JUNE 2016 VOL 31 NO 6

magazine

msan

When Only the Best Will Do

Our high-performance and feature-complete UI Controls and Libraries will help
you build your best, without limits or compromise

" DevExpress

Free 30-day Trial
devexpress.com/try

All trademarks or registered trademarks are property of their respective owners.

www.devexpress.com/try

Unleash the Ul Superhero in You

With DevExpress tools, you'll deliver amazing user-experiences
for Windows®, the Web and Your Mobile World

Experience the DevExpress difference today.
Download your free 30-day trial.
devexpress.com/try

% DevExpress WIN ASP MVC WPF ==

www.devexpress.com/try

THE MICROSOFT JOURNAL FOR DEVELOPERS

JUNE 2016 VOL 31 NO 6

msd

Use Custom Middleware to Detect and
Fix 404s in ASPNET Core Apps

Steve Smith

Scale Asynchronous Client-Server Links

with Reactive
Peter Vogel

Language-Agnostic Code Generation

with Roslyn
Alessandro Del Sole......

Microsoft Azure Media Services and Power Bl
Sagar Bhanudas Joshi....

magazine

N

Using Azure App Services to Convert
a Web Page to PDF

Benjamin Perkins.

Speed Up Your Mobile Development

Using an MBaa$S PIatform
Paras Wadehra..... -

COLUMNS

CUTTING EDGE

Building an Historical CRUD,
Part 2
Dino Esposito, page 6

TEST RUN

Introduction to
Prediction Markets
James McCaffrey, page 54

THE WORKING
PROGRAMMER

How To Be MEAN: Passport
Ted Neward, page 62

ESSENTIAL .NET

Dependency Injection
with .NET Core
Mark Michaelis, page 66

MODERN APPS

Playing with Audio in the UWP
Frank La Vigne, page 74

DON’'T GET ME STARTED

The Joy of UX
David Platt, page 80

Microsoft

TEXTCONTROL

ASPNET MVC
REPORTING

The first cross-browser, true
WYSIWYG HTML5-based
document editor,

Now with Tul
ASENET MVC support.

DVoee

Give your users an MS Word compatible editor to create powerful
documents and reporting templates anywhere - in any browser.
Feature-complete including mail merge, sections, headers and

footers, drawings and shapes, tables, barcodes and charts.

Available for ASPNET Web Forms and MVC.

HTML
>q Visual Studio E Call us: 855-533-TEXT
Partner © 2076 Text Control GmbH. All rights reserved. All other product and brand names are trademarks and/or registered trademarks of their respective owners

http://www.textcontrol.com/html5

Edit and create Create and modify Create reports Integrate with
MS Word Adobe® PDF and mail merge Microsoft®
documents documents templates Visual Studio

PM> Install-Package TXTextControl.web

Live demo and 30-day trial version download at:
www.textcontrol.com/html5

VAR s TEXTCONTROL

http://www.textcontrol.com/html5

magazine

I I I S d I I JUNE 2016 VOLUME 31 NUMBER 6

General Manager Jeff Sandquist
Director Dan Fernandez

Editorial Director Mohammad Al-Sabt mmeditor@microsoft.com

Site Manager Kent Sharkey

Editorial Director, Enterprise Computing Group Scott Bekker

Editor in Chief Michael Desmond

Features Editor Sharon Terdeman

Features Editor Ed Zintel

Group Managing Editor Wendy Hernandez
Senior Contributing Editor Dr. James McCaffrey

Contributing Editors Dino Esposito, Frank La Vigne, Julie Lerman, Mark Michaelis,

Ted Neward, David S. Platt, Bruno Terkaly
Vice President, Art and Brand Design Scott Shultz
Art Director Joshua Gould

/|ENTERPRISE
' Il COMPUTING CROUP

President
Henry Allain

Chief Revenue Officer
Dan LaBianca

Chief Marketing Officer
Carmel McDonagh

ART STAFF

Creative Director Jeffrey Langkau
Associate Creative Director Scott Rovin
Senior Art Director Deirdre Hoffman

Art Director Michele Singh

Assistant Art Director Dragutin Cvijanovic
Graphic Designer Erin Horlacher

Senior Graphic Designer Alan Tao

Senior Web Designer Martin Peace

PRODUCTION STAFF
Print Production Coordinator Lee Alexander

ADVERTISING AND SALES

Chief Revenue Officer Dan LaBianca

Regional Sales Manager Christopher Kourtoglou
Account Executive Caroline Stover

Advertising Sales Associate Tanya Egenolf

ONLINE/DIGITAL MEDIA

Vice President, Digital Strategy Becky Nagel
Senior Site Producer, News Kurt Mackie
Senior Site Producer Gladys Rama

Site Producer Chris Paoli

Site Producer, News David Ramel

Director; Site Administration Shane Lee

Site Administrator Biswarup Bhattacharjee
Front-End Developer Anya Smolinski

Junior Front-End Developer Casey Rysavy
Executive Producer, New Media Michael Domingo
Office Manager & Site Assoc. James Bowling

2 msdn magazine

LEAD SERVICES
Vice President, Lead Services Michele Imgrund

Senior Director, Audience Development
& Data Procurement Annette Levee

Director, Audience Development
& Lead Generation Marketing Irene Fincher

Director, Client Services & Webinar
Production Tracy Cook

Director, Lead Generation Marketing Eric Yoshizuru

Director; Custom Assets & Client Services Mallory Bundy

Senior Program Manager, Client Services
& Webinar Production Chris Flack

Project Manager, Lead Generation Marketing
Mahal Ramos

Coordinator, Lead Generation Marketing
Obum Ukabam

MARKETING

Chief Marketing Officer Carmel McDonagh

Vice President, Marketing Emily Jacobs

Senior Manager, Marketing Christopher Morales
Marketing Coordinator Alicia Chew

Marketing & Editorial Assistant Dana Friedman

ENTERPRISE COMPUTING GROUP EVENTS
Vice President, Events Brent Sutton

Senior Director, Operations Sara Ross

Senior Director, Event Marketing Merikay Marzoni
Events Sponsorship Sales Danna Vedder

Senior Manager, Events Danielle Potts
Coordinator, Event Marketing Michelle Cheng
Coordinator, Event Marketing Chantelle Wallace

HNHOSMEDIA

YOUR GROWTH. OUR BUSINESS
Chief Executive Officer

Rajeev Kapur

Chief Operating Officer

Henry Allain

Vice President & Chief Financial Officer
Michael Rafter

Chief Technology Officer

Erik A. Lindgren

Executive Vice President

Michael J. Valenti

Chairman of the Board
Jeffrey S. Klein

ID STATEMENT MSDN Magazine (ISSN 1528-4859) is
published monthly by 1105 Media, Inc., 9201 Oakdale
Avenue, Ste. 101, Chatsworth, CA 91311. Periodicals
postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offices. Annual subscription rates
payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in

U.S. funds are: U.S. $25.00, International $25.00. Single
copies/back issues: U.S. $10, all others $12. Send orders
with payment to: MSDN Magazine, PO. Box 3167, Carol
Stream, IL 60132, email MSDNmag@1105service.com
or call (847) 763-9560. POSTMASTER: Send address
changes to MSDN Magazine, P.O. Box 2166, Skokie,

IL 60076. Canada Publications Mail Agreement No:
40612608. Return Undeliverable Canadian Addresses
to Circulation Dept. or XPO Returns: PO. Box 201,
Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part
prohibited except by written permission. Mail requests
to "Permissions Editor” ¢/o MSDN Magazine, 4 Venture,
Suite 150, Irvine, CA 92618.

LEGAL DISCLAIMER The information in this magazine
has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed
or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While
the information has been reviewed for accuracy, there

is no guarantee that the same or similar results may be
achieved in all environments. Technical inaccuracies may
result from printing errors and/or new developments

in the industry.

CORPORATE ADDRESS 1105 Media, 9201 Oakdale Ave.
Ste 101, Chatsworth, CA 91311 www.1105media.com

MEDIA KITS Direct your Media Kit requests to Chief
Revenue Officer Dan LaBianca, 972-687-6702 (phone),
972-687-6799 (fax), dlabianca@1105media.com

REPRINTS For single article reprints (in minimum
quantities of 250-500), e-prints, plaques and posters
contact: PARS International Phone: 212-221-9595.
E-mail: 1105reprints@parsintl.com.
www.magreprints.com/QuickQuote.asp

LIST RENTAL This publication’s subscriber list, as well as
other lists from 1105 Media, Inc., is available for rental
For more information, please contact our list manager,
Jane Long, Merit Direct. Phone: 913-685-1301;

E-mail: jlong@meritdirect.com;

Web: www.meritdirect.com/1105

Reaching the Staff

Staff may be reached via e-mail, telephone, fax, or mail.
Alist of editors and contact information is also available
online at Redmondmag.com.

E-mail: To e-mail any member of the staff, please use the
following form: FirstinitialLastname@1105media.com
Irvine Office (weekdays, 9:00 a.m. — 5:00 p.m. PT)
Telephone 949-265-1520; Fax 949-265-1528

4 Venture, Suite 150, Irvine, CA 92618

Corporate Office (weekdays, 8:30 a.m. — 5:30 p.m. PT)
Telephone 818-814-5200; Fax 818-734-1522

9201 Oakdale Avenue, Suite 101, Chatsworth, CA 91311
The opinions expressed within the articles and other
contentsherein do not necessarily express those of

the publisher.

BE Microsoft

100
&BPA 19V, Bwen

WORLDWIDE AMERICAN Western Publications Associafion
BUSINESS MEDIA

mailto:mmeditor@microsoft.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:dlabianca@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/QuickQuote.asp
mailto:jlong@meritdirect.com
http://www.meritdirect.com/1105
mailto:FirstinitialLastname@1105media.com

-

LEADTOOL.

Document

Document Viewer & Converter
OCR, MICR, OMR & ICR

1D & 2D Barcode

Forms Recognition

Create, Save, Edit & View PDF

Annotations & TWAIN

.NET Windows API

DOAWMLOAD OUR 60 DaY ENVALUATION

WWW.LEADTOOLS.COM

Medical

DICOM, CCOW & HL7

PACS Client & Server Framework
DICOMWeb (WADO)

Web & Desktop Viewers

Image Processing & Annotations

Medical 3D (MPR, MIP, VRT)

WInRT Linux i0OS

0OS X Android

Multimedia

Play, Capture, Convert & DVR
MPEG2-TS & RTSP

Media Streaming Server
MPEG-4, H.264, H.265 & more
Media Foundation & DirectShow

Distributed Transcoding

JavaScript

El%"lil
SALES@LEADTOOLS.COM
800.637.1840 [E

www.leadtools.com

EpiTor’s NOTE

MICHAEL DESMOND

Cognitive Bias

In my last column (msdn.com/magazine/mt703429), I described how
efforts to control the coolant loss event at the Three Mile Island
(TMI) nuclear plant in 1979 were shaped by received wisdom
from another domain—in this case, training that plant operators
received in the US. Navy’s nuclear fleet. Faced with conflicting
information from malfunctioning and dysfunctional systems
and controls, operators chose to act first on water level readings
in the cooling system’s pressurizer tank over those in the reactor
core itself. The incident resulted in a partial fuel meltdown and the
worst nuclear reactor accident in U.S. history.

The lessons of Three Mile
Island extend beyond the
biases professionals bring with
them as they transition among
organizations, projects
andjob roles.

The lessons of TMI extend beyond the biases professionals bring
with them as they transition among organizations, projects and job
roles. In fact, TMI and nuclear incidents such as the 2011 Fukushima
Daichii disaster in Japan reveal an important aspect about human
nature in the face of crisis, and present cautionary lessons for
software developers who must be responsive to deadlines, budget
constraints, code flaws, security threats and a host of other stresses.

Arnie Gundersen isa nuclear industry veteran and chief engineer
at Fairewinds Energy Education. During an April 2016 presenta-
tion in Japan, he noted that plant operators at TMI and Fukushima

each relied on instruments that falsely indicated “that there was a
lot of water in the nuclear reactor, when in fact there was none”

He went on to say: “Every reading that was true and really bad,
they thought of as erroneous. Every reading that was erroneous
but really good, they relied upon. Thats a trend that I always see
in emergency response. Operators want to believe the instruments
that lead them to the conclusion they want to get to”

Normalcy bias explains some of this. Humans are hardwired to
underestimate the likelihood and impacts of a disaster and tend to,
as Wikipedia notes, “interpret warnings in the most optimistic way
possible, seizing on any ambiguities to infer a less serious situation”
This cognitive quirk occurs all over the place—in aircraft cockpits,
financial institutions, government bodies and, yes, software devel-
opment shops. Banks and financial firms, for instance, continued to
engage in risky behavior ahead of the global financial collapse 02008,
despite clear indications of the impending downturn. In the minutes
and hours before the Deepwater Horizon oil spill in 2010, operators
failed to act on abnormal pressure and fluid readings in the well,
which portended the calamitous blow out. After the explosion, British
Petroleum downplayed the impact, estimating the flow rate of oil
into the Gulf of Mexico at just 1,000 to 5,000 barrels per day, while
the U.S. governments Flow Rate Technical Group (FRTG) placed
that figure at 62,000 barrels.

Ignoring troubling indicators, downplaying damage, and choosing
to believe information that supports positive outcomes—these
are flawed responses that can make bad situations terrible. But
the motivation to engage in them is strong. When I interviewed
Gundersen, he drove the point home by citing author Upton Sinclair,
who famously wrote: “It is difficult to get a man to understand
something, when his salary depends on his not understanding it”

For developers pressed by unrealistic ship schedules, inadequate
budgets and ambitious software requirements, the ability to make clear-
eyed judgments spells the difference between making tough decisions

today and facing much more W

difficult ones down the road.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

© 2016 Microsoft Corporation. All rights reserved.

Complymg with all applicable copynght laws is the responsibility of the user. Without limiting the rights under copyright, you are not itted to rep
i properly acquired a copy of MSDN Magazine in paper format, you are permnted to phy5|cally transfer this paper copy in unmodified form. Otherwise, you are not permitted to transmit

If you have pi d or have otherwi
copies of MSDN Magazme (or any part of MSDN Magazine) in any form or by any means without the express written

store, or i into a retrieval system MSDN Magazine or any part of MSDN

of M|

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affiliated with Mi

recommendations and technical guidelines in MSDN Magazine are based on specific envi and

any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other inf

used by 1105 Media, Inc. under license from owner.

4 msdn magazine

Corporati i Corp is solely for the edltonal contents of this magazine. The
These dations or guidelines may not apply to dissimilar configt Ci i does not make
MSDN M: MSDN and ft logos are

mailto:mmeditor@microsoft.com
http://msdn.com/magazine/mt703429
http://msdn.microsoft.com/magazine

Switch to Amyuni PDF AMYUNI"=

For FOF & POFIA

dit PDFs in .NET,
, WinRT & UWP

porCon

i

J

roF Converter

- Edit, process and print PDF 1.7 documents
- Create, fill-out and annotate PDF forms

’ - Fast and lightweight 32- and 64-bit
components for NET and ActiveX/COM
- New Universal Apps DLLs enable publishing
Ci#, C++, CX or Javascript apps to windows

Store
- Updated Postscript/EPS to PDF conversion
module

High Performance PDF Printer
for Desktops and Servers

te of Accurate - Print to PDF in a fraction of the time
ents needed with other tools. WHQL tested

for all Windows platforms. Version 5.5
« All your PDF processing, conversion and updated for Windows 10 support
editing in a single package
- Combines Amyuni PDF Converter and PDF
Creator for easy licensing, integration and

g M.

roF Sulte

deployment. e)
« Includes our Microsoft WHQL certified PDF i : =
Converter printer driver < - — :

- Export PDF documents into other formats . .'__'I ___:l B =
such as Jpeg, PNG, XAML or HTML5 P e P -

- Import and Export XPS files using any
programming environment

- WebkitPDF: Direct conversion of HTML files into PDF and XAML without SEVEr= 08
the use of a web browser or a printer driver
« PDF2HTML5: Conversion of PDF to HTML5 including dynamic forms =

. Pos'tscnpt to PDF Library: qu document workflow applications that =. WlndOWS
require processing of Postscript documents

+ OCR Module: Free add-on to PDF Creator uses the Tesseract engine for
character recognition

- Javascript engine: Integrate a full Javascript interpreter into your
applications to process PDF files or for any other need

I$d = -

| :
W 7
CONTIFND O Windows
Windows ST

AMYUNI"=

Technologies

USA and Canada

Toll Free: 1866 926 9864
Support: 514 868 9227
sales@amyuni.com

Europe
UK: 0800-015-4682

WWW.a myu Ni .com Germany: 0800-183-0923

France: 0800-911-248

All development tools available at

www.amyuni.com

CuTtTING EDGE

DINO ESPOSITO

Building an Historical CRUD, Part 2

Conceptually speaking, an historical Create, Read, Update, Delete
(CRUD) s the classic CRUD extended with an additional parameter:
adate. An historical CRUD lets you add, update and delete records
from a database and lets you query the state of the database at a
given point in time. An historical CRUD gives your applications
a built-in infrastructure for business intelligence analysis and
advanced reporting features.

In last month’s column (msdn.com/magazine/mt703431), I introduced
the theoretical foundation of historical CRUD systems. In this
article, I'll give a practical demonstration.

Presenting the Sample Scenario
For the purposes of this article, I'll consider a simple booking sys-
tem. For example, take the system a company uses internally to
let employees book meeting rooms. In the end, such software is a
plain CRUD where a new record is created to reserve a slot. The
same record is updated if the meeting is moved to a different time
or deleted if the meeting is canceled.

Ifyou code such a booking system as a regular CRUD, you know
the latest state of the system, but lose any information about updated

and deleted meetings. Is this really a problem? It depends. Its prob-
ably nota problem if you simply look at the affects of meetings on
the actual business. However, if you're looking for ways to improve
the overall performance of employees, then an historical CRUD
that tracks updates and deletions of records might reveal that too
many times meetings are moved or canceled and that could be
the sign of less-than-optimal internal processes or bad attitude.

Figure 1 presents a realistic UI for a room-booking system.
The underlying database is a SQL Server database with a couple of
linked tables: Rooms and Bookings.

The sample application is designed asan ASPNET MVCapplication.
When the user clicks to place the request, a controller method kicks
inand processes the posted information. The following code snippet
givesa clear idea of the code handling the request on the server side:

[HttpPost]
public ActionResult Add(RoomRequest room)

service.AddBooking(room);
return RedirectToAction("index", "home");

The method belongs to a BookingController class and dele-
gates to an injected worker service class the burden of organizing

2 hitp/ocalhost 4

(& MERLOBOOK :: Rooms

Small

the actual work. An interesting aspect of the
method’s implementation is that it redirects
to the front page in Figure 1 after creating the
booking. Theres no explicit view being created
as the result of the add-booking operation. This
isaside effect of choosinga Command Query
Responsibility Segregation (CQRS) architec-
ture. The add-booking command is posted to

= o X
P-G

v the back end; it alters the state of the system

and thats it. Had the sample application used
AJAX to post, there wouldve been no need to
refresh anything and the command would've
been a standalone operation with no visible

v link to the UL

09:00 Available Room
10:00 IHHHWHHHI |CkxnerRoom
11:00 |Booked : 53 - Time of the day
10
12:00 | Available
Length
13:00 i
Available | =
-
15:00 Available
16:00 I
Available Notes
Place request

.Figure 1 The Front-End Ul for a Booking System

6 msdn magazine

The core difference between a classic CRUD
and an historical CRUD is that the latter keeps
track of all operations that alter the state of the
system since the beginning. To plan an his-
torical CRUD, you should think of business
operations as commands you give to the
system and of a mechanism to track those
commands down. Each command alters the
state of the system and an historical CRUD

http://msdn.com/magazine/mt703431

' DevExpress

DevExpress Spreadsheet Control

Excel® Inspired Ul Controls for Desktops and the Web

It's no secret...spreadsheets are an important part of business and if you need to incorporate the UX and
functionality end-users have come to expect from Microsoft Excel®, DevExpress Spreadsheet is the tool for
you. The component library ships with dozens of easy-to-implement features including chart support and
fully integrates with other DevExpress components like our Office® inspired Ribbon.

Your Next Great Spreadsheet Starts @DevExpress

See how you can harness the power of spreadsheets in your next .NET app.

devexpress.com/spreadsheet

gabes byt
sy B
v i
= et
apw WA Gerersl conationdt T0
s DR - e g 3 Ae S pormattnd ‘
i FORM ™ % -
& 9 pagH Larout . = = pherge Sl L
o e | WSERT = n = » == @ u = & Mo
- :“ ok £ paby 2 IE. . W L - I.'nﬂ“"m — W
MRl 5 com p 1 Y ' 6
Fastt o pastt et Fonk ¥
t
d
R = o
b2 ¢
) . ==

g 12000
43,00

56242

‘ g6 42300
" g1 28000
" ACME *:-‘I = 0.00 §1,2%000 Sl'll?::f I
= Circuit T 4 51 .:;?.;-Iw g1,28000 £21,616
W EmporTum $1.2e% .
15 Vided © ‘ g1 34400 52037090
alTers
= “’:’me e g saa10
Z

TOTAL

www.devexpress.com/spreadsheet

Prepare a Prepare a handler

Deliver the

»

-

Figure 2 The Chain of Core Steps to Process a Command

keeps track of each state the system reaches. Any reached state is
logged asan event. An event is the mere and immutable description
of something that has happened. Once you have the list of events,
you can create multiple projections of data on top of it, the most pop-
ular of which is just the current status of involved business entities.

In an application, events originate directly from the execution
ofuser commands or indirectly from other commands or external
input. In this sample scenario, you expect the user to click a button
to post a booking request.

Processing the Command
Heres a possible implementation of the AddBooking method of
the applications controller:

public void AddBooking(RoomRequest request)

{
var command = new RequestBookingCommand(request);
var saga = new BookingSaga();
var response = saga.AddBooking(command);

/1 Do something based on the outcome of the command

}

The RoomRequest class is a plain data-transfer object popu-
lated by the ASPNET MVC binding layer out of posted data. The
RequestBookingCommand class, instead, stores the input parame-
ters required to execute the command. In such a simple scenario, the
two classes nearly coincide. How would you process the command?
Figure 2 presents the key three steps of processing a command.

The handler isa component that receives the command and pro-
cesses it. A handler can be invoked through a direct in-memory
call from within the worker service code or you can have a bus in
the middle, as shown here:

public void AddBooking(RoomRequest request)
{
var command = new RequestBookingCommand(request);

// Place the command on the bus for

/] registered components to pick it up

BookingApplication.Bus.Send(command);
}

A bus might bring a couple of benefits. One is that you can easily
handle scenarios in which multiple handlers might be interested in
the same command. Another benefit is that a bus might be config-
ured to be a reliable messaging tool that ensures the delivery of the
message over time and overcoming possible connectivity issues.
In addition, a bus can just be the component that offers the ability
to log the command.

The handler might be a simple one-off component that starts
and ends in the same request or it can be a long-running work-
flow that takes hours or days to complete and may be suspended
waiting for human approval at some point. Handlers that are not
simple one-off task executors are often called sagas.

In general, you use a bus or a queue if you have specific require-
ments in terms of scalability and reliability. If you're just looking for

8 msdn magazine

building an historical CRUD in lieu of a classic CRUD, you probably
don't need to use a bus. Whether you use a bus or not, at some point
the command might reach its one-off or long-running handler. The
handler is supposed to carry out whatever tasks are expected. Most
tasks consist of core operations on a database.

Logging the Command

In a classic CRUD, writing information to a database would mean
adding a record that lays out the values passed in. In an historical
CRUD perspective, though, the newly added record represents
the created event of a booking. The created event of a booking is
an independent and immutable piece of information that includes
a unique identifier for the event, a timestamp, a name and a list of
arguments specific of the event. The arguments of a created event
typically include all the columns you would fill in for a newly
added Booking record in a classic Bookings table. The arguments
ofan updated event, instead, are limited to the fields that are actu-
ally updated. Subsequently, all updated events might not have the
same content. Finally, the arguments of a deleted event are limited
to the values that uniquely identify the booking.

Any operation of an historical CRUD is made up of two steps:

L. Log the event and its related data.
2. Ensure the current state of the system is immediately and
quickly queryable.

In this way, the current state of the system is always available and
up-to-date and all the operations that led to it are also available for
any further analysis. Note that the “current state of the system” is
just the only state you see in a classic CRUD system. To be effective
in the context of a simple CRUD system, the step of logging the
event and updating the state of the system should take place syn-
chronously and within the same transaction, as shown in Figure 3.

Asthingsare, every time you add, edit or delete a booking record
you maintain the overall list of bookings up-to-date while knowing
the exact sequence of events that led to the current state. Figure 4
shows the two SQL Server tables involved in the sample scenario
and their content after an insert and update.

The Bookings table lists all distinct bookings found in the system and
for each returns the current state. The LoggedEvents table lists all the
events for the various bookings in the order they were recorded. For
example, the booking 54 has been created on a given date and modi-
fied a few days later. In the example, the Cargo column in the picture
stores the JSON serialized stream of the command being executed.

Figure 3 Logging an Event and Updating the System

using (var tx = new TransactionScope())
{
// Create the "regular" booking in the Bookings table
var booking = _bookingRepository.AddBooking(
command.RoomId, ...);
if (booking == null)
(
tx.Dispose();
return CommandResponse.Fail;
}
// Track that a booking was created
var eventTolog = command.ToEvent(booking.Id);
eventRepository.Store(eventTolog);
tx.Complete();
return CommandResponse.0k;

Cutting Edge

Using Logged Events in the Ul

Lets say thatan authorized user wants to see the details ofa pending
booking. Probably the user will get to the booking from a calendar
list or through a time-based query. In both cases, the fundamental
facts of the booking—when, how long and who—are already known
and the details view might even be of little use. It might really be
helpful, though, if you could show the entire history of the book-
ing, as shown in Figure 5.

By reading through the logged events, you can build a view
model that includes a list of states for the same aggregate entity—
booking #54. In the sample application, when the user clicks to
view the details of the booking a modal popup appears and some
JSON is downloaded in the background. The endpoint that returns
the JSON is shown here:

public JsonResult BookingHistory(int id)
{
var history = _service.History(id);
var dto = history.ToJavaScriptSlotHistory();
return Json(dto, JsonRequestBehavior.AllowGet);
}

The History method on the worker service does most of the work
here. The core part of this work is querying all events that related
to the specified booking ID:

EXPOWARE.expoware_Merlo - dbo.Bookings

var events = new EventRepository().Al1(aggregateld);
foreach (var e in events)

{
var slot = new SlotInfo();

switch (e.Action)

{

.
history.Changelist.Add(slot);

}

Asyou loop through the logged events, an appropriate object is
appended to the data-transfer object to be returned. Some trans-
formation performed in the ToJavaScriptSlotHistory makes it quick
and easy to display the delta between two consecutive states in the
form you see in Figure 5.

Its remarkable, though, that while logging events even within a
CRUD allows for such nice improvements in the UI, the largest value
lies in the fact that you now know everything that ever happened within
the systemand can process that data to extractany custom projection
of data you might need at some point. For example, you might create
a statistics of the update and let analysts come to the conclusion that
the entire process of requesting meeting rooms doesnt work in the
company because people too often book and then update or delete.
You can also easily track down what the situation was of the book-
ings ata specific date by simply querying events logged until then and
calculating the subsequent state of
things. In a nutshell, an historical

Id Requestid Name Roomld StartingAt Length Notes CRUD opensupa whole new world
4{85063e-4ce5-450f-920d-57622454ad95 Joe 1 10 1 NULL f bl . f l .
W NULL NULL NuLL NULL NUIL NULL UL of possibilities for applications.
EXPOWARE.expoware_Merlo - dbo.LoggedEvents » B X .
Id Action Aggregateld Cargo TimeStamp Wra p pl n g U p
1062 AddBooking 54 {"Roomid":1,"Hour":10,"Length™:1,"UserName"Paul", Notes™™","Name""AddBooking] 2016-04-01 13:07:03.473 Historical CRUD is simplyasmarter
» 2058 EditBooking 54 ["Bookingld™;54,"Hour":10, Length™:1, UserN. ":"Joe”,"Name™ "EditBooking™} 2016-04-04 15:49:49.687 : : :
i i ity A way of evolvmg pl.am CRUD appli-
cations. Yet, this discussion touched
onbuzzwordsand patterns that have
alot more potential, such as CQRS,
event sourcing, busand queues, and
message-based businesslogic. If you
found this article helpful, T suggest
Rl R you go back and read my July 2015

Figure 4 Bookings and LoggedEvents Tables Side by Side

Booking 54 :: History

Action When Room Id

Created 01 Apr 2016 15:07 1

Updated 04 Apr 2016 17:49

Figure 5 Consuming Logged Events in the Ul

msdnmagazine.com

(msdn.com/magazine/mt238399) and
August 2015 (msdn.com/magazine/
mt185569) columns. In light of this
example, you might find those
articles even more inspiring! ~ ®

Starting at

Dino EsposiTo is the author of “Microsoft
.NET: Architecting Applications for the
Enterprise” (Microsoft Press, 2014) and
“Modern Web Applications with ASPNET”
(Microsoft Press, 2016). A technical evan-
gelist for the NET and Android platforms
at JetBrains, and frequent speaker at indus-
try events worldwide, Esposito shares his
vision of software at software2cents@word-
press.com and on Twitter: @despos.

10

THANKS to the following Microsoft
technical expert for reviewing this
article: Jon Arne Saeteras

June 2016 9

mailto:software2cents@word�press.com
http://www.msdnmagazine.com
http://msdn.com/magazine/mt238399
http://msdn.com/magazine/mt185569
http://msdn.com/magazine/mt185569
mailto:software2cents@word�press.com
www.Twitter.com/despos

ASP.NET CORE

Use Custom Midd
Nd

to Detect a

eware
04s

-1x 4

N ASPNET Core Apps

Steve Smith

If you've ever lost somethingat a school or an amusement
park, you may have had the good fortune of getting it back by
checking the locations Lost and Found. In Web applications,
users frequently make requests for paths that aren't handled by the
server, resulting in 404 Not Found response codes (and occasionally
humorous pages explaining the problem to the user). Typically,
it’s up to the user to find what they’re looking for on their own,
either through repeated guesses or perhaps using a search engine.
However, with a bit of middleware, you can add a “lost and found”
to your ASPNET Core app that will help users find the resources
they're looking for.

This article is based on ASPNET Core 1.0 RC1.
Some information may change when RC2 becomes available.

This article discusses:

« Creating a separate middleware class

« Detecting and recording 404 responses

« Displaying Not Found requests

+ Fixing 404s

- Configuring the middleware and adding support for storing data
Technologies discussed:

ASPNET Core 1.0, Entity Framework Core 1.0

Code download available at:
bit.ly/1vUcY0)

10 msdn magazine

What Is Middleware?

The ASPNET Core documentation defines middleware as ‘compo-
nents thatare assembled into an application pipeline to handle requests
and responses” Atits simplest, middleware is a request delegate, which
can be represented as a lambda expression, like this one:

app.Run(async context => {
await context.Response.WriteAsync(“Hello world”);
1

If your application consists of just this one bit of middleware, it
will return “Hello world” to every request. Because it doesn't refer
to the next piece of middleware, this particular example is said to
terminate the pipeline—nothing defined after it will be executed.
However, just because it’'s the end of the pipeline doesn't mean you
cant “wrap’ it in additional middleware. For instance, you could
add some middleware that adds a header to the previous response:

app.Use(async (context, next) =>

{ context.Response.Headers.Add("Author",
await next.Invoke();

Z;;.Run(async context =>

{ await context.Response.WriteAsync("Hello world ");

1

The call to app.Use wraps the call to app.Run, calling into it
using next.Invoke. When you write your own middleware, you can
choose whether you want it to perform operations before, after,
or both before and after the next middleware in the pipeline. You
can also short-circuit the pipeline by choosing not to call next. T'll
show how this can help you create your 404-fixing middleware.

"Steve Smith");

www.bit.ly/1VUcY0J

Figure 1 Middleware Class Template

public class MyMiddleware
{
private readonly RequestDelegate _next;

public MyMiddleware(RequestDelegate next)
{
_next = next;

}

public Task Invoke(HttpContext httpContext)
{

return _next(httpContext);
}
}

// Extension method used to add the middleware to the HTTP request pipeline.
public static class MyMiddlewareExtensions
{

public static IApplicationBuilder UseMyMiddleware(this
IApplicationBuilder builder)

{

return builder.UseMiddleware<MyMiddleware>();

}

}

Ifyou're using the default MVC Core template, you won't find such
low-level delegate-based middleware code in your initial Startup
file. Its recommended that you encapsulate middleware in its own
classes, and provide extension methods (named UseMiddle-
wareName) that can be called from Startup. The built-in ASPNET
middleware follows this convention, as these calls demonstrate:

if (env.IsDevelopment())
{
app.UseDeveloperExceptionPage();
}
app.UseStaticFiles()
app.UseMvc();

The order of your middleware is important. In the preceding code,
the call to UseDeveloperExceptionPage (which is only configured
when the app is running in a development environment) should
be wrapped around (thus added before) any other middleware that
might produce an error.

InaClass of Its Own

I don't want to clutter my Startup class with all of the lambda
expressions and detailed implementation of my middleware. Just
as with the built-in middleware, I want my middleware to be add-
ed to the pipeline with one line of code. T also anticipate that my

Figure 2 Dependency Injection Passing
RequestTracker into Middleware

public class NotFoundMiddleware

{
private readonly RequestDelegate _next;
private readonly RequestTracker _requestTracker;
private readonly ILogger _logger;

public NotFoundMiddleware(RequestDelegate next,
ILoggerFactory loggerFactory,
RequestTracker requestTracker)
{
_next = next;
_requestTracker = requestTracker;
_logger = loggerFactory.CreatelLogger<NotFoundMiddleware>();
}
}

msdnmagazine.com

middleware will need services injected using dependency injection
(DI), which is easily achieved once the middleware is refactored
into its own class. (See my May article at msdn.com/magazine/mt703433
for more on DI in ASPNET Core.)

Because I'm using Visual Studio, I can add middleware by using Add
New Item and choosing the Middleware Class template. Figure 1 shows
the default content this template produces, including an extension
method foradding the middleware to the pipeline via UseMiddleware.

Typically, I'll add async to the Invoke method signature, and
then change its body to:

await _next(httpContext);

This makes the invocation asynchronous.

Once I've created a separate middleware class, | move my delegate
logic into the Invoke method. Then I replace the call in Configure
with a call to the UseMyMiddleware extension method. Running
the app at this point should verify that the middleware still behaves
as it did before, and the Configure class is much easier to follow
when it consists of a series of UseSomeMiddleware statements.

Detecting and Recording 404 Not Found Responses
Inan ASPNET application, if a request is made that doesn't match
any handlers, the response will include a StatusCode set to 404.
I can create a bit of middleware that will check for this response
code (after calling _next) and take some action to record the
details of the request:

await _next(httpContext);
if (httpContext.Response.StatusCode == 404)
{
_requestTracker.Record(httpContext.Request.Path);
}

I want to be able to keep track of how many 404s a particular
path has had, so I can fix the most common ones and get the most
out of my corrective actions. To do that, I create a service called
RequestTracker that records instances of 404 requests based on
their path. RequestTracker is passed into my middleware through
DI, as shown in Figure 2.

It's recommended that you
encapsulate middleware in
its own classes, and provide
extension methods (named
UseMiddlewareName) that can
be called from Startup.

To add NotFoundMiddleware to my pipeline, I call the Use-
NotFoundMiddleware extension method. However, because it
now depends on a custom service being configured in the services
container, [also need to ensure the service is registered. I create an
extension method on IServiceCollection called AddNotFound-
Middleware and call this method in ConfigureServices in Startup:

June 2016 11

http://www.msdnmagazine.com
http://msdn.com/magazine/mt703433

public static IServiceCollection AddNotFoundMiddleware(
this IServiceCollection services)
{
services.AddSingleton<INotFoundRequestRepository,
InMemoryNotFoundRequestRepository>();
return services.AddSingleton<RequestTracker>();
}

In this case, my AddNotFoundMiddleware method ensures
an instance of my RequestTracker is configured as a Singleton in
the services container, so it will be available to inject into the Not-
FoundMiddleware when it’s created. It also wires up an in-memory
implementation of the INotFoundRequestRepository, which the
RequestTracker uses to persist its data.

Because many simultaneous requests might come in for the same
missing path, the code in Figure 3 uses a simple lock to ensure
duplicate instances of NotFoundRequest arent added, and the
counts are incremented properly.

Displaying Not Found Requests
Now that I have a way to record 404s, I need a way to view this data.
To do this, 'm going to create another small middleware component
that will display a page showingall of the recorded NotFoundRequests,
ordered by how many times they've occurred. This middleware will
check to see if the current request matches a particular path, and will
ignore (and pass through) any requests that dont match the path.
For matching paths, the middleware will return a page with a table
containing the NotFound requests, ordered by their frequency. From
there, the user will be able to assign individual requests a corrected
path, which will be used by future requests instead of returning a 404.
Figure 4 demonstrates how simple it is to have the NotFound-
PageMiddleware check for a certain path, and to make updates
based on querystring values using that same path. For security

Figure 3 RequestTracker

public class RequestTracker

{
private readonly INotFoundRequestRepository _repo;
private static object _lTock = new object();

public RequestTracker(INotFoundRequestRepository repo)
{

_repo = repo;
}

public void Record(string path)
{
Tock(_Tock)
{
var request = _repo.GetByPath(path);
if (request != null)
{
request.IncrementCount();
}
else
{
request = new NotFoundRequest(path);
request.IncrementCount();
_repo.Add(request);
}
}
}
public IEnumerable<NotFoundRequest> ListRequests()
{
return _repo.List();
}
// Other methods

12 msdn magazine

Figure 4 NotFoundPageMiddleware

public async Task Invoke(HttpContext httpContext)
(
if (!httpContext.Request.Path.StartsWithSegments("/fix404s"))
{
await _next(httpContext);
return;
}
if (httpContext.Request.Query.Keys.Contains("path") &&
httpContext.Request.Query.Keys.Contains("fixedpath"))
{
var request = _requestTracker.GetRequest(httpContext.Request.Query["path"]);
request.SetCorrectedPath(httpContext.Request.Query["fixedpath"]1);
_requestTracker.UpdateRequest(request);
}
Render404List(httpContext);
}

reasons, access to the NotFoundPageMiddleware path should be
restricted to admin users.

As written, the middleware is hardcoded to listen to the path
/fix404s. Its a good idea to make that configurable, so that differ-
ent apps can specify whatever path they want. The rendered list
of requests shows all requests ordered by how many 404s theyve
recorded, regardless of whether a corrected path has been set up. It
wouldn't be difficult to enhance the middleware to offer some fil-
tering. Other interesting features might be recording more detailed
information, so you could see which redirects were most popular, or
which 404s were most common in the last seven days, but these are
left as an exercise for the reader (or the open source community).

Figure 5 shows an example of what the rendered page looks like.

Adding Options

Id like to be able to specify a different path for the Fix 404s page
within different apps. The best way to do so is to create an Options
classand pass itinto the middleware using DI. For this middleware,
[create a class, NotFoundMiddlewareOptions, which includes a
property called Path with a value that defaults to /fix404s. I can pass
this into the NotFoundPageMiddleware using the IOptions<T>
interface, and then set a local field to the Value property of this
type. Then my magic string reference to /fix404s can be updated:

if (!httpContext.Request.Path.StartsWithSegments(_options.Path))

Fixing 404s

When a request comes in that matches a NotFoundRequest that
has a CorrectedUrl, the NotFoundMiddleware should modify the
request to use the CorrectedUrl. This can be done by just updating
the path property of the request:

string path = httpContext.Request.Path;
string correctedPath = _requestTracker.GetRequest(path)?.CorrectedPath;
if(correctedPath != null)
{
httpContext.Request.Path = correctedPath; // Rewrite the path
}
await _next(httpContext);

With this implementation, any corrected URL will work just as if
its request had been made directly to the corrected path. Then, the
request pipeline continues, now using the rewritten path. This may or
may not be the desired behavior; for one thing, search engine listings
can suffer from having duplicate content indexed on multiple URLs.
Thisapproach could resultin dozens of URLs all mapping to the same

ASPNET Core

2 software

We didn't invent the Internet..

...but our components help you power the apps that bring it to business.

TOOLS « COMPONENTS « ENTERPRISE ADAPTERS

AS2, EDI/X12, NAESB, OFTP ... FTP, SMTP, IMAP, POP, WebDav ...
Authorize.Net, TSYS, FDMS ... SSH, SFTP, SSL, Certificates ...
FedEx, UPS, USPS ... S/MIME, OpenPGP ...
QuickBooks, OFX ... SNMP, MIB, LDAP, Monitoring ...
Amazon, eBay, PayPal ... Zip, Gzip, Jar, AES ...

‘ﬁg P BCTalk Server 2 S0 Server ﬂﬁhle mﬁ

2 &,
B arePoint 2010 Efcewen EER Co+BUILDER L--*; J:«E'-.l -

The Market Leader in Internet Communications, Security, & E-Business Components

Each day, as you click around the Web or use any connected any application, on any platform, anywhere, and you do the rest.
application, chances are that directly or indirectly some bits are Since 1994, we have had one goal: to provide the very best
flowing through applications that use our components, on a server, connectivity solutions for our professional developer customers.
on a device, or right on your desktop. It's your code and our code With more than 100,000 developers worldwide using our software
working together to move data, information, and business. We and millions of installations in almost every Fortune 500 and

give you the most robust suite of components for adding Internet Global 2000 company, our business is to connect business, one
Communications, Security, and E-Business Connectivity to application at a time.

connectivity To learn more please visit our website >

i?owaraé b7 v

Microsoft .NET, | Java | ActiveX | C++ | Delphi | C++ Builder | PHP | Objective-C | Windows | Windows Mobile | Mac OS X | Linux/Unix | iPhone

www.nsoftware.com

underlying application path. For this reason, its often preferable to
fix 404s using a permanent redirect (status code 301).

If I modify the middleware to send a redirect, I can have the
middleware short circuit in that case, because theres no need to
run any of the rest of the pipeline if I've decided I'm just going to
return a 301:

if(correctedPath != null)
{
httpContext.Response. Redirect(httpContext.Request.PathBase + correctedPath +
httpContext.Request.QueryString, permanent: true);
return;
}
await _next(httpContext);

Take care not to set corrected paths that result in infinite redi-
rect loops.

Ideally, the NotFoundMiddleware should support both path
rewriting and permanent redirects. I can implement this using
my NotFoundMiddlewareOptions, allowing one or the other
to be set for all requests, or I can modify CorrectedPath on the
NotFoundRequest path, so it includes both the path and the mech-
anism to use. For now I'll just update the options class to support
the behavior, and pass IOptions<NotFoundMiddleOptions> into
the NotFoundMiddleware just as I'm already doing for the Not-
FoundPageMiddleware. With the options in place, the redirect/
rewrite logic becomes:

if(correctedPath != null)
{
if (_options.FixPathBehavior == FixPathBehavior.Redirect)
{
httpContext.Response.Redirect(correctedPath, permanent: true);
return;
}
if(_options.FixPathBehavior == FixPathBehavior.Rewrite)
{
httpContext.Request.Path = correctedPath; // Rewrite the path
}
}

At this point, the NotFoundMiddlewareOptions class has two
properties, one of which is an enum:

public enum FixPathBehavior
{

Redirect,

Rewrite
}

public class NotFoundMiddlewareOptions
{

public string Path { get; set; } = "/fix404s";

public FixPathBehavior FixPathBehavior { get; set; } = FixPathBehavior.Redirect;
}

B Fix 4045 x4+ =i |
& 5 O | nitpyccalnostsooosixsoss *| = Z &
Fix 404s
Path 404 Count Corrected Path
}homeneeg 2 £
- S —T
o 3 [Jsae
fbaz 3 Save
SfTixa0as 1 SMindbadlinks
Figure 5 The Fix 404s Page

14 msdn magazine

Configuring Middleware

Once you have Options set up for your middleware, you pass an
instance of these options into your middleware when you config-
ure them in Startup. Alternatively, you can bind the options to your
configuration. ASPNET configuration is very flexible, and can be
bound to environment variables, settings files or built up program-
matically. Regardless of where the configuration is set, the Options
can be bound to the configuration with a single line of code:

services.Configure<NotFoundMiddlewareOptions>(
Configuration.GetSection("NotFoundMiddleware"));

With this in place, I can configure my NotFoundMiddleware
behavior by updating appsettings.json (the configuration I'm
using in this instance):

"NotFoundMiddleware": {
"FixPathBehavior": "Redirect",
"Path": "/fix404s"

}

Note that converting from string-based JSON values in the set-
tings file to the enum for FixPathBehavior is done automatically
by the framework.

Persistence

So far, everything is working great, but unfortunately my list of 404s
and their corrected paths are stored in an in-memory collection.
This means that every time my application restarts, all of this data
is lost. It might be fine for my app to periodically reset its count of
404s,s0 I can geta sense of which ones are currently the most com-
mon, but I certainly don't want to lose the corrected paths I've set.

Thefirstthing I need
inorder to use EF to save and
retrieve NotFoundRequests
isa DbContext.

Fortunately, because I configured the RequestTracker to rely on
anabstraction for its persistence (INotFoundRequestRepository),
it’s fairly easy to add support for storing the results in a database
using Entity Framework Core (EF). Whats more, I can make it
easy for individual apps to choose whether they want to use EF
or the in-memory configuration (great for testing things out) by
providing separate helper methods.

The first thing I need in order to use EF to save and retrieve Not-
FoundRequestsisa DbContext. I dont want to rely on one that the app
may have configured, so I create one just for the NotFoundMiddleware:

public class NotFoundMiddlewareDbContext : DbContext

{
public DbSet<NotFoundRequest> NotFoundRequests { get; set; }
protected override void OnModelCreating(ModelBuilder modelBuilder)

base.OnModelCreating(modelBuilder);
model1Builder.Entity<NotFoundRequest>().HasKey(r => r.Path);
}
}

Once I have the dbContext, I need to implement the repository
interface. I create an EfNotFoundRequestRepository, which requests

ASPNET Core

an instance of the NotFoundMiddlewareDbContext in its construc-
tor, and assigns it to a private field, _dbContext. Implementing the
individual methods is straightforward, for example:

public IEnumerable<NotFoundRequest> List()
{

return _dbContext.NotFoundRequests.AsEnumerable();
}

public void Update(NotFoundRequest notFoundRequest)

{
_dbContext.Entry(notFoundRequest).State = EntityState.Modified;
_dbContext.SaveChanges();

}

At this point, all that remains is to wire up the DbContext and
EF repository in the apps services container. This is done in a new
extension method (and T rename the original extension method
to indicate it’s for the InMemory version):

public static IServiceCollection AddNotFoundMiddlewareEntityFramework(
this IServiceCollection services, string connectionString)
{
services.AddEntityFramework()
.AddSq1Server()
.AddDbContext<NotFoundMiddlewareDbContext>(options =>
options.UseSqlServer(connectionString));

services.AddSingleton<INotFoundRequestRepository,
EfNotFoundRequestRepository>();
return services.AddSingleton<RequestTracker>();
}

I chose to have the connection string passed in, rather than stored
in NotFoundMiddlewareOptions, because most ASPNET apps
that are using EF will already be providing a connection string to
it in the ConfigureServices method. If desired, the same variable
can be used when calling services. AddNotFoundMiddleware-
EntityFramework(connectionString).

The last thing a new app needs to do before it can use the EF
version of this middleware is run the migrations to ensure the
database table structure is properly configured. I need to specify
the middelwares DbContext when I do so, because the app (in my
case) already has its own DbContext. The command, run from
the root of the project, is:

dotnet ef database update --context NotFoundMiddlewareContext

[fyou getan error about a database provider, make sure you're call-
ing services.AddNotFoundMiddlewareEntityFramework in Startup.

Next Steps
The sample I've shown here works fine, and includes both an in-
memory implementation and one that uses EF to store Not Found
request counts and fixed paths in a database. The list of 404s and
the ability to add corrected paths should be secured so that only
administrators can access it. Finally, the current EF implementa-
tion doesn't include any caching logic, resulting in a database query
being made with every request to the app. For performance reasons,
I would add caching using the CachedRepository pattern.

The updated source code for this sample is available at bitly/ 1VUcY0). m

STEVE SMITH is an independent trainer, mentor and consultant, as well as an
ASPNET MVP. He has contributed dozens of articles to the official ASPNET
Core documentation (docs.asp.net), and helps teams quickly get up to speed with
ASPNET Core. Contact him at ardalis.com.

THANKS to the following Microsoft technical expert for reviewing this article:
Chris Ross

msdnmagazine.com

Instantly Search
Terabytes of Text

dtSearch’s document filters
support popular file types, emails
with multilevel attachments,
databases, web data

Highlights hits in all data types;
25+ search options

With APIs for .NET, Java and C++.
SDKs for multiple platforms.

(See site for articles on faceted
search, SQL, MS Azure, etc)

Visit dtSearch.com for

« hundreds of reviews and
case studies

« fully-functional enterprise and
developer evaluations

since 1991

.

dtSearch.com 1-800-IT-FINDS

The Smart Choice for Text Retrieval®

V.

www.dtSearch.com
http://www.msdnmagazine.com
www.bit.ly/1VUcY0J
http://docs.asp.net
www.ardalis.com

REACTIVE FRAMEWORK

SCa
Client-Server
with Reactive

Peter Vogel

As async hronous processing has become more common in
application development, the Microsoft NET Framework hasacquired
a wide variety of tools that support specific asynchronous design
patterns. Often creating a well-designed asynchronous application
comes down to recognizing the design pattern your application is
implementing and then picking the right set of NET components.

In some cases, the match requires integrating several NET compo-
nents. Stephen Clearys article, “Patterns for Asynchronous MVVM
Applications: Commands” (bit.ly/233Kocr), shows how to fully support
the Model-View-ViewModel (MVVM) pattern in an asynchronous
fashion. In other cases support requires just one component from the
NET Framework. I've discussed implementing the provider/consumers
pattern using the BlockingCollection in my VisualStudioMagazine.com
Practical NET columns, “Create Simple, Reliable Asynchronous Apps
with BlockingCollection™ (bit.ly/1TuOpE6), and, “Create Sophisticated
Asynchronous Applications with BlockingCollection” (bit.ly/1SpYyD4).

Another example is implementing the observer design pattern to
monitor along-running operation asynchronously. In this scenario,

This article discusses:

+ Getting results from a long-running process as soon as those
results are available using the observer pattern

» ObservableCollection provides an easy way to create applica-
tions that monitor long-running processes

+ Upgrading to Reactive Extensions allows you to asynchronously
accept output from event-driven processes

Technologies discussed:

Rx (Reactive Extensions), ObservableCollection,
Asynchronous Programming

Code download available at:

msdn.com/magazine/0616magcode

16 msdn magazine

e Asynchror

OusS
<S

LN

an asynchronous method that returns a single Task object doesn't
work because the client is frequently returning a stream of results.
For these scenarios, you can leverage atleast two tools from the NET
Framework: the ObservableCollection and Reactive Extensions (Rx).
For simple solutions, the ObservableCollection (along with the async
and await keywords) is all you need. However, for more “interesting”
and, especially, event-driven problems, Rx provides you with better
control over the process.

Defining the Pattern

While the observer pattern is frequently used in UT design patterns—
including Model-View-Controller (MVC), Model-View-Presenter
(MVP)and MVVM—UlIs should be considered as just one scenario
from a larger set of scenarios where the observer pattern applies.
The definition of the observer pattern (quoting from Wikipedia)
is: ‘An object, called the subject, [that] maintains alist of its depen-
dents, called observers, and notifies them automatically of any state
changes, usually by calling one of their methods”

Really, the observer pattern is about getting results from long-
running processesto the client as soon as those results are available. Without
some version of the observer pattern, clients must wait until the
last result is available and then have all the results sent to them ina
single lump. In an increasingly asynchronous world, you want the
observers to process results in parallel with the client as the results
become available. To emphasize that you're talking about more
than Uls when leveraging the observer pattern, I'll use “client” and
“server” instead of ‘observer” and “subject, in the rest of this article.

Problems and Opportunities

There are at least three issues and two opportunities with the
observer pattern. The first issue is the lapsed-listener problem:
Many implementations of the observer pattern require the server
to hold a reference to all of its clients. As a result, clients can be

www.bit.ly/233Kocr
www.VisualStudioMagazine.com
www.bit.ly/1TuOpE6
www.bit.ly/1SpYyD4
http://msdn.com/magazine/0616magcode

held in memory by the server until the server exits. This obviously
isnt an optimal solution for a long-running process in a dynamic
system where clients connect and disconnect frequently.

The lapsed-listener problem, however, is just a symptom of the
second, larger problem: Many implementations of the observer
pattern require the server and the client to be tightly coupled,
requiring both the server and the client to be present at all times.
At the very least, the client should be able to determine if the server
is present and choose not to attach; in addition, the server should
be able to function even if there are no clients accepting results.

The third issue is performance-related: How long will it take for
the server to notify all clients? Performance in the observer pattern is
directly affected by the number of clients to be notified. Therefore, there
isan opportunity to improve performance in the observer pattern by
letting the client preemptively filter the results that come back from
the server. This also addresses the scenarios where the server produces
more results (or a wider variety of results) than the client is interested
in: The client can indicate that its only to be notified in specific cases.
The second performance opportunity exists around recognizing when
the server has no results or has finished producing results. Clients can
skip acquiring resources required to process server events until the cli-
ent is guaranteed there is something to process and clients can release
those resources as soon as they know they've processed the last result.

From Observer to Publish/Subscribe

Factoring in these considerations leads from simple implementations
of the observer pattern to the related publish/subscribe model.
Publish/subscribe implements the observer pattern inaloosely coupled
way that lets servers and clients execute even if the other is currently
unavailable. Publish/subscribe also typically implements client-side
filtering by letting the client subscribe either to specific topics/channels
(“Notify me about purchase orders”) or to attributes associated with
different kinds of content (“Notify me about any urgent requests”).

One issue remains, however. Allimplementations of the observer
pattern tend to tightly couple clients and servers to a specific
message format. Changing the format of a message in most
publish/subscribe implementations can be difficult because all of the
clients must be updated to use the new format.

In many ways, this is similar to the description of a server-side
cursor in a database. To minimize transmission costs, the database
server doesn't return results as each row is retrieved. However,
for large row sets, the database also doesn't return all the rows
in a single batch at the end. Instead, the database server typically
returns subsets from a cursor held on the server often as those
subsets become available. With a database, the client and the server
don't have to be simultaneously present: The database server can
run when there are no clients present; a client can check to see if
the server is accessible and, if not, decide what (if anything) else it
can do. The filtering process (SQL) is also very flexible. However,
if the database engine changes the format it uses to return rows,
then all clients must, at the very least, be recompiled.

Processing a Cache of Objects
Asmy case study for looking ata simple observer pattern implemen-
tation, I'm using as my server a class that searches an in-memory

msdnmagazine.com

cache of invoices. That server could, at the end of its processing,
return a collection of all of the invoices. However, Id prefer to have
the client process the invoices individually and in parallel to the
server’s search process. That means I prefer a version of the process,
which returns each invoice as its found and lets the client process
each invoice in parallel with the search for the next invoice.

A simple implementation of the server might look like this:

private List<Invoice> foundInvoices = new List<Invoice>();
public List<Invoice> FindInvoices(decimal Amount)
{
foundInvoices.Clear();
Invoice inv;
/] ...search Togic to add invoices to the collection
foundInvoices.Add(inv);
/] ...repeat until all invoices found
return foundInvoices;
}

More sophisticated solutions might use yield return to return
each invoice as its found rather than assembling the list. Regardless,
a client that calls the FindInvoices method will want to perform
some critical activities before and after processing. For example,
once the first item is found, the client might want to enable a
Matchinglnvoices list to hold the invoices at the client or acquire/
initialize any resources required to process an invoice. As additional
invoices are added, the client would need to process each invoice
and, when the server signals that the final invoice is retrieved,
release any resources that are no longer required because there are
“no more” invoices to process.

During a database retrieval, for example, a read will block until
the first row is returned. Once the first row is returned, the client
initializes whatever resources are needed to process a row. The read
also returns false when the final row is retrieved, letting the client
release those resources because there are no more rows to process.

Creating Simple Solutions with ObservableCollection
The most obvious choice for implementing the observer pattern in the
NET Framework is the ObservableCollection. The ObservableCol-
lection will notify the client (through an event) whenever its changed.
Rewriting my sample server to use the ObservableCollection
class requires only two changes. First, the collection holding the
results needs to be defined as an ObservableCollection and made
public. Second, its no longer necessary for the method to return
aresult: The server only needs to add invoices to the collection.
The new implementation of the server might look like this:

public List<Invoice> FindInvoices(decimal Amount)
{
public ObservableCollection<Invoice> foundInvoices =
new ObservableCollection<Invoice>();

public void FindInvoices(decimal Amount)
{

foundInvoices.Clear();

Invoice inv;

// ...search lTogic to set inv

foundInvoices.Add(inv);

/] ...repeat until all invoices are added to the collection
}

A client that uses this version of the server only needs to wire up
an event handler to the CollectionChanged event of the Invoice-
Managements foundInvoices collection. In the following code
I've had the class implement the IDisposable interface to support
disconnecting from the event:

June 2016 17

http://www.msdnmagazine.com

public class SearchInvoices: IDisposable
{
InvoiceManagement invMgmt = new InvoiceManagement();

public void SearchInvoices()
{
invMgmt. foundInvoices.CollectionChanged += InvoicesFound;

}
public void Dispose()
{
invMgmt.foundInvoices.CollectionChanged -= InvoicesChanged;
}

In the client, the CollectionChanged event is passed a Notify-
CollectionChangedEventArgs object as its second parameter. That
object’s Action property specifies both what change was performed
on the collection (the actions are: the collection was cleared, new
items were added to the collection, existing items were moved/
replaced/removed) and information about the changed items (a
collection of any added items, a collection of items present in the
collection prior to the new items being added, the position of the
item that was moved/removed/replaced).

Simple code in the client that would asynchronously process
each invoice as its added to the collection in the server would look
like the code in Figure 1.

While simple, this code mightbe inadequate for your needs, especially
if youre handling a long-running process or working in a dynamic
environment. From an asynchronous design point of view, for exam-
ple, the code could capture the Task object returned by the Handle-
InvoiceAsync so that the client could manage the asynchronous tasks.
You'llalso want to make sure that the CollectionChanged event is raised
on the Ul thread even if FindInvoices runs on a background thread.

Because of where the Clear method is called in the server class
(just before searching for the first Invoice) the Action property’s
Reset value can be used as a signal that the first item is about to
be retrieved. However, of course, no invoices may be found in the
search, so using the Reset Action might result in the client allo-
cating resources that are never actually used. To actually handle
“first item” processing, youd need to add a flag to the Add Action
processing to execute only when the first item was found.

In addition, the server has a limited number of options for
indicating that the last Invoice is found so that the client can stop
waiting for “the next one”” The server could, presumably, clear the
collection after finding the last item, but that
would just force more complex processing

Figure 1 Asynchronously Processing
Invoices Using ObservableCollection

observer pattern by borrowing from the publish/subscribe model.
This solution also provides a LINQ-based filtering model, better
signaling for first/last item conditions and better error handling.

Rx can also handle more interesting observer implementations
than are possible with an ObservableCollection. In my case study,
after returning the initial list of invoices, my server might continue
to check for new invoices that are added to the cache after the origi-
nal search completes (and that match the search criteria, of course).
When an invoice meeting the criteria does appear, the client will
want to be notified about the event so that the new invoice can be
added to the list. Rx supports these kinds of event-based exten-
sions to the observer pattern better than ObservableCollection.

There are two key interfaces in Rx for supporting the observer
pattern. The firstis IObservable<T>, implemented by the server and
specifying a single method: Subscribe. The server implementing the
Subscribe method will be passed a reference to an object from a cli-
ent. To handle the lapsed listener problem, the Subscribe method
returns a reference to the client for an object that implements the
IDisposable interface. The client can use that object to disconnect
from the server. When the client does disconnect, the server is
expected to remove the client from any of its internal lists.

The second is the IObserver<T> interface, which must be imple-
mented by the client. That interface requires the client to implement
and expose three methods to the server: OnNext, OnCompleted
and OnError. The critical method here is OnNext, which is used by
the server to pass a message to the client (in my case study that mes-
sage would be new Invoice objects that will be returned as each one
appears). The server can use the clients OnCompleted method to signal
that theres no more data. The third method, OnError, provides a way
for the server to signal to the client that an exception has occurred.

You're welcome to implement the IObserver interface your-
self, of course (its part of the NET Framework). Along with the
ObservableCollection, that may be all you need if you're creating
a synchronous solution (I've written a column about that, too,
“Writing Cleaner Code with Reactive Extensions” [bit.ly/10nfQtm]).

However, the Rx includes several packages that provide asynchro-
nous implementations of these interfaces, including implementations
for JavaScriptand RESTful services. The Rx Subject class provides an
implementation of [Observable that simpli-
fiesimplementing an asynchronous publish/

into the Reset Action processing (have I
been processing Invoices? If yes, then I've
processed the last Invoice; if no, then I'm
about to process the first Invoice).

While, for simple problems, Observable-
Collection will be fine, any reasonably {
sophisticated implementation based on
ObservableCollection (and any application)

switch (e.Action)
{

return;

case NotifyCollectionChangedAction.Add:

thatvalues efficiency) is going to require some [

complicated code, especially in the client. {

await HandlelInvoiceAsync(inv);

The Rx Solutions)
If you want asynchronous processing then) TR
Rx (available through NuGet) can provide }

a better solution for implementing the

18 msdn magazine

case NotifyCollectionChangedAction.Reset:

// ...initial item processing

foreach (Invoice inv in e.NewItems)

subscribe version of the observer pattern.

private async void InvoicesFound(object sender,
NotifyCollectionChangedEventArgs e)

Creating an

Asynchronous Solution

Creating a server to work with a Subject
object requires very few changes to the
original synchronous server-side code. I
replace the old ObservableCollection with a
Subject object that will pass each Invoice as
it appears to any listening clients. I declare
the Subject object as public so that clients
can access it:

public class InvoiceManagement
{
public IObservable<Invoice> foundInvoice =
new Subject<Invoice>();

Reactive Framework

www.bit.ly/10nfQtm

In the body of the method, instead of adding an invoice to a col-
lection, T use the Subjects OnNext method to pass each invoice to

the client as it's found:

public void FindInvoices(decimal Amount)

{
inv = GetInvoicesForAmount(Amount) // Poll for invoices
foundInvoice.OnNext(inv);
/] ...repeat...

}

In my client, I first declare an instance of the server class. Then,
ina method marked as async, I call the Subject’s Subscribe method

to indicate that I want to start retrieving messages:

public class InvoiceManagementTests
{
InvoiceManagement invMgmt = new InvoiceManagement();

public async void ProcessInvoices()
{
invMgmt . foundInvoice.Subscribe<Invoice>();

To filter the results to just the invoices I want, I can apply a LINQ
statement to the Subject object. This example filters the invoices to
the ones that are back ordered (to use Rx LINQ extensions you'll need

to add a using statement for the System.Reactive.Linq namespace):
invMgmt. foundInvoice.Where(i => i.BackOrder == "BackOrder").Subscribe();

Once I've started listening to the subject, I can specify what pro-
cessing want to do when I receive an invoice. I can, for example, use
FirstAsyncto process just the first invoice returned by the service. In
this example, [use the await statement with the call to FirstAsync so
that I can return control to the main body of my application while
processing the invoice. This code waits to retrieve that first invoice,
then moves on to whatever code I use to initialize the invoice pro-

cessing process and, finally, processes the invoice:

Invoice inv;

inv = await invMgmt.foundInvoice.FirstAsync();
/] ...setup code invoices...
HandleInvoiceAsync(inv);

One caveat: FirstAsync will block if the server hasnt yet produced
any results. If you want to avoid blocking, you can use FirstOrDefault-
Async, which will return null if the server hasn't produced any results.
If there are no results, the client can decide what, if anything, to do.

The more typical case is that the client wants to process all the
invoices returned (after filtering) and to do so asynchronously. In
that case, rather than use a combination of Subscribe and OnNext,
you can just use the ForEachAsync method. You can pass a method

Figure 2 Code to Support Cancellation
and Defer Processing Until Results are Ready

CancellationTokenSource cancelSource = new CancellationTokenSource();

CancellationToken cancel;
cancel = cancelSource.Token;
if (lawait invMgmt.foundInvoice.IsEmpty())
{
/] ...setup code for processing invoices...
try
{
invMgmt. foundInvoice.ForEachAsync(HandleInvoice, cancel);
}
catch (Exception ex)
{
if (ex.GetType() != typeof(CancellationToken))
{

/] ...report message
}
}
/] ...clean up code when all invoices are processed or client disconnects
}

msdnmagazine.com

oralambda expression that processes incoming results. If you pass

amethod (which cant be asynchronous), as I do here, that method

will be passed the invoice that triggered ForEachAsync:
invMgmt.foundInvoice.ForEachAsync(HandleInvoice);

The ForEachAsync method can also be passed a cancellation
token to let the client signal that its disconnecting. A good practice
would be to pass the token when calling any of Rx *Async methods
to support letting the client terminate processing without having
to wait for all objects to be processed.

The ForEachAsync won't process any result already processed by
a First (or FirstOrDefaultAsync) method so you can use FirstOr-
DefaultAsync with ForEachAsync to check to see if the server has
anything to process before processing subsequent objects. However,
the Subjects IsSEmpty method will perform the same check more sim-
ply. If the client has to allocate any resources required for processing
results, IsSEmpty allows the client to check to see if theres anything
to do before allocating those resources (an alternative would be to
allocate those resources on the first item processed in the loop). Using
IsEmpty with a client that checks to see if there are any results before
allocating resources (and starting processing) while also supporting
cancellation would give code that looks something like Figure 2.

Wrapping Up

Ifall you need is a simple implementation of the observer pattern, then
ObservableCollection might do all you need to process a stream of
results. For better control and foran event-based application, the Subject
classand the extensions that come with Rx will let your application work
in an asynchronous mode by supporting a powerful implementation
of the publish/subscribe model (and Thaventlooked at the rich library
of operators that come with Rx). If youre working with Rx, its worth-
while to download the Rx Design Guide (bit.ly/ 1VOPXGS), which discusses
the best practices in consuming and producing observable streams.

Rx also provides some support for converting the message type
passed between the clientand the server by using the ISubject<TSource,
TResult> interface. The ISubject<TSource, TResult> interface spec-
ifies two datatypes: an “in” datatype and an “out” datatype. Within
the Subject class that implements this interface you can perform any
operations necessary to convert the result returned from the server (the
“in” datatype) into the result required by the client (the ‘out” datatype).
Furthermore, the in parameter is covariant (it will accept the specified
datatype or anything the datatype inherits from) and the out param-
eter is contravariant (it will accept the specified datatype or anything
that derives from it), giving you additional flexibility.

We live in an increasingly asynchronous world and, in that world,
the observer pattern is going to become more important—its a
useful tool for any interface between processes where the server
process returns more than a single result. Fortunately, you have
several options for implementing the observer pattern in the NET
Framework, including the ObservableCollection and Rx. L]

Peter VOGEL is a systems architect and principal in PH&V Information Services.
PH&V provides full-stack consulting from UX design through object modeling
and database design.

THANKS to the following Microsoft technical experts for reviewing this article:
Stephen Cleary, James McCaffrey and Dave Sexton

June 2016 19

http://www.msdnmagazine.com
www.bit.ly/1VOPxGS

G BEST FILE APIs

Open Create Convert Print Save

files from your applications!

pocC {

\ PDF

Contact Us: :m?;ii&v?:;;
US: +1 BBB 277 6734 f

EU: +44 141 416 1112 E-l E
AU: +61 2 8003 5926 A
sales{@aspose.com [=]

www.aspose.com

BUSINESS FILE FORMATS

ASPOSE.Cells
XLS, CSV, PDF, SVG, HTML, PNG

BMP, XPS, JPG, SpreadsheetML...

ASPOSE.Pdf

PDF, XML, XSL-FO, HTML, BMP
JPG, PNG, ePUB...

ASPOSE.BarCode

JPG, PNG, BMP, GIF, TIF, WMF
ICON...

ASPOSE.Email

MSG, EML, PST, EMLX
OST, OFT...

ASPOSE.Words

DOC, RTF, PDF, HTML, PNG
ePUB, XML, XPS, JPG...

ASPOSE.Slides

PPT, POT, POTX, XPS, HTML
PNG, PDF...

ASPOSE.Tasks

XML, MPP, SVG, PDF, TIFF
PNG...

ASPOSE.Imaging

PDF, BMP, JPG, GIF, TIFF
PNG...

+ MANY MORE!

Get your FREE evaluation copy at www.aspose.com

NET

Cloud

9 ASPOSE

Your File Format APls

www.aspose.com

.NET COMPILER PLATFORM

Language-Ag
erat

Code Ger
with Roslyn

Alessandro Del Sole

The Roslyn code base provides powerful APIs you
can leverage to perform rich code analysis over your source code.
For instance, analyzers and code refactorings can walk through a
piece of source code and replace one or more syntax nodes with
new code you generate with the Roslyn APIs. A common way to
perform code generation is via the SyntaxFactory class, which
exposes factory methods to generate syntax nodes in a way that
compilers can understand. The SyntaxFactory class is certainly
very powerful because it allows generating any possible syntax
element, but there are two different SyntaxFactory implementations:
Microsoft.CodeAnalysis.CSharp.SyntaxFactory and Microsoft. Code-
Analysis.VisualBasic.SyntaxFactory. This has an important impli-
cation if you want to write an analyzer with a code fix that targets

This article discusses:

« Using Roslyn to generate syntax that targets both C# and Visual Basic
+ The SyntaxGenerator class and its members

* Generating syntax nodes and compilation units

» The Workspaces APIs

Technologies discussed:

Roslyn, C#, Visual Basic

Code download available at:

msdn.com/magazine/0616magcode

22 msdn magazine

NOStIC
0N

both C# and Visual Basic—you have to write two differentanalyzers,
one for C#and one for Visual Basic, using the two implementations
of SyntaxFactory, each with a different approach due to the differ-
ent way those languages handle some constructs. This likely means
wasting time writing the analyzer twice, and maintaining them
becomes more difficult. Fortunately, the Roslyn APIs also provide
the Microsoft. CodeAnalysis.Editing. SyntaxGenerator, which allows
for language-agnostic code generation. In other words, with Syntax-
Generator you can write your code-generation logic once and
target both C# and Visual Basic. In this article T'll show you how to
perform language-agnostic code generation with SyntaxGenerator,
and I'll give you some hints about the Roslyn Workspaces APIs.

Starting with Code

Lets start with some source code that will be generated using Syn-
taxGenerator. Consider the simple Person class that implements the
[Cloneable interface in C# (Figure 1) and Visual Basic (Figure 2).

Youd probably argue that declaring auto-implemented prop-
erties would have the same effect and would keep code much
cleaner in this particular case, but later you'll see why I'm using
the expanded form.

This implementation of the Person class is very simple, but it
contains a good number of syntax elements, making it helpful
for understanding how to perform code generation with Syntax-
Generator. Lets generate this class with Roslyn.

http://msdn.com/magazine/0616magcode

Figure 1 ASimple Person Class in C#

public abstract class Person : ICloneable

{
// Not using auto-props is intentional for demo purposes

private string _lastName;
public string LastName
{
get
{
return _lastName;

set
{
_lastName = value;
}
}

private string _firstName;
public string FirstName
{
get
{
return _firstName;

set
{
_firstName = value;
}
}

public Person(string LastName, string FirstName)
{

_lastName = LastName;

_firstName = FirstName;
}

public virtual object Clone()
{
return MemberwiseClone();
}
}

Figure 2 A Simple Person Class in Visual Basic

Public MustInherit Class Person
Implements ICloneable

"Not using auto-props is intentional for demo purposes
Private _lastName As String
Private _firstName As String

Public Property LastName As String
Get
Return _TastName
End Get
Set(value As String)
_lastName = value
End Set
End Property

Public Property FirstName As String
Get
Return _firstName
End Get
Set(value As String)
_firstName = value
End Set
End Property

Public Sub New(LastName As String, FirstName As String)
_lastName = LastName
_firstName = FirstName

End Sub

Public Overridable Function Clone() As Object Implements ICTloneable.Clone
Return MemberwiseClone()
End Function
End Class

msdnmagazine.com

Creating a Code Analysis Tool
The first thing to do is create a new project in Visual Studio 2015
with references to the Roslyn libraries. Because of the general pur-
pose of this article, instead of creating an analyzer or refactoring,
I'll choose another project template available in the NET Compiler
Platform SDK, the Stand-Alone Code Analysis Tool, available in
the Extensibility node of the New Project dialog (see Figure 3).
This project template actually generates a console application

and automatically adds the proper NuGet packages for the Roslyn
APIs, targeting the language of your choice. Because the idea is
to target both C# and Visual Basic, the first thing to do is add
the NuGet packages for the second language. For instance, if you
initially created a C# project, you'll need to download and install
the following Visual Basic libraries from NuGet:

« Microsoft.CodeAnalysis.VisualBasic.dll

« Microsoft.CodeAnalysis.VisualBasic. Workspaces.dll

« Microsott.CodeAnalysis. VisualBasic. Workspaces. Common.dll

You can just install the latter from NuGet, and this will auto-

matically resolve dependencies for the other required libraries.
Resolving dependencies is important anytime you plan to use the
SyntaxGenerator class, no matter what project template you're
using. Forgetting to do this will result in exceptions at run time.

Resolving dependencies s
important anytime you want to
use the SyntaxGenerator class,

no matter what project template
you're using.

Meet SyntaxGenerator and the Workspaces APIs
The SyntaxGenerator class exposes a static method called GetGen-
erator, which returns an instance of SyntaxGenerator. You use the
returned instance to perform code generation. GetGenerator has
the following three overloads:

public static SyntaxGenerator GetGenerator(Document document)
public static SyntaxGenerator GetGenerator(Project project)
public static SyntaxGenerator GetGenerator(Workspace workspace, string language)

The first two overloads work againsta Document and a Project,
respectively. The Document class represents a code file in a proj-
ect, while the Project class represents a Visual Studio project as a
whole. These overloads automatically detect the language (C# or
Visual Basic) the Document or Project target. Document, Project,
and Solution (an additional class that represents a Visual Studio
sln solution) are part of a Workspace, which provides a managed
way to interact with everything that makes up an MSBuild solu-
tion with projects, code files, metadata and objects. The Workspac-
es APIs expose several classes you can use to manage workspaces,
such as the MSBuildWorkspace class, which allows working against
an .sln solution, or the AdhocWorkspace class, which is instead
very useful when you're not working against an existing MSBuild
solution but want an in-memory workspace that represents one.

June 2016 23

http://www.msdnmagazine.com

Generating Syntax Nodes

Mew Project L X
b Recent NET Framework 461 = Sortby: Default - Search Installed Templates (Ctrl+E) 0 - The SyntaxGenerator class exposes
e e e
4 Templates = g Create s code analysis command-line generate proper syntax nodes in
4 Visual C= @ Analyzer with Code Fix (NuGet - VSIX) Visual C# AppRchLion that liant with th
4 Vindows a way that's compliant with the
Universal 1 | €= ltem Template Visual €= :
i d) grammar and semantics of both
s R [B] CeProject Tempiste Visusl €2 C#and Visual Basic. For example,
el
b Office/SharePoint & coteracioing 0 iR methods with names ending with
s Z8 the Expression suffix generate
b Cloud A~ Download the NET Compiler Platform SDK Visual C=
i s expressions; methods with names
Ll i1] . .
b 05 B] voxeoia wle ending with the Statement suffix
e generate statements; methods with
Sitvelight names ending with the Declara-
Test . .
vic tion suftix generate declarations.
Ry s For each category, there are spe-
b Online Clckchere 2 g2 oniine and find cialized methods that generate
Hame SHELA R specific syntax nodes. For instance,
atio users\, do nts\visual studio 2015\Proj - Erowse... .
;:d,m"" s = MethodDeclaration generates a
en: f -
Sotionmame SymacGeneaton 9 Crste grectoyforsoation methodblock, PropertyDeclaration
LJAdd toourca contred generates a property, FieldDec-
laration generates a field and so

Figure 3 The Stand-Alone Code Analysis Tool Project Template

In the case of analyzers and code refactorings, you already have
an MSBuild workspace that allows you to work against code files
using instances of the Document, Project and Solution classes. In
the current sample project, theres no workspace, so lets create one
using the third overload of SyntaxGenerator. To get a new empty
workspace, you can use the AdhocWorkspace class:

/1 Get a workspace
var workspace = new AdhocWorkspace();

Now you can get an instance of SyntaxGenerator, passing the

workspace instance and the desired language as arguments:

// Get the SyntaxGenerator for the specified language
var generator = SyntaxGenerator.GetGenerator(workspace, LanguageNames.CSharp);

The SyntaxGenerator class
exposes instance factory
methods that generate proper
syntax nodes inaway that's
compliant with the grammar
and semantics of both C#
and Visual Basic.

The language name can be CSharp or VisualBasic, both constants
from the LanguageNames class. Lets start with C#; later you'll see
how to change the language name to VisualBasic. You have all the
tools you need now and are ready to generate syntax nodes.

24 msdn magazine

on (and, as usual, IntelliSense is

your best friend). The peculiarity
of these methods is that each returns SyntaxNode, instead of a spe-
cialized type that derives from SyntaxNode, as happens with the
SyntaxFactory class. This provides great flexibility, especially when
generating complex nodes.

Based on the sample Person class, the first thing to generate isa
using/Imports directive for the System namespace, which exposes
the ICloneable interface. This can be accomplished with the
NamespacelmportDeclaration method as follows:

/1 Create using/Imports directives

var usingDirectives = generator.NamespaceImportDeclaration("System");

This method takes a string argument that represents the name-
space you want to import. Lets go ahead and declare two fields,
which is accomplished via the FieldDeclaration method:

// Generate two private fields

var lastNameField = generator.FieldDeclaration("_lastName",

generator.TypeExpression(SpecialType.System_String),
Accessibility.Private);
var firstNameField = generator.FieldDeclaration("_firstName",

generator.TypeExpression(SpecialType.System_String),
Accessibility.Private);

Figure 4 Generating Two Properties
via the PropertyDeclaration Method

// Generate two properties with explicit get/set

var lastNameProperty = generator.PropertyDeclaration("LastName",
generator.TypeExpression(SpecialType.System_String), Accessibility.Public,
getAccessorStatements:new SyntaxNode[]
{ generator.ReturnStatement(generator.IdentifierName("_lastName")) },
setAccessorStatements:new SyntaxNode[]
{ generator.AssignmentStatement(generator.IdentifierName("_lastName"),
generator.IdentifierName("value"))});

var firstNameProperty = generator.PropertyDeclaration("FirstName",
generator.TypeExpression(SpecialType.System_String),
Accessibility.Public,
getAccessorStatements: new SyntaxNode[]
{ generator.ReturnStatement(generator.IdentifierName("_firstName")) },
setAccessorStatements: new SyntaxNode[]
{ generator.AssignmentStatement(generator.IdentifierName("_firstName"),
generator.IdentifierName("value")) });

NET Compiler Platform

PRECISELY
PROGRAMMED
FOR

ceTe Software’'s DynamicPDF products provide real-time PDF generation, manipulation, conversion,
printing, viewing, and much more. Providing the best of both worlds, the object models are extremely
flexible but still supply the rich features you need as a developer. Reliable and efficient, the high-
performance software is easy to learn and use. If you do encounter a question with any of our

components, simply contact ceTe Software's readily available, industry-leading support team.

' TRY OUR PDF SOLUTIONS FREE TODAY!

www.DynamicPDF.com/eval or call 800.631.5006 | +1 410.772.8620

DynamicPDF

WWW.DYNAMICPDF.COM

& ceTesoftware

www.dynamicpdf.com
www.dynamicpdf.com/eval

FieldDeclaration takes the field name, the field type, and the
accessibility level as arguments. To supply the proper type, you
invoke the TypeExpression method, which takes a value from the
Special Type enumeration, in this case System_String (don't forget
to use IntelliSense to discover other values). The accessibility level
is set with a value from the Accessibility enumeration. When
invoking methods from SyntaxGenerator, it's very common to
nest invocations to other methods from the same class, as in the
case of TypeExpression. The next step is generating two proper-
ties, which is accomplished by invoking the PropertyDeclaration
method, shown in Figure 4.

Assignments are represented
by the AssignmentStatement
method, which takes two
arguments, the left and right
sides of the assignment.

Asyou can see, generating a syntax node for a property is more
complex. Here you still pass a string with the property name, then
a TypeExpression for the property type, then the accessibility level.
With a property you also typically need to provide the Get and
Setaccessors, especially for those situations in which you need to
execute code other than for setting or returning the property value
(such as raising the OnPropertyChanged event when implement-
ing the INotifyPropertyChanged interface). Both the Get and Set
accessors are represented by an array of SyntaxNode objects. In
the Get, you typically return the property value, so here the code
invokes the ReturnStatement method, which represents the return
instruction plus the value or object it returns. In this case, the
returned value is a fields identifier. A syntax node for an identifier
is obtained by invoking the IdentifierName method, which takes
an argument of type string, and still returns SyntaxNode. The Set
accessors in contrast store the property value into a field via an
assignment. Assignments are represented by the Assignment-
Statement method, which takes two arguments, the left and right
sides of the assignment. In the current case, the assignment is
between two identifiers, so the code invokes IdentifierName twice,
one for the left side of the assignment (the field name) and one for
the right side (the property value). Because the property value is
represented by the value identifier in both C# and Visual Basic, it
can be hardcoded.

The next step is code generation for the Clone method, which
is required by the ICloneable interface implementation. Generally
speaking, a method consists of the declaration, which includes
the signature and block delimiters, and of a number of statements,
which make up the method body. In the current example, Clone
must also implement the ICloneable.Clone method. For this
reason, a convenient approach is dividing the code generation for

26 msdn magazine

the method into three smaller syntax nodes. The first syntax node
is the method body, which looks like the following:

// Generate the method body for the Clone method
var cloneMethodBody = generator.ReturnStatement(generator.
InvocationExpression(generator.IdentifierName("MemberwiseClone")));

In this case, the Clone method returns the result of the invocation
to the MemberwiseClone method it inherits from System.Object. For
this reason, the method body is justan invocation to ReturnStatement,
which you met previously. Here, the argument of the ReturnState-
ment is an invocation of the InvocationExpression method, which
represents a method invocation and whose parameter is an iden-
tifier representing the name of the invoked method. Because the
InvocationExpression argument is of type SyntaxNode, a convenient
way to supply the identifier is using the IdentifierName method, pass-
ing the string representing the identifier of the method to invoke. If
you had a method with a more complex method body, youd need to
generate an array of type SyntaxNode, with each node representing
some code in the method body.

The next step is generating the Clone method declaration, which
is accomplished like so:

// Generate the Clone method declaration
var cloneMethoDeclaration = generator.MethodDeclaration("Clone", null,
null,null,
Accessibility.Public,
DeclarationModifiers.Virtual,
new SyntaxNode[] { cloneMethodBody });

You generate a method with the MethodDeclaration method.
This takes a number of arguments, such as:

« the method name, of type String

« the method parameters, of type [IEnumerable<SyntaxNode>
(null in this case)

« the type parameters for generic methods, of type
[Enumerable<SyntaxNode> (null in this case)

« the return type, of type SyntaxNode (null in this case)

« the accessibility level, with a value from the Accessibility
enumeration

« the declaration modifiers, with one or more values from the
DeclarationModifiers enumeration; in this case the modifier
is virtual (Overridable in Visual Basic)

« the statements for the method body, of type SyntaxNode; in
this case, the array contains one element, which is the return
statement defined earlier

Because the property value
is represented by the value
identifier in both C# and Visual
Basic, it can be hardcoded.

You'll see an example of how to add method parameters with
the more specialized ConstructorDeclaration method shortly. The
Clone method mustimplement its counterpart from the ICloneable
interface, so this must be handled. What you need now is a syn-
tax node that represents the interface name and that will also be

NET Compiler Platform

useful when the interface implementation is added to the Person
class. This can be accomplished by invoking the IdentifierName
method, which returns a proper name from the specified string:

// Generate a SyntaxNode for the interface's name you want to implement
var ICloneableInterfaceType = generator.IdentifierName("ICloneable");

If you wanted to import the fully qualified name, System.IClone-
able, youd use DottedName instead of IdentifierName in order
to generate a proper qualified name, but in the current example
a NamespacelmportDeclaration for System was already added.
At this point, you can put it all together. SyntaxGenerator has the
AsPublicInterfacelmplementation and AsPrivateInterfacelmple-
mentation methods that you use to tell the compiler that a method
definition is implementing an interface, as in the following:

// Explicit ICloneable.Clone implemenation

var cloneMethodWithInterfaceType = generator

AsPublicInterfaceImplementation(cloneMethoDeclaration,
ICloneablelnterfaceType);

This is particularly important with Visual Basic, which explicitly
requires the Implements clause. AsPublicInterfacelmplementation
is the equivalent of implicit interface implementation in C#,
whereas AsPrivatelnterfacelmplementation is the equivalent of
explicit interface implementation. Both work against methods,
properties and indexers.

The next step is about generating the constructor, which is accom-
plished via the ConstructorDeclaration method. As with the Clone

B Select file///C:/Users/proga/Documents/Visual Studio 2015/Projects/Cons.. — =] X

Figure 5 The C# Roslyn-Generated Code for the Person Class

msdnmagazine.com

method, the constructors definition should be split into smaller
pieces for easier understanding and cleaner code. As you'll recall
from Figure 1 and Figure 2, the constructor takes two parameters
of type string, which are required for property initialization. So it's
a good idea to generate the syntax node for both parameters first:

// Generate parameters for the class' constructor

var constructorParameters = new SyntaxNode[] {
generator.ParameterDeclaration("LastName",
generator.TypeExpression(SpecialType.System_String)),
generator.ParameterDeclaration("FirstName",
generator.TypeExpression(SpecialType.System_String)) };

Each parameter is generated with the ParameterDeclaration
method, which takes a string representing the parameter name, and
an expression representing the parameter type. Both parametersare
of type String, so the code simply uses the TypeExpression method,
asyou already learned. The reason for packing both parameters into
a SyntaxNode is that the ConstructorDeclaration wants an object
of this type to represent parameters.

Now you need to construct the method body, which takes advantage
of the AssignmentStatement method you saw previously; as follows:

// Generate the constructor's method body

var constructorBody = new SyntaxNode[] {
generator.AssignmentStatement(generator.IdentifierName("_lastName"),
generator.IdentifierName("LastName")),
generator.AssignmentStatement(generator.IdentifierName("_firstName"),
generator.IdentifierName("FirstName"))};

In this case there are two statements, both grouped into a Syntax-
Node object. Finally, you can generate the constructor, putting
together the parameters and the method body:

// Generate the class' constructor

var constructor = generator.ConstructorDeclaration("Person",
constructorParameters, Accessibility.Public,
statements:constructorBody);

ConstructorDeclaration is similar to MethodDeclaration, but
is specifically designed to generate a .ctor method in C# and a Sub
New method in Visual Basic.

Generating a CompilationUnit

So far you've seen how to generate code for every member in the
Person class. Now you need to put these members together and
generate a proper SyntaxNode for the class. Class members must
be supplied in the form of a SyntaxNode, and the following demon-
strates how to put together all the members previously created:

// An array of SyntaxNode as the class members

var members = new SyntaxNode[] { TastNameField,
firstNameField, lastNameProperty, firstNameProperty,
cloneMethodWithInterfaceType, constructor };

Now you can finally generate the Person class, taking advantage
of the ClassDeclaration method as follows:

June 2016 27

http://www.msdnmagazine.com

/1 Generate the class
var classDefinition = generator.ClassDeclaration(
"Person", typeParameters: null,
accessibility: Accessibility.Public,
modifiers: DeclarationModifiers.Abstract,
baseType: null,
interfaceTypes: new SyntaxNode[] { ICloneableInterfaceType },
members: members);

By using SyntaxGenerator
instead of SyntaxFactory, you can
target both C# and Visual Basic
simultaneously.

Aswith other kinds of declarations, this method requires speci-
tying the name, the generic type (null in this case), the accessibility
level, the modifiers (Abstract in this case, or MustInheritin Visual
Basic), base types (null in this case) and the implemented interfaces
(in this case a SyntaxNode containing the interface name created
previously as a syntax node). You might also want to encapsulate
the class into a namespace. SyntaxGenerator includes the Name-
spaceDeclaration method, which accepts the namespace name and
the SyntaxNode it contains. You use it like this:

// Declare a namespace
var namespaceDeclaration = generator.NamespaceDeclaration("MyTypes", classDefinition);

Compilers already know how to handle the generated syntax
node for the complete namespace and nested members, and how

to perform code analysis over syntax, but sometimes you need to
return this result in the form of a CompilationUnit, a type that rep-
resentsa code file. This is typical with analyzers and code refactorings.
Heres the code you write to return a CompilationUnit:

/1 Get a CompilationUnit (code file) for the generated code
var newNode = generator.CompilationUnit(usingDirectives, namespaceDeclaration).
NormalizeWhitespace();

This method accepts one or more SyntaxNode instances as
the argument.

The Output in C# and Visual Basic
After all this work, you're ready to see the result. Figure 5 shows
the generated C# code for the Person class.

Now, simply change the language to VisualBasic in the line of
code that creates a new AdhocWorkspace:

generator = SyntaxGenerator.GetGenerator(workspace, LanguageNames.VisualBasic);

If you re-run the code, you'll get a Visual Basic class definition,
as shown in Figure 6.

The key point here is that, with SyntaxGenerator, you wrote code
once and were able to generate both C# and Visual Basic code with
which the Roslyn analysis APIs can work. When you're done, don't
forget to invoke the Dispose method over the AdhocWorkspace
instance, or simply enclose your code within a using statement.
Because nobody is perfect and the generated code might contain
errors, you can also check the ContainsDiagnostics property to see
if any diagnostics exist in the code and get detailed information
about code issues via the GetDiagnostics method.

Language-Agnostic Analyzers and Refactorings

B file:///C:/ Users/proga/Documents/Visual Studio 2015/Projects/ConsoleApplication3... — O

Figure 6 The Visual Basic Roslyn-Generated Code for the Person Class

28 msdn magazine

X

You can use the Roslyn APIs and the SyntaxGenerator class
whenever you need to perform rich analysis over source code,
but this approach is also very useful with analyzers and code
refactorings. In fact, analyzers, code fixes, and refactorings
have the DiagnosticAnalyzer, ExportCodeFixProvider, and
ExportCodeRefactoringProvider attributes, respectively, each
accepting the primary and secondary supported languages.
By using SyntaxGenerator instead of SyntaxFactory, you can
target both C# and Visual Basic simultaneously.

Wrapping Up

The SyntaxGenerator class from the Microsoft.CodeAnal-
ysis.Editing namespace provides a language—agnostic way
of generating syntax nodes, targeting both C# and Visual
Basic with one code base. With this powerful class you can
generate any possible syntax element in a way thats com-
pliant with both compilers, saving time and improving
code maintainability.]

ALessanbro DEL SOLE has been a Microsoft MVP since 2008. Awarded
MVP of the Year five times, he has authored many books, eBooks, instruc-
tional videos and articles about NET development with Visual Studio.
Del Sole works as a solution developer expert for Brain-Sys (brain-sys.it),
focusing on .NET development, training and consulting. You can follow
him on Twitter: @progalex.

THANKS to the following Microsoft technical experts for reviewing this
article: Anthony D. Green and Matt Warren

NET Compiler Platform

www.Twitter.com/progalex

&S ComponentSource /update/2016/06

BEST SELLER 4 g DevExpress DXperience 15.2 \ from $1,439.99 % DevExpress

The complete range of DevExpress .NET controls and libraries for all major Microsoft platforms.

+ WinForms Grid: New data-aware Tile View

+ WinForms Grid & TreeList: New Excel-inspired Conditional Formatting
» .NET Spreadsheet: Grouping and Outline support

« ASPNET: New Rich Text Editor-Word Processing control

« ASPNET Reporting: New Web Report Designer

BEST SELLER s Help & Manual Professional \ from $586.04

Help and documentation for .NET and mobile applications.

« Powerful features in an easy, accessible and intuitive user interface

« As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor
- Single source, multi-channel publishing with conditional and customized output features
« Output to responsive HTML, CHM, PDF, MS Word, ePUB, Kindle or print

- Styles and Templates give you full design control

BEST SELLER o re Aspose.TotaIfor.NET‘from $2,449.02 @ASPOSE

Every Aspose .NET component in one package.

« Programmatically manage popular file formats including Word, Excel, PowerPoint and PDF

« Work with charts, diagrams, images, project plans, emails, barcodes, OCR and OneNote files
alongside many more document management features in .NET applications

« Common uses also include mail merging, adding barcodes to documents, building dynamic
reports on the fly and extracting text from most document types

LEADTOOLS Document Imaging SDKs V19 \ fom $2,995.00 srp ¥ recimstosies

Add powerful document imaging functionality to desktop, tablet, mobile & web applications.

« Universal document viewer & conversion framework for PDF, Office, CAD, TIFF & more

+ OCR, MICR, OMR, ICR and Forms Recognition supporting structured & unstructured forms
- PDF SDK with text edit, hyperlinks, bookmarks, digital signature, forms, metadata

« Barcode Detect, Read, Write for UPC, EAN, Code 128, Data Matrix, QR Code, PDF417

« Zero-footprint HTML5/JavaScript Ul Controls & Web Services

We accept purchase orders.

© 1996-2016 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts. Contact us to apply for a credit account.
US Headquarters European Headquarters Asia/ Pacific Headquarters 8 o DISC VER
ComponentSource ComponentSource ComponentSource Sa | es H Otl Ine - U S & Ca n ad a: _. . V’SA -
650 Claremore Prof Way 2 New Century Place 3F Kojimachi Square Bldg

Suite 100 East Street 3-3 Kojimachi Chiyoda-ku 8 8 8 8 5 O — 9 9 1 1

Woodstock Reading, Berkshire Tokyo

GA 30188-5188 RG14ET Japan GSA

USA United Kingdom 102-0083 WWW.COMm ponen‘l‘sou rce.com

http://www.componentsource.com

POWER Bl

Microsoft Azure Med
Services and Power B

Sagar Bhanudas Joshi

Microsoft Azure Media Services offers arich
platform for developers and independent software vendors to
deliver video-on-demand and live-streaming experiences over the
Web and native apps. To enrich consumer experiences and gain
insights into context/application usage, it's important to weave a
robust cross-platform solution in the back end for analytics and
data visualization. As of this writing, the Azure Media Services
platform doesn' offer analytics out of the box; hence, developers
are always challenged by business demands usage data from an
analytics standpoint.

This article focuses on helping developers build an analytics
platform on top of Azure Media Services (and Player) to surface
out usage trends. The solution space includes usage of an inter-
mediate (Web API) service and database, with the visualization
culminating with Power BI.

This article discusses:

+ Dynamic packaging and preparation for video consumption
» The Web APl and the database

* Gaining insights through Power BI

Technologies discussed:

Azure Media Services, Azure Web Apps, Azure SQL Database,
Microsoft Power Bl

Code download available at:

msdn.com/magazine/0616magcode

30 msdn magazine

The Scenario
Most of the organizations creating/embedding media content need
to delve on usage/analytics data in an effort to improvise end-user
experience. To achieve this, developers need to record some of the
key performance indicators (KPIs) related to their video/media con-
sumption. Here are some of the most common and desirable KPIs:
« Which is the most watched video?
« How many people watched the video until completion?

Figure 1 Code for Submitting an Encoding Job

static public IAsset EncodeToAdaptiveBitrateMP4s(IAsset asset,
AssetCreationOptions options)

IJob job = _context.Jobs.CreateWithSingleTask(
Media Encoder Standard",
"H264 Multiple Bitrate 720p",
asset,
"Adaptive Bitrate MP4",
options);
Console.WriteLine("Submitting transcoding job...");

Jjob.Submit();
Jjob = job.StartExecutionProgressTask(
i=

{

Console.WriteLine("Job state: {0}", j.State);
Console.WriteLine("Job progress: {0:0.#H}%",
Jj.GetOverallProgress());

Jo
CancellationToken.None).Result;
Console.WriteLine("Transcoding job finished.");
IAsset outputAsset = job.OutputMediaAssets[0];
return outputAsset;

http://msdn.com/magazine/0616magcode

€2 DASHEOARD CONTENT PROTECTION CONTENT JOBS STREAMING ENDPOINTS

STATUS | All » FROM | 2016-02-08 [|| 8:00PM v | TO | 2016-4-04

081D

NAME PROGRESS TIME STARTED TIME COMPLETED | ID

CHANNELS

8:00 PM ~

performing the same steps from code
if you need to automate the steps/
solution. This section of the scenario
discusses the following tasks:
« Identify the content (in this case,
v I'll choose ademo video content)
to be consumed on demand
« Upload the video to Azure
Media Services (backed by an

ENCODING

Teskfor <video name> 100% [N 2/9/2016 6:06:33 PM 2/3/2016 6:07:24 PM

Azure Storage account)
« Monitor the upload progress

Figure 2 Azure Media Services Sample Showing Job Progress

« How many times was the video paused and at which position?
« Which is the most streamed format/bit rate?
« Platform information and other demographic details.

In order for you to decide the right mix of services and tools
that will help deliver these KPIs, a significant amount of time and
energy is spent to either create each component from the ground
up or build on top of proven platform services.

Thankfully, the Azure Cloud Platform has a rich set of services
that can be leveraged in the overall solution design to capture and
address analytics requirements. The following components will be
used for this scenario:

« Azure Media Services
« Azure Media Player

« Azure Web Apps

« Azure SQL Database
« Power Bl

The best part of using Azure
Media Services isthatyou can
take your video/audio content
and prepare it for consumption

on various platforms.

The idea here is to capture raw data from Azure Media Player
and feed it back to a middle-tier (Web API), which brokers the con-
nection with the managed Azure SQL (reporting) database. You
then connect Power BI to the data sources within the reporting
database for surfacing out the trends of media usage/consumption
through visualizations.

Further sections in this article detail the actual implementation
of enabling this scenario.

Dynamic Packaging and Preparation

for Video Consumption

The best part of using Azure Media Services is that you can take your
video/audio content and prepare it for consumption on various plat-
forms. You can achieve this either by using the Azure Portal or by

msdnmagazine.com

and submit the job for
dynamic packaging

« Get the relevant URLSs for consumption on various platforms

I'll use the Azure sample located at bit.ly/221y1ST to get started
with the C# console app for achieving these tasks. Though this
sample leverages NuGet packages and the C# program, you can
use SDKs available in other languages, as well. The most important
code here is to submit the video for encoding and get the URLs,
as shown in Figure 1.

If you're new to Azure Media Services, heres a quick list of
terminologies:

« Asset (or [Asset)—an entity representing a Media package
with Azure Media Services. It may contain one or more
content files.

« Job (or IJob)—an entity representing a unit of “encoding”
work to be performed by the Azure Media Service. Think of
it as converting a file from one format to another.

« Adaptive Bitrate—an encoding format that adapts to CPU/
network capability of the target system and delivers content
matching the criteria that best suits the device. You just have
to create the Adaptive Bitrate files and Azure Media Services
will identify the right bitrate to be streamed to the client device.

Now;, putting the pieces together from the code in Figure 1, the
function submits an “asset” to the Media Services Standard Encoder
for conversion to the source format Adaptive Bitrate MP4 asset.

The sample also shows job progress, or you can track it through
the Azure Portal as shown in Figure 2 in the “jobs” section. (I have
blanked out the ID field values.)

Figure 3 The HTML Front-End Code

<!DOCTYPE htm1>
<htm1>
<head>
<titledWelcome to the awesome world of Azure Media Services</title>
<link href="http://amp.azure.net/1ibs/amp/1.6.3/skins/amp-default/
azuremediaplayer.min.css"
rel="stylesheet">
<script src="http://amp.azure.net/1ibs/amp/1.6.3/azuremediaplayer.min.
Js"></script>
<script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.2.1.min.
js"></script>
<meta charset="utf-8" />
</head>
<body>
<video id="azuremediaplayer" class="azuremediaplayer
amp-default-skin amp-big-play-centered"
tabindex="0"></video>
<script src="scripts/Player/Player.js"></script>
</body>
</html>

June 2016 31

http://www.msdnmagazine.com
www.bit.ly/22Iy1ST

Now that you've successfully created a media asset ready to be
consumed across devices and platforms, you must be sure to let
Azure Media Services know the platform of the target device so
that it can stream out the right encoding and content format. For
example, Windows devices generally support playing Silverlight
Smooth Streaming format:

http://testendpoint-testaccount.streaming.mediaservices.windows.net/
fecebb23-46f6-490d-8b70-203e86b0df58/assetvideo.ism/Manifest

where iOS devices support HLS video format and others:

http://testendpoint-testaccount.streaming.mediaservices.windows.net/fecebb23-
466-490d-8b70-203e86b0df58/assetvideo. ism/Manifest(format=m3u8-aapl-v3)

Notice the trailing few letters of the URL, which are appended
after “Manifest” These format notations help the Azure Media
Services endpoint identify the content format to be streamed to

Figure 4 Setting Video Source and
Capturing Azure Media Player Attributes

var myOptions = {
"nativeControlsForTouch": true,
controls: true,
autoplay: true,
width: "640",
height: "400",
}
myPlayer = amp("azuremediaplayer", myOptions);
myPlayer.src([
{

// For feature detection, you can use Tibraries 1ike Modernizr and then
/1 construct the URL

"src": "http://demoendpoint.streaming.mediaservices.windows.
net/8frnf8nf-1jd8-1918-009w-92073ffd3fsce/assetvideo.ism/Manifest",
"type": "application/vnd.ms-sstr+xml",

}
1;

/] Events
myPlayer.addEventListener(amp.eventName.pause, _ampEventHandler);

/] More events Tike

// Content Toad complete
// Media completed

// Video seek

// Page unload

function _ampEventHandler(eventDetails)
{
var eventName = eventDetails.type;
var pauseTime = eventDetails.presentationTimeInSec;
var title = "Hello Azure Media Service ! ";
var ExtraData = "None";
var dateTime = new Date().toUTCString();

var data = {
'MediaRef': 9999,
"EventTime': pauseTime,
'MediaTitle': title,
'TimeStamp': dateTime,
'ExtraData’ : ExtraData
}

$(function () {

$.ajax({
type: "POST",
data: JSON.stringify(data),
url: "http://demowebapi.azurewebsites.net/api/MediaAnalytics",
contentType: "application/json"
)8

)8
}

32 msdn magazine

the device. Now that you have the media ready to be streamed to
the device, lets create an HTML page for consuming the video
through Azure Media Player (bit.ly/1SQ8Rwr).

Consuming Media and Sending

Analytics Data to the Back End

Azure Media Player is a Web video player that complements the
playback of Azure Media Services content on the client side. It
works with an underlying browser platform to render the video
content (primarily from Azure Media Services) with minimal
configuration in JavaScript code. However, the goal is not only to
play the media but also to derive analytical data of the usage and
logitto the back end. Because the objective is to view the aggregate
data toward the end of the solution for analysis, T'll focus only ona
select number of parameters to be recorded; for example, an iden-
tifier of the video content, title of the video, pause time, timestamp
and extra remarks/data.

Hence, the HTML code for player looks like that in Figure 3.

The HTML (design) code in Figure 3 simply declares the video
element along with the Azure Media Player-specific properties
to denote the UT of the player. Notice the Playerjs file, which will
perform the task of detecting the platform specifying the video
URL, create an object analytics data and send it asynchronously
to the custom back end.

The simplest code in Player,js can look something like that in
Figure 4.

Figure 4 shows the simplest form of attributes that can be collected
from the Azure Media Player for reference. Your solution media
player can attach many more event handlers and capture richer
metrics (see bit.ly/1VA5osy). Although the code references a smooth
streaming format, you can detect the platform features and quickly
prepare the media URL for the relevant format of the content.

In this example, a handler is attached to the “paused” event of the
Azure Media Player, which calls a back-end Web API through an
AJAX call (JQuery) to avoid any blocking interference with the video
playback. Hence, whenever the user pauses the video, the back-end
call is made to push the data asynchronously to the analytics data-
base, without any response being passed back to the HTML page.

Because JavaScript isn't a strongly typed language, you can create
and append dynamic properties to the object and set its values. The
“data” object in this example represents the instance of the attributes

Figure 5 The Web API and the Database

public class MediaAnalyticsController :
{

ApiController

async public void Post([FromBodyIMediaWebAPI.Models.MediaData value)
{

using (SqlConnection connection =
SQLConnHelper.CreateDatabaseConnection())

(
await connection.OpenAsync();
int EntryID = SQLConnHelper.SQLWriteAnalyticsDataAsync(value, connection);
connection.Close();
connection.Dispose();

Power BI

www.bit.ly/1SQ8Rwr
www.bit.ly/1VA5osy

G IVE Yo U R DEVELOPMENT TOPICS:
> ALM / DevOps > Visual Studio /

CAMPAIGN FOR CODE 2016 * VISUAL STUDIO LIVE! V clongeotpu " ek
D E =
the announcements coming out of Build,

we'll be finalizing the FULL Track of Microsoft-

Database & Analytics
led sessions shortly. Be sure to check
vslive.com/redmond for session updates!

> Web Server
MICROSOFT HO REGISTER BY JUNE 8 AND
A s -~ SAVE $400!

USE PROMO CODE VSLJUNTI

Y

> Mobile Client

| > Windows Client
> Software Practices

& MICROSOFT-LED SESSIONS: With all of

Scan the QR code to register
. or for more event details.

Vlsual Studlo LIVE! VSLIVE.COM/REDMOND

EXPERT SOLUTIONS FOR .NET DEVELOPERS

www.vslive.com/redmond

Visual Studio Live VSLIVE.COM

EXPERT SOLUTIONS FOR .NET DEVELOPERS

ON THE 2016
JnIN “s CAMPAIGN FOR CODE
TRAIL!

PN

PISTIE.- i 4
- 20016 ek Fi
- W October3-6 __—
” e / A= Q
June 13-16 : / Y

< ™ o> g ORLANDO
-
August 8-12 ., i R
ANAHEIM)-.2006 -4
May 16-19 W December 5-9

September 26-29

e
EVENT PARTNER PLATINUM SPONSOR SUPPORTED BY PRODUCED BY

- ¥ Microsoft Virtual Academy . l . . Gl
a8 Microsoft pq VisualStudio MSAN Visual Studio MOSNMEDIA
magazine MAGAZINE

www.vslive.com

hit to the database, as the options
SQL Server Object Explorer AL 8 dbo.finalyticsTable [Design] & X h d h b
VIR B 4 Update | ScriptFile: dbo.AnalyticsTable.sgl - may vary here an thiscan € gen-
P S0t e T DataType | AlowNull | Defauk eral code that can symbolize the use
R — |=o EnteyiD int] of multiple types of middleware
P 1 System Databases Meacied marcharis)) plus database combinations. Upon
4 @ medizanalyticsdb TimeStamp datetime i
4] Tables : = successful entry to the database,
b Ml System Tables EventTime float Wl . .
y — the unique ID for
4 [dbo.AnalyticsTable MediaTitle rvarchar{MAX) i) you receive q
P EaraDats nverchar(MAX) [the row, Entryld. There are defi-
i Keys . .
P o Constraits o nitely other methods of receiving
[@ Tni
oo feedback from the database for
P Satistics successful operation and any of
Bl Views .
b ol Smoeyi them will work here, as well.
b il Programmability 03 Design 1 S T-50L .
b il Storage CREATE TABLE [dbo].[AnalyticsTable] (. To represent the analﬁ1c§ data
bWl Security [EntryID] INT IDENTITY (1, 1) MOT HULL, in a structured format within the
b Security [MediaRef] NVARCHAR (58) MULL, N
b Projects (TimeStamp) DATETIME MULL, database, T've created a table closely
[EventTime] FLOAT (53) MULL, . .
[MediaTitle] NVARCHAR (MAX) MULL, matchmg the Model (in MVC) or
[ExtraData] NVARCHAR (MAX) NULL, . .
PRINARY KEY CLUSTERED ([EntryID] ASC) the JSON object I received from
0% - the HTML front end, as shown

Figure 6 A Simplistic Table Design

captured from Azure Media Player and sent asa JSON string to the back
end of one of the widely used formats for Web API communications.
The JSON string looks like this:

{

"MediaRef":12345,

"EventTime":15.5499976,"

MediaTitle":"Video - 21",

"TimeStamp":"Mon, 04 Apr 2016 16:03:36 GMT",
"ExtraData":"None"

}

The Web APl and the Database

The choice of Web API and database can be across the spec-
trum because the reporting tool for this scenario is Power BI
(powerbi.microsoft.com). However, just to keep this simple, an ASPNET
Web API project has been created to quickly set up the back-end
service. This helps you easily set

in Figure 6.
Tip: Another quick way to create
Backend as a Service is to use Azure Mobile Apps, which lets you
quickly provision Web API, as well as Azure SQL database, during
service creation.

Stitching the Workflow Together:

Gaining Insights Through Power Bl

Allthe phases previously were building blocks for setting the stage
for demonstrating the end goal of the very topic discussed here:
Analytics/BI using the Azure Media Services component.

With the combination of Azure Media Services and Azure
Media Player, you were able to quickly deliver the video experience
without having to worry much about the encoding and streaming
capabilities. However, most organizations are also interested in
gaining insights into the usage pattern of the media to surface out

up communication from the front

end without having to worry about 4 Get Data *

writing a lot of code for connect- Visualizations

. . Al

ing to database systems. Unlike the =

front-end AJAX call, its important Al i ST’ R a bor
.. Fil Qracle Database -

that you ensure connectivity and - R ‘,'."

Database 18M DB2 Database \

feedback from the databaselayer. Any
issue with CRUD operations with P
DB might result in failure to capture
client-side metrics. This approach

Azure MySQL Database
PostgreSQL Database
Sybase Database

Teradata Catabase

also helps in testing the Web API-to-

Micresoft Azure SQL Database

database connections without having
to write complex test cases.

The code in Figure 5 shows how
the back-end Web API received the

|

front end and pushes it to the SQL
Azure Database.
I'm abstracting much of the data

Microssft Azure SOL Imgort data from a
4 Microsaft Azure Marketplace

Micresoft Azure HDInsight

Microsoft Azure Blob Storage

Micresoft Azure Table Storsge
“data” JSON object from the HTML & weo

B SharePoint List

Bl OData Feed

access layer class code and the actual

msdnmagazine.com

Figure 7 Power Bl Getting Started
June 2016 33

http://www.msdnmagazine.com
http://powerbi.microsoft.com

Page 1 +

Figure 8 Creating Visualization Charts

consumption trends. Azure provides a great visualization platform
to innovate and enable solution developers to create engaging
experiences around its cloud-powered services. Power Bl is a
data visualization and analytics tool, which supports creation of
interactive dashboards to monitor metrics/KPIs through easy-to-
configure development environments.

To create the visualizations and surface out the trends in the media
content usage, you'll use the Power BI desktop tool (bit.ly/1S8XkLO)
to configure and create the reports, which will then be published
as dashboards for monitoring the KPIs. In the Power BI desktop,
click the Get Data button and select More from the dropdown.
You should see the list of various supported database sources and,
for this instance, youd select Microsoft Azure SQL Database, as
shown in Figure 7.

The Get Data wizard then connects to the database and you can
specify additional options to import data into the designer. Power
Bl uses datasets to load data from data sources.

After the dataisimported, you'll create a report using visualization
charts/artifacts to reflect the KPIs. In a multi-table scenario, there
can be relationships between tables for complex user objects that
can be depicted in the model, as well. The datasets and visualizations
can be paired through the top-right pane of the Power BI desktop
tool, as shown in Figure 8.

Each visualization forms a tile
interface in the Power BI report
to reflect a particular KPI. In this
scenario, video completion rates,
pause times and most consumed
media content should give the
overall trend of the usage, which
then can be used for marketing
campaigns, user-engagement anal-
ysis and so on.

Once the KPIs are finalized, they
can be pinned to the dashboard-
which can form asingle view of the
product for CXOs, developers, IT,
support functions and other inter-
ested parties. The tiles can be spread across different dashboards
to form the views or KPIs that are of interest to sets of teams. For
example, CXOs might be interested in viewing media comple-
tion rates, demographic details and most consumed categories,
whereas IT and engineering teams can choose to monitor other
KPIs such as failure rates, most streamed Bitrate, network analytics
and so on.

Finally, the reports can be published over the Web at PowerBl.com
for broad consumption and usage, as shown in Figure 9.

| |
L}
L

Wrapping Up
This is just the tip of the iceberg regarding solutions and services
Microsoft Azure can provide developers and solution providers.
Along with video on demand, Azure Media Services can also
deliver live streaming services for richer media experiences. Theres
ample documentation around use cases and scenarios for Azure
Media Services, Web apps and databases that can help developers
provision and start running applications in a matter of minutes.
Continuous improvements are incorporated to Azure and the
Power BI platform almost every month to enable relevant scenar-
ios for the services.

Little customization can help you address specific needs and this
article is a starting point to demonstrate how usage statistics can be
captured and extended to provide

EventTime

media-consumption analytics. ®

SaGAR BHANUDAS JosHI fas worked with
developers and ISVs on Universal Win-
dows Platform and the Microsoft Azure
platform for more than six years. His role
includes working with ISVs and startups
to help them architect, design and on-
board solutions and applications to Mi-
crosoft Azure, Windows and the Office
365 platform. Joshi lives and works in
Mumbai, India. Contact him on Twitter:
@sagarjms handle.

THANKS to the following Microsoft
technical expert for reviewing this

Figure 9 Power Bl Dashboard Displaying Reports

34 msdn magazine

article: Sandeep J. Alur

Power BI

www.bit.ly/1S8XkLO
www.PowerBI.com
www.twitter.com/sagarjms
www.twitter.com/sagarjms

VA Nl eSSBS LS

B nstalishield GO FOR THE WIN K

Y
X

O

xS MODERN DESKTOP APPS:
“<“THE FUTURE OF DESKTOP INSTALLATIONS /

v

Take a Fresh Look at InstallShield

Inside Track — Simplify complex installs for web,
cloud, virtual, PC and server

Wow the Crowd - Reliably deliver fast
downloads and simple installations

Pole Position — Spend less time building
installations and more time creating
features that put you in the lead

Team Win - Distributed and agile teams
can easily collaborate and save time

Download the White Paper:

Building MSI Installer
Updates and Patches

------ flexerasoftware.com/MSI

"~ Watch the Video:

flexerasoftware.com/GoForTheWin

Keep competitors in your rearview mirror:
Test drive InstallShield today.

US/Canada: 1-800-809-5659
FLE @ International: 1-847-466-4000

SBFTWARE Ask to speak to an InstallShield Account Manager

© 2016 Flexera Software LLC. All other brand and product names mentioned herein may be the trademarks and registered trademarks of their respective owners.

www.flexerasoftware.com/GoForTheWin
www.flexerasoftware.com/MSI

AZURE APP SERVICES

0 aPDF

Benjamin Perkins

Converting aWeb page toa PDF is nothing new, but my goal—to
place a link on my Web site that gave visitors a simple way to convert
a specific page to a PDF document in real time—turned out to be
somewhat complicated. There are numerous Web sites and open
source binaries thatlet you do this, but I wasn't ever able to connect
all the dots and get the output I wanted in the way that I wanted it.

The best, or at least my favorite, Web page-to-PDF converter is
the open source program called wkhtmltopdf (wkhtmitopdf.org), which
uses the command line, as shown in Figure 1.

However, running a program from a command line is a long way
from real-time conversion with a button on a Web page.

I worked on different portions of this solution over the past
months, but the execution of the wkhtmltopdf process stubbornly
prevented me from achieving my goal. The question that remained
unanswered was: “How can I get Microsoft Azure App Service

This article discusses:

* Azure App Service Web Apps

 App Services Authentication and Authorization
+ Azure Storage

 Azure WebJobs

« SignalR

Technologies discussed:

Microsoft Azure, C#, SignalR,

Code download available at:

msdn.com/magazine/0616magcode

36 msdn magazine

Using Azure App Services
to Convert a Web Page

Web Apps to spawn this process to create the PDF?” App Service
Web Apps runs within a sandbox and I knew from the start that
I couldn't do that—there was zero possibility of having a request
sent from a client machine starting and running a process on the
server. Having worked on the IIS support team for many years, [
knew that making this happen even on a standalone version of IIS
would require configurations that would make security analysts
lose sleep. Then I thought of WebJobs.

WebJobs are made for exactly this situation because they can run
executables either continuously or when triggered from an external
source; for example, manually from the Azure SDK or by using an
Azure Scheduler, CRON or the Azure WebJob API (bit.ly/1SD9gVJ).
And, bang, there was the answer. I could call the wkhtmltopdf
program from my App Service Web App using the WebJob API.
The other components of the solution had already been worked
out; I finally had the last piece of the puzzle, as Figure 2 shows.

The example code contains an ASPNET Web site with an index
page that allows a user to enter a URL, send that Web page to get
converted to a PDF and then download the PDF to a client device.

| Command Frompt

s\temp

w.bing.com c

Figure 1 Running the wkhtmltopdf Converter from the Console

www.wkhtmltopdf.org
http://msdn.com/magazine/0616magcode
www.bit.ly/1SD9gVJ

Azure WebJob

FileName.pdf

Azure App Service Web App
URL
Download URL Download URL

Azure Storage

Figure 2 The Complete Solution

It takes very little effort to dynamically set this URL to the current
page and have the button send the page to the WebJob API for con-
version and download. The next few sections of this article discuss
the technologies used to create the solution, and explain how you
can build and utilize them.

HTML-to-PDF Converter Overview

I've used numerous technologies to create the real-time HTML-to-
PDF App Service Web App solution. The table in Figure 3 presents
a brief description of these technologies, and I describe them in
more detail in the sections that follow.

Each section includes a functional and technical description
of a technology, plus the details of coding and/or configuration
requirements. I've ordered the different portions of the solution as
I created them, but it could be done using a number of different
sequences. The technical goal is to pass a URL to the App Service
Web App and get back a PDE Lets get started.

Azure App Service Web App
Azure App Services lets you work with a variety of app types: Web,
Mobile, Logic (preview) and APIL. All App Services function in
the same way in the back end, with each having addtional config-
urable capabilites on the front end. By back end I mean that App
Services run in different service plans (Free, Shared, Basic, Stan-
dard and Premium) and instance sizes (F1-P4); see bit.ly/1CVtRec for
more details. The plans provide features such as deployment slots,
disk-space limits, auto-scaling, maximum number of instances and
so forth, and the instance sizes describe the number of dedicated
CPUs, as well as the memory per App Service Plan (ASP), which
is equivalent to a virtual machine (VM). And for the front end, the
features for a given App Service provide specially designed capa-
bilities for a particular App Service type to get your application
deployed, configured and running in the
shortest amount of time.

App Service Plan and press the Create button. Once you've created
the app, you use this location to deploy the source code contained
in the downloadable Visual Studio 2015 solution, convertHTML-
toPDE Deployment details are provided at the end of the article;
you'll need to make some changes to get the code to work with your
particular Web App and WebJob.

Web apps, Mobile apps and APTapps include a federated identity-
based feature for setting up authentication and authorization with
Azure Active Directoy and other identity providers like Facebook,
Microsoft Live, Twitter and so on, as discussed in the next section.

App Service Authentication and Authorization
I decided to configure the App Service Authentication / Authori-
zation feature for my Web app because it fit nicely into the SignalR
scheme, in which a display name or the identity of the client is
desirable. SignalR creates a Connectionld for each client, but
its friendlier and more personal to use the real name of a visitor
when sending or posting messages. This can be done by capturing
it from the callback of the Authentication feature and then dis-
playing it using the SignalR code. As I implemented the Microsoft
Account identity provider (IDP), the name of the authenticated
visitor is returned in the X-MS-CLIENT-PRINCIPAL-NAME
request header. The identity name is also accessible from the
System.Security.Principle.IPrinciple.Identity. Name property.
Getting the Authentication / Authorization feature to work
requires no code changes on the app back end and you can simply
follow the instructions at bit.ly/ IMQZZdF. The implementation requires
only that you enable App Service Authentication, accessible from
the Settings blade for the given App Service, and configure one
or more of the Authentication Providers, as shown in Figure 4.
The feature offers numerous choices for an “Action to take when
request is not authorized” For example, in order to access the
HTML-to-PDF Web app, you must have a Microsoft Accountand be
authenticated by the identity provider; no Web app code is executed
before this IDP authentication takes place. In this case, pre-
authentication is required because I selected “Log in with Microsoft
Account” from the dropdown. All App Service resources require
such authentication once an action is applied. You can configure
the authentication feature so that visitors can access a login page or
other endpoints of the Azure-hosted App Service, which isaccom-
plished by selecting the Allow request (no action) item from the
dropdown. However, it would then be up to the application code
to restrict access to protected pages. This more granular approach
is commonly achieved by checking the Context.User.Identity.Is-
Authenticated Boolean before executing the code within the page.

Figure 3 Technologies Used in the Solution

For the HTML-to-PDF converter, I'lluse Technology

Brief description

an S2 Azure App Service Web App because

Azure App Service Web App (S2 Plan)

Front end that hosts SignalR code

I don't need any of the features provided

App Service Authentication and Authorization

Confirms client identity

by the other App Service types.

Azure Storage

Stores the PDF document

To start, create the Web App within the

Converts HTML to PDF, uploads PDF to Azure Storage

An interface for triggering a WebJob

Azure portal by selecting New | Web + Azure Weblob
Mobile | Web App, then provide the App Azure Weblob API
ASPNET SignalR

name, Subscription, Resource Groups and

msdnmagazine.com

Manages response from server back to client

June 2016 37

http://www.msdnmagazine.com
www.bit.ly/1CVtRec
www.bit.ly/1MQZZdF

The last component of the no-code, real-time HTML-to-PDF
conversion solution is the creation and configuration of the Azure
Storage account and container.

Azure Storage

The Azure Storage container is the location where the PDF file is stored
for download. If the storage container is made public, anyone can
access the files hosted in the container by referencing the filename us-
inga URL such as https://{storage-account}.blob.core.windows.net/
{container-name}/{filename.pdf}. Inserting, updating or remov-
ing files from the container requires an access key when performed
by code. Doing so via the Azure Management Portal or from within
Visual Studio can be restricted using role-based access control (RBAC)
or simply by disallowing user access to the Azure subscription.

To create the storage account, select New | Data + Storage and the
storage account. The Name attribute becomes the storage account
where the container is created, and the first part of the URL: https//
{storage-account}.blob.core.windows.net. The Deployment model
attribute lets you choose either Resource manager or Classic. Unless
you have existing applications deployed into a classic virtual network
(VNET), its recommended you use Resource manager for all new
developmentactivity. The Azure Resource Manager (ARM) isa more
declarative approach that uses templates and scripts. In contrast,
interfacing with the Classic model, commonly referred to as Azure
Service Manager (ASM), is generally performed using code and libraries.

When deciding whether to choose Standard or Premium Per-
formance, you'll want to consider cost and throughput. Standard
is the most cost-effective and is optimal for applications that store
infrequently accessed bulk data. Premium storage is backed by
solid-state drives (SSD) that offer optimal performance for virtu-
al machines with intensive I/O requirements.

The Replication attribute has numerous options—Local, Zone,
Global and Read-Access Global—each providing a greater level
of redundency and accessibility. I used the default settings for
the HTML-to-PDF solution, and selected the same Subscription,
Resource group and Location as for the Web app created previously.

Finally, after successfully creating the storage account, select
Blobs services from the Storage account General blade, and then
add the container.

The Access Type on the New container blade can be either Private
(anaccess key is required for all operations), Blob (allows public read
access) or Container (allows public read and list access).

Thats it, that’s all the Azure configuration required for this
solution. Lets jump into some C# code now to see how to get this
real-time HTML-to-PDF conversion to work.

Azure WebJob

The Azure WebJob feature supports running a script or executable
file ina continuous, triggered or scheduled manner (bit.ly/10g9P95).
Don't confuse this with a Windows Service; think of it instead as a
task or batch job that needs to run at certain times or when a cer-
tain event happens. In this case, using the real-time HTML-to-PDF
conversion tool triggers the WebJob using the API. Alternatively,
WebJobs can be started manually via Visual Studio or by using the
Azure Scheduler Job Collections capability.

The Azure App Service platform determines whether the WebJob
is triggered or continuous according to the path in which the WebJob
is stored. If the WebJob is to be triggered, it should be deployed into
the d:\home\site\wwwroot\app_data\jobs\triggered\{job name}
directory; if it's to be continuous, simply replace the triggered direc-
tory path with continuous. To deploy the WebJob, add the app_data\
jobs\triggered\{job name} directory to a Web site project in Visual
Studio, add the script or executable to it, similiar to what's described
at bit.ly/ LUczf8L, and publish it to the Azure App Service platform.

The WebJob I created performs two tasks, converting the page
ata given Web address to a PDF file and uploading that PDF file to
an Azure Storage container. I could have called wkhtmltopdf.exe
directly using the WebJob API, but I would have had to make a
second API call to then upload the file to storage and that wouldve
involved alot of complexity in managing the file and sending the result
back to the client. Therefore, I created a console application called
convertToPdf (which you can see in the source) that performs these

two tasks, one after the other, and

O Custom gomaens and

Authentication / Authorization

Traffic routing 2

? Authentication / Authorization

Authentication / Authorization is a turn key solution that lets you control access o

WES JOBS.
your app
& Weblobs 2
App Service Authenticatior
Off
—— [on |
Action to take when request is not authenticated
& Backups > e
Leg in with Microsoft Accourt
B App Service Adviscr 2
Authentication Providers
Authentication / Authorization >
B paicrosoh Account
B Diagnostics logs > Configured
RESCURCE MAMACET * Anuse Active Directory
Mot Configured
il Users >
B facebock
@ Togs b Mot Configured

returns the location of the PDF file
to the client that made the request.

To start wkhtmltopdf.exeand pass
it the two required parameters—the
Web address and PDF filename—I
used System.Diagnostics.Pro-
cessStartInfo, as shown in Figure 5.

The code creates an instance of
the ProcessStartInfo class and sets
the FileName, Arguments and other
properties of the class. The method
then starts the process identified by
the FileName property, waits for it
> to complete and exits the process.
By default, when the WebJob is
uploaded to the Azure App Ser-
vice environment, it's copied by

Figure 4 The App Service Authentication / Authorization Feature

38 msdn magazine

the platform to a temporary local

Azure App Services

www.bit.ly/1Og9P95
www.bit.ly/1Uczf8L

Get the Complete Ul
Control Toolkit.

Deliver Awesome Windows, Web, and Mobile Apps

 S— -

Newly Added Controls for Xamarin: Start building cross-platform
iOS and Android apps with C# and Visual Studio.

Develop modern, streamlined, futureproof .NET applications with ComponentOne Studio's
powerful, lightweight Microsoft Visual Studio controls. Deliver quality and high-performing
desktop, web, and mobile apps, including native mobile apps in C#.

Explore the flexibility of our modular references and API across all controls and platforms

Grids & Data Management Data Visualization

Get every spreadsheet function you
need with our datagrid control - without
any heaving lifting.

Reporting & Documentation
Migrate reports from another
platform or generate your own with
a full collection of controls.

WinForms | WPF | UWP | ASPNETMVC | Xamarin | ActiveX | LightSwitch | Silverlight | ASPNET Web Forms

Download your free trial at hd Visual Studio CDFT‘I[Z}C!F"IGHtCJFIC

Partner E.:' t L ":.] |- O

Present large data sets
out-of-the-box with our beautiful,
flexible charts and gauges.

Scheduling

Offer instant Outlook-like
functionality in any application.

www.ComponentOne.com

© 2016 Gme@ﬁﬁv All rights reserved. All other product and brand names are trademarks and/or registered trademarks of their respective holders.

www.componentOne.com

directory—D:\local\temp\jobs\triggered\{job name}*****\, where
*+** is a dynamically generated directory name. This is also where
the PDF file is physically stored prior to being uploaded to the Azure
Storage container. Because the file is local only, its not persisted or
accessible to any other instance of the Azure App Service Web App.
If youre running on mutiple instances, you might not see it in the
local directory, but the Azure Storage container is globally accessible.

Once the PDF file is created, it needs to be uploaded to the Azure
Storage container. You'll find an excellent tutorial that describes in
detail how to do this at bitly/10AXIQ0. In summary, the capability to cre-
ate, read, update and delete content in a container is controlled by two
NuGet packages, the Microsoft Azure Configuration Manager library
for NET and the Microsoft Azure Storage Clientlibrary for NET. Both
packagesare referenced from the convert ToPdf WebJob console appli-
cation. To install them, right-click the console application project and
then Manage NuGet Packages. Then search for and install the libraries.

I used CloudConfigurationManager.GetSetting, which is part
of the Microsoft Azure Configuration Manager library, to retrieve
the storage connection string values for making the connection
to the Azure Storage container. The values are the AccountName,
which is the Azure Storage Account name (in this case, convert-
htmltopdf), not the container name, and the AccountKey, which

Figure 5 Starting wkhtmltopdf.exe

static void Main(string[] args)
{
var URL = args[0];
var filename = args[1];
try
{
using (var p = new System.Diagnostics.Process())
{
var startInfo = new System.Diagnostics.ProcessStartInfo
{
FileName = "wkhtmltopdf.exe",
Arguments = URL + " " + filename,
UseShellExecute = false

StartInfo = startInfo;
Start();
WaitForExit();
Close();

T T T T

catch (Exception ex) { WriteLine($"Something Happened: {ex.Message}"); }

Figure 6 Uploading the PDF to an Azure Storage Container

static void Main(string[] args)
{
try
{
CloudStorageAccount storageAccount =
CloudStorageAccount.Parse(
CloudConfigurationManager.GetSetting("StorageConnectionString"));
CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient();
CloudBlobContainer container =
blobClient.GetContainerReference("pdf");
CloudBlockBlob blockBlob = container.GetBlockBlobReference(filename);
using (var fileStream = System.I0.File.OpenRead(filename))
{
blockBlob.UploadFromStream(fileStream);
}
}
catch (StorageException ex) { WriteLine($"StorageException: {ex.Message}"); }
catch (Exception ex) { Writeline($"Exception: {ex.Message}"); }
}

40 msdn magazine

is retrieved from the Storage Account blade by clicking on Settings
| Access keys. Figure 6 shows how to upload the PDF file to the
Azure Stroage container created previously.

This configuration information is used as input for the Cloud-
StorageAccount class, which is part of the Microsoft Azure Storage
Client library. As an alternative to the CloudConfigurationManager
to retrieve the StorageConnectionString from the App.config file,
you can use System.Configuration.ConfigurationManager. AppSet-
tings[“StorageConnectionString”].

I use an instance of the CloudStorageAccount class to create a
CloudBlobClient, then use the blobClient to get a reference to the
Azure Storage container with the GetContainerReference method.
Then, using the GetBlockBlobReference method of the CloudBlob-
Container class, I createa CloudBlockBlob containing the name of the
file being uploaded. Both of the executable files, as previously noted,
are located in the D:\local\temp\jobs\triggered\convertToPdf***\
directory—the same place where the PDF file is stored and refer-
enced. This is why no path to the filename is required, because
the file is created in the same temporary directory as the execut-
ables. Last, I pass an instance of System.1O.FileStream using the
System.IO.File.OpenRead method, and upload it to the container
using the UploadFromStream method of the CloudBlockBlock class.

Once the code is complete and compiles, add both wkhtmltopdf.exe
and the convertToPdf.exe to the \app_data\jobs\triggered\convert-
ToPdf directory of the Visual Studio solution that will be published to
the Azure App Service Web App. You can also publish just the WebJob
files using an FTP tool, transferring the code directly to the Web site.

Now that the convertToPdf Web]ob that creates and stores the PDF
is complete, lets look at how to call the WebJob from C# code using
the HttpClient. After that, all that remains is creating a SignalR-based
Azure App Service Web App front end to allow a visitor to send a
URL to the WebJob and get back the URL to the PDF for download.

Azure WebJob API

I wrote an article about the Azure WebJob API (bit.ly/1SD9gVJ) in
which I discussed how to call the API that triggers the WebJob. In
essence, the WebJob API is a Web interface that executes a script
or executable using the arguments passed in the URL.

Prior to creating the SignalR Hub that triggers the WebJob API,
[created a simple console application consumer, shown in Figure
7, that calls the WebJob API. Its included in the downloadable
solution and is called convertToPDF-consumer. This console
application simplified the coding, troubleshooting and testing as
it removed the SignalR feature from the scenario.

Use the HttpClient method of System.Net. Http.HttpClient class
to make the request. Then use the Source Control Management
(SCM)-based Azure App Service Web App URL as the Base-
Address property for the request. As you might know, each Azure
App Service Web App comes with an SCM URL (aka the KUDU
console) thats accessible using https://{appname}.scm.azureweb-
sites.net and is the URL used for calling the WebJob APIL Appending
/basicAuth to the end of the URL allows the calling client to authen-
ticate using a basic challenge-and-response handshake. The userName
and password are the Publish Profile credentials, which are down-
loadable from the Azure Management Portal by navigating to the

Azure App Services

www.bit.ly/1OAXIQ0
www.bit.ly/1SD9gVJ

Azure App Service Web App and selecting Get publish profile. Within
the downloaded *.PublishSettings file you'll find the userName
and userPWD to use in the code. For simplicity, I hardcoded the
userName and password into the application, but for the real world
these should be placed in a safe location and retrieved from code,
so they can be changed if desired by selecting the Reset publish
profile in the Azure Management Portal. You don't want to have to
deploy updated code every time something changes.

Basic authentication requires associating an ASCII-encoded Base64
string of the userName and password to the Basic header in this
format: Basic userName:password. Once the header value is created
using the ASCIIEncoding method of the System. Text ASCITEncoding
class, together with the ToBase64String method of the System.Convert
class,add it toa new instance of the System Net.Http.Headers. Authen-
ticationHeaderValue class along with the Basic header name.
Use the instance of the System.Net. Http.HttpClient class created
in the using statement to add the AuthenticationHeaderValue
to the DefaultRequestHeaders. Authorization property of the
System.Net.Http.Headers. HttpRequestHeaders class.

For the filename I used eight characters of a GUID using the Sub-
string method of the String class, removing the dashes from the GUID.
The GUID was created using the NewGuid method of the System.
Guid class, by passing an “N” parameter to the ToString method of
the Guid class. Finally, I asynchronously posted to the WebJob API
using the PostAsync method of the System.Net. Http.HttpClient
class, passing the URL and filename as arguments of the WebJob and
awaiting its completion. When the process successfully completes,
the URL to the Azure Storage container with the concatenated file-
name is displayed to the console, otherwise, a notification is sent
that the creation of the PDF failed.

Figure 7 The Simple Console Application Consumer

static async Task<string> ConvertToPDFWebJobAPIAsync(string Url)
{
try
{
using (var client = new HttpClient())
{
client.BaseAddress = new Uri(
"https://converthtmltopdf.scm.azurewebsites.net/");
client.DefaultRequestHeaders.Accept.Clear();
var userName = "your userName";
var password = "your userPWD ";
var encoding = new ASCIIEncoding();
var authHeader =
new AuthenticationHeaderValue("Basic",
Convert.ToBase64String(
encoding.GetBytes(string.Format($" {userName}: {password}"))));
client.DefaultRequestHeaders.Authorization = authHeader;
var content = new System.Net.Http.StringContent("");
string filename = Guid.NewGuid().ToString("N").Substring(0, 8) + ".pdf";
HttpResponseMessage response =
await client.PostAsync(
$"api/triggeredwebjobs/convertToPDF/run?arguments={Ur1}
{filename}", content);
if (!response.IsSuccessStatusCode)

return $"Conversion for {Url} {filename} failed: " +
DateTime.Now.ToString();
}
return $"{response.StatusCode.ToString()}:
your PDF can be downloaded from here:";
}
}

catch (Exception ex) { return ex.Message; 1} }

msdnmagazine.com

To see the status of the WebJob, go to the Azure Management Portal,
navigateto the Azure App Service Web App running the WebJob, and
select Settings | WebJobs. The WebJobs blade contains Name,
Type, Status, and a very useful link to the WebJob execution logs.
Click on the link to access a WebJob-specific KUDU console to see
recent job runs, their status and a link to the actual log output of
the WebJob, as shown in Figure 8. For example, if the WebJob is a
console application, when you use the System.Console.WriteLine
method to write the state of the execution to the console output
window, this information is also written to the WebJob log and is
viewable via the link from the Azure Management Portal.

Once this part was working as expected, all that remained was just
asimple copy and paste into the SignalR solution, discussed next.

ASP.NET SignalR
ASPNET SignalR is an open source library for ASPNET develop-
ers to ease the sending of real-time notifications to browser-based,
mobile or .NET client applications. The server to client remote
procedure call (RPC) makes use of an API that calls JavaScript
functions on the client from server-side .NET code. Prior to the
existence of this technology, a common approach for achieving a
similar solution was using an ASPNET UpdatePanel control that
would frequently refresh itself by making a request to the server to
checkif there was any change in the state of the data. This was much
more a PULL approach, where the client triggered the request to
the server instead of the server PUSHing the real-time data to the
client as soon as it became available.

The client-side JavaScript code instantiates a Hub proxy, exposes
the methods the server can trigger and identifies the server-side

method to call (Send) when a click event occurs:

var pdf = $.connection.pDFHub;

pdf.client.broadcastMessage = function (userId, message) {};

pdf.client.individualMessage = function (userld, message) {};

$('#sendmessage’).click(function () {
pdf.server.send($('#displayname').val(), $('fmessage').val());

1

The name of the Hub proxy in the client-side JavaScript is the name
of the Hub created to run on the server side; in this example,
the Hub is named PDFHub, and it inherits from the Microsoft. Asp-
Net.SignalR.Hub class. The two methods exposed by the client
are broadcastMessage and individualMessage; each has a function
with parameters that match the pattern of the server-side Send
method, userld and message. The Send method is called on the
server when the send button is clicked by a visitor on the Web app.
The ConvertToPDFWebJobAsync method is a cut and paste of the
consoleapplication created in the previous section that calls the Azure
WebJob API to convert the provided Web page into a PDF file and
load it into an Azure Storage container. Last, the server-side Send
method uses an instance of the Microsoft. AspNet.SignalR Hub.Cli-
ents property, which implements the [HubCallerConnectionContext
interface. The Clients property is linked to the two client-side
methods and provides the information sent from the server to the
appropriate clients (see Figure 9).

You might be wondering why I chose SignalR to consume the
Azure WebJob APl instead of justa simple ASPNET Web Form or
ASPNET MVC Web application. Its true, there are numerous ways
to consume an API. For example, the downloadable code for this

June 2016 41

http://www.msdnmagazine.com

Microsoft Azure WebJobs

Weblobs | convertToPDF

WebJob Run Details convertroror

Success 5 minutes ago (9 s running time)
Run ID: 201604201429556558

Toggle Output

download

[04/20/2016 14:30:02 > 2878ee: SYS INFO] Status changed to Running
[04/20/2016 14:30:02 > 2878ee: INFO] Conversion started: 4/20/2016 2:30:02 PM
[04/20/2016 14:30:02 > 2878ee: INFO] Process started: 4/20/2016 2:30:02 PM
[04/20/2016 14:30:03 > 2878ee: INFO] Start upload to Azure Storage Container
[04/20/2016 14:30:04 > 2878ee: INFO] Permission for container 'pdf* is public.

[04/20/2016 14:30:04 > 2878ee: SYS INFO] Status changed to Success

[04/20/2016 14:30:02 > 2878ee: INFO] Convert: www.bing.com to 3404fec5.pdf at 4/20/2016 2:30:02 PM
[04/20/2016 14:30:03 > 2878ee: INFO] Conversion completed: 4/20/2016 2:30:03 PM

[04/20/2016 14:30:03 > 2878ee: INFO] Conversion successful: 4/20/2016 2:30:03 PM

[04/20/2016 14:30:04 > 2878ee: INFO] Container 'pdf* already exists for storage account ‘converthtmitopdf'.

[04/20/2016 14:30:04 > 2878ee: INFO] Uploaded PDF to ‘converthtmltopdf/pdf* successfully.

the client instead of, for example,
aunique but generic connectionld.
The Context.User.Identity. Name
property is used to set the name
of the visitor, validated by their
Microsoft Account, which adds to
the social friendliness of the client.

Now all that needs to happen
is to deploy the code (client code,
server code and Azure WebJob) to
the Azure App Service Web App
platform using Visual Studio or
an FTP application and test it out.
Detailed instruction on how to
deploy toan Azure App Service Web
App can be found at bit.ly/ LnXnhmB.

Software as a Service

While writing this article I started
thinking about Software as a
Service (SaaS) and whether this
real-time HTML-to-PDF convert-

Figure 8 Azure WebJob Output Log

solution contains a console application that consumes the Azure
WebJob API, so why do I use SignalR?

To answer that question, notice in Figure 9 that when the server
has a message for the connected clients, two client-side methods
are invoked. First, the broadcastMessage method notifies all the
connected clients that a specific person converted a given URL
to a PDE but it doesn't provide the link to the Azure Storage con-
tainer and PDF file for download. The second client-side method
is individualMessage, which sends the status of the HTML to PDF
conversion and the link to the Azure Storage container with the
concatenated PDF filename. The reason for using SignalR is to give
the consuming clients a sense of social interaction by providing all
the connected clients information about whats happening on the
Azure App Service Web app.

Recall that previously I mentioned the System.Security.Princi-
ple.IPrinciple Identity. Name and noted how it made the Web app
much more friendly because it could render a visitors name to

Figure 9 The PDFHub Class

public class PDFHub : Hub
{
public void Send(string userld, string message)
{
string name = Context.User.Identity.Name;
string convertMessage = "no message yet";
Task.Run(async () =>
{
convertMessage = await ConvertToPDFWebJobAPIAsync(message);
}).Wait();
Clients.Al11.broadcastMessage(userId, "just converted: "
" to a pdf");
Clients.Client(Context.ConnectionId).individualMessage(
name, convertMessage);

+ message +

}
}

42 msdn magazine

er is a Saa$ solution or simply an
API-accessible app running in the
cloud. I decided that the exposure
of the Azure WebJob AP, by the name itself, makes it an API and
not SaaS. For my solution, the WebJob API is exposed through a
URL and protected by Basic authentication. The API is available
for other consumers to build on top of it or to add functionality
to their applications, which is the definition of an API. However,
as soon as theres a consumer for the API, additional features are
added around the consumed API that can be used by multiple
online users, so it matches the definition of SaaS. Therefore, the
Azure WebJob APT alone is simply an API, while my ASPNET
SignalR client running on the Azure App Service Web App plat-
form is a Saa$ solution. Sure its not OneDrive, Othce 365, CRM
Dynamics Online or Hotmail, but if you need to convert a Web
site to a PDF really quick, you know where to come.

Wrapping It up

This article explored three Azure features: an Azure App Service
Web App; Azure Service Authentication and Authorization; and an
Azure Storage account and container. These features are the platform
that support the Azure WebJob, expose the Azure WebJob APl and
host the ASPNET SignalR browser-based consumer. I discussed
each of the features and the steps needed to configure them. I also
described the code for the Azure WebJob, the code for calling the
Azure WebJob API, and the ASPNET SignalR client. L

Benuamin PERKINS is an escalation engineer at Microsoft and author of four books
on C#, IIS, NHibernate and Microsoft Azure. He recently coauthored Beginning
C# 6 Programming with Visual Studio 2015 (John Wiley & Sons). Reach him at
benperk@microsoft.com.

THANKS to the following Microsoft technical expert for reviewing this article:
Richard Marr

Azure App Services

mailto:benperk@microsoft.com
www.bit.ly/1nXnhmB

Visual Studio @@
JOIN US on the CAMPAIGN TRAIL in 2016!

JUNE 13-16

HYATT CAMBRIDGE, MA
vslive.com/boston

See pages 60 — 61 for more info

AUGUST 8-12

MICROSOFT HQ, REDMOND, WA

vslive.com/redmond

See pages 70 — 73 for more info

SEPTEMBER 26 -29 Eu
HYATT ORANGE COUNTY,CA- &
A DISNEYLAND® GOOD
NEIGHBOR HOTEL

vslive.com/anaheim

See pages 44 — 45 for more info

OCTOBER 3-6

RENAISSANCE, WASHINGTON, D.C.
vslive.com/dc

See pages 46 — 47 for more info

DECEMBER 5-9
LOEWS ROYAL PACIFIC
ORLANDO, FL

vslive.com/orlando

See pages 78 — 79 for more info

CONNECT WITH VISUAL STUDIO LIVE!

. . . St linkedin.com — Join the VSLIVE CUM
u twitter.com/vslive - @VSLive n facebook.com - Search “VSLive m “Visual Studio Live” group! .

www.vslive.com/boston
www.vslive.com/redmond
www.vslive.com/anaheim
www.vslive.com/dc
www.vslive.com/orlando
https://twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com
www.vslive.com

CAMPAIGN FOR CODE 2016 » VISUAL STUDIO LIVE!

FOR A BETTER
TOMORRO\

SEPT. 26-29,2016

HYATT REGENCY
DISNEYLAND"™
GOOD NEIGHBEOR HOTEL

Visual Studio uive

EXPERT SOLUTIONS FOR .NET DEVELOPERS

VISUAL STUDIO LIVE! (VSLive!™) is blazing new trails on the
Campaign for Code: For the first time ever, we are headed to Anaheim,
CA, to bring our unique brand of unbiased developer training to
Southern California. With our host hotel situated just down the street
from Disneyland®, developers, software architects, engineers, designers
and more can code by day, and visit the Magic Kingdom by night. From
Sept. 26-29, explore how the code you write today will create a better
tomorrow—not only for your company, but your career, as well!

B Microsoft mMsd Visual Studio D VisualStudio ~ NOSMEDIA

magazine MAGAZINE

www.vslive.com/anaheim

ANAHEIM - SEPT. 26-29, 2016

HYATT REGENCY, A DISNEYLAND® GOOD NEIGHBOR HOTEL

CONNECT WITH VISUAL STUDIO LIVE!

linkedin.com - Join the
“Visual Studio Live” group!

EEECEEEEEEEEEEREER0E 8
DEVELOPMENT TOPICS INCLUDE:
> Windows Client California code with us:

> Visual Studio/.NET 0 o Q

» Windows Client register to join us today!
> Mobile Client

> JavaScript/HTML5 Client e

At NUW .A.ND it 1 event details.

> Cloud Computing o
\ @D s SAVE $300! EizE=4 use promMO CODE VSLAN2

' twitter.com/vslive - @VSLive f facebook.com - Search “VSLive” in

VSLIVE.COM/ANAHEIM

www.vslive.com/anaheim
https://twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

VOTE “YES" FOR BETTER

CAMPAIGN FUR EUDE 2016 *VISUAL STUDIU LIVEI

Visual Studio Live

EXPERT SOLUTIONS FOR .NET DEVELOPERS

VISUAL STUDIO LIVE! (VSLive!™) is on a Campaign for Code in 2016, in
support of developer education. It's only fitting that we return with our
unique brand of practical, unbiased, Developer training to the nation’s
capital this year. From Oct. 3-6, we're offering four days of sessions,
workshops and networking events to developers, software architects,
engineers and designers—all designed to help you vote “yes” for better
code and write winning applications across all platforms.

B Microsoft msdn Visual Studio B VisualStudio NOSIMVEDIA

magazine

www.vslive.com/dc

WASHINGTON, D.C. - OCT. 3-6, 2016

RENAISSANCE, WASHINGTON, D.C.

CONNECT WITH VISUAL STUDIO LIVE!

linkedin.com - Join the
“Visual Studio Live” group!

EEEEEEENNEEEEENENENER
DEVELOPMENT TOPICS INCLUDE:

> Visual Studio/.NET DD yuur dEVEleEP dUty:
> Windows Clent register to join us today!

> Mobile Client
> JavaScript/HTML5 Client

> ASP.NET REGISTER 9
> Cloud Computing NUW AND
> Database and Analytics SAVE $ 300 |

y twitter.com/vslive - @VSLive f facebook.com - Search “VSLive” in

Scan the QR code to
register or for more
event details.

USE PROMO CODE VSLDC2

VSLIVE.COM/DC

www.vslive.com/dc
https://twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

MBAAS

Speed U
Developme
an MBaaS P

Paras Wadehra

A very large percentage of mobile app development cost comes
from back-end integration. Moreover, most apps have a core set of
features that vary little across them. So instead of building the same
features and components over and over again from scratch for every
application, what if you could focus on what makes a great mobile
app—the UX—and consume (instead of build) the other critical
app features? Thats exactly the theory behind Mobile Backend as
a Service (MBaa$), which provides those important but common
app features as a service for you to consume, allowing you to save
massive amounts of time (and therefore money) on app develop-
ment while focusing on delivering a great experience to your users.

Not only do you not have to reinvent the wheel for every app,
the MBaaS$ platform also allows you to use a “de-coupled” devel-
opment approach for the app front end and back end. This means
building the front end and the back end at the same time is now
possible, and connecting the two just takes “flipping the switch”
when both sides are done.

This article discusses:

+ Authentication

+ Data access

+ Adding and editing offline data

« Push notifications

- File storage and access
Technologies discussed:

Mobile Backend as a Service (MBaaS)

48 msdn magazine

0 YOU
Al
atform

~Mobile
Using

I'm going to walk you through the major steps of a sample enter-
prise apps development process using both “do it yourselt” (DIY)
and MBaaS$ approaches, and then compare the two and see in what
kind of scenario one makes sense over the other. The high-level
requirements of this use case are as follows:

1. The app needs to authenticate its users against Active
Directory Federation Services (AD FS).

2. The app should connect to and display data from a
SharePoint instance, but needs to filter the data rather
than display the full record set from SharePoint.

3. Theapp should allow the user to browse the data while offline.

4. The app should allow the user to add new records while
offline and automatically synchronize these records with
the server when the app is online.

5. The app should receive a push notification confirming the
new or updated record was successfully saved in SharePoint.

6. The app should allow the user to take a picture and upload
it to the server attached to the record being created.

Now imagine youve just been handed these requirements and asked
to build a mobile app. Where do you start? Lets look at the choices.

One option is to get all the back-end services like AD FS and
SharePoint up and running, along with a server to host your files—
pictures in this case. Youd also need to build services on top of
AD FS and SharePoint to let you connect and talk to them from
the mobile app. Then youd be able to build the front-end mobile
app to connect into these back-end services.

You could also start by building the front-end mobile app, having
it talk to mock data and authentication sources first, then updating

the mobile app to talk to the actual data and authentication sources
once the back-end services are up and running. However, this
requires you to create mock data and authentication systems or
services you can use to build the mobile app.

With either of these DIY options, your front-end app will need
to talk the same language as the back end and has the potential to
break if the back end changes, requiring you to make expensive
and time-consuming fixes to the app.

In contrast, using an MBaa$ platform means the front-end
mobile app and the back-end services can be created at the same
time by two different teams—meaning faster time to market—and
the two can be connected to each other using the MBaaS$ platform
itself. One of the several benefits of this approach is that you don't
need to worry about creating mock services to mimic data and
authentication sources.

Using an MBaas$ platform means
the front-end mobile app and
the back-end services can be

created atthe same time by two

different teams.

An MBaaS$ platform provides you with SDKs for both native and
hybrid platforms. You simply integrate the SDK for the platform of
your choice into your development environment and code against
it to make it easy to consume back-end services. One of the most
important features of MBaa$ your apps will consume is integrating
with back-end data and identity sources. The MBaa$ platform also
provides an abstraction layer, thereby hiding the complexities of
the back end from the front-end mobile app.

Let’s take a more detailed look at what each of these options
entails. I'll examine each of the required features of the app and
focus first on the DIY way of implementing that feature, then com-
pare that to the MBaa$S way of doing things. In the end, I'll do an
overall comparison of the two approaches.

Authentication
With the DIY approach, you first need to build up the connector
to AD FSand then use that connector to authenticate the user. The
connector must be consumable from a mobile app, and allow the
passing of a username and password from the app back to Active
Directory for authentication. Once Active Directory successfully
authenticates the user, it returns an authentication token that will
need to be parsed, encrypted and stored for use in future calls. In
addition, if an authentication provider supports refresh tokens,
code will need to be written to automatically refresh the authenti-
cation token when it expires.

With MBaaS$, in contrast, you make an authentication call using
the client SDK to authenticate the user, something like:

MBaaS.login(redirectURI);

msdnmagazine.com

Depending on the type of authentication, the provider might
present you with its own login screen (OAuth style) or an MBaa$S
provider might present its own version of the login screen. All MBaa$S
providers offer at least some no-code connectors into enterprise
identity sources, including, but not limited to, AD FS. You simply
supply a few configuration parameters in the MBaaS cloud portal
and configure MBaasS to talk to your instance of AD FS. The types
of configuration parameters you provide include provider login
URI, logout URI, certificate text and name ID format URI along
with redirect URIs and time-to-live (TTL) for the authentication
token. You should be able to get all these values from the AD FS
administrator in your enterprise. Just by setting up these configu-
ration parameters you create a connection to your AD FS instance.

The complexity of implementing the whole authentication process
has now been simplified to that one line of code. All the back-end
complexities, like the authentication handshake, retrieving the
authentication token, encrypting and storing it, and so forth are now
taken care of by the MBaa$ platform and the corresponding SDK.

Data Access

DIY data fetching seems straightforward—until you sit down and
try it. Its not too bad for data sources that expose a consumable
Web service on top of the data by default. It might even be easy
to connect directly to the data source from a Web-based app.
However, mobile platforms typically do not have the same connec-
tors to enterprise data sources available as Web apps. This means
a custom connector needs to be written, most probably as a Web
service that talks to the data source and exposes its data using nor-
mal HTTP verbs like GET, PUT, POST and DELETE. Moreover,
this connector will need to be hosted somewhere. In most cases,
your app will be accessed from outside your network, which means
the Web service you create must be able to talk to both the outside
world, as well as the inside-the-firewall enterprise world, and that
means a hole probably needs to be poked in the firewall. After the
custom connector has been created, you can connect to it from the
mobile app and perform all the data operations accordingly. But
what if you have to let the user fetch only certain record sets based
on their queries? This requires building querying capabilities in the
Web service, which can get complicated, especially if you need to
allow the users to make complex queries.

Most MBaaS systems provide out-of-the-box connectors to several
enterprise data sources, which means you simply configure them
instead of creating them. For the sample use case, youd configure
the connector for SharePoint by providing configuration param-
eters like the host URL and username and password to connect to
your instance of SharePoint. Consuming the data from SharePoint
within the mobile app is as easy as writing this one line of code:

MBaaS.data.get(NameofDataCollection [,QueryParams] [,Options]);

This would normally return an array of JSON objects from
your data source. One of the benefits of using an out-of-the-box
connector from an MBaaS$ provider is that such connectors pro-
vide a way to discover all the objects in your data store so you can
simply discover all SharePoint lists and select the ones you want
to provide access to from the mobile app. You can also filter and
orchestrate the fields being returned by SharePoint to just the few

June 2016 49

http://www.msdnmagazine.com

that are needed in the mobile app so that large amounts of data
sets arent sent to the mobile device when only a small percentage
might be actually useful to the app. Again, filters can be applied
without having to write any custom code—a huge value propo-
sition for mobile developers. Without an MBaa$ providing such
a feature set, the entire burden of filtering and orchestrating the
data comes down either to the mobile app (which means greater
bandwidth and battery consumption on the device—never a good
experience for the mobile user) or to using a server-side script that
you'll need to write, host somewhere and manage (which means
ongoing work and maintenance for you). The QueryParams input
to the method in the previous line of code allows you to pass in
query-based parameters to allow searching and filtering of records
based on the need or input of the user.

Using a client SDK from an MBaa$S
provider should make it much
easier to enable offline data
consumption within your app.

An MBaaS platform generally also provides dataand file stores built
into the platform itself, so apps that don't have their own data source
can use the built-in MBaaS data store to store and consume data.

Offline Data

Just making the data available for offline consumption is actually
pretty easy with the DIY approach. All you need to do is store the
data on the local device, either in local storage or in a data store
like SQLite, and read it from there when the user tries to access
that data within your app.

However, its not so easy to enable offline editing of existing data
oradding new data and then synchronizing it with the server while
taking care of conflicts that might happen along the way. As any-
one who has ever tried implementing conflict resolution code will
tell you, its not the most fun thing to do. You need to check which

Universal Windows

Figure 1 Flow for Setting Up and Sending Push Notifications

50 msdn magazine

entities were modified locally and which were modified on the
server at the same time, then figure out what attributes of each entity
were modified, and if the same attributes of the same entity were
modified on both the client and the server, decide which change
takes precedence and save that as the value of record.

Usinga client SDK from an MBaaS$ provider should make it much
easier to enable offline data consumption within your app. Using
the data consumption example from the previous section, youd
simply pass certain option values to the call, as follows:

MBaa$.data.get(NameofDataCollection [,QueryParams] , Data.0ffline, Data.EncryptfFull);

In this code, I enable offline data storage on the device, as well
as encryption of the data. How the SDK stores the data for offline
consumption varies from provider to provider, but the implementa-
tion of that shouldn' affect how you interact with the MBaaS SDK.
The SDK will take care of all the complexities around offline
implementation for you. Even better, enabling encryption should
bejustas easy and simply involves setting up an option. This makes
the offline data store secure, a key requirement for most enterprise
apps. The MBaa$S SDK automatically decrypts data for user inter-
action or display on the screen and encrypts user-entered data
before storing it on the device. The SDK generally takes care of
enabling offline editing and the addition of new data, as well. For
this to work as expected, though, the back-end systems must have
LastUpdated Time implemented for each record. Similarly, setting
up further options for conflict resolution determines whether the
changes on the client or the server win when a record is updated
simultaneously on both sides.

Push Notifications

Setting up push notifications for a DIY project can be a challenge.
Asshown in Figure 1, multiple steps must take place for a success-
ful push notification channel to be set up and a push notification
to be sent. (See bit.ly/UWPPush for more information.)

1. The Universal Windows Platform (UWP) app requests a
push notification channel from the OS.

2. A new notification channel is created by Windows Notifi-
cation Service (WNS) and returned to the calling device in
the form of a Uniform Resource Identifier (URI).

3. The notification channel URI is returned by Windows to
your app.

4. Your app sends the URI to your own cloud service, where it's
stored so you can access the URI when you send notifications.

5. When your cloud service has a notification to send, it
informs WNS using the URI registered earlier. This is
done by issuing an HTTP POST request, including the
notification payload, over Secure Sockets Layer (SSL).

6. WNS receives the request and routes the notification to
the appropriate device.

In addition, you need to request a channel each time the app
launches because channel URIs can expire and theres no guarantee a
previous channel URI will still be valid. If the returned channel URI
is different from the URI you've been using, you'll need to update
the URI in your cloud service. You also need to map the channel
URT to the device ID for the user so you can update the appropri-
ate channel URT on your server.

MBaa$

www.bit.ly/UWPPush

DOMAINS | WEBSITES | CLOUD SERVERS | WEB HOSTING

SAFEST OF THE

7 I SSL CERTIFICATE

- - HIGHEST SECURITY

EXCLUSIVE TO 1&1!

1&1 provides the highest standard of protection available! Show your online visitors that

their security is your top priority with: \/ SSL Certificate included \/ Geo-redundancy
\/ Certified data centers \/ DDoS protection

SPEAK WITH AN
EXPERT 24/7

(. 1(877) 461-2631

Visit www.1and1.com for full promotional offer details. 1&1 and the 1&1 logo are trademarks of 1&1 Internet, all other trademarks are the property of their 1 a n d1 -co m
respective owners. ©2016 1&1 Internet. All rights reserved.

http://www.1and1.com

DIY MBaa$S

v
v

Request Push
Notification Channel

Set up server for managing
push registration

Upload notification channel
URI to server

Set up server-side script to
determine who gets push

v
v

Figure 2 Push Notification Complexities Taken Care of by MBaaS

Create script to send push

Any good MBaaS$ platform provides ways to simplify push
notification setup. Remember the steps you just saw for sending
a successful push notification to your UWP app? Now take a look
at Figure 2, which shows what you don't have to do if you use an
MBaaS platform.

As you can see, MBaa$ hides all the complexities of setting up,
managing and sending push notifications to users. All this is han-
dled with a single call made using the client-side SDK:

MBaaS.registerForPush();
and writing server-side business logic within the MBaa$ platform
that determines when to send a push notification and invokes the
predefined method that sends out the push to the appropriate users.

File Server

Following the DIY path means you need to host and manage your
own file server to allow users to take a picture from their device
and upload it to the server, and also manage user access to those
files so one user can't access another user files. In addition, you
need to manage the uptime of the server, as well as scalability,
performance and security updates.

With an MBaa$ platform, you probably won't have to implement
anything to be able to host files in the cloud. One of the features
of MBaaS$ platforms is access to a file store out of the box. You get
a fully CDN-backed file store to host all the common file types—
PDFs, images, videos, office documents and the like. As with the
other features, all you need to do is make a simple call to a method
in the MBaa$ SDK to work with files stored in the cloud. The Files
API lets you upload, download, and stream files to and from the
File Store, using calls like:

MBaaS.File.upload(FileName);
MBaaS.File.download(FileName or FilelD);

This eliminates the headaches of managing a huge file server
(depending on the number and size of the files being stored), includ-
ing expanding and shrinking storage based on needs at any given
point, and managing both uptime and the latency of file access.

Other MBaaS$ Features
I've described the feature set of the sample app at the beginning of
this article, but Id also like to highlight a couple of other MBaa$S
platform features that might ease your app development:
Server-side business logic enables you to run heavy processing
on the server rather than consuming power on the client device. It
also lets you filter the data being sent from the data source to send
only whats needed on the mobile device saving bandwidth for the

52 msdn magazine

user. Moreover, you can intercept any of the calls going through,
to and from the MBaas$ platform.

Server-side caching enables sub-second UX scenarios. Tradi-
tional enterprise data sources often take several seconds to respond
to a query, but mobile users expect a much faster response and if
loading an app takes too long, they'll simply uninstall the app and
go to a competitor. With the server-side caching feature, the data
from the enterprise data source can be cached within the MBaa$S
platform for a quick response to the requests from the mobile app,
and the cache can be silently updated from the original data source
in the background.

Wrapping Up

Both DIY and MBaaS$ approaches have a place in app development.
The benefits of using an MBaa$ platform are clear, but in some cases
just going with a DIY approach may make sense. Such instances
include one-off app development projects that already have all the
necessary services in place to connect to data and identity sources.
For scenarios where the service connections into such data and
identity sources havent been built yet and will need to be consumed
from multiple apps, an MBaa$ platform can really speed up mobile
development by providing the most complex features of back-end
integration out of the box. With the help of an MBaa$ platform you
can focus on your apps UX rather than worrying about integrating
dataand identity sources, encryption, offline implementation, con-
flict resolution, push notification setup, and other basic but critical
components of mobile apps.

In the end, it the abstraction an MBaa$ platform provides that is
the benefit, allowing you to change your back-end data and identity
sources as often as you want. You can also change your server-side
business logic without ever needing to rewrite a single line of code
in your app. The mobile SDKs the MBaa$ platform provide work
with this abstraction to keep your app running and save you from
updating, testing (including unit, integration and regression test-
ing), and deploying the app and waiting for store approval again!

One drawback is that using an MBaaS$ platform might make it
harder to change platforms, as the implementations of the con-
nectors are abstracted from the user. In a DIY approach, you own
the code for all connectors so its easier to further customize it for
future needs.

MBaa$ does offer significant cost savings when building mobile
apps, both in terms of time and effort and also from the perspec-
tive of ongoing maintenance, security, and upkeep of the services
and servers involved. L

Paras WADEHRA is an experienced software architect who solves problems while
making applications that work across the Web, desktop and mobile platforms. He
has experience developing for all major mobile platforms including iOS, Android
and Windows. He writes code in C#, Node.js, JavaScript, SQL and Swift to name
just a few. Wadehra is currently a Microsoft MVP in Windows Development. He
speaks at various industry events and conferences and can be reached on Twitter:
@ParasWadehra and on LinkedIn.

THANKS to the following technical experts for reviewing this article:
Hermit Dave (Associated Press Limited, UK), Kurt Monnier (Kinvey, Inc.) and
Arun Nagarajan (Uber)

MBaa$

www.twitter.com/ParasWadehra
www.twitter.com/ParasWadehra
www.linkedin.com/

Try GdPicture.NET V12 for Free for 30 days

www.gdpicture.com

www.gdpicture.com

TesT RuN

JAMES MCCAFFREY

Introduction to Prediction Markets

Suppose you want to predict the outcome of an upcoming champi-
onship football game between the Xrays and the Yanks. You find a
group of 20 football experts and give each of them $500 in tokens. The
experts are allowed to buy and sell shares of each of the two teams,
in a way that's somewhat similar to how the stock market works.

When an expert buys shares in one team, say the Xrays, the price
ofashare of that team increases and the price of a share of the other
team decreases. Over time, the experts will buy and sell shares of
the two teams until prices stabilize, and then you'll be able to infer
the probability of each team winning.

You halt trading the day before the championship game. After
the game is played and the winner is determined, you pay experts
who have shares in the winning team according to the last price of
the team when trading closed. Because the experts know they'll be
paid, they have incentive to give their true opinions during trading.

What I've just described is called a prediction market. In this
article, I'll describe the math behind prediction markets and show
you how to implement the key functions in code. Its unlikely you'll
ever have to create a prediction market in your day-to-day job, but
I think you'll find the ideas very interesting. Additionally, some of
the programming techniques presented in this article can be used
in more common software development scenarios.

This article assumes you have at least beginner-level coding skill,
but doesntassume you know anything about prediction markets. I
presenta complete demo program, and you can also get the source
code from the download that accompanies this article. The demo
uses C#, but you should have no trouble refactoring the code to
another language if you wish.

Note that this is an informal introduction to prediction markets,
intended primarily for software developers. I take some liberties
with terminology and definitions in order to keep the main ideas
as clear as possible.

An Example
Prediction markets are perhaps best explained with a concrete
example. Take a look at the demo program in Figure 1. After some
preliminary messages, the demo output starts with:

Setting liquidity parameter = 100.0

Initial number of shares owned of teams [0] and [1] are:
00

Initial inferred probabilities of winning are:
0.5000 0.5000

Code download available at msdn.com/magazine/0616magcode.

54 msdn magazine

The liquidity parameter will be explained in detail shortly, but for
now its enough to know that liquidity controls how much market
prices react to buying and selling. Larger values of liquidity pro-
duce smaller changes in prices.

Initially, no shares are owned by the experts. Because the number
of shares owned for each team is the same (zero), its reasonable that
the initial inferred probability a team will win is 0.50.

The next part of the demo output is:

Current costs for one share of each team are:
$0.5012 $0.5012

At any point in time, a share of each team has a certain price.
Experts need to know this price because theyre playing for real
money. Because the initial probabilities of winning are equal, its
reasonable that the prices for a share of each team are also the same.

The final probabilities are the
goal of the prediction market.

The next part of the demo output is:
Update: expert [01] buys 20 shares of team [0]

Cost of transaction to expert was: $10.50

Expert #1 believes that team 0, the Xrays, will win and buys 20
shares of team 0. The cost to the expert is $10.50. Notice that the
price for 20 shares ($10.50) is not the same as 20 times the price of
a single share (20 * $0.5012 = $10.02). As each share is purchased,
the price for an additional share of the team increases. The next
part of the demo output is:

New number of shares owned of teams [0] and [1] are:

20 0

New inferred probabilities of winning are:

0.5498 0.4502

The demo displays the updated number of shares outstanding
on each team, (x, y) = (20, 0) and computes and displays updated
inferred probabilities of each team winning (0.55, 0.45). Because
experts have bought more shares of team 0 than team I, the
inferred probability of team 0 winning must be greater than that of
team 1. The calculation of the probabilities will be explained shortly.

Next, the demo displays:

Current costs for one share of each team are:

$0.5511 $0.4514

Update: expert [02] buys 20 shares of team [1]

Cost of transaction to expert was: $9.50

The new cost per share for each team is calculated and displayed.
Notice that the price of a share of team 0 ($0.55) is now quite a bit

http://msdn.com/magazine/0616magcode

more expensive than that of team 1 ($0.45). This gives
experts an incentive to buy shares of team 1 if they
think the price is a good value relative to the likeli-
hood of team 1 winning. In this case, the demo sim-
ulates expert #2 buying 20 shares of team 1 for a cost
of $9.50. Next:

New number of shares owned of teams [0] and [1] are:
20 20

Initial numbher of shares owned

i file:///C:/PredictionMarket/bin/Debug/PredictionMarket.EXE

etting liguidity parameter =

Begin prediction market demo

oal is to predict winner of Hrays (team [B1>
)s. Yanks (team [11> using expert opinions

108.8

of teams [B] and [1] are:

Initial inferred probhabilities of winning are:

New inferred probabilities of winning are: N
0.5000 0.5000
There are now 20 shares outstanding for each team,
so the inferred probabilities of each team winning
revert to 0.50 and 0.50.
The next part of the demo output is:

Current costs for one share of each team are:
$0.5012 $0.5012

$0.5012

B.5498
Update: expert [03] buys 60 shares of team [0]
Cost of transaction to expert was: $34.43

New number of shares owned of teams [0] and [1] are:
80 20

Cost of

New inferred probabilities of winning are:

0.6457 0.3543

Expert #3 believes strongly that team 0 will win, so
he buys 60 shares of team 0 for a cost of $34.43. This
transaction changes the number of outstanding shares
to (80, 20) and causes the new inferred probabilities of
winning to move strongly toward team 0 (0.65, 0.35).

Next, expert #1 sees that the value of his shares in team
0 have risen greatly to approximately $0.6468 per share:

Current costs for one share of each team are:
$0.6468 $0.3555

B.5000

LY
$0.50812

8.6457

tc

Update: expert [01] sells 10 shares of team [0]
Cost of transaction to expert was: $-6.34

: expert [B11 sells 18 sha
Cost of transaction to expert wa

New number of shares owned of teams [0] and [1] are:
70 20

B 28
New inferred probabilities of winning are:

0.6225 0.3775

Expert #1 feels that team 0 is now somewhat over-
priced relative to its chances of winning and sells 10 of
his 20 shares, getting $6.34 (indicated by the negative
sign). The new inferred probabilities adjust back to a
bit more equal, but team 0 is still predicted to win with
probability 0.63.

The demo ends by closing trading. The final proba-
bilities are the goal of the prediction market. After the
game between the Xrays and the Yanks is played, experts would
be paid for shares they hold in the winning team, based on the
final share price of the winning team. The payments encourage the
experts to give their true opinions.

B.6225

The Four Key Prediction Market Equations

A basic prediction market uses four math equations, as shown in
Figure 2. Bear with me; the equations arent nearly as complicated
as they might first appear. There are several math models that
can be used to define a prediction market. The model presented
in this article is based on what's called the Logarithmic Market
Scoring Rule (LMSR).

msdnmagazine.com

Lurrent co

ew number

: expert [B2]1 buys 28 shar
transaction to expert was

ew number
a 28

ew inferred probabilit

rent cos

ew number

ew inferred probabhilities

B.50080

hare of each team are:

*t [B1]1 buys 28 sha

of team [B]
ction to expert u $10.5

58

of shares ouned of teams [B] and [1] are:

ew inferred probabilities of winning are:

8.4582

of team [11]
£9.58

of shares owned of teams [B] and [1] are:

of winning are:
8.5008

» one share of each team are:

ew inferred probabilities of winning are:

B.3543

for one share of h team are:

[
$@.3555

of team [B]
: $-6.34
of teams [B]1 and [11

of shares owned are:

of winning are:
8.3775

[End prediction market demo

Figure 1 A Prediction Market Demo

Equation 1is the cost function associated with a set of outstand-
ing shares (x, y). The equation, which isntatall obvious, comes from
economics theory. Froma developer’s point of view, you can think of
the equation as a helper function. It accepts x, which is the number
of shares held of option 0, and y, which is the number of shares held
of option 1, and returns a value. Variable b in all four equations is
the liquidity parameter. Suppose x =20 and y = 10. Ifb=100.0, then
C(x,y) =100.0 * In(exp(20/100) + exp(10/100)) =100.0 * In(1.22 + L.11)
=100.0 * 0.8444 = $84.44. The return value is used in equation 2.

Equation 2 is the cost of a transaction to a buyer. Suppose a current
set of outstanding shares is (20, 10) and an expert buys 30 shares of
option 0. The cost of that transaction to the expert is computed using

June 2016 55

http://www.msdnmagazine.com

equation 2as C(20+30,10) - C(20,10)
—(C(50,10) - C(20,10) = 101.30 - 84.44
= $16.86. If an expert sells shares, the
cost of the transaction will be a nega-
tive value indicating the expert is paid.

Equation 3 is technically the mar-
ginal price of option 0 based on a set
of outstanding shares (x, y). Buta mar-
ginal price can be loosely interpreted
as the probability that an option will
win. Equation 4 is the marginal price
(probability) of option L. If you look at
the two equations closely, you'll notice
they must sum to 1.0, as is required for

(2) Cerans =

(1) C(x,y) = b+ In(e*’? + &¥/?)

after — Cbefore

@) re¥) = o

(4) Py(x: y) = eX/b 4 ev/b

The Demo Program

To create the demo program, I launched
Visual Studio and selected the C# con-
sole application program template. I
named the project PredictionMarket. The
demo has no significant Microsoft NET
Framework dependencies, so any version
of Visual Studio will work.

After the template code loaded, in the
Solution Explorer window I renamed file
Program.cs to the more descriptive Predic-
tionMarketProgram.cs and allowed Visual
Studio to automatically rename class Pro-
gram for me. At the top of the source code, I

ex/b

eV/b

a set of probabilities.
Implementing the four key pre-
diction market equations is straight-

forward. The demo program implements the cost, equation 1, as:

static double Cost(int[] outstanding, double 1iq)
{
double sum = 0.0;
for (int i =0; 1 < 2; +i)
sum += Math.Exp(outstanding[i] / 1iq);
return 1ig * Math.Log(sum);
}

The Cost method is virtually an exact translation of equation 1.
Notice method Cost assumes there are just two options. For sim-
plicity, no error checking is performed.

Equation 2 is also rather simple to implement:
static double CostOfTrans(int[] outstanding, int idx, int nShares, double 1iq)
{
int[] after = new int[2];
Array.Copy(outstanding, after, 2);
after[idx] += nShares;
return Cost(after, 1iq) - Cost(outstanding, 1iq);
}

The array named after holds the new number of outstanding
shares after a transaction, and the method then just calls the Cost
helper method twice. With a method to calculate the cost of a trans-
action in hand, it’s easy to write a method that calculates the cost
of buying a single share of each of the two options:

static double[] CostForOneShare(int[] outstanding, double Tiq)
{

double[] result = new double[2];

result[0] = CostOfTrans(outstanding, 0, 1, 1iq);

result[1] = CostOfTrans(outstanding, 1, 1, 1iq);

return result;
}

The cost of a single share can be used by experts to get an approx-
imation of how much it would cost to buy n shares of an option.
Method Probabilities returns the two marginal prices (inferred

probabilities) of each option winning in an array:

static double[] Probabilities(int[] outstanding, double 1iq)
{
double[] result = new double[2];
double denom = 0.0;
for (int i =0; 1 < 2; +1)
denom += Math.Exp(outstanding[i] / 1iq);
for (int i =10; i <2; ++i)
result[i] = Math.Exp(outstanding[i] / 1iq) / denom;
return result;
}

If you compare the code for method Probabilities with equations
3and 4, you'll see that, again, the code follows directly from the
math definition.

Market Equations

56 msdn magazine

Figure 2 The Four Key Prediction

deleted all using statements that referenced
unneeded NET namespaces, leavingjust the
reference to the top-level System namespace.

The complete demo code, with a few minor edits and some
WriteLine statements deleted to save space, is presented in Figure 3.
All the program control logic is in the Main method. All the pre-
diction market functionality is in four static methods, and there
are two ShowVector helper display methods.

After displaying some preliminary messages, program execution
in method Main begins with:

double 1ig = 100.0;
int[] outstanding = new int[] { 0, 0 };
ShowVector(outstanding);

Variable liq is the liquidity parameter. A value 0f 100.0 is typical,
butif you experiment by adjusting the value, you'll see how it affects
the change in share prices after a transaction. Larger liquidity values
produce smaller changes. The array named outstanding holds the
total number of shares owned by all experts, on each of the two teams.
Notice that the liquidity parameter has to be passed to the four static
market prediction methods. An alternative design is to encapsulate
the methods into a C# class and define liquidity as a member field.

Next, the number of outstanding shares is used to determine the
inferred probabilities of each team winning;

double[] probs = Probabilities(outstanding, 1iq);
Console.WriteLine("Initial probabilities of winning:");
ShowVector(probs, 4, " ");

Next, the demo displays the costs of buying a single share of
each of the two teams:

double[] costPerShare = CostForOneShare(outstanding, 1iq);
Console.WriteLine("Current costs for one share are: ");
ShowVector(costPerShare, 4, " $");

Inarealistic prediction market, this information would be useful
to the market experts to help them assess whether the share price
of a team is too high or too low relative to the experts perception
that the team will win.

The demo program simulates one of the experts buying some
shares, like so:

Console.WriteLine("Update: expert [01] buys 20 shares of team [0]");

doubTe costTrans = CostOfTrans(outstanding, 0, 20, Tig);

Console.WriteLine("Cost of transaction to expert was: $" +
costTrans.ToString("F2"));

In a real prediction market, the system would have to maintain
quite a bit of information about experts account balances and the
number of shares owned.

Test Run

Ultimate Data Visualization
Controls for WPF and Windows Forms...

 LightningChart .

New! DirectX 11 rendering - Faster WPF Chart - Bindable WPF Chart - Smith Chart

B B vty g 1 8 e et 408 (D '

LIGHTNING-FAST CHARTING COMPONENTS FOR SCIENCE, ENGINEERING AND TRADING

» Superior rendering performance New! 4-in-1: All editions included

» Outstanding configurability e

. DirectX 9 and 11 rendering engines FREE Gauges Prefer performance or binding features

* WARP rendering for virtual machines .

- Optimized for reak-time data

. Touch-enabled operations

* Supports gigantic data sets

Ol Al G s

» Great customer support

+ Hundreds of examples
\ J \, S

p Visual Studio

%ﬁ@ Download a free 30-day trial
o8 www.LightningChart.com

www.lightningChart.com

Figure 3 Prediction Market Demo

using System;

namespace PredictionMarket Console.WriteLine(" "8
{
class PredictionMarketProgram costPerShare = CostForOneShare(outstanding, 1ig);
{ Console.WriteLine("Current costs for one share are: ");
static void Main(stringl] args) ShowVector(costPerShare, 4, " $");
{

Console.WriteLine("Update: expert [01] sells 10 shares " +
"of team [01");

costTrans = CostOfTrans(outstanding, 0, -10, 1iq);

Console.WriteLine("Cost of transaction to expert was: $" +

double Tig = 100.0; costTrans.ToString("F2"));

Console.WriteLine("Begin prediction market demo ");
Console.WriteLine("Goal is to predict winner of Xrays");
Console.WriteLine("vs. Yanks using expert opinions");

Console.WriteLine("Setting 1iquidity parameter = " + outstanding = new int[] { 70, 20 };

1iq.ToString("F1")); Console.WriteLine("New number of shares owned are:");

int[] outstanding = new int(l € 0, 0 1; ShowVector(outstanding);

Conso]e,writeLine("¥nitia1 number of shares owned are:"); probs = Probabilities(outstanding, 1iq);
ShowVector(outstanding); Console.WriteLine("New inferred probs of winning:");

ShowVector(probs, 4, " ");
double[] probs = Probabilities(outstanding, 1iq); ¢)

Console.Writeline("Initial probabilities of winning:"); Console.WriteLine(™ oF
ShowVector(probs, 4, " ");

Console.WriteLine("Update: Market Closed");
Console.WriteLine(" ok Console.Writeline("\nEnd prediction market demo \n");
Console.ReadLine();

double[] costPerShare = CostForOneShare(outstanding, 1iq);
Console.WriteLine("Current costs for one share are: "); } /1 Main()

ShowVector(costPerShare, 4, " $"); . e s
static double[]Probabilities(int[] outstanding,

Console.Writeline("Update: expert [01] buys 20 shares " + doubTe Tig)
"of team [0]"); t
double costTrans = CostOfTrans(outstanding, 0, 20, 1iq); double[] result = new double[2];
Console.Writeline("Cost of transaction to expert was: $" + doubTe denom = 0.0;
costTrans.ToString("F2")); for (int 1 =0; 1 < 2; ++i)
denom += Math.Exp(outstanding[i] / 1iq);
outstanding = new int[] { 20, 0 }; for (int 1 =10; 1 < 2; ++1)
Console.WriteLine("New number of shares owned are: "); result[i] = Math.Exp(outstanding[i] / Tiq) / denom;
ShowVector (outstanding); return result;
}
probs = Probabilities(outstanding, 1iq);
Console.WriteLine("New inferred probs of winning:"); static double Cost(int[] outstanding, double Tiq)
ShowVector(probs, 4, " "); t
double sum = 0.0;
Console.WriteLine(")3 for (int 1 =10; 1 < 2; ++)
sum += Math.Exp(outstanding[i] / 1iq);
costPerShare = CostForOneShare(outstanding, 1iq); return 1iq * Math.Log(sum)
Console.WriteLine("Current costs for one share are:"); }

ShowVector(costPerShare, 4, " $");
static double CostOfTrans(int[] outstanding, int idx,

Console.WriteLine("Update: expert [02] buys 20 shares " + int nShares, double 1iq)
"of team [1]"); {
costTrans = CostOfTrans(outstanding, 1, 20, 1iq); int[] after = new int[2];
Console.WriteLine("Cost of transaction to expert was: $" + Array.Copy(outstanding, after, 2);
costTrans.ToString("F2")); after[idx] += nShares;
return Cost(after, 1iq) - Cost(outstanding, 1iq);
outstanding = new int[] { 20, 20 }; }
Console.WriteLine("New number of shares owned are:");
ShowVector(outstanding); static double[] CostForOneShare(int[] outstanding,
double Tiq)
probs = Probabilities(outstanding, 1iq); {
Console.WriteLine("New inferred probs of winning:"); doubTe[] result = new double[2];
ShowVector(probs, 4, " "); result[0] = CostOfTrans(outstanding, 0, 1, 1iq);
result[1] = CostOfTrans(outstanding, 1, 1, 1iq);
Console.WriteLine(")3 return result;
}
costPerShare = CostForOneShare(outstanding, 1iq);
Console.WriteLine("Current costs for one share are:"); static void ShowVector(double[] vector, int dec, string pre)
ShowVector(costPerShare, 4, " $"); (
for (int i = 0; i < vector.Length; ++i)
Console.WriteLine("Update: expert [03] buys 60 shares " + Console.Write(pre + vector[i].ToString("F" + dec) + " ");
"of team [01"); Console.WriteLine("\n");
costTrans = CostOfTrans(outstanding, 0, 60, 1iq); }
Console.WriteLine("Cost of transaction to expert was: $" +
costTrans.ToString("F2")); static void ShowVector(int[] vector)
(
outstanding = new int[] { 80, 20 }; for (int i = 0; i < vector.Length; ++i
Console.WriteLine("New number of shares owned are:"); Console.Write(vector[i] + " ");
ShowVector(outstanding); Console.WriteLine("\n");
}
probs = Probabilities(outstanding, 1iq);
Console.WriteLine("New inferred probs of winning:"); } /1 Program class
ShowVector(probs, 4, " "); } // ns

58 msdn magazine Test Run

Next, the number of outstanding shares is updated, like so:

outstanding = new int[] { 20, 0 };

Console.WriteLine("New number of shares owned on teams [0] " +
"and [1] are: ");

ShowVector(outstanding);

If you refer back to the math equations in Figure 2, you'll notice
that the number of outstanding shares for each team/option, (x, y),
is needed by all equations.

After the number of outstanding shares has been updated, that
information is used to estimate the revised probabilities of each
team or option winning:

and Team | will beat team K. Combinatorial prediction markets
are much more complex than simple markets. u

DR. James McCAFFREY works for Microsoft Research in Redmond, Wash. He
has worked on several Microsoft products including Internet Explorer and Bing.
Dr. McCaffrey can be reached at jammc@microsoft.com.

THANKS to the following Microsoft technical experts who reviewed this article:
Pallavi Choudhury, Gaz Igbal, Umesh Madan and Tien Suwandy

probs = Probabilities(outstanding, 1iq);

Console.WriteLine("New inferred probabilities of
winning are: ");

ShowVector(probs, 4, " ");

Recall that these values are really mar-
ginal prices, but its useful to think of them
as probabilities. Ultimately, the purpose of
aprediction market is to produce the likeli-
hood that each team or option will win, so
the final set of probabilities after the market
stabilizes is what you're after.

The demo program concludes by repeating
the following five operations three more times:
« Show current cost for one share

of each team
« Perform a buy or sell transaction
« Show the cost of the transaction
« Update the total number of
shares outstanding
« Update the probability of each
team winning

Notice that the demo program begins with
the probabilities of both teams being equal.
This isn't realistic in many real prediction-
market scenarios. Its possible to initialize a
prediction market with unequal probabilities
by solving for x and y in equations 3 and 4.

Wrapping Up

The information in this article is based on the
2002 research paper, “Logarithmic Market
Scoring Rules for Modular Combinatorial
Information Aggregation; by Robin Hanson.
You can find a PDF version of the paper in
several places on the Internet by using any

msdn

magazine

Where you need us most.

BV Dpvelopers guide 1
Wifiradowsy 10

e P e

qguiiuadsaﬂd tools for Windows Gt starved with Wiadows 10
1

e
Lt P e ias e ol by Wiy £

search tool.

Prediction markets aren' just an abstract
theoretical idea. In the past few years, sev-
eral companies have been created that
actually implement prediction markets for
real money.

An area of active research is in what are
called combinatorial prediction markets.
Instead of picking just one of two options
to win, experts can buy shares in combina-
tion events such as team A will beat team B

MSDN.microsoft.com

Visua

TECH EVENTS WITH PERSPECTIVE

msdnmagazine.com

June 2016 59

mailto:jammc@microsoft.com
http://MSDN.microsoft.com
http://www.msdnmagazine.com

Visual Studio Live

EXPERT SOLUTIONS FOR .NET DEVELOPERS

BETTER

For the first time in a decade, Boston will host

VISUAL STUDIO LIVE! from June 13 - 16. Through four
intense days of practical, unbiased, Developer training,
join us as we dig in to the latest features of Visual Studio
2015, ASP.NET, JavaScript, TypeScript, Windows 10 and
so much more. Code with industry experts, get practical
answers to your current challenges, and immerse
yourself in what's to come on the .NET horizon.

m
bﬁ\

talasoft D VisualStudio MSAN Visual Studio MOSNMEDIA

VSLIVE.COM/BOSTON

CAMPAIGN FOR CODE 2016 » VISUAL STUDIO LIVE!

CAMBRIDGE, MA
JUNE 13-16, 2016

THE HYATT REGENCY

Life, liberty, and the
pursuit of better code:
register to join us today!

SESSIONS ARE FILLING UP QUICKLY-
REGISTER TODAY!

Scan the QR code to register
or for more event details.

USE PROMO CODE VSLBO2

www.vslive.com/boston

ALM /
DevOps

START TIME END TIME

Computing

Cloud Database and

Analytics

MO1 Workshop: SQL Server for Developers
- Andrew Brust and Leonard Lobel

BOSTON AGENDA AT-A-GLANCE

Mobile
Client

Software
Practices

MO02 Workshop: DevOps for Your
Mobile Apps and Services
- Brian Randell

Visual Studio
/ .NET
Framework

ux/
Design

Visual Studio Live! Pre-Conference Workshops: Monday, June 13, 2016 (Separate entry fee required)

30 AM | 9:00 AM Pre-Conference Workshop Registration « Coffee and Morning Pastries

MO03 Workshop: Native Mobile App Development
for iOS, Android and Windows Using C#
- Marcel de Vries and Roy Cornelissen

Web
Client

Web
Server

Dine-A-Round

START TIME END TIME

10:30 AM

10:45 AM | 12:00 PM

TO1 Technical Debt —Fight It
with Science and Rigor
- Brian Randell

TO5 Automated X-Browser
Testing of Your Web Apps with
Visual Studio CodedUlI
- Marcel de Vries

Visual Studio Live! Day 1: Tuesday, June 14, 2016

KEYNOTE: What's New in ASP.NET and VS 2015,
Scott Hunter, Principal Program Manager Lead, ASP.NET Team, Microsoft

T02 What's New in SQL Server 2016
- Leonard Lobel

T06 Database Lifecycle Management
and the SQL Server Database
- Brian Randell

TO03 Getting Started with Aurelia
- Brian Noyes

TO07 Angular 2 101
- Deborah Kurata

T04 Developer Productivity in
Visual Studio 2015
- Robert Green

@ TO08 This session is sequestered,
details will be released soon

12:00 PM Lunch - Visit Exhibitors

2:45 PM

3:00PM | 415PM

START TIME END TIME

10:45 AM

11:00 AM | 12:00 PM

3:00PM | 4:15PM

4:30 PM

5:45 PM

10:45 AM

9:30 AM
11:00 AM | 12:15 PM

3:00PM | 4:15PM

Speakers and sessions subject to change

TO09 ASP.NET Core 1.0 in All Its Glory
- Adam Tuliper

T13 Hack Proofing Your Modern
Web Applications
- Adam Tuliper

W01 AngularJS & ASP.NET
MVC Playing Nice
- Miguel Castro

WO5 Did a Dictionary and a Func
Just Become the New Black in
ASP.NET Development?

- Chris Klug

W09 Richer MVC Sites
with Knockout JS
- Miguel Castro

W13 Securing Client JavaScript Apps
- Brian Noyes

W17 Get Good at DevOps: Feature
Flag Deployments with ASP.NET,
WebAPI, & JavaScript - Benjamin Day

THO1 Windows Presentation
Foundation (WPF) 4.6
- Laurent Bugnion

THO5 Power Bl 2.0: Analytics in
the Cloud and in Excel
- Andrew Brust

THO9 Big Data and Hadoop
with Azure HDInsight
- Andrew Brust

TH13 Top 10 Entity Framework
Features Every Developer
Should Know
- Philip Japikse

TH17 Pretty, Yet Powerful. How Data
Visualization Transforms the Way We
Comprehend Information
- Walt Ritscher

®

CONNECT WITH VISUAL STUDIO LIVE!

u twitter.com/vslive - @VSLive n facebook.com - Search “VSLive” m

T10 Predicting the Future Using
Azure Machine Learning
- Eric D. Boyd

T14 No Schema, No Problem!—
Introduction to Azure DocumentDB
- Leonard Lobel

T11 TypeScript for C# Developers
- Chris Klug

T15 Angular 2 Forms and Validation
- Deborah Kurata

Visual Studio Live! Day 2: Wednesday, June 15, 2016

W02 Cloud Enable .NET Client
LOB Applications
- Robert Green

WO06 Azure Mobile Apps: APIs in the
Cloud for Your Mobile Needs
- Danny Warren

W10 Breaking Down Walls
with Modern Identity
- Eric D. Boyd

W14 Exploring Microservices
in a Microsoft Landscape
- Marcel de Vries

W18 Patterns and Practices for Real-
World Event-Driven Microservices
- Rachel Reese

THO2 Open Source Software
for Microsoft Developers
- Rockford Lhotka

THO6 Dependencies Demystified
- Jason Bock

TH10 Improving Performance
in .NET Applications
- Jason Bock

TH14 Architecting For Failure: How to
Build Cloud Applications
- Michael Stiefel

TH18 Architects? We Don’t Need
No Stinkin® Architects!
- Michael Stiefel

Visual Studio Live! Day 3: Thursday, June 16, 2016

linkedin.com - Join the
Visual Studio Live” group!

WO03 Creating Great Windows
Universal User Experiences
- Danny Warren

WO7 User Experience Case Studies—
The Good and The Bad
- Billy Hollis

General Session: More Personal Computing through Emerging Experiences,
Tim Huckaby, Founder / Chairman - InterKnowlogy & Actus Interactive Software

0PM Birds-of-a-Feather Lunch « Visit Exhibitors

W11 Creating Dynamic Pages Using
MVVM and Knockout.JS
- Christopher Harrison

W15 Learning to Live Without
Data Grids in Windows 10
- Billy Hollis

W19 Take Your Site From Ugh to
OOH with Bootstrap
- Philip Japikse

THO3 Real World Scrum with Team
Foundation Server 2015 & Visual
Studio Team Services - Benjamin Day

THO7 Automate Your Builds with
Visual Studio Team Services or Team
Foundation Server - Tiago Pascoal

TH11 Cross Platform Continuous
Delivery with Team Build and Release
Management - Tiago Pascoal

TH15 JavaScript Patterns for
the C# Developer
- Ben Hoelting

TH19 Unit Testing & Test-Driven
Development (TDD) for Mere Mortals
- Benjamin Day

DETAILS COMING SOON! These sessions have been sequestered by our
conference chairs. Be sure to check vslive.com/boston for session updates!

T12 Testing at the
New DevOps World
-Deniz Ercoskun

T16 Windows 10—The Universal
Application: One App To Rule
Them All?

- Laurent Bugnion

15 PM Welcome Reception

WO04 Building Cross-Platform
C# Apps with a Shared Ul Using
Xamarin.Forms
- Nick Landry

W08 Build Cross-Platform Mobile
Apps with lonic, Angular, and Cordova
- Brian Noyes

W12 Mobile App Development
with Xamarin and F#
- Rachel Reese

W16 Conquer the Network—Making
Your C# Mobile App More Resilient
to Network Hiccups
- Roy Cornelissen

W20 Strike Up a Conversation
with Cortana on Windows 10
- Walt Ritscher

THO04 Windows for Makers:
Raspberry Pi, Arduino & loT
- Nick Landry

THO8 Automated Ul Testing for iOS
and Android Mobile Apps
- James Montemagno

TH12 This session is sequestered,
details will be released soon

g olsev | Lioev L L ——

TH16 Developing with Xamarin
& Amazon AWS to Scale Native
Cross-Platform Mobile Apps
- James Montemagno

TH20 Advanced Mobile App
Development for the Web Developer
- Ben Hoelting

VSLIVE.COM/BOSTON

www.vslive.com/boston
https://twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

THE WORKING PROGRAMMER

TED NEWARD

How to be MEAN: Passport

Welcome back, MEANers.

I've been doing a ton of server-side work and it’s getting close to
the time that I start moving over to the client end of things. Before
I do that, though, theres one more thing that absolutely needs dis-
cussing before I can make the transition entirely. Specifically, I need
to be able to support users. Most applications (if not all of them, by
this point) require some kind of user authentication mechanism
to establish a users identity, typically so that you can restrict the
data that you show them or the options that you allow them to do
within the system.

While its always tempting to “roll your own,” within the Node
community, thats just so 2010! The right answer to any of these kinds
of dilemmas is always “go to npm,” and in this case, the widespread
hands-down winner around authentication systems is a Node.js
library called Passport.

Passport

By this point, it should be straightforward to figure out what the
first steps are for using the Passport library; find out the npm pack-
age name and “npm install” The npm package name can be discov-
ered either by searching the online npm registry, or by visiting the
Passport homepage. However, visiting Passport)S.org first yields two
interesting tidbits: one, that contrary to every other Node.js pack-
age homepage ever written, the “npm install” command isn't present
right there on the front page; two, that Passport apparently has this
concept of “strategies,” and its important.

The reason for this is simple: When you say, “Its time to authen-
ticate the user’s credentials; thats actually a vague statement. Not
only is there a variety of different credentials that might be used to
authenticate, theres a thousand or more different credential stores (a
laservers) against which a user might authenticate. Passport wants
to be the solution to any sort of authentication against any kind of
credential store—Facebook, LinkedIn, Google or your own local
database—and uses a variety of different kinds of credentials, from
username/password through JSON Web Tokens to HTTP Bearer
headers and just about anything else that you might dream up.

This means, then, that Passport isn' just one package; theres a
core passport package and then there are strategies (307 of them, in
fact, at the time of this writing) for how Passport is to do the actual
work of authenticating. The choice of strategy (or strategies—I'll get
to that in a moment) defines the actual package required, which in
turn defines what to install. (But, truth-in-advertising time here,
Passport does in fact define a core package “passport” that will be
used by the other strategies involved, so you can get a jump on

62 msdn magazine

things by doing an “npm install --save passport” before I dive into
the strategy details).

Hello, Local

Far and away the most common strategy (particularly for systems
thatare being built against internal user databases/credential stores)
is the “local” strategy. This is the classic, “Client sends a username
and a password, and you compare it against ... well, whatever you
store usernames and passwords in”” Its arguably also not nearly as
secure as some of the other strategies, but its a good place to start.

Right now, in the code I've been working with, theres been no
authentication whatsoever. So, lets keep things simple by just
hardcoding a fixed username/password in place. Once you see
how Passport works, its relatively easy to see where the code fora
database lookup would go to do the comparison, so I'm going to
leave that out.

Having decided that I want to use the passport-local strategy, I
begin with “npm install --save passport-local” to get the necessary
passport bits in place. (Remember, the “--save” argument puts it
into the package manifest file so that it'll get automatically tracked
as a formal dependency.)

Once installed, I need to do three things: one, configure Passport
to use the given strategy; two, establish the HTTP URL route to
which the user will be sending the authentication request; three,
set up the Express middleware to require authentication before
allowing the user to actually access the HTTP URL in question.

Configuration

Il startby getting Passportloaded up in the application first. Assuming
that passport and passport-local have already been installed, I need
to load them into the app.js script via the usual require magic:

var express = require('express'),
bodyParser = require('body-parser'),
/...
passport = require('passport'),
LocalStrategy = require('passport-Tocal').Strategy;

Notice that the LocalStrategy is set slightly different; like with
MongoClient before, you actually assign LocalStrategy the result of
accessing the field “Strategy” out of the object that's returned from the
require call. This isnt common in Node.js, but its not so rare as to be
unique. LocalStrategy in this case is going to serve asakind of class
to be instantiated (or as close to it as JavaScript can generally get).

Lalso need to tell the Express environment that Passport is on the job:

var app = express();
app.use(bodyParser.json());
app.use(passport.initialize());

www.PassportJS.org

The initialize call is fairly self-explanatory; it will prep Passport to
prepare to receive incoming requests. Often, there'll be a similar call
to passport.session to set up per-user sessions, similar to what you
see in ASPNET, but for an HTTP API like what I'm building here,
thats less often necessary or desirable (I'll talk about that in a bit).

Challenge

Next, I need to establish the callback that Passport will invoke
when it receives an authentication request. This callback will do the
work of looking up the user and validating the password passed
in. (Or, in a more real-world scenario, looking up the user and
validating that the salted password hash is the same as the salted
password hash currently stored in the database—but that’s really
more outside the scope of Passport itself.) Thats done by calling
passport.useand passinginaninstance of the Strategy to use, with the
callback embedded within it, as shown in Figure 1.

Passport doesn't particularly care
whatthe URL pattern is that does
the actual authentication.

Several things are going on here. First, by the time the callback
is invoked, Passport has already done the work of parsing the
incoming request and extracting the username and password to
pass in to this callback. For the LocalStrategy, Passport assumes
that those values are passed in via parameters named username and
password, respectively. (This is configurable in the LocalStrategy
construction call, if those aren't acceptable.)

Second, the actual mechanism of verification is entirely outside
of Passports jurisdiction; it assumes the strategies will do the ver-
ification, and in this case, the “local” strategy defers that entirely
to the application code. In this example, you just check against a
hardcoded value, but in more conventional cases this would be
a Mongo lookup for a user whose username matched what was
passed in and then a check against the password.

Third, in keeping with the usual Node.js middleware style, success
or failure is signaled by use of the done function, with the parame-
ters passed indicating whether success or failure took place. Success

Figure 1 Establishing the Callback

passport.use(new LocalStrategy(
function(username, password, done) {

debug("Authenticating ",username,",",password)
if ((username === "sa") && (password == "nopassword")) {
var user = {
username : "ted",
firstName : "Ted",
lastName : "Neward",

id : 1
I8
return done(null, user);
}
else {
return done(null, false, { message: "DENIED"})
}
}
))s

msdnmagazine.com

means the second parameter is a user object that will be placed
within the Express request object that’s passed further on down the
pipeline; failure will cause Passport to ask Express to return a 401
(Not Authorized) response, and can optionally include the failure
message, usually used for “flash™ messages against the UL (If flash
messages arent being used, the message is effectively thrown away.)

Consequences
Now, all that remains is to configure the route by which the
authentication will take place:

app.post('/Togin',
passport.authenticate('local', { session: false })
function(req, res) {
debug("user ", req.user.firstName, "
res.redirect("/persons");
1)

Passport doesnt particularly care what the URL pattern is that does
the actual authentication; /login is justa convention, but /signin or
/user/auth or any of a half-dozen other varieties would be entirely
reasonable. The key is that the first step when resolving this route is
to call the passportauthenticate function, passing in which strategy
to use (local), whether to use per-user session cookies (which, as
already noted, is not particularly appropriate for an API), and the
actual function to invoke if the authentication succeeds. Here, that
function simply logs a message to debug and then redirects the user
to the list of Persons stored in the database.

Now;, I can test this by passing in either form-POSTed content
or by sending in JSON content; because this is an AP, its proba-
bly better and easier to send in a JSON packet:

{ "username" :

If the username and password match, success and a 302 redi-
rect to /persons is returned; if not, then a 401 response is handed
back. Tt works!

authenticated against the system");

"sa" , "password" : "nopassword" }

Redirecting Traffic

In fact, its a common pattern (when building a traditional server-
side Web app using Express) that a successful authentication will
take the user to a given route, whereas a failure should take the user
to a new page, and for this reason, Passport allows for a simpler

approach to authenticates callbacks:
app.post('/Togin',
passport.authenticate('local', { successRedirect: '/',
failureRedirect: '/login',
failureFlash: true })
)3

Here, on success, Passport will automatically redirect to the “/”
URL, and on failure, back to the “/login” URL, and (in this case) with
a flash message indicating that the user failed to sign in successfully.

In the case of an API, though, its more common to hand back a
JSON representation of the user object to the client for display and
editing. Bear in mind, however, that nothing security-related or
sensitive should ever be sent back as part of this—no passwords,
in particular. The browsers are all extremely helpful in providing
client-side debugging utilities, and as a result, any attacker could very
easily reach into that user object held in the browsers memory and
start editing away to their hearts content. That could be bad. (These
JSON objects can also be tampered with “in flight, prompting most
Node.js-based API systems to run over HTTPS, rather than HT'TP.
Fortunately, most of the time, configuring Express to run over HTTPS

June 2016 63

http://www.msdnmagazine.com

instead of HTTP is more an exercise in cloud configuration than
any programmatic change.) As a result, passwords should never
leave the server, and “roles” (for a role-based authorization system)
should always be checked from the database, not from the user
object the request passed in.

As written, however, right now the API client will need to pass
authentication credentials each time the “/login” route is hit, and
the credentials aren't checked on any of the other routes. While
I certainly could put authentication checks on every route (and
should, come to think of it), I probably don't want to have to pass
the credentials as part of every method call.

Alternatives
Passport has this idea covered “in spades; as they say.

First, you can always go back to turning sessions on; when sessions
are on, Passport will create a unique identifier and hand it back as
part of the HT'TP response as a cookie. Clients are then required
to hand that cookie back as part of each subsequent request.
The main requirement at that point on the server end is that the
Passport library needs to know how to transform a user object into
an identifier, and back again; they call this serializing and deseri-
alizing a user, and it requires setting up method callbacks for each
of these two Passport endpoints:

passport.serializeUser(function(user, done) {
done(null, user.id);
1)

passport.deserializeUser(function(id, done) {
User.findById(id, function(err, user) {
done(err, user);
I N
1)

The serializeUser function is designed to provide a unique iden-
tifier for the user to Passport (so I grab it out of the user.id field)
and the deserializeUser function does the reverse (so I use the
id passed in as the primary key in a database lookup for the user
object as a whole).

You can turn on sessions for most, if not all, Passport strate-
gies, but in general it works when the server is generating HTML
to be interpreted directly by the browser. APIs tend not to work
with cookies nearly as much, particularly because APIs are often
hit by native mobile app clients as much as, or more often than, a
browser-based client.

A second approach uses a different Passport strategy that relies on
a “known secret” to both client and server. This can then be passed
in a variety of ways. In some cases, the system maintains a known
set of issued “API keys,” and you must provide that key as part of
each request. This is quite common with a number of third-party
REST services, but it bears a serious weakness in that if an attacker
can obtain the key, the attacker can masquerade as the client until
the client resets the key. Passport provides a strategy for this; use
“npm install --save passport-localapikey” It behaves much the same
way as the Local strategy, except now the strategy authentication
method will look up the API key in the database, rather than the
username and password.

A similar approach makes use of JSON Web Tokens (JW'Ts), which
are more secure, but require a much longer space to explain than
what I have here; “npm install --save passport-jwt” brings it into the

64 msdn magazine

project. JWTsare a packed set of a variety of different data elements,
one of which can be a shared secret (a la API key or password),
but can be verified against particular issuers, audience and more.

Or, perhaps, the goal is to not store any sort of credentials at all,
but rely on third-party systems (like Facebook, Google, Twitter,
LinkedIn or any of several hundred other popular sites) to do the
authenticating. Passport has it covered here, as well, with specific
strategies for each of these sites individually, as well as generalized
OAuth 2.0 (and OpenlID, for those sites that use that) strategies.

I think the point is becoming clear: If you can imagine an
authentication system, Passport has a strategy already defined for
it. Just “npm install; set up the configuration, put the authorize call
in the Express routes and oft you go.

By the way, it seems important to point out that there are services
across the Internet that will provide a single point ofaccess control for
all of these authentication issues. These “Authentication-as-a-Service’
services are becoming more popular as the number of sites that
people use on a regular basis proliferate and become more and
more of an administrative headache. One of my favorites, Auth0
(which actually has a few ex-Microsoft folks in the technical side
of the company), is a sponsor for the Passport project, and its icons
and logos appear discreetly scattered throughout the Passport site.
I would strongly encourage checking it out if the project doesnt
already have a pre-determined authentication strategy in place
(such asalegacy system or integrating against Facebook or Drop-
box, or what have you).

Wrapping Up

Passport is arguably the most successful authentication projects
ever developed, across any language or platform. It manages to
provide the necessary authentication “hooks” while leaving open
the actual means of authentication when you want to control that,
yet slipping in and doing all that heavy lifting when you don'. The
strategy approach means its infinitely extensible, and can accom-
modate any sort of new authentication scheme that might emerge,
even 20 years into the future. (Don't laugh—all this JavaScript will,
in fact, still be running 20 years from now. You watch.)

But Passport is defined almost as much by what it doesn't do
as what it does; it completely punts on any idea of role-based
authorization and it doesn't try to address any kind of encryption
or cryptography. Passport is all about credentials checking, which
of course by this point makes the name a lot clearer—just as when
[travel to Europe, I need to show my passport to prove that I am
an American citizen, Passport requires that users display their cre-
dentials so that they can prove they are citizens in good standing
within the system.

Once again, I find myself out of space and time, so for now...
happy coding! L

Tep NEwARD is a Seattle-based polytechnology consultant, speaker and mentor.
He has written more than 100 articles, is an F# MVP and has authored and
coauthored a dozen books. Reach him at ted@tedneward.com if youre interested in
having him come work with your team, or read his blog at blogs.tedneward.com.

THANKS to the following technical expert for reviewing this article:
Shawn Wildermuth

The Working Programmer

mailto:ted@tedneward.com
http://blogs.tedneward.com

Extreme Performance Linear Scalability

Cache data, reduce expensive database trips, and scale your apps to extreme transaction

processing (XTP) with NCache.

In-Memory Distributed Cache

« Extremely fast & linearly scalable with 100% uptime
- Mirrored, Replicated, Partitioned, and Client Cache
« Entity Framework & NHibernate Second Level Cache

ASP.NET Optimization in Web Farms

« ASP.NET Session State storage
* ASP.NET View State cache
« ASP.NET Output Cache provider

Full Integration with Microsoft Visual Studio

« NuGet Package for NCache SDK
« Microsoft Certified for Windows Server 2012 R2

E)NCache“

sales@alachisoft.com US: +1 (925) 236 3830

FREE Download

www.alachisoft.com

www.alachisoft.com
mailto:sales@alachisoft.com

_ ESSENTIAL .NET

MARK MICHAELIS

Dependency Injection with NET Core

In my last two articles, “Logging with .NET Core” (msdn.com/magazine/
mt694089), and, “Configuration in .NET Core” (msdn.com/magazine/
mt632279), I demonstrated how .NET Core functionality can be lever-
aged from both an ASPNET Core project (project.json) and the
more common .NET 4.6 C# project (*.csproj). In other words, taking
advantage of the new framework isn't limited to those who are writ-
ing ASPNET Core projects. In this column I'm going to continue
to delve into NET Core, with a focus on .NET Core dependency
injection (DI) capabilities and how they enable an inversion of con-
trol (IoC) pattern. As before, leveraging .NET Core functionality
is possible from both “traditional” CSPROJ files and the emerging
project.json type projects. For the sample code, this time T'll be
using XUnit from a project.json project.

Why Dependency Injection?

With .NET, instantiating an object is trivial with a call to the con-
structor via the new operator (that is, new MyService or whatever
the object type is you wish to instantiate). Unfortunately, an invo-
cation like this forces a tightly coupled connection (a hardcoded
reference) of the client (or application) code to the object instan-
tiated, along with a reference to its assembly/NuGet package.
For common .NET types this isnt a problem. However, for types
offering a “service,” such as logging, configuration, payment, noti-
fication, or even DI, the dependency may be unwanted if you want
to switch the implementation of the service you use. For example,
in one scenario a client might use NLog for logging, while in
another they might choose Log4Net or Serilog. And, the client
using NLog will prefer not to dirty up their project with Serilog,
so a reference to both logging services would be undesirable.

To solve the problem of hardcoding a reference to the service
implementation, DI provides a level of indirection such that rather
than instantiating the service directly with the new operator,
the client (or application) will instead ask a service collection or
“factory” for the instance. Furthermore, rather than asking the ser-
vice collection for a specific type (thus creating a tightly coupled
reference), you ask for an interface (such as ILoggerFactory) with
the expectation that the service provider (in this case, NLog,
Log4Net or Serilog) will implement the interface.

The result is that while the client will directly reference the
abstract assembly (Logging.Abstractions), defining the service inter-
face, no references to the direct implementation will be needed.

Code download available at GitHub.com/IntelliTect/Articles.

66 msdn magazine

We call the pattern of decoupling the actual instance returned to
the client Inversion of Control. This is because rather than the client
determining what is instantiated, as it does when explicitly invoking
the constructor with the new operator, DI determines what will be
returned. DI registers an association between the type requested
by the client (generally an interface) and the type that will be
returned. Furthermore, DI generally determines the lifetime of the
type returned, specifically, whether there will be a single instance
shared between all requests for the type, a new instance for every
request, or something in between.

One especially common need for DI is in unit tests.
Consider a shopping cart service that, in turn, depends on a
payment service. Imagine writing the shopping cart service
that leverages the payment service and trying to unit test the
shopping cart service without actually invoking a real payment
service. What you want to invoke instead is a mock payment
service. To achieve this with DI, your code would request an
instance of the payment service interface from the DI framework
rather than calling, for example, new PaymentService. Then, all
thats needed is for the unit test to “configure” the DI framework
to return a mock payment service.

In contrast, the production host could configure the shopping
cart to use one of the (possibly many) payment service options.
And, perhaps most important, the references would be only to the
payment abstraction, rather than to each specific implementation.

Providing an instance of the “service” rather than having the client
directly instantiating it is the fundamental principle of DI. And,
in fact, some DI frameworks allow a decoupling of the host
from referencing the implementation by supporting a binding
mechanism that’s based on configuration and reflection, rather
than a compile-time binding. This decoupling is known as the
service locator pattern.

.NET Core

Microsoft.Extensions.Dependencylnjection

To leverage the NET Core DI framework, all you need is a reference
to the Microsoft.Extnesions.Dependencylnjection. Abstractions
NuGet package. This provides access to the IServiceCollection
interface, which exposes a System.IServiceProvider from which
you can call GetService<TService>. The type parameter, TService,
identifies the type of the service to retrieve (generally an interface),
thus the application code obtains an instance:

ILoggingFactory ToggingFactor = serviceProvider.GetService<ILoggingFactory>();

http://msdn.com/magazine/mt694089
http://msdn.com/magazine/mt694089
http://msdn.com/magazine/mt632279
http://msdn.com/magazine/mt632279
http://GitHub.com/IntelliTect/Articles

www.gnostice.com Gnosti CG“

Smart needs...Smarter solutions...

Document Technology
for Everybody

.;.’"""'“\. @ P Y
[| [I
I\\H_F/;l A \‘x_d--/r
XtremeDocumentStudio StarDocs API XtremeDocumentStudio XtremeDocumentStudio
.NET Server Java Delphi
— ~lw
—f Nyt 0101010
= A J et
Create Print Edit Convert Digitize

Responsive HTML5 control, automatically
adjusts for Mobile, Desktop and Pad/Tablets.

100% Independent. No browser plug-ins
required. No ActiveX. No Office Automation.
Single viewer for PDF, Office documents, text
files and Images.

Text Search, On-the-fly OCR on images, PDF
form-filling, and more...

Bpl GRRRS F QREILE IR

Full-fledged client-side JavaScript to
configure and perform all operations.

TypeScript Support.

Simple, straightforward licensing.

XtremeDocumentStudio StarDocs API XtremeDocumentStudio XtremeDocumentStudio
NET Server Java Delphi

Download free trial from: www.gnostice.com | Contact us at: support@gnostice.com sales@gnostice.com +91.988.070.0511

www.gnostice.com
mailto:support@gnostice.com
mailto:sales@gnostice.com

There are equivalent non-generic GetService methods that have
Type asa parameter (rather than a generic parameter). The generic
methods allow for assignment directly to a variable of a particu-
lar type, whereas the non-generic versions require an explicit cast
because the return type is Object. Furthermore, there are generic
constraints when adding the service type so that a cast can be
avoided entirely when using the type parameter.

Figure 1 Registering and Requesting
an Object from Dependency Injection

public class Host
{
public static void Main()
{
IServiceCollection serviceCollection = new ServiceCollection();

ConfigureServices(serviceCollection);
Application application = new Application(serviceCollection);

// Run
/...
}

static private void ConfigureServices(IServiceCollection serviceCollection)
{
ILoggerFactory ToggerFactory = new Logging.LoggerFactory();

serviceCollection.AddInstance<ILoggerFactory>(loggerFactory);
}
}

public class Application

{
public IServiceProvider Services { get; set; }
public ILogger Logger { get; set; }

public Application(IServiceCollection serviceCollection)
{
ConfigureServices(serviceCollection);
Services = serviceCollection.BuildServiceProvider();
Logger = Services.GetRequiredService<ILoggerFactory>()
.Createlogger<Application>();
Logger.LogInformation("Application created successfully.");

}

public void MakePayment(PaymentDetails paymentDetails)
{
Logger.LogInformation(
$"Begin making a payment { paymentDetails }");
IPaymentService paymentService =
Services.GetRequiredService<IPaymentService>();

M ooo
}

private void ConfigureServices(IServiceCollection serviceCollection)
{
serviceCollection.AddSingleton<IPaymentService, PaymentService>();
}
}
public class PaymentService: IPaymentService

public ILogger Logger { get; }

public PaymentService(ILoggerFactory loggerFactory)
{

Logger = ToggerFactory?.CreateLogger<PaymentService>();
if(Logger == null)
{

throw new ArgumentNullException(nameof(loggerFactory));
}

Logger.LogInformation("PaymentService created");

68 msdn magazine

If no type is registered with the collection service when calling
GetService, it will return null. This is useful when coupled with the
null propagation operator to add optional behaviors to the app. The
similar GetRequiredService method throws an exception when the
service type isnt registered.

Asyou can see, the code is trivially simple. However, whats missing
ishow to obtain an instance of the service provider on which to invoke
GetService. The solution is simply to first instantiate ServiceCollec-
tions default constructor, then register the type you want the service to
provide. An example is shown in Figure 1, in which you can assume
each class (Host, Application and PaymentService) is implemented
in separate assemblies. Furthermore, while the Host assembly knows
which loggers to use, theres no reference to loggers in Application or
PaymentService. Similarly, the Host assembly has no reference to the
PaymentServices assembly. Interfaces are also implemented in separate
“abstraction” assemblies. For example, the ILogger interface is defined
in Microsoft.Extensions.Logging. Abstractions assembly.

You can think of the ServiceCollection type conceptually as a
name-value pair, where the name is the type of an object (generally
an interface) you'll later want to retrieve and the value is either the
type that implements the interface or the algorithm (delegate) for
retrieving that type. The call to AddInstance, in the Host.Configure-
Services method in Figure 1, therefore, registers that any request
for the ILoggerFactory type return the same LoggerFactory instance
created in the ConfigureServices method. As a result, both Appli-
cation and PaymentService are able to retrieve the ILoggerFactory
without any knowledge (or even an assembly/NuGet reference) to
what loggers are implemented and configured. Similarly, the appli-
cation provides a MakePayment method without any knowledge
as to which payment service is being used.

Note that ServiceCollection doesn't provide GetService or
GetRequiredService methods directly. Rather, those methods
are available from the IServiceProvider thats returned from the
ServiceCollection.BuildServiceProvider method. Furthermore,
the only services available from the provider are those added
before the call to BuildServiceProvider.

Microsoft.Framework. Dependencylnjection. Abstractions also
includes a static helper class called ActivatorUtilities that provides
a few useful methods for dealing with constructor parameters
that aren't registered with the IServiceProvider, a custom
ObjectFactory delegate, or in situations where you want to create
adefaultinstance in the event that a call to GetService returns null
(see bit.ly/ 1WIt4Ka#ActivatorUtilities).

Service Lifetime

In Figure 1 I invoke the IServiceCollection AddInstance<T-
Service>(TService implementationInstance) extension method.
Instance is one of four different TService lifetime options available
with .NET Core DI. It establishes that not only will the call to Get-
Service return an object of type TService, but also that the specific
implementationInstance registered with AddInstance is what will
be returned. In other words, registering with AddInstance saves
the specific implementationInstance instance so it can be returned
with every call to GetService (or GetRequiredService) with the
AddInstance methods TService type parameter.

Essential .NET

http://bit.ly/1WIt4Ka#ActivatorUtilities

In contrast, the IServiceCollection AddSingleton<TService>
extension method has no parameter for an instance and instead relies
on the TService having a means of instantiation via the constructor.
Whilea default constructor works, Microsoft. Extensions. Dependency-
Injection also supports non-default constructors whose parameters
are also registered. For example, you can call:

IPaymentService paymentService = Services.GetRequiredService<IPaymentService>()
and DI will take care of retrieving the ILoggingFactory concrete
instance and leveraging it when instantiating the PaymentService
class that requires an ILoggingFactory in its constructor.

If there’s no such means available in the TService type, you
can instead leverage the overload of the AddSingleton extension
method, which takes a delegate of type Func<IServiceProvider,
TService> implementationFactory—a factory method for instan-
tiating TService. Whether you provide the factory method or not,
the service collection implementation ensures that it will only ever
create one instance of the TService type, thus ensuring that theres
a singleton instance. Following the first call to GetService that
triggers the TService instantiation, the same instance will always
be returned for the lifetime of the service collection.

IServiceCollection also includes the AddTransient(Type service-
Type, Type implementationType) and Add Transient(Type service-
Type, Func<IServiceProvider, TService> implementationFactory)
extension methods. These are similar to AddSingleton except they
return a new instance every time they're invoked, ensuring you
always have a new instance of the TService type.

Last, there are several AddScoped type extension methods.
These methods are designed to return the same instance within
a given context and to create a new instance whenever the
context—known as the scope—changes. The behavior of ASPNET
Core conceptually maps to the scoped lifetime. Essentially, a new
instance is created for each HttpContext instance, and whenever
GetService is called within the same HttpContext, the identical
TService instance is returned.

In summary, there are four lifetime options for the objects
returned from the service collection implementation: Instance,
Singleton, Transient and Scoped. The last three are defined in
the ServiceLifetime enum (bit.ly/1SFtcaG). Instance, however, is
missing, because it’s a special case of Scoped in which the con-
text doesn't change.

Earlier I referred to the ServiceCollection as conceptually like
a name-value pair with the TService type serving as the lookup.
The actual implementation of the ServiceCollection type is done
in the ServiceDescription class (see bit.ly/1SFoDgu). This class pro-
vides a container for the information required to instantiate the
TService, namely the ServiceType (TService), the Implementation-
Type or ImplementationFactory delegate along with the ServiceLife-
time. Inaddition to the ServiceDescriptor constructors, there are a
host of static factory methods on ServiceDescriptor that help with
instantiating the ServiceDescriptor itself.

Regardless of which lifetime you register your TService with, the
TService itself must be a reference type, not a value type. Whenever
you use a type parameter for TService (rather than passing Type as
a parameter) the compiler will verify this with a generic class con-
straint. One thing, however, thats not verified is using a TService

msdnmagazine.com

of type object. You'll want to be sure to avoid this, along with any
other non-unique interfaces (such as IComparable, perhaps). The
reason is that if you register something of type object, no matter
what TService you specify in the GetService invocation, the object
registered as a TService type will always be returned.

Dependency Injection for the DI Implementation
ASPNET leverages DI to such an extent that, in fact, you can DI
within the DI framework itself. In other words, you'e not limited
to using the ServiceCollection implementation of the DI mecha-
nism found in Microsoft. Extensions.Dependencylnjection. Rath-
er, as long as you have classes that implement [ServiceCollection
(defined in Microsott. Extensions. Dependencylnjection. Abstractions;
see bit.ly/1Skdm1z) or IServiceProvider (defined within the System
namespace of NET Core lib framework) you can substitute your
own DI framework or leverage one of the other well-established
DI frameworks including Ninject (ninject.org, with a shout out to
@lanfDavis for his work maintaining this over the years) and
Autofac (autofac.org).

Wrapping Up

As with NET Core Logging and Configuration, the NET Core
DI mechanism provides a relatively simple implementation of its
functionality. While you're unlikely to find the more advanced DI
functionality of some of the other frameworks, the .NET Core
version is lightweight and a great way to get started. Furthermore
(and, again, like Logging and Configuration), the NET Core imple-
mentation can be replaced with a more mature implementation.
Thus, you might consider leveraging the NET Core DI framework
asa “wrapper” through which you can plug in other DI frameworks
as the need arises in the future. In this way, you don't have to
define your own “custom” DI wrapper, but can leverage NET Cores
as a standard one for which any client/application can plug in a
custom implementation.

One thing to note about ASPNET Core is that it leverages
DI throughout. This is undoubtedly a great practice if you need
it and its especially important when trying to substitute mock
implementations of a library in your unit tests. The drawback
is that rather than a simple call to a constructor with the new
operator, the complexity of DI registration and GetService calls is
needed. I can't help but wonder if perhaps the C# language could
simplify this, but, based on the current C# 7.0 design, that isn't
happening any time soon. L

Mark MicHAELIS is founder of IntelliTect, where he serves as its chief technical
architect and trainer. For nearly two decades he has been a Microsoft MVP, and
a Microsoft Regional Director since 2007. Michaelis serves on several Microsoft
software design review teams, including C#, Microsoft Azure, SharePoint
and Visual Studio ALM. He speaks at developer conferences and has written
numerous books including his most recent, “Essential C# 6.0 (5th Edition)” (itl.tc/
EssentialCSharp). Contact him on Facebook at facebook.com/Mark. Michaelis,
on his blog at IntelliTect.com/Mark, on Twitter: @markmichaelis or via e-mail
at mark@Intelli Tect.com.

THANKS to the following IntelliTect technical experts for reviewing this article:
Kelly Adams, Kevin Bost, Ian Davis and Phil Spokas

June 2016 69

mailto:mark@IntelliTect.com
http://www.msdnmagazine.com
www.bit.ly/1SFoDgu
www.bit.ly/1SKdm1z
www.autofac.org
www.bit.ly/1SFtcaG
www.itl.tc/EssentialCSharp
www.itl.tc/EssentialCSharp
www.facebook.com/Mark.Michaelis
http://intelliTect.com/Mark
www.Twitter.com/markmichaelis
www.ninject.org

U

= CAMPAIGN FOR CODE 2016 = VISUAL STUDIO LIVE!

Visual Studio Live

EXPERT SOLUTIONS FOR .NET DEVELOPERS

VISUAL STUDIO LIVE! is on a Campaign for Code in 2016, and we're taking
a swing through our home state, rallying @ Microsoft Headquarters

in beautiful Redmond, WA. From August 8 — 12, developers, software
REDH““B architects, engineers, designers and more will convene for five days of
unbiased and cutting-edge education on the Microsoft Platform. Plus,
you'll be at the heart of it all: eating lunch with the Blue Badges, rubbing
elbows with Microsoft insiders, exploring the campus, all while expanding
your development skills and the ability to create better apps!

g Visual Studio

magazine

www.vslive.com/redmond

MICROSOFT HO - AUGUST 8-12, 2016

MICROSOFT HEADQUARTERS * REDMOND, WA

Vlsual _S:;tud|0_"" 2

EXPERT SOLLUTION

TURN THE
PAGE FOR
| MORE EVENT
i DETAILS.

CONNECT WITH VISUAL STUDIO LIVE!

linkedin.com - Join the

3 twitter.com/vslive - @VSLive f facebook.com — Search “VSLive” |n “Visual Studio Live” group!

*x Kk ok * Kk ok Kk Kk ok Kk *
TOPICS INCLUDE: = e &

0 ¥ e Y Have your code heard:
S, i) (register to join us today.
» Software Practices -

Scan the QR code to
register or for more
d event details.

> Visual S.tudio/.NET Framework REGISTER BY
Wb Server JUNE 8 AND
» Windows Client SAVE $4UU|

» Microsoft-led Sessions

88 ySE PROMO CODE VSLREDA

VSLIVE.COM/REDMOND

www.vslive.com/redmond
https://twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

MICROSOFT HQ

Visual StUdIO LIVE! AUGUST 812, 2016

EXPERT SOLUTIONS FOR .NET DEVELOPERS

Visual Studio Live! has partnered
with the Hyatt Regency Bellevue
for conference attendees at a
special reduced rate.

Explore the Microsoft Campus
during Visual Studio Live!
Redmond 2016!

REGISTER BY JUNE 8
AND SAVE $400!

Scan the QR code to register
or for more event details.

USE PROMO CODE VSLRED4

VSLIVE.COM/REDMOND

CONNECT WITH VISUAL STUDIO LIVE!

. . . el iy inkedin.com - Join the
u twitter.com/vslive - @VSLive n facebook.com - Search “VSLive' m “Visual Studio Live” group!

EDMOND, WA

ALM / DevOps Cloud Computing Database & Analytics Mobile Client

STARTTIME END TIME

MO1 Workshop: DevOps in a Day
- Brian Randell

MO1 Workshop Continues

START TIME END TIME

TO01 Windows Presentation Foundation (WPF) 4.6 T02 Angular 2 101
- Laurent Bugnion - Deborah Kurata

8:00 AM

T06 Windows 10—The Universal Application: .
One App To Rule Them All? ez Typesf”g;”f.:;(ﬁl# evelopers
- Laurent Bugnion 9

T11 Strike Up a Conversation with e
Cortana on Windows 10 T12 Angular 2 Forms and Validation

- Walt Ritscher - Deborah Kurata

T16 Building Truly Universal Applications i D:ll?tuhggiic'i-lglzre (el

- Laurent Bugnion - Ido Flatow

START TIME END TIME

W01 Real World Scrum with Team Foundation q 5 5
Server 2015 & Visual Studio Team Services TS G irer WNVE s i [l o [

- Benjamin Day - Miguel Castro
W06 Team Foundation Server 2015: W07 Get Good at DevOps: Feature Flag
Must-Have Tools and Widgets Deployments with ASP.NET, WebAPI, & JavaScript
- Richard Hundhausen - Benjamin Day

W11 Stop the Waste and Get Out q q .
A W12 Getting Started with Aurelia
of (Technical) Debt - Brian Noyes

- Richard Hundhausen

W16 Real World VSTS Usage for the Enterprise W17 AngularJS & ASP.NET MVC Playing Nice
- Jim Szubryt - Miguel Castro

N

START TIME END TIME

00 AM THO1 Enterprise Reporting from VSTS THO2 Bugd Real_—t'lt']i?e Wle;)sites and
- Jim Szubryt pps with Signal
- Rachel Appel

THO6 App Services Overview—Web, Mobile, THO7 Breaking Down Walls with Modern Identity
API and Logic Oh My... - Mike Benkovich - Eric D. Boyd
TH12 What You Need To Know About
TH11 Real-World Azure DevOps ASP.NET Core and MVC 6

- Brian Randell - Rachel Appel

TH17 Take Your Site From Ugh to OOH
with Bootstrap
- Philip Japikse

TH21 Migrating Cloud Service Applications TH22 Test Drive Automated GUI Testing
to Service Fabric with WebDriver
- Vishwas Lele - Rachel Appel

START TIME END TIME

m FO1 Workshop: Data-Centric Single Page Apps with Angular 2, Breeze, and Web API
: - Brian Noyes

Speakers and sessions subject to change.

11:00 AM 12:15 PM

TH16 Cloud Oriented Programming
- Vishwas Lele

www.vslive.com/redmond
https://twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com
www.vslive.com/redmond

REDMOND AGENDA AT-A-GLANCE

DETAILS COMING SOON! With all of the announcements coming out of Build, we'll be
finalizing the Redmond Keynotes and the FULL Track of Microsoft-led sessions shortly.
Be sure to check vslive.com/redmond for session updates!

Visual Studio / Microsoft-led

Software Practices Web Client Web Server Windows Client

.NET Framework Sessions
Visual Studio Live! Pre-Conference Workshops: Monday, August 8, 2016 (separate entry fee required)
MO02 Workshop: Developer Dive into SQL Server 2016 MO03 Workshop: Distributed Cross-Platform Application Architecture

- Leonard Lobel - Rockford Lhotka & Jason Bock
Lunch @ The Mixer ¢ Visit the Microsoft Company Store & Visitor Center
MO02 Workshop Continues MO03 Workshop Continues

Dine-A-Round Dinner
Visual Studio Live! Day 1: Tuesday, August 9, 2016
@ KEYNOTE: To Be Announced, Amanda Silver, Director of Program Management, Visual Studio, Microsoft

T03 Go Mobile with C#, Visual Studio, and Xamarin TO04 What's New in SQL Server 2016 ® TO5 This Microsoft session is sequestered,
- James Montemagno - Leonard Lobel details will be released soon
TO08 Using Visual Studio Tools for Apache Cordova T09 No Schema, No Problem! - Introduction s [V B
to Create Multi-Platform Applications to Azure DocumentDB ® .cli-::’ai;rsh\::illlwl;;r?eslzfatssezssslggnls seqlestered,
- Kevin Ford - Leonard Lobel

Lunch - Visit Exhibitors
T13 Create Great Looking Android Applications

Using Material Design
- Kevin Ford

Sponsored Break « Visit Exhibitors

T18 Building Cross-Platform C# Apps with
a Shared Ul Using Xamarin.Forms
- Nick Landry

Microsoft Ask the Experts & Exhibitor Reception « Attend Exhibitor Demos

Visual Studio Live! Day 2: Wednesday, August 10, 2016

T14 Dependencies Demystified @ T15 This Microsoft session is sequestered,
- Jason Bock details will be released soon

T19 Improving Performance in .NET Applications @ T20 This Microsoft session is sequestered,
- Jason Bock details will be released soon

WO5 ASP.NET Core: Reimagining Web
Application Development in .NET
- Ido Flatow

W03 Windows for Makers: Raspberry Pi, Arduino & loT W04 Applying S.O.L.I.D. Principles in .NET/C#
- Nick Landry - Chris Klug

QUCBIE cmAs:;PJT;:[’;:L'%EEAEVQPPS pithlion o W09 Open Source Software for Microsoft Developers ®
9 B 2 - Rockford Lhotka
- Brian Noyes

GENERAL SESSION: To Be Announced

W13 Top 10 Entity Framework Features Every
Developer Should Know

W10 This Microsoft session is sequestered,
details will be released soon

W14 Creating Dynamic Pages Using MVVM and Knockout.JS ® W15 This Microsoft session is sequestered,

Sl lipWagikse - Christopher Harrison details will be released soon
Sponsored Break « Exhibitor Raffle @ 2:55 pm (Must be present to win)
W18 Predicting the Future Using Azure Machine Learning W19 This session is sequestered, @ W20 This Microsoft session is sequestered,

- Eric D. Boyd details will be released soon details will be released soon

Set Sail! VSLive's Seattle Sunset Cruise on Lake Washington

Visual Studio Live! Day 3: Thursday, August 11, 2016

THO4 Pretty, Yet Powerful. How Data Visualization

THO3 Write Better C# Transforms the Way we Comprehend Information

THO5 Docker and Azure

- James Montemagno “Walt Ritscher - Steve Lasker
THO8 Debugging Your Way through .NET with THO09 Windows 10 Design Guideline Essentials @ TH10 This Microsoft session is sequestered,

Visual Studio 2015 - /do Flatow - Billy Hollis details will be released soon
TH13 Build Distributed Business Apps Using CSLA .NET TH14 Learning to Live Without Data Grids in Windows 10 ® TH15 This Microsoft session is sequestered,

- Rockford Lhotka - Billy Hollis details will be released soon

Lunch @ The Mixer « Visit the Microsoft Company Store & Visitor Center

TH18 PowerShell for Developers TH19 Busy JavaScript Developer'sGuide to ECMAScript 6 ® TH20 This Microsoft session is sequestered,

- Brian Randell - Ted Neward details will be released soon
ULEE Tg:;:bﬁiz;;se ch()altGDEecyg?\lné;yizv;sgwres &l TH24 Busy Developers Guide to Node.js ® TH25 This Microsoft session is sequestered,

- Ted Neward details will be released soon

- Mike Benkovich
Visual Studio Live! Post-Conference Workshops: Friday, August 12, 2016 (separate entry fee required)

F02 Workshop: Building Business Apps on the Universal Windows Platform
- Billy Hollis

= i = o

VSLIVE.COM/REDMOND

www.vslive.com/redmond
www.vslive.com/redmond

MobDEerN Apps

FRANK LA VIGNE

Playing with Audio in the UWP

The Universal Windows Platform (UWP) has rich APIs for recording
audio and video. However, the feature set doesn't stop at recording.
With just a few lines of code, developers can apply special effects
to audio in real time. Effects such as reverb and echo are built into
the APIand are quite easy to implement. In this article, I'll explore
some of the basics of audio recording and applying special effects.
I'll create a UWP app that can record audio, save it, and apply var-
ious filters and special effects.

Setting up the Project to Record Audio

Recording audio requires the app to have permission to access the
microphone and that requires modifying the apps manifest file. In
Solution Explorer, double-click on the Package.appxmanifest file.
It'll always be the in-root of the project.

Once the app manifest file editor window opens, click on the
Capabilities tab. In the Capabilities list box, check the Microphone
capability. This will allow your app access to the end users micro-
phone. Without this, your app will throw an exception when you
try to access the microphone.

Recording Audio

Before you start adding special effects to audio, you first want to be
able to record audio. This is fairly straightforward. First,add a class
to your project to encapsulate all the audio recording code. You'll
call this class AudioRecorder. It ll have public methods to startand
stop recording, as well as to play the audio clip you just recorded.
To do this, you'll need to add some members to your class. The
first of these will be MediaCapture, which provides capabilities
for capturing audio, video and images from a capture device, such
as a microphone or webcam:

private MediaCapture _mediaCapture;

You'll also want to add an InMemoryRandomAccessStream to
capture the input from the microphone into memory:

private InMemoryRandomAccessStream _memoryBuffer;

In order to keep track of the state of your recording, you'll add
a publicly accessible property Boolean to your class:

public bool IsRecording { get; set; }

Recording the audio requires you to check if you're already
recording and if you are, the code will throw an exception. Other-
wise, you'll need to initialize your memory stream, delete the
previous recording file and start recording.

Code download available at bit.ly/10bYYlb.

74 msdn magazine

Because the MediaCapture class provides multiple functions,
you'll have to specify that you want to capture audio. You'll create
an instance of MediaCapturelnitializationSettings to do just that.
The code then creates an instance of a MediaCapture object and
passes the MediaCapturelnitializationSettings to the Initialize Async
method, as shown in Figure 1. Finally, you'll tell the MediaCapture
object to start recording, passing along parameters that it records
in MP3 format and where to store the data.

Stopping the recording requires far fewer lines of code:

public async void StopRecording()

{
await _mediaCapture.StopRecordAsync();
IsRecording = false;
SaveAudioToFile();

}

The StopRecording method does three things: it tells the Media-
Capture object to stop recording, sets the recording state to false
and saves the audio stream data to an MP3 file on disk.

Saving Audio Data to Disk

Once the captured audio data is in the InMemoryRandom-
AccessStream, you want to save the contents onto disk, as shown
in Figure 2. Saving audio data from an in-memory stream requires
you to copy the contents over to another stream and then push that
data onto disk. Using the utilities in the Windows.Application-
Model.Package namespace, you're able to get the path to your apps
install directory. (During development, this will be in the \bin\x86\
Debug directory of the project.) This is where you want the file to

Figure 1 Creating an Instance of a MediaCapture Object

public async void Record()
{
if (IsRecording)
(
throw new InvalidOperationException("Recording already in progress!");
}

await Initialize();
await DeleteExistingFile();

MediaCaptureInitializationSettings settings =
new MediaCaptureInitializationSettings
(
StreamingCaptureMode = StreamingCaptureMode.Audio
N

_mediaCapture = new MediaCapture();

await _mediaCapture.InitializeAsync(settings);

await _mediaCapture.StartRecordToStreamAsync(
MediaEncodingProfile.CreateMp3(AudioEncodingQuality.Auto), _memoryBuffer);

IsRecording = true;

www.bit.ly/1ObYYIb

: Enable users to wsuahze data with

ot comprehensrve Excel compatrble'c- _

~which makes creatmg modlfytng I_renderr :

_ : and mteractlng Wlth complex tharts as;e
~ than ever before i

asrly'create nch!y formatted Exce! E
. reports \ without Excel from any =
- ASP.NET, Windows Forms \X/PF ori 15
Sllverhght appllcatlon S

Download your free fuliy functronal evaluatnon at Spreadsheerﬁear com

= Spreadsheetiea

Toll Free USA (888) ';‘_?4 3273 | Phone {913).390 4797 | sates@spreadshcetgcancom

www.spreadsheetGear.com

Figure 2 Saving Audio Data to Disk

private async void SaveAudioToFile()

{
IRandomAccessStream audioStream = _memoryBuffer.CloneStream();
StorageFolder storageFolder = Package.Current.InstalledlLocation;

StorageFile storageFile = await storageFolder.CreateFileAsync(
DEFAULT_AUDIO_FILENAME, CreationCollisionOption.GenerateUniqueName);
this._fileName = storageFile.Name;

using (IRandomAccessStream fileStream =
await storageFile.OpenAsync(FileAccessMode.ReadWrite))

{
await RandomAccessStream.CopyAndCloseAsync(

audioStream.GetInputStreamAt(0), fileStream.GetOutputStreamAt(0));

await audioStream.FlushAsync();
audioStream.Dispose();

}

}

be recorded. You could easily modify the code to save elsewhere
or have the user pick where to save the file.

Playing Audio

Now that you have your audio data inside an in-memory buffer

and on disk, you have two choices to play from: memory and disk.
The code for playing the audio from memory is quite simple.

You create a new instance of the MediaElement control, set its

source to the in-memory buffer, pass it a MIME type and then

call the Play method.

public void Play()

{
MediaElement playbackMediaElement = new MediaElement();
playbackMediaETement.SetSource(_memoryBuffer, "MP3");
playbackMediaElement.Play();

}

Playing from disk requires a little extra code, as opening files is
an asynchronous task. In order to have the UI thread communi-
cate with a task running on another thread, you'll need to use the
CoreDispatcher. The CoreDispatcher sends messages between the
thread a given piece of code is running on and the Ul thread. With
it, code can get the UI context from another thread. For an excel-
lent description of CoreDispatcher, read David Crook’s blog post
on the subject at bit.ly/1SbJ6up.

Aside from the extra steps to handle the asynchronous code, the
method resembles the previous one that uses the in-memory buffer:

public async Task PlayFromDisk(CoreDispatcher dispatcher)
{
await dispatcher.RunAsync(CoreDispatcherPriority.Normal, async () =>
{
MediaElement playbackMediaElement = new MediaElement();
StorageFolder storageFolder = Package.Current.Installedlocation;
StorageFile storageFile = await storageFolder.GetFileAsync(this._fileName);
IRandomAccessStream stream = await storageFile.OpenAsync(FileAccessMode.Read);

playbackMediaElement.SetSource(stream, storageFile.FileType);
playbackMediaETement.Play();

record and a button to play back the recorded audio, as shown
in Figure 3. Accordingly, the XAML is simple: a TextBlock and a
stack panel with two buttons:

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<Grid.RowDefinitions>
<RowDefinition Height="43"/>
<RowDefinition Height="*"/>
</Grid.RowDefinitions>
<TextBlock FontSize="24">Audio in UWP</TextBlock>
<StackPanel HorizontalAlignment="Center" Grid.Row="1" >
<Button Name="btnRecord" Click="btnRecord_Click">Record</Button>
<Button Name="btnPlay" Click="btnPlay_Click">Play</Button>
</StackPanel>
</Grid>

In the codebehind class, you create a member variable of Audio-
Recorder. This will be the object your app uses to record and play
back audio:

AudioRecorder _audioRecorder;

You'll instantiate the AudioRecorder class in the constructor of
your apps MainPage:

public MainPage()
{
this.InitializeComponent();
this._audioRecorder = new AudioRecorder();
}

The btnRecord button actually toggles the starting and stopping
ofaudio recording. In order to keep the user informed of the current
state of the AudioRecorder, the btnRecord_Click method changes the
content of the btnRecord button, as well as starts and stops recording.

You have two options for the event handler for the btnPlay button:
to play from the in-memory buffer or play froma file stored on disk.

To play from the in-memory buffer, the code is straightforward:

private void btnPlay_Click(object sender, RoutedEventArgs e)
{

this._audioRecorder.Play();
}

As I mentioned previously, playing the file from disk happens
asynchronously. This means that the task will run on a different
thread than the Ul thread. The OS scheduler will determine what
thread the task will execute on at run time. Passing the Dispatcher
object to the PlayFromDisk method allows the thread to get access
to the UT context of the UI thread:

private async void btnPlay_Click(object sender, RoutedEventArgs e)
{

await this._audioRecorder.PlayFromDisk(Dispatcher);
}

Applying Special Effects
Now that you have your app recording and playing back audio, the
time has come to explore some of the lesser-known features in the
UWP: real-time audio special effects. Included within the APIs in
the Windows.Media.Audio namespace are a number of special
effects that can add an additional touch to apps.

For this project, you'll place all the special effects code into its own
class. However, before you create the new class, you'll make one last

. hs modification to the AudioRecorder class. I'lladd the following method:
public async Task<StorageFile>
— GetStorageFile(CoreDispatcher dispatcher)

Building the Ul Audio in UWP S o

. . torageFolder storageFolder =
With the AudioRecorder class complete, the Record Paciage'mrent'Igsta”edmcatmn;
only thing left to do is build out the interface = Storagefile storageFile =

. . . . L await storageFolder.GetFileAsync(this._fileName);

for the app. The interface for this project is return storageFile;
quite simple, as all you need is a button to Figure 3 AudioRecorder Ul }

76 msdn magazine

Modern Apps

www.bit.ly/1SbJ6up

The GetStorageFile method returns a StorageFile object to the saved
audio file. This is how my special effects class will access the audio data.

Introducing the AudioGraph
The AudioGraph class is central to advanced audio scenarios in
the UWP. An AudioGraph can route audio data from input source
nodes to output source nodes through various mixing nodes. The
tull extent and power AudioGraph lies beyond the scope of this
article, but its something I plan to dive more deeply into in future
articles. For now, the important point is that every node in an
audio graph can have multiple audio effects applied to them. For
more information on AudioGraph, be sure to read the article on
the Windows Dev Center at bit.ly/1VCIBD.

First, you'll want to add a class called AudioEffects to your project
and add the following members:

private AudioGraph _audioGraph;
private AudioFileInputNode _fileInputNode;
private AudioDeviceQutputNode _deviceOutputNode;

In order to create an instance of the AudioGraph class, you need
to create an AudioGraphSettings object, which contains the con-
figuration settings for the AudioGraph. You then call the Audio-
Graph.CreateAsync method passing these configuration settings.
The CreateAsync method returns a CreateAudioGraphResult
object. This class provides access to the created audio graph and a
status value whether the audio graph creation failed or succeeded.

You also need to create an output node to play the audio. To do
so, call the CreateDeviceOutputNodeAsync method on the Audio-
Graph class and set the member variable to the DeviceOutputNode
property of the CreateAudioDeviceOutputNodeResult. The code
to initialize the AudioGraph and the AudioDeviceOutputNode all
resides in the InitializeAudioGraph method here:

public async Task InitializeAudioGraph()

{

AudioGraphSettings settings = new AudioGraphSettings(AudioRenderCategory.Media);
CreateAudioGraphResult result = await AudioGraph.CreateAsync(settings);
this._audioGraph = result.Graph;
CreateAudioDeviceOutputNodeResult outputDeviceNodeResult =

await this._audioGraph.CreateDeviceOutputNodeAsync();
_deviceOutputNode = outputDeviceNodeResult.DeviceOutputNode;

}

Playing audio from an AudioGraph object is easy; simply call
the Play method. Because the AudioGraph is a private member
of your AudioEffects class, you'll need to wrap a public method
around it to make it accessible:

pubTic void Play()

{
this._audioGraph.Start();
}

Now thatyou have the output device node created on the AudioGraph,
you need to create an input node from the audio file stored on disk.
You'll also need to add an outgoing connection to the FileInputNode.
In this case, you want the outgoing node to be your audio output
device. Thats exactly what you do in the LoadFileIntoGraph method:

public async Task LoadFileIntoGraph(StorageFile audioFile)
{
CreateAudioFileInputNodeResult audioFileInputResult =
await this._audioGraph.CreateFileInputNodeAsync(audioFile);

_fileInputNode = audioFileInputResult.FileInputNode;
_fileInputNode.AddOutgoingConnection(_deviceOutputNode);

CreateAndAddEchoEffect();
}

msdnmagazine.com

You'll also notice a reference to the CreateAndAddEchoEffect
method, which I'll discuss next.

Adding the Audio Effect

There are four built-in audio eftects in the audio graph API: echo,
reverb, equalizer and limiter. In this case, you want to add an echo
to the recorded sound. Adding this effect is as easy as creating an
EchoEffectDefition object and setting the properties of the eftect.
Once created, you need to add the effect definition to a node. In
this case, you want to add the effect to the _fileInputNode, which
contains the audio data recorded and saved onto disk:

private void CreateAndAddEchoEffect()
{

EchoEffectDefinition echoEffectDefinition = new
EchoEffectDefinition(this._audioGraph);

echoEffectDefinition.Delay = 100.0f;
echoEffectDefinition.WetDryMix = 0.7f;
echoEffectDefinition.Feedback = 0.5f;

_fileInputNode.EffectDefinitions.Add(echoEffectDefinition);
}

Playing audio from an
AudioGraph objectis easy.

Putting It All Together

Now that you have the AudioEffect class completed, you can use

it from the UL First, you'll add a button to your apps main page:
<Button Content="Play with Special Effect" Click="btnSpecialtffectPlay_Click" />
And inside the click event handler, you get the file where the

audio data is stored, create an instance of the AudioEffects class

and pass it to the audio data file. Once thats all done, all you need

to do to play the sound is call the Play method:

private async void btnSpecialEffectPlay_Click(object sender, RoutedEventArgs e)
{
var storageFile = await this._audioRecorder.GetStorageFile(Dispatcher);
AudioEffects effects = new AudioEffects();
await effects.InitializeAudioGraph();
await effects.LoadFileIntoGraph(storageFile);
effects.Play();
}

You run the app and click Record to record a small clip. To hear
itas it was recorded, click the Play button. To hear the same audio
with an echo added to it, click Play with Special Eftect.

Wrapping Up

The UWP not only has rich support for capturing audio, but it
also has some superb features to apply special effects to media in
real time. Included with the platform are several effects that can
be applied to audio. Among these are echo, reverb, equalizer and
limiter. These eftects can be applied individually or in any number
of combinations. The only limit is your imagination. L

Frank La VIGNE is a technology evangelist on the Microsoft Technology and Civic
Engagement team, where he helps users leverage technology in order to create a
better community. He blogs regularly at FranksWorld.com and has a YouTube
channel called Franks World TV (youtube.com/FranksWorldTV).

THANKS to the following technical experts for reviewing this article: Drew
Batchelor and Jose Luis Manners

June 2016 77

http://www.msdnmagazine.com
www.bit.ly/1VCIBfD
www.FranksWorld.com
www.youtube.com/FranksWorldTV

_\ﬂ ?ﬁ:-r 7he Ultimate £ducatwn T)eatumatwn

Live! 360+ is a uniqgue conference where the IT and
Developer community converge to debate leading edge
technologies and educate themselves on current ones.

These six co-located events incorporate knowledge transfer
and networking, along with finely tuned education and training,
as you create your own custom conference, mixing and matching
sessions and workshops to best suit your needs.

Choose the ultimate education destination: Live! 360.

B~ Microsoft Magenic = GRIDSTORE) GOVERLAN pq Visual Studic msdn Redon! Partner

www.live360events.com

Take the Tour

Visual Studio @

EXPERT SOLUTIONS FOR .NET DEVELOPERS

Visual Studio Live!: VSLive!™is a victory for code,
featuring unbiased and practical development
training on the Microsoft Platform.

SQL Server

TRAINING FOR DBAs AND IT PROS

SQL Server Live!: This conference will leave you with
the skills needed to Lead the Data Race, whether you
are a DBA, developer, IT Pro, or Analyst.

[ECHMENTOR

IN-DEPTH TRAINING FOR IT PROS

TechMentof: This is IT training that finishes first, with
zero marketing speak on topics you need training on
now, and solid coverage on what's around the corner.

Connect with Tive! 360

twitter.com/live360
@live360

Office & SharePoint Live!: Provides leading-
edge knowledge and training for SharePoint
both on-premises and in Office 365 to maximize

the business value.
facebook.com

Search "Live 360"

Join the #Livet 360" group! Modern AppS

MOBILE, CROSS-DEVICE & CLOUD DEVELOPMENT

Modern Apps Live!: Presented in partnership with
Magenic, this unique conference leads the way to
learning how to architect, design and build a complete

REGISTER, TODAY Modern App.
AND SAVE $500!

Use promo code T

TRENDS
Scan the QR code to App Dev Trends: This new technology

register or for more conference focuses on the makers & maintainers of
event details. the software that Power organizations in nearly every
industry in the world — in other words, enterprise

software professionals!

PRODUCED BY

Redmond ViRTUALiZiTION DS\ EDIA- LIVE360EVENTS.COM

MASAZINE

www.live360events.com
https://twitter.com/live360events
https://facebook.com/live360events
https://www.linkedin.com/

.. DON'T GET ME STARTED

DAVID S. PLATT

The Joy of UX

Ten years ago, I published my book, “Why Software Sucks; high-
lighting the UX shortcomings of current programs. I thought it
would save the world, but it didn't. When T asked devs why they
didn't fix the problems I described, they said, “We don't know how,
and we're too busy

Limplored Microsoft to fix the former problem, but it wouldnt. As
aproduct-oriented company, Microsoft explains in great detail how
to implementa feature, butalmost never when to use itand when not
to. And in the few spots where Microsoft does provide such guidance,
the company undermines it by doing exactly the opposite in its own
applications (see my May 2013 column at msdn.com/magazine/dn198249).

Enough! I cant stand it any longer. I've written another book to fix
both of these problems together and save the world. Addison-Wesley
published it last month. I call it “The Joy of UX” Any similarity to
“The Joy of Sex” is one heck of a coincidence, isn't it?

Written for an audience
who knew nothing about
cooking, that book famously
opened with the instructions,
“Stand facing the stove!

I also wanted to emulate the original “Joy of Cooking” Writ-
ten for an audience who knew nothing about cooking, that book
famously opened with the instructions, “Stand facing the stove”
As one reviewer writes, it targeted readers who were, ... busy, not
really interested in cooking, but eager to bring off a dashing effect
with a minimum of effort”

That describes you, dear reader, doesn't it? You know youd make
more money with a better UX. But you don't have resources for a
full UX department, and if your company already has one, you
cant get much attention from them. Raising your UX game is up
to you, the front-line geek. You wish you could read Alan Cooper’s
‘About Face” cover to cover, but you don't have time, and its level
of detail makes it hard to apply.

Fear not. Plattskis got you covered. My “Joy” is short, only 212
pages. I've extracted the 20 percent of principles that you use 80
percent of the time. I've compiled them into seven easy steps, the

80 msdn magazine

totality of which T have named (with characteristic modesty) the
Plattski UX Protocol. Figure out who the user is. Figure out what
problem the user is trying to solve. Make low-fidelity mockups in
a sketch editor, then try them on actual users or their representa-
tives. Modify mockups based on the results. (And a few other easy
steps.) Rinse. Repeat. Profit.

The last two chapters contain case studies applying these princi-
ples to two real-life programs—the MBTA commuter rail mobile
app, and Beth Israel Hospitals PatientSite.org Web site. Early readers
tell me that this is their favorite part of the book. You'll find a sam-
ple chapter and more case studies at joyofux.com.

My other books have targeted specific technologies, and waned as
those technologies aged. This one is different. The same principles,
and therefore the same development steps, apply to all applications,
regardless of platform. It doesn't matter whether you're on Xamarin
or HTMLS5 or Windows Forms or Web Forms or even VB6. You
don't have to upgrade to a fancy graphical environment to make
your users much happier. Just start listening to them, as I show you.

Above all, start these steps early in the development process.
Teams way too often say, “We'll work on the UX once we have the
architecture fleshed out” The UX is your architecture, as I wrote
in my September 2011 column (msdn.com/magazine/hh394140). Until
you've involved your users, you dont know what they need or want.
An apps basic feature set always changes, often drastically, after
users react to the first mockups.

If you really want to get moving, I'll bring this guidance to you
personally through my jumpstart workshops, in which I come to
your company and guide you through these steps on your own
projects. Because summer is my slow season, I'm offering a half-
price deal through Sept. 1. Check it out on the book's Web site and
give me a call.

The “Joy of Cooking™ has remained in print continuously since
1936 and sold more than 18 million copies through eight editions. If
I keep “The Joy of UX” up-to-date, it might outlast me. Perhaps my
daughters will take it over, as Marion Rombauer Becker took over the
original “Joy of Cooking” from her mother Irma Rombauer. Stand
facing the users, my friends.]

Davip S. PLATT teaches programming . NET at Harvard University Extension School
and at companies all over the world. Hes the author of 11 programming books,
including “Why Software Sucks” (Addison- Wesley Professional, 2006) and “Intro-
ducing Microsoft NET” (Microsoft Press, 2002). Microsoft named him a Software
Legend in 2002. He wonders whether he should tape down two of his daughters
fingers so she learns how to count in octal. You can contact him at rollthunder.com.

http://msdn.com/magazine/dn198249
www.PatientSite.org
www.joyofux.com
www.rollthunder.com
http://msdn.com/magazine/hh394140

el NE\I?ON www.nevron.com

~~ NEVRON
~" OPEN VISION for .NET

The Complete Ul suite for .NET

o

SCHEDULER

s -
= ——
- [——
[= [——

Nevron Open Vision is the first and only .NET component suite that allows you to develop cutting edge
Applications, Dashboards and User Interfaces for Windows (WinForms and WPF) and Mac (MonoMac
and Xamarin.Mac) from a Single Code Base.

It includes advanced Ul controls such as Chart, Diagram, Grid, Text Editor, Scheduler, Gauges and
Barcodes as well a complete set of Ul controls (ListBox, TreeView, ComboBox, Color Pickers etc.).

The conftrols in those suites seamlessly integrate in
Microsoft

Silverlight ‘ s WPF ‘ am WinForms ‘ €@ Xamarin

All conftrols in the suite are completely windowless, styleable and open for customization.

Learn more at www.nevron.com today

www.nevron.com | email@nevron.com | +1888-201-6088 (Toll free, USA and Canada) 5q Visual Studio

Microsoft, .NET, ASP.NET, SharePoint, SQL Server and Visual Studio are registered trademarks of Microsoft Corporation in the United States and/or other countries.
Some Nevron components are only available for certain platforms. For details visit www.nevron.com or send and e-mail to support@nevron.com. Partner

www.nevron.com

D As H B oA H D "$787,328 “l_—
PLATFORM - ""'_

BUSINESS DASHBOARDS SIMPLIFIED

i

i
M|
I

* The complete solution for creating and sharing interactive business dashboards.
* Includes a user-friendly drag-and-drop designer and widgets to visualize your dashboards.
* |ntegrates seamlessly with the Syncfusion Big Data Platform.

* Connects to commonly used data sources like Microsoft Excel, SQL Server, Oracle,
MySQL and Spark SQL.

Deploy to 50 users for only $1,995 per year

FREE COMMUNITY LICENSE AVAILABLE!

Ready to get started?

Download a free trial

www.syncfusion.com/msdndashboard ==:Sgncfusion“’
[]|

www.syncfusion.com/msdndashboard

	Back
	Print
	MSDN Magazine, June 2016
	Cover Tip
	Front
	Back

	Contents
	CUTTING EDGE: Building an Historical CRUD, Part 2
	Use Custom Middleware to Detect and Fix 404s in ASP.NET Core Apps
	Scale Asynchronous Client-Server Links with Reactive
	Language-Agnostic Code Generation with Roslyn
	Microsoft Azure Media Services and Power BI
	Using Azure App Services to Convert a Web Page to PDF
	Speed Up Your Mobile Development Using an MBaaS Platform
	TEST RUN: Introduction to Prediction Markets
	THE WORKING PROGRAMMER: How To Be MEAN: Passport
	ESSENTIAL .NET: Dependency Injection with .NET Core
	MODERN APPS: Playing with Audio in the UWP
	DON’T GET ME STARTED: The Joy of UX

	Visual Studio Live! - Insert

