
magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS FEBRUARY 2016 VOL 31 NO 2

UWP Apps for Web Devs...18

 0216msdn_CoverTip_8x10.75.indd 1 0216msdn_CoverTip_8x10.75.indd 1 1/7/16 1:09 PM1/7/16 1:09 PM

www.devexpress.com/dashboard

 0715msdn_CoverTip_8x10.75.indd 2 0715msdn_CoverTip_8x10.75.indd 2 6/8/15 11:58 AM6/8/15 11:58 AM

www.devexpress.com/try

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS FEBRUARY 2016 VOL 31 NO 2

Universal Windows Platform Apps
for Web Developers
Tim Kulp.. 18

Implementing a UWP App with
the Official OneDrive SDK
Laurent Bugnion.. 22

Progressive Enhancement with
ASP.NET and React
Graham Mendick.. 28

Customizable Scripting in C#
Vassili Kaplan.. 34

Azure Service Fabric, Q-Learning
and Tic-Tac-Toe
Jesus Aguilar.. 48

COLUMNS
U P S TA R T
Loyalty Test
Krishnan Rangachari, page 6

CUTTING EDGE
Architecture Spinoffs of UXDD
Dino Esposito, page 8

DATA POINTS
Refactoring an ASP.NET 5/EF6
Project and Dependency Injection
Julie Lerman, page 14

TEST RUN
Roach Infestation Optimization
James McCaffrey, page 56

THE WORKING
PROGRAMMER
How to Be MEAN:
Inside MongoDB
Ted Neward, page 70

ESSENTIAL .NET
Configuration in .NET Core
Mark Michaelis, page 74

DON’T GET ME STARTED
VB6: Waking a Sleeping Giant
David Platt, page 80

UWP Apps for Web Devs...18

0216msdn_C1_v1.indd 1 1/12/16 2:37 PM

Untitled-1 2Untitled-1 2 1/7/16 12:20 PM1/7/16 12:20 PM

www.textcontrol.com/html5

released

Untitled-1 3Untitled-1 3 1/7/16 12:20 PM1/7/16 12:20 PM

www.textcontrol.com/html5

msdn magazine2

ID STATEMENT MSDN Magazine (ISSN 1528-4859) is
published monthly by 1105 Media, Inc., 9201 Oakdale
Avenue, Ste. 101, Chatsworth, CA 91311. Periodicals
postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offices. Annual subscription rates
payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in
U.S. funds are: U.S. $25.00, International $25.00. Single
copies/back issues: U.S. $10, all others $12. Send orders
with payment to: MSDN Magazine, P.O. Box 3167, Carol
Stream, IL 60132, email MSDNmag@1105service.com
or call (847) 763-9560. POSTMASTER: Send address
changes to MSDN Magazine, P.O. Box 2166, Skokie,
IL 60076. Canada Publications Mail Agreement No:
40612608. Return Undeliverable Canadian Addresses
to Circulation Dept. or XPO Returns: P.O. Box 201,
Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part
prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 4 Venture,
Suite 150, Irvine, CA 92618.

LEGAL DISCLAIMER The information in this magazine
has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed
or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While
the information has been reviewed for accuracy, there
is no guarantee that the same or similar results may be
achieved in all environments. Technical inaccuracies may
result from printing errors and/or new developments
in the industry.

CORPORATE ADDRESS 1105 Media, 9201 Oakdale Ave.
Ste 101, Chatsworth, CA 91311 www.1105media.com

MEDIA KITS Direct your Media Kit requests to Chief
Revenue Officer Dan LaBianca, 972-687-6702 (phone),
972-687-6799 (fax), dlabianca@1105media.com

REPRINTS For single article reprints (in minimum
quantities of 250-500), e-prints, plaques and posters
contact: PARS International Phone: 212-221-9595.
E-mail: 1105reprints@parsintl.com.
www.magreprints.com/QuickQuote.asp

LIST RENTAL This publication’s subscriber list, as well as
other lists from 1105 Media, Inc., is available for rental.
For more information, please contact our list manager,
Jane Long, Merit Direct. Phone: 913-685-1301;
E-mail: jlong@meritdirect.com;
Web: www.meritdirect.com/1105

Reaching the Staff
Staff may be reached via e-mail, telephone, fax, or mail.
A list of editors and contact information is also available
online at Redmondmag.com.
E-mail: To e-mail any member of the staff, please use the
following form: FirstinitialLastname@1105media.com
Irvine Office (weekdays, 9:00 a.m. – 5:00 p.m. PT)
Telephone 949-265-1520; Fax 949-265-1528
4 Venture, Suite 150, Irvine, CA 92618
Corporate Office (weekdays, 8:30 a.m. – 5:30 p.m. PT)
Telephone 818-814-5200; Fax 818-734-1522
9201 Oakdale Avenue, Suite 101, Chatsworth, CA 91311
The opinions expressed within the articles and other
contentsherein do not necessarily express those of
the publisher.

President
Henry Allain

Chief Revenue Officer
Dan LaBianca

Chief Marketing Officer
Carmel McDonagh

ART STAFF

Creative Director Jeffrey Langkau
Associate Creative Director Scott Rovin
Senior Art Director Deirdre Hoffman
Art Director Michele Singh
Assistant Art Director Dragutin Cvijanovic
Graphic Designer Erin Horlacher
Senior Graphic Designer Alan Tao
Senior Web Designer Martin Peace

PRODUCTION STAFF

Director, Print Production David Seymour
Print Production Coordinator Lee Alexander

ADVERTISING AND SALES

Chief Revenue Officer Dan LaBianca
Regional Sales Manager Christopher Kourtoglou
Account Executive Caroline Stover
Advertising Sales Associate Tanya Egenolf

ONLINE/DIGITAL MEDIA

Vice President, Digital Strategy Becky Nagel
Senior Site Producer, News Kurt Mackie
Senior Site Producer Gladys Rama
Site Producer Chris Paoli
Site Producer, News David Ramel
Director, Site Administration Shane Lee
Site Administrator Biswarup Bhattacharjee
Front-End Developer Anya Smolinski
Junior Front-End Developer Casey Rysavy
Executive Producer, New Media Michael Domingo
Office Manager & Site Assoc. James Bowling

LEAD SERVICES

Vice President, Lead Services Michele Imgrund
Senior Director, Audience Development
& Data Procurement Annette Levee
Director, Audience Development
& Lead Generation Marketing Irene Fincher
Director, Client Services & Webinar
Production Tracy Cook
Director, Lead Generation Marketing Eric Yoshizuru
Director, Custom Assets & Client Services Mallory Bundy
Senior Program Manager, Client Services
& Webinar Production Chris Flack
Project Manager, Lead Generation Marketing
Mahal Ramos
Coordinator, Lead Generation Marketing
Obum Ukabam

MARKETING

Chief Marketing Officer Carmel McDonagh
Vice President, Marketing Emily Jacobs
Senior Manager, Marketing Christopher Morales
Marketing Coordinator Alicia Chew
Marketing & Editorial Assistant Dana Friedman

ENTERPRISE COMPUTING GROUP EVENTS

Vice President, Events Brent Sutton
Senior Director, Operations Sara Ross
Senior Director, Event Marketing Merikay Marzoni
Events Sponsorship Sales Danna Vedder
Senior Manager, Events Danielle Potts
Coordinator, Event Marketing Michelle Cheng
Coordinator, Event Marketing Chantelle Wallace

Chief Executive Officer
Rajeev Kapur

Chief Operating Officer
Henry Allain

Vice President & Chief Financial Officer
Michael Rafter

Executive Vice President
Michael J. Valenti

Chief Technology Officer
Erik A. Lindgren

Chairman of the Board
Jeffrey S. Klein

General Manager Jeff Sandquist
Director Dan Fernandez
Editorial Director Mohammad Al-Sabt mmeditor@microsoft.com
Site Manager Kent Sharkey
Editorial Director, Enterprise Computing Group Scott Bekker
Editor in Chief Michael Desmond
Features Editor Sharon Terdeman
Features Editor Ed Zintel
Group Managing Editor Wendy Hernandez
Senior Contributing Editor Dr. James McCaffrey
Contributing Editors Dino Esposito, Julie Lerman, Mark Michaelis, Ted Neward,
David S. Platt, Bruno Terkaly
Vice President, Art and Brand Design Scott Shultz
Art Director Joshua Gould

FEBRUARY 2016 VOLUME 31 NUMBER 2

magazine

0216msdn_Masthead_v3_2.indd 2 1/13/16 11:59 AM

mailto:mmeditor@microsoft.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:dlabianca@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/QuickQuote.asp
mailto:jlong@meritdirect.com
http://www.meritdirect.com/1105
mailto:FirstinitialLastname@1105media.com

Untitled-10 1 1/6/16 1:59 PM

www.leadtools.com

msdn magazine4

If you’ve been reading MSDN Magazine, you know Ted Neward.
He’s been a regular in our pages going back to 2008, writing
The Polyglot Programmer and then The Working Programmer
columns. Over the years, he’s covered everything from SQL and
NoSQL databases and C# tips and tricks, to the dangers of rigid
programming methodologies. Through it all, Neward has applied
his trademark wit and irreverence.

For the past several months, Neward has been writing about
MongoDB, Express, AngularJS and Node.js—collectively known
as the MEAN stack. The Node.js platform and the MEAN stack
built around it have quickly earned a strong following among
JavaScript developers, and with Microsoft supporting both Node.js
and MongoDB on Microsoft Azure, it has emerged as a solid
option for Visual Studio developers, as well. You can read this month’s
column on using the MongoDB database at msdn.com/magazine/
mt632276, and be sure to check out the opening column in the series at
msdn.com/magazine/mt185576.

I caught up with Neward and asked him about his ongoing MEAN
development series, and what motivated him to cover the topic in
depth. Of course, the growing popularity of MEAN development
was a factor, but he says he was drawn to the stack because Node
developers tend to approach problems in ways that are “fundamen-
tally different” from seasoned .NET programmers.

“MEAN has some interesting ideas to it, and I think it’s a useful
tool to have in your tool belt, but I think the more important thing
to realize is that MEAN is just an approach and a pre-defined set of
architectural ‘pieces,’” Neward says. “It’s just as reasonable to have
a Mongo + Web API + AngularJS + C# stack, or a DocumentDB
+ Web API + AngularJS + C# stack.”

In writing about the MEAN stack, Neward says he’s learned plenty,
including a bit about npm and package.json, about the workings
of the require method, and about the behavior of callbacks. (He
warns that callbacks do not execute serially, despite how things
appear when working in the editor.) So what advice does Neward

have for developers considering a move to MEAN? In a phrase,
look out for gotchas.

“The biggest advice I have for developers is to make sure they’re
comfortable with JavaScript and the callback-based nature of Node.js.
There’s a lot of subtleties involved when the flow of execution doesn’t
quite behave the way the code on the page implies it will,” he says,
adding that even with JavaScript fixes being made, “certain code
idioms will linger for years to come.”

Neward isn’t done with MEAN yet. Readers can look forward
to explorations into the Angular framework, replacing MongoDB
in the stack with DocumentDB, and using Edge.js to access .NET-
specific resources from Node.js. As Neward notes, “There’s a lot left to
explore here.”

Are there specific aspects of the MEAN stack you would like to see
Neward explore in his series? E-mail him at ted@tedneward.com.

MEAN Streak

MICHAEL DESMONDEditor’s Note

© 2016 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodified form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affiliated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specific environments and configurations. These recommendations or guidelines may not apply to dissimilar configurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

Readers can look forward to
explorations into the Angular

framework, replacing MongoDB
in the stack with DocumentDB,

and using Edge.js to access
.NET-specific resources

from Node.js.

0216msdn_DesmondEdNote_v4_4.indd 4 1/12/16 2:43 PM

mailto:mmeditor@microsoft.com
mailto:ted@tedneward.com
http://msdn.com/magazine/mt632276
http://msdn.com/magazine/mt632276
http://msdn.com/magazine/mt185576
http://msdn.microsoft.com/magazine

Untitled-5 1 9/28/15 4:25 PM

www.amyuni.com

msdn magazine6

While at my first job, I underwent a life-changing surgery. It was
paid for by my employer’s excellent health benefits, so I paid
nothing out of pocket.

I felt so grateful that I believed I was “meant to be” in that job.
I repaid my firm’s kindness by staying on for years. I considered
leaving tantamount to betrayal. Over time, I became unproduc-
tive, hardly performed at my best, and began to resent my job. I
felt handcuffed by my own loyalty.

Looking back, the best way I could have been loyal was to stay
there as long as I performed at my peak—and then left with heart-
felt gratitude, wishing my company and coworkers the best when
I couldn’t be at my best any longer.

Anytime I’ve stayed on at a job out of obligation, I’ve failed to live
up to my own potential. Worse, I’ve actually betrayed the very man-
agers to whom I’ve tried to be loyal, by growing to dislike my job.

Settling or Choosing?
Imagine I’m not really interested in someone I’m dating, but I “settle”
for her and end up marrying her because I don’t think I have a shot
with anyone else. By doing this, I cheat her out of an amazing relation-
ship with someone who in the future will love her fully. I’m cheating
myself, too, because I don’t think I’m worthy of such full love myself.

Settling for an employer is no different. To let go of a bad
employer or relationship is as much an act of love and loyalty (both
to myself and the other party) as it is to stay.

In my career now, I’ve cultivated my employability, partly by
mastering the art of job hunting and the science of careerism. I can
walk away and get another job, but I choose to stay because I love
it. Now that is real loyalty.

The Antidote: Letting Go with Gratitude
Today, I give thanks for the rewards, friendships, health and growth
my company has given me, and let it go for having been in my life.

Today, I understand that I’m not “meant to be” in any job. Even
if I’m awarded a million dollars at work or have my life saved by
my coworkers, it doesn’t mean that I’m meant to be there. Where
I am right now is, by definition, exactly where I am meant to be.
If I’m not happy with it, I can change it. If I’m already happy, I can
keep going. My destiny is the life I’m living right now, not the life
I want to live in the future.

No matter what career mistakes I’ve made, that’s exactly what I’m
meant to do. The way to ensure that I don’t repeat mistakes is to
learn what I can and forgive that which is outside my control. When
I thank these mistakes for being a part of my life and let them go,
I unlock my own power and reach greater heights.

The Darker Side of Loyalty
At one point, I went through a string of bad jobs, characterized
by long hours and harsh coworkers. Eventually, I found my way
to an excellent company with perks, colleagues and a work-life
balance to match.

And, yet, I found myself repeatedly frustrated at this new dream
job. I’d come to believe that real work had to be very challenging,
and that my life had to be difficult to have meaning. When I didn’t
feel external pressure to perform, I felt I’d sold myself short to a
starry-eyed employer that didn’t understand competitiveness.

In retrospect, my loyalty to my own conception of an ideal
employer had become self-destructive. I was thriving on the excite-
ment and aggression of intense work, at the expense of self-respect
and fulfillment. In lusting after grandeur and belligerence, control
and power, my hankering would unfailingly turn to heartbreak.
Finally wising up, I began to go for a slower burn, experimenting
with companies who loved me and weren’t afraid to show it calmly.

I did this by playing with my own assumptions. If I felt judg-
mental toward a company during my job search (for example, too
trusting, too laid-back, not intelligent), I’d go against my instincts
and give them a shot.

Ultimately, I started to err on the side of prizing balance, kindness,
generosity, and respect in my interviewers and coworkers. Instead
of dismissing these qualities as weak, I began to see them for what
they really were—wisdom and love. Gradually, as I began to prize
these qualities in others, I began to live them out in my own life.	 n

Krishnan Rangachari is the career coach for hackers. He’s held senior engi-
neering roles at Silicon Valley startups and large companies like Microsoft
(where he started working full time at age 18). Visit radicalshifts.com to down-
load his free career success kit.

Loyalty Test

Upstart KRISHNAN RANGACHARI

In my career now, I’ve cultivated my
employability, partly by mastering

the art of job hunting and the
science of careerism. I can walk
away and get another job, but I
choose to stay because I love it.

0216msdn_RangachariUpstart_v3_6.indd 6 1/12/16 2:39 PM

www.radicalshifts.com

Untitled-6 1 10/6/15 3:11 PM

www.devexpress.com/hybrid

msdn magazine8

Years go by and I’m just happy if I know and can recommend one
or two effective ways of doing most software things. Don’t let the
emphasis of software marketing fool you. Software improves con-
stantly, but software is not the core business of most companies
out there. This means that it’s more than acceptable for companies
to keep using the same software for many years. According to the
Tiobe.com index, in the summer of 2014, Visual Basic 6 was still in
the Top 10 of most used programming languages. A year and a
half later, it dropped quite a few positions, however. This seems to
confirm the trend that the silent majority of companies tend to
postpone full rewrites of software as much as possible. Realistically,
the silent majority of companies have at least a five-year backlog
in software technology that’s still running in their businesses. But
when it’s time for companies to update those backlog systems,
architects will look for state-of-the-art software.

Software Architecture Today
As far as software architecture is concerned, a couple of keywords
are buzzing around these days. One is “CQRS,” which is the acro-
nym for Command and Query Responsibility Segregation, and
the other is “polyglot persistence.” I covered CQRS in a series of
Cutting Edge articles recently. For a primer, you might want to read
“CQRS for the Common Application” (msdn.com/magazine/mt147237)
in the June 2015 issue of MSDN Magazine. CQRS is an architectural
guideline that simply recommends you keep distinct the code that
alters the state of the system from the code that reads and reports
it. Broadly speaking, polyglot persistence refers to the emerging
practice of using multiple persistence technologies in the context
of the same data access layer. The expression, polyglot persistence,
summarizes in two words the complex technical solutions adopted
by social networks to deal with the humongous amount of data
they have to manage every day. The essence of polyglot persistence
is to just use the persistence technology that appears to be ideal for
the type and quantity of data you have.

While both CQRS and polyglot persistence have noticeable mer-
its and potential benefits, it’s sometimes hard to see their relevance
in the context of a complex business application to revive from
the ashes of a Visual Basic 6, Windows Forms or Web Forms large
code base. Yet, relevance exists and missing it may be detrimental
in the long run for the project and the company. At the same time,
software architecture is not an act of faith. CQRS might seem like
a great thing, but you must find the right perspective to see it fit
into your scenario.

Well, if you look at software architecture through the lens of UXDD,
you can easily find a fit for both CQRS and polyglot persistence.

Task-Based Design
Forms of UXDD workflows are being used already in companies
of every size and I’ve personally seen flavors of it in small teams
of 10 people or less, as well as in multi-billion dollar enterprises.
When this happens there’s a UX team that elaborates screens in
collaboration with end customers, whether internal or external.
The UX team produces some colorful artifacts in the form of PDF
or HTML files and delivers that to the development team. The
issue is that most of the time the development team ignores such
artifacts until the entire back-end stack is designed and built. Too
often the back end is designed taking into little or no account the
actual tasks performed at the presentation level. As architects we
diligently take care of the business-logic tasks and think of ways
to optimize and generalize the implementation. We don’t typically
care enough about bottlenecks and suboptimal data presentation
and navigation. When we get to discover that the actual experi-
ence users go through while working the application is less than
ideal, it’s usually too late to implement changes in a cost-effective
manner, as shown in Figure 1.

Architecture Spinoffs of UXDD

Cutting Edge DINO ESPOSITO

Figure 1 Bottom-Up vs. Top-Down Design of a Software System

3. UI
2. Logic
1. Data Model

1. UX
2. Tasks
3. Persistence

Bottom-Up

Requirements

Requirements

Top-Down

Well, if you look at software
architecture through the lens
of UXDD you can easily find

a fit for both CQRS and
polyglot persistence.

0216msdn_EspositoCEdge_v4_8-11.indd 8 1/12/16 2:44 PM

http://msdn.com/magazine/mt147237

Untitled-1 1Untitled-1 1 10/13/11 11:25 AM10/13/11 11:25 AM

www.nsoftware.com

msdn magazine10 Cutting Edge

Let’s face it. Well beyond its undisputed
effectiveness for data storage, the relational
model is misleading for software architec-
ture. Or, at least, it started being seriously
misleading after its first two decades of life.
Already in the mid-1990s in the Java space
the mismatch between relational and con-
ceptual data models was a matter of fact
that led to experimenting with O/RM tools.
Generations of software architects (now
managers) grew up with the idea that all
that matters is a solid database foundation.
No doubt that a solid database is the foun-
dation of any solid software. The problem
is the complexity and the amount of
domain and application logic. It was no big deal until it was viable
to add bits and pieces of such logic in stored procedures. Beyond that
threshold software architects evolved toward the classic three-layer
architecture (presentation, business, data) and later on in the
domain-driven design (DDD) layered architecture: presentation,
application, domain and infrastructure. No matter the number of
layers, the design was essentially a bottom-up design.

The bottom-up design works beautifully if at least one of the
following two conditions is verified:

1. �The ideal UI is very close to the relational model.
2. �Your users are dumb and passive.

Software design seems an exact science when you look at tutorials
ready-made to promote some cool new technology or framework.
As you leave the aseptic lab to move into the real world, software
design becomes the reign of fear, doubt and uncertainty—the
no-man’s land where only one rule exists: It depends.

UXDD simply suggests you don’t start any serious development
until you have some clear evidence (read: wireframes) of the ideal
architecture of the information and the ideal interaction between
users and the system. Top-down design starting from wireframes
of the presentation layer guarantees you get really close to what
users demanded. The risk of hearing the nefarious words “this is
not what we asked for” is dramatically reduced. Keep in mind that
if a wireframe is labeled as wrong, it’s never a matter of preference;
it’s more likely a business matter. Ignoring the feedback of wire-
frames is likely creating deliberate bugs in the resulting system.

Figure 2 summarizes the architecture impedance mismatch
nowadays. We have wireframes that describe the ideal presentation
layer and we have the code that implements the business logic as

it was understood. Unfortunately, more
often than not, the two don’t match. If
software projects rarely live up to expec-
tations—especially from a financial point
of view—are you sure it’s not because of
the architecture impedance mismatch?

Addressing Architecture
Impedance Mismatch
It turns out that a comprehensive domain
model that covers the entire spectrum of
the domain logic makes no sense at all, to
put it mildly. The idea of domain models,
and the entire DDD approach, came up to
tackle complexity in the heart of software,

but that was more than a decade ago. A lot has changed since and while
some core elements of DDD—specifically the strategic design con-
cepts and tools—are valuable more than ever today, an object-oriented
domain model that comprehensively covers all read-and-write
aspects of distinct bounded contexts is painful to build and unrealistic.

At the same time, the idea of a comprehensive domain model is
aligned with a bottom-up vision of the software where you understand
what users want, elaborate a model, code the model and then put
some UI on top of it. As funny as you might see it, successful software
is a nice and effective UX on top of some magical black box (MBB).

If you start any engineering effort from wireframes, then you
know exactly what the MBB has to support effectively. And you
also know that as long as the MBB does its job the system is really
close to what users formally asked for. There’s hardly any room for
developers’ assumptions and most of the iterations with customers
are grouped in the initial phase of the project. Any change is cheap
and once the UX tests have passed, most of what remains has the
relevance of an implementation detail.

UXDD puts emphasis on tasks and events. In a top-down
design, the starting point is a user action like a click or a selection.
Each user action is bound to an entry point in the application layer.
As an example, in ASP.NET MVC that means that every con-
troller method (presentation layer) is bound to an entry point in
an application layer class, as shown in Figure 3.

The two SomeService classes are the section of the application layer
that’s visible from the part of the presentation layer represented by the
SomeController class. The two SomeService classes may be part of the
same physical project and assembly as the presentation or be distinct
assemblies and projects. Consider that, architecturally speaking, the
application layer goes hand-in-hand with the presentation layer. This
means that when multiple presentation layers are required (that is,

Figure 2 Architecture Impedance Mismatch

Presentation

Architecture

Impedance Mismatch

Back End

The risk of hearing the nefarious
words “this is not what we asked

for” is dramatically reduced.

Well beyond its undisputed
effectiveness for data storage,

the relational model is misleading
for software architecture.

0216msdn_EspositoCEdge_v4_8-11.indd 10 1/12/16 2:44 PM

11February 2016msdnmagazine.com

Web, mobile Web and mobile apps) it’s acceptable to have multiple
application layers with subsequent limited reusability of the logic.

You will have an entry point method in the application layer for
each possible task the user might trigger from the approved UI. If
you faithfully reproduce the wireframes you received, you know
exactly what comes in and out of each screen. You just can’t make
it wrong. It can, perhaps, be inefficient or slow, but never wrong.

The application layer exchanges data-transfer objects with the
presentation and orchestrates any required workflow for the task.
In doing so, the application layer typically needs to read and write
data from some persistent store, access external Web services and
perform calculations. That’s just domain logic and domain logic is
invariant to use cases. Whether requested from a Web or mobile
presentation, the business domain task runs the same and is fully
reusable. In short, the idea of business logic is split into two more
specific segments—application logic as the logic necessary to
implement specific presentation use cases, and domain logic that’s
invariant to presentation and use cases.

The domain logic can be designed according to a variety of pat-
terns, including Transaction Script and Table Module. In these
cases, the business rules are a foreign body injected in the class-
es you use. Typically, business rules form a calculator you invoke
to get a response about the feasibility of an action. The Domain
Model pattern—often misrepresented as the true essence of DDD—
is simply a pattern that suggests you create classes that behave like
the real entities and subsequently incorporate the business rules
and hide their application in the methods they offer. There’s no
right or wrong way of designing domain logic—it’s a pure matter
of attitude and effectiveness.

In a task-based design, you see immediately if the action alters
the state of the system or reports it. By using a CQRS design, you

naturally split commands from queries, and having them in sep-
arate stacks brings the obvious benefits of writing and optimizing
them separately with no risk of regression, even with the potential
of simplified scalability. CQRS is a natural fit in a UXDD context.

Persistence at Last!
Proceeding from the top to the bottom, inevitably persistence is the
last of your concerns. Don’t get it wrong: All applications need to
have data persisted effectively and data that can be queried effectively.
The last of your concerns doesn’t mean you neglect persistence; it
just means that in a user-oriented, interactive system, the design of
persistence becomes critical only after other aspects—specifically
UX and domain logic—have been cleared out. Just because of this,
you have no constraints on which database technology should be
used. Moreover, if you have a CQRS design, then you can easily
have multiple persistence layers, one for commands and one for
queries, managed independently and even—if that helps—based
on different storage technologies and paradigms. For example, if
you know that at some point analytics must be reported to the UI,
you might want to adopt an event-sourcing framework and track
each update and relevant actions as an event. This will give you
the full log of whatever happened in the system and can be used
at some point as the starting point of self-made business intelli-
gence analysis. At the same time, if you need ready-made data to
quickly serve to the user, you just keep the event store synced-up
with a projection of the data that suits your presentation needs. A
projection of data in this context is the state generated after a list
of actions. It’s the same as willing to know the bank account bal-
ance (the projection) resulting from a list of transactions (events).
The query stack is often simply made of plain SQL Server views
whereas the command stack might be based on relational tables,
NoSQL or event store, including any combination thereof.

This is just what some call polyglot persistence.

Wrapping Up
Like it or not, users judge the system primarily from the gut
feeling of their direct experience. Today, the key factor to save
money on software projects is ensuring that you create, right away,
exactly what users want. It’s not just about doing it right, but doing
it right, right away. With UXDD you know as early as possible for
which output you’re going to create the system and this cuts down
the fixes to apply when you deploy the system and users don’t
actually like it. Furthermore, with a top-down design your design
experience is naturally led toward modern patterns such as CQRS
and polyglot persistence that, well beyond the level of buzzwords,
are proven practices to build effective software.	 n

Dino Esposito is the coauthor of “Microsoft .NET: Architecting Applications
for the Enterprise” (Microsoft Press, 2014) and “Modern Web Applications”
(Microsoft Press, 2016). A technical evangelist for the Microsoft .NET Frame-
work and Android platforms at JetBrains and frequent speaker at industry events
worldwide, Esposito shares his vision of software at software2cents.wordpress.com
and on Twitter: @despos.

Thanks to the following technical expert for reviewing this article:
Jon Arne Saeteras

public class SomeController
{
 public ActionResult SomeQueryTask(InputModel input)
 {
 var service = new QueryStack.SomeService();
 var model = service.GetActionViewModel(input);
 return View(model);
 }

 public ActionResult SomeCommandTask(InputModel input)
 {
 var service = new CommandStack.SomeService();
 service.GetActionViewModel(input);
 RedirectToAction(...);
 }
}

Figure 3 CQRS Controller

If you faithfully reproduce the
wireframes you received, you

know exactly what comes in and
out of each screen.

0216msdn_EspositoCEdge_v4_8-11.indd 11 1/12/16 2:44 PM

http://software2cents.wordpress.com
www.twitter.com/despos
http://www.msdnmagazine.com

Untitled-3 2 10/21/15 12:01 PM

www.aspose.com

Untitled-3 3 10/21/15 12:02 PM

www.aspose.com

msdn magazine14

Dependency injection (DI) is all about loose coupling (bit.ly/1TZWVtW).
Rather than hardcoding classes you depend on into other classes, you
request them from somewhere else, ideally your class’s constructor. This
follows the Explicit Dependencies Principle, more clearly informing
users of your class about the collaborators it requires. It also allows
you to build more flexibility into your software for scenarios such
as alternate configurations of a class’s object instance, and it’s really
beneficial for writing automated tests for such classes. In my world,
which is fraught with Entity Framework code, a typical example of
coding without loose coupling is creating a repository or controller
that instantiates a DbContext directly. I’ve done this thousands of
times. In fact, my goal with this article is to apply what I’ve learned
about DI to the code I wrote in my column, “The EF6, EF7 and
ASP.NET 5 Soup” (msdn.com/magazine/dn973011). For example, here’s
a method where I instantiated a DbContext directly:

public List<Ninja> GetAllNinjas() {
 using (var context=new NinjaContext())
 {
 return context.Ninjas.ToList();
 }
}

Because I used this within an ASP.NET 5 solution and ASP.NET
5 has so much DI support built in, Rowan Miller from the EF team
suggested I could improve the example by taking advantage of that
DI support. I had been so focused on other aspects of the prob-
lem I hadn’t even considered this. So, I went about refactoring that
sample bit by bit, until I got the flow working as prescribed. Miller
had actually pointed me toward a nice example written by Paweł
Grudzień in his blog post, “Entity Framework 6 with ASP.NET 5”
(bit.ly/1k4Tt4Y), but I explicitly chose to avert my eyes and not simply
copy and paste from that blog. Instead, I worked the ideas out on
my own so I could better comprehend the flow. In the end, I was
happy to see that my solution aligned well with the blog post.

Inversion of Control (IoC) and IoC containers are patterns that
have always seemed a bit daunting to me. Keep in mind that I’ve
been coding for almost 30 years, so I imagine I’m not the only
experienced developer who never made the mental transition to
this pattern. Martin Fowler, a well-known expert in this field, points
out that IoC has several meanings, but the one that aligns with
DI (a term he created to clarify this flavor of IoC) is about which
piece of your application is in control of creating particular objects.
Without IoC, this has always been a challenge.

When co-authoring the Pluralsight course “Domain-Driven
Design Fundamentals” (bit.ly/PS-DDD) with Steve Smith (deviq.com), I
was finally led to use the StructureMap library, which has become
one of the most popular IoC containers among .NET developers
since its inception in 2005. The bottom line is that I was a little late
to the game. With Smith’s guidance, I was able to understand how
it works and its benefits, but I still didn’t feel quite solid with it. So
after the hint from Miller, I decided to refactor my earlier sample
to leverage a container that makes it easier to inject object instances
into logic that needs to use them.

But First, Let’s Get DRY
An initial problem in my class that houses the GetAllNinjas class
shown earlier, is that I repeat the using code:

using(var context=new NinjaContext)

in other methods in that class, such as:
public Ninja GetOneNinja(int id) {
 using (var context=new NinjaContext())
 {
 return context.Ninjas.Find(id);
 }
}

The Don’t Repeat Yourself (DRY) principle helps me recognize
that potential pitfall. I’ll move the creation of the NinjaContext
instance into a constructor and share a variable such as _context
with the various methods:

NinjaContext _context;
public NinjaRepository() {
 _context = new NinjaContext();
}

However, this class, which should just focus on retrieving data, is
still responsible for determining how and when to create the context.
I want to move decisions about how and when to create the context
higher up in the stream and just let my repository use the injected
context. So I’ll refactor again to pass in a context created elsewhere:

NinjaContext _context;
public NinjaRepository(NinjaContext context) {
 _context = context;
}

Now the repository is on its own. I don’t have to keep mucking
with it to create the context. The repository doesn’t care about how
the context is configured, when it’s created or when it’s disposed.
This also helps the class follow another object-oriented principle,
the Single Responsibility Principle, because it’s no longer responsible
for managing EF contexts in addition to making database requests.
When working in the repository class, I can focus on queries. I can
also test it more easily because my tests can drive those decisions

Refactoring an ASP.NET 5/EF6 Project and
Dependency Injection

Data Points JULIE LERMAN

Code download available at msdn.com/magazine/0216magcode.

0216msdn_LermanDpts_v5_14-16.indd 14 1/12/16 2:49 PM

www.bit.ly/1TZWVtW
http://msdn.com/magazine/dn973011
www.bit.ly/1k4Tt4Y
http://msdn.com/magazine/0216magcode
www.bit.ly/PS-DDD
www.deviq.com

15February 2016msdnmagazine.com

and won’t be tripped up by a repository that’s designed to be used in a
way that doesn’t align with how I may want to use it in automated tests.

There’s another problem in my original example, which is that I
hardcoded the connection string into the DbContext. I justified that
at the time because it was “just a demo” and getting the connection
string from the executing app (the ASP.NET 5 application) to the
EF6 project was complicated and I was focused on other things.
However, as I refactor this project, I’ll be able to leverage the IoC
to pass in the connection string from the executing application.
Watch for this further on in the article.

Let ASP.NET 5 Inject the NinjaContext
But where do I move the NinjaContext creation to? The controller
uses the repository. I definitely don’t want to introduce EF into the
controller in order to pass it into a new instance of the repository.
That would create a mess (something like this):

public class NinjaController : Controller {
 NinjaRepository _repo;
 public NinjaController() {
 var context = new NinjaContext();
 _repo = new NinjaRepository(context);
 }
 public IActionResult Index() {
 return View(_repo.GetAllNinjas());
 }
}

At the same time I’m forcing the controller to be aware of EF, this
code ignores the problems of instantiating dependent objects that
I just solved in the repository. The controller is directly instanti-
ating the repository class. I just want it to use the repository, not
worry about how and when to create it or when to dispose it. Just
as I injected the NinjaContext instance into the repository, I want
to inject a ready-to-use repository instance into the controller.

A cleaner version of the code inside the controller class looks
more like this:

public class NinjaController : Controller {
 NinjaRepository _repo;
 public NinjaController(NinjaRepository repo) {
 _repo = repo;
 }
 public IActionResult Index() {
 return View(_repo.GetAllNinjas());
 }
}

Orchestrating Object Creation with IoC Containers
Because I’m working with ASP.NET 5, rather than pull in Struc-
tureMap, I’ll take advantage of the ASP.NET 5 built-in support for
DI. Not only are many of the new ASP.NET classes built to accept
objects being injected, but ASP.NET 5 has a service infrastructure
that can coordinate what objects go where—an IoC container. It
also allows you to specify the scope of objects—when they should
be created and disposed—that will be created and injected. Working
with the built-in support is an easier way to get started.

Before using the ASP.NET 5 DI support to help me inject my
NinjaContext and NinjaRepository as needed, let’s see what this
looks like injecting EF7 classes, because EF7 has built-in methods
to wire it up to the ASP.NET 5 DI support. The startup.cs class that’s
part of a standard ASP.NET 5 project has a method called Config-
ureServices. This is where you tell your application how you want to
wire up the dependencies so it can create and then inject the proper

objects into the objects that need them. Here’s that method, with
everything eliminated but a configuration for EF7:

public void ConfigureServices(IServiceCollection services)
{
 services.AddEntityFramework()
 .AddSqlServer()
 .AddDbContext<NinjaContext>(options =>
 options.UseSqlServer(
 Configuration["Data:DefaultConnection:ConnectionString"]));
}

Unlike my project, which uses my EF6-based model, the project
where this configuration is being executed depends on EF7. These
next few paragraphs describe what’s happening in this code.

Because EntityFramework .MicrosoftSqlServer was specified in its
project.json file, the project references all of the relevant EF7 assem-
blies. One of these, the EntityFramework.Core assembly, provides
the AddEntityFramework extension method to IServiceCollection,
allowing me to add in the Entity Framework service. The Entity-
Framework .MicrosoftSqlServer dll provides the AddSqlServer
extension method that’s appended to AddEntityFramework. This
stuffs the SqlServer service into the IoC container so that EF will
know to use that when it’s looking for a database provider.

AddDbContext comes from the EF core. This code adds
the specified DbContext instance (with the specified options)
to the ASP.NET 5 built-in container. Any class that requests a
DbContext in its constructor (and that ASP.NET 5 is constructing)
will have the configured DbContext provided to it when it’s created.
So this code adds the NinjaContext as a known type that the ser-
vice will instantiate as needed. In addition, the code specifies that
when constructing a NinjaContext, it should use the string found
in the configuration code (which in this case is coming from an
ASP.NET 5 appsettings.json file, created by the project template) as
a SqlServer configuration option. Because ConfigureService runs
in the startup code, when any code in the application expects a
NinjaContext but no specific instance is provided, ASP.NET 5 will
instantiate a new NinjaContext object using the specified connec-
tion string and pass that in.

So that’s all very nicely built-in with EF7. Unfortunately, none of
this exists for EF6. But now that you have an idea how the services
work, the pattern for adding the EF6 NinjaContext to the applica-
tion’s services should make sense.

Adding Services Not Built for ASP.NET 5
In addition to services that are built to work with ASP.NET 5, which
have nice extensions like AddEntityFramework and AddMvc, it’s
possible to add other dependencies. The IServicesCollection interface
provides a plain vanilla Add method, along with a set of methods
to specify the lifetime of the service being added: AddScoped,
AddSingleton and AddTransient. I’ll focus on AddScoped for my
solution because it scopes the lifetime of the requested instance to
each HTTP request in the MVC application where I want to use my
EF6Model project. The application won’t try to share an instance across
requests. This will emulate what I was originally achieving by creating
and disposing my NinjaContext within each controller action,
because each controller action was responding to a single request.

Remember that I have two classes that need objects injected. The
NinjaRepository class needs NinjaContext, and NinjaController
needs a NinjaRepository object.

0216msdn_LermanDpts_v5_14-16.indd 15 1/12/16 2:49 PM

http://www.msdnmagazine.com

msdn magazine16 Data Points

In the startup.cs ConfigureServices method I begin by adding:
services.AddScoped<NinjaRepository>();
services.AddScoped<NinjaContext>();

Now my application is aware of these types and will instantiate
them when requested by another type’s constructor.

When the controller constructor is looking for a NinjaRepository
to be passed in as a parameter:

public NinjaController(NinjaRepository repo) {
 _repo = repo;
 }

but none has been passed in, the service will create a NinjaRepos-
itory on the fly. This is referred to as “constructor injection”. When
the NinjaRepository expects a NinjaContext instance and none
has been passed in, the service will know to instantiate that, as well.

Remember the connection string hack in my DbContext, which
I pointed out earlier? Now I can instruct the AddScoped method
that constructs the NinjaContext about the connection string. I’ll
put the string in the appsetting.json file again. Here’s the appropriate
section of that file:

"Data": {
 "DefaultConnection": {
 "NinjaConnectionString":
 "Server=(localdb)\\mssqllocaldb;Database=NinjaContext;
 Trusted_Connection=True;MultipleActiveResultSets=true"
 }
 }

Note that JSON doesn’t support line wrapping, so the string that
begins with Server= can’t be wrapped in your JSON file. It’s wrapped
here only for readability.

I’ve modified the NinjaContext constructor to take in a connec-
tion string and use it in the DbContext overload, which also takes
a connection string:

public NinjaContext(string connectionString):
 base(connectionString) { }

Now I can tell AddScoped that when it sees a NinjaContext,
it should construct it using that overload, passing in the Ninja
ConnectionString found in appsettings.json:

services.AddScoped<NinjaContext>
(serviceProvider=>new NinjaContext
 (Configuration["Data:DefaultConnection:NinjaConnectionString"]));

With this last change, the solution that I broke while refactoring
now works from end to end. The start-up logic sets up the app for
injecting the repository and context. When the app routes to the
default controller (which uses the repository that uses the context),
the needed objects are created on the fly and the data is retrieved
from the database. My ASP.NET 5 application takes advantage of
its built-in DI to interact with an older assembly where I used EF6
to build my model.

Interfaces for Flexibility
There is one last possible improvement, which is to take advan-
tage of interfaces. If there’s a possibility that I might want to use
a different version of my NinjaRepository or NinjaContext class,
I can implement interfaces throughout. I can’t foresee needing to
have a variation on NinjaContext, so I’ll only create an interface
for the repository class.

As shown in Figure 1, the NinjaRepository now implements an
INinjaRepository contract.

The controller in the ASP.NET 5 MVC application now uses the
INinjaRepository interface instead of the concrete implementa-
tion, NinjaRepository:

public class NinjaController : Controller {
 INinjaRepository _repo;

 public NinjaController(INinjaRepository repo) {
 _repo = repo;
 }
 public IActionResult Index() {
 return View(_repo.GetAllNinjas());
 }
}

I’ve modified the AddScoped method for the NinjaRepository
to tell ASP.NET 5 to use the appropriate implementation (currently
NinjaRepository) whenever the interface is required:

services.AddScoped<INinjaRepository, NinjaRepository>();

When it’s time for a new version, or if I’m using a different imple-
mentation of the interface in a different application, I can modify the
AddScoped method to use the correct implementation.

Learn By Doing, Don’t Copy and Paste
I’m grateful that Miller gently challenged me to refactor my solution.
Naturally, my refactoring didn’t go as smoothly as it might appear
based on what I’ve written. Because I didn’t just copy from someone
else’s solution, I did some things incorrectly at first. Learning what
was wrong and figuring out the correct code led me to success and
was hugely beneficial to my understanding of DI and IoC. I hope
my explanations will give you that benefit without your having to
bump your head as much as I did.	 n

Julie Lerman is a Microsoft MVP, .NET mentor and consultant who lives in
the hills of Vermont. You can find her presenting on data access and other
.NET topics at user groups and conferences around the world. She blogs at
thedatafarm.com/blog and is the author of “Programming Entity Framework,”
as well as a Code First and a DbContext edition, all from O’Reilly Media.
Follow her on Twitter: @julielerman and see her Pluralsight courses at
juliel.me/PS-Videos.

Thanks to the following technical expert for reviewing this article:
Steve Smith (ardalis.com)

public interface INinjaRepository
{
 List<Ninja> GetAllNinjas();
}

public class NinjaRepository : INinjaRepository
{
 NinjaContext _context;
 public NinjaRepository(NinjaContext context) {
 _context = context;
 }
 public List<Ninja> GetAllNinjas() {
 return _context.Ninjas.ToList();
 }
}

Figure 1 NinjaRepository Using an Interface

Dependency injection (DI) is all
about loose coupling.

0216msdn_LermanDpts_v5_14-16.indd 16 1/12/16 2:49 PM

www.thedatafarm.com/blog
www.twitter.com/julielerman
http://juliel.me/PS-Videos
www.ardalis.com

DOMAINS | MAIL | HOSTING | eCOMMERCE | SERVERS

100 % PERFORMANCE
■ NEW! Unlimited SSD webspace
■ NEW! Unlimited SSD databases
■ NEW! PHP 7 with OPcache
■ Unlimited traffi c
■ Unlimited e-mail accounts
■ 2 GB RAM guaranteed

MANAGED WORDPRESS
100 % SECURITY
■ NEW! 1&1 DDoS Protection with NGINX

for greater performance, reliability,
and maximum security

■ Geo-redundancy: simultaneous
storage in separate data centers

■ 1&1 CDN with RailgunTM

■ 1&1 SiteLock

100 % RELIABILITY
■ NEW! WP Assistant – unique guided

installation and initial setup
■ Includes ready-to-use templates
■ 24/7 customer support
■ 1&1 WP Expert Support
■ 1&1 Community

®

1and1.com* 1&1 Managed WP Basic is $0.99/month for the fi rst 12 months, after which the regular pricing of $6.99/month applies. Visit www.1and1.com and www.1and1.com/Gtc
for full promotional details. 1&1 and the 1&1 logo are trademarks of 1&1 Internet, all other trademarks are property of their respective owners. Rubik‘s Cube® used by
permission of Rubik’s Brand Ltd. © 2016 1&1 Internet Inc. All rights reserved.

1 (877) 461-2631

CALL
SPEAK WITH AN
EXPERT 24/71TRIAL

TRY FOR
30 DAYS1 MONTH

FLEXIBLE PAYMENT
OPTIONS1

$0.99
per month,

then starting at $6.99/month*

12 MONTHS

from

Untitled-7 1 1/5/16 3:14 PM

www.1and1.com

msdn magazine18

As an enterprise Web developer, you have a keen
understanding of HTML, CSS and JavaScript. You can build out
responsive Web applications that adapt to the screen size while
maintaining functionality across your supported browsers or
devices. The same skills you use to light up the Web can be used to
build Universal Windows Platform (UWP) apps. Whether you’re
building for desktop, mobile or any Windows 10 platform, your
lessons learned from cross-browser adaptive Web applications will
give you a head start in UWP.

In this article, I explore how to use knowledge from Web devel-
opment to go from building cross-browser applications to flexible
UWP apps that run on any Windows device. To do this, I start by
examining how the fundamentals of building responsive inter
faces translate from CSS and HTML to UWP. Next, I examine
using VisualStates and XAML Views to structure your app based

on specific device capabilities. Finally, I use Adaptive Code to
target devices based on how Plain Old JavaScript is used to target
specific browsers.

Why XAML for Web Developers?
In this article, I’ll build parallels from Web development to XAML.
Web developers might already have a strong HTML/CSS/JavaScript
skillset and want to build UWP with that skillset. If you love HTML
and JavaScript, feel free to stick with it. If you’re new to UWP and
unsure where to start, XAML is a great tool to help you due to its
strongly typed nature.

A common example of this is using a grid-based layout in XAML
versus HTML. In XAML, building a grid layout starts with adding
a grid control, defining the columns and rows, then assigning each
control within the grid to a specific cell or row. In HTML, there are
numerous ways to build a grid layout such as:

• �Using floats with defined height and width to create cells
with clears to start a new row

• �Using display:grid on the container element with each child
element having a column and row defined

• �Using a table with tr and td elements
Which is implemented is up to your knowledge of CSS or

HTML and these approaches won’t give you help through tools
such as IntelliSense, as the grid control will in XAML. The strongly
typed controls of XAML make it easier to know how to build a UI
through IntelliSense, which is extremely helpful for developers
who are new to UWP.

WIN DO WS 10

Universal Windows
Platform Apps for
Web Developers
Tim Kulp

This article discusses:
•	Identifying key skills to build responsive UWP apps

•	Mapping how to use what you already know in HTML/CSS/
JavaScript to build UWP apps

•	Using various responsive approaches to build apps for multiple
form factors

•	Using a single code base for cross-platform development

Technologies discussed:
HTML/CSS/JavaScript, XAML, C#, Universal Windows Platform

0216msdn_KulpWin10_v3_18-21.indd 18 1/12/16 2:38 PM

19February 2016msdnmagazine.com

Strongly typed code also provides a lot of value when trouble-
shooting issues. In HTML/CSS/JavaScript, developers have great
flexibility to bend the rules to the demands of the app using loosely
typed code. This is great for building apps but can be a nightmare
for supporting apps. Troubleshooting loosely typed code can be
a challenge when types change or objects change dynamically.
As enterprise developers, building apps is fun, but at some point,
someone is going to have to keep this app running. The ability to
easily navigate the functionality of an app through strongly typed
objects and IntelliSense helps the support team understand the app.

If you’re passionate about HTML/CSS/JavaScript, UWP gives
you a platform to use your existing code to produce great apps.
HTML/CSS/JavaScript and XAML are both great tools with lots of
pros and cons. There are two articles about why one author prefers
XAML to JavaScript (bit.ly/1NxUxqh) and another prefers JavaScript
to XAML (bit.ly/1RSLZ2G). I love HTML for Web applications but I
encourage you to explore XAML if you’re new to UWP to learn the
controls within UWP, to keep support costs down for your team
through strongly typed code with rich IntelliSense integration and
to have fun learning something new.

Building on What You Already Know
UWP has many similarities with the fundamentals of Web design.
Basic ideas such as separation of concerns in Web development
between HTML and JavaScript translate in UWP to XAML and
the XAML.cs codebehind file. All logic goes into the codebehind,
while all presentation is maintained in the XAML file (just as all
logic goes in JavaScript while presentation is in HTML with help
from CSS). Further, many modern Web applications leverage
frameworks such as Knockout and AngularJS to implement data
binding through the Model-View-ViewModel (MVVM) design
pattern. Knowledge of these frameworks and MVVM in general
is the basis for understanding data binding in UWP. While the
syntax is different between Web development and UWP, when it
comes to basic concepts, Web developers have
a strong foundation for building apps that cross
devices, browsers and capabilities.

There are differences between Web develop-
ment and UWP that I won’t cover in this article,
such as state management and data storage. For
this article, I’ll focus on building the UI and
ensuring that the app can interact with the
device on which it’s running.

Positioning: Float and Clear
to RelativePanel
In HTML, you determine the positioning of
each element by where it is in the Document
Object Model. HTML is top-down with each
element being rendered in order from the first
element declared to the last. When CSS was
introduced, it let elements have sophisticated
layouts based on setting the element’s display
style (inline, block and so on), position (rel-
ative or absolute), as well as float and clear.

Using float, Web developers could take an HTML element out of
the top-down flow, and place the element to the left (float: left) or
right (float: right) of the containing element.

Imagine a simple layout including header, main content, sidebar
and footer. Using float instructs the browser to render the sidebar
to the right edge of the container and to render the main content
to the left edge of the container. Using float, elements will position
beside each other to the left or right, depending on which float
value is specified. Clear is used to stop the floating of elements and
return to the standard top-down flow of HTML. Figure 1 shows
an example of using float to build a simple layout.

Where Web developers use float and clear to create a layout,
UWP provides a control called the RelativePanel, which, as the
name suggests, lets a layout be defined using relative relationships
to other controls. Like float, RelativePanels let developers manage
how controls are positioned relative to an anchor control. CSS classes
are used to determine positioning of the elements of the Web
page. To replicate the same layout, use the RelativePanel and the
RelativePanel’s attached properties within the controls:

<RelativePanel>
 <!-- Header is the anchor object for the relative panel -->
 <TextBlock Text="Header" Name="tbHeader"></TextBlock>
 <TextBlock Text="Content" RelativePanel.Below="tbHeader"
 Name="tbContent"></TextBlock>
 <TextBlock Text="SideBar" RelativePanel.RightOf="tbContent"
 RelativePanel.Below="tbHeader" Name="tbSideBar"></TextBlock>
 <TextBlock Text="Footer" RelativePanel.Below="tbSideBar"
 Name="tbFooter"></TextBlock>
</RelativePanel>

In this code block, the positioning of each control is relative
to the position of the anchor control (in this case, the anchor is
the header TextBlock). Using RelativePanel, each control can be
assigned to where the control should appear on the screen in relation
to the other controls. Where Web developers would use float: left,
UWP developers would use RelativePanel.LeftOf or Relative
Panel.RightOf (for float: right) to position content. While this is
similar to using float, there isn’t a concept of using clear to

return to the normal flow; instead, just note
that something is below a previous element.
This simplifies troubleshooting layout issues as
managing floats and clears can get challenging
for developers who do not have strong CSS
skills. Using the RelativePanel provides a declar-
ative way to specify where a control should
appear in relation to other controls. When the
RelativePanel is closed, the app will return to
the normal rendering flow of XAML (which is
top-down like HTML).

Scaling: Percentages to Pixels
Building a responsive Web application through
resizing means using relative sizing for elements.
Using the header, content, sidebar and footer
page layout, imagine this UI was originally built
for a desktop screen. Web designers would first
identify the optimal pixel width for the page for
this layout. In this example, page width will be
1000px. As each element is built in the design,

div {
 width: 100%;
}
mainContent {
 width: 60%; float: left;
}
 sidebar{
 width: 40%; float: right;
}
clearer {
 clear: both;
}
CSS for design

<header>

</header>
<div>
 <section class="content"></section>
 <section class="sidebar"></section>
 <div class="clearer"></div>
</div>
<footer>

</footer>
HTML for design

Figure 1 Using Float to Build a
Simple Layout

0216msdn_KulpWin10_v3_18-21.indd 19 1/12/16 2:38 PM

www.bit.ly/1NxUxqh
www.bit.ly/1RSLZ2G
http://www.msdnmagazine.com

msdn magazine20 Windows 10

the element is built to the pixel width keeping the 1000px con-
tainer in mind. In HTML, the content section would be 800px
wide while the sidebar section would be 200px wide. Using the
formula: target / context = percentage, the content section is 80
percent of the context (whereas the context = the 1000px page)
while the sidebar is 20 percent.

Using percentages in Web design lets the layout resize as the con-
tainer resizes. In this case, if the 1000px page object were resized
by the user to only 659px, the content and sidebar would resize to
527px and 131px, respectively. Similarly, building styles to use em
instead of specific point or pixel sizes lets the font scale according
to the context. These practices help ensure that a design maintains
the proportional sizing independent of the window size.

While using percentages seems like simple math, there are other
factors that are involved in how elements scale, such as pixel density
of the device and orientation, which add an element of unpredict-
ability to your design. UWP simplifies scaling by using the concept
of the “effective pixel” for all measurements. An effective pixel is not
the same as a single pixel. Effective pixels use the UWP scaling algo-
rithm to know how to represent one effective pixel based on standard
distance of the device from the user and pixel density.

As an example, a Surface Hub would have a much higher pixel
density than a tablet or phone. UWP developers only need to build
to effective pixels in tools such as Blend and let the scaling algo-
rithm handle the complex calculations necessary to shrink or grow
accordingly. One thing to keep in mind: Effective pixels must be in
multiples of four. Based on how the scaling algorithm works, using
multiples of four will ensure clean edges as the UI scales.

ViewStates and Media Queries
In Web development, CSS provides the layout information for an
application. Building with percentages lets an application resize,
but at some point, the design needs to break and reform to meet
the changing display demands. A layout built for a mobile device
such as a tablet isn’t going to be the same as a layout built for an
80-inch-plus presentation device such as the Surface Hub. An older
analogy for Web design is the case where a user would want to print
a screen-based design. CSS let designers fix the screen-to-print

dilemma with CSS media queries. As the user printed the design,
the browser would use the print CSS instead of the screen CSS.
As responsive Web design has grown, media queries have grown
to support information that is more detailed. Here’s an example
CSS media query:

<link type="text/css" rel="stylesheet"
 href="styles/719style.css"
 media="screen and (max-device-width: 719px)"/>

In this query, the 719style.css file is applied if the media display-
ing the Web application is a screen with a device width less than
or equal to 719px. As an example, this media query can be used to
clear the float values and present the content and sidebar elements
in a stacked design versus side-by-side. Using media queries lets
Web developers customize the display based on screen size, reso-
lution, orientation and many more options (see complete list for
CSS3 at bit.ly/1riUA2h).

In UWP, the ViewStateManager can be used as media queries
to alter the application design based on defined parameters. The
VisualStateManager contains one or more VisualStateGroups, a
container object of multiple ViewStates. Each ViewState holds the
setters (what properties get updated for each control) and triggers
(what makes the setters change). ViewStateManager manages the
triggers to know when to apply a specific ViewState’s setter values.
In the terms of CSS, the triggers are like media queries and the
setters are the style values within the stylesheet referenced in the
media query. See the example in Figure 2.

In this code, two VisualStates are set up. The LessThan720 View-
State is triggered when the window width is 1px to 719px. When
the window expands to 720px or higher, then the GreaterThan720
ViewState is triggered. Each of these ViewStates work with the
tbSideBar control’s RelativePanel settings. If the window size is less
than 720, then the screen isn’t big enough to support a design where
content is beside the sidebar. In this situation, the LessThan720
ViewState will be triggered, which will stack the sidebar below the
main content TextBlock. This is similar to using the media query
in that I can set float: none in a LessThan719.css file.

Just like media queries, ViewStates can be used to reposition or
rearchitect controls based on the triggers. Managing ViewStates
and ViewStateGroups can get complicated as an interface grows in
complexity. Managing complex ViewState changes are easiest with
Blend for Visual Studio 2015. Using Blend’s editor, you can create
new VisualStates and see the changes in the app design as you make
them. Blend will handle writing all the XAML for you and ensure
that you provide the necessary data to trigger the VisualState change.
Microsoft Virtual Academy has great walk-through videos on using
Blend for ViewState management at bit.ly/1P94e32.

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="ResponseStateGroup">
 <VisualState x:Name="LessThan720">
 <VisualState.Setters>
 <Setter Target="tbSideBar.(RelativePanel.Below)" Value="tbContent"/>
 <Setter Target="tbSideBar.(RelativePanel.RightOf)" Value=""/>
 </VisualState.Setters>
 <VisualState.StateTriggers>
 <AdaptiveTrigger MinWindowWidth="1"/>
 </VisualState.StateTriggers>
 </VisualState>
 <VisualState x:Name="GreaterThan720">
 <VisualState.Setters>
 <Setter Target="tbSideBar.(RelativePanel.Below)" Value="tbHeader"/>
 <Setter Target=" tbSideBar.(RelativePanel.RightOf)" Value="tbContent"/>
 </VisualState.Setters>
 <VisualState.StateTriggers>
 <AdaptiveTrigger MinWindowWidth="720"/>
 </VisualState.StateTriggers>
 </VisualState>
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

Figure 2 Reposition Controls Based on VisualState Triggers

Just like media queries,
ViewStates can be used to

reposition or rearchitect controls
based on the triggers.

0216msdn_KulpWin10_v3_18-21.indd 20 1/12/16 2:38 PM

www.bit.ly/1riUA2h
www.bit.ly/1P94e32

21February 2016msdnmagazine.com

Using Views to Rearchitect the Experience
Sometimes a mobile site is a different UI due to a reduction in use
cases or change in focus that the mobile site provides versus the full
desktop experience. In this scenario, Web developers would tailor
content to the mobile experience for a more streamlined experi-
ence, or to highlight the capabilities of the mobile device. Using
various detection methods, Web developers can redirect users to
a rearchitected experience tailored to their device, often known as
the m.webapp.com site.

UWP provides the same capability through Views. Depending
on the app, working with different device families might call for
such a stark difference in UI for which the ViewStateManager
might not be the right tool. Views let developers leverage the exist-
ing back-end code with a new XAML UI. You can simplify Using
Views through using well-structured ViewModels whereas you can
leverage a single ViewModel object by multiple Views. Knowledge
of Knockout or AngularJS will help Web developers build proper
ViewModels in UWP for tailored UXes for a specific device family.

You set up a View for a specific device by creating a folder within
the app’s Views folder.

Within the Views folder, create a new folder called Device
Family-Mobile. This tells the Modern Resource Technology to use
the MainPage.xaml view found in the DeviceFamily-Mobile folder
when the MainPage is requested on a device in the mobile device
family (such as a phone). If the request for MainPage comes from any
other device family, the response will be the standard MainPage. This
functionality lets UWP developers build targeted UI for use cases
that are unique to specific Windows device families.

Adaptive Code
In building Web applications, not all browsers are the same. In an
enterprise, you might have a corporate standard, but when devel-
oping for external users, complexity comes from various OSes,
browser types and versions. Web developers have many tricks up
their sleeves to handle these differences gracefully. Libraries such
as Modernizr (modernizr.com) have made handling these complexities
easier, but enabling features based on device or browser is nothing
new to Web developers.

Building UWP apps can have the same complexities as
cross-browser functionality. Imagine a note-taking application
where users can add pictures to their notes. The app could leverage
the built-in camera functionality of a phone to take a picture, or
could just let users view images that already exist on their devices.

The first step in using device-specific capabilities is ensuring
the proper Extension APIs are included in the project. As an
example, in the note-taking app, the hardware buttons would need
to be accessible on a phone. To use those buttons, you must add a
reference to the Windows Mobile Extensions for the UWP. This is
done by adding a reference to the project (just like any other ref-
erence), then selecting Universal Windows, then Extensions. You
will see a list of possible extensions such as Desktop, Mobile and
Team (for Surface Hub) extensions. Select which extensions you
need to add to the project and click OK.

Wherein JavaScript detecting the browser’s capabilities would be
through a series of navigator checks, in UWP the app checks for the

presence of the needed API through the IsTypePresent method.
In the note-taking app, check for the hardware button to use the
camera through the following code:

string apiName = "Windows.Phone.UI.Input.HardwareButtons";
if (Windows.Foundation.Metadata.ApiInformation.IsTypePresent(apiName))
{
 Windows.Phone.UI.Input.HardwareButtons.CameraPressed +=
 HardwareButtons_CameraPressed;
}

This short code lets the app target specific device capabilities added
through the Extension APIs. By wrapping the CameraPressed event
handler declaration with the IsTypePresent method, you ensure that
you don’t try to register the event handler when the API isn’t present.
There are tools to help ensure that the API checks occur so that the
app doesn’t crash when the API isn’t present. PlatformSpecific is an
excellent NuGet package that simplifies identifying and wrapping
any reference to an extension API that isn’t first validated through
the ApiInformation.IsTypePresent method. Learn more about this
NuGet package from the PlatformSpecific GitHub site at bit.ly/1GvhkF0.

Just as in Web development, sometimes a specific version of the
browser needs targeting for a client or corporate standard. In these
situations, Web developers need to focus on a specific browser con-
figuration that might not match what the rest of the Internet is using.

Similarly, UWP developers might need to target specific contracts
of an extension API to maintain existing code. This is very useful
in enterprise applications where the IT operations team could have
a fast loop and slow loop for deploying updates to employee com-
puters. The fast loop might be getting a new great feature of some
extension API that must be implemented in the app immediately.
In this situation, the slow loop users still need their functionality.
Using IsApiContractPresent UWP can check that the extension
API is available and that the specific version expected is available
prior to executing the code:

if(Windows.Foundation.Metadata.ApiInformation.IsApiContractPresent(apiName, 3))
{
 newKillerFunction();
}

In this code segment, the app will only run the newKillerFunction
if the apiName provided is at version 3. If the version is less than 3,
then newKillerFunction will not run. If a greater version is present
(as example, version 4), then newKillerFunction will execute.

Wrapping Up
UWP development leverages many of the skills and knowledge
that Web developers use to build responsive, cross-browser Web
applications. Designing layout, responding to differences in dis-
plays (both static and dynamic), as well as system capabilities, are
all common practices to Web developers from dealing with the
wild world of Web browsers. Applying these skills in UWP devel-
opment will help in building rich UXes that adapt to screen size,
device and capabilities. 	 n

Tim Kulp is a senior technical architect living in Baltimore, Md. He is a Web, mobile
and UWP developer, as well as author, painter, dad and “wannabe Mad Scientist
Maker.” Find him on Twitter: @seccode or via LinkedIn: linkedin.com/in/timkulp.

Thanks to the following Microsoft technical expert for reviewing this article:
Kevin Hill

0216msdn_KulpWin10_v3_18-21.indd 21 1/12/16 2:38 PM

www.modernizr.com
www.bit.ly/1GvhkF0
www.twitter.com/seccode
www.linkedin.com/in/timkulp
http://www.msdnmagazine.com

msdn magazine22

In part one of this two-part series (msdn.com/magazine/mt614268),
I talked about using the OneDrive APIs over HTTP directly from
a Universal Windows Platform (UWP) app, using the HttpClient
to place the calls. This gave me the chance to go quite deep into
the fundamentals of REST and to see how a .NET application can
take advantage of modern programming techniques such as the
async/await keywords and the HttpClient library to place calls to
modern Web APIs. I also showed how the authentication mech-
anism works with the OAuth protocol, which lets a user enter
his credential in a hosted Web page so that the communication
between the user and the credential service is completely transpar-
ent to the hosting application. I implemented this using a WebView
hosted in a XAML page.

Implementing the authentication and the REST calls isn’t very
difficult, but it is work, especially when you want to keep your
library up-to-date with all the latest changes and additions. This is

why Microsoft has published the OneDrive SDK, which you can add
to your application in an easy manner (using the NuGet Package
Manager). This is a very useful component, and in the true “new
Microsoft” manner, the library is open sourced and published on
GitHub at bit.ly/1WX0Y03.

To illustrate this article, a complete sample can be found at
1drv.ms/1ObySnz.

Authentication with the New SDK
One of the biggest differences between the “low-level” implementation
described in the previous article and the official SDK is the authenti-
cation mechanism. Previously, I implemented OAuth manually and
had to create a number of parts that had to play together:

• �A WebView to present the user with a Web page sent by the
Microsoft authentication service, so that the username and
password are sent directly to the service, without the appli-
cation being aware of this.

• �A XAML page hosting the WebView, and waiting to parse
the authentication token returned by the service when the
process was successful.

• �A client-side authentication service that’s responsible for
deciding if the authentication token is available and valid,
and for showing the authentication page if that’s not the case.

The new SDK simplifies this greatly, for the developer and for the user.

Authentication for the Developer
For the developer, the authentication process is almost trivial now.
The whole workflow is handled by the SDK. Even better, in the
background, the SDK uses a feature of Windows Store apps named
the OnlineIdAuthenticator. This class handles the authentication
mechanism at the OS level and removes the need to parse the
authentication token.

WIN DO WS 10

Implementing a
UWP App with the
Official OneDrive SDK
Laurent Bugnion

This article discusses:
•	How the authentication works with the official SDK, either
with the logged-in user’s credentials transparently, or with an
authentication broker

•	How the new app is linked with a reserved name in the
Windows Store

•	How various file operations are executed by building requests
and sending them to the service

Technologies discussed:
OneDrive SDK, REST, OAuth, Windows 10,
Universal Windows Platform

Code download available at:
1drv.ms/1ObySnz

0216msdn_BugnionOneDrive_v3_22-27.indd 22 1/12/16 2:36 PM

http://msdn.com/magazine/mt614268
www.1drv.ms/1ObySnz
www.bit.ly/1WX0Y03
www.1drv.ms/1ObySnz

23February 2016msdnmagazine.com

In addition to OnlineIdAuthenticator, the OneDrive SDK for
Windows 10 also supports the WebAuthenticationBroker class,
which provides a more “classic” way of logging in by entering
username and password, but also takes care of parsing the authen-
tication token and all dialog with the service. You’ll see examples
of these two authentication modes later in this article.

Authentication for the User
For the end user, the main advantage is in OnlineIdAuthenticator
taking advantage of the logged-in Windows user’s credentials,
which are already available at the OS level. If the Windows user is
logging into the OneDrive account associated with his Windows
account (which is often the case), he doesn’t even need to re-enter
his username and password. The whole authentication mechanism
is transparent for him.

Note: In addition to Microsoft Accounts (MSA) for consumers, such
as Outlook.com, Live.com or Hotmail.com addresses, the OneDrive
SDK also supports Azure Active Directory (Azure AD) for business
users. This is great for enterprises whose users are managed this way.
MSA is available for the Microsoft .NET Framework 4.5.1 (such as
Windows Presentation Foundation applications or Windows Forms),
Windows Store and Windows Phone applications. Azure AD is avail-
able for Windows Forms, Windows Store 8.1 and UWP apps.

Associating a New UWP App in the Windows Store
For the OnlineIdAuthenticator to work, it’s necessary to register
the new application with the Windows Store. Note that you don’t
need to actually submit your app to the Windows Store to use the
OneDrive SDK. The registration will create some unique IDs for
your application, which must be entered into the application man-
ifest (Package.appxmanifest). When users attempt to authenticate
themselves to the OneDrive service, these IDs are used to uniquely
identify the application. As such, the process of registering your
application with the Windows Store replaces the Client ID that you
were getting earlier from the OneDrive developer center.

To register your application with the Windows Store, you need
to go to the Windows Dev Center at dev.windows.com and log in
with your Windows developer account to access the Dashboard.

Depending on your status, you might have to register for the
account and provide payment information.

Once logged in on the Dashboard, look for the “Submit your app”
link. This will take you to an overview page where you can see existing
apps and submit the new one, getting it registered with the Windows
Store. Creating a new Windows Store app requires a unique app name,
which you will enter after clicking the Create a new app button. Then,
click on Check availability to make sure the app name you chose is
indeed unique. Because the name you chose will be reserved, it’s good
practice to use temporary names for test applications that will never
be published. This way you avoid blocking another developer’s app
name. Also, make sure that you own the rights to the name that you’re
reserving to avoid legal actions from a brand owner. Finally, note that
if you don’t submit the application within a year, the name reserva-
tion will be lost. For the purpose of the sample, I reserved the name
TestOneDriveSdk_001, which happened to be available.

Implementing and Testing the Authentication
Now is the time to create the application and to add the OneDrive
SDK. First, using Visual Studio, create a new UWP application
for Windows 10. The application doesn’t have to have the same
name as the one you reserved in the Windows Store, but it is good
practice to use the same name.

After the application is created, open the NuGet Package Manager
by right-clicking on the project in the Solution Explorer and selecting
Manage NuGet Packages from the context menu. Select Browse on
top of the Package Manager, search for the Microsoft.OneDriveSDK
package and add it to the application.

Now you’ll add authentication to the application with the
following steps:

• �Open MainPage.xaml and add a button to the page and name
it AuthenticateButton.

• �In MainPage.xaml.cs, implement the Click event handler as
shown in Figure 1.

In the code in Figure 1, you recognize the scopes that you already
used in the previous article’s sample. These will provide you with
read/write access to the files, as well as the Application folder. As a
reminder, this special folder is created in the Apps folder directly
under the root and will carry the same name as the application. This
is a good place to save roaming settings, online documents and so on.

Before you run the application to test it, you still need to asso-
ciate it with the Windows Store name that you reserved earlier. To
do this, follow these steps:

• �In Solution Explorer, right-click on the project and select
Store/Associate App with the Store. This is what you need
to do before publishing a UWP app to the Windows Store.
In this case, it’s done very early in development because the
information generated is needed.

• �In the dialog, Associate Your App with the Windows Store,
press the Next button and then sign into the store. Make sure
to use the same credentials you used to reserve the name.

• �After signing in, you should see the application name that you
reserved. Note that you can also reserve a name directly from
this dialog if you don’t want to use the Web-based dashboard.

• �Select the name and click on Next, then on Associate.

private IOneDriveClient _client;

public MainPage()
{
 InitializeComponent();

 AuthenticateButton.Click += async (s, e) =>
 {
 var scopes = new[]
 {
 "onedrive.readwrite",
 "onedrive.appfolder",
 "wl.signin"
 };

 _client = OneDriveClientExtensions.GetClientUsingOnlineIdAuthenticator(
 _scopes);

 var session = await client.AuthenticateAsync();
 Debug.WriteLine($"Token: {session.AccessToken}");
 };
}

Figure 1 Implementing the Click Event Handler

0216msdn_BugnionOneDrive_v3_22-27.indd 23 1/12/16 2:36 PM

http://dev.windows.com
http://www.msdnmagazine.com

msdn magazine24 Windows 10

Now you’re ready to test the authentication mechanism. Run the
application in debug mode and click on the Authenticate button.
You should see a dialog on top of your app asking for your consent.
Note, however, that you don’t have to enter your Microsoft creden-
tials. Instead, your Windows login credentials are used automatically.

After executing the code in Figure 1, you’ll see the SessionToken
(authentication token) in the Output window. You’ll be able to
use this token in subsequent API calls just like you did in the first
article. If you run the application again later and press Authenticate
again, you probably won’t even have to confirm again because your
consent is cached until you sign off. This provides a seamless sign-in
experience for the user.

Why Can We Not Switch Accounts?
The sample shown in Figure 1 uses the SDK’s GetClientUsing
OnlineIdAuthenticator extension method, which, under the covers,
uses the OnlineIdAuthenticator class. As I explained, this object
uses the logged-in user’s credentials, which makes the login expe-
rience extremely easy for the large majority of users.

The downside of this approach, however, is that there’s no way to
select a different account when logging in. As such, this authentica-
tion method is great for basic users who have only one OneDrive
account associated with their Microsoft accounts. But for power
users who have more than one OneDrive account, the OnlineId
Authenticator might be too limited. Thankfully, you can switch to
a different method quite easily.

Using a WebAuthenticationBroker
If the user needs to sign in with his credentials explicitly (for exam-
ple, to let him switch to a different account than the one he logged
into Windows with), it’s better to use the WebAuthenticationBroker
class. Here, too, the OneDrive SDK is hiding most of the complexity
and you can use the following code to create the OneDrive client:

var client = OneDriveClientExtensions.GetClientUsingWebAuthenticationBroker(
 "[CLIENT ID]",
 _scopes);

In the code shown in Figure 1, the [CLIENT ID] string must
be replaced with your application’s Client ID. As a reminder, this
is a unique ID that you can retrieve in the Windows Dev Center
in your application’s details.

If you run the application with this minor change, you’ll now
see a different dialog. This dialog lets the user switch to a differ-
ent account, which is good. However, the user needs to enter his

password manually, which is less seamless than the previous work-
flow. As is usual in engineering, it’s up to you to select the method
best suited to the use case you try to solve.

Using the SDK to Access Folders and Files
Once the client is available and authenticated, the OneDrive SDK pro-
vides several methods to retrieve information about Drive, Folders
and Files. In the previous article, you saw how the file structure is
composed of Items, Folders, Files, Audio, Images, Photos and Videos.
Until now, you had been getting a JSON response from the service
and deserializing it manually into the corresponding C# classes. With
the OneDrive SDK, this is no longer necessary because it’ll take care
of that step for you. To illustrate this, I’ll rework the same sample
application as in the previous article to use the official SDK instead.

Building the Requests
To send requests to the OneDrive REST API, the SDK uses an object
hierarchy composed of so-called “request builders.” For example,
getting the user’s Drive is done with _client.Drive and getting his
Root folder is done with _client.Drive.Root. The most common
request builders are listed later in this article.

There are, of course, many possible combinations. Once a request
builder has been obtained, the actual request is created by using
the Request method, and sent with one of the HTTP methods, for
example, GetAsync or PostAsync. For instance, the code in Figure
2 will get the metainformation for the file located at the path
Public/Test/MyFile.txt and its content as a stream.

Listing a Few of the Most Common Requests
The most common requests are listed here as request builders:

• �_client.Drive: Builds a request to access the OneDrive itself
and get its properties (IDriveRequestBuilder). If you have
multiple drives, you can also use _client.Drives, which is an
IDrivesCollectionRequestBuilder.

• �_client.Drive.Root: Builds a request to access the OneDrive’s
Root folder (IItemRequestBuilder).

• �_client.Drive.Root.Children: Builds a request to get the root
folder’s children (IChildrenCollectionRequestBuilder).
After the request is executed (with Request().GetAsync()),
the result is an IChildrenCollectionPage, which contains
a property named NextPageRequest. If the number of chil-
dren was too large, the NextPageRequest property can be
used to access the next page of items.

• �_client.Drive.Root.ItemWithPath("Public/Test"): Builds a
request to get the item at the path Public/Test within the root
folder (IItemRequestBuilder).

• �_client.Drive.Root.ItemWithPath("Public/Test/MyFile.txt").Con-
tent: Build a request to get the content of the file called MyFile.txt
(IItemContentRequestBuilder).

• �_client.Drive.Special.AppRoot: Builds a request to access
the Application folder (IItemRequestBuilder).

• �_client.Drive.Items[SomeId]: Builds a request to access an
item by ID.

Each of these request builders can be seen in action in the sample
illustrating this article.

var builder = _client.Drive.Root
 .ItemWithPath("Public/Test/MyFile.txt");

var file = await builder
 .Request()
 .GetAsync();

var contentStream = await builder.Content
 .Request()
 .GetAsync();

Debug.WriteLine($"Content for file {file.Name}:");

using (var reader = new StreamReader(contentStream))
{
 Debug.WriteLine(reader.ReadToEnd());
}

Figure 2 Downloading a Text File’s Content

0216msdn_BugnionOneDrive_v3_22-27.indd 24 1/12/16 2:36 PM

Try a little Vitamin Q.

Data entry errors. Consolidation headaches.
Quality data shouldn’t be a pain.

India
www.MelissaData.in

Australia
www.MelissaData.com.au

United Kingdom
www.MelissaData.co.uk

Germany
www.MelissaData.de

www.MelissaData.com 1-800-MELISSA

We supply Vitamin Q – “quality” – in
data quality management solutions
that profile, clean, enrich, and match
your customer data – and keep it
healthy over time. Add Vitamin Q to
your data integration, business
intelligence, Big Data, and CRM
initiatives to ensure accurate data for
greater insight and business value.

Solutions for
240+ Countries

Data Quality &
Mailing Solutions

10,000+ Customers
Worldwide

30+ Years
Strong

Cloud • On-Premise
• Services

Get a FREE 30-day trial!
www.MelissaData.com/vitaminQ

ACT
NOW

Untitled-3 1 12/11/15 12:48 PM

http://www.MelissaData.in
http://www.MelissaData.com.au
http://www.MelissaData.de
http://www.MelissaData.co.uk
http://www.MelissaData.com
http://www.MelissaData.com/vitaminQ
http://www.MelissaData.com

msdn magazine26 Windows 10

Uploading a File
Uploading a file’s content happens with a PUT request according
to the principles of REST APIs. Apart from this difference, the
mechanism to build a PUT request is very similar to the GET
requests used earlier. In fact, most of the work needed is to actually
acquire the Stream. For example, in a UWP app, this can be done
with a FileOpenPicker loading the selected file from the Windows
file system. The code in Figure 3 shows a simple example (without
error handling) uploading the selected file to the Application folder.
A more complete example can be found in the code download.
In this example, you access the meta information returned by the
PutAsync method and save the item’s ID so that you can easily
access the saved item later; for instance, to get a link to this item.

Getting a Sharing Link
Once a request for an item has been created, a unique link to this
item can be obtained from the OneDrive client with the CreateLink
method that returns an IItemCreateLinkRequestBuilder. The

following code shows how to do that using the _savedId that you
saved earlier when you uploaded a file to OneDrive:

link = await _client.Drive
 .Items[_savedId]
 .CreateLink("view")
 .Request().PostAsync();

Of course, the CreateLink method can be called on any item
request (for example, to get a link to a folder and so on). Note that
the request created by the CreateLink method needs to be POSTed
to the service. The CreateLink method requires one parameter that
can be “view” or “edit.” Depending on the value of this parameter,
a read-only link or a read-write link will be created.

Updating an Item
Updating an item’s metainformation happens with a request builder
and the UpdateAsync method. For example, after you upload a file as
shown earlier in this article, you can use its ID (which you saved in
the _savedId attribute) to modify its name with the code shown here:

var updateItem = new Item
{
 Name = "[NewNameHere]"
};

var itemWithUpdates = await _client
 .Drive
 .Items[_savedId]
 .Request()
 .UpdateAsync(updateItem);

Moving an Item
Moving an item to a new location is a special case of updating its
properties. In this case, you’ll update its ParentReference property,
which contains information about the item’s location in OneDrive.
If you modify this property with a new location and update the
OneDrive item accordingly, the item will be moved.

In the following sample, you take the file that you uploaded ear-
lier (having saved its ID in the _savedId attribute) and move it from
its original location into the Root folder (of course in a real life
application, some error handling needs to be added to this code):

var newLocation = await _client.Drive.Root.Request().GetAsync();

var updateItem = new Item
{
 ParentReference = new ItemReference
 {
 Id = newLocation.Id
 }
};

var itemWithUpdates = await _client
 .Drive
 .Items[_savedId]
 .Request()
 .UpdateAsync(updateItem);

Copying an Item
Copying an item is a little different than moving it. Interestingly,
when you move or rename an item, the result of the asynchro-
nous operation comes immediately, and is the Item instance with
the new metainformation (such as the new location or the new
name). When you copy an item, however, this can take a while
and instead of waiting until the operation is completed, the SDK
returns an instance of IItemCopyAsyncMonitor as soon as the
copy operation begins.

var picker = new FileOpenPicker
{
 SuggestedStartLocation = PickerLocationId.DocumentsLibrary
};

picker.FileTypeFilter.Add("*");
var file = await picker.PickSingleFileAsync();

using (var stream = await file.OpenStreamForReadAsync())
{
 var item = await _client.Drive.Special.AppRoot
 .ItemWithPath(file.Name)
 .Content.Request()
 .PutAsync<Item>(stream);

 // Save for the GetLink demo
 _savedId = item.Id;
}

Figure 3 Selecting and Uploading a File’s Content

var newLocation = await _client.Drive.Root.Request().GetAsync();

// Get the file to access its meta info
var file = await _client.Drive.Items[_savedId].Request().GetAsync();
var newName = Path.GetFileNameWithoutExtension(file.Name)
 + "-"
 + DateTime.Now.Ticks
 + Path.GetExtension(file.Name);

var itemStatus = await _client
 .Drive
 .Items[_savedId]
 .Copy(
 newName,
 new ItemReference
 {
 Id = newLocation.Id
 })
 .Request()
 .PostAsync();

var newItem = await itemStatus.CompleteOperationAsync(
 null,
 CancellationToken.None);

var successDialog = new MessageDialog(
 $"The item has been copied with ID {newItem.Id}",
 "Done!");
await successDialog.ShowAsync();

Figure 4 Copying the Newly Uploaded Item to the Root

0216msdn_BugnionOneDrive_v3_22-27.indd 26 1/12/16 2:36 PM

27February 2016msdnmagazine.com

This instance has one method called CompleteOperationAsync,
which polls the result of the copy operation on OneDrive, updates
an optional progress provider and returns the Item instance only
when the copy operation is completed. This provides a very nice
UX because it’s possible to do another operation at the same time
and notify the user when the copy operation is finished. Of course,
just as with every long-lasting operation, it’s possible to cancel the
polling (however, this will not cancel the copy operation itself !).
The code in Figure 4 shows how the item that was uploaded to
the Application folder can be copied to the Root folder. First, you
retrieve the Root folder itself. Then, you get the file in order to
construct a new unique name (to avoid collisions). Finally, the Copy
request is created and executed by a POST to the server. Note how
you then use the CompleteOperationAsync method to wait and
notify the user when the copy operation is done.

Creating a New Folder
There are more operations possible in the SDK, but before I move
on, I want to mention another interesting feature: creating a
new folder. This is interesting because it acts on a collection (the
parent folder’s Children) by adding an item and then sending the
request to OneDrive as shown in Figure 5. Note that in this case
the method used (AddAsync) doesn’t directly correspond to an
HTTP method (GET, POST, PUT and so on). Once the folder is
created, the newFolderCreated variable contains the necessary
information, especially the folder’s ID:

Signing Off and More
Finally, once the work with the client is finished, the user can
choose to sign off. This is easy to do by using the OneDrive client’s
SignOutAsync method.

In addition to the methods and properties described in this
article, there are a few more functionalities in the SDK. To make
sure to get the latest and greatest documentation, you can check
two different documentation sources:

• �The OneDrive C# SDK on GitHub has quite a lot of docu-
mentation available. You can find it at bit.ly/1k0V2AL.

• �The OneDrive API itself is documented at bit.ly/1QniW84.

Error Handling
If anything wrong happens with the service call, a OneDrive
Exception will be thrown. However, the exception message doesn’t

contain information about the actual error. Instead, the error
detail is contained in the OneDriveException’s Error property (of
type Microsoft.OneDrive.Sdk.Error). This is where you’ll find the
error message, as well as additional data to help you solve the issue.

Because errors can be nested, you can easily use the IsMatch
method to look for a specific error code anywhere in the error
hierarchy, for example with:

theException.IsMatch(OneDriveErrorCode.InvalidRequest.ToString());

Getting and Building the SDK Source
While the SDK can be added using the NuGet Package Manager, it
can be useful to get the source code; for example, to make changes
or add features to the code. This can be done easily, either by down-
loading the source code, or (even better) by forking the source code
from GitHub and modifying your branch.

The OneDrive SDK source code is available at bit.ly/1WX0Y03. In
order to get the code and create a fork, you can use your favorite
GitHub client, such as GitHub Desktop (desktop.github.com). Once
you get the code on your local machine, you can build it in Visual
Studio and add it to your application as a project reference, for
example. From this point forward, you’re at the same point as after
adding the SDK through NuGet.

Wrapping Up
In the first article of this series, you saw how you can build a powerful
library calling into a REST API by using the HttpClient, the async/
await keywords and a JSON serializer. However, while these days
this is much easier than it used to be, it’s still a lot of work, especially
when you want to keep your library up-to-date with new features.

In this article, I took the other approach, which is to use the
OneDrive SDK built by Microsoft. You saw how the library can be
added to a UWP application, how the authentication works (either
by using the logged-in user’s credentials transparently or by using
the WebAuthenticationBroker and offering to the user the possi-
bility to select a different account and so on). I also demonstrated
the most useful item operations such as getting an item informa-
tion by its path or ID, getting a folder’s children, downloading,
renaming, moving or copying a file, getting a unique share link to
an item, and more.

With the OneDrive SDK available on GitHub in open source
and Microsoft actively developing new features and fixing issues,
it’s easier than ever to access OneDrive from your UWP apps. This
opens the door to a range of features such as roaming settings,
sharing documents between devices and more. 	 n

Laurent Bugnion is senior director for IdentityMine, one of the leading companies
(and a gold partner) for Microsoft technologies. He is based in Zurich, Switzerland.
His 2010 book, “Silverlight 4 Unleashed,” published by Sams, is an advanced sequel
to “Silverlight 2 Unleashed” (2008). He writes for several publications, is in his
ninth year as a Microsoft MVP and is in his second year as a Microsoft Regional
Director. He’s the author of the well-known open source framework MVVM Light
for Windows, WPF, Xamarin and of the popular Pluralsight reference course about
MVVM Light. Reach him on his blog at galasoft.ch.

Thanks to the following Microsoft technical expert for reviewing this article:
Gina Chernoby

var newFolder = new Item
{
 Name = NewFolderNameText.Text,
 Folder = new Folder()
};

var newFolderCreated = _client.Drive
 .Special.AppRoot
 .Children
 .Request()
 .AddAsync(newFolder);

var successDialog = new MessageDialog(
 $"The folder has been created with ID {newFolderCreated.Id}",
 "Done!");
await successDialog.ShowAsync();

Figure 5 Creating a New Folder

0216msdn_BugnionOneDrive_v3_22-27.indd 27 1/12/16 2:36 PM

www.bit.ly/1k0V2AL
www.bit.ly/1QniW84
www.bit.ly/1WX0Y03
http://desktop.github.com
www.galasoft.ch
http://www.msdnmagazine.com

msdn magazine28

Delivering Web content reliably is a game of chance. The
random elements are the user’s network speed and browser capabili-
ties. Progressive enhancement, or PE, is a development technique that
embraces this unpredictability. The cornerstone of PE is server-side
rendering of the HTML. It’s the only way to maximize your chances
of success in the game of content delivery. For users with a modern
browser, you layer on JavaScript to enhance the experience.

With the advent of data-binding libraries like AngularJS and
Knockout, the Single-Page Application (SPA) came into its own. The
SPA is the antithesis of PE because, by client rendering the HTML, it
ignores the unpredictable nature of the Web. Visitors on slow net-
works face long loading times while users and search engines with
less-capable browsers might not receive any content at all. But even
these concerns haven’t blunted the appeal of the SPA.

The SPA killed progressive enhancement. It was just too
hard to turn a server-rendered application into a SPA through
JavaScript enhancement.

Luckily, it turns out that PE isn’t really dead. It’s merely been
sleeping, and a JavaScript library called React has just come along
and woken it up. React provides the best of both worlds because it
can run on the server and on the client. You can start with a server-
rendered application and, at the flick of a switch, bring it to life as
a client-rendered one.

The TodoMVC project (todomvc.com) offers the same Todo SPA
built with different JavaScript data-binding libraries to help you
decide which to choose. It’s a great project, but the implementations
suffer from being client-rendered only. In this article, I’ll put this
right by building a cut-down version as a progressively enhanced
SPA using React and ASP.NET. I’ll concentrate on the read-only
functionality, so you’ll be able to view your list of todos and filter
them to show the active or completed ones.

Rendering on the Server
With the old approach to PE, I’d build an ASP.NET MVC applica-
tion using Razor to render the todo list on the server. If I decided
to enhance it into a SPA, I’d be back at square one—I’d have to
re-implement the rendering logic in JavaScript. With my new
approach to PE, I’ll build an ASP.NET MVC application using
React instead of Razor to render the todo list on the server. This
way, it can double as the client-rendering code.

I’ll start by creating a new ASP.NET MVC project called TodoMVC.
Aside from the View layer, the code is unremarkable, so the Models
folder holds a TodoRepository that returns an IEnumerable of todos,

AS P. N E T

Progressive Enhancement
with ASP.NET and React
Graham Mendick

This article discusses:
•	Progressively enhanced applications vs. Single-Page

Applications

•	Rendering and filtering on the server

•	Rendering and filtering on the client

•	Checking for HTML5 History support

Technologies discussed:
ASP.NET, React, JavaScript, HTML, C#, Node, Babel, Navigation,
Gulp, Edge

Code download available at:
msdn.com/magazine/0216magcode

0216msdn_MendickReact_v5_28-32.indd 28 1/12/16 2:53 PM

www.todomvc.com
http://msdn.com/magazine/0216magcode

29February 2016msdnmagazine.com

and inside the HomeController is an Index method that calls into
the repository. From that point on, things start to look a bit differ-
ent. Instead of passing the todo list to the Razor view, I’ll pass it to
React to produce the HTML on the server.

To run JavaScript on the server you need Node.js, which you can
download from nodejs.org. Node.js comes with its own package man-
ager called npm. I’ll install React using npm just as I’d use NuGet
to install a .NET package. I’ll open a command prompt, cd into my
TodoMVC project folder and run the “npm install react” command.

Next, I’ll create a file called app.jsx in the Scripts folder (I’ll explain
the .jsx file extension shortly). This file will hold the React rendering
logic, taking the place of the Razor view in a typical ASP.NET MVC
project. Node.js uses a module-loading system so, to load the React
module, I’ll add a require statement at the start of app.jsx:

var React = require('react');

A React UI is made up of components. Each component has a
render function that turns input data into HTML. The input data
is passed in as properties. Inside app.jsx, I’ll create a List compo-
nent that takes in the todos and outputs them as an unordered list,
with the title of each todo represented as a list item:

var List = React.createClass({
 render: function () {
 var todos = this.props.todos.map(function (todo) {
 return <li key={todo.Id}>{todo.Title};
 });
 return {todos};
 }
});

The file has a .jsx extension because the React code is a mixture of
JavaScript and an HTML-like syntax called JSX. I want to run this
code on the server, but Node.js doesn’t understand JSX so I must first
convert the file into JavaScript. Converting JSX to JavaScript is known
as transpiling, and an example transpiler is Babel. I could paste my
app.jsx contents into the online Babel transpiler (babeljs.io/repl) and
create an app.js file from the transpiled output. But it makes more
sense to automate this step because app.jsx could change fairly often.

I’ll use Gulp to automate the conversion of app.jsx into app.js.
Gulp is a JavaScript task runner that comes with a variety of
plug-ins to help you transform source files. Later on, I’ll write a
Gulp task that bundles up the JavaScript for the browser. For now,
I need a task that passes app.jsx through the Babel transpiler so it
can be used inside Node.js on the server. I’ll install Gulp and the
Babel plug-in from npm by running:

npm install gulp gulp-babel babel-preset-react

As you can see, by separating the package names with spaces,
I can install multiple packages with a single command. I’ll cre-
ate a gulpfile.js inside the TodoMVC project folder and add the
transpile task to it:

var babel = require('gulp-babel');

gulp.task('transpile', function(){
 return gulp.src('Scripts/app.jsx')
 .pipe(babel({ presets: ['react'] }))
 .pipe(gulp.dest('Scripts/'))
});

The task is made up of three steps. First, Gulp receives the
app.jsx source file. Then, the file is piped through the Babel transpiler.
Last, the output app.js file is saved to the Scripts folder. To make
the task runnable, I’ll use Notepad to create a package.json file in
the TodoMVC project folder with a scripts entry pointing at it:

{
 "scripts": {
 "transpile": "gulp transpile"
 }
}

From the command line I’ll run the transpile task using “npm
run transpile.” This generates an app.js file that can run inside
Node.js because the JSX has been replaced with JavaScript.

Because I’m using React as the view layer, I want to pass the todos
from the controller into the List component and have the HTML
returned. In Node.js, the code inside app.js is private and can only
be made public by explicitly exporting it. I’ll export a getList func-
tion from app.jsx so the List component can be created externally,
remembering to run the transpile task so that app.js is updated:

function getList(todos) {
 return <List todos={todos} />;
}
exports.getList = getList;

The HomeController is in C# and the getList function is in
JavaScript. To call across this boundary, I’ll use Edge.js (tjanczuk.github.io/
edge), which is available from NuGet by running Install-Package
Edge.js. Edge.js expects you to pass it a C# string containing Node.js
code that returns a function with two parameters. The first param-
eter holds the data passed from the C# and the second parameter is
a callback used to return the JavaScript data back to the C#. After
running “npm install react-dom” to bring in React’s server-rendering
capability, I’ll use Edge.js to create a function that returns the List
component’s HTML from the todos array passed in:

private static Func<object, Task<object>> render = Edge.Func(@"
 var app = require('../../Scripts/app.js');
 var ReactDOMServer = require('react-dom/server');

 return function (todos, callback) {
 var list = app.getList(todos);
 callback(null, ReactDOMServer.renderToString(list));
 }
");

From the Node.js code, Edge.js creates a C# Func, which I assign to a
variable called “render” in the HomeController. Calling render with a list
of todos will return the HTML. I’ll add this call into the Index method,
using the async/await pattern because calls into Edge.js are asynchronous:

public async Task<ActionResult> Index()
{
 var todos = new TodoRepository().Todos.ToList();
 ViewBag.List = (string) await render(todos);
 return View();
}

I added the HTML returned to the dynamic ViewBag so I can
access it from the Razor view. Even though React is doing all the
work, I still need one line of Razor to send the HTML to the browser
and complete the server rendering:

<div id="content">@Html.Raw(ViewBag.List)</div>

This new approach to progressive enhancement might seem like more
work compared to the old approach. But don’t forget, with this new
approach, the server-rendering code will become the client-rendering
code. There won’t be the duplicated effort required by the old approach
when it comes to turning the server-rendered application into a SPA.

Filtering on the Server
The todos must be filterable so that either the active or completed
ones can be displayed. Filtering means hyperlinks and hyperlinks
mean routing. I’ve just substituted Razor for React, a JavaScript

0216msdn_MendickReact_v5_28-32.indd 29 1/12/16 2:53 PM

http://babeljs.io/repl
http://tjanczuk.github.io/edge
http://tjanczuk.github.io/edge
http://www.msdnmagazine.com

msdn magazine30 ASP.NET

renderer that works on both client and server. Next, I’m going to
apply the same treatment to routing. Rather than use the routing
solution that ships with ASP.NET MVC, I’m going to replace it with the
Navigation router (grahammendick.github.io/navigation), a JavaScript router
that works on both client and server.

I’ll run “npm install navigation” to bring in the router. You can
think of the Navigation router as a state machine, where each state
represents a different view within your application. In app.jsx, I’ll
configure the router with a state representing the todo “list” view.
I’ll assign that state a route with an optional “filter” parameter so
that the filtering URLs look like “/active” and “/completed”:

var Navigation = require('navigation');

var config = [
 { key: 'todoMVC', initial: 'list', states: [
 { key: 'list', route: '{filter?}' }]
 }
];
Navigation.StateInfoConfig.build(config);

With the old approach to PE, you’d put the filtering logic inside
the controller. With the new approach, the filtering logic lives inside
the React code so it can be reused on the client when I turn it into a
SPA. The List component will take in the filter and check it against a
todo’s completed status to determine the list items to display:

var filter = this.props.filter;
var todoFilter = function(todo){
 return !filter || (filter === 'active' && !todo.Completed)
 || (filter === 'completed' && todo.Completed);
}
var todos = this.props.todos.filter(todoFilter).map(function(todo) {
 return <li key={todo.Id}>{todo.Title};
});

I’ll change the HTML returned from the List component to
include the filter hyperlinks below the filtered todo list:

<div>
 {todos}

 All
 Active
 Completed

</div>

The exported “getList” function needs an additional parameter
so it can pass the new filter property into the List component. This
is the last change to app.jsx to support filtering, so it’s a good time
to rerun the Gulp transpile task to generate a fresh app.js.

function getList(todos, filter) {
 return <List todos={todos} filter={filter} />;
}

The selected filter must be extracted from the URL. You might
be tempted to register an ASP.NET MVC route so that the filter
is passed into the controller. But this would duplicate the route
already configured in the Navigation router. Instead, I’ll use the
Navigation router to extract the filter parameter. First, I’ll remove
all mention of route parameters from the C# RouteConfig class.

routes.MapRoute(
 name: "Default",
 url: "{*url}",
 defaults: new { controller = "Home", action = "Index" }
);

The Navigation router has a navigateLink function for parsing
URLs. You hand it a URL and it stores the extracted data in a State-
Context object. You can then access this data using the name of the
route parameter as the key:

Navigation.StateController.navigateLink('/completed');
var filter = Navigation.StateContext.data.filter;

I’ll plug this route parameter extraction code into the render Edge.js
function so the filter can be retrieved from the current URL and passed
into the getList function. But the JavaScript on the server can’t access
the URL of the current request, so it’ll have to be passed in from the
C#, along with the todos, via the function’s first parameter:

return function (data, callback) {
 Navigation.StateController.navigateLink(data.Url);
 var filter = Navigation.StateContext.data.filter;
 var list = app.getList(data.Todos, filter);
 callback(null, ReactDOMServer.renderToString(list));
}

The corresponding change to the Index method of the Home-
Controller is to pass an object into the render call that holds both
the URL from the server-side request and the todo list.

var data = new {
 Url = Request.Url.PathAndQuery,
 Todos = todos
};
ViewBag.List = (string) await render(data);

With the filtering in place, the server-side phase of the build
is complete. Starting with server-rendering guarantees, the todo
list is viewable by all browsers and search engines. The plan is to
enhance the experience for modern browsers by filtering the todo list
on the client. The Navigation router will manage the browser history
and ensure that a client-filtered todo list remains bookmarkable.

Rendering on the Client
If I’d built the UI with Razor, I’d be no closer now to the SPA finish-
ing line than when I set out. Having to replicate the rendering logic
in JavaScript is why old school PE fell out of favor. But, with React,
it’s quite the opposite because I can reuse all my app.js code on the
client. Just as I used React to render the List component to HTML
on the server, I’ll use it to render that same component to the DOM
on the client.

To render the List component on the client I need access to the
todos. I’ll make the todos available by sending them down in a
JavaScript variable as part of the server render. By adding the todo
list to the ViewBag in the HomeController, I can serialize them to
a JavaScript array inside the Razor view:

<script>
 var todos = @Html.Raw(new JavaScriptSerializer().Serialize(ViewBag.Todos));
</script>

I’ll create a client.js file inside the Scripts folder to hold the client
rendering logic. This code will look the same as the Node.js code
I passed into Edge.js to handle the server rendering, but tweaked
to cater to the differences in environment. So, the URL is sourced
from the browser’s location object, rather than the server-side
request, and React renders the List component into the content
div, rather than to an HTML string:

var app = require('./app.js');
var ReactDOM = require('react-dom');
var Navigation = require('navigation');

Navigation.StateController.navigateLink(location.pathname);
var filter = Navigation.StateContext.data.filter;
var list = app.getList(todos, filter);
ReactDOM.render(list, document.getElementById('content'));

I’ll add a line to app.jsx that tells the Navigation router I’m using
HTML5 History rather than the hash history default. If I didn’t do
this, the navigateLink function would think that the URL had changed
and update the browser hash to match:

Navigation.settings.historyManager = new Navigation.HTML5HistoryManager();

0216msdn_MendickReact_v5_28-32.indd 30 1/12/16 2:53 PM

http://grahammendick.github.io/navigation

ement1); areaSeries Add(seriesElement2); areaSeries Add(seriesElement3); // Add series to the plot area plotArea Series Add(areaSeries); //page Elements Add(new LayoutGrid()); // Add the page elements to the page AddEAement1); areaSerieies.AAdd(se(s rriesElement2t2); a) reaSeries.AdA d(seriesElement3); // Add series to the plot area plotArea.Series.Add(areaSeries); //page.Elemenem ts.Add(ddd(new ne LaLayyoutGrid()); // A/ dd the page elements to the page AddEA

s, 240, 0); AddEAN1AN 3SupSup5(pa5(p ge.Elemeentnts, 480, 0); AdddUPCVersionA(page.Elemene ts, 0, 135); AddUPCVersionASup2(page.Elements, 240, 135); AdddUPCddUPCd CVerssionAionAo Sup5((page.Elemennts, t 480, 135); AddEAN8(page.Elements, 0,

.Elements, 480, 2270);; AddddUUPCVersionE(papage.Elementts, 0, 405); AddUPCVersionESuE p2(page.Elements, 240, 405); AddUPCVersionESup5(pageage.Ele.Elelemmments, 4s, 48800, 4405); // AAdd the page toe t the document document.Pages.Add(pa

CaptionAndRectanga lee(elemeements, “EAN/JA/JAN 13 Bar Codde”, x, y, 204, 99); BarCode barCode = new Ean13(“123456789012”, x, y + 21); barCode.ode.X +=X +X +=X + ((2004 -4 - baarCoode.GettSymbolWidth()h) / 2; elements.Add(barCode); } private vovo

dRectangle(elemente s,, “EANEAN/JAN 13 Bar Car Code, 2 digit supplement”, x, y, 204, 99); BarCode barCode = new Ean13Sup2(“12 234556789678 0121212”, 2”, x, yy + 2+ 211); 1); barCoode.XX += (204 - barCode.GetSymbolWidth()) / 2; elements.Add((barC

ts, float x, float yy) { A{ AddCaCaptionAndRectanangle(elements, “EAN/JAN 13 Bar Code, 5 5 digit supplement”, x, y, 204, 99); BaB rrCodee barrCode == new Ean13SupS 5(“12345678901212345”, x, y + 21); ba

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onA(Group elements, float x, float y) {Add{ CaptionAndRectangle(elements, “, UPC VersVersVersVersion ionoi A Baar Cr Coode”, x, y,y, 204, 99);; BarCoode barCode = new UpcVersionA(“12345678901”, xx, y +

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onASup2(Group elements, float x, floato y) { AddCaptionAndRectangle(elementm ““UPCC Version E Bar Code, 2 digit supplement”, x, y, 204, 94 9); BarCoode od

21) ; barCode.X ++= (2= (04 - barba Code.GeetSymbymbolWidth()) / 2; elements.Add(barCode); e } private void AddUPCVersionASSSSuup5(up5(u Group elements,n float x, flfloaflo t VV

digit supplement”,t” xx, y, 22004, 99); BarCodeCode bbarCode = new UUpcVep rsionASuAS p5(“12343 567890112345”, x, y + 21); bbarCarCode.Xde.X += (204 - barCode.GetSymboom lWidth()) / 22; eelele

t x, float y) { AddCapdCaptionnAndRAnd ectangle(eleelemments, “EAN/JANN 88 Bar Code”,de”, xx, y, 204, 0 99); BarCode barCode = nnew Eew Ean8(an8(n8n8 “1 2345670”, x, y + 21); OpenFileileDiala og fileDie aloogoglo =

g.Filter = “Adobeob PDPDF fileess (*.pdf)|*.pdf|Alll FileFiles (*.*)|*.*”; if (fileDieD alog.SShowDiialog() == DialogResult.OK) { { pdfVpdfVf ieweewer.OpOpr.OpOpen (fifileDialogalog.FilleName, “”); } SaveveFileDialog saveFaveFileileDDialoog = neneww Sav

Dialog.Filter == “AdoAdobe PPDF fiDF files (*.pdff)|*.pdpdf|A|All Files (*.*)|*.*”;”; iff (saveFFileDialolog.Showh Dialog() ==DialoalogResgResRee ult..OK)OK) OK) { pdfVfVView .SSaveAsve (sav(saveFieFileDia

printer = pdfViewViewer.Per rinterr; pprinter.PriintWiW thDialog(); } elsee { MesssageBox.SShoww(“Please opeopen a n a fifile to pto p rintrinrint”)”); }OpenFin le DDialoog fileDieD alogalog = new OpenFileDDialog(); fileDiaDialog.og Tittle = e e = e “Opepen File Dl

les (*.*)|*.*|Addobe Pe PDF files es (*.p*.pdf)|*.pdddf”; if i (fifileDialog.ShowwDialalog() === DialogResult.ult OK) { { DynaDynamicPDFVDFVDFVDFViewiewewerClass test e = neew DynammiccPDFViewerClass((); PPDFPrinter ter pprinp ter er r = te= ttet st.OpenFFileFo

= File.ReadAAllByteBytes(@”C:\M:\MyDyDoc.pdff””); //u// sing System.Runntimme.Inttent ropServicces;GCHaGCHandlendledd gch=GCH= CHaananddla e.Aloc(conteents, GCHandleTTypee.Pinnedd);) IIntntPtrPtr cooncontentsIntPtr = g

tents.Lengthh, “”);“”); A AddCaCaptioonAndReReectanglan ee(pageElementts, “BBBookkmark k Pagee E Elemelemeent:”nt:”, x,, y);; pa pagaapageEeEleemeents.Add(newtesw t Bookmookmaark(“Bookmarked TextTextt”, x + 55, y , y, yy ++ 2+ 20+ , pap rentre OutlO ine)); p) a

215, 10, Fonnt.TTimemesRomanma , 1010)); } prprrriivate vooid AddCiirclercle(GGro(G up paageElemeennnts,nts floafloat x,x floafloat yt y)t y) { / { /////Add/Add/A ss a circlt to the pap ge Eleemenmentenents AddCapdCapCaCadCaptiont AndRdRectae

Add(new Cirrcle(x e(x ++ 112.5f5f, y ++ 50f, 1007.5f, 300f, RgbColoolor.RRRed, RgbbbColor.Bor.Bluee,lue 2, LineL eStyylylly e.DaDae shLaLs rge))); } pprivate void AdA d FormatteeddTexxtAreea(Groupp paageElements, flofl aat x, fl float yy)) {) // A// AAdds dds a fofoa rmatted textte a

mic</i>PDFPDF/b>&tm; GGenerator vvv666.0 6 for ..NETNET has has a forrmattted ttetext arrea pea paaage a “ + “ “ele“ele“eleeeemmmentm . ThThis prroviddes rich fororm m atting ssuppupport for texext that appap eears in the doocumment. You have “ + “+ “compcompletlete conco trolol ove ovevever 8 r paragraph

left indentattionn, rigrighht indenentation, aligliggnnment, allollowing orphaaan linnes, aand whwhite ite “ + “spa“spaacece ppce pprereservata ion; 6 foont propropeerties: e <fonont fat f ce=’=’Timemes’>s’>font facece, <//fontt>font “ + “s+ “size, ont><fonont cocoocoot lor=lor=’FF0000’00’>c

 2 line prpropertieses: le leading, ag ndd leaddinngg type.ype. TText can also be rootateeed.</d.</< p>”;p> FFororo mattmattmm edeedTeedTeTeextArx ea fformaormattedTTextAreArea = nnew FormattedTextTex Areare (formattat edHHtmll, x + 5, yy + 20, 215, 60, FonttFammily.Helveelvetictica, 9, fffalalsse);se);se);sssse) // // Sets the i

ddCaptionAAndReRectanct gle(e(pagepageElemeenntsnts, “F, “Fororrmarmattedtte TextT Areeae Page ElElemenement:”,t:”,,, x, y); y); y)y AddCAdddCddCA aptionAnAndReectangnglele(pageElements, “Formatm tedTextAx rea OverOv flflow TText:”, x x + 2279, y); pageElementments.Add(foormarmattedTTTextAxttAAtArea)r ; // CrCrer ate

tArea overflowFoowFormatrm tedTdTextAArea == foormamatteddTdt extArea.GettOveerflowwwFormatmatteddTTexextAxx rea(rerea(re x + x 28284, y +y 200); pageElements.Add(overflowFormattedTextAArea)); } pprivate vooid AddImage(Group p pagpageElementsents, float t x, flo, at yy) {) { // // A/ dd

ents, “Imagee PagePage Elementen :”, xx, y); IImmagemage imaaage =ge new Imaage(SServvever.Mr.MapPattatth(“.h(“.“ ./I./Im./ agesages/DPDDFLogL o..png”), x + 112.5f, y + 50f, 0.24f); // Image is ssizzed and centeredd inn the rectangle immage.age SetBoundunds(21s(215, 5, 65 0); 0) image.VAVAAlign

ge); } privatte void oid AAddLabela (Group pp ppageageElememments, float x, flfloat y) { /// A/ Adds as aa llabel tel t to tht e pappap gegeElemenementts AddCaptionAndRectangle(pageElemenm ts, “LabLa el & PPageNummbeeringLabel Page EElemments:”, x,x, y); y) striing g laabelTextxt = = “= ““Lab

aain page numbumberinering: %%CP%%CP%%% ofof %%%T%%TP%%% pages.”; LLabel le abbel = nnew LLLew Laabel(labbelTeelTeeelTexxt, x + 5, y5 ++ 12, 220, 80, Font.TimesRoman, 12, Texe tAlign.C.Centter); label.Annglee = 8; PageNumbeeringgLabel pagepageNumLNumLabelab = nnnewew Pw Page

, 12, TeextAlxtAligign.CentC er); paga eEleementntntss.Ad.Addd(paageNumLabel));); p paggeElemenments.Addddd(d(label)); } } privprpp ate voidoid A AddLine(Group pageElements, float x, floao t y) { /// Addds aa line to thethe pageElements AdddCCaptionAndRAndRRectanngleglen (pagpag(a eeElemments

+ 5,+ y ++ 20, x + 220, y + 8080, , 3, RRgbbColor.Gr.G eeen)); pageElemmementss.n Add(d(d new w Linee(x ++ 22 2200, yy ++ 20, x + 5,+ 5, y + 80, 3, RgbColor.Green)); } private void AdddLLink((Grouup pageEElemments, float x, floaat yy) { // Adds ads a link toto thethhe pagp eEleEleemen

ynynamicPDF.com.m ”; AAddCaddCaptioptionAAnddnAndRectanglan e((pageElementts, “LLink PaPagege Elemment:nt:”, xx, y);y); LLabel llabela = new Label(text, x + 5, y + 20, 215, 80, font, 12,2 RggbCoolor.Blue)e); laabel.Underline = true;rue Link link =k = newnew LLinnk(x k(x ++ 5,5, y y ++ 20,

on(o “httpp://www.dynnamicppddf.coomm””))); pageEeElemments..Add(Ad labbeel);l); ppagepagpageElementsnts.AAdd(link); k) } prp ivatee void AddPath(Group pageElements, float x, float y) { // AAdds a path to the pageElemeents ceeTe.DynamicamicicPPDPDF.PagegeElemlemlements.PatP h

20,0 RgbgbbColor.Blue, RgbCRgbCoolor.RRedd, 22, LineStyeS lee.Solidd, true); pathhh.Su.SubbPaths.A.Adddd(new Lw LineSineSubPaubPath(x + 215, y + 40)); path.SubPaths.Add(new CurveToSToSubPPathh(x + 1+ 08, y + 80, x + 160,, y ++ 800)); path.SubSubPSubPathssssh .AAAd.Add(new(ne CurveS

ectecctanglangle(pageElemeents, “P“Path Ph Paage ge Element:””, x, yy);) pageEEleEleEE meentss.AdAdd(pad(path));th } pprivaate ve vooid AAddRectangle(Group pageElements, float x, float y) ororderede ddList = ordeo redLedList.GetOverFlowLo List((xx + x 5, y + 2+ 22000); AddCddCCCA aptiapa oonAndRect

2222 55, 1110); page.Eleements.Ats.Add(odd(ordrdrderr edList); x == 0; 0; y +=y ++=y + 118881 ; // CCCreaate e aan unorrderede lisist UnUnordderedList unorderedList = new Unoro deredList(x + 5, y +y + 220, 4400, 900, Font.Ht.Helvetica, 10); uuunoorderredListst.Itte.I ms.Amms Am dd(“ddd(“FruiFruFFFrFruF tss”); unorder

eree ies(); pieSeries.DaataLababel = da; plotArea.Seeriesess.AAd.Add(pieSSSeriesss);es ppieSeries.Elemelementss.AddAdd(27,7, “Website A”); pieSeries.Elements.Add.Ad (19, “Website e B”)); pieSerrieses.Elementmen s.Add(21, “WWebssite CC”); pieSpieSSerieeririees.Elemeneemmee ts[0s[0].Color = a

sess.Elemments[2].Color = auttogradient3;”unoro derreder ddSubLList2 == unoorderedList.Items[ms 1].SubLubLissts.AAddUnorderedSubList(); unorderedSubLu ist2.Items.Add(“dd(“Pottato”); unu ordeeredSubList2.Itemmms.A.Add(d(“Beaansansea ”);;; UUUnorU dereree dSubSu List subU

dSuedd bList(); subUnoUnorderedSubList.Items.As.AAdd(““d Lime”); subUUnorddereedSubList.Itemtems.Ads.Add(“Od(“Orangrange”);e” Unorderd edSubList sus bUnorderd edSue bList2 = unnorddereedSubLisLi t.Items[ms 1].SubLists.s.AddUAAddUd norrdereddeddSubLSubLbList(st); ssubUnbUnu oorderedSe ub

na”aa); UUnorderederedSubList subUnordo erededSubLSu ist3st3 = uunnorderredSubLSubList2.Itet ms[00].Su.SubLisLists.As.AddUnd orderedSSubList(); subUnoU rderedSudSubList3.Items.AAdd((“Swweet Potao to”)); UUnorderedSredSubLubLiL st sst ubUUnordrdeeredSdSredSdSubList4 st4st = ununorderedSu

ubLSuSu ist444.Ite.Items.Am dd(“String Bean”n”); s; subUnbUnordeereedSubbList4..Itemms.Addd(“Lima BeanBean”); subUsubUnnorderedSubList4.Items.Add(“Kidney Bean”e); x += 279; pagpage.EElemenntts.Addd(unorderedListst); u); ; nordno eredreddLisst = = uunordn ereddreddLisst..GetG Overv Flo

e.e.Elemeentsen , “Unordered List Page Ege Elemment On verflverflow:””, x, y,, 2255, 110); page.Elemementsents.AddAdd(un(unorderedList); } private void AddTextFt ield(Group pageEeElemlemennts, flfloaat x, flooatt y) { TextFFielddield txt = new Tew extFextFieldeld(“txtfnafnaaame”,meme”,me”, x +x + 20, 20, y + y +

tteaa dTeextArea(formattedHtml, x ++ 5, 5 y ++ 20, 202 215,15 60, FontFFamilyy.Heelvetica, 9, ffalse)se ; /// SetSets ths the ine dent property formattedTextArea.Style.Paragraph.IndeIn nnt = 1188; AddCaptCap ionAndRendRectanaa gle(eg pagepageep ElemElemE ents, “FFormamormattedttedtedtedTeTextArearea P

atteatat dTeextArea Overflow TeeText:”, x + 27 9, y9, y); p; pageEgeElements.AAdd(formformattedTextAArea); a) // CCreatea ee an overflow formatted text area for the overflow text FoFormmattedTtedTextAxt reaMMaxaxLeLengthngth = 9 = 9= 9; txtxtxtxxt1.B1.Bordeded rCorColor =r = RgbCololoColoor.Br.BBlaack; txttxt1.Ba1 Ba

MaMMM ximuum Lengthgth”; p; ageEEgeEElemeements.nts.Add(Add(txttxt1); TTextFex ieldd txt2 = neew TeextField(“txxtf2namename”, xx + 3+ 30, y + 30, 150, 40); txt2.DefaultValue = “This is a TexxtFtFieldd whiichh goees tototot the nexxt lit liline ine iif thff t e text et et xceexceeds wds wididth”; ”; ttxt2.xt2.xt2xt2 MMMultMu iLinLine = e =

RgRR bCooolor.AliceBlueBluee; txt2.T2. oolTip == “M“Multiline”; ppageEElemennts.AAdd(ttxt2); AddCapCaptiont AndRAndRecctangle(pageElements, “TextField Form Page Element:”, x, x, y, 50450444, 8585); }; } prri vate voioidd AddComCCC boFibo eld(Group pap pageElgeElemeemenene ttts, ts float x, fl

, , y + 4000, 150,, 20 20)20); c; cb.Boro derCd olor = RgbColorr.BBlack; cb.BaackggrounndColor = RgbCRgbColoro .AliAliceBceBlue; cb.Font = Font.Helvetica; cb.FontSize = 12; cb.Itemsem .AAdd(“(“It((em 1m 1”); ; ccb.IItemste .Add(“It““Item 2em 2”); ”); cb.Icb.Itemsems.Add(“Item 3em 3”)); cb.IItems

aaabbble”b].SSeSeSeleleclected = true; cb.Edb itable = true; cb.ToToololTip = “Editable Coe Combo Box””; pa; pageElgeE emements.Add(cb); ComboBox cb1 = new ComboBox(“cmb1namame”, x + 303,030 y +y + 4440 40, 150, 200); c); cb1.Bb1.Bb1 ordeorderColrColoor = Rgbg Coloor.Blr.Br Br B ack;ack cb1.Bac

.F..FFFontontSize = 12; cb1.Items.Add(“Item 1”); cb1.Items.AAdd(“Item 2em 2”); ccb1.Items.Add((“Itemem 3”); cb1.Items.Add(“Item 4”); cb1.Items.Add(“Non-Editable”);”); cb111.Items[“NNon-Eon-Editable”].Selecteccc ed =ed = tru true; ce; cb1 Eb1.EEditable e = fa= f lse;se cb1.ToolT

eerrter.Coonvert(“http://www.google.com”, “Output.pdf”));Convverteer.Coonvert(GetDocD PathPath(“Do(“D cumentA.rtf”), “Output.pdf”);System.Diagnostics.Process..s SStartt(“Ot(“ uutpuutpuutputt.pdf”);”); AsyncCoConvernverrtter t aConaConvertverter =e newe AsyncCncConnverter(); aC

vveerted); aConverter.ConversionError += new ConversiionErroorEvventHHandler(aConveerteer_ConversionError); aConverter.Convert(@”C:\temp\DocumentA.rtA f””””, f , f @”C:C \temte p\OuO tputtputA.pdA.pdf”);f”); aCo aCoa nverter.Convert(ert @”C:\teme p\Dop\D cumentB

\Doc\D ummentC.rtf”, @”C :\temp\OutputC.pdf”); aConverrter.Coonverrt(“hhttp://www.yahoo.coo.com”, @”C:\Temp\yahoo.pdf”); ConvC ersionOptions ops optiontions = nneewnew new ew Conversise onOpOptiontionoo s(72s(720, 70, 720, 72, 7 true); ceTe.DynaDynamicPm DF.CDF.Conveon rsiorsion Con.Co

outpou ut.pdf”, optionso); ceTe.DynamicPDF.Conversion.CConveerter.ConvCon ert(“C:\\temp\\\Documocument2.docx”, “C:\\temp\\op\ utput.pdf”, optiptoptioptiop ons)ons); s; stringing sampleHple tml m = “<“<htmlhtml><bo><bob dydy><p>This is s a very simplee HTMLHTMLHTHT strstrs ing iningin inclincincincludinud ng a g a g TT

(g[] g)

{{

pp

gg g (p p)

[]

[]

pp y y yyp

HighhSecuSec rity securiturity y new w HighhSecuurityy(“OOwnerPassword”, “U“ serPassword”)

yy ppy

ees y yy

p

(p p)

pag p (p pp)

p ()

}

Untitled-1 1Untitled-1 1 9/8/11 11:56 AM9/8/11 11:56 AM

www.dynamicpdf.com
www.dynamicpdf.com/eval

msdn magazine32 ASP.NET

If I could add a client.js script reference directly to the Razor view,
that would be the end of the changes needed for client rendering.
Unfortunately, it’s not quite that simple, because the require statements
inside client.js are part of the Node.js module-loading system and
aren’t recognized by browsers. I’ll use a Gulp plug-in called browserify
to create a task that bundles client.js and all its required modules into
a single JavaScript file, which I can then add to the Razor view. I’ll run
“npm install browserify vinyl-source-stream” to bring in the plug-in:

var browserify = require('browserify');
var source = require('vinyl-source-stream');

gulp.task('bundle', ['transpile'], function(){
 return browserify('Scripts/client.js')
 .bundle()
 .pipe(source('bundle.js'))
 .pipe(gulp.dest('Scripts/'))
});

I don’t want the bundle task to run unless it includes the latest
changes to app.jsx. To ensure that the transpile task always runs first,
I made it a dependency of the bundle task. You can see that the sec-
ond parameter of a Gulp task lists its dependencies. I’ll add an entry
to the scripts section of package.json for the bundle task. Running
the command “npm run bundle” will create bundle.js and I’ll add
a script reference pointing at it to the bottom of the Razor view:

<script src="~/Scripts/bundle.js"></script>

By server-rendering the HTML, I’ve built an application that
starts faster than those at todomvc.com because they can’t display
any content until their JavaScript loads and executes. Similarly,
once the JavaScript loads in my application, a client render runs.
In contrast, this doesn’t update the DOM at all, but allows React
to attach to the server-rendered content so that subsequent todo
list filtering can be handled on the client.

Filtering on the Client
If you were doing PE the old-fashioned way, you might implement
filtering on the client by toggling class names to control the todo
items’ visibility. But without a JavaScript router to help out, it’s all
too easy to break browser history. If you neglect to update the URL,
the filtered list won’t be bookmarkable. By doing PE the modern
way, I already have the Navigation router up and running on the
client to keep the browser history intact.

To update the URL when a filter hyperlink is clicked, I need to inter-
cept the click event and pass the hyperlink’s href into the router’s nav-
igateLink function. There’s a React plug-in for the Navigation router
that will handle this for me, provided I build the hyperlinks in the pre-
scribed way. For example, instead of writing Active</
a>, I must use the RefreshLink React component the plug-in provides:

var RefreshLink = require('navigation-react').RefreshLink;
<RefreshLink toData={{filter: 'active'}}>Active</RefreshLink>

After running “npm install navigation-react” to bring in the plug-in,
I’ll update the List component in app.jsx by replacing the three
filter hyperlinks with their RefreshLink equivalents.

To keep the UI and URL in sync, I have to filter the todo list
whenever the URL changes—not only when a filter hyperlink is
clicked but also when the browser back button is pressed. Instead
of adding separate event listeners, I can add a single listener to the
Navigation router that will be called any time navigation happens.
This navigation listener must be attached to the “list” state I

created as part of the router configuration. First, I’ll access this state
from the Navigation router using the keys from the configuration:

var todoMVC = Navigation.StateInfoConfig.dialogs.todoMVC;
var listState = todoMVC.states.list;

A navigation listener is a function assigned to the state’s “navigated”
property. Whenever the URL changes, the Navigation router will call
this function and pass in the data extracted from the URL. I’ll replace
the code in client.js with a navigation listener that re-renders the List
component into the “content” div using the new filter. React will take
care of the rest, updating the DOM to display the freshly filtered todos:

listState.navigated = function(data){
 var list = app.getList(todos, data.filter);
 ReactDOM.render(list, document.getElementById('content'));
}

In implementing the filtering, I accidentally removed the code
from client.js that triggered the initial client render. I’ll restore this
functionality by adding a call to “Navigation.start” at the bottom
of client.js. This effectively passes the current browser URL into
the router’s navigateLink function, which triggers the navigation
listener and performs the client rendering. I’ll rerun the bundle task
to bring the latest changes into app.js and bundle.js.

The new approach to PE is modern day alchemy. It turns the base
metal of a server-rendered application into SPA gold. But it takes a
special kind of base metal for the transformation to work, one that’s
built from JavaScript libraries that run equally well on the server and
in the browser: React and the Navigation router in the place of Razor
and ASP.NET MVC routing. This is the new chemistry for the Web.

Cutting the Mustard
The aim of PE is an application that works in all browsers, while
offering an improved experience for modern browsers. But, in build-
ing this improved experience, I’ve stopped the todo list from working
in older browsers. The SPA conversion relies on the HTML5 History
API, which Internet Explorer 9, for example, doesn’t support.

PE isn’t about offering the same experience to all browsers. The
todo list doesn’t have to be a SPA in Internet Explorer 9. In browsers
that don’t support HTML5 History, I can fall back to the server-ren-
dered application. I’ll change the Razor view to dynamically load
bundle.js, so it’s only sent to browsers that support HTML5 History:

if (window.history && window.history.pushState) {
 var script = document.createElement('script');
 script.src = "/Scripts/bundle.js";
 document.body.appendChild(script);
}

This check is called “cutting the mustard” because only those
browsers that meet the requirements are considered worthy of
receiving the JavaScript. The end result is the Web equivalent of the
optical illusion where the same picture can either look like a rabbit
or a duck. Take a look at the todo list through a modern browser
and it’s a SPA, but squint at it using an old browser and it’s a tradi-
tional client-server application.	 n

Graham Mendick believes in a Web accessible to all and is excited by the new
possibilities for progressive enhancement that isomorphic JavaScript has opened
up. He’s the author of the Navigation JavaScript router, which he hopes will help
people to go isomorphic. Get in touch with him on Twitter: @grahammendick.

Thanks to the following Microsoft technical expert for reviewing this article:
Steve Sanderson

0216msdn_MendickReact_v5_28-32.indd 32 1/12/16 2:53 PM

www.todomvc.com
www.twitter.com/grahammendick

(888) 850-9911
Sales Hotline - US & Canada:

/update/2016/02

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2016 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
2 New Century Place
East Street
Reading, Berkshire
RG1 4ET
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Help & Manual Professional from $586.04
Help and documentation for .NET and mobile applications.

• Powerful features in an easy, accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to responsive HTML, CHM, PDF, MS Word, ePUB, Kindle or print

• Styles and Templates give you full design control

BEST SELLER

Experience the brand new look at www.componentsource.com

DevExpress DXperience 15.2 from $1,439.99
The complete range of DevExpress .NET controls and libraries for all major Microsoft platforms.

• WinForms Grid: New data-aware Tile View

• WinForms Grid & TreeList: New Excel-inspired Conditional Formatting

• .NET Spreadsheet: Grouping and Outline support

• ASP.NET: New Rich Text Editor-Word Processing control

• ASP.NET Reporting: New Web Report Designer

BEST SELLER

Aspose.Total for .NET from $2,449.02
Every Aspose .NET component in one package.

• Programmatically manage popular � le formats including Word, Excel, PowerPoint and PDF

• Work with charts, diagrams, images, project plans, emails, barcodes, OCR and OneNote � les
alongside many more document management features in .NET applications

• Common uses also include mail merging, adding barcodes to documents, building dynamic
reports on the � y and extracting text from most document types

BEST SELLER

LEADTOOLS Document Imaging SDKs V19 from $2,995.00 SRP

Add powerful document imaging functionality to desktop, tablet, mobile & web applications.

• Universal document viewer & conversion framework for PDF, O� ce, CAD, TIFF & more

• OCR, MICR, OMR, ICR and Forms Recognition supporting structured & unstructured forms

• PDF SDK with text edit, hyperlinks, bookmarks, digital signature, forms, metadata

• Barcode Detect, Read, Write for UPC, EAN, Code 128, Data Matrix, QR Code, PDF417

• Zero-footprint HTML5/JavaScript UI Controls & Web Services

BEST SELLER

Untitled-5 1 1/6/16 12:32 PM

http://www.componentsource.com

msdn magazine34

In this article I’ll show you how to build a custom scripting lan-
guage using C#—without using any external libraries. The scripting
language is based on the Split-And-Merge algorithm for parsing
mathematical expressions in C# I presented in the October 2015
issue of MSDN Magazine (msdn.com/magazine/mt573716).

By using custom functions, I can extend the Split-And-Merge
algorithm to parse not only a mathematical expression, but also to
parse a customizable scripting language. The “standard” language
control flow statements (if, else, while, continue, break and so on)
can be added as custom functions, as can other typical script-
ing language functionality (OS commands, string manipulation,
searching for files and so on).

I’m going to call my language Customizable Scripting in C#, or
CSCS. Why would I want to create yet another scripting language?
Because it’s an easy language to customize. Adding a new function
or a new control flow statement that takes an arbitrary number of
parameters takes just a few lines of code. Moreover, the function names
and the control flow statements can be used in any non-English lan-
guage scenario with just some configuration changes, which I’ll also
show in this article. And by seeing how the CSCS language is imple-
mented, you’ll be able to create your own custom scripting language.

The Scope of CSCS
It’s fairly simple to implement a very basic scripting language, but
brutally difficult to implement a five-star language. I’m going to

C#

Customizable Scripting
in C#
Vassili Kaplan

This article discusses:
•	Modifying the Split-And-Merge algorithm

•	The Interpreter class

•	Variables and arrays

•	Control flow

•	Functions

•	Internationalization

Technologies discussed:
C#

Code download available at:
msdn.com/magazine/0216magcode

By using custom functions, I can
extend the Split-And-Merge
algorithm to parse not only a
mathematical expression, but
also to parse a customizable

scripting language.

0216msdn_KaplanScripting_v3_34-42.indd 34 1/12/16 2:37 PM

http://msdn.com/magazine/0216magcode
http://msdn.com/magazine/mt573716

35February 2016msdnmagazine.com

limit the scope of CSCS here so you’ll
know what to expect:

• �The CSCS language has if, else if,
else, while, continue and break
control flow statements. Nested
statements are supported, as well.
You’ll learn how to add addition-
al control statements on the fly.

• �There are no Boolean values.
Instead of writing “if (a),” you
have to write “if (a == 1).”

• �Logical operators aren’t supported.
Instead of writing “if (a ==1 and b
== 2),” you write nested ifs: “if (a
== 1) { if (b == 2) { … } }.”

• �Functions and methods aren’t
supported in CSCS, but they can
be written in C# and registered
with the Split-And-Merge Parser
in order to be used with CSCS.

• �Only “//”-style comments
are supported.

• �Variables and one-dimensional
arrays are supported, all defined
at the global level. A variable can
hold a number, a string or a tuple
(implemented as a list) of other
variables. Multi-dimensional
arrays are not supported.

Figure 1 shows a “Hello, World!”
program in CSCS. Due to a mistyping
of “print,” the program displays an error at the end: “Couldn’t parse
token [pint].” Note that all the previous statements executed suc-
cessfully; that is, CSCS is an interpreter.

Modifications to the Split-And-Merge Algorithm
I’ve made two changes to the Split part of the Split-And-Merge
algorithm. (The Merge part remains the same.)

The first change is that the result of parsing an expression can be
now a number, a string or a tuple of values (each of which can be
either a string or a number), rather than just a number. I created
the following Parser.Result class to store the result of applying the
Split-And-Merge algorithm:

public class Result
{
 public Result(double dRes = Double.NaN, string sRes = null, List<Result>
tRes = null)
 {
 Value = dResult;
 String = sResult;
 Tuple = tResult;
 }
 public double Value { get; set; }
 public string String { get; set; }
 public List<Result> Tuple { get; set; }
}

The second modification is that now the splitting part is performed
not just until a stop-parsing character—) or \n—is found, but until
any character in a passed array of stop-parsing characters is found.

This is necessary, for example, when parsing the first argument of
an If statement, where the separator can be any <, >, or = character.

You can take a look at the modified Split-And-Merge algorithm
in the accompanying source code download.

The Interpreter
The class responsible for interpreting the CSCS code is called
Interpreter. It’s implemented as a singleton, that is, a class defini-
tion where there can be only one instance of the class. In its Init
method, the Parser (see the original article mentioned earlier) is
initialized with all the functions used by the Interpreter:

public void Init()
{
 ParserFunction.AddFunction(Constants.IF, new IfStatement(this));
 ParserFunction.AddFunction(Constants.WHILE, new WhileStatement(this));
 ParserFunction.AddFunction(Constants.CONTINUE, new ContinueStatement());
 ParserFunction.AddFunction(Constants.BREAK, new BreakStatement());
 ParserFunction.AddFunction(Constants.SET, new SetVarFunction());
...
}

In the Constants.cs file, the actual names used in CSCS are defined:
public const string IF = "if";
public const string ELSE = "else";
public const string ELSE_IF = "elif";
public const string WHILE = "while";
public const string CONTINUE = "continue";
public const string BREAK = "break";
public const string SET = "set";
...

Figure 1 “Hello, World!” in CSCS

0216msdn_KaplanScripting_v3_34-42.indd 35 1/12/16 2:37 PM

http://www.msdnmagazine.com

msdn magazine36 C#

Any function registered with the Parser must be implemented
as a class derived from the ParserFunction class and must override
its Evaluate method.

The first thing the Interpreter does when starting to work on
a script is to simplify the script by removing all white spaces
(unless they’re inside of a string), and all comments. Therefore,
spaces or new lines can’t be used as operator separators. The
operator separator character and the comment string are defined
in Constants.cs, as well:

public const char END_STATEMENT = ';';
public const string COMMENT = "//";

Variables and Arrays
CSCS supports numbers (type double), strings or tuples (arrays of
variables implemented as a C# list). Each element of a tuple can be
either a string or a number, but not another tuple. Therefore, multi-
dimensional arrays are not supported. To define a variable, the CSCS
function “set” is used. The C# class SetVarFunction implements
the functionality of setting a variable value, as shown in Figure 2.

Here are some examples of defining a variable in CSCS:
set(a, "2 + 3"); // a will be equal to the string "2 + 3"
set(b, 2 + 3); // b will be equal to the number 5
set(c(2), "xyz"); // c will be initialized as a tuple of size 3 with c(0) = c(1) = ""

Note that there’s no special declaration of an array: just defining a
variable with an index will initialize the array if it’s not already ini-
tialized, and add empty elements to it, if necessary. In the preceding
example, the elements c(0) and c(1) were added, both initialized to
empty strings. This eliminates, in my view, the unnecessary step
that’s required in most scripting languages of declaring an array first.

All CSCS variables and arrays are created using CSCS functions
(like set or append). They’re all defined with global scope and can
be used later just by calling the variable name or a variable with an
index. In C#, this is implemented in the GetVarFunction shown
in Figure 3.

Only the set variable function must be registered with the Parser:
ParserFunction.AddFunction(Constants.SET, new SetVarFunction());

The get variable function is registered inside of the set variable
function C# code (see the next-to-last statement in Figure 2):

ParserFunction.AddFunction(varName, new GetVarFunction(varName, varValue));

class SetVarFunction : ParserFunction
{
 protected override Parser.Result Evaluate(string data, ref int from)
 {
 string varName = Utils.GetToken(data, ref from, Constants.NEXT_ARG_ARRAY);
 if (from >= data.Length)
 {
 throw new ArgumentException("Couldn't set variable before end of line");
 }

 Parser.Result varValue = Utils.GetItem(data, ref from);

 // Check if the variable to be set has the form of x(i),
 // meaning that this is an array element.
 int arrayIndex = Utils.ExtractArrayElement(ref varName);
 if (arrayIndex >= 0)
 {
 bool exists = ParserFunction.FunctionExists(varName);
 Parser.Result currentValue = exists ?
 ParserFunction.GetFunction(varName).GetValue(data, ref from) :
 new Parser.Result();

 List<Parser.Result> tuple = currentValue.Tuple == null ?
 new List<Parser.Result>() :
 currentValue.Tuple;
 if (tuple.Count > arrayIndex)
 {
 tuple[arrayIndex] = varValue;
 }
 else
 {
 for (int i = tuple.Count; i < arrayIndex; i++)
 {
 tuple.Add(new Parser.Result(Double.NaN, string.Empty));
 }
 tuple.Add(varValue);
 }

 varValue = new Parser.Result(Double.NaN, null, tuple);
 }

 ParserFunction.AddFunction(varName, new GetVarFunction(varName, varValue));

 return new Parser.Result(Double.NaN, varName);
 }
}

Figure 2 Implementation of the Set Variable Function

class GetVarFunction : ParserFunction
{
 internal GetVarFunction(Parser.Result value)
 {
 m_value = value;
 }

 protected override Parser.Result Evaluate(string data, ref int from)
 {
 // First check if this element is part of an array:
 if (from < data.Length && data[from - 1] == Constants.START_ARG)
 {
 // There is an index given - it may be for an element of the tuple.
 if (m_value.Tuple == null || m_value.Tuple.Count == 0)
 {
 throw new ArgumentException("No tuple exists for the index");
 }

 Parser.Result index = Utils.GetItem(data, ref from, true /* expectInt */);
 if (index.Value < 0 || index.Value >= m_value.Tuple.Count)
 {
 throw new ArgumentException("Incorrect index [" + index.Value +
 "] for tuple of size " + m_value.Tuple.Count);
 }

 return m_value.Tuple[(int)index.Value];
 }

 // This is the case for a simple variable, not an array:
 return m_value;
 }

 private Parser.Result m_value;
}

Figure 3 Implementation of the Get Variable Function

Note that there’s no special
declaration of an array: just

defining a variable with an index
will initialize the array if it’s not
already initialized, and add

empty elements to it if necessary.

0216msdn_KaplanScripting_v3_34-42.indd 36 1/12/16 2:37 PM

Untitled-2 1 12/4/15 11:58 AM

www.nevron.com

msdn magazine38 C#

Some examples of getting variables in CSCS are:
append(a, "+ 5"); // a will be equal to the string "2 + 3 + 5"
set(b, b * 2); // b will be equal to the number 10 (if it was 5 before)

Control Flow: If, Else If, Else
The If, Else If and Else control flow statements are implemented
internally as Parser functions, as well. They are registered by the
Parser just like any other function:

ParserFunction.AddFunction(Constants.IF, new IfStatement(this));

Only the IF keyword must be registered with the Parser. ELSE_IF
and ELSE statements will be processed inside of the IfStatement
implementation:

class IfStatement : ParserFunction
{
 protected override Parser.Result Evaluate(string data, ref int from)
 {
 m_interpreter.CurrentChar = from;
 Parser.Result result = m_interpreter.ProcessIf();

 return result;
 }
 private Interpreter m_interpreter;
}

The real implementation of the If statement is in the Interpreter
class, as shown in Figure 4.

It’s explicitly stated that the If condition has the form: argument
1, comparison sign, argument 2:

Parser.Result arg1 = GetNextIfToken();
string comparison = Utils.GetComparison(m_data, ref m_currentChar);
Parser.Result arg2 = GetNextIfToken();

bool isTrue = EvalCondition(arg1, comparison, arg2);

This is where optional AND, OR or NOT statements can be added.

The EvalCondition function just compares the tokens according
to the comparison sign:

internal bool EvalCondition(Parser.Result arg1, string comparison, Parser.Result arg2)

{
 bool compare = arg1.String != null ? CompareStrings(arg1.String,
comparison, arg2.String) :
 CompareNumbers(arg1.Value,
comparison, arg2.Value);

 return compare;
}

Here’s the implementation of a numerical comparison:
internal bool CompareNumbers(double num1, string comparison, double num2)
{
 switch (comparison) {
 case "==": return num1 == num2;
 case "<>": return num1 != num2;
 case "<=": return num1 <= num2;
 case ">=": return num1 >= num2;
 case "<" : return num1 < num2;
 case ">" : return num1 > num2;
 default: throw new ArgumentException("Unknown comparison: " + comparison);
 }
}

The string comparison is similar and is available in the accom-
panying code download, as is the straightforward implementation
of the GetNextIfToken function.

internal Parser.Result ProcessIf()
{
 int startIfCondition = m_currentChar;
 Parser.Result result = null;

 Parser.Result arg1 = GetNextIfToken();
 string comparison = Utils.GetComparison(m_data, ref m_currentChar);
 Parser.Result arg2 = GetNextIfToken();

 bool isTrue = EvalCondition(arg1, comparison, arg2);

 if (isTrue)
 {
 result = ProcessBlock();
 if (result is Continue || result is Break)
 {
 // Got here from the middle of the if-block. Skip it.
 m_currentChar = startIfCondition;
 SkipBlock();
 }
 SkipRestBlocks();

 return result;
 }

 // We are in Else. Skip everything in the If statement.
 SkipBlock();

 int endOfToken = m_currentChar;
 string nextToken = Utils.GetNextToken(m_data, ref endOfToken);

 if (ELSE_IF_LIST.Contains(nextToken))
 {
 m_currentChar = endOfToken + 1;
 result = ProcessIf();
 }
 else if (ELSE_LIST.Contains(nextToken))
 {
 m_currentChar = endOfToken + 1;
 result = ProcessBlock();
 }

 return result != null ? result : new Parser.Result();
}

Figure 4 Implementation of the If Statement

internal Parser.Result ProcessBlock()
{
 int blockStart = m_currentChar;
 Parser.Result result = null;

 while(true)
 {
 int endGroupRead = Utils.GoToNextStatement(m_data, ref m_currentChar);
 if (endGroupRead > 0)
 {
 return result != null ? result : new Parser.Result();
 }

 if (m_currentChar >= m_data.Length)
 {
 throw new ArgumentException("Couldn't process block [" +
 m_data.Substring(blockStart) + "]");
 }

 result = Parser.LoadAndCalculate(m_data, ref m_currentChar,
 Constants.END_PARSE_ARRAY);

 if (result is Continue || result is Break)
 {
 return result;
 }
 }
}

Figure 5 Implementation of the ProcessBlock Method

Each element of a tuple can be
either a string or a number, but

not another tuple.

0216msdn_KaplanScripting_v3_34-42.indd 38 1/12/16 2:37 PM

Untitled-3 1Untitled-3 1 12/11/15 11:13 AM12/11/15 11:13 AM

www.gnostice.com

msdn magazine40 C#

When an if, else if, or else condition is true, all of the statements
inside the block are processed. This is implemented in Figure 5 in
the ProcessBlock method. If the condition isn’t true, all the state-
ments are skipped. This is implemented in the SkipBlock method
(see accompanying source code).

Note how the “Continue” and “Break” statements are used inside
of the while loop. These statements are implemented as functions,
as well. Here’s Continue:

class Continue : Parser.Result { }

class ContinueStatement : ParserFunction
{
 protected override Parser.Result
 Evaluate(string data, ref int from)
 {
 return new Continue();
 }
}

The implementation of the Break
statement is analogous. They’re both
registered with the Parser like any oth-
er function:

ParserFunction.AddFunction(Constants.
CONTINUE, new ContinueStatement());
ParserFunction.AddFunction(Constants.
BREAK, new BreakStatement());

You can use the Break function to
get out of nested If blocks or to get out
of a while loop.

Control Flow:
The While Loop
The while loop is also implemented and
registered with the Parser as a function:

ParserFunction.AddFunction(Constants.
WHILE, new WhileStatement(this));

Whenever the while keyword is
parsed, the Evaluate method of the
WhileStatement object is called:

class WhileStatement : ParserFunction
{
 protected override Parser.Result Evaluate(string data, ref int from)
 {
 string parsing = data.Substring(from);
 m_interpreter.CurrentChar = from;
 m_interpreter.ProcessWhile();

 return new Parser.Result();
 }
 private Interpreter m_interpreter;
}

Figure 7 Detecting an Infinite While Loop in CSCS

Figure 6 Implementation of the While Loop

internal void ProcessWhile()
{
 int startWhileCondition = m_currentChar;

 // A heuristic check against an infinite loop.
 int cycles = 0;
 int START_CHECK_INF_LOOP = CHECK_AFTER_LOOPS / 2;
 Parser.Result argCache1 = null;
 Parser.Result argCache2 = null;

 bool stillValid = true;
 while (stillValid)
 {
 m_currentChar = startWhileCondition;

 Parser.Result arg1 = GetNextIfToken();
 string comparison = Utils.GetComparison(m_data, ref m_currentChar);
 Parser.Result arg2 = GetNextIfToken();

 stillValid = EvalCondition(arg1, comparison, arg2);
 int startSkipOnBreakChar = m_currentChar;

 if (!stillValid)
 {
 break;
 }

 // Check for an infinite loop if same values are compared.
 if (++cycles % START_CHECK_INF_LOOP == 0)
 {
 if (cycles >= MAX_LOOPS || (arg1.IsEqual(argCache1) &&
 arg2.IsEqual(argCache2)))
 {
 throw new ArgumentException("Looks like an infinite loop after " +
 cycles + " cycles.");
 }
 argCache1 = arg1;
 argCache2 = arg2;
 }

 Parser.Result result = ProcessBlock();
 if (result is Break)
 {
 m_currentChar = startSkipOnBreakChar;
 break;
 }
 }

 // The while condition is not true anymore: must skip the whole while
 // block before continuing with next statements.
 SkipBlock();
}

0216msdn_KaplanScripting_v3_34-42.indd 40 1/12/16 2:37 PM

41February 2016msdnmagazine.com

So the real implementation of the while loop is in the Interpreter
class, as shown in Figure 6.

Note that the while loop proactively checks for an infinite loop after
a certain number of iterations, defined in the configuration settings
by the CHECK_AFTER_LOOPS constant. The heuristic is that if the
exact same values in the while condition are compared over several
loops, this could indicate an infinite loop. Figure 7 shows a while loop
where I forgot to increment the cycle variable i inside of the while loop.

Functions, Functions, Functions
In order for CSCS to do more useful things, more flesh needs to
be added; that is, more functions must be implemented. Adding a
new function to CSCS is straightforward: First implement a class
deriving from the ParserFunction class (overriding the Evaluate
method) and then register it with the Parser. Here’s the implemen-
tation of the Print function:

class PrintFunction : ParserFunction
{
 protected override Parser.Result Evaluate(string data, ref int from)
 {
 List<string> args = Utils.GetFunctionArgs(data, ref from);
 m_interpreter.AppendOutput(string.Join("", args.ToArray()));

 return new Parser.Result();
 }

 private Interpreter m_interpreter;
}

The function prints any number of comma-separated arguments
passed to it. The actual reading of the arguments is done in the
GetFunctionArgs auxiliary function, which returns all the passed
arguments as a list of strings. You can take a look at the function
in the accompanying source code.

The second and last step is to register the Print function with the
Parser in the program initialization part:

ParserFunction.AddFunction(Constants.PRINT, new PrintFunction(this));

The Constants.PRINT constant is defined as “print.”
Figure 8 shows an implementation of a function that starts a

new process.

Here’s how you can find files, start and kill a process, and print
some values in CSCS:

set(b, findfiles("*.cpp", "*.cs"));
set(i, 0);
while(i < size(b)) {
 print("File ", i, ": ", b(i));
 set(id, run("notepad", b(i)));
 kill(id);
 set(i, i+ 1);
}

Figure 9 lists the functions that are implemented in the down-
loadable source code, along with a brief description. Most of the
functions are wrappers over corresponding C# functions.

Internationalization
Note that you can register multiple labels (function names) cor-
responding to the same function with the Parser. In this way, it’s
possible to add any number of other languages.

Adding a translation consists of registering another string with
the same C# object. The corresponding C# code follows:

var languagesSection =
 ConfigurationManager.GetSection("Languages") as NameValueCollection;
string languages = languagesSection["languages"];

foreach(string language in languages.Split(",".ToCharArray());)
{
 var languageSection =
 ConfigurationManager.GetSection(language) as NameValueCollection;

 AddTranslation(languageSection, Constants.IF);
 AddTranslation(languageSection, Constants.WHILE);
...
}

Note that you can register
multiple labels (function names)

corresponding to the same
function with the Parser. In this
way, it’s possible to add any
number of other languages.

In order for CSCS to do more
useful things, more flesh needs

to be added; that is, more
functions must be implemented.

class RunFunction : ParserFunction
{
 internal RunFunction(Interpreter interpreter)
 {
 m_interpreter = interpreter;
 }

 protected override Parser.Result Evaluate(string data, ref int from)
 {
 string processName = Utils.GetItem(data, ref from).String;

 if (string.IsNullOrWhiteSpace(processName))
 {
 throw new ArgumentException("Couldn't extract process name");
 }

 List<string> args = Utils.GetFunctionArgs(data, ref from);
 int processId = -1;

 try
 {
 Process pr = Process.Start(processName, string.Join("", args.ToArray()));
 processId = pr.Id;
 }
 catch (System.ComponentModel.Win32Exception exc)
 {
 throw new ArgumentException("Couldn't start [" + processName + "]:
 " + exc.Message);
 }

 m_interpreter.AppendOutput("Process " + processName + " started, id:
 " + processId);
 return new Parser.Result(processId);
 }

 private Interpreter m_interpreter;
}

Figure 8 Run Process Function Implementation

0216msdn_KaplanScripting_v3_34-42.indd 41 1/12/16 2:37 PM

http://www.msdnmagazine.com

msdn magazine42 C#

The AddTranslation method adds a synonym for an already
existing function:

public void AddTranslation(NameValueCollection languageDictionary, string
originalName)
{
 string translation = languageDictionary[originalName];

 ParserFunction originalFunction =
 ParserFunction.GetFunction(originalName);
 ParserFunction.AddFunction(translation, originalFunction);
}

Thanks to C# support of Unicode, most languages can be added
this way. Note that the variable names can be in Unicode, as well.

All of the translations are specified in the configuration file. This
is how the configuration file looks for Spanish:

<Languages>
 <add key="languages" value="Spanish" />
</Languages>
<Spanish>
 <add key="if" value ="si" />
 <add key="else" value ="sino" />
 <add key="elif" value ="sinosi" />
 <add key="while" value ="mientras" />
 <add key="set" value ="asignar" />
 <add key="print" value ="imprimir" />
 ...
</Spanish>

Here’s an example of the CSCS code in Spanish:
asignar(a, 5);
mientras(a > 0) {
 asignar(expr, 2*(10 – a*3));
 si (expr > 0) {
 imprimir(expr, " es mayor que cero");
 }
 sino {
 imprimir(expr, " es cero o menor que cero");
 }
 asignar(a, a - 1);
}

Note that the Parser can now process control statements and
functions in both English and Spanish. There’s no limit to the num-
ber of languages you can add.

Wrapping Up
All of the CSCS elements—control flow statements, variables, arrays,
and functions—are implemented by defining a C# class deriving from
the ParserFunction base class and overriding its Evaluate method.
Then you register an object of this class with the Parser. This approach
provides the following advantages:

• �Modularity: Each CSCS function and control flow statement
resides in its own class, so it’s easy to define a new function
or a control flow statement or to modify an existing one.

• �Flexibility: It’s possible to have CSCS keywords and function
names in any language. Only the configuration file needs to
be modified. Unlike most other languages, in CSCS control
flow statements functions and variable names don’t have to
be in ASCII characters.

Of course, at this stage the CSCS language is far from complete.
Here are some ways to make it more useful:

• �Creating multidimensional arrays. The same C# data struc-
ture as the one for one-dimensional arrays, List<Result>,
can be used. However, more parsing functionality must
be added when getting and setting an element of the
multidimensional array.

• �Enabling tuples to be initialized on one line.

• �Adding logical operators (AND, OR, NOT and so forth),
which would be very useful for if and while statements.

• �Adding the capability to write functions and methods in
CSCS. Currently, only functions previously written and
compiled in C# can be used.

• �Adding the capability to include CSCS source code from
other units.

• �Adding more functions that perform typical OS-related tasks.
Because most such tasks can be easily implemented in C#,
most would be just a thin wrapper over their C# counterparts.

• �Creating a shortcut for the set(a, b) function as “a = b.”
I hope you’ve enjoyed this glimpse of the CSCS language and

seeing how you can create your own custom scripting language.	n

Vassili Kaplan is a former Microsoft Lync developer. He’s passionate about
programming in C# and C++. He currently lives in Zurich, Switzerland, and
works as a freelancer for various banks. You can reach him at iLanguage.ch.

Thanks to the following Microsoft technical expert for reviewing this article:
James McCaffrey

abs gets the absolute value of an expression

append appends a string or a number (converted then to a string) to
a string

cd changes a directory

cd.. changes directory one level up

dir shows the contents of the current directory

enc gets the contents of an environment variable

exp exponential function

findfiles finds files with a given pattern

findstr finds files containing a string having a specific pattern

indexof returns an index of a substring, or -1, if not found

kill kills a process having a given process id number

pi returns an approximation of the pi constant

pow returns the first argument to the power of the second argument

print prints a given list of arguments (numbers and lists are
converted to strings)

psinfo returns process information for a given process name

pstime returns total processor time for this process; useful for
measuring times

pwd displays current directory pathname

run starts a process with a given argument list and returns process id

setenv sets the value of an environment variable

set sets the value of a variable or of an array element

sin returns the value of the sine of the given argument

size returns the length of the string or the size of the list

sqrt returns the square root of the given number

substr returns the substring of the string starting from given index

tolower converts a string to lowercase

toupper converts a string to uppercase

Figure 9 CSCS Functions

0216msdn_KaplanScripting_v3_34-42.indd 42 1/12/16 2:37 PM

www.iLanguage.ch

GdPicture.NET

Untitled-6 1 6/30/15 1:39 PM

www.docuvieware.com

CAMPAIGN FOR CODE 2016 VISUAL STUDIO LIVE!

VISUAL STUDIO LIVE! is on a Campaign for Code in
2016, in support of developer education. First up on the
campaign trail? Fabulous Las Vegas, where developers,
software architects, engineers, designers and more will
convene for five days of unbiased and cutting-edge
education on the Microsoft Platform. Sharpen your skills
in Visual Studio, ASP.NET, JavaScript, HTML5, Mobile,
Database Analytics, and so much more.

SUPPORTED BY

magazine

PRODUCED BYEVENT PARTNERS PLATINUM SPONSOR

0216msdn_VSLie-LV_4pages.indd 2 1/12/16 5:06 PM

www.vslive.com/lasvegas

VSLIVE.COM/LASVEGAS

Be a responsible dev citizen.
Register to code with us today!

twitter.com/vslive – @VSLive facebook.com – Search “VSLive” linkedin.com – Join the
“Visual Studio Live” group!

CONNECT WITH VISUAL STUDIO LIVE!

DEVELOPMENT TOPICS
INCLUDE:

Scan the QR code to
register or for more
event details.

REGISTER BY
FEBRUARY 19

AND SAVE $300! USE PROMO CODE VSLFEB4

LAS VEGAS • MARCH 7-11, 2016
BALLY’S HOTEL & CASINO

Turn the page
for more Event
details

➤ ALM/DevOps

➤ ASP.NET

➤ Cloud Computing

➤ Database & Analytics

➤ JavaScript /
HTML5 Client

➤ Mobile Client

➤ Modern App
Development

➤ UX/Design

➤ Visual Studio / .NET

➤ Windows Client

0216msdn_VSLie-LV_4pages.indd 3 1/12/16 5:07 PM

www.vslive.com/lasvegas
https://twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

AGENDA AT-A-GLANCE

CONNECT WITH
VISUAL STUDIO LIVE!

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

Scan the QR code to
register or for more
event details.

ALM / DevOps ASP.NET Cloud
Computing

Database and
Analytics

START TIME END TIME Pre-Conference Workshops: Monday, March 7, 2016 (Separate entry fee required)

7:30 AM 9:00 AM Pre-Conference Workshop Registration - Coffee and Morning Pastries

9:00 AM 1:00 PM M01 Workshop: Service Oriented Technologies—Designing, Developing,
& Implementing WCF and the Web API - Miguel Ca stro

1:00 PM 2:00 PM Lunch @ Le Village Buffet, Paris Las Vegas

2:00 PM 6:00 PM M01 Workshop Continues

7:00 PM 9:00 PM Dine-A-Round

START TIME END TIME Day 1: Tuesday, March 8, 2016
7:00 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:00 AM Keynote: To Be Announced

9:15 AM 10:30 AM T01 Developer Productivity in
Visual Studio 2015 - Robert Green T02 Angular 101 - Deborah Kurata

10:45 AM 12:00 PM T06 How to Scale Entity Framework Apps
with Distributed Caching - Iqbal Khan

T07 Angular 2.0: A Comparison
- Deborah Kurata

12:00 PM 1:00 PM Lunch

1:00 PM 1:30 PM Dessert Break - Visit Exhibitors

1:30 PM 2:45 PM
T11 Native Mobile App Development for

iOS, Android and Windows Using C#
- Marcel de Vries

T12 ASP.NET 5 in All its Glory
- Adam Tuliper

3:00 PM 4:15 PM
T16 Getting Started with Hybrid Mobile Apps

with Visual Studio Tools for Cordova
- Brian Noyes

T17 MVC 6 - The New Unified Web
Programming Model

- Marcel de Vries

4:15 PM 5:30 PM Welcome Reception

START TIME END TIME Day 2: Wednesday, March 9, 2016
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM W01 Busy .NET Developer’s Guide to
Native iOS - Ted Neward

W02 Getting Started with Aurelia
- Brian Noyes

9:30 AM 10:45 AM W06 Busy Developer’s Guide to Mobile
HTML/JS Apps - Ted Neward

W07 Securing Single Page Applications
- Brian Noyes

11:00 AM 12:00 PM General Session: To Be Announced

12:00 PM 1:00 PM Birds-of-a-Feather Lunch

1:00 PM 1:30 PM Dessert Break - Visit Exhibitors - Exhibitor Raffle @ 1:15pm (Must be present to win)

1:30 PM 2:45 PM
W11 Optimizing Applications for

Performance Using the Xamarin Platform
- Kevin Ford

W12 An Introduction to TypeScript
- Jason Bock

3:00 PM 4:15 PM
W16 Leverage Azure App Services Mobile

Apps to Accelerate Your Mobile App
Development - Brian Noyes

W17 Take a Gulp, Make a Grunt, and
Call me Bower - Adam Tuliper

4:30 PM 5:45 PM W21 Building Cross-Platform Apps
Using CSLA.NET - Rockford Lhotka

W22 JavaScript for the C# (and Java)
Developer - Philip Japikse

7:00 PM 9:00 PM Evening Out Event

START TIME END TIME Day 3: Thursday, March 10, 2016
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM TH01 Building for the Internet of Things:
Hardware, Sensors & the Cloud - Nick Landry

TH02 Responsive Web Design with
ASP.NET 5 - Robert Boedigheimer

9:30 AM 10:45 AM TH06 User Experience Case Studies—
Good and Bad - Billy Hollis

TH07 Tools for Modern Web Development
- Ben Hoelting

11:00 AM 12:15 PM
TH11 Pretty, Yet Powerful. How Data
Visualization Transforms The Way We

Comprehend Information - Walt Ritscher
TH12 SASS and CSS for Developers

- Robert Boedigheimer

12:15 PM 1:45 PM Lunch @ Le Village Buffet, Paris Las Vegas

1:45 PM 3:00 PM TH16 Exposing an Extensibility API for
your Applications - Miguel Castro

TH17 Hack Proofing your Web
Applications - Adam Tuliper

3:15 PM 4:30 PM TH21 UWP Development for WPF and
Silverlight Veterans - Walt Ritscher

TH22 Increase Website Performance
and Search with Lucene.Net Indexing

- Ben Hoelting

START TIME END TIME Post-Conference Workshops: Friday, March 11, 2016 (Separate entry fee required)

7:30 AM 8:00 AM Post-Conference Workshop Registration - Coffee and Morning Pastries

8:00 AM 12:00 PM F01 Workshop: Upgrading Your Skills to ASP.NET 5 - Mark Michaelis

12:00 PM 1:00 PM Lunch

1:00 PM 5:00 PM F01 Workshop Continues

Bally’s Hotel & Casino
will play host to
Visual Studio Live!, and
is offering a special
reduced room rate to
conference attendees.

Speakers and sessions subject to change

0216msdn_VSLie-LV_4pages.indd 4 1/12/16 5:07 PM

www.vslive.com/lasvegas
www.vslive.com/lasvegas
https://twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

VSLIVE.COM/LASVEGAS

JavaScript /
HTML5 Client

Mobile
Client UX/Design Visual Studio /

.NET
Windows

Client Modern Apps Live!

Pre-Conference Workshops: Monday, March 7, 2016 (Separate entry fee required)

Pre-Conference Workshop Registration - Coffee and Morning Pastries

M02 Workshop: DevOps in a Day - Brian Randell M03 Workshop: SQL Server for Developers
- Leonard Lobel

M04 Workshop: Modern App Technology Overview—
Android, iOS, Cloud, and Mobile Web - Allen Conway,

Brent Edwards, Kevin Ford & Nick Landry

Lunch @ Le Village Buffet, Paris Las Vegas

M02 Workshop Continues M03 Workshop Continues M04 Workshop Continues

Dine-A-Round

Day 1: Tuesday, March 8, 2016
Registration - Coffee and Morning Pastries

Keynote: To Be Announced

T03 Introduction to Next Generation of Azure Compute -
Service Fabric and Containers - Vishwas Lele

T04 Technical Debt—Fight it with Science and Rigor
- Brian Randell

T05 Defining Modern App Development
- Rockford Lhotka

T08 Docker and Azure - Steve Lasker T09 Building Windows 10 Line of
Business Applications - Robert Green T10 Modern App Architecture - Brent Edwards

Lunch

Dessert Break - Visit Exhibitors

T13 Knockout In 75 Minutes (Or Less…)
- Christopher Harrison

T14 Exploring T-SQL Enhancements:
Windowing and More - Leonard Lobel

T15 ALM with Visual Studio Online and Git
- Brian Randell

T18 Building “Full Stack” Applications with
Azure App Service - Vishwas Lele

T19 Geospatial Data Types in SQL Server
- Leonard Lobel

T20 DevOps and Modern Applications
- Dan Nordquist

 Welcome Reception

Day 2: Wednesday, March 9, 2016
Registration - Coffee and Morning Pastries

W03 Exploring Microservices in a
Microsoft Landscape - Marcel de Vries

W04 Database Lifecycle Management and the
SQL Server Database - Brian Randell W05 Reusing Logic Across Platforms - Kevin Ford

W08 Breaking Down Walls with Modern Identity
- Eric D. Boyd

W09 JSON and SQL Server, Finally Together
- Steve Hughes

W10 Coding for Quality and Maintainability
- Jason Bock

General Session: To Be Announced

Birds-of-a-Feather Lunch

Dessert Break - Visit Exhibitors - Exhibitor Raffle @ 1:15pm (Must be present to win)

W13 Real-world Azure DevOps
- Brian Randell

W14 Using Hive and Hive ODBC with HDInsight
and Power BI - Steve Hughes W15 Start Thinking Like a Designer - Anthony Handley

W18 Lock the Doors, Secure the Valuables,
and Set the Alarm - Eric D. Boyd

W19 Introduction to Spark for C# Developers
- James McCaffrey

W20 Applied UX: iOS, Android, Windows
- Anthony Handley

W23 Managing Windows Azure with
PowerShell - Mark Michaelis

W24 Introduction to R for C# Programmers
- James McCaffrey W25 Leveraging Azure Services - Brent Edwards

Evening Out Event

Day 3: Thursday, March 10, 2016
Registration - Coffee and Morning Pastries

TH03 Unit Testing & Test-Driven Development (TDD)
for Mere Mortals - Benjamin Day

TH04 Effective Agile Software Requirements
- Richard Hundhausen

TH05 Building for the Modern Web with
JavaScript Applications - Allen Conway

TH08 Unit Testing JavaScript - Ben Dewey TH09 Lessons Learned: Being Agile in a
Waterfall World - Philip Japikse

TH10 Building a Modern Android App
with Xamarin - Kevin Ford

TH13 End-to-End Dependency Injection & Writing
Testable Software - Miguel Castro

TH14 Real World Scrum with Team Foundation
Server 2015 & Visual Studio Online - Benjamin Day

TH15 Building a Modern Windows 10
Universal App - Nick Landry

Lunch @ Le Village Buffet, Paris Las Vegas

TH18 Async Patterns for .NET Development - Ben Dewey TH19 DevOps vs. ALM Different
Measures of Success - Mike Douglas

TH20 Panel: Decoding Mobile Technologies
- Rockford Lhotka

TH23 Improving Quality for Agile Projects Through
Manual and Automated UI Testing—

NO CODING REQUIRED! - Mike Douglas
TH24 Use Visual Studio to Scale Agile in Your Enterprise

- Richard Hundhausen
TH25 Analyzing Results with Power BI

- Scott Diehl

Post-Conference Workshops: Friday, March 11, 2016 (Separate entry fee required)

Post-Conference Workshop Registration - Coffee and Morning Pastries

F02 Workshop: Building Business Apps on the
Universal Windows Platform - Billy Hollis

F03 Workshop: Creating Awesome 2D & 3D Games
and Experiences with Unity - Adam Tuliper

F04 Workshop: Modern Development Deep Dive
- Jason Bock, Allen Conway, Brent Edwards & Kevin Ford

Lunch

F02 Workshop Continues F03 Workshop Continues F04 Workshop Continues

Presented in partnership with

BONUS CONTENT! Modern Apps Live! is now a part of
Visual Studio Live! Las Vegas at no additional cost!

0216msdn_VSLie-LV_4pages.indd 5 1/12/16 5:07 PM

www.vslive.com/lasvegas
www.vslive.com/lasvegas

msdn magazine48

Innovations in cloud computing are reducing the barriers
to entry for distributed computing and machine learning applica-
tions from niche technologies requiring specialized and expensive
infrastructure to a commodity offering available to any software
developer or solution architect. In this article, I’ll describe the
implementation of a reinforcement learning technique that lever-
ages the distributed computing and storage capabilities of Azure
Service Fabric, the next iteration of the Azure Platform-as-a-Service
offering. To demonstrate the potential of this approach, I’ll show
how you can make use of the Service Fabric and its Reliable Actors
programming model to create an intelligent back end that can pre-
dict the next move in a game of tic-tac-toe. War Games, anyone?

Enter Q-Learning
Today we see innovative data-driven solutions such as recom-
mendations, face recognition and fraud detection everywhere.

Software engineering teams use supervised and unsupervised
learning techniques to implement these solutions. Despite the
extensive capabilities of these approaches, there are cases where
they are difficult to apply.

Reinforcement learning is a method that handles scenarios you
can represent as a sequence of states and transitions. In contrast
to other machine learning approaches, reinforcement learning
doesn’t attempt to generalize patterns by training a model from
labeled information (supervised learning) or from unlabeled data
(unsupervised learning). Instead, it focuses on problems you can
model as a sequence of states and transitions.

Say you have a scenario you can represent as a sequence of states
that lead to the final state (known as the absorbing state). Think
of a robot making decisions to avoid obstacles, or artificial intelli-
gence (AI) in a game designed to beat an opponent. In many cases,
the sequence of states that lead to a particular situation is what
determines the best next step for the agent/robot/AI character.

Q-learning is a reinforcement learning technique that uses an
iterative reward mechanism to find optimal transitional pathways in
a state machine model; it works remarkably well when the number of
states and their transitions are finite. In this article, I’ll present how
I used Service Fabric to build an end-to-end Q-learning solution
and show how you can create an intelligent back end that “learns”
how to play tic-tac-toe. (Note that state machine scenarios are also
referred to as Markov Decision Processes [MDPs]).

First, some basic theory about Q-learning. Consider the states
and transitions depicted in Figure 1. Say you want to find, at any
state, which state an agent needs to transition to next to arrive at

MICROS OF T A ZUR E

Azure Service Fabric,
Q-Learning and
Tic-Tac-Toe
Jesus Aguilar

This article discusses:
•	The Q-learning reinforcement learning technique
•	Azure Service Fabric and its actor programming model
•	Exposing an actor’s functionality via an API controller
•	Implementing the tic-tac-toe scenario

Technologies discussed:
Azure Service Fabric, Q-learning

Code download available at:
aka.ms/servicefabricqlearning

0216msdn_AguilarFabric_v4_48-54.indd 48 1/12/16 2:57 PM

http://aka.ms/servicefabricqlearning

49February 2016msdnmagazine.com

the gold state—while minimizing the number of transitions. One
way to tackle this problem is to assign a reward value to each state.
The reward suggests the value of transitioning to a state toward
your goal: getting the gold.

Simple, right? The challenge becomes how to identify the reward
for each state. The Q-learning algorithm identifies rewards by
recursively iterating and assigning rewards to states that lead to
the absorbing (gold) state. The algorithm calculates a state’s reward
by discounting the reward value from a subsequent state. If a state
has two rewards—which is possible if a state exists in more than
one pathway—the highest prevails. The discount has an important
effect on the system. By discounting the reward, the algorithm
reduces the value of the reward for states that are far from the gold
and assigns more weight to the states closest to the gold.

As an example of how algorithm calculates the reward, look
at the state diagram in Figure 1. As you can see, there are three
pathways to gold:

1à5à4àG
1à5à3à4àG
1à5à3à2à4àG

After running the algorithm using brute force transitioning
(iterating through all the possible paths in the graph), the algorithm
calculates and assigns the rewards for the valid pathways. Rewards
are calculated with the discount factor of 0.9.

1(R=72)à5(R=81)à4(R=90)àG (R=100)
1(R=64)à5(R=72)à3(R=81)à4(R=90)à G(R=100)
1(R=58)à5(R=64)à3(R=72)à2(R=81)à4(R=90)à G(R=100)

Because some states have more than one reward, the highest
value will prevail. Figure 2 depicts the final reward assignment.

With this information, an agent can identify the optimal path
to gold in any state by transitioning to the state with the highest
reward. For instance, if the agent is in state 5, it has the choice to
transition to states 3 or 4, and 4 becomes the choice because the
reward is higher.

Azure Service Fabric
Service Fabric, the next iteration of the Azure Platform-as-a-Service
offering, empowers developers to create distributed applications
using two different top-level programming models: Reliable Actors
and Reliable Services. These programming models allow you to
maximize the infrastructure resources of a distributed platform. The
platform handles the most difficult tasks associated with maintaining
and running a distributed application—recovery from failures, dis-
tribution of services to ensure efficient resource utilization, rolling
updates and side-to-side versioning, to mention a few.

Service Fabric provides you with a cluster, giving you a higher
level of abstraction to use, rather than having to worry about the
underlying infrastructure. Your code runs on the nodes of a Service
Fabric cluster, and you can host multi-node clusters on a single
machine for development purposes or on multiple servers (virtual
or physical machines) for production workloads. The platform
manages the lifecycle of your Actors and Services and the recovery
from infrastructure failures.

Service Fabric introduces Reliable Actors and Services with
stateful semantics. This capability translates into a fully integrated
developer experience in which you can develop applications that
persist data in a distributed and therefore highly available manner
without having to include an external storage layer (for example,
taking dependency on an external storage or caching layer) in
your architecture.

By implementing the Q-learning algorithm as a service within
Service Fabric, you can benefit from having distributed computing
and low-latency state storage capabilities, enabling you to execute
the algorithm, persist the results, and expose the whole thing as
reliable end points for clients to access. All these capabilities come
together in a single solution with a unified programming and man-
agement stack. There’s no need to add additional components to
your architecture, such as an external storage, cache or messaging
system. In short, you have a solution in which your compute, data
and services reside within the same integrated platform. That’s an
elegant solution in my book!

Q-Learning and Reliable Actors
The actor model simplifies the design of massively concurrent
applications. In the actor model, actors are the fundamental com-
puting unit. An actor represents a boundary of functionality and
state. You can think of an actor as an object entity living in a dis-
tributed system. Service Fabric manages the lifecycle of the actor.
In the event of failure, Service Fabric re-instantiates the actor in a
healthy node automatically. For example, if a stateful actor crashes

Figure 2 Final Rewards

1 4

2 5

3

R:72

R:81

R:90

R:81

R:100

Gold

Figure 1 A Sequence of States Leading to the Gold State

1 4

2 5

3

R:100

Gold

Reinforcement learning is a
method that handles scenarios

you can represent as a sequence
of states and transitions.

0216msdn_AguilarFabric_v4_48-54.indd 49 1/12/16 2:57 PM

http://www.msdnmagazine.com

msdn magazine50 Microsoft Azure

for some reason or the node (think VM) it’s running on fails, the
actor is automatically re-created on another machine with all of
its state (data) intact.

Service Fabric also manages how an instance of an actor is accessed.
The platform guarantees that at any point in time, only one method
on a particular actor is executing at a time. If there are two concurrent
calls to the same actor, Service Fabric will queue one and let the other
proceed. The implication is that inside an actor your code doesn’t have
to worry about race conditions, locks or synchronization.

As I described earlier, the Q-learning algorithm iterates through
states with the goal of finding absorbing states and states with rewards.
Once the algorithm identifies an absorbing state with a reward, it will
calculate rewards for all the states that lead to the absorbing state.

Using the actor model, I can model this functionality as an actor
that represents a state in the context of the Q-learning algorithm
(think of stages in the overall graph). In my implementation, the
actor type that represents these states is QState. Once there’s a tran-
sition to a QState actor containing a reward, the QState actor will
create another actor instance of a different type (QTrainedState)
for each of the QState actors in the pathway. QTrainedState actors
maintain the maximum reward value and a list of the subsequent
states that yield the reward. The list contains the state tokens (which
uniquely identifies a state in the graph) of the subsequent states.

In Figure 3, I depict the logic of the algorithm using actors, for a
very simple scenario where a state with state token 3 is an absorb-
ing state, contains a reward of 100, and has only one pathway with
two previous states (state token 1 and 2). Each circle represents an
instance of an actor, QStates in blue and QTrainedStates in orange.
Once the transition process reaches the QState with state token 3,
the QState actor will create two QTrainedStates, one for each of
the previous QStates. For the QTrainedState actor that represents

state token 2, the suggested transition (for a reward of 90) is to state
token 3, and for the QTrainedState actor that represents state token
1, the suggested transition (for a reward of 81) is to state token 2.

It’s possible that multiple states will yield the same reward, so
the QTrainedState actor persists a collection of state tokens as
children states.

The following code shows the implementation of the interfaces for
the QState and QTrainedState actors, called IQState and IQTrained-
State. QStates have two behaviors: transitioning to other QStates
and starting the transition process when no prior transition exists:

public interface IQState : IActor
{
 Task StartTrainingAsync(int initialTransitionValue);

 Task TransitionAsync(int? previousStateToken, int transitionValue);
}
public interface IQTrainedState:IActor
{
 .Task AddChildQTrainedStateAsync(int stateToken, double reward);

 .Task<List<int>> GetChildrenQTrainedStatesAsync();
}

Notice that the implementation of IQTrainedState surfaces the
method GetChildrenQTrainedStatesAsync. This method is how
the QTrainedState actor will expose the trained data containing
the states with the highest reward value for any state in the system.
(Note that all actors in the Service Fabric must implement an
interface derived from IActor.)

QState Actor
After defining the interfaces, I can move to the implementation of
the actors. I’ll start with the QState actor and the TransitionAsync
method, which is the cornerstone of the algorithm and where
most of the work resides. TransitionAsync makes the transition to
another state by creating a new instance of a QState actor and
calling the same method again.

public abstract class QState : StatefulActor, IQState, IRemindable
{
 // ...
 public Task TransitionAsync(int? previousStateToken, int transitionValue)
 {
 var rwd = GetReward(previousStateToken, transitionValue);

 var stateToken = transitionValue;
 if (previousStateToken != null)
 stateToken = int.Parse(previousStateToken.Value + stateToken.ToString());

 var ts = new List<Task>();

 if (rwd == null || !rwd.IsAbsorbent)
 ts.AddRange(GetTransitions(stateToken).Select(p =>
 ActorProxy.Create<IQState>(ActorId.NewId(),
 "fabric:/QLearningServiceFab").TransitionAsync(stateToken, p)));

 if (rwd != null)
 ts.Add(RegisterReminderAsync("SetReward",
 Encoding.UTF8.GetBytes(JsonConvert.SerializeObject(rwd))
 , TimeSpan.FromMilliseconds(0)
 , TimeSpan.FromMilliseconds(-1), ActorReminderAttributes.Readonly));

 return Task.WhenAll(ts);
 }
 // ...
}

Figure 4 TransitionAsync in the QState Class

Figure 3 Determining and Persisting Rewards

QTrainedStates

No Reward/
Not Absorbant

No Reward/
Not Absorbant

Reward = 100 Absorbant =
True Discount = .9

1

2

3

1

R:81
Children States: 2

2

R:90
Children States: 3

QStates

Once the algorithm identifies
an absorbing state with a reward,

it will calculate rewards for all
the states that lead to the

absorbing state.

0216msdn_AguilarFabric_v4_48-54.indd 50 1/12/16 2:57 PM

Untitled-7 1 9/3/15 1:26 PM

www.lightningChart.com

msdn magazine52 Microsoft Azure

You might wonder if by calling the method recursively you’d
avoid the overhead of invoking the method through another ac-
tor instance. A recursive method call is a compute-intensive oper-
ation in a single node. In contrast, by instantiating another actor,
you're taking advantange of the capabilities of Service Fabric by
letting the platform distribute the processing across horizontal
computing resources.

To manage the assignment of the reward, I’ll register a
reminder. Reminders are new constructs introduced in the actor
programming model that allow you to schedule asynchronous
work without blocking the execution of a method.

Reminders are available only for stateful actors. For both state-
less and stateful actors, the platform provides timers that enable
similar patterns. One important consideration is that when the
actor is used, the garbage collection process is delayed; never-
theless, the platform doesn’t consider timer callbacks as usage. If
the garbage collector kicks in, the timers will be stopped. Actors
won’t be garbage collected while a method is executed. To guar-
antee recurring execution, use reminders. More information can
be found at bit.ly/1RmzKfr.

The goal, as it relates to the algorithm, is to perform the
reward assignment without blocking the transition process.
Typically, scheduling a work item in the thread pool with a
callback will suffice; however, in the actor programming model,
this approach is not a good idea as you’ll lose the concurrency
benefits of the platform.

The platform guarantees that only one method is executed
at any time. This capability allows you to write your code with-
out considering concurrency; that is, without having to worry
about thread safety. As you’d expect, there’s a trade-off: You must
avoid creating tasks or threads to wrap operations inside the actor
methods. The reminders allow you to implement background

public Task SetRewardAsync(int stateToken, double stateReward, double discount)
 {
 var t = new List<Task>();
 var reward = stateReward;

 foreach (var pastState in GetRewardingQStates(stateToken))
 {
 t.Add(ActorProxy
 .Create<IQTrainedState>(new ActorId(pastState.StateToken),
 "fabric:/QLearningServiceFab")
 .AddChildQTrainedStateAsync(pastState.NextStateToken, reward));

 reward = reward * discount;
 }

 return Task.WhenAll(t);

 }

public async Task ReceiveReminderAsync(string reminderName,
 byte[] context, TimeSpan dueTime, TimeSpan period)
 {
 await UnregisterReminderAsync(GetReminder(reminderName));

 var state = JsonConvert.DeserializeObject<JObject>(
 Encoding.UTF8.GetString(context));

 if (reminderName == "SetReward")
 {
 await SetRewardAsync(state["StateToken"].ToObject<int>(),
 state["Value"].ToObject<double>(),
 state["Discount"].ToObject<double>());
 }

 if (reminderName == "StartTransition")
 {
 await TransitionAsync(null, state["TransitionValue"].ToObject<int>());
 }
 }

Figure 5 The SetRewardAsync and
the ReceiveReminderAsync Methods

public class QTrainedState : StatefulActor<QTrainedStateState>, IQTrainedState
{
 protected async override Task OnActivateAsync()
 {
 this.State =
 await ActorService.StateProvider.LoadStateAsync<QTrainedStateState>(
 Id, "qts") ??
 new QTrainedStateState() { ChildrenQTrainedStates = new HashSet<int>() };

 await base.OnActivateAsync();
 }

 protected async override Task OnDeactivateAsync()
 {
 await ActorService.StateProvider.SaveStateAsync(Id, "qts", State);

 await base.OnDeactivateAsync();
 }

 [Readonly]
 public Task AddChildQTrainedStateAsync(int stateToken, double reward)
 {

 if (reward < State.MaximumReward)
 {
 return Task.FromResult(true);
 }

 if (Math.Abs(reward - State.MaximumReward) < 0.10)
 {
 State.ChildrenQTrainedStates.Add(stateToken);
 return Task.FromResult(true);
 }

 State.MaximumReward = reward;
 State.ChildrenQTrainedStates.Clear();
 State.ChildrenQTrainedStates.Add(stateToken);

 return Task.FromResult(true);
 }

 [Readonly]
 public Task<List<int>> GetChildrenQTrainedStatesAsync()
 {
 return Task.FromResult(State.ChildrenQTrainedStates.ToList());
 }
}

Figure 6 The QTrainedState Class

Reminders are new constructs
introduced in the actor

programming model that allow
you to schedule asynchronous

work without blocking the
execution of a method.

0216msdn_AguilarFabric_v6_48-54.indd 52 1/13/16 4:06 PM

www.bit.ly/1RmzKfr

53February 2016msdnmagazine.com

processing scenarios with the concurrency guarantees of the plat-
form, as shown in Figure 4.

(Note that setting dueTime to TimeSpan.FromMilliseconds(0))
indicates an immediate execution.)

To complete the implementation of IQState, the following
code implements the StartTransitionAsync method, where I use a
reminder to avoid a blocking long-running call:

public Task StartTrainingAsync(int initialTransitionValue)
 {
 return RegisterReminderAsync("StartTransition",
 Encoding.UTF8.GetBytes(JsonConvert.SerializeObject(new { TransitionValue =
 initialTransitionValue })), TimeSpan.FromMilliseconds(0),
 TimeSpan.FromMilliseconds(-1),
 ActorReminderAttributes.Readonly);
 }

To finalize the implementation of the QState class, I’ll describe
the implementation of the SetRewardAsync and the Receive
ReminderAsync methods, shown in Figure 5. The SetReward
method creates or updates a stateful actor (the implementation of
IQTrainedState). To locate the actor in subsequent calls, I use the
state token as the actor id—actors are addressable.

QTrainedState Actor
The second actor in the solution is QTrained-
State. The data in QTrainedState actor must
be durable, therefore I implemented this
actor as a stateful actor.

In Service Fabric, you implement a stateful
actor by deriving your class from Stateful
Actor or the StatefulActor<T> base classes
and implementing an interface derived from
IActor. T is the type of the state instance,
which must be serializable and a reference
type. When you call a method of a class
derived from StatefulActor<T>, the plat-
form loads the state from the state provider,
and once the call completes, the platform

saves it automatically. In the case of the QTrainedState, I modeled
the state (durable data) using the following class:

[DataContract]
public class QTrainedStateState
{
 [DataMember]
 public double MaximumReward { get; set; }

 [DataMember]
 public HashSet<int> ChildrenQTrainedStates { get; set; }
}

Figure 6 shows the complete implementation of the QTrained-
State class, which implements the two methods of the IQTrained-
State interface.

Surfacing the Actors
At this point, the solution has everything necessary to start the
training process and persist the data. But I haven’t yet discussed
how clients will interact with these actors. At a high level, this
interaction consists of starting the training process and querying
the persisted data. Each of these interactions correlates nicely with
an API operation, and a RESTful implementation facilitates the
integration with clients.

In addition to having the two programming models, Service
Fabric is a comprehensive orchestration and process management
platform. The failure recovery and resource management that
exists for actors and services is also available to other processes. For
instance, you can run Node.js or ASP.NET 5 processes, managed
by Service Fabric, and benefit from these capabilities without fur-

ther effort. So I can just use a standard
 ASP.NET 5 Web API application and create
an API controller that exposes the relevant
actor’s functionality, as shown in Figure 7.

And Tic-Tac-Toe?
What’s left now is to make use of the solu-
tion with a concrete scenario. For this, I’ll
use a simple game: tic-tac-toe.

The goal is to train a set of QTrainedStates
that you can query to predict the next move
in a game of tic-tac-toe. One way to think
about this is that the machine is acting as
both players and learning from the outcomes.

[Route("api/[controller]")]
public class QTrainerController : Controller
{
 [HttpGet()]
 [Route("[action]/{startTrans:int}")]
 public async Task<IActionResult> Start(int startTrans)
 {
 var actor = ActorProxy.Create<IQState>(ActorId.NewId(),
 "fabric:/QLearningServiceFab/");

 await actor.StartTrainingAsync(startTrans);

 return Ok(startTrans);
 }

 [HttpGet()]
 [Route("[action]/{stateToken}")]
 public async Task<int> NextValue(int stateToken)
 {
 var actor = ActorProxy.Create<IQTrainedState>(new ActorId(stateToken),
 "fabric:/QLearningServiceFab");

 var qs = await actor.GetChildrenQTrainedStatesAsync();

 return qs.Count == 0 ? 0 : qs[new Random().Next(0, qs.Count)];
 }
}

Figure 7 The API Controller

Figure 8 The Tic-Tac-Toe Scenario

X 1 X 2 X 3

O 4 5 6

O 7 8 9

1 14 142 1427 14273

1 4 2 7 3

R2 R1 R0

In addition to having
the two programming
models, Service Fabric

is a comprehensive
orchestration and process
management platform.

0216msdn_AguilarFabric_v6_48-54.indd 53 1/13/16 4:06 PM

http://www.msdnmagazine.com

msdn magazine54 Microsoft Azure

Going back to the implementation, notice that QState is an
abstract class. The idea is to encapsulate the basic aspects of the
algorithm and put the logic of the specific scenario in a derived
class. A scenario defines three parts of the algorithm: how the tran-
sition between states occurs (policy); what states are absorbing
and have an initial reward; and the states the algorithm will assign
a reward with a discount. For each of these parts, the QState class
has a method where you can implement these semantics to solve
a specific scenario. These methods are GetTransitions, GetReward
and GetRewardingQStates.

So the question becomes: How can you model a game of tic-tac-
toe as a sequence of states and transitions?

Consider the game depicted in Figure 8, where each cell has a
number assigned. You can think of each turn as a transition from
one state to another in which the transition value is the cell where
the player is making a play. Each state token is then a combination
of the previous turns (cells) and the transition value. For the exam-
ple in Figure 8, a transition from 1 to 14, and then to 142, and so
on, models the steps of the game where the player that played the
first turn wins. And in this case, all the states that lead to 14273 (the
winning and absorbing state) must be assigned a reward: 1 and 142.

Going back to Q-learning, what I need to provide are all the
final (absorbing) states, each with an initial reward. For tic-tac-toe,
three types of states will yield a reward: a win, a tie or a block
(referring to a point when your opponent is about to win, so you
are forced to use your turn to block him). A win and a tie are
absorbing, meaning the game ends; a block is not, however, and
the game continues. Figure 9 shows the implementation of the
GetReward method for the game of tic-tac-toe.

Next, once a state is identified with a reward, I need to provide
the algorithm with the states that led to the state with an initial
reward so a discounted reward can be assigned. For win or block
scenarios, these states are all the previous states (plays) of the win-
ning or blocking player. For ties, all the states (plays) of both players
must be assigned a reward:

internal override IEnumerable<IPastState> GetRewardingQStates(int stateToken)
{
 var game = new TicTacToeGame(stateToken);

 if (game.IsTie)
 return game.GetAllStateSequence();

 return game.GetLastPlayersStateSequence();
}

Finally, I need to implement a transition policy that determines
how the algorithm will iterate through the states. For the game,
I’ll implement a transition policy where all possible combinations
are explored:

internal override IEnumerable<int> GetTransitions(int stateToken)
{
 var game = new TicTacToeGame(stateToken);

 return game.GetPossiblePlays();
}

Playing Against the Machine
At this point, I can publish the solution and start the training by
calling REST API and providing the initial transitions: 1 to 9.

Once the training finishes, you can use the API to create an appli-
cation that can simply pass a state token and receive the suggested
value. The source code for this article contains a Universal Windows
Platform app that uses this back end. Figure 10 shows the game.

Wrapping Up
By using Q-learning and Service Fabric, I was able to create an
end-to-end framework that leverages a distributed platform to
compute and persist data. To showcase this approach, I used the
game of tic-tac-toe to create a back end that learns how to play the
game, and does so at an acceptable level by only indicating when
a win, a tie, or a block occurs and letting the machine learn by
playing the game.	 n

Jesus Aguilar is a senior cloud architect at Microsoft in the Technical Evangelism
and Development team where he partners with awesome companies that are
born in the cloud, and helps them deliver compelling experiences at scale. He is
passionate about software engineering and solution design, and you will catch his
attention by using terms such as “Predictive Analytics,” “Scalability,” “Concurrency,”
“Design Patterns” and “<Choose any Letter>aaS.” You can follow him on Twitter:
@giventocode and check out his blog at giventocode.com.

Thanks to the following Microsoft technical experts for reviewing this article:
Rob Bagby, Mike Lanzetta and Matthew Snider

internal override IReward GetReward(int? previousStateToken, int transitionValue)
{
 var game = new TicTacToeGame(previousStateToken,transitionValue);
 IReward rwd = null;

 if (game.IsBlock)
 {
 rwd = new TicTacToeReward() { Discount = .5, Value = 95, IsAbsorbent = false,
 StateToken = game.StateToken};
 }
 if (game.IsWin)
 {
 rwd = new TicTacToeReward() { Discount = .9, Value = 100, IsAbsorbent = true,
 StateToken = game.StateToken };
 }
 if (game.IsTie)
 {
 rwd = new TicTacToeReward() { Discount = .9, Value = 50, IsAbsorbent = true,
 StateToken = game.StateToken };
 }
 return rwd;
}

Figure 9 The GetReward Method

Figure 10 A Game of Tic-Tac-Toe

0216msdn_AguilarFabric_v4_48-54.indd 54 1/12/16 2:57 PM

www.twitter.com/giventocode
www.twitter.com/giventocode
www.giventocode.com

Untitled-6 1Untitled-6 1 1/12/16 1:02 PM1/12/16 1:02 PM

www.alachisoft.com

msdn magazine56

Roach infestation optimization is a numerical optimization algorithm
that’s loosely based on the behavior of common cockroaches such as
Periplaneta americana. Yes, you read that correctly. Let me explain.

In machine learning, a numerical optimization algorithm is often
used to find a set of values for variables (usually called weights) that
minimize some measure of error. For example, logistic regression
classification uses a math equation where, if there are n predictor
variables, there are n+1 weight values that must be determined.
The process of determining the values of the weights is called
training the model. The idea is to use a collection of training data
that has known correct output values. A numerical optimization
algorithm is used to find the values of the weights that minimize
the error between computed output values and known correct
output values.

There are many different numerical optimization algorithms. The
most common are based on calculus derivatives, but there are also
algorithms that are based on the behaviors of natural systems. These
are sometimes called bio-inspired algorithms. This article explains
a relatively new (first published in 2008) technique called roach
infestation optimization (RIO). RIO optimization loosely models
the foraging and aggregating behavior of a collection of roaches.

A good way to get an idea of what RIO is and to see where this
article is headed is to take a look at the demo program in Figure
1. The goal of the demo is to use RIO to find the minimum value
of the Rastrigin function with eight input variables. The Rastrigin
function is a standard benchmark function used to evaluate the
effectiveness of numerical optimization algorithms. The function

has a known minimum value of 0.0 located at x = (0, 0, . . 0) where
the number of 0 values is equal to the number of input values.

The Rastrigin function is difficult for most optimization algorithms
because it has many peaks and valleys that create local minimum
values that can trap the algorithms. It’s not possible to easily visual-
ize the Rastrigin function with eight input values, but you can get a
good idea of the function’s characteristics by examining a graph of
the function for two input values, shown in Figure 2.

The demo program sets the number of roaches to 20. Each sim-
ulated roach has a position that represents a possible solution to
the minimization problem. More roaches increase the chance of
finding the true optimal solution at the expense of performance.
RIO typically uses 10 to 100 roaches.

RIO is an iterative process and requires a maximum loop counter
value. The demo sets the maximum value to 10,000 iterations. The
maximum number of iterations will vary from problem to problem,
but values between 1,000 and 100,000 are common. RIO has an ele-
ment of randomness and the demo sets the seed value for the random
number generator to 6, because 6 gave representative demo output.

In the demo shown in Figure 1, the best (smallest) error associ-
ated with the best roach position found so far was displayed every
500 time units. After the algorithm finished, the best position found
for any roach was x = (0, 0, 0, 0, 0, 0, 0, 0), which is, in fact, the cor-
rect answer. But notice if the maximum number of iterations had
been set to 5,000 instead of 10,000, RIO would not have found
the one global minimum. RIO, like almost all numerical optimi-
zation algorithms, is not guaranteed to find an optimal solution in
practical scenarios.

This article assumes you have at least intermediate program-
ming skills but doesn’t assume you know anything about numerical

Roach Infestation Optimization

Test Run JAMES MCCAFFREY

Code download available at msdn.com/magazine/0216magcode.

The most common algorithms
are based on calculus derivatives,
but there are also algorithms that

are based on the behaviors of
natural systems.

Roach infestation optimization
is a numerical optimization

algorithm that’s loosely based
on the behavior of

common cockroaches.

0216msdn_McCaffreyTestRun_v4_56-64.indd 56 1/12/16 2:50 PM

http://msdn.com/magazine/0216magcode

57February 2016msdnmagazine.com

optimization or the roach infestation optimization
algorithm. The demo program is coded using C#,
but you shouldn’t have too much difficulty refac-
toring the code to another language such as Visual
Basic or JavaScript.

The complete demo code, with a few minor edits
to save space, is presented in this article. The demo
is also available in the code download that accom-
panies this article. The demo code has all normal
error checking removed to keep the main ideas
as clear as possible and the size of the code small.

Overall Program Structure
The overall program structure is presented in
Figure 3. To create the demo, I launched Visual
Studio and created a new C# console application
named RoachOptimization. The demo has no sig-
nificant Microsoft .NET Framework dependencies
so any recent version of Visual Studio will work.

After the template code loaded into the Visual
Studio editor, in the Solution Explorer window I
renamed file Program.cs to the more descriptive
RoachOptimizationProgram.cs and Visual Studio
automatically renamed class Program for me. At
the top of the source code, I deleted all unnec-
essary using statements, leaving just the single
reference to System.

I coded the demo using a mostly static-method
approach rather than a full Object-Oriented
Programming (OOP) approach. The demo has all the control logic
in the Main method. It begins by setting up the algorithm input
parameter values:

Console.WriteLine("Begin roach optimization demo");
int dim = 8;
int numRoaches = 20;
int tMax = 10000;
int rndSeed = 6;

The dim variable specifies the number of input values for Rastrigin’s
function. In a non-demo machine learning scenario, the dim rep-
resents the number of weights in the prediction model. The number
of roaches is set to 20. Variable tMax is the maximum number of
iterations. RIO, like most bio-inspired algorithms, is probabilistic.
Here, a random variable seed value is set to 6.

Next, the RIO parameters are echoed to the console:
Console.WriteLine("Goal is to minimize Rastrigin's " +
 "function in " + dim + " dimensions");
Console.WriteLine("Problem has known min value = 0.0 " +
 "at (0, 0, .. 0) ");
Console.WriteLine("Setting number of roaches = " +
 numRoaches);
Console.WriteLine("Setting maximum iterations = " +
 tMax);
Console.WriteLine("Setting random seed = " + rndSeed);;

The roach optimization algorithm is called like so:
Console.WriteLine("Starting roach optimization ");
double[] answer = SolveRastrigin(dim, numRoaches,
 tMax, rndSeed);
Console.WriteLine("Roach algorithm completed");

The Main method concludes by displaying the results:
double err = Error(answer);
Console.WriteLine("Best error found = " +
 err.ToString("F6") + " at: ");
for (int i = 0; i < dim; ++i)
 Console.Write(answer[i].ToString("F4") + " ");
Console.WriteLine("");
Console.WriteLine("End roach optimization demo");
Console.ReadLine();

The roach optimization algorithm presented in this article is based
on the 2008 research paper, “Roach Infestation Optimization,” by
T. Havens, C. Spain, N. Salmon and J. Keller. You can find the paper
in several locations on the Web.

Understanding the Roach Optimization Algorithm
In RIO, there’s a collection of simulated roaches. Each roach has a
position in n-dimensions that represents a possible solution to a
minimization problem. Simulated roach behavior is based on three

Figure 1 The Roach Infestation Optimization Algorithm in Action

The Rastrigin function is difficult
for most optimization algorithms

because it has many peaks
and valleys that create local

minimum values that can trap
the algorithms.

0216msdn_McCaffreyTestRun_v4_56-64.indd 57 1/12/16 2:50 PM

http://www.msdnmagazine.com

msdn magazine58 Test Run

behaviors of real roaches. First, roaches tend to move toward dark
areas. Second, roaches like to group together. Third, when roaches
get hungry, they will leave their current location to search for food.
Exactly how simulated roaches model these behaviors will become
clear when the code is presented.

Expressed in very high-level pseudocode, the roach optimization
algorithm is presented in Figure 4. At first glance, the algorithm
seems quite simple; however, there are a lot of details that aren’t
apparent in the pseudo-code.

The Roach Class
The definition of program-defined class Roach begins as:

public class Roach
{
 public int dim;
 public double[] position;
 public double[] velocity;
 public double error;
...

The dim field is the problem dimension, which is 8 in the case of
the demo. The position field is an array that conceptually represents
the location of a roach, and also represents a possible solution to a
minimization problem. The velocity field is an array of values that
determine where the roach will move in the next time unit. For
example, if dim = 2 and position = (5.0, 3.0) and velocity = (1.0,
-2.0), the roach will move to (6.0, 1.0). The error field is the error
associated with the current position.

The definition continues:
public double[] personalBestPos;
public double personalBestErr;
public double[] groupBestPos;
public int hunger;
private Random rnd;

The personalBestPos field holds the best position
found by the simulated roach at any point during
its movement. The personalBestError holds the
error that corresponds to personalBestPos. The
groupBestPos field holds the best position found
by any of a group of neighbor roaches. The hunger
field is an integer value that represents how hun-
gry the roach is. The Random object rnd is used to
initialize a roach to a random position.

The Roach class definition continues by defin-
ing a constructor:

public Roach(int dim, double minX, double maxX,
 int tHunger, int rndSeed)
{
 this.dim = dim;
 this.position = new double[dim];
 this.velocity = new double[dim];
 this.personalBestPos = new double[dim];
 this.groupBestPos = new double[dim];
...

The minX and maxX parameters are used to set limits for the compo-
nents of the position vector. Parameter tHunger is a maximum hunger
value. When a roach’s hunger reaches tHunger, the roach will move to
a new location. The constructor allocates space for the four array fields.

Next, the constructor initializes the Random object and then
uses it to set the initial hunger value to a random value:

this.rnd = new Random(rndSeed);
this.hunger = this.rnd.Next(0, tHunger);

Next, the constructor sets the initial position, velocity, personal
best location and group best location arrays to random values
between minX and maxX:

The personalBestPos field holds
the best position found by the
simulated roach at any point

during its movement.

using System;
namespace RoachOptimization
{
 class RoachOptimizationProgram
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Begin roach optimization demo");
 // Code here
 Console.WriteLine("End roach demo");
 Console.ReadLine();
 }

 static double[] SolveRastrigin(int dim, int numRoaches,
 int tMax, int rndSeed) { . . }

 public static double Error(double[] x) { . . }

 static double Distance(double[] pos1,
 double[] pos2) { . . }

 static void Shuffle(int[] indices,
 int seed) { . . }

 } // Program

 public class Roach
 {
 // Defined here
 }
}

Figure 3 Roach Optimization Demo Program Structure

Figure 2 The Rastrigin Function with Two Input Variables

0216msdn_McCaffreyTestRun_v4_56-64.indd 58 1/12/16 2:50 PM

Untitled-1 1Untitled-1 1 4/1/14 10:47 AM4/1/14 10:47 AM

www.spreadsheetgear.com

msdn magazine60 Test Run

for (int i = 0; i < dim; ++i) {
 this.position[i] = (maxX - minX) * rnd.NextDouble() + minX;
 this.velocity[i] = (maxX - minX) * rnd.NextDouble() + minX;
 this.personalBestPos[i] = this.position[i];
 this.groupBestPos[i] = this.position[i];
}

The Roach constructor definition finishes like so:
...
 error = RoachOptimizationProgram.Error(this.position);
 personalBestErr = this.error;
 } // ctor
} // Roach

The error field is set by calling external method Error, defined in
the calling program class. An alternative approach is to compute
the error value before calling the constructor, then pass the error
value in as a parameter to the constructor.

Implementing the Roach Algorithm
The RIO algorithm is contained in static method SolveRastrigin,
whose definition begins as:

static double[] SolveRastrigin(int dim, int numRoaches,
 int tMax, int rndSeed)
{
 double C0 = 0.7;
 double C1 = 1.43;
 double[] A = new double[] { 0.2, 0.3, 0.4 };
...

Constants C0 and C1 are used when computing a roach’s new
velocity, as you’ll see shortly. The values used, 0.7 and 1.43, come from
particle swarm theory. You might want to investigate other values.

Roaches that are close to each other are called neighbors. Neighbors
will sometimes, but not always, exchange information. The array
named A holds probabilities. The first value, 0.2, is the probability
that a roach with one neighbor will exchange information with that
neighbor. The second value, 0.3, is the probability that a roach will
exchange information if it has two neighbors. The third value, 0.4,
is the probability of exchanging information if a roach has three
or more neighbors.

These probability values, (0.2, 0.3, 0.4), are not the ones that were
used in the source research paper. The original study used proba-
bility values of (0.49, 0.63, 0.65), which correspond to actual roach
behavior as described in a biology research paper. I discovered the
probabilities that match real roach behavior weren’t as effective as
the artificial probability values used in the demo. The definition
of method SolveRastrigin continues with:

int tHunger = tMax / 10;
double minX = -10.0;
double maxX = 10.0;
int extinction = tMax / 4;
Random rnd = new Random(rndSeed);

Local variable tHunger determines when a roach will become
hungry and leave its current location and neighbors. For example,
if tMax is 10,000 as in the demo, then, when a roach’s hunger value
reaches tMax / 10 = 1,000, the roach will move to a new position.

Variables minX and maxX set limits on a roach’s position vector.
The values (-10.0, +10.0) are normal for machine learning weights
and also correspond to usual limits for the Rastrigin function.
For example, for a problem with dimension = 3, the position vec-
tor is an array of three cells, all of which will have values between
-10.0 and +10.0.

Local variable extinction determines when all the roaches will
die and be reborn at new positions. This mechanism is a restart
and helps prevent the algorithm from getting stuck at a non-
optimal solution.

Local Random object rnd is used by the algorithm for three pur-
poses. The order in which the roaches are processed is randomized;
the exchange of information between neighbor roaches occurs
with a certain probability; and there’s a random component to each
roach’s new velocity. Method SolveRastrigin continues:

Roach[] herd = new Roach[numRoaches];
for (int i = 0; i < numRoaches; ++i)
 herd[i] = new Roach(dim, minX, maxX, tHunger, i);

The collection of simulated roaches is an array named herd.
There are all kinds of interesting names for collections of animals,
such as a pod of whales and a gaggle of geese. As a matter of fact,
a collection of cockroaches is called an intrusion of roaches. (This
information could make a useful bar bet for you.)

Notice that the loop index variable, i, is passed to the Roach con-
structor. The index variable acts as a random seed for the Random
object that’s part of the Roach class definition. Passing a loop index
variable to be used as a random seed value is a common technique
in machine learning. The method definition continues with:

int t = 0; // Loop counter (time)
int[] indices = new int[numRoaches];
for (int i = 0; i < numRoaches; ++i)
 indices[i] = i;

double bestError = double.MaxValue;
double[] bestPosition = new double[numRoaches];
int displayInterval = tMax / 20;

The array named indices holds values (0, 1 2, . . numRoaches-1).
The array will be shuffled in the main processing loop so that the
order in which the roaches are processed is different every time.
Local variables bestPosition and bestError hold the best position/

initialize n roaches to random positions
loop tMax times
 compute distances between all roaches
 compute median distance
 for-each roach
 compute number neighbors
 exchange data with neighbors
 if not hungry
 compute new velocity
 compute new position
 check if new best position
 else if hungry
 relocate to new position
 end-if
 end-for
end loop
return best position found

Figure 4 The Roach Algorithm at a High Level

I discovered the probabilities
that match real roach behavior

weren’t as effective as the
artificial probability values used

in the demo.

0216msdn_McCaffreyTestRun_v4_56-64.indd 60 1/12/16 2:50 PM

Untitled-2 1Untitled-2 1 5/31/13 10:57 AM5/31/13 10:57 AM

www.rssbus.com

msdn magazine62 Test Run

solution and associated error found by any roach at any time. Local
variable displayInterval determines when a progress message will
be displayed to the console. Next, an array-of-arrays style matrix
is instantiated to hold the distance between all pairs of roaches:

double[][] distances = new double[numRoaches][];
for (int i = 0; i < numRoaches; ++i)
 distances[i] = new double[numRoaches];

For example, if distances[0][3] = 7.89 then distances[3][0] is also
7.89 and the distance between roach 0 and roach 3 is 7.89. Note that
the redundant data isn’t serious because in most cases you won’t have
a huge number of roaches. Next, the main processing loop starts:

while (t < tMax)
{
 if (t > 0 && t % displayInterval == 0) {
 Console.Write("time = " + t.ToString().PadLeft(6));
 Console.WriteLine(" best error = " +
 bestError.ToString("F5"));
 }
...

Then the distances between roaches is calculated:
for (int i = 0; i < numRoaches - 1; ++i) {
 for (int j = i + 1; j < numRoaches; ++j) {
 double d = Distance(herd[i].position,
 herd[j].position);
 distances[i][j] = distances[j][i] = d;
 }
}

The distance values are calculated using helper method Distance,
which will be presented shortly. The array indexing here is a bit tricky
but I’ll leave it to you to verify if you’re curious. Next, the distance
values are copied from the distances matrix into an array so they
can be sorted and then the median distance can be determined:

double[] sortedDists =
 new double[numRoaches * (numRoaches - 1) / 2];
int k = 0;
for (int i = 0; i < numRoaches - 1; ++i) {
 for (int j = i + 1; j < numRoaches; ++j) {
 sortedDists[k++] = distances[i][j];
 }
}

The size of the array is best explained by example. Suppose there
are n = 4 roaches. Then the distances matrix will have size 4x4. The
values on the diagonal, [0][0], [1][1], [2][2] and [3][3] will be 0.0
and shouldn’t be included. That leaves the 6 values at [0][1], [0][2],
[0][3], [1][2], [1][3] and [2][3]. You don’t need the identical distance
values at symmetric indices [1][0], [2][0] and so on. So, there are
n * (n-1) / 2 distinct distance values. Next, the median distance
between roaches is calculated and the roach indices are randomized:

Array.Sort(sortedDists);
double medianDist = sortedDists[sortedDists.Length / 4];
Shuffle(indices, t); // t is used as a random seed

Here, because I divide by 4, the distance is one-fourth from the
beginning of the sorted distances array so the result really isn’t a
median, it’s a quartile. The original research paper used the actual
median (by dividing by 2), but I found that the quartile worked better
than the median. The idea is that the median or quartile deter-
mines how many neighbors a roach has, which in turn influences
how closely the roaches are grouped. Using the quartile keeps the
roaches further apart, giving them a better chance to find a tricky
global minimum value for the target function to minimize.

The roach indices are randomized using helper method Shuffle,
which will be presented shortly. Notice that the time index variable, t,
is passed to the Shuffle method and acts as a seed for the Shuffle ran-
dom number generator. Next, the loop to process each roach begins:

for (int i = 0; i < numRoaches; ++i) // Each roach
{
 int idx = indices[i]; // Roach index
 Roach curr = herd[idx]; // Ref to current roach
 int numNeighbors = 0;
...

A reference to the current roach, herd[idx], is created and named
curr. This is just for convenience. Next, the number of neighbors
of the current roach is calculated:

for (int j = 0; j < numRoaches; ++j) {
 if (j == idx) continue;
 double d = distances[idx][j];
 if (d < medianDist) // Is a neighbor
 ++numNeighbors;
}

The condition j == idx is used to prevent the current roach from
being counted as a neighbor to itself. Next, the effective number of
neighbors is determined:

int effectiveNeighbors = numNeighbors;
if (effectiveNeighbors >= 3)
 effectiveNeighbors = 3;

Recall that the purpose of calculating the number of neighbors is
to determine the probability that neighbors will exchange informa-
tion. But the probability of information exchange is the same for 3
or more neighbors. Next, the algorithm determines if information
should be exchanged:

for (int j = 0; j < numRoaches; ++j) {
 if (j == idx) continue;
 if (effectiveNeighbors == 0) continue;
 double prob = rnd.NextDouble();
 if (prob > A[effectiveNeighbors - 1]) continue;
...

The current roach is compared against all other roaches. If
the current roach has no neighbors then there’s no information
exchange. If the current roach has one or more neighbors, the A
array of probabilities is used to decide if information should be
exchanged or not. Next:

double d = distances[idx][j];
if (d < medianDist) { // a neighbor
 if (curr.error < herd[j].error) { // curr better than [j]
 for (int p = 0; p < dim; ++p) {
 herd[j].groupBestPos[p] = curr.personalBestPos[p];
 curr.groupBestPos[p] = curr.personalBestPos[p];
 }
 }
...

When information exchange between neighbor roaches occurs,
the group best position and associated error of the better of the
two roaches is copied to the worse roach. The second branch of the
information exchange code is:

...
 else { // [j] is better than curr
 for (int p = 0; p < dim; ++p) {
 curr.groupBestPos[p] = herd[j].personalBestPos[p];
 herd[j].groupBestPos[p] = herd[j].personalBestPos[p];
 }
 }
 } // If a neighbor
} // j, each neighbor

After information exchange between neighbor roaches is taken
care of, the current roach moves if it’s not hungry. The first part of the
move process is to calculate the new velocity of the current roach:

if (curr.hunger < tHunger) {
 for (int p = 0; p < dim; ++p)
 curr.velocity[p] = (C0 * curr.velocity[p]) +
 (C1 * rnd.NextDouble() * (curr.personalBestPos[p] -
 curr.position[p])) +
 (C1 * rnd.NextDouble() * (curr.groupBestPos[p] -
 curr.position[p]));

0216msdn_McCaffreyTestRun_v4_56-64.indd 62 1/12/16 2:50 PM

Tracks include:

Start planning your presence now.
Exhibit & Sponsorship packages available.

ACQUIRE is a new 2-day event that focuses on
3 key OMB spending categories—Professional
Services, Office Management and Information
Technology. Covering all aspects of the acquisition
and management process, from setting policy
and defining requirements to implementing and
managing programs to end user experience, it’s
guaranteed to be THE NEXT BIG THING.

WA S H I N G T O N , D C

JUNE
8-9

ACQUIREshow.com

Contact Stacy Money for pricing & details:
smoney@1105media.com 415.444.6933

Untitled-6 1 10/9/15 2:43 PM

mailto:smoney@1105media.com
www.acquireshow.com

msdn magazine64 Test Run

The new velocity has three components. The first component is
the old velocity, which is sometimes called inertia in particle swarm
terminology. Inertia acts to keep a roach moving in the same
direction. The second component is the roach’s best known position,
which is sometimes called the cognitive term. The cognitive com-
ponent prevents a roach from moving to bad positions. The third
component is the best known position of the roach’s neighbors. This
component is more or less unique to RIO and doesn’t have a stan-
dard name. This third term acts to keep groups of roaches together.

After the velocity of the current roach has been calculated, the
roach is moved:

for (int p = 0; p < dim; ++p)
 curr.position[p] = curr.position[p] + curr.velocity[p];

double e = Error(curr.position);
curr.error = e;

After the current roach is moved, its new position is checked to
see if it’s a new best for the roach:

if (curr.error < curr.personalBestErr) {
 curr.personalBestErr = curr.error;
 for (int p = 0; p < dim; ++p)
 curr.personalBestPos[p] = curr.position[p];
}

Next, the new position is checked to see if it’s a new global best,
and the hunger counter is incremented:

 if (curr.error < bestError) {
 bestError = curr.error;
 for (int p = 0; p < dim; ++p)
 bestPosition[p] = curr.position[p];
 }
 ++curr.hunger;
} // If not hungry

The each-roach loop finishes by dealing with hungry roaches:
 else { // Roach is hungry
 {
 herd[idx] = new Roach(dim, minX, maxX, tHunger, t);
 }
} // j each roach

If a roach’s hunger counter reaches the tHunger threshold, the
roach moves to a new, random location. After all roaches have
been processed, the algorithm finishes by checking if it’s time for
a global extinction, incrementing the main loop time counter and
returning the best position found by any roach:

 if (t > 0 && t % extinction == 0) { // Extinction?
 Console.WriteLine("Mass extinction at t = " +
 t.ToString().PadLeft(6));
 for (int i = 0; i < numRoaches; ++i)
 herd[i] = new Roach(dim, minX, maxX, tHunger, i);
 }

 ++t;
 } // Main while loop

 return bestPosition;
} // Solve

Notice that the algorithm is contained in a method named Solve
Rastrigin rather than a more general name such as Solve. The idea
here is that RIO is really a meta-heuristic, rather than a prescriptive
algorithm, and needs to be customized to whatever minimization
problem you’re trying to solve.

The Helper Methods
Method SolveRastrigin calls helper methods Distance, Error and
Shuffle. Helper method Distance returns the Euclidean distance
(square root of the sum of squared term differences):

static double Distance(double[] pos1, double[] pos2)
{
 double sum = 0.0;
 for (int i = 0; i < pos1.Length; ++i)
 sum += (pos1[i] - pos2[i]) * (pos1[i] - pos2[i]);
 return Math.Sqrt(sum);
}

Helper method Error returns the squared difference between the
calculated value of Rastrigin’s function at a given roach position x
and the true minimum value of zero:

public static double Error(double[] x)
{
 double trueMin = 0.0; double rastrigin = 0.0;
 for (int i = 0; i < x.Length; ++i) {
 double xi = x[i];
 rastrigin += (xi * xi) - (10 * Math.Cos(2 * Math.PI * xi)) + 10;
 }
 return (rastrigin - trueMin) * (rastrigin - trueMin);
}

Method Shuffle randomizes the order of the values in an array
using the Fisher-Yates mini-algorithm:

static void Shuffle(int[] indices, int seed)
{
 Random rnd = new Random(seed);
 for (int i = 0; i < indices.Length; ++i) {
 int r = rnd.Next(i, indices.Length);
 int tmp = indices[r]; indices[r] = indices[i];
 indices[i] = tmp;
 }
}

The original research version of RIO doesn’t randomize the roach
processing order, but I’ve found that this approach almost always
improves the accuracy of bio-inspired optimization algorithms.

A Few Comments
So, just how effective is roach-inspired optimization compared to
other numerical optimization techniques? Based on a few limited
experiments I’ve performed, RIO appears to solve some bench-
mark problems better than other algorithms, but is weaker on
other problems. I conclude that while RIO is not a fantastic new
general-purpose optimization algorithm, it does have promise
and could be useful for certain specific minimization problems.
And for sure, roach infestation optimization has one of the most
unusual names in all of computer science.	 n

Dr. James McCaffrey works for Microsoft Research in Redmond, Wash. He
has worked on several Microsoft products including Internet Explorer and Bing.
Dr. McCaffrey can be reached at jammc@microsoft.com.

Thanks to the following Microsoft technical experts for reviewing this article:
Todd Bello, Marciano Moreno Diaz Covarrubias and Alisson Sol

Based on a few limited experiments
I’ve performed, RIO appears to

solve some benchmark problems
better than other algorithms, but

is weaker on other problems.

0216msdn_McCaffreyTestRun_v4_56-64.indd 64 1/12/16 2:50 PM

mailto:jammc@microsoft.com

CONNECT WITH VISUAL STUDIO LIVE!
linkedin.com – Join the
“Visual Studio Live” group!twitter.com/vslive – @VSLive facebook.com – Search “VSLive”

JOIN US on the CAMPAIGN TRAIL in 2016!

CAMPAIGN FOR CODE 2016 VISUAL STUDIO LIVE!

 VISUAL STUDIO MARCH 7 - 11
BALLY’S HOTEL & CASINO
LAS VEGAS, NV

vslive.com/lasvegas
See pages 44 – 47 for more details

MAY 16 - 19
HYATT AUSTIN, TX

vslive.com/austin
See pages 66 – 67 for more info

JUNE 13 - 16
HYATT CAMBRIDGE, MA

vslive.com/boston
See pages 68 – 69 for more info

AUGUST 8 - 12
MICROSOFT HQ, REDMOND, WA

vslive.com/redmond

SEPTEMBER 26 - 29
HYATT ORANGE COUNTY, CA —
A DISNEYLAND® GOOD
NEIGHBOR HOTEL

vslive.com/anaheim

OCTOBER 3 - 6
RENAISSANCE, WASHINGTON, D.C.

vslive.com/dc

DECEMBER 5 - 9
LOEWS ROYAL PACIFIC
ORLANDO, FL

TURN THE PAGE FOR
MORE EVENT DETAILS.

0216msdn_VSLive2016_5pages.indd 1 1/12/16 6:16 PM

www.vslive.com/lasvegas
www.vslive.com/austin
www.vslive.com/boston
www.vslive.com/redmond
www.vslive.com/anaheim
www.vslive.com/dc
www.vslive.com
https://twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com
www.vslive.com

CAMPAIGN FOR CODE 2016 VISUAL STUDIO LIVE!

VISUAL STUDIO LIVE! is bringing back its unique
brand of practical, unbiased, Developer training to the
deep heart of Texas. We’re all set to convene in Austin
this May, where your code not only counts, it’s crucial!
From May 16 – 19, we’re offering four days of sessions,
workshops and networking events—all designed to
help you elevate your code-writing abilities to write
winning applications across all platforms.

magazine

SUPPORTED BY PRODUCED BY

0216msdn_VSLive2016_5pages.indd 2 1/12/16 6:16 PM

www.vslive.com/austin

VSLIVE.COM/AUSTIN

Get out and code.
Register to join us today!

twitter.com/vslive – @VSLive facebook.com – Search “VSLive” linkedin.com – Join the
“Visual Studio Live” group!

CONNECT WITH VISUAL STUDIO LIVE!

Scan the QR code to
register or for more
event details.

REGISTER NOW
AND SAVE $300!

 USE PROMO CODE VSLFEB5

AUSTIN • MAY 16-19, 2016
HYATT REGENCY • AUSTIN, TX

TOPICS INCLUDE:
➤ Visual Studio / .NET
➤ Windows Client
➤ Mobile Client
➤ JavaScript / HTML5 Client
➤ ASP.NET
➤ Cloud Computing
➤ Database & Analytics
➤ ALM / DevOps
➤ UX / Design

0216msdn_VSLive2016_5pages.indd 3 1/12/16 6:17 PM

www.vslive.com/austin
https://twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

CAMPAIGN FOR CODE 2016 VISUAL STUDIO LIVE!

For the first time in a decade, Boston will host
Visual Studio Live! from June 13 – 16. Through four
intense days of practical, unbiased, Developer training,
join us as we dig in to the latest features of Visual Studio
2015, ASP.NET, JavaScript, TypeScript, Windows 10 and
so much more. Code with industry experts, get practical
answers to your current challenges, and immerse
yourself in what’s to come on the .NET horizon.

magazine

SUPPORTED BY PRODUCED BY

0216msdn_VSLive2016_5pages.indd 4 1/12/16 6:17 PM

www.vslive.com/boston

VSLIVE.COM/BOSTON

Life, liberty, and the pursuit of better
code: register to join us today.

twitter.com/vslive – @VSLive facebook.com – Search “VSLive” linkedin.com – Join the
“Visual Studio Live” group!

CONNECT WITH VISUAL STUDIO LIVE!

TOPICS INCLUDE:
➤ Visual Studio / .NET
➤ Windows Client
➤ Mobile Client
➤ JavaScript / HTML5 Client
➤ ASP.NET
➤ Cloud Computing
➤ Database & Analytics
➤ ALM / DevOps
➤ UX / Design

Scan the QR code to
register or for more
event details.

REGISTER NOW
AND SAVE $300!

USE PROMO CODE VSLFEB5

BOSTON • JUNE 13-16, 2016
HYATT REGENCY • CAMBRIDGE, MA

0216msdn_VSLive2016_5pages.indd 5 1/12/16 6:17 PM

www.vslive.com/boston
https://twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine70

Welcome back, “MEANies.” (I decided that sounds better than
“Nodeists,” and, besides, starting with this piece, we’re moving
past just Node.)

The code has reached an important transition point—now that
there are some tests in place to verify that functionality remains
the same, it’s safe to begin some serious refactoring. In particular,
the current in-memory data storage system might be nice for quick
demos, but it’s not going to scale up particularly well over time.
(Not to mention all it takes is one VM reboot/restart, and you’ve
lost all the data that’s not hardcoded in the startup code.) It’s time
to explore the “M” in MEAN: MongoDB.

Hu-MongoDB-ous
First off, it’s important to recognize that according to popular lore,
MongoDB actually gets its name from the word “humongous.”
Whether that bit of Internet trivia is true or not, it serves to under-
score that MongoDB isn’t built to provide the exact same feature
set as your average relational database. To Mongo, scalability ranks
high, and toward that end, MongoDB is willing to sacrifice a little
consistency, trading off ACID transaction capabilities across the
cluster in favor of “eventual consistency.”

This system might not ever reach the scale of bazillions of
records; in fact, I’d be quite shocked if it ever came within shouting
distance of needing it. However, MongoDB has another feature that
ranks equally high on the “this is worth exploring” scale of intrigue
and that’s its data model: It’s a document-oriented database. This
means that instead of the traditional relational tables-and-columns
schema-enforced model, MongoDB uses a data model of “schema
less” documents gathered into collections. These documents are
represented in JSON, and as such each document is made up of

name-value pairs, where the values can be traditional data types
(strings, integers, floating-point values, Booleans and so on), as
well as more “composite” data types (arrays of any of the data types
just listed, or child objects that in turn can have name-value pairs).
This means, offhand, that the data modeling will be a bit different
than you might expect if your only experience is with a relational
database; this application is small enough now that these differ-
ences won’t be very overt, but it’s something to keep in mind when
working with more complex storage needs.

Note: For a deeper look at MongoDB from a .NET developer’s
perspective, check out this column’s 201 three-part series on
MongoDB (bit.ly/1J7DjOB).

Data Design
From a design perspective, seeing how the “persons” data model will
map against MongoDB is straightforward: there will be a “persons”

How To Be MEAN: Inside MongoDB

The Working Programmer TED NEWARD

// Go get your configuration settings
var config = require('./config.js');
debug("Mongo is available at ",config.mongoServer,":",config.mongoPort);

// Connect to MongoDB
var mongo = null;
var persons = null;
var mongoURL = "mongodb://" + config.mongoServer +
 ":" + config.mongoPort + "/msdn-mean";
debug("Attempting connection to mongo @",mongoURL);
MongoClient.connect(mongoURL, function(err, db) {
 if (err) {
 debug("ERROR:", err);
 }
 else {
 debug("Connected correctly to server");
 mongo = db;
 mongo.collections(function(err, collections) {
 if (err) {
 debug("ERROR:", err);
 }
 else {
 for (var c in collections) {
 debug("Found collection",collections[c]);
 }
 persons = mongo.collection("persons");
 }
 });
 }
});

// Create express instance
var app = express();
app.use(bodyParser.json());

// ...

Figure 1 Creating an Object in MongoDB

Like most databases, connecting
to MongoDB will require a server

DNS name or IP address, a
database name and (optionally)

a port to use.

0216msdn_NewardWProg_v5_70-73.indd 70 1/12/16 2:55 PM

www.bit.ly/1J7DjOB

71February 2016msdnmagazine.com

collection and each document inside that will be a JSON-based
bundle of name-value pairs and so on.

And that’s pretty much it. Seriously. This is part of the reason that
document-oriented databases are enjoying such favor in the devel-
opment community—the startup curve to getting data into them is
ridiculously low, compared to their schema-based relational coun-
terparts. This has its own drawbacks, too, of course—one typo and
suddenly all the queries that are supposed to be based on “firstName”
are suddenly coming back empty, because no document has a field
“firstName”—but I’ll look at a few ways to mitigate some of these later.

For now, let’s look at getting some data into and out of MongoDB.

Data Access
The first step is to enable the application to talk to MongoDB; that
involves, not surprisingly, installing a new npm package called
“mongodb.” So, by now, this exercise should seem almost automatic:

npm install --save mongodb

The npm tool will churn through its usual gyrations and when
it returns, the Node.js MongoDB driver is installed into the node_
modules directory. If you get a warning from npm about a kerberos
package not being installed (“mongodb-core@1.2.28 requires a
peer of kerberos@~0.0”), this is a known bug and seems fixable by
simply installing kerberos directly via npm (“npm install kerberos”).
There shouldn’t be any problems beyond that, but of course, this
is all subject to the next release of any of these packages—such is
the joy of developing on the bleeding edge.

Next, the code will need to open a connection to the Mongo
DB instance. Where the instance resides, however, deserves a
little discussion.

Data Location
As mentioned in the first article in this series, there’s two easy
options for MongoDB: one is to run it locally, which is great for
the development experience but not so good for the production
experience; and the other is to run it in the cloud, which is great
for the production experience but not for development. (If I can’t
run the code while I’m on an airplane on my way to a conference,
then it’s not a great developer experience, in my opinion.) This is
not an unusual state of affairs and the solution here is very much
the same as it would be for any application: run it locally during
development and from the cloud in production or testing.

Like most databases, connecting to MongoDB will require a
server DNS name or IP address, a database name and (optionally)
a port to use. Normally, in development, this will be “localhost,”

the database name and “27017” (the MongoDB default), but the
settings for a MongoDB instance in the cloud will obviously be
different than that. For example, the server and port settings
for my Mongolab MongoDB instance called “msdn-mean” are
“ds054308.mongolab.com” and “54308,” respectively.

The easiest way to capture this divergence in the Node world is
to create a standalone JS file (typically called config.js) and require
it into the app.js code, like so:

// Load modules
var express = require('express'),
 bodyParser = require('body-parser'),
 debug = require('debug')('app'),
 _ = require('lodash');

// Go get your configuration settings
var config = require('./config.js');
debug("Mongo is available at",config.mongoServer,":",config.mongoPort);

// Create express instance
var app = express();
app.use(bodyParser.json());

// ... The rest as before

What remains, then, is for the config file to determine the envi
ronment in which this application is running; the usual way to do
this in the Node.js environment is to examine an environment
variable, “ENV,” which will be set to one of “prod,” “dev,” or “test” (if
a third, QA-centric, environment is in place). So the config code
needs to examine the ENV environment variable and put the right
values into the exported module object:

// config.js: Configuration determination
//
var debug = require('debug')('config');

debug("Configuring environment...");

// Use these as the default
module.exports = {
 mongoServer : "localhost",
 mongoPort : "27017"
};

if (process.env["ENV"] === "prod") {
 module.exports.mongoServer = "ds054308.mongolab.com";
 module.exports.mongoPort = "54308";
}

Note the use of the “process” object—this is a standard Node.js
object, always implicitly present inside any Node.js-running
application, and the “env” property is used to look up the “ENV”
environment variable. (Sharp readers will note that the ExpressJS
code does exactly the same thing when deciding what port to use;
you could probably refactor that snippet to use the config.js settings,
as well, but I’ll leave that as an exercise to you, the reader.)

So far, so good. Actually, better; this has also implicitly created a
nice separation of configuration code away from
the main code base.

Let’s start adding and removing data.

MongoDB + Node.js
Like most databases, you need to open a connec-
tion to MongoDB, hold on to that object, and use
that for subsequent actions against the database.
Thus, it would seem an obvious first step would
be to create that object as the application is start-
ing up and store it globally, as shown in Figure 1.Figure 2 Debug Printed Output

0216msdn_NewardWProg_v5_70-73.indd 71 1/12/16 2:55 PM

http://www.msdnmagazine.com

msdn magazine72 The Working Programmer

Notice that the connect call takes a URL, and a callback—this call-
back takes an error object and the database connection object as its
parameters, as is the Node.js convention. If the first is anything but
undefined or null, it’s an error, otherwise everything went swimmingly.
The URL is a MongoDB-specific URL, using the “mongodb” scheme,
but otherwise looking very much like a traditional HTTP URL.

However, there’s a subtlety to this code that may not be apparent
at first: The callback is invoked at some point well after the rest of
the startup code completes, which becomes more obvious when
you look at the debug-printed output, as shown in Figure 2.

See how the “Example app listening” message appears before
the “Connected correctly to server” message from the callback?
Given that this is happening on application startup, this concur-
rency issue isn’t critical, but it’s not going away, and this is, without
question, one of the trickiest parts of working with Node.js. It’s
true that your Node.js code will never be executed simultaneously
on two threads at the same time, but that doesn’t mean you won’t
have some interesting concurrency problems going on here; they
just look different than what you’re used to as a .NET developer.

Also, just as a quick reminder, when this code is first run against a
brand-new MongoDB database, the collections loop will be empty—
MongoDB won’t create the collections (or even the database!) until
it absolutely has to, which usually occurs when somebody writes to
it. Once an insert is done, then MongoDB will create the necessary
artifacts and data structures to store the data.

Regardless, for the moment, we have a database connection.
Time to update the CRUD methods to start using it.

Insert
The insertPerson will use the insert method on the MongoDB collec-
tion object and, again, you need a callback to invoke with the results
of the database operation:

var insertPerson = function(req, res) {
 var person = req.body;
 debug("Received", person);
 // person.id = personData.length + 1;
 // personData.push(person);
 persons.insert(person, function(err, result) {
 if (err)
 res.status(500).jsonp(err);
 else
 res.status(200).jsonp(person);
 });
};

Notice the commented-out code (from the in-memory database
version I’m migrating away from); I left it there specifically to prove
a point. MongoDB will create an identifier field, “_id,” that’s the pri-
mary key for the document in the database, so my incredibly lame
homegrown “id” generator code is not only no longer necessary,
but entirely unwanted.

Also, notice that the last statement in the function is the insert
method, with the associated callback. While it isn’t necessary
that this be the last statement in the function block, it’s critical to
understand that the insertPerson function will terminate before the
database insert completes. The callback-based nature of Node.js is
such that you don’t want to return anything to the caller until you
know the success or failure of the database operation—hence the
calls to “res” don’t happen anywhere outside the callback. (Skeptics
should convince themselves of this by putting a debug call after the

persons.insert call, and another one in the callback itself, and see
the first one fire before the callback does.)

Retrieve All
Inserts require validation, so while I’m here, I’ll refactor getAll
Persons, which just needs a quick query to the collection to find
all the documents in that collection:

var getAllPersons = function(req, res) {
 persons.find({}).toArray(function(err, results) {
 if (err) {
 debug("getAllPersons--ERROR:",err);
 res.status(500).jsonp(err);
 }
 else {
 debug("getAllPersons:", results);
 res.status(200).jsonp(results);
 }
 });
};

Before moving on, there’s a couple of quick things to note: First,
the find call takes a predicate document describing the criteria by
which you want to query the collection, which in this case, I leave as
empty; if this were a query by first name, that predicate document
would need to look something like:

"{ 'firstName':'Ted' }"

Second, notice that the returned object from find isn’t an actual
result set yet, hence the need to call toArray to convert it into some-
thing of use. The toArray takes a callback and, again, each branch
of the callback must make sure to communicate something back
to the caller using res.status().jsonp.

Middleware
Before I can go on, recall from my previous columns that the get-
Person, updatePerson and deletePerson functions all depend on the
personId middleware function to look up a person by identifier. This
means that that middleware needs to be updated to query the collec-
tion by its _id field (which is a MongoDB ObjectID, not a string!),
instead of looking in the in-memory array, as shown in Figure 3.

The MongoDB Node.js driver documents a findOne method,
which would seem to be more appropriate, but the driver docu-
mentation notes that as a deprecated method.

app.param('personId', function (req, res, next, personId) {
 debug("personId found:",personId);
 if (mongodb.ObjectId.isValid(personId)) {
 persons.find({"_id":new mongodb.ObjectId(personId)})
 .toArray(function(err, docs){
 if (err) {
 debug("ERROR: personId:",err);
 res.status(500).jsonp(err);
 }
 else if (docs.length < 1) {
 res.status(404).jsonp(
 { message: 'ID ' + personId + ' not found'});
 }
 else {
 debug("person:", docs[0]);
 req.person = docs[0];
 next();
 }
 });
 }
 else {
 res.status(404).jsonp({ message: 'ID ' + personId + ' not found'});
 }
});

Figure 3 Updating Middleware to Query the Collection

0216msdn_NewardWProg_v5_70-73.indd 72 1/12/16 2:55 PM

msdnmagazine.com

Instantly Search
Terabytes of Text

dtSearch.com 1-800-IT-FINDS

dtSearch’s document filters
support popular file types, emails
with multilevel attachments,
databases, web data

Highlights hits in all data types;
25+ search options

 The Smart Choice for Text Retrieval®

since 1991

Visit dtSearch.com for
• hundreds of reviews and

case studies
• fully-functional enterprise and

developer evaluations

With APIs for .NET, Java and C++.
SDKs for multiple platforms.
(See site for articles on faceted
search, SQL, MS Azure, etc.)

®

Notice that the middleware, if it gets an invalid ObjectId, doesn’t
call next. This is a quick way to save some lines of code in the
various methods that are depending on finding persons from
the database, because if it’s not a legitimate ID, it can’t possibly be
there, so hand back a 404. The same is true if the results have zero
documents (meaning that ID wasn’t in the database).

Retrieve One, Delete and Update
Thus, the middleware makes getPerson trivial, because it handles

all the possible error or document-not-found conditions:
var getPerson = function(req, res) {
 res.status(200).jsonp(req.person);
};

And deletePerson is almost as trivial:
var deletePerson = function(req, res) {
 debug(“Removing”, req.person.firstName, req.person.lastName);
 persons.deleteOne({“_id”:req.person._id}, function(err, result) {
 if (err) {
 debug(“deletePerson: ERROR:”, err);
 res.status(500).jsonp(err);
 }
 else {
 res.person._id = undefined;
 res.status(200).jsonp(req.person);
 }
 });
};

Both of which make updatePerson pretty predictable:
var updatePerson = function(req, res) {
 debug(“Updating”,req.person,”with”,req.body);

 _.merge(req.person, req.body);

 persons.updateOne({“_id”:req.person._id}, req.person, function(err, result) {
 if (err)
 res.status(500).jsonp(err);
 else {
 res.status(200).jsonp(result);
 }
 });
};

The merge call, by the way, is the same Lodash function used
before to copy the properties from the request body over to the
person object that was loaded out of the database.

Wrapping Up
Wow. This has been a little heavier than some of the others in the
series, but at this point, I have code that completely runs now against
a MongoDB database, instead of the in-memory array I’d been using
during the mocking out. But it’s not perfect, not by a long shot. For
starters, any typos in the code around those query predicates will create
unanticipated runtime errors. More important, as .NET developers,
we’re accustomed to some kind of “domain object” to work with,
particularly if there’s some sort of validation on the various proper-
ties of the object that need to be done—it’s not a good idea to spread
that validation code throughout the Express parts of the code base.
That’s on the docket for next time. But for now … happy coding!	 n

Ted Neward is the CTO of iTrellis, a Seattle-based polytechnology consulting firm. He
has written more than 100 articles, is an F# MVP, INETA speaker, and has authored
or co-authored a dozen books. Reach him at ted@tedneward.com if you’re interested
in having him come work with your team, or read his blog at blogs.tedneward.com.

Thanks to the following technical expert for reviewing this article:
Shawn Wildermuth

0216msdn_NewardWProg_v5_70-73.indd 73 1/12/16 2:55 PM

mailto:ted@tedneward.com
www.dtsearch.com
http://blogs.tedneward.com
http://www.msdnmagazine.com

msdn magazine74

Those of you working with ASP.NET 5 have no doubt noticed the
new configuration support included in that platform and avail-
able in the Microsoft.Extensions.Configuration collection of
NuGet packages. The new configuration allows a list of name-value
pairs, which can be grouped into a multi-level hierarchy. For
example, you can have a setting stored in SampleApp:Users:Inigo
Montoya:MaximizeMainWindow and another stored in
SampleApp:AllUsers:Default:MaximizeMainWindow. Any stored
value maps to a string, and there’s built-in binding support that
allows you to deserialize settings into a custom POCO object. Those
of you already familiar with the new configuration API probably
first encountered it within ASP.NET 5. However, the API is in no
way restricted to ASP.NET. In fact, all the listings in this article
were created in a Visual Studio 2015 Unit Testing project with the
Microsoft .NET Framework 4.5.1, referencing Microsoft.Exten
sions.Configuration packages from ASP.NET 5 RC1. (Go to
GitHub.com/IntelliTect/Articles for the source code.)

The configuration API supports configuration providers
for in-memory .NET objects, INI files, JSON files, XML files,
command-line arguments, environment variables, an encrypted
user store, and any custom provider you create. If you wish to leverage
JSON files for your configuration, just add the Microsoft.Exten
sions.Configuration.Json NuGet package. Then, if you want to allow
the command line to provide configuration information, simply
add the Microsoft.Extensions.Configuration.CommandLine NuGet
package, either in addition to or instead of other configuration refer-
ences. If none of the built-in configuration providers are satisfactory,
you’re free to create your own by implementing the interfaces found
in Microsoft.Extensions.Configuration.Abstractions.

Retrieving Configuration Settings
To familiarize yourself with retrieving configuration settings, take
a look at Figure 1.

Accessing the configuration begins easily with an instance of the
ConfigurationBuilder, a class available from the Microsoft.Exten-
sions.Configuration NuGet package. Given the ConfigurationBuilder
instance, you can add providers directly using IConfigurationBuilder
extension methods like AddInMemoryCollection, as shown in Fig-
ure 1. This method takes a Dictionary<string,string> instance of the
configuration name-value pairs, which it uses to initialize the con-
figuration provider before adding it to the ConifigurationBuilder

instance. Once the configuration builder is “configured,” you invoke
its Build method to retrieve the configuration.

As mentioned earlier, a configuration is simply a hierarchical
list of name-value pairs in which the nodes are separated by a
colon. Therefore, to retrieve a particular value, you simply access
the Configuration indexer with the corresponding item’s key:

Console.WriteLine($"Hello {Configuration["Profile:UserName"]}");

However, accessing a value isn’t limited to only retrieving strings.
You can, for example, retrieve values via the ConfigurationBinder’s
Get<T> extension methods. For instance, to retrieve the main win-
dow screen buffer size you can use:

Configuration.Get<int>("AppConfiguration:MainWindow:ScreenBufferSize", 80);

This binding support requires a reference to the Microsoft.Exten
sions.Configuration.Binder NuGet package.

Configuration in .NET Core

Essential .NET MARK MICHAELIS

Code download available at GitHub.com/IntelliTect/Articles.

public class Program
{
 static public string DefaultConnectionString { get; } =
 @"Server=(localdb)\\mssqllocaldb;Database=SampleData-0B3B0919-C8B3-481C-9833-
 36C21776A565;Trusted_Connection=True;MultipleActiveResultSets=true";

 static IReadOnlyDictionary<string, string>
DefaultConfigurationStrings{get;} =
 new Dictionary<string, string>()
 {
 ["Profile:UserName"] = Environment.UserName,
 [$"AppConfiguration:ConnectionString"] = DefaultConnectionString,
 [$"AppConfiguration:MainWindow:Height"] = "400",
 [$"AppConfiguration:MainWindow:Width"] = "600",
 [$"AppConfiguration:MainWindow:Top"] = "0",
 [$"AppConfiguration:MainWindow:Left"] = "0",
 };

 static public IConfiguration Configuration { get; set; }

 public static void Main(string[] args = null)
 {
 ConfigurationBuilder configurationBuilder =
 new ConfigurationBuilder();

 // Add defaultConfigurationStrings
 configurationBuilder.AddInMemoryCollection(
 DefaultConfigurationStrings);
 Configuration = configurationBuilder.Build();

 Console.WriteLine($"Hello {Configuration["Profile:UserName"]}");

 ConsoleWindow consoleWindow =
 Configuration.Get<ConsoleWindow>("AppConfiguration:MainWindow");
 ConsoleWindow.SetConsoleWindow(consoleWindow);
 }
}

Figure 1 Configuration Basics Using the InMemoryConfigu-
rationProvider and ConfigurationBinder Extension Methods

0216msdn_MichaelisDotNET_v3_74-78.indd 74 1/12/16 2:38 PM

http://GitHub.com/IntelliTect/Articles
www.GitHub.com/IntelliTect/Articles

75February 2016msdnmagazine.com

Notice there’s an optional argument following the key, for which
you can specify a default value to return when the key doesn’t exist.
(Without the default value, the return will be assigned default(T),
rather than throw an exception as you might expect.)

Configuration values are not limited to scalars. You can retrieve
POCO objects or even entire object graphs. To retrieve an instance

of the ConsoleWindow whose members map to the AppConfigu-
ration:MainWindow configuration section, Figure 1 uses:

ConsoleWindow consoleWindow =
 Configuration.Get<ConsoleWindow>("AppConfiguration:MainWindow")

Alternatively, you could define a configuration graph such as
AppConfiguration, shown in Figure 2.

With such an object graph, you could define all or part of your
configuration with a strongly typed object hierarchy that you can
then use to retrieve your settings all at once.

Multiple Configuration Providers
The InMemoryConfigurationProvider is effective for storing
default values or possibly calculated values. However, with only that
provider, you’re left with the burden of retrieving the configuration
and loading it into a Dictionary<string,string> before registering it
with the ConfigurationBuilder. Fortunately, there are several more
built-in configuration providers, including three file-based pro-
viders (XmlConfigurationProvider, IniConfigurationProvider and
JsonConfigurationProvider); an environment variable provider
(EnvironmentVariableConfigurationProvider); and a command-line
argument provider (CommandLineConfigurationProvider).
Furthermore, these providers can be mixed and matched to suit
your application logic. Imagine, for example, that you might specify
configuration settings in the following ascending priority:

• �InMemoryConfigurationProvider
• �JsonFileConfigurationProvider for Config.json
• �JsonFileConfigurationProvider for Config.Production.json
• �EnvironmentVariableConfigurationProvider
• �CommandLineConfigurationProvider

In other words, the default configuration values might be stored
in code. Next, the config.json file followed by the Config.Produc-
tion.json might override the InMemory specified values—where
later providers like the JSON ones take precedence for any over-
lapping values. Next, when deploying, you may have custom
configuration values stored in environment variables. For example,
rather than hardcoding Config.Production.json, you might retrieve
the environment setting from a Windows environment variable
and access the specific file (perhaps Config.Test.Json) that the
environment variable identifies. (Excuse the ambiguity in the term
environment setting relating to production, test, pre-production
or development, versus Windows environment variables such as
%USERNAME% or %USERDOMAIN%.) Finally, you specify
(or override) any earlier provided settings via the command line—
perhaps as a onetime change to, for example, turn on logging.

To specify each of the providers, add them to the configuration
builder (via the extension method AddX fluent API), as shown
in Figure 3.

For the JsonConfigurationProvider, you can either require the
file to exist or make it optional; hence the additional optional
parameter on AddJsonFile. If no parameter is provided, the file is
required and a System.IO.FileNotFoundException will fire if it isn’t
found. Given the hierarchical nature of JSON, the configuration
fits very well into the configuration API (see Figure 4).

The CommandLineConfigurationProvider requires you to specify
the arguments when it’s registered with the configuration builder.
Arguments are specified by a string array of name-value pairs, with

class AppConfiguration
{
 public ProfileConfiguration Profile { get; set; }
 public string ConnectionString { get; set; }

 public WindowConfiguration MainWindow { get; set; }

 public class WindowConfiguration
 {
 public int Height { get; set; }
 public int Width { get; set; }
 public int Left { get; set; }
 public int Top { get; set; }
 }

 public class ProfileConfiguration
 {
 public string UserName { get; set; }
 }
}
public static void Main()
{
 // ...
 AppConfiguration appConfiguration =
 Program.Configuration.Get<AppConfiguration>(
 nameof(AppConfiguration));

 // Requires referencing System.Diagnostics.TraceSource in Corefx
 System.Diagnostics.Trace.Assert(
 600 == appConfiguration.MainWindow.Width);
}

Figure 2 A Sample Configuration Object Graph

public static void Main(string[] args = null)
{
 ConfigurationBuilder configurationBuilder =
 new ConfigurationBuilder();

 configurationBuilder
 .AddInMemoryCollection(DefaultConfigurationStrings)
 .AddJsonFile("Config.json",
 true) // Bool indicates file is optional
 // "EssentialDotNetConfiguartion" is an optional prefix for all
 // environment configuration keys, but once used,
 // only environment variables with that prefix will be found
 .AddEnvironmentVariables("EssentialDotNetConfiguration")
 .AddCommandLine(
 args, GetSwitchMappings(DefaultConfigurationStrings));

 Console.WriteLine($"Hello {Configuration["Profile:UserName"]}");

 AppConfiguration appConfiguration =
 Configuration.Get<AppConfiguration>(nameof(AppConfiguration));
}

static public Dictionary<string,string> GetSwitchMappings(
 IReadOnlyDictionary<string, string> configurationStrings)
{
 return configurationStrings.Select(item =>
 new KeyValuePair<string, string>(
 "-" + item.Key.Substring(item.Key.LastIndexOf(':')+1),
 item.Key))
 .ToDictionary(
 item => item.Key, item=>item.Value);
}

Figure 3 Adding Multiple Configuration Providers—the Last
One Specified Takes Precedence

0216msdn_MichaelisDotNET_v3_74-78.indd 75 1/12/16 2:38 PM

http://www.msdnmagazine.com

msdn magazine76 Essential .NET

each pair of the format /<name>=<value>, in which the equals sign is
required. The leading slash is also required but the second parameter
of the AddCommandLine(string[] args, Dictionary<string,string>
switchMappings), function allows you to provide aliases that must
be prefixed with either a - or --. For example, a dictionary of values
will allow a command line of “program.exe -LogFile="c:\program-
data\Application Data\Program.txt” to load into the AppConfigu-
ration:LogFile configuration element:

["-DBConnectionString"]="AppConfiguration:ConnectionString",
 ["-LogFile"]="AppConfiguration:LogFile"

Before finishing off the configuration basics, here are a few
additional points to note:

• �The CommandLineConfigurationProvider has several char-
acteristics that are not intuitive from IntelliSense of which
you need to be aware:

 ◉ �The CommandLineConfigurationProvider’s switchMap-
pings only allows a switch prefix of - or --. Even a slash (/)
isn’t allowed as a switch parameter. This prevents you from
providing aliases for slash switches via switch mappings.

 ◉ �CommandLineConfigurationProviders doesn’t allow
for switch-based command-line arguments—arguments
that don’t include an assigned value. Specifying a key of
“/Maximize,” for example, isn’t allowed.

 ◉ �While you can pass Main’s args to a new CommandLine-
ConfigurationProvider instance, you can’t pass Environ-
ment.GetCommandLineArgs without first removing the
process name. (Note that Environment.GetCommand-
LineArgs behaves differently when a debugger is attached.
Specifically, executable names with spaces are split into
individual arguments when there’s no debugger attached.
See itl.ty\GetCommandLineGotchas).

 ◉ �An exception will be issued when you specify a command-line
switch prefix of - or -- for which there’s no corresponding
switch mapping.

• �Although configurations can be updated (Configuration["-
Profile:UserName"]="Inigo Montoya"), the updated value is
not persisted back into the original store. For example, when
you assign a JSON provider configuration value, the JSON
file won’t be updated. Similarly, an environment variable
wouldn’t get updated when its configuration item is assigned.

• �The EnvironmentVariableConfigurationProvider optionally
allows for a key prefix to be specified. In such cases, it will load
only those environment variables with the specified prefix.

In this way, you can automatically limit the configuration
entries to those within an environment variable “section”
or, more broadly, those that are relevant to your application.

• �Environment variables with a colon delimiter are supported.
For example, assigning SET AppConfiguration:Connection-
String=Console on the command line is allowed.

• �All configuration keys (names) are case-insensitive.
• �Each provider is located in its own NuGet package where

the NuGet package name corresponds to the provider: Mic-
rosoft.Extensions.Configuration.CommandLine, Microsoft.
Extensions.Configuration.EnvironmentVariables, Microsoft.
Extensions.Configuration.Ini, Microsoft.Extensions.Config-
uration.Json and Microsoft.Extensions.Configuration.Xml.

Understanding the Object-Oriented Structure
Both the modularity and the object-oriented structure of the
configuration API are well thought out—providing discoverable,
modular and easily extensible classes and interfaces with which to
work (see Figure 5).

Each type of configuration mechanism has a corresponding con-
figuration provider class that implements IConfigurationProvider.
In the majority of built-in provider implementations, the imple-
mentation is jump-started by deriving from ConfigurationBuilder
rather than using custom implementations for all of the interface
methods. Perhaps surprisingly, there’s no direct reference to any
of the providers in Figure 1. This is because instead of manually
instantiating each provider and registering it with the Configura-
tionBuilder class’s Add method, each provider’s NuGet pacakge
includes a static extension class with IConfigurationBuilder extension
methods. (The name of the extension class is generally identified
by the suffix ConfigurationExtensions.) With the extension classes,
you can start accessing the configuration data directly from
ConfigurationBuilder (which implements IConfigurationBuilder)
and directly call the extension method associated with your pro-
vider. For example, the JasonConfigurationExtensions class adds
AddJsonFile extension methods to IConfigurationBuilder so that
you can add the JSON configuration with a call to Configuration
Builder.AddJsonFile(fileName, optional).Build();.

For the most part, once you have a configuration, you have all
you need to start retrieving values.

IConfiguration includes a string indexer, allowing you to retrieve
any particular configuration value using the key to access the
element for which you’re looking. You can retrieve an entire set
of settings (called a section) with the GetSection or GetChildren
methods (depending on whether you want to drill down an addi
tional level in the hierarchy). Note that configuration element
sections allow you to retrieve the following:

• �key: the last element of the name.
• �path: the full name pointing from the root to the

current location.
• �value: the configuration value stored in the

configuration setting.
• �value as an object: via the ConfigurationBinder, you can

retrieve a POCO object that corresponds to the configuration
section you’re accessing (and potentially its children). This is how

{
 "AppConfiguration": {
 "MainWindow": {
 "Height": "400",
 "Width": "600",
 "Top": "0",
 "Left": "0"
 },
 "ConnectionString":
 "Server=(localdb)\\\\mssqllocaldb;Database=Database-0B3B0919-C8B3-481C-9833-
 36C21776A565;Trusted_Connection=True;MultipleActiveResultSets=true"
 }
}

Figure 4 JSON Configuration Data for
the JsonConfigurationProvider

0216msdn_MichaelisDotNET_v3_74-78.indd 76 1/12/16 2:38 PM

http://itl.ty\GetCommandLineGotchas

Join us for TechMentor, March 7 – 11, 2016, as we make
our return to fabulous Las Vegas, NV.

What sets TechMentor apart,
and makes it a viable alternative
to huge, first-party conferences,
is the immediately usable
IT education, providing the
tools you need today while
preparing you for tomorrow.
Zero marketing-speak, a strong
emphasis on doing more with
the technology you already own,
and solid coverage of what’s just
around the corner.

MARCH 7 – 11, 2016
BALLY’S HOTEL & CASINO, LAS VEGAS, NV

REAL TOOLS FOR TODAY’S
IT CHALLENGES

TRACK TOPICS INCLUDE:

TECHMENTOREVENTS.COM/LASVEGAS

Hot Topics
Covered:

PowerShell

Security

DSC

Hyper-V

DevOps

Windows Server

Azure

And More!

SAVE
$300

REGISTER

BEFORE

FEBRUARY 10

USE PROMO CODE
TMFEB1

DataCenter Client
Devices

Dev Ops

IT Soft Skills The Real Cloud

Untitled-5 1 1/6/16 1:32 PM

www.techmentorevents.com/lasvegas

msdn magazine78 Essential .NET

the Configuration.Get<AppConfiguration>(nameof(App
Configuration)) works in Figure 3, for example.

• �IConfigurationRoot includes a Reload function that allows you
to reload values in order to update the configuration. Configu-
rationRoot (which implements IConfigurationRoot) includes
a GetReloadToken method that lets you register for notifica-
tions of when a reload occurs (and the value might change).

Encrypted Settings
On occasion, you’ll want to retrieve settings that are encrypted
rather than stored in open text. This is important, for example,
when you’re storing OAuth application keys or tokens or storing
credentials for a database connection string. Fortunately, the
Microsoft.Extensions.Configuration system has built-in support
for reading encrypted values. To access the secure store, you need
to add a reference to the Microsoft.Extensions.Configuration.User
Secrets NuGet package. Once it’s added, you’ll have a new
IConfigurationBuilder.AddUserSecrets extension method that
takes a configuration item string argument called userSecretsId
(stored in your project.json file). As you’d expect, once the User-
Secrets configuration is added to your configuration builder, you

can begin retrieving encrypted values, which only users with whom
the settings are associated can access.

Obviously, retrieving settings is somewhat pointless if you can’t
also set them. To do this, use the user-secret.cmd tool as follows:

user-secret set <secretName> <value> [--project <projectPath>]

The --project option allows you to associate the setting with
the userSecretsId value stored in your project.json file (created by
default by the ASP.NET 5 new project wizard). If you don’t have the
user-secret tool, you’ll need to add it via the developer command
prompt using the DNX utility (currently dnu.exe).

For more information on the user secret configuration option,
see the article, “Safe Storage of Application Secrets,” by Rick
Anderson and David Roth at bit.ly/1mmnG0L.

Wrapping Up
Those of you who have been with .NET for some time have likely
been disappointed with the built-in support for configuration via
System.Configuration. This is probably especially true if you’re
coming from classic ASP.NET, where configuration was limited
to Web.Config or App.config files and then only by accessing the
AppSettings node within that. Fortunately, the new open source

Microsoft.Extensions.Configuration
API goes well beyond what was
originally available by adding a
multitude of new configuration
providers, along with an easily
extensible system into which you
can plug any custom provider you
want. For those still living (stuck?)
in a pre-ASP.NET 5 world, the old
System.Configuration APIs still
function, but you can slowly begin
to migrate (even side-by-side) to
the new API just by referencing
the new packages. Furthermore,

the NuGet packages can be used from Windows
client projects like console and Windows
Presentation Foundation applications. Therefore,
the next time you need to access configuration
data, there’s little reason not to leverage the
Microsoft.Extensions.Configuration API.	 n

Mark Michaelis is founder of IntelliTect, where he serves as its
chief technical architect and trainer. For nearly two decades he
has been a Microsoft MVP, and a Microsoft Regional Direc-
tor since 2007. Michaelis serves on several Microsoft software
design review teams, including C#, Microsoft Azure, SharePoint
and Visual Studio ALM. He speaks at developer conferences
and has written numerous books including his most recent,
“Essential C# 6.0 (5th Edition)” (itl.tc/EssentialCSharp).
Contact him on Facebook at facebook.com/Mark.Michaelis,
on his blog at IntelliTect.com/Mark, on Twitter:
@markmichaelis or via e-mail at mark@IntelliTect.com.

Thanks to the following IntelliTect technical experts for
reviewing this article: Grant Erickson, Derek Howard,
Phil Spokas and Michael StokesbaryFigure 5 Configuration Provider Class Model

0216msdn_MichaelisDotNET_v3_74-78.indd 78 1/12/16 2:38 PM

mailto:mark@IntelliTect.com
www.bit.ly/1mmnG0L
www.facebook.com/Mark.Michaelis
www.IntelliTect.com/Mark
www.twitter.com/markmichaelis
www.twitter.com/markmichaelis

Where you need us most.

magazine

MSDN.microsoft.com

Untitled-5 1Untitled-5 1 12/10/15 2:34 PM12/10/15 2:34 PM

http://MSDN.microsoft.com

msdn magazine80

This issue begins my seventh year stirring up trouble in this space.
To celebrate the occasion, I’m going to kick over my all-time favor-
ite hornets’ nest: the developers who continue to love Visual Basic
6, and those who love to hate it and them.

I’ve written twice (msdn.com/magazine/jj133828 and msdn.com/magazine/
dn745870) about the unique place VB6 occupies in today’s software
development world, likening it to a cockroach, a bus and a knuckle
ball. I got more responses to these columns than anything else I’ve
ever written. Today I’m going to exceed my usual pouring of oil on
troubled fires. I’m about to set off a nuclear explosion, the radia-
tion from which will mutate VB6 into immortality. Don’t believe
me? Read on, my friend.

I was having lunch with a client some weeks ago. He has a
Silverlight-based solution that displays video from security cam-
eras. But Microsoft has now deprecated Silverlight, encouraging
developers to switch to HTML5 instead. “That’s a pain in the ass,”
complained my client. “I was doing fine with what I had. Now I have
to go learn another language and migrate all my code. My app isn’t
all that complicated, just a few video streams and some buttons. I
wish there was some way to make that really easy.”

Then it hit me: This is exactly what VB6 does with its current
target of unmanaged Windows apps. How about we develop a ver-
sion of VB6 that produces HTML5? The output would then run
in any browser, on any OS, on any platform, desktop or mobile.

I wrote last May (msdn.com/magazine/dn973019) about the smallpox
virus and how it managed to jump hosts—from human to computer—
just before the last of the virus died in its final human victim. Here’s
the chance for VB to jump from its unmanaged Windows host and
burst out and infect the entire software world; to do what Java prom-
ised and never delivered—writing code once, running absolutely
everywhere. A true Universal app. From humble, old VB6. Who’d-a
thunk it? Because it will go anywhere, I’ll call the new language VB*.

The VB* programming model would conceptually resemble the
ASP.NET Web Forms model, in which controls render their con-
tent as HTML. But that rendering requires ASP.NET on the server
side, and VB* needs to avoid depending on any particular server.
Therefore, VB* will compile down to independent pages of HTML5
elements and JavaScript code, just as VB6 compiles down to x86
assembler with Windows function calls. You’ll be able to slap the
page onto any HTML5 server and access it from any HTML5 client.

VB* will use the VB6 ultra-simple syntax and organization. We’ll
deliberately omit sophisticated functionality in return for easiest
programming of simple cases. We probably won’t, for example,

surface threads into the VB* language. If it turns out that our VB*
apps need background operations, some hot-shot programmer will
write a background operation control that handles all those grotty
details, as happened in VB6.

Therefore, VB* will need a design that supports two tiers of
developers—the uber-geeks who write the controls, and the application
programmers who consume them. We’ve done that twice before, with
VBX controls and then OCX controls, so we can doubtless do it again.

How could we develop and finance and release and support VB*?
Open source? Maybe some tool vendor wants to take it on? How
about a consortium? I’d love to help, for a fee of course. (Student:
“Plattski, is it true you’re a cynical, mercenary bastard who’s only in
this for the money?” Me: “How much will you pay me if I tell you?”)
I’ve even snagged the Web address vbstar.org to get things started.

I can hear the VB haters tuning up their chorus now: “It’s not a
real language! They’re not real programmers! You should be shot
for even suggesting it. VB* will never be able to do [this], or [that],
or [the other].”

Maybe it won’t. But as I wrote previously, “… the rapid (and
therefore cheaper) development of limited (and therefore cheaper)
applications by lower-skilled (and therefore cheaper) personnel is
an important solution to a very large class of problems.” If it’s done
right, VB* will become that solution.

Long live VB*!	 n

David S. Platt teaches programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming
books, including “Why Software Sucks” (Addison-Wesley Professional, 2006)
and “Introducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named
him a Software Legend in 2002. He wonders whether he should tape down two
of his daughter’s fingers so she learns how to count in octal. You can contact him
at rollthunder.com.

VB6: Waking a Sleeping Giant

Don’t Get Me Started DAVID S. PLATT

Then it hit me: This is exactly what
VB6 does with its current target
of unmanaged Windows apps.

How about we develop a version
of VB6 that produces HTML5?

0216msdn_PlattDGMS_v3_80.indd 80 1/12/16 2:39 PM

http://msdn.com/magazine/jj133828
http://msdn.com/magazine/dn745870
http://msdn.com/magazine/dn745870
http://msdn.com/magazine/dn973019
www.vbstar.org
www.rollthunder.com

Untitled-5 1Untitled-5 1 1/6/16 12:32 PM1/6/16 12:32 PM

http://tools.grapecity.com

Untitled-1 1 1/11/16 10:52 AM

www.syncfusion.com/msdnnancyfx
www.syncfusion.com/

	Back
	Print
	MSDN Magazine, February 2016
	Cover Tip
	Front
	Back

	Contents
	UPSTART: Loyalty Test
	CUTTING EDGE: Architecture Spinoffs of UXDD
	DATA POINTS: Refactoring an ASP.NET 5/EF6 Project and Dependency Injection
	Universal Windows Platform Apps for Web Developers
	Implementing a UWP App with the Official OneDrive SDK
	Progressive Enhancement with ASP.NET and React
	Customizable Scripting in C#
	Azure Service Fabric, Q-Learning and Tic-Tac-Toe
	TEST RUN: Roach Infestation Optimization
	THE WORKING PROGRAMMER: How to Be MEAN: Inside MongoDB
	ESSENTIAL .NET: Configuration in .NET Core
	DON’T GET ME STARTED: VB6: Waking a Sleeping Giant

