
magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS APRIL 2016 VOL 31 NO 4

Cross-Platform Development
with .NET Core.....................20

 0416msdn_CoverTip_8x10.75.indd 1 0416msdn_CoverTip_8x10.75.indd 1 3/10/16 1:00 PM3/10/16 1:00 PM

www.devexpress.com/try

 0416msdn_CoverTip_8x10.75.indd 2 0416msdn_CoverTip_8x10.75.indd 2 3/10/16 1:00 PM3/10/16 1:00 PM

www.devexpress.com/try

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS APRIL 2016 VOL 31 NO 4

.NET Goes Cross-Platform with .NET Core
Phillip Carter and Zlatko Knezevic...20

Microsoft Pushes C++ into the Future
Kenny Kerr..24

Using Ionic and TACO to Create
Cross-Platform Mobile Apps
Adam Tuliper..32

Data Processing and Machine
Learning on Spark
Eugene Chuvyrov...40

Develop an Azure-Connected IoT Solution
in Visual Studio with C++
Marc Goodner...52

COLUMNS
UPSTART
Ordinary People
Krishnan Rangachari, page 6

CUTTING EDGE
Pushing Notifications
to Mobile Apps
Dino Esposito, page 8

DATA POINTS
Handling the State of
Disconnected Entities in EF
Julie Lerman, page 14

ESSENTIAL .NET
Logging with .NET Core
Mark Michaelis, page 64

MODERN APPS
Writing UWP Apps for the
Internet of Things
Frank La Vigne, page 70

DON’T GET ME STARTED
Gods and Fools
David Platt, page 80

Cross-Platform Development
with .NET Core.....................20

0416msdn_C1_v1.indd 1 3/10/16 2:45 PM

Break free from Oracle

Get the one data solution that has everything you need—
mission-critical performance, business intelligence, and
advanced analytics—all built in.

As the new industry leader in data, SQL Server has no equal.

Now is the time to move your Oracle
databases to SQL Server with free licenses.*

*SSofoftwt arreee AsAsAssususurararancnce e e susuuuubbbsbsbb crcrripii tiononoo rreqeqqqqqqquiuiuiiuiu rererererereedddddddddddd

Limited Time Offer. Learn more.
www.microsoft.com/break-free
1-800-867-3163

Untitled-6 2Untitled-6 2 3/9/16 1:24 PM3/9/16 1:24 PM

http://www.microsoft.com/break-free

Untitled-6 3Untitled-6 3 3/9/16 2:35 PM3/9/16 2:35 PM

http://marketplace.visualstudio.com
www.vspartner.com
www.aka.ms/javatc
www.aka.ms/buildvs

msdn magazine2

ID STATEMENT MSDN Magazine (ISSN 1528-4859) is
published monthly by 1105 Media, Inc., 9201 Oakdale
Avenue, Ste. 101, Chatsworth, CA 91311. Periodicals
postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offices. Annual subscription rates
payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in
U.S. funds are: U.S. $25.00, International $25.00. Single
copies/back issues: U.S. $10, all others $12. Send orders
with payment to: MSDN Magazine, P.O. Box 3167, Carol
Stream, IL 60132, email MSDNmag@1105service.com
or call (847) 763-9560. POSTMASTER: Send address
changes to MSDN Magazine, P.O. Box 2166, Skokie,
IL 60076. Canada Publications Mail Agreement No:
40612608. Return Undeliverable Canadian Addresses
to Circulation Dept. or XPO Returns: P.O. Box 201,
Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part
prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 4 Venture,
Suite 150, Irvine, CA 92618.

LEGAL DISCLAIMER The information in this magazine
has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed
or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While
the information has been reviewed for accuracy, there
is no guarantee that the same or similar results may be
achieved in all environments. Technical inaccuracies may
result from printing errors and/or new developments
in the industry.

CORPORATE ADDRESS 1105 Media, 9201 Oakdale Ave.
Ste 101, Chatsworth, CA 91311 www.1105media.com

MEDIA KITS Direct your Media Kit requests to Chief
Revenue Officer Dan LaBianca, 972-687-6702 (phone),
972-687-6799 (fax), dlabianca@1105media.com

REPRINTS For single article reprints (in minimum
quantities of 250-500), e-prints, plaques and posters
contact: PARS International Phone: 212-221-9595.
E-mail: 1105reprints@parsintl.com.
www.magreprints.com/QuickQuote.asp

LIST RENTAL This publication’s subscriber list, as well as
other lists from 1105 Media, Inc., is available for rental.
For more information, please contact our list manager,
Jane Long, Merit Direct. Phone: 913-685-1301;
E-mail: jlong@meritdirect.com;
Web: www.meritdirect.com/1105

Reaching the Staff
Staff may be reached via e-mail, telephone, fax, or mail.
A list of editors and contact information is also available
online at Redmondmag.com.
E-mail: To e-mail any member of the staff, please use the
following form: FirstinitialLastname@1105media.com
Irvine Office (weekdays, 9:00 a.m. – 5:00 p.m. PT)
Telephone 949-265-1520; Fax 949-265-1528
4 Venture, Suite 150, Irvine, CA 92618
Corporate Office (weekdays, 8:30 a.m. – 5:30 p.m. PT)
Telephone 818-814-5200; Fax 818-734-1522
9201 Oakdale Avenue, Suite 101, Chatsworth, CA 91311
The opinions expressed within the articles and other
contentsherein do not necessarily express those of
the publisher.

President
Henry Allain

Chief Revenue Officer
Dan LaBianca

Chief Marketing Officer
Carmel McDonagh

ART STAFF

Creative Director Jeffrey Langkau
Associate Creative Director Scott Rovin
Senior Art Director Deirdre Hoffman
Art Director Michele Singh
Assistant Art Director Dragutin Cvijanovic
Graphic Designer Erin Horlacher
Senior Graphic Designer Alan Tao
Senior Web Designer Martin Peace

PRODUCTION STAFF

Print Production Coordinator Lee Alexander

ADVERTISING AND SALES

Chief Revenue Officer Dan LaBianca
Regional Sales Manager Christopher Kourtoglou
Account Executive Caroline Stover
Advertising Sales Associate Tanya Egenolf

ONLINE/DIGITAL MEDIA

Vice President, Digital Strategy Becky Nagel
Senior Site Producer, News Kurt Mackie
Senior Site Producer Gladys Rama
Site Producer Chris Paoli
Site Producer, News David Ramel
Director, Site Administration Shane Lee
Site Administrator Biswarup Bhattacharjee
Front-End Developer Anya Smolinski
Junior Front-End Developer Casey Rysavy
Executive Producer, New Media Michael Domingo
Office Manager & Site Assoc. James Bowling

LEAD SERVICES

Vice President, Lead Services Michele Imgrund
Senior Director, Audience Development
& Data Procurement Annette Levee
Director, Audience Development
& Lead Generation Marketing Irene Fincher
Director, Client Services & Webinar
Production Tracy Cook
Director, Lead Generation Marketing Eric Yoshizuru
Director, Custom Assets & Client Services Mallory Bundy
Senior Program Manager, Client Services
& Webinar Production Chris Flack
Project Manager, Lead Generation Marketing
Mahal Ramos
Coordinator, Lead Generation Marketing
Obum Ukabam

MARKETING

Chief Marketing Officer Carmel McDonagh
Vice President, Marketing Emily Jacobs
Senior Manager, Marketing Christopher Morales
Marketing Coordinator Alicia Chew
Marketing & Editorial Assistant Dana Friedman

ENTERPRISE COMPUTING GROUP EVENTS

Vice President, Events Brent Sutton
Senior Director, Operations Sara Ross
Senior Director, Event Marketing Merikay Marzoni
Events Sponsorship Sales Danna Vedder
Senior Manager, Events Danielle Potts
Coordinator, Event Marketing Michelle Cheng
Coordinator, Event Marketing Chantelle Wallace

Chief Executive Officer
Rajeev Kapur

Chief Operating Officer
Henry Allain

Vice President & Chief Financial Officer
Michael Rafter

Executive Vice President
Michael J. Valenti

Chief Technology Officer
Erik A. Lindgren

Chairman of the Board
Jeffrey S. Klein

General Manager Jeff Sandquist
Director Dan Fernandez
Editorial Director Mohammad Al-Sabt mmeditor@microsoft.com
Site Manager Kent Sharkey
Editorial Director, Enterprise Computing Group Scott Bekker
Editor in Chief Michael Desmond
Features Editor Sharon Terdeman
Features Editor Ed Zintel
Group Managing Editor Wendy Hernandez
Senior Contributing Editor Dr. James McCaffrey
Contributing Editors Dino Esposito, Frank La Vigne, Julie Lerman, Mark Michaelis,
Ted Neward, David S. Platt, Bruno Terkaly
Vice President, Art and Brand Design Scott Shultz
Art Director Joshua Gould

APRIL 2016 VOLUME 31 NUMBER 4

magazine

0416msdn_Masthead_v2_2.indd 2 3/10/16 2:48 PM

mailto:mmeditor@microsoft.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:dlabianca@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/QuickQuote.asp
mailto:jlong@meritdirect.com
http://www.meritdirect.com/1105
mailto:FirstinitialLastname@1105media.com

Untitled-5 1 3/4/16 1:48 PM

www.leadtools.com

msdn magazine4

On March 30 Microsoft holds its annual Build conference in San
Francisco, providing updates and guidance on a host of develop-
ment technologies, platforms and strategies. In a sense, it’s the first
day of the new year on the Microsoft developer calendar.

No surprise, Xamarin and its pending acquisition by Microsoft
are top topics at Build. Developers can expect to learn more about
Microsoft’s plans to improve cross-platform mobile development by
leveraging and integrating Xamarin’s expansive suite of technologies.
As Forrester Research Inc. Vice President and Principal Analyst Jeffrey
Hammond noted after the announcement, Microsoft has developed
a robust portfolio of mobile infrastructure services that tie into the
Microsoft Azure public cloud. With the addition of Xamarin, Microsoft
now has a front-end mobile app dev story to match (see bit.ly/1oW6CQC).

In fact, the Xamarin buy is just the latest in a parade of cross-
platform-minded efforts from Microsoft. Prominent among them:
.NET Core, which is comprised of a modular and cross-platform
runtime and set of APIs that allow you to build cross-platform Web
apps, libraries and console apps. You can expect Microsoft to have

plenty to say about .NET Core at Build. As authors Phillip Carter
and Zlatko Knezevic describe in their feature article this month,
.NET Core opens new opportunities for developers, enabling sce-
narios where apps and services can be deployed and run across
Windows, Mac and Linux machines.

“Developers are genuinely excited about being able to develop
and deploy on their OS of choice,” says Carter, a program manager
on the .NET Team at Microsoft. “Many places have a need to sup-
port more than just Windows as a deploy target. Furthermore, we
believe .NET Core is an attractive offering to developers who aren’t
traditionally focused on Windows and .NET.”

Microsoft has also been busy supporting cross-platform hybrid
app development, by way of Visual Studio Tools for Apache Cordova
(aka TACO). In his article, “Using Ionic and TACO to Create
Cross-Platform Mobile Apps,” Adam Tuliper describes how devel
opers can create compelling UIs for their hybrid apps. He also
looks at the new Cordova Tools extensions for IntelliSense and
debugging in Visual Studio Code.

Finally, Eugene Chuvyrov, a cloud solutions architect at Microsoft,
offers a glimpse at how Microsoft is reaching across platforms in the
Big Data space. His feature, “Data Processing and Machine Learning
on Spark,” explores how the Linux-based, open source Spark frame-
work powers cutting-edge analytics and machine learning in Azure
and Visual Studio.

This is kind of amazing when you think about it. As Chuvyrov
noted to me, “I think the overlooked fact is that an open source
project (Hadoop, Spark) is running as a managed service in Azure
with SLAs and enterprise support.”

Microsoft has come a long way over the last 10 years. It’ll be inter
esting to see how much further the company goes before Build 2017
rolls around.

Build’s Bold Direction

MICHAEL DESMONDEditor’s Note

© 2016 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodified form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affiliated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specific environments and configurations. These recommendations or guidelines may not apply to dissimilar configurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

Developers can expect to learn
more about Microsoft’s plans to
improve cross-platform mobile
development by leveraging and
integrating Xamarin’s expansive

suite of technologies.

0416msdn_DesmondEdNote_v4_4.indd 4 3/14/16 11:45 AM

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine
http://bit.ly/1oW6CQC

Untitled-5 1 9/28/15 4:25 PM

www.amyuni.com

msdn magazine6

Throughout my career, I’ve had a desire to be special. I’ve wanted
to be the best, the youngest, the smartest or the hardest-working
in everything I’ve ever done.

But I came to notice something odd. I would briefly enjoy the
thrill of my achievements, and then brush them off casually—as if
I didn’t really do them. It wasn’t humility. At some level, I felt like
a ghost living someone else’s life. I couldn’t actually identify with
this guy inside me who received all the accolades.

I grew to understand that I sought to be extraordinary because I felt
broken. The only way I couldn’t feel worthless was to be significant.

I realized also that if I could somehow not feel broken, then I
wouldn’t have to work so hard trying to be special. I came to won-
der if I could embrace my own ordinariness; to that end, I’ve been
trying a few experiments.

First: I take on projects that aren’t as exciting or high-profile at
work. They’re projects I’m not immediately drawn to, but where my
skills and expertise are needed. I focus simply on helping others
in such projects.

When I do this, I tell my mind I can take joy in any job, that
I’m not seeking glory. This begins to confuse my mind! It starts to
wonder, “If I’m not seeking glory, does that mean I’m not broken?”

Second: I experiment with humility and silence in new ways.
I let someone else present a project if they want to (and I love to
present). When I feel the urge to destroy someone’s argument, I try
hard to say nothing at all.

Third: I step off the hamster wheel of over-achievement.
Instead of trying to live up to a mythical ideal of a high-achiever, I
take care of my body and actively try to work less. It’s easy for me to
get carried away with work. I can control work—if I get X amount

of work done, I can see Y amount of results—so I seek refuge in it,
because I can’t control life.

In stepping off the career gas pedal, I see that I’m so divorced
from reality that I’m medicating all of my life’s pain—family issues,
relationship problems, existential angst—with work. When some-
one praises me for my work, gives me a promotion or offers me a
raise, they dull the pain of my life. No wonder I’m hooked on work!

When I no longer suffocate the pained parts of me that I’m trying
to repress, it gives me an opportunity to heal the pain itself, straight
at the source.

Fourth: I cultivate a set of spiritual practices—meditation,
prayer, mindfulness—that accept my fundamental smallness and
helplessness in the face of life’s challenges. They allow me to feel like
an actor in a much larger play. I walk and work more slowly, read
books by mystics and spend more time in nature.

I stop being obsessed with trying to be the next Steve Jobs, and
ponder how I can take inspiration from Gandhi’s life instead. With
this new perspective, I have more compassion for myself and others.
Instead of judging myself harshly for not being special enough, I
wonder how I can be even more loving, even more patient, even
more ordinary.

Fifth: I disconnect from people and media that promote sep-
arateness. For me to feel special, I used to have to see others as
broken. But what if life is not a zero sum game? What if I’m just
like everyone else, no matter how amazing I am in business? So,
I cut out news coverage, TV shows, books, and movies focused
on hatred, narcissism, or self-centeredness. I stop being around
complaining friends who feel the world is unfair to them.

I begin to cultivate deep, close relationships with a small hand-
ful of people, instead of superficial relationships with many. To be
ordinary is to live with my own faults, and to accept others’ faults.
To be exceptional is to imagine a world without faults, and to seek
a fantasy where everyone behaves according to my expectations.

The closer I get to annoying family members, troublesome
coworkers and quirky friends, the more I begin to see—in myself—
all of their faults. I realize I could be loved not only in spite of my
faults, but sometimes because of them.

My greatest weakness—my feeling of brokenness—becomes
my greatest strength. It affirms my humanity and, ultimately, my
true ordinariness.	 n

Krishnan Rangachari is a career coach for software engineers. Visit radicalshifts.com
to download his free career success kit.

Ordinary People

Upstart KRISHNAN RANGACHARI

In stepping off the career gas
pedal, I see that I’m so divorced
from reality that I’m medicating

all of my life’s pain—family issues,
relationship problems, existential

angst—with work.

0416msdn_RangachariUpstart_v3_6.indd 6 3/10/16 2:49 PM

www.radicalshifts.com

Untitled-2 1 3/10/16 11:28 AM

www.devexpress.com/spreadsheet

msdn magazine8

In my last few columns, I’ve written
mostly about software design and archi-
tecture. While the role of architecture in
the building of a software system should
never be undervalued or denied, any
application in the end results from the
sum of individual features. It’s the same
User Experience Driven Development
(UXDD) philosophy that says the mea-
sure of success for a software application
is in the experience the user goes through
when she deals with the application. If
your software system comprehends a
mobile front end, then you can hardly
ignore a feature like push notifications.

In this column, I’ll summarize what it takes to add a notification
layer on top of mobile applications, regardless of the mobile OS
itself. In doing so, I’ll review the services of the Microsoft Azure
Notification Hub platform.

Push Notifications at a Glance
A push notification is when a mobile device receives a message from
the application’s back end without first sending an explicit request.
Most of the interactions between the client and server components
of an application occur through an explicit action—typically, a user
action—that solicits feedback. In a way, a push notification is a sort

of unsolicited feedback, a message that the back end sends when
some important information is available. To be precise, the term
“unsolicited” is not completely accurate here. Any mobile applica-
tion must subscribe to the available feed in order to receive push
notifications. However, once subscribed to the service, notifications
arrive in an unsolicited manner.

The net effect of push notifications on
a user is the delivery of relevant updates
whether or not he’s actively using the app.
For example, installing an airliner’s app
probably enables you to receive quick
and timely updates on schedule and
gate changes. At some point your phone
beeps or vibrates and visible feedback
appears somewhere on the phone’s inter-
face. Where exactly it appears, however,
strictly depends on the version of the OS
on which your device is based, as well
as app configuration and user settings.
Depending on the OS, a push notifica-
tion can take the form of an icon on the

top bar, a toast message, a badge update and so on.
The crucial point of push notifications is that all of their technical

aspects are rigorously platform-specific. For example, the way an
application subscribes to a push notification service is different in
iOS, Android, Windows Phone and Universal Windows Platform
(UWP) apps. Likewise, each platform uses its own payload to deliver
messages to connected devices and each platform requires you to
configure a different dispatching engine. In spite of significant dif-
ferences in the actual implementation, I dare say that the overall
architecture of a push notification system (PNS) is quite common
and looks like the diagram in Figure 1.

Working with Multiple Push Notification Systems
It comes as no surprise that the variety of mobile platforms out there
also reflects in a variety of push notification platforms. A developer
creating a mobile app for multiple platforms must become familiar
with multiple different push notification engines and must set up a
proper server environment for each. Unless you’re developing an
app for a single mobile platform with no foreseeable plans to port
it to other platforms, you might want to look into cross-platform
PNSes, as shown in Figure 2. Compared to the diagram in Fig-
ure 1, the new architecture adds one more layer and offers a single
entry point for programming.

The mobile application registers with the generic push notification
hub and the application’s back end queues messages to the hub. Next,
the hub delivers physical messages to the specific mobile platform
using the appropriate protocol and payload. By using one of these cross-
platform mobile notification systems, you can use a single API to push

Pushing Notifications to Mobile Apps

Cutting Edge DINO ESPOSITO

Figure 1 Overall Architecture of a
Platform-Specific Push Notification System

Application Back End

Platform-Specific Notification Engine

Devices

2. Delivery2. Delivery

3. Push3. Push 1. Registration1. Registration

The crucial point of push
notifications is that all of their

technical aspects are rigorously
platform-specific.

0416msdn_EspositoCEdge_v3_8-11.indd 8 3/10/16 2:46 PM

Untitled-1 1Untitled-1 1 10/13/11 11:25 AM10/13/11 11:25 AM

www.nsoftware.com

msdn magazine10 Cutting Edge

messages to Android, iOS and Windows
Phone devices in a single shot.

The Azure Notification Hub is just
one of these cross-platform notification
systems. Let’s see how it works.

The Azure Notification Hub
The first step to use the Azure Notifica-
tion Hub is setting up an Azure plan. The
service is offered in three levels, the low-
est of which is free and sets a limit in the
number of reachable devices (500) and
maximum notifications you can send (1
million). For more information, refer to
bit.ly/1Tbimew. To get started, all you need
is a free account to create a Notification
Hub and a namespace in it. This informa-
tion comes in handy later to establish the
connection from the application’s back
end to queue messages for the devices.

The most cumbersome part of using push notifications isn’t
dealing with a cross-platform hub, but meeting the requirements
of each mobile platform you want to reach. For example, in order
to deliver updates to iOS or Android devices, you must first fully
configure your applications with the respective native PNSes. For
more information, go to bit.ly/1o15uv2. As you may know, only regis-
tered iOS apps can receive push notifications. To register your app
with the native Apple Push Notification Service you must first get
a certificate from Apple that serves the purpose of uniquely iden-
tifying the notifications coming from your app. The same task for
Android requires instead an API key you get through the interface
of Android Studio. For UWP apps, you must first register with the
Windows Store. All platform-specific steps must be accomplished
for any platform you intend to support. Any registration informa-
tion you get must be entered into the Azure Notification Hub, which
will be acting on behalf of you with respect to the native PNSes.

Registering the Application with the Hub
Let’s say you hold a .p12 certificate file and an updated provisioning
profile for your iOS application that’s enabled to receive notifi-
cations from the Apple system. You would be mostly done if you
weren’t using the Azure Notification Hub. Should you really use
an intermediate hub system?

The point is that any platform-specific PNS still leaves a lot of work
for the developer to perform commonly requested tasks such as plain
broadcasting to all connected devices or just to specific groups of users

such as those using the device in a partic-
ular locale. Broadcasting, in particular, is
not a trivial task as it may pose nontrivial
scalability issues when the number of
devices grows. That’s why a scalable
infrastructure in the middle that
decouples core platform-specific services
from the code you write is a tremendous
benefit. To use the Azure Notification
Hub, though, you also need to upload the
Apple .p12 certificate and programmat-
ically register your application with the
Azure Hub. If you’re using Xamarin.iOS
to write the iOS app, an excellent step-by-
step tutorial is at bit.ly/1KaySJ3.

The mobile application has two
main responsibilities. First, it needs
to incorporate code that subscribes to
the Azure notification feed. Second, it
needs to include code to process in some

way any incoming notifications. An iOS app physically receives
push notifications from the Apple service so it needs to subscribe
to it. This is accomplished through the UIApplication.Shared
Application.RegisterForRemoteNotifications method. Upon exit,
this method invokes an overridable method in the app delegate
class named RegisteredForRemoteNotifications. Here, you sub-
scribe to the Azure Hub. This method receives the device token
from the OS and your code just forwards it to the Hub. The Azure
Hub is identified by path and connection string, like so:

var hub = new SBNotificationHub(connectionString, hubPath);
hub.RegisterNativeAsync(deviceToken, null);

Next, when a notification is actually received, another overridable
method in the app delegate class is invoked: ReceivedRemote
Notification. The method receives from the OS the actual content
of the pushed message in the form of a (possibly nested) string
dictionary. The method override is responsible for extracting the
actual message and displaying it through whatever works for the
app—badge, sound or alert.

Queuing Messages to the Azure Hub
All the work done so far is only half the effort. What remains is fig-
uring out how to send messages to the Azure Hub and from there
down to connected devices. In other words, you need to have an
application back end that knows about Hub connection details and
passes the message for the user. Such an application back end can
be any sort of .NET application, including an ASP.NET application.
If you have a business reason for a mobile app to receive push
notifications, then something in the business domain is generat-
ing related messages. It can be a software trigger to send a message
or it can be the action of an admin user, as shown in Figure 3.

To incorporate push notifications in an ASP.NET back end, all
you need is the Microsoft Azure NotificationHubs Nuget package.
In addition, your code is responsible for constructing the proper
connection string. A connection string contains information about
the related Azure Service Bus URL endpoint and an encrypted

Figure 2 Overall Architecture of a Cross-Plat-
form Push Notification System

Platform-Specific Notification Engine

Application Back End

Generic Platform Notification Engine

Devices

2. Enqueuing2. Enqueuing

3. Delivery3. Delivery

4. Push4. Push

1. Registration1. Registration

It comes as no surprise that the
variety of mobile platforms out
there also reflects in a variety of

push notification platforms.

0416msdn_EspositoCEdge_v3_8-11.indd 10 3/10/16 2:46 PM

www.bit.ly/1Tbimew
www.bit.ly/1o15uv2
www.bit.ly/1KaySJ3

11April 2016msdnmagazine.com

token. The Service Bus endpoint contains the name of the namespace
you created when you set up the Azure service. It’s something like
sb://your-ns.servicebus.windows.net. The encrypted token is read from
the configuration page of your namespace under the label “Connec-
tion String.” Here’s the code you need to create a valid Hub instance:

var hub = NotificationHubClient.CreateClientFromConnectionString(
 connString, hubName);

The next step consists of creating the proper payload for each of
the platforms you want to target. The payload is a string of JSON
that follows a fixed pattern. You can build the JSON string any way
you like. In the following example, the $ is a placeholder for the
actual message to send:

const string iosFormat = "{\"aps\":{\"alert\":\"$\"}}";
const string androidFormat = "{\"data\":{\"message\":\"$\"}}";
var iosAlert = iosFormat.Replace("$", actualMessage);
var androidAlert = androidFormat.Replace("$", actualMessage);

Once the payload is constructed, sending it to the hub is as easy
as the following code:

var task1 = hub.SendAppleNativeNotificationAsync(iosAlert);
var outcome1 = task1.Result;
var task2 = hub.SendGcmNativeNotificationAsync(androidAlert);
var outcome2 = task2.Result;

The outcome variables in the code snippet are instances of the
NotificationOutcome type and return detailed information about
the result of the operation.

Sending Template-Based Messages
The previous code sample shows just the simplest way of sending
push notifications—a plain string of text that will be broadcast
unchanged to any connected devices. Moreover, you need to for-
mat it for each mobile platform of interest. A much more common
scenario is sending template-based messages. A template-based
message is delivered to Azure in the form of a dictionary of string
and the Azure Hub ensures it gets delivered to any mobile platform
the account has configured. The key idea behind template-based
messages is that the application intends to use a richer format than
the default. For example, let’s see how to send different messages
to users following different locales:

var locale = "EN";
var template = String.Format("{{\"aps\":{{\"alert\":\"$(News_{0})\"}}}}", locale);

The example shows the template to register with the Apple PNS
any incoming template-based message named News_XX where XX
is the two initial letters of a locale. The nice thing about templates
here is that the application back end might send multiple entries
in a single dictionary, but each device receives only the message
for which it registered. This is just one of the additional services

brought by an intermediate hub such as the Azure Notification
Hub. To send locale-specific messages you need the following code:

var messages = new Dictionary<string, string>
{
 {"News_EN", "..."},
 {"News_ES", "..."},
 {"News_PT", "..."},
 {"News_IT", "..."}
};
var task = hub.SendTemplateNotificationAsync(messages);
var outcome = task.Result;

With a single push, you reach devices across platforms with the
guarantee that each user sees just the notification appropriate for the
locale he has selected on the phone. Note that this is a feature slightly
different from automatic localization of messages that’s available, for
example, on iOS devices. On iOS devices, in fact, you can send mes-
sages with a placeholder that maps to entries in the localized strings
dictionary and the OS does the magic of automatically translating
the message before calling the alert. Template messages, instead, are
an Azure feature that lets you send different messages to segmented
groups of users and you decide how to segment the groups of users.

Scheduled Messages
Another interesting feature you’ll find in the Azure Notification Hub
is scheduled messages. Scheduled messages are notifications deliv-
ered to Azure but sent to connected devices only at a given time. To
send scheduled notifications you only use a slightly different API:

var notification = new TemplateNotification(messages);
var task = hub.ScheduleNotificationAsync(notification, new DateTime(...));
var outcome = task.Result;

It’s worth noting that scheduled notifications require a Standard
Tier subscription and aren’t available in the free test subscription.

Be a Good Citizen
Beyond the mere technical aspects of how to register and send
push notifications via the Azure Hub, the real painful point of push
notifications is using them in the context of a successful commu-
nication with the user.

You don’t want to bug the user with plain informational notifica-
tions day and night. Because it’s a “push” notification, you want to
make sure there’s a real interest from the user in being pushed. In
this regard, segmented groups of users are a great feature on which
to rely. The size of the message does matter, too. I suggest you keep
any message close to the size of a tweet. Until iOS 8, for example,
the maximum size of push notifications was 256 bytes and rose to
2K in newer systems. It’s 4K on Android. Last, but not least, make
sure the OS you’re targeting makes the entire feature easy to opt

out. That’s mostly true with most recent OSes, but
you’d better double check.	 n

Dino Esposito is the author of “Microsoft .NET: Architecting
Applications for the Enterprise” (Microsoft Press, 2014) and
“Modern Web Applications with ASP.NET” (Microsoft Press,
2016). A technical evangelist for the .NET and Android
platforms at JetBrains, and frequent speaker at industry
events worldwide, Esposito shares his vision of software at
software2cents@wordpress.com and on Twitter: @despos.

Thanks to the following Microsoft technical expert for
reviewing this article: Jon Arne Saeteras

Figure 3 An ASP.NET Back End to Send Locale-Specific Messages to an iOS
and Android App Via the Azure Hub

0416msdn_EspositoCEdge_v3_8-11.indd 11 3/10/16 2:46 PM

mailto:software2cents@wordpress.com
http://www.msdnmagazine.com
www.Twitter.com/despos

Untitled-3 2 10/21/15 12:01 PM

www.aspose.com
mailto:sales@aspose.com

Untitled-3 3 10/21/15 12:02 PM

www.aspose.com

msdn magazine14

Disconnected data is an old problem that precedes Entity Framework
and, for that matter, most data access tools. It’s never been an easy
one to solve. The server sends data down the wire, not knowing
what may happen to it in the client app that requested it, not even
knowing if it will return. Then, suddenly, some data reappears in
a request. But is it the same data? What was it up to in its absence?
Did anything happen to it? Is it completely new data? So much to
worry about!

As .NET developers, you’ve likely seen patterns for solving this
problem. Remember ADO.NET DataSets? Not only did they
contain your data, but they encapsulated all of the change state
information for each row and each column. This wasn’t limited to
“it was modified” or “it is new”; the original data was kept, as well.
When we started building ASMX Web services, it was so easy to
serialize a dataset and send it down the wire. If that message went
to a .NET client, that client could deserialize the dataset and con-
tinue to keep track of changes. When it was time to return the data
to the service, you would just serialize it again and then, on the
server side, deserialize it back into a dataset with all of that lovely
change-tracking information intact to be easily persisted to the
database. It worked. It was so easy. But it entailed such enormous
amounts of data going back and forth across the wire. Not just the
data bits, but the structure of the dataset getting serialized created
big fat XML.

The size of the serialized message going back and forth across the
wire was only one problem. The beauty of Web services was that
you could provide services to a variety of platforms, but the message
itself was meaningful only to another .NET application. In 2005,
Scott Hanselman wrote a great wake-up call to the problem, epically
titled, “Returning DataSets from WebServices Is the Spawn of Satan
and Represents All That Is Truly Evil in the World” (bit.ly/1TlqcB8).

All of that state information on the wire disappeared when
Entity Framework replaced DataSets as the primary data access tool
in .NET. Rather than being stored with the data, change-tracking
information—original value, current value, state—was stored by EF
as part of the ObjectContext. But still, in the first iteration of EF, a
serialized entity was a cumbersome message due to its need to
inherit from the EF EntityObject type. But the message going back
and forth across the wire with the entity data had lost its under
standing of state. Those of us who were used to the overloaded

DataSet freaked out. Those who were already familiar with handling
disconnected state were upset for another reason—the EntityObject
base class requirement. Eventually that problem won the EF team’s
attention (a very good turn of events) and with the next iteration,
EF4, EF had evolved to Plain Old CLR Object (POCO) support.
This meant that the ObjectContext could maintain the state of a
simple class with no need for that class to inherit from EntityObject.

But with EF4, the disconnected state problem did not go away.
EF had no clue about the state of an entity it was not able to track.
People familiar with DataSets expected EF to provide the same mag-
ical solution and were unhappy about having to choose between
a lightweight message and disconnected change tracking. In the
meantime, developers (including me) had explored a lot of ways to
inform a server about what happened to the data while it was on its
walkabout. You could re-read the data from the database and let EF
do a comparison to work out what had changed, if anything. You
could make presumptions such as “if the identity key value is 0, it
must be new.” You could troll around in the low-level APIs to write
code to make discoveries about state and act upon them. I did a lot
of that back in the day, but none of those solutions were satisfying.

When EF4.1 came out with its lighter-weight DbContext, it
had a gift from the EF team—the ability to easily inform the con-
text about the state of the entity. With a class that inherits from
DbContext, you can write code such as:

myContext.Entity(someEntity).State=EntityState.Modified;

When someEntity is new to the context, this forces the con-
text to begin tracking the entity and, at the same time, specify its
state. That’s enough for EF to know what type of SQL command to
compose upon SaveChanges. In the preceding example, it would
result in an UPDATE command. Entry().State doesn’t help with
the problem of knowing the state when some data comes over the
wire, but it does allow you to implement a nice pattern that’s now

Handling the State of
Disconnected Entities in EF

Data Points JULIE LERMAN

Code download available at msdn.com/magazine/0416magcode.

When we started building ASMX
Web services, it was so easy to
serialize a dataset and send it

down the wire.

0416msdn_LermanDPts_v4_14-17.indd 14 3/10/16 3:23 PM

http://msdn.com/magazine/0416magcode
www.bit.ly/1TlqcB8

15April 2016msdnmagazine.com

in wide use by developers using Entity Framework, which I’ll lay
out further along in this article.

Even though the next version of Entity Framework—EF Core (the
framework formerly known as EF7) will bring more consistency
for working with disconnected graphs, the pattern you’ll learn in
this article should still be useful in your bag of tricks.

The problem with disconnected data escalates as graphs of data
get passed back and forth. One of the biggest problems is when
those graphs contain objects of mixed state—with the server hav-
ing no default way of detecting the varying states of entities it has
received. If you use DbSet.Add, the entities will all get marked
Added by default. If you use DbSet.Attach, they’ll be marked
Unchanged. This is the case even if any of the data originated from
the database and has a key property populated. EF follows the in-
structions, that is, Add or Attach. EF Core will give us an Update
method, which will follow the same behavior as Add, Attach and
Delete, but mark the entities as Modified. One exception to be
aware of is that if the DbContext is already tracking an entity, it
won’t overwrite the entity’s known state. But with a disconnected
app, I wouldn’t expect the context to be tracking anything prior to
connecting the data returned from a client.

Testing the Default Behavior
Let’s clarify the default behavior in order to highlight the prob-
lem. To demonstrate, I’ve got a simple model (available in the
download) with a few related classes: Ninja, NinjaEquipment
and Clan. A Ninja can have a collection of NinjaEquipment and
be associated with a single Clan. The test that follows involves a
graph with a new Ninja and a pre-existing, un-edited Clan. Keep
in mind that I would normally assign a value to Ninja.ClanId to
avoid confusion with reference data. In fact, setting foreign keys
rather than navigation properties is a practice that can help you
avoid a lot of problems due to the “magic” of EF working out state
across relationships. (See my April 2013 column [bit.ly/20XVxQi],
“Why Does Entity Framework Reinsert Existing Objects into My
Database?” to learn more about that.) But I’m writing the code this
way to demonstrate the behavior of EF. Notice that the clan object
has its key property, Id, populated to indicate that it’s pre-existing
data that came from the database:

[TestMethod]
public void EFDoesNotComprehendsMixedStatesWhenAddingUntrackedGraph() {
 var ninja = new Ninja();
 ninja.Clan = new Clan { Id = 1 };
 using (var context = new NinjaContext()) {
 context.Ninjas.Add(ninja);
 var entries = context.ChangeTracker.Entries();
 OutputState(entries);
 Assert.IsFalse(entries.Any(e => e.State != EntityState.Added));
 }
}

My OutputState method iterates through DbEntityEntry objects
where the context retains the state information for each tracked
entity and prints out the type and value of its State.

In the test, I emulate the scenario that, somewhere, I’ve created
a new Ninja and associated it with the existing Clan. The clan is
simply reference data and has not been edited. Then I create a
new context and use the DbSet.Add method to tell EF to track
this graph. I assert that none of the entities being tracked are any-
thing but Added. When the test passes, it proves the context didn’t

comprehend that the Clan was Unchanged. The test output tells
me that EF thinks both entities are Added:

Result StandardOutput:
Debug Trace:
EF6WebAPI.Models.Ninja:Added
EF6WebAPI.Models.Clan:Added

As a result, calling SaveChanges will insert both the Ninja and
the Clan, resulting in a duplicate of the Clan. If I had used the
DbSet.Attach method instead, both entities would be marked
Unchanged and SaveChanges wouldn’t insert the new Ninja into
the database, causing real problems with the data persistence.

Another common scenario is retrieving a Ninja and its Equip-
ment from the database and passing them to a Client. The Client
then edits one of the pieces of equipment and adds a new one.
The true state of the entities is that the Ninja is Unchanged, one
piece of Equipment is Modified and another is Added. Neither
DbSet.Add nor DbSet.Attach will comprehend the varying states
without some help. So now it’s time to apply some help.

Informing EF of Each Entity’s State
The simple recipe for helping EF comprehend the correct state of
each entity in a graph consists of a four-part solution:

1. �Define an enum representing possible object states.
2. �Create an interface with an ObjectState property defined

by the enum.
3. �Implement the interface in the domain entities.
4. �Override the DbContext SaveChanges to read object

state and inform EF.
EF has an EntityState enum with the enumerators Unchanged,

Added, Modified and Deleted. I’ll create another enum to be used
by my domain classes. This one mimics those four states, but has
no ties to the Entity Framework APIs:

public enum ObjectState
{
 Unchanged,
 Added,
 Modified,
 Deleted
}

Unchanged is first so it will be the default. If you want to specify
the values, be sure that Unchanged is equal to zero (0).

Next, I’ll create an interface to expose a property to track the
state of objects using this enum. You might prefer to create a base
class or add this to a base class you’re already using:

public interface IObjectWithState
{
 ObjectState State { get; set; }
}

public class Ninja : IObjectWithState
{
 public Ninja() {
 EquipmentOwned = new List<NinjaEquipment>();
 }
 public int Id { get; set; }
 public string Name { get; set; }
 public bool ServedInOniwaban { get; set; }
 public Clan Clan { get; set; }
 public int ClanId { get; set; }
 public List<NinjaEquipment> EquipmentOwned { get; set; }
 public ObjectState State { get; set; }

}

Figure 1 Ninja Class Implementing IObjectState

0416msdn_LermanDPts_v4_14-17.indd 15 3/10/16 3:23 PM

http://www.msdnmagazine.com
www.bit.ly/20XVxQi

msdn magazine16 Data Points

This State property is for in-memory use only and doesn’t need
to be persisted to the database. I’ve updated the NinjaContext to
ensure that the property is ignored for any objects that implement it:

protected override void OnModelCreating(DbModelBuilder modelBuilder) {
 modelBuilder.Types<IObjectWithState>().Configure(c => c.Ignore(p=>p.State));
}

With the interface defined, I can implement it in my classes, for
example, in the Ninja class shown in Figure 1.

With my default ObjectState enum defined as Unchanged, every
Ninja will begin Unchanged and anyone coding with the Ninja class
will be responsible for setting the State value as needed.

If relying on the client to set state is a problem, another ap-
proach, which is influenced by Domain-Driven Design practices,
can ensure that the Ninja object is more involved in its behavior

and state. Figure 2 shows a much more richly defined version of
the Ninja class. Note that:

• �The Create factory methods both set the State to Added.
• �I’ve hidden the setters of the properties.
• �I’ve created methods to change properties where the State

is set to Modified if it isn’t a new Ninja (that is, the state
isn’t already set to Added).

I’ve modified the NinjaEquipment type to be richer, as well, and
you can see that I benefit from that in the AddNew, Transfer and
NoLongerExists equipment methods. The modification ensures
that the foreign keys pointing back to the Ninja are persisted cor-
rectly or, in the case of equipment being destroyed, that it gets
deleted completely from the database according to the business
rules of this particular domain. Tracking relationship changes
when reconnecting graphs to EF is a little trickier, so I like that I
can keep tight control over the relationships at the domain level.
For example, the ChangeOwner method sets the State to Modified:

public NinjaEquipment ChangeOwner(int newNinjaId) {
 NinjaId = newNinjaId;
 State = ObjectState.Modified;
 return this;
}

Now, whether the client explicitly sets the state or uses classes
like this (or similarly coded classes in the language of the client)
on the client side, the objects passed back into the API or service
will have their state defined.

Now it’s time to leverage that client-side state in the server-side code.
Once I connect the object or object graph to the context, the

context will need to read the state of each object. This ConvertState
method will take an ObjectState enum and return the matching
EntityState enum:

public static EntityState ConvertState(ObjectState state) {
 switch (state) {
 case ObjectState.Added:
 return EntityState.Added;
 case ObjectState.Modified:
 return EntityState.Modified;
 case ObjectState.Deleted:
 return EntityState.Deleted;
 default:
 return EntityState.Unchanged;
 }
}

Next, I need a method in the NinjaContext class to iterate through
the entities—just before EF saves the data—and update the context’s
understanding of each entity’s state according to the State property
of the object. That method, shown here, is called FixState:

public class NinjaContext : DbContext
{
 public DbSet<Ninja> Ninjas { get; set; }
 public DbSet<Clan> Clans { get; set; }

 public void FixState() {
 foreach (var entry in ChangeTracker.Entries<IObjectWithState>()) {
 IObjectWithState stateInfo = entry.Entity;
 entry.State = DataUtilities.ConvertState(stateInfo.State);
 }
 }
}

I considered calling FixState from inside of SaveChanges so it
would be totally automated, but there could be side effects in a num-
ber of scenarios. For example, if you use your IObjectState entities
in a connected application that doesn’t bother setting the local state,
FixState will always revert entities to Unchanged. It’s better to leave

public class Ninja : IObjectWithState
{
 public static RichNinja CreateIndependent(string name, bool servedinOniwaban) {
 var ninja = new Ninja(name, servedinOniwaban);
 ninja.State = ObjectState.Added;
 return ninja;
 }
 public static Ninja CreateBoundToClan(string name,
 bool servedinOniwaban, int clanId) {
 var ninja = new Ninja(name, servedinOniwaban);
 ninja.ClanId = clanId;
 ninja.State = ObjectState.Added;
 return ninja;
 }
 public Ninja(string name, bool servedinOniwaban) {
 EquipmentOwned = new List<NinjaEquipment>();
 Name = name;
 ServedInOniwaban = servedinOniwaban;
 }

 // EF needs parameterless ctor for queries
 private Ninja(){}

 public int Id { get; private set; }
 public string Name { get; private set; }
 public bool ServedInOniwaban { get; private set; }
 public Clan Clan { get; private set; }
 public int ClanId { get; private set; }
 public List<NinjaEquipment> EquipmentOwned { get; private set; }
 public ObjectState State { get; set; }

 public void ModifyOniwabanStatus(bool served) {
 ServedInOniwaban = served;
 SetModifedIfNotAdded();
 }
 private void SetModifedIfNotAdded() {
 if (State != ObjectState.Added) {
 State = ObjectState.Modified;
 }
 }
 public void SpecifyClan(Clan clan) {
 Clan = clan;
 ClanId = clan.Id;
 SetModifedIfNotAdded();
 }
 public void SpecifyClan(int id) {
 ClanId = id;
 SetModifedIfNotAdded();
 }
 public NinjaEquipment AddNewEquipment(string equipmentName) {
 return NinjaEquipment.Create(Id, equipmentName);
 }
 public void TransferEquipmentFromAnotherNinja(NinjaEquipment equipment) {
 equipment.ChangeOwner(this.Id);
 }
 public void EquipmentNoLongerExists(NinjaEquipment equipment) {
 equipment.State = ObjectState.Deleted;
 }
}

Figure 2 A Smarter Ninja Class

0416msdn_LermanDPts_v4_14-17.indd 16 3/10/16 3:23 PM

0416msdn_DevExpress_Insert.indd 1 3/11/16 1:19 PM

www.devexpress.com/superhero
www.devexpress.com

0416msdn_DevExpress_Insert.indd 2 3/11/16 1:19 PM

0416msdn_DevExpress_Insert.indd 3 3/11/16 1:19 PM

www.devexpress.com/office
www.devexpress.com

0416msdn_DevExpress_Insert.indd 4 3/11/16 1:20 PM

www.devexpress.com/
www.devexpress.com/reports

0416msdn_DevExpress_Insert.indd 5 3/11/16 1:20 PM

www.devexpress.com/
www.devexpress.com/dashboard

0416msdn_DevExpress_Insert.indd 6 3/11/16 1:20 PM

www.devexpress.com/hybrid
www.devexpress.com/

0416msdn_DevExpress_Insert.indd 7 3/11/16 1:21 PM

www.devexpress.com/mobile
www.devexpress.com/

0416msdn_DevExpress_Insert.indd 8 3/11/16 1:21 PM

www.devexpress.com/
www.devexpress.com/try

17April 2016msdnmagazine.com

it as a method to be executed explicitly. In “Programming Entity
Framework: DbContext,” a book I co-authored with Rowan Miller,
we discuss some additional edge cases that might be of interest.

Now, I’ll create a new version of the previous test that uses these
new features, including the richer versions of my classes in the
test. The new test asserts that EF comprehends mixed states for a
brand-new Ninja tied to an existing Clan. The test method prints
out the EntityState before and after calling NinjaContext.FixState:

[TestMethod]
public void EFComprehendsMixedStatesWhenAddingUntrackedGraph() {
 var ninja = Ninja.CreateIndependent("julie", true);
 ninja.SpecifyClan(new Clan { Id = 1, ClanName = "Clan from database" });
 using (var context = new NinjaContext()) {
 context.Ninjas.Add(ninja);
 var entries = context.ChangeTracker.Entries();
 OutputState(entries);
 context.FixState();
 OutputState(entries);
 Assert.IsTrue(entries.Any(e => e.State == EntityState.Unchanged));
}

The test passes and the output shows that the FixState method
applied the proper state to the Clan. If I were to call SaveChanges,
that Clan wouldn’t be reinserted into the database by mistake:

Debug Trace:
Before:EF6Model.RichModels.Ninja:Added
Before:EF6Model.RichModels.Clan:Added
After:EF6Model.RichModels.Ninja:Added
After:EF6Model.RichModels.Clan:Unchanged

Using this pattern also solves the problem of the Ninja graph I
discussed earlier where the Ninja might not have been edited and
any number of changes (inserts, modifications or deletes) made
to the equipment. Figure 3 shows a test that checks to see if EF
correctly identifies that one of the entries is modified.

The test passes and the output shows that the original Attach
method resulted in all objects marked Unchanged. After calling
FixState, the Ninja is Unchanged (which is still correct), but the
equipment object is correctly set to Modified:

Debug Trace:
Before:EF6Model.RichModels.Ninja:Unchanged
Before:EF6Model.RichModels.NinjaEquipment:Unchanged
After:EF6Model.RichModels.Ninja:Added
After:EF6Model.RichModels.NinjaEquipment:Modified

What About EF Core?
Even as I move to EF Core, I’ll keep this pattern in my toolbox.
Great strides have been made toward simplifying the problems of

disconnected graphs—mostly along the lines of providing consis-
tent patterns. In EF Core, setting state using DbContext.Entry().State
property will only ever set the state of the root of the graph. This will
be advantageous in many scenarios. Additionally, there’s a new meth-
od called TrackGraph that will “walk the graph,” hitting every entity
within, and apply a specified function to each method. The most
obvious function is one that simply sets state:

context.ChangeTracker.TrackGraph(Samurai_GK,
 e => e.Entry.State = EntityState.Added);

Imagine having that function be one that uses the aforementioned
FixState method to apply the EF state based on the ObjectState set
on the client side.

Rich Domain Models Simplify Controlling
State in the Client
While I prefer building the richer domain classes that update the
state as needed, you can achieve the same results with simple CRUD
classes as long as the client using the classes explicitly sets the states.
With a manual method, however, you’ll have to pay closer attention
to modified relationships, ensuring you account for the foreign
key modifications.

I’ve been using this pattern for years, and sharing it in books,
at conferences, with clients and in my Pluralsight courses.
And I know it’s being happily used in many software solutions.
Whether you’re using EF5 or EF6, or gearing up for EF Core,
this recipe should remove a huge layer of pain related to your
disconnected data.	 n

Julie Lerman is a Microsoft MVP, .NET mentor and consultant who lives in the
hills of Vermont. You can find her presenting on data access and other .NET topics
at user groups and conferences around the world. She blogs at thedatafarm.com/
blog and is the author of “Programming Entity Framework,” as well as a Code
First and a DbContext edition, all from O’Reilly Media. Follow her on Twitter:
@julielerman and see her Pluralsight courses at juliel.me/PS-Videos.

Thanks to the following Microsoft technical expert for reviewing this article:
Rowan Miller

[TestMethod]
public void MixedStatesWithExistingParentAndVaryingChildrenisUnderstood() {
 // Arrange
 var ninja = Ninja.CreateIndependent("julie", true);
 var pNinja =new PrivateObject(ninja);
 pNinja.SetProperty("Id", 1);
 var originalOwnerId = 99;
 var equip = Create(originalOwnerId, "arrow");
 // Act
 ninja.TransferEquipmentFromAnotherNinja(equip);
 using (var context = new NinjaContext()) {
 context.Ninjas.Attach(ninja);
 var entries = context.ChangeTracker.Entries();
 OutputState(entries);
 context.FixState();
 OutputState(entries);
 // Assert
 Assert.IsTrue(entries.Any(e => e.State == EntityState.Modified));
 }
}

Figure 3 Testing State of Children in a Graph

Another feature of EF4.1 was a T4 template that gen-
erated “self-tracking entities,” which turned those newly freed PO-
COs back into weighed-down beasts. Self-tracking entities were
designed specifically for scenarios where Windows Communica-
tion Foundation (WCF) services served data to .NET clients. I was
never a fan of self-tracking entities and was happy when they qui-
etly disappeared from EF. However, some developers relied on
them. And there are some APIs that will give you these benefits.
For example, Tony Sneed built a lighter-weight implementation
called “trackable entities,” which you can find at trackableentities.
github.io. IdeaBlade (ideablade.com) has a rich history of solving
disconnected data problems with its flagship product, DevForce,
which includes EF support. IdeaBlade took that knowledge and
created the free and open source Breeze.js and Breeze# products,
which provide client- and server-side state tracking, as well. I’ve
written about Breeze previously in this column, in the December
2012(bit.ly/1WpN0z3) and April 2014 issues (bit.ly/1Ton1Kg).

Self-Tracking Entities

0416msdn_LermanDPts_v4_14-17.indd 17 3/10/16 3:23 PM

http://www.msdnmagazine.com
www.ideablade.com
www.bit.ly/1WpN0z3
www.bit.ly/1Ton1Kg
www.thedatafarm.com/blog
www.thedatafarm.com/blog
www.twitter.com/julielerman
www.twitter.com/julielerman
http://juliel.me/PS-Videos

VISUAL STUDIO LIVE! (VSLive!TM) is blazing new trails on the
Campaign for Code: For the first time ever, we are headed to Anaheim,
CA, to bring our unique brand of unbiased developer training to
Southern California. With our host hotel situated just down the street
from Disneyland®, developers, software architects, engineers, designers
and more can code by day, and visit the Magic Kingdom by night. From
Sept. 26-29, explore how the code you write today will create a better
tomorrow—not only for your company, but your career, as well!

PRODUCED BYSUPPORTED BY

magazine

CAMPAIGN FOR CODE 2016 VISUAL STUDIO LIVE!

Untitled-6 2 3/4/16 3:35 PM

www.vslive.com/anaheim

VSLIVE.COM/ANAHEIM

California code with us:
register today!

Scan the QR code to
register or for more
event details.

REGISTER
NOW AND

SAVE $300! USE PROMO CODE VSLAN2

ANAHEIM • SEPT. 26-29, 2016
HYATT REGENCY, A DISNEYLAND® GOOD NEIGHBOR HOTEL

CONNECT WITH VISUAL STUDIO LIVE!
linkedin.com – Join the
“Visual Studio Live” group!twitter.com/vslive – @VSLive facebook.com – Search “VSLive”

DEVELOPMENT TOPICS INCLUDE:
➤ Windows Client

➤ Visual Studio/.NET

➤ Windows Client

➤ Mobile Client

➤ JavaScript/HTML5 Client

➤ ASP.NET

➤ Cloud Computing

➤ Database and Analytics

Untitled-6 3 3/4/16 3:35 PM

www.vslive.com/anaheim
https://twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine20

At Microsoft, we’re building a new implementation
of .NET, called .NET Core, to let you write cross-platform code
for cloud-optimized workloads. Many are excited about this open
source development, but what does it actually mean? This article
should help clarify what .NET Core is today and what its goals are,
how it relates to the Microsoft .NET Framework and the funda-
mentals of the command-line tooling that you can use to get start-
ed with .NET Core.

What’s .NET Core?
To understand what .NET Core is, it’s helpful to understand .NET
itself. Many people mean “.NET Framework” when they say “.NET,”
but there’s more to it than that. .NET is an ECMA standard that has
different implementations—.NET Framework, Mono, Unity and,
now, .NET Core. This means that many of the experiences are shared

between the .NET Framework and .NET Core. However, .NET Core
is new, with some different principles in mind.

First, .NET Core is cross-platform. It runs on Windows, OS X
and multiple distributions of Linux. It also supports different CPU
architectures. We’re adding more Linux distribution and CPU
architecture support with the eventual goal of .NET Core running
in as many places as possible.

At the same time, .NET Core is fundamentally modular in its design
and architecture. The runtime, library and compiler components
are all separate entities that communicate through well-designed
interfaces. This allows you to “swap” components in and out for your
particular needs. The libraries themselves are also modular and
distributed via NuGet, letting you use only what you need so that
you can fine-tune the footprint of .NET Core on any given system.

In addition, code written for .NET Core is portable, and can be tuned
to run across different supported platforms. Depending on how you
target your projects, it’s possible to have .NET Core code run on the
.NET Framework, Mono and Xamarin platforms, on Windows 8 and
Windows Phone, and on the Universal Windows Platform (UWP).
To learn more, check out the .NET Platform Standard (bit.ly/1Of6W1r).

Finally, .NET Core will be “pay-for-play” and performant. One
goal of the .NET Core effort is to make the cost of abstraction clear
to developers, by implementing a pay-for-play model that makes
obvious the costs that come from employing a higher-level abstrac-
tion to solve a problem. Abstractions don’t come for free, and that
truth should never be hidden from developers. Additionally, .NET
Core will favor performance with a standard library that minimizes
allocations and the overall memory footprint of your system.

. N E T COR E

.NET Goes Cross-Platform
with .NET Core
Phillip Carter and Zlatko Knezevic

This article discusses:
•	 .NET Core is a new cross-platform .NET implementation with dif-

ferent goals than the .NET Framework

•	You can build ASP.NET Core apps, console apps, libraries/frame-
works, and Universal Windows Platform apps on .NET Core today

•	The .NET CLI is a set of command line tools you can use to build
cross-platform .NET Core assets

Technologies discussed:
.NET Core, .NET Core Command-Line Tools, Microsoft .NET
Framework, ASP.NET Core

0416msdn_CarterCore_v4_20-22.indd 20 3/10/16 3:18 PM

www.bit.ly/1Of6W1r

21April 2016msdnmagazine.com

Scenarios for .NET Core
Today, four scenarios exist in which you can write code for .NET
Core: cross-platform ASP.NET Web apps, cross-platform console
apps, cross-platform libraries and frameworks, and UWP apps

Built for speed, ASP.NET Core 1.0 is the cross-platform Web stack
for .NET Core. If you’ve ever wanted to do something like deploy
your ASP.NET Web app to a container on Linux, you can now do
that. To learn more about the breadth of functionality ASP.NET
Core offers, check out the documentation at bit.ly/1TqPcIo.

The scope of cross-platform console apps is actually quite larger
than many developers might expect. For example, an ASP.NET
Core Web app is, at its core, a console app that reads and writes
information to ports—it just so happens to do a lot of other things.
A suite of microservices that form the back end of an entire system
could each be written as console apps.

The distinction between cross-platform libraries and frameworks
is one of scale. Libraries are one of the most natural candidates
on which to build things on .NET Core. But at a much larger
scale, things like frameworks for distributed computing are good
candidates, as well.

Finally, UWP apps that target the family of Windows 10 devices
run on .NET Core. You can build a fully featured UWP app that in-
corporates .NET Core libraries to help build rich Windows 10 apps.

In other words, there are a lot of things you can write for .NET
Core today. As the tooling matures and expands, there’ll be even
more things you can build in the future.

If you have .NET Framework assets that fall into one of these
four scenarios, or want to cut your teeth on some new technology,
go to bit.ly/1Q1Q18q so you can begin writing some .NET Core code.

How .NET Core Compares with the .NET Framework
The .NET most of you have come to know and love is known as the
.NET Framework. So how does .NET Core compare with the .NET
Framework? The first thing to keep in mind is
that you still use the same languages—C#, F#,
Visual Basic—to write all your code. Your ex-
perience writing code should look and feel
very familiar. However, .NET Core is a new
stack—not a subset of .NET Framework.
It’s best to think of .NET Core and the .NET
Framework as two stacks that coincide and
co-evolve.

The .NET Framework is and will continue to
be the stack to use when writing desktop appli-
cations for Windows 7 through Windows 10.

In fact, you can have .NET Framework and .NET Core code live
harmoniously together in the same solution. For example, consider
a scenario where a .NET Framework GUI (like Windows Forms)
consumes services written on .NET Core.

It’s helpful to think about the similarities and differences of .NET
Core and the .NET Framework from two perspectives: API Surface
area and runtime capabilities. Figure 1 helps illustrate the overlap
of APIs between the two platforms.

There are .NET APIs implemented on both .NET Core and the
.NET Framework (although sometimes with different underly-
ing implementations). At the same time, .NET Core and .NET
Framework both have APIs and capabilities that the other does
not. For example, the .NET Framework has multiple GUI frame-
works and Windows-specific APIs that aren’t present in .NET Core.
Likewise, .NET Core has cross-platform capabilities and APIs that
the .NET Framework lacks.

Additionally, the .NET Framework is a Windows component that’s
serviced through Windows Updates. .NET Core employs a completely
different model for where it lives and how it’s serviced. .NET Core is
composed of NuGet packages, with the runtime installed App-Local.
This means that applications can “carry” .NET Core with them,
enabling them to exist side-by-side with other .NET Core instanc-
es on a machine or device. Servicing can then be done per-applica-
tion and through a package manager, rather than globally through
OS updates.

A practical question is this: If you write something on one stack,
will it run on the other? Like most answers in life, it depends.
If the APIs you use are implemented on both platforms, then
you should be able to run your code on .NET Core and the .NET
Framework with relatively little work on your part. However,
if you assume dependencies on the running environment or use
APIs not available on one stack (such as a library for working
with XAML-based UIs), your code won’t run across both stacks.
The .NET Portability Analyzer—available as a command-line
tool (bit.ly/1Sd8oIK) or Visual Studio extension (bit.ly/1LqX0aF)—
is a tool that will analyze your .dll files and generate a report
on how portable your code is from the .NET Framework to
.NET Core. We’ll be releasing more tools to help with porting
in the future.

The Command Line: Your Entry Point for .NET Core
.NET Core comes with a new and revamped foundational toolset that’ll
be used to develop applications. That toolset is called .NET Core CLI,

which is short for .NET Core Command-Line
Interface. As with other parts of .NET Core, it’s
also open source (see GitHub.com/dotnet/cli) and has
a vibrant open source community that’s intimate-
ly involved with its development.

There are several reasons for introducing
a new toolset to the world. First, we have the
need to support core development scenar-
ios on all of the platforms that .NET Core
supports. Given the diverse set of the plat-
forms, a good command-line experience
is a great foundation that we can build on;

The distinction between
cross-platform libraries and

frameworks can be considered
one of scale.

Figure 1 The .NET Framework and
.NET Core Share a Subset of APIs

.NET Framework
APIs Shared

APIs .NET Core
APIs

0416msdn_CarterCore_v4_20-22.indd 21 3/10/16 3:18 PM

http://www.msdnmagazine.com
www.bit.ly/1TqPcIo
www.bit.ly/1Q1Q18q
www.bit.ly/1Sd8oIK
www.bit.ly/1LqX0aF
www.GitHub.com/dotnet/cli

msdn magazine22 .NET Core

after all, the command line is what each of these platforms comes
with by default.

As a logical extension, we wanted to support the same UX across
the supported platforms. You’ll be able to move between Linux,
Windows, and OS X and not have to re-learn the tools, their syntax,
or semantics. They’re the same on all platforms. The usage patterns
are the same and even the syntaxes are the same.

This idea that there’s one toolset you use across the platforms
also extends to higher-level tooling, namely Visual Studio Code
and Visual Studio. These higher-level tools will be layered upon
the .NET CLI and will use them to support .NET Core projects
moving forward. This means that when you build your .NET Core
application from Visual Studio, .NET CLI tools will be invoked to
perform the build.

Trying the .NET Core Command-Line Interface
The easiest way to get started with the .NET Core CLI is to follow
the Getting Started guide (aka.ms/dotnetcoregs). The short of it is that
you download an installer for your platform (or register a new
apt-get feed in the case of Ubuntu), install the tools and you’re ready
to go. The installers will take care of setting the installation folder
on your system PATH in all supported OSes, as well as any other
environment variables the CLI needs.

After this, you can start by invoking the driver “dotnet” and
passing a command (what we also call a “verb”). The driver
is in charge of running the command and passing any argu-
ments to it. At the time of this writing, the CLI package comes
with the commands in Figure 2. Of course, by the time you
read this we’ll probably add more commands that will increase
your productivity.

In addition to any commands that come with the package, you’ll
also have an option to add additional commands as tools in your
project.json and then restore them. They’re packaged as a NuGet
package, which provides a nice and easy-to-use and understand
extensibility model.

Wrapping Up
We hope you learned about .NET
Core and are excited about writing
.NET code that can run cross-plat-
form. As a new stack, it provides
some exciting capabilities that
weren’t possible with the .NET
Framework before. The .NET
CLI also introduces a great com-
mand-line experience that will be
the foundation of the developer
experience and integrated into
other tools such as Visual Studio
and Visual Studio Code.

Finally, we know that you have
a lot of assets written for the .NET
Framework, and we’d love to see
those assets continue to grow as
the .NET Framework evolves. We
imagine a world where the .NET

Framework and .NET Core are used together in systems that take
advantage of the strengths of both stacks.

If you’d like to learn more and perhaps get involved, here are a
few places to get started:

• �.NET Core Runtime: GitHub.com/dotnet/coreclr
• �The .NET libraries: GitHub.com/dotnet/corefx
• �The command-line interface and tooling: GitHub.com/dotnet/cli
• �The Roslyn compiler (C# and Visual Basic) and language

tooling for Visual Studio: GitHub.com/dotnet/roslyn
• �Our documentation for .NET Core: GitHub.com/dotnet/core-docs

We have many more .NET open source projects that are being
worked on. If you’re interested in seeing more of them, check out the
.NET Foundation, an independent organization that fosters open
development and collaboration around .NET. Microsoft has contribut-
ed several projects to the .NET Foundation, as well as other companies
like Xamarin, Umbraco, Salesforce and the .NET community. Learn
more about them and contribute at DotNetFoundation.org/projects.	 n

Phillip Carter is a program manager on the .NET Team at Microsoft. A lover
of systems and programming language theory, Carter can be found staying up
late at night arguing over concurrency models with friends. He hopes one day
that the runtime behavior of all systems can be expressed in type systems, thereby
allowing the human race to ascend to a state of higher reasoning. He can be reached
at phcart@microsoft.com.

Zlatko Knezevic is a program manager (PM) on the .NET Team at Microsoft.
In 2005, he joined Microsoft, first working in CEE as a developer evangelist, then
moving on to become a PM in SQL Server. There he worked on a range of things,
from adding new indices in the core engine to building butt services that deal with
Big Data, data discovery and so on. In 2015, he joined the .NET team as a PM
and has since been working on .NET Core cross-platform experiences. He can be
reached at Zlatko.Knezevic@microsoft.com.

Thanks to the following Microsoft technical experts for reviewing this
article: Immo Landwerth and the .NET Core and Framework Program
Management Team

Command Description

dotnet new Initialize a valid project for either a class library or a console application using C# as a language.

dotnet restore Restore dependencies that are defined in the project.json file for a given project. Dependencies
are usually NuGet packages you use in your application.

dotnet build Build your code! This command will produce an Intermediate Language (IL) binary for your
project. If the project is a console application, the produced output will be an executable that
you can immediately run. By default, the build command will output the built assemblies and
executables (if applicable) to the bin directory in the directory where it’s invoked.

dotnet test No good tooling should come without support for running tests. This command allows you
to run a suite of tests using a runner that you can specify in the project.json file. Currently
supported are xUnit and NUnit test runners.

dotnet publish Publish your application for running on the targeted machine.

dotnet pack The pack command will package your project as a NuGet package. The output is a set of
nupkg files that you can then upload to your feeds or use in the restore operation by using the
local folder override.

dotnet run The run command will compile and run your application. You can think of this as a Ctrl+F5
analogue, just without Visual Studio.

Figure 2 Some Common .NET CLI Commands You Can Use Today

0416msdn_CarterCore_v4_20-22.indd 22 3/10/16 3:18 PM

mailto:phcart@microsoft.com
mailto:Zlatko.Knezevic@microsoft.com
www.aka.ms/dotnetcoregs
www.GitHub.com/dotnet/coreclr
www.GitHub.com/dotnet/corefx
www.GitHub.com/dotnet/cli
www.GitHub.com/dotnet/roslyn
http://GitHub.com/dotnet/core-docs
www.DotNetFoundation.org/projects

Learning Paths Include:

Microsoft
Cloud Training for

the Enterprise
We bring the cloud experts. You choose your pace.

Instructor-Led Training
Engage in real time with your

instructor either online or in-person
for a personalized training experience.

(Onsite or Virtual)

Microsoft
Azure

Dynamics
CRM Online

Microsoft Visual Studio
Team Services

REAL CODE. REAL LABS. REAL LEARNING.
Opsgility.com

On-Demand Online Training
Choose the time, the place and the

Go to Opsgility.com now to start your free,
MSDNMAG

Untitled-2 1Untitled-2 1 3/7/16 3:55 PM3/7/16 3:55 PM

www.Opsgility.com

msdn magazine24

Visual C++ has a reputation for lagging behind the
curve. If you need the latest and greatest C++ features you should
just use Clang or GCC, or so the oft-repeated story goes. I would
like to suggest that there has been a change to the status quo, a
glitch in the matrix, a disturbance in the force, if you will. It’s true
that the Visual C++ compiler has an incredibly old code base that
has made it difficult for the C++ team at Microsoft to add new
features rapidly (goo.gl/PjSC7v). This is starting to change, though,
with Visual C++ being ground zero for many new proposals to the
C++ language and the Standard Library. I’m going to highlight a
few new or improved features in the Visual C++ Update 2 release
that I’ve found particularly compelling and that illustrate that there
is life yet in this tenured compiler.

Modules
A few developers at Microsoft, notably Gabriel Dos Reis and Jonathan
Caves, have been working on a design to add componentization sup-
port directly to the C++ language. A secondary goal is to improve
build throughput, akin to a precompiled header. This design, called a

module system for C++, has been proposed for C++ 17, and the new
Visual C++ compiler provides a proof of concept and the start of a
working implementation for modules in C++. Modules are designed
to be very straightforward and natural to both create and consume
for any developer using standard C++. Make sure you’ve got Visual
C++ Update 2 installed, open a developer command prompt and
follow along as I show you how. As the feature is still quite experi-
mental, it lacks any IDE support and the best way to get started is by
using the compiler directly from the command prompt.

Let’s imagine I have an existing C++ library that I’d like to dis-
tribute as a module, perhaps something elaborate, like this:

C:\modules> type animals.h
#pragma once
#include <stdio.h>

inline void dog()
{
 printf("woof\n");
}

inline void cat()
{
 printf("meow\n");
}

I might also have a compelling sample app to accompany my
domesticated library:

C:\modules> type app.cpp
#include "animals.h"

int main()
{
 dog();
 cat();
}

V IS UAL C+ +

Microsoft Pushes C++
into the Future
Kenny Kerr

This article discusses:
•	A module system for C++

•	Inside coroutines

•	Microsoft’s investment in C++

Technologies discussed:
Visual C++ Update 2

0416msdn_KerrVisualCPP_v3_24-31.indd 24 3/10/16 2:47 PM

www.goo.gl/PjSC7v

25April 2016msdnmagazine.com

Pressure from C++ activists has caused me to blush over the use
of printf, but I can’t deny its unmatched performance, so I decide to
turn the library into a module to obscure the truth that I prefer printf
over other forms of I/O. I can start by writing the module interface:

C:\modules> type animals.ixx
module animals;
#include "animals.h"

I could, of course, just define the cat and dog functions right
inside the module interface file, but including them works just as
well. The module declaration tells the compiler that what follows
is part of the module, but that doesn’t mean subsequent declara-
tions are all exported as part of the module’s interface. So far, this
module doesn’t export anything, unless the stdio.h header that
animals.h includes happens to export something all by itself. I can
even guard against that by including stdio.h prior to the module
declaration. So if this module interface doesn’t actually declare any
public names, how do I go about exporting something for others to
consume? I need to use the export keyword; this—and the module
and import keywords—are the only additions to the C++ language
that I need to think about. This speaks to the beautiful simplicity
of this new language feature.

As a start, I can export the cat and dog functions. This involves
updating the animals.h header and beginning both declarations
with the export specifier as follows:

C:\modules> type animals.h
#pragma once
#include <stdio.h>

export inline void dog()
{
 printf("woof\n");
}

export inline void cat()
{
 printf("meow\n");
}

I can now compile the module interface file using the compiler’s
experimental module option:

C:\modules> cl /c /experimental:module animals.ixx

Notice that I also included the /c option to instruct the compiler
merely to compile but not link the code. At this stage, it wouldn’t
make sense to have the linker attempt to create an executable. The
module option instructs the compiler to produce a file containing
metadata describing the interface and the implementation of the
module in a binary format. This metadata isn’t machine code,

but rather a binary representation for C++ language constructs.
However, it’s also not source code, which is both good and bad,
depending on how you look at it. It’s good in that it should improve
build throughput because apps that might import the module don’t
need to parse the code anew. On the other hand, it also means that
there isn’t necessarily any source code for traditional tools like
Visual Studio and its IntelliSense engine to visualize and parse.
That means that Visual Studio, and other tools, need to be taught
how to mine and visualize code within a module. The good news
is that the code or metadata inside a module is stored in an open
format and tools can be updated to deal with it.

Moving on, the app can now import the module rather than the
library header directly:

C:\modules> type app.cpp
import animals;

int main()
{
 dog();
 cat();
}

The import declaration instructs the compiler to look for a
matching module interface file. It can then use that, along with any
other includes that might be present in the app, to resolve the dog
and cat functions. Thankfully, the animals module exports a pair
of furry functions and the app can be recompiled using the same
module command-line option:

C:\modules> cl /experimental:module app.cpp animals.obj

Notice this time that I allow the compiler to call the linker
because I now actually want to produce an executable. The experi-
mental module option is still required because the import keyword
is not yet official. Further, the linker also requires the object file be
produced when the module was compiled. This again hints at the
fact that the new binary format that contains the module’s metadata
isn’t actually the “code,” but merely a description of the exported
declarations, functions, classes, templates and so on. At the point
at which you want to actually build the app that uses the module,
you still need the object file to allow the linker to do its job of
assembling the code into an executable. If all went well, I now have
an executable I can run just like any other—the end result is no
different from the original app using the header-only library. Put
another way, a module is not a DLL.

Now, I happen to work on a rather large library, and the thought
of adding export to every declaration is not at all appealing.
Fortunately, the export declaration can export more than just func-
tions. One option is to export a bunch of declarations with a pair
of braces, as follows:

C:\modules> type animals.h
#pragma once
#include <stdio.h>

export
{
 inline void dog()
 {
 printf("woof\n");
 }

 inline void cat()
 {
 printf("meow\n");
 }
}

The module declaration tells the
compiler that what follows is part
of the module, but that doesn’t
mean subsequent declarations
are all exported as part of the

module’s interface.

0416msdn_KerrVisualCPP_v3_24-31.indd 25 3/10/16 2:47 PM

http://www.msdnmagazine.com

msdn magazine26 Visual C++

This doesn’t introduce a new scope and is merely used to group
any contained declarations for export. Of course, no self-respecting
C++ programmer would write a library with a bunch of declarations
at global scope. Rather, it’s far more likely my animals.h header
declared the dog and cat functions inside a namespace, and the
namespace as a whole can be exported quite simply:

C:\modules> type animals.h
#pragma once
#include <stdio.h>

export namespace animals
{
 inline void dog()
 {
 printf("woof\n");
 }

 inline void cat()
 {
 printf("meow\n");
 }
}

Another subtle benefit of moving from a header-only library to
a module is that the app can no longer accidentally take a depen-
dency on stdio.h because that’s not part of the module’s interface.
What if my header-only library includes a nested namespace
including implementation details not intended for apps to use
directly? Figure 1 shows a typical example of such a library.

A consumer of this library knows not to take a dependency on
anything in the implementation namespace. Of course, the com-
piler won’t stop nefarious developers from doing just that:

C:\modules> type app.cpp
#include "animals.h"
using namespace animals;
int main()
{
 dog();
 cat();
 impl::print("rats");
}

Can modules help here? Sure, but keep in mind that the design
of modules is based upon keeping the feature as small or as
simple as possible. So once a declaration is exported, everything is
exported unconditionally:

C:\modules> type animals.h
#pragma once

#include <stdio.h>

export namespace animals
{
 namespace impl
 {
 // Sadly, this is exported, as well
 }

 // This is exported
}

Fortunately, as Figure 2 shows, you can rearrange the code such
that the animals::impl namespace is declared separately while pre-
serving the library’s namespace structure.

Now all we need is Visual C++ to implement the nested name-
space definitions and it becomes quite a bit prettier to look at and a
lot easier to manager for libraries with a lot of nested namespaces:

C:\modules> type animals.h
#pragma once
#include <stdio.h>

namespace animals::impl
{
 // This is *not* exported -- yay
}

export namespace animals
{
 // This is exported
}

Hopefully this feature will arrive in Visual C++ Update 3. Fingers
crossed! As it stands, the animals.h header will break existing apps
that simply include the header and are perhaps built with a compiler
that doesn’t yet support modules. If you need to support existing
library users while slowly transitioning them to modules, you can use
the dreaded preprocessor to smooth things over during the transi-
tion. This is not ideal. The design of many of the newer C++ language
features, including modules, are meant to make programming C++
without macros increasingly plausible. Still, until modules actually
land in C++ 17 and commercial implementations are available to
developers, I can use a little preprocessor trickery to make the animals
library build both as a header-only library and as a module. Inside
my animals.h header, I can conditionally define the ANIMALS_
EXPORT macro as nothing and use that to precede any namespaces
I’d like to export if this were a module (see Figure 3).

Now any developer unfamiliar with modules, or lacking an ade-
quate implementation, can simply include the animals.h header and
use it just like any other header-only library. I can, however, update

C:\modules> type animals.h
#pragma once
#include <stdio.h>

namespace animals
{
 namespace impl
 {
 inline void print(char const * const message)
 {
 printf("%s\n", message);
 }
 }

 inline void dog()
 {
 impl::print("woof");
 }

 inline void cat()
 {
 impl::print("meow");
 }
}

Figure 1 Header-Only Library
with an Implementation Namespace

C:\modules> type animals.h
#pragma once
#include <stdio.h>

namespace animals
{
 namespace impl
 {
 // This is *not* exported -- yay!
 }
}

export namespace animals
{
 // This is exported
}

Figure 2 Preserving the Library’s Namespace Structure

0416msdn_KerrVisualCPP_v3_24-31.indd 26 3/10/16 2:47 PM

To learn more, please visit our website www.leadtools.com

Best of the Best:
LEADTOOLS Imaging SDKs

Visual Studio Partner Program

Partner Program

Unparalleled Experience
For over 25 years, LEAD Technologies has been supplying
imaging technology to software developers, integrators,
contractors and solution providers throughout the United
States government, military and most Fortune 1000

most comprehensive and widely used imaging toolkits
and are regarded as the gold standard across the

document, medical, multimedia, raster or vector

experience packed into the millions of lines of

One Stop Shop
If you could summarize LEADTOOLS in one

Why? It boasts the most imaging categories on

Tomorrow’s Technology Today

that when new standards and development platforms are released that LEADTOOLS will have something

Personal Touch

too! LEAD Technologies gets that and has utilized the customer feedback and suggestions over the

Untitled-5 1Untitled-5 1 3/4/16 12:54 PM3/4/16 12:54 PM

http://www.leadtools.com
http://www.leadtools.com

msdn magazine28 Visual C++

the module interface to define ANIMALS_EXPORT so that this
same header can produce a set of exported declarations, as follows:

C:\modules> type animals.ixx
module animals;

#define ANIMALS_EXPORT export

#include "animals.h"

Like many C++ developers today, I dislike macros and would
rather live in a world without them. Still, this is a useful technique
as you transition a library to modules. Best of all, while the app that
includes the animals.h header will see the benign macro, it won’t
be visible at all to those who simply import the module. The macro
is stripped out prior to the creation of the module’s metadata and,
as a result, will never bleed into the app or any other libraries and
modules that might make use of it.

Modules are a welcome addition to C++ and I look forward
to a future update to the compiler with full commercial support.
For now, you can experiment along with us as we push the C++
standard forward with the prospect of a module system for C++.
You can learn more about modules by reading the technical spec-
ification (goo.gl/Eyp6EB) or by watching a talk given by Gabriel Dos
Reis at CppCon last year (youtu.be/RwdQA0pGWa4).

Coroutines
While coroutines, previously called resumable functions, have
been around a little longer in Visual C++, I continue to be excited
about the prospect of having true coroutine support in the C++
language—with its deep roots in the stack-based language design
of C. As I was thinking what to write, it dawned on me that I wrote
not just one but at least four articles about the topic for MSDN

Magazine. I suggest you start with the latest article in the October
2015 issue (goo.gl/zpP0AO), where you’ll be introduced to the corou-
tines support provided in Visual C++ 2015. Rather than rehash the
benefits of coroutines, let’s drill into them a little further. One of
the challenges with getting coroutines adopted by C++ 17 is that
the standardization committee didn’t like the idea that they could
provide automatic type deduction. The type of the coroutine can
be deduced by the compiler such that the developer doesn’t have
to think about what that type might be:

auto get_number()
{
 await better_days {};
 return 123;
}

The compiler is more than able to produce a suitable coroutine
type and arguably this was inspired by C++ 14, which stated that
functions can have their return type deduced:

auto get_number()
{
 return 123;
}

Still, the standardization committee is not yet comfortable with
this idea being extended to coroutines. The problem is that the
C++ Standard Library doesn’t provide suitable candidates, either.
The closest approximation is the clumsy std::future with its often
heavy implementation and its very impractical design. It also
doesn’t help much in the way of asynchronous streams produced
by coroutines that yield values rather than simply returning a single
value asynchronously. So if the compiler can’t provide a type and
the C++ Standard Library doesn’t provide a suitable type, I need
to look a little closer to see how this actually works if I’m going to
make any progress with coroutines. Imagine I have the following
dummy awaitable type:

struct await_nothing
{
 bool await_ready() noexcept
 {
 return true;
 }

 void await_suspend(std::experimental::coroutine_handle<>) noexcept
 {}

 void await_resume() noexcept
 {}
};

It doesn’t do anything, but allows me to construct a coroutine
by awaiting on it:

coroutine<void> hello_world()
{
 await await_nothing{};
 printf("hello world\n");
}

Again, if I can’t rely on the compiler automatically deducing the
coroutine’s return type and I choose not to use std::future, then how
might I define this coroutine class template?

template <typename T>
struct coroutine;

Because I’m already running out of space for this article, let’s
just look at the example of a coroutine returning nothing, or void.
Here’s the specialization:

template <>
struct coroutine<void>
{
};

C:\modules> type animals.h
#pragma once
#include <stdio.h>

#ifndef ANIMALS_EXPORT
#define ANIMALS_EXPORT
#endif

namespace animals { namespace impl {

// Please don't look here

}}

ANIMALS_EXPORT namespace animals {

// This is all yours

}

Figure 3 Building a Library Both as a Header-Only Library and
as a Module

The type of the coroutine can be
deduced by the compiler such that
the developer doesn’t have to think

about what that type might be.

0416msdn_KerrVisualCPP_v3_24-31.indd 28 3/10/16 2:47 PM

www.youtu.be/RwdQA0pGWa4
www.goo.gl/Eyp6EB
www.goo.gl/zpP0AO

(888) 850-9911
Sales Hotline - US & Canada:

/update/2016/04

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2016 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
2 New Century Place
East Street
Reading, Berkshire
RG1 4ET
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Help & Manual Professional from $586.04
Help and documentation for .NET and mobile applications.

• Powerful features in an easy, accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to responsive HTML, CHM, PDF, MS Word, ePUB, Kindle or print

• Styles and Templates give you full design control

BEST SELLER

Experience the brand new look at www.componentsource.com

Aspose.Total for .NET from $2,449.02
Every Aspose .NET component in one package.

• Programmatically manage popular � le formats including Word, Excel, PowerPoint and PDF

• Work with charts, diagrams, images, project plans, emails, barcodes, OCR and OneNote � les
alongside many more document management features in .NET applications

• Common uses also include mail merging, adding barcodes to documents, building dynamic
reports on the � y and extracting text from most document types

BEST SELLER

DevExpress DXperience 15.2 from $1,439.99
The complete range of DevExpress .NET controls and libraries for all major Microsoft platforms.

• WinForms Grid: New data-aware Tile View

• WinForms Grid & TreeList: New Excel-inspired Conditional Formatting

• .NET Spreadsheet: Grouping and Outline support

• ASP.NET: New Rich Text Editor-Word Processing control

• ASP.NET Reporting: New Web Report Designer

BEST SELLER

LEADTOOLS Document Imaging SDKs V19 from $2,995.00 SRP

Add powerful document imaging functionality to desktop, tablet, mobile & web applications.

• Universal document viewer & conversion framework for PDF, O� ce, CAD, TIFF & more

• OCR, MICR, OMR, ICR and Forms Recognition supporting structured & unstructured forms

• PDF SDK with text edit, hyperlinks, bookmarks, digital signature, forms, metadata

• Barcode Detect, Read, Write for UPC, EAN, Code 128, Data Matrix, QR Code, PDF417

• Zero-footprint HTML5/JavaScript UI Controls & Web Services

BEST SELLER

Untitled-5 1 3/4/16 3:20 PM

http://www.componentsource.com

msdn magazine30 Visual C++

The first thing the compiler does is look for a promise_type
on the coroutine’s return type. There are other ways to wire this
up, particularly if you need to retrofit coroutine support into an
existing library, but because I’m writing the coroutine class tem-
plate I can simply declare it right there:

template <>
struct coroutine<void>
{
 struct promise_type
 {
 };
};

Next, the compiler will look for a return_void function on the
coroutine promise, at least for coroutines that don’t return a value:

struct promise_type
{
 void return_void()
 {}
};

While return_void doesn’t have to do anything, it can be used by
different implementations as a signal of the state change that the
logical result of the coroutine is ready to be inspected. The compiler
also looks for a pair of initial_suspend and final_suspend functions:

struct promise_type
{
 void return_void()
 {}

 bool initial_suspend()
 {
 return false;
 }

 bool final_suspend()
 {
 return true;
 }
};

The compiler uses these to inject some initial and final code into
the coroutine, which tells the scheduler whether to begin the corou-
tine in a suspended state and whether to suspend the coroutine prior
to completion. This pair of functions can actually return awaitable
types so that in effect the compiler could await on both as follows:

coroutine<void> hello_world()
{
 coroutine<void>::promise_type & promise = ...;
 await promise.initial_suspend();

 await await_nothing{};
 printf("hello world\n");

 await promise.final_suspend();
}

Whether or not to await and, thus, inject a suspension point,
depends on what you’re trying to achieve. In particular, if you need
to query the coroutine following its completion, you’ll want to
ensure that there’s a final suspension; otherwise, the coroutine will
be destroyed before you get a chance to query for any value cap-
tured by the promise.

The next thing the compiler looks for is a way to get the coroutine
object from the promise:

struct promise_type
{
 // ...

 coroutine<void> get_return_object()
 {
 return ...
 }
};

The compiler makes sure the promise_type is allocated as part
of the coroutine frame. It then needs a way to produce the corou-
tine’s return type from this promise. This then gets returned to the
caller. Here I must rely on a very low-level helper class provided
by the compiler called a coroutine_handle and currently provided
in the std::experimental namespace. A coroutine_handle repre
sents one invocation of a coroutine; thus, I can store this handle
as a member of my coroutine class template:

template <>
struct coroutine<void>
{
 // ...

 coroutine_handle<promise_type> handle { nullptr };
};

I initialize the handle with a nullptr to indicate that the coroutine
isn’t currently in flight, but I can also add a constructor to explicitly
associate a handle with a newly constructed coroutine:

explicit coroutine(coroutine_handle<promise_type> coroutine) :
 handle(coroutine)
{}

The coroutine frame is somewhat like a stack frame, but is a
dynamically allocated resource and must be destroyed, so I’ll nat-
urally use the destructor for that:

~coroutine()
{
 if (handle)
 {
 handle.destroy();
 }
}

I should also delete the copy operations and allow move seman-
tics, but you get the idea. I can now implement the promise_type’s
get_return_object function to act as a factory for coroutine objects:

struct promise_type
{
 // ...

 coroutine<void> get_return_object()
 {
 return coroutine<void>(
 coroutine_handle<promise_type>::from_promise(this));
 }
};

I should now have enough for the compiler to produce a corou-
tine and kick it into life. Here, again, is the coroutine followed by
a simple main function:

coroutine<void> hello_world()
{
 await await_nothing{};
 printf("hello world\n");
}

int main()
{
 hello_world();
}

Whether or not to await and,
thus, inject a suspension point,
depends on what you’re trying

to achieve.

0416msdn_KerrVisualCPP_v3_24-31.indd 30 3/10/16 2:47 PM

31April 2016msdnmagazine.com

I haven’t yet done anything with the result of hello_world, yet
running this program causes printf to be called and the familiar
message printed to the console. Does that mean the coroutine
actually completed? Well I can ask the coroutine that question:

int main()
{
 coroutine<void> routine = hello_world();
 printf("done: %s\n", routine.handle.done() ? "yes" : "no");
}

This time I’m not doing anything with the coroutine but asking
whether it’s done, and sure enough it is:

hello world
done: yes

Recall that the promise_type’s initial_suspend function returns
false so the coroutine itself doesn’t begin life suspended. Recall
also that await_nothing’s await_ready function returns true, so
that doesn’t introduce a suspension point, either. The end result is
a coroutine that actually completes synchronously because I gave
it no reason to do otherwise. The beauty is that the compiler is able
to optimize coroutines that behave synchronously and apply all of
the same optimizations that make straight-line code so fast. Still,
this isn’t very exciting, so let’s add some suspense, or at least some
suspension points. This can be as simple as changing the await_
nothing type to always suspend, even though it has nothing to do:

struct await_nothing
{
 bool await_ready() noexcept
 {
 return false;
 }

 // ...
};

In this case, the compiler will see that this awaitable object isn’t
ready and return to the caller before resuming. Now if I return to
my simple hello world app:

int main()
{
 hello_world();
}

I’ll be disappointed to find that this program doesn’t print any-
thing. The reason should be obvious: The coroutine suspended
prior to calling printf and the caller that owns the coroutine object
didn’t give it an opportunity to resume. Naturally, resuming a corou-
tine is as simple as calling the handle-provided resume function:

int main()
{
 coroutine<void> routine = hello_world();
 routine.handle.resume();
}

Now the hello_world function again returns without calling
printf, but the resume function will cause the coroutine to complete.
To illustrate further, I can use the handle’s done method before and
after resuming, as follows:

int main()
{
 coroutine<void> routine = hello_world();
 printf("done: %s\n", routine.handle.done() ? "yes" : "no");
 routine.handle.resume();
 printf("done: %s\n", routine.handle.done() ? "yes" : "no");
}

The results clearly show the interaction between the caller and
the coroutine:

done: no
hello world
done: yes

This could be very handy, particularly in embedded systems that
lack sophisticated OS schedulers and threads, as I can write a light-
weight cooperative multitasking system quite easily:

while (!routine.handle.done())
{
 routine.handle.resume();
 // Do other interesting work ...
}

Coroutines aren’t magical, nor do they require complex sched-
uling or synchronization logic to get them to work. Supporting
coroutines with return types involves replacing the promise_type’s
return_void function with a return_value function that accepts a
value and stores it inside the promise. The caller can then retrieve the
value when the coroutine completes. Coroutines that yield a stream
of values require a similar yield_value function on the promise_
type, but are otherwise essentially the same. The hooks provided by
the compiler for coroutines are quite simple yet amazingly flexible.
I’ve only scratched the surface in this short overview, but I hope it’s
given you an appreciation for this amazing new language feature.

Gor Nishanov, another developer on the C++ team at Microsoft,
continues to push coroutines toward eventual standardization. He’s
even working on adding support for coroutines to the Clang com-
piler! You can learn more about coroutines by reading the technical
specification (goo.gl/9UDeoa) or by watching a talk given by Nishanov
at CppCon last year (youtu.be/_fu0gx-xseY). James McNellis also gave a
talk on coroutines at Meeting C++ (youtu.be/YYtzQ355_Co).

There’s so much more happening with C++ at Microsoft. We’re add-
ing new C++ language features, including variable templates from C++
14 that allow you to define a family of variables (goo.gl/1LbDJ2). Neil Mac-
Intosh is working on new proposals to the C++ Standard Library for
bounds-safe views of strings and sequences. You can read up on span<>
and string_span at goo.gl/zS2Kau and goo.gl/4w6ayn, and there’s even an
implementation available of both (GitHub.com/Microsoft/GSL).

On the back end, I recently discovered that the C++ optimizer is a
lot smarter than I thought when it comes to optimizing away calls to
strlen and wcslen when called with string literals. That’s not particularly
new, even if it’s a well-guarded secret. What is new is that Visual C++
finally implements the complete empty base optimization, which it
has lacked for well over a decade. Applying __declspec(empty_bases)
to a class results in all direct empty base classes being laid out at off-
set zero. This isn’t yet the default because it would require a major
version update to the compiler to introduce such a breaking change,
and there are still some C++ Standard Library types that assume the
old layout. Still, library developers can finally take advantage of this
optimization. Modern C++ for the Windows Runtime (moderncpp.com)
particularly benefits from this and is actually the reason why this
feature was finally added to the compiler. As I mentioned in the
December 2015 issue, I recently joined the Windows team at Microsoft
to build a new language projection for the Windows Runtime based
on moderncpp.com and this is also helping to push C++ forward at
Microsoft. Make no mistake, Microsoft is serious about C++.	 n

Kenny Kerr is a software engineer on the Windows team at Microsoft. He blogs
at kennykerr.ca and you can follow him on Twitter: @kennykerr.

Thanks to the following Microsoft technical expert who reviewed this article:
Andrew Pardoe

0416msdn_KerrVisualCPP_v3_24-31.indd 31 3/10/16 2:47 PM

http://www.msdnmagazine.com
www.goo.gl/9UDeoa
http://youtu.be/_fu0gx-xseY
http://youtu.be/YYtzQ355_Co
www.goo.gl/1LbDJ2
www.goo.gl/zS2Kau
www.goo.gl/4w6ayn
www.GitHub.com/Microsoft/GSL
www.kennykerr.ca
www.Twitter.com/kennykerr
www.moderncpp.com

msdn magazine32

There are many workflows available for developing
and deploying cross-platform applications, which means it’s not
always easy to choose. Not only can you get stuck on what devel
opment technology to use, but the entire dev-to-production
workflow is even more confusing. You can develop natively on each
mobile platform, which requires you to be pretty skilled with C#,
Objective-C/Swift, Java and sometimes C++. Or you might choose
cross-platform tools like Apache Cordova or Xamarin. Beta testing
is yet another issue, as you can side-load apps (painful beyond
a couple users), use platform-specific beta testing distribution
solutions, such as using promotional codes on Windows 10
devices, TestFlight on iOS, groups on Google Play, or platforms like
HockeyApp. There are many ways to achieve a similar end result,
but through very different journeys.

In this article, I’ll be taking a look at a workflow for creating
cross-platform apps that includes tools installation, development,
debugging, deployment (production or beta) and updates. This
workflow utilizes the Ionic HTML5 mobile app framework, the
Tools for Apache Cordova (TACO) command-line tools, CodePush,
and Visual Studio Code, and it can integrate tightly into Visual
Studio. I’ll focus on the command line and on the Visual Studio
Code workflow, as these are essentially the same across Mac OS,
Linux, and Windows using the same tools. You’ll definitely want
the tooling for either Visual Studio Code or Visual Studio—it’s the
best on the market for developing and debugging Cordova-based
apps, though I want to stress the projects are completely interop-
erable among OSes (Mac OS, Linux, Windows), command lines
(Ionic, Cordova and so forth), and tooling (Visual Studio Code
or Visual Studio). The tooling for Visual Studio installs all of the
required SDKs automatically and sets you up for Windows native
and Android debugging.

If you’re a Web developer looking to do cross-platform app
development and are new to Apache Cordova, I recommend getting
started with the article, “Write Cross-Platform Hybrid Apps in
Visual Studio with Apache Cordova” (msdn.com/magazine/dn879349),
to get an overview of how the framework works.

Tools for Apache Cordova (TACO)
TACO is a suite of products designed to make development faster
and more productive. There are multiple endpoints when developing

MO BILE APPS

Using Ionic and TACO
to Create Cross-Platform
Mobile Apps
Adam Tuliper

This article discusses:
•	Tools for Apache Cordova (TACO)

•	The Ionic framework

•	Visual Studio Code

•	Live updates to cross-platform Windows Store apps

•	Platform-specific CSS

Technologies discussed:
Ionic Framework, Tools for Apache Cordova (TACO), CodePush,
Visual Studio and Visual Studio Code

0416msdn_TuliperIonic_v4_32-39.indd 32 3/10/16 3:25 PM

www.msdn.com/magazine/dn879349

Register by April 13
and Save $200

USE PROMO CODE VSLAPRTI

Scan the QR code to register
or for more event details.

 ALM / DevOps
 ASP.NET
 Cloud Computing
 Database and Analytics
 JavaScript / HTML5

Client
 Mobile Client

 Software Practices
 UX / Design
 Visual Studio /

.NET Framework
 Windows Client

(Windows 10/UWP,
WPF)

PRACTICAL & UNBIASED
TRAINING FOR DEVELOPERS:

VSLIVE.COM/AUSTIN
magazine

SUPPORTED BYPLATINUM SPONSOR

CAMPAIGN FOR CODE 2016 VISUAL STUDIO LIVE!

vslive.com/austin

Austin MAY 16 - 19
HYATT REGENCY, AUSTIN, TX

GOLD SPONSOR PRODUCED BY

0416msdn_VSLive_Insert.indd 1 3/2/16 2:51 PM

www.vslive.com/austin

B�tonPRACTICAL & UNBIASED
TRAINING FOR DEVELOPERS:

 ALM / DevOps
 Cloud Computing
 Database and Analytic
 Mobile Client
 Software Practices

 UX / Design
 Visual Studio /

.NET Framework
 Web Client
 Web Server

magazine

SUPPORTED BYPLATINUM SPONSOR PRODUCED BY

VSLIVE.COM/BOSTON

CAMPAIGN FOR CODE 2016 VISUAL STUDIO LIVE!

Boston JUNE 13 - 16
HYATT REGENCY, CAMBRIDGE, MA

vslive.com/boston

Register by April 20
and Save $300

USE PROMO CODE VSLAPRTI

Scan the QR code to register
or for more event details.

 0416msdn_VSLive_Insert.indd 2 3/2/16 3:20 PM

www.vslive.com/boston

33April 2016msdnmagazine.com

an Apache Cordova application. The Visual Studio path installs
all the required SDK and third-party tools, including an advanced
emulator for Android. If you’re working on cross-platform devel-
opment, a useful Visual Studio Code extension gives you features
like IntelliSense and debugging from within Visual Studio Code.
There’s also a set of command-line utilities called TACO-CLI that you
can use for installing third-party SDKs if you prefer the command-
line path. These tools work with any Cordova-compatible project
(Ionic, PhoneGap and more). I’m going to install TACO-CLI now
so it’s available later when I need it:

#install taco one time (**this requires Node to be installed **)
npm install taco-cli –g

Whenever you add a platform to an Apache Cordova application
via any of the following commands (which basically do the same
thing depending on which command line you’re using), you’re only
configuring the project for that platform; the command doesn’t
do anything about checking for or installing the required SDKs:

cordova platform add android

#or
ionic platform add android

#or
taco platform add android

The Android platform, for example, requires dependencies like
the Android SDK, Gradle, and Java, which aren’t added by the Ionic
or Cordova command-line tools, but can be added from inside an
existing project by running:

taco install-reqs android

This will install Java and the Android SDK, along with Gradle
integration and Android Debug Bridge (adb) support.

Developing and Debugging
If you’re working cross-platform, Visual Studio Code has tooling
that enables you to debug from an emulator or right on a device,
as shown in Figure 1. All you do is right-click on a folder and
select to open with Visual Studio Code, or use File | Open Folder.
You can do this with any cross-platform Cordova-based applica-
tion; there’s nothing Visual Studio-specific about this step and it
allows you to make the workflow your own, quite a nice feature
when you’re working with a team using other tools and platforms.

All you need to do to install this extension is to bring up the
Command Palette via control-shift-p and type:

ext install cordova

To debug your app, simply switch to the Debug view (via the
icon or Control+Shift+D) and choose your debugging target (as

in Figure 1) and click play. This
assumes you’ve already installed
the platform-specific SDKs either
manually or via taco install-reqs.

If you love Visual Studio, you
can also work with existing proj-
ect folders, such as those from
command-line tools, by simply
performing File | New | Project
From Existing Code. Note that this
only adds a .jsproj and taco.json file
in your folder—that’s it. You can

then happily use these from Visual Studio while your Mac OS and
Linux developers share the same repository and use Visual Studio
Code, the command line, and so forth. It all works well together.
Of course, you can create a new Apache Cordova project, as well,
from File | New Project and that will also work cross-platform. It’s
a harmonious world, isn’t it?

What about IntelliSense? In Visual Studio you can install the
Ionic Pack from the Extension Gallery right in Visual Studio or
from bit.ly/1Vq4dIo. You get snippets, validation and IntelliSense.
Visual Studio Code contains IntelliSense for Ionic once you install
the Cordova Tools Extension.

The Ionic Framework
Ionic is a CSS framework and a JavaScript UI library, optionally
coupled with a build system. It typically runs on top of Apache
Cordova, the open source cross-platform HTML/JS/CSS native app
framework. You generally hear of Ionic being used with Cordova,
but that isn’t necessary; for example, check out some of the code pens
at CodePen.io/ionic; Ionic is just HTML, CSS, JavaScript and images.

One of the challenges with creating convincing mobile apps is
ensuring that they look and perform according to the design guide-
lines for each OS: the Material Design guidelines for Android;
the UX Guidelines for Universal Windows Platform (UWP) apps
and the Human Interface Guidelines for iOS. Whether you’re
developing line-of-business apps or games, users have expectations
regarding how an interaction should
behave. Whether you realize it, there
are micro-interactions you use daily
throughout the devices, appliances and
other items in your life.

Micro-interactions in a mobile app can
be as simple as swiping the screen in a

Figure 1 Debugging from Within Visual Studio Code

Figure 2 Android and
iOS Spinners

If you’re working cross-platform,
Visual Studio Code has tooling
that enables you to debug from
an emulator or right on a device.

0416msdn_TuliperIonic_v4_32-39.indd 33 3/10/16 3:25 PM

http://www.msdnmagazine.com
www.CodePen.io/ionic
www.bit.ly/1Vq4dIo

msdn magazine34 Mobile Apps

particular direction to perform an action, pulling to refresh, “liking”
on a social media page or displaying a spinner. How do you han-
dle these in a platform-specific manner? Ionic takes care of some
of these details automatically. For example, it will detect if you’re
on iOS or Android and use the appropriate CSS-styled spinner
to look like the platform-specific one, as shown in Figure 2.
Ionic tags for a spinner are custom HTML tags that look like
the following:

<ion-spinner></ion-spinner>

Figure 3 shows example code for a native-looking list using just
HTML and CSS in Ionic. This in turn yields the nice, native-look-
ing top section of the app shown in Figure 4.

Getting Started
An Ionic application is just a Web page pack-
aged locally in a Cordova app. There are custom
HTML tags as you can see, as well as platform-
specific CSS styling. Ionic apps are built on top
of Angular. Let’s create a simple Ionic app and
explore its structure. If you’re familiar with
Angular, this will be a breeze. If not, it’s pretty
easy to understand what’s going on from a high
level. To use the Ionic command-line interface
(cli), you should have npm installed (available
when you install Node.js from Nodejs.org) and Git
from Git-scm.com.

If you just want to use Ionic in a standalone
app, you could simply install it via bower:

bower install ionic

Visual Studio users can take advantage of the
Ionic template (managed by the Visual Studio
team) available in the Visual Studio Gallery
under Tools | Extensions and Updates. Because
Ionic has its own command-line interface (CLI),
which makes it pretty easy to use, and it builds
on top of Cordova, let’s explore that route and
create a new app from the Ionic command line:

#install ionic and cordova (once) and create the app(s)
npm install-g ionic cordova

#create a new app using the tabs template
#Could be one of several templates – run the command:
#ionic templates
#or specify url of a custom template
ionic start myIonic tabs
cd myIonic

#add platform support to the project
ionic platform add android
ionic platform add ios

I don’t have the Android SDK installed so I can’t run it yet. But
it’s simple to install it via the TACO-CLI, so I’ll do that and then
launch the emulator. Keep in mind that TACO provides much more
than just a CLI, as noted earlier. I also want to point out that the
Ionic, TACO and Cordova command lines can all work together:

#install JAVA, Android SDK, Gradle, and so forth if they don’t yet exist
taco install-reqs android

#run in the browser
ionic serve

#run in an emulator
ionic emulate android

What About iOS?
For iOS, you can debug and run your Apache Cordova application
using either Visual Studio Code or Visual Studio. You’ll need access
to a Mac at some point if you want to run the app on a device or in
the Apple simulator, so if you’re already on Mac OS, you can run and
debug directly from within Visual Studio Code as shown previously
to launch on a device or in the simulator.

If you prefer to develop on Windows, you have several options.
If you’re using Visual Studio, you can use the Apache Ripple

simulator on Windows (bit.ly/1QOqXxK) as it’s con-
figured out of the box to simulate iOS (see Figure
5). If you want to run and debug in the Apple
simulator (on OS X) or on an iOS device, you’ll
need a Mac with Xcode installed and the remote
agent installed on the Mac so Visual Studio or
Visual Studio Code can communicate with it,
as outlined at bit.ly/1XC36H3. You can get a three-
month Parallels subscription to run Windows
on your Mac from Visual Studio Dev Essentials.
Last, you can use one of the various Mac cloud
services such as MacInCloud and run in the
cloud as shown at bit.ly/1QOrYpz.

As mentioned, you’ll need Xcode installed on
your Mac, but if you use the taco install-reqs,
that command will also install ios-sim, which
allows you to launch the iOS simulator from the
command line, and use ios-deploy to install and
debug apps onto iOS devices outside of Xcode.

Loading in Visual Studio Code
At this point, I have an application folder that
was created by Ionic. This is a Cordova appli-
cation. I can load either Visual Studio Code or
Visual Studio and point it to this folder and start
working with it. I could now go to the Debug

<div class="list">

 <i class="icon ion-email"></i>
 Check mail

 <i class="icon ion-chatbubble-working"></i>
 Call Ma
 <i class="icon ion-ios-telephone-outline"></i>

 <i class="icon ion-mic-a"></i>
 Record album

 Grammy

 <i class="icon ion-person-stalker"></i>
 Friends
 0

</div>

Figure 3 A Native-Looking List Created in Ionic Using HTML

Figure 4 A Native-Looking List
Created in Ionic

0416msdn_TuliperIonic_v4_32-39.indd 34 3/10/16 3:25 PM

www.Nodejs.org
http://Git-scm.com
www.bit.ly/1QOqXxK
www.bit.ly/1XC36H3
www.bit.ly/1QOrYpz

Try a little Vitamin Q.

Data entry errors. Consolidation headaches.
Quality data shouldn’t be a pain.

India
www.MelissaData.in

Australia
www.MelissaData.com.au

United Kingdom
www.MelissaData.co.uk

Germany
www.MelissaData.de

www.MelissaData.com 1-800-MELISSA

We supply Vitamin Q – “quality” – in
data quality management solutions
that profile, clean, enrich, and match
your customer data – and keep it
healthy over time. Add Vitamin Q to
your data integration, business
intelligence, Big Data, and CRM
initiatives to ensure accurate data for
greater insight and business value.

Solutions for
240+ Countries

Data Quality &
Mailing Solutions

10,000+ Customers
Worldwide

30+ Years
Strong

Cloud • On-Premise
• Services

Get a FREE 30-day trial!
www.MelissaData.com/vitaminQ

ACT
NOW

Untitled-3 1 12/11/15 12:48 PM

http://www.MelissaData.in
http://www.MelissaData.com.au
http://www.MelissaData.de
http://www.MelissaData.co.uk
http://www.MelissaData.com/vitaminQ
http://www.MelissaData.com

msdn magazine36 Mobile Apps

tab in Visual Studio Code, choose a target, and
start debugging, as shown in Figure 1.

Now let’s take a look at the structure of the
application. Index.html is the main page and
loads Ionic and Angular. You’ll quickly note that
Ionic uses custom tags, such as <ion-nav-view>,
but more on those shortly. Index.html is the
root page that hosts the other pieces of con-
tent delivered through Angular. Ionic consists
of two references, the css and the js, which has
Angular bundled with it:

<!-- compiled css (from sass) output -->
<link href="css/ionic.app.css" rel="stylesheet">
<!-- ionic & angularjs bundled together js -->
<script src="lib/ionic/js/ionic.bundle.js"></script>

Figure 6 shows the index.html body tag. The
flow in this application is URI-controlled. Those
URIs are registered in app.js, as shown in Figure
7. If you’re an MVC developer, think of these as
your routes. Figure 7 shows just a segment here that’ll be extended
later. As you can see, two URLs are handled here: /tab and /tab/dash.
What gets loaded when the app loads? The $urlRouterProvider.
otherwise function provides a default of /tab/dash, so when you
start with index.html, you also process /tab/dash.

The first URI is marked abstract, which means it will never
directly navigate to /tabs. It will be utilized, though, whenever any
of its children are accessed. Since the default is /tab/dash, this will
cause both views to be processed for these URIs. A Cordova app
doesn’t run in a Web browser but a WebView, so there’s no exposed
URI a user would type into. This navigation is handled completely
via hrefs or JavaScript. The states define what HTML to show for
a URI, as well as what controller will handle the business logic.

The ./js/controllers.js file in this template contains the rudimen-
tary business logic tied to each URI-template combination. The
$scope variable is used simply to assign data that the templates
can use. If I had customer information to return, I could just use:

$scope.customer = { "firstName": "John" };

Keeping this simplicity in mind, here’s the ChatDetail controller
assigning data from a Chat service defined in services.js and, in
the second example, the controller assigning a JSON object to a
variable called settings I can bind in my template:

// controller.js
angular.module('starter.controllers', [])
// ...code omitted for brevity
.controller('ChatDetailCtrl', function($scope, $stateParams, Chats) {
 $scope.chat = Chats.get($stateParams.chatId);
})

.controller('StorageCtrl', function($scope) {
 $scope.settings = {
 enableCloudStorage: true
 };
});

The default tab interface is made of two
templates—the tab interface (from /tab) and
whichever of the three child views tabs-html
contains, depending what the user selects. The
HTML for the interface is shown in Figure 8.
Notice how I use ion-tabs and ion-tab to define
the tabs control and an individual tab, and then
ion-nav-view to host the actual child views.

This is the default tab-dash view displayed
when the app loads. It’s rendered inside of the
tab-dash <ion-nav-view> noted earlier:

<ion-view view-title="Dashboard">
 <ion-content class="padding">
 <h2>Welcome to Ionic</h2>
 <p>
 This is the Ionic starter...
 </p>
 </ion-content>
</ion-view>

Ionic also understands navigation between
views. If you’re running this in a browser and click back, you go
to the previous view. If you’re running on a Windows Phone or
Android device and use the back button, you’ll also navigate to the
previous view. This is configured inside of Index.html:

<ion-nav-bar class="bar-stable">
 <ion-nav-back-button>
 </ion-nav-back-button>
</ion-nav-bar>

Platform-Specific CSS
There are still some platform-specific things to do, such as deter-
mining which icons to show, but for this I need to know on which
platform I’m running. There are several ways to detect this. I could
use JavaScript from the default cordova-device plug-in using
device.platform, but that means being stuck with a bunch of if/else
logic to display icons. Remember, these apps are made of Web pages.
I don’t want to sound simplistic, because “just Web pages” can run
full 3D apps at near native speeds (like WebGL), but in this case,
because I’m using just HTML/CSS/JS, I can style the app with just
CSS. Ionic provides a library called Ionicons, available at Ionicons.com.
And definitely checkout the cheat sheet at Ionicons.com/cheatsheet.html.

When you build for a platform by running cordova build
<platform>, one change that happens is the <body> element gets
an additional CSS class for that platform. For example, if you run
on an Android, the body tag will be some variant of:

<body class="platform-android">

<body ng-app="starter">
 <!--
 The nav bar that will be updated as we navigate between views.
 -->
 <ion-nav-bar class="bar-stable">
 <ion-nav-back-button>
 </ion-nav-back-button>
 </ion-nav-bar>
 <!--
 The views will be rendered in the <ion-nav-view> directive below
 Templates are in the /templates folder (but you could also
 have templates inline in this html file if you'd like).
 -->
 <ion-nav-view></ion-nav-view>
 </body>

Figure 6 The Index.Html Body Tag

Figure 5 iOS Run/Debug Options
in Visual Studio

The flow in this application is
URI-controlled.

0416msdn_TuliperIonic_v4_32-39.indd 36 3/10/16 3:25 PM

www.Ionicons.com
www.Ionicons.com/cheatsheet.html

Download your
Free Trial right now.

combit.com/reporting

Partner Program

Reporting with List & Label 21

List & Label is the reporting component
of choice for thousands of development teams
and millions of end-users worldwide – with a
successful track record stretching back more
than 20 years. It combines high performance
with outstanding scalability, and can be
integrated into your own application with
ease and speed. List & Label gives your users

a powerful reporting tool that enables the
import of data from any source – including all
SQL dialects, ORM tools, and OData & REST.
And it supports a vast number of export and
barcode formats, plus Windows 10, the latest
.NET features, WinForms, ASP.NET/MVC and
WPF apps. The royalty-free designer will add
huge value to your applications.

Add value to your application in an instant!

Untitled-1 1 3/11/16 12:22 PM

www.combit.com/reporting
www.combit.com/reporting

msdn magazine38 Mobile Apps

You can use this to your advantage to display platform-specific
icons by using a mix of the Sass stylesheet language and Ionic Icons.
The following command configures my Ionic application with Sass:

#tell Ionic to configure/create Sass and make the .scss file
ionic setup sass

If you’re using Visual Studio, this step works, but be sure to first
configure Task Runner Explorer to run the Gulp task to compile
the Sass to CSS. Not sure what Gulp or the Task Runner Explorer is?
Check out my article on Grunt and Gulp at msdn.com/magazine/mt595751.

If you want Visual Studio to automatically compile your LESS,
Sass, CoffeeScript, JSX, ES6 and Stylus files in your Web projects,
you can use the Web Compiler extension to process them. Find
it at bit.ly/1O0LP3x. This isn’t required here because I’m going to use
Gulp, but either method works.

Now let’s open up the ./scss/ionic.app.scss file and add in some Sass.
There’s loads of information out there about Sass, but the one thing to
note here is that it lets you do things with CSS that would otherwise
require quite a bit more text to accomplish. If I want a platform-specific
cloud icon to show up and a default icon when there isn’t a platform-
specific one, I can edit the .scss file to add the code shown in Figure 9.

Then I can manually trigger the Gulp task for this and run it:
#compile sass
gulp sass

Using gulpfile ~\myIonic\gulpfile.js
[11:28:24] Starting 'sass'...
[11:28:26] Finished 'sass' after 2.1 s
#now run it!
ionic emulate android

One thing you can immediately see is the platform-specific tab
placement, shown in Figure 10. There were no code changes required
for this—it’s how Ionic operates. Another change, albeit very slight,
is the difference in the cloud icon. Because of the simple CSS mod-
ification, I’m rendering platform-specific icons for each platform.

Providing Application Updates
Applications are services. In other words, if you want to ensure a
healthy community around your applications, you don’t deploy
once and then forget about them. You should continually update
to deliver fixes and features. A very compelling reason to choose
Cordova apps over fully native apps is that you can deliver updates
out of the store. App approvals on iOS can, for example, take weeks.
What do you do if you have a new bug fix or feature that needs to
go out immediately?

CodePush is a service from Microsoft that allows out-of-store
updates for applications as long as there are no native code changes
in the Cordova apps (which would typically be from adding new
plug-ins). You can change assets such as the HTML/CSS/JavaScript
and create a new release. Releases of your applications are stored
in Microsoft Azure and completely managed by CodePush so you
don’t have to worry about any infrastructure. Let’s look at the steps
required to bring a version of my Android Ionic app up to the cloud:

npm install -g code-push-cli
code-push register
code-push app add myIonic

These commands give you a CodePush deployment key, which you
can add to the end of the /config.xml file using a <platform> element:

<ion-tabs class="tabs-icon-top tabs-color-active-positive">
 <!-- Dashboard Tab -->
 <ion-tab title="Status" icon-off="ion-ios-pulse"
 icon-on="ion-ios-pulse-strong"
 href="#/tab/dash">
 <ion-nav-view name="tab-dash"></ion-nav-view>
 </ion-tab>

 <!-- Chats Tab -->
 <ion-tab title="Chats" icon-off="ion-ios-chatboxes-outline"
 icon-on="ion-ios-chatboxes"
 href="#/tab/chats">
 <ion-nav-view name="tab-chats"></ion-nav-view>
 </ion-tab>

 <!-- Storage Tab -->
 <ion-tab title="Storage" icon-off="cloud-outline" icon-on="cloud"
 href="#/tab/storage">
 <ion-nav-view name="tab-storage"></ion-nav-view>
 </ion-tab>
</ion-tabs>

Figure 8 The HTML for the Default Tab Interface

// Handle any platform not defined
.cloud{
 @extend .ion-ios-cloud
}

.cloud-outline{
 @extend .ion-ios-cloud-outline
}

// Android-specific
.platform-android {
 .cloud{
 @extend .ion-android-cloud
 }
 .cloud-outline{
 @extend .ion-android-cloud-outline
 }
}

// iOS-specific
.platform-ios .platform-win32{
 .cloud {
 @extend .ion-ios-cloud
 }
 .cloud-outline{
 @extend .ion-ios-cloud-outline
 }
}

Figure 9 Using Sass to Define Platform-Specific Cloud Icons

// app.js
// ..
 $stateProvider
// Setup an abstract state for the tabs directive
.state('tab', {
 url: '/tab',
 abstract: true,
 templateUrl: 'templates/tabs.html'
})

// Each tab has its own nav history stack:\
.state('tab.dash', {
 url: '/dash',
 views: {
 'tab-dash': {
 templateUrl: 'templates/tab-dash.html',
 controller: 'DashCtrl'
 }
 }
})
// Extra code removed for brevity...
// If none of the above states (urls)
// are matched, use this as fallback
$urlRouterProvider.otherwise('/tab/dash');

Figure 7 App.js Containing Angular UI Router

0416msdn_TuliperIonic_v4_32-39.indd 38 3/10/16 3:25 PM

www.msdn.com/magazine/mt595751

39April 2016msdnmagazine.com

<widget id="com.ionicframework.myionic594688" version="0.0.1"
 xmlns="http://www.w3.org/ns/widgets" xmlns:cdv="http://cordova.apache.org/ns/1.0">
 <!-- other config removed for brevity -->
 <platform name="android">
 <preference name="CodePushDeploymentKey"
 value="YourKeyGeneratedInPriorStep" />
 </platform>
 <platform name="ios">
 <preference name="CodePushDeploymentKey"
 value="YourKeyGeneratedInPriorStep" />
 </platform>
</widget>

Now you just need to tell CodePush to check for updates and
sync the changes. If changes are found, they’re downloaded and
updated at the next launch of the app. There are asynchronous and
synchronous ways of checking, but I’ll keep it short and sweet here
with sync. In app.js , there’s a nice place to check for updates to my
application when the Cordova APIs are ready. Typically, in Cordova
apps you know you’re ready to go by hooking into deviceready:

window.addEventListener('deviceready', {})

Because I’m using Ionic, it will listen for the deviceready event
and, in turn, call $ionicPlatform.ready, which is already provided
in the template in app.js. I just need to add one line of code there
to sync with CodePush:

// app.js
angular.module('starter', ['ionic', 'starter.controllers', 'starter.services'])
.run(function($ionicPlatform) {
 $ionicPlatform.ready(function() {
 window.codePush.sync();
 // ...
 });
})

I made a small HTML update to the /templates/tab-dash file.
To release this change, I simply ask Cordova to prepare it, and
then CodePush it. First I need the version of the app that’s noted
in the /config.xml:

<widget id= "com.ionicframework.myiconic594688" version= "0.0.1"

Next, I’ll do the whopping two steps to prepare and push this
change to the CodePush service:

#get my app ready (makes changes only in the /platforms folders)
#we could also cordova prepare or taco prepare – all do the same thing
ionic prepare

#push this release up to the cloud
#we use /assets as those are the prepared html/js/css files
code-push release myIonic ./platforms/android/assets/www 0.0.1
--deploymentName Production

Now, when the application is launched from Visual Studio Code,
I can see the app checking for updates in the Visual Studio Code
Debug Console:

Debug Console
Launching for android (This may take a while)...
App successfully launched
Attaching to android
Forwarding debug port
Attaching to app.

[CodePush] An update is available.
[CodePush] Downloading update package ...
[CodePush] Package download
[CodePush] Installing update package ...
[CodePush] First update: back up package information skipped.
[CodePush] Install succeeded.

That’s it! In this configuration, it takes two launches of the app to real-
ize the changes. The first downloads the updates when the new build on
CodePush is detected upon startup; the second time the app launches
with the applied updates. Note that this entire workflow can be used in
production or testing. Everything I’ve discussed works fine in the emu
lator, as well as live, and I can see the results in my Android emulator.

Wrapping Up
The workflow I’ve discussed involves developing, preparing and
pushing your apps to the CodePush service. If you’re a continu-
ous deployment aficionado, there’s a complete workflow outlined
at bit.ly/1QpydG4. This workflow additionally outlines deployments
from Visual Studio Team System and using HockeyApp to man-
age beta distributions (crash reporting and user feedback, too!). If
you’re hoping to hit the ground running, Subhag Oak has a helpful

self-contained workshop you can find at bit.ly/1QpCwBt.
Both Angular and Ionic have new major versions in the

works (2.x for each of them) that are both available now for
checking out. It was a bit early to talk about them here because
as of this writing they haven’t been released.

This has been a quick tour of one of the most exciting
areas of mobile app dev right now. Please check out some of
the following resources for great documentation and to keep
on top of upcoming changes:

• �TACO - taco.tools
• �Visual Studio Tools for Apache Cordova - taco.visualstudio.com
• �Performance tips - bit.ly/24kEaIx
• �Native transitions for Ionic Framework - bit.ly/1SKFFfm
• �Visual Studio Tools for Apache Cordova Team Blog - bit.ly/1KBpJcH
Until next time!	 n

Adam Tuliper is a senior technical evangelist with Microsoft living in sunny
SoCal. He’s a Web dev/game dev Pluralsight.com author, and all-around
tech lover. Find him on Twitter: @AdamTuliper or at channel9.msdn.com/
Blogs/AdamsGarage.

Thanks to the following Microsoft technical experts for reviewing this
article: Subhag Oak, Ricardo Minguez Pablos and Ryan SalvaFigure 10 Ionic on Android and iOS

0416msdn_TuliperIonic_v4_32-39.indd 39 3/10/16 3:25 PM

http://www.msdnmagazine.com
www.bit.ly/1QpydG4
www.bit.ly/1QpCwBt
www.taco.tools
www.bit.ly/24kEaIx
www.bit.ly/1SKFFfm
www.bit.ly/1KBpJcH
www.Twitter.com/AdamTuliper
http://channel9.msdn.com/Blogs/AdamsGarage
http://channel9.msdn.com/Blogs/AdamsGarage

msdn magazine40

Here’s a question for you: What’s the name of the frame­
work that borrowed heavily from the Microsoft Dryad project,
became the most popular open source project of 2015 and also set
a data processing record, sorting 100TB of data in just 23 minutes?
The answer: Apache Spark.

In this article, I’ll talk about the speed and popularity of Spark
and why it’s the clear current winner in the Big Data processing
and analytics space. Using your Microsoft Azure subscription,
I’ll present examples of solving machine learning (ML) problems
with Spark, taking a small step from software engineering into the
data science world. But before I dive into data analysis and ML, it’s
important to say a few words about various components of the
Spark framework and about Spark’s relationship with Azure.

Spark Components
The value of the Spark framework is that it allows for processing of
Big Data workloads on the clusters of commodity machines. Spark

Core is the engine that makes that processing possible, packaging
data queries and seamlessly distributing them across the cluster.
Besides Spark Core, there are several additional components to the
Spark framework, and each of those components is applicable to a
specific problem domain. It’s possible that you would never need
to work with any of those components if you’re interested only in
manipulating and reporting on large data workloads. However, in
this article, I’ll use Spark MLLib to build out an ML model that’ll let
you fairly accurately “guess” the digits that’ve been written by hand
(a lot more on this later). Other components of the Spark frame­
work allow for processing of streaming data (Spark Streaming),
manipulation of graphs and the computation of the famous Page­
Rank algorithm (GraphX), and running SQL queries on top of
distributed data (Spark SQL).

Running Spark on Azure
There are quite a few options in experimenting with Spark, from
using managed services from databricks.com (this company created
and continues to enhance Spark), to provisioning a Docker container
and grabbing pre-installed Spark images from Docker Hub, to
getting the entire source code repo from GitHub (github.com/apache/
spark) and building the product yourself. But because this article is
about Azure, I’d like to show you how to create Spark clusters on
Azure. The reason this option is extremely interesting is because
Azure provides enterprise-level guarantees for Spark deployed
onto Azure compute clusters. Azure gives a 99.9 percent Microsoft-
backed SLA for all Spark clusters and also offers 24x7 enterprise
support and cluster monitoring. These guarantees, coupled with the
ease of cluster deployment and a slew of announcements around
Spark and Azure during the 2016 Build conference make Microsoft
Cloud an excellent environment for your Big Data jobs.

B IG DATA

Data Processing
and Machine Learning
on Spark
Eugene Chuvyrov

This article discusses:
•	The accessibility of hyperscale data processing in the

Microsoft Cloud

•	Apache Spark, a modern Big Data analytics framework, can be
deployed in minutes on Azure

•	Examples of solving machine learning problems with Spark

Technologies discussed:
Microsoft Azure, HDInsight, Apache Spark, Python

Code download available at:
GitHub.com/echuvyrov/SparkOnAzure

0416msdn_ChuvyrovAzure_v4_40-46.indd 40 3/10/16 3:19 PM

www.GitHub.com/echuvyrov/SparkOnAzure
www.github.com/apache/spark
www.github.com/apache/spark
www.databricks.com

41April 2016msdnmagazine.com

The Pixie Dust
The secret that makes Spark so popular among data scientists
today is two-fold: It’s fast and it’s a joy to program on that frame­
work. First, let’s look at what makes Spark much faster than the
frameworks that preceded it.

Spark’s predecessor, Hadoop MapReduce, was the workhorse of
Big Data analytics space ever since Doug Cutting and Mike Cafarella
co-founded the Apache Hadoop project in 2005. MapReduce tools
were previously available only inside the Google datacenters and were
completely closed sourced. Hadoop worked well for running batch
analytics processing on the cluster, but it suffered from extreme rigid­
ity. Map and Reduce operations go together; first you complete the
Map task, then you complete the Reduce task. Complex tasks had to
combine multiple map and reduce steps. Also, every task had to be
decomposed into a map to reduce operations. That took a long time
to run these sequential operations and was tedious to program. In
other words, this wasn’t real-time analytics.

In contrast, the Spark framework applies intelligence to data
analytics tasks at hand. It constructs a Directed Acyclic Graph
(DAG) of execution before scheduling tasks, very similar to how
SQL Server constructs a query execution plan before executing a
data retrieval or manipulation operation. DAGs provide informa­
tion about transformations that’ll be performed on data and Spark
is able to intelligently combine many of these transformations into
a single stage and then execute transformations all at once—an
idea initially pioneered by Microsoft Research in Project Dryad.

Additionally, Spark is able to intelligently persist data in memory via
the constructs called Resilient Distributed Datasets (RDDs)—which I’ll
explain later—and share it among DAGs. This sharing of data among
DAGs lets jobs complete faster than they would have without that
optimization. Figure 1 shows a DAG for the “hello world” of the data
science space—the count of words in a given text file. Notice how
several operations, namely reading text file, flatMap and map, are
combined into a single stage, allowing for faster execution. The
following code shows the actual Scala code (because Spark is written
in Scala) performing the word count (even if you’ve never seen a line
of Scala code before, I’m willing to bet that you’ll instantly understand
how to implement the word count in Spark):

val wordCounts = textFile.flatMap(line => line.split(" ")).map(word => (word,1))
 .reduceByKey((a, b) => a + b)

The second reason Spark is so popular is because of its program­
ming model. Implementing the word count in Spark (Scala code)
is much simpler than implementing word count in Hadoop Map­
Reduce. In addition to Scala, you can create Spark applications in Java
and Python, which is the language I’m using in this article. Before
Spark, with Hadoop MapReduce, data scientists/programmers had
to use an unnatural paradigm of breaking down a complex task into
a set of maps and reduce operations. With Spark, a functional pro­
gramming approach familiar to any .NET developer working with
LINQ and lambda functions is used to transform and analyze data.

Shortly, you’ll see just how easy, yet powerful, the Spark pro­
gramming model is. But before you get to write awesome
functional code that’ll work equally well on datasets large and
small, you need to create a distributed cluster of machines that’ll
have all the necessary components of Spark installed and ready to
accept programming tasks you submit to it. The creation of a Spark
cluster would be absolutely daunting if you had to create and con­
figure the cluster yourself; fortunately, Microsoft Cloud lets you
accomplish provisioning in just a few clicks. In the next section,
I’ll show you just how to do that.

Deploying a Spark Cluster
Now, let’s create an HDInsight cluster on Azure. Think of
“HDInsight” as an umbrella term that includes both Hadoop and
Spark technologies; Hadoop HDInsight and Spark HDInsight are
two examples of managed Big Data services on Azure.

To provision a Spark cluster, log on to the Azure Portal (portal.azure.com)
and click through New | Data +
Analytics | HDInsight | Create. Fill
out HDInsight Cluster properties,
specifying Name, Cluster Type =
Spark, set Cluster Operating Sys­
tem as Linux (because Spark is being
developed on Linux) and leave the
version field unchanged, as shown
in Figure 2. Complete the rest of
the required information, including
specifying the credentials to log onto
the cluster and storage account/
container name. Then press the
Create button. The process of creat­
ing a cluster takes 15 to 30 minutes.

Figure 1 Directed Acyclic Graph (DAG) for Word Count

Stage 0

reduceByKeytextFile

flatMap

map

Stage 0

Figure 2 Creating a Spark Cluster in Azure

0416msdn_ChuvyrovAzure_v4_40-46.indd 41 3/10/16 3:19 PM

http://www.msdnmagazine.com
http://portal.azure.com

msdn magazine42 Big Data

After the creation process completes, you’ll have a tile in the
Azure portal representing the newly created HDInsight cluster.
Finally, you get to dive deep into code! Before getting into code,
however, let’s review the programming environment and languages
available to you with Spark.

There are several ways to program in the Spark environment.
First, you can access Spark shell via, intuitively enough, the spark-
shell command, explained at bit.ly/1ON5Vy4, where, after establishing
an SSH session to the Spark cluster head node, you can write Scala
programs in a REPL-like manner and submit programming con­
structs one at a time (don’t worry if this sentence sounded like it
was written in a foreign language, just proceed directly to Option 3).
Second, you can run complete Scala applications on Spark (submit­
ting them via the spark-submit command explained at bit.ly/1fqgZHY).
Finally, there’s also an option to use Jupyter notebooks (jupyter.org) on
top of Spark. If you aren’t familiar with the Jupyter project, Jupyter
notebooks provide a visual, Web-based interactive environment in
which to run data analytics scripts. These notebooks are my pre­
ferred method of data analysis and I’m convinced that, once you try
them, they’ll become your preferred method of programming on
Spark, too. Azure HDInsight installs the Jupyter notebook environ­
ment on top of the cluster for you, making it easy to start using it.

To access Jupyter notebooks, click on the Cluster Dashboards tile
as illustrated in Figure 3, then click the Jupyter notebook tile on the
slide-out window. Log in using the credentials you specified during
cluster creation and you should see the Jupyter environment ready to

accept new or edit old notebooks.
Now click on the New button in
the upper-right corner and select
Python 2. Why Python 2? Because
while Spark itself is written in Scala
and a lot of Spark programming
is done in Scala, there’s also a
Python bridge available via Pyspark.
By the way, there’s a raging debate
whether you should code in
Scala or Python. Each language
has its clear benefits, with Scala
being potentially faster, while

Python is perhaps more expressive and the most commonly
used language for data science (see bit.ly/1WTSemP). This
lets you use an expressive, yet concise Python when pro­
gramming on top of the Spark cluster. Python is also my
preferred language for data analysis (along with R) and I
can utilize all the powerful Python libraries that I’m used to.

You’re finally ready to dive deep and perform ML and
data analytics tasks inside the Jupyter notebooks.

Machine Learning with Spark
To illustrate ML in Spark, I’ll use a “smallish” data exam­
ple in the form of classical problems in ML—recognizing
handwritten digits, such as the ones that appear in ZIP
codes on envelopes. Although this dataset isn’t large by
any means, the beauty of this solution is that, should the
data increase one-thousand fold, you could add more

machines to the cluster and still complete the data analysis in a
reasonable amount of time. No changes to the code illustrated
here will be necessary—the Spark framework will take care of
distributing workloads to individual machines in the cluster. The
data file that you’ll use is also a classical one—it’s frequently referred
to as MNIST dataset—and it contains 50,000 handwritten digits,
ready for you to analyze. Although there are many places online to
get the MNIST dataset, the Kaggle Web site gives you convenient
access to that data (see bit.ly/1QJN20c).

As a side note, if you’re not familiar with kaggle.com, it hosts ML
competitions online, where almost 500,000 data scientists from
around the world compete for monetary prizes or a chance to inter­
view at one of the top ML companies. I’ve competed in five Kaggle
competitions and, if you’re a competitive person, it’s an extremely
addictive experience. And the Kaggle site itself is running on Azure!

Let’s take a moment to understand the contents of train.csv. Each
line of that file represents a pixel-by-pixel representation of a 28x28
image containing a handwritten digit, such as the one shown in
Figure 4 (the figure shows a zoomed-in representation). The first
column contains what the digit really is; the rest of the columns
contain pixel intensities, from 0 to 255, of all 784 pixels (28x28).

With the new Jupyter notebook open, paste the following code
into the first cell:

from pyspark import SparkContext
from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.tree import RandomForest
import time

sc = SparkContext(appName="MNISTDigitsDT")
#TODO: provide your own path to the train.csv in the line(s) below, you can use
Azure Storage #Explorer to upload files into the cloud and to read their full path
fileNameTrain = 'wasb://datasets@chuvyrov.blob.core.windows.net/trainingsample.csv'
fileNameTest = 'wasb://datasets@chuvyrov.blob.core.windows.net/validationsample.csv'

mnist_train = sc.textFile(fileNameTrain)
mnist_test = sc.textFile(fileNameTest)

This code imports the necessary libraries for doing ML in Spark,
then specifies the location of the data files that’ll be used for train­
ing and testing the model (note that these files should reside in
your storage account, accessible from Spark in Microsoft Cloud
via the wasb:// reference). Finally, the last two lines is where the
RDD are created from the text files. RDDs are the magic behind
Spark—they’re distributed data structures, but the complexity of

Figure 3 Accessing Jupyter Notebooks in Azure HDInsight Via Cluster
Dashboards

Figure 4 Zoomed in Sample
of the Digit “7” Represented
in the MNIST Dataset

0416msdn_ChuvyrovAzure_v4_40-46.indd 42 3/10/16 3:19 PM

www.bit.ly/1ON5Vy4
www.bit.ly/1fqgZHY
www.jupyter.org
www.bit.ly/1WTSemP
www.bit.ly/1QJN20c
www.kaggle.com

Keep competitors in your rearview mirror.
Test drive InstallShield today.

Take a Fresh Look at InstallShield
Inside Track – Simplify complex installs for web,
cloud, virtual, PC and server

Wow the Crowd – Reliably deliver fast
downloads and simple installat ions

Pole Posit ion – Spend less t ime building
installat ions and more t ime creat ing
features that put you in the lead

Team Win – Distributed and agile teams
can easily collaborate and save t ime

GO FOR THE WIN

US/Canada: 1-800-809-5659
International: 1-847-466-4000
Ask to speak to an InstallShield Account Manager

Watch the Video:
 exerasoftware.com/GoForTheWin

VISIT FLEXERA SOFTWARE AT MICROSOFT BUILD 2016

Untitled-3 1Untitled-3 1 3/7/16 4:33 PM3/7/16 4:33 PM

www.flexerasoftware.com/goforthewin

msdn magazine44 Big Data

their implementation is generally hidden from the programmer/
user. Additionally, these RDDs are lazily evaluated and are persist­
ed, so in case you needed to use that RDD again, it’s immediately
available without re-computation/retrieval. When you manipu­
late RDDs, it triggers the generation of DAGs and the execution of
staged tasks in the Spark cluster, as I touched upon earlier.

Press Shift+Enter inside the Jupyter cell to execute the code you
pasted. No news should be good news (if you didn’t get an error
message, you’re good), and you should now have RDDs available
to you for querying and manipulation. These RDDs contain lines
of comma-separated text at the moment, because that’s how your
MNIST data came through.

The next thing you’re going to do is define a simple function
that’ll help you convert these lines of text into a custom Labeled­
Point object. This object is required for the ML algorithm that
you’ll use to train and make predictions. In a nutshell, this object
contains an array of “features” (sometimes, it’s convenient to think
of features as columns in a database table) or characteristics about
a single data point, as well as its “label,” or the value you’re trying
to learn to predict. If this sounds a bit unclear right now, perhaps
looking at the MNIST train.csv file might help. You’ll notice that
every line in train.csv has a number in the first column and a set of
numbers, from 0 to 255, in all other columns. The first column is
called the “label,” because we’re trying to learn how to predict that
number. All other columns are “features” and the features taken all
together are referred to as a “feature vector.” These features are the
intensity of each digitized pixel in the picture of the digit, 0 being
black and 255 being white, with many values in between. The pictures
are all 28 pixels high and 28 pixels wide, making up 784 columns
containing pixel intensities in the train.csv file (28x28=784).

Copy and paste the following function into the new cell of your
Jupyter notebook:

def parsePoint(line):
 #Parse a line of text into an MLlib LabeledPoint object
 values = line.split(',')
 values = [0 if e == '' else int(e) for e in values]
 return LabeledPoint(int(values[0]), values[1:])

Press Shift+Enter to execute the code. You have now defined the
parsePoint function, which has been evaluated by Spark and it’s avail­
able for you to use with the dataset that you just read in. This function
takes in a single line of comma-separated text, splits it into individual
values and converts these values into the LabeledPoint object.

Next, you perform some basic data cleansing to get it ready for
the learning algorithm; unfortunately, the learning algorithm isn’t
yet smart enough to know what part of the data has predictive value.
So, skip the header of the train.csv file using a hack borrowed from
stackoverflow.com; then, you’ll print the first line of the resulting RDD
to make sure it’s in the state you expect it to be in:

#skip header
header = mnist_train.first() #extract header
mnist_train = mnist_train.filter(lambda x:x !=header) #filter out header
using a lambda
print mnist_train.first()

Now, you’re ready to apply a functional programming approach
with the .map(parsePoint) operator in the next section to transform
the RDD into the format ready for ML algorithms in Spark. This trans­
formation will essentially parse every line inside the mnist_train RDD
and convert that RDD to a set of LabeledPoint objects.

RDDs and Interactivity: Main Pillars of Spark’s Power
There are several important issues here. First, you’re working with
a data structure distributed across the cluster of machines (the
RDD), yet the complexity of distributed computing is almost com­
pletely hidden from you. You’re applying functional transforms to
the RDD, and Spark optimizes all the processing and heavy lifting
across the cluster of available machines behind the scenes for you:

labeledPoints = mnist_train.map(parsePoint)
#Split the data into training and test sets (30% held out for testing)
(trainingData, testData) = labeledPoints.randomSplit([0.7, 0.3])

print mnist_train.first()

Although the last line (with the print statement) might seem
trivial, the ability to interactively query large datasets is extremely
powerful and was virtually absent from the world of large datasets
before Spark. In your data science and large data manipulation
projects, it’ll be a very useful technique to verify that the transfor­
mations you think are being applied are indeed being applied. This
powerful interactive processing is yet another advantage of Spark
over other Big Data processing frameworks.

Also notice the splitting of the data into the training and test data­
set using the randomSplit function. The idea there is to create an ML
model using the data in trainingData RDD and to test the model
using the data in testData RDD, as you’ll see in the code shortly.

You’re now ready to apply an ML algorithm to the distributed
dataset that you’ve just created (mnist_train). As a quick review,
remember that in ML problems, almost in all cases there are two
distinct sets of steps that occur: First, you train the model using the
known dataset with known conclusions; second, you make predic­
tions based on the model you created, or learned, in the first step. In
the following code, you’re using a RandomForest algorithm avail­
able within the Spark Machine Learning framework (Spark MLLib)
to train the model. RandomForest is one of several distributed
algorithms available within Spark MLLib and it’s one of the most
powerful. Paste the following contents into the new cell:

depthLevel = 4
treeLevel = 3
#start timer
start_time = time.time()
#this is building a model using the Random Forest algorithm from Spark MLLib
model = RandomForest.trainClassifier(trainingData, numClasses=10,
categoricalFeaturesInfo={},
 numTrees=treeLevel, featureSubsetStrategy="auto",
 impurity='gini', maxDepth=depthLevel, maxBins=32)

print("Training time --- %s seconds ---" % (time.time() - start_time))

Evaluate model on test instances and compute test error

1 #start timer
2 start_time = time.time()
3 #make predictions using the Machine Learning created prior
4 predictions = model.predict(testData.map(lambda x: x.features))
5 #validate predictions using the training set
6 labelsAndPredictions = testData.map(lambda lp: lp.label).zip(predictions)
7 testErr = labelsAndPredictions.filter(lambda (v, p): v != p).count() /
8 float(testData.count())
9 print('Test Error = ' + str(testErr))
10 print("Prediction time --- %s seconds ---" % (time.time() - start_time))

11 #print('Learned classification tree model:')
12 #print(model.toDebugString())

Figure 5 Evaluating the Accuracy of Your Predictions

0416msdn_ChuvyrovAzure_v4_40-46.indd 44 3/10/16 3:19 PM

www.stackoverflow.com

 WINNER
Jan. 2016

Best price/performance ratio

TRY IT
1&1 CLOUD SERVER

TODAY!*
With the 1&1 Cloud App Center you can get your
applications up and running in no time. Choose from more than
100 cutting-edge apps and combine them with the superior
speed and performance of the best value cloud server around.

 Secure and powerful platform
 No prior server knowledge necessary
 Billing by-the-minute

DOMAINS | MAIL | HOSTING | eCOMMERCE | SERVERS

READY FOR THE CLOUD!
APPS

®

 * 1&1 Cloud Server is free for one month, after which the regular pricing starts from $4.99/month. One-time setup fee of $9.99 applies. 1&1 Cloud Server comes with a
30-day money back guarantee. If your package is not canceled within the fi rst 30 days, you will be charged in accordance with your agreed billing cycle. Visit 1and1.com
for full offer details, terms and conditions. Intel, the Intel Logo are trademarks of Intel Corporation in the U.S. and/or other countries. 1&1 and the 1&1 logo are trademarks
of 1&1 Internet, all other trademarks are property of their respective owners. ©2016 1&1 Internet. All rights reserved.

1and1.com

TRIAL
TRY FOR
30 DAYS1 MONTH

FLEXIBLE PAYMENT
OPTIONS1 CALL

SPEAK WITH AN
EXPERT 24/71

1 (877) 461-2631

Untitled-4 1 3/4/16 2:03 PM

www.1and1.com

msdn magazine46 Big Data

Note how this code starts to measure the execution time of the
algorithms, then sets initial values for some of the parameters expected
by the RandomForest algorithm, namely maxDepth and numTrees.
Execute that code by pressing Shift+Enter. You might be wondering
what this RandomForest thing is and how does it work? RandomFor­
est is an ML algorithm that, at a very high level, works by constructing
many decision trees on the data by randomly selecting a variable to
split a decision tree on (that is, one tree could be as simple as, “If the
pixel in the bottom-right corner is white, it’s probably No. 2”) and then
making the final decision after polling all the trees constructed. Fortu­
nately, there’s already a distributed version of the algorithm available
to you on Spark. However, nothing stops you from writing your own
algorithms should you decide to do it; distributed k-Nearest Neighbors
(kNN) algorithm still isn’t present in the Spark framework.

Now, back to the MNIST digits recognition task. If you have an
environment similar to mine, you should get execution time of
training the algorithm of about 21 seconds. This means that in 21
seconds, you’ve learned—using the RandomForest algorithm—a
model that you can use to predict the digits you’re seeing given the
features you’ve analyzed. Now you’re ready for the most important
part of the ML task—making predictions based on the model you’ve
created. In addition, you’re also ready to evaluate the accuracy of
these predictions, as shown in Figure 5.

Note the model.predict construct on line 4 of Figure 5. This is
the line that makes the actual prediction based on the model that
you’ve built earlier. On the lines after the prediction is made (lines
5-7), you’re using some basic data manipulation strategies to tem­
porary relate—via the zip function—your predicted values to the
real values available to you as part of the download. Then, you sim­

ply compute the percentage of correct predictions given this data
and print the execution time.

The result of this initial classification with the error being so high is
slightly disconcerting (that is, does your model work at all with error
rates approaching 43 percent?). You can improve the model using the
concept called “grid hyperparameter search” where you try a series of
values when building out the model, test it right away and eventually
converge on the hyperparameter values that give you the best perfor­
mance overall. In other words, try a bunch of systematic experiments
to determine what model parameters have the best predictive value.

The hyperparameters that you’ll apply grid search to will be
numTrees and maxDepth; paste the code shown in Figure 6 into
the new cell in the notebook.

Notice how in lines 8-14 you scan through a set of numTrees
parameters for the random forest algorithm from 3 to 10, creating
models and evaluating their performance. Next, in lines 30-32,
you capture the model if it gives you better results than any of the
prior models that you’ve tried, or dismiss the model otherwise.
Give this loop some time to run; at the end of the run, you should
see prediction error values no greater than 10 percent.

Wrapping Up
When I set out to write this article, my main goal was to show through
examples how easy it is to program with Spark, especially if you’re a
fan of functional programming and Azure. My secondary goal was
to demonstrate how you can perform ML tasks on datasets both
large and small with the help of the Spark MLLib library. Along the
way, I wanted to explain why Spark performs faster on distributed
data than its predecessors and share bits of trivia of how we arrived
at where we are today in the distributed data analytics space.

Microsoft is investing heavily in the future of Big Data, ML,
analytics and, specifically, Spark. This is the right time to learn
these technologies to truly take advantage of the opportunities
for hyperscale compute and data analytics provided by Microsoft
Cloud. Azure makes getting going with Spark fast, easy and ready
to scale up to large datasets, all backed by service-level guarantees
you can expect only from the best enterprise cloud providers.

Now that you’ve created an ML model and made predictions on the
known data, you can also make predictions on the data that doesn’t
include its true label; namely, on the test.csv file from Kaggle.com.
You can then make a submission to Kaggle.com as part of the digit
recognizer competition on that platform. All of the code for this
article, as well as the code to write a submission file, is available at
GitHub.com/echuvyrov/SparkOnAzure. I’d love to learn about the scores that
you get. E-mail me with questions, comments, suggestions and ML
achievements at eugene.chuvyrov@microsoft.com.	 n

Eugene Chuvyrov is a cloud solutions architect at Microsoft in the Technical
Evangelism and Development team where he helps companies around the San
Francisco Bay area take full advantage of the hyper scale afforded by Microsoft
Cloud. Although he currently focuses on high-scale data partners, he hasn’t
forgotten his roots as a software engineer and enjoys writing cloud-ready code in
C#, JavaScript and Python. Follow him on Twitter: @EugeneChuvyrov.

Thanks to the following Microsoft technical expert for reviewing this article:
Bruno Terkaly

1 bestModel = None
2 bestTestErr = 100
3 #Define a range of hyperparameters to try
4 maxDepths = range(4,10)
5 maxTrees = range(3,10)
6
7 #Loop over parameters for depth and tree level(s)
8 for depthLevel in maxDepths:
9 for treeLevel in maxTrees:
10
11 #start timer
12 start_time = time.time()
13 #Train RandomForest machine learning classifier
14 model = RandomForest.trainClassifier(trainingData,
15 numClasses=10, categoricalFeaturesInfo={},
16 numTrees=treeLevel, featureSubsetStrategy="auto",
17 impurity='gini', maxDepth=depthLevel, maxBins=32)
18	
19 #Make predictions using the model created above
20 predictions = model.predict(testData.map(lambda x: x.features))
21 #Join predictions with actual values from the data and determine the error rate
22 labelsAndPredictions = testData.map(lambda lp: lp.label).zip(predictions)
23 testErr = labelsAndPredictions.filter(lambda (v, p): v != p)
24 .count() / float(testData.count())
25
26 #Print information about the model as we proceed with each iteration of the loop
27 print ('\maxDepth = {0:.1f}, trees = {1:.1f}: trainErr = {2:.5f}'
28 .format(depthLevel, treeLevel, testErr))
29 print("Prediction time --- %s seconds ---" % (time.time() - start_time))
30 if (testErr < bestTestErr):
31 bestModel = model
32 bestTestErr = testErr
33
34 print ('Best Test Error: = {0:.3f}\n'.format(bestTestErr))

Figure 6 Iterative “Grid Search” for Optimal Parameters in the
RandomForest Algorithm in Spark

0416msdn_ChuvyrovAzure_v4_40-46.indd 46 3/10/16 3:19 PM

mailto:eugene.chuvyrov@microsoft.com
http://GitHub.com/echuvyrov/SparkOnAzure
www.Twitter.com/EugeneChuvyrov

JOIN US on the CAMPAIGN TRAIL in 2016!

CAMPAIGN FOR CODE 2016 VISUAL STUDIO LIVE!

MAY 16 - 19
 HYATT AUSTIN, TX

 vslive.com/austin
 See pages 48 – 49 for more info

JUNE 13 - 16
 HYATT CAMBRIDGE, MA

 vslive.com/boston
 See pages 50 – 51 for more info

AUGUST 8 - 12
 MICROSOFT HQ, REDMOND, WA

 vslive.com/redmond
 See pages 78 – 79 for more info

SEPTEMBER 26 - 29
 HYATT ORANGE COUNTY, CA —
 A DISNEYLAND® GOOD
 NEIGHBOR HOTEL

 vslive.com/anaheim
See pages 18 – 19 for more info

OCTOBER 3 - 6
 RENAISSANCE, WASHINGTON, D.C.

 vslive.com/dc
See pages 62 – 63 for more info

DECEMBER 5 - 9
 LOEWS ROYAL PACIFIC
 ORLANDO, FL

live360events.com/
orlando

TURN THE PAGE FOR
MORE EVENT DETAILS.

CONNECT WITH VISUAL STUDIO LIVE!
linkedin.com – Join the
“Visual Studio Live” group!twitter.com/vslive – @VSLive facebook.com – Search “VSLive”

Untitled-3 1Untitled-3 1 3/11/16 1:02 PM3/11/16 1:02 PM

www.vslive.com/austin
www.vslive.com/boston
www.vslive.com/redmond
www.vslive.com/anaheim
www.vslive.com/dc
www.live360events.com/orlando
https://twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

CAMPAIGN FOR CODE 2016 VISUAL STUDIO LIVE!

VISUAL STUDIO LIVE! is bringing back its unique
brand of practical, unbiased, Developer training to the
deep heart of Texas. We’re all set to convene in Austin
this May, where your code not only counts, it’s crucial!
From May 16 – 19, we’re offering four days of sessions,
workshops and networking events—all designed to
help you elevate your code-writing abilities to write
winning applications across all platforms.

VSLIVE.COM/AUSTIN

AUSTIN, TX
MAY 16-19, 2016

THE HYATT REGENCY

Get out and code.
Register to join us today!

Scan the QR code to register
or for more event details.

REGISTER BY APRIL 13
& SAVE $200!

USE PROMO CODE VSLAPR5

magazine

SUPPORTED BYGOLD SPONSOR PRODUCED BYPLATINUM SPONSOR

Untitled-3 2Untitled-3 2 3/11/16 12:57 PM3/11/16 12:57 PM

www.vslive.com/austin

VSLIVE.COM/AUSTIN

ALM /
DevOps ASP.NET Cloud

Computing
Database

and
Analytics

JavaScript /
HTML5
Client

Mobile
Client

Software
Client

UX /
Design

Visual
Studio /

.NET
Windows

Client

START TIME END TIME Visual Studio Live! Day 1: Tuesday, May 17, 2016

8:00 AM 9:00 AM KEYNOTE: Visual Studio: Looking into the Future,
Tarek Madkour, Principal Group Program Manager, Microsoft

9:15 AM 10:30 AM T01 ASP.NET Core 1.0 in All Its Glory
- Adam Tuliper

T02 WCF & Web API: Can We All
Just Get Along?!?
- Miguel Castro

T03 Using Visual Studio Tools
for Apache Cordova to Create
Multi-Platform Applications

- Kevin Ford

T04 Developer Productivity in
Visual Studio 2015

- Robert Green

10:45 AM 12:00 PM
T05 Build Data-Driven Web Apps
with ASP.NET MVC 6 and WebAPI 2

- Rachel Appel

T06 What’s New in SQL Server 2016
- Leonard Lobel

T07 From Oculus to HoloLens:
Building Virtual & Mixed Reality Apps

& Games - Nick Landry

T08 This session is sequestered,
details will be released soon

12:00 PM 1:30 PM

1:30 PM 2:30 PM GENERAL SESSION: JavaScript and the Rise of the New Virtual Machine,
Scott Hanselman, Principal Community Architect for Web Platform and Tools, Microsoft

2:45 PM 4:00 PM
T09 What You Need To Know
About ASP.NET 5 and MVC 6

- Rachel Appel

T10 Database Development with
SQL Server Data Tools

- Leonard Lobel

T11 This session is sequestered,
details will be released soon

T12 Linux and OSX for
Windows Developers

- Brian Randell

4:15 PM 5:30 PM
T13 UX Beyond the Keyboard:

Gaze, Speech and Other Interfaces
- John Alexander

T14 Cloud Enable .NET Client
LOB Applications

- Robert Green

T15 Go Mobile with C#,
Visual Studio, and Xamarin

- James Montemagno

T16 Busting .NET Myths
- Jason Bock

5:30 PM 6:45 PM Welcome Reception

START TIME END TIME Visual Studio Live! Day 2: Wednesday, May 18, 2016

8:00 AM 9:15 AM W01 Angular 2 101
- Deborah Kurata

W02 Building for the Internet of
Things: Hardware, Sensors & the Cloud

- Nick Landry

W03 Creating Great Looking Android
Applications Using Material Design

- Kevin Ford

W04 DevOps
- Brian Randell

9:30 AM 10:45 AM
W05 Hack Proofing Your
Modern Web Applications

- Adam Tuliper

W06 Setting Up Your First VM, and
Maybe Your Data Center, In Azure

- Eric D. Boyd

W07 Developing with Xamarin
& Amazon AWS to Scale Native

Cross-Platform Mobile Apps
- James Montemagno

W08 Easy and Fun Environment
Creation with DevOps Provisioning

Tools and Visual Studio
- John Alexander

11:00 AM 12:00 PM GENERAL SESSION: Coding, Composition, and Combinatorics, Billy Hollis, Next Version Systems
12:00 PM 1:30 PM

1:30 PM 2:45 PM
W09 AngularJS & ASP.NET

MVC Playing Nice
- Miguel Castro

W10 Knockout in 75 Minutes
(Or Less...)

- Christopher Harrison

W11 Big Data and Hadoop
with Azure HDInsight

- Andrew Brust

W12 Real World Scrum with Team
Foundation Server 2015 & Visual

Studio Team Services
- Benjamin Day

3:00 PM 4:15 PM W13 Angular 2 Forms and Validation
- Deborah Kurata

W14 Introduction to the Next
Generation of Azure PaaS—Service

Fabric and Containe rs
- Vishwas Lele

W15 No Schema, No Problem!—
Introduction to Azure DocumentDB

- Leonard Lobel

W16 Effective Agile Software
Requirements

- Richard Hundhausen

4:30 PM 5:45 PM
W17 Busy JavaScript Developer’s

Guide to ECMAScript 6
- Ted Neward

W18 Building “Full Stack”
Applications with Azure App Service

- Vishwas Lele

W19 Predicting the Future Using
Azure Machine Learning

- Eric D. Boyd

W20 Acceptance Testing in
Visual Studio 2015

- Richard Hundhausen

7:00 PM 9:00 PM Rollin’ On the River Bat Cruise

START TIME END TIME Visual Studio Live! Day 3: Thursday, May 19, 2016

8:00 AM 9:15 AM
TH01 Role-Based Security is

Stinks: How to Implement Better
Authorization in ASP.NET & WebAPI

- Benjamin Day

TH02 Code Reactions—An
Introduction to Reactive Extensions

- Jason Bock

TH03 Busy Developer’s Guide
to NoSQL

- Ted Neward

TH04 Open Source Software for
Microsoft Developers

- Rockford Lhotka

9:30 AM 10:45 AM
TH05 Get Good at DevOps: Feature

Flag Deployments with ASP.NET,
WebAPI, & JavaScript

- Benjamin Day

TH06 DI Why? Getting a Grip
on Dependency Injection

- Jeremy Clark

TH07 Power BI 2.0: Analytics in
the Cloud and in Excel

- Andrew Brust

TH08 Architects? We Don’t Need
No Stinkin’ Architects!

- Michael Stiefel

11:00 AM 12:15 PM
TH09 Future of the Web

with HTTP2
- Ben Dewey

TH10 Unit Testing Makes Me Faster:
Convincing Your Boss, Your
Co-Workers, and Yourself

- Jeremy Clark

TH11 User Experience Case
Studies—Good and Bad

- Billy Hollis

TH12 This session is sequestered,
details will be released soon

12:15 PM 1:30 PM Lunch

1:30 PM 2:45 PM
TH13 TypeScript: Work Smarter

Not Harder with JavaScript
- Allen Conway

TH14 Exceptional Development:
Dealing With Exceptions in .NET

- Jason Bock

TH15 Let’s Write a Windows 10 App:
A Basic Introduction to Universal Apps

- Billy Hollis

TH16 Clean Code: Homicidal
Maniacs Read Code, Too!

- Jeremy Clark

3:00 PM 4:15 PM
TH17 Unit Testing JavaScript Code

in Visual Studio .NET
- Allen Conway

TH18 Async Patterns for
.NET Development

- Ben Dewey

TH19 Windows 10 Design
Guideline Essentials

- Billy Hollis

TH20 Architecting For Failure:
How to Build Cloud Applications

- Michael Stiefel

START TIME END TIME Visual Studio Live! Pre-Conference Workshops: Monday, May 16, 2016 (Separate entry fee required)

9:00 AM 6:00 PM M01 Workshop: DevOps in a Day
- Brian Randell

M02 Workshop: SQL Server for Developers
- Andrew Brust and Leonard Lobel

M03 Workshop: Building Modern Mobile Apps
- Brent Edwards and Kevin Ford

6:45 PM 9:00 PM Dine-A-Round

DETAILS COMING SOON! These sessions have been sequestered by our
conference chairs. Be sure to check vslive.com/austin for session updates!

Speakers and sessions subject to change

CONNECT WITH VISUAL STUDIO LIVE!
linkedin.com – Join the
“Visual Studio Live” group!twitter.com/vslive – @VSLive facebook.com – Search “VSLive”

AUSTIN AGENDA AT-A-GLANCE

Untitled-3 3Untitled-3 3 3/11/16 12:57 PM3/11/16 12:57 PM

www.vslive.com/austin
https://twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

CAMPAIGN FOR CODE 2016 VISUAL STUDIO LIVE!

VSLIVE.COM/BOSTON

For the first time in a decade, Boston will host
VISUAL STUDIO LIVE! from June 13 – 16. Through four
intense days of practical, unbiased, Developer training,

so much more. Code with industry experts, get practical
answers to your current challenges, and immerse

Life, liberty, and the
pursuit of better code:
register to join us today!

Scan the QR code to register
or for more event details.

REGISTER BY APRIL 20
& SAVE $300!

USE PROMO CODE VSLAPR5

CAMBRIDGE, MA
JUNE 13-16, 2016

THE HYATT REGENCY

magazine

SUPPORTED BY PRODUCED BYPLATINUM SPONSOR

Untitled-3 4Untitled-3 4 3/11/16 12:58 PM3/11/16 12:58 PM

www.vslive.com/boston

BOSTON AGENDA AT-A-GLANCE

VSLIVE.COM/BOSTON
CONNECT WITH VISUAL STUDIO LIVE!

linkedin.com – Join the
“Visual Studio Live” group!twitter.com/vslive – @VSLive facebook.com – Search “VSLive”

ALM /
DevOps

Cloud
Computing

Database and
Analytics

Mobile
Client

Software
Practices

UX /
Design

Visual Studio
/ .NET

Framework
Web

Client
Web

Server

START TIME END TIME Visual Studio Live! Day 1: Tuesday, June 14, 2016
8:00 AM 9:00 AM Keynote: To Be Announced

9:15 AM 10:30 AM
T01 Technical Debt —Fight It

with Science and Rigor
- Brian Randell

T02 What’s New in SQL Server 2016
- Leonard Lobel

T03 Getting Started with Aurelia
- Brian Noyes

T04 Developer Productivity in
Visual Studio 2015

- Robert Green

10:45 AM 12:00 PM
T05 Automated X-Browser

Testing of Your Web Apps with
Visual Studio CodedUI

- Marcel de Vries

T06 Database Lifecycle Management
and the SQL Server Database

- Brian Randell

T07 Angular 2 101
- Deborah Kurata

T08 This session is sequestered,
details will be released soon

12:00 PM 1:30 PM

1:30 PM 2:45 PM T09 ASP.NET Core 1.0 in all its glory
- Adam Tuliper

T10 Predicting the Future Using
Azure Machine Learning

- Eric D. Boyd

T11 TypeScript for C# Developers
- Chris Klug

T12 This session is sequestered,
details will be released soon

3:00 PM 4:15 PM
T13 Hack Proofing Your Modern

Web Applications
- Adam Tuliper

T14 No Schema, No Problem!—
Introduction to Azure DocumentDB

- Leonard Lobel

T15 Angular 2 Forms and Validation
- Deborah Kurata

T16 Windows 10—The Universal
Application: One App To Rule

Them All?
- Laurent Bugnion

4:15 PM 5:30 PM Welcome Reception

START TIME END TIME Visual Studio Live! Day 2: Wednesday, June 15, 2016

8:00 AM 9:15 AM
W01 AngularJS & ASP.NET

MVC Playing Nice
- Miguel Castro

W02 Cloud Enable .NET Client
LOB Applications

- Robert Green

W03 Creating Great Windows
Universal User Experiences

- Danny Warren

W04 Building Cross-Platform
C# Apps with a Shared UI Using

Xamarin.Forms
- Nick Landry

9:30 AM 10:45 AM
W05 Did a Dictionary and a Func Just

Become the New Black in ASP.NET
Development?

- Chris Klug

W06 Azure Mobile Apps: APIs in the
Cloud for Your Mobile Needs

- Danny Warren

W07 User Experience Case Studies—
The Good and The Bad

- Billy Hollis

W08 Build Cross-Platform Mobile
Apps with Ionic, Angular, and Cordova

- Brian Noyes

11:00 AM 12:00 PM General Session: To Be Announced, Tim Huckaby, Founder & Chairman,
InterKnowlogy & Actus Interactive Software

12:00 PM 1:30 PM

1:30 PM 2:45 PM
W09 Richer MVC Sites

with Knockout JS
- Miguel Castro

W10 Breaking Down Walls
with Modern Identity

- Eric D. Boyd

W11 Knockout in 75 Minutes
(Or Less...)

- Christopher Harrison

W12 Mobile App Development
with Xamarin and F#

- Rachel Reese

3:00 PM 4:15 PM W13 Securing Client JavaScript Apps
- Brian Noyes

W14 Exploring Microservices
in a Microsoft Landscape

- Marcel de Vries

W15 Learning to Live Without
Data Grids in Windows 10

- Billy Hollis

W16 Conquer the Network—Making
Your C# Mobile App More Resilient to

Network Hiccups
- Roy Cornelissen

4:30 PM 5:45 PM
W17 Get Good at DevOps: Feature

Flag Deployments with ASP.NET,
WebAPI, & JavaScript - Benjamin Day

W18 Patterns and Practices for Real-
World Event-Driven Microservices

- Rachel Reese

W19 Take Your Site From Ugh to
OOH with Bootstrap

- Philip Japikse

W20 Strike Up a Conversation
with Cortana on Windows 10

- Walt Ritscher

7:00 PM 9:00 PM

START TIME END TIME Visual Studio Live! Day 3: Thursday, June 16, 2016

8:00 AM 9:15 AM
TH01 Windows Presentation

Foundation (WPF) 4.6
- Laurent Bugnion

TH02 Open Source Software
for Microsoft Developers

- Rockford Lhotka

TH03 Real World Scrum with Team
Foundation Server 2015 & Visual

Studio Team Services - Benjamin Day

TH04 Windows for Makers:
Raspberry Pi, Arduino & IoT

- Nick Landry

9:30 AM 10:45 AM
TH05 Power BI 2.0: Analytics in

the Cloud and in Excel
- Andrew Brust

TH06 Dependencies Demystified
- Jason Bock

TH07 Automate Your Builds with
Visual Studio Team Services or Team
Foundation Server - Tiago Pascoal

TH08 Automated UI Testing for iOS
and Android Mobile Apps

- James Montemagno

11:00 AM 12:15 PM
TH09 Big Data and Hadoop

with Azure HDInsight
- Andrew Brust

TH10 Improving Performance
in .NET Applications

- Jason Bock

TH11 Cross Platform Continuous
Delivery with Team Build and Release

Management - Tiago Pascoal

TH12 This session is sequestered,
details will be released soon

12:15 PM 1:45 PM Lunch

1:45 PM 3:00 PM
TH13 Top 10 Entity Framework

Features Every Developer Should
Know - Philip Japikse

TH14 Architecting For Failure: How to
Build Cloud Applications

- Michael Stiefel

TH15 JavaScript Patterns for
the C# Developer

- Ben Hoelting

TH16 Developing with Xamarin
& Amazon AWS to Scale Native

Cross-Platform Mobile Apps
- James Montemagno

3:15 PM 4:30 PM
TH17 Pretty, Yet Powerful. How Data
Visualization Transforms the Way We

Comprehend Information
- Walt Ritscher

TH18 Architects? We Don’t Need
No Stinkin’ Architects!

- Michael Stiefel

TH19 Unit Testing & Test-Driven
Development (TDD) for Mere Mortals

- Benjamin Day

TH20 Advanced Mobile App
Development for the Web Developer

- Ben Hoelting

START TIME END TIME Visual Studio Live! Pre-Conference Workshops: Monday, June 13, 2016 (Separate entry fee required)

7:30 AM 9:00 AM

9:00 AM 6:00 PM M01 Workshop: SQL Server for Developers
- Andrew Brust and Leonard Lobel

M02 Workshop: DevOps for Your
Mobile Apps and Services

- Brian Randel

M03 Workshop: Native Mobile App Development
for iOS, Android and Windows Using C#

- Marcel de Vries and Roy Cornelissen

6:45 PM 9:00 PM Dine-A-Round

DETAILS COMING SOON! These sessions have been sequestered by our
conference chairs. Be sure to check vslive.com/boston for session updates!

Speakers and sessions subject to change

Untitled-3 5Untitled-3 5 3/11/16 12:58 PM3/11/16 12:58 PM

www.vslive.com/boston
https://twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine52

The Internet of Things (IoT) is everywhere nowadays. The
IoT is many things, but it can most simply be understood as sensor
data that’s collected to the cloud for further processing. This man-
ifests itself in many different types of devices deployed to collect
that sensor data; rich cloud services for ingesting that data at scale;
Big Data analytics and machine learning for processing and acting
on that data; and rich reporting and client-side apps for gaining
insights from this data.

So how do you get started with IoT? You need a device, a cloud
and the tools to write and deploy your software solution to each.

In this article I’m going to walk you through connecting a device
to Azure IoT using C++ project templates in Visual Studio, which
cover the most common devices. You’ll learn how to stand up an
Azure IoT Hub to ingest your device data, and learn about the related
services that can act on that data. Azure IoT services offer a huge

degree of flexibility, both because they’re agnostic to the program-
ming language you use on the device itself and because, through
the Azure IoT device Client SDKs, they support an ever-growing
number of languages and devices. In this article I’m going to focus
on C++ because of the broad range of device support it offers—
from the smallest, most power-efficient microcontrollers to devices
that run full OSes such as Linux or Windows IoT—and because of
the control it affords developers over lower-level device function-
ality. Even if you’re not a C++ developer you’ll learn enough to be
able to deploy a simple application to a network-connected device
and get data to Azure.

The scenario for this article is a simple one—collecting light-sensor
data from a device into Azure. The goal isn’t to complete an end-
to-end solution, but to focus on the fundamentals—how to collect
data and verify it’s getting to the cloud. I’ll show how this data can
be used within other Azure services and how you can deploy those
services within your Azure subscription. For more information
on the IoT, visit aka.ms/iotmsdnb16, where you’ll also find links to
tools discussed in this article, additional documentation, many
more samples and a complete end-to-end IoT application called
Connect the Dots, which you can easily deploy into your Azure
subscription and to which you can connect your devices.

First, I’ll set up the Azure IoT Hub, then write some code in Visual
Studio to send test data to the Azure back end. Then I’ll do the same
with real data from a variety of devices, and conclude with a discus-
sion of Azure services you can use with the sensor data you collect.

IN TE RN E T OF T H INGS

Develop an
Azure-Connected
IoT Solution in Visual
Studio with C++
Marc Goodner

This article discusses:
•	Setting up an Azure IoT hub

•	A light sensor and three device options: Raspberry Pi,
Arduino and mbed

•	Using sensor data in Azure services

Technologies discussed:
Visual Studio 2015, Azure IoT Suite, Azure IoT Hub, C++, Raspberry
Pi, Arduino, mbed

0416msdn_GoodnerAzure_v3_52-60.indd 52 3/10/16 2:47 PM

www.aka.ms/iotmsdnb16

53April 2016msdnmagazine.com

Azure IoT Suite and Azure IoT Hub
For the cloud part of the IoT solution, Azure offers several services,
including Azure IoT Hub and a bundle called Azure IoT Suite that
reduces the up-front work and provides scalability in the longer
term. Azure IoT Hub is the connection point for devices and is
optimized to support the ingestion of large amounts of data, an
essential capability given that deployments of millions of devices
sending continual updates are not uncommon. You can choose a
free edition that supports up to 8,000 messages per day (ideal for
prototyping or personal projects), or either of two paid editions,
one for smaller projects that accepts up to 400,000 messages a day
and one scaled for larger implementations that supports up to 6
million messages a day. Depending on the scale of the IoT solution
you’re building, you can deploy as many IoT hubs as you need to
support the message volume your solution requires. IoT Hub also
provides capabilities for device management and provisioning
tailored to the needs of IoT deployments, as well as a range of
open source SDKs for developing the device connectivity and the
service management parts of your solution.

Azure IoT Suite offers a growing collection of full end-to-end
IoT solutions, preconfigured to simplify the development process.
These include solutions for common IoT projects such as predic-
tive maintenance, using sensor data from machines to anticipate
problems before they occur. Azure IoT Suite solutions comprise
a set of preconfigured Azure IoT services, including Azure IoT

Hub, that can be provisioned into your Azure subscription so you
can quickly deploy an IoT solution and then customize it to fit the
unique needs of your project.

Whether you go with an Azure IoT Suite preconfigured solu-
tion or deploy your own set of Azure services, you’ll be using the
same Azure IoT SDKs to develop the device side of your applica-
tion. In the sample that follows, I’ll manually set up some simple
services behind an Azure IoT Hub instance to illustrate a simple
IoT end-to-end solution.

Connecting to Azure IoT Hub
The first step is to set up your Azure IoT Hub. If you don’t have an
Azure subscription, you can create a free trial subscription. When
that’s done, log into the Azure Portal and select New | Internet of
Things | Azure IoT Hub, complete the options and select New.
Select your pricing tier (you can deploy only one instance of the
free tier of IoT Hub per subscription), complete the additional
prompts and select Create (see Figure 1).

Next, make sure you have Visual Studio 2015 Community Edition
or higher with the C++ tools installed and properly configured. You’ll
need to have the extensions for Visual C++ for Linux Development,
Visual C++ for IoT Development and Azure IoT Hub Connected
Service installed, as well as the Windows IoT Core templates if you
plan to target a Windows IoT device. You can find these extensions
on the Visual Studio Gallery or install them from within Visual
Studio from the Tools | Extensions and Updates menu. Likewise,
the examples for Arduino and mbed use PlatformIO to enable the
compilers for those boards, which you can get at platformio.org.

Now, create a project to connect to your IoT Hub. There are many
samples in the Azure IoT SDK that cover this code, each focused on a
specific protocol or device. The easiest way to get this code is to install
the Azure IoT Hub Connected Service extension, which currently
supports C# and C++ projects. I want to quickly prototype my code
before involving a device so I’m going to do this on Windows. After
installing the extension, create a new Win32 project under Visual C++.

Figure 1 Creating a New Azure IoT Hub

The IoT is many things, but it can
most simply be understood as
sensor data that’s collected to

the cloud for further processing.

0416msdn_GoodnerAzure_v3_52-60.indd 53 3/10/16 2:47 PM

http://www.msdnmagazine.com
www.platformio.org

msdn magazine54 Internet of Things

In your project, right-click on
References and choose Add Con-
nected Service. In the dialog that
comes up, choose Azure IoT Hub
Connected Service and select
Configure (see Figure 2).

Sign in with your Azure account
and you’ll see your IoT Hub. Select it
and choose Add. This brings up a list
of existing devices if you’ve already
added any devices to your IoT Hub;
if not, it will be blank. Choose New
Device and pick a name—let’s call it
ThingOne. Wait for it to appear and
select it. This pulls down a NuGet
package with the libraries you need
and generates a new file, azure_iot_
hub.cpp and corresponding header
azure_iot_hub.h, which contains
helper functions that encapsulate best practices for sending data
to the Azure IoT Hub with the necessary connection string for the
device you chose. Of course, you’ll need to modify this generated
code to handle the messages you want to send and receive. For now,
we’ll send the default message. Add the new header reference to your
console application code and place a call to the send_device_to_
cloud_message function in main. Your code should look like this:

#include "stdafx.h"
#include "azure_iot_hub.h"

int main()
{
 send_device_to_cloud_message();
 return 0;
}

Next, use the IoT Hub Explorer to verify your messages are going
to your IoT Hub. This is a cross-platform CLI tool based on Node.js,
so if it isn’t installed on your system you should install it now. Get
the tool via npm:

npm install -g iothub-explorer@latest

Next, in your command prompt, start the IoT Hub Explorer to
see data sent from your device into Azure IoT Hub. The necessary
command with connection string and device name is in the com-
ments of the azure_iot_hub.cpp file. To find this string on your
own in the Azure Portal, select your IoT Hub, then choose the key
icon on the Essentials bar and look in the Shared Access Policies
panel that appears.

iothub-explorer [<connection-string>} monitor-events ThingOne

You’ll see a message that says events from your device are being
monitored. Now switch back to Visual Studio and start debugging
by hitting F5. You should see an event received in the console,
“Hello Cloud.”

You may want to pause here to examine the generated code handling
the connection to Azure. Within the send_device_to_cloud_message
you’ll find an IoT client being created:

IOTHUB_CLIENT_HANDLE iothub_client_handle =
 IoTHubClient_CreateFromConnectionString(connection_string, AMQP_Protocol);

Note the AMQP_Protocol, which is the default, though other
protocols like HTTP and MQTT can also be used here. You’ll

also observe that error handling is provided around creating this
client, and it is properly disposed. The message itself is sent just
after successful creation of the client:

d::string message = "Hello, Cloud!";
IOTHUB_MESSAGE_HANDLE message_handle =
 IoTHubMessage_CreateFromByteArray((const unsigned char*)message.data(),
 message.size());

Again, you’ll see that error handling is provided, and a request
is sent to the IoT Hub to confirm delivery of receipt. You can now
make some minor modifications to send a message of your own.

When you move on to using actual sensors, you’re going to detect
brightness using a photoresistor, also known as a Light Dependent
Resistor or LDR, so let’s modify the code to send a message with
a value appropriate for that scenario. In the header file azure_iot_
hub.h, add an int as a parameter of the function call. When you’re
done, the contents of the header should be as follows:

// Insert call to this function in your code:
void send_device_to_cloud_message(int);

In the function definition of send_device_to_cloud_message, change
the value of message to use the sensor data rather than sending Hello
World. Here’s an example of how you can do that in JSON format:

char msgText[1024];
sprintf_s(msgText, sizeof(msgText), "{\"ldrValue\":%d}", ldrValue);
std::string message = msgText;

For more complex JSON data, or other formats, you can use
your favorite C++ library.

Now update your main function to pass some values as sensor data:
#include "stdafx.h"
#include "azure_iot_hub.h"

int main()
{
 int ldrValue = 500; // value will be read from a sensor in later examples
 send_device_to_cloud_message(ldrValue);
 return 0;
}

With IoT Hub Explorer still running, watch the messages build
and run your project. You’ll see a new event received, with JSON-
formatted data, { ldrValue: 500 }.

Congratulations! You now have an IoT cloud and some code
ready to wire up to a device with sensors connected to it.

Figure 2 Using the Azure IoT Hub Connected Service Extension

0416msdn_GoodnerAzure_v3_52-60.indd 54 3/10/16 2:47 PM

Untitled-2 1Untitled-2 1 3/7/16 3:57 PM3/7/16 3:57 PM

www.textcontrol.com

msdn magazine56 Internet of Things

Devices and Sensors
For the actual sensors in this application, I’m going to use the Grove
system from Seeed Studios. Grove offers a wide range of sensors
with a common connector that interfaces with expansion boards
connected to your device, avoiding the need for breadboards and
soldering as you develop your prototype IoT solution. You can, of
course, use any sensor you like, or none at all if you want to simu-
late sensor data within your device code. The specific Grove device
I’m showing in the code samples here is a light sensor, in part for
simplicity because it produces an analog output, so I don’t need to
find and install a specific library, a process that can vary platform
to platform. In all of the examples, the sensor is plugged into the
connector labeled A0 on the Grove expansion board. If you don’t
want to use a shield and are good with a breadboard, simply con-
nect an LDR to the power and an analog input pin on your board.

For the device part of the solution, I’m going to cover three alter-
natives: Raspberry Pi, Arduino and mbed. There are many factors
to take into account when choosing a device for your IoT project,
and these three options cover a range of different scenarios. For
smaller deployments, a variety of off-the-shelf devices can simplify
the development process. However, for large deployments, these
choices aren’t as cost-effective. (For a deployment of tens of thou-
sands of devices, reducing hardware costs, even by as little as a
dollar or two, can make a big difference.) If you’re just getting
started learning about the IoT, simplicity of development probably
trumps minimizing such costs, but for prototyping you’ll probably
want to consider it. Basic setup of the devices isn’t covered here, but
you’ll find pointers to materials online at aka.ms/iotmsdnb16. Figure
3 shows the devices and sensor discussed in this section.

At the time of this writing, the Azure IoT Hub Connected Service
extension can only pull down the binary libraries for use on Windows.
Microsoft is working to enable this for targeting other platforms, as
well. That said, the code the extension generates does work across
platforms. In the steps that follow, you’ll reuse the code generated
earlier for handling messages to the Azure IoT Hub. Each device
section is intended to stand on its own, so you can skip sections for
devices you’re not interested in.

Raspberry Pi The Raspberry Pi is a single-board computer with
an ARM processor and a GPU. It can run various flavors of Linux
and the Raspberry Pi 2 also supports Windows 10 IoT. Raspberry
Pi offers lots of flexibility—it’s a full computer and includes net-
working, USB, GPIO and HDMI (though it doesn’t support analog
sensors), and thanks to a vibrant maker community, example proj-
ects abound and help is available online. That flexibility does come
at a cost, though—a higher power draw compared to alternatives
and limited options to customize. So if you’re prototyping a device
that won’t have access to hardwired power or will be deployed in
large numbers, you might want to start with another board.

For this article, I’m going to use a Raspberry Pi in conjunc-
tion with an expansion board for Grove connectors from Dexter
Industries, which also adds analog support, and a light sensor
connected to A0. I’m also going to use the recently launched new
project system support for Linux (part of the Visual C++ for Linux
Development extension), which lets you build and debug code on
remote Linux machines. Go to File | New Project. Under Visual C++
| Cross Platform, select Console Application (Linux). This opens a
help file that explains the new capabilities of this project type and
tells how to add your remote Linux machine to the project. The
instructions also cover acquisition of the Azure IoT libraries for
Linux and some tips for setting up the Grove shield.

Copy the generated files from the first project into this project.
Open the cpp file in the solution named after your project and add the
reference to azure_iot_hub.h. Now update the code in main to read
the sensor data from the device continuously, as shown in Figure 4.

Now you can run your application from within Visual Studio. It
will copy your sources to the Pi in the location you specified, build
and run them. As with any other code in Visual Studio, you can set
breakpoints. Once the code runs, you’ll see an event received by
the IoT Hub Explorer as with the simulated data, { ldrValue: 1013 }.

This support for Linux isn’t tied to the Raspberry Pi; it also works
with other Linux-based devices like the Intel Edison, the Beagle-
Bone or any remote Linux machine.

Windows 10 IoT Core on the Raspberry Pi 2 is another option. See
windowsondevices.com for information on getting started. After the tools
are installed, go to File | New Project, then look under Visual C++
Windows and select Blank App (Universal Windows). Add a refer-
ence to Windows IoT Extensions for the UWP to the project. At the
time of writing, there are some additional steps required for UWP.
Please see the comments in the generated file azure_iot_hub.cpp

#include "azure_iot_hub.h"
#include <unistd.h>
#include "grovepi.h"

int main()
{
 int ldrValue;

 while(1) {
 ldrValue = analogRead(0);
 send_device_to_cloud_message(ldrValue);
 sleep(5);
 }
 return 0;
}

Figure 4 Reading Sensor Data Using a Raspberry Pi

Figure 3 From the Left, a Raspberry Pi 2 with a Grove Hat and
Light Sensor Attached, an Arduino Yun, a Grove Base Shield,
and the FRDM 64 mbed Board at Bottom

0416msdn_GoodnerAzure_v3_52-60.indd 56 3/10/16 2:47 PM

www.aka.ms/iotmsdnb16
www.windowsondevices.com

Untitled-3 1 3/7/16 4:49 PM

www.gnostice.com

msdn magazine58 Internet of Things

in case those are still required. In the application code of Main
Page.xaml.cpp, add the reference to the azure_iot_hub.h include file.

In the MainPage.xaml.h include file, add the following pri
vate declarations:

private:
 const int readPin = 4;
 Windows::Devices::Gpio::GpioPin ^pin_;

This code illustrates how to read directly from a GPIO pin using
the UWP APIs. Please see aka.ms/iotmsdnb16 for updates regarding
using the Grove Pi shield with C++. Update the function definition
and implementation to pass the sensor values as a JSON object as
in the earlier example.

Next, you’ll update the implementation of MainPage in Main-
Page.xaml.cpp, as follows:

MainPage::MainPage()
{
 int ldrValue;
 auto gpio = GpioController::GetDefault();
 pin_ = gpio->OpenPin(readPin);
 pinValue = (int) pin_->Read();
 send_device_to_cloud_message(ldrValue);
}

Make sure the Azure IoT Hub is listening for your device, then build
and deploy. You’ll see the JSON messages with the value from your
light sensor stream by. Debugging works just as you’d expect because
the target device is another Windows machine. There’s no special
configuration required when your target is a Windows IoT device.

Arduino The Arduino is found in more maker projects than prob-
ably any other board out there. As a result of its widespread appeal,
many other providers have added support for their boards to the
Arduino IDE. Among sensor manufacturers, the level of support
is similarly high, with libraries that can easily be incorporated into
the Arduino IDE. The boards themselves have common connectors
that provide a variety of digital and analog inputs and outputs in
a common form factor for expansion shields to be added, such as
the Grove base shield. That form factor has been adopted by many
other board providers. There are many Arduino/Genuino boards
to choose from, ranging from low-power MCUs to powerful ARM
chips, and a rich ecosystem of third-party boards is available. As
an open source hardware platform, all the schematics are available,
making this an excellent platform for use in larger deployments.

Not all Arduinos have networking built in, though, so you’ll want
to either choose one that does or use an expansion shield that adds
networking to your device. Attach a Grove base shield and plug the
light sensor into the port labeled A0.

Basic Arduino projects are called sketches and comprise a folder
containing a file of the same name ending in .ino. This file is just a
C++ file. The Arduino IDE hides a lot of complexity of its default
Wiring API libraries. There are many guides online that cover basic
Arduino setup and usage; visit Arduino.cc or aka.ms/iotmsdnb16 if you
need pointers to those. If you want the fuller functionality of Visual
Studio but want to stay within the Arduino ecosystem and use the
.ino format, Visual Micro provides an extension that brings most
of the board and library management functions from the Arduino
IDE directly into Visual Studio.

To use C++ directly rather than the .ino sketch format, make sure
you’ve installed the Visual C++ for IoT Development extension and
create a new project. Then, from Visual C++ | Cross Platform, select
Blank Application (IoT) project. This opens a help file that explains
the new capabilities of this project type. Refer to those instructions
for how to add and configure your board within the project.

Refer to the readme in the project on initializing PlatformIO
for use with the Arduino and importing the required Azure IoT
libraries. Copy the azure_iot_hub.h file from the first exercise into
the lib folder and the azure_iot_hub.cpp into the src folder:

#include "azure_iot_hub.h"

int lightSensorPin = 0;
int ldrValue;

void loop()
{

 ldrValue = analogRead(lightSensorPin);
 send_device_to_cloud_message(ldrValue);
 delay(2000);
}

Now you can build and deploy your code to the board. Make sure
the Azure IoT Hub Explorer is running so you can see the messages
being sent from the board. Debugging is supported, as well. Set up
for this varies, so please see the help file that’s included in the project.

mbed The ARM mbed platform is another excellent choice. This
is an OS for ARM-based microcontrollers that provides a common
framework for development and is supported by a wide range of
prototyping boards supplied by the many ARM silicon vendors.
These vendors all have their own path to production of custom
designs. For deployments at scale, mbed is an excellent place to
start. At Microsoft, we’ve been working with boards from Freescale,
Marvel, STMicro and others. The range of choice here, however,
can also make it a little hard to know where to start, but the excel-
lent community online at mbed.org can help. Be aware that you won’t
find as many maker-style projects online for mbed as for Raspberry
Pi or Arduino. Every ARM vendor who produces an mbed board
has getting started guidance; I highly recommend you start there.

For this article, I’m going to use the Freescale Freedom K64F
board because it has built-in Ethernet, which makes it a snap to get
connected to the Internet. This board also has headers matching
the Arduino so you can use the same Grove base shield for con-
necting your sensors. Attach the light sensor to the plug labeled A0.

Again, as with the Raspberry Pi and Arduino, I’m going to use
the microcontroller support in Visual Studio. Make sure you’ve
installed the Visual C++ for IoT Development extension and create
a new project. Select Visual C++ | Cross Platform | Blank Applica-
tion (IoT). This opens a help file that explains the new capabilities

#include "azure_iot_hub.h"
#include "mbed.h"

AnalogIn lightSensorPin(A0);
float ldrSensorValue;
int ldrValue

int main()
{
 while(1) {
 ldrSensorValue = lightSensorPin.read();
 ldrValue = (int) (ldrSensorValue * 1000);
 send_device_to_cloud_message(ldrValue);
 delay(2000);
 }
}

Figure 5 Reading Sensor Data Using MBed

0416msdn_GoodnerAzure_v3_52-60.indd 58 3/10/16 2:47 PM

www.aka.ms/iotmsdnb16
www.Arduino.cc
www.aka.ms/iotmsdnb16
www.mbed.org

Great Apps Happen
By Design

Design Desktop Web Mobile Data Visualization

Superior user experiences start with Infragistics Ultimate.

Choose UX & UI tools built to accelerate the application design
and development process.

Download a free trial of Infragistics Ultimate at
infragistics.com

Untitled-1 1 3/9/16 1:14 PM

www.infragistics.com

msdn magazine60 Internet of Things

of this project type. Refer to those instructions for how to add and
configure your board within the project.

I’m going to use PlatformIO as my build tool for this project.
PlatformIO is a flexible system that supports many different
microcontroller platforms. Please refer to the readme in the project
on initializing PlatformIO for use with an mbed target and import-
ing the required Azure IoT libraries. Copy the azure_iot_hub.h file
from the first exercise into the lib folder and the azure_iot_hub.cpp
into the src folder.

Update your program code as shown in Figure 5.
Now you can build and deploy your code to the board. Make sure

the Azure IoT Hub Explorer is running so you can see the messages
being sent from the board. Debugging is supported, as well. Setting
this up varies so please see the help file that’s included in the project.

Using Your Sensor Data in Azure Services
Now that you’ve gotten the sensor data flowing from your device
to Azure, you can use it with any available Azure service. This is
where the reference implementations in the Azure IoT Suite or the
Connect the Dots project can help you see the possibilities and how
things are connected together.

As an example, you can process real-time information coming
in via IoT Hubs and use it as input to other services. A common
pattern here is anomaly detection and notification. To configure
this type of alert, you’d create a Stream Analytics service that takes
as its input your IoT Hub. Next, you’d define an output for this job,
for example to Storage Blob or PowerBI, and then define a query
that parses data coming from the input, looking for values above
a certain threshold, for example. Any matches would then be sent
to the defined output (see Figure 6).

You could use the Storage Blob as
an input to a logic app that would
then send an SMS alert, or in the case
of PowerBI it could be used in a near-
real-time dashboard of changing
conditions. Machine learning services
also provide rich opportunities to
unlock value from the vast amounts
of sensor data that can be collected,
either in real-time hot paths or by
analyzing historical data. These are
just a few examples. With all of the
Azure services available to further pro-
cess and report on your data, you can
realize any of your IoT needs.

One thing to note is that IoT Hubs
can be used anywhere you can use
Event Hubs. If you find a service you’re
trying to use doesn’t have an IoT Hub
option, you’ll need to get the Event Hub
compatible name. Go to your IoT Hub
in the Azure Portal and select Messag-
ing. Under Device to Cloud settings,
you’ll see the Event Hub compatible
name and endpoint.

Taking full advantage of IoT data always involves the use of
multiple services. Azure Resource Manager (ARM) templates can
help you manage that complexity. These templates, written in JSON,
define Azure services for deployment, including the ordering of
deployment, location, values to use, and so forth, and they allow
you to quickly deploy a full set of services to create an IoT cloud
back end. These templates are used within the IoT Suite for
deploying solutions into specific Azure subscriptions. Because the
templates are simple JSON files, you can also keep track of them
in your version control system for use in future deployments, say
moving from prototype to production deployment.

Your Future with IoT
You have a role to play in building the Internet of Things. If you haven’t
already started down this path, hopefully this article has piqued your
interest. If you’ve been hacking Arduinos and Raspberry Pi devices
for years already, perhaps you’ll find value in the new Visual Studio
C++ capabilities introduced here. If you aren’t a C++ developer, you
may find that these new capabilities make C++ far more approachable.

There is much more to Azure IoT than I’ve presented here. I cov-
ered the basics to get you started, and provided pointers for you to
go further. Do give it a try. I look forward to seeing what you build.

Remember to visit aka.ms/iotmsdnb16 for additional resources and
to keep learning.	 n

Marc Goodner is a program manager focused on IoT tooling on the Visual
Studio team and an active participant in Microsoft’s Garage Maker Community.
He appreciates a fine single malt.

Thanks to the following Microsoft technical experts for reviewing this article:
Olivier Bloch and Artur Laksberg

Figure 6 The Simplest Stream Analytics Job Ever

0416msdn_GoodnerAzure_v3_52-60.indd 60 3/10/16 2:47 PM

www.aka.ms/iotmsdnb16

Untitled-3 1 3/7/16 4:19 PM

www.lightningchart.com

VOTE “YES” FOR BETTER

VISUAL STUDIO LIVE! (VSLive!TM) is on a Campaign for Code in 2016, in
support of developer education. It’s only fitting that we return with our
unique brand of practical, unbiased, Developer training to the nation’s
capital this year. From Oct. 3-6, we’re offering four days of sessions,
workshops and networking events to developers, software architects,
engineers and designers—all designed to help you vote “yes” for better
code and write winning applications across all platforms.

PRODUCED BYSUPPORTED BY

magazine

CAMPAIGN FOR CODE 2016 VISUAL STUDIO LIVE!

Untitled-6 2 3/4/16 3:04 PM

www.vslive.com/dc

VSLIVE.COM/DC

Do your developer duty:
register to join us today

Scan the QR code to
register or for more
event details.

REGISTER
NOW AND

SAVE $300! USE PROMO CODE VSLDC2

DEVELOPMENT TOPICS INCLUDE:
➤ Visual Studio/.NET

➤ Windows Client

➤ Mobile Client

➤ JavaScript/HTML5 Client

➤ ASP.NET

➤ Cloud Computing

➤ Database and Analytics

CONNECT WITH VISUAL STUDIO LIVE!
linkedin.com – Join the
“Visual Studio Live” group!twitter.com/vslive – @VSLive facebook.com – Search “VSLive”

RENAISSANCE, WASHINGTON, D.C.
WASHINGTON, D.C. • OCT. 3-6, 2016

Untitled-6 3 3/4/16 3:05 PM

www.vslive.com/dc
https://twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine64

In the February issue, I delved into the new configuration API
included in the newly named .NET Core 1.0 platform (see bit.ly/
1OoqmkJ). (I assume most readers have heard about the recently
renamed .NET Core 1.0, which was formerly referred to as .NET
Core 5 and part of the ASP.NET 5 platform [see bit.ly/1Ooq7WI].) In that
article I used unit testing in order to explore the Microsoft.Exten-
sions.Configuration API. In this article I take a similar approach,
except with Microsoft.Extensions.Logging. The key difference in my
approach is that I’m testing it from a .NET 4.6 CSPROJ file rather
than an ASP.NET Core project. This emphasizes the fact that .NET
Core is available for you to consider using immediately—even if
you haven’t migrated to ASP.NET Core projects.

Logging? Why on earth do we need a new logging framework?
We already have NLog, Log4Net, Loggr, Serilog and the built-in
Microsoft.Diagnostics.Trace/Debug/TraceSource, just to name a few.
As it turns out, the fact that there are so many logging frameworks
is actually one of the driving factors that make Microsoft.Exten
sions.Logging relevant. As a developer faced with the myriad of
choices, you’re likely to select one knowing you might have to
switch to another one later. Therefore, you’re probably tempted to
write your own logging API wrapper that invokes whichever par-
ticular logging framework you or your company chooses this week.
Similarly, you might use one particular logging framework in your
application, only to find that one of the libraries you’re leveraging
is using another, causing you to have to write a listener that takes
the messages from one to the other.

What Microsoft is providing with Microsoft.Extensions.Logging
is that wrapper so everyone doesn’t have to write their own. This
wrapper provides one set of APIs that are then forwarded to a pro-
vider of your choosing. And, while Microsoft includes providers for

things like the Console (Microsoft.Extensions.Logging.Console),
debugging (Microsoft.Extensions.Logging.Debug), the event
log (Microsoft.Extensions.Logging.EventLog) and TraceSource
(Microsoft.Estensions.Logging.TraceSource), it has also collaborated
with the various logging framework teams (including third parties
like NLog, Serilog, Loggr, Log4Net and more) so that there are
Microsoft.Extensions.Logging compatible providers from them, too.

Getting Started
The root of the logging activity begins with a log factory, as shown
in Figure 1.

As the code demonstrates, to begin you instantiate a Microsoft.Exten
sions.Logging.LoggerFactory, which implements ILoggerFactory in
the same namespace. Next, you specify which providers you want
to utilize by leveraging the extension method of ILoggerFactory.
In Figure 1, I specifically use Microsoft.Extensions.Logging.Con-
soleLoggerExtensions.AddConsole and Microsoft.Extensions.Log
ging.DebugLoggerFactoryExtensions.AddDebug. (Although
the classes are both in the Microsoft.Extensions.Logging name-
space, they’re actually found in the Microsoft.Extensions.Log
ging.Console and Microsoft.Extensions.Logging.Debug NuGet
packages, respectively.)

The extension methods are simply convenient shortcuts for the
more general way to add a provider—ILoggerFactory.AddProvider
(ILoggerProvider provider). The shortcut is that the AddProvider
method requires an instance of the log provider—likely one whose
constructor requires a log-level filter expression—while the exten-
sion methods provide defaults for such expressions. For example,
the constructor signature for ConsoleLoggerProvider is:

public ConsoleLoggerProvider(Func<string, LogLevel, bool> filter,
 bool includeScopes);

This first parameter is a predicate expression that allows you to
define whether a message will appear in the output based on the
value of the text logged and the log level.

Logging with .NET Core

Essential .NET MARK MICHAELIS

Code download available at GitHub.com/IntelliTect/Articles.

public static void Main(string[] args = null)
{
 ILoggerFactory loggerFactory = new LoggerFactory()
 .AddConsole()
 .AddDebug();

 ILogger logger = loggerFactory.CreateLogger<Program>();

 logger.LogInformation(
 "This is a test of the emergency broadcast system.");
}

Figure 1 How to Use Microsoft.Extensions.Logging

What Microsoft is providing with
Microsoft.Extensions.Logging
is that wrapper so everyone

doesn’t have to write their own.

0416msdn_MichaelisDotNet_v3_64-69.indd 64 3/10/16 2:49 PM

www.GitHub.com/IntelliTect/Articles
www.bit.ly/1Ooq7WI
www.bit.ly/1OoqmkJ
www.bit.ly/1OoqmkJ

Untitled-6 1Untitled-6 1 1/12/16 1:02 PM1/12/16 1:02 PM

www.alachisoft.com

msdn magazine66 Essential .NET

For example, you could call AddProvider with a specific Console
LoggerProvider instance that was constructed from a filter of all
messages higher (more significant) than LogLevel.Information:

loggerFactory.AddProvider(
 new ConsoleLoggerProvider(
 (text, logLevel) => logLevel >= LogLevel.Verbose , true));

(Interestingly, unlike the extension methods that return an ILogger-
Factory, AddProvider returns void—preventing the fluid type syntax
shown in Figure 1.)

It’s important to be cognizant that, unfortunately, there’s some
inconsistency between log providers as to whether a high log-level
value is more or less significant. Does a log level of 6 indicate a
critical error occurred or is it just a verbose diagnostic message?
Microsoft.Extensions.Logging.LogLevel uses high values to indi-
cate higher priority with the following LogLevel enum declaration:

public enum LogLevel
{
 Debug = 1,
 Verbose = 2,
 Information = 3,
 Warning = 4,
 Error = 5,
 Critical = 6,
 None = int.MaxValue
}

Therefore, by instantiating a ConsoleLoggerProvider that writes
messages only when the logLevel >= LogLevel.Verbose, you’re excluding
only Debug-level messages from being written to the output.

Note that you can add multiple providers to the log factory, even
multiple providers of the same type. Therefore, if I add an invocation
of ILoggerFactory.AddProvider to Figure 1, a call to ILogger.LogIn-
formation would display a message on the console twice. The first
console provider (the one added by AddConsole) defaults to dis-
playing anything LogLevel.Information or higher. However, an
ILogger.LogVerbose call would appear only once as only the second
provider (added via the AddProvider method) would successfully
avoid being filtered out.

Logging Patterns
As Figure 1 demonstrates, the root of all logging begins with a log
factory from which you can request an ILogger via the ILoggerFac-
tory.CreateLogger<T> method. The generic type T in this method
is to identify the class in which the code executes, so it’s possible to
write out the class name in which the logger is writing messages.
In other words, by calling loggerFactory.CreateLogger<Program>,
you essentially initiate a logger specific to the Program class so
that each time a message is written, it’s also possible to write the

execution context as being within the Program class. Thus, the
console output of Figure 1 is:

info: SampleWebConsoleApp.Program[0]
 This is a test of the emergency broadcast system.

This output is based on the following:
• �“info” results from the fact that this is a LogInformation

method call.
• �“SampleWebConsoleApp.Program” is determined from T.
• �“[0]” is the eventId—a value I didn’t specify so it defaults to 0.
• �“This is a test of the emergency broadcast system.” is the

messages argument passed to LogInformation.
Because the value Program indicates class-level context, you’ll

likely want to instantiate a different logger instance for each class
from which you want to log. For example, if Program creates and
calls into a Controller class instance, you’ll want to have a new logger
instance within the Controller class that was created via another
method call where T is now Controller:

loggerFactory.CreateLogger<Controller>()

As you may notice, this requires access to the same logger factory
instance on which the providers were previously configured. And
while it’s conceivable you could pass the logger factory instance
into every class from which you want to perform logging, it would
quickly become a hassle that would beg for refactoring.

The solution is to save a single static ILoggerFactory as a static
property that’s available for all classes when instantiating their object’s
specific ILoggger instance. For example, consider adding an Applica-
tionLogging static class that includes a static ILoggerFactory instance:

public static class ApplicationLogging
{
 public static ILoggerFactory LoggerFactory {get;} = new LoggerFactory();
 public static ILogger CreateLogger<T>() =>
 LoggerFactory.CreateLogger<T>();
}

The obvious concern in such a class is whether the LoggerFactory
is thread-safe. And, fortunately, as the AddProvider method shown
in Figure 2 demonstrates, it is.

Because the only data in the ILogger instance is determined from
the generic type T, you might argue that each class could have a static
ILogger that each class’s object could leverage. However, assuming
the programming standard of ensuring thread safety for all static
members, such an approach would require concurrency control
within the ILogger implementation (which isn’t there by default),
and likely result in a significant bottleneck as locks are taken and
released. For this reason, the recommendation, in fact, is to have
an individual ILogger instance for each instance of a class. The
result, therefore, is an ILogger property on each class for which
you wish to support logging (see Figure 3).

public void AddProvider(ILoggerProvider provider)
{
 lock (_sync)
 {
 _providers = _providers.Concat(new[] { provider }).ToArray();
 foreach (var logger in _loggers)
 {
 logger.Value.AddProvider(provider);
 }
 }
}

Figure 2 The Microsoft.Extensions.Logging.LoggerFactory
AddProvider Implementation

Because the value Program
indicates class-level context,

you’ll likely want to instantiate a
different logger instance for each
class from which you want to log.

0416msdn_MichaelisDotNet_v3_64-69.indd 66 3/10/16 2:49 PM

Untitled-1 1 3/9/16 10:59 AM

www.jetbrains.com/resharper

msdn magazine68 Essential .NET

Understanding Scopes
Frequently, providers support the concept of “scope” such that
you could (for example) log how your code traverses a call chain.
Continuing the example, if Program invokes a method on a Con-
troller class, that class in turn instantiates its own logger instance
with its own context of type T. However, rather than simply
displaying a message context of info: SampleWebConsoleApp.Pro-
gram[0] followed by info: SampleWebConsoleApp.Controller[0],
you might wish to log that Program-invoked Controller and pos-
sibly even include the method names themselves. To achieve this,

you activate the concept of scope within the provider. Figure 3
provides an example within the Initialize method via the invoca-
tion of Logger.BeginScopeImpl.

Using the logging pattern while leveraging the scope activation
will result in a Program class that might look a little like Figure 4.

The output of Figure 3 combined with Figure 4 is shown in
Figure 5.

Notice how the scope automatically unwinds to no longer include
Initialize or Main. This functionality is provided by the fact that
BeginScopeImpl returns an IDisposable instance that automati-
cally unwinds the scope when the using statement calls Dispose.

Leveraging a Third-Party Provider
To make available some of the most prominent third-party logging
frameworks, Microsoft collaborated with its developers and ensured
there are providers for each. Without indicating a preference, consider
how to connect up the NLog framework, as demonstrated in Figure 6.

Most of this code is well-known to those familiar with NLog.
First, I instantiate and configure an NLog target of type NLog.Tar-
gets.MemoryTarget. (There are numerous NLog targets and each
can be identified and configured in the NLog configuration file,
in addition to using configuration code as shown in Figure 6.)
Notice that while similar in appearance, the Layout is assigned a
literal value of ${message}, not a string interpolated value.

Once added to the LoggerFactory and configured, the code is
identical to any other provider code.

Exception Handling
Of course, one of the most common reasons to log is to record when
an exception is thrown—more specifically, when the exception is
being handled rather than re-thrown or when the exception is
entirely unhandled (see bit.ly/1LYGBVS). As you’d expect, Microsoft.Exten
sions.Logging has specific methods for handling an exception. Most
such methods are implemented in Microsoft.Extensions.Log-
ging.LoggerExtensions as extension methods to ILogger. And, it’s
from this class that each method specific to a particular log level
(ILogger.LogInformation, ILogger.LogDebug, ILogger.LogCritical
and so forth) is implemented. For example, if you want to log a
LogLevel.Critical message regarding an exception (perhaps before
gracefully shutting down the application), you’d call:

Logger.LogCritical(message,
 new InvalidOperationException("Yikes..."));

Another important aspect of logging and exception handling
is that logging, especially when handling exceptions, should not
throw an exception. If an exception is thrown when you log,

public class Program
{
 static ILogger Logger { get; } =
 ApplicationLogging.CreateLogger<Program>();

 public static void Main(string[] args = null)
 {
 ApplicationLogging.LoggerFactory.AddConsole(true);
 Logger.LogInformation(
 "This is a test of the emergency broadcast system.");
 using (Logger.BeginScopeImpl(nameof(Main)))
 {
 Logger.LogInformation("Begin using controller");
 Controller controller = new Controller();
 controller.Initialize();
 Logger.LogInformation("End using controller");
 }
 Logger.Log(LogLevel.Information, 0, "Shutting Down...", null, null);
 }
}

Figure 4 An Updated Implementation of Program

info: SampleWebConsoleApp.Program[0]
 This is a test of the emergency broadcast system.
info: SampleWebConsoleApp.Program[0]
 => Main
 Begin using controller
info: SampleWebConsoleApp.Controller[0]
 => Main => Initialize
 Initialize the data
info: SampleWebConsoleApp.Controller[0]
 => Main => Initialize
 Initialize the UI
info: SampleWebConsoleApp.Program[0]
 => Main
 End using controller
info: SampleWebConsoleApp.Program[0]
 Shutting down...

Figure 5 Console Logging Output with Scopes Included

Of course, one of
the most common reasons
to log is to record when an

exception is thrown.

public class Controller
{
 ILogger Logger { get; } =
 ApplicationLogging.CreateLogger<Controller>();

 // ...
 public void Initialize()
 {
 using (Logger.BeginScopeImpl(
 $"=>{ nameof(Initialize) }"))
 {
 Logger.LogInformation("Initialize the data");
 //...
 Logger.LogInformation("Initialize the UI");
 //...
 }
 }
}

Figure 3 Adding an ILogger Instance
to Each Object That Needs Logging

0416msdn_MichaelisDotNet_v3_64-69.indd 68 3/10/16 2:49 PM

www.bit.ly/1LYGBVS

msdnmagazine.com

Instantly Search
Terabytes of Text

dtSearch.com 1-800-IT-FINDS

dtSearch’s document filters
support popular file types, emails
with multilevel attachments,
databases, web data

Highlights hits in all data types;
25+ search options

 The Smart Choice for Text Retrieval®

since 1991

Visit dtSearch.com for
• hundreds of reviews and

case studies
• fully-functional enterprise and

developer evaluations

With APIs for .NET, Java and C++.
SDKs for multiple platforms.
(See site for articles on faceted
search, SQL, MS Azure, etc.)

®

presumably the message or exception will never get written and
could potentially go entirely unnoticed, no matter how critical.
Unfortunately, the out-of-the-box ILogger implementation—
Microsoft.Extensions.Logging.Logger—has no such exception
handling, so if an exception does occur, the calling code would
need to handle it—and do so every time Logger.LogX is called. A
general approach to solving this is to possibly wrap Logger so as to
catch the exception. However, you might want to implement your
own versions of ILogger and ILoggerFactory (see bit.ly/1LYHq0Q for
an example). Given that .NET Core is open source, you could even
clone the class and purposely implement the exception handling
in your very own LoggerFactory and ILogger implementations.

Wrapping Up
I started out by asking, “Why on Earth would we want yet another
logging framework in .NET?” I hope by now this is clear. The
new framework creates an abstraction layer or wrapper that
enables you to use whichever logging framework you want as a
provider. This ensures you have the maximum flexibility in your
work as a developer. Furthermore, even though it’s only available
with .NET Core, referencing .NET Core NuGet packages like
Microsoft.Extensions.Logging for a standard Visual Studio .NET
4.6 project is no problem.	 n

Mark Michaelis is founder of IntelliTect, where he serves as its chief technical
architect and trainer. For nearly two decades he has been a Microsoft MVP, and
a Microsoft Regional Director since 2007. Michaelis serves on several Microsoft
software design review teams, including C#, Microsoft Azure, SharePoint
and Visual Studio ALM. He speaks at developer conferences and has written
numerous books including his most recent, “Essential C# 6.0 (5th Edition)”
(itl.tc/EssentialCSharp). Contact him on Facebook at facebook.com/
Mark.Michaelis, on his blog at IntelliTect.com/Mark, on Twitter: @markmichaelis
or via e-mail at mark@IntelliTect.com.

Thanks to the following IntelliTect technical experts for reviewing this article:
Kevin Bost, Chris Finlayson and Michael Stokesbary

[TestClass]
public class NLogLoggingTests
{
 ILogger Logger {get;}
 = ApplicationLogging.CreateLogger<NLogLoggingTests>();

 [TestMethod]
 public void LogInformation_UsingMemoryTarget_LogMessageAppears()
 {
 // Add NLog provider
 ApplicationLogging.LoggerFactory.AddNLog(
 new global::NLog.LogFactory(
 global::NLog.LogManager.Configuration));

 // Configure target
 MemoryTarget target = new MemoryTarget();
 target.Layout = "${message}";
 global::NLog.Config.SimpleConfigurator.ConfigureForTargetLogging(
 target, global::NLog.LogLevel.Info);

 Logger.LogInformation(Message);
 Assert.AreEqual<string>(
 Message, target.Logs.FirstOrDefault<string>());
 }
}

Figure 6 Configuring NLog as
a Microsoft.Extensions.Logging Provider

0416msdn_MichaelisDotNet_v3_64-69.indd 69 3/10/16 2:49 PM

mailto:mark@IntelliTect.com
www.dtsearch.com
http://www.msdnmagazine.com
www.bit.ly/1LYHq0Q
www.facebook.com/Mark.Michaelis
www.facebook.com/Mark.Michaelis
www.IntelliTect.com/Mark
www.Twitter.com/markmichaelis

msdn magazine70

One of the most-used phrases in the technology industry
today is “the Internet of Things,” often abbreviated as IoT.
The IoT promises to turn every device into a smart device
by connecting it to the cloud. From the cloud, a device can
provide a control surface and raw data. Cameras can be
controlled remotely. Data can be collected and analyzed
for patterns and insight.

While there have been many articles in MSDN Magazine
on how to collect and analyze data from these devices,
there hasn’t yet been any discussion from hardware or
wiring perspectives. However, jumping in with both feet
into IoT might require developers to acquire new skills
such as electronics design, electricity and, in some cases,
soldering. Developers, by nature, are quite comfortable
writing code but might not feel quite so comfortable with
the circuits and electrons underpinning everything in the
virtual world. Many software developers might find them-
selves wondering what to do with solderless breadboards,
jumper cables and resistors. This column will explain their purpose.

Of course, programmable devices have existed for many years.
Writing code for these devices, however, often required extensive
knowledge of proprietary toolsets and expensive prototyping
hardware. The Raspberry Pi 2 Model B can run Windows 10 IoT
Core, a special version of Windows 10. Windows 10 IoT Core is
a free download from the Windows Dev Center IoT Web site at
dev.windows.com/iot. Now that Windows 10 IoT Core runs on the
Raspberry Pi 2, Universal Windows Platform (UWP) developers
can leverage their existing code and skills.

In this column, I’ll create a UWP app that runs on the Raspberry
Pi 2 and will flash an LED light based on the data from a weather
API. I’ll introduce IoT concepts, the Raspberry Pi 2 Model B hard-
ware and how to control it from C# code.

Project: Monitoring for Frost
As spring brings back warm weather, many eagerly await the chance
to start gardening again. However, early spring in many areas can
also bring a few cold weather snaps. Frost can seriously damage
plants, so as a gardener, I want to know if cold weather is in the
forecast. For this, I’ll display a message on the screen if the forecast
low goes below 38 degrees Fahrenheit (3.3 degrees Celsius). The
app will also rapidly flash an LED as an extra warning.

In addition to the software normally needed to write UWP apps,
I’ll need to have some additional hardware. Naturally, I’ll need to
have a Raspberry Pi 2 Model B on which to deploy my solution.
I’ll also need a MicroSD card, an LED light, a 220 Ohm resistor,
solderless breadboard, jumper wires, USB mouse and keyboard,
and an HDMI monitor.

Raspberry Pi 2 Model B The Raspberry Pi 2 Model B is the
computer onto which I’ll deploy my UWP app. The Raspberry Pi 2
contains 40 pins (see Figure 1), some of which are General Purpose
input/output (GPIO) pins. Using code, I’ll be able to manipulate
or read the state of these pins. Each pin has one of two values: high
or low—high for higher voltage and low for lower voltage. This lets
me turn the LED light on or off.

MicroSD Card The MicroSD card acts
at the Raspberry Pi 2 hard drive. This is
where the device will find its boot files
and OS. It’s also where the UWP app,
once deployed, will reside. I could get
away with SD cards as small as 4GB, but
it’s recommended to have 8GB. Naturally,
the project requirements determine the
size of the card needed. If, for example,
I needed to store large amounts of sen-
sor data locally before uploading, then
I’d need a larger SD card to support a
larger local file store.

Writing UWP Apps for the Internet of Things

Modern Apps FRANK LA VIGNE

Code download available at bit.ly/1PQyT12.

Figure 1 Raspbery Pi 2 Model B Pinout Diagram

Figure 2 The Circuit
Diagram

GPIO
5

3.3V
PWR

0416msdn_LaVigneModApps_v3_70-76.indd 70 3/10/16 2:47 PM

http://dev.windows.com/iot
www.bit.ly/1PQyT12

Untitled-1 1Untitled-1 1 4/1/14 10:47 AM4/1/14 10:47 AM

www.spreadsheetgear.com

msdn magazine72 Modern Apps

Solderless Breadboard and Jumper Wires In order to connect
components to the Raspberry Pi 2, I’ll need to create a path for elec-
trons to follow from the Raspberry Pi 2 through my components
and back to the Raspberry Pi 2. This is known as a circuit. While
I could use any number of ways to connect the parts together, the
fastest and easiest way is the solderless breadboard. As the name
implies, I won’t need to solder components together to create the
circuit. I’ll use jumper wires to make the connections. The type of
solderless breadboard I use for this project has 30 rows and 10 col-
umns of sockets. Note that the columns have two groupings of five:
“a through e” and “f through j.” Each hole is connected electrically
to every other hole in its row and column group. The reason why
will become apparent shortly.

LED Light and Resistor In this project, I’ll connect the LED
light to the Raspberry Pi 2 board. The pins on the Raspberry Pi 2
operate at 5 volts. The LED light, however,
will burn out at this voltage. The resister will
reduce the extra energy to make the circuit
safe for the LED light.

Ethernet Cable, USB Mouse and Key-
board, and HDMI Monitor The Raspberry Pi
2 Model B has four USB ports, an Ethernet jack
and HDMI output, among other connectors.
Once the UWP app is running on the device,
I can interact with it very much the same way
as if it were on a PC or tablet because I have
a display and will be able to enter a ZIP code
to pull down the forecast for a specific area.

Putting Windows onto
the Raspberry Pi 2
To get started with Windows 10 IoT Core,
I follow the directions at bit.ly/1O25Vxl. The
first step is to download the Windows 10 IoT
Core Tools at bit.ly/1GBq9XR. The Windows 10
IoT Core Tools contain utilities, Windows
IoTImageHelper and WindowsIoTWatcher,

for working with IoT devices. WindowsIoTImageHelper provides
a GUI to format an SD card with Windows IoT Core boot files.
WindowsIoTWatcher is a utility that periodically scans the local
network for Windows IoT Core devices. I’ll be using them shortly.

Connecting the Hardware
In order to start creating a solution for the IoT, I need to make a
“thing” with which to work. This is the part of an IoT project that
many developers find the most intimidating. Most developers are
accustomed to moving bits via code, not necessarily wiring parts
together for electrons to travel around. To keep this simple, I take
the very basic blinking LED light project (bit.ly/1O25Vxl), but enhance
it with real-time data from the Internet. The basic hardware sup-
plies are the same: LED light, solderless breadboard, jumper cables
and a 220 Ohm resistor.

The Raspberry Pi 2 Model B has a number of GPIO pins. The
state of many pins can be manipulated by code. However, some of
these pins have reserved functions and can’t be controlled by code.
Fortunately, there are handy diagrams of the purpose of each pin.
The diagram seen in Figure 1 is known as a “pinout” and provides
a map of the circuit board’s interface.

Designing a Circuit
Basically, what I need to create is a circuit for electrons to flow
through, as shown in Figure 2. The electrons start their journey

In order to start creating a
solution for IoT, I need to make a

“thing” with which to work.

Figure 3 The Completed Wiring with Raspberry Pi 2 in a Clear
Plastic Case

Figure 4 The Default Information Screen on Windows IoT Core for Raspberry Pi 2

0416msdn_LaVigneModApps_v3_70-76.indd 72 3/10/16 2:48 PM

www.bit.ly/1O25Vxl
www.bit.ly/1GBq9XR
www.bit.ly/1O25Vxl

FREE TRIAL

Untitled-2 1Untitled-2 1 2/5/16 12:44 PM2/5/16 12:44 PM

www.docuvieware.com

msdn magazine74 Modern Apps

at pin 1, labeled 3.3V PWR in Figure 1. This pin supplies 3.3 volts
of power to the circuit and it’s this power that will light the LED.
In fact, 3.3 volts is too much power for the LED light. To prevent it
from burning out, I place a resistor on the circuit to absorb some
of the electrical energy. Next on the circuit is GPIO 5, which,
according to the pinout diagram, is physical pin 29. This pin, which
can be controlled by code, makes the LED light “smart.” I can set the
output voltage of this pin to either high (3.3 volts) or low (0 volts)
and the LED light will be either on or off, respectively.

Building a Circuit
Now, it’s time to build the circuit shown in Figure 2. For this, I need
to take the female end of one jumper cable and connect it to pin 29
on the Raspberry Pi 2. I then place the other end, the male end, into
a slot on my solderless breadboard. I chose row 7, column e. Next,
I take the LED light and place the shorter leg into the slot at row 7,
column a, while placing the other, longer LED into the slot at row
8, column a. Now, I take the resistor and place one end into row 8,
column c and the other into row 15, column c. Finally, I place the
male end of the second jumper cable into the slot at row 15, col-
umn a, and connect the female end into pin 1 on the Raspberry

Pi 2. Once all of this is done, I have
something that looks like Figure 3.

Booting up the Device
After I have Windows IoT Core
installed onto a MicroSD card, I insert
the SD card into the Raspberry Pi 2.
Then, I connect a network cable, USB
Mouse and HDMI monitor, and plug
in the Raspberry Pi 2. The device will
boot up and, eventually, the screen

shown in Figure 4 will pop up (I
make note of the device name and
the IP address).

Writing the Software
With the hardware setup complete,
I can now work on the software
portion of my IoT project. Creat-
ing an IoT project in Visual Studio
is easy. It’s essentially the same as
any other UWP project. As usual,
I create my project by choosing
File | New Project in Visual Studio
2015, and choosing Blank App
(Universal Windows) as the tem-
plate. I choose to call my project
“WeatherBlink.” Once the project
loads, I’ll need to add a reference
to the Windows IoT Extensions
for the UWP. I right-click on Ref-
erences in my solution in Solution
Explorer and in the dialog box
that follows, check the Windows

IoT Extensions for the UWP under Extensions in the Universal
Windows tree (see Figure 5). Finally, I click OK.

Now that I have the correct reference added to my project, I’ll add
the following using statement to the top of the MainPage.xaml.cs file:

using Windows.Devices.Gpio;

The Windows.Devices.Gpio namespace contains all the func-
tionality I need to access the GPIO pins on the Raspberry Pi 2.
Setting the state of a given pin is easy. For example, the following
code sets the value of pin 5 to High:

var gpioController = GpioController.GetDefault();

gpioPin = gpioController.OpenPin(5);
 gpioPin.Write(GpioPinValue.High);

Reading a pin’s value is just as easy:
var currentPinValue = gpioPin.Read();

Because GPIO pins are resources that need to be shared across
the app, it’s easier to manage them via class-scoped variables:

private GpioPin gpioPin;
private GpioPinValue gpioPinValue;

And initialize them in a common method:
private void InitializeGPIO()
{
 var gpioController = GpioController.GetDefault();

 gpioPin = gpioController.OpenPin(5);
 gpioPinValue = GpioPinValue.High;
 gpioPin.Write(gpioPinValue);
 gpioPin.SetDriveMode(GpioPinDriveMode.Output);

}

Creating the Simple UI
Because this is a UWP app, I have access to the full range of Windows
10 UWP interface controls. This means that my IoT can have a fully
interactive interface with no additional effort on my part. Many
IoT implementations are “headless,” meaning that they have no UI.

Figure 6 The UI of the
WeatherBlink UWP App

Figure 5 Adding a Reference to Windows IoT Extensions for the UWP in Visual Studio 2015

0416msdn_LaVigneModApps_v3_70-76.indd 74 3/10/16 2:48 PM

ement1); areaSeries Add(seriesElement2); areaSeries Add(seriesElement3); // Add series to the plot area plotArea Series Add(areaSeries); //page Elements Add(new LayoutGrid()); // Add the page elements to the page AddEAement1); areaSerieies.AAdd(se(s rriesElement2t2); a) reaSeries.AdA d(seriesElement3); // Add series to the plot area plotArea.Series.Add(areaSeries); //page.Elemenem ts.Add(ddd(new ne LaLayyoutGrid()); // A/ dd the page elements to the page AddEA

s, 240, 0); AddEAN1AN 3SupSup5(pa5(p ge.Elemeentnts, 480, 0); AdddUPCVersionA(page.Elemene ts, 0, 135); AddUPCVersionASup2(page.Elements, 240, 135); AdddUPCddUPCd CVerssionAionAo Sup5((page.Elemennts, t 480, 135); AddEAN8(page.Elements, 0,

.Elements, 480, 2270);; AddddUUPCVersionE(papage.Elementts, 0, 405); AddUPCVersionESuE p2(page.Elements, 240, 405); AddUPCVersionESup5(pageage.Ele.Elelemmments, 4s, 48800, 4405); // AAdd the page toe t the document document.Pages.Add(pa

CaptionAndRectanga lee(elemeements, “EAN/JA/JAN 13 Bar Codde”, x, y, 204, 99); BarCode barCode = new Ean13(“123456789012”, x, y + 21); barCode.ode.X +=X +X +=X + ((2004 -4 - baarCoode.GettSymbolWidth()h) / 2; elements.Add(barCode); } private vovo

dRectangle(elemente s,, “EANEAN/JAN 13 Bar Car Code, 2 digit supplement”, x, y, 204, 99); BarCode barCode = new Ean13Sup2(“12 234556789678 0121212”, 2”, x, yy + 2+ 211); 1); barCoode.XX += (204 - barCode.GetSymbolWidth()) / 2; elements.Add((barC

ts, float x, float yy) { A{ AddCaCaptionAndRectanangle(elements, “EAN/JAN 13 Bar Code, 5 5 digit supplement”, x, y, 204, 99); BaB rrCodee barrCode == new Ean13SupS 5(“12345678901212345”, x, y + 21); ba

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onA(Group elements, float x, float y) {Add{ CaptionAndRectangle(elements, “, UPC VersVersVersVersion ionoi A Baar Cr Coode”, x, y,y, 204, 99);; BarCoode barCode = new UpcVersionA(“12345678901”, xx, y +

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onASup2(Group elements, float x, floato y) { AddCaptionAndRectangle(elementm ““UPCC Version E Bar Code, 2 digit supplement”, x, y, 204, 94 9); BarCoode od

21) ; barCode.X ++= (2= (04 - barba Code.GeetSymbymbolWidth()) / 2; elements.Add(barCode); e } private void AddUPCVersionASSSSuup5(up5(u Group elements,n float x, flfloaflo t VV

digit supplement”,t” xx, y, 22004, 99); BarCodeCode bbarCode = new UUpcVep rsionASuAS p5(“12343 567890112345”, x, y + 21); bbarCarCode.Xde.X += (204 - barCode.GetSymboom lWidth()) / 22; eelele

t x, float y) { AddCapdCaptionnAndRAnd ectangle(eleelemments, “EAN/JANN 88 Bar Code”,de”, xx, y, 204, 0 99); BarCode barCode = nnew Eew Ean8(an8(n8n8 “1 2345670”, x, y + 21); OpenFileileDiala og fileDie aloogoglo =

g.Filter = “Adobeob PDPDF fileess (*.pdf)|*.pdf|Alll FileFiles (*.*)|*.*”; if (fileDieD alog.SShowDiialog() == DialogResult.OK) { { pdfVpdfVf ieweewer.OpOpr.OpOpen (fifileDialogalog.FilleName, “”); } SaveveFileDialog saveFaveFileileDDialoog = neneww Sav

Dialog.Filter == “AdoAdobe PPDF fiDF files (*.pdff)|*.pdpdf|A|All Files (*.*)|*.*”;”; iff (saveFFileDialolog.Showh Dialog() ==DialoalogResgResRee ult..OK)OK) OK) { pdfVfVView .SSaveAsve (sav(saveFieFileDia

printer = pdfViewViewer.Per rinterr; pprinter.PriintWiW thDialog(); } elsee { MesssageBox.SShoww(“Please opeopen a n a fifile to pto p rintrinrint”)”); }OpenFin le DDialoog fileDieD alogalog = new OpenFileDDialog(); fileDiaDialog.og Tittle = e e = e “Opepen File Dl

les (*.*)|*.*|Addobe Pe PDF files es (*.p*.pdf)|*.pdddf”; if i (fifileDialog.ShowwDialalog() === DialogResult.ult OK) { { DynaDynamicPDFVDFVDFVDFViewiewewerClass test e = neew DynammiccPDFViewerClass((); PPDFPrinter ter pprinp ter er r = te= ttet st.OpenFFileFo

= File.ReadAAllByteBytes(@”C:\M:\MyDyDoc.pdff””); //u// sing System.Runntimme.Inttent ropServicces;GCHaGCHandlendledd gch=GCH= CHaananddla e.Aloc(conteents, GCHandleTTypee.Pinnedd);) IIntntPtrPtr cooncontentsIntPtr = g

tents.Lengthh, “”);“”); A AddCaCaptioonAndReReectanglan ee(pageElementts, “BBBookkmark k Pagee E Elemelemeent:”nt:”, x,, y);; pa pagaapageEeEleemeents.Add(newtesw t Bookmookmaark(“Bookmarked TextTextt”, x + 55, y , y, yy ++ 2+ 20+ , pap rentre OutlO ine)); p) a

215, 10, Fonnt.TTimemesRomanma , 1010)); } prprrriivate vooid AddCiirclercle(GGro(G up paageElemeennnts,nts floafloat x,x floafloat yt y)t y) { / { /////Add/Add/A ss a circlt to the pap ge Eleemenmentenents AddCapdCapCaCadCaptiont AndRdRectae

Add(new Cirrcle(x e(x ++ 112.5f5f, y ++ 50f, 1007.5f, 300f, RgbColoolor.RRRed, RgbbbColor.Bor.Bluee,lue 2, LineL eStyylylly e.DaDae shLaLs rge))); } pprivate void AdA d FormatteeddTexxtAreea(Groupp paageElements, flofl aat x, fl float yy)) {) // A// AAdds dds a fofoa rmatted textte a

mic</i>PDFPDF/b>&tm; GGenerator vvv666.0 6 for ..NETNET has has a forrmattted ttetext arrea pea paaage a “ + “ “ele“ele“eleeeemmmentm . ThThis prroviddes rich fororm m atting ssuppupport for texext that appap eears in the doocumment. You have “ + “+ “compcompletlete conco trolol ove ovevever 8 r paragraph

left indentattionn, rigrighht indenentation, aligliggnnment, allollowing orphaaan linnes, aand whwhite ite “ + “spa“spaacece ppce pprereservata ion; 6 foont propropeerties: e <fonont fat f ce=’=’Timemes’>s’>font facece, <//fontt>font “ + “s+ “size, ont><fonont cocoocoot lor=lor=’FF0000’00’>c

 2 line prpropertieses: le leading, ag ndd leaddinngg type.ype. TText can also be rootateeed.</d.</< p>”;p> FFororo mattmattmm edeedTeedTeTeextArx ea fformaormattedTTextAreArea = nnew FormattedTextTex Areare (formattat edHHtmll, x + 5, yy + 20, 215, 60, FonttFammily.Helveelvetictica, 9, fffalalsse);se);se);sssse) // // Sets the i

ddCaptionAAndReRectanct gle(e(pagepageElemeenntsnts, “F, “Fororrmarmattedtte TextT Areeae Page ElElemenement:”,t:”,,, x, y); y); y)y AddCAdddCddCA aptionAnAndReectangnglele(pageElements, “Formatm tedTextAx rea OverOv flflow TText:”, x x + 2279, y); pageElementments.Add(foormarmattedTTTextAxttAAtArea)r ; // CrCrer ate

tArea overflowFoowFormatrm tedTdTextAArea == foormamatteddTdt extArea.GettOveerflowwwFormatmatteddTTexextAxx rea(rerea(re x + x 28284, y +y 200); pageElements.Add(overflowFormattedTextAArea)); } pprivate vooid AddImage(Group p pagpageElementsents, float t x, flo, at yy) {) { // // A/ dd

ents, “Imagee PagePage Elementen :”, xx, y); IImmagemage imaaage =ge new Imaage(SServvever.Mr.MapPattatth(“.h(“.“ ./I./Im./ agesages/DPDDFLogL o..png”), x + 112.5f, y + 50f, 0.24f); // Image is ssizzed and centeredd inn the rectangle immage.age SetBoundunds(21s(215, 5, 65 0); 0) image.VAVAAlign

ge); } privatte void oid AAddLabela (Group pp ppageageElememments, float x, flfloat y) { /// A/ Adds as aa llabel tel t to tht e pappap gegeElemenementts AddCaptionAndRectangle(pageElemenm ts, “LabLa el & PPageNummbeeringLabel Page EElemments:”, x,x, y); y) striing g laabelTextxt = = “= ““Lab

aain page numbumberinering: %%CP%%CP%%% ofof %%%T%%TP%%% pages.”; LLabel le abbel = nnew LLLew Laabel(labbelTeelTeeelTexxt, x + 5, y5 ++ 12, 220, 80, Font.TimesRoman, 12, Texe tAlign.C.Centter); label.Annglee = 8; PageNumbeeringgLabel pagepageNumLNumLabelab = nnnewew Pw Page

, 12, TeextAlxtAligign.CentC er); paga eEleementntntss.Ad.Addd(paageNumLabel));); p paggeElemenments.Addddd(d(label)); } } privprpp ate voidoid A AddLine(Group pageElements, float x, floao t y) { /// Addds aa line to thethe pageElements AdddCCaptionAndRAndRRectanngleglen (pagpag(a eeElemments

+ 5,+ y ++ 20, x + 220, y + 8080, , 3, RRgbbColor.Gr.G eeen)); pageElemmementss.n Add(d(d new w Linee(x ++ 22 2200, yy ++ 20, x + 5,+ 5, y + 80, 3, RgbColor.Green)); } private void AdddLLink((Grouup pageEElemments, float x, floaat yy) { // Adds ads a link toto thethhe pagp eEleEleemen

ynynamicPDF.com.m ”; AAddCaddCaptioptionAAnddnAndRectanglan e((pageElementts, “LLink PaPagege Elemment:nt:”, xx, y);y); LLabel llabela = new Label(text, x + 5, y + 20, 215, 80, font, 12,2 RggbCoolor.Blue)e); laabel.Underline = true;rue Link link =k = newnew LLinnk(x k(x ++ 5,5, y y ++ 20,

on(o “httpp://www.dynnamicppddf.coomm””))); pageEeElemments..Add(Ad labbeel);l); ppagepagpageElementsnts.AAdd(link); k) } prp ivatee void AddPath(Group pageElements, float x, float y) { // AAdds a path to the pageElemeents ceeTe.DynamicamicicPPDPDF.PagegeElemlemlements.PatP h

20,0 RgbgbbColor.Blue, RgbCRgbCoolor.RRedd, 22, LineStyeS lee.Solidd, true); pathhh.Su.SubbPaths.A.Adddd(new Lw LineSineSubPaubPath(x + 215, y + 40)); path.SubPaths.Add(new CurveToSToSubPPathh(x + 1+ 08, y + 80, x + 160,, y ++ 800)); path.SubSubPSubPathssssh .AAAd.Add(new(ne CurveS

ectecctanglangle(pageElemeents, “P“Path Ph Paage ge Element:””, x, yy);) pageEEleEleEE meentss.AdAdd(pad(path));th } pprivaate ve vooid AAddRectangle(Group pageElements, float x, float y) ororderede ddList = ordeo redLedList.GetOverFlowLo List((xx + x 5, y + 2+ 22000); AddCddCCCA aptiapa oonAndRect

2222 55, 1110); page.Eleements.Ats.Add(odd(ordrdrderr edList); x == 0; 0; y +=y ++=y + 118881 ; // CCCreaate e aan unorrderede lisist UnUnordderedList unorderedList = new Unoro deredList(x + 5, y +y + 220, 4400, 900, Font.Ht.Helvetica, 10); uuunoorderredListst.Itte.I ms.Amms Am dd(“ddd(“FruiFruFFFrFruF tss”); unorder

eree ies(); pieSeries.DaataLababel = da; plotArea.Seeriesess.AAd.Add(pieSSSeriesss);es ppieSeries.Elemelementss.AddAdd(27,7, “Website A”); pieSeries.Elements.Add.Ad (19, “Website e B”)); pieSerrieses.Elementmen s.Add(21, “WWebssite CC”); pieSpieSSerieeririees.Elemeneemmee ts[0s[0].Color = a

sess.Elemments[2].Color = auttogradient3;”unoro derreder ddSubLList2 == unoorderedList.Items[ms 1].SubLubLissts.AAddUnorderedSubList(); unorderedSubLu ist2.Items.Add(“dd(“Pottato”); unu ordeeredSubList2.Itemmms.A.Add(d(“Beaansansea ”);;; UUUnorU dereree dSubSu List subU

dSuedd bList(); subUnoUnorderedSubList.Items.As.AAdd(““d Lime”); subUUnorddereedSubList.Itemtems.Ads.Add(“Od(“Orangrange”);e” Unorderd edSubList sus bUnorderd edSue bList2 = unnorddereedSubLisLi t.Items[ms 1].SubLists.s.AddUAAddUd norrdereddeddSubLSubLbList(st); ssubUnbUnu oorderedSe ub

na”aa); UUnorderederedSubList subUnordo erededSubLSu ist3st3 = uunnorderredSubLSubList2.Itet ms[00].Su.SubLisLists.As.AddUnd orderedSSubList(); subUnoU rderedSudSubList3.Items.AAdd((“Swweet Potao to”)); UUnorderedSredSubLubLiL st sst ubUUnordrdeeredSdSredSdSubList4 st4st = ununorderedSu

ubLSuSu ist444.Ite.Items.Am dd(“String Bean”n”); s; subUnbUnordeereedSubbList4..Itemms.Addd(“Lima BeanBean”); subUsubUnnorderedSubList4.Items.Add(“Kidney Bean”e); x += 279; pagpage.EElemenntts.Addd(unorderedListst); u); ; nordno eredreddLisst = = uunordn ereddreddLisst..GetG Overv Flo

e.e.Elemeentsen , “Unordered List Page Ege Elemment On verflverflow:””, x, y,, 2255, 110); page.Elemementsents.AddAdd(un(unorderedList); } private void AddTextFt ield(Group pageEeElemlemennts, flfloaat x, flooatt y) { TextFFielddield txt = new Tew extFextFieldeld(“txtfnafnaaame”,meme”,me”, x +x + 20, 20, y + y +

tteaa dTeextArea(formattedHtml, x ++ 5, 5 y ++ 20, 202 215,15 60, FontFFamilyy.Heelvetica, 9, ffalse)se ; /// SetSets ths the ine dent property formattedTextArea.Style.Paragraph.IndeIn nnt = 1188; AddCaptCap ionAndRendRectanaa gle(eg pagepageep ElemElemE ents, “FFormamormattedttedtedtedTeTextArearea P

atteatat dTeextArea Overflow TeeText:”, x + 27 9, y9, y); p; pageEgeElements.AAdd(formformattedTextAArea); a) // CCreatea ee an overflow formatted text area for the overflow text FoFormmattedTtedTextAxt reaMMaxaxLeLengthngth = 9 = 9= 9; txtxtxtxxt1.B1.Bordeded rCorColor =r = RgbCololoColoor.Br.BBlaack; txttxt1.Ba1 Ba

MaMMM ximuum Lengthgth”; p; ageEEgeEElemeements.nts.Add(Add(txttxt1); TTextFex ieldd txt2 = neew TeextField(“txxtf2namename”, xx + 3+ 30, y + 30, 150, 40); txt2.DefaultValue = “This is a TexxtFtFieldd whiichh goees tototot the nexxt lit liline ine iif thff t e text et et xceexceeds wds wididth”; ”; ttxt2.xt2.xt2xt2 MMMultMu iLinLine = e =

RgRR bCooolor.AliceBlueBluee; txt2.T2. oolTip == “M“Multiline”; ppageEElemennts.AAdd(ttxt2); AddCapCaptiont AndRAndRecctangle(pageElements, “TextField Form Page Element:”, x, x, y, 50450444, 8585); }; } prri vate voioidd AddComCCC boFibo eld(Group pap pageElgeElemeemenene ttts, ts float x, fl

, , y + 4000, 150,, 20 20)20); c; cb.Boro derCd olor = RgbColorr.BBlack; cb.BaackggrounndColor = RgbCRgbColoro .AliAliceBceBlue; cb.Font = Font.Helvetica; cb.FontSize = 12; cb.Itemsem .AAdd(“(“It((em 1m 1”); ; ccb.IItemste .Add(“It““Item 2em 2”); ”); cb.Icb.Itemsems.Add(“Item 3em 3”)); cb.IItems

aaabbble”b].SSeSeSeleleclected = true; cb.Edb itable = true; cb.ToToololTip = “Editable Coe Combo Box””; pa; pageElgeE emements.Add(cb); ComboBox cb1 = new ComboBox(“cmb1namame”, x + 303,030 y +y + 4440 40, 150, 200); c); cb1.Bb1.Bb1 ordeorderColrColoor = Rgbg Coloor.Blr.Br Br B ack;ack cb1.Bac

.F..FFFontontSize = 12; cb1.Items.Add(“Item 1”); cb1.Items.AAdd(“Item 2em 2”); ccb1.Items.Add((“Itemem 3”); cb1.Items.Add(“Item 4”); cb1.Items.Add(“Non-Editable”);”); cb111.Items[“NNon-Eon-Editable”].Selecteccc ed =ed = tru true; ce; cb1 Eb1.EEditable e = fa= f lse;se cb1.ToolT

eerrter.Coonvert(“http://www.google.com”, “Output.pdf”));Convverteer.Coonvert(GetDocD PathPath(“Do(“D cumentA.rtf”), “Output.pdf”);System.Diagnostics.Process..s SStartt(“Ot(“ uutpuutpuutputt.pdf”);”); AsyncCoConvernverrtter t aConaConvertverter =e newe AsyncCncConnverter(); aC

vveerted); aConverter.ConversionError += new ConversiionErroorEvventHHandler(aConveerteer_ConversionError); aConverter.Convert(@”C:\temp\DocumentA.rtA f””””, f , f @”C:C \temte p\OuO tputtputA.pdA.pdf”);f”); aCo aCoa nverter.Convert(ert @”C:\teme p\Dop\D cumentB

\Doc\D ummentC.rtf”, @”C :\temp\OutputC.pdf”); aConverrter.Coonverrt(“hhttp://www.yahoo.coo.com”, @”C:\Temp\yahoo.pdf”); ConvC ersionOptions ops optiontions = nneewnew new ew Conversise onOpOptiontionoo s(72s(720, 70, 720, 72, 7 true); ceTe.DynaDynamicPm DF.CDF.Conveon rsiorsion Con.Co

outpou ut.pdf”, optionso); ceTe.DynamicPDF.Conversion.CConveerter.ConvCon ert(“C:\\temp\\\Documocument2.docx”, “C:\\temp\\op\ utput.pdf”, optiptoptioptiop ons)ons); s; stringing sampleHple tml m = “<“<htmlhtml><bo><bob dydy><p>This is s a very simplee HTMLHTMLHTHT strstrs ing iningin inclincincincludinud ng a g a g TT

(g[] g)

{{

pp

gg g (p p)

[]

[]

pp y y yyp

HighhSecuSec rity securiturity y new w HighhSecuurityy(“OOwnerPassword”, “U“ serPassword”)

yy ppy

ees y yy

p

(p p)

pag p (p pp)

p ()

}

Untitled-1 1Untitled-1 1 9/8/11 11:56 AM9/8/11 11:56 AM

www.dynamicpdf.com
www.dynamicpdf.com/eval

msdn magazine76 Modern Apps

This project will have a simple UI that’ll display a message based
on the weather forecast. If a keyboard and mouse are attached to the
Raspberry Pi 2, end users will be able to enter a ZIP code and update
the weather forecast information accordingly, as shown in Figure 6.

Making the Device Smart
In order to make my IoT device aware of the weather forecast, I
need to pull down weather data from the Internet. Because this is a
UWP app, I have all the libraries and tools accessible to me. I chose
to get my weather data from openweathermap.org/api, which provides
weather data for a given location in JSON format. All temperature
results are given in Kelvin. Figure 7 shows my code for checking
the weather and changing the rate of blinking based on the results.
Typically, frost warnings are issued once the air temperature gets
to around 38 degrees Fahrenheit (3.3 degrees Celsius). If there’s a
chance of frost, I want the LED to blink fast to alert me that my
garden is in imminent danger. Otherwise, I want the LED to blink
slowly, to let me know that there is still power to the device. Because
making a REST API call and parsing a JSON response in UWP is
a well-covered topic, I’ve omitted that specific code for brevity.

The Blink method is straightforward—
it sets the interval of a dispatch timer
based on the parameter sent to it:

private void Blink(int interval)
{
 blinkingTimer = new DispatcherTimer();
 blinkingTimer.Interval =
 TimeSpan.FromMilliseconds(interval);
 blinkingTimer.Tick += BlinkingTimer_Tick;
}

The BlinkingTimer_Tick method is
where the code to turn the LED on or off
resides. It reads the state of the pin and
then sets the state to its opposite value:

private void BlinkingTimer_Tick(
 object sender, object e)
{
 var currentPinValue = gpioPin.Read();

 if (currentPinValue == GpioPinValue.High)
 {
 gpioPin.Write(GpioPinValue.Low);
 }
 else
 {
 gpioPin.Write(GpioPinValue.High);
 }

}

The full source code is available at bit.ly/1PQyT12.

Deploying the App
Deploying the app to the Raspberry Pi 2 requires an initial setup
on my PC. First, I’ll need to change my architecture to ARM and
then under the dropdown next to the play icon, I’ll choose Remote
Machine. The Remote Connections dialog (see Figure 8) appears,
where I can either enter my device’s IP address manually or select
from a list of auto-detected devices. In either case, authentication
doesn’t need to be enabled. Last, I hit Select and now I can deploy my
solution to the device.

Design Considerations
The world of IoT opens new opportunities and challenges for
developers. When building an IoT device prototype, it’s important
to factor in the runtime environment where it’ll be deployed. Will
the device have ready access to power and networking? A home
thermostat certainly will, but a weather station placed in a remote
forest might not. Clearly, most of these challenges will dictate how
I build my device, for example, adding a weatherproof container
for outdoor scenarios. Will my solution be headless or require a
UI? Some of these challenges will dictate how I would write code.
For example, if my device transmits data over a 4G network then
I need to factor in data transmission costs. I certainly would want
to optimize the amount of data my device sends. As with any
project that’s purely software, keeping the end-user requirements
in mind is critical.

Wrapping Up
While controlling an LED light from code might not change the
world, there are many other applications that could. Instead of
relying on a weather forecast API, I could connect a temperature
sensor to the Raspberry Pi 2 and place it in or near my garden.

What about a device that could
send an e-mail alert if it detected
moisture in a particular part of my
home? Imagine installing air quality
sensors all over a major city or just
in a neighborhood. Imagine placing
weight sensors on roofs to determine
if enough snow has fallen to deter-
mine if there’s a risk of collapse. The
possibilities are endless.

Go and build great things!	 n

Frank La Vigne is a technology evangelist on
the Microsoft Technology and Civic Engage-
ment team, where he helps users leverage
technology in order to create a better commu-
nity. He blogs regularly at FranksWorld.com
and has a YouTube channel called Frank's
World TV. (youtube.com/FranksWorldTV).

Thanks to the following technical experts
for reviewing this article: Rachel Appel,
Robert Bernstein, Andrew Hernandez

private async void LoadWeatherData()
{
 double minTempDouble = await GetMinTempForecast();

 // 38F/3.3C = 276.483 Kelvin
 if (minTempDouble <= 276.483)
 {
 Blink(500);
 txtStatus.Text = "Freeze Warning!"
 }
 else
 {
 Blink(2000);
 txtStatus.Text = "No freezing weather in forecast."
 }

Figure 7 Checking Weather and the Rate of Blinking

Figure 8 Remote Connections Dialog

0416msdn_LaVigneModApps_v3_70-76.indd 76 3/10/16 2:48 PM

www.openweathermap.org/api
www.bit.ly/1PQyT12
www.FranksWorld.com
www.youtube.com/FranksWorldTV

Untitled-1 1 2/9/16 11:05 AM

www.nevron.com

CAMPAIGN FOR CODE 2016 VISUAL STUDIO LIVE!

magazine

SUPPORTED BY PRODUCED BY

VISUAL STUDIO LIVE! is on a Campaign for Code in 2016, and we’re taking
a swing through our home state, rallying @ Microsoft Headquarters
in beautiful Redmond, WA. From August 8 – 12, developers, software
architects, engineers, designers and more will convene for five days of
unbiased and cutting-edge education on the Microsoft Platform. Plus,
you'll be at the heart of it all: eating lunch with the Blue Badges, rubbing
elbows with Microsoft insiders, exploring the campus, all while expanding
your development skills and the ability to create better apps!

Untitled-1 2 2/3/16 1:55 PM

www.vslive.com/redmond

twitter.com/vslive – @VSLive facebook.com – Search “VSLive” linkedin.com – Join the
“Visual Studio Live” group!

CONNECT WITH VISUAL STUDIO LIVE!

MICROSOFT HQ • AUGUST 8-12, 2016
MICROSOFT HEADQUARTERS • REDMOND, WA

VSLIVE.COM/REDMOND

Have your code heard:
register to join us today.

Scan the QR code to
register or for more
event details.

REGISTER NOW
AND SAVE $400!

USE PROMO CODE VSLRED2

TOPICS INCLUDE:
➤ Visual Studio / .NET
➤ Windows Client
➤ Mobile Client
➤ JavaScript / HTML5 Client
➤ ASP.NET
➤ Cloud Computing
➤ Database & Analytics

Untitled-1 3 2/3/16 1:56 PM

www.vslive.com/redmond
https://twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine80

Abraham Lincoln famously said, “You can fool all of the people
some of the time, and some of the people all the time. But you can
fool yourself any time.” (Or something like that. April Fool.) We
geeks are especially good at the last of these. Before long, though,
we won’t need to do it anymore.

I just finished watching the movie “Her,” starring Joaquin Phoenix
as a lonely depressed geek and Scarlett Johansson as the voice of
his AI bot girlfriend Samantha. She’s like Siri or Cortana or Alexa,
on mental steroids. I wondered how a brilliant bot like her fell for
a dweeb like him. And then it struck me: that’s precisely the point.
She was built to bond to her user, because no one else would.

This idea of constructing an ideal partner, rather than finding one
in the wild, occurs throughout human history. The earliest reference
I can find is the ancient Cypriot sculptor Pygmalion. He sculpted a
beautiful statue, then prayed to Aphrodite for a bride who would be
“the living likeness of my ivory girl.” Aphrodite granted his wish by
bringing the statue to life. Shakespeare used this idea in “A Winter’s
Tale,” George Bernard Shaw’s play, “Pygmalion,” brought it to 20th
century London, “My Fair Lady” set it to music and the Star Trek
episode, “I, Mudd,” showed it backfiring. Robert Heinlein’s “Time
Enough for Love” projects it 2,200 years into the future (about as
far as the original Pygmalion was in the past): His self-aware com-
puter character Minerva falls in love with a human.

But the work that most resembles “Her” is Lester Del Rey’s 1938
science fiction short story, “Helen O’Loy” (bit.ly/1naYFWp and download-
able as a PDF at bit.ly/1QnJO3h). Dave, a near-future robot repairman,
invents artificial endocrine glands that provide emotional capa-
bilities to robots—an early analog approach, rather than today’s
digital. He and his partner Phil splice these into an off-the-shelf
robot and, of course, she falls in love with him. They name her
Helen for her beauty, and O’Loy for the alloys from which she is
constructed. And she proceeds to light up their hitherto-empty lives.

How can human/bot love work? Obviously, physical bodies pose an
obstacle. Minerva’s friends clone a human body for her from carefully
selected genes, so she’s all set. In the obligatory lovemaking scene in “Her,”
we hear suggestive audio but the screen is dark. Samantha later recruits
a surrogate to perform the physical acts, but it doesn’t work out the way
the characters want. Helen is built from rubber and metal, apparently
quite well: “You know how perfectly I’m made to imitate a real woman
… in all ways. I couldn’t give him sons, but in every other way …”

Normally a physical goddess like this wouldn’t pay attention to
geeks like us, but we can program them to be attracted to the way
we actually are: “Oh, you have such beautiful love handles.” What
geek could resist?

We haven’t quite reached the point of Cortana evolving into
Samantha. We still need to assist in our own deception, as I wrote
last November (msdn.com/magazine/mt620019). But I foresee the day
when humanity will no longer need to call on gods or fiction or
even denial to attain the unattainable.

We are the new gods, creating in our own image. Starting out
crude, limited, buggy—and what’s more human than that? But con-
stantly developing, improving; occasionally disrupting—and what’s
more human than that, either? The mythologies we instantiate will
echo forward from a strangely prescient past. Those ancient Greeks
were onto something; it just took us a while to become able to build
what they thought of.

The line between reality and virtuality gets blurrier by the day.
At what point do they become indistinguishable? I wish I could
just say “April Fool” and end this piece. But the seductiveness of
our fool’s universe grows daily as technology progresses. How long
until we refuse to leave it, thereby dooming the human species? As
Phil says at the end of the story: “I’m an old man now and can view
things more sanely; I should have married and raised a family, I
suppose. But … there was only one Helen O’Loy.”	 n

David S. Platt teaches programming .NET at Harvard University Extension School
and at companies all over the world. He’s the author of 11 programming books,
including “Why Software Sucks” (Addison-Wesley Professional, 2006) and “Intro-
ducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named him a Software
Legend in 2002. He wonders whether he should tape down two of his daughter’s
fingers so she learns how to count in octal. You can contact him at rollthunder.com.

Gods and Fools

Don’t Get Me Started DAVID S. PLATT

I foresee the day when humanity
will no longer need to call on

gods or fiction or even denial to
attain the unattainable.

0416msdn_PlattDGMS_v3_80.indd 80 3/10/16 2:49 PM

www.bit.ly/1naYFWp
www.bit.ly/1QnJO3h
http://msdn.com/magazine/mt620019
www.rollthunder.com

Untitled-4 1 3/4/16 12:51 PM

www.componentone.com

Untitled-4 1 3/4/16 1:32 PM

www.syncfusion.com/msdnxamarin

	Back
	Print
	MSDN Magazine, April 2016
	Cover Tip
	Front
	Back

	Contents
	UPSTART: Ordinary People
	CUTTING EDGE: Pushing Notifications to Mobile Apps
	DATA POINTS: Handling the State of Disconnected Entities in EF
	.NET Goes Cross-Platform with .NET Core
	Microsoft Pushes C++ into the Future
	Using Ionic and TACO to Create Cross-Platform Mobile Apps
	Data Processing and Machine Learning on Spark
	Develop an Azure-Connected IoT Solution in Visual Studio with C++
	ESSENTIAL .NET: Logging with .NET Core
	MODERN APPS: Writing UWP Apps for the Internet of Things
	DON’T GET ME STARTED: Gods and Fools

	DevExpress Insert
	Visual Studio Live! - Insert

