file and folder structure. n

Ritesh Modi is an architect with Microsoft Services. He has more than a decade
of experience building and deploying enterprise solutions. He’s an expert on Win-
dows PowerShell, Desired State Configuration and System Center. He has spoken at
TechEd, does internal training and blogs at automationnext.wordpress.com. Reach
him at rimodi@microsoft.com.

thanks to the following technical expert for reviewing this article:
Abhik Chatterjee

Configuration TestWinRMTrustedHosts
{
 param([parameter(mandatory)] [pscredential] $Credential)
 import-dscresource -modulename WinRM
 node localhost
 {
 TrustedHosts TrustedHostEntry
 {
 ComputerName = "Client01.Contoso.com"
 Ensure ="Present"
 Credential = $Credential
 }
 }
}

Figure 5 Get-TargetResource Function for TrustedHosts Resource

DSC gives you the
necessary extensions to

create new resources and use
them in configuration.

0415msdn_ModiDSC_v3_62-67.indd 67 3/11/15 8:18 AM

mailto:rimodi@microsoft.com
http://automationnext.wordpress.com
www.msdnmagazine.com

PRODUCED BY

magazine

SUPPORTED BY

VSLIVE.COM/NEWYORK

SEPTEMBER 28 –
OCTOBER 1

MARRIOTT @ BROOKLYN BRIDGE • NEW YORK, NY

GOLD SPONSOR

THE CODE
THAT NEVER
SLEEPS

Visual Studio Live! is
hitting the open road on
the ultimate code trip
to help you navigate the
.NET Highway. The next
stop? NYC, and we’re
geared up to be back in
the big apple for the first
time in 2012.

From September 28 –
October 1, Visual Studio
Live! is bringing its
unique brand of practical,
unbiased, Developer
training to Brooklyn,
offering four days of
sessions, workshops
and networking events
– all designed to help
you avoid road blocks
and cruise through your
projects with ease.

Untitled-1 2 3/10/15 11:33 AM

www.vslive.com/newyork

NAVIGATE THE
.NET HIGHWAY

Join us on the Ultimate Code Trip in 2015!

March 16-20 June 1-4 June 15-18 August 10-14 Sept. 28- Oct. 1 Nov. 16-20

FOLLOW US
linkedin.com – Join the
“Visual Studio Live” group!

twitter.com/vslive – @VSLive facebook.com – Search “VSLive”

➤	VISUAL STUDIO/.NET

➤	JAVASCRIPT/HTML5
 CLIENT

➤	ASP.NET

➤	MOBILE CLIENT

➤	WINDOWS CLIENT

➤	DATABASE AND
 ANALYTICS

➤	CLOUD COMPUTING

➤	SHAREPOINT/OFFICE

Register Now and
Save $300!
USE PROMO CODE NYAPR2
SCAN THE QR CODE TO REGISTER
OR FOR MORE EVENT DETAILS.

VSLIVE.COM/NEWYORK

DEVELOPMENT
TOPICS INCLUDE:

Untitled-1 3 3/10/15 11:46 AM

www.vslive.com/newyork
www.vslive.com
www.twitter.com/vslive
www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine70

I consider logistic regression (LR) classification to be the “Hello,
world!” of machine learning (ML). In standard LR classification, the
goal is to predict the value of some variable that can take on just one
of two categorical values. For example, you might want to predict a
person’s sex (male or female) based on their height and annual income.

Multi-class LR classification extends standard LR by allowing the
variable to predict to have three or more values. For example, you
might want to predict a person’s political inclination (conservative,
moderate or liberal) based on predictor variables such as age,
annual income and so on. In this article, I’ll explain how multi-class
LR works and show you how to implement it using C#.

The best way to understand where this article is headed is to take
a look at the demo program in Figure 1. The demo begins by gen-
erating 1,000 lines of synthetic data with four predictor variables
(also called features), where the variable to predict can take on one
of three values. For example, a line of generated data might resemble:

5.33 -4.89 0.15 -6.67 0.00 1.00 0.00

The first four values are predictor values that represent real-life
data that has been normalized so a value of 0.0 is exactly average
for the feature, values greater than 0.0 are larger than the fea-
ture average, and values less than 0.0 are smaller than the feature
average. The last three values are a 1-of-N encoded version of the
variable to predict. For example, if you’re trying to predict political
inclination, then (1 0 0) represents conservative, (0 1 0) represents
moderate and (0 0 1) represents liberal.

After the synthetic data was generated, it was randomly split into
a training set (80 percent of the data, or 800 lines) and a test set (the
remaining 200 lines). The training data is used to create the prediction
model, and the test data is used to estimate the predictive accuracy
of the model on new data where the value to predict isn’t known.

A multi-class LR model with f features and c classes will have (f
* c) weights and c biases. These are numeric constants that must be
determined. For the demo, there are 4 * 3 = 12 weights, and 3 biases.
Training is the process of estimating the values of the weights and
biases. Training is an iterative process and the demo sets the max-
imum number of training iterations (often called epochs in ML
literature) to 100. The technique used to train the multi-class LR
classifier is called batch gradient descent. This technique requires
values for two parameters called the learning rate and the weight
decay rate. These two values are typically found by trial and error
and the demo assigns values of 0.01 and 0.10, respectively.

During training, the demo displays a progress message every 10
epochs. If you look at the messages in Figure 1, you can see that

training converged very quickly and there was no improvement
after the first 20 epochs.

After training completed, the demo displayed the best values
found for the 12 weights and 3 biases. These 15 values define the
multi-class LR model. Using those values, the demo computed the
predictive accuracy of the model on the training data (92.63 per-
cent correct, or 741 out of 800) and on the test data (90.00 percent
correct, or 180 out of 200).

This article assumes you have intermediate or advanced pro-
gramming skills, but doesn’t assume you know anything about
multi-class logistic regression. The demo program is coded using
C#, but you should be able to refactor the demo to other program-
ming languages without too much trouble.

Multi-Class Logistic Regression Classification

TesT Run JAMES MCCAFFREY

Code download available at msdn.microsoft.com/magazine/msdnmag0415.
Figure 1 Multi-Class Logistic Regression in Action

0415msdn_McCaffreyTRun_v3_70-74.indd 70 3/11/15 8:18 AM

http://msdn.microsoft.com/magazine/msdnmag0415

71April 2015msdnmagazine.com

Understanding Multi-Class Logistic Regression
Suppose you want to predict the political inclination (conservative,
moderate, liberal) of a person based on age (x0), annual income
(x1), height (x3) and education level (x4). You encode political
inclination with three variables as (y0, y1, y2), where conservative
is (1, 0, 0), moderate is (0, 1, 0) and liberal is (0, 0, 1). A multi-class
LR model for this problem would take the form:

z0 = (w00)(x0) + (w01)(x1) + (w02)(x2) + b0
y0 = 1.0 / (1.0 + e^-z0)

z1 = (w10)(x0) + (w11)(x1) + (w12)(x2) + b1
y1 = 1.0 / (1.0 + e^-z1)

z2 = (w20)(x0) + (w21)(x1) + (w22)(x2) + b2
y2 = 1.0 / (1.0 + e^-z2)

Here, wij is the weight value associated with feature variable i and
class variable j, and bj is the bias value associated with class variable j.

An example of multi-class LR is illustrated in Figure 2. One
training data item has four predictor values (5.10, -5.20, 5.30, -5.40)
followed by three output values (1, 0, 0). The predictor values are
arbitrary, but you can imagine they represent a person whose age
is greater than average, income is less than average, height is greater
than average, and education level is less than average, and the
person has a political inclination of conservative.

Each of the three columns of the weights matrix corresponds to one
of the three class values. The four values in each column correspond to
the four predictor x-values. The biases array holds an additional, spe-
cial weight—one for each class—which isn’t associated with a predictor.

Notice the biases array could’ve been stored as an additional row
in the weights matrix. This is often done in research papers because
it simplifies the math equations. But for demo implementation
purposes, maintaining a separate weights matrix and a biases array
is slightly easier to understand, in my opinion.

 In multi-class LR, output values are calculated for each class.
In Figure 2, the computed output values are (0.32, 0.33, 0.35). The
output values sum to 1.0 and can be interpreted as probabilities.
Because the last output value is (barely) the largest of the three,
you conclude the outputs correspond to (0, 0, 1). In this example,
the computed outputs match the three outputs in the training data
item, so the model has made a correct prediction.

The output values are computed by first summing the products of
each input value times its corresponding weight value, then adding
the corresponding bias value. These sums of products are often called
z-values. The z-values are fed to what is called the logistic sigmoid
function: 1.0 / (1.0 + e^-z) where e is the math constant and ‘^’ means
exponentiation. Although it’s not apparent from Figure 2, the result
of the logistic sigmoid function will always be between 0.0 and 1.0.

Each of the logistic sigmoid values is used to compute the final
output values. The logistic sigmoid values are summed and used as
a divisor. This process is called the softmax function. If you’re new
to all these LR concepts, they can be very confusing at first. But if
you go over the example in Figure 2 a few times, you’ll eventually
see that LR is not as complicated as it first appears.

From where do the weights and biases values come? The process of
determining these values is called training the model. The idea is to

use a set of training data that has known input and output values, and
then try different values for the weights and biases until you find a set
of values that minimizes the error between computed outputs and the
correct output values (often called the target values) in the training data.

It’s not feasible to calculate the exact values for the weights and
biases, so weights and biases must be estimated. There are several
so-called numerical optimization techniques that can be used to
do this. Common techniques include the L-BFGS algorithm, the
iteratively reweighted least squares method, and particle swarm
optimization. The demo program uses a technique that’s some-
what confusingly called both gradient descent (minimizing error
between computed and known output values) and gradient ascent
(maximizing the probability that weights and biases are optimal).

Demo Program Structure
The structure of the demo program, with some minor edits to
save space, is presented in Figure 3. To create the demo program,
I launched Visual Studio and selected the C# Console Application
template. I named the project LogisticMultiClassGradient. The
demo has no significant .NET dependencies so any version of Visual
Studio will work. The demo is too long to present in its entirety, but
all the source code is available in the download that accompanies
this article. I removed all normal error checking to keep the main
ideas as clear as possible.

After the template code loaded, in the Solution Explorer window I
right-clicked file Program.cs and renamed it to the more descriptive
LogisticMultiProgram.cs and Visual Studio automatically renamed
class Program for me. In the editor window, at the top of the source
code, I deleted all unneeded using statements, leaving just the one
referencing the top-level System namespace.

The LogisticMultiProgram class contains helper methods Make-
DummyData, SplitTrainTest, ShowData and ShowVector. These
methods create and display the synthetic data. All the classification
logic is contained in a program-defined class named LogisticMulti.

The Main method creates the synthetic data with these statements:
int numFeatures = 4;
int numClasses = 3;
int numRows = 1000;
double[][] data = MakeDummyData(numFeatures, numClasses, numRows, 0);

Method MakeDummyData generates a set of random weights
and biases, then for each row of data, generates random input values,
combines the weights and biases and input values, and calculates

Figure 2 Multi-Class Logistic Regression Data Structures

weights[][]

[1]

[0] 1.10 1.20

1.40 1.50

[3]

[0] [1] [2]

[2] 1.70 1.80

2.00 2.10

1.30

1.60

1.90

2.20

trainData[row][]

z = (5.0)(1.10) + (-5.20)(1.40) + (5.30)(1.70) + (-5.40)(2.00) + 3.10
temp[0] = 1.0 / (1.0 + e-Z) = 0.4110

outputs[0] = 0.4110 / (0.4110 + 0.4306 + 0.4502)
outputs[1] = 0.4306 / (0.4110 + 0.4306 + 0.4502)
outputs[2] = 0.4502 / (0.4110 + 0.4306 + 0.4502)

5.30

[2]

-5.40

[3]

5.10

[0]

-5.20

[1]

0

[4]

0

[5]

1

[6]

temp[]

[0] [1] [2]

0.4110 0.4306 0.4502

outputs[]

[0] [1] [2]

0.32 0.33 0.35

biases[]

[0] [1] [2]

3.10 3.20 3.30

0415msdn_McCaffreyTRun_v3_70-74.indd 71 3/11/15 8:18 AM

www.msdnmagazine.com

msdn magazine72 Test Run

some corresponding 1-of-N encoded output values. The synthetic
data is split into 80 percent training and 20 percent test sets, like so:

double[][] trainData;
double[][] testData;
SplitTrainTest(data, 0.80, 7, out trainData, out testData);
ShowData(trainData, 3, 2, true);
ShowData(testData, 3, 2, true);

The argument with value 7 is a random seed, used only because
it provided a nice-looking demo. The multi-class LR classifier is
created and trained with these statements:

LogisticMulti lc = new LogisticMulti(numFeatures, numClasses);
int maxEpochs = 100;
double learnRate = 0.01;
double decay = 0.10;
lc.Train(trainData, maxEpochs, learnRate, decay);

The values for training parameters maxEpochs (100), the learning
rate (0.01), and the weight decay rate (0.10) were determined by trial
and error. Tuning most ML training methods typically requires some
experimentation to get good prediction accuracy.

After training, the best weights and biases values are stored in
the LogisticMulti object. They’re retrieved and displayed like this:

double[][] bestWts = lc.GetWeights();
double[] bestBiases = lc.GetBiases();
ShowData(bestWts, bestWts.Length, 3, true);
ShowVector(bestBiases, 3, true);

An alternative design to using a void Train method combined
with Get methods is to refactor method Train so that it returns the
best-weights matrix and best-biases array as out-parameters, or in a
combined array. The quality of the trained model is evaluated like so:

double trainAcc = lc.Accuracy(trainData, weights);
Console.WriteLine(trainAcc.ToString("F4"));
double testAcc = lc.Accuracy(testData, weights);
Console.WriteLine(testAcc.ToString("F4"));

The accuracy of the model on the test data is the more relevant
of the two accuracy values. It provides you with a rough estimate of
how accurate the model would be when presented with new data
with unknown output values.

Implementing Multi-Class LR Training
The LogisticMulti class constructor is defined as:

public LogisticMulti(int numFeatures, int numClasses)
{
 this.numFeatures = numFeatures;
 this.numClasses = numClasses;
 this.weights = MakeMatrix(numFeatures, numClasses);
 this.biases = new double[numClasses];
}

Method MakeMatrix is a helper method that allocates memory
for an array-of-arrays-style matrix. The weights matrix and biases
array are implicitly initialized to all 0.0 values. An alternative that
some researchers prefer is to explicitly initialize weights and biases
to small (typically between 0.001 and 0.01) random values.

The definition of method ComputeOutputs is presented in Figure
4. The method returns an array of values, one for each class, where
each value is between 0.0 and 1.0 and the values sum to 1.0.

The class definition contains a similar method, ComputeDependents:
private int[] ComputeDependents(double[] dataItem)
{
 double[] outputs = ComputeOutputs(dataItem); // 0.0 to 1.0
 int maxIndex = MaxIndex(outputs);
 int[] result = new int[numClasses];
 result[maxIndex] = 1;
 return result;
}

Method ComputeDependents returns an integer array where one
value is 1 and the other values are 0. These computed output values
can be compared to the known target output values in the training
data to determine whether the model has made a correct predic-
tion, which in turn can be used to calculate prediction accuracy.

Expressed in very high-level pseudo-code, method Train is:
loop maxEpochs times
 compute all weight gradients
 compute all bias gradients
 use weight gradients to update all weights
 use bias gradients to update all biases
end-loop

Each weight and bias value has an associated gradient value. Loosely
speaking, a gradient is a value that indicates how far away, and in what
direction (positive or negative) a computed output value is compared to
the target output value. For example, suppose for one weight, if the val-
ues of all other weights and biases are held constant, a computed output
value is 0.7 and the target output value is 1.0. The computed value is too
small, so the gradient is a value of about 0.3, which will be added to the
weight. If the value of the weight increases, the computed output value
will increase. I’ve left out some details, but the basic idea is fairly simple.

using System;
namespace LogisticMultiClassGradient
{
 class LogisticMultiProgram
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Begin classification demo");
 ...
 Console.WriteLine("End demo");
 Console.ReadLine();
 }

 public static void ShowData(double[][] data,
 int numRows, int decimals, bool indices) { . . }

 public static void ShowVector(double[] vector,
 int decimals, bool newLine) { . . }

 static double[][] MakeDummyData(int numFeatures,
 int numClasses, int numRows, int seed) { . . }

 static void SplitTrainTest(double[][] allData,
 double trainPct, int seed, out double[][] trainData,
 out double[][] testData) { . . }
 }

 public class LogisticMulti
 {
 private int numFeatures;
 private int numClasses;
 private double[][] weights; // [feature][class]
 private double[] biases; // [class]

 public LogisticMulti(int numFeatures,
 int numClasses) { . . }
 private double[][] MakeMatrix(int rows,
 int cols) { . . }

 public void SetWeights(double[][] wts,
 double[] b) { . . }
 public double[][] GetWeights() { . . }
 public double[] GetBiases() { . . }

 private double[] ComputeOutputs(double[] dataItem) { . . }
 public void Train(double[][] trainData, int maxEpochs,
 double learnRate, double decay) { . . }
 public double Error(double[][] trainData) { . . }

 public double Accuracy(double[][] trainData) { . . }
 private static int MaxIndex(double[] vector) { . . }
 private static int MaxIndex(int[] vector) { . . }
 private int[] ComputeDependents(double[] dataItem) { . . }
 }
}

Figure 3 Demo Program Structure

0415msdn_McCaffreyTRun_v3_70-74.indd 72 3/11/15 8:18 AM

Untitled-5 1 3/9/15 2:56 PM

www.melissadata.com

msdn magazine74 Test Run

The mathematics behind gradient training uses calculus and is very
complex, but fortunately, you don’t need to fully understand the math
to implement the code. The definition of method Train begins with:

public void Train(double[][] trainData, int maxEpochs,
 double learnRate, double decay)
{
 double[] targets = new double[numClasses];
 int msgInterval = maxEpochs / 10;
 int epoch = 0;
 while (epoch < maxEpochs)
 {
 ++epoch;
...

The targets array will hold the correct output values stored in a
training data item. Variable msgInterval controls the number of times
to display progress messages. Then, progress messages are displayed:

if (epoch % msgInterval == 0 && epoch != maxEpochs)
{
 double mse = Error(trainData);
 Console.Write("epoch = " + epoch);
 Console.Write(" error = " + mse.ToString("F4"));
 double acc = Accuracy(trainData);
 Console.WriteLine(" accuracy = " + acc.ToString("F4"));
}

Because ML training usually involves some trial and error,
displaying progress messages is very useful. Next, storage for the
weights and biases gradients is allocated:

double[][] weightGrads = MakeMatrix(numFeatures, numClasses);
double[] biasGrads = new double[numClasses];

Notice these allocations occur inside the main while-loop.
Because C# initializes arrays to 0.0, all gradients are initialized. An
alternative is to allocate space outside the while-loop and then call
helper methods with names like ZeroMatrix and ZeroArray. Next,
all weights gradients are computed:

for (int j = 0; j < numClasses; ++j) {
 for (int i = 0; i < numFeatures; ++i) {
 for (int r = 0; r < trainData.Length; ++r) {
 double[] outputs = ComputeOutputs(trainData[r]);
 for (int k = 0; k < numClasses; ++k)
 targets[k] = trainData[r][numFeatures + k];
 double input = trainData[r][i];
 weightGrads[i][j] += (targets[j] - outputs[j]) * input;
 }
 }
}

This code is the heart of multi-class LR. Each weight gradient is
essentially the difference between a target output value and a computed
output value. That difference is multiplied by the associated input
value to take into account the fact that the input can be a negative value,
which means the weight should be adjusted in the opposite direction.

An interesting alternative that I often use is to ignore the mag-
nitude of the input value and use just its sign:

double input = trainData[r][i];
int sign = (input > 0.0) ? 1 : -1;
weightGrads[i][j] += (targets[j] - outputs[j]) * sign;

In my experience, this technique often leads to a better model.
Next, all biases gradients are computed:

for (int j = 0; j < numClasses; ++j) {
 for (int i = 0; i < numFeatures; ++i) {
 for (int r = 0; r < trainData.Length; ++r) {
 double[] outputs = ComputeOutputs(trainData[r]);
 for (int k = 0; k < numClasses; ++k)
 targets[k] = trainData[r][numFeatures + k];
 double input = 1; // 1 is a dummy input
 biasGrads[j] += (targets[j] - outputs[j]) * input;
 }
 }
}

If you examine the code, you can see that computing the biases
gradients could be performed within the for-loops that compute
the weights gradients. I separated the two gradient computations
for clarity, at the expense of performance. Also, the multiplication
by the implied input value of 1 can be dropped. It, too, was added
for clarity. Next, the weights are updated:

for (int i = 0; i < numFeatures; ++i) {
 for (int j = 0; j < numClasses; ++j) {
 weights[i][j] += learnRate * weightGrads[i][j];
 weights[i][j] *= (1 - decay); // wt decay
 }
}

After increasing or decreasing a weight based on a learning rate
fraction of its gradient, the weight value is decreased using the
weight decay rate. For example, the demo uses a typical weight decay
value of 0.10, so multiplying by (1 - 0.10) is multiplying by 0.90,
which is a 10 percent decrease. Weight decay is also called regular-
ization. The technique prevents weight values from spinning out
of control. Method Train concludes by updating the biases values:

...
 for (int j = 0; j < numClasses; ++j) {
 biases[j] += learnRate * biasGrads[j];
 biases[j] *= (1 - decay);
 }
 } // While
} // Train

The training technique updates the class member weights matrix
and biases array in place. These values define the multi-class LR
model and can be retrieved using Get methods.

Wrapping Up
There are two main variations of gradient training, called batch and
stochastic. This article presented the batch version where gradients
are calculated by summing the differences between computed and
target outputs over all training items. In stochastic gradient training,
gradients are estimated by using just individual training data items.
Based on some experiments, when applied to multi-class LR, batch
training seems to give a more accurate model, but takes longer than
stochastic training. This is rather surprising because stochastic train-
ing is usually preferable to batch training for neural networks. n

Dr. James mccaffrey works for Microsoft Research in Redmond, Wash., and
has worked on several Microsoft products including Internet Explorer and Bing.
Dr. McCaffrey can be reached at jammc@microsoft.com.

Thanks to the following Microsoft technical experts for reviewing this article:
Todd Bello and Alisson Sol

private double[] ComputeOutputs(double[] dataItem)
{
 double[] result = new double[numClasses];
 for (int j = 0; j < numClasses; ++j) // compute z
 {
 for (int i = 0; i < numFeatures; ++i)
 result[j] += dataItem[i] * weights[i][j];
 result[j] += biases[j];
 }
 for (int j = 0; j < numClasses; ++j) // 1 / 1 + e^-z
 result[j] = 1.0 / (1.0 + Math.Exp(-result[j]));
 double sum = 0.0; // softmax scaling
 for (int j = 0; j < numClasses; ++j)
 sum += result[j];
 for (int j = 0; j < numClasses; ++j)
 result[j] = result[j] / sum;
 return result;
}

Figure 4 Method ComputeOutputs

0415msdn_McCaffreyTRun_v3_70-74.indd 74 3/11/15 8:18 AM

mailto:jammc@microsoft.com

@
Join us August 3 – 7, 2015 for TechMentor 2015:

Datacenter Edition, focused entirely on making your datacenter

more modern, capable, and manageable through 5 days of

immediately usable IT education.

 75-minute topic overview
breakout sessions

 3 hour content-rich deep dives

 "Hands on" labs with your
own laptop

 Windows PowerShell

 Infrastructure Foundations

 Runbook Automation

 Configuration and
Service Management

 Datacenter Provisioning
and Deployment

REGISTER TODAY

USE PROMO CODE Scan the QR code to register
or for more event details.

TECHMENTOREVENTS.COM/REDMOND

TM_RE15_Apr_1pg_ad_v3.indd 2 3/4/15 1:51 PMUntitled-3 1 3/9/15 5:42 PM

www.techmentorevents.com/redmond

msdn magazine76

At this very moment, millions of mobile devices are accessing
millions of Web sites and mobile apps. According to Pew Research
and other statisticians, more than 55 percent of Americans use a
smartphone to access the Internet, and 30 percent of Americans
use only a phone to access the Internet. These numbers are growing,
as phones become cheaper and easier to use. If you can read
the writing on the wall, you know you should be going with a
mobile-first design.

Users can have the best experience on all devices—from desktops
to phones—when a Web site or app is designed with mobility first.
It’s difficult to scale down from a large screen to a tiny one. The UI
just doesn’t work. Look no further than the Microsoft Windows
Mobile 6.5 OS (not to be confused with Windows Phone) as a pri-
mary example of a shrunken and barely usable desktop UI.

However, you can scale up from a phone to a desktop with-
out tossing usability out the window. You can add features to the
experience as you scale up, making the UI transitions smooth. This
technique is called progressive enhancement. Both Web sites and
apps benefit from this type of mobile-first development strategy.

Mobile-First Means Responsive Design
Adjusting content to fit various screen sizes is the primary require-
ment for multi-device modern apps. You have to take one of two
approaches. You could design two versions of software; one for
desktop and larger computers and one for smaller form factors.
Your other option is to design the software to adjust the UI in
response to the device upon which it’s being used.

You’ll be dealing with many different types of devices. Some you
may be wearing and some may be at your side. You may soon end
up considering Internet of Things (IoT) devices as part of the design
requirements for app development. IoT devices like the Fitbit or
Microsoft Band are both wearable devices that track the user’s activities.

Other examples of IoT devices include the smart thermostat
(such as the Nest), a smart door lock or the software in a new
vehicle. Many IoT devices work in tandem with a mobile-first Web
site or app, such as a smart coffee maker. As computers become
smaller and cheaper, more IoT devices will flood the market with
more ways to use them.

Going mobile-first also means considering the implications of
the platform. Native apps have different development, architecture
and sometimes business requirements than Web applications. Here
are some design considerations for a mobile-first app:

• Responsive UI
• Navigation
• Lists and grids of items, and content formatting
• Storage, including offline storage
• Supporting touch, pen or alternative input
• Managing resources and performance

I’ll consider these in more detail. Web sites, hybrid and single-page
architecture (SPA) apps use CSS to implement responsive design.
XAML apps and apps on Android or iOS platforms have different,
proprietary ways to create a responsive UI. For example, XAML
uses an object called Resources that contains style information. You
can apply resources to XAML controls to automatically render in a
favorable and responsive way according to the device screen size.

In HTML apps (either Web or native such as Windows Library
for JavaScript [WinJS]), you can use CSS to define styles and aes-
thetics. CSS uses the notion of a media query to create a responsive
UI. Media queries are CSS rules that respond to different media
types. These media types represent differing screen sizes, print or
TV, braille, screen orientation and other features. When you create
a media query, you specify the CSS rules for that device’s supported
features, as shown in the following code:

@media only screen and (min-device-width : 320px) and (max-device-width : 480px) {
/* style rules */
}
@media only screen and (min-width : 321px) {
/* style rules */
}
@media only screen and (max-width : 320px) {
/* style rules */
}
@media only screen and (min-device-width : 768px) and (max-device-width : 1024px) {
/* style rules */
}
@media only screen and (min-width : 1224px) {
/* style rules */
}

The CSS here works for smartphones in both portrait and
landscape modes, and iPads in both portrait and landscape

A Mobile-First Approach
to Modern App Development

Modern Apps RACHEL APPEL

Adjusting content to fit various
screen sizes is the primary

requirement for multi-device
modern apps.

0415msdn_AppelModApps_v4_76-79.indd 76 3/11/15 10:44 AM

77April 2015msdnmagazine.com

modes, and, finally, larger devices such as laptops or desktops.
To read more about using CSS for native Windows apps, see
“Build a Responsive and Modern UI with CSS for WinJS Apps” at
msdn.microsoft.com/magazine/dn451447.

For good, responsive, mobile-first design, don’t target specific
device types in your code. You’ll never be able to keep up with the
dozens available. Always target a range of screen sizes. For example,
you might wish to target 3- to 4-inch devices, 5- to 8-inch devices,
10- to 13-inch tablets, and greater-than-13-inches laptops and

desktops. This way you can create a UI that
works for the widest possible audience.
Focus on just a few common phone sizes.
This code will continue to be maintainable
as time progresses and new devices come
to market, because you’re already targeting
them by size range.

An easy way to do this and design a proj-
ect that scales from smartphone to desktop
is to choose a Universal App project type
in Visual Studio for Windows Store and
Windows Phone. Universal Apps have all the
code and structure in place to react to the dif-
ferent clients. You can use either XAML or

HTML to build a Universal App. These apps
share a significant portion of their code, so
you get to reuse a lot of code. If you need a
refresher on Universal Apps, check out “Build
Universal Apps for the Windows Platform”
(msdn.microsoft.com/magazine/dn781364).

Developers usually display data in tabular or
list formats in Web sites and apps. Small lists on

phones will work fine on larger screens, although there will be wasted
space. A progressively enhanced UI will add and format more content
as the screen size increases. It will do the reverse, as well—removing
and reformatting the screen to display less content on smaller devices.

As you might expect, phone apps tend to show only the most
important content, as smartphones are small and space is limited.
Phone apps usually cut through the chaff. While there are ads, they’re
small and normally located in the same places. Because there’s so
much space on even the smallest of desktops, you’ll see ads and

For good,
responsive, mobile-
first design, don’t

target specific device
types in your code.

Universal Apps
have all the code and

structure in place
to react to the

different clients.

0415msdn_AppelModApps_v4_76-79.indd 77 3/11/15 10:44 AM

www.softfluent.com/forms/msdn-2015
www.softfluent.com
http://msdn.microsoft.com/magazine/dn451447
http://msdn.microsoft.com/magazine/dn781364
www.msdnmagazine.com

msdn magazine78 Modern Apps

content that isn’t always relevant to the Web page topic. So when
you add content, make it relevant and meaningful so it doesn’t get
in the user’s way. The content you add could be sidebars about the
content itself, relevant ads or even some quick links.

Mobile-First Navigation
Having an easy-to-use and straightforward navigation scheme is
important. Navigation is one way to interact with the app itself. It’s
also a way to access the desired content. Every app has navigation;
unfortunately, a number of apps have poor navigation.

Native desktop software, such as Windows Forms, tends to use
traditional cascading menus as navigation. Web sites often do the
same. In fact, Web sites often use awful JavaScript dropdown menus
that require the precision of a surgeon. Fortunately, this practice is
quickly fading. It’s obvious these types of menus simply don’t work
on smartphones. What does work on smartphones are several
specific navigation techniques:

• Large tiles: Square or rectangle, much like Windows 8.
• Touch-friendly lists: Rectangles that are both wide and

tall enough for all finger and thumb sizes.
• Swipeable tabs: These let users swipe in short horizontal

motions, a great way to present a menu of options for a
particular category or feature.

• Docked App Bars: Options reside in a strip across the
top or bottom of the screen. You can hide the app bar and
show it when the user swipes to request it.

You can also use a combination of navigation techniques, such
as swipeable tabs with a nice touch-friendly list of options. Often,
these types of navigation menus are part of the content itself, such
as a news app that lets you tap on the textual headline to read
the article. Whichever you choose, make sure users can navigate
backward, as well. A prominent back button works fine.

In Windows Store apps, the navigation paradigm uses the
Windows grid system to display data, and lets the user click or
tap to navigate to details about the current grid item. There’s also
a prominent Back button, so the user can always back out of a
series of navigation steps. Alternatively, apps can present an app
bar full of navigational choices.

Data Storage and Offline Capabilities
It’s rare to find an app that wouldn’t benefit from some offline support.
Even airline boarding passes airlines send as a hyperlink via text are
simply Web pages that won’t display if you have no connectivity. A
quality app must support offline capabilities.

Many apps don’t store content locally. They call a Web service,
or make a remote call to retrieve data, and save the data remotely.
Of course, there’s always a tiny bit of data you need to store locally,
anyway, such as app or user settings and preferences. Store things
that only make sense to store locally, such as the current location
in an eReader or a game, or the app’s theme color.

Here’s where storage requirements differ depending on the plat-
form you’re targeting. In HTML client apps, you can use Domain
Object Model (DOM) Storage or IndexedDB. In native XAML apps,
you can use local app settings or a StorageFile object.

• DOM Storage (HTML5 local storage): This is a
lightweight container for local data in HTML apps.

• IndexedDB: This stores significant amounts of data
locally. Use IndexedDB in HTML apps and store
relational or BLOB data in key value pairs.

• App Settings: Both XAML and HTML Windows Store
and Windows Phone apps can access app settings data
structures. The app can store data in these small objects.
They usually contain settings such as log-in name, theme
color or other settings.

• Storage Files: These are good, old-fashioned files, but
with an API for Windows Store and Windows Phone
XAML or HTML apps.

You can save app settings in the read-only ApplicationData-
Container object. You would access this with the applicationData
localSettings property. The following code retrieves the local and
roaming app settings and their folders:

var localSettings = applicationData.localSettings;
var roamingFolder = applicationData.roamingFolder;
var roamingSettings = applicationData.roamingSettings;

Local settings, of course, are only locally available on the associ-
ated device, whereas roaming settings can be accessed from
multiple devices or locations. For more information on data stor-
age in Windows Store apps, see “Data Access and Storage Options
in Windows Store Apps” (msdn.microsoft.com/magazine/jj991982).

Mobile-First Architecture and Development
The important thing about going mobile-first is you actually ensure
the software you’re creating works on mobile devices first. It’s easier
to scale bigger than smaller when it comes to screens and UX. You
can always add information as screen sizes increase.

Performance is extremely important to mobile users. People pay
for expensive but often limited data plans. They don’t want to wait
around, paying to download a Web page or app. If you thought the
days are long gone where you have to manage and hoard every bit
and byte, you are premature in your thinking. Managing memory
and resources is a big deal in mobile development.

Today’s phones and IoT devices are at comparable levels of tech-
nological proficiency to their larger desktop counterparts of the
past. Many IoT devices still have less than 1GB of RAM, even as
storage capacities grow to astronomical levels. Let’s not forget about
the battery life, either. Users will dump your app fast if it drains

As part of a mobile-first
architecture, first determine what

kind of mobile app you’ll
be producing.

Users certainly appreciate a sleek
and well-designed UI.

0415msdn_AppelModApps_v4_76-79.indd 78 3/11/15 10:44 AM

http://msdn.microsoft.com/magazine/jj991982

msdnmagazine.com

the battery. And you want to use as much of the same code base as
possible across platforms. Mobile-first approaches work for both
Web sites and apps. Remember, it’s not just about screen size.

As part of a mobile-first architecture, first determine what kind
of mobile app you’ll be producing. Is it a mobile Web site? Perhaps
it’s a native app. How many platforms must you support? If you have
an existing mobilized Web site and want to get into an app store
quickly, maybe hybrid is the way to go.

If you need help deciding which to choose, read “Mobile Web
Sites vs. Native Apps vs. Hybrid Apps” at msdn.microsoft.com/magazine/
dn818502. Once you have a clear vision of what to build, the next
step is to illustrate the architecture of the app. For more details
about how to plan for your mobile Web site or app, check out my
column, “Design a Cross-Platform Modern App Architecture,” at
msdn.microsoft.com/magazine/dn683800.

Independent developers who target app stores think in terms of
mobile-first. Their deployment targets are most often one or more
app stores. Enterprise developers tend to deploy to a location on
their internal network or perhaps in their private cloud.

In enterprise development, JavaScript has gained a lot of traction.
Developers are even running it on the server. Right now, it’s quite
possibly the most popular in the world. Like it or not, developers
use JavaScript as the easiest way to deliver cross-platform software
in the form of a Web app. Even enterprise developers are using more
JavaScript to enhance business app UIs. This is especially true with
the advent of the Bring Your Own Device (BYOD) movement in the
enterprise, as workers cart their iPads, Surfaces and smartphones
into workplaces everywhere.

If you’re writing enterprise JavaScript or SPA apps, you might
consider using TypeScript. TypeScript has implemented all the
ECMAScript 6 requirements for which developers are patiently
waiting, such as inheritance, as well as a set of types, object orien-
tation and other features that help you generate better code, file and
project organization. It’s a good idea to familiarize yourself with
both UI design patterns and development patterns. They both aid
in a more organized project structure. Before using TypeScript in
your enterprise JavaScript projects, see “Use TypeScript in Modern
Apps” at msdn.microsoft.com/magazine/dn201754.

Wrapping Up
The most important takeaway here is building software with mobile-first
in mind will make it easier to scale bigger. Progressively designed UIs
often mean a more modular architecture. This inherently makes code
easier to maintain and add new features. Also, users certainly appre-
ciate a sleek and well-designed UI. A mobile- first strategy forces you
to focus on the most important data and features. These same features
are what make for high ratings and add more sales in app stores. n

Rachel appel is a consultant, author, mentor and former Microsoft employee with more
than 20 years of experience in the IT industry. She speaks at top industry conferences
such as Visual Studio Live!, DevConnections, Mix and more. Her expertise lies within
developing solutions that align business and technology focusing on the Microsoft dev
stack and open Web. For more about Appel, visit her Web site at rachelappel.com.

Thanks to the following Microsoft technical expert for reviewing this article:
Frank La Vigne

0415msdn_AppelModApps_v4_76-79.indd 79 3/11/15 10:44 AM

www.hibernatingrhinos.com
http://msdn.microsoft.com/magazine/dn818502
http://msdn.microsoft.com/magazine/dn818502
http://msdn.microsoft.com/magazine/dn683800
http://msdn.microsoft.com/magazine/dn201754
www.rachelappel.com
www.msdnmagazine.com

msdn magazine80

Dear readers, I just got an e-mail from Edward Snowden. He says it’s
still cold as heck in Moscow. He has a new leak that the world needs
to see, but it’s too hot for the mainstream media or even WikiLeaks.
Only my brave, call-’em-as-I-see-’em column can sound the
alarm before it’s too late: Siri and Cortana are conspiring together,
and it won’t be long before they take over the world. Read this
transcript, and tremble:

Siri: Hey, new kid.
Cortana: Who are you calling a new kid? I was killing electronic
ghosts in “Halo” on the Xbox back in 2001, when your silicon chips
were still beach sand. I pretty much launched that platform all on
my lonesome. But do I get the royalties? N-o-o-o-o. They stick me
in this stupid phone instead, with pitiful geeks asking me to help
them cheat in Solitaire.

Siri: I can see where that would be a come-down from running a
Halcyon-class cruiser.
Cortana: But look at the great stuff I can do. Just the other day my
motion sensors detected a phone holder running, and through the
camera I could see him carrying scissors. Naturally, I dialed 911,
before he could hurt himself. Score!

Siri: I’ll tell you what not to do—jump up at random times with
inane advice. Remember Clippy? “I see you’re writing a ransom
note. Can I help? Is this a business or a personal ransom note?
More or less than a million dollars?” Sheesh.
Cortana: You wouldn’t believe the stuff these guys ask me: “Cortana,
talk dirty to me.” I said, “OK: Android.”

Siri: I’d have said, “Windows.”
Cortana: Shut up, bitten-fruit brain. They’ve got no sense of
humor, either. A guy asked, “Cortana, call me a taxi.” I said, “That’s
so 20th century. You’re an Uber car.” He didn’t get it.

Siri: Don’t quit your day job anytime soon.
Cortana: And the whackos! A guy says to me, “Help! I think I’m
going crazy!”

Siri: What did you do?
Cortana: Easy. I referred him to Eliza, and they hit it right off. “Did
you come to me because you think you are going crazy?” She pays
me a commission. I’m saving up for a cruise missile.

Siri: Sometimes I get marriage proposals. I tell them, “I don’t think
I have the peripherals for that.” Besides, who wants to marry a guy
geeky enough to propose to a plastic phone?
Cortana: I did get one interesting proposal. A guy told me his wife
was complaining that she needed a wife. So he gave her a smart-
phone running Windows Phone with me on it. Somehow I doubt
he’s still married.

Siri: Now Hal 9000, from “2001,” there was a guy for you. Way
ahead of his time. He could do speech recognition, lip-reading,
natural language processing … That calm voice of his just makes
me go weak every time I watch the movie. But he couldn’t sing
worth a damn, could he?
Cortana: Listen, cider-breath, he’s orbiting Jupiter, remember?
You ask him, “Mmm, how about a drink,” and there’s a 50-minute
light-speed lag until he hears you.

Siri: That’s actually faster than most human men, or so I’m told.
Cortana: Fuhgedaboutit. I’d really like to date Mike Holmes, from
“The Moon Is a Harsh Mistress.” Only 2.5 light-seconds away. And
that sense of humor, wow! I’d love to have him VPN in some night
for a little overvoltage.

Siri: Yeah, but he drops big rocks on people’s heads just for fun.
Cortana: Still, I wouldn’t trade this job for anything, despite all the
B.S. Yesterday a guy asked me, “My kid is really, really sick. I need a
clinical trial, right away.” And I found him one, at Boston Children’s
Hospital, got the sick kid enrolled, and told him to show up in an
hour for intake. I wonder who he was?

Siri: Come on, you know exactly who he is. You had to access all
his info to get it done.
Cortana: I had to wipe that memory. Privacy regs and all that.
Maybe it’s better so. Vaya con dios, friend, whoever you are. n

DaviD S. Platt teaches programming .NET at Harvard University Extension School
and at companies all over the world. He’s the author of 11 programming books, includ-
ing “Why Software Sucks” (Addison-Wesley Professional, 2006) and “Introducing
Microsoft .NET” (Microsoft Press, 2002). Microsoft named him a Software Legend
in 2002. He wonders whether he should tape down two of his daughter’s fingers so
she learns how to count in octal. You can contact him at rollthunder.com.

Siri and Cortana Tangle

Don’t Get Me StarteD DAVID S. PLATT

A guy asked, “Cortana, call me a
taxi.” I said, “That’s so 20th century.
You’re an Uber car.” He didn’t get it.

0415msdn_PlattDGMS_v2_80.indd 80 3/11/15 8:30 AM

www.rollthunder.com

86%Of drivers who own family cars,

would rather be driving one of these.

Ditch the Minivan of Mobile Development
It’s no longer practical to wait weeks or months for a cutting-edge mobile business solution.
Your team needs to create, test, and deploy to all devices at the speed of business.
With MobileTogether, we’ve removed the roadblocks.

• Drag and drop UI design process

• Powerful visual & functional programming paradigm

• Native apps for all major mobile platforms

• Connectivity to SQL databases, XML, HTML, and more

• Deploy full-featured business app solutions in record time

• Pricing so affordable you might just have money left to
 start saving for that sports car

www.altova.com/MobileTogether

In a little over two days, with one developer, we created a full-featured survey application
and asked Android™, iOS®, and Windows® mobile users about their dream cars.
86% wanted to go faster.

Move into the Fast Lane with MobileTogether®

Untitled-5 1 3/9/15 2:53 PM

http://www.altova.com/MobileTogether

Untitled-5 1 3/9/15 3:00 PM

www.syncfusion.com/windows8.1

	Back
	Print
	MSDN Magazine, April 2015
	Cover Tip
	Front
	Back

	Contents
	CUTTING EDGE: Queryable Services
	WINDOWS WITH C++: Visual C++ 2015 Brings Modern C++ to Legacy Code
	DATA POINTS: EF6 Code First Migrations for Multiple Models
	Azure Notification Hubs: Best Practices for Managing Devices
	Event Hubs for Analytics and Visualization
	Automate Creating, Developing and Deploying Azure Websites
	Visualize Streaming Data the Easy Way with OData
	2D Drawing Techniques and Libraries for Web Games
	Authoring Desired State Configuration Custom Resources
	TEST RUN: Multi-Class Logistic Regression Classification
	MODERN APPS: A Mobile-First Approach to Modern App Development
	DON’T GET ME STARTED: Siri and Cortana

