
Coopyright 1998-2013 Developer Expreess, Inc. All rights reserved. All trademarks are property of their respective owners.

The next generation of inspiring tools. Today.Download your
30-day trial at
www.DevExpress.com

Introducing
Report Server
Shipping as part of the Universal Subscription, the DevExpress
Report Server is a powerhouse reporting platform: A combination
of a high-performance server and an elegant client which fully
exploits all the key features of the award-winning DevExpress
End User Report Designer.

Enterprise Reporting in Minutes

Untitled-6 1 3/1/13 11:59 AM

http://www.DevExpress.com

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS APRIL 2013 VOL 28 NO 4

A Tour of C++/CX
Thomas Petchel . 30

Exploring the JavaScript API for Offi ce:
Data Binding and Custom XML Parts
Stephen Oliver and Eric Schmidt . 40

Building and Validating Windows Store Apps
with Team Foundation Service
Thomas LeBrun. 52

A Treasure Hunt Through ALM Readiness
ALM Rangers . 60

Classifi cation and Prediction
Using Adaptive Boosting
James McCaffrey . 68

COLUMNS
CUTTING EDGE
Essential Facebook
Programming:
Widgets and Timeline
Dino Esposito, page 6

DATA POINTS
Why Does Entity Framework
Reinsert Existing Objects
into My Database?
Julie Lerman, page 12

WINDOWS AZURE INSIDER
NoSQL Data in the Cloud
with Windows Azure Tables
Bruno Terkaly and
Ricardo Villalobos, page 18

THE WORKING
PROGRAMMER
Capturing Important
Business Logic
Ted Neward, page 76

MODERN APPS
Power Your Modern Apps with
Windows Azure Mobile Services
Rachel Appel, page 78

DIRECTX FACTOR
Streaming and Manipulating
Audio Files in Windows 8
Charles Petzold, page 82

DON’T GET ME STARTED
Coining Currency
David Platt, page 88

A Tour of C++/CX...............30

At Your Fingertips

Compatible with
Microsoft® Visual Studio® 2012

Untitled-1 2 12/5/12 11:08 AM

www.infragistics.com/experience

Copyright 1996-2013 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc.

The Infragistics logo is a trademark of Infragistics, Inc. All other trademarks or registered trademarks are the respective property of their owners.

infragistics.com/

Infragistics Sales US 800 231 8588 • Europe +44 (0) 800 298 9055 • India +91 80 4151 8042 • APAC +61 3 9982 4545

Download your free trial

Untitled-1 3 12/5/12 11:08 AM

www.infragistics.com/experience

Printed in the USA

magazineAPRIL 2013 VOLUME 28 NUMBER 4

BJÖRN RETTIG Director
MOHAMMAD AL-SABT Editorial Director/mmeditor@microsoft.com
PATRICK O’NEILL Site Manager

MICHAEL DESMOND Editor in Chief/mmeditor@microsoft.com
DAVID RAMEL Technical Editor
SHARON TERDEMAN Features Editor
WENDY HERNANDEZ Group Managing Editor
KATRINA CARRASCO Associate Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director

SENIOR CONTRIBUTING EDITOR Dr. James McCaffrey
CONTRIBUTING EDITORS Rachel Appel, Dino Esposito, Kenny Kerr,
Julie Lerman, Ted Neward, Charles Petzold, David S. Platt,
Bruno Terkaly, Ricardo Villalobos

Henry Allain President, Redmond Media Group
Michele Imgrund Sr. Director of Marketing & Audience Engagement
Tracy Cook Director of Online Marketing
Irene Fincher Audience Development Manager

ADVERTISING SALES: 818-674-3416/dlabianca@1105media.com

Dan LaBianca Vice President, Group Publisher
Chris Kourtoglou Regional Sales Manager
Danna Vedder Regional Sales Manager/Microsoft Account Manager
Jenny Hernandez-Asandas Director, Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in U.S. funds are: U.S. $25.00, International $25.00.
Single copies/back issues: U.S. $10, all others $12. Send orders with payment to: MSDN Magazine,
P.O. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return Undeliverable Canadian Addresses to Circulation
Dept. or XPO Returns: P.O. Box 201, Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail
requests to “Permissions Editor,” c/o MSDN Magazine, 4 Venture, Suite 150, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct, Attn: Jane Long. Phone:
913-685-1301; E-mail: jlong@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:818-674-3416/dlabianca@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:jlong@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtSearch.com

Untitled-1 1 2/26/13 12:05 PM

www.leadtools.com

msdn magazine4

Over the past several months MSDN Magazine has welcomed a
pair of new columns—Rachel Appel’s Modern Apps and Bruno
Terkaly’s and Ricardo Villalobos’ Windows Azure Insider. We’ve
also seen Charles Petzold rebrand his column as DirectX Factor,
refl ecting his shift to exploring the DirectX infrastructure of the
Windows Runtime. What you may not know is that we’ve also been
busy on the Web site. In January we introduced a new monthly
online column called Patterns in Practice, written by veteran MSDN
Magazine author Peter Vogel.

As the name of the column suggests, Patterns in Practice
explores the value and potential of design patterns by applying them
in working scenarios. In his inaugural column, “Adding Func-
tionality to an Object” (msdn.microsoft.com/magazine/jj890759), Vogel
looks at an application managing sales orders, and how the client
can dynamically add permitted functionality to an object as it’s
needed. Vogel explains that his columns will present a business
problem and discuss a few alternative solutions before diving into,
as he writes, “a solution that addresses the problem in a testable/
maintainable way, based on some design pattern.” From there, readers
can expect to follow along as Vogel builds out the design and
implements the solution.

I asked Vogel why he wanted to focus specifically on design
patterns. His response:

“I keep working with programmers who are trying to address
the ‘-ities’ that design patterns address: reusability, maintainability,
extensibility, testability. But these developers don’t look to the already
existing solutions that design patterns provide, because they don’t
see design patterns as sources of useful inspiration or direction. Th ey
see patterns as being more like straightjackets: some guy yelling at
you that ‘You’re doing it wrong!’ Th is is compounded by many of
the design pattern examples being about things that most business
application developers would never build—editors, for instance.

“I want to show that design patterns should be as much a part
of a developer’s toolkit as relational database design or structured
programming. Design patterns are, to me, all about moving
from ‘thinking in procedural code’ to ‘thinking in objects.’ This
column should demonstrate that design patterns, like the three

levels of data normalization, provide very helpful answers to some
very common problems.”

Th e fruits of this eff ort are already visible in the energetic back-
and-forth in the comments section of the fi rst Patterns in Practice
column, and are shaping the direction of Vogel’s coverage today. Vogel
says he adjusted the design of his object model—presented in detail
in his February column, “Data Design for Adding Functionality to
a Class” (msdn.microsoft.com/magazine/jj984634)—based on compelling
arguments made in response to the fi rst Patterns in Practice column.

“While I’m always resistant when people disagree with me, I do
try to generate questions that will resolve the discussion one way or
another,” Vogel says. “Th at lets me go out and look for the answers
to those questions and apply the evidence instead of just stomping
my feet or falling back on ‘principles.’”

Vogel says he sees several common mistakes when it comes to
working with patterns, starting with developers who fail to take
advantage of patterns where they would be truly useful. “Developers
end up spending time reinventing the wheel and ending up with an
oval when a circle would have been a much better choice,” he says.

Vogel continues by noting that modern toolsets make common
patterns easy to implement, yet many developers aren’t aware of
the available resources. Finally, he says, developers can run into
the problem of misdiagnosis—they either misunderstand what a
design pattern is intended to address or misdiagnose the problem
they’re trying to solve.

In the months to come, you can expect Vogel’s Patterns in Practice
column to explore the observer pattern and how a variation of it is
implemented in SignalR for Web-based and service-oriented archi-
tecture (SOA) applications. Vogel says the columns will show how
changing technology sets can make some patterns more attractive
in an environment where the pattern would, as he says, “otherwise
be discarded as un-implementable.” Also look for a case study built
around the decorate pattern.

Do you have a concept or pattern you’d like to see Vogel explore
in his column? Write me at
mmeditor@microsoft .com
and let us know!

Patterns in Practice

MICHAEL DESMONDEDITOR’S NOTE

© 2013 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine
http://msdn.microsoft.com/magazine/jj890759
http://msdn.microsoft.com/magazine/jj984634

Untitled-1 1 2/26/13 12:02 PM

www.OnTimeNow.com/msdn
www.OnTimeNow.com
www.axosoft.com
www.axosoft.com

msdn magazine6

Aft er covering some basic aspects of Facebook programming in
previous columns, I’ll now discuss tools and techniques to view and
retrieve content from a Facebook wall in order to share it through
other means and catalog it for something else, such as business
intelligence (BI) analysis.

Not all companies have the same level of interest in the
world of social communities as does Facebook. One lesson I’ve
learned, however, is that in all companies, periodically an internal
department—usually marketing—ends up with a strong interest in
getting closer to customers and, maybe more important, in having
customers get closer to the company. A Facebook fan page is one of
the tools to attract contacts, and the number of Likes and the level of
activity on the page can measure the success of the initiative.

Where does programming fi t in? To keep a Facebook page alive
and kicking and to stimulate user activity that increases the number
of “people talking about this,” you need to post interesting content—
and frequently. Sometimes the company can aff ord a staff of people
just researching and creating content for the Facebook page. Some-
times, instead, good content for the Facebook page comes straight
from the regular fl ow of company business. In this case, it would be
a bit problematic for employees doing their regular jobs to reserve

extra time to report on a Facebook page what they’re doing. Imagine,
for example, that news is posted to the Web site. Th e internal work-
fl ow might entail preparing the text, getting it approved, publishing
it in the internal system and waiting for the content management
system to make it live on the site. If the same news should be pub-
lished to Facebook, too, most of the time the same person opens
the Facebook page as an admin and just posts content manually. It
oft en works this way today, but it’s not an approach that scales. Th is
is just where Facebook programming fi ts in.

Beyond Posting
In recent installments of this column, I addressed the main topic
of posting to a Facebook wall and the basics of building a Web
site and a desktop application that can interact with the Facebook
account of the user (you can see all my columns at bit.ly/hBNZA0).
For an enterprise scenario where the target wall is the company’s
fan page, the approach isn’t really diff erent. All that changes is the
account that receives posts.

So the first step toward Facebook programming is definitely
fi nding a way to post content to specifi c walls in an automated way
under the control of your soft ware.

Over time, the content shared to the company’s fan page, which
typically includes marketing communications, becomes a useful
resource for the company. It becomes valuable information that the
company might want to retrieve and further share or analyze. And
this is another great fi t for Facebook programming.

The Like Box Widget
A quick and simple way to add some Facebook content to your site is
through the Like Box widget. Th e widget lists recent posts made on
a Facebook page as well as an optional list of users who like the page.
For Web sites interested in using content published to Facebook, this

Essential Facebook Programming:
Widgets and Timeline

CUTTING EDGE DINO ESPOSITO

Parameters Description
href Indicates the URL of the Facebook fan page to feature in

the Like Box.
width Indicates the desired width in pixels for the plug-in. The

default width is 300 pixels.
height Indicates the desired height in pixels of the plug-in. The

default height is not fi xed and depends on whether faces
and streams are to be displayed. In general, you should
allow 500 pixels for it if you intend to have a stream of news.

colorscheme Indicates the color scheme for the plug-in. You have only
two options: light or dark.

show_faces Indicates whether the plug-in should display profi le
photos. The default is true.

stream Indicates whether the plug-in should display the latest
posts from the page’s wall.

header Boolean parameter, hides or displays the default Facebook
header at the top of the plug-in.

border_color Indicates the border color of the plug-in.
force_wall If the page refers to a place, then this parameter indicates

whether the stream should contain posts from the place’s
wall or just check-ins from friends. The default is false.

Figure 1 Parameters to Confi gure the Facebook Like Box

<iframe src="//www.facebook.com/plug-ins/likebox.php
 ?href=http://www.facebook.com/etennisnetpage
 &width=292&height=490
 &colorscheme=light
 &show_faces=false
 &stream=true
 &header=true
 &appId=xxxxxxxxxxxxxxx"
 scrolling="no"
 frameborder="0"
 style="border:none; overflow:hidden; width:292px; height:590px;"
 allowTransparency="true">
</iframe>

Figure 2 Binding a URL to an Iframe

www.bit.ly/hBNZA0

Altova MissionKit® is an integrated suite of
UML, XML, and data integration tools for today’s
software architect.

Visualize
software works
of art with the
complete set of tools
from Altova®

Altova MissionKit includes multiple tools
for software architects:

Download a 30 day free trial!

Try before you buy with a free, fully

functional trial from www.altova.com

UModel® – UML tool for software modeling

 Support for all UML diagram types, MDA,

 SQL database diagrams, BPMN, SysML

 Reverse engineering and code generation

 in Java, C#, VB.NET

XMLSpy® – XML editor & development environment

 Support for all XML-based technologies

 Royalty-free Java, C#, C++ code generation

MapForce® – any-to-any data mapping & integration tool

 Mapping between XML, databases, EDI, flat files, XBRL,

 Excel, Web services

 Royalty-free Java, C#, C++ code generation

Plus up to four additional tools…

NEW in Version 2013:

 as UML properties

 automatic error correction

 dures in data mapping projects

 in Java applications

Scan to learn more

about these Altova

MissionKit tools.

Untitled-3 1 3/1/13 10:56 AM

http://www.altova.com

msdn magazine8 Cutting Edge

is the fi rst step to accomplish. It’s important to note that the Facebook
Like Box social plug-in is only intended to be used with Facebook fan
pages and won’t work if you connect it to a personal Facebook account.

Also, note that Facebook diff erentiates between fan pages and
profi le pages. Th e bottom line is that fan pages are for businesses,
whereas profi le pages are for individuals. Th ere are some diff erences
between the two as far as the allowed actions are concerned. First
and foremost, a team of people can have admin rights on a fan page.
In addition, posts from a fan page can be specifi cally targeted by
language and location so they reach followers (well, fans, actually)
who can best receive them. Fan pages support additional features
and can be promoted via ads and sponsored articles.

Conversely, profi le pages are intended to let owners stay in touch
with friends and family. Being a friend becomes a mandatory
condition to get updates, even though through the subscription
mechanism you can allow non-friends to get your updates as well.

Confi guring the Like Box for a Web page couldn’t be easier. You
can preview the content being displayed and grab related HTML
directly from the Facebook developers site. Go to bit.ly/hFvo7y for
a live demo. In the end, it’s all about arranging a long URL to

set on an iframe element.
Figure 1 lists the parame-
ters you can use in the URL.

All you do is arrange a
URL and bind it to an iframe,
as shown in Figure 2.

It goes without saying
that you can also embed
the Like Box in a desktop
application (for example,
a Windows Presentation
Foundation—or WPF—
application) through a
WebBrowser control.

As you can see, the plug-in allows for some quick styling
that works most of the time. However, if you want to apply
your own CSS (to the extent that it’s possible and documented)
you should embed the Like Box via JavaScript and HTML5.
Figure 3 shows the output of a Like Box for a sample site with
custom and regular (light) style.

The Activity Plug-In
Another quick way to incorporate existing specifi c Facebook
content in Web pages or desktop applications (via Web-browser
components) is the Activity plug-in.

Th is plug-in aggregates stories resulting from the interaction
that users have with your site through Facebook. Notice that
the target here isn’t a Facebook page but rather an external site.
Example actions that generate such feeds are liking content on
the site, watching videos, commenting and sharing content
from the site. Th e plug-in is also able to detect whether the
current user of the site that contains the Activity plug-in
is logged in to Facebook or not. If so, the displayed feed is
restricted to friends of the user. Otherwise, the plug-in
shows recommendations from across the site, while giving the

user the option to log in to Facebook and receive more-targeted
feedback. Here’s the markup you need (note that the Activity
plug-in can only be consumed through HTML5 markup):

<div class="fb-activity"
 data-site="www.yoursite.com"
 data-app-id="xxxxxxxxxxxxx"
 data-width="300"
 data-height="300"
 data-header="true"
 data-recommendations="true">
</div>

You must incorporate the JavaScript SDK in the page in order
for this markup to produce what’s in Figure 4.

Accessing the Timeline
In past columns, I used the Facebook C# SDK to post to the wall
both plain text and attachments. Once the post is made, friends and
fans can interact with it by liking it, sharing it and commenting on
it. Let’s see what it takes to read the timeline of a given user.

Facebook assigns a unique and fairly long ID to any account,
whether profi le or fan page. Users, however, don’t use this ID to iden-
tify pages. So the fi rst thing to do in order to read a timeline is match
the public name of the page (or user) to the underlying Facebook
ID. As a mere exercise, you can type the following into the address
bar of any browser: https://graph.facebook.com/your-page-name.

Th e placeholder “your-page-name” is just the name of the account
as you would type it to reach the page. Getting the ID of the account
for which you intend to read the timeline is only the fi rst step. You
also need to be authenticated to access the feed. Th e bottom line is
that any operation that goes directly against the underlying Facebook
Graph API requires OAuth authentication. Th is means that the same
preliminary steps discussed in past columns must also be done here:

• Create a Facebook app to deal with the Facebook back end.
• Have the user authorize the Facebook app to operate on

behalf of the account. Th is step delivers an access token that
binds together (for a limited time) the user and Facebook app.

Figure 3 Sample Like Box

Figure 4 The Activity Plug-in
in Action

www.bit.ly/hFvo7y

Untitled-1 1 1/4/13 10:51 AM

http://www.aspose.com

msdn magazine10 Cutting Edge

• Use the access token as the key to operate against the Graph
API from within the host application (for example, an
ASP.NET MVC application).

Once acquired, the access token can
be saved to a cookie and used for ev-
ery further operation until it expires.
Here’s the required code to get the raw
feed from the Facebook server:
 var name = "name-of-the-user";
 // For example, joedummy
 var client =
 new FacebookClient(access_token);
 dynamic user = client.Get(name);
 dynamic feed =
 client.Get(name + "/feed");

Th e fi rst call to the Facebook client
doesn’t strictly require the access
token, as it’s expected to return only
public information about the user. Th e
user variable exposes properties such
as fi rst_name, last_name, id and loca-
tion. Depending on your intentions,
you might not need to place this call.
Th e second call to the Facebook client

is what really does the trick. It takes a string that denotes the path to
the user’s feed. You build the path concatenating the account’s name
with the /feed string. In return, you get a dynamic C# object built
out of an underlying JSON stream. Figure 5 shows the structure of
the JSON stream as captured by Fiddler.

It shows that the selected post got two types of actions—it has
been liked and commented upon. It also currently counts 14 likes.
More details about people who commented on it or liked it are
available as you expand nodes. Finally, you fi nd the content of the
post. At the JSON level, the content of the post is the message fi eld.

It’s important to note that not all posts have the same structure;
this is the reason why the Facebook C# SDK doesn’t use plain, stat-
ically defi ned classes as data transfer objects (DTOs). A common
snag is that the post lacks a message, link and picture, but includes
a story fi eld. Th is is the case, for example, when the admin adds a
collection of photos.

Th e Facebook C# SDK just hands you a dynamic C# object. Parsing
that into more defi ned data types—or deciding that the object is good
as is to trickle down to the view—is your call. Figure 6 shows some
code that attempts to parse the dynamic object into a classic C# class.

Th e most annoying part of this code is fi nding an eff ective way
to check whether a given property is defi ned on the dynamic object
you parse. Quite a few stackoverfl ow.com users agree on the approach
shown in Figure 6, based on a delegate.

Dealing with social networks opens up a whole new world of
possibilities, which become opportunities for developers to think
of and realize new creative applications. As a .NET developer, you
should be a friend of the Facebook C# SDK.

DINO ESPOSITO is the author of “Architecting Mobile Solutions for the Enterprise”
(Microsoft Press, 2012) and “Programming ASP.NET MVC 3” (Microsoft Press,
2011), and coauthor of “Microsoft .NET: Architecting Applications for the Enter-
prise” (Microsoft Press, 2008). Based in Italy, Esposito is a frequent speaker at
industry events worldwide. Follow him on Twitter at twitter.com/despos.

THANKS to the following technical expert for reviewing this article:
Scott Densmore (Microsoft)

public class FacebookPost
{
 public String PostId { get; set; }
 public String Author { get; set; }
 public String Picture { get; set; }
 public String Link { get; set; }
 public String Published { get; set; }
 public String ContentHtml { get; set; }

 private delegate String ExtractDelegate();
 public static IList<FacebookPost> Import(dynamic data)
 {
 var posts = new List<FacebookPost>();
 foreach (var item in data)
 {
 var tempItem = item;
 var fb = new FacebookPost
 {
 PostId = Extract(() => tempItem["id"]),
 Published = Extract(() => tempItem["created_time"]),
 Picture = Extract(() => tempItem["picture"]),
 Link = Extract(() => tempItem["link"]),
 Author = Extract(() => tempItem["from"]["name"])
 };
 try
 {
 fb.ContentHtml = Extract(() => tempItem["message"]);
 }
 catch
 {

 }

 if (!String.IsNullOrEmpty(fb.ContentHtml))
 posts.Add(fb);
 }
 return posts;
 }
 private static String Extract(ExtractDelegate func)
 {
 try {
 return func();
 } catch {
 return null;
 }
 }
}

Figure 6 Parsing a Dynamic Object into a Classic C# Class

Figure 5 The JSON Structure of a Timeline Item in Facebook

www.stackoverflow.com
www.twitter.com/despos

Telerik DevCraft
The all-in-one toolset for professional
developers targeting Microsoft platforms.

Get your 30-day free trial today:
www.telerik.com/all-in-one

Untitled-2 1 1/31/13 12:32 PM

http://www.telerik.com/all-in-one

msdn magazine12

Just as it was time to come up with an idea for this column, three
people asked me, via twitter and e-mail, why Entity Framework
reinserts existing objects into their databases. Deciding what to
write about became easy.

Because of its state management capabilities, when Entity
Framework works with graphs, its entity state behavior doesn’t
always align with your ideas of how it should work. Let’s look at a
typical example.

Suppose I have two classes, Screencast and Topic, where each
Screencast is assigned a single Topic, as shown in Figure 1.

If I were to retrieve a list of Topics, assign one of them to a
new Screencast and then save—with the entire set of operations
contained in a single context—there would be no problem, as the
following example shows:

using (var context = new ScreencastContext())
{
 var dataTopic = context.Topics.FirstOrDefault(t=>t.Name.Contains("Data"));
 context.Screencasts.Add(new Screencast
 {
 Title="EF101",
 Description = "Entity Framework 101",
 Topic = dataTopic
 });
 context.SaveChanges();
}

A single Screencast would be inserted into the database with the
proper foreign key for the chosen Topic.

When you’re working in client applications, or performing these
steps within a single Unit of Work where the context is tracking all
of the activity, this is the behavior you’d probably expect. However,
if you’re working with disconnected data the behavior is quite
diff erent, and this has surprised many developers.

Added Graphs in Disconnected Scenarios
A common pattern that I use for handling reference lists is to use
a separate context, which would no longer be in scope by the time
you saved any user modifi cations. Th is situation is common for
Web applications and services, but it can also occur in a client-side
app. Here’s an example that uses a repository for reference data with
the following GetTopicList method for retrieving a list of Topics:

public class SimpleRepository
{
 public List<Topic> GetTopicList()
 {
 using (var context = new ScreencastContext())
 {
 return context.Topics.ToList();
 }
 }
 ...
}

You might then present the Topics in a list on a Windows
Presentation Foundation (WPF) form that lets users create a new
Screencast, such as the one shown in Figure 2.

In a client app, such as the WPF form in Figure 2, you might
then set the selected item from the dropdown to the new Screen-
cast’s Topic property with code such as this:

private void Save_Click(object sender, RoutedEventArgs e)
{
 repo.SaveNewScreencast(new Screencast
 {
 Title = titleTextBox.Text,
 Description = descriptionTextBox.Text,
 Topic = topicListBox.SelectedItem as Topic
 });
}

Now the Screencast variable is a graph containing the new Screen-
cast and the Topic instance. Passing that variable into the repository’s
SaveNewScreencast method adds the graph to a new context instance
and then saves it to the database, like so:

public void SaveNewScreencast(Screencast screencast)
{
 using (var context = new ScreencastContext())
 {
 context.Screencasts.Add(screencast);
 context.SaveChanges();
 }
}

Profi ling the database activity reveals that not only is the Screen-
cast inserted but, before that, a new row is inserted for the Data Dev
topic into the Topics table, even though that topic already existed:

exec sp_executesql N'insert [dbo].[Topics]([Name])
values (@0)
select [Id]
from [dbo].[Topics]
where @@ROWCOUNT > 0 and [Id] = scope_identity()',N'@0 nvarchar(max)
',@0=N'Data Dev'

Why Does Entity Framework Reinsert Existing
Objects into My Database?

DATA POINTS JULIE LERMAN

Code download available at archive.msdn.microsoft.com/mag201304DataPoints.

public class Screencast
{
 public int Id { get; set; }
 public string Title { get; set; }
 public string Description { get; set; }
 public Topic Topic { get; set; }
 public int TopicId { get; set; }
}

public class Topic
{
 public int Id { get; set; }
 public string Name { get; set; }
}

Figure 1 The Screencast and Topic Classes

http://archive.msdn.microsoft.com/mag201304DataPoints

Rackspace and Fanatical Support are service marks of Rackspace US, Inc. All trademarks, service marks, and images are the property of their respective owners.

The open age started with Linux. Next came Android. Then, Rackspace and NASA created
OpenStack and open–sourced the biggest platform of them all. It’s called the open cloud.
Now, you’re no longer locked in to the pricing, service limitations, or pace of innovation of
any one vendor. You’re free to run your cloud anywhere you want: in your data center, in
ours, or with any other OpenStack provider—and the response has been overwhelming.
More than 800 organizations and 6,000 individuals are collaborating on OpenStack.
This is greater than one company. It's a movement.

With over 200,000 customers and more than 60% of the FORTUNE® 100 trusting our
Fanatical Support®, we’ve done big things at Rackspace before—but this is the biggest.

Try it today. Download the open cloud at rackspace.com/open

Untitled-5 1 3/4/13 11:41 AM

www.rackspace.com/open

msdn magazine14 Data Points

Th is behavior has confounded many developers. Th e reason it
happens is that when you use the DbSet.Add method (that is, Screen-
casts.Add), not only is the state of the root entity marked “Added,”
but everything in the graph that the context was not previously
aware of is marked Added as well. Even though the developer may
be aware that the Topic has an existing Id value, Entity Framework
honors its EntityState (Added) and creates an Insert database
command for the Topic, regardless of the existing Id.

While many developers may anticipate this behavior, there are
many who don’t. And in that case, if you aren’t profi ling the database
activity, you may not realize it’s occurring until the next time you (or
a user) discover duplicate items in the Topics list.

Note: If you’re not familiar with how EF inserts new rows, you may
be curious about the select in the middle of the preceding SQL. Th at’s
to ensure EF will get back the Id value of the newly created Screencast
so it can set the value in the Screencast instance.

Not Just a Problem When Adding Entire Graphs
Let’s look at another scenario where this problem might occur.

What if, instead of passing a graph to the repository, the repository
method requests both the new Screencast and the selected Topic as
parameters? Instead of adding a full graph, it adds the Screencast
entity and then sets its Topic navigation property:

p ublic void SaveNewScreencastWithTopic(Screencast screencast,Topic topic)
{
 using (var context = new ScreencastContext())
 {
 context.Screencasts.Add(screencast);
 screencast.Topic = topic;
 context.SaveChanges();
 }
}

In this case, the SaveChanges behavior is the same as with the
Added graph. You might be familiar with using the EF Attach method

to attach an untracked entity to a context. In that case, the entity’s state
starts out as Unchanged. But here, where we’re assigning the Topic to
the Screencast instance, not to the context, EF considers this to be an
unrecognized entity and its default behavior for unrecognized entities
with no state is to mark them as Added. So, again, the Topic will be
inserted into the database when SaveChanges is called.

It’s possible to control the state, but this requires a deeper under-
standing of EF behavior. For example, if you were to attach the
Topic directly to the context, instead of to the Added Screencast,
its EntityState would start out as Unchanged. Setting it to screen-
cast.Topic wouldn’t alter the state because the context is already
aware of the Topic. Here’s the modified code that demonstrates
this logic:

using (var context = new ScreencastContext())
{
 context.Screencasts.Add(screencast);
 context.Topics.Attach(topic);
 screencast.Topic = topic;
 context.SaveChanges();
}

Alternatively, in lieu of context.Topics.Attach(topic), you could
set the state of the Topic before or aft er the fact, explicitly setting
its state to Unchanged:

context.Entry(topic).State = EntityState.Unchanged

Calling this code before the context is aware of the Topic will
cause the context to attach the Topic and then set the state.

Th ough these are correct patterns for handling this problem,
they’re not obvious. Unless you’ve learned about this behavior and
the required code patterns in advance, you’re more apt to write code
that seems logical, then run into this problem and only at that point
start trying to fi gure out what the heck is going on.

Save the Grief and Use That Foreign Key
But there’s a much simpler way to avoid this state of confusion (pardon
my pun), which is to take advantage of the foreign key properties.

Rather than setting the navigation property and having to worry
about the state of the Topic, just set the TopicId property, because you
do have access to that value in the Topic instance. Th is is something
I fi nd myself frequently suggesting to developers. Even on Twitter, I
see the question: “Why is EF inserting data that already exists?” And
I oft en guess correctly in reply: “Any chance u r setting a navigation
property on a new entity instead of an FK? ☺”

So let’s revisit the Save_Click method in the WPF form and set
the TopicId property instead of the Topic navigation property:

repo.SaveNewScreencast(new Screencast
 {
 Title = titleTextBox.Text,
 Description = descriptionTextBox.Text,
 TopicId = (int)topicListBox.SelectedValue)
 });

Th e Screencast that’s sent to the repository method is now just
the single entity, not a graph. Entity Framework can use the foreign
key property to directly set the table’s TopicId. Th en it’s simple (and
faster) for EF to create an insert method for the Screencast entity
including the TopicId (in my case, the value 2):

exec sp_executesql N'insert [dbo].[Screencasts]([Title], [Description], [TopicId])
values (@0, @1, @2)
select [Id]
from [dbo].[Screencasts]
where @@ROWCOUNT > 0 and [Id] = scope_identity()',
N'@0 nvarchar(max) ,@1 nvarchar(max) ,@2 int',
 @0=N'EFFK101',@1=N'Using Foreign Keys When Setting Navigations',@2=2

Figure 2 A Windows Presentation Foundation Form for
Entering New Screencasts

It’s possible to control the state,
but this requires a deeper

understanding of EF behavior.

Untitled-3 1 3/1/13 11:00 AM

www.MelissaData.com

msdn magazine16 Data Points

If you wanted to keep the construction logic in the repository and
not force the UI developer to worry about setting the foreign key,
you could specify a Screencast and the Topic’s Id as parameters for
the repository method and set the value in the method as follows:

public void SaveNewScreencastWithTopicId(Screencast screencast, int topicId)
{
 using (var context = new ScreencastContext())
 {
 screencast.TopicId = topicId;
 context.Screencasts.Add(screencast);
 context.SaveChanges();
 }
}

In our never-ending worries about what could happen, we need
to consider the possibility that a developer might set the Topic
navigation property anyway. In other words, even though we want
to use the foreign key to avoid the EntityState problem, what if the
Topic instance is part of the graph, such as in this alternative code
for the Save_Click button:

repo.SaveNewScreencastWithTopicId(new Screencast
 {
 Title = titleTextBox.Text,
 Description = descriptionTextBox.Text,
 Topic=topicListBox.SelectedItem as Topic
 },
 (int) topicListBox.SelectedValue);

Unfortunately, this brings you back to the original problem: EF
sees the Topic entity in the graph and adds it to the context along
with Screencast—even though the Screencast.TopicId property has
been set. And again, the EntityState of the Topic instance creates
confusion: EF will insert a new Topic and use the value for that
new row’s Id when it inserts the Screencast.

Th e safest way to avoid this is to set the Topic property to null
when you set the foreign key value. If the repository method will be

used by other UIs where you can’t be sure that only existing Topics
will be used, you might even want to provide for the possibility of
a newly created Topic being passed in. Figure 3 shows the reposi-
tory method modifi ed yet again to perform this task.

Now I have a repository method that covers a number of
scenarios, even providing logic to accommodate new Topics being
passed in to the method.

ASP.NET MVC 4 Scaffolding-Generated Code
Avoids the Problem
Although this is a problem that’s inherent in disconnected apps, it’s
worth pointing out that if you’re using ASP.NET MVC 4 scaff olding
to generate views and MVC controllers, you’ll avoid the problem
of duplicate navigation entities being inserted into the database.

Given the one-to-many relationship between Screencast and
Topic, as well as the TopicId property that’s the foreign key in the
Screencast type, the scaffolding generates the following Create
method in the controller:

public ActionResult Create()
{
 ViewBag.TopicId = new SelectList(db.Topics, "Id", "Name");
 return View();
}

It has built a list of Topics to pass to the view and named that list
TopicId—the same name as the foreign key property.

Th e scaff olding has also included the following List in the markup
for the Create view:

<div class="editor-field">
 @Html.DropDownList("TopicId", String.Empty)
 @Html.ValidationMessageFor(model => model.TopicId)
</div>

When the view posts back, the HttpRequest.Form includes a
query-string value named TopicId that comes from the ViewBag
property. TopicId’s value is that of the selected item from the

DropDownList. Because the query string
name matches the Screencast’s property
name, ASP.NET MVC model binding uses
the value for the TopicId property of the
Screencast instance it creates for the method
parameter, as you can see in Figure 4.

To verify this, you could change the
controller’s TopicId variables to some-
thing else, such as TopicIdX, and make
the same change to the “TopicId” string in
the view’s @Html.DropDownList, and the
query-string value (now TopicIdX) would be
ignored and screencast.TopicId would be 0.

Figure 4 The New Screencast Gets Its TopicId from the Matching HttpRequest
Query-String Value

A much simpler way to
avoid this state of confusion is

to take advantage of the foreign
key properties.

public void SaveNewScreencastWithTopicId(Screencast screencast, int topicId)
{
 if (topicId > 0)
 {
 screencast.Topic = null;
 screencast.TopicId = topicId;
 }
 using (var context = new ScreencastContext())
 {
 context.Screencasts.Add(screencast);
 context.SaveChanges();
 }
}

Figure 3 Repository Method Designed to Protect Against
Accidental Navigation Property Insertion into Database

17April 2013msdnmagazine.com

Th ere’s no Topic instance being passed back through the pipeline.
So ASP.NET MVC depends on the foreign key property by default
and avoids the particular problem of reinserting an existing dupli-
cate Topic into the database.

It’s Not You! Disconnected Graphs Are Complicated
While the EF team has done a lot to make working with discon-
nected data easier from one version of EF to the next, it’s still a
problem that daunts many developers who aren’t well-versed in
the expected behavior of EF. In our book,
“Programming Entity Framework: DbCon-
text” (O’Reilly Media, 2012), Rowan Miller
and I devoted an entire chapter to working
with disconnected entities and graphs. And
when creating a recent Pluralsight course,
I added in an unplanned 25 minutes that
focused on the complexity of disconnected
graphs in repositories.

It’s very convenient to work with graphs
when you’re querying and interacting with
data, but when it comes to building rela-
tionships with existing data, foreign keys are
your friends! Take a look at my January 2012
column, “Making Do with Absent Foreign
Keys” (msdn.microsoft.com/magazine/hh708747),
which is also about some of the pitfalls of
coding without foreign keys.

In an upcoming column, I’ll continue on
my quest to alleviate some of the pain devel-
opers encounter when working with graphs in
disconnected scenarios. Th at column, which
will be Part 2 on this topic, will focus on
controlling the EntityState in many-to-many
relationships and navigation collections. Q

JULIE LERMAN is a Microsoft MVP, .NET mentor and consultant who lives in the
hills of Vermont. You can fi nd her presenting on data access and other Microsoft
.NET topics at user groups and conferences around the world. She blogs at
thedatafarm.com/blog and is the author of “Programming Entity Framework”
(2010) as well as a Code First edition (2011) and a DbContext edition (2012), all
from O’Reilly Media. Follow her on Twitter at twitter.com/julielerman.

THANKS to the following technical expert for reviewing this article:
Diego Vega (Microsoft)

While the EF team
has done a lot to

make working with
disconnected data

easier from one
version of EF to

the next, it’s still a
problem that daunts
many developers.

www.softfluent.com/landings_cfe_msdn
www.softfluent.com
www.msdnmagazine.com
http://msdn.microsoft.com/magazine/hh708747
www.twitter.com/julielerman

msdn magazine18

Th e price of storing data on disk has dropped so dramatically it
seems like science fi ction, opening the fl oodgates for companies to
store massive amounts of data. But being able to store lots of data
economically solves only half the problem. Th e data has become
so large and complex that traditional database management tools
and data processing applications are vastly inadequate. With so
much data on disk, new issues have arisen, such as ingesting the
data, performing searches, sharing the data, analyzing it and,
ultimately, visualizing it.

Th e power of cloud computing has stepped up to fi ll this need.
Th e ability to run massively parallel soft ware solutions—running on
tens, hundreds or even thousands of servers—is the silver bullet that
enables organizations to deal with all of that stored data.

Microsoft realized this important trend several years ago. Windows
Azure Storage (WAS) was launched in November 2008 and dramati-
cally improved the ability of businesses to get value from the massive
amounts of data being stored.

In the words of Brad Calder, a distinguished engineer at Microsoft
and the shepherd who guided the construction of the WAS system,
“Windows Azure Storage is a cloud storage system that provides
customers the ability to store seemingly limitless amounts of data
for any duration of time that is highly available and durable. When
using Windows Azure Storage, you have access to your data from
anywhere, at any time, and only pay for what you use and store.”

WAS is used inside Microsoft for applications such as social
networking search; serving video, music and game content; and
managing medical records. It’s also used by the Bing search engine
to provide almost-immediate publicly searchable content from
Facebook or Twitter posts or status updates. With around 350TB of
data, the scope of Facebook and Twitter data is remarkable. When
this data is being ingested, transaction throughput reaches peaks
of around 40,000 transactions per second and totals between 2 to
3 billion transactions per day.

Th is month we’ll explore one facet of WAS—Windows Azure
Tables—both how it works and how developers can get it up and
running quickly.

The Landscape
Th e modern data scientist is faced with many choices when selecting
a data platform, each with its own strengths and weaknesses. For

example, many big data solutions are based on the concept of
NoSQL, which means that a relational database management system
(RDBMS) model isn’t used—there are no tables and no SQL state-
ments. Instead, the data structures are typically a massive collection
of key/value pairs or associative arrays. Th e popular choices today

NoSQL Data in the Cloud with
Windows Azure Tables

Code download available at archive.msdn.microsoft.com/
mag201304AzureInsider.

WINDOWS AZURE INSIDER
BRUNO TERKALY AND

RICARDO VILLALOBOS

Individual Storage Accounts
Capacity Up to 200TB
Transactions Up to 20,000 entities/messages/blobs per second

Bandwidth for a Geo-Redundant Storage Account
Ingress Up to 5Gbps
Egress Up to 10Gbps

Bandwidth for a Locally Redundant Storage Account
Ingress Up to 10Gbps
Egress Up to 15Gbps

Figure 1 Scalability Targets for a Single Storage Account

// Our entity derives from TableEntity
public class EmailAddressEntity : TableEntity
{
 // Basic information that makes up our entity
 public string EMailAddress { get; set; }
 public string PhoneNumber { get; set; }

 // A necessary default constructor
 public EmailAddressEntity()
 {
 }

 // A two-parameter constructor
 public EmailAddressEntity(string email, string phone)
 {
 EMailAddress = email;
 PhoneNumber = phone;
 SetKeys(email, phone);
 }

 // A method that initializes the partition key and row key
 public void SetKeys(string email, string phone)
 {
 int startIndex = email.IndexOf("@");
 // Extract the mailname from the e-mail address
 string mailname = email.Substring(0, startIndex);
 // Extract the domain from the e-mail address
 string domain = email.Substring(startIndex + 1);
 // Perform the mandatory assignments to the partition key and row key
 PartitionKey = domain;
 RowKey = mailname;
 PhoneNumber = phone;
 }
}

Figure 2 The Entity EmailAddressEntity

http://archive.msdn.microsoft.com/mag201304AzureInsider

Untitled-3 1 3/1/13 11:05 AM

www.scaleoutsoftware.com

msdn magazine20 Windows Azure Insider

are MongoDB, Cassandra, HBase, CouchDB, Neo4j and Windows
Azure Tables. Th is article will focus on Windows Azure Tables.

Despite the major diff erences, both SQL and NoSQL databases
have one thing in common: these technologies are offered as a
service in the cloud, freeing developers from having to manually
provision and de-provision data servers. For example, Windows
Azure Tables is off ered as a service and a developer never has to
think in terms of separate physical servers.

In this month’s column, we’ll start with a brief discussion of some
of the features and capabilities of Windows Azure Tables. Next,
we’ll provide some code to demonstrate how you might work with
Windows Azure Tables in terms of inserting and querying data.
And, fi nally, we’ll take a look at some of the design goals and the
high-level implementation details of WAS.

Some Basics
One of the great features of Windows Azure Tables is that storage
is off ered across three geographically distributed regions, includ-

ing the United
States, Europe
and Asia. Every
Microsoft data-
center complies
with the Inter-
national Orga-

nization for Standardization (ISO) 27001, SSAE 16 ISAE 3402, EU
Model Clauses and Health Insurance Portability and Accountabil-
ity Act (HIPAA) business associate agreement (BAA) standards.
Another important feature is geo-redundant storage, which allows
you to replicate your data in another datacenter within the same
region, adding yet another level of disaster recovery.

WAS performance and capacities are correlated to storage
accounts. An individual storage account includes 200TB of storage.
Windows Azure Tables have been optimized to provide incredibly
fast query performance under write-heavy workloads. You can
read more at bit.ly/cMAWsZ.

Figure 1 shows the scalability targets for a single storage account
created aft er June 7, 2012.

WAS analytics are also available, allowing developers to trace
storage requests, analyze usage trends and optimize data-access
patterns in a storage account. Read more at bit.ly/XGLtGt.

Be aware that the WAS system includes other abstractions, such as
blobs and queues. We’ll focus here on Windows Azure Tables, which
are used to store non-relational structured and semi-structured data.
Th e most succinct way to express the value of Windows Azure Tables
is that they support NoSQL key-value lookups at scale and under
write-heavy workloads. From a developer’s point of view, Windows
Azure Tables are for storing large collections of non-uniform objects
or for serving pages on a high-traffi c Web site.

Windows Azure Tables can be accessed from almost anywhere.
Th e entire storage system is Representational State Transfer (REST)-
enabled, which means that any client capable of HTTP can commu-
nicate with the WAS system. Obvious clients include iOS, Android,
Windows 8 and diff erent Linux distros. Th e REST API supports
inserts, upserts, updates and deletes, and selects or queries.

When working with Windows Azure Tables, a key starting point
is understanding how to control the data partitioning scheme. For
any given Windows Azure Table, the data architect must define
(up front) a PartitionKey and a RowKey. Th is is perhaps the most
important decision you’ll make when using Windows Azure Tables.
PartionKeys and RowKeys determine how your data is automatically
partitioned by the storage service and the way your queries will per-
form. It’s recommended that you understand how your data will be
queried before fi nalizing your decisions on PartitionKey and RowKey.
Later, we’ll delve into the mechanics of transactional consistency
and their relationship to PartitionKeys. For now, let’s walk through a
simple example of how the WAS system partitions table data.

try
{
 // Use the local storage emulator
 var storageAccount = CloudStorageAccount.DevelopmentStorageAccount;
 // Create a cloud table client object
 CloudTableClient tableClient = storageAccount.CreateCloudTableClient();
 // Create an e-mail address table object
 CloudTable emailAddressTable =
 tableClient.GetTableReference("EmailAddressTable");
 // Create the table if it does not exist
 // Only insert a new record once for this demo
 if (emailAddressTable.CreateIfNotExists() == true)
 {
 // Create a new EmailAddressEntity entity
 EmailAddressEntity emailaddress = new
 EmailAddressEntity("bterkaly@microsoft.com", "555-555-5555");
 // Create an operation to add the new e-mail and phone number to
 // the emailAddressTable
 TableOperation insertEmail = TableOperation.Insert(emailaddress);
 // Submit the operation to the table service
 emailAddressTable.Execute(insertEmail);
 }
}
catch (Exception ex)
{

 // Put the message in the Web page title (for testing purposes)
 // Real error messages should go to a proper log file
 this.Title = ex.Message.ToString();
 throw;
}

Figure 3 Inserting an EmailAddressEntity

Figure 4 Server Explorer

Windows Azure Tables can be
accessed from almost anywhere.

www.bit.ly/cMAWsZ
www.bit.ly/XGLtGt

®

1and1.com

* Offers valid for a limited time only. Starter hosting package price of $3.49 per month is valid for a 36 month prepaid package; total purchase amount of $125.64. Visit www.1and1.com
for billing information and full promotional offer details. Program and pricing specifi cations and availability subject to change without notice. 1&1 and the 1&1 logo are trademarks of
1&1 Internet, all other trademarks are the property of their respective owners. © 2013 1&1 Internet. All rights reserved.

50 GB Webspace

Unlimited Bandwidth (Traffi c)

250 E-Mail Accounts (2 GB each)

24/7 Phone and E-mail Support

NEW! ASP.NET/
.NET Framework 4, 4.5

NEW! PHP 5.4
and Host multiple websites

NEW! 1 MSSQL 2012
Database (1 GB)

10 MySQL
Databases (1 GB each)

NEW! ASP.NET MVC NEW! Webspace Recovery and
daily server backups

NEW! Dedicated App Pools 2 Click & Build Applications,
like Wordpress, Joomla!, TYPO3

Save up to $90
$ 3.49per monthStarting at

1&1 Starter
Windows

1&1 Starter
Linux

Dual Hosting for Maximum
Reliability
Your wesite hosted across multiple
servers in two different data centers,
and in two geographic locations.

Unlimited Bandwidth (Traffi c)

IpV6 Ready

NEW: Choose your prepaid
billing plan

YOUR HOSTING PARTNER
Whether you use Windows or Linux, 1&1 is always
the right choice. We offer the latest in programming
languages with PHP 5.4 for Linux and ASP.NET 4.5
for Windows.

We also now offer fl exible prepaid billing plans of
1, 12, 24, or 36 month terms to allow you to match
your hosting needs with the billing option best
suited for you.

Untitled-1 1 3/8/13 10:05 AM

http://www.1and1.com
www.1and1.com

msdn magazine22 Windows Azure Insider

A Quick Tutorial
Imagine you wish to store and retrieve e-mails from vari-
ous domains, such as the following: bterkaly@microsoft.com,
ricardo.villalobos@microsoft .com, brunoterkaly@hotmail.com
and ricardovillalobos@hotmail.com. In these e-mail addresses,
the domain names are microsoft .com and hotmail.com, while the
e-mail names are bterkaly and ricardo.villalobos. Typical queries
search fi rst by domain name, then by e-mail name.

In this simple example, the choice of PartitionKey and RowKey
are fairly straightforward. We’ll map the domain name to the
PartitionKey and the e-mail name to the RowKey.

Th e code in Figure 2 should make things a bit clearer. It illustrates
four simple capabilities:

• Defi ning an entity (EmailAddressEntity)
• Defi ning the table that will store the entities

(Email AddressTable)
• Inserting the entity into the table (insert EmailAddress-

Entity into EmailAddressTable)
• Querying the table to search for a specifi c entity (search

for bterkaly@microsoft .com)
First, we defi ne the entity structure itself, EmailAddressEntity, as

shown in Figure 2. Th e actual table (a container for entities) will be
defi ned later, when we insert EmailAddressEntity into the table. An
entity can be thought of as an individual object; it’s the smallest unit
of data that can be stored in a Windows Azure Table. As mentioned
previously, an entity is a collection of typed name-value pairs,
oft en referred to as properties. Tables are collections of entities, and
each entity belongs to a table just as a row does in a relational data-
base table. But tables in Windows Azure Table Storage don’t have a

fi xed schema. Th ere’s no requirement that all entities in a table be
structurally identical, as is the case for a relational database table.

Th ere are four main pieces of information in Figure 2. Th e fi rst
two, EMailAddress and PhoneNumber, are simply two strings we
want to store. Th e other two are the properties PartitionKey and
RowKey, which we discussed previously. A third property required
of all entities is Timestamp, which is used internally by the system
to facilitate optimistic concurrency.

Th e Timestamp column diff ers from the PartitionKey and RowKey
columns because it’s automatically populated by the WAS system.
In contrast, developers are required to insert into the PartitionKey
and RowKey properties.

To summarize, the importance of PartitionKey and RowKey is
mostly about query performance and transactional consistency. We
explained query performance previously and it’s largely dependent
on the way the data is partitioned across storage nodes. But Partition-
Keys also allow you to make changes to multiple entities as part of the
same operation, allowing developers to roll back changes should any
single operation fail. Th e requirement is that entities are part of the
same entity group, which really means that entities share the same
PartitionKey. Transactions are supported within a single PartitionKey.

Th e code in Figure 3 illustrates instantiating an entity of type
EmailAddressEntity (from Figure 2) and then inserting that
entity into EmailAddressTable. Note that we’re using the local stor-
age emulator. Th is lets us run and test our code and data locally
without connecting to a datacenter.

You can view your data in the Server Explorer pane in Visual Studio
2012, as shown in Figure 4, which makes the process of writing and
testing code much easier. You can also attach Server Explorer to a real
instance of your Windows Azure Tables in a datacenter.

Th e code in Figure 5 illustrates how to query the data.
The code performs a simple query using PartitionKey and

RowKey. Note that you can construct fairly complex queries using
these fi lters because you can join them together in an ad hoc fash-
ion. We build a query object using the combined fi lter. Th e fi nal
step is to simply execute the query and do whatever is needed with
the EmailAddressEntity. Th e WAS Client Library greatly simplifi es
both the Create/Read/Update/Delete (CRUD) operations as well
as the needed queries.

What’s Inside
We thought it might be helpful to take a slightly deeper look at
the internal architecture of the WAS system, shown in Figure 6.
Much of the following narrative is based on Brad Calder’s paper
referenced later in this article.

WAS is composed of a series of storage stamps across its eight
datacenters. A storage stamp is a cluster of about 10 to 20 racks of
storage nodes. Each rack sits in a separate fault domain. Every rack
comes with redundant networking and power. Each storage stamp
contains approximately 30PBs of raw storage.

To keep costs low, it’s important to keep these storage stamps
running above 70 percent utilization, which is measured in terms
of capacity, transactions and bandwidth. Going above 90 percent
is considered too high, though, as it leaves little headroom in the
event of rack failures, when the system needs to do more with less.

// Use the local storage emulator
var storageAccount = CloudStorageAccount.DevelopmentStorageAccount;
try
{
 // Create the table client
 CloudTableClient tableClient = storageAccount.CreateCloudTableClient();
 CloudTable emailAddressTable =
 tableClient.GetTableReference("EmailAddressTable");

 // Retrieve the entity with partition key of "microsoft.com"
 // and row key of "bterkaly"
 TableOperation retrieveBrunoEmail =
 TableOperation.Retrieve<EmailAddressEntity>(
 "microsoft.com", "bterkaly");

 // Retrieve entity
 EmailAddressEntity specificEntity =
 (EmailAddressEntity)emailAddressTable.Execute(retrieveBrunoEmail).Result;
 TableResult result =
 emailAddressTable.Execute(TableOperation.Retrieve<EmailAddressEntity>(
 "microsoft.com", "bterkaly"));

 // Pull the data out that you searched for
 // Do something with emailAddress and phoneNumber
 string emailAddress = specificEntity.EMailAddress;
 string phoneNumber = specificEntity.PhoneNumber;

}
catch (Exception ex)
{
 // Put the message in the Web page title (for testing purposes)
 // Real error messages should go to a proper log file
 this.Title = ex.Message.ToString();
 throw;
}

Figure 5 Querying Windows Azure Tables

Untitled-1 1 3/5/13 2:44 PM

http://marketdash.componentone.com/redirect.ashx?rdtl=1782

msdn magazine24 Windows Azure Insider

Storage Location Service
Th e developer has no direct control over the Storage Location Service
(SLS). At the account level, not only does the SLS map account name-
spaces across all stamps, it’s also responsible for disaster recovery,
storage account allocation and load balancing. Th e SLS greatly sim-
plifi es the ability to add new storage in a datacenter. It can allocate
new storage accounts to the new stamps for customers as well as
load balance existing storage accounts from older stamps to the new
stamps. All of these operations by the SLS are done automatically.

Let’s look a little closer at the three layers that make up a storage
stamp—stream, partition and front end (FE)—starting from the bottom.

The stream layer provides an internal interface the partition
layer uses to read and write large fi les, and is responsible for core
replication functionality. Th e stream layer also handles opening,

closing, deleting, renaming, reading, appending to and concate-
nating these large fi les. It doesn’t concern itself with the semantics
of objects that are in the stream of data.

Th e partition layer provides the data model for the diff erent
types of objects stored (tables, blobs, queues); the logic and seman-
tics to process the diff erent types of objects; a massively scalable
namespace for the objects; load balancing to access objects across
the available partition servers; transaction ordering and strong
consistency for access to objects; and the geo-replication of data
objects from the primary to the secondary region.

The partition layer also encapsulates an important internal
data structure called an Object Table. Th ere are several versions
of the Object Table, including the Entity Table, which stores all
entity rows for all accounts in the stamp. It’s used to publicly expose
Windows Azure Table data abstraction. The object table also
interacts with the partition layer to ensure data consistency by ordering
transactions with blobs, tales and queues.

The FE layer is composed of a set of stateless servers that take
incoming requests. Upon receiving a request, an FE looks up the
AccountName, authenticates and authorizes the request, then
routes the request to the appropriate partition server in the parti-
tion layer (based on the PartitionName). To enhance performance,
the FE maintains and caches a Partition Map, so that routing to the
appropriate partition server is expedited on frequently accessed data.

Wrapping Up
In this article, we’ve provided some high-level, actionable
guidelines as well as some of the architectural details on how the
WAS system is designed, and in particular how Windows Azure
Tables can help you manage your data. We’d like to thank Brad
Calder for some of his insights shared in “Windows Azure Storage:
A Highly Available Cloud Storage Service with Strong Consistency,”
a recently published paper for the 23rd ACM Symposium on
Operating Systems Principles (SOSP). You can download his paper
at bit.ly/tMIPus.

BRUNO TERKALY is a developer evangelist for Microsoft . His depth of knowledge
comes from years of experience in the fi eld, writing code using a multitude of
platforms, languages, frameworks, SDKs, libraries and APIs. He spends time
writing code, blogging and giving live presentations on building cloud-based
applications, specifically using the Windows Azure platform. Terkaly is also
the author of two Windows Store apps, Teach Kids Car Colors and Teach Kids
Music. You can read his blog at blogs.msdn.com/brunoterkaly.

RICARDO VILLALOBOS is a seasoned soft ware architect with more than 15 years of
experience designing and creating applications for companies in the supply chain
management industry. Holding different technical certifications, as well as a
master’s degree in business administration from the University of Dallas, he works
as a cloud architect in the Windows Azure CSV incubation group for Microsoft .

Terkaly and Villalobos jointly present at large industry conferences. They
encourage readers to contact them for availability. Terkaly can be reached at bterkaly@
microsoft .com and Villalobos can be reached at Ricardo.Villalobos@microsoft .com.

THANKS to the following technical experts for reviewing this article:
Brad Calder (Microsoft) and Jai Haridas (Microsoft)

Figure 6 Windows Azure Storage Internals

Geo-
Replication

Data Access

Storage Stamp

Stream Layer

Intra-Stamp Replication

Storage Stamp

Stream Layer

Intra-Stamp Replication

LB

Partition Layer

Front Ends

LB

Partition Layer

Front Ends

Storage Location Service

Back in late October 2012, Microsoft released a new
client-side storage library—Windows Azure Storage (WAS) Client
Library 2.0—which dramatically improves usability, extensibility
and performance when interacting with Windows Azure Tables.
You can install the WAS Client Library 2.0 with NuGet from
bit.ly/YFeHuw. This can be done within Visual Studio 2012. For a
detailed look at some of the great new features, visit bit.ly/VQSaUv.

The new library includes some new approaches that improve
functionality with respect to usability, extensibility and performance.
One nice feature saves you from the hassle of worrying about
serialization and deserialization logic when working with Plain Old
C# Objects (POCO). Another cool feature is the EntityResolver,
which allows you to perform client-side projections, so you can
create objects on the fl y based on only the information you’re
interested in. In short, you can convert directly from table entity
data to a client object type without a separate table entity class
type that deserializes every property individually. Another
powerful technology is the IQueryable interface, which gives you
an expressive way to defi ne complex LINQ queries.

Windows Azure Storage Client Library 2.0

www.bit.ly/YFeHuw
www.bit.ly/VQSaUv
www.bit.ly/tMIPus
http://blogs.msdn.com/brunoterkaly
mailto:bterkaly@microsoft.com
mailto:bterkaly@microsoft.com
mailto:Ricardo.Villalobos@microsoft.com

Untitled-1 1 3/5/13 2:46 PM

http://marketdash.componentone.com/redirect.ashx?rdtl=1784

Intense Take-Home Training for
Developers, Software Architects
and Designers

Visual Studio Live! is thrilled to be back in Chicago! Register for your
backstage pass to the Microsoft Platform and 4 days of unbiased
.NET training led by industry experts and Microsoft insiders.

In

a

I
D
a

YOURR BAACCKSTAAGEE PPASS TOO TTHE MICCROSSOFTT PLAATFORMMM

Sweet
127.0.0.1
Chicago!

PRODUCED BYSUPPORTED BY

magazine

GOLD SPONSOR

Untitled-3 2 2/27/13 10:29 AM

www.vslive.com/chicago

REGISTER
TODAY!
USE PROMO CODE CHAPR4

vslive.com/chicago

Chicago May
13-16, 2013

HILTON CHICAGO

TURN THE PAGE FOR
MORE EVENT DETAILS

Untitled-3 3 2/27/13 10:29 AM

www.vslive.com/chicago

YOURR BAACKKSTAGGE PAASS TTO TTHHE MICROOSOFFT PLLATFFORMM

AGENDA AT-A-GLANCE
TOPICS WILL INCLUDE:

ASP.NET

Azure / Cloud Computing

Cross-Platform Mobile

Data Management

HTML5 / JavaScript

SharePoint / Of ce

Windows 8 / WinRT

WPF / Silverlight

Visual Studio 2012 /
.NET 4.5

CONNECT WITH
VISUAL STUDIO LIVE!

twitter.com/vslive – @VSLive

facebook.com – Search “VSLive”

linkedin.com – Join the
“VSLive” group!

Windows 8 /
WinRT

WPF/
Silverlight ASP.NET Visual Studio

2012 / .NET
SharePoint /

Of ce

START TIME END TIME Visual Studio Live! Pre-Conference Workshops: Monday, May 13, 2
7:30 AM 9:00 AM Pre-Conference Workshop Registration

9:00 AM 6:00 PM MW01 - Workshop: Build a Windows 8 Application in a Day -
Rockford Lhotka

START TIME END TIME Visual Studio Live! Day 1: Tuesday, May 14, 2013
7:00 AM 8:00 AM Registration

8:00 AM 9:00 AM Keynote: To Be Announced

9:15 AM 10:30 AM T01 - A Primer in Windows 8 Development
with WinJS - Philip Japikse

T02 - jQuery Fundamentals -
Robert Boedigheimer

10:45 AM 12:00 PM T05 - Windows 8 Style Apps - Design
Essentials - Billy Hollis

T06 - Hate JavaScript? Try
TypeScript. - Ben Hoelting

12:00 PM 1:30 PM Lunch

1:30 PM 2:45 PM T09 - MVVM in Practice aka “”Code
Behind””- Free XAML - Tiberiu Covaci

T10 - Tips for Building Multi-Touch
Enabled Web Sites - Ben Hoelting

3:00 PM 4:15 PM T13 - New XAML Controls in
Windows 8 - Billy Hollis

T14 - Beyond Hello World: A
Practical Introduction to Node.js -
Rick Garibay

4:15 PM 4:45 PM Networking Break

4:45 PM 6:00 PM T17 - Make Your App Alive with Tiles
and Noti cations - Ben Dewey

T18 - Build Speedy Azure
Applications with HTML5 and
Web Sockets Today - Rick Garibay

6:00 PM 7:30 PM Exhibitor Reception

START TIME END TIME Visual Studio Live! Day 2: Wednesday, May 15, 2013
7:00 AM 8:00 AM Registration

8:00 AM 9:00 AM Keynote: To Be Announced

9:15 AM 10:30 AM W01 - Building Your First Windows
Phone 8 Application - Brian Peek

W02 - What’s New in Azure for
Developers - Vishwas Lele

10:45 AM 12:00 PM W05 - Sharing Code Between Windows 8
and Windows Phone 8 Apps - Ben Dewey

W06 - In Depth Azure IaaS -
Vishwas Lele

12:00 PM 1:30 PM Round Table Lunch

1:30 PM 2:45 PM W09 - Connecting to Data from Windows
Phone 8 - Christopher Woodruff

W10 - Moving Web Apps to the
Cloud - Eric D. Boyd

3:00 PM 4:15 PM W13 - Building a Windows Runtime
Component with C# - Brian Peek

W14 - IaaS in Windows Azure with
Virtual Machines - Eric D. Boyd

4:15 PM 4:45 PM Networking Break

4:45 PM 6:00 PM W17 - Demystifying the Microsoft UI
Technology Roadmap - Brian Noyes

W18 - Bringing Open Source to
Windows Azure: A Match Made in
Heaven - Jesus Rodriguez

6:30 PM 8:30 PM Blues after Dark at Buddy Guy’s Legends

START TIME END TIME Visual Studio Live! Day 3: Thursday, May 16, 2013
7:30 AM 8:00 AM Registration

8:00 AM 9:15 AM TH01 - Building Extensible XAML Client
Apps - Brian Noyes

TH02 - JavaScript, Meet Cloud:
Node.js on Windows Azure -
Sasha Goldshtein

9:30 AM 10:45 AM TH05 - Migrating from WPF or
Silverlight to WinRT - Rockford Lhotka

TH06 - Using Windows Azure to
Build the Next Generation of Mobile
Applications - Jesus Rodriguez

11:00 AM 12:15 PM TH09 - Managing the .NET Compiler -
Jason Bock

TH10 - Cloud Backends for Your
Mobile Apps: Windows Azure
Mobile Services and Parse -
Sasha Goldshtein

12:15 PM 1:30 PM Lunch

1:30 PM 2:45 PM TH13 - Understanding Dependency
Injection and Those Pesky Containers -
Miguel Castro

TH14 - Using Windows Azure for
Solving Identity Management
Challenges - Michael Collier

3:00 PM 4:15 PM TH17 - Static Analysis in .NET -
Jason Bock

TH18 - Elevating Windows Azure
Deployments - Michael Collier

4:30 PM 5:30 PM Conference Wrap-Up - Andrew Brust, Moderator, Rockford Lhotka, Miguel Castro, M

*Speakers and sessions subject to change

 2

 M

Untitled-3 4 2/27/13 10:29 AM

www.vslive.com/chicago
www.vslive.com/chicago

, 2

o, M

Scan the QR
code to register
or for more
event details.

Register at
vslive.com/chicago
Use Promo Code CHAPR4

Chicago May
13-16, 2013

HILTON CHICAGO

Azure / Cloud
Computing Data Management HTML5 /

JavaScript
Cross-Platform

Mobile

 2013 (Separate entry fee required)

MW02 - Workshop: SQL Server 2012 -
Andrew Brust & Leonard Lobel

MW03 - Workshop: Happy ALM with Visual Studio 2012
and Team Foundation Server 2012 - Brian Randell

T03 - Big Data-BI Fusion: Microsoft HDInsight &
MS BI - Andrew Brust

T04 - Microsoft Session To Be Announced

T07 - Getting to Know the BI Semantic Model -
Andrew Brust

T08 - IntelliTrace, What is it and How Can I Use it to My
Bene t? - Marcel de Vries

T11 - Session To Be Announced T12 - Team Foundation Server 2012 Builds: Understand,
Con gure, and Customize - Benjamin Day

T15 - Busy Developer’s Guide to MongoDB -
Ted Neward

T16 - Modern ALM and the DevOps Story -
Brian Randell

T19 - Busy Developer’s Guide to Cassandra -
Ted Neward

T20 - Patterns for Parallel Programming -
Tiberiu Covaci

W03 - SQL Server Data Tools - Leonard Lobel W04 - Design for Testability: Mocks, Stubs, Refactoring,
and User Interfaces - Benjamin Day

W07 - Working with Client-Side HTML5 Storage
Technologies - Gil Fink

W08 - Microsoft Session To Be Announced

W11 - LINQ Performance and Scalability -
Jim Wooley

W12 - Microsoft Session To Be Announced

W15 - OData - Oh Yeah - Gil Fink W16 - Build Modern Collaborative Solutions with Of ce
2013, “Napa”” Of ce 365 Development Tools, and
SharePoint 2013 - Brian Randell

W19 - Not Just a Designer: Code First and Entity
Framework - Gil Fink

W20 - Unit Testing in SharePoint - Jim Wooley

TH03 - Improving Web Performance -
Robert Boedigheimer

TH04 - Sharing Up to 80% of Code Building Mobile
Apps for iOS, Android, WP 8 and Windows 8 -
Marcel de Vries

TH07 - Controlling ASP.NET MVC4 -
Philip Japikse

TH08 - iOS Development Survival Guide for the
.NET Guy - Nick Landry

TH11 - MVC for WebForms Developers:
Comparing and Contrasting - Miguel Castro

TH12 - Session To Be Announced

TH15 - Creating Web Sites Using Visual Studio
LightSwitch - Michael Washington

TH16 - Building Multi-Platform Mobile Apps with Push
Noti cations - Nick Landry

TH19 - Building Single Page Web Applications
with HTML5, ASP.NET MVC4 and Web API -
Marcel de Vries

TH20 - Create HTML5 Mobile Websites with Visual
Studio LightSwitch - Michael Washington

 Marcel de Vries, Jason Bock

“ Several of the presentations
were cutting edge – they
would have insider tips that
you can’t easily search for or
wouldn’t know to look for.”
John Kilic
Web Application Developer
Grand Canyon University

Visual Studio Live! Chicago
Blues After Dark Reception at
Buddy Guy's Legends

Untitled-3 5 2/27/13 10:29 AM

www.vslive.com/chicago
www.vslive.com/chicago

msdn magazine30

Ready to write your fi rst Windows Store app? Or have you
already been writing Windows Store apps using HTML/JavaScript,
C# or Visual Basic, and you’re curious about the C++ story?

With Visual C++ component extensions (C++/CX), you can take
your existing skills to new heights by combining C++ code with the
rich set of controls and libraries provided by the Windows Runtime
(WinRT). And if you’re using Direct3D, you can really make your
apps stand out in the Windows Store.

When some people hear about C++/CX they think they have to
learn a whole new language, but the fact is that for the vast majority
of cases you’ll be dealing with just a handful of nonstandard language
elements such as the ^ modifi er or the ref new keywords. Further-
more, you’ll only use these elements at the boundary of your app,
that is, only when you need to interact with the Windows Runtime.

Your portable ISO C++ will still act as the workhorse of your app.
Perhaps best of all, C++/CX is 100 percent native code. Although
its syntax resembles C++/Common Language Infrastructure (CLI),
your app won’t bring in the CLR unless you want it to.

Whether you have existing C++ code that was already tested or
just prefer the fl exibility and performance of C++, rest assured that
with C++/CX you don’t have to learn a whole new language. In this
article you’ll learn what makes the C++/CX language extensions
for building Windows Store apps unique, and when to use C++/
CX to build your Windows Store app.

Why Choose C++/CX?
Every app has its own unique set of requirements, just as every
developer has his own unique skills and abilities. You can success-
fully create a Windows Store app using C++, HTML/JavaScript or
the Microsoft .NET Framework, but here are some reasons why
you might choose C++:

• You prefer C++ and have existing skills.
• You want to take advantage of code that you’ve already

written and tested.
• You want to use libraries such as Direct3D and C++ AMP

to fully unleash the hardware’s potential.
Th e answer doesn’t have to be one or the other—you can also mix

and match languages. For example, when I wrote the Bing Maps
Trip Optimizer sample (bit.ly/13hkJhA), I used HTML and JavaScript
to defi ne the UI and C++ to perform the background processing.
Th e background process essentially solves the “traveling salesman”
problem. I used the Parallel Patterns Library (PPL) (bit.ly/155DPtQ)
in a WinRT C++ component to run my algorithm in parallel on all
available CPUs to improve overall performance. Th is would have
been diffi cult to do from just JavaScript alone!

COMPONENT EX T ENS IONS

A Tour of C++/CX
Thomas Petchel

This article discusses:
• When to use C++/CX

• How C++/CX works

• A sample tic-tac-toe game

• Creating the game UI

• Creating a game library

• Using interfaces

• Using the Windows Runtime C++ Template Library

Technologies discussed:
C++/CX, Windows Runtime

Code download available at:
archive.msdn.microsoft.com/mag201304/C++CX

http://archive.msdn.microsoft.com/mag201304/C++CX
www.bit.ly/13hkJhA
www.bit.ly/155DPtQ

Untitled-1 1 2/26/13 3:20 PM

www.aspose.com

msdn magazine32 Component Extensions

How Does C++/CX Work?
At the heart of any Windows Store app is the Windows Runtime.
At the heart of the Windows Runtime is the application binary
interface (ABI). WinRT libraries define metadata through
Windows metadata (.winmd) files. A .winmd file describes the
public types that are available, and its format resembles the format
that’s used in .NET Framework assemblies. In a C++ component,
the .winmd fi le contains only metadata; the executable code resides
in a separate fi le. Th is is the case for the WinRT components that
are included with Windows. (For .NET Framework languages,
the .winmd fi le contains both the code and the metadata, just like
a .NET Framework assembly.) You can view this metadata from
the MSIL Disassembler (ILDASM) or any CLR metadata reader.
Figure 1 shows what Windows.Foundation.winmd, which contains
many of the fundamental WinRT types, looks like in ILDASM.

Th e ABI is built using a subset of COM to enable the Windows
Runtime to interact with multiple languages. In order to call
WinRT APIs, the .NET Framework and JavaScript require projec-
tions that are specifi c to each language environment. For example,
the underlying WinRT string type, HSTRING, is represented
as System.String in .NET, a String object in JavaScript and the
Platform::String ref class in C++/CX.

Although C++ can directly interact with COM, C++/CX aims
to simplify this task through:

• Automatic reference counting. WinRT objects are reference-
counted and typically heap-allocated (no matter which
language uses them). Objects are destroyed when their
reference count reaches zero. The benefit that C++/CX
off ers is that the reference counting is both automatic and
uniform. Th e ^ syntax enables both of these.

• Exception handling. C++/CX relies on exceptions, and
not error codes, to indicate failures. Underlying COM
HRESULT values are translated to WinRT exception types.

• An easy-to-use syntax for consuming the WinRT APIs,
while still maintaining high performance.

• An easy-to-use syntax for creating new WinRT types.
• An easy-to-use syntax for performing type conversion,

working with events and other tasks.
And remember, although C++/CX borrows the C++/CLI

syntax, it produces pure native code. You can also interact with the
Windows Runtime by using the Windows Runtime C++ Template
Library (WRL), which I’ll introduce later. However, I hope that
aft er using C++/CX you’ll agree it makes sense. You get the per-
formance and control of native code, you don’t have to learn COM
and your code that interacts with the Windows Runtime will be
as succinct as possible—letting you focus on the core logic that
makes your app unique.

C++/CX is enabled through the /ZW compiler option. This
switch is set automatically when you use Visual Studio to create a
Windows Store project.

A Tic-Tac-Toe Game
I think the best way to learn a new language is to actually build
something with it. To demonstrate the most common parts of
C++/CX, I wrote a Windows Store app that plays tic-tac-toe (or
depending on where you grew up, you might call it “noughts and
crosses” or “Xs and Os”).

For this app, I used the Visual Studio Blank App (XAML) template.
I named the project TicTacToe. Th is project uses XAML to defi ne the
app’s UI. I won’t focus much on the XAML. To learn more about that
side of things, see Andy Rich’s article, “Introducing C++/CX and XAML”
(msdn.microsoft.com/magazine/jj651573), in the 2012 Windows 8 Special Issue.

I also used the Windows Runtime Component template to
create a WinRT component that defines the logic of the app. I
love code reuse, so I created a separate component project so that
anyone can use the core game logic in any Windows Store app
using XAML and C#, Visual Basic, or C++.

Figure 2 shows what the app looks like.
When I worked on the Hilo C++ project (bit.ly/Wy5E92), I fell in love

with the Model-View-ViewModel (MVVM) pattern. MVVM is an
architectural pattern that helps you separate the appearance, or view,
of your app, from its underlying data, or model. Th e view model con-
nects the view to the model. Although I didn’t use full-on MVVM
for my tic-tac-toe game, I found that using data binding to separate
the UI from app logic made the app easier to write, more readable
and easier to maintain in the future. To learn more about how we
used MVVM in the Hilo C++ project, see bit.ly/XxigPg.Figure 1 Inspecting Windows.Foundation.winmd with ILDASM

Although C++/CX borrows
the C++/CLI syntax, it produces

pure native code.

http://msdn.microsoft.com/magazine/jj651573
www.bit.ly/Wy5E92
www.bit.ly/XxigPg

33April 2013msdnmagazine.com

To connect the app to the WinRT
component, I added a reference to the
TicTacToeLibrary project from the TicTacToe
project’s Property Pages dialog.

By simply setting the reference, the TicTac-
Toe project has access to all of the public C++/
CX types in the TicTacToeLibrary project. You
don’t have to specify any #include directives
or do anything else.

Creating the TicTacToe UI
As I said earlier, I won’t go much into the
XAML, but in my vertical layout, I set up one
area to display the score, one for the main play
area and one to set up the next game (you can
see the XAML in the fi le MainPage.xaml in the accompanying code
download). Again, I used data binding pretty extensively here.

The definition of the MainPage class (MainPage.h) is shown
in Figure 3.

So what’s in MainPage.g.h? A .g.h file contains a compiler-
generated partial class defi nition for XAML pages. Basically, these
partial defi nitions defi ne the required base classes and member
variables for any XAML element that has the x:Name attribute.
Here’s MainPage.g.h:

namespace TicTacToe
{
 partial ref class MainPage :
 public ::Windows::UI::Xaml::Controls::Page,
 public ::Windows::UI::Xaml::Markup::IComponentConnector
 {
 public:
 void InitializeComponent();
 virtual void Connect(int connectionId, ::Platform::Object^ target);

 private:
 bool _contentLoaded;

 };
}

The partial keyword is important because it enables a type
declaration to span fi les. In this case, MainPage.g.h contains com-
piler-generated parts, and MainPage.h contains the additional
parts that I defi ne.

Notice the public and ref class keywords in the MainPage decla-
ration. One diff erence between C++/CX and C++ is the concept of
class accessibility. If you’re a .NET programmer, you’ll be familiar
with this. Class accessibility means whether a type or method is
visible in metadata, and therefore accessible from external com-
ponents. A C++/CX type can be public or private. Public means
that the MainPage class can be accessed outside of the module (for
example, by the Windows Runtime or by another WinRT com-
ponent). A private type can be accessed only inside the module.
Private types give you more freedom to use C++ types in public
methods, which isn’t possible with public types. In this case, the
MainPage class is public so that it’s accessible to XAML. I’ll look
at some examples of private types later.

Th e ref class keywords tell the compiler that this is a WinRT type
and not a C++ type. A ref class is allocated on the heap and its life-
time is reference-counted. Because ref types are reference-counted,
their lifetimes are deterministic. When the last reference to a ref

type object is released, its destructor is called
and the memory for that object is released.
Compare this to .NET, where lifetimes are
less deterministic and garbage collection is
used to free memory.

When you instantiate a ref type, you typi-
cally use the ^ (pronounced “hat”) modifi er.
Th e ^ modifi er is similar to a C++ pointer
(*), but it tells the compiler to insert code to
manage the object’s reference count automat-
ically and delete the object when its reference
count reaches zero.

To create a plain old data (POD) structure,
use a value class or value struct. Value types have
a fi xed size and consist of fi elds only. Unlike

ref types, they have no properties. Windows::Foundation::DateTime
and Windows::Foundation::Rect are two examples of WinRT value
types. When you instantiate value types, you don’t use the ̂ modifi er:

Windows::Foundation::Rect bounds(0, 0, 100, 100);

Also notice that MainPage is declared as sealed. The sealed
keyword, which is similar to the C++11 fi nal keyword, prevents
further derivation of that type. MainPage is sealed because any
public ref type that has a public constructor must also be declared
as sealed. Th is is because the runtime is language-agnostic and not
all languages (for example, JavaScript) understand inheritance.

Now direct your attention to the MainPage members. The
m_processor member variable (the GameProcessor class is defi ned
in the WinRT component project—I’ll talk about that type later) is pri-
vate simply because the MainPage class is sealed and there’s no possibility
that a derived class can use it (and, in general, data members should be
private when possible to enforce encapsulation). Th e OnNavigatedTo
method is protected because the Windows::UI::Xaml::Controls::Page
class, from which MainPage derives, declares this method as pro-
tected. Th e constructor and the Processor property must be accessed
by XAML, and therefore both are public.

You’re already familiar with public, protected and private access
specifi ers; their meanings in C++/CX are the same as in C++. To
learn about internal and other C++/CX specifi ers, see bit.ly/Xqb5Xe.
You’ll see an example of internal later on.

A ref class may have only publicly accessible types in its public
and protected sections—that is, only primitive types, public ref or
public value types. Conversely, a C++ type can contain ref types
as member variables, in method signatures and in local function
variables. Here’s an example from the Hilo C++ project:

std::vector<Windows::Storage::IStorageItem^> m_createdFiles;

Th e Hilo team uses std::vector and not Platform::Collections::Vector
for this private member variable because we don’t expose the col-
lection outside of the class. Using std::vector helps us use C++ code
as much as possible and makes its intention clear.

Moving on to the MainPage constructor:
MainPage::MainPage() : m_processor(ref new TicTacToeLibrary::GameProcessor())
{
 InitializeComponent();
 DataContext = m_processor;
}

I use the ref new keywords to instantiate the GameProcessor
object. Use ref new instead of new to construct WinRT reference

Figure 2 The TicTacToe App

www.msdnmagazine.com

msdn magazine34 Component Extensions

type objects. When you’re creating objects in functions, you can
use the C++ auto keyword to reduce the need for specifying the
type name or use of ^:

auto processor = ref new TicTacToeLibrary::GameProcessor();

Creating the TicTacToe Library
Th e library code for the TicTacToe game contains a mixture of C++
and C++/CX. For this app, I pretended that I had some existing
C++ code that I’d already written and tested. I incorporated this
code directly, adding C++/CX code only to connect the internal
implementation to XAML. In other words, I used C++/CX only
to bridge the two worlds together. Let’s walk through some of the
important parts of the library and highlight any C++/CX features
not already discussed.

Th e GameProcessor class serves as the data context for the UI
(think view model if you’re familiar with MVVM). I used two
attributes, BindableAttribute and WebHostHiddenAttribute, when
declaring this class (like .NET, you can omit the “Attribute” part
when you declare attributes):

[Windows::UI::Xaml::Data::Bindable]
[Windows::Foundation::Metadata::WebHostHidden]
public ref class GameProcessor sealed : public Common::BindableBase

Th e BindableAttribute produces metadata that tells the Windows
Runtime that the type supports data binding. Th is ensures that
all the public properties of the type are visible to the XAML
components. I derive from BindableBase to implement the func-
tionality required to make binding work. Because BindableBase
is intended for use by XAML and not JavaScript, it uses the
WebHost HiddenAttribute (bit.ly/ZsAOV3) attribute. Per convention,
I also marked the GameProcessor class with this attribute to
essentially hide it from JavaScript.

I separated GameProcessor’s properties into public and internal
sections. Th e public properties are exposed to XAML; the internal
properties are exposed only to other types and functions in the
library. I felt that making this distinction helps make the intent of
the code more obvious.

One common property usage pattern is binding collections to XAML:
property Windows::Foundation::Collections::IObservableVector<Cell^>^ Cells
{
 Windows::Foundation::Collections::IObservableVector<Cell^>^ get()
 { return m_cells; }
}

Th is property defi nes the model data for the cells that appear on
the grid. When the value of Cells changes, the XAML is updated
automatically. Th e type of the property is IObservableVector, which
is one of several types defi ned specifi cally for C++/CX to enable
full interoperability with the Windows Runtime. Th e Windows
Runtime defi nes language-independent collection interfaces, and
each language implements those interfaces in its own way. In C++/
CX, the Platform::Collections namespace provides types such as
Vector and Map that provide concrete implementations for these
collections interfaces. Th erefore, I can declare the Cells property
as IObservableVector but back that property by a Vector object,
which is specifi c to C++/CX:

Platform::Collections::Vector<Cell^>^ m_cells;

So when do you use Platform::String and Platform::Collections
collections versus the standard types and collections? For example,
should you use std::vector or Platform::Collections::Vector to store

your data? As a rule of thumb, I use Platform functionality when I
plan to work primarily with the Windows Runtime, and standard
types such as std::wstring and std::vector for my internal or com-
putationally intensive code. You can also easily convert between
Vector and std::vector when you need to. You can create a Vector
from a std::vector or you can use to_vector to create a std::vector
from a Vector:

std::vector<int> more_numbers =
 Windows::Foundation::Collections::to_vector(result);

Th ere’s a copy cost associated when marshaling between the
two vector types, so again, consider which type is appropriate in
your code.

Another common task is converting between std::wstring and
Platform::String. Here’s how:

// Convert std::wstring to Platform::String.
std::wstring s1(L"Hello");
auto s2 = ref new Platform::String(s1.c_str());
// Convert back from Platform::String to std::wstring.
// String::Data returns a C-style string, so you don’t need
// to create a std::wstring if you don’t need it.
std::wstring s3(s2->Data());
// Here's another way to convert back.
std::wstring s4(begin(s2), end(s2));

Th ere are two interesting points to note in the GameProcessor
class implementation (GameProcessor.cpp). First, I use only stan-
dard C++ to implement the checkEndOfGame function. Th is is
one place where I wanted to illustrate how to incorporate existing
C++ code that I’d already written and tested.

Th e second point is the use of asynchronous programming.
When it’s time to switch turns, I use the PPL task class to process
the computer players in the background, as shown in Figure 4.

If you’re a .NET programmer, think of task and its then method
as the C++ version of async and await in C#. Tasks are available
from any C++ program, but you’ll use them throughout your C++/
CX code to keep your Windows Store app fast and fl uid. To learn
more about async programming in Windows Store apps, read
Artur Laksberg’s February 2012 article, “Asynchronous Program-
ming in C++ Using PPL” (msdn.microsoft.com/magazine/hh781020), and
the MSDN Library article at msdn.microsoft.com/library/hh750082.

Th e Cell class models a cell on the game board. Two new things
that this class demonstrates are events and weak references.

#pragma once

#include "MainPage.g.h"

namespace TicTacToe
{
 public ref class MainPage sealed
 {
 public:
 MainPage();

 property TicTacToeLibrary::GameProcessor^ Processor
 {
 TicTacToeLibrary::GameProcessor^ get() { return m_processor; }
 }
 protected:
 virtual void OnNavigatedTo(
 Windows::UI::Xaml::Navigation::NavigationEventArgs^ e) override;
 private:
 TicTacToeLibrary::GameProcessor^ m_processor;
 };
}

Figure 3 The Defi nition of the MainPage Class

www.bit.ly/ZsAOV3
http://msdn.microsoft.com/magazine/hh781020
http://msdn.microsoft.com/library/hh750082

Untitled-1 1 11/26/12 3:02 PM

www.xceed.com

msdn magazine36 Component Extensions

Th e grid for the TicTacToe play area consists of Windows::UI::
Xaml::Controls::Button controls. A Button control raises a Click event,
but you can also respond to user input by defi ning an ICommand
object that defi nes the contract for commanding. I use the ICom-
mand interface instead of the Click event so that Cell objects can
respond directly. In the XAML for the buttons that defi ne the cells,
the Command property binds to the Cell::SelectCommand property:

<Button Width="133" Height="133" Command="{Binding SelectCommand}"
 Content="{Binding Text}" Foreground="{Binding ForegroundBrush}"
 BorderThickness="2" BorderBrush="White" FontSize="72"/>

I used the Hilo DelegateCommand class to implement the
ICommand interface. DelegateCommand holds the function to
call when the command is issued, and an optional function that
determines whether the command can be issued. Here’s how I set
up the command for each cell:

m_selectCommand = ref new DelegateCommand(
 ref new ExecuteDelegate(this, &Cell::Select), nullptr);

You’ll commonly use predefi ned events when doing XAML pro-
gramming, but you can also defi ne your own events. I created an
event that’s raised when a Cell object is selected. Th e GameProcessor
class handles this event by checking whether the game is over and
switching the current player if needed.

To create an event, you must fi rst create a delegate type. Th ink of
a delegate type as a function pointer or a function object:

delegate void CellSelectedHandler(Cell^ sender);

I then create an event for each Cell object:
event CellSelectedHandler^ CellSelected;

Here’s how the GameProcessor class subscribes to the event for
each cell:

for (auto cell : m_cells)
{
 cell->CellSelected += ref new CellSelectedHandler(
 this, &GameProcessor::CellSelected);
}

A delegate that’s constructed from a ̂ and a pointer-to-member
function (PMF) holds only a weak reference to the ̂ object, so this
construct won’t cause circular references.

Here’s how Cell objects raise the event when they’re selected:
void Cell::Select(Platform::Object^ parameter)
{
 (void)parameter;

 auto gameProcessor = m_gameProcessor.Resolve<GameProcessor>();
 if (m_mark == L'\0' && gameProcessor != nullptr &&
 !gameProcessor->IsThinking && !gameProcessor->CanCreateNewGame)
 {
 m_mark = gameProcessor->CurrentPlayer->Symbol;
 OnPropertyChanged("Text");

 CellSelected(this);
 }
}

What’s the purpose of the Resolve call in the preceding code?
Well, the GameProcessor class holds a collection of Cell objects,
but I want each Cell object to be able to access its parent Game-
Processor. If Cell held a strong reference to its parent—in other
words, a GameProcessor^—I’d create a circular reference. Circular
references can cause objects to never be freed because the mutual
association causes both objects to always have at least one refer-
ence. To avoid this, I create a Platform::WeakReference member
variable and set it from the Cell constructor (think very carefully
about lifetime management and what objects own what!):

Platform::WeakReference m_gameProcessor;

When I call WeakReference::Resolve, nullptr is returned if the
object no longer exists. Because GameProcessor owns Cell objects,
I expect the GameProcessor object to always be valid.

In the case of my TicTacToe game, I can break the circular reference
each time a new game board is created, but in general, I try to avoid
the need to break circular references because it can make code less
maintainable. Th erefore, when I have a parent-child relationship and
children need to access their parent, I use weak references.

Working with Interfaces
To distinguish between human and computer players, I created
an IPlayer interface with concrete implementations HumanPlayer
and ComputerPlayer. Th e GameProcessor class holds two IPlayer
objects—one for each player—and an additional reference to the
current player:

void GameProcessor::SwitchPlayers()
{
 // Switch player by toggling pointer.
 m_currentPlayer = (m_currentPlayer == m_player1) ? m_player2 : m_player1;

 // If the current player is computer-controlled, call the ThinkAsync
 // method in the background, and then process the computer's move.
 if (m_currentPlayer->Player == TicTacToeLibrary::PlayerType::Computer)
 {
 m_currentThinkOp =
 m_currentPlayer->ThinkAsync(ref new Vector<wchar_t>(m_gameBoard));
 m_currentThinkOp->Progress =
 ref new AsyncOperationProgressHandler<uint32, double>([this](
 IAsyncOperationWithProgress<uint32, double>^ asyncInfo, double value)
 {
 (void) asyncInfo; // Unused parameter

 // Update progress bar.
 m_backgroundProgress = value;
 OnPropertyChanged("BackgroundProgress");
 });

 // Create a task that wraps the async operation. After the task
 // completes, select the cell that the computer chose.
 create_task(m_currentThinkOp).then([this](task<uint32> previousTask)
 {
 m_currentThinkOp = nullptr;

 // I use a task-based continuation here to ensure this continuation
 // runs to guarantee the UI is updated. You should consider putting
 // a try/catch block around calls to task::get to handle any errors.
 uint32 move = previousTask.get();

 // Choose the cell.
 m_cells->GetAt(move)->Select(nullptr);

 // Reset the progress bar.
 m_backgroundProgress = 0.0;
 OnPropertyChanged("BackgroundProgress");

 }, task_continuation_context::use_current());
 }
}

Figure 4 Using the PPL Task Class to Process Computer Players
in the Background

I try to avoid the need to break
circular references because it can

make code less maintainable.

37April 2013msdnmagazine.com

IPlayer^ m_player1;
IPlayer^ m_player2;
IPlayer^ m_currentPlayer;

Figure 5 shows the IPlayer interface.
Because the IPlayer interface is private, why didn’t I just use C++

classes? To be honest, I did it to show how to create an interface and
how to create a private type that isn’t published to metadata. If I
were creating a reusable library, I might declare IPlayer as a public
interface so other apps could use it. Otherwise, I might choose to
stick with C++ and not use a C++/CX interface.

The ComputerPlayer class implements ThinkAsync by per-
forming the minimax algorithm in the background (see the fi le
ComputerPlayer.cpp in the accompanying code download to
explore this implementation).

Minimax is a common algorithm when creating artifi cial intel-
ligence components for games such as tic-tac-toe. You can learn
more about minimax in the book, “Artifi cial Intelligence: A Modern
Approach” (Prentice Hall, 2010), by Stuart Russell and Peter Norvig.

I adapted Russell and Norvig’s minimax algorithm to run in par-
allel by using the PPL (see minimax.h in the code download). Th is
was a great opportunity to use pure C++11 to write the processor-
intensive part of my app. I’ve yet to beat the computer and have never
seen the computer beat itself in a computer-versus-computer game.
I admit this doesn’t make for the most exciting game, so here’s your
call to action: Add additional logic to make the game winnable. A
basic way to do this would be to have the computer make random
selections at random times. A more sophisticated way would be to
have the computer purposely choose a less-optimal move at random
times. For bonus points, add a slider control to the UI that adjusts
the game’s diffi culty (the less diffi cult, the more the computer either
chooses a less-optimal move or at least a random one).

For the HumanPlayer class, Th inkAsync has nothing to do, so I
throw Platform::NotImplementedException. Th is requires that I
test the IPlayer::Player property fi rst, but it saves me a task:

IAsyncOperationWithProgress<uint32, double>^
 HumanPlayer::ThinkAsync(IVector<wchar_t>^ gameBoard)
{
 (void) gameBoard;

 throw ref new NotImplementedException();
}

The WRL
Th ere’s a great sledgehammer available in your toolbox for when
C++/CX doesn’t do what you need or when you prefer to work

directly with COM: the WRL. For example, when you create a
media extension for Microsoft Media Foundation, you must create
a component that implements both COM and WinRT interfaces.
Because C++/CX ref classes can only implement WinRT interfaces,
to create a media extension you must use the WRL because it
supports the implementation of both COM and WinRT interfaces.
To learn more about WRL programming, see bit.ly/YE8Dxu.

Going Deeper
At fi rst I had misgivings about C++/CX extensions, but they soon
became second nature, and I like them because they enable me to write
Windows Store apps quickly and use modern C++ idioms. If you’re
a C++ developer, I highly recommend you at least give them a shot.

I reviewed just some of the common patterns you’ll encounter when
writing C++/CX code. Hilo, a photo app using C++ and XAML, goes
deeper and is much more complete. I had a great time working on
the Hilo C++ project, and I actually refer back to it oft en as I write
new apps. I recommend that you check it out at bit.ly/15xZ5JL.

THOMAS PETCHEL works as a senior programming writer in the Microsoft Developer
Division. He has spent the past eight years with the Visual Studio team creating
documentation and code samples for the developer audience.

THANKS to the following technical experts for reviewing this article:
Michael Blome (Microsoft) and James McNellis (Microsoft)

private interface class IPlayer
{
 property PlayerType Player
 {
 PlayerType get();
 }

 property wchar_t Symbol
 {
 wchar_t get();
 }

 virtual Windows::Foundation::IAsyncOperationWithProgress<uint32, double>^
 ThinkAsync(Windows::Foundation::Collections::IVector<wchar_t>^ gameBoard);
};

Figure 5 The IPlayer Interface

www.godiagram.com
www.msdnmagazine.com
www.bit.ly/YE8Dxu
www.bit.ly/15xZ5JL

GET INSIDE
THE IT CLASSROOM
 In-Depth Training for IT Pros

LAS VEGAS
Sept 30-Oct 4, 2013
The Tropicana, Las Vegas

YEARS OF IT EDUCATION

TechMentor is returning to Las Vegas for 5 days of information-
packed sessions and workshops! Surrounded by your fellow
IT professionals, you will receive immediately usable education
that will keep you relevant in the workforce.

Untitled-6 2 3/4/13 2:50 PM

www.techmentorevents.com/lasvegas

Register today and get inside
the IT classroom! There’s a
lot of knowledge out there just
waiting for you – TechMentor
is an experience you won’t
want to miss.

Save
$300!

Register before July 31
Use Promo Code TMLVAPR

T
H

E
IT

 CLASSROO
M

 Windows PowerShell

and Automation

 Cisco and Networking

Infrastructure

 Windows Server Management

 Windows Client Management

 Cloud and Virtualization

 Identity, Access Management

and Security

 Performance Tuning and

Troubleshooting

 Mobility and BYOD

 Messaging and Collaboration

 Microsoft Certifi cation Training

TechMentor session topics include:TechMentor session topics include:

TECHMENTOREVENTS.COM/LASVEGAS

PRODUCED BYSUPPORTED BY

Untitled-6 3 3/4/13 2:50 PM

www.techmentorevents.com/lasvegas

msdn magazine40

This article is Part 3 in a series of in-depth walkthroughs of
the JavaScript API for Offi ce. Th is article continues the examination
of key aspects of the API, focusing on data binding and support for
working with custom XML parts. Part 1, “Exploring the New JavaScript
API for Offi ce” (msdn.microsoft.com/magazine/jj891051), provides a broad
overview of the object model. Part 2, “Exploring the JavaScript API
for Offi ce: Data Access and Events” (msdn.microsoft.com/ magazine/jj991976),
looks closely at the important concept of how to get fi le content and

conducts a thorough review of the Event model. Following this article,
Part 4 will focus solely on the third type of app for Offi ce: mail apps.

Th roughout this series, we oft en make reference to the JavaScript
API for Offi ce reference documentation. You can fi nd the offi cial
documentation, code samples and community resources at
the Apps for Offi ce and SharePoint Developer Preview page on
MSDN (dev.offi ce.com).

Data Binding in an App for Offi ce
Data binding provides close integration between a specifi c region of
data in the document and the app. Th e data in the region is bound
to a named object in the app so that the app can access the data
in the named region, even if the user has selected something else.

Once created, the binding persists even if the region is moved on
the page (in Word) or copied to another worksheet (in Excel). For
example, a binding to a table persists even if it’s renamed by the user.

When the data in the region is changed, the binding raises an
event into which the app can hook. From this event, the app can
get to the data that has changed and react appropriately.

Bindings and the “View” of an App Certainly, the data binding
in an app for Offi ce gives an app direct access to a set of data within
the Office file, thus making it easier for the app to analyze that
data without relying on direct action from the user. Yet data bind-
ing does more than just allow for targeted data access—it allows
the developer to include the Offi ce fi le itself as a customizable and
integral component of the app.

MICROS OF T OFF IC E

Exploring the JavaScript
API for Offi ce:
Data Binding and
Custom XML Parts
Stephen Oliver and Eric Schmidt

This article discusses:
• Scenarios for using data binding in an app for Offi ce

• Using the Binding object and Bindings collection

• The Offi ce Open XML fi le format

• Using content controls with custom XML parts

• Mapping content controls to an element in the XML

• Using JavaScript with custom XML parts

• Basics of the CustomXmlParts object

• Using CustomXmlParts methods

Technologies discussed:
JavaScript API for Offi ce

Code download available at:
bit.ly/ZaXvaG

http://msdn.microsoft.com/magazine/jj891051
http://msdn.microsoft.com/magazine/jj991976
www.bit.ly/ZaXvaG
http://dev.office.com

41April 2013msdnmagazine.com

Many apps for Offi ce present their users with an interface con-
tained solely within the confi nes of the task pane or content app
UI—and there’s nothing wrong with that. Yet, in a very simple sense,
the data and its presentation within the Offi ce fi le is itself a “view”
of the app. Users interact with their data within the Offi ce fi le. Th ey
enter new data, change existing data and delete unnecessary data
within the content of the document. Offi ce applications present a
view of the data that users know and understand.

The data-binding capabilities in the JavaScript API for Office
allow you to leverage the view of the data that the Offi ce application
provides in an app. You, the developer, can develop an “interface”
for your app using what’s already provided to you in Offi ce. In this
way, you can style the view of your app using the out-of-the-box
features of the Offi ce application. Th e data binding then provides
the sinews that connect the view of the app to the business logic
“model” contained in the JavaScript fi les.

Of course, the reverse is true, as well. You can use the Offi ce fi le
as your data source, storing the content of the data model. You can
then use the app to provide a view of the data. With the fl exibility
of bindings, you can apply the Model-View-Controller (MVC)
pattern to an app and Offi ce fi le as fi ts your needs.

Scenarios for Using Bindings Without setting a hard limit on
the creativity of developers, an app can use bindings in any combi-
nation of three generalized ways:

• Th e app reacts when the user changes the data in the region.
• The app picks up the data in the region, analyzes it, and

presents the user with options for modeling or submitting
the data.

• Th e app pushes data from an external data source into the
bound region.

Take, for example, a simple stock ticker app inserted into an Excel
workbook, where one column in the workbook contains stock sym-
bols and another contains current stock values. With data binding,
an app could bind to the column with the stock symbols, picking

up the stock symbols in the column. Th e app could then subscribe
to changes in the price of those stocks via a Web service and parse
the results sent from the service. Finally, the app could bind to the
price column in the worksheet and update the values in real time.

We’ll do just that—create a stock ticker workbook—in the next
section as we examine the Binding object.

Using the Binding Object Th e underlying magic of data binding
is contained in the Bindings collection and the Binding object.

• The Bindings collection represents all of the bindings
created between the Offi ce fi le and the app for Offi ce. An app
doesn’t have access to any bindings created by other apps.

• Th e Binding object represents one named binding between
a region in the Office file and the app. It exposes several
members for getting, reading, and setting data, and reacting
to changes in the bound region.

We’ll look more closely at these objects as we build the stock
ticker app.

Before we go any further, let’s take a quick look at the data.
Figure 1 shows how the view of this app looks. As you can see,
we’re using fi ctitious stock symbols for demonstration purposes.

 Also, we’ve already added some “intelligence” to this workbook.
Th e region of data to which we want to bind has been formatted as
a table and named “Stocks.” A custom formula has been added to
the values in the right-hand column to compare the other values
in the table. We also applied conditional formatting to the table to
make the icon sets appear in the right-hand column.

It’s worth noting that we’ve added this workbook to our solution
in Visual Studio 2012 so that we don’t have to re-create our table
each time we debug the app. To add the workbook to the solution,
right-click the app project in the solution (the fi rst project listed in
the Solution Explorer when using the default template), click Add
Existing Item and then select your workbook. Th en, in the prop-
erties for the app project, set the Start Action to your workbook
fi le. When debugging, you’ll need to insert the app manually into

your workbook (Insert tab | Apps
for Offi ce button).

When it’s initialized, the business
logic of the app needs to both set
the binding and then add an event
handler to the event of the bind-
ing, Office.EventType.Binding-
DataChanged. Figure 2 shows the
code. Notice that we’ve encapsulated
our code within a self-executing
anonymous function stored in the
StockTicker variable. Th e name of
the table on the spreadsheet, the
binding name and the binding
are all stored as class fi elds within
the StockTicker “class.” Th e Stock-
Ticker “class” exposes only a single
member: initializeBinding.

To establish a binding between
the app and the table in the work-
sheet, we can use one of several

Figure 1 A Table Named “Stocks” in an Excel Workbook with Formulas and Conditional
Formatting Applied

www.msdnmagazine.com

msdn magazine42 Microsoft Offi ce

diff erent methods of the Document class in the JavaScript API,
including addFromNamedItemAsync, addFromPromptAsync
and addFromSelectionAsync. (Note that addFromPromptAsync
is available only in Excel and the Excel Web App.)

Because we know the name of the region to which we want to
bind—it’s the table titled “Stocks” on Sheet1—we used the addFrom-
NamedItemAsync method to establish the binding. We passed in
the name of the table using Excel range notation (Sheet1!Stocks).
The results of this method call include a reference to the
binding itself, allowing us to store a reference to the binding in our
binding variable (class fi eld).

In our code, we’ve passed in the Offi ce.BindingType.Table value
for the bindingType parameter of the method. Th is specifi es that
we want to create a “Table” type of binding with our data, although
we also could’ve specifi ed a text or matrix type of binding. Binding
to the region as a table provides us with several benefi ts. For exam-
ple, if the user adds a new column or row to the table, the scope of
the bound region increases, too. Th at works the other way, as well.
Th e TableBinding object, which underlies the binding, exposes
properties for adding columns, adding rows and even deleting all
of the data in the table.

(See the section titled “Accessing Offi ce File Content from an
App for Offi ce” in the second article in this series for details about
the text and matrix data types in the JavaScript API for Offi ce.)

Our code then adds a handler to the BindingDataChanged event
of the binding. When the data changes in the bound region—that
is, when the user changes the data in the region—we want to call
a locally defined refreshData function to start the process that
updates the table. Also, because the table hasn’t yet been updated
with data from the data source, we’ll want to call refreshData aft er
the event handler has been added.

You’ll note that the addBindingsHandler function uses the
Offi ce.select method to get the binding, although we could’ve used
the Bindings.getByIdAsync method instead. Th e major diff erence
between the two methods is the level of access to the data returned
in the results. Th e Offi ce.select method returns a Binding object
promise to the calling code. If the method succeeds, the Binding
object returned has only a limited number of members available
for use. By selecting the binding using Offi ce.select, we can call
members from the Binding object immediately. Th is way, we don’t
have to add a callback to a function that gets the binding in order
to add a handler to the binding.

(You might be thinking that we could’ve just used the local “binding”
variable that captures the reference to the binding—and you’re right, we
could have. We’ve written this code as it is for demonstration purposes.)

Figure 3 displays the refreshData and getBindingData functions.
Th e refreshData function simply begins the chain of asynchronous calls
that gets the table data from the worksheet by calling getBindingData.
Th e getBindingData function contains a call to the Binding.getData-
Async method and returns the data as a TableData object.

In the call to getDataAsync shown in Figure 3, we could’ve spec-
ifi ed the data type to retrieve (or changed the data type) explicitly
by passing in an anonymous object, {coercionType: Offi ce.Coer-
cionType.Table}, for the options parameter. Because we haven’t
specifi ed a data type to retrieve, the getDataAsync call returns the
binding data in its original data type (a TableData object).

The TableData object, as we discussed in the second article,
provides more structure to the data that we’re working with—namely,
a header and a rows property that we can use to select data from the
table. In this example, we just need to get the stock symbols from
the fi rst column in the table. As you might recall, the rows property
stores the data in the table as an array of arrays, where each item
in the fi rst array corresponds to a row in the table.

When we work with a binding to a TableData object, we can specify
a subset of the rows and columns to get from the binding, using the
startRow and startColumn parameters. Both parameters specify
zero-based starting points for the data to extract from the table, where
the upper-left corner of the table is the point of origin. (Note that you
must use the startRow and startColumn parameters together or else
you’ll raise an exception.) Because we only need the fi rst column of data
from the table, we also pass in the columnCount parameter, set to 1.

Once we have that column of data, we push each value into
a one-dimensional array. In Figure 3, you see that we call a
getStockQuotes function that accepts the array of stock symbols as
an argument. In Figure 4, we use the getStockQuotes function to
retrieve data from a stock quote Web service. (For demonstration
purposes, we’ve left out the code for the Web service.) Aft er we’ve
parsed the results from the Web service, we call the locally defi ned
removeHandler method.

var StockTicker = (function () {

 var tableName = "Sheet1!Stocks",
 bindingName = "Stocks",
 binding;

 // Create the binding to the table on the spreadsheet.
 function initializeBinding() {
 Office.context.document.bindings.addFromNamedItemAsync(
 tableName,
 Office.BindingType.Table,
 { id: bindingName },
 function (results) {
 binding = results.value;
 addBindingsHandler(function () { refreshData(); });
 });
 }

 // Event handler to refresh the table when the
 // data in the table changes.
 var onBindingDataChanged = function (result) {
 refreshData();
 }

 // Add the handler to the BindingDataChanged event of the binding.
 function addBindingsHandler(callback) {
 Office.select("bindings#" + bindingName).addHandlerAsync(
 Office.EventType.BindingDataChanged,
 onBindingDataChanged,
 function () {
 if (callback) { callback(); }
 });
 }

 // Other member methods of this "class" ...

 return {
 initializeBinding: initializeBinding
 };

})();

Figure 2 Creating the Binding to the Excel Workbook and
Adding a Handler to the Data Changed Event in the Binding

The next generation of inspiring tools. Today.

Copyright 1998-2013 Developer Express Inc. All rights reserved. All trademarks are property of their respective owners.

Download your 30-day trial at
www.DevExpress.com

Now you think—game on!! The new tools in 12.2 help you envision and
create engaging applications for the Web that can be accessed by mobile
users on the go. And, with our Windows 8 XAML and JS tools you will begin
to create highly interactive applications that address your customer needs
today and build next generation touch enabled solutions for tomorrow.

You used to think "Impossible"

Your Apps, Any Device

Untitled-13 1 1/7/13 12:52 PM

http://www.DevExpress.com

msdn magazine44 Microsoft Offi ce

Th e removeHandler function calls the binding.removeHandler-
Async method, which removes the event handler to the Binding-
DataChanged event. Now, if we had left that handler attached to the
event, then the event would be raised when we updated the table.
Th e event handler would then be called again and would update the
table, thereby causing an infi nite loop. Aft er we’ve updated the table
with the new data, we’ll add the event handler back to the event.

(Of course, we also could’ve created diff erent bindings to separate
columns in the table, using the matrix coercion type. Th en we could’ve
hooked up events only to the columns that users can edit.)

Th e removeHandlerAsync method takes a parameter, handler,
which specifi es the name of the handler to be removed. It’s a best
practice to use the handler parameter to remove handlers from
binding events.

In Figure 5, we’re going to update the table with the new stock
values by calling the locally defi ned updateTable function.

Th e updateTable function takes the data passed in from the Web
service and then writes it back to the bound table. In this example,
the stockValues parameter contains another array of arrays, where
each item in the fi rst array is an array containing a stock symbol
and its current price. To set this data back into the bound table, we
create a new TableData object and insert the stock value data into it.

We need to be careful that the data we set in the TableData.rows
property matches the shape of the data that we’re inserting into
the binding. If we blindly set a brand-new TableData object into
the bound table, we run the risk of losing some of the data in our
table—like the formulas, for example. In Figure 5, we added the
data to the TableData object as a single column of data (an array
of arrays, where each subarray contains a single item). When we
insert this data back into the bound table, we need to insert this
updated column of data into the appropriate column.

Here again we use the startRow and startColumn properties. Th e
updateTable function contains a call to binding.setDataAsync that
pushes the TableData back into the table in the worksheet, specify-
ing the startColumn and startRow parameters. Th e startColumn
parameter is set to 3, meaning that the inserted TableData object
will insert its data starting at the fourth column in the table. In the
callback for the setDataAsync method, we call the addBindings-
Handler function again to reapply the event handler to the event.

When the binding.setDataAsync method completes successfully,
the new table data is pushed into the bound region and immediately
displayed. From the user’s perspective the experience is seamless.
Th e user types data into a cell in the table, presses Enter and then
the Value column of the table automatically updates.

Custom XML Parts
A particularly noteworthy feature supported by the JavaScript API
for Offi ce is the ability to create and manipulate custom XML parts
in Word. In order to appreciate the deep potential of the JavaScript
API for Offi ce for custom XML parts, some background is helpful.
Specifi cally, you need to understand how the Offi ce Open XML
(OOXML or OpenXML) file format, custom XML parts, con-
tent controls and XML mapping can be combined to create really
powerful solutions—namely, solutions that involve the creation of
dynamic Word documents.

var StockTicker = (function () {

 // Other members of this "class"...

 // Refresh the data displayed in the bound table of the workbook.
 // This function begins a chain of asynchronous calls that
 // updates the bound table.
 function refreshData() {
 getBindingData();
 }

 // Get the stock symbol data from the bound table and
 // then call the stock quote information service.
 function getBindingData() {
 binding.getDataAsync(
 {
 startRow: 0,
 startColumn: 0,
 columnCount: 1
 },
 function (results) {
 var bindingData = results.value,
 stockSymbols = [];

 for (var i = 0; i < bindingData.rows.length; i++) {
 stockSymbols.push(bindingData.rows[i][0]);
 }

 getStockQuotes(stockSymbols);
 });
 }

 return {
 // Exposed members of the "class."
 };
})();

Figure 3 Getting the Data from the
Table Binding and Calling the Web Service

var StockTicker = (function () {

 // Other members of this "class"...

 // Call a Web service to get new stock quotes.
 function getStockQuotes(stockSymbols) {

 var stockValues = [];

 // Make a call to the Web service and parse the results.
 // The results are stored in the stockValues variable, which
 // contains an array of arrays that include the stock symbol
 // with the current value.

 removeHandler(function () {
 updateTable(stockValues);
 });
 }

 // Disables the BindingDataChanged event handler
 // while the table is being updated.
 function removeHandler(callback) {

 binding.removeHandlerAsync(
 Office.EventType.BindingDataChanged,
 { handler: onBindingDataChanged },
 function (results) {
 if (results.status == Office.AsyncResultStatus.Succeeded) {
 if (callback) { callback(); }
 }
 });
 }

 return {
 // Exposed members of the "class."
 };
})();

Figure 4 Calling the Web Service and Removing
the BindingDataChanged Event Handler

ement1); areaSeries Add(seriesElement2); areaSeries Add(seriesElement3); // Add series to the plot area plotArea Series Add(areaSeries); //page Elements Add(new LayoutGrid()); // Add the page elements to the page AddEAement1); areaSerieies.AAdd(se(s rriesElement2t2); a) reaSeries.AdA d(seriesElement3); // Add series to the plot area plotArea.Series.Add(areaSeries); //page.Elemenem ts.Add(ddd(new ne LaLayyoutGrid()); // A/ dd the page elements to the page AddEA

s, 240, 0); AddEAN1AN 3SupSup5(pa5(p ge.Elemeentnts, 480, 0); AdddUPCVersionA(page.Elemene ts, 0, 135); AddUPCVersionASup2(page.Elements, 240, 135); AdddUPCddUPCd CVerssionAionAo Sup5((page.Elemennts, t 480, 135); AddEAN8(page.Elements, 0,

.Elements, 480, 2270);; AddddUUPCVersionE(papage.Elementts, 0, 405); AddUPCVersionESuE p2(page.Elements, 240, 405); AddUPCVersionESup5(pageage.Ele.Elelemmments, 4s, 48800, 4405); // AAdd the page toe t the document document.Pages.Add(pa

CaptionAndRectanga lee(elemeements, “EAN/JA/JAN 13 Bar Codde”, x, y, 204, 99); BarCode barCode = new Ean13(“123456789012”, x, y + 21); barCode.ode.X +=X +X +=X + ((2004 -4 - baarCoode.GettSymbolWidth()h) / 2; elements.Add(barCode); } private vovo

dRectangle(elemente s,, “EANEAN/JAN 13 Bar Car Code, 2 digit supplement”, x, y, 204, 99); BarCode barCode = new Ean13Sup2(“12 234556789678 0121212”, 2”, x, yy + 2+ 211); 1); barCoode.XX += (204 - barCode.GetSymbolWidth()) / 2; elements.Add((barC

ts, float x, float yy) { A{ AddCaCaptionAndRectanangle(elements, “EAN/JAN 13 Bar Code, 5 5 digit supplement”, x, y, 204, 99); BaB rrCodee barrCode == new Ean13SupS 5(“12345678901212345”, x, y + 21); ba

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onA(Group elements, float x, float y) {Add{ CaptionAndRectangle(elements, “, UPC VersVersVersVersion ionoi A Baar Cr Coode”, x, y,y, 204, 99);; BarCoode barCode = new UpcVersionA(“12345678901”, xx, y +

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onASup2(Group elements, float x, floato y) { AddCaptionAndRectangle(elementm ““UPCC Version E Bar Code, 2 digit supplement”, x, y, 204, 94 9); BarCoode od

21) ; barCode.X ++= (2= (04 - barba Code.GeetSymbymbolWidth()) / 2; elements.Add(barCode); e } private void AddUPCVersionASSSSuup5(up5(u Group elements,n float x, flfloaflo t VV

digit supplement”,t” xx, y, 22004, 99); BarCodeCode bbarCode = new UUpcVep rsionASuAS p5(“12343 567890112345”, x, y + 21); bbarCarCode.Xde.X += (204 - barCode.GetSymboom lWidth()) / 22; eelele

t x, float y) { AddCapdCaptionnAndRAnd ectangle(eleelemments, “EAN/JANN 88 Bar Code”,de”, xx, y, 204, 0 99); BarCode barCode = nnew Eew Ean8(an8(n8n8 “1 2345670”, x, y + 21); OpenFileileDiala og fileDie aloogoglo =

g.Filter = “Adobeob PDPDF fileess (*.pdf)|*.pdf|Alll FileFiles (*.*)|*.*”; if (fileDieD alog.SShowDiialog() == DialogResult.OK) { { pdfVpdfVf ieweewer.OpOpr.OpOpen (fifileDialogalog.FilleName, “”); } SaveveFileDialog saveFaveFileileDDialoog = neneww Sav

Dialog.Filter == “AdoAdobe PPDF fiDF files (*.pdff)|*.pdpdf|A|All Files (*.*)|*.*”;”; iff (saveFFileDialolog.Showh Dialog() ==DialoalogResgResRee ult..OK)OK) OK) { pdfVfVView .SSaveAsve (sav(saveFieFileDia

printer = pdfViewViewer.Per rinterr; pprinter.PriintWiW thDialog(); } elsee { MesssageBox.SShoww(“Please opeopen a n a fifile to pto p rintrinrint”)”); }OpenFin le DDialoog fileDieD alogalog = new OpenFileDDialog(); fileDiaDialog.og Tittle = e e = e “Opepen File Dl

les (*.*)|*.*|Addobe Pe PDF files es (*.p*.pdf)|*.pdddf”; if i (fifileDialog.ShowwDialalog() === DialogResult.ult OK) { { DynaDynamicPDFVDFVDFVDFViewiewewerClass test e = neew DynammiccPDFViewerClass((); PPDFPrinter ter pprinp ter er r = te= ttet st.OpenFFileFo

= File.ReadAAllByteBytes(@”C:\M:\MyDyDoc.pdff””); //u// sing System.Runntimme.Inttent ropServicces;GCHaGCHandlendledd gch=GCH= CHaananddla e.Aloc(conteents, GCHandleTTypee.Pinnedd);) IIntntPtrPtr cooncontentsIntPtr = g

tents.Lengthh, “”);“”); A AddCaCaptioonAndReReectanglan ee(pageElementts, “BBBookkmark k Pagee E Elemelemeent:”nt:”, x,, y);; pa pagaapageEeEleemeents.Add(newtesw t Bookmookmaark(“Bookmarked TextTextt”, x + 55, y , y, yy ++ 2+ 20+ , pap rentre OutlO ine)); p) a

215, 10, Fonnt.TTimemesRomanma , 1010)); } prprrriivate vooid AddCiirclercle(GGro(G up paageElemeennnts,nts floafloat x,x floafloat yt y)t y) { / { /////Add/Add/A ss a circlt to the pap ge Eleemenmentenents AddCapdCapCaCadCaptiont AndRdRectae

Add(new Cirrcle(x e(x ++ 112.5f5f, y ++ 50f, 1007.5f, 300f, RgbColoolor.RRRed, RgbbbColor.Bor.Bluee,lue 2, LineL eStyylylly e.DaDae shLaLs rge))); } pprivate void AdA d FormatteeddTexxtAreea(Groupp paageElements, flofl aat x, fl float yy)) {) // A// AAdds dds a fofoa rmatted textte a

mic</i>PDFPDF/b>&tm; GGenerator vvv666.0 6 for ..NETNET has has a forrmattted ttetext arrea pea paaage a “ + “ “ele“ele“eleeeemmmentm . ThThis prroviddes rich fororm m atting ssuppupport for texext that appap eears in the doocumment. You have “ + “+ “compcompletlete conco trolol ove ovevever 8 r paragraph

left indentattionn, rigrighht indenentation, aligliggnnment, allollowing orphaaan linnes, aand whwhite ite “ + “spa“spaacece ppce pprereservata ion; 6 foont propropeerties: e <fonont fat f ce=’=’Timemes’>s’>font facece, <//fontt>font “ + “s+ “size, ont><fonont cocoocoot lor=lor=’FF0000’00’>c

 2 line prpropertieses: le leading, ag ndd leaddinngg type.ype. TText can also be rootateeed.</d.</< p>”;p> FFororo mattmattmm edeedTeedTeTeextArx ea fformaormattedTTextAreArea = nnew FormattedTextTex Areare (formattat edHHtmll, x + 5, yy + 20, 215, 60, FonttFammily.Helveelvetictica, 9, fffalalsse);se);se);sssse) // // Sets the i

ddCaptionAAndReRectanct gle(e(pagepageElemeenntsnts, “F, “Fororrmarmattedtte TextT Areeae Page ElElemenement:”,t:”,,, x, y); y); y)y AddCAdddCddCA aptionAnAndReectangnglele(pageElements, “Formatm tedTextAx rea OverOv flflow TText:”, x x + 2279, y); pageElementments.Add(foormarmattedTTTextAxttAAtArea)r ; // CrCrer ate

tArea overflowFoowFormatrm tedTdTextAArea == foormamatteddTdt extArea.GettOveerflowwwFormatmatteddTTexextAxx rea(rerea(re x + x 28284, y +y 200); pageElements.Add(overflowFormattedTextAArea)); } pprivate vooid AddImage(Group p pagpageElementsents, float t x, flo, at yy) {) { // // A/ dd

ents, “Imagee PagePage Elementen :”, xx, y); IImmagemage imaaage =ge new Imaage(SServvever.Mr.MapPattatth(“.h(“.“ ./I./Im./ agesages/DPDDFLogL o..png”), x + 112.5f, y + 50f, 0.24f); // Image is ssizzed and centeredd inn the rectangle immage.age SetBoundunds(21s(215, 5, 65 0); 0) image.VAVAAlign

ge); } privatte void oid AAddLabela (Group pp ppageageElememments, float x, flfloat y) { /// A/ Adds as aa llabel tel t to tht e pappap gegeElemenementts AddCaptionAndRectangle(pageElemenm ts, “LabLa el & PPageNummbeeringLabel Page EElemments:”, x,x, y); y) striing g laabelTextxt = = “= ““Lab

aain page numbumberinering: %%CP%%CP%%% ofof %%%T%%TP%%% pages.”; LLabel le abbel = nnew LLLew Laabel(labbelTeelTeeelTexxt, x + 5, y5 ++ 12, 220, 80, Font.TimesRoman, 12, Texe tAlign.C.Centter); label.Annglee = 8; PageNumbeeringgLabel pagepageNumLNumLabelab = nnnewew Pw Page

, 12, TeextAlxtAligign.CentC er); paga eEleementntntss.Ad.Addd(paageNumLabel));); p paggeElemenments.Addddd(d(label)); } } privprpp ate voidoid A AddLine(Group pageElements, float x, floao t y) { /// Addds aa line to thethe pageElements AdddCCaptionAndRAndRRectanngleglen (pagpag(a eeElemments

+ 5,+ y ++ 20, x + 220, y + 8080, , 3, RRgbbColor.Gr.G eeen)); pageElemmementss.n Add(d(d new w Linee(x ++ 22 2200, yy ++ 20, x + 5,+ 5, y + 80, 3, RgbColor.Green)); } private void AdddLLink((Grouup pageEElemments, float x, floaat yy) { // Adds ads a link toto thethhe pagp eEleEleemen

ynynamicPDF.com.m ”; AAddCaddCaptioptionAAnddnAndRectanglan e((pageElementts, “LLink PaPagege Elemment:nt:”, xx, y);y); LLabel llabela = new Label(text, x + 5, y + 20, 215, 80, font, 12,2 RggbCoolor.Blue)e); laabel.Underline = true;rue Link link =k = newnew LLinnk(x k(x ++ 5,5, y y ++ 20,

on(o “httpp://www.dynnamicppddf.coomm””))); pageEeElemments..Add(Ad labbeel);l); ppagepagpageElementsnts.AAdd(link); k) } prp ivatee void AddPath(Group pageElements, float x, float y) { // AAdds a path to the pageElemeents ceeTe.DynamicamicicPPDPDF.PagegeElemlemlements.PatP h

20,0 RgbgbbColor.Blue, RgbCRgbCoolor.RRedd, 22, LineStyeS lee.Solidd, true); pathhh.Su.SubbPaths.A.Adddd(new Lw LineSineSubPaubPath(x + 215, y + 40)); path.SubPaths.Add(new CurveToSToSubPPathh(x + 1+ 08, y + 80, x + 160,, y ++ 800)); path.SubSubPSubPathssssh .AAAd.Add(new(ne CurveS

ectecctanglangle(pageElemeents, “P“Path Ph Paage ge Element:””, x, yy);) pageEEleEleEE meentss.AdAdd(pad(path));th } pprivaate ve vooid AAddRectangle(Group pageElements, float x, float y) ororderede ddList = ordeo redLedList.GetOverFlowLo List((xx + x 5, y + 2+ 22000); AddCddCCCA aptiapa oonAndRect

2222 55, 1110); page.Eleements.Ats.Add(odd(ordrdrderr edList); x == 0; 0; y +=y ++=y + 118881 ; // CCCreaate e aan unorrderede lisist UnUnordderedList unorderedList = new Unoro deredList(x + 5, y +y + 220, 4400, 900, Font.Ht.Helvetica, 10); uuunoorderredListst.Itte.I ms.Amms Am dd(“ddd(“FruiFruFFFrFruF tss”); unorder

eree ies(); pieSeries.DaataLababel = da; plotArea.Seeriesess.AAd.Add(pieSSSeriesss);es ppieSeries.Elemelementss.AddAdd(27,7, “Website A”); pieSeries.Elements.Add.Ad (19, “Website e B”)); pieSerrieses.Elementmen s.Add(21, “WWebssite CC”); pieSpieSSerieeririees.Elemeneemmee ts[0s[0].Color = a

sess.Elemments[2].Color = auttogradient3;”unoro derreder ddSubLList2 == unoorderedList.Items[ms 1].SubLubLissts.AAddUnorderedSubList(); unorderedSubLu ist2.Items.Add(“dd(“Pottato”); unu ordeeredSubList2.Itemmms.A.Add(d(“Beaansansea ”);;; UUUnorU dereree dSubSu List subU

dSuedd bList(); subUnoUnorderedSubList.Items.As.AAdd(““d Lime”); subUUnorddereedSubList.Itemtems.Ads.Add(“Od(“Orangrange”);e” Unorderd edSubList sus bUnorderd edSue bList2 = unnorddereedSubLisLi t.Items[ms 1].SubLists.s.AddUAAddUd norrdereddeddSubLSubLbList(st); ssubUnbUnu oorderedSe ub

na”aa); UUnorderederedSubList subUnordo erededSubLSu ist3st3 = uunnorderredSubLSubList2.Itet ms[00].Su.SubLisLists.As.AddUnd orderedSSubList(); subUnoU rderedSudSubList3.Items.AAdd((“Swweet Potao to”)); UUnorderedSredSubLubLiL st sst ubUUnordrdeeredSdSredSdSubList4 st4st = ununorderedSu

ubLSuSu ist444.Ite.Items.Am dd(“String Bean”n”); s; subUnbUnordeereedSubbList4..Itemms.Addd(“Lima BeanBean”); subUsubUnnorderedSubList4.Items.Add(“Kidney Bean”e); x += 279; pagpage.EElemenntts.Addd(unorderedListst); u); ; nordno eredreddLisst = = uunordn ereddreddLisst..GetG Overv Flo

e.e.Elemeentsen , “Unordered List Page Ege Elemment On verflverflow:””, x, y,, 2255, 110); page.Elemementsents.AddAdd(un(unorderedList); } private void AddTextFt ield(Group pageEeElemlemennts, flfloaat x, flooatt y) { TextFFielddield txt = new Tew extFextFieldeld(“txtfnafnaaame”,meme”,me”, x +x + 20, 20, y + y +

tteaa dTeextArea(formattedHtml, x ++ 5, 5 y ++ 20, 202 215,15 60, FontFFamilyy.Heelvetica, 9, ffalse)se ; /// SetSets ths the ine dent property formattedTextArea.Style.Paragraph.IndeIn nnt = 1188; AddCaptCap ionAndRendRectanaa gle(eg pagepageep ElemElemE ents, “FFormamormattedttedtedtedTeTextArearea P

atteatat dTeextArea Overflow TeeText:”, x + 27 9, y9, y); p; pageEgeElements.AAdd(formformattedTextAArea); a) // CCreatea ee an overflow formatted text area for the overflow text FoFormmattedTtedTextAxt reaMMaxaxLeLengthngth = 9 = 9= 9; txtxtxtxxt1.B1.Bordeded rCorColor =r = RgbCololoColoor.Br.BBlaack; txttxt1.Ba1 Ba

MaMMM ximuum Lengthgth”; p; ageEEgeEElemeements.nts.Add(Add(txttxt1); TTextFex ieldd txt2 = neew TeextField(“txxtf2namename”, xx + 3+ 30, y + 30, 150, 40); txt2.DefaultValue = “This is a TexxtFtFieldd whiichh goees tototot the nexxt lit liline ine iif thff t e text et et xceexceeds wds wididth”; ”; ttxt2.xt2.xt2xt2 MMMultMu iLinLine = e =

RgRR bCooolor.AliceBlueBluee; txt2.T2. oolTip == “M“Multiline”; ppageEElemennts.AAdd(ttxt2); AddCapCaptiont AndRAndRecctangle(pageElements, “TextField Form Page Element:”, x, x, y, 50450444, 8585); }; } prri vate voioidd AddComCCC boFibo eld(Group pap pageElgeElemeemenene ttts, ts float x, fl

, , y + 4000, 150,, 20 20)20); c; cb.Boro derCd olor = RgbColorr.BBlack; cb.BaackggrounndColor = RgbCRgbColoro .AliAliceBceBlue; cb.Font = Font.Helvetica; cb.FontSize = 12; cb.Itemsem .AAdd(“(“It((em 1m 1”); ; ccb.IItemste .Add(“It““Item 2em 2”); ”); cb.Icb.Itemsems.Add(“Item 3em 3”)); cb.IItems

aaabbble”b].SSeSeSeleleclected = true; cb.Edb itable = true; cb.ToToololTip = “Editable Coe Combo Box””; pa; pageElgeE emements.Add(cb); ComboBox cb1 = new ComboBox(“cmb1namame”, x + 303,030 y +y + 4440 40, 150, 200); c); cb1.Bb1.Bb1 ordeorderColrColoor = Rgbg Coloor.Blr.Br Br B ack;ack cb1.Bac

.F..FFFontontSize = 12; cb1.Items.Add(“Item 1”); cb1.Items.AAdd(“Item 2em 2”); ccb1.Items.Add((“Itemem 3”); cb1.Items.Add(“Item 4”); cb1.Items.Add(“Non-Editable”);”); cb111.Items[“NNon-Eon-Editable”].Selecteccc ed =ed = tru true; ce; cb1 Eb1.EEditable e = fa= f lse;se cb1.ToolT

eerrter.Coonvert(“http://www.google.com”, “Output.pdf”));Convverteer.Coonvert(GetDocD PathPath(“Do(“D cumentA.rtf”), “Output.pdf”);System.Diagnostics.Process..s SStartt(“Ot(“ uutpuutpuutputt.pdf”);”); AsyncCoConvernverrtter t aConaConvertverter =e newe AsyncCncConnverter(); aC

vveerted); aConverter.ConversionError += new ConversiionErroorEvventHHandler(aConveerteer_ConversionError); aConverter.Convert(@”C:\temp\DocumentA.rtA f””””, f , f @”C:C \temte p\OuO tputtputA.pdA.pdf”);f”); aCo aCoa nverter.Convert(ert @”C:\teme p\Dop\D cumentB

\Doc\D ummentC.rtf”, @”C :\temp\OutputC.pdf”); aConverrter.Coonverrt(“hhttp://www.yahoo.coo.com”, @”C:\Temp\yahoo.pdf”); ConvC ersionOptions ops optiontions = nneewnew new ew Conversise onOpOptiontionoo s(72s(720, 70, 720, 72, 7 true); ceTe.DynaDynamicPm DF.CDF.Conveon rsiorsion Con.Co

outpou ut.pdf”, optionso); ceTe.DynamicPDF.Conversion.CConveerter.ConvCon ert(“C:\\temp\\\Documocument2.docx”, “C:\\temp\\op\ utput.pdf”, optiptoptioptiop ons)ons); s; stringing sampleHple tml m = “<“<htmlhtml><bo><bob dydy><p>This is s a very simplee HTMLHTMLHTHT strstrs ing iningin inclincincincludinud ng a g a g TT

(g[] g)

{{

pp

gg g (p p)

[]

[]

pp y y yyp

HighhSecuSec rity securiturity y new w HighhSecuurityy(“OOwnerPassword”, “U“ serPassword”)

yy ppy

ees y yy

p

(p p)

pag p (p pp)

p ()

}

Untitled-1 1 9/8/11 11:56 AM

www.dynamicpdf.com
www.dynamicpdf.com/eval
www.cete.com

msdn magazine46 Microsoft Offi ce

OOXML Formats Office 2007 introduced the new OOXML
fi le format for Offi ce documents, now the default fi le format for
Offi ce 2010 and Offi ce 2013. (You can tell which Offi ce documents
are in the OOXML fi le format because the extensions for those
documents are now four-letter extensions, many of which end in
“x,” for example “.docx” for a Word document, “.xlsx” for an Excel
spreadsheet or “.pptx” for a PowerPoint document.)

Offi ce documents in the OOXML format are essentially .zip fi les.
Each .zip fi le contains a collection of XML fi les, called “parts,” which
together make up the Offi ce document. If you rename an Offi ce
document, such as a Word .docx document, to
.zip, and then examine the fi les inside, you can
see that the document is really just a collection
of separate XML fi les, organized into folders,
inside a .zip package, as shown in Figure 6.

Custom XML Parts Basics While there are
standard XML parts that the Offi ce applications
always create for each new Office document
in the OOXML format (for example, there’s a
built-in XML part that describes core docu-
ment properties), the interesting thing is that
you can also add your own “custom XML”
parts to a Word document, Excel workbook
or PowerPoint presentation. Th e custom XML

parts are added to the collection of XML fi les inside the .zip pack-
age that forms the Offi ce document. A custom XML part is stored
within the fi le structure of the document but isn’t displayed to the
end user. Th is allows you to insert business data that travels with
a specifi c instance of an Offi ce document that’s hidden inside the
fi le structure. You can then work with that custom XML in your
app, and that’s exactly what the JavaScript API for Offi ce supports.

Content Controls Along with the OOXML format and its fi le
structure that allows for the inclusion of custom XML into a doc-
ument, Word 2007 added content controls, a feature that richly
complements custom XML parts.

Content controls are a way to define fixed regions in a Word
document that hold certain kinds of data, such as plain text, rich
text, pictures, dates and even repeating data. Th e key aspect of con-
tent controls that complements custom XML parts is data binding
using XML mapping.

XML Mapping A content control can be bound or “mapped”
to an element in the XML in an XML part that’s contained in the
document. For example, a business could inject business data from
a back-end system as a custom XML part into a Word document
that has content controls mapped to the custom XML part. Th e
content controls are bound to specifi c nodes in the custom XML
part so when the end user opens the document, the XML-mapped
content controls are automatically populated with data from the
custom XML part. Or, reversing the scenario, a business could use
the same Word document with mapped content controls but have
the end user enter data into the content controls. When the doc-
ument is saved, the data in the mapped content controls is saved
back to the XML fi le. An application could then scrape the data
from the custom XML part in the saved document and push it into
a back-end system. Th e JavaScript API for Offi ce provides rich sup-
port for developing applications exactly like those just described.

Using the JavaScript API for Offi ce to Work with Custom
XML Parts Th e best way to walk through some of the more sig-
nifi cant parts of the custom XML parts API in the apps for Offi ce
JavaScript Object Model is through an example. In this section, we
use the “invoice manager” sample (bit.ly/YRdlwt) from the Samples
area of the apps for Offi ce and SharePoint developer portal so that
you can follow along. Th e invoice manager sample is an example of
a dynamic document scenario where a business wants to generate
documents that draw data from a back-end system to produce

invoices. In this case, the data is a customer’s
name and shipping address, and an associated
list of the customer’s purchases.

Th e sample includes a template document
used to create new invoices. Th e template doc-
ument has a layout with the customer name,
address and a table of customer purchases. Th e
customer name, address and purchases sections
of the document are each content controls.
Each content control is mapped to a node in
the schema that was created to hold customer
invoice data, as shown in Figure 7.

Th e UI for the invoice manager sample app
is straightforward, as shown in Figure 8.

var StockTicker = (function () {

 // Other members of this "class"...

 // Update the TableData object referenced by the binding
 // and then update the data in the table on the worksheet.
 function updateTable(stockValues) {

 var stockData = new Office.TableData(),
 newValues = [];

 for (var i = 0; i < stockValues.length; i++) {
 var stockSymbol = stockValues[i],
 newValue = [stockSymbol[1]];

 newValues.push(newValue);

 }

 stockData.rows = newValues;

 binding.setDataAsync(
 stockData,
 {
 coercionType: Office.CoercionType.Table,
 startColumn: 3,
 startRow: 0

 },
 function (results) {
 if (results.status == Office.AsyncResultStatus.Succeeded) {
 addBindingsHandler();
 }
 });
 }

 return {
 // Exposed members of the "class."
 };
})();

Figure 5 Getting the Data from the
Table Binding and Calling the Web Service

Figure 6 File Structure of an Offi ce
Open XML Format Document

www.bit.ly/YRdlwt

(888) 850-9911
Sales Hotline - US & Canada:

/update/2013/04

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2013 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Aspose.Total for .NET from $2,449.02
Every Aspose .NET component in one package.

• Programmatically manage popular fi le formats including Word, Excel, PowerPoint and PDF

• Add charting, email, spell checking, barcode creation, OCR, diagramming, imaging, project
management and fi le format management to your .NET applications

• Common uses also include mail merge, adding barcodes to documents, building dynamic
Excel reports on the fl y and extracting text from PDF fi les

BEST SELLER

BEST SELLER ComponentOne Studio Enterprise from $1,315.60
.NET Tools for the Smart Developer: Windows, Web, and XAML.

• Hundreds of UI controls for all .NET platforms including grids, charts, reports and schedulers

• Supports Visual Studio 2012 and Windows 8

• Now includes Windows 8 Studios for WinRT XAML and WinJS

• New Cosmopolitan (Windows 8 UI) theme provides a modern look and feel

• Royalty-free deployment and distribution

BEST SELLER

Help & Manual Professional from $583.10
Easily create documentation for Windows, the Web and iPad.

• Powerful features in an easy accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to HTML, WebHelp, CHM, PDF, ePUB, RTF, e-book or print

• Styles and Templates give you full design control

BEST SELLER

Code Compare Pro from $48.95
An advanced visual fi le comparison tool with Visual Studio integration.

• Code oriented comparison, including syntax highlighting, unique structure and lexical
comparison algorithms, for the most popular programming languages

• Smooth Visual Studio integration to develop and merge within one environment in the
context of current solution, using native IDE editors

• Three-way fi le merge, folder comparison and synchronization

BEST SELLER

Untitled-3 1 3/1/13 10:57 AM

http://www.componentsource.com

msdn magazine48 Microsoft Offi ce

Th e end user chooses an invoice number from the dropdown
box in the app UI and the customer data associated with the invoice
number is shown in the body of the app, as shown in Figure 9.

When the user chooses the Populate button, the app pushes the
displayed data as a custom XML part into the document. Because
the content controls are mapped to nodes in the custom XML part,
as soon as the custom XML part is pushed into the document the
content controls immediately show the data
for each XML node to which they’re mapped.
You can replace the custom XML part on
the fl y (as we did here), but as long as the
part conforms to the schema to which the
content controls are mapped, the content
controls will show the mapped data. Figure
10 shows the invoice manager Packing Slip
form when the content controls are mapped
to a custom XML part in the document.

The CustomXmlParts Object
CustomXmlParts.addAsync The first
step in working with custom XML parts is
learning how to add them to a document
using the JavaScript API for Offi ce. Th e only
way to do this is by using the customXml-
Parts.addAsync method. As its name
suggests, the customXmlParts.addAsync
method adds a custom XML part asynchro-
nously and has the following signature:

Office.context.document.customXmlParts.
addAsync(xml [, options], callback);

Note that the required fi rst parameter
for the function is a string of XML. Th is is
the XML for the custom XML part. As we
mentioned earlier, the invoice manager uses
custom XML parts that are mapped to the
content controls on the document surface,
but fi rst it has to get customer data to insert
as custom XML. In the InvoiceManager.js
fi le, which holds the logic for the entire app,
the app simulates getting customer data from
a back-end system using the user-defi ned

function setupMyOrders. Th is function creates an
array of three objects that represent three customer
orders. You can, of course, imagine any number of
ways a business might store and get a customer’s
purchase history—for example, a SQL database—
but for simplicity’s sake, the app creates three
“hardwired” customer orders right within the app.

Once the orders objects have been created, the
data they represent must be rendered in XML
so that they can be used in the call to custom-
XmlParts.addAsync. That’s what happens in the
initializeOrders function, which also sets up the
app UI and wires up event handlers to the con-
trols on the UI. Th e important piece to note is in
the jQuery code that wires up an event handler for

the Populate button click event, as shown in Figure 11.
Essentially, the anonymous function that acts as the event

handler for the Populate button click event converts an order
object (which was created with the setupMyOrders function) into
a string of XML and then calls the customXmlParts.addAsync
method and passes the string of XML that contains the order info
as the required fi rst parameter.

The other parameter for customXml-
Parts.addAsync is a callback. Of course,
this can be a reference to a method defi ned
elsewhere in your code, or it can be an
anonymous function. Th e invoice manager
sample uses an inline anonymous function:

 _document.customXmlParts.addAsync(xml,
 function (result) { });

As is the case for all callbacks in the Java-
Script API for Offi ce, an AsyncResult object
is passed in as the only argument for the
callback. For customXmlParts.addAsync
and all the customXmlParts functions, you
can use the AsyncResult object to:

• get a reference to the newly created
custom XML part using the Async-
Result.value property

• get the result of the request using the
AsyncResult.status property

• get information about an error (if
one occurred) using the Async-
Result.error property

• get your own state data (if you
included any in the call to custom-
XmlParts.addAsync) using the
AsyncResult.asyncContext property

For that last item, remember that the other
parameter in the customXmlParts.addAsync
method was an optional options object:

Office.context.document.customXmlParts.addAsync(
 xml [, options], callback);

Th e options object is provided as a way
for you to pass your own user-defined
object into the call for your callback.

Figure 9 The Invoice Manager UI Popu-
lated with Data from a Custom XML Part

Figure 8 The UI for the Invoice Manager
Sample App

Figure 7 Content Controls on the Document Surface Mapped
to a Custom XML Part

Sweet
127.0.0.1
Chicago!
4 Days of 60+ Sessions and Workshops

YOUR BACKSTAGE PASS TO THE MICROSOFT PLATFORM

Flip over for more details
visual studio live! chicago |MAy 13-16, 2013
HILTON CHICAGO | vslive.com/chicago

0413msdn_VSLive-Chicago_Insert.indd 1 2/26/13 10:58 AM

www.vslive.com/chicago

Scan the QR
code for more

information on
Visual Studio Live!

vslive.com/chicago

visual studio live! chicago | MAy 13-16, 2013
HILTON CHICAGO

 ASP.NET
 Azure / Cloud
Computing

 Cross-Platform
Mobile
Data Management

HTML5 / JavaScript
 Windows 8 / WinRT
 WPF / Silverlight
 Visual Studio 2012 /
.NET 4.5

REGISTER TODAY
AND SAVE $200
USE PROMO CODE CHTIP1

PRACTICAL & UNBIASED
EDUCATION FOR DEVELOPERS:

PRODUCED BYSUPPORTED BYGOLD SPONSOR

magazine

0413msdn_VSLive-Chicago_Insert.indd 2 2/26/13 10:59 AM

www.vslive.com/chicago

49April 2013msdnmagazine.com

As you can see in the invoice manager sample, the anonymous
function in the call to customXmlParts.addAsync does nothing,
but in a production environment you’d probably want to do error
checking to handle an instance gracefully if for some reason the
custom XML part isn’t successfully added.

CustomXmlParts.getByNamespaceAsync Another key part of
the JavaScript API for Offi ce for working with custom XML parts
that’s demonstrated in the invoice manager sample is the use of the
customXmlParts.getByNamespaceAsync method, which you can

see in the click event handler code for the Populate
button. Th e signature for customXmlParts.getBy-
NamespaceAsync is:

Office.context.document.customXmlParts.getByNamespaceAsync(
 ns [, options], callback);

Th e required fi rst parameter, ns, is a string that
specifi es the namespace of the custom XML parts
that you want to get. So customXmlParts.getBy-
NamespaceAsync returns an array of custom XML
parts in the document that have the namespace
you specified. Because the custom XML parts
created in the invoice manager sample don’t use
namespaces, the call to customXmlParts.getBy-
NamespaceAsync passes an empty string as the
argument for the namespace parameter, as shown
in Figure 12.

Like all asynchronous functions in the API,
customXmlParts.getByNamespaceAsync has
optional options and callback parameters.

CustomXmlParts.getByIdAsync Th e last pro-
grammatic way to get a custom XML part in a document is the
customXmlParts.getByIdAsync. Th e signature is:

Office.context.document.customXmlParts.getByIdAsync(id [, options], callback);

Th is function gets a single custom XML part using the GUID
of the part. You fi nd the GUID for the custom XML part in the
itemPropsn.xml fi le inside the document package. You can also
get the GUID using the id property of the customXmlPart. A key
thing to note here is that the string for the GUID must contain the
curly braces (“{}”) around the GUID.

The invoice manager sample doesn’t use the customXml-
Parts.getByIdAsync function, but the following code demonstrates
it clearly enough:

function showXMLPartBuiltId() {
 Office.context.document.customXmlParts.getByIdAsync(
 "{3BC85265-09D6-4205-B665-8EB239A8B9A1}", function (result) {
 var xmlPart = result.value;
 write(xmlPart.id);
 });
}
// Function that writes to a div with id='message' on the page.
function write(message){
 document.getElementById('message').innerText += message;
}

In addition to the id parameter, like customXmlParts.addAsync
and customXmlParts.getByNamespaceAsync, the customXml-
Parts.getByIdAsync method also has the optional parameter,
options, and the required parameter callback, and they’re used just
as in the other functions.

The CustomXmlPart Object Th e customXmlPart object rep-
resents a single custom XML part. Once you get a reference to a
customXmlPart using the methods from the customXmlParts
object, you have several properties available, as shown in Figure 13.

CustomXmlPart also has events associated with it, which are
shown in Figure 14.

But for the purposes of this article, we want to focus on a few
key methods of the customXmlPart object that will oft en be used
by developers. Th ese are shown in Figure 15.

CustomXMLPart.addHandlerAsync Th e customXmlPart.add-
HandlerAsync method is key to wiring up event handlers that

$("#populate").click(function () {
 var selectedOrderID = parseInt($("#orders option:selected").val());
 _document.customXmlParts.getByNamespaceAsync("", function (result) {
 if (result.value.length > 0) {
 for (var i = 0; i < result.value.length; i++) {
 result.value[i].deleteAsync(function () {
 });
 }
 }
 });
 var xml = $.json2xml(findOrder(myOrders, selectedOrderID));
 _document.customXmlParts.addAsync(xml, function (result) { });
});

Figure 11 Wiring Up an Event Handler
for the Populate Button Click Event

$("#populate").click(function () {
 var selectedOrderID = parseInt($("#orders option:selected").val());
 _document.customXmlParts.getByNamespaceAsync("", function (result) {
 if (result.value.length > 0) {
 for (var i = 0; i < result.value.length; i++) {
 result.value[i].deleteAsync(function () {
 });
 }
 }
 });
 var xml = $.json2xml(findOrder(myOrders, selectedOrderID));
 _document.customXmlParts.addAsync(xml, function (result) { });
 });
 var selOrder = $("#orders option:selected");
 popOrder(selOrder.val());

Figure 12 Using the Method
CustomXmlParts.getByNamespaceAsync

Figure 10 Content Controls Mapped to Nodes in a Custom XML Part
Showing Bound Data

www.msdnmagazine.com

msdn magazine50 Microsoft Offi ce

respond to changes to the custom XML part. Th e signature for the
customXmlPart.addHanderAsync method is as follows:

customXmlPart.addHandlerAsync(eventType, handler [, options], callback);

Note that the fi rst required parameter is an Offi ce.EventType
enumeration, which specifi es what kind of event in the apps for
Offi ce object model you want to handle. Th e next required param-
eter is the handler for the event. Th e important thing here is that
when the handler is invoked, the JavaScript API for Office will
pass in an event arguments parameter specifi c to the kind of event
being handled (NodeDeletedEventArgs, NodeInsertedEventArgs or
NodeReplacedEventArgs). Th en, as in all asynchronous functions
in the API, you have, optionally, options and callback parameters.

Consider the scenario where a document is being used like a
data-entry form. Th e user inputs data into the form and then the

form is scraped for the data. Th e form contains a Repeating Section
content control so that each time the user enters a repeated item,
a new node is added to the underlying custom XML part. Every
time a node is added, or inserted, the NodeInserted event is fi red
and you can react to the event (and all customXmlPart events)
using customXmlPart.addHandlerAsync.

Figure 16 shows how you could respond to the NodeInserted event.
CustomXMLPart.deleteAsync Of course, along with knowing

how to add a custom XML part, it’s important to know how to
delete one. Th e customXmlPart.deleteAsync method provides that
functionality. CustomXmlPart.deleteAsync is an asynchronous
function with the following signature:

customXmlPart.deleteAsync([options ,] callback);

Going back to the invoice manager sample, you can see a demon-
stration of customXMLPart.deleteAsync:

$("#populate").click(function () {
 var selectedOrderID = parseInt($("#orders option:selected").val());
 _document.customXmlParts.getByNamespaceAsync("", function (result) {
 if (result.value.length > 0) {
 for (var i = 0; i < result.value.length; i++) {
 result.value[i].deleteAsync(function () {
 });
 }
 }
});

Within the click event handler for the Populate button, the
program logic checks to see if any custom XML parts with “blank”
namespaces exist. If they do, it deletes each one using the custom-
XmlPart.deleteAsync method.

Th ere’s much more to working with custom XML parts, but what
we’ve walked through in this article should be enough to give you
a sense of the rich support the JavaScript API for Offi ce provides
for custom XML parts.

Next Up: Mail Apps
In this third article of the series, we reviewed some advanced
techniques for working with data in apps for Offi ce. We showed
how to add additional intelligence to a table in Excel by using data
bindings. We also explored how to leverage custom XML parts in
an app for Word to facilitate automated document creation.

In the next and final article in this series, we’ll examine the
JavaScript API for Offi ce as it applies to mail apps. Mail apps rep-
resent a unique set of capabilities within the JavaScript API for
Offi ce, allowing app developers and Exchange administrators to
build powerful tools for working with e-mail items.

STEPHEN OLIVER is a programming writer in the Offi ce Division and a Microsoft
Certified Professional Developer (SharePoint 2010). He writes the developer
documentation for the Excel Services and Word Automation Services, along with
PowerPoint Automation Services developer documentation. He helped curate and
design the Excel Mashup site at ExcelMashup.com.

ERIC SCHMIDT is a programming writer in the Offi ce Division. He has created
several code samples for apps for Offi ce, including the popular Persist custom
settings code sample. In addition, he has written articles and created videos about
other products and technologies within Offi ce programmability.

THANKS to the following technical experts for reviewing this article:
Mark Brewster (Microsoft), Shilpa Kothari (Microsoft) and
Juan Balmori Labra (Microsoft)

function addNodeInsertedEvent() {
 Office.context.document.customXmlParts.getByIdAsync(
 "{3BC85265-09D6-4205-B665-8EB239A8B9A1}", function (result) {
 var xmlPart = result.value;
 xmlPart.addHandlerAsync(Office.EventType.NodeInserted,
 function (eventArgs) {
 write("A node has been inserted.");
 });
 });
}
// Function that writes to a div with id='message' on the page.
function write(message){
 document.getElementById('message').innerText += message;
}

Figure 16 Wiring Up an Event Handler for the
CustomXmlPart.NodeInserted Event

Name Description
builtIn Gets a value that indicates whether the

customXmlPart is built in.
id Gets the GUID of the customXmlPart.
namespaceManager Gets the set of namespace prefi x mappings

(customXmlPrefi xMappings) used against the
current customXmlPart.

Figure 13 CustomXmlPart Properties

Name Description
addHandlerAsync Asynchronously adds an event handler for a

customXmlPart object event.
deleteAsync Asynchronously deletes this custom XML part from

the collection.
getNodesAsync Asynchronously gets any customXmlNodes in this

custom XML part that match the specifi ed XPath.
getXmlAsync Asynchronously gets the XML inside this custom

XML part.

Figure 15 CustomXmlPart Methods

Name Description
nodeDeleted Occurs when a node is deleted.
nodeInserted Occurs when a node is inserted.
nodeReplaced Occurs when a node is replaced.

Figure 14 CustomXmlPart Events

www.ExcelMashup.com

Untitled-1 1 10/13/11 11:25 AM

www.nSoftware.com

msdn magazine52

Available in fi nal release since October 2012, Team Foun-
dation Service, the cloud version of Visual Studio Team Foundation
Server (TFS), off ers a number of features that can help you deliver
quality soft ware. And it’s no great leap to imagine the soft ware you’re
thinking about developing will likely target Windows 8.

You might be wondering whether you can mix the power of the
two products—use Team Foundation Service to build Windows
Store applications. Unfortunately, this isn’t possible out of the box,
due to some limitations I’ll cover later in this article. However, I’ll
also show you the steps needed to bypass this issue and help you
validate Windows Store apps during the build process.

First, let’s take a quick look at Team Foundation Service.

Overview of Team Foundation Service
As a cloud-based service, Team Foundation Service allows devel-
opers to access the features off ered by TFS without the hassle of

having to install and manage it. Just sign up (for free!) at bit.ly/ZusqUY
and you’re ready to go.

Among the services off ered by the product, you’ll likely focus on
three major features to develop and deliver high-quality soft ware:

Source Code Management You can use the source control
feature with your current tools and preferred language—virtually
any kind of fi le (C#, C++, HTML, PHP, Java and more) can be
handled by the source controller. If you use an IDE such as Visual
Studio or Eclipse, you can continue to use it to develop your appli-
cations and to check your fi les into the source control.

Th e source controller architecture provides a local workspace
that stores a local copy of the source code. In disconnected mode,
all modifications are performed in this workspace. When you
reconnect, you simply check in your code to push it to the
server, keeping the full history of all versions so you can track and
roll back changes.

Collaboration Team Foundation Service lets developers work
better together, primarily via a tool called the task board. Th e task
board is accessible from any modern browser that lets you create
custom dashboards. You use the task board to manage information
about work items, build status, tests results and so forth, as shown
in Figure 1.

Build Service Still in preview at the time of this writing, the
Build Service is based on Team Build, which is part of TFS 2010,
and provides automated build in the cloud.

All the standard features of Team Build can be used by the Build
Service, including continuous integration, nightly builds and gated
check-in builds. Moreover, the build template it uses is fully custom-
izable. Th ere’s even a “ready to go” template for doing continuous

TFS

Building and Validating
Windows Store Apps with
Team Foundation Service
Thomas Lebrun

The Team Foundation Service Build Service is still in preview. All
information is subject to change.

This article discusses:
• Major features of Team Foundation Service

• Implementing a workaround for building Windows Store apps
with Team Foundation Service

• Validating Windows Store apps and customizing the build report

Technologies discussed:
Team Foundation Service, Windows 8, Visual Studio 2012,
Visual Studio Team Foundation Server 2012

www.bit.ly/ZusqUY

53April 2013msdnmagazine.com

deployment on Windows Azure (you can check in code in the source
control and see its updates on Windows Azure Web sites).

The Build Service is hosted on a build server deployed with
Windows Server 2008 R2, Team Build, Visual Studio 2010 or
later, and more (see the full list of required soft ware and options
at the bottom of this page: bit.ly/12Sf99Z). Th e default confi guration
is good for most applications—except Windows Store apps. As
you can see in Figure 2, Windows Store apps need to be built on
Windows 8 (or Windows Server 2012) and these are not installed
on the build server.

So, as noted earlier, building Windows Store apps with Team
Foundation Service isn’t possible out of the box. But, as you’ll
see, there’s a workaround. In essence, the workaround consists of
installing a Windows 8 computer that will become a new build
agent, dedicated to Windows Store apps, for Team Foundation
Service. I’ll show you how to implement it.

Building Windows Store Apps with
Team Foundation Service
Here’s a look at the steps needed to build Windows Store apps
using Team Foundation Service.

Installing the Build Service First, you need a machine running
Windows 8. Th is can be either a physical or a virtual machine (VM);
it’s not important as long as the
machine is accessible from the
Internet. Next, install TFS 2012 on
that machine. Note that installing
TFS doesn’t mean it’ll be confi gured
and ready to use. Th e only reason
you’re installing it is to be able to
confi gure the Build Service. You
don’t need to get a Team Foundation
Application Server, as you have the
one from Team Foundation Service.

Once the Build Service is
installed, you can confi gure it using
a dedicated team project collection.
In this case, because you won’t be
setting up other TFS components
and you do want to use the Team
Foundation Service, specify the
team projects collection available
with your Team Foundation Service
account and fi nish the confi gura-
tion, as shown in Figure 3.

Confi guring the Build Service
For the next part, you need to
understand some basics about TFS
and its build architecture.

Each TFS has a set of dedicated
build controllers. A build controller
is the endpoint that will receive the
build request and execute it using
dedicated build agents. Th e build
agent does the most important

work of the build: It gets fi les from source control, compiles the
code, executes unit tests and so on.

Team Foundation Service comes with a dedicated build
controller—the hosted build controller—so you might think you
just have to create a new agent to run with this controller. Unfortunately,
you can’t attach an on-premises build agent to a hosted build
controller. You need to either choose another build controller or
create a new build controller.

To keep it simple, let’s create a new one, as shown in Figure 4.
Once the controller is up and running, the next step is to set

up a new agent dedicated to the building of Windows Store apps.
Creating a new build agent is as simple as clicking on the New
Agent link and then filling in the fields. In a real production
environment, you might have more agents for your build controller,
so to be sure that Windows Store apps will be built only by agents
running on Windows 8, add a dedicated tag as shown in Figure 5.
Th is isn’t required, but when you create the build defi nition later,
you’ll be able to specify this tag to ensure that only this agent will
be used for the build process.

Before moving to the next part, you need to go to the Build
Service properties and set it to run interactively. This step isn’t
mandatory if you just want to build Windows Store apps. But if
you want to validate your applications, Team Foundation Service

Figure 1 Sample Dashboard for Team Foundation Service

Figure 2 Building Windows Store Apps on Team Foundation Service Is Not Possible
out of the Box

www.msdnmagazine.com
www.bit.ly/12Sf99Z

msdn magazine54 TFS

and the Build Service will need to install and launch them on the
build machine, and this can’t be done if the Build Service isn’t
confi gured to run interactively.

On the Builds page in Visual Studio Team Explorer, click on
Actions, then on Manage Build Controllers to open a window
showing a list of all the build controllers (with their dedicated
agents) installed. If the confi guration was successful, you should
see your new controller and agent.

Preparing the Build Agent to Run Unit Tests If the computer
that hosts the build agent will be used to perform unit tests, there
are two other steps that need to be performed. First, a Windows 8
developer license must be installed on the computer. Developer
licenses are free, they need to be renewed every 30 days (or 90 days,
if you have a Windows Store account), and you can get as many as
you need if you already have a Microsoft account. Th ere are two
ways to acquire a developer license. On
your build machine, you can simply cre-
ate a Windows Store app, which opens a
dialog box from which you can get a valid
license. If you don’t want to create a fake
application on the build machine, you can
run the following Windows PowerShell
command to get the same dialog box:

C:\PS> Show-WindowsDeveloperLicenseRegistration

Aft er you get the developer license, you
need to generate and install a unit test cer-
tifi cate (from the code project that contains
the unit tests you want to run) on the build
agent. For this step, generate an applica-
tion package on the developer machine. In
Visual Studio, click on Store | Create App
Package. Th is creates a folder containing
the Windows Store app (in a fi le with the
extension .appx) and its certifi cate.

To install the certifi cate on the build machine, open
a command prompt as an administrator and enter the
following command:

certutil -addstore root certificate_file

Note that certifi cate_fi le is the path to the certifi cation fi le.
Building Windows Store Apps Once the controller

and agent are running, building Windows Store apps is
the same as building other kinds of applications. You
just need to set up a new build defi nition and specify
that you want to use the new build controller you just
set up. To be sure that the build process will use the
build agent running on Windows 8, in the Process
tab of the build defi nition, select the tag you indicated
when you created the build agent (see Figure 6).

Once this is done, queuing a new build using the
build definition you just created launches it and,
thanks to the specifi ed tag, you can be sure the build is
performed using the right agent, so it won’t fail.

As you can see, building a Windows Store app using
Team Foundation Service is pretty easy and extremely
powerful, and you can fully customize the build pro-

cess. However, there’s still a problem. Even if the build succeeds, it
doesn’t mean the application will run correctly or even that it will
pass all the basics steps for validation. Next, I’ll explain how you
can validate the application and how to indicate to users (through
the build report) whether the validation passed or failed.

Validating Windows Store Apps During Team Build
As you probably know, in order to be published to the Windows
Store, an app must be certifi ed. Th at is, it must pass the required
validation steps. You can validate your applications during the build
process. This can be performed easily by simply adding a post-
build event, which will launch the Windows App Certifi cation Kit
(ACK) to validate the application. But, out of the box, the valida-
tion doesn’t notify users of the results. I’ll show you how to extend
the build process to include this step.

Figure 5 Creating a New Build Agent

Figure 4 Creating a New Build Controller

Figure 3 Installing the Team Foundation Build Service in a Dedicated
Team Projects Collection

NOSQL IS
JUST THE
BEGINNING
INTRODUCING

FATDB
The only NoSQL database built on and for .NET that
includes a distributed file management system, work
queue, and high-speed cache. For more information or to
download FatDB visit FATCLOUD.COM/DOWNLOAD.

Untitled-4 1 2/27/13 12:47 PM

www.fatcloud.com/download

msdn magazine56 TFS

To integrate ACK execution during the build process, you just need
to modify your project fi le to add the following PostPackageEvent:

<Target Name="PostPackageEvent" AfterTargets="_GenerateAppxPackage">
 <Exec Command=""$(TargetPlatformSdkPath)App Certification Kit\
appcert.exe" reset"/>
 <Exec Command=""$(TargetPlatformSdkPath)\App Certification
Kit\appcert.exe" test -apptype windowsstoreapp -AppxPackagePath
"$(FinalAppxPackage)" –reportoutputpath "$(outdir)\
ValidationResult.xml"" />
 <Exec Command="copy "$(userprofile)\appdata\Local\Microsoft\
appcertkit\ValidationResult.htm" "$(outdir)\ValidationResult.
htm""/>
</Target>

When executed, the code will cre-
ate the fi le ValidationResult.html,
which contains the results of the
validation performed by ACK. If
you’re connected to the build server
when the build is executed, you’ll
see that the application is launched
to be validated by ACK. Th is is nor-
mal; the app is installed, validated
and then removed automatically
when the test is fi nished. Remem-
ber that you confi gured the Build
Service to run interactively, which
is what allows the application to be
installed and executed. If you hadn’t
done this, an error would have
occurred during the build.

The build process itself isn’t
aff ected by the results of the vali-
dation, so users need to be able to

check the test results to know whether the application has validation
errors. Fortunately, you can enhance the build report to let users know
if the validation encountered any errors. Let’s see how to customize
the build report to integrate the validation results of the ACK tool.

Customizing the Build Report ACK creates both an HTML
and an XML fi le and saves them in the folder you choose. You can
use this XML fi le to create a custom workfl ow activity that will
modify the build report to notify users of the validation results.

Th e code to create this activity is quite simple. It fi nds the XML fi le
(which contains the validation results), reads the fi le to fi nd the value

Figure 6 Creating the Build Process Using the Specifi ed Tag

Figure 7 CheckWackResultsActivity

[BuildActivity(HostEnvironmentOption.All)]
public sealed class CheckWackResultsActivity : CodeActivity<bool>
{
 [RequiredArgument]
 public InArgument<string> DropLocation { get; set; }

 [RequiredArgument]
 public InArgument<string> WackResultsFilename { get; set; }

 [RequiredArgument]
 public InArgument<string> WackReportFilename { get; set; }

 public OutArgument<string> WackReportFilePath { get; set; }

 // If your activity returns a value, derive from CodeActivity<TResult>
 // and return the value from the Execute method.
 protected override bool Execute(CodeActivityContext context)
 {
 string dropLocation = context.GetValue(this.DropLocation);
 string wackResultsFilename =
 context.GetValue(this.WackResultsFilename);
 string wackReportFilename = context.GetValue(this.WackReportFilename);

 var dropLocationFiles = Directory.GetFiles(dropLocation, "*.*",
 SearchOption.AllDirectories);
 if (dropLocationFiles.Any())
 {
 var resultFile = dropLocationFiles.FirstOrDefault(
 f => Path.GetFileName(f).ToLowerInvariant() ==
 wackResultsFilename.ToLowerInvariant());
 if (!string.IsNullOrWhiteSpace(resultFile))
 {
 var xDocument = XDocument.Load(resultFile);
 var reportElement = xDocument.Element("REPORT");

 if (reportElement != null)
 {
 var resultAttribute = reportElement.Attribute("OVERALL_RESULT");
 if (resultAttribute != null)
 {
 context.SetValue(this.WackReportFilePath,
 Path.GetDirectoryName(resultFile));

 var validationResult = resultAttribute.Value;
 // Fail or Pass
 if (validationResult.ToLowerInvariant() == "fail")
 {
 return false;
 }

 return true;
 }
 }
 }

 throw new InvalidOperationException(
 "Unable to find the Windows App Certification Kit results file!");
 }
 else
 {
 throw new InvalidOperationException(
 "There are no files in the drop location!");
 }

 throw new InvalidOperationException(
 "Unknow error while checking the content of the Windows App
 Certification Kit results file!");
 }
}

Untitled-13 1 1/7/13 12:58 PM

www.nevron.com

msdn magazine58 TFS

of the “OVERALL_RESULT” attribute and returns that value. Figure
7 shows the code that creates the activity CheckWackResultsActivity.

By default, the build activities run on build agents. But there
might be some scenarios where you want the activity to execute as
early as the fi rst step, even before the
build starts, or as the last step before
the build is fi nalized. For that kind of
fl exibility, you need to have the activ-
ity run on the controller, not on the
agent. You can do this using the attri-
bute BuildActivityAttribute, which
takes as an argument the enumera-
tion value HostEnvironmentOption.
All (as you can see in Figure 7). Note
that if you don’t use the correct Host-
EnvironmentOption option, you’ll
get an error during the build process.

Th e class CheckWackResultsActivity inherits from Code-
Activity<bool> so that its result value can be used to display the
correct message in the build report. To display this message, you
can use a new activity available in TFS 2012: WriteCustomSum-
maryInfo. Th is activity is very useful if you want to add a message
to the build report because, instead of adding simple text, it allows
you to add a dedicated category in the build report.

You have to specify the following properties:
• Message, which is the text to display in the report
• SectionDisplayName, which corresponds to the header

of the section
• SectionKey, the unique value of the section
• SectionPriority, which defi nes the position of the new

section in the report (0 is the highest priority and the
standard sections start at 100)

So, using the new activity and WriteCustomSummaryInfo, I’m
able to modify the build process to check for the validation results
and add a new section in the build report. Figure 8 shows the
XAML code of the modifi ed build process.

Notice in Figure 8 that if the validation fails, the compilation status
is set to “Failed” to prevent the build process from continuing. Th is
isn’t mandatory and you can remove it if you prefer to always fi nish
the build process, regardless of the validation results.

Now, each time a build is triggered, the build report displays a
new section, dedicated to Windows 8, which shows the result of
the validation (see Figure 9).

Using WriteCustomSummaryInfo, the build report can be
enhanced with text and links only. If a more complex modifi cation
is needed (for example, adding an image), you can still apply the
techniques used with TFS 2010.

Th ere are a lot of possibilities for customizing the build process
template for Windows Store apps, and the good news is that such
customizations are pretty much the same for both Team Foundation
Service and on-premises TFS.

THOMAS LEBRUN is technical leader at Infi nite
Square, a French Microsoft partner work-
ing on technologies including Windows 8/
Windows Phone, Team Foundation Server,
SharePoint and more. Th e author of two
French books about Windows Presentation
Foundation and the Model-View-ViewModel
pattern, Lebrun is also a regular speaker
during French events. Follow his blog at
blog.thomaslebrun.net and follow him on
Twitter at twitter.com/thomas_lebrun.

THANKS to the following technical
expert for reviewing this article:
Chris Patterson (Microsoft)

<Sequence DisplayName="Windows 8" sap2010:WorkflowViewState.IdRef="Sequence_4">
 <Sequence.Variables>
 <Variable x:TypeArguments="x:Boolean" Name="WackToolRanSuccessfully" />
 <Variable x:TypeArguments="x:String" Name="WackReportFilePath" />
 </Sequence.Variables>
 <c:CheckWackResultsActivity DropLocation="[DropLocation]"
 sap2010:WorkflowViewState.IdRef="CheckWackResultsActivity_3"
 Result="[WackToolRanSuccessfully]"
 WackReportFilePath="[WackReportFilePath]"
 WackReportFilename="ValidationResult.html"
 WackResultsFilename="ValidationResult.xml" />
 <If Condition="[Not WackToolRanSuccessfully]"
 sap2010:WorkflowViewState.IdRef="If_4">
 <If.Then>
 <Sequence sap2010:WorkflowViewState.IdRef="Sequence_6">
 <mtbwa:WriteCustomSummaryInformation
 sap2010:WorkflowViewState.IdRef=
 "WriteCustomSummaryInformation_2"
 Message="["Windows App Certification Kit ran with errors.
 Click [here](" & WackReportFilePath & ") to
 access the folder containing the report."]"
 SectionDisplayName="Windows 8" SectionKey="Windows8"
 SectionPriority="75"
 mva:VisualBasic.Settings=
 "Assembly references and imported namespaces
 serialized as XML namespaces" />
 <mtbwa:WriteBuildError
 sap2010:WorkflowViewState.IdRef="WriteBuildError_1"
 Message="Windows App Certification Kit ran with errors." />
 <mtbwa:SetBuildProperties
 CompilationStatus=
 "[Microsoft.TeamFoundation.Build.Client.BuildPhaseStatus.Failed]"
 DisplayName="Set Status and CompilationStatus to Failed"
 sap2010:WorkflowViewState.IdRef="SetBuildProperties_1"
 mtbwt:BuildTrackingParticipant.Importance=
 "Low" PropertiesToSet="CompilationStatus" />
 </Sequence>
 </If.Then>
 <If.Else>
 <mtbwa:WriteCustomSummaryInformation
 sap2010:WorkflowViewState.IdRef="WriteCustomSummaryInformation_1"
 Message="["Windows App Certification Kit ran with success.
 Click [here](" & WackReportFilePath & ") to
 access the folder containing the report."]"
 SectionDisplayName="Windows 8" SectionKey="Windows8"
 SectionPriority="75"
 mva:VisualBasic.Settings=
 "Assembly references and imported namespaces
 serialized as XML namespaces" />
 </If.Else>
 </If>
</Sequence>

Figure 8 The Modifi ed Build Process

Figure 9 The New Section in the Build Report Showing
Validation Results

To be published to the Windows
Store, an app must be certifi ed.

http://twitter.com/thomas_lebrun
http://blog.thomaslebrun.net

Untitled-1 1 1/11/10 10:55 AM

www.alexcorp.com

msdn magazine60

In this article, we introduce the sample Windows Store app, ALM
Readiness Treasure Map, and share the design, coding and testing
experiences of the Visual Studio ALM Rangers in building the app. It’s
designed to provide a master catalog of the content available to help
developers become profi cient in Application Lifecycle Management
(ALM) practices. Th e ALM Rangers are a group of experts who
promote collaboration among the Visual Studio product group,
Microsoft Services and the Microsoft MVP community by addressing
missing functionality, removing adoption blockers, and publishing best
practices and guidance based on real-world experiences.

What Did We Do and Why?
We have a confession to make: We love Visual Studio and Visual
Studio Team Foundation Server (TFS). Microsoft produces some of

the best soft ware development tools available. We’re not just saying
that because we work for Microsoft —we felt this way long before
joining the company. Th ese suites provide an incredible number of
features but can prove daunting to new users. How do developers
start learning to use these tools? Th is question presented itself to
us in a slightly diff erent fashion.

ALM Rangers present at TechReady conferences that typically
have a number of sessions describing how to improve knowl-
edge of Microsoft development tools. Th e conferences even hold
interactive sessions where participants can provide feedback to
the internal groups building these products. We found these to be
exciting opportunities for developers and consultants. Aft er join-
ing the ALM Rangers team, we started exploring the published
guidance and quickly realized there was a signifi cant amount of
content to digest; we were unsure of where to begin studying.

What we really wanted was a resource to help us become pro-
fi cient in ALM practices. We began building the ALM Readiness
Treasure Map Windows Store app to lead users through the
materials on their journey to becoming experts. Figure 1 shows
you the results of our work. It contains fi ve categories, each with
multiple topics of study:

1. Prepare
2. Quick intro
3. Guidance
4. Tooling
5. Workshops

Th ese areas contain guides, hands-on labs, and videos to make it
as easy as possible for users to pick up the skills they need quickly

A LM RA NGER S

A Treasure Hunt Through
ALM Readiness
Visual Studio ALM Rangers

This article discusses:
• Why the app was built

• UX design considerations

• Coding goals

• Testing and quality assurance

Technologies discussed:
Visual Studio, Team Foundation Server, C#, XAML,
Windows Store Apps

Code download and map available at:
aka.ms/almtreasure

www.aka.ms/almtreasure

61April 2013msdnmagazine.com

and eff ectively. Navigating the materials works particularly well on
new touch-enabled devices, such as the Microsoft Surface.

To provide the optimal experience, we enlisted the help of an
expert UX designer and senior developers to build the app.

The ALM Readiness Treasure Map Solution:
UX Design Nuggets
Making a Good First Impression The treasure map tile (see
Figure 2) is eye-catching and bright, with an orange background
used to symbolize sand. Immediately, the user sees the theme of the
app—this is clear because of the palm tree and the path leading to
where “X” marks the spot of the treasure. Th e app title is clearly visible
on the tile. Making sure that the tile depicts what your app is actually
about creates a good fi rst impression. Th e last thing
you want is for users to open your app and be confused
about why they’re using it and how it can help them.

We’ve leveraged the splash screen (see Figure 3) to
show a bit more of the app’s personality and to help
ensure a good launch experience. Th e treasure map’s
splash screen renders an extended path to the treasure,
which is a smooth, polished loading experience. It’s
uncluttered and straightforward by design, refl ecting
how the UX will be. In addition, a unique screen can
help reinforce the brand.

Th e homepage—the treasure map itself—appears once the app
has loaded. Again, our clear, content-focused design immediately
confirms the purpose of the app. We wanted to make this page
fantastic so the user would want to explore the rest of the app. Th e
homepage is where the journey begins and, at a glance, the user knows
this is going to be a journey. Th e titles are the source for navigation,
and because of our “content over chrome” design, they stand out.
Th e app’s content is emphasized by removing any non-functional
elements. Anyone looking to fi nd information quickly can fi nd all
the links on the screen without having to navigate through the app,
which provides a great experience for all types of users.

Sometimes Overlooked, but Crucial Th e Windows 8 UI uses
the principle of a grid system across all its apps. This principle

promotes a clean, uncluttered design.
The Treasure Map app employs the grid system

everywhere except on the homepage and the result
is that content is highly visible—more content, less
chrome. This content over chrome principle is one
of the more unique principles of the Windows Store
app style, where visual unity contributes to a great UX.
Th e homepage is the only page that’s an exception to
this rule. We’re portraying a journey and a pirate theme
that we wouldn’t have been able to achieve without
visual representations.

Figure 1 The Treasure Map Windows Store App

Figure 2 The Treasure
Map Windows Store
App Tile

www.msdnmagazine.com

msdn magazine62 ALM Rangers

Typography is sometimes overlooked and many people don’t
realize how much it can strengthen the brand of the app. Using fonts
correctly and consistently helps achieve clarity and gives a clean,
uncluttered look that makes the app easier to read and therefore
use. Th e recommended fonts are Segoe UI (primarily used for UI
elements like buttons), Calibri (used for reading and writing, such
as in e-mails) and Cambria (for larger blocks of text). We used
Segoe UI for all text other than the headers. For those, we used
Blackadder ITC to establish a stronger theme (see Figure 4). We do
break the font rule here, because we wanted the app’s appearance
to be consistent with a paper-based map, as this helps to reinforce
the pirate theme. So, in this case, it does work well.

Seamless and fl uid navigation is crucial to provide that ease of
use and great UX. Two forms of navigational patterns are recom-
mended: the hierarchical system and the fl at system (see Figure 5).
The hierarchical system is what most apps use. It’s the most
common and will be the most familiar type of navigation to many
users. It’s also the best system to create that fl uid feel yet still be
easy to use. Th e fl at system is used mainly in games, browsers, or
document-creation apps, where the user can only go backward
and forward at the same hierarchical level. Th e Treasure Map app
uses the hierarchical system, and we believe that it uses it well. Th e
homepage would be classifi ed as the hub, and each section creates
the fi rst hierarchical branch, from where each section then creates
another hierarchical branch. For example, from the homepage, the
user can navigate to the Prepare section, where the user can explore
other Prepare subsections.

Usability It’s important to assess the UX of the app to improve
the design so that the app is:

• Easy to use
• More valuable to users—for example, in the features it

can off er
• More desirable to use

Assessing your design gives you confi dence that the app has an
outstanding UX and that users will fi nd it useful, usable and desirable.

So how do we assess the UX of the app?
There are many ways to do this, but two
common ones are self-assessments and cog-
nitive walkthroughs, as shown in Figure 6.

Th ere are four success metrics that will
help in both the self-assessment of the app
as well as the cognitive walkthrough of the
app. Th ese are:

• Great at: What’s the app great at? What are the focal points
of the visuals?

• Usable: What should users be able to understand, know
or do more successfully because of the app?

• Useful: What do you want the users to value?
• Desirable: What parts of the app do you want to delight

users or make them love?
We used both self-assessments and cognitive walkthroughs. Th e

self-assessments were carried out through each sprint and reviewed
at our weekly stand-ups. Th e cognitive walkthroughs were carried
out during the design process and through every sprint. Assessing
the UX of our app helped us to understand the desire and emotional
connection to experiences that a user may acknowledge.

To sum up UX design:
• Make sure that the tile depicts what your app is about.
• Create a unique splash screen to reinforce your brand.
• Write content with a clear focus.
• Use the recommended grid layout to create a simple and

clean design.
• Don’t forget about typography. Use the recommended

fonts where possible, such as Segoe UI, Calibri or Cambria.
• Have a clear navigation pattern. Choose from either the

hierarchical system or the fl at system.
• Assess the usability of your app throughout the develop-

ment cycle.

The Coding Jewels
Before coding started, we set forth a series of coding goals for this
project. Th ese goals became the mantra for how we designed and
developed the codebase.

• Adaptability: Requirements can change, features can be
added or cut, and designs can be thrown away in favor of
something completely diff erent. Adaptability is the name
of the game!

• Simplicity: Simplicity is essential for many advantages in
soft ware design, in particular for maintainability and fi xability.

• Testability: Quality assurance must be a high priority for
every project, and the codebase must allow for compre-
hensive and “simple” testing.

• Performance and fl uidity: Th e app’s UX must be positive from
the start. Th e app must display information in a timely man-
ner, must always be responding to user input and mustn’t lag.

• Team environments: Rarely is an app built by an indi-
vidual contributor or even an individual team. We made
sure that the app was built in a way that could be scaled to
many more team members.

So now that we had our goals defi ned, how in the world did
we achieve writing an app in such a short
time—working part-time—while not only
meeting the functional requirements, but
also our non-functional requirements as
well? Luckily for us, this wheel has been
built before and the construction of our app
was a matter of applying proven patterns
and practices to our app:

Figure 3 The Treasure Map Windows Store App Splash Screen

Figure 4 The Typography We Used in the
Treasure Map Windows Store App

WINDOWS FORMS | WPF | ASP.NET

WWW.TEXTCONTROL.COM

US +1 855 - 533 - 8398
EU +49 421 - 4270671 - 0

Reuse MS Word documents or templates as your reporting templates.

Easy database connection with master-detail nested blocks.

Powerful, programmable template designer with full sources for Visual Studio®.

Integrate dynamic 2D and 3D charting to your reports.

Create print-ready, digitally signed Adobe PDF and PDF/A documents.

tables, columns, images, headers and footers and more.

FLOW TYPE LAYOUT
REPORTING

Untitled-1 1 3/5/13 10:05 AM

www.textcontrol.com

msdn magazine64 ALM Rangers

• C# and XAML: We decided to use C# and XAML,
primarily because the majority of the contributors on this
project are familiar with this approach. Th is includes the
languages themselves as well as the tooling and support for them.

• Model-View-ViewModel (MVVM): Th is is a pattern for
separating your presentation layer from your business logic
from your objects. We chose this particular pattern because
the C# and XAML technologies lend themselves very well
to it. But more important, with a single pattern, we were
able to begin chiseling away at our non-functional require-
ments. Th e goals that MVVM most positively aff ected were
adaptability, testability, team environments and simplicity.
Adaptability is improved in that you can interchange any of
the functional pieces of your app. Perhaps a new presenta-
tion for a particular view model has been fi nished, and you
can instantly replace it without changing any other code.
Testability is improved because each core functional piece
of code is separated into its own individual responsibilities,
which means tests can be written against those directly
and automated. Team environments are improved because
you have a defi ned set of contracts among the app’s moving
parts, allowing teams to work in parallel with one another.
Simplicity is improved in that each moving part is its own
defi ned moving part and interacts in a specifi c way. For more
information, see “What’s New in Microsoft Test Manager
2012” at msdn.microsoft.com/magazine/jj618301.

• Resources: Following the spirit of MVVM and separation
of roles and replaceable parts, we decided to add resources
for the defi nition of our fonts, buttons and other similar
design elements. Th is helped improve team environments,
simplicity and adaptability.

• But what did we do about performance and fl uidity? We
followed the async/await pattern for long-running processes.
Th is is one of the areas where developers might struggle in
building Windows Store apps, but it doesn’t have to be. Luck-
ily, Windows Store apps using C# and XAML are powered
by the Microsoft .NET Framework 4.5, which lets you easily
include asynchronous workloads into your app through this
pattern. If it’s so easily done, why do folks struggle with it? Th e
answer to this question usually boils down to using logic that’s
long-running and isn’t provided out of the box by the .NET
Framework. An example of this could be logic to calculate
plot points for a chart based on complex mathematics. A full
understanding of async and await is crucial for providing a
fl uid, high-performing app. For more information, see “Async
Performance: Understanding the Costs of Async and Await”
at msdn.microsoft.com/magazine/hh456402.

Other considerations included:
• Touch language: From a development perspective, this

couldn’t be any easier. Nearly every out-of-the-box control
supports touch in all of the ways that you expect. From a
coding perspective, this was the easiest part of the app to
build for.

• Charms: Interacting with the charms was simple as well.
Register these in your appxmanifest and add in the event
handlers to each page for the specifi c charms you want to
register, such as Search or Share. We had no issues dealing
with charms. Th ey worked well, like a charm should work.

• Tiles, splash screens and orientations: All of these
were handled in the appxmanifest and then through event
hooks in the app at the app level. It was straightforward, and
everything is detailed in the sample code.

How It All Really Worked Here’s how things worked out in
actual practice:

• MVVM commands: MVVM was fantastic in theory.
However, in reality, it proved a bit diff erent from the usual
Windows Presentation Foundation (WPF) and Silverlight
development, particularly for implementing commands,
because our old samples didn’t work. Luckily, Command<T>
was fairly easy to implement in the new framework and
can be seen in our sample app. But our woes didn’t end
with commands, because ListViewBase items don’t have an
attached command property! We decided to solve this for
demonstrational purposes in two ways:

 1. First, we decided to solve this problem using an
unused property:

 <ListView Grid.Column="2"
 SelectedItem="{Binding Selected,Mode=TwoWay}"

Th e property to which it’s bound returns “null” and doesn’t
throw any exceptions (even if you turn all exceptions
on), which is nice, but the key is in the set. In the set,
instead of setting anything, we make a navigation call
and pass as a parameter the index of the selected item.

 2. Second, we decided to create an attached dependency
property of type ICommand. Th e sample implemen-
tation is in the class “ItemClickCommand” within the
folder “MVVMSupport.”

• Multiple view states lead to massive view fi les: Our
view fi les became extremely large and more diffi cult to

Self-Assessment Cognitive Walkthrough
Why This is based on the goals that

you want the user to achieve
or fi nd. It ensures that the
design is on track with your
main intentions.

This is a little more structured
around the specifi c tasks that
a user might want to fulfi ll, for
example, to fi nd information
about “VM factory tooling
and guidance.”

When It’s a good idea to do self-
assessments every sprint, or
when each goal has been
reached; they last up to 30
minutes.

During the design process,
and through every sprint.

Figure 6 Assessing the UX of the App

Figure 5 Recommended Navigational Patterns

Flat System Hierarchical System

http://msdn.microsoft.com/magazine/jj618301
http://msdn.microsoft.com/magazine/hh456402

SpreadsheetGear

Toll Free USA (888) 774-3273 | Phone (913) 390-4797 | sales@spreadsheetgear.com

SpreadsheetGear

SpreadsheetGear 2012
Now Available

WPF and Silverlight controls,

to XPS, improved

2012 support and more.

Excel Reporting for ASP.NET,
WinForms, WPF and Silverlight

Forms, WPF or Silverlight

Free
30 Day

Trial

Performance Spreadsheet Components

Excel Compatible Windows Forms,
WPF and Silverlight Controls

Forms, WPF and

Excel Dashboards, Calculations,
Charting and More

charts, and models in Excel
or the SpreadsheetGear

NEW!

www.SpreadsheetGear.com

Untitled-3 1 11/30/12 11:25 AM

http://www.SpreadsheetGear.com
mailto:sales@spreadsheetgear.com

msdn magazine66 ALM Rangers

manage, primarily due to multiple view states. A diff erent
layout per view state is generally required, and you could
even have diff erent views for diff erent display dimensions or
changing dimensions, and so on. Our approach was to split
them up into multiple .xaml fi les, using one .xaml fi le per
view per state. For example, if we had a view called “Home-
PageView,” we’d have “HomePageView.xaml” inside a full,
snapped and fi lled folder, each one in the folder for its state.

• Adapting in the real world: Th is was a good story. Aft er
we had developed the large parts of our app—switching
data providers, switching UIs and adding new charm
interactions to all of the appropriate places—adapting it
to changing requirements became a piece of cake. Issues
were easy to track down, and much of the planning paid
off because the designers could work in parallel with the
developers and the sponsors.

To summarize this section, from a coding standpoint, Windows
Store apps are straightforward to develop properly. Following a few
predefi ned rules, mentalities and patterns lets you create a good
app quickly. Th e primary concerns are app view state, app lifecycle
state, charm interaction, fl uidity and ensuring that you code in a
way that allows your design team to iterate designs at will. For more
information, see dev.windows.com.

Testing and Verifying Solution Quality
One of the core acceptance requirements we defined from the
start was to raise the sample code quality and be part of our overall
quality dog-fooding program (see aka.ms/df_tooling). Stringent quality
gates for geopolitical, namespace, code analysis and StyleCop (see
stylecop.codeplex.com) compliance helped us produce a better solution,
albeit only a sample.

Testing should not be an aft erthought and is as important with
samples as it is with mission-critical solutions. It’s easier to enforce
code quality, and to manage user expectations and requirements from

the start, rather than be faced with
hundreds of compliance bugs and
irate testers and have to deal with
feature and code churn during a
belated quality-improvement cycle.

Because the intention was a
quick sample solution, we primar-
ily adopted a “black box” testing
strategy focusing on behavior
as part of the system and user
acceptance testing (UAT). The
former was manually performed
by the team, focusing on expected
features and non-functional
requirements, and exploring
edge-cases where the internals
were understood. Th e community
was invited to assist with the UAT
validation, performing explor-
atory testing based on real-world
scenarios and expectations, and

unearthing bugs and missing, impractical, and unclear features.
As shown in Figure 7 (with the numerals here corresponding to the

red-circled numbers in the fi gure), we typically used the Microsoft Test
Manager exploratory testing feature (1) and the simulator (2) to eval-
uate the sample solution on a Surface-type device, captured detailed
comments (3) and recorded the test session (4) for future reference.

 In the future, we’ll seriously consider the defi nition of more-structured
test cases and the use of Microsoft Fakes to help us implement the
unit and smoke testing. Th is will allow us to automatically and con-
tinuously validate feature changes and associated code changes.

What’s Next?
We will evolve the ALM Readiness Treasure Map app, and we’re
considering an online update feature for the readiness reference assets.
For more information, see “Under standing the Visual Studio ALM
Rangers” at aka.ms/vsarunderstand; “Visual Studio ALM Ranger Solutions”
at aka.ms/vsarsolutions; the ALM Readiness Treasure Map sample code
at aka.ms/almtreasure; and the app itself in the Windows Store at aka.ms/
vsartmapapp. We welcome your candid feedback and ideas!

ANISHA PINDORIA is a UX developer consultant with Microsoft Consulting
Services in the United Kingdom.

DAVE CROOK is a developer consultant with Microsoft Consulting Services East
Region, where his focus is Visual Studio and Team Foundation Server.

ROBERT BERNSTEIN is a senior developer with the Microsoft Consulting Services
Worldwide Public Sector Cyber Security Team.

ROBERT MACLEAN is a soft ware developer nestled in a typical open-plan
development offi ce at BBD (bbd.co.za).

WILLY-PETER SCHAUB is a senior program manager with the Visual Studio ALM
Rangers at the Microsoft Canada Development Center.

THANKS to the following technical expert for reviewing this article:
Patricia Wagner (Microsoft)

Figure 7 Exploratory Testing

http://dev.windows.com
http://aka.ms/df_tooling
http://stylecop.codeplex.com
http://aka.ms/vsarunderstand
http://aka.ms/vsarsolutions
http://aka.ms/almtreasure
http://aka.ms/vsartmapapp
http://aka.ms/vsartmapapp

www.alachisoft.com 1-800-253-8195

Extreme Performance
 & Linear Scalability

Download a 60-day FREE trial today!

Enterprise Distributed Cache

ASP.NET Optimization in Web Farms

Runtime Data Sharing

Extremely fast & linearly scalable with 100% uptime

Mirrored, Replicated, Partitioned, and Client Cache

NHibernate & Entity Framework Level-2 Cache

ASP.NET Session State storage

ASP.NET View State cache

ASP.NET Output Cache provider

ASP.NET JavaScript & image merge/minify

Remove data storage and database performance bottlenecks and scale your applications to extreme transaction
processing (XTP). NCache lets you cache data in memory and reduce expensive database trips. It also scales
linearly by letting you add inexpensive cache servers at runtime.

Powerful event notifications for pub/sub data sharing

NCache
Distributed Cache for .NET & Java

TM

Untitled-2 1 1/31/13 12:27 PM

http://www.alachisoft.com

msdn magazine68

Classifi cation is a machine-learning technique that
uses training data to generate a model (usually a single complex rule
or mathematical equation) that assigns data items to one of several
distinct categories. Th e model can then be used to make predictions
about new data items whose category is unknown. Examples include
predicting whether a patient has cancer (yes, no) based on various
medical test data, and predicting the risk category (low, medium,
high) of a loan application based on an applicant’s fi nancial history.

Th ere are many diff erent classifi cation algorithms and techniques,
including Naive Bayes, neural network and logistic regression. In
this article I explain a fascinating technique called adaptive boosting
classifi cation in which, instead of attempting to determine a single
complex prediction rule, training data is used to generate a large
collection of very simple crude rules of thumb. A weight for each
rule of thumb is then computed. A prediction about new input is

made by combining the rules of thumb, taking into account each
simple rule’s weight and arriving at a consensus outcome. Th e term
“boosting” comes from the fact that the predictive quality of the
simple rules is boosted (improved) by combining them.

Adaptive boosting is a meta-heuristic. By that I mean adaptive
boosting is a set of guidelines that can be used to create a specifi c
classification algorithm. There are many variations of adaptive
boosting algorithms and there are many existing standalone tools
that implement some form of adaptive boosting, so why bother
to code adaptive boosting classification from scratch? Existing
adaptive boosting classifi cation tools can be diffi cult or impossible
to customize, they might be diffi cult to integrate into a soft ware
system, and they may have copyright or intellectual property issues.

A concrete example is the best way to understand what adaptive
boosting is. Take a look at Figure 1. Th e ultimate problem of the
demo program is to predict whether some sports team from Seattle
will win or lose an upcoming contest against a team from Detroit,
when Seattle will be playing on its home field and the betting
consensus (the spread) is that Seattle has a slight advantage (small).
Th e top part of Figure 1 shows 10 hypothetical training data items
with known results. Th e fi rst training tuple (Detroit, Home, Large,
Win) means that in a previous game against Detroit, when Seattle
played at home and the point spread was large, Seattle won the game.

Th e next part of the demo program shows that the 10 training
data items were converted from string data into zero-based integer
form for more effi cient processing and then stored into machine
memory as a matrix. For example, (Detroit, Home, Large, Win) is
stored as (3, 0, 2, 1). Notice that in this example, the outcome to be

C#

Classifi cation and
Prediction Using
Adaptive Boosting
James McCaffrey

This article discusses:
• Adaptive boosting classifi cation

• A demo program based on adaptive boosting

• The adaptive boosting algorithm

• The overall program structure

Technologies discussed:
Visual Studio 2010, C#

Code download available at:
archive.msdn.microsoft.com/mag201304AdaptiveBoost

http://archive.msdn.microsoft.com/mag201304AdaptiveBoost

69April 2013msdnmagazine.com

predicted has just two values, win or lose. Th is is called a binary
classification problem. Adaptive boosting can also be used in
situations where the dependent variable has three or more values
(multinomial classifi cation). Most binary classifi cation techniques
encode the dependent variable to be predicted using a (0, 1) scheme,
but adaptive boosting almost always uses a (-1, +1) scheme because
that encoding slightly simplifi es some of the algorithm implemen-
tation. Notice that all of the independent variable predictor values
are categorical (“Home,” “Medium” and so on) rather than numer-
ical. Adaptive boosting can also be used when training data has
numerical values, as I’ll explain later.

Th e third part of Figure 1 shows that eight rules of thumb were
generated from the training data. Rules of thumb are oft en called
weak learners or weak classifi ers in adaptive boosting terminology.
Th e fi rst weak learner, expressed in human-friendly form, is “IF
Opponent IS Buff alo THEN Result IS Win” with a 0.00 raw error
rate. The second weak learner, which is more illustrative, is “IF
Opponent IS Chicago THEN Result IS Lose” with a 0.33 error rate.
Where did this weak learner come from? If
you examine the training data, you’ll see that
there are three instances where the opponent
is Chicago. In two of those training instances
the result was Lose, so the weak learner is
correct two out of three times (0.67) and
wrong one time out of three (0.33).

Notice that not all training item predictor
values generated a weak learner—there’s no
rule for when the opponent is Atlanta. Because
there are two training tuples where opponent
is Atlanta, and one outcome is Win and the
other outcome is Lose, the error rate for the
learner would be 0.50, which doesn’t provide
any useful information. Th e version of adap-
tive boosting classifi cation presented in this
article assumes that all weak learners have a
raw error rate that is less than 0.50.

The next section of Figure 1 indicates
that behind the scenes the adaptive boosting
algorithm processes the weak learners to fi nd
a weight for each learner. Th ese weights are
measures of the importance of each weak
classifi er, and are called alpha values in adap-
tive boosting terminology. Determining the
alpha values is the key part of adaptive boost-
ing. Th e set of weak learners and their alpha
weights make up the classifi cation model.

Th e last part of the demo program shows
the classifi cation model being used to make
a prediction for team Seattle when the
opponent team is Detroit, the fi eld is Home
and the point spread is Small. If you refer
to the set of generated weak learners, you’ll
see that three learners are applicable: [2] IF
Opponent IS Detroit THEN Result IS Win
(+1), [3] IF Field IS Home THEN Result IS

Win (+1), and [5] IF Spread IS Small THEN Result IS Lose (-1).
Th e computed alpha values for weak learners 2, 3, and 5 are 0.63,
3.15, and 4.49, respectively. Th erefore, the consensus prediction
= (0.63)(+1) + (3.15)(+1) + (4.49)(-1) = -0.72 (rounded), which,
because the value is negative, means Lose. Notice that even though
two of three weak learners (2 and 3) predict Win, the large alpha
of weak learner 5 outweighs those Win predictions to yield an
overall prediction of Lose.

In the sections that follow I’ll carefully explain how the demo
program works so that you can add prediction features to a .NET
system or application. This article assumes you have advanced
programming skills with a C-family language but does not assume
you know anything about classifi cation with adaptive boosting.
I coded the demo using C# but the explanation should give you
enough information to refactor the code to other languages such
as Visual Basic .NET or Python. Th e code for the demo program
is too long to fully list in this article, but the complete source code
is available at archive.msdn.microsoft.com/mag201304AdaptiveBoost.

Figure 1 Adaptive Boosting Classifi cation and Prediction

www.msdnmagazine.com
http://archive.msdn.microsoft.com/mag201304AdaptiveBoost

msdn magazine70 C#

The Adaptive Boosting Algorithm
Th e heart of adaptive boosting classifi cation is a routine that examines
each weak learner and assigns an alpha weight to each. Th e algorithm
is quite tricky and best explained by a concrete example. Suppose there
are 10 training tuples and eight weak learners, as shown in Figure 1.
Each training tuple is assigned a weight, usually called D in adaptive
boosting literature. Th e sum of the D weights is 1.0, making the D
values a distribution. Initially all training data items are assigned equal
D weights, in this case 0.10 because there are 10 items:

[0] (D = 0.10) Detroit Home Large Win
[1] (D = 0.10) Detroit Away Medium Win
[2] (D = 0.10) Buffalo Home Small Win
[3] (D = 0.10) Buffalo Home Medium Win
[4] (D = 0.10) Atlanta Away Large Win
[5] (D = 0.10) Chicago Home Medium Win
[6] (D = 0.10) Chicago Away Small Lose
[7] (D = 0.10) Chicago Home Small Lose
[8] (D = 0.10) Atlanta Away Medium Lose
[9] (D = 0.10) Detroit Away Large Lose

Each learner has an epsilon value and an alpha value. Epsilon
values are weighted error rates used to compute alpha values.
Initially all learners have unknown alpha values (say a = 0.00) and
unknown epsilon values (say e = -1.0):

[0] (a = 0.00) (e = -1.0) IF Opponent IS Buffalo THEN Result IS Win
[1] (a = 0.00) (e = -1.0) IF Opponent IS Chicago THEN Result IS Lose
[2] (a = 0.00) (e = -1.0) IF Opponent IS Detroit THEN Result IS Win
[3] (a = 0.00) (e = -1.0) IF Field IS Home THEN Result IS Win
[4] (a = 0.00) (e = -1.0) IF Field IS Away THEN Result IS Lose
[5] (a = 0.00) (e = -1.0) IF Spread IS Small THEN Result IS Lose
[6] (a = 0.00) (e = -1.0) IF Spread IS Medium THEN Result IS Win
[7] (a = 0.00) (e = -1.0) IF Spread IS Large THEN Result IS Win

In pseudo-code, the algorithm to find the alpha weights for
each learner is:

set t=0
while not done loop
 update all learners' epsilons (weighted errors)
 find best (smallest epsilon) unused learner
 compute and save the alpha of best learner using its epsilon
 update the D weights for each training item using the best learner
 normalize the D weights so they sum to 1.0
 ++t
end loop

Th e main processing loop terminates when all weak learners
have been processed and assigned an alpha weight; or when the
loop counter variable t exceeds some maximum value; or when
the weighted error rate, epsilon, for the best unused weak learner
is some value, such as 0.45 or 0.49, indicating there aren’t any
relatively good unused learners left to process.

Figure 2 Overall Program Structure

using System;
using System.Collections.Generic;
namespace AdaptiveBoosting
{
 class Program
 {
 static void Main(string[] args)
 {
 try
 {
 Console.WriteLine("\nBegin adaptive boosting classification demo\n");

 string[] features = new string[] { "Opponent", "Field", "Spread",
 "Result" };

 string[][] values = new string[4][];
 values[0] = new string[] { "Atlanta", "Buffalo", "Chicago",
 "Detroit" }; // opponent
 values[1] = new string[] { "Home", "Away" }; // Field
 values[2] = new string[] { "Small ", "Medium", "Large " };
 // Note: Spaces added
 values[3] = new string[] { "Lose", "Win" };
 // The dependent/predicted variable

 string[][] rawTrain = new string[10][];
 rawTrain[0] = new string[] { "Detroit", "Home", "Large ", "Win" };
 rawTrain[1] = new string[] { "Detroit", "Away", "Medium", "Win" };
 rawTrain[2] = new string[] { "Buffalo", "Home", "Small ", "Win" };
 rawTrain[3] = new string[] { "Buffalo", "Home", "Medium", "Win" };
 rawTrain[4] = new string[] { "Atlanta", "Away", "Large ", "Win" };
 rawTrain[5] = new string[] { "Chicago", "Home", "Medium", "Win" };
 rawTrain[6] = new string[] { "Chicago", "Away", "Small ", "Lose" };
 rawTrain[7] = new string[] { "Chicago", "Home", "Small ", "Lose" };
 rawTrain[8] = new string[] { "Atlanta", "Away", "Medium", "Lose" };
 rawTrain[9] = new string[] { "Detroit", "Away", "Large ", "Lose" };

 Console.WriteLine("Raw (string) training data for team seattle:\n");
 Console.WriteLine("Opponent Field Spread Result");
 Console.WriteLine("===============================");
 ShowMatrix(rawTrain);

 Console.WriteLine("\nConverting and storing training data");
 int[][] train = RawTrainToInt(rawTrain, values);
 Console.WriteLine("Training data in int form:\n");
 ShowMatrix(train, true);

 Console.WriteLine(
 "\nCreating weak categorical stump learners from training data");
 List<Learner> learners = MakeLearners(values, train);

 Console.WriteLine("Completed. Weak learners are:\n");
 for (int i = 0; i < learners.Count; ++i)
 Console.WriteLine("[" + i + "] " + Description(learners[i],
 features, values));

 Console.WriteLine("\nInitializing list of best learner indexes");
 List<int> bestLearners = new List<int>(); // Indexes of good weak learners

 Console.WriteLine(
 "\nUsing adaptive boosting to find best learners and alphas");
 MakeModel(train, values, learners, bestLearners);

 Console.WriteLine("\nModel completed");
 int numGood = bestLearners.Count;
 Console.Write("Algorithm found " + numGood + " good learners ");
 Console.WriteLine("and associated alpha values");

 Console.WriteLine("\nThe good learners and their alpha value are:");
 for (int i = 0; i < bestLearners.Count; ++i)
 {
 int lrn = bestLearners[i];
 Console.Write("[" + lrn + "] " +
 learners[lrn].alpha.ToString("F2") + " ");
 }

 Console.Write("\nPredicting outcome when Opponent = Detroit, ");
 Console.WriteLine("Field = Home, Spread = Small\n");
 int[] unknownTuple = new int[] { 3, 0, 0 }; // Detroit, Home, Small

 int Y = Classify(unknownTuple, learners, bestLearners);
 Console.Write("Predicted Y = " + Y + " => ");
 Console.WriteLine("seattle will " + YValueToString(Y, values));

 Console.WriteLine("\nEnd\n");
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 } // Main

 // (Many) static methods here

 } // Class Program

 public class Learner // Weak learner
 {
 // Definition code here
 }
} // ns

71April 2013msdnmagazine.com

Th e fi rst step inside the loop is to update all epsilons. An epsilon
value is the sum of the D weights of incorrectly classifi ed training
tuples. For learner [0] (IF Opponent IS Buff alo THEN Result IS
Win) there are two applicable training tuples, [2] and [3], and the
rule is correct in both instances, so epsilon is 0.00. For learner [1]
(IF Opponent IS Chicago THEN Result IS Lose) there are three
applicable training tuples, [5], [6] and [7]. Of these, tuple [5] is
incorrect, so epsilon is just the D weight for tuple [5] = 0.10.

Although it’s not immediately obvious, if you carefully review how
epsilons are computed, you’ll notice that epsilon values will always
be between 0.0 and 0.5. Aft er all updates, the learner epsilons are:

[0] (a = 0.00) (e = 0.00) IF Opponent IS Buffalo THEN Result IS Win
[1] (a = 0.00) (e = 0.10) IF Opponent IS Chicago THEN Result IS Lose
[2] (a = 0.00) (e = 0.10) IF Opponent IS Detroit THEN Result IS Win
[3] (a = 0.00) (e = 0.10) IF Field IS Home THEN Result IS Win
[4] (a = 0.00) (e = 0.20) IF Field IS Away THEN Result IS Lose
[5] (a = 0.00) (e = 0.10) IF Spread IS Small THEN Result IS Lose
[6] (a = 0.00) (e = 0.10) IF Spread IS Medium THEN Result IS Win
[7] (a = 0.00) (e = 0.10) IF Spread IS Large THEN Result IS Win

At this point the best learner is selected. It is learner [0] because
its epsilon is smallest at 0.00. Th e associated alpha is computed as:

alpha = 0.5 * log((1.0 - epsilon) / epsilon)

This is essentially a magic equation from adaptive boosting
theory. Here, log is the natural (base e) logarithm. Recall that the
alpha value is a weight that assigns an importance to a learner. Th e
previous equation is designed so that smaller values of epsilon
(learner error) yield larger values of alpha (learner importance).

In this particular situation there’s a problem because epsilon is 0, so
there’d be a division by 0 error. To avoid this, the demo program arbi-
trarily converts any epsilon with a 0 value to 0.000001. So the alpha for
learner [0] is computed as 0.5 * log(0.999999 / 0.000001) = 6.91 and that
value is assigned to learner [0], and learner [0] is fl agged as completed.

The next step inside the algorithm loop is to update the D
training tuple weights based on the just-computed best learner. Th e
idea is to increase the D weights for those training tuples that are
incorrectly classifi ed by the best learner and decrease the D weights
for training tuples that are correctly classifi ed by the best learner.
Th e D update equation is a bit tricky at fi rst glance:

D(new) = D(old) * exp(-alpha * actualY * predictedY)

Th e best learner was learner [0] (IF Opponent IS Buff alo THEN
Result IS Win) with an alpha of 6.91. Of the 10 training tuples, learner
[0] applies to tuples [2] and [3], so those D values are updated. For
training tuple [2]:

D(new) = 0.10 * exp(-6.91 * (+1) * (+1))
 = 0.10 * exp(-6.91)
 = 0.0000997758

Th e new D value for training tuple [3] has the same computation
and same value as tuple [2].

In this case, we get a new D weight that’s very small because the
training tuple was correctly classifi ed by the best learner. Notice
that when the actual Y value and predicted Y value are the same
(both are -1 or both are +1), when multiplied together the result is
+1 and the argument to exp will be a negative number (because
-alpha will always be negative), which will yield a result less than 1.0.
However, if the actual Y and predicted Y are diff erent, their prod-
uct will be -1, and the argument to exp will be positive, which will
yield a (possibly large) number greater than 1.0. Th is update tech-
nique for D is why adaptive boosting classifi cation typically uses
-1 and +1 for the dependent variable values rather than 0 and +1.

At this point the preliminary approximate D values (rounded) are:
[0] (D = 0.1000) Detroit Home Large Win
[1] (D = 0.1000) Detroit Away Medium Win
[2] (D = 0.0001) Buffalo Home Small Win
[3] (D = 0.0001) Buffalo Home Medium Win
[4] (D = 0.1000) Atlanta Away Large Win
[5] (D = 0.1000) Chicago Home Medium Win
[6] (D = 0.1000) Chicago Away Small Lose
[7] (D = 0.1000) Chicago Home Small Lose
[8] (D = 0.1000) Atlanta Away Medium Lose
[9] (D = 0.1000) Detroit Away Large Lose

Th e next step in the main algorithm loop is to normalize the D
values so they sum to 1.0 by dividing each preliminary D value by
the sum of the D values. Th e sum of the 10 D values is about 0.8002,
so the normalized D for training tuple [0] is approximately 0.1000
/ 0.8002 = 0.1249. Th e fi nal updated D weights are:

[0] (D = 0.1249) Detroit Home Large Win
[1] (D = 0.1249) Detroit Away Medium Win
[2] (D = 0.0001) Buffalo Home Small Win
[3] (D = 0.0001) Buffalo Home Medium Win
[4] (D = 0.1249) Atlanta Away Large Win
[5] (D = 0.1249) Chicago Home Medium Win
[6] (D = 0.1249) Chicago Away Small Lose
[7] (D = 0.1249) Chicago Home Small Lose
[8] (D = 0.1249) Atlanta Away Medium Lose
[9] (D = 0.1249) Detroit Away Large Lose

Th e idea here is that we want the algorithm to now focus on train-
ing tuples other than [2] and [3] because those tuples have been
accounted for by learner [0]. At this point the algorithm jumps back
to the top of the loop and updates all learners’ epsilon values based on
the newly computed D weights, determines the best unused learner
(learner [5]), computes the alpha for the best learner (4.49), updates
the D values for applicable training tuples ([2], [6] and [7]) and
computes normalized D values for all training tuples.

In this example, the process continues until alpha values for all
eight weak learners have been computed, but in general, not all
weak learners will necessarily make the cut as good learners and
be assigned an alpha value.

Overall Program Structure
The demo program shown in Figure 1 is a single C# console
application. I used Visual Studio 2010, but any version that sup-
ports the Microsoft .NET Framework 2.0 or higher will work. I
created a new project named AdaptiveBoosting and then in the
Solution Explorer window renamed Program.cs to the more
descriptive AdaptiveBoostingProgram.cs, which also automati-
cally renamed class Program. I deleted all the template-generated
using statements at the top of the source code except for the
references to the System and Collections.Generic namespaces. Th e
Main method—with some WriteLine statements removed, a few
other minor edits and a key program-defi ned class to defi ne weak
learner objects—is listed in Figure 2.

Th e Main method begins by setting up hardcoded strings for
“Opponent,” “Field,” “Spread” and “Result” for the features. Th en
the code in Main sets up hard-coded values for each feature:
“Atlanta,” “Buff alo,” “Chicago,” “Detroit,” “Home,” “Away,” “Small,”
“Medium,” “Large,” “Lose” and “Win.” To keep my output tidy, I used
a hack and inserted a blank space at the end of “Small” and “Large.”

For simplicity, the training data is also hardcoded into the demo
program. In many situations your training data will be stored in a
text fi le or a SQL table. In those situations you might want to con-
sider programmatically scanning the training data to determine

www.msdnmagazine.com

msdn magazine72 C#

the feature names (presumably from a text fi le header line or SQL
table column names) and the feature values.

Method RawTrainToInt converts the training data in string form
to zero-based integers and stores those integers into an int[][] matrix
named train. RawTrainToInt calls a helper named ValueToInt. Th e
train matrix has the dependent variable values (Result) stored in the
last column. You may want to store dependent values in a separate
column array. In situations with very large training data sets, you
might not be able to store the entire training data set into machine
memory. In those situations you’ll have to stream through the exter-
nal data store instead of an internal matrix.

Th e demo program determines the weak learners using method
MakeLearners and a program-defi ned class Learner. I’ll describe
that method and class in detail in the next section of this article.
After the weak learners have been created, the demo program
calls method MakeModel. MakeModel is the heart of the adaptive
boosting algorithm as described in the previous section. Th e net
result is a sorted List, named bestLearners, of the indexes of the
learners that were assigned alpha values.

Th e Main method fi nishes by predicting the outcome for Seattle
for a set of inputs with Opponent of “Detroit,” Field of “Home” and
Spread of “Small,” using method Classify. In this case, the return
value from Classify is -0.72, which is interpreted as “Lose.”

Making the Weak Learners
The implementation of a specific adaptive boosting algorithm
depends to some extent on the specific definition of a weak
learner. Program-defi ned class Learner has six fi elds:

public int feature;
public int value;
public int predicted;
public double error;
public double epsilon;
public double alpha;

I declared all fi ve fi elds with public scope for simplicity. Th e
feature field holds an integer that indicates which independent
variable is the key to the learner. For example, if feature is 0, the
weak learner is based on the value of an opponent. Th e value fi eld
holds an integer that indicates the value of the feature. For example,
if value is 3, the weak learner is based on the condition opponent is
Detroit. Th e predicted fi eld is -1 or +1, depending on whether the
actual category for the feature value is Lose or Win.

Th e error fi eld is type double and is the raw error rate associated
with the weak learner on the training data. For example, if a weak
learner has feature = 0, and value = 3, and predicted = +1 (meaning if
Opponent is Detroit then result is Win), then the raw error rate for the
training data in Figure 1 is 0.33 because one out of three training data
items would be incorrectly predicted. Notice that raw error treats each
training item equally. It turns out that the adaptive boosting algorithm
presented in this article doesn’t really need the raw error fi eld, so that
fi eld could’ve been omitted, but I believe the information is useful.

The epsilon field is a weighted error term. The epsilon for a
weak learner is an error term that takes into account the internal D
weights assigned to each training item. Th e epsilon values are used
by the adaptive boosting algorithm to compute the alpha weights.
To summarize, there are two sets of weights used in adaptive
boosting classifi cation. Th e alpha weights assign an importance to

each weak learner and are used to determine an overall prediction.
An epsilon error is an internal error associated with a weak learner
that’s used to compute the alpha weights. Each training tuple
has an internal weight (given the name D in adaptive boosting
literature) that’s used to compute the epsilon errors.

In pseudo-code, method MakeLearners works like this:
initialize an empty result list of learners
for each feature loop
 for each value of curr feature loop
 scan training data to determine most likely -1, +1 result
 if no most likely result, skip curr value
 create a new learner object with feature, value, predicted
 add learner object to result list
 end each value
end each feature
for each learner in result list
 for each training data item
 if learner isn't applicable to data, skip curr data item
 compute raw error rate
 store raw error into learner
 end each training data item
end each learner

Th e idea is that each feature value such as “Atlanta” (opponent)
or “Medium” (point spread) will generate a weak learner rule based
on the training data unless the value doesn’t appear in the training
data (for example, an opponent of “New York”) or the value doesn’t
produce a most-likely result because there are the same number
of wins and losses associated with the value (for example, when
opponent is “Atlanta” in the demo data, with one win and one loss).

Wrapping Up
An important variation on the algorithm presented in this article
is dealing with data that has numeric values. For example, sup-
pose that the values for the point spread feature, instead of being
categorical “Small,” “Medium” and “Large,” were numeric, such as
1.5, 3.0 and 9.5. One of the major advantages of adaptive boosting
classifi cation compared with some other classifi cation techniques
is that adaptive boosting can easily handle both categorical and
numeric data directly. You could create a dedicated learner class
that has a friendly description similar to “if Spread is less than or
equal to 5.5 then Result is Lose,” or a more-complex learner along
the lines of “if Spread is between 4.0 and 6.0 then Result is Win.”

In my opinion, adaptive boosting classifi cation is best used when
the dependent variable to be predicted has just two possible values.
However, advanced forms of adaptive boosting can deal with mul-
tinomial classifi cation. If you wish to investigate this or the theory
behind adaptive boosting in general, I recommend searching for
articles by researchers R. Schapire and Y. Freund.

Machine-learning research suggests that there’s no single best
data classification/prediction technique. But adaptive boosting
is a very powerful approach that can form the basis of adding
predictive features to a .NET soft ware system.

DR. JAMES MCCAFFREY works for Volt Information Sciences Inc., where he man-
ages technical training for soft ware engineers working at the Microsoft Redmond,
Wash., campus. He has worked on several Microsoft products including Internet
Explorer and MSN Search. He’s the author of “.NET Test Automation Recipes”
(Apress, 2006), and can be reached at jammc@microsoft .com.

THANKS to the following technical expert for reviewing this article:
Darren Gehring (Microsoft)

mailto:jammc@microsoft.com

Download a free 30-day trial online at: www.rssbus.com
© Copyright 2013 RSSBus Inc. All rights reserved. All trademarks and registered trademarks are the property of their respective owners.

RSSBus Data Providers [ADO.NET]
Build cutting-edge .NET applications that connect to any
data source with ease.

The RSSBus Data Providers give your .NET applications the
power to databind (just like SQL) to Amazon, PayPal, eBay,
QuickBooks, FedEx, Salesforce, MS-CRM, Twitter, Share-
Point, Windows Azure, and much more! Leverage your
existing knowledge to deliver cutting-edge WinForms,
ASP.NET, and Windows Mobile solutions with full readwrite
functionality quickly and easily.

The RSSBus Data Providers make everything look like a
SQL table, even local application data. Using the RSSBus
Data Providers your .NET applications interact with local
applications, databases, and services in the same way
you work with SQL Tables and Stored Procedures. No
code required. It simply doesn’t get any easier!

All these data sources at your fingertips – and that is just a start.

Also available for:
JDBC | ODBC | SQL SSIS | Excel | OData | SharePoint ...

Untitled-1 1 1/11/13 1:55 PM

http://www.rssbus.com

Intense Take-Home
Training for Developers,
Software Architects
and Designers

Celebrating 20 years of education and training for the developer community,
Visual Studio Live! is back on the Microsoft Campus – backstage passes
in hand! Over 5 days and 60+sessions and workshops, you’ll get an
all-access look at the Microsoft Platform and practical, unbiased, developer
training at Visual Studio Live! Redmond.

PLATINUM SPONSOR PRODUCED BYSUPPORTED BY

magazine

C l b ti 20 f d ti d t i i f th d

Rock
Your
CODE On
Campus!

YOURR BAACCKSTAAGEE PPASS TOO TTHE MICCROSSOFTT PLAATFORMMM

Untitled-6 2 3/4/13 2:52 PM

www.vslive.com/redmond

TOPICS WILL INCLUDE:
 ASP.NET
 Azure / Cloud Computing
 Cross-Platform Mobile
 Data Management
 HTML5 / JavaScript
 SharePoint / Of ce
 Windows 8 / WinRT
 WPF / Silverlight
 Visual Studio 2012 / .NET 4.5

CONNECT WITH
VISUAL STUDIO LIVE!

twitter.com/vslive – @VSLive

facebook.com – Search “VSLive”

linkedin.com – Join the “VSLive” group!

vslive.com/redmond

REDMOND, WA August
19-23, 2013

MICROSOFT CAMPUS

REGISTER
TODAY
AND
SAVE $400
USE PROMO CODE REDAPR2

Scan the QR code
to register or for
more event details.

Untitled-6 3 3/4/13 2:52 PM

www.vslive.com/redmond

msdn magazine76

Given that this is the month of April, that the magazine arrived on
your doorstep (or mailbox or e-mail inbox or ... whatever) some-
where on or around April 1, and that said date is oft en referred to in
the United States and other Western nations as “April Fool’s Day,” it
seemed appropriate to do a column on languages in which we can
capture Important Business Logic. (Note the capitals there; that’s how
business people always refer to whatever ridiculous new feature they
want, so it’s only appropriate that we refer to it with the same degree
of veneration and respect that it deserves.) It’s important to note it’s
of utmost importance that when we capture said Important Business
Logic, we do so with gravitas and sincerity; this means doing so in a
language that the business owners and customer representatives (and
most of the marketing department) can understand.

So, it’s with a grave and sincere demeanor that I present to you an
important language in your .NET programming toolbox: LOLCODE.

LOLCODE
While it has long been the opinion of scientists and dog owners
alike that cats can’t really communicate with their owners, cat own-
ers have known for years that they communicate just fi ne—just ask
any cat’s co-residing human whose cat has just informed him that
despite the fact it’s 5 a.m., it’s time for the cat to be fed. (For the un-
initiated, such activity usually involves loud meows, head butts to
the nose, innocent expressions and occasionally a very slight fl ex-
ing of a feline claw to a sensitive human body part.)

However, ever since cats discovered the mechanical mouse, a
quiet revolution has been taking place across the Internet: Cats
have steadily improved their ability to communicate by posting
pictures of themselves with captions written in what many anthro-
pologists and historians (all of whom are cat lovers—the dog-loving
anthropologists and historians having been “unavailable” to com-
ment on this) agree is the fundamental building blocks of all hu-
man language. Th is fundamental language is sometimes referred
to imperfectly by humans by the name “LOLspeak.” (Examples of
it can be found in your Facebook and Twitter feeds, so don’t pre-
tend you don’t know what I’m referring to.)

Fortunately, well-intentioned cat-owned engineers familiar with
the .NET platform have taken to extending this language into the
.NET platform; two such endeavors were, in fact, in place, but sadly
only one has survived to this day. Th e fi rst was an implementation
based on the Dynamic Language Runtime (DLR) from Martin Maly
and John Lam back when the DLR was new (2007), but it seems to
have disappeared. Th e second is a project from around the same
time frame, but compiling the code into .NET assemblies rather
than interpreting the source directly. Th at project is hosted at bit.ly/
AJeM and, being open source, is easily accessible through Subversion

via a single “svn checkout http://lolcode-dot-net.googlecode.com/
svn/trunk/” command at your local command-line window. Once
built, we can start to explore this amazing and powerful language.

For full details on the LOLCODE language, check out the LOL-
CODE Web site at lolcode.com, and in particular check out the LOL-
CODE language specifi cations, all of which are European Cat
Programmers’ Association (ECPA) standards, at lolcode.com/specs/1.2.
LOLCODE.NET implements much (if not all) of LOLCODE 1.2,
which is the latest LOLCODE standard.

HAI
Of course, the fi rst program that anyone ever writes in any new
language must be that language’s version of “Hello World,” and our
dive into LOLCODE will be no diff erent:

HAI
 BTW Greet the people
 VISIBLE "Hello, world!"
KTHXBYE

Every LOLCODE program begins with the traditional greeting,
“HAI,” and is terminated with the traditional closing, “KTHXBYE.”
As with all keywords in LOLCODE, these are case-sensitive and
must be typed all uppercase. “VISIBLE” is, as might be inferred, the
command to write to the standard output stream, and “BTW” is the
single-line comment. (Multi-line comments open with “OBTW”
and end with “TLDR.”)

Using the “lolc” compiler built from the LOLCODE.NET source
tree gives us a traditional .NET assembly, named (in the traditional
fashion of .NET compilers) aft er the source fi le, so if the previous
code is stored in “hello.lol,” then “hello.exe” contains the Interme-
diate Language (IL).

I HAS YARN
LOLCODE recognizes that there are only four types in the world:
strings (YARN), numbers (NUMBR), Booleans (TROOF) and ar-
rays (BUKKIT), but because cats never commit to anything un-
til the last possible moment, a variable declaration in LOLCODE
(using the “I HAS A” syntax) is untyped until the value is assigned
to it. More important, because a cat would never be held account-
able to a decision even once the decision is made, variables in
LOLCODE are fl exibly typed, meaning that a variable can hold
any value, changing its type as necessary to refl ect the new value:

I HAS A COOLVAR ITZ THREE
LOL COOLVAR R 3

Th e fi rst line of code declares a variable named “COOLVAR”
and assigns it the string (YARN) value THREE. Th e second line of
code sets that same variable to the value 3, of NUMBR type. Any
uninitialized variable contains the null value, “NOOB.”

Capturing Important Business Logic

THE WORKING PROGRAMMER TED NEWARD

www.lolcode.com
http://lolcode.com/specs/1.2
www.bit.ly/AJeM
www.bit.ly/AJeM

77April 2013msdnmagazine.com

Like keywords, variables are case-sensitive and may use mixed-
case, though idiomatic LOLCODE suggests all capitals for clari-
ty. Like C#, variable names must begin with a letter, but can then
consist of letters, numbers or underscores.

Reading from the console is done using the “GIMMEH” com-
mand, so a second program to greet the user, ask him his name and
print it back to him looks like the following:

HAI
 I HAS A NAME ITZ "Ted"
 VISIBLE "d00d type in ur name"
 GIMMEH NAME
 VISIBLE "d00d ur name is " NAME
KTHXBYE

While the l33tspeak in the console isn’t a required part of the
language, it’s considered idiomatically correct and good form.

Flow Control
If/then constructs are created by placing “O RLY?” aft er an expres-
sion, using “YA RLY” to defi ne the truth branch of the expression
and “NO WAI” for the false branch of the expression, and “OIC”
to indicate the end of the if/then construct entirely. Multiple state-
ments can be comma-separated on a single line if this is aestheti-
cally pleasing. If there are more than two possible branches (what
other, less feline-friendly languages call an “else if ”), then this is
given by “MEBBE” blocks defi ned in between the “YA RLY” and
“NO WAI” blocks. Comparison operations are fully listed in the
LOLCODE 1.2 specifi cation, but the “SAEM” (equality) and “DIF-
FRINT” (inequality) operators are likely to be the most commonly
used comparisons, as is true of most modern programming lan-
guages. For Boolean operations, “BOTH OF <x> AN <y>” give us
logical-AND, “EITHER OF <x> [AN] <y>” give us logical-OR, and
“WON OF <x> [AN] <y>” give us logical-XOR.

Loops are signifi ed using the “IM IN YR <label>” keyword to be-
gin the loop construct and end with the “IM OUTTA YR <label>”
construct; without a terminating condition at the start of the loop
construct, given by a “TIL” or “WILE” expression, the loop will run
infi nitely until terminated by a “GTFO” expression, which returns
control immediately aft er the “IM OUTTA YR” keyword.

Putting all of this together, for example, you have the
following program:

HAI
 I HAS A NAME ITZ ""
 IM IN YR LOOP
 VISIBLE "Gimmeh ur name or 'gtfo' to GTFO"
 GIMMEH NAME
 SAEM NAME AN "gtfo", O RLY?
 YA RLY, VISIBLE "L8r!", GTFO
 NO WAI, VISIBLE "Yo " NAME
 OIC
 IM OUTTA YR LOOP
KTHXBYE

Notice that the loop “LOOP” is an infi nite loop, with no termi-
nation condition, using “GTFO” in the “YA RLY” branch of the
“SAEM ... O RLY?” conditional to terminate the program in the
event the user types in “gtfo” as input.

HOW DUZ I ...
Good programming practice demands that code be segregated into
easily consumable units, and LOLCODE wouldn’t be the serious
business-ready language that it is without similar capability. By

using the “HOW DUZ I” and “IF U SAY SO” keyword pairs, you
can defi ne functions that can be invoked to carry out operations:

HAI

 HOW DUZ I GREET
 I HAS A NAME ITZ "Ted"
 VISIBLE "d00d type in ur name"
 GIMMEH NAME
 VISIBLE "d00d ur name is " NAME
 IF U SAY SO

 GREET

KTHXBYE

Th is will defi ne a single function, “GREET,” that’s then used from
the main program to greet the user and echo back his name. Pa-
rameters to the function are given by “YR”-name pairs.

I CAN HAZ LIBRAY?
Of course, the real advantage of LOLCODE isn’t in writing the
boring and tedious parts of the program (a real cat would never
stoop to boring and tedious, of course); instead, LOLCODE’s true
advantage lies in capturing the Important Business Logic and ex-
posing it through a Web service or Windows Presentation Foun-
dation (WPF) GUI or something. For this reason, the LOLCODE
compiler also supports the ubiquitous “/target:library” option to
produce a standard .NET library assembly—doing this, however,
still produces a “.exe”-suffi xed assembly, with a Main method pres-
ent in the program, even though the Main simply does nothing.
Th is is actually quite in keeping with other modern languages that
assume that the top of the fi le is the entry point to the program as
a whole; LOLCODE is simply taking the extra step of always pro-
viding a Main, because one (even though empty) is always present.

Whether compiling as a library or an executable, LOLCODE
always wraps the generated code into a class called “Program.” Th ere
is no namespace functionality—no self-respecting feline would ever
accept a last name, either.

Soon to Be a Mission-Critical Best Practice
While LOLCODE is powerful, unfortunately its acceptance has not
yet reached a point where many business analysts and customer
representatives understand the benefi ts of expressing business logic
in it. Fortunately, being open source, extensions to the language are
easy, and this language is expected to become an industry-standard
mission-critical best practice by 2014. For best results, architects are
encouraged to demonstrate the power of LOLCODE in hands-on
coding sessions, preferably in a meeting with high-level executives
with no forewarning or advance notice. Happy coding!

TED NEWARD is totally making all of this up, except for the parts about the LOL-
CODE language—all of that is absolutely true. He has written more than 100
articles and authored or coauthored a dozen books, including “Professional F#
2.0” (Wrox, 2010), but none as a joke like this article is. He is an F# MVP and
speaks at conferences around the world. He has been advised by counsel not to
publish any means of reaching him, so as to avoid angry letters from architects
who followed that last bit of advice, but longtime readers of this column will al-
ready know how to reach him.

THANKS to the following technical experts in the Neward family for reviewing
this article: Scooter, Shadow, Princess and Mr. Fluff Fluff

www.msdnmagazine.com

msdn magazine78

Regardless of the platform you’ve targeted for app publishing,
Windows Azure Mobile Services (WAMS) is one back end to rule
them all. It’s a key component of the Windows Azure platform and
it’s the back end for cross-platform modern app and Web develop-
ment. In this article I’ll cover setting up WAMS to work in Visual
Studio, provide an overview of the WAMS API and explain the
coding necessary to build a modern app with WAMS.

The Cross-Platform Architecture of WAMS
Th ere are many Windows Azure services you can use for manag-
ing data and powering an app’s back end, and it isn’t uncommon
for apps to consume more than one Windows Azure service. Here
are some of the available services:

• WAMS: A cross-platform, full-featured set of back-end ser-
vices and resources geared specifi cally for fast app building.

• SQL Azure: Th is is the same popular SQL Server, but in
the cloud, with an easy-to-use Web admin interface. It’s
cost-eff ective for smaller startups, companies and ISVs.

• Windows Azure Table Storage: A NoSQL way to work
with tabular and sometimes-not-so-tabular data.

• Windows Azure Binary Large Object (BLOB) Storage:
A highly scalable way to contain data in key/value pairs
in the cloud without the worries and restrictions of
structured data.

• Windows Azure Web Sites: In addition to Web site
hosting, Windows Azure Web Sites can run ASP.NET
and ASP.NET Web APIs. Th is is a great way to power
legacy Web sites, programs and apps over HTTP without
having to do much architectural rework.

An app’s architecture will depend on its requirements. If the app
needs to store large amounts (for example, tens or hundreds of
gigabytes of data) of media or binary content, using Windows Azure
BLOB Storage is likely a better fi t. For most apps that just read and
write textual data with some accompanying pictures, WAMS is a
straightforward and easy solution. Many apps must deal with legacy
data, so migrating from SQL Server, SQL Server Compact (SQL
CE) or any of the Microsoft SQL family of databases straight
to SQL Azure might be the best route if you need a DBA to
administer the data.

For most apps, WAMS is quite suitable because not only does it
have data storage, but also a full set of back-end services on top of the
database created for the express purposes of supporting common app
infrastructure scenarios like push notifi cations and authentication.

WAMS Core Services
Th e following features are core WAMS services:

• Data: Of course, housing and manipulating data is essen-
tial to every app, so WAMS supports it. For each mobile
service, there’s a SQL Azure database behind it.

• Messaging: Push notifi cations are increasingly important
because users want to stay up-to-date. As apps get progres-
sively more complex, intuitive and user-friendly—in other
words, more modern—features such as push messaging
and real-time communication become commonplace.
Fortunately, using push notifi cations in WAMS is as easy as
a call to send a toast (a small pop-up message in the top- or
bottom-right of the OS) notifi cation like so:

 push.wns.sendToastText04(channel, { text1: item.text });

• Authentication: Securing data, especially user data, is
as important as the data itself. A cornerstone of modern
apps is authenticating via widely popular Web sites—such
as Facebook or Twitter—so WAMS allows you to authen-
ticate with any of the following identity providers:

 1. Microsoft Account (the authentication provider
formerly known as Windows Live ID)

 2. Facebook login
 3. Twitter login
 4. Google login

WAMS sports several libraries for the Windows family of app
development, including the Windows Runtime (WinRT) library
for managed clients, the Windows Library for JavaScript (WinJS)
client library and Representational State Transfer (REST) APIs for
everything—core services, authentication and messaging. Th ere
are even iOS and Android client libraries for cross-platform parity.

Power Your Modern Apps with
Windows Azure Mobile Services

MODERN APPS RACHEL APPEL

For most apps that just
read and write textual data with
some accompanying pictures,

WAMS is a straightforward
and easy solution.

79April 2013msdnmagazine.com

Use the WAMS API in Windows Store
or Windows Phone Projects
Whether you’re building a Windows Store or Windows Phone app, the
code will be almost identical, and the JavaScript code is remarkably
similar on the WinJS side. Once you have the proper development
tools and WAMS set up and confi gured (see bit.ly/NAAQz8 for more on
this), writing the code to access objects and data in a mobile service
is easy, but diff erent from traditional client/server or n-tier app
development. Th is is because WAMS integrates with the app in such
a way that certain changes in the app’s model can cause changes in
the underlying data structures. In other words, you can throw out
many of the traditional SQL data defi nition statements and simply
modify a class’s member, recompile, run the app and verify the
changes at the database level. In addition to this, JavaScript takes the
place of SQL as the syntax du jour for database maintenance such
as validation scripts or creating constraints on the data. Being able
to easily script database changes from the app, command prompt
and Web administration tool shortens the app-building process.

The Microsoft.WindowsAzure.MobileServices namespace
provides standard-issue access to objects in the mobile service or
its underlying SQL Azure database. Th e following code sample
creates an instance of MobileServiceClient:

public static MobileServiceClient MobileService = new MobileServiceClient(
 "https://your-very-own-service-url.azure-mobile.net/",
 "your-very-own-key-that-is-a-gigantic-string-of-characters-and-numbers"
);

As you can see, your WAMS app URL and key are parameters of
the MobileServiceClient constructor. To fi nd your URL and key, log
in to the Windows Azure portal and navigate to your mobile service,
then click the cloud icon to the left of the dashboard menu item.

In the preceding code sample, the MobileServiceClient class
behaves somewhat like a connection object, but without those
pesky open and close methods from the era of the SqlConnection
object. Th e MobileServiceClient class manages the connectivity

for you. If your data is set for public consumption, then you don’t
need to call the MobileServiceClient.login method, yet you can
access tables, run queries and sort data. Of course, more complex
or security-conscious operations may require credentials.

Once you have a valid instance of a MobileServiceClient class, you
can then use GetTable<T> to interact with an underlying WAMS table:

private IMobileServiceTable<Person> personsTable =
 MobileService.GetTable< Person>();

Th e type parameter T in IMobileServiceTable<T> causes the
compiler to inspect the properties and information about the
parameter—in this case the Person class in Figure 1—by mapping
it to the underlying table at the database level. Th is allows you to
add or modify properties during development and see the schema
changes reflected in the cloud at run time, resulting in a more
symbiotic alliance between the code and the database. However,
schema changes at the database level don’t happen automatically
for every change in code. For example, adding a property to the
code in Figure 1 creates a new column in the table, but deleting
an existing property doesn’t cause a deletion.

GetTable<T> returns an IMobileServiceTable object that rep-
resents the actual underlying table in WAMS and contains methods
for inserting, updating, deleting and sorting services, as shown here:

// Perform delete asynchronously where item is of type Person, see Figure 1.
await itemsTable.DeleteAsync(item);
// Select specific records with LINQ query
var people =
 personsTable.Select(p => p.Birthday > DateTime.Now.AddDays(14));

You can build your data layer in the code by creating a custom
class that matches the table and member names. Th is technique
is known as convention over confi guration, which is a way to cut
down on bloated XML confi guration code in favor of continuity
and consistency in naming, resulting in less code that’s more main-
tainable. For example, the class and schema in Figure 1 demonstrate
that the client class code maps to a WAMS table and its members.

Th e code in Figure 1 creates the database schema shown in Figure 2.
WAMS infers data types from the property’s data type in code.

Some types, however, can’t be represented with data attributes,
specifi cally image and binary data. Th is means that when you want
to store an image, you should use Windows Azure BLOB storage
because it’s more scalable, cheaper and performs much better than
the alternative, which is Base64 encoding to a string and then stor-
ing it in a WAMS table. Windows Azure BLOB storage has a REST
API and managed API so developers can easily access the services
across platforms and preferences.

To perform insert, update or delete operations, just make an
instance of your custom object and call the corresponding method
from your IMobileServiceTable object:

Person person = new Person {
 Name = "Alan Turing",
 Birthday = DateTime dte = new DateTime(1912,6,23),
 Picture = base64string, // Image encoding done elsewhere in code.
 Notes = "A father of modern computer science. There is a test " +
 "named after him that I fail regularly"};
await personsTable.InsertAsync(person);

Because the call to InsertAsync is clearly asynchronous, the call
doesn’t block UI code from running, and you can manage data
in the background without interfering with the user’s activities.
Windows Store and Windows Phone apps work in an asynchronous
fashion by default, as you can’t always count on reliable connectivity.

// Data model/class code.
public class Person
{
 public int Id { get; set; }

 public string Name { get; set; }

 [DataMember(Name = "Birthday")]
 public DateTime Date { get; set; }

 public string Picture { get; set; }

 public string Notes { get; set; }
}

Figure 1 The Person Class

Column Type
Id SQL Bigint
Name String
Date DateTime
Picture String
Notes String

Figure 2 Convention over Confi guration
Matches Class Code and Database Schema Names

www.msdnmagazine.com
www.bit.ly/NAAQz8

msdn magazine80 Modern Apps

If you’re working in XAML, you can data bind the table by
calling the IMobileServiceTable object’s ToListAsync method.
Th is method preps the data and returns it into an object that binds
WAMS tables easily to XAML ListView elements, as the following
code sample demonstrates:

var results = await todoTable.ToListAsync();
items = new ObservableCollection<TodoItem>(results);
ListItems.ItemsSource = items;

Th e preceding code is similar to traditional data-binding code
in the Microsoft .NET Framework. You can also call methods
on the IMobileServiceTable object to return an IList<T> or
IEnumerable<T> if you wish to manually loop through the data,
rather than data bind.

Managing Advanced WAMS Features
You will, of course, need to administer and maintain the mobile
service, its data, security and all the usual tasks that go with back-
end maintenance, as not all of that kind of work should be done
in the app. Fortunately, WAMS gives you a few choices in regard
to back-end administrative tasks:

• Command-line tool: Th is is great no matter what platform
you use for development; you can use any command prompt
once you’ve downloaded and installed the command-line
libraries (see bit.ly/14Q49bi for more on this).

• Web administration: Great for cross-platform back-end
development, and also known as the Windows Azure portal,
this tool lets you do all the basics online—create databases,
run server-side scripts, manage services, manage security
and so on (the portal is accessed from the main Windows
Azure site at bit.ly/4yqVhP).

• SQL Server Management Studio: A classic Microsoft
database administration tool that you can use to connect
and manage the databases behind a mobile service (see
bit.ly/VdqpZH for more on this).

WAMS contains a succinct yet complete WAMS server-side
script reference (bit.ly/XvsVec). You can launch commands from the
command-line tool or from the Windows Azure portal online. At
the command prompt, simply enter the command “azure mobile”
to see a list of all available commands and “azure mobile list” to list
all your mobile services.

Just like your app code, server-side script functions are “registered”
to a table via naming conventions, so the scripts must match method
signatures for insert, read, update and delete operations. Here are the
data-manipulation script signatures in JavaScript:

• Insert function: insert (item, user, request) { ... }
• Read function: read (query, user, request) { ... }
• Update function: update (item, user, request) { ... }
• Delete function: del (id, user, request) { ... }

Notice that everything you need is included as method parameters,
that is, the data row, the user identity and the request itself. Th is allows
you to perform row-level security as well as run any type of server-side
rules such as data validation when these activities occur.

As an example, you might want to perform validation to limit
the incoming string’s length for insertions. You can do so by using
this code:

function insert(item, user, request) {
 if (item.text.length > 20) {
 request.respond(statusCodes.BAD_REQUEST,
 'The length of the input text must be less than 20');
 } else {
 request.execute();
 }
}

While you can modify these scripts at the Windows Azure portal,
you can also do so in your favorite text editor and save the fi le with
a .js extension, for example, person.insert.js. You can then upload
the prepared script via the command line with a command with
this syntax and signature:

azure mobile script upload <service-name> table/<table-name>.<operation>.js

A command to upload the previous sample script would look
something like this (where “Notable” is the service name and “person”
is the table name):

azure mobile script upload NotablePeople table/person.insert.js

As you might expect, the results of a validation error can be caught
by a try/catch statement in any client-side language.

Alas, SQL developers might be feeling out of touch at this point,
with all the server-side JavaScript trends lately, but they can feel
more at home by using SQL inside an mssql script object, even if
it’s mixed with JavaScript:

mssql.query('select * from people', {
 success: function(results) {
 console.log(results);
 }
});

Th is is especially helpful if you come from an enterprise devel-
opment background that’s full of SQL, as it’s much diff erent than
the dynamic nature of JavaScript.

To review, WAMS is a complete set of back-end services for
rapid, cross-platform app building. All of the Windows Azure
services except SQL Azure automatically implement REST-friendly
URLs, and because REST is cross-platform, there’s no need to worry
about ensuring your app architecture will support new client
devices or user agents in the future. In the meantime, working with
WAMS requires no heft y soft ware installs on the client because of
its powerful Web administration and command-line tools, as well
as easy-to-use APIs for everything from basic data storage to bulk
e-mailing and push notifi cations.

RACHEL APPEL is a developer evangelist at Microsoft New York City. Reach her via
her Web site at rachelappel.com or by e-mail at rachel.appel@microsoft .com. You
can also follow her latest updates on Twitter at twitter.com/rachelappel.

THANKS to the following technical expert for reviewing this article:
Paul Batum (Microsoft)

Working with WAMS requires
no hefty software installs on the
client because of its powerful

Web administration and
command-line tools.

www.bit.ly/14Q49bi
www.bit.ly/4yqVhP
www.bit.ly/XvsVec
www.rachelappel.com
mailto:rachel.appel@microsoft.com
www.twitter.com/rachelappel

HTML5+jQUERY
Any App - Any Browser - Any Platform - Any Device

Dowload Your Free Trial!
www.infragistics.com/igniteui-trial

Infragistics Sales US 800 231 8588 • Europe +44 (0) 800 298 9055 • India +91 80 4151 8042 • APAC +61 3 9982 4545
Copyright 1996-2013 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc.

The Infragistics logo is a trademark of Infragistics, Inc. All other trademarks or registered trademarks are the respective property of their owners.

Untitled-2 1 12/5/12 10:49 AM

http://www.infragistics.com/igniteui-trial

msdn magazine82

Many Windows users these days
have a Music Library on their
hard drives containing perhaps
thousands or tens of thousands of
MP3 and WMA fi les. To play this
music on the PC, generally such
users run the Windows Media
Player or the Windows 8 Music
application. But for programmers,
it’s good to know we can write our
own programs to play these fi les.
Windows 8 provides program-
ming interfaces to access the Music
Library, obtain information about
the individual music fi les (such as
artist, title and duration), and play
these fi les using MediaElement.

MediaElement is the easy
approach, and of course there are
alternatives that make the job more diffi cult but also add a lot of
versatility. With two DirectX components—Media Foundation
and XAudio2—it’s possible for an application to get much more
involved in this process. You can load chunks of decompressed
audio data from music fi les, and analyze that data or manipulate it
some way before (or instead of) playing the music. Have you ever
wondered what a Chopin Étude sounds like when played back-
ward at half speed? Well, neither have I, but one of the programs
accompanying this article will let you fi nd out.

Pickers and Bulk Access
Certainly the easiest way for a Windows 8 program to access the
Music Library is through the FileOpenPicker, which can be initial-
ized in a C++ program for loading audio fi les like this:

FileOpenPicker^ fileOpenPicker = ref new FileOpenPicker();
fileOpenPicker->SuggestedStartLocation = PickerLocationId::MusicLibrary;
fileOpenPicker->FileTypeFilter->Append(".wma");
fileOpenPicker->FileTypeFilter->Append(".mp3");
fileOpenPicker->FileTypeFilter->Append(".wav");

Call PickSingleFileAsync to display the FileOpenPicker and let
the user select a fi le.

For a free-form exploration of the folders and files, it’s also
possible for the application manifest fi le to indicate it wants more
extensive access to the Music Library. Th e program can then use
the classes in the Windows::Storage::BulkAccess namespace to
enumerate the folders and music fi les on its own.

Regardless of the approach you take, each fi le is represented by
a StorageFile object. From that object you can obtain a thumbnail,
which is an image of the music’s album cover (if it exists). From the
Properties property of StorageFile, you can obtain a MusicProperties
object, which provides the artist, album, track name, duration and
other standard information associated with the music fi le.

By calling OpenAsync on that StorageFile, you can also open
it for reading and obtain an IRandomAccessStream object,
and even read the entire file into memory. If it’s a WAV file, you
might consider parsing the fi le, extracting the waveform data and
playing the sound through XAudio2, as I’ve described in recent
installments of this column.

But if it’s an MP3 or WMA fi le, that’s not so easy. You’ll need
to decompress the audio data, and that’s a job you’ll probably not
want to take on yourself. Fortunately, the Media Foundation APIs
include facilities to decompress MP3 and WMA fi les and put the
data into a form that can be passed directly to XAudio2 for playing.

Streaming and Manipulating Audio Files
in Windows 8

DIRECTX FACTOR CHARLES PETZOLD

Code download available at archive.msdn.microsoft.com/mag201304DXF.

Figure 1 The StreamMusicFile Program Playing a Music File

http://archive.msdn.microsoft.com/mag201304DXF

83April 2013msdnmagazine.com

Another approach to getting access to decompressed audio data
is through an audio eff ect that’s attached to a MediaElement. I hope
to demonstrate this technique in a later article.

Media Foundation Streaming
To use the Media Foundation functions and interfaces I’ll be
discussing here, you’ll need to link your Windows 8 program with
the mfplat.lib and mfreadwrite.lib import libraries, and you’ll need
#include statements for mfapi.h, mfidl.h and mfreadwrite.h in
your pch.h fi le. (Also, be sure to include initguid.h before mfapi.h
or you’ll get link errors that might leave you baffled for many
unproductive hours.) If you’re also using XAudio2 to play the fi les
(as I’ll be doing here), you’ll need the xaudio2.lib import library
and xaudio2.h header fi le.

Among the downloadable code for this column is a Windows 8
project named StreamMusicFile that demonstrates pretty much the
minimum code necessary to load a fi le from the PC’s Music Library,
decompress it through Media Foundation and play it through
XAudio2. A button invokes the FileOpenPicker, and aft er you’ve
selected a fi le, the program displays some standard information
(as shown in Figure 1) and immediately begins playing the fi le.
By default, the volume Slider at the bottom is set to 0, so you’ll
need to increase that to hear anything. There’s no way to pause
or stop the file except by terminating the program or bringing
another program to the foreground.

In fact, the program doesn’t stop playing a music fi le even if you
click the button and load in a second fi le. Instead, you’ll discover
that both fi les play at the same time, but probably not in any type
of coherent synchronization. So that’s something this program
can do that the Windows 8 Music application and Media Player
cannot: play multiple music fi les simultaneously!

The method shown in Figure 2 shows how the program
uses an IRandomAccessStream from a StorageFile to create an
IMFSourceReader object capable of reading an audio file and
delivering chunks of uncompressed audio data.

For clarity, Figure 2 excludes all code dealing with errant
HRESULT return values. Th e actual code throws exceptions of type
COMException, but the program doesn’t catch these exceptions
as a real application would.

In short, this method uses the IRandomAccessStream to
create an IMFByteStream object encapsulating the input stream,
and then uses that to create an IMFSourceReader, which can
perform the actual decompression.

Notice the use of an IMFAttributes object to specify a low-latency
operation. Th is isn’t strictly required, and you can set the second
argument to the MFCreateSourceReaderFromByteStream function
to nullptr. However, as the fi le is being read and played, the hard
drive is being accessed and you don’t want those disk operations
to create audible gaps in the playback. If you’re really nervous

ComPtr<IMFSourceReader> MainPage::CreateSourceReader(IRandomAccessStream^
randomAccessStream)
{
 // Start up Media Foundation
 HRESULT hresult = MFStartup(MF_VERSION);

 // Create a IMFByteStream to wrap the IRandomAccessStream
 ComPtr<IMFByteStream> mfByteStream;
 hresult = MFCreateMFByteStreamOnStreamEx((IUnknown *)randomAccessStream,
 &mfByteStream);

 // Create an attribute for low latency operation
 ComPtr<IMFAttributes> mfAttributes;
 hresult = MFCreateAttributes(&mfAttributes, 1);
 hresult = mfAttributes->SetUINT32(MF_LOW_LATENCY, TRUE);

 // Create the IMFSourceReader
 ComPtr<IMFSourceReader> mfSourceReader;
 hresult = MFCreateSourceReaderFromByteStream(mfByteStream.Get(),
 mfAttributes.Get(),
 &mfSourceReader);

 // Create an IMFMediaType for setting the desired format
 ComPtr<IMFMediaType> mfMediaType;
 hresult = MFCreateMediaType(&mfMediaType);
 hresult = mfMediaType->SetGUID(MF_MT_MAJOR_TYPE, MFMediaType_Audio);
 hresult = mfMediaType->SetGUID(MF_MT_SUBTYPE, MFAudioFormat_Float);

 // Set the media type in the source reader
 hresult = mfSourceReader->SetCurrentMediaType(MF_SOURCE_READER_FIRST_AUDIO_STREAM,
 0, mfMediaType.Get());
 return mfSourceReader;
}

Figure 2 Creating and Initializing an IMFSourceReader

AudioFilePlayer::AudioFilePlayer(ComPtr<IXAudio2> pXAudio2,
 ComPtr<IMFSourceReader> mfSourceReader)
{
 this->mfSourceReader = mfSourceReader;

 // Get the Media Foundation media type
 ComPtr<IMFMediaType> mfMediaType;
 HRESULT hresult = mfSourceReader->GetCurrentMediaType(MF_SOURCE_READER_
 FIRST_AUDIO_STREAM,
 &mfMediaType);

 // Create a WAVEFORMATEX from the media type
 WAVEFORMATEX* pWaveFormat;
 unsigned int waveFormatLength;
 hresult = MFCreateWaveFormatExFromMFMediaType(mfMediaType.Get(),
 &pWaveFormat,
 &waveFormatLength);

 // Create the XAudio2 source voice
 hresult = pXAudio2->CreateSourceVoice(&pSourceVoice, pWaveFormat,
 XAUDIO2_VOICE_NOPITCH, 1.0f, this);

 // Free the memory allocated by function
 CoTaskMemFree(pWaveFormat);

 // Submit two buffers
 SubmitBuffer();
 SubmitBuffer();

 // Start the voice playing
 pSourceVoice->Start();
 endOfFile = false;
}

Figure 3 The AudioFilePlayer Constructor in StreamMusicFile

MediaElement is the
easy approach, and of course

there are alternatives that make
the job more diffi cult but also

add a lot of versatility.

www.msdnmagazine.com

msdn magazine84 DirectX Factor

about this problem, you might consider reading the entire file
into an InMemoryRandomAccessStream object and using that for
creating the IMFByteStream.

When a program uses Media Foundation to decompress an
audio fi le, the program has no control over the sampling rate of
the uncompressed data it receives from the fi le, or the number of
channels. Th is is governed by the fi le. However, the program can
specify that the samples be in one of two diff erent formats: 16-bit
integers (used for CD audio) or 32-bit fl oating-point values (the C

fl oat type). Internally, XAudio2 uses 32-bit fl oating-point samples,
so fewer internal conversions are required if 32-bit fl oating-point
samples are passed to XAudio2 for playing the fi le. I decided to go
that route in this program. Accordingly, the method in Figure 2
specifies the format of the audio data it desires with the two
identifi ers MFMediaType_Audio and MFAudioFormat_Float. If
decompressed data is required, the only alternative to this second
identifi er is MFAudioFormat_PCM for 16-bit integer samples.

At this point, we have an object of type IMFSourceReader poised
to read and decompress chunks of an audio fi le.

Playing the File
I originally wanted to have all the code for this fi rst program in
the MainPage class, but I also wanted to use an XAudio2 callback
function. Th at’s a problem because (as I discovered) a Windows
Runtime type like MainPage can’t implement a non-Windows
Runtime interface like IXAudio2VoiceCallback, so I needed a
second class, which I called AudioFilePlayer.

Aft er obtaining an IMFSourceReader object from the method shown
in Figure 2, MainPage creates a new AudioFilePlayer object, also
passing to it an IXAudio2 object created in the MainPage constructor:

new AudioFilePlayer(pXAudio2, mfSourceReader);

From there, the AudioFilePlayer object is entirely on its own
and pretty much self-contained. Th at’s how the program can play
multiple fi les simultaneously.

To play the music fi le, AudioFilePlayer needs to create an IXAudio2-
SourceVoice object. Th is requires a WAVEFORMATEX structure
indicating the format of the audio data to be passed to the source
voice, and that should be consistent with the audio data being deliv-
ered by the IMFSourceReader object. You can probably guess at the
correct parameters (such as two channels and a 44,100 Hz sampling
rate), and if you get the sampling rate wrong, XAudio2 can perform
sample rate conversions internally. Still, it’s best to obtain a WAVE-
FORMATEX structure from the IMFSourceReader and use that, as
shown in the AudioFilePlayer constructor in Figure 3.

Getting that WAVEFORMATEX structure is a bit of a nuisance
that involves a memory block that must then be explicitly freed,
but by the conclusion of the AudioFilePlayer constructor, the fi le
is ready to be played.

To keep the memory footprint of such a program to a minimum,
the fi le should be read and played in small chunks. Both Media
Foundation and XAudio2 are very conducive to this approach. Each
call to the ReadSample method of the IMFSourceReader object
obtains access to the next block of uncompressed data until the fi le
is entirely read. For a sampling rate of 44,100 Hz, two channels and
32-bit fl oating-point samples, my experience is that these blocks
are usually 16,384 or 32,768 bytes in size, and sometimes as little
as 12,288 bytes (but always a multiple of 4,096), indicating about
35 to 100 milliseconds of audio each.

Following each call to the ReadSample method of IMFSource-
Reader, a program can simply allocate a local block of memory,
copy the data to that, and then submit that local block to the
IXAudio2SourceVoice object with SubmitSourceBuff er.

AudioFilePlayer uses a two-buffer approach to play the file:
While one buff er is being fi lled with data, the other buff er is playing.
Figure 4 shows the entire process, again without the checks for errors.

void AudioFilePlayer::SubmitBuffer()
{
 // Get the next block of audio data
 int audioBufferLength;
 byte * pAudioBuffer = GetNextBlock(&audioBufferLength);

 if (pAudioBuffer != nullptr)
 {
 // Create an XAUDIO2_BUFFER for submitting audio data
 XAUDIO2_BUFFER buffer = {0};
 buffer.AudioBytes = audioBufferLength;
 buffer.pAudioData = pAudioBuffer;
 buffer.pContext = pAudioBuffer;
 HRESULT hresult = pSourceVoice->SubmitSourceBuffer(&buffer);
 }
}

byte * AudioFilePlayer::GetNextBlock(int * pAudioBufferLength)
{
 // Get an IMFSample object
 ComPtr<IMFSample> mfSample;
 DWORD flags = 0;
 HRESULT hresult = mfSourceReader->ReadSample(MF_SOURCE_READER_FIRST_AUDIO_STREAM,
 0, nullptr, &flags, nullptr,
 &mfSample);
 // Check if we’re at the end of the file
 if (flags & MF_SOURCE_READERF_ENDOFSTREAM)
 {
 endOfFile = true;
 *pAudioBufferLength = 0;
 return nullptr;
 }

 // If not, convert the data to a contiguous buffer
 ComPtr<IMFMediaBuffer> mfMediaBuffer;
 hresult = mfSample->ConvertToContiguousBuffer(&mfMediaBuffer);

 // Lock the audio buffer and copy the samples to local memory
 uint8 * pAudioData = nullptr;
 DWORD audioDataLength = 0;
 hresult = mfMediaBuffer->Lock(&pAudioData, nullptr, &audioDataLength);
 byte * pAudioBuffer = new byte[audioDataLength];
 CopyMemory(pAudioBuffer, pAudioData, audioDataLength);
 hresult = mfMediaBuffer->Unlock();

 *pAudioBufferLength = audioDataLength;
 return pAudioBuffer;
}

// Callback methods from IXAudio2VoiceCallback
void _stdcall AudioFilePlayer::OnBufferEnd(void* pContext)
{
 // Remember to free the audio buffer!
 delete[] pContext;

 // Either submit a new buffer or clean up
 if (!endOfFile)
 {
 SubmitBuffer();
 }
 else
 {
 pSourceVoice->DestroyVoice();
 HRESULT hresult = MFShutdown();
 }
}

Figure 4 The Audio-Streaming Pipeline in StreamMusicFile

85April 2013msdnmagazine.com

To get temporary access to the audio data, the program needs
to call Lock and then Unlock on an IMFMediaBuffer object
representing the new block of data. In between those calls, the
GetNextBlock method in Figure 4 copies the block into a newly
allocated byte array.

Th e SubmitBuff er method in Figure 4 is responsible for setting
the fi elds of an XAUDIO2_BUFFER structure in preparation for
submitting the audio data for playing. Notice how this method also
sets the pContext fi eld to the allocated audio buff er. Th is pointer is
passed to the OnBuff erEnd callback method seen toward the end
of Figure 4, which can then delete the array memory.

When a fi le has been entirely read, the next ReadSample call
sets an MF_SOURCE_READERF_ENDOFSTREAM fl ag and
the IMFSample object is null. Th e program responds by setting
an endOfFile fi eld variable. At this time, the other buff er is still
playing, and a last call to OnBuff erEnd will occur, which uses the
occasion to release some system resources.

There’s also an OnStreamEnd callback method that’s trig-
gered by setting the XAUDIO2_END_OF_STREAM fl ag in the
XAUDIO2_BUFFER, but it’s hard to use in this context. The
problem is that you can’t set that flag until you receive an
MF_SOURCE_READERF_ENDOFSTREAM flag from the
ReadSample call. But SubmitSourceBuffer does not allow null
buff ers or buff ers of zero size, which means you have to submit a
non-empty buff er anyway, even though no more data is available!

Spinning a Record Metaphor
Of course, passing audio data from Media Foundation to
XAudio2 is not nearly as easy as using the Windows 8 Media-
Element, and hardly worth the effort unless you’re going to do
something interesting with the audio data. You can use XAudio2
to set some special eff ects (such as echo or reverb), and in the next
installment of this column I’ll apply XAudio2 fi lters to sound fi les.

Meanwhile, Figure 5 shows a program named DeeJay that
displays an on-screen record and rotates it as the music is playing
at a default rate of 33 1/3 revolutions per minute.

Not shown is an application bar
with a Load File button and two
sliders—one for the volume and
another to control the playback
speed. Th is slider has values that
range from -3 to 3 and indicate a
speed ratio. Th e default value is 1.
A value of 0.5 plays back the fi le
at half speed, a value of 3 plays the
fi le back three times as fast, a value
of 0 essentially pauses playback,
and negative values play the file
backward (perhaps allowing you
to hear hidden messages encoded
in the music).

Because this is Windows 8,
of course you can also spin the
record with your fi ngers, thus jus-
tifying the program’s name. DeeJay

allows for single-fi nger rotation with inertia, so you can give the
record a good spin in either direction. You can also tap the record
to move the “needle” to that location.

I very, very, very much wanted to implement this program in a
manner similar to the StreamMusicFile project with alternating calls
to ReadSample and SubmitSourceBuff er. But problems arose when
attempting to play the fi le backward. I really needed IMFSource-
Reader to support a ReadPreviousSample method, but it does not.

What IMFSourceReader does support is a SetCurrentPosition
method that allows you to move to a previous location in the fi le.
However, subsequent ReadSample calls begin returning blocks
earlier than that position. Most of the time, a series of calls to
ReadSample eventually meet up at the same block as the last Read-
Sample call before SetCurrentPosition, but sometimes they don’t,
and that made it just too messy.

I eventually gave up, and the program simply loads the entire
uncompressed audio fi le into memory. To keep the memory foot-
print down, I specifi ed 16-bit integer samples rather than 32-bit
fl oating-point samples, but still it’s about 10MB of memory per
minute of audio, and loading in a long movement of a Mahler
symphony would commandeer about 300MB.

Th ose Mahler symphonies also mandated that the entire fi le-loading
method be executed in a secondary thread, a job that’s greatly simpli-
fi ed by the create_task function available in Windows 8.

Figure 5 The DeeJay Program

Of course, passing audio
data from Media Foundation
to XAudio2 is not nearly as

easy as using the Windows 8
MediaElement.

www.msdnmagazine.com

msdn magazine86 DirectX Factor

To ease working with the individual samples, I created a simple
structure named AudioSample:

struct AudioSample
{
 short Left;
 short Right;
};

So instead of working with an array of bytes, the AudioFilePlayer
class in this program works with an array of AudioSample values.
However, this means that the program is basically hardcoded for
stereo fi les. If it loads an audio fi le that doesn’t have exactly two
channels, it can’t play that fi le!

Th e asynchronous fi le-reading method stores the data it obtains
in a structure I call LoadedAudioFileInfo:

struct LoadedAudioFileInfo
{
 AudioSample* pBuffer;
 int bufferLength;
 WAVEFORMATEX waveFormat;
};

Th e pBuff er is the big block of memory, and buff erLength is the
product of the sampling rate (probably 44,100 Hz) and the dura-
tion of the fi le in seconds. Th is structure is passed directly to the
AudioFilePlayer class. A new AudioFilePlayer is created for each
loaded fi le, and it replaces any previous AudioFilePlayer instance.
For cleaning up, AudioFilePlayer has a destructor that deletes the
big array holding the entire fi le, as well as two smaller arrays used
for submitting buff ers to the IXAudio2SourceVoice object.

Th e keys to playing the fi le forward and backward at various
speeds are two fi elds in AudioFilePlayer of type double: audioBuff er-
Index and speedRatio. Th e audioBuff erIndex variable points to a
location within the big array containing the entire uncompressed
fi le. Th e speedRatio variable is set to the same values as the slider,
-3 through 3. When the AudioFilePlayer needs to transfer audio
data from the big buff er into the smaller buff ers for submission, it

increments audioBuff erIndex by speedRatio for each sample. Th e
resultant audioBuff erIndex is (in general) between two fi le samples,
so the method in Figure 6 performs an interpolation to derive a
value that’s then transferred to the submission buff er.

The Touch Interface
To keep the program simple, the entire touch interface consists of a
Tapped event (to position the “needle” at a diff erent location on the
record) and three Manipulation events: the ManipulationStarting
handler initializes single-fi nger rotation; the ManipulationDelta
handler sets a speed ratio for the AudioFilePlayer that overrides
the speed ratio from the slider; and the ManipulationCompleted
handler restores the speed ratio in AudioFilePlayer to the slider
value aft er all inertial movement has completed.

Rotational velocity values are directly available from event
arguments of the ManipulationDelta handler. Th ese are in units
of degrees of rotation per millisecond. If you consider that a stan-
dard long-playing record speed of 33 1/3 revolutions per minute
is equivalent to 200° per second, or 0.2° per millisecond, I merely
needed to divide the value in the ManipulationDelta event by 0.2
to obtain the speed ratio I required.

However, I discovered that the velocities reported by the Manipu-
lationDelta are quite erratic, so I had to smooth them out with some
simple logic involving a fi eld variable named smoothVelocity:

smoothVelocity = 0.95 * smoothVelocity +

 0.05 * args->Velocities.Angular / 0.2;
pAudioFilePlayer->SetSpeedRatio(smoothVelocity);

On a real turntable, you can stop rotation by simply pressing your
fi nger on the record. But that doesn’t work here. Actual movement
of your fi nger is necessary for Manipulation events to be generated,
so to stop the record you need to press and then move your fi nger
(or mouse or pen) a bit.

Th e inertial deceleration logic also doesn’t match up with reality.
Th is program allows inertial movement to fi nish entirely before
restoring the speed ratio to the value indicated by the slider. In
reality, that slider value should exhibit a type of pull on the inertial
values, but that would have complicated the logic considerably.

Besides, I couldn’t really detect an “unnatural” inertial effect.
Undoubtedly a real DJ would feel the diff erence right away.

CHARLES PETZOLD is a longtime contributor to MSDN Magazine and the author
of “Programming Windows, 6th edition” (O’Reilly Media, 2012), a book about
writing applications for Windows 8. His Web site is charlespetzold.com.

THANKS to the following technical experts for reviewing this article:
Richard Fricks (Microsoft)

Rotational velocity values
are directly available from
event arguments of the

ManipulationDelta handler.

AudioSample AudioFilePlayer::InterpolateSamples()
{
 double left1 = 0, left2 = 0, right1= 0, right2 = 0;

 for (int i = 0; i < 2; i++)
 {
 if (pAudioBuffer == nullptr)
 break;

 int index1 = (int)audioBufferIndex;
 int index2 = index1 + 1;
 double weight = audioBufferIndex - index1;

 if (index1 >= 0 && index1 < audioBufferLength)
 {
 left1 = (1 - weight) * pAudioBuffer[index1].Left;
 right1 = (1 - weight) * pAudioBuffer[index1].Right;
 }

 if (index2 >= 0 && index2 < audioBufferLength)
 {
 left2 = weight * pAudioBuffer[index2].Left;
 right2 = weight * pAudioBuffer[index2].Right;
 }
 }

 AudioSample audioSample;
 audioSample.Left = (short)(left1 + left2);
 audioSample.Right = (short)(right1 + right2);
 return audioSample;
}

Figure 6 Interpolating Between Two Samples in DeeJay

www.charlespetzold.com

MAY 14-16, 2013
WASHINGTON, DC
WALTER E. WASHINGTON CONVENTION CENTER

Keynotes

Joe

Thiesmann

Jan R.

Frye

Steven

VanRoekel

General

McChrystal

(Invited)

Improve
Efficiencies
& Manage Risk
Learn skill improvement,

agile development,

metrics & more.

PROJECT
MANAGEMENT

EXPERIENCE TECHNOLOGY

SEE IT. HEAR IT. TRY IT. KNOW IT.
Experience NEW Solutions at FOSE.

App Arcade

FREE EXPO*

The Business of
Cybersecurity
Detect, determine and

develop your strategy.

Extract
Meaning
Use your bits and

bytes to reach

objectives.
Experience the

latest apps for

government.

Benefit Today
& Plan for
Tomorrow
Do more with less.

Obtain new guidance

on cloud initiatives.

Digital Government
Strategy
Achieve your BYOD,

security, API and

Enterprise System goals.

Hands-on demos, free

education, networking

and more!

First @ FOSEGovernment Tech Talks
See industry giants’ latest

products and services.

Valuable technology implementation

—3 strategies in 15 minutes!

FOSE.com

REGISTER TODAY!
Early Bird Special—SAVE $100!
USE PRIORITY CODE: FOSEAD2

 3-DAY PAID CONFERENCE delivering best

practices & case studies from some of the

biggest names in government.

 FREE EXPO* showcasing industry partners

& their solutions to help you reach your

mission goals!

* Expo is free for government; $50 for industry suppliers. PRODUCED BY

PLATINUM PARTNER TECHNOLOGY SPONSORSGOLD SPONSORS SILVER SPONSORS

Untitled-3 1 3/1/13 10:58 AM

www.fose.com

msdn magazine88

One of the delights of writing this column is that I get to see lots of
new things. Sometimes their creators forget to name them, so I get
to do it. And because they’re new, I sometimes have to coin new
words to describe them. Here are some of my favorites:

hassle budget (n.): Th e amount of security-related overhead
that a user is willing to tolerate before he either throws away your
product or fi gures out a workaround. “Wow, that User Account
Control popping up all the time asking, ‘Are you sure?’ is a real pain
in the ass, especially because I’ve never once said ‘no’ to it. It’s way
over my hassle budget. I’m turning the thing off .”

marketingbozo (n.): A person who attempts to sell a product
without understanding it, and without understanding his lack of
understanding. “Bob, you marketingbozo! You poured our entire
budget into promoting caff eine-free diet Jolt Cola. We’re broke,
and you’re fi red.”

Th e key distinguishing feature of the marketingbozo is his con-
stant spouting of technical buzzwords he doesn’t understand. At
a TechEd many years ago, I stopped to chat with a marketingbozo
who was turning cartwheels over the fact that the soft ware he sold
had just been made object-oriented. “Please forgive my ignorance,”
I asked him, “but what exactly is object-oriented soft ware, how
does it diff er from soft ware that’s not object-oriented, and why is
that diff erence something I care about buying?” Watching the poor
sod wriggle until his technical guy came back and recognized me
(we both laughed) was the most fun I had at the whole conference.
Call me easily amused.

armadillo (n.): A technology product that fails because its func-
tionality falls between two successful niches, off ering the drawbacks

of both but the advantages of neither. I got the idea from a Texan
student of mine, who observed, “Th ere ain’t nothing in the middle of
the road ’cept yellow lines and squashed armadillos.” If something is
neither fi sh nor fowl, it’s probably an armadillo. “Th is device is too
hot, heavy and expensive for a tablet, and way too underpowered
and too hard to type on for a notebook. What an armadillo!”

MINFU (n.): An acronym standing for MIcrosoft Nomenclature
Foul-Up, based on the military acronyms SNAFU and FUBAR
that crossed into general usage decades ago. I coined it in a
1998 column on Byte.com, and it’s been in three editions of my
Microsoft Press book. Several other authors have picked it up, most
notably David Chappell.

For example, a marketingbozo once attempted to name the
in-place activation of an embedded object in Office as “Visual
Editing.” I guess he wanted to distinguish it from tactile editing, or
perhaps olfactory editing. I said to the guy, “Well, my embedded
objects are sound presentations, so they’re not visual. And I don’t
edit them in place, I play them. Do you still want me to call it Visual
Editing, even though it’s not editing and it’s not visual?”

And now, of course, the latest MINFU is “Metro.” Microsoft used
that name to describe its new tile-based interface, which debuted
with the Windows 7 phone, in November of 2010. Almost two
years later, just before the debut of Windows 8, Microsoft shouted,
“Whoa! Hold everything!” It turns out that a German supermarket
company named Metro AG claimed rights to the name. A friend of
mine barely managed to retrieve his book manuscript containing
the “M” word the day before the presses rolled.

So what do we call apps of the type “Formerly Known as Metro”?
At the time of this writing, I’ve been directed to use the term
“Windows Store app” to describe the tile-based interface. What to
call these apps when you get them from other sources, I don’t quite
know. ATCHCFTSETYAGTSE (Apps Th at Could Have Come
from the Store Even Th ough You Actually Got Th em Somewhere
Else)? MINFU.

DAVID S. PLATT teaches programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming
books, including “Why Soft ware Sucks” (Addison-Wesley Professional, 2006)
and “Introducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named
him a Soft ware Legend in 2002. He wonders whether he should tape down two
of his daughter’s fi ngers so she learns how to count in octal. You can contact him
at rollthunder.com.

Coining Currency

DON’T GET ME STARTED DAVID S. PLATT

The key distinguishing feature
of the marketingbozo

is his constant spouting of
technical buzzwords he

doesn’t understand.

www.rollthunder.com

Untitled-1 1 3/5/13 2:46 PM

http://marketdash.componentone.com/redirect.ashx?rdtl=1783

Untitled-3 1 3/1/13 11:07 AM

www.syncfusion.com/msdnapril

	Back
	Print
	MSDN Magazine, April 2013
	Cover Tip
	Contents
	CUTTING EDGE: Essential Facebook Programming: Widgets and Timeline
	DATA POINTS: Why Does Entity Framework Reinsert Existing Objects into My Database?
	WINDOWS AZURE INSIDER: NoSQL Data in the Cloud with Windows Azure Tables
	A Tour of C++/CX
	Exploring the JavaScript API for Office: Data Binding and Custom XML Parts
	Building and Validating Windows Store Apps with Team Foundation Service
	A Treasure Hunt Through ALM Readiness
	Classification and Prediction Using Adaptive Boosting
	THE WORKING PROGRAMMER: Capturing Important Business Logic
	MODERN APPS: Power Your Modern Apps with Windows Azure Mobile Services
	DIRECTX FACTOR: Streaming and Manipulating Audio Files in Windows 8
	DON’T GET ME STARTED: Coining Currency

	Visual Studio Live!-Chicago Insert

