
magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS APRIL 2014 VOL 29 NO 4

Windows Store C++  
for C# Developers................20

 0414msdn_CoverTip.indd   1 3/19/14   4:57 PM

http://www.DevExpress.com/Dashboard


0314msdn_CoverTip.indd   2 2/6/14   10:52 AM

http://www.DevExpress.com/Superhero


magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS APRIL 2014 VOL 29 NO 4

Windows Store C++ for C# Developers: 
Understanding the Domain  
Bill Kratochvil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

 Multithreading and Dispatching 
in MVVM Applications  
Laurent Bugnion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Patterns for Asynchronous 
MVVM Applications: Commands  
Stephen Cleary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Build a Cross-Platform, Mobile Golf App 
Using C# and Xamarin  
Wallace B. McClure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Build an Advanced Camera App 
for Nokia Lumia Phones  
Rajesh Lal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Using Survival Analysis  
Zvi Topol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

COLUMNS
WINDOWS WITH C++ 
Using Databases 
on Windows Azure  
Kenny Kerr, page 6

DATA POINTS 
Adding New Life to 
a 10-Year-Old ASP.NET 
Web Forms App  
Julie Lerman, page 14

MODERN APPS 
What’s New in Windows 8.1 
for Windows Store Developers  
Rachel Appel, page 66

DIRECTX FACTOR 
3D Transforms on 2D Bitmaps  
Charles Petzold, page 74

DON’T GET ME STARTED 
We Didn’t Start Computing  
David Platt, page 80

Windows Store C++ 
for C# Developers................20



Untitled-11   2 2/5/14   4:05 PM

http://www.OnTimeNow.com/msdn


Untitled-11   3 2/5/14   4:05 PM

http://www.OnTimeNow.com/msdn


"lightning fast" Redmond Magazine

"covers all data sources" eWeek

"results in less than a second" 
 InfoWorld

hundreds more reviews and developer 
case studies at www.dtsearch.com

The Smart Choice for Text Retrieval® since 1991

www.dtSearch.com   1-800-IT-FINDS

Instantly Search  
Terabytes of Text

®

Ask about fully-functional evaluations

25+ fielded and full-text search types

dtSearch’s own document filters 
support “Office,” PDF, HTML, XML, ZIP, 
emails (with nested attachments), and 
many other file types

Supports databases as well as static 
and dynamic websites

Highlights hits in all of the above

APIs for .NET, Java, C++, SQL, etc.

64-bit and 32-bit; Win and Linux

dtSearch products:
Desktop with Spider Web with Spider
Network with Spider Engine for Win & .NET
Publish (portable media) Engine for Linux
Document filters also available for separate
licensing

Printed in the USA

magazineAPRIL 2014 VOLUME 29 NUMBER 4

MOHAMMAD AL-SABT Editorial Director/mmeditor@microsoft.com
KENT SHARKEY Site Manager

MICHAEL DESMOND Editor in Chief/mmeditor@microsoft.com
LAFE LOW Features Editor
SHARON TERDEMAN Features Editor
DAVID RAMEL Technical Editor
WENDY HERNANDEZ Group Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director

SENIOR CONTRIBUTING EDITOR Dr. James McCaffrey 
CONTRIBUTING EDITORS Rachel Appel, Dino Esposito, Kenny Kerr, 
Julie Lerman, Ted Neward, Charles Petzold, David S. Platt, 
Bruno Terkaly, Ricardo Villalobos

Henry Allain President, Redmond Media Group 
Michele Imgrund Sr. Director of Marketing & Audience Engagement
Tracy Cook Director of Online Marketing
Irene Fincher Audience Development Manager

ADVERTISING SALES: 818-674-3416/dlabianca@1105media.com

Dan LaBianca Vice President, Group Publisher
Chris Kourtoglou Regional Sales Manager
Danna Vedder Regional Sales Manager/Microsoft Account Manager
David Seymour Director, Print & Online Production
Anna Lyn Bayusa Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue, 
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at 
additional mailing offi ces. Annual subscription rates payable in US funds are: U.S. $35.00, International 
$60.00. Annual digital subscription rates payable in U.S. funds are: U.S. $25.00, International $25.00. 
Single copies/back issues: U.S. $10, all others $12. Send orders with payment to: MSDN Magazine, 
P.O. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call (847) 763-9560.  
POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie, IL 60076. Canada 
Publications Mail Agreement No: 40612608. Return Undeliverable Canadian Addresses to Circulation 
Dept. or XPO Returns: P.O. Box 201, Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail 
requests to “Permissions Editor,” c/o MSDN Magazine, 4 Venture, Suite 150, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media, 
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information 
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy, 
there is no guarantee that the same or similar results may be achieved in all environments. Technical 
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone), 
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact: 
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available 
for rental. For more information, please contact our list manager, Jane Long, Merit Direct. Phone: 913-
685-1301; E-mail: jlong@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

http://www.dtSearch.com
mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:818-674-3416/dlabianca@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:jlong@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com


Untitled-4   1 3/5/14   3:36 PM

http://www.Leadtools.com


msdn magazine4

Every couple years we conduct a survey of MSDN Magazine sub-
scribers, in an eff ort to understand the technologies, issues and 
topics that are of greatest interest to our readers. Th e results always 
make for fascinating reading, as we get a glimpse into the tools 
our readers use and the directions they intend to take with them.

Our 2013 reader survey came during what can only be called an 
interesting juncture in the evolution of the Microsoft  developer eco-
system. Between our 2011 and 2013 surveys, Microsoft  released a little 
thing called Windows 8 and the Windows Runtime. You might have 
heard of them. Th e company also deprecated Silverlight, released 
key improvements to ASP.NET, and launched not one, but two, new 
updates of the Visual Studio IDE. Platforms such as Windows Azure 
and Windows Phone continued to advance rapidly, creating increas-
ingly mature and compelling targets for application development.

So it’s no surprise that our surveys in 2011 and 2013 have produced 
an informative snapshot of how these changes are impacting the 
planning and thinking of MSDN Magazine readers.

One thing that hasn’t changed: MSDN Magazine readers are 
accomplished. About 23 percent of survey respondents report 
having worked 25 years or more in the development fi eld, while 
55 percent report working between 10 and 25 years. Th at’s nearly 
80 percent of MSDN Magazine readers with more than a decade 
of hands-on experience in the field. What’s more, 83 percent of 
readers report being actively involved in programming, versus just 
17 percent who are not coding on a daily basis.

Th e use of tools and languages among MSDN Magazine subscrib-
ers continues to evolve. In 2011, 61 percent of respondents reported 
working in C# as their primary language. Two years later in 2013, 
that fi gure stood at 65.5 percent. Visual Basic .NET, on the other 
hand, declined in usage as a primary programming language, from 
17 percent of respondents in 2011 to about 12 percent in 2013. C++ 
usage declined as well over the two year period, from 10 percent 
to a little more than 6 percent. 

We also asked readers what languages and tools are in use in their 
organizations, and found some interesting trends. Employment of 
languages such as C#, C++ and Java within companies remained 
largely stable at organizations between the 2011 and 2013 surveys, 

but usage of both Visual Basic .NET and Visual Basic 6 dipped. 
In 2013, 41 percent of respondents reported their companies use 
Visual Basic .NET, down from 44 percent in 2011. Similarly, Visual 
Basic 6 use has declined from 21 percent of companies to 17 percent 
over the two-year span.

JavaScript earns a nod here, as we added the language to those 
tracked beginning with the 2013 survey. Reporting that their 
companies employ JavaScript were 67.4 percent of respondents, 
placing it second only to C# (86.5 percent) among languages 
deployed within reader organizations. I look forward to our next 
reader survey, and seeing how the arrival of the Windows Runtime, 
with its native support for both C++ and JavaScript, impacts 
uptake of these languages going forward.

No surprise, the vast majority of MSDN Magazine readers live 
and work in Visual Studio, and pickup of the latest versions of the 
IDE remains prompt. In 2011, 79 percent of readers reported that 
Visual Studio 2010 was deployed at their companies, followed by 
Visual Studio .NET 2008 at 64 percent. Two years later, the most 
widely deployed Visual Studio version was Visual Studio 2012 
(68.4 percent), followed by Visual Studio 2010 (58.4 percent) and 
the just-released Visual Studio 2013 (41.6 percent).

When we asked readers which Microsoft technologies they 
currently use or plan to use within the next 12 months, we weren’t 
surprised to see technologies such as Visual Studio and the 
Microsoft  .NET Framework produce response rates north of 90 
percent. We also weren’t surprised to see planned adoption of 
Silverlight crater, from 43 percent in 2011 to just 16 percent of 
respondents in 2013. Emerging technologies and platforms, led by 
Windows Azure (28.4 percent), Windows Phone (21.3 percent) 
and the Windows Runtime (13.4 percent) have all gained ground.

What will the MSDN Magazine readership look like in 2015, 2017 or 
2019? It’s an open question. Languages like JavaScript certainly fi gure to 
grow in importance. In 2013 just 1 percent of MSDN Magazine readers 
identifi ed JavaScript as their primary language—the same percentage 
that singled out Visual Basic 6 as their main language. I can only guess 
where that number might sit 
two or four years from now.

Survey Says

© 2014 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN 
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit 
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The 
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make 
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are 
used by 1105 Media, Inc. under license from owner. 

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

MICHAEL DESMONDEDITOR’S NOTE

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine


Untitled-1   1 2/27/14   10:41 AM

http://www.melissaData.com


msdn magazine6

Microsoft  has a long history of confusing developers with a dizzying 
array of data access technologies. Th ere was a time when it seemed 
as if every release of Windows, SQL Server or Visual Studio 
ushered in a new data access API. Somewhere along the line—
around 1996, I believe—Microsoft  applied its usual enthusiasm to 
move developers from ODBC to OLE DB.

ODBC stands for Open Database Connectivity and was the old 
standard for accessing database management systems. OLE DB 
stands for … wait for it … Object Linking and Embedding Database 
and was the new and universal data access utopia. But this name is 
entirely misleading, which I’ll discuss in a moment.

I still remember reading Don Box’s column in the July 1999 issue 
of MSDN Magazine (then called the Microsoft  Systems Journal) where 
he described the motivation and inspiration leading to OLE DB. I 
remember thinking at the time that this was a lot more complicated 
than ODBC but that it sure was a lot more extensible. Th e reason the 
name OLE DB is so misleading is that it has nothing to do with OLE 
and it isn’t specifi cally for databases. It was truly designed as a univer-
sal data access model for all data—relational or otherwise—such as 
text, XML, databases, search engines, you name it. OLE DB debuted 
when COM was all the rage on the Windows platform, so its COM-
heavy API and natural extensibility appealed to many developers.

Still, as a relational database API, it never quite achieved the raw 
performance of ODBC. Subsequent data access technologies, such 
as those from the Microsoft  .NET Framework, dropped all but 
the database access features so the dream of universal data access 
began to fi zzle out. Th en in August 2011 the SQL Server team, the 
biggest proponents of OLE DB, made the stunning announcement 
that “Microsoft  is aligning with ODBC for native relational data 
access” (bit.ly/1dsYgTD). Th ey declared the marketplace was moving 
away from OLE DB and toward ODBC. So it’s back to ODBC as 
you and I fi gure out how to access SQL Server for the next gener-
ation of native C++ applications. 

Th e good news is that ODBC is relatively simple. It’s also extremely 
fast. It was often claimed that OLE DB outperformed ODBC, 

but this was rarely the case. Th e bad news is that ODBC is an old 
C-style API that few developers remember—or ever learned—
how to use. Fortunately, modern C++ comes to the rescue and can 
make programming ODBC a breeze. If you want to access data-
bases on Windows Azure with C++, then you need to embrace 
ODBC. Let’s take a look.

Like so many other C-style APIs, ODBC is modeled around 
a set of handles representing objects. So I’ll again use my trusty 
unique_handle class template that I’ve written about and used in 
numerous columns. You can get a copy of handle.h from dx.codeplex.com

and follow along. ODBC handles are, however, a little dumb. Th e 
ODBC API needs to be told the type of each handle as it’s used, 
both in creating and freeing a handle (and its underlying object). 

A handle type is expressed with a SQLSMALLINT, which is just 
a short int value. Instead of defi ning a unique_handle traits class for 
each type of object that ODBC defi nes, I’m going to make the traits 
class itself a template. Figure 1 shows what this might look like.

Th e traits class close method in Figure 1 is where you can begin to 
see how you need to tell ODBC the type of each handle when used 
with some of the generic ODBC functions. Because I’m using the latest 
preview build of the Visual C++ compiler (the November 2013 CTP 
as of this writing) I’m able to replace the deprecated throw exception 
specifi cation with the noexcept specifi er, opening the door for the 
compiler to generate more optimal code in some cases. Unfortunately, 
although this compiler also provides the ability to deduce the return 
type for auto functions, it includes a bug that prevents it from doing 
so for member functions of class templates. Of course, because the 
traits class is itself a class template, a template alias comes in handy:

template <SQLSMALLINT T>
using sql_handle = unique_handle<sql_traits<T>>;

Using Databases on Windows Azure

WINDOWS WITH C++ KENNY KERR

template <SQLSMALLINT T>
struct sql_traits
{
  using pointer = SQLHANDLE;

  static auto invalid() noexcept -> pointer
  {
    return nullptr;
  }

  static auto close(pointer value) noexcept -> void
  {
    VERIFY_(SQL_SUCCESS, SQLFreeHandle(T, value));
  }
};

Figure 1 An ODBC Traits Class

Fortunately, modern C++ comes 
to the rescue and can make 

programming ODBC a breeze.



Untitled-12   1 3/11/14   5:40 PM

http://www.scaleoutsoftware.com


msdn magazine8 Windows with C++

Now I can defi ne type aliases for the various ODBC objects, such 
as the environment and statement objects:

using environment = sql_handle<SQL_HANDLE_ENV>;
using statement = sql_handle<SQL_HANDLE_STMT>;

I’ll also define one for connections, although I’ll use a more 
specifi c name:

using connection_handle = sql_handle<SQL_HANDLE_DBC>;

Th e reason for this is that connections require a bit more work 
to clean up in all cases. While environment and statement objects 
don’t need much more than this, connection objects really need 
a connection class to reliably deal with connectivity. Before I can 
deal with that, I need to create an environment. 

Th e generic SQLAllocHandle function creates various objects. 
Here, again, you see the separation of the object—or at least the 
handle—and its type. Rather than duplicating this code all over 
the place, I’ll again use a function template to bring the type infor-
mation back together. Here’s a function template for the generic 
ODBC SQLAllocHandle function:

template <typename T>
auto sql_allocate_handle(SQLSMALLINT const type,
                         SQLHANDLE input)
{
  auto h = T {};

  auto const r = SQLAllocHandle(type,
                                input,
                                h.get_address_of());

  // TODO: check result here ...

  return h;
}

Of course, this is still just as generic as the ODBC function, but 
it exposes the genericity in a C++-friendly manner. I’ll get back 
to error handling in a moment. Because this function template 
will allocate a handle of a given type and return a handle wrapper, 
I can simply use one of the type aliases I defi ned earlier. For an 
environment, I might do this:

auto e = sql_allocate_handle<environment>(SQL_HANDLE_ENV, nullptr);

Th e input handle or parent handle, the second parameter, pro-
vides an optional parent handle for some logical containment. An 
environment doesn’t have a parent but instead acts as the parent 
for connection objects. Unfortunately, it takes a bit more eff ort to 
create an environment. ODBC requires that I tell it which version 
of ODBC I’m expecting. I do that by setting an environment attri-
bute with the SQLSetEnvAttr function. Here’s what this might look 
like when wrapped up in a handy helper function:

auto create_environment()
{
  auto e = sql_allocate_handle<environment>(SQL_HANDLE_ENV, nullptr);

  auto const r = SQLSetEnvAttr(e.get(),
    SQL_ATTR_ODBC_VERSION,
    reinterpret_cast<SQLPOINTER>(SQL_OV_ODBC3_80),
    SQL_INTEGER);

  // TODO: check result here ...

  return e;
}

At this point I’m ready to create a connection, which, fortunately, 
is quite simple:

auto create_connection(environment const & e)
{
  return sql_allocate_handle<connection_handle>(
    SQL_HANDLE_DBC, e.get());
}

Connections are created in the context of an environment. 
Here you can see that I use the environment as the parent of the 
connection. I still need to actually make a connection, and that’s 
the job of the SQLDriverConnect function, some of whose param-
eters may be ignored:

auto connect(connection_handle const & c,
             wchar_t const * connection_string)
{
  auto const r = SQLDriverConnect(c.get(), nullptr,
    const_cast<wchar_t *>(connection_string),
    SQL_NTS, nullptr, 0, nullptr,
    SQL_DRIVER_NOPROMPT);

  // TODO: check result here ...
}

Notably, the SQL_NTS constant just tells the function the preceding 
connection string is null terminated. You could, instead, opt to provide 
the length explicitly. Th e fi nal SQL_DRIVER_NOPROMPT constant 
indicates whether to prompt the user if more information is required 
to establish a connection. In this case, I’m saying “no” to prompts.

But as I alluded earlier, gracefully closing a connection is a little 
more involved. Th e trouble is that while the SQLFreeHandle func-
tion is used to free the connection handle, it assumes the connection 
is closed and won’t automatically close an open connection. 

What I need is a connection class that tracks the connection’s 
connectivity. Something like this:

class connection
{
  connection_handle m_handle;
  bool m_connected { false };

public:

  connection(environment const & e) :
    m_handle { create_connection(e) }
  {}

  connection(connection &&) = default;

  // ...
};

I can now add a connect method to my class using the previously 
defi ned non-member connect function and update the connected 
state accordingly:

auto connect(wchar_t const * connection_string)
{
  ASSERT(!m_connected);

  ::connect(m_handle, connection_string);

  m_connected = true;
}

auto get_int(statement const & s,
             short const column)
{
  auto value = int {};

  auto const r = SQLGetData(s.get(),
                            column,
                            SQL_C_SLONG,
                            &value,
                            0,
                            nullptr);

  // TODO: check result here ...

  return value;
}

Figure 2 Retrieving a SQL Integer Value



Untitled-2   1 4/30/13   10:48 AM

http://www.amyuni.com


msdn magazine10 Windows with C++

Th e connect method asserts the connection is not open to begin with 
and keeps track of the fact that the connection is open at the end. Th e 
connection class destructor can then automatically disconnect as needed:

~connection()
{
  if (m_connected)
  {
    VERIFY_(SQL_SUCCESS, SQLDisconnect(m_handle.get()));
  }
}

Th is will ensure the connection is disconnected prior to the 
member handle destructor being called to free the connection han-
dle itself. I can now create an ODBC environment and establish a 
connection correctly and effi  ciently with just a few lines of code:

auto main()
{
  auto e = create_environment();
  auto c = connection { e };

  c.connect(L"Driver=SQL Server Native Client 11.0;Server=...");
}

What about statements? Th e sql_allocate_handle function tem-
plate again comes in handy, and I’ll just add another method to my 
connection class:

auto create_statement()
{
  return sql_allocate_handle<statement>(SQL_HANDLE_STMT,
                                        m_handle.get());
}

Statements are created in the context of a connection. Here you can 
see how the connection is the parent for the statement object. Back 
in my main function, I can create a statement object quite simply:

auto s = c.create_statement();

ODBC provides a relatively simple function for executing SQL 
statements, but I’ll again wrap it up for convenience:

auto execute(statement const & s,
             wchar_t const * text)
{
  auto const r = SQLExecDirect(s.get(),
                               const_cast<wchar_t *>(text),
                               SQL_NTS);

  // TODO: check result here ...
}

ODBC is an extremely old C-style API so it doesn’t use const, not 
even conditionally for C++ compilers. Here, I need to cast away the 
“const-ness” so the caller is shielded from this const-ignorance. Back 
in my main function, I can execute SQL statements quite simply:

execute(s, L"create table Hens ( ... )");

But what if I execute a SQL statement that returns a result set? 
What if I execute something like this:

execute(s, L"select Name from Hens where Id = 123");

In that case, the statement eff ectively becomes a cursor and I need 
to fetch the results, if any, one at a time. Th at’s the role of the SQLFetch 
function. I might want to know whether a hen with the given Id exists:

if (SQL_SUCCESS == SQLFetch(s.get()))
{
  // ...
}

On the other hand, I might execute a SQL statement that 
returns multiple rows:

execute(s, L"select Id, Name from Hens order by Id desc");

In that case, I can simply call the SQLFetch function in a loop:
while (SQL_SUCCESS == SQLFetch(s.get()))
{
  // ...
}

Getting the individual column values is what the SQLGetData 
function is for. Th is is another generic function, and you need to 
precisely describe the information you expect as well as the buff er 
where you expect it to copy the resulting value. Retrieving a fi xed-
size value is relatively straightforward. Figure 2 shows a simple 
function to retrieve a SQL int value.

Th e fi rst parameter in SQLGetData is the statement handle, the 
second is the one-based column index, the third is the ODBC type 
for a SQL int and the fourth is the address of the buff er that will 
receive the value. Th e second-to-last parameter is ignored because 
this is a fi xed-size data type. For other data types, this would indi-
cate the size of the buff er on input. Th e fi nal parameter provides the 
actual length or size of the data copied into the buff er. Again, this 
isn’t used for fi xed-size data types, but this parameter may also be 
used to return status information such as whether the value was null. 
Retrieving a string value is only slightly more complicated. Figure 
3 shows a class template that will copy the value into a local array.

Notice how in this case I need to tell the SQLGetData function 
the actual size of the buff er to receive the value, and I need to do 
so in bytes, not characters. If I queried for the name of a particular 
hen and the Name column holds a maximum of 100 characters, I 
might use the get_string function, as follows:

if (SQL_SUCCESS == SQLFetch(s.get()))
{
  wchar_t name[101];
  get_string(s, 1, name);
  TRACE(L"Hen’s name is %s\n", name);
}

Finally, while I can reuse a connection object to execute mul-
tiple statements, once the statement object represents a cursor, 

template <unsigned Count>
auto get_string(statement const & s,
                short const column,
                wchar_t (&value)[Count])
{
  auto const r = SQLGetData(s.get(),
                            column,
                            SQL_C_WCHAR,
                            value,
                            Count * sizeof(wchar_t),
                            nullptr);

  sql_check(r, SQL_HANDLE_STMT, s.get());
}

Figure 3 Retrieving a SQL String Value
auto native_error = long {};
wchar_t state[6];
wchar_t message[1024];

auto record = short {};

while (SQL_SUCCESS == SQLGetDiagRec(type,
                                    handle,
                                    ++record,
                                    state,
                                    &native_error,
                                    message,
                                    _countof(message),
                                    nullptr))
{
  // ...
}

Figure 4 Retrieving Diagnostic Error Information



11April 2014msdnmagazine.com

I need to be sure to close the cursor before executing any sub-
sequent statements:

VERIFY_(SQL_SUCCESS, SQLCloseCursor(s.get()));

Ironically, this isn’t a resource management issue. Unlike the 
challenges with open connections, the SQLFreeHandle function 
doesn’t care if the statement has an open cursor. 

I’ve avoided talking about error handling up until now because 
it’s a complex topic in its own right. ODBC functions return error 
codes, and it’s your responsibility to check the value of these return 
codes to determine whether the operation 
succeeded. Usually the functions will return 
the SQL_SUCCESS constant indicating 
success, but they can also return the SQL_
SUCCESS_WITH_INFO constant. Th e latter 
is equally successful but implies further diag-
nostic information is available if you wish to 
retrieve it. Typically, only in debug builds do 
I retrieve the diagnostic information when 
the SQL_SUCCESS_WITH_INFO constant 
is returned. Th is way I can gather as much 
information as possible in development and 
not waste cycles in production. Of course, I 
always gather this information when an error 
code is actually returned. Regardless of the 
cause, the process by which the diagnostic 
information is retrieved is the same.

ODBC provides diagnostic information 
as a result set and you can retrieve the rows 
one at a time with the SQLGetDiagRec func-
tion and a one-based row index. Just make 
sure to call it with the handle of the object 
that produced the error code in question. 

Th ere are three principal bits of informa-
tion in each row: a native error code specifi c 
to the ODBC data source or driver; a short, 
cryptic, fi ve-character state code that defi nes 
the class of error to which this record might 
refer; and a longer textual description of the 
diagnostic record. Given the necessary buf-
fers, I can simply call the SQLGetDiagRec 
function in a loop to retrieve them all, as 
shown in Figure 4.

Windows Azure along with SQL Server 
provides an amazingly simple way to get 
started with hosted databases. Th is is partic-
ularly compelling as the SQL Server database 
engine is the same one C++ developers have 
known and used for years. While OLE DB 
has been scrapped, ODBC is more than up 
to the task and, in fact, is simpler and faster 
than OLE DB ever was. Of course, it takes 
a bit of help from C++ to make it all come 
alive in a coherent way. 

Check out my Pluralsight course, “10 Prac-
tical Techniques to Power Your Visual C++ 

Apps” (bit.ly/1fgTifi ), for more information about using Visual C++ to 
access databases on Windows Azure. I provide step-by-step instruc-
tions to set up and use database servers and bind columns to simplify 
the process of fetching rows of data, examples of how to simplify and 
modernize the error-handling process, and much more. 

KENNY KERR is a computer programmer based in Canada, as well as an author 
for Pluralsight and a Microsoft MVP. He blogs at kennykerr.ca and you can 
follow him on Twitter at twitter.com/kennykerr.

http://www.softfluent.com
www.bit.ly/1fgTifi
www.twitter.com/kennykerr
http://www.msdnmagazine.com
www.kennykerr.ca


Untitled-2   2 2/21/14   10:08 AM

http://www.aspose.com


Untitled-2   3 2/21/14   10:09 AM

http://www.aspose.com


msdn magazine14

Legacy code: can’t live with it, can’t live 
without it. And the better job you do with 
an app, the longer it will hang around. My 
very fi rst ASP.NET Web Forms app has 
been in use for a little more than 10 years. 
It’s fi nally getting replaced with a tablet 
app someone else is writing. However, in 
the meantime, the client asked me to add a 
new feature to it that will let the company 
start collecting right away some of the 
data the new version will gather.

Th is isn’t a matter of a simple fi eld or 
two. In the existing app—a complicated 
time sheet for tracking employee hours—
there’s a dynamic set of checkboxes 
defi ned by a list of tasks. Th e client main-
tains that list in a separate application. In 
the Web app, a user can check any number 
of items on that list to specify the tasks he performed. The list 
contains a little more than 100 items and grows slowly over time.

Now, the client wants to track the number of hours spent on each 
selected task. Th e app will be used for only a few more months, so 
it didn’t make sense to invest a lot into it, but I had two important 
goals regarding the change:

1.  Make it really easy for the user to enter the hours, which meant 
not having to click any extra buttons or cause postbacks.

2.  Add the feature to the code in the least invasive way 
possible. While it would be tempting to overhaul the 
10-year-old app with more modern tools, I wanted to 
add the new logic in a way that wouldn’t impact existing 
(working) code, including data access and the database.

I spent some time considering my options. Goal No. 2 meant 
leaving the CheckBoxList intact. I decided to contain the hours 
in a separate grid, but Goal No. 1 meant not using the ASP.NET 
GridView control (thank goodness). I decided to use a table and 
JavaScript for retrieving and persisting the task-hours data and I 
explored a few ways to achieve this. AJAX PageMethods to call the 
codebehind couldn’t be used because my page was retrieved using a 
Server.Transfer from another page. Inline calls, such as <%MyCode-
BehindMethod()%>, worked until I had to do some complex data 

validation (too diffi  cult to accomplish in 
JavaScript) that required a mix of client- 
and server-side objects. Th e situation also 
started getting ugly with the need to make 
everything touched by the inline call static. 
So I was failing at “least invasive.”

Finally, I realized I should really aim 
to keep the new logic totally separate and 
put it into a WebAPI that would be easy 
to access from JavaScript. Th is would help 
keep a clean separation between the new 
logic and the old.

Still, I had challenges. My prior expe-
rience with Web API was to create a new 
MVC project. I started with that, but 
calling methods in the Web API from the 
existing app was causing Cross Origin 
Resource Sharing (CORS) issues that 

defied every pattern I could find for avoiding CORS. Finally, I 
discovered an article by Mike Wasson about adding a Web API 
directly into a Web Forms project (bit.ly/1jNZKzI) and I was on my 
way—though I had many bridges yet to cross. I won’t make you 
relive my pain as I bashed, thrashed and fumbled my way to suc-
cess. Instead, I’ll walk you through the solution I ultimately reached.

Rather than present my client’s real application to demonstrate 
how I brought the new functionality into the old app, I’ll use a 
sample that tracks user preferences via comments about things 
they like to do: fun stuff . I’ll forgo the list of 100-plus items here; 
the form shows only a short CheckBoxList, as well as the addi-
tional work for data validation. And instead of tracking hours, I’ll 
track user comments.

Once I committed to the Web API, adding the validation method 
wasn’t a challenge at all. Because I was creating a new sample, I 
used the Microsoft  .NET Framework 4.5 and Entity Framework 6 
(EF) instead of .NET Framework 2.0 and raw ADO.NET. Figure 
1 shows the starting point of the sample application: an ASP.NET 
Web Form with a user name and an editable CheckBoxList of pos-
sible activities. Th is is the page to which I’ll add the ability to track 
comments for each checked item as shown by the sketched-in grid. 

Step 1: Add the New Class
I needed a class to store the new comments. I concluded that, 
given my data, it made the most sense to use a key composed of 

Adding New Life to a 10-Year-Old 
ASP.NET Web Forms App

DATA POINTS JULIE LERMAN

Code download available at msdn.microsoft.com/magazine/msdnmag0414.

Figure 1 Starting Point: A Simple ASP.NET 
Web Form with the Planned Addition

http://msdn.microsoft.com/magazine/msdnmag0414
www.bit.ly/1jNZKzI


15April 2014msdnmagazine.com

UserId and FunStuff Id to determine to which user and fun activity 
the comment would attach: 

namespace DomainTypes{
  public class FunStuffComment{
    [Key, Column(Order = 0)]
    public int UserId { get; set; }
    [Key, Column(Order = 1)]
    public int FunStuffId { get; set; }
    public string FunStuffName { get; set; }
    public string Comment { get; set; }
  }
}

Because I planned to use EF for persisting the data, I needed to 
specify the properties that would become my composite key. In EF, 
the trick for mapping composite keys is to add the Column Order 
attribute along with the Key attribute. I also want to point out the 
FunStuff Name property. Even though I could cross-reference my 
FunStuff  table to get the name of a particular entry, I found it easier to 
simply surface FunStuff Name in this class. It might seem redundant, 
but keep in mind my goal to avoid messing with the existing logic.

Step 2: Adding Web API to 
the Web Forms-Based Project
Th anks to Wasson’s article, I learned I could add a Web API con-
troller directly into the existing project. Just right-click the project 
in Solution Explorer and you’ll see Web API Controller Class as 
an option under the Add context menu. Th e controller that’s cre-
ated is designed to work with MVC, so the fi rst order of business 

is to remove all of the methods and add in my Comments method 
for retrieving existing comments for a particular user. Because I’ll 
be using the Breeze JavaScript library and have already installed 
it into my project using NuGet, I use Breeze naming conventions 
for my Web API Controller class, as you can see in Figure 2. I 
haven’t hooked the Comments into my data access yet, so I’ll begin 
by returning some in-memory data. 

Wasson’s article guides you to add routing to the global.asax 
file. But adding Breeze via NuGet creates a .config file with the 
appropriate routing already defi ned. Th at’s why I’m using the Breeze 
recommended naming in the controller in Figure 2.

Now I can call the Comments method easily from the client side 
of my FunStuff Form. I like to test my Web API in a browser to make 
sure things are working, which you can do by running the app and 
then browsing to http://localhost:1378/breeze/Breeze/Comments?U-
serId=1. Be sure to use the correct host:port your app is using.

Step 3: Adding Client-Side Data Binding
But I’m not done yet. I need to do something with that data, 
so I looked back to my previous columns on Knockout.js  
(msdn.microsoft.com/magazine/jj133816 for JavaScript data binding) 
and Breeze (msdn.microsoft.com/magazine/jj863129, which makes the 
data binding even simpler). Breeze automatically transforms the 
results of my Web API into bindable objects that Knockout (and 
other APIs) can use directly, eliminating the need to create addi-
tional view models and mapping logic. Adding the data binding is 
the most intensive part of the conversion, made worse by my still 
very limited JavaScript and jQuery skills. But I persevered—and 
also became a semi-pro at JavaScript debugging in Chrome along 
the way. Most of the new code is in a separate JavaScript fi le that’s 
tied to my original Web Form page, FunStuff Form.aspx.

When I was nearly done with this article, someone pointed out 
that Knockout is now a bit dated (“It’s so 2012,” he said), and many 
JavaScript developers are using the simpler and richer frameworks 
such as AngularJS or DurandalJS instead. Th at’s a lesson for me 
to learn another day. I’m sure my 10-year-old app won’t mind a 
2-year-old tool. But I’ll defi nitely be taking a look at these tools in 
a future column.

In my Web Form, I defi ned a table named comments with columns 
populated by fi elds of the data I’ll be binding to it with Knockout 
(see Figure 3). I’m also binding the UserId and FunStuff Id fi elds, 
which I’ll need later, but keeping them hidden.

The first chunk of logic in the JavaScript file that I called 
FunStuff .js is what’s known as a ready function and it will run as 
soon as the rendered document is ready. In my function, I defi ne 
the viewModel type, shown in Figure 4, whose comments property 
I’ll use to bind to the comments table in my Web Form.

Th e ready function also specifi es some startup code:
•  serviceName defi nes the Web API uri
•  vm is a short alias for viewModel
•  manager sets up the Breeze EntityManager for the Web API
•  getComments is a method that calls the API and 

returns data
•  ko.applyBinding is a Knockout method to bind the 

viewModel to the comments tables

namespace April2014SampleWebForms{
[BreezeController]  
public class BreezeController: ApiController  {
  [HttpGet]
  public IQueryable<FunStuffComment> Comments(int userId = 0)
    if (userId == 0){ // New user
      return new List<FunStuffComment>().AsQueryable();
    }
      return new List<FunStuffComment>{
        new FunStuffComment{FunStuffName = "Bike Ride",
          Comment = "Can't wait for spring!",FunStuffId = 1,UserId = 1},
        new FunStuffComment{FunStuffName = "Play in Snow",
          Comment = "Will we ever get snow?",FunStuffId = 2,UserId = 1},
        new FunStuffComment{FunStuffName = "Ski",
          Comment = "Also depends on that snow",FunStuffId = 3,UserId = 1}
      }.AsQueryable();    }
  }
}

Figure 2 BreezeController Web API

<table id="comments">
  <thead>
    <tr>
      <th></th>
      <th></th>
      <th>Fun Stuff</th>
      <th>Comment</th>
    </tr>
  </thead>
  <tbody data-bind="foreach: comments">
    <tr>
      <td style="visibility: hidden" data-bind="text: UserId"></td>
      <td style="visibility: hidden" data-bind="text: FunStuffId"></td>
      <td data-bind="text: FunStuffName"></td>
      <td><input data-bind="value: Comment" /></td>
    </tr>
  </tbody>
</table>

Figure 3 HTML Table Set Up for Binding with Knockout

http://msdn.microsoft.com/magazine/jj133816
http://msdn.microsoft.com/magazine/jj863129
http://www.msdnmagazine.com


msdn magazine16 Data Points

Notice that I’ve declared viewModel outside of the function. I’ll 
need access to it from a script in the .aspx page later, so it had to be 
scoped for external visibility.

Th e most important property in viewModel is an observable-
Array named comments. Knockout will keep track of what’s in the 
array and update the bound table when the array changes. The 
other properties just expose additional functions I’ve defined 
below this startup code through the viewModel.

Let’s start with the getComments function shown in Figure 5.
In the getComments function, I use Breeze to execute my Web 

API method, Comments, passing in the current UserId from a 
hidden fi eld on the Web page. Remember I’ve already defi ned the 
uri of Breeze and Comments in the manager variable. If the query 
succeeds, the saveSucceeded function runs, logging some info on 
the screen and pushing the results of the query into the comments 
property of the viewModel. On my laptop, I can see the empty table 
before the asynchronous task is complete and then suddenly the 
table is populated with the results (see Figure 6). And remember, 
this is all happening on the client side. No postbacks are occurring 
so it’s a fl uid experience for the user. 

Step 4: Reacting to Boxes Being 
Checked and Unchecked
Th e next challenge was to make that list 
respond to the user’s selections from the 
Fun Stuff  List. When an item is checked, 
it needs to be added or removed from 
the viewModel.comments array and the 
bound table depending on whether the 
user is adding or removing a checkmark. 
Th e logic for updating the array is in the 
JavaScript fi le, but the logic for alerting 
the model about the action resides in a 
script in the .aspx. It’s possible to bind 
functions such as a checkbox onclick to 
Knockout, but I didn’t take that route.

In the markup of the .aspx form, I 
added the following method to the page 
header section:

$("#checkBoxes").click(function(event) {
  var id = $(event.target)[0].value;
  if (event.target.nodeName == "INPUT") {
    var name = $(event.target)[0].parentElement.textContent;
    // alert('check!' + 'id:' + id + ' text:' + name);
    viewModel.updateCommentsList(id, name);
  }
});

Th is is possible thanks to the fact that I have a div named check-
Boxes surrounding all of the dynamically generated CheckBox 
controls. I use jQuery to grab the value of the CheckBox that’s 
triggering the event and the name in the related label. Th en I pass 
those on to the updateCommentsList method of my viewModel. 
Th e alert is just for testing that I had the function wired properly. 

Now let’s take a look at the updateCommentsList and related 
functions in my JavaScript fi le. A user might check or uncheck an 
item, so it needs to be either added or removed.  Rather than worry 
about the state of the checkbox, in my exists method I just let the 
Knockout utils function help me see if the item is already in the 
array of comments. If it is, I need to remove it. Because Breeze is 
tracking changes, I remove it from the observableArray but tell the 
Breeze change tracker to consider it deleted. Th is does two things. 
First, when I save, Breeze sends a DELETE command to the data-
base (via EF in my case). But if the item is checked again and needs 
to be added back into the observableArray, Breeze simply restores it 

in the change tracker. Otherwise, because 
I’m using a composite key for the iden-
tity of comments, having both a new 
item and a deleted item with the same 
identity would create a confl ict.  Notice 
that while Knockout responds to the push 
method for adding items, I must notify it 
that the array has mutated in order for it 
to respond to removing an item. Again, 
because of the data binding, the table 
changes dynamically as checkboxes are 
checked and unchecked.

Notice that when I create a new item, 
I’m grabbing the user’s userId from the 
hidden fi eld in the form’s markup. In the 
original version of the form’s Page_Load, 
I set this value aft er grabbing the user. 

var viewModel;
$(function() {
  viewModel = {
    comments: ko.observableArray(),
    addRange: addRange,
    add: add,
    remove: remove,
    exists: exists,
    errorMessage: ko.observable(""),
  };

  var serviceName = 'breeze/Comments';
  var vm = viewModel;
  var manager = new breeze.EntityManager(serviceName);
  getComments();
  ko.applyBindings(viewModel, document.getElementById('comments'));

 // Other functions follow
});

Figure 4 Beginning of FunStuff.js

function getComments () {
  var query = breeze.EntityQuery.from("Comments")
    .withParameters({ UserId: document.getElementById('hiddenId').value });
  return manager.executeQuery(query)
    .then(saveSucceeded).fail(failed);
}

function saveSucceeded (data) {
  var count = data.results.length;
  log("Retrieved Comments: " + count);
  if (!count) {
    log("No Comments");
    return;
  }
  vm.comments(data.results);
}
function failed(error) {
  vm.errorMessage(error);
}

Figure 5 Querying Data Through the Web API Using Breeze

Figure 6 Comments Retrieved from Web API 
and Bound with the Help of Knockout.js



Untitled-2   1 2/6/14   10:45 AM

http://www.DevExpress.com/Touch


msdn magazine18 Data Points

By tying the UserId and FunStuff Id to each item in the comments, 
I can store all of the necessary data along with the comments to 
associate them with the correct user and item.

With oncheck wired up and the comments observableArray 
modified in response, I can see that, for example, toggling the 
Watch Doctor Who checkbox causes the Watch Doctor Who row 
to display or disappear based on the state of the checkbox. 

Step 5: Saving Comments 
My page already has a Save feature for saving the checkboxes marked 
true, but now I want to save the comments at the same time using 
another Web API method. Th e existing save method executes when 
the page posts back in response to the SaveTh atStuff  button click. Its 
logic is in the page codebehind. I can actually make a client-side call 
to save the comments prior to the server-side call using the same 
button click. I knew this was possible with Web Forms using an 
old-school onClientClick attribute, but in the timesheet application 
I was modifying, I also had to perform a validation that would 
determine if the task hours and time sheet were ready to be saved. 
If the validation failed, not only did I have to forget about the Web 
API save, but I had to prevent the postback and server-side save 
method from executing as well. I was having a hard time working 
this out using onClientClick, which encouraged me to modernize 
again with jQuery. In the same way I can respond to the CheckBox 
clicks in the client, I can have a client-side response to btnSave being 
clicked. And it will happen prior to the postback and server-side 
response. So I get to have both events on one click of the button, like so:  

$("#btnSave").click(function(event) {
  validationResult = viewModel.validate();
  if (validationResult == false) {
    alert("validation failed");
    event.preventDefault();
  } else {
    viewModel.save();
  }
});

I have a stub validation method in the sample that always 
returns true, though I tested to be sure things behave properly if it 
returns false. In that case, I use the JavaScript event.preventDefault 
to stop further processing. Not only will I not save the comments, 
but the postback and server-side save will not occur. Otherwise, 
I call viewModel.save and the page continues with the button’s 
server-side behavior, saving the user’s FunStuff choices. My 
saveComments function is called by viewModel.save, which asks 
the Breeze entityManager to execute a saveChanges:

function saveComments() {
  manager.saveChanges()
    .then(saveSucceeded)
    .fail(failed);
} 

This in turn finds my controller SaveChanges method and 
executes it:

[HttpPost]
  public SaveResult SaveChanges(JObject saveBundle)
  {
    return _contextProvider.SaveChanges(saveBundle);
  }

For this to work, I added Comments into the EF6 data layer and 
then switched the Comments controller method to execute a query 
against the database using the Breeze server-side component (which 
makes a call to my EF6 data layer). So the data returned to the client 

will be data from the database, which SaveChanges can then save 
back to the database. You can see this in the download sample, which 
uses EF6 and Code First and will create and seed a sample database.

JavaScript with a Little Help from My Friends
Working on this project and on the sample built for this article, I 
wrote more JavaScript than I ever had before. It’s not my area of 
expertise (as I’ve pointed out frequently in this column), though I 
was quite proud of what I had accomplished. However, knowing 
that many readers might be seeing some of these techniques for 
the fi rst time, I leaned on Ward Bell from IdeaBlade (the creators 
of Breeze) for an in-depth code review, along with some pair pro-
gramming to help me clean up some of my Breeze work as well as 
JavaScript and jQuery. Except perhaps for the now “dated” use of 
Knockout.js, the sample you can download should provide some 
good lessons. But, remember, the focus is about enhancing an old 
Web Forms project with these more modern techniques that make 
the end-user experience so much more pleasant. 

JULIE LERMAN is a Microsoft  MVP, .NET mentor and consultant who lives in the 
hills of Vermont. You can fi nd her presenting on data access and other Microsoft  
.NET topics at user groups and conferences around the world. She blogs at 
thedatafarm.com/blog and is the author of “Programming Entity Framework” 
(2010) as well as a Code First edition (2011) and a DbContext edition (2012), all 
from O’Reilly Media. Follow her on Twitter at twitter.com/julielerman and see 
her Pluralsight courses at juliel.me/PS-Videos.

THANKS to the following Microsoft technical experts for reviewing this article: 
Damian Edwards and Scott Hunter

function updateCommentsList(selectedValue, selectedText) {
  if (exists(selectedValue)) {
    var comment = remove(selectedValue);
    comment.entityAspect.setDeleted();
  } else {
  var deleted = manager.getChanges().filter(function (e) {
    return e.FunStuffId() == selectedValue
  })[0];  // Note: .filter won't work in IE8 or earlier
  var newSelection;
  if (deleted) {
    newSelection = deleted;
    deleted.entityAspect.rejectChanges();
  } else {
    newSelection = manager.createEntity('FunStuffComment', {
      'UserId': document.getElementById('hiddenId').value,
      'FunStuffId': selectedValue,
      'FunStuffName': selectedText,
      'Comment': ""
    });
  }
  viewModel.comments.push(newSelection);    }

  function exists(stuffId) {
    var existingItem = ko.utils.arrayFirst(vm.comments(), function (item) {
      return stuffId == item.FunStuffId();
    });
    return existingItem != null;
  };
  function remove(stuffId) {
    var selected = ko.utils.arrayFirst
    (vm.comments(), function (item) {
    return stuffId == item.FunStuffId;
    });
    ko.utils.arrayRemoveItem(vm.comments(), selected);
    vm.comments.valueHasMutated();
  };

Figure 7 JavaScript for Updating the Comments List 
in Response to a User Clicking on the Checkboxes

http://www.juliel.me/PS-Videos
www.thedatafarm.com/blog
www.twitter.com/julielerman


*  Offer valid for a limited time only. First year of .com domain registration is $0.99, then $14.99/year. Offer valid ONLY for new contracts on Instant Domain packages. 
Limit one $0.99 .com domain per contract per customer. 1&1 and the 1&1 logo are trademarks of 1&1 Internet, all other trademarks are the property of their respective owners. 
©2014 1&1 Internet. All rights reserved.

 Value-Added Services 
FREE Private Domain Registration, up to 
5 sub-domains and free domain redirection

 24/7 Customer Support

$0.99 First year*

DOMAINS | E-MAIL | WEBHOSTING | eCOMMERCE | SERVERS

Visit 1and1.com or call 1-877-461-2631 1and1.com

®

Your Domain Name here .com

Untitled-2   1 3/7/14   11:14 AM

www.1and1.com


msdn magazine20

C# developers have a rich development environment 
that emphasizes productivity over performance. I suspect this 
statement might be met with some skepticism from C# developers 
as performance is excellent and exceeds what most of us need to 
accomplish our goals. Th us, for C# developers, modern C++ may 
not off er a return on investment as productivity may suff er even 
with all of the new improvements the new C++ off ers. However, 
the beauty of Windows Store app development is that you can take 
an agile approach to building reusable components that’s produc-
tive, using the best of both languages to phase in C++ components 
where they’re most useful.

This article is intended for C# developers who want to tap 
into the power and performance that modern C++, C++/CX 
(component extensions), and the Windows Runtime C++ Tem-
plate Library (WRL) off er (all referred to as C++ here for brevity). 
It’s also intended for developers who, like me, plan on leveraging 
the power of the Windows Azure cloud. Applications built with 
C++ not only have the potential to extend tablet and phone battery 
life but should also result in lower cost due to better performance 
per watt, per transistor and per cycle (see “C++ and Beyond 2011: 
Herb Sutter – Why C++?” at bit.ly/1gtKQya).  

Th e problem C# developers encounter in attempting to learn 
C++ is that most of the documentation, blogs and other material 
available refl ect the perspectives of experienced C++ developers, 
not the C# developer (who generally doesn’t want to build a 
single-project console application). To further complicate matters, 
C++ is undergoing a renaissance, so much of the current material 
could be obsolete, not apply or distract you from the newer, more 
effi  cient coding techniques. To discern what’s valid and what isn’t, 
you need a basic understanding of the domain, indicated by acro-
nyms such as C++, C++/CLI, C++/CX, WRL, STL, ATL, WinRT 
and so on. Without this understanding you could end up burning 
valuable cycles learning material that doesn’t apply to your 
objective, which is, most likely, ramping up quickly to build C++ 
Windows Store applications.  

My interest in C++ came about when I hit the C# performance 
ceiling with a use case that had to process a complex algorithm on 

WIN DOWS STOR E

Windows Store C++ 
for C# Developers: 
Understanding 
the Domain
Bill Kratochvil

This article discusses:
• The WinRT type system

• Libraries

• Modern C++

• Setting up Visual Studio to use the Windows Store application 
C++ project templates

Technologies discussed:
 C#, C++, C++/CX, Windows Runtime C++ Template Library, 
JavaScript

Code download available at:
msdn.microsoft.com/magazine/msdnmag0414

http://msdn.microsoft.com/magazine/msdnmag0414
www.bit.ly/1gtKQya


21April 2014msdnmagazine.com

more than 200,000 records. My research took me to the webcast, 
“Taming GPU Compute with C++ AMP” (bit.ly/1dajKE6), which presented 
a demo application that changed my perception of performance for-
ever. Had I had experience with C++ AMP, and been able to create 
a proof of concept to present to the team, I suspect they would’ve 
gladly accepted a C++ component when they saw an 11-second pro-
cess reduced to milliseconds. Unfortunately, the magnitude of C++ 
information (and disinformation) available, coupled with my lack 
of C++ domain knowledge, had me stumbling into a vast library 
of information, searching for the shelf that contained the books 
pertaining to C++ development for Windows Store applications. 

Th e purpose of this article is not to teach you C++, but to point 
you to that shelf. Th is will ensure your learning path is clear, free 
of muddied waters, and you’re not distracted by the blizzard of 
information that can actually block your progress and cause you 
unnecessary frustration. Aft er reading this article, you should be 
better equipped to benefi t from applicable C++ material, such as 
the more recent MSDN Magazine articles, libraries and blogs about 
C++ development.

Th e code download for this article is a Visual Studio solution con-
taining three apps based on diff erent development platforms: C#, C++ 
and JavaScript. As you’ll see, within this solution I abbreviate Windows 
Store applications as Wsa for my project names (this is not an offi  cial 
abbreviation). Th e WsaJavaScript application is based on the MSDN 
tutorial, “Walkthrough: Creating a 
Basic Windows Runtime Compo-
nent Using WRL” (bit.ly/1n1gvV2). You’ll 
see that I simply added two buttons 
labeled “Data Binding” and “Data 
Binding (Reused)” to this tutorial 
application (as shown in Figure 1). 
Note that both the WsaXamlCpp 
(C++/CX) and WsaXamlCs (C#) 
applications in this solution use the 
same libraries and yield the same 
exact results.

The C# and C++/CX appli-
cations demonstrate just how 
powerful Windows Store applica-
tion development really is—you 
can seamlessly reuse components 
between platforms, as the right 
pane of Figure 1 shows). For exam-
ple, as you review the code, you’ll 
fi nd both the C# and C++/CX 

demo applications use the same XAML, which was copied and pasted 
into each application’s respective view (DataBindingView). Like-
wise, you’ll see they use the same presenter (DataBindingPresenter), 
view model (MainViewModel), data access layer (MockDataDal) 
and logger (DebugLogger). With Windows Store application 
development, you can create C# or C++ libraries in either language, 
so you can step into C++ development at your own pace, and 
replace less effi  cient C# algorithms with high-performance C++ 
AMP code with minimal productivity loss.

Productivity shines because you can recycle all of your useful 
code. For example, the logger for both applications (see the output 
window at the bottom of Figure 2) is a C# component that resides 
in the C# WsaWrcCs project. I didn’t have to invest time building 
a C++ logger, which has negligible impact on performance, and 
could focus on more critical areas. Figure 2 also reveals there’s little 
diff erence between the C# and C++/CX code in the DataBinding-
Presenter class; this class contains most of the application’s code as 
all other logic resides in the shared components (you’ll fi nd little 
code in both application projects). 

Besides showing off  the power of Windows Store application 
development, the solution presented here provides a sandbox in which 
you can start C++ development. Where most tutorials and examples 
provide code for a console app (having little value in a Windows Store 
application environment), this solution gives you sample code in the 
applicable project type in which you’re interested—modern C++, 
WRL or C++/CX. You can see how your C++ code can be easily 
accessed by the C# application.

While I’m going to discuss the C++ domain topics applicable to 
Windows Store app development, they won’t be covered in great 
depth here. However, the following should provide a baseline from 
which you can continue your research, and I’ll provide some links 
so you can drill down into the details, when applicable. Th e point 
of this exercise is to help you focus on the key topics you need to 
understand, eff ectively fi ltering out the magnitude of information 

Figure 1 Three Application Views (Applications Shown in Green, Libraries in Purple, Use 
Cases in Gray)

C# developers have a rich 
development environment that 

emphasizes productivity 
over performance.

www.bit.ly/1dajKE6
www.bit.ly/1n1gvV2
http://www.msdnmagazine.com


msdn magazine22 Windows Store

that doesn’t apply. I want to acknowledge the Microsoft C++ 
development team, as they were instrumental in helping me nav-
igate through the massive library of information to fi nd the shelf 
I needed so I could be productive in my journey to becoming a 
Microsoft  C++ developer.

Windows Runtime (WinRT)
The WinRT type system lets you use a variety of languages to 
access Windows APIs (that are exposed as WinRT types) and 
to write apps and components using the same technology. The 
Windows Runtime is based on an Application Binary Interface 
(ABI); a standard for connecting components, as well as APIs. 

What you see in Figure 1 is the seamless integration of diff erent 
development platforms: C#, C++, and C++/CX transparently 
being used by JavaScript, C# and C++ Windows Store applica-
tions. For this to be possible there has to be a standard interface 
all development languages adhere to so they can use the compiled 
code.  To achieve this, the WRL and WinRT component projects 
each generate a .winmd fi le that serves as a cross-language header 
fi le. Note that the .winmd fi le is essentially a CLI metadata fi le (so 
it can be viewed with ILSpy).

You produce and consume the ABI using C++/CX, WRL, C# and 
JavaScript (or any other language that adds support for the WinRT 
ABI). As a C# developer your inclination might be to write all of 
your code using C++/CX, as it’s closest to what you’re accustomed 
to using,  but you should minimize the use of WinRT as much as 
possible, and strictly limit it to the ABI layer. For example, your code 
should leverage the power of C++ using only C++/CX when neces-
sary to cross the ABI. Consistent with its design and purpose, you’ll 

fi nd that C++/CX contains only a small subset of functions for its 
components, that is, String will be missing most of the functions 
to which you’re accustomed and may need, as it was not intended 
to be a stand-alone development language. Understanding the ABI 
and its constraints will help you in your C++/CX development. I 
recommend reviewing the Channel 9 videos on the topic, such as 
“Under the Covers with C++ for Metro-Style Apps” (bit.ly/1k7CWLq).

Libraries
Th e Standard Template Library (STL) is the most important library 
for C++ users. Templates and generics both answer the question, 
“How do you build type-safe generic containers?” It’s templates in 
C++ and generics in C#, and though the syntax is somewhat sim-
ilar, they’re pretty diff erent concepts. Templates are specialized at 
compile time. Generics are specialized at run time. As for C++/CLI, 
they’re diff erent enough in that they have diff erent keywords and 
syntaxes. From a C# perspective, if you approach templates like 
you do generics you’ll fi nd they’re somewhat familiar.  

As the MSDN Library documentation (bit.ly/1bZzkTB) indicates, the 
STL establishes uniform standards for the application of iterators to 
STL containers or other sequences you defi ne, by STL algorithms 
or other functions you define. This is a common definition of 
the STL, which means, of course, you’ll need to understand what 
algorithms, iterators and containers are. I won’t delve into these 
here, but they’re well documented in the MSDN Library.

Keep in mind the C++ STL isn’t the same thing as the C++ Standard 
Library. According to MSDN Library documentation, the Standard 
C++ Library in Visual Studio 2013 is a conforming implementation 
from which a C++ program can call on a large number of func-

tions. These functions perform 
essential services such as input 
and output and provide effi  cient 
implementations of frequently used 
operations (bit.ly/1eQkPlS). 

The Active Template Library 
(ATL) is a set of template-based 
C++ classes that lets you create 
small, fast COM objects. It has spe-
cial support for key COM features, 
including stock implementations, 
dual interfaces, standard COM 
enumerator interfaces, connection 
points, tear-off interfaces and 
ActiveX controls (bit.ly/1engnjy). It’s 
important to know that only a small 
subset of COM and the WINAPI 
are supported in a WinRT appli-
cation. Th e WRL is better suited 
for WinRT applications.

The WRL is like a simplified 
ATL for the Windows Runtime. 
It consists of a set of headers 
and templates that can help you 
develop WinRT classes using stan-
dard C++ capabilities. It eliminates Figure 2 C++/CX and C# Code Using the Same View Model, Data Access Layer and Logger

www.bit.ly/1k7CWLq
www.bit.ly/1bZzkTB
www.bit.ly/1eQkPlS
www.bit.ly/1engnjy


ement1); areaSeries Add(seriesElement2); areaSeries Add(seriesElement3); // Add series to the plot area plotArea Series Add(areaSeries); //page Elements Add( new LayoutGrid() ); // Add the page elements to the page AddEAement1); areaSerieies.AAdd(se(s rriesElement2t2); a) reaSeries.AdA d(seriesElement3); // Add series to the plot area plotArea.Series.Add(areaSeries); //page.Elemenem ts.Add( ddd( new ne LaLayyoutGrid() ); // A/ dd the page elements to the page AddEA

s, 240, 0); AddEAN1AN 3SupSup5(pa5(p ge.Elemeentnts, 480, 0); AdddUPCVersionA(page.Elemene ts, 0, 135); AddUPCVersionASup2(page.Elements, 240, 135); AdddUPCddUPCd CVerssionAionAo Sup5((page.Elemennts, t 480, 135); AddEAN8(page.Elements, 0,

.Elements, 480, 2270);; AddddUUPCVersionE(papage.Elementts, 0, 405); AddUPCVersionESuE p2(page.Elements, 240, 405); AddUPCVersionESup5(pageage.Ele.Elelemmments, 4s, 48800, 4405); // AAdd the page toe t  the document document.Pages.Add(pa

CaptionAndRectanga lee(elemeements, “EAN/JA/JAN 13 Bar Codde”, x, y, 204, 99); BarCode barCode = new Ean13(“123456789012”, x, y + 21); barCode.ode.X +=X +X +=X +  ((2004 -4 - baarCoode.GettSymbolWidth()h ) / 2; elements.Add(barCode); } private vovo

dRectangle(elemente s,, “EANEAN/JAN 13 Bar Car Code, 2 digit supplement”, x, y, 204, 99); BarCode barCode = new Ean13Sup2(“12 234556789678 0121212”, 2”, x, yy + 2+ 211); 1); barCoode.XX += (204 - barCode.GetSymbolWidth()) / 2; elements.Add((barC

ts, float x, float yy) { A{ AddCaCaptionAndRectanangle(elements, “EAN/JAN 13 Bar Code, 5 5 digit supplement”,  x,  y,  204,  99);                                 BaB rrCodee barrCode == new Ean13SupS 5(“12345678901212345”, x, y + 21); ba

s.Add(barCode); }  } pprivate te vooid AddUPCVPCVersiers onA(Group elements, float x, float y) {Add{ CaptionAndRectangle(elements,  “, UPC  VersVersVersVersion ionoi A Baar Cr Coode”, x, y,y, 204, 99);; BarCoode barCode = new UpcVersionA(“12345678901”, xx, y +

s.Add(barCode); }  } pprivate te vooid AddUPCVPCVersiers onASup2(Group elements, float x, floato  y) { AddCaptionAndRectangle(elementm                        ““UPCC Version E Bar Code, 2 digit supplement”, x, y, 204, 94 9); BarCoode od

21) ; barCode.X ++= (2= ( 04 - barba Code.GeetSymbymbolWidth()) /  2; elements.Add(barCode); e }  private void  AddUPCVersionASSSSuup5(up5(u                                                                           Group elements,n  float x, flfloaflo t VV

digit supplement”,t”  xx, y, 22004, 99); BarCodeCode bbarCode = new UUpcVep rsionASuAS p5(“12343 567890112345”, x, y + 21); bbarCarCode.Xde.X                                                              += (204 - barCode.GetSymboom lWidth()) / 22; eelele

t x, float y) { AddCapdCaptionnAndRAnd ectangle(eleelemments, “EAN/JANN 88 Bar Code”,de”, xx, y, 204, 0 99); BarCode barCode = nnew Eew Ean8(an8(n8n8 “1                                                  2345670”, x, y + 21); OpenFileileDiala og fileDie aloogoglo  =

g.Filter = “Adobeob  PDPDF fileess (*.pdf)|*.pdf|Alll FileFiles (*.*)|*.*”;  if (fileDieD alog.SShowDiialog() == DialogResult.OK)   {   {   pdfVpdfVf ieweewer.OpOpr.OpOpen                                    (fifileDialogalog.FilleName, “”);  }  SaveveFileDialog saveFaveFileileDDialoog = neneww Sav

Dialog.Filter == “AdoAdobe PPDF fiDF files (*.pdff)|*.pdpdf|A|All Files (*.*)|*.*”;”;  iff (saveFFileDialolog.Showh Dialog() ==DialoalogResgResRee ult..OK)OK) OK) { pdfVfVView   .SSaveAsve (sav(saveFieFileDia

printer = pdfViewViewer.Per rinterr;  pprinter.PriintWiW thDialog();  }  elsee  {  MesssageBox.SShoww(“Please opeopen a n a fifile to pto p rintrinrint”)”);  }OpenFin le                                  DDialoog fileDieD alogalog = new OpenFileDDialog();  fileDiaDialog.og Tittle = e e = e “Opepen File Dl

les (*.*)|*.*|Addobe Pe PDF files es (*.p*.pdf)|*.pdddf”;  if  i (fifileDialog.ShowwDialalog() === DialogResult.ult OK)  {  {  DynaDynamicPDFVDFVDFVDFViewiewewerClass test e =                                  neew DynammiccPDFViewerClass(();  PPDFPrinter ter pprinp ter er r = te= ttet st.OpenFFileFo

= File.ReadAAllByteBytes(@”C:\M:\MyDyDoc.pdff””);  //u// sing System.Runntimme.Inttent ropServicces;GCHaGCHandlendledd  gch=GCH= CHaananddla e.Aloc(conteents,                                             GCHandleTTypee.Pinnedd);  )  IIntntPtrPtr cooncontentsIntPtr = g

tents.Lengthh, “”);“”);   A AddCaCaptioonAndReReectanglan ee(pageElementts, “BBBookkmark k Pagee E Elemelemeent:”nt:”, x,,  y);; pa pagaapageEeEleemeents.Add(newtesw t                                      Bookmookmaark(“Bookmarked TextTextt”, x + 55, y , y, yy ++ 2+ 20+ , pap rentre OutlO ine)); p) a

215, 10, Fonnt.TTimemesRomanma , 1010)); } prprrriivate vooid AddCiirclercle(GGro(G up paageElemeennnts,nts  floafloat x,x  floafloat yt y)t y) { / { /////Add/Add/A ss a circlt to the pap ge                                                                       Eleemenmentenents AddCapdCapCaCadCaptiont AndRdRectae

Add(new Cirrcle(x e(x ++ 112.5f5f, y ++ 50f, 1007.5f, 300f, RgbColoolor.RRRed, RgbbbColor.Bor.Bluee,lue  2, LineL eStyylylly e.DaDae shLaLs rge))); } pprivate void AdA d               FormatteeddTexxtAreea(Groupp paageElements, flofl aat x, fl float yy)) { ) // A// AAdds dds a fofoa rmatted textte  a

mic</i><b>PDFPDF</b>/b>&tm; GGenerator vvv666.0 6 for ..NETNET has has a forrmattted ttetext arrea pea paaage a “ + “ “ele“ele“eleeeemmmentm . ThThis prroviddes rich fororm   m   atting ssuppupport for texext that appap eears in the doocumment. You have “ + “+ “compcompletlete conco trolol ove ovevever 8 r paragraph 

left indentattionn, rigrighht indenentation, aligliggnnment, allollowing orphaaan linnes, aand whwhite ite “ + “spa“spaacece ppce pprereservata ion;  6 foont propropeerties: e <fonont fat f ce=’=’Timemes’>s’>font facece, <//fontt><font ppoinntSize=’6’>font “ + “s+ “size, </font>ont><fonont cocoocoot lor=lor=’FF0000’00’>c

 2 line prpropertieses: le leading, ag ndd leaddinngg type.ype. TText can also be rootateeed.</d.</< p>”;p>  FFororo mattmattmm edeedTeedTeTeextArx ea fformaormattedTTextAreArea = nnew FormattedTextTex Areare (formattat edHHtmll, x + 5, yy + 20, 215, 60, FonttFammily.Helveelvetictica, 9, fffalalsse);se);se);sssse)  //  // Sets the i

ddCaptionAAndReRectanct gle(e(pagepageElemeenntsnts, “F, “Fororrmarmattedtte TextT Areeae  Page ElElemenement:”,t:”,,, x, y); y); y)y AddCAdddCddCA aptionAnAndReectangnglele(pageElements, “Formatm tedTextAx rea OverOv flflow TText:”, x x + 2279, y); pageElementments.Add(foormarmattedTTTextAxttAAtArea)r ; // CrCrer ate

tArea overflowFoowFormatrm tedTdTextAArea == foormamatteddTdt extArea.GettOveerflowwwFormatmatteddTTexextAxx rea(rerea(re x + x 28284, y +y  200); pageElements.Add(overflowFormattedTextAArea)); } pprivate vooid AddImage(Group p pagpageElementsents, float t x, flo, at yy) { ) { // // A/ dd

ents, “Imagee PagePage Elementen :”, xx, y); IImmagemage imaaage =ge  new Imaage(SServvever.Mr.MapPattatth(“.h(“.“ ./I./Im./ agesages/DPDDFLogL o..png”), x + 112.5f, y + 50f, 0.24f); // Image is ssizzed and centeredd inn the rectangle immage.age SetBoundunds(21s(215, 5, 65 0); 0) image.VAVAAlign 

ge); } privatte void oid AAddLabela (Group pp ppageageElememments, float x, flfloat y) { /// A/ Adds as aa llabel tel t to tht e pappap gegeElemenementts AddCaptionAndRectangle(pageElemenm ts, “LabLa el & PPageNummbeeringLabel Page EElemments:”, x,x, y); y) striing g laabelTextxt = = “= ““Lab

aain page numbumberinering: %%CP%%CP%%% ofof  %%%T%%TP%%% pages.”; LLabel le abbel = nnew LLLew Laabel(labbelTeelTeeelTexxt, x + 5, y5  ++ 12, 220, 80, Font.TimesRoman, 12, Texe tAlign.C.Centter); label.Annglee = 8; PageNumbeeringgLabel pagepageNumLNumLabelab  = nnnewew Pw Page

, 12, TeextAlxtAligign.CentC er); paga eEleementntntss.Ad.Addd(paageNumLabel));); p paggeElemenments.Addddd(d(label)); } } privprpp ate voidoid A AddLine(Group pageElements, float x, floao t y) { /// Addds aa line to thethe pageElements AdddCCaptionAndRAndRRectanngleglen (pagpag( a eeElemments

+ 5,+  y ++ 20, x + 220, y + 8080, , 3, RRgbbColor.Gr.G eeen)); pageElemmementss.n Add(d(d new w Linee(x ++ 22 2200, yy ++ 20, x + 5,+ 5, y + 80, 3, RgbColor.Green)); } private void AdddLLink((Grouup pageEElemments, float x, floaat yy) { // Adds ads a link toto thethhe pagp eEleEleemen

ynynamicPDF.com.m ”; AAddCaddCaptioptionAAnddnAndRectanglan e((pageElementts, “LLink PaPagege Elemment:nt:”, xx, y);y); LLabel llabela  = new Label(text, x + 5, y + 20, 215, 80, font, 12,2  RggbCoolor.Blue)e); laabel.Underline = true;rue  Link link =k = newnew  LLinnk(x k(x ++ 5,5, y y ++ 20, 

on(o “httpp://www.dynnamicppddf.coomm””))); pageEeElemments..Add(Ad labbeel);l); ppagepagpageElementsnts.AAdd(link); k) } prp ivatee void AddPath(Group pageElements, float x, float y) { // AAdds a path to the pageElemeents ceeTe.DynamicamicicPPDPDF.PagegeElemlemlements.PatP h

20,0  RgbgbbColor.Blue, RgbCRgbCoolor.RRedd,  22, LineStyeS lee.Solidd, true); pathhh.Su.SubbPaths.A.Adddd(new Lw LineSineSubPaubPath(x + 215, y + 40)); path.SubPaths.Add(new CurveToSToSubPPathh(x + 1+ 08, y + 80, x + 160,, y ++ 800)); path.SubSubPSubPathssssh .AAAd.Add(new(ne  CurveS

ectecctanglangle(pageElemeents, “P“Path Ph Paage ge Element:””, x, yy);)  pageEEleEleEE meentss.AdAdd(pad(path));th  } pprivaate ve vooid AAddRectangle(Group pageElements, float x, float y) ororderede ddList = ordeo redLedList.GetOverFlowLo List((xx + x 5, y + 2+ 22000); AddCddCCCA aptiapa oonAndRect

2222 55, 1110); page.Eleements.Ats.Add(odd(ordrdrderr edList); x == 0; 0; y +=y ++=y +  118881 ; // CCCreaate e aan unorrderede  lisist UnUnordderedList unorderedList = new Unoro deredList(x + 5, y +y + 220, 4400, 900, Font.Ht.Helvetica, 10); uuunoorderredListst.Itte.I ms.Amms Am dd(“ddd(“FruiFruFFFrFruF tss”); unorder

eree ies(); pieSeries.DaataLababel = da; plotArea.Seeriesess.AAd.Add(pieSSSeriesss);es  ppieSeries.Elemelementss.AddAdd(27,7, “Website A”); pieSeries.Elements.Add.Ad (19, “Website e B”)); pieSerrieses.Elementmen s.Add(21, “WWebssite CC”); pieSpieSSerieeririees.Elemeneemmee ts[0s[0].Color = a

sess.Elemments[2].Color = auttogradient3;”unoro derreder ddSubLList2 == unoorderedList.Items[ms 1].SubLubLissts.AAddUnorderedSubList(); unorderedSubLu ist2.Items.Add(“dd(“Pottato”); unu ordeeredSubList2.Itemmms.A.Add(d(“Beaansansea ”);;; UUUnorU dereree dSubSu List subU

dSuedd bList(); subUnoUnorderedSubList.Items.As.AAdd(““d Lime”); subUUnorddereedSubList.Itemtems.Ads.Add(“Od(“Orangrange”);e”  Unorderd edSubList sus bUnorderd edSue bList2 = unnorddereedSubLisLi t.Items[ms 1].SubLists.s.AddUAAddUd norrdereddeddSubLSubLbList(st ); ssubUnbUnu oorderedSe ub

na”aa ); UUnorderederedSubList subUnordo erededSubLSu ist3st3 = uunnorderredSubLSubList2.Itet ms[00].Su.SubLisLists.As.AddUnd orderedSSubList(); subUnoU rderedSudSubList3.Items.AAdd((“Swweet Potao to”)); UUnorderedSredSubLubLiL st sst ubUUnordrdeeredSdSredSdSubList4 st4st = ununorderedSu

ubLSuSu ist444.Ite.Items.Am dd(“String Bean”n”); s; subUnbUnordeereedSubbList4..Itemms.Addd(“Lima BeanBean”); subUsubUnnorderedSubList4.Items.Add(“Kidney Bean”e ); x += 279; pagpage.EElemenntts.Addd(unorderedListst); u); ; nordno eredreddLisst = = uunordn ereddreddLisst..GetG Overv Flo

e.e.Elemeentsen , “Unordered List Page Ege Elemment On verflverflow:””, x, y,, 2255, 110); page.Elemementsents.AddAdd(un(unorderedList); } private void AddTextFt ield(Group pageEeElemlemennts, flfloaat x, flooatt y) { TextFFielddield  txt = new Tew extFextFieldeld(“txtfnafnaaame”,meme”,me”,  x +x + 20, 20, y + y +

tteaa dTeextArea(formattedHtml, x ++ 5, 5 y ++ 20, 202 215,15  60, FontFFamilyy.Heelvetica, 9, ffalse)se ; /// SetSets ths the ine dent property formattedTextArea.Style.Paragraph.IndeIn nnt = 1188; AddCaptCap ionAndRendRectanaa gle(eg pagepageep ElemElemE ents, “FFormamormattedttedtedtedTeTextArearea P

atteatat dTeextArea Overflow TeeText:”, x + 27 9, y9, y); p; pageEgeElements.AAdd(formformattedTextAArea); a) // CCreatea ee an overflow formatted text area for the overflow text FoFormmattedTtedTextAxt reaMMaxaxLeLengthngth = 9 = 9= 9; txtxtxtxxt1.B1.Bordeded rCorColor =r = RgbCololoColoor.Br.BBlaack; txttxt1.Ba1 Ba

MaMMM ximuum Lengthgth”; p; ageEEgeEElemeements.nts.Add(Add(txttxt1); TTextFex ieldd txt2 = neew TeextField(“txxtf2namename”, xx + 3+ 30, y + 30, 150, 40); txt2.DefaultValue = “This is a TexxtFtFieldd whiichh  goees tototot  the nexxt lit liline ine iif thff t e text et et xceexceeds wds wididth”; ”; ttxt2.xt2.xt2xt2 MMMultMu iLinLine = e = 

RgRR bCooolor.AliceBlueBluee; txt2.T2. oolTip == “M“Multiline”; ppageEElemennts.AAdd(ttxt2); AddCapCaptiont AndRAndRecctangle(pageElements, “TextField Form Page Element:”, x, x, y, 50450444, 8585); }; } prri vate voioidd AddComCCC boFibo eld(Group pap pageElgeElemeemenene ttts, ts float x, fl

, , y + 4000, 150,, 20 20)20); c; cb.Boro derCd olor = RgbColorr.BBlack; cb.BaackggrounndColor = RgbCRgbColoro .AliAliceBceBlue; cb.Font = Font.Helvetica; cb.FontSize = 12; cb.Itemsem .AAdd(“(“It(( em 1m 1”); ; ccb.IItemste .Add(“It““Item 2em 2”); ”); cb.Icb.Itemsems.Add(“Item 3em 3”)); cb.IItems

aaabbble”b ].SSeSeSeleleclected = true; cb.Edb itable = true; cb.ToToololTip = “Editable Coe Combo Box””; pa; pageElgeE emements.Add(cb); ComboBox cb1 = new ComboBox(“cmb1namame”, x + 303,030  y +y + 4440 40, 150, 200); c); cb1.Bb1.Bb1 ordeorderColrColoor = Rgbg Coloor.Blr.Br Br B ack;ack  cb1.Bac

.F..FFFontontSize = 12; cb1.Items.Add(“Item 1”); cb1.Items.AAdd(“Item 2em 2”); ccb1.Items.Add((“Itemem 3”); cb1.Items.Add(“Item 4”); cb1.Items.Add(“Non-Editable”);”); cb111.Items[“NNon-Eon-Editable”].Selecteccc ed =ed = tru true; ce; cb1 Eb1.EEditable e = fa= f lse;se  cb1.ToolT

eerrter.Coonvert(“http://www.google.com”, “Output.pdf”));Convverteer.Coonvert(GetDocD PathPath(“Do(“D cumentA.rtf”), “Output.pdf”);System.Diagnostics.Process..s SStartt(“Ot(“ uutpuutpuutputt.pdf”);”); AsyncCoConvernverrtter t aConaConvertverter =e  newe  AsyncCncConnverter(); aC

vveerted); aConverter.ConversionError += new ConversiionErroorEvventHHandler(aConveerteer_ConversionError); aConverter.Convert(@”C:\temp\DocumentA.rtA f””””, f , f @”C:C \temte p\OuO tputtputA.pdA.pdf”);f”); aCo aCoa nverter.Convert(ert @”C:\teme p\Dop\D cumentB

\Doc\D ummentC.rtf”, @”C :\temp\OutputC.pdf”); aConverrter.Coonverrt(“hhttp://www.yahoo.coo.com”, @”C:\Temp\yahoo.pdf”); ConvC ersionOptions ops optiontions =  nneewnew new ew Conversise onOpOptiontionoo s(72s(720, 70, 720, 72, 7 true); ceTe.DynaDynamicPm DF.CDF.Conveon rsiorsion Con.Co

outpou ut.pdf”, optionso ); ceTe.DynamicPDF.Conversion.CConveerter.ConvCon ert(“C:\\temp\\\Documocument2.docx”, “C:\\temp\\op\ utput.pdf”, optiptoptioptiop ons)ons); s; stringing sampleHple tml m = “<“<htmlhtml><bo><bob dydy><p>This is s a very simplee HTMLHTMLHTHT  strstrs ing iningin inclincincincludinud ng a g a g TT

( g[] g )                                                                                              

{{  

pp                                                                                             

gg g ( p p )                                                                                                                                                                                                                               

[ ]                                                                                                                                                                               

[ ]                                                                                                                                                                   

pp y y yyp                                                                                                 

HighhSecuSec rity securiturity y  new w HighhSecuurityy(“OOwnerPassword”, “U“ serPassword”)                                                                                                                                                                                                                                                               

yy ppy                                                                                      

ees y yy                                                                                                    

p                                                                                                                                                                

( p p )                                                                                                                     

pag p ( p pp )                                                                                                                                                                                                                            

p ()                                                  

}  

Untitled-1   1 9/8/11   11:56 AM

http://www.dynamicpdf.com


msdn magazine24 Windows Store

a massive amount of boilerplate code you’d otherwise need to add 
and reduces the line count required to roughly the same as C++/
CX. C++/CX is the way most developers are expected to produce 
and consume WinRT components, unless you need to do so in a 
code base that bans exceptions or has other special needs, or you 
simply prefer to avoid proprietary language extensions unless 
absolutely necessary. WRL is the lowest level of C++ development 
for interfacing to Windows Store applications. It does lack some 
facilities for building XAML components, so you should only use 
C++/CX or C# to create XAML components.

C++ 
Modern C++ (version 11 or higher) is signifi cantly diff erent from 
previous versions, outdating many current books, blogs and articles, 
so be careful. If something is using “new” or “delete,” it’s the old 
C++. Not that that’s obsolete or useless, and you won’t have to 
rewrite existing code, as C++11 plays well with existing code; you 
just won’t be leveraging the simplicity and effi  ciency of modern C++. 

C++/CX is a relatively C# developer-friendly way to author WinRT 
types. Th is language extension was created to make it easy to produce 
and consume WinRT types, but it isn’t required. In fact, you can use 
WRL to do the same, but not as easily or directly. Note that C++/
CX borrows the C++/CLI syntax, but targets a diff erent runtime.

C++/CLI generally isn’t used for Windows desktop development. 
Typically, it’s used only for managed code in extremely narrow 
circumstances. For example, some existing native code performs 
a task well and you want to expose it for easy use from managed 
code, but the interface you want to expose to managed code isn’t 
ideally exposed via COM or P/Invoke. Th e audience for C++/CLI 
is very, very small. I’ve noted it here only because of the similarities 
of the ^ (hat) notation and the potential for it to cause confusion 
as some CLI code samples won’t be compatible with C++/CX.

Both C++/CLI and Windows Store applications written with 
C++/CX use the hat notation. You can use WinRT components 
in Windows desktop (not Windows Store) applications with 
C++/CX, in which case you use the hat. You can also use WinRT 

components in both Windows Store and Windows desktop applica-
tions using C++, in which case the applications won’t use the hat.

When researching the Internet, it’s a good idea to precede your 
searches with “modern C++” or “C++/CX” to ensure you’ll be 
viewing applicable documentation.

A History Lesson
In the past, software reusability meant providing access to 
components without necessarily giving others access to the code. 
Th is could be done by providing a static linked library (.lib) fi le 
with a header (.h) fi le, which other developers could then use to 
link the .lib into diff erent applications—the header provided the 
interface and the library the compiled sourcecode.  

One of the inherent problems of this practice is the amount of 
memory and disk space it can take. For example, a 2MB library 
compiled into a soft ware suite of six applications takes 12MB of disk 
space. Of course, the average XT-compatible PC disk capacity at 
the time was 20MB. With the emergence of the DLL came the abil-
ity to share a single set of code among multiple applications. With 
this, the six applications now take only 2MB to use the same library.  

The details, pros and cons of static libraries versus DLLs are 
outside the scope of this article. You’ll fi nd exhaustive references 
to both libraries in MSDN Library documentation.

Static libraries and DLLs have a place in building modern C++ 
libraries. However, if you’re trying to build reusable components 
that can be easily accessed by JavaScript, C++ and C# Windows 
Store applications, you need to resist the knee-jerk reaction to 
select the Windows Store application DLL (to which C# developers 
are accustomed). As you’ll see later, it’s not the DLL as you know it. 
Instead, you’ll want to select the project template for the WinRT 
component (which I refer to as WRC). This is what Microsoft 
recommends, and it provides a development experience closest to 
the one to which you’re accustomed.

Project Templates
For C# developers, adding a new library is simple—you add a class 
library project and use it to build your interfaces, classes and so 
forth. Referencing class libraries is just as easy, as you simply add 
references to your class library project from your application or 
other class libraries—productivity at its best.

Unfortunately, building C++ libraries is far less straightforward 
and, as of this writing, you won’t fi nd a lot of documentation or 
examples on how to set up Visual Studio for the development of 
reusable components, in particular on confi guring the various avail-
able project template types. Th e following will help you set up Visual 
Studio to use the Windows Store application C++ project templates.

WinRT Component 
Th e MSDN Library documentation for “DLLs (C++/CX)” suggests 
that when you need to create a DLL for a Windows Store app, you 
should create it as a WinRT component by using the project template 
of that name (bit.ly/1iwL1Wg). As I noted, this option off ers the most 
familiar experience for adding and referencing libraries.   

As Figure 2 shows, there are a lot of similarities between C++/
CX and C#, so C# developers should be able to quickly ramp up 

import "inspectable.idl";
import "Windows.Foundation.idl";
import "ocidl.idl";
#define COMPONENT_VERSION 1.0

namespace Contoso {
  interface ICalculator;
  runtimeclass Calculator;

  [uuid(0be9429f-2c7a-40e8-bb0a-85bcb1749367), version(COMPONENT_VERSION), 
    exclusiveto(Calculator)]
  interface ICalculator : IInspectable
  {
    // msdn.microsoft.com/library/jj155856
    // Walkthrough: Creating a Basic Windows Runtime Component Using WRL
    HRESULT Add([in] int a, [in] int b, [out, retval] int* value);
    HRESULT AddStr([in] HSTRING a, [in] HSTRING b, [out, retval] int* value);
  }
  [version(COMPONENT_VERSION), activatable(COMPONENT_VERSION)]
  runtimeclass Calculator
  {
    [default] interface ICalculator;
  }
}

Figure 3 Contoso.idl

www.bit.ly/1iwL1Wg


Untitled-1   1 10/13/11   11:25 AM

http://www.nsoftware.com


msdn magazine26 Windows Store

to C++. Th e interesting thing about the WinRT component is that 
it’s transparent to C# and C++ Windows Store apps, giving C# 
developers a means to focus on both productivity and performance 
as the situation dictates. Th us, as I indicated earlier, if you want 
to reuse an existing C# Logger component in your C++ XAML 
Windows Store application, all you have to do is port the code into 
a C# WRC project and you’re done. You can now reference it from 
both C++ and C# applications (as I’ve done in the sample solution). 

Keep in mind that because the ABI does impose some restrictions, 
such as requiring classes to be sealed, you’ll have to look at development 
from a new angle, one that emphasizes “composition over abstraction,” 
which lends itself nicely to building composite applications. 

WRL Class Library Project Template
A WRL Class Library project template is a set of user-defi ned classes 
built using the WRL. Unfortunately, WRL tutorials and explanations 
can be quite daunting. As an introduction to WRL and understanding 
the WRL Class Library project template, I recommend you follow 
the tutorial “Walkthrough: Creating a Basic Windows Runtime 
Component Using WRL” (bit.ly/1n1gvV2). You’ll be impressed at how, 
with just a few lines of code, you can access your C++ code from a 

JavaScript application by simply adding a reference to the library. 
Th is tutorial was the basis for the sample solution I’ve provided.

Th e tutorial is important for those new to WRL because it also 
provides an important link for generating a WRL project using the 
WRL Class Library template. Th is template includes the necessary 
information to invoke the MIDL compiler, which processes an 
IDL fi le (see bit.ly/1fLMurc for more information). Behind the scenes, 
the MIDL compiler generates the necessary (hidden) fi les for the 
Contoso WRL project, which take care of all the overhead asso-
ciated with WRL development—contoso_h.h, contoso_i.c and 
contoso_p.c. As you’ll see from the tutorial, all you have to create 
are the contoso.idl and contoso.cpp fi les, which Figure 3 and Figure 
4 show, respectively. Note that I added the AddStr(string, string) 
functionality; it wasn’t part of the tutorial.

As with C# class libraries, using a WRL component from 
an external project or application simply requires you to add a 
reference to this project.

Static Libraries
Static libraries are appropriate when you’re rebuilding code using 
current tools for each project and you want minimal overhead 
calling into the code. Th is is the option to choose if you probably 
won’t be using the exact same binary across multiple projects built 
at diff erent times.

Th e compiler needs to know the location of the static library (.lib) 
and its associated header (.h) in order to successfully link the com-
piled code into the application. Th is can be done by right-clicking 
on the Solution and selecting Common Properties | Project 
Dependencies and then your project (WsaWrcCpp) from the proj-
ects list, and checking the .lib fi le (WsaLibCpp) as a dependency. 
Th en, right-click on the Project (WsaWrcCpp), select Properties | 
Common Properties | References | Add New Reference | Solution| 
Projects, and then choose your .lib fi le (WsaLibCpp). 

You now have to let the project know where to fi nd the .lib projects 
header fi le. If you’re running through the sample solution, right-click 
on the WsaWrcCpp (WRC) project and select Properties | Confi gu-
ration Properties | C/C++ | General, and set the “Additional Include 
Directories” to the location of the header fi le, in this case, that would 
be $(SolutionDir)WsaLibCpp;<existing paths>.

DLLs
In the downloadable sample solution you’ll fi nd a Windows Store 
application DLL for a C++ project named WsaDllCpp (as in Figure 
2). I used the MSDN Library article, “Walkthrough: Creating and 
Using a Dynamic Link Library (C++)” (bit.ly/1enxzWc) as a reference. 
Note that this project is for demonstration purposes only as the 
use of this DLL has been discouraged (in my correspondence with 
Microsoft  C++ developers and reviewers). I’ve included it because you 
may need to use existing DLLs in your Windows Store application.

With that in mind, the WsaDllCpp DLL gives the solution 
Contoso WRL (the WRL Class Library template discussed earlier) 
with the ability to add two strings together; for example, WsaDll-
Cpp::Calculator::Add(“1000”,“2000”) yields 3000. Th e following 
interface code highlights the diff erence between a C++ DLL over 
the C# DLL as you know it:

#include "pch.h"
#include "Contoso_h.h"
#include <wrl.h>
#include <string>
#include <memory>
#include "Calculator.h"
using namespace std;
using namespace Microsoft::WRL;
using namespace Windows::Foundation;

namespace ABI {
  namespace Contoso {
    class Calculator : public RuntimeClass<ICalculator> {
      InspectableClass(RuntimeClass_Contoso_Calculator, BaseTrust)

    public:
      // Use an external C++ Windows Store App DLL to handle strings 
      // note: WRL doesn't permit overloading functions
      HRESULT __stdcall AddStr(_In_ HSTRING a, _In_ HSTRING b, _Out_ int* value)
      {
        // Convert HSTRING values into const wchar_t* 
        // so you can pass them into C++ DLL
        const wchar_t* buffera = WindowsGetStringRawBuffer(a, nullptr);
        const wchar_t* bufferb = WindowsGetStringRawBuffer(b, nullptr);
        // Instantiate calculator using modern methods – reference
        // msdn.microsoft.com/library/hh279669 
        auto calc = make_shared<WsaDllCpp::Calculator>();
        // Add the string values
        auto val = calc->Add(buffera, bufferb);
        // Assign value
        *value = val;
        return S_OK;
      }
      // msdn.microsoft.com/library/jj155856
      // Walkthrough: Creating a Basic Windows Runtime Component Using WRL
      HRESULT __stdcall Add(_In_ int a, _In_ int b, _Out_ int* value)   {
        if (value == nullptr)
        {
          return E_POINTER;
        }
        *value = a + b;
        return S_OK;
            }
      };
      ActivatableClass(Calculator);
  }
}

Figure 4 Contoso.cpp

www.bit.ly/1n1gvV2
www.bit.ly/1fLMurc
www.bit.ly/1enxzWc


msdnmagazine.com

#pragma once

#include <string>
#define WSADLLCPP_API __declspec(dllexport)

namespace WsaDllCpp
{
  class Calculator
  {
  public:
    WSADLLCPP_API int Add(const wchar_t* numberOne, const wchar_t* numberTwo);
    WSADLLCPP_API int Add(int numberOne, int numberTwo);
  };
} 

As you can see, there’s a wee bit of overhead associated with 
making functions visible to external libraries and applications 
(__declspec). Likewise, the settings required to successfully 
compile the WsaDllCpp into the application go beyond simply 
setting a project reference. I had to right-click on the Contoso WRL 
project and select Properties | Confi guration Properties | C/C++ 
| General, and set the “Additional Include Directories” to the loca-
tion of the header fi le.  

C# developers might find adding a reference to a DLL isn’t 
intuitive, or at least it isn’t what you’re accustomed to, as there’s 
usually a “reference” link in the project list on which to right-click 
(which you’ll fi nd in the WRC project). As with the .lib fi le, to add 
a reference you’ll have to right-click on the project and then select 
Add | Reference, and then click the Add new Reference button.

Unlike with C# development, you can’t assume the paths you 
select will be converted to relative paths—they won’t. It’s best to 
get used to using the Visual Studio macros to specify your paths. 
For the previous example I had to set the “Additional Include 
Directories” to $(SolutionDir)WsaDllCpp; <existing paths>.

Wrapping Up
Once you hone in on that correct bookshelf, you’ll discover a 
wealth of information (particularly in the MSDN Library), making 
your learning process more effi  cient and rewarding. Th is fi rst step 
toward a basic understanding of the C++ domain will help you 
in your research and development of C++ Windows Store appli-
cations. Th ere’s just so much information that doesn’t apply (such 
as legacy C++, MFC, C++/CLI and, for the most part, ATL) that 
this awareness will prevent you from wasting valuable cycles on 
material that could take you down a long road to a dead end.

I also recommend you review Kenny Kerr’s MSDN Magazine 
articles (bit.ly/1iv7mUQ) and Channel 9 (bit.ly/1dFqYjV), as well as 
Michael B. Mclaughlin’s articles at bit.ly/1b5CDhs. (A valuable resource 
not listed on this site is his “C# to C++ - A Somewhat Short Guide,” 
available at bit.ly/MvdZv4.)

If you focus your attention on C++/CX, modern C++ and on using 
the WinRT component, you’ll be well on your way to achieving your 
goals in the Windows Store application development environment. 

BILL KRATOCHVIL is owner of Global Webnet LLC, an Amarillo, Texas-based com-
pany that performs contract soft ware architecture and development. Currently, 
Kratochvil is on contract with a leading company in the medical industry.

THANKS to the following Microsoft technical experts for reviewing this 
article: Mohammad Al-Sabt, John Cuyle, Chris Guzak, Frantisek Kaduk, 
Ben Kuhn and Th omas Petchel. Also, thanks to Steven Southwick. mmaaggaaziinnee

MSDN
Magazine
Online

It’s like MSDN Magazine—
only better. In addition to all the 
great articles from the print   
edition, you get:

 Code Downloads
 The MSDN Magazine Blog
 Digital Magazine Downloads
 Searchable Content

All of this and more at
msdn.microsoft.com/magazine

http://msdn.microsoft.com/magazine
www.bit.ly/1iv7mUQ
www.bit.ly/1dFqYjV
www.bit.ly/MvdZv4
http://www.msdnmagazine.com


msdn magazine28

Just about a year ago I began a series of articles on the 
Model-View-ViewModel (MVVM) pattern for the MSDN Magazine 
Web site (you can access them all at is.gd/mvvmmsdn). The articles 
show how to use the components of the MVVM Light Toolkit 
to build loosely coupled applications according to this pattern. I 
explore the dependency injection (DI) and inversion of control 
(IOC) container patterns (including the MVVM Light SimpleIoc), 
introduce the Messenger and discuss View services (such as 
Navigation, Dialog and so forth). I also show how to create design 
time data to maximize the use of visual designers such as Blend, 
and I talk about the RelayCommand and EventToCommand 
components that replace event handlers for a more decoupled 
relationship between the View and its ViewModel. 

In this article, I want to delve into another frequent scenario in modern 
client applications—handling multiple threads and helping them 
communicate with each other. Multithreading is an increas-
ingly important topic in modern application frameworks such as 

Windows 8, Windows Phone, Windows Presentation Foundation 
(WPF), Silverlight and more. On every one of these platforms, 
even the least powerful, it’s necessary to start background threads 
and to manage them. In fact, you could argue that it’s even more 
important on small platforms with less computing power, in order 
to off er an enhanced UX.

Th e Windows Phone platform is a good example. In the very fi rst 
version (Windows Phone 7), it was quite diffi  cult to get smooth 
scrolling in long lists, especially when the item templates contained 
images. However, in later versions the decoding of images, as well 
as some animations, are passed to a dedicated background thread. 
As a result, when an image is loaded, it doesn’t impact the main 
thread anymore, and the scrolling remains smooth.

Th is example underlines some important concepts I’ll explore 
in this article. I’ll start by reviewing how multithreading works in 
XAML-based applications in general.

Simply put, a thread can be considered as a smaller unit of 
execution of an application. Each application owns at least one 
thread, which is called the main thread. This is the thread that 
gets started by the OS when the main method of the application 
is called, on startup. Note that more or less the same scenario 
happens on all supported platforms, as much on WPF running on 
powerful computers as on Windows Phone-based devices with 
limited computing power.

When a method is called, the operation is added to a queue. 
Each operation is executed sequentially, according to the order in 
which it was added to the queue (though it’s possible to infl uence the 
order in which the operations are executed by assigning a priority to 
them.). Th e object responsible for managing the queue is called the 
thread’s dispatcher. Th is object is an instance of the Dispatcher class in 
WPF, Silverlight and Windows Phone. In Windows 8, the dispatcher 
object is named CoreDispatcher and uses a slightly diff erent API. 

MV VM

Multithreading 
and Dispatching in 
MVVM Applications
Laurent Bugnion

This article discusses:
• How multithreading works in XAML-based applications

• Allowing threads to communicate with each other

• Dispatching in MVVM applications

• A real-life dispatching example using the Windows Phone 
Compass Sensor

Technologies discussed:
Windows 8, MVVM Light Toolkit, Visual Studio, Windows Phone, 
Windows Presentation Foundation

Code download available at:
msdn.microsoft.com/magazine/msdnmag0414

www.is.gd/mvvmmsdn
http://msdn.microsoft.com/magazine/msdnmag0414


Untitled-2   1 3/10/14   1:03 PM

http://marketdash.componentone.com/redirect.ashx?rdtl=3430


msdn magazine30 MVVM

As required by the application, new threads can be started 
explicitly in code, implicitly by some libraries or by the OS. Mostly, 
the purpose of starting a new thread is to execute an operation 
(or wait on the result of an operation) without blocking the rest 
of the application. This can be the case of a computationally 
intensive operation, an I/O operation and so on. This is why 
modern applications are increasingly multithreaded, because UX 
requirements are also increasing. As applications become more 
complex, the number of threads they start increases. A good 
example of this trend is the Windows Runtime framework used 
in Windows Store apps. In these modern client applications, asyn-
chronous operations (operations running on background threads) 
are very common. For instance, every file access in Windows 8 
is now an asynchronous operation. Here’s how a file gets read 
(synchronously) in WPF:

public string ReadFile(FileInfo file)
{
  using (var reader = new StreamReader(file.FullName))
  {
    return reader.ReadToEnd();
  }
}

And here’s the equivalent (asynchronous) operation in Windows 8:
public async Task<string> ReadFile(IStorageFile file)
{
  var content = await FileIO.ReadTextAsync(file);
  return content;
}

Note the presence of the await and async keywords in the 
Windows 8 version. Th ey’re there to avoid using callbacks in asyn-
chronous operations, and to make the code easier to read. Th ey’re 
needed here because the fi le operation is asynchronous. Th e WPF 
version, in contrast, is synchronous, which risks blocking the 
main thread if the fi le that’s getting read is long. Th is can cause choppy 
animations, or a lack of update on the 
UI, which worsens the UX.

Similarly, long operations in your 
applications should be taken care of on 
a background thread if they risk making 
the UI choppy. For example, in WPF, 
Silverlight and Windows Phone, the 
code in Figure 1 initiates a background 
operation that runs a long loop. In every 

loop, the thread is put to sleep for a short time to give time to the 
other threads to process their own operations.

Letting Threads Communicate
When a thread needs to communicate with another thread, some 
precautions need to be taken. For example, I’ll modify the code in 
Figure 1 to display a status message to the user on each loop. To 
do this, I just add a line of code in the while loop, which sets the 
Text property of a StatusTextBlock control located in the XAML:

while (_condition)
{
  // Do something

  // Notify user
  StatusTextBlock.Text = string.Format("Loop # {0}", loopIndex++);

  // Sleep for a while
  Thread.Sleep(500);
}

Th e application named SimpleMultiTh reading that accompanies 
this article shows this example. If you run the application using the 
button labeled “Start (crashes the app),” the application, indeed, 
crashes. So what happened? When an object is created, it belongs 
to the thread on which the constructor method was called. For UI 
elements, objects are created by the XAML parser when the XAML 
document is loaded. Th is all happens on the main thread. As a con-
sequence, all the UI elements belong to the main thread, which is 
also oft en called the UI thread. When the background thread in the 
previous code attempts to modify the Text property of the StatusText-
Block, this creates an illegal cross-thread access. As a consequence, 
an exception is thrown. Th is can be shown by running the code in 
a debugger. Figure 2 shows the exception dialog. Notice the “Addi-
tional information” message, which indicates the root of the problem.

In order for this code to work, the background thread needs to 
queue the operation on the main thread by contacting its dispatcher. 
Th ankfully, each FrameworkElement is also a DispatcherObject as 
shown by the .NET class hierarchy in Figure 3. Every Dispatcher-
Object exposes a Dispatcher property that gives access to its owner 
dispatcher. Th us, the code can be modifi ed as shown in Figure 4.

Dispatching in MVVM Applications
When the background operation is executed from a ViewModel, 
things are a little diff erent. Typically, ViewModels don’t inherit from 
DispatcherObject. They’re plain old CLR objects (POCOs) that 
implement the INotifyPropertyChanged interface. For example, Figure 
5 shows a ViewModel deriving from the MVVM Light ViewModel-
Base class. In true MVVM manner, I add an observable property named 
Status that raises the PropertyChanged event. Th en, from the background 
thread code, I attempt to set this property with an information message.

public void DoSomethingAsynchronous()
{
  var loopIndex = 0;

  ThreadPool.QueueUserWorkItem(
    o =>
    {
      // This is a background operation!
      while (_condition)
      {
        // Do something
        // ...

        // Sleep for a while
        Thread.Sleep(500);
      }
  });
}

Figure 1 Asynchronous Operation in the 
Microsoft .NET Framework

Figure 2 Cross-Thread Exception Dialog



Untitled-2   1 3/10/14   1:09 PM

http://marketdash.componentone.com/redirect.ashx?rdtl=3431


msdn magazine32 MVVM

Running this code in Windows Phone or Silverlight works fi ne 
until I try to data bind the Status property to a TextBlock in the 
XAML front end. Running the operation again crashes the appli-
cation. Just like before, as soon as the background thread attempts 
to access an element belonging to another thread, the exception is 
thrown. Th is occurs even if the access is done through data binding.

Note that in WPF, things are diff erent and the code shown in Figure 
5 works even if the Status property is data-bound to a TextBlock. 
Th is is because WPF automatically dispatches the PropertyChanged 
event to the main thread, unlike all the other XAML frameworks. 
In all other frameworks, a dispatching solution is needed. In fact, 
what’s really needed is a system that dispatches the call only if neces-
sary. In order to share the ViewModel code between WPF and other 
frameworks, it would be great if you didn’t have to care about the 
need to dispatch, but had an object that would do this automatically.

Because the ViewModel is a POCO, it doesn’t have access to a 
Dispatcher property, so I need another way to access the main thread 
and to enqueue an operation. Th is is the purpose of the MVVM Light 
DispatcherHelper component. In essence, what this class does is 
store the main thread’s Dispatcher in a static property and expose a 
few utility methods to access it in a convenient and consistent man-
ner. In order to be functional, the class needs to be initialized on the 
main thread. Ideally, this should be done early in the application’s 
lifetime, so the features are accessible from the application’s start. 
Typically, in an MVVM Light application, the DispatcherHelper 
is initialized in App.xaml.cs, which is the fi le defi ning the startup 
class of the application. In Windows Phone, you call Dispatcher-
Helper.Initialize in the InitializePhoneApplication method, right 
aft er the application’s main frame is created. In WPF, the class is 

initialized in the App constructor. In Windows 8, you call the Ini-
tialize method in OnLaunched, right aft er the windows is activated.

Aft er the call to the DispatcherHelper.Initialize method is complete, 
the UIDispatcher property of the DispatcherHelper class contains a 
reference to the main thread’s dispatcher. It’s relatively rare to use the 
property directly, but it is possible if needed. Instead, however, it’s bet-
ter to use the CheckBeginInvokeOnUi method. Th is method takes a 
delegate as parameter. Typically, you use a lambda expression as shown 
in Figure 6, but it could also be a named method.

As the name suggests, this method performs a check first. If 
the caller of the method is already running on the main thread, 
no dispatching is necessary. In that case, the delegate is executed 
immediately, directly on the main thread. If, however, the caller is 
on a background thread, the dispatching is executed.

Because the method checks before dispatching, the caller can rely 
on the fact the code will always use the optimal call. Th is is especially 
useful when you’re writing cross-platform code, where multithread-
ing might work with small diff erences on diff erent platforms. In that 
case, the ViewModel code shown in Figure 6 can be shared anyway, 
without any need to modify the line where the Status property is set.

while (_condition)
{
  // Do something

  Dispatcher.BeginInvoke(
    (Action)(() =>
    {
      // Notify user
      StatusTextBlock.Text = string.Format("Loop # {0}", loopIndex++);
    }));

  // Sleep for a while
  Thread.Sleep(500);
}

Figure 4 Dispatching the Call to the UI Thread

public class MainViewModel : ViewModelBase
{
  public const string StatusPropertyName = "Status";

  private bool _condition = true;
  private RelayCommand _startSuccessCommand;
  private string _status;

  public RelayCommand StartSuccessCommand
  {
    get
    {
      return _startSuccessCommand
        ?? (_startSuccessCommand = new RelayCommand(
          () =>
          {
            var loopIndex = 0;
            ThreadPool.QueueUserWorkItem(
              o =>
              {
                // This is a background operation!

                while (_condition)
                {
                  // Do something

                  DispatcherHelper.CheckBeginInvokeOnUI(
                    () =>
                    {
                      // Dispatch back to the main thread
                      Status = string.Format("Loop # {0}", loopIndex++);
                    });

                  // Sleep for a while
                  Thread.Sleep(500);
                }
              });
          }));
    }
  }

  public string Status
  {
    get
    {
      return _status;
    }
    set
    {
      Set(StatusPropertyName, ref _status, value);
    }
  }
}

Figure 5 Updating a Bound Property in the ViewModel

Figure 3 Window Class Hierarchy



CHICAGO 2O14
May 5 - 8 | Chicago Hilton
vslive.com/chicago

4
on

live long
and code Intense Take-Home 

Training for Developers,  
Engineers, Software Architects 
and Designers

Topics include:

Visual Studio/.NET Framework

Windows Client

JavaScript/HTML5 Client

ASP.NET

Cloud Computing

Windows Phone

Cross-Platform Mobile Development

SharePoint

SQL Server
Use promo code CHTIP2

SESSIONS ARE 
FILLING UP 
QUICKLY –
REGISTER
TODAY!

vslive.com/chicago

0414msdn_VSLive_Tip-In.indd   1 2/18/14   4:56 PM

www.vslive.com/chicago


Use promo code CHTIP2

SUPPORTED BY PRODUCED BY

magazine

SESSIONS ARE
FILLING UP QUICKLY! 
REGISTER TODAY!
vslive.com/chicago

CONNECT WITH VISUAL STUDIO LIVE!

 twitter.com/vslive – @VSLive

 facebook.com – Search ”VSLive”

 linkedin.com – Join the 
“Visual Studio Live” group! 

CHICAGO 2O14
May 5 – 8 | Chicago Hilton

This May, developers, software 
architects, engineers, and designers 
will blast off in the windy city for four 
days of unbiased and cutting-edge 
education on the Microsoft Platform. 

Live long and code with .NET gurus, 
launch ideas with industry experts 
and rub elbows with Microsoft stars 
in pre-conference workshops, 
60+ sessions and fun networking 
events – all designed to make you 
better at your job. 

Plus, explore hot topics like Web API, 
jQuery, MongoDB, SQL Server Data 
Tools and more!vslive.com/chicago

0414msdn_VSLive_Tip-In.indd   2 2/18/14   4:57 PM

www.vslive.com/chicago


33April 2014msdnmagazine.com

In addition, DispatcherHelper abstracts the diff erences in the 
dispatcher API between the XAML platforms. In Windows 8, the 
CoreDispatcher’s main members are the RunAsync method and the 
HasTh readAccess property. In other XAML frameworks, however, 
the BeginInvoke and CheckAccess methods are used, respectively. 
By using the DispatcherHelper, you don’t have to worry about these 
diff erences, and can more easily share the code.

Real-Life Dispatching: Sensors
I’ll illustrate the use of DispatcherHelper by building a Compass 
sensor Windows Phone application. 

The sample code accompanying this article contains a draft 
application named CompassSample - Start. When you open 
this application in Visual Studio, the access from the MainView-
Model to the compass sensor is encapsulated in a service called 
SensorService, which is an implementation of the ISensorService 
interface. Th ese two elements can be found in the Model folder.

Th e MainViewModel gets a reference to the ISensorService in 
its constructor and registers for every compass change using the 
SensorService RegisterForHeading method. Th is method requires 
a callback, which will be executed every time the sensor reports a 
change in the Windows Phone-based device heading. In the Main-
ViewModel, replace the default constructor with the following code:

sensorService.RegisterForHeading(
  heading =>
  {
    Heading = string.Format("{0:N1}°", heading);
    Debug.WriteLine(Heading);
  });

Unfortunately, there’s no way to simulate the device compass in 
the Windows Phone emulator. To test the code, you’ll need to run 
the app on a physical device. Connect a developer device and run 
the code in debug mode by clicking F5. Observe the Output con-
sole in Visual Studio. You’ll see the output of the Compass listed. 
If you move the device, you’ll be able to fi nd the north and observe 
how the value keeps updating.

Next, I’ll bind a TextBlock in XAML to the Heading property in 
the MainViewModel. Open the MainPage.xaml and locate the Text-
Block located in the ContentPanel. Replace the “Nothing yet” in the 
Text property with “{Binding Heading}”. If you run the application 
again, in debug mode, you’ll witness a crash with an error message 
similar to the earlier one. Again, this is a cross-thread exception.

Th e error is thrown because the compass sensor runs on a back-
ground thread. When the callback code is called, it also runs on 
the background thread, as does the setter of the Heading property. 

Because the TextBlock belongs to the main thread, the exception 
is thrown. Here, too, you need to create a “safe zone” to take care 
of dispatching the operations to the main thread. To do this, 
open the SensorService class. Th e CurrentValueChanged event is 
handled by a method named CompassCurrentValueChanged; this 
is where the callback method is executed. Replace this code with 
the following, which uses DispatcherHelper:

void CompassCurrentValueChanged(
  object sender, 
  SensorReadingEventArgs<CompassReading> e)
{
  if (_orientationCallback != null)
  {
    DispatcherHelper.CheckBeginInvokeOnUI(
      () => _orientationCallback(e.SensorReading.TrueHeading));
  }
}

Now the DispatcherHelper must be initialized. To do this, open 
App.xaml.cs and locate the method called InitializePhoneApplication. 
At the very end of this method, add DispatcherHelper.Initialize();. 
Running the code now produces the expected result, displaying the 
Windows Phone-based device heading properly. 

Note that not all sensors in Windows Phone raise their events 
on a background thread. Th e GeoCoordinateWatcher sensor, for 
instance, which is used to observe the phone’s geolocation, already 
returns on the main thread for your convenience. By using 
DispatcherHelper, you don’t have to worry about this and can 
always call the main thread’s callback in the same manner. 

Wrapping Up
I discussed how the Microsoft  .NET Framework handles threads 
and what precautions need to be taken when a background thread 
wants to modify an object created by the main thread (also called 
the UI thread). You saw how this can cause a crash, and that to 
avoid this crash, the main thread’s Dispatcher should be used to 
properly handle the operation.

Th en I translated this knowledge to an MVVM application and 
introduced the DispatcherHelper component of the MVVM Light 
Toolkit. I showed how you can use this component to avoid issues 
when communicating from a background thread, and how it opti-
mizes this access and abstracts the diff erences between WPF and 
the other XAML-based frameworks. By doing so, it allows easy 
sharing of ViewModel code and makes your work easier.

Finally, I demonstrated in a real-life example how the Dispatcher-
Helper can be used in a Windows Phone application to avoid issues 
when you’re working with certain sensors that raise their events 
on a background thread.

In the next article, I’ll delve further into the Messenger com-
ponent of MVVM Light, and show how it can be used for easy 
communication among objects without any need for them to know 
about each other, in a true decoupled manner. 

LAURENT BUGNION is senior director for IdentityMine Inc., a Microsoft  partner 
working with technologies such as Windows Presentation Foundation, Silverlight, 
Pixelsense, Kinect, Windows 8, Windows Phone and UX. He’s based in Zurich, 
Switzerland. He is also a Microsoft  MVP and a Microsoft  Regional Director.

THANKS to the following technical expert for reviewing this article: 
Th omas Petchel (Microsoft )

while (_condition)
{
  // Do something

  DispatcherHelper.CheckBeginInvokeOnUI(
    () =>
    {
      // Dispatch back to the main thread
      Status = string.Format("Loop # {0}", loopIndex++);
    });

  // Sleep for a while 
  Thread.Sleep(500);
}

Figure 6 Using DispatcherHelper to Avoid Crashing

http://www.msdnmagazine.com


msdn magazine34

This is the second article in a series on combining async 
and await with the established Model-View-ViewModel (MVVM) 
pattern. Last time, I showed how to data bind to an asynchronous 
operation, and I developed a key type called NotifyTaskComple-
tion<TResult> that acted like a data binding-friendly Task<TResult> 
(see msdn.microsoft.com/magazine/dn605875). Now I’ll turn to ICommand, 
a .NET interface used by MVVM applications to define a user 
operation (which is oft en data bound to a button), and I’ll consider 
the implications of making an asynchronous ICommand.

Th e patterns here may not fi t every scenario perfectly, so feel free 
to tune them to your needs. In fact, this entire article is presented 
as a series of improvements on an asynchronous command type. 
At the end of these iterations, you’ll end up with an application 

like what’s shown in Figure 1. Th is is similar to the application 
developed in my last article, but this time I provide the user with an 
actual command to execute. When the user clicks the Go button, 
the URL is read from the textbox and the application will count 
the number of bytes at that URL (aft er an artifi cial delay). While 
the operation is in progress, the user may not start another one, 
but he can cancel the operation.

I’ll then show how a very similar approach can be used to cre-
ate any number of operations. Figure 2 illustrates the application 
modifi ed so the Go button represents adding an operation to a 
collection of operations.

Th ere are a couple of simplifi cations I’m going to make during 
the development of this application, to keep the focus on asyn-
chronous commands instead of implementation details. First, I 
won’t use command execution parameters. I’ve hardly ever needed 
to use parameters in real-world apps; but if you need them, 
the patterns in this article can be easily extended to include them. 
Second, I don’t implement ICommand.CanExecuteChanged 

A S YN C  PR OGR AMMING

Patterns for 
Asynchronous 
MVVM Applications: 
Commands
Stephen Cleary

This article discusses:
• The ICommand interface

• Handling asynchronous command completion via data binding

• Adding the ability to cancel a command

• Creating a simple work queue

Technologies discussed:
Asynchronous programming, Model-View-ViewModel Pattern

Code download available at:
msdn.microsoft.com/magazine/msdnmag0414

The patterns here may not fi t 
every scenario perfectly, so feel 
free to tune them to your needs. 

http://msdn.microsoft.com/magazine/dn605875
http://msdn.microsoft.com/magazine/msdnmag0414


35April 2014msdnmagazine.com

myself. A standard field-like event will leak memory on some 
MVVM platforms (see bit.ly/1bROnVj). To keep the code simple, 
I use the Windows Presentation Foundation (WPF) built-in 
CommandManager to implement CanExecuteChanged.

I’m also using a simplifi ed “service layer,” which for now is just a 
single static method, as shown in Figure 3. It’s essentially the same 
service as in my last article, but extended to support cancellation. 
Th e next article will deal with proper asynchronous service design, 
but for now this simplifi ed service will do.

Asynchronous Commands
Before getting started, take a quick look at the ICommand interface:

public interface ICommand
{
  event EventHandler CanExecuteChanged;
  bool CanExecute(object parameter);
  void Execute(object parameter);
}

Ignore CanExecuteChanged and the parameters, and think 
for a bit about how an asynchronous command would work with 
this interface. Th e CanExecute method must be synchronous; the 
only member that can be asynchronous is Execute. Th e Execute 
method was designed for synchronous implementations, so it 
returns void. As I mentioned in a previous article, “Best Practices in 
Asynchronous Programming” (msdn.microsoft.com/magazine/jj991977), 
async void methods should be avoided unless 
they’re event handlers (or the logical equiv-
alent of event handlers). Implementations 
of ICommand.Execute are logically event 
handlers and, thus, may be async void.

However, it’s best to minimize the code 
within an async void method and expose an 
async Task method instead that contains the 
actual logic. Th is practice makes the code more 
testable. With this in mind, I propose the fol-
lowing as an asynchronous command interface, 
and the code in Figure 4 as the base class:

public interface IAsyncCommand : ICommand
{
  Task ExecuteAsync(object parameter);
}

Th e base class takes care of two things: It 
punts the CanExecuteChanged implementa-
tion off  to the CommandManager class; and it 
implements the async void ICommand.Exe-
cute method by calling the IAsyncCommand.
ExecuteAsync method. It awaits the result to 
ensure that any exceptions in the asynchro-
nous command logic will be properly raised 
to the UI thread’s main loop.

Th is is a fair amount of complexity, but each 
of these types has a purpose. IAsyncCommand 
can be used for any asynchronous ICommand 
implementation, and is intended to be exposed 
from ViewModels and consumed by the 
View and by unit tests. AsyncCommandBase 
handles some of the common boilerplate code 
common to all asynchronous ICommands.

With this groundwork in place, I’m ready to start developing 
an eff ective asynchronous command. Th e standard delegate type 
for a synchronous operation without a return value is Action. Th e 
asynchronous equivalent is Func<Task>. Figure 5 shows my fi rst 
iteration of a delegate-based AsyncCommand.

At this point, the UI has only a textbox for the URL, a button 
to start the HTTP request and a label for the results. Th e XAML 
and the essential parts of the ViewModel are simple. Here’s Main-
Window.xaml (skipping the positioning attributes such as Margin):

<Grid>
  <TextBox Text="{Binding Url}" />
  <Button Command="{Binding CountUrlBytesCommand}" Content="Go" />
  <TextBlock Text="{Binding ByteCount}" />
</Grid>

MainWindowViewModel.cs is shown in Figure 6.
If you execute the application (AsyncCommands1 in the sample 

code download), you’ll notice four cases of inelegant behavior. 
First, the label always shows a result, even before the button is 
clicked. Second, there’s no busy indicator aft er you click the button 
to indicate the operation is in progress. Th ird, if the HTTP request 
faults, the exception is passed to the UI main loop, causing an 
application crash. Fourth, if the user makes several requests, she 
can’t distinguish the results; it’s possible for the results of an earlier 
request to overwrite the results of a later request due to varying 
server response times.

Th is is quite a slew of problems! But before 
I iterate the design, consider for a moment the 
kinds of issues raised. When a UI becomes 
asynchronous, it forces you to think about 
additional states in your UI. I recommend you 
ask yourself at least these questions:

1.  How will the UI display errors? (I hope 
your synchronous UI already has an 
answer for this one!)

2.  How should the UI look while the 
operation is in progress? (For example, 
will it provide immediate feedback via 
busy indicators?)

3.  How is the user restricted while the 
operation is in progress? (Are buttons 
disabled, for example?)

4.  Does the user have any additional 
commands available while the opera-
tion is in progress? (For instance, can 
he cancel the operation?)

5.  If the user can start multiple operations, 
how does the UI provide completion or 
error details for each one? (For example, 
will the UI use a “command queue” style 
or notifi cation popups?)

Handling Asynchronous Command 
Completion via Data Binding
Most of the problems in the first Async-
Command iteration relate to how the results 
are handled. What’s really needed is some kind 
of type that would wrap a Task<T> and provide 

Figure 1 An Application That Can 
Execute One Command

www.bit.ly/1bROnVj
http://msdn.microsoft.com/magazine/jj991977
http://www.msdnmagazine.com


msdn magazine36 Async Programming

some data-binding capabilities so the application can respond more 
elegantly. As it happens, the NotifyTaskCompletion<T> type devel-
oped in my last article fi ts these needs almost perfectly. I’m going 
to add one member to this type that simplifi es some of the Async-
Command logic: a TaskCompletion property that represents the 
operation completing but doesn’t propagate exceptions (or return 
a result). Here are the modifi cations to NotifyTaskCompletion<T>:

public NotifyTaskCompletion(Task<TResult> task)
{
  Task = task;
  if (!task.IsCompleted)
    TaskCompletion = WatchTaskAsync(task);
}
public Task TaskCompletion { get; private set; }

The next iteration of AsyncCommand uses NotifyTaskCom-
pletion to represent the actual operation. By doing so, the XAML 

can data bind directly to the result and error message of that 
operation, and it can also use data binding to display an appropriate 
message while the operation is in progress. Th e new AsyncCommand 
now has a property that represents the actual operation, as shown 
in Figure 7.

Note that AsyncCommand.ExecuteAsync is using TaskCompletion 
and not Task. I don’t want to propagate exceptions to the UI 
main loop (which would happen if it awaited the Task property); 
instead, I return TaskCompletion and handle exceptions by data 
binding. I also added a simple NullToVisibilityConverter to the 
project so that the busy indicator, results and error message are 
all hidden until the button is clicked. Figure 8 shows the updated 
ViewModel code.

And the new XAML code is shown in Figure 9.

The code now matches the AsyncCommands2 project in the 
sample code. Th is code takes care of all the concerns I mentioned 
with the original solution: labels are hidden until the fi rst operation 
starts; there’s an immediate busy indicator providing feedback to the 
user; exceptions are captured and update the UI via data binding; 
multiple requests no longer interfere with each other. Each request 
creates a new NotifyTaskCompletion wrapper, which has its own 
independent Result and other properties. NotifyTaskCompletion 
acts as a data-bindable abstraction of an asynchronous opera-
tion. This allows multiple requests, with the UI always binding 
to the latest request. However, in many real-world scenarios, the 
appropriate solution is to disable multiple requests. Th at is, you 
want the command to return false from CanExecute while there’s 
an operation in progress. Th is is easy enough to do with a small 
modifi cation to AsyncCommand, as shown in Figure 10.

public abstract class AsyncCommandBase : IAsyncCommand
{
  public abstract bool CanExecute(object parameter);
 
  public abstract Task ExecuteAsync(object parameter);
 
  public async void Execute(object parameter)
  {
    await ExecuteAsync(parameter);
  }
 
  public event EventHandler CanExecuteChanged
  {
    add { CommandManager.RequerySuggested += value; }
    remove { CommandManager.RequerySuggested -= value; }
  }
 
  protected void RaiseCanExecuteChanged()
  {
    CommandManager.InvalidateRequerySuggested();
  }
}

Figure 4 Base Type for Asynchronous Commands

public class AsyncCommand : AsyncCommandBase
{
  private readonly Func<Task> _command;
 
  public AsyncCommand(Func<Task> command)
  {
    _command = command;
  }
 
  public override bool CanExecute(object parameter)
  {
    return true;
  }
 
  public override Task ExecuteAsync(object parameter)
  {
    return _command();
  }
}

Figure 5 The First Attempt at an Asynchronous Command

Figure 2 An Application Executing Multiple Commands

public static class MyService
{
  // bit.ly/1fCnbJ2
  public static async Task<int> DownloadAndCountBytesAsync(string url, 
    CancellationToken token = new CancellationToken())
  {
    await Task.Delay(TimeSpan.FromSeconds(3), token).ConfigureAwait(false);
    var client = new HttpClient();
    using (var response = await client.GetAsync(url, token).ConfigureAwait(false))
    {
      var data = await 
        response.Content.ReadAsByteArrayAsync().ConfigureAwait(false);
      return data.Length;
    }
  }
}

Figure 3 The Service Layer

Cancellation itself is always a 
synchronous operation—the act 

of requesting cancellation 
is immediate.



Alexsys Team®

Free Trial and Single User FreePack™
available at Alexcorp.com

Alexsys Team® Features Include:

Untitled-1   1 7/15/13   10:18 AM

http://www.alexcorp.com


msdn magazine38 Async Programming

Now the code matches the AsyncCommands3 project in the 
sample code. Th e button is disabled while the operation is going on.

Adding Cancellation
Many asynchronous operations can take varying amounts of time. 
For example, an HTTP request may normally respond very quickly, 
before the user can even respond. However, if the network is slow or 
the server is busy, that same HTTP request might cause a consider-
able delay. Part of designing an asynchronous UI is expecting and 
designing for this scenario. Th e current solution already has a busy 
indicator. When you design an asynchronous UI, you can also choose 
to give the user more options, and cancellation is a common choice.

Cancellation itself is always a synchronous operation—the act 
of requesting cancellation is immediate. Th e trickiest part of can-
cellation is when it can run; it should be able to execute only when 
there’s an asynchronous command in progress. Th e modifi cations 
to AsyncCommand in Figure 11 provide a nested cancellation 
command and notify that cancellation command when the asyn-
chronous command begins and ends.

Adding a Cancel button (and a canceled label) to the UI is straight-
forward, as Figure 12 shows.

Now, if you execute the application (AsyncCommands4 in the 
sample code), you’ll fi nd the cancel button is initially disabled. It’s 
enabled when you click the Go button and remains enabled until the 
operation completes (whether successfully, faulted or canceled). You 
now have an arguably complete UI for an asynchronous operation.

A Simple Work Queue
Up to this point, I’ve been focusing on a UI for just one opera-
tion at a time. Th is is all that’s necessary in many situations, but 
sometimes you need the ability to start multiple asynchronous 
operations. In my opinion, as a community we haven’t come 

up with a really good UX for handling multiple asynchronous 
operations. Two common approaches are using a work queue or a 
notifi cation system, neither of which is ideal.

A work queue displays all asynchronous operations in a collection; 
this gives the user maximum visibility and control, but is usually 
too complex for the typical end user to cope with. A notifi cation 
system hides the operations while they’re running, and will pop up 
if any of them fault (and possibly if they complete successfully). A 
notifi cation system is more user-friendly, but it doesn’t provide the 
full visibility and power of the work queue (for example, it’s diffi  -
cult to work cancellation into a notifi cation-based system). I have 
yet to discover an ideal UX for multiple asynchronous operations.

public sealed class MainWindowViewModel : INotifyPropertyChanged
{
  public MainWindowViewModel()
  {
    Url = "http://www.example.com/";
    CountUrlBytesCommand = new AsyncCommand(async () =>
    {
      ByteCount = await MyService.DownloadAndCountBytesAsync(Url);
    });
  }

  public string Url { get; set; } // Raises PropertyChanged
  public IAsyncCommand CountUrlBytesCommand { get; private set; }
  public int ByteCount { get; private set; } // Raises PropertyChanged
}

Figure 6 The First MainWindowViewModel

public class AsyncCommand<TResult> : AsyncCommandBase, INotifyPropertyChanged
{
  private readonly Func<Task<TResult>> _command;
  private NotifyTaskCompletion<TResult> _execution;
 
  public AsyncCommand(Func<Task<TResult>> command)
  {
    _command = command;
  }
 
  public override bool CanExecute(object parameter)
  {
    return true;
  }
 
  public override Task ExecuteAsync(object parameter)
  {
    Execution = new NotifyTaskCompletion<TResult>(_command());
    return Execution.TaskCompletion;
  }
 
  // Raises PropertyChanged
  public NotifyTaskCompletion<TResult> Execution { get; private set; }
}

Figure 7 The Second Attempt at an Asynchronous Command

public sealed class MainWindowViewModel : INotifyPropertyChanged
{
  public MainWindowViewModel()
  {
    Url = "http://www.example.com/";
    CountUrlBytesCommand = new AsyncCommand<int>(() => MyService.
DownloadAndCountBytesAsync(Url));
  }
 
  // Raises PropertyChanged
  public string Url { get; set; }
 
  public IAsyncCommand CountUrlBytesCommand { get; private set; }
}

Figure 8 The Second MainWindowViewModel

In my opinion, as a community 
we haven’t come up with a really 
good UX for handling multiple 

asynchronous operations.

The trickiest part of 
cancellation is when it can run; 

it should be able to execute only 
when there’s an asynchronous 

command in progress.



(888) 850-9911
Sales Hotline - US & Canada:

/update/2014/04

US Headquarters 
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2014 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters 
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE 
United Kingdom

Asia / Pacific Headquarters 
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Help & Manual Professional     from $583.10
Easily create documentation for Windows, the Web and iPad.

•   Powerful features in an easy accessible and intuitive user interface

•  As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

•   Single source, multi-channel publishing with conditional and customized output features

•   Output to HTML, WebHelp, CHM, PDF, ePUB, RTF, e-book or print

•   Styles and Templates give you full design control

BEST SELLER

BEST SELLER GdPicture.NET Ultimate    from $4,127.59
All-in-one AnyCPU document-imaging and PDF toolkit for .NET and ActiveX.

•   Document viewing, processing, printing, scanning, OMR, OCR, Barcode Recognition, DICOM

•  Annotate image and PDF within your Windows & Web applications

•  Read, write and convert vector & raster images in more than 90 formats, including PDF

•  Color detection engine for image and PDF compression

•  100% royalty-free and world leading Imaging SDK

BEST SELLER ComponentOne Studio Enterprise 2014 v1      from $1,315.60
.NET Tools for the Professional Developer: Windows, HTML5/Web, and XAML.

•   Hundreds of UI controls for all .NET platforms including grids, charts, reports and schedulers

•  Visual Studio 2013 and Bootstrap support

•  Advanced theming tools for WinForms and ASP.NET

•  40+ UI widgets built with HTML5, jQuery, CSS3, and SVG

•  Windows Store Sparkline, DropDown, & Excel controls

BEST SELLER

Aspose.Total for .NET    from $2,449.02
Every Aspose .NET component in one package.

•   Programmatically manage popular fi le formats including Word, Excel, PowerPoint and PDF

•   Work with charts, diagrams, images, project plans, emails, barcodes, OCR, and document 
management in .NET applications

•   Common uses also include mail merging, adding barcodes to documents, building dynamic 
reports on the fl y and extracting text from PDF fi les

BEST SELLER

Untitled-2   1 2/28/14   1:13 PM

http://www.componentsource.com


msdn magazine40 Async Programming

That said, the sample code at this point can be extended to 
support a multiple-operation scenario without too much trouble. 
In the existing code, the Go button and the Cancel button are both 
conceptually related to a single asynchronous operation. Th e new 
UI will change the Go button to mean “start a new asynchronous 
operation and add it to the list of operations.” What this means 
is that the Go button is now actually synchronous. I added a 
simple (synchronous) DelegateCommand to the solution, and 
now the ViewModel and XAML can be updated, as Figure 13
and Figure 14 show.

Th is code is equivalent to the AsyncCommandsWithQueue proj-
ect in the sample code. When the user clicks the Go button, a new 
AsyncCommand is created and wrapped into a child ViewModel 
(CountUrlBytesViewModel). This child ViewModel instance is 
then added to the list of operations. Everything associated with 
that particular operation (the various labels and the Cancel button) 
is displayed in a data template for the work queue. I also added a 
simple button “X” that will remove the item from the queue.

Th is is a very basic work queue, and I made some assumptions 
about the design. For example, when an operation is removed 
from the queue, it isn’t automatically canceled. When you start 
working with multiple asynchronous operations, I recommend 
you ask yourself at least these additional questions:

1.  How does the user know which notifi cation or work item 
is for which operation? (For example, the busy indicator in 
this work queue sample contains the URL it’s downloading).

2.  Does the user need to know every result? (For example, 
it may be acceptable to notify the user only of errors, or 
to automatically remove successful operations from the 
work queue).

<Grid>
  <TextBox Text="{Binding Url}" />
  <Button Command="{Binding CountUrlBytesCommand}" Content="Go" />
  <Grid Visibility="{Binding CountUrlBytesCommand.Execution, 
    Converter={StaticResource NullToVisibilityConverter}}">
    <!--Busy indicator-->
    <Label Visibility="{Binding CountUrlBytesCommand.Execution.IsNotCompleted, 
      Converter={StaticResource BooleanToVisibilityConverter}}" 
      Content="Loading..." />
    <!--Results-->
    <Label Content="{Binding CountUrlBytesCommand.Execution.Result}" 
      Visibility="{Binding CountUrlBytesCommand.Execution.IsSuccessfullyCompleted, 
      Converter={StaticResource BooleanToVisibilityConverter}}" />
    <!--Error details-->
    <Label Content="{Binding CountUrlBytesCommand.Execution.ErrorMessage}" 
      Visibility="{Binding CountUrlBytesCommand.Execution.IsFaulted, 
      Converter={StaticResource BooleanToVisibilityConverter}}" Foreground="Red" />
  </Grid>
</Grid>

Figure 9 The Second MainWindow XAML

public class AsyncCommand<TResult> : AsyncCommandBase, INotifyPropertyChanged
{
  public override bool CanExecute(object parameter)
  {
    return Execution == null || Execution.IsCompleted;
  }
 
  public override async Task ExecuteAsync(object parameter)
  {
    Execution = new NotifyTaskCompletion<TResult>(_command());
    RaiseCanExecuteChanged();
    await Execution.TaskCompletion;
    RaiseCanExecuteChanged();
  }
}

Figure 10 Disabling Multiple Requests

public class AsyncCommand<TResult> : AsyncCommandBase, INotifyPropertyChanged
{
  private readonly Func<CancellationToken, Task<TResult>> _command;
  private readonly CancelAsyncCommand _cancelCommand;
  private NotifyTaskCompletion<TResult> _execution;
 
  public AsyncCommand(Func<CancellationToken, Task<TResult>> command)
  {
    _command = command;
    _cancelCommand = new CancelAsyncCommand();
  }
 
  public override async Task ExecuteAsync(object parameter)
  {
    _cancelCommand.NotifyCommandStarting();
    Execution = new NotifyTaskCompletion<TResult>(_command(_cancelCommand.Token));
    RaiseCanExecuteChanged();
    await Execution.TaskCompletion;
    _cancelCommand.NotifyCommandFinished();
    RaiseCanExecuteChanged();
  }
 
  public ICommand CancelCommand
  {
    get { return _cancelCommand; }
  }
 
  private sealed class CancelAsyncCommand : ICommand
  {
    private CancellationTokenSource _cts = new CancellationTokenSource();
    private bool _commandExecuting;
 
    public CancellationToken Token { get { return _cts.Token; } }
 
    public void NotifyCommandStarting()
    {
      _commandExecuting = true;
      if (!_cts.IsCancellationRequested)
        return;
      _cts = new CancellationTokenSource();
      RaiseCanExecuteChanged();
    }
 
    public void NotifyCommandFinished()
    {
      _commandExecuting = false;
      RaiseCanExecuteChanged();
    }
 
    bool ICommand.CanExecute(object parameter)
    {
      return _commandExecuting && !_cts.IsCancellationRequested;
    }
 
    void ICommand.Execute(object parameter)
    {
      _cts.Cancel();
      RaiseCanExecuteChanged();
    }
  }
}

Figure 11 Adding CancellationThere isn’t a universal solution for 
an asynchronous command that 

fi ts everyone’s needs—yet.



41April 2014msdnmagazine.com

Wrapping Up
There isn’t a universal solution for an asynchronous command 
that fi ts everyone’s needs—yet. Th e developer community is still 
exploring asynchronous UI patterns. My goal in this article is to 
show how to think about asynchronous commands in the con-
text of an MVVM application, especially considering UX issues 
that must be addressed when the UI becomes asynchronous. But 

keep in mind the patterns in this article and sample code are just 
patterns, and should be adapted to the needs of the application.

In particular, there isn’t a perfect story regarding multiple asyn-
chronous operations. Th ere are drawbacks to both work queues and 
notifi cations, and it seems to me that a universal UX has yet to be 
developed. As more UIs become asynchronous, a lot more minds will 
be thinking about this problem, and a revolutionary breakthrough 
might be right around the corner. Give the problem some thought, 
dear reader. Perhaps you will be the discoverer of a new UX.

In the meantime, you still have to ship. In this article I started 
with the most basic of asynchronous ICommand implementations 
and gradually added features until I ended up with something fairly 
suitable for most modern applications. The result is also fully 
unit-testable; because the async void ICommand.Execute method 
only calls the Task-returning IAsyncCommand.ExecuteAsync 
method, you can use ExecuteAsync directly in your unit tests.

In my last article, I developed NotifyTaskCompletion<T>, a 
data-binding wrapper around Task<T>. In this one, I showed how 
to develop one kind of AsyncCommand<T>, an asynchronous 
implementation of ICommand. In my next article, I’ll address 
asynchronous services. Do bear in mind that asynchronous MVVM 
patterns are still quite new; don’t be afraid to deviate from them 
and innovate your own solutions. 

STEPHEN CLEARY is a husband, father and programmer living in northern 
Michigan. He has worked with multithreading and asynchronous programming 
for 16 years and has used async support in the Microsoft  .NET Framework since 
the fi rst CTP. His homepage, including his blog, is at stephencleary.com.

THANKS to the following Microsoft technical experts for reviewing this article: 
James McCaff rey and Stephen Toub

public sealed class CountUrlBytesViewModel
{
  public CountUrlBytesViewModel(MainWindowViewModel parent, string url, 
    IAsyncCommand command)
  {
    LoadingMessage = "Loading (" + url + ")...";
    Command = command;
    RemoveCommand = new DelegateCommand(() => parent.Operations.Remove(this));
  }
 
  public string LoadingMessage { get; private set; }

  public IAsyncCommand Command { get; private set; }
 
  public ICommand RemoveCommand { get; private set; }
}
 
public sealed class MainWindowViewModel : INotifyPropertyChanged
{
  public MainWindowViewModel()
  {
    Url = "http://www.example.com/";
    Operations = new ObservableCollection<CountUrlBytesViewModel>();
    CountUrlBytesCommand = new DelegateCommand(() =>
    {
      var countBytes = new AsyncCommand<int>(token => 
        MyService.DownloadAndCountBytesAsync(
        Url, token));
      countBytes.Execute(null);
      Operations.Add(new CountUrlBytesViewModel(this, Url, countBytes));
    });
  }
 
  public string Url { get; set; } // Raises PropertyChanged
 
  public ObservableCollection<CountUrlBytesViewModel> Operations 
    { get; private set; }
 
  public ICommand CountUrlBytesCommand { get; private set; }
}

Figure 13 ViewModel for Multiple Commands

<Grid>
  <TextBox Text="{Binding Url}" />
  <Button Command="{Binding CountUrlBytesCommand}" Content="Go" />
  <ItemsControl ItemsSource="{Binding Operations}">
    <ItemsControl.ItemTemplate>
      <DataTemplate>
        <Grid>
          <!--Busy indicator-->
          <Label Content="{Binding LoadingMessage}" 
            Visibility="{Binding Command.Execution.IsNotCompleted, 
            Converter={StaticResource BooleanToVisibilityConverter}}" />
          <!--Results-->
          <Label Content="{Binding Command.Execution.Result}" 
            Visibility="{Binding Command.Execution.IsSuccessfullyCompleted, 
            Converter={StaticResource BooleanToVisibilityConverter}}" />
          <!--Error details-->
          <Label Content="{Binding Command.Execution.ErrorMessage}" 
            Visibility="{Binding Command.Execution.IsFaulted, 
            Converter={StaticResource BooleanToVisibilityConverter}}" 
            Foreground="Red" />
          <!--Canceled-->
          <Label Content="Canceled" 
            Visibility="{Binding Command.Execution.IsCanceled, 
            Converter={StaticResource BooleanToVisibilityConverter}}" 
            Foreground="Blue" />
          <Button Command="{Binding Command.CancelCommand}" Content="Cancel" />
          <Button Command="{Binding RemoveCommand}" Content="X" />
        </Grid>
      </DataTemplate>
    </ItemsControl.ItemTemplate>
  </ItemsControl>
</Grid>

Figure 14 XAML for Multiple Commands

<Grid>
  <TextBox Text="{Binding Url}" />
  <Button Command="{Binding CountUrlBytesCommand}" Content="Go" />
  <Button Command="{Binding CountUrlBytesCommand.CancelCommand}" Content="Cancel" />
  <Grid Visibility="{Binding CountUrlBytesCommand.Execution, 
    Converter={StaticResource NullToVisibilityConverter}}">
    <!--Busy indicator-->
    <Label Content="Loading..." 
      Visibility="{Binding CountUrlBytesCommand.Execution.IsNotCompleted, 
      Converter={StaticResource BooleanToVisibilityConverter}}" />
    <!--Results-->
    <Label Content="{Binding CountUrlBytesCommand.Execution.Result}" 
      Visibility="{Binding CountUrlBytesCommand.Execution.IsSuccessfullyCompleted, 
      Converter={StaticResource BooleanToVisibilityConverter}}" />
    <!--Error details-->
    <Label Content="{Binding CountUrlBytesCommand.Execution.ErrorMessage}" 
      Visibility="{Binding CountUrlBytesCommand.Execution.IsFaulted, 
      Converter={StaticResource BooleanToVisibilityConverter}}" Foreground="Red" />
    <!--Canceled-->
    <Label Content="Canceled" 
      Visibility="{Binding CountUrlBytesCommand.Execution.IsCanceled, 
      Converter={StaticResource BooleanToVisibilityConverter}}" Foreground="Blue" />
  </Grid>
</Grid>

Figure 12 Adding a Cancel Button

www.stephencleary.com
http://www.msdnmagazine.com


msdn magazine42

One of the fun things about the return of golf season is 
participating in tournaments that feature events such as a longest 
drive contest. In these, a person’s fi rst shot off  a designated hole 
is measured against others in the tournament. Th e longest drive 
during the day is declared the winner. However, these contests 
typically don’t have centralized scoring. If you’re in the fi rst group, 
you don’t know until aft er the event is over where your shots stand 
in relation to everyone else’s. Why not use a mobile phone to 
record the starting point and ending point of drives and store the 
information in a cloud-hosted database?

Th e options for building such an app are many, which can be 
confusing. In this article, I’ll walk through how I built such an app 
using the back-end options in Windows Azure and how I handled 
various issues. I’ll show the code for writing an app for Windows 
Phone as well as iOS using Xamarin.

Several features were required. Th e app needed to run across 
mobile devices and multiple device OSes. It had to be a native app 
that looked just like all of the others on a device. Th e back-end server 
had to be always available, with minimal hassle to the developer 
(me). Th e cloud services had to provide as much help as possible 
in the area of cross-platform development. Th e back-end database 
needed to provide some amount of geolocation functionality.

Why C#?
Options to build cross-platform apps include: mobile Web apps; 
Xamarin C# for the iPhone (and Android); forgoing cross-platform 
and building apps in the vendor-directed language (the Microsoft  
.NET Framework for Windows Phone and Objective-C for the 
iPhone); and several others. First off, the choice of C#/.NET 
Framework as the language on the client made sense to me. 
Having a background in C# meant aft er learning the platform- 
specifi c features of a device there was one less item to spend time 
learning. Being able to develop everything in Visual Studio 2013 
was an even bigger reason to go with a Xamarin solution for the 
iPhone. Th e problem with the mobile Web option is users want 
apps that integrate as deeply with their platform as possible. Th is 
is diffi  cult with a mobile Web solution, but it’s easier with a native 

WIN DOWS PHONE

Build a Cross-Platform, 
Mobile Golf App Using 
C# and Xamarin

Wallace B. McClure

This article discusses:
• Technology choices to build an example app

• Using Windows Azure Mobile Services

• Scaling in Windows Azure

• Using Windows Azure SQL Database

• Effi cient data access

• Sharing code

• Push notifi cations

Technologies discussed:
Windows Phone, C#, Microsoft .NET Framework, Apple iOS, 
Xamarin, Windows Azure Mobile Services

Code download available at:
msdn.microsoft.com/magazine/msdnmag0414

http://msdn.microsoft.com/magazine/msdnmag0414


43April 2014msdnmagazine.com

solution. Forgoing cross-platform and going with a vendor-directed 
solution didn’t make sense because it would require learning a new 
language for each platform.

Development Tools
Building an app for multiple platforms has typically required multiple 
development tools. Before the advent of Xamarin.iOS, development 
for the iPhone could only be done on a Mac using Xamarin Studio 
(previously MonoDevelop, which was a port of the open source 
SharpDevelop). While there’s nothing wrong with Xamarin Studio, 
developers typically want to stay within the same IDE as much 
as possible. Visual Studio 2013 used with Xamarin.iOS for Visual 
Studio lets you develop for Windows Azure, Windows Phone and 
the iPhone without having to leave the IDE you know and love. 

Windows Azure
A mobile device can interact with Windows Azure in several ways. 
Th ese include Windows Azure Virtual Machine (VM hereaft er for 
brevity), Web Role, Windows Azure Web Sites and Windows Azure 
Mobile Services (WAMS).

A VM provides the most control of all the variables. You can 
make changes to your app and all of the server’s settings. Th is is 
great for those apps that require customization to the underlying 
OS settings, another app to be installed or other possible changes. 
Th is is referred to as Infrastructure as a Service (IaaS).

Windows Azure has a Cloud Service project type that encom-
passes a set of roles. Roles typically map to projects in Visual Studio. 
A Web Role is basically a Web project that has been bundled in a 
single deployable package that’s uploaded and runs within a VM. A 
Web Role provides Web UIs and can also have Web services within 
it. A Worker Role is a project that will continually run on the server. 
Th is is referred to as Platform as a Service (PaaS).

Windows Azure Web Sites are similar in concept to a Web Role. 
Th is solution will let an app host a Web site or project. Th e project 
can include Web services. Th ese Web services can be called via a 
SOAP or REST call. Windows Azure Web Sites are a great solution 
for when an application only needs IIS.

Th e fi rst three options require you to have complete knowledge 
of Web services—how to call them, storing them in the database, 
and the plumbing that’s in between the mobile device and the cloud. 
Microsoft  has a solution that lets you quickly and easily store data 
in the cloud, handle push notifi cations and authenticate users 
quickly and easily: WAMS. Having built solutions with the other 

function insert(item, user, request) {
  if ((!isNaN(item.StartingLat)) && (!isNaN(item.StartingLon)) &&
    (!isNaN(item.EndingLat)) && (!isNaN(item.EndingLon))) {
    var distance1 = 0.0;
    var distance2 = 0.0;
    var sd = item.StartingTime;
    var ed = item.EndingTime;
    var sdate = new Date(sd);
    var edate = new Date(ed);
    var res = user.userId.split(":");
    var provider = res[0].replace("'", "''");
    var userId = res[1].replace("'", "''");
    var insertStartingDate = sdate.getFullYear() + "-" + 
      (sdate.getMonth() + 1) + "-" + sdate.getDate() + " " +
      sdate.getHours() + ":" + sdate.getMinutes() + ":" + sdate.getSeconds();
    var insertEndingDate = edate.getFullYear() + "-" + 
      (edate.getMonth() + 1) + "-" + edate.getDate() + " " + 
      edate.getHours() + ":" + edate.getMinutes() + ":" + edate.getSeconds();
    var lat1 = item.StartingLat;
    var lon1 = item.StartingLon;
    var lat2 = item.EndingLat;
    var lon2 = item.EndingLon;
    var sp = "'POINT(" + item.StartingLon + " " + item.StartingLat + ")'";
    var ep = "'POINT(" + item.EndingLon + " " + item.EndingLat + ")'";
    var sql = "select Max(Distance) as LongDrive from Drive";
    mssql.query(sql, [], {
      success: function (results) {
        if ( results.length == 1)
        {
          distance1 = results[0].LongDrive;
        }
      }
    });

    var sqlDis = "select [dbo].[CalculateDistanceViaLatLon](?, ?, ?, ?)";
    var args = [lat1, lon1, lat2, lon2];
    mssql.query(sqlDis, args, {
      success: function (distance) {
        distance2 = distance[0].Column0;
      }
    });

    var queryString = "INSERT INTO DRIVE (STARTINGPOINT, ENDINGPOINT, " +
      "STARTINGTIME, ENDINGTIME, Provider, UserID, " +
      "deviceType, deviceToken, chanelUri) VALUES " +
      "(geography::STPointFromText(" + sp + ", 4326), " +
      " geography::STPointFromText(" + ep + ", 4326), " +
      " '" + insertStartingDate + "', '" +
      insertEndingDate + "', '" + provider + "', " + userId + ", " +
      item.deviceType + ", '" + item.deviceToken.replace("'", "''") + 
      "', " + "'" + item.ChannelUri.replace("'", "''") + "')";
    console.log(queryString);
    mssql.query(queryString, [], {
      success: function () {
        if (distance2 > distance1) {
          if (item.deviceType == 0) {
            push.mpns.sendFlipTile(item.ChannelUri, {
              title: "New long drive leader"
            }, {
                  success: function (pushResponse) {
                    console.log("Sent push:", pushResponse);
                  }
               });
            }
          if (item.deviceType == 1) {
            push.apns.send(item.deviceToken, {
              alert: "New Long Drive",
              payload: {
                inAppMessage: "Hey, there is now a new long drive."
              }
            });
          }
        }
      },
      error: function (err) {
        console.log("Error: " + err);
      }
    });
    request.respond(200, {});
  }
}

Figure 1 The Insert.js File Used When 
a Golf Drive Is Inserted into the Cloud 

Being able to develop 
everything in Visual Studio 2013 
was an even bigger reason to 
go with a Xamarin solution 

for the iPhone.

http://www.msdnmagazine.com


msdn magazine44 Windows Phone

options, I thought it sensible to use WAMS, given the need for the 
least amount of plumbing as possible and its good cross-platform 
support. WAMS is sometimes described as the “back end that you 
don’t have to build.”

Windows Azure Mobile Services
WAMS lets you accelerate your mobile development eff orts by 
providing storage, user authentication against multiple social net-
works, mechanisms to create logic on the server (with Node.js), 
push notifi cations, and a packaged client-side code library to ease 
create, read, update and delete (CRUD) operations against the data.

The first step in using WAMS is to create the mobile service 
and an associated database table. Th e database table isn’t strictly 
required. For more details on the setup process, see the Windows 
Azure tutorial at bit.ly/Nc8rWX.

Server Scripts Basic CRUD operations are available in WAMS 
via server operations. Th ese are the delete.js, insert.js, read.js and 
update.js fi les, which are processed via Node.js on the server. For 
more information on Node.js in WAMS, see the article, “Work 
with server scripts in Mobile Services,” on the Windows Azure 
site at bit.ly/1cHASFA. 

Let’s start by taking a look at 
the insert.js file in Figure 1. In 
the method signature, the “item” 
parameter contains the data that’s 
handed in. The members of the 
object map to the data object 
handed in from the client. The 
members of this object will make 
more sense aft er looking at the sec-
tion on fi lling data from the client. 
The “user” parameter contains 
information regarding the con-
nected user. In this example, the 
user must be authenticated. The 
app uses Facebook and Twitter for 
authentication, so the userId that’s 

returned has the form of “Network:12345678.” Th e “Network” part of 
the value contains the name of the network provider. In this exam-
ple, either Facebook or Twitter is available, so one of these will be a 
part of the value. Th e number “12345678” is merely a representation 
of the userId. While Twitter and Facebook are used in this exam-
ple, Windows Azure can also use a Microsoft  or Google account. 

Th e fi rst thing to do is test the code to validate the input. I want 
to verify that the latitudes and longitudes brought in are valid 
numbers. If not, the insert will exit immediately. Th e next step is 
to parse the passed-in userId to get the network provider and the 
numeric user identifi er. Th e third step is to set up the dates so they 
can be inserted into the database. JavaScript and SQL Server have 
mismatched date/time representations, so these must be parsed 
and placed in the correct format.

Now a query needs to be done. A Node.js command to perform 
a CRUD statement calls mssql.query(command, parameters, call-
backs). Th e “command” parameter is the SQL command that will 
be executed. Th e “parameters” parameter is a JavaScript array that 
matches up with the parameters specifi ed in the command that’s 
set. Th e “callbacks” parameter contains the JavaScript callbacks to 
be used when the query is completed, depending on success or 

CREATE FUNCTION [dbo].[CalculateDistanceViaLatLon]
(
  @lat1 float,
  @lon1 float,
  @lat2 float,
  @lon2 float
)
RETURNS float
AS
BEGIN
  declare @g1 sys.geography = sys.geography::Point(@lat1, @lon1, 4326)
  declare @g2 sys.geography = sys.geography::Point(@lat2, @lon2, 4326)
  RETURN @g1.STDistance(@g2)
END
CREATE FUNCTION [dbo].[CalculateDistance]
(
  @param1 [sys].[geography],
  @param2 [sys].[geography]
)
RETURNS INT
AS
BEGIN
  RETURN @param1.STDistance(@param2)
END

Figure 3 SQL Function to Calculate Distance Between Two Points

CREATE TABLE [MsdnMagGolfLongDrive].[Drive] (
  [id]            NVARCHAR (255)     CONSTRAINT [DF_Drive_id] DEFAULT 
(CONVERT([nvarchar](255),newid(),(0))) NOT NULL,
  [__createdAt]   DATETIMEOFFSET (3) CONSTRAINT 
    [DF_Drive___createdAt] DEFAULT (CONVERT([datetimeoffset](3),
    sysutcdatetime(),(0))) NOT NULL,
  [__updatedAt]   DATETIMEOFFSET (3) NULL,
  [__version]     ROWVERSION         NOT NULL,
  [UserID]        BIGINT             NULL,
  [StartingPoint] [sys].[geography]  NULL,
  [EndingPoint]   [sys].[geography]  NULL,
  [DateEntered]   DATETIME           NULL,
  [DateUpdated]   DATETIME           NULL,
  [StartingTime]  DATETIME           NULL,
  [EndingTime]    DATETIME           NULL,
  [Distance]      AS                 ([dbo].[CalculateDistance]
    ([StartingPoint],[EndingPoint])),
  [Provider]      NVARCHAR (20)      NULL,
  [deviceToken]   NVARCHAR (100)     NULL,
  [deviceType] INT NULL, 
    
  PRIMARY KEY NONCLUSTERED ([id] ASC)
);

Figure 4 SQL Table to Hold Drive Data

Figure 2 Log File Information in Visual Studio 2013

www.bit.ly/Nc8rWX
www.bit.ly/1cHASFA


There are many .NET ‘Rich Text Editors’ out there...

www.textcontrol.com

There is only one

Meh, sorry!

/txtextcontrol US: +1 855-533-TEXT
EU: +49 421 427 067-10

Untitled-5   1 2/4/14   11:43 AM

http://www.textcontrol.com
www.facebook.com/txtextcontrol
www.twitter.com/txtextcontrol
https://plus.google.com/+textcontrol/


msdn magazine46 Windows Phone

error. I’ll discuss the contents of a successful initial query in the 
section on push notifi cations.

Finally, the question of debugging comes up. How do you know 
what’s happening in the script? JavaScript has the console.log(info) 
method. When this method is called with the “info” parameter, 
the parameter is saved within the log fi le of the service, as shown 
in Figure 2. Note the built-in refresh functionality at the top right 
of the screen.

Once WAMS is set up, it can be managed via the windowsazure.com
portal or Visual Studio. 

Note: Calling from a WAMS script fi le to a method may result 
in an error with the default setup because they run in diff erent 
schemas. Permissions might need to be granted depending on 
your specific situation. Jeff Sanders has a blog post about this 
issue at bit.ly/1cHQ4Cu.

Scale
Mobile apps can put a tremendous load on infrastructure, and 
luckily Windows Azure has several options to handle this. First, 
you have several alternatives for message queuing. 

Queuing is available in Windows Azure via Service Bus as well 
as the Windows Azure Queue Service. Queuing lets you quickly 
store data without tying up the app. Under heavy load, an app can 
wait on a response from a remote data source. Instead of interacting 
directly with a data source, an app can store data in a queue, 
which will free the app to continue processing. Based on personal 
experience, using queuing can easily increase the scalability of an 

app. While this app doesn’t use queuing, it needs to be mentioned as 
an option depending on the load of the operations and the number 
of mobile devices accessing the system. Thankfully, both the 
Service Bus and the Windows Azure Queue Service have the nec-
essary APIs for the server scripts in WAMS to access each of them.

Overall, queuing is a great solution for data-intensive apps. 
Another tool in the scaling toolbox is auto scale. Windows Azure 
lets you monitor the health and availability of an app from a dash-
board. You can set up rules to notify an application administrator 
when the availability of services is degraded. Windows Azure 
lets an app scale up or down to match demand. By default, this 
feature is turned off. When it’s turned on, Windows Azure will 
periodically check the number of API calls on the service and will 
scale up if the number of calls is at or more than 90 percent of the 
API quota. Every day, Windows Azure will scale back down to the 
set minimum. Th e general rule is to set the daily quota to handle 
the expected daily traffi  c and allow Windows Azure to scale up as 
necessary. As this is being written, health, monitoring and auto 
scaling are available in preview.

Database
Data is the root of any app and the basis for nearly every business. 
You can use a hosted third-party database, a database service run-
ning with a VM, Windows Azure SQL Database and probably 
several other options. For the back-end database, I chose to use 
Windows Azure SQL Database over SQL Server running within 
a VM for several reasons. First, it has support for location-based 
services in the base product. Second, Windows Azure SQL 
Database is optimized for performance over a baseline installation 
of SQL Server on a client system. Finally, there’s no ongoing man-
agement of the underlying system. 

Windows Azure SQL Database has the same point and geography 
database types as SQL Server, so it’s easy to calculate distances 
between two points. To make this easier, I wrote two stored 
procedures to calculate these distances. The SQL function 

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Newtonsoft.Json;

namespace Support
{
  public partial class Drive
  {
    public Drive() {
      DeviceToken = String.Empty;
      ChannelUri = String.Empty;
    }
    [JsonProperty(PropertyName="id")]
    public string Id { get; set; }
    [JsonProperty(PropertyName = "UserID")]
    public Int64 UserID { get; set; }
    [JsonProperty(PropertyName = "Provider")]
    public string Provider { get; set; }
    public double StartingLat { get; set; }
    public double StartingLon { get; set; }
    public double EndingLat { get; set; }
    public double EndingLon { get; set; }
    [JsonProperty(PropertyName = "StartingTime")]
    public DateTime StartingTime { get; set; }
    [JsonProperty(PropertyName = "EndingTime")]
    public DateTime EndingTime { get; set; }
    [JsonProperty(PropertyName = "Distance")]
    public double Distance { get; set; }
    [JsonProperty(PropertyName = "deviceType")]
    public int deviceType { get; set; }
    [JsonProperty(PropertyName = "deviceToken")]
    public string DeviceToken { get; set; }
    [JsonProperty(PropertyName = "ChannelUri")]
    public string ChannelUri { get; set; }
  }
}

Figure 5 A Proxy to Work with REST

Figure 6 The Scoreboard As Depicted on a 
Windows Phone-Based Device and an iPhone

www.windowsazure.com
www.bit.ly/1cHQ4Cu


Untitled-1   1 2/7/14   11:02 AM

http://www.alachisoft.com


msdn magazine48 Windows Phone

Calculate DistanceViaLatLon takes the fl oating point values of latitude 
and longitude. It’s designed to run within the WAMS insert.js script 
so it’s easy to calculate the distance of the incoming drive. The 
result can be compared with the current maximum drive within the 
system. Th e SQL function CalculateDistance takes two geography 
points and calculates the distance between them, as shown in Figure 
3. Th e data is stored in the Drive table as SQL Server points.

Figure 4 shows the table used to hold the data about the drive. 
Because the columns prefi xed with “__” are columns particular to 
Windows Azure, every eff ort has been made to not use them. Th e 
columns of interest are StartingPoint, EndingPoint, Distance, device-
Token and deviceType. Th e StartingPoint and EndingPoint columns 
hold the starting and ending geographic points of a drive. Th e Dis-
tance column is a calculated column. It’s a fl oat that uses the Calculate-
Distance SQL function. Th e deviceToken and 
deviceType columns hold a token that iden-
tifi es the device and the type of the device 
(Windows Phone-based or iPhone). Th e app 
currently only communicates back to the
posting device if a new drive entered is the new 
leader. The deviceToken and deviceType 
columns could be used to communicate 
there’s a new leader and to regularly commu-
nicate other updates to competitors. 

Dynamic Schema
One of the great features of WAMS is that a 
database table schema is dynamic by default. 
It’s modifi ed based on the information sent 
from the mobile device to the client. As you 
move from development to production, this 
should be turned off . Th e last thing you want 
is some type of schema change to a running 
system due to a programming mistake. Th is 
can easily be done by going to Confi gure in 
the WAMS section of the Windows Azure 
Portal and turning the “dynamic schema” 
option to off .

Accessing Data
Accessing data with a mobile device with an unreliable and a rela-
tively high-latency network is signifi cantly diff erent from accessing 
data over a wired connection and relatively low-latency network. 
Th ere are two general rules to get data with a device. First, data 
access must be done asynchronously. Given the unreliable nature 
and high latency of mobile networks, locking the UI thread in any 
way is a really bad idea. Users don’t understand why the UI is stalled. 
If getting data takes too long, the device OS will assume the app is 
hung and kill it. Th e second rule is that the transferred data must 
be relatively small. Sending too many records to a mobile device 
will cause problems due to the low-speed, high-latency networks 
common in mobile provider systems and the fact that mobile 
device CPUs are optimized more for low power consumption than 
for processing data like a laptop or desktop CPU. WAMS addresses 
both these issues. Data access is asynchronous and queries are 
automatically done via a paging algorithm. To show this, I’ll look 
at two operations, an insert and a select.

Using a Proxy Any developer who has called REST-based ser-
vices knows about the problem of using REST due to its lack of a 
built-in proxy service. Th is makes working with REST somewhat 
mistake-prone. It’s not impossible—just a little more diffi  cult to 
work with than SOAP. To make development easier, you can create a 
proxy locally. Th e proxy for this example is shown in Figure 5. Th e 
properties of an object instance can be accessed in the server scripts.

Query Data Querying data in Windows Azure is actually simple. 
Th e data will be returned via a call through a LINQ query. Here’s 
a call to run a simple query to return the data:  

var drives = _app.client.GetTable<Support.Drive>();
var query = drives.OrderByDescending(
  drive => drive.Distance).Skip(startingPoint).Take(PageSize);
var listedDrives = await query.ToListAsync();

async void PostDrive()
{
  Drive d = new Drive();
  d.StartingLat = first.Latitude;
  d.StartingLon = first.Longitude;
  d.EndingLat = second.Latitude;
  d.EndingLon = second.Longitude;
  d.StartingTime = startingTime;
  d.EndingTime = endingTime;
  d.deviceType = (int)Support.AppConstants.DeviceType.WindowsPhone8;
  d.ChannelUri = _app.CurrentChannel.ChannelUri.ToString();

  try
  {
    await _app.client.GetTable<Support.Drive>().InsertAsync(d);
  }
  catch (System.Exception exc)
  {
    Console.WriteLine(exc.Message);
  }
}

Figure 7 Inserting Data (Windows Phone-Based Device) 

Figure 8 Using Linked Files



Untitled-1   1 1/13/14   10:11 AM

http://www.spreadsheetgear.com


msdn magazine50 Windows Phone

In this example, I need the list of longest drives starting at the 
top of the list and going down. Th is is then bound to a grid in both 
a Windows Phone-based device and the iPhone. While the data 
binding part is diff erent, retrieving the data is exactly same.

Note that in the preceding query, there’s no Where method called, 
but this could easily be done. Also, the Skip and Take methods 
are used to show how the app could easily add in paging. Figure 
6 shows the scoreboard on a Windows Phone-based device and 
on an iPhone.

Inserting Data
Inserting a record is easy in WAMS. Just create an instance of the 
data object and then call the InsertAsync method on the client 
object. The code for the insert in a Windows Phone-based 
device is shown in Figure 7. Th e code for performing an insert in 
Xamarin.iOS is similar and only diff ers in the areas of the device-
Type, ChannelUri and DeviceToken.

Sharing Code Between Platforms
Sharing code between platforms is an important consideration and 
can be done in several ways with the cross-platform capabilities of 
C# and Xamarin. Th e mechanism used is determined by the exact 
scenario. I needed to share non-UI logic. To do that, there are two 
options: Portable Class Libraries (PCL) and linked fi les.

Portable Class Libraries Lots of platforms use the .NET Framework. 
Th ese platforms include Windows, Windows Phone, Xbox, Windows 
Azure and others supported by Microsoft . When the .NET Framework 

initially shipped—and up 
through several iterations 
afterward—.NET code 
would need to be recom-
piled for various platforms. 
PCLs solve this problem. 
With a PCL project, you 
set up a library to sup-
port a defi ned set of APIs 
available for the target 
platforms. Th is choice of 
platforms is set in the class 
library’s project settings. 

Along with Microsoft ’s 
support for PCLs, last fall 
Microsoft  changed its PCL 
licensing to allow sup-
port on non-Microsoft 
platforms. Th is allowed 
Xamarin Inc. to provide 
support for the defi ned 
Microsoft PCLs in the 

iOS and Android platforms and on OS X. Doc-
umentation on using PCLs is readily available.

Linked Files PCLs are a great solution for 
cross-platform development. However, if a 
feature is included on one platform but not on 
another, linked fi les become the alternative way to 

share code. A linked fi le setup includes a basic .NET class library, the 
platform-specifi c class libraries and the platform application project. Th e 
.NET class library has the general code that’s shared across platforms. 

Th e platform-specifi c library contains two types of fi les. Th ese are 
the linked fi les from the generic .NET class library and code that would 
have common APIs but diff erent platform-specifi c implementations. 
Th e idea is to “Add As Link” a fi le from the class library project 
into the platform-specifi c class library. Th is is shown in Figure 8.

Other Options PCLs and linked fi les are just two of the options 
you can use to share code. Other options include partial classes, 
if/def compiler options, the observer pattern, Xamarin.Mobile 
(and similar libraries), other libraries available via NuGet (or the 
Xamarin Component Store) and more. 

Partial classes allow for the multiple class fi les to be shared across 
the shared class library and the platform-specifi c class library. By 
default, the namespaces will be diff erent between the .NET class 
library and the platform-specifi c library. Th e biggest issue to be aware 
of with partial classes is that the namespaces must match. Not having 
the namespaces match is a common mistake made with partial classes.

Visual Studio allows code to be compiled into or out of code via 
if/then compiler options. Along with this, the platforms can be 
defi ned as conditional compilation symbols. Th ese are set up in 
the project’s properties, as shown in Figure 9, where the #if direc-
tive is used to conditionally compile code for Windows Phone. 

Xamarin.Mobile is a set of libraries with common APIs. The 
libraries are available for Windows Phone, iOS and Android. Xam-
arin.Mobile currently supports location services, contacts and 
the camera. I used Xamarin.Mobile geolocation APIs in this app. 

To determine location, the geolocator object is a wrapper for 
the platform-specifi c geolocation object. Here, it uses the C# 5.0 
async-style syntax. Once a location is determined, a call is made 
into .ContinueWith and processing occurs:

geo = new Geolocator();
...
await geo.GetPositionAsync(timeout: 30000).ContinueWith(t =>
  {
    first = t.Result;
    LandingSpot.IsEnabled = true;
  }, TaskScheduler.FromCurrentSynchronizationContext());

Figure 9 Defi ning a Platform as a Conditional Compilation Symbol

Figure 10 A Push Message Showing 
a New Long Drive Leader

Sharing code between platforms 
is an important consideration 
and you can do this in several 
ways with the cross-platform 

capabilities of C# and Xamarin.



51April 2014msdnmagazine.com

Note that devices tend to provide geolocation as an approximation. 
As a result, not every recorded distance will be perfectly accurate.

When apps are built, developers tend to think of higher logical 
layers of an app calling down into lower levels. For example, a user 
can touch a button that triggers a location detection. Th e problem 
comes when the logical lower level of an app needs to call into a 
higher layer. A simple solution is to pass a reference from the higher 
level into a lower level. Unfortunately, this will almost defi nitely 
keep the lower-level code from being shared across platforms. Th is 
can be overcome with events. Fire an event in the lower level that’s 
processed in a higher level. Th is is the basis of the observer pattern.

Numerous third parties have created libraries that can be 
used across platforms. You can find these with NuGet and the 
Xamarin Component Store.

Push Notifi cations
Sometimes the server app needs to communicate with the mobile 
device. Th is can be done via WAMS or the Notifi cation Hub. WAMS 
is a great solution when sending a small number of messages. 
Th e Notifi cation Hub is designed for sending messages to a large 
number of devices, such as “premium customers” or “all customers 
in the state of California.” I’ll discuss the WAMS option. 

You can call WAMS push notifi cations to a mobile device within 
the server scripts. Windows Azure handles many of the complex 
parts of push notifi cations, but it can’t abstract every diff erence in 
the way messages are sent to every diff erent platform. Th ankfully, 
the diff erences are slight.

Th e mpns object is used to send messages via the Microsoft  Push 
Notifi cation Service (MPNS). Th e mpns object contains four mem-
bers. Th ese members are sendFlipTile, sendTile, sendToast and 
sendRaw. Each of these members has a similar signature. Th e fi rst 
parameter is the channel that will be used to communicate. Th e 
second parameter is a JSON object with the parameters to be sent 
to the device. Th e third parameter is a set of callbacks that occur 
on the success or failure of the request. Th e following code using 

the mpns object is used in the Windows Azure server scripts to 
send a message if there’s a new leader in the longest drive contest:

push.mpns.sendFlipTile(item.ChannelUri, {
  title: "New long drive leader"
}, {
    success: function (pushResponse) {
      console.log("Sent push:", pushResponse);
    }

Th e result is the update to the tile as shown in Figure 10. Notice in 
the image how the tile has been updated to say “New long drive leader.”

You use an apns object to send messages to the Apple Push 
Notifi cation Services (APNS) in the WAMS scripts. It’s conceptu-
ally similar to the mpns object. Th e member of most interest is the 
send method. It has a signature similar to the mpns send methods. 
Th e signature contains three parameters: the deviceToken, which 
uniquely identifi es a device; a JSON-based parameter object; and 
a fi nal parameter that’s a set of callbacks. 

Here’s the code showing how the apns object is used to send a 
“new leader” message to an iOS device:

push.apns.send(item.deviceToken, {
  alert: "New Long Drive",
  payload: {
    inAppMessage: "Hey, there is now a new long drive."
  }
});

Figure 11 shows the code to be added to the AppDelegate.cs 
fi le to handle the message sent to the iPhone. In this example, a 
UIAlertView is displayed to the user.

If needed, you can use a gcm object to send messages to the 
Google Cloud Messaging (GCM) platform.

One signifi cant diff erence between the Windows and Apple push 
notifi cations (and Google notifi cations) is how the client mobile 
system handles these messages. A full listing of client systems is 
included in the Xamarin.iOS project in the AppDelegate.cs fi le in 
the accompanying code download. 

And that’s it. Good luck with your mobile app development and 
your golf game! 

WALLACE B. MCCLURE graduated from the Georgia Institute of Technology (Georgia 
Tech) with bachelor’s and master’s degrees in electrical engineering. He has done 
consulting and development for companies large and small. McClure has authored 
books on iPhone programming with Xamarin.iOS; Android programming with 
Xamarin.Android; application architecture; ADO.NET and SQL Server; and 
AJAX. He is a Microsoft  MVP, ASPInsider, Xamarin MVP and Xamarin Insider. 
He’s also a partner in Scalable Development Inc. His training materials for iOS 
and Android are available via Learn Now Online. His blog is at morewally.com 
and he’s on Twitter at twitter.com/wbm. 

THANKS to the following technical experts for reviewing this article: 
Kevin Darty (independent contractor) and Brian Prince (Microsoft )

public override void RegisteredForRemoteNotifications(
  UIApplication application, NSData deviceToken)
{
  string trimmedDeviceToken = deviceToken.Description;
  if (!string.IsNullOrWhiteSpace(trimmedDeviceToken))
  {
    trimmedDeviceToken = trimmedDeviceToken.Trim('<');
    trimmedDeviceToken = trimmedDeviceToken.Trim('>');
  }
  DeviceToken = trimmedDeviceToken;
}

public override void ReceivedRemoteNotification(
  UIApplication application, NSDictionary userInfo)
{
  System.Diagnostics.Debug.WriteLine(userInfo.ToString());
  NSObject inAppMessage;

  bool success = userInfo.TryGetValue(
    new NSString("inAppMessage"), out inAppMessage);

  if (success)
  {
    var alert = new UIAlertView("Got push notification", 
      inAppMessage.ToString(), null, "OK", null);
    alert.Show();
  }
}

Figure 11  Processing a Message on an iPhone

Partial classes allow for the 
multiple class fi les to be shared 

across the shared class library and 
the platform-specifi c class library. 

www.morewally.com
www.twitter.com/wbm
http://www.msdnmagazine.com


msdn magazine52

In this article, I’m going to teach you how to develop an app 
for the 41-megapixel (MP) Nokia Lumia 1020 and 20MP Nokia 
Lumia 1520 smartphones. I’ll focus primarily on the Nokia Lumia 
1020, but the information applies to all Lumia Windows Phone 8 
devices with PureView technology. First, I’ll discuss PureView, the 
technology behind the powerful camera included in the phones, 
and then I’ll explain the advanced features available to access and 
enhance your photographs. I’ll provide an overview of the Nokia 
Imaging SDK (it has tons of ready-to-use graphic fi lters) and a 
walk-through of how to use it. I’ll also cover the typical workfl ow 
needed to build a camera app and show you how to create a tilt-
shift  photo fi lter to simulate shallow depth of fi eld. Let’s get started.

Understanding the PureView Technology in a 
41MP Camera Phone 
PureView technology consists of advanced camera hardware and 
related soft ware. Together, they allow the capturing and saving of 

high-quality, high-resolution images. Th e three main aspects of 
PureView technology are a high-resolution camera lens, oversam-
pling and lossless zoom. I’ll briefl y explain each one.

Th e core of PureView technology is a high-resolution sensor, 
7,728 pixels wide and 5,368 pixels high, totaling more than 41MP. 
Th is enables the camera phone to capture big photographs, six 
times larger than a normal 5MP photograph. 

Figure 1 compares a 41MP resolution picture with a 5MP resolution 
picture. Because of this 41MP resolution, you can take high-quality 
34MP 16:9 photographs (7,728 x 4,354) as well as 38MP 4:3 photographs 
(7,152 x 5,368), as shown in the lens view of the camera in Figure 2.

Pixel oversampling is when the camera takes a 41MP photograph 
and creates a high-quality 5MP image. Th is is the picture you see on 
the phone’s screen. Furthermore, the oversampling process keeps 
all the rich detail in the image but fi lters away any visual noise.

Th e third aspect of PureView technology is lossless zoom, which 
simply means you don’t lose image quality when you zoom. Th is 

WIN DOWS PHONE  8

Build an Advanced 
Camera App for 
Nokia Lumia Phones
Rajesh Lal

This article discusses:
• PureView technology used in advanced Nokia smartphones

• Random Access JPEG technology

• Nokia Imaging SDK APIs

• Camera app workfl ow

• Creating a tilt-shift photographic fi lter

Technologies discussed:
Windows Phone 8, Nokia Imaging SDK

DOWNLOAD THE WINDOWS PHONE SDK TODAY 

The Windows Phone Software Development Kit (SDK) includes all of the 
tools you need to develop apps and games for Windows Phone. 

bit.ly/UbFlDG
Figure 1 A 41MP Picture Compared with a 5MP Picture 

7,728

5,368

7,728

5,368

3,072

1,7285MP

41MP

www.bit.ly/UbFlDG


53April 2014msdnmagazine.com

is possible because—at any point in time—you have available the 
original 41MP picture, which is oversampled to show a 5MP photo. 
When you zoom, you’re really zooming into a part of the original 
41MP photo. At up to a 3x zoom, you’re still dealing with parts of the 
original 41MP photo. And even at maximum zoom, your photo 
quality is still the quality of a regular 5MP photo. Due to oversam-
pling, the picture quality only gets better as you zoom. Figure 2
shows how the lossless zoom is still part of the original photograph.

The Nokia Imaging SDK 
When building a camera app, a high-resolution photograph is the 
raw material, but you’ll need an advanced soft ware stack that can use 
the huge images and let you access 
and manipulate them. Th is is where 
the Nokia Imaging SDK comes 
into the picture (bit.ly/1hJkmpl). 
It provides a set of advanced fea-
tures to access a high-resolution 
photograph taken by the camera. 

The Nokia Imaging SDK 
includes partial JPEG decoding, 
called Random Access JPEG 
(RAJPEG) technology. RAJPEG 
allows for random access of JPEG 
data, fast downscaling of images 

and instant partial decoding. These aspects of RAJPEG enable 
real-time image manipulation. Th e Nokia Imaging SDK contains 
more than 50 fi lters, eff ects and enhancements. It even contains 
a set of the most common image operations, such as crop, resize, 
rotate and undo, just to name a few. Th ese out-of-the-box features 
help you create advanced camera/photo-centric applications with-
out worrying about the most common functionalities. To use the 
Nokia Imaging SDK in your project, follow the instructions on the 
Nokia Lumia Developer Library page (bit.ly/KzDPNG).

Imaging SDK APIs  
Th e APIs available in the Imaging SDK can be easily applied to the 
image data captured by the camera in relatively few lines:

var imageSource = new StreamImageSource(e.ChosenPhoto);
// Define the effects to apply
var filterEffect = new FilterEffect(imageSource);
filterEffect.Filters = new [] { new FogFilter() };

// Render the image using WriteableBitmapRenderer
WriteableBitmapRenderer renderer = 
  new WriteableBitmapRenderer(filterEffect,  
  myImageBitmap,OutputOption.PreserveAspectRatio);
await renderer.RenderAsync();

Here, e.ChosenPhoto is used to create a StreamImageSource. Th e 
e.ChosenPhoto can come directly from a camera-captured photo 
or from any photo in the album. I then created a filter effect to 
apply on the photo and added an artistic FogFilter to the array of 
fi lters in my eff ect. If desired, this array can contain multiple fi lters, 
which are then applied and rendered to myImageBitmap using a 
WriteableBitmapRenderer. As the name suggests, it renders an 
image source to a WriteableBitmap. Finally, the RenderAsync 
method helps in the asynchronous rendering of the image.

Along with FogFilter, you can apply more than 50 other Imaging 
SDK fi lters to a photograph. Figure 3 shows the list of enhancement 

Figure 3 Enhancement Filters in the Free App Filter Explorer

Figure 4 Image App Workfl ow

Acquire
Photo

Figure 2 Lossless Zoom Is Still Part of the Photograph

34MP  16:9 Resolution
38MP  4:3 Resolution

5MP, 3x
Lossless Zoom

Figure 5 The Tilt-Shift Effect

www.bit.ly/1hJkmpl
www.bit.ly/KzDPNG
http://www.msdnmagazine.com


msdn magazine54 Windows Phone 8

filters inside the free App Filter Explorer, available out of the 
box for developers. It includes fi lters such as AutoEnhanceFilter, 
AutoLevelsFilter, ColorBoostFilter and ExposureFilter. Th ese are 
fi lters you can directly apply to any photo or real-time captured 
image to enhance quality. 

Th ere are other fi lters for brightness (BrightnessFilter) and con-
trast (ContrastFilter), which take parameters for brightness and 
contrast. Th ere are a number of fi lters just for artistic eff ects, such 
as emboss, grayscale and sepia. Th ere are also the image-editing 
“fi lters” that provide the previously mentioned commonly used 
functions such as rotate, flip, mirror and so on. These can be 
applied to a single image multiple times, one on top of another, to 
create dramatic eff ects.

High-Resolution Camera App Workfl ow
Now that I’ve told you about the hardware and Imaging SDK capa-
bilities, I’ll show you the typical workfl ow you need for building 
a powerful camera phone app. Because I’m dealing with a huge 
image, I have to play nice so my app doesn’t make other apps slow 
or take a huge amount of memory. This can be ensured by not 
trying to directly manipulate the big image in the camera. 

At any point of time, the camera will have two photographs: 
the original 41MP photograph and the 5MP photograph, which is 

shown in the camera view panel. In my app, I’ll always work on the 
5MP camera phone picture, which can be either the oversampled 
image of the whole photo, the zoomed part of the picture, or the 
oversampled and partially zoomed part of the photo.

Figure 4 shows the workfl ow for the imaging app.
Th e individual steps include:

•  Capture a high-resolution image. 
•  Save it to your local storage. 
•  Do your magic using the Imaging SDK.
•  Scale down the resulting image to 5MP. 
•  Save the 5MP-enhanced image to the camera roll.

Creating a Photographic Filter: Tilt Shift 
Now I’ll walk through the workfl ow of my photographic fi lter-based, 
tilt-shift  camera app. Tilt-shift  photography is the use of camera 
movements—specifically tilt—for selective focus to simulate a 
miniature scene (see Figure 5). You can fi nd more information on 
tilt-shift  photography at bit.ly/1bRYYNK. In this app, I’ll simulate the 
shallow depth of fi eld with digital post-processing using multiple 
fi lters in the Nokia Imaging SDK. 

<Canvas x:Name="LayoutRoot" Background="Transparent">
  <TextBlock Text="" Style="{StaticResource
    PhoneTextNormalStyle}" />
  <Image x:Name="TiltShiftImage" Height="480" Width="728"
    Stretch="UniformToFill" MouseLeftButtonUp
    ="TiltShiftImage_MouseLeftButtonUp"/>
  <Image x:Name="OriginalImage" Height="480" Width="728"
    Stretch="UniformToFill" Canvas.ZIndex="0"
    MouseLeftButtonUp="OriginalImage_MouseLeftButtonUp"
    Source="/Assets/Landscapes.jpg"/>
  <Rectangle x:Name="TiltshiftRegion" Fill="White" Height="65"
    Stroke="#FF0B7AFF" Canvas.Top="320" Width="728"
    Opacity="0.25" StrokeThickness="5"/>
  <Button x:Name="SelectButton" Content="Select"
    Click="PickAnImageButton_Click" Canvas.Left="4"
    Canvas.Top="398" />
  <Button x:Name="CameraButton" Content="Camera"
    Click="CameraButton_Click" Canvas.Left="123" 
    Canvas.Top="398" />
  <Button x:Name="ProButton" Content="Pro Camera"
    Click="ProCameraButton_Click" Canvas.Left="254"
    Canvas.Top="398" />
  <Button x:Name="SaveButton" Content="Save"
    Click="SaveImage_Click" Canvas.Left="630" 
    Canvas.Top="398" />
  <Button x:Name="TiltShiftButton" Content="Tilt Shift"
    Click="TiltShiftButton_Click" Canvas.Left="449"
    Canvas.Top="398" />
</Canvas>

Figure 7 The XAML UI Code

Figure 8 The Tilt-Shift App UI

Figure 6 Methods and Properties Supported 
by PhotoCaptureDevice

www.bit.ly/1bRYYNK


Untitled-2   1 5/31/13   10:57 AM

http://www.rssbus.com


msdn magazine56 Windows Phone 8

I’ll show you how this fi ts in the workfl ow I discussed earlier.
Acquire Photo The first step for any camera-based app is to 

acquire an image either from the phone’s camera or image gallery. 
You can do this in three diff erent ways. One is using the default 
5MP camera by using the CameraCaptureTask, which triggers 
the normal camera viewfi nder. Th e second method is by using the 
native photo picker control called by PhotoChooserTask. Th ese 
two alternatives are suffi  cient for most camera apps, but for an 
advanced app where you need to capture high-resolution photos, 
you need to create a custom viewfi nder, which triggers the built-in 
Pro Camera application viewfi nder with high resolution. Th is is 
done using the object PhotoCaptureDevice. See Figure 6 for the 
list of methods and properties supported by PhotoCaptureDevice. 

The UI Th e tilt-shift  app consists of two images: one Original-
Image to show the actual image captured or selected using the 
photo chooser, and the TiltShiftImage, which displays the final 
image aft er the tilt-shift  fi lter is applied to the original image. Th e 
SelectButton triggers the native photo chooser, and the Camera-
Button triggers the camera, as shown in the code in Figure 7.

Th e resulting camera UI is shown in Figure 8.

Capture a High-Resolution Image Th e fi rst two methods of 
normal camera and photo picker functionality are straightforward. 
Th e Microsoft .Phone.Tasks namespace has two task objects, Camera-
CaptureTask and PhotoChooserTask, for these two purposes. 
Simply select the image either from the photo chooser or from the 
result of the camera capture as the source of your tilt-shift  fi lter:

private void PickAnImageButton_Click(object sender, RoutedEventArgs e) 
{
  PhotoChooserTask chooser = new PhotoChooserTask();
  chooser.Completed += PickImageCallback;
  chooser.Show();   
}
private void CameraButton_Click(object sender, RoutedEventArgs e)
{
  CameraCaptureTask camera = new CameraCaptureTask();
  camera.Show();
  camera.Completed += PickImageCallback;
}

Models 
Variants Manually Confi gurable High-Resolution Options
Lumia 
1020 RM-875, RM-876, RM-877 7712 x 4352 (16:9), 7136 x 5360 (4:3)

Lumia 
1520 RM-937, RM-938, RM-939 5376 x 3024 (16:9), 4992 x 3744 (4:3)

Figure 9 High-Resolution Options

private void InitializeCamera() {
  Windows.Foundation.Size captureResolution;
  var deviceName = DeviceStatus.DeviceName;
  if (deviceName.Contains("RM-875") || deviceName.Contains("RM-876") ||
    deviceName.Contains("RM-877"))
  {
    captureResolution = new Windows.Foundation.Size(7712, 4352); // 16:9
    //captureResolution = new Windows.Foundation.Size(7136, 5360); // 4:3
  }
  else if (deviceName.Contains("RM-937") || deviceName.Contains("RM-938") ||
    deviceName.Contains("RM-939"))  {
      captureResolution = new Windows.Foundation.Size(5376, 3024); // 16:9
      //captureResolution = new Windows.Foundation.Size(4992, 3744); // 4:3
    }
  else {
    captureResolution = PhotoCaptureDevice.GetAvailableCaptureResolutions(
      REAR_CAMERA_SENSOR_LOCATION).First();
  }
  var task = PhotoCaptureDevice.OpenAsync(REAR_CAMERA_SENSOR_LOCATION,
  captureResolution).AsTask();
  task.Wait();
  _device = task.Result;
  _device.SetProperty(
    KnownCameraGeneralProperties.PlayShutterSoundOnCapture, true);
  if (_flashButton != null) {
    SetFlashState(_flashState);
  }
  AdaptToOrientation();  
  ViewfinderVideoBrush.SetSource(_device);
  if (PhotoCaptureDevice.IsFocusSupported(REAR_CAMERA_SENSOR_LOCATION))  {
    Microsoft.Devices.CameraButtons.ShutterKeyHalfPressed +=
    CameraButtons_ShutterKeyHalfPressed;
  }
  Microsoft.Devices.CameraButtons.ShutterKeyPressed +=
    CameraButtons_ShutterKeyPressed;
}

Figure 10 Initializing the Pro Camera Application

private async void CameraButtons_ShutterKeyHalfPressed(
  object sender, EventArgs e) {
    if (!_focusing && !_capturing) {
      _focusing = true;
      await _device.FocusAsync();
      _focusing = false;
    }
}

private async void CameraButtons_ShutterKeyPressed(
  object sender, EventArgs e) {
    if (!_focusing && !_capturing) {
      _capturing = true;
      var stream = new MemoryStream();
      try {
        var sequence = _device.CreateCaptureSequence(1);
        sequence.Frames[0].CaptureStream = stream.AsOutputStream();
        await _device.PrepareCaptureSequenceAsync(sequence);
        await sequence.StartCaptureAsync();
      }
      catch (Exception ex) {
        stream.Close();
      }
      _capturing = false;
      if (stream.CanRead) {
        // Process the image in the stream
        // This can be saved to the local storage
      }
    }
}

Figure 11 Capturing an Image via Shutter Key-Pressed Events

public partial class MainPage : PhoneApplicationPage {
  private Stream _img;
  private StreamImageSource imageSource;
  private ImageProviderInfo info;
  private FilterEffect _tiltshiftEffect = null;
  private WriteableBitmap _tiltshiftImageBitmap = null;
  // Constructor
  public MainPage()  {
    InitializeComponent();
    _tiltshiftImageBitmap = 
    new WriteableBitmap((int)TiltShiftImage.Width,(int)TiltShiftImage.Height);
  }
...
private async void PickImageCallback(Object sender, PhotoResult e) {
  if (e.TaskResult != TaskResult.OK) {
    return;
  }
  _img = e.ChosenPhoto;
  imageSource = new StreamImageSource(_img);
  var bitmapImage = new BitmapImage();
  bitmapImage.SetSource(e.ChosenPhoto);
  OriginalImage.Source = bitmapImage;
  info = await imageSource.GetInfoAsync();
  TiltShift();          
...

Figure 12 Initializing Filters for an Effect



Experience how Altova MissionKit®, a software 

development suite of industrial-strength XML, SQL, 

and data integration tools, can simplify even the 

most advanced XML development projects. 

Bring your 

XML development 

projects to light 

with the complete set 

of tools from Altova® 

MissionKit
ALTOVA®ALTOVA®

Altova MissionKit includes multiple, 

tightly-integrated  XML tools: 

XMLSpy® – industry-leading XML editor

 • Support for all XML-based technologies

 • NEW! Support for XML Schema 1.1 and 

  XPath/XSLT/XQuery 3.0 

 • Industry’s strongest validation engine with Smart Fix

 • NEW! Powered by RaptorXML® for lightning-fast 

  validation & processing

 • Graphical editing views, powerful

  debuggers, code generation, & more

MapForce® – any-to-any data mapping & integration tool

 • Drag-and-drop data conversion

 • Mapping of XML, DBs, EDI, Excel®, XBRL, 

    flat files & Web services

• Automation via MapForce Server

StyleVision® – visual XSLT stylesheet & report designer

 • Graphical XSLT stylesheet & report design 

   for XML, XBRL, & SQL databases

 • Output to HTML, PDF, Word & more

 • Automation via StyleVision Server

Download a 30 day free trial!

Try before you buy with a free, fully

functional trial from www.altova.com 

div
div

div div

BiggestCities ($)

Paris

New York

Moscow

Karachi

Shanghai

Sydney

Tokyo

Chicago

Hong KongLondon

List of the biggest cities in the world:

chart drawn with sample data

Address_US

ipo:US-Addresstype

Address

ipo:Addresstype

Address_EU

ipo:EU-Addresstype

ipo:name

ipo:street

ipo:city

type string

type string

type string

type ipo:EU-Postcode

ipo:postcode

ipo:EU-Address

attributes

P

O
WERED BY

RA PTO
R

X
M

L
®

Untitled-2   1 3/10/14   1:19 PM

http://www.altova.com


msdn magazine58 Windows Phone 8

To capture a high-resolution photo, I need to create a custom 
viewfi nder using a video brush whose source will be the image of 
the Pro Camera application:

<Canvas x:Name="Canvas" Tap="Canvas_Tap" Height="480"
  HorizontalAlignment="Center" VerticalAlignment="Center">
  <Canvas.Background>
    <VideoBrush x:Name="ViewfinderVideoBrush" Stretch="Uniform"/>
  </Canvas.Background>           
  <Border x:Name="FocusBracket" Width="80" Height="80"
    BorderBrush="White" BorderThickness="2" Margin="-40"
    Visibility="Collapsed" CornerRadius="360"/>
  <Image x:Name="FreezeImage" Visibility="Collapsed" 
    Stretch="Uniform" Height="480"/>
</Canvas>

I also need to initialize the Pro Camera application 
with the correct resolution depending on the device, 
Lumia 1020 or Lumia 1520, and the type of resolution 
wanted. See Figure 9 for options. 

Figure 10 shows how you can initialize the Pro 
Camera application.

Capturing the image from the Pro Camera applica-
tion involves ShutterHalfKeyPressed and ShutterKey-
Pressed events, as shown in Figure 11. 

Do the Magic First I’ll use the PickImageCallback 
to get a photo, which is then set as a source of the 
OriginalImage. To access dimensions of the image, I’ll 
use ImageProviderInfo.

I’ll also create fi lters and apply them in the session. 
To create a tilt-shift  eff ect, I’ll use three diff erent fi lters: 
BlurFilter with KernelSize 15; ColorBoostFilter with 

value 0.5; and again BlurFilter with KernelSize 21. Th e two blur fi lters 
make the foreground and the background of the image out of focus 
and the ColorBoostFilter brightens the region, which I want to do to 
create the miniature eff ect. Th e code for this is shown in Figure 12.

To apply the tilt-shift filter, I need three rectangles: the top 
rectangle for blur; the middle rectangle for color boost; and the 
bottom rectangle for blur again (see Figure 13). In this example, 
I’ll use a rectangular region called Tiltshift Region, which the user 
can touch and move to customize the position where the tilt shift  
takes place. Th e translucent rectangle shown in Figure 13 becomes 
tilt shift ed and the rest of the area is blurred.

The TiltShiftRegion position is used to calculate the three 
rectangles where the fi lters are applied (see Figure 14).

Save Photo Finally, the processed image needs to be saved back, 
as shown in Figure 15. 

And I’m done. You now understand PureView advanced camera 
capture and post processing of the image using the Nokia Imaging 
SDK. I hope you found this article useful, and I look forward to 
hearing your comments and suggestions. 

RAJESH LAL works at Nokia and is passionate about Windows Phone and Web 
technologies. His latest book is “Digital Design Essentials: 100 Ways to Create 
Better Desktop, Web and Mobile Interfaces” (Rockport Publishers, 2013). You can 
fi nd it at bit.ly/dsgnbk. For information about the author, check out iRajLal.com. 

THANKS to the following technical experts for reviewing this article: 
Chevon Christie (Microsoft ) and Paras Wadehra (Nokia)

private async void TiltShift() {
  if (info == null) return;
  try {
    var topLeft = new Windows.Foundation.Point(0, 0);
    var tiltShiftRegionTop = Canvas.GetTop(TiltshiftRegion);
    var delta = info.ImageSize.Height / TiltShiftImage.Height;
    tiltShiftRegionTop = (tiltShiftRegionTop + 10) * delta;
    var tiltShiftRegionBottom = 
      (Canvas.GetTop(TiltshiftRegion) + 10) * delta + TiltshiftRegion.Height;

    var topRight = 
      new Windows.Foundation.Point(info.ImageSize.Width, tiltShiftRegionTop);
    var bottomLeft = new Windows.Foundation.Point(0, tiltShiftRegionBottom);
    var bottomRight = new Windows.Foundation.Point(
      info.ImageSize.Width, info.ImageSize.Height);
    // Define the effects to apply
    _tiltshiftEffect = new FilterEffect(imageSource);

    List<IFilter> filters = new List<IFilter>();
    filters.Add(new BlurFilter(15, (
      new Windows.Foundation.Rect(topLeft, topRight)),
      BlurRegionShape.Rectangular));
    filters.Add(new ColorBoostFilter(0.5));
    filters.Add(new BlurFilter(23, (new Windows.Foundation.Rect(bottomLeft,
      bottomRight)), BlurRegionShape.Rectangular));

    _tiltshiftEffect.Filters = filters;
    // Render the image using WriteableBitmapRenderer
    WriteableBitmapRenderer renderer = 
      new WriteableBitmapRenderer(_tiltshiftEffect,
      _tiltshiftImageBitmap, OutputOption.PreserveAspectRatio);
    _tiltshiftImageBitmap = await renderer.RenderAsync();
    TiltShiftImage.Source = _tiltshiftImageBitmap;
  }
  catch (Exception exception) {
    MessageBox.Show("Exception:" + exception.Message);
    return;
  }
  SaveButton.IsEnabled = true;  
}

Figure 14 Combining Filters for an Effect

private async void SaveImage_Click(object sender, RoutedEventArgs e) {
  SaveButton.IsEnabled = false;
  if (_tiltshiftEffect == null) {
    return;
  }
  var jpegRenderer = new JpegRenderer(_tiltshiftEffect);
  // JPEG renderer gives the raw buffer for the filtered image
  IBuffer jpegOutput = await jpegRenderer.RenderAsync();

  // Save the image as a JPEG to the saved pictures album
  MediaLibrary library = new MediaLibrary();
  string fileName = string.Format("TiltShiftImage_{0:G}", DateTime.Now);
  var picture = library.SavePicture(fileName, jpegOutput.AsStream());
  MessageBox.Show("Tilt Shift Image saved!");
  SaveButton.IsEnabled = true;
}

Figure 15 Saving the Processed Image

Figure 13 The Three Rectangles Used for the Tilt-Shift Effect

www.iRajLal.com
www.bit.ly/dsgnbk


Untitled-1   1 10/10/13   10:10 AM

http://www.atalasoft.com


set your course 
  127.0.0.1!

REDMOND 2O14

for
vslive.com/redmond

SUPPORTED BY

magazine

SPONSORPLATINUM SPONSOR

Untitled-11   2 3/11/14   4:45 PM

http://www.vslive.com/redmond


Tracks Include:
Visual Studio/.NET Framework
Windows Client
JavaScript/HTML5 Client
ASP.NET
Cloud Computing
Windows Phone
Cross-Platform Mobile Development
SharePoint
SQL Server

Register by June 11 
and Save $400!
Use promo code VSLAPR2

CONNECT WITH VISUAL STUDIO LIVE!

twitter.com/vslive – @VSLive

facebook.com – Search “VSLive”

linkedin.com – Join the 
“Visual Studio Live” group!

Scan the QR code to 
register or for more 
event details.

REDMOND 2O14
August 18 – 22 
Microsoft Campus
Redmond, WA

vslive.com/redmond

From August 18 – 22, 2014, developers, engineers, 
software architects and designers will land in Redmond, 
WA at the idyllic Microsoft headquarters for 5 days 
of cutting-edge education on the Microsoft Platform. 

Come experience code at the source – rub elbows with 
Microsoft stars, get the inside scoop on what’s next, 
and learn what you need to know now. Over 5 days and 
60+sessions and workshops, you’ll explore the .NET 
Development Universe, receiving the kind of practical, 
unbiased training you can only get at Visual Studio Live! 

PRODUCED BY

YOUR GUIDE TO THE 
.NET DEVELOPMENT
UNIVERSE

Untitled-11   3 3/11/14   4:46 PM

http://www.vslive.com/redmond


msdn magazine62

Survival analysis (SA) is a discipline of statistics that focuses 
on estimating time to events. You would typically apply survival 
analysis methods to clinical studies to help determine the eff ective-
ness of certain drugs (time to patient death), reliability of soft ware 
systems (time to failure) and credit analytics (time to loan default). 

Pharmaceutical clinical studies involving two groups of patients 
are an excellent example of how this can work. Th e control group 
members are administered a placebo. The test group members 
receive the experimental drug targeting the disease. Survival 
analysis methods are then applied to determine whether there’s a 
statistically signifi cant diff erence in patient survival between the 
two groups. Th e “time to” event in this case is the time from the 
beginning of the study until patients die.

To expose you to using SA, I’ll cover basic concepts along with a 
C# implementation of a commonly used estimation method called 

the Kaplan-Meier estimator. I’ll use a real-world example of esti-
mating the survival probability of mobile applications. 

Imagine a software development firm produces two separate 
mobile applications titled X and Y. Each one is developed by sep-
arate teams. The firm is eager to learn how robust the mobile 
applications are and to determine if one application is signifi cantly 
less robust and requires more eff ort to improve its reliability. 

At any given moment, there can be many instances of X and 
Y alive and running on customer mobile devices. Th us, a mobile 
application crash is what’s most interesting. Longer time periods to 
the event, in this case, will indicate the application is more robust 
or has better survivability.

In the demo program, I’ll fi rst display the survival data for mobile 
applications X and Y (see Figure 1). Th e data shows both applications 
were run by 10 diff erent users with IDs ranging from zero to nine. In 
my example, an application can either crash (described by event = 
app crash in the screenshot) or get closed by the user (described by 
event = app off ). Th e day on which the event occurs is also recorded.

C#

Using Survival 
Analysis
Zvi Topol

This article discusses:
• How to use survival analysis to estimate time to events

• Using a C# implementation of the Kaplan-Meier estimating 
algorithm

• Using censoring to account for missing data

• Coding the Kaplan-Meier algorithm and interpreting the results

Technologies discussed:
C#

The most basic concept 
in SA is that of the 
survival function.



63April 2014msdnmagazine.com

Basic Concepts of SA
Th e most basic concept in SA is that of the survival function. Th is 
is commonly denoted by S(t). If X is a random variable (a variable 
whose values are outcomes based on chance) representing the event 
time, then S(t) = Pr (X > t). In other words, S(t) is the probability 
for survival aft er time t. S(0) is defi ned to be 1. Th e survival func-
tion is related to the lifetime distribution function. Th is is typically 
denoted by F(t) and is defi ned as F(t) = Pr(X<=t), in other words, 
the probability the event happened until time t. Th erefore, F(t) = 
1 – S(t). Th e event density function f(t) is then defi ned to be dF(t)/
dt—the fi rst derivative of F(t), if F(t) is diff erentiable. Th erefore, 
f(t) can be thought of as the rate of the event (per unit of time).

Th e hazard function, another basic concept, is equal to f(t)/S(t) 
and is the event rate at time t for individuals who are alive at time t. 

You can specify survival functions parametrically, using an 
explicit function or a family of functions. You can also infer them 
non-parametrically from existing data, without having a parame-
trized closed form. A semi-parametric specifi cation, which is a 
mix between parametric and non-parametric specifi cation, is also 
possible. The exponential distribution is a simple and popular 

parametrized function family to describe 
survival functions due to its appealing 
mathematical properties. 

For example, S(t) = exp(-0.05t) is a survival 
function from a paramterized exponential 
distribution plotted in Figure 2. Th e survival 
functions of the form S(t) = exp(-at) (where 
a is a parameter controlling the hazard rate 
can describe that distribution). Th e lifetime 
distribution function is given by F(t) = 1 – 
S(t) = 1 – exp(-at). Figure 2 helps us visual-
ize how survival functions behave over time. 

Working with a given parametric model, 
you can use actual data to estimate the mod-
el’s parameters. In the case of exponential 
distribution, it’s the parameter a. One way 
to do so is to use Maximum Likelihood 
Estimation (MLE) methods, but that’s 
another subject entirely.

I’ll focus on implementing a non- 
parametric estimate for the survival function. Th at is, I won’t set 
a predefined model for the survival function and estimate the 
model parameters. Instead, I’ll derive the survival function directly 
from the data observed. Before I describe how to do that, I have to 
explain another important concept of SA called censoring. 

Censoring occurs when some observations in the dataset are 
incomplete. At some point, you’ve lost track of the item observed. 
In my example, this would mean a mobile application ended its 
execution without crashing (throwing a fatal exception). The 
application was gracefully closed by the user. Although there can 
be other reasons an application ended without crashing, I’ll assume 
an application either crashes or gets closed by the user.

Th ere are two main fl avors for censoring—right censoring and 
left  censoring. Right censoring occurs when the start time is known, 
but the event time is missing. Left  censoring occurs when the event 
time is present, but the start time is missing. Right censoring is 
occuring in my example.

Using the Kaplan-Meier Estimator 
to Estimate the Survival Function
Th e Kaplan-Meier (KM) estimator is a non-parametric algorithm that 
estimates the survival function. Deriving the KM estimator entails 
the use of advanced math, including martingale theory and counting 
processes, and is beyond the scope of this article. Implementing the 
KM estimator, however, is straightforward and is based on counts. 

Figure 1 The Survival Analysis Demo Showing Lifecycle of Mobile Apps

The Kaplan-Meier (KM) 
estimator is a non-parametric 
algorithm that estimates the 

survival function.

Figure 2 How Survival Functions Behave over Time

http://www.msdnmagazine.com


msdn magazine64 C#

Consider computing the KM estimator for the survival of 
mobile application X. Th e KM estimator needs to keep track of 
three diff erent counts:

1.  How many instances of mobile application X are still up 
and running. Th is is represented using the variable atRisk 
in my implementation.

2.  Th e number of instances that have crashed. Th is is tracked 
in the crashed variable.

3.  Th e number of instances that fi nished execution gracefully. 
Th ese are counted using the variable censored.

Th e following lines of code (for mobile application X) are using the 
CrashMetaData class to encode the survival data represented in Figure 3: 

var appX = new CrashMetaData[] {new CrashMetaData{UserID = 0, 
  CrashTime = 1, Crashed = false},
           new CrashMetaData{UserID = 1, CrashTime = 5, Crashed = true},  
           new CrashMetaData{UserID = 2, CrashTime = 5, Crashed = false}, 
           new CrashMetaData{UserID = 3, CrashTime = 8, Crashed = false}, 
           new CrashMetaData{UserID = 4, CrashTime = 10, Crashed = false},
           new CrashMetaData{UserID = 5, CrashTime = 12, Crashed = true},
           new CrashMetaData{UserID = 6, CrashTime = 15, Crashed = false}, 
           new CrashMetaData{UserID = 7, CrashTime = 18, Crashed = true}, 
           new CrashMetaData{UserID = 8, CrashTime = 21, Crashed = false},
           new CrashMetaData{UserID = 9, CrashTime = 22, Crashed = true}};

The survival data contains event time in days (encoded by 
CrashTime) and information about whether the event refers to 
an application crash or censoring. If Crashed is equal to true, the 
application crashed. Otherwise, the application closed gracefully 
(in other words, was censored). Additionally, a UserID field is 
tracking the instance of the application.

Th e KM estimator is implemented in the EstimateKaplanMeier meth-
od. Th is partitions the data to diff erent non-overlapping time intervals 
based on time periods to events (in my example this is an application 
crash). It keeps track of the counts in each interval. 

It’s important to note the count of how many applications are still up 
and running is done just before the event (this is due to the mathemat-
ical formulation of counting processes). So in the fi rst interval in my 
example, which covers days 0 to 5, 9 out of the 10 instances were up and 
running just before day 5 (one instance fi nished running at time 1). In 
the interval up to and including day 5, I had one crash (which defi nes 
the interval) and 2 instances fi nishing (on days 1 and 5). See Figure 4. 

Th e KM estimate for the survival function is then the product 
over all the diff erent intervals of the survival derived from the 
counts in the partitions:  

1 – (crashed in interval) /(those at risk just before the end 
of the interval)

Th e EstimateKapalanMeier method returns an object of class 
SurvivalCurve. Th is represents the estimated survival function. 
The output is a step function. Each step is the value of survival 
function in a corresponding interval (as estimated by the KM 
estimator). Figure 5 includes part of the Survival Analysis demo 
program output corresponding to the SurvivalCurve object (for 
both applications X and Y).

Figure 6 includes a plot of the step survival function estimated 
for mobile application X. In the plot, short vertical lines in each 
step denote multiple occurrences of the crash event during the 
interval corresponding to the step.

You can then use the estimate to infer the median survival time, 
or the time by which half of the instance will be alive. Th is should 
occur at some point in time between days 12 (where the survival 
probability estimate is 0.711 > 0.5) and 18 (where the survival 
probability is 0.474 < 0.5). Th ere are a few approaches in the SA 
literature describing how to exactly compute this quantity, because 
it typically falls between two steps. 

I’ll defi ne the median survival time as the minimal survival time 
for which the survival function is less than 0.5, which for mobile 
application X results in a median survival time of 18 days. Th e 
interpretation of this quantity is that by day 18, half of the mobile 
instances of application X crash and half stay up and running. Th is 
implementation computes the median survival time in the method 
GetMedianSurvivalTime.

Another question you can answer using the KM estimates is 
whether there’s a diff erence in the survivability of two (or more) 
different applications. One way to approach this question is to 
visually plot the KM estimates corresponding to each application. 
This type of plot is described in Figure 7, and compares the 
estimated survival functions of applications X and Y.Figure 4 Day Intervals Created by the KM Estimator

0 2218125

2 finished

1 crashed

9 at risk

3 finished

1 crashed

5 at risk

1 finished

1 crashed

3 at risk

1 finished

1 crashed

1 at risk

Another question you can 
answer using the KM estimates 
is whether there’s a difference in 
the survivability of two (or more) 

different applications.

UserID Days Crashed Censored
0 1 X
1 5 X
2 5 X
3 8 X
4 10 X
5 12 X
6 15 X
7 18 X
8 21 X
9 22 X

Figure 3 Survival Data of Mobile Application X



65April 2014msdnmagazine.com

Th e green curve represents survival function of application X 
and the blue curve represents survival function of application Y.

From the plot, you can see the survival function of application 
X tops the survival function of application Y. Th erefore, you can 
infer application X has better survivability than application Y and, 
thus, is more robust.

While visualizing survival functions may help in determining 
survivability diff erences, some cases are not as clear-cut. Fortu-
nately, there’s a statistical approach to test for such diff erences in 
a formal and rigorous way, called the Log Rank Test. Th is is an 
algorithm that tests whether there’s a signifi cant diff erence between 
two (or more) survival distributions in a non-parametric way. Th e 
SA literature includes a detailed discussion about this and most SA 
statistical libraries include Log Rank test implementations.

It’s worth noting there’s another popular algorithm to estimate the 
survival function in a non-parametric way called the Nelson-Aalen 
(NA) estimator. Th e NA estimates the cumulative hazard function 
from survival data. You can then derive the survival function from 

this estimate using a mathematical formula 
that ties it to the cumulate hazard function. 
You can fi nd more details about this estima-
tor in the SA literature.

Wrapping Up
I’ve introduced basic concepts and terminol-
ogy from the statistical branch of survival 
analysis. I showed how to implement the 
non-parametric Kaplan-Meier estimator 
and applied it to an example comparing 
the robustness of mobile applications. Th is 
estimator can help determine whether there’s 
a diff erence in the survivability of the two 
applications. I also mentioned a rigorous 
statistical test to check for diff erences, called 
the Log Rank test. Another quantity I derived 
using the KM estimator is the median sur-
vival time, which also points to survivability 
diff erences between applications X and Y. 

Finally, I mentioned the Nelson-Aalen estimator as an alterna-
tive non-parametric method for estimating the survival function. It 
doesn’t directly estimate the survival function like the KM estimator, 
but rather estimates the cumulative hazard function. You can then 
derive the survival function from the cumulate hazard function.

Th is only scratches the surface of the rich fi eld of SA. Th e applica-
tions span areas from medicine to engineering and whose methods 

and algorithms are implemented 
in many statistical packages. With 
the proliferation of mobile appli-
cations and Soft ware as a Service 
enterprise deployments, I antici-
pate SA methods can play a role 
in monitoring and improving the 
quality of such deployments. 

ZVI TOPOL works as a senior scientist in 
marketing analytics in New York City. He 
designs and applies non-linear large-scale 
optimization algorithms and statistical 
methods to improve marketing planning 
for big Fortune 500 companies.

THANKS to the following technical 
expert for reviewing this article: 
Dr. James McCaff rey (Microsoft  Research)

 Figure 7 KM Estimates for Mobile 
Applications X and Y

Figure 6 KM Estimate of the Survival 
Function for Mobile Application X

Figure 5 Survival Analysis Demo Output for KM Estimates for Applications X and Y

While visualizing survival 
functions may help in determining 

survivability differences, some 
cases are not as clear-cut.

http://www.msdnmagazine.com


msdn magazine66

Windows 8.1 is a substantial update to the Windows OS, with many 
new enhancements and features to help you innovate and build the 
best creations possible. In this article, I’ll look at the new enhance-
ments in Windows 8.1 for developers who build Windows Store apps. 

More Ways to Do Windows and Tiles
Before Windows 8.1, your app could display in one of three modes: 
full view (landscape or portrait), fi lled view or snapped view. Users 
of Surfaces and other devices requested more control over 
window management such as, for example, being able to view more 
than two apps concurrently. Th erefore, to refl ect the varied uses of 
the customer base, the Windows team responded by adding more 
ways to manage and organize windows and screen real estate. Th is 
means users can position windows side by side equally or in any 
proportions they want, and an app can also create multiple views 
that users can size and position independently. 

Previously, in Windows 8 apps built with JavaScript, you’d use 
CSS media queries to control how the page lays itself out depending 
on its view state (full, filled or snapped). In Windows 8.1, this 
has changed so you only need CSS media queries that target the 
dimensions and orientations of the screen, as shown here: 

@media screen and (min-width: 500px) and (max-width: 1023px) {
  /* CSS styles to change layout based on window width */
}
@media (min-width: 1024px) {
  /* CSS styles to change layout based on window width */
}
@media screen and (orientation: portrait) {
  /* CSS styles to change layout based on orientation */
}

Th is means you don’t need to adjust or query for specifi c app 
view states, as you did before. You only need to use media queries 
and set a minimum width and orientation, which you can do in 
the media query itself. The mandatory minimum height of any 
Windows app is 768 pixels. 

Tiles usually bring the user to the app in the fi rst place. Located 
in the Start menu, live tiles are an excellent modern feature of 
Windows and Windows Phone. No other platform has quite the 
same capability to show all your data in a real-time dashboard the 
way Windows does. Th at said, as a developer, you can extend your 
apps to use four diff erent tile sizes: small, medium, wide and large, 
as shown in Figure 1.

Th e package manifest in Visual Studio contains a Visual Assets 
tab where you can confi gure the tile sizes, along with other visual 
assets such as the splash screen. 

New Visual Studio 2013 Project Templates 
Help You Build Modern Apps
As you might expect, with each Visual Studio release come new proj-
ect templates. New Windows Store apps built with JavaScript (using 
the Windows Library for JavaScript, or WinJS) project templates 
include a Hub template, while the new XAML project templates 
include Hub, Portable Class Library and Coded UI Test.

The new Hub project template in both WinJS and XAML 
encapsulates a popular design approach I refer to as “modern.” Its 
default layout contains fi ve diff erent sections carefully craft ed so 
you can off er varied visual arrangements of data to your users. Th e 
Hub layout makes it easier for users to scan and pinpoint what’s 
important to them. Designing a modern UI means you present 
data in ways different from previous non-modern, traditional 
techniques, with a focus on the user and usability. The Hub 
project does just that.

Inside the Hub project’s pages folder live three folders named hub, 
item and section. Each of these comes with its own corresponding 
.html, .js and .css fi les. In the XAML projects, there are equivalent 
pages named HubPage.xaml, SectionPage.xaml and ItemPage.xaml 
in the root folder. Figure 2 shows what the Hub project, featuring 
the Hub control, looks like at run time.

As you can see, the Hub project and control show a panorama 
view of nicely arranged content. It’s a sleek and modern design.

Updated and New HTML and 
XAML Controls for a Modern UI
New controls and control improvements in all project types make them 
simpler to use. Th ese new and updated controls make it easier than 
ever to create and publish a modern app. In both HTML and XAML, 
there are performance and data-binding control enhancements. For 
a primer on Windows Store controls, see my MSDN Magazine article, 
“Mastering Controls and Settings in Windows Store Apps Built with 
JavaScript,” at msdn.microsoft.com/magazine/dn296546.

In the Hub project template comes the Hub control, new for both 
WinJS and XAML. Th e default template’s Hub control structures 
the UI layout with fi ve sections to scroll through horizontally, all 
in the app’s starting page. Th e hero section is the crown jewel of the 
app, oft en used for presenting the featured news story, recipe, sports 
score, weather data or whatever it may be. It’s also the fi rst thing 
a user will see aft er the splash screen. Provided as a starting point 
for the developer, the next four sections simply contain data items 

What’s New in Windows 8.1 
for Windows Store Developers

MODERN APPS RACHEL APPEL

http://msdn.microsoft.com/magazine/dn296546


67April 2014msdnmagazine.com

of varied sizes. Users can navigate to the listing of section 3’s group 
membership or to individual items in section 3. Of course, the Hub 
control is fl exible and can accommodate any number of sections 
with any content. It’s designed to easily handle heterogeneous con-
tent of diff erent kinds and from diff erent sources, as opposed to 
strictly homogeneous content of similar data from the same source. 

The Grid template relies only on the ListView control. Now 
the new Hub control contains an embedded ListView control so 
navigation works as you’d expect, to either the group listing or an 
individual item, depending on which item the user taps or clicks.

This ListView has many modern enhancements, including 
support for drag-and-drop operations. Alongside drag and drop 
is a ListView enhancement for reordering items. Simply set the 
itemsReorderable property of the ListView to true and no other 
code is required. Th e ListView includes several other enhance-
ments, including improved cell spanning, better accessibility and 
better memory management.

While the ListView control has many new and shiny features, 
there’s another control worth mentioning: the Repeater. Several 
UI controls across the Microsoft  .NET Framework use repeating 
controls. For example, there’s an ASP.NET Repeater control. Grid 
controls and the like exist throughout the .NET platform, cus-
tomized to the varied ways you can build a UI with the .NET 
Framework. As you probably suspect, you can use the Repeater con-
trol to generate a list of items with styling from a data set. In WinJS, 
this means the Repeater will properly render just about any embedded 
HTML or WinJS controls. Figure 3 shows an example of the Repeater 
control. Note how it works much like a ListView, except that groups 
are no longer required. As you can see in the sample data in Figure 
3, the JavaScript creates a simple array.

Th e NavBar is another control that improves the UX by providing 
menu options in a way that’s conducive to user interaction. Unlike 
the JavaScript menus on popular Web sites from days of yore, 
modern menu items are large and optimized for a variety of input 
devices. We’ve all seen someone not so skilled with a mouse struggle 
with those tiny, cascading Web site menus of the past. Th is means, 
as part of modern app UI design principles, the NavBar works well 
with touch input, a must-have feature for tablets. Th e user invokes the 
navigation toolbar by swiping from the top or bottom edges, using 
the Windows key+Z shortcut or by a right-click. If you’ve used the 
AppBar control, the NavBar control works almost identically. 

Th ose who want to integrate a modern Web site with client apps 
can use the new WebView control. It can present data from the 

Internet much easier than in previous WinJS versions that used an 
iframe. Th e WebView control is an HTML element that looks like this:

<x-ms-webview id="webview" src="http://rachelappel.com" 
  style="width: 400px; height: 400px;"></x-ms-webview>

Th is is diff erent from the standard way to create WinJS controls 
by using a <div> element and setting the data-win-options attri-
bute. Th e WebView control serves as a container that’s hosting the 
external content. Along with that are security and sandboxing 
implications, so using an HTML element works better than a 
typical control in this case. WebView isn’t a control that you can just 
implement with other HTML elements, and it must be supported 
directly in the app host. Note that work is being done to propose a 
<webview> element as a standard for consideration by the World 
Wide Web Consortium (W3C).

Until this Windows release, XAML hasn’t had parity with HTML 
as far as controls were concerned. Now, though, XAML has caught 
up by adding the following new controls:

•  AppBar:  Th e menu bar across the bottom of the screen. 
•  CommandBar:  An individual menu bar item.

Figure 2 The Hub Project at Run Time

Figure 1 New Live Tiles in Windows (Not to Scale)

Large

Wide

Medium

Small Small

http://www.msdnmagazine.com


msdn magazine68 Modern Apps

•  DatePicker:  A set of three dropdowns that capture the 
date from the user.

•  Flyout: A modeless, light-dismiss dialog box or a 
settings control.

•  Hub: Th is lets you display a panorama of various-sized 
items in groups. 

•  Hyperlink: A hyperlink that navigates to a URI.
•  MenuFlyout: A predefi ned Flyout specifi cally styled so it 

displays a list of menu items.
•  SettingsFlyout: A Flyout that appears from the right side 

of the screen upon the user’s swipe or interaction. It’s used 
for managing app settings.

•  TimePicker: A control that lets the user select hours, 
minutes, seconds and other segments of time. It oft en 
complements the DatePicker.

Now there’s less need for XAML developers to create their own 
visual elements, as many are now part of the UI framework. 

Windows 8.1 Has More Choice in Search
Windows 8 introduced the concept of a charm—a shortcut to a 
common task. Users have their habits, and search as a way to launch 
apps or fi nd information is a common one. Users frequently search 
for information, as search engine results will attest. Search is such an 
important part of computing that it’s part of the Windows OS and 
now there’s a search control to complement the charms. When you 
have data local to your app that users should be able to search, use 
the SearchBox control, and when they need to do a wider-scoped 
or Internet search, go with the SearchPane (the Search Windows 
charm introduced in Windows 8). Aft er you confi gure the search 
contract in package.appmanifest in the declarations tab, you can 
provide search services to your users. You may have either the 
SearchBox or the SearchPane in your app, but not both. 

Adding a SearchBox control is as easy as applying the data- win-
control attribute to WinJS.UI.SearchBox, as you might expect:

<div id="searchBoxId" 
  data-win-control="WinJS.UI.SearchBox"
  data-win-options="{focusOnKeyboardInput: true}">
</div>

XAML keeps the SearchBox class definition in the Win-
dows.UI.Xaml.Controls namespace, and the declarative syntax 
looks like this:

<SearchBox x:Name="SearchBox" 
  FocusOnKeyboardInput="True"
  QuerySubmitted="SearchBox_QuerySubmitted"
  Height="35" />

Microsoft  recommends adding instant search to your apps. Instant 
search is when users simply type to activate and start a search query. 
Go to the Windows 8 Start screen and just start typing. You’ll notice 
the SearchPane immediately initiates a search query across the device 
as well as on the Internet. You can, of course, emulate this behavior in 
your apps like the preceding code samples do by setting the HTML 
data-win-option attribute to focusOnKeyboardInput or the XAML 
FocusOnKeyboardInput value to True. 

Use Contact and Calendar APIs 
to Stay Connected and Up-to-Date
With Windows 8.1, you get convenient APIs to interact with a 
user’s contacts and calendar if the user allows. Th e Contacts API 
enables a source app to query the data store by e-mail address or 
phone number and provide relevant information to the user. Th e 
Calendar API allows you to add, replace, remove, or otherwise 
work with appointments and show the user’s default appointment 
provider app (for example, the built-in calendar app or Outlook) 
on screen next to your app at run time. Th is means your app can 
seamlessly integrate with the built-in apps.

In the Contact API, Windows 8.1 uses the Windows.Applica-
tionModel.Contacts.Contact class to represent a contact, and the 
older ContactInformation class used in Windows 8 has been depre-
cated. Luckily, the API documentation clearly labels each member 
of deprecated namespaces with the following message: “<member 
name> may be altered or unavailable for releases aft er Windows 
8.1,” so it’s easy to avoid using these. Figure 4 shows just how easy 
it is to capture an e-mail address and phone number and shows a 
user’s contact card from that data. With a bit more code, you could 
save or show the contact in another part of the app.

As you can see, the Contacts API is simple to use, yet allows a 
deep level of integration with Windows. Th e Calendar API is quite 
similar. In code, you make instances of appointment objects and 

<!—HTML -- >
<div id="listTemplate" data-win-control="WinJS.Binding.Template">
  <li data-win-bind="textContent: title"></li>
</div>
<ul data-win-control="WinJS.UI.Repeater" 
  data-win-options="{data: RepeaterExample.basicList, 
  template: select('#listTemplate')}">
</ul>
// JavaScript
(function () {
  "use strict";
  var basicList2 = new WinJS.Binding.List(
    [
      { title: "Item 1" },
      { title: "Item 2" },
      { title: "Item 3" },
      { title: "Item 4" }
    ]);
  WinJS.Namespace.define("RepeaterExample",
    {
      basicList: basicList2
    });
})();

Figure 3 HTML and JavaScrip That Builds 
a Simple Repeater Control

<label for="emailAddressInput">Email Address</label>
<input id="emailAddressInput" type="text"/>
<label for="phoneNumberInput">Phone Number</label>
<input id="phoneNumberInput" type="text" />
<button id="addToContactsButton" onclick=
  "addContactWithDetails()">Add to Contacts</button>
function showContactWithDetails() {
  var ContactsAPI = Windows.ApplicationModel.Contacts; 
  var contact = new ContactsAPI.Contact();

  var email = new ContactsAPI.ContactEmail();
  email.address = document.querySelector("#emailAddressInput");
  contact.emails.append(email);

  var phone = new ContactsAPI.ContactPhone();
  phone.number = document.querySelector("#phoneNumberInput");
  contact.phones.append(phone);
  ContactsAPI.ContactManager.showContactCard(
    contact, {x:120, y:120, width:250, height:250}, 
    Windows.UI.Popups.Placement.default);
}

Figure 4 Showing a Contact Card



69April 2014msdnmagazine.com

assign values to properties that represent meeting details—such as 
the date and time of the meeting—and then save them. Th en you 
have contacts and calendaring capabilities in your app. 

New Networking and Security APIs 
No system update would be complete without networking and 
security improvements. Th ese networking enhancements will let 
you do more via code than ever before, yet remain secure. New in 
the Windows Runtime (WinRT) in the Windows.Web.Http name-
space are objects and methods that connect to HTTP and REST 
services with more power and flexibility than is available with 
previous APIs such as WinJS.xhr and System.Net.HttpClient. Th e 
following code shows how to connect to a RESTful service:

var uri = new Uri("http://example.com/data.svc");
var httpClient = new HttpClient();
httpClient.GetStringAsync(uri).done(function () {
  // Process JSON 
}, error);
function error(reason) {
  WinJS.log && WinJS.log("Oops!");
}

Just as with any other library, the Windows.Web.Http namespace 
has members that perform their duties asynchronously, and with 
JavaScript, that means using the “done” function that runs upon 
return of a promise. However, if you want up-to-date, real-time 
apps, you can use Windows.Web.Http for standby apps that run 
in the background. Also note that you have all kinds of other 
capabilities with Windows.Web.Http, such as the ability to control 
the cache, control cookies, make other kinds of requests and 
insert fi lters in the pipeline to do all kinds of interesting things that 
I don’t have room to explore here.  

Th e good news is if you access REST services that require user cre-
dentials, you (as a user) can now manage them as multiple accounts 
in the Settings charm. Along with these security and account man-
agement features comes the option to use fi ngerprint authentication 
in your modern apps using the Windows Fingerprint (biometric) 
authentication APIs.

Modern Apps Are All About Diverse Devices
You don’t get more modern than 3D printing. Windows 8.1 has it, and 
you can develop with it! Th at’s not to mention the catalog of hardware- 
and sensor-capable APIs that are now available, including the following: 

•  Human Interface Devices (HID): A protocol that 
fosters communication and programmability between 
hardware and soft ware.

•  Point of Service (PoS): A vendor-neutral API for 
Windows Store apps that can access devices such as 
barcode scanners or magnetic-stripe readers. 

•  USB: Enables communication with standard USB devices.
•  Bluetooth: Enables communication with standard 

Bluetooth devices.
•  3D printing: Th ese are C++ extensions of the 2D printing 

support that serve as the basis for 3D printer support. You 
can access Windows printing to send formatted-for-3D 
content to the printer through an app. 

•  Scanning: Enables support for scanners.
Th e preceding APIs all enable hardware peripheral integration. 

Since Windows 8, though, apps in both HTML and XAML have 

been able to take advantage of hardware integration for working 
with the webcam, accelerometer, pen, touch and other peripherals. 

Windows 8.1 includes a set of Speech Synthesis, or text-to-speech, 
APIs. Using these APIs, you can transform textual data into a vocal 
stream—and this entails less code than you might expect. For 
example, the following code sample shows that once a new instance 
of the SpeechSynthesizer exists, you can call its synthesizeText-
ToStreamAsync method. The synthesizeTextToStreamAsync 
method accepts textual data that it then transforms into a voice 
stream, and then it sends that stream to a player:

var audio = new Audio();
var synth = new Windows.Media.SpeechSynthesis.SpeechSynthesizer();
var input = document.querySelector("#input");
synth.synthesizeTextToStreamAsync(input).then(function (markersStream) {
  var blob = MSApp.createBlobFromRandomAccessStream(
    markersStream.ContentType, markersStream);
  audio.src = URL.createObjectURL(blob, { oneTimeOnly: true });
  audio.play();
});

In addition to working with simple textual data, you can use the 
W3C standard Speech Synthesis Markup Language (SSML) for sen-
tence construction and lexical clarifi cation. Using this XML-based 
language lets you perform input and output synthesis in a more clearly 
defi ned manner, which makes a diff erence to the user.

Wrapping Up with New App 
Store Packaging Features
You can confi gure resources such as tile images and localized strings in 
the package manifest, which has changed slightly to refl ect new image 
sizes and other confi guration options. One such option is to create 
bundles. Bundles primarily let you add and manage locale-specifi c 
information so you can deploy your app to various geographic areas. 

When you deploy your app to the store, notice there are a few 
changes, including an enhanced UI at the developer portal. Users 
can fi nd your app easier than ever before now that Bing integrates 
neatly into the OS. With Bing integration, users can discover your 
app (or any fi le) via the Windows Store or via a Web site or search. 
In addition, apps that users install now will automatically update 
unless users turn the automatic update feature off . You don’t need 
to worry about frequent app updates on the user’s behalf.

I don’t have enough room to list all the new and enhanced 
features in the Windows Runtime and Visual Studio here. I do 
highly suggest you review other new features such as DirectX, which 
sports several updates that you can read about at bit.ly/1nOp0Ds. In 
addition, Charles Petzold authors an MSDN Magazine column 
focused on DirectX, so you can expect to see more details about 
the new features there (bit.ly/1c37bLI). Finally, all the information 
you need about what to expect in Windows 8.1 is in the Windows 
8.1 Feature Guide at bit.ly/1cBHgxu. 

RACHEL APPEL is a consultant, author, mentor and former Microsoft  employee with 
more than 20 years of experience in the IT industry. She speaks at top industry confer-
ences such as Visual Studio Live!, DevConnections, MIX and more. Her expertise lies 
within developing solutions that align business and technology focusing on the Microsoft  
dev stack and open Web. For more about Appel, visit her Web site at rachelappel.com.

THANKS to the following technical expert for reviewing this article: 
Kraig Brockschmidt (Microsoft )

www.bit.ly/1cBHgxu
www.rachelappel.com
www.bit.ly/1nOp0Ds
www.bit.ly/1c37bLI
http://www.msdnmagazine.com


PRODUCED BYSUPPORTED BY

magazine

CHICAGO 2O14

live long
and code 

Untitled-2   2 3/12/14   11:52 AM

http://www.vslive.com/chicago


vslive.com/chicago

This May, developers, software architects, 
engineers, and designers will blast off in the 
windy city for four days of unbiased and 
cutting-edge education on the Microsoft 
Platform. Live long and code with .NET gurus, 
launch ideas with industry experts and rub 
elbows with Microsoft stars in pre-conference 
workshops, 60+ sessions and fun networking 
events – all designed to make you better at your 
job. Plus, explore hot topics like Web API, 
jQuery, MongoDB, SQL Server Data Tools 
and more!

Tracks Include:
Visual Studio/.NET Framework
Windows Client
JavaScript/HTML5 Client
ASP.NET
Cloud Computing
Windows Phone
Cross-Platform Mobile Development
SharePoint
SQL Server

TURN THE PAGE FOR MORE EVENT DETAILS

Sessions Are    
Filling Up Quickly –  
Register Today!
Use promo code VSLAPR4

Scan the QR code to 
register or for more 
event details.

CHICAGO 2O14
May 5 – 8 | Chicago Hilton

YOUR GUIDE TO THE
.NET DEVELOPMENT
UNIVERSE

Untitled-2   3 3/12/14   11:53 AM

http://www.vslive.com/chicago


AGENDA AT-A-GLANCE

" Several of the 
presentations were 
cutting edge – they 
would have insider 
tips that you can’t 
easily search for or 
wouldn’t know to 
look for.”
John Kilic 
Web Application Developer
Grand Canyon University

START TIME END TIME Visual Studio Live! Pre-Conference Workshops: Monday,                      

7:30 AM 9:00 AM Pre-Conference Workshop Registration

9:00 AM 6:00 PM MW01 - Workshop: Modern UX Design - Billy Hollis

6:00 PM 9:00 PM Dine-A-Round Dinner

START TIME END TIME Visual Studio Live! Day 1: Tuesday, May 6, 2014

7:00 AM 8:00 AM Registration

8:00 AM 9:00 AM Keynote: Modern Application Lifecycle Management - Craig Kitterman, Group                      

9:15 AM 10:30 AM T01 - What's New in WinRT 
Development - Rockford Lhotka

T02 - What's New in the Visual Studio 
2013 IDE

10:45 AM 12:00 PM T05 -  What's New for XAML Windows 
Store Apps - Ben Dewey

T06 - ALM with Visual Studio 2013 and Team 
Foundation Server 2013 - Brian Randell

12:00 PM 1:30 PM Lunch - Visit Exhibitors

1:30 PM 2:45 PM T09 - Interaction Design Principles and 
Patterns  - Billy Hollis

T10 - What's New for Web Developers in 
Visual Studio this Year? - Mads Kristensen

3:00 PM 4:15 PM T13 - Applying UX Design in XAML - 
Billy Hollis

T14 - Why Browser Link Changes Things, 
and How You Can Write Extensions? - 
Mads Kristensen

4:15 PM 4:45 PM Networking Break - Visit Exhibitors

4:45 PM 6:00 PM T17 - What's New for HTML/WinJS 
Windows Store Apps - Ben Dewey

T18 - Katana, OWIN, and Other Awesome 
Codenames: What's coming? - 
Howard Dierking

6:00 PM 7:30 PM Exhibitor Welcome Reception

START TIME END TIME Visual Studio Live! Day 2: Wednesday, May 7, 2014
7:00 AM 8:00 AM Registration

8:00 AM 9:00 AM Keynote: There’s No Future in the Past: A Critique of Conventional Thinking on the                     

9:15 AM 10:30 AM W01 - Windows 8 HTML/JS Apps for the 
ASP.NET Developer - Adam Tuliper

W02 - Creating Data-Driven Mobile 
Web Apps with ASPNET MVC and jQuery 
Mobile - Rachel Appel

10:45 AM 12:00 PM W05 - Developing Awesome 3D 
Applications with Unity and 
C#/JavaScript - Adam Tuliper

W06 - Getting Started with Xamarin - 
Walt Ritscher

12:00 PM 1:30 PM Birds-of-a-Feather Lunch & Exhibitor Raf  e at 1:15pm MUST be present to win

1:30 PM 2:45 PM W09 - What's New in WPF 4.5 - 
Walt Ritscher

W10 - Building Multi-Platform Mobile
Apps with Push Noti  cations - Nick Landry

3:00 PM 4:15 PM W13 - Implementing M-V-VM 
(Model-View-View Model) for WPF - 
Philip Japikse

W14 - Getting Started with Windows 
Phone Development - Nick Landry

4:30 PM 5:45 PM W17 - Build Maintainable Windows Store 
Apps with MVVM and Prism - Brian Noyes

W18 - Build Your First Mobile App in 1 Hour
with Microsoft App Studio - Nick Landry

7:00 PM 9:00 PM Blues after Dark at Buddy Guy’s Legends

START TIME END TIME Visual Studio Live! Day 3: Thursday, May 8, 2014
7:30 AM 8:00 AM Registration

8:00 AM 9:15 AM TH01 - Leveraging Windows Azure Web 
Sites (WAWS) - Rockford Lhotka

TH02 - To Be Announced

9:30 AM 10:45 AM TH05 - Zero to Connected with Windows 
Azure Mobile Services - Brian Noyes

TH06 - Essential C# 6.0 - Mark Michaelis

11:00 AM 12:15 PM TH09 - Building Services with ASP.NET 
MVC Web API Deep Dive - Marcel de Vries

TH10 - Performance and Diagnostics 
Hub in Visual Studio 2013 - Brian Peek

12:15 PM 1:30 PM Lunch

1:30 PM 2:45 PM TH13 - Beyond Hello World: A Practical 
Introduction to Node.js on Windows 
Azure Websites - Rick Garibay

TH14 - Visual Studio 2013 Release Manager: 
Reduce Your Cycle Time to Improve Your 
Value Delivery - Marcel de Vries

3:00 PM 4:15 PM TH17 - From the Internet of Things to 
Intelligent Systems: A Developer's 
Primer - Rick Garibay

TH18 - Create Automated Cross Browser 
Testing of Your Web Applications with 
Visual Studio CodedUI - Marcel de Vries

4:30 PM 5:30 PM Conference Wrap-Up Panel: Andrew Brust, Miguel Castro, Rockford Lhotka, Ted Neward,                      

*Speakers and sessions subject to change

Visual Studio / 
.NET Framework

Windows
Client

Cloud
Computing

Windows
Phone

Cross-Platform
Mobile 

Development

Untitled-2   4 3/12/14   11:53 AM

http://www.vslive.com/chicago


               May 5, 2014 (Separate entry fee required)

MW02 - Workshop: Data-Centric Single Page 
Applications with Angular, Breeze, and Web 
API - Brian Noyes

MW03 - Workshop: SQL Server for Developers - 
Andrew Brust & Leonard Lobel

                    Product Manager, Visual Studio Team, Microsoft

T03 - HTML5 for Better Web Sites - 
Robert Boedigheimer

T04 - Introduction to Windows Azure - Vishwas Lele

T07 - Great User Experiences with CSS 3 - 
Robert Boedigheimer

T08 - Windows Azure Cloud Services - Vishwas Lele

T11 - Build Angular Applications Using TypeScipt 
- Part 1 - Sergey Barskiy

T12 - Windows Azure SQL Database – SQL Server in 
the Cloud - Leonard Lobel

T15 - Build Angular Applications Using TypeScipt 
- Part 2 - Sergey Barskiy

T16 - Solving Security and Compliance Challenges with 
Hybrid Clouds - Eric D. Boyd

T19 - Building Real Time Applications with 
ASP.NET SignalR - Rachel Appel

T20 - Learning Entity Framework 6 - Leonard Lobel

                     Radical Changes in Our Industry - Billy Hollis, Next Version Systems

W03 - Leveraging Visual Studio Online - 
Brian Randell

W04 - Programming the T-SQL Enhancements in 
SQL Server 2012 - Leonard Lobel

W07 - JavaScript for the C# Developer - 
Philip Japikse

W08 - SQL Server 2014: Features Drill-down - Scott Klein

W11 - Build Data-Centric HTML5 Single Page 
Applications with Breeze - Brian Noyes

W12 - SQL Server 2014 In-memory OLTP - Deep Dive - 
Scott Klein

W15 - Knocking it Out of the Park, with 
Knockout.JS - Miguel Castro

W16 - To Be Announced

W19 - JavaScript: Turtles, All the Way Down - 
Ted Neward

W20 - Building Apps for SharePoint - Mark Michaelis

TH03 - What's New in MVC 5 - Miguel Castro TH04 - Excel, Power BI and You: An Analytics Superhub 
- Andrew Brust

TH07 - What's New in Web API 2 - Miguel Castro TH08 - Big Data 101 with HDInsight - Andrew Brust

TH11 - Upgrading Your Existing ASP.NET Apps - 
Pranav Rastogi

TH12 - NoSQL for the SQL Guy - Ted Neward

TH15 - Finding and Consuming Public Data APIs - 
G. Andrew Duthie

TH16 - Git for the Microsoft Developer - Eric D. Boyd

TH19 - Provide Value to Customers and
Enhance Site Stickiness By Creating an API - 
G. Andrew Duthie

TH20 - Writing Asynchronous Code Using .NET 4.5 
and C# 5.0 - Brian Peek

                        & Brian Peek

ASP.NET JavaScript / HTML5 
Client SharePoint SQL Server

vslive.com/chicago

CONNECT WITH VISUAL STUDIO LIVE!

twitter.com/vslive – @VSLive

facebook.com – Search “VSLive”

linkedin.com – Join the 
“Visual Studio Live” group!

CHICAGO 2O14
May 5 – 8 | Chicago Hilton

Scan the QR code to 
register or for more 
event details.

SESSIONS ARE
FILLING UP QUICKLY –
REGISTER TODAY!
Use Promo Code VSLAPR4

Visual Studio Live! Chicago Blues After Dark 
Reception at Buddy Guy's Legends

Untitled-2   5 3/12/14   11:53 AM

http://www.vslive.com/chicago


msdn magazine74

Th ree-dimensional graphics programming is mostly a matter of 
creating optical illusions. Images are rendered on a flat screen 
consisting of a two-dimensional array of pixels, but these objects 
must appear to have a third dimension with depth. 

Probably the biggest contributor to the illusion of 3D is 
shading—the art and science of coloring pixels so that surfaces 
resemble real-world textures with lighting and shadows.

Underneath all that, however, is an infrastructure of virtual objects 
described by 3D coordinates.  Ultimately, these 3D coordinates are 
fl attened into a 2D space, but until that fi nal step, 3D coordinates 
are oft en systematically modifi ed in various ways through the use 
of transforms. Mathematically, transforms are operations in matrix 
algebra. Achieving a fl uency in these 3D transforms is crucial for 
anyone who wants to become a 3D graphics programmer.

Recently, I’ve been exploring the several ways 3D is supported 
in the Direct2D component of DirectX. Exploring 3D within the 
relative familiarity and comfort of Direct2D allows you to become 
acquainted with 3D concepts prior to the very scary deep plunge 
into Direct3D.

Bitmaps in 3D? 
One of the several ways 3D is supported in Direct2D is tucked 
away as the last argument to the DrawBitmap methods defi ned by 
ID2D1DeviceContext. Th is argument lets you apply a 3D transform 
to a 2D bitmap. (Th is feature is special to ID2D1DeviceContext. 
It is not supported by the DrawBitmap methods defined by 
ID2D1RenderTarget or the other interfaces that derive from that.)

Th e DrawBitmap methods defi ned by ID2D1DeviceContext 
have a fi nal argument of type D2D1_MATRIX_4X4_F, which is a 
4×4 transform matrix that performs a 3D transform on the bitmap 
as it’s rendered to the screen:

void DrawBitmap(ID2D1Bitmap *bitmap,
                D2D1_RECT_F *destinationRectangle,
                FLOAT opacity,
                D2D1_INTERPOLATION_MODE interpolationMode,
                const D2D1_RECT_F *sourceRectangle,
                const D2D1_MATRIX_4X4_F *perspectiveTransform)

Th is appears to be sole purpose of D2D1_MATRIX_4X4_F. It 
isn’t used elsewhere in DirectX. In Direct3D programming, the 
DirectX Math library is used instead to represent 3D transforms.

DD2D1_MATRIX_4X4_F is a typedef for D2D_MATRIX_4X4_F, 
which is defi ned in Figure 1. It’s basically a collection of 16 fl oat values 

arranged in four rows of four columns. You can reference the value 
in the third row and second column using the data member _32, or 
you can get at the same value as the zero-based array element m[2][1]. 

However, when showing you the mathematics of the transform, 
I’ll instead refer to the element in the third row and second column 
of the matrix as m32. The entire matrix can be represented in 
traditional matrix notation, like so:

m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44

Th e 3D bitmap transform in Direct2D underlies a similar facil-
ity in the Windows Runtime, where it shows up as the Matrix3D 
structure and the Projection property defi ned by UIElement. Th e 
two mechanisms are so similar that you can cross-fertilize your 
knowledge and experience between the two environments. 

The Linear Transform
Many people encountering 3D transforms for the fi rst time ask: 
Why is it a 4×4 matrix? Shouldn’t a 3×3 matrix be adequate for 3D? 

3D Transforms on 2D Bitmaps

DIRECTX FACTOR CHARLES PETZOLD

Code download available at msdn.microsoft.com/magazine/msdnmag0414.

typedef struct D2D_MATRIX_4X4_F
{
  union
  {
    struct 
    {
      FLOAT _11, _12, _13, _14;
      FLOAT _21, _22, _23, _24;
      FLOAT _31, _32, _33, _34;
      FLOAT _41, _42, _43, _44;
    } ;
    FLOAT m[4][4];
  };
} D2D_MATRIX_4X4_F;

Figure 1 The 3D Transform Matrix Applied to Bitmaps

Three-dimensional graphics 
programming is mostly a matter 

of creating optical illusions.

http://msdn.microsoft.com/magazine/msdnmag0414


Some things are 
just better together.
Make your Windows Azure environment
more appetizing with New Relic.

newrelic.com/azure

Get more visibility into your entire Windows Azure environment. 

Monitor all your Virtual Machines, Mobile Services, and Web Sites 

- all from one powerful dashboard.

©2014 New Relic, Inc. All rights reserved. 

Untitled-2   1 3/10/14   12:39 PM

http://www.newrelic.com/azure


msdn magazine76 DirectX Factor

To answer this question while exploring the 3D transform on Draw-
Bitmap, I created a program named BitmapTransformExperiment that’s 
included with the downloadable code for this article. Th is program 
contains homemade spinner controls that let you select values for the 
16 elements of the transform matrix and see how the matrix aff ects the 
display of a bitmap. Figure 2 shows a typical display.

For your initial experimentations, restrict your attention to the 
top three rows and the left most three columns of the matrix. Th ese 
make up a 3×3 matrix that performs the following transform:

|x   y   z| × = |x'   y'   z'|
m11 m12 m13
m21 m22 m23
m31 m32 m33

Th e 1×3 matrix at the left  represents a 3D coordinate. For the 
bitmap, the x value ranges from 0 to the bitmap width; y ranges 
from 0 to the bitmap height; and z is 0.

When the 1×3 matrix is multiplied by the 3×3 transform matrix, the 
standard matrix multiplication results in transformed coordinates:

x' = m11 ∙ x + m21 ∙ y + m31 ∙ z
y' = m12 ∙ x + m22 ∙ y + m32 ∙ z
z' = m13 ∙ x + m23 ∙ y + m33 ∙ z

Th e identity matrix—in which the diagonal elements of m11, m22, 
and m33 are all 1 and everything else is 0—results in no transform. 

Because I’m starting out with a fl at bitmap, the z coordinate is 
0, hence m31, m32, and m33 have no eff ect on the result. When 
the transformed bitmap is rendered to the screen, the (x', y', z') 
result is collapsed onto a fl at 2D coordinate system by ignoring the z' 
coordinate, which means that m13, m23, and m33 have no eff ect. 
Th is is why the third row and third column are grayed out in the 
BitmapTransformExperiment program. You can set values for these 
matrix elements, but they don’t aff ect how the bitmap is rendered.

What you’ll discover is that m11 is a horizontal scaling factor 
with a default value of 1. Make it larger or smaller to increase or 
decrease the bitmap width, or make it negative to fl ip the bitmap 
around the vertical axis. Similarly, m22 is a vertical scaling factor.

Th e m21 value is a vertical skewing factor: Values other than 0 
turn the rectangular bitmap into a parallelogram as the right edge 
is shift ed up or down. Similarly, m12 is a horizontal skewing factor.

A combination of horizontal skewing and vertical skewing can result 
in rotation. To rotate the bitmap clockwise by a particular angle, set m11 
and m22 to the cosine of that angle, set m21 to the sine of the angle, and 
set m12 to the negative sine. Figure 2 shows rotation by 30 degrees.

In the context of 3D, the rotation shown in Figure 2 is actually 
rotation around the Z axis, which conceptually extends out from 
the screen. For an angle of α, the transform matrix looks like this:

 cos a sin a 0
 – sin a cos a 0
 0 0 1

It’s also possible to rotate the bitmap around the Y axis or the X 
axis. Rotation around the Y axis doesn’t aff ect the y coordinate, so 
the transform matrix is this:

 cos a 0 – sin a
 0 1 0
 sin a 0 cos a

If you try this with the BitmapTransformExperiment program, you’ll 
discover that only the m11 value has an eff ect. Setting it to the cosine 
of a rotation angle merely decreases the width of the rendered bitmap. 
Th at decrease in width is consistent with rotation around the Y axis.

Similarly, this is rotation around the X axis:

1 0 0
0 cos a sin a
0 – sin a cos a

In the BitmapTransformExperiment program, this results in 
reducing the height of the bitmap.

Th e signs of the two sine factors in the transform matrices gov-
ern the direction of rotation. Conceptually, the positive Z axis is 
assumed to extend from the screen, and the rotations follow the 
left-hand rule: Align the thumb of your left hand with the axis 
of rotation and point it toward positive values; the curve of your 
other fi ngers indicates the direction of rotation for positive angles. 

The type of 3D transform represented by this 3×3 transform 
matrix is known as a linear transform. Th e transform only involves 
constants multiplied by the x, y and z coordinates. No matter what 

Figure 2 The BitmapTransformExperiment Program 

Probably the biggest 
contributor to the illusion of 3D 
is shading—the art and science 
of coloring pixels so that surfaces 

resemble real-world textures 
with lighting and shadows.



77April 2014msdnmagazine.com

numbers you enter in the fi rst three rows and columns of the trans-
form matrix, the bitmap is never transformed into anything more 
exotic than a parallelogram; in three dimensions, a cube is always 
transformed into a parallelepiped.

You’ve seen how the bitmap can be scaled, skewed and rotated, 
but throughout this exercise, the upper-left  corner of the bitmap has 
remained fi xed at a single location. (Th at location is governed by a 
2D transform set in the Render method prior to the DrawBitmap 
call.) Th e inability to move the upper-left  corner of the bitmap results 
from the mathematics of the linear transform. Th ere’s nothing in the 
transform formula that can shift  a (0, 0, 0) point to another location, 
which is a type of transform known as translation.

Achieving Translation
To understand how to obtain translation in 3D, let’s briefl y think 
about 2D transforms.

In two dimensions, a linear transform is a 2×2 matrix, and 
it’s capable of scaling, skewing and rotating. To get translation as 
well, the 2D graphics are assumed to exist in 3D space but on a 2D 
plane where the z coordinate always equals 1. To accommodate the 
additional dimension, the 2D linear transform matrix is expanded 
into a 3×3 matrix, but usually the last row is fi xed:

|x   y   1| ×
m11 m12 0
m21 m22 0
m31 m32 1

Th e matrix multiplication results in these transform formulas:

x' = m11 ∙ x + m21 ∙ y + m31
y' = m12 ∙ x + m22 ∙ y + m32
z' = 1

Th e m31 and m32 factors are the translation factors. Th e secret 
behind this process is that translation in two dimensions is equiv-
alent to skewing in three dimensions.

An analogous process is used for 3D graphics: Th e 3D coordinate 
is actually assumed to exist in 4D space where the coordinate of the 
fourth dimension is 1. But to represent a 4D coordinate point, you 
have a silly little practical problem: A 3D point is (x, y, z) and no letter 
comes aft er z, so what letter do you use for the fourth dimension? 
Th e closest available letter is w, so the 4D coordinate is (x, y, z, w).

Th e 3D linear transform matrix is expanded to 4×4 to accom-
modate the extra dimension:

m11 m12 m13 0
m21 m22 m23 0
m31 m32 m33 0
m41 m42 m43 1

|x   y   z   1| ×

Th e transform formulas are now:

x' = m11 ∙ x + m21 ∙ y + m31 ∙ z + m41
y' = m12 ∙ x + m22 ∙ y + m32 ∙ z + m42
z' = m13 ∙ x + m23 ∙ y + m33 ∙ z + m43
w' = 1

You now have translation along the X, Y, and Z axes with m41, 
m42, and m43. Th e calculation seems to occur in 4D space, but it’s 
actually restricted to a 3D cross-section of 4D space where the w 
coordinate is always 1.

Homogenous Coordinates
If you play around with the m41 and m42 values in BitmapTrans-
formExperiment, you’ll see they do indeed result in horizontal 
and vertical translation.

But what about that last row of the matrix? What happens if you 
don’t restrict that last row to 0s and 1s? Here’s the full 4×4 transform 
applied to a 3D point:

m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44

|x   y   z   1| ×

The formulas for x', y' and z' remain the same, but w' is now 
calculated like this:

w' = m14 ∙ x + m24 ∙ y + m34 ∙ z + m44

And that’s a real problem. Previously, a little trick was employed 
to use a 3D cross-section of 4D space where the w coordinate 
always equals 1. But now the W coordinate is no longer 1, and you’ve 
been propelled out of that 3D cross-section. You’re lost in 4D space, 
and you need to get back to that 3D cross-section where w equals 1.

There’s no need to build a trans-dimensional space-time 
machine, however. Fortunately, you can make the leap mathemat-
ically by dividing all the transformed coordinates by w':

m11 ∙ x + m21 ∙ y + m31 ∙ z + m41
m14 ∙ x + m24 ∙ y + m34 ∙ z + m44x' =

m12 ∙ x + m22 ∙ y + m32 ∙ z + m42
m14 ∙ x + m24 ∙ y + m34 ∙ z + m44y' =

m13 ∙ x + m23 ∙ y + m33 ∙ z + m43
m14 ∙ x + m24 ∙ y + m34 ∙ z + m44z' =

m14 ∙ x + m24 ∙ y + m34 ∙ z + m44
m14 ∙ x + m24 ∙ y + m34 ∙ z + m44w' = = 1

Figure 3 Perspective in BitmapTransformExperiment 

http://www.msdnmagazine.com


msdn magazine78 DirectX Factor

Now w' equals 1 and you’re back home!
But at what cost? You now have a division in the transform 

formulas, and it’s easy to see how that denominator might be 0 
in some circumstances. Th at would result in infi nite coordinates.

Well, maybe that’s a good thing. 
When German mathematician August Ferdinand Möbius (1790–

1868) invented the system I’ve just described (called “homogenous 
coordinates” or “projective coordinates”), one of his goals was to 
represent infi nite coordinates using fi nite numbers.

Th e matrix with the 0s and 1s in the last row is called an affi  ne 
transform, meaning that it doesn’t result in infi nity, so a transform 
capable of infi nity is called a non-affi  ne transform.

In 3D graphics, non-affi  ne transforms are extremely important, 
for this is how perspective is achieved. Everyone knows that in real 
life, objects further from your eye appear to be smaller. In 3D graph-
ics, you obtain that eff ect with a denominator that isn’t a constant 1.

Try it out in BitmapTransformExperiment: If you make m14 
a small positive number—and only small values are necessary 
for interesting results—then values of x and y are proportionally 
decreased as x gets larger. Make m14 a small negative number, and 
larger values of x and y are increased. Figure 3 shows that eff ect 
combined with a non-zero m12 value. Th e rendered bitmap is no 
longer a parallelogram, and the perspective suggests that the right 
edge has swung closer to your eyes.

Similarly, non-zero values of m24 can make the top or bottom 
of the bitmap seemingly swing toward you or further away. In real 
3D programming, it’s the m34 value that’s commonly used, for 
that allows objects to increase or decrease in size based on their z 
coordinates—their distance from the viewer’s eyes. 

When a 3D transform is applied to 2D objects, the m44 value is 
usually left  at 1, but it can function as an overall scaling factor. In 
real 3D programming, m44 is usually set to 0 when perspective 

is involved because conceptually the camera is at the origin. A 0 
value of m44 only works if 3D objects don’t have z coordinates of 
0, but when working with 2D objects, the z coordinate is always 0. 

Any Convex Quadrilateral
In applying this 4×4 transform matrix to a fl at bitmap, you’re only 
making use of half the matrix elements. Even so, Figure 3 shows 
something you can’t do with the normal two-dimensional Direct2D 
transform matrix, which is to apply a transform that turns a rectangle 
into something other than a parallelogram. Indeed, the transform 
objects used in most of Direct2D are called D2D1_MATRIX_3X2_F 
and Matrix3x2F, emphasizing the inaccessibility of the third row 
and the inability to perform non-affi  ne transforms.

With D2D1_MATRIX_4X4_F, it’s possible to derive a transform 
that maps a bitmap into any convex quadrilateral—that is, any 
arbitrary four-sided fi gure where the sides don’t cross and where 
interior angles at the vertices are less than 180 degrees.

If you don’t believe me, try playing around with the NonAffi  ne-
Stretch program. Note that this program is adapted from a Windows 
Runtime program, also called NonAffi  neStretch, in Chapter 10 of my 
book, “Programming Windows, 6th Edition” (Microsoft  Press, 2013).

Figure 4 shows NonAffineStretch in use. You can use the 
mouse or your fi ngers to drag the green dots to any location on the 
screen. As long as you keep the fi gure a convex quadrilateral, a 4×4 

Figure 4 The NonAffi neStretch Program

In 3D graphics, non-affi ne 
transforms are extremely 
important, for this is how 
perspective is achieved.

void RotatingTextRenderer::Update(DX::StepTimer const& timer)
{
  ...
  // Begin with the identity transform
  m_matrix = Matrix4x4F();

  // Rotate around the Y axis
  double seconds = timer.GetTotalSeconds();
  float angle = 360 * float(fmod(seconds, 7) / 7);
  m_matrix = m_matrix * Matrix4x4F::RotationY(angle);

  // Apply perspective based on the bitmap width
  D2D1_SIZE_F bitmapSize = m_bitmap->GetSize();
  m_matrix = m_matrix * Matrix4x4F::PerspectiveProjection(bitmapSize.width);
}

void RotatingTextRenderer::Render()
{
  ...
  ID2D1DeviceContext* context = m_deviceResources->GetD2DDeviceContext();
  Windows::Foundation::Size logicalSize = m_deviceResources->GetLogicalSize();

  context->SaveDrawingState(m_stateBlock.Get());
  context->BeginDraw();
  context->Clear(ColorF(ColorF::DarkMagenta));

  // Move origin to top center of screen
  Matrix3x2F centerTranslation = 
    Matrix3x2F::Translation(logicalSize.Width / 2, 0);

  context->SetTransform(centerTranslation * 
    m_deviceResources->GetOrientationTransform2D());

  // Draw the bitmap
  context->DrawBitmap(m_bitmap.Get(), 
                      nullptr, 
                      1.0f, 
                      D2D1_INTERPOLATION_MODE_LINEAR, 
                      nullptr, 
                      &m_matrix);
  ...
}

Figure 5 Code from RotatingTextRenderer.cpp



79April 2014msdnmagazine.com

transform can be derived based on the dot locations. Th at transform 
is used to draw the bitmap and is also displayed in the lower-right 
corner. Only eight values are involved; the elements in the third row 
and third column are always default values, and m44 is always 1.

Th e mathematics behind this are a little hairy, but the derivation 
of the algorithm is shown in Chapter 10 of my book.

The Matrix4x4F Class 
To make working with the D2D1_MATRIX_4X4_F structure a bit 
easier, the Matrix4x4F class in the D2D1 namespace derives from 
that structure. Th is class defi nes a constructor and a multiplica-
tion operator (which I used in the NonAffi  neStretch algorithm), 
and several helpful static methods for creating common transform 
matrices. For example, the Matrix4x4F::RotationZ method accepts 
an argument that is an angle in degrees and returns a matrix that 
represents rotation by that angle around the Z axis:

 cos a sin a 0 0
 – sin a cos a 0 0
 0 0 1 0
 0 0 0 1

Other Matrix4x4F functions create matrices for rotation around 
the X and Y axes, and rotation around an arbitrary axis, which is a 
much more diffi  cult matrix.

A function called Matrix4x4F::PerspectiveProjection has an 
argument named depth. Th e matrix it returns is:

1 0 0 0
0 1 0 0
0 0 1 – 1 

depth

0 0 0 1
Th is means the transform formula for x’ is:

x' =
x

1 – z 
depth

And similarly for y' and z', which means whenever the z 
coordinate equals depth, the denominator is 0, and all the 
coordinates become infi nite. 

Conceptually, this means you’re viewing the computer screen 
from a distance of depth units, where the units are the same as 

the screen itself, meaning pixels or device-independent units. If a 
graphical object has a z coordinate equal to depth, it’s depth units 
in front of the screen, which is right at your eyeball! Th at object 
should appear very large to you—mathematically infi nite.

But wait a minute: Th e sole purpose of the D2D1_MATRIX_4X4_F
structure and the Matrix4x4F class is for calls to DrawBitmap, 
and bitmaps always have z coordinates of 0. So how does this m34 
value of –1/depth have any eff ect at all?

If the PerspectiveProjection matrix is used by itself in the 
DrawBitmap call, it will indeed have no eff ect. But it’s intended 
to be used in conjunction with other matrix transforms. Matrix 
transforms can be compounded by multiplying them. Although 
the original bitmap has no z coordinates, and z coordinates are 
ignored for rendering, z coordinates can certainly play a role in the 
compounding of transforms.

Let’s look at an example. The RotatingText program creates a 
bitmap with the text “ROTATE” with a width that’s just about half 
the width of the screen. Much of the Update and Render methods 
are shown in Figure 5. 

In the Update method, the Matrix4x4F::RotationY method 
creates the following transform:

 cos a 0 – sin a 0
 0 1 0 0
 sin a 0 cos a 0
 0 0 0 1

Multiply this by the matrix shown earlier returned from the 
Matrix4x4F::PerspectiveProjection method, and you’ll get:

 cos a 0 – sin a sin a 
depth

 0 1 0 0
 sin a 0 cos a – cos a 

depth

 0 0 0 1

Th e transform formulas are:

x' =
cos a ∙ x
1 + sin a ∙ x 

depth

y' =
y

1 + sin a ∙ x 
depth

Th ese defi nitely involve perspective, and you can see the result 
in Figure 6. 

Watch out: The depth argument to Matrix4x4F::Perspective-
Projection is set to the bitmap width, so as the rotating bitmap 
swings around, it might come very close to your nose. 

CHARLES PETZOLD is a longtime contributor to MSDN Magazine and the author 
of “Programming Windows, 6th Edition” (Microsoft  Press, 2013), a book about 
writing applications for Windows 8. His Web site is charlespetzold.com. 

THANKS to the following Microsoft technical experts for reviewing this article: 
Jim Galasyn and Mike RichesFigure 6 The RotatingText Display

www.charlespetzold.com
http://www.msdnmagazine.com


msdn magazine80

I’ve always admired the April Fools’ Day column as an art form. 
Th e best I’ve ever heard of is the April 1, 1919, cover of the British 
humor magazine Punch, which supposedly screamed: “Archduke 
Franz Ferdinand Found Alive! War Fought By Mistake!” (And if it 
didn’t really say that, well, April fool, it should have.)

I’ve also admired Billy Joel since he delivered a superb concert at 
my undergrad university, back before he got famous. You’ve proba-
bly heard his historical song, “We Didn’t Start the Fire,” which uses 
tiny snippets to narrate history from 1950 onward: “Harry Truman, 
Doris Day, Red China, Johnnie Ray ….” So for your amusement, 
I’ve rewritten that song to narrate the progression of our industry. 

I offered to sing the song onstage at Build for only $5,000. 
Microsoft countered with $10,000 if I didn’t. So I’m getting my 
revenge by publishing it here. You will probably enjoy it most if 
you read it while listening to the original song (bit.ly/1fnHqf0). And 
if you’re crazy enough or masochistic enough to sing it in public, 
you can fi nd an instrumental karaoke version at bit.ly/1k5RLhS. Go to 
it, my brave readers. As we geeks say, “a-01two, 10two, 11two, 100two …”

Alan Turing, Frederick Brooks, John von Neumann, Donald Knuth
Ada Lovelace, Grace Hopper, Th ree-fi nger salute
Z-80, fi rst for me, Kernighan and Ritchie C
Apple and the Macintosh in 1984

Peter Norton, Byte magazine, “Th e Soul of a New Machine”
PDP-8, IBM, 8-inch fl oppy CP/M
Bell Labs, Xerox PARC, Wang, Data General, DEC
Commodore! 64! I can’t take it anymore!

We didn’t start computing
It was always burning since a brain’s been churning
We won’t stop computing
No we won’t stop it, but we’ll try to top it

Bjarne Stroustrup, C++, Bill Gates, Windows, Microsoft 
Minesweeper and Solitaire, Dummies tearing out their hair
World-wide-Web, Tim Berners-Lee, CompuServe and Prodigy
Dave Cutler, NT, want to strangle Clippy

Amazon and Pets.com, Y2K doesn’t bomb
Circuit City, Googleplex, what the hell is ActiveX?
COM OLE and DDE, Microsoft  monopoly
Janet Reno! DOJ! What else do I have to say?

We didn’t start computing
It was always burning since a brain’s been churning
We won’t stop computing
No we won’t stop it, but we’ll try to top it.

Larry Page, Sergey Brin, Oracle and Ellison
Charles Petzold, Seymour Cray, Google Doodle every day
Camera phones, Nintendo Wii, Roomba Kindle Blackberry
Jeff  Bezos, Craig’s list, Donald Norman, no more Borland

PageMaker, Acrobat, soft ware legend David Platt 
Dell, Gateway, Lenovo, Vista is no-go
YouTube, Elon Musk, .NET Framework, Lotus Notes 
Steve Jobs, iMac, iPod, iTunes, iPhone, iPad

We didn’t start computing
It was always burning since a brain’s been churning 
We won’t stop computing 
No we won’t stop it, but we’ll try to top it

Dot-com bubble, Xbox, Google Chrome and Firefox
Steve Ballmer, David Pogue, Zynga Facebook Zuckerberg 
Alan Cooper, Clippy dead, GPS and Javaheads
Jakob Nielsen, LinkedIn, Silverlight and Python 
Netfl ix, Apple hype, PayPal Yahoo eBay Skype 
XSD! USB! TLAs are BFD!

We didn’t start computing
It was always burning since a brain’s been churning 
We won’t stop computing 
No we won’t stop it, but we’ll try to top it

Angry Birds, Snapchat, Candy Crush and Black Hat
Azure Cloud, eHarmony, Surveymonkey WebMD
Uber Quber Chatroulette, Samsung Android Babelfi sh
Deep Th roat, Deep Blue, NSA is watching you,

Wikipedia, Instagram, Bing, IMDB and Spam 
Twitter Tumblr MSN, Ballmer out Nadella in, 
MOOCs, Nooks, Google Glass, Jobs and Ritchie bite the dust. 
Windows 8! What’s its fate? Will the next one be too late? 

We didn’t start computing
It’s been always burning since a brains been churning
But when we are gone 
Will it still burn on and on and on and on and on? 

DAVID S. PLATT teaches programming .NET at Harvard University Extension 
School and at companies all over the world. He’s the author of 11 programming 
books, including “Why Soft ware Sucks” (Addison-Wesley Professional, 2006) 
and “Introducing Microsoft  .NET” (Microsoft  Press, 2002). Microsoft  named 
him a Soft ware Legend in 2002. He wonders whether he should tape down two 
of his daughter’s fi ngers so she learns how to count in octal. You can contact him 
at rollthunder.com.

We Didn’t Start Computing

DON’T GET ME STARTED DAVID S. PLATT

www.bit.ly/1fnHqf0
www.bit.ly/1k5RLhS
www.rollthunder.com


Untitled-1   1 3/13/14   10:04 AM

http://marketdash.componentone.com/redirect.ashx?rdtl=3429


Buy online and
get your license today!

Windows Phone 8
Development Succinctly 

Introducing the latest e-book in the Syncfusion Succinctly series

Download your free copy now!
s y n c f u s i o n . c om/W inPhone8Dev

Untitled-2   1 2/28/14   1:19 PM

http://www.syncfusion.com/WinPhone8Dev


DOC, XLS, JPG, PNG, PDF 
BMP, MSG, PPT, VSD, XPS
& many other formats.

Native APIs for
.NET, Java, Android & Cloud

Aspose APIs help developers
with all file related tasks, from 
conversions to reporting.

US Sales: +1 888 277 6734
sales@aspose.com

EU Sales: +44 141 416 1112
sales.europe@aspose.com  

AU Sales: +61 2 8003 5926
sales.asiapacific@aspose.com

Also Powering

www.aspose.com

Powerful File APIs that are easy and intuitive to use

mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com
http://www.aspose.com
http://www.aspose.com


CONVERT
PRINT
CREATE
COMBINE
MODIFY

CONVERT
PRINT
CREATE
COMBINE
MODIFY

100% Standalone - No Office Automation







http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com


AndroidCloudJava.NET

Aspose.Total for Cloud

Aspose.Total for Android

Aspose.Total for .NET

Aspose.Total for Java

ASPOSE.TOTALASPOSE.TOTALASPOSE.TOTAL

http://www.aspose.com


page 4

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com


Aspose.Cells

XLS  XLSX  TXT  PDF  HTML  CSV  TIFF  PNG  JPG  BMP
SpreadsheetML and many others.

Aspose.Cells comes with complete support for charting and 
supports all standard chart types. Also, you can convert charts
to images.

Easily convert worksheets to images as well as adding images
to worksheets at runtime.

Aspose.Cells lets you create, import, and export spreadsheets
and also allows you to manipulate contents, cell formatting, 
and file protection.

US Sales: +1 888 277 6734
FAX: +1 866 810 9465
sales@aspose.com

EU Sales: +44 141 416 1112
sales.europe@aspose.com No Office Automation

Get your FREE Trial at
http://www.aspose.com

Aspose.Cells does not require Microsoft Office to 
be installed on the machine in order to work.

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
http://www.aspose.com


page 6

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com


page 7

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com


mailto:sales@groupdocs.com
http://www.groupdocs.com
http://www.groupdocs.com




page 10

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com


page 11

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com


http://www.aspose.com
http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com


page 13

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com


page 14

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com


Get your FREE TRIAL at www.aspose.com

Now you can!

Want to work with real business documents?

http://www.aspose.com


http://www.banckle.com
mailto:sales@banckle.com
http://www.banckle.com
mailto:sales@banckle.com


http://www.banckle.com
http://www.banckle.com
mailto:sales@banckle.com


page 18

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com


page 19

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.asiapacific@aspose.com
mailto:sales.europe@aspose.com


Get the feature you need built now

Communicate with product
managers, influence the roadmap

Support Forums with no Charge

24 hour response time in the
week, issue escalation, 
dedicated forum

Technical Support is an issue 
that Aspose takes very seriously.
Software must work quickly and 
dependably.  When problems arise, 
developers need answers in a hurry.
We ensure that our clients receive
useful answers and solutions quickluseful answers and solutions quickly.

CONTACT US

US Sales: +1 888 277 6734
sales@aspose.com

EU Sales: +44 141 416 1112
sales.europe@aspose.com

AU Sales: +61 2 8003 5926
sales.asiapacific@aspose.com

Email • Live Chat • Forums

Free Support

Priority Support

Enterprise Support

Sponsored Support

Aspose has 4 Support Services to best suit your needs

mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com
http://www.aspose.com

	Back
	Print
	MSDN Magazine, April 2014
	Cover Tip
	Front
	Back

	Contents
	WINDOWS WITH C++:  Using Databases on Windows Azure
	DATA POINTS:  Adding New Life to a 10-Year-Old ASP.NET Web Forms App
	Windows Store C++ for C# Developers: Understanding the Domain
	Multithreading and Dispatching in MVVM Applications
	Patterns for Asynchronous MVVM Applications: Commands
	Build a Cross-Platform, Mobile Golf App Using C# and Xamarin
	Build an Advanced Camera App for Nokia Lumia Phones
	Using Survival Analysis
	MODERN APPS:  What’s New in Windows 8.1 for Windows Store Developers
	DIRECTX FACTOR: 3D Transforms on 2D Bitmaps
	DON’T GET ME STARTED:  We Didn’t Start Computing

	Visual Studio Live!, Chicago 2014 - Insert
	Aspose Outsert



