ANL-84-56

$$
A M L--84-56
$$

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

DISPL1: A SOFTWARE PACKAGE FOR ONE AND TWO SPATIALLY DIMENSIONED KINETICS-DIFFUSION PROBLEMS

by
G. K. Leaf and M. Minkoff

Mathematics and Computer Science Division

September 1984
(Supersedes ANL-77-12 Rev. 1, November 1978)

MASTEX

table OF CONTENTS

ABSTRACT 1
INTRODUCTION 1

1. NATURE OF THE PARTIAL DIFFERENTIAL EQUATIONS 4
1.1 Domain of the Equation 6
1.2 Boundary Conditions 7
1.3 Interface Conditions 8
1.4 Initial Conditions 10
2. APPROXIMATION PROCEDURE 12
2.1 Weak Form of the Equation 12
2.2 Approximating Subspace 16
2.2.1 B-Spline Basis 16
2.2.2 Tensor Product Basis 19
2.3 Galerkin Approximation 21
2.3.1 Non-Conservative Convection Terms 22
2.3.2 Divergence Term 23
2.3.3 Non-Essential Boundary Terms 23
2.3.4 Gap Interface Term 25
2.3.5 Distributed Source Term 27
2.3.6 Essential Boundary Condition Terms 27
2.3.7 Initial Conditions 29
2.4 Evaluation of Integrals 30
3. PROBLEM DESCRIPTION 32
3.1 Domain 32
3.2 Geometry 32
3.3 Interfaces 32
3.4 Additional Mesh Points 32
3.5 Partial Differential Equations 33
3.6 Interface Conditions 34
3.6.1 Continuity Condition 34
3.6.2 Gap Condition 35
3.7 Boundary Conditions 37
3.8 Initial Conditions 39
4. DESCRIPTION OF USER-SUPPLIED SUBROUTINES 41
4.1 DIFUSE (Diffusion term) 41
4.2 VEL (Velocity term) 43
4.3 BRH \emptyset (Boundary term) 43
4.4 BDFRD (Boundary Fréchet derivative term) 45
4.5 BRHØDT (Boundary time derivative term) 46
4.6 BDFRDT (Boundary time derivative Fréchet derivative term) 47
4.7 EXTSRC (Distributed source term) 48
4.8 FDEXTU (Distributed source derivative term) 50
4.9 INDATA (Input data for initial fit) 53
4.10 RHØCP (Heat capacity term) 54
4.11 ANAL (Analytic solution) 54
4.12 MASTER DRIVER (Highest level calling program) 55
5. DESCRIPTION OF USER-SUPPLIED DATA 60
5.1 Mortran Macros and Unit Assignments 62
5.2 Namelist GRID 66
5.3 Namelist DATA 74
5.4 Namelist FØRMAT 79
5.5 Namelist CSPIN 81
5.6 Namelist CNTRIN 84
5.7 Namelist DIM3IN 85
5.8 Summary of Restart Procedures 86
5.9 DISPL1 Files 87
5.10 Error Messages 88
6. DESCRIPTION OF PRINTED AND GRAPHICAL OUTPUT 92
6.1 Printed Output 92
6.2 Cross Section Plotting 95
6.3 Contour Plotting 97
6.4 Perspective Plotting of Solution Surfaces 97
7. SAMPLE PROBLEMS 99
7.1 Two-Dimensional Heat Conduction in a Plate 99
7.2 Water Hammer 128
7.3 Diurnal Chemical Kinetics 161
7.4 Cooling of a Sphere in a Well Stirred Fluid 193
7.5 Heat Conduction with Chemical Heat Source 208
7.6 A Defect-Diffusion Problem in One-Dimensional Spherical Geometry 225
APPENDIX - List of Symbols 245
ACKNOWLEDGEMENTS 253
REFERENCES 254
LIST OF FIGURES
1 Interface partition of a domain 7
2 Sample breakpoint and knot distribution 25
3 Interface conditions before refinement 36
4 Interface conditions after refinement 36
7.1.1 Contour plot at $t=0.75$ (Frame 4) 123
7.1.2 Contour plot at $t=3.0$ (Frame 5) 124
7.1.3 Three-dimensional perspective surface for heat conduction problem 126
7.1.4 Three-dimensional perspective surface for heat conduction problem 127
7.2.1 Graph of pressure and velocity for water hammer problem 158
7.2.2 Graph of pressure and velocity for water hammer problem 159
7.2.3 Graph of pressure and velocity for water hammer problem 160
7.3.1 Time graphs of the species concentrations via CSP 188
7.3.2 Time graph of the first species via C $\varnothing N T \emptyset R$ 189
7.3.3 Time graph of the second species via C $\emptyset N T \not \subset R$ 190
7.3.4 Time graph of the first species via THREED 191
7.3.5 Time graph of the second species via THREED 192
7.6.1 Graph of concentrations at 141st time step 244
LIST OF TABLES
7.2.1 Output from method of characteristic solution 135
7.3.1 Finite difference solution for atmospheric model 166
7.4.1 First 15 non-zero roots 194
7.4.2 Effect of quadrature order on approximation error 198
7.5.1 Approximation errors 214

DISPL1: A Software Package for One and Two Spatially Dimensioned Kinetics-Diffusion Problems

by
G. K. Leaf and M. Minkoff

ABSTRACT
DISPL1 is a software package for solving some second order nonlinear systems of partial differential equations including parabolic, elliptic, hyperbolic, and some mixed types such as parabolic-elliptic equations. Fairly general nonlinear boundary conditions are allowed as well as interface conditions for problems in an inhomogeneous media. The spatial domain is one or two dimensional with Cartesian, cylindrical, or spherical (in one dimension only) geometry. The numerical method is based on the use of Galerkin's procedure combined with the use of B-splines in order to reduce the system of PDE's to a system of ODE's. The latter system is then solved with a sophisticated ODE software package. Software features include extensive dump/restart facilities, free format input, moderate printed output capability, dynamic storage allocation, and three graphics packages.

Introduction

DISPL1 is a computer software system for solving a broad class of partial differential equations. This class includes problems which arise from the simulation of: time dependent heat conduction in nonhomogeneous media; the chemical kinetics-diffusion (or transport) of minor chemical species in the upper atmosphere; the steady state behavior of the boundary layer of a gas bubble immersed in a moving fluid; a water hammer; tertiary recovery of oil by thermal methods; steady state heat conduction; and chemical concentrations in both steady and unsteady tubular chemical reactors (packed or empty). This class then includes certain systems of partial differential equations of the following types: parabolic, elliptic, hyperbolic and certain mixed systems of these three types. Fairly general nonlinear boundary conditions are allowed and include those for which the solution, its flux or combinations of these are specified at the boundary, in perhaps a very complicated functional relationship. The basic set of equations consists of a substantial subset of
of the class of second order nonlinear systems of partial differential equations in one or two space-like variables and one time-like variable. The spatial domain is rectangular in either Cartesian, cylindrical or spherical (one dimension only) ge aetry. MSPLI permits the presence of several material interfaces so that a variety of problems involving non-homogeneous media can be easily solved.

The numerical method used in DISPLI can be described as follows. The system of partial differential equations is discretized in the space-like variables. This discretization is achieved by using a Galerkin procedure in conjunction with B-splines of a specified order and smoothness. This leads to a system of first order ordinary differential equations (ODE's) in the time-like variable which is solved by a sophisticated ODE software package. Currently, the ODE solver is a variation of GEAR.

The software aspects in DISPLI of interest to the user are as follows. Input is via namelist which implies a free field format. An extensive dump and restart facility is available which has the following features. During either a steady-state or a transient calculation, a dump occurs automatically when the computer time allotted for the job has been exceeded. A dump can also be made at the normal conclusion of a steady-state calculation for use in starting a subsequent transient calculation. Furthermore, when time is exceeded, the dump is made in such a way that the internal routines can be restarted without any significant numerical effect. The restart is effected via a four-card change in the input deck. There are also extensive output capabilities including printed output and three graphics packages (onedimensional slices, contours, and three-dimensional perspectives). Further the coding, other than that in the B-spline and ODE packages, and the user routines, is in MORTRAN. This language is a FORTRAN preprocessor which uses macro-instructions, adjusts the dimension of internal arrays at compile time, and allows structured programming.

In the sequel, we describe the problem types which can be solved by DISPLI in 51 . In 52, we describe the numerical methods used in this code. The package is treated in $5 \$ 3,4,5,6$, while sample problem coding and input are given in 57 . Thus 551 and 2 describe the underlying methods and strategies used in DISPLI, while 553-7 constitute a user's guide with examples.

To solve a given problem, the following two-tier approach to using this report is recommended.

1. Initial Use of the Package
2. Study 551 and 3. This will provide a basic introduction to the form of the equation and terminology.
3. Use a previous deck (there are two sample decks provided with the code) as a basis for the current deck. That is, rather than developing the user deck from scratch, modify a previous one.
4. Use $£ 4$ to determine the form of the user routines.
5. Use the Machine Readable Documentation listing to determine Namelist data.
II. Further Use of the Package
6. Refer to 55 for assistance in modifying the macro variables, using the restart features, and interpreting error messages.
7. Refer to $\$ 6$ for interpretation of printed and graphical output.
8. Refer to $\S 7$ for further examples.
9. Users interested in the mathematical and numerical procedures used should study 52.

Finally, some cautionary remarks concerning this code. First, the code is designed as an engineering tool for use on a reasonably large class of practical problems. The code is not designed to replace either special purpose programs or production codes. Second, this code will not solve every secondorder partial differential equation. Some of the more obvious restrictions include such aspects as rectangular spatial domains, no cross-derivatives, any side is of one boundary condition type, and second derivative information is not available for use in boundary conditions. Third, this program is primarily designed for nonlinear systems of parabolic equations. However, the program can solve some problems from other classes of PDE's including elliptic, hyperbolic, and mixed type problems such as parabolic-elliptic types (cf. 5 7). This generality means that the user can specify ill-posed problems either through a conceptual error or an input error. Moreover, for some hyperbolic problems, the numerical method used in this code (Galerkin combined with a stiff ODE solver) will not be stable. Thus when using this code, the user has an obligation to see that he has formulated a meaningful problem for which a solution exists.

1. NATURE OF THE PARTIAL DIrFERENTIAL EQUATIONS

This program is designed to approximate the solution of a class of nonlinear parabolic systems of partial differential equations in one dimension (Cartesian, cylindrical, or spherical geometry) or two dimensions (Cartesian or cylindrical geometry). The approximation is based on the use of a Galerkin procedure to reduce the system of partial differential equations to a system of ordinary differential equations. This system of ordinary differential equations is then solved by means of a variant of the ANL version of the GEAR code [1]. In the Galerkin procedure, the class of approximating functions is generated from a tensor product basis of one-dimensional B-splines generated by subroutines developed by de Boor [2].

The starting point for this work was a desire to provide the capability for solving some simplified forms of the equation of continuity for a multicomponent chemically reactive fluid. Of course, in most fluid dynamics problems involving chemical reactions, it is necessary to carry out the simultaneous solution of the coupled equations of mass, momentum, and energy. However, there is a substantial class of problems for which a solution of the equation of continuity will suffice; it is for some of these problems that this code is intended.

Tre system of PDE's treated in this program does not have to be considered in any particular context; however, it may be helpful to use a physical model in order to provide some motivation for the choice of the class of PDE's treated here. To this end, consider a multicomponent fluid of M species with mass concentration ρ_{i} for the $i-t h$ species, and total mass concentration $\rho=\sum_{i=1}^{M} \rho_{i}$. Let \vec{V}_{i} denote the velocity of the i-th species with respect to fixed coordinate axes, and $\vec{V}=\sum_{i=1}^{M} \rho_{i} \vec{V}_{i} / \rho$ denotes the local mass averaged velocity. Let q_{i} denote the rate of production of the i-th species from chemical reactions and other volume distributed sources, and $J_{i}=\left(\nabla_{i}-\bar{V}\right)_{p_{j}}$ denote the mass flux relative to the mass averaged velocity. The equation of continuity for the i-th species is then given by

$$
\begin{equation*}
\frac{\partial \rho_{i}}{\partial t}+\nabla \cdot\left(\rho_{i} \dot{\forall}+\dot{J}_{i}\right)=q_{i}, \quad 1 \leq i \leq M \tag{1.1}
\end{equation*}
$$

where ∇. denotes the divergence operator. If the flux $\vec{j}_{\mathcal{1}}$ can be approximated
by

$$
\mathbf{J}_{i}=-\rho D_{i} \nabla\left(\rho_{i} / \rho\right) \quad \text { (Fick's law of diffusivity) }
$$

then we have

$$
\begin{equation*}
\frac{\partial \rho_{i}}{\partial t}+\nabla \cdot\left(\rho_{i} \vec{V}\right)=\nabla \cdot\left(\rho D_{i} \nabla\left(\rho_{i} / \rho\right)\right)+q_{i}, \quad 1 \leq i \leq M . \tag{1.2}
\end{equation*}
$$

If we assume that the total mass density ρ is constant, then $\nabla \cdot\left(\rho D_{i} \nabla\left(\rho_{\mathbf{i}} / \rho\right)\right)=$ $\nabla \cdot\left(D_{i} \nabla \rho_{i}\right)$. Moreover, since $\sum_{i=1}^{M} J_{i}=\sum_{i}^{M} a_{i}=0$, we find by summing Eq. (1.2) $\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \vec{V})=0$. When ρ is constant this reduces to $\nabla \cdot \nabla=0$. Now $\nabla \cdot\left(\rho_{i} \vec{V}\right)=$ $\forall \cdot \nabla \rho_{i}+\rho_{i} \nabla \cdot \vec{\nabla}$; thus when ρ is constant, Eq. (1.2) reduces to

$$
\begin{equation*}
\frac{\partial \rho_{\mathbf{i}}}{\partial t}+\forall \cdot \nabla \rho_{\mathfrak{i}}=\nabla \cdot\left(D_{i} \nabla \rho_{\mathfrak{i}}\right)+q_{\mathfrak{i}}, \quad 1 \leq \mathfrak{i} \leq M \tag{1.3}
\end{equation*}
$$

or since $\nabla \cdot \vec{V}=0$ we can write this equation in its conservative form

$$
\begin{equation*}
\frac{\partial \rho_{i}}{\partial t}+\nabla \cdot\left(\rho_{i} \vec{V}\right)=\nabla \cdot\left(D_{i} \nabla \rho_{i}\right)+q_{i}, \quad 1 \leq i \leq M . \tag{1.4}
\end{equation*}
$$

Note: If ρ is not constant, we can set $\psi_{i}=\rho_{i} / \rho$ and using the continuity equation for ρ, replace equation 1.2 by

$$
\rho \frac{\partial \psi_{\mathbf{i}}}{\partial t}+\rho \vec{V} \cdot \nabla \psi_{\mathbf{i}}=\nabla \cdot\left(\rho D \nabla \psi_{\mathbf{i}}\right)+q_{i}, \quad 1 \leq i \leq M .
$$

Equations (1.3) or (1.3') and (1.4) provide a basis for the selection of a class of PDE's treated by the program. With this physical model in mind, we consider the following system of nonlinear parabolic equations.

$$
\begin{align*}
& {\left[\rho C_{p}\right]_{m}(t, r, z, \vec{u}) \frac{\partial u_{m}}{\partial t}+\theta \nabla \cdot\left(V_{m}(t, r, z, \vec{u}) u_{m}\right)+(1-\theta) V_{m}(t, r, z, \vec{u}) \cdot \nabla u_{m}} \tag{1.5}\\
& =\nabla \cdot\left(\nabla_{m}(t, r, z, \vec{u}, \nabla \vec{u}) \nabla u_{m}\right)+\sum_{m^{\prime}=1}^{M} c_{m m^{\prime}} u_{m^{\prime}}+ \\
& \quad \sum_{m^{\prime}=1}^{M} \sum_{m^{\prime \prime}=1}^{M} c_{m m^{\prime} m^{\prime \prime}} u_{m^{\prime}} u_{m^{\prime \prime}}+f_{m}(t, r, z, \vec{u}, \nabla \vec{u}) \text { for } 1 \leq m \leq M .
\end{align*}
$$

Here $u_{m}=u_{m}(r, z, t)$ denotes the dependent variable (e.g. concentration of the m-th species), and we have included the option of considering a system in the substantial derivative form ($\theta=0$) or in the conservative form $(\theta=1)$. The
mass averaged velocity has been somewhat generalized by the inclusion of a two-component $\nabla_{m}=\left(V_{m}^{r}, V_{m}^{z}\right)^{\top}\left(t, r, z, \vec{u}^{*}\right)^{\star}$ user supplied function which, as indicated, may depend on the species index m as well as (t, r, z) and $u(t, r, z)=$ $\left(u_{1}, u_{2}, \ldots, m_{M}\right)^{\top}(t, r, z)$. The coefficient of diffusivity $\vec{D}_{m}=\left(D_{m}^{r} D_{m}^{z}\right)^{\top}$ is a two component user supplied function with the indicated dependencies. The expression ($\nabla_{m} \nabla u_{m}$) is interpreted as the two component vector

$$
\left(\nabla_{m}^{r} \frac{\partial u_{m}}{\partial r}, D_{m}^{z} \frac{\partial u_{m}}{\partial z}\right)^{\top}
$$

so that anisotropic diffusion can be taken into account. The heat capacity coefficient $\left[\rho C_{p}\right]_{m}(t, r, z, u)$ is included for heat conduction problems when $n=1$ and $u(t, r, z)$ represents the temperature. Note, however, that this system allows ρC_{p} to depend on the species index m when $M>1$; in particular $\left[\rho C_{p}\right]_{m}$ can be identically zero. As indicated, first and second order reaction rate coefficients are assumed to be constant. These rate constants are provided to the program through the input. The distributed source $f_{m}(t, r, z, u, \nabla u)$ is user supplied, and it can have the indicated dependencies when $\vec{u}=$ $\left(u_{1}, \ldots, u_{M}\right)^{\top}(t, r, z)$ and $\nabla_{\mathrm{u}}^{+}=\left(\nabla u_{1}, \ldots, \nabla u_{M}\right)^{\top}(t, r, z)$. The convection velocity $\vec{V}_{m}(t, r, z, \vec{u})$, diffusivity $\vec{D}_{m}(t, r, z, \vec{u}, \vec{p})$, heat capacity $\left[\rho C_{p}\right](t, r, z, \vec{u})$, and the distributed source $f_{m}(t, r, z, \vec{u}, \nabla \vec{u})$ are made available to the program by means of user supplied subroutines (VEL, DIFUSE, RHOCP, and EXTSRC, respectively).

1.1 Domain of the Equation

Equation (1.5) is considered over a domain $R=[\underline{R}, \bar{R}] \times[\underline{Z}, \bar{Z}]$ which is rectangular with sides parallel to the coordinate axes. The geometry can be either Cartesian, cylindrical or spherical. In order to allow for diffusion in an inhomogeneous medium, the domain R can be composed of subrectangles where each subrectangle can have its own material properties. It is assumed that these subrectangles are formed by a set of NTIR vertical interfaces and a set of NTIZ horizontal interfaces as shown in Fig. 1.

Here the four sides of the domain R are indexed from 1 to 4 counterclockwise starting on the left hand side of R as indicated by the symbols $|\underline{I}|, \ldots,|\underline{I}|$ in Fig. 1. This indexing scheme for the sides is used throughout this report.
*Here T denotes the transpose.

Figure 1
Interface Partition of a Domain

1.2 Boundary Conditions

This code does not require boundary conditions to be imposed on each of the four sides for each species. Thus, in principle, this code can deal with a larger class of problems than the set of coupled nonlinear parabolic equations. However, this larger class includes problems which are not well posed as well as problems for which the numerical method used in this code is unstable. For this reason, the discussion is primarily concerned with the class of parabolic type problems.

For each species m, a boundary condition of the following form may be specified on each of the four sides of the domain R.

$$
\begin{equation*}
\alpha h u_{m}+\beta \delta_{m} \nabla u_{m} \cdot \vec{n}=\gamma h \rho_{m}^{0} \tag{1.6}
\end{equation*}
$$

where $x=\alpha(m, s), \beta=\beta(m, s), \gamma=\gamma(m, s), 1 \leq m \leq M, 1 \leq 5 \leq 4$ are specified constants which depend on the species index m and the side index s. On the left hand side of R (side 1), we have $h=h_{1}(J, m), 1 \leq J \leq N T I Z+1,1 \leq m \leq M$; and on side 3 , we have $h=h_{3}(J, m), 1 \leq J \leq N T I Z+1,1 \leq m \leq M$. On sides 2 and 4, we have $h=h_{2}(1, m)$ and $h=h_{4}(1, m)$ espectively for $1 \leq I \leq N T I R+1$,
$1 \leq m \leq M$. Recall that NTIR(NTIZ) is the number of vertical (horizontal) interfaces in R; so that for each species m, these mass transfer coefficients h can depend on the materials which are present on the boundary of R. The function $\rho_{m}^{0}=\rho^{0}(t, m, s, x)$ is specified by the user as functions of time t, species m , side s , and the position x on side s (thus, if $s=1$ or $3, x=z$ and if $s=2$ or $4, x=r$). In addition, the function $\rho{ }^{0}$ can depend on \vec{u} and the derivative $\nabla u \cdot|\vec{n}|$, each evaluated at x on side s. Thus the code can handle nonlinear boundary conditions as well as boundary conditions involving relationships between the species at the boundary. Here $\vec{n}=\vec{n}(s)$ denotes the exterior unit normal for the boundary ∂R of R. Thus if \vec{r} and \vec{z} are the unit coordinate vectors, we have $\vec{n}(1)=-\vec{r}, \vec{n}(2)=-\overrightarrow{2}, \vec{n}(3)=\vec{r}$, and $\vec{n}(4)=\vec{z}$. In addition, we allow for the possibility that p^{0} may depend on the sign of the normal component $\vec{V}_{m} \cdot \vec{n}$ of the convection velocity on the boundary, e.g. $\rho^{0}=0$ if $\vec{\nabla} \cdot \vec{n}<0$.

Since $\nabla_{m} \cdot \vec{n}$ is available, boundary conditions of the form

$$
\alpha h u_{m}-\beta\left(u_{m} \vec{\nabla}_{m}-D_{m} \nabla u_{m}\right) \cdot \vec{n}=\gamma h_{m}^{0}
$$

can be treated in this code by writing this condition in the form

$$
\alpha h u_{m}+\beta \vec{D}_{m} \nabla u_{m} \cdot \vec{n}=\gamma h_{m}^{0}+\beta u_{m} \vec{V}_{m} \cdot \vec{n}
$$

and supplying the r.h.s. in subroutine BRHD. The motivation for this type of condition is provided by the mass transport model where $\left(u_{m} \vec{\nabla}_{m} \cdot \vec{\nabla}_{m} \nabla u_{m}\right) \cdot \vec{n}$ is the normal component of the total mass flux.

1.3 Interface Conditions

Let NTIR denote the number of vertical interfaces and NTIZ the number of horizontal interfaces in R as shown in Fig. 1. Note that an interface extends from one external boundary of R to the opposite external boundary. Let Γ denote any one of these interfaces and let $|\vec{n}|$ denote the positive unit vector \hat{r} if r is vertical and the positive unit vector \hat{z} if r is horizontal. If $F(t, r, z)$ is any given function, $\left.F\right|_{r^{-}}$will denote the limiting value of F on r
from the left (below) if r is vertical (horizontal) while $\left.\mathrm{F}\right|_{\mathrm{r}}+$ denotes the limiting value from the right (above) if Γ is vertical (horizontal).

This program allows for two possible types of interface conditions to be imposed on u_{m} at an interface r.

A. Continuous Interface Condition

Before stating this interface condition, we impose the following restriction on the behavior of $\vec{\nabla}_{\mathrm{m}}$ across an interface.

$$
\begin{align*}
& \vec{V}_{m}(t, r, z, \vec{u}) \text { as a function of }(r, z) \text { is continuous } \tag{H1.1}\\
& \text { across an interface } r \text {. }
\end{align*}
$$

The continuous interface condition on Γ requires that the concentration and the normal component of the total flux be continuous across the interface Γ, that is

$$
\begin{align*}
& \left.u_{m}(t, r, z)\right|_{\Gamma^{-}}=\left.u_{m}(t, r, z)\right|_{\Gamma^{+}} \tag{1.7}\\
& \left.\left(\vec{V}_{m} u_{m} \bar{\nabla}_{m} \nabla u_{m}\right) \cdot|\vec{n}|\right|_{\Gamma^{-}}=\left.\left(\vec{V}_{m} u_{m}-\vec{\delta}_{m} \nabla u_{m}\right) \cdot|\vec{n}|\right|_{\Gamma^{+}} \quad .
\end{align*}
$$

Since $\vec{\nabla}_{m}$ is assumed to be continuous across Γ, this last condition reduces to

$$
\begin{equation*}
\left.\dot{\delta}_{m} \nabla u_{m} \cdot|\vec{n}|\right|_{r^{-}}=\left.\vec{\delta}_{m} \nabla u_{m} \cdot|\vec{n}|\right|_{r^{+}} \tag{1.8}
\end{equation*}
$$

B. Gap Interface Condition

The gap interface condition is intended for use in problems of heat transfer between solids of different material properties. For this reason it is assumed in this case that $\vec{\nabla}_{\mathrm{m}} \equiv 0$, and the conditions are of the following form.
a) $\quad-\left.\dot{\delta}_{m} \nabla u_{m} \cdot|\vec{n}|\right|_{r^{-}}=h^{g}\left\{u_{m}\left|r^{-}-u_{m}\right| r^{+}\right\}$
b) $\left.\delta_{m} \nabla u_{m} \cdot|\vec{n}|\right|_{r^{-}}=\left.\vec{D}_{m} \nabla u_{m} \cdot|\vec{n}|\right|_{r^{+}}$

$\vec{D}_{m} \nabla u_{m} \cdot|\vec{n}|=D_{m}^{z} \frac{\partial u_{m}}{\partial z}$ if r is a horizontal interface. The gap interface is intended primarily for problems in heat transfer when the number of species M is equal to one. Although the condition (1.9) can be used when $M>1$, the program imposes the following restriction on gap interfaces.
(H1.2) If Γ is a gap interface for one species then it must be a gap interface for all species.

Thus the classification of interfaces into two types -- continuity and gap -is independent of species.

The gap coefficients h^{9} can depend on the following parameters. First consider the set of all vertical gap interfaces and let this st: be indeied by $I, 1 \leq I \leq N I G A P \leq N T I R$. The I-th vertical gap will intersect a set of NTIZ horizontal interfaces. This horizontal set will subdivide the vertical gap into a set of NTIZ+1 subintervals. The vertical gap coefficients can depend on the following parameters.

$$
h^{V g}=h^{V g}(m, I, J) \text { where } 1 \leq m \leq M, 1 \leq I \leq N I G A P, ~ 子 \begin{array}{r}
\text { and } 1 \leq J \leq N T I Z+1 . \tag{1.10}
\end{array}
$$

In the same way, if NJGAP denotes the number of horizontal gaps, then the horizontal gap coefficients can depend on the following parameters.

$$
\begin{array}{r}
h^{\mathrm{Hg}}=h^{\mathrm{Hg}}(m, J, I) \text { where } 1 \leq m \leq M, 1 \leq J \leq N J G A P, \tag{1.11}\\
\text { and } 1 \leq I \leq N T I R+1 .
\end{array}
$$

1.4 Initial Conditions

The system (1.5) - (1.9) will be complete when a set of initial conditions are specified. This program allows for two possibilities. First, an arbitrary initial distribution $\left\{u_{m}^{0}(r, z): 1 \leq m \leq M\right\}$ can be specified by the user. The second possible approach is to start from a steady-state or equilibrium distribution $\left\{\tilde{u}_{m}^{0}(r, z): 1 \leq m \leq M\right\}$. The program computes this steady-state distribution (prior to the start of the transient calculation) as the asymptotic solution (i.e., as the time t goes to infinity) corresponding to specified time-independent convection velocities \vec{V}_{m}, diffusion
coefficients \vec{D}_{m}, heat capacity coefficients $\left[\rho C_{p}\right]_{m}$ distributed sources f_{m}, and external boundary source ρ_{m}^{0}. Since the program calculates the steady-state solution as an asymptotic solution in time of a system of first order ODE's, the program requires an initial estimate for the steady-state solution. The program allows for two possibilities. First, the user may provide an initial estimate for the steady-state distribution just as he would provide an initial distribution for a transient calculation. The second option is to let the program generate an initial estimate for the steady-state solution.

In summary, this program approximates the solution to the nonlinear paratolic system (1.5), (1.6), (1.8), and (1.9) over a two-dimensional rectangular domain in either Cartesian, cylindrical, or spherical (one dimensional) geometry. The domain may be subdivided into subrectangles having different material properties with. specified interface conditions. The user supplies the convection velocities $\vec{\nabla}_{m}(t, r, z, \vec{u})$, the diffusion coefficient $\vec{D}_{m}(t, r, z, \vec{u}, \vec{\nabla})$, the heat capacity ccefficients $\left[\rho C_{p}\right]_{m}(t, r, z, \vec{u})$, the distributed sources $f_{m}(t, r, z, \vec{u}, \vec{\nabla})$, and the external boundary source $\rho^{0}(t, m, s, x)$. First and second order constant reaction rates can be specified on input. Higher order and variable reaction rates are specified in the distributed sources. The program can perform either a transient calculation, or a steady-state calculation, or a steady-state calculation followed by a transient calculation. The program also has a restart capability which will be described in a later section.

2. APPROXIMATION PROCEDURE

This program approximates the solution to Eqs. (1.5) - (1.9) by means of a Galerkin type procedure based on the use of a tensor product basis of onedimensional B-splines. The integrals which arise from the Galerkin procedure are evaluated by means of product Gauss-Legendre quadrature formulas.

2.1 Weak Form of the Equation

The Galerkin procedure used in this program starts from a weak form of Eqs. (1.5), (1.6), (1.8), and (1.9). In order to simplify the notation, we will drop the species index m in this discussion. For each species, Eq. (1.5) has the general form

$$
\begin{equation*}
\left[\rho C_{p}\right] \frac{\partial u}{\partial t}=-\theta \nabla \cdot(\vec{V} u)-(1-\theta) \vec{V} \cdot \nabla u+\nabla \cdot(\vec{D} \nabla u)+F(t, r, z, u, \nabla u), \tag{2.1}
\end{equation*}
$$

where $\rho C_{p}=\rho C_{p}(t, r, z, u), \vec{V}=\vec{V}(t, r, z, u)$ and $\vec{D}=\vec{D}(t, r, z, u)$. Here we have grouped the reaction sources and the distributed source into the general term F. Recall that the rectangular domain R is the union of material subrectangles $\left\{R_{s}\right\}$ defined by a set of vertical and horizontal interfaces. Let $\omega=\omega(r, z)$ be any function belonging to the class $C^{1}\left(R_{s}\right)$ for each s and, for the moment, satisfying no other constraints. To obtain a weak form, we multiply Eq. (2.1) by ω and integrate the resulting equation over the domain R. If $\langle u, \omega\rangle=\iint_{R} U_{\omega}$, we obtain the expression

$$
\begin{equation*}
\left\langle\left[\rho C_{p}\right] \frac{\partial u}{\partial t}, \omega\right\rangle=-(1-\theta)\langle\vec{V} \cdot \nabla u, \omega\rangle+\langle\nabla \cdot(\vec{\delta} \nabla u-\theta \vec{V} u), \omega\rangle+\langle F, \omega\rangle . \tag{2.2}
\end{equation*}
$$

To obtain the weak solution, we first apply Green's theorem to the divergence term over each subrectangle R_{s}. Before doing this we will introduce some notation for boundaries and interfaces. Let $\partial \widetilde{R}_{1}$ denote that part of the external boundary ∂R for which $\beta \neq 0$ in the boundary condition (1.6), let $\partial \widetilde{R}_{2}$ denote that part of the external boundary where no boundary condition is imposed, and let ∂R_{0} denote that part where $\beta=0$ in condition (1.6). Thus $\partial R=\partial R_{0} \cup \partial \tilde{R}_{1} \cup \partial \tilde{R}_{2}$, and each part $\partial R_{0}, \partial \tilde{R}_{1}$, and $\partial \tilde{R}_{2}$ may be different for different species. For the moment we set $\partial \widetilde{R}=\partial \widetilde{R}_{1} \cup \partial \widetilde{R}_{2}$. Boundary conditions on ∂R_{0} are usually referred to as essential conditions. If ∂R_{s} denotes the
boundary of a material subrectangle R_{s}, then let Γ_{s} denote that part of ∂R_{s} which is an interface, that is Γ_{s} is not part of the external boundary ∂R. Now $\Gamma_{s}=\Gamma_{s}^{g} \cup \Gamma_{s}^{c}$ where Γ_{s}^{g} is that part of Γ_{s} which is a gap interface and Γ_{s}^{c} is that part which is a continuity interface.

Consider the divergence term in Eq. (2.2) and apply Green's theorem over each subrectangle R_{s}.

$$
\begin{align*}
\langle\nabla \cdot(D \nabla u-\theta \vec{\nabla} u), \omega\rangle= & \sum_{S} \iint_{R_{S}} \omega \nabla \cdot\left(D \nabla u-\theta \vec{V}_{u}\right) \tag{2.3}\\
= & \sum_{S} \int_{\Gamma_{S}} \omega(D \nabla u-\theta \vec{\nabla} u) \cdot \vec{n}_{s}+\int_{\partial \tilde{R}} \omega(D \nabla u-\theta \vec{V} u) \cdot \vec{n}+\int_{\partial R_{0}} \omega(D \nabla u-\theta \nabla \vec{V} u) \cdot \vec{n} \\
& -\iint_{R}(D \nabla u-\theta \vec{\nabla} u) \cdot \nabla \omega .
\end{align*}
$$

For each Γ_{s}, the integral over Γ_{s} appears twice in the above sum with the direction of integration reversed; therefore, terms of the following form will appear in the above sum.

$$
\begin{equation*}
\int_{\left|\Gamma_{s}\right|} \omega^{-}(D \nabla u-\theta \vec{V} u)^{-} \cdot\left|\vec{n}_{s}\right|-\omega^{+}(D \nabla u-\theta \vec{V} u)^{+} \cdot\left|\vec{n}_{s}\right| \cdot \tag{2.4}
\end{equation*}
$$

Here $\left|\vec{n}_{s}\right|$ denotes the unit normal to the interface r_{s} oriented in the positive coordinate direction; thus ($\left.D \nabla u-\theta \vec{V}_{u}\right) \cdot\left|\vec{n}_{s}\right|=D^{r} \frac{\partial u}{\partial r}-{ }_{\theta}^{s} V^{r}{ }_{u}$ if r_{s} is a vertical interface and ($D \nabla u-\theta \vec{V} u) \cdot\left|n_{s}\right|=D^{2} \frac{\partial u}{\partial z}-\theta V^{z} u$ if Γ_{s} is a horizontal interface. The symbol $\int_{r_{s} \mid}$ indicates that the integral is taken in the positive coordinate direction. As usual, ω^{-}and ω^{+}indicate limiting values on Γ_{s} taken from the left (below) and from the right (above) respectively if r_{s} is a vertical (horizontal) interface. Now $r_{s}=r_{s}^{c} \cup r_{s}^{g}$, so consider a continuous interface r_{s}^{c}. If $\theta=1$, then condition (2.8) states that

$$
\left(D \nabla u-\vec{V}_{u}\right)^{-} \cdot\left|\vec{n}_{s}\right|=\left(D \nabla u-\vec{V}_{u}\right)^{+} \cdot\left|\vec{n}_{s}\right|
$$

Thus in either case $\theta=0$ or 1 , we find that the integral in (2.4) has the following form on r_{s}^{c}.

$$
\begin{equation*}
\int_{\Gamma_{s}}\left(\omega^{-}-\omega^{+}\right)\left(D \nabla u-\theta \vec{V}_{u}\right)^{-} \cdot\left|\vec{n}_{s}\right| \tag{2.5}
\end{equation*}
$$

Hence if we assume, as we shall, that ω is continuous across each continuity interface Γ_{s}^{c}, then these integrals over Γ_{s}^{C} will not contribute to the sum appearing in Eq. (2.3).

Next we consider a gap interface Γ_{5}^{g}. At such an interface we have assumed that $\vec{V}=0$ or at least that $\vec{V} \cdot\left|\frac{s}{n_{s}}\right|=0$; hence using conditions (1.9), we find that integral (2.4) on Γ_{s}^{g} has the following form.

$$
\begin{equation*}
-\int_{\Gamma_{s}}\left(\omega^{-}-\omega^{+}\right) h^{g}\left(u^{-}-u^{+}\right) \tag{2.6}
\end{equation*}
$$

Next, we consider the integral over $\partial \tilde{R}=\partial \tilde{R}_{1} \cup \partial \tilde{R}_{2}$ appearing in Eq. (2.3). On $\partial \tilde{R}_{1}, \beta \neq 0$; thus we can use the boundary condition (1.6) to eliminate Dou. From (1.6), we have

$$
\begin{equation*}
D_{\nabla} u \cdot \vec{n}=-\beta^{-1} h\left(\alpha u-\gamma \rho^{0}\right) \text {, } \tag{2.7}
\end{equation*}
$$

which gives

$$
\begin{align*}
\int_{\partial \widetilde{R}} \omega(D \nabla u-\theta u \vec{V}) \cdot \vec{n}= & \int_{\partial \widetilde{R}_{1}} \omega\left[(-\theta) u \vec{V} \cdot \vec{n}-\beta^{-1} h\left(\alpha u-\gamma \rho \rho^{0}\right)\right] \tag{2.8}\\
& +\int_{\partial \widetilde{R}_{2}} \omega[\partial \nabla u-\theta u \vec{V}] \cdot \vec{n} .
\end{align*}
$$

Next we consider the integral over ∂R_{0} appearing in Eq. (2.3). On ∂R_{0} we have $\beta=0$, so that $u=\gamma \rho / \alpha$ on ∂R_{0}. Since this form does not help in simplifying the integral appearing in Eq. (2.3), we will restrict the class of test functions from which ω is selected by requiring that $\omega \equiv 0$ on ∂R_{0}. Then this integral will not contribute to Eq. (2.3). The essential condition $u=\gamma_{\rho} 0 / \alpha$ will then be applied in a weak form by requiring

$$
\begin{equation*}
\int_{\partial R_{0}} \omega u=\int_{\partial R_{0}} \frac{\gamma}{\alpha} \rho^{0} \omega . \tag{2.9}
\end{equation*}
$$

From (2.6) and (2.8), we find that Eq. (2.3) takes the form

$$
\begin{align*}
&\langle\nabla \cdot(D \nabla u-\theta \vec{V} u), \omega\rangle=-\sum_{s} \int_{\mid r_{s}}\left(\omega^{-}-\omega^{+}\right) h^{g}\left(u^{-}-u^{+}\right) \tag{2.10}\\
&+\int_{\partial \tilde{R}_{1}} \omega\left[(-\theta) u \vec{V} \cdot \vec{n}-\beta^{-1} h\left(\alpha u-\gamma \rho \rho^{0}\right)\right]+\int_{\partial \tilde{R}_{2}} \omega[D \nabla u-\theta u \vec{V}] \cdot \vec{n} \\
&-\iint_{R}(D \nabla u-\theta \vec{V} u) \cdot \nabla \omega .
\end{align*}
$$

Using this expression in Eq. (2.2), we find
(a) $\left.\left\langle\left[\rho C_{p}\right] \frac{\partial u}{\partial t}, \omega\right\rangle=-(1-\theta)<\vec{V} \cdot \nabla u, \omega\right\rangle-\sum_{s} \int_{\Gamma_{s}}\left(\omega^{-} \mid-\omega^{+}\right) h^{g}\left(u^{-}-u^{+}\right)$
$\left.-\theta \int_{\partial \tilde{R}_{1}} \omega u \vec{V} \cdot \vec{n}-\beta^{-1} \int_{\partial \tilde{R}_{1}} \omega\left(\alpha h u-\gamma h \rho^{0}\right)+\int_{\partial \tilde{R}_{2}} \omega[\vec{D}\rangle u-\theta u \vec{V}\right] \cdot \vec{n}$
$-\iint_{R}(D \nabla u-\theta u \vec{V}) \cdot \nabla \omega+\iint_{R} F \omega$,
(2.11)
(b) $\int_{\partial R_{0}} \omega u=\frac{Y}{\alpha} \int_{\partial R_{0}} \rho^{0} \omega$,
(c) $\iint_{R} u\left(t=t_{0}\right) \omega=\iint_{R} u^{0} \omega$,
(d) $\int_{\partial R_{0}} \omega u\left(t=t_{0}\right)=\frac{Y}{n} \int_{\partial R_{0}} \omega_{0}^{0}\left(t=t_{0}\right)$.

In Eq. (2.11a), w is allowed to range over the set of all functions which are continuous together with their first derivatives in each material subrectangle R_{s}, and which are continuous across each continuous interface, and which vanish on the essential boundary ∂R_{0}. In Eq. (2.11b), ω is allowed to range over the set of functions ω defined on ∂R_{0} which are continuous together with their first derivatives in each material subrectangle on ∂R_{0} and which are continuous across every continuous interface on ∂R_{0}. In Eq. (2.11c), ω
ranges over the same set of functions as in Eq. (2.11a), and in Eq. (2.11d), ω ranges over the same ser as in Eq. (2.11b). The system (2.11) represents the weak form to which the Galerkin approximation is applied.

2.2 Approximating Subspace

A Galerkin procedure seeks a solution in a subspace spanned by a given basis set. The basis sets used in this program are tensor product basis generated from one-dimensional B-splines. The B-splines are calculated using a subroutine package written by de Boor [2]. For completeness, we will describe B -splines in one dimension. This presentation is based on the work of de Boor in $[2,3]$.

2.2.1 B-Spline Basis

Let an interval [a,b] be subdivided by a mesh

$$
\pi: a=X_{1}<X_{2}<\ldots<X_{\ell}<X_{\ell+1}=b .
$$

The points x_{i} will be referred to as breakpoints. In this subsection we develop a basis for spaces of functions which are piecewise polynomials over this mesh π. Let

$$
\begin{aligned}
\mathbf{P}_{k, \pi}=\{f(x): & \text { in each interval }\left[x_{i}, x_{i+1}\right], 1 \leq i \leq \ell, \\
& f(x) \text { is equal to a polynomial of order } \\
& k \text { (degree at most } k-1)\} .
\end{aligned}
$$

Since there are ℓ subintervals, it is clear that the dimension of $\mathbf{P}_{\mathrm{k}, \pi}$ is kl . Observe that any function in $\mathbf{P}_{\mathbf{k}, \boldsymbol{\pi}}$ may be discontinuous at the interior breakpoints $\left\{x_{i}: 2 \leq i \leq l\right\}$. We now consider subspaces of $\mathbf{P}_{k, \pi}$ generated by imposing smoothness constraints on elements in $\mathbb{P}_{\mathrm{k}, \pi}$ at these interior breakpoints. Let $v=\left(v_{2}, \ldots, v_{\ell}\right)$ be a set of specified integers with $0 \leq \nu_{\nu} \leq k-1$, and let $S_{k, \pi, v}$ denote the space of function $f(x)$ in $\mathbb{P}_{k, \pi}$ for which $\bar{f}(j)\left(\overline{X_{j}}\right)=$ $f^{(j)}\left(x_{j}^{+}\right), 0 \leq j \leq v_{i}-1$, for $2 \leq i \leq \ell$. At each ureakpoint x_{i} we have imposed a set of v_{i} constraints on a function in $P_{k, \pi}$. Thus the dimension of the subspace $S_{k, \pi, v}$ will be

$$
k \ell-\sum_{i=2}^{\ell} v_{i}=k+\sum_{i=2}^{\ell}\left(k-v_{i}\right) .
$$

We now consider the construction of a basis for $S_{k, \pi, v}$ such that each element of the basis has local support; i.e., is non-zero on only a few subintervals, and furthermore each element is non-negative. The space $S_{k, \pi, v}$ is a space of polynomial splines and a basis of the above type is called a Bspline basis. To generate such a basis, we will consider divided differences of order k of the truncated power functions $g_{k}(\sigma ; s)=(\sigma-s)_{+}^{k-1}$. To this end, let $\left\{\xi_{j}\right\}$ be any non-decreasing sequence of points (they will be referred to as knots) subject to the condition that $\xi_{i} \leq \xi_{i+k}$ for all i. Let $M_{i}(s)$ denote the k-th divided difference of $g_{k}(\sigma ; s)$ with respect to the knots $\xi_{i}, \ldots, \xi_{i+k}$, that is $M_{i}(s)=g_{k}\left[\xi_{i}, \ldots, \xi_{i+k} ; s\right]$. Assuming for the moment that the knots $\xi_{i}, \ldots, \xi_{i+k}$ are distinct, then the divided difference $M_{i}(s)$ would have the representation

$$
M_{i}(s)=\sum_{j=0}^{k} \frac{g_{k}\left(\xi_{i+j} ; s\right)}{\substack{\prod_{\begin{subarray}{c}{m \\
m=0 \\
m \neq j} }}^{k}\left(\xi_{i+j}-\xi_{i+m}\right)}}
$$

If two of the knots $\xi_{i}, \ldots, \xi_{i+k}$ coincide, then the above representation will involve first derivatives of $g_{k}(\sigma ; s)$ with respect to σ; if three knots coincide, then derivation of order up to two will appear, and so on. In general, if $\zeta_{1}, \ldots, \zeta_{j}$ are the distinct points among the knots $\left\{\xi_{\mathbf{j}}\right\}$ and if each $\zeta_{\mathbf{j}}$ appears d_{j} times, then $M_{i}(s)$ will be a linear combination of the functions $\left(\zeta_{j}-s\right)^{k-m}, 1 \leq m \leq d_{i}, 1 \leq j \leq J$. Note that if v_{j} is the smoothness index of $M_{i}(s)$ at $\zeta_{j}\left(M_{j}(s)\right.$ has continuous derivatives at ζ_{j} through order $\left.v_{j}-1\right)$, then $k=d_{j}+v_{j}$. It is easily seen that each $M_{i}(s)$ is a piecewise polynomial of order k with breakpoints $\zeta_{1}, \ldots, \zeta_{j}$ at which

$$
M_{i}^{(m)}\left(\zeta_{j}^{-}\right)=M_{i}^{(m)}\left(\zeta_{j}^{+}\right) \text {for } 0 \leq m \leq k-1-d_{j}=v_{j}-1,1 \leq j \leq J \text {, }
$$

$M_{i}(s)$ has its support in $\left[\xi_{j}, \xi_{j+k}\right]$, and each $M_{i}(s)$ is non-negative.
Now consider the subspace $S_{k, \pi, v}$. Define the set of knots
$\left\{\xi_{i}: 1 \leq i \leq n+k\right\}$ where $n=k+\sum_{i=2}^{l} d_{i}, d_{i}=k-v_{i}$, and
and

$$
\begin{aligned}
& \xi_{1}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots=\xi_{k}=x_{1} \\
& \xi_{k+1}=\ldots \ldots \ldots \ldots \ldots \ldots=\xi_{k+d_{2}}=X_{2} \\
& \vdots \\
& \xi_{k+d_{2}+\ldots+d_{j-1}+1}=\ldots \ldots .=\varepsilon_{k+d_{2}+\ldots+d_{j}=x_{j}, j \leq \ell,}
\end{aligned}
$$

$$
\xi_{n+1}=\ldots \ldots \ldots \ldots \ldots \ldots=\xi_{n+k}=x_{\ell+1}
$$

That is, the first and last breakpoints have multiplicity k while the breakpoint X_{j} has multiplicity d_{j}; for $2 \leq j \leq \ell$. For each $i, 1 \leq i \leq n$, we can form the divided difference $M_{i}(x)$, and the B-spline basis for $S_{k, \pi, v}$ is taken to be the so-called normalized B-splines $\left\{N_{i, k}(x): 1 \leq i \leq n\right\}$ where $N_{i, k}(x)=\left(\xi_{i+k}-\xi_{i}\right) M_{j}(x)=\left(\xi_{i+k}-\xi_{i}\right) g_{k}\left[\xi_{j}, \ldots, \xi_{i+k} ; x\right]$. Explicit representations of the normalized B-splines are generally rather involved due to possibile multiplicity of knots; however the following properties are useful in applications of these functions.
(i) $\sum_{i=1}^{n} N_{i, k}(x) \equiv 1$ for $a \leq x \leq b$,
(ii) $N_{1, k}\left(x_{1}\right)=N_{n, k}\left(x_{\ell+1}\right)=1 ; N_{i, k}\left(x_{1}\right)=0$ for $i>1$,

$$
N_{i, k}\left(x_{\ell+1}\right)=0 \text { for } i<n
$$

(iii) $N_{1, k}^{\prime}\left(X_{1}\right)+N_{2, k}^{\prime}\left(X_{1}\right)=0, N_{i, k}^{\prime}\left(X_{1}\right)=0$ for $1>2$.

$$
\begin{equation*}
N_{n-1, k}^{\prime}\left(X_{\ell+1}\right)+N_{n, k}^{\prime}\left(X_{\ell+1}\right)=0, \quad N_{i, k}^{\prime}\left(x_{\ell+1}\right)=0 \text { for } i<n-1, \tag{2.12}
\end{equation*}
$$

$$
N_{1, k}^{\prime}\left(X_{1}\right)=-\frac{(k-1)}{X_{2}-X_{1}}, \quad N_{n, k}^{\prime}\left(x_{\ell+1}\right)=\frac{(k-1)}{X_{\ell+1}-x_{\ell}},
$$

(iv) $N_{i, k}(x) \equiv 0$ if $x \notin\left[\xi_{j}, \xi_{i+k}\right]$,
(v) $N_{i, k}(x) \geq 0$ for $a \leq x \leq b$.

2.2.2 Tensor Product Basis

We now consider the two-dimensional domàin $R=[\underline{R}, \bar{R}] \times[\underline{Z}, \bar{Z}]$. Recall that this domain may be subdivided by a set of NTIR vertical interfaces and a set of NTIZ horizontal interfaces. In addition, we will allow for an additional set of NMR vertical mesh lines and an additional set of NMZ horizontal mesh lines. The set of interfaces and the set of additional mesh lines are interior to R; so that the interval $[\underline{R}, \bar{R}]$ is subdivided by a set of NTIR+NMR interior (not including \underline{R} or \bar{R}) points. Thus we have a partition

$$
\pi_{r}: \underline{R}=r_{1}<r_{2}<\ldots<r_{\ell r}<r_{\ell_{r}+1}=\bar{R}
$$

of the interval $[\underline{R}, \bar{R}]$ with $\ell_{r}=1+$ NTIR + NMR. In the same way, we have a partition

$$
\pi_{z}: \underline{z}=z_{1}<z_{2}<\ldots<z_{\ell_{Z}}<z_{\ell_{Z}+1}=\bar{Z}
$$

of the interval $[\underline{Z}, \bar{Z}]$ with $\ell_{z}=1+N T I Z+N M Z$. Let k_{r}, k_{z} be integers greater than or equal to 2 specifying the order of the B-splines basis in the r variable and in the z variable, respectively. Consider the r variable first; we must specify a smoothness index $\theta^{r}=\left(v_{2}^{r}, \ldots, v_{l}^{r}\right)$. These indices are subject to the following restrictions:
(i) $0 \leq v_{\sigma}^{r} \leq k_{r}-1$,
(ii) if r_{σ}, corresponds to a vertical gap interface, then as we have seen, the solution can be discontinuous across this interface; hence we must have $v_{\sigma}^{r}=0$,
(iii) if r_{σ}, corresponds to a continuity interface, then as we have seen, the solution is continuous across this interface but the first derivative may be discontinuous across this interface; hence we must have $\nu_{\sigma}^{r}=1$.

A similar set of restrictions is placed on the horizontal smoothness indices $v^{2}=\left(v_{2}^{2}, \ldots, v_{l_{2}}^{2}\right)$. Let $\left\{A_{i}(r): 1 \leq i \leq N_{r}\right\}$ be the set of nomalized B-splines
relative to k_{r}, π_{r}, and v^{r}; and let $\left\{B_{j}(z): 1 \leq J \leq N_{z}\right\}$ be the set of normalized B-splines relative to k_{z}, π_{z}, and v^{z}. Here

$$
N_{r}=k_{r}+\sum_{\sigma=2}^{\ell r}\left(k_{r}-v_{\sigma}^{r}\right) \text { and } N_{z}=k_{z}+\sum_{\tau=2}^{\ell}\left(k_{z}-v_{\tau}^{z}\right) \text {. }
$$

Let the four sides of the domain R be numbered consecutively from 1 to 4 in the counterclockwise direction starting on the left side. Set

$$
s_{i}= \begin{cases}1 & \text { if side } i \text { has an essential boundary condition }(\beta=0 \text { in Eq. 1.6) } \\ 0 & \text { if side } i \text { has a non-essential boundary condition (} \beta \neq 0 \text { in }\end{cases}
$$

$\hat{n}_{r}=1+s_{1}= \begin{cases}2 & \text { if side } 1 \text { has an essential condition, } \\ 1 & \text { otherwise. }\end{cases}$
$\hat{N}_{r}=N_{r}-s_{3}=\left\{\begin{array}{l}N_{r}-1 \text { if side } 3 \text { has an essential condition, } \\ N_{r} \text { otherwise. }\end{array}\right.$

$$
\hat{n}_{z}=1+s_{2}
$$

$$
\hat{N}_{z}=N_{z}-s_{4}
$$

For each species m, we seek an approximate solution of the following form

$$
u_{m}(r, z, t)=\sum_{i^{\prime}=1}^{N_{r}} \sum_{j^{L_{z 1}}}^{N_{z}} u_{i j_{j}}^{m}(t) A_{i}(r) B_{j \prime}(z)
$$

In the second expression, we have grouped the basis functions by identifying

$$
\begin{align*}
& =s_{1} \sum_{j^{\prime}=\hat{n}_{z}}^{\hat{N}_{z}} U_{1, j^{\prime}}^{m}(t) A_{1}(r) B_{j^{\prime}}(z)+s_{2} \sum_{1^{\prime}=1}^{N} U_{i}^{m} U_{1}(t) A_{i^{\prime}}(r) B_{1}(z) \tag{2.13}\\
& +s_{3} \sum_{j=n_{z}}^{\hat{N}_{z}} U_{N_{r}, j}^{m}(t) A_{N_{r}}(r) B_{j \prime}(z)+s_{4} \sum_{i^{\prime}=1}^{N_{r}} U_{i}^{m}, N_{z}^{m}(t) A_{j}(r) B_{N_{z}}(z) \\
& +\sum_{i^{\prime}=\hat{n}_{r}}^{\hat{N}_{r}} \sum_{j^{\prime}=\hat{n}_{z}}^{\hat{N}_{z}} U_{i^{\prime} j^{\prime}}^{m}(t) A_{i}(r) B_{j^{\prime}}(z) .
\end{align*}
$$

the set which is associated with the essential boundary ∂R_{0}. That is, the set

$$
\begin{align*}
T_{0}= & \left\{s_{1} A_{1}(r) B_{j}(z), s_{2} A_{i}(r) B_{1}(z), s_{3} A_{N_{r}}(r) B_{j^{\prime}}(z), s_{4} A_{i}(r) B_{N_{z}}(z):\right. \tag{2.14}\\
& \left.1 \leq i^{\prime} \leq N_{r}, \hat{n}_{z} \leq j^{\prime} \leq \hat{N}_{z}\right\}
\end{align*}
$$

when restricted to ∂R_{0} provides a basis for functions defined on ∂R_{0}. Moreover, the set

$$
\begin{equation*}
T=\left\{A_{i},(r) B_{j} \prime(z): \quad \hat{n}_{r} \leq i^{\prime} \leq \hat{N}_{r}, \hat{n}_{z} \leq j^{\prime} \leq \hat{N}_{z}\right\} \tag{2.15}
\end{equation*}
$$

will provide a basis for functions defined on R which vanish on ∂R_{0}.

2.3 Galerkin Approximation

Given the basis sets T and T_{0} defined in the last subsection, the Galerkin approximation applied to the system (2.11) proceeds as follows. For each species m, we seek an approximation to the concentration $u_{m}(t, r, z)$ of the form given in Eq. (2.13). Each species m has a weak equation of the form (2.1i); thus for each species, we use the expansion (2.13) in equations of the form (2.11a) and (2.11b). Then in Eq. (2.11a), we let the functions w range over the set of basis functions T defined in (2.15). From the definition of these B-splines, it is clear that every member of T satisfies the required continuity conditions and each member of T vanishes on ∂R_{0}. In Eq. (2.11b), we let the functions ω range over the set T_{0} defined in 2.14. Again we see from the definition of these B-splines, that each member of T_{0} when restricted to ∂R_{0} satisfies the required continuity properties. For the approximation of the initial conditions we proceed in the same way in the sense that we seek an approximation for the initic conditions of the form given in Eq. (2.13). We then use this expression in (2.11c) and (2.11d) with ω ranging over the set T in (2.11c) and ω ranging over the set T_{0} in (2.11d). Note that with this procedure, the approximation to the initial condition is required to satisfy the essential boundary conditions (in weak form) at the initial time $t=t_{0}$.

Next we consider the form of the equations generated by this procedure. First we consider the left hand side of Eq. (2.11a). For each species m, the
left hand side of Eq. (2.11a) has the following form.

$$
\begin{align*}
& <\left[\rho C_{p}\right]_{m}(t, r, z, u) \frac{\partial u_{m}}{\partial t}, A_{i} B_{j}> \tag{2.16}\\
& =\sum_{i^{t}=1}^{N} \sum_{j}^{N}=1 \sum_{i^{\prime} j^{\prime}}^{N} \iint_{R}^{m}\left[\rho C_{p}\right]_{m}(t, r, z, u) A_{i}(r) B_{j}(z) A_{i}(r) o_{j}(z) d \mu_{r} d \mu_{z} \\
& \quad \text { for } \hat{n}_{r} \leq i \leq \hat{N}_{r}, \hat{n}_{z} \leq j \leq \hat{N}_{z} .
\end{align*}
$$

The measures are defined by $d \mu_{z}=d z$ and

$$
d \mu_{r}= \begin{cases}d r, & \text { Cartesiần geometry, } \\ 2 \pi r d r, & \text { cylindrical geometry, } \\ 4 \pi r^{2} d r, & \text { spherical geometry (one dimensional only). }\end{cases}
$$

For each species m, the right hand side of Eq. (2.16) has the form $\tilde{A}_{m}(t, U) \dot{U}^{m}$ where $\tilde{A}_{m}(t, U)$ is a rectangular matrix having $\left(\hat{N}_{r}-\hat{n}_{r}+1\right)\left(\hat{N}_{z}-\hat{n}_{z}+1\right)$ rows and $N_{r} N_{2}$ columns with

$$
U^{m}=U^{m}(t)=\left\{U_{i}^{m} j^{\prime}(t): 1 \leq i^{\prime} \leq N_{r}, 1 \leq j^{\prime} \leq N_{2}\right\} \text { with } U=\left\{U^{m}: 1 \leq m \leq M\right\} .
$$

Here $\tilde{U}_{i^{\prime} j^{\prime}}=\frac{d}{d t} U_{i}^{m} j^{\prime}(t)$, and the notation $\tilde{A}_{m}(t, U)$ indicates that the elements of \tilde{A}_{m} may depend on t and U through the presence of the heat capacity coefficient $\left[\rho C_{p}\right]_{m}(t, r, z, u)$.

Next we consider the right hand side of Eq. (2.11a). For each species, the right hand side is the sum of several terms. The form of each of these terms will be displayed.

2.3.1 Non-Conservative Convection Terms

Recall that θ can have either one of two values in Eq. (1.5). When $\theta=0$ we have Eq. (1.5) in substantive derivative (non-conservative) form. In this case, the following convection term is present on the rigint hand side of Eq. (2.11a).

$$
\begin{align*}
& -<\vec{V}_{m} \cdot \nabla u_{m}, A_{i} B_{j}>=-\iint_{R} \vec{\nabla}_{m} \cdot \nabla u_{m} A_{i} B_{j} d \mu_{r} d \mu_{z} \tag{2.17}\\
& = \\
& -\sum_{i}^{N_{r}=1} j_{j=1}^{N_{z}} U_{i}^{m} \prime^{\prime} \cdot \iint_{R} A_{i}(r) B_{j}(z) \nabla_{m} \cdot \nabla\left(A_{i},(r) B_{j \prime}(z)\right) d_{H_{r}} d \mu_{z}, \\
& \\
& \quad \text { for } \hat{n}_{r} \leq i \leq \hat{N}_{r}, \hat{n}_{z} \leq j \leq \hat{N}_{z} .
\end{align*}
$$

Recall that $\vec{V}_{m}=\left(V_{m}^{r}, V_{m}^{z}\right)$ with, for example, $V_{m}^{r}=V_{m}^{r}\left(t, r, z, u_{1}(r, z, t), \ldots\right.$, $\left.u_{p 1}(r, z, t)\right)$.

2.3.2 Divergence Term

Recall that when $\theta=1$, Eq. (1.5) is in conservative form so that the divergence term will include both diffusion and convection terms when $\theta=1$. From the right hand side of Eq. (2.11a), we have

$$
\begin{align*}
& -\iint_{R}\left(\nabla_{m} \nabla u_{m}-\theta u_{m} \vec{\nabla}_{m}\right) \cdot \nabla\left(A_{i} B_{j}\right) d_{\mu_{r}} d z= \tag{2.18}\\
& \quad-\sum_{i^{\prime}=1}^{N_{r}} \sum_{j^{\prime}=1}^{N_{z}} U_{i^{\prime} j^{\prime}}^{m} \iint_{R}\left(\partial_{m} \nabla\left(A_{i}, B_{j} \prime\right)-\theta A_{i}, B_{j}, \nabla_{m}\right) \cdot \nabla\left(A_{i} B_{j}\right) d_{r} d z \\
& \quad \text { for } \hat{n}_{r} \leq i \leq \hat{N}_{r}, \hat{n}_{z} \leq j \leq \hat{N}_{z},
\end{align*}
$$

where the explicit form of the integrand is

$$
\begin{equation*}
\left(D_{m}^{r} A_{i}^{\prime}, B_{j} \prime-\theta A_{i}, B_{j}, V_{m}^{r}\right) A_{i}^{\prime} B_{j}+\left(D_{m}^{z} A_{i}, B_{j}^{\prime}-\theta A_{i}, B_{j}, V_{m}^{z}\right) A_{i} B_{j}^{\prime} \tag{2.19}
\end{equation*}
$$

Here, $A_{i^{\prime}}=\frac{d}{d r} A_{i}(r), B_{j}^{\prime}=\frac{d}{d z} B_{j}(z)$; and, of course, $\nabla_{m}=\vec{\nabla}_{m}(t, r, z, \vec{u})$.

2.3.3 Non-Essential Boundary Terms

Recall that $\partial \tilde{R}_{1}$ is the union of the sides where $\beta \neq 0$; thus the integral in (2.11a) over $\partial \vec{R}_{1}$ is the sum of integrals over the sides where $\beta \neq 0$.

If $B \neq 0$ on side 1 , then we have a contribution of the form

$$
\begin{align*}
\int_{S_{1}} B_{j} & {\left[-(-\theta) V_{m}^{r} u_{m}-\beta_{1}^{-1}\left(\alpha_{1} h_{1} u_{m}-\gamma_{1} h_{1} \rho^{0}\right)\right] S^{\delta}(\underline{R}) d z } \tag{2.20}\\
& =\sum_{j^{\gamma}=1}^{N_{z}} U_{1 j}^{m} \cdot\left[\int_{\underline{Z}}^{Z}\left\{-(-\theta) V_{m}^{r}-\beta_{1}^{-1} \alpha_{1} h_{1}\right\} B_{j},(z) B_{j}(z) S^{\delta}(\underline{R}) d z\right] \\
& \quad+\beta_{1}^{-1} \gamma_{1} \int_{\underline{Z}}^{Z} h_{1} B_{j}(z)_{\rho}^{0}(t, \underline{R}, z) s^{\delta}(\underline{R}) d z \text { for } \hat{n}_{z} \leq j \leq \hat{N}_{z} \cdot
\end{align*}
$$

Here we have used the fact that on side 1 , we have $\vec{\nabla}_{m} \cdot \vec{n}=-V_{m}^{r}$. Note also that the transfer coefficient h_{1} may depend on the materials which are present on side 1 , so that h_{1} is a piecewise constant function on side 1. The factor $S^{\delta}(\underline{R})$ is defined by

$$
S^{\delta}(\underline{R})= \begin{cases}1 & \text { Cartesian geometry } \\ 2 \pi R, & \text { cylindrical geometry } \\ 4 \pi \underline{R}^{2}, & \text { spherical geometry (one dimension only). }\end{cases}
$$

If $\beta \neq 0$ on side 3 , then we will have a contribution from this side whose form is very similar to Eq. (2.20). In fact, we just replace $U_{1 j}^{m}$, by $U_{N_{r} j^{\prime}}^{m}$, subscript 1 by $3, \underline{R}$ by \bar{R} and $-V_{m}^{r}$ by V_{m}^{r} in the above expression.

If $\beta \neq 0$ on side 2 , we have a contribution of the following form.

$$
\begin{align*}
& \int_{s_{2}} A_{i}\left[-(-\theta) V_{m}^{z} u_{m}-\beta_{2}^{-1}\left(\alpha_{2} h_{2} u_{m}-\gamma_{2} h_{2}{ }^{0}\right)\right] d \mu_{r} \tag{2.21}\\
&= \int_{i^{\prime}=1}^{N_{r}} U_{i^{\prime} 1}^{m}\left[\int_{\underline{R}}^{\bar{R}}\left\{-(-\theta) V_{m}^{z}-\beta_{2}^{-1} \alpha_{2} h_{2}\right\} A_{i},(r) A_{i}(r) d \mu_{r}\right] \\
&+\beta_{2}^{-1} r_{2} \int_{\underline{R}}^{\bar{R}} h_{2} A_{i}(r)_{0}^{0}(t, r, \underline{z}) d \mu_{r} \text { for } \hat{n}_{r} \leq i \leq \hat{N}_{r} .
\end{align*}
$$

Again, if $\beta \neq 0$ on side 4 then we have a contribution from this side which has the same form as Eq. (2.21) with $U_{i{ }^{\prime} 1}^{m}$ replaced by U_{i}^{m}, N_{2}, subscript 2 replacei by $4, \underline{Z}$ by \bar{Z}, and $-V_{m}^{z}$ by V_{m}^{z}. In Eqs. (2.20) and (2.21), the convection velocity $\vec{\nabla}_{m}$ is evaluated on the appropriate boundary. Thus, for example, on side 1 in Eq. (2.20), $V_{m}^{r}=V_{m}^{r}(t, \underline{R}, z, \vec{u}(t, \underline{R}, z))$.

The integral over $\partial \widetilde{R}_{2}$ in Eq. (2.11a) is treated in a manner similar to the above integrals.

2.3.4 Gap Interface Term

The gap interface term has the following form.

$$
\begin{align*}
& -\sum_{s}\left\{\hat{r}_{s}^{g} \mid\left\{\left(A_{i} B_{j}\right)^{-}-\left(A_{i} B_{j}\right)^{+}\right\} h_{s}^{g}\left\{\sum_{i=1}^{N_{r}} \sum_{j^{t}=1}^{N_{z}} U_{i \prime j 1}^{m}\left[\left(A_{i}, B_{j \prime}\right)^{-}-\left(A_{i}, B_{j}\right)^{+}\right]\right\}\right. \tag{2.22}\\
& =-\sum_{s} \sum_{i^{\prime}=1}^{N_{r}} \sum_{j^{\prime}=1}^{N_{z}} U_{i \prime j^{\prime}}^{m}\left\{\int_{\mid \Gamma_{s}^{g}}\left[\left(A_{i} B_{j}\right)^{-}-\left(A_{i} B_{j}\right)^{+\mid}\left|h_{s}^{g}\right|\left(A_{i}, B_{j}\right)^{-}-\left(A_{i}, B_{j}\right)^{+}\right]\right\} \\
& \text {for } \hat{n}_{r} \leq i \leq \hat{N}_{r}, \hat{n}_{z} \leq j \leq \hat{N}_{z} \text {. }
\end{align*}
$$

We consider vertical and horizontal gaps separately. Let $\left\{\sigma^{g}(p)\right.$: $1 \leq P \leq N T I R\}$ denote the set of vertical gap indices, that is, $r_{\sigma} g_{(p)}$ is a vertical gap interface (when $\nu_{\sigma^{r}}^{r}(p)=0$), and let $\left\{\tau^{g}(q): 1 \leq q \leq\right.$ NTIZ $\}$ denote the set of horizontal gap indices. Recall that each breakpoint r_{σ} has multiplicity $d_{\sigma}=k_{r}-\nu_{\sigma}^{r}$ and a set of knots $\left\{\xi_{i}^{r}: I L(\sigma)-d_{\sigma}+1 \leq i \leq I L(\sigma)\right\}$ associated with r_{σ} where IL (σ) is the index of the last knot associated with r_{σ}. For example, in Fig. 2 we show a set of 5 breakpoints ($\ell=4$) with the knots distributed on the breakpoints as indicated by the symbol x above the breakpoints. In this example, $k=4$ so that the breakpoint r_{3} could be a gap interface. For this example we have:

$$
\begin{aligned}
& \xi_{1}=\xi_{2}=\xi_{3}=\xi_{4}=r_{1}, \quad \operatorname{IL}(1)=4, \quad d_{1}=4, \quad v_{1}=0, \\
& \xi_{5}=\xi_{6}=r_{2}, \operatorname{IL}(2)=6, \quad d_{2}=2, \quad v_{2}=2, \\
& \xi_{7}=\xi_{8}=\xi_{9}=\xi_{10}=r_{3}, \quad I L(3)=10, \quad d_{3}=4, \quad v_{3}=0, \\
& \xi_{11}=\xi_{12}=r_{4}, I L(4)=12, \quad d_{4}=2, \quad v_{4}=2, N=12, \\
& \xi_{13}=\ldots .=\xi_{16}=r_{5}, \quad d_{5}=4, \quad v_{5}=0 .
\end{aligned}
$$

Figure $\hat{\imath}$
Sample breakpoint and knot distribution

For each vertical gap interface ${ }^{r}{ }_{\sigma}{ }^{g}(p)$, let $I^{g}(p)$ denote the index of the last knot associated with the breakpoints ${ }^{r}{ }_{\sigma}{ }^{g}(p)-1$, ie., set $I^{g}(p)=$ IL $\left(\sigma^{g}(p)-1\right)$. In the same way, for each horizontal gap interface ${ }^{z}{ }_{\tau} g_{(q)}$, set $J^{g}(q)=J L\left(\tau^{g}(q)-1\right)$.

Consider a vertical gap with index $\sigma^{9}(p)$, then at this gap

$$
\left(A_{i} B_{j}\right)^{-}-\left(A_{i} B_{j}\right)^{+}=\left[A_{i}\left(r_{\sigma}^{-} g^{g}(p)\right)-A_{i}\left(r_{\sigma}^{+}(p)\right] B_{j}(z) \equiv 0\right.
$$

unless $\mathfrak{i}=I^{9}(p)$ or $\mathfrak{i}=I^{9}(p)+1$, in which case

$$
A_{i}\left(r_{\sigma^{g}(p)}^{-}\right)-A_{i}\left(r_{\sigma^{g}(p)}^{+}\right)=\left\{\begin{array}{rll}
1 & \text { if } & i=I^{g}(p) \\
-1 & \text { if } & i=I^{g}(p)+1
\end{array}\right.
$$

Consider the contribution to Eq. (2.11a) from the vertical gaps. With $i_{0}=I^{g}(p)$, we have
(2.23a) $-\sum_{p=1}^{\text {STIR }} \sum_{i^{4}=1}^{N_{r}} \sum_{j^{4}=1}^{N_{z}} U_{i}^{m} j^{\prime} \int_{\underline{z}}^{\bar{z}}\left[A_{i}\left(r_{\sigma}^{-}{ }_{\sigma}(p)\right)-A_{i}\left(r_{\sigma^{\prime}(p)}^{+}\right)\right] B_{j}(z) h_{p}^{V g}$

- $\left[A_{i},\left(r_{\sigma^{-}(p)}^{-}\right)-A_{i^{\prime}}\left(r_{\sigma^{g}(p)}^{+}\right)\right] B_{j^{\prime}}(z) S^{\delta}\left(r_{\sigma^{g}(p)}\right) d z$

$$
\begin{aligned}
& \text { for } \hat{n}_{z} \leq \mathrm{j} \leq \hat{N}_{z} \text {. }
\end{aligned}
$$

In the same way, we find that horizontal gaps will contribute terms of the following form.

$$
\begin{aligned}
& \text { for } \hat{n}_{r} \leq i \leq \hat{N}_{r} \text {. }
\end{aligned}
$$

2.3.5 Distributed Source Term

Recall from Eq. (1.5) that

$$
\begin{equation*}
F_{m}(t, r, z, \vec{u}, \nabla \vec{u})=\sum_{m^{4}=1}^{M} C_{m m^{\prime}} u_{m^{\prime}}+. \sum_{m^{r}=1}^{M} \sum_{m^{\prime \prime}=1}^{M} C_{m m^{\prime} m^{\prime \prime}} u_{m^{\prime}} u_{m^{\prime \prime}}+f_{m}(t, r, z, \vec{u}, \nabla \vec{u}) \tag{2.24}
\end{equation*}
$$

where

$$
\begin{aligned}
& f_{m}(t, r, z, \vec{u}, \nabla \vec{u})=f_{m}\left(t, r, z, u_{1}(t, r, z), \ldots, u_{m}(t, r, z)\right. \\
& \left.\quad \frac{\partial u_{1}}{\partial r}(t, r, z), \frac{\partial u_{1}}{\partial z}(t, r, z), \ldots, \frac{\partial u_{m}}{\partial r}(t, r, z), \frac{\partial u_{m}}{\partial z}(t, r, z)\right)
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left\langle F_{m}, A_{i} B_{j}\right\rangle=\iint_{R} F_{m}(t, r, z, \vec{u}, \nabla \vec{u}) A_{i} B_{j} d \mu_{r} d z \quad \text { for } \quad \hat{n}_{r} \leq i \leq \hat{N}_{r}, \hat{n}_{z} \leq j \leq \hat{N}_{z} \tag{2.25}
\end{equation*}
$$

We have now accounted for each term which contributes to the right hand side of Eq. (2.11a). For each species m, the right hand side of Eq. (2.11a) has a total of $\left(\hat{N}_{r}-\hat{n}_{r}+1\right)\left(\hat{N}_{z}-\hat{n}_{z}+1\right)$ components. If we denote by \hat{G}^{m} the vector with these components, then Eq. (2.11a) can be written as a system of $\left(\hat{N}_{r}-\hat{n}_{r}+1\right)\left(\hat{N}_{z}-\hat{n}_{z}+1\right)$ differential equations

$$
\begin{equation*}
\tilde{A}_{m}(U) U^{m}=\tilde{G}^{m} \tag{2.26}
\end{equation*}
$$

for the $N_{r} N_{z}$ functions $U^{m}=\left\{U_{i}^{m} j_{j}(t): 1 \leq j^{\prime} \leq N_{r}, 1 \leq j^{\prime} \leq N_{z}\right\}$.

2.3.6 Essential Bour Hu: Condition Terms

This system is augmented by the weak form of the essential boundary
conditions (2.11b) which generates an additional system of algebraic equations as ω ranges over the set T_{0}. Thus if $s_{1}=1$, then the set $\left\{A_{1}(r) B_{j}(z): \hat{n}_{z} \leq j \leq \hat{N}_{z}\right\}$ is part of T_{0} and $E q$. (2.11b) will provide the following equations.

If $s_{2}=1$ then the set $\left\{A_{i} B_{j}: 1 \leq i \leq N_{r}\right\}$ is part of T_{0}; so that Eq. (2.11b) will provide the following equations.

$$
\begin{equation*}
\sum_{i^{\prime}=1}^{N_{r}} U_{i^{\prime}, 1}^{m} \int_{\underline{R}}^{\bar{R}} A_{i}, A_{i} d \mu_{r}=\frac{r_{2}}{a_{2}} \int_{\underline{R}}^{\bar{R}} A_{i} \rho^{0}(t, r, \underline{z}) d \mu_{r} \text { for } 1 \leq i \leq N_{r} . \tag{2.27b}
\end{equation*}
$$

If $s_{3}=1$, we obtain the set

If $s_{4}=1$, we obtain the set

$$
\begin{equation*}
\sum_{i^{\prime}=1}^{\mu_{r}} U_{i^{\prime}, N_{2}}^{m} \int_{\underline{R}}^{\bar{R}} A_{i}, A_{i} d \mu_{r}=\frac{r_{4}}{\alpha_{A}} \int_{\underline{R}}^{\bar{R}} A_{i} \rho^{0}(t, r, \bar{Z}) d \mu_{r} \quad \text { for } 1 \leq i \leq N_{r} \tag{2.27d}
\end{equation*}
$$

Equations 2.27 provide an additional system of $\left(s_{1}+s_{3}\right)\left(\hat{N}_{2}-\hat{n}_{z}+1\right)+\left(s_{2}+s_{4}\right) N_{r}$ algebraic equations which when consid_red together with the system of differential equations in (2.26) provides us with a mixed system of algebraic and differential equations whose total number is $\mathrm{N}_{\mathrm{r}} \mathrm{N}_{\mathbf{z}}$.

The algebraic equations (2.27) can be avoided if in the essential boundary condition $u=\frac{\gamma}{a} \rho^{0}$, we take the partial derivative with respect to time of both sides of this equation. We then have

$$
\dot{u}=\gamma / a \dot{\rho}^{0}
$$

and the weak form

$$
\begin{equation*}
\int_{\partial R_{0}} \omega \dot{u}=\int_{\partial R_{0}}{ }_{\alpha}^{\gamma} \dot{\rho}^{0} \omega . \tag{2.28}
\end{equation*}
$$

From this expression we then obtain a system of differential equations which have the same form as the system (2.27) with $U_{i \prime j}^{m}$ replaced by $\dot{U}_{i \prime j}^{m}$, and $\rho{ }^{0}$ replaced by $\dot{\rho}^{0}=\partial \rho \rho^{0} / \partial t$. When this differential system is combined with the system (2.26) we obtain a system of $N_{r} N_{z}$ differential equations in $N_{r} N_{z}$ unknown functions for each species. This system can be written in the form

$$
\begin{equation*}
A_{m}(U) u^{m}=G^{m}, \quad m=1, \ldots, M \tag{2.29}
\end{equation*}
$$

where $A_{m}(U)$ is now a square matrix.
The m xed differential and algebraic system will be called the mixed or algebraic voundary condition version. The differential system (2.29) will be called the differential boundary condition version. Both versions have been implemented in the same program, and either can be selected on input.

2.3.7 Initial Conditions

The initial conditions are generated from the weak form given by Eqs. (2.11c,d) as follows. Given an initial distribution $u_{m}^{0}(r, z)$, we seek the projection of this function into the space span.ed by the sets T and T_{0}. That is, we seek

$$
\begin{equation*}
\hat{u}_{m}^{0}(r, z)=\sum_{i=1}^{N_{r}} \sum_{j=1}^{N_{z}} \hat{u}_{i \prime j}^{m} A_{i}, B_{j \prime}, \tag{2.30}
\end{equation*}
$$

and determine the coefficients \hat{U}_{i}^{m},jl by the following equations.

$$
\begin{array}{r}
\left\langle\hat{u}^{0}, A_{i} B_{j}\right\rangle=\sum_{i}^{N_{r}} \sum_{j=1}^{N_{z}} \hat{U}_{j: j}^{m},\left\langle A_{i}, B_{j},, A_{i} B_{j}\right\rangle=\left\langle u^{0}, A_{i} B_{j}\right\rangle \tag{2.31}\\
\quad \text { for } \hat{n}_{r} \leq 1 \leq \hat{N}_{r}, \hat{n}_{z} \leq J \leq \hat{N}_{z}
\end{array}
$$

and if $s_{1}=1$ (side 1 is essencial, $8=0$)

$$
\begin{array}{r}
\sum_{j^{K}=1}^{N_{z}} \hat{U}_{1 j}^{m}, S^{\delta}(\underline{R}) \int_{\underline{Z}}^{\bar{Z}} B_{j} B_{j}, d z=S^{\delta}(\underline{R}) \quad \int_{\underline{Z}}^{\sum_{1}} \frac{\gamma_{1}}{\alpha_{1}} B_{j^{\circ}}{ }^{0}\left(t_{0}, \underline{R}, z\right) d z \tag{2.3乏}\\
\text { for } \hat{n}_{z} \leq j \leq \hat{N}_{z},
\end{array}
$$

if $s_{2}=1(\beta=0$ on side 2$)$

$$
\begin{equation*}
\sum_{i=1}^{N_{r}} \hat{U}_{i}^{m} 1 \int_{\underline{k}}^{\bar{R}} A_{i} A_{i}, d \mu_{r}=\int_{\underline{k}}^{\bar{R}} \frac{\gamma_{2}}{\alpha_{2}} A_{i} \rho^{0}\left(t_{0}, r, \underline{Z}\right) d \mu_{r} \quad \text { for } 1 \leq i \leq N_{r} \text {, } \tag{2.33}
\end{equation*}
$$

with similar expressions if $s_{3}=1$ and if $s_{4}=1$. Note that in determining $\left\{\hat{U}_{i j}^{m}\right\}$ we have imposed the initial values of the essential boundary conditions (i.e. $\rho^{0}\left(t_{0}\right)$ on ∂R_{0}) even though the initial distribution u^{0} may or may not satisfy these conditions. Using $\rho^{0}\left(t_{g}\right)$ on ∂R_{0} means that we have selected one of many possible projections of u^{8} into the space spanned by the sets T and T_{0}.

2.4 Evaluation of Integrals

In the case of algebraic constraints on the essential boundaries, the Galerkin procedure leads to a mixed system of urdinary differential equations and algebraic equations. In the case of differential constraints, the Galerkin procedure leads to a systom of ordinary differential equations of the form given in Eq. (2.29). In either case, a variety of integrals have to be evaluated. The general procedure for the evaluation is the same for all of these integrals and can be illustrated by considering the integrals appearing in the coefficient matrix of Eq. (2.29) which arise from Eq. (2.16). From this equation, we see that the following integrals have to be computed.

$$
\begin{align*}
& I^{A}\left(i, j ; i^{\prime}, j^{\prime}\right)=\iint_{R}\left[D C_{p}\right](t, r, z, u) A_{i}(r) A_{i}(r) B_{j}(z) B_{j}(z) d \mu_{r} d z \tag{2.34}\\
& \quad \text { for } \hat{n}_{r} \leq i \leq \hat{N}_{r}, \hat{n}_{z} \leq j \leq \hat{N}_{z}, \text { and } 1 \leq i^{\prime} \leq N_{r}, 1 \leq j^{\prime} \leq N_{z} .
\end{align*}
$$

First we observe that since $A_{i}(r) A_{i},(r) \equiv 0$ for $\left|i-i^{\prime}\right|>k_{r}$ and $B_{j}(z) B_{j}(z) \equiv 0$ for $\left|j-j^{\prime}\right|>k_{z}$, we have $I^{A}\left(i, j ; i^{\prime}, j^{\prime}\right)=0$ when $\left|i-i^{\prime}\right|>k_{r}$ or $\left|j-j^{\prime}\right|>k_{z^{\prime}}$ (Recall from (2.12 iv) that $A_{i}(r)$ has its support in the interval $\left.\left[\xi_{i}^{r}, \xi_{i+k_{r}}^{r}\right].\right)$ The computation of the integrals is accomplished by
accumulating the integrals over each mesh subrectangle. Thus

$$
\begin{equation*}
I^{A}\left(i, j ; i^{\prime}, j^{\prime}\right)=\sum_{\sigma=1}^{\ell} r \sum_{\tau=1}^{\ell} Z 1_{\sigma, \tau}^{A}\left(i, j ; i^{\prime}, j^{\prime}\right) \tag{2.35}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{\sigma, \tau}^{A}\left(i, j ; i^{\prime}, j^{\prime}\right)=\int_{z_{\tau}}^{z} \tau+1 \int_{\sigma}^{r_{\sigma+1}}\left[\rho C_{p}\right](t, r, z, u) A_{j}(r) A_{i^{\prime}}(r) B_{j}(z) B_{j}(z) d \mu_{r} d \mu_{z} \tag{2.36}
\end{equation*}
$$

If IL (σ) is the index of the last knot associated with r_{σ} then if $r \varepsilon\left[r_{\sigma}, r_{\sigma+1}\right]$ we have $A_{i \prime \prime}(r)=0$ for $i^{\prime \prime} \notin\left[\operatorname{IL}(\sigma)-k_{r}+1, \operatorname{IL}(\sigma)\right]$. Similarly, let JL($\left.\tau\right)$ denote the index of the last knot associated with z_{τ}, then if $z \varepsilon\left[z_{\tau}, z_{\tau+1}\right]$, we have $B_{j \prime \prime}(z)=0$ for $j^{\prime \prime} \notin\left[J L(\tau)-k_{z}+1, J L(\tau)\right]$. Considering the integrals in (2.36), we see then that when $r \in\left[r_{\sigma}, r_{\sigma+1}\right], A_{i}(r) A_{i}(r) \neq 0$ for $\hat{\mathbf{i}}_{\ell} \leq i \leq \hat{\mathbf{i}}_{u}$ and $i_{\ell} \leq i^{\prime} \leq i_{u}$ where $i_{\ell}=\operatorname{IL}(\sigma)-k_{r}+1, i_{u}=\operatorname{IL}(\sigma), \hat{i}_{\ell}=\operatorname{Max}\left(\hat{n}_{r}, i_{\ell}\right)$, and $\hat{i}_{u}^{\ell}=\operatorname{Min}\left(\hat{N}_{r}, i_{u}\right)$. In the same way, we find that for $z \varepsilon\left[z_{\tau}, z_{\tau+1}\right]$, $B_{j}(z) B_{j}(z) \neq 0$ for $\hat{j}_{\ell} \leq j \leq \hat{j}_{u}$ and $j_{\ell} \leq j^{\prime} \leq j_{u}$ where j_{ℓ}, j_{u}, etc. are defined as above with $J L(\tau)$ and k_{z} in place of $I L(\sigma)$ and k_{r}. Thus for each σ, $1 \leq \sigma \leq \ell_{r}$ and $\tau, 1 \leq \tau \leq \ell_{z}$, an integral of the type 2.36 must be evaluated for

$$
\mathbf{i}_{\ell} \leq \mathfrak{i}^{\prime} \leq \mathfrak{i}_{u}, \quad \hat{\mathbf{i}}_{\ell} \leq \mathbf{i} \leq \hat{\mathbf{i}}_{u}, \quad \mathbf{j}_{\ell} \leq \mathbf{j}^{\prime} \leq \mathbf{j}_{u}, \quad \text { and } \quad \hat{\mathbf{j}}_{\ell} \leq j \leq \hat{j}_{u}
$$

Since each integral extends over a rectangular region, a product formula is a natural choice for a numerical quadrature scheme. This program uses a product Gauss-Legendre quadrature scheme with NQR points in each interval $\left[r_{\sigma}, r_{\sigma+1}\right]$ and NQZ points in eacin interval $\left[z_{\tau}, z_{\tau+1}\right]$. The values of NQR and NQZ can be selected by the user with the restriction that $N Q R \geq k_{r}-1$ and $N Q Z \geq k_{z}-1$. However, $N Q R=k_{r}$ and $N Q Z=k_{z}$ are reasonable choices for these values in the sense that for this choice the error due to the use of quadrature formulas is much less than the error due to the Galerkin approximation. The choice $N Q R=k_{r}-1$ and $N Q Z=k_{z}-1$, when it works, appear to be optimal in the sense that the quadrature error is not greater than the Galerkin a proximations error. This would be in agreement with the theory for elliptic roblems as discussed by Strang in [4]. However, there are problems for which this choice does not work. See, for example, the sample problem in section 7 o ; in this case one must use the default values $N Q R=k_{r}$ and $N Q Z=k_{z}$ (cf. s 5.2).

3. PROBLEM DESCRIPTION

In this section, we describe the class of problems which call be solved by DiSPLI, as well as its capabilities and limitations. We will also describe input and output of the code. In short then, this section and the remainder of this report constitutes a user's guide.

3.1 Domain

$$
R=\{(r, z): \text { RLOW } \leq r \leq R U P, Z L O W \leq z \leq Z U P\}
$$

is a rectangular domain with sides parallel to the coordinate axes.

3.2 Geometry

$$
\text { DELTA }= \begin{cases}0, & \text { Cartesian }(x, y), \\ 1, & \text { cylindrical (} r, z), \\ 2, & \text { spherical (one-dimensional only) } .\end{cases}
$$

3.3 Interfaces

The domain R may be composed of subrectangles such that each subrectangle has its own material properties.

NTIR ... the number of vertical interfaces.
NTIZ ... the number of horizontal interfaces. NTIR $=0(N T I Z=0)$ means that there are no vertical (horizontal) interfaces.
$\operatorname{RIF}(\mathrm{I}), 1 \leq \mathrm{I} \leq N T I R \ldots$ the position of the I-th vertical interface.
ZIF $(J), 1 \leq J \leq N T I Z \ldots$ the position of the J-th horizontal interface.

3.4 Additional Mesh Points

In addition to the interfaces, the domain R can be subdivided further by additional mesh points.

NMR ... the total number of additional vertical mesh points in the domain R not including the end points.
NMZ ... the total number of additional horizontal mesh points in the domain R not including the end points.

RMESH(I), $1 \leq I \leq N M R \ldots$ the position of the I-th vertical additional mesh point. Here RLOW < RMESH(I) < RUP.
ZMESH(J), $1 \leq J \leq N M Z \ldots$ the position of the J-th horizontal additional mesh point. Here ZLOW < ZMESH(J) < ZUP.

The program merges the additional mesh points with the interface points to form a mesh over which the B-splines are defined.

3.5 Partial Differential Equations

The basic equation considered by this program can be viewed as a general form of the equation of continuity of a multicomponent fluid under the assumption that the total mass density is constant. This particular physical model provides convenient terminology for describing the equations. From a mathematical standpoint, the equation considered by this program is a system of nonlinear parabolic equations in two spatial variables.

NSPEC ... denotes the number of species (total number of parabolic partial differential equations).
$u_{m}=u_{m}(t, r, z) \ldots$ denotes the concentration of the $m-t h$
species at the point (t, r, z) (dependent variables for the m-th equation).
$\vec{u}=\left(u_{1}, u_{2}, \ldots, u_{m}\right)^{\top} \ldots$ denotes the vector of concentrations.
The system of equations has the following form.

$$
\begin{align*}
& {\left[\rho C_{p}\right]_{m}(t, r, z, \vec{u}) \frac{\partial u_{m}}{\partial t}+\theta \nabla \cdot\left(\vec{V}_{m}(t, r, z, \vec{u}) u_{m}\right)+(1-\theta) \vec{V}_{m}(t, r, z, \vec{u}) \cdot \nabla u_{m}} \tag{3.1}\\
& =\nabla \cdot\left(\vec{\delta}_{m}(t, r, z, \vec{u}, \vec{\nabla} \vec{u}) \nabla u_{m}\right)+\sum_{m^{\prime}=1}^{N S P E C} c_{m m^{\prime}} u_{m^{\prime}} \\
& +\sum_{m^{\prime}=1}^{\text {NSPEC }} \sum_{m^{\prime \prime}=1}^{\text {NSPEC }} c_{m m^{\prime} m^{\prime \prime}} u_{m^{\prime}} u_{m "}+f_{m}(t, r, z, \vec{u}, \overrightarrow{\nabla u}) \\
& \text { for } 1 \leq m \leq N S P E C .
\end{align*}
$$

When $\left[\rho C_{p}\right]_{m}(t, r, z, \vec{u}) \equiv 1$ for any m, the program precomputes the integrals I^{A} appearing in (2.34) which can result in a substantial reduction in the execution time. In Namelist GRID, the flag IREVLA(m)=T, implies that $\left[\rho C_{p}\right]_{m}$ is not identically 1 or 0 . $\operatorname{IREVLA}(m)=F$, implies that $\left[\rho C_{p}\right]_{m}$ is either
identically 1 or 0 . The flag $\operatorname{IRH}(m)=T$, implies that $\left[\rho C_{p}\right]_{m} \equiv 0$ while $\operatorname{IRHD}(\mathrm{m})=\mathrm{F}$, implies $\left[\rho C_{p}\right]_{m} \neq 0$. The parameter θ can have either of the values 0 or 1. When $\theta=1$, we have the conservative form. and when $\theta=0$, we have the non-conservative form for the equations. The conservative form is used by the proaram by settina the loaical indicator CONSRV $=T$, in the input namelist GRID.

The following user-supplied subroutines provide the coefficient functions appearing in Eq. (3.1).

RHOCP - supplies the heat capacity coefficient $\left[\rho C_{p}\right]_{m}(t, r, z, \vec{u})$.
VEL - supplies the convection velocity vector coefficients $\vec{V}_{m}(t, r, z, \vec{u})$.
DIFUSE - suppiies the diffusion vector coefficient $\vec{\delta}_{m}(t, r, z, \vec{u}, \vec{\nabla})$.
EXTSRC - supplies the distributed source $f_{m}(t, r, z, \vec{u}, \vec{\nabla})$.
In addition to the indicated dependence of these functions are the arguments t, r, z, \vec{u}, and $\vec{\nabla} \vec{u}$, each of these functions can also depend on the material index present at the point (r, z). This dependence on the material index can simplify the task of writing these subroutines when the coefficients depend on the materials which are present.

3.6 Interface Conditions

If interfaces are present in the domain R, then interface conditions must be applied across each interface. Recall that NTIR is the number of vertical interfaces and NTIZ is the number of horizontal interfaces. (If NTIR (NTIZ) is zero, then there are no vertical (horizontal) interfaces in the domain R.) As far as this program is concerned, an interface must extend from one external boundary to the opposite external boundary of R. Let Γ denote an interface, then this program allows for one of two possible interface conditions to be imposed on Γ.

3.6.1 Continuity Condition (continuity of density and flux)

$$
\left\{\begin{array}{l}
\text { (i) }\left.u_{m}\right|_{r^{-}}=\left.u_{m}\right|_{r^{+}} \tag{3.2}\\
\text {(ii) }\left.\quad \delta_{m} \frac{u_{m}}{\partial|n|}\right|_{r^{-}}=\left.\vec{\delta}_{m} \frac{\partial u_{m}}{\partial|n|}\right|_{r^{+}}, \text {for } 1 \leq m \leq \text { NSPEC. }
\end{array}\right.
$$

Here $\vec{D}_{m}=\vec{D}_{m}(t, r, z, \vec{u}, u)$ and $\vec{D}_{m} \frac{\partial u_{m}}{\partial|n|}=D_{m}^{r} \frac{\partial u_{m}}{\partial r}$ if Γ is vertical; while $\vec{D}_{m} \frac{\partial u_{m}}{\partial|n|}=$ $D_{m}^{z} \frac{\partial u_{m}^{m}}{\partial z}$ if Γ is horizontal. In addition, the symbol $\left.\right|_{\Gamma}+$ indicates a limiting value taken from the right (above) if Γ is vertical (horizontal) with the corresponding meaning for $\left.\right|_{\Gamma}$-.
3.6.2 Gap Condition (Discontinuity in the density and continuity in the flux.)

$$
\begin{cases}\text { (i) } & -\left.\vec{D}_{m} \frac{\partial u_{m}}{\partial|n|}\right|_{r^{-}}=n^{g}\left\{\left.u_{m}\right|_{r^{-}}-\left.u_{m}\right|_{r^{+}}\right\} \tag{3.3}\\ \text {(ii) } & \left.\vec{\delta}_{m} \frac{\partial u_{m}}{\partial|n|}\right|_{r^{-}}=\left.\vec{D}_{m} \frac{\partial u_{m}}{\partial|n|}\right|_{r^{+}}\end{cases}
$$

Let NIGAP denote the set of vertical gap interfaces. The I-th vertical gap will intersect a set if NTIZ horizontal interfaces. This horizontal set of interfaces will subd y'do the r -th vertical gap into a set of $1+$ NTIZ subintervals. The vertic 1 gap coefficients " ${ }^{V g}$ can then depend on the following parameters.

$$
\begin{equation*}
h^{V g}=\operatorname{HVGAP}(m, I, J) \text { for } 1 \leq m \leq \operatorname{NSPEC}, \quad 1 \leq I \leq N I G A P, \text { and } . \tag{3.4i}
\end{equation*}
$$

In the same way, if NJGAP denotes the number of horizontal gaps, then (3.4ii) $h^{\mathrm{Hg}}=\operatorname{HHGAP}(\mathrm{m}, \mathrm{J}, \mathrm{I})$ for $1 \leq \mathrm{m} \leq \operatorname{NSPEC}, 1 \leq \mathrm{J} \leq \operatorname{NJGAP}$, and

$$
1 \leq I \leq 1+N T I R .
$$

The gap coefficients $\operatorname{HVGAP}(m, I, J)$ and $\operatorname{HHGAP}(m, J, I)$ are supplied by the user in the input namel ist DATA.

With regard to interfaces, this program is restricted by the following requirements.
(i) All interfaces must be parallel to the coordinate axes.
(ii) Each interface must extend from one external boundary to the opposite external boundary.
(iii) For a given species and a given interface, the same type of interface condition must be applied everywhere on the interface.

In order to illustrate the last two restrictions, consider the following domain with three different materials labeled I, II, and III as shown in Fig. 3.

Suppose that for a given species, we have a gap condition between materials I and II, and continuity conditions between materials I and III as well as material II and III. As it stands this configuration cannot be handled by this program. However, an approximate problem can be handled by the program. To this end we first extend the interfaces so that they extend from one exterior boundary to the opposite side. This gives a set of NTIR=2 vertical interfaces and a set of $N T I Z=1$ horizontal interfaces as shown in Fig. 4.

Figure 4
Interface Conditions after Refinement

Consider the lst vertical interface which is divided into two subintervals. The lower subinterval separates materials I and II and across this interface we have a gap condition. But then the program requires a gap condition to be applied across the upper subinterval which separates materials I and III. However, the original problem required a continuity condition across this upper subinterval. In order to approximate the original problem, we observe that the continuity condition is a limiting case of a gap condition as the gap coefficient increases in magnitude. Thus, in order to approximate the original problem, we would impose a gap condition across the first vertical interface. There are two gap coefficients associated with this interface $h^{V g}(m, 1, J), J=1,2$, with $h{ }^{\mathrm{Vg}}(m, 1,1)$ the given coefficient for materials I and II, and $h^{{ }^{\mathrm{Vg}}(m, 1,2)}$ an arbitrary but large number. If $h^{\mathrm{Vg}}(\mathrm{m}, 1,2)$ is sufficiently large, the original interface condition across the first vertical interface will be approximated as closely as desired. Extending the horizontal interface implies that we have introduced an interface in material I, for example, where in the original problem there was none. Interfaces of this type would cause concern only if very accurate values of the concentration were required in the vicinity of corners.

3.7 Boundary Conditions

For each species m, a boundary condition may be specified on each of the four sides of the domain R. The boundary conditions have the following form.

$$
\begin{equation*}
\alpha h u_{m}+\beta J_{m} \nabla u_{m} \cdot \stackrel{\Delta}{n}=\gamma h_{\rho}^{0} \tag{3.5}
\end{equation*}
$$

where \vec{n} denotes the unit exterior normal on R, and

$$
\left.\begin{array}{l}
\alpha=\operatorname{ALPHA}(m, s) \\
\beta=\operatorname{BETA}(m, s) \\
\gamma=\operatorname{GAMMA}(m, s)
\end{array}\right\} 1 \leq m \leq \operatorname{NSPEC}, 1 \leq s \leq 4,
$$

are specified in namelist DATA for each species m and each side index s. The sides are numbered counterclockwise starting with the left hand side. The mass transfer coefficients are indexed as follows.

$$
\begin{aligned}
& h=\left\{\begin{array}{l}
\operatorname{HU1}(J, m) \text { on side } 1 \\
H U 3(J, m) \text { on side } 3
\end{array}\right\} 1 \leq J \leq 1+\text { NTIZ, } 1 \leq m \leq \text { NSPEC. } \\
& h=\left\{\begin{array}{l}
\text { HU2 }(I, m) \text { on side } 2 \\
\operatorname{HU4}(1, m) \text { on side } 4
\end{array}\right\} 1 \leq I \leq 1+\text { NTIR, } 1 \leq m \leq \text { NSPEC. }
\end{aligned}
$$

These coefficients are specified in the input namelist DATA.
The function $\rho^{0}(t, m, s, x)$ is specified in the user-supplied subroutine BRHO when the algebraic version is used ($A L G B C S=T$,). The time derivative of ρ_{m}^{0} is supplied in the user-supplied subroutine BRHODT when the differential version is used ($A L G B C S=F$,). The value of ρ_{m}^{0} is allowed to depend on the normal component $\vec{V}_{m} \cdot \vec{n}$ of the convection velocity. In addition, the function $\rho{ }^{0}$ can depend on $\overrightarrow{\mathrm{u}}$ and the derivatives $\overrightarrow{\nabla \mathrm{u}} \cdot|\vec{n}|$ evaluated at x on side s. That is,

$$
\rho^{0}=\rho^{0}\left(t, m, s, x, u_{1}(x), \ldots, u_{M}(x), \overrightarrow{\nabla u}_{1} \cdot|\vec{n}|(x), \ldots, \overrightarrow{\nabla u}_{M} \cdot|\vec{n}|(x)\right)
$$

Note that if $g(t, m, s, x, \vec{u}(x), \overrightarrow{\nabla u} \cdot \vec{u}(x))=0$ is a given nonlinear boundary condition, then we can achieve the form of equation (3.5) by setting
$\rho_{m}^{0}=g(t, m, s, x, \vec{u}(x), \overrightarrow{\nabla u} \cdot \vec{u}(x))+\alpha u_{m}+\beta\left(D_{m} \vec{v}_{m}\right) \cdot \vec{n}(x)$ with $h \equiv 1$ and $\gamma \equiv 1$. It should be emphasized that boundary conditions must be put in the form given by equation (3.5).

In order to avoid any confusion on signs, we write equation (3.5) explicitly for each side.

$$
\begin{aligned}
& \alpha_{1} h_{1} u_{m}-\beta_{1}\left(D_{m}^{r} \frac{\partial u_{m}}{\partial r}\right)=\gamma_{1} h_{1} \rho_{1, m}^{0}, \\
& \alpha_{2} h_{2} u_{m}-\beta_{2}\left(D_{m}^{z} \frac{\partial u_{m}}{\partial z}\right)=\gamma_{2} h_{2} \rho_{2, m}^{0}, \\
& \alpha_{3} h_{3} u_{m}+\beta_{3}\left(D_{m}^{r} \frac{\partial u_{m}}{\partial r}\right)=r_{3} h_{3} \rho_{3, m}^{0}, \\
& \alpha_{4} h_{4} u_{m}+\beta_{4}\left(D_{m}^{z} \frac{\partial u_{m}}{\partial z}\right)=r_{4} h_{4} \rho_{4, m}^{0},
\end{aligned}
$$

For each species m, the program requires a set of four indicators, provided in the input namelist DATA, with the following meaning.

$$
N S J(m)=\left\{\begin{aligned}
1 & \text { if side } J \text { has essential boundary conditions } \\
0 & \text { if side } J \text { does not have essential boundary conditions } \\
-1 & \text { if side } J \text { does not have a boundary condition }
\end{aligned}\right.
$$

for $\mathrm{J}=1,2,3,4$; and $m=1$, NSPEC.
As an example, consider a boundary condition on side 1 given in laboratory coordinates having the following form.

$$
D_{m}^{r} \frac{\partial}{\partial r} u_{m}=g_{1, m}
$$

Since we are on side $1, \nabla u_{m} \cdot \vec{n}_{1}=-\frac{\partial}{\partial r}$ where \vec{n}_{1} is the outward pointing normal on side 1 ; hence the above condition can be written in the form

$$
-\nabla_{m}^{r} \nabla u_{m} \cdot \vec{n}_{1}=g_{1, m}
$$

This is the form which is appropriate for specifying the values of α, β, and γ. Thus in this example we would set

$$
\alpha_{1}=0, \quad \beta_{1}=-1, \quad r_{1}=1, \quad h_{1}=1, \quad f_{1, m}^{0}=g_{1, m} .
$$

Then internally the code uses the condition in laboratory coordinates as shown in the first form.

3.8 Initial Conditions

This program allows for two possible types of initial conditions.
A. An arbitrary initial distribution $\left\{u_{m}^{0}(r, z): 1 \leq m \leq N S P E C\right\}$ can be specified in a user-supplied subroutine INDATA. The program will then project this data into the approximating subspace in order to provide the initial data for solving the system of ordinary differential equations. The use of this option is indicated by setting INITSW=T, in the input namelist GRID.
B. The second type of initial condition is for the program to start from some particular steady-state or equilibrium distribution $\left\{\tilde{u}_{m}^{0}(r, z): 1 \leq m \leq\right.$ NSPEC\}. The program will first compute an approximation to this steadystate distribution in the approximating subspace of B-splines by means of the control subroutine STEADY. The program can then use this steady-state solution as the initial data for a transient calculation which is done under the control of subroutine TIMEX. Recall that if all the coefficients (convection velocity, diffusivity, distributed source, and external
boundary functions) are independent of time, then the steady solution exists and can be found by integrating the differential equations out in time until the solutions are independent of time. The program uses this approach to find a steady-state solution. A steady-state calculation is indicated by setting STEOSW=T, in the input namelist GRID. If this calculation is to be followed by a transient calculation which uses the steady-state solution as its initial data, then this is indicated by setting TRANSW $=T$, in addition to $S T E D S W=T$. When the program performs a steady-state calculation, it will require an initial estimate for the steady-state solution. There are two options available for providing this initial estimate. First, if the user has an initial estimate, he can provide this estimate in subroutine INDATA and signal the program to use this estimate by setting INITSW=T, in the input namelist GRID. If the user does not wish to provide an initial estimate for the steady-state calculation, the program will generate an initial estimate with the control program GUFSS1. This option can be invoked by setting GUESSW=T, in the input namelisi GRID.

The four switches TRANSW, STEDSW, INITSW, and GUESSW control the nature of the calculation as well as the nature of the initial conditions. We illustrate this with some examples.
I. GUESSW=F, INITSW=T, STEDSW=T, TRANSW=T. This indicates that a transient calculation is to be cone with the initial data provided by the result of a steady-siate calculation. Moreover, the initial estimate for the steady-state calculation is provided by the user in the user subroutine INDATA.
II. GUESSW=T, INITSW=F, STEDSW=T, TRANSW=T. This is the sine calculation as in I. except that the user does not supply the initial estimate for the steady-state calculation.
III. GUESSW=F, 'NITSW=T, STEDSW=F, TRANSW=T. This is a transient calculation with the initial data provided by the user in the user subroutine INDATA.

All four switches have default values T; thus each switch must be explicitly set to F is that calculation is not desired.

The physical conditions which initiate a transient can be provided in the appropriate user-supplied subroutines or in the input namelist DATA whichever is applicable for initiating the transient. Note that two different sets of input data can be provided for namelist DATA. The first set is used in a steadystate calculation and the second set is used in the transient calculation.

4. DESCRIPTION OF USER-SUPPLIED SUBROUTINES

This program requires nine 'iser-supplied subroutines each written in FORTRAN. Every one of these routines must be present in at least dummy form.

4.1 Subroutine DIFUSE(JM4TL,KSPEC,NSPEC, T,RR,ZZ, SPDEN,SPDENR,SPDENZ, DIFUR, DIFUZ,T0)

Variable Names and imeanings:
KSPEC.....Species index.
NSPEC.... Total number of species.
T..........Current value of the time.

RR....... Value of the abscissa.
22........Value of the ordinate.
imATL.... Value of the material index at the position (RR,ZZ).
$\operatorname{SPDEN} . .$. An array $\operatorname{SPDEN}(K), K=1, N S P E C$ for which $\operatorname{SPDEN}(K)=u(K, T, R R, Z Z)$ is the concentration of the K-th species at time T and position (R R, ZZ).
$\operatorname{SPDENR} .$. An array $\operatorname{SPDENR}(K), K=1, N S P E C$ for which $\operatorname{SPDENR}(K)=\frac{\partial U}{\partial r}(K, T, R R, Z Z)$.
$\operatorname{SPDENZ} . .$. An array $\operatorname{SPDENZ}(K), K=1, N S P E C$ for which $\operatorname{SPDENZ}(K)=\frac{\partial u}{\partial Z}(K, T, R R, Z Z)$.
DIFUR....Output value of the r-component of the diffusion coefficient for the species witi index KSPEC.

DIFUZ....Output valu of the z-component of the diffusion coefficient for the species with index KSPEC.

TO........Initial value of time at which a transient calculation starts. This value can be used to distinguish whether a steady-state (T < $T O$) calculation is in progress or whether a transient ($\mathrm{T} \geq \mathrm{TO}$) calculation is in progress.

Given $T, R R, Z Z, I M A T L$, and $\{\operatorname{SPDEN}(k), \operatorname{SPDENR}(K), \operatorname{SPDENZ}(K): K=1, N S P i C\}$, this routine returns the two components of the diffusion coefficient for the species with index KSPEC.

When a steady-state calculation is in progress we have $T<T O$ and thts routine must then return a diffusion coefficient which is independent of time.

Moreover, if the user does not provide an initial estimate (INITSW=F in namelist GRID), then the GUESS1 option (GUESSW=T in namelist GRID) must be used to provide an initial estimate for the steady-state calculation. In the ccurse of the GUESS1 calculation, the program requires that this subroutine provides an initial estimate for the diffusion coefficient. Since the concentrations are not known, this initial estimate cannot depend on SPDEN, SPDENR, SPDENZ, or T. The flag IPHASE=-2 is used to indicate when this initial estimate is to be provided for a GUESS1 calculation. This indicator is transmitted through the CDMMON block BNDCDM which can appear in this subroutine.

The general form of DIFUSE could be as follows.

```
            SUBR\emptysetUTINE DIFUSE(IMATL,KSPEC,NSPEC,T,RR,ZZ,SPDEN,SPDENR,SPDENZ,
    # OIFUR,DItUZ,TO)
    INTEGER IMATL,KSPEC,NSPEC
    D\emptysetUBLE PRECISION T,RR,ZZ,SPDEN(NSPEC),SPDENR(NSPEC),SPDENZ(NSPEC),
# DIFUR,DIFUZ,TO
    CDMMDN/BNDCDM/IPHASE,NS1(MAXSP),NS2(MAXSP),NS3(MAXSP),NS4(MAXSP)
    INTEGER IPHASE,NS1,NS2,NS3,NS4
    IF (IPHASE .EQ. -2) GO TO 10
    IF (T .LT. TO) GD TD 5
    DIFUR = D(IMATL,KSPEC,T,RR,ZZ,SPDEN(1),\ldots, SPDEN(NSPEC),
    # SPDENR(1),...,SPDENZ(NSPEC))
    DIFUZ = DIFUR
    RETURN
5 DIFUR = DH:(IMATL,RR,ZZ,SPDEN(1),...,SPDFNZZ(NSPEC))
    DIFUZ = DIFUR
    RETURN
10 DIFUR = DW(IMATL,RR,ZZ)
    DIFUZ = DIFUR
    RETURN
    END
```

where MAXSP in COMMON block BNDCDM is the value used in the MORTRAN macros (cf. 65.1).

Here D is a known expression for the diffusion coefficient which is to be used during a transient calculation (TRANSW=T in namelist GRID). In the same way DH is a known expression to be used during a steady-state calculation (STEDSW $=T$), and $D W i=$ to be used during a GUESS1 calculation (GUESSW $=T$).

4.2 Subroutine VEL(IMATL, KSPEC,NSPEC, T, RR;ZZ; SPDEN,VELR,VELZ,TO)

Variable Names and Meanings:
KSPEC....Species index.
NSPEC.... Total number of species.
T..........Current value of the time.

RR.Value of the abscissa.

ZZ........Value of the ordinate.
IMATL.... Value of the material index at the position (RR,ZZ).
$\operatorname{SPDEN} . .$. .The array $\{\operatorname{SPDEN}(K): K=1, N S P E C\}$ of concentrations.
VELR.....Cutput value of the r -compenent of the convection velocity.
VELZ.....Output value of the \mathbf{z}-component of the convection velocity.
TO........Initial value of time at which a transient calculation starts.
Given $T, R R, Z Z, I M A T L$, and $\{\operatorname{SPDEN}(K), K=1, N S P E C\}$, this routine returns the two components of the convection velocity. Note that in Eq. (3.1), the convection term appears on the left side of this equation; therefore, this routine must return values for VELR and VELZ consistent with these terms appearing on the left side.

All remarks concerning subroutine DIFUSE also app'y to subroutine VEL. The general form of VEL would be the same as that of DIFUSE with the obvious changes.

4.3 Subrnutine BRHD(T,KSPEC,NSPEC,ISIDE, XX,VLBD,SPDEN,SPDENX,RH $9 V, T 0)$

Variable Names and Meanings:
KSPEC.... Species index.
NSPEC. ... Total number of species.
ISIDE....Side index. This index can have any integer value from one to four. The sides of the domain are indexed counterclockwise starting with the left side.
$X X$. . The position coordinate of a point on the side with index ISIDE. Thus if ISIDE=1 or $3, X X=Z$ is the ordinate of a point
on either of these sides. If ISIDE=2 or 4, then $X X=R$ is the abscissa of a point on either of these sides.

VLBD......Normal component of the convection velocity at the position $X X$ on side ISIDE for species XSPEC. That is, $V L B D=V^{r}$ on sides 1 and $3, V L B D=V^{2}$ on sides 2 and 4.

SPDEN....The array $\{\operatorname{SPDEN}(K), K=1, N S P E C\}$ of concentrations.
SPDENX. . . The array $\{\operatorname{SPDENX}(K), K=1$, NSPEC $\}$ of derivatives $\frac{\partial U}{\partial|n|}(K, T, X X)$ of u on side ISIDE evaluated at time T and position $X X$ on ISIDE. That is, $\frac{\partial u}{\partial r}$ on sides 1 and $3, \frac{\partial u}{\partial z}$ on sides 2 and 4.

RHDV.....Output value of the boundary function on side ISIDE at position $X X$ for species KSPEC at time T.

TO.......Initial time at which a transient calculation starts.
Given T, KSPEC, ISIDE, XX, VLBD, SPDEN, and SPDENX, this routine returns the boundary values appearing on the right side of Eq. (3.5), i.e., the usersupplied function $\rho^{0}(T, K S P E C, I S I D E, X X)$. Note that since $\{\operatorname{SPDEN}(K)\}$ and $\{\operatorname{SPDENX}(K)\}$ are available, the value for $\rho^{0}(T, K \leq P E C, I S I D E, X X)$ can depend on the values of the arrays SPDEN and SPDENX; thus nonlinear boundary conditions are allowed. In problems where convective flow is important, it may be useful to have ρ^{0} depend on the sign of the normal component of the convection velocity. For example, if on side 1 , we require that $\rho(T, K S P E C, 1, X X)=0$ Wh n VLBD >0, and on side 3 , we require that $\rho^{0}(T, K S P E C, 3, X X)=0$ when VLBD < 0 ; then with $\alpha=0, \beta=\gamma=1$, Eq. (3.5) states that there is no incoming flux or sides 1 and 3.

Recall that when a steady-state calculation is in progress, the boundary function $\rho^{0}(T, K S P E C, I S I D E, X X)$ must be independent of the time T. A steadystate calculation is in progress when $T<T O$ and a transient calculation is in progress when $T \geq T 0$. This routine is called when the algebraic version (ALGBCS=T, in namel ist GRID) is used or when an initial solution estimate via the user-supplied subroutine INDATA (INITSW=T, in Namelist GRID) is used.

The general form of BRHØ could be as follows.
SUBRØUTINE BRHØ(T,KSPEC,NSPEC,ISIDE,XX, NIBD,SPDEN,SPDENX,RHØV,TO) INTEGER KSPEC,NSPEC,ISIDE
OqUBLE PRECISION T,XX,VLBD,SPDEN(NSPEC),SPDENX(NSPEC),RHO/N,TO IF (T .LT. TO) Gø TØ 5
101 RHØV $=\rho_{1}(T, K S P E C, X X)$
RETURN
102 RHØV $=\rho_{2}($ T,KSPEC,$X X)$
RETURN
103 RHDV $=\rho_{3}(T, K S P E C, X X)$
RE TURN
104 RHO $/ V=\rho_{4}(T, K S P E C, X X)$
RE TURN
$5 \mathrm{G} \emptyset \mathrm{T} \emptyset(1001,1002,1003,1004)$, ISIDE
1001 RHDV $=\hat{\rho}_{1}$ (KSPEC, $X X$)
RETURN
1002
:
RE TURN
END
Here ρ_{i} and $\hat{\rho}_{\mathrm{i}}, \mathrm{i}=1,4$ are the known boundary values.

4.4 Subrout ine BDFRD(T,KSPEC,NSPEC,ISIDE, XX, VLBD, SPDEN,SPDENX,RHQUD,RHØUXD,TO)

Variable Names and Meanings:
hSPEC....Species index.
NSPEC.... Total number of species.
ISIDE....Side index. This index can have any integer value from one to four. The sides of the domain are indexed counterclockwise starting with the left side.
XX........The position coordinate of a point on the side with index ISIDE. Thus if ISIDE $=1$ or $3, X X=Z$ is the cirdinate of a point on either of these sides. If ISIDE $=2$ or 4 , then $X X=R$ is the abscissa of a point on either of these sides.

VLBD......Normal component of the convection velocity at the position $x x$ on side ISIDE for species KSPEC. That is, VLBD $=V^{r}$ on sides 1 and 3 , VLBD $=V^{2}$ on sides 2 and 4.
¢PDEN....The array $\{\operatorname{SPDEN}(K), K=1, N S P E C\}$ of concentrations.
SPDENX...The array $\{\operatorname{SPDENX}(K), K=1, N S P E C\}$ of derivatives $\partial u / \partial|n|(K, T, X X)$ of u on side ISIDE evaluated at time T and position $X X$ on ISIDE. That is, $\partial u / \partial r$ on sides 1 and $3, \partial u / \partial z$ on sides 2 and 4.

RHØUD....The output array $\left\{\operatorname{RH} \emptyset U D\left(K^{\prime}\right)=\partial \rho(K S P E C) / \partial u\left(K^{\prime}\right), K^{\prime}=1\right.$, NSPEC $\}$ where ρ is the boundary function returned in RHøV in subroutine BRHø.

RHØUXD. . The output array $\left\{\operatorname{RH\emptyset UXD}\left(K^{\prime}\right)=\partial \rho(K S P E C) / \partial u|n|\left(K^{\prime}\right), K^{\prime}=1\right.$, NSPEC $\}$ where ρ is the boundary function returned in RHØV in subroutine BRHø.

Given T, KSPEC, ISIDE, XX, VLBD, SPDEN, and SPDENX, subroutine BRHø returns ρ^{0}. Subroutine $B D F R D$ is used to evaluate the Fréchet derivatives of ρ^{0} wich respect to u and $u|n|$. These derivatives are used to provide an accurate Jacobian for DISPL1 (just as BDFRDT provides the Fréchet derivatives of BRHØDT and FDEXTU provides the derivatives for EXTSRC).

9.5 Subroutine BRHøDT(T,KSPEC,NSPE`. IS IDE, XX, VIBD,SPDEN,SPDENX,RHøV,T0)

The variables have the same meaning as in subroutine BRHD. This routine returns differentiated boundary values on sides with essential boundary condicions and non-differentiated values on sides with non-essential boundary conditions. Recall that if $\beta=\beta\left(K^{\prime}, I S I D E\right)=0$ for species $K^{\prime}, 1 \leq K^{\prime}<$ NSPEC, then we say that the side with index ISIDE has an essential boundary condition for species K^{\prime}. If $J=$ ISIDE, then an essential boundary condition on side J is indicated by setting the integer flag NSJ(K^{\prime}) $=1$ in the input namelist GRID. When $T<T O$, this routine is being called from either a GUESS1 initial calculation or a steady-state calculation; in either case, the boundary values are constant in time. Hence if side J has an essential boundary condition and if $T<T O$, this routine must return RHOV $=0 . D 0$.

If side $J(J=I S I D E)$ has non-essential boundary conditions for species $K^{\prime}\left(\operatorname{NSJ}\left(K^{\prime}\right)=0\right)$, this routine must return undifferentiated boundary values on this side just as in subroutine BRHØ.

The common block BNDCøM must be present in this routine in order that the essential boundary indicators NS1, NS2, NS3, and NS4 are available to this routine. This routine is used when the differentiated version (ALGBCS=F, in
namelist GRID) is used. If the algebraic version is used, this routine is ignored.

The general form of this routine could be as follows.

```
    SUBRØUTINE BRH\emptysetDT(T,KSPEC,NSPEC,ISIDE,XX,VLBD,SPDEN,SPDENX,RHØV,TO)
    INTEGER KSPEC,NSPEC,ISIDE
    DØUBLE PRECISI\emptysetN T,XX,VLBD,SPDEN(NSPEC),SPDENX(NSPEC),RHØV,TO
    COMMON/BNOC@M/IPHASE,NS1(MAXSP),NS2(MAXSP),NS3(MAXSP),NS4(MAXSP)
    INTEGER IPHASE,NS1,NS2,NS3,NS4
    IF (T .LT. T0) G\emptyset TD 5
    G\emptyset T\emptyset (101,102,103,104),ISIDE
101 IF (NS1(KSPEC) .NE. 1) G\emptyset T\emptyset 111
    RHDV = d/dt }\mp@subsup{\rho}{1}{(}(T,KSPEC,XX
    RETURN
111 RH\emptysetV = 的(T,KSPEC,XX)
    RETURN
102 IF (NS2(KSPEC) .NE. 1) G\emptyset T\emptyset 121
141 RH\emptysetV = 的(T,KSPEC,XX)
    RETURN
    5G\emptyset T\emptyset (1001,1002,1003,1004),ISIDE
1001 IF (NSI(KSPEC) .NE. 1) G\emptyset T\emptyset 1011
    RHDV = 0.DO
    RETURN
1011 RH\emptysetV = \hat{\rho}
    RETURN
    \vdots
    END
```

Here ρ_{i} and $\hat{\rho}_{j}, i=1,4$ are the same boundary value functions as in BRHØ, and MAXSP is the value used in the MORTRAN macros. Note that since the concentrations $\{\operatorname{SPDEN}(K)\}$ and the derivatives $\{\operatorname{SPDENX}(K)\}$, evaluated on ISIDE at the position $X X$, are available; nonlinear boundary conditions are allowed in this subroutine.

4.6 Subrout ine BDFRDT(T,KSPEC,NSPEC,ISIDE, XX, VLBD,SPDEN,SPDENX,RHQUD,RHQUXD, TO)

Variable Names and Meanings:
KSPEC.....Species index.
NSPEC.... Total number of species.
ISIDE.... Side index. This index can have any integer value from one to four. The sides of the domain are indexed counterclockwise starting with the left side.
XX.......The position coordinate of a point on the side with index ISIDE. Thus if ISIDE=1 or $3, X X=Z$ is the ordinate of a point on either of these sides. If $I S I D E=2$ or 4 , then $X X=R$ is the abscissa of a point on either of these sides.

VLBD......Normal component of the convection velocity at the position XX on side ISIDE for species KSPEC. That is, $V \angle B D=V^{r}$ on sides 1 and 3 , $\mathrm{VLBD}=\mathrm{V}^{2}$ on sides 2 ard 4.

SPDEN....The array $\{\operatorname{SPDEN}(\mathrm{K}), \mathrm{K}=1, \mathrm{NSPEC}\}$ of concentrations.
SPDENX...The array $\{\operatorname{SPDENX}(\mathrm{K}), \mathrm{K}=1$, ,NSPEC $\}$ of derivatives $\partial u / \partial|n|$ ($K, T, Z Z$) of u on side ISIDE evaluated at time T and position $X X$ on ISIDE. That is, $\partial u / \partial r$ on sides 1 and 3 , $\partial u / \partial z$ on sides 2 and 4.

RHØUD....The output array $\left\{\right.$ RH@UD(K') $\left.=2 \rho(K S P E C) / \partial u\left(K^{\prime}\right), K^{\prime}=1, N S P E C\right\}$ where ρ is the boundary function returned in RHOV in Subroutine BRHgOT.
 where ρ is the boundary function returned in RH@V in Subroutine BRHgOT.

Given T, KSPEC, ISIDE, XX, VLBD, SPDEN, and SPDENX, subroutine BRHGDT returns the time derivative of ρ^{0}. Subroutine BDFRDT is used to evaluate the Fréchet derivatives of the time derivative of ρ^{0} with respect to u and $u_{|n|}$. These derivatives are used to provide an accurate Jacobian for DISPL1 (just as BDFRD provides the Fréchet derivatives of BRH \emptyset and FDEXTU provides the derivatives for EXTSRC).

4.7 Subroutine EXTSRC(IMATL,KSPEC,NSPEC,T,RR,ZZ,SPDEN,SPDENR,SPDENZ,VV,TO)

Variable Names and Meanings:
KSPEC....Species index.
NSPEC....Total number of species present.
T.........Value of the time.

RRValue of the abscissa.

ZZ Value of the ordinate.

IMATL.....Value of the material index at the position (RR,ZZ).
SPDEN....The array $\left\{\operatorname{SPDEN}\left(K^{\prime}\right)=u\left(K^{\prime}, T, R R, Z Z\right) ; K^{\prime}=1, N S P E C\right\}$ of concentrations.
$\operatorname{SPDENR} . .$. The array $\left\{\operatorname{SPDENR}\left(K^{\prime}\right)=\frac{\partial u}{\partial r}\left(K^{\prime}, T, R R, Z Z\right) ; K^{\prime}=1, \operatorname{NSPEC}\right\}$ of r-direction partials of concentrations evaluated at (T,RR,ZZ).
SPDENZ...The array $\left\{\operatorname{SPDENZ}\left(K^{\prime}\right)=\frac{\partial u}{\partial z}\left(K^{\prime}, T, R R, Z Z\right) ; K^{\prime}=1, N S P E C\right\}$ of z-direction partials of the concentrations evaluated at (T,RR,ZZ).

VV.......Output value of the distributed source $f_{m}(t, r, z, \vec{u}, \overrightarrow{\nabla u})$, ($m=K$ KSPEC) appearing on the right hand side of Eq. (1.1).

TO........Initial value of time at which a transient calculation starts.
Given KSPEC, $T, \operatorname{RR}, Z Z, I M A T L,\left\{\operatorname{SPDEN}\left(K^{\prime}\right)\right\},\left\{\operatorname{SPDENR}\left(K^{\prime}\right)\right\}$, and $\left\{\operatorname{SPDENZ}\left(K^{\prime}\right)\right\}$, this routine calculates the value of the distributed source appearing on the right hand side of Eq. (1.1). The common block BNDCOM must appear in this subroutine in order to transmit the IPHASE indicator. When IPHASE $=-2$, this routine is being called during a GUESS1 calcuiation. Recall that a GUESS1 calculation provides an initial estimate for a steadystate calculation. In this case, this routine must return an estimate for the distributed source which is independent of the concentrations $\left\{\operatorname{SPDEN}\left(K^{\prime}\right)\right\}$ and the gradients $\left\{\operatorname{SPDENR}\left(K^{\prime}\right)\right\}$ and $\left\{\operatorname{SPDENZ}\left(K^{\prime}\right)\right\}$. When $T<T O$, a steady-state calculation is in progress. In this case the distributed source must be independent of the time T. The general form of this routine could be as follows. SUBRøUTINE EXTSRC(IMATL,KSPEC,NSPEC,T,RR,ZZ,SPDEN,SPDENR,SPDENZ, * VV,TO)

INTEGER IMATL,KSPEC,NSPEC
DQUBLE PRECISION T,RR,ZZ,SPDEN(NSPEC), SPDENR(NSPEC), SPDENZ(NSPEC), \# VV,TO
CØIMM 1 /BNDCDM/IPHASE, NS1(MAXSP) ,NS2(MAXSP), NS3(MAXSP) ,NS4 (MAXSP)
INTEGER IPHASE,NS1,NS2, NS3,NS4
IF (IPHASE .EQ. -2) GD TO 10
IF (T .LT. TO) GD TD 5
$V V=f\left(\operatorname{IMATL}, K S P E C, T, R R, Z Z,\left\{\operatorname{SPDEN}\left(K^{\prime}\right)\right\},\left\{\operatorname{SPDENR}\left(K^{\prime}\right)\right\},\left\{\operatorname{SPDENZ}\left(K^{\prime}\right)\right\}\right)$ RETURN
$5 \mathrm{VV}=\mathrm{f}_{0}\left(\operatorname{IMATL}, \operatorname{KSPEC}, R R, Z Z,\left\{\operatorname{SPDEN}\left(\mathrm{~K}^{\prime}\right)\right\},\left\{\operatorname{SPDENR}\left(K^{\prime}\right)\right\},\left\{\operatorname{SPDENZ}\left(\mathrm{K}^{\prime}\right)\right\}\right)$ RETURN
$10 \mathrm{VV}=\mathrm{f}_{\mathrm{f}}$ (IMATL, KSPEC, RR,ZZ)
RETURN

Here f, f_{0}, and \hat{f}_{0} are the known distributed sources, and MAXSP is the value used in the MORTRAN macros.

4.8 Subroutine FDEXTU(IMATL, KSPEC, NSPEC, T, RR, ZZ, SPDEN, SPDENR, SPDENZ, UU, UUR, UUZ, TO)

Variable Names and Meanings:
KSPEC.....Species index.
NSPEC.....Total number of species.
T.........Value of the time.

RR........Value of the abscissa.
ZZ........Value of the ordinate.
IMATL.... Value of the material index.
SPDEN....Array of concertrations.
SPDENR...Array of partial derivatives with respect to r of the concentrations.

SPDENZ...Array of partials derivatives with respect to z of the concentrations.

When $T, R R$, and $Z Z$ are fixed, the distributed source f, which is provided by subroutine EXTSRC, is a function of the concentrations $u(1), \ldots, u\left(\right.$ NSPEC) ; the r-direction partials $u_{r}(1), \ldots, u_{r}$ (NSPEC); and the z-direction partials $u_{z}(1), \ldots, u_{z}$ (NSPEC).

UU........The output array $\left\{U U\left(K^{\prime}\right)=\partial f(K S P E C) / \partial u\left(K^{\prime}\right) ; K^{\prime}=1, N S P E C\right\}$ of Fréchet pariial derivatives of the distributed source with respect to the concentrations.

UUR.......The output array $\left\{\operatorname{UUR}\left(K^{\prime}\right)=\partial f(K S P E C) / \partial u_{r}\left(K^{\prime}\right) ; K^{\prime}=1\right.$, NSPEC $\}$ of Fréchet partial derivatives of the distributed source with respect to the r-direction partial derivatives of the concentrations.

UUZ.......The output array $\left\{U \cup Z\left(K^{\prime}\right)=\partial f(K S P E C) / \partial u_{z}\left(K^{\prime}\right) ; K^{\prime}=1, N S P L i j\right.$ of Fréchet partial derivatives of the distributed source with respect to the z-direction partial derivatives of the concentrations.

T0.
.......Initial value of time at which a transient calculation starts.
As indicated above, this routine provides the Frechet derivatives of the distributed source. These quantities are used in the formation of the Jacobian of a nonlinear system which at each time step has to be solved by the ODE solver.

To illustrate the nature of the computations performed by this subroutine, we will consider the following example. Let NSPEC=2, and let the distributed sources be defined as follows.

$$
\begin{aligned}
& f(1, t, r, z)=u(1, t, r, z)+u(1, t, r, z) u(2, t, r, z)+u_{r}(1, t, r, z) u_{z}(2, t, r, z) \\
& f(2, t, r, z)=u(2, t, r, z)+(u(1, t, r, z))^{2}+\left(u_{z}(2, t, r, z)\right)^{2}
\end{aligned}
$$

With (t, r, z) fixed, we can write these expressions as follows.

$$
\begin{aligned}
& f(1)=u(1)+u(1) u(2)+u_{r}(1) u_{z}(2) \\
& f(2)=u(2)+(u(1))^{2}+\left(u_{z}(2)\right)^{2}
\end{aligned}
$$

Then for KSPEC = 1, we have:

$$
\begin{aligned}
& U U(1)=\partial f(1) / \partial u(1)=1+u(2) \\
& \operatorname{UU}(2)=\partial f(1) / \partial u(2)=u(1) \\
& \operatorname{UUR}(1)=\partial f(1) / \partial u_{r}(1)=u_{z}(2) \\
& \operatorname{UUR}(2)=\partial f(1) / \partial u_{r}(2)=0 \\
& \operatorname{UUZ}(1)=\partial f(1) / \partial u_{z}(1)=0 \\
& \operatorname{UUZ}(2)=\partial f(1) / \partial u_{z}(2)=u_{r}(1)
\end{aligned}
$$

For $\operatorname{KSPEC}=2$, we have

$$
\begin{aligned}
& \operatorname{UU}(1)=\partial f(2) / \partial u(1)=2 u(1) \\
& \operatorname{UU}(2)=\partial f(2) / \partial u(2)=1 \\
& \operatorname{UUR}(1)=\partial f(2) / \partial U_{r}(1)=0 \\
& \operatorname{UUR}(2)=\partial f(2) / \partial u_{r}(2)=0 \\
& \operatorname{UUZ}(1)=\partial f(2) / \partial u_{z}(1)=0 \\
& \operatorname{UUZ}(2)=\partial f(2) / \partial u_{z}(2)=2 u_{z}(2)
\end{aligned}
$$

Clearly if the distributed source does not depend on the concentrations or their gradients, then this source is an external source and this routine would return arrays $U U \equiv 0$, UUR $\equiv 0$, and $U U Z \equiv 0$ in this case. The general form of this routine could be as follows.

```
    SUBRRDUTINE FDEXTU(IMATL,KSPEC,NSPEC,T,RR,ZZ,SPDEN,SPDENR,SPDENZ,
    # UU,UUR,UUZ,TO)
    INTEGER IMATL,KSPEC,NSPEC
    DQUBLE PRECISI\emptysetN T,RR,ZZ,SPDEN(NSPEC),SPDENR(NSPEC),SPDENZ(NSPEC),
    # UU(NSPEC),UUR(NSPEC),UUZ(NSPEC),TO
    CDMMON/BNDCQM/IPHASE,NS1(MAXSP),NS2(MAXSP),NS3(MAXSP),NS4(MAXSP)
    INTEGER IPHASE,NS1,NS2,NS3,NS4
    IF (IPHASE .EQ. -2) GD TD 10
    IF (T .LT. TO) GD T0 5
    GD TD (101,102,\ldots., 10 NSPEC),KSPEC
1 0 1
    UU(NSPEC) = \partialf(1)/\partialu(NSPEC)
    UUR(1) = \partialf(1)/\partialur
    :
    UUR(NSPEC) = \partialf(1)/\partialur (NSPEC)
    UUZ(1) = \partialf(1)/\partialu_(1)r
    UUZ(NSPEC) = \partialf(1)/\partialu_z (NSPEC)
    102 UU(1) = \partialf(2)/\partialu(1)
    :
    UUZ(NSPEC) = af(2)/\partialu_z (NSPEC)
    RETURN
103
    RETURN
    5G0 TD (201,202,...,20NSPEC)KSPEC
201UU(2) = \partialf f
20NSPEC UU(1) = afor(NSPEC)/\partialu(1)
    RETURN
10 DD 15 KP=1,NSPEC
    UU(KP) = 0.D0
    UUR(KP) = 0.D0
    UUZ(KP) = 0.00
15 continue
    RETURN
    END
```

where MAXSP is the value used in the MORTRAN macros.
Here f and f_{0} are the same distributed sources as produced by the subroutine EXTSRC. Again we emphasize that if f and f_{0} are external sources, then this routine returns zeros in the arrays UU, UUR, and UUZ.

4.9 Subroutine INDATA(KSPEC,RR,2Z,UU)

Variable Names and Meanings:
KıPEC....Species index.
RR....... Value of the abscissa.
ZZ........Va!ue of the ordinate.
UU.......Output value of the initial concentration for species with index KSPEC at the position (RR,ZZ).

This routine allows the user to specify the initial value of the concentrations for each species at the positions (RR,ZZ). Note that as usual, the values $R R$ and $Z Z$ passed to this routine are the Gaussian quadrature points used in the Galerkin approximation of the integrals. The values from this routine can be used to start either a steady-state or a transient calculation by setting INITSW = T in the input namelist GRID. The general form of this subroutine could be as follows.

SUBRDUTINE INDATA(KSPEC,RR,ZZ,UU)
INTEGER KSPEC
DøUBLE PRECISIøN RR,ZZ,UU
G \emptyset TD (101,102,...,10NSPEC),KSPEC
$101 \underset{R E T U R N}{U U}=u_{0}(1, P R, Z Z)$
$102 \mathrm{UU}_{\text {RETURN }}=\mathrm{U}_{0}(2, R R, Z Z)$
:
RETURN
END
Here $U_{0}(K S P E C, R R, Z Z)$ is the known initial concentrations. For a steadystate calculation, the user can either use this routine to provide an initial estimate, in which case he sets INITSW=T and STEDSW=T in namelist GRID; or he can use a GUESSI calculation to form a starting estimate (GUESSW=T, INITSW=F, STEDSW=T). When INITSW=F, this routine is ignored by the prograni. For a transient calculation, the user again has two choices. He can use this routine if he has initial conditions that he wishes to start from. Alternatively, he performs a steady-state calculation first and uses this solution to start the transient calculation. If this latter option is to be used, then the user has the option of using this routine to start the preliminary steadystate calculation.
4.10 Subroutine RH $\emptyset C P$ (IMATL, KSPEC, $i, \bar{\pi} R, Z Z, S P D E N, R C$)

Variable Names and Meanings:
IMATL.... Material index.
KSPEC....Species index.
T......... Value of time.

RR....... Value of the abscissa.
ZZ........laiue of the ordinate.
SPDEN....Array of concentrations.
RC.......Value of ρC_{p} returned by this subroutine.
For each species KSPEC this routine provides the coefficient $\left[\rho C_{p}\right]_{m}(t, r, z, \vec{u})$ where $m=K S P E C$ which appears in Eq. (1.1). If $\left[\rho C_{p}\right]_{m}(t, r, z, \vec{u})$ $\equiv 1$ for some species index m, then the user should set the logical indicator $\operatorname{IREVLA}(m)=F$, and $\mathrm{T} H \emptyset(m)=F$, in namelist GRID. This will save on computer time since the integrals I^{A} in Eq. (2.35) are then precomputed. The case when $\left[\rho C_{p}\right]_{m}(i, r, z, \vec{u}) \equiv 0$ for some m is permitted in this program. In this case one sets $\operatorname{IREVLA}(m)=F, \operatorname{IRHD}(m)=T$, and in this routine one returns $R C=0.00$ for the species index m. The general form of th: $i s$ subroutine could be as follows.

SUBRDUTINE RHDCP(IMATL,KSPEC,T,RR,ZZ,SPDEN,RC)
INTEGER IMATL,KSPEC DDUBLE PRECISIQN T,RR, $27, R C, S P D E N(1)$
$\mathrm{RC}=\rho C_{p}\left(\right.$ IMATL $\left., K S P E C, T, R R, Z Z,\left\{\operatorname{SPDEN}\left(K^{\prime}\right)\right\}\right)$ RETURN
END

4.11 Subroutine ANAL(KSPEC,T,RR,ZZ,VV)

Variable Names and Meanings:
KSPEC....Species index.
RR .Value of the abscissa.

Z2....... Value of the ordinate.
VVUutput value.
T. . Value of the time.

This routine provides the analytic or true solution if it is known, and is used in testing the program. If the solution is uriknown, the following dummy subroutine should be provided.

```
SUBR\emptysetUTINE ANAL(KSPEC,T,RR,ZZ,VV)
INTEGER KSPEC
D\emptysetUBLE PRECISI@N T,RR,ZZ,VV
RETURN
END
```


4.12 Master Driver

This is che main routine of the program and from che usar's point of view serves three important functions.
(1) Any preliminary calculations can be done in a call from this routine.
(2) If the program DISPL1 is going to be used as a subroutine, then the call is made from this routine.
(3) In the DISPLl program, the tulk of the storage is determined by the size of two arrays, AL and GPW. The size of these arrays can be set at run time in this routine.

The first function is self-evident. The second function can be elaborated on as follows. On each call to EXEC (the main subroutine), the program processes a complete problem. That is, Namelist GRID is read once and Namelist DATA is read twice. Control is then returned to the Master Driver where the user can do further calculations and repeated calls to EXEC. If the user calls ryEC when there is no further Nameiist GRID input cards, the program will print

END ØF INPUT FILE WHILE READING NAMELIST GRID PROGRAM STOPPED IN EXEC
and the execution will be terminated. If the user calls EXEC when there are no further Namelist DATA input cards, the program will print

END $\emptyset F$ INPUT FILE WHILE READING NAMELIST DATA
and stop. In some cases the user may wish to change some parameters in the master driver and call EXEC without reading any Namelist input (berause Namelists GRIO and DATA are unchanged from the previous call to EXEC). To avoid reading Namelist make a common block READIN containing on!y a logical variable L. $\mathrm{P}^{-} A D$

CIMMAN/READIN/LREAD
available to the Master Driver. The default value for LREAD is set in DISPLl and is .TRUE. If EXEC is called with LREAD=.FALSE., DISPLL will not read any Namelist but will do computation. This feature has been useful in parameter studies and optimization problems involving simulations solved by DISPLI. In addition, all Namelist variables for GRID and DATA are available through CØMMON blocks (see the Macro file). Thus, if desired, some Namelist variables can alternatively be set in the Master Driver).

The third function requires some discussion. Recall the following definitions:

NSPEC....Total number of species (number of partial differential equations).

KR(KZ)...Order of the B-splines in the $r(z)$ coordinate direction.
LR(LZ)...Totai number of subintervals in the $r(z)$ coordinate direction.
INUR(I)(INUZ(J))..Vector of continuity indices in the $r(z)$ coordinate direction. Generally INUR(I) \equiv CØNTR and INUZ $(J) \equiv C \emptyset N T Z ~ w i t h ~$ $0 \leq C \not \subset N R \leq K R-1$ and $0 \leq C \nsubseteq N T Z \leq K Z-1$.

Let $N R(N Z)$ cienote the number of unknowns associated with the $r(z)$ direction. Then

$$
\begin{align*}
N R & =K R+\sum_{i=2}^{L R}(K R-I N U R(i)) \tag{4.1}\\
& =K R \cdot L F-C \not N T R \cdot(L R-1) \text { when } \operatorname{INUR}(i) \equiv C \nsupseteq N R,
\end{align*}
$$

and
(4.2)

$$
\begin{aligned}
N Z & =K Z+\sum_{j=2}^{L Z}(K Z-I N U Z(j)) \\
& =K Z \cdot L Z-\operatorname{ConTZ} \cdot(L Z-1) \text { when } \operatorname{INUZ}(j) \equiv \operatorname{ConTZ} .
\end{aligned}
$$

Then the number of variables associated with each species will be

$$
N R N Z=N R \cdot N Z,
$$

and the total number of variables will be

$$
\begin{equation*}
N V A R=N S P E C \cdot N R \cdot N Z . \tag{4.3}
\end{equation*}
$$

There are two matrices which dominate the storage requirement; both of which are stored as band matrices. For each species $k, 1 \leq k \leq N S P E C$, the first matrix $A L$ is generated from the integrals I^{A} appearing in Eq. (2.3.4). This matrix has NRNZ rows and a band width which will be calculated. Recall that the variables are $\left\{U_{i, j, k}: 1 \leq i \leq N_{R}, I \leq j \leq N_{Z}, 1 \leq k \leq N S P E C\right\}$. Now the program stores these variables as a sinyly indexed array, and since there are three indices i, j, k, there are several possible choices for generating the single index used in the program. The species index k is the most rapidly varying index. The order of the two remaining indices is then selected by the program in such a way that the bandwidth of the matrix AL is a minimum. This selection is done as follows. Let
(a) H (RHBW $=(K R-1)+(K Z-1) \cdot N R$, and
(b) VERHBW $=(K R-1) \cdot N Z+(K Z-1)$.
$H \emptyset R H B W$ is the half bandwisth of $A L$ when the index i varies more rapidly than the index j, i.e. the ordering is (k, i, j) with k the most rapidly varying and j the slowest varying. VERHBW is the half bandwidth of AL when the index j varies more rapidly than i, i.e. the order is (k, j, i). Then if $H \emptyset R H B W<$ VERHBW, the program selects the "norizontal" ordering (k, i, j); otherwise the program selects the "vertical" ordering (k, j, i). For each ordering, define the following parameters.

Horizontal Ordering

NI $=$ NSPEC, NIH $=1$,
$N J=N S P E C \cdot N R, N J H=N R$,
$N C C=-(1+N R) \cdot N S P E C, N C C H=-N R$.

Vertical Ordering

$$
\begin{aligned}
& N I=N S P E C \cdot N Z, N I H=N Z, \\
& N J=N S P E C, N J H=1, \\
& N C C=-(1+N Z) \cdot N S P E C, N C C H=-N Z .
\end{aligned}
$$

In terms of these parameters, the single index n corresponding to the triple (i, j, k) is given by

$$
\begin{equation*}
n=i \cdot N I+j \cdot N J+k+N C C . \tag{4.7}
\end{equation*}
$$

with this ordering for the variables $U_{i j k}=W(n)$, the matrix $A L$ is a band matrix with NRNZ rows and a half bandwidth

$$
\begin{equation*}
D M=(K R-1) \cdot N I H+(K Z-1) \cdot N J H . \tag{4.8}
\end{equation*}
$$

ror storage purposes, the bandwidth of AL is given by

$$
\begin{equation*}
F B W=3 \cdot D M+1 . \tag{4.9}
\end{equation*}
$$

This gives the storage requirement for $A L$ as
$S N A L=F \cdot B W \cdot N R \cdot N Z$.

If we set NAL = SNAL where SNAL is the numerical value stored in NAL, then the storage requirements for the matrix AL is set at run time with ihe statements appearing in Master Driver

CDMMDN/ALHS/AL(SNAL)
CDMMON/ALSIZE/NAL
NAL $=$ SNAL
The second matrix whicn dominates the storage requirements of the direct version is the Jacobian matrix PW used by the ODE solver GEAR. This matrix PW has NVAR rows an: is stored in band form. Note that when NSPEC > 1, the matrix PW is larger than the matrix AL. The bandwidth of PW is computed as fullows. With DM defined by Eq. (4.8), the half-bandwidth of PW is given by:

$$
\begin{equation*}
\text { MBW }=(1+D M) \cdot N S P E C-1 . \tag{4.12}
\end{equation*}
$$

For storage purposes, the bandwicth of PW is given by:

```
MFBW = 3.MEW+1.
```

One might expect MFBW $=2 \cdot M B W+1$; however, pivotirig is required in the decomposition of PW. Therefore a factor of 3 is required rather than the factor 2. The storage requirement for PW is then determined by setting $S N P W=M F B W \cdot N V A R$,
and using the statements

> CDMMDN/GEAR6/GPW (SNPW); CDMMON/PWSIZE/NPW
$\left(4 . i^{c}\right)$ $N P W=S N P W$
in Master Driver. Here SNPW is the number determined by the user from Eq. (4.14).

The Master Driver should have the following basic form.
C THIS IS THE MASTER DRIVER FQR DISPLI.
C SPACE is ALL.øCATED FGR AL and PW HERE. ANY PRELIMINARY
C CALCULATIØNS CAN BE DØNE IN A CALL FRG HERE.
DREAL AL,GPW
COMMDN/ALHS/AL (SNAL)
COMMON/GEAR6/GPW (SNPW)
C $\emptyset M M D N / P W S I Z E / N P W$
C \quad MMIN/ALSIZE/NAL
NAL $=$ SNAL
NPW $=$ SNPW
CAL'. EXEC
RETJRN
END

5. DESCRIPTION OF USER-SUPPLIED DATA

For the computational phase of DISPL1, the program requires the usersupplied subroutines discussed in section 4, certain Mortran macro input, unit assignments, and input daca. In this section we discuss this additional information as well as the corresponding needs of all three of the optional graphics programs. In section 5.1 we discuss the Mortran macros and unit assignments for the computational and graphics programs in DISPL1. The namelist input for the computational phase is discussed in section 5.2 and 5.3, i.e. namelists GRID and DATA. The graphics namelists are discussed in sections 5.4-5.7. Specifically, nameiist FORMAT is used in all three graphics packages and is discussed in section 5.4. Namelist CSPIN (section 5.5) provides the remaining input for the cross-section plot package; namelist CNTRIN (section 5.6) provides the remaining data for the contour graphics package; and namelist DIM3IN (section 5.7) provides the remaining data for the three-dimensional perspective plotting package. The only user-supplied subroutine in the graphics packages occur in the cross-section plotting package. In this program the user can plot the analytic solution and, in this case, he must provide a single precision version of subroutine ANAL.

In section 5.8 we discuss restart procedures used in the computational phase of the code. Finally, in section 5.9 we describe the organization of the files containing the DISPLI code.

Before discussing the macros, unit assignments, and nameiists, we begin with a general discussion of the namelist feature for users unfamiliar with it. For concreteness we discuss namelist feature in connection with the input data for the computational phase of the code.

For each problem, three sets of input data cards are required. Recall that a complete problem may consist of:
(a) a steady-state calculation, or
(b) a transient calculation, or
(c) a steady-state followed by a transient calculation.

Consider the last situation. We divided the input data into three sections.

The first section consists of that data which is unchanged in passing from a steady-state to a transient calculation (e.g. specification of the domain including the approximation grid and interfaces, number of species, order of the approximating piecewise polynomials, etc.). The second section consists of the remaining data necessary to specify the problem (e.g. boundary values, gap data, reaction coefficients, essential side indicators, output control, etc.). Some or all of the data in the second section can be changed just prior to a transient calculation by resetting this data in the third input data section. Thus, for example, in situation (c), the program uses the first two sections of input data for the steady-state calculation, and the first two sections subject to modifcations in the third section for the transient calculation.

These three sections of input data are communicated to the program via the Nam-list feature of Fortran. Namelist uses a free-format similar to ordinary assignment statements and is described in [11, pp. 54-55]. In Namelist terms, the first input section is called GRID, while the other two are called DATA. The data cards thus have the form
\&GRIDb free-format statements free-format statements

SEND
\&DATAb free-format statements free-format statements
\vdots
\& END
\&DATAD free-format statements free-format statements

\&END
The "\&GRID" and "\&DATA" must begin in column 2 and must be followed by a blank, i.e. the " b " indicated above. All other cards may begin in any column other than column 1. The "\&END" can be on a separate card or at the end of the last free-format card. The free-format cards have the following form.

$$
A=1 ., B=2 \ldots, 3 ., B(3)=4 \ldots
$$

where, in this case, A is a variable set to 1. and the first three elements of the vector B are set to 2., 3., and 4., respectively. Any number of blank colums can follow each comma. Thus, one convenient way of using the namelist format is to put only one variable or vector component on a card, e.g.

$$
\begin{gathered}
A=1 ., \\
B=2 ., \\
3 ., \\
B(4)=4 .,
\end{gathered}
$$

and so allow for easy modification of the input cards. It is recommended that two- and three-dimensional data be entered with explicit subscripts for readability.

The three namelist groups must be provided even if they are not used, i.e. even if there are no variables to be read in, the "\&DATA" and "\&END" must be provided for the third set of data cards. The variables within a given namelist input can be in any order.

5.1 Mortran Macros and Unit Assignments

Before describing these namelist variables we discuss some other inputs the user must provide which are referred to in the definition of these variables. First, the computational phase of the program has the ability to dump information on unit 11 which can be used for later restart calculation. The restart reads data from unit 10 and when it dumps, the dump is on unit 11. Notice that this procedure will allow multiple restarts from a fixed set of dump information. The user must therefore assign units 10 and 11 (to disk or tape datasets). The program also writes data on unit 12, optionally, for use in later graphical analysis. Again, the user must assign this unit. The assignment of units 10,11 and 12 must be done even if the program does not use these units.

One of the advantages of using MORTRAN is that the size of storage arrays are specified in macro variables. By changing the values of the following macro integer variables, the Fortran code produced by the Mortran processor will be correspondingly changed.

MAXBRK....integer macro for the maximum number of breakpoints in either the r or z direction. In either direction this number is a bound on the sum of the interior mesh points, interface points, and end points.

MAXTQD....integer macro for the maximum total number of quadrature points per mesh interval in either the r or z direction.

MAXSP.....inteser macro for the maximum number of species.

MAXGAP....integer macro for the maximum number of gap interfaces in either coordinate direction.

MAXK.......integer macro for the maximum order of splines in either direction.

MAXNØT....integer macro for the maximum number of spline knots in either direction.

MXNRNZ.... integer macro for the maximum number of variables permitted fcr any single species.

MXNVAR....integer macro for the maximum number of total variables.

MXRGRD....integer macro for the maximum number of points in the r direction for the user-specified grid.

MXZGRD.... integer macro for the maximum number of points in the 2 direction for the user-specified grid.

INFILE....integer macro for the standard input unit.

DUMPRD....integer macro for the unit from which a restart is read.

DUMPWR....integer macro for the unit on which a dump is written.

GRAPHWR...integer macro for the unit on which the unformatted graphics information is written.

At the time of compilation, these macros should be selected with some care since they determine some of the core requirements of the code. In order to judge the effect of changing these macros, we list the arrays which depend on these macros.

Real arrays

A (MAXK, MAX TQO, MAXBRK), APRIM(MAXK, MAX TQD, MAXBRK), B (MAXK, MAX TQD, MAXBRK), BPRIM(MAXK, MAXTQD, MAXBRK)

AINT(MAXK, MAXBRK), BINT(MAXK, MAXBRK)
AAINT(MAXK, MAXK, MAXBRK), BBINT(MAXK, MAXK, MAXBRK)
HVGAP (MAXGAP, MAXBRK, MAXSP), HHGAP (MAXGAP, MAXBRK, MAXSP)
HU1(MAXBRK, MAXSP), HU2(MAXBRK, MAXSP), HU3(MAXERK, MAXSP), HU4(MAXBRK, MAXSP)
H1(MAXBRK, MAXSP), H2(MAXBRK, MAXSP), H3(MAXBRK, MAXSP), H4(MAXBRK, MAXSP)
RGAU(MAXTQD,MAXBRK), ZGAU(MAXTQD,MAXBRK), R2PI(MAXTQD,MAXBRK)
CK (MAXSP, MAXSP), CKK (MAXSP, MAXSP, MAXSP)
ALPHA(MAXSP , 4), BETA(MAXSP , 4), GAMMA(MAXSP , 4)
R(MAXBRK), Z(MAXBRK), WR(MAXTQD), WZ(MAXTQD)
HSIG(MAXBRK), HTAU(MAXBRK), RG2PI (MAXBRK), RIF(MAXBRK), ZIF (MAXBRK), RMESH (MAXBRK), ZMESH(MA․3RK)

RKNØT(MAXNØT), ZKNØT(MAXNФT)
RGRID(MAXGRD), JGRIO(MXGRD)
Integer arrays
IL(MAXBRK), JL(MAXBRK)
SVGP.P (MAXBRK), THGAP (MAXBRK)
MLTAB(MAXBRK, MA×BRK), MATL(MAXBRK,MAXBRK)
IFTYPR (MAXBRK), IFTYPZ (MAXBRK)
NS1(MAXSP), N2(MAXSP), NS3(MAXSP), NS4(MAXSP)
IGDSIG(MXPGRD), JGDTAU (MXZGRD)
We now consider the unit assignments and macro variables associated with the graphics programs. In all three cases the graphics programs read the graphics dataset created on unit 12 by the computational phase of DISPL1. For a particular graphics run this dataset must be again assigned to unit 12. The graphics programs are all written in Mortran and utilize the same macro dataset as was used in the computational phase. This dataset must be assigned to
unit 2. Except for the assignment of graphics JCL [9] there are no other units required.

The Macro variables used in a given execution of a graphics program musts be compatible with the Macros used in the computational phase of DISPL1. That is, certain Macro variables used in generating the graphics dataset on unit 12 during the computational phase must have the same value when used in a graphics execution. These variables are MAXSP, MAXK, MXNRNZ, MXNVAR, MAXBRK, and MAXNQT. In addition, other Macro variables must be set. The Macro dataset which is on the first file of the tape is designed to simplify this task. This dataset is compatible with all of the graphics programs as well as the computational phase of DISPLl. Thus, by using the same version of this dataset for all of the programs in DISPLl we assure the compatibility of MAXSP, MAXK, MXNRNZ, MXNVAR, MAXBRK, and MAXNDT. The following Mortran variables are used only by the graphics programs and must be set for a given compilation of a graphics program.

MAXFRM....integer Macro for the maximum number of duplicate graphs to be created by the CSP program. These duplicate frames are genrated only in CSP and only in the cinema mode.

MAXINT....integer Macro which must be set to twice MAXBRK. This number is only used in the CSP program.

NRES1......integer Macro for the maximum number of points to be plotted on curves in the CSP program. Notice that this value is an upper bound on the Namelist FQRMAT variable NRESIN when used in the CSP program.

MRES.......integer Macro which must be set to NRES1+2. This value is used only in CSP.

NRESD.integer Macro for the maximum number of grid points used along each axis in the C $\emptyset N T \notin R$ and THREED programs. This value is used only in those two programs and is an upper bound on NRESIN when used in connection with these programs.

NWDRK......integer Macro for the size of a workspace array used only in the THREED program. NWGRK should be $2 \star$ NRESD +4 .

MXGNUM....integer Macro for the maximum number of time plots generated by CONTøR or THREED. This macro is used only in those two programs ard is associated with arrays which are used only if ITIME in Namelist CNTRIN or DIM3IN is true. In this situation MXGNUM is an upper bound on the Namelist FORMAT variable IGNUM.

MXGRP......integer Macro for the maximum number of frames to be plotted for a given time value in the CSP program.

5.2 Namelist GRID

We next describe the input variables in GRID and their default values, i.e. values used if not specified.

KR......... integer variable for the order of the spline approximation in the r-direction.
$K R=4$, (Default value) $(1 \leq K R \leq M A X K \leq 12)$
KZ.........integer variable for the order of the spline approximation in the z-direction.
$K Z=4,(1 \leq K Z \leq M A X K \leq 12)$
NQR........integer variable for the order of quadrature formula used for r-direction integration.
$\operatorname{NQR}=\operatorname{MAX}(K R, 1) \quad(1 \leq N Q R \leq \operatorname{MAXTQD} \leq 12)$
NQZ........ integer variable for the order of quadrature formula used for z-direction integration.
$\operatorname{NQZ}=\operatorname{MAX}(K Z, 1) \quad(1 \leq N O Z \leq \operatorname{MAXTOD} \leq 12)$
However, these are conservative choices. The choices
$N Q R=K R-1$ and $N Q Z=K Z-1$ seem to be optimal. See Sample problem 7.4 for a further discussion.

NSPEC......integer variable for the total number of chemical species. NSPEC $=1$, ($1 \leq$ NSPEC \leq MAXSP)

DELTA......integer variable for geometry selection. Use 0 for rectangular geometry, 1 for cylindrical geometry, and 2 for spherical geometry (one dimension only).
DELTA $=0$,

RLOW......real variable for the left hand boundary of the domain. RLOW=0.0,

RUP........real variable for the right hand boundary of the domain. $R U P=1.0$,

ZLOW.......real variable for the lower boundary of the domain. ZLOW=0.0,

ZUP........real variable for the upper boundary of the domain.
$z^{\circ}=1.0$,
iNTIR.......integer variable for the total number of interfaces along the R axis.
NYIR=0, ($0 \leq N T I R \leq M A X B R K$)
NTIZ.......integer variable for the total number of interfaces along the Z axis.
$N T I Z=0,(0 \leq N T I Z \leq M A X B R K)$
RIF........real vector of interface mesh points (R coordinate).
RIF $=0.0,0.0, \ldots$ (vector is initialized to zero) (Dimension is NTIR)

ZIF........real vector of interface mesh points (Z coordinate).
ZIF $=0.0,0.0, \ldots$ (vector is initialized to zero) (Dimension is NTIZ)

IFTYPR....interface type indicator integer for r-direction. Use 0 for a gap interface, or 1 for a continuous interface. (Notice that all r-direction interfaces at a particular r-coordinate are therefore of the same type.)
IFTYPR $=1,1, \ldots$ (Dimension is NTIR)
IFTYPZ.....interface type indicator integer for z-direction. Use 0 for a gap interface or 1 for a continuous interface. (Notice that all z-direction interfaces at a particular z-coordinate are therefore of the same type.)
IFTYPZ $=1,1, \ldots$ (Dimension is NTIZ)
NWR........ integer variables of the total number of non-interface mesh points in the r-direction (not including the end foints RLOW and RUP).
$N M R=0,(0 \leq N M R \leq M A X B R K)$
integer variable of the total number of non-interface mesh points in the z-direction (not including the end points ZLOW and ZUP).
NMZ $=0$, ($0 \leq$ NMZ \leq MAXBRK)
RMESH......real vector of non-interface mesh points (r-coordinate). If the vector RMESH is omitted, the code will use NMR to generate a set of equally spaced interior points.
RMESH (I), I $=1$,NMR
ZMESH.....real vector of non-interface mesh points (z-coordinate). If the vector ZMESH is omitted, the code will use NMZ to generate a set of equally spaced interior points.
ZMESH(J), J=1,NMZ
CONTR......integer variable of continuity (in the r-direction) across mesh points. ($0 \leq$ CONTR $\leq K R-1$) CDNTR=KR-1, (the default value is set to KR-1)

CøNTZ......integer variable of continuity (in the z-direction) across mesh points. ($0 \leq$ CONTZ $\leq K R-1$) CONTZ=KR-1,

INUR.......integer vector of continuity indices (in the r-direction) at non-interface mesh points. These values can be used to overrife the continuity value CONTR at specified non-interface mesh points.
INUR=CØNTR,C@NTR,... (the defacilt value of C@NTR is set by the code) (Dimension is NMR)

INUZ.......integer vector of continuity indices (in the z-direction) at non-interface mesh points. These values can be used to override the continuity value CONTZ at specified non-interface mesh points.

INUZ=CØNTZ,C®NTZ,... (Dimension is NMZ)
MATL.......two-dimensional integer array of material indices. MATL is dimensioned (MAXBRK,MAXBRK) and is defined for

$\operatorname{MATL}(I, J) \quad I=1, \ldots, N T I R+1$	
	$J=1, \ldots, N T I Z+1$

The default is MATL=1,1,...

ALGBCS....logical indicator for selecting method of treating algebraic boundary conditions. If ALGBCS is true, the values of the boundary conditions as provided through the user-supplied subroutine $8 R H \emptyset$ are used. If $A L G B C S=F$, the user routine BRHØOT is used to provide the boundary conditions. Note that in BRHØDT one must provide the time derivative of the essential boundary values. If $A L G B C S=F, B R H \varnothing$ can be dummy routine, while if ALGBCS $=T$, BRH $\emptyset D T$ can be a dummy routine. ALGBCS $=T$,

C $Ø$ NSRV....logical indicator of solecting conservative or substantial derivative form of convection term. If CØNSRV is true, the conservative form is used. If CØNSRV is false the substantial derivativ. form is used. $C \not \subset N S R V=T$,

IREVLA....vector of logical variables for indicating the presence of a heat capacity coefficient in the time derivative term. IREVLA has dimension NSPEC and IREVLA $(K)=T$, indicates that $\left[\rho C_{p}\right]_{K}(T, P, Z, \mathbb{U}) \neq 1.0$; in this case the left hand side of Eq. (3.1) is reevaluated at each time step unless IRH $\emptyset(K)=T$. IREVLA $=F, F, \ldots$

IRHO......vector of logical variables for indicating whether $\left[\rho \mathcal{C}_{p}\right]_{K} \equiv 0$ or not. $\operatorname{IRH} \emptyset(K)=T$, implies that $\left[\rho C_{p}\right]_{K} \equiv 0$. IRH $\emptyset(K)=F$, implies that $\left[\rho C_{p}\right]_{k} \neq 0$. See Note at end of namelist GRID (page 78).
IRH $\boldsymbol{=}=\mathrm{F}, \mathrm{F} \ldots$
INITSW....logical indicator for using the user-supplied subroutine INDATA to provide an intial estimate of the solution for the steadystate calculation or initial conditions for the transient calculation.
INIT: W=T,
GUESSH....logical indicator for using the program's initial estimate of the solution for the steady-state calculation. Whenever possible the user should provide an initial estimate for a stei'ystate calculation. GUESSW=T,

Note: If $\left[\rho C_{p}\right](K) \equiv 1$ use $\operatorname{IREVLA}(K)=F$, and $\operatorname{IRHD}(K)=F$, (both default values).
If $\left[\rho C_{p}^{\rho}\right](K) \equiv 0$ use $\operatorname{IREVLA}(K)=T$, and $\operatorname{iRH} \emptyset(K)=T$, (IREVLA $(K)=F$, and $\operatorname{IRHD}(K)=T$, can also be used -- it generates a warning message).
If $\left[\rho C_{p}\right](K) \not \equiv 1$ and $\not \equiv 0$ use $\operatorname{IREVLA}(K)=T$, and $\operatorname{IRH} \emptyset(K)=F$..

STEDSW....logical indicator for doing a steady-state calculation. STEDSW=T,

TRANSW....logical indicator for doing a transient calculation. A transient calculation expects initial conuitions. These can be provided by either the initial spline coefficients, a least squares fit to the initial data (INITSW=T,) or a steady-state calculation. TRANSW=T,

ISTDFQ.....integer variable for the frequency of output from the steadystate calculation. Output occurs every ISTDFQ time steps after the first time step. Output also occurs on the first time step. (Notice that ISTDFQ ≤ 0 is meaningless.) The output includes an evaluation of the approximate solution at the Gaussian point grid (or optionally on user-specified grid) and may also give the error at points on the grid via calls to user-supplied subroutine ANAL.
ISTDFQ=10,
IRGRD......integer variable of the number of points in the r-direction for the optional user-specified output grid. If IRGRD=0 then the tensor product of the Gaussian points in the r and z direction is used to form the output grid. If IRGRD is positive, then the grid used is the tensor product of RGRID and ZGRID (see below). For a one-dimensional problem in z, set IRGRD=1, .
IRGRD=1, ($0 \leq$ IRGRD \leq NXRGRD $)$
RGRID......real vector of IRGRD points in the r-direction for user's specified grid. When IRGRD=0 or 1 , the vector KGRID is not needed. When IRGRD ≥ 2, the vector RGRID can be omitted. In this case, the code generates a set of IRGRD equally spaced output points RGRID(I) such that the first point is equal to RLOW and the last point is equal to RUP.

JZGRD......integer variable of the number of points in the z-direction for user's specified grid. For a one-dimensional problem in r, set JZGRD=1, JZGRD=1, ($0 \leq J Z G R D \leq M X Z G R D)$

ZGRID......real vector of JZGRD points in the z-direction for user's specifiec grid. When JZGRD=0 or $1, Z G R I D$ is not needed. When JZGRD ≥ 2, ZGRID can be omitted in which case the code generates equally spaced output points, the first and last being ZLDW and ZUP.

IORD.......integer vector indicating order of derivatives computec on the user-supplied untout grid. The code always provides the approximate solut.on (either user-supplied or Gaussian). However, if a user-supplied grid is used, partial derivatives of the approximation can be requested. IORD is a vector of, at most, fifteen components. Each component is an integer of the form 10*I+J and will cause the mixed partial of order I with respect to R and order J with respect to Z to be computed. Thus IORD $=10,11$, will cause $\frac{\partial U(K)}{\partial R}$ and $\frac{\partial U(K)}{\partial R \partial Z}$ to be computed as well as $U(K)$ for all K. Notice that the user need not specify $I=J=0$ (the function value case). IORD $=0,0, \ldots$

IANAL......logical indicator for giving the analytic solution in usersupplied subroutine ANAL. If IANAL=F, subroutine ANAL can be a dummy routine. If IANAL=T, subroutine ANAL is used to compute the steady state or the transient solution on the Gaussian or user-specified grid.
IANAL=F,
ISTDRS....logical indicator for restarting the steady-state calculation from a dump. This indicator and the next two indicators can be used to restart a calculation from a dump generated during a previous run. The code dumps information under the following four conditions: if it detects that time is expiring during a steady-state calculation; at a normal conclusion of a steadystate calculation; if it detects that time is expiring during a transient calculation; and ai the normal conclusion of a transient ralculation. Only the last dump during a given run is meaningful since each dump writes from the beginning of the file. Thus to generate a dump at the normal conclusion of the steady-state calculation, set TRANSW=F. (See $\varsigma 5.8$ for further
information about restarting.) The ISTDRS indicator is associated with restarting the first type of dump, the DUMPSW indicator is associated with restarting the second type; and the ITRARS indicator is associated with the third type. The fourth type of dump can be utilized as follows: Set up an array of UTØUT of dimension $N 2$ and set NUTØUT $=N 1<N 2$. The program will then dump at $T=U T \emptyset U T(N 1)$. On the restart run set INITSW, GUESSW and STEDSW to false and TRANSW to true and use NTQUT=N2. The calculation will restart from UTØUT(N1) and process to UTØUT(N2). To restart a steady-state calculation set ISTDRS=T, INITSW=F, GUESSW=F, and STEDSW=T. The code will then read the current value of the approximating coefficients and time (variables W and T, respectively) from unit 10. ISTDRS $=F$,

DUMPSW.... logical indicator for reading coefficients from unit 10. If the dump in a previous run occurred at the normal conclusion of the steady-state calculation, the code dumped the final coefficients. By setting DUMPSW=T, these coefficients can be read from unit 10 and can be used in either a new steady-state or transient calculation. DUMPSW=F,

ITRARS.... logical indicator for restarting a transient calculation which ran out of time. If ITRARS $=T$, then the current value of the approximate coefficients and time (variables W and T, respectively) are read from unit 10. When ITRARS is true, INITSW, GUESSW, and STEOSW must be false and TRANSW must be true.

I TRARS=F,
ITRCØD.... logical variable to specify a cold rather than hot restart of a transient calculation. Normally to restart a transient calculation we set ITRARS=T. If, however, the problem has changed,
e.g. boundary conditions modified, we do not want a hot restart. In this case specify I $\mathrm{PRC} \cap \mathrm{C}=\mathrm{T}$ as well as ITRARS $=\mathrm{T}$ to get a cold restart.

I TRCØD=F,
MXSTED.....integer variable for the maximum number of time steps permitted during a steady-state calculation.

MXSTED $=500$,
LGSTØP....logical variable for specifying a user-controlled termination criterion (sometimes called a G-stop facility). If LGSTØP=T, the routines GSTØPF and EVALFN are intended to be modified and extended by the user to specify the termination criterion. The GSTØPF routine returns a flag (IGSTØP) via CøMM indicating either no change (IGSTดP=0), exit DISPL1 to start a new problem (IGSTØP=1), or exit DISPL1 to change data and continue the current problem (IGSTØP=2). Note that GSTØPF is called after each successful time-step and is called only if LGSTøP $=T$. Subroutine GSTøPF can use subroutine EVALFN to evaluate the current solution as an aid in determining whether or not an exit should occur.

LGSTDP $=F$,

5.3 Namel ist DATA

As mentioned earlier there are two sets of Namelist DATA. The first set is read once immediately after GRID before any calls to the calculation drivers. The second set is read just before the call to TIMEX, the transient driver. Thus the first set is read before either a steady state or a transient calculation is started, wnile the second set is read just before a transient calculation is started. If a steady-state calculation is to be followed by a transient calculation, the first set is used to define the steady-state case while the second set is used to define the transient case. If there are no changes in the variables appearing in the first set of Namelist DATA, then the second set can be a null set. Furthermore, the second set need only contain those variables in Namelist DATA which are changed when passiny from a steadystate to a transient calculation. The variables and Jefallts for Namelist DATA are as follows.
W..........real vector of spline coefficients. W is an array of dimension MXNVAR. This array can be used to specify the initial values for either a steady-state or a transient calculation by setting INITSW=F, in Namelist GRID. However, since W is an array of spline coefficients, it can be specified only in exceptional circumstances (cf. sample problem 7.4). Moreover, in order to specify W one must know the ordering of W used in the code. This ordering is discussed in section 4.10. $W=1.0,1.0, \ldots$,

ALPHA.....real variable array of boundary value coefficients. ALPHA is dimensioned (MAXSP,4) and the user must provide

$$
\begin{aligned}
& \text { ALPHA(I,J) I=1,2,...,NSPEC } \\
& \mathrm{J}=1,2,3,4 \text { (side index) }
\end{aligned}
$$

The default is ALPHA=0.0,0.0,...,
BETA.......real variable array of boundary value coefficients. BETA is dimensioned (MAXSP,4) and the user must provide

$$
\begin{array}{ll}
\operatorname{BETA}(I, J) & \mathrm{I}=1,2, \ldots, \text { NSPEC } \\
& \mathrm{J}=1,2,3,4 \text { (side index) }
\end{array}
$$

The oifault is BETA $=1.0,1.0, \ldots$,

GAMMA......real variable array of boundary value coefficients. GAMMA is dimensioned (MAXSP,4) and the user must provide GAMMA(I, J) $\mathrm{I}=1,2, \ldots$, NSPEC $\mathrm{J}=1,2,3,4$ (side index)
The default is GAMMA $=0.0,0.0, \ldots$,
NSI(K).....integer indicator for essential boundary conditions of side 1 for K-th species. If $\operatorname{NS} 1(K)=1$ then the boundary condition is essential, i.e. $\operatorname{BETA}(K, 1)=0$. If $N S 1(K)$ is 0 then the boundary condition on side 1 is non-essential for species K. When $\operatorname{NS} 1(K)=-1$, no boundary condition is imposed on side 1 for species K. ${ }^{\dagger}$ NS $1=0,0, \ldots$

NS2(K).....integer indicator for essential boundary conditions on side 2 for the K-th species. See description of NS1 indicator. NS2=0,0, ...

NS3(K).....integer indicator for essential boundary conditions on side 3 for the K-th species. See description of NS1 indicator. NS $3=0,0, \ldots$

NS4(K).....integer indicator for essential boundary conditions on side 4 for the K -th species. See description of NSI indicator. NS $4=0,0, \ldots$

For the standard Dirichlet or Newmann condition see the variables DRCHLT and NEUMAN at the end of this namelist.

HU1
real array of boundary function h for side 1 . HUl is dimensioned (MAXBRK,MAXSP) and the user must provide

$$
\begin{array}{ll}
\text { HU1 }(\mathrm{I}, \mathrm{~K}) & \begin{array}{l}
\mathrm{I}=1,2, \ldots, \mathrm{NTIZ+1} \\
\mathrm{~K}=1,2, \ldots, \mathrm{NSPEC}
\end{array}
\end{array}
$$

The default value is HU1=1.0,1.0,...,
HU2.......real array of boundary function h for side 2. HU2 is dimensioned (MAXBRK,MAXSP) and the user must provide

$$
\begin{array}{lll}
\text { HU2 }(I, K) & \begin{array}{l}
I=1,2, \ldots, N T I R+1 \\
K=1,2, \ldots, N S P E C
\end{array}
\end{array}
$$

The default value is HUZ $=1.0,1.0, \ldots$,

[^0]HU3........real array of boundary function h for side 3. Description is as for HU1.
HU3 $=1.0,1.0, \ldots$,

HU4 \qquad real array of boundary function h for side 4 . Description is as f:' HUl.
HU4 $=1.0,1.0, \ldots$,

HVGAP.....real array of gap coefficients in the z-direction. HVGAP is of dimension (MAXBRK, MAXBRK,MAXSP) and the user must provide

$$
\begin{array}{ll}
\operatorname{HVGAP}(I, J, K) \quad & I=1,2, \ldots, \text { number of vertical gaps along } R \\
& J=1,2, \ldots, N T 1 Z+1 \\
K=1,2, \ldots, N S P E C
\end{array}
$$

Default value is HVGAP $=0.0,0.0, \ldots$,

HHGAP.....real array of gap coefficients in the r-direction. HHGAP is of dimension (MAXBRX, MAXBRK, MAXSP) and the user must provide HHGAP ($\mathrm{J}, \mathrm{I}, \mathrm{K}$) $\mathrm{J}=1,2, \ldots$, number of horizontal gaps along Z $\mathrm{I}=1,2, \ldots, \mathrm{NTIR}+1$ $K=1,2, \ldots$, NSPEC
Default value is $H H G A P=0.0,0.0, \ldots$,

TO \qquad real variable for initial time at start of transient calculation.

T0=0.0,

NUTDUT....integer variable related to the frequency of output during the transient computation. NUTGUT is the number of major time values in the array UTDUT (see below).
NUTØUT=2,

UTØUT......real vector of NUTØUT major time values. Note that UTQUT(1) is the time at which the transient calculation begins and must agree with TO, the physical initial time. UTQUT is of dimension 100 and its default value is

UTOUT $=0.0,1.0,2.0,0.0,0.0, \ldots$,

NUFREQ....integer variable of the number of equally spaced points on each interval [UTØUT(I),UTØUT(I+1)]. Output will occur at each such point. If NUFREQ $=1$ then output will occur at each time UTØUT(I), $1 \leq I \leq N U T \emptyset U T$. Notice that NUFREQ ≤ 0 is meaningless. NUFREQ $=1$,

GRAPH..... logical indicator to write output of unit 12 for later use in graphic analysis. This output will occur during each ordinary output for the steady-state or transient calculation. GRAPH=F,

NUMGRF....number of run. This integer variable is written on unit 12 and is used by the graphics programs to identify the run which produced the graphics file.
NUMGRF $=0$,

EPS........real variable of accuracy requirement for the GEAR subroutines used in solving the ordinary differential equations system. EPS $=.0001$,

HINIT.....real variable of initial step size for GEAR calculation. HINIT=. 001 ,

MXGØRD....integer variable for selecting the maximum order used in the ODE solver. MXGØRD must be between 1 and 5.
$M X G \oslash R D=5$,

IPRSW1.....integer variable for certain additional output from subroutine INPRUC. If IPRSW1=0 print will not occur. If IPRSW1=1 the print will occur. (This print switch and the following print switches are primarily of use for debugging the code.) IPRSW1=0,

IPRSW2.....integer variable for additional output from subroutine INIFIT and certain output from subroutine INPROC. (See description of IPRSW1.)

IPRSW2=0,
IPRSW3.....integer variable for additional output from subroutine GFUN and certain output from subroutine PEDERV. (See description of IPRSW1.) IPRSW $3=0$,

IPRSW4.....integer variable for additional output from subroutines GUESS1, RHS, and TIMEX. (See description of IPRSW1.)

IPRSW4 $=0$,
IPRSW5....integer variable for certain additional output from subroutine PEDERV. (See description of IPRSW1.) IPRSW5=0,

IPRSW6.....integer variable for additional output from subroutine BLKSOR (in the iterative version of the code only). IPRSW6=0,
$\operatorname{DRCHLT}(K, I) . . l o g i c a l$ indicator specifying that the K-th species on side I satisfies a Dirichlet boundary condition. $\operatorname{DRCHLT}(K, I)=T$, will set $\operatorname{NSI}(K)=1, \operatorname{ALPHA}(K, I)=1 . D 0, \operatorname{BETA}(K, I)=0 . D 0$, and $\operatorname{GAMMA}(K, I)=1 . D 0$. $\operatorname{DRCHLT}(K, I)=F$,

NEUMAN(K,I)..logical indicator for a Neumann boundary condition. $\operatorname{NEUMAN}(K, I)=T$, will set $\operatorname{NSI}(K)=0$, $A L P H A=0 . D 0, B E T A=1 . D 0$, and GAMMA $=1.00$. $\operatorname{NEUMAN}(K, I)=F$,

5.4 Namelist FgRMAT

This ard the following three namelists provide the input for the graphics programs which are available with this code. The first namelist, FDRMAT, provides variables common to all three of the graphics packages. The first graphics package is CSP which provides a one-dimensional cross section plotting capability. The namelist for this package is CSPIN. The second graphics package is CDNTOR which provides a contour plotting capability. The namelist for this package is CNTRIN. The third graphics package is THREED which provides perspective surface plotting capability. The namelist for this package is DIM3IN.

The graphics programs will process files that were generated by several calls to EXEC. For each complete problem being graphed (that is for each time EXEC was called), the graphics program reads Namelist FQRMAT and either Namelist CSPIN, CNTRIN, or BIM3IN. For example, if EXEC was called twice and we are using the CSP program, we neen Namelist FORMAT and CSPIN followed by Namelist FDRMAT and CSPIN.

In discussing the namelist input for these graphics packages, the following terminology will be used. A frame is a physical plotting area, and for each time value one can have several frames. In the CONT@R and THREED package there is just one coordinate axis per frame and one curve (contour, surface plot) per axis. In the CSP package, one can have one or more coordinate axis per frame with the same number of axis in each frame. It there is more than one axis per frame, then there can be only one curve per axis. On the other hand if there is one coordinate axis per frame, then there can be several curves per axis.

The following variables are in namelist FDRMAT.
ITRTV......integer variable indicator specifying which version of the code was used to generate to graphics dataset. (unit 12). This indicator establishes the ordering assumed for the spline coefficients. If ITRTV is 1 , the ordering assumed is that used in the iterative version. If ITRTV is anything else, the ordering is assumed to be that used in the direct version of the code. ITRTV=0,

IGNUM......integer variable for the number of curves (or contours or threedimensional perspectives) to be produced at each time value. IGNUM=1, ($1 \leq$ IGNUM \leq MXGNUM)
NRESIN.....integer variable for the number of grid points used for graphical purposes in each coordinate direction. For CSP it
is recommended to use $200 \leq$ NRESIN ≤ 1000. For CDNTOR and THREED recommended values of $10 \leq$ NRESIN ≤ 50. NRES IN=NRES1, for CSP ($1 \leq$ NRESIN \leq NRES1) NRESIN=NRESD, for CDNTDR or THREED ($1 \leq$ NRESIN \leq NRESD)

ITIME......logical variable for use in time plots. When ITIME=T, the graphs generated will involve time as one of the independent variables. In the case of CSP, the solution at a given point is plotted as a function of time. At present this plot consists only of points without any connecting curve. In the case of CONTDR, contours are plotted on a plane in which the horizontal axis is time, and the other axis is a line parallel to either the r or the z axis. This line is specified by setting RMIN,ZMIN, RMAX,ZMAX in Namelist CNTRIN. In the case of THREED, the independent variables are the same as in CONTDR, however, the coordinates of the line are specified in Namel ist DIM3IN rather than CNTRIN. Note: for CØNTDR and THREED, the time values must be equally spaced. ITIME=F, (Default value)

NTIME
integer variable for the number of time values used when ITIME=T. When ITIME=F, this variable can be ignored. NTIME=NRES1, (Default for CSP) ($1 \leq$ NTIME \leq NRES1) NTIME=NRESD, (Default for CONTR and THREED) ($1 \leq$ NTIME \leq NRESD)

5.5 Namelist CSPIN

The variables described here are used in the cross section plotting (CSP) program only.

ICN........integer variable indicator for cinema mode. If ICN=1 the code uses its cinema mode to produce multiple copies of each frame during graphing. If ICN is anything else, cinema mode is not used and only one copy of each frame may be requested. ICN=0,

IF@RMT....integer indicator for grouping format of graphs. If IFDRMT is set to 1 , the graphs will be produced in packed format. That is, all the curves in a frame will be plotted on a single set of axes. If IFØRMT is set to anything else, the code will use its separate mode. In this mode each curve on a given frame will be plotted on a separate set of axes. Thus multiple sets of axes will occur on a single frame.
IFDRMT=0,
IANAL..... logical indicator for graphing the analytic solution. If IANAL is TRUE, the analytic solution for each species is plotted along with the numerical solution. In this case the user must supply a SINGLE PRECISION version of SUBROUTINE ANAL. If IANAL is FALSE the analytic solution will not be plotted although a dummy version of SUBROUTINE ANAL must be provided.
IANAL $=F$,
YAXMIN....real vector used as an estimate of the minimum value of the ordinate for all curves in a given frame (where the frame number for a given time is defined in LGRQUP). This estimate is checked by the CSP code and is used if it is reasonably close to the actual minimum value needed for all the curves within the given frame. By proper selection of YAXMIN and YAXMAX a constant vertical axis range can be used for all time values in a frame, e.g. for movie generation. Since there is a separate estimate for each frame there are $\max _{I}(L G R D U P(I))$ components in YAXMIN and YAXMAX.
YAXMIN=0.0,0.0,
YAXMAX....real vector used as an estimate of the maximum value of the ordinate for all curves in a given frame. This vector is used with YAXMIN in establishing an initial vertical axis range for each
frame.
$\operatorname{YaXMAX}=1.0,1.0$,
ISFEC......integer vector relating species numbers with curves. The vector ISPEC is used to identify the $I^{\text {th }}$ curve with a graph of species ISPEC(I). This vector has IGNUM components. Frequently we select $\operatorname{ISPEC}(\mathrm{I})=1$ so that we simpiy plot each species. Note, however, that a given species can be associated with several curves, e.g. $\operatorname{ISPEC}(I)=I_{0}$ for several values of 1 .

ISPEC=1,2, .. MXGNLM,
LGRDUP.....integer vector used to associate a given curve with a given frame. In general, the $i^{\text {th }}$ curve is plotted on the LGROUP(I) frame. Thus the $I^{\text {th }}$ curve plots the ISPEC(I) species on the LGROUP(I) frame. Notice that if we wish to plot, say, the first species on frames one and two we use $\operatorname{ISPEC}(1)=\operatorname{ISPEC}(2)=1$, $\operatorname{LGROUP}(1)=1$, and $\operatorname{LGROUP}(2)=2$. There are IGNUM compone:ıs in LGROUP.

$$
\text { LGROUP }=1,1, \ldots,(1 \leq I \leq \text { IGNUM })
$$

LORDER....inteyer vector used to order curves on frames. If IFORMT=1, the LORDER(I) caicomp plotting symbol is used for the $I^{\text {th }}$ curve (see $[10]$, p. 16) for a sample of these symbols). The selected symbol will be plotted at a few selected poinis along the $I^{\text {th }}$ curve. If IFORMT $\neq 1$, the separate axes plots in the frame will be ordered from the bottom of the frame, i.e. the $I^{\text {th }}$ curve will be the LORDER(I) plot from the bottom of the LCPOUP(I) frame. There are IGNUM components in LORDER.
Usually we use LORDER(I)=I.
LORDER $=1,1, \ldots,(1 \leq I \leq$ IGNUM $)$
Al.........real vector or r coordinates of the first endpoint of the cross-sections. There is a separate cross-section associated with each frame and thus there are max LGROUP(I) cross-sections to provide. Each cross-section is provided by giving the r and z components of the two endpoints of the cross-section line. Thus, for the $I^{\text {th }}$ frame, the line used for the
cross-section connects (A1(I), B1 (I)) with (A2(I), B2(I)). $A 1=0.0,0.0, \ldots,(1 \leq I \leq \operatorname{MAX}(\operatorname{LGROLP}))$

Bl.........real vector of z coordinates of the first endpoint of the cross-sections.
$B 1=0.0,0.0, \ldots,(1 \leq I \leq \operatorname{MAX}(L G R \not \subset U P))$
A2.........real vector of r coordinates of the second endpoint of the cross-sections.
$A 2=1.0,1.0, \ldots,(1 \leq I \leq \operatorname{MAX}(L G R O U P))$
B2.........real vector of z coordinates of the second endpoint of the cross-sections.
$\mathrm{B} 2=1.0,1.0, \ldots,!1 \leq I \leq \operatorname{Max}($ LGRQUP $))$
CAMPQS.....logical variable to do a composite plot. If set to TRUE, all plots will occur on a single frame. CøMøS=F,

SCALE.....logical variable to do automatic axis scaling. If set to TRUE, axes will be resealed as the solution evolves. If FALSE, the values in YAXMIN and YAXMAX will be used.
SCALE=F,

5.6 Name I ist CNTRIN

In this subsection we describe the variables in Namelist CNTRIN which, together with those in Namelist FøRMAT, provide the input data for the contouring program.

ISPEC......integer vector of species numbers. The vector, just as the ISPEC vector in Namelist CSPIN, specifies that for a given timi value, the th frame will be a contour plot of species ISPEC(I).

```
ISPEC=1,2,..., (i \(\leq 1 \leq I G N U M)\)
```

RMIN.......real vector of minimum r coordinate to be contoured on the Ith frame. There are IGrUM components in RMIN.
RMIN $=0.0,0.0, \ldots,(1 \leq 1 \leq I G N U M)$
RMAX.......real vector of maximum r coordinate to be contoured on the Ith frame. There are IGNUM components in RMAX.

$$
\operatorname{RMAX}=1.0,1.0, \ldots,(1 \leq I \leq I G N U M)
$$

ZMIN.......real vector of minimum z coordinate to be contoured on the Ith frame. There are IGNUM components in ZMIN.
ZMIN $=0.0,0.0, \ldots,(1 \leq I \leq I G N U M)$
ZMAX......real vector of maximum z coordinate to be contoured on the Ith frame. There are IGNUM components in ZMAX.
ZMAX $=1.0,1.0, \ldots,(1 \leq I \leq$ IGNUM $)$
NRESR......integer variable for the number of grid points used for the r direction. This variable defaults to the value of Ni:ESIN in Namelist FØRMAT. NRESR=NRESIN,

NRESZ......integer variable for the number of grid points used for the z direction.
NRESZ=NRESIN,

5.7 Namc 1 : st DIM3IN

In this subsection we describe the values in Namelist DIM3IN which, together with those in Namelist FøRMAT, provide the input data for the threedimensional perspective program (THREED).

The variables ISPEC, RMIN, RMAX, ZMIN, ZMAX, NRESR, and NRESZ as described in section 5.6 are required to specify the species indices and the rectangular plotting domain in $r-z$ space. These variables are not repeated here for the sake of brevity. We also need to specify the viewpoint of the surface and bounds on the function axis.

RVIEW.....real variable describing the r coordinate of the viewpoint. In terms of actual coordinates we view the three-dimensional surface from the point (RVIEW, ZVIEW,FVIEW). It is recommended that the viewpoint be initially selected to be a considerable distance from the surface. On subsequent runs the viewpoint may be refined. Note when ITIME=T, RVIEW is associated with the time axis.
RVIEW $=100.0,100.0, \ldots,(1 \leq$ I \leq IGNUM $)$
ZVIEW......rea! variable specifying z coordinate of viewpoint.
ZVIEW $=100.0,100.0, \ldots,(1 \leq I \leq I G N U M)$
FVIEW.....real variable specifying function axis coordinate of viewpoint. FVIEW $=100.0,100.0, \ldots,(1 \leq I \leq I G N U M)$

FMATMN....real variable used to provide an estimate of the minimum function value for all species over all time values. This variable, along with FMATMX, can be set large enough to provide a constant function axis for all plots in a given run. Oiherwise, the code will adjust both FMATMN and FMATMX to accommodate the data.
FMATMN $=0.0,0.0, \ldots,(1 \leq I \leq I G N U M)$
FMATMX....real variables used to provide an estimate of the maximum function value for all species over all time values.
FMATMX $=1.0,1.0, \ldots,(1 \leq I \leq I G N U M)$

5.8 Summary of Restart Procedures

Recall that the program writes restart data on unit 11 , and reads restart data from unit 10. Furthemore, the write on unit 11 will always occur when any of the following circumstances occur.
(1) If time expires during a steady-state calculation.
(2) At the conclusion of a steady-state calculation.
(3) If time expires during a transient calculation.
(4) At the conclusion of a transient calculation. Note that the value of NUTOUT determines where the transient calculation stops. For example, if the UTOUT array has 21 time values and we set NUTOUT=8, then the program will stop at the end of the first 8 time values in UTOUT. If one wished to continue, then on a subsequent restart, one would set $8<$ NUTOUT ≤ 21. The prcgram will then proceed from UTOUT(8) to UTOUT(NUTOUT).

The general procedure for a restart is as follows.
(a) Assign the previously written restart dataset to unit 10 (it was previously assigned to unit 11).
(b) Assign to unit 11 the dataset on which the restart data will be written at the conclusion of this run.
(c) In Namelist GRID set

> INITSW $=F$, GUESSW $=F$,
(d) If this is a restart from a steady-state calculation and is a continuation of a steady-state calculation, then leave STEDSW $=T$, and leave TRANSW as it was in the previous calculation. Then set ISTDRS=T,
(e) If the previous run was a normal conclusion of a steady-state calculation with DUMPSW=T, and if one wishes to restart from this run to do a transient calculation, set the following indicators: STEDSW=F, TRANSW=T, DUMPSW=T, (in this case DUMPSW=T, serves to indicate that transient will read the steady-state data).
(f) If the previous run was a transient calculation, and this is a restart to continue this calculation then set ITRARS $=T$, and make sure STEDSW=F,.

5.9 DISPLI Files

The DISPL1 package consists of the following files:

1. The DISPLI macros.
2. The DISPLI numerical package.
3. The CSP graphics program.
4. The C $\varnothing N T \emptyset R$ graphics program.
5. The THREED graphics program.

In addition the MORTRAN preprocessor consists of

1. The MøRTRAN macros.
2. The preprocessor itself.

To utilize these files, first compile the MORTRAN preprocessor itself into an executable program (use a Fortran 77 compiler). To conduct any MロRTRAN compile execute the preprocessor assigning the MDRTRAN macros to unit 1 , the DISPL1 macros to unit 2 and the source MCKTRAN code (e.g. the DISPL1 package) to unit 5. The MORTRAN listing will be generated on unit 6 and the FØRTRAN translation of the MORTRAN source code will be generated on unit 7. The resulting $F \emptyset R T R A N$ can then be compiled with a Fortran 77 compiler. Using the above procedure the DISPLI numerical package, and each of the three graphics programs can be compiled. In the case of the graphics programs the resulting object code can be linked to the DISSPLA library to produce an executable file.

To run a problem the user file (master driver and user routines) should be compiled (in MORTRAN or FØRTRAN) and linked to the DISPL1 numerical object code to produce an executable file. This file should be executed with the Namelist assigned to unit 5, restart and dump files assigned to units 10 and 11, and graphics file assigned to unit 12. To execute any of the graphics programs, assign unit 12 from a previous computational run and assign the Namelist input to unit 5.

5.10 Error Messages

This program performs some consiscency checks on the input stream. We distinguish between fatal and non-fatal eriors in the input. Whenever possible an error is interpreted as non-fatal in which case the error is corrected and execution resun os. When a non-fatal error is encountered, the error is corrected and a message is printed informing the user of the correction. For example, if the number of quadrature points per interval in the r direction NQR is less than $K R-1$, then the quadrature error may exceed the spatial truncation error, and even worse, the matrix AL can be so poorly conditioned that it cannot be inverted. Hence if $N Q R$ < KR-1, the code will set NQR $=K R-1$ and then continue. This same situation also applies to NQZ.

For fatal errors, the program prints a message and then stops. The following errors are recognized as fatal errors in the computational phase of DISPLI.

- -) If side J has a non-essential boundary condition for the K -th species, we have

$$
\alpha h u+\beta D \nabla u \cdot r_{1}=\gamma h_{\rho}{ }^{0}
$$

on side J where $\beta=\beta(K, J) \neq 0$. Thus the code checks that $\operatorname{NSJ}(K)$ and $B(K, J)$ are not both zero. If they are, the following message appears.
***INPUT ERRDR.BETA=0. FOR A NפN-ESS. SIDE.
(2) Recall that MAXBRK is the Macro parameter for the maximum number of intervals in either direction. The code checks whether LR > MAXBRK-1 or LZ > MAXBRK-1, and if so prints
***INPUT ERR@R.NUMBER $\emptyset F$ INTERVALS NפT C@NSISTENT WITH NUMBER $\emptyset F$ BREAKPDINTS.
(3) NRNZ is the number of variables associated with one species, and MXNRNZ is the Macro parameter for this variable. The code checks NRNZ > MXNRNZ, and if so prints
***INPUT ERRØR.NUMBER DF VARIABLES PER SPECIES EXCEEDS DIMENSIONED SIZE.
(4) NVAR is the total number of variables for the problem, and MXNVAR is the corresponding Macro parameter. The code checks NVAR > MXNVAR and if so prints
***INPUT ERR@R.TØTAL NUMBER $\emptyset F$ VARIABLES EXCEEDS DIMENSIDNED SIZF.
(5) $\operatorname{NQR}(N Q Z)$ is the number of quadrature points per interval, and MAXTQD is the corresponding Macro parameter. The code checks NQR > MAXTQD or NQZ > MAXIQD and if so prints
***INPUT ERRQR.NUMBER OF QUADRATURE PDINTS EXCEEDS DIMENSIQNED SIZE.
(6) NUTDUT is the number of output times in a transient calculation. The code checks if NUTØUT < 2 or NUTØUT > 100, and if so prints
***INPUT ERRDR.NUTØUT IS QUTSIDE THE INTERVAL $(2,100)$.
(7) The PW array is dimensioned at run time by the user setting NPW in the DRIVER. The code checks whether the user has set NPW large enough, that is, whether MFBW*NVAR > NPW for the direct version, or FBW*NVAR*NSPEC > NPW for the iterative version. In either case the code prints
***PW ARRAY IS TDD SMALL.
(8) The AL array is dimensioned at run time by setting NAL in MASTER DRiVER. For either version the code checks whether FBW*NRNZ > NAL, and if so prints
***AL ARRAY IS T@D SMALL.
(9) MAXNQT is the Macro variable for the number of knots in either the r or z direction. If this numser is exceeded the code prints
***INPUT ERR@R. TØTAL NUMBER $\emptyset F$ KNÐTS IN ØNE DIRECTIØN EXCEEDS STØRAGE.

The graphics programs generate fatal errors with messages if the Macro variables used in the graphics programs are not as large as the Macro variables used to generate the graphics dataset on unit 12 during the execution of the computational phase. In the following discussion we refer to the value of the Macros used in the graphics codes by preceding the variable name with a J. The corresponding value in the computational code will be indicated by preceding the variable name with an I.

The fatal errors are:
(1) If the original Macro for the number of breakpoints is greater than the corresponding graphics Macro, the message

SPECIFIED NUMBER DF BREAKPDINTS (IMAXBRK) EXCEEDS THE MAXIMUM NUMBER DIMENSIDNED (JMÄBRK). RUN STDPPED.
(2) If the original Macro for the number of species is greater than the corresponding graphics Macro the following message appears.

SPECIFIED NUMBER DF SPECIES (IMAXSP) EXCEEDS THE MAXIMUM NUMBER DIMENSIØNED (JMAXSP). RUN STØPPED.
(3) If the original Macro for the spline order is greater than the value used in the graphics program the following message appears.

SPECIFIED ØRDER $\emptyset F$ SPLINES (IMAXK) EXCEEDS THE LIMITS $\emptyset F$ THE PR@GRAM (JMAXK). RUN STøPPED.
(4) If the original Macro for the number of knots in either direction is greater than the value used in the graphics program the following message appears.

SPECIFIED NUMBER $\emptyset F$ KNQTS (IMAXNQT) EXCEEDS THE MAXIMUM NUMBER DIMENSIDNED (JMAXNDT). RUN STDPPED.
(5) If the original Macro for the number of variables in either direction is greater than the value used in the graphics program the following message appears.

THE SINGLE SPECIES NUMBER OF VARIABLES (IMXNRNZ) EXCEEDS THE LIMITS ØF THE PRØGRAM (JMXNRNZ). RUN STØPPED.
(6) If the original Macro for the total number of variables is greater than the value used in the graphics program the following message appears.

THE SPECIFIED NUMBER DF VARIABLES (IMXNVAR) EXCEEDS THE LIMITS $\emptyset F$ THE PRØGRAM (JMXNVAR). RUN STØPPED.

In addition, a fatal error can occur when ITIME=T and if NTIME is greater than NRES1 (for CSP) or NRESD (for CONTOR or THREED). If this occurs, the following message is printed.

SPECIFIED NUMBER DF TIME VALUES IS
GREATER THAN $\left\{\begin{array}{c}\text { NRESI } \\ \text { NRESD }\end{array}\right\}$, NTIME= . RUN STDPPED.
where the appropriate Macro name NRESI or NRESD is printed as well as the value of NTIME.

If a fatal error is detected (either due to input or due to computation), the last message printed in EXEC is

EXIT EXEC WITH ABN@RMAL TERMINATIDN
and control is returned to the Master Driver.
The following non-fatal message is printed by the graphics programs is ITIME $=T$ and there are more time values on the graphics dataset than the user requested to be graphed via NTIME.

WARNING *** MDRE TIME VALUES THAN NTIME.

6. DESCRIPTION OF PRINTED AND GRAPHICAL OUTPUT

In this section we discuss the output generated by the DISPL.l package. We first discuss the printed output generated by the computational phase of DISPL1 in section 6.1. In section 6.2 we discuss the printed and graphical output which can be produced by the cross-section plot program. In section 6.3 we discuss the printed and graphical output which can be produced by the contour package. Finally in section 6.4 we discuss printed and graphical output which can be produced by the three-dimensional perspective program. In all cases, we describe the output with reference to the examples in section 7.

6.1 Printed Output

In this subsection we discuss the printed output of the DISPLI computational code. The printed output has three main sections. The first section is the result of processing Namelist GRID and the first read of Namelist DATA. The second section contains the results of any initial fit computation and any steady-state calculation. The third section contains the results of a second read of Namelist DATA and any transient calculation which may have occurred. In discussing the results of processing the namelists, we will discuss only those aspects which are not clear from the discussion of the namelists in section 5.

Considering the first section, we use example 7.2 as an illustration. The output begins with a summary of the variables in Namelist GRID. Notice that INITIAL CONTR=13; this is just an indication that the code is going to set C@NTR=KR-1 which is the default value. The next part of the output consists of certain internal arrays followed by a summary of Namelist DATA. The code first indicates that CONTR is reset to $K R-1=4-1=3$ and C@NTZ is reset to KZ-1=1-1=0. NVGAP is the number of vertical gap interfaces, and NHGAP is the number of horizontal gap interfaces. LR and LZ are the number of intervals in the r and z direction. The IL array is the index set for the B-splines in the r-direction. $J L$ is the corresponding index set for the z direction. IREF is an index set in the r direction for the interfaces. JREF is a similar array for the z direction.

MLTAB is the two-dimensional table of materials in the domain. This table is the internal array which is obtained from the Namelist GRID array

MATL. Next, the code determines whether it is more efficient (in terms of bandwidth) to store the coefficients with horizontal or vertical ordering. The ordering used is reported in the output. The next two lines of code deal with constants involved in the indexing of the coefficients. These constants are explained in section 4.10.

The output next gives the actual system size for the problem. $N R$ is the number of variables per species in the r-direction. $N Z$ is the corresponding number for the z-direction. NVAR is the total number of variables, i.e. NSPEC*NR*NZ. The output next indicates whether this is the iterative or direct version of the code. The summary print of namelist DATA then begins. The reference to PRDUT in describing the time and space grid is to SUBKDUTINE PRDUT which controls output (both for units 6 and 12) during the steady-state and transient computation. The variable MF (which is 21) is an indicator for the ODE solver GEAR and must remain fixed.

Next we consider the second section. After completing the summary print for Namelist DATA, the code calls SUBRDUTINE INIFIT if INITSW=T (which is the case in this example). The output contains a table of the least-squares solution evaluated at the quadrature points. In this example the code next reads namelist DATA for the second time and repeats its summary print. Notice that the coefficients, W, have changed as a result of the call to INIFIT. If GUESSW and/or STEDSW were TRUE, calls to SUBRDUTINE GUESS1 and/or STEADY would have occurred. While the call to GUESS1 would not directly produce any printed output, the call to STEADY would produce output similar to the transient output discussed below. Such steady-state output would occur after the first time-step, after every ISTDFQ steps beyond the first one, and at the final step. Also, if the code runs out of time during the execution of STEADY, printout will occur for the last step before doing a dump.

Finally, we consider the third section of output. We first see a message indicating that the transient solution is beginning. There then follows a set of small (half page) reports of the solution as it is progressing. Each report is a result of a call to PROUT and occurs at a time specified by the user's time grid. Consider the first report in example (section 7.1) in detail. The time value is given followed by the spline coefficient values. Each approximate solution is then evaluated on the user-specified grid and, if IANAL=T, the corresponding analytic solution is given. The output values on
this grid are arranged as follows: each row represents a fixed value of z with the first row corresponding to ZGRID(JZGRD) and the last row corresponding to ZGRID(1). On a given row, the first entry corresponds to RGRID(1) and the last entry corresponds to RGRID(IRGRD). ${ }^{\dagger}$ The message
(FRØM PRØUT VIA TIMEX)
is a reminder that this is a transient solution. If this call to PRDUT was from SUBRØUTINE STEADY we would get the following message.
(FRQM PRDUT VIA STEADY)
After the final species solution is printed, the time value, TDUT, is again printed.

PRDUT reports other than the first one also include the value DELTA T and provide information concerning the monitoring of computer time usage.

DELTA T is the current spacing of subintervals on the user's time grid. Notice that this number will change when we move from one major time interval to another, i.e. from [UTOUT(1), UTØUT(2)] to [UTØUT(2), UTDUT(3)]. In the case of a steady-state solution, DELTA T is the actual time step being used in the ÚDE solver.

The next two lines deal with monitoring computer time usage. Based on the amount of time required to solve the problem during the previous call to the ODE solver GEAR, the code estimates the time required to do the next call to GEAR. This estimate is given, followed by the amount of computer time remaining. If the estimate is less than the time left we proceed. If not, we immediately dump the current results on unit 11 , report this fact on the output, and stop. In the steady-state case a similar situation applies.

Returning to the example in section 7.1, after the transient solution is completed, the code writes the current solution on unit 11 and reports this on the output as a normal dump. The value of I ($=5$ in section 7.1) is the final index of UTØUT used. Finally, the code checks whether there is another problem to solve. If not, a message indicating that the end of the input file has been reached is printed.

[^1]
6.2 Cross Section Plotting

The output of the cross section plotting program (CSP) is both printed and graphical. In this subsection we discuss both forms of output by reference to the examples in section 7 . To begin with, all of the graphing programs can be used in one of two basic modes. If ITIME=F in Narelist FORMAT, the graphing program will generate plots associated with the solution at a specific time value. For example, CSP will generate plots of species solutions along one-dimensional slices at time values associated with the time array specified in Namelist DATA. If, on the other hand, ITIME=T, the graphing prograr: will generate graphs with time as one of the independent variables. In the case of CSP we will obtain plots as specified by the graphing formats in Namelists FORMAT and CSPIN. The plot involves a graph of a species value $u_{k}\left(r^{\star}, z^{\star}, t\right)$, at a fixed spatial location (r^{*}, z^{*}) as a function of time t for a given species k. The point (r^{\star}, z^{\star}) is specified as follows. Recall that for the $m^{\text {th }}$ frame, CSP requires that a line segment in the spatial domain be specified by giving its end points ($\mathrm{A} 1(\mathrm{~m}), \mathrm{B} 1(\mathrm{~m})$) and ($\mathrm{A} 2(\mathrm{~m}), \mathrm{B} 2(\mathrm{~m})$). The point ($r^{*}, 2^{*}$) is specified by setting

$$
\begin{aligned}
& A 1(m)=r^{\star}, A 2(m)=r^{\star}, \\
& B 1(m)=z^{\star}, B 2(m)=z^{\star},
\end{aligned}
$$

Note that $r^{*}=r^{*}(m), z^{*}=z^{*}(m)$, i.e. $\left(r^{*}, z^{*}\right)$ can change with each frame. The time values used in these plots are specified through the users time grid in Namelist DATA. The ITIME=T case for CDNT@R and THREED will be discussed in sections 6.3 and 6.4.

We now discuss the printed output of CSP when using the ITIME=F mode. For example, consider the output in section 7.2. The printed output begins with:

BEGINNING CROSS SECTION GRAPHICS PACKAGE

The program then checks the sizes of various macro variables. If these values are acceptable, no prints occur. The program then gives formatting parameters and the value of NRESIN. The values of ITIME and NTIME are then given. Recall that NTIME is used only if ITIME=T. The values of YAXMIN(I) and $\operatorname{YAXMAX}(\mathrm{I})$ are then given in pairs for $I=1, \ldots$, IGNUM. Next, the user's graphing format data is summarized on a frame-by-frame basis. Specifically, for each frame (at a given time value) the ordering of plots on that frame
and the associated species number is given. In a similar manner. the definttion of the cross section for each frame is reported. Finally, the program informs the user that the end of data has been encountered and the total number of frames produced is reported.

The graphical output associated with an ITIME=F case is also illustrated in section 7.2. In this example graphs were produced in the separate (not packed) format. Notice that the legend in the lower left corner of each graph gives the species number. Further, the time value associated with each frame is given. (Warning: Since floating point numbers must be plotted in an F format in the CALCOMP package, we sometimes obtain a double asterisk when a number, such as time, is out of range.)

We next consider the ITIME=T case, as is illustrated in section 7.3. The printed output is the same as in the ITIME $=F$ case and for reasons of space we do not include it. The graphical output for ITIME=T differs from that for ITIME $=F$ in that the legend in the lower left corner gives the r and z coordinates of the point where the solution is evaluated rather than a time value. Of course, the horizontal axis is time rather than r or z. The most significant difference is that the graph for ITIME=F is a curve whereas the graph for ITIME=T is just the NTIME points at which we have evaluated the solution. Finally, we point out that even when ITIME $=T$ we can use the other options of CSP such as the grouping format (packed or separate) as well as the ISPEC, LGROUP, and LORDER arrays.

6.3 Contour Plotting

The contouring program (CดNTØR) can be used in one of two basic modes. If CøNTØR is used with ITIME=F contour plots are generated in which each plot is the approximate solution for a particular species over a rectangular domain in r-z space at a particular time. Thus we generate a series of contour plots ranging over the species and time values. Thus we generate a series of contour plots ranging over the species and time values. If CøNTR is used with ITIME $=T$, we generate a given contour plot with two independent variables--time and a space variable. The time values used are those defined in Namelist DATA and must be uniformly spaced for use in CØNTØR. The spatial variable must be a line in the $r-z$ domain and must be parallel to one of the coordinate axes. The definition of this line is transmitted to C $\sigma N T \emptyset R$ through the RMIN, RMAX, ZMIN, and ZMAX arrays (which define the contouring domain when ITIME=F). Notice that if the problem is one dimensional in the spatial variable, then a contour plot cannot be done with ITIME=F,; however, a contour plot can be done with ITIME=T.

In describing the output of C $\emptyset N T \emptyset R$ we consider the ITIME $=F$ mode and refer to the examples in section 7 for concreteness. The printed output of the CØNTØR program is illustrated in section 7.1. The output begins with the statement

BEGINNING CØNTØR GRAPHICS PACKAGE

The program then does a series of checks on the sizes of Macro variables. If these values are within range, the execution continues. The output next states the VERSI $\emptyset N$ C $\emptyset N T \emptyset R$ being used followed by the value of IGNUM. The user's formatting instructions are then summarized. Next, the value of ITIME is given along with the number of points in the r and z directions (NRESR and NRESZ) each of which is the input value NRESIN.

6.4 Perspective P lotting of Solution Surfaces

The three-dimensional perspective program (THREED) uses the DISSPLA graphics software package to generate views of the solution surface for a particular species over a rectangular domain. As with CSP and CONTR, THREED can be used in two basic modes: ITIME=F and ITIME=T. When used with ITIME=F, the domain is specified by [RMIN(I),RMAX(I)] $\times[$ ZMIN(I), ZMAX(I)]. When used
with ITIME=T the domain is defined as for CONTR. That is, the domain involves two independent variables: the first is time, and values must be generated by a uniformly spaced time grid in Namelist DATA; the second independent variable must be parallel to the r or z axis and is specified by the values of RMIN(I), RMAX(I), ZMIN(I), and ZMAX(I). Notice that when ITIME=T, the spatial domain can, in fact, arise from a one-variable problem (see section 7.3).

In discussing the printed output we refer to the example in section 7.1. While this output deals with ITIME=F, the printed output for IT IME=T is essentially the same. The output begins with

BEGINNING THREE DIMENSIONAL PLOTTING PACKAGE
The program then conducts a series of checks for the size of certain variables relative to the size of the macro variables in the particular compilation being used. If necessary, diagnostic messages are given and the program stops. In the normal case the program next provides a summary of the input data. First, the VERSI $\emptyset N$ and value of IGNUM are given. This is followed by the user's formatting instructions and the values of NRESIN and ITIME. Then the values of ISPEC, RMIN, RMAX, ZMIN, and ZMAX are given. Finally the viewpoint and FMATM and FMATM are given.

The graphical output for THREED gives a series of frames which are perspective views. Each view is a surface for a given species at a given time. Notice that each frame gives the title, value of TOUT, frame number, and specie number. Thus, each frame is clearly defined without reference to the printed output.

When using THREED with ITIME=T the outputs are similar. The printed output differs in only one respect:

The user's stated number of time values, NTIME (which is only required when ITIME $=T$) must not be greater than the Macro variable NRESD. A check of this requirement is made and, if necessary, a diagnostic message is printed. Further, if the actua? number of time values is greater than NRESD, a warning message is given and the graph produced represents only the first NRESD time values.

The graphical output for the ITIME=T plots is similar to the graphical output already described. Of course, TQUT is not given in the lower left corner and one of the axes is the time axis.

7. SAMPLE PROBLEMS

In this section, we will illustrate the procedure used in setting up problems for this code. The computer output for the problems 7.2-7.5 was obtained from an earlier version of DISPL1 and differs somewhat in detail and format from the current package.

7.1 Two-Dimensional Heat Conduction in a Plate

Consider a rectangular plate $R=\{(r, z): 0 \leq r \leq 2,0 \leq z \leq 1\}$ with the heat conduction equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial r^{2}}+\frac{\partial^{2} u}{\partial z^{2}} \text { in } R \text { for } t>0 . \tag{7.1.1}
\end{equation*}
$$

Let the following temperature distribution be specified on the sides for $\mathrm{t}>0$.

$$
\begin{align*}
& u(0, z, t)=\phi(z, t), \tag{7.1.2}\\
& u(r, 0, t) \equiv 0, \\
& u(2, z, t) \equiv 0, \\
& u(r, 1, t) \equiv 0,
\end{align*}
$$

and let the initial temperature distributions be

$$
\begin{equation*}
u(r, z, 0) \equiv 0 . \tag{7.1.3}
\end{equation*}
$$

For $\phi(z, t)$ we take

$$
\begin{equation*}
\phi(z, t)=t \theta(z) \tag{7.1.4}
\end{equation*}
$$

where

$$
\theta(z)=\left\{\begin{array}{l}
2 z \text { for } 0 \leq z \leq 1 / 2 \tag{7.1.5}\\
2(1-z) \text { for } 1 / 2 \leq z \leq 1
\end{array}\right.
$$

To set up this problem, we have to consider the three Namelists described in section 5 , the user-supplied subroutines described in section 4 , and the Namelist graphics data described in section 5.

Namelist GRID

1. Spline Order

When in doubt, use a cubic, i.e.
$K R=4, K Z=4$, (Default) (Default cases do not require any cards.)
2. Continuity at the mesh points

With a homogeneous domain and smooth data, the smooth splines are
a reasonable choice.
CDNTR=3, CøNTZ=3, (= KR-1 and KZ-1) (Default)
3. Number of species

NSPEC=1, (Default)
4. Doma in

RL $\emptyset W=0.0$, (Default)
RUP $=2.0$,
ZL@W=0.0, (Default)
ZUP=1.0, (Default).
5. Total number of interfaces

None (Default)
6. Interface mesh points

None (Default)
7. Interface type codes

None (Default)
8. Geometry type

Rectangular
DELTA=0, (Default)
9. Total number of non-interface mesh points in each direction. (This total does not include the end points.)

The numbers NMR and NMZ (and the corresponding positions of the mesh points) together with the spline orders KR and KZ control the errors in the approximate solution as far as the spatial approximation
is concerned. For heat conduction problems with very smooth data and at points not near the corners, one can expect the spatial error to behave as $0\left(h^{k}\right)$ asymptotically as $h \rightarrow 0$. Here h is an appropriate measure of the mesh width and $k=K R=K Z$. Thus, if one is familiar with the mesh requirements for a second order accurate finite difference scheme in order to achieve a given accuracy, then for a cubic spline ($K=4$) one would start by trying to use the square root of the number of points needed for the second order method. Of course, this estimate applies only for h rather small, e.g. $h \sim \frac{1}{100}$ one might use $h \sim \frac{1}{10}$ with a cubic. For illustrative purposes we use

$$
N M R=4, N M Z=1,
$$

10. Additional non-interface mesh points

These are the NMR and NMZ mesh points discussed above.
RNESH $=0.1,0.25,0.5,1.0$, ZMESH=0.5,
11. Continuity indices at non-interface mesh points

Not needed
(Default)
12. Quadrature order

NQR(NQZ) is the number of quadrature points used in each $r(z)$ mesh interval. The choice $N Q R=K R$ and $N Q Z=K Z$ is a conservative choice. $N Q R=4, N Q Z=4$,
13. Index for algebraic boundary conditions

ALGBCS $=\mathrm{T}$, (Default) indicates that we will use the boundary conditions as they are given. If we were to use the differential version, we would set $A L G B C S=F$, then differentiate the essential boundary condition (7.4) with respect to time; thereby generating

$$
\frac{\partial \phi}{\partial t}(z, t)=\theta(z),
$$

and use the user routine BRHODT to provide $\theta(z)$. With ALGBCBS=T, we use the user routine BRHO to provide $t \theta(z)$.
14. Conservative form index for the convection term

Since the convection term is zero, use the default value. CDNSRV $=T$, (Default)
15. Material table

Not needed (Default)
16. Selection of calls to the calculation drivers

INITSW $=T$, GUESSW $=F, S T E D S W=F, T R A N S W=T$,
Since the initial condition for this problem is a zero temperature, we could have set the initial coefficients to zero in Namelist DATA rather than having INITSW=T. GUESSW=F, because we have initial conditions and STEDSW=F, because this is not a steady-state problem.
17. Species dependent heat capacity term

Since the coefficient of $\frac{\partial u}{\partial t}$ in Eq. (7.1.1) is identically one, we set $\operatorname{IREVLA}(1)=F, \quad \operatorname{IRH} \emptyset(1)=F$, (Defaults)
18. Frequency of output from a steady-state calculation Not applicable.
19. Indicator for restarting a STEADY calculation Not applicable.
20. Indicator for restarting a TRANSIENT calculation

Since this is not a restart we use ITRARS=F, (Default)
21. Indicator for reading coefficients from unit 10 generated at the conclusion of a previous steady-state calculation Not applicable.
22. Number of points in R-direction for user's grid IRGRD=4,
23. R coordinates for user's grid

RGRID $=0.25,0.75,1.25,1.75$,
24. Number of z coordinates in user's grid J7GRD=2,
25. 2 coordinates for user's grid

ZGRID=0.25,0.75,
26. Indicator for an analytic solution

For this problem, we can approximate the solution by means of a double Fourier series.
IANAL $=T$,

Using the default options wherever possible, we see that the input for this Namelist GRID requires 10 cards.

Next we consider Namelist DATA. As mentioned before, there are two sets of namelist DATA, the first set is read before a steady-state calculation and the second set is read before a transient calculation. Since we are not doing a steady-state calculation we would fill out the second set of Namelist DATA and ignore the first set. That is, our deck would read:
\&DATA
\&END
8DATA
"To be filled in"
:
\&END
From a conceptual point of view this is the proper form for the program; however, the program will also accept (for a transient calculation) all the data in the first namelist, i.e.

8DATA
"To be filled in"
\vdots
\&END
\&DATA
\&END
In this sample problem we will use this last form. We now consider the variables to be specified in Namelist DATA.

Namelist DATA

1. Boundary condition switches

Recall that NSI(K) is the switch for species K on side I with
0 non-essential b.c. on side I for species K
$\operatorname{NSI}(K)=1$ essential b.c. on side I for species K
-1 no b.c. on side I for species K
In this problem we have essential conditions on all four sides. $\operatorname{NS} 1(1)=1, \operatorname{NS} 2(1)=1, \operatorname{NS3}(1)=1, \operatorname{NS} 4(1)=1$,
2. Boundary value coefficients (MAXSP,4)

$$
\begin{aligned}
& \operatorname{ALPHA}(1,1)=1.0, \operatorname{BETA}(1,1)=0.0, \operatorname{GAMMA}(1,1)=1.0, \\
& \operatorname{ALPHA}(1,2)=1.0, \operatorname{BETA}(1,2)=0.0, \operatorname{GAMMA}(1,2)=0.0, \\
& \operatorname{ALPHA}(1,3)=1.0, \operatorname{BETA}(1,2)=0.0, \operatorname{GAMMA}(1,3)=0.0, \\
& \operatorname{ALPHA}(1,4)=1.0, \operatorname{BETA}(1,4)=0.0, \operatorname{GAMMA}(1,4)=0.0,
\end{aligned}
$$

3. Boundary h functions

Not applicable (Default)
4. Gap coefficients

Not applicable (Default)
5. Reaction coefficients, first order

Not applicable (Default)
6. Reaction coefficients, second order Not applicable (Default)
7. Initial time for the start of the transient calculation.

For this problem we use 0.0, i.e.
TO $=0.0$, (Default)
8. Output time control for a transient calculation
nUTOUT is the number of output time values including the initial and final times.
NUTOUT $=5$,
UTOUT(I), $1 \leq \mathrm{I} \leq$ NUTOUT is the array of output times. For this problem we use UTOUT $=0.0,0.25,0.5,0.75,3.0$,

Each time interval defined by the array UTOUT can be subdivided into NUFREQ subintervals. The output will then be provided at each time point of this fine grid. For this problem we use NUFREQ=1, (Default)
9. Internal output control switches Not applicable (Default)
10. Initial spline coefficients

Since B-splines are not interpolatory splines, it is not, in general, a simple matter to select che initial spline coefficients. Thus in general, one would use the least squares fit provided by setting INITSW=T, in Namelist GRID. However, in some situations, it is convenient to provide the initial spline coefficients. For example, in this problem, the initial data is zero everywhere; thus we could have set $W=56 * 0.0$, and INITSW=F,.
Note that for this problem there are 56 variables; however, we could have used any number $\mathrm{I}, 56 \leq \mathrm{I} \leq$ MXNVAR. The use of initial spline coefficients is not recommended for those who are not familiar with B-splines and the ordering procedure used in this program, c.f. section 4.10. For this problem, we use the default $W=1.0, \ldots$ (Default)
11. ODE solver control parameters

EPS is the error control parameter used in the GEAR solver to control the error in the time integration. For this problem we used EPS=1. D-6,
HINIT is the initial time step used in the GEAR solver. If this initial step is too large relative to the size of EPS, the GEAR solver will reduce the initial step size. For this problem we use HINIT=1.D-5,
12. Maximum order for the time integration used in GEAR

MXG@RD=5, (Default)
Note that one must have $1 \leq M X G Ð R D \leq 5$.
13. Graphics output switch

If any graphical output is desired at the end of this computer run or at some later time, then when this switch is true the data for the graphics programs will be written on unit 12 for graphical purposes.

GRAPH=T,

For this test problem, we need 10 cards in Namelist DATA if we use the default values wherever possible.

Next we will consider the cards which are needed for the user-supplied subroutines. We shall assume that the user starts from the model subroutines as described in sections 4.1-4.10.

Subroutine RHOCP
Since the coefficient of $\frac{\partial u}{\partial t}$ in Eq. (7.1.1) is identically equal to 1 , we need only let
$R C=1 . D 0$

Subroutine DIFUSE

The diffusivity is identically equal to 1 ; thus we set DIFUR=1.DO DIFUZ=1.00

Subroutine VEL
There is no convective term in this problem; hence VELR=0.DO
VELZ=0.DO

Subroutine EXTSRC
The distributed source is identically zero; hence VV=0.00

Subroutine FDEXTU
Since the distributed source is zero, the Frechet derivatives are identically zero.
(This problem has only one species.)

Subroutine INDATA
The initial data is identically zero; thus $U U=0 . D 0$

Subroutine BRHO
From Eq. (7.1.2), we have $u(0, z, t)=t \theta(z)$ on side 1 ; thus for side 1 we have

101 CONTINUE
RHOV=2.DO*T*XX
IF (XX .GT. 0.5DO) RHOV=2.DO*T*(1.DO-XX) RETURN

From Eq. (7.1.2), u $\equiv 0$ on the remaining sides; thus we use

$$
\mathrm{RHOV}=0 . \mathrm{DO}
$$

for sides 2, 3, and 4.

Subroutine BRHODT

Since we are using the algebraic boundary conditions, this routine can be a dummy routine.

Subroutine ANAL

For this problem we can provide an alternative approximate solution to this problem by using the Green's function for Eq. (7.1.1) (cf. [5]). The Green's function for the equation

$$
\frac{\partial u}{\partial t}=\Delta u
$$

with zero boundary values over a two-dimensional rectangle $R=[0, a] \times[0, b]$ is given by

$$
G\left(x, y: x^{\prime}, y^{\prime}, t-\tau\right)=\frac{4}{a b} \sum_{m^{\prime}=1}^{\infty} \sum_{n=1}^{\infty} e^{-\sigma(t-\tau)} \sin \frac{m \pi x}{a} \sin \frac{m \pi x^{\prime}}{a} \sin \frac{n \pi y}{b} \sin \frac{n \pi y^{\prime}}{b}
$$

where $\sigma=\pi^{2}\left(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right)$.
The solution to the problem

$$
\frac{\partial u}{\partial t}=\Delta u \text { in } R, u=\phi \text { on } \partial R, u=f \text { at } t=0
$$

is given by

$$
u(x, y, t)=\iint_{R}\left[G\left(x, y: x^{\prime}, y^{\prime}, t\right] f\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}+\int_{0}^{t} \int_{\partial R} \phi\left(x^{\prime}, y^{\prime}, \tau\right) \frac{\partial G}{\partial n} d a d \tau\right.
$$

where n is the inward directed normal to ∂R.

For this problem, $f \equiv 0, a=2, b=1$, and

$$
\phi=\left\{\begin{array}{l}
t \theta(y) \text { on side } 1, \\
0 \quad \text { on sides } 2,3, \text { and } 4,
\end{array}\right.
$$

where

$$
\theta(y)=\left\{\begin{array}{l}
2 y, 0 \leq y \leq \frac{1}{2} \\
2(1-y), \frac{1}{2} \leq y \leq 1
\end{array}\right.
$$

Hence the solution for this problem has the representation

$$
u=\pi \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} m \sin \frac{\pi m x}{2} \sin n \pi y \int_{0}^{t} \tau e^{-\sigma(t-\tau)} d \tau \int_{0}^{1} \theta\left(y^{\prime}\right) \sin n \pi y^{\prime} d y^{\prime} .
$$

We have

$$
\begin{aligned}
& \int_{0}^{t} \tau e^{-\sigma(t-\tau)} d \tau=\frac{1}{\sigma^{2}}\left(e^{-\sigma t}+\sigma t-1\right), \\
& \int_{0}^{1} \theta\left(y^{\prime}\right) \sin n \pi y^{\prime} d y^{\prime}=\frac{4}{x^{2} n^{2}} \sin \frac{n \pi}{2}, n \geq 1 ;
\end{aligned}
$$

thus

$$
\begin{equation*}
u=\frac{4}{\pi} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m}{n^{2}} \frac{1}{\sigma^{2}}\left(e^{-\sigma t}+\sigma t-1\right) \sin \frac{n \pi}{2} \sin \frac{m \pi x}{2} \sin n \pi y . \tag{7.6}
\end{equation*}
$$

This double series was implemented in subroutine ANAL. The question of when to truncate the series was settled as follows. For this problem, three decimal place accuracy is enough to determine the error between the series solution and the approximate solution. Let N denote the upper limit for the n index and M the upper limit for the m index. For $t=3, x=0.25, y=0.25$, the series (7.6) was evaluated for various computations of N and M with the results shown in the following table.

M	10	15	50	15	15	15	15
M	1000	1000	1000	3000	5000	7500	10000
u	.75678	.75675	.75675	.75515	.75483	.75429	.75411

On the basis of these results, we selected the series solution with $\mathrm{N}=15$ and
$M=5000$ as being almost accurate to three decimal places.
For this problem, both of the arrays AL and GPW in the Master Driver routine were of dimension 4100. The program was run on an IBM 370/195 in 410 K bytes of fast memory. The CPU time for this problem was about 117 seconds of which 52 seconds were used in computing the series solution leaving 65 seconds for the computation of the approximate solution on the time interval $[0,3]$.

The following pages contain the printed output from the computational phase of DISPLI.

THIS fRCBLEM DEALS HITH HEAT CONDUCTION IN
A PLATE IN TWO-DIMENSIO:AL CARTESTIAN GECMETRY
IT IS DESCRISED IN SECTIOH 7.1 OF DISPL1: A
SOFTHARE PACKAGE FOR ONE AND TH:O SPATIALLY
OIMENSIONED KINETICS-DIFFUSION PROSLEMS BY
G.K. Leaf atd M. himkoff,

MAY, 1934 ,
MAY, 1934,
MATHEMATICS AAD COMPITIER SEIEHCE DIVISIORI, ARGOMAE, ILLINOIS

STORAGE MAXIMA FOR THIS COMPILATION :
MAXBRK
MAXSP
MAXTGO
HAXK
MAXNRNZ
MXANVAR
MAXGAP
MAXYOT
IEXRGRD MXZGRD

READING H\&MELIST GRID

FHESHE 11 $=0.1000000000000000 C D+00$ RiEESH 2) $=0.250 C 0000 C 0006005 D+00$

L6STOP $=F$

IARIAL	$=F$
ISTDFQ	$=10$
IXSTED	$=500$

$\begin{aligned} \text { IREVLAC 1) } & F \\ \text { IRHOU 11 } & =F \\ \text { IRGRD } & =4\end{aligned}$
$\begin{array}{ll}\text { IRGRD } & =4 \\ \text { RGRID } 11=\end{array}$
RERID (2) $=\quad 0.75000000000000000+00$
RGF:ID(3) = 0.125000000000000 CD +01
RERID (4) $=0.17500000000933000+01$
JZGRO
$=2$
ZGRID($11=0.250000000000000000+00$
ZGRID $21=0.75000000000000000 \mathrm{D}+00$
SPLINE ORDER IN R DIRECTION
SPLINE ORDER IN Z DIRECTION
MHIGER OF SPECIES
LEFT BOUIDDARY
RIGHT BOUNDARY
OIIER BOUHDARY
UPPER BOUNDARY
GEO:IETRY INDICATOR
NUHBER OF INTERFACES IN R DIRECTION
MUTEER OF INTERFACES IN 2 DIRECTION
HMEER OF CONTIMUOUS DERIVATIVES AT MESH POINTS
IVES AT R DIRECTION MESH POINTS
HON-IHTERFACE R HESH POINTS
MAMBER OF NON-INTERFACE 2 DIRECTION MESH PDINTS MUHBER OF COHTTIAHOUS DERIVATIVES AT Z DIRECTION MESH POINTS HON-INTERFACE Z HESH POINTS
QUADRATURE ORDER FOR R DIRECTION
QUADRATURE ORDER FOR 2 DIRECTION
COHSERVATIVE FORH INDICATON FOR COHVECTION TERH
algebraic treathent of boulidary cohioitions indicator
INDICATCR FOR IMITIAL FIT OF DATA
IRIDICATOR FOR STEADY STATE COMPUTATION
INDICATOR FOR TRANSIENT COMPUTATION
NDICATOR FOR READING STEADY STATE COEFFICIENTS FROM UNIT DUMPRD
HDICATOR FOR STEADY STATE RESTART
INDICATOR FOR TRAAISIENT RESTART
INDICATOR FOR A COLD RESTART HHEN A TRANSIENT RESTART IS DONE.
a COLD RESTART INVOLVES A CALL TO AINVG AND IS USEFUL
IF THE ODES HAVE CHANGED, I.E. THE PDE BOUUDARY CONDITIONS
HAVE BEEN CHANGED
IHDICATOR FOR USING G-STOP CAPABILITY
THIS ALLOWS THE USER TO RETURN TO THE CALLING PROGRAH,
CHANGE SOIIE PROBLEH DEFINIHG PARAMETER AND CALL EXEC
O CONTIHUE CALCULATION
INOICATOR FOR USING ANALYTIC SOLUTIOM
PRINTOUT FREQUENCY FOR STEADY STATE COMPUTATION
HAX STEADY STATE CO.U.E. CALLS
IREVLAIK) INDICATES THAT THE COEFFICIENT OF THE TIME DERIVATIVE
S NOT TDERTICALIY 1
IRHO(K) INDICATES THAT THE COEFFICIENT OF THE TIME DERIVATIVE
IS IDENTICALIY
NUMEER OF USER SUPPLIED POINTS IN R DIRECTION

hamber of majcr time intervals
HIUMBER OF SUBINTERVALS IN EACH MAJOR TIME INTERVAL
MAJOR TIHE VALUES

LOGICAL INDICATOR FOR HRITIMG DATASET FOR LATER GRAPHICS GRAPH NUHBER TO BE ASSOCIATED WITH THIS RUN FRINT SHITCH INDICATORS

ORDINARY DIFFEREMTIAL EQUATION PACKAGE DATA LOCAL TEMPORAL ERROR CONTROL
LOCAL TEMPORAL ERR
MAXIMUM ORDER OF TIME TNTEGRATTON
INITIAL TIHE
COHTINUITY
CONTINUITY IN R DIRECTION (HAY HAVE BEEN RESET) DEFAULT INITIAL SPLINE COEFFICIEHTS (SET TO ONE)

reading namelist data

CHANGES IN HAMELIST DATA MAY HAVE BEEN MADE FOR TRANSIENT CALCULATION DIRICHLET CCNDIJION FOR SPECIES 1 ON SIDE
OIRICHLET COHDITION FOR SPECIES 1 ON SIDE
OIRICHLET COBDITION FDR SPECIES 1 ON SIDE
DIRICHLET CONDITION FOR SPECIES 1 ON SIDE 4
BOUTDARY CONDITION COEFFICIENTS

FOR SPECIES NO.	1	
SIDE	1	
SIDE	1	
SIDE	1	
SIDE	2	
SIDE	2	
SIDE	2	
SIDE	3	
SIDE	3	
SIDE	3	
SIDE	4	
SIDE	4	
SIDE 4		
SIDE INDICATORS		
FOR SPECIES HO.	1	

BOURDARY H FUNCTION FOR SIDES 1 AND 3

for material index 1 arlo species no. 1

GOUNDARY H FUACTION FOR SIDES 2 ARD 4 FOR HATERIAL INDEX 1 AND SPECIES NO.

TIME GRID FOR TRANSIENT PRINTOUT

MUHER OF MAJOR TIME INTERYALS

NHMBER OF SUBINTERVALS IN EACH MAJOR TIHE INTERVAL
HAJOR TIME VALUES

LOGICAL INDICATOR FOR WRITING DATASET FOR LATER GRAPHICS GRAPH NUHiBER TO BE ASSOCIATED WITH THIS RUN PRINT SHITCH IMDICATORS
ordinary differential equation package data LOCAL TEHPORAL ERROR CONTROL
INITIAL TIHE STEP
MAXIHUH ORDER OF TIME INTEGRATION
IHITIAL TIME
CONTINUITY IN R DIRECTION (MAY HAVE BEEN RESET)

CONTINUITY IN Z OIRECTION (MAY HAVE BEEN RESET) IHITIAL SFLIHE COEFFICIENTS PROVIDED FROM A RESTART DUMP, NAHELIST GRID, INITIAL FIT OR STEADY-STATE CALCULATION

BEGIH TRALISIEHT SOLUTIOR

```
PROUT FCR TIME = 0.0
VALUES OF COICEHTRGTICIIS U FOR THE 1 TH SPECIES ON THE USERS GRID
FFULY ROGUT YIA TIHE%)
\begin{tabular}{|c|c|c|c|}
\hline APPRO:IMATION IS 0.0 & 0.0 & 0.0 & 0.0 \\
\hline APPROXIMATIOA IS & & & \\
\hline 0.G & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}
PROUT FOP. TIME = 0.250000000000000000+00
VALUES OF COHCENTRATIOHS U FOR THE 1 TH SPECIES ON THE USERS GRID
fFkU:I FRGUT VLA RIMEX
APPROXIHATICH IS
    0.5374667374358776D-01 0.71135000920852180-02 
APPROXIILATIEN IS
    0.5374667374431950D-01 0.71135000921397330-02 0.87092488093316510-03 0.70.7229221038365038D-04
    TOUT= 0.2EOGOOODODOOD0000 +00 HUSED = 0.23800464284200640-0
ESTIMATED TIHE FOR A CALL TO DRIVE
TIME LEFT 0.10000009000000000+07
PROAT FOR TIME = 0.500000000000000000+00
VALUES GF COHCEHIRATIOHIS U FOR THE 1 TH SPECIES ON THE USERS GRID
(FROH PROUT VIA TIMEX)
```

```
0.1175448076859300D+00 0.20208845427545460-01 0.3451868393469731D-02 0.48977811470993060-03
```

0.1175448076859300D+00 0.20208845427545460-01 0.3451868393469731D-02 0.48977811470993060-03
APPROXIMATION IS
0.117544807t8E8481D+00 0.2020884542777563D-01 0.34518683932658550-02 0.48977811471147750-03
TOUT= 0.50000000000000000+00 HUSED = 0.39114298900627880-01
STIMATED TIME FOR A CALL TO DRIVE 0.0
TIME LEFT 0.1000000000000000D+07
PRCUT FOR TIME = 0.75000003000000000+00
VALUES OF COTICEHTRATIOINS U FOR THE 1 TH SPECIES ON THE USERS GRID
(FRUM PROUT VIA TIHEX
APPROXIIAGTION IS
$0.18146062195922900+00 \quad 0.33552480747176120-01 \quad 0.62376338354543400-02 \quad 0.97837431000903880-03$

```
```

APPKOXIMATION IS
0.18146́052195903530+00 0.33553480747153050-01 0.62376338350046600-02 0.97837431022897150-03

```

```

ESTIMATED TIM:C FOR A CALL TO DRIVE O
0 . 0
TIMF: LEITT 0.1000000000000006:0*07
PROUT FGR TIME = 0.30000000000000000+01
VALUES OF CCNCEMTRATIOHS U FOR THE I TH SPECIES ON THE USERS GRID
(FROH' PROUY YIA TIHEX)
APPPOXILLATICH IS
0.75674363174142710+00 0.15374259187918380+00 0.31405217392910750-01 0.54151267497946770-02
APPRCXIHATION IS
0.75574368174137250400 0.15374259187895540+00 0.3140521739286817D-01 0.54151267495689880-02
TOUT = 0.30000000000000000+01 HUSED = 0.33322242322485450+00
ESTIHASTED TIHE FOR A CALL TO DRIVE
ESIIFAKED TIHE FOR A CALL TO DRIVE
****** HIERHAL DUMP AT END OF TIHEX
I = 5 TOUT = 0.30000000000000000+01

```
END OF CASE

We next consider the use of the graphics packages in connection with this problem. While the cross-section plot program can be used to plot the solution along a straight line in the domain, we will illustrate the use of only CØNTØR and THREED in connection with this problem. (The CSP program will be illustrated in the next example.) In either case the graphics dataset generated on unit 12 during the computational phase must be assigned to this unit for the graphics run. For either case we will need Namelist FøRMAT.

\section*{Namelist FØRMAT}
1. Iterative or direct indicator

Previous versions of DISPL allowed for direct or iterative solution of certain equations. The current version of DISPL1 only allows for the direct version; thus the default value ITRTV \(=0\), MUST be used. ITRTV=0, (Default)
2. Number of curves to be plotted We have only one equation and thus IGNUM=1, (Default)
3. Number of grid points in each direction for graphical purposes This number cannot be larger than the default value NRESD. As the complexity of the surface increases, this number must increase. NRESIN=NRESD, (Default) (NRESD=21)

For the CØNTØR program we also need Namelist CNTRIN.

\section*{Namelist CNTRIN}
1. Vector of species numbers

This vector has, as its Ith component, the species number of the Ith frame to be contoured. The pattern of plots indicated by the vector is repeated for each time value. In the current case we have only one species and so,
ISPEC=1, (Default)
2. Real vector of minimum \(R\) coordinate for the Ith frame

We use the same value as RLøW.
RMIN=0.0, (Default)
3. Real vector of maximum \(R\) coordinate for the Ith frame We use the same value as RUP.
RMAX \(=2.0\),
4. Real vector of minimum \(Z\) coordinate for the Ith frame We use the same value as ZLOW.
ZMIN=0.0, (Default)
5. Real vector of maximum \(Z\) coordinate for the Ith frame We use the same value as ZUP. ZMAX=1.0, (Default)
for the THREED program we need:

\section*{Namelist DIM3IN}

All of the variables described in Namelist CNTRIN are used in this namelist. Also, the following variables are needed.
1. \(R\) coordinate of the viewpoint

The viewpoint is given in absolute coordinates. That is, it is relative to the actual coordinate values used in the graph. It is usually a good idea to first view the surface from a considerable distance. Thus, the viewpoint used was (100.,100.,100.). RVIEW=100.0,
2. \(Z\) coordinate of viewpoint.

ZVIEW=100.0,
3. F coordinate of viewpoint

This is the vertical coordinate of the viewpoint (the solution axis). FVIEW=100.0,
4. Lower bound on function axis

The lower and upper bounds on the function axis can be used to
provide a fixed vertical axis range for several time values (for use in movie generation). For most purposes it is sufficient to use the default value
FMATMN \(=0.0\), (Default)
5. Upper bound on function axis.

FMATMX \(=1.0\), (Default)
The following pages contain selected printout from the execution of CØNT@R, the corresponding plots, selected printout from the execution of THREED, and the corresponding plots. Specifically, for CDNTØR we present output concerning frame 4 (time \(=.75\) ) and frame 5 (time \(=3.0\) ). For THREED we present the corresponding graphs and the printout associated with frame 4 only. The other printout and graphs are not included in the interest of saving space.
beginning contour plotting graphics package
VERSION NMBER OF GRAPHS FOR EACH TIME
ITRTV = \(0 \quad\) IGNM \(=1 \quad\) NRESIN \(=21\)
USER SUPPLIED FORMAT INSTRUCTIONS
\begin{tabular}{|c|c|c|c|c|}
\hline SPECIES & RMIN & RMAX & ZHIN & ZMAX \\
\hline & O000E+00 & \(0.20000000 E+01\) & \(0.00000000 \mathrm{E}+00\) & \(0.10000000 \mathrm{E}+01\) \\
\hline
\end{tabular}

NRESR \(=21 \quad\) NRESZ \(=21\)
MUMBER FOR RUN IS 1
USING A PRE-ALLOCATED DATASET ON FORTRAN UNIT 11
THE DATASET SHOULD BE "\&\&LBSCR"
THE DATASET SHA 9 BE "\& DISLBSCR" PROPRIETARY SOFTHARE PRODUCT OF ISSCO, SAN DIEGO, CA.
2192 VIRTUAL STORAGE REFERENCES; 4 READS; 0 WRITES.


Figure 7.1 .1
Contour plot at \(t=0.75\) (Frame 4)


Figure 7.1.2
beglining three dimensional plotting package
version number of graphs for each time
0

1

NPESIN = 21
ITIME \(=F\)
IJSER SUPPLIED FORMAT INSTRUCTIONS
\begin{tabular}{ccccccc} 
SPECIES & RMIN & RHAX & ZMIN & ZMAX & FMATHN & FMATMXX \\
& \(0.00000000 E+00\) & \(0.20000000 E+01\) & \(0.00000000 \mathrm{E}+00\) & \(0.10000000 \mathrm{E}+01\) & \(0.00000000 \mathrm{E}+00\) & \(0.30000000 \mathrm{E}+01\)
\end{tabular}

VIEMPOINT IA absolute coordinates
\(x\)
\(Y\)

\section*{2}

\section*{0. 10000000E+03 \\ \(0.10000000 \mathrm{E}+03\)}
\(0.10000000 \mathrm{E}+03\)
NRESR \(=21\) NRESZ \(=21\)
NUABER FDR RUN IS
USING A PRE-ALLOCATED DATASET ON FORTRAN UNIT 76
THE DATASET SHOULD BE "SYS1.DISSPLA.DATA"
USING A PRE-ALLOCATED DATASET ON FORTRAN UNIT 77
USING A PRE-ALLOCATED DATASET ON FORT
THE DATASET SHOULD BE "SCRATCH FILE"
THE DATASET SHOULD BE "SCRATCH FILE"
END OF OISSPLA 9.0 -- 8310 VECTORS GENERATED IN 5 fiot frames.
PROPRIETARY SOFTHARE PRODUCT OF ISSCO, SAN DIEGO, CA.
3926 VIRTUAL STORAGE REFERENCES; 4 READS; 0 WRITES.


Figure 7.1 .3
Three-dimensional perspective surface for heat conduction problem


Figure 7.1 .4
Three-dimensional perspective surface for heat conduction problem

\subsection*{7.2 Water Hammer}

This example involves a hyperbolic system of flow equations for a water hammer problem [6]. The model considers the flow of water from a reservoir down a conduit with a valve at the exit end. The valve is closed at a linear rate and, after closure, the flow reverses.

The continuity and momentum equations form a pair of quasi-linear hyperbolic partial differential equations in two dependent variables, velocity \(u\) and pressure head \(H\), and two independent variables, distance along the pipe \(x\) and time \(t\). The equations are given by
\[
\begin{align*}
& \frac{\partial H}{\partial t}+u \frac{\partial H}{\partial x}+\frac{a^{2}}{g} \frac{\partial u}{\partial x}=0,  \tag{7.2.1}\\
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+g \frac{\partial H}{\partial x}=-\frac{u|u| f}{2 D},
\end{align*}
\]
where
\(g=32.2 \ldots\) the acceleration due to gravity.
\(a=3963 \ldots\) the speed of sound in water.
\(L=4253.5\). the length of the horizontal conduit.
\(D=3 \ldots .\). the diameter of the conduit.
\(f=0.019 .\). the friction coefficient.
\(x\)........... the distance along the conduit from the reservoir.
\(H=H(x, t)\).. the pressure head in the conduit at \(x\) and \(t\).
\(u=u(x, t)\).. the velocity in the conduit at \(x\) and \(t\).
The valve is located at \(x=L\), and is closed at a linear rate until it is fully closed at \(t=t_{c}=5.9\); thereafter, the valve remains closed.

The boundary conditions are as follows:
\[
\begin{align*}
& H(0, t)=305.12, \\
& u(L, t)=\tau u_{0} \sqrt{\frac{H(L, t)}{H_{0}}}, \tag{7.2.2}
\end{align*}
\]
where
\(u_{0}=3.5 \ldots\) the steady-state velocity.
\(H_{0}=300 \ldots\) the steady state head loss across the valve.
\(\tau=\left\{\begin{array}{cl}(1-t / 5.9) & , 0 \leq t \leq 5.9 \\ 0, & t>5.9\end{array}\right.\)
The initial conditions are the steady-state conditions, viz.
\[
\begin{align*}
& u(x, 0)=u_{0}=3.5 \\
& H(x, 0)=305.12-\frac{\left(u_{0}\right)^{2} f x}{2 g D} \tag{7.2.3}
\end{align*}
\]

We shall use this problem to illustrate: the procedures for setting up one-dimensional problems, nonlinear boundary conditions, and graphical output for one-dimensional problems.

It is assumed that the reader has already considered sample problem 7.1; therefore, we shall not discuss those items in the namelists which can be ignored for this problem. Recall that this problem is one dimensional and we shall arbitrarily take this dimension as the \(r\) direction.
1. Spline Order
\(K R=4, K Z=1\),
\(K Z=1\) is one of the parameters which is used in defining a onedimensional problem. In this problem we will use smooth cubics, so that \(K R=4\), is a default value.
2. Continuity at the mesh points

The default values are used, i.e.
CONTR=3, CONTZ=0,
Note that since \(K Z=1\), CONTZ must be zero.
3. Number of species

NSPEC=2,
4. Domain

RUP \(=4253.5\),
The other values are default values.
9. Total number of non-interface mesh points in each direction NMR=9,
The value \(N M Z=0\), is default and this value should be used for onedimensional problems in \(r\).
10. Additional non-interface mesh points

RMESH \(=425.35,850.7,1276.05,1701.4,2126.75,2552.1,2977.45\), 3402.8, 3828.15,
12. Quadrature Order

NQR=4, NQZ=1,
NQZ=1 should be used for a one-dimensional problem in the \(r\) direction.
13. Index for algebraic boundary conditions

ALGBCS \(=T\),
This is the default value; however, it is worth noting that for boundary conditions which are not of the form \(u_{m}=\rho_{m}\) where \(\rho_{m}\) is a known function of \(t\) and \(x\) only, the concept of a time derivative of the boundary conditions is not feasible in this program. Hence for non-standard and/or nonlinear boundary conditions, one must use ALGBCS \(=T\),
22. Number of points in the r-direction for the user's grid IRGRD=6,
23. \(R\) coordinates for the user's grid RGRID \(=0.0,850.7,1701.4,2552.1,3402.8,4253.5\),

Next we consider Namelist DATA.
1. Boundary condition switches
\(\operatorname{NS} 1(1)=1, \operatorname{NS} 3(1)=-1\),
\(\operatorname{NS} 1(2)=-1, \operatorname{NS} 3(2)=1\),
Here we have selected the head pressure as the first species and the velocity as the second species. The default values NS2(i) = NS4(i) \(=0\) for \(i=1,2\) are needed for a one-dimensional problem in \(r\).
2. Boundary value coefficients
\(\operatorname{ALPHA}(1,1)=1.0, \operatorname{BETA}(1,1)=0.0, \operatorname{GAMMA}(1,1)=1.0\),
\(\operatorname{ALPHA}(1,3)=1.0, \operatorname{BETA}(1,3)=0.0, \operatorname{GAMMA}(1,3)=1.0\),
\(\operatorname{ALPHA}(2,1)=1.0, \operatorname{BETA}(2,1)=0.0, \operatorname{GAMMA}(2,3)=1.0\), \(\operatorname{ALPHA}(2,3)=1.0, \operatorname{BETA}(2,3)=0.0, \operatorname{GAMMA}(2,3)=1.0\),

The default values on sides 2 and 4 must be used for one-dimensional problems in \(r\).
8. Output time control

NUTOUT=21,
UTOUT \(=0.0,0.429,0.859,1.288,1.717,2.147,2.576,3.005,3.435\), \(3.864,4.293,4.723,5.152,5.581,5.841,5.9,6.01,6.44,6.869\), 7.298, 7.729,

If one were \(\therefore\) use, Tcr ex.m.np. NUTOUT=8 in conjunction with this UTOUT array, i a program would integrate the equations from \(t=0.0\) to \(\mathrm{t}=3.005\) wi h output at each of the first eight times in the UTOUT array. If one wished to restart from \(t=3.005\) to go to \(t=7.728\), for example, then one would use NUTOUT \(=21\) with this same UTOUT array. Thus NUTOUT is the number of output times desired counting from the first element of the UTOUT array. This is true even on a restart.
11. ODE Solver control parameters

For this problem we used EPS \(=1 . D-6\), HINIT \(=1 . D-6\),

This completes the input for the two namelists for this water hammer problem. Next we consider the user-supplied subroutines. Again we assume that the user starts from the model subroutines described in section 4.

\section*{Subroutine RHOCP}

For both species, the coefficient of the time derivative term is identically one; thus we use
\(R C=1.00\)

\section*{Subroutine DIFUSE}

There are no diffusion terms in this problem; hence
DIFUR=0.DO
DIFUZ \(=0.00\)

\section*{Subroutilia VEL}

This problem was run with the convection term explicitly displayed and also with the convection term grouped with the distributed term. In the run shown here we have used the convection term grouped with the distributed source term. Thus we have:
\[
\begin{aligned}
& \text { VELR }=0 . D 0 \\
& \text { VEL } Z=0 . D 0
\end{aligned}
\]

Note that the use of \(V E L Z=0 . D 0\) and \(D I F U Z=0 . D 0\) are part of the defining relations for a problem which is one dimensional in the \(r\) direction.

\section*{Subroutine EXTSRC}

The first species is the pressure and the second species is the velocity. Since we have grouped the convective terms with the distributed source terms, we have from Eq. (7.2.1),

1st species:
\[
V V=-u \frac{\partial H}{\partial x}-\frac{\mathbf{a}^{2}}{g} \frac{\partial u}{\partial x}=-\operatorname{SPDEN}(2) \star \operatorname{SPDENR}(1)-\operatorname{ASDG} \star \operatorname{SPDENR}(2)
\]

2nd species:
\[
\begin{gathered}
V V=-u \frac{\partial u}{\partial x}-g \frac{\partial H}{\partial x}-\frac{u \mid u j f}{2 D}=-\operatorname{SPDEN}(2) \star \operatorname{SPDENR}(2)-G * \operatorname{SPDENR}(1) \\
-F * \operatorname{SPDEN}(2) * \operatorname{DABS}(\operatorname{SPDEN}(2)) / 2 \cdot D 0 * D
\end{gathered}
\]
where
\[
\begin{aligned}
& G=32.2 D 0 \\
& D=3 . D 0 \\
& F=0.01900 \\
& \text { ASDG }=(3963 . D 0 * * 2) / G
\end{aligned}
\]

\section*{Subroutine FDEXTU}

Recall that, for each species, this routine calculates the Frechet derivative of the distributed source with respect to \(u\left(k^{\prime}\right), \frac{\partial u}{\partial r}\left(k^{\prime}\right)\), and \(\frac{\partial u}{\partial z}\left(k^{\prime}\right)\) for \(k^{\prime}=1\),NSPEC.

Consider the 1st species. The source term is
\[
V V=-u \frac{\partial H}{\partial x}-\frac{a^{2}}{g} \frac{\partial u}{\partial x}=-\operatorname{SPDEN}(2) \star \operatorname{SPDENR}(1)-\operatorname{ASDG} * \operatorname{SPDENR}(2) .
\]

Thus
\[
\frac{\partial V V}{\partial u(1)}=0,
\]
i.e.
\[
U U(1)=0.00 .
\]

This is a one-dimensional problem in \(r\); hence
\[
\begin{aligned}
& \operatorname{UUZ}(1)=0 . D 0, \\
& \operatorname{UUZ}(2)=0.00 .
\end{aligned}
\]

Next, consider the 2nd species.
\[
V V=-u \frac{\partial u}{\partial x}-g \frac{\partial H}{\partial x}-\frac{u|u| f}{2 D}
\]

Thus
\[
\frac{\partial V V}{\partial u(1)}=0,
\]
i.e.
\[
U U(1)=0.00
\]
i.e.
\[
\frac{\partial V V}{\partial u(2)}=-\frac{\partial u}{\partial x}-\frac{|u| f}{D},
\]
\[
\operatorname{UU}(2)=-\operatorname{SPDENR}(2)-F * \operatorname{DABS}(\operatorname{SPDEN}(2)) / D .
\]
i.e.
\[
\begin{aligned}
& \frac{\partial V V}{u_{r}(1)}=-g \\
& \operatorname{UUR}(1)=-G .
\end{aligned}
\]
\[
\frac{\partial V V}{\partial u_{r}(2)}=-u
\]
\[
\begin{aligned}
& \frac{\partial V V}{\partial u(2)}=-\frac{\partial H}{\partial x}, \\
& \text { i.e. } \\
& U U(2)=-\operatorname{SPDENR}(1) . \\
& \frac{\partial V V}{\partial u_{r}(1)}=-u, \quad\left(u_{r}(1)=\frac{\partial H}{\partial x}, u_{r}(2)=\frac{\partial u}{\partial x}\right) \\
& \text { i.e. } \\
& \operatorname{UUR}(1)=-\operatorname{SPDEN}(2) . \\
& \frac{\partial V V}{\partial u_{r}(2)}=-a^{2} / g, \\
& \text { i.e. } \\
& \operatorname{UUR}(2)=-A S D G .
\end{aligned}
\]
i.e.
\[
\begin{aligned}
& \operatorname{UUR}(2)=-\operatorname{SPDEN}(2) \\
& \operatorname{UUZ}(1)=0.00 \\
& \operatorname{UUZ}(2)=0 . D 0
\end{aligned}
\]

Subroutine INDATA
The initial conditions are given by Eq. (7.2.3); thus we have:
\(\mathrm{G}=32.200\)
ASDG=(3963.D0**2)/G
\(D=3.00\)
\(\mathrm{F}=0.01900\)
\(\mathrm{IF}(\mathrm{K} . \mathrm{EQ} .2) \mathrm{G} \mathrm{T} T 10\)
\(\mathrm{UU}=305.12 \mathrm{DO}-\mathrm{F} *(3.5 \mathrm{DO} * * 2) * R R /(2 . D 0 * D * G)\)
RETURN
\(10 U U=3.500\)
RETURN

Subroutine BRHO
The boundary conditions are given by Eq. (7.2.2). Using the model subroutine for BRHO described in section 4 , we have:
after 101
RHOV \(=305.1200\)
after 203
RHOV \(=0\). DO
\(T A U=1 . D 0-(T / T C)\)
IF (T .LT. TC) RHOV=UO*TAU*DSQRT(SPDEN(1)/HO)
RETURN
where
\(T C=5.9 D 0\)
\(H 0=300 . D 0\)
\(\mathrm{UO}=3.500\)
In the Master Driver, both AL and GPW were of dimension 784 (AL could have been half this size). The water hammer problem was iun on an IBM 370/195. With the same macros as used in the first problem, this problem used 356K bytes of fast memory and ran with 42 seconds for the CPU time. In [6], this problem was solved by the method of characteristics and the results are shown in Table 7.2.1. Since we have selected the output grid and the output times to be the same as those in Table 7.2.1, the results can be compared and the agreement is seen to be excellent.

The following pages contain the printed output from the computational phase of DISPL.

Table 7.2.1
Output from method of characteristic solution
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline TIME & TAU & X/L \(=\) & 0. & .2 & .4 & - 0 & . 8 & 1. \\
\hline . 000 & 1.000 & \[
\begin{aligned}
& H= \\
& V=
\end{aligned}
\] & \[
\begin{array}{r}
305.12 \\
3.50
\end{array}
\] & \[
\begin{array}{r}
364.10 \\
3.50
\end{array}
\] & \[
303.07
\] & \[
\begin{array}{r}
302.05 \\
3.50
\end{array}
\] & \[
\begin{array}{r}
301.02 \\
3.50
\end{array}
\] & \[
\begin{array}{r}
360.09 \\
3.50
\end{array}
\] \\
\hline . 429 & . 927 & \[
\begin{aligned}
& \mathrm{H}= \\
& \mathrm{V}=
\end{aligned}
\] & \[
\begin{array}{r}
305.12 \\
3.50
\end{array}
\] & \[
\begin{array}{r}
304.10 \\
3.50
\end{array}
\] & \[
\begin{array}{r}
303.07 \\
3.50
\end{array}
\] & \[
\begin{array}{r}
302.05 \\
3.50
\end{array}
\] & \[
\begin{array}{r}
310.30 \\
3.42
\end{array}
\] & \[
\begin{array}{r}
318.93 \\
3.35
\end{array}
\] \\
\hline . 859 & . 854 & \[
\begin{aligned}
& \mathrm{H}= \\
& \mathrm{V}=
\end{aligned}
\] & \[
\begin{array}{r}
305.12 \\
3.50
\end{array}
\] & \[
\begin{array}{r}
3 C 4.10 \\
3.50
\end{array}
\] & \[
312.30
\] & \[
\begin{array}{r}
32 \mathrm{C.} 90 \\
3.35
\end{array}
\] & \[
\begin{array}{r}
329.92 \\
3.27
\end{array}
\] & \[
\begin{array}{r}
339.37 \\
3.18
\end{array}
\] \\
\hline 1.288 & . 782 & \[
\begin{aligned}
& H= \\
& V=
\end{aligned}
\] & \[
\begin{array}{r}
305.12 \\
3.35
\end{array}
\] & \[
\begin{array}{r}
322.60 \\
3.35
\end{array}
\] & \[
\begin{array}{r}
331.84 \\
3.27
\end{array}
\] & \[
\begin{array}{r}
341.24 \\
3.18
\end{array}
\] & \[
\begin{array}{r}
351.11 \\
3.09
\end{array}
\] & \[
\begin{array}{r}
3 \in 1.43 \\
3.00
\end{array}
\] \\
\hline 1.71: & . 769 & \[
\begin{aligned}
& H= \\
& V=
\end{aligned}
\] & \[
\begin{array}{r}
305.12 \\
3.04
\end{array}
\] & \[
\begin{array}{r}
324.44 \\
3.03
\end{array}
\] & \[
\begin{array}{r}
143.79 \\
3.02
\end{array}
\] & \[
\begin{array}{r}
363.21 \\
3.01
\end{array}
\] & \[
\begin{array}{r}
373.93 \\
2.91
\end{array}
\] & \[
\begin{array}{r}
385.24 \\
2.81
\end{array}
\] \\
\hline 2.147 & - 636 & \[
\begin{aligned}
& H= \\
& V=
\end{aligned}
\] & \[
\begin{array}{r}
305.12 \\
2.70
\end{array}
\] & \[
\begin{array}{r}
320.15 \\
2.69
\end{array}
\] & \[
\begin{array}{r}
347.20 \\
2.68
\end{array}
\] & \[
\begin{array}{r}
368.33 \\
2.66
\end{array}
\] & \[
\begin{array}{r}
389.56 \\
2.64
\end{array}
\] & \[
\begin{array}{r}
410.93 \\
2.61
\end{array}
\] \\
\hline 2.576 & . 563 & \[
\begin{aligned}
& H= \\
& V=
\end{aligned}
\] & \[
\begin{array}{r}
305.12 \\
2.33
\end{array}
\] & \[
\begin{array}{r}
327.98 \\
2.33
\end{array}
\] & \[
\begin{array}{r}
350.87 \\
2.32
\end{array}
\] & \[
\begin{array}{r}
373.43 \\
2.30
\end{array}
\] & \[
\begin{array}{r}
392.68 \\
2.30
\end{array}
\] & \[
\begin{array}{r}
410.99 \\
2.31
\end{array}
\] \\
\hline 3.605 & . 491 & \[
\mathrm{H}=
\] & \[
\begin{array}{r}
305.12 \\
1.44
\end{array}
\] & \[
\begin{array}{r}
3 \geq 9.94 \\
1.93
\end{array}
\] & \[
\begin{array}{r}
350.59 \\
1.95
\end{array}
\] & \[
\begin{array}{r}
370.63 \\
1.97
\end{array}
\] & \[
\begin{array}{r}
390 . C 6 \\
1.99
\end{array}
\] & \[
\begin{array}{r}
408.83 \\
2.00
\end{array}
\] \\
\hline 3.435 & .414 & \[
\begin{aligned}
& \mathrm{H}= \\
& \mathrm{Va}
\end{aligned}
\] & \[
\begin{array}{r}
305.12 \\
1.58
\end{array}
\] & \[
\begin{array}{r}
322.97 \\
1.58
\end{array}
\] & \[
\begin{array}{r}
344.33 \\
1.61
\end{array}
\] & \[
\begin{array}{r}
364.97 \\
1.64
\end{array}
\] & \[
\begin{array}{r}
384.80 \\
1.67
\end{array}
\] & \[
\begin{array}{r}
404.01 \\
1.70
\end{array}
\] \\
\hline 3. 864 & . 345 & \[
\begin{aligned}
& \mathrm{H}= \\
& \mathrm{V}=
\end{aligned}
\] & \[
\begin{array}{r}
305.12 \\
1.29
\end{array}
\] & \[
\begin{array}{r}
322.32 \\
1.29
\end{array}
\] & \[
\begin{array}{r}
339.43 \\
1.39
\end{array}
\] & \[
\begin{array}{r}
356.38 \\
1.31
\end{array}
\] & \[
\begin{array}{r}
370.65 \\
1.35
\end{array}
\] & \[
\begin{array}{r}
396.00 \\
1.39
\end{array}
\] \\
\hline 4. 243 & . 272 & \[
\begin{aligned}
& \mathrm{H}= \\
& \mathrm{Ve}
\end{aligned}
\] & \[
\begin{array}{r}
305.12 \\
1.02
\end{array}
\] & \[
\begin{array}{r}
321.34 \\
1.02
\end{array}
\] & \[
\begin{array}{r}
337.46 \\
1.03
\end{array}
\] & \[
\begin{array}{r}
353.37 \\
1.04
\end{array}
\] & \[
\begin{array}{r}
368.48 \\
1.06
\end{array}
\] & \[
\begin{array}{r}
384.19 \\
1.08
\end{array}
\] \\
\hline 4.723 & . 200 & \[
\begin{aligned}
& \mathrm{H}= \\
& \mathrm{V}=
\end{aligned}
\] & \[
\begin{array}{r}
305.12 \\
.76
\end{array}
\] & \[
\begin{array}{r}
319.96 \\
.77
\end{array}
\] & \[
\begin{array}{r}
334.68 \\
.78
\end{array}
\] & \[
\begin{array}{r}
344.16 \\
.79
\end{array}
\] & \[
\begin{array}{r}
366.35 \\
.79
\end{array}
\] & \[
\begin{array}{r}
303.85 \\
.79
\end{array}
\] \\
\hline 5.152 & .127 & Ha & \[
305.12
\] & 318-11 & \[
334.02
\] & \[
\begin{array}{r}
350.65 \\
.52
\end{array}
\] & \[
\begin{array}{r}
367.36 \\
.51
\end{array}
\] & \[
\begin{array}{r}
384.77 \\
.50
\end{array}
\] \\
\hline 5.541 & .054 & \[
\begin{aligned}
& \mathrm{Ha} \\
& \mathrm{Va}
\end{aligned}
\] & \[
\begin{array}{r}
305.12 \\
.29
\end{array}
\] & \[
\begin{array}{r}
322.63 \\
.29
\end{array}
\] & \[
\begin{array}{r}
337.80 \\
.27
\end{array}
\] & \[
\begin{array}{r}
353.71 \\
.25
\end{array}
\] & \[
\begin{array}{r}
370.34 \\
.23
\end{array}
\] & \[
\begin{array}{r}
387.70 \\
.22
\end{array}
\] \\
\hline 6.010 & . CCO & \[
\begin{aligned}
& \mathrm{H}= \\
& \mathrm{V}=
\end{aligned}
\] & \[
\begin{array}{r}
305.12 \\
.00
\end{array}
\] & \[
\begin{array}{r}
323.23 \\
.00
\end{array}
\] & \[
\begin{array}{r}
341.44 \\
-.00
\end{array}
\] & \[
\begin{array}{r}
354.08 \\
.01
\end{array}
\] & \[
\begin{array}{r}
376.26 \\
-.04
\end{array}
\] & \[
\begin{array}{r}
384.48 \\
.00
\end{array}
\] \\
\hline 6.440 & - COS & \[
\begin{aligned}
& \mathrm{H}= \\
& \mathrm{V}=
\end{aligned}
\] & \[
\begin{array}{r}
305.12 \\
=.30
\end{array}
\] & \[
\begin{array}{r}
124.27 \\
-.36
\end{array}
\] & \[
\begin{array}{r}
343.35 \\
-.31
\end{array}
\] & \[
\begin{array}{r}
353.99 \\
-.25
\end{array}
\] & \[
\begin{array}{r}
350.04 \\
=.12
\end{array}
\] & 350.52
.00 \\
\hline 6.469 & . 000 & \[
\begin{aligned}
& \text { He } \\
& \text { Y= }
\end{aligned}
\] & \[
\begin{array}{r}
305.12 \\
-.02
\end{array}
\] & \[
\begin{array}{r}
316.74 \\
-.55
\end{array}
\] & \[
\begin{array}{r}
319.73 \\
0.42
\end{array}
\] & \[
\begin{array}{r}
322.41 \\
0.29
\end{array}
\] & \[
\begin{array}{r}
323.37 \\
0.14
\end{array}
\] & \[
\begin{array}{r}
323.51 \\
.00
\end{array}
\] \\
\hline 7.294 & . \(3 C 0\) & \[
\begin{aligned}
& \text { He } \\
& V=
\end{aligned}
\] & \[
\begin{array}{r}
305.12 \\
-.53
\end{array}
\] & \[
\begin{array}{r}
292.11 \\
=.04
\end{array}
\] & \[
\begin{array}{r}
244.96 \\
-.46
\end{array}
\] & \[
\begin{array}{r}
20 ن .29 \\
-.30
\end{array}
\] & \[
\begin{array}{r}
287.08 \\
-.15
\end{array}
\] & \[
\begin{array}{r}
281.33 \\
.90
\end{array}
\] \\
\hline 7.728 & . 000 & \[
\mathrm{K}=
\] & \[
305.12
\] & \[
\begin{array}{r}
251.09 \\
-.25
\end{array}
\] & \[
272.49
\] & \[
\begin{array}{r}
256.61 \\
=.25
\end{array}
\] & \[
\begin{array}{r}
244.66 \\
-.16
\end{array}
\] & \[
\begin{array}{r}
249.02 \\
.00
\end{array}
\] \\
\hline
\end{tabular}
spopace gaxima por furs conpilation
MAY日RK
\(=4 \times 50\)
-4x50
लिए0

MIT
-IyRyz
\(\begin{array}{ll}\text { MYMFAR } & 10 n \\ \text { MYA }\end{array}\)
\(\begin{array}{ll}\text { Mryint } & 70\end{array}\)
\(\begin{array}{ll}\text { MXRGPD } & ? 0 \\ \text { HXZGRD } & 20\end{array}\)

\section*{PADHE MAMELIST GPID}

```

RID\# = C.0 EUP = 0.425350000000000000+00
lLON= C.n
\#Ab=9 MHz =
GRITIML COMTP = 13
GDCITIONAL \& GRID POIN*S
T=, PRESH(I) = O.42535000000000000DCC3
I . 2 RHESHIII = 0.85j70000j00050000*0
I = 3 PMESK(I) = O.1276050000000000D+94
I = RHESH(II = i.1701400000030000D % 3
I= G REESH(I) = N.1701400000030000D* 34
I = EnESHIII = i.25521000000000000+04
I=7\&HESE<I| = J.29774500000000000D +04
T = RMESHII = 0.34028000000000000+04
I = PRESH(T)= ..38281500300N0COOD*34
Me ADDI=IOMAL z grin poImTS
OMADRAYONE ORDER FOR F DIRECTION
OMADRATOER ORDER FOR F DIRECTIOM
material fabie is givim is matl(findEx,zindex)
mapenial tamle fos zimopy = 1
\$
CCYSRY= % 0
ALGBC5= SiITCRES TO COMTROL PROGBAG

```

```

DOFPS\# E
IRPVLAI 1)* *
ORDER OF SPL ANP EEQYMATIVES CCHPUTED IS 0
WUNEER OF OSP: SUPPLIED POIMIS IM E OIRECTION 6
PCFID(\)= 0.B
PGFID(2) = 3.QKg705000403
PGPID(T) = 0.17914000D+04
RGPID) = n.25k21000D+04
PGPID(5) = 3.24n2800004044
PGimD(f) = 0.34n288000+04
RGID(f) = n.425350000+04
wunger OF OSEP SJODIIED POIMTS IY z DIEECTIOM 1
GEID(| = C.<COMNOOOD*OO
PEADIWG EABELIST DATA
COYTR TOO HIGM, BDING RESET TO 4-1
romTz yOO HIGH, gFIMG RESET TO 1-1

```

```

IL(J) = % % 9, 9
II (J) =

```

1

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline WI= & 2 & \#.J= & 26 & \(y \mathrm{cc}=-28\) & HBU= & \\
\hline mige & 1 & HJME & 13 & WCCH:-13 & On= & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & & por this ciat \\
\hline 18 & 10 & \(t 2\) \\
\hline 19 & 13 & W \\
\hline Wyas & 26 & \\
\hline
\end{tabular}

TAIS IS THE DIAECT VEPSIOM
THIS EERSIOM DCES MOT RECOIJE GOUMDARI COMDITIONS ON EVERY SIDR PORSPECIEE NO.
SIDE 1 ALPHA \(\quad 0.120000000 * 01\)
SIDE 2 AIPFA \(=0.0\)
SIDE 3 ILPHA \(=0.10006000 \mathrm{D} 401\) SIDE 4 ALPHA.
fer species mo.
SIDE ALPHA \(=\). \(100000000 \cdot 01\)
SIDE 2 ALPHA
SIDE 3 AIPHA
SIDE 4 ALPHA \(=0.1\)
sile indicators ey sficies

COFVECIIOM VELOCITT IM P DIEECTION
bonmeary h penction for sides 1 And
SPECIES mo. 1 HATEBIAL INDRI , HUI=
SPECIES Mo. 2 GATERIALINDEX 1 EG \(1=\)
BODNUARY H PONCTION PRD SIDES 2 AND 4 SFECIES MC. 1 HATESIAL INDEX, HH \(2=\) SPPCIES MO. 2 AATERIAL INDEX 1 HU2 =
BETA \(=0.0\)
BETA \(=-0.10000000 \mathrm{D}+01\)
BETA \(=3 . C\)
BETA \(=0.10000 C 00 \mathrm{D}+01\)
BETA \(=\mathrm{C} \cdot \mathrm{C}\)
BETA \(=-0.10000000 \mathrm{D}+01\)
RETA \(=0.0\)
BETA \(=0 .: 0000000 \mathrm{~T}+01\)
gamba =
GAMMA \(=0.0\)
AhMA \(=0.0\)
GARFA \(=0.10 C 000000+01\)
gamea \(=0.0\)
GARKA \(=0.1000\) CCOOD 0 C1
GARFA \(=0.0\)
GAHEA \(=\begin{aligned} & 0.10000000 D+01 \\ & n .0\end{aligned}\)

HU3 = \(\quad \mathrm{C} .100 \operatorname{COCOOCCOOCOCOL}+01\)
H03 \(=0.1000000000000000 \mathrm{D} * 0\)
\(104=0.10000000000000 C 00+01\)




\section*{fritial confficients pce teamsiemr}

\section*{\(0.3051200009000230 \mathrm{D}+03\)}
\(0.3046075765398622 \mathrm{D}+03\)
\(0.3035 \mathrm{~A} 27296195667 \mathrm{D}+03\)
\(0.3 C 25578826992759 \mathrm{D}+03\)
\(858 \mathrm{D}+0\)
0. \(2999957653985500 D+03\)
\(0.34999999799989000+01\)
\(0.3499999922026616 \mathrm{D}+\mathrm{Cr}\) \(0.3499999838219784 \mathrm{D}+01\) \(0.3499999463305600 n+C 1\) \(0.3499998111794399 \mathrm{~L}+{ }^{-1}\) \(0.3499991861774387 \mathrm{D}+01\) \(0.3499975298071043 \mathrm{D}+\mathrm{C1}\)
\(0.304949192179938 \mathrm{CD}+03\)
. \(30409515307970700+03\)
\(0.303070306+594194 \mathrm{D}+03\)
\(0.302045459239 \div 300 c+C 3\)
\(0.30102061+3.34020+03\)
\(0.3051665732165990 D+03\)
0.35000000477555010401
\(0.3500000986899850+01\)
\(0.3500000290486270 \mathrm{D}+01\)
\(0.3500001001598519 \mathrm{D}+01\) \(0.35500016815961290+01\) \(0.3500146802961290+01\)

\section*{eggin taisient solftion}
```

PRONT POR TinE = 0.0

```
\(0.305120 n 00+03\) \(0.304095150+03\) \(0.302557800+92\) \(0.30102061 \mathrm{D}+03\) \(0.29999577 D \cdot 03\) TALOES OP CONCENTRATIO
pproximate solution
C. \(305120000000 \cap 2290+03\) \(0.29999576539855077+C 3\)
\(0.350030000+0\)
\(0.35070901 \mathrm{D}+0\)
0.34999995040
\(0.350900370+01\)
\(0.349997530+01\)
\(\begin{array}{ll}0.3 & 0 . \\ 0.349997530+01 & 0 . \\ 0 \text { OF PHE }\end{array}\) \(.30358273 D+03\) . \(302 \cap 4446 \mathrm{D}+0\) \(0.30050819 \mathrm{D}+0\)
2. \(3500000000+01\)
\(0.3499999 R D+0\)
C. \(35010010 \mathrm{D}+0\) \(0.349999190+0\)
0. 304607580+03 . \(30307 \mathrm{C} 31 \mathrm{D}+\) n3 2. 3 C1533C4D+03 0.309166570403
\(0.349999990+01\)
\(0.350000030+01\)
\(0.34999981 \mathrm{D}+01\)
\(0.35000149 \mathrm{D}+01\)
```

HALUES OP CONCENTPATIO
APPROIIHATE SOLITIION
0.749999997999\&90DD+31
C. 3449975298071043D+01
TONT= 0.1
PROUT POR TIHE = 0.429000000*00

ROUT FOM TIRE = $\quad 0.429000000 \div 00$
$0.305120000+03$ $0.30402964 \mathrm{D}+03$ $0.30258892 \mathrm{D}+03$ $0.310734200+03$ $0.318728820+03$ valoes or concenraitio
afPROITHATE SOLTTIOY
$0.305119999999999 a d+03$
$0.31872832160339610+03$
thloes of conceatrations o gethe 2 th species on the osegs geid
cfach drout vis tinex
APPEOTIMATE SOLUTIOM
$0.34997974857743270+09$

- 334 c28129403000 01
$0.3500274391204740^{2} 01$ 0.34994905741563600201
$0.3345281284030008 \mathrm{D}+01$


```
STIGATED TJS% FOR A CALL TO DRIVE 0.43651399D+03
```

STIGATED TJS% FOR A CALL TO DRIVE 0.43651399D+03
TIRE LEFT 0.447060COD+05

```
```

TIRE LEFT 0.447060COD+05

```
```

0.3501N219D+01
$0.350018660+01$
$0.35000112 \mathrm{D}+01$
$0.339233780+01$
$0.3049 C 589 D+03$
$0.30364543 \mathrm{D}+0$
$0.30153048 \mathrm{D}+\mathrm{C}$
$0.313776250+03$ $0.350070320+0$
$0.350211270+01$
$0.341804210+01$
$0.334529130+01$
U OP TAE
$0.3040740120664202 \mathrm{D} * 03$
0.307060 P3 PR 3262297003
3. 2024587155705833 D 403
$0.3 C 46 e c c e d+03$
0. 3 C300766D +03 c. $30594146 \mathrm{D}+0$ $0.31 \mathrm{E12C47D} 03$

```
\(0.349864710+01\)
\(0.34986612 \mathrm{D}+01\)
\(0.346859260+01\)
\(0.33600726 \mathrm{D}+01\)
\(0.305120000+13\) \(0.30407290 \mathrm{D}+03\) \(0.3159 \mathrm{C} 380 \mathrm{D}+03\)
\(0.32958951 \mathrm{D}+03\)
0.349959470 -0 \(0.349892840+0\) 0.33873741040

\(9.349655890+01\)
\(0.346749340+01\) \(0.346749340+01\) \(0.321965840+01\)
0.3 C4371240+03 \(0.213 C 2244 \mathrm{D}+\mathrm{C3}\) \(0.32533242 \mathrm{D}+03\) C. 3 3 \(272 \mathrm{EEA4D}+\mathrm{C}\)
\(0.350517470+01\)
\(0.34216478 \mathrm{D}+01\)
\(0.33013599 \mathrm{D}+01\)
\(0.31946876 \mathrm{D}+01\)
```

 0.33953476D*03 0.31313697D*01
 FALOES OF CONCPMTRATIONS U OF EHE I TH SPECIES ON TAE USERS GRID
(PROM phout via timEz)

```


```

PROOT TOP TIFE = 9.1289003コD*心1
\# C.3n5127.900.03
0.3220C,734D+173
C. 316ART09D+N3
C.351303520+07
0.334941020401
0.3355889020401
O.335789020+01
3. 30363322D+01
O. 3n7319910+0)

```
\(0.3981 c 0810+03\)
\(0.32767759 \mathrm{D}+07\) \(0.32767759 \mathrm{D}+03\) \(0.34103714 D+C 3\) ）． 35 578983D＋A2

0． \(33571745 \mathrm{D}+0\) ？ \(0.33076997 D+01\) 0．317741920 +0 － \(3.305624900+01\)

```

cacmsfur vla
appHOEIMATE sOLHEIOM
0.30511999990999790+C3
0.3222819145036516D*03
0.3316643232829942D+03
$0.34119810635717910+03$
$0.3512533952052090 \mathrm{D}+03$ $0.3051199999999979 \mathrm{D}+\mathrm{CH}$
C． $36+4751794530577 \mathrm{D}+03$

```

```

GFOD FPODT VIA THAET
APPROTIRATE SOLOTION
C． $33494102192750430+\mathrm{Cl}$
9．33441279695029410＋01
0.3266989422655 ＠97D 01
$0.31807718798592370+01$
$0.314185740+03$
$0.321356 C 90+03$
$0.346156080+03$
$0.36 C C 3677 D+03$
$0.335350680+0$ $0.32666271 D+01$ $0.31472262 \mathrm{D}+0$ $0.30190036 \mathrm{D}+0$

```


```

TIME LFPT $1.444080,030 \rightarrow 05$

```
```

PRONT POE TTAE = O.17170000D\&01

```
```

PRONT POE TTAE = O.17170000D\&01

```
```

 N=0.30512900n+03 0.30304720000
 C. 324229520+73
 0.354n43117+07
 0.38535579D*03
    ```
\(0.303947200+01\)
\(0.30311295 D+01\)
\(0.30133550 \mathrm{D}+01\) \(0.30183550 \mathrm{D}+01\)
\(0.291897120+01\) \(0.291897120+01\) \(0.281237820+01\) \(0.363277590+E 3\)
\(0.379567910+C 3\) \(0.379567910+C 3\)
n． \(303568930+01\)
\(0.301157410+0\) \(0.30115741 \mathrm{D}+01\)
\(0.285653690+01\)

\(0.314925 C C D+03\)
\(0.343280 C 4 D+03\) \(0.343280 C 4 D+03\) C． \(36887720 \mathrm{C}+03\)
c． \(385 \mathrm{~S} 124 \mathrm{D}+03\)
\(0.30365009 \mathrm{D}+01\)
\(0.30179598 \mathrm{D}+01\) \(0.30179598 \mathrm{D}+01\)
\(0.29523359 \mathrm{D}+01\) \(0.29523359 D+0\)
\(0.28282452 D+0\)

\section*{(FECE FRODT EIA TIMRI}


\section*{tiat left} O440489000*n5

ENOUT FOR TI:E = 0.30050000D.31

\(0.129362180+01\)
\(0.30819747 \mathrm{D}+\mathrm{C3}\)
\(0.128503410+01\)
0.314181450003
\(0.130074: 10 \times 01\)


```

 TOUTE 0.498100000000000000$01 DELTA T = 0.42900000000000090D+00
    ```

PROOT POR TIEE \(=\quad 0.58410000 \mathrm{D}+01\)
    -
        \(0.305320000+03\)
        \(0.32257716 \mathrm{D}+03\)
        C. \(34947846 \mathrm{D}+03\)
        \(.37376418 D+07\)
        \(.37376418 D+07\)
\(0.390708900 \mathrm{D}+03\)
    IALOES OF concerreapio
fPDom piod via tiak
APPDOLIHATE SOLTITION
    \(0.30511999999999980+03 \quad 0.3227768177585234 \mathrm{D}+03 \quad 0.3408231726745876 \mathrm{D}+\mathrm{Cl}\)

fPIOR PRODT FJA TIEEX
    APPAOIIEATE SOLUTIOM
\(0.11862040032277420+00\)
    \(0.11862040032277420+00\)
\(0.39946499743513340-C 1\)
    \(0.39946499743513340-C 1\)
TOOTR \(\quad 0.58410000000000000+01\) DELFAT \(T=0.26000000000000300+00\)

enout pol tine : \(0.590000000+01\)

ESTIAATED TIAE POR A CALL TO DEIVE \(0.192033900+03\)
TIEE LEFT \(0.432100000+05\)
pront rol fiat -
\(0.531000000+0\)
```

 n.3051200nnd+03 rran
 C.324035270+03
 .35035217D+03
 0.37590473D+03
 0.38309902D+03
 -0.12631084D-05
 -0.109307900D-01
 0.372月31511D-01
 0.0
 ALuR OPOT (OICETMET
(PRCN flove tIa finRE
APFROXIRATE SOLOTION
0.305119999999999990+03
0.38309901962656600%0
TALEES OP COMCEMTEAFIONS D OF THE 2 TASPECIES ON THE OSERS GRIO
(fPOA pRODE EIA finEX)

 0.40030811599991020
 .0N= 0.6010000n000000000*01 DELFA T = 0.11000000C0000071D*00
    ```

```

PRO0T Post1:?= 0.640000000+01

```


```

PROOT POS tIME = 0.606900000*01
| - 0.3051200n0.03

```
\(0.3051209 n D+03\) \(0.31702959 \mathrm{D}+07\) 0.321150180407 \(.32338 C 69 \mathrm{D}+03\) \(0.32556991 \mathrm{D}+03\)
\(\begin{array}{ll}0.137244140+00 \\ 0.0 & 0.0\end{array}\) 0.0 O. OP the
\(0.32358610 \mathrm{D}+03\)

\(0.3160: 7760+03\) C. 32C02481C+03 . 323226140403 c. \(32218 \mathrm{C4} 7 \mathrm{D}+\mathrm{C3}\)
\(-0.601470080+00\)
\(-0.412101360 .00\) \(-0.22920468 \mathrm{D} 800\)
```

 -0.40756950D-21
    ```

\section*{\(0.313554330+63 \quad 0.126790680-09\) \(0.277801140-02\) \\ \(-0.10602568 \mathrm{D}-01\) 0.341791640 .03 . 38 8462C5D+03}
```

(PRON PROOT VIA TIMET)
APPROXINATE SOLUTION
0.3051199999999999 D+03 0.31697081615200R2D+03 0.3198327102971742D*03 0. 322701410497898eD+03 0.32338916295088882D+03
0. 32556991075275350+03
valuEs O\& Concentearions o of the 2 th species CM the osers grid

```


```

 0.6239487068A460690+00 -0.55629419107573480+00 0.47423825368735
 ESIIRACRD TIME POA CALL TO DHIFE O.18000000D*OS
TTME LPFT C.02571090D+05
PROOT FOP TIHE= 0.729800000D+01

```



```

APPROIIM:IE SOLITION

```

```

 0.0
 TOOT= 0.7728000C00900:20D+01 DELTA = = 0.029999099999999900+00
    ```

```

***** MOgnal dump at END OF sIMEX
I = 21 MT END OP INALX
0.172d000v00COCOCCD+01

```
EMD or case

We next illustrate the lise of the cross-section plnt (CSi) piogram to generate a series of graphs at selected times. Much of the input is similar to that given in section 7.1. For example, the graphics dataset which was written on unit 12 during the computational piase must be reassigned to unit 12 for the CSP run.

For CSP, two namelists are required. Th: first is Namelist FDRMAT which has input very similar to the FgRMAT namelist used in section 7.1. The second is Namelist CSPIN which involves variables specifically for the CSP program.

\section*{Namelist FORMAT}
1. Indicator for iterative or direct version of the computational code Previous versions of DISPL allowed for direct or iterative solution of certain equations. The current version of DISPL1 only allows for the direct version; thus the default value ITRTV \(=0\), MJST be used. ITRTV=0, (0.efault)
2. Number of curves to be produced per time value For this proviam we will generate two curves (one for each species) on each frame for each time value. Each curve will have its own axis.

IGNUM=2,
3. Number of grid points for graphical purposes

This number cannot exceed NRES.
NRESIN=NRES1, ( NRES1=501)
We next consider the namelist which specifically applies to the CSP program.

Namelist CSPIN
1. Indicator for cinema mode

We would use this option only if we wished to produce multiple copies of each frame. This should only be done in movie generation. ICN=0, (Default)
2. Indicator for grouping format

When more than one curve appears on a single frame, we can either produce the curves on a single set of axes (packed format) or produce each curve on its own set of axes (separate format). Since the range of values for pressure and velocity differ considerably, it is not desirable to use packed mode for this problem. We this use the separate mode.
IFØRMT=0, (Default)
3. Indicator for analytic solution

If the analytic solution is available we can graph the analp+ic solution for the Ith species with its corresponding numerical solution. The analytic solution is supplied via a SINGI.E PRECISION version of the analytic subroutine. Since the CSP program contains its own dummy version of the analytic subroutine we don't need to provide the dummy version. For this problem we do not have an analytic solution; we use this dummy routine and set IANAL=F, (Default)
4. Estimate of minimum value of the ordinates

This vector has, as its Ith component, an estimate for the lower bound of the vertical axis for the lth curve. When the solution values lie cutside the interval [YAXMIN(I), YAXMAX(I)], the code will rescale the vertical axis. Hence if the user does not want this rescaling to occur, he should specify a generous interval which contains a vertical axis range large enough for the Ith curve over all time values being plotted. Also, such a constant axis is useful for movie generation. In other cases it is sufficient to use the default values. YAXMIN=0.0,0.0, (Default)
5. Estimate of maximum value of the ordinates
\(\operatorname{YAXMAX}=1.0,1.0\), (Default)
6. Species number for each curve

This vector has, as its Ith component, the species to be plotted as
the Ith curve. In the usual case, which we have, we use \(\operatorname{ISPEC}(I)=I\), for \(I=1\), NSPEC.
ISPEC=1,2,
7. Frame number indicator

This vector specifies the frame on which the Ith curve is to be plotted. In our case we are plotting one frame for each time value. LGRDUP=1,1, (Default)
8. Ordering of the curvcs on each frame

If IFQRMT=1, the Ith component of this vector specifies the plotting symbol to be used to indicate the Ith curve. If IFØRMT\#1 (as in this case), LøRDER(I) indicates the order of the curves on each frame.
LDRDER=1,2,
9. R coordinate of first endpoint of the cross-section line

This vector has, as its mth component, the \(R\) coordinate of the first of the two points specifying the cross-section for the mth frame.
That is, each frame can have a different cross-section if desired. In our case we have only one frame and we wish to plot along the \(R\) axis from 0.0 to 4253.5. Further, since the \(Z\) axis defaults to [0.0,1.0], we can use any constant in the interval [0.0,1.0] for the \(Z\) component. We will use a cross-section from [0.0,0.0] to [4253.5,0.0].
\(A 1=0.0\), (Default)
10. \(Z\) coordinate of first endpoint of the cross-section

B1=0.0, (Default)
11. \(R\) coordinate of second endpoint of the cross-section
\(A 2=4253.5\),
12. \(Z\) roordinate of second endpoint in cross-section
\(B 2=0.0\), (Default)

The following page contains the printed output of the CSP run. This is followed by three of the twenty-one frames generated by the run. Each frame is for a oiven time value and consists of two curves: the lower curve (species 1) is a plot of head pressure versus distance; the upper curve (species 2) is a plot of velocity versus distance. Figure 7.2 .1 is at a time ( \(t=3.435\) ) before the valye is closed. Figure 7.2 .2 is at the time ( \(t=5.9\) ) when the valve has just closed, and Figure 7.2 .3 is at a time ( \(t=7.728\) ) after the valve has closed. Note the flow reversal in this last figure.
```

EEGINNIMG CRCSS SECTION GRAPHICS PACKAGE
fofmatting panametges

| CINEMA HODE | VERSION | NUMEER OF GAAPHS FOK EACG TIME GROURING PORMAT | ANALYTIC | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2 | 2 | 0 | F |

NGESIN = SC1
ITIME = F NUMBER OF TIME VALUES FCR TIME CRIIUN IS 501
If ITIME=T, tHE SOLUTION IS EVAIDATED AT (A1(I), B1;I))
inItIal estibate foe vertical axes
yAXMIN,YAXHAX
0.0
0.0
USEE GRAPH FORMAT SPECIFICATIONS
fgame wumpfy oftek :ithin each frame species number
FROM TOP TO POTTOK
1
1 1
2 2
COORDINATES OF THE ENDPOINTS FOZ EACHi ChOSS SECTION
LINE GIVEN XITH THE CORRESPONDING FIAME NUMBEF
FRAMF NUMEFF (1)

```

```

THE NUMBEG OF GPAPHS FAODUCE\ IS \1

```


Figure 7.2.1
Graph of pressure and velocity for water hammer problem


TIME 5.900

Figure 7.2.2
Graph of pressure and velocity for water hammer problem


\subsection*{7.3 Diurnal Chemical Kinetics}

This problem is concerned with the concentrations of minor chemical species in the upper atmosphere. A major feature of this problem is the large time variations in the concentrations of the chemical species. In the course of solving this problem we shall see how a knowledgeable user can modify the code (at least its performance) by modifying the user subroutines. This problem will also illustrate the time history graphical output.

In the following problem, we let \(c^{1}(z, t)\) denote the concentration of ozone \(\left(\mathrm{O}_{3}\right), c^{2}(z, t)\) denote the concentration of the oxygen singlet ( 0 ), and \(c^{3}\) denote the concentration of oxygen ( \(\mathrm{O}_{2}\) ) assumed to be constant. This model neglects convection, uses one spatial coordinate \(z\) (the altitude in kilometers), and a Fickian model of turbulent eddy diffusion. The problem is as follows.
\[
\begin{aligned}
& \frac{\partial c^{i}}{\partial t}=\frac{\partial}{\partial z}\left[K(z) \frac{\partial c^{i}}{\partial z}\right]+R^{i}(c, t), \quad i=1,2 \\
& \frac{\partial c^{i}(30, t)}{\partial z}=\frac{\partial c^{i}(50, t)}{\partial z}=0, \quad t>0 \\
& c=\left(c^{1}(z, t), c^{2}(z, t)\right)^{\top}, \\
& 30 \leq z \leq 50, \\
& 0 \leq t \leq 8.64 \cdot 10^{4} \text { (one 24-hour day in seconds). }
\end{aligned}
\]

Further,
\[
\begin{aligned}
& K(z)=\exp [z / 5], \\
& R^{1}(c, t)=-k_{1} c^{1} c^{3}-k_{2} c^{1} c^{2}+2 k_{3}(t) c^{3}+k_{4}(t) c^{2} \\
& R^{2}(c, t)=k_{1} c^{1} c^{3}-k_{2} c^{1} c^{2}-k_{4}(t) c^{2} \\
& c^{3}=3.7 \cdot 10^{16} \\
& k_{1}=1.63 \cdot 10^{-16} \\
& k_{2}=4.66 \cdot 10^{-16}
\end{aligned}
\]
\[
\begin{aligned}
& k_{i}(t)=\left\{\begin{array}{l}
\exp \left(-v_{i} / \sin \omega t\right), \text { for } \sin \omega t>0, \\
0, \text { for } \sin \omega t \leq 0,
\end{array}\right. \\
& v_{3}=22.62, \quad v_{4}=7.601, \text { and } \omega=\pi / 43,200 . \\
& c^{1}(z, 0)=10^{6} \gamma(z), c^{2}(z, 0)=10^{12} \gamma(z), \text { where } \\
& \gamma(z)=1-\left(\frac{z-40}{10}\right)^{2}+\frac{1}{2}\left(\frac{z-40}{10}\right)^{4} .
\end{aligned}
\]

Notice that the reaction rates \(k_{3}(t)\) and \(k_{4}(t)\) build up to a peak at noon \((t=21,600)\) and are switched off from sunset \((t=43,200)\) to sunrise ( \(t=86,400\) ) which models the diurnal effect. In this model the concentration \(c^{1}(z, t)\) rises to a peak value of about \(10^{8}\) at noon, and then falls to zero at 6:00 p.m. and stays zero through the night. This behavior requires a modification to the error control mechanism in the ODE solver GEAR. Such a modification could have been made in GEAR; however, we choose to make this adjustment through a usei routine in order to illustrate the point that some modifications can be achieved through these user routines. Let Y (I) denote the I-th component of the solution vector and \(E(I)\) the I-th component of the error vector, both considered at some current time \(t\). The version of GEAR which is used in this code defines a vector \(\operatorname{YMAX}(I)\) such that \(\operatorname{YMAX}(I)\) is the maximum value (in modulus) that \(Y(I)\) has achieved in the past, i.e. for \(t^{\prime}<t\). A relative error control is used in this code, that is the quotient \(E(I) / Y M A X(I)\) is compared with a specified tolerance factor. (The code uses an \(L_{2}\) norm so that the actual situation is somewhat more involved.) Now consider the present problem as time approaches 6:00 p.m. The concentration \(c^{1}\) has reached a peak value of about \(10^{8}\) at noon; thus \(\mathrm{YMAX}(\mathrm{I}) \sim 10^{8}\) during the entire afternoon. Moreover as we approach 6:00 p.m., the concentratiuns \(c^{l}\) fall to zero very rapidly; hence we are using the error criterion \(10^{-8} \cdot \mathrm{E}(\mathrm{I})<\) tol which is a very loose error control. In order to correct this situation we could put a floor value on the error control. For example we could define YMAX(I) as follows:
\[
\operatorname{YMAX}(I)=\operatorname{MAX}\left\{|Y(I)|, 10^{-20}\right\} .
\]

This would have the effect of replacing a relative error control by absolute error control when \(|Y(I)|\) is small. This change could have been made to

GEAR; however, we can also achieve this change through a user routine. of course, this requires knowledge of the GEAR code and the DISPL code; so it is not a casual procedure.

To achieve the above change one must modify the definitions of \(\operatorname{YMAX}(I)\) as described above. Moreover, this must be done after the GEAR program has defined YMAX. The - 4 R program defines YMAX in subroutine DRIVE. The subroutine DRIVE calls a subroutine STIFF which in turn calls a DISPL subroutine GFUN. This latter subroutine calis several user routines such as VEL, DIFUSE, EXTSRC. Thus we call modify the definition of YMAX in any one of these subroutines, for example, subroutine VEL. To modify the definition of YMAX, we must have \(\operatorname{YMAX}(I)\) and \(Y(I)\) available in this subroutine. The array YMAX(I) is in the common block GEAR2 and \(Y\) is in the common block GEAR10. These common blocks are invoked in subroutine VEL and the modification to YMAX(I) is made in this subroutine.

For this problem we use the following data in the namelists.

\section*{GRID}
\(K R=1, K Z=4\),
NSPEC=2,
\(Z L\) OW \(=30.0, Z U P=50.0\),
CのNTZ=2,
NMZ \(=7\),
ZMESH \(=32.5,35.0,37.5,40.0,42.5,45.0,47.5\),
NQR=1, NQZ=4,
INITSW \(=T, T\) RANSW \(=T, G U E S S W=F, S T E D S W=F\), JZGRD=3,
ZGRID \(=30 ., 40 ., 50\).,
DATA
NUTOUT \(=2\),
NUFREQ \(=12\),
UTŋUT \(=0.0,86400.0\),
EPS =1. \(\mathrm{D}-3, \mathrm{HINIT}=1 . \mathrm{D}-4\),
GRAPH \(=T\),

For the user routines, we used the following statements.
Subroutine RHDCP
RC=1.00

Subroutine DIFUSE
DIFUR=0.DO
DIFUZ \(=(1 . D-8) \star \operatorname{DEXP}(Z Z / 5.00)\)
Subroutine VEL
COMMON/GEAR2/YMAX(1)
COMMON/GEARIO/Y(1)
DQUBLE PRECISIDN Y,YMAX
DATA N/36/
DD \(5 \mathrm{I}=1, \mathrm{~N}\)
\(5 \operatorname{YMAX}(I)=\operatorname{DMAXI}(\operatorname{DABS}(Y(I)), 1 . D-20)\)
VELR=0.D0
VELZ \(=0\). U
The use of this subroutine to modify YMAX was just a matter of convenience.
Subroutine EXTSRC
In this routine we form the sources
\[
\begin{aligned}
& R^{1}=-k_{1} c^{1} c^{3}-k_{2} c^{1} c^{2}+2 k_{3} c^{3}+k_{4} c^{2} \\
& R^{2}=k_{1} c^{1} c^{3}-k_{2} c^{1} c^{2}-k_{4} c^{2}
\end{aligned}
\]

Subroutine FDEXTU
In this subroutine we calculate the Frechet derivative of the distributed
source.
For species 1 we have
\[
\begin{aligned}
& U U(1)=-k_{1} c^{3}-k_{2} c^{2}, \\
& U U(2)=-k_{2} c^{1}+k_{4} .
\end{aligned}
\]

For species 2 we have
\[
\begin{aligned}
& U U(1)=k_{1} c^{3}-k_{2} c^{2} \\
& U U(2)=-k_{2} c^{1}-k_{4}
\end{aligned}
\]

For both species, \(\operatorname{UUR}(K)\) and \(\operatorname{UUZ}(K)\) are zero for \(K=1,2\).
Subroutine INDATA
In this routine we return the initial distributions
\[
\begin{aligned}
& c^{1}(z, 0)=10^{6} \gamma(z), \quad c^{2}(z, 0)=10^{12} \gamma(z) \text { where } \\
& \gamma(z)=1-\left(\frac{z-40}{10}\right)^{2}+\frac{1}{2}\left(\frac{z-40}{10}\right)^{4}
\end{aligned}
\]

\section*{Subroutine BRHP}

Since \(\frac{\partial c^{i}}{\partial z}(30, t)=\frac{\partial c^{i}}{\partial z}(50, t)=0\), we just return \(R H \emptyset V=0 . D 0\) on sides 2 and 4 for both species.

In this probiem we used the \(z\) axis for the spatial variahle and Hermite cubic ( \(K Z=4, C \notin N T Z=2\) ) B-splines. For spatially smooth solutions, the use of Hermite cubics is not an advantage; however, we use them here for illustrative purposes. The output is given ar 30,40 , and 50 km at two-hour intervals during a 24 -hour day. Thir problem was taken from Ref. [7] where a finite difference solution is given at the above spatial and time values. This data is given in Table 7.3.1.

The following pages contain the computational phase output for this problem.

TABLE 7.3.1. Finite Difference Solution for Atmospheric Model
\begin{tabular}{|c|c|c|c|}
\hline Time & 30 krn & 40 km & 50 km \\
\hline 8:00 AM & \[
\begin{aligned}
& 2.10 \cdot 10^{4} \\
& 5.06 \cdot 10^{11}
\end{aligned}
\] & \[
\begin{aligned}
& 4.12 \cdot 100^{4} \\
& 9.96 \cdot 10^{11}
\end{aligned}
\] & \[
\begin{aligned}
& 2.22 \cdot 10^{4} \\
& 5.36 \cdot 10^{11}
\end{aligned}
\] \\
\hline 10:00 AM & \[
\begin{aligned}
& 1.31 \cdot 10^{7} \\
& 5.09 \cdot 10^{11}
\end{aligned}
\] & \[
\begin{aligned}
& 2.54 \cdot 10^{7} \\
& 9.91 \cdot 10^{11}
\end{aligned}
\] & \[
\begin{aligned}
& 1.44 \cdot 100^{7} \\
& 5.60 \cdot 10^{11}
\end{aligned}
\] \\
\hline 12:00 & \[
\begin{aligned}
& 4.74 \cdot 10^{7} \\
& 5.49 \cdot 10^{11}
\end{aligned}
\] & \[
\begin{aligned}
& 8.68 \cdot 107 \\
& 10.2 \cdot 10^{71}
\end{aligned}
\] & \[
\begin{aligned}
& 5.29 \cdot 10^{7} \\
& 6.10 \cdot 10^{11}
\end{aligned}
\] \\
\hline 2:00 PM & \[
\begin{aligned}
& 1.52 \cdot 10^{7} \\
& 5.91
\end{aligned}
\] & \[
\begin{aligned}
& 2.72 \cdot 10^{7} \\
& 10.6 \cdot 10^{11}
\end{aligned}
\] & \[
\begin{aligned}
& 1.72 \cdot 10^{7} \\
& 6.71 \cdot 10^{11}
\end{aligned}
\] \\
\hline 4:00 PM & \[
\begin{aligned}
& 2.46 \cdot 10^{4} \\
& 5.94 \cdot 10^{11}
\end{aligned}
\] & \[
\begin{aligned}
& 4.37 \cdot 10^{4} \\
& 10.5 \cdot 10^{11}
\end{aligned}
\] & \[
\begin{aligned}
& 2.84 \cdot 109^{4} \\
& 6.84 \cdot 10^{11}
\end{aligned}
\] \\
\hline 6:00 PM & \[
\begin{aligned}
& 0 \\
& 5.96 \cdot 10^{11}
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 10.5 \cdot 10^{11}
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 6.95 \cdot 10^{11}
\end{aligned}
\] \\
\hline 8:00 PM & \[
\begin{aligned}
& 0 \\
& 5.97 \cdot 10^{11}
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 3 C .5 \cdot 10^{11}
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 7.05 \cdot 10^{11}
\end{aligned}
\] \\
\hline 10:00 PM & \[
\begin{aligned}
& 0 \\
& 5.99 \cdot 10^{11}
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 10.4 \cdot 10^{11}
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 7.14 \cdot 10^{11}
\end{aligned}
\] \\
\hline 12:00 & \[
\begin{aligned}
& 0 \\
& 6.01 \cdot 10^{11}
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 10.4 \cdot 10^{11}
\end{aligned}
\] & \[
\frac{0}{7.22 \cdot 10^{11}}
\] \\
\hline 2:00 AM & \[
\begin{aligned}
& 0 \\
& 6.03 \cdot 10^{11}
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 10.3 \cdot 10^{11}
\end{aligned}
\] & \[
\frac{0}{7.29 \cdot 10^{11}}
\] \\
\hline 4:00 AM & \[
{ }_{6.04 \cdot 10^{11}}
\] & \[
\begin{aligned}
& 0 \\
& 10.3 \cdot 10^{11}
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 7.36 \cdot 10^{11}
\end{aligned}
\] \\
\hline 6:00 AM & \[
\begin{aligned}
& 0 \\
& 6.11 \\
& \hline 10
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 10.2 \cdot 10^{11}
\end{aligned}
\] & \[
{ }^{0} .42 \cdot 10^{11}
\] \\
\hline
\end{tabular}
storage haitha por this compilation :
Mireme
HIISP
garfod
saxi

GXByaz
ExMyAZ
日AIMOT
HIEGRO MI2GBD
```

peading mamelige grid

```


```

SLOE = 2.0, a|p = 0.1000c0000000000000+01

```
SLOE = 2.0, a|p = 0.1000c0000000000000+01
2LO1 = 0.30000000000000000D+02 20P = 0.500000000000000000002
2LO1 = 0.30000000000000000D+02 20P = 0.500000000000000000002
##geo mez=
```

\#\#geo mez=

```


```

gzonzTE: IMNICATOE = 0

```
```

gzonzTE: IMNICATOE = 0

```


```

ADOITIONAL HOU-THTEBPACE Z HBEH POIMES

```
ADOITIONAL HOU-THTEBPACE Z HBEH POIMES
I=12neSH(I)=0.32500000000000000D+02
I=12neSH(I)=0.32500000000000000D+02
I = 2 %RISE(I) = 0.35000000000000000*02
I = 2 %RISE(I) = 0.35000000000000000*02
I=3 2HESB(I) = 0.37500000000000000D+02
I=3 2HESB(I) = 0.37500000000000000D+02
I = zHESB(I) = 0.400000000000000000+02
I = zHESB(I) = 0.400000000000000000+02
I=S 2HESE(I) = 0.4250000000000000D+02
I=S 2HESE(I) = 0.4250000000000000D+02
I=6 7HESE(I) = 0.450000000000000000*02
I=6 7HESE(I) = 0.450000000000000000*02
I=6 ZH2SE(T)= 0.45000000000000000+002
I=6 ZH2SE(T)= 0.45000000000000000+002
ODADEAT0BE* (%)
```

ODADEAT0BE* (%)

```


```

0OADAGTOHE ORDES POR 2 DIEECTIO|

```
0OADAGTOHE ORDES POR 2 DIEECTIO|
GATBEIIL TAOLE IS GIFPM AS AIFL(AIMDEI,zIMDEI)
GATBEIIL TAOLE IS GIFPM AS AIFL(AIMDEI,zIMDEI)
GATERIAL TABLE FOR zIMDEZ = 1
GATERIAL TABLE FOR zIMDEZ = 1
1
1
conssve
conssve
LOGICAL SHITCHES to COHTEOL pgOGRAM
```

LOGICAL SHITCHES to COHTEOL pgOGRAM

```




```

DOAPSE = P

```
DOAPSE = P
IEEVLA(1)=?
IEEVLA(1)=?
OPDER OF SPLIMB DEAIVITIIES COMPUTED IS O
OPDER OF SPLIMB DEAIVITIIES COMPUTED IS O
MOEQRE OP OSER SUPPLIED POIMIS IIN DIRECTION 
MOEQRE OP OSER SUPPLIED POIMIS IIN DIRECTION 
EEPID( 1) # 0.5000000000400
EEPID( 1) # 0.5000000000400
EOPPER OP USEP SUPPLIED POIMTS IN 2 DIRECTIOM
EOPPER OP USEP SUPPLIED POIMTS IN 2 DIRECTIOM
ZGRID (1) OSES SUPPLIED POIMTSS I
ZGRID (1) OSES SUPPLIED POIMTSS I
ZG#ID( 1) = 0.3000000000+02
ZG#ID( 1) = 0.3000000000+02
zGRID(3)= 0.5000000000*02
zGRID(3)= 0.5000000000*02
geadiag manelist data
geadiag manelist data
COMt; tOO HIGR, bEING RESET to 1-1
COMt; tOO HIGR, bEING RESET to 1-1
NTEAP = 0 MHGAP=0 LR * 1 Lz= a MR= 1 MZ = 19
NTEAP = 0 MHGAP=0 LR * 1 Lz= a MR= 1 MZ = 19
ILIN =
ILIN =
ML(3)=
ML(3)=
IMEP(I)=
IMEP(I)=
JHEP(d)=1, 1, 1, 1, 1 1 1 1
JHEP(d)=1, 1, 1, 1, 1 1 1 1
GITID(1, 1)=1
```

GITID(1, 1)=1

```

```

II= 2
M- 2
\#J!e 1
\#CCE= -1
DH= 3

```

```

PaIS IS tai orezet version

```




``` SIDE ALPEA - 0.0 POR SPECIES 10. 2
SIDE 1 ALPEA - 0.0
SIDE 2 IPPIE
SIDE 2 ALPAK 0.0
SIDE 3 ILPEA \(=0.0\)
SIDE MIPAK 0.0
BETA \(=\quad 0.1000000\) D +01
BETA \(=0.10000000 \mathrm{D}+01\)
BETA \(=-0.100000000 \mathrm{D}+01\)
EETA \(=-0.100300000+01\)
EETA - \(\quad 0.1000000000+01\)
```



```
SIDE IMDICATOAS GY SPECIES
```



```
GODIDAEI E POHCTION POR SIDES AMD 3 0,10000000000000000001
SPECIESEO. 1 MATERIAL IHDER 1 E01 = \(0.10000000000000000+01\)
SPECIES HO. 2 HATERIEL IMDEX i BOT: \(0.10000000000000000+71\)
```




``` SPECIES O.igs
prest opoge cites
```




```
CR IHTO 1 FROM
\(\begin{array}{cc}\text { CF IHTO } \\ \text { CF } \\ \text { IHTO } \\ 2 & \text { FROM } \\ 2\end{array}\)
Sycollo ospermo 2 IS 0.0
```



```
CKK TMFO K = 1 FOR KP = 1 THTO KPP =
CEK 13TOK = 1 POR KP = 2 IHTO KPP \(=\)
```



```
\(\begin{array}{llllll}\operatorname{CKK}(1, & 1, & 11 & = & 0.0 \\ \operatorname{CKK} & 1, & 2, & 11 & = & 0.0 \\ \operatorname{CKK}(2, & 1, & 11 & = & 0.0\end{array}\)
```

503 $=0.1000000000000000040$ $0.100000000 \mathrm{C} 0000 \mathrm{COD}+0$
$004=0.10000000 c \operatorname{cocc} 000 \mathrm{D}+9$


0.10000000 P 00000000 \$01	0. $100000000000 c c c o d+01$	$0.10000000000000000+01$	0. $10000000000000000+01$
$0.10000000000000000+01$	$0.1000000000 c 000000+01$	$0.1000000000000000 c+01$	0. $10000000000000000+01$
0. $10000000000000000+01$	0.1000000000000000 D+01	$0.1000000000000000 \mathrm{D}+01$	$0.10000000000000090+01$
0.10000000000000000 -01	$0.1000000000000000 D+01$	$0.10000000000000000+01$	$0.10000500000000000+01$
$0.10000500000000000+01$	$0.1000000000000000 \mathrm{D}+01$	$0.1000000000000000 \mathrm{D}+01$	0. $10000000000000000+01$
$0.1000000007000000 \mathrm{D}+01$	$0.10000000000000000+01$	$0.1000000000000000 \mathrm{D}+01$	$0.1000000000000000 \mathrm{D}+01$
$0.1000000000000000 \mathrm{D}+01$	0. $1000000000 \mathrm{C} 0000 \mathrm{D}+01$	$0.10000000000000000+01$	$0.1900000000000000 \mathrm{D}+01$
$0.1000000009000000 \mathrm{D}+01$	0. $1000000000000000 \mathrm{D}+01$	$0.10000000000000000+01$	0.1000000000000000D+01
$0.100 C 000002000000 D+01$	$0.1000000000000000 \mathrm{D}+91$	0.1000000000000000 D 01	$0.1000000000000000 D+01$



```
(PHOE INIPIT)
 0.58455076051041010+06
 0.54707296901689230+06
 0.5125333979232570.06
```



```
(FPOB IMIPIT)
 0.50455076051041000 + 12
 0.5470729890169923D +12
 0.51253133979232570+12
```



```
(PRON INIFIT)
 0.76820923305950200+06
 0.71822423848839450+06
 0.65369055032093G3D*06
```



```
(PROS IVIPIT)
 0.7602C9233C5960270+12
 0.7182242384R83946D+1
 0.6536905503209353D +12
 0.6073443721745726D+12
taloES of coucemteation o of the 1 th species at the quackatobe points in the (1. 3)-tb agctamgle
 B0: IEIFITI
 *1p87513656886D+05
 0.8955229152425516D*066
```

0.84086066961380810406
 (FAOB IAIFIT) $1668988 \mathrm{D}+12$
$0.93112875136666880+12$
$0.69552291524255180+12$
$0.84086066961300810+12$
C. $84086066961300810+12$
$0.79424328561812620+12$
valdes of comcempation of tae 1 th species at taz quadratoer points in the ( 1 , aj-therctamge. (TBOE IMIPIT)
C. $99975483578175100+06$
$0.99318635423153640 \mathrm{D}+06$
$0.9723089106323048 D+06$
 (PROM IMIPITI
$0.99975483578175000+12$
$0.9931863542315363 \mathrm{D}+12$
0.91230 G9 10632304 BD +12
$0.94739659506625840+12$
 (PRON IHIPIT)
$0.94739859506625910+06$
0.97230891063230550406
$0.9931863543153570+06$
 (PROA IHIFIT)
$0.94739859506625960+12$
$0.9723069106323060 \mathrm{D}+12$
$0.99318635423153570+12$
$0.9997548357817502 \mathrm{D}+12$
 (FMOR IMIFITI
$0.79424328561812710+06$
$0.0808606696138088 D+06$
$0.89552291524255120+06$

(FROB IMIPIT)
$0.79424328561812710+12$
$0.84086066961380860+12$
$0.89552291524255120+12$
$0.89552291524255120+12$
 (PROA IMIFITI
$0.60734437217401710+06$
$0.6536965503209357 n+06$
$0.71822423848939440+06$
 (PPOA IIITIT)
$0.60734437217497300+12$
$0.65369055032093560+12$
$0.71822423848839450+12$
 (rion IuIPIT)
$0.50056232635677770+06$
$0.5125313397923259 D+06$
$0.54707298901689230+06$
 (PROH IWIPIT)
C. $5005823263587776 \mathrm{D}+12$
$0.5125313397323258 \mathrm{D}+12$
$C .54707298901689230+12$
$0.58455076051041020+12$

## READIAG Manelist oata


0. 49992644134230720.06 $0.5409738759634485 \mathrm{D}+06$ $0.7187855915021812 \mathrm{D}+06$ $0.900447533441054 \mathrm{D}+0$
C. $1000064170975785 \mathrm{D}+07$
$0.49992644134230710+12$ $0.54077387596344845+12$ $0.71878559150218130+12$ . $9004477533441058 D+12$
C. 572322217 Ca789410+06
C. $6505155792121346 \mathrm{D}+06$ $0.65051>5792121346 D+06$
0.843832 AFFE260228D+C6
 $0.19^{79064170975782 D 407 ~}$
$.50032221798789420+12$ $0.65051957921213460+12$ $0.65051957921213460+12$
$0.843833286882602260+12$ $0.84383288682602260+12$
$0.9785851462945552 \mathrm{D}+12$ $0.1000064770975782 \mathrm{D}+13$
C. 97 R 5 R $514629455 \mathrm{e} 1 \mathrm{D}+06$
C. $8438328868260250 \mathrm{D}+\mathrm{C6}$
$0.6505195792121350 \mathrm{D}+36$
$0.50032227708789500+06$
0.9785 d 514629455910.12
$0.143 \mathrm{~d} 32886826 C 246 \mathrm{D}+12$ $0.65051+5792121353 \mathrm{D}+12$ $0.6503175792121353 D+12$
$0.5003221708789460+12$
0.9704477533441027 D 406
. $71878559150217960+C$ $0.5479738759634476 \mathrm{c}+06$ $0.4999264413423769 \mathrm{D}+06$
$0.9004477533410260 \cdot 12$
$0.7187855915021800 \mathrm{D}+12$ $0.5409738759634480 \mathrm{D}+12$ $0.4999264413423070 \mathrm{D}+12$

```
PROET FOP TIBE = 0,0
```

V - $0.49992644 \mathrm{D}+06$ 0.6505195 AD +06 $0.900447750+06$ 0.100006920407 C. $043832890+06$
$0.540973 B^{2} D+06$

```
vaiozs of comcrutehtions \(u\) of the 1 th species ow fhe hisers grio (PRON PROUT VIA TIMEX)
PPROXIAATE SOLOTIOA
0.4999264413423089 D406
```


## PPPOXIARTE SOLYT100 <br> C. 100006 17ก̣7578ad\& 07

```
PPHOEINATE SOLOETOM
```

PPHOEINATE SOLOETOM
0.49992644133423072D*06

```
 0.49992644133423072D*06
```



```
(FIOR PROOT VIK IIHEZ,
```

(FIOR PROOT VIK IIHEZ,
APPAOXIHATE SOLMTIOR
APPAOXIHATE SOLMTIOR
0.499926441342306990*12
0.499926441342306990*12
APPPOEIGATE SOLJTIOM
APPPOEIGATE SOLJTIOM
0.1000064170975784D+13
0.1000064170975784D+13
PPAOXIABTE SOLUTION
PPAOXIABTE SOLUTION
0.49992664134230710+12
0.49992664134230710+12
T00Y=
T00Y=
peove POP TINE = 0.72000000D404
| =

```
0.207610570405
\(0.27001837 \mathrm{D}+05\)
\(0.37299100 \mathrm{D}+05\)
0.4119226 AD 405
\(0.344666610+05\)
\(0.230435230+05\)
```

0.720000000404
Maldes of comcentations o of the 1 th sptcies on the useps geto
(PROA PRONT VII timex)
tPPROITAATE SOLUTIOM
$0.22201936647969210+n 5$
APPROXInAPE SOLnTIOM
$0.41250179456291220+C 5$
APFAORIGATE SOLOTIOA
$0.20761056998983010+15$
-

```
\(0.50032222 \mathrm{D}+12\) \(0.7187 R 559 \mathrm{D}\) •1 \(0.978485150+12\) \(\therefore .978585150+1\) \(0.718785590+12\) \(0.590322220+1\)
C. \(54097388 \mathrm{D}+06\) \(0.843832890+0\) C. \(1000 \mathrm{C64} 2 \mathrm{D}+17\) C. \(900447750+06\) \(0.65 \mathrm{C} 51958 \mathrm{D}+06\) c. \(49992644 \mathrm{D}+06\)
\(0.54097388 \mathrm{D}+12\)
\(0.84383289 D+12\)
\(0.10009642 \mathrm{D}+1\)
\(0.900447750+12\) \(0.65 \mathrm{C5} 19580+1\) 0.499926440 .12
 C. \(222 \mathrm{C} 1937 \mathrm{D}+05\)
\(0.542319460+12\) \(0.844294510+1\) \(0.997111350+1\) \(0.889867980+12\)
\(0.53590019 \mathrm{D}+12\)
\(0.531532050+12\) \(0.719990740+12\) \(0.976854740 \mathrm{D}+12\) \(0.970995070+12\) \(0.758328370+\)
```

(PRCH FFC(IT VIA TIMPT)
APfFOXIHAPE SOIITION
0.53590C18539398190+12
APPROXIKATE SOLTTION
0.99571336277598440%12
APPROXIEATE SOLOTION
0.50111956250147610+12
OOUT= 0.729000N0000000000D+04 DELTE T = 0.06400000000%99000*05
ESTIHATED TIGE vor CALL TO DRIVE 0.227900000.04
TIME LEFT TIGE O.175350000* OS
PMOUT TOR TIME = C.14400000D*C5

```
\(0.129086990+08\) \(.167619290+08\) \(.230827670+0\)
. 210524 50D 09
\(0.21052490 \mathrm{D}+0 \mathrm{O}\)
```

clors of concentpitions U Of taz f th SpECIES CN the OSEPS gRID
(FAOB PBONT FIA TIFEI
APPPOIIASTE SOLOTIOM
0.1436251371761 SB90*08
:PpROETHATE SOLOTIOM
$0.254005034277794 \mathrm{D}+00$
APPROTIHATE SOLUPTOM
O.1290869CO4271510D+78 OR THE 2 TH SPECIES OM THE OSEPS SRID
(PBOM FBODT EIA TIMEX)
apfrotibate solution
$0.5594094582439390 \mathrm{D}+12$
apptoziante solution
$0.9914349289540650 \mathrm{D}+12$
mpFPorinate solotion
$0.502562477490 \mathrm{~F} 30 \mathrm{AD} \cdot 12$

```

```

ESTMALTED TINE POA A CALL TO DAIVE 0.650000000002
TIME LEFT O.174700j0D*05

```
\begin{tabular}{|c|c|c|}
\hline \(0.502562480+12\) & 0.129105370408 & 0.50298663 \\
\hline \(0.653231570+12\) & 0.185004550 \% \({ }^{\text {P8 }}\) & 0.721212580 \\
\hline \(0.90039636 \mathrm{D}+12\) & 0.24996354D+CA & 0.975225200 \\
\hline \(0.98860347 \mathrm{D}+12\) & \(0.24696308 \mathrm{D}+\mathrm{CO}\) & O.963493040 \\
\hline 0.821001800*12 & \(0.18020727 \mathrm{D}+\mathrm{CB}\) & 0.70245396 \\
\hline & & \\
\hline
\end{tabular}
\(0.821001800+12\)
. \(573910140+12\)
0.185004550 AB \(0.1850{ }^{0} 5{ }^{0}\)
\(.24696308 \mathrm{D}+\mathrm{CO}\) \(0.14353287 D+C B\)

12 \(.915225200+12\) \(7 \cap 245396 \mathrm{D}+12\) \(0.559018690+12\)
\(0.139654950+08\) \(0.216694 \mathrm{CJD}+08\) \(.25483258 D+00\) \(0.22554 C 66 D+00\) -. \(14362594 \mathrm{D}+08\)
\(0.543805110+12\)
\(0.844933310+12\) \(0.844933310+12\)
\(0.994266390+12\) \(0.994266390+12\)
\(0.87972254 D+12\) \(0.879722540+12\)
\(0.655080710+12\) \(0.559809460+12\)
```

PROUT POR TIME $=0.216000000+05$

```

U \(=0.468299630+0 R\)
- \(0.593139400+0\) \(0.796661380+O A\)
\(0.542694620+12\) \(0.693307670+1\) \(0.938984060+12\)
\(0.46865844 \mathrm{D}+08\)
0.64971A75D4C. \(0.857192610+03\)
\(0.54312753 \mathrm{D}+12\) . \(761102310+12\) \(0.111192200+13\)
\(0.502637 C 2 D+08\) C.7512C9730+08 0.8719365 10•08
\(0.584123460+12\) . 8 . \(400200 \mathrm{D}+12\) \(0.102971270+13\)
```

        llll
        0.7228503AD * OO
        0.53891859D+08
        0.84982666D +12
        O.639196320405
        O.61619946D+12
    ```
\(0.908458490 \cdot 12\) \(0.68944363 \mathrm{D}+12\) \(0.61543094 \mathrm{D}+12\)
```

faldes of concemprations o of the ith sRecizs on the uSers grid
(PAOR PRODT IIA tIMEX)
apppotinate solution
0.52941712118923200+00
IPPIOXIRATE SOLOPION
0.86034544130692590+00

```

\section*{PPRorigate solotion \\ \(0.46829963018326 \mathrm{C2D} 200\) \\ pion fgoot viatinex)}
```

THLOES OF COACEHTRATIOMS OF THE 2 TH SPECIES OM THE USEAS GRID

```
```

ppaorimate solntio:

```
ppaorimate solntio:
 0.61643094n14352月nD* 12
APFBOIIAATE SOLOTIOE
 0.1025m403927605400+13
APFHOETEATE sOLGTION
 0.542694462486442j40+12
 TOUT= 0.21000000000000000D+05 DELTET T = 0.86400000000000000D*05
85TIMATED tIEE pon a call fo peIve 0.2900000000402
TIME LEPT O.174A10000&05
PNODT POS ITHE - 0.288000000.05
```


$0.14969979 \mathrm{D}+0 \mathrm{P}$
$0.18021159 \mathrm{D}+08$
0.250616390408
$0.270136320+08$
$0.22579440+00$
$0.17451115 \mathrm{D}+0 \mathrm{~B}$
taloes of comcenthatiows o of the 1 th species on the osers ghid
(FAOM PROUS VIA PIMEX
PPROEIAATE SOLitrol
0.17207414542941800409

APPPOIIATE SOLOTIOA
$0.2715965397759396 \mathrm{D}+08$
appporimate solotion
0.14969979304843540408 TH SPECIES ON THE OSERS GRID
paloes of concentaitio
PPROXIHATE SOLOTIOA
$0.67049463 * 30017490+12$

## ppioximati solmtion

$0.1059574509224302 \mathrm{D}+13$
$0.160323020+08$ $0.23674942 \mathrm{D}+08$ $0.273 C 56760+0$ C. 24052492040 C. $172 \mathrm{C} 74150 * 08$
0.624552700112 $0.92333751 \mathrm{D}+1$ $0.10652837 \mathrm{D}+13$ $0.938096460+1$
$0.67049463 \mathrm{D}+12$
2.59346290001 0.831188070 .12 $0.10487649 \mathrm{D}+13$ $0.10253197 \mathrm{D}+13$ C. $670334930+12$

| forimite solition C. ¢efer23nral?2r244-+1. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| phout top tine = 0.360000000005 |  |  |  |  |  |
| $0.242312710+05$ | 0.5844925 do 12 | J. $242497490 \cdot 05$ | $0.584938290+12$ | $0.259573810+65$ | $0.626130540 \cdot 12$ |
| 0. $30472392 \mathrm{D}+05$ | $0.735045510+12$ | 0.33268451 D 05 | 0.832495330412 | $0.39301332 \mathrm{D}+05$ | $0.92390628 \mathrm{D}+12$ |
| $0.405234770+05$ | $0.97751316 \mathrm{D}+12$ | $0.434003140+05$ | 0.104691430 13 | 0.44 C 317 C 2 P 05 | $0.106214610 \cdot 13$ |
| $0.434404390 \times 05$ | $0.104788200+13$ | $0.4219 \mathrm{C936}+\mathrm{CS}$ | $0.171773898+13$ | $0.395498310+05$ | $0.929909940 \times 12$ |
| $0.36232941{ }^{\text {a }}$ +05 | $0.874709300 \times 12$ | $0.32201044 \mathrm{D}+05$ | $0.776746110+12$ | $0.30583625 \mathrm{D}+05$ | $0.73772907 \mathrm{D}+12$ |
| $0.286757640+05$ | c. $691730010+12$ | $0.28333922 \mathrm{D}+0 \mathrm{~S}$ | $0.68345973 \mathrm{D}+12$ | c. $283386780+05$ | $0.603574 .60 \times 12$ |
|  ppoi prout via timex) |  |  |  |  |  |
| APPBOLIMATE SOLDTIOM <br> 0.28338677 7659093D405 |  |  |  |  |  |
| APPEOTIBATE EOLOTION <br> $0.4373606636 n 639320+05$ |  |  |  |  |  |
| aprpoiinate solditom <br> 0.26231270656292740 .05 <br> valozs of conctatrifions o of the 2 th spzcizs on the ustrs grid <br> trion frous via tinif |  |  |  |  |  |
| APPROETAATE SOLMTIOA <br> $0.68357445604034550+12$ |  |  |  |  |  |
| APPROIIMATE SOLDTIOM <br> $0.10550140536882990+13$ |  |  |  |  |  |
| APPROLIMATE SNLTTIOM <br> $0.5844925418915659 \mathrm{D}+12$ |  |  |  |  |  |
|  |  |  |  |  |  |
| Prout por tine = 0.432000000005 |  |  |  |  |  |
| -0.21014397D-32 $0.5957045 C D+12 \quad-0.21030572 \mathrm{D}-32 \quad 0.58615507 D+12 \quad-0.225120150-32 \quad 0.62744470 D+12$ |  |  |  |  |  |
| -0.264179000-32 | $0.736247190+12$ | -0.28833606D-32 | 0.80353557D+12 | -0.3317c1830-32 | $0.92419592 \mathrm{D}+12$ |
| -0.35077433D-32 | $0.977182920+12$ | -0.375182850-32 | $0.19447384 \mathrm{D}+13$ | -c. $390296350-32$ | $0.10586571 \mathrm{D}+13$ |
| -0.37426949D-32 | 0. $10416156 \mathrm{D}+13$ | -0.362-9360D-32 | 0.10100597~+13 | -C. 33C742C5D-32 | $0.922317160+12$ |
| -0.311207930-32 | $0.368586960+12$ | -0.2787e2370-32 | 0.774 0.545012 | -0. $266395270-32$ | $0.74291685 \mathrm{D}+12$ |
| - $2.25194597 \mathrm{D}-32$ | 0.701997920-12 | -0.24042474 D-32 | $0.694487530+12$ | -0.240452570-32 | 0.69477214812 |
| palues of concentbations of fhe 1 fa sprcies on the users grid (prch erout via tinex) |  |  |  |  |  |

```
APPROZIMATE SOLYTION
 -0.2494525718306979D-32
APPMOEIMATE SOLOTIOM
 -0.37727841423341870-32
CPPBOITAATE SOLOTIOM
APPPOEINATE SOLUPIC:
 C.69#:721404534730D*12
appgorimate solititom
 0.10501363360781%7D*13
APPAOIIHATE SOLOTION
 0.58570.459622816300*12
 TOUT= 0.$32000000C0000000D*05 DELTA T = 0.864C 00000000000000*05
```



```
PROUS FOE TIHE = 0.50400000D*05
 *=0.35a300090-3
 0.45c41975D-3
 0.59804735D-3
 0.63810459D-3
 C.531112400-33
 0.42918450D-33
valuES OP CONCEMTBATIONS O OP the I TH SPECIES ON taE OSEBS G&ID
(PROM PPratr viafynEz)
APPPOXIMATE SOLUTION
 0.42485843413672590-33
APPBOEIMATE SOLITIOM
APPzOIIM1PE SOLOTIOM
APFEOMIMATE SOLGTION
 0.35830000734683872D-33
 O.3583000734603872D-33 - OF THE 2 TH SPECIES ON THE OSERS GRID
(FROE PHOUT VIA PIMET (
AppROIIMATE solmtion
 MPROMInATE SOLntion
APPROYINAFE SOLOTION
APPROYINATE SOLOTION
PFBCIIAATE SOLTYION
 0.52691920782655450+12
 0.58691928782655450+12
Estiasmed tine ron acall ro daive 0.130000000*02
```


0.597373830 12 $0.804561350+12$ -. 1042a7690413 c. $100262500+1$ $0.77976944 \mathrm{D}+12$ 0.704669390.12
$0.35857567 \mathrm{D}-33$ $0.491611850-33$ $0.63963794 \mathrm{D}-33$ $0.618672770-33$ $0.47554004 \mathrm{D}-3$ $0.67554004 \mathrm{D}-33$
$0.383832730-33$
C. $565539180-3$ $0.648338520-33$ c. $56436148 \mathrm{D}-3$ 0.454 if934D-33 $0.4249 \leq 8420$ - 33
0.620755010 .12
$0.924449820+1$
$0.10550586 \mathrm{D}+13$ $0.915727960+12$ $0.74798418 \mathrm{~L}+1$ $0.70473255 \mathrm{D}+12$

$0.30386136306323790-27$
talues op concentations of the 2 th species on the users grid (TROB phoof tis tinez)
approtimats solvition
$0.7217415928622239 \mathrm{D}+12$

## Appporinazs solntion

0. $1035294006580380 \mathrm{D}+13$
```
appmorigayE solotion
 0.5893565638845197n+12
 TO0T: 0.64800000005000000D005 DELTE T = 0.864COC00N000000000405
ssTIMATED FIHE PON A CALL TO DRIVE 0.150900000.C2
TME LEPS
0.155970000005
```

PaOUT POR TIEE © 0.72000000 D 05
$\#=0.124351320-26$
$0.300289700-2$
$0.14297890 \mathrm{D}-27$
$0.249471740-2$
$0.33776693 \mathrm{D}-29$
$0.33776693 \mathrm{D}-29$
$0.67721692 \mathrm{D}-30$
$0.590578650+12$ $0.74096695 \mathrm{D}+12$ $0.97534519 \mathrm{D}+12$
$0.101702470+13$
3. $855811402 \mathrm{D}+12$
$0.73374306 D+12$
 $3.200501350-29$ -0.676032360-30
0.591041140412 0. $80754782 \mathrm{D}+12$ $0.103519560+13$ 0.9 922月A92D+12 $0.796603880+12$ $0.72902665 \mathrm{D}+12$
$0.10522 .81 \mathrm{D}-26$ $0.27167 \mathrm{C540}-27$ $-0.61215333 \mathrm{D}-23$ $0.7046 \mathrm{C2} 22 \mathrm{D}-29$ $-0.106405760-29$ -0.106405760-29
$0.632664370+12$ $0.92500340 \mathrm{D}+12$ $0.10436981 \mathrm{D}+13$ $0.90032421 D^{+} 12$ $.76204910 \mathrm{D}+12$ $0.729055010 \cdot 12$
valoes of concentations o op tar 1 th species on the osers grio (fion plodt via tiagi )

```
APPMORIEAPE SOLD+IOR
 0.1459220425798624D-30
```


## APFBOEIRATE SOLOTIO

$-0.8134079675338630-29$

```
APPROEIMATE SOLDTIOM
 0.12435132175938590-26
GPOLES PHOOT YIA TIFSX (
```

Yaides of concerithations o or tue 2 th species on the osers irid
APEROITHAFE SOLUTIOM
$0.72905501 n 911752 A D+12$
APPROLImATE SOLOPIOM
$0.10303613912044850+13$
APPBOEIMATE SOLUTION
payimatz SOLUTIOM
$0.59057665194102040+12$


SIEE LPET THE FOR A CALL TO D

$0.282841410-26 \quad 0.59180276 \mathrm{D}+12 \quad-0.669883650-25 \quad 0.59226$ RA4D+12 $\quad 0.239331930 \sim 26 \quad 0.633960690+12$

```
 _-0.7C1131720-27
 ., M3n3D+12
 *:1+1N:290+12
4. 101119370+13
M.354111740D+12 rro.46345566DD-29
-0.7828175500-27
0.608511A4D+12
 0.103261230+13
 0.97625973D+12
 0.789069270+12
0.6316470\leqD-27
Thlues of concentmatioys u of the 1 fa species CM taE OSEES GRIO
(PFOH pBOOT via pinez)
APPporimate solation
 _ORIMATE SOLOTION
apfagimate solition
 -0.16400556951356C2D-28
APprozimatz solotionm
 O.28284i41C5480083MD-26
(PHOB FROUT VIA TIMEX)
APPGOEIAATE SOLITIOM
 0.7357795C445929150+12
APPMOEIEATE solution
 0.102547937937624400413
APPBOEIRATE SOLOTIOM
 0.5916027643466777D+12
E5FIGATED TIME YOR A CALL TO DRIVE 0.100000000+01
TINE LEPT 0.155950000*05
pROUT POM TIAE= 0.864000000*05
 * 0.360506330-27
```

$0.360506330-27$
$-0.893797950-28$ $-0.89379795 \mathrm{D}-28$ $0.414409570-28$
$0.72529621 \mathrm{D}-29$ $0.725296210-29$
$-0.96347710-3 n$ 0.209249 ค10-30
$0.593028690+12$

### 0.743270550 +12

$0.974098300+12$
$0.974098800+12$
$0.120556670+13$
C. $652747120+12$
$0.74600926 \mathrm{D}+12$
 $-0.999206420-28$ $0.254550170-28$ $-0.33831253 \mathrm{D}-29$ 0. $5956555 \mathrm{CD}-30$ -0.18327663D-30

. $593493960+12$ $.879459490+12$ $.192995670+13$
$.970640570+12$ $0.79147867 \mathrm{D}+12$ $0.742924320+12$
$0.305118170-27$ $0.305118170-27$
$C .8 C 5317710-28$
$-0.119315560-28$ $-0.119315560-28$
$0.276003970-29$ $0.296003970-29$
$-\mathrm{C} .2949098 \mathrm{CD}-30$ $0.550629830-31$
$0.63525302 D+12$
$0.92519017 D+12$ $0.92519017 \mathrm{D}+12$
$0.10357839 \mathrm{D}+13$ $0.10357839 D+11$
$0.89304437 D+12$ $0.77032616 \mathrm{D}+12$ $0.74204049 \mathrm{D}+12$

```
giloes of cowcempations
APPGOXINATR SOLHTION
 0.55062982750706490-31
APPPOIIMATE SOLTTION
M,
APPROTIMATE SOLITION
 0.36058633393709210-27
FALOES OF CONCENTRATIONS U OY thE 2 TH SPECIES ON THE USERS GPID
(PRON PMOOT VIA PIMEX)
APPHORIMATE SOLMTION
 0.74204040A2437140D+12
```

APFPOXIAATE SOLOTIOM
$0.10206753064133550+13$

## APPROXIRATE SOLOTION

$0.59302060683 n 59820+12$
TOOT $=0.86400000000000000+05$ DELTE $=0.86400000000000000+05$
ESTIMATED TIAE OR CALL TO DRIVE 0.35900000002
TIEE LEPT $0.155600000+05$
**e** MOPhal DUMP AT EMD OF TIGEX

EMD OF Cas:

To illustrate the use of the graphics programs for ITIME=T, we will present plots using CSP, C $\varnothing N T \emptyset R$, and THREED. In the case of CSP, we present a graph of each species on the same frame. At $r=30 \mathrm{~km}$, each species $c^{i}(z, t)$ is plotted as a function of $t$ where $t$ is evaluated at 2 -hour intervals starting at 6:00 AM for one 24-hour period. Note that the data points on the graph are not connected with any type of curve. This is a limitation of the present version of CSP. In the case of CØNTดR, we present two contour plots--one for each species. The horizontal axis is time ( $0 \leq t \leq 86400 \mathrm{sec}$ ) and the vertical axis is the spatial variable $z(30 \leq \bar{z} \leq \overline{50})$. Note that the contour heights for the second species are too large for the printing capability of BLACKB $\emptyset X$. Hence we have ${ }^{* *}$ printed for the contour heights. In the case of THREED we present two graphs--one for each species. In each case the independent variables are $t$ and $z$ (as in CØNTØR), and the dependent variable is the species concentrations $c^{i}(z, t)$.

In the following we give the namelist data used for each of the three graphics programs.

For CSP:

## Name list FGRMAT

1. Indicator for iterative or direct version.

Previous versions of DISPL allowed for direct or iterative solution of certain equations. The current version of DISPL1 only allows for the direct version; thus the default value ITRTV $=0$, MUST be used. ITRTV=0,
2. Number of curves produced.

We want a time plot for each of two species.
IGNUM=2,
3. Logical indicator for time option. ITIME $=T$,
4. Number of time values.

There are 13 output time values.
NTIME $=13$,
Namelist CSPIN

1. Indicator for cinema mode.

ICN=0, (Default)
2. Indicator for grouping format.

We will put each curve on a separate axis; thus we want separate format.
IFØRMT=0, (Default)
3. Species number for each curve.

We will plot the first species on the first curve and the second species on the second curve.
ISPEC=1,2,
4. Ordering of curves on frames. LORDER=1,2,
5. Frame number indicator.

Both curves will be plotted on the first frame.
LGROUP $=1,1$,
6. Estimate of minimum value of the ordinates. YAXMIN $=0,0$, (Default)
7. Estimate of maximum value of the ordinates. YAXMAX $=0,0$, (Default)
8. Coordinates of the point at which the solution is evaluated.
$\mathrm{A} 1=0.0, \mathrm{~A} 2=0.0$, $B 1=30.0, B 2=30.0$,

For CONTDR:
Namelist FORMAT is the same as in CSP. (We allow NRESIN to take on its default value of the Macro variable NRESD=21.)

Namel ist CNTRIN

1. Species number for each frame.

ISPEC=1,2,
2. Coordinates of line to be used as the spatial variable.

RMIN=0.0,0.0, (Default)
RMAX $=0.0,0.0$,
$Z M I N=30.0,30.0$,
$Z M A X=50.0,50.0$,

## For THREED:

Namelist FØRMAT is the same as in CSP. (We again allow NRESIN=NRESD, its default value.)

## Namelist DIM3IN

This namelist contains all the variables which appear in CNTRIN and these values are unchanged. In addition, we need the following

## variables.

1. Coordinates of the viewpoint.

RVIEW=-100.0,
ZVIEW=-100.0,
FVIEW=150.0,
2. Bounds on the function axis.

FMATMN $=0.0$, FMATMX $=1.0$, (Defaults)
The graphs are presented on the following pages.


Figure 7.3.1
Time graphs of the species concentrations via CSP
time axis


Figure 7.3.2
Time graph of the first species via CONTOR


Figure 7.3.3
Time graph of the second species via CONTOR

## 2-D KINETICS

FRAME 1


SPECIES 1

Figure 7.3.4
Time graph of the first species via THREED


SPECIES 2

Figure 7.3.5
Time graph of the second species via THREED

### 7.4 Cooling of a Sphere in a Well Stirred Fluid

This problem will illustrate the use of spherical geometry and the differential boundary condition version of the code.

Consider a homogeneous sphere initially at a uniform temperature $T$, which is immersed in a volume $V_{f}$ of a well stirred fluid at a temperature $T_{0}$ in an insulated tank. Let
$k_{s}$.........thermal conductivity of the sphere,
$\rho_{s} C_{p s} \ldots \ldots$.......eat capacity of the sphere,
$T_{s}=T_{s}(r, t)$.temperature of the sphere,
$T_{f}=T_{f}(t) \ldots$ temperature of the fluid at the surface of the sphere,
R...........radius of the sphere,
$V_{s} \ldots \ldots$. ....volume of the sphere.
Define the following dimensionless variables.

$$
\begin{aligned}
& \alpha_{s}=k_{s} / \rho_{s} C_{p s}, \\
& \xi=r / R, \\
& \tau=\alpha_{s} t / R^{2}, \\
& \theta_{s}=\theta_{s}(\xi, \tau)=\left(T_{1}-T_{s}\right) /\left(T_{1}-T_{0}\right), \\
& \theta_{f}=\left(T_{1}-T_{f}\right) /\left(T_{1}-T_{0}\right) .
\end{aligned}
$$

For this problem, we will set $\mathrm{T}_{0}=0$, then we have the following conduction problem.
(7.4.1) $\quad \frac{\partial \theta_{s}}{\partial \tau}=\frac{1}{\xi^{2}} \frac{\partial}{\partial \xi} \xi^{2} \frac{\partial \theta_{s}}{\partial \xi}, 0 \leq \xi<1$

$$
\begin{equation*}
\frac{\partial \theta_{S}}{\partial \xi}(0, \tau)=0 \tag{7.4.2}
\end{equation*}
$$

$$
\begin{align*}
\theta_{s}(1, \tau)=\theta_{f}(\tau) \text { where } \frac{d \theta_{f}}{d \tau} & =-\frac{3}{B} \frac{\partial \theta_{s}}{\partial \xi}(1, \tau),  \tag{7.4.3}\\
B & =\rho_{f} C_{p f} V_{f} / \rho_{x} C_{p s} V_{s},
\end{align*}
$$

$$
\begin{align*}
& \theta_{s}(\xi, 0) \equiv 0 \text { for } 0 \leq \xi<1, \text { and }  \tag{7.4.4}\\
& \theta_{f}(0)=1
\end{align*}
$$

Note that the boundary condition at $\xi=1$ can be written in the form

$$
\begin{equation*}
\frac{\partial \theta_{s}}{\partial \tau}(1, \tau)=-\frac{3}{B} \frac{\partial \theta_{s}}{\partial \xi}(1, \tau) \tag{7.4.5}
\end{equation*}
$$

This boundary condition is given in a time differential form; hence it is natural to use the differential boundary condition version to solve this problem.

This problem is selected from the text by Bird, Stewart, and Lightfoot, Ref. [8], page 357; the same problem can also be found in Carslaw and Jaeger, Ref. [5], page 205. The solution to this problem can be written in the following form (with $T_{0}=0$ ).

$$
\begin{align*}
& \text { (7.4.6) } \quad \theta_{s}(\xi, \tau)=\frac{B}{B+1}+\frac{2 B}{3 \xi} \sum_{k=1}^{\infty} \exp \left(-\tau b_{k}^{2}\right) \frac{\left[B^{2} b_{k}^{4}+3(2 B+3) b_{k}^{2}+9\right]}{B^{2} b_{k}^{4}+9(B+1) b_{k}^{2}} \sin \xi b_{k} \sin b_{k}  \tag{7.4.6}\\
& \text { (7.4.7) } \quad \theta_{f}(\tau)=\frac{B}{1+B}+6 B \sum_{k=1}^{\infty} \exp \left(-\tau b_{k}^{2}\right)\left[b_{k}^{2} B^{2}+9(1+B)\right]^{-1}
\end{align*}
$$

where the $b_{k}$ are the non-zero roots of (7.4.8) $\quad \tan b=3 b /\left(3+B b^{2}\right)$.

For this problem, we take

$$
B=1 / 2,
$$

and for this value of $B$, the first 15 non-zero roots are given in Table 7.4.1.

TABLE 7.4.1. First 15 Non-zero Roots

| 3.972021016717 | 6.938670961459 | 9.942061135575 |
| :---: | :---: | :---: |
| 12.98602738139 | 16.05806834831 | 19.14860439986 |
| 22.25151701953 | 25.36296489242 | 28.48048660982 |
| 31.60245747142 | 34.72777199596 | 37.85565636325 |
| 40.98555486792 | 44.1170592249 | 47.24986331196 |

The roots shown in Table 7.4.1 were obtained by fixed point iteration on Eq. (7.4.8), and they were also calculated using Newton iterations. When these roots are used in (7.4.8), the residuals are less than 1.0-8 in all cases. These roots were used in Eqs. (7.4.6) and (7.4.7), and for $\tau \geq .04$ the partial sums were unchanged in the first 10 significant digits when using 10 or 15 terms in these series. From these circumstances, we infer that the first 15 terms will provide solutions accurate to at least eight significant places when $\tau \geq 0.04$.

For this problem we used the following input data in the namelists.

GRID
$\mathrm{KR}=6, \mathrm{KZ}=1$, CDNTR=5,
Here we are using a smooth quintic B-spline.
DELTA=2,
(Spherical geometry)
$N Q R=6, N Q Z=1$,
NMR=22,
RMESH $=0.1,0.2,0.3,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.725$, $0.75,0.775,0.8,0.825,0.85,0.875,0.9,0.925,0.95$, $0.975,0.985$,
Here we are using a non-uniform mesh since the temperature is initially one at the surface ( $\xi=1$ ) and zero for $0 \leq \xi<1$. The temperature profile will initially have a large cradient near $\xi=1$, and the gradient will always be zero at $\xi=0$.

INITSW=F, GUESSW=F, STEDSW=F, TRANSW=T,
Since the initial temperature is zero inside the sphere and one at the surface, the least squares fit, which INITSW=T, would provide would generate a very poor fit to this data. For this reason, the initial spline coefficients will be provided in namelist DATA.

```
IRGRD=6,
RGRID \(=0.2,0.4,0.6,0.8,0.9,1.0\),
IANAL=T,
```

The series solution as given in Eqs. (7.4.6) and (7.4.7) will be provided in the user subroutine ANAL.

ALGBCS $=\mathrm{F}$,
We are using the differential boundary condition option of the code.

DATA

$$
\begin{aligned}
& \operatorname{NS3}(1)=1, \\
& \operatorname{ALPHA}(1,3)=1.0, \operatorname{BETA}(1,3)=0.0, \operatorname{GAMMA}(1,3)=1.0, \\
& \operatorname{NUT} \operatorname{GUT}=6, \\
& U T Q U T=0.0,0.04,0.08,0.12,0.16,0.2, \\
& W=27 * 0.0,
\end{aligned}
$$

Here we are providing the initial spline coefficients. Recall that the initial temperature is identically zero for $0 \leq \xi<1$ and one for $\xi=1$. From the properties of the B-splines (cf. section 2.2) we can infer that if the dimension of the problem is $N$ (the number of basis functions), then the initial spline coefficients $W$ will satisfy

$$
\begin{aligned}
& W(j) \equiv 0 \text { for } 1 \leq j \leq N-1 \text {, and } \\
& W(N)=1 .
\end{aligned}
$$

Since the default value for the initial spline coefficients is one, setting $W=27 * 0.0$, will provide this initial distribution for the spline coefficients. Of course, there is the problem of determining that $N=28$ for this problem. Recall from section 2 that for a one-dimensional problem in $r$
$N=N_{r}=K R+N M R \cdot(K R-C O N T R)$.
For this problem $K R=6$, $N M R=22$, and $C$ C $N T R=K R-1=5$; hence $N=28$.
$E P S=1 . D-6, \operatorname{HINIT}=1.0-8$,
GRAPH $=T$,
The user routines for this problem are characterized as follows.
RHOCP

$$
R C=1 . D 0
$$

DIFUSE
DIFUR=1.DO
DIFUZ $=0.00$
VEL
VELR=0.DO
VELZ $=0.00$

## EXTSRC

$V V=0.00$

## FDEXTU

## BRH@DT

As mentioned before, the boundary conditions for this problem are presented in differential form; hence we use the differential boundary condition option. This implies that we use subroutine BRHØDT rather than BRHD. In BRH $\varnothing D T$, we return time differentiated boundary values on sides that have essential boundary conditions (where $\beta=0$ ), and we return undifferentiated boundary values on sides that have non-essential boundary conditions. In this problem we have $\frac{\partial \theta_{s}}{\partial \xi_{s}}=0$ on side 1 ; this is a non-essential boundary condition, hence we ${ }_{\partial \theta}$ return RH $\varnothing_{\bar{\theta}}=0.00$ on side 1 . On side 3 , we have $\theta_{s}=\theta_{f}$ where $\frac{\partial \theta_{s}}{\partial \tau}=-3 / B \frac{\partial \theta_{s}}{\partial \xi}$. This is an essential boundary condition; hence we return the time derivative of $\theta_{s}$ on side 3 , that is

$$
\text { RHDV }=-3 . D 0 * \operatorname{SPDENX}(1) / B .
$$

ANAL
In this routine we implement the series solutions given in Eqs. (7.4.6) and (7.4.7) using the 15 non-zero roots given in Table 7.4.1. For very small values of ? (in particular for $\tau=0$ ) these series are very slowly converging, and 15 terms is not adequate to obtain a reasonable solution. For $\tau \geq 0.04$, 15 terms is more than adequate to obtain eight significant digits of accuracy in these series solutions.

In all these sample problems, we have used $N Q R=K R$ and $N Q Z=K Z$. This is not necessarily the optimal choice; however, we have used these values to insure that errors in the approximation were due solely to the spatial approximation. This is also why we have used rather tight convergence criteria (EPS) in the ODE solver. In Table 7.4.2 we show the effect of varying the quadrature order for the case of a cubic B-spline approximation to this problem.

Using $K R=4$ (cubic $B-s p l i n e s)$ we ran this problem with $N Q R=3,4,6$. Table 7.4.2 presents the solution values at $\mathrm{t}=0.04$ and $\xi=0.1$ and $\xi=1.0$.

TABLE 7.4.2. Effect of Quadrature Order on Approximation Error

| $N Q R$ | $\xi=0.1$ | $\xi=1.0$ | CPU <br> time(sec) |
| :---: | :---: | :---: | :---: |
| 3 | 0.016126856864 | 0.4516148560 | 36 |
| 4 | 0.01612406559 | 0.4515455554 | 40 |
| 6 | 0.01612406537 | 0.4515455545 | 43 |
| Series | 0.0158142829 | 0.44352229025 |  |

The data shows that for this problem the choice $N Q R=K R-1=3$ is the optimal choice. This is in agreement with the discussion for elliptic problems in [4]. Although the CPU times are not drastically different, it should be remembered that for two-dimensional problems the effect of using $(K-1)^{2}$ points per rectangle rather than $K^{2}$ points will have a significant effect on the running time.

Stofage maxima por tais conpilation
Marber
Mazsp
bation
mazsp
Barteo
Barfeo
Hara
laki
Mrifyz
hripiz
maxuot
HXBGPD
日X 30
6
6
6
170
$3 n 0$
40
20
20
fPadig manelist ghid

```
MP=6 K2= K2= (
MSPIC = 1.0, RUP = 0.100ccocojocojon000*01
```



```
z100=22 0.7 Haz = %
Imitial Coutz * 13
INITIAL conTa = 13
gRONETAF IMCICITOP =
GDDITIOMAL BON-IMTEPVACE F MESH POINTS
I = F FRESH(I) = 0.40000909900000900000
I = 2 PHFSHIII = 2.20000300090000000*000
I = MRESN(I)= 0,70000000900000000D*00
I= FMESH(I) = 0.400000000000000000+09
I=6 PMPSY(II = r.4500000000000000D*00
I=7 PRFSH(I)= C.55000200090900000+000
I= FRESH(I)= %.550000707705CJ00000*000
I = presh(I)= 0.650000000000000000+30
I = 10 PhFSH(I) = 0.7.0000900000000000+00
I = 11 PrFSH(I) = r.72500000000000000000
I = 12 PAESHIII = 3.750900000000000000+00
I = I3 PNPSHII = O.775009000000000000 +50
I= 1# PHESN(I)= O..77500090C000000000D+90
I - 15 PMESH(I) = i. $25000009300000 30D +00
I= Th EMRSH(I): r.85000050000C000000 +00
I=17 EHFSH(I)= C.875900009500300000D+30
T=19 FHFSM(I) = C.9000000C5000000000*09
I=19 PrRS&(I) = 0.925000090000000000D+00
I=2DFRESA(I) = 0.95300000000300000D+00
I=22 PRESH(I)= C.9850C000000000000+000
mo IDDITIONAL NON-INTEFPACE 2 MESH POINTS
CO IDDITIONAL NOM-INTEFPACEE Z MESH
M,
HATEPIAL TABLE ISGITENAS HATL
F
consav* *
LLGPCSE FOICAL SMITCHES TO CCNTROL PROGRAS
LOSICAL SWITCHES TO CCNTROL PROGRAMG
DORPSU = P
IPEVLA! I)=*
ORDER OF SPIINE DEPIVATIVES COMPUTED IS 0
ORDER OF SPIINE DEPIVATIVES COMPUTED IS O
MGABER OF OSEP STPPLTED POIFTTS IL
PGPIDI 2) = 0.400050000D+00
PGEID(3) = 0.6`n000)CD+00
PGRID(4) = 0.6CCODODOD.00
PGPID(#) = 0.ACCOOOOODD*OS
RGEID(5) = 0.9:9C000000+09
MOMREP OF OSFP SOPPLTED POYMTS IN 2 DIRECTION
2GFIDI II = 0.5nO\20000 000
```

COMTR POO HIGH, BEING RESET TJ 6-1
contz tOO high, being neset to 1-1
NVGAP=C NHGAO= L LR = 23 LZ = NP=2A NZ= 1

```

```

j(N)=
TREP(I) =
JBPF(3) = 1
MLTAB1:1: 11=
LTAB( 2, 11 =
mLTAB( 3,
mlas(A, 1)=
LTAB{ 5, 11=
HLTAB(6. 1)=
MlTaB! 6,
GlTAB( 7, 11=
GLTaB(9,
mytabe(10,
HLTAB(11,
nltabit2.
GLTABi13,
HLTAE(14.
Hlfabi15.
MLTAB(16.
MLTAB(17,
HLTAB(18, 1)=
M\&%⿻(19,
MLTAB120.
HLTAB(21, i) =
HLTAB(22, 1)=
HLTAB(23; 1)=?
HOFIZOUTAL OPDERITG

```

```

MIH= P MJH= $28 \quad W C C R=-2 B \quad D N=5$

```

```

THIS IS TME DIRECT VERSIOM

```
TMIS EERSION NOES WOT PEQUIRE COUNDRY COMDITIONS ON EYERY SIDE
TOP SPICIES MO.

0.0
\(c .0\)
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0. \(10003000000000000+01\)
```

PEADIMG manELIST gata

```


```

SINE InDICATORS BT SPECIES
POF SPECIESNO. 1 NSI= 0, NS2= 0 NS3= 1 NS4= 0

```

```

SPECIES UO. I MATEPIAL TEDEX 1 HUI =
SPECIES mO. 1 Hategial IMDEE 1 HO2 =
peaction fates
IRST ORDRE BATE
CR INTO IFYOM 1 tS 0.0
SEcomd ondeg memction rares age
CKK IUTO F= 1 POR KP= 1 IMTO KPP = = CKKi 1, 1, 11= 0.0
ISTOPO = 100
time alld Space grid pon projt
NOEEEP OF HAJCP tine faldes
UHEEP OF SODINTERTALS OF EACH SAJOR TIBE INEZBVAL f
(OUTPUT EILL OCCUP (T PACR SOCH TIME)
hajog TIKE valoes 0.0 0.400000C00000005000-01
0.0
O.160NC000009000000N+0J 0.20000
gatp| = T

```



```

COMrIMDIPY FOR m AmD 7 DIBECTIOUS
CONIT: 5 COWT2 = 0
IMITIAI COEPFICIEMTS POR TRAMSIENT

| 0.0 | 0.0 | 0.0 | 0.0 |
| :--- | :--- | :--- | :--- |
| 0.0 | 0.0 | 0.3 | 0.7 |
| 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.3 | 0.3 | 0.0 |
| 0.0 | 0.0 | 0.7 | 0.3 |
| 0.0 | 0.0 | 0.3 | 0.1 |

0.0
2.1
0.0
0.0
0.3
C. 0
$0.10000900000000000+01$

```

\section*{BEGIM TMASIENT SOLOTIOM}


```

    .119+314ग1raQ21:rr.
    Mal%TIC soly
HAITTIC SOLM.
.1179A2222n259A139D*00
CIIGNG EPDOP CM GRID IS
TOUT= 0.\&2NOOSTCOODO0000D-0.:53229578D-92

```

```

POOT POE CIMR = 0.12000000D*00

v* $0.209877410+00$ $0.242741390+09$ $0.315961570+9 n$ $0.347489850+\mathrm{C}$ 0.36321 n32D•03 values of comcentpati
1149.710501916430000
$0.17228770608706510+00$
C. $25196205740926510 \cdot 00$ $0.33200717378148560 * 00$ $0.532295780-0$ DELTA T =
$0.23600000 \mathrm{D}+03$

## fine left

. 166740 ro daive
$0.12000000 \mathrm{D}+00$

## Ppsorlmare sortrio

$0.21405662463 \mathrm{CA2190+9}$ 0.364545727106807000 Halttic sole
0.2 112335:72519160+0)
$0.3595946 C B 1411449 \mathrm{CHO}$

$0.497996450-02$


```
ESTIMATED TIGE FOP CIIL TO DRIVE 0.12700000D+03
```

ESTIMATED TIGE FOP CIIL TO DRIVE 0.12700000D+03
TGE LPFT
TGE LPFT
0.165479000+05

```
0.165479000+05
```

TIGE LTPT
$0.165479000+05$

```
C. \(2126 \mathrm{C} 373 \mathrm{D}+00\) \(0.296395 C C D+00\) \(.33911715 \mathrm{D}+00\) \(0.36 \mathrm{CC} 21 \mathrm{C} 3 \mathrm{D}+03\)
\(3.24960164171810930+00 \quad 0.29632954277811340+20 \quad 0.339047 C 3711016090400\)
\(0.2461833001422379 D 40 C \quad C .29227497392920470+00 \quad 0.33441250 C 225 C 3990+05\)
\(0.226858300+00\) 0.306943600400 . \(34945331 \mathrm{D}+00\) \(0.361935920+00\)
```

PFOUT TOR TIHE $=0,16000500 \mathrm{D}+00$

```
\(0=0.263410680+00\) c. 28696 8890 +00 0.326601 COD +27
C. 34313 noxo +00
C. \(351268640+n 0\)
values op comceuration
(fion paont via trqex b

P PHOITMATE SOLTPTOM
\(0.270 n 917563317534 D * 00\)
\(0.35197286695330070+20\) ifitc solv.
0.26718403973256920400
n. \(34710199764 \mathrm{~A} 3230 \mathrm{O}+0 \mathrm{O}\)

EAEIMOE EPEOE ON GEIO IS

TIME LETE
9. 157920000405
\(0.29073834330433590+0 C\)
C. 31014079079854390400
\(.31181698422139357+00\)
\begin{tabular}{|c|c|c|}
\hline 0.263410670 .00 & \(0.26379612 \mathrm{D}+\mathrm{CC}\) & 9. \(2555330810+0\) \\
\hline \(0.29555614 D 400\) & \(0.30324580 \mathrm{D}+0\). & O. \(319745220+\) O \\
\hline 0.33057313D+00 & \(0.33379856 \mathrm{D}+\mathrm{CO}\) & C. 336354960 O \\
\hline 3.345061633000 & \(0.346818360+00\) & 2.3443954CD* \\
\hline 0.351669970400 & \(0.3518+1330+00\) & 9.351972810+00 \\
\hline
\end{tabular}
3.345061639000
\(3.351669970+00\)
\(0.346818360+00\)
\(0.3518+1330+00\)
\(0.37416 C 83761339690+70\)
n. 33RTIGS1051007990009
\(0.27811972 \mathrm{D}+00\)
\(0.32181629 \mathrm{D}+00\)
\(.341029920+00\)
\(0.35061078 D+00\)
```

$0.3467734494822907 D+00$ $0.3420750294256298 \mathrm{D} * 00$

```

geanjg maneltet ifid

\subsection*{7.5 Heat Conduction with Chemical Heat Source}

This problem involves a simple model for a fixed-bed flow reactor. The problem will illustrate the use of interface conditions and the use of material tables. This problem is taken from [8] where a solution to the problem is also given.

The reactor extends from \(Z=-\infty\) to \(Z=+\infty\) and is divided into three zones with the central zone (\(0<2<L\)) being the reaction zone. Radial velocity gradients are neglected and the walls are well insulated so that the temperature is independent of the radial coordinate \(r\). The task is to find the steady-state axial temperature distribution \(T(z)\) when the fluid enters at \(?=-\infty\) with a uniform temperature \(T_{1}\) and are average linear velocity without packing of \(v_{1}=\omega / \pi R^{2} \rho_{1}\) where \(R\) is the radius of the reactor and \(\rho_{1}\) is the fluid density. The volume rate of thermal energy production by chemical reactions \(S_{c}\) is assumed to be of the form
\[
S_{c}(z)=S_{c 1}\left(\frac{T(z)-T^{0}}{T_{1}-T^{0}}\right)
\]
where \(\mathrm{T}^{0}\) and \(\mathrm{S}_{\mathrm{C} 1}\) are given constants.
The governing equations are as follows.
\[
\begin{align*}
& \rho_{1} v_{1} C_{p} \frac{d T}{d z}=k \frac{d^{2} T}{d z^{2}} \text { for } z<0, \\
& \rho_{1} v_{1} C_{p} \frac{d T}{d z}=k \frac{d^{2} T}{d z^{2}}+S_{C}:\left(\frac{T-T^{0}}{T_{1}-T^{0}}\right) \text { for } 0<z<L, \tag{7.5.1}\\
& \rho_{1} v_{1} C_{p} \frac{d T}{d z}=k \frac{d^{2} T}{d z^{2}} \text { for } L<z .
\end{align*}
\]

The following boundary and interface conditions are used.
\[
\begin{align*}
& T=T_{1} \text { at } z=-\infty \\
& T\left(0^{-}\right)=T\left(0^{+}\right) \\
& \left.k \frac{d T}{d z}\right|_{0^{-}}=\left.k \frac{d T}{d z}\right|_{0^{+}} \\
& T\left(L^{-}\right)=T\left(L^{+}\right) \tag{7.5.2}\\
& \left.k \frac{d T}{d z}\right|_{L^{-}}=\left.k \frac{d T}{d z}\right|_{L^{+}} \\
& \frac{d T}{d z}=0 \text { at } z=+\infty
\end{align*}
\]

In [8] the solution to this problem is given in terms of dimensionless variables. Thus
\[
\begin{aligned}
& r_{2}=z / L, \quad \theta=\left(T-T^{0}\right) /\left(T_{1}-T^{0}\right), \quad B=\rho_{1} v_{1} C_{p} L / k, \quad \text { and } \\
& F=S_{C 1} L / \rho_{1} v_{1} C_{p}\left(T_{1}-T^{0}\right) .
\end{aligned}
\]

The governing equations are then of the following form:
(7.5.3)
\[
\begin{aligned}
& \frac{d f)}{d r}=\frac{1}{B} \frac{d^{2} \theta}{d \zeta^{2}} \text { for } r<0, \\
& \frac{d \theta}{d \zeta}=\frac{1}{B} \frac{d^{2} \theta}{d \zeta^{2}}+\theta F \text { for } 0<\zeta<1, \\
& \frac{d \theta}{d \zeta}=\frac{1}{B} \frac{d^{2} \theta}{d \zeta^{2}} \text { for } 1<\zeta .
\end{aligned}
\]

The boundary conditions and interface conditions have the form:
\[
\begin{aligned}
& \theta=1 \text { at } \quad=-\infty \\
& \theta\left(0^{-}\right)=\theta\left(0^{+}\right) \\
& \left.\frac{1}{B} \frac{d \theta}{d \zeta}\right|_{0^{-}}=\left.\frac{1}{B} \frac{d \theta}{d \zeta}\right|_{0^{+}} \\
& \theta\left(1^{-}\right)=\theta\left(1^{+}\right) \\
& \left.\frac{1}{B} \frac{d \theta}{d \zeta}\right|_{1^{-}}=\left.\frac{1}{B} \frac{d \theta}{d \zeta}\right|_{1^{+}} \\
& \frac{d \theta}{d \zeta}=0 \text { at } \zeta=+\infty .
\end{aligned}
\]

The solution, from [8], is then given by the following expressions. Let
\[
\begin{align*}
& m_{3}=\frac{1}{2} B(1-\sqrt{1-4 F / B}) \\
& m_{4}=\frac{1}{2} B(1+\sqrt{1-4 F / B}) \\
& \text { Assume that } 1-4 F / B>0 \text { and set } \\
& E=m_{4}^{2} \exp \left(m_{4}\right)-m_{3}^{2} \exp \left(m_{3}\right), \text { then } \\
& \left\{\begin{array}{l}
\theta(\zeta)=1+\frac{1}{E}\left[m_{3} m_{4}\left(\exp \left(m_{4}\right)-\exp \left(m_{3}\right)\right)\right] \exp \left[\left(m_{3}+m_{4}\right) \zeta\right] \text { for } \zeta<0, \\
\left.\theta(\zeta)=\frac{1}{E}\left[m_{4} \exp \left(m_{4}+m_{3} \zeta\right)-m_{3}^{2}-m_{3}^{2}\right) \exp \left(m_{3}+m_{4} \zeta\right)\right]\left(m_{3}+m_{4}\right) \text { for } 0<\zeta<1
\end{array}, \text { for } 1<\zeta .\right. \tag{7.5.5}
\end{align*}
\]

This problem was run with \(B=8\) and \(F=-1\), and the following data was used in the namelists.

Grid
\(K R=1, K Z=4\),
Since the problem is one dimensional and presented as a problem in \(z\), we use this coordinate.

NTIZ \(=2\),
This is the number of interfaces for this problem.

IFTYPZ=1,1,
This vector indicates that the two interfaces are of type 1 ; that is, we require that the approximation be continuous at these interfaces. For this particular problem the diffusivity is the same in each of the three sections; thus the solution given in Eq. (7.5.5) has continuous first derivative at these interfaces. Using interfaces, our approximations will not have a continuous first derivative at these interfaces; although the discrepancy will tend to zero as the mesh or spline order is increased. If we had wished to use splines with continuous first derivatives at these interfaces, we would have avoided using interfaces (i.e. we would have set NTIZ \(=0\),) and instead we would have used the variable continuity index INUZ to specify the continuity desired at those interfaces. However, in this problem we wish to illustrate the use of material regions and interfaces.

ZIF \(=0.0,1.0\),
These are the coordinates of the interfaces.
ZLDW=-2.0,
At \(z=-2\), the amalytic solution is equal to 1 to 7 decimal places; hence the error due to the position of the boundary should not contaminate the approximation error.

ZUP \(=1.2\),
Since the solution is flat in the interval \([1, \infty)\) this choice is appropriate. Thus for numerical purposes, the reactor is in the interval [-2,1.2].

NMZ \(=11\),
ZMESH \(=-1.5,-1.0,-0.8,-0.6,-0.4,-0.2,0.2,0.4,0.6,0.8,1.1\),
Note that these additional mesh points do not include the interface points. Thus the total number of mesh points will be 13.
\(N Q R=1, N Q Z=4\),
\(\operatorname{MATL}(1,1)=1, \operatorname{MATL}(1,2)=2, \operatorname{MATL}(1,3)=3\),
Here we assign material indices to each of the three sections.
Material "1 is assigned to the interval \([-2.0,0)\), material \(\# 2\) is assigned to \((0,1)\), and material \#3 is assigned to (1.0,1.2). Recall that the vector ZIF subdivided the interval [-2.0,1.2] into three sections.

INITSW=T, GUESSW=F, STEDSW=T, TRANSW=F, ISTDFQ \(=100\),

This is a steady-state calculation, so we are only interested in the final solution. However, ISTDFQ \(=100\), means that we will get output every 100 time steps. This is useful as a check on how the calculation is proceeding. When the problem finishes, i.e. when a steady-state has been reached, the program will produce the printed output regardless of the value of ISTDFQ. Thus we could have set it to 1,000 or some large number in order to suppress the intermediate output.

JZGRD=6,
ZGRID \(=-0.3,0.0,0.2,0.6,1.0,1.1\),
Here we are asking for output at these six locations.
IANAL=T,
We have an analytic solution for this problem so we will provide this solution.

Namelist DATA
NS2(1)=1,
The boundary conditions on sides 1,3 , and 4 are non-essential which is the default value.
\(\operatorname{ALPHA}(1,2)=1.0, \operatorname{BETA}(1,2)=0.0, \operatorname{GAMMA}(1,2)=1.0\),
EPS \(=1 . D-5\), HINIT \(=1 . D-5\),
GRAPH \(=T\),

This completes the input for the namelists. The user-supplied subroutines used the following data.

\section*{RH@CP}
\(R C=1.00\)

\section*{DIFUSE}

DIFUR=0.DO
DIFUZ=1.D0/8.DO
VEL

\section*{EXTSRC}

Recall that only the central section has a non-zero source. This central section had material index 2 ; so we can use this material index in this routine.
\(V V=0.00\)
IF(IMATL .EQ 2) \(\mathrm{V}=-\operatorname{SPDEN(1)}\)

\section*{FDEXTU}

The source is non-zero only in the central sections where it is equal to \(-\operatorname{SPDEN}(1)\). Thus \(U U(1)\), \(\operatorname{UUR}(1)\), and \(\operatorname{UUZ}(1)\) are zero except in the central section where we use:
\(\operatorname{IF}(\operatorname{IMATL}\).EQ. 2) \(\operatorname{UU}(1)=-1 . D 0\)

\section*{INDATA}

Any reasonable estimate will do; here we use \(U U=1.00\)

\section*{BRH 6}

The boundary conditions are taken as \(\theta(-2)=1\) and \(\theta^{\prime}(1.2)=0\). From Eq. (7.5.5), we see that the solution is constant for \(z>1\); hence the choice \(Z U P=1.2\) is reasonable and leads to no errors in the approximation. The choice of \(\mathrm{ZL} \rho \mathrm{W}=-2\) as an approximation to \(-\infty\) does lead to an error in the approximation; however, the solution at \(z=-2\) is equal to 1 to 7 decimal places; hence we do not expect this choice for ZLDW to cause any significant error. Thus on side 2 we use:

RHOV=1.DO
and on side 4 we use
RHOV=0.DO
ANAL
In this routine we implement Eq. (7.5.5).
The printed output corresponding to this data is given on the following pages. In addition, for this problem we also give some indication of the effect of spline order and mesh size on the approximation error. For a fixed mesh size NMZ=11 we used splines of order 2, 3, and 4. Also for a spline order of 4 we halved the mesh size (NMZ=21) in the interval \([-1.0,1.0]\). We sampled the maximum error over the points \(-0.3,0.0,0.2,0.6,1.0\), and 1.1;
in all cases the maximum error was at -0.3. In the following table we give the error at the first interface 0.0 , at \(z=0.2\), and the maximum error (which occurred at \(z=-n .3\)).

TABLE 7.5.1. Approximation Errors
\begin{tabular}{|c|c|c|c|}
\hline\(K Z\) & \begin{tabular}{c}
\(z=0\) \\
(interface)
\end{tabular} & \(z=0.2\) & \begin{tabular}{c}
Max. Error \\
\((z=-0.3)\)
\end{tabular} \\
\hline 2 & 2194.65 & 1892.3 & 2793.09 \\
\hline 3 & 0.795 & 32.92 & 765.938 \\
\hline 4 & 1.609 & 12.28 & 30.767 \\
\hline \begin{tabular}{c}
4 \\
\(\mathrm{NMZ}=21\)
\end{tabular} & 0.485 & 0.551 & 3.527 \\
\hline
\end{tabular}

In considering this data we must bear in mind that the time integration error control parameter (EPS) was only 1.D-5 for these runs; thus there could be some contamination in the results for \(k=4\). In addition, the fact that the maximum error was always at -0.3 may indicate that the position of the mesin in the first section is contributing to the error. (Recall that we have used \(z=-2.0,-1.5,-1.0, \ldots\) as mesh points, and the solution at \(z=-1.0\) is 1 to 3 decimal places; thus these mesh positions may be contaminating the error when \(k=4\).\() In any case the results show substantial reductions in the error at\) least from \(k=2\) to \(k=3\), and for \(k=4\) we see a behavior of \(\epsilon=0\left(h^{4}\right)\) when refining the mesh.
storage mayima for this compilation :
maxbrk
MAXSF
maxigd
haxto
MAXK
GIXK
GYMERZ
EXMVAR
maxyot GXRGRD
HXZGRD \(\begin{array}{lr}\text { HXZCRD } & 20\end{array}\)
geadimg magelist grid


```

GROBETAY I|rICATOA =
IMTERFACE z-DIBECTION HESH POYMTS

```

```

I* 2 IPTIPZ (I) ** I, 2IP(I) =
MDDITIOMAL MON-IMTERPACE 2 AESH POIMTS
I= 1 ZHESG(I) = -0.15000000000000000D*01
I=2 2HESH(I)=-0.10000000000000000D+01
I=3 2nESH(I)=-0.8000800000000000D+00
I= 2HESH(I) = - 0.60000000000000000D+00
I=5 2nESH(I) = - 0.4000000000000000D+00
I=62HESH(I)= =0.20000000000000000+0.0
=72HESB(I) = 0.20000000000000000D+00
I=8 2HESH(I)=0.40000000000000000D+00
I=9 2HESH(I) = 0.60000000c0000000D+00
I=10 2HESH(I)= (I)= 0.80000000000000000D+00
I=102EESH(I)= 0.0000000000000000D+00
I =ODDITORE CDDER FOR B DIRECTION
MATEIN
MarEgIAI TABLE IS GIVEN IS HA+L(AINDEX,2INDEX
3
GATERIAL TABLE POR 2IMDEI = 2
MATERIAL TABLE FOR 2IMDEI = 1
c
consev= P
llgBCS= T

```

```

STIDSW = I GOESSW = F
ITRARS F F IAMAL = T
DOMPSy % %
IRETLA ( ') = P
MOHEER OI DSEP SOPPLIED POIMTS IM R DIRECTION 1
GMID( 1) 0.5000000CD+OC
OGEEE OF USEE SUPPLIED POIMTS IM 2 DIRECTION 6
2GRID( 1) = -0.300000000D+00
2G日ID(2) = 0.0
2GEID ( 3) = 0.20000000D+0C
GEID (4) = 0.60000000D+00
GEID(5) = 0.10000000D*01
GEID (6) = 0.110000000+01

```

READING Magzlist data
```

COMTz TOO HIGH, BEIMG RESET TO 4-1
WVGAP = MHGAF = $0 \quad L R=1 \quad L 2=14 \quad M R=1 \quad N Z=21$
II(I)=
3L(J)= 5
INEF(I) =
JAEP(J) % 1, 1 1 1 1 1 1 2 2 2
JREF(J) : % 1, 1
MLTAB( 1; 2)=1
GLTAB(1; 3)=
Bytab( 1, 4)=
alTas( 1, 5)=
ALTAB(1, 5)=
mlyas( i, 7)=
MlTAB(1, 8) =
GlTAB( 1, 9) =
glmas( 1, 10)=
almag(1,11)=
Mlyas( 1;13)=3
MORIZONTAL CEDERIMG

```


THIS EEESIO DORS MOT REQURE BOUMDAYY CONDITIONS ON EVERY SIDE

SIDE 3 MLPHE \(=0.0\)
SIDE 4 LIPHZ \(=0.0\)
SIDE IMDICATORS EY SPECYES

soomdey b puriton por sides 1 and 3

\section*{15 SDPQ \(=100\)}
```

tiEE AED SFACE GRID FOR Prout

```


SOUNDARY G FONCTION FOR SIDES 2 AND 4
SOUNDARY G FONCTION FOR SIDES 2 AND 4
SPECIESMO. GATERIALINDEX 1 HO2 \(=0.10000000000000000+01\)
SPECIESMO. GATERIALINDEX 1 HO2 \(=0.10000000000000000+01\)
rCa SpecIes 1 IMTEFPACES 1 HHGAP \(=0.0\)
rCa SpecIes 1 IMTEFPACES 1 HHGAP \(=0.0\)
FCESPECIES 1 IMTEFRACES 21 HHGAP \(=0.0\)
FCESPECIES 1 IMTEFRACES 21 HHGAP \(=0.0\)
REACTIOM NATES
REACTIOM NATES
finst oader gates
finst oader gates
CEINTO 1 FPOA 1 IS
CEINTO 1 FPOA 1 IS
SECCID OIDEE REACTIOI RATES ABE
SECCID OIDEE REACTIOI RATES ABE
CEE ITTO K = POR KP \(=1\) IUTO KPP \(=1\)
CEE ITTO K = POR KP \(=1\) IUTO KPP \(=1\)
\(\operatorname{CKK}(1,1,1)=\)
\(\operatorname{CKK}(1,1,1)=\)
0.0
0.0
Maber OF EAJOA TIUE VALUES 6
Maber OF EAJOA TIUE VALUES 6
Maber OF EAJOA TIUE VALUES 6
Gaze of subimizerals of eack hajop tine Interval 1
Gaze of subimizerals of eack hajop tine Interval 1
Gaze of subimizerals of eack hajop tine Interval 1
(OUSPUT WILL OCCUR AT RACH SUCH TIAE)
(OUSPUT WILL OCCUR AT RACH SUCH TIAE)
(OUSPUT WILL OCCUR AT RACH SUCH TIAE)
 \(0.0 \quad 0.4000000000000000 \mathrm{D}-01 \quad 0.8000000000000000 \mathrm{D}-01 \quad 0.120000000000000000+00\)
 \(0.0 \quad 0.4000000000000000 \mathrm{D}-01 \quad 0.8000000000000000 \mathrm{D}-01 \quad 0.120000000000000000+00\)
 \(0.0 \quad 0.4000000000000000 \mathrm{D}-01 \quad 0.8000000000000000 \mathrm{D}-01 \quad 0.120000000000000000+00\)
 0. \(160000000000000 \mathrm{D}+00 \quad 0.2000000000000000 \mathrm{D}-01\)
 0. \(160000000000000 \mathrm{D}+00 \quad 0.2000000000000000 \mathrm{D}-01\)
 0. \(160000000000000 \mathrm{D}+00 \quad 0.2000000000000000 \mathrm{D}-01\)
 DITASET CREATED FOR 0SE in GRAPHICS
 DITASET CREATED FOR 0SE in GRAPHICS
 DITASET CREATED FOR 0SE in GRAPHICS

ODE PACRIGI DATA
ODE PACRIGI DATA
ODE PACRIGI DATA

COMTIEDITY FOR END 2 directioys may have bêm reset
COMTIEDITY FOR END 2 directioys may have bêm reset
COMTIEDITY FOR END 2 directioys may have bêm reset
COMTM O Coxtz 3
COMTM O Coxtz 3
COMTM O Coxtz 3
DEFAOLT TMITIAL cogrpizients
DEFAOLT TMITIAL cogrpizients
DEFAOLT TMITIAL cogrpizients
0. \(1000000000000000 \mathrm{D}+01\)
0. \(10000000000000000 \mathrm{D}+01\)
0. \(1000000000000000 \mathrm{D}+01\)
O. \(1000000000000000 \mathrm{D}+01\)
\(0.1000000 \mathrm{C} 00000000 \mathrm{D}+01\)
\(0.10000000000000000 \rightarrow 01\)
\(0.10000000000000000+01\)
\(0.1000000000000000 \mathrm{D}+01\)
\(0.10000000000000000+01\)
. \(1000000000003000 \mathrm{D}+01\)
. \(10000000000000000 \mathrm{D}+01\)
\(0.1000000000000000 \mathrm{D}+\) Ü
\(0.1000000000000000 \mathrm{D}+\mathrm{O}\)
0.100000000000000000001
\(0.10900000000000000+01\)
\(0.10000010000000000+01\)
\(0.1000000000000000 D+01\)
\(0.1000000000000000 D+01\)
0.1000000000000000 D 4
\(0.1000000000000000 D+01\) . \(10000000000000000+0\) \(0.1000000000000000 \mathrm{D}+0\) \(0.1000000000000000 \mathrm{D}+0\)
vaides of comcemtration o of the 1 fh species at the quadrature points in the (1, 1)-th prctangie.
(PECE IMIFII)
\(0.10000 \subset 000000000000+01\)
0.9999999999999999000
0. 9999999999999995 D 00

(FtiOn IUIFIF)
\(0.9999999999999999 D+00\)
C. \(1000000000000000 \mathrm{D}+01\)
0. 1000000000000000 D 01
0. \(1000000000000000 \mathrm{D} \cdot 01\)
 (TBC日 IMITIT)
\(0.1000000000000000 \mathrm{D}+01\)
0. \(1000000000000000 \mathrm{D}+01\)
0. \(1000000000000000 \mathrm{D}+01\)
yalues of comceitaition of the 1 th species at the quadrature points in the 1 , ut-ta bectangie.
(Fioy Imifit)
\(0.9999999999999998 \mathrm{D}+00\)
\(0.9999999999999998 \mathrm{D} * 00\)
\(0.100000 \mathrm{C} 000000000 \mathrm{D}+01\)
\(0.99999999999999980+00\)
\(0.9999999999999998 \mathrm{D}+00\)
\(0.99999999999999970+00\)
\(0.9999999999999998 D+00\)
 (PEOA IMIFIT)
0.9999999999999996 D 400
\(0.999999999999996 \mathrm{D} \cdot 00\)
0.99999999999999970400
0. \(9999999999999998 \mathrm{D}+0 \mathrm{O}\)
values of comermaration \(u\) of the 1 th species at the quadrature pgints in the (1 , 7) th rectangle (IIOM IHIFIT)
- 9 (
\(0.9999999999999998 \mathrm{D}+00\)
. \(99999999999999970+00\)
\(0.99-9999999999996 \mathrm{D}+00\)
 (FROZ YE ',
0.90 999: \(19999970+00\)
\(0.9959999999999996 \mathrm{D}+00\)
0. \(9999999999999996 \mathrm{D}+00\)
\(0.9999999999999998 \mathrm{D}+00\)
 Trion Inirif
. \(10000000060000000+01\)
. \(1000000000000000 \mathrm{D}+01\)
0.10000000000000000001
 (InOM IUIFIT)
\(0.9999999999999994 \mathrm{D}+00\)
0. \(9999999999999994 \mathrm{D}+00\)
0.999999995999999 ; \(\mathrm{D}+00\)
0. \(1000000000000000 \mathrm{D}+01\)
 (F20: InIPIT)
0. 1000000000000000D401
\(0.1060000000000000 \mathrm{D} * 01\)
. \(9999999997999998 \mathrm{D}+00\)
 (FP3 IHIPIT)
0. 10000000000000000D 01
\(0.99999999999999910+00\)
\(0.9999999999999995 \mathrm{D}+00\)
\(0.100000 \mathrm{COC} 0000000 \mathrm{D}+01\)
 (FBOA IHIPIT)
0.10000000000009000001
. \(1000000009000000 \mathrm{D}+01\)
0. 100000 CO 00000000 D 40
values of comcertafion of the 1 th species at the quidratufe points in the (1 , lef-th bectangle. (FROM InIFIT)
0. 10000005000000000001
\(0.9999995999999996 \mathrm{D}+00\)
0. \(1000000000000000 \mathrm{D}+0\)
\(\begin{array}{llll}\text { TIMTY, } \$ 2 . I C O R ~ & 0.70000000 D+01 ~ & 0.15596000 D+05 ~ 27\end{array}\)

1 calls to jaive haye occupred
```

PEOUT TOR IIRE = -0.10COD0000D*05
v=0.1c0000000+01
0.1c000000D+01
0.10000007D+C1
0.999989500+00
0.999999970*00
.9999937D+00
.999998370400
.999989970+00
0.100000010+01
.100000300+01
0.10000030C*01
0.999999911D*00
HaloES of concenreatioms d of the 1 th species on the uSERS -oid
(FROM PEODI VIL STEIDY)
APPROXIMATE SOLOTION
0.99999994021873465D*00
MMAIETIC 501E218734650+00
0.4028316717141206D+00
appmosimate solutyom
MPgOEIMAKE SOLUTYOM
AEYYIC S01M. N17142060000
0.4028316717141206
APPPORIEATE SOLOTIOM
0.99999000944C84490+00
awalitic 5CL\#

```

```

APPIORIEATE SOLUTIOM
0.9999900399945185D*00
O.9999900399945185D*00
APPAOTIMATE SOLOTIOM
0.99999497962091090*00
AMIfIIC SCI\#.
0.898985C414801589D*00
APFBOEIMATE SOLUTIOM
0.99999966756092040+00
AHIITIC SCIM.
0.990836129771146510+00
GEyIEOS E|ECE OM GEID IS

```

```

gQUSED = =
SCPI
0.129201890-04

```

94 CALLS TO DRIVE HAVE OCCORPED

PROOT POR TIEE \(=\quad-0.99906467 D+04\)

\section*{aEADIMG NABELIST DATA}

 \(0.40283100187932880 * 00\)
\(0.40283078285906720 * 00\)
\(0.99998093409079710+00\)
\(0.9093344190424562 \mathrm{D}+0 \mathrm{C}\)
\(0.8999834325178914 \mathrm{D}+00\)
\(0.5218819170437302 \mathrm{D}+00\)
\(0.4028309550497788 \mathrm{D}+30\)

\subsection*{0.10000332928341970401 0.997497531731546110400 \(0.8451315202364675 D 400\)} \(0.40283084995813150+0\)
\(0.99996399881938990+00\) \(0.98620943116953330+00\) \(0.74697464950089850+00\)
\(0.4028307830128990 \mathrm{D} * 00\)

\subsection*{7.6 A Defect-Diffusion Problem in One-Dimensional Spherical Genmetry}

This problem involves the distribution of two reacting species in a domain bounded by two concentric spheres, i.e. \(\Omega=\left\{r: R_{L} \leq r \leq R_{U}\right\}\). Let \(u_{i}(r, t)\), \(i=1,2\), denote the concentration of the \(i^{\text {th }}\) species subject to the following governing equations.
\[
\begin{align*}
& \frac{\partial u_{1}}{\partial t}=D_{v} \Delta u_{1}+D_{R}-C_{i v} u_{1} u_{2}-C_{s v} C_{s}\left(u_{1}-V A T V\right) \\
& \frac{\partial u_{2}}{\partial t}=D_{I} \Delta u_{2}+D_{R}-C_{i v} u_{1} u_{2}-C_{s i} C_{s} u_{2} \tag{7.6.1}\\
& u_{1}\left(R_{L}, t\right)=\text { VEQL; } u_{1}\left(R_{u}, t\right)=\text { VATV } \tag{7.6.2}\\
& u_{2}\left(R_{L}, t\right)=X I E Q L ; u_{2}\left(R_{u}, t\right)=X I E Q L
\end{align*}
\]
\[
\begin{align*}
& u_{1}(r, 0) \equiv \operatorname{VEQL} \tag{7.6.3}\\
& u_{2}(r, 0) \equiv X I E Q L
\end{align*}
\]
where \(\Delta\) denotes the Laplacian in spherical geometry, and
\[
\begin{align*}
R_{L} & =10^{-6}, R_{U}=10^{-5} \\
D_{V} & \doteq 1.98354 \cdot 10^{--1} \\
D_{I} & \doteq 9.37700 \cdot 10^{-4} \\
D_{R} & =10^{-3} \\
C_{i V} & \doteq 3.40606 \cdot 10^{13} \\
C_{S V} & \doteq 3.70750 \cdot 10^{8} \tag{7.6.4}\\
C_{S} & \doteq 7.38716 \cdot 10^{-8} \\
C_{S i} & \doteq 1.75269 \cdot 10^{12} \\
V A T V & \doteq 1.65843 \cdot 10^{-7} \\
V E Q L & \doteq 1.35436 \cdot 10^{-7} \\
\text { XIEQL } & \doteq 6.75044 \cdot 10^{-18}
\end{align*}
\]

For the numerical approximation of this problem, the following input parameters are used in the Namelist input.

\section*{Namelist GRID}

DELTA=2,
Spherical geometry.
\(K R=3\),
B-splines of degree 2 are used in the radial direction.
\(K Z=1\),
B-splines of zero degree are used on this axis. The problem is one dimensional.

NSPEC=2,
Two species.
\(R L \emptyset W=1 . D-6, R U P=1 . D-5\),
Inner and outer radii of the concentric spheres. Defines the spatial domain in the radial direction.

NMR=10,
Number of interior breakpoints not including the end points.
RMESH \(=1.1 \mathrm{D}-6,1.2 \mathrm{D}-6,1.4 \mathrm{D}-6,2.4 \mathrm{D}-6,4.4 \mathrm{D}-6,6.6 \mathrm{D}-6,8.6 \mathrm{D}-6,9.6 \mathrm{D}-6\), 9.8D-6, 9.9D-6,

Location of the radial breakpoints.
TRANSW=r,
A steady-state calculation will be done. We will not use the transient option.

\section*{IRGRD=4,}

Number of output points in the radial direction.
RGRID \(=3.5 D-6,5 . D-6,8 . D-6,9 . D-6\),
Position of the radial output points.
NQR=3,
NQZ \(=1\),
These values are the default values; however they are displayed here in order to call attention to the fact that this problem fails with \(N Q R=K R-1=2\) and \(N Q Z=K Z-1=0\).

\section*{Namelist DATA}
\(\operatorname{DRCHLT}(1,1)=T, \operatorname{DRCHLT}(2,1)=T\),
Dirichlet boundary conditions for both species on side 1 (the left
or inner boundary).
\(\operatorname{DRCHLT}(1,3)=T, \operatorname{DRCHLT}(2,3)=T\),
Dirichlet boundary conditions for both species on side 3 (the right or outer boundary).

ISTDFQ \(=100\),
Frequency of output for a steady-state calculation. Printout will occur every ISTDFQ time steps.

GRAPH \(=T\),
Graph of the solution is desired.
EPS \(=1.0-3\),
Local error tolerance for the time integration in the ODE solver. HINIT=1.D-15,

Initial step size in time used in the ODE solver.
The user-supplied subroutines are discussed below.

\section*{MASTER DRIVER}

The data for this problem is temperature dependent and is generated in the MASTER DRIVER. This case corresponds to a temperature of 900 . The MASTER DRIVER is also used to allocate space for the arrays AL and PW with NAL=100 and NPW=420 for this case. With the use of quadratic B-splines over 11 intervals, we have 13 unknowns for each species for a total system size of 26 . This gives a required storage for AL of 91 and for PW of 416. This data is printed in the output.

RHOCP
This subroutine provides the coefficients of the time derivatives in Equation (7.6.1). Since these coefficients are equal to one, this routine returns 1.DO.

VEL
This subroutine returns the coefficients of the convective terms in Equation (7.6.1). Since there are no convective terms, this routine returns 0.00.

DIFUSE
This routine provides the diffusion coefficients \(D_{v}\) and \(D_{I}\). Note that the user does not concern himself with the form of the Laplacian in spherical geometry. This is taken care of in Namelist GRID by
setting \(D E L T A=2,\). Note also that since this problem is one dimensional (all quantities depend only on the R-coordinate), this routine sets the Z-component of the diffusion coefficient to O.DO.

\section*{EXTSRC}

This routine returns the source terms \(s_{1}=D_{R}-C_{i v} u_{1} u_{2}-C_{s v} C_{s}\) (\(u_{1}\)-VATV) for species 1 , and \(s_{2}=D_{R}-C_{i v} u_{1} u_{2}-C_{s i} C_{s} u_{2}\) for species 2.

FDEXTU
This routine provides the Frechet derivatives (or an approximation thereof) of the distributed source. From the form of the distributed source terms, we find for species 1:
\[
\begin{gathered}
\frac{\partial s_{1}}{\partial u_{1}}=-C_{i v} u_{2}-C_{s v} C_{s}, \\
\frac{\partial s_{1}}{\partial u_{2}}=-C_{i v} u_{1}, \\
\text { hile for species } 2 \text {, we find }
\end{gathered}
\]
\[
\begin{aligned}
& \frac{\partial s_{2}}{\partial u_{1}}=-C_{i v} u_{2}, \\
& \frac{\partial s_{2}}{\partial u_{2}}=-C_{i v} u_{1}-c_{s i} c_{s} .
\end{aligned}
\]

BRHD
This routine provides the boundary values for each species as given in Equation (7.6.2). The inner radius \(R_{L}\) is identified with side 1 , and the outer radius is identified with side 3.

BRH@DT
This routine is not used since the boundary values do not involve time derivatives of the concentrations.

INDATA
This routine provides the initial data as given in Equation (7.6.3). ANAL

This routine is not used in this problem and appears in dummy form.
The printed output is supplied on the following pages. Notice that output occurs after the first time step, the \(100^{\text {th }}\) time step (since ISTDFQ \(=100\)), and the \(141^{\text {st }}\) time step (at which the steady state solution has been found).

THIS PROELEH IS A KIHETICS-DIFFISIOH PRCBLEH IN O:IE-GIFiENSIUHAL SPHIERICAL GEGHETRY
IT IS EESCRIEEO IF: SECTIUN 7.6 OF DISPL \(1: ~ A\) SOFTIARE PACLNGE FOR OHE ARO THJ SPATINLLY IHENEIO:LED KINETICS-DIFFUSION FKNOQLEHS BY
G.K. LEAF ALD H. MIISGCF.

MAİHEMATICS AND COHPUTER SCIEISE DIVISION, ARGOHNE.ILLIMUIS

DI, DV \(0.93770024319257760-03 \quad 0.19835430285050830-06\) VEQL,XIEQL \(\quad 0.13543561005374360-06 \quad 0.6750441388724501 \mathrm{D}-17\)
VATV,CIV, CSV,CSI,CS
\(\begin{array}{llllll}0.16584308014448320-06 & 0.34060612710446400+14 & 0.3707504460802127 D+09 & 0.17526858679500590+13 & 0.73871547397838210-07\end{array}\)

STORAGE MAXIMA FOR THIS COMPILATION ：
MiLXBRI：
MAXSP
MAXSP
MAXTVD
MAXTRD
MASKK
MidiXK
MXHRIIZ
MXHREIZ
HXIVAR
MXIVAR
MAXGAP
MAXG4P
MAXPにT
MaxibT
MiRGRRD
MAREGRD
MAZGRD

READING NAMELIST GRID

IANAL \(=F\)
ISTDFQ \(=100\)
HXSTED \(=500\)

\footnotetext{
IREVLA(1) \(=F\)
IRHO 1) \(=\)
IRtiD 2) \(=\)
I2GRD
IRGRD \(=4\)
00000000-05
RGRID(2; \(=\) i.50000000000030000-05
}

> SPLINE ORDER IN R DIRECTION
> SPLINE ORDER IN \(Z\) DIRECTION
> NUMBER OF SPECIES
> LEFT BOUNDARY
> RIGHT BOLHDARY
> LOWER BOUNDARY
> UPPER BOUHDARY
> GEDMETRY IRDIC:TOR
> MUIEER OF INTEK:ACES IN R DIRECTION
> MURER OF INTERFACES IN 2 DIRECTION
> NUIIBER OF NON-INTERFACE R DIRECTION MESH POINTS
> NON-INTERFACE R HESH POINTS

\section*{MPfaER OF NON-INTERFACE 2 DIRECTION MESH POINTS}

\section*{QUADRATURE ORDER FOR R DIRECTION \\ QUAORATURE ORDER FOR \(Z\) DIRECTIO}

CONSERVATIVE FORH INDICATOR FOR CONVECTION TERH algebraic treathent of boundary corloitions indicator INDICATOR FOR INITIAL FIT O- DATA
INDICATOR FOR STEADY STATE COHPUTATIO
IHDICATOR FOR TRANSIENT COHPUTATION
INDICATOR FOR READING STEADY STATE COEFFICIENTS FROH UNIT DUHPRD INDICATOR FOR STEADY STATE RESTART
INDICATOR FOR TRANSIENT RESTAR
INDICATOR FOR A COLD RESTART h''EN A TRANSIENT RESTART IS DONE.
A COLD RESTART INVOLVES A CALL TO AINVG AND IS USEFUL
IF THE ODES HAVE CHANGED, I.E. THE PDE BOUNDARY CONDITIONS
have been changed
INOICATOR FOR USING G-STOP CAPABILITY
THIS ALLOHS THE USER TO RETURN TO THE CALLING PROGRAHI,
CHARGE SOME PROBLEH DEFINING PARAMETER AHD CALL EXEC
TO CONTIHUE CALCULATION
INDICATOR FOR USING ANALYTIC SOLUTION
PRINTGGT FREQUENCY FOR STEADY STATE COHIPUTATION
MAXIMUH HUV:BER OF O.D.E. CALLS
FOR STEADY STATE COHPUTATION
IREVLAIK IHDICATES THAT THE COEFFICIENT OF THE TIME DERIVATIVE IS HOT TOENTICALLY 1 THATES THAT THE COEFFICIENT OF THE TIME DERIVATIVE IS IDEHTICALLY 0

NUMEER OF USER SUPPLIED POINTS IN R DIRECTION

RERID(3) \(=0.80000000000000000-05\)
RGRID 4) \(=0.90000000003600900-05\)
\(\begin{aligned} & \text { JZERD } \\ & \text { ZGRID } \\ & 11\end{aligned}=10.50000030000000000+00\)

MUMBER OF USER SUPPLIED POINTS IN 2 DIRECTION

READING NAMELIST DATA

COHTR TOO HIGH, BEING RESET TO 3-1 COMZ TOO HIGH, BEING RESET TO 1-1

DKCHLT(1,1) =
\(\operatorname{HELVIAN}(1,2)=T\)
\(\operatorname{DRCHLT}(1,3)=T\)
\(\operatorname{NEU}\) (AHII \((1,4)=T\)

ALPHA 1,1\()=0.100000000000000000+01\)
Getal \(1,11=0.0\)
GAFLu(1.) \(=0.10000000000000000+01\)
ALPFA(1,2)
GEMHACi, 3
alpha 1,3)
BETA(1.3)
GAMYA(1,3)
ALPHA 1,4)
ALPHA(1,4)
BETA 9,\(4 ;\)
Getal 1,4,
DRCHLT(2,1) \(=\)
\(\operatorname{AELHPAN}(2,2)=\)
\(\operatorname{DRCHLT}(2,3)=T\)
NESP\{At1 \((2,4)=\)

ALPHA(2,1) \(=0.10000000000000000+01\) ETAL 2,1\()=0.0\)
GatMa(2 1) \(=0.10000000000000900+01\)

HORIZONTAL ORDERING
HALF BANDHIDTH FOR AL
HALF BANDS FOR ORD
COHSTANTS FQR ORDERTNG OF VARIABLES

CONSTANTS FOR ORDERING OF VARIABLES HITHIN A SPECIES

REQUIRED STORAGE FOR AL
AVAILABLE STJRAGE FOR AL
RE UUIRED STORAGE FOR PH
aVAILABLE STORAGE FOR PH
SYSTEI SIZE FCR THIS CASE
NUHER OF R DIRECTION MESH POINTS
HUHEER OF 2 EIRECTION MESH POIHTS
number of variables per species in the r direction
HUKBER OF VARIABLES PER SPECIES IN THE 2 DIRECTION
HMBER OF VARIABLES PER SPECIES
TOTAL NLHEER OF VARIABLES
OIRICHLET CONDITIDN FOR SPECIES 1 ON SIDE 1
NEUTAA CONDITION FOR SPECIES 1 ON SIDE 2
OIRICHLET CONDITION FOR SPECIES 1 ON SIDE 3
NEUMAN CONDITIDN FOR SPECIES 1 ON SIDE
BOUNDARY CONDITION COEFFICIENTS
FOR SPECIES NO. 1
SIDE 1
SIDE
SIDE
SIDE
SIDE
SIDE
SIDE
SIDE
SIDE
SIDE
\(\begin{array}{ll}\text { SIDE } & 4 \\ \text { SIDE }\end{array}\)
OIRICHLET CONDITION FOR SPECIES 2 ON SIDE 1
NEURIAH CONDITION FOR SPECIES 2 OH SIDE 2
DIRICHLET CONDITION FOR SPECIES 2 Oit SIDE 3
NELHAN CONDITION FOR SPECIES 2 ON SIDE 4
BOUIDARY CONDITION COEFFICIENTS
FOR SPECIES NO. 2
SIDE
SIDE
SIOE
SIDE 2

\begin{tabular}{lll}
SIDE & 2 \\
SIDE & 2 \\
SIDE & 3 & \\
SIDE & 3 & \\
SIDE & 3 & \\
SIDE & 4 & \\
SIDE & 4 & \\
SIDE & 4 & \\
SIDE IHDICATORS & \\
FOR SPECIES NO. & 1
\end{tabular}
BOLNDARY H FUNCTION FOR SIDES 1 AND 3
FOR HATERIAL INDEX 1 AND SPECIES NO. 1
FOR MATERIAL INOEX 1 AND SPECIES NO. 2

BOUNDARY H FUICTICN FOR SIDES 2 AND 4 for material index 1 AND Species no. 1

FOR : TATERIAL yNDEX 1 AND SPECIES NO. 2

TIME GRID FOR TRANSIENT PRINTOUT
NUMBER OF MAJOR TIHE IHTERVALS
NUMBER OF SUBINTERVALS IN EACH HAJOR TIME INTERVAL MAJOR TIME VALUES

LOGICAL INUICATOR FOR hPITING DATASET FOR LATER GRAPHICS GRAPH NUIMEER TO BE ASSOCIATED HITH THIS RUN PRINT SHITCH INDICATORS

ORDIHARY DIFFERENTIAL EQUATION PACKAGE DATA LOCAL TEMPORAL ERROR CONTROL
INIIIAL TIME STEP
MAXIHUMI ORDER OF TIME INTEGRATION
IHITIAL TIME
CONTINUITY IN R DIRECTICN (MAY HAVE BEEN RESET)
CONTIHUITY IN Z DIRECTION (MAY HAVE BEEN RESET
OEFAULT INITIAL SPLINE COEFFICIENTS (SET TO ONE)

\section*{VAIUES OF CON-EHTRATIGHS U FOR THE 1 TH SPECIES ON THE USERS GRID (\(\overline{\text { rROHI FROLT VIA INIFIT) }}\)}

APPROXIHATIUN IS
\(\begin{array}{lllll}0.13541814840617360-06 & 0.1354536 & 1851186660-06 & 0.13543974214971290-06 & 0.13548623522075160-06\end{array}\)
VALUES OF COIにEHTRATIGHS U FOR THE 2 TH SPECIES OH THE USERS GRIO [FRGM FRGUT VIA ITHEIT)

APPROXIISATICH IS
\(\begin{array}{lllll}.675044138872450 \text { id-17 } & 0.67504413387245020-17 & 0.67504413887245010-17 & 0.67504413887245010-17\end{array}\)

PíOUT FCR TIHE \(=-0.99999999999398990-01\)
VAL.UES OF COICEIMTRATIOISS U FOR THE 1 TH SFECIES ON THE USERS GRID (FROM FROUT VIA STEADY)

APPROXIHATICH ES
\(0.1354131484120200-06 \quad 0.13545564350681810-06 \quad 0.13543974214949890-06 \quad 0.13548623520733380-06\)
Yalues of coriceni atichs u for the 2 Th species od the users grio FROil PRCUT VIA STEADY)

APPROXIHATICN IS
\(0.77510552319278510-17 \quad 0.77497750465599540-17 \quad 0.77503222851643030-17 \quad 0.77487689158389090-17\) AT TOUT \(=-0.9999999999999899 \mathrm{D}-01 \mathrm{SOBN}=0.1734212558762423 \mathrm{D}+15\) AND H \(=0.1000000000000000 \mathrm{D}-14\) \(H Q=1\)
SUPH =
\(0.17342125587624230+00\)
1 CALIS TO DRIVE HAVE OCCURRED
a SIEADI FRINT TAKES LESS THAN A CENYISEC.--USE 1 CENTISEC. AS AN ESTIHATE
a cal.l to drive takes less than a centisec. -- use 1 centisec. as a estimate

\section*{PROUT FOR TIME \(=-0.99999497,70853030-111\)}

Vatues of coilcelitrations u for the 1 TH SPECIES ON THE USERS GRID
[FROH PROUT VIA STEADY]
APPROXIHATION IS
\(0.1361175329402143 \mathrm{D}-06 \quad 0.13564187227327690-06 \quad 0.13588326826806520-06 \quad 0.13646678367920500-06\)
VALUES OF COHCENTRATIGNS U FOR THE 2 TH SPECIES ON THE USERS GRID
\{FROH PROUT VIA STEADY)
APPROXIMATIO:: IS
\(0.11^{\prime} 180064{ }^{4} 985331 \mathrm{D}-10 \quad 0.1088675613581780 \mathrm{D}-10 \quad 0.57030539375028200-11 \quad 0.3059871655671660 \mathrm{D}-11\) \(A_{T}\) TCUT \(=-\) L. \(.99999497170853030-01\) SOBN \(=0.51985128437186950+12\) ANT, H \(=0.0 .12875652510359090-06\)

SUPN \(=\)
\(0.15395832709092860-01 \quad 0.73091094037060140-02\)
100 Calls to drive have occurked

\section*{PROUT FOR TIME \(=-0.97473534320324620-31\)}

VALUES CF CONCENTRATIONS U FOR THE 1 TH SPECIES OH THE USEKS GRID (FROH PRCUT VIA STEADY)

APPROXIHATION IS
\(0.212 \mathrm{~J} \angle 33324879970 \mathrm{D}-06 \quad 0.2128414321298770 \mathrm{D}-06 \quad 0.191523842520860\) D \(-006 \quad 0.1797282631119838 \mathrm{D}-06\)
VALUES OF CONCENTRATIONS U FOR THE 2 TH SPECIES ON THE USERS GRID
(FROH PROUT VIA STEADY)
APPROXIHATION IS
\(0.1116890400099292 \mathrm{D}-10 \quad 0.10660216527 \varepsilon 9107 \mathrm{D}-10 \quad 0.5610816382509098 \mathrm{D}-11 \quad 0.30167560530498440-11\) AT TCUT \(=-0.9747353432082462 \mathrm{D}-01\) SDEN \(=0.2082263871447386 \mathrm{D}-03 \mathrm{AND} \mathrm{H}=0.1650701540647895 \mathrm{D}-02\)
-
SUPN \(=\)
\(0.34371961805336500-06\)
14i: CALLS TO DRIVE GAVE CECURRED STEADY-STA E SOLUTION hAS BEEN ACHIEVED COEFFICIENTS WRITTEH ON DUAP DATASET

\section*{READING NAHIELIST DATA}
\(\operatorname{DRCHLT}(1,1)=T\)
\(\operatorname{MEUMAN}(1,2)=T\)
\(\operatorname{DRCHLT}(1,3)=T\)
\(\operatorname{DREHLT}(1,3)=T\)
NEUMAN(1,4\()=T\)
\begin{tabular}{|c|c|c|}
\hline alfhal 1,1) & & \(0.10000006000000000 \cdot 01\) \\
\hline BETA(1.1) & = & 0.0 \\
\hline gatmat 1.1\()\) & = & \(0.10000060000600000+01\) \\
\hline alphat 1,2\()\) & \(=\) & 0.0 \\
\hline EETAI 1,21 & \(=\) & \(0.100060000000000000+01\) \\
\hline G 5 :314 (1,2) & \(=\) & 0. 10005200030000300-01 \\
\hline alphai (1,3) & \(=\) & \(0.1000030 c 023060000+01\) \\
\hline BETA 1,3\()\) & \(=\) & 0.1 \\
\hline gatirat (1,3) & \(=\) & \(0.1000000000000000 \mathrm{D}+01\) \\
\hline ALPha (1,4) & = & 0.0 \\
\hline beta (1,4) & \(=\) & \(0.1000000000003 .300 \mathrm{D}+01\) \\
\hline Gartisal 1,4) & \(=\) & \(0.10000000000000000+01\) \\
\hline DRCHLT(2,1) & & \\
\hline Nälumin 2,2\()\) & \(=T\) & \\
\hline DPCHLT(2,3) & \(=T\) & \\
\hline NEUMANI (2,4) & \(=T\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline ALPHA12,1) & = & 0.100000000000000 \\
\hline BETA 2,1) & & 0.0 \\
\hline Catillic 2,11 & = & 0. \(100000000000006 D+01\) \\
\hline 4.fual 2,2 : & = & 0.0 \\
\hline BFTA(2,2) & = & \(0.1000000000000000 \mathrm{D}+01\) \\
\hline GAuta \((2,2)\) & = & \(0.1030 C 000000600000+01\) \\
\hline ALPHA 2,3) & = & \(0.10000000060000000+01\) \\
\hline BETA 2,3) & = & 0.0 \\
\hline GAymal 2,3) & = & \(0.13000000000000000+01\) \\
\hline ALPHA 2,4) & \(=\) & 0.0 \\
\hline BETAl 2,4) & = & \(0.10000000000000000+01\) \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
NS11 11 & \(=1\) \\
NS2 13 & \(=0\) \\
NS3(1\()\) & \(=1\) \\
NS4 11 & \(=0\) \\
NS1(21 & \(=1\) \\
NS2(2\()\) & \(=0\) \\
NS3 2\()\) & \(=1\) \\
HS4(2) & \(=0\)
\end{tabular}

HU1\{ 1, i) \(=0.10000000000000000+01\)
HJ3 \(1,\{1)=0.2000000000000000+0 ?\)
HU1 1,2\()=0.10000000000000000+01\) HU3! 1, 2! =

CHANGES in namelist data may have been made for transient calculation OIRICHLET COHOITTGA FOR SPECIES 1 OH SIDE 1
HELi.AN CONDI IOHA FOR SPECIES 1 OH SIDE 2
IELHN CONTIU FOR SPECIES 1 OH SIDE 3 OULIDARY CONDITIOH COEFFICIENTS
```

FOR SRECIES NO.
OR SPECIES NO.
SIDE 1
SIDE 1
SIDE
SIDL 2
SIDE
SIDE
SIDE
SIDE
SIDE
SIDE
IRICHLET CONDITION FOR SPECIES 2 ON SIDE 1
NEUMAN COHDITION FOR SPECIES 2 ON SIDE }
DIRICHLET CONDITION FOR SPECIES 2 ON SIDE 3
NEUYAN CONDITION FOR SPECIES 2 ON SIDE }
NEURAN CONDITION FOR SPECIES ?

```
FOR SPECIES NO. 2
SIOE 1
SIDE 1
SIDE 1
SIDE 2
SIDE 2
SIDE 2
SIDE 3
SIDE 3
SIDE 3
SIDE 4
SIDE 4
SIDE 4
SIDE INDICATORS
FOR SPECIES NO.

FOR SPECIES NO. 2
```

BOUNDARY H FUNCTINN FOR SINES 1 AND 3
FOR MATERIAL INDEX 1 NAD SPECIES NO.
FGR MATERIAL INDEX i AND SPECIES NO. 2

```


BOUNDARY H FUNCTION FOR SIDES 2 AHID 4
FOR MATERIAL IHDEX 1 AND SPECIES NO. 1
FOR MATERIAL INDEX 1 AND SPECIES NO. 2

TIHE GRID FCR TRANSE: it PRINTOUT
NUHEER OF MAJOR TIHE INTERVALS
NUHEER OF SUB_NTERVALS IN EACH MAJOR TIME INTERVAL MAJOR TIME VALUES

LOGICAL INDICATOR FOR WRITING DATASET FOR LATER GRAPHICS
GRAPH NUMBER TO BE ASSOCIATED WITH THIS RUH
PRINT SHITCH IND PRINT SWITCH INDICATORS

ORDIMAPY OIFFERENTIAL EQUATION PACKAGE DATA LOCAL TEMPDRAL ERROR CONTROL
LOCAL TEMPORAL ERR
MAXIHUM ORDER OF TIME INTEGRATION
INITIAL TIME
CONTINUITY IN R DIRECTION (MAY HAVE BEEN RESET)
CONTINUITY IN \(Z\) DIREL.ION (MAY HAVE BEEN RESET)
INITIAL SPLINE COEFFICIENTS PROVIDED FROH
INITIAL SPLINE COEFFICIENTS PRO
A RESTART DUMP, HAHELIST GRID,
A RESTART DUMP, HAHELIST GRID,
INITIAL FIT OR STEADY-STATE CALCULATION

We next consider the use of the Cross Section Plotting (CSP) graphics program in connection with the defect-diffusion problem.

The CSP program is provided with a dummy form of SUBRØUTINE ANAL which is the only user-supplied routine. Since we do not have an analytic solution, we leave the dummy routine as it is.

There are two Namelists required: Namelist FØRMAT and Namelist CSPIN.

\section*{Namelist FGRMAT}
1. Iterative or direct indicator.

Previous versions of DISPL allowed for direct or iterative solution of certain equations. The current version of DISPL1 only allows for the direct version; thus the default value ITRTV \(=0\), MUST be used. ITRTV=0, (Default)
2. Number of curves to be produced per time value.

This variable specifies the number of curves to be produced for each time value. Since there are two equations and each solution is produced once for each time value, use IGNUM=2,
3. Number of grid points for graphical purposes.

This number cannot exceed the macro variable NRES1 which has a value of 501 .

NRESIN=NRES1, (Default)
4. Logical variable for doing space-time plots.

A time plot is not called for.
ITIME=F, (Default)

\section*{Namelist CSPIN}
1. Indicator for grouping format.

The IFØRMT, ISPEC, LGRØUP, and LØRDER variables describe how the curves are to be displayed. For each time value in this example, a single frame will be produced. Within this frame both curver will be plotted and, since these solutions differ considerably in magnitude, they will be put on separate sets of axes. Thus the separate mode is used.

IFØRMT=0, (Default)
2. Estimate of the minimum value of the ordinates

This is defaulted to zero.
YAXMIN=0.0, (Default)
3. Estimate of the maximum value of the ordinate for all curves.

This defaults to one. The CSP program will automatically rescale this value since it is much larger than necessary. YaXMAX \(=1.0\), (Default)
4. Species number for each curve

The next three variables will be two component vectors since IGNUM=2. Associate the first curve with the first specie and the second curve with the second specie. (See Note 10 of the Machine Readable Documentation for more general examples of ISPEC, LGRøUP, and LØRDER.) ISPEC=1,2,
5. Frame number indicator

Since only one frame is generated for each time value:
LGRดUP=1,1, (Default)
6. Ordering of curves on each frame

The plots will be ordered from the bottom to the top of each frame. L \(\emptyset R D E R=1,2\),
7. \(R\) coordinate of first endpoint of cross-section

This is a one-dimensional problem in the R direction. The crosssection will be from \(\left(10^{-6}, 0\right)\) to \(\left(10^{-5}, 0\right)\).
\(\mathrm{A}=1 . \mathrm{E}-6\),
8. R coordinate of second endpoint of cross-section \(\mathrm{A} 2=1 . \mathrm{E}-5\),

The CSP program will provide a frame for each time that printout occurred. Thus there will be a frame corresponding to the \(1^{\text {st }}, 100^{\text {th }}\), and \(141^{\text {st }}\) time step. The following page provides the graph associated with the \(141^{\text {st }}\) step (the steadystate solution). Notice that the time value appearing in the graph is artificial and is only used within DISPL to control integration to steady-state.
```

beginNING CROSS SECtION PLOTtING gRapHICS paCkage
FORMATIING PARAMETERS

| CINEMA MODE | VERSION | NUABER OF GRAPHS FOR EACH TIME | GROUPING FORMAT | ANALYTIC |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 2 | 0 | $F$ |

NRESIN = 501
ITIME = F NUMBER OF TIME VALUES FOR TIME OPTION IS 501
IF ITIME=T, THE SOLUTION IS EVALUATED AT (A1(I),B1(I))
INITIAL ESTIMATE FOR VERTICAL AXES
YAXHIN, YAXMAX
0.00000000E+00 0.00000000E+00
NUMBER FOR RUN IS 1
USER GRAPH FORMAT SPECIFICATIONS
frame number order hithin EaCH FRAME SPECIES Number
FROM TOP TO BOTTOM
1
COORDINATES OF THE ENOPOINTS FTR EACH CROSS SECTION
LINE GIVEN HITH THE C.ORFESFONDING FRAME NUMBER

| FRAME NUTBER | $X 1$ | $Y 1$ | $X 2$, | $Y 2$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $0.10000003 E-05$ | $0.00000000 E+00$ | $0.99999997 E-05$ | $0.00005000 \mathrm{E}+00$ |

The NuHBER OF dISTINCT GRAPHS PRODUCED IS 3
THE END OF THE DATA HAS 3EEN REACHED, program ends.
END OF DISSPLA 9.0 -- }11306\mathrm{ VECTORS GENERATED IN 4 PLOT FRAMES
PROPRIETARY SOFTHARE PRODUCT OF ISSCO, SAN DIEGO, CA.
3488 VIRTUAL STORAGE REFERENCES; 4 READS; O WRITES.

```


Figure 7.6 .1

\section*{APPENDIX}

\section*{List of Symbols}
Section 1 Page
MNumber of species. 4
\(\rho_{\mathrm{i}}\). . . . Mass concentrations, \(\mathrm{i}^{\text {th }}\) species 4
pTotal mass concentration 4
\(\vec{V}_{i}\).Velocity of \(i^{\text {th }}\) species. 4
VLocal mass averaged velocity 4
\(q_{i}\). Rate of production of species \(i\) 4
\(\vec{j}_{i}\). Mass flux relative to \(\vec{V}\). 4
\(\nabla\) .Divergency operator. 4
\(\theta\) .Parameter for conservative/nonconservative form. 5
\(u_{m}\). . . . Dependent variable, \(u_{m}=u_{m}(r, z, t)\) 5
rIrdependent space-like variable 5
zIndependent space-like variable 5
tIndependent time-like variable 5
\(\vec{\nabla}_{\mathrm{m}}\).Convective velocity coefficient 5
\(\bar{D}_{\mathrm{m}}\).Coefficient of Diffusivity 6
\(\left[\rho C_{p}\right]_{m} \cdot\). . Heat capacity coefficient. 6
\(f_{m} \cdot\). . . .Distributed source 6
RSpatial domain 6
NTIR.Number of vertical interfaces 6
NTIZ.Number of horizontal interfaces 6
\(\alpha\).Coefficient \(\alpha(m, s)\) in boundary conditions 7
BCoefficient \({ }_{\beta}(m, s)\) in boundary conditions. 7
\(\gamma\).Coefficient \(\gamma(m, s)\) in boundary conditions 7
hMass transfer coefficient in boundary conditions 7
\(\rho^{0}\). User-specified function in boundary conditions 7
\(\partial R\). Boundary of \(R\). 8
Page
\(\vec{n}\).Exterior unit normal to \(\partial R\) 8
\(h^{g}\).Gap interface coefficient 9
\(u_{m}^{0}\). Initial distribution 10
Section 2
FGeneral term for reaction and distributed source 12
\(R_{s}\).Material subrectangles 12
\(\omega\).Test function in Galerkin procedure 12
\(C^{1}\left(R_{s}\right)\). . . .Class of finctions continuous together with the first derivatives in \(R_{s}\). 12
\(\langle u, \omega\rangle\). . . .Inner prociuct of \(u, \omega\) 12
\(\partial \tilde{R}_{1}\). That part of \(\partial R\) where \(\beta \neq 0\). 12
\(\partial \widetilde{R}_{2}\).That part of \(\partial R\) where no boundary condition is imposed 12
\(\partial R_{0}\). That part of \(\partial R\) where \(\beta=0\). 12
\(\partial k_{s}\). Boundary of \(R_{s}\) 12
\(\Gamma_{s}\).That part of \(\partial R_{s}\) which is an interface 13
\(\pi\).Mesh subdividing an interval 16
kOrder of a polynomial 16
\(\mathbf{P}_{k, \pi}\).Space of piecewise polynomials 16
\&Number of subintervals in 16
\(X_{i}\).Breakpoints in \(\pi\) 16
\(v_{i}\).Smoothness index associated with \(X_{i}\) 16
\(S_{k, \pi,,^{\prime}}\). . .Spline subspace 16
\(g_{k}(\sigma ; s)\). . .Truncated power function \(1 \%\)
\(\left\{\xi_{i}\right\}\).Knots 17
\(M_{i}(s)\). . . Divided difference of \(g_{k}\) 17
\(\mathrm{d}_{\mathrm{j}}\). Multiplicity of knots associated with \(\mathrm{X}_{\mathrm{j}}\) 17
Page
\(N_{i, k}(x)\). . Normalized B-spline 18
NMR Number of additional vertical mesin lines 19
NMZ Number of additional horizontal mesh lines 19
\(A_{i}(r)\). . . Nomalized B-spline in \(r\) 19
\(B_{j}(z)\). . . Normalized B-spline in \(z\) 20
\(N_{r}\left(N_{z}\right)\). . . .Number of normalized B-splines in \(r(z)\) 20
\(s_{i}\).Indicator on side \(i\) for boundary condition type. 20
\(\hat{n}_{r}\left(\hat{n}_{z}\right)\). . . Lower integral bounds 20
\(\hat{N}_{r}\left(\hat{N}_{z}\right)\). . . Upper integrā? bounds 20
\(U_{i, j}^{m}(t)\). . Coefficient in tensor B-spline expansion 20
\(T_{0}\). Set of B-splines associated with essential boundary. 21
T. Set of B-splines which vanish on \(\partial R_{0}\) 21
\({ }^{d} \mu_{r}\).Measure for integration. 22
\(S^{\delta}(R)\). . . . Surface area factor 24
\({ }_{\sigma}{ }^{g}(p)\). . . Vertical gap indices 25
\({ }^{9}(q)\). . . .Horizontal gap indices 25
IL \((\sigma)\). . . . Index of last knot associated with \(r_{\sigma}\) 25
\(\mathrm{JL}(\tau)\). . . . Index of last knot associated with \(\mathrm{z}_{\tau}\). 26
\(C_{\text {man }}\).First order reaction rate coefficient 27
\(C_{m m} m^{\prime \prime}\) • . . . Second order reaction rate coefficient 27
NQR Number of quadrature points in each r interval 31
NQZ . Number of quadrature points in each \(z\) interval 31
Section 3
RSpatial domain 32
RLOW.Left sida of domain. 32
RUP .Right side of domain 32
Page
ZLOW.Bottom side of domain. 32
ZUPTop side of domain 32
DELTAGeometry indicator 32
NTIR.Number of vertical interfaces 32
NTIL.Number of horizontal interfaces. 32
RIFPosition of a vertical interface 32
ZIFPosition of a horizontal interface 32
NMR . . .Number of additional vertical mesh points 32
NMZ Number of additional horizontal mesh points 32
PMESHPositicn of a vertical additional mesh point 33
ZMESHPosition of a ho:izontal additional mesh point 33
NSPECNumber of species. 33
\(u_{m}(r, z, t)\). .Concentration of the \(m\) - \(t h\) species. 33
CONSRV. . . .Logical indicator for convection term. 34
RHOCPHeat capacity subroutine 34
VELConvective velocity subroutine 34
¿TFUSE. . . .Diffusion coefficient subroutine 34
EXTSRC. . . .Distributed source subroutine 34
NIGAPNumber of vertical gap interfaces. 35
HVGAPVertical gap coefficient 35
NJGAPNumber of horizontal gap interfaces. 35
HHGAPHorizontal gap coefficients 35
ALPHABoundary condition coefficient 37
BETA.Boundary condition coefficient 37
GAMMABoundary condition coefficient 37
HUJMass transfer coefficients (\(J=1,4\)) 38
Page
N:SJ Boundary condition side indicators 39
INDATA. . . .Initial data subroutine 39
INITSW. . . .Control program switch 39
STEADY. . . .Control program for steady state calculation 39
TIMEXControl program for transient calculation 39
STEDSW. . . .Control program switch 40
TRANSW. . . .Control program switch 40
GUESS1. . . .Control program for initial estimate 40
GUESSW. . . .Control program switch 40
Section 4
DIFUSE. . . .User subroutine. 41
IMATLMaterial index 41
KSPEC Species index. 41
NSPECNumber of species. 41
TTime, current value. 41
RR.Abscissa 41
ZZ.Ordinate 41
SPDEN Array of concentrations. 41
SPDENR. . . .Array of partial derivatives with respect to \(r\) 41
SPDENZ. . . .Array of partial derivatives with respect to \(z\) 41
UIFUROutput from DIFUSE 41
DIFUZOutpu fiom DIFUSE 41
TI. Initial time 41
VELUser subioutine. 43
VELR.Output from VEL. 43
VELZ.Output froin VEL. 43
Page
BRHø. User subroutine. 43
RHDV. Output from BRHC 43
XX. .Pcsition coordinate on a side. 43
VLBD.Normal component of convestion velocity 44
BDFRDUser subroutine. 45
BRHØDT. . . .User subroutine. 46
BDFRDT. . . User subrcitine. 47
EXTSRC. . . .User subroutine. 48
FDEXTU. . . .User subroutine. 50
INDATA. . . .User subroutine. 53
RHØCP User subroutine. 54
ANAL.'ser subroutine. 54
KR(KZ). . . .Order of B-splines 56
LR(LZ). . . .Numier of subintervals 56
INUR(INUZ). .Vector of continuity indices 56
NRNZ.Number of variables for one species. 56
NVAR.Number of variables. 57
AL.Coeffirient matrix 57
HØRHBW(VERHBW). .Half baradwidths. 57
NI,NJ,NCC . .Ordering parameters. 57
DM.Half bandwidth for AL. 58
FBWFull bandwidth for AL. 58
NiLStorage requirement for AL. 58
ALHSCommon block for AL. 58
PW.Jacobian matrix. 58
MBW . Half bandwidth for PW. 58
MFBW.Full bandwidth for PW. 58
SNPW.Storage requirament for PW 59
GEAR6Common block for PW. 59

\section*{ACKNOWLEDGMENTS}

The authors wish to express their gratitude to T. Chawla for providing the motivation for undertaking this effort. we wish to acknowledge the assistance of G. D. Byrne, D. C. Sorensen, T. Bleakney, and J. Saltzman on earlier versions of this packace. We also express our appreciation to J. Dongarra ard A. Hinds for their help and guidance in optimizing some key loops in this program. Special thanks to J . Beumer for the excellent typing of this report.

\section*{REFERENCES}
[1] Hindmarsh, A. C., GEAR: Ordinary Differential Equation System Solver, Lawrence Livermore Laboratory Report UCID-30001, Rev. 2, Aug. 1972.
[2] De Boor, C., A Practical Guide of Splines, Springer-Veriag, 1978.
[3] De Bcor, C., on Calculating with B-Splines, J. of Approximation Theory 6, 50-62 (1972).
[4] Strang, G. and Fix. G., An Analysis of the Finite Flement Method, Prentica-Hall, Englewood Cliffs, NJ, 1973.
[5] Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in Solide, 0xford University Press, 1948.
[8] Streeter, V. L. and Wylie, E. B., Hydraulic Transients, McGraw-Hill, New York, 1967.
[7] Byrne, G. D. and Hindmarsh, A. C., EPISODEE: An Experimental Package for the Integration of Systems of Ordinary Differential Equations with Banded Jacobians, Lawrence Livermore Laboratory Report UCID-30132, April 30, 1976.
[8] Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Tranaport Phenomena, Wiley \& Sons, New York, 1960.
[9] Prastein, S. M., ed., Argonne National Laboratory Uesr's Guide, June 1976.
[10] DISSPLA, Display Integrated Software System and Plotting Language, Vols. \(I\) and \(I I\), lntegrated Software Systems Corp., 6th printing, December, 1978.
[.11] IBM, IBM System/360 and System/370 FORTRAN IV Language, Order No. GC28-6515-10, Eleventh Edition, May, 1974, New York, New York.
[12] Cook, A. J. and Shustek, L. J., A User's Guide to MORTRAN2, Computation Research Group, Stanford Linear Accelerator Center, CGTM No. 165, Stanford, Califurnia, 1975.

\section*{Distribution for ANL-84-56}

Internal:
K. L. Kliewer
A. B. Krisciunas
G. K. Leăf (20)
P. C. Messina
M. Minkoff (27)
D. M. Pahis
T. N. Woods (2)
G. W. Pieper

ANL Patent Departhient
ANL Contract File
ANL Litraries
TIS Files (6)

\section*{Exterrial:}

DOE-TIC, for distribution per UC.-32 (172)
Manager, Chicago Operations Office, DOE
Mathematics and Computer Science Division Review Committee:
J. L. Bona, U. Chicago
J. C. Browne, U. Texas, Austin
S. Gerhart, Wang Institute,Tynsboro, MA
G. H. Golub, Stanford U.
W. C. Lynch, Xerox Corp., Palo Alto
M. F. Wheeler, Rice U.
L. P. Kadanoff, U. of Chicago (Board of Governors liaison)
U. Ascher, U. of British Columbia
D. Austin, Office of Basic Energy Sciences, DOE
J. Bolstad, Calif. Inst. of Technology
G. Byrne, Exxon Research and Engineering Co.
T. Chan, Yale U.
A. Curtis, AERE Harwell, United Kingdom
P. Deuflrard, U. Heidelberg, West Germany
D. Evans, Loughborough U. of Technology
K. Fong, LLL
P. Gaffney, Christian Michelsen Inst., Norway
U. Garcia-Palomares, U. Simon Bolivar, Venezuela
m. Ginsberg, General Motors Research Labs
C. Hamrin, U. of Kentucky
A. Hindmarsh, LLL
J. Hyman, LANL.
G. Koopmans, KEMA, The Netherlands
K. Jackson, U. of Toronto
K. Jordan, Exxon Research and Engineering Co.
G. Klinzing, U. of Pittsburgh
R. Klopfenstein, RCA Labs
B. Lindberg, KTH, Sweden
N. Madsen, LLL.
P. Merz, Chevron Research Co.
G. Michae1, LLL
E. Oliver, Office of Basic F.nergy Sciences, DOE
L. Petzold, Sandia Laboratories
R. Russell, U. of New Mexico
N. Schryer, Bell Laboratories
L. Shampine, Sandia Laboratories
R. Sincovec, U. of Colorado, Colorado Springs
R. Sweet, National Bureau of Standards```

[^0]: ${ }^{\dagger}$ When specifying the indicators NS1 (K), NS2 $(K), N S 3(K)$, and NS4(K) in Namelist DATA (pp. 74-75), the user must be sure to also specify the corresponding values of ALPHA $(K, I), \operatorname{BETA}(K, I)$, and $\operatorname{GAMMA}(K, I)$. These values can be specified directly or by use of the logical indicators $\operatorname{DRCHLT}(\mathrm{K}, \mathrm{I})$ or $\operatorname{NEUMAN}(\mathrm{K}, \mathrm{I})$.

[^1]: It should be emphasized that the output from PRDUT (whether from STEADY or TIMEX is laid out just as if one were looking at the domain. That is, the output consists of a series of rows of numbers. Each row has values corresponding to ascending values of RGRID. The first row corresponds to the largest value of ZGRID while the last row corresponds to the smallest value of ZGRID.

