
THE MICROSOFT JOURNAL FOR DEVELOPERS

COLUMNS
TOOLBOX
F# Tools and Resources
Terrence Dorsey page 8

CUTTING EDGE
Give Your Classes
a Software Contract
Dino Esposito page 12

DATA POINTS
Composing WPF DataGrid
Column Templates for a
Better User Experience
Julie Lerman page 20

MOBILE MATTERS
Windows Phone Navigation,
Part 2: Advanced Recipes
Yochay Kiriaty and
Jaime Rodriguez page 82

UI FRONTIERS
Lissajous Animations in Silverlight
Charles Petzold page 88

DON’T GET ME STARTED
The Cat Butt Factor
David Platt page 96

APRIL 2011 VOL 26 NO 4

WINDOWS AZURE
Introducing the Windows Azure
AppFabric Caching Service
Karandeep Anand and Wade Wegner . 26

CQRS on Windows Azure
Mark Seemann . 36

Parsing Log Files with F#, MapReduce
and Windows Azure
Noah Gift . 44

PLUS:
Visual Studio TFS Team Project
and Collection Guidance
Willy-Peter Schaub and Mike Schimmel . 50

Use Bee Colony Algorithms to
Solve Impossible Problems
James McCaffrey . 56

Introduction to WebMatrix
Clark Sell . 72

Using Quince™, you and your team can
collaborate on the user interface using
wireframes, designs and examples.

Then use NetAdvantage® UI controls,
like the map control used here, to bring
the application to life quickly & easily.

...

..

...

Untitled-7 2 11/10/10 10:59 AM

www.infragistics.com/impress

From start to finish, Infragistics gives you the tools to create
impressive user experiences that'll make end users happy!

SEE HOW WE USE THE TOOLS
TO CREATE THIS KILLER APP AT
INFRAGISTICS.COM/IMPRESS

Infragistics Sales 800 231 8588 • Infragistics Europe Sales +44 (0) 800 298 9055 • Infragistics India +91 80 4151 8042 • @infragistics

..

...

Untitled-7 3 11/10/10 10:59 AM

www.infragistics.com/impress

Untitled-2 2 3/8/11 10:21 AM

www.microsoft.com/cloud/windowsazure

Untitled-2 3 3/8/11 10:21 AM

www.microsoft.com/cloud/windowsazure

magazine

Printed in the USA

LUCINDA ROWLEY Director
KIT GEORGE Editorial Director/mmeditor@microsoft.com
KERI GRASSL Site Manager

KEITH WARD Editor in Chief/mmeditor@microsoft.com
TERRENCE DORSEY Technical Editor
DAVID RAMEL Features Editor
WENDY GONCHAR Managing Editor
KATRINA CARRASCO Associate Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director

CONTRIBUTING EDITORS K. Scott Allen, Dino Esposito, Julie Lerman, Juval
Lowy, Dr. James McCaffrey, Ted Neward, Charles Petzold, David S. Platt

Henry Allain President, Redmond Media Group
Matt Morollo Vice President, Publishing
Doug Barney Vice President, Editorial Director
Michele Imgrund Director, Marketing
Tracy Cook Online Marketing Director

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP, Publishing
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder Microsoft Account Manager
Jenny Hernandez-Asandas Director Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Abraham M. Langer Senior Vice President, Audience Development & Digital Media
Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
Carmel McDonagh Vice President, Attendee Marketing
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in U.S. funds are: U.S. $25.00, International $25.00.
Single copies/back issues: U.S. $10, all others $12. Send orders with payment to: MSDN Magazine,
P.O. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return Undeliverable Canadian Addresses to Circulation
Dept. or XPO Returns: P.O. Box 201, Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail
requests to “Permissions Editor,” c/o MSDN Magazine, 4 Venture, Suite 150, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

APRIL 2011 VOLUME 26 NUMBER 4

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtSearch.com

programmersparadise.com

Your best source for
software development tools!

Prices subject to change. Not responsible for typographical errors.

®

programmers.com/vSphere

VMware vSphere
Essentials Kit Bundle
vSphere Essentials provides an all-in-one
solution for small offices to virtualize three
physical servers for consolidating and
managing applications to reduce hardware
and operating costs with a low up-front
investment. vSphere Essentials includes:

• VMware ESXi and VMware ESX
(deployment-time choice)

• VMware vStorage VMFS
• Four-way virtual SMP
• VMware vCenter Server Agent
• VMware vStorage APIs/VCB
• VMware vCenter Update Manager
• VMware vCenter Server for Essentials

for 3 hosts
Paradise #

V55 85101C02

$446.99

ActiveReports 6
by GrapeCity PowerTools

The de facto standard reporting tool
for Microsoft Visual Studio.NET

• Fast and Flexible reporting engine
• Flexible event-driven API to completely

control the rendering of reports
• Wide range of Export and Preview formats

including Windows Forms Viewer, Web
Viewer, Adobe Flash and PDF

• XCopy deployment
• Royalty-Free Licensing for Web and

Windows applications

Professional Ed.
Paradise #
D03 04301A01
$1,310.99

NEW
VERSION

6!

programmers.com/grapecity

866-719-1528

New Intel Visual
Fortran Compiler
by Intel
Intel® Visual Fortran Composer XE
2011 includes the latest generation of Intel®

Fortran compilers, Intel® Visual Fortran Compiler
XE 12.0 for Windows. Intel® Fortran Composer
XE is available for Linux and Mac OS X. This
package delivers advanced capabilities for
development of application parallelism and
winning performance for the full range of Intel®

processor-based platforms and other compatible
platforms. It includes the compiler’s breadth of
advanced optimization, multithreading, and
processor support, as well as automatic proces-
sor dispatch, vectorization, and loop unrolling.

for Windows
Single (SSR)
Paradise #
I23 86101E03
$263.99

programmers.com/intel programmers.com/microsoft

Microsoft SQL Server
Developer Edition 2008 R2
by Microsoft
SQL Server 2008 Developer enables
developers to build and test applications
that run on SQL Server on 32-bit, ia64, and
x64 platforms. SQL Server 2008 Developer
includes all of the functionality of Enterprise
Edition, but is licensed only for development,
test, and demo use. The license for SQL
Server 2008 Developer entitles one developer
to use the software on as many systems
as necessary. For rapid deployment into
production, instances of SQL Server 2008
Developer can easily be upgraded to SQL
Server 2008 Enterprise without reinstallation.

2-bit/x64
IA64 DVD
Paradise #

M47 31101A04

$40.99

programmers.com/sparxsystems

Enterprise Architect
Corporate Edition
Visualize, Document and
Control Your Software Project
by Sparx Systems
Enterprise Architect is a comprehensive,
integrated UML 2.1 modeling suite
providing key benefits at each stage of
system development. Enterprise Architect
7.5 supports UML, SysML, BPMN and
other open standards to analyze, design,
test and construct reliable, well under-
stood systems. Additional plug-ins are
also available for Zachman Framework,
MODAF, DoDAF and TOGAF, and to
integrate with Eclipse and Visual Studio
2005/2008.

1-4 Licenses
Paradise #

SP6 03101A02
$182.99

programmers.com/mindjet

Mindjet® MindManager
version 9 for Windows®

Every Successful Project Starts
with a Good Plan.
by Mindjet®

Mindjet MindManager® is information
mapping software that gives business
professionals a better way to conquer
information overload, brainstorm
concepts, develop strategies, simplify
project planning, and communicate
results. MindManager® maps provide
an intuitive visual framework for
planning successful projects.

1 User
Paradise #

F15 17401A01

$293.98

programmers.com/idm

UltraEdit
The #1 Best Selling Text Editor
in the World

by IDM
UltraEdit is the world’s standard in text
editors. Millions use UltraEdit as the
ideal text/hex/programmers editor
on any platform — Windows, Mac,
or Linux!

Features include syntax highlighting
for nearly any programming language;
powerful Find, Replace, Find in Files,
and Replace in Files; FTP support, sort,
column mode, hex, macros/scripting,
large file handling (4+ GB), projects,
templates, Unicode, and more.

Named User
1-24 Users
Paradise #

I84 01201A01
$59.95

NEW
RELEASE!

Win an iPad!
Place an Order for Software
(or Hardware) with
Programmer’s Paradise
and You’ll be Entered
for a Drawing to Win
an iPad Wi-Fi 32GB.

Just Use the Offer Code TRWD04
When You Place Your Order Online or with
Your Programmer’s Paradise Representative.

programmers.com/embarcadero

Embarcadero RAD Studio XE
by Embarcadero
Embarcadero® RAD Studio XE is a comprehen-
sive application development suite and the
fastest way to visually build GUI-intensive,
data-driven applications for Windows, .NET,
PHP and the Web. RAD Studio includes Delphi®,
C++Builder®, Delphi Prism™, and RadPHP™. The
suite provides powerful compiled, managed
and dynamic language support, heterogeneous
database connectivity, rich visual component
frameworks and a vast third-party ecosystem
that enable you to deliver applications up to
5x faster across multiple Windows, Web, and
database platforms!

Paradise #
CGI 15401A01
$1,383.99

NEW
RELEASE!

programmers.com/textcontrol

Download a demo today.

Professional Edition
Paradise #

T79 12101A01
$1,109.99

• .NET WinForms and WPF rich
text box for VB.NET and C#

• ActiveX for VB6, Delphi, VBScript/HTML, ASP
• File formats DOCX, DOC, RTF, HTML,

XML, TXT
• PDF and PDF/A export, PDF text import
• Tables, headers & footers, text frames,

bullets, structured numbered lists, multiple
undo/redo, sections, merge fields, columns

• Ready-to-use toolbars and dialog boxes

TX Text Control 16.0
Word Processing Components
TX Text Control is royalty-free, robust and
powerful word processing software
in reusable component form. New

Version
Released!

programmers.com/tuneup

TuneUp Utilities™ 2011
by TuneUp Distribution
The latest version of TuneUp Utilities™ has been
designed with the need of small-to-medium
businesses as well as government and educational
institutions in mind. TuneUp Utilities™ will allow
you to reduce costly system downtime, extend
system lifetime and allow your staff to work
more efficiently.

With more than 30 intuitive tools, you will benefit from:
• Increased performance and system response time
• Solutions to a large number of PC problems
• Greater system reliability
• Optimal maintenance
• Recovered disk space

Single User
Paradise #

TU7 01201A01

$34.52

programmers.com/LEAD

LEADTOOLS Document
Imaging Suite SDK v17.0
by LEAD Technologies
• Libraries for C/C++, .NET, Silverlight,

Windows Phone, WPF, WCF & WF
• High Performance OCR, ICR, MICR & OMR
• 1D & 2D Barcodes (Read/Write)
• Forms Recognition/Processing
• PDF, PDF/A and XPS
• Document Cleanup
• Advanced Compression (CCITT G3/G4,

JBIG2, MRC, ABIC, ABC)
• High-Speed Scanning
• Print Capture and Document Writers

Paradise #
L05 03301A02
$4,018.99

Untitled-4 1 3/2/11 3:33 PM

www.programmersparadise.com

msdn magazine6

if I missed something on the Web site—was there a way to cancel
my subscription online that I didn’t see? Was I just dumb (always
a possibility with me)?

“No,” said the friendly voice on the other side. “Th ere’s no way to
cancel your subscription on the Web site.”

I thought I must have misheard. So, you can sign up on the site—
in fact, signing up and providing a credit-card number is as easy as
taking a bite of cheesecake—but you can’t cancel in the same way?

Th at’s right, I was told. Th en she tried to sell me on an even cheaper
version of my subscription. How thoughtful of her.

To her credit, the lady was very professional and polite. So I
responded, just as politely (I hope), to pass along my complaint
about this sneaky, money-grubbing Web site and the company
that produces it. She said she would.

And maybe she even did. Of course, I’m sure my complaint was
placed in the “round fi le” equivalent of their e-mail system.

So, aft er a long while of clicking around in a vain eff ort to fi nd
a way to delete my subscription, I called a hard-to-locate phone
number, hoping that there might be a way to cancel. I lucked into
the right number, and canceled. But, again, nowhere on the Web site
was I told how to cancel my subscription. Nary a word.

Although I’m certain this company would give some long-winded
rationale for this Web site design, there is, of course, just one reason
for it: Th ey hope you get tired of looking, and give up the idea of
canceling because it’s not worth it. Th row up enough barriers, and
hope the poor schlub gets tired of scaling or going around them.

Word of advice: Don’t do this to your users. Don’t treat them like
suckers. Don’t try to bleed them in this cynical manner. All you’ll
do is lose a customer forever.

Th e Golden Rule comes to mind.

Cancel This!
Do you develop Web sites that actively push users away? “Of course
not!” you respond. “What kind of addlepated fool would do that?”

Maybe, uh, you—if you do one or more of these things, either at the
behest of your boss(es), or because you think it will help drive sales.

Th e thing that drove me away from a sports-related Web site last
week was the simple act of trying to cancel my “premium content”
subscription. So I logged in to my account and looked up Settings.
I looked under my Subscriptions. I found my subscription.

Th en I looked around for how to cancel it. Nada. Th ere was a veri-
table buff et of tabs: Profi les, Messages, Groups, Blogs and more. I
decided to click on Edit Profi le. Sensible enough, right? My Profi le
should include information about my subscription, and a way to cancel.

El zippo—nothing useful there.
OK, where to next? Hmm, let’s try Member Services. Surprise—

more links! Th ey included yet another Profi le section, among other
goodies. I didn’t have any luck in the previous Profi le section, so
maybe this one had some deeper level of information, including
how to cancel my account.

Nope. Disappointed yet again.
Aha! Account Information. Th at had to be it, especially as one

of the categories was Payment Methods. It did have lots of account
information, including Payment Methods, which listed some old
credit cards and a new one. Yikes—I didn’t know that old informa-
tion was still there, so I deactivated all my old cards.

I fi gured if I deactivated all my cards, my subscription would be
automatically cancelled. But no: I couldn’t deactivate the current
credit card. Because, of course, I needed some way to pay for the
subscription I no longer wanted.

So, feeling a bit like Th eseus, I wandered further into the labyrinth.
I did searches on “cancel my subscription” and other phrases.

If you’re guessing that I didn’t fi nd what I’m looking for, give
yourself a one-handed clap.

Finally, I located a customer service number. Note that I didn’t fi nd any
number, link or written description of any kind that mentioned cancel-
ing a subscription or account; I just stumbled across a phone number.

I called. Aft er a bit of shuffl ing around, I talked to someone who
cancelled my subscription. Th inking that this was ridiculous, I asked

EDITOR’S NOTE KEITH WARD

© 2011 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

Feeling a bit like Theseus,
I wandered further into the labyrinth.

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine

Untitled-11 1 3/4/11 2:53 PM

www.axosoft.com

msdn magazine8

F# Tools and Resources

TOOLBOX TERRENCE DORSEY

And if you’re a die-hard Emacs user, don’t despair: Laurent Le
Brun is working on F# IntelliSense in Emacs (bit.ly/f3pd8b). Watch his
blog for details.

Tools, Templates and Libraries
There are a variety of tools available to make F# easier and more
powerful. Your fi rst download should probably be the F# PowerPack
(fsharppowerpack.codeplex.com) from the F# development team. The
PowerPack includes source for the F# compiler and code library, plus
a number of additional tools and libraries. Among them are a
Matrix library, tools for lexing and parsing, LINQ-based data access
and tools for documenting F# libraries.

FAKE (github.com/forki/FAKE) is a build-automation system for F#
designed with inspiration from tools like make and rake. FAKE lets you
leverage both functional programming techniques and direct access
to .NET assemblies while also integrating directly with the editing and
debugging features of F#-aware IDEs like Visual Studio and SharpDevelop.

Head over to CodePlex to fi nd a couple of handy testing tools:
TickSpec (tickspec.codeplex.com) is a Behavior-Driven Development
framework that lets you describe behaviors in Gherkin (given, when,
then), and then execute the behaviors against C# and F# methods.

FsUnit (fsunit.codeplex.com) is a unit-testing library. Simply drop the
FsUnit.fs fi le into your project, then start writing test fi xtures and tests.

And FsCheck (fscheck.codeplex.com) is a randomized testing
framework based on the Haskell QuickCheck project that lets you
write your test specifi cations in F#, C# or Visual Basic.

If you’re interested in Windows Phone 7 development, go to the
Visual Studio Gallery and grab the F# Library for Windows Phone
(XNA) template (bit.ly/h5sg9h) and F# and C# Win Phone App
(Silverlight) template (bit.ly/fraF4S) for Visual Studio.

Speaking of Visual Studio again, here are two great projects that
will make working with F# much easier: F# Project Extender

F# is a new functional, type-safe programming language for the
Microsoft .NET Framework. Developed at Microsoft Research, it’s
based on Objective Caml, or OCaml, which is in turn based on ML.
The creator of F#, Don Syme, calls it “a synthesis between type-safe,
scalable, math-oriented scripting and programming for .NET.”

It may be a relatively young language, but F# has quickly developed
a cult following within the programming community. Perhaps that’s
because F# lets you build on familiarity with the .NET Framework and
Visual Studio. Perhaps it’s because F# combines functional, imperative
and object-oriented programming techniques in a single language.
Or perhaps it’s because F# is a strongly typed language that also
supports the fl exibility of compile-time typing.

Whichever aspects of the language appeal to you, here’s a guide
to the tools and resources that will help you get the most out of F#.

Getting Started
If you’re using Visual Studio 2010 and the .NET Framework 4, you’ve
already installed all the tools you need to start playing with F# 2.0.
You can also download a standalone installer for the F# 2.0 tools
(bit.ly/fGVQvl) if you want to use F# in a previous version of Visual
Studio or in other development environments.

Your next stop for learning about F# should be the Microsoft F#
Developer Center (msdn.microsoft.com/fsharp). Here you’ll fi nd docu-
mentation, links to examples, blog posts from F# experts and more.

Your core resource is going to be the F# Language Reference
(msdn.microsoft.com/library/dd233181) in the MSDN Library. This has all
the language details, along with sample code.

Development Environments
As mentioned earlier, Visual Studio 2010 has deep support for F#
right out of the box. But if you want to experiment with the language
on other machines, or even other OSes, head over to the Try F#
Web site (tryfs.net), where you can interactively code using F# in a
browser-based interpreter.

Those without Visual Studio can grab a trial download as a standalone
app or virtual machine from Microsoft (msdn.microsoft.com/vstudio/bb984878).
Aside from Visual Studio, there are a number of other free and
commercial IDEs that directly support F# development. These
include SharpDevelop (sharpdevelop.net/OpenSource/SD), xacc.ide
(xacc.wordpress.com) and MonoDevelop (monodevelop.com).

A unique aspect of MonoDevelop is that it enables you to set up
your development environment on Windows, Mac OS X or Linux and
target .NET Framework-based applications to those platforms in
addition to Android, iOS and Windows Phone 7. Functional Variations
has details on getting the F# features running; see “Installing and using
F# in MonoDevelop” (functional-variations.net/monodevelop). Robert
Pickering also has a guide to using F# on Mac OS X and Linux with
Mono (strangelights.com/fsharp/MonoLinux.aspx) on his F# Resources blog.

VSLab Math Visualizations in Visual Studio

http://bit.ly/fGVQvl
http://msdn.microsoft.com/fsharp
http://msdn.microsoft.com/library/dd233181
http://tryfs.net
http://msdn.microsoft.com/vstudio/bb984878
http://sharpdevelop.net/OpenSource/SD
http://xacc.wordpress.com
http://monodevelop.com
http://functional-variations.net/monodevelop
http://strangelights.com/fsharp/MonoLinux.aspx
http://bit.ly/f3pd8b
http://fsharppowerpack.codeplex.com
http://github.com/forki/FAKE
http://tickspec.codeplex.com
http://fsunit.codeplex.com
http://fscheck.codeplex.com
http://bit.ly/h5sg9h
http://bit.ly/fraF4S

DESIGN
Design Applications That Help Run the Business

Our xamMap™ control in Silverlight and
WPF lets you map out any geospatial
data like this airplane seating app to
manage your business. Come to
infragistics.com to try it today!

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91 80 4151 8042

@infragistics

Untitled-6 1 11/10/10 11:41 AM

www.infragistics.com

msdn magazine10 Toolbox

(fsprojectextender.codeplex.com) helps organize the
fi les in F# projects in Solution Explorer without
affecting compilation order; F# Refactor
(fsharprefactor.codeplex.com) is developing a toolset for
refactoring your F# code (this one’s not quite ready
for production work yet, and I’m sure they’d appre-
ciate your contribution; give something back to the
community that made all the great tools listed here).

The Web in F#
Websharper (websharper.com) is a framework for
writing Web applications in F#. WebSharper 2.1 beta
5 brings F# compatibility extensions for a number
of popular Web libraries including Google Maps,
Google Visualization, jQuery, Bing Maps, Modernizr,
InfoVis and Protovis.

Among his many contributions to the F# community, Tomas Petricek
developed F# Web Tools (tomasp.net/projects/fswebtools.aspx), which
helps you author client/server/database Web apps with F# and LINQ.
Be sure to watch Petriceck’s blog (tomasp.net/blog) for F# news, tips
and tricks. Petricek was a member of the Microsoft Research team
that created F# and thus has a unique insight into the language.

Remember we said “contributions”? Well, Petricek also created
F# Snippets (fssnip.net), a site where you can share and borrow F#
code snippets for hundreds of different uses. The site features full
syntax highlighting and type information.

Fun Stuff
It’s not all serious stuff in the world of F#. Sometimes you build
something just to have fun. I think IronJS (github.com/fholm/IronJS) falls
into that bucket. IronJS is a fast implementation of JavaScript running
on the DLR and written in F#. Check out the code and play with it.

A bit more useful for math enthusiasts and number crunchers,
VSLab (vslab.codeplex.com) provides an F#-based interactive visualiza-
tion environment similar to Matlab within Visual Studio.

To help you learn F#, Chris Marinos started an ongoing project
called F# Koans (bit.ly/hovkxs). Inspired by the Ruby Koans approach to
learning the Ruby language, F# Koans teaches you the fundamentals
and deeper truths of F# through testing. Each koan solution presents
a runtime error. Your goal is to make the error go away. By fi xing the
errors you gain knowledge of the F# language and functional program-
ming. Check out Marinos’ blog for more F# tidbits at chrismarinos.com.

Reading Is Fundamental
Many of us rely on good old-fashioned books—and increasingly,
ebooks—for learning new skills and as resources we refer to for
language details and for implementation techniques. Here are a few
you might turn to when adding F# to your quiver of skills.

“Expert F# 2.0” (Apress, 2010) (tinyurl.com/4ddksgm), by Don Syme,
Adam Granicz and Antonio Cisternino, is an authoritative guide to
the language by its inventor and two leading members of the F#
development community. You’ll learn how to use F# with .NET
technologies including ASP.NET, LINQ, Windows Presentation
Foundation and Silverlight. You can get “Expert F# 2.0” in print and
ebook formats, including a Kindle edition.

Another reference for developers is “Programming F#” (O’Reilly,
2009) (tinyurl.com/4dhl2z9), by Chris Smith, who worked on the F#

development team at Microsoft. Smith walks you
through using F# to solve problems with functional,
imperative and object-oriented programming
techniques so you can see the full capabilities of the
language. There’s also an overview of the F# libraries.
“Programming F#” is available in print and a variety
of ebook formats, including a Kindle edition.

Flying Frog Consultancy (ffconsultancy.com)
specializes in functional programming and technical
computing. The company offers a number of
inter esting publications on F#, including “Visual F#
2010 for Technical Computing,” “F# for
Numerics,” “F# for Visualization” and the
monthly “F# Journal.” It also has a selection of
other books on OCaml and data analysis techniques.

Deeply geeky stuff! Don’t forget to check out its F# News blog
(fsharpnews.blogspot.com) for news, analysis, examples and job listings for
developers with experience in F# and functional programming.

Community Resources
From the outside it might seem as if F# is a niche technology, but
there’s a huge, enthusiastic community growing around it. To join in,
start by hanging around some of these popular sites on the Web:

Community for F# (communityforfsharp.net) meets via Live Meeting
about once every month for presentations from members around
the world. Past meetings are archived on the site.

F# Central (fsharpcentral.com) provides a roundup of weekly F#
community news. If you want to keep up with the latest articles,
releases, training and job opportunities, point your browser or RSS
reader right here.

hubFS: THE place for F# (cs.hubfs.net) hosts a news feed, blogs
and discussion forums for F# programmers.

In addition, here are some key people in the F# community whose
blogs you may want to peruse for tips and tricks:

Gordon Hogenson (blogs.msdn.com/gordonhogenson) is the technical
writer who wrote most of the MSDN documentation for F#.

Luke Hoban (blogs.msdn.com/lukeh) was a project manager for the
F# team. Although he’s now working on the JavaScript team, he still
loves F# and has some great information on his blog.

Richard Minerich (richardminerich.com) does a fantastic job of
sharing blog posts and news about F# and other interesting topics.
You can follow him on Twitter too, for the real-time F# experience
(twitter.com/rickasaurus).

Dan Mohl (bloggemdano.blogspot.com) is an F# Insider and Microsoft
MVP who blogs extensively about F# and Microsoft. Mohl has been
keeping up on F#-related NuGet packages, so turn to him if you
want the latest news.

Don Syme (blogs.msdn.com/dsyme), as the creator of F#, uses his
blog to share some great insights into how the language works and
what you can expect in future releases. You’ll also fi nd breaking news
about F# here.

TERRENCE DORSEY is the technical editor of MSDN Magazine. You can read
his blog at terrencedorsey.com or follow him on Twitter at twitter.com/tpdorsey.

THANKS to the following technical experts for reviewing this article:
Chris Marinos and Richard Minerich

TOOLBOX

Expert F# 2.0

http://fsprojectextender.codeplex.com
http://fsharprefactor.codeplex.com
http://websharper.com
http://tomasp.net/projects/fswebtools.aspx
http://tomasp.net/blog
http://fssnip.net
http://github.com/fholm/IronJS
http://vslab.codeplex.com
http://bit.ly/hovkxs
http://chrismarinos.com
http://tinyurl.com/4ddksgm
http://tinyurl.com/4dhl2z9
http://ffconsultancy.com
http://fsharpnews.blogspot.com
http://communityforfsharp.net
http://fsharpcentral.com
http://cs.hubfs.net
http://blogs.msdn.com/gordonhogenson
http://blogs.msdn.com/lukeh
http://richardminerich.com
http://twitter.com/rickasaurus
http://bloggemdano.blogspot.com
http://blogs.msdn.com/dsyme
http://twitter.com/tpdorsey
www.terrencedorsey.com

DEVELOP
Rich Business Intelligence Applications in WPF and Silverlight

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91 80 4151 8042

@infragistics

Robust Pivot Grids for WPF and
Silverlight let your users analyze data
to make key business decisions.
Visit infragistics.com to try it today!

Untitled-6 1 11/10/10 10:57 AM

www.infragistics.com

msdn magazine12

think so many are actively using Code Contracts in .NET 4 applica-
tions, now that Microsoft has made soft ware contracts available and
integrated in Visual Studio. Th is article focuses on the benefi ts of a
contract-fi rst approach for code maintainability and ease of devel-
opment. You can hopefully use arguments in this article to sell Code
Contracts to your boss for your next project. In future installments of
this column, I’ll drill down into aspects such as confi guration, runtime
tools and programming features such as inheritance.

Reasoning About a Simple Calculator Class
Code Contracts are a state of mind; you shouldn’t put them aside until
you’re called to design a big application that requires a super architec-
ture and employment of many cutting-edge technologies. Keep in mind
that—when poorly managed—even the most powerful technology
can cause problems. Code Contracts are useful for just about any type
of application, as long as you have a good grasp of them. So let’s start
with a simple class—a classic Calculator class such as this:

public class Calculator
{
 public Int32 Sum(Int32 x, Int32 y)
 {
 return x + y;
 }

 public Int32 Divide(Int32 x, Int32 y)
 {
 return x / y;
 }
}

You’ll probably agree that the code here isn’t realistic, as it lacks
at least one important piece: a check to see if you’re attempting to
divide by zero. As we write a better version of it, let’s also assume
that we have an additional issue to deal with: Th e calculator doesn’t
support negative values. Figure 1 has an updated version of the
code that adds a few If-Th en-Th row statements.

So far, we can state that our class either starts processing its
input data or, in the case of invalid input, it just throws before
doing anything. What about the results generated by the class? What
facts do we know about them? Looking at the specifi cations, we
should expect that both methods return a value not less than zero.
How can we enforce that and fail if it doesn’t happen? We need a
third version of the code, as shown in Figure 2.

Both methods now are articulated in three distinct phases: check
of the input values, performance of the operation and check of the
output. Checks on input and output serve two diff erent purposes.
Input checks fl ag bugs in your caller’s code. Output checks look
for bugs in your own code. Do you really need checks on the out-

 Give Your Classes a Software Contract

An old but good practice of soft ware development recommends
that you place at the top of each method—before any signifi cant
behavior takes place—a barrier of conditional statements. Each
conditional statement checks a different condition that input
values must verify. If the condition isn’t verifi ed, the code throws
an exception. Th is pattern is oft en referred to as If-Th en-Th row.

But is If-Then-Throw all that we need to write effective and
correct code? Is it suffi cient in all cases?

Th e notion that it may not be suffi cient in all cases isn’t a new one.
Design by Contract (DbC) is a methodology introduced several
years ago by Bertrand Meyer based on the idea that each piece of
soft ware has a contract in which it formally describes what it expects
and what it provides. Th e If-Th en-Th row pattern nearly covers the
fi rst part of the contract; it lacks entirely the second part. DbC isn’t
natively supported in any mainstream programming language. How-
ever, frameworks exist to let you taste fl avors of DbC in commonly
used languages such as Java, Perl, Ruby, JavaScript and, of course,
the Microsoft .NET Framework languages. In .NET, you do DbC
via the Code Contracts library added to the .NET Framework 4,
located in the mscorlib assembly. Note that the library is available to
Silverlight 4 applications but not to Windows Phone applications.

I believe that nearly every developer would agree in principle that
a contract-fi rst approach to development is a great thing. But I don’t

CUTTING EDGE DINO ESPOSITO

public class Calculator
{
 public Int32 Sum(Int32 x, Int32 y)
 {
 // Check input values
 if (x <0 || y <0)
 throw new ArgumentException();

 // Perform the operation
 return x + y;
 }

 public Int32 Divide(Int32 x, Int32 y)
 {
 // Check input values
 if (x < 0 || y < 0)
 throw new ArgumentException();
 if (y == 0)
 throw new ArgumentException();

 // Perform the operation
 return x / y;
 }
}

Figure 1 The Calculator Class Implementing the
If-Then-Throw Pattern

EXPERIENCE
Beautiful Data Visualizations That Bring Your Data to Life

Use our Motion Framework™ to see your data
over time and give your users new insight
into their data. Visit infragistics.com/motion
to try it today!

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics, the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.
Motion Framework is a trademark of Infragistics, Inc.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91 80 4151 8042

@infragistics

Untitled-1 1 1/11/11 1:39 PM

www.infragistics.com/motion

msdn magazine14 Cutting Edge

put? I admit that check conditions can be verifi ed via assertions
in some unit tests. In that case, you don’t strictly need such checks
buried in the runtime code. However, having checks in the code
makes the class self-describing and makes it clear what it can and
can’t do—much like the terms of a contracted service.

If you compare the source code of Figure 2 with the simple
class we started with, you’ll see that the source grew by quite a few
lines—and this is a simple class with few requirements to meet.
Let’s take it one step further.

In Figure 2, the three steps we identifi ed (check input, operation
and check output) run sequentially. What if the performance of
the operation is complex enough to accommodate additional exit
points? What if some of these exit points refer to error situations
where other results are expected? Th ings can really get complicated.
To illustrate the point, however, it suffi ces that we add a shortcut
exit to one of the methods, as shown in Figure 3.

In the sample code (and it is just an example), method Sum
attempts a shortcut if the two values are equal—multiplying instead

of summing. Th e code used to check output values, however, must
be replicated for each early exit path in the code.

Th e bottom line is that nobody can reasonably think of taking
a contract-fi rst approach to soft ware development without some
serious tooling, or at least a specifi c helper framework. Checking
preliminary conditions is relatively easy and cheap to do; dealing
manually with post-execution conditions makes the entire code
base unwieldy and error prone. Not to mention a few other ancil-
lary aspects of contracts that would make the source code of classes
a real mess for developers, such as checking conditions when input
parameters are collections and ensuring that the class is always
in a known valid state whenever a method or a property is called.

Enter Code Contracts
In the .NET Framework 4, Code Contracts is a framework that pro-
vides a much more convenient syntax to express a class contract.
In particular, Code Contracts support three types of contracts: pre-
conditions, postconditions and invariants. Preconditions indicate
the preliminary conditions that should be verifi ed for a method to
execute safely. Postconditions express the conditions that should be
verifi ed once the method has executed either correctly or because of
a thrown exception. Finally, an invariant describes a condition that’s
always true during the lifetime of any class instance. More precisely,
an invariant indicates a condition that must hold aft er every possible
interaction between the class and a client—that is, aft er executing
public members, including constructors. Th e conditions expressed
as invariants aren’t checked and subsequently may be temporarily
violated aft er the invocation of a private member.

Th e Code Contracts API consists of a list of static methods defi ned
on the class Contract. You use the Requires method to express pre-
conditions and Ensures to express postconditions. Figure 4 shows
how to rewrite the Calculator class using Code Contracts.

A quick comparison of Figure 3 and Figure 4 shows the power
of an eff ective API for implementing DbC. Method code is back to a

public class Calculator
{
 public Int32 Sum(Int32 x, Int32 y)
 {
 // Check input values
 if (x <0 || y <0)
 throw new ArgumentException();

 // Perform the operation
 Int32 result = x + y;

 // Check output
 if (result <0)
 throw new ArgumentException();

 return result;
 }

 public Int32 Divide(Int32 x, Int32 y)
 {
 // Check input values
 if (x < 0 || y < 0)
 throw new ArgumentException();
 if (y == 0)
 throw new ArgumentException();

 // Perform the operation
 Int32 result = x / y;

 // Check output
 if (result < 0)
 throw new ArgumentException();

 return result;
 }
}

Figure 2 The Calculator Class Checking Preconditions
and Postconditions

public Int32 Sum(Int32 x, Int32 y)
{
 // Check input values
 if (x <0 || y <0)
 throw new ArgumentException();

 // Shortcut exit
 if (x == y)
 {
 // Perform the operation
 var temp = x <<1; // Optimization for 2*x

 // Check output
 if (temp <0)
 throw new ArgumentException();

 return temp;
 }

 // Perform the operation
 var result = x + y;

 // Check output
 if (result <0)
 throw new ArgumentException();

 return result;
}

Figure 3 A Shortcut Exit Duplicates the Code for Postconditions

Code Contracts are useful
for just about any type of

application, as long as you have
a good grasp of them.

Experience how the Altova MissionKit®, the

integrated suite of XML, database, and data

integration tools, can simplify even the most

advanced XML development projects.

Bring your

XML development

projects to light

with the complete set

of tools from Altova®

Download a 30 day free trial!

Try before you buy with a free,

fully functional, trial from

www.altova.com

The Altova MissionKit includes multiple

 intelligent XML tools – now with cutting

 edge chart and report generation:

XMLSpy® – industry-leading XML editor

 Support for all XML-based technologies

 Graphical editing views, powerful

 debuggers, code generation, & more

MapForce® – graphical data mapping & ETL tool

 Drag-and-drop data conversion

with code generation

 Support for XML, DBs, EDI, Excel® 2007+,

 XBRL, flat files & Web services

StyleVision® – visual stylesheet & report designer

 Graphical stylesheet and report design for

 XML, XBRL & databases

 Report designer with chart creation

 Output to HTML, PDF, Word & eForms

Plus up to five additional tools…

 Instant chart
 generation for XML,

 XBRL, and databases

 Schema flattener & schema
 subset creation

 Report generation in MapForce
 via StyleVision integration

 Data streaming for ETL

 Ability to auto-generate ASPX
 Web applications

 Numerous enhancements for
database, XML, and XBRL

reporting

New in
Version

2011:

Untitled-4 1 3/2/11 3:21 PM

http://www.altova.com

msdn magazine16 Cutting Edge

highly readable form in which you distinguish only two levels: contract
information including both preconditions and postconditions and
actual behavior. You don’t have to mix conditions with behavior, as in
Figure 3. As a result, readability is greatly improved, and maintaining
this code gets much easier for the team. For example, you can quickly
and safely add a new precondition or edit postconditions at will—you

intervene in just one place and your changes can be clearly tracked.
Contract information is expressed via plain C# or Visual Basic

code. Contract instructions aren’t like classic declarative attributes,
but they still maintain a strong declarative fl avor. Using plain code
instead of attributes increases the programming power of devel-
opers, as it makes it more natural to express the conditions you
have in mind. At the same time, using Code Contracts gives you
more guidance when you refactor the code. Code Contracts, in
fact, indicate the behavior you should expect from the method.
Th ey help maintain coding discipline when you write methods and
help keep your code readable even when preconditions and post-
conditions get numerous. Even though you can express contracts
using a high-level syntax such as that in Figure 4, when code actu-
ally gets compiled, the resulting fl ow can’t be much diff erent from
the code outlined in Figure 3. Where’s the trick, then?

An additional tool integrated in the build process of Visual
Studio—the Code Contracts rewriter—does the trick of reshaping
the code, understanding the intended purpose of expressed precon-
ditions and postconditions and expanding them into proper code
blocks placed where they logically belong. As a developer, you just don’t
worry about where to place a postcondition and where to duplicate
it if, at some point, you edit the code to add another exit point.

Expressing Conditions
You can fi gure out the exact syntax of preconditions and postcon-
ditions from the Code Contracts documentation; an up-to-date
PDF can be obtained from the DevLabs site at bit.ly/f4LxHi. I’ll briefl y
summarize it. You use the following method to indicate a required
condition and otherwise throw the specifi ed exception:

Contract.Requires<TException> (Boolean condition)

Th e method has a few overloads you might want to consider.
Th e method Ensures expresses a postcondition:

Contract.Ensures(Boolean condition)

When it comes to writing a precondition, the expression will
usually contain only input parameters and perhaps some other
method or property in the same class. If this is the case, you’re
required to decorate this method with the Pure attribute to note
that executing the method won’t alter the state of the object. Note
that Code Contract tools assume property getters are pure.

When you write a postcondition, you may need to gain access to
other information, such as the value being returned or the initial
value of a local variable. You do this through ad hoc methods such
as Contract.Result<T> to get the value (of type T) being returned
from the method, and Contract.OldValue<T> to get the value
stored in the specifi ed local variable at the beginning of the method

using System.Diagnostics.Contracts;
public class Calculator
{
 public Int32 Sum(Int32 x, Int32 y)
 {
 Contract.Requires<ArgumentOutOfRangeException>(x >= 0 && y >= 0);
 Contract.Ensures(Contract.Result<Int32>() >= 0);

 if (x == y)
 return 2 * x;

 return x + y;
 }

 public Int32 Divide(Int32 x, Int32 y)
 {
 Contract.Requires<ArgumentOutOfRangeException>(x >= 0 && y >= 0);
 Contract.Requires<ArgumentOutOfRangeException>(y > 0);
 Contract.Ensures(Contract.Result<Int32>() >= 0);

 return x / y;
 }
}

Figure 4 The Calculator Class Written Using Code Contracts

public class Calculator
{
 public Int32 Sum(Int32 x, Int32 y)
 {
 // Check input values
 ValidateOperands(x, y);
 ValidateResult();

 // Perform the operation
 if (x == y)
 return x<<1;
 return x + y;
 }

 public Int32 Divide(Int32 x, Int32 y)
 {
 // Check input values
 ValidateOperandsForDivision(x, y);
 ValidateResult();

 // Perform the operation
 return x / y;
 }

 [ContractAbbreviator]
 private void ValidateOperands(Int32 x, Int32 y)
 {
 Contract.Requires<ArgumentOutOfRangeException>(x >= 0 && y >= 0);
 }

 [ContractAbbreviator]
 private void ValidateOperandsForDivision(Int32 x, Int32 y)
 {
 Contract.Requires<ArgumentOutOfRangeException>(x >= 0 && y >= 0);
 Contract.Requires<ArgumentOutOfRangeException>(y > 0);
 }

 [ContractAbbreviator]
 private void ValidateResult()
 {
 Contract.Ensures(Contract.Result<Int32>() >= 0);
 }
}

Figure 5 Using ContractAbbreviators

Code Contracts help you write
clean code by forcing you to

indicate expected behavior and
results for each method.

http://bit.ly/f4LxHi

17April 2011msdnmagazine.com

execution. Finally, you also have a chance to verify a condition when
an exception is thrown during the execution of the method. In this
case, you use the method Contract.EnsuresOnTh row<TException>.

Abbreviators
Th e contract syntax is certainly more compact than using plain
code, but it can grow large as well. When this happens, readability
is at risk again. A natural remedy is grouping several contract in-
structions in a subroutine, as shown in Figure 5.

The ContractAbbreviator attribute
instructs the rewriter on how to correctly
interpret the decorated methods. Without
the attribute to qualify it as a sort of macro
to expand, in fact, the Validate Result method
(and other ValidateXxx methods in Figure 5)
would contain rather inextricable code. What
would, for example, Contract.Result<T> refer
to, as it’s used in a void method? Currently,
the ContractAbbreviator attribute must be
explicitly defined by the developer in the
project, as it isn’t included in the mscorlib as-
sembly. Th e class is fairly simple:

namespace System.Diagnostics.Contracts
{
 [AttributeUsage(AttributeTargets.Method,
 AllowMultiple = false)]
 [Conditional("CONTRACTS_FULL")]
 internal sealed class
 ContractAbbreviatorAttribute :
 System.Attribute
 {
 }
}

Clean, Improved Code
Summing up, the Code Contracts API—
basically the Contract class—is a native part
of the .NET Framework 4, as it belongs to the
mscorlib assembly. Visual Studio 2010 comes
with a confi guration page in the project prop-
erties specifi c to the confi guration of Code
Contracts. For each project, you must go
there and explicitly enable runtime checking
of contracts. You also need to download run-
time tools from the DevLabs Web site. Once
on the site, you pick up the proper installer for
the version of Visual Studio you have. Runtime
tools include the Code Contracts rewriter and
interface generator, plus the static checker.

Code Contracts help you write clean code
by forcing you to indicate expected behavior
and results for each method. At the very
minimum, this gives guidance when you go
to refactor and improve your code. Th ere’s a
lot more to be discussed about Code Con-
tracts. In particular, in this article, I just
quickly mentioned invariants and didn’t
mention the powerful feature contract

inheritance at all. In future articles, I plan to cover all of this and more.
Stay tuned!

DINO ESPOSITO is the author of “Programming Microsoft ASP.NET MVC”
(Microsoft Press, 2010) and coauthor of “Microsoft .NET: Architecting Applications
for the Enterprise” (Microsoft Press, 2008). Based in Italy, Esposito is a frequent
speaker at industry events worldwide. Follow him on Twitter at twitter.com/despos.

THANKS to the following technical expert for reviewing this article:
Brian Grunkemeyer

www.codefluententities.com/msdn
http://twitter.com/despos
www.msdnmagazine.com

Untitled-9 2 2/15/11 1:10 PM

www.componentart.com

Untitled-9 3 2/15/11 1:11 PM

www.componentart.com

msdn magazine20

When you fi rst edit a cell in a new row, the edit mode triggers an
insert in the data source (again, not in the database, but in the
underlying in-memory source). Because DatePicker isn’t trigger-
ing edit mode, this doesn’t happen.

I discovered this problem because, coincidentally, a date column
was the fi rst column in my row. I was depending on it to trigger
the row’s edit mode.

Figure 1 shows a new row where the date in the fi rst editable
column has been entered.

But aft er editing the value in the next column, the previous edit
value has been lost, as you can see in Figure 2.

Th e key value in the fi rst column has become 0 and the date that
was just entered has changed to 1/1/0001. Editing the Task column
fi nally triggered the DataGrid to add a new entity in the source.
Th e ID value becomes an integer—default, 0—and the date value
becomes the .NET default minimum date, 1/1/0001. If I had a
default date specifi ed for this class, the user’s entered date would
have changed to the class default rather than the .NET default.
Notice that the date in the Date Performed column didn’t change
to its default. Th at’s because DatePerformed is a nullable property.

So now the user has to go back and fi x the Scheduled Date again?
I’m sure the user won’t be happy with that. I struggled with this
problem for a while. I even changed the column to a DataText-
BoxColumn instead, but then I had to deal with validation issues
that the DatePicker had protected me from.

Finally, Varsha Mahadevan on the WPF team set me on the right path.
By leveraging the compositional nature of WPF, you can use two

elements for the column. Not only does the DataGridTemplate-
Column have a CellTemplate element, but there’s a CellEditing-
Template as well. Rather than ask the DatePicker control to trigger
edit mode, I use the DatePicker only when I’m already editing. For

Composing WPF DataGrid Column
Templates for a Better User Experience

Recently I’ve been doing some work in Windows Presentation
Foundation (WPF) for a client. Although I’m a big believer in
using third-party tools, I sometimes avoid them in order to fi nd
out what challenges lay in wait for developers who, for one reason
or another, stick to using only those tools that are part of the
Visual Studio installation.

So I crossed my fingers and jumped into the WPF DataGrid.
Th ere were some user-experience issues that took me days to solve,
even with the aid of Web searches and suggestions in online forums.
Breaking my DataGrid columns into pairs of complementary
templates turned out to play a big role in solving these problems.
Because the solutions weren’t obvious, I’ll share them here.

Th e focus of this column will be working with the WPF Combo-
Box and DatePicker controls that are inside a WPF DataGrid.

The DatePicker and New DataGrid Rows
One challenge that caused me frustration was user interaction with the
date columns in my DataGrid. I had created a DataGrid by dragging
an object Data Source onto the WPF window. Th e designer’s default
behavior is to create a DatePicker for each DateTime value in the
object. For example, here’s the column created for a DateScheduled fi eld:

<DataGridTemplateColumn x:Name=" dateScheduledColumn"
 Header="DateScheduled" Width="100">
 <DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <DatePicker
 SelectedDate="{Binding Path=DateScheduled, Mode=TwoWay,
 ValidatesOnExceptions=true, NotifyOnValidationError=true}" />
 </DataTemplate>
 </DataGridTemplateColumn.CellTemplate>
</DataGridTemplateColumn>

This default isn’t conducive to editing. Existing rows weren’t
updating when edited. The DatePicker doesn’t trigger editing in
the DataGrid, which means that the data-binding feature won’t
push the change through to the underlying object. Adding the
UpdateSourceTrigger attribute to the Binding element and set-
ting its value to PropertyChanged solved this particular problem:

<DatePicker
 SelectedDate="{Binding Path= DateScheduled, Mode=TwoWay,
 ValidatesOnExceptions=true, NotifyOnValidationError=true,
 UpdateSourceTrigger=PropertyChanged}" />

However, with new rows, there’s a worse implication of the
inability of the DatePicker to trigger the DataGrid edit mode. In
a DataGrid, a new row is represented by a NewRowPlaceHolder.

DATA POINTS JULIE LERMAN

Code download available at code.msdn.microsoft.com/mag201104DataPoints.

There were some
user-experience issues that

took me days to solve, even with
the aid of Web searches and
suggestions in online forums.

http://code.msdn.microsoft.com/mag201104DataPoints

we are Countersoft
you are Control

I am testing

I am answers

you are software development

I am product support
you are bug tracking

I am project management

I am agile

The first comprehensive solution to
address ISVs’ profitability AND customer
experience by targeting product support

The most versatile project
management platform for software
development and testing teams
around the world

Project Platform Product Support Optimized

Patent pending Atlas addresses the area of the software
business that matters most: the product support eco-
system. Atlas is the logical alternative to revenue-
sapping, customer-irritating forums. Atlas offers smarter
community-based support and integrates FAQ/KB,
documentation and how-to videos.

 BOOK A DEMO / FREE TRIAL / 3-for-FREE
 Seeing is believing! We’ll talk about YOU.
 www.geminiplatform.com

The award-winning Gemini Project Platform is the
.NET based project platform that uniquely allows
teams to work the way they want to work with more
functionality and easy customization for optimum
team performance and predictable results.

 DOWNLOAD NOW
 and lead from the front.
 www.atlasanswer.com

ENABLING COLLECTIVE CAPABILITY www.countersoft.com

I am creating

I am job management

I am issue tracking

rates FAQ/KB,

m

Contact // Europe/Asia: +44 (0)1753 824000 // US/Canada: 800.927.5568 // E: sales@countersoft.com

I am help desk

Untitled-1 1 2/22/11 2:19 PM

http://www.geminiplatform.com
http://www.atlasanswer.com
http://www.countersoft.com
mailto:sales@countersoft.com
http://www.countersoft.com

msdn magazine22 Data Points

displaying the date in the CellTemplate, I switched to a TextBlock.
Here’s the new XAML for dateScheduledColumn:

<DataGridTemplateColumn x:Name="dateScheduledColumn"
 Header="Date Scheduled" Width="125">
 <DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Path= DateScheduled, StringFormat=\{0:d\}}" />
 </DataTemplate>
 </DataGridTemplateColumn.CellTemplate>
 <DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <DatePicker SelectedDate="{Binding Path=DateScheduled, Mode=TwoWay,
 ValidatesOnExceptions=true, NotifyOnValidationError=true}" />
 </DataTemplate>
 </DataGridTemplateColumn.CellEditingTemplate>
</DataGridTemplateColumn>

Notice that I no longer need to specify UpdateSourceTrigger. I’ve
made the same changes to the DatePerformed column.

Now the date columns start out as simple text until you enter the
cell and it switches to the DatePicker, as you can see in Figure 3.

In the rows above the new row, you don’t have the DatePicker
calendar icon.

But it’s still not quite right. We’re still getting the default .NET
value as we begin editing the row. Now you can benefit from
defi ning a default in the underlying class. I’ve modifi ed the construc-
tor of the ScheduleItem class to initialize new objects with today’s
date. If data is retrieved from the database, it will overwrite that
default. In my project, I’m using the Enity Framework, therefore
my classes are generated automatically. However, the generated
classes are partial classes, which allow me to add the constructor
in an additional partial class:

 public partial class ScheduleItem
 {
 public ScheduleItem()
 {
 DateScheduled = DateTime.Today;
 }
 }

Now when I begin entering data into
the new row placeholder by modifying the
DateScheduled column, the DataGrid will
create a new ScheduleItem for me and the
default (today’s date) will be displayed in the
DatePicker control. As the user continues to
edit the row, the value entered will remain
in place this time.

Reducing User Clicks
to Allow Editing
One downside to the two-part template
is that you have to click on the cell twice

to trigger the DatePicker. Th is is a frustration to anyone doing data
entry, especially if they’re used to using the keyboard to enter data
without touching the mouse. Because the DatePicker is in the editing
template, it won’t get focus until you’ve triggered the edit mode—by
default, that is. Th e design was geared for TextBoxes and with those it
works just right. But it doesn’t work as well with the DatePicker. You
can use a combination of XAML and code to force the DatePicker
to be ready for typing as soon as a user tabs into that cell.

First you’ll need to add a Grid container into the CellEditing-
Template so that it becomes a container of the Da tePicker. Th en,
using the WPF FocusManager, you can force this Grid to be the
focal point of the cell when the user enters the cell. Here’s the new
Grid element surrounding the DatePicker:

<Grid FocusManager.FocusedElement="{Binding ElementName= dateScheduledPicker}">
 <DatePicker x:Name=" dateScheduledPicker"
 SelectedDate="{Binding Path=DateScheduled, Mode=TwoWay,
 ValidatesOnExceptions=true, NotifyOnValidationError=true}" />
</Grid>

Notice I’ve provided a name for the DatePicker control and I’m point-
ing to that name using the FocusedElement Binding ElementName.

Moving your attention to the DataGrid that contains this Date-
Picker, notice that I’ve added three new properties (RowDetailsVisi-
bilityMode, SelectionMode and SelectionUnit), as well as a new
event handler (SelectedCellsChanged):

<DataGrid AutoGenerateColumns="False" EnableRowVirtualization="True"
 ItemsSource="{Binding}" Margin="12,12,22,31"
 Name="scheduleItemsDataGrid"
 RowDetailsVisibilityMode="VisibleWhenSelected"
 SelectionMode="Extended" SelectionUnit="Cell"
 SelectedCellsChanged="scheduleItemsDataGrid_SelectedCellsChanged">

Figure 1 Entering a Date Value into a New Row Placeholder

Figure 2 Date Value Is Lost After the Value of the Task Column
in the New Row Is Modifi ed

One challenge that
caused me frustration was

user interaction with the date
columns in my DataGrid.

ENTERPRISE

SNMP

POP

TCP

UDP

2IP

SSL

SFTP

SSH

HTTP

TELNET

EMULATION

FTPSMTP

WEB
UI

Internet Connectivity for the Enterprise

PowerSNMP for ActiveX and .NET
Create custom Manager, Agent and Trap applications with a set
of native ActiveX, .NET and Compact Framework components.
SNMPv1, SNMPv2, SNMPv3 (authentication/encryption) and
ASN.1 standards supported.

Since 1994, Dart has been a leading provider of high quality, high performance Internet connectivity components supporting a wide
range of protocols and platforms. Dart’s three product lines offer a comprehensive set of tools for the professional software developer.

PowerWEB for ASP.NET
AJAX enhanced user interface controls for responsive ASP.NET
applications. Develop unique solutions by including streaming file
upload and interactive image pan/zoom functionality within a page.

Download a fully functional product trial today!
Ask us about Mono Platform support. Contact sales@dart.com.

PowerTCP for ActiveX and .NET
Add high performance Internet connectivity to your ActiveX, .NET
and Compact Framework projects. Reduce integration costs with
detailed documentation, hundreds of samples and an expert
in-house support staff.

SSH
UDP
TCP
SSL

FTP
SFTP
HTTP
POP

SMTP
IMAP
S/MIME
Ping

DNS
Rlogin
Rsh
Rexec

Telnet
VT Emulation
ZIP Compression
more...

Untitled-1 1 1/11/10 11:10 AM

mailto:sales@dart.com
www.dart.com
www.dart.com

msdn magazine24 Data Points

Th e changes to the DataGrid will enable
notifi cation when a user selects a new cell in
the DataGrid. Finally, when this happens,
you need to ensure that the DataGrid does
indeed go into edit mode, which will then
provide the user with the necessary cur-
sor in the DatePicker. Th e scheduleItems-
DataGrid_SelectedCellsChanged method
will provide this last bit of logic:

private void scheduleItemsDataGrid_
SelectedCellsChanged
 (object sender,
 System.Windows.Controls.SelectedCellsChangedEventArgs e)
{
 if (e.AddedCells.Count == 0) return;
 var currentCell = e.AddedCells[0];
 string header = (string)currentCell.Column.Header;

 var currentCell = e.AddedCells[0];

 if (currentCell.Column ==
 scheduleItemsDataGrid.Columns[DateScheduledColumnIndex])
 {
 scheduleItemsDataGrid.BeginEdit();
 }
}

Note that in the class declarations, I’ve defi ned the constant, Date-
ScheduledColumnIndex as 1, the position of the column in the grid.

With all of these changes in place, I now have happy end users. It
took a bit of poking around to fi nd the right combination of XAML
and code elements to make the DatePicker work nicely inside of

a DataGrid, and I hope to have helped you
avoid making that same eff ort. Th e UI now
works in a way that feels natural to the user.

Enabling a Restricted ComboBox
to Display Legacy Values
Having grasped the value of layering the
elements inside the DataGridTemplate-
Column, I revisited another problem that
I’d nearly given up on with a DataGrid-
ComboBox column.

Th is particular application was being written to replace a legacy
application with legacy data. Th e legacy application had allowed
users to enter data without a lot of control. In the new applica-
tion, the client requested that some of the data entry be restricted
through the use of drop-down lists. Th e contents of the drop-down
list were provided easily enough using a collection of strings. Th e
challenge was that the legacy data still needed to be displayed even
if it wasn’t contained in the new restricted list.

My fi rst attempt was to use the DataGridComboBoxColumn:
<DataGridComboBoxColumn x:Name="frequencyCombo"
 MinWidth="100" Header="Frequency"
 ItemsSource="{Binding Source={StaticResource frequencyViewSource}}"
 SelectedValueBinding=
 "{Binding Path=Frequency, UpdateSourceTrigger=PropertyChanged}">
</DataGridComboBoxColumn>

Th e source items are defi ned in codebehind:
private void PopulateTrueFrequencyList()
{
 _frequencyList =
 new List<String>{"",
 "Initial","2 Weeks",
 "1 Month", "2 Months",
 "3 Months", "4 Months",
 "5 Months", "6 Months",
 "7 Months", "8 Months",
 "9 Months", "10 Months",
 "11 Months", "12 Months"
 };
 }

Th is _frequencyList is bound to frequencyViewSource.Source
in another method.

In the myriad possible confi gurations of the DataGridCombo-
BoxColumn, I could find no way to display disparate values
that may have already been stored in the Frequency field of the
database table. I won’t bother listing all of the solutions I attempted,
including one that involved dynamically adding those extra values
to the bottom of the _frequencyList and then removing them as
needed. Th at was a solution I disliked but was afraid that I might
have to live with.

I knew that the layered approach of WPF to composing a UI
had to provide a mechanism for this, and having solved the Date-
Picker problem, I realized I could use a similar approach for
the ComboBox. The first part of the trick is to avoid the slick
DataGridComboBoxColumn and use the more classic approach of
embedding a ComboBox inside of a DataGridTemplateColumn.
Th en, leveraging the compositional nature of WPF, you can use
two elements for the column just as with the DateScheduled
column. Th e fi rst is a TextBlock to display values and the second
is a ComboBox for editing purposes.

Figure 4 shows how I’ve used them together.

<DataGridTemplateColumn x:Name="taskColumnFaster"
 Header="Task" Width="100" >
 <DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Path=Task}" />
 </DataTemplate>
 </DataGridTemplateColumn.CellTemplate>

 <DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <Grid FocusManager.FocusedElement=
 "{Binding ElementName= taskCombo}" >
 <ComboBox x:Name="taskCombo"
 ItemsSource="{Binding Source={StaticResource taskViewSource}}"
 SelectedItem ="{Binding Path=Task}"
 IsSynchronizedWithCurrentItem="False"/>
 </Grid>
 </DataTemplate>
 </DataGridTemplateColumn.CellEditingTemplate>
</DataGridTemplateColumn>

Figure 4 Combining a TextBlock to Display Values and
a ComboBox for Editing

Figure 3 DateScheduled Column Using
Both a TextBlock and a DatePicker

It took a bit of poking around
to fi nd the right combination

of XAML and code elements to
make the DatePicker work nicely

inside of a DataGrid.

msdnmagazine.com

Th e TextBlock has no dependency on the restricted list, so it’s
able to display whatever value is stored in the database. However,
when it’s time to edit, the ComboBox will be used and entry is
limited to the values in the frequencyViewSource.

Allowing Users to Edit the ComboBox
When the Cell Gets Focused
Again, because the ComboBox won’t be available until the user
clicks twice in the cell, notice that I wrapped the ComboBox in a
Grid to leverage the FocusManager.

I’ve modified the SelectedCellsChanged method in case the
user starts his new row data entry by clicking the Task cell, not by
moving to the fi rst column. Th e only change is that the code also
checks to see if the current cell is in the Task column:

private void scheduleItemsDataGrid_SelectedCellsChanged(object sender,
 System.Windows.Controls.SelectedCellsChangedEventArgs e)
{
 if (e.AddedCells.Count == 0) return;
 var currentCell = e.AddedCells[0];
 string header = (string)currentCell.Column.Header;

 if (currentCell.Column ==
 scheduleItemsDataGrid.Columns[DateScheduledColumnIndex]
 || currentCell.Column == scheduleItemsDataGrid.Columns[TaskColumnIndex])
 {
 scheduleItemsDataGrid.BeginEdit();
 }
}

Don’t Neglect User Experience
While we developers are building solutions, it’s common to focus
on making sure data is valid, that it’s getting where it needs to go
and other concerns. We may not even notice that we had to click
twice to edit a date. But your users will quickly let you know if the
application you’ve written to help them get their jobs done more
eff ectively is actually holding them back because they have to keep
going back and forth from the mouse to the keyboard.

While the WPF data-binding features of Visual Studio 2010 are
fantastic development time savers, fi ne-tuning the user experience
for the complex data grid—especially when combining it with the
equally complex DatePicker and ComboBoxes—will be greatly
appreciated by your end users. Chances are, they won’t even notice
the extra thought you put in because it works the way they expect
it—but that’s part of the fun of our job.

JULIE LERMAN is a Microsoft MVP, .NET mentor and consultant who lives in the
hills of Vermont. You can fi nd her presenting on data access and other Microsoft
.NET topics at user groups and conferences around the world. She blogs at
thedatafarm.com/blog and is the author of the highly acclaimed book,
“Programming Entity Framework” (O’Reilly Media, 2010). Follow her on Twitter
at twitter.com/julielerman.

THANKS to the following technical expert for reviewing this article:
Varsha Mahadevan

The UI now works in a way that
feels natural to the user.

www.scaleoutsoftware.com/eval
http://thedatafarm.com/blog
http://twitter.com/julielerman
www.msdnmagazine.com

msdn magazine26

CLO U D CAC HE

Introducing the
Windows Azure AppFabric
Caching Service

In a world where speed and scale are the key success
metrics of any solution, they can’t be aft erthoughts or retrofi tted
to an application architecture—speed and scale need to be made
the core design principles when you’re still on the whiteboard
architecting your application.

Th e Windows Azure AppFabric Caching service provides the
necessary building blocks to simplify these challenges without
having to learn about deploying and managing another tier in
your application architecture. In a nutshell, the Caching service is
the elastic memory that your application needs for increasing its
performance and throughput by offl oading the pressure from the
data tier and the distributed state so that your application is able
to easily scale out the compute tier.

Th e Caching service was released as a Community Technology
Preview (CTP) at the Microsoft Professional Developers Conference
in 2010, and was refreshed in February 2011.

Karandeep Anand and Wade Wegner

Th e Caching service is an important piece of the Windows Azure
platform, and builds upon the Platform as a Service (PaaS) off erings
that already make up the platform. Th e Caching service is based
on the same code-base as Windows Server AppFabric Caching,
and consequently it has a symmetric developer experience to the
on-premises cache.

Th e Caching service off ers developers the following capabilities:
• Pre-built ASP.NET providers for session state and page

output caching, enabling acceleration of Web applications
without having to modify application code

• Caches any managed object—no object size limits, no
serialization costs for local caching

• Easily integrates into existing applications
• Consistent development model across both Windows Azure

AppFabric and Windows Server AppFabric
• Secured access and authorization provided by the Access

Control service
While you can set up other caching technologies (such as mem-

cached) on your own as instances in the cloud, you’d end up installing,
confi guring and managing the cache clusters and instances yourself.
Th is defaults one of the main goals of the cloud, and PaaS in particular:
to get away from managing these details. The Windows Server
AppFabric Caching service removes this burden from you, while also
accelerating the performance of ASP.NET Web applications running in
Windows Azure with little or no code or confi guration changes. We’ll
show you how this is done throughout the remainder of the article.

This article discusses:
• Caching client and service

• Setting up AppFabric Caching

• Caching in your app

• Storing session data

Technologies discussed:
Windows Azure, Visual Studio 2010

27April 2011msdnmagazine.com

Under the Hood
Now that you understand how caching can be a strategic design choice
for your application, let’s dig a little deeper into what the Caching
service really looks like. Let’s take an example of a typical shopping
Web site, say an e-commerce site that sells Xbox and PC games, and
use that to understand the various pieces of the Caching service.

At a high level, there are three key pieces to the puzzle:
• Cache client
• Caching service
• Connection between the client and the service

Cache client is the proxy that lives within your application—the
shopping Web site in this case. It’s the piece of code that knows how
to talk to the Caching service, in a language that both understand
well. You need to include this client assembly in your application
and deploy it with your Web application with the appropriate con-
fi guration to be able to discover and talk to the Caching service.
(We’ll cover this process later in the article.)

Because there are some common application patterns, such as
ASP.NET session state, where caching can be used out of the box,
there are two ways to use the client.

For explicit programming against the cache APIs, include the
cache client assembly in your application from the SDK and you
can start making GET/PUT calls to store and retrieve data from
the cache. Th is is a good way to store your games catalog or other
reference data for your gaming Web site.

For higher-level scenarios that in turn use the cache, you need to
include the ASP.NET session state provider for the Caching service
and interact with the session state APIs instead of interacting with
the caching APIs. Th e session state provider does the heavy lift ing
of calling the appropriate caching APIs to maintain the session state
in the cache tier. Th is is a good way for you to store information
like user preferences, shopping cart, game-browsing history and so
on in the session state without writing a single line of cache code.

You can pretty much keep any object in the cache: text, data,
blobs, CLR objects and so on. Th ere’s no restriction on the size of the
object, either. Hence, whether you’re storing explicit objects in cache
or storing session state, the object size is not a consideration to choose
whether you can use the Caching service in your application.

One thing to note about the Caching service is that it’s an
explicit cache that you write to and have full control over. It’s not
a transparent cache layer on top of your database or storage. Th is
has the benefi t of providing full control over what data gets stored
and managed in the cache, but also means you
have to program against the cache as a separate
data store using the cache APIs.

Th is pattern is typically referred to as the cache-
aside, where you fi rst load data into the cache and
then check if it exists there for retrieving and,
only when it’s not available there, you explicitly
read the data from the data tier. So, as a devel-
oper, you need to learn the cache programming
model, the APIs, and common tips and tricks to
make your usage of cache effi cient.

One other thing to know about the cache client
is the ability to cache a subset of the data that

resides in the distributed cache servers, directly on the client—the Web
server running the gaming Web site in our example. Th is feature is
popularly referred to as the local cache, and it’s enabled with a simple
confi guration setting that allows you to specify the number of objects
you wish to store and the timeout settings to invalidate the cache.

Th e second key part of the puzzle is the Caching service itself. Th ink
of the Caching service as Microsoft running a large set of cache clus-
ters for you, heavily optimized for performance, uptime, resiliency
and scale out and just exposed as a simple network service with an
endpoint for you to call. Th e Caching service is a highly available
multitenant service with no management overhead for its users.

As a user, what you get is a secure Windows Communication
Foundation (WCF) endpoint to talk to and the amount of usable
memory you need for your application and APIs for the cache
client to call in to store and retrieve data. Th e key here is usable
memory. If you ask for 1GB cache memory, you get 1GB of usable
memory to store your objects, unlike the amount of memory avail-
able on a Windows Azure instance you buy. Th e Caching service
does the job of pooling in memory from the distributed cluster
of machines it’s running and managing to provide the amount
of usable memory you need. As a result, it also automatically
provides the fl exibility to scale up or down based on your cache
needs with a simple change in the confi guration. In that sense, think
of the Caching service as a virtual pool of partitioned and shared
memory that you can consume fl exibly.

Th e other under-the-hood design point to understand is that the
Caching service automatically partitions your cache so that you
don’t lose data in the event of a machine going down, even if you
haven’t bought the more expensive high availability (HA) option for
your cache. (Th e HA option is not currently available in Windows
Azure AppFabric Caching, and only available on Windows Server
AppFabric Caching today.) Th is partitioning scheme increases the
performance and reduces the data loss probability automatically
for you without ever having to learn about the back-end service.

Th e third and last part of the puzzle is the connection between your
cache client and Caching service. Th e communication between the
cache client and service is using WCF, and the WCF programming
model is abstracted from the developer as the cache client translates
GET/PUT calls to a WCF protocol that the service understands.
Th e thing you need to know about this communication chan-
nel is that it’s secure, which is extremely critical, especially in the
cloud world. Your cache is secured using an Access Control service

token (which you get when you create the named
cache). Th e Caching service uses this token to
restrict access to your cached data by your client.

Architectural Guidance
We’ve spent a lot of time with customers who have
varying degrees of application complexity . Usually,
before we start whiteboarding the design choices
and architecture, we’ll draw the simple diagram
shown in Figure 1. For most cases this diagram
captures the trade-off s between the three most
basic elements involved in storing and manipu-
lating data. (We’ve had some storage gurus argue

Figure 1 Memory, Network
and Disk Usage in Data
Manipulation Scenarios

Speed
& Cost Capacity

Memory

Network

Disk

www.msdnmagazine.com

msdn magazine28 Cloud Cache

with us that they can saturate network before they can max the disk
throughput, hence we qualify the statement about “most” cases.)

Th e basic principle is that your memory on the local machine
provides the fastest data access with lowest latency, but is limited
to the amount of usable memory on the machine. As soon as you
need more memory than your local machine can give you or you
need to externalize the data from your compute tier (either for
shared state or for more durability), the minimum price you pay is
for the network hop. Th e slowest in this spectrum is storing data on
a disk (solid-state drives help a little, but are still quite expensive).

Disk is the cheapest and largest store while memory is the most
expensive and hence the most constrained in terms of capacity. Th e
Caching service balances the various elements by providing the ser-
vice as a network service to access a large chunk of distributed and
shared memory across multiple compute tiers. At the same time, it
provides an optimization with the local cache feature to enable a
subset of the data to additionally reside on the local machine while
removing the complexity of maintaining consistency between the
local cache and the cache tier in the service.

With this background, let’s look at some top-level architectural
considerations for using cache in your application.

What data should you put in the cache? Th e answer varies signifi -
cantly with the overall design of your application. When we talk about
data for caching scenarios, usually we break it into the data types and
access patterns shown in Figure 2 (see msdn.microsoft.com/library/ee790832
for a deeper explanation of these data access patterns).

Using this model to think about your data, you can plan for
capacity and access patterns (for managing consistency, eviction,
refreshes and so on) and restrict the data to the most frequently
used or time-sensitive data used or generated by your application.

As an example, reference data should be readily partitioned into
frequently accessed versus infrequently accessed to split between
cache and storage. Resource data is a classic example where you

want to fi t as much as possible in cache to get the maximum scale
and performance benefi ts. In addition to the cache tier, even the
use of local cache on the client goes hand in hand with the data
type. Reference data is a great candidate for keeping in the local
cache or co-located with the client; while in most cases resource
data can become quite chatty for the local cache due to frequent
updates and hence best fi ts on the cache tier.

As the second-most-expensive-resource and usually the bottle-
neck for most ineffi cient implementations, network traffi c patterns
for accessing cache data is something to which you should pay
particular attention. If you have a large number of small objects,
and you don’t optimize for how frequently and how many objects
you fetch, you can easily get your app to be network-bound. Using
tags to fetch like data or using local cache to keep a large number
of frequently accessed small objects is a great trade-off .

While the option to enable HA for a named cache is not yet avail-
able in the Caching service, it’s another factor to consider in your
application design. Some developers and architects choose to use
cache only as a transient cache. However, others have taken the
leap of faith to move exclusively to storing a subset of their data
(usually activity data) only in the cache by enabling the HA feature.
HA does have a cost overhead, but it provides a design model that
treats the cache as the only store of data, thereby eliminating the
need to manage multiple data stores.

However, the cache is not a database! We cannot stress this
point too strongly. Th e topic of HA usually makes it sound like the
cache can replace your data tier. Th is is far from the truth—a SQL
database is optimized for a diff erent set of patterns than the cache
tier is designed for. In most cases, both are needed and can be
paired to provide the best performance and access patterns while
keeping the costs low.

How about using the cache for data aggregation? This is a
powerful yet usually overlooked scenario. In the cloud, apps oft en
deal with data from various sources and the data not only needs
to be aggregated but also normalized. Th e cache off ers an effi cient,
high-performance alternative for storing and managing this aggre-
gated data with high throughput normalization (in-memory as
opposed to reading from and writing to disk), and the normalized
data structure of the cache using key-value pairs is a great way to
think about how to store and serve this aggregated data.

A common problem that application developers and architects
have to deal with is the lack of guarantee
that a client will always be routed to the same
server that served the previous request. When
these sessions can’t be sticky, you’ll need to
decide what to store in session state and how
to bounce requests between servers to work
around the lack of sticky sessions. Th e cache
off ers a compelling alternative to storing any
shared state across multiple compute nodes.
(Th ese nodes would be Web servers in this
example, but the same issues apply to any
shared compute tier scenario.) The shared
state is consistently maintained automatically
by the cache tier for access by all clients, and Figure 3 Confi guring a New Cache Service Namespace

Data Type Access Pattern
Reference Shared read
Activity Exclusive write
Resource Shared, concurrently read and written into, accessed by a

large number of transactions

Figure 2 Data in Caching Scenarios

http://msdn.microsoft.com/library/ee790832

Untitled-4 1 3/2/11 3:31 PM

www.telerik.com/justcodemsdn

msdn magazine30 Cloud Cache

at the same time there’s no overhead or latency
of having to write it to a disk (database or fi les).

Th e trade-off to consider here is that if you
need ultra-low latency access to the shared
state (session state in an online gaming Web
site that tracks scores in real time, for example),
then an external cache tier might not be your
best option. For most other scenarios, using
the cache tier is a quick yet powerful way to
deal with this design pattern, which automati-
cally eliminates the staleness from your data.

Be sure to spend enough time in capacity
planning for your cache. Number of objects,
size of each object, frequency of access of each
object and pattern for accessing these objects
are all critical in not only determining how
much cache you need for your application, but
also on which layers to optimize for (local cache, network, cache tier,
using regions and tags, and so on). Remember that you can start with
a simple confi guration switch in your web.confi g fi le to start using
caching without writing a single line of code, and you can spend years
in designing a solution that uses caching in the most effi cient way.

Setting Up AppFabric Caching
To get started using the Windows Azure AppFabric Caching service,
head to portal.appfabriclabs.com. Th is is the CTP portal that you can use
to get familiar with the Caching service. It doesn’t cost anything, but
there are no service level agreements for the service.

On the portal, select the Cache option and then create a new
cache by clicking New Namespace. Th e dialog box to confi gure
the Cache service namespace is shown in Figure 3.

Th e only two options you need to specify are a unique service
namespace and the cache size (of which you can choose between
128MB and 256MB in the CTP). When you choose OK the service
will provision the cache for you in the background. Th is typically
takes 10 to 15 seconds. When complete, you have a fully functional,
distributed cache available to your applications.

Now that it’s created, you can take a look at the properties of
your cache, shown in Figure 4. (Note that we’ve obfuscated some
account-specifi c information here.)

You can see that we’ve created a cache using the namespace of
CachingDemo. Th ere are a few pieces of important information
that you’ll want to grab, as we’ll use them later in our code: the
Service URL and the Authentication Token. The Service URL
is the TCP endpoint that your application will connect to when
interacting with the Caching service. Th e Authentication Token
is an encrypted token that you’ll pass along to Access Control to
authenticate your service.

Caching in Your App
Now, before you start coding, download the Windows Azure
AppFabric SDK. You can fi nd it at go.microsoft.com/fwlink/?LinkID=184288
or click the link on the portal.

Make sure you don’t have the Windows Server AppFabric Cache
already installed on your machine. While the API is symmetric,

the current assemblies are not compatible. Th e
Windows Server AppFabric Cache registers its
Caching assemblies in the Global Assembly
Cache (GAC), so your application will load
the wrong assemblies. Th is will be resolved by
the time the service goes into production, but
for now it causes a bit of friction.

To begin, let’s create a simple console
application using C#. Once created, be sure
to update the project so that it targets the
full Microsoft .NET Framework instead
of the Client Profile. You’ll also need to
add the Caching assemblies, which can
typically be found under C:\Program Files\
Windows Azure AppFabric SDK\V2.0\
Assemblies\Cache. For now, add the follow-
ing two assemblies:

• Microsoft .ApplicationServer.Caching.Client
• Microsoft .ApplicationServer.Caching.Core

One thing that changed between the October CTP and the
February refresh is that you now must use the System.Security.Secure-
String for your authentication token. Th e purpose of SecureString
is to keep you from putting your password or token into memory
within your application, thereby keeping it more secure. However,
to make this work in a simple console application, you’ll have to
create the following method:

static private SecureString Secure(string token) {
 SecureString secureString = new SecureString();
 foreach (char c in token) {
 secureString.AppendChar(c);
 }
 secureString.MakeReadOnly();
 return secureString;
}

While this defeats the purpose of SecureString by forcing you to
load the token into memory, it’s only used for this simple scenario.

Now, the next thing to do is write the code that will set us up to
interact with the Caching service. Th e API uses a factory pattern,

private static DataCache configureDataCache(
 SecureString authorizationToken, string serviceUrl) {

 // Declare an array for the cache host
 List<DataCacheServerEndpoint> server =
 new List<DataCacheServerEndpoint>();
 server.Add(new DataCacheServerEndpoint(serviceUrl, 22233));

 // Set up the DataCacheFactory configuration
 DataCacheFactoryConfiguration conf =
 new DataCacheFactoryConfiguration();
 conf.SecurityProperties =
 new DataCacheSecurity(authorizationToken);
 conf.Servers = server;

 // Create the DataCacheFactory based on config settings
 DataCacheFactory dataCacheFactory =
 new DataCacheFactory(conf);

 // Get the default cache client
 DataCache dataCache = dataCacheFactory.GetDefaultCache();

 // Return the default cache
 return dataCache;
}

Figure 5 Loading the Default Cache

Figure 4 Cache Service Properties

http://portal.appfabriclabs.com
http://go.microsoft.com/fwlink/?LinkID=184288

Untitled-4 1 3/2/11 3:32 PM

www.telerik.com/InteractiveReports

msdn magazine32 Cloud Cache

so we’ll have to defi ne the factory, set some confi guration settings
and then load our default cache as shown in Figure 5.

You can see that we’ve defi ned a new DataCacheServerEndpoint
based on a service URL (that we’ll provide) that points to port
22233. We then create the DataCacheFactoryConfi guration, pass
in our authentication token (which is a SecureString) and set it
to the security properties—this will enable us to authenticate to
the service. At this point it’s simply a matter of constructing the
DataCacheFactory, getting the DataCache based on the default
cache and returning the default cache.

While it’s not required to encapsulate this logic in its own method,
it makes it much more convenient later on.

At this point, it’s pretty simple to pull this together in our appli-
cation’s Main method (see Figure 6).

We provide the authentication token and service URL to our
application, then pass them into the confi gureDataCache method,
which sets the DataCache variable to the default cache. From here
we can grab some input from the console, put it into the cache and
then call Get on the key, which returns the value. Th is is a simple,
but valid, test of the cache.

Including the tokens and service URL in the code is not ideal.
Fortunately, the portal provides you with XML that you can insert
within your app.confi g (or web.confi g) fi le, and the APIs will man-
age everything for you.

In the portal, select your cache, then click the View Client Confi g-
uration button. Th is opens a dialog that provides the confi guration
XML. Copy the XML snippet and paste it into your confi guration
fi le. Th e end result will look like Figure 7.

Now we can heavily refactor our code, get rid of the createSecure-
String and confi gureDataCache methods, and be left with this:

static void Main(string[] args) {
 DataCacheFactory dataCacheFactory =
 new DataCacheFactory();
 DataCache dataCache = dataCacheFactory.GetDefaultCache();
 Console.Write("Enter a value: ");
 string value = Console.ReadLine();
 dataCache.Put("key", value);
 string response = (string)dataCache.Get("key");
 Console.WriteLine("Your value: " + response);
}

You can see that all we have to do is create a new instance of
the DataCacheFactory, and all the configuration settings in the
app.confi g fi le are read in by default.

As you’ve seen, you can use the APIs directly or manage Data-
CacheFactory in your confi guration. While we’ve only performed
PUT and GET operations on simple data, we could easily store
data retrieved from SQL Azure, Windows Azure or another
provider of data. For a more complex look at using the cache for
reference data stored in SQL Azure, refer to the Caching Service
Hands-On Lab in the Windows Azure Platform Training Course
(msdn.microsoft.com/gg457894).

Storing Session Data
Next, let’s take a look at how to use the Caching service to store the
session data for our ASP.NET Web application. Th is is a power-
ful technique, as it allows us to separate the session state from the
in-process memory of each of our Web clients, thus making it easy
to scale our applications beyond one instance in Windows Azure.

Th is is important for servicesthat don’t support sticky sessions,
such as Windows Azure. There’s no way to guarantee that a user
will hit the same instance with each additional request—in fact,
the Windows Azure load balancer explicitly uses a round-robin
approach to load balancing, so it’s likely that your user will hit a new
instance. By using the Caching service for session state, it doesn’t
matter which instance your user hits because all the instances are
backed by the same session state provider.

To begin, create a new Windows Azure Project and add an
ASP.NET Web Role. In the Web Role, add all of the assemblies
provided by the Windows Azure AppFabric SDK, including:

• Microsoft .ApplicationService.Caching.Client
• Microsoft .ApplicationService.Caching.Core
• Microsoft .Web.DistributedCache
• Microsoft .WindowsFabric.Common
• Microsoft .WindowsFabric.Data.Common

Next, update your web.confi g fi le so that the very fi rst things to
follow the <confi guration> element are the <confi gSections> and
<dataCacheClient> elements (you’ll receive errors if they aren’t
the fi rst elements).

Now, the key to using the Caching service for session state is the
Microsoft .Web.DistributedCache assembly. It contains the custom
session state provider that uses the Caching service. Return to the
LABS portal where you grabbed the XML for your confi guration
files, and find the <sessionState> element—you can place this
directly in the <system.web> element of your web.confi g fi le and
it will immediately tell your application to start leveraging the
Caching service for session state:

<system.web>
 <sessionState mode="Custom"
 customProvider="AppFabricCacheSessionStoreProvider">
 <providers>
 <add name="AppFabricCacheSessionStoreProvider"
 type="Microsoft.Web.DistributedCache.
DistributedCacheSessionStateStoreProvider, Microsoft.Web.DistributedCache"
 cacheName="default"
 useBlobMode="false" />
 </providers>
 </sessionState>
 ...
</system.web>

static void Main(string[] args) {
 // Hardcode your token and service url
 SecureString authorizationToken =
 createSecureString("YOURTOKEN");
 string serviceUrl = "YOURCACHE.cache.appfabriclabs.com";

 // Create and return the data cache
 DataCache dataCache =
 configureDataCache(authorizationToken, serviceUrl);

 // Enter a value to store in the cache
 Console.Write("Enter a value: ");
 string value = Console.ReadLine();

 // Put your value in the cache
 dataCache.Put("key", value);

 // Get your value out of the cache
 string response = (string)dataCache.Get("key");

 // Write the value
 Console.WriteLine("Your value: " + response);
}

Figure 6 Console Application Main Method

http://msdn.microsoft.com/gg457894

Untitled-4 1 3/2/11 3:32 PM

www.telerik.com/phonemsdn

msdn magazine34 Cloud Cache

To validate that this is working, open the Global.asax.cs fi le and
add the following code to the Session_Start method:

void Session_Start(object sender, EventArgs e) {
 int i = 0;
 while (i < 10) {
 Session.Add(Guid.NewGuid().ToString(), DateTime.Now.ToString());
 i++;
 }
}

Th is will add 10 random items into your session context. Next, open
up your Default.aspx.cs page and update the Page_Load method:

protected void Page_Load(object sender, EventArgs e) {
 foreach (var key in Session.Contents) {
 Response.Write("key: " + key + ", guid: " +
 Session[key.ToString()].ToString() + "
");
 }
}

Th is will write out all the values that were added into the session
context. Finally, open the ServiceConfiguration.cscfg file and
increase the instance count from 1 to 2:

<Instances count="2" />

Now, when you hit F5, you’ll get two instances of your applica-
tion running in the Compute Emulator. Notice that no matter
how many times you refresh the page, you’ll always have the same
10 values in your session state—this is because it’s a shared session,
and session start only runs once. Conversely, if you don’t use the
Caching service as your session state provides, but opt to keep
the default in-process choice, you’ll have diff erent values on each
of the instances.

What’s Next?
Windows Azure AppFabric Caching service is slated to go into
production as a commercial service in the fi rst half of 2011. In the
fi rst commercial release, some of the features that are available in
Windows Server AppFabric will not yet be available. Some of these
exclusions are purposeful, as they may not apply in the cloud world.
However, features like notifi cations are relevant in Windows Azure
as well and are critical in completing the local-cache scenario, and
hence are part of the short-term roadmap for Microsoft . Similarly,
the option of turning on HA for a given named cache as a premium
capability is also high on the priority list.

Th e growing popularity of Windows Server AppFabric Caching
has resulted in a number of new feature requests that open up the
applicability of caching to an even broader set of scenarios. Some
of the capabilities that are being discussed include the ability to
perform rich queries on the cache and enabling an easier way to
retrieve bulk data from a named cache.

In addition, the success of the Caching session state provider sce-
narios with ASP.NET has resulted in requests for the ability to asso-
ciate write-behind and read-through queries with the cache so that
the cache can become the primary way to manipulate data, while
letting the associated queries update the data tier in the back end.

We’ll be evaluating these and other features for possible inclusion in
future releases of Windows Azure AppFabric Caching. In the mean-
time, we encourage you to experiment with the current Caching
service implementation and let us know how it works for you.

KARANDEEP ANAND is a principal group program Manager with the AppFabric
product group at Microsoft . His team is responsible for building the next generation
application platform and services for the Windows Azure Platform and Windows
Server. You can reach him at Karandeep.Anand@microsoft .com.

WADE WEGNER is a technical evangelist at Microsoft, responsible for
infl uencing and driving the Microsoft technical strategy for the Windows Azure
platform. You can reach him through his blog at wadewegner.com or on Twitter
at twitter.com/WadeWegner.

<?xml version="1.0"?>
<configuration>
 <configSections>
 <section
 name="dataCacheClient"
 type="Microsoft.ApplicationServer.Caching.DataCacheClientSection,
Microsoft.ApplicationServer.Caching.Core"
 allowLocation="true"
 allowDefinition="Everywhere"/>
 </configSections>
 <dataCacheClient deployment="Simple">
 <hosts>
 <host
 name="YOURCACHE.cache.appfabriclabs.com"
 cachePort="22233" />
 </hosts>
 <securityProperties mode="Message">
 <messageSecurity
 authorizationInfo="YOURTOKEN">
 </messageSecurity>
 </securityProperties>
 </dataCacheClient>
</configuration>

Figure 7 Client Confi guration

www.godiagram.com
mailto:Karandeep.Anand@microsoft.com
http://twitter.com/WadeWegner

Toll Free USA (888) 774-3273 | Phone (913) 390-4797 | sales@spreadsheetgear.com

Download the FREE fully functional 30-Day
evaluation of SpreadsheetGear 2010 today at

www.SpreadsheetGear.com.

ASP.NET Excel Reporting
Easily create richly formatted Excel reports without Excel using the
new generation of spreadsheet technology built from the ground up
for scalability and reliability.

Excel Compatible Windows Forms Control
Add powerful Excel compatible viewing, editing, formatting, calculating,
charting and printing to your Windows Forms applications with the
easy to use WorkbookView control.

Create Dashboards from Excel Charts and Ranges
You and your users can design dashboards, reports, charts, and
models in Excel rather than hard to learn developer tools and you can
easily deploy them with one line of code.

Microsoft Chose SpreadsheetGear...
“After carefully evaluating SpreadsheetGear, Excel Services, and other
3rd party options, we ultimately chose SpreadsheetGear for .NET
because it is the best fi t for MSN Money.”

Chris Donohue, MSN Money Program Manager

Untitled-9 1 11/2/10 12:10 PM

http://www.SpreadsheetGear.com
mailto:sales@spreadsheetgear.com

msdn magazine36

W IN DOWS A ZUR E DEVELOP M E NT

CQRS on
Windows Azure

Microsoft Windows Azure off ers unique opportunities
and challenges. There are opportunities in the form of elastic
scalability, cost reduction and deployment flexibility, but also
challenges because the Windows Azure environment is diff erent
from the standard Windows servers that host most Microsoft .NET
Framework services and applications today.

One of the most compelling arguments for putting applications
and services in the cloud is elastic scalability: You can turn up the

Mark Seemann

power on your service when you need it, and you can turn it down
again when demand trails off . On Windows Azure, the least disrup-
tive way to adjust power is to scale out instead of up—adding more
servers instead of making existing servers more powerful. To fi t into
that model of scalability, an application must be dynamically scal-
able. Th is article describes an eff ective approach to building scalable
services and demonstrates how to implement it on Windows Azure.

Command Query Responsibility Segregation (CQRS) is a new
approach to building scalable applications. It may look diff erent
from the kind of .NET architecture you’re accustomed to, but it
builds on tried and true principles and solutions for achieving
scalability. Th ere’s a vast body of knowledge available that describes
how to build scalable systems, but it requires a shift of mindset.

Taken fi guratively, CQRS is nothing more than a statement about
separation of concerns, but in the context of soft ware architecture,
it oft en signifi es a set of related patterns. In other words, the term
CQRS can take on two meanings: as a pattern and as an architectural
style. In this article, I’ll briefl y outline both views, as well as provide
examples based on a Web application running on Windows Azure.

Understanding the CQRS Pattern
Th e underlying terminology for CQRS originates in object-oriented
pattern language. A Command is an operation that changes the
state of something, whereas a Query is an operation that retrieves
information about state. More informally, Commands are writes
and Queries are reads.

Th e CQRS pattern simply states that reads and writes must be
explicitly modeled as segregated responsibilities. Writing data is

This article discusses:
• Understanding the CQRS pattern

• CQRS architectural style

• A reservation booking application

• Submitting commands

• Processing commands

• Making write operations idempotent

• Using optimistic concurrency with Windows Azure Storage

• Updating view data

• Querying view data

Technologies discussed:
Windows Azure; Command Query Responsibility Segregation;
ASP.NET MVC 2

Code download available at:
code.msdn.microsoft.com/mag201104CQRS

http://code.msdn.microsoft.com/mag201104CQRS

37April 2011msdnmagazine.com

one responsibility, and reading data is another. Most applications
need to do both, but as Figure 1 shows, each responsibility must
be treated separately.

Th e application writes to a diff erent conceptual system than it
reads from.

Obviously, the data that the application writes should eventually
end up being available for reading. Th e CQRS pattern says noth-
ing about how this could happen, but in the simplest possible
implementation, the read and write systems could use the same
underlying data store.

In this world view, reads and writes are strictly segregated; writes
never return data. Th at seemingly innocuous statement opens up a
rich set of opportunities for creating massively scalable applications.

CQRS Architecture Style
In addition to the CQRS pattern, the foundation of the CQRS archi-
tectural style is a simple but profound realization about displaying
data. Consider Figure 2, which shows the UI for a booking app—
imagine that it’s a restaurant reservation system.

Th e calendar shows dates in a given month, but some dates are
disabled because they’re already fully booked.

How up-to-date is the data in such a UI? In the time it takes to
render the data, transport it over the network, and for the user
to interpret it and react to it, it may already have changed in the
underlying data store. Th e longer the user looks at it before reacting,
the staler it becomes. Th e user may be interrupted by a phone call
or similar distraction before continuing, so think times (the time
spent by a user perusing a Web page) may be measured in minutes.

A common way to address this issue is by using optimistic
concurrency to handle the cases where confl icts occur. Application
developers must write the code to handle such
situations, but instead of treating them as
exceptional cases, the CQRS architectural style
embraces this basic condition. When display
data is stale the moment it’s rendered, it doesn’t
have to refl ect the data in the central data store.
Instead, an application can display data from
a denormalized data source that may lag a bit
behind the “real” data store.

Th e realization that display data is always
stale, coupled with the CQRS principle that
writes never return data, results in scalability
opportunities. UIs don’t have to wait for data
to be written, but can instead just send an
asynchronous message and return a view to

the user. Background workers pick up the messages and process
them at their own pace. Figure 3 shows a more comprehensive
view of the CQRS-style architecture.

Whenever the application needs to update data, it sends a Com-
mand as an asynchronous message—most likely via a durable queue.
As soon as the Command is sent, the UI is free to return a view to
the user. A background worker picks up the Command message in
a separate process and writes any appropriate changes to the data
store. As part of this operation, it also raises an event as another asyn-
chronous message. Other message handlers can subscribe to such
events and update a denormalized view of the data store accordingly.

Although the view data will lag behind the “real” data, this event
propagation oft en happens so fast that users never notice it. But
even if the system slows down due to excessive load, the view data
will eventually be consistent.

Th is sort of architecture can be implemented on many diff erent
systems, but with its explicit concepts of Worker Roles and queues,
Windows Azure is quite well-suited for it. However, Windows Azure
also presents some unique challenges in relation to CQRS; the
remainder of this article explores both opportunities and chal-
lenges through a sample application.

A Reservation Booking Application
A simple booking application serves as an excellent example of
how to implement CQRS on Windows Azure. Imagine that the
application takes reservation requests for a restaurant. Th e fi rst
page that meets the user is a date picker, as shown in Figure 2—
notice again that some dates are already disabled to indicate that
these dates are sold out.

When the user clicks an available date, a reservation form and
subsequent receipt is displayed, as shown
in Figure 4.

Notice that the receipt page makes an eff ort
to inform the user that the reservation isn’t
guaranteed at this point. Th e fi nal decision
will be communicated via e-mail.

In CQRS, the UI plays an important part
in setting expectations because processing
happens in the background. However, during
normal load, a receipt page buys enough time
that when the user moves on, the request has
already been handled.

I’ll now demonstrate key points about
implementing the sample booking app. As
there are many moving parts in even this

F igure 1 Segregating Reads from Writes

Application

Write System Read System

readswrites

Fi gure 2 Display Data Is Stale at the
Moment It’s Rendered

UIs don’t have to wait for data to
be written, but can instead just

send an asynchronous message
and return a view to the user.

www.msdnmagazine.com

msdn magazine38 Windows Azure Development

simple application, I’ll focus on the most interesting code snippets
here; the full code is available in the download accompanying
this article.

Submitting Commands
Th e Web Role is implemented as an ASP.NET MVC 2 application.
When the user submits the form shown in Figure 4, the appropriate
Controller Action is invoked:

[HttpPost]
public ViewResult NewBooking(BookingViewModel model)
{
 this.channel.Send(model.MakeNewReservation());
 return this.View("BookingReceipt", model);
}

Th e channel fi eld is an injected instance of this simple IChan-
nel interface:

public interface IChannel
{
 void Send(object message);
}

Th e command that the NewBooking method sends through the
channel is just the HTML form’s data encapsulated in a Data Transfer
Object. Th e MakeNewReservation method simply transforms the
posted data into a MakeReservationCommand instance, as shown here:

public MakeReservationCommand MakeNewReservation()
{
 return new MakeReservationCommand(this.Date,
 this.Name, this.Email, this.Quantity);
}

Because the Send method returns
void, the UI is free to return an HTML
page to the user as soon as the Com-
mand is successfully sent. Implement-
ing the IChannel interface on top of a
queue ensures that the Send method
returns as quickly as possible.

On Windows Azure, we can imple-
ment the IChannel interface on top
of the built-in queues that are part of
Windows Azure Storage. To put mes-
sages on such a durable queue, the
implementation must serialize the
messages. There are many different
ways to do this, but to keep things

simple I’ve chosen to use the binary serializer built in to the .NET
Framework. However, in a production application, you should
seriously consider alternatives, as the binary serializer makes it
diffi cult to handle versioning issues. For example, what happens
when a new version of your code attempts to deserialize a blob
serialized by an old version? Possible alternatives include XML,
JSON or Protocol Buff ers.

With this technology stack, the implementation of IChannel.Send
is simple:

public void Send(object command)
{
 var formatter = new BinaryFormatter();
 using (var s = new MemoryStream())
 {
 formatter.Serialize(s, command);
 var msg = new CloudQueueMessage(s.ToArray());
 this.queue.AddMessage(msg);
 }
}

Th e Send method serializes the Command and creates a new Cloud-
QueueMessage out of the resulting byte array. Th e queue fi eld is an
injected instance of the CloudQueue class from the Windows Azure
SDK. Initialized with the correct address information and credentials,
the AddMessage method adds the message to the appropriate queue.
Th is usually happens surprisingly fast, so when the method returns,
the caller is free to perform other work. At the same time, the message
is now in the queue, waiting for a background processor to pick it up.

Processing Commands
While the Web Roles are happily displaying HTML and accepting data
that they can send via the IChannel interface, Worker Roles receive and
process messages from the queue at their own pace. Th ese background
workers are stateless, autonomous components, so if they can’t keep
up with the incoming messages you can add more instances. Th is is
what provides the massive scalability of messaging-based architecture.

As was previously demonstrated, sending messages over
Windows Azure queues is easy. Consuming them in a safe and
consistent manner is a bit trickier. Each Command encapsulates an
intention to change the state of the application, so the background
worker must make sure that no message is lost and that underlying
data is changed in a consistent way.

Figu re 4 Reservation UI Flow

Fig ure 3 CQRS-Style Architecture

UI

Query
Event

View Data

Command

Background WorkerBackground Worker

Data Store

www.devart.com

30-day
 Fully

Functional
Trial

100%
Free

Edition

Free
Updates

1 Year

Untitled-4 1 3/2/11 3:25 PM

http://www.devart.com

msdn magazine40 Windows Azure Development

This might be fairly easy to ensure for a queuing technology
that supports distributed transactions (such as Microsoft Message
Queuing). Windows Azure queues aren’t transactional, but they do
come with their own set of guarantees. Messages aren’t lost when
read, but rather made invisible for a period of time. Clients should
pull a message off the queue, perform the appropriate operations
and delete the message as the last step in the process. Th is is what
the sample booking application’s general-purpose Worker Role
does; it executes the PollForMessage method shown in Figure 5
in an endless loop.

Th e GetMessage method may return null if no message is currently
in the queue. In that case, the method simply waits 500 milliseconds
and returns, in which case it will immediately be invoked again by the
endless outer loop. When a message is received, the method handles
the message by invoking the Handle method. Th is is where all the
real work is supposed to happen, so if that method returns without
throwing an exception, it’s safe to delete the message.

On the other hand, if an exception happens while handling the
message, it’s important to suppress the exception; an unhandled

exception will crash the entire worker instance and it will stop
pulling messages off the queue.

A production-ready implementation needs to be more sophis-
ticated to handle so-called poison messages, but I decided to leave
this out of the sample code to keep it simpler.

If an exception is thrown while a message is being processed,
it won’t be deleted. Aft er a timeout, it will become available for
processing once again. Th is is the guarantee that Windows Azure
queues provide: A message can be processed at least once. As a
corollary, it may be replayed several times. Th us, all background
workers must be able to handle message replays. It’s essential that
all durable write operations are idempotent.

Making Write Operations Idempotent
Every method that handles a message must be able to deal with
replays without compromising the state of the application. Han-
dling a MakeReservationCommand is a good example. Figure 6
provides an overview of the message fl ow.

Th e fi rst thing the application must do is check if the restaurant
has enough c apacity for the requested date; all tables may already
be reserved for the given date, or there may only be a few places
left. To answer the question about available capacity, the appli-
cation tracks the current capacity in durable storage. There are
several options for doing this. Tracking all reservation data in a
SQL Azure database is one possibility, but as there are limits to the
size of SQL Azure databases, a more scalable option is to use either
Windows Azure blob or table storage.

The booking sample application uses blob storage to store a
serialized idempotent Value Object. This Capacity class keeps
track of accepted reservations so that it can detect message replays.
To answer the question about remaining capacity, the application
can load a Capacity instance for the appropriate day and invoke
the CanReserve method with the correct reservation ID:

public bool CanReserve(int quantity, Guid id)
{
 if (this.IsReplay(id))
 {
 return true;
 }
 return this.remaining >= quantity;
}

private bool IsReplay(Guid id)
{
 return this.acceptedReservations.Contains(id);
}

Each MakeReservationCommand has an associated ID. To
ensure idempotent behavior, the Capacity class saves each accepted
reservation ID so that it can detect replays. Only if the method call
isn’t a replay does it invoke the actual business logic, comparing the
requested quantity against the remaining capacity.

Th e application serializes and stores a Capacity instance for
each date, so to answer the question of whether the restaurant
has remaining capacity, it downloads the blob and invokes the
CanReserve method:

public bool HasCapacity(MakeReservationCommand reservation)
{
 return this.GetCapacityBlob(reservation)
 .DownloadItem()
 .CanReserve(reservation.Quantity, reservation.Id);
}

public void PollForMessage(CloudQueue queue)
{
 var message = queue.GetMessage();
 if (message == null)
 {
 Thread.Sleep(500);
 return;
 }

 try
 {
 this.Handle(message);
 queue.DeleteMessage(message);
 }
 catch (Exception e)
 {
 if (e.IsUnsafeToSuppress())
 {
 throw;
 }
 Trace.TraceError(e.ToString());
 }
}

Figure 5 PollForMessage Method

Figure 6 Workfl ow for Handling the Make Reservation Command

MakeReservation
Command

Decrement Capacity

Write Reservations
to Store

Raise Acceptance
Event

Raise Rejection
Event

Yes

No

Has
Capacity?

Our Name
Says It All

Download our FREE evaluation from
www.activepdf.com/MSDN

Call 1-866-GoTo-PDF | 949-582-9002 | Sales@activepdf.com

Come and see why thousands of customers have
trusted us over the last decade for all their server

based PDF development needs.

. Convert over 400 fi les types to PDF

. High fi delity translation from PDF to Offi ce

. ISO 32000 Support including PDF/X & PDF/A

. HTML5 to PDF

. True PDF Print Server

. Form Fill PDF

. Append, Stamp, Secure and Digitally Sign

ActivePDF_ad_v6-copy.indd 2 3/4/11 1:14 PM

http://www.activepdf.com/MSDN
mailto:Sales@activepdf.com

msdn magazine42 Windows Azure Development

If the answer is “true,” the application invokes the set of opera-
tions associated with that outcome, as shown in Figure 6. The
fi rst step is to decrement the capacity, which involves invoking the
Capacity.Reserve method shown in Figure 7.

This is another idempotent operation that first invokes the
CanReserve and IsReplay methods as guards. If the method call
represents a genuinely new request to reserve some capacity, a new
Capacity instance is returned with the decremented capacity and
the ID is added to the list of accepted IDs.

Th e Capacity class is just a Value Object, so it must be committed
back to the Windows Azure blob storage before the operation is
complete. Figure 8 shows how the original blob is initially down-
loaded from Windows Azure blob storage.

Th is is the serialized Capacity instance that corresponds to the
date of the requested reservation. If the capacity changed (that is, it
wasn’t a replay) the new Capacity is uploaded back to blob storage.

What happens if exceptions are thrown along the way? One way
this could happen would be if the Capacity instance has changed
since the CanReserve method was invoked. Th is is not unlikely in
high-volume scenarios where many competing requests are being
handled concurrently. In such cases, the Reserve method might
throw an exception because there’s not enough remaining capacity.
That’s OK; this simply means that this particular reservation
request has lost a concurrent race. Th e exception will be caught by
the exception handler in Figure 5, but because the message was
never deleted, it will later reappear to be handled once more. When
this happens, the CanReserve method will immediately return false
and the request can be politely rejected.

However, another potential concurrency conflict lurks in
Figure 8. What happens when two background workers update
the capacity for the same date at the same time?

Using Optimistic Concurrency
Th e Consume method in Figure 8 downloads the Capacity blob
from blob storage and uploads a new value if it changed. Many back-
ground workers may be doing this concurrently, so the application
must make sure that one value doesn’t overwrite another.

Because Windows Azure Storage is REST-based, the recom-
mended way to deal with such concurrency issues is to use ETags.
The first time the application creates a Capacity instance for a
given date, the ETag will be null, but when an existing blob is
downloaded from storage, it will have an ETag value available via

CloudBlob.Properties.ETag. When the application uploads the
Capacity instance, it must correctly set the correct AccessCondition
on a BlobRequestOptions instance:

options.AccessCondition = etag == null ?
 AccessCondition.IfNoneMatch("*") :
 AccessCondition.IfMatch(etag);

When the application creates a new instance of Capacity, the ETag
is null and the AccessCondition must be set to IfNoneMatch(“*”).
Th is ensures that an exception will be thrown if the blob already
exists. On the other hand, if the current write operation represents
an update, the AccessCondition must be set to IfMatch, which
ensures that an exception is thrown if the ETag in blob storage
doesn’t match the supplied ETag.

Optimistic concurrency based on ETags is an important tool in
your toolbox, but you must explicitly enable it by supplying the
appropriate BlobRequestOptions.

If no exception is thrown while decrementing the capacity,
the application can move on to the next step in Figure 6: writing
the reservation to table storage. This follows roughly the same
principles as decrementing the capacity, so I’ll skip it here. Th e code
is available in the accompanying download, but the main point is
that, once again, the write operation should be idempotent.

Th e last step in the workfl ow is to raise an event that signifi es
the reservation was accepted. This is done by sending another
asynchronous message via the Windows Azure queue. Any other
background workers that care about this Domain Event can pick
it up and handle it. A relevant action would be to send a confi rma-
tion e-mail to the user, but the application also needs to close the
loop to the UI by updating the view data store.

Updating View Data
Events that happen during processing of a Command are sent as
asynchronous messages via the IChannel interface. As an example,
the Consume method in Figure 8 raises a new SoldOutEvent if
the capacity is reduced to zero. Other message handlers can sub-
scribe to such events to properly update view data, as shown here:

public void Consume(SoldOutEvent message)
{
 this.writer.Disable(message.Date);
}

Th e injected writer implements the Disable method by updating
an array of disabled dates for the appropriate month in blob storage:

public void Disable(DateTime date)
{
 var viewBlob = this.GetViewBlob(date);
 DateTime[] disabledDates = viewBlob.DownloadItem();
 viewBlob.Upload(disabledDates
 .Union(new[] { date }).ToArray());
}

public Capacity Reserve(int quantity, Guid id)
{
 if (!this.CanReserve(quantity, id))
 {
 throw new ArgumentOutOfRangeException();
 }

 if (this.IsReplay(id))
 {
 return this;
 }

 return new Capacity(this.Remaining - quantity,
 this.acceptedReservations
 .Concat(new[] { id }).ToArray());
}

Figure 7 The Capacity.Reserve Method

Data rendered on a screen is
always disconnected, which
means that it’s stale from the

moment it’s rendered.

43April 2011msdnmagazine.com

Th is implementation simply downloads an array of disabled
DateTime instances from blob storage, appends the new date to
the array and uploads it again. Because the Union method is used,
the operation is idempotent, and once more the Upload method
encapsulates ETag-based optimistic concurrency.

Querying View Data
The UI can now query directly from the view data. This is an
efficient operation because the data is static—no calculation is
required. For example, to update the date picker in Figure 2 with
disabled dates, the date picker sends an AJAX
request to the controller to get the array.

The Controller can simply handle the
request like this:

public JsonResult DisabledDays(int year, int month)
{
 var data = this.monthReader.Read(year, month);
 return this.Json(data, JsonRequestBehavior.AllowGet);
}

The injected reader implements the
Read method by reading the blob that the
SoldOutEvent handler writes:

public IEnumerable<string> Read(int year, int month)
{
 DateTime[] disabledDates =
 this.GetViewBlob(year, month).DownloadItem();
 return (from d in disabledDates
 select d.ToString("yyyy.MM.dd"));
}

Th us the loop is closed. Th e user browses
the site based on current view data and fi lls
out a form to submit data that’s handled via
asynchronous messaging. Finally, view data is
updated based on the Domain Events raised
during the workfl ow.

Denormalizing Data
Summing up, most applications read data a lot
more than they write data, so optimizing the
read side enables scalability—particularly when
data can be read from static resources such
as blobs. Data rendered on a screen is always
disconnected, which means that it’s stale from
the moment it’s rendered. CQRS embraces this

staleness by disconnecting the reading and writing of data. Th e data
being read doesn’t have to come directly from the same data source as
the data being written. Instead, data can be asynchronously transported
from the store to which it’s written to view-specifi c data stores where
the cost of projecting and manipulating the data is paid only once.

With its built-in queues and scalable, denormalized data stores,
Windows Azure is a great fi t for this kind of architecture. Even
though distributed transactions aren’t supported, queues guarantee
that messages are never lost, but are served at least once. To han-
dle potential replays, all asynchronous write operations must be
idempotent. For denormalized data such as blob and table storage,
ETags must be used to implement optimistic concurrency. Using
these simple techniques, Eventual Consistency can be ensured.

Th is article only scratches the surface of CQRS. If you want to know
more about CQRS, the body of knowledge is currently spread out over
a number of resources on the Internet; however, Rinat Abdullin’s CQRS
Starting Page at abdullin.com/cqrs is a good place to start.

MARK SEEMANN is the Windows Azure technical lead for Commentor A/S, a
Danish consulting company based in Copenhagen. He is also the author of the
book “Dependency Injection in .NET” (Manning Publications, 2011) and the cre-
ator of the open source project AutoFixture. His blog is available at blog.ploeh.dk.

THANKS to the following technical experts for reviewing this article:
Rinat Abdullin and Karsten Strøbæk

public void Consume(MakeReservationCommand message)
{
 var blob = this.GetCapacityBlob(message);
 var originalCapacity = blob.DownloadItem();

 var newCapacity = originalCap acity.Reserve(
 message.Quantity, message.Id);

 if (!newCapacity.Equals(originalCapacity))
 {
 blob.Upload(newCapacity);
 if (newCapacity.Remaining <= 0)
 {
 var e = new SoldOutEvent(message.Date);
 this.channel.Send(e);
 }
 }
}

Figure 8 Decrementing Capacity and Committing to Storage

www.MelissaData.com/mynet
http://abdullin.com/cqrs
http://blog.ploeh.dk
www.msdnmagazine.com

msdn magazine44

MA PRE D UC E IN F#

Parsing Log Files with
F#, MapReduce and
Windows Azure

As a longtime Python programmer, I was intrigued
by an interview with Don Syme, architect of the F# language. In
the interview, Don mentioned that, “some people see [F#] as a sort
of strongly typed Python, up to syntactic diff erences.” Th is struck
me as something worth investigating further.

As it turns out, F# is a bold and exciting new programming language
that’s still a secret to many developers. F# off ers the same benefi ts in
productivity that Ruby and Python programmers have enjoyed in
recent years. Like Ruby and Python, F# is a high-level language with
minimal syntax and elegance of expression. What makes F# truly
unique is that it combines these pragmatic features with a sophisticated
type-inference system and many of the best ideas of the functional
programming world. Th is puts F# in a class with few peers.

Noah Gift

But a new high-productivity programming language isn’t the
only interesting new technology available to you today.

Broad availability of cloud platforms such as Windows Azure
makes distributed storage and computing resources available
to single developers or enterprise-sized companies. Along with
cloud storage have come helpful tools like the horizontally scalable
MapReduce algorithm, which lets you rapidly write code that can
quickly analyze and sort potentially gigantic data sets.

Tools like this let you write a few lines of code, deploy it to the
cloud and manipulate gigabytes of data in an aft ernoon of work.
Amazing stuff .

In this article, I hope to share some of my excitement about F#,
Windows Azure and MapReduce. I’ll pull together all of the ideas
to show how you can use F# and the MapReduce algorithm to
parse log fi les on Windows Azure. First, I’ll cover some prototyping
techniques to make MapReduce programming less complex; then,
I’ll take the results … to the cloud.

This article discusses:
• Interactive coding with F#

• MapReduce in F#

• Moving to Windows Azure

• Deploying the solution

Technologies discussed:
F#, Windows Azure

Code download available at:
code.msdn.microsoft.com/mag201104Parsing

This approach is useful
for quick and dirty debugging

of an F# program.

http://code.msdn.microsoft.com/mag201104Parsing

45April 2011msdnmagazine.com

Hacking with F#
One of the new styles of working that’s available to .NET program-
mers with F# is the Interactive workfl ow that many Perl, Python and
Ruby programmers are accustomed to. Th is style of programming
oft en uses an interactive coding environment like the Python shell
itself, or a tool such as IPython, which provides readline comple-
tion. This allows a developer to import a class from a module,
instantiate it, and then use tab completion to discover methods
and data on the object.

A common method of interactive development that will be
familiar to .NET developers is to simply write your code in
Visual Studio and send snippets to the F# Interactive window for
execution. Snippets are sent using the Alt+Enter key combination

for the currently selected text, or
Alt+SingleQuote for a single line.
Figure 1 shows an example of this
technique in action.

This approach is useful for
quick-and-dirty debugging of an
F# program and both IntelliSense
and Tab completion are available
in the F# script you are developing.

A second approach is to again
write your code in Visual Studio,
but then copy a section of code
from Visual Studio and paste it
directly into the standalone F#
Interactive Console (see Figure
2). If you employ this technique,
you’ll need to remember to place
two semicolons aft er your pasted
code. Th is lets you interact with your
code with the additional benefi t

of tab completion. You may fi nd yourself using this technique as
you get used to programming in a more interactive fashion.

You can also develop interactively with F# by running your
code directly from Windows
PowerShell—in other words, by
passing a script to fsi.exe (the F#
Interactive Console executable)
itself. One of the advantages of
this approach is that it lets you
prototype quick scripts and print
the results to standard output. In
addition, you can edit the code
iteratively with a lightweight text
editor, such as Notepad++. Figure
3 shows an example of a Map-
Reduce script output that I’ll be
using throughout this article, as
it’s run from Windows PowerShell.

These different ways to write
code all come in handy in helping
you deal with complex algorithms,
network programming and the
cloud. You can write a quick-and-
dirty prototype and run it from the
command line to see if it gives you

Figure 1 Using the F# Interactive Window

Figure 2 The F# Interactive Console

You can also develop
interactively with F# by running

your code directly from
Windows PowerShell.

www.msdnmagazine.com

msdn magazine46 MapReduce in F#

the results you expected. Th en you can start building your larger
project back in Visual Studio.

With this background information out of the way, let’s dive into
some actual code.

MapReduce-Style Log Parsing
In addition to the aforementioned benefi ts of interactive programming,
F# code is also concise and powerful. Th e example in Figure 4 is less
than 50 lines of code, yet it contains all of the important parts of a Map-
Reduce algorithm to calculate the top 10 IP addresses in a set of log fi les.

This standalone version, which will later become a network
version, can be broken into three distinct phases: the map phase,
the reduce phase and the display phase.

Phase 1 is the map phase. Th e function mapLogFileIpAddr takes a
log fi le as a parameter. Defi ned inside this function is another func-
tion, fi leReader, which uses a functional programming technique
to lazily yield a line of text from the log fi le (although languages
like C# and Python also have this). Next, the cutIp function parses
each line of input, discards comment lines and then returns the IP
address and an integer, 1.

To see why this is lazy, highlight the whole map block of code and
run it in the F# Interactive window, along with the line:

let ipMatches = mapLogFileIpAddr inputFile

You’ll see the following output:
val ipMatches : seq<string * int>

Note that nothing has actually been done yet, and the log fi le has
not been read. Th e only thing that has happened is that an expres-
sion has been evaluated. By doing this, execution is delayed until
it’s actually needed, without pulling data into memory just for the
sake of evaluating an expression. Th is is a powerful technique for
processing data and it becomes especially noticeable when you have
gigantic log fi les to parse that are in the gigabyte or terabyte range.

If you want to compare the diff erence and evaluate the code
more eagerly, then simply add a line to the cutIp function, so that
it looks like this:

let cutIp =
 let line = fileReader inputFile
 line
 |> Seq.filter (fun line -> not (line.StartsWith("#")))
 |> Seq.map (fun line -> line.Split [|' '|])
 |> Seq.map (fun line -> line.[8],1)
 |> Seq.toArray
cutIp

If you resend this code to the F# interpreter and you give it a large
log fi le that contains several gigabytes of data, you might want to
go get a cup of coff ee, because your machine will busy reading in
the whole fi le and generating key/value mappings for it in memory.

In the next section of the data pipeline, I take the output of the
map result and fold the results of the sequence into an anonymous
function that counts how many occurrences of IP addresses are in
the sequence. It does this by continuously adding to the Map data
structure via recursion. Th is style of programming can be hard to
understand for developers new to functional programming, so
you may want to embed print statements inside the anonymous
function to see exactly what it does.

In an imperative programming style, you could accomplish the
same thing by updating a mutable dictionary that holds each IP
address as a key, looping over the sequence of IP addresses, and
then updating the count of each value.

The final phase has nothing to do with the MapReduce algo-
rithm, but is useful in hacking scripts during the prototyping
phase. Th e results from the map phase are pipelined from a Map
data structure to a Seq. Th e results are sorted and the top 10 results
are printed out. Note that this data pipelining style enables the

open System.IO
open System.Collections.Generic

// Map Phase
let inputFile = @"web.log"
let mapLogFileIpAddr logFile =
 let fileReader logFile =
 seq { use fileReader = new StreamReader(File.OpenRead(logFile))
 while not fileReader.EndOfStream do
 yield fileReader.ReadLine() }

 // Takes lines and extracts IP Address Out,
 // filter invalid lines out first
 let cutIp =
 let line = fileReader inputFile
 line
 |> Seq.filter (fun line -> not (line.StartsWith("#")))
 |> Seq.map (fun line -> line.Split [|' '|])
 |> Seq.map (fun line -> line.[8],1)
 |> Seq.toArray
 cutIp

// Reduce Phase
let ipMatches = mapLogFileIpAddr inputFile
let reduceFileIpAddr =
 Array.fold
 (fun (acc : Map<string, int>) ((ipAddr, num) : string * int) ->
 if Map.containsKey ipAddr acc then
 let ipFreq = acc.[ipAddr]
 Map.add ipAddr (ipFreq + num) acc
 else
 Map.add ipAddr 1 acc)
 Map.empty
 ipMatches

// Display Top 10 Ip Addresses
let topIpAddressOutput reduceOutput =
 let sortedResults =
 reduceFileIpAddr
 |> Map.toSeq
 |> Seq.sortBy (fun (ip, ipFreq) -> -ipFreq)
 |> Seq.take 10
 sortedResults
 |> Seq.iter(fun (ip, ipFreq) ->
 printfn "%s, %d" ip ipFreq);;

reduceFileIpAddr |> topIpAddressOutput

Figure 4 MapReduce Algorithm to Parse a Log File

PS C:\Users\Administrator\Desktop> & 'C:\Program Files (x86)\
FSharp-2.0.0.0\bin\fsi.exe' mapreduce.fsscript
192.168.1.1, 11
192.168.1.2, 9
192.168.1.3, 8
192.168.1.4, 7
192.168.1.5, 6
192.168.1.6, 5
192.168.1.7, 5

Figure 3 Running an F# Script in Windows PowerShell

This a powerful technique
for processing data.

Essential Studio Enterprise 2011 Vol. 1:

1.888.9DOTNET | www.syncfusion.com | @syncfusion

Untitled-1 1 3/8/11 10:18 AM

http://www.syncfusion.com

msdn magazine48 MapReduce in F#

results of one operation to fl ow seamlessly into the next operation
without a for loop in sight.

MapReduce Plus Windows Azure
With my proof-of-concept script completed—in less than 50 lines
of code, remember—it’s time move this to something resembling a

production environment. As an example, I’ll move the
example from desktop to Windows Azure.

As background, you might fi nd it useful to look at the
Windows Azure F# examples at code.msdn.microsoft.com/
fsharpazure and to install the Windows Azure templates.
Of particular interest is the webcrawler example
in which an F# Worker Role uses both blob and
queue storage endpoints. This would be a handy
project to review as you further explore using F#
with Windows Azure.

I’m not going to go into too much detail about
setting up a multinode MapReduce farm. Instead I’ll
cover it from a higher level. For specifi cs, see the MSDN
Magazine article “Synchronizing Multiple Nodes in
Windows Azure” by Josh Twist (msdn.microsoft.com/
magazine/gg309174).

Th ere are several ways to set up a MapReduce farm
on Windows Azure. Figure 5 demonstrates one
example using F# Worker Roles that would be equally
divided between Map Workers and Reduce Workers.
Going back to script, this would be almost as simple

as copying and pasting the map function to the Map Worker, and
the reduce function to the Reduce Worker.

Th e MapReduce presentation by Jeff Dean and Sanjay Ghemawat
is a great reference for further detail on the distributed algorithm
and possible implementations (labs.google.com/papers/mapreduce-osdi04-
slides/). In the Figure 5 example, though, it shows that several log

fi les are consumed in parallel by F# Worker
Roles. Th ey then return their output, consist-
ing of IP address keys with a value of 1 via the
Windows Azure AppFabric Service Bus to
the Reduce Workers, or by writing it to disk.

Next, the Reduce Workers read this inter-
mediate data and produce a summarized count
of the key value pairs by writing it out to blob
storage. Each Reduce Worker produces its own
summarized report, which would need to be
combined together before being sorted and
displayed by the Master Worker.

Worker Role Creation
and Publishing
With a prototype fi nished, and a high-level
architecture planned, the next step is to create
the necessary project in Visual Studio 2010
and publish it to Windows Azure. Fig ure 6 Creating an F# Worker Role

Figure 5 MapReduce Farm in Windows Azure

Multiple Reduce Worker Results
Sets, Sorted, Summarized

and Displayed
WINDOWS AZURE CLOUD

Log Data
key, value

pairs

F# Worker Role
Map Worker

Log Data F# Worker Role
Reduce Worker

key, value
pairs

F# Worker Role
Map Worker

Log Data F# Worker Role
Reduce Worker

key, value
pairs

F# Worker Role
Map Worker

Log Data F# Worker Role
Reduce Worker

key, value
pairs

F# Worker Role
Map Worker

F# Worker Role
Reduce Worker

Blob
Storage

Master
Worker

Multiple Summarized
Results Stored

There are several ways to
set up a MapReduce farm

on Windows Azure.

http://code.msdn.microsoft.com/fsharpazure
http://code.msdn.microsoft.com/fsharpazure
http://msdn.microsoft.com/magazine/gg309174
http://msdn.microsoft.com/magazine/gg309174
http://labs.google.com/papers/mapreduce-osdi04-slides/
http://labs.google.com/papers/mapreduce-osdi04-slides/

0411msdn_GrapeCity_Insert.indd 1 3/3/11 1:44 PM

www.GCPowerTools.com/Spreadsheets

0411msdn_GrapeCity_Insert.indd 2 3/3/11 1:45 PM

www.GCPowerTools.com/Reporting

49April 2011msdnmagazine.com

Creating an F# Worker Role isn’t as straightforward as it could
be, so let’s walk through the steps involved. First, you’ll need to
download the Windows Azure F# templates mentioned earlier.
Next, you’ll need to create a Visual C# project for Windows Azure.
I called mine AzureFSharpProject.

Next, you’ll have the option to create an F# Worker Role
as shown in Figure 6.

At that point, you can place your map function in your
Map Worker role, or your reduce function in your Reduce
Worker role. Th en create further Worker Roles for additional
Map Workers or Reduce Workers, depending on the scale of
your data-crunching needs. Th e canonical reference to refer
to is the Google MapReduce paper at labs.google.com/papers/
mapreduce.html. It goes into further detail about the Map Reduce
architecture, caveats and use cases.

When you’re ready to publish to Windows Azure, you can
right-click on the project, select Publish, then Create Service
Package Only, as shown in Figure 7.

Finally, you sign into the new Windows Azure manage-
ment portal and use the interface to create your Worker
Role (see Figure 8).

At this point, you can wire up your nodes in any way you
see fi t, and MapReduce your logs in the cloud. Of course,
this same technique could be applied easily to data sources
other than simple log files. The general outline of this F#
MapReduce algorithm—along with the interactive tech-

niques I demonstrated in coding it—can be used for just about any
parsing, mapping and reducing job.

Next Steps
F# is a powerful language that enables you to solve problems by

both cranking out quick hacks and by building up more
complex solutions from those hacks. In this article I used
it to cut down the MapReduce algorithm into bite-sized
morsels. Th is enabled me to demonstrate how only 50
lines of F# could then turn into a Windows Azure-based
log analyzer.

Regarding the implementation of MapReduce on
Windows Azure, you might want to take a look at two
other interesting articles on the subject. First, take a look
at “Building a Scalable, Multi-Tenant Application for
Windows Azure” on MSDN for discussion of Worker Roles
and MapReduce (msdn.microsoft.com/library/ff966483). Also,
Juan G. Diaz has a blog entry, “Comparison of the use of
Amazon’s EC2 and Windows Azure, cloud computing
and implementation of MapReduce,” that’s worthwhile
reading (bit.ly/hBQFSt).

If you haven’t looked at F# yet, I hope this article
encouraged you to give it a try. And if you’re interested
in hearing all of the Don Syme interview that turned me
on to F#, head over to the Simple-Talk blog and give it a
listen (bit.ly/eI74iO).

NOAH GIFT is associate director of engineering at AT&T Interactive. He
has a B.S. in Nutritional Science from Cal Poly San Luis Obispo, an M.S.
in Computer Information Systems from California State University, Los
Angeles, and is an MBA Candidate at UC Davis, specializing in Business
Analytics, Finance and Entrepreneurship.

THANKS to the following technical experts for reviewing the article:
Michael Bakkemo, Don Syme and Paras Wadehra

Figure 7 Publishing to Windows Azure

Figure 8 Confi guring the New Worker Role

http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/mapreduce.html
http://msdn.microsoft.com/library/ff966483
http://bit.ly/hBQFSt
http://bit.ly/eI74iO
www.msdnmagazine.com

msdn magazine50

TE AM FOUNDAT ION SER V ER

Visual Studio TFS
Team Project and
Collection Guidance

In the MSDN Magazine article, “Visual Studio TFS Branching
and Merging Guidance” (msdn.microsoft.com/magazine/gg598921), the
Visual Studio ALM Rangers introduced a number of new branch-
ing scenarios and associated guidance to assist you in complex,
real-world branching and merging environments, in order to
improve the consistency and quality of solutions and the overall
Application Lifecycle Management (ALM) process.

To recap, the Rangers are a group of experts who promote collabo-
ration between the Visual Studio product groups, Microsoft Services
and the Microsoft Most Valuable Professional (MVP) community by
addressing missing functionality and removing adoption blockers.

In this article, the Rangers offer guidance for organizing and
provisioning Team Foundation Server (TFS) Team Projects and
Team Project Collections.

Aft er reading this article, you should have a better understanding of:
• Team Project Collections and their benefi ts

Willy-Peter Schaub and Mike Schimmel

• Considerations for choosing to combine one or more Team
Projects into a single Team Project Collection, or to keep
them in separate Team Project Collections

• Considerations for organizing Team Projects and Team Proj-
ect Collections to increase isolation or improve scalability

• How to archive one or more inactive Team Projects
Th is article will help you understand how Team Project and Team

Project Collection organization is infl uenced by issues such as:
• Security and provisioning for TFS, Team Project Collections

and Team Projects
• Selecting a Process Template
• Process Template customizations including customized

work fl ows, Work Item Type customizations, custom reports,
custom queries and customized process guidance

• Team organization
• Team Project organization including Areas and Iterations
• Project management considerations including project

milestones and schedules

Planning
Visual Studio TFS planning usually starts with the recommended
infrastructure and the structuring of the Team Projects and Team
Project Collections to ensure an effective and scalable ALM
system for all stakeholders.

The Visual Studio 2010 Quick Reference Guidance (vs2010quickref.
codeplex.com) and Visual Studio 2010 and TFS 2010 Virtual Machine

This article discusses:
• Planning

• Visual Studio Team Projects

• Visual Studio Team Project Collections

• Team Project archiving strategies

Technologies discussed:
Visual Studio Team Foundation Server 2010

http://msdn.microsoft.com/magazine/gg598921
http://vs2010quickref.codeplex.com
http://vs2010quickref.codeplex.com

51April 2011msdnmagazine.com

(VM) Factory (rangersvsvmfactory.codeplex.com)
Rangers guidance projects provide concepts,
guidance and quick reference posters to sup-
port capacity planning and help answer the
question of whether infrastructure should be
physical or virtual, or both.

Although you typically plan and defi ne a
Team Project Collection before a Team Proj-
ect in a TFS 2010 environment, we’ll cover the
Team Project fi rst.

Visual Studio Team Projects
In TFS 2005 and TFS 2008, a single TFS server could host one or
more Team Projects. Each Team Project is essentially a container for
artifacts, including source code (organized into folders, branched
folders and branches) and containing one or more Visual Studio
solutions, Team Build confi guration fi les, Team Load Test Agents,
an optional SharePoint repository containing the pertinent docu-
ments for the project and security provisioning used by a team to
track and perform a set of work as governed by a process template.
Th e Team Project should not be confused with a Visual Studio .NET
Project, which contains all of the build and confi guration settings
required to generate a Microsoft .NET Framework assembly; a
Visual Studio .NET Solution, which contains one or more Visual
Studio .NET projects and defi nes project dependencies, build pro-
cess and order; or a project initiative, which is a scheduled initiative
for building something from a set of requirements.

For more information on creating and managing Team Projects,
you can refer to the “Creating and Managing Team Projects” MSDN
Library page (bit.ly/eCP0yX).

Let’s discuss considerations for organizing Project Initiatives
into Team Projects. Team Projects oft en contain the largest unit
of work associated with developing a single product or product
line. For example, at Microsoft, Visual Studio and Office are
two product lines each contained within its own separate Team
Project (see Figure 1), because the development
of these two product lines proceeds along com-
pletely different timelines with separate milestones
and release schedules.

It’s important to take note of provisioning con-
siderations and security isolation. One of the most
time-consuming aspects of creating a new Team Project
is the eff ort required to provision the project for use by
one or more teams, primarily by defi ning the security
users, groups and permissions that control access to a
Team Project and its artifacts. Th is provisioning eff ort
needs to be balanced against the benefi ts of properly
defi ning security at the right level of granularity so as
to allow members of the team to be able to do what
they need to do. At the same time, proper security pro-
visioning protects a Team Project and its assets from
inadvertent or intentional damage done by people
who aren’t supposed to be performing certain tasks.

For product lines with diff erent milestones and re-
lease schedules, such as Visual Studio and Offi ce, it

makes sense to organize each product line
into a separate Team Project for security
isolation. The development teams asso-
ciated with each product line are likely to
be completely separate and unlikely to
require and be granted contribution or build
permissions to both team environments.

For project initiatives with diff erent meth-
odologies—for example, where one team

chooses to use the Microsoft Solutions Framework (MSF) for Agile
Soft ware Development version 5.0 and the second team chooses to
use the MSF for CMMI Process Improvement version 5.0 Process
Template—separate Team Projects are required because a given Team
Project has one, and only one, Process Template associated with it.

For project initiatives that require unique definitions for
Areas and Iterations, we suggest separate Team Projects, as a
given Team Project defines a single Area and Iteration hierarchy.
Alternatively, a single Team Project can use Areas to organize
multiple feature teams (see Figure 2) that share the same Iterations
(see Figure 3). Also see “Project of Projects with Team Foundation
Server 2010,” by Martin Hinshelwood, at bit.ly/hSnHGw, for a dis-
cussion on a scenario using Areas instead of having many small
Team Projects.

Version Control Check-out settings (such as exclusive Check-out,
Check-in policies and Check-in notes) are defi ned for a Team Project,
and these settings aren’t shared across Team Project boundaries. If

F igure 1 Visual Studio and Offi ce
Team Projects

TFS Server

Office TP #2Visual Studio TP #1

Fi gure 2 Team Project Using Areas to Organize Separate Feature Teams

It’s important to take note of
provisioning considerations and

security isolation.

http://rangersvsvmfactory.codeplex.com
http://bit.ly/eCP0yX
http://bit.ly/hSnHGw
www.msdnmagazine.com

msdn magazine52 Team Foundation Server

separate project initiatives require diff erent Source Control settings,
they must be associated with separate Team Projects.

Process Template Customizations include customized or custom
Work Flows, Work Item Types (WITs), Reports and Queries. You
can customize a process template used to create new Team Projects
or customize the specifi c Process Template used by a Team Project,
whereby the latter is not shared across Team Projects.

Sharing of Team Project Artifacts is typically achieved by branch-
ing from one Team Project to another. In our previous article, we
discussed various approaches for sharing common code, most of
which involve branching.

As you can see, there are a number of considerations for deciding
whether separate projects or project initiatives can share the same
Team Project or must be associated with separate Team Projects.
You should understand the various considerations and make Team
Project organization decisions that are best for your organization.

Visual Studio Team Project Collections
Although Team Projects are somewhat independent of one another,
in TFS 2005 and TFS 2008, certain maintenance activities such
as consolidating multiple TFS servers into a single server were
diffi cult. Further, separate business units within an organization
could only achieve organizational isolation by implementing two
or more TFS servers within the organization, increasing the cost of
infrastructure, maintenance and overall complexity.

Visual Studio 2010 introduced Team Project Collections. Each
TFS Server can have one or more Team Project Collections.
In turn, a Team Project Collection contains one or more Team
Projects. A Team Project Collection is the basic unit of recovery
for TFS. From a backup and restore perspective, a Team Project
Collection is similar to a SharePoint Site Collection.

The Visual Studio 2010 Quick Reference Guidance project
(vs2010quickref.codeplex.com) provides a quick reference poster to assist

you with the planning of the new Team Project
Collection feature, as well as Team Projects. Team
Project Collections provide a more scalable deploy-
ment for TFS servers. One Team Project Collection
in TFS 2010 is the rough equivalent of one TFS Server
in TFS 2005 or TFS 2008. For more information on
creating and managing Team Project Collections,
refer to msdn.microsoft.com\library\dd236915.

Considerations for isolating Team Projects into
separate Team Project Collections include scalabil-
ity, backup, recovery, security isolation and sharing of
information among Team Projects.

Scalability of TFS servers is supported by the
ability to load balance Team Project Collections across
physical SQL Servers and SQL Server instances, taking
advantage of scalability and load-balancing infrastruc-
ture that’s typically associated with database environ-
ments. If you have the ability to load balance across SQL
Servers, you may benefi t from splitting Team Projects
across multiple Team Project Collections.

As noted earlier, the basic unit of recovery for TFS
is the Team Project Collection. Team Projects can’t be

individually backed up or restored. If you require granular backup
and recovery capabilities (for example, if you don’t want to recover
more than a single Team Project), it may benefi t your organization
to isolate Team Projects into separate Team Project Collections for
the purpose of backup and recovery.

Security provisioning for Team Project Collections, if administered
properly and with the correct degree of control and granularity, may
be time consuming. As you add new Team Project Collections, you
must consider the initial and ongoing eff ort to provision each of these
collections. If the project teams for the Team Projects being managed
on a TFS server have diff erent security requirements, it may benefi t
you to isolate Team Projects into separate Team Project Collections
for security purposes.

Figu re 4 Team Project Collection Sharing and Isolation Boundaries

TFS Server

WIT VC

Team Project 3

WIT VCVC

Collection B

link

branch

No Entry!

Collection A

Team Project 2Team Project 1

WIT

Fig ure 3 Team Project with Multiple Feature Teams Sharing
the Iteration Hierarchy

http://vs2010quickref.codeplex.com
http://msdn.microsoft.com/library/dd236915

Untitled-1 1 2/10/11 9:04 AM

www.xceed.com

msdn magazine54 Team Foundation Server

On the other hand, if the project teams for the Team Projects
being managed on a TFS server don’t require security isolation, it
may benefi t your organization to have their Team Projects within
the same Team Project Collection (see Figure 4).

While sharing of artifacts (such as source code fi les) can be done
between Team Projects in the same Team Project Collection, they
can’t be shared across collection boundaries (see Figure 4). If two
Team Projects must share artifacts, they must be contained within
the same Team Project Collection.

Discussions about the topics of using Team Project Collections
for sharing and isolation of source code, and branching and merg-
ing, are not within the scope of this article. We recommend you
refer to tfsbranchingguideiii.codeplex.com for associated discussions and
information that will be included in forthcoming guidance.

Team Project Archiving Strategies
Periodic maintenance is essential, as a TFS environment can never
be installed on unlimited physical resources. Administrators need
to plan for periodic maintenance to archive completed project data
and relieve pressure on the server before it becomes a performance
issue for development teams.

Th e Rangers Upgrade Guidance (vs2010upgradeguide.codeplex.com)
defines a number of possible strategies as part of the upgrade
guidance, similar to the procedure that the Microsoft Consulting
Services has developed (see Figure 5):

1. Start by making a copy of the Team Project Collection.
2. Delete active Team Projects from the newly cloned archi-

val Team Project Collection (using the TFSDeleteProject
command-line utility).

3. Delete the archived projects from the original (active)
Team Project Collection.

4. Th e new Team Project Collection can then be stored off to
external media, such as tape or fl ash media, and then removed
from the hardware. If an audit is made of the system, the
archive media can easily be restored for that purpose.

5. Detach the new Team Project Collection in order to
easily get it back later.

In concept, this seems like a trivial strategy, but it really requires
a policy for determining which Team Projects can be archived
and which can’t. Take special note that source code branches are
removed from the system when a TFSDeleteProject action is
performed, and this isn’t an undoable event.

Following are suggestions for an archiving policy:
• Establish a project close-out policy for development teams

to cleanse project data and store it. Source code is not the
only material that needs to be saved. Project requirements
are interesting, but they’re probably not in a format that
can be reused or from which enhancements can be made.
Functional specifi cations need to be blended with previ-
ous ones to refl ect the state of the product as it stands in
production at the completion of the project. Th e require-
ments for that project can then be archived with no worry
of losing data. Work Items can’t be merged from one Team
Project to another Team Project like source code can, so
decisions about how to store completed work items aft er
a project is completed will be necessary.

• Send a standard request to all teams notifying them of a
pending archival action prior to the event, listing all Team
Projects targeted for the archiving.

• Establish a milestone folder in each Team Project that
serves as a container for a completed project initiative’s fi nal
project data, including requirements listings, fi nal project
reports and any documentation that’s stored under normal
methodology policy for project closeout.

Essentially, all project data—not only source code—needs to be
preserved in order for an archive to be successful.

Splitting Team Project Collections is needed to react to a possible
separation of a business unit into two or more managed entities. In
this scenario, a similar approach to that used for archiving Team
Projects is employed, although none of the Team Projects will be
archived. Th e second Team Project Collection will have to be treated
like the original in that it will now require periodic maintenance
separate from the original Team Project Collection.

Moving Team Projects between Team Project Collections isn’t
easy, and once a collection is split, it can’t simply be remerged, as
only new Team Projects can be added to a collection. In order to
merge Team Project Collections, custom code is required using
the TFS API to copy project data from one collection to another.

 Although not recommended, TFS Integration Tools can be used
to merge Team Projects into Team Project Collections—see the TFS
Integration Tools documentation (bit.ly/9tHWdG).

In a future article, we’ll investigate how the Rangers are over-
coming and managing the challenges of distributed Agile team
management using the Visual Studio ALM tooling.

WILLY-PETER SCHAUB is a senior program manager with the Visual Studio
ALM Rangers at the Microsoft Canada Development Center. Since the mid-’80s,
he’s been striving for simplicity and maintainability in software engineering.
His blog is at blogs.msdn.com/b/willy-peter_schaub and you can follow him
on Twitter at twitter.com/wpschaub.

MIKE SCHIMMEL is an ALM solution architect with the Microsoft Consulting
Services U.S. Architects and a core member of the Visual Studio ALM Rangers.
He has nearly 25 years of experience studying and practicing ALM, from research
and consulting to competitive product sales and service delivery.

THANKS to the following technical experts for reviewing this article:
Bill Essary, Bill Heys, Martin Hinshelwood, Bijan Javidi and Mario Rodriguez

 Figur e 5 Possible Archive Strategy

1. COPY 4. Archive

5. Detach
2. 3.

TFS Server

Collection
CURRENT

Team Project
Active

Collection
ARCHIVE

Team Project
Inactive

Team Project
Inactive

Team Project
Active

http://tfsbranchingguideiii.codeplex.com
http://vs2010upgradeguide.codeplex.com
http://bit.ly/9tHWdG
http://twitter.com/wpschaub
http://blogs.msdn.com/b/willy-peter_schaub

Free 60 Day Evaluation! www.leadtools.com/sd
 (800) 637-1835

The LEADTOOLS Silverlight SDK gives Web and
Windows Phone developers the ability to load,
display, process, convert and save many different
image formats that are not intrinsic to the Silverlight
framework. Because of the 100% managed Silverlight
binaries, images can be processed and annotated
directly within the Silverlight application without the
need for external server calls.

The SDK comes with several viewing components
including Image Viewer, Image List and Pan Window.
The viewer is equipped with automated interactive tools
including scroll, pan, scale, zoom and magnifying glass.

Adding Annotations and Markup to your Silverlight
application is a cinch with LEADTOOLS fully automated
annotations. Load, save, create and edit popular
annotation types like line, ruler, polygon, curve, note,
highlight, redaction and more.

Create highly interactive medical imaging applications
with LEADTOOLS support for DICOM. Load, save
and modify tags from DICOM data sets and display
12/16 bpp grayscale images with Window Leveling.
LEADTOOLS is currently the only Windows Phone
imaging toolkit on the market with support for DICOM
data sets.

LEADTOOLS includes sample projects to demonstrate
all of the SDK’s capabilities including the display of over
100 image formats and incorporation of more than 200
image processing functions.

Untitled-7 1 3/7/11 2:06 PM

http://www.leadtools.com/sd

msdn magazine56

N ATU RAL ALG OR IT HMS

Use Bee Colony
Algorithms to Solve
Impossible Problems

Simulated Bee Colony (SBC) algorithms model the
behavior of honey bees and can be used to fi nd solutions to diffi cult
or impossible combinatorial problems. In this article I’ll explain
what exactly SBC algorithms are, describe the types of problems
that can be solved using SBC algorithms, and present a complete
end-to-end example that uses an SBC algorithm to solve the
Traveling Salesman Problem.

A good way for you to get a feel for SBC algorithms and see where
I’m headed in this article is to examine the demo program shown
running in Figure 1. Th e demo program uses an SBC algorithm to
analyze a set of 20 cities (labeled A through T) and fi nd the shortest
path that visits every city exactly once. Th e city data is artifi cially
constructed so that the best path starts at city A and continues
through city T, in order, and the best path has a length of 19.0 units.

Behind the scenes the SBC algorithm instantiates a hive of 100
simulated bees, each of which has a random potential solution.
Initially, the best of the random solutions has a path length of 95.0
units. Th e SBC algorithm enters a processing loop, indicated by the
text-based progress bar, which simulates the behavior of common
honey bees foraging for food. At the end of the SBC processing loop,

James McCaffrey

the best solution found has 16 correct city positions out of 20, and has
a path length of 26.5—close to, but not quite, the optimal solution.

SBC algorithms are oft en called meta-heuristics because they
provide a general framework and set of guidelines for creating a
problem solution rather than providing a highly detailed solution
prescription. Th is article presents an example of using an SBC to solve
a specifi c problem. Once you understand how an SBC can be used
to solve one problem, you can adapt the SBC algorithm presented
here to solve your own problems. As this article will demonstrate,
SBC algorithms are best suited for solving complex combinatorial
problems that have no practical deterministic solutions.

Th is article assumes you have intermediate-level programming
skills. Th e example in this article is coded using C#, but all the
code has been written so that it can be easily refactored to other
programming languages. I think you’ll fi nd this article quite inter-
esting and the ability to use SBC algorithms a useful addition to
your personal skill set.

About the Bees
Common honey bees such as Apis mellifera assume diff erent roles
within their colony over time. A typical hive may have 5,000 to
20,000 individual bees. Mature bees (20 to 40 days old) usually
become foragers. Foraging bees typically occupy one of three roles:
active foragers, scout foragers and inactive foragers.

Active foraging bees travel to a food source, examine neighbor
food sources, gather food and return to the hive.

Scout bees investigate the area surrounding the hive, oft en a region
of up to 50 square miles, looking for attractive new food sources.
Roughly 10 percent of foraging bees in a hive are employed as scouts.

At any given time some of the foraging bees are inactive. Th ese
inactive foragers wait near the hive entrance. When active foragers and
scouts return to the hive, depending on the quality of the food source
they’ve just visited, they may perform a waggle dance to the waiting

This article discusses:
• The Traveling Salesman Problem

• A Simulated Bee Colony algorithm

• Implementing Bees and Hives

• Three essential SBC methods

Technologies discussed:
Algorithms, Honey Bees

Code download available at:
code.msdn.microsoft.com/mag201104BeeColony

http://code.msdn.microsoft.com/mag201104BeeColony

57April 2011msdnmagazine.com

inactive bees. Th ere’s strong evidence that this waggle dance conveys
information to the inactive bees about the location and quality of the
food source. Inactive foragers receive this food source information
from the waggle dance and may become active foragers.

In general, an active foraging bee continues gathering food from a
particular food source until that food source is exhausted, at which
time the bee becomes an inactive forager.

The Traveling Salesman Problem
Th e Traveling Salesman Problem (TSP) is one of the most widely
studied problems in computer science research. Th ere are many
variations of the TSP but, informally, the problem is to fi nd the
shortest path that visits every city in a given set of cities exactly once.

If you look at Figure 1 you can see the SBC demo program
uses a set of 20 cities that are arbitrarily labeled A through T. A
valid path consists of an ordered set of the 20 city labels where
each city occurs exactly once. Th erefore there are a total of 20! =
2,432,902,008,176,640,000 possible paths.

Behind the scenes there’s a distance value associated with each
pair of cities. For simplicity, if city c1 < city c2 the distance between
c1 and c2 is just 1.0 times the ordinal distance between the city
labels. If c1 > c2 the distance is 1.5 times the ordinal distance
between c1 and c2. So the distance from A to B is 1.0 arbitrary units,
the distance from B to A is 1.5 units, the distance from A to C is
2.0 units and so on. Th erefore, the best path that visits every city
exactly once is A -> B-> C -> ... -> T and the best (shortest) path
length is (20-1) * 1.0 = 19.0.

In most TSP scenarios, the distances between cities wouldn’t be
artifi cially computed. Instead, the distances would likely be stored
in some sort of lookup data structure. Some variations of the TSP
assume that every city is connected to every other city and some
problems assume the cities are not fully connected. Additionally,
some TSP variations assume that the distance from any city c1
to city c2 is the same as the distance from city c2 to c1, and some
problem variations don’t make this bidirectional assumption.

Except in trivial situations, a brute force approach to finding
the shortest path is not feasible. For example, with 20 cities, even

if you could evaluate 1 million paths
per second, examining all 20! possible
paths would require more than 77,000
years. Th is kind of extremely diffi cult
combinatorial optimization problem
is the type of problem that SBC algo-
rithms are well suited to handle.

Th e dummy TSP problem is imple-
mented in a class named CitiesData,
shown in Figure 2. The complete
source code for the SBC demo program
is available at code.msdn.microsoft.com/
mag0411BeeColony.

Th e defi nition of some class or data
structure that represents your partic-
ular problem will be different from
the one shown here. However, as a
general rule of thumb, problems that

are well-suited for solution using an SBC algorithm usually can
be represented as a non-numeric array, a non-numeric matrix or
a non-numeric jagged array of arrays.

Th e CitiesData constructor accepts a value for the number of cities
and assigns the fi rst city a label of A, the second city a label of B and so on.

Th e Distance method is defi ned in an unidirectional way as I previously
described and assumes that any city can be reached by any other city.

Th e ShortestPathLength method returns the optimal path length
given the Distance defi nition. In most SBC cases you won’t have

class CitiesData {
 public char[] cities;

 public CitiesData(int numberCities) {
 this.cities = new char[numberCities];
 this.cities[0] = 'A';
 for (int i = 1; i < this.cities.Length; ++i)
 this.cities[i] = (char)(this.cities[i - 1] + 1);
 }

 public double Distance(char firstCity, char secondCity) {
 if (firstCity < secondCity)
 return 1.0 * ((int)secondCity - (int)firstCity);
 else
 return 1.5 * ((int)firstCity - (int)secondCity);
 }

 public double ShortestPathLength() {
 return 1.0 * (this.cities.Length - 1);
 }

 public long NumberOfPossiblePaths() {
 long n = this.cities.Length;
 long answer = 1;
 for (int i = 1; i <= n; ++i)
 checked { answer *= i; }
 return answer;
 }

 public override string ToString() {
 string s = "";
 s += "Cities: ";
 for (int i = 0; i < this.cities.Length; ++i)
 s += this.cities[i] + " ";
 return s;
 }
}

Figure 2 The CitiesData Class Defi nition

Figure 1 Simulated Bee Colony Demo

http://code.msdn.microsoft.com/mag0411BeeColony
http://code.msdn.microsoft.com/mag0411BeeColony
www.msdnmagazine.com

msdn magazine58 Natural Algorithms

the information necessary to implement a method that returns
the optimal solution.

Th e NumberOfPossiblePaths method just computes n! where
n is the number of cities. In some TSP scenarios the number of
possible paths is n-1! (if the start city doesn’t matter) and in some
scenarios the number of possible paths is n/2! (if the direction of
the path doesn’t matter).

The ToString method uses string concatenation rather than
the more efficient StringBuilder class to assemble a string with
descriptive data. String concatenation is used in order to simplify
refactoring to other programming languages.

In this article, to keep the code relatively short and clean, I take
shortcuts you wouldn’t use in production code, such as removing most
error-checking. For example, method NumberOfPossiblePaths doesn’t
deal with numeric overfl ow if the result is greater than long.MaxValue.

SBC Program Structure
Th e SBC algorithm shown in Figure 1 is implemented as a C# console
application. Th e overall structure of the program is listed in Figure 3.
Notice that the SBC program structure is relatively simple and uses
only the basic System namespace. Th ere are three classes: the Program

class, which houses a single Main method; the Hive class, which houses
all the SBC algorithm logic; and the CitiesData class presented in the
previous section of this article. Th e Hive class is generically named Hive
rather than given a more specifi c name like TravelingSalesmanHive,
even though SBC algorithm implementations are heavily dependent
upon the particular problem they’re designed to solve.

Th e Main method is quite simple. Aft er displaying a begin mes-
sage the CitiesData object is instantiated:

Console.WriteLine(
 "Loading cities data for SBC Traveling Salesman Problem analysis");
CitiesData citiesData = new CitiesData(20);
Console.WriteLine(citiesData.ToString());
Console.WriteLine("Number of cities = " + citiesData.cities.Length);
Console.WriteLine("Number of possible paths = " +
 citiesData.NumberOfPossiblePaths().ToString("#,###"));
Console.WriteLine("Best possible solution (shortest path) length = " +
 citiesData.ShortestPathLength().ToString("F4"));

In many SBC scenarios your problem data will reside in exter-
nal storage such as a text fi le or a SQL databases, and you’ll load
problem data via some load constructor or load method along the
lines of myProblemData.Load(dataFile).

Next, the Hive constructor is prepared and called:
int totalNumberBees = 100;
int numberInactive = 20;
int numberActive = 50;
int numberScout = 30;
int maxNumberVisits = 100;
int maxNumberCycles = 3460;

Hive hive = new TravelingSalesmanHive(totalNumberBees,
 numberInactive, numberActive, numberScout, maxNumberVisits,
 maxNumberCycles, citiesData);

As you’ll see in more detail in the following sections of this
article, an SBC algorithm uses three types of bees: active, inactive
and scout. Although the counts of each of these types of bees can
be hard-coded, in most scenarios it’s better to pass these counts
in as parameters to the Hive constructor so the algorithm can be
more easily tuned for performance.

The value of the totalNumberBees variable could be derived
from the other three variables, but the extra variable improves code
readability here. The total number of bees will depend on your
particular problem. More bees are better but slow the program’s
execution. In terms of ratios, there’s some research that suggests the
best percentages of active, inactive and scout bees are oft en roughly
75 percent, 10 percent and 15 percent, respectively.

Th e 100 value used for the maxNumberVisits variable will be
explained shortly, but it’s related to the number of neighbor solu-
tions there are relative to a given solution.

Th e maxNumberCycles variable is used to control how many
times the Solve routine will iterate; this is necessary because in SBC
algorithm scenarios you usually don’t know when you’ve reached an
optimal solution—if you know the optimal solution you really don’t
have a problem to solve. In this case, the value of maxNumberCycles
was limited to 3,460 only so that the SBC algorithm did not produce
a perfect result. Th e point here is that although SBC algorithms may
produce an optimal result, you usually have no way of knowing this
and so you must be willing to accept a “good” result.

When the constructor executes it creates a collection of bees,
each of which has a random solution. Th e Hive object tracks the
overall best (shortest) path found by any of the bees in the hive and
the best solution’s associated path length.

using System;
namespace SimulatedBeeColony {
 class Program {
 static void Main(string[] args) {
 Console.WriteLine("\nBegin Simulated Bee Colony algorithm demo\n");
 . . .
 Console.WriteLine("End Simulated Bee Colony demo");
 }
 }

 class Hive {
 public class Bee {
 . . .
 }

 // Hive data fields here

 public override string ToString() { . . . }

 public Hive(int totalNumberBees, int numberInactive,
 int numberActive, int numberScout, int maxNumberVisits,
 int maxNumberCycles, CitiesData citiesData) {
 . . .
 }

 public char[] GenerateRandomMemoryMatrix() { . . . }

 public char[] GenerateNeighborMemoryMatrix(char[] memoryMatrix) { . . . }

 public double MeasureOfQuality(char[] memoryMatrix) { . . . }

 public void Solve() { . . . }

 private void ProcessActiveBee(int i) { . . . }

 private void ProcessScoutBee(int i) { . . . }

 private void ProcessInactiveBee(int i) { . . . }

 private void DoWaggleDance(int i) { . . . }
 }

 class CitiesData {
 . . .
 }

} // ns

Figure 3 Overall Program Structure

Untitled-11 1 3/9/11 2:47 PM

www.DevExpress.com/FreeEval

msdn magazine60 Natural Algorithms

Aft er calling the Hive constructor, the Main method fi nishes
up by using the ToString method to display the initial, randomly
generated Hive values, calling the Solve method with a parameter
indicating that a text-based progress bar should be printed, and
then displaying the best path and associated path length found:

...
 Console.WriteLine("\nInitial random hive");
 Console.WriteLine(hive);

 bool doProgressBar = true;
 hive.Solve(doProgressBar);

 Console.WriteLine("\nFinal hive");
 Console.WriteLine(hive);
 Console.WriteLine("End Simulated Bee Colony demo");
}

The Bee Class
As shown in Figure 3, the Hive class contains a nested Bee class
defi nition. Th e details of the Bee defi nition are listed in Figure 4.

Th e Bee class has three data fi elds common to all SBC implemen-
tations and one problem-specifi c data fi eld. Th e problem-specifi c
fi eld is named memoryMatrix. Every SBC implementation must
have some way to represent a solution. In the case of the TSP in
this article, a solution can be represented by an array of type char.
Let me emphasize that the object that represents a solution is
highly problem-dependent and every problem must be analyzed
separately to produce a meaningful solution representation.

Th e fi eld named status holds an int value that indicates the Bee
object’s type: 0 for inactive, 1 for active and 2 for inactive. If you’re
coding in a language that supports enumeration types, you may
want to refactor the status fi eld as an enumeration.

Th e fi eld measureOfQuality holds a double value that represents
the goodness of the Bee object’s memoryMatrix. In the case of the TSP,
a natural measure of solution quality is the path length represented
by the memoryMatrix object. Notice that in this situation, shorter
path lengths are better than longer path lengths and so smaller values
of the measureOfQuality fi eld represent better solutions than larger

values. Every SBC implementation must have some way of comput-
ing a measure of solution quality. In many situations this measure is
best represented by a value of type double.

Th e third common data fi eld in the Bee class is named number-
OfVisits. Th is fi eld holds an int value that represents the number of
times the Bee object has visited a particular food source/problem
solution, without fi nding a better neighbor solution. Th is fi eld is
used to simulate a bee visiting a food source until that food source
is used up. For an active bee, when the value of the numberOfVisits
fi eld exceeds a threshold value, the simulated bee will have virtually
exhausted the food supply and transition to inactive status (and an
inactive bee will transition to active status).

Th e Bee constructor accepts values for the four data fi elds, status,
memoryMatrix, measureOfQuality, and numberOfVisits. Note
that the Bee constructor must accept a value for measureOfQuality
because a Bee can’t directly compute this from its memoryMatrix
fi eld; determining the measure of quality depends on information
stored in the problem-specifi c CitiesData object.

The Bee class definition contains a ToString method, which
exposes the values of the four data fi elds. Th e Bee.ToString method
is not absolutely necessary but can be quite useful during SBC
development to help uncover bugs by using WriteLine statements.

The Hive Data Fields
The Hive class code is presented in Figure 5. There are 14 hive
data fields and understanding the purpose of each is the key to
understanding how to implement a specifi c SBC algorithm.

For simplicity and easier debugging with WriteLine statements,
all 14 data fi elds are defi ned with public scope. You may want to
restrict the fi elds to private scope and create properties for those
fi elds you need to access outside the class defi nition.

Th e fi rst fi eld is named random and is type Random. SBC algo-
rithms are probabilistic and the random object is used to generate
pseudorandom numbers for several purposes. Th e random object
will be instantiated in the hive constructor.

Th e second data fi eld is an object of type CitiesData. Th e SBC
implementation needs to know details of the problem being solved.
In most cases, such as this one, the problem data is represented
as an object. Recall that CitiesData has a list of city labels and a
method that returns the distance between any two cities.

public class Bee {
 public int status;
 public char[] memoryMatrix;
 public double measureOfQuality;
 public int numberOfVisits;

 public Bee(int status, char[] memoryMatrix,
 double measureOfQuality, int numberOfVisits) {
 this.status = status;
 this.memoryMatrix = new char[memoryMatrix.Length];
 Array.Copy(memoryMatrix, this.memoryMatrix, memoryMatrix.Length);
 this.measureOfQuality = measureOfQuality;
 this.numberOfVisits = numberOfVisits;
 }

 public override string ToString() {
 string s = "";
 s += "Status = " + this.status + "\n";
 s += " Memory = " + "\n";
 for (int i = 0; i < this.memoryMatrix.Length-1; ++i)
 s += this.memoryMatrix[i] + "->";
 s += this.memoryMatrix[this.memoryMatrix.Length-1] + "\n";
 s += " Quality = " + this.measureOfQuality.ToString("F4");
 s += " Number visits = " + this.numberOfVisits;
 return s;
 }
}

Figure 4 Bee Class Defi nition

static Random random = null;

public CitiesData citiesData;

public int totalNumberBees;
public int numberInactive;
public int numberActive;
public int numberScout;

public int maxNumberCycles;
public int maxNumberVisits;

public double probPersuasion = 0.90;
public double probMistake = 0.01;

public Bee[] bees;
public char[] bestMemoryMatrix;
public double bestMeasureOfQuality;
public int[] indexesOfInactiveBees;

Figure 5 The 14 Hive Data Fields

Untitled-11 1 3/9/11 2:48 PM

www.DevExpress.com/FreeEval

msdn magazine62 Natural Algorithms

Th e third through sixth data fi elds are int variables that hold the
total number of bees, the number of inactive bees, the number of
active bees and the number of scout bees. As mentioned earlier,
because each bee represents a potential solution, the more bees
in the hive, the better. However, larger numbers of bees degrade
program performance.

Th e seventh data fi eld, maxNumberCycles, is a threshold value
used to constrain how long the Solve method runs. One cycle
represents processing of each bee in the hive.

Th e eighth data fi eld, maxNumberVisits, is a threshold value used
to prevent a bee from staying too long at a particular solution. In
every iteration of the main processing loop in the Solve method,
if a bee does not fi nd a neighbor food source with better quality,
the bee’s numberOfVisits counter is incremented. If the number-
OfVisits counter in a Bee object exceeds the maxNumberVisits
threshold value, the bee transitions to an inactive state.

Th e ninth data fi eld, probPersuasion, is a probabilistic threshold
value used to determine whether an inactive bee who observes the
waggle dance of a bee that has returned to the hive with a better solu-
tion will be persuaded to update its memory with the better solution.

Th e value of probPersuasion is hard-coded to 0.90, which means
that an inactive bee will be persuaded to accept a better solution
about 90 percent of the time. Th e 0.90 value for probPersuasion is
based on research fi ndings, but you may want to experiment with
other values. Larger values will produce an SBC algorithm which
converges to a solution more quickly, at the risk of more likely
converging to a non-optimal solution.

Th e tenth data fi eld, probMistake, is a probabilistic threshold value
used to determine whether an active bee will make a mistake—that
is, incorrectly reject a neighbor solution that’s better than the bee’s
current solution, or incorrectly accept a neighbor solution that’s
worse than the bee’s current solution. Th e value of probMistake is
hardcoded to 0.01, which means that an active bee will make a mis-
take in evaluating a neighbor solution about 1 percent of the time.

Th e 11th data fi eld, bees, is an array of Bee objects.
Recall that each bee has a status (active, inactive,
scout), a solution (memoryMatrix), a measure of
the solution’s quality (measureOfQuality), and a
counter of the number of times a particular vir-
tual food source has been visited without fi nding
a better neighbor food source (numberOfVisits).
Because a Bee is defi ned as a class, each entry in
the bees array is a reference to a Bee object.

The 12th data field, bestMemoryMatrix, is an
array of char and represents the best solution in the
bees array. Recall that because simulated bee colony
algorithms are specifi c implementations of a meta-
heuristic, the representation of a problem solution
will vary from problem to problem. An alternative
design approach to hardcoding a solution type defi -
nition is to parameterize this data fi eld as a generic
type. When I use an SBC algorithm I’m usually trying
to solve a specifi c problem, so I prefer to recode each
new SBC implementation from scratch.

Th e 13th data fi eld, bestMeasureOfQuality, is the
measure of quality that corresponds to the bestMemoryMatrix solution.

Th e last hive data fi eld, indexesOfInactiveBees, is an array of
int. Th is array holds the indexes of the bees in the hive that are
currently inactive. Recall that active bees can transition to an
inactive state and inactive bees can transition to an active state. An
SBC algorithm implementation must frequently determine which
bees are currently inactive when an active bee performs a virtual
waggle dance, and storing the indexes of inactive bees improves
performance compared to the alternative of iterating through the
entire bees array and checking the status data fi eld of each bee.

A visual representation of a possible Hive object is presented in
Figure 6. Th e hive shown has 10 bees: 5 active, two scout and three
inactive. Th e currently inactive bees are at indexes 2, 7 and 4 in the bees
array. Th e CitiesData object has fi ve cities. Th e current best solution is:

A->B->E->C-D

Th is solution has a path length, in distance units, of:
1.0 + (3 * 1.0) + (2 * 1.5) + 1.0 = 8.0

Note that the citiesData fi eld is a reference to a CitiesData object
defi ned outside of the hive object.

The Hive Constructor
Th e code for the hive constructor is presented in Figure 7. Th e hive
constructor accepts seven input parameters. Six of the parameters
are scalar and one is an object (citiesData). Th e totalNumberBees
parameter is redundant in the sense that it can be determined from
numberInactive, numberActive and numberScout, but I feel the
improvement in readability is worth the extra code.

Th e class-scope random object is instantiated with a seed value
of 0. Supplying a seed value allows you to reproduce results. Next,
six input parameter values for the scalar data fi elds are copied to
hive data fi elds. Th e hive object has a total of 14 data fi elds; the
threshold values probPersuasion and probMistake are hardcoded.

Th e Hive constructor takes the input citiesData parameter and
assigns the citiesData field to the parameter as a reference. An

Figure 6 The Hive Representation

random

citiesData

(bee 0)

(bee 9)

bees[]

0

1

2

3

4

5

6

7

8

9

totalNumberBees 10

3numberInactive

5numberActive

2numberScout

10000maxNumberCycles

15maxNumberVisits

0.90probPersuasion

0.01probMistake

2 7 4

0 1 2

indexesOfInactiveBees[]

8.0bestMeasureOfQuality

A B C

0 1 2

D E

3 4

bestMemoryMatrix[]

Untitled-11 1 3/9/11 2:48 PM

www.DevExpress.com/FreeEval

msdn magazine64 Natural Algorithms

alternative to this by-reference approach is to make a new copy of
the problem data, like so:

int n = citiesData.cities.Length;
this.citiesData = new CitiesData(n);

Th is approach uses more memory, but avoids potential side-eff ect
errors. Th e alternative approach can be used if you’re refactoring
the code presented here to a programming language that doesn’t
support pointers or references.

At this point in the Hive constructor all entries in the bees
array will be null. Next, the constructor initializes the globally best
solution (that is, the best solution among all bees in the hive) and
corresponding solution quality:

this.bestMemoryMatrix = GenerateRandomMemoryMatrix();
this.bestMeasureOfQuality =
 MeasureOfQuality(this.bestMemoryMatrix);

Th e GenerateRandomMemoryMatrix helper method generates
a random solution. Th e MeasureOfQuality helper method accepts
the randomly generated solution and computes its quality. I’ll dis-
cuss the code for these two helper methods later in the article.

Aft er initializing the global best solution and its corresponding
quality, the hive constructor allocates the indexesOfInactiveBees
bees array using the value in the numberInactive fi eld. At this point
all values in this indexes array will be 0.

Th e next part of the constructor code iterates through each Bee
object in the bees array and instantiates it using the Bee constructor.
Th e logic in this loop assumes that the fi rst numberInactive cells
in the bees array are inactive bees, the next numberScout cells are
scout bees and the remaining cells are active bees.

For example, if there are fi ve active bees, two inactive bees and
three scout bees, the constructor initializes a bees array of size 10,
and instantiates cells 0 and 1 as inactive bees, cells 2-4 as scout bees
and cells 5-9 as active bees. Additionally, the indexesOfInactiveBees
array will have size 2 and initially hold values 0 and 1.

Aft er the status of the current bee is determined based on the
loop index variable, a randomly generated solution is created
and its corresponding quality is computed, the number of visits
counter is explicitly set to 0, and the Bee constructor is called:

char[] randomMemoryMatrix = GenerateRandomMemoryMatrix();
double mq = MeasureOfQuality(randomMemoryMatrix);
int numberOfVisits = 0;
bees[i] = new Bee(currStatus, randomMemoryMatrix,
 mq, numberOfVisits);

Aft er each bee is instantiated, the quality of the bee’s randomly
generated solution is checked to see if it’s better than the global best
solution. If so, the current bee’s solution and corresponding quality
are copied to the bestMemoryMatrix and bestMeasureOfQuality
fi elds. Note in the check for a global best solution quality, a smaller
value is better than a larger value because quality value are path
lengths and the TSP wishes to minimize the path length.

Instead of explicitly copying a bee’s memory into the best-
MemoryMatrix array, an alternative approach is to assign by
reference. Th is approach improves performance at the expense of
an increase in complexity.

Three Essential SBC Methods
Every SBC algorithm implementation must have three problem-specifi c
methods: a method to generate a random solution, a method to generate
a neighbor solution relative to a given solution, and a method to com-
pute the quality of a given solution. In this TSP example each method
is implemented in a custom and completely problem-dependent way.

A design alternative is to defi ne interfaces and implement these
interfaces. Programming via interfaces has several advantages
and disadvantages compared to the non-interface approach used,
but is mostly a matter of personal preference in my opinion. Th e
method to generate a random solution, GenerateRandomMemory-
Matrix, is shown here:

public char[] GenerateRandomMemoryMatrix() {
 char[] result = new char[this.citiesData.cities.Length];
 Array.Copy(this.citiesData.cities, result,
 this.citiesData.cities.Length);
 for (int i = 0; i < result.Length; i++) {
 int r = random.Next(i, result.Length);
 char temp = result[r];
 result[r] = result[i];
 result[i] = temp;
 }
 return result;
}

Because a solution to the TSP problem is an array of char where
each char represents a city label, the GenerateRandomMemory-
Matrix method returns a char array. Th e local result array size is
allocated based on the hive’s CitiesData object, and the city IDs
stored in the hive’s reference to the CitiesData object are copied

public Hive(int totalNumberBees, int numberInactive,
 int numberActive, int numberScout, int maxNumberVisits,
 int maxNumberCycles, CitiesData citiesData) {

 random = new Random(0);

 this.totalNumberBees = totalNumberBees;
 this.numberInactive = numberInactive;
 this.numberActive = numberActive;
 this.numberScout = numberScout;
 this.maxNumberVisits = maxNumberVisits;
 this.maxNumberCycles = maxNumberCycles;

 this.citiesData = citiesData;

 this.bees = new Bee[totalNumberBees];
 this.bestMemoryMatrix = GenerateRandomMemoryMatrix();
 this.bestMeasureOfQuality =
 MeasureOfQuality(this.bestMemoryMatrix);

 this.indexesOfInactiveBees = new int[numberInactive];

 for (int i = 0; i < totalNumberBees; ++i) {
 int currStatus;
 if (i < numberInactive) {
 currStatus = 0; // inactive
 indexesOfInactiveBees[i] = i;
 }
 else if (i < numberInactive + numberScout)
 currStatus = 2; // scout
 else
 currStatus = 1; // active

 char[] randomMemoryMatrix = GenerateRandomMemoryMatrix();
 double mq = MeasureOfQuality(randomMemoryMatrix);
 int numberOfVisits = 0;

 bees[i] = new Bee(currStatus,
 randomMemoryMatrix, mq, numberOfVisits);

 if (bees[i].measureOfQuality < bestMeasureOfQuality) {
 Array.Copy(bees[i].memoryMatrix, this.bestMemoryMatrix,
 bees[i].memoryMatrix.Length);
 this.bestMeasureOfQuality = bees[i].measureOfQuality;
 }
 }
}

Figure 7 Hive Constructor

Untitled-11 1 3/9/11 2:48 PM

www.DevExpress.com/FreeEval

msdn magazine66 Natural Algorithms

into the result array. Th e order of the values in result array is then
randomized using the class scope random object and the Fisher-
Yates shuffl e algorithm (sometimes called the Knuth shuffl e).

At fi rst, it might seem that method GenerateRandomMemory-
Matrix conceptually belongs to a Bee object. However, because
generating a random solution depends in part on problem-specifi c
data—CitiesData in this case—placing the random solution gen-
eration method in the overall hive defi nition is a better design.

Th e method to generate a neighbor solution, GenerateNeighbor-
MemoryMatrix, is presented in Figure 8.

A key concept in SBC algorithms is the idea that each virtual food
source that represents a solution has some sort of neighbor. Without
the neighbor concept, the entire idea of an algorithm based on bee
behavior collapses. In the case of the TSP, where a solution can be rep-
resented as an array of city IDs representing a path from city to city, a
natural neighbor solution relative to a current solution is a permutation
of the current solution where two adjacent cities have been exchanged.

For example, if a current TSP solution is A,B,C,D,E, then a reason-
able neighbor solution is A,C,B,D,E. It’s not so obvious if a permu-
tation where any two arbitrary cities are exchanged (as opposed to
two adjacent cities) represents a reasonable neighbor solution. For
the previous example, is A,D,C,B,E a reasonable neighbor solution?
Deciding on the defi nition of a neighbor solution for an SBC algo-
rithm is problem-dependent and typically involves subjective criteria.

Th e neighbor-solution concept also serves to illustrate in part why
non-numeric combinatorial problems are especially well suited for
solution by SBC algorithms. If a problem is inherently numeric, the
idea of a neighbor is oft en diffi cult to defi ne satisfactorily. If a problem
is inherently combinatorial, the idea of a neighbor can oft en be nicely
defi ned by some form of mathematical permutation or combination.

Th e GenerateNeighborMemoryMatrix method accepts a bee’s
current memoryMatrix representation of a solution as an input
parameter and copies it into a result array. Th e method selects a
single random index into the current result array using the class-
scope random object. If the random index points to the last cell
then the first and last city IDs are exchanged; otherwise, if the
random index points to any non-last cell, the IDs pointed to by
the random index and the next index are exchanged.

Th e neighbor solution concept is related to the maxNumber-
Visits value. Th ere’s some research that suggests a good value for
maxNumberVisits is about five times the number of neighbor
solutions possible for any given solution. For example, for three cities

(A,B,C), if a neighbor solution is defi ned as exchanging any pair of
adjacent cities, then there are three possible neighbors (exchange
A and B, exchange B and C, exchange A and C). So for 20 cities, a
reasonable maxNumberVisits value is about 20 * 5 = 100.

Th e method to evaluate the quality of a bee’s solution, Measure-
OfQuality, is:

public double MeasureOfQuality(char[] memoryMatrix) {
 double answer = 0.0;
 for (int i = 0; i < memoryMatrix.Length - 1; ++i) {
 char c1 = memoryMatrix[i];
 char c2 = memoryMatrix[i + 1];
 double d = this.citiesData.Distance(c1, c2);
 answer += d;
 }
 return answer;
}

To solve a problem using an SBC algorithm, an essential char-
acteristic of the problem is that any solution must be able to be
evaluated to yield a measure of the solution’s quality. In conceptual
terms, a real-world combinatorial optimization problem almost
always has some inherent and common-sense measure of quality.
However, in practical terms, computing the measure of quality of
a solution can be diffi cult and time-consuming.

In this example, the MeasureOfQuality method simply iterates
through every pair of consecutive city IDs in the solution rep-
resented by parameter memoryMatrix, determines the distance
between each pair using the Distance method of the CitiesData
object, and accumulates the total distance. Recall that the city data
was artifi cially constructed so that the distance between any two
cities could be quickly and easily computed simply by using the
ordinal distance between two city IDs. But in a real problem, the
distance between two cities would likely have to be looked up in
some sort of data structure. In SBC implementations, the Measure-
OfQuality method is oft en the routine that dominates the running
time of the program. Th erefore, it’s usually worthwhile to make sure
that this method is optimized for performance—as well as feasible,
given the memory resources of the host system.

public void Solve(bool doProgressBar) {
 bool pb = doProgressBar;
 int numberOfSymbolsToPrint = 10;
 int increment = this.maxNumberCycles / numberOfSymbolsToPrint;
 if (pb) Console.WriteLine("\nEntering SBC Traveling Salesman Problem
algorithm main processing loop\n");
 if (pb) Console.WriteLine("Progress: |==========|");
 if (pb) Console.Write(" ");
 int cycle = 0;

 while (cycle < this.maxNumberCycles) {
 for (int i = 0; i < totalNumberBees; ++i) {
 if (this.bees[i].status == 1)
 ProcessActiveBee(i);
 else if (this.bees[i].status == 2)
 ProcessScoutBee(i);
 else if (this.bees[i].status == 0)
 ProcessInactiveBee(i);
 }
 ++cycle;

 if (pb && cycle % increment == 0)
 Console.Write("^");
 }

 if (pb) Console.WriteLine("");
}

Figure 9 The Solve Method

public char[] GenerateNeighborMemoryMatrix(char[] memoryMatrix) {
 char[] result = new char[memoryMatrix.Length];
 Array.Copy(memoryMatrix, result, memoryMatrix.Length);

 int ranIndex = random.Next(0, result.Length);
 int adjIndex;
 if (ranIndex == result.Length - 1)
 adjIndex = 0;
 else
 adjIndex = ranIndex + 1;

 char tmp = result[ranIndex];
 result[ranIndex] = result[adjIndex];
 result[adjIndex] = tmp; return result;
}

Figure 8 Generating a Neighbor Solution

Untitled-11 1 3/9/11 2:49 PM

www.DevExpress.com/FreeEval

msdn magazine68 Natural Algorithms

The Solve Method
Th e Solve method houses all the logic that simulates the behavior
of foraging bees to solve a problem. Th e Solve method is moder-
ately complex and uses three helper methods, ProcessActiveBee,
ProcessScoutBee and ProcessInactiveBee. Th e ProcessActiveBee
and ProcessScoutBee methods in turn use a DoWaggleDance helper
method. Th e Solve method is presented in Figure 9.

Most of the actual work is farmed out to helper methods Process-
ActiveBee, ProcessScoutBee and ProcessInactiveBee. A Boolean
input parameter is passed to Solve to indicate whether to print a
rudimentary text-based progress bar. Th is is useful when developing
an SBC algorithm to monitor the speed of the implementation and
help uncover performance bottlenecks. Th is approach makes the
assumption that the Solve method is part of a console application.

The value of the Boolean parameter value is transferred into
a local Boolean variable named pb just to have a short variable
name to work with. Th e numberOfSymbolsToPrint is set to 10 so
that each increment in the status bar will represent 10 percent of
the total progress, which is determined by the maxNumberCycles
value (the increment variable is used to determine how many cycles
represent 10 percent progress).

Aft er the loop control variable, cycle, is initialized to 0, a while loop
is used to process each bee in the hive. A for loop could just as easily
be used. On each cycle, the bees array is iterated using a for loop and
each Bee object is processed by the appropriate helper method. Aft er
each bee has been processed, if the Boolean doProgressBar parameter
is true, the code uses the modulus operator, %, to check if it’s time to
print an update to the progress bar using a ^ character.

The ProcessActiveBee Method
Th e ProcessActiveBee method is the heart of an SBC algorithm and
is the most complex method in terms of code size and branching.
Th e ProcessActiveBee method is presented in Figure 10.

Th e ProcessActiveBee method accepts a single input parameter,
i, which is the index of the bee in the bees array. Th e active bee fi rst
obtains a neighbor solution relative to its current solution stored in
memoryMatrix, and then determines the quality of that neighbor:

char[] neighbor =
 GenerateNeighborMemoryMatrix(bees[i].memoryMatrix);
double neighborQuality = MeasureOfQuality(neighbor);

Next, the algorithm sets up three local variables that will be used later:
double prob = random.NextDouble();)
bool memoryWasUpdated = false;
bool numberOfVisitsOverLimit = false;

Th e prob variable has a value between 0.0 and 1.0 and will be com-
pared against the probMistake fi eld value to determine if the bee
makes a mistake in evaluating the neighbor solution—that is, rejects
a better neighbor solution or accepts a worse neighbor solution.

Th e Boolean memoryWasUpdated value will be used to deter-
mine if the active bee should perform a waggle dance to the inactive
bees (if true) or not (if false). Th e Boolean numberOfVisitsOver-
Limit will be compared against the maxNumberVisits field to
determine if the bee has exhausted a particular food source without
fi nding a better neighbor solution, and if so should convert from
active status to inactive status.

If the current bee fi nds a better neighbor solution, the algorithm
determines if the bee makes a mistake and rejects the better neighbor

or if the bee accepts the better neighbor. Similarly, if the current bee
did not fi nd a better neighbor solution, the algorithm determines
whether the bee makes a mistake and accepts the worse neighbor
solution or does not make a mistake and rejects the neighbor.

Notice that there are two diff erent types of mistakes possible,
but that both types of mistakes have the same probability, prob-
Mistake = 0.01. There’s some research that suggests using two
diff erent probabilities for the two diff erent types of mistakes does
not improve the eff ectiveness of SBC algorithms, but you may want
to experiment with two diff erent threshold values.

After the current active bee accepts or rejects the neighbor
solution, the algorithm checks if the number of visits counter has
exceeded the maxNumberVisits threshold. If so, the current bee’s
status is converted to inactive, a randomly selected inactive bee is
converted to active status and the indexesOfInactiveBees array is
updated. Next, the algorithm checks to see if the bee’s memory was
updated. If so, the new solution is checked to see if it’s a new global

private void ProcessActiveBee(int i) {
 char[] neighbor = GenerateNeighborMemoryMatrix(bees[i].memoryMatrix);
 double neighborQuality = MeasureOfQuality(neighbor);
 double prob = random.NextDouble();
 bool memoryWasUpdated = false;
 bool numberOfVisitsOverLimit = false;

 if (neighborQuality < bees[i].measureOfQuality) { // better
 if (prob < probMistake) { // mistake
 ++bees[i].numberOfVisits;
 if (bees[i].numberOfVisits > maxNumberVisits)
 numberOfVisitsOverLimit = true;
 }
 else { // No mistake
 Array.Copy(neighbor, bees[i].memoryMatrix, neighbor.Length);
 bees[i].measureOfQuality = neighborQuality;
 bees[i].numberOfVisits = 0;
 memoryWasUpdated = true;
 }
 }
 else { // Did not find better neighbor
 if (prob < probMistake) { // Mistake
 Array.Copy(neighbor, bees[i].memoryMatrix, neighbor.Length);
 bees[i].measureOfQuality = neighborQuality;
 bees[i].numberOfVisits = 0;
 memoryWasUpdated = true;
 }
 else { // No mistake
 ++bees[i].numberOfVisits;
 if (bees[i].numberOfVisits > maxNumberVisits)
 numberOfVisitsOverLimit = true;
 }
 }

 if (numberOfVisitsOverLimit == true) {
 bees[i].status = 0;
 bees[i].numberOfVisits = 0;
 int x = random.Next(numberInactive);
 bees[indexesOfInactiveBees[x]].status = 1;
 indexesOfInactiveBees[x] = i;
 }
 else if (memoryWasUpdated == true) {
 if (bees[i].measureOfQuality < this.bestMeasureOfQuality) {
 Array.Copy(bees[i].memoryMatrix, this.bestMemoryMatrix,
 bees[i].memoryMatrix.Length);
 this.bestMeasureOfQuality = bees[i].measureOfQuality
 }
 DoWaggleDance(i);
 }
 else {
 return;
 }
}

Figure 10 The ProcessActiveBee Method

Untitled-11 1 3/9/11 2:49 PM

www.DevExpress.com/FreeEval

msdn magazine70 Natural Algorithms

best solution, and then a private helper method, DoWaggleDance,
is called to simulate the bee returning to the hive and conveying
information about the new food source to the inactive bees.

The DoWaggleDance Method
Th e DoWaggleDance helper method simulates an active or scout
bee returning to the hive and then performing a waggle dance to
inactive bees in order to convey information about the location
and quality of a food source. Here’s the DoWaggleDance method:

private void DoWaggleDance(int i) {
 for (int ii = 0; ii < numberInactive; ++ii) {
 int b = indexesOfInactiveBees[ii];
 if (bees[i].measureOfQuality < bees[b].measureOfQuality) {
 double p = random.NextDouble();
 if (this.probPersuasion > p) {
 Array.Copy(bees[i].memoryMatrix, bees[b].memoryMatrix,
 bees[i].memoryMatrix.Length);
 bees[b].measureOfQuality = bees[i].measureOfQuality;
 }
 }
 }
}

Th e input parameter i is the index of the current bee performing
the virtual waggle dance. The measure of quality of the current
bee’s solution is compared against the measure of quality of each
inactive bee. If the current bee’s solution is better and the current
inactive bee is persuaded (with probability probPersuasion = 0.90),
the current bee’s memory is copied to the inactive bee’s memory.

Note that there are many opportunities to insert error checking
into the code presented in this article. For example, inside the
for loop in DoWaggleDance, you may want to check the current
inactive bee’s status with:

if (bees[b].status != 0) throw new Exception(. . .);

Or you may want to verify the inactive bee’s number of visits
counter with:

if (bees[b].numberOfVisits != 0) throw new Exception(. . .);

ProcessScoutBee and ProcessInactiveBee
Th e ProcessScoutBee helper method used by the Solve method simu-
lates the action of a scout bee randomly searching for appealing food
sources. Th e ProcessScoutBee method is presented in Figure 11.

Th e input parameter i represents the index of a scout bee in the
bees array. A scout bee generates a random solution, checks if the
random solution is better than the current solution in memory,
and, if so, copies the random solution into memory. Recall that
smaller quality values are better. If the scout bee has found a

better solution, the algorithm checks to see if the new solution is
a global best solution.

Note that unlike active bees, in this SBC implementation scout
bees never make mistakes evaluating the quality of a food source.
Th ere’s no current research on the eff ect of scout bee mistakes.

Th e ProcessInactiveBee method is:
private void ProcessInactiveBee(int i) {
 return;
}

In this SBC implementation inactive bees are exactly that—
inactive—so the ProcessInactiveBee method is merely a placeholder
in case you wish to implement some problem-dependent logic for
an inactive bee. One possible modifi cation would be to randomly
mutate an inactive bee’s memory with some very small probability.

Wrapping Up
Th e overall process of implementing an SBC algorithm starts with
problem identifi cation. Complex, non-numerical, combinatorial
optimization problems with no practical deterministic solutions
are oft en good candidates for an SBC solution. Th e target problem
must have a way to represent a solution (oft en as an array or matrix)
and each solution must have some sort of a neighbor solution and
a measure of solution quality.

For example, consider the problem of dividing a graph into two
parts so that the number of connections within each part is maxi-
mized and the number of connections between the two parts is
minimized. This graph partition problem is combinatorial and
there’s no quick algorithm that finds the optimal solution (al-
though there are deterministic algorithms that are good at fi nding
near-optimal solutions). Th ere are many other NP-complete and
NP-hard problems that might be tackled using an SBC.

SBC algorithms are based on the behavior of natural systems.
Th ere are other such algorithms, including genetic algorithms (GA)
based on natural selection and evolution, ant colony optimization
(ACO) based on the behavior of ants, and simulated annealing (SA)
based on the physical properties of cooling metals.

Algorithms based on natural systems are oft en easy to implement
relative to deterministic approaches. However, algorithms based on
natural systems typically require the specifi cation of values for sev-
eral parameters that tend to be sensitive with regard to their eff ect
on solution convergence speed and solution accuracy. In the case
of an SBC, sensitive parameters that must be fi ne-tuned for each
problem include the number of each type of bee, the maximum
number of visits before a food source is exhausted, inactive bee per-
suasion probability threshold and active bee mistake probability.

Although SBC algorithms aren’t applicable to every problem, in
some scenarios they can be extremely powerful tools.

DR. JAMES MCCAFFREY works for Volt Information Sciences Inc., where he man-
ages technical training for soft ware engineers working at the Microsoft Redmond,
Wash., campus. He’s worked on several Microsoft products, including Internet
Explorer and MSN Search. Dr. McCaff rey is the author of “.NET Test Automation
Recipes” (Apress, 2006) and can be reached at jammc@microsoft .com.

THANKS to the following technical experts for reviewing this article:
Dan Liebling and Anne Loomis Th ompson, both of Microsoft Research

private void ProcessScoutBee(int i) {
 char[] randomFoodSource = GenerateRandomMemoryMatrix();
 double randomFoodSourceQuality =
 MeasureOfQuality(randomFoodSource);
 if (randomFoodSourceQuality < bees[i].measureOfQuality {
 Array.Copy(randomFoodSource, bees[i].memoryMatrix,
 randomFoodSource.Length);
 bees[i].measureOfQuality = randomFoodSourceQuality;
 if (bees[i].measureOfQuality < bestMeasureOfQuality) {
 Array.Copy(bees[i].memoryMatrix, this.bestMemoryMatrix,
 bees[i].memoryMatrix.Length);
 this.bestMeasureOfQuality = bees[i].measureOfQuality;
 }
 DoWaggleDance(i);
 }
}

Figure 11 The ProcessScoutBee Method

mailto:jammc@microsoft.com

© 2011 ComponentOne LCC. All rights reserved. All other product and brand
names are trademarks and/or registered trademarks of their respective holders.

Untitled-5 1 3/8/11 12:23 PM

www.c1.ms/c1charts

msdn magazine72

A S P. N E T WEB PAG ES

Introduction to
WebMatrix

There’s no shortage of available tooling in the market for
a Web developer today. In fact, chances are good that you already
spend much of your day in Visual Studio. If you’ve heard of
Microsoft WebMatrix, you might be wondering what it is and what
its existence means to you—maybe even why you should care.

In this article I’ll explore those questions and more. I’ll start by
exploring a few of the recent changes to the ASP.NET stack. Th en

Clark Sell

I’ll explain how to get WebMatrix set up and create a “Hello Web”
app. Th en I’ll dive into some of the bells and whistles such as layout,
helpers, data access, reporting and, of course, deploying. Before all
that, I’ll start by defi ning WebMatrix.

WebMatrix is a new all-in- one Web site editor for ASP.NET
Web Pages. It’s aimed at a diff erent Web developer and a diff erent
part of ASP.NET than is usual for a Microsoft product. WebMa-
trix isn’t a competitor to Visual Studio; it’s more of a complement,
with some overlap between the two.

You’ll fi nd installing WebMatrix to be quick and painless. Th at’s
because the entire package and its dependencies are less than
50MB. Th e package includes a text editor, Web server, database
engine and the underlying framework—basically everything you
need to create a Web site and deploy it. What might surprise you
is that it’s not just limited to ASP.NET. WebMatrix also supports
PHP and MySQL. Th is article will specifi cally focus on the .NET
features of WebMatrix.

The New ASP.NET Stack
Over the past few years, the ASP.NET stack has gone through a bit
of a transformation. In April 2009, ASP.NET MVC was released as
a new option for Web application development in ASP.NET. Th e
MVC, or Model-View-Controller, pattern was nothing new, but its
implementation on top of ASP.NET was. Furthermore, Web Forms
and MVC can both coexist in the same site in perfect harmony.

To properly enable its introduction into ASP.NET, there was
some gentle framework refactoring going on so that those LEGO
pieces could easily snap together how you chose. Fast forward

This article discusses:
• The new ASP.NET stack

• Getting started

• Hello Web

• Coding in Razor

• Layout

• Helpers

• Data access

• Serving the site

• Search Engine Optimization

• Deployment

• Scalability

Technologies discussed:
ASP.NET, WebMatrix, Razor, NuGet

Code download available at:
code.msdn.microsoft.com/mag201104WebMatrix

http://code.msdn.microsoft.com/mag201104WebMatrix

73April 2011msdnmagazine.com

to now, and Microsoft has just released ASP.NET MVC 3 and
WebMatrix. Th ese represent major releases that include a number
of new additions and enhancements. Th ere are three notable new
additions to the framework: the Razor Parser and View Engine,
or Razor for short; ASP.NET Web Pages; and IIS Express. Figure
1 depicts the relationships between all of the associated ASP.NET
framework pieces.

In Figure 1, you might have noticed that Razor, IIS Express,
SQL Compact and Web Deploy are valid options for other areas
in ASP.NET Web development. Furthermore, with the release of
ASP.NET MVC 3, Razor is now the default view engine. I’ll cover
Razor in more detail later.

Conversely, ASP.NET Web Pages is being introduced as a peer to
Web Forms and MVC. Th e Web Page model is a page-centric execu-
tion model, similar to PHP. Markup and code are both contained in
the page itself, with helpers being leveraged to keep the code succinct.
You write these pages in Razor in either Visual Basic or C#.

Getting Started
Getting started with WebMatrix is easy. Th e installation is delivered
courtesy of the Microsoft Web Platform Installer version 3.0,
or WebPI for short. It’s a client-side program that makes things
such as installing SQL Express or ASP.NET MVC a breeze. For
more information about WebPI, visit microsoft.com/web/downloads/
platform.aspx. To quickly install it, visit web.ms/webmatrix and click the
Download Now button. Th at will not only install WebPI but will
install WebMatrix as well. Once the installation completes, you’ll
have the following installed:

• Microsoft WebMatrix (editor)
• ASP.NET Web Pages with Razor Syntax (engine and framework)
• SQL Compact (database)
• IIS Express (development Web server)

I mentioned earlier that WebMatrix also supports PHP devel-
opment. While the package supports development out of the box,
you’ll need to install the PHP runtime if you’re going to create a
PHP site from scratch.

Hello World Web
Just about every technical book out there has the classic “Hello
World” example, so let’s create a “Hello Web” site with WebMatrix.
When you open WebMatrix for the fi rst time, you’ll be presented
with a dialog with four choices. Each of these choices represents a
diff erent starting point:

• My Sites
• Site From Folder
• Site From Template
• Site From Web Gallery

My Sites simply includes the past sites you’ve been working on. Site
From Folder will open any folder as the root of a site. Anything that’s listed
in that folder will show up as part of the assets of the site. You can also
right-click on a folder and select Open as a Web Site with Microsoft
WebMatrix, which behaves the same as the Site From Folder.

WebMatrix ships with a number of prebuilt Web templates to
jumpstart your site creation. Selecting Site From Template will set
up your folder structure with all of the source code needed to have
a site based on that template. At the time of this writing, there were
fi ve templates: Empty Site, Starter Site, Bakery, Photo Gallery and
Calendar. More will be available in the future.

Site From Gallery might be the most interesting. For a number of
years now, you could use WebPI and download applications such as
Umbraco or WordPress, customize them at will and deploy to your
hosting provider. Unfortunately there really wasn’t an integrated
end-to-end story. Now, from within WebMatrix, you can actually
start development from an existing application such as Umbraco.
WebMatrix and WebPI will set up everything needed to start your
site from one of the applications listed in the gallery. Once WebMatrix
sets things up, you can customize as needed and use the deployment

capabilities of WebMatrix to deploy
to your hosting provider.

To create our Hello Web demo,
let’s start by opening WebMatrix
and selecting Start from Template.
Select the Empty Site template and
give the site a name—HelloWeb

Figure 1 The Web Stack

Visual Studio WebMatrix

ASP.NET

Web Forms

Web Forms View Engine

Core

Razor View Engine

MVC Web Pages

Web Deploy

SQL Compact

IIS Express

Figure 2 Hello Web in the Browser

WebMatrix ships with a number
of prebuilt Web templates to
jumpstart your site creation.

http://microsoft.com/web/downloads/platform.aspx
http://microsoft.com/web/downloads/platform.aspx
http://web.ms/webmatrix
www.msdnmagazine.com

msdn magazine74 ASP.NET Web Pages

in this case. WebMatrix will create an empty folder with the name
you chose. Now Select the Files tab and then Add a fi le to your site
from that main window. Th e fi rst thing you should notice is the
new fi le extension. ASP.NET WebPages has two new fi le formats:
CSHTML and VBHTML. Th e fi rst two letters of the extension
indicate the language that the Razor parser should use to parse
code: C# and Visual Basic, respectively. I’ll select a CSHTML fi le
and name it HelloWeb.cshtml. Th at will automatically open that fi le
prepopulated with some default HTML.

Adding the text Hello Web to the existing body element will fi n-
ish Hello Web. WebMatrix will automatically detect all of the Web
browsers you have installed. You can run your site in any or all of
them with a simple button click. Clicking Run in the ribbon will start
the default browser and open and render the page you had focus on.
Of course, in the case of Hello Web, you’ll see the words “Hello Web.”

Coding in Razor
As I stated earlier, Razor is a code and markup templating engine.
What that really means is that you write some syntax that’s later
interpreted and sent to the requestor. Here’s the HTML for our
simple Web page, with a little code calling @DateTime.Now:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Hello World</title>
 </head>
 <body>
 Hello Web it’s @DateTime.Now
 </body>
</html>

That code makes a call to the Now method of the .NET
System.DateTime class. Th e result is a page that would render what
you see in Figure 2.

We can get a bit more complicat-
ed, too. Let’s create some properties,
run a loop, intermix some HTML
and just mix it all together for fun.
Figure 3 is just that, with some val-
id HTML omitted for brevity. And
Figure 4 shows the rendered results.

Let’s take a closer look at some
of that code listed in Figure 3.
Start with the hyperlink “http://

@(@car).something.com .” You see “@(@car).” Th ere I need to explic-
itly tell Razor that @car is the variable, because it’s embedded within
the URL. Th e next code nugget is the content block defi ned by “@:”.
Within the loop, there’s an If statement containing the text content
“Is my favorite!”. If you remove “@:”, Razor wouldn’t compile because
that text content isn’t wrapped in HTML. Finally, at the end, we call
@emailAddress, but end the sentence with a period. Razor was smart
enough to know @emailAddress was a variable and not a class. Th e
coolness doesn’t end there. By viewing the source on that page, you’ll
see that pure HTML was rendered to the browser, as shown here:

 Camaro Is my favorite!
 Avalanche
 Honda

To comment on this list of cars e-mail us at cars@something.com

Layout
Razor introduces a new way to structure your site content in a reus-
able way. If you’re familiar with the Master Pages idiom in ASP.NET
Web Forms, Razor uses layout to accomplish the same thing, but with
a diff erent approach. As a tangential observation, it’s important to note
the two layout approaches don’t work together, meaning Master Pages
can’t be used as a layout engine for Razor, and vice versa.

To start with layout, I’m going to create a page that begins with an
underscore; for example, _MasterLayout.cshtml. Underscored pages
can’t be rendered directly in the browser and must be referenced
by other, public pages. In a way, an underscored page is like a class
in an assembly marked internal. In that page, I’ll structure how and
where diff erent pieces of the page will get inserted by downstream
references. Th ere are three main classes you use to help structure
things: RenderSection, RenderPage and RenderBody. Figure 5
shows a simple master layout page using all three.

Th is master page will need to be referenced by any child page
that wants to inherit its defi ned layout. As seen here, the fi rst line
does exactly that:

@{ Layout = "~/layout/shared/_MasterLayout.cshtml"; }

@section ClientScripts {
 Custom Script Here </br>
}

Some body content

Figure 4 The Cars Code Rendered in a Browser

@{
 var cars = new string [] { "Camaro", "Avalanche", "Honda"};
 var emailAddress = "cars@something.com";
}

 @foreach (var car in cars) {

 @car

 @if (car == "Camaro") {
 @: Is my favorite!
 }

 }

To comment on this list of cars e-mail us at @emailAddress.

Figure 3 CodingRazor.cshtml

Razor is a code and markup
templating engine.

Untitled-11 1 1/7/11 4:08 PM

http://www.aspose.com

msdn magazine76 ASP.NET Web Pages

In my layout page, I defi ned an optional section (@RenderSection)
in the head section of our page. Because it was optional, a child
page has the option to implement it if it so chooses. To implement
a section, use the “@section” followed by the name you specifi ed
in the “@RenderSection” call. Th e remainder of the page (in this
example) is assumed to be the content. Th is will be consumed by
the “@RenderBody.” See the online source code accompanying this
article for a more detailed example.

Running default.cshtml (in the folder named “layout” in the
source code download) will produce the output shown in Figure 6.
All sections were rendered correctly and emitted as pure HTML
to the browser.

Help Me Help You
You hear it all the time in the soft ware industry: reuse. WebMatrix
introduces a concept similar to the plug-in model used in WordPress
or jQuery. In WebMatrix, these plug-ins are known as helpers. Th e
concept is similar: they’re published packages of reusable functional-
ity, or little nuggets of .NET code that are purposely built and pack-
aged for easy distribution and consumption. Th e helper package
itself is merely a NuGet package (see nuget.codeplex.com). If you’re a
.NET developer building and using helpers, it will feel no diff erent
than consuming any standard .NET
class, because that’s all it really is.

Helpers are stored and retrieved
from a cloud-based NuGet feed.
So how do you find these elusive
helpers? After you’ve opened up
your site in WebMatrix, click Run.
Th at opens your site in the browser,
for example: http://localhost:53655/
default.cshtml. Then browse to
http://localhost:53655/_admin. Th is
is the only underscored page that will
render, and that’s just on your local
machine. At this point, you’ll be
prompted to create a password, aft er
which you’ll be taken to the Package
Manager (see Figure 7).

You can view helpers in one of
three categories: Installed, Online and
Updates. You can also view by the
source from which they originated.
That source is a NuGet feed. The

default feed is the offi cial directory of WebMatrix helpers, but you
could add other sources as well.

Now that we have the list of packages, let’s install one. For dem-
onstration purposes, let’s install and explore a helper called the Url
Shortener Helper (see UrlShortenerHelper.CodePlex.com). Th is is a helper I
built to aid in shortening URLs, leveraging a provider such as bit.ly. Th e
concept is simple: Take a URL and shorten it, hiding the interaction
with the provider chosen to accomplish it. Now let’s switch to Online
and select Install for the UrlShortener. Th is will download, install and
confi gure the helper into your site.

Helpers are currently written in two ways—either directly in Razor
or in a compiled assembly. Which should you choose? It depends,
of course. In the case of my Url Shortener, the code is really just an
interaction with an external provider API; it doesn’t emit any HTML.
So in my scenario, the helper was better suited to be packaged in
an assembly. Th e Facebook helper, on the other hand, emits a large
amount of markup and, as such, is written as a CSHTML helper.
For helpers that need to wrap API calls and emit markup, there’s
also a hybrid approach in which you could do both—have some
functionality in Razor and in an assembly.

You’ll fi nd an example of this in the UserVoiceHelper at UserVoice-
Helper.codeplex.com.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title></title>
 @RenderSection("ClientScripts", required: false)
 </head>
 <body>
 @RenderPage("~/layout/shared/_header.cshtml")
 @RenderBody()
 @RenderPage("~/layout/shared/_footer.cshtml")
 </body>
</html>

Figure 5 The RenderSection, RenderPage and RenderBody Classes

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title></title>
 Custom Script Here </br>
</head>
<body>
 <p>this was rendered from ~/layout/shared/_header.cshtml</p>
 Some body content
 <p>this was rendered from ~/layout/shared/_footer.cshtml</p>
</body>
</html>

Figure 6 Output from Running default.cshtml

Figure 7 ASP.NET Web Pages Administration Package Manager

http://nuget.codeplex.com
http://UrlShortenerHelper.CodePlex.com
http://UserVoice-Helper.codeplex.com
http://UserVoice-Helper.codeplex.com

Create accurate PDF documents in a fraction of the time needed
with other tools

WHQL tested for all Windows 32 and 64-bit platforms

Produce fully compliant PDF/A documents

Standard PDF features included with a number of unique features

Interface with any .NET or ActiveX programming language

High-Performance PDF Printer Driver

Edit, process and print PDF 1.7 documents programmatically

Fast and lightweight 32 and 64-bit managed code assemblies
for Windows, WPF and Web applications

Support for dynamic objects such as edit-fields and sticky-notes

Save image files directly to PDF, with optional OCR

Multiple image compression formats such as PNG, JBIG2 and TIFF

■

■

■

■

■

All trademarks are property of their respective owners. © 1999-2010 AMYUNI Technologies. All rights reserved.

www.amyuni.com

New Touchscreen Tablet
for Mobile Development!

The DevTouch Pro is a new color
touchscreen tablet designed to provide
mobile application developers with a
customizable develo pment, testing
and deployment platform.

Fully open customizable tablet

Develop with .NET, Java or C++

Unrestricted development and
flexible quantities

Fully supported in North America

Learn more at www.devtouchpro.com

PDF Integration into Silverlight Applications

More Development Tools Available at:

v4.5!

v4.5!

New!

PDF Editor for .NET, now Webform Enabled

Server-side PDF component based on the robust Amyuni PDF
Creator ActiveX or .NET components

Client-side C# Silverlight 3 control provided with source-code

Optimization of PDF documents prior to converting them into XAML

Conversion of PDF edit-boxes into Silverlight TextBox objects

Support for other document formats such as TIFF and XPS

■

■

■

■

■

■

■

■

■

■

■

■

■

■

USA and Canada
Toll Free: 1 866 926 9864
Support: (514) 868 9227

Info: sales@amyuni.com

Europe
Sales: (+33) 1 30 61 07 97
Support: (+33) 1 30 61 07 98

Customizations: management@amyuni.com

Untitled-1 1 2/22/11 2:33 PM

http://www.amyuni.com
http://www.devtouchpro.com
mailto:sales@amyuni.com
mailto:management@amyuni.com

msdn magazine78 ASP.NET Web Pages

Looking back at our site, you now see a few new assets. Under the
root of your site, there’s now a /bin folder with two new assemblies.
Th is happened as a result of NuGet installing our package. Th ere will
also be a ReadMe.UrlShortener.txt fi le in the root with instructions
on how to use the helper. Other helpers, such as the Facebook helper,
will actually add their own folders and code to the App_Code folder.

Data
It’s pretty hard to have a Web site without having a data store behind
it. WebMatrix ships with a new version of SQL Compact Server
Compact Edition 4, or SQL Compact. It’s a free embedded data-
base engine that supports no installation and xcopy deployments.

Because SQL Compact is a version of SQL Server itself, you can
always upgrade to more advanced versions of SQL Server with little
work. WebMatrix even ships with a tool that will help you upgrade
your SQL Compact database to SQL Server.

WebMatrix has built-in editor support for your database needs.
From table creation to data creation, you can do it all from the
comfy confi nes of WebMatrix. Once you’ve created your database
and all of the necessary assets, it will all be contained in a database
fi le with an SDF extension. Figure 8 is a simple data-access call.

I start by opening the cars database and later query that connec-
tion in a foreach loop. In the loop, I display a result per row. Aft er
you render the page, send the page to source view and you’ll again
fi nd pure HTML. Parts of this example were omitted for brevity
but are available in the online source code in a fi le named Data-
Access.cshtml.

Serving It Up
Your Web site is basically useless if you don’t have something to serve
it up. On the Windows platform, that has always meant IIS. For more
information on IIS, visit iis.net. IIS has historically been a feature of
the Windows OS and something that your hosting provider or IT
professionals would confi gure and use. Web developers on Windows
typically used IIS or the built-in Visual Studio Web server, called
Cassini. With the release of WebMatrix and Visual Studio 2010 SP1,
we now have IIS Express as an additional option. IIS Express is the
best of both worlds—the power of IIS and the simplicity of Cassini.

IIS Express installs with WebMatrix by default, but you can down-
load it separately with WebPI. Unlike the full version of IIS, IIS

Express is installed just like any other
user-mode program. You’ll fi nd it at C:\
Program Files (x86)\IIS Express. It’s com-
prised of two programs, iisexpress.exe
and iisexpresstray.exe. Th e former is
really IIS Express, and iisexpresstray
is the visual tray that runs in the
Windows system notifi cation area.

Starting up IIS Express is typically
done in the command line (cmd.exe).
Th ere are a number of options you can
pass in such as path, port, name, frame-
work version and more. For all of the
commands, type: > iisexpress.exe /? If
I wanted to start up a Web server for
my new WebMatrix site, outside of
WebMatrix itself, I would just need to
type the following:
> iisexpress.exe /path:"c:\MySite" /port:81

 Th en you could open your favorite
Internet browser and browse to http://
localhost:81, which would serve up your
site located at C:\MySite.

WebMatrix hides all of this from
you, but that power is there if you
want it. Upon clicking Run, WebMatrix
will start up IIS Express in the system

@{
 var db = Database.Open("Cars");
 var selectQueryString = "SELECT * FROM Models ORDER BY Year";
}
<!DOCTYPE html>
<html lang="en">
 ...
 <tbody>
 @foreach (var row in db.Query(selectQueryString))
 {
 <tr>
 <td>@row.Year</td>
 <td>@row.Maker</td>
 <td>@row.Model</td>
 </tr>
 }
 </tbody>
 ...
</html>

Figure 8 Cars.cshtml Querying for Data

Figure 9 SEO Reporting

http://iis.net

Untitled-1 1 1/13/11 9:48 AM

www.techexcel.com/TryDevSuite

msdn magazine80 ASP.NET Web Pages

tray and configure it all on your behalf. When you shut down
WebMatrix, IIS Express is shut down as well.

Search Relevance
Search relevance is more important now than ever. You can’t just
wait for Bing or Google to make you relevant. To aid you in your
relevance quest, WebMatrix has a reporting feature called Search
Engine Optimization (SEO).

Clicking on the reporting tab down in the lower-left -hand corner
of WebMatrix will present you with the ability to create a new SEO
Report. In doing so, WebMatrix crawls your site and looks for those
potential areas where your site could be more relevant to search
engines. Once WebMatrix has fi nished crawling your site, it will give
you a detailed list of your violations as well as recommendations
on how to resolve them. See Figure 9 for a sample SEO Report
that was run with the demo code for this article.

Deploying
You’ve spent countless hours perfecting your site. Now it’s time to
deploy it. WebMatrix does that in just two steps: confi gure and
deploy. In the WebMatrix ribbon, you’ll find a Publish button.
Confi guring your deployment settings is of course dependent on
your hosting provider and what it has enabled. Figure 10 shows the
publish settings dialog. Out of the box, WebMatrix supports both FTP
and WebDeploy. Enter your appropriate settings and click Publish.

Don’t have a hosting provider? Click Find Hosting Provider. Th at
will take you to asp.net/webmatrix/hosts, where you can choose a host-
ing provider that’s already confi gured and certifi ed to work with

WebMatrix. If you already had a site,
Web Matrix has that covered, too.
In that same Publish menu, you’ll fi nd
Download Published Site. It’s simply
the reverse of deploying. It works off
the same settings you configured
to deploy. Once you’ve configured
your publish settings, you can then
download your current site locally
to edit. When your edits are done,
just redeploy.

Growing Up
When choosing a framework,
wouldn’t it be nice to know if it
could scale with you as your needs
and complexity increase? Over the
years, ASP.NET has been building
the LEGO pieces to do exactly that.
Today we have an entire bucket full
and we can snap them together as
our needs demand it. In Figure 1
you saw how everything is built
on top of ASP.NET and, further-
more, .NET. Th is means that taking
your WebMatrix application and
migrating it to Visual Studio is in fact

possible. It’s a click of a button.
Looking closer at the WebMatrix ribbon will reveal a button to

open in Visual Studio located at the top-right-hand corner. Th is
will open your site as an ASP.NET Web Site project in Visual Studio.
But it doesn’t stop at the core Web site. Chances are that you have a
database, too. You can port any SQL Compact database to higher
levels of SQL Server. WebMatrix will also aid you in this migra-
tion process by using the Migration button in the database menus.

Summing up, WebMatrix is designed to be a tool for every-
one, and it complements Visual Studio well. How you leverage
WebMatrix will depend on the task at hand, but nonetheless it’s a
tool in your toolbox. It’s seamless to pick and choose what ASP.NET
pieces you might leverage, and it makes migrating to Visual Studio
and SQL Server seamless, too. Th e advent of helpers and the new
layout subsystem have made reuse become a reality. If creating a
site from scratch wasn’t appealing, with WebMatrix you can start
from a proven application listed in WebPI such as Umbraco or
WordPress and deploy right to your hosting provider.

Unfortunately, there are many more features I couldn’t cover in
this article, including caching, routing and debugging. You can fi nd
all of the links used in this article at bit.ly/IntroToWebMatrix.

CLARK SELL works as a senior developer evangelist for Microsoft outside of
Chicago. He blogs at csell.net, podcasts at DeveloperSmackdown.com and you
can follow him on twitter.com/csell5.

THANKS to the following technical experts for reviewing this article:
Erik Porter, Mark Nichols and Brandon Satrom

Figure 10 Publishing Settings

http://asp.net/webmatrix/hosts
http://bit.ly/IntroToWebMatrix
http://twitter.com/csell5

Visit us at booth #1847

to win an XBOX

WORD PROCESSING
COMPONENTS

WINDOWS FORMS / WPF / ASP.NET / ACTIVEX

MILES BEYOND RICH TEXT

TRUE WYSIWYG

POWERFUL MAIL MERGE

MS OFFICE NOT REQUIRED

PDF, DOCX, DOC, RTF & HTML

Word Processing Components for
Windows Forms, WPF and ASP.NET

TX Text Control Sales:
US +1 877 - 462 - 4772 (toll-free)
EU +49 421 - 4270671 - 0WWW.TEXTCONTROL.COM

Untitled-4 1 3/2/11 3:32 PM

www.textcontrol.com

msdn magazine82

1. A Popup isn’t orientation-aware. Th is isn’t a huge problem;
you could write an orientation-aware Popup or you could
just insert the Popup into the visual tree and it would then
do layout according to the page orientation.

2. Content inside a full-screen Popup isn’t hardware-
accelerated. For the login dialog UI (and for many transient
pages) this will be fi ne, but imagine where the Popup has a
ListBox with enough items to scroll through, or it has an
animated ProgressBar—you’ll want to hardware accelerate
the Popup to maximize your UI thread’s responsiveness.

Because of these small issues, we recommend you inline the UI
by inserting it into the visual tree with a higher z-index than the
content of the page you’re in. Here’s the step-by-step recipe:

1. Package the content you want to inline into the visual
tree in a User control so you can insert it into the tree and
show it in your page (without it being mixed into the UI
of your page).

2. In the PhoneApplicationPage that will show the UI, handle
the OnBackKeyPress callback or the BackKeyPress event
to dismiss the transient UI (without navigating back) when
the Back button is pressed.

 a. Custom controls that have multiple states (expanded
and collapsed) should expose properties so that the
host page can query into their state and know if they’re
in a state that can consume the Back button press (if
applicable). For example, ListPicker on the control
toolkit has a ListPickerMode property, ContextMenu
has an IsOpen property and so on.

3. Hide the ApplicationBar in the page when displaying the
transient UI (if applicable). Th e ApplicationBar is drawn
by the OS and when it’s Opaque (Opacity = 1.0) it reserves
space below the content area for your page. To simulate
your transient UI as being a new screen, you likely want
to hide the application bar.

Windows Phone Navigation, Part 2:
Advanced Recipes

[This concludes the first installment of MSDN Magazine’s newest
monthly column, Mobile Matters. With the growing importance of mobile
technologies such as Windows Phone 7, we’ll regularly feature experts
giving practical, hands-on advice to developers of all levels who want
to increase their skills in this crucial technology space. We encourage
you to help us shape our new column as we move forward. Please
e-mail us at mmeditor@microsoft .com to suggest topics, share ideas
or ask questions. We welcome all feedback.—Ed.]

Last month we introduced you to the Windows Phone navigation
model and related APIs (see msdn.microsoft.com/magazine/gg650662).
Now we’ll share tips and tricks to accomplish more advanced navi-
gation tasks. We’ll address the following aspects of Windows Phone:

• Using the navigation APIs, you can use the Navigate and
GoBack methods. Th ese two methods either push or pop
a URL to the navigation history (back stack). Because there
are no APIs to manage the back stack, you have to manage
transient screens yourself. Transient screens are dialogs or
prompts that you don’t want users to revisit when they hit
Back—for example, a message prompt or a login dialog.

• Windows Phone allows only one navigation to be active
at a time. If you need the “take me home” feature, which
is usually a shortcut for a user to navigate back by multi-
ple pages, you’ll have to serialize the sequence of GoBack
method calls one at a time; this can aff ect your UX.

• Neither of the two navigation participants—PhoneAppli-
cationPage and PhoneApplicationFrame—have out-of-
the-box support for page transitions.

Let’s dissect these aspects so we can arrive at actionable recipes
to address them.

Transient Content
Transient screens are screens that shouldn’t be added to the jour-
naling back stack (the journaling history)—for example, a login
dialog. Users navigate from a page to a login dialog, but when they
move forward and hit Back, you don’t want users to go back to the
dialog, you want them to go back to the previous screen.

Th ere are multiple ways to create and display a transient screen.
Th e obvious one is to use a Silverlight Popup to show the UI. Th ere
are two small issues with the Popup approach:

MOBILE MATTERS YOCHAY KIRIATY AND JAIME RODRIGUEZ

Code download available at code.msdn.microsoft.com/mag201103Mobile.

Windows Phone allows
only one navigation to be active

at a time.

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine/gg650662
http://code.msdn.microsoft.com/mag201103Mobile

(888) 850-9911
Sales Hotline - US & Canada:

/update/2011/04

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2011 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

FusionCharts from $195.02
Interactive Flash & JavaScript (HTML5) charts for web apps.

BEST SELLER

BEST SELLER Spread for Windows Forms from $959.04
A comprehensive Excel compatible spreadsheet component for Windows Forms applications.

BEST SELLER

BEST SELLER ActiveReports 6 from $685.02
Latest release of the best selling royalty free .NET report writer.

BEST SELLER

BEST SELLER TX Text Control .NET for Windows Forms/WPF from $499.59
Word processing components for Visual Studio .NET.

BEST SELLER

Untitled-4 1 3/2/11 3:23 PM

http://www.componentsource.com

msdn magazine84 Mobile Matters

4. Animate the transient UI when it transitions in and when
it’s dismissed so that it blends with the rest of your appli-
cation’s UX (if applicable).

Code walkthrough: To see a transient UI screen, check Transient-
UISample.xaml.cs in the accompanying code download, with
step-by-step instructions as comments.

Most of the preceding requirements should be intuitive; the only
one that needs explanation is No. 2.a. To meet the certification
requirements, a PhoneApplicationPage showing a transient screen
shouldn’t navigate back when the transient UI is showing. Instead,
it should dismiss the transient UI.

In part 1 of this article, we mentioned that you should prevent
hardware Back navigations by handling OnBackKeyPress or the
BackKeyPress event. If your page is hosting a control that has two
states and one of them is transient, then a bit of coordination (or
at least awareness) between the page and the control is required.
To implement the handshake, we recommend:

1. Custom controls that have multiple states (for example,
ListPicker) should subscribe to BackKeyPress on their
hosting page and handle it appropriately. If they’re in a
transient state, they should cancel the Back key press and
dismiss their transient state.

 a. These controls should subscribe only when needed.
Delay subscription to the BackKeyPress event until needed.

 b. We prefer the controls walk up the visual tree to fi nd
their PhoneApplicationPage, but we’ve seen experts
(for example, the control toolkit team) do it by reaching
out to the Application RootVisual (which we know is a

PhoneApplicationFrame) and peeking into its content.
Th is is, of course, more performant and still safe because
we know there’s only one UI thread in a Silverlight app
(so it’s unlikely the RootVisual is changing inside an
event handler for your control or your page).

2. Custom controls and transient UIs should expose prop-
erties so that the host page can query into their state and
know if they’re in a state that can consume the Back button
press. For example, ListPicker on the control toolkit has
a ListPickerMode property, ContextMenu has an IsOpen
property and so on.

3. Your host PhoneApplicationPage will need to be aware
of any transient controls or UI that can be displayed and
check on all of these before it does any navigation within
OnBackKeyPress. Remember, OnBackKeyPress is called
before any handlers to BackKeyPress event are called.
If you’re relying on the hosted controls to handle their
transient state, make sure you don’t call the Navigate
method and get ahead of the handlers.

Home Button Navigation
(and Clearing the Back Stack)
A common UX pattern for other mobile platforms is to have a
“Home” button that shortcuts navigation and sends you to a specifi c
page. Th e Windows Phone navigation APIs don’t directly handle
this; in fact, the UX guidelines strongly discourage having a Home
button. Th e recommendation is to have a well-designed, relatively
fl at navigation structure. If your navigations are two or three levels
deep, it’s probably just as easy to press the hardware Back button
a couple times as it is to make a more calculated gesture fi nding a
Home button on the screen and clicking it. Th at said, if you choose
to have a Home button, there are a few things you must consider
to implement the navigation:

• Remember that Windows Phone allows one navigation at
a time. Th is means if you’re four levels deep in a navigation,

Animation Usage Directions Transition Notes
Turnstile Takes user from one space to another.

Defaults across device. It’s heavy by design
to emphasize that a transition happened.

ForwardIn, ForwardOut, BackwardIn and
BackwardOut

This will be a common animation you’ll want
to use. It’s fairly straightforward.

Continuum Transitions user from one space to another,
but gives the perception of continuity.
Carries context from one space to the other.
Almost feels like you didn’t leave.

In, Out Continuum is common, but harder
to implement. It requires carrying the
continuum context (the perception that a
UIElement is carried across two pages).

Swivel Used for transient UI; for example, for dialogs.
It’s different from other animations in that
it doesn’t transition, but keeps user in same
space or at least aims to give that perception.

ForwardIn, ForwardOut, FullScreenIn,
FullScreenOut, BackwardIn, BackwardOut

Not used much for transitions; mostly used
for dialogs.

Slide Used for transient UI. Brings content over
the existing content.

SlideUpFadeIn, SlideUpFadeOut,
SlideDownFadeIn, SlideDownFadeOut,
SlideLeftFadeIn, SlideLeftFadeOut,
SlideRightFadeIn, SlideRightFadeOut

Commonly used to transition in transient UIs.

Rotate Rotates the screen in a specifi c direction
and angle.

In90Clockwise, In90CounterClockwise,
In180Clockwise, In180CounterClockwise,
Out90Clockwise, Out90CounterClockwise,
Out180Clockwise, Out180CounterClockwise

Not used much for transitions; mostly used
for orientation.

Figure 1 A Summary of Animations

There are multiple ways to create
and display a transient screen.

85April 2011msdnmagazine.com

you’ll have to call GoBack three times in a row to get home.
Because concurrent navigations aren’t allowed, you must
wait until a navigation is completed (when the Navigated
event fi res) to start the next navigation. Th is “navigation
sequence” can lead to brief delays if your page is taking a
lot of time to load, or it can lead to “fl ickers” if your page is
visible while you pop the back stack.

• Th e animations for the ApplicationBar are implemented
by the OS. Th is means if you’re navigating in a loop across
pages, your UI can again flicker if the ApplicationBar is
being animated to be shown on a page in your loop.

So, here’s a recipe to solve the “Home” navigation challenge. You
can see all this code implemented via the BackNavigationHelper
class in the accompanying download:

1. Hide the PhoneApplicationFrame (RootVisual for the app)
from the screen while you pop the back stack. Th is will
prevent fl ickering of the UI (it will fl icker once, but you
won’t see all your screens go back).

 a. If your pages take too much time, you can show a full-
screen Popup with an animation so the user knows
what’s happening.

 b. You should also set a fl ag before a home navigation
begins so your pages know not to do a lot of work in
their OnNavigatedTo callback. If you’re navigating back,
these pages will be unloaded as the navigation is com-
pleted (so any UI work they’re doing is thrown away).

2. Hide the ApplicationBar (by setting its IsVisible property to
false) from each page that’s being unwound (if applicable).

 a. Note that this is only required for pages where the
ApplicationBar is 100 percent opaque (its Opacity = 1.0).

3. Unwind the stack.
 a. Call the GoBack method.
 b. Listen for Navigated (on the RootVisual) and call

GoBack again, if you’re not already on the “Home” page.
Reset everything back to normal when you’ve unwound the stack.

Code walkthrough: You can see examples of “take me home”
navigation in the pages in the HomeNavigationSamplePages folder
in the accompanying code download. The interesting code is, of
course, on the BackNavigationHelper class, but our sample has a
BackNavConfi g page where you can select the options you want to
enable in BackNavigationHelper (such as hiding the frame, hiding the
application bar, validating journaling and so on).

Page Transitions
Th e fi nal and most advanced navigation concept you might care
about concerns page transitions. In the context of navigation, we
think of a transition as the perception of a hand-off between a page
that you’re navigating from and the page that you’re navigating to. Th e
navigation is still happening and it’s using the underlying navigation
framework we’ve discussed earlier, but as the navigation happens,
the content in the PhoneApplicationPages that are participating in
the navigation is animated to simulate a hand-off .

Th e recipe for transitions is a bit more complicated. In fact, just
like grandma’s lasagna, there isn’t a single recipe—it will require
some “tweaking” to your taste (and application needs). Th at said,
we have a few tenets you should follow, along with a sample and
code walkthrough, of course.

Th e tenets:
1. Follow all the Back key press principles described earlier.

Again, transition is just an extension to navigation—not
an excuse to fail certifi cation.

2. Understand the context and purpose of a transition
animation. Windows Phone has a well-defined set of
transitions and most of these have a specifi c context or
usage. You must understand the intended usage so you
can implement the right transitions in your app. Jeff
Arnold (the lead motion designer for Windows Phone)
did a brief recording of all the animations and transi-
tions; it’s a must-watch to understand the purpose of each
animation. You can fi nd the video at bit.ly/eBTkjD.

Transition (Property Name) Description
NavigationInTransition.Forward Called as you Navigate to this page,

with a forward navigation.
NavigationInTransition.Backward Called when the user triggers a

back navigation that’s navigating to
this page.

NavigationOutTransition.Forward Called as you Navigate away from
this page in a forward navigation.

NavigationOutTransition.Backward Called as you Navigate away from
this page in a back navigation.

Figure 2 The Four Page Transitions that Can Be Specifi ed

private void InitializePhoneApplication()
 {
 if (phoneApplicationInitialized)
 return;

 // Create the frame but don't set it as RootVisual yet; this allows the splash
 // screen to remain active until the application is ready to render.
 RootFrame = new Microsoft.Phone.Controls.TransitionFrame();
 RootFrame.Navigated += CompleteInitializePhoneApplication;

 // Handle navigation failures
 RootFrame.NavigationFailed += RootFrame_NavigationFailed;

 // Ensure we don't initialize again
 phoneApplicationInitialized = true;
 }

Figure 3 Replacing the RootVisual Frame for Your Application
by Editing the App.xaml.cs

The Windows Phone
Controls Toolkit has support

for transitions, and it has
Storyboards for the most

common transitions.

http://bit.ly/eBTkjD
www.msdnmagazine.com

msdn magazine86 Mobile Matters

3. Keep your transitions fast and short.
 a. Remember a transition is both an “out” from a page

and an “in” on a diff erent page. Th ese two phases will
add up. Keep them short. We would say 300 ms total
is a good upper limit.

 b. Delay as much UI work as you can during a transition.
If your page can avoid data binding or expensive layout
operations, consider doing that. You can transition the
screen and then quickly move to populating it aft erwards.

Figure 1 shows a summary of animations, their usage, directions
and relevant notes.

With the three tenets listed earlier in mind, we can now move
to coding page transitions. Th e Windows Phone Controls Toolkit
has support for transitions, and it has Storyboards for the most
common transitions.

Note: To follow along with the rest of the article, you’ll need the
Silverlight for Windows Phone Toolkit (silverlight.code plex.com). Th e
code in this article is written against the February release (later
releases should work, too).

Toolkit transitions use a TransitionFrame that inherits from
PhoneApplicationFrame but has a customized template with two
content presenters (where PhoneApplicationFrame has only one
content presenter). TransitionFrame listens to changes to its Con-
tent property and transitions in the new Content (page) and tran-
sitions out the old content.

Each PhoneApplicationPage determines what transitions it
wants using an attached property in the toolkit’s TransitionService

class. You can specify up to four transitions for each page, as
shown in Figure 2.

These transitions are instances of an extensible Navigation-
Transition class. The toolkit includes five built-in Navigation-
Transitions: TurnstileTranstion, SlideTransition, SwivelTransition,
RotateTransition and RollTransition. Again, the system is extensible
so you can add your own.

Step-by-step directions to implement transitions using the
toolkit are:

1. Download and add a reference to the Silverlight con-
trol toolkit.

2. Replace the RootVisual frame for your application by
editing the App.xaml.cs and replacing it with a Transition-
Frame (see Figure 3).

3. Apply transition properties to your pages (see Figure 4).

Actionable Recipes
To sum up, Windows Phone Silverlight applications have a
Web-like navigation model in which you can transition from one
page and have a journaling (or history) so you can go back to previ-
ous pages. Out-of-the-box, the navigation model is easy to use and
relatively complete. Th ere are a few advanced navigation tasks—such
as transient UIs, transitions or “jump to home” functionality—that
aren’t implemented out of the box, but this two-part article has
explained the design considerations you should take into account
to implement these more advanced tasks and has given you con-
cise, actionable recipes to implement them.

YOCHAY KIRIATY is a senior technical evangelist at Microsoft , focusing on client
technologies such as Windows and Windows Phone. He coauthored the books
“Introducing Windows 7 for Developers” (Microsoft Press, 2009) and “Learning
Windows Phone Programming” (O’Reilly Media, 2011).

JAIME RODRIGUEZ is a principal evangelist at Microsoft , driving adoption of
emerging client technologies such as Silverlight and Windows Phone. Follow him
on Twitter at twitter.com/jaimerodriguez or on blogs.msdn.com/jaimer.

THANKS to the following technical expert for reviewing this article: Peter Torr

<phone:PhoneApplicationPage
 x:Class="LWP.TransitionSamples.Turnstile"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"
 xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 FontFamily="{StaticResource PhoneFontFamilyNormal}"
 FontSize="{StaticResource PhoneFontSizeNormal}"
 Foreground="{StaticResource PhoneForegroundBrush}"
 SupportedOrientations="Portrait" Orientation="Portrait"
 mc:Ignorable="d" d:DesignHeight="768" d:DesignWidth="480"
 shell:SystemTray.IsVisible="True" xmlns:toolkit=
 "clr-namespace:Microsoft.Phone.Controls;assembly=
 Microsoft.Phone.Controls.Toolkit"
 >

 <toolkit:TransitionService.NavigationInTransition>
 <toolkit:NavigationInTransition>
 <toolkit:NavigationInTransition.Backward>
 <toolkit:TurnstileTransition Mode="BackwardIn"/>
 </toolkit:NavigationInTransition.Backward>
 <toolkit:NavigationInTransition.Forward>
 <toolkit:TurnstileTransition Mode="ForwardIn"/>
 </toolkit:NavigationInTransition.Forward>
 </toolkit:NavigationInTransition>
 </toolkit:TransitionService.NavigationInTransition>
 <toolkit:TransitionService.NavigationOutTransition>
 <toolkit:NavigationOutTransition>
 <toolkit:NavigationOutTransition.Backward>
 <toolkit:TurnstileTransition Mode="BackwardOut"/>
 </toolkit:NavigationOutTransition.Backward>
 <toolkit:NavigationOutTransition.Forward>
 <toolkit:TurnstileTransition Mode="ForwardOut"/>
 </toolkit:NavigationOutTransition.Forward>
 </toolkit:NavigationOutTransition>
 </toolkit:TransitionService.NavigationOutTransition>

Figure 4 Applying Transition Properties to Your Pages

Windows Phone Silverlight
applications have a Web-like

navigation model in which you
can transition from one page

and have a journaling
(or history) so you can go back

to previous pages.

http://silverlight.codeplex.com
http://twitter.com/jaimerodriguez
http://blogs.msdn.com/jaimer

Project3 12/16/09 11:55 AM Page 1

www.nSoftware.com

msdn magazine88

You can experiment with a Silverlight program that generates
Lissajous curves on my Web site (charlespetzold.com/silverlight/LissajousCurves/
LissajousCurves.html). Figure 1 shows a typical display.

Although it’s not quite obvious in a static screenshot, a green point
is moving around the dark gray screen and leaving behind a trail that
fades out over four seconds. Th e horizontal position of this point is
governed by one sine curve, and the vertical position by another. Repeti-
tive patterns result when the two frequencies are simple integral ratios.

It’s now a truth universally acknowledged that a Silverlight pro-
gram of any good fortune must be ported to Windows Phone 7, and
subsequently reveal any performance problems previously masked
by high-powered desktop computers. Th at was certainly the case
with this program, and I’ll be discussing these performance issues
later in this article. Figure 2 shows the program running on the
Windows Phone 7 emulator.

Th e downloadable code consists of a single Visual Studio solu-
tion named LissajousCurves. Th e Web application consists of the
projects LissajousCurves and LissajousCurves.Web. Th e Windows
Phone 7 application has the project name LissajousCurves.Phone.
Th e solution also contains two library projects: Petzold.Oscillo-
scope.Silverlight and Petzold.Oscilloscope.Phone, but these two
projects share all the same code fi les.

Lissajous Animations in Silverlight

We commonly think of software as more flexible and
versatile than hardware. It’s certainly true in many cases,
because hardware is oft en stuck in one confi guration while
software can be reprogrammed to perform completely
diff erent tasks.

Yet some rather prosaic pieces of hardware are actually
quite versatile. Consider the common—or these days, not
so common—cathode ray tube (CRT). Th is is a device that
shoots a stream of electrons on the inside of a glass screen.
Th e screen is coated with a fl uorescent material that reacts
to these electrons by briefl y glowing.

In old-time TV sets and computer monitors, the electron
gun moves in a steady pattern, repetitively sweeping hori-
zontally across the screen while traveling more slowly from top to
bottom. Th e intensity of electrons at any time determines the bright-
ness of a dot at that point. For color displays, separate electron guns
are used to create the primary red, green and blue colors.

Th e direction of the electron gun is controlled by electromagnets,
and it can actually be aimed at any arbitrary location on the two-
dimensional surface of the glass. This is how the CRT is used in
an oscilloscope. Most commonly, the beam sweeps horizontally
across the screen at a constant rate, usually in synchronization
with a particular input waveform. Th e vertical defl ection shows the
amplitude of that waveform at that point. Th e fairly long persis-
tence of the fl uorescent material used in oscilloscopes allows the
entire waveform to be displayed—in eff ect “freezing” the waveform
to be visually examined.

Oscilloscopes also have an X-Y mode that allows the horizontal
and vertical defl ection of the electron gun to be controlled by two
independent inputs, usually waveforms such as sine curves. With
two sine curves as input, at any point in time the point (x, y) is
illuminated, where x and y are given by the parametric equations:

x(t) = AxSin(ωxt + kx)
y(t) = AySin(ωyt + ky)
Th e A values are amplitudes, the ω values are frequencies and

the k values are phase off sets.
Th e pattern resulting from the interaction of these two sine waves

is a Lissajous curve, named aft er French mathematician Jules Antoine
Lissajous (1822 - 1880) who fi rst visually created these curves by bounc-
ing light between a pair of mirrors attached to vibrating tuning forks.

UI FRONTIERS CHARLES PETZOLD

Code download available at code.msdn.microsoft.com/mag201104UIFrontiers.

Figure 1 The Web Version of the LissajousCurves Program

The pattern resulting from the
interaction of these two sine
waves is a Lissajous curve.

http://code.msdn.microsoft.com/mag201104UIFrontiers
http://charlespetzold.com/silverlight/LissajousCurves/LissajousCurves.html
http://charlespetzold.com/silverlight/LissajousCurves/LissajousCurves.html

ement1); areaSeries Add(seriesElement2); areaSeries Add(seriesElement3); // Add series to the plot area plotArea Series Add(areaSeries); //page Elements Add(new LayoutGrid()); // Add the page elements to the page AddEAement1); areaSerieies.AAdd(se(s rriesElement2t2); a) reaSeries.AdA d(seriesElement3); // Add series to the plot area plotArea.Series.Add(areaSeries); //page.Elemenem ts.Add(ddd(new ne LaLayyoutGrid()); // A/ dd the page elements to the page AddEA

s, 240, 0); AddEAN1AN 3SupSup5(pa5(p ge.Elemeentnts, 480, 0); AdddUPCVersionA(page.Elemene ts, 0, 135); AddUPCVersionASup2(page.Elements, 240, 135); AdddUPCddUPCd CVerssionAionAo Sup5((page.Elemennts, t 480, 135); AddEAN8(page.Elements, 0,

.Elements, 480, 2270);; AddddUUPCVersionE(papage.Elementts, 0, 405); AddUPCVersionESuE p2(page.Elements, 240, 405); AddUPCVersionESup5(pageage.Ele.Elelemmments, 4s, 48800, 4405); // AAdd the page toe t the document document.Pages.Add(pa

CaptionAndRectanga lee(elemeements, “EAN/JA/JAN 13 Bar Codde”, x, y, 204, 99); BarCode barCode = new Ean13(“123456789012”, x, y + 21); barCode.ode.X +=X +X +=X + ((2004 -4 - baarCoode.GettSymbolWidth()h) / 2; elements.Add(barCode); } private vovo

dRectangle(elemente s,, “EANEAN/JAN 13 Bar Car Code, 2 digit supplement”, x, y, 204, 99); BarCode barCode = new Ean13Sup2(“12 234556789678 0121212”, 2”, x, yy + 2+ 211); 1); barCoode.XX += (204 - barCode.GetSymbolWidth()) / 2; elements.Add((barC

ts, float x, float yy) { A{ AddCaCaptionAndRectanangle(elements, “EAN/JAN 13 Bar Code, 5 5 digit supplement”, x, y, 204, 99); BaB rrCodee barrCode == new Ean13SupS 5(“12345678901212345”, x, y + 21); ba

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onA(Group elements, float x, float y) {Add{ CaptionAndRectangle(elements, “, UPC VersVersVersVersion ionoi A Baar Cr Coode”, x, y,y, 204, 99);; BarCoode barCode = new UpcVersionA(“12345678901”, xx, y +

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onASup2(Group elements, float x, floato y) { AddCaptionAndRectangle(elementm ““UPCC Version E Bar Code, 2 digit supplement”, x, y, 204, 94 9); BarCoode od

21) ; barCode.X ++= (2= (04 - barba Code.GeetSymbymbolWidth()) / 2; elements.Add(barCode); e } private void AddUPCVersionASSSSuup5(up5(u Group elements,n float x, flfloaflo t VV

digit supplement”,t” xx, y, 22004, 99); BarCodeCode bbarCode = new UUpcVep rsionASuAS p5(“12343 567890112345”, x, y + 21); bbarCarCode.Xde.X += (204 - barCode.GetSymboom lWidth()) / 22; eelele

t x, float y) { AddCapdCaptionnAndRAnd ectangle(eleelemments, “EAN/JANN 88 Bar Code”,de”, xx, y, 204, 0 99); BarCode barCode = nnew Eew Ean8(an8(n8n8 “1 2345670”, x, y + 21); OpenFileileDiala og fileDie aloogoglo =

g.Filter = “Adobeob PDPDF fileess (*.pdf)|*.pdf|Alll FileFiles (*.*)|*.*”; if (fileDieD alog.SShowDiialog() == DialogResult.OK) { { pdfVpdfVf ieweewer.OpOpr.OpOpen (fifileDialogalog.FilleName, “”); } SaveveFileDialog saveFaveFileileDDialoog = neneww Sav

Dialog.Filter == “AdoAdobe PPDF fiDF files (*.pdff)|*.pdpdf|A|All Files (*.*)|*.*”;”; iff (saveFFileDialolog.Showh Dialog() ==DialoalogResgResRee ult..OK)OK) OK) { pdfVfVView .SSaveAsve (sav(saveFieFileDia

printer = pdfViewViewer.Per rinterr; pprinter.PriintWiW thDialog(); } elsee { MesssageBox.SShoww(“Please opeopen a n a fifile to pto p rintrinrint”)”); }OpenFin le DDialoog fileDieD alogalog = new OpenFileDDialog(); fileDiaDialog.og Tittle = e e = e “Opepen File Dl

les (*.*)|*.*|Addobe Pe PDF files es (*.p*.pdf)|*.pdddf”; if i (fifileDialog.ShowwDialalog() === DialogResult.ult OK) { { DynaDynamicPDFVDFVDFVDFViewiewewerClass test e = neew DynammiccPDFViewerClass((); PPDFPrinter ter pprinp ter er r = te= ttet st.OpenFFileFo

= File.ReadAAllByteBytes(@”C:\M:\MyDyDoc.pdff””); //u// sing System.Runntimme.Inttent ropServicces;GCHaGCHandlendledd gch=GCH= CHaananddla e.Aloc(conteents, GCHandleTTypee.Pinnedd);) IIntntPtrPtr cooncontentsIntPtr = g

tents.Lengthh, “”);“”); A AddCaCaptioonAndReReectanglan ee(pageElementts, “BBBookkmark k Pagee E Elemelemeent:”nt:”, x,, y);; pa pagaapageEeEleemeents.Add(newtesw t Bookmookmaark(“Bookmarked TextTextt”, x + 55, y , y, yy ++ 2+ 20+ , pap rentre OutlO ine)); p) a

215, 10, Fonnt.TTimemesRomanma , 1010)); } prprrriivate vooid AddCiirclercle(GGro(G up paageElemeennnts,nts floafloat x,x floafloat yt y)t y) { / { /////Add/Add/A ss a circlt to the pap ge Eleemenmentenents AddCapdCapCaCadCaptiont AndRdRectae

Add(new Cirrcle(x e(x ++ 112.5f5f, y ++ 50f, 1007.5f, 300f, RgbColoolor.RRRed, RgbbbColor.Bor.Bluee,lue 2, LineL eStyylylly e.DaDae shLaLs rge))); } pprivate void AdA d FormatteeddTexxtAreea(Groupp paageElements, flofl aat x, fl float yy)) {) // A// AAdds dds a fofoa rmatted textte a

mic</i>PDFPDF/b>&tm; GGenerator vvv666.0 6 for ..NETNET has has a forrmattted ttetext arrea pea paaage a “ + “ “ele“ele“eleeeemmmentm . ThThis prroviddes rich fororm m atting ssuppupport for texext that appap eears in the doocumment. You have “ + “+ “compcompletlete conco trolol ove ovevever 8 r paragraph

left indentattionn, rigrighht indenentation, aligliggnnment, allollowing orphaaan linnes, aand whwhite ite “ + “spa“spaacece ppce pprereservata ion; 6 foont propropeerties: e <fonont fat f ce=’=’Timemes’>s’>font facece, <//fontt>font “ + “s+ “size, ont><fonont cocoocoot lor=lor=’FF0000’00’>c

 2 line prpropertieses: le leading, ag ndd leaddinngg type.ype. TText can also be rootateeed.</d.</< p>”;p> FFororo mattmattmm edeedTeedTeTeextArx ea fformaormattedTTextAreArea = nnew FormattedTextTex Areare (formattat edHHtmll, x + 5, yy + 20, 215, 60, FonttFammily.Helveelvetictica, 9, fffalalsse);se);se);sssse) // // Sets the i

ddCaptionAAndReRectanct gle(e(pagepageElemeenntsnts, “F, “Fororrmarmattedtte TextT Areeae Page ElElemenement:”,t:”,,, x, y); y); y)y AddCAdddCddCA aptionAnAndReectangnglele(pageElements, “Formatm tedTextAx rea OverOv flflow TText:”, x x + 2279, y); pageElementments.Add(foormarmattedTTTextAxttAAtArea)r ; // CrCrer ate

tArea overflowFoowFormatrm tedTdTextAArea == foormamatteddTdt extArea.GettOveerflowwwFormatmatteddTTexextAxx rea(rerea(re x + x 28284, y +y 200); pageElements.Add(overflowFormattedTextAArea)); } pprivate vooid AddImage(Group p pagpageElementsents, float t x, flo, at yy) {) { // // A/ dd

ents, “Imagee PagePage Elementen :”, xx, y); IImmagemage imaaage =ge new Imaage(SServvever.Mr.MapPattatth(“.h(“.“ ./I./Im./ agesages/DPDDFLogL o..png”), x + 112.5f, y + 50f, 0.24f); // Image is ssizzed and centeredd inn the rectangle immage.age SetBoundunds(21s(215, 5, 65 0); 0) image.VAVAAlign

ge); } privatte void oid AAddLabela (Group pp ppageageElememments, float x, flfloat y) { /// A/ Adds as aa llabel tel t to tht e pappap gegeElemenementts AddCaptionAndRectangle(pageElemenm ts, “LabLa el & PPageNummbeeringLabel Page EElemments:”, x,x, y); y) striing g laabelTextxt = = “= ““Lab

aain page numbumberinering: %%CP%%CP%%% ofof %%%T%%TP%%% pages.”; LLabel le abbel = nnew LLLew Laabel(labbelTeelTeeelTexxt, x + 5, y5 ++ 12, 220, 80, Font.TimesRoman, 12, Texe tAlign.C.Centter); label.Annglee = 8; PageNumbeeringgLabel pagepageNumLNumLabelab = nnnewew Pw Page

, 12, TeextAlxtAligign.CentC er); paga eEleementntntss.Ad.Addd(paageNumLabel));); p paggeElemenments.Addddd(d(label)); } } privprpp ate voidoid A AddLine(Group pageElements, float x, floao t y) { /// Addds aa line to thethe pageElements AdddCCaptionAndRAndRRectanngleglen (pagpag(a eeElemments

+ 5,+ y ++ 20, x + 220, y + 8080, , 3, RRgbbColor.Gr.G eeen)); pageElemmementss.n Add(d(d new w Linee(x ++ 22 2200, yy ++ 20, x + 5,+ 5, y + 80, 3, RgbColor.Green)); } private void AdddLLink((Grouup pageEElemments, float x, floaat yy) { // Adds ads a link toto thethhe pagp eEleEleemen

ynynamicPDF.com.m ”; AAddCaddCaptioptionAAnddnAndRectanglan e((pageElementts, “LLink PaPagege Elemment:nt:”, xx, y);y); LLabel llabela = new Label(text, x + 5, y + 20, 215, 80, font, 12,2 RggbCoolor.Blue)e); laabel.Underline = true;rue Link link =k = newnew LLinnk(x k(x ++ 5,5, y y ++ 20,

on(o “httpp://www.dynnamicppddf.coomm””))); pageEeElemments..Add(Ad labbeel);l); ppagepagpageElementsnts.AAdd(link); k) } prp ivatee void AddPath(Group pageElements, float x, float y) { // AAdds a path to the pageElemeents ceeTe.DynamicamicicPPDPDF.PagegeElemlemlements.PatP h

20,0 RgbgbbColor.Blue, RgbCRgbCoolor.RRedd, 22, LineStyeS lee.Solidd, true); pathhh.Su.SubbPaths.A.Adddd(new Lw LineSineSubPaubPath(x + 215, y + 40)); path.SubPaths.Add(new CurveToSToSubPPathh(x + 1+ 08, y + 80, x + 160,, y ++ 800)); path.SubSubPSubPathssssh .AAAd.Add(new(ne CurveS

ectecctanglangle(pageElemeents, “P“Path Ph Paage ge Element:””, x, yy);) pageEEleEleEE meentss.AdAdd(pad(path));th } pprivaate ve vooid AAddRectangle(Group pageElements, float x, float y) ororderede ddList = ordeo redLedList.GetOverFlowLo List((xx + x 5, y + 2+ 22000); AddCddCCCA aptiapa oonAndRect

2222 55, 1110); page.Eleements.Ats.Add(odd(ordrdrderr edList); x == 0; 0; y +=y ++=y + 118881 ; // CCCreaate e aan unorrderede lisist UnUnordderedList unorderedList = new Unoro deredList(x + 5, y +y + 220, 4400, 900, Font.Ht.Helvetica, 10); uuunoorderredListst.Itte.I ms.Amms Am dd(“ddd(“FruiFruFFFrFruF tss”); unorder

eree ies(); pieSeries.DaataLababel = da; plotArea.Seeriesess.AAd.Add(pieSSSeriesss);es ppieSeries.Elemelementss.AddAdd(27,7, “Website A”); pieSeries.Elements.Add.Ad (19, “Website e B”)); pieSerrieses.Elementmen s.Add(21, “WWebssite CC”); pieSpieSSerieeririees.Elemeneemmee ts[0s[0].Color = a

sess.Elemments[2].Color = auttogradient3;”unoro derreder ddSubLList2 == unoorderedList.Items[ms 1].SubLubLissts.AAddUnorderedSubList(); unorderedSubLu ist2.Items.Add(“dd(“Pottato”); unu ordeeredSubList2.Itemmms.A.Add(d(“Beaansansea ”);;; UUUnorU dereree dSubSu List subU

dSuedd bList(); subUnoUnorderedSubList.Items.As.AAdd(““d Lime”); subUUnorddereedSubList.Itemtems.Ads.Add(“Od(“Orangrange”);e” Unorderd edSubList sus bUnorderd edSue bList2 = unnorddereedSubLisLi t.Items[ms 1].SubLists.s.AddUAAddUd norrdereddeddSubLSubLbList(st); ssubUnbUnu oorderedSe ub

na”aa); UUnorderederedSubList subUnordo erededSubLSu ist3st3 = uunnorderredSubLSubList2.Itet ms[00].Su.SubLisLists.As.AddUnd orderedSSubList(); subUnoU rderedSudSubList3.Items.AAdd((“Swweet Potao to”)); UUnorderedSredSubLubLiL st sst ubUUnordrdeeredSdSredSdSubList4 st4st = ununorderedSu

ubLSuSu ist444.Ite.Items.Am dd(“String Bean”n”); s; subUnbUnordeereedSubbList4..Itemms.Addd(“Lima BeanBean”); subUsubUnnorderedSubList4.Items.Add(“Kidney Bean”e); x += 279; pagpage.EElemenntts.Addd(unorderedListst); u); ; nordno eredreddLisst = = uunordn ereddreddLisst..GetG Overv Flo

e.e.Elemeentsen , “Unordered List Page Ege Elemment On verflverflow:””, x, y,, 2255, 110); page.Elemementsents.AddAdd(un(unorderedList); } private void AddTextFt ield(Group pageEeElemlemennts, flfloaat x, flooatt y) { TextFFielddield txt = new Tew extFextFieldeld(“txtfnafnaaame”,meme”,me”, x +x + 20, 20, y + y +

tteaa dTeextArea(formattedHtml, x ++ 5, 5 y ++ 20, 202 215,15 60, FontFFamilyy.Heelvetica, 9, ffalse)se ; /// SetSets ths the ine dent property formattedTextArea.Style.Paragraph.IndeIn nnt = 1188; AddCaptCap ionAndRendRectanaa gle(eg pagepageep ElemElemE ents, “FFormamormattedttedtedtedTeTextArearea P

atteatat dTeextArea Overflow TeeText:”, x + 27 9, y9, y); p; pageEgeElements.AAdd(formformattedTextAArea); a) // CCreatea ee an overflow formatted text area for the overflow text FoFormmattedTtedTextAxt reaMMaxaxLeLengthngth = 9 = 9= 9; txtxtxtxxt1.B1.Bordeded rCorColor =r = RgbCololoColoor.Br.BBlaack; txttxt1.Ba1 Ba

MaMMM ximuum Lengthgth”; p; ageEEgeEElemeements.nts.Add(Add(txttxt1); TTextFex ieldd txt2 = neew TeextField(“txxtf2namename”, xx + 3+ 30, y + 30, 150, 40); txt2.DefaultValue = “This is a TexxtFtFieldd whiichh goees tototot the nexxt lit liline ine iif thff t e text et et xceexceeds wds wididth”; ”; ttxt2.xt2.xt2xt2 MMMultMu iLinLine = e =

RgRR bCooolor.AliceBlueBluee; txt2.T2. oolTip == “M“Multiline”; ppageEElemennts.AAdd(ttxt2); AddCapCaptiont AndRAndRecctangle(pageElements, “TextField Form Page Element:”, x, x, y, 50450444, 8585); }; } prri vate voioidd AddComCCC boFibo eld(Group pap pageElgeElemeemenene ttts, ts float x, fl

, , y + 4000, 150,, 20 20)20); c; cb.Boro derCd olor = RgbColorr.BBlack; cb.BaackggrounndColor = RgbCRgbColoro .AliAliceBceBlue; cb.Font = Font.Helvetica; cb.FontSize = 12; cb.Itemsem .AAdd(“(“It((em 1m 1”); ; ccb.IItemste .Add(“It““Item 2em 2”); ”); cb.Icb.Itemsems.Add(“Item 3em 3”)); cb.IItems

aaabbble”b].SSeSeSeleleclected = true; cb.Edb itable = true; cb.ToToololTip = “Editable Coe Combo Box””; pa; pageElgeE emements.Add(cb); ComboBox cb1 = new ComboBox(“cmb1namame”, x + 303,030 y +y + 4440 40, 150, 200); c); cb1.Bb1.Bb1 ordeorderColrColoor = Rgbg Coloor.Blr.Br Br B ack;ack cb1.Bac

.F..FFFontontSize = 12; cb1.Items.Add(“Item 1”); cb1.Items.AAdd(“Item 2em 2”); ccb1.Items.Add((“Itemem 3”); cb1.Items.Add(“Item 4”); cb1.Items.Add(“Non-Editable”);”); cb111.Items[“NNon-Eon-Editable”].Selecteccc ed =ed = tru true; ce; cb1 Eb1.EEditable e = fa= f lse;se cb1.ToolT

eerrter.Coonvert(“http://www.google.com”, “Output.pdf”));Convverteer.Coonvert(GetDocD PathPath(“Do(“D cumentA.rtf”), “Output.pdf”);System.Diagnostics.Process..s SStartt(“Ot(“ uutpuutpuutputt.pdf”);”); AsyncCoConvernverrtter t aConaConvertverter =e newe AsyncCncConnverter(); aC

vveerted); aConverter.ConversionError += new ConversiionErroorEvventHHandler(aConveerteer_ConversionError); aConverter.Convert(@”C:\temp\DocumentA.rtA f””””, f , f @”C:C \temte p\OuO tputtputA.pdA.pdf”);f”); aCo aCoa nverter.Convert(ert @”C:\teme p\Dop\D cumentB

\Doc\D ummentC.rtf”, @”C :\temp\OutputC.pdf”); aConverrter.Coonverrt(“hhttp://www.yahoo.coo.com”, @”C:\Temp\yahoo.pdf”); ConvC ersionOptions ops optiontions = nneewnew new ew Conversise onOpOptiontionoo s(72s(720, 70, 720, 72, 7 true); ceTe.DynaDynamicPm DF.CDF.Conveon rsiorsion Con.Co

outpou ut.pdf”, optionso); ceTe.DynamicPDF.Conversion.CConveerter.ConvCon ert(“C:\\temp\\\Documocument2.docx”, “C:\\temp\\op\ utput.pdf”, optiptoptioptiop ons)ons); s; stringing sampleHple tml m = “<“<htmlhtml><bo><bob dydy><p>This is s a very simplee HTMLHTMLHTHT strstrs ing iningin inclincincincludinud ng a g a g TT

(g[] g)

{{

pp

gg g (p p)

[]

[]

pp y y yyp

HighhSecuSec rity securiturity y new w HighhSecuurityy(“OOwnerPassword”, “U“ serPassword”)

yy ppy

ees y yy

p

(p p)

pag p (p pp)

p ()

}

Untitled-3 1 12/7/10 3:17 PM

www.DynamicPDF.com/eval

msdn magazine90 UI Frontiers

Push or Pull?
Aside from the TextBlock and Slider controls,
the only other visual element in this program
is a class named Oscilloscope that derives from
UserControl. Providing the data for Oscilloscope
are two instances of a class named SineCurve.

SineCurve has no visuals itself, but I derived
the class from FrameworkElement so I could
put the two instances in the visual tree and
defi ne bindings on them. In fact, everything in
the program is connected with bindings—from
the Slider controls to the SineCurve elements
and from SineCurve to Oscilloscope. The
MainPage.xaml.cs fi le for the Web version of the
program has no code beyond what’s provided
by default, and the equivalent fi le in the phone
application only implements Tombstoning logic.

SineCurve defi nes two properties (backed by
dependency properties) named Frequency and
Amplitude. One SineCurve instance provides
the horizontal values for Oscilloscope, and the
other the vertical values.

The SineCurve class also implements an
interface I called IProvideAxisValue:

public interface IProvideAxisValue {
 double GetAxisValue(DateTime dateTime);
}

SineCurve implements this interface with a rather simple method
that references two fi elds as well as the two properties:

public double GetAxisValue(DateTime dateTime) {
 phaseAngle += 2 * Math.PI * this.Frequency *
 (dateTime - lastDateTime).TotalSeconds;
 phaseAngle %= 2 * Math.PI;
 lastDateTime = dateTime;

 return this.Amplitude * Math.Sin(phaseAngle);
}

Th e Oscilloscope class defi nes two properties (also backed by
dependency properties) named XProvider and YProvider of type
IProvideAxisValue. To get everything moving, Oscilloscope installs
a handler for the CompositionTarget.Rendering event. Th is event
is fi red in synchronization with the refresh rate of the video display
and thus serves as a convenient tool for performing animations.
On each call to the CompositionTarget.Rendering handler, Oscil-
loscope calls GetAxisValue on the two SineCurve objects set to its
XProvider and YProvider properties.

In other words, the program implements a pull model. The
Oscilloscope object determines when it needs data and then pulls
the data from the two data providers. (How it displays that data is
something I’ll discuss soon.)

As I began to add more features to the program—in particular,
two instances of an additional control that displayed the sine curves,
but that I eventually removed as an unenlightening distraction—I
began to doubt the wisdom of this model. I had three objects pull-
ing the same data from two providers, and I thought maybe a push
model would be better.

I restructured the program so that the SineCurve class installed a
handler for CompositionTarget.Rendering and pushed data to the

Oscilloscope control through properties now
named simply X and Y of type double.

I probably should’ve anticipated the fun-
damental flaw in this particular push model:
Th e Oscilloscope was now receiving two sepa-
rate changes in X and Y and constructing not
a smooth curve but a series of stair steps, as
shown in Figure 3.

Making the decision to go back to the pull
model was easy!

Rendering with WriteableBitmap
From the moment I conceived this program,
there was absolutely no question in my mind
that using WriteableBitmap was the best solution
to implement the actual Oscilloscope screen.

WriteableBitmap is a Silverlight bitmap that
supports pixel addressing. All the pixels of the
bitmap are exposed as an array of 32-bit inte-
gers. Programs can obtain and set these pixels
in an arbitrary manner. WriteableBitmap also
has a Render method that allows rendering the
visuals of any object of type FrameworkElement
onto the bitmap.

If Oscilloscope just needed to display a simple static curve, I’d
use Polyline or Path and wouldn’t even consider WriteableBitmap.
Even if that curve needed to change shape, Polyline or Path would
still be preferable. But the curve displayed by Oscilloscope needs
to grow in size, and it needs to be colored oddly. Th e line needs
to fade out progressively: Recently displayed parts of the line are
brighter than older parts of the line. If I used a single curve, it
would need various colors along its length. This is not a concept
supported under Silverlight!

Without WriteableBitmap, the program would need to create
several hundred different Polyline elements, all colored differ-
ently and juggled around, and triggering layout passes aft er each
CompositionTarget.Rendering event. Everything I knew about
Silverlight programming indicated that WriteableBitmap would
defi nitely off er much better performance.

An early version of the Oscilloscope class processed the
CompositionTarget.Rendering event by obtaining new values
from the two SineCurve providers, scaling those to the size of the
WriteableBitmap, and then constructing a Line object from the
previous point to the current point. Th at was simply passed to the
Render method of WriteableBitmap:

writeableBitmap.Render(line, null);

Figure 2 The LissajousCurves
Program for Windows Phone 7

A Silverlight program of any
good fortune must be ported to

Windows Phone 7.

91April 2011msdnmagazine.com

Th e Oscilloscope class defi nes a Persistence property that indi-
cates the number of seconds for any color or alpha component
of a pixel to decrease from 255 to 0. Making those pixels fade out
involved direct pixel addressing. Th e code is shown in Figure 4.

At this point in the development of the program, I took the steps
necessary to also get it running on the phone. On both the Web and
the phone, the program seemed to run well, but I knew it was not
quite fi nished. I wasn’t seeing curves on the Oscilloscope screen:
I was seeing a bunch of connected straight lines. And nothing
destroys the illusion of digitally simulated analog faster than a
bunch of extremely straight lines!

Interpolation
Th e CompositionTarget.Rendering handler is called in synchro-
nization with the video display refresh. For most video displays—

including the display on Windows Phone 7—this is usually in the
region of 60 frames per second. In other words, the Composition-
Target.Rendering event handler is called approximately every 16 or
17 ms. (Actually, as you’ll see, that’s only the optimum situation.)
Even if the sine waves are a leisurely one cycle per second, for a
480-pixel-wide oscilloscope, two adjacent samples might have
pixel coordinates some 35 pixels apart.

The Oscilloscope needed to interpolate between consecutive
samples with a curve. But what kind of curve?

My fi rst choice was a canonical spline (also known as a cardinal
spline). For a sequence of control points p1, p2, p3 and p4, the canonical
spline provides a cubic interpolation between p2 and p3 with a degree
of curviness based on a “tension” factor. It’s a general-purpose solution.

Th e canonical spline was supported in Windows Forms, but never
made it into Windows Presentation Foundation (WPF) or Silverlight.
Fortunately, I had some WPF and Silverlight code for the canonical
spline that I developed for a 2009 blog entry called, appropriately
enough, “Canonical Splines in WPF and Silverlight” (bit.ly/bDaWgt).

Aft er generating a Polyline with interpolation, the Composition-
Target.Rendering processing now concluded with a call like this:

writeableBitmap.Render(polyline, null);

Th e canonical spline worked, but it was not quite right. When
the frequencies of the two sine curves are simple integral multi-
ples, the curve should stabilize into a fi xed pattern. But that wasn’t
happening, and I realized that the interpolated curve was slightly
diff erent depending on the actual sampled points.

This problem was exacerbated on the phone, mostly due to
the tiny phone processor having trouble keeping up with all the
demands I was putting on it. At higher frequencies, the Lissajous
curves on the phone looked smooth and curvy, but seemingly
moving in almost random patterns!

Only slowly did I realize that I could interpolate based on time.
Two consecutive calls to the CompositionTarget.Rendering event
handler are about 17 ms apart. I could simply loop through all these
intermediate millisecond values and call the GetAxisValue method
in the two SineCurve providers to construct a smoother polyline.

Th at approach worked much better.

Improving Performance
One piece of essential reading for all Windows Phone 7 program-
mers is the documentation page “Performance Considerations
in Applications for Windows Phone” at bit.ly/fdvh7Z. Aside from
many helpful hints about improving performance in your phone
applications, it will also tell you the meaning of those numbers that
are displayed at the side of the screen when you run the program
under Visual Studio, as shown in Figure 5.

accumulatedDecrease += 256 *
 (dateTime - lastDateTime).TotalSeconds / Persistence;
int decrease = (int)accumulatedDecrease;

// If integral decrease, sweep through the pixels
if (decrease > 0) {
 accumulatedDecrease -= decrease;

 for (int index = 0; index <
 writeableBitmap.Pixels.Length; index++) {

 int pixel = writeableBitmap.Pixels[index];

 if (pixel != 0) {
 int a = pixel >> 24 & 0xFF;
 int r = pixel >> 16 & 0xFF;
 int g = pixel >> 8 & 0xFF;
 int b = pixel & 0xFF;

 a = Math.Max(0, a - decrease);
 r = Math.Max(0, r - decrease);
 g = Math.Max(0, g - decrease);
 b = Math.Max(0, b - decrease);

 writeableBitmap.Pixels[index] = a << 24 | r << 16 | g << 8 | b;
 }
 }
}

Figure 4 Code to Fade out Pixel Values

The Oscilloscope needed to
interpolate between consecutive

samples with a curve.

Figure 3 The Disastrous Result of a Push-Model Experiment

http://bit.ly/bDaWgt
http://bit.ly/fdvh7Z
www.msdnmagazine.com

Untitled-1 1 1/11/10 10:55 AM

www.alexcorp.com

93April 2011msdnmagazine.com

Th is row of numbers is enabled by setting the Application.Cur-
rent.Host.Settings.EnableFrameRateCounter property to true, which
the standard App.xaml.cs fi le does if the program is running under
the Visual Studio debugger.

The first two numbers are the most significant: Sometimes, if
nothing is going on, these two numbers display zero, but they’re
both intended to display frame rates—which means they display
a number of frames per second. I mentioned that most video dis-
plays are refreshed at the rate of 60 times per second. However, an
application program might attempt to perform animations where
each new frame requires more than 16 or 17 ms of processing time.

For example, suppose a CompositionTarget.Rendering handler
requires 50 ms to do whatever job it’s doing. In that case, the pro-
gram will be updating the video display at the rate of 20 times per
second. Th at’s the program’s frame rate.

Now 20 frames per second is not a terrible frame rate. Keep in mind
that movies run at 24 frames per second, and standard television has
an eff ective frame rate (taking interlacing into account) of 30 frames
per second in the United States, and 25 in Europe. But once the frame
rate drops to 15 or 10, it’s going to start being noticeable.

Silverlight for Windows Phone is able to offl oad some anima-
tions to the Graphics Processing Unit (GPU), so it has a secondary
thread (sometimes referred to as the composition or GPU thread)
that interacts with the GPU. The first number is the frame rate

associated with that thread. Th e second number is the UI frame
rate, which refers to the application’s primary thread. That’s the
thread that any CompositionTarget.Rendering handlers run in.

Running the LissajousCurves program on my phone, I saw
numbers of 22 and 11, respectively, for the GPU and UI threads,
and they dropped down a bit when I increased the frequency of
the sine curves. Could I do better?

I began to wonder how much time this crucial statement in my
CompositionTarget.Rendering method required:

writeableBitmap.Render(polyline, null);

This statement should have been called 60 times per second
with a polyline consisting of 16 or 17 lines, but it was actually being
called more like 11 times per second with 90-segment polylines.

For my book, “Programming Windows Phone 7” (Microsoft
Press, 2010), I wrote some line-rendering logic for XNA, and I was
able to adapt that for Silverlight for this Oscilloscope class. Now
I wasn’t calling the Render method of WriteableBitmap at all, but
instead directly altering pixels in the bitmap to draw the polylines.

Unfortuntely, both frame rates plunged to zero! Th is suggested
to me that Silverlight knew how to render lines on a bitmap
much faster than I did. (I should also note that my code was not
optimized for polylines.)

At this point, I began wondering if an approach other than
WriteableBitmap might be reasonable. I substituted a Canvas for
the WriteableBitmap and Image element, and as each Polyline was
constructed, I simply added that the Canvas.

Of course, you can’t do this indefi nitely. You don’t want a Canvas
with hundreds of thousands of children. And besides, these Poly-
line children needed to fade out. I tried two approaches: Th e fi rst
involved attaching a ColorAnimation to each Polyline to decrease
the alpha channel of the color, and then removing the Polyline from
the Canvas when the animation completed. Th e second was a more
manual approach of enumerating through the Polyline children,
decreasing the alpha channel of the color manually, and removing
the child when the alpha channel got down to zero.

These four methods still exist in the Oscilloscope class, and
they’re enabled with four #defi ne statements at the top of the C#
fi le. Figure 6 shows the frame rates with each approach.

Figure 6 tells me that my original instinct about WriteableBitmap
was wrong. In this case, it’s really better to put a bunch of Polyline
elements in a Canvas. Th e two fade-out techniques are interesting:
When performed by an animation, the fading out occurs in the
composition thread at 20 frames per second. When performed
manually, it’s in the UI thread at 15 frames per second. However,
adding new Polyline elements always occurs in the UI thread, and
that frame rate is 20 when fading-out logic is off -loaded to the GPU.

In conclusion, the third method has the best overall performance.
So what have we learned today? Clearly, to eke out the best per-

formance, it’s necessary to experiment. Try diff erent approaches,
and never, ever trust your initial instincts.

CHARLES PETZOLD is a longtime contributing editor to MSDN Magazine.
His new book, “Programming Windows Phone 7” (Microsoft Press, 2010), is
available as a free download at bit.ly/cpebookpdf.

THANKS to the following technical expert for reviewing this article: Jesse Liberty

Composition
Thread UI Thread

WriteableBitmap with Polyline render 22 11
WriteableBitmap with manual outline fi lls 0 0
Canvas with Polyline with animation fade-out 20 20
Canvas with Polyline with manual fade-out 31 15

Figure 6 Frame Rates for the Four Oscilloscope Updating Methods

Figure 5 Performance Indicators in Windows Phone 7

Once the frame rate drops
to 15 or 10, it’s going to start

being noticeable.

http://bit.ly/cpebookpdf
www.msdnmagazine.com

VISUAL STUDIO LIVE! LAS VEGAS TRACKS

Visual Studio Live! Pre-Conference Workshops: Monday, April 18, 2011
(Separate entry fee required)

MWK1 An Introduction to Multi-Platform Mobile
Development Using C#: iPhone, Android, and
Windows Phone 7 Ken Getz & Brian Randell

MWK2 Workshop: Making Effective Use of
Silverlight and WPF Billy Hollis & Rockford Lhotka

MWK3 Workshop: Programming with WCF in
One Day Miguel Castro

Visual Studio Live! Day 1: Tuesday, April 19, 2011

T1 Easing in to Windows Phone 7
Development Walt Ritscher

T2 Getting Started with ASP.NET MVC
Philip Japikse

T3 Azure Platform Overview
Vishwas Lele

T4 Best Kept Secrets in Visual Studio
2010 and .NET 4.0 Deborah Kurata

T5 Silverlight in 75 Minutes
Ken Getz

T6 Test Driving ASP.NET MVC2
Philip Japikse

T7 Building Azure Applications
Vishwas Lele

T8 How We Do Language Design at
Microsoft Lucian Wischik

TCT1 Chalk Talk: Silverlight, WCF RIA Services, and
Your Business Objects Deborah Kurata

TCT2 Chalk Talk: Building N-Tier Applications With
Entity Framework 4 Leonard Lobel

TCT3 Chalk Talk: Join the XAML Revolution
Billy Hollis

T9 Transitioning from Windows Forms
to WPF Miguel Castro

T10 HTML5/IE9 inspire T11 Building Compute-Intensive Apps
in Azure Vishwas Lele

T12 Turn Your Development Up to 11:
Debugging to Win with Visual Studio
2010 Brian Randell

T13 Programming for Windows 7 with
WPF Miguel Castro

T14 Improving Your ASP.NET
Application Performance with
Asynchronous Pages and Actions
Tiberiu Covaci

T15 Using C# and Visual Basic to
Build a Cloud Application for Windows
Phone 7 Lucian Wischik &
Srivatsn Narayanan

T16 Designing and Developing for the
Rich Mobile Web Joe Marini

Visual Studio Live! Day 2: Wednesday, April 20, 2011

W1 Bind Anything to Anything in
Silverlight and WPF Rockford Lhotka

W2 HTML 5 and Your Web Sites
Robert Boedigheimer

W3 How to Make Your Application
Awesome with JSON, REST, WCF and
MVC James Bender

W4 Visual Studio LightSwitch—
Beyond the Basics Robert Green

W5 Design, Don't Decorate
Billy Hollis

W6 Styling Web Pages with CSS 3
Robert Boedigheimer

W7 RESTBuilding RESTful Services in
the Microsoft Platform: When to Use
What? Jesus Rodriguez

W8 Advanced LightSwich
Development Michael Washington

WCT1 Chalk Talk: CSLA .NET Rockford Lhotka WCT2 Chalk Talk: Busy Developer’s Guide to (ECMA/Java)Script Ted Neward

W9 Leveraging the MVVM Pattern in
Silverlight, WPF and Windows Phone
Rockford Lhotka

W10 HTML5 Messaging, Web
Workers and Web Sockets with
JavaScript Jeffrey McManus

W11 WCF Workflow Services
Rob Daigneau

W12 The Almighty @— A Razor
Primer Charles Nurse

W13 Top 7 Lessons Learned On My
First Big Silverlight Project
Benjamin Day

W14 jQuery Application Development
Jeffrey McManus

W15 WCF Tips & Tricks – From the
Field Christian Weyer

W16 WebMatrix Real World Data-
Centric Applications Charles Nurse

Visual Studio Live! Day 3: Thursday, April 21, 2011

TH1 Multi-touch Madness! Brian Peek TH2 The Best of jQuery
Robert Boedigheimer

TH3 Making WCF Simple: Best
Practices for Testing, Deploying and
Managing WCF Solutions in the Big
Enterprise Jesus Rodriguez

TH4 Digging Deeper in Windows
Phone 7 Walt Ritscher

TH5 XAML Primer Clarifying the UI
Markup Language Walt Ritscher

TH6 Single Sign-On for ASP.NET
Applications Dominick Baier

TH7 How to Take WCF Data Services
to the Next Level Rob Daigneau

TH8 C# on Android: Building Android
Apps with .NET Christian Weyer

TH9 Silverlight Security
Dominick Baier

TH10 The Scrum vs. Kanban Cage
Match Benjamin Day & David Starr

TH11 Busy .NET Developer's Guide
to Parallel Extensions for .NET 4
Ted Neward

TH12 C# on Android: Building Android
Apps with .NET Christian Weyer

TH13 LINQ Programming Model
Marcel de Vries

TH14 Patterns of Healthy Teams using
Visual Studio and TFS David Starr

TH15 Designing Applications in the
Era of Many-Core Computing Tiberiu
Covaci

TH16 XNA Games for Windows
Phone 7 Brian Peek

TH17 So Many Choices, So Little
Time: Understanding Your .NET 4.0
Data Access Options Leonard Lobel

TH18 Produce Better Quality Code
by Leveraging the Visual Test Tools
You Never Discovered Before
Marcel de Vries

TH19 Building Event-Driven
Applications with Microsoft
StreamInsight Torsten Grabs

TH20 Windows Azure and PHP
Jeffrey McManus

Visual Studio Live! Post-Conference Workshops: Friday, April 22, 2011
(Separate entry fee required)

FWK1 Architectural Katas Workshop Ted Neward FWK2 SQL Server 2011 Andrew Brust & Leonard Lobel

Silverlight/WPF
Programming

Practices

Visual Studio
2010/
.NET 4

WCF Cloud Computing
Data

Management
Web/

HTML 5
"Simplification"

Tools
Mobile

Development

AGENDA

VISIT US ONLINE AT VSLIVE.COM/LV FOR DETAILS ON SESSIONS, SPEAKERS, AND MORE!

Untitled-8 2 3/7/11 2:09 PM

www.vslive.com/lv

APRIL 18–22, 2011
LAS VEGAS, NEVADA
RIO ALL-SUITE HOTEL & CASINO

REGISTER NOW

WITH CODE APRAD

WWW.VSLIVE.COM/LV

CHECK OUT THE FULL 50+ SESSION SCHEDULE NOW!

If you’re looking for hard-hitting .NET
development training, look no further than
Visual Studio Live! Las Vegas. Our goal?
To arm you with the knowledge to build
better applications.

JOIN US IN LAS VEGAS
THIS MONTH.

DOWNLOAD
THE AGENDA
NOW!

VISUAL STUDIO LIVE! LAS VEGAS is 5 days packed with full

day workshops, keynotes from industry heavy weights and your choice

of 50 hard-hitting sessions.

You'll learn tips, tricks and fi xes from .NET pros like Billy Hollis,

Rockford Lhotka, Andrew Brust, Deborah Kurata and Dave Mendlen,

Senior Director, Developer Platform and Tools at Microsoft.

SUPPORTED BY:

PRODUCED BY:

Untitled-8 3 3/7/11 2:10 PM

www.vslive.com/lv

msdn magazine96

to what Dave eventually identifi ed as
Indonesian. He was tearing out his face
fur. I haven’t seen him so angry since
he called tech support for my self-
scooping USB-controlled litter box
and they put him on hold. I thought
I’d have to take him to the people-vet.

He’s supposed to know this stuff . He’s
written more than a dozen books on
programming Windows, he teaches
it at a major university and Microsoft
designated him a Software Legend
back in 2002. And a cat’s butt has made
him repave his hard drive, more than
once. He thinks it’s wrong. I think it
shows how we cats really run the world.

Th ink Dave’s just being extra dumb,
even for him? Nope. Approximately 38 million U.S. households—
about a third of the total—own at least one cat. Th e average number
owned per household is about 2.5, for a total of 94 million owned
cats in the United States. And of those 108 feline beasts, exactly
zero owners have any control whatsoever over where the cat goes
or what the cat does in the house. Th is isn’t an obscure edge case.

Legend says that the Internet was designed to survive a nuclear
war. Your programs ought to survive the attack of a cat’s butt. Maybe
Dave will rent me to you as a tester. I could use the money for pâté
and caviar instead of the cheap kibble he feeds me.

It’s amazing to realize that a simple beast like me has witnessed
the entire rise of Windows over the last 20 years. I wish I could stay
around to see the next 20. Th anks for listening to me. Bye.

SIMBA adopted David Platt in 1991. She has obstructed the writing of 11 program-
ming books by jumping on the keyboard. Watch for her forthcoming tell-all book,
“Why Being Dave’s Cat Sucks,” and her subsequent appearance on Oprah. A New
England snowshoe cat with polydactyl thumbs, she can almost count in octal.

The Cat Butt Factor

You probably don’t think about my
butt when you design software. But
you should.

Hi, I’m Simba, Dave’s long-suff ering
cat. Dave’s really busy this month, so he
asked me to help out. He said I could
either write this column or he’d get me
a job in the exciting fi eld of medical
research. Anyone who knows Dave
will understand what a tough call that
was, either living with him or being
dissected alive. But I’ve always wanted
to see my name in print, so I decided
to tolerate him a little longer.

My picture doesn’t show it, but
I’m almost 20 years old. I remember
when Dave got his fi rst 386 PC from
Gateway, with cow spots on the box. It ran this funny “Windows”
thing when it started up. I thought the mouse was really cool. But
when I bit its tail, I found a really shocking experience. Dave tried
to uninstall Windows, but stopped when I showed him Solitaire.

Th at was back when Windows only ran on PCs. Cell phones were
these big clunky things with horrible voice quality that dropped
calls all the time. Now Windows runs on sleek, light phones that
play music and games, give driving directions and even show
movies. And they still have horrible voice quality and drop calls
all the time; but now, at least, we have apps that use GPS to locate
the nearest working pay phone when we really have to make a call.
Th at’s progress, no?

What does this have to do with my butt, I hear you wondering.
Th e answer is that, like many users of Windows, Dave leaves his
laptop on overnight because it takes so long to boot up. Naturally,
the keyboard is where I like to sleep. It’s warm from the heat sink,
and the keys make a soft bed for my old joints. But I do it mostly
because I know he doesn’t want me there.

Simultaneously holding down multiple keys doesn’t just trash
whatever document Dave foolishly left open; it oft en scrambles
the connection between the hardware and the OS in ways that are
very hard to diagnose and fi x aft er he chases me off it (which serves
him right, don’t you think?). One time the keyboard emitted weird
clicks but wouldn’t echo any characters. Another time the screen
image turned upside down and stayed that way. Still another time,
nothing initially seemed wrong, but the keyboard layout changed

DON’T GET ME STARTED SIMBA

You might think that my not having opposable
thumbs would make this column diffi cult to write.
You would be wrong.

I thought the mouse was really
cool. But when I bit its tail, I found

a really shocking experience.

Untitled-2 1 3/3/11 11:36 AM

www.GCPowerTools.com/Videos

Untitled-1 1 11/4/10 4:37 PM

www.dundas.com

	Back
	Print
	MSDN Magazine, April 2011
	Contents
	TOOLBOX: F# Tools and Resources
	CUTTING EDGE: Give Your Classes a Software Contract
	DATA POINTS: Composing WPF DataGrid Column Templates for a Better User Experience
	WINDOWS AZURE:
	Introducing the Windows Azure AppFabric Caching Service
	CQRS on Windows Azure
	Parsing Log Files with F#, MapReduce and Windows Azure

	Visual Studio TFS Team Project and Collection Guidance
	Use Bee Colony Algorithms to Solve Impossible Problems
	Introduction to WebMatrix
	MOBILE MATTERS: Windows Phone Navigation, Part 2: Advanced Recipes
	UI FRONTIERS: Lissajous Animations in Silverlight
	DON’T GET ME STARTED: The Cat Butt Factor

	GrapeCity Insert

