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Simple Summary: We consider a subset (n = 306) of an Eastern European ageing population cohort
which was followed up for 15 years. Using blood DNA methylation data, we calculated nine epige-
netic age acceleration scores, which are defined as deviations of epigenetic age from chronological
age. We then evaluated how those scores are associated with available phenotypic data. This was
implemented by splitting the phenotypic data into groups with positive and negative epigenetic age
acceleration, and evaluating the difference between those groups. We observed strong association
between all the considered epigenetic age acceleration and sex, suggesting that any analysis of these
scores should be adjusted for sex. Moreover, even after adjusting for sex, the associations between
the scores and considered phenotypes remain sex-specific. The only two associations that persisted
through the entire dataset and both male and female subsets are incident coronary heart disease
and smoking status. The observed associations of the various epigenetic age acceleration scores
with both individual and groups of phenotypes suggest that these scores are sensitive to various
cardiometabolic parameters, which might indicate their prognostic potential for related disorders.

Abstract: We evaluated associations between nine epigenetic age acceleration (EAA) scores and
18 cardiometabolic phenotypes using an Eastern European ageing population cohort richly annotated
for a diverse set of phenotypes (subsample, n = 306; aged 45–69 years). This was implemented by
splitting the data into groups with positive and negative EAAs. We observed strong association
between all EAA scores and sex, suggesting that any analysis of EAAs should be adjusted by sex.
We found that some sex-adjusted EAA scores were significantly associated with several phenotypes
such as blood levels of gamma-glutamyl transferase and low-density lipoprotein, smoking status,
annual alcohol consumption, multiple carotid plaques, and incident coronary heart disease status
(not necessarily the same phenotypes for different EAAs). We demonstrated that even after adjusting
EAAs for sex, EAA–phenotype associations remain sex-specific, which should be taken into account
in any downstream analysis involving EAAs. The obtained results suggest that in some EAA–
phenotype associations, negative EAA scores (i.e., epigenetic age below chronological age) indicated
more harmful phenotype values, which is counterintuitive. Among all considered epigenetic clocks,
GrimAge was significantly associated with more phenotypes than any other EA scores in this
Russian sample.
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1. Introduction

It has been more than a decade since the very first epigenetic age predictor was
proposed [1], and since then, dozens of DNA methylation (DNAm) based clocks have been
developed. “Epigenetic age” (EA) is a score that is calculated by applying an EA prediction
model (a DNAm clock) onto a set of DNA methylation measurements at particular loci
(CpGs). Epigenetic age acceleration (EAA) is defined as the deviation of the estimated EA
from the chronological age (CA), and is typically derived as either the difference between
EA and CA or as the residual from regressing EA onto CA (EA∼CA).

In the beginning of the epigenetic clock era, the first-generation EA predictors (i.e., [1–3])
were primarily focused on accurate age prediction. The new EAA measures, which are
derived from second-generation epigenetic clocks (i.e., [4,5]), are more focused on capturing
physiological dysregulation [6] while still keeping strong links to chronological age [7].

Various measures of EAA are shown to be associated with different phenotypes and
diseases (see reviews [8,9]). For example, deviations in EAA were shown to be connected
to cancer [10,11], metabolic syndrome [12], and cognitive function decline [13]. All of
these conditions are linked with ageing, which is a complex process that involves changes
in all organs, tissues, and cells and cannot be quantified by a single biological measure.
Similarly, there is no single EAA measure that could be declared as the best epigenetic
marker of ageing.

In this study, we investigate the relationship between several widely-used EAA scores
with the phenotypic data on cardiovascular disease (CVD) related risk factors and con-
ditions available for a random population sample (n = 306) that is a part of the Health,
Alcohol, and Psychosocial Factors in Eastern Europe (HAPIEE) Project [14] is a Siberian
cohort established in 2003 as a multicentre epidemiological study of CVD in Eastern and
Central Europe. One of our aims was to determine which EAA measures are “sensitive”
to which phenotypes and health-related conditions. By comparing the distributions of
phenotypes between those with positive and negative EAAs, we identified how EAAs are
associated with clinical data in an ageing Russian population.

2. Methods
2.1. Data Collection

This study is based on the data generated from a subset of the Russian branch of the
HAPIEE (Health, Alcohol, and Psychosocial Factors in Eastern Europe) cohort [14], which
was established in Novosibirsk (Russia) in 2003–2005 and followed up in 2006–2008 and
then again in 2015–2017. The protocol of the baseline cohort examination included an
assessment of cardiovascular and other chronic disease history, lifestyle habits and general
health, socioeconomic circumstances, an objective measurement of blood pressure (BP),
anthropometric parameters, physical performance, and instrumental measurement. The
details of the protocol are reported elsewhere [14].

This study is based on a cohort of n = 306 HAPIEE participants who did not have any
indications of cardiovascular disease during the baseline measurement, as well as having
a whole blood DNA methylation profile. DNAm was measured in accordance with the
manufacturer’s recommended procedures using the Illumina MethylationEPIC BeadChip
(Illumina, San Diego, CA, USA); a detailed description is available in [15].

2.2. Variables Description

All variables involved in our analyses were collected during the baseline examination
(with the exception of incident coronary heart disease). Phenotypic data available for
our study included age, sex, systolic and diastolic blood pressure values (SBP and DBP,
mmHg; respectively), anthropometric parameters—body mass index (BMI, kg/m2) and
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waist–hip ratio (WHR, units), smoking status (ever smoker or never smoker), and the
estimated annual alcohol intake (g of ethanol and number of annual occasions). A person
who smoked at least one cigarette a day was classified as an “ever smoker”. The amount
of alcohol consumed was assessed using the Graduated Frequency Questionnaire and
was then converted to pure ethanol (g) [16]. The height and weight were measured with
accuracy to 1 mm and 100 g, respectively. Blood pressure (BP) was measured three times
(Omron M-5 tonometer) on the right arm in a sitting position after a 5 min rest period
with 2 min interval between measurements. The average of three BP measurements was
calculated and recorded.

Fasting blood serum test results contain measured levels of total cholesterol (TC,
mmol/L), triglycerides (TG, mmol/L), high-density lipoprotein cholesterol (HDL, mmol/L),
gamma-glutamyl transferase (GGT, mmol/L), and plasma glucose (mmol/L). The levels
of TC, TG, HDL, GGT, and glucose in blood serum were measured enzymatically with
the KoneLab 300i autoanalyser (Thermo Fisher Scientific Inc., Waltham, MA, USA) us-
ing Thermo Fisher Scientific kits. The Friedewald formula [17] was applied to calculate
low-density lipoprotein cholesterol (LDL, mmol/L). Fasting plasma glucose (FPG) was
calculated from the fasting serum glucose levels using the European Association for the
Study of Diabetes (EASD) formula [18]. Hypertension (HT) comprises SBP ≥ 140 mmHg
or DBP ≥ 90 mmHg according to the European Society of Cardiology/European Society
of Hypertension (ESC/ESH) Guidelines [19] and/or antihypertensive medication intake
within two weeks prior to the blood draw. Presence of Type 2 diabetes mellitus (T2DM)
was defined as FPG > 7.0 mmol/L, or ongoing treatment with insulin or oral hypogly-
caemic medicines [20]. None of the participants included in our analysis had a history of
major cardiovascular disease (CVD), such as myocardial infarction (MI), acute coronary
syndrome (ACS), stroke, or transit ischemic attack at the time of the baseline examination
and blood draw. The binary coronary heart disease (CHD) variable in our dataset includes
any incident CHD events (MI/ACS) which occurred within the 15-year follow-up period
of the cohort.

Carotid arteries were examined via high-resolution ultrasound using the systems Vivid
q or Vivid7 (GE HealthCare) with a 7.5/10 mHz phased-array linear transducer. Device
settings were adjusted in accordance with the American Society of Echocardiography (ASE)
recommendations [21]. Longitudinal and transverse scans were performed at the right and
left common carotid arteries with branches to assess anatomy and atherosclerotic lesions.
The digital images were archived and the measurements were conducted offline by an
experienced researcher (A.R.) who was blinded to the participants’ characteristics [22]. The
plaques were defined in accordance with the Mannheim consensus [23]. For the present
analysis, we used two phenotypes of atherosclerosis: presence of at least one carotid plaque
(CP) or multiple plaques (MCP). The ultrasound variables are only available for a subset of
samples (n = 105, 35% of all samples).

Individual phenotypes were also combined into five groups of phenotypes, which we
define as follows:

1. Anthropometric: BMI and WHR;
2. Lifestyle: smoking status and annual alcohol consumption (intake and number

of occasions);
3. Metabolic: GGT, T2DM, and plasma glucose;
4. Lipids: TC, HDL, LDL, and TG;
5. Cardiovascular: SBP, DBP, HT, CHD, CP, and MCP.

2.3. DNAm Data Quality Control (QC) and Preprocessing

In preprocessing raw DNAm data, we mostly followed the procedures from [24],
which are in line with the manufacturer’s recommended steps. In brief, we checked the
array control probes’ metrics (Illumina Bead Control Reporter), signal detection p-values,
and bead count numbers for all available cytosine–phosphate–guanine (CpG) probes.
Furthermore, we compared actual and DNAm predicted sex data for each sample. Samples
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included in this analysis have less than 1% of CpGs with detection p ≥ 0.01 and bead count
number ≥ 3, all the included probes have detection p < 0.01 in at least 99% of samples.
Initial DNAm data processing and QC data filtering were implemented using R v.4.1.0 [25]
together with specialised R libraries minfi [26], ChAMP [27], and ENmix [28].

2.4. Epigenetic Age Acceleration

EAA scores were calculated using the DNA Methylation Online Calculator [3]. This
web-based tool gives nine EAAs based on five epigenetic scores, namely, Horvath’s [3],
Hannum’s [2], Skin and Blood [29], PhenoAge [4], and GrimAge [5] measures; see Table 1.
Further details regarding epigenetic clocks and various EAAs are given in Appendix B.

Table 1. Summary of the EAA scores measured using DNA Methylation Online Calculator. Abbre-
viations: CA—chronological age, EA—epigenetic age, EAA—epigenetic age acceleration, IEAA—intrinsic
epigenetic age acceleration, EEAA—extrinsic epigenetic age acceleration.

EAA Clock Info

HannumAA Hannum [2] Residuals from regressing EA on CA

HannumEEAA Hannum [30]
Residuals from regressing the weighted average
of Hannum’s EA and estimated measures of
blood cells counts on CA

HannumIEAA Hannum [30] Residuals from regressing Hannum’s EA on CA
and various blood immune cell counts

HorvathAAd Horvath [3] Difference between EA and CA
HorvathAAr Horvath [3] Residuals from regressing EA on CA

HorvathIEAA Horvath [30] Residuals from regressing Horvath’s EA on CA
and various blood immune cell counts

SkinBloodAA Skin and Blood [29] Residuals from regressing EA on CA
PhenoAA PhenoAge [4] Residuals from regressing EA on CA
GrimAA GrimAge [5] Residuals from regressing EA on CA

2.5. Grouping

In this study, we evaluated CVD-related phenotypes and their association with differ-
ent EAA scores. It is expected that these phenotypes show small effect size (in comparison
with some types of cancer) in blood DNA methylation, and hence in EAAs as well. Taking
into account the relatively small sample size of our study, we decided to limit our analyses
to the grouping of EAAs as described below.

Analysis of associations between EAAs and phenotypes in our study involves com-
paring the distributions of the phenotypic data in two groups. The grouping is based on
binary split with respect to the sign of EAA, defined as follows:

All samples =

{
EAA+, samples with non-negative EAA,
EAA−, samples with negative EAA.

(1)

In other words, for each clock we use the definition (1) to split our cohort into two
groups, one with EAA < 0 and the other with EAA ≥ 0, and then study the differences
in phenotypic distribution between these groups. Similar grouping was also featured in
previous studies based on EAAs [31,32].

2.6. Statistical Analysis

All statistical analyses were performed using R v.4.1.2. They include descriptive
analysis of the available data using relevant techniques, such as univariate analysis, cross-
tabulation, statistical hypothesis testing (Welch’s t-test [33] for continuous variables and
Fisher’s exact test [34] for binary data), and linear-regression-based data adjustments.
Welch’s t-test null hypothesis: mean values of a given variable in EAA+ and EAA− groups
are not different. Fisher’s exact test null hypothesis: classifications of a given binary variable

 https://dnamage.genetics.ucla.edu/
 https://dnamage.genetics.ucla.edu/
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in EAA+ and EAA− groups are not different. The significance level is defined as α = 0.05
for each EAA–phenotype association hypothesis test.

In order to consider the association between different EAAs and groups of phenotypes
(all apart from the lifestyle group), we controlled for family-wise error rate (FWER) using
the Bonferroni correction [35,36], which was performed per group of phenotypes per EAA.
The significance threshold for the anthropometric, metabolic, lipids, and cardiovascular
groups of phenotypes were calculated to be 0.025, 0.0166, 0.0125, and 0.0083, respectively.
In the lifestyle group, we considered the smoking and alcohol intake data separately; thus,
FWER-controlled significance threshold for alcohol consumption phenotypes is 0.025, and
0.05 for smoking status. It means that for each clock, the group association was inferred
from the individual phenotypes by controlling for FWER in the different phenotype groups.
In other words, we define the EAA score to be associated with the group of phenotypes
if for at least one of the phenotypes in the group the significance of the relationship is
sustained with the Bonferroni-corrected threshold.

All the graphs presented in the paper were produced using ggplot2 [37] and its
extensions, pheatmap [38], PerformanceAnalytics [39], and base R functions.

3. Results
3.1. Associations between Sex and Phenotypes

Our dataset consisted of (n = 306) samples (166 females and 140 males). Sum-
maries of the dataset characteristics for all samples and for sex-specific groups are given in
Tables A1 and A3. Table A1 contains descriptive statistics (range, mean, and standard devi-
ation) for the available continuous phenotype data and the corresponding Welch’s t-test
p-values and 95% confidence intervals. Table A3 includes count numbers and percentages
for dichotomous variables, together with sex-specific odds ratios, 95% confidence intervals,
and p-values calculated by performing a Fisher’s exact statistical test.

The Russian sample being considered in this study showed no significant difference
between males and females in the distribution of chronological age, blood pressure values
(both SBP and DBP), incidence of acute CHD events, diagnosis of hypertension and diabetes,
or levels of triglycerides and fasting glucose. The phenotypes which were significantly
different in males vs. females are anthropometric measures (BMI and WHR), lifestyle
choices (alcohol consumption and smoking status), and blood levels of gamma-glutamyl
transferase (GGT) and lipids (both LDL and HDL). Interestingly, in this Russian dataset,
there was no significant difference between the male and female odds ratios of being
diagnosed with a carotid plaque (CP), but the odds ratios of having multiple carotid
plaques (MCP) significantly differed between sexes.

3.2. EAAs Are Associated with Some Phenotypes and Have Strong Sex Bias

Our EAA analyses are based on nine EAA scores (described in Section 2.4) which
were obtained from the five different epigenetic clock models, with multiple EAA scores
derived from Horvath’s multi-tissue and Hannum’s clocks (three EAAs each). Correlation
coefficients are higher among EAAs based on the same clock than among EAAs from
different clocks. Namely, Pearson correlation coefficients range between 0.78 and 0.97
within EAAs derived from Horvath’s and Hannum’s models, whilst the highest value
of correlation for EAAs derived from separate clocks is r = 0.57 (see correlation table in
Figure A2). Note that neither of the EAAs is significantly correlated with chronological
age apart from HorvathAAd, which is the only measure calculated without chronological
age adjustment.

To explore connections among the variables, we calculated correlation coefficients
(Spearman correlation) and normalised entropy-based mutual information values for all
the phenotypes and EAAs. Heatmaps for correlations (absolute values) and mutual infor-
mation values, as well as correlations-based network plots, are presented in corresponding
Figures 1, A1 and 2, respectively. In both the correlation and mutual information plots, the
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EAAs are clustered together with the exception of GrimAA, which displays very strong
associations with sex and smoking status.

Figure 1. Heatmap of the correlations between all available traits and epigenetic age accelerations,
based on Spearman correlation and unsupervised clustering.

We further investigated the relationship between phenotypes and EAAs by split-
ting the dataset into EAA+ and EAA− groups using (1), and, subsequently, testing the
phenotype data distribution using a t-test for continuous variables and Fisher’s exact
test for binary variables. The corresponding statistical testing results are presented in
Tables A5 and A6.

We noted that in nearly all EAA measures the size distribution of the EAA+ and EAA−

groups were within a 45–55% range. The only exceptions to this were HorvathAAd (32%
EAA+ samples vs. 68% EAA− samples) and GrimAA (61% EAA+ samples vs. 39% EAA−

samples). Sex-specific group splitting was found to be very unbalanced for all the EAAs for
both sexes with the exception of HorvathIEAA (see Table A4). Furthermore, we observed
significant differences in distributions of all nine EAA measures in our data between males
and females; the corresponding data along with descriptive statistics are presented in
Table A2. Given the strong association between sex and the various phenotypes examined
in this study, the significant results obtained for EAA–phenotype associations might have
been confounded by sex.



Biology 2023, 12, 68 7 of 37

Figure 2. Network plot of of the connections among the phenotypes and EAAs in the dataset, based
on Spearman correlation coefficients with absolute values above 0.3.

3.3. Sex-Adjusted EAAs Are Associated with Various Phenotypes

In order to eliminate the undesired sex bias, we adjusted all of the EAA scores by sex
and then repeated the analyses described in the previous section, based on the calculated
adjusted EAAs (adjEAA). Splitting the data into EAA+ and EAA− resulted in balanced
group sizes for all the adjEAAs, and all of the groupings were within a 44–56% range; see
Table A4. The medians of the adjEAAs for sex-specific subsets located closer to 0 compared
to the medians of unadjusted EAAs (see Figure 3A).

The significant results from testing the differences in phenotype distribution between
the EAA+ and EAA− groups are given in Table 2. This table contains 95% confidence
intervals, which indicate the trends in the direction of differences. The corresponding means
and odds ratio values could be found in Table A6, where we present all testing outcomes
regardless of their significance. For all available samples, only four adjEAAs (GrimAA,
PhenoAA, Horvath’s residuals, and IEAA) demonstrated statistically significant results
for six phenotypes, with four phenotypes highlighted by GrimAA, and one phenotype
each by the rest of the adjAAs (seven phenotype–EAA combinations in total). Among the
differently distributed phenotypes are blood levels of GGT and LDL, smoking status and
annual alcohol consumption, diagnosed MCP, and incident CHD status, with the latter
being the only phenotype that tested significantly different by multiple adjEAAs (GrimAA
and Horvath’s differences). Interestingly, for the GrimAA clock, incident CHD and smoking
status stayed significantly different for both male-only and female-only subsets, whilst
GGT was not significantly different in any sex-specific groupings.

Seven phenotype–EAA combinations were demonstrated to be statistically significant.
Of these, five remained significant in male-only data subsets, and three remained significant
in female-only subsets. In males, the significant differences between the EAA+ and EAA−

groups were confirmed by four EAAs (the same for all samples) and seven phenotypes
(10 phenotype–EAA combinations). Significant results for females feature seven EAAs (all
apart from Horvath’s and HannumIEAA) and 10 traits (21 phenotype–EAA combinations).
Nearly half (10 out of 21) of the results for the female subgroup presented in Table 2 relate
to blood lipids measures (TG, LDL, and HDL), and another six results for females relate to
the presence of a hypertension diagnosis and blood pressure values (SBP and DBP). Nei-
ther lipid- nor blood-pressure-related phenotypes were associated with the EAA+/EAA−

grouping in males, unlike the presence of a CP/MCP diagnosis. Anthropometric parame-
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ters were also found to be statistically different in both sex-specific groups (BMI in males
and WHR in females), but not for the combined dataset.

Figure 3. Boxplots of EAAs and sex-adjusted EAAs for all samples and sex-specific subsets (panel (A)),
distribution of GrimAA distribution stratified by sex (panel (B)) and adjusted for sex (panel (C)).
Dashed vertical lines on panels (B,C) correspond to group means.

Our findings also suggest that some of the clocks are associated with groups of
phenotypes. In particular, we observed that GrimAA and HorvathAAr are significantly
associated with the cardiovascular group of phenotypes for the entire dataset. In the female-
only subset, HorvathAAd and GrimAA are both associated with the anthropometric and
cardiovascular groups, whilst PhenoAA, HannumAA, and HannumEEAA are associated
with the lipids group. No significant results were found for the metabolic group or in the
male-only subset.
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Table 2. Significant differences between groups with positive and negative epigenetic age acceler-
ation scores (EAA+ and EAA−). Results which remained significant after controlling for family-wise
error rate of 0.05 in groups of phenotypes per clock (as described in the Methods Section 2.6) are
presented in bold.

Phenotype EAA p, All 95% CI, All p, F 95% CI, F p, M 95% CI, M

Anthropometric

BMI GrimAA 0.039 (−3.079, −0.079)

WHR
HorvathAAd 0.004 (−0.048,

−0.009)

GrimAA 0.010 (0.006, 0.046)

Lifestyle

Smoking
status

GrimAA <0.001 (1.799, 4.895) 0.026 (1.077, 8.931) <0.001 (4.5, 58.7)

HorvathAAd 0.016 (1.140, 9.454)

PhenoAA 0.004 (1.360, 8.319)

Alcohol,
annual intake

HorvathIEAA 0.028 (−2832, −163 ) 0.023 (−5522, −422)

GrimAA 0.049 (16, 5370)

Metabolic

GGT
GrimAA 0.023 (0.728, 9.699)

HorvathAAr 0.030 (0.738, 14.5)

Lipids

TC

HannumAA 0.009 (−0.947,
−0.141)

GrimAA 0.046 (0.008, 0.818)

PhenoAA 0.010 (−0.919,
−0.127)

HannumEEAA 0.003 (−1.004,
−0.203)

TG GrimAA 0.015 (0.070, 0.632)

HDL
HorvathAAr 0.013 (0.026, 0.219)

SkinBloodAA 0.027 (0.012, 0.205)

LDL

PhenoAA 0.037 (−0.523,
−0.016) 0.004 (−0.840,

−0.157)

HannumAA 0.010 (−0.811,
−0.112)

HannumEEAA 0.002 (−0.904,
−0.215)

Cardiovascular

CHD
GrimAA <0.001 (1.518, 4.060) 0.001 (1.458, 5.955) 0.042 (1.020, 4.389)

HorvathAAr 0.006 (1.187, 3.139) 0.018 (1.150, 4.995)

CP GrimAA 0.009 (1.367, 22.723)

MCP GrimAA 0.004 (1.584, 26.779) 0.009 (1.401, 33.864)

HT
HorvathAAd 0.005 (0.202, 0.781)

GrimAA 0.043 (0.987, 3.764)

SBP
HorvathAAd 0.008 (−20.1, −3.2)

GrimAA 0.024 (1.3, 18.4)

DBP
HorvathAAd 0.003 (−10.626,

−2.144)

GrimAA 0.039 (0.228, 8.832)
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3.4. Directions of Some EAA–Phenotype Associations in Sex-Specific Subsets Are Different

The results presented in Tables 2 and 3 summarise the significant outcomes of statistical
hypothesis testing of our data based on grouping (1). Some of the phenotypes in the
sex-specific groupings were highlighted by multiple EAAs, e.g., female total cholesterol
(HannumAA, PhenoAA, GrimAA, and EEAA) and male alcohol consumption (IEAA and
GrimAA); however, the signs of the groups’ mean differences are not consistent.

Table 3. EAA–phenotype association table. White colour indicates no significant association,
green/red colour indicate significantly higher/lower values of phenotype measures (higher odds
ratios) in EAA+ group compared to EAA− for continuous (binary) phenotypes. Lower case letters
indicate individual significant associations between a clock and a phenotype for all cohort partici-
pants (a), females (f), and males (m); capital letters indicate phenotype group significant association
(controlled for family-wise error rate) for all (A), females (F), and males (M).
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BMI m
WHR F F

Smoking Status F M AFM
Alcohol (annual intake) a M m

Alcohol (annual
occasions)

GGT m a
TC F F F f
TG f

HDL f f
LDL F F aF
CHD A m AFm

CP m
MCP A m
HT F f
SBP F f
DBP F f

For instance, in Table 2, the confidence intervals for female WHR are positive for
GrimAA and negative for HorvathAAd. Further investigation revealed that the EAA+

group have a higher mean WHR than in EAA− for GrimAA, but the opposite is true for
HorvathAAd (see Figure A6). Furthermore, the mean WHR values were higher in the
EAA− group for all three EAAs derived from Horvath’s clock, together with HannumIEAA
and SkinBloodAA. Similar trends were observed in male annual alcohol consumption (see
Figure A3) and in female levels of TC, HDL, LDL, and blood pressure values (SBP and
DBP) (see Figures A7–A9, A11 and A12, respectively).

4. Discussion

The question of which EAA measure is the “best” or “most suitable” to study particular
phenotypes is yet to be answered. For our data, we decided to take into consideration all
the EAA measures that could be calculated using DNA Methylation Online Calculator [3],
which is a relatively easy-to-use open-access tool. Epigenetic clocks included in the Online
Calculator are featured in the vast majority of studies related to EAA–phenotype/disease
associations (see, e.g., [32,40–42]), as well as in benchmarking the newly developed DNAm-
based clocks’ performance (see, e.g., [43]).

Ability of the considered nine EAAs to reflect the differences in phenotype distribution
was investigated by splitting the data based on the sign of the EAA scores. Similar grouping
was also used in [31], where the risk of CHD was studied by splitting HorvathAAd and

 https://dnamage.genetics.ucla.edu/
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HannumAA into positive and negative groups. In a recent paper [32], the authors used
the positive/negative GrimAA and PhenoAA split to study the incident diabetes in the
Coronary Artery Risk Development in Young Adults (CARDIA) cohort.

All the considered EAAs were independent (apart from HorvathAAd) of chronological
age, but clearly sex-biased (Table A2), with generally lower EAA values for females. It was
particularly obvious for the GrimAA scores, with distribution profiles separated for males
and females; see Figure 3B,C. As we pointed out in Section 3.3, splitting the dataset
into EAA+ and EAA− groups revealed big variation in group sizes for different scores
(Table A4), which became particularly extreme for sex-specific subsets. To avoid unwanted
confounding, for our analyses we adjusted EAAs by sex and proceeded with adjEAA values.
This step resulted in a more balanced EAA+/EAA− group split for all adjEAAs. Of course,
adjusting EAAs for sex did not affect the actual differences in phenotypes distributions
between male and female subjects (see Tables A1 and A3). As a result, several phenotype–
EAA combinations, which have previously demonstrated statistically significant results,
did not persist after the adjustment (see Table A5).

Due to some phenotypes showing sex-specific behaviour (see, e.g., [44–46]), we pre-
sented the results for males and females separately alongside the results for the entire
dataset. In one of the recent reviews [47], the authors pointed out the lack of sex-specific re-
sults involving EAAs and recommended splitting data by sex in downstream analyses. Our
findings confirm the importance of using EAAs in sex-specific groups. We observed that
most phenotypes are reflected by some EAAs in one sex-specific group only. It should be
noted that the results presented used positive and negative EAAs grouping (see Section 2.5).
The observed association in groups could be further investigated in larger datasets using
continuous EAAs.

We found that in our dataset both BMI and WHR were significantly different in
males and females. Without adjusting for sex, multiple EAAs groupings highlighted
significant differences in both BMI and WHR for all samples, but none of those associations
were replicated after adjustment (see Table A5). It is known [44] that in females WHR
is associated with risks of CHD regardless of BMI, whilst in males, WHR was found to
be associated with incidence of CHD only for subjects with normal BMI measures. Our
analysis found the anthropometric parameters to be statistically different in both sex-
specific groups (BMI (GrimAA) in males and WHR (GrimAA and HorvathAA) difference
in females), which is in line with results reported in large-scale US Sisters study [48]
and Taiwan Biobank [49] cohorts. Interestingly (and opposite to findings in [44]), in [49],
the authors reported significant associations between WHR and EAAs (PhenoAge and
GrimAge) in males, and between BMI and EAAs (PhenoAge and GrimAge) in females,
which is the other way around in a studied Russian sample (WHR in females and BMI in
males). We would like to point out that the GrimAA grouping revealed higher mean WHR
in female EAA+, but lower male mean BMI in the same group with positive EAAs (see
Figures A5 and A6).

Lifestyle habits, including diet, smoking, and alcohol consumption, are known to
impact DNAm and are associated with epigenetic age in multiple studies (see, e.g., [50–52]).
Some DNAm clocks were specifically developed to be sensitive to smoking status, such
as, for example, GrimAge [5]. GrimAA was the only score associated with smoking status
in the entire dataset, and the associations were replicated in sex-specific subsets (Table 2).
PhenoAA and HorvathAAd were also found to be significantly associated with smoking
status in male and female subgroups, respectively. We would like to point out the very
uneven distribution of the smoking status in men and women in our cohort (see Table A3),
which is in line with the published data for the Russian population [53], but should be
taken into account when comparing our findings with the results in other populations.
HorvathIEAA was significantly associated with annual alcohol consumption for all the
samples and this association persisted in males, together with GrimAA, but not in females.
Interestingly, the mean annual alcohol volume was higher in the EAA+ group for GrimAA,
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but lower in the EAA+ group for IEAA (Figure A3), which is not in line with the current
state of the art in alcohol–ageing relationships (see, e.g., review [54]).

Previous publications suggest that EAAs are associated with diabetes and/or glucose
levels [9,55,56]. It was also found that positive GrimAA (but not PhenoAA) is associated
with a 5–10 years’ higherincidence of Type 2 diabetes, particularly for obese individuals [32].
In analysing this Russian sample, we did not observe any significant associations of the
considered EAAs with prevalent Type 2 diabetes mellitus (T2DM) status and/or fasting
blood glucose values. This might be attributed to the small proportion (11%) of the diabetics
in our data compared to other studies (e.g., nearly 20% in [56]). Blood levels of GGT are
associated with many dysmetabolic conditions, including fatty liver, excessive alcohol
consumption, and increased risks of CHD and T2DM [57,58], and is known to be different
in men and women [45], with no unified reference values. For the entire dataset, GrimAA
EAA+/EAA− grouping demonstrated significant difference in serum GGT measures. This
result was not replicated in sex-specific subsets, but at the same time, in the male subgroup,
a GGT-leveldifference was detected in HorvathAAr split (see Figure A4).

Blood levels of total cholesterol, TG, and lipoproteins (HDL and LDL) are known to
be sex-specific and associated with risk of developing CVD in both sexes (see, e.g., [59]).
Changes in lipids concentrations are also shown to be reflected in age-related changes in
DNAm following dietary interventions [60]. Furthermore, associations of EAAs and lipids
levels were confirmed in several studies [61,62]. In our entire dataset, among all available
lipids data, only mean LDL levels in EAA+ with PhenoAA grouping were significantly
lower than in EAA−, and this result persisted in the female subset. No significant dif-
ferences in mean lipids concentrations were highlighted by any EAA split for the male
subgroup, whilst ten EAA–lipids phenotypes associations were highlighted in females.
In particular, in the female subset, GrimAA grouping demonstrated significantly higher
group mean levels of total cholesterol and TG in EAA+ compared to EAA− (see Table 2,
Figures A9 and A10). At the same time, mean TC and LDL concentrations (Figure A7) were
significantly lower in the EAA+ group in PhenoAA, HannumAA, and EEAA splits. Female
HDL levels associations were picked up in SkinBloodAA and HorvathAAr groupings, with
higher lipoprotein concentration in the EAA+ group (see Figure A8). Remarkably, for all
four considered lipids-related measures, known CVD risk factors (high TC, LDL, and TG,
and low HDL) were associated (not all significantly) with positive age acceleration only for
the GrimAA grouping, whilst the opposite was demonstrated in all the significant (and
vast majority of insignificant) EAAs–lipids associations based on other EAA splits (see
Figures A7–A10). In view of recently published age-related sex-specific trends in lipid
levels [63] and hypertension prevalence [46], it would be interesting to conduct extended
sex-specific analyses on EAA–lipids and hypertension associations for the particular age
groups to see whether EAA values reflect the observed age-related patterns.

Data on carotid atherosclerosis and advanced atherosclerosis, which are defined in
our study as the presence of at least a single (CP) and multiple carotid plaques (MCP),
respectively, were available for only 34% of the participants, with 50/23/14 and 55/23/2
total/CP/MCP samples available for males and females. Only the GrimAA grouping was
significantly associated with CP in males and MCP in the entire dataset and its male-only
subset. In female-specific subset, blood pressure values (both SBP and DBP) and hyper-
tension status were significantly associated with HorvathAAd and GrimAA groupings.
Interestingly, in the case of the GrimAA group split, mean values of SBP and DBP were
higher in the EAA+ group, which might indicate the increased risk of CVD [64]. This is the
opposite to the corresponding results of HorvathAAd grouping. None of these phenotypes
were highlighted in the entire dataset and male subset. Two groupings, GrimAA and
HorvathAAr, were significantly associated with incident CHD for all available samples.
The results persisted in the male subset for both groupings and in the female subset for
GrimAA split only. Similar results were also described in the Genetic Epidemiology Net-
work of Arteriopathy (GENOA) dataset study [56], where the authors reported significant
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connections not only between GrimAA and incident CVD, but also between GrimAA and
time to the CVD event.

Notably, while higher odds of CHD were associated with EAA+ for both GrimAA
and HorvathAAr, only GrimAA EAA+ was consistently associated with more harmful
phenotypes values, indicating higher risk of CHD. All other EAA splits demonstrated
mostly the opposite behaviour regarding available risk factors (lipids, anthropometric,
lifestyle, and cardiovascular).

The observed associations of the various EAAs with both individual and groups of
phenotypes suggest that EAA scores are sensitive to various cardiometabolic parameters,
which might indicate their prognostic potential for related disorders. Further investigations
conducted on well-annotated larger datasets are needed to improve the understanding of
the mechanisms behind those associations and to possibly develop new biomarkers. These
might be extended by applying other epigenetic age models and using continuous EAAs in
association studies.

5. Conclusions

Our study, conducted on a subset of HAPIEE cohort, shows that EAAs are sex-specific
and should be adjusted for sex in EAA–phenotypes association studies. Moreover, even
after adjusting for sex, the associations between EAAs and 18 considered cardiometabolic
phenotypes are sex-specific. The only two phenotype–EAA associations that persisted
through the entire dataset and both male and female subsets are incident CHD and smok-
ing status.

Among all considered epigenetic clocks, GrimAge was significantly associated with
more phenotypes than any other EA scores, but for most of the phenotypes, those asso-
ciations are weaker than in other scores. Furthermore, for some EAAs, the direction of
the association with phenotype is counterintuitive, i.e., lower EAA scores corresponded to
more harmful values of the phenotypes. The observed associations of the various EAAs
with both individual and groups of phenotypes suggest that EAA scores are sensitive to
various cardiometabolic parameters, which might indicate their prognostic potential for
related disorders.
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Appendix A

Figure A1. Normalised mutual information heatmap.
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Figure A2. Correlation table for EAAs. Red asterisks correspond to the correlation test p-values as
follows: *** for p < 0.001.
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Figure A3. Histograms of distributions of annual alcohol consumption in males in EAA+ and EAA−

groups. Dashed lines correspond to the group means.

Figure A4. Histograms of distributions of GGT levels in males in EAA+ and EAA− groups. Dashed
lines correspond to the group means.
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Figure A5. Histograms of distributions of BMI in males in EAA+ and EAA− groups. Dashed lines
correspond to the group means.

Figure A6. Histograms of distributions of waist–hip ratio in females in EAA+ and EAA− groups.
Dashed lines correspond to the group means.
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Figure A7. Histograms of distributions of LDL levels in females in EAA+ and EAA− groups. Dashed
lines correspond to the group means.

Figure A8. Histograms of distributions of HDL levels in females in EAA+ and EAA− groups. Dashed
lines correspond to the group means.
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Figure A9. Histograms of distributions of TC levels in females in EAA+ and EAA− groups. Dashed
lines correspond to the group means.

Figure A10. Histograms of distributions of TG levels in females in EAA+ and EAA− groups. Dashed
lines correspond to the group means.
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Figure A11. Histograms of distributions of DBP levels in females in EAA+ and EAA− groups.
Dashed lines correspond to the group means.

Figure A12. Histograms of distributions of SBP levels in females in EAA+ and EAA− groups. Dashed
lines correspond to the group means.
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Table A1. Summary of the continuous phenotype data for males and females. Sample size is
n = 306, 166/140 female/male. Glucose measurements are only available for n = 298, 159/139
female/male samples. p-values obtained from the Welch’s t-test, testing difference between male
and female groups for each variable (H0: mean value of the variable is the same for male and
female groups).

Phenotype Sex (Min, Max) Mean (SD) p-Value 95% CI

Age, years

All (44.78, 70.37) 56.78 (7.13)

0.16 (−0.46, 2.75)F (44.78, 70.11) 57.3 (7.28)

M (45.15, 70.37) 56.15 (6.92)

BMI, kg/m2

All (16.76, 53.62) 28.06 (5.3)

<0.001 (1.18, 3.48)F (16.76, 53.62) 29.12 (5.66)

M (18.37, 43.27) 26.8 (4.54)

WHR, units

All (0.69, 1.13) 0.88 (0.08)

<0.001 (−0.12, −0.09)F (0.69, 1.01) 0.84 (0.06)

M (0.79, 1.13) 0.94 (0.07)

Alcohol (annual intake), g

All (0, 43,530) 2696.73 (5936.95)

<0.001 (−6129.87, −3453.23)F (0, 14,850) 504.52 (1323.39)

M (0, 43,530) 5296.07 (7919.46)

Alcohol (annual occasions), n

All (0, 365) 47 (75.56)

<0.001 (−77.54, −44)F (0, 198) 19.19 (34.44)

M (0, 365) 79.96 (95.4)

GGT, mmol/L

All (10, 140) 31.26 (19.92)

<0.001 (−12.69, −3.77)F (10, 140) 27.5 (18.34)

M (12, 130) 35.73 (20.85)

Glucose, mmol/L

All (4.11, 17.11) 6.04 (1.65)

0.766 (−0.44, 0.32)F (4.11, 16) 6.02 (1.6)

M (4.56, 17.11) 6.07 (1.72)

TC, mmol/L

All (4.04, 11.06) 6.5 (1.28)

0.001 (0.19, 0.75)F (4.14, 11.06) 6.72 (1.33)

M (4.14, 11.06) 6.25 (1.17)

TG, mmol/L

All (0.56, 5.56) 1.62 (0.84)

0.189 (−0.06, 0.31)F (0.56, 5.56) 1.67 (0.92)

M (0.63, 4.59) 1.55 (0.71)

HDL, mmol/L

All (0.7, 3.29) 1.54 (0.33)

0.015 (0.02, 0.17)F (0.93, 2.46) 1.59 (0.32)

M (0.7, 3.29) 1.49 (0.35)

LDL, mmol/L

All (1.46, 8.3) 4.22 (1.14)

0.013 (0.07, 0.58)F (1.94, 8.09) 4.37 (1.15)

M (1.46, 8.3) 4.05 (1.1)

SBP, mmHg

All (93.33, 247) 140.95 (25.75)

0.861 (−5.21, 6.23)F (93.33, 227.67) 141.18 (28.19)

M (99.67, 247) 140.67 (22.62)

DBP, mmHg

All (54.33, 135.33) 88.65 (13.76)

0.275 (−4.8, 1.37)F (59, 135) 87.87 (14.15)

M (54.33, 135.33) 89.59 (13.26)
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Table A2. Summary of EAAs score data for males and females. EAA scores before adjustment for
sex. p-values obtained from the Welch’s t-test, testing difference between male and female groups for
each EAA (H0: mean value of the EAA is the same for male and female groups).

EAA Sex (Min, Max) Mean (SD) Median
(IQR) p-Value 95% CI

HannumAA

All (−17.6, 20.49) 0 (4.35) −0.33 (5.2)

<0.001 (−3.46, −1.56)F (−17.6, 10.69) −1.15 (4.06) −1.06 (4.77)

M (−7.65, 20.49) 1.36 (4.32) 0.7 (5.85)

HannumEEAA

All (−20, 24.18) 0 (5.42) 0.04 (6.73)

<0.001 (−4.59, −2.27)F (−20, 13.44) −1.57 (5.15) −1.55 (5.8)

M (−9.24, 24.18) 1.86 (5.16) 1.29 (7.2)

HannumIEAA

All (−15.55, 18.54) 0 (3.91) −0.19 (4.98)

0.001 (−2.44, −0.69)F (−15.55, 8.11) −0.72 (3.57) −0.67 (4.43)

M (−7.49, 18.54) 0.85 (4.13) 0.55 (5.19)

HorvathAAd

All (−17.16, 21.87) 2.16 (4.95) 2 (6.02)

<0.001 (−3.51, −1.31)F (−17.16, 13.42) 1.06 (4.58) 0.82 (5.55)

M (−10.84, 21.87) 3.47 (5.07) 3.49 (6.15)

HorvathAAr

All (−16.11, 17.01) 0 (4.49) −0.07 (5.55)

<0.001 (−3.07, −1.08)F (−16.11, 11.83) −0.95 (4.13) −0.9 (5.43)

M (−9.98, 17.01) 1.13 (4.65) 1.08 (5.79)

HorvathIEAA

All (−15.62, 15.93) 0 (4.32) 0.07 (5.57)

0.002 (−2.51, −0.56)F (−15.62, 10.23) −0.7 (4.07) −0.48 (5.26)

M (−8.84, 15.93) 0.83 (4.48) 0.58 (5.56)

SkinBloodAA

All (−21.55, 13.15) 0 (3.68) −0.39 (4.82)

0.048 (−1.66, −0.01)F (−21.55, 9.82) −0.38 (3.73) −0.58 (4.85)

M (−9.33, 13.15) 0.45 (3.58) 0.18 (4.48)

PhenoAA

All (−17.95, 26.12) 0 (5.74) −0.53 (7.4)

<0.001 (−3.62, −1.08)F (−17.95, 26.12) −1.08 (5.68) −1.62 (5.78)

M (−10.35, 15.91) 1.27 (5.56) 0.71 (7.88)

GrimAA

All (−10.46, 15.05) 0 (5.44) −1.47 (7.73)

<0.001 (−8.19, −6.26)F (−10.46, 8.45) −3.31 (2.94) −3.44 (3.16)

M (−7.71, 15.05) 3.92 (5.12) 3.66 (8.39)

Table A3. Summary of binary phenotypes. Being case means having phenotype. Smoking status
cases correspond to current or former smokers. p-values and odds ratios (with corresponding 95%
confidence intervals) obtained from the Fisher’s exact test testing difference in ratio of each class of
the variable between male and female groups (H0: classification for given binary variable for male
and female groups are not different).

Phenotype Sex Samples, n Cases, n (%) OR (95% CI) p-Value

Smoking status

All 306 126 (41.18%)

<0.001F 166 24 (14.46%) 0.06 (0.03, 0.12)

M 140 102 (72.86%) 15.69 (8.67, 29.34)

T2DM

All 306 34 (11.11%)

0.466F 166 16 (9.64%) 0.72 (0.33, 1.57)

M 140 18 (12.86%) 1.38 (0.64, 3.03)

CHD

All 306 130 (42.48%)

0.083F 166 63 (37.95%) 0.67 (0.41, 1.08)

M 140 67 (47.86%) 1.5 (0.93, 2.43)
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Table A3. Cont.

Phenotype Sex Samples, n Cases, n (%) OR (95% CI) p-Value

CP

All 105 46 (43.81%)

0.698F 55 23 (41.82%) 0.85 (0.36, 1.96)

M 50 23 (46%) 1.18 (0.51, 2.75)

MCP

All 105 16 (15.24%)

0.001F 55 2 (3.64%) 0.1 (0.01, 0.47)

M 50 14 (28%) 10.1 (2.12, 96.93)

HT

All 306 176 (57.52%)

0.643F 166 93 (56.02%) 0.88 (0.54, 1.41)

M 140 83 (59.29%) 1.14 (0.71, 1.85)

Table A4. Number of samples in EAA− and EAA+ groups for unadjusted and adjusted for sex
EAA scores.

EAA Sex
EAA Group Size, n (%) adjEAA Group Size, n (%)

EAA< 0 EAA≥ 0 adjEAA< 0 adjEAA≥ 0

HannumAA

All 162 (53%) 144 (47%) 155 (51%) 151 (49%)

F 104 (63%) 62 (37%) 80 (48%) 86 (52%)

M 58 (41%) 82 (59%) 75 (54%) 65 (46%)

HannumEEAA

All 150 (49%) 156 (51%) 159 (52%) 147 (48%)

F 100 (60%) 66 (40%) 81 (49%) 85 (51%)

M 50 (36%) 90 (64%) 78 (56%) 62 (44%)

HannumIEAA

All 160 (52%) 146 (48%) 159 (52%) 147 (48%)

F 95 (57%) 71 (43%) 82 (49%) 84 (51%)

M 65 (46%) 75 (54%) 77 (55%) 63 (45%)

HorvathAAd

All 98 (32%) 208 (68%) 156 (51%) 150 (49%)

F 68 (41%) 98 (59%) 87 (52%) 79 (48%)

M 30 (21%) 110 (79%) 69 (49%) 71 (51%)

HorvathAAr

All 155 (51%) 151 (49%) 151 (49%) 155 (51%)

F 98 (59%) 68 (41%) 81 (49%) 85 (51%)

M 57 (41%) 83 (59%) 70 (50%) 70 (50%)

HorvathIEAA

All 150 (49%) 156 (51%) 152 (50%) 154 (50%)

F 89 (54%) 77 (46%) 79 (48%) 87 (52%)

M 61 (44%) 79 (56%) 73 (52%) 67 (48%)

SkinBloodAA

All 163 (53%) 143 (47%) 162 (53%) 144 (47%)

F 96 (58%) 70 (42%) 91 (55%) 75 (45%)

M 67 (48%) 73 (52%) 71 (51%) 69 (49%)

PhenoAA

All 168 (55%) 138 (45%) 164 (54%) 142 (46%)

F 105 (63%) 61 (37%) 89 (54%) 77 (46%)

M 63 (45%) 77 (55%) 75 (54%) 65 (46%)

GrimAA

All 186 (61%) 120 (39%) 157 (51%) 149 (49%)

F 151 (91%) 15 (9%) 85 (51%) 81 (49%)

M 35 (25%) 105 (75%) 72 (51%) 68 (49%)
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Table A5. Significant differences in EAA− and EAA+ groups for unadjusted and adjusted for sex EAA scores.

Phenotype EAA

Unadjusted Adjusted for sex

All Female Male All Female Male

p 95% CI p 95% CI p 95% CI p 95% CI p 95% CI p 95% CI

Anthropometric

BMI
GrimAA 0.011 (−2.767,

−0.364) 0.039 (−3.079,
−0.079)

HorvathAAd 0.019 (−2.950,
−0.267) 0.031 (−3.751,

−0.188)

WHR

HorvathAAd 0.007 (−0.048,
−0.008) 0.004 (−0.048,

−0.009)

GrimAA <0.001 (0.069, 0.103) 0.046 (−0.0004, 0.042) 0.010 (0.006, 0.046)

SkinBloodAA 0.041 (−0.001,0.038)

HannumEEAA 0.016 (−0.004,
0.042)

Lifestyle

Smoking status

GrimAA <0.001 (15.646,
61.134) <0.001 (3.642, 52.054) <0.001 (5.237, 39.030) <0.001 (1.799, 4.895) 0.026 (1.077, 8.931) <0.001 (4.515, 58.734)

HorvathAAd 0.003 (1.294, 3.884) 0.016 (1.140, 9.454)

PhenoAA 0.002 (1.262, 3.359) 0.013 (1.201, 6.494) 0.004 (1.360, 8.319)

HannumAAr <0.001 (1.447, 3.873)

HannumIEAA 0.015 (1.112, 2.940)

HannumEEAA <0.001 (1.717, 4.677)

Alcohol (annual intake)

HorvathIEAA 0.009 (−6721.199,
−1005.072) 0.028 (−2832.461,

−163.529) 0.023 (−5521.650,
−422.226)

HorvathAAr 0.033 (−5976.624,
−264.277)

GrimAA <0.001 (2477.312,
5546.062) 0.049 (16.036,

5369.626)

HannumAAr 0.028 (165.525,
2866.550)

HannumEEAA 0.009 (432.292,
3063.949)
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Table A5. Cont.

Phenotype EAA

Unadjusted Adjusted for Sex

All Female Male All Female Male

p 95% CI p 95% CI p 95% CI p 95% CI p 95% CI p 95% CI

Alcohol (annual occasions)

HorvathIEAA 0.020 (−73.632,
−6.503)

HorvathAAr 0.027 (4.412, 72.233)

HannumEEAA 0.015 (4.092, 37.637)

GrimAA <0.001 (28.848,
66.692)

HannumAAr 0.016 (3.953,38.375 )

Metabolic

GGT

HannumIEAA 0.029 (0.817, 15.130)

GrimAA 0.003 (2.518, 11.746) 0.023 (0.728, 9.699)

HorvathAAr 0.030 (0.738, 14.519)

Lipids

TC

HannumAAr 0.011 (−0.652,
−0.085) 0.014 (−0.904,

−0.103) 0.009 (−0.947,
−0.141)

GrimAA 0.025 (−0.630,
−0.042) 0.046 (0.008, 0.818)

PhenoAA 0.010 (−0.653,
−0.088) 0.004 (−0.993,

−0.198) 0.010 (−0.919,
−0.127)

HannumEEAA 0.012 (−0.653,
−0.082 ) 0.012 (−0.904,

−0.113) 0.003 (−1.004,
−0.203)

TG

GrimAA 0.015 (0.070, 0.632)

HannumIEAA 0.043 (−0.378,
−0.006) 0.028 (−0.510,

−0.030)

HannumAAr 0.023 (−0.403,
−0.031) 0.034 (−0.522,

−0.021)

HDL

HorvathAAr 0.004 (0.046, 0.236) 0.013 (0.026, 0.219)

SkinBloodAA 0.027 (0.012, 0.205)

HorvathIEAA 0.002 (0.053, 0.241)

HannumIEAA 0.033 (0.010, 0.236)

HannumAAr 0.036 (0.008, 0.233)

GrimAA 0.004 (−0.192,
−0.036 )
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Table A5. Cont.

Phenotype EAA

Unadjusted Adjusted for Sex

All Female Male All Female Male

p 95% CI p 95% CI p 95% CI p 95% CI p 95% CI p 95% CI

LDL

PhenoAA 0.012 (−0.575,
−0.070) 0.002 (−0.891,

−0.208) 0.037 (−0.523,
−0.016) 0.004 (−0.840,

−0.157)

HannumAAr 0.013 (−0.575,
−0.068) 0.007 (−0.822,

−0.129) 0.010 (−0.811,
−0.112)

HannumEEAA 0.008 (−0.601,
−0.093) 0.004 (−0.848,

−0.165) 0.002 (−0.904,
−0.215)

Cardiovascular

CHD
GrimAA 0.003 (1.267, 3.408) 0.011 (1.220, 7.596) <0.001 (1.518, 4.060) 0.001 (1.458, 5.955) 0.042 (1.020, 4.389)

HorvathAAr 0.015 (1.106, 2.913) 0.006 (1.187, 3.139) 0.018 (1.150, 4.995)

CP GrimAA 0.009 (1.367, 22.723)

MCP GrimAA 0.001 (1.979, 46.687) 0.004 (1.584, 26.779) 0.009 (1.401, 33.864)

HT
HorvathAAd 0.009 (0.296, 0.867) 0.007 (0.195, 0.793) 0.005 (0.202, 0.781)

GrimAA 0.043 (0.987, 3.764)

SBP
HorvathAAd 0.024 (−13.311,

−0.964) 0.028 (−18.191,
−1.045) 0.008 (−20.142,

−3.153)

GrimAA 0.024 (1.294, 18.398)

DBP
HorvathAAd 0.048 (−8.648,

−0.031) 0.003 (−10.626,
−2.144)

GrimAA 0.039 (0.228, 8.832)
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Table A6. All results for EAA− and EAA+ groups for adjusted for sex EAA scores. For Welch’s
t-test, group 1 is EAA− and group 2 is EAA+. For Fisher’s exact test, odds ratios depend on the
phenotype value and grouping for the first sample in our data.

Phenotype EAA p, All ∆Mean/OR (95% CI,
All) p, Female ∆Mean/OR (95% CI,

Female) p, Male ∆Mean/OR (95% CI,
Male)

Anthropometric

BMI HorvathAAd 0.118 0.946 (−0.242, 2.133) 0.051 1.712 (−0.005, 3.428) 0.880 −0.117 (−1.641, 1.408)

BMI HorvathAAr 0.955 0.034 (−1.159, 1.227) 0.665 −0.381 (−2.116, 1.353) 0.446 0.588 (−0.933, 2.108)

BMI SkinBloodAA 0.768 −0.179 (−1.373, 1.014) 0.873 0.141 (−1.593, 1.875) 0.323 −0.764 (−2.285, 0.758)

BMI HorvathIEAA 0.409 0.501 (−0.692, 1.694) 0.742 0.291 (−1.452, 2.034) 0.199 0.983 (−0.522, 2.488)

BMI HannumEEAA 0.691 0.242 (−0.958, 1.442) 0.970 −0.033 (−1.768, 1.702) 0.228 0.929 (−0.589, 2.447)

BMI HannumIEAA 0.465 0.442 (−0.746, 1.631) 0.656 0.394 (−1.348, 2.135) 0.296 0.789 (−0.698, 2.277)

BMI HannumAA 0.982 0.014 (−1.181, 1.208) 0.830 0.190 (−1.556, 1.935) 0.921 0.078 (−1.460, 1.615)

BMI GrimAA 0.844 −0.120 (−1.322, 1.082) 0.081 −1.543 (−3.281, 0.195) 0.039 1.579 (0.079, 3.079)

BMI PhenoAA 0.841 −0.123 (−1.329, 1.084) 0.787 0.239 (−1.510, 1.989) 0.483 −0.554 (−2.113, 1.005)

WHR HorvathAAd 0.178 0.013 (−0.006, 0.032) 0.004 0.029 (0.009, 0.048) 0.909 0.001 (−0.021, 0.023)

WHR HorvathAAr 0.482 0.007 (−0.012, 0.026) 0.170 0.014 (−0.006, 0.034) 0.686 −0.004 (−0.026, 0.017)

WHR SkinBloodAA 0.184 −0.013 (−0.032, 0.006) 0.604 −0.005 (−0.025, 0.015) 0.269 −0.012 (−0.034, 0.010)

WHR HorvathIEAA 0.317 0.010 (−0.009, 0.028) 0.376 0.009 (−0.011, 0.029) 0.996 0.000 (−0.022, 0.022)

WHR HannumEEAA 0.152 0.014 (−0.005, 0.033) 0.605 0.005 (−0.015, 0.025) 0.477 0.008 (−0.014, 0.030)

WHR HannumIEAA 0.506 0.006 (−0.012, 0.025) 0.678 −0.004 (−0.024, 0.016) 0.583 0.006 (−0.016, 0.028)

WHR HannumAA 0.609 0.005 (−0.014, 0.024) 0.810 −0.002 (−0.023, 0.018) 0.911 0.001 (−0.021, 0.023)

WHR GrimAA 0.162 −0.013 (−0.032, 0.005) 0.010 −0.026 (−0.046, −0.006) 0.920 0.001 (−0.021, 0.023)

WHR PhenoAA 0.475 0.007 (−0.012, 0.026) 0.104 0.016 (−0.003, 0.036) 0.714 −0.004 (−0.026, 0.018)

Lifestyle

Alcohol (annual
intake) HorvathAAd 0.496 459.390 (−868.299,

1787.078) 0.292 −225.055 (−645.973,
195.864) 0.238 1595.070 (−1070.824,

4260.965)

Alcohol (annual
intake) HorvathAAr 0.107 1101.018 (−238.071,

2440.106) 0.522 −130.099 (−531.505,
271.307) 0.069 2435.000 (−192.278,

5062.278)

Alcohol (annual
intake) SkinBloodAA 0.438 519.830 (−797.085,

1836.746) 0.388 −190.837 (−627.538,
245.865) 0.182 1783.619 (−845.651,

4412.889)

Alcohol (annual
intake) HorvathIEAA 0.028 1497.995 (163.529,

2832.461) 0.485 −140.131 (−535.868,
255.606) 0.023 2971.938 (422.226,

5521.650)

Alcohol (annual
intake) HannumEEAA 0.833 144.007 (−1197.565,

1485.579) 0.373 −180.731 (−581.352,
219.891) 0.888 −193.486 (−2906.095,

2519.122)

Alcohol (annual
intake) HannumIEAA 0.506 448.790 (−878.267,

1775.846) 0.379 −180.038 (−583.961,
223.885) 0.642 616.522 (−2000.890,

3233.935)

Alcohol (annual
intake) HannumAA 0.529 426.629 (−906.939,

1760.197) 0.257 −228.406 (−625.223,
168.412) 0.627 646.862 (−1977.101,

3270.824)

Alcohol (annual
intake) GrimAA 0.105 −1119.352 (−2474.041,

235.337) 0.355 187.723 (−212.549,
587.995) 0.049 −2692.831 (−5369.626,

−16.036)

Alcohol (annual
intake) PhenoAA 0.446 510.560 (−806.875,

1827.995) 0.727 −76.111 (−506.575,
354.353) 0.360 1210.595 (−1395.209,

3816.398)

Alcohol (annual
occasions) HorvathAAd 0.886 −1.236 (−18.230,

15.759) 0.316 −5.429 (−16.092, 5.234) 0.629 7.843 (−24.213, 39.900)

Alcohol (annual
occasions) HorvathAAr 0.213 10.806 (−6.247, 27.859) 0.441 −4.114 (−14.640, 6.412) 0.096 26.900 (−4.801, 58.601)

Alcohol (annual
occasions) SkinBloodAA 0.884 1.253 (−15.668, 18.175) 0.375 −4.829 (−15.541, 5.883) 0.392 13.818 (−18.028, 45.664)

Alcohol (annual
occasions) HorvathIEAA 0.134 13.001 (−4.012, 30.013) 0.419 −4.305 (−14.803, 6.194) 0.083 27.554 (−3.661, 58.768)

Alcohol (annual
occasions) HannumEEAA 0.967 −0.360 (−17.423,

16.703) 0.515 −3.487 (−14.028, 7.054) 0.722 −5.854 (−38.391,
26.683)

Alcohol (annual
occasions) HannumIEAA 0.907 −1.014 (−18.093,

16.065) 0.587 −2.911 (−13.470, 7.647) 0.706 −6.212 (−38.690,
26.266)

Alcohol (annual
occasions) HannumAA 0.942 0.634 (−16.385, 17.654) 0.255 −6.066 (−16.547, 4.414) 0.927 1.484 (−30.599, 33.568)
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Table A6. Cont.

Phenotype EAA p, All ∆mean/OR (95% CI,
All) p, Female ∆mean/OR (95% CI,

Female) p, Male ∆mean/OR (95% CI,
Male)

Alcohol (annual
occasions) GrimAA 0.737 −2.923 (−20.017,

14.170) 0.529 3.366 (−7.167, 13.900) 0.512 −10.678 (−42.810,
21.453)

Alcohol (annual
occasions) PhenoAA 0.412 7.037 (−9.830, 23.903) 0.576 3.000 (−7.580, 13.580) 0.459 11.880 (−19.746, 43.506)

Smoking status HorvathAAd 0.164 1.400 (0.865, 2.271) 0.016 3.112 (1.140, 9.454) 0.850 0.901 (0.398, 2.028)

Smoking status HorvathAAr 0.908 0.957 (0.591, 1.547) 0.661 0.779 (0.294, 2.027) 0.849 1.154 (0.513, 2.613)

Smoking status SkinBloodAA 0.908 1.039 (0.642, 1.682) 0.826 0.847 (0.314, 2.209) 1.000 0.962 (0.426, 2.169)

Smoking status HorvathIEAA 1.000 0.978 (0.605, 1.582) 1.000 1.085 (0.417, 2.874) 0.706 1.186 (0.527, 2.700)

Smoking status HannumEEAA 0.642 1.142 (0.706, 1.849) 0.512 1.397 (0.536, 3.769) 0.181 1.771 (0.771, 4.217)

Smoking status HannumIEAA 0.642 1.142 (0.706, 1.849) 0.271 1.757 (0.669, 4.873) 0.451 1.360 (0.600, 3.150)

Smoking status HannumAA 0.296 1.297 (0.802, 2.102) 0.128 2.048 (0.769, 5.900) 0.186 1.708 (0.750, 4.004)

Smoking status GrimAA 0.000 2.954 (1.799, 4.895) 0.026 2.941 (1.077, 8.931) 0.000 14.047 (4.515, 58.734)

Smoking status PhenoAA 0.132 1.424 (0.879, 2.311) 0.663 0.801 (0.297, 2.087) 0.004 3.249 (1.360, 8.319)

Metabolic

T2DM HorvathAAd 0.717 1.192 (0.548, 2.614) 0.441 0.635 (0.180, 2.043) 0.207 2.124 (0.685, 7.363)

T2DM HorvathAAr 0.102 1.912 (0.866, 4.419) 0.794 1.250 (0.391, 4.172) 0.075 2.943 (0.914, 11.207)

T2DM SkinBloodAA 0.720 1.141 (0.523, 2.489) 0.188 2.169 (0.673, 7.658) 0.451 0.618 (0.190, 1.882)

T2DM HorvathIEAA 0.364 1.469 (0.674, 3.284) 0.798 1.186 (0.371, 3.956) 0.313 1.844 (0.605, 6.012)

T2DM HannumEEAA 0.468 0.732 (0.328, 1.596) 0.794 1.250 (0.391, 4.172) 0.203 0.441 (0.116, 1.420)

T2DM HannumIEAA 1.000 0.957 (0.436, 2.081) 0.432 1.706 (0.530, 6.018) 0.321 0.572 (0.165, 1.777)

T2DM HannumAA 1.000 1.030 (0.472, 2.245) 0.436 1.618 (0.503, 5.706) 0.615 0.704 (0.216, 2.144)

T2DM GrimAA 0.858 0.929 (0.424, 2.021) 1.000 1.054 (0.326, 3.410) 0.803 0.828 (0.264, 2.510)

T2DM PhenoAA 0.586 0.788 (0.353, 1.718) 0.112 0.354 (0.079, 1.235) 0.455 1.518 (0.501, 4.757)

GGT HorvathAAd 0.664 0.990 (−3.484, 5.464) 0.260 3.176 (−2.373, 8.725) 0.770 −1.037 (−8.046, 5.973)

GGT HorvathAAr 0.614 −1.150 (−5.630, 3.330) 0.151 4.135 (−1.521, 9.791) 0.030 −7.629 (−14.519,
−0.738)

GGT SkinBloodAA 0.531 1.431 (−3.061, 5.924) 0.794 −0.766 (−6.551, 5.019) 0.178 4.752 (−2.182, 11.685)

GGT HorvathIEAA 0.937 0.180 (−4.309, 4.669) 0.305 2.983 (−2.749, 8.715) 0.270 −3.955 (−11.026, 3.115)

GGT HannumEEAA 0.186 2.997 (−1.449, 7.443) 0.192 3.749 (−1.902, 9.400) 0.803 0.873 (−6.041, 7.788)

GGT HannumIEAA 0.218 2.774 (−1.652, 7.201) 0.893 0.386 (−5.266, 6.037) 0.172 4.644 (−2.039, 11.326)

GGT HannumAA 0.120 3.530 (−0.925, 7.984) 0.304 2.968 (−2.716, 8.651) 0.344 3.255 (−3.530, 10.041)

GGT GrimAA 0.023 −5.213 (−9.699, −0.728) 0.087 −4.906 (−10.542, 0.729) 0.114 −5.618 (−12.606, 1.370)

GGT PhenoAA 0.916 0.244 (−4.285, 4.773) 0.205 3.549 (−1.960, 9.057) 0.314 −3.666 (−10.841, 3.510)

Glucose HorvathAAd 0.500 0.130 (−0.248, 0.508) 0.197 0.325 (−0.170, 0.820) 0.761 −0.089 (−0.664, 0.487)

Glucose HorvathAAr 0.706 −0.072 (−0.447, 0.303) 0.907 −0.029 (−0.527, 0.468) 0.675 −0.123 (−0.701, 0.455)

Glucose SkinBloodAA 0.686 0.077 (−0.297, 0.452) 0.778 −0.072 (−0.572, 0.428) 0.392 0.249 (−0.325, 0.824)

Glucose HorvathIEAA 0.873 −0.031 (−0.407, 0.346) 0.981 −0.006 (−0.503, 0.491) 0.828 −0.065 (−0.653, 0.524)

Glucose HannumEEAA 0.455 0.143 (−0.234, 0.521) 0.910 −0.029 (−0.533, 0.476) 0.260 0.335 (−0.251, 0.921)

Glucose HannumIEAA 0.360 −0.182 (−0.574, 0.209) 0.088 −0.439 (−0.944, 0.067) 0.730 0.108 (−0.509, 0.725)

Glucose HannumAA 0.488 −0.133 (−0.512, 0.245) 0.564 −0.147 (−0.647, 0.354) 0.680 −0.128 (−0.742, 0.486)

Glucose GrimAA 0.792 0.051 (−0.328, 0.430) 0.359 −0.234 (−0.736, 0.268) 0.200 0.376 (−0.201, 0.952)

Glucose PhenoAA 0.517 0.124 (−0.253, 0.501) 0.421 0.203 (−0.294, 0.700) 0.909 0.034 (−0.550, 0.618)

Lipids

HDL HorvathAAd 0.948 0.002 (−0.073, 0.077) 0.712 −0.018 (−0.117, 0.080) 0.725 0.021 (−0.096, 0.137)

HDL HorvathAAr 0.281 −0.041 (−0.116, 0.034) 0.013 −0.122 (−0.219, −0.026) 0.328 0.057 (−0.058, 0.173)

HDL SkinBloodAA 0.104 −0.062 (−0.136, 0.013) 0.027 −0.108 (−0.205, −0.012) 0.790 −0.016 (−0.131, 0.100)

HDL HorvathIEAA 0.328 −0.037 (−0.113, 0.038) 0.065 −0.091 (−0.188, 0.006) 0.541 0.035 (−0.079, 0.150)

HDL HannumEEAA 0.158 −0.054 (−0.129, 0.021) 0.959 −0.003 (−0.101, 0.095) 0.092 −0.102 (−0.221, 0.017)

HDL HannumIEAA 0.195 −0.050 (−0.125, 0.026) 0.765 0.015 (−0.083, 0.113) 0.056 −0.116 (−0.234, 0.003)

HDL HannumAA 0.529 −0.024 (−0.099, 0.051) 0.450 0.038 (−0.060, 0.135) 0.148 −0.087 (−0.204, 0.031)
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Table A6. Cont.

Phenotype EAA p, All ∆mean/OR (95% CI,
All) p, Female ∆mean/OR (95% CI,

Female) p, Male ∆mean/OR (95% CI,
Male)

HDL GrimAA 0.935 −0.003 (−0.078, 0.072) 0.306 0.051 (−0.047, 0.148) 0.260 −0.066 (−0.183, 0.050)

HDL PhenoAA 0.604 −0.020 (−0.095, 0.055) 0.602 −0.026 (−0.122, 0.071) 0.825 −0.013 (−0.129, 0.103)

LDL HorvathAAd 0.458 0.097 (−0.160, 0.353) 0.324 0.177 (−0.176, 0.531) 0.916 −0.020 (−0.388, 0.349)

LDL HorvathAAr 0.643 −0.060 (−0.316, 0.195) 0.916 0.019 (−0.334, 0.372) 0.435 −0.146 (−0.515, 0.223)

LDL SkinBloodAA 0.138 0.193 (−0.063, 0.449) 0.055 0.343 (−0.007, 0.693) 0.954 −0.011 (−0.381, 0.359)

LDL HorvathIEAA 0.627 −0.063 (−0.319, 0.193) 0.779 0.050 (−0.302, 0.402) 0.379 −0.166 (−0.539, 0.207)

LDL HannumEEAA 0.096 0.216 (−0.039, 0.470) 0.002 0.560 (0.215, 0.904) 0.441 −0.146 (−0.520, 0.228)

LDL HannumIEAA 0.427 0.104 (−0.153, 0.360) 0.090 0.303 (−0.048, 0.654) 0.617 −0.095 (−0.468, 0.279)

LDL HannumAA 0.211 0.163 (−0.093, 0.418) 0.010 0.461 (0.112, 0.811) 0.413 −0.154 (−0.525, 0.217)

LDL GrimAA 0.446 −0.099 (−0.356, 0.157) 0.089 −0.304 (−0.655, 0.047) 0.439 0.145 (−0.224, 0.513)

LDL PhenoAA 0.037 0.270 (0.016, 0.523) 0.004 0.498 (0.157, 0.840) 0.994 −0.001 (−0.373, 0.371)

TC HorvathAAd 0.560 0.085 (−0.203, 0.374) 0.479 0.148 (−0.263, 0.558) 0.920 −0.020 (−0.411, 0.371)

TC HorvathAAr 0.410 −0.120 (−0.407, 0.167) 0.610 −0.105 (−0.513, 0.302) 0.525 −0.126 (−0.517, 0.265)

TC SkinBloodAA 0.203 0.186 (−0.101, 0.472) 0.149 0.297 (−0.108, 0.702) 0.947 0.013 (−0.378, 0.404)

TC HorvathIEAA 0.404 −0.122 (−0.409, 0.165) 0.797 −0.053 (−0.460, 0.353) 0.431 −0.157 (−0.552, 0.237)

TC HannumEEAA 0.140 0.215 (−0.071, 0.500) 0.003 0.603 (0.203, 1.004) 0.378 −0.178 (−0.575, 0.220)

TC HannumIEAA 0.473 0.105 (−0.182, 0.392) 0.099 0.341 (−0.064, 0.747) 0.552 −0.120 (−0.516, 0.277)

TC HannumAA 0.192 0.190 (−0.096, 0.477) 0.009 0.544 (0.141, 0.947) 0.385 −0.174 (−0.568, 0.220)

TC GrimAA 0.215 −0.182 (−0.470, 0.106) 0.046 −0.413 (−0.818, −0.008) 0.633 0.095 (−0.296, 0.485)

TC PhenoAA 0.081 0.253 (−0.031, 0.538) 0.010 0.523 (0.127, 0.919) 0.738 −0.067 (−0.460, 0.326)

TG HorvathAAd 0.751 −0.031 (−0.220, 0.159) 0.867 −0.025 (−0.314, 0.265) 0.702 −0.046 (−0.285, 0.192)

TG HorvathAAr 0.667 −0.041 (−0.229, 0.147) 0.979 −0.004 (−0.288, 0.280) 0.498 −0.082 (−0.322, 0.157)

TG SkinBloodAA 0.215 0.119 (−0.069, 0.308) 0.342 0.137 (−0.148, 0.422) 0.474 0.087 (−0.153, 0.327)

TG HorvathIEAA 0.623 −0.047 (−0.235, 0.141) 0.851 −0.027 (−0.310, 0.256) 0.633 −0.059 (−0.302, 0.184)

TG HannumEEAA 0.222 0.117 (−0.071, 0.305) 0.479 0.102 (−0.182, 0.386) 0.198 0.155 (−0.082, 0.393)

TG HannumIEAA 0.243 0.112 (−0.076, 0.300) 0.718 0.052 (−0.232, 0.336) 0.097 0.200 (−0.036, 0.435)

TG HannumAA 0.233 0.114 (−0.074, 0.302) 0.491 0.099 (−0.185, 0.383) 0.222 0.147 (−0.090, 0.385)

TG GrimAA 0.070 −0.174 (−0.363, 0.014) 0.015 −0.351 (−0.632, −0.070) 0.767 0.036 (−0.204, 0.276)

TG PhenoAA 0.940 0.007 (−0.183, 0.198) 0.445 0.110 (−0.174, 0.395) 0.357 −0.115 (−0.361, 0.131)

Cardiovascular

CHD HorvathAAd 0.419 0.820 (0.507, 1.323) 0.423 0.737 (0.372, 1.448) 0.866 0.895 (0.437, 1.830)

CHD HorvathAAr 0.006 1.924 (1.187, 3.139) 0.151 1.626 (0.826, 3.234) 0.018 2.377 (1.150, 4.995)

CHD SkinBloodAA 1.000 0.991 (0.613, 1.600) 0.521 0.776 (0.390, 1.528) 0.612 1.253 (0.613, 2.572)

CHD HorvathIEAA 0.134 1.421 (0.880, 2.303) 0.423 1.357 (0.690, 2.687) 0.236 1.568 (0.765, 3.239)

CHD HannumEEAA 0.420 1.209 (0.749, 1.954) 0.264 1.466 (0.746, 2.905) 1.000 1.039 (0.505, 2.136)

CHD HannumIEAA 0.730 1.086 (0.673, 1.754) 1.000 1.012 (0.516, 1.989) 0.611 1.237 (0.603, 2.547)

CHD HannumAA 0.298 1.296 (0.803, 2.095) 0.201 1.564 (0.795, 3.109) 0.865 1.107 (0.540, 2.273)

CHD GrimAA 0.000 2.474 (1.518, 4.060) 0.001 2.915 (1.458, 5.955) 0.042 2.102 (1.020, 4.389)

CHD PhenoAA 0.418 1.218 (0.754, 1.969) 0.873 1.083 (0.550, 2.128) 0.397 1.393 (0.680, 2.870)

MCP HorvathAAd 0.429 0.638 (0.184, 2.119) 1.000 0.964 (0.012, 78.414) 0.343 0.485 (0.112, 1.986)

MCP HorvathAAr 0.290 1.797 (0.540, 6.237) 0.170 Inf (0.265, Inf) 0.761 1.244 (0.302, 5.156)

MCP SkinBloodAA 0.426 0.616 (0.169, 2.062) 1.000 1.298 (0.016, 105.663) 0.211 0.404 (0.087, 1.672)

MCP HorvathIEAA 1.000 1.118 (0.333, 3.755) 0.236 Inf (0.196, Inf) 1.000 0.841 (0.197, 3.436)

MCP HannumEEAA 1.000 1.092 (0.315, 3.640) 1.000 1.400 (0.017, 114.021) 1.000 1.049 (0.244, 4.318)

MCP HannumIEAA 0.412 0.535 (0.134, 1.842) 1.000 1.118 (0.014, 90.951) 0.353 0.507 (0.097, 2.191)

MCP HannumAA 1.000 1.043 (0.301, 3.475) 1.000 1.298 (0.016, 105.663) 1.000 1.049 (0.244, 4.318)

MCP GrimAA 0.004 5.795 (1.584, 26.779) 0.156 Inf (0.286, Inf) 0.009 6.225 (1.401, 33.864)

MCP PhenoAA 0.791 1.144 (0.330, 3.815) 1.000 1.400 (0.017, 114.021) 1.000 1.175 (0.273, 4.866)

CP HorvathAAd 0.332 0.677 (0.289, 1.571) 1.000 1.089 (0.328, 3.644) 0.153 0.392 (0.104, 1.397)
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Table A6. Cont.

Phenotype EAA p, All ∆mean/OR (95% CI,
All) p, Female ∆mean/OR (95% CI,

Female) p, Male ∆mean/OR (95% CI,
Male)

CP HorvathAAr 0.843 1.141 (0.488, 2.666) 1.000 1.122 (0.330, 3.793) 1.000 1.143 (0.326, 4.030)

CP SkinBloodAA 0.555 0.746 (0.318, 1.730) 1.000 0.989 (0.292, 3.317) 0.395 0.536 (0.148, 1.873)

CP HorvathIEAA 0.437 1.380 (0.595, 3.225) 0.176 2.239 (0.669, 7.862) 0.782 0.832 (0.234, 2.910)

CP HannumEEAA 1.000 0.957 (0.406, 2.244) 0.417 0.610 (0.171, 2.069) 0.567 1.544 (0.435, 5.598)

CP HannumIEAA 1.000 0.977 (0.417, 2.278) 1.000 1.038 (0.311, 3.462) 1.000 0.936 (0.257, 3.359)

CP HannumAA 0.844 0.894 (0.380, 2.090) 0.286 0.540 (0.151, 1.823) 0.567 1.544 (0.435, 5.598)

CP GrimAA 0.074 2.090 (0.883, 5.032) 1.000 0.941 (0.271, 3.199) 0.009 5.241 (1.367, 22.723)

CP PhenoAA 1.000 1.026 (0.435, 2.412) 0.787 0.829 (0.240, 2.796) 0.774 1.301 (0.362, 4.717)

HT HorvathAAd 0.064 0.642 (0.396, 1.038) 0.005 0.400 (0.202, 0.781) 0.864 1.113 (0.537, 2.309)

HT HorvathAAr 0.908 1.046 (0.648, 1.689) 0.877 0.941 (0.487, 1.818) 0.731 1.193 (0.576, 2.480)

HT SkinBloodAA 0.563 0.860 (0.532, 1.389) 0.351 0.744 (0.383, 1.440) 1.000 1.011 (0.488, 2.097)

HT HorvathIEAA 0.908 0.970 (0.601, 1.565) 0.876 0.930 (0.481, 1.797) 1.000 1.033 (0.498, 2.146)

HT HannumEEAA 0.644 1.140 (0.706, 1.843) 0.755 1.144 (0.592, 2.212) 0.730 1.160 (0.557, 2.430)

HT HannumIEAA 0.817 1.081 (0.669, 1.746) 0.876 1.096 (0.567, 2.118) 0.864 1.080 (0.520, 2.256)

HT HannumAA 0.356 1.248 (0.773, 2.018) 0.435 1.316 (0.681, 2.552) 0.730 1.189 (0.573, 2.482)

HT GrimAA 0.488 1.193 (0.739, 1.929) 0.043 1.917 (0.987, 3.764) 0.303 0.677 (0.324, 1.403)

HT PhenoAA 0.908 0.965 (0.597, 1.559) 0.876 1.088 (0.563, 2.109) 0.610 0.834 (0.401, 1.731)

SBP HorvathAAd 0.069 5.357 (−0.419, 11.133) 0.008 11.648 (3.153, 20.142) 0.582 −2.110 (−9.680, 5.461)

SBP HorvathAAr 0.606 −1.520 (−7.316, 4.276) 0.802 −1.100 (−9.759, 7.559) 0.602 −2.005 (−9.585, 5.576)

SBP SkinBloodAA 0.506 1.949 (−3.810, 7.708) 0.366 3.904 (−4.595, 12.403) 0.920 −0.386 (−7.976, 7.204)

SBP HorvathIEAA 0.931 −0.256 (−6.057, 5.546) 0.895 0.581 (−8.097, 9.260) 0.756 −1.198 (−8.816, 6.419)

SBP HannumEEAA 0.986 −0.051 (−5.865, 5.763) 0.570 2.492 (−6.159, 11.144) 0.432 −3.027 (−10.622, 4.569)

SBP HannumIEAA 0.356 2.712 (−3.058, 8.481) 0.102 7.186 (−1.433, 15.805) 0.505 −2.565 (−10.151, 5.021)

SBP HannumAA 0.710 −1.099 (−6.902, 4.704) 0.884 0.641 (−8.019, 9.300) 0.416 −3.117 (−10.675, 4.441)

SBP GrimAA 0.293 −3.104 (−8.899, 2.691) 0.024 −9.846 (−18.398,
−1.294) 0.200 4.894 (−2.621, 12.409)

SBP PhenoAA 0.793 −0.779 (−6.619, 5.061) 0.590 −2.376 (−11.075, 6.322) 0.774 1.114 (−6.549, 8.778)

DBP HorvathAAd 0.135 2.356 (−0.735, 5.448) 0.003 6.385 (2.144, 10.626) 0.309 −2.288 (−6.718, 2.141)

DBP HorvathAAr 0.994 −0.011 (−3.106, 3.084) 0.922 0.215 (−4.131, 4.560) 0.886 −0.324 (−4.774, 4.127)

DBP SkinBloodAA 0.523 1.009 (−2.094, 4.113) 0.520 1.416 (−2.924, 5.756) 0.760 0.688 (−3.766, 5.142)

DBP HorvathIEAA 0.443 1.209 (−1.887, 4.305) 0.462 1.626 (−2.730, 5.981) 0.809 0.551 (−3.945, 5.047)

DBP HannumEEAA 0.870 −0.259 (−3.374, 2.857) 0.989 0.030 (−4.303, 4.363) 0.701 −0.869 (−5.333, 3.595)

DBP HannumIEAA 0.383 1.373 (−1.719, 4.466) 0.273 2.419 (−1.921, 6.759) 0.972 −0.080 (−4.541, 4.381)

DBP HannumAA 0.614 −0.795 (−3.896, 2.306) 0.721 −0.786 (−5.121, 3.550) 0.653 −1.013 (−5.453, 3.427)

DBP GrimAA 0.505 −1.052 (−4.152, 2.047) 0.039 −4.530 (−8.832, −0.228) 0.172 3.064 (−1.353, 7.481)

DBP PhenoAA 0.678 −0.666 (−3.820, 2.487) 0.282 −2.399 (−6.790, 1.992) 0.547 1.390 (−3.173, 5.953)

Appendix B. Epigenetic Clocks Information

Appendix B.1. First-Generation Clocks

By the first-generation clocks we understand epigenetic age predictors which were
developed only based on chronological age. Chronological age is, in itself, a significant risk
factor for cardiovascular disease. With age, changes in the cardiovascular system lead to
a decline in functioning, and predispose to CVDs such as coronary artery disease (CAD),
hypertension, atherosclerosis, stroke, and myocardial infarction (MI). While structural
and functional changes that predispose individuals to cardiovascular events (e.g., left
ventricular hypertrophy, arrhythmia) have been characterised, the causes of cardiac ageing
are not fully understood.
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Appendix B.1.1. Horvath’s Clock

This first multi-tissue age estimator was developed on about 8000 samples from 51
different tissues and cell types from both children and adults [3]. A penalised regression
model was used to regress transformed chronological age onto the 353 CpGs automatically
selected by the elastic net regression model. Specifically, methylation of 193 CpGs positively
correlates with chronological age, whilst the other 160 present negative correlation [3].
Together, they form a very accurate molecular measure of chronological age, often used
in laboratories for validation of age data of clinical samples [8]. The greatest benefit of
Horvath’s clock is the accuracy of age prediction using DNA from a wide range of tissues
and organs, with the exception of breast tissue, uterine endometrium, dermal fibroblast,
skeletal muscle tissue, heart tissue, and sperm cells. Horvath’s age estimate is also reliable
in testing all ages, children included [3].

Appendix B.1.2. Hannum’s Clock

Hannum’s clock was developed by regressing chronological age using an elastic
net penalised multivariate regression method together with bootstrap approaches which
resulted in the selection of 71 CpGs as accurate age predictors [2]. This clock was developed
on whole-blood DNA from 656 adults, leading to possible biases in children and non-
blood tissues.

Appendix B.2. Second-Generation Clocks

The second-generation epigenetic clocks are designed to incorporate not only chrono-
logical age, but also ageing-related physiological conditions. Specialised clocks (i.e., those
that were developed for specific phenotypes) are usually also attributed to the second-
generation epigenetic clocks.

Appendix B.2.1. Intrinsic and Extrinsic EAAs

With the advance of the second-generation clock, modification to the first-generation
clocks was proposed to reflect both extrinsic and intrinsic epigenetic age accelerations
components (EEAA and IEAA) [66].

IEAA is defined as a residual of the regression of epigenetic age on chronological age
and blood immune cell counts, inferred from DNAm data. The list of blood cell types
includes naive CD8+ T cells, exhausted CD8+ T cells, plasmablasts, CD4+ T cells, natural
killer cells, monocytes, and granulocytes. This EAA measure was created to estimate “pure”
epigenetic ageing effects that are not influenced by differences in blood cell counts [66].

By design, EEAA is positively correlated with the counts of exhausted CD8+ T cells
and plasmablast cells, and negatively correlated with naive CD8+ T cells, estimated from
DNAm data. According to the authors, EEAA was developed to track both age-related
changes in blood cell composition and intrinsic epigenetic changes [66].

Appendix B.2.2. Skin and Blood Clock

The Skin and Blood Clock’s 391 CpGs were obtained from elastic net regression of
chronological age onto CpGs from datasets of human blood, saliva, keratinocytes, buccal
cells, endothelial cells, and fibroblasts [29]. In addition to these aforementioned tissues/cell
types used in obtaining clock CpGs, Skin and Blood age estimates are strongly correlated
with chronological age in other tissues, including colon and heart tissue [29].

Similar to Horvath’s clock, the Skin and Blood Clock is accurate across multiple
tissues/cell types and is only weakly affected by blood cell type counts; the clock may
capture the physiological processes of cell-intrinsic ageing [8,29]. It may capture cell-
intrinsic ageing in cardiac tissues with greater accuracy than Horvath’s clock, since it is
capable of detecting (1) age acceleration in individuals with HGPS, who often die from
myocardial infarction, and (2) increases in epigenetic age with proliferation of human
coronary artery endothelial cells [29].
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Appendix B.2.3. DNAm PhenoAge

Development followed a two-stage process. First, a “phenotypic age” metric was
created to consider the age-related changes that are associated with senescence, composed
of ten clinical characteristics: chronological age, albumin, creatinine, glucose, C-reactive
protein, lymphocyte percentage, mean cell volume, red blood cell distribution weight,
alkaline phosphatase, and white blood cell count. After that, 513 CpGs were isolated using
an elastic net regression of methylation data from whole blood samples onto phenotypic
age; this linear combination of CpGs estimates phenotypic age [4].

As DNAm PhenoAge was designed to include CpGs which reflect “phenotypic”
ageing rather than chronological ageing [8], it predicts both mortality and age-related
morbidity risk with greater accuracy than the Horvath and Hannum clocks [4]. The clinical
characteristics used in PhenoAge can be particularly relevant to cardiovascular diseases.
For example, albumin is a modulator of vascular functioning and anticoagulation, as well
as antioxidation. Creatine has an effect on blood pressure and heart recovery, as well as
potentially increasing flow and ATP content while decreasing cell death [67].

Appendix B.2.4. Grimage

Development followed a two-stage process. First, DNAm-based surrogates for biomark-
ers of smoking pack-years and twelve plasma proteins were produced, through elastic
net regression of DNA methylation data from blood samples. Subsequently, alongside
other patient characteristics, the DNAm-based surrogates were considered as covariates
in an elastic net Cox regression model for “time-of-death due to all-cause-mortality” [5].
Significant covariates included chronological age, sex, and DNAm surrogates for smoking
pack-years and seven (out of twelve) plasma proteins (ADM, B2M, Cystatin C, leptin, GDF-
15, PAI-1, and TIMP-1). Transformation of the covariates’ linear combination produced
the algorithm’s age estimate [5]. According to the authors, GrimAge EAA is a significant
predictor of lifespan regardless of smoking history. Furthermore, upon comparison to
other clocks (Hannum, Horvath, and DNAm PhenoAge), AgeAccelGrim is a more accurate
predictor of age-related disease onset, including coronary heart disease[5].

By design, GrimAge is probably the most relevant epigenetic clock in studying car-
diovascular diseases, as the plasma proteins used as physiological variables are known to
be associated with CVD. Adrenomedullin (ADM) increases cardiac output and decreases
blood pressure [68], while increases of ADM in plasma correspond to hypertension [69].
Beta-2-microglobulin is also an emerging biomarker for cardiovascular diseases [70]. In-
creased expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) has been linked to
cardiac fibrosis and dysfunction of the heart [71]. Given that a significant number of the
physiological variables used in the development of GrimAge have been shown to associate
strongly specifically with cardiovascular pathology, it is important to consider this clock in
the study of cardiovascular disease.

Appendix B.3. Summary of the Epigenetic Clocks

Epigenetic clocks use mathematical modelling to evaluate the methylation of the
specific CpG sites in DNA in order to estimate the epigenetic age. While the epigenetic
age highly correlates with the chronological age, a difference between chronological and
epigenetics age, termed the epigenetic age acceleration (EAA), can be observed and has been
studied extensively. EAA has been associated with many later-life pathologies, ranging
from cardiovascular and neurological diseases to cancer. To reflect the changes in cell-
type composition of blood naturally occurring with ageing, the extrinsic epigenetic age
acceleration (EEAA) has been termed. These changes are more accurately measured by
clocks from blood DNA, such as Hannum’s or PhenoAge [8]. On the other hand, the cell-
intrinsic ageing, which is believed to be more consistent over various tissues and organs, is
more accurately measured by the Horvath’s multi-tissue clock, and has been termed the
intrinsic epigenetic age acceleration (IEAA) [8].
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Epigenetic clocks use different CpGs, and therefore naturally form different associ-
ations with different disease processes; the ways in which the clocks are constructed are
highly relevant to the processes they capture. Specifically, associations between certain
CpGs and the biological processes underlying development, maintenance of cellular iden-
tity, and cell differentiation have been captured [8]. Another possible association has been
made with regards to the circadian rhythm, suggesting that epigenetic ageing might be
linked to genetic oscillation, such as cell cycle oscillator. One review compared six different
types of ageing biomarkers, and found that epigenetic clocks were the best predictors of
chronological age.

Both first-generation clocks used in our study (Horvath and Hannum) were con-
structed to accurately predict chronological age. PhenoAge and GrimAge both include
a training step that uses physiological variables, which may explain why both of these
clocks appear to be more sensitive to age-related pathologies than first-generation clocks
constructed for the sole purpose of predicting chronological age.

For example, smoking, a known risk factor for disease, is not reflected in the Horvath
and Hannum clocks, despite being a strong DNAm mortality predictor [72]. PhenoAge
captures smoking-associated methylation changes, and GrimAge uses a DNAm surrogate
of pack-years, both of which lead to a better prediction of smoking-related pathology [5].

It is not entirely clear what is measured by epigenetic clocks and to what extent
biological ageing is related to disease. In the review [73], the authors suggest that epigenetic
clocks track both CA and physiological/pathological mechanisms to differing proportions.
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