Weighted k-Server Bounds via Combinatorial Dichotomies

Nikhil Bansal, Marek Eliáš, Grigorios Koumoutsos
TU Eindhoven

Appeared in FOCS 2017

The k-Server Problem

- Generalization of many online problems

Definition of the problem:

- Metric Space of n points, k servers.
- In each time step a point is requested.
- To serve the request, need to move one server there.
- Goal: Minimize total distance traveled by the servers.

Example:

- At time 1, request arrives at point c
- we serve it by moving the server from the point a, which might be a wrong move, if a is requested at time 2

Competitive ratio:

$$
\mathrm{R}(\sigma)=\frac{\operatorname{ALG}(\sigma)}{\operatorname{OPT}(\sigma)} ; \quad \text { Competitive ratio }=\max _{\sigma}(\mathrm{R}(\sigma))
$$

- $\operatorname{ALG}(\sigma)$: cost of the online algorithm on σ
- OPT (σ) : cost of the optimal offline solution on σ

Goal: Achieve the smallest possible competitive ratio

Classic k-Server Results

1. For metrics of $n=k+1$ points, comp. ratio $\geqslant k$.

Conjecture that k is the right bound [Manasse, McGeoch, Sleator '88]
2. Conjecture true for $k=2, \mathrm{n}=\mathrm{k}+1$ [Manasse, McGeoch, Sleator '88]
3. [Fiat, Rabani, Ravid '90]: $\mathrm{O}\left((\mathrm{k}!)^{3}\right)$ (smart, ad-hoc)
4. [Koutsoupias, Papadimitriou '94] : $(2 k-1)$ (Work Function Algorithm - WFA)

Morally: Arbitrary n is not much harder than $\mathrm{n}=\mathrm{k}+1$.

The Weighted k-Server Problem

- Servers have different weights $\mathcal{w}_{1} \leqslant \mathcal{w}_{2} \leqslant \ldots \leqslant \mathcal{w}_{\mathrm{k}}$
- Cost of moving server i distance d is $w_{i} \cdot d$

Focus on uniform metrics (all distances 1)

- Even this case not well understood

Known Results:

1. For $n=k+1$, comp. ratio $\geqslant(k+1)$! -1 [Fiat, Ricklin '94]((2%5E%7B2%5E%7B0(k)%7D%7D)) Conjecture that $(k+1)$! -1 is the right bound
2. Conjecture true for $k=2, n=k+1$. [Chrobak, Sgall 2000]
3.

Goal: Show that competitive ratio of WFA is $\mathrm{O}((\mathrm{k}+1)$!)

Our Results

1. Lower Bound $2^{2^{k-4}}$ for deterministic algorithms

- Almost matches the $2^{2^{k+1}}$ upper bound
- For metric spaces of $\geqslant 2^{2^{k-4}}$ points.

2. Upper Bound $2^{2^{k+O(\log k)}}$ for generalized (WFA)
3. For distinct weights, generalized WFA is $2^{\mathrm{O}\left(\mathrm{d} \cdot \mathrm{k}^{\mathrm{d}+3}\right)}$-competitive

Our Approach

Combinatorial View:

Solution to weighted k -server $=$ collection of labeled intervals

- Intervals at level $\mathfrak{i}=$ Moves of i th server.
- Label of an interval = Location of the server

A solution has two aspects:

1. Pattern of the intervals (service pattern)
2. Label of each interval

Main Ideas:

- Most crucial decision: Location of server with weight $w_{\max }$
- Focus on service patterns with tree structure
- Assume we know the optimal service pattern
- Problem: It might have many feasible labelings for the root \Rightarrow Many "good" locations for server $\mathcal{w}_{\text {max }}$

Combinatorial Problem: Given the optimal service pattern, how many feasible choices exist for the root?
Dichotomy Property: Root has either $\leqslant f(k)$ feasible choices or n (i.e location of heavy server does not matter) Goal: Estimate f(k)

- Lower Bound on $f(k) \Rightarrow$ Lower Bound for weighted k-server
- Upper Bound on $\mathrm{f}(\mathrm{k}) \Rightarrow$ Upper Bound for generalized WFA.

Core Results: $f(k) \geqslant 2^{2^{k-4}}, f(k) \leqslant 2^{2^{k+O(\log k)}}$

Open Problems

Randomized Algorithms?

- Best known $2^{2^{k+O(1)}}$, lower bound $\Omega(\log k)$.
- Natural to guess $2^{\mathrm{O}(\mathrm{k})}$ bound

Weighted k-server on other metrics? (line, trees, arbitrary)

- No $f(k)$-competitive known for $k>2$

