DOE/TIC-11026

Radioactive Decay Data Tables

A Handbook of Decay Data for Application to Radiation Dosimetry and Radiological Assessments

David C. Kocher

Office of Scientific and Technical Information U. S. DEPARTMENT OF ENERGY

ABOUT THE OFFICE OF SCIENTIFIC AND TECHNICAL INFORMATION

The Department of Energy's Scientific and Technical Information Program (STIP) is carried out at many levels within the Department and by its contractor organizations. The Office of Scientific and Technical Information (OSTI) in Oak Ridge, Tennessee, provides direction and leadership for STIP and serves as DOE's national center for scientific and technical information management and dissemination. Both DOE-originated information and worldwide literature regarding advances in subjects of interest to DOE researchers are collected, processed, and disseminated through an energy information system maintained by OSTI. The major data bases in this system are available within the United States through commercial on-line systems and to those outside the United States through formal governmental exchange agreements. The current-year records for the major data base, plus a number of specialized data bases, are available to DOE offices and contractors through OSTI's Integrated Technical Information System (ITIS). ITIS also serves as a gateway to other government and commercial systems and provides information merging for customized information products. To manage DOE's information resources effectively, DOE's Scientific and Technical Information Program is one of continual development and evaluation of new information products, systems, and technologies.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DOE/TIC-11026 (DE81002999)

Radioactive Decay Data Tables

A Handbook of Decay Data for Application to Radiation Dosimetry and Radiological Assessments

> David C. Kocher Health and Safety Research Division Oak Ridge National Laboratory

> > 1981

Published by Office of Scientific and Technical Information U. S. DEPARTMENT OF ENERGY

Library of Congress Cataloging in Publication Data

Kocher, David C. Radioactive decay data tables.

"DOE/TIC-11026" 1. Radioactive decay—Tables. I. Title. [DNLM: 1. Radioactivity—Tables. WN 16 K76r] QC795.8.D4K62 539.7'5 81-607800 ISBN 0-87079-124-9 AACR2

Available as DE81002999

National Technical Information Service U S. Department of Commerce 5285 Port Royal Road Springfield, Virginia 22161

DOE Distribution Category UC-41 Price Code: Paper Copy A11 Microfiche A01

Printed in the United States of America April 1981; latest printing November 1988

Radioactive Decay Data Tables

This compilation of radioactive decay data culminates 8 years of effort in the field of nuclear data compilation and evaluation. During the first $4\frac{1}{2}$ years of this time, I worked with the Nuclear Data Project in the Physics Division at Oak Ridge National Laboratory (ORNL). The primary interest of this group is the evaluation of a wide variety of nuclear physics data to determine the structure and properties of atomic nuclei, and its most visible contribution to nuclear structure physics is the mass-chain evaluations published in the journal *Nuclear Data Sheets*.

In 1976, I joined the Technology Assessments Section of the Health and Safety Research Division at ORNL. Since that time I have been concerned with the evaluation and compilation of radioactive decay data from the point of view of its application to radiation dosimetry and radiological assessments. Initially, I prepared a data base of evaluated decay data for 240 radionuclides of potential importance in the nuclear fuel cycle. This data base was adopted for use by the U. S. Nuclear Regulatory Commission, and the data were published in August 1977 as the report ORNL/NUREG/TM-102.

The radioactive decay data tabulated in this handbook result from the continual expansion and updating of the data base published in the aforementioned report. In addition to the radionuclides of interest in the nuclear fuel cycle, the data base now comprises most of the nuclides occurring naturally in the environment, those of current interest in nuclear medicine and fusion reactor technology, and some (but hardly all!) additional radionuclides of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits of intake and derived air concentrations for occupationally exposed individuals. Approximately 500 radionuclides are contained in the current data base, and our recent experience suggests that almost all radionuclides of potential impact on the general public or occupationally exposed individuals have been included. The data for each radionuclide have been maintained on an up-to-date basis by examination of all recent experimental results published in the open literature and incorporation of these results into the data base whenever warranted. The data base takes into account all experimental results reported to me prior to July 1, 1979.

Several compilations of radioactive decay data similar in some respects to this one have been published in recent years. Particularly noteworthy are the compilations by L. T. Dillman and F. C. Von der Lage, published in 1975 in Pamphlet No. 10 of the Medical Internal Radiation Dose Committee, and M. J. Martin of the Nuclear Data Project, published in 1978 in Report No. 58 of the National Council on Radiation Protection and Measurements. The proliferation of published compilations containing data for large numbers of radionuclides is testimony to the successful application of computers to the processing of data bases of this type.

In spite of the apparent similarities between the different compilations, there are some differences of importance to potential users of the data. The most obvious is the particular selection of radionuclides. More subtle differences may result from the various methods used to select and evaluate data from the literature and to prepare the data sets. It is worth emphasizing that there is a considerable degree of subjectivity in this process and two knowledgeable compilers can therefore produce somewhat different decay schemes for a given radionuclide starting from the same data in the literature. We note, however, that the differences would likely be within experimental uncertainties unless the decay scheme is poorly determined from the data.

In the preparation of the decay data in this handbook, the fundamental principle has been to critically evaluate the available data from all source: in the open literature and attempt to construct the most accurate decay scheme consistent with the data rather than simply to adopt a decay scheme proposed by another compiler or experimenter without further examination. The evaluation process is not always foolproof, however, since the compiler is occasionally faced with reconciling or choosing between disparate sets of data, and the choices made may not prove to be correct. It is clear, therefore, that the biases of the compiler can play an important role in the process of selecting and evaluating data. It is hoped that my biases and data-evaluation philosophy have been applied reasonably consistently to obtain the adopted data sets for all the radionuclides contained herein.

I cannot overemphasize the importance of the contributions of the staff of the Nuclear Data Project and other compilers who have published mass-chain compilations in the journals *Nuclear Data Sheets* and *Nuclear Physics* to the successful completion of this work. I am particularly grateful to W. B. Ewbank, director of the Nuclear Data Project, for his continual assistance and cooperation throughout this effort.

The Nuclear Data Project maintains a computer file called the Evaluated Nuclear Structure Data File (ENSDF). Radioactive decay data sets written in the ENSDF format were used to generate the tables of decay data given in this handbook. When work on this compilation began early in 1976, much of the radioactive decay data previously published in *Nuclear Data Sheets* and *Nuclear Physics* had not yet been entered in ENSDF. Consequently considerable effort was required on my part to prepare many of the data sets in the proper format. In the meantime, however, ENSDF has been expanded to currently include more than 1500 radioactive decay data sets. If a compiler were to begin now to assemble a compilation such as the one presented in this handbook, he or she would be able to rely almost exclusively on data sets already contained in ENSDF, and little additional effort in evaluating data and producing new data sets would be required. Thus it is my intention in the future to rely on ENSDF rather than continually updating a separate data base of my own to provide additional radioactive decay data that might be needed in the radiological assessment activities of the Health and Safety Research Division.

It is worth noting that, with few exceptions, the decay data contained in this handbook are not likely to change significantly over the next few years as the result of new measurements. Most of the decay schemes have been studied with reasonable care and accuracy, and only minor improvements in the data of little significance for radiological applications can be expected. Thus I anticipate that the data contained in this handbook and in other recent compilations can be used with confidence for a considerable period of time.

I would like to express my appreciation to G. G. Killough, R. O. Chester, P. S. Rohwer, and S. V. Kaye of the Health and Safety Research Division at ORNL and to F. Swanberg, Jr., of the Division of Safeguards, Fuel Cycle, and Environmental Research at the Nuclear Regulatory Commission for their support and encouragement of this effort. This research was sponsored by the Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, under Interagency Agreement DOE 40-550-75 with the U.S. Department of Energy under contract W-7405-eng-26 with the Union Carbide Corporation.

> David C. Kocher Health and Safety Research Division Oak Ridge National Laboratory

Radioactive Decay Data Tables

i

Preface		iii				
Chapter 1	Introduction					
	References					
Chapter 2	Review of Radioactive Decay					
	Processes					
	2-1 Alpha Decay	3				
	2-2 Beta Decay	4				
	2-3 Electromagnetic De-Excitation					
	of Nuclear Energy Levels	5				
	2-4 Atomic Radiations	7				
	References					
Chapter 3	Preparation of Radioactive					
	Decay Data Sets					
	3-1 ENSDF Formats	9				
	3-2 Preparation of Decay					
	Data Sets	11				
	References	14				
Chapter 4	Computer Code MEDLIST and					
	Description of Tables of					
	Radioactive Decay Data					
	Reference	17				
Chapter 5	Chapter 5 Applications of Decay Data					
	to Radiation Dosimetry and					
	Radiological Assessments	18				
	References	19				

Chapter 6	Parent—Daughter Activity	
	Ratios	20
	References	20
Chapter 7	Accuracy of the Data and	
	Uncertain Decay Schemes	21
	7-1 Uncertain Decay Data for	
	Radionuclides from the	
	Nuclear Fuel Cycle	21
	7-2 Uncertain Decay Schemes for	
	Other Radionuclides	23
	Reference	25
Appendix 1	Symbols and Definitions	26
Appendix 2	2 Index to Tables of Radioactive Decay Data	27
Appendix 3	3 References for Radioactive Decay Data Sets	36
Appendix 4	Diagrams of Radioactive Decay Chains	49
Appendix 5	 Tables of Radioactive Decay Data 	68

Introduction

The estimation of radiation dose to man from either external or internal exposure to radionuclides requires a knowledge of the energies and intensities of the atomic and nuclear radiations emitted during the radioactive decay process. The availability of evaluated decay data for the large number of radionuclides of interest is thus of fundamental importance for radiation dosimetry.

This handbook contains a compilation of decay data for approximately 500 radionuclides. These data constitute an evaluated data file that I have constructed for use in the radiological assessment activities of the Technology Assessments Section of the Health and Safety Research Division at Oak Ridge National Laboratory.

The radionuclides selected for this handbook include those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals. This handbook supersedes a previous report,¹ which was concerned only with radionuclides from the nuclear fuel cycle.

The physical processes involved in radioactive decay which produce the different types of radiation observed are discussed in Chap. 2. The methods used to prepare the decay data sets for each radionuclide in the format of the computerized Evaluated Nuclear Structure Data File (ENSDF),² developed and maintained by the Nuclear Data Project at Oak Ridge National Laboratory, are described in Chap. 3. Some

of the discussion in Chaps. 2 and 3 is probably not comprehensible to readers lacking a basic knowledge of atomic and nuclear structure. Without deviating substantially from the scope of this handbook, it is difficult to adequately define such concepts as spin and parity, gamma-ray transition multipolarity, forbiddenness of beta transitions, and energy levels of nuclei and orbital atomic electrons. The inclusion of the material of a specialized nature should provide the interested reader with a reasonably self-contained description of the decay data and how they were obtained, but these discussions should not preclude proper interpretation of the data tables by any interested user.

Chapter 4 describes the tables of radioactive decay data and the computer code MEDLIST used to produce the tables.³ Some applications of the radioactive decay data to problems of interest in radiation dosimetry and radiological assessments are described in Chap. 5. The calculation of the activity of a daughter radionuclide relative to the activity of its parent in a radioactive decay chain is described in Chap. 6. Chapter 7 discusses the accuracy of the decay data in this handbook with particular emphasis on radionuclides for which the data may be significantly in error with regard to applications to radiation dosimetry.

The symbols appearing in the tables of decay data and their definitions are listed in Appendix 1. Appendix 2 provides an index of the tables of radioactive decay data, and Appendix 3 contains the literature references on which the tables are based. Appendix 4 gives diagrams of all decay chains involving two or more radionuclides in the present compilation. The tables of radioactive decay data are presented in Appendix 5. This handbook is one of several similar compilations of radioactive decay data which have appeared in recent years. Particularly recommended is the compilation by Dillman and Von der Lage,⁴ which contains data for 122 radionuclides of interest to nuclear medicine, and the compilation prepared by M. J. Martin of the Nuclear Data Project for the National Council on Radiation Protection and Measurements,⁵ which contains data for about 210 radionuclides of interest primarily to nuclear medicine and the nuclear fuel cycle. I have independently reevaluated decay data for all radionuclides in the previous compilations which are included in this compilation.

REFERENCES

1. D. C. Kocher, Nuclear Decay Data for Radionuclides Occurring in Routine Releases from Nuclear Fuel Cycle *Facilities,* ERDA Report ORNL/NUREG/TM-102, Oak Ridge National Laboratory, 1977, NTIS.

- W. B. Ewbank and M. R. Schmorak, Evaluated Nuclear Structure Data File—A Manual for Preparation of Data Sets, ERDA Report ORNL-5054/R1, Oak Ridge National Laboratory, 1978, NTIS.
- M. J. Martin (Ed.), Nuclear Decay Data for Selected Radionuclides, ERDA Report ORNL-5114, Oak Ridge National Laboratory, 1976, NTIS.
- L. T. Dillman and F. C. Von der Lage, Radionuclide Decay Schemes and Nuclear Parameters for Use in Radiation-Dose Estimation, Pamphlet 10, Society of Nuclear Medicine, New York, 1975.
- National Council on Radiation Protection and Measurements, A Handbook of Radioactivity Measurements Procedures, Report No. 58, 1978.

Review of Radioactive Decay Processes

The term "radioactivity" denotes those spontaneous changes of state in atomic nuclei which release energy in the form of electromagnetic or particle radiations. This chapter discusses briefly the different radioactive decay processes in sufficient detail to allow an understanding of the tables in Appendix 5. This presentation and the discussions in Chaps. 4 and 6 follow closely those given previously by Martin.^{1,2} For examples of more-detailed discussions of radioactive decay processes, the reader is referred to the report by Dillman³ and the reference work of Siegbahn.⁴

In this compilation we are concerned with alpha decay, beta decay [including β^- , β^+ , and electron capture (EC)], isomeric transitions (i.e., the decay of long-lived excited states of a nucleus to states of lower energy in the same nucleus), and the various atomic and nuclear radiations that accompany these processes. Nuclear radiations are those which result directly from a change of state of the nucleus and include alpha particles, β^- and β^+ particles, gamma rays, and internal conversion electrons. Atomic radiations are those which result from the subsequent changes of state of the orbital electrons in the daughter atom and include X rays and Auger electrons.

A radioactive decay process not considered in this compilation is spontaneous fission, which can be the most important mode of decay in terms of total energy released for some of the transuranic radionuclides. Methods for estimating energy distributions of neutrons, prompt and delayed gamma rays, and beta particles, as well as the average energies of these radiations, have been given by Dillman and Jones.⁵

A type of radiation also not considered in this compilation is bremsstrahlung, which is the gamma

radiation produced when electrons emitted in radioactive decay are slowed down by passage through matter. Bremsstrahlung forms a continuous spectrum of energies ranging from zero energy to the kinetic energy of the emitted electron with the intensity distribution considerably skewed toward the lower energies. Intensities of bremsstrahlung from slowing down of alpha particles and other heavy charged particles, such as recoil nuclei and fission fragments, are expected to be very small compared with electron bremsstrahlung. Bremsstrahlung consists of two types, external and internal. External bremsstrahlung results from the interaction of the emitted electrons with the atoms in the material surrounding the radiating atom; so the energy spectrum depends on the atomic composition of the surrounding medium. In some cases, particularly for radionuclides that emit only beta particles, external bremsstrahlung can be of importance in radiation dosimetry. Methods for calculating external bremsstrahlung in such materials as air, muscle, fat, and bone have been implemented by Dillman.³ Internal bremsstrahlung occurs as an electron is being ejected from the decaying nucleus itself and thus may be considered an inherent part of the radioactive decay process. Internal bremsstrahlung is also discussed in the report by Dillman.³ In general, this radiation can be neglected for the purposes of radiation dosimetry because of its low intensity and low average energy.

2–1 ALPHA DECAY

In alpha decay an atom with atomic number Z and mass number A emits an alpha particle (a ⁴He nucleus with Z = 2 and A = 4) producing a daughter

atom with atomic number Z-2 and mass number A-4. The difference in total energy between the initial state in the parent atom and the final state in the daughter is divided between the emitted alpha particle and the recoil energy of the daughter. From conservation of energy and momentum, the energy of the alpha particle for a particular transition, E_{α} , can be written as

$$E_{\alpha} = \frac{E}{1 + (4.0026/M_d)}$$
(2.1)

$$\mathsf{E} = \mathsf{Q}_{\alpha} + \mathsf{E}_{\mathsf{p}} - \mathsf{E}_{\mathsf{L}} \tag{2.2}$$

where E = total transition energy

- Q_{α} = difference in energy between the ground states of the parent and daughter atoms
- E_p = excitation energy of the alpha-emitting level in the parent (E_p = 0.0 | except for an isomeric level)
- E_L = excitation energy of the level in the daughter fed by the alpha decay
- M_d = atomic mass of the daughter

and 4.0026 is the atomic mass of an alpha particle. The recoil energy of the daughter is given by

$$E_r = E - E_{\alpha} = \frac{4.0026 E_{\alpha}}{M_d}$$
 (2.3)

The recoil energy of the daughter has not been included in the tables of decay data in this handbook, but this energy should be taken into account, for example, in estimating the dose from internally deposited alpha-emitting radionuclides.

Alpha transitions that feed excited states of the daughter nucleus are usually accompanied by additional prompt radiations (e.g., gamma rays and internal conversion electrons) as the excited state decays to the ground state of the daughter. These processes are described in Sec. 2-3. Except for alpha decays to an isomeric state in the daughter, which is then treated as a separate radionuclide, these additional radiations are included in the decay scheme of the parent radionuclide.

2–2 BETA DECAY

Beta decay includes the processes of β^- , β^+ , and electron capture decay. As with alpha decay, the prompt radiations resulting from the de-excitation of excited states in the daughter nucleus produced by

2–2.1 β^- Decay

In β^- decay, an antineutrino $(\overline{\nu})$ and a negative electron (β^-) are emitted from the nucleus as a result of the transformation of a neutron into a proton:

$$n \rightarrow p + \beta^{-} + \overline{\nu}$$

Therefore the decay increases the atomic number by one unit, but the mass number remains the same. Because two different radiations are emitted from the nucleus (beta decay is a so-called three-body process), the energy released in a single β^- transition is divided between the β^- particle and the antineutrino in a statistical manner. Thus, when a large number of transitions between the same two energy levels in the parent and daughter is considered, the β^- particles (and the antineutrinos) have a continuous kinetic energy distribution from zero energy to a maximum value called the endpoint energy. From conservation of energy, the endpoint energy for a β^- transition is given by

$$E^{max}(\beta^{-}) = Q^{-} + E_{p} - E_{L}$$
 (2.4)

where Q^- is the energy difference between the ground states of the parent and daughter atoms and E_p and E_L are the same as in Eq. 2.2.

For application to radiation dosimetry, the quantity of interest for a continuous spectrum from β^- decay is often the average energy, $\overline{E}(\beta^-)$, defined as

$$\overline{E}(\beta^{-}) = \frac{\int_{0}^{E^{\max}(\beta^{-})} N_{\beta}^{-}(E) E dE}{\int_{0}^{E^{\max}(\beta^{-})} N_{\beta}^{-}(E) dE}$$
(2.5)

where $N_{\beta}^{-}(E)$, called the probability distribution function, is the probability that a β^{-} particle has energy between E and E + dE. The probability distribution function is obtained from the Fermi theory of beta decay, as described by Gove and Martin.⁶ This function depends on the so-called degree of forbiddenness of the transition, which is determined by the changes in total angular momentum (spin) and parity between the initial state in the parent and the level fed in the daughter. In this compilation, the beta transitions are assumed to have the probability distribution function for an allowed transition unless the spin (J) and parity (π) change is $\Delta J^{\pi} = 2^{-}$ or 3^{+} , in which case the distribution function for a first-forbidden unique transition or a second-forbidden unique transition is used.

2–2.2 β^+ Decay

In β^* decay a neutrino (ν) and a positron (β^*) are emitted from the nucleus as a result of the transformation of a proton into a neutron:

$$p \rightarrow n + \beta^+ + \nu$$

As in β^{--} decay, the β^{+} particles emitted in a transition between particular levels in the parent and daughter nuclei have a continuous distribution of energies that can be characterized by the endpoint, $E^{max}(\beta^{+})$, and average, $\tilde{E}(\beta^{+})$, energies. The β^{+} -decay process decreases the atomic number by one unit, and the mass number remains the same. From conservation of energy, the endpoint energy for a β^{+} transition is given by

$$E^{max}(\beta^{+}) = Q^{+} + E_{p} - E_{L} - 2m_{0}c^{2}$$
 (2.6)

where Q⁺ is the energy difference between the ground states of the parent and daughter atoms, m_0c^2 is the rest mass energy of an electron (511 keV), and E_p and E_L are as defined in Eq. 2.2. We note that β^+ decay cannot occur unless the energy difference between the parent and daughter levels is greater than $2m_0c^2 = 1022$ keV. That part of the total transition energy which is "lost" in the formation of the two electron rest masses is normally "regained" when the emitted positron annihilates at rest in the matter surrounding the decaying atom, producing two 511 keV annihilation gamma rays. The small probability of positron annihilation in flight can be ignored.

As with β^- decay, the probability distribution function $N^*_{\beta}(E)$ for β^+ particles is obtained by using the Fermi theory of beta decay for an allowed transition, with an appropriate correction for known first-forbidden unique or second-forbidden unique transitions.⁶

2-2.3 Electron Capture Decay

In electron capture decay an atomic electron is captured by the nucleus, which transforms a proton into a neutron, and a neutrino is emitted via the process

$$p + e^- \rightarrow n + \nu$$

Thus, like β^* decay, electron capture decay decreases the atomic number by one unit, and the mass number remains the same. The capture of an atomic electron leaves the daughter atom with a vacancy in one of its atomic energy levels, which are also called atomic shells. If Δ_X^E is defined as the electron binding energy for shell X in the daughter atom (i.e., the energy required to remove an electron in shell X from the atom), the total energy available for electron capture decay is

$$E_{EC} = Q^{\dagger} + E_{p} - E_{L} - \Delta_{X}^{E}$$
(2.7)

where Q^{\dagger} , E_p , and E_L are as defined in Secs. 2-1 and 2-2.2. Thus the energy available for electron capture decay is greater than that available for β^{\dagger} decay (see Eq. 2.6) by an amount equal to two electron rest masses minus a small correction for the orbital electron binding energy in the shell X from which electron capture occurs. The electron binding energies used in this work are obtained from Bearden and Burr.⁷

For a given transition, the vacancy resulting from atomic electron capture will be distributed among the various shells, denoted by K, L, M, etc., in order of decreasing binding energy. This distribution affects the relative intensities of X rays and Auger electrons that result from the filling of the initial vacancy by an electron from a higher (less tightly bound) atomic shell. The probabilities for K-, L-, and M-shell capture for allowed, first-forbidden unique, and secondforbidden unique electron capture transitions are calculated as described by Gove and Martin.⁶ If K-shell electron capture is energetically allowed, it generally has a higher probability than capture from higher atomic shells. The report by Dillman³ discusses electron capture decay in more detail.

Electron capture always competes with β^* decay whenever the transition energy is greater than $2m_0 c^2$ (1022 keV). In general, the probability for electron capture relative to positron emission increases with decreasing transition energy and with increasing atomic number. When the transition energy is too small to allow positron emission, only electron capture decay occurs.

2–3 ELECTROMAGNETIC DE EXCITATION OF NUCLEAR ENERGY LEVELS

Most of the excited states of a daughter nucleus formed by alpha or beta decay of a parent decay very

rapidly via electromagnetic processes to states of lower energy (eventually to the ground state) in the daughter. The de-excitation results in the emission of either gamma rays or internal conversion electrons. Long-lived isomeric states may also decay to lower energy states in the same nucleus via electromagnetic transitions.

2-3.1 Gamma Radiation

When a gamma ray (γ) is emitted by a nucleus in a transition from a higher to a lower energy state, the gamma-ray energy is equal to the energy difference between the two levels minus the energy of nuclear recoil given by

$$E_r \simeq 5.4 \times 10^{-7} \frac{[E(\gamma)]^2}{A} \text{ keV}$$
 (2.8)

where $E(\gamma)$ is the gamma-ray energy in kilo electron volts (keV) and A is the mass number of the nucleus. The energy of nuclear recoil is usually negligible except for high-energy transitions in light nuclei.

2–3.2 Internal Conversion Electrons

The emission of internal conversion electrons (ce) competes with gamma-ray emission. In this process the energy difference between the initial and final states in the nucleus is transferred directly to a bound atomic electron which is then ejected from the atom. The energy of an internal conversion electron emitted from atomic shell X, $E_{ce,X}$, is given in terms of the corresponding gamma-ray energy $E(\gamma)$ by

$$\mathsf{E}_{\mathsf{ce},\mathsf{X}} = \mathsf{E}(\gamma) - \Delta_{\mathsf{X}}^{\mathsf{E}} \tag{2.9}$$

where $\Delta_{\mathbf{X}}^{\mathbf{E}}$ is the electron binding energy in shell X.

The emission of K-shell internal conversion electrons can occur only if the transition energy is greater than the K-shell binding energy and similarly for higher electron shells. For a particular transition, the ratio of the probability for emission of a K-shell electron to the probability for emission of a gamma ray is called the K-shell internal conversion coefficient. Internal conversion coefficients for the other atomic shells are defined in an analogous manner. Internal conversion for shells above the K-shell is often divided according to the contributions from the different subshells; e.g., L-shell internal conversion is calculated separately for the L_1 -, L_2 -, and L_3 -subshells.

The internal conversion coefficients for the different atomic shells and subshells depend on the

transition energy, the atomic number of the nucleus. and the so-called transition multipolarity, which is determined by the spin-parity change between the initial and final states in the nucleus.* In general, the internal conversion coefficient for a particular atomic shell or subshell increases with decreasing transition energy (as long as the particular internal conversion process is energetically allowed), increasing atomic number, and increasing transition multipolarity. Internal conversion is often negligible for transitions in light nuclei but may occur with nearly 100% probability in isomeric transitions with high multipolarity or in low-energy transitions in heavy nuclei. Usually, the internal conversion coefficient for a given transition is largest for the innermost shell for which internal conversion is energetically possible and decreases for each higher shell. Exceptions occur, however, for transition energies slightly greater than the binding energy of an atomic shell. The ratios of internal conversion coefficients among the different subshells of the L or M shell are often a sensitive indicator of the transition multipolarity.

A special type of electromagnetic transition is the monopole transition, for which the spins of the initial and final states are both zero. In this case the emission of a single gamma ray is strictly forbidden. Electric monopole (E0) transitions usually occur entirely by means of internal conversion or, if energetically possible, by emission of a positron electron pair. Emission of two gamma rays is also possible but is usually negligible. Magnetic monopole (M0) transitions are not encountered in this work.

In this compilation the theoretical internal conversion coefficients for shells K, $L_{1...3}$, and $M_{1...5}$ are obtained by spline interpolation from the tables of Hager and Seltzer⁸ and Band, Trzhaskovskaya, and Listengarten;⁹ for E5 and M5 transitions, the values are obtained by polynomial interpolation from the tables of Sliv and Band.^{10,11} Internal conversion coefficients for shells N + O + ... are obtained by spline interpolation from the tables of Dragoun,

^{*}The emitted radiation is classified into two multipole types, electric and magnetic. For a spin change of L units, an electric multipole type EL involves a parity change of $(-1)^{L}$, and a magnetic multipole type ML has parity change $(-1)^{L+1}$. For example, E1 denotes an electric dipole transition between states differing in spin by one unit and having opposite parity, M1 is a magnetic dipole transition with L = 1 and no change in parity, and E2 is an electric quadrupole transition with L = 2 and no change in parity. For increasing L, the transition is said to be of higher multipolarity.

Plajner, and Schmutzler.¹² For E0 transitions, the conversion electron intensity ratios K/L_1 and L_1/L_2 are obtained by graphical interpolation from the tables of Hager and Seltzer.¹³

2–3.3 Other Radiations

Other radiation processes besides emission of a single gamma ray or internal conversion electron can occur during the de-excitation of a nuclear energy level. If the transition energy is greater than $2m_0 c^2$ (1022 keV), an alternative decay mode is emission of a positron-electron pair, which is an electromagnetic process taking place in the Coulomb field of the excited nucleus. Since the probability of pair formation is normally 0.003 per emitted gamma ray or less,³ this process has been neglected in this compilation. We have also neglected other very unlikely processes, such as the emission of two gamma rays or one gamma ray and one internal conversion electron.

2–4 ATOMIC RADIATIONS

The nuclear decay processes of electron capture and internal conversion always produce a vacancy in an inner atomic electron shell. The filling of this vacancy by an electron from an outer shell to reduce the total energy of the atomic electrons results in the emission of either an X ray or an Auger electron, which we call the atomic radiations in the radioactive decay process. Vacancies that are created by the filling of the initial vacancy will, in turn, produce further X rays or Auger electrons. This cascade of radiations continues until the only remaining vacancies are in the outermost electron shell.

2-4.1 X Rays

An X ray is a photon emitted as a result of the filling of a vacancy in an atomic shell by an electron from a higher shell. The energy of the emitted X ray is just equal to the difference in energy between the two atomic shells.

The probability that a vacancy in a particular atomic shell results in the emission of an X ray is called the fluorescence yield for that shell. The K-shell fluorescence yield, for example, is denoted by $\omega_{\rm K}$. If $n_{\rm K}$ is the number of vacancies produced in the K-shell per decay of the parent, the number of K X rays per decay is $n_{\rm K}\omega_{\rm K}$ and similarly for higher shells. In this compilation we consider only K-shell

and L-shell X rays, for which the adopted fluorescence yields are obtained from the review of Bambynek et al.¹⁴

A K X ray results from the filling of a K-shell vacancy by an electron from a higher shell. A transition from shell Y to the K-shell is denoted by K-Y. In order of increasing intensity, the most important K X rays are $K_{\alpha 1} = K - L_3$, $K_{\alpha 2} = K - L_2$, $K_{\beta 1} = K - M_3$, $K_{\beta 2} = K - N_3$, $K_{\beta 3} = K - M_2$, $K_{\beta 4} = K - N_2$, and $K_{\beta 5} = K - M_4$. In this compilation the energies and intensities for three K X-ray groups are given explicitly—the $K_{\alpha 1}$ and $K_{\alpha 2}$ lines and the composite $K_{\beta} = \Sigma K_{\beta i}$ group. The X-ray energies are obtained from Bearden and Burr,⁷ and the intensity ratios K_{β}/K_{α} and $K_{\alpha 2}/K_{\alpha 1}$ are obtained from Rao, Chen, and Crasemann.¹⁵

As previously mentioned, the number of K X rays per decay is $n_K \omega_K$. The number of K-shell vacancies per decay is the sum of the vacancies produced by K-shell electron capture and those produced by internal conversion in the K-shell. Thus

$$n_{K} = \epsilon_{K} + I_{ce,K}$$
(2.10)

where e_K is the number of K captures per decay and $I_{ce,K}$ is the number of K-shell internal conversion electrons per decay.

As with K-shell X rays, many separate transitions contribute to the L X-ray spectrum. However, since the relative intensities of the different transitions are not known for all atomic numbers and the energy differences between the strong transitions are small ($\leq 3 \text{ keV}$ for $Z \leq 92$), we have treated the total L X-ray intensity as a single group having the energy of the strongest transition.

The calculation of the number of L X rays per decay, $n_L\omega_L$, is similar to the calculation for K X rays, except that, in addition to initial vacancies produced by direct L-shell electron capture and by L-shell internal conversion, vacancies created by transfer of L-shell electrons to fill vacancies in the K-shell must be taken into account. Therefore the number of L-shell vacancies per decay is given by

$$n_{L} = \epsilon_{L} + I_{c,e,L} + n_{KL} n_{K} \qquad (2.11)$$

where n_{KL} is the number of vacancies in the L shell created per vacancy in the K-shell and the other symbols have meanings analogous to those in Eq. 2.10. The values of n_{KL} were obtained from Bambynek et al.¹⁴

2–4.2 Auger Electrons

The emission of Auger electrons competes with the emission of X rays as a means of carrying off the energy released by filling an inner-shell vacancy with an electron from an outer shell. A detailed discussion of the Auger process is given by Dillman.³

In the Auger process the filling of an inner-shell vacancy is accompanied by the simultaneous ejection of an outer-shell electron from the atom. The resulting atom is thus left with two vacancies. From the definition of the fluorescence yield given in the previous section, the yield of Auger electrons per decay of the parent for a particular atomic shell is $n_K(1 - \omega_K)$, $n_L(1 - \omega_L)$, etc.

If the initial vacancy is in the K-shell and if this vacancy is filled by an electron from shell X with the ejection of an electron from shell Y, the transition is denoted by KXY. The energy of the ejected electron is $E_{K} - E_{X} - E'_{Y}$, where E_{K} and E_{X} are the K- and X-shell electron binding energies in the neutral atom, respectively, and E'_{Y} is the binding energy of a Y-shell electron in an atom containing a vacancy in the X-shell. The most intense K Auger transitions are of the type KLL. In this compilation the K Auger electrons are treated as a single group having the energy of the strongest transition (KL_2L_3) , because the relative intensities of the different electrons in the KLL group are not accurately known for all atomic numbers and the energy difference between transitions is small ($\leq 5 \text{ keV}$ for $Z \leq 92$). The energy of the strongest KLL transition is obtained from Bergstrom et al.¹⁶

Very little is known about the energies or relative intensities of individual L Auger electrons. In this compilation the L Auger electrons are treated as a single group having the energy of an $L_3M_4M_5$ transition.

REFERENCES

 M. J. Martin (Ed.), Nuclear Decay Data for Selected Radionuclides, ERDA Report ORNL-5114, Oak Ridge National Laboratory, 1976, NTIS.

- National Council on Radiation Protection and Measurements, A Handbook of Radioactivity Measurements Procedures, Report No. 58, 1978.
- L. T. Dillman, EDISTR—A Computer Program to Obtain a Nuclear Decay Data Base for Radiation Dosimetry, USDOE Report ORNL/TM-6689, Oak Ridge National Laboratory, 1980, NTIS.
- K. Siegbahn (Ed.), Alpha-, Beta-, and Gamma-Ray Spectroscopy, North-Holland Publishing Co., Amsterdam, 1965.
- L. T. Dillman and T. D. Jones, Internal Dosimetry of Spontaneously Fissioning Nuclides, *Health Phys.*, 29: 111 (1975).
- 6. N. B. Gove and M. J. Martin, Log-f Tables for Beta Decay, Nucl. Data Tables, 10: 205 (1971).
- A. Bearden and A. F. Burr, Reevaluation of X-Ray Atomic Energy Levels, *Rev. Mod. Phys.*, 39: 125 (1967).
- R. S. Hager and E. C. Seltzer, Internal Conversion Tables. Part I: K-, L-, M-Shell Conversion Coefficients for Z = 30 to Z = 103, Nucl. Data, A4: 1 (1968).
- M. Band, M. B. Trzhaskovskaya, and M. A. Listengarten, Internal Conversion Coefficients for Atomic Nuclei with Z ≤ 30, At. Data Nucl. Data Tables, 18: 433 (1976).
- L. A. Sliv and I. M. Band, *Coefficients of Internal Conversion of Gamma Radiation*, Part I, Academy of Sciences of the USSR Press, Moscow and Leningrad, 1956; Report 57 ICC K1, University of Illinois, Urbana, III.,1957.
- L. A. Sliv and I. M. Band, Coefficients of Internal Conversion of Gamma Radiation, Part 2, 'L-Shell, Academy of Sciences of the USSR Press, Moscow and Leningrad, 1958; Report 58 ICC L1, University of Illinois, Urbana, III., 1958.
- O. Dragoun, Z. Plajner, and F. Schmutzler, Contribution of Outer Atomic Shells to Total Internal Conversion Coefficients, *Nucl. Data Tables*, A9: 119 (1971).
- R. S. Hager and E. C. Seltzer, Internal Conversion Tables. Part III: Coefficients for the Analysis of Penetration Effects in Internal Conversion and EO Internal Conversion, Nucl. Data Tables, A6: 1 (1969).
- W. Bambynek et al., X-Ray Fluorescence Yields, Auger, and Coster-Kronig Transition Probabilities, *Rev. Mod. Phys.*, 44: 716 (1972).
- P. V. Rao, M. S. Chen, and B. Crasemann, Atomic Vacancy Distributions Produced by Inner-Shell Ionization, *Phys. Rev.*, A5: 997 (1972).
- I. Bergstrom, C. Nordling, A. H. Snell, R. Wilson, and B. G. Pettersson, Some "Internal" Effects in Nuclear Decay, in *Alpha-, Beta-, and Gamma-Ray Spectroscopy*, K. Siegbahn (Ed.), p. 1523, North-Holland Publishing Co., Amsterdam, 1965.

Preparation of Radioactive Decay Data Sets

The tables of radioactive decay data given in Appendix 5 of this handbook were produced by the computer code MEDLIST,¹ which uses as input radioactive decay data sets consisting of card images written in the format of the Evaluated Nuclear Structure Data File (ENSDF).² In this chapter a sample data set is described, and the methods used in this compilation to prepare data sets in the ENSDF format are discussed.

3–1 ENSDF FORMATS

Radioactive decay data in ENSDF are organized into data sets, each of which summarizes the state of experimental knowledge for a distinct decay mode (alpha, beta, or isomeric transition) of a particular radionuclide. Thus, if a given radionuclide has more than one decay mode (e.g., isomeric transition and $\beta^$ decay), each of which necessarily leads to a different daughter nucleus, each decay mode is described by a separate data set. Each data set includes an adopted value for the radionuclide half-life and the decay branching fraction for the particular decay mode, adopted values for the energies and intensities of the nuclear radiations (alpha, β^- , β^+ , gamma, and internal conversion electrons) occurring in the decay mode, and an adopted uncertainty for each quantity. A decay data set also includes descriptive information on daughter radionuclides produced in the particular decay mode and their abundances.

Each decay data set in ENSDF is written in a uniform, standard format. The format is illustrated by means of the data set for 134 Cs β^- decay shown in Fig. 3.1.

The data set begins with an identification record giving the daughter nucleus (134BA); the data set name [134CS B- DECAY (2.062 Y)]; key numbers for the literature references as assigned by the Nuclear Data Project (75HE08, 75VA12, 76GR11); the characters HASRD-DCK, which appear on all data sets prepared for this compilation in the Health and Safety Research Division (HASRD) by myself (DCK), and the month and year when the data set was prepared or last revised (3/78).

Following the identification record are comment records denoted by the letter "C" following the daughter nucleus. Comment records are optional in ENSDF, but they are always used in this compilation to give information on the decay branching ratio if the particular decay mode does not occur 100% of the time, on decay branching ratios for other modes of decay or cross-references to decay data sets for the other decay modes, and on daughter radionuclides produced by the particular decay mode of the parent. In Fig. 3.1 the comments indicate that ¹³⁴Cs decays (99.9997 \pm 0.0001)% by β^{--} decay and the remaining $(0.0003 \pm 0.0001)\%$ by electron capture (EC) decay (see Appendix 1 for the conventions used for writing a number and its uncertainty). We emphasize again that, since decay modes other than β^- decay produce daughter nuclei different from ¹³⁴Ba, data for the alternate decay modes are not contained in this data set. In this case a separate data set for ¹³⁴Cs electron capture decay was not prepared since the branching ratio is less than the arbitrary cutoff of 0.1% chosen for this compilation.

The normalization record, denoted by "N," gives the factors by which the adopted relative gamma-ray intensities are multiplied to obtain absolute intensi-

13484 C	13403 0-	38- 0 FCAY	= 99	·9997 1	54605475	V412 #	(BURIT, HASKU-DUK)	57 10
134BA C		TEC DECAY	=ó.	0003 1				
13484 N	1.000003	1	••	0.999997	1			
134CS P	0.0	4(+)		2	.062 Y	5	2058.4	4
1348A L	0.0	0+		s	TABLE	-		-
134BA L	604.704	14 2+		-				
134EA B		0.008	4		14.0	922		
2 8	EAV= 534	.46 185			• • • •			
1348A G	604.695	15 97.6	3	E2			0.00599	с
1348A2 G	KC=0.0050	35						
1348A L	1167.933	17 2+						
1348A B		0.045	15		12.5	415		
2 B	EAV= 299	.88 16\$						
134BA G	563.227	15 8.38	5	M1+E2	7.5	9	0.00726 1	
1348A G	1167.94	3 1.80	3	E 2				С
1348A L	1400.537	21 4+						
1348A B		70.1	5		8.98	4 4		c
2 B	EAV= 210	.11 155						
1348A G	795.845	22 85.4	4	52			0.00305	C C
1348A2 G	KC=0.0025	8.						
1348A L	1643.310	25 3+						
1348A B		2.48	5		9.65	59		
2 B	EAV= 123	.40 145						
1348A G	242.89	5 0.0210	8	IF M1+E2			0.0880 23	
13484 G	475.35	5 1.46	4	E2+(ML)			0.0114	ſ
1348A G	1038.571	26 1.00	1	M1+E2	-1.8	2		
1348A L	1969.857	20 4+						
1348A B		27.40	13		6.48	37		
28	EAV= 23	.06 115						
1348A G	326.45	10 0.0144	6	IF M1+E2			0.0370 23	
1348A G	569.315	15 15.43	11	M1+E2	-0.29	2	0.00952 3	c
1348A2 G	KC=0.0081	3 3 5						
134BA G	801.932	22 8.73	4	M1+E2	0.010	4	0.00427	C
1348A G	1365.15	3 3.04	4	E 2				C

Fig. 3.1 Data set for 134 Cs β^- decay written in ENSDF format.

ties. Multiplication by the first factor (1.000003 ± 0.000001) gives the number of gamma rays per 100 β^- decays of the parent. Multiplication of the resulting intensities by the second factor (0.999997 ± 0.000001), which is the decay branching fraction for the particular decay mode, gives the number of gamma rays per 100 decays of ^{1.34}Cs. We note in this case that the product of the two normalization factors is unity, which results from the fact that absolute gamma-ray intensities rather than relative values are given with the data set. It is more often the case that the adopted gamma-ray intensities are arbitrarily normalized to 100 units for the strongest transition, and therefore the first factor on the normalization record is different from unity.

Following the normalization record is the parent record, denoted by "P," which gives the parent nucleus (134CS), the excitation energy (0.0), and

spin-parity [4(+)] of the parent (the parentheses around the "+" denote an uncertain parity assignment), the adopted half-life (2.062 ± 0.005 years), and the adopted decay Q-value (2058.4 ± 0.4 keV), which is the total energy difference between the ground states of the parent and daughter atoms.

The remainder of the data set consists of a series of records giving data on the levels in the daughter nucleus which are fed in the decay, the direct $\beta^$ feeding to these levels, and gamma rays and internal conversion electrons from de-excitation of the levels.

The level records for the daughter nucleus are denoted by "L." They give the level energy (e.g., 604.704 ± 0.014 keV for the first excited state), the spin-parity (e.g., 2+), and the half-life if known (e.g., STABLE for the ground state).

Following each level record is the β^- record, denoted by "B," for that level, which is included only

if the direct β^- feeding to the level is nonzero. Each β^- record consists of two cards. The first card gives the number of β^- decays feeding the level per 100 decays of the parent (e.g., 0.008 ± 0.004 for the first excited state) and the log-ft value³ (14.09 \pm 0.22). The blank columns preceding the beta intensity can be used to enter the beta endpoint energy and its uncertainty. In this compilation, however, this field is normally left blank, and the endpoint energy is calculated automatically when the data set is processed by other computer codes from the adopted level energy and Q-value given on the parent record and from the adopted level energy in the daughter given on the level record (see Chap. 2, Eq. 2.4). The second card of each beta record gives the average beta energy (e.g., 534.46 ± 0.18 for the first excited state). For β^+ and electron capture decay, the records comparable to the β^- records are denoted by "E" and have the same form as the β^- records except that on the first card the β^+ and electron capture intensities are given separately and the second card of each record also contains the fraction of decay by electron capture from the K, L, M, and all higher shells. For alpha decay, the record denoted by "A" consists of a single card giving the energy of the alpha particle feeding the level (this datum must be entered for alpha decay) and the number of alpha particles per 100 alpha decays of the parent. For isomeric transitions, there are no records corresponding to the B, E, or A records.

The gamma records, denoted by "G," describe gamma-ray transitions originating from the decay of the particular level in the daughter. (If a gamma or an alpha radiation properly belongs in a data set but cannot be associated with any particular level, the record is placed in the data set before the first level record.) A gamma record consists of either one or two cards. The first card gives the adopted gamma-ray energy (e.g., 563.227 ± 0.015 keV for the first gamma ray from the second excited state); the adopted relative gamma-ray intensity (e.g., 97.6 ± 0.3 ; the transition multipolarity, if known (e.g., M1 + E2, indicating a mixture of magnetic dipole and electric quadrupole radiation); the multipole mixing ratio, if known (e.g., 7.5 ± 0.9), for transitions involving more than one multipole (the square of the mixing ratio in this case gives the ratio of E2 to M1 radiation); the total internal conversion coefficient (e.g., 0.00726 ± 0.00001), defined as the total number of internal conversion electrons per gamma ray for the transition; and symbols (CC) denoting measured gamma-gamma coincidences. For

the transition multipolarity, the notation "IF M1 + E2" denotes a transition assumed to be M1 + E2 for the purpose of estimating the intensity of internal conversion electrons, and parentheses denote uncertain assignments. The second card of the gamma record gives internal conversion coefficients for the K, L, M, etc., shells. For example, the K-shell internal conversion coefficient (KC) for the decay of the first excited state is 0.00503. In this compilation an internal conversion coefficient is given on a second gamma card only if the resulting conversion electron intensity (i.e., the conversion coefficient for the particular shell multiplied by the number of gamma rays per 100 decays of the parent) is 0.1 per 100 decays or more.

Each decay data set written in the ENSDF format terminates with a blank card.

3–2 PREPARATION OF DECAY DATA SETS

In this section the methods used in this work to prepare radioactive decay data sets in the ENSDF format are described in some detail. All computer codes used in this process were developed by the Nuclear Data Project.

Preparation of the decay data sets normally involved the following procedures:

1. Evaluation of all available measurements reported in the literature, selection of adopted values for the measured quantities (the half-life and decay branching fraction, gamma-ray energies and relative intensities, energies and absolute intensities for β^- , β^+ , and alpha particles, relative conversion electron intensities, and gamma-ray multipole mixing ratios), and placement of the observed radiations in a decay scheme involving energy levels in the daughter nucleus.

2. Calculation of internal conversion coefficients for the gamma-ray transitions.

3. Normalization of the decay scheme to obtain absolute gamma-ray and conversion electron intensities.

4. Calculation of adopted level energies in the daughter and, for beta decays, the intensity of beta transitions feeding each level.

5. For beta decays, calculation of average beta energies and log-ft values for each transition.

These procedures are described in the following paragraphs.

3–2.1 Data Evaluation and Construction of the Decay Scheme

The process of evaluating all data reported in the literature and constructing the decay scheme for a given mode of decay of a given radionuclide was normally based on an examination of the data presented in the relevant mass-chain compilation published either in the journal Nuclear Data Sheets (for radionuclides with $A \ge 45$) or in the journal Nuclear Physics (for A = 3 to 44). Many of the decay schemes published in the mass-chain compilations had already been prepared by other compilers in the ENSDF format. For a few radionuclides, we began by examining the data sets in ENSDF format previously prepared by M.J. Martin of the Nuclear Data Project.⁴ Next, we examined all relevant papers published in the open literature since the cutoff date for papers included in the mass-chain compilation or in the existing data set in ENSDF format. The additional literature search was greatly facilitated by use of the issues of Nuclear Data Sheets called "Recent References."

All decay schemes adopted for use in this compilation are based on my evaluation of all data reported in the mass-chain compilations and "Recent References" through April 1979. If the date given with a data set precedes April 1979 (e.g., 3/78 on the first card in Fig. 3.1), this indicates that no new data were reported between the two dates. No previously proposed decay schemes were adopted for this compilation without further examination of all the data. For a few radionuclides, this reexamination produced significant changes in the decay scheme adopted for this compilation. Some of these cases are described in Chap. 7.

In this work the adopted values for the gammaray energies and multipole mixing ratios for a given decay data set were based on the most accurate measurements from any experiment and were not necessarily measured in the particular radioactive decay of concern. For example, the adopted gammaray energies in the beta decay of an isomeric state of a nucleus would be taken from measurements on the beta decay of the ground state of the same nucleus if more-accurate values were obtained in the latter experiment. Similarly, adopted gamma-ray energies for a β^- decay data set could be obtained from measurements following β^+ or electron capture decay leading to the same daughter nucleus and vice versa. Some of the adopted multipole mixing ratios were obtained from diverse experiments, such as Coulomb excitation or in-beam gamma-ray spectroscopy. Consequently, if more than one radionuclide in the present compilation decays to the same daughter nucleus, all gamma rays common to the different decay schemes have the same adopted energy, multipole mixing ratio, and internal conversion coefficients.

3–2.2 Calculation of Internal Conversion Coefficients

Following construction of the decay scheme, internal conversion coefficients for the gamma-ray transitions in the daughter nucleus were calculated by using the computer code HSICC (Ref. 2). For transitions with multipolarity $L \ge 3$, the adopted internal conversion coefficients were taken to be 3% less than the values calculated by the code to provide better overall agreement between theory and experiment.⁵

For some transitions, the adopted multipolarity and multipole mixing ratio were determined directly from such measurements as the ratio of conversion electron to gamma-ray intensities, ratios of conversion electron intensities for different atomic shells or subshells, or angular correlations of two cascading gamma rays. For other transitions, the multipolarity was inferred from the known spin-parity change between the initial and final states. For example, any transition involving a state with spin-parity 0⁺ has a multipolarity uniquely determined by the spin-parity of the other state. A transition involving a spin-parity change $\Delta J^{\pi} = 1^{-}$ was assumed to be E1 in the absence of other data because possible M2 admixtures are usually small. For spin changes $\Delta J \ge 2$, we assumed that the transition proceeds by the lowest possible multipole order. Appreciable multipole mixing often occurs whenever both M1 and E2 transitions are allowed. If no experimental data were available but the spin-parity change was known to be $\Delta J^{\pi} = 0^+$ or 1^+ , we normally assumed internal conversion coefficients equal to the average of the M1 and E2 values with an uncertainty equal to half the difference. Exceptions occurred, however, for some low-energy transitions in heavy nuclei if the E2 internal conversion coefficients resulted in an unreasonably large total transition intensity (gamma rays plus conversion electrons), in which case the transition was assumed to be pure M1.

If no data were available to determine the transition multipolarity or if the transition did not involve a known spin-parity change, no assumption

was made in this compilation concerning the transition multipolarity, and internal conversion was assumed to be zero.

An adopted value for the total internal conversion coefficient, denoted by α_{T} , is entered on the first card of the gamma record only if the relative transition intensity, $I_{\gamma}(1 + \alpha_{T})$, where I_{γ} is the relative gamma-ray intensity, differs from I_{γ} by at least one digit in the last significant figure. Internal conversion coefficients for the different atomic shells are entered on the second card of the gamma record only if the resulting conversion electron intensity is at least 0.1 per 100 decays of the parent. Internal conversion coefficients for as many as four shells can be entered-K, L, M, and N+, where N+ includes internal conversion for the N and higher shells. An entry for M+-shell internal conversion (M and higher shells as a single group) is made whenever the M-shell internal conversion electron intensity, Ice.M, is at least 0.1 per 100 decays but Ice.N+ is less than this amount or whenever $I_{ce,M}$ and $I_{ce,N+}$ are both less than 0.1 per 100 decays but their sum exceeds this amount.

3–2.3 Normalization of Decay Schemes

Normalization of a decay scheme is the process of obtaining the constants entered on the normalization record which determine the number of gamma rays and conversion electrons per 100 decays of the parent from the adopted relative gamma-ray intensities and internal conversion coefficients. One normalization constant determines the number of gamma rays and conversion electrons per 100 decays via the particular decay mode for the data set, and the second normalization constant is the decay branching fraction for the particular decay mode.

Depending on the data available, the normalization constants for a decay scheme were determined by one or more methods. For a decay mode with a branching fraction of unity, for example, one common method for normalizing the decay scheme is to use measurements, where available, of the number of gamma rays emitted per β^- or β^+ particle for a strong gamma-ray transition. Another method is to use the requirement that the total intensity of the direct beta decay to the ground state plus all gamma rays and internal conversion electrons feeding the ground state must be 100 per 100 decays of the parent (i.e., all decays of the parent eventually populate the ground state). This method is especially useful whenever the direct beta feeding to the ground state has been accurately measured or can be assumed to be zero from the large spin change involved in the transition.

The system used in ENSDF, by which relative gamma-ray intensities are entered on the gamma records and all normalization factors for obtaining absolute intensities are entered on a single normalization record, has considerable advantages compared with entering absolute gamma-ray intensities directly on each gamma record. Suppose, for example, that the normalization for a decay scheme is determined by a measurement of the number of gamma rays per β^- decay for the strongest gamma-ray transition. If a new measurement changes the adopted value of this quantity, only a single entry has to be changed on the normalization record in the ENSDF format to obtain the new values of the absolute gamma-ray intensities, whereas the gamma-ray intensity on every gamma record would have to be changed if the normalization record were not used.

3-2.4 Calculation of Level Energies and Beta Decay Intensities

For each decay scheme, the adopted energies of the levels in the daughter nucleus were calculated by using the computer code GTOL,² which performs a least-squares adjustment of the energies of all gamma rays placed in the decay scheme. The calculations also take into account the recoil energy of the nucleus accompanying each transition.

For beta decay schemes, measured intensities of β^- or β^+ transitions feeding individual levels were adopted only if they were used to determine the normalization constants for the decay scheme. In general, it is very difficult to directly measure the intensity of each individual β^- or β^+ transition in a decay scheme containing more than one or two transitions, and intensities of electron capture transitions cannot be directly measured. Therefore the beta feedings to most levels in the daughter were calculated by the code GTOL as the difference between the number of gamma rays plus internal conversion electrons from decay of the level and the number of these radiations feeding the level from the deexcitation of higher excited states, with the intensities properly normalized to give transitions per 100 decays of the parent. For alpha decay schemes, measured alpha intensities were normally adopted for each level, but the calculations with the code GTOL were used to check that the measured alpha intensities agreed with those inferred from the gamma-ray plus conversion electron intensity balances.

3–2.5 Calculation of Average Energies and Log-ft Values for Beta Decay

For beta decay schemes, the average β^- or β^+ energy for a transition feeding a given level, the ratio of electron capture to β^+ intensity and the relative intensities for K-, L-, and M-shell electron capture, and the log-ft value were calculated by using the computer code LOGFT.³ All transitions were assumed to be allowed except for known firstforbidden unique or second-forbidden unique transitions. The endpoint energy for each β^- or β^+ transition and the total energy released in an electron capture transition were obtained from the level energy of the parent state and the decay Q-value contained on the parent record and the excitation energy of the particular level in the daughter given on the level record. For most decay schemes, the adopted Q-value was obtained from the recent atomic mass adjustment of Wapstra and Bos.⁶

REFERENCES

- 1. M. J. Martin (Ed.), *Nuclear Decay Data for Selected Radionuclides,* ERDA Report ORNL-5114, Oak Ridge National Laboratory, 1976, NTIS.
- W. B. Ewbank and M. R. Schmorak, Evaluated Nuclear Structure Data File—A Manual for Preparation of Data Sets, ERDA Report ORNL-5054/R1, Oak Ridge National Laboratory, 1978, NTIS.
- 3. N. B. Gove and M. J. Martin, Log-f Tables for Beta Decay, *Nucl. Data Tables,* 10: 205 (1971).
- National Council on Radiation Protection and Measurements, A Handbook of Radioactivity Measurements Procedures, Report No. 58, 1978.
- S. Raman, T. A. Walkiewicz, R. Gunnick, and B. Martin, How Good Are the Theoretical Internal Conversion Coefficients? *Phys. Rev.*, C7: 2531 (1973).
- A. H. Wapstra and K. Bos, The 1977 Atomic Mass Evaluation, At. Data Nucl. Data Tables, 19: 177 (1977).

Computer Code MEDLIST and Description of Tables of Radioactive Decay Data

The radioactive decay data tables given in Appendix 5 of this handbook were generated by processing the decay data sets in ENSDF format with the computer code MEDLIST.¹ The MEDLIST code also uses computer files of the relevant Z-dependent constants (X-ray energies, $\omega_{\rm K}$, n_{KL}, etc.) described in Chap. 2, Sec. 2-4. For each data set, the code calculates the energies and intensities of the atomic radiations (X rays and Auger electrons). The code then combines the atomic radiations with the nuclear radiations contained in the data set in ENSDF format, sorts them according to radiation type (internal conversion and Auger electrons, alpha particles, β^{-} or β^+ particles, and gamma rays and X rays), and, within each type, arranges and numerically labels them in order of increasing energy.

Uncertainties in all experimental quantities, including the Z-dependent constants, are propagated consistently throughout the calculations. An uncertainty of 3% is assigned to all theoretical internal conversion coefficients and is combined with the experimental uncertainties.

Figure 4.1 shows the data table for 134 Cs β^- decay obtained from the data set in ENSDF format shown in Fig. 3.1 and discussed in Chap. 3, Sec. 3-1. The symbols used in the data tables and their definitions are listed in Appendix 1.

For each decay data set, the table contains data on the atomic and nuclear radiations of the following types: Auger electrons (shells K and L); X rays (K_{α 1}, K_{α 2}, K_{β}, and L); β^- particles; β^+ particles; alpha (α) particles; gamma rays (γ); and internal conversion electrons (ce) (shells K, L, M, and N+).

The data tables list all radiations with intensity greater than the variable low-intensity limit built into the MEDLIST code. In this compilation the low-

intensity limit is 0.1 per 100 decays, as indicated by the heading "I(min) = 0.10%" printed with the tables. Immediately following the listings for alpha, beta, and gamma radiations, the code prints a comment giving the number of radiations omitted from the list because of the low-intensity limit (provided that the total intensity of all omitted radiations of the particular type exceeds 0.01 per 100 decays), the average of the energies of the omitted radiations weighted by the respective intensities, and their total intensity. For ¹³⁴Cs β^- decay, for example, two weak β^- groups are omitted with weighted average energy of 335.3 keV and total intensity of 0.05 per 100 decays. For β^+ decays, the code prints a comment following the gamma-ray list giving the maximum possible intensity of the annihilation radiation, which is calculated as twice the total intensity of all emitted positrons.

It should be noted that a somewhat different convention is used in numerically labeling the alpha and beta radiations in the data tables compared with the labeling of gamma and conversion electron radiations. For alpha and beta radiations, only those transitions with intensity greater than 0.1 per 100 decays are given a numerical label in order of increasing energy. Thus, for example, one or more weak omitted β^- radiations could occur with energies between those for the transitions labeled " β^{-} 1" and " β^{-} 2" and similarly for alpha radiations. For gamma rays and their corresponding internal conversion electrons, however, the numerical labels are applied to all radiations contained in the data set in ENSDF format. These labels are maintained throughout the MEDLIST calculations and are carried into the output. Therefore, when gamma rays are omitted from the data table because of their low intensity, the

Radiation Type	Energy (keV)	Intensity (%)	Δ (g-rad/ μ Ci-h)			
• 134 Cs β^- Decay (2.062 y 5) I (min) = 0.10% % β^- Decay = 99.9997 1 %EC Decay = 0.0003 1						
Auger-L ce-K- 5 ce-K- 6 ce-K- 7	3.67 531.874 15 567.258 15 758.404 22	0.66 5 0.125 1 0.491 15 0.220 7	≈0 0.0014 0.0059 0.0036			
 β- 1 max avg β- 2 max avg β- 3 max avg total 8- avg 	88.5 4 23.06 11 415.1 4 123.40 14 657.9 4 210.11 15 156.8 3	27.40 13 2.48 5 70.1 5 100.0 6	0.0135 0.0065 0.314 0.334			
2 weak β 's omitted: E β (avg) = 335.3; Σ I β = 0.05%						
$ \begin{array}{r} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.214 8 0.396 15 0.144 6 1.46 4 8.38 5 15.43 11 97.6 3 85.4 4 8.73 4 1.000 10 1.80 3 3.04 4	0.0001 0.0003 0.0001 0.0148 0.101 0.187 1.26 1.45 0.149 0.0221 0.0448 0.0884			
	2 weak γ's omi Εγ(avg)= 276	tted: 5.9; ΣΙγ= 0.04%	5			

Fig. 4.1 Table of energies and intensities of atomic and nuclear radiations from ¹³⁴ Cs β^- decay produced by the computer code MEDLIST from the data set in ENSDF format.

remaining radiations that are listed separately are not relabeled. In Fig. 4.1, for example, the list of gamma rays begins with γ 3, which indicates that the two weak gammas omitted are γ 1 and γ 2. The labeling of all gammas, whether or not they are listed separately in the tables, is maintained because an internal conversion electron line associated with an omitted gamma ray appears in the list if its intensity exceeds the low intensity cutoff. Suppose, for example, that the gamma listing contains the sequence γ 1, γ 2, γ 4,..., which indicates that γ 3, with energy between those of $\gamma 2$ and $\gamma 4$, has been omitted because of its low intensity. The conversion electron list would nonetheless contain an entry labeled ce-K-3 if the intensity for the K-shell internal conversion electron associated with γ 3 exceeds the low-intensity limit.

In each data table the radiations are listed in the first column by type. Particle radiations (Auger, ce, alpha, and beta) are listed first, followed by the electromagnetic radiations (X ray and gamma). Whenever more than one beta group occurs, the table contains a separate entry at the end of the beta listing, labeled "total β ," which gives the average energy and total intensity for the composite spectrum. This entry includes the contributions from the groups omitted from the list because of the lowintensity limit. For β^- decay, the total beta intensity should, in principle, be precisely equal to the decay branching ratio for the parent radionuclide [e.g., $(99.9997 \pm 0.0001)\%$ for ¹³⁴Cs and 100% for β^{-134} emitters having no alternate mode of decay]. As indicated in Chap. 3, Sec. 3-2.4, however, the intensities of the individual β^- groups are usually determined indirectly from the gamma and ce intensity balances for the different levels in the daughter, and therefore the total β^- intensity does not normally equal the expected amount. This is particularly the case if there are levels in the daughter for which the gamma + ce intensity feeding the level from the de-excitation of higher excited states exceeds the gamma + ce intensity depopulating the level. The total β^- intensity could be replaced by the known branching ratio, but we have not done so in this compilation. We note that, for the decay data tables in Appendix 5, the total β^- intensity always agrees with the known branching ratio within experimental uncertainties.

The second and third columns in each table give the energy in keV and intensity in number per 100 decays of the parent, respectively. For beta groups, both the maximum (endpoint) and the average energies for each transition are given.

The last column gives the mean energy emitted per unit of cumulated activity, Δ , in units of gram-rads/microcurie-hour. For an infinite, homogeneous medium in which a radioactive source is uniformly dispersed with a concentration of 1 μ Cih/g, Δ gives the absorbed dose in rads. From the definitions of the curie as 3.7 x 10¹⁰ disintegrations per second and the rad as 100 ergs per gram, it is easy to show that, for a source concentration of 1 μ Ci-h/g, an energy release of 1 MeV per disintegration results in an absorbed dose of 2.13 rads.

The first entry in each data table (e.g., see Fig. 4.1) gives the title of the decay data set, the adopted half-life for the parent nucleus, and the low-intensity cutoff limit for the separate listing of radiations in the table. We note that the symbol "M" is not used with the mass number of the parent to denote a metastable isomeric state. Rather, an isomer is uniquely identified by the radionuclide name and the half-life.

The following policy concerning the use of " β^+ " and "EC" in data set names for positron and/or electron capture decay should be noted. The use of "EC" may denote either pure electron capture decay or electron capture and positron decay if positron emission is energetically allowed. In the latter case, the notation " β^+ " may also be used, especially if positron decay is more probable than electron capture.

If the given mode of decay produces a daughter nucleus that is also radioactive or if the parent radionuclide decays by more than one mode, comments are printed below the title for the data table. If no comments are given, the parent decays 100% by the given decay mode to a stable daughter.

We first consider the comments for the case of a single decay mode for the parent leading to one or more radioactive daughters. The radionuclide ⁸⁸Kr, for example, decays entirely to the radionuclide ⁸⁸ Rb; thus the data set for ⁸⁸ Kr β^- decay contains the comment "Feeds ⁸⁸ Rb." As a more complicated example, ⁹¹Sr decays to both the ground state (58.51 d) and the isomeric state (49.71 m) of 91 Y. Thus the data set for ${}^{91}\mathrm{Sr}~\beta^-$ decay contains the comments "% Feeding to ⁹¹Y (58.51 d) = 42.6 16" and "% Feeding to ⁹¹Y (49.71 m) = 57.4 16." So that contributions to the decay of a parent when daughter radionuclides are produced can be correctly included, the radiations for each member of the decay chain must be combined by using the standard equations for parent-daughter activity relations and the known feeding of each member of the chain. The equations describing parent-daughter activity ratios are given in Chap. 6.

For a parent radionuclide that has more than one mode of decay, each decay mode is given in a separate table, provided the decay mode yields at least one radiation with intensity greater than 0.1 per 100 decays of the parent, and comments giving cross-references to the alternate modes of decay are given. For example, ⁶⁴Cu decays by both β^+ and $\beta^$ decay. Thus the data set for 64 Cu β^+ decay contains the comment "See also 64 Cu β^- Decay" and the data set for 64 Cu β^- decay contains the comment "See also ⁶⁴Cu β^+ Decay." Whenever alternate decay modes occur, the radiations from each data set can simply be combined to obtain all radiations from the particular parent. If a separate data set has not been prepared because an alternate decay mode produced no radiations above the low-intensity limit, the alternate decay branching ratio is given in a comment with the data set for the prevalent decay mode. In Fig. 4.1, for example, we find that ¹³⁴Cs also decays $(0.0003 \pm 0.0001)\%$ via electron capture decay. Known decay branches for spontaneous fission, which is not included in this compilation, are also indicated in this manner. For example, the data table for ²⁵⁶Fm alpha decay contains the comment "% Spontaneous Fission = 91.9 3."

REFERENCE

1. M. J. Martin (Ed.), *Nuclear Decay Data for Selected Radionuclides*, ERDA Report ORNL-5114, Oak Ridge National Laboratory, 1976, NTIS.

Applications of Decay Data to Radiation Dosimetry and Radiological Assessments

hapter 5

In addition to the data tables given in Appendix 5, the MEDLIST code produces output in a decimal, computer-readable format suitable for use as input to further calculations. This chapter briefly describes some of the applications of the decay data in computer-readable format to the radiation dosimetry and radiological assessment activities of the Health and Safety Research Division at Oak Ridge National Laboratory.

The formats for the card images of the decimal output from the MEDLIST code are a close approximation to the formats proposed for radioactive decay data in the ENDF/B-V file by the National Neutron Cross Section Center at Brookhaven National Laboratory.¹ The formats for the output produced by the MEDLIST code are available from the Nuclear Data Project upon request.

The MEDLIST decimal output is generally more extensive than required in applications to radiation dosimetry. Therefore the computer code CONVER² was written to prepare output of energies and intensities by radiation type in a simple format suitable for input to further calculations. The output from the CONVER code for ¹³⁴Cs β^- decay is shown in Fig. 5.1. The first card gives the radio-nuclide name, half-life, and atomic number. The

```
CS-134 2.062 Y 55.

0

4

8.8543E-02 2.3060E-02 2.7400E-01 4.1509E-01 1.2340E-01 2.4800E-02

6.5786E-01 2.1011E-01 7.0100E-01 9.7550E-01 3.3529E-01 5.3000E-04

0

5

3.6700E-03 6.5531E-03 2.6400E-02 8.2834E-04 5.3187E-01 1.2545E-03

5.6726E-01 4.9093E-03 7.5840E-01 2.2033E-03

14

4.4700E-03 8.9360E-04 3.1817E-02 2.1438E-03 3.2194E-02 3.9554E-03

3.6400E-02 1.4394E-03 4.7535E-01 1.4600E-02 5.6323E-01 8.3800E-02

5.6932E-01 1.5430E-01 6.0470E-01 9.7600E-01 7.9584E-01 8.5400E-01

8.0193E-01 8.7300E-02 1.0386E 00 1.0000E-02 1.1679E 00 1.8000E-02

1.3652E 00 3.0400E-02 2.7688E-01 3.5400E-04
```

Fig. 5.1 Table of energies and intensities of radiations from 134 Cs β^- decay in card-image form produced by the computer code CONVER from the computer-readable output from the MEDLIST code.

atomic number of the parent is needed for the calculation of external dose from electrons from beta decay. The subsequent cards give the number of radiations for a particular type and the energies and intensities of the radiations of that type. The radiation type is listed in the following order: alpha particles, β^- particles, β^+ particles, Auger and internal conversion electrons, and gamma rays and X rays. In Fig. 5.1, for example, the "0" on the second card indicates that no alpha particles are emitted. The "4" on the next card indicates the number of β^- particles. The entries on the two cards following give the endpoint energy in million electron volts (MeV), the average energy in MeV, and the intensity in number per decay of the parent for the first β^- group, followed by similar data for the three remaining groups. The next "0" indicates the number of positrons emitted. The following "5" gives the number of Auger and internal conversion electrons. The entries on the next two cards give the energy in MeV and the intensity in number per decay for each of the five radiations. The data for the 14 gamma rays and X rays follow in the same format.

For application to radiation dosimetry, it is sensible to combine the data from the different modes of decay of a given radionuclide into a single data set. For example, ⁶⁴Cu decays by both β^+ and β^- decay, and two separate sets of decay data in decimal format are therefore produced by the MEDLIST code. The output from the code CONVER for each data set is then combined into a single data set giving all radiations from the decay of ⁶⁴Cu.

The MEDLIST decimal output in the simplified format illustrated in Fig. 5.1 has been used in the Health and Safety Research Division as input to two types of calculations in radiation dosimetry. First, the decay data published in a previous report³ have been used to calculate dose-rate conversion factors for external exposure to electron and photon radiations for three modes of exposure---immersion in contaminated air, immersion in contaminated water, and exposure to a contaminated ground surface. For a unit concentration of a given radionuclide of 1 μ Ci/cm³ in air or water or 1 μ Ci/cm² on the ground, the decay data are used to calculate dose-equivalent rates in units of millirems per year for various body organs of an exposed individual.⁴ The second application concerns the calculation of S factors for internally deposited radionuclides.⁵ For unit residence of 1μ Ci-day in a particular source organ in the body, the S factors give the dose equivalent in rems for various target organs, including the source organ

itself. The S factors are then combined with metabolic models for transport of radionuclides in the body following intake via inhalation or ingestion and models for retention of radionuclides in the various body organs to calculate dose conversion factors, which give the dose equivalent per unit intake for the organs of interest.^{6,7}

The applications of decay data to radiation dosimetry described in the preceding text essentially give the dose equivalent per unit activity to which man is exposed. Realistic estimates of concentrations of radionuclides in the environment require implementation of models to describe such phenomena as atmospheric transport and dispersion, transport of radionuclides through terrestrial and aquatic food chains leading to ingestion by man, and the use of consumer products containing radioactive materials.⁸

REFERENCES

- R. E. Schenter, P. F. Rose, and T. W. Burrows, Proposed Formats and Procedures for ENDF/B-V⁻ Radioactive Decay Data (MT=457), Brookhaven National Laboratory, unpublished.
- E. Dunning, Jr., Oak Ridge National Laboratory, unpublished.
- 3. D. C. Kocher, Nuclear Decay Data for Radionuclides Occurring in Routine Releases from Nuclear Fuel Cycle Facilities, ERDA Report ORNL/NUREG/TM-102, Oak Ridge National Laboratory, 1977, NTIS.
- 4. D. C. Kocher, Dose-Rate Conversion Factors for External Exposure to Photon and Electron Radiation from Radionuclides Occurring in Routine Releases from Nuclear Fuel Cycle Facilities, *Health Phys.*, 38: 543 (1980); see also USDOE Report ORNL/NUREG/TM-283, Oak Ridge National Laboratory, 1979, NTIS.
- D. E. Dunning, Jr., J. C. Pleasant, and G. G. Killough, SFACTOR: A Computer Code for Calculating Dose Equivalent to a Target Organ per Microcurie-Day Residence of a Radionuclide in a Source Organ, ERDA Report ORNL/NUREG/TM-85, Oak Ridge National Laboratory, 1977, NTIS.
- G. G. Killough, D. E. Dunning, Jr., S. R. Bernard, and J. C. Pleasant, *Estimates of Internal Dose Equivalent to 22 Target Organs for Radionuclides Occurring in Routine Releases from Nuclear Fuel Cycle Facilities*, ERDA Report ORNL/NUREG/TM-190(Vol. 1), Oak Ridge National Laboratory, 1978, NTIS.
- 7. D. E. Dunning, Jr., S. R. Bernard, P. J. Walsh, G. G. Killough, and J. C. Pleasant, Estimates of Internal Dose Equivalent to 22 Target Organs for Radionuclides Occurring in Routine Releases from Nuclear Fuel Cycle Facilities, USDOE Report ORNL/NUREG/TM-190(Vol. 2), Oak Ridge National Laboratory, 1979, NTIS.
- 8. G. G. Killough and L. R. McKay, Methodology for Calculating Radiation Doses from Radioactivity Released to the Environment, USAEC Report ORNL-4992, Oak Ridge National Laboratory, 1976, NTIS.

Parent-Daughter Activity Ratios

A common occurrence in radioactive decay is a parent radionuclide decaying to a daughter that is also radioactive. Estimates of radiation dose to man must properly account for the buildup and decay of the radioactive daughter products.

First consider the case of a radioactive parent (p) with half-life $T_{\frac{1}{2}}(p)$ and decay constant λ_p $[\lambda = (ln 2)/T_{\frac{1}{2}}]$ which feeds a radioactive daughter (d) with half-life $T_{\frac{1}{2}}(d)$ and decay constant λ_d in a fraction f of the parent decays. If we assume that the activity of the daughter is zero at time t = 0, it is easy to show from the exponential law of radioactive decay that the ratio of the daughter activity, $\lambda_d N_d$, where N_d is the number of atoms of the daughter, to the activity of the parent, $\lambda_p N_p$, at time t is given by 1

$$\frac{\lambda_{d}N_{d}}{\lambda_{p}N_{p}} = \frac{f T_{\frac{1}{2}}(p)}{T_{\frac{1}{2}}(p) - T_{\frac{1}{2}}(d)} \left[1 - e^{-(\lambda_{d} - \lambda_{p})t}\right] \quad (6.1)$$

In many parent-daughter decay chains, the daughter is short lived compared with the parent, in which case the activity of the daughter relative to that of the parent approaches a value that is constant with time. For a time that is large compared with $[1/(\lambda_d - \lambda_p)]$, the daughter is in transient equilibrium with the parent, and the activity ratio reduces to

$$\frac{\lambda_{d} N_{d}}{\lambda_{p} N_{p}} = \frac{f T_{\frac{1}{2}}(p)}{T_{\frac{1}{2}}(p) - T_{\frac{1}{2}}(d)}$$
(6.2)

For example, the radionuclide ⁹⁹Mo, with $T_{\frac{17}{2}}(p) = 66.02 \pm 0.01$ hours, decays to the isomeric state in ⁹⁹Tc, with $T_{\frac{17}{2}}(d) = 6.02 \pm 0.02$ hours, in a fraction f = 0.886 ± 0.009 of the decays. At transient equilibrium, which is essentially achieved for times greater than 10 half-lives of the daughter, the ratio of ⁹⁹Tc activity to ⁹⁹Mo activity is (0.886 ± 0.009)(1.1003 ± 0.0004) = 0.975 ± 0.010. Therefore, so that all radiations from a ⁹⁹Mo source at transient equilibrium will be correctly accounted for, the intensities of the radiations from the decay of the daughter product ⁹⁹Tc (6.02 hours) should be multiplied by 0.975 ± 0.010 and combined with the radiations from ⁹⁹Mo decay.

For the general case of a parent that has a series of radioactive daughters, such as the alpha decay chains for many of the transuranic radionuclides, the activity of any daughter product as a function of time can be obtained from the general solution of the Bateman equations, which is given, for example, by Evans¹ and by Skrable et al.²

REFERENCES

- 1. R. D. Evans, *The Atomic Nucleus*, McGraw-Hill Book Company, New York, 1955.
- K. Skrable, C. French, G. Chabot, and A. Major, A General Equation for the Kinetics of Linear First Order Phenomena and Suggested Applications, *Health Phys.*, 27: 155 (1976).

Accuracy of the Data and Uncertain Decay Schemes

As described in Chap. 4, the uncertainties in the intensities given in the tables of decay data in Appendix 5 are based primarily on uncertainties in measurements estimated by the experimenters. For most of the radionuclides, it is evident from the tables that the experimental uncertainties are sufficiently small that the decay data may be used with confidence in applications to radiation dosimetry. For other radionuclides, however, the adopted uncertainties show that the available measurements are not sufficiently precise to determine the decay data with high accuracy. It is particularly the case that the intensities of some important β^- transitions, as obtained from gamma-ray plus conversion electron intensity balances, are relatively poorly determined. For some radionuclides, no experimental uncertainties have been given with the adopted intensities. In most of these cases, however, it is likely that the intensities of at least the stronger radiations have been determined with reasonable accuracy.

Other sources of error in the decay data may be more significant than the experimental uncertainties given in the data tables. One source of error arises from the subjective processes of choosing the adopted values for measured quantities from different sets of experimental results and constructing the adopted decay data set in the ENSDF format. The choices made may lead to significant errors in the decay data, particularly whenever conflicting sets of data are available. The extent to which subjective judgments have resulted in significant errors in this work is difficult to determine, but, for the radionuclides in common, the decay data given in this handbook are generally in good agreement with the results previously adopted by Martin.¹ A second potentially important source of error in the decay data arises from a lack of measurements necessary to determine the decay scheme accurately. In these cases the decay data given for some of the more intense radiations may be significantly in error, and other important radiations may have been left out of account.

The remainder of this chapter briefly discusses those radionuclides in this handbook for which, in my opinion, the adopted decay data may contain significant uncertainties or errors resulting from lack of appropriate experimental data. The radionuclides are divided into two classes—those of interest to the nuclear fuel cycle and the remaining radionuclides. In each case the reader is referred to the appropriate data tables in Appendix 5. The literature references in the text are denoted by key number and are given in Appendix 3.

7–1 UNCERTAIN DECAY DATA FOR RADIONUCLIDES FROM THE NUCLEAR FUEL CYCLE

The decay schemes for the following radionuclides of interest to the nuclear fuel cycle may be significantly in error: 92 Sr, 115 Cd (44.6 d), 133 Te (55.4 m), 141 La, 142 Ba, 166 Ho (1200 y), 227 Ac, 228 Ra, 229 Th, 234 Pa (6.70 h), and 245 Cm.

7–1.1 Strontium-92

The absolute intensities of the radiations from 92 Sr β^- decay are based on the measured intensity of (90 ± 10)% for the 1384-keV gamma ray (72Ko60). As a consequence of the 10% uncertainty in this

measurement, the calculated β^- intensity for the highest energy transition (β^- 4) is consistent with zero but may be as large as 8%. Therefore the value of Δ for the total β^- spectrum may be in error by more than 10%. This uncertainty could be reduced by a direct measurement of the intensity of the $\beta^$ transition in question or by a more precise measurement of the intensity of the 1384-keV gamma ray.

7-1.2 Cadmium-115 (44.6 d)

The absolute intensities of the radiations from the β^- decay of ¹¹⁵Cd (44.6 d) are based on the measured intensity of ~98% for the β^- transition feeding the ground state in the daughter nucleus (75Ra27). A small error in this estimate would result in large errors in the absolute intensities of all gamma rays resulting from β^- transitions feeding excited states in the daughter. If, for example, the correct β^- intensity were only 2% less than the measured value, all gamma-ray intensities would be a factor of 2 larger than the adopted values. The absolute gamma-ray intensities could be determined independently of the measured β^- intensity from a measurement of the number of 934-keV gamma rays per β^- transition.

7–1.3 Tellurium-133 (55.4 m)

Of the 63 gamma rays assigned to the β^- decay of ¹³³ Te (55.4 m), only three have been placed in a decay scheme involving energy levels in the daughter (74He27). The unplaced gamma rays comprise 53% of the total gamma-ray intensity. Furthermore, the conversion electron intensities for some of the unplaced gamma rays of low energy may be significant. Therefore, although the total β^- intensity of (87 ± 3)% is accurately known, the distribution of the total β^- intensity with energy and thus the total β^- energy per decay are quite uncertain. Careful gamma-gamma 'coincidence measurements to determine the placement of more of the gamma rays in the decay scheme and conversion electron measurements for relatively intense low-energy transitions are needed.

7-1.4 Lanthanum-141

Similarly to the case for ¹¹⁵Cd (44.6 d), the absolute intensities of the radiations from ¹⁴¹La β^- decay are based on the measured intensity of ~97% for the β^- transition feeding the ground state in the daughter nucleus (78Tu01), and a small error in this measurement would therefore result in a large error in

the absolute intensities for all gamma rays. The absolute gamma-ray intensities could be determined independently of the measured β^- intensity from a measurement of the number of 1355-keV gamma rays per β^- transition.

7–1.5 Barium-142

The absolute intensities of the radiations from $^{\rm 1\,4\,2}\,{\rm Ba}\;\beta^-$ decay are based on the assumption that the β^- feeding to the ground state in the daughter nucleus is zero. The resulting large uncertainty in the intensity of the highest energy β^- transition (β^- 13), deduced from the gamma-ray plus conversion electron intensity balance, is quite significant because the transition yields about one-third of the total $\beta^$ energy per decay. Furthermore, except for the 77.6-keV transition (γ 3), the transition multipolarities of the relatively intense low-energy gamma rays with energies between 69 and 255 keV are unknown (78Tu03). If these transitions are M1 or E2. the conversion electron intensities could be as large as 5%, and the β^- intensities for the high-energy transitions β^- 10 - β^- 13 calculated from gamma-ray plus conversion electron intensity balances could be in error by comparable amounts. A direct measurement of the intensity of the highest energy β^{-} transition and a measurement of the conversion electron spectrum could reduce possible errors in the β^{-} intensities.

7-1.6 Holmium-166 (1200 y)

The previously adopted decay scheme for the $\beta^$ decay of $^{1\,6\,6}\,\text{Ho}$ (1200 y) assumed that all the $\beta^$ intensity was contained in the two lowest energy transitions (β^{-1} and β^{-2}), even though measured beta-gamma coincidences and calculated gamma-ray plus conversion electron intensity balances indicated significant higher energy β^- transitions (75Bu06). In this work we have adopted the additional β^- transitions $(\beta^{-} 3 - \beta^{-} 7)$ obtained from the intensity balances. The assumed existence of these transitions clearly results in a significant increase in the value of Δ for the total β^- spectrum. The existence of these β^- transitions could be determined from measurements of the total β^- spectrum and : beta-gamma coincidences. A determination of the spin and parity of the parent state in ¹⁶⁶Ho might also be useful in order to specify the levels in the daughter which could be directly fed in the decay on the basis of the known change in spin and parity.

7–1.7 Actinium-227

The adopted intensities of all radiations from the 98.6% decay branch for 227 Ac β^- decay are based on the crude estimates of the intensities for the three assumed β^- transitions (77Ma32), and all values, therefore, are subject to considerable error. We note, however, that the determination of a more accurate decay scheme for 227 Ac is probably not important for radiation dosimetry applications, because all radiations have low energies and the relatively short-lived 227 Th daughter product has many higher energy radiations with significant intensity.

7-1.8 Radium-228

The decay scheme for ²²⁸Ra is not known, and therefore the data adopted in this handbook are quite uncertain (76Ho06). Several gamma rays between 6 and 31 keV are believed to belong to the decay scheme, but the intensities and transition multipolarities have not been established. As with ²²⁷Ac, however, the determination of the decay scheme for ²²⁸Ra is probably not important for radiation dosimetry applications because the relatively shortlived ²²⁸Ac daughter product has many high-energy transitions with significant intensity.

7-1.9 Thorium-229

Most of the adopted gamma-ray intensities from ²²⁹ Th alpha decay are based on measured conversion electron intensities for which the relative uncertainties are 10 to 50% (78To04). Therefore many of the gamma-ray and conversion electron intensities are likely to be quite uncertain. Further indication of errors in the data is the fact that the adopted decay scheme (78To04, 73Ma66) contains significant intensity imbalances at several levels in the daughter nucleus ²²⁵ Ra up to 236 keV. Additional gamma-ray and conversion electron measurements are needed.

7-1.10 Protactinium-234 (6.70 h)

With the use of the adopted gamma-ray intensities and transition multipolarities in the β^- decay of ²³⁴ Pa (6.70 h), the total β^- intensity obtained from the gamma-ray plus conversion electron intensity balances at each level in the daughter nucleus is found to be 146% (77EI06), which is clearly in error compared with the expected value of 100%. The larger value results from the fact that, for some levels in the daughter, the total gamma-ray plus conversion electron intensity feeding the level *exceeds* the total intensity from decay of the level by more than the experimental uncertainties. This strongly suggests that some of the measured gamma-ray intensities are in error. In this work the adopted β^- intensities were obtained by dividing all values calculated from the decay scheme by a factor of 1.46 to give a total β^- intensity of 100%, but the resulting values for the individual transitions are clearly suspect. A remeasurement of relative gamma-ray intensities is needed. Protactinium-234 (6.70 h), however, is not an important radionuclide in the decay chain for the uranium series (see Appendix 4) since it is produced only by the 0.16% isomeric transition from the decay of ²³⁴ Pa (1.17 m).

7-1.11 Curium-245

Only two gamma rays have been observed in ²⁴⁵ Cm alpha decay, even though at least six levels in the daughter nucleus are known to be populated (76EI01, 78EI02). From the measured alpha-particle intensities, we can estimate that 6% of the expected gamma-ray plus conversion electron intensity has not been observed. The missing transitions should be observable from a measurement of the conversion electron spectrum.

7–2 UNCERTAIN DECAY SCHEMES FOR OTHER RADIONUCLIDES

The decay schemes for the following additional radionuclides in this handbook may be significantly in error: ⁶⁷Cu, ⁹¹Nb (61 d), ⁹⁵Tc (61 d), ¹²⁶I, ¹⁹⁴Ir (171 d), ²¹⁰TI, ²³¹U, ²³⁶Np (1.15E5 y), ²³⁶Np (22 h), ²⁴⁵Pu, ²⁴⁶Pu, ²⁵⁰Cm, ²⁵¹Bk, ²⁵¹Cf, ²⁵³Es, and ²⁵⁵Es. These radionuclides, however, will not likely be of great importance in radiation dosimetry and radiological assessment activities.

7-2.1 Copper-67

The absolute intensities of the radiations from 67 Cu β^- decay are based on the measured intensity of ~20% for the β^- transition feeding the ground state in the daughter nucleus (75Au10). An error in this measurement would result in comparable errors in all other β^- and gamma-ray intensities. A more precise measurement of the ground-state β^- transition intensity or a measurement of the number of 185-keV gamma rays per β^- transition would determine all absolute intensities more accurately.

7-2.2 Niobium-91 (61 d) and Technetium-95 (61 d)

For both ⁹¹Nb (61 d) and ⁹⁵Tc (61 d), the available measurements indicate that the branching ratios for electron capture decay and the isomeric transition may not be accurately determined (72Ve09, 75MeHo). An error in the branching ratios would result in errors in the intensities of all radiations from these decays. For each radionuclide, a remeasurement of the intensity of the gamma ray from the isomeric transition relative to the intensity of a strong gamma ray from electron capture decay is needed.

7-2.3 lodine-126

Absolute intensities of the radiations from ¹²⁶ I decay differing by as much as 30% can be obtained, depending on the data chosen to normalize the electron capture and β^- decay schemes (73Au10). The intensities adopted in this handbook are barely in agreement with those adopted by Martin (78NCRP). Additional measurements of both β^+ and β^- intensity ratios are needed to reduce possible errors in the two decay schemes.

7–2.4 Iridium-194 (171 d)

The β^- decay of ¹⁹⁴ Ir (171 d) is assumed to proceed via a single β^- transition (77Ha46), but only an upper limit of 250 keV has been established for the endpoint energy. The endpoint energy could be determined from measurements of the β^- spectrum or beta-gamma coincidences.

7-2.5 Thallium-210

The only data on the gamma-ray spectrum from ²¹⁰ Tl β^- decay are crude measurements made with scintillation detectors (71Lew1). Consequently the energies and intensities of all gamma rays and internal conversion electrons are poorly known. Furthermore, the energies and intensities of the β^- transitions could be estimated only from measurements of the total β^- spectrum, a procedure that may result in considerable error. Since the β^- feeding to the ground state in the daughter nucleus can be assumed to be zero from the probable spins of ²¹⁰ Tl, the decay scheme could be determined from measurements of the gamma-ray spectrum with modern detection techniques.

7-2.6 Uranium-231

The intensities of all radiations from ²³¹U electron capture decay are based on unpublished data (77Sc15) and appear to be poorly determined. Additional measurements of the gamma-ray and conversion electron spectra are needed.

7-2.7 Neptunium-236 (1.15E5 y)

No gamma rays have been observed following the β^- decay of ²³⁶ Np (1.15E5 y), for which the branching ratio is 8.9% (77Sc13). Therefore the adopted intensities for this decay branch are uncertain.

7-2.8 Neptunium-236 (22 h)

In the electron capture and β^- decays of ²³⁶ Np (22 h), the gamma-ray and conversion electron intensities of the two 45-keV transitions are poorly determined (77Sc13). Therefore the intensities of the individual electron capture and β^- transitions are also uncertain.

7-2.9 Plutonium-245

From the adopted decay scheme for ²⁴⁵ Pu $\beta^$ decay (76EI01), it is evident that nearly all the gamma rays resulting from the decay of levels in the daughter nucleus below 200 keV excitation energy have not been observed. Therefore it is likely that most of the conversion electron intensity from the decay of ²⁴⁵ Pu has been left out of account. In addition, the energies and intensities for the two highest energy β^- groups (β^- 9 and β^- 10) were estimated from measurements of the total $\beta^$ spectrum and thus could be in error since several separate transitions likely contribute to each group.

7-2.10 Plutonium-246

No transition multipolarities are known for any of the gamma rays following ²⁴⁶Pu β^- decay (76Sc02). For relatively low-energy transitions in a heavy nucleus, the conversion electron intensities that have been left out of account are undoubtedly significant and, in some cases, are likely to be greater than the corresponding gamma-ray intensities. Furthermore, the β^- intensities obtained from the gamma-ray intensity balances without accounting for the conversion electron intensities are undoubtedly in error.

7–2.11 Curium-250

The decay of 250 Cm has not been observed (76Sc02), and the estimated decay branching ratios for the alpha and β^- decays are based on the systematic trends of data for other radionuclides of similar atomic number and mass. It is obvious, therefore, that the adopted decay data are quite uncertain.

7–2.12 Berkelium-251 and Einsteinium-255

The decay schemes for both ²⁵¹Bk β^- decay and the 92% β^- branch for the decay of ²⁵⁵Es are unknown (76Sc09). In each case we have assumed that all the β^- decays directly feed the ground state in the daughter nucleus. However, many excited states are known in the daughters which could be fed by $\beta^$ transitions from the decay of each parent. Therefore it is likely that significant gamma-ray and conversion electron intensities have been left out of account in the adopted decay data.

7-2.13 Californium-251

From the adopted decay scheme for ²⁵¹ Cf alpha decay (76Sc09), it is evident that several gamma rays and conversion electrons resulting from decay of levels in the daughter nucleus have not been observed. These transitions likely account for more than 10% of the total gamma-ray and conversion electron intensity.

7-2.14 Einsteinium-253

The adopted gamma-ray and conversion electron intensities for transitions in ^{2 5 3} Es alpha decay with energies below 136 keV appear to be quite uncertain (76Sc09). The uncertainties are particularly significant for the conversion electrons since the intensities are much greater than for the corresponding gamma rays.

REFERENCE

National Council on Radiation Protection and Measurements, A Handbook of Radioactivity Measurements Procedures, Report No. 58, 1978.

Symbols and Definitions

Appendix 1

The symbols appear decay data in Append	ring in the tables of radioactive dix 5 and their definitions are:	rad	Unit of absorbed dose, equal to 6.25 x 10 ⁷ MeV/g
		S	Second
		у	Year
Auger-K, Auger-L avg	K-shell, L-shell Auger electron Average	α	Alpha, as alpha decay in table headings
ce-K-1, ce-L-2, etc.	K-shell internal conversion electron for gamma-ray 1,	α 1, α 2, etc.	Alpha particle corresponding to transition 1, 2, etc.
	L-shell internal conversion electron for gamma-ray 2,	β^+ , β^-	Beta-plus, beta-minus, as beta decay in table headings
Ci	etc. Curie	β 1, β 2, etc.	Beta particle corresponding to transition 1.2 etc.
d	Dav	$\gamma 1 \gamma 2$ etc	Gamma ray corresponding to
EC	Electron capture	, , , , _,	transition 1, 2, etc.
h	Hour	γ^{\pm}	Annihilation radiation
l(min)	Minimum intensity for separate listing of radiation in table	Δ	Mean energy emitted per unit of cumulated activity
IT	Isomeric transition	μCi-h	Microcurie-hour
$K_{\alpha 1}$, $K_{\alpha 2}$, K_{β} ; L	K X rays; L X rays	3.624 12	3.624 ± 0.012
m	Minute	2.6 h 12	2.6 ± 1.2 h
max	Maximum	2.1E5 y 2	$(2.1 \pm 0.2) \times 10^5 \text{ y}$

Index to Tables of Radioactive Decay Data Appendix 2

This appendix contains an index to the tables of radioactive decay data in Appendix 5. Each entry in the index gives the data set name (including the half-life if it is needed to identify the radionuclide), the key numbers for the literature references assigned by the Nuclear Data Project and listed in Appendix 3, the identifying characters "HASRD-DCK" for all sets in this compilation, and the month and year when the data set was prepared or last revised. We emphasize that the decay data in Appendix 5 take into account all mass-chain compilations and "Recent References" published in the journals *Nuclear Data Sheets* and *Nuclear Physics* through April 1979.

The tables of decay data are ordered by increasing mass number of the radionuclides. Within a given mass number, the order is by increasing atomic number. For a particular atomic number and mass number, the order is by increasing level energy in the parent nucleus. If a given radionuclide has more than one mode of decay, the separate data tables for each decay mode are ordered first by increasing mass number of the daughter nucleus and then, within a given mass number, by increasing atomic number of the daughter.
	011 D 0564W	
SHE	3H B- DECAY	75+108, HASRD-DCK, 10777
	THE EC DECAY	74AJ01, HASRD-DCK, 10/77
108	10BE B- DECAY	74AJ01, HASRD-DCK, 10/77
118	11C B+ DECAY	75AJ02,75AZ01, HASRD-DCK, 10/77
13C	13N B+ DECAY	78NCRP,77AZO1, HASRD-DCK, 1/78
14N	14C B- DECAY	78NCRP, HASRD-DCK, 10/77
15N	150 B+ DECAY	76AJ04, HASRD-DCK, 10/77
160	16N B- DECAY	77AJ02, HASRD-DCK, 3/79
180	18F B+ DECAY	78NCRP. HASRD-DCK. 10/77
22NE	22NA B+ DECAY	78NCRP. HASRD-DCK. 10/77
24MG	24NA B- DECAY	78NCRP, HASRD-DCK, 10/77
26MG	26 AL B+ DECAY (7.2E5 V)	78 EN02.78NCPP. HASPD-DCK. 3/70
2741	27MG B- DECAY	78EN02.78NCRP. HASRD-DCK. 3/79
2841	28MG B- DECAY	78NCR9.78D105: HASRD-DCK, 6/79
2851		78NCRP, HASPD-OCK, 10/77
210		
320	32ST B- DECAY	79EN02: HASED_DCK 3/70
225		
225	320 B- DECAY	79NCPD HASED-DCK 10/77
550	SEC P- DECAY	$\frac{10}{10}$
3500	DECAT	TONUKP, HASKU-DUK, $10/77$
2640	DOLL EU DECAT	$\frac{1}{22} = \frac{1}{2} = 1$
30 AK	JOLL B- DECAY	TERVA, HASKU-DUK, 10/77
3701	JIAR EL DECAY	TERVA, TEKILO, HASRD-DUK, 10///
38AK	JOL B- DECAY	TBNURP, HASRU-DUK, 10/77
39K	39AR B- DECAY	73 ENVA, HASRD-DCK, 10/77
40AR	40K EC DECAY	73 ENVA, HASRD-DCK, 10/77
40C A	40K B- DECAY	73ENVA, HASRD-DCK, 10/77
41K	41AR B- DECAY	78NCRP, HASRD-DCK, 10/77
41K	41CA EC DECAY	73ENVA,74MA30, HASRD-DCK, 10/77
42 C A	42K B- DECAY	78NCRP, HASRD-DCK, 10/77
43CA	43K B- DECAY	78NCRP, HASRD-DCK, 10/77
44C A	44 SC B+ DECAY (3.927 H)	78EN02,78NCRP, HASRD-DCK, 3/79
44SC	44TI EC DECAY	78EN02,78NCRP, HASRD-DCK, 3/79
45 S C	45CA B- DECAY	78NCRP, HASRD-DCK, 10/77
45SC	45TI EC DECAY	77BE63, HASRD-DCK, 6/79
46TI	46 SC B- DECAY (83.83 D)	78NCRP, HASRD-DCK, 10/77
46 S C	46 SC IT DECAY (18.72 S)	78AU04, HASRD-DCK, 3/79
47SC	47CA B- DECAY	78NCRP, HASRD-DCK, 10/77
47 T I	47SC B- DECAY	78NCRP, HASRD-DCK, 10/77
48TI	48SC B- DECAY	78BE01, HASRD-DCK, 4/78
48TI	48V B+ DECAY	78BE01, HASRD-DCK, 4/78
49SC	49CA B- DECAY	78HA15, HASRD-DCK, 8/78
49T I	49SC B- DECAY	78HA15, HASRD-DCK, 8/78
49T I	49V EC DECAY	78HA15, HASRD-DCK, 8/78
49V	49CR B+ DECAY	78HA15, HASRD-DCK, 10/78
51V	51TI B- DECAY	78AU01, HASRD-DCK, 6/79
51 V	51CR EC DECAY	78AU01, HASRD-DCK, 4/78
52CR	52V B- DECAY	78BE37, HASRD-DCK, 6/79
52CR	52MN B+ DECAY (5.591 D)	78BE37, HASRD-DCK, 10/78
52CR	52MN B+ DECAY (21.4 M)	78BE37, HASRD-DCK, 10/78
52MN	52MN IT DECAY (21.4 M)	788E37, HASRD-DCK, 10/78
52MN	52FE B+ DECAY	788637. HASRD-DCK. 10/78
53CR	53MN FC DECAY	774U08. HASRD-DCK. 4/79
54CR	54MN EC DECAY	78NCRP, HASRD-DCK, 10/77
55MN	55FE EC DECAY	78NCRP. HASRD-DCK. 10/77
56FE	56MN B- DECAY	77 AU03 . HASRD-DCK. 10/77
56FE	56CO B+ DECAY	77AU03.77GE12. HASRD-DCK. 8/78
56C0	56NI FC DECAY	77 AU03. HASRD-DCK. 10/77
57FE	57MN B- DECAY	77AU04.78WY02. HASRD-DCK. 6/79
57FF	57CO EC DECAY	77 AU04 - HASPD-DCK- 10/77
5700	STNT B+ DECAY	77 NU04 - HASPD-DCK, 2/79
58EE	58CD EC DECAY (70-80 D)	76K016-76VA30- HASED-DCK, 1/79
5800	58CD IT DECAY (9.15 H)	76K016, HASPD-DCK 1/79
5900	SOLE B- DECAY	76K103. HASPD-DCK, 10/77
5900	SONT EC DECAY	78NC2P HASED-DCK, 10/77
5900	4000 B- DECAY (5 271 V)	1000000000000000000000000000000000000
6000	60C0 IT DECAY (10 47 M)	75K119 HASED-DCK ((70
6001	6000 R= 060AV (10 47 M)	75K119, WASRD-DCK, 4/79
61 MT	AICO B- DECAN LIVANT MP	75 A1105, HASAD-DCV 5/70
61NT	AICH BA DECAY	7540031 HASHU-UUR1 3/19 754005 798510 HASHD DCV 5/70
6781	A2CH RA DECAY	1340031107E101 HASKU-UUK, 5779 704401 44500-064 - 770
4201	ADTH EC DECAT	701401 HASKUTULN, 3/19
6200	CZLIN EL DELAT	75 AUG2 UASDD DCV 30/77
0 3 L U 4 4 N T	DOINT DE DECAT	10 AUUD 1 MASKU-ULK, 10/11
6471	STUD DT DECAT	TUNCKY HASKUTULKY 10/17
042N	AFNI D- DECAT	754000 04500 DCK 10/77
4500	ASTN EC DECAY	1040000 HASKD-DCK 10/77
63UU	GOLN EL DELAT	TRAUNDE HASKU-DUR, 10/77
00 LN	COUR DE DECAY	TONUKY, HASKU-UUK, 10/77
DILN	OILU B- DELAY	IDAULU,/8MELU, HASKD-DCK, 12/78

. • 9

672N		
	67GA EC DECAY	75AUI0,78MEIO, HASRD-DCK, 12/78
68ZN	68GA B+ DECAY	75LE12, HASRD-DCK, 10/77
68GA	68GE EC DECAY	78NCRP, HASRD-DCK, 10/77
69GA	69ZN B- DECAY (55.6 M)	76AU01, HASRD-DCK, 10/77
69ZN	69ZN IT DECAY (13.76 H)	76AU01,77HE20, HASRD-DCK, 5/78
71GA	71 GE EC DECAY	734133 HASRD-DCK. 10/77
726F	72GA B- DECAY	741154 HASED-DCK. 5/79
7265	72AS BA DECAY	74AL34
7200	TZAS DE DECAT	700000 UACOD DCK 10/77
(36E	TAAS EU DECAY	TONCRP, HASRD-DCK, 10/17
73AS	TASE EC DECAY (T.15 H)	74AL33, HASRD-DCK, 10/77
74GE	74AS B+ DECAY	76K007,75CA37,76HA61, HASRD-DCK, 10/7
74SE	74AS B- DECAY	76K007,75CA37,76HA61, HASRD-DCK, 10/7
75AS	75SE EC DECAY	75H017,76HU11,77GE12, HASRD-DCK, 8/78
765E	76AS B- DECAY	78NCRP + HASRD-DCK + 10/77
7745	7766 B- DECAY (11.30 H)	78NCRP.746U30.75CH32. HASRD-DCK. 11/7
7765	77AC R- DECAY	70NCDD HACDD-DCK 11/77
7765	7700 CC DECAT	70NCDD 75UA20 UACDD-DCV 11/77
TISE	TIBE EL DECAT (DI.04 HI	TONURP FIDWAZO, HASKU-DUK, 11/1/
79BR	19SE B- DECAY	75UR03, HASRD-DCK, 11777
79BR	79KR B+ DECAY (55.04 H)	78NCRP, HASRD-DCK, 11/77
80 S E	80BR EC DECAY (17.4 M)	75GR19, HASRD-DCK, 11/77
80KR	80BR B- DECAY (17.4 M)	75GR19, HASRD-DCK, 11/77
80 B R	80BR IT DECAY (4.42 H)	75GR19, HASPD-DCK, 11/77
81 BR	81KR EC DECAY (2.1E5 Y)	78NCRP. HASRD-DCK. 11/77
AIKR	8188 EC DECAY (4.58 H)	751 E08.75VA24.771 114. HASRD-DCK. 5/78
9340	9280 8- DECAY (36 30 H)	751 E11.77CE12. HASDD-DCK. 9/78
02 K K	BODD DA DECAT (JJAJU HI	751511 HACDD-DCK 11/77
8288	SZRB B+ DELAY (1.20 M)	TOLEII, HASKU-DUK, II/ (
82RB	82SR EC DECAY	75LE11, HASRD-DCK, 11777
83KR	83BR B- DECAY	75KD07,76VA03, HASRD-DCK, 11/77
83KR	83KR IT DECAY (1.83 H)	75K007, HASRD-DCK, 11/77
83KR	83RB EC DECAY	75K007,76VA03, HASRD-DCK, 6/78
84KR	84BR B- DECAY	71AUB2 . 72H103 . HASRD-DCK . 11/77
8468	8488 B+ DECAY	78NCRP.76G114. HASRD-DCK. 11/77
9450	PADE B- DECAY	70NCDD 74CT14 HASRD DCK 11/77
0435	OFRD D- DECAT	71 100 1 751102 HASRD-DCK 11/77
85KK	85 BK B- DECAT	(1HUK1, (5NUU3, HASKU-UCK, 11///
85KB	85KR B- DELAY (10.72 Y)	78NCRP, HASRD-DCK, 11777
85KR	85KR IT DECAY (4.48 H)	78NCRP, HASRD-DCK, 11/77
85R B	85KR B- DECAY (4.48 H)	78NCRP, HASRD-DCK, 11/77
85RB	85 SR EC DECAY (64.84 D)	78NCRP,77PR04, HASRD-DCK, 1/78
85RB	85 SR EC DECAY (67.66 M)	71HDR1,718U08,71VD06, HASRD-DCK, 11/7
8558	85 SR IT DECAY (67.66 M)	71HOR1.718008.71V006. HASRD-DCK. 11/7
94 50	REPR B- DECAY	78TE01. WASPD-DCK. 12/78
0034	OCKU DE DECAN (16 76 H)	701501 HASRO DCK 3/70
865K	SOT BY DECAT (14.14 H)	101EU1, HASRU-UCK, 5/19
86 Y	862R EU DECAY	181EU1, HASRU-UCK, 5779
87RB	87KR B- DECAY	78NCRP, HASRD-DCK, 11/77
87 SR	87RB B- DECAY	79LU05, HASRD-DCK, 11/77
87RB	87SR EC DECAY (2.805 H)	78NCRP, HASRD-DCK, 11/77
87 SR	87SR IT DECAY (2.805 H)	78NCRP, HASRD-DCK, 11/77
875R	ATH FC OFCAN	
	BIT EU DEUAT	78NCRP, HASRD-DCK, 11/77
8888	SAKE B- DECAT	78NCRP, HASRD-DCK, 11/77 768U07-768U05-76WD05- HASRD-DCK, 11/7
8888 8858	88KR B- DECAY 88KR B- DECAY	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79
88RB 885R	877 EC DECAY 88KR B- DECAY 88RB B- DECAY	78NCRP, HASRD-DCK, 11/77 768U07,768U05,76WD05, HASRD-DCK, 11/7 768U07,768U05,76WD05, HASRD-DCK, 6/79 769U07,768U05,76WD05, HASRD-DCK, 6/79
88RB 885R 885R	88KR B- DECAY 88RB B- DECAY 88RB B- DECAY	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 11/77
88RB 88SR 88SR 88Y	88 KR B- DECAY 88 KB B- DECAY 88 Y EC DECAY 88 ZR EC DECAY	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78
88RB 88SR 88SR 88Y 89RB	88 KR B- DECAY 88 KB B- DECAY 88 Y EC DECAY 88 ZR EC DECAY 89 KB B- DECAY 89 KB B- DECAY	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75KD21,76W005,78WD15, HASRD-DCK, 6/79
88RB 88SR 88SR 88Y 89RB 89SR	87Y EC DECAY 88KR B- DECAY 88RB B- DECAY 88Y EC DECAY 89KR B- DECAY 89KR B- DECAY 89RB B- DECAY	78NCRP, HASRD-DCK, 11/77 768U07,768U05,76WD05, HASRD-DCK, 11/7 768U07,768U05,76WD05, HASRD-DCK, 6/79 768U07, HASRD-DCK, 11/77 768U07, HASRD-DCK, 2/78 75KD21,76W005,78WU15, HASRD-DCK, 6/79 75KD21,76W005,78WU04, HASRD-DCK, 6/79
88RB 88SR 88SR 88Y 89RB 89SR 89SR	87Y EC DECAY 88KR B- DECAY 88RY EC DECAY 88ZR EC DECAY 89KR B- DECAY 89SR B- DECAY 89SR B- DECAY	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75KD21,76W005,78WD15, HASRD-DCK, 6/79 75KD21,76W005,78WD4, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77
88RB 88SR 88SR 88Y 89RB 89RB 89SR 89Y 89Y	87Y EC DECAY 88KR B- DECAY 88RY EC DECAY 88ZR EC DECAY 89KR B- DECAY 89SR B- DECAY 89ZR B+ DECAY	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75K021,76W005,78WD15, HASRD-DCK, 6/79 75K021,76W005,78WU04, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75K021, HASRD-DCK, 2/78
88 R B 88 S R 88 S R 88 Y 89 R B 89 S R 89 Y 89 Y 90 R B	87Y EC DECAY 88KR B- DECAY 88RB B- DECAY 88ZR EC DECAY 89KR B- DECAY 89SR B- DECAY 89SR B- DECAY 89ZR B+ DECAY 90KR B- DECAY	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75KD21,76W005,78WD15, HASRD-DCK, 6/79 75KD21,76W005,78WU04, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75KD21, HASRD-DCK, 2/78 75KD16,76W005, HASRD-DCK, 11/77
88 R B 88 S R 88 S R 88 Y 89 R B 89 S R 89 Y 90 R B 90 S R	BYY EC DECAY 88KR B- DECAY 88RB B- DECAY 88Y EC DECAY 89KR B- DECAY 89SR B- DECAY 89SR B- DECAY 90KR B- DECAY 90KR B- DECAY 90KB B- DECAY 157 SI	78NCRP, HASRD-DCK, 11/77 768U07,768U05,76WD05, HASRD-DCK, 11/7 768U07,768U05,76WD05, HASRD-DCK, 6/79 768U07, HASRD-DCK, 11/77 768U07, HASRD-DCK, 2/78 75K021,76W005,78W015, HASRD-DCK, 6/79 75K021,76W005,78WU04, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75K021, HASRD-DCK, 2/78 75K016,76W005, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 6/79
88 R B 88 S R 88 S R 89 R 89 R 89 S R 89 Y 89 Y 90 R B 90 R B 90 R B	BYY EC DECAY 88KR B- DECAY 88RB B- DECAY 88ZR EC DECAY 89KR B- DECAY 89SR B- DECAY 89SR B- DECAY 89ZR B+ DECAY 90KR B- DECAY 90RB B- DECAY 90RB IT DECAY 258 SI	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75K021,76W005,78WD15, HASRD-DCK, 6/79 75K021,76W005,78WU04, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75K021, HASRD-DCK, 2/78 75K016,76W005, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 5/78
88 R B 88 S R 88 S R 89 R B 89 S R 89 S R 89 Y 90 R B 90 S R 90 R B 90 S R 90 S R	BYY EC DECAY 88KR B- DECAY 88RB B- DECAY 88ZR EC DECAY 89KR B- DECAY 89KR B- DECAY 89SR B- DECAY 89ZR B+ DECAY 90KR B- DECAY 90KR B- DECAY 90KB B- DECAY 90RB B- DECAY 90RB B- DECAY 90RB C- DECAY 90RCAY	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75K021,76W005,78WD15, HASRD-DCK, 6/79 75K021,76W005,78WD4, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75K021, HASRD-DCK, 2/78 75K016,76W005, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 5/78 75K016,77HU03, HASRD-DCK, 5/78
88 R B 88 S R 88 S R 89 R B 89 R B 89 S R 89 Y 90 R B 90 S R 90 R B 90 S R 90 S R	BYY EC DECAY 88KR B- DECAY 88RB B- DECAY 88Y EC DECAY 89KR B- DECAY 89KR B- DECAY 89SR B- DECAY 89SR B- DECAY 90KR B- DECAY 90RB B-	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75K021,76W005,78W015, HASRD-DCK, 6/79 75K021,76W005,78W04, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75K016,76W005, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 5/78 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79
88 R B 88 S R 88 S R 89 R B 89 S R 89 Y 90 R B 90 R B 90 R B 90 R B 90 S R 90 S R 90 Y	BYY EC DECAY 88KR B- DECAY 88KR B- DECAY 88ZR EC DECAY 89KR B- DECAY 89SR B- DECAY 89SR B- DECAY 89ZR B+ DECAY 90KR B- DECAY 90RB B- DECAY 90RB B- DECAY 90RB B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75KD21,76W005,78WU15, HASRD-DCK, 6/79 75KD21,76W005,78WU04, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75KD16,76W005, HASRD-DCK, 11/77 75KD16,77HU03, HASRD-DCK, 11/77 75KD16,77HU03, HASRD-DCK, 5/78 75KD16,77HU03, HASRD-DCK, 6/79 75KD16,77HU03, HASRD-DCK, 6/79 75KD16,77HU03, HASRD-DCK, 6/79
88 R B 88 S R 88 S R 88 Y 89 R B 89 S R 89 Y 90 R B 90 S R 90 S R 90 S R 90 Y 90 Z R	81Y EC DECAY 88KR B- DECAY 88RB B- DECAY 88ZR EC DECAY 89KR B- DECAY 89RB B- DECAY 89SR B- DECAY 89ZR B+ DECAY 90KR B- DECAY 90KR B- DECAY 90RB B- DECAY 90RB B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 90Y B- DECAY 90	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75K021,76W005,78WD15, HASRD-DCK, 6/79 75K021,76W005,78WD4, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75K016,76W005, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77
88 R B 88 S R 88 S R 89 R B 89 S R 89 S R 89 S R 90 R B 90 R B 90 S R 90 S R 90 S R 90 S R 90 Y 90 Y	81Y EC DECAY 88KR B- DECAY 88RB B- DECAY 88Y EC DECAY 89KR B- DECAY 89KR B- DECAY 89SR B- DECAY 89ZR B+ DECAY 90KR B- DECAY 90KB B- DECAY 90RB B- DECAY 90RB B- DECAY 90RB B- DECAY 90SR B- DECAY 90SR B- DECAY 90Y B- DECAY 90Y B- DECAY 1258 S 90Y B- DECAY 1258 S 90Y B- DECAY 1258 S 100Y B- DECAY 1258 S 1258	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75KD21,76W005,78WD15, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75KD21,76W005, TAWD4, HASRD-DCK, 6/79 75KD16,76W005, HASRD-DCK, 11/77 75KD16,77HU03, HASRD-DCK, 6/79 75KD16,77HU03, HASRD-DCK, 6/79 75KD16,77HU03, HASRD-DCK, 6/79 75KD16, HASRD-DCK, 11/77 75KD16, HASRD-DCK, 11/77 75KD16, HASRD-DCK, 11/78 75KD16, HASRD-DCK, 12/78
88 R B 88 S R 88 S R 89 R B 89 S R 89 Y 90 S R 90 S R	81Y EC DECAY 88KR B- DECAY 88RB B- DECAY 88RR EC DECAY 89KR B- DECAY 89KR B- DECAY 89KR B- DECAY 89KR B- DECAY 90KR B- DECAY 90KB B- DECAY 90RB B- DECAY 90KB B- DECAY 90KB B- DECAY 90KB B- DECAY 90Y	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75K021,76W005,78WU15, HASRD-DCK, 6/79 75K021,76W005,78WU04, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75K016,76W005, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/78 75K016,75PA07,78BE12, HASRD-DCK, 5/79
88 R B 88 S R 88 S R 88 Y 89 S R 89 S R 89 S R 89 Y 90 S R 90 S R 90 S R 90 S R 90 S R 90 Z R 90 Z R 90 Z R 90 Z R 90 Z R	81Y EC DECAY 88KR B- DECAY 88RB B- DECAY 88ZR EC DECAY 89KR B- DECAY 89SR B- DECAY 89SR B- DECAY 89SR B- DECAY 90KR B- DECAY 90RB B- DECAY 90RB B- DECAY 90SR B- DECAY 91SR B- DECAY	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75K021,76W005,78WD15, HASRD-DCK, 6/79 75K021,76W005,78WU04, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75K016,76W005, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,75PA07,78BE12, HASRD-DCK, 5/79 72VE09,73HA11,77H012, HASRD-DCK, 1/78
88 R B 88 S R 88 S R 89 S R 89 S R 89 S R 89 Y 90 R B 90 S R 90 R B 90 S R 90 S R	81Y EC DECAY 88KR B- DECAY 88RB B- DECAY 88ZR EC DECAY 89KR B- DECAY 89KR B- DECAY 89SR B- DECAY 89SR B- DECAY 90KR B- DECAY 90KR B- DECAY 90RB B- DECAY 90RB B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 90Y B- DECAY 90Y B- DECAY 91SR B- D	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75K021,76W005,78WD15, HASRD-DCK, 6/79 75K021,76W005,78WD4, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75K016,76W005, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/78 75K016, HASRD-DCK, 11/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,75PA07,78BE12, HASRD-DCK, 5/79 72VE09,73HA11,77H012, HASRD-DCK, 178 72VE09, HASRD-DCK, 11/77
88 R B 88 S R 88 S R 89 R B 89 S R 89 S R 89 Y 90 R B 90 S R 90 R B 90 S R 90 S R	81Y EC DECAY 88KR B- DECAY 88RB B- DECAY 88Y EC DECAY 89KR B- DECAY 89KR B- DECAY 89SR B- DECAY 89SR B- DECAY 90KR B- DECAY 90KB B- DECAY 90RB B- DECAY 90RB B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 90Y B- DECAY 90Y B- DECAY 91Y B- DECAY 91Y B- DECAY 91Y B- DECAY 157 51 90KB 17 DECAY 18 51 19 51 10 51	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75K021,76W005,78WD15, HASRD-DCK, 6/79 75K021,76W005,78WD4, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75K016,76W005, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 12/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,75PA07,78BE12, HASRD-DCK, 5/79 72VE09,33HA11,77HD12, HASRD-DCK, 1/78 72VE09, HASRD-DCK, 11/77
88 R B 88 S R 88 S R 88 Y 89 S R 89 S R 89 S R 89 S R 90 S R 90 S R 90 S R 90 S R 90 Z R 90 Z R 90 Z R 91 Y 91 Z R	81Y EC DECAY 88KR B- DECAY 88KR B- DECAY 88Y EC DECAY 89KR B- DECAY 89KR B- DECAY 89SR B- DECAY 89SR B- DECAY 90KR B- DECAY 90KR B- DECAY 90RB B- DECAY 90RB B- DECAY 90RB B- DECAY 90SR B- DECAY 90Y B- DECAY 90Y B- DECAY 90Y B- DECAY 91SR B- DECAY 91SR B- DECAY 91Y B- DECAY 91	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75K021,76W005,78WU04, HASRD-DCK, 6/79 75K021,76W005,78WU04, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75K016,76W005, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,75PA07,78BE12, HASRD-DCK, 5/79 72VE09,73HA11,77H012, HASRD-DCK, 1/78 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 11/77
88 R B 88 S R 88 S R 88 Y 89 S R 89 S R 89 Y 90 S R 90 Y 90 Z R 90 Y 91 Z R 91 Y 91 Z R	81Y EC DECAY 88KR B- DECAY 88RB B- DECAY 88ZR EC DECAY 89ZR B- DECAY 89SR B- DECAY 89SR B- DECAY 89ZR B+ DECAY 90KR B- DECAY 90RB B- DECAY 90RB B- DECAY 90RB B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 91SR B- DECAY 91Y B- DECAY 91NB EC	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75K021,76W005,78W015, HASRD-DCK, 6/79 75K021,76W005,78W004, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75K016,76W005, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016, THU03, HASRD-DCK, 6/79 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,78RA05, HASRD-DCK, 177 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 2/78
88 R B 88 S R 88 S R 89 S R 89 S R 89 S R 89 S R 90 R B 90 S R 90 S R 90 S R 90 S R 90 S R 90 Z R 90 Z R 90 Z R 91 Z R 91 Z R 91 Z R 91 Z R 91 Z R	81Y EC DECAY 88KR B- DECAY 88R B- DECAY 88R EC DECAY 89KR B- DECAY 89KR B- DECAY 89SR B- DECAY 89SR B- DECAY 90KR B- DECAY 90KR B- DECAY 90RB B- DECAY 90RB B- DECAY 90RB B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 91SR B- DECAY 91SR B- DECAY 91SR B- DECAY 91SR B- DECAY 91SH B- D	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75K021,76W005,78WU15, HASRD-DCK, 6/79 75K021,76W005,78WU04, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75K016,76W005, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 5/78 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,78RA05, HASRD-DCK, 12/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,75PA07,78BE12, HASRD-DCK, 5/79 72VE09,73HA11,77H012, HASRD-DCK, 1/78 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 2/78
88 R B 88 S R 88 S R 88 S R 89 S R 89 S R 89 S R 89 S R 90 Z R 90 Z R 91 Z R 91 Z R 91 Z R 91 Z R 91 Z R 91 N B 91 Z R	BY EC DECAY 88KR B- DECAY 88KR B- DECAY 88RR EC DECAY 88RR EC DECAY 89KR B- DECAY 89KR B- DECAY 89KR B- DECAY 90KR B- DECAY 90KR B- DECAY 90KB B- DECAY 91KB B- DECAY 91KB EC	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75KD21,76W005,78WD15, HASRD-DCK, 6/79 75KD21,76W005,78WD4, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75KD16,76W005, HASRD-DCK, 11/77 75KD16,77HU03, HASRD-DCK, 11/77 75KD16,77HU03, HASRD-DCK, 6/79 75KD16,77HU03, HASRD-DCK, 6/79 75KD16,77HU03, HASRD-DCK, 6/79 75KD16,77HU03, HASRD-DCK, 6/79 75KD16,77HU03, HASRD-DCK, 6/79 75KD16,77HU03, HASRD-DCK, 6/79 75KD16,77H003, HASRD-DCK, 5/78 75KD16,77BRA05, HASRD-DCK, 12/78 75KD16,75PA07,78BE12, HASRD-DCK, 1/78 72VE09, TASRD-DCK, 11/77 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 2/78
88RB 88SR 88SR 88SY 89SR 89SR 89SR 90SR 90SR 90SR 90SR 90SR 90Y 90ZR 90Y 90ZR 90Y 91Y 91ZR 91Y 91ZR 91NB 91NB	81Y EC DECAY 88KR B- DECAY 88RR B- DECAY 88ZR EC DECAY 88ZR EC DECAY 89KR B- DECAY 89SR B- DECAY 89SR B- DECAY 90KR B- DECAY 90KR B- DECAY 90RB B- DECAY 90RB B- DECAY 90RB B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 91SR B-	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75K021,76W005,78WD15, HASRD-DCK, 6/79 75K021,76W005,78WD04, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75K016,76W005, HASRD-DCK, 11/77 75K016,76W005, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016, THU03, HASRD-DCK, 6/79 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 72VE09, TASRD-5, HASRD-DCK, 12/78 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 2/78
88 R B 88 S R 88 S R 88 S R 89 S R 89 S R 89 S R 90 R B 90 S R 90 S R 91 Z R 91 Z R 91 N B 91 N B 92 Y 22	81Y EC DECAY 88KR B- DECAY 88R B- DECAY 88R EC DECAY 89KR B- DECAY 89KR B- DECAY 89SR B- DECAY 89SR B- DECAY 90KR B- DECAY 90KR B- DECAY 90RB IT DECAY (157 S) 90RB B- DECAY 90RB B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 91SR B- DECAY 9	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75K021,76W005,78WU04, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75K016,76W005, HASRD-DCK, 11/77 75K016,76W005, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016, HASRD-DCK, 11/78 75K016, HASRD-DCK, 11/78 75K016, HASRD-DCK, 11/78 75K016, T8RA05, HASRD-DCK, 12/78 75K016, 78BE12, HASRD-DCK, 5/79 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 2/78
88 R B 88 S R 88 S R 89 S R 89 S R 89 S R 90 R B 90 S R 90 S R 91 S R R R R R R R R R R R R R R	BYY EC DECAY 88KR B- DECAY 88RR B- DECAY 88RR EC DECAY 89KR B- DECAY 89KR B- DECAY 89KR B- DECAY 89KR B- DECAY 90KR B- DECAY 90KR B- DECAY 90KB B- DECAY 90RB B- DECAY 90RB B- DECAY 90SR B- DECAY 90Y B- DECAY 90Y B- DECAY 91Y B- DECAY 91NB EC DECAY 92SR B- DECAY 92SR B- DECAY 92SR B- DECAY 92Y B- DECAY	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75K021,76W005,78WU04, HASRD-DCK, 6/79 75K021,76W005,78WU04, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,78RA05, HASRD-DCK, 12/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,75PA07,78BE12, HASRD-DCK, 1/78 72VE09,73HA11,77H012, HASRD-DCK, 1/78 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 11/77 72K060, HASRD-DCK, 11/77
88 R B 88 S R 88 S R 88 S R 89 S R 89 S R 89 S R 90 Z R 91 Y 91 Z R 91 N B 91 N B 91 N B 91 N B 91 N B 92 Z R 92 Z R	81Y EC DECAY 88KR B- DECAY 88KR B- DECAY 88RR EC DECAY 88RR B- DECAY 89KR B- DECAY 89KR B- DECAY 89SR B- DECAY 90KR B- DECAY 90KR B- DECAY 90KB B- DECAY 90RB B- DECAY 90RB B- DECAY 90RB B- DECAY 90Y B- DECAY 90Y B- DECAY 91Y B- DECAY 91Y B- DECAY 91Y B- DECAY 91NB EC DECAY 92SR B- DECAY 92SR B- DECAY 92SR B- DECAY 92NB EC DECA	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75K021,76W005,78WU04, HASRD-DCK, 6/79 75K021,76W005,78WU04, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75K016,76W005, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 72VE09,73HA11,77H012, HASRD-DCK, 5/79 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 11/77 72K060, 78NE04, HASRD-DCK, 5/79
88 R B 88 S R 88 S R 89 S R 89 S R 89 S R 90 R B 90 S R 90 S R 91 S R 92 S R 91 S R 91 S R 91 S R 91 S R 92 S R 91 S R 91 S R 92 S R 92 S R 92 S R 91 S R 92 S R R 92 S R	BYY EC DECAY 88KR B- DECAY 88RB B- DECAY 88R EC DECAY 89KR B- DECAY 89KR B- DECAY 89SR B- DECAY 89SR B- DECAY 90KR B- DECAY 90KR B- DECAY 90RB B- DECAY 90RB B- DECAY 90RB B- DECAY 90RB B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 91Y B- DECAY 91Y B- DECAY 91Y B- DECAY 91Y B- DECAY 91NB EC DECAY 91NB EC DECAY 91NB EC DECAY 91NB EC DECAY 91NB EC DECAY 91NB EC DECAY 92NB B- DECAY 92NB EC DECA	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75K021,76W005,78W015, HASRD-DCK, 6/79 75K021,76W005,78W004, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75K016,76W005, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,78RA05, HASRD-DCK, 12/78 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 11/77 72K060,78DE04, HASRD-DCK, 11/77 72K060, HASRD-DCK, 11/77 72K060, HASRD-DCK, 11/77 72K060, HASRD-DCK, 11/77 72K060, HASRD-DCK, 11/77 72K060, HASRD-DCK, 11/77 72K060, HASRD-DCK, 2/78
88 R B 88 S R 88 S R 88 S R 89 S R 89 S R 90 R B 90 S R 90 S R 90 S R 90 S R 90 Z R 91 Z R 91 Z R 91 Z R 91 N B 92 Z R 92 Z R 93 Y	BYY EC DECAY 88KR B- DECAY 88RR B- DECAY 88RR EC DECAY 89KR B- DECAY 89KR B- DECAY 89SR B- DECAY 89SR B- DECAY 90KR B- DECAY 90KR B- DECAY 90RB B- DECAY 90RB B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 91SR B- DECAY 92SR B- DECAY 92SR B- DECAY 92NB EC DECAY 93SR B- DECAY	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75K021,76W005,78WU15, HASRD-DCK, 6/79 75K021,76W005,78WU04, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75K016,76W005, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77H003, HASRD-DCK, 12/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,78RA05, HASRD-DCK, 12/78 72VE09,73HA11,77H012, HASRD-DCK, 5/79 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 11/77 72K060,720L03, HASRD-DCK, 6/79 72K060,78NE04, HASRD-DCK, 5/79 72K060, HASRD-DCK, 11/77 72K060, HASRD-DCK, 11/77 72K060, HASRD-DCK, 11/77 72K060, HASRD-DCK, 2/78 72HE41,74AC04,778I01, HASRD-DCK, 11/77
88 R B 88 S R 88 S R 88 S R 89 S R 89 S R 89 S R 90 S R 90 S R 90 S R 90 S R 90 S R 90 Z R 90 Z R 91 Z R 91 Z R 91 N B 91 N B 91 N B 91 N B 91 N B 91 N B 92 Z R 92 Z R 93 Z R	BY EC DECAY 88KR B- DECAY 88KR B- DECAY 88RR EC DECAY 88RR EC DECAY 89KR B- DECAY 89KR B- DECAY 89KR B- DECAY 90KR B- DECAY 90KR B- DECAY 90KB B- DECAY 90RB B- DECAY 90RB B- DECAY 90KB B- DECAY 90KB B- DECAY 90KB B- DECAY 90KB B- DECAY 91Y B- DECAY 91KB B- DECAY 91KB EC DECAY 91KB EC DECAY 91NB EC DECAY 91NB EC DECAY 91NB EC DECAY 91NB EC DECAY 91NB EC DECAY 92KB B- DECAY 92KB B- DECAY 92KB B- DECAY 92KB EC DECAY 93KB B- DECAY 93KB- DEC	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75KD21,76W005,78WU15, HASRD-DCK, 6/79 75KD21,76W005,78WU04, HASRD-DCK, 6/79 75KD16,76W005, HASRD-DCK, 11/77 75KD16,77HU03, HASRD-DCK, 11/77 75KD16,77HU03, HASRD-DCK, 6/79 75KD16,77HU03, HASRD-DCK, 6/79 75KD16,77HU03, HASRD-DCK, 6/79 75KD16,77HU03, HASRD-DCK, 6/79 75KD16,77HU03, HASRD-DCK, 6/79 75KD16,78RA05, HASRD-DCK, 12/78 75KD16,78RA05, HASRD-DCK, 12/78 75KD16,78PA07,78BE12, HASRD-DCK, 5/79 72VE09,73HA11,77HD12, HASRD-DCK, 1/78 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 11/77 72KD60,72DLO3, HASRD-DCK, 6/79 72KD60,78NE04, HASRD-DCK, 5/79 72KD60, HASRD-DCK, 2/78 72KD60, HASRD-DCK, 11/77 72KD60, HASRD-DCK, 11/77 72KD60, HASRD-DCK, 11/77 72KD60, HASRD-DCK, 2/78 72HE41,74AC04,77BI01, HASRD-DCK, 11/77
88 R B 88 S R 88 S R 89 S R 89 S R 89 S R 90 S R 90 S R 90 S R 90 S R 90 S R 90 Y 90 Z R 90 Y 91 Z R 91 N B 91 N B 91 N B 92 Z R 92 Z R 93 Z R 93 Z R	BY EC DECAY 88KR B- DECAY 88RB B- DECAY 88R EC DECAY 88R B- DECAY 89RB B- DECAY 89SR B- DECAY 89SR B- DECAY 90RB B- DECAY 90RB B- DECAY 90RB B- DECAY 90RB B- DECAY 90RB B- DECAY 90RB B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 91Y B- DECAY 91Y B- DECAY 91Y B- DECAY 91Y B- DECAY 91Y B- DECAY 91NB EC DECAY 91NB EC DECAY 91NB EC DECAY 91NB EC DECAY 92NB B- DECAY 92NB EC DECAY 92NB EC DECAY 92NB EC DECAY 93SR B- DECAY	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07,76BU05,76WD05, HASRD-DCK, 6/79 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75K021,76W005,78WD15, HASRD-DCK, 6/79 75K021,76W005,78WD4, HASRD-DCK, 6/79 78NCRP, HASRD-DCK, 11/77 75K016,76W005, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 75K016, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 11/77 72K060,78DE37, HASRD-DCK, 11/77 72K060,78DE04, HASRD-DCK, 11/77 72K060,78DE04, HASRD-DCK, 11/77 72K060, HASRD-DCK, 2/78 72HE41,74AC04,778I01, HASRD-DCK, 11/77 72K059,73TA15, HASRD-DCK, 11/77 72K059, HASRD-DCK, 2/78
88 R B 88 S R 88 S R 88 S R 89 S R 89 S R 90 S R 90 S R 90 S R 90 S R 90 S R 90 S Y 90 Z Y 91 Z R 91 Z R 91 N B 92 Z R 93 Z R 93 Z R 93 Z R 93 N B 93 S R 94 S R 94 S R 95 S R 96 S R 97 S R 90 S R 90 S R 90 S R 90 S R 91 Z R 91 Z R 91 Z R 91 Z R 92 Z R 93 Z R 93 Z R 93 S R 93 S R 93 S R 94 S R 95 S R 96 S R 97 S R 90 S R 90 S R 91 Z R 91 Z R 91 Z R 92 Z R 93 Z R 93 S R 93 S R 93 S R 93 S R 94 S R 95 S R 90 S R 90 S R 91 Z R 91 Z R 91 Z R 92 Z R 93 Z R 93 S R 93 S R 93 S R 94 S R 95 S R 95 S R 90 S R 90 S R 91 Z R 91 Z R 92 Z R 93 S R 93 S R 94 S R 95 S R	BYY EC DECAY 88KR B- DECAY 88RR B- DECAY 88RR EC DECAY 89KR B- DECAY 89KR B- DECAY 89SR B- DECAY 89SR B- DECAY 90KR B- DECAY 90KR B- DECAY 90RB B- DECAY 90RB B- DECAY 90RB B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 90SR B- DECAY 91SR B- DECAY 92SR B- DECAY 93SR B	78NCRP, HASRD-DCK, 11/77 76BU07,76BU05,76WD05, HASRD-DCK, 11/7 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 11/77 76BU07, HASRD-DCK, 2/78 75K021,76W005,78WU04, HASRD-DCK, 6/79 75K021, HASRD-DCK, 11/77 75K016,76W005, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 11/77 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 6/79 75K016,77HU03, HASRD-DCK, 12/78 75K016,77HU03, HASRD-DCK, 12/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,78RA05, HASRD-DCK, 12/78 75K016,78RA05, HASRD-DCK, 12/78 72VE09,73HA11,77H012, HASRD-DCK, 1/78 72VE09, HASRD-DCK, 11/77 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 2/78 72VE09, HASRD-DCK, 11/77 72K060,78DE03, HASRD-DCK, 6/79 72K060,78DE04, HASRD-DCK, 5/79 72K060,78DE04, HASRD-DCK, 5/79 72K060,78DE04, HASRD-DCK, 11/77 72K060, HASRD-DCK, 11/77 72K060, HASRD-DCK, 11/77 72K060, HASRD-DCK, 11/77 72K060, HASRD-DCK, 11/77 72K060, HASRD-DCK, 11/77 72K060, HASRD-DCK, 2/78 72HE41,74AC04,77BI01, HASRD-DCK, 11/77 72K059,73TA15, HASRD-DCK, 11/77 72K059,73TA15, HASRD-DCK, 11/77

93NB	93MO EC DECAY
94 M O	94NB B- DECAY (2-03E4 V)
94NR	94NB IT DECAY (6-26 M)
94 10	94NB B- DECAY (6-26 M)
95NB	95ZR B- DECAY
95M0	95NB B- DECAY (35.06 D)
95NB	95NB IT DECAY (86.6 H)
95M0	95NB B- DECAY (86.6 H)
95M0	95TC EC DECAY (20.0 H)
95M0	95TC EC DECAY (61 D)
95TC	95TC IT DECAY (61 D)
96M0	96NB B- DECAY
9640	96 TC EC DECAY (4.28 D)
96M0	96TC EC DECAY (51.5 M)
96TC	96TC IT DECAY (51.5 M)
97NB	97ZR B- DECAY
97MO	97NB B- DECAY (72.1 M)
97NB	97NB IT DECAY (60 S)
97M0	97TC EC DECAY (2.6E6 Y)
9710	97TC IT DECAY (89 D)
9710	97RU EC DECAY
98RU	981L B- DELAY
9910	99MU B- DECAY (2 15EE X)
99KU	9910 D- DECAT (2.13E3 T)
9910 101 TC	101NO R- DECAY (0.02 HF
10180	1017C B- DECAT
10201	10201 B- DECAY
10384	TOJRO U- DECAT
1038H	103PD FC DECAY
105RH	105RU B- DECAY
10500	1058H B- DECAY (35-36 H)
105RH	105RH IT DECAY (45 \$)
106RH	106RU E- DECAY
106 PD	106RH B- DECAY (29.92 S)
106PD	106AG EC DECAY (8.46 D)
107AG	107PD B- DECAY
108PD	108AG EC DECAY (2.37 M)
108CD	108AG B- DECAY (2.37 M)
108PD	108AG EC DECAY (127 Y)
108AG	108AG IT DECAY (127 Y)
109AG	109PD B- DECAY (13.453 H)
109AG	109AG IT DECAY (39.6 S)
109AG	109CD EC DECAY
110PD	110AG EC DECAY (24.57 S)
11000	110AG 8- DECAY (24.57 S)
110AG	110AG 11 DECAY (249.85 D)
	110AG E- DECAY (249.85 D)
	111AG D- DECAT (1.40 D)
11100	11100 IF DECAT (40.1 M)
11210	11200 = DECAV (0.3515 V)
11310	11300 B = DECAT (9, 5015) (7)
113TN	113IN IT DECAY (1.658 H)
113TN	113SN FC DECAY
11400	114IN EC DECAY (71.9 S)
1145N	114IN B- DECAY (71.9 S)
114CD	114IN EC DECAY (49.51 D)
114IN	114IN IT DECAY (49.51 D)
115IN	115CD B- DECAY (53.46 H)
115IN	115CD B- DECAY (44.6 D)
115 SN	115IN B- DECAY (4.6E15 Y)
115IN	115IN IT DECAY (4.36 H)
115SN	115IN B- DECAY (4.36 H)
116 SN	116IN B- DECAY (54.15 M)
117IN	117CD B- DECAY (2.49 H)
117IN	117CD B- DECAY (3.36 H)
117SN	117IN B- DECAY (43.8 M)
117IN	117IN IT DECAY (116.5 M)
1175N	11/1N B- DECAY (116.5 M)
11/SN	1175N 17 DECAY (13.60 D)
1175N	ILISB EC DECAY
TTA2N	1195N 11 DECAY (293.0 D)
12158	1211E EL DELAY (16.8 D)
12135	1211E EU UEUAT (154 U)
121 I C	1211E 11 DECAT (124 D)
1223N	12230 EU DECAT 12288 R- DECAV
12275	12230 DECAT
****	ILLI DE DECAT

72K059, HASRD-DCK, 1/78 73K043, HASRD-DCK, 3/79 73K043, HASRD-DCK, 3/79 73K043, HASRD-DCK, 3/79 73K043, HASRD-DCK, 3/79 72MEH0,74AN22,76H004, HASRD-DCK, 11/77 72MEH0,74AN22,76H004, HASRD-DCK, 10/78 72MEH0,76H004, HASRD-DCK, 11/77 72MEH0,76H004, HASRD-DCK, 11/77 72MEH0,76H004, HASRD-DCK, 10/78 72MEH0,77ME12, HASRD-DCK, 10/78 72MEH0,73BE34,77ME12, HASRD-DCK, 10/78 72MEH0, HASRD-DCK, 10/78 72ME40, HASRD-DCK, 2/78 72ME28,74GA14, HASRD-DCK, 12/77 72ME28,74GA14, HASRD-DCK, 12/77 72ME28, HASRD-DCK, 12/77 72ME28, HASRD-DCK, 12/77 73ME29,73SA36,75CD26, HASRD-DCK, 8/78 75ME29,76KR01, HASRD-DCK, 12/77 73ME29, HASRD-DCK, 12/77 73ME29, HASRD-DCK, 12/77 73ME29, HASRD-DCK, 12/77 73ME29, HASRD-DCK, 12/77 73ME29,74HU05,77KR03, HASRD-DCK, 1/78 74ME34, HASRD-DCK, 5/79 74ME33,74GA01, HASRD-DCK, 12/77 74ME53,73LE10,74EN02, HASRD-DCK, 12/77 74ME33,75LE10,74EN02, HASRD-DCK, 12/77 74ME33,74GA01, HASRD-DCK, 12/77 75T017,73AL16,75WR01, HASRD-DCK, 6/79 73T017,75WR01, HASRD-DCK, 12/77 74K036,76MA37, HASRD-DCK, 12/77 74K036, HASRD-DCK, 12/77 74K036,75CZ05,76MA37, HASRD-DCK, 12/77 74BE77,76BA39,77WR09, HASRD-DCK, 5/78 74BE77,76BA39,77W10, HASRD-DCK, 5/78 74BE77,76BA39,77WI10, HASRD-DCK, 5/78 74BE77, HASRD-DCK, 12/77 74BE76, HASRD-DCK, 12/77 748E76,75HS02,770K02-3, HASRD-DCK, 5/79 74BE76,77TI01,78GE01, HASRD-DCK, 5/79 72BEA6, HASRD-DCK, 12/77 72 BEA7,73SI02,74RY01, HASRD-DCK, 3/79 72 BEA7,73SI02,74RY01, HASRD-DCK, 3/79 72 BEA7,73BE08,75M034, HASRD-DCK, 3/79 728EA7,72SC42, HASRD-DCK, 3/79 788E02,77G11, HASRD-DCK, 4/78 788E02, HASRD-DCK, 4/78 788E02, HASRD-DCK, 4/78 778E64, HASRD-DCK, 12/77 778664, HASRD-DCK, 12/77 778664, HASRD-DCK, 12/77 778664,776612,78WA07, HASRD-DCK, 6/79 71RA43,755H29,77NE10, HASRD-DCK, 5/78 71RA43.75SH29, HASRD-DCK, 1/78 71RA43.72EM01.75SH29, HASRD-DCK, 1/78 71RA44, HASRD-DCK, 1/78 71RA44,72WA11, HASRD-DCK, 1/78 71RA44,70G048,76DE35, HASRD-DCK, 1/78 71RA44,73IN06,78HE08, HASRD-DCK, 12/78 75KI17, HASRD-DCK, 1/78 75KI17, HASRD-DCK, 1/78 75KI17, HASRD-DCK, 1/78 75KI17, HASRD-DCK, 1/78 75RA27,75B029,78HE08, HASRD-DCK, 12/78 75RA27,75B029,78HE08, HASRD-DCK, 12/78 75RA27,78PF01, HASRD-DCK, 12/78 75RA27,75BU24,78HE08, HASRD-DCK, 12/78 75RA27,78HE08, HASRD-DCK, 12/78 75CA10,74AR13,75YA08, HASRD-DCK, 4/79 78AU06, HASRD-DCK, 5/79 78AU06, HASRD-DCK, 5/79 78 AU06, HASRD-DCK, 5/79 78AU06, HASRD-DCK, 5/79 78AU06, HASRD-DCK, 5/79 78AU06, HASRD-DCK, 11/78 78AU06, HASRD-DCK, 4/79 79AU01, HASRD-DCK, 4/79 79TA01, HASRD-DCK, 5/79 79TA01, HASRD-DCK, 5/79 79TA01, HASRD-DCK, 5/79 72BER1, HASRD-DCK, 1/78 72BER1, HASRD-DCK, 6/79

72BER1, HASRD-DCK, 6/79

1221	122XE EC DECAY
12358	1235N B- DECAY (129.2 D)
1235B	125TE EC DECAY (1E15 Y)
12275	123TE IT DECAY (110 7 D)
10075	1231 CC DECAY (1194) UV
12310	1231 EC DECAT
1251	12 SAE DE DECAT
12415	12458 B- DELAY (60.20 D)
124TE	1241 B+ DECAY
12558	1255N B- DECAY (9.64 D)
125TE	125SB B- DECAY
125TE	125TE IT DECAY (58 D)
125TE	125I EC DECAY
1251	125XE EC DECAY
126SB	126SN B- DECAY
126TE	12658 B- DECAY (12.4 D)
12658	12658 IT DECAY (19.0 M)
12616	12658 B- DECAY (19-0 M)
12616	126T EC DECAY
13475	1201 LC DECAT
12070	1201 B- DECAT
12675	126LS B+ DECAT
127TE	127SB E- DECAY
1271	127TE B- DECAY (9.35 H)
127TE	127TE IT DECAY (109 D)
1271	127TE B- DECAY (109 D)
1271	127XE EC DECAY (36.406 D)
128TE	1281 EC DECAY
128XF	1281 B- DECAY
129TF	129SB B- DECAY
1291	129TE B- DECAY IA9. A MI
12075	120TE IT DECAY (32 6 D)
12910	1291E 11 DECAT (33.6 D)
1291	1291E D- DECAT (55.6 D)
12985	1291 B- DECAY
129XE	129XE IT DECAY (8.89 D)
129XE	129CS EC DECAY
130XE	1301 B- DECAY (12.36 H)
1311	131TE B- DECAY (25.0 M)
131TE	131TE IT DECAY (30 H)
1311	131TE B- DECAY (30 H)
131XE	1311 B- DECAY
131XF	131XE IT DECAY (11.84 D)
131XF	131CS EC DECAY
13105	131BA EC DECAY
1221	132TE B- DECAY
15246	1521 B- DECAY /2 50 HI
19285	1321 D- DECAT (2.50 H)
13285	132US EL DECAV
1328A	132CS B- DECAY
1331	133TE B- DECAY (12.45 M)
133TE	133TE IT DECAY (55.4 M)
135 I	133TE B- DECAY (55.4 M)
133XE	133I B- DECAY
133CS	133XE B- DECAY (5.245 D)
133XE	133XE IT DECAY (2.19 D)
13305	1338A EC DECAY (10.5 Y)
133BA	133BA IT DECAY (38.9 H)
1341	134TE B- DECAY
134XE	1541 B- DECAY (52.6 M)
134BA	134CS B- DECAY (2.062 Y)
13409	13465 IT DECAY (2.90 H)
125463	1361 B- DECAN
13505	125VE DE DECAV (O 11 H)
10000	IJJAC D- DECAT (9.11 M)
10080	155AE 11 UEUAY (15.56 M)
1358A	13505 B- DECAY (2.3E6 Y)
135BA	1358A IT DECAY (28.7 H)
136XE	136I B- DECAY (83 S)
136BA	136CS B- DECAY
13705	137XE B- DECAY
137BA	137CS B- DECAY
137BA	1378A IT DECAY (2.552 M)
13805	138XE B- DECAY
15884	15 0CC 8- 0FCAY (50 0 H)
+	130LS D- UPLAT LAZZ MI
13984	13905 B- DECAY (52.2 M)
139BA	139CS B- DECAY 139BA B- DECAY
139BA 139LA	139CS B- DECAY 139BA B- DECAY 139BA B- DECAY
139BA 139LA 139LA	139CS B- DECAY 139CS B- DECAY 139BA B- DECAY 139CE EC DECAY
1398A 1391A 1391A 1401A	139CS B- DECAY 139BA B- DECAY 139CE EC DECAY 140BA B- DECAY
139BA 139LA 139LA 140LA 140CE	139CS B- DECAY 139CS B- DECAY 139BA B- DECAY 139CE EC DECAY 140BA B- DECAY 140BA B- DECAY
1398A 139LA 139LA 139LA 140LA 140CE 141LA	139CS B- DECAY (32.2 M) 139CS B- DECAY 139BA B- DECAY 140BA B- DECAY 140LA B- DECAY 141BA B- DECAY
1398A 139LA 139LA 140LA 140CE 141LA 141CE	139CS B- DECAY 139CS B- DECAY 139BA B- DECAY 139CE EC DECAY 140DA B- DECAY 140LA B- DECAY 141LA B- DECAY
1398A 139LA 139LA 140LA 140CE 141LA 141CE 141PR	139CS B- DECAY 139CS B- DECAY 139BA B- DECAY 139CE EC DECAY 140LA B- DECAY 141BA B- DECAY 141LA B- DECAY 141CE B- DECAY

72BER1,75L010, HASRD-DCK, 6/79 72 AUB1,74R A03, HASRD-DCK, 1/78 72 AUB1,714 AU3, HASRD-DCK, 1/78 72 AUB1,72 EW01,73 RA32, HASRD-DCK, 1/78 72 AUB1,72 EW01,73 RA32, HASRD-DCK, 1/78 72 AUB1,76 WA13, HASRD-DCK, 1/78 72 AUB1,74 J016, HASRD-DCK, 6/79 72 REF 76 J002, WASRD-DCK, 1/78 73 BE78,74J003, HASRD-DCK, 1/78 73 BE78,73KA45, HASRD-DCK, 1/78 736173,745,445, HASRD-DCK, 1/78 72AU10,746A03, HASRD-DCK, 1/78 72AU10,76WA13,776F12, HASRD-DCK, 8/78 72AU10,76WA13, HASRD-DCK, 1/78 72AU10,76WI18, HASRD-DCK, 1/78 72AU10,76LE23, HASRD-DCK, 6/79 73AU10,76SM01, HASRD-DCK, 2/78 73AU10,75BA17, HASRD-DCK, 2/78 73 AU10, HASRD-DCK, 2/78 73AU10, HASRD-DCK, 2/78 73AU10,77JA04, HASRD-DCK, 2/78 73AU10,77JA04, HASRD-DCK, 6/79 75 AU10,76PA11,78DR01, HASRD-DCK, 6/79 72 AU09, HASRD-DCK, 2/78 72AU09,77KU17, HASRD-DCK, 5/78 72AU09, HASRD-DCK, 2/78 72AU09, HASRD-DCK, 2/78 72AU09, HASRD-DCK, 2/78 72AU09,74C005,76LE23, HASRD-DCK, 2/78 73 AU11, HASRD-DCK, 5/79 75 AU11,730K04, HASRD-DCK, 5/79 72 H055,74F006, HASRD-DCK, 5/79 72 H055,74F016, HASRD-DCK, 2/78 72 H055,74 DE15,76MA35, HASRD-DCK, 2/78 72H055, HASRO-DCK, 2/78 72H055,74DE15,76MA35, HASRD-DCK, 2/78 72H055,74M108, HASRD-DCK, 2/78 72H055,73M108, HASRD-DCK, 4/79 72H055,74MA24,76ME16, HASRD-DCK, 2/78 74H108, HASRD-DCK, 2/78 74H108, HASRD-DCK, 2/78 76AU03, HASRD-DCK, 2/78 76AU03, HASRD-DCK, 2/78 76AU03, T5MI14, 76DE43, HASRD-DCK, 2/78 76AU03, 75MI14, 76KD29, HASRD-DCK, 2/78 76AU03, 75HD18, HASRD-DCK, 2/78 76AU03, 75HD18, HASRD-DCK, 2/78 76 AU03, HASRD-DCK, 2/78 76AU03,76GE14, HASRD-DCK, 2/78 76HI02, HASRD-DCK, 2/78 76HI02,78NE08, HASRD-DCK, 6/79 76HI02, HASRD-DCK, 6/79 76HI02, HASRD-DCK, 4/79 74HE27, HASRD-DCK, 2/78 74HE27, HASRD-DCK, 2/78 74HE27,74FU15, HASRD-DCK, 3/78 74HE27,74K026,76ME16, HASRD-DCK, 3/78 74HE27,74CA27, HASRD-DCK, 3/78 74HE27, HASRD-DCK, 3/78 74HE27, 77GE12, 77SC31, HASRD-DCK, 8/78 74HE27, HASRD-DCK, 4/79 75HE08,76ME07, HASRD-DCK, 3/78 75HE08,74GU20, HASRD-DCK, 3/78 75HE08,75VA12,76GR11, HASRD-DCK, 3/78 75HE08, HASRD-DCK, 3/78 75HE12, HASRD-DCK, 3/78 75HE12, HASRD-DCK, 3/78 75HE12,75FU12, HASRD-DCK, 3/78 75HE12, HASRD-DCK, 3/78 75HE12, HASRD-DCK, 3/78 75HE12, HASRD-DCK, 3/78 79PE02, HASRD-DCK, 5/79 79PE02, HASRD-DCK, 5/79 75BU12,75FR23,77WE02, HASRD-DCK, 3/78 75BU12, HASRD-DCK, 12/78 75BU12,76BO16, HASRD-DCK, 3/78 76PA04, HASRD-DCK, 4/78 76PA04,75FR23,78WU04, HASRD-DCK, 6/79 10PAU4,10+R25,18WU04, HASRD-DCK, 6/79 74GR46,78WU04, HASRD-DCK, 6/79 74GR46,78LA03, HASRD-DCK, 12/78 74GR46,73LE29,76VA30, HASRD-DCK, 4/78 74PE19,77GE12, HASRD-DCK, 8/78 74PE19,76LI06,77GE12, HASRD-DCK, 12/78 78TU01, HASRD-DCK, 4/78 78TU01, HASRD-DCK, 4/78 78TU01, HASRD-DCK, 4/78 78TU01, HASRD-DCK, 4/78 78 TU03, HASRD-DCK, 9/78

142CE	142LA B- DECAY	78TU03, HASR
142ND	142PR B- DECAY (19.13 H)	78TU03, HASR
143PR	143CE B- DECAY	78 TU05, HASP
143ND	143PK D- DECAY	781005, HASK
14500	143PM EC DECAT	750000 TASK
14400	14400 B- DECAY (17 28 M)	758110.760.00
14400	14400 IT DECAY (17 2 N)	750019910KAZ
14400	144PK II DECAT (1.2 M)	7581119.75AVA
145ND	1450M EC DECAT	76 801 3 76 700
146ND	146PM EC DECAT	7581105.74080
1465M	146PM B- DECAY	758105.74080
147PM	147ND B - DECAY	78 44 22 . 44 58
1475M	147PM B- DECAY	78HA22, HASP
143ND	147SM A DECAY	78H422, HASR
148SM	148PM 8- DECAY (5.37 D)	77HA16.77KA1
148PM	148PM IT DECAY (41.3 D)	77HA16, HASR
1485M	148PM B- DECAY (41.3 D)	77 HA16,77KA1
149PM	149ND B- DECAY	76H017, HASR
149SM	149PM B- DECAY	76H017, HASR
151SM	151PM B- DECAY	76HA35,77BU1
151EU	151SM B- DECAY	76HA35, HASR
152SM	152EU EC DECAY (13.6 Y)	78NCRP,77GE1
152GD	152EU B- DECAY (13.6 Y)	78 NCRP , 75 HE1
152SM	152EU EC DECAY (9.32 H)	- 78NCRP , 75PR0
152GD	152EU B- DECAY (9.32 H)	78NCRP,75PR0
148SM	152GD A DECAY	78NCRP, HASR
153EU	153SM B- DECAY	73KR24, HASR
153EU	153GD EC DECAY	73KR24,72EM0
154GD	154EU B- DECAY	79HA02, HASR
155GD	155EU B- DECAY	75KR07,75KR0
15660	156EU B- DECAY	768009,76YA1
157GD	1571B EC DECAY	73 TU06, HASR
15078	157DT EC DECAT	75 TUOS - HASR
16002	160TB B DECAY	741107 74502
162TB	162GD B - DECAY	768102. HASP
16207	162TB B - DECAY	768U02.77KA0
165H0	165DY B- DECAY (2.334 H)	74BU29.74AB2
166H0	166DY B- DECAY	758006 HASR
166ER	166H0 B- DECAY (26.80 H)	758006.74GR4
166ER	166H0 B- DECAY (1200 Y)	758006,77GE1
169TM	169ER B- DECAY	73HA 76,77M YO.
169TM	169YB EC DECAY	73HA76,77GE1
170YB	170TM B- DECAY	75SC26,75B00
171TM	171ER B- DECAY	74HOHA,73EL1
171YB	171TM B- DECAY	74HOHA, HASRI
175LU	175YB B- DECAY	76MIO7, HASR
177HF	177LU B- DECAY (6.71 D)	75 EL07,77KE1
177LU	177LU IT DECAY (160.10 D)	75 EL07,75M01
177HF	177LU B- DECAY (160.10 D)	75 EL 07,75 MO14
18114	181HF B- DECAY	75EL18,76CA1
18114	181W EC DECAY	73EL18,73MY0
1828	1821A B- DECAY	75 SU13,76HE1
102W	102KE EU DECAT (04.0 H)	75 SC13 HACD
1924	195DE EC DECAY	75 ADT1 77000
184W	184RE EC DECAT	77MA13. HACD
184W	184RE EC DECAY (169 D)	77MA13, HASR
184RF	184RE IT DECAY (169 D)	77MA13. HASR
185RE	185W B- DECAY	74EL08. HASRI
185RE	1850S FC DECAY	74 EL 08.77882
186W	186RE EC DECAY (90.64 H)	74 SC 38 HA SRI
18605	186RE B- DECAY (90.64 H)	74 SC 38 . HA SRI
182W	1860S A DECAY	74 SC38,75V 10
187RE	187W B- DECAY	75EL02,76BR09
18705	187RE B- DECAY	75EL02, HASRO
188RE	188W B- DECAY	73SC41, HASRE
18805	188RE D DECAY	73 SC 41,748 E7
19005	1900S IT DECAY (9.9 M)	73SC42,748A71
19005	190IR EC DECAY (11.78 D)	73SC42,74HE08
1901R	190IR IT DECAY (1.2 H)	735042, HASRE
19005	190IR EC DECAY (3.2 H)	73SC42,70B022
190IR	1901R IT DECAY (3.2 H)	73SC42,70B022
1911R	1910S B- DECAY (15.4 D)	73LEW1, HASRE
19105	19105 IT DECAY (13.03 H)	73LEW1,75L003
1911R	191PT EC DECAY	73LEW1,75RU06
19205	1921R EC DECAY (74.02 D)	735C43,73GE0
19761	1921K B- DECAY (74.02 D)	135043+73GE05

D-DCK, 9/78 RD-DCK, 9/78 D-DCK, 12/78 D-DCK, 12/78 D-DCK, 5/79 33,77GE12, HASRD-DCK, 8/78 22,77GE12, HASRD-DCK, 8/78 20-DCK, 5/78 1, HASRD-DCK, 5/79 4, HASRD-DCK, 4/79 08,74SC06, HASRD-DCK, 5/79 08,74SC06, HASRD-DCK, 5/79 RD-DCK, 9/78 RD-DCK, 9/78 RD-DCK, 9/78 4, HASRD-DCK, 5/78 D-DCK, 5/78 4, HASRD-DCK, 5/78 D-DCK, 5/78 2,77H021, HASRD-DCK, 5/78 2, HASRD-DCK, 8/78 3,77GE12, HASRD-DCK, 8/78 13,77GE12, HASRD-DCK, 8/78 05,75SC32, HASRD-DCK, 6/78 05,75SC32, HASRD-DCK, 6/78 RD-DCK, 6/78 RD-DCK, 6/78 RD-DCK, 5/79 04, HASRD-DCK, 6/78 L1,77CD22, HASRD-DCK, 7/78 RD-DCK, 7/78 D-DCK, 7/78 D-DCK, 7/78 D-DCK, 7/78 7,76DA09, HASRD-DCK, 7/78 D-DCK, 7/78 8, HASRD-DCK, 7/78 6,75AR12, HASRD-DCK, 7/78 D-DCK, 7/78 KU-DUK, 7/78 41,77AL27, HASRD-DCK, 7/78 L2,78SA14, HASRD-DCK, 12/78 D2, HASRD-DCK, 7/78 L2,78VE07, HASRD-DCK, 6/79 D7, HASRD-DCK, 7/78 13,75GD06, HASRD-DCK, 7/78 D-DCK, 7/78 D-DCK, 7/78 2. HASRD-DCK, 7/78 4,75WA19, HASRD-DCK, 7/78 4.75WA19, HASRD-DCK, 7/78 1.77FR10, HASRD-DCK, 7/78 02, HASRD-DCK, 7/78 8,77GE12, HASRD-DCK, 5/79 2, HASRD-DCK, 5/79 D-DCK, 5/79 2. HASRD-DCK. 7/78 D-DCK, 5/79 D-DCK, 5/79 D-DCK, 5/79 D-DCK, 7/78 2, HASRD-DCK, 7/78 DD-DCK, 7/78 D-DCK, 7/78 D-DCK, 7/78 D1, HASRD-DCK, 7/78 P9, HASRD-DCK, 7/78 D-DCK, 7/78 D-DCK, 8/78 5,755V01, HASRD-DCK, 8/78 7, HASRD-DCK, 9/78 8,74YA02, HASRD-DCK, 9/78 D-DCK, 9/78 2, HASRD-DCK, 9/78 2, HASRD-DCK, 9/78 D-DCK, 9/78 5, HASRD-DCK, 9/78 6, HASRD-DCK, 9/78 5,73WI10, HASRD-DCK, 9/78 5,73WI10, HASRD-DCK, 9/78

1931R	19305	B- DECAY	72LEW1,73KR05, HASRD-DCK, 9/78
193IR	193IR	IT DECAY (11.9 D)	72LEW1, HASRD-DCK, 9/78
193TR	193PT	FC DECAY (50 Y)	721 EW1. HASED-DCK. 9/78
10207	10207		
19001	19501	II DECAT (4.35 D)	IZLEWIN HASKU-UCKN 9770
194PT	1941R	B- DECAY (19.15 H)	77HA46, HASRD-DCK, 9/78
194PT	194 I R	B- DECAY (171 D)	77HA46, HASRD-DCK, 5/79
194PT	19440	EC DECAY	77HA46.77VY01. HASRD-DCK. 6/79
LOEDT	LOEDT	IT DECAY (6 02 D)	70HA02 HACDD_DCK 11/70
19061	19961	11 DECAT (4.02 D)	TOHAUSE HASRU-DUKE 11770
19501	195AU	EC DECAY (183 D)	78HAU3, HASRD-DCK, 9778
195AU	195AU	IT DECAY (30.6 S)	78HA03, HASRD-DCK, 9/78
19687	19640	EC DECAY (6.183 D)	72 SC50, HASRD-DCK, 9/78
10440	104 411	R- DECAY (6 193 D)	725650 HASPD_DCK 0/79
19000	19040	D- DECAT (0.105 D)	1230300 HASKD-DUK 9718
19740	19701	B- DECAY (18.3 H)	((HA15, HASRU-ULK, 9/18
197PT	197PT	IT DECAY (94.4 M)	77HA15, HASRD-DCK, 9/78
197AU	197PT	B- DECAY (94.4 M)	77HA15, HASRD-DCK, 9/78
197411	19746	EC DECAY (66 16 H)	77HA15, HASPD-DCK, 9/78
19740	10700		771415 HACOD DCK 0/70
197AU	19786	EL DELAY (23.8 H)	TTHALD, HASKU-ULK, 9710
197HG	197HG	IT DECAY (23.8 H)	77HA15, HASRD-DCK, 9/78
198HG	198AU	B- DECAY (2.696 D)	77HA26,78KE02, HASRD-DCK, 9/78
100HC	199411	B- DECAY	78H412, HASRD-DCK, 9/78
20000	20071		705601 UASRD DCK 3/70
20086	20011	EL DELAT	195001, HASRD-DUK, 5/19
201HG	201TL	EC DECAY	78SC15, HASRD-DCK, 3/79
202HG	202TL	EC DECAY	78SC16, HASRD-DCK, 12/78
203TI	203HG	B- DECAY	785005. HASRD-DCK. 10/78
20211	20208	EC DECAY	78 CCAE HACRD-DCK 10/78
2051	20500	ECUECAT	TOSLUD, HASRU-ULK, IU/TO
204HG	20 4 T L	EC DECAY	71MA78, HASRD-DCK, 10/78
204PB	204TL	B- DECAY	71 MA78, HASRD-DCK, 10/78
204PB	20408	IT DECAY (66.9 M)	71 MA 78. 725122. HASED-DCK. 10/78
20470	20 47 0	TO DECAY (00+) MV	705001 700500 UASOD DCKY 10710
2051L	20268	EL DELAY	185LU1, 18PEU8, HASKU-UCK, 5719
206PB	206B I	EC DECAY	79WE01, HASRD-DCK, 3/79
207PB	207TL	B- DECAY	77SC19,76BL13, HASRD-DCK, 12/78
207PB	207B1	FC DEC AY	775019-78YA04, HASRD-DCK, 12/78
20000	20101	P- DECAY	711EW1 75K000 77CE12 HACRO-DCK 10/70
20000	20011	D- DECAT	TILEWI, TORUVZ, TTGEIZ, HASKU-DUK, 10770
20898	20881	EC DECAY	71LEW1, HASRD-DCK, 5779
209PB	209TL	B- DECAY	77MA34,77VY02, HASRD-DCK, 10/78
209BT	209PB	B- DECAY	77MA54 . HASRD-DCK . 10/78
20508	20000	A DECAY	77MA34 HASPD-DCK. 5/79
200750	20970		
20481	20900	EL DELAY	((MA34, HASRU-ULK, 5/19
210PB	21 OTL	B- DECAY	71LEW2, HASRD-DCK, 10/78
21081	21 OPB	B- DECAY	71LEW2, HASRD-DCK, 10/78
21020	21.081	B- DECAY (5.015 D)	711 FW2, HASRD-DCK, 10/78
20400	21 000	A DECAY	711EW2 720020 UASDD_DCK 10/70
20008	21000	ADECAY	71LEW2,736039, HASKU-UCK, 10778
21181	211PB	E- DECAY	78MA29,76BL13, HASRD-DCK, 12/78
2071L	21 1B I	A DECAY	78MA29,76BL13, HASRD-DCK, 12/78
21100	21 1 B T	B- DECAY	78MA29, HASRD-DCK, 10/78
20709	21100	A DECAN IN E14 CA	79MA29 HASED_DCK 12/79
20760	21100	A DECAT (0.510 ST	10HA29; HASKU-UCK; 12/10
20781	21 I A 1	A DECAY	/8MA29, HASRD-DCK, 12/78
211PO	21 1 A T	EC DECAY	78MA29, HASRD-DCK, 12/78
21281	212PB	B- DECAY	72 PAMA • 77KU25• HASRD-DCK• 12/78
20811	21 2B T	A DECAY	72 PAMA - HASPD-DCK. 10/78
21200	21201		7204WA HASND-DCK 10/70
21200	21201	B- DECAY	12PAMA, HASRD-DUK, 107 18
208PB	21 ZPO	A DECAY	72PAMA,74HU15,75SA06, HASRD-DCK, 10/78
209TL	21 3 B I	A DECAY	75MA63,77VY02, HASRD-DCK, 10/78
213P0	21 3 B I	B- DECAY	73MA63,77VY02, HASRD-DCK, 10/78
209PB	21.3PD	A DECAY	73MA63-77VY02- HASRD-DCK. 10/78
21401	21400	P- DECAY	77TD12 777D01 44500-0CV 10/70
21400	21401		777013 777001 HACOD DEV 10/70
214PU	21401	DT DELAT	111012+112001, MASKU-UCK, 10/18
210 PB	214P0	A DECAY	77T012, HASRD-DCK, 10/78
211PB	21 5 P O	A DECAY	77MA29, HASRD-DCK, 10/78
212PB	21.6PD	A DECAY	76EL03.77KU15. HASRD-DCK. 10/78
21201	21 741	A DECAY	73MA44 UACOD DCK 10/79
21301	21 /A1	AUECAT	TOMACH . HASKU-UCK IU/ 10
214PB	21890	A DECAY	77T013, HASRD-DCK, 10/78
214P0	21 8RN	A DECAY	77T013, HASRD-DCK, 10/78
215PO	21 9RN	A DECAY	77MA30,76BL13, HASRD-DCK. 12/78
21600	220PM	A DECAY	76 EL 04 - 77K1115 HASPD-DCK 10/79
21747	22000	A DECAY	TOLLUTITINUTS HASHDTUCKI 10/10
CLIA!	ZZIFR	AUELAY	10MA00, HASKU-ULK, 10/18
218PO	222RN	A DECAY	77T014, HASRD-DCK, 11/78
218RN	22.2RA	A DECAY	77T014, HASRD-DCK, 11/78
223R4	22 3FP	B- DECAY	77MA31. HASED-DCK. 11/78
210DM	222DA	A DECAY	77MAS1 - HACDD_DCV - 11/70
617KN	CC DKA	A DELAT	TIMAJI MASKU-ULK, 11/10
ZZORN	ZZ 4R A	A UECAY	162105,77KU15,77KU25, HASRD-DCK, 11/78
225AC	22 5R A	B- DECAY	73MA66, HASRD-DCK, 11/78
221 FR	22 5AC	A DECAY	73MA66.72DZ14. HASRD-DCK. 11/78
222PN	22 6 D A	ADECAY	77T009.777001. HASPD-DCK 11/70
22204	33/TH	A DECAV	77TDAO 744100 UACDO DC4 11/10
222KA	2201H	AUELAT	111009, TOKUUS, MASKU-UUK, 11/18
223FR	227AC	A UECAY	77MA32, HASRD-DCK, 11/78
227TH	227AC	E- DECAY	77MA32, HASRD-DCK, 11/78
223RA	22 7TH	A DECAY	77M432. HASRD-DCK. 11/78
22040	32004		74 UD04 UACDD_DCV 19770
220AL	ZZOKA	D- UCLAT	(OHUVO) HASKU-DUK, 12/18

228TH 228AC B- DECAY 228TH A DECAY 224RA 22 5RA 229TH A DECAY 226RA 230TH A DECAY 230TH 230PA EC DECAY 230PA E- DECAY 2300 230U A DECAY 226TH 231TH B- DECAY 231PA A DECAY 231PA 227AC 231 PA 231U EC DECAY 228RA 232TH & DECAY 232U A DECAY 228TH 233TH B- DECAY 233PA B- DECAY 233PA 233U 233U A DECAY 229TH 2340 A DECAY 2347H B- DECAY 254PA B- DECAY (6.70 H) 234PA IT DECAY (1.17 M) 234PA B- DECAY (1.17 M) 234PA 2340 234PA 23411 2340 A DECAY 2350 A DECAY (7.038E8 Y) 230TH 231 TH 235NP EC DECAY 2350 23 6U A DECAY 232TH 2360 A DECAT 236NP EC DECAY (1.15E5 Y) 236NP B- DECAY (1.15E5 Y) 236NP EC DECAY (22.5 H) 236NP B- DECAY (22.5 H) 236U 236PU 236U 236PU 236PU A DECAY 232U 237NP 237U B- DECAY 237NP A DECAY 233PA 237PU EC DECAY 237NP 238U A DECAY 238NP B- DECAY 238PU A DECAY 234TH 238PU 2340 239U B- DECAY 239NP 239NP B- DECAY 239PU A DECAY 239PU 2350 240U B- DECAY 240 NP 2400 B- DECAY 240NP B- DECAY (65 M) 240NP IT DECAY (7.4 M) 240NP B- DECAY (7.4 M) 240PH 240NP 240PU 240PU A DECAY 236U 241PU B- DECAY 241AM 241AM A DECAY 237NP 242PU A DECAY 238U 242AM EC DECAY (16.02 H) 242AM E- DECAY (16.02 H) 242PU 242CM 242AM A DECAY (152 Y) 238NP 242AM IT DECAY (152 Y) 242CM A DECAY 242 AM 238PU 243AM 243PU B- DECAY 243AM A DECAY 239NP 243CM A DECAY 239PU 244PU A DECAY 2400 244AM B- DECAY (10.1 H) 244CM 244CM A DECAY 240 PU 245PU B- DECAY 245AM B- DECAY 245AM 245CM 241 PU 245CM A DECAY 246PU B- DECAY 246AM B- DECAY (25.0 M) 246AM 246CM 246CM A DECAY 242PU 243 PU 247CM A DECAY 244PU 248CM A DECAY 244CM 248CF A DECAY 249 BK 249CM B- DECAY 2498K B- DECAY 249CF A DECAY 249CF 245CM 250CM A DECAY 246 PU 250BK 250CM B- DECAY 250BK B- DECAY 250CF 250CF A DECAY 246CM 251CF 251BK B- DECAY 251CF A DECAY 247CM 252CF A DECAY 248CM 249CM 253CF A DECAY 253ES 253CF 8- DECAY 253ES A DECAY 249BK 254CF A DECAY 250CM

76H006, HASRD-DCK, 12/78 76H006,77KU15,77KU25, HASRD-DCK, 12/78 78T004, HASRD-DCK, 12/78 77EL03,78KU08, HASRD-DCK, 6/79 77EL03, HASRD-DCK, 12/78 77EL03, HASRD-DCK, 12/78 77EL03,76KU08, HASRD-DCK, 12/78 77SC15, HASRD-DCK, 12/78 77SC15, HASRD-DCK, 12/78 77 SC15, HASRD-DCK, 6/79 77 SC13, HASRD-DCK, 1/79 77SC13, HASRD-DCK, 1/79 78EL04, HASRD-DCK, 6/79 78EL04, HASRD-DCK, 1/79 78EL04, HASRD-DCK, 1/79 78EL04, HASRD-DCK, 1/79 77EL06, HASRD-DCK, 1/79 77EL06, HASRD-DCK, 1/79 77EL06,78CH06, HASRD-DCK, 1/79 77EL06, HASRD-DCK, 1/79 77EL06, HASRD-DCK, 1/79 77EL06, HASRD-DCK, 1/79 77SC15, HASRD-DCK, 1/79 77SC15, HASRD-DCK, 2/79 77SC13, HASRD-DCK, 1/79 77SC13, HASRD-DCK, 6/79 77SC13, HASRD-DCK, 6/79 77SC13, 77PO05, HASRD-DCK, 6/79 77SC13, HASRD-DCK, 6/79 77 SC 13, HASRD-DCK, 1/79 78 EL01, HASRD-DCK, 1/79 78 ELOI, HASRD-DCK, 1/79 78 ELOI, HASRD-DCK, 2/79 77EL07, HASRD-DCK, 1/79 77EL07, HASRD-DCK, 1/79 77EL07, HASRD-DCK, 1/79 77SC15, HASRD-DCK, 6/79 77SC15, HASRD-DCK, 1/79 77SC15,77JA08, HASRD-DCK, 1/79 77 SC13, HASRD-DCK, 1/79 77SC13, HASRD-DCK, 1/79 77SC13, HASRD-DCK, 1/79 77SC13, HASRD-DCK, 1/79 775C13,77BA69,78JA11, HASRD-DCK, 6/79 78EL02, HASRD-DCK, 1/79 78 EL02, 78 GE06, 78 DV01, HASRD-DCK, 2/79 77EL08,76BU23, HASRD-DCK, 2/79 77EL08, HASRD-DCK, 2/79 76 EL10, HASRD-DCK, 2/79 76EL10, HASRD-DCK, 2/79 76EL10, HASRD-DCK, 2/79 76 SC02, HASRD-DCK, 2/79 76SC02, HASRD-DCK, 2/79 76 SC 02, HA SRD-DCK, 2/79 76EL01, HASRD-DCK, 6/79 76EL01, HASRD-DCK, 6/79 76 EL01, HASRD-DCK, 2/79 765C02, HASRD-DCK, 2/79 76SC02,76MU03, HASRD-DCK, 2/79 76 SC02, HASRD-DCK, 3/79 76EL02, HASRD-DCK, 3/79 76 SC02, 778 A69, HASRD-DCK, 3/79 76 SC02, HASRD-DCK, 6/79 765009, HASRD-DCK, 3/79 765009, HASRD-DCK, 3/79 76 SC09, HASRD-DCK, 3/79 76 SC 02 + HASRD-DCK, 3/79 76 SC 02 + HASRD-DCK, 3/79 76 SC02, HASRD-DCK, 3/79 76 SC02, HASRD-DCK, 3/79 76SC09, HASRD-DCK, 3/79 76SC09, HASRD-DCK, 3/79 76SC02,76M030, HASRD-DCK, 3/79 76 SC 09, HA SRD-DCK, 3/79 76 SC09, HASRD-DCK, 3/79 76 SC09, HASRD-DCK, 3/79 765002, HASRD-DCK, 3/79

250BK 254ES 250BK 254ES 254FM 254ES 250CF 254FM 251BK 255ES 251CF 255FM 251CF 255FM 252CF 256FM	A DECAY (275.7 D) A DECAY (39.3 H) B- DECAY (39.3 H) A DECAY A DECAY B- DECAY A DECAY A DECAY A DECAY	76 SC 02, 76 SC 02, 76 SC 02, 76 SC 02, 76 SC 09, 76 SC 09, 76 SC 09, 76 SC 02,	HASRD-DCK, HASRD-DCK, HASRD-DCK, HASRD-DCK, HASRD-DCK, HASRD-DCK, HASRD-DCK,	3/79 3/79 3/79 3/79 5/79 3/79 3/79 3/79
252CF 256FM	A DECAY	76 SC 02 ,	HASRD-DCK,	3/79

References for Radioactive Decay Data Sets

This appendix contains the literature references for the radioactive decay data sets corresponding to the key numbers given with the index to tables in Appendix 2.

M.Bormann, H.H.Bissem, E.Magiera, R.Warnemunde - Nucl.Phys. A157, 481 (1970) Total Cross Sections and Isomeric Cross-Section Ratios for (n,2n) Reactions in 7 CBo 22 the Energy Region 12-18 MeV I.W.Goodier, F.H.Hughes, M.J.Woods - Int.J.Appl.Radiat.Isotop. 21, 678 (1970) The Decay of Indium-113m R.L.Auble - Nucl. Data Sheets B5, 109 (1971) 70Go48 7 1Aub2 Nuclear Data Sheets for A = 84 I.F.Bubb, S.I.H.Naqvi, J.L.Wolfson - Nucl.Phys. A167, 252 (1971) Gamma Rays Following the Decay of ⁸⁵Sr and ⁸⁵m-Sr 71Bu08 71Hor1 D.J.Horen - Nucl.Data Sheets B5, 131 (1971) Nuclear Data Sheets for A = 85 M.B.Lewis - Nucl.Data Sheets B5, 243 (1971) 71Lew1 Nuclear Data Sheets for A = 208 M.B.Lewis - Nucl.Data Sheets B5, 631 (1971) 71Lew2 Nuclear Data Sheets for A = 21071Ma78 M.J.Martin - Nucl.Data Sheets B5, 601 (1971) Nuclear Data Sheets for A = 204 S.Raman, H.J.Kim - Nucl.Data Sheets B6, 39 (1971) 71Ra 43 Nuclear Data Sheets for A = 111S.Raman, H.J.Kim - Nucl.Data Sheets B5, 181 (1971) Nuclear Data Sheets for A = 11371Ra 44 N.A.Voinova, A.I.Egorov, Y.V.Kalinichev, A.G.Sergeev - Izv.Akad.Nauk SSSR, Ser.Fiz. 35, 861 (1971); Bull.Acad.Sci.USSR, Phys.Ser. 35, 794 (1972) Properties of Low-Lying Excited Levels of ⁸⁵Sr and ⁹⁹Tc 71Vo06 R.L.Auble - Nucl. Data Sheets B7, 363 (1972) 72Aub1 Nuclear Data Sheets for A = 123R.L.Auble - Nucl. Data Sheets B8, 77 (1972) 72Au 09 Nuclear Data Sheets for A = 127 R.L.Auble - Nucl. Data Sheets B7, 465 (1972) Nuclear Data Sheets for A = 125 R.L.Auble - Nucl.Data Sheets B7, 465 (1972) Nuclear Data Sheets for A = 125 72Au 10 F.E.Bertrand, D.J.Horen - Nucl.Data Sheets B7, 1 (1972) Nuclear Data Sheets for A = 10772BeA6 F.E.Bertrand - Nucl.Data Sheets B7, 33 (1972) 72BeA7 Nuclear Data Sheets for A = 10872Ber1 F.E.Bertrand - Nucl.Data Sheets B7, 419 (1972) F. E. Bertrand - Nucl. Data Sheets B7, 419 (1972) Nuclear Data Sheets for A = 122 B. S. Dzhelepov, R. B. Ivanov, M. A. Mikhailova, V.O. Sergeev - Izv. Akad. Nauk SSSR, Ser. Fiz. 36, 2080 (1972); Bull. Acad. Sci. USSR, Phys. Ser. 36, 1832 (1973) y-Spectrum of ²²⁵Ac J. F. Emery, S. A. Reynolds, E. I. Wyatt, G. I. Gleason - Nucl. Sci. Eng. 48, 319 (1972) Half-Lives of Radionuclides - IV W. Herzog, W. Grimm - Z. Phys. 257, 424 (1972) Der Zerfall des 93Sr 72Dz 14 72Em01 ..nerzog, W.Grimm - Z.Phys. 257, 424 (1972) Der Zerfall des ⁹³Sr J.C.Hill, K.H.Wang - Phys.Rev. C5, 805 (1972) Decay of ⁶⁺Br 72He41 72H103 D.J.Horen - Nucl.Data Sheets B8, 123 (1972) 728055 Nuclear Data Sheets for A = 129 72Ko 59 D.C.Kocher - Nucl.Data Sheets B8, 527 (1972) Nuclear Data Sheets for A = 93 D.C.Kocher, D.J.Horen - Nucl.Data Sheets B7, 299 (1972) 72Ko60 Nuclear Data Sheets for A = 92 D.C.Kocher, D.J.Horen - Nucl.Data Sheets B⁷, 299 (1972) Nuclear Data Sheets for A = 92 M.B.Lewis - Nucl.Data Sheets B8, 389 (1972) Nuclear Data Sheets for A = 193 L.R.Medsker, D.J.Horen - Nucl.Data Sheets B8, 29 (1972) 72Lev1 72NeHo Nuclear Data Sheets for A = 95 L.R.Medsker - Nucl.Data Sheets B8, 599 (1972) 72Me28 Nuclear Data Sheets for A = 96Gamma-Ray Studies of the Decays of 92Kr, 92Rb, and 92Sr 720103 S.C.Pancholi, M.J.Martin - Nucl.Data Sheets B8, 165 (1972) Nuclear Data Sheets for A = 212 72Pa Ma W.-D.Schmidt-Ott, R.W.Fink - Z.Phys. 254, 281 (1972) The K-Conversion Coefficient Near Threshold of the 30 keV Isomeric Transition 725c42 in 108m-Ag Decay M.R.Schmorak - Nucl. Data Sheets B7, 395 (1972) Nuclear Data Sheets for A = 196C.Signorini, H.Norinaga - Phys.Lett. 40B, 549 (1972) 72Sc50 72Si22 A 4+ + 0+ Cross-over Transition in 204Pb H.Verheul, W.B.Ewbank - Nucl.Data Sheets B8, 477 (1972) 72Ve09 Nuclear Data Sheets for A = 91 A.C.Wahl - J.Inorg.Nucl.Chem. 34, 1767 (1972) 72Wa 11 14.6 +/- 0.5 Year Half-Life of 113m-Cd A. V. Aldushchenkov, N. A. Voinova, V. G. Dubro, A. I. Egorov, Y. V. Kalinichev, D. N. Kaminker, L. K. Peker, A. G. Sergeev - Izv. Akad. Nauk SSSR, Ser. Piz. 37, 965 (1973); Bull. Acad. Sci. USSR, Phys. Ser. 37, No. 5, 48 (1974)
 Three-Particle and 'Anomalous' Excited States of 101Tc K. R. Alvar - Nucl Data Shorts 10, 205 (1973); 7 3A1 16 K.R.Alvar - Nucl. Data Sheets 10, 205 (1973) Nuclear Data Sheets for $\lambda = 71$ 7 3A1 33

73Au 10 R.L.Auble - Nucl.Data Sheets 9, 125 (1973) Nuclear Data Sheets for A = 12673Au 11 R.L.Auble - Nucl.Data Sheets 9, 157 (1973) Nuclear Data Sheets for A = 128M. Behar, K.S. Krane, R.M. Steffen, M.E. Bunker - Nucl. Phys. A201, 126 (1973) The Spin and Parity of the 1771.2 keV Excited State of 100Pd 73Be08 M. Behar, D.A.Garber, Z.W.Grabowski - Nucl. Phys. A209, 525 (1973) Spins of the Levels and Multipole Mixing Ratios of the Transitions in ⁹⁵Mo 73Be34 F.E.Bertrand - Nucl.Data Sheets 10, 91 (1973) 73Be78 Muclear Data Sheets for A = 124 M.S.El-Nesr, E.Bashandy - Z.Naturforsch. 28a, 1959 (1973) Anomalous L-Subshell Internal Conversion of Some Hindered E1 Transitions in 7 3E1 13 171Tm, 175Lu and 177Hf Y.A.Ellis - Nucl. Data Sheets 9, 319 (1973) Nuclear Data Sheets for A = 18173E118 P.M.Endt, C.Van der Leun - Nucl.Phys. A214, 1 (1973); Erratum Nucl.Phys. A248, 73EnVa 153 (1975) Energy Levels of A = 21-44 Nuclei (V) R.J.Gehrke - Nucl.Phys. A204, 26 (1973) The Decay of ¹⁹²Ir 73Ge05 D.J.Gorman, A.Rytz - C.R.Acad.Sci., Ser.B 277, 29 (1973) Nouvelle Determination Absolue de l'Energie α du 210Po J.K.Halbig, F.K.Wohn, W.L.Talbert,Jr., J.J.Eitter, J.R.McConnell - Nucl.Phys. 736039 73Ha11 A203, 532 (1973) The β -Decay of 91Sr B.Harmatz - Nucl.Data Sheets 10, 359 (1973) 73Ha76 Nuclear Data Sheets for A = 169 H.Inoue, Y.Yoshizawa, T.Morii - J.Phys.Soc.Jap. 34, 1437 (1973) Gamma-Ray Energies and Relative Intensities of 75Se, 108m-Ag, 113Sn, 131I and 73In 06 133Ba 73Ka 45 H.M.A.Karim - Radiochim.Acta 19, 1 (1973) A Study of 4 GeV Electron Spallation Products of Iodine-I D.C.Kocher - Nucl.Data Sheets 10, 241 (1973) 736043 Nuclear Data Sheets for A = 94K.S.Krane, W.A.Steyert - Phys.Rev. C7, 1555 (1973) Nuclear Orientation Studies of the Decays of 187W and 185,191,1930s 73Kr05 7 3Kr 24 L.A.Kroger, C.W.Reich - Nucl.Data Sheets 10, 429 (1973) Nuclear Data Sheets for A = 153M.B.Lewis - Nucl.Data Sheets 9, 479 (1973) Nuclear Data Sheets for A = 19173Lew1 J.Legrand, J.Morel - Phys.Rev. C8, 366 (1973) Evidence of a Low-Intensity β^- Transition in the Disintegration of 99Tc 73Le10 73Le29 J.Legrand, M.Blondel, P.Magnier - Nucl.Instrum. Methods 112, 101 (1973) High-Pressure 4# Proportional Counter for Internal Conversion Electron Measurements (139Ce, 109Cd, 99Tc-m) P.Loeweneck, B.Martin - Nucl.Phys. A203, 332 (1973) 73Lo03 Nuclear Structure Effect in Internal Conversion of the Isomeric Transition in 1910s 73Lo10 D.Lode, F.Munnich, A.Hoglund, S.G.Malmskog - Nucl. Phys. A209, 170 (1973) Half-Life Measurements of Excited Levels in 1221 C.Maples - Nucl.Data Sheets 10, 597 (1973) 73Ma63 Nuclear Data Sheets for A = 213C. Maples - Nucl. Data Sheets 10, 611 (1973) 73Ma64 Nuclear Data Sheets for A = 21773Ma 65 C. Maples - Nucl. Data Sheets 10, 625 (1973) Nuclear Data Sheets for A = 221Nuclear Data Sheets for A = 225 73Ma66 L.R.Medsker - Nucl.Data Sheets 10, 1 (1973) 73Me29 Nuclear Data Sheets for A = 97L.D.Miller, F.J.Schima - Int.J.Appl.Radiat.Isotop. 24, 353 (1973) The Half-Life of ¹²⁹m-Xe 73Mi08 73My 02 W.A.Myers, R.J.Nagle, Jr. - J.Inorg.Nucl.Chem. 35, 3985 (1973) The Half-Life of ¹⁸¹W 730k04 K.Okano, Y.Kawase, T.Hayashi - Nucl.Instrum.Methods 108, 279 (1973) Gamma-Gamma Angular Correlation Apparatus with on-Line Irradiation System for the Study of Short-Lived Isotopes S. Raman, R.L.Auble, W.T.Milner - Phys.Lett. 47B, 19 (1973) An E5 Transition in ¹²³Te and E5 Transitions in General 73Ra 32 73Sa36 D.C.Santry, R.D.Werner - Can.J.Phys. 51, 2441 (1973) Thermal Neutron Activation Cross Sections and Resonance Integrals of 9*2r and 96Zr 73Sc41 M.R. Schmorak - Nucl. Data Sheets 10, 553 (1973) Nuclear Data Sheets for A = 188 73Sc42 M.R.Schmorak - Nucl.Data Sheets 9, 401 (1973) Nuclear Data Sheets for A = 190735c43 M.R.Schmorak - Nucl.Data Sheets 9, 195 (1973) Nuclear Data Sheets for A = 192N.C.Singhal, N.R.Johnson, E.Eichler, J.H.Hamilton - Phys.Rev. C7, 774 (1973) 73Si02 Gamma-Ray Studies on the Decay of 2.41-min 108Ag

7 3Ta 15 W.L.Talbert, Jr., R.J.Hanson - Phys.Rev. C8, 1945 (1973) Decay of Mass-Separated 93Y R.R.Todd, W.H.Kelly, F.N.Bernthal, W.C.NcHarris - Nucl.Data Sheets 10, 47 7.310 17 (1973) Nuclear Data Sheets for A = 101J.K.Tuli - Nucl.Data Sheets 9, 435 (1973) Nuclear Data Sheets for A = 159 731105 J.K.Tuli - Nucl.Data Sheets 9, 273 (1973) Nuclear Data Sheets for A = 157 7 3Tu 06 Nuclear Data Sneets for A = 157
J.B. Willett, G.T. Emery - Ann.Phys. (New York) 78, 496 (1973)
Relative Intensity and Internal Conversion Coefficient Measurements in The Decays of ⁵¹Cr, ¹³⁷Cs, ¹⁹²Ir, and ²⁰⁷Bi
E. Achterberg, P.C. Iglesias, A.E.Jech, J.A. Moragues, D. Otero, M.L. Perez, A.N. Proto, J.J. Rossi, W.Scheuer - Phys. Rev. C10, 2526 (1974)
Levels of ⁹³Rb, ⁹³Sr, and ⁹³Y Fed in the Decays of ⁹³Kr, ⁹³Rb, and ⁹³Sr 73Wi10 74Ac 04 P.Ajzenberg-Selove, T.Lauritsen - Nucl. Phys. A227, 1 (1974) Energy Levels of Light Nuclei A = 5-10 74A 101 74A133 K.R.Alvar - Nucl. Data Sheets 13, 305 (1974) Nuclear Data Sheets for A = 7374A134 K.R.Alvar - Nucl.Data Sheets 11, 121 (1974) Nuclear Data Sheets for A = 7274An 22 N.M.Antoneva, A.V.Barkov, A.V.Zolotavin, G.S.Katykhin, V.M.Makarov, V.O.Sergeev Izv. Akad. Nauk SSSR, Ser. Fiz. 38, 1741 (1974); Bull. Acad. Sci. USSR, Phys. Ser. 38, No.8, 154 (1974) Weak Beta and Gamma Transitions in the Decay of 95Zr, 95Nb*, and 95Nb-g 74Ar 13 G. Ardisson - Radiochem. Radioanal. Lett. 16, 241 (1974) Decroissance du $116m_1$ In (T = 54 mn) 74Ar 26 G. Ardisson - Radiochem. Radioanal. Lett. 18, 365 (1974) Decroissance du 165Dy H. Backe, R. Engfer, E. Kankeleit, R. Link, R. Michaelsen, C. Pettitjean, L. Schellenberg, H. Schneuwly, W. U. Schroder, J. L. Vuilleumier, H. K. Walter, A. Zehnder - Nucl. Phys. A234, 469 (1974) Nuclear Excitation and Isomer Shifts in Muonic Atoms (I). Experiment and 748a 77 Evaluation B.N.Belyaev, S.S.Vasilenko, D.N.Kaminker, Y.V.Sergeenkov - Izv.Akad.Nauk SSSR, Ser.Fiz. 38, 2505 (1974); Bull.Acad.Sci.USSR, Phys.Ser. 38, No.12, 35 (1974) Excited States of 1880s. B0 Transitions 74Be75 74Be76 F.E.Bertrand - Nucl.Data Sheets 13, 397 (1974) Nuclear Data Sheets for A = 106 F.E.Bertrand - Nucl.Data Sheets 11, 449 (1974) 748e77 Nuclear Data Sheets for A = 105Nuclear Data Sheets for A = 105T. W. Burrows - Nucl.Data Sheets 12, 203 (1974) Nuclear Data Sheets for A = 145A. Buyrn - Nucl.Data Sheets 11, 189 (1974) Nuclear Data Sheets for A = 16574Bur1 74Bu29 L.M.Cavallo, F.J.Schima, M.P.Unterweger - Phys.Rev. C10, 2631 (1974) Decay of 133Xe-g 740 27 R.Colle, R.Kishore - Phys.Rev. C9, 981 (1974) Absolute 7-Ray Intensities in the Decay of 79Kr and 127Xe J.De Raedt, H.Rots, H.Van de Voorde - Phys.Rev. C9, 2391 (1974) Angular Correlation Study of 129I Populated in the Decay of 129Te 740005 74De15 P. Drehmann - Z. Phys. 271, 349 (1974) Beta-gamma-Winkelkorrelation bei 1*6Pm Y. A. Bilis - Nucl. Data Sheets 12, 533 (1974) 74Dr 08 74E108 Nuclear Data Sheets for A = 185 C.E.Engelke, J.D.Ullman - Phys.Rev. C9, 2358 (1974) Observation of a Weak Beta-Decay Branch in 99Tc 74En 02 M.M.Fowler, G.W.Goth, C.-C.Lin, A.C.Wahl - J.Inorg.Nucl.Chem. 36, 1191 (1974); A.C.Wahl, Priv.Comm. (January 1974) Half-Lives of Tin and Antimony Fission Products with A = 128-133 R.A.Fox, W.D.Hamilton, D.D.Warner - J.Phys. (London) A7, 1716 (1974) 748006 748027 Multipole Mixing Ratios of Gamma Rays Emitted in the Decay of Polarized 160 Tb I.Fujiwara, N.Imanishi, T.Nishi - J.Inorg.Nucl.Chem. 36, 1921 (1974) Decay of 131 Te and 133 Te Isomers 74Fn 13 No.L.Gardulski, N.L.Wiedenbeck - Phys.Rev. C9, 262 (1974) Multipole Mixing Ratics of Transitions in 99Tc 74Ga 01 D.A.Garber, M.Behar, Z.W.Grabowski, Y.W.Yu - Nucl. Phys. A219, 370 (1974) Spins of the Levels and Multipole Mixing Ratios of Transitions in ¹²⁵Sb Determined from γ-γ Directional Correlation and Polarization-Directional 74Ga 03 Correlation Measurements 74Ga 14 V.I.Gavrilyuk, A.A.Klyuchnikov, V.T.Kupryashkin; G.D.Latyshev, V.K.Maidanyuk, Y.V.Makovetskii, A.F.Novgorodov, A.I.Peoktistov - Izv.Akad.Nauk SSSR, Ser.Fiz. 38, 36 (1974); Bull.Acad.Sci.USSR, Phys.Ser. 38, No.1, 31 (1974) The Internal Conversion Spectrum of 96Tc E.P.Grigorev, A.V.Zolotavin, S.V.Kamynov - IZV.Akad.Nauk SSSR, Ser.Piz. 38, 74Gr41 2499 (1974); Bull.Acad.Sci.USSR, Phys.Ser. 38, No.12, 30 (1974) Decay of 100g-Ho L.R.Greenwood - Nucl.Data Sheets 12, 139 (1974) 746-46 Nuclear Data Sheets for A = 139

J. M. Gualda, R. N. Saxena, F. C. Zawislak - Nucl. Phys. A234, 357 (1974) 74Gu 20 Directional Correlations of γ -Transitions in 13*Xe J.M.Gualda, R.N.Saxena - Rev.Brasil.Fis. 4, 47 (1974) 74Gu 30 Nuclear Spectroscopic Studies of Low-Lying States in 77As H.Helppi, A.Pakkanen, J.Hattula - Nucl.Phys. A223, 13 (1974) The E2/N1 Mixing of the Transitions from the Kw = 2+ Bands in 190,1920s and 192Pt E.A.Henry - Nucl.Data Sheets 11, 495 (1974) 74He08 74He 27 Huchear Data Sheets for A = 133 H.R.Hiddleston, C.P.Browne - Nucl.Data Sheets 13, 133 (1974) 74H108 Nuclear Data Sheets for A = 130 D.J.Horen, B.Harmatz - Nucl.Data Sheets 11, 549 (1974) 74HoHa D.J. Nuclear Data Sheets for A = 171 B.W. Huber, K.Kramer - Z.Phys. 267, 111 (1974) Levels of 97Tc from the Decay of 97Ru E.Huenges, H.Vonach, J.Labetzki - Nucl.Instrum.Methods 121, 307 (1974) Precision Time-of-Flight System for Measurement of the Beam Energy of the 74Hu 05 74Hu 15 Munich Tandem Accelerator J.R.Johnson, K.C.Mann - Can.J.Phys. 52, 406 (1974) The Decay of 124Sb 74.10.03 A.S.Johnston - Med.Phys. 1, 280 (1974) Photon Yield of 148.9-keV Gamma of 123Xe 74.10 16 B.K.S.Koene, H.Ligthart, H.Postma - Nucl.Phys. A235, 267 (1974) Directional Distribution of γ -Rays from Oriented ¹³³I 748026 D.C.Kocher - Nucl.Data Sheets 13, 337 (1974) 748036 Nuclear Data Sheets for A = 103G. Marest, R. Haroutunian, I. Berkes, M. Meyer, M. Rots, J. De Raedt, H. Van de Voorde, H. Oonis, R. Coussement - Phys. Rev. C10, 402 (1974) 74Ma24 Electromagnetic Properties of Low-Lying Levels of 129Xe 74Ma 30 H. Mabuchi, H. Takahashi, Y. Nakamura, K. Notsu, H. Hamaguchi - J. Inorg. Nucl. Chem. 36, 1687 (1974) The Half-Life of *1Ca L.R.Medsker - Nucl.Data Sheets 12, 431 (1974) 74Me33 Nuclear Data Sheets for A = 99 L.R.Medsker - Nucl.Data Sheets 11, 157 (1974) 74Me34 Nuclear Data Sheets for A = 98Nuclear Data Sheets for A = 98 L.K.Peker, V.N.Sigalov, Y.I.Kharitonov - Nucl.Data Sheets 12, 343 (1974) Nuclear Data Sheets for A = 140 S.Raman, R.L.Auble, F.F.Dyer - Phys.Rev. C9, 426 (1974) Weak Gamma Transitions in 129-Day 123Sn-g Decay T.B.Ryves, K.J.Zieba - J.Phys. (London) A7, 2318 (1974) The Resonance Integrals of 63Cu, 65Cu, 107Ag, 159Tb, 164Dy, and 165Ho H.M.Schupferling, K.-W.Hoffmann - Z.Phys. 266, 129 (1974) Formfaktor des Betaspektrums von 146Pm M.P.Schworak - Nucl Data Sheete 13, 267 (1974) 74Pe 19 74 Ra 03 748 v 01 74Sc06 M.R.Schmorak - Nucl.Data Sheets 13, 267 (1974) 745c38 Nuclear Data Sheets for A = 186 V.A.Sergienko, V.M.Lebedev - Izv.Akad.Nauk SSSR, Ser.Fiz. 38, 802 (1974); 74Se08 Bull.Acad.Sci.USSR, Phys.Ser. 38, No.4, 122 (1974) Determining K-Capture Intensities for 153Gd + 153Eu Decay 747004 F.Tolea, K.R.Baker, W.D.Schmidt-Ott, R.W.Fink - Z.Phys. 268, 289 (1974) The Electron Capture Decay of 1251 and 145 Pm J.K.Tuli - Nucl.Data Sheets 12, 477 (1974) Nuclear Data Sheets for A = 160 741107 74¥a02 S.W.Yates, J.C.Cunnane, P.J.Daly, R.Thompson, R.K.Sheline - Nucl. Phys. A222, 276 (1974) Levels of 1900s Populated in the Decays of 3.3 h 190m-Re and 12 d 190Ir and in the 1890s(d,p)1900s Reaction 75A 102 F.Ajzenberg-Selove - Nucl. Phys. A248, 1 (1975) Energy Levels of Light Nuclei A = 11-12 75Art1 A.Artna-Cohen - Nucl.Data Sheets 16, 267 (1975) Nuclear Data Sheets for A = 18375Ar 12 G.Ardisson - Nucl.Instrum.Methods 126, 269 (1975) Energies et Intensities des γ Qui Suivent la Disintegration de ¹⁶⁵Dy R.L.Auble - Nucl.Data Sheets 14, 119 (1975) 75Au 03 Nuclear Data Sheets for A = 6375Au 05 R.L.Auble - Nucl.Data Sheets 16, 1 (1975) Nuclear Data Sheets for A = 61 75Au 08 R.L.Auble - Nucl. Data Sheets 16, 351 (1975) Nuclear Data Sheets for A = 6575Au 10 R.L.Auble - Nucl. Data Sheets 16, 417 (1975) Nuclear Data Sheets for A = 67 F.T.Avignone,III, S.Raman - Phys.Rev. C12, 963 (1975) 75Av01 Internal Conversion Studies in 144Nd G.Azuelos, J.E.Kitching - Phys.Rev. C12, 563 (1975) Half-Lives of Some T = 1/2 Mirror Decays 75Az01 75Ba17 C.Bargholtz, J.Becker, S.Beshai, L.Eriksson, K.Fransson, L.Gidefeldt, L.Holmberg, V.Stefansson - Z.Phys. A272, 3 (1975) Levels and Transitions in 126Te 758007 G.L.Borchert, W.Scheck, K.P.Wieder - Z.Naturforsch. 30a, 274 (1975) Precision Measurement of the γ -Ray Energies from the Radioactive Decay of 51Cr, 169Yb, 170Tm, 192Ir and 203Hg

H.E.Bosch, J.Davidson, V.Silbergleit, C.A.Heras, S.M.Abecasis - Z.Phys. A273, 373 (1975) 75Bo29 Studies on the Nuclear Structure of 115 In 75Bn 05 T.W.Burrows - Nucl.Data Sheets 14, 413 (1975) Nuclear Data Sheets for A = 146 A.Buyrn - Nucl.Data Sheets 14, 471 (1975) 75Bn 06 Nuclear Data Sheets for A = 166 R.L.Bunting - Nucl.Data Sheets 15, 335 (1975) 75Bu 12 Nuclear Data Sheets for A = 137758n 19 T.W.Burrows, R.L.Auble - Nucl.Data Sheets 16, 231 (1975) Nuclear Data Sheets for A = 144 75Bu24 B.Bulow, M.Eriksson, G.G.Jonsson, E.Hagebo - Z.Phys. A275, 261 (1975) Some (7, 1pxn) Reactions in 118Sn at Intermediate Energies G.H.Carlson, W.L.Talbert, Jr., S.Raman - Nucl.Data Sheets 14, 247 (1975) Nuclear Data Sheets for A = 11675Ca 10 M.C.Cambiaggio, G.Garcia Bermudez, M.Behar - Z.Phys. A275, 183 (1975) The Spin of the 2.198 keV Level in 74Ge and Multipole Mixing Ratios of Gamma 75Ca 37 Transitions in the Decay of 7*As R.N.Cherry, Jr., N.L.Wiedenbeck - Nucl.Phys. A252, 445 (1975) Directional Correlations of Gamma Rays in 77As 75Ch 32 75Co26 V.Cojocaru, D.Pantelica, M.Patrutescu, M.Salagean - Rev.Roum.Phys. 20, 729 (1975) The Level Scheme of 97Nb Nucleus 75Cz05 K.H.Czock, N.Haselberger, F.Reichel, S.Popa - Int.J.Appl.Radiat.Isotop. 26, 782 (1975) Determination of the Half-Life of 103Pd 75E102 Y.A.Ellis - Nucl. Data Sheets 14, 347 (1975) Nuclear Data Sheets for A = 187 75E107 Y.A.Ellis, B.Harmatz - Nucl.Data Sheets 16, 135 (1975) Nuclear Data Sheets for A = 177S.Fiarman, S.S.Hanna - Nucl. Phys. A251, 1 (1975) 75F1 08 Energy Levels of Light Nuclei A = 3K. Fransson, A. Nilsson, J.de Raedt, L. Tauscher - Nucl. Instrum. Methods 131, 511 75Fr 23 (1975) Precise Energy Determination of the First Excited State in 137Cs for Absolute Energy Calibration in Muonic Atoms T.Fukuda, S.Omori - J.At.Energy Soc.Jap. 17, 177 (1975) 75Fu 12 A Dry Method for Separating Xenon from its Precursor Pission-Iodine: Measurements of the ¹³⁵I Branching Ratio and Half-Life of ¹³⁵m-Xe K.P.Gopinathan, S.B.Patel - Phys.Rev. C11, 1364 (1975) 75Go 06 Properties of the Excited States in 171Tm L.R.Greenwood - Nucl.Data Sheets 15, 289 (1975) 75Gr 19 Nuclear Data Sheets for A = 80 E.A.Henry - Nucl.Data Sheets 15, 203 (1975) 75He08 Nuclear Data Sheets for A = 134 75He 12 E.A.Henry - Nucl.Data Sheets 14, 191 (1975) Nuclear Data Sheets for A = 135H.Helppi, A.Pakkanen, J.Hattula - Nucl.Phys. A247, 317 (1975) Mixing of the Transitions from the 3⁺ Quasi γ -Band Level in ¹⁵²Gd 758e13 75Ho17 D.J.Horen, M.B.Lewis - Nucl.Data Sheets 16, 25 (1975) Nuclear Data Sheets for A = 7575Ho18 D.C.Hoffman, J.W.Barnes, B.J.Dropesky, F.O.Lawrence, G.M.Kelley, M.A.Ott -J.Inorg.Nucl.Chem. 37, 2336 (1975) Half-Lives of 129m-Xe, 131m-Xe, 133m-Xe, 133g-Xe and 135g-Xe 75Hs02 S.T.Hsue, H.H.Hsu, F.K.Wohn, W.R.Western, S.A.Williams - Phys.Rev. C12, 582 (1975) Level Structure of 106Pd from the Decay of 106Rh R.Kishore, R.Colle, S.Katcoff, J.B.Cumming - Phys.Rev. C12, 21 (1975)
 ³⁷Cl(p,n)
 ³⁷Ar Excitation Function up to 24 Mev: Study of (p,n) Reactions 75Ki10 H.J.Kim - Nucl.Data Sheets 16, 107 (1975) Nuclear Data Sheets for A = 114 H.J.Kim - Nucl.Data Sheets 16, 317 (1975) Nuclear Data Sheets for A = 60 75Ki17 75Ki 19 N.Kortelahti, A.Pakkanen, J.Kantele - Nucl.Phys. A240, 87 (1975) Electromagnetic Transition Rates in ²⁰⁸Pb 758002 D.C.Kocher - Nucl.Data Sheets 15, 169 (1975) Nuclear Data Sheets for A = 83 75Ko 07 Nuclear Data Sheets for A = 9075Ko 16 75Ko21 D.C.Kocher - Nucl.Data Sheets 16, 445 (1975) Nuclear Data Sheets for A = 89H.J.Krell, S.Hofmann - Z.Phys. A272, 257 (1975) $\gamma\gamma$ -Winkelkorrelationsmessungen an ¹⁵⁵Gd 75Kr 04 L.A.Kroger, C.W.Reich - Nucl.Data Sheets 15, 409 (1975) 75Kr 07 Nuclear Data Sheets for A = 155 J.F.Lemming - Nucl.Data Sheets 15, 137 (1975) 75Le08 Nuclear Data Sheets for A = 81J.F.Lemming, R.L.Auble - Nucl.Data Sheets 15, 315 (1975) Nuclear Data Sheets for A = 8275Le11

75Le12 M.B.Lewis - Nucl.Data Sheets 14, 155 (1975) Nuclear Data Sheets for A = 68Z. Miligy, D. A. E. Darwish, S. A. Eid - Acta Phys. 38, 123 (1975) The Decay of 131g-Te and 131m-Te to 131I Levels 75Mi14 T.Morii - J.Phys.Soc.Jap. 38, 616 (1975) 75Mo14 Precise Measurement of Rotational Levels of 177 Lu and 177 Hf T.Morii, T.Saito - Nucl.Instrum.Nethods 131, 197 (1975) 751034 The 434 keV Gamma Ray of 108Ag-m as a New Energy Standard P. M. Nuh, D. R. Slaughter, S.G. Prussin - Nucl. Phys. A 250, 1 (1975) Decay of *5Br 75Nu 03 A.Pakkanen, M.Kortelahti, H.Helppi, J.Kantele, T.Poikolainen, R.Komu - Z.Phys. A274, 127 (1975) 75Pa 07 Decay of 14.6 h 90Nb H.S.Pruys, E.A.Hermes, H.R.Von Gunten - J.Inorg.Nucl.Chem. 37, 1587 (1975) 75Pr 05 The Decay of 152m1Eu and 152m2Eu and Reaction Cross Sections of 153Eu for 14 MeV Neutrons S.Raman, H.J.Kim - Nucl.Data Sheets 16, 195 (1975) Nuclear Data Sheets for A = 115 75Ra 27 H. Rubinsztein, M. Gustafsson - Phys. Lett. 58B, 283 (1975) 75Ru06 Nuclear Spin Measurements on Neutron-Deficient Isotopes of the Refractory Elements S.Sanyal, R.K.Garg, S.D.Chauhan, S.L.Gupta, S.C.Pancholi - Phys.Rev. C12, 318 (1975) 75Sa 06 Half-Life Measurement of the 212Po Ground State M.R.Schmorak - Nucl.Data Sheets 14, 559 (1975) 75Sc13 Nuclear Data Sheets for A = 182 M.R.Schmorak, R.L.Auble - Nucl.Data Sheets 15, 371 (1975) 75Sc26 Nuclear Data Sheets for A = 170U.Schneider, U.Hauser - Z.Phys. A273, 239 (1975) 755c32 On EO Transitions in the Decay of ¹⁵²Eu-m (9.3 h) G.A.Shevelev, A.G.Troitskaya, V.M.Kartashov - Izv.Akad.Nauk SSSR, Ser.Fiz. 39, 2038 (1975); Bull.Acad.Sci.USSR, Phys.Ser. 39, No.10, 26 (1975) 75Sh29 The Excited States of 111Cd M.D.Svoren, E.F.Zganjar, I.L.Hawk - Z.Phys. A272, 213 (1975) New Levels Observed in ¹⁶⁸Os from the Decay of ¹⁸⁶Re P.P.Urone, D.C.Kocher - Nucl.Data Sheets 15, 257 (1975) 755 01 750r03 Nuclear Data Sheets for A = 79 J.R. Van Hise, D.C.Camp, R.A. Meyer - Z.Phys. A274, 383 (1975) Decay of the 13*Cs Isomers and the Levels of 13*Xe, 13*Cs, and 13*Ba 75Va 12 S. Vaisala, T. Raunemaa, A. Fontell, G. Graeffe, A. Siivola - Phys. Fenn. 10, 133 75Va24 (1975) The Decay of ⁰¹Rb 3/2- Ground State V.E.Viola,Jr., C.T.Roche, N.N.Minor - J.Inorg.Nucl.Chem. 37, 11 (1975) Alpha Decay of Natural ¹⁸⁶OS T.E.Ward, Y.Y.Chu - Radiochem.Radioanal.Lett. 22, 1 (1975) 75Vi01 75¥a 19 Refined Value for the Half-Life of 177m-Lu S.L.Waters, M.J.Woods - Int.J.Appl.Radiat.Isotop. 26, 484 (1975) 75Va28 The Half-Life of 77Br J.F. Wright, W.L.Talbert, Jr., A.F. Voigt - Phys.Rev. C12, 572 (1975) Decays of 101Mo and 101Tc Y.Yamaguchi, J.Ruan(Gen), T.Nagahara - J.Phys.Soc.Jap. 38, 911 (1975) The Properties of 2112 keV Level in 1165n 758-01 75Ya 08 F.Ajzenberg-Selove - Nucl.Phys. A268, 1 (1976) 76A 104 Energy Levels of Light Nuclei A = 13-15 76Au01 R.L.Auble - Nucl. Data Sheets 17, 193 (1976) Nuclear Data Sheets for A = 69 R.L.Auble, H.R.Hiddleston, C.P.Browne - Nucl.Data Sheets 17, 573 (1976) 76Au 03 Nuclear Data Sheets for A = 131J.A.Barclay, S.S.Rosenblum, W.A.Steyert, K.S.Krane - Phys.Rev. C14, 1183 (1976) Nuclear Orientation of 97,103,105Ru and 105Rh 76Ba 39 76Ba 42 C.Bargholtz, S.Beshai, L.Gidefeldt - Nucl. Phys. A270, 189 (1976) Angular Correlation Measurements in 131 Xe K.Blaton-Albicka, B. Kotlinska-Filipek, M. Matul, K. Stryczniewicz, M. Nowicki, B. Ruchowska-Lukasiak - Nukleonika 21, 935 (1976) 76B1 13 Precision Gamma-Ray Spectroscopy of the Decay of 223Ra and its Daughter Products 76Bo 16 G.L.Borchert - Z.Naturforsch. 31a, 387 (1976) Precision Measurement of y-Ray Energies from the Decay of 57Co, 60Co, 137Cs, 152Bu, 1535m and 198Au D.S.Brenner, R.A. Meyer - Phys.Rev. C13, 1288 (1976) 76Br 09 Decay of 187W and the 1/2+[411] Band in Odd-Mass Re Isotopes A.Buyrn - Nucl.Data Sheets 17, 97 (1976) Nuclear Data Sheets for A = 162 R.L.Bunting, W.L.Talbert,Jr., J.R.McConnell, R.A.Meyer - Phys.Rev. C13, 1577 76Bu02 76 Bu 05 (1976) Decays of **Kr and **Rb R.L.Bunting, J.J.Kraushaar - Nucl.Data Sheets 18, 87 (1976) Nuclear Data Sheets for A = 8876Bu 07 T.W.Burrows - Nucl.Data Sheets 18, 553 (1976) Nuclear Data Sheets for A = 15676Bu 09

76Bu 23 L.S.Bulyanitsa, A.M.Geidelman, Y.S.Egorov, L.M.Krizhanskii, A.A.Lipovskii, L.D.Preobrazhenskaya, A.V.Lovtsyus, Y.V.Kholnov - Izv.Akad.Nauk SSSR, Ser.Fiz. 40, 2075 (1976); Bull.Acad.Sci.USSR, Phys.Ser. 40, No. 10, 42 (1976) The Half-Life of 242Pu J.L.Campbell, B.Martin - Z.Phys. A277, 59 (1976) 76Ca 11 Internal Conversion of the 6.2 keV Transition in 181Ta 76Ca 18 D.C.Camp, J.R.Van Hise - Phys.Rev. C14, 261 (1976) Weak Gamma Rays Observed in the 60Co Decay 76Ch33 J.M.Chatterjee-Das, R.K.Chattopadhyay, P.Bhattacharya, B.Sethi, S.K.Mukherjee -Radiochem.Radioanal.Lett. 27, 119 (1976)
 The Decay Scheme of the 284.3 D 1**Ce and Energy Levels and Transitions in 1**Pr 76Da 09 B.K.Dasmahapatra - J.Phys. (London) G2, 233 (1976) Gamma Vibrational Band in 160 Dy A.A.Delucchi, R.A.Meyer - J.Inorg.Nucl.Chem. 38, 2135 (1976) 76De 35 Decay of 113Sn to Levels of 113In 76De37 J.C.de Lange, J.Bron, A.van Poelgeest, H.Verheul, W.B.Ewbank - Z.Phys. A279, 79 (1976) The Decay of 93g-Ru, 93m-Ru, 91g-Mo, 91m-Mo, 91g-Tc and 91m-Tc 76De43 J.De Raedt, G.Lhersonneau, R.Geerts, H.Van de Voorde - J.Phys. (London) G2, 719 (1976) Spin and Parity Assignment of the 1924 keV Level in 1311 76EL01 Y.A.Ellis - Nucl. Data Sheets 19, 143 (1976) Nuclear Data Sheets for A = 245Y.A.Ellis - Nucl.Data Sheets 19, 181 (1976) 76E102 Nuclear Data Sheets for A = 24776E103 Y.A. Ellis - Nucl. Data Sheets 17, 329 (1976) Nuclear Data Sheets for A = 21676EL04 Y.A.Ellis - Nucl. Data Sheets 17, 341 (1976) Nuclear Data Sheets for A = 220 76E105 Y.A.Ellis - Nucl.Data Sheets 17, 351 (1976) Nuclear Data Sheets for A = 22476E1 10 Y.A.Ellis - Nucl. Data Sheets 19, 103 (1976) Nuclear Data Sheets for A = 24376Ge 14 R.J.Gehrke, R.G.Helmer, C.W.Reich, R.C.Greenwood, R.A.Anderl - Phys.Rev. C14, 1896 (1976) Level Structure of 131Cs and the Decay Energy of 131Ba J.E.Gindler - Inorg. Nucl. Chem.Lett. 12, 931 (1976) The Half-Lives of ⁶³Rt and ⁶⁴Rb 76Gi14 76Gr11 R.C.Greenwood, C.W.Reich, R.G.Helmer, R.J.Gehrke, R.A.Anderl - Phys.Rev. C14, 1906 (1976) 13 Ba Level Scheme as Observed in the Decay of 13 La B. Harmatz - Nucl. Data Sheets 19, 33 (1976) 76Ha35 Nuclear Data Sheets for A = 151 76Ha61 W.Hartl, J.W.Hammer - Z.Phys. A279, 135 (1976) The K-Fluorescence Yield of Germanium R.G.Helmer - Nucl. Phys. A272, 269 (1976) 76He 18 The K-Conversion Coefficients of Y-Rays Above 800 keV from 182Ta Decay 76Hi02 H.R.Hiddleston, C.P.Browne - Nucl.Data Sheets 17, 225 (1976) Nuclear Data Sheets for A = 132 P.K. Hopke, R.A. Neyer - Phys. Rev. C13, 434 (1976) Hindered Beta Decay of 95Nb-m and the Decay Sequence 95Zr + 95Nb-m,g, + 95No D.J. Horen - Nucl. Data Sheets 17, 367 (1976) Nuclear Data Sheets for A = 228 G.E. Holland - Nucl. Data Sheets 19, 337 (1976) 76Ho04 76Ho06 76Ho 17 Nuclear Data Sheets for A = 14976Hu11 J.M.R.Hutchinson, P.A.Mullen - Int.J.Appl.Radiat.Isotop. 27, 47 (1976) Standardization and Ground-State Branching of Selenium-75 76Ki03 H.J.Kim - Nucl.Data Sheets 17, 485 (1976) Nuclear Data Sheets for A = 5976Ko 07 D.C.Kocher - Nucl.Data Sheets 17, 519 (1976) Nuclear Data Sheets for A = 7476Ko 16 D.C.Kocher, R.L.Auble - Nucl.Data Sheets 19, 445 (1976) Nuclear Data Sheets for A = 58 76Ko29 B.K.S.Koene, H.Postma - Hyperfine Interactions 2, 310 (1976) Negative Parity States in ¹³IXe Studied by Nuclear Orientation
76Kr01 K.S.Krane, C.E.Olsen, S.S.Rosenblum, W.A.Steyert - Phys.Rev. C13, 831 (1976) Nuclear Orientation of 95,97Nb and 952r in ZrPe₂
76Ku08 W.Kurcewicz, N.Kaffrell, N.Trautmann, A.Plochocki, J.Zylicz, K.Stryczniewicz, T.Vulardor - Nucl Phys. Rev. 175 (1976) T.Yutlandov - Nucl.Phys. A270, 175 (1976) Collective States Fed by Weak α -Transitions in the ²³°U Chain T.v.Ledebur - Helv.Phys.Acta 49, 661 (1976) 76Le23 Gamma-Gamma Angular Correlation Experiments Using Gaseous Sources of 125Xe, 127Xe and 129m-Xe 76Li06 C.-C.Lin - J.Inorg.Nucl.Chem. 38, 1409 (1976) γ -Ray Intensities in the Decay of 140Ba-140La and 152Eu: Use of 13 y 152Eu as a Secondary Calibration Standard L.G.Mann, W.B.Walters, R.A.Meyer - Phys.Rev. C14, 1141 (1976) Levels of ¹²⁹I Populated in the Decay of ¹²⁹Te-m and ¹²⁹Te-g 76Ma 35

76Ma 37 E.S.Macias, M.E.Phelps, D.G.Sarantities, R.A.Meyer - Phys.Rev. C14, 639 (1976) Decay of 39-Day 103Ru and 17-Day 103Pd to the Levels of 103Rh R.A.Meyer, J.H.Landrum, S.V.Jackson, W.H.Zoller, W.B.Walters - Phys. Rev. C13, 76Me07 1617 (1976) Three-Particle One-Hole Configurations in Odd-Odd 134I and the Decay of 134Te R. A. Meyer, F.F. Momyer, J.H. Landrum, E.A. Henry, R.P. Yaffee, W.B. Walters -Phys.Rev. C14, 1152 (1976) Levels of Odd-Mass Xe Populated in the Beta Decay of 129Cs and 133I 7611e16 N.M.Minor - Nucl.Data Sheets 18, 331 (1976) Nuclear Data Sheets for A = 175 - 76Mi07 J.P.Miller, F.Boehm, H.E.Henrikson - Nucl.Instrum.Methods 136, 403 (1976) 76N i 18 A Precision Energy Measurement of the 125I Gamma Line V.K.Mozhaev - At.Energ. 40, 174 (1976); Sov.At.Energy 40, 200 (1976) Effective Half-Life of 252Cf 768030 L.G. Multhauf, K.G.Tirsell, R.A. Meyer - Phys.Rev. C13, 771 (1976) Collective Excitations in 2**Cm and the Decay of 2**Am-m 76Mu 03 S.C.Pancholi, M.J.Martin - Nucl.Data Sheets 18, 167 (1976) 76Pa04 Nuclear Data Sheets for A = 13876Pa11 B.P.Pathak, L.Lessard, L.Nikkinen, I.L.Preiss - Phys.Rev. C14, 1573 (1976) Decays of 126Ba and 126Cs Decays of 140 Ba and 14003 B.V.N.Rao, G.N.Rao - J.Phys.Soc.Jap. 40, 1 (1976) Decay of 144Ce to Levels in 144Pr and 144Nd M.R.Schmorak - Nucl.Data Sheets 17, 391 (1976) Nuclear Data Sheets for (Even-A) A = 244 Through A = 262 76Ra 22 765c02 M.R.Schmorak - Nucl.Data Sheets 18, 389 (1976) Nuclear Data Sheets for (Odd-A) A = 249 Through A = 263 76Sc09 H.A.Smith, Jr., M.E.Bunker, J.W.Starner, C.J.Orth, K.E.G.Lobner - Phys.Rev. C13, 387 (1976) 76Sm01 States in 126Sb Populated in the ß Decay of 105-yr 126Sn S. Vaisala, G. Graeffe, J. Heinonen, A. A. Delucchi, R. A. Meyer - Phys. Rev. C13, 372 (1976) Levels of *3Kr Populated in the Decay of *3Rb and *3Br 76Va 03 R. Vaninbroukz, G. Grosse - Int. J. Appl. Radiat. Isotop. 27, 727 (1977) New Determination of the Half-Lives of 50CO, 60CO, 130Ce and 141Ce W. B. Walters, R. A. Meyer - Phys. Rev. C14, 1925 (1976) 76 V a 30 76Wa 13 Levels of 123Te and 125Te and the Decay of 13.3-h 123I and 2.7-yr 125Sb P.K.Wohn, M.D 2492 (1976) 761005 M.D.Glascock, W.L.Talbert, Jr., S.T.Hsue, R.J.Hanson - Phys. Rev. C13, Ground-State & Branching of Gaseous Fission Products and their Daughters for A = 88-91 76Ya 11 H. Yamada, T. Katoh, M. Fujioka, M. Sekikawa, S. H. Ahn, J. H. Hamilton, N. R. Johnson, J.J.Pinajian - J.Phys.Soc.Jap. 41, 1843 (1976) Electric Monopole Transitions from Excited 0+ States in 156Gd 77Aj02 F.Ajzenberg-Selove - Nucl. Phys. A281, 1 (1977) Energy Levels of Light Nuclei A = 16-17 M. Allab, F. Azgui, G. Ardisson - Radiochem. Radioanal. Lett. 30, 253 (1977) 77A127 Niveaux de 166Er Peuples par Decroissande de 166g-Ho R.L.Auble - Nucl.Data Sheets 20, 253 (1977) 77Au 03 Nuclear Data Sheets for A = 56 77Au 04 R.L.Auble - Nucl.Data Sheets 20, 327 (1977) Nuclear Data Sheets for A = 5777Au 08 R.L.Auble - Nucl.Data Sheets 21, 323 (1977) Nuclear Data Sheets for A = 53G.Azuelos, J.E.Kitching, K.Ramavataram - Phys. Pev. C15, 1847 (1977) 77Az01 Half-Lives and Branching Ratios of Some T = 1/2 Nuclei 77Ba69 S.A.Baranov, V.M.Shatinskii - Yad.Fiz. 26, 461 (1977); Sov.J.Nucl.Phys. 26, 244 (1977) Alpha Decay of 2**Cf, 2**Cm, and 2**OPu J.R.Beene - Nucl.Data Sheets 22, 1 (1977) 77Be63 Nuclear Data Sheets for A = 4577Be64 F.E.Bertrand - Nucl.Data Sheets 22, 135 (1977) Nuclear Data Sheets for A = 110C.J.Bischof, W.L.Talbert, Jr. - Phys.Rev. C15, 1047 (1977) Gamma-Ray Decay Schemes for 9^{3} Kr, 9^{3} Rb, and 9^{3} Sr 77Bi01 D. S. Brenner, M. Lindner, R. A. Meyer - Phys. Rev. C16, 747 (1977) Unique Pirst Porbidden Beta Decay of 183Re and 1850s J. Burde, A. Ginzburg, A. Molchadzki - Phys. Rev. C15, 2187 (1977) Absolute Transition Probabilities in 151Sm 77Br 22 77Bu 12 W.E.Collins, J.H.Hamilton, J.Lange - Phys.Rev. C16, 2019 (1977) Properties of the Second Kw = 0+ Band in 156Gd 770022 Y.A.Ellis - Nucl.Data Sheets 20, 139 (1977) 77E1 03 Y.A.Ellis - Nucl.Data Sheets 21, 493 (1977) 77E106 Nuclear Data Sheets for A = 234Y.A.Ellis - Nucl.Data Sheets 21, 549 (1977) 77E107 Nuclear Data Sheets for A = 238 Y.A.Ellis, R.L.Haese - Nucl.Data Sheets 21, 615 (1977) 77E108 Nuclear Data Sheets for A = 242K.Freitag, K.Krien, J.C.Soares, P.Herzog, W.D.Schneider, E.Bodenstedt - Z.Phys. A282, 39 (1977) 77Fr 10

The Penetration Parameter λ of the Anomalous M1-Conversion of the 482 keV Transition in 181Ta 77Ge 12 R.J.Gehrke, R.G.Helmer, R.C.Greenwood - Nucl.Instrum.Methods 147, 405 (1977) Precise Relative γ -Ray Intensities for Calibration of Ge Semiconductor Detectors 77Gi11 J.E.Gindler, L.E.Glendenin - Inorg.Nucl.Chem.Lett. 13, 95 (1977) The Half-Lives of 109Pd and 112Pd B. Harmatz - Nucl. Data Sheets 20, 73 (1977) 77Ha 15 Nuclear Data Sheets for A = 197B. Harmatz, J.R. Shepard - Nucl. Data Sheets 20, 373 (1977) 77Ha 16 Nuclear Data Sheets for A = 14877Ha26 B. Harmatz - Nucl. Data Sheets 21, 377 (1977) Nuclear Data Sheets for A = 198B.Harmatz - Nucl.Data Sheets 22, 433 (1977) 77Ha46 Nuclear Data Sheets for A = 194P.Herzog, H.-R.Folle, E.Bodenstedt - Hyperfine Interactions 3,361 (1977) 77fle20 The Sign of the Electric Field Gradient at the Nuclear Site of Zn in Zn Metal 77Ho12 O.Horibe, Y.Mizumoto, N.Kawamura - J.Phys.Soc.Jap. 42, 1803 (1977) The Decay Scheme of ⁹¹Sr 77Ho21 M.Hoshi - J.Phys.Soc.Jap. 43, 25 (1977) Decay of 151Pm H. Huang, B. P. Pathak, R. Iafigliola, L. Lessard, J.K. P. Lee - Z. Phys. A 282, 285 (1977) Decay of 90m,g-Rb 77Hu 03 S.V.Jackson, R.A.Meyer - Phys.Rev. C15, 1806 (1977) Population of 0+ States in ¹²⁶Te by Decay of ¹²⁶I and γ Softness in Even-Even 77.1a 04 Te Nuclei 77Ja08 A.H.Jaffey, H.Diamond, W.C.Bentley, K.F.Flynn, D.J.Rokop, A.M.Essling, J.Williams - Phys.Rev. C16, 354 (1977) Half-Life of 239Pu by Two Independent Methods B.D.Jeltema, F.M.Bernthal, T.L.Khoo, C.L.Dors - Nucl. Phys. A280, 21 (1977) 77Je02 Rotational and Intrinsic Structure of 182W from the $(\alpha, 2n\gamma)$ Reaction and Decay of 182m-Re 77Ka08 K.Kawade, H.Yamamoto, Y.Ikeda, V.N.Bhoraskar, T.Katoh - Nucl.Phys. A279, 269 (1977) Excited States of 162 Dy in the Decay of 162 Tb C.A.Kalfas - J.Phys. (London) G3, 929 (1977) Structure of 1405m Studied from the Decay of 140Pm and 140m-Pm H.E.Keus, W.J.Huiskamp - Physica 85B, 137 (1977) Nuclear Orientation of 177Lu in Iron, Cobalt and Nickel 77Ka 14 77Ke12 77Kr 03 K.S.Krane, J.M.Shobaki - Phys.Rev. C15, 1589 (1977) Angular Correlation Measurements in the Decay of 97Ru K.S.Krane, J.M.Shobaki - Phys.Rev. C16, 1576 (1977) Angular Correlation Measurements in the Decay of ¹⁰⁵Ru 77Kr 09 W. Kurcewicz, N. Kaffrell, N. Trautmann, A. Plochocki, J. Zylicz, M. Matul, K. Stryczniewicz - Nucl. Phys. A289, 1 (1977) 77Ku 15 Collective States Fed by Weak α -Transitions in the ²³²U Chain A.Kumar, S.K.Soni, S.C.Pancholi, S.L.Gupta - Phys.Rev. C16, 2027 (1977) Perturbation of the 360.3-57.6 keV Gamma-Gamma Directional Correlation in ¹²⁷I 77Ku 17 77Ku 25 W.Kurcewicz, E.Ruchowska, N.Kaffrell, N.Trautaann - Nucl.Instrum.Methods 146, 613 (1977) Precise Energies of Gamma Rays from the 230Th and 228Th Decay J.Liptak, K.Kristiakova, J.Kristiak - Nucl.Phys. A286, 263 (1977) Properties of *1Kr Levels Populated in the Decay of *1Rb Isomers R.Lloret - Radiochem.Radioanal.Lett. 29, 165 (1977) 77Li14 771.101 Mesure de la Periode de Decroissance Radioactive de 93Nb-m 77Ma 13 M.J.Martin, P.H.Stelson - Nucl.Data Sheets 21, 1 (1977) Nuclear Data Sheets for A = 184 C.Maples - Nucl.Data Sheets 22, 207 (1977) 77Ma 29 Nuclear Data Sheets for A = 21577Ma 30 C. Maples - Nucl. Data Sheets 22, 223 (1977) Nuclear Data Sheets for A = 21977Na 31 C. Maples - Nucl.Data Sheets 22, 243 (1977) Nuclear Data Sheets for A = 22377Ma 32 C.Maples - Nucl.Data Sheets 22, 275 (1977) Nuclear Data Sheets for A = 22777Ma 34 N.J.Martin - Nucl.Data Sheets 22, 545 (1977) Nuclear Data Sheets for A = 209 R.A.Meyer, K.V. Marsh, D.S.Brenner, V.Paar - Phys.Rev. C15, 417 (1977) 77Me12 Cluster-Vibrational-Pield Model for 95Mo and Levels Populated in the Decay of 95TC-m.g J. Morel, J.-P. Perolat, N.Coursol - C.R.Acad.Sci., Ser.B 284, 223 (1977) Mise en Evidence de l'Emission γ Lors de la Desexcitation du Niobium-93 m 771007 W.A.Myers - J.Inorg.Nucl.Chem. 39, 925 (1977) The Half-Life of ¹⁶⁹Er 77My 02 77Ne10 D.R.Nethaway, A.L.Prindle, W.A.Nyers, W.C.Fuqua, M.V.Kantelo - Phys.Rev. C16, 1907 (1977) Fission of 200 Pu with 14.8-MeV Neutrons K.Okano, Y.Kawase, S.Yamada - J.Phys.Soc.Jap. 43, 381 (1977) Excited States and Transitions in ¹⁰⁶Pd from the Decay of ¹⁰⁶Rh-g 770 k 02

770k03 K.Okano, Y.Kawase - J.Phys.Soc.Jap. 43, 389 (1977) Gamma-Gamma Angular Correlation Measurements in 106 Pd 77Po05 W.L. Posthumus, K.E.G. Lobner, J.L. Maarleveld, H.P. Geerke, J.Konijn - Z.Phys. A281, 277 (1977) The Odd-Parity Level at 687.59 keV in 236U 77Pr 04 W.W.Pratt - J.Inorg.Nucl.Chem. 39, 919 (1977) Decay of **Sr N.R.Schmorak - Nucl.Data Sheets 20, 165 (1977) 775c13 Nuclear Data Sheets for A = 232, 236, 240M.R.Schmorak - Nucl.Data Sheets 21, 91 (1977) 77Sc15 Nuclear Data Sheets for A = 231, 235, 239M.R.Schmorak - Nucl.Data Sheets 22, 487 (1977) Nuclear Data Sheets for A = 207775c19 U. Schotzig, K. Debertin, K. P. Walz -Int. J. Appl. Radiat. Isotop. 28, 503 (1977) 77Sc 31 Standardization and Decay Data of 133Ba P.J.Tivin, B.Singh, H.W.Taylor - J.Phys. (London) G3, 1267 (1977) Gamma-Gamma Directional Correlations in 106Pd 77**Ti**01 K.S.Toth - Nucl.Data Sheets 20, 119 (1977) Nuclear Data Sheets for A = 226771009 K.S.Toth - Nucl.Data Sheets 21, 437 (1977) 77To 12 Nuclear Data Sheets for A = 214K.S.Toth - Nucl.Data Sheets 21, 467 (1977) 77To 13 Nuclear Data Sheets for A = 218K.S.Toth - Nucl.Data Sheets 21, 479 (1977) Nuclear Data Sheets for λ = 222 77To 14 T. Vylov, A.A. Klyuchnikov, V. T. Kupryashkin, A.F. Novgorodov, A.I. Peoktistov -Izv. Akad. Nauk SSSR, Ser. Fiz. 41, 64 (1977); Bull. Acad. Sci. USSR, Phys. Ser. 41, 778901 No.1, 50 (1977) The y-Spectrum of 194Au T. Vylov, N.A.Golovkov, B.S.Dzhelepov, R.B.Ivanov, M.A.Mikhailova, Y.V.Norseev, V.G.Chumin - Izv.Akad.Nauk SSSR, Ser.Fiz. 41, 1635 (1977); Bull.Acad.Sci.USSR, Phys.Ser. 41, No.8, 85 (1977) 77Vy 02 The Decay of 221 Rn W.R.Western, J.C.Hill, W.L.Talbert, Jr., W.C.Schick, Jr. - Phys.Rev. C15, 1024 (1977) Decay of Mass-Separated ¹³⁷Xe to Levels in the N = 82 Nucleus ¹³⁷Cs 77We02 G.Wittkemper,H.D.Ruter,W.Haaks,E.Gerdau - Hyperfine Interactions 3,157 (1977) Nuclear Orientation of 105Rh and 95Tc in Iron 77Wi10 V.Zobel, J.Eberth, U.Eberth, E.Eube - Nucl.Instrum.Methods 141, 329 (1977) 772001 226Ra as Calibration Standard for Ge(Li) Spectrometers R.L.Auble - Nucl.Data Sheets 23, 163 (1978) 78Au 01 Nuclear Data Sheets for A = 5178Au 04 R.L.Auble - Nucl.Data Sheets 24, 1 (1978) Nuclear Data Sheets for A = 4678Au 06 R.L.Auble - Nucl.Data Sheets 25, 315 (1978) Nuclear Data Sheets for A = 11778Be01 J.R.Beene - Nucl.Data Sheets 23, 1 (1978) Nuclear Data Sheets for A = 4878Be02 Nucl.Data Sheets 23, 229 (1978) F.E.Bertrand -Nuclear Data Sheets for A = 10978Be 12 S.Beshai, K.Fransson, L.-E.Froberg, B.Sundstrom - Nucl. Phys. A296, 151 (1978) Gamma-Gamma Directional Correlations in 90Zr J.R.Beene - Nucl.Data Sheets 25, 235 (1978) 78Be37 Nuclear Data Sheets for A = 52Y.Y.Chu, G.Scharff-Goldhaber - Phy Decay of ²³*Th to the ²³*Pa Isomers 78Ch 06 Phys.Rev. C17, 1507 (1978) 78Di05 P.A.Dickey, J.E.Busscletti, E.G.Adelberger - Nucl. Phys. A303, 442 (1978) Isospin-Forbidden 8-Decay of 28Mg C. Droste, L.Goettig, T.Morek, J.Srebrny, J.Bucka, J.Dobaczewski, S.G.Rohozinski - Z.Phys. A284, 297 (1978) 78Dr01 Study of the 124 Xe and 126 Xe Structure Y.A.Ellis - Nucl.Data Sheets 23, 71 (1978) 78E101 Nuclear Data Sheets for A = 237Y.A.Ellis - Nucl.Data Sheets 23, 123 (1978) 78E102 Nuclear Data Sheets for A = 2417821 04 Y.A.Ellis - Nucl.Data Sheets 24, 289 (1978) Nuclear Data Sheets for A = 233 P.N.Endt, C.van der Leun - Nucl.Phys. A310, 1 (1978) 78En 02 Energy Levels of A = 21-44 (VI) M.Fujishiro - J.Nucl.Sci.Technol. 15, 237 (1978) 78Fu 05 Intensity of 2,505 keV Gamma-Ray in Decay of Cobalt-60 C,P,Gerner, J.van Pelt, O.W.De Ridder, J.Blok - Nucl. Phys. A295, 221 (1978) 78Ge01 The Electron Capture of 106m-Ag A.Genoux-Lubain, G.Ardisson - Radiochem.Radioanal.Lett. 33, 59 (1978) 78Ge06 Le Rayonnement γ de Basse Energie Qui Accompagne la Decroissance α de ²⁴¹Am B.Harmatz - Nucl.Data Sheets 23, 607 (1978) 78Ha03 Nuclear Data Sheets for A = 19578Ha 12 J.Halperin - Nucl.Data Sheets 24, 57 (1978) Nuclear Data Sheets for A = 199

788a 15 M.L.Halbert - Nucl.Data Sheets 24, 175 (1978) Nuclear Data Sheets for A = 49 B.Harmatz, W.B.Ewbank - Nucl.Data Sheets 25, 113 (1978) 78Ha 22 Nuclear Data Sheets for A = 147K.Heyde, M.Waroquier, R.A.Meyer - Phys.Rev. C17, 1219 (1978) 78He08 Unified Description of Odd-Mass Indium Nuclei I. General Theory and Comparison to ¹¹³In and ¹¹⁵In Levels Populated in the Decay of ¹¹³Sn and ¹¹⁵Cd-m,g A.H.Jaffey, H.Diamond, W.C.Bentley, D.G.Graczyk, K.P.Flynn - Phys.Rev. C18, 78Ja11 969 (1978) Half-Life of 2+0Pu 78Ke02 B.G.Kessler, Jr., R.D.Deslattes, A.Henins, W.C.Sauder - Phys.Rev.Lett. 40, 171 (1978) Redetermination of 198Au and 192Ir γ -Ray Standards between 0.1 and 1.0 MeV 78Ku08 W.Kurcewicz, E.Ruchowska, J.Zylicz, N.Kaffrell, N.Trautmann - Nucl.Phys. A304, 77 (1978) Search for the Kw = 0* Excited States in ²²⁶Ra Fed in the α -Decay of ²³⁰Th R.E.Laird - Phys.Rev. C17, 1498 (1978) 78La 03 Radioactive Decay of 139Ba M.J.Martin - Nucl.Data Sheets 25, 397 (1978) 78Ma 29 Nuclear Data Sheets for A = 211R.A.Meyer, A.L.Prindle, W.A.Myers, P.K.Hopke, D.Dieterly, J.E.Koops -Phys.Rev. C17, 1822 (1978) 78Ne 10 Nultiparticle Configurations in the Odd-Neutron Nuclei 61Ni and 67Zn Populated by Decay of 61Cu, 67Cu, and 67Ga National Council on Radiation Protection and Measurements - NCRP Report No.58 78NCRP (1978) A Handbook of Radioactivity Measurements Procedures D.R.Nethaway, A.L.Prindle, R.A.Van Konyenburg - Phys.Rev. C17, 1409 (1978) 78Ne04 Half-Life of 92Nb 78Ne08 W.G.Nettles, R.K.Scoggins, W.K.James, L.C.Whitlock, B.N.Subba Rao J.H.Hamilton, A.V.Ramayya, R.Gunnink - Phys.Rev. C18, 2441 (1978) Energies and Intensities of Weak Transitions in the Decay of ¹³²I V.V.Ovechkin - Izv.Akad.Nauk SSSR, Ser.Fiz. 42, 101 (1978); 780v01 Bull.Acad.Sci.USSR, Phys.Ser. 42, No.1, 82 (1978) The y-Rays of 241Am Above 600 keV J.G.Pengra, H.Genz, R.W.Pink - Nucl.Phys. A302, 1 (1 Orbital Electron Capture Ratios in the Decay of 205Pb 78Pe08 1 (1978) L.Pfeiffer, A.P.Mills, Jr., R.S.Raghavan, E.A.Chandross - Phys.Rev.Lett. 41, 78Pf01 63 (1978) Indium-Loaded Liquid Scintillator for Low-Energy Solar-Neutrino Spectroscopy G.N.Rao, C.Gunther - Phys.Rev. C17, 1266 (1978) Remeasurement of the 7+ + 2- E5 Transition Probability in 90Y 78Ra 05 Relative Intensities of Gamma Rays from 166m-Ho 785a 14 785c01 M.R.Schmorak - Nucl.Data Sheets 23, 287 (1978) Nuclear Data Sheets for A = 205M.R.Schmorak - Nucl.Data Sheets 24,117 (1978) 78Sc05 Nuclear Data Sheets for A = 203 Nucl.Data Sheets 25, 193 (1978) 78Sc 15 M.R.Schmorak -Nuclear Data Sheets for A = 20178Sc16 M.R.Schmorak - Nucl.Data Sheets 25, 675 (1978) J.W.Tepel - Nucl.Data Sheets 25, 553 (1978) 78Te01 Nuclear Data Sheets for A = 86 787004 K.S.Toth - Nucl.Data Sheets 24, 263 (1978) Nuclear Data Sheets for A = 22978Tu 01 J.K.Tuli - Nucl.Data Sheets 23, 529 (1978) Nuclear Data Sheets for A = 14178Tu03 J.K.Tuli - Nucl.Data Sheets 25, 53 (1978) Nuclear Data Sheets for A = 14278Tu 05 J.K.Tuli - Nucl.Data Sheets 25, 603 (1978) Nuclear Data Sheets for A = 14378Ve07 H.R.Verma, A.K.Sharma, N.Singh, P.N.Trehan - J.Phys.Soc.Jpn. 45, 374 (1978) The Level Structure of Tm¹⁶⁹ 78 Wa 07 G.W.Wang, A.J.Bečker, L.M.Chirovsky, J.L.Groves, C.S.Wu - Phys.Rev. C18, 476 (1978) Time-Reversal Test and Nuclear-Structure Study Using 110Ag-m 788015 F.K.Wohn, W.L.Talbert, Jr. - Phys. Rev. C18, 2328 (1978) Decay Energies of Gaseous Fission Products and their Daughters for A = 88 to 93 and A = -138 to 142 78Wu 04 K.D.Wunsch, R.Decker, H.Wollnik, J.Munzel, G.Siegert, G.Jung, E.Koglin -Z. Phys. A288, 105 (1978) Precision Beta Endpoint Energy Measurements of Rubidium and Caesium Fission Products with an Intrinsic Ge-Detector 78Wy02 A.Wyttenbach, A.Schubiger, H.S.Pruys - Phys.Rev. C18, 590 (1978) Half-Life of 57Mn 78Ya 04 M.Yanokura, H.Kudo, H.Nakahara, K.Miyano, S.Ohya, O.Nitoh - Nucl.Phys. A299, 92 (1978) The Half-Life of 207Bi and Decays of 211At and 211Po

79Au 01	R.L.Auble - Nucl.Data Sheets 26, 207 (1979)
	Nuclear Data Sheets for $A = 119$
79Ha 01	N.L.Halbert - Nucl.Data Sheets 26, 5 (1979)
	Nuclear Data Sheets for $A = 62$
79Ha 02	B.Harmatz – Nucl.Data Sheets 26, 281 (1979)
	Nuclear Data Sheets for $A = 154$
79Lu 05	P.Luksch, J.W.Tepel - Nucl.Data Sheets 27, 389 (1979)
	Nuclear Data Sheets for $A = 87$
79Pe02	L.K.Peker - Nucl.Data Sheets 26, 473 (1979)
	Nuclear Data Sheets for $A = 136$
79Sc01	M.R.Schmorak - Nucl.Data Sheets 26, 81 (1979)
	Nuclear Data Sheets for A = 200
79Ta 01	T.Tamura, Z.Matumoto, A.Hashizume, Y.Tendow, K.Miyano, S.Ohya, K.Kitao,
	N.Kanabe - Nucl.Data Sheets 26, 385 (1979)
	Nuclear Data Sheets for $A = 121$
79We01	M.P.Webb - Nucl.Data Sheets 26, 145 (1979)
	Nuclear Data Sheets for $A = 206$

 $\overline{}$

e 1

Diagrams of Radioactive Decay Chains

Appendix 4

This appendix contains diagrams of the decay chains that involve two or more of the radionuclides considered in this handbook. The half-life, modes of decay, and decay branching ratios for each radio-

28

β

.........

nuclide in the decay chain are shown. The branching ratios for spontaneous fission are not shown, and modes of decay with branching ratios less than 0.1% are omitted.

$${}^{25}Mg(20.91 h) \longrightarrow {}^{27}M1(2.240 m) \longrightarrow {}^{27}Si$$

$${}^{32}Si(3.3E2 y) \xrightarrow{\beta^{-}} {}^{32}P(14.29 d) \xrightarrow{\beta^{-}} {}^{32}S$$

$${}^{44}Ca \xrightarrow{\beta^{+}} {}^{44}Sc(3.927 h) \xrightarrow{EC} {}^{44}Ti(47.3 y)$$

$${}^{46}Sc(18.67 s)$$

$$IT \xrightarrow{\beta^{-}} {}^{46}Ti$$

$${}^{46}Sc(83.83 d) \xrightarrow{\beta^{-}} {}^{47}Sc(3.422 d) \xrightarrow{\beta^{-}} {}^{47}Ti$$

$${}^{47}Ca(4.536 d) \xrightarrow{\beta^{-}} {}^{47}Sc(3.422 d) \xrightarrow{\beta^{-}} {}^{47}Ti$$

$${}^{49}Ca(8.719 m) \xrightarrow{\beta^{-}} {}^{49}Sc(57.4 m) \xrightarrow{\beta^{-}} {}^{49}Ti \xrightarrow{EC} {}^{49}V(330 d) \xrightarrow{\beta^{+}} {}^{49}Cr(42.09 m)$$

$${}^{52}V(3.75 m) \xrightarrow{\beta^{-}} {}^{52}Cr \xrightarrow{9}{}^{9}S^{15} \xrightarrow{50} IT \xrightarrow{1.75\%} {}^{52}Fe(8.275 h)$$

ß

28 ...

^{5 2}Mn (5.591 d)

49

⁵⁶Mn (2.5785 h)
$$\stackrel{\beta^-}{\longrightarrow}$$
 ⁵⁶Fe $\stackrel{\beta^+}{\longrightarrow}$ ⁵⁶Co (78.76 d) $\stackrel{EC}{\longrightarrow}$ ⁵⁶Ni (6.10 d)
⁵⁷Mn (1.47 m) $\stackrel{\beta^-}{\longrightarrow}$ ⁵⁷Fe $\stackrel{EC}{\longrightarrow}$ ⁵⁷Co (270.9 d) $\stackrel{\beta^+}{\longrightarrow}$ ⁵⁷Ni (36.08 h)

⁶²Ni β^{+} ⁶²Cu (9.74 m) EC ⁶²Zn (9.26 h) ⁶⁸Zn β^{+} ⁶⁸Ga (68.0 m) EC ⁶⁸Ge (288 d)

⁷³Ge
$$\stackrel{EC}{\longrightarrow}$$
 ⁷³As (80.30 d) $\stackrel{EC}{\longrightarrow}$ ⁷³Se (7.15 h)
⁷⁷Ge (11.30 h) $\stackrel{\beta^{-}}{\longrightarrow}$ ⁷⁷As (38.8 h) $\stackrel{\beta^{-}}{\longrightarrow}$ ⁷⁷Se $\stackrel{EC}{\longrightarrow}$ ⁷⁷Br (57.04 h)

⁸⁰Se
$$E_C$$
 IT δ^{50} Kr
⁸⁰Se E_C δ^{50} Kr
⁸⁰Br (17.4 m) $9^{1.7^{40}}$

⁸¹Br
$$\leftarrow EC$$
 ⁸¹Kr (2.1E5 y) $\leftarrow EC$ ⁸¹Rb (4.58 h)

50 RADIOACTIVE DECAY DATA TABLES

52 RADIOACTIVE DECAY DATA TABLES

DIAGRAMS OF RADIOACTIVE DECAY CHAINS 55

¹³⁸Xe (14.13 m)
$$\xrightarrow{\beta^{-138}}$$
 ¹³⁸Cs (32.2 m) $\xrightarrow{\beta^{-138}}$ ¹³⁸Ba

¹³⁹Cs (9.40 m)
$$\xrightarrow{\beta^{-}}$$
 ¹³⁹Ba (83.1 m) $\xrightarrow{\beta^{-}}$ ¹³⁹La $\xrightarrow{\text{EC}}$ ¹³⁹Ce (137.66 d)

¹⁴⁰Ba (12.789 d)
$$\beta^{-140}$$
La (40.22 h) β^{-140} Ce

¹⁴¹ Ba (18.27 m)
$$\beta^{-141}$$
 La (3.94 h) β^{-141} Ce (32.50 d) β^{-141} Pr

¹⁴²Ba (10.70 m)
$$\xrightarrow{\beta^{-142}}$$
La (95.4 m) $\xrightarrow{\beta^{-142}}$ Ce ¹⁴²Pr (19.13 h) $\xrightarrow{\beta^{-142}}$ Nd ^{99.9836%}

¹⁴³Ce (33.0 h) $\xrightarrow{\beta^{-}}$ ¹⁴³Pr (13.56 d) $\xrightarrow{\beta^{-}}$ ¹⁴³Nd \xrightarrow{EC} ¹⁴³Pm (265 d)

56 RADIOACTIVE DECAY DATA TABLES

¹⁴⁹Nd (1.73 h)
$$\xrightarrow{\beta^{-}}$$
 ¹⁴⁹Pm (53.08 h) $\xrightarrow{\beta^{-}}$ ¹⁴⁹Sm

¹⁵¹Pm (28.40 h)
$$\xrightarrow{\beta^{-}}$$
 ¹⁵¹Sm (90 y) $\xrightarrow{\beta^{-}}$ ¹⁵¹Eu

$$^{157}\text{Gd} \xrightarrow{\text{EC}} ^{157}\text{Tb} (150 \text{ y}) \xrightarrow{\text{EC}} ^{157}\text{Dy} (8.06 \text{ h})$$

162
Gd (9.7 m) $\xrightarrow{\beta^{-162}}$ Tb (7.76 m) $\xrightarrow{\beta^{-162}}$ Dy

¹⁷¹ Er (7.52 h)
$$\xrightarrow{\beta^{-171}}$$
 Tm (1.92 y) $\xrightarrow{\beta^{-171}}$ Yb

¹⁸⁷W (23.83 h)
$$\beta^{-187}$$
 Re (4.7E10 y) β^{-187} Os

¹⁸⁸W (69.4 d)
$$\beta^{-188}$$
 Re (16.98 h) β^{-188} Os

Neptunium Series

Uranium Series

²³⁴U (2.445E5 y)
Actinium Series

Thorium Series

·

³ H—^{2 4} Na

							3 H—2 * Na
Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-́rad/ µCi-h)
• 3 H β^{-} Decay (1	12.28 y 3)	L (mi	n) = 0.10%	● ¹⁶ N β [−] Decay	(7.13 s 2)	l (mir	n) = 0.10%
β− 1 max avg	18.600 20 5.685 7	100	0.0121	$\begin{array}{c} \beta^{-} & 1 & \max \\ & avg \\ \beta^{-} & 2 & \max \\ & avg \\ 2 & -2 \\ \end{array}$	1546.8 24 630.4 11 3301.9 23 1461.5 12	1.00 20 4.9 4	0.0134 0.153
● ⁷ Be EC Decay (53.44 d 9)	l (mi	n) = 0.10%	$\beta = 4 \max_{avg}$	4208.3 23 1941.2 12 10418.7 23 4979.2 12	68.0 20 26.0 20	2.81
γ 1	477.593 12	10.42 18	0.106	total B- avg	2695.1 15	100 3	5.74
● ¹⁰ Be β [−] Decaγ	(1.6E6 y 2)	l (mir	ı) = 0.10%	1 w E	eak β's omitt β(avg)= 1998.	ed: 8; ΣΙβ= 0.01%	
8-1 max avg	555.8 7 202.5 3	100	0.431	7 3 7 5 7 8 7 10	1754.8 6 2741.2 6 6129.17 5 7115.15 20	0.13 3 0.76 15 69.0 20 5.0 4	0.0049 0.0444 9.01 0.758
● ^{1 1} C β ⁺ Decay (2	20.48 m 3)	l (mir	n) = 0.10%	7 wi E	eak γ's omitt γ(avg)= 6334.	ed: 2; ΣΙγ= 0.16%	
Auger-K	0.17	0.221	≈0	● ¹⁸ F β ⁺ Decay (109.74 m 4)	l (min) = 0.10%
8+1 max avg	960.1 11 385.6 5	99.766 2	0.819	Auger-K	0.52	3.069 11	≈ 0
Maxim	um y±- intensi	ty =199.53%		β+ 1 max avg	633.5 6 249.8 3	96.73 4	0.515
13 N β^+ Decay (§	9.97 m 1)	l (min) = 0.10%	Maxim	num γ±-intens	ity =193.46%	
Auger-K	0.26	0.185	* :0	• $2^2 Na \beta^+$ Decay	(2602 x 2)	I /i) - 0 10%
β+ 1 max avg	1198.5 9 491.8 4	99.804 3	1.05	Auger-K	0.82	9.20 5	0.0002
Maximu	ım γ±-intensi	ty_=199.61%		6+ 1 max avg	545.5 5 215.54 21	89.84 9	0.412
) ¹⁴ C β ⁻ Decay (5	730 y 40)	l (min) = 0.10%	1 we Bf	eak β 's omitt 3 (avg) = 835.	ed: 0; ΣΙβ= 0.06%	
β−1 max avg	156.478 9 49.470 3	100	0.105	Κ X-ray γ 1	0.84 1274.540 20	0.12 4 99.940 20	≈0 2.71
¹⁵ O β^+ Decay (1	22.24 s 16)	l (min) = 0.10%	Maxim	um γ±-intens:	ity = 179.80%	
8+ 1 max avg	1731.9 7 735.2 4	99.900 1	1.56	• ²⁴ Na β^- Decay	(15.00 h 4)	l (min)	= 0.10%
Maximu	m y±-intensit	:y =199.80%		β− 1 max avg	1390.2 7 553.9 4	99.935 4	1.18
				1 we B6	eak β 's omitte $\beta(avg) = 88.0$	ed: 5; ΣΙ8= 0.06%	
							(Continued)

²⁴Na-³⁵S

Badiation	Energy	Intensity	$\Delta(q-rad/$	Badia	tion Energy	Intensity	∆(a-rad/
Туре	(keV)	(%)	μCi-h)	Typ	be (keV)	(%)	μCi-h)
			·				
²⁴ Na β Decav	(15.00 h 4)	(Continued)		K 7-7	а у 1 . ЦЯ	0 97 24	~0
,	((Continuou)		γ 1	1 30.640 2	0 66 4	0.0431
	1360 53 5	00.0004.4	2.04	γ γ	2 400.690 20	0 36.6 10	0.312
γ 2 γ 3	2754.09 5	99.862 5	2.91	r	5 941.45 3	38.3 10	0.768
1 5	2,34,03	57•002 J	5.00	7	8 1342.25 3	52.6 16	1.50
4 .	eak γ's omitt	ed:		, r	9 13/2.89 6	4.70.20	0.137
Į	$Z\gamma(avg) = 3823.$	6; ΣIγ= 0.06%			1 1620.00 15	0.30 10	0.0104
				, .			
					4 weak y's omit	ted:	
- 26 •• of -					$B\gamma(avg)=717.$,6; $\Sigma I \gamma = 0.13\%$	
• • Al p Decay	(7.2E5 y 3)	I (min)	= 0.10%				
Auger-K	1.18	16.20 19	0.0004	• ²⁸ Al 6 ⁻	Decay (2.240 m 1)	1 (min)	= 0 10%
					(2.2.0 m .)	, (,	0.10%
8+ 1 max	1174.2 5			0- 1	nom 1964 1 6		
avg	543.87 23	81.81 22	0.948	p= 1	max 2004.2 0 avg 1242.3 3	100	2.65
						100	2100
K X-ray	1.25	0.44 6	≈0		1 1770 05 3	100	2 70
γ 1	129.67 10	2.50 20	0.0602	(*	1 1/10.00 3	100	3.19
γ 2 2	1808.65 7	99.76 4	3.84				
γ J Mari	2938.24 13	1+v = 163.625	0.0150				
	india /1 incono	1030024			acav (1573 m 3)	L (min)	= 0 10%
						1 (1111)	- 0.1076
				a- 1			
• ²⁷ Mg β^- Decay	(9.458 m 12)	l (min)	= 0.10%		aver 595.6 4	100	1 27
8- 1 max	1594.8 12				1 weak β's omit	ted:	
avg	645.7 6	29.0 4	0.399		$\mathbf{E}\boldsymbol{\beta}\left(\mathbf{a}\mathbf{v}\mathbf{g}\right)=68.$	7; $\Sigma I \beta = 0.07 $	
8- 2 max	1765.5 12	74 0 4					
avg total 8-	/24.4 6	/1.0 4	1.10		1 weak γ's omit	ted:	
avo	701.6 6	100.0 6	1.49		$E\gamma(avg) = 1266$	1; $\Sigma I \gamma = 0.07\%$	
v 1	170.686 15	0.84 3	0.0031				
γ 2	843.76 3	71.8 4	1.29		ecav (3 3E2 v 4)	(min)	= 0.10%
γ 3	1014.44 4	28.0 4	0.605		ends $3^2 P$	1 (11111)	0.1070
			1	''			
				а <u>-</u> 1	010 7		
- 28	(00.04.1.0)		0.000	ייט	Max 213 / avg 64.724	100	0 138
• ² ^α Ng β ⁻ Decay	(20.91 h 3)	l (min)	= 0.10%		urg 0417 24	100	0.150
Feeds	² °AI						
				[
Auger-K	1.39	26 6	0.0008	● ^{3 2} P β ⁻ De	cay (14.29 d 3)	l (min)	= 0.10%
Ce-K- 1	29.080 20	2 6 7	0.0168				
Celli	308322 20	20 /	0.0017	B- 1	max 1710.4 6		
					avg 694.9 3	100	1.48
β− 1 max	211.8 20						
avq	65.2 7	4.70 20	0.0065				
b−2 max avor	458.9 20	95.1 19	0 3 16				
6-3 max	859.6 20	J J •1 17	0.510	● ³³ P β De	cay (25.4 d 2)	l (min)	= 0.10%
avg	319.3 9	0.21 12	0.0014				
total B-				B- 1	max 249.0 20		
avg	152.0 9	100.0 20	0.324		avg 76.6 6	100	0.163
				- 35			
				● ³°S β ⁻ De	cay (87.44 d 7)	f (min)	= 0.10%
				β- 1	max 167.47 19		_
					avg 48.83 7	100	0.104
			ļ				

³⁶CI-⁴²K

Radiation Type	Energy (keV)	Inten: (%)	sity	Δ (g-rad/ μ Ci-h)	Ra	diation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
 ³⁶CI EC Decay %(EC - See als 	(3.01E5 y 2) + β^+) Decay = 1 o ³⁶ Cl β^- Deca	.0 8 y	I (min) •	= 0.10%	• ⁴⁰ Κ β ⁻	Decay (%β ⁻ De See also	1. 277E9 y 8) cay = 89.33 11 ^{4 o} K EC Decay	l (min)	= 0.10%
Auger-K	2.1	0.8	7	≈0	β -	1 max avg	1311.6 5 508.54 23	89.33 11	0.968
 ³⁶ Cl β⁻ Decay %β⁻ D See alse 	(3.01E5 y 2) ecay = 99.0 8 o ³⁶ Cl EC Deca	v	I (min) =	= 0.10%	• ⁴¹ Ar β	Decay	(1.827 h 7)	l (min)	= 0.10%
β−1 max avg	709.6 3 251.33 13	, 99.0	8	0.530	β- β- tot	1 max avg 2 max avg al 8- avg	1198.3 8 459.3 4 2492.0 8 1076.7 4 464.0 4	99.170 20 0.780 20 100.00 3	0.970 0.0179 0.988
• ³⁷ Ar EC Decay	(35.02 d 5)		l (min) =	= 0.10%		1 w E	eak β 's omitte $\beta(avg) = 294.0$	ed:); ΣΙβ= 0.05%	
Auger-K	2.38	81.7	5	0.0041	r r	1	1293.64 4	99.160 20	2.73
К Х-гау	2.62	8.5	5	0.0005		1 w E	eak γ's omitte γ(avg) = 1677.(eđ:); ΣΙγ= 0.05%	
• ³⁸ Cl β ⁻ Decay	(37.21 m 4)		l (min) =	= 0.10%	• ⁴¹ Ca F	C Decay	(103E5 v 4)	l (min)	= 0 10%
β− 1 max	1107.0 9	32.5	6	0 291	U UU L	o Decay	2 CT.0020 9 47	77 0 10	0.10%
β- 2 max	2749.4 9	11.5	8	0.289	. Aug	er-K	3	//.0 12	0.0049
8-3 max avg	4917.0 9 2244.1 5	56.0	5	2.68	K J	-ray	3.31	12.3 12	0.0009
total B- avg	1529.2 8	100.0	12	3.26					
	1642 42 6	22 F			• ^{4 2} Κ β ⁻	Decay (12.36 h 1)	l (min)	= 0.10%
γ 1 γ 2	2167.51 5	44.0	5	2.03	β-	1 max avg	1683.7 16 700.9 8	0.319 17	0.0048
E	γ (avg) = 3809.	0; ΣΙγ=	0.03%		β-	2 max avg	1996.4 16 822.3 8	17.5 5	0.307
					β-	3 max avg	3521.1 16 1563.9 8	82.1 5	2.73
● ^{3 9} Ar β [−] Decay	(269 y 3)		l (min) =	• 0.10%	tot	alβ- avg	1429.8 9	100.0 7	3.05
β−1 max avg	565 5 218.8 21	100		0.466		2 w	eak β's omitte β(avg)= 191.5	ed: ; ΣΙβ= 0.12%	
					· γ γ	1 6	312.75 3 1524.665 20	0.31917 17.95	0.0021 0.581
 ⁴⁰ K EC Decay (%(EC + See also 	$\{1.277E9 \ y \ 8\}$ $\beta^+\}$ Decay = 10 β^{40} K β^- Decay	0.67 11	I (min) =	• 0.10%		6 w E	eak γ's omitte γ(avg)= 1446.4	ed: ; ΣΙγ= 0.14%	
Auger-K	2.66	7.22	10	0.0004					
K X-ray γ 1	2.95 1460.81 4	0.94 10.67	5 11	≈0 0.332					

⁴³K–⁴⁶Sc

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	Δ (g-rad/ μ Ci-h)
● ^{4 3} K β Decay ()	22.6 h 2)	l (min)	= 0.10%	● ^{4 5} Ca β ⁻ Decay (1	62.7 d 4)	I (min)	= 0.10%
8-1 max avg 8-2 max	422 10 137 4 827 10	2.24 9	0.0065	B−1 max avg	256.9 10 77.2 4	99.998 1	0.164
avg B- 3 max	298 5 1224 10	92.2 14	0.585				
avg β-4 max avg	469 5 1817 10 762 5	3.6 4 1.3 3	0.0360	● ^{4 5} Ti EC Decay (3	.08 h 1)	l (min)	= 0.10%
total β- avg	307 6	99.3 15	0.649	Auger-L Auger-K	0.37 3.64	22.6 5 10.99 23	0.0002 0.0009
7 1 7 2 7 3 7 4 7 5	184.00 20 220.608 18 372.763 15 396.870 20 404.30 20	0.27 6 4.11 22 87.3 5 11.43 12 0.109 8	0.0011 0.0193 0.693 0.0966 0.0009	β+1 max avg 1 we Ββ	1040.6 24 439.1 11 ak β's omitte (avg) = 133.4	84.82 16 ed: 4; ΣΙβ= 0.01%	0.793
γ 7 γ 8 γ 9 γ 10 γ 11 γ 12	617.494 25 800.8 10 990.25 20 1015.1 10 1021.79 18 1394.2 7	80.5 14 0.147 10 0.33 7 0.16 7 1.88 8 0.102 12	1.06 0.0025 0.0069 0.0034 0.0409 0.0030	X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 12	4.08610 2 4.09060 2 4.46 720.34 15	2 0.76 7 2 1.52 13 0.30 3 0.154 12	≈0 0.0001 ≈0 0.0024
• ⁴⁴ Sc β^+ Decay (3	3.927 h 8)	l (min)	= 0.10%	18 we: Er Maxim	ak γ's omitte (avg)= 1200.8 um γ±-intensi	ed: 3; ΣΙγ= 0.20% ity =169.67%	
Auger-L Auger-K	0.3 3.3	8.55 16 4.22 9	≈0 0.0003	● ⁴⁶ Sc β ⁻ Decay (8	3.83 d 2)	I (min)	= 0.10%
6* 1 max avg	1476.3 20 632.9 9	94.37 6	1.27	β−1 max avg	357.3 8 112.0 3	99.996	0.239
X-ray Kα ₂ X-ray Kα ₁ γ 1 γ 2	3.68809 3.69168 1157.002 11 1499.451 23	$0.244\ 25$ $0.48\ 5$ $99.881\ 15$ $0.912\ 20$	≈0 ≈0 2.46 0.0291	γ 1 γ 2	889.25 3 1120.51 5	99•983 99•987	1.89 2.39
γ 5 Maxim	2656.41 3 num $\gamma \pm$ -intensi	0.112 4 ty =188.74%	0.0064	• ⁴⁶ Sc IT Decay (18 Feeds ⁴⁶ S	3.72 s 6) Sc (83.83 d)	I (min)	= 0.10%
• ⁴⁴ Ti EC Decay (Feeds ⁴⁴	47.3 y 12) Sc (3.927 h)	l (min)	= 0.10%	Auger-L Auger-K ce-K-1 ce-L-1 ce-MND-1	0.37 3.64 138.035 3 142.028 3 142.474 3	54.7 15 26.6 8 32.8 7 3.34 10 1.10 3	0.0004 0.0021 0.0964 0.0101
Auger-L Auger-K ce-K- 1 ce-L- 1 ce-MNO- 1 ce-K- 2 ce-L- 2	0.37 3.64 63.36 4 67.35 4 67.80 4 73.89 4 77.88 4	165 3 79.9 16 7.13 22 0.631 19 0.208 2.72 9 0.249 8	0.0013 0.0062 0.0096 0.0009 0.0003 0.0043 0.0004	X-ray L X-ray Κα ₂ X-ray Κα ₁ X-ray K6 Y 1	0.4 4.08610 2 4.09060 2 4.46 142.528 3	0.11 4 1.84 17 3.7 4 0.72 7 62.7 7	*0 0.0002 0.0003 *0 0.190
X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ Y 1 Y 2 Y 3	0.4 4.08610 2 4.09060 2 4.46 67.85 4 78.38 4 147.0 15	0.33 12 5.5 5 11.0 10 2.17 19 91.92 22 97.6 8 0.10 3	№0 0.0005 0.0010 0.0002 0.133 0.163 0.0003				

1

^{4 7} Ca—^{4 9} Ca

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
 4⁷Ca β⁻ Decay (Feeds ⁴ 	4.536 d 2) ⁷ Sc	l (min)	= 0.10%	 ⁴⁸ V β⁺ Decay (1 	5.971 d 4)	l (min)	= 0.10%
$ \begin{array}{c} \beta^{-} 1 \max \\ avg \\ \beta^{-} 2 \max \\ avg \\ total \beta^{-} \\ avg \\ 2 vg \\ 2 \\ \gamma \\ \beta^{+} \\ \gamma \\ 2 \\ \gamma \\ \beta^{+} \\ \gamma \\ $	690 4 240.9 15 1988 4 816.8 17 344.9 19 eak β's omit β(avg) = 374. 489.23 10 530.4 3 767.0 3 807.86 10	<pre>81.7 20 18.0 20 100 3 ted: 0; ΣΙβ= 0.11% 6.7 3 0.105 16 0.195 16 6.9 3</pre>	0.419 0.313 0.733 0.0702 0.0012 0.0032 0.119	Auger-L Auger-K β + 1 max avg X-ray L X-ray K α_2 X-ray K α_1 X-ray K β γ 1 γ 2 γ 3 γ 4	0.42 4 697 3 291.4 13 0.45 4.50486 4.51084 5 803.23 8 928.32 4 944.101 7 983.5010 2	73.6 21 34.8 10 50.1 12 0.15 6 2.89 25 5.7 5 1.15 10 0.150 21 0.77 6 7.76 18 0100.0 20	$\begin{array}{c} 0.0007\\ 0.0030\\ \end{array}$
γ 6 2 we Βη	1297.09 10 eak γ 's omitt $\gamma(avg) = 1542.$	74.9 18 eed: 2; ΣΙγ= 0.03%	2.07	γ 5 γ 6 γ 7 3 we B1 Maxim	1312.087 3 1437.31 7 2240.341 17 ak γ 's omitt (avg) = 2361. hum γ t-intens	97.5 20 0.120 21 2.41 7 ed: 5; ΣΙγ= 0.03% ity =100.20%	2.72 0.0037 0.115
 ⁴⁷Sc β⁻ Decay (Auger-L Auger-K ce-K-1 	3.422 d 4) 0.42 4 154.42 5	l (min) 0.59 5 0.300 21 0.384 25	= 0.10% **0 **0 0.0013	● ^{4 9} Ca β [−] Decay (Feeds ⁴	8.719 m 13) ⁹ Sc	l (min)	= 0.10%
$\begin{array}{cccc} \beta^{-} & 1 & \max & a v g \\ \beta^{-} & 2 & \max & a v g \\ a v g & total & \beta^{-} & a v g \end{array}$	441.1 19 142.7 8 600.5 19 204.0 8 162.3 9	68 3 32 3 100 5	0.207 0.139 0.346	β-1 max avg β-2 max avg β-3 max avg A-4 max	530 4 177.1 16 775 4 275.4 17 1196 4 456.1 18 1751 4	0.21 6 0.63 7 7.1 8	0.0008 0.0037 0.0690
7 1	159.39 5	68 3	0.231	$\beta - 5 \max_{avg}$ $\beta - 5 \max_{avg}$ $\beta - 6 \max_{avg}$ $total 8 -$	707.2 19 2184 4 908.6 19 2896 4 1247.2 20	0.18 4 91.5 7 0.41 10	0.0027 1.77 0.0109
 4*8 Sc β Decay (4 Auger-L Auger-K ce-K-1 β-1 max avg β-2 max avg 	43.67 h 9) 0.42 4 170.391 5 482 6 157.9 23 657 6 226.5 25	l (min) 0.23 19 0.12 10 0.15 12 10.01 25 89.99 25	= 0.10% **0 0.0005 0.0337 0.434	avg 7 2 7 4 7 6 7 7 7 8 7 8 7 9 7 10 7 11	872.0 20 856.1 5 1144.5 5 1408.90 20 2228.9 5 2371.7 5 3084.40 10 4071.90 10 4738.20 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.86 0.0024 0.0027 0.0188 0.0092 0.0247 6.05 0.607 0.0214
total β- avg γ 1 γ 2 γ 3 γ 4 γ 5	220 3 175.357 5 983.5010 2 1037.4960 2 1212.849 7 1312.087 3	100.0 4 7.47 17 0100.0 21 97.5 20 2.38 6 100.0 21	0.468 0.0279 2.09 2.15 0.0615 2.79	3 we By	ak γ's omitt (avg)= 947.	ed: 0; ΣΙγ= 0.18%	

⁴⁹Sc-⁵²Mn

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensíty (%)	∆(g-rad/ μCi-h)
 ⁴⁹Sc β⁻ Decay 	(57.4 m 2)	l (min)	≈ 0.10%	β-1 max avg	1537 3 606.7 14	8.1 4	0.105
β− 1 max avg	2004 4 823.1 19	99.940 10	1.75	$\begin{array}{c} B^{-} 2 \max \\ a v g \\ total B^{-} \end{array}$	2146 3 888.2 14	91.9 4	1.74
2 we El	eak β's omitt 3(avg) = 80.	ed: 0; ΣΙβ= 0.06%		avg	865.4 15	100.0 6	1.84
2 we B1	eak γ's omitt r(avg)= 1738.	ed: 7; ΣΙγ= 0.06%		7 1 7 2 7 3	320.076 6 608.55 5 928.63 6	92.9 3 1.18 10 6.9 4	0.633 0.0153 0.136
● ⁴⁹ V EC Decay	(330 d 15)	L (min) = 0.10%	• ⁵¹ Cr EC Decay	(27.704 d 4)	L (min) = 0.10%
Auger-L Auger-K	0.42 4	147 4 69.7 16	0.0013 0.0059	Auger-L Auger-K	0.47 4.38	144.7 12 66.9 7	0.0014 0.0062
X-гау L X-гау Ка ₂ X-гау Ка ₁ X-гау Кв	0.45 4.50486 4.51084 5	0.31 11 5.8 5 11.5 10 2.29 20	≈0 0.0006 0.0011 0.0002	X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 1	0.5 4.94464 4.95220 5.43 320.076 6	0.33 12 6.59 21 13.1 4 2.62 9 9.83 14	≈0 0.0007 0.0014 0.0003 0.0670
• ⁴⁹ Cr β^+ Decay (Feeds ⁴	42.09 m 15) °∨	l (min)	= 0.10%	• ⁵² V β^- Decay (3.75 m 1)	l (min) = 0.10%
Auger-L Auger-K ce-K- 1 ce-L- 1 ce-K- 2 ce-L- 2 ce-K- 3 ce-L- 3	0.47 4.38 56.8239 2 61.6608 2 85.1739 2 90.0108 2 147.4629 2 152.2998 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0002 0.0008 0.0014 0.0001 0.0029 0.0003 0.0003 0.0063 0.0006	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1011.72 11 372.57 5 1208.78 11 458.36 5 2542.42 11 1073.97 5 1069.03 5 eak B's omitt: 3(avg) = 424.	0.116 2 0.570 11 99.2 10 100.0 10 ed: 7; Στβ= 0.09%	0.0009 0.0056 2.27 2.28
B+ 1 maxavgB+ 2 maxavgB+ 3 maxavgtotal B+avg	1453 3 625.5 14 1515 3 653.7 14 1606 3 695.0 14 644.4 14	46.3 16 34.6 12 11 3 92 4	0.617 0.482 0.163 1.26	γ 6 γ 7 γ 8 12 we Βγ	1333.615 16 1434.056 16 1530.670 10 eak y's omitte r(avg)= 1005.8	0.588 10 100.0 10 0.116 2 ed: 3; ΣΙγ= 0.12%	0.0167 3.05 0.0038
X-ray Kα ₂ X-ray Kα ₁ X-ray Kθ γ 1 γ 2	4.94464 4.95220 5.43 62.2890 20 90.6390 20	0.84 4 1.66 7 0.332 14 16.4 7 53.2 16	≈0 0.0002 ≈0 0.0217 0.103	● ⁵² Mn β ⁺ Decaγ Auger-L	(5.591 d 3) 0.54	l (min 99.4 17) = 0.10% 0.0011
γ3 13 we Βγ Maxim	152.9280 20 ak γ's omitte (avg) = 1450.9 um γ±-intensi) 30.3 12 d: ; ΣΙγ= 0.12% ty =183.80%	0.0988	Auger-K 6+ 1 max avg	4.78 575.3 23 241.6 10	44.7 9 29.4 7	0.0046 0.151 (Continued)
● ^{sı} Tiβ ⁻ Decay (5.752 m 7)	l (min)	= 0.10%				
Auger-L Auger-K ce-K+ 1	0.47 4.38 314.611 6	0.217 6 0.107 3 0.143 4	≈0 ≈0 0.0010				

74 RADIOACTIVE DECAY DATA TABLES

^{5 2} Mn-^{5 6} Mn

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
							·
X-ray L X-ray Kα ₂ X-ray Kα ₂	0.57 5.40551 5.41472	0.26 9 5.20 17 10.3 4	≈0 0.0006 0.0012	β+ 1 max avg	804 12 340 6	56.0 13	0.406
X-ray Ke	6	2.06 8	0.0003	X-ray L	0.64	0.20 7	re 0
γ 2	346.03 3	0.980 20	0.0072	X-ray Kaz	5.88765	3.9 4	0.0005
γ 4 2 5	399.56 5	0.183 8	0.0016	X-ray Kaı	5.89875	7.8 8	0.0010
γ 5 γ 6	600.18 4	0.390 20	0.0022	X-ray KB	6.49 169 69/ 11	1.57 16	0.0002
γ̈́	647.450 20	0.400 20	0.0055	Maxin	num v±-intens	itv = 112.00%	0.347
7 8	744.214 11	90.0 19	1.43		· · · · · · · · · · · · · · · · · · ·		
7 9	848.13 3	3.32 8	0.0600				
γ II γ 13	935.520 20	94.5 20	1.88				
y 14	1247.85 9	0.38 4	0.0101	• ^{5 3} Mn EC Decay	(3.7E6 y 4)	l (mir	ı) = 0.10%
y 15	1333.615 16	5.07 11	0.144				
γ 16	1434.056 16	100	3.05	Auger-L	0.54	142.0 12	0.0016
9	oak ale omitte			Auger-K	4.78	63.9 7	0.0065
7 W 1	$\gamma(av\sigma) = 884$	eα: 5· Στν= 0,374	t i i i i i i i i i i i i i i i i i i i				
Maxi	mum γ±-intensi	ty = 58.80%		X-ray L	0.57	0.37 13	* 0
		•		X-ray Kaz	5.40551	7.43 21	0.0009
				X-ray Kai	5.41472	14.7 4	0.0017
				X-ray KB	6	2.95 10	0.0004
 ^{5 2} Mn β⁺ Decay %(EC · 	(21.4 m 5) + β^+) Decay = 9	l (mir 8.25 5	a) = 0.10%				
See als	so ^{5 2} Mn IT Deca	ay (21.4 m)		• ⁵⁴ Mn EC Decay	(312.7 d 3)	I (min	ı) = 0.10%
Auger-L	0.54	2.37 5	≈ 0	Angor-T	0 54	142 0 12	0 0010
Auger-K	4.78	1.067 24	0.0001	Auger-K	4.78	63.9 7	0.0016
	005 1 00						
et i max	905.1 23	0 16# 0	0 0007	X-ray L	0.57	0.37 13	≈ 0
avy A+2 max	2632.8 23	0.104 8	0.0013	X-ray Ka ₂	5.40551	7.43 21	0.0009
avq	1173.8 11	96.4 20	2.41	$X - ray K \alpha_1$	5.41472	14.7 4	0.0017
total B+				γ 1	834.827 21	99.975	1.78
avg	1172.1 11	96.6 20	2.41				
4 we E6	eak 8's omitte 3(avg)= 410.2	d: ; ΣΙβ= 0.05%		• ⁵⁵ Eo EC Doom	(2.7	I () - 0.10%
				• Fe EC Decay	(2.7 y I)	i (min) = 0.10%
X-ray Ka ₂	5.40551	0.124 5	n :0	lugar-T	0 6	1 3 0 0	0 0010
$x - ray K\alpha_1$	5.41472	0.246 8	≈0 ⊐ 00	Auger-L Auger-K	0.0	139 4	0.0018
γ J γ 7	1727.53 7	0.216 10	0.0080	auger n	5.15	00.7 21	0.0007
				K-ray L	0.64	0.42 14	~0
14 we	ak y's omitte	d:		X-ray Ka,	5.88765	8.2 7	0.0010
Ey Navim	r(avg) = 1643.9	; $\Sigma I \gamma = 0.17\%$		X-ray Kai	5.89875	16.3 12	0.0020
n d A L R	da At-tuceust	cy - 193.23%		X-ray K8	6.49	3.29 25	0.0005
• ^{5 2} Mn IT Decay	(21.4 m 5)	l (min) = 0.10%	• ⁵⁶ Mn β^- Decay	(2.5785 h 6)	I (min) = 0.10%
%IT De	ecay = 1.755						
Feeds ³	^{s 2} Mn (5.591 d)	, t		A- 1 mar	375 6 12		
See also	o ⁵² Mnβ ⁺ Deca	iy (21.4 m)			99.1 5	1.16 4	0.0024
		· .	- 1 - AP	8- 2 max	735.5 12		0.0024
y 1	377.738 11	1.68 5	0.0135	avg	255.2 5	14.6 4	0.0794
			-	β - 3 max	1037.9 12		0 007
	• *			β-4 max	2848.6 12	2/.8 8	0.226
• ^{5 2} Fe β^+ Decav ((8.275 h 8)	I (min) = 0.10%	avg	1216.7 6	56.2 10	1.46
Feeds 5	² Mn (21.4 m)		,	τοταί β- avg	829.8 9	99.9 14	1.77
Ingor-1	0 6	66 5	0 0000	3 40	ak Ale ami++		- 1
Auger-K	5.19	28.9 20	0,0032	EB	(avg) = 373.	1; ΣΙβ= 0.12%	
ce-K- 1	162.145 11	3.0 22	0.0104				(Continued)
ce-r- 1	107.915 11	0.30 23	0.0011	1			

⁵⁶Mn-⁵⁷Mn

Radiation Type	Energy (keV)	Intensity (%)	Δ (g-rad/ μ Ci-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ µCi-h)
^{5 ő} Mn β [−] Decay	(2.5785 h 6)	(Continued)		● ^{5 6} Ni EC Decay(Feeds ⁵	6.10 d 2) ⁶ Co	L (min)	= 0.10%
7 2 7 6 7 7 7 9 7 11 7 12 7 13	846.752 19 1810.69 4 2113.05 4 2522.88 6 2657.45 5 2959.77 6 3369.60 7	98.9 3 27.2 8 14.3 4 0.99 3 0.653 20 0.306 10 0.168 10	1.78 1.05 0.645 0.0531 0.0369 0.0193 0.0121	Auger-L Auger-K ce-K- 1 ce-L- 1 ce-K- 2	0.75 6 150.67 3 157.45 3 261.791 20	136 5 55.5 25 1.10 4 0.109 4 0.107 4	0.0022 0.0072 0.0035 0.0004 0.0006
6 we Ву	ak γ's omitt (avg) = 1351.	ed: 4; ΣΙγ= 0.16%		X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 1	0.78 6.91530 6.93032 7.65 158,38 3	0.48 17 10.1 8 20.0 15 4.1 3 98.8 10	**0 0.0015 0.0029 0.0007 0.333
 ⁵⁶ Co β⁺ Decay ([*] 	78.76 d 12)	l (min)	= 0.10%	γ 2 γ 3 γ 4	269.500 20 480.440 20 749.95 3	36.5 8 36.5 8 49.5 12	0.210 0.373 0.791
Auger-L Auger-K	0.67 5.62	109.8 14 46.5 7	0.0016 0.0056	γ 5 γ 6	811.85 3 1561.80 5	86.0 9 14.0 6	1.49 0.466
β+ 1 max avg β+ 2 max	422.6 19 179.4 8 1460.5 19	1.05 3	0.0040	● ⁵⁷ Mn β ⁻ Decay	(1.47 m 4)	l (min)	= 0.10%
total B+ avg	607.8 10	19.7 7	0.252	Auger-L Auger-K ce-K- 1 ce-L- 1	0.67 5.62 7.3007 10 13.5666 6	120 8 51 4 77 6 5 8 7 7	0.0017 0.0061 0.0120 0.0025
X-ray L X-ray Ka ₂ X-ray Ka ₁ X-ray KB	0.7 6.39084 6.40384 7	0.34 11 7.33 21 14.5 4 2.92 9	≈0 0.0010 0.0020 0.0004	ce-MNO- 1 ce-K- 2 ce-K- 3	14.3198 10 114.951 4 129.364 4	1.28 12 0.222 13 0.192 13	0.0004 0.0005 0.0005
γ 5 γ 6 γ 7 γ 9	733.63 787.84 4 846.752 19 977.42 4	0.192 22 0.307 7 99.958 5 1.425 21	0.0030 0.0051 1.80 0.0297	β-1 max avg β-2 max	967 8 351 4 1065 8	0.155 12	0.0012
γ 10 γ 11 γ 13	996.9 4 1037.818 22 1140.32 14	0.14 3 14.03 20 0.126 15	0.0030 0.310 0.0031	avg β-3 max avg β-4 max	393 4 1685 8 670 4 1986 8	0.85 5 0.299 19	0.0071
γ 15 γ 17 γ 19 γ 20	1175.09 3 1238.25 3 1335.51 6 1360.21 3	2.28 3 67.0 7 0.120 2 4.29 4	0.0570 1.77 0.0034 0.124	avg 8-5 max avg	809 4 2325 8 968 4	4.7 3 1.65 10	0.0810 0.0340
γ 21 γ 24 γ 25	1442.69 6 1771.40 10 1810.69 4	0.174 4 15.51 14 0.650 10	0.0053 0.585 0.0251	$\beta = 6 \max$ avg $\beta = 7 \max$	2556 8 1077 4 2678 8 1125 4	11.5 5	0.264
γ 26 γ 27 γ 28 τ 20	1963.79 11 2015.35 5 2034.91 5	0.713 11 3.03 5 7.78 12	0.0298 0.130 0.337	total β- avg	1101 4	100.0 10	2.34
7 29 7 30 7 31 7 34 7 37 7 38 7 39 7 40 7 42 7 43 18 we. B7 Maxim	2:13.01 11 2276.08 8 2598.48 9 3009.67 14 3202.24 7 3253.52 12 3273.20 6 3451.42 13 3548.14 10 ak γ 's omitte (avg) = 1452.8 um γ t-intensi	$\begin{array}{c} 0.3 & 76 & 7 \\ 0.3 & 88 & 15 \\ 0.1 & 20 & 18 \\ 16.9 & 3 \\ 1.06 & 3 \\ 3.18 & 10 \\ 7.79 & 25 \\ 1.85 & 6 \\ 0.93 & 3 \\ 0.190 & 6 \\ 0.93 & 3 \\ 0.190 & 6 \\ 0.71 & 3 \\ 0.190 & 6 \end{array}$	0.0183 0.0058 0.935 0.0679 0.217 0.540 0.129 0.0683 0.0144	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7 6.39084 6.40384 7 14.4127 122.063 3 136.476 3 230.25 4 339.60 6 352.32 3 366.73 4 569.93 5 692.00 3 706.42 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>≈0 0.0011 0.0022 0.0005 0.0033 0.0269 0.0042 0.0008 0.0009 0.0117 0.0023 0.0047 0.0603 0.0026</pre>
				γ 11 γ 13	870.68 5 992.68 8	0.192 13 0.106 10	0.0036 0.0022 (Continued)

⁵⁷ Mn—⁵⁹ Fe

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
γ 15 γ 16	1260.54 8 1612.82 7	0.241 17 0.54 4	0.0065 0.0187	• ^{5 8} Co EC Decay	(70.80 d 7)	l (mir	n) = 0.10%
γ 17 2 v	1725.18 11 weak y's omitt	0.123 11 ed:	0.0045	Auger-L Auger-K	0.67 5.62	116.5 13 49.4 7	0.0017 0.0059
ľ	$s_{\gamma}(avg) = 952.$	4; Σ1γ= 0.10%) 	8+1 max avg	475.0 13 201.2 6	14.93 18	0.0640
● ⁵⁷ Co EC Decay	/ (270.9 d 6)	1 (min) = 0.10%	X-ray L X-ray Kg-	0.7 6.39084	0.36 12	≈0 0-0011
Auger-L	0-67	249 3	0 0036	X-ray Kai	6.40384	15.4 4	0.0021
Auger-K	5.62	105.5 13	0.0126	X-ray KB	7	3.10 10	0.0005
ce-K- 1	7.3007 1	0 69.5 3	0.0108	r 1	863,935 18	99.4 3	0.0135
Ce-L- 1 Ce-NNO- 1	13.5666	6 7.78 22	0.0022	γ 3	1674.68 4	0.54 4	0.0192
ce-K- 2	114.951 4	1.838 10	0.0045	Maxin	um γ±-intens:	ity = 29.86%	
ce-L- 2	121.217 3	0.183 1	0.0005				
ce-K- 3	129.364 4	1.42 5	0.0039				
C6-T- 3	135+030 3	0.147 5	0.0004	● ⁵⁸ Co_IT_Decay	(915 h 10)	L (mir	(1) = 0.10%
Y-ray I	0.7	0 9 3	-0	Feeds 5	⁸ Co (70.80 d)		17 0.10%
X-ray Ka ₂	6.39084	16.6 5	0.0023		(,,		
X-ray Ka ₁	6.40384	32.8 8	0.0045	Auger-L	0.75	130 4	0.0021
X-ray KB	7	6.62 21	0.0010	Auger-K	6	46.5 21	0.0060
y 2	122.063 3	85.51 18	0.222	ce-K- 1	17.180 21	75.2 6	0.0275
γ 3	136.476 3	10.60 18	0.0308	ce-L- i	23.963 21	24.8 6	0.0127
γġ	692.00 3	0.160 5	0.0024		2		
6 w	eak y's omitt	ed:		X-ray L	0.78	0.46 16	as ()
E	γ (avg) = 536.	0; ΣIγ= 0.03%		X-ray Ka ₂	6.91530	8.5 7	0.0013
				X-ray Ka _i X-ray Ka	6.93032 7.65	16.8 12	0.0025
						J.4 J	0.0000
● ⁵⁷ Ni ^{β+} Decay	(36.08 b 9)	l (min) = 0.10%	1 we	ak γ's omitte	ed:	
Feeds	^{5 7} Co	. (,,	57	(avg) = 24	9; 21γ= 0.049	h
Auger-L	0.75	82 4	0.0013				
Auger-K	6	33.6 20	0.0043	● ⁵⁹ Fe β Decay	(44.63 d 9)	l (mir	n) = 0.10%
ce-K- 1	119.48 3	1.3 12	0.0033				
Ce-r- I	120.20 3	0.14 12	0.0004	6- 1 max	130.8 22		
At 1 may	302 7			avg	35.7 7	1.37 9	0.0010
avq	130 3	0.41 5	0.0011	p 2 max avor	81.0 8	45.2 11	0.0780
6+ 2 max	463 7			8- 3 max	465.8 22		
avg At 3 mav	197 3 716 7	0.87 10	0.0037	avg	149.2 9	53.1 11	0.169
avg	304 3	5.7 7	0.0369		614.5 10	0.18 4	0.0024
β+ 4 max	843 7			total B-			
avg total 8t	359 3	33.1 17	0.253	avg	117.5 10	99.9 16	0.250
avg	345 3	40.1 19	0.295	1 we 88	ak β's omitte (avg)= 22.2	d: : ΣΙ8= 0.09%	
X-rav I.	0.78	0-29 10	*0	~ •			
X-ray Kaz	6.91530	6.1 5	0.0009	y 1	142.648 4	1.03 5	0.0031
X-ray Ka	6.93032	12.1 10	0.0018	γ 2	192.344 6	3.11 16	0.0127
X-ray K8	7.65	2.46 21	0.0004	γ 3	334.80 20	0.260 20	0.0019
γ 7	1046.40 20	0.124 2	0.0028	γ 5 γ 6	1291.56 3	43.2 10	1.19
y 9	1377.59 4	77.9 22	2.29	• -			
γ 11 ~ 13	1757.48 8	7.1 7	0,265	2 ve	ak γ's omitte	:	
7 13 7 16	2803,90 20	0.132 3	0.0079	E Y	(avg) = 122/.9	ν; 21γ= 0.09%	
,							
11 w E	eak γ 's omitte γ (avg) = 1192.	ed: 5; $\Sigma I \gamma = 0.50\%$					
naxi	wum yr-intens:	LLY - 00.10%	l.				

⁵⁹Ni-⁶²Cu

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
- 59NI 50 D ()	7.554 40)	.,					
• ³⁷ Ni EC Decay (7.5E4 y 13)	I (min) = 0.10%	B∽1max avg	413.5 11 129.6 4	3.7 4	0.0102
Auger-L	0.75	134 5	0.0021	6-2 max	1254.7 11	963 H	A 077
Auger-K	6	54.9 24	0.0071	total 8-	4/4.4 3	70.5 4	0.973
V-mon t	0 79	0 11 17	- 0	avg	461.6 6	100.0 6	0.983
X-ray Kaz	6.91530	10.0 8	0.0015	Y-Tay Ka-	7 46089	1 28 10	0 0002
X-ray Kai	6.93032	19.8 14	0.0029	$X - ray K\alpha_1$	7.47815	2.53 19	0.0004
X-ray KB	7.65	4.0 3	0.0007	X-ray K8	8.26	0.51 4	≈0
				γ 1	67.412 3	85.0 4	0.122
				y 4	625.605 24	0.119 17	0.0016
• ⁶⁰ Co β^- Decay (5.271 v 1)	L (min) = 0.10%	y 5	841.211 17	0.59 6	0.0105
, , , , , , , , , , , , , , , , , , ,	, ,	,	,	7 6	908.631 17	3.0 4	0.0576
8- 1 max	317.90 12	100	0.20%				
avy	75 . 77 4	100	0.204		2 409 5 101	l (min	- 0 10%
y 3	1173.216 21	100	2.50		3.400 11 10/	1 (1111)	/ - 0.10%
γ 4	1332.486 22	001	2.84	Auger-L	0.84	51.5 20	0.0009
4 wea	ak 7' s omitt	ed:		Auger-K	6.54	20.4 11	0.0028
Εγ	(avg) = 693.	8; $\Sigma I \gamma = 0.02\%$		ce-K- 1	59.079 3	0.48 4	0.0006
]	At 1 may	560.4.14		
				avq	238.8 6	2.54 14	0.0129
• °°Co IT Decay (1	10.47 m 2)	l (min) = 0.10%	β+ 2 max	933.4 14		
%IT Dec	ay = 99.76 3			avg	399.3 7	5.6 3	0.0476
Feeds	'Co (5.271 y)	<i></i>			494.2 7	1,98 15	0.0208
See also	00 Co β^- Deca	ay (10.47 m)		8+ 4 max	1216.4 14		0.0200
				avg	524.2 7	51.3 13	0.573
Auger-L Auger-K	0.75	125 4	0.0020		499.8 8	61.5 14	0.654
ce-K- 1	50.894 7	78.9 5	0.0855			••••	
ce-L- 1	57.677 7	14.2 5	0.0174	1 we RA	ak β 's omitte	ed: • Στ8≈ 0 08≪	
	30.302 ,	4.07 17	0.0050		(2.5)		
X-ray L	0.78	0.44 16	se 0	X-ray L	0.85	0.20 7	≈0
X-ray Ka ₂	6.91530	8.9 7	0.0013	X-ray Ka ₂	7.46089	4.3 3	0.0007
X-ray Ka _l	6.93032 7.65	1/.6 13	0.0026		7.47815 8.26	8.4 0	0.0013
γ 1	58.603 7	2.02 7	0.0025	γ 1	67.412 3	3.87 23	0.0056
, .				y 5	282.9560 20	12.3 6	0.0741
				7 6	373.050 5	2.12 12	0.0168
				γ 7	529.169 22	0.41 8	0.0046
• ⁶⁰ Co β ⁻ Decay (1	10.47 m 2)	I (min)) ≈ 0.10%	γ 8 ~ 11	568.605 9	1.18 0	0.0148
%β⁻ Der	cay = 0.24 3			v 13	816.692 13	0.355 19	0.0062
See also	⁶⁰ Co IT Deca	av (10.47 m)		γ 15	841.211 17	0.244 16	0.0044
		,		y 17	908.631 17	1.19 7	0.0231
A- 1 may	1549 73 12			γ 23	1099.560 19	0.279 17	0.0065
avg	606.38 5	0.23 3	0.0030	γ 26	1185.234 15	3.63 20	0.0916
			Í	23 we	ak γ's omitte	d:	
y 2	1332.486 22	0.24 3	0.0068	By Maxim	(avg) = 1198.2 um $\gamma \pm -intensi$	$z_1 y = 0.82\%$ ty =122.91%	
● ⁶¹ Co ^{β−} Decay (1	(650 h 5)	L (min)	= 0.10%				
		. (1141)	0.10/0	• ^{6 2} Cu β^+ Decay (9.74 m 2)	l (min	= 0.10%
Auger-L	0.84	15.5 7	0.0003	1000-1	0.94	2 20 10	-0
Auger-K Ce-K- 1	59,079 3	0-1 4 10-5 4	0.0009	Auger-K	6.54	1.14 6	0.0002
ce-L- 1	66.404 3	1.09 4	0.0015				(Continued)
ce-MNO- 1	67.300 3	0.359 1	0.0005				(22

.

^{6 2} Cu--^{6 5} Zn

Radiat Typ	ion Energ e (keV	y Intensity) (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
ß+ 1 B+ 2	max 1754 5 avg 767.5 max 2927 5	23 0.132 10	0.0022	 ⁶⁴Cu β⁺ Decay %(EC - See als 	(12.701 h 2) + β ⁺) Decay = ο ⁶⁴ Cu β ⁻ Dec	l (mir 62.8 4 cay	n) = 0.10%
total	B+	24 9/. 59 5	2.74				
	avg 1314.3	24 97.82 4	2.74	Auger-L Auger-K	0.84 6.54	59.1 21 23.3 12	0.0011 0.0033
	2 weak 8's c	mitted:	,				
	ED (avg) -	334.1; 21.p= 0.10%	,	8+ 1 max	652.9 8 278 1 #	17 07 10	0 106
X-ray	Kaz 7.46	089 0.239 17	≈ 0	avg	270.1 4	1/.0/ 10	0.108
X-ray	Κα1 7.47	7815 0.47 4	≈0	X-ray L	0.85	0.23 8	≈0
Υ 1 Υ 4	1173-05	8 0.336 17	0.0028	X-ray Kaz	7.46089	4.9 4	0.0008
•				X-ray Kai X-ray Ka	7.47815	9.6 7 1.96 14	0.0015
	12 weak γ 's o	mitted: 1966 1. 57~- 0 09%		γ 1	1345.9 3	0.49 4	0.0140
	Maximum γ±-in	itensity =195.64%		Maxi	mum γ±-intens	sity = 35.74%	
• ⁶² Zn EC [Decay (9.26 h 2) Feeds ^{6 2} Cu) I (min) = 0.10%	● ⁶⁴ Cu β ⁻ Decay %β ⁻ D See als	(12.701 h 2) becay = 37.2 4 co ⁶⁴ Cu β ⁺ Dec	l (mir	n) = 0.10%
NUCOT-	1 0.92	142 4	0.0028			•	
Auger-	ĸ 7	54.3 17	0.0081	6-1 max	578.2 15		
ce-K-	1 31.86	4 15.7 11	0.0106	avg	190.2 6	37.2 4	0.151
ce-L-	- 1 40.72	4 1.67 11	0.00014				
				- 65 NI 0- D	(0.500 + 0)		1
B+ 1	max 605.0	10	0.0010	• • • NI β Decay	(2.520 h 2)	I (mir	1 = 0.10%
	avg 258.0	5 /.0 /	0.0419	6- 1 max	412.1 16		
X-rav	L 0.93	0.64 22	≈0	avg	128.7 6	0.54 3	0.0015
X-ray	Kaz 8.02	7830 12.9 5	0.0022	$\beta^- 2 \max$	513.6 16		0 0020
X-ray X-ray	Kar 8.04	5,18 20	0.0044	$\beta = 3 \max$	655.2 16	V.04 4	0.0030
ົາ້ຳ	40.84	4 26.9 16	0.0234	avg	220.9 7	28.1 10	0.132
7 3	243.44	3 2.67 16	0.0138	β^{-4} max	1021.5 16	9 9 5	0 0777
γ 4 γ 5	247.04	6 1.43 9	0.0106	β-5 max	2137.0 16	9 •0 J	0.0777
γ 6	304.88	9 0.305 19	0.0020	avg	875.7 8	60.7 14	1.13
γ 7 ~ 9	349.59	7 0.48 4	0.0035	total 8-	632.3 11	100.0 18	1, 35
y 11	507.60	10 15.7 10	0.169				
y 12	548.41	4 16.2 10	0.190	7 2	366.27 3	4.61 20	0.0359
γ 13 • 15	596.65 637.41	7 0.269 18	0.349	γ 3	507.80 20	0.287 20	0.0031
1 13	03.44	. 0.20, 10		7 4	609.30 20 1115.52 3	0.141 11	0.352
	19 weak y's o	mitted:		7 9	1481.84 5	23.5 8	0.742
	$E\gamma(aVg) =$ Mavimum $\gamma + -in$	921.2; $\Sigma I \gamma = 0.20\%$:	γ 10	1623.42 6	0.475 23	0.0164
	Haxiada yi in	icensicy - (Sizow	. .	7 11	1/24.92 6	0.388 21	0.0142
				4	eak γ's omitt	ed:	
• ⁶³ Ni β ⁻ D)ecay (100.1 y 2	20) t (min) = 0.10%	<u>в</u> .	Y (avg) = 814.	8: 217= 0.1/*	1
8- 1	max 65.87	20			•		
	avg 17.13	6 100	0.0365	● ⁶⁵ Zn EC Decay	(244.4 d 2)	l (min) = 0.10%
				Auger-L Auger-K	0.92 7	126.7 18 48.3 8	0.0025 0.0072
				β+ 1 max	329.9 11 143.0 5	1.415 23	0.0043
					17500 5		(Continued)

,

-

^{6 5} Zn—^{6 7} Ga

Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
(244.4 d 2) 0,93	(Continued)	*0	γ 58 γ 59 γ 60	4086.36 10 4295.70 20 4462.01 15	1.16 5 3.56 10 0.726 21	0.101 0.326 0.0690
8.027830 8.047780 9 1115.52 3 num γ±-intensi	11.5 3 22.6 5 4.61 13 50.75 10 ty = 2.83%	0.0020 0.0039 0.0009 1.21	γ 61 25 we Β΄ Μαχίι	4806.59 15 eak γ's omitte γ(avg)= 1349.2 mum γ±-intensi	1.51 5 ed: 2; ΣΙγ= 1.05% ity =110.49%	0.155
(9.40 h 7)	l (min)	= 0.10%	● ⁶⁷ Cu β ⁻ Decay	(61.88 d 14)	l (mir	n) = 0.10%
0.99 7.53	57 3 20.7 13	0.0012 0.0033	Auger-L Auger-K ce-K- 1 ce-K- 2	0.99 7.53 81.607 5 83.652 5	19.1 10 7.0 5 0.51 5 12.1 5	0.0004 0.0011 0.0009 0.0215
361 3 156.8 13 720 3	0.98 5	0.0033	ce-L- 2 ce-MNO- 2 ce-K- 3	92.117 5 93.175 6 174.918 10	1.48 6 0.489 10 0.82 12	0.0029 0.0010 0.0031
772 3 330.9 13 924 3	0.699 23	0.0049	0∼ 1 max avg	181 8 50.7 25	1	0.0012
397.0 14 1760 3 781.5 14	3.70 12 0.372 18	0.0313 0.0062	6~2 max avg 8~3 max avg	390 8 121 3 482 8 154 3	57 22	0.147
1904.1 15	49.3 13 55.2 13	2.00	β^- 4 max avg total β^-	575 8 189 3	20	0.0805
ak β 's omitte (avg) = 330.9	d: ; SIB= 0.03%		avg Verav Kg	141 4 8 61578	100	0.301
1 8.61578 8.63886 9.57 448.90 10 686.28 10 833.56 10 856.70 10 907.0 3	0.28 12 5.7 4 11.1 8 2.26 16 0.113 5 0.264 11 6.19 18 0.124 5 0.116 9	<pre>≈0 0.0010 0.0020 0.0005 0.0011 0.0039 0.110 0.0023 0.0022</pre>	x-ray κα ₂ x-ray κα ₁ x-ray κβ γ 1 γ 2 γ 3 γ 4 γ 5 γ 6	8.61578 8.63886 9.57 91.266 5 93.311 5 184.577 10 208.951 10 300.219 10 393.529 10	1.9114 3.8 3 0.76 6 7.00 10 16.1 3 48.7 6 0.115 5 0.797 14 0.220 8	0.0004 0.0007 0.0136 0.0320 0.191 0.0005 0.0051 0.0018
1039.29 10 1190.36 10 1232.9 1333.20 20	38.8 10 0.136 13 0.543 21 1.26 4	0.859 0.0034 0.0143 0.0359	● ^{6 7} Ga EC Decay	(3.261 d 1)	l (min) = 0.10%
1356.2 1356.6 1357 1418.88 10 1459.2 3 1508.33 10 1899.18 10 1918.64 10	0.38 4 0.128 20 0.19 8 0.652 19 0.101 5 0.590 20 0.438 17 2.19 6	0.0110 0.0037 0.0056 0.0197 0.0031 0.0189 0.0177 0.0896	Auger-L Auger-K ce-K-2 ce-K-3 ce-L-3 ce-MNO-3 ce-K-4	0.99 7.53 81.607 5 83.652 5 92.117 5 93.175 6 174.918 10	165 11 60 5 0.208 21 26.8 17 3.28 21 1.09 6 0.33 5	0.0035 0.0097 0.0004 0.0478 0.0064 0.0022 0.0012
2173.90 20 2190.00 20 2213.60 20 2393.30 20 2422.70 10 2752.10 20 2780.50 20 2934.30 20 3229.26 10 3229.26 10 3256.57 15 3381.32 10 3422.64 15 3433.00 15 3767.40 20 3791.47 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0056 0.271 0.0068 0.0131 0.103 1.39 0.0077 0.0138 0.105 0.0070 0.105 0.0070 0.104 0.0614 0.0210 0.0115 0.0837	X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 2 γ 3 γ 4 γ 5 γ 6 γ 7 γ 14 7 we Bγ	1 8.61578 8.63886 9.57 91.266 5 93.311 5 184.577 10 208.951 10 300.219 10 393.529 10 887.693 15 ak y's omitte (avg) = 629.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>>> 0 0.0030 0.0059 0.0013 0.0056 0.0710 0.0775 0.0100 0.102 0.0375 0.0026</pre>
	Energy (keV) (244.4 d 2) 0.93 8.027830 8.047780 9 1115.52 3 um y±-intensi (9.40 h 7) 0.99 7.53 361 3 156.8 13 720 3 308.7 13 772 3 308.7 13 772 3 308.7 13 772 3 308.7 13 772 3 308.7 14 1780 3 781.5 14 4153 3 1904.1 15 1739.1 21 ak & s omitte (avg) = 330.9 1 8.61578 8.63886 9.57 448.90 10 686.28 10 833.56 10 833.50 20 833.50	Energy (ntensity (keV) (%) (244.4 d 2) (Continued) 0.93 0.57 20 8.027830 11.5 3 8.047780 22.6 5 9 4.61 13 1115.52 3 50.75 10 num γ t-intensity = 2.83% (9.40 h 7) I (min) 0.99 57 3 7.53 20.7 13 361 3 156.8 13 0.98 5 720 3 308.7 13 0.166 6 772 3 30.9 13 0.699 23 924 3 397.0 14 3.70 12 1780 3 781.5 14 0.372 18 4153 3 1904.1 15 49.3 13 1739.1 21 55.2 13 ak β 's omitted: (avg) = 330.9; $\Sigma I\beta$ = 0.03% 1 0.28 12 8.61578 5.7 4 8.63886 11.1 8 9.57 2.26 16 448.90 10 0.113 5 686.28 10 0.264 11 833.56 10 6.19 18 856.70 10 0.124 5 907.0 3 0.116 9 1039.29 10 38.8 10 1190.36 10 0.264 11 835.66 0.128 0 1190.36 10 0.136 13 1232.9 0.543 21 133.20 20 1.26 4 1356.2 0.38 4 1356.6 0.128 20 1357 0.19 8 1415.8 31 0.115 5.2 13 2190.0 20 5.22 19 1459.2 3 0.101 5 5.686.28 10 119.36 10 0.264 11 835.66 0.128 20 1357 0.19 8 1418.88 10 0.652 19 1459.2 3 0.101 5 1508.33 10 0.438 17 1918.64 10 2.19 6 2173.90 20 5.82 17 2213.60 20 0.12 3 2190.00 20 5.82 17 2213.60 20 0.124 5 937.0 12 1.25 4 333.00 12 3 2190.00 20 5.82 17 2213.60 20 0.124 4 3422.64 15 0.84 3 3433.00 15 0.287 9 3767.40 20 0.144 9 3791.47 10 1.04 3	Energy (keV)Intensity (%) Δ (g-rad/ μ Ci-h)(244.4 d 2)(Continued)0.930.57 20 8.047780 22.6 50.0020 8.047780 22.6 58.047780 22.6 50.0039 994.61 13 4.61 130um yz-intensity = 2.83%(9.40 h 7)I (min) = 0.10%0.9957 3 7.530.0012 7.537.5320.7 130.0033361 3 156.8 130.98 5 0.0033308.7 130.166 6 0.00117.23 330.9 130.699 23 0.0049924 3 397.0 143.70 12 0.03131780 3 781.5 140.372 18 0.00624453 3 1904.1 1549.3 13 2.001739.1 2155.2 13 2.05at β's omitted: (arg) = 330.9; EIβ= 0.03%10.28 12 0.003510.28 12 0.003510.28 11 0.003510.28 12 0.003510.28 12 0.003510.28 12 0.003510.28 12 0.003510.26 11 0.003510.26 11 0.003510.26 11 0.003510.26 11 0.003510.26 12 0.003510.26 13 0.003510.26 14 0.0035133.20 20 0.256 150.0131 0.0031232.9 0.033.260.136 13 0.0034232.9 0.033.260.136 13 0.0034232.9 0.033.260.136 13 0.0034232.9 0.033.260.136 13 0.0034232.9 0.033.260.	Energy (keV)Intensity (%) Δ (g-rad/ μ Ci-h)Radiation Type(244.4 d 2)(Continued) γ 58(244.4 d 2)(Continued) γ 590.930.57 20 ∞ 08.027783011.5 30.00208.02778022.6 50.003994.61 130.002094.61 130.00201115.52350.75 101.2110m 7t-intensity = 2.83%1.83(9.40 h 7)1 (min) = 0.10%0.9957 30.0012156.8 130.98 50.0033308.7 130.1660.0011772030.669 23309.7 130.1660.0011772.330.669 230.0049924 3337.0 143.70 120.0313904.1 1549.3 132.00415331904.1 159.0025739.1 2155.2 132.05at Af's omitted:arg(arg) = 330.9; ΣIβ = 0.03%K -ray KagK -ray KagK -ray Kag10.28 12 ∞ 09.572.26 160.00259.572.26 160.00251333.20 201.24 50.00231333.20 201.24 50.00371355.20.38 40.011083.5610.013 597.000.116 990.200.38 497.010.16 997.70.543 2197.70.38 497.70.543 2197.70.543 21 <td>Energy (keV)Intensity (%)Δ(g-rad/ μCi-h)Radiation TypeEnergy (keV)(244.4 d 2)(Continued)7584.086.36100.930.57 20 8.0477800.0020 9.04261137584.086.36109.0478011.5 530.0020 9.04461137514806.59159.0478022.6 50.0029 9.97614806.59159.0478011.5 533.50.75101.21 1.21T_{7} (arg) = 1345; Maximus rz-intensi(9.40 h 7)1 (min) = 0.10%-6^7 Cu β^- Decay (61.88 d 14)0.99 7.5320.7 130.0012 0.0033Auger-L0.99 2.21175361 3 720 30.98 50.0033 0.0033Ce-K- 181.607 5 2.22.1175727 30.1660.0011 72.3-7.25 2.22.61-7.25 2.22.11757170 140.7120.0313 2.003B- 2 arg 13.7013.0.699 2.3 2.00331739.1 2155.2 13 2.052.05 4.73-7.25 2.26 f1739.1 2155.2 13 2.052.05 4.73-7.25 4.731739.1 2155.2 13 2.052.05 4.73-7.25 4.731739.1 2155.2 13 2.052.05 4.0005-7.29 7.23 4.731739.1 2155.2 13 2.050.0010 7.18 4.63861739.2 200.28 12 9.00100.0023 7.22 9.00101739.2 200.28 12 9.00050.0139 7.731739.2 200.28 12 9.00050.0139 7.73</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	Energy (keV)Intensity (%) Δ (g-rad/ μ Ci-h)Radiation TypeEnergy (keV)(244.4 d 2)(Continued)7584.086.36100.930.57 20 8.0477800.0020 9.04261137584.086.36109.0478011.5 530.0020 9.04461137514806.59159.0478022.6 50.0029 9.97614806.59159.0478011.5 533.50.75101.21 1.21 T_{7} (arg) = 1345; Maximus rz-intensi(9.40 h 7)1 (min) = 0.10%-6^7 Cu β^- Decay (61.88 d 14)0.99 7.5320.7 130.0012 0.0033Auger-L0.99 2.21175361 3 720 30.98 50.0033 0.0033Ce-K- 181.607 5 2.22.1175727 30.1660.0011 72.3-7.25 2.22.61-7.25 2.22.11757170 140.7120.0313 2.003B- 2 arg 13.7013.0.699 2.3 2.00331739.1 2155.2 13 2.052.05 4.73-7.25 2.26 f1739.1 2155.2 13 2.052.05 4.73-7.25 4.731739.1 2155.2 13 2.052.05 4.73-7.25 4.731739.1 2155.2 13 2.052.05 4.0005-7.29 7.23 4.731739.1 2155.2 13 2.050.0010 7.18 4.63861739.2 200.28 12 9.00100.0023 7.22 9.00101739.2 200.28 12 9.00050.0139 7.731739.2 200.28 12 9.00050.0139 7.73	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

⁶⁸Ga-⁷²Ga

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
● ⁶⁸ Ga β ⁺ Decay	(68.0 m 2)	I (mii	n) = 0.10%	● ⁷¹ Ge EC Decay	(11.8 d 4)	I (min) = 0.10%
Auger-L Auger-K	0.99 7.53	14.0 6 5.1 3	0.0003 0.0008	Auger-L Auger-K	1 8	121.9 18 42.9 7	0.0029 0.0074
$\begin{array}{c} \beta + 1 \max \\ avg \\ \beta + 2 \max \\ avg \\ total \beta + \\ avg \end{array}$	821.7 12 352.6 6 1899.1 12 836.0 6 829.4 6	1.22 10 87.7 3 88.9 4	0.0092 1.56 1.57	X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ	1 9.22482 9.25174 10.3	0.67 19 13.2 3 25.9 5 5.52 14	≈0 0.0026 0.0051 0.0012
X-ray Kaz X-ray Kai	8.61578 8.63886	1.40 10 2.75 18	0.0003	● ^{7 2} Ga β [−] Decay	(14.1 h 2)	l (min) = 0.10%
x-ray κυ γ 3 γ 7	9.57 1077.35 6 1883.09 7	0.56 4 3.29 24 0.142 12	0.0001 0.0755 0.0057	Auger-L Auger-K ce-K- 20	1.19 8.56 680.10 20	0.53 3 0.194 13 0.421 12	≈0 ≈0 0.0061
7 We Ra	eak γ 's omitter (avg) = 1014.	ed: 5: ΣΙγ= 0-24%					
Maxin	num 7±-intens	ity =177.84%		8- 1 max avg 8- 2 max	234 4 67.0 10 313 4	0.124 4	0.0002
				avg 8-3 may	93.2 11 #25 #	0.769 19	0.0015
^{6 8} Ge EC Decay Ecods	(288 d 6)	l (mir	n) = 0.10%		132.4 12	0.222 6	0.0006
reeus	Ga			avg	173.3 12	0.341 9	0.0013
Auger-L	1	121.5 18	0.0028	p=5 max. avg	552 4 179.3 12	0.317 12	0.0012
Ruger-K	0	42.4 /	0.0073	6-6 max avg	650 4 217.0 13	15.0 3	0.0693
X-ray L	1	0.67 19	*0	8-7 max avg	667 4 223.5 13	21.52 24	0.102
$X - ray Ka_1$	9.22482	25.6 5	0.0026	8−8 max avor	956 4 341,813	27.9 6	0.203
х-гау кв	10.3	5.46 14	0.0012	8-9 max	1048 4	1.86 #	0-0151
				8-10 max	1477 4	9 94 17	0 109
● ⁶⁹ Zn β ⁻ Decay	(55.6 m 16)	l (min	n) = 0.10%	β−11 max	1528 4	0.14 4	0.0010
8- 1 max	905 3			avg B-12 max	1589 4	0.14 4	0.0018
avg	320.9 13	99.9986 2	0.684	avg B-13 max	619.6 14 1927 4	0.242 15	0.0032
				avg β−14 max	774.0 15 2263 4	3.03 15	0.0500
● ⁶⁹ Zn IT Decay	(13.756 h 18)	I (min) = 0.10%	avg 8-15 max	930.6 15 2528 4	0.81 24	0.0161
%IT D	ecay = 99.967 (3		avg 8−16 max	1054.9 15 3158 4	8.0 8	0.180
Feeds ' %β D	°²Zn (55.6 m) ecav = 0.033 3			avg	1354.3 15	10.6 10	0.306
		. ⁻ .		avg	497.7 20	100.1 15	1.06
Auger-L Auger-K ce-K- 1 ce-L- 1	0.99 7.53 428.975 18 437.440 18	6.3 3 2.29 15 4.39 12 0.514 15	0.0001 0.0004 0.0401 0.0048	9 we 158	ak β 's omitt (avg) = 234.	ed: 5; ΣΤβ= 0.25%	
ce-MNO- 1	438.498 18	0.170 5	0.0016	X-ray Kai	9.88642	0.131 8	*0
X-ray Kaz	8.61578	0.63 5	0.0001	τ 2 τ 6	289.50 20	0.201 7	0.0003
X-ray Kai X-ray KA	8.63886 9.57	1.23 9 0.250 18	0.0002	γ 9 γ 10	336.60 20 381.20 20	0.107 3 0.276 8	0.0008 0.0022
γ 1	438.634 18	94.89 15	0.887	γ 12	428.40 20	0.184 8	0.0017
				γ 17 ~ 19	587.4 3	0.124 4	0.0016
				γ 10 γ 19	629.86 4	24.4 7	0.327
				γ 21	735.60 20	0.360 11	0.0056
				γ 24 ~ 25	786.43 5	3.17 7	0.0530
				1 25	010.24 9	2.01 3	(Continued)

(Continued)

^{7 2} Ga—^{7 3} Se

¢.

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
72 Ga β^- Decay	(14.1 h 2)	(Continued)		γ 17 γ 18	600.85 3 629.86 4	0.314 11 7.86 21	0.0040
v 26	834.00 3	95.65 7	1 70	γ 23	786.43 5	0.469 17	0.0079
v 27	861.11 5	0.912 25	0.0167	γ 25 γ 28	834.00 3	19.1 13 0.77 3	1.42
¥ 29	894.22 5	9.85 21	0.188	v 38	1050.76 5	0.99 3	0.0221
γ <u>3</u> 0	924.10 20	0.143 4	0.0028	v 43	1215.14 5	0.206 7	0.0053
γ 32	939.35 8	0.259 7	0.0052	γ 47	1390.44 5	0.236 8	0.0070
γ 34	970.54 6	1.105 23	0.0228	γ 48	1464.00 7	1.10 3	0.0343
γ 36	999.86 6	0.796 23	0.0169	γ 49	1475.91 7	0.512 17	0.0161
γ 40	1050.76 5	6.93 15	0.155	γ 51	1568.20 10	0.128 5	0.0043
γ 44 45	1215.14 5	0.797 21	0.0206	γ 57	1680.77 8	0.116 4	0.0042
γ 45 ~ 45	1230.86 /	1.44 3	0.0379	7 58	1710.90 7	0.243 9	0.0089
7 40 7 117	1276.75 8	1.559 20	0.0308	γ 63 	1991.14 8	0.537 12	0.0143
y 50	1464.00 7	3.56 8	0.111	7 65 ∞ 66	2109.50 10	0.270 9	0.0121
γ 55	1568.20 10	0.199 7	0.0066	v 68	2201.67 8	0.465 15	0.0218
y 56	1571.70 20	0.835 24	0.0280	y 70	2248.50 10	0.308 12	0.0148
y 57	1596.65 9	4.24 9	0.144	γ 75	2507.80 8	0.320 11	0.0171
γ 60	1680.77 8	0.868 23	0.0311	γ 80	2621.50 10	0.386 13	0.0215
γ 61	1710.90 7	0.383 10	0.0139	γ 89	2940.10 10	0.289 10	0.0191
γ 63 ~ 64	1857.60 20	5 23 12	0.00/9	γ 108	3803.6 3	0.102 6	0.0083
7 65	1878.0 3	0.231 6	0.0093	88 40	ak wis omitte	• 60	
γ 65	1920.20 20	0.159 5	0.0065	Εγ	(avq) = 1929.5	5: ΣIγ= 1.85%	
γ 67	1991.14 8	0.112 3	0.0047	Maxim	um y±-intensi	ty =176.12%	
γ 68	2029.1 4	0.124 4	0.0054			-	
γ /0	2109.50 10	1.034 22	0.0465	1			
7 72 7 73	2201.07 8	20.1 0	1.22				
v 77	2490.98 8	7.48 18	0.397	• ^{7 3} As EC Decay	(80.30 d 6)	l (min) = 0.10%
γ 78	2507.80 8	12.8 3	0.685				
γ 79	2515.40 20	0.253 10	0.0135	Auger-L	1.19	320 10	0.0081
y 82	2621.50 10	0.131 4	0.0073	ce-K- 1	2.160 17	27.8 6	0.0013
y 85	2844.10 20	0.410 12	0.0249	Auger-K	8.56	88 5	0.0160
52 4	oak wie omi++	6d •		ce-L- 1	11.849 15	60.3 7	0.0152
52 W	y(avg) = 1274.	7: ΣTr= 1.55%			13.003 13	0.93 24 2 95 9	0.0025
-	/(=-;)/ ·= ·•	,,		ce-K- 2	42.334 12	75.1 6	0.0677
				ce-L- 2	52.023 9	10.9 3	0.0121
				ce-MNO- 2	53.257 9	3.61 11	0.0041
• ^{7 2} As β^+ Decay	(26.0 h 1)	ł (min)	= 0.10%				
				X-ray L	1.19	1.9 7	≈ 0
Augor-T	1, 10	15.5.6	0.0004	X-ray Kaz	9.85532	30.3 16	0.0064
Auger-K	8.56	5.3 3	0.0010	X-rav Kaı	9.88642	59 3	0.0125
ce-K- 19	680.10 20	0.87 8	0.0125	X-ray KB	11	13.3 7	0.0031
				γ 2	53.437 9	10.3 3	0.0117
6+ 1 max	814 7			1 ve	ak v's omitte	ed :	
avq	351 3	0.473 17	0.0035	Εγ	(avg) = 13.3	$ΣI\gamma = 0.09\%$	
8+ 2 max	927 7			2			
avg	400 3	0.152 7	0.0013				
8+ 3 max	1865 7	5 70 40					
avg 8t / mar	822 4	5. /8 18	0.101	• ⁷³ Se EC Decay	(7.15 h 8)	l (min)	= 0.10%
	1115 4	64.7 12	1.54	Feeds 7	′ ³ As		
8+ 5 max	2638 7	04. 12	1.34	1			
avg	1203 4	0.19 8	0.0049	Auger-I	1.24	67 4	0 0018
8+ 6 max	3329 7			Auger-K	9.1	21.8 16	0.0042
avg	1526 4	16.6 14	0.540	ce-K- 1	55.13 10	19.1 4	0.0224
total β+				ce-L- 1	65.47 10	2.09 6	0.0029
avg	1167 5	88.1 19	2.19	ce-M- 1	66.80 10	0.327 9	0.0005
9 4	ook Ale omitt	ođ •		ce-NOP-1	67.00 10	0.107 3	0.0002
5 W.	$6(av\sigma) = 358.$	5: $\Sigma I B = 0.17\%$			349.23 10	1.12 4	0.0083
				00-D- Z	JJ7+37 TV	V.124 4	0.0009
Y-ray Y-	0_85532	1.87 10	0,0004				(Continued)
X-rav Ka-	9.88642	3.56 18	0.0007				
X-ray KB	11	0.80 5	0.0002				
•							

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad) μCi-h)
8+ 1 max avg 8+ 2 max avg	1208 10 525 5 1290 10 562 5	0.49 25	0.0055 0.773	● ^{7 4} As β ⁻ Decay %β ⁻ D See als	(17.77 d 3) ecay = 34.3 14 ο ⁷⁴ As β ⁺ Deca	l (min	n) = 0.10%
B+ 3 max avg total B+	1651 10 725 5	0.71 19	0.0110	8- 1 max	718 3		
avg	563 5	65.9 8	0.790	β=2 max avg avg	1353 3 530.9 12	18.8 10	0.0802
5 же Вβ	ak B's omitt (avg)= 201.	ed: 3; ΣΙβ= 0.05%		total B- avg	400.5 14	34.3 14	0.293
X-ray L X-ray Kα ₂	1.28 10.50800	0.47 14 1 8.4 5	≈0 0.0019	1 we Ер	eak B 's omitte (avg) = 22.	ed: 1; ΣΙβ= 0.03%	
[-ray Κα ₁ [-ray Κβ ~ 1	10.54370 11.7 67 00 10	1 16.4 10 3.79 23 77 3 8	0.0037 0.0009	γ 1	634.78 8	15.4 10	0.209
7 2 7 4 7 8 7 12 7 14 7 14	361.10 10 509.5 8 764.4 8 865.40 20 901.2 4	96.5 5 1.1 4 0.135 20 0.47 3 0.145 20	0.742 0.0115 0.0022 0.0087 0.0028	2 we Bi	ak γ's omitt (avg)= 685.1	ed: 4; £Iy= 0.03%	
γ 17 γ 19	1111.0 4 1422.90 20	0.183 20 0.135 20	0.0043 0.0041	• ⁷⁵ Se EC Decay	(119.78 d 7)	l (mir	n) = 0.10%
13 we Εγ Maxim	ak γ's omitt (avg)= 894. um γ±-intens	ed: 4; ΣΙγ= 0.42% ity =131.70%		Auger-L Auger-K ce-K- 1 ce-L- 1 ce-MNO- 1	1.24 9.1 12.53 20 22.87 20 24.20 20	129 8 42 4 5.0 11 0.98 20 0.21 5	0.0034 0.0081 0.0013 0.0005 0.0001
As β ⁺ Decay (%(EC + See also	β^{+}) Decay = 0 β^{+}) Decay = 0 γ^{-4} As β^{-} Dec	l (mir 65.7 14 ay	n) = 0.10%	ce-K- 4 ce-L- 4 ce-K- 5 ce-K- 6 ce-L- 6	84.8663,22 95.2065,22 109.248,3 124.133,5 134.473,5	2 2.65 16 2 0.354 22 0.62 3 1.56 8 0.161 9	0.0004 0.0007 0.0015 0.0041 0.0005
Auger-L Auger-K	1.19 8.56	43.4 21 14.6 10	0.0011 0.0027	ce-K- 11	267.661 8	0.380 2	0.0010
β+ 1 max avg β+ 2 max avg otal β+	944.5 17 408.0 8 1540.4 17 701.1 8	26.6 11 3.0 12	0.231 0.0448	$\begin{array}{c} X - ray L \\ X - ray K\alpha_2 \\ X - ray K\alpha_1 \\ X - ray K\beta \\ \dot{\gamma} & 2 \\ \dot{\gamma} & 4 \end{array}$	1.28 10.50800 10.54370 11.7 66.050 10 95.7330 20	$\begin{array}{c} 0.9 & 3 \\ 1 & 16.1 & 11 \\ 1 & 31.4 & 20 \\ \hline 7.3 & 5 \\ 1.02 & 3 \\ 0 & 3.41 & 18 \end{array}$	≈0 0.0036 0.0071 0.0018 0.0014 0.0070
avg 1 wea Εβ	437.5 9 ak β's omitte (avg) = 147.6	29.6 f/ ed: 6; ΣΙβ= 0.02%	0.276	7 5 7 6 7 7 7 10	121.115 3 136.000 5 198.596 7 264.651 8	16.7 6 59.2 25 1.45 3 59.8 3	0.0432 0.171 0.0061 0.337
K-ray L K-ray Kα ₂ K-ray Kα ₁	1.19 9.85532 9.88642	0.26 9 5.1 3 9.9 6	≈0 0.0011 0.0021	γ 11 γ 13 γ 16	279.528 8 303.910 11 400.646 9	25.2 3 1.32 5 11.4 4	0.150 0.0086 0.0975
$\begin{array}{c} \chi - ray \\ \gamma \end{array}$	595.88 4 608.40 5 1204.29 6	2.22 14 59.9 24 0.55 3 0.287 22	0.0005 0.760 0.0071 0.0074	τ5 we Βγ	ak y's omitte (avg) = 332.6	ed: 5; ΣΙγ= 0.10%	
8 wea Ey Maximu	ak γ's omitte (avg) = 1194. 1m γ±-intensi	ed: 1; ΣΙγ= 0.09% Lty = 59.23%		• 7.6 As $\beta^{}$ Decay	(26 <u>,</u> 32 h 7)	l (min) = 0.10%
				8- 1 max avg	298.8 19 87.8 6	0.63 4	0.0012
				n − 2 max avg 8 − 3 max	92.6 7 539.8 19	1.20 7	0.0024
				β^{-} 4 max	173.7 7 1180.9 18	1.88 12	0.0070
				avg 6-5 max	436.2 8 1752.5 18	2.08 10	0.0193
			l	avg	691.5 9	7.6 5	0.112 (Continued)

⁷⁶ As-⁷⁷ Ge

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)		Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
⁷⁶ As β [−] Decay	(26.32 h 7)	(Continued)			8-12 max	1303 3		
8- 6 may	1846 2 18				avg 6-13 mar	490.6 14 1356 3	1.74 5	0.0182
avg	749.1 9	0.75 6	0.0120	Į]	avg	514.2 14	0.150 3	0.0016
β−7 max avor	2409.5 18	34.7 15	0.736		814 max avq	1382 3 525.5 14	0.568 12	0.0064
β− 9 max	2968.6 18	54.0.00			6-15 max	1512 3	10 2 4	0.000
avg total 8-	1265.9 9	51.0 20	1.38		avg 8-16 max	1536 3	19.2 4	0.239
avg	1064.2 11	100 3	2.27	[]	avg 8-17 mav	594.6 14	0.168 3	0.0021
5 we	eak B's omitte	ed :			avg	642.7 14	0.178 7	0.0024
Bf	3(avg) = 373.8	3; ΣI8= 0.22%			β-18 max avg	1812 3	0.301 16	0.0046
~ 7	559 10 5	44.7.18	0 532		8-19 max	1826 3		
y 8	563.23 8	1.17 6	0.0140		avg 8-20 max	726.5 14 1917 3	0.265 16	0.0041
γ 9 γ 12	571.30 20 657.03 5	0,139 8 6,1 4	0.0017	[[avg	768.1 14	0.69 7	0.0111
γ 14	665.31 7	0.39 4	0.0056]]	avg	837.7 14	0.964 24	0.0172
γ 17 γ 19	740.12 8	0.116 /	0.0018		β -22 max	2070 3 838-9 14	20 6 6	0 368
γ 23 τ 20	867.63 8	0.125 7	0.0023	11	8-23 max	2087 3	20.0 0	0.000
y 31	1212.72 18	1.63 11	0.0420		avg 8-24 max	846.9 14 2226 3	0.85 6	0.0153
γ 32 γ 33	1216.02 7 1228.52 8	3.84 24 1.39 8	0.0996 0.0363		avg	911.7 14	17.2 9	0.334
y 35	1439.13 8	0.326 19	0.0100		avg	1010.7 15	1.0 10	0.0215
γ 36 γ 42	1787.67 8	0.331 23	0.0126]	8-26 max avg	2486 3	6.0 9	0.133
γ 46 ~ 47	2096.33 14	0.66 5	0.0295	+	otal B-	<i>cuc</i> 7 6 0		
,			0.0000		avg	646./ 18	99.7 19	(• 3 /
34 We By	(avg) = 1152.0	ea:); ΣΙγ= 0.65%			7 we Ef	eak 8's omitte 3(avg) = 281.2	d: 2; ΣΙβ= 0.34%	
• ⁷⁷ Ge β^- Decay Feeds	(11.30 h 1) ^{7 7} As	l (min)	= 0.10%	X X X	-ray Kα ₂ -rav Kα ₁ -rav Kβ γ 2	10.50800 1 10.54370 1 11.7 156.36 3	0.57 10 1.12 20 0.26 5 0.79 4	0.0001 0.0003 ≈0 0.0026
1	1 24		0 0001		γ 3 γ 4	159.11 15 177.28 3	0.228 9	0.0008
Auger-K	9.1	1.5 3	0.0003		γ 5	194.762 20	1.75 6	0.0073
ce-K- 2 ce-K- 7	144.49 3 199.164 19	0.104 6 1.93 9	0.0003		γ δ γ 7	208.98 8	30.5 9	0.0042
ce-K- 8	203.638 22	0.7 5	0.0031		γ 8 γ 9	215.505 22	28.3 9	0.130
ce-L- 7 ce-K- 11	209.504 19 252.573 17	0.223 10	0.0010 0.0037		7 10	254.74 16	0.208 6	0.0011
					γ 11 γ 12	264.440 17 268.10 22	53.3 9 0.586 10	0.300 0.0033
β-1 max	188 3 52-5 10	0.217 5	0 0002		γ 14 15	337.63 6	0.229 7	0.0016
β - 2 max	277 3	0.217 5	0.0002		γ 18	338.66 4 367.397 16	13.9 4	0.0048
avg 6-3 max	80.8 10 347 3	0.147 4	0.0003		γ 20 γ 21	416.328 14 419 75 3	21.6 5	0.191
avg	104.6 11	1.022 24	0.0023		γ 23	439.438 20	0.200 4	0.0019
p=4 max avg	108.8 11	2.23 4	0.0052		γ 25 γ 27	461.378 15 475.433 17	1.251 25 0.979 19	0.0123
β-5 max avg	591 3 193,5 12	2.17 4	0,0089		y 29	520	0.29 4	0.0032
$\beta = 6 \text{ max}$	701 3				γ 33 γ 36	582.537 14	0.771 14	0.189
avg 6-7 max	236.7 12 730 3	7.9 4	0.0398		γ 38 ~ #0	614.39 624 76 9	0.50 6	0.0066
avg	248.3 12	2.47 5	0.0131		γ 41	631.823 13	6.89 12	0.0927
avoj	414.1 13	1.83 4	0.0161		γ 42 γ 47	634.389 15 673	2.06 4 0.53 6	0.0278 0.0076
β - 9 max	1141 3	7.00 13	0,0626		γ 48 ~ 52	673	0.132 14	0.0019
6-10 max	1173 3				7 52 7 53	705.24 8	0.105 2	0.0034
avg 8-11 max	433.8 13 1244 3	0.890 17	0.0082	Į	γ 54 γ 55	712.35 4	0.818 15	0.0124
avg	464.6 14	3.65 9	0.0361	1	r 57	743.649 25	0.175 4	0.0028

(Continued)

^{7 7} Ge—^{7 9} Se

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiatio Type	n Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
γ 58 ~ 50	745.748 12	0.955 17	0.0152	γ <u>3</u>	87.876 20	0.20 6	0.0004
τ 59 τ 60 τ 62	766.715 13	0.776 14	0.0140	7 6 7 9	161.933 20 238.999 20 240 700 20	0.13 4 1.6 4	0.0004
γ 63 γ 65	784.770 12	1.299 23	0.0217	γ 10	520.652 20	0.61 16	0.0023
γ 68 γ 69	810.352 12 813 36 8	2.24 4	0.0387	10	weak γ 's omitte	d:	
γ 70 γ 71	823.13 4	0.594 11	0.0104	1	(avg) = 245.5	$z_1 = 0.105$	
γ 73 γ 76	875.191 17	0.773 14 0.121 2	0.0144				
τ τ τ γ 78	900.97 11 906.986 13	0.119 2	0.0023	• ^{7 7} Br EC Dec	ay (57.04 h 11)	I (min) = 0.10%
γ 79 γ 81	913.805 20 923.143 20	0.361 7	0.0070	Auger-L	1.32	115 7	0.0032
γ 83 γ 85	925.473 928.853 12	0.71 8	0.0140	ce-K- 4	75.218 20	0.161 18	0.0003
γ 86 γ 93	939.350 15	0.281 5	0.0056	ce-k- 9 ce-L- 9	160.279 21	0.134 6	0.0025
7 100 7 101	1061.699 23	0.149 3	0.0034	ce-K- 15	226.341 20	0.219 7	0.0011
γ 102 7 102	1085.188 13	5.98 11	0.138	8+ 1 man	x 343 3 x 151 7 12	073 //	0 0020
γ 104 γ 105	1124.99 3	0.116 2	0.0028		y (31•7 12		0.0024
γ 108 γ 112	1193.263 13	2.54 5	0.0645	X-ray L X-ray Ko	1.38 1.18140 2	1.05 24 15.4 9	≈0 0.0037
γ 1 14 γ 1 16	1215.418 25	0.125 2	0.0033	X-ray Ko X-ray Ko	11.22240 2 12.5	30.0 17	0.0072
γ 118 γ 138	1263.862 15	0.838 15	0.0226	γ 4 γ 6	87.876 20 138.95 9	1.40 4 0.129 6	0.0026
y 121 y 122	1309.271 16	0.481 9	0.0134	γ 9 γ 10	161.933 20 180.68 7	1.10 3	0.0038
γ 123 γ 130	1319.662 17 1368	0.297 6 3.3 4	0.0084 0.0963	γ 13 γ 15	200.40 7	1.21 6	0.0052
γ 134 γ 138	1452.59 4 1476.524 22	0.1192 0.2395	0.0037	γ 17	249.790 20	2.98 10	0.0159
γ 139 γ 141	1479 1495.597 17	0.126 13 0.492 9	0.0040 0.0157	7 20	281.68 3	2.29 7	0.0137
γ 143 γ 146	1538.763 20 1573.688 20	0.140 2 0.650 12	0.0046 0.0218	y 21 y 22	303.76 9	1.18 4	0.0263
γ 151 γ 152	1709.812 25	0.303 6	0.0110	γ 28 γ 33	384.99 B 439.47 6	0.84 3 1.56 5	0.0069 0.0146
γ 154 ~ 162	1727.18 3	0.146 3	0.0054	γ 35 γ 37	484.57 7 517.9 4	1.00 4 0.16 5	0.0103 0.0018
γ 168 ~ 170	2000.10 3	0.553 10	0.0236	γ 38 γ 40	520.652 20 565.91 19	22.4 6 0.427 17	0.248 0.0052
γ 171 γ 172	2089.60 3	0.236 5	0.0105	γ 41 γ 42	567.90 8 574.64 8	0.86 3 1.19 4	0.0104 0.0145
γ 172 γ 176	2341.63 4	0.466 9	0.0233	γ 43 γ 44	578.91 7 585.48 7	2.96 10 1.57 5	0.0365 0.0196
94 we Έγ	ak γ's omitte (avg)= 1100.8	1: ; ΣΙγ≓ 2.90%	i	γ 49 γ 52 γ 60	755.35 7 817.79 6 1005.05 6	1.67 5 2.08 7 0.92 3	0.0268 0.0362 0.0198
• ^{7 7} As β^- Decay	(38.8 h 3)	t (min)	= 0.10%	38 Max	weak γ's omitte Εγ(avg)= 428.2 imum γ±-intensi	d: ; $\Sigma I \gamma = 0.83\%$ ty = 1.46%	
8- 1 max	170 4	0 60 10	0.0007			х. х	
$\beta = 2 \max_{avg}$	441 4	0.65.17	0.0010	■ 79 Sa 8- Daga	· · · · · · · · · · · · · · · · · · ·	l (min)	- 0 10%
β - 3 max	451 4	1.5 4	0 0045		y (<0.064 y)	r (mm)	- 0.10%
8-4 max	690 4 231_8 16	97,18	0.479	B-1 max avg	149 5 52.2 19 1	100	0.111
total B-	228.5 17	100.0 10	0.487				
2 we	ak β's omitted	1;	V• 40 /				
₹B	(avg) = 117.1	: ΣIβ= 0.02%					

⁷⁹ Kr-⁸¹ Kr

						μ ωι- η,
5.04 h 10)	l (min) = 0.10%	● ^{8 0} Br β ⁻ Decay	(17.4 m 2)	1 (min) = 0.10%
1.4	105 5	0.0032	%β⁻ De See also	ecay∍≈ 91.74 17 o ⁸⁰ Br EC Deca	y (17.4 m)	
10.2	31 3	0.0067				
30.7 4	0.214 22	0.0001	8~ 1 max	686 11		
247.75 10	0.104 3	0.0003	avg	229 5	0.19 3	0.0009
349 9			5-2 max avg	254 5	0.32 4	0.0017
154 4	0.181 19	0.0006	6-3 max	1390 11		
609 8			avq	526 5	6.2 6	0.0695
265 4	6.9 3	0.0389	6-4 max	2005 11	85 0 6	1 16
262 4	7.1 3	0.0396	total 8-		0.00	1.40
k Ale omitte			avg	783 6	91.7 9	1.53
(avg) = 102.8	3; ΣΙΒ= 0.02%	1	~ 1	616 2 5	666	0 0867
			r 2	639.40 20	0.26 3	0.0035
1.48	1.1 4	≈0	7 3	703.80 20	0.19 3	0.0029
11.87760 2	14.9 9	0.0038			_	
11.92420 2	28.9 15	0.0074	1 we	ak γ 's omitte	d:	
13.3	7.1 4	0.0020	5 7	(avg) = 1200.1	$21\gamma = 0.07\%$	
135.99 10	1.00 10	0.0029				
180.21 15	0.10 5	0.0004				
208.45 10	0.78 4	0.0035	● ⁸⁰ Br IT Decay ((4.42 h 1)	I (min) = 0.10%
217.02 10	2.40 10	0.0111	Feeds 8	^o Br (17,4 m)		,
299.51 10	1.57 7	0.0100				
306.31 15	2.60 10	0.0170	luger-L	1.4	175 8	0.0053
344.70 10	0.240 10	0.0018	Auger-K	10.2	48 4	0.0103
389.00 10	1.52 7	0.0126	ce-K- 1	23.5783 21	53.6 7	0.0269
522.98 20	0.250 10	0.0028	ce-L- 1	35.2700 21	6.04 17	0.0045
525.32 15	0.430 20	0.0048	ce-M- 2	35.44	0.95 3	0.0007
606.07 10	8.10 20	0.105	ce-NOP- 1	37.0247 21	0.314 9	0.0002
832.04 10 934 81 15	1.26 6	0.0223	ce-L- 2	47.1 4	22.4 5	0.0225
1025.70 10	0.156 9	0.0034	ce-M- 2	48.6 4	3.79 11	0.0039
1115.1 3	0.370 20	0.0088	Ce-MOP+ Z	48.9 4	1.20 4	0.0013
1332.13 10	0.44 3	0.0125	X-rav L	1.48	1.8 6	æ ()
k γ's omitte	ed :		X-ray Kaz	11.87760 2	22.9 13	0.0058
avg) = 787.3	; ΣΙγ= 0.55%	[X-ray Kai	11.92420 2	44.4 24	0.0113
m γ±-intensi	ty = 14.21%	ł	X-rav KB	13.3	11.0 7	0.0031
			y 2	48.9 4	0.335 10	0.0003
17.4 m 2)	l (min) = 0.10%				
β^{-} Decay = 8 ⁸⁰ Br β^{-} Deca	y (17.4 m)		• ⁸¹ Kr EC Decay	(2.1E5 y 2)	l (min) = 0.10%
1.32	7.0 5	0.0002	Auger-L	1.4	110 6	0.0033
9.67	2.16 19	0.0004	Auger-K	10.2	31 3	0,0067
		(X-ray I.	1.48	1.1 4	*0
848.3 20	2 2 2 7	0 0170	Y-ray Kaz	11.87760 2	14.9 8	0.0038
307.8 9	2.20	0.01/2	X-ray Kai	11.92420 2	28.9 16	0.0073
11 10140 0	0.04 6	0 0000	X-ray KB	13.3	7.1 4	0.0020
11.22240 2	0.94 b 1.82 11	0.0002	ז יי	213.990 11	3.0 3	0.0212
12.5	0.44 3	0.0001				
665.80 20	1.05 12	0.0149				
k γ's omitte avg)= 957.5 m γ±-intensi	d: ; ∑Iy= 0.07% ty = 4.40%					
	1.4 10.2 30.7 247.79 10 348 8 154 4 609 8 265 4 262 4 k β 's omitted avg) = 102.8 1.48 11.87760 21.92420 21.3 44.2 4.35.99 10 265.4 1.48 11.87760 21.92420 21.3 44.2 1.3 44.2 1.3 44.2 1.3 3 44.2 1.3 208.45 10 217.02 10 265.31 15 344.70 10 397.56 10 525.32 15 606.07 10 31.55 344.70 10 397.56 10 525.32 15 606.07 10 115.1 31 32.13 10 k γ 's omitted avg) = 787.3 m γ t-intensi 7.4 m 2) β^+) Decay = 8 80 Br β^- Deca 1.32 9.67 848.3 20 367.8 9 11.18140 2 1.22240 2 12.5 665.80 20 k γ 's omitted avg) = 957.5 m γ t-intensi	1.4 105 5 10.2 31 3 30.7 4 0.214 22 247.79 10 0.104 5 348 8 154 4 0.181 19 609 8 265 4 6.9 3 262 4 7.1 3 k β 's omitted: avg) = 102.8; Σ IB = 0.02% 1.48 1.1 4 11.87760 2 14.9 9 11.92420 2 28.9 16 13.3 7.1 4 44.2 4 0.210 20 135.99 10 1.00 10 180.21 15 0.10 5 208.45 10 0.78 4 217.02 10 2.40 10 261.26 10 12.7 4 299.51 10 1.57 7 306.31 15 2.60 10 344.70 10 0.240 10 389.00 10 1.52 7 397.56 10 9.5 3 522.98 20 0.250 10 525.32 15 0.430 20 606.07 10 8.10 20 832.04 10 1.26 6 934.81 15 0.126 7 1025.70 10 0.156 9 1115.1 3 0.370 20 1332.13 10 0.44 3 k γ 's omitted: avg) = 787.3; Σ I γ = 0.55% m γ t-intensity = 14.21% 7.4 m 2) I (min β^+) Decay = 8.26 17 ⁸⁰ Br β^- Decay (17.4 m) 1.32 7.0 5 9.67 2.16 19 848.3 20 367.8 9 2.20 7 11.18140 2 0.94 6 11.22240 2 1.82 11 12.5 0.44 3 65.80 20 1.05 12 k γ 's omitted: avg) = 957.5; Σ I γ = 0.07% m γ t-intensity = 4.40%	1.4 105 5 0.0032 10.2 31 3 0.0067 30.7 4 0.214 22 0.0001 247.79 10 0.104 5 0.0005 348 8 154 4 0.181 19 0.0006 609 8 265 4 6.9 3 0.0389 262 4 7.1 3 0.0396 k β 's omitted: avg) = 102.8; $\Sigma \Gamma \beta = 0.02\%$ 1.48 1.1 4 $\%$ 0 11.87760 2 14.9 9 0.0038 11.92420 2 28.9 15 0.0074 13.3 7.1 4 0.0020 44.2 4 0.210 20 0.0002 135.99 10 1.00 10 0.0029 180.21 15 0.10 5 0.0004 208.45 10 0.78 4 0.0035 217.02 10 2.40 10 0.0111 261.26 10 12.7 4 0.0707 29.51 10 1.57 7 0.0100 306.31 15 2.60 10 0.0170 344.70 10 0.240 10 0.0118 399.00 10 1.52 7 0.0126 397.56 10 9.5 3 0.0804 522.98 20 0.250 10 0.0028 525.32 15 0.430 20 0.0048 606.07 10 8.10 20 0.105 832.04 10 1.26 7 0.0025 1025.70 10 0.156 9 0.0038 115.1 3 0.370 20 0.0048 606.07 10 8.10 20 0.105 832.04 10 1.26 7 0.0025 1025.70 10 0.44 3 0.0125 k γ 's omitted: avg) = 787.3; $\Sigma \Gamma \gamma = 0.55\%$ m $\gamma t = intensity = 14.21\%$ 7.4 m 2) I (min) = 0.10% β^+) Decay = 8.26 17 ⁸⁰ Br β^- Decay (17.4 m) 1.32 7.0 5 0.0002 9.67 2.16 19 0.0004 848.3 20 367.8 9 2.20 7 0.0172 11.18140 2 0.94 6 0.0002 11.22240 2 1.82 11 0.0004 12.5 0.44 3 0.0017 65.80 20 1.05 12 0.0149 k γ 's omitted: avg) = 957.5; $\Sigma \Gamma \gamma = 0.07\%$ m $\gamma t = intensity = 4.40\%$	1.410550.0032See also10.23130.0067 34.8 8 247.79100.10450.0005 8^{-1} 1 max3488 55.4 0.181190.0006 8^{-2} 2 max3488 55.4 6.930.0389 8^{-2} 2 max26247.130.0396 8^{-2} 2 max1.481.14 0^{-2} arg arg 26247.130.0396 8^{-1} arg 1.481.14 0^{-2} arg arg 1.481.4 9^{-2} arg arg 1.481.4 9^{-2} arg arg 1.481.4 9^{-2} arg arg 1.491.00 0.028 7^{-2} 7^{-3} 1.491.00 10^{-2} 10^{-2} 10^{-2} 1.10010 0.028 7^{-2} 7^{-2} 11.50.10 0^{-7} 0^{-7} 29-5110 1.57 7^{-0} 22.9820 0.250 10^{-2} 22.92 0^{-2} 0^{-2} 0^{-2} 22.92 0^{-2} 0^{-2} 0^{-2} 22.92 0^{-2} 0^{-2} 0^{-2} 22.92 0^{-2} 0^{-2} 0^{-2} 217.02 10^{-2} 10^{-2} 0^{-2} 22.94 0^{-2} 0^{-2} 0^{-2} 22.95 0^{-2} 10^{-2} <td>1.410550.003210.23130.0067247.79100.10450.0005247.79100.10450.0005247.79100.10450.0005348810.0006avg2295546.930.038926247.130.039626247.130.03961.822022.8610.03961.9242022.86100.00741.9242022.86100.00741.9242022.86100.00741.9242022.86100.0074299.51101.5770.0002299.51101.5770.010634.81150.240100.0028277.52102.2670.0275217.02102.40100.0126299.51101.5770.010234.81150.12670.027522.98200.25010.027522.98200.250100.028297.56109.570.002834.81150.126734.81150.255115.130.27734.8150.25537.21.300.002829.672.161934.8150.25537.42.20<</td> <td>1.410550.03210.231.30.00530.740.214247.79100.104247.79100.10431.30.000531.40.18126546.926546.926247.130.710.03626247.126556.266.92627.1330.391102.812621.481.11.420.0361.481.141.337.140.007431.37.140.002441.22.26.91.33.9111.427602.14.9200.65100.077431.37.1201.65111.57201.65111.57201.65111.57201.65111.57201.65100.0024201.65111.57201.65100.0025201.65110.126201.75510.0034201.7550.0034202.700.152202.700.0034202.700.017221.22201.22621.22201.221121.22201.221121.22201.221121.22201.221121.22201.221121.22201.221121.22201.221121.22201.221122.30</td>	1.410550.003210.23130.0067247.79100.10450.0005247.79100.10450.0005247.79100.10450.0005348810.0006avg2295546.930.038926247.130.039626247.130.03961.822022.8610.03961.9242022.86100.00741.9242022.86100.00741.9242022.86100.00741.9242022.86100.0074299.51101.5770.0002299.51101.5770.010634.81150.240100.0028277.52102.2670.0275217.02102.40100.0126299.51101.5770.010234.81150.12670.027522.98200.25010.027522.98200.250100.028297.56109.570.002834.81150.126734.81150.255115.130.27734.8150.25537.21.300.002829.672.161934.8150.25537.42.20<	1.410550.03210.231.30.00530.740.214247.79100.104247.79100.10431.30.000531.40.18126546.926546.926247.130.710.03626247.126556.266.92627.1330.391102.812621.481.11.420.0361.481.141.337.140.007431.37.140.002441.22.26.91.33.9111.427602.14.9200.65100.077431.37.1201.65111.57201.65111.57201.65111.57201.65111.57201.65100.0024201.65111.57201.65100.0025201.65110.126201.75510.0034201.7550.0034202.700.152202.700.0034202.700.017221.22201.22621.22201.221121.22201.221121.22201.221121.22201.221121.22201.221121.22201.221121.22201.221121.22201.221122.30

.

							⁸ ¹ Rb— ⁸ ² Sr
Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
 ⁸¹ Rb EC Decay Feeds 	/ (4.58 h 1) ⊨ ⁸¹ Kr	l (mir	n) = 0.10%	γ 23 γ 24 γ 25	952.10 20 1007.57 9 1043.97 3	0.37 3 1.268 18 27.3 4	0.0074 0.0272 0.608
Auger-L Auger-K ce-K- 7 ce-L- 7	1.5 10.8 175.97 3 188.38 3	106 6 30 3 25.6 8 4.37 14	0.0034 0.0068 0.0958 0.0175	7 27 7 30 7 31 7 32 7 33	1081.40 20 1317.47 5 1426 1474.82 8 1650.30 10	0.62 4 26.9 4 0.11 5 16.58 17 0.741 11	0.0144 0.755 0.0033 0.521 0.0250
ce-MNO- 7	190.01 3	1.439 14	0.0058	γ 34	1779.60 20	0.113 1	0.0043
8+1 max avg 8+2 max avg	600 30 264 13 1050 30 458 14	1.7 3 31.4 19	0.0096 0.306		$\varphi_{avg} = 743.6$; ΣΙγ= 0.76%	
total B+ avg	448 15	33.1 20	0.316	• ^{8 2} Rb β^+ Decay	(1.25 m 3)	l (min) = 0.10%
3 ਮ ਸ਼ੁ	eak β's omitt β(avg)= 112.	ed: 2: ΣΙβ= 0.01%		Auger-L Auger-K	1.5 10.8	5.03 1.4113	0.0002 0.0003
X-ray L X-rav Kα ₂ X-rav Kα ₁ X-ray Kβ	1.59 12.5980 2 12.6490 2 14	1.4 6 0 15.8 9 0 30.6 17 7.8 5	≈0 0.0042 0.0082 0.0023	8+ 1 max avg 8+ 2 max	1184 19 517 9 1881 19	0.276 17	0.0030
7 6 7 7 7 9	180.20 10 190.30 3 243.80 8	0.125 4 65.7 6 0.204 7	0.0005 0.266 0.0011	avg B+ 3 max avg	833 9 2580 19 1157 9	0.171 21 11.7 5	0.0030 0.288
γ 14 γ 16 γ 19	357.38 4 388.84 6 446.140 20	0.558 14 0.283 7 18.95 18	0.0043 0.0023 0.180	B+ 4 max avg total B+	3356 19 1524 9	83.3 5	2.70
γ 20 γ 21 γ 23 γ 24	456.71 3 476.68 3 510.5 5 537.60 4	2.313 25 0.388 8 0.5 3 1.551 25	0.0225 0.0039 0.0050 0.0178	avg 3 w E	1474 10 eak β's omitte β(avg) = 628.6	95.5 7 d: ; ΣΙβ= 0.06%	3.00
γ 26 γ 27 γ 33 γ 36 γ 37 γ 40 γ 43	549.05 4 568.90 4 729.09 6 803.74 6 834.73 6 977.15 4 1041.25 5	0.328 8 0.394 8 0.217 7 0.657 9 0.631 9 0.381 8 0.394 8	0.0038 0.0048 0.0034 0.0112 0.0112 0.0079 0.0087	X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 2 γ 4 γ 5	12.5980 20 12.6490 20 14 698.330 20 776.49 3 1395 2 3	0.75 4 1.46 8 0.371 20 0.147 20 13.5 5 0.509 20	0.0002 0.0004 0.0001 0.0022 0.223
39 we Bi Maxin	eak γ's omitte γ(avg)= 626.0 mum γ±-intens:	ed: 5; $\Sigma I \gamma = 1.03\%$ ity = 66.23%		8 W E Maxi	eak γ 's omitted γ (avg) = 1633.8 mum γ t-intensi	d: : ΣΙγ= 0.33% ty =191.01%	0.0151
● ^{8 2} Br β ⁻ Decay	(35.30 h 3)	l (min)	= 0.10%	• ^{8 2} Sr EC Decay Feeds	(25.0 d 4) ^{; 2} Rb (1.25 m)	l (min)	= 0.10%
8- 1 max avg 8- 2 max avg total 8-	264.6 15 76.2 5 444.3 15 137.8 6	1.359 20 97.9 6	0.0022 0.287	Auger-L Auger-K	1.68 11.4	107.2 18 28.5 7	0.0038 0.0069
avq 1 we Ef	137.0 6 ak B's omitte 3(avg) = 171.6	99.3 6 d: ; ΣΙβ= 0.09%	0.290	X-ray L X-ray Κα ₂ X-ray Κα ₁	1.69 13.33580 2 13.39530 2	1.6 6 16.8 4 32.4 5	≈0 0.0048 0.0093
Y 1 Y 4 Y 6 Y 7 Y 12 Y 14 Y 15 Y 17 Y 19 Y 20	92.184 8 137.40 20 221.45 3 273.45 3 554.320 20 606.30 10 619.070 20 698.330 20 776.49 3 827.81 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0014 0.0004 0.0106 0.0047 0.833 0.0151 0.568 0.419 1.38 0.426	A LAY NO	15	U 1 L	0.0027

.

^{8,3} Br-^{8 4} Br

Radiation Type	Energy (keV)	Intensity (%)	$\Delta(extbf{g-rad}/ \mu extbf{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
 ^{8 3} Br β⁻ Decay % Feed 	(2.39 h 2) ing to ⁸³ Kr (1	l (min .83 h) ≈ 99.974) = 0.10% 8	● ⁸⁴ Br β Decay	(31.80 m 8)	l (min) = 0.10%
0- 1	200 15			6-1 max avg	480 30 152 10	0.22 5	0.0007
$B^{-1} max$ avg $B^{-2} max$	118 6 919 15	1.3 4	0.0033	8-2 max avg	560 30 179 10	2.1 4	0.0080
avg	323 7	98.6 4	0.678	8-3 max avg	590 30 191 10	0.49 7	0.0020
avg	320 7	100.0 6	0.682	β-4 max avg	750 30 253 11	11.7 13	0.0631
2 we В В	ak β 's omitt (avg) = 112.	ed: 7: ΣI8= 0.10%		B−5 max avg	790 30 272 11	0.29 4	0.0017
	520 640 10	1 2 0	0.01/17	B- 6 max avg	800 30 276 11	0.18 5	0.0011
y 0	529.040 TO	1.J 4	0.0147	B- / max avg	343 11	2.5 3	0.0183
9 We Εγ	(avg) = 537.	ea: 4; ΣΙγ= 0.10%		8 max avg	442 12	0.49 14	0.0046
				8- 9 max avg	490 12	9.5 11	0.0992
● ⁸³ Kr IT Decay (1.83 h 2)	l (min	= 0.10%	β-10 max avg	616 12	3.9 4	0.0512
		445 0 04		e=10 max	763 12	1.13 22	0.0184
Auger-L ce-L- 1 co-M- 1	1.5 7.469 10	165.2 21 77.7 6 12 7 4	0.0053	8-13 max	790 12	7.4 9	0.125
ce-NOP- 1	9.366 10	4.20 12	0.0008	avor 8-14 max	826 12 2180 30	1.9 3	0.0334
ce-K- 2	17.834 20	24.3 6	0.0092	avg 8-15 max	888 13 2330 30	0.34 7	0.0064
ce-M- 2 ce-NOP- 2	31.872 20	10.4 3	0.0071	avg 8-16 max	955 13 2780 30	1.6 4	0.0325
	528 150 20	5.44 10		avg 8-17 max	1166 13 3790 30	12.1 20	0.301
$\gamma 1$.1.59 9.390 10	2.2 9 5.41 16	≈0 0.0011	avg 8-18 max	1650 13 4670 30	13.7 16	0.481
X-ray Kaz X-ray Ka ₁	12.5980 2 12.6490 2	0 4.57 25	0.0012	avg total 8-	2072 13	32 5	1.41
x-ray KB	14	2.26 13	0.0007	a∀q	1230 21	102 6	2.66
iwe Εγ	(avg) = 32.	2; ΣΙγ= 0.05%		1 we Bi	eak β's omit: 3(avg)= 1194.	ed: 0; ΣΙβ= 0.06%	
- 8301 50 Dawn	(00.0.1.1)	1.4	0.10%	γ 1 r 3	230.20 20 354.70 20	0.31 5	0.0015
 KD EC Decay % Feed 	ding to 83 Kr (1.83 h) = 76 4) = 0.10%	γ 4 γ 10	382.00 20 604.8 3	0.57 10	0.0046
Auger-L	1.5	127 8	0,0041	γ 12 γ 13	736.5 3 802.20 20	1.31 24 6.1 8	0.0205 0.104
ce-L- 1	7.469 10	19 3	0.0029	γ 14 γ 15	881.50 10	42 4	0.792
ce-NOP- 1	9.366 10	1.00 15	0.0002	Y 17	987.3 4	0.78 14	0.0164
Auger-K	10.8	31 3	0.0071	γ 18 γ 19	1005.7 7	0.46 14	0.0099
¥ - ma m 1	1 50	1 7 7		y 20	1082.6 4	0.14 3	0.0033
y 1	9.390 10	1.29 20	0.0003	γ 21 γ 23	1119.1 4	0.14 3	0.0034
X-ray Ka ₂	12.5980 2	0 16.4 12	0.0044	γ 24	1213.30 20	2.6 4	0.0676
X-ray Ka ₁	12.6490 2	0 31.8 23	0.0086	y 27	1463.8 7	2.0 5	0.0618
x = ray Rp	520.41 3	46 3	0.509	γ 28	1534.7 6	0.101 23	0.0033
γ 6	529.640 10	30.3 19	0.342	7 29 7 30	1578.1 4	0.00 14 0.40 7	0.0221
γ 7	552.650 20	16.4 11	0.193	7 31	1741.2 4	1.6 3	0.0610
γ 11	790.14 5	0.67 4	0.0114	γ 34	1818.7 4	0.24 5	0.0095
y 12	799.36 5	0.243 14	0.0041	γ 35	1877.5 4	1.14 19	0.0456
6 40	ak vis omi++	eg .	[γ 36 7 77	1897.3 3	14.9 19	0.604
υ τε Έγ	(avg) = 591.	9; EIY= 0.14%		7 31 7 78	2029.0 5	2+1 5 0.22 5	0.0912
			ļ	y 39	2200.7 4	1.18 20	0.0554
				γ ⁻ 41	2484.1 3	6.8 9	0.357
				i de la construcción de la constru			(Continued)

^{8 4} Br—^{8 5} Kr

Radiation Type	Energy (keV)	Intensity (%)	$\Delta(extbf{g-rad}/ \mu extbf{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
					·····		
γ 42 ~ 43	2593.7 6	0.14 4	0.0077	8-6 max	2500 100	05 30 00	• • •
γ 43 γ 44	2758.7 5	0.49 10	0.0290	avg total 8-	1030 50	95.72 20	2.10
γ 45 γ 46	2824.1 4 2988.7 7	1.14 19 0.18 5	0.0685	avg	1000 60	100.0 3	2.14
y 47	3045.4 4	2.5 5	0.164	4 we	ak B's omitt	ed:	
γ 48 γ 49	3202.1 7	0.21 5	0.0144	EB	(avg) = 465.	0; ΣIB= 0.20%	
γ 50	3365.8 4	2.9 5	0.209	~ 10	79/ 79 10	0 10/ 11	0 0019
γ 51 γ 52	4084.6 6	0.28 5	0.575	γ 21	802.41 10	2,56 16	0.0437
15		- • .		γ 25 γ 26	861.76 8 865.22 8	0.228 20	0.0042
15 W	$\gamma(avg) = 1122.$.ea: 9; ΣΙγ= 0.67%	۶	γ 27	913.31 9	0.134 12	0.0026
				γ 28 γ 29	919.06 8 924.63 8	0.65 6 1.63 13	0.0127
				y 32	1037.83 8	0.103 11	0.0023
• ⁸⁴ Rb β^+ Decay	(32.9 d 2)	l (mir	n) = 0.10%	γ 40 γ 42	1727.02 11	0.38 3 0.150 13	0.0140
%(EC	+ β^+) Decay =	96.0 3		, , , , , , , , , , , , , , , , , , , ,			
See als	so ⁸ 4 Rb β ^{−−} Deo	сау		34 We Ey	(avg) = 789.	ea: 3; ΣΙγ= 1.08%	
Auger-L Auger-K	1.5 10.8	75 4 21-4 19	0.0024				
			0.0047	 ⁸⁵ Kr β⁻ Decay ((10.72 y 1)	I (min)) = 0.10%
6+1 max avg	777 3 338,5 13	13-67 22	0 0986				
8+ 2 max	1658 3	13.0 22	0.0900	8- 1 max	173.0 20		
avg total 8+	756.3 13	13.50 8	0.217	avg 8-2 max	47.5 6 687.0 20	0.437 11	0.0004
avg	546.1 16	27.17 24	0,316	avg total 8-	251.4 8	99.563 11	0.533
X-rav L	1, 59	1.0 4	~0	avg	250.5 8	100.000 16	0.534
X-ray Ka ₂	12.5980 2	0 11.4 6	0.0030	. 1	513 000 10	0 4 74 44	
X-ray Ka _l X-ray KB	12.6490 2	5.6 3	0.0059	7 1	515.990 10	0.434 11	0.0048
γ 1 ~ 2	881.50 10	67.7 6	1.27				
γ 3	1897.3 3	0.927 10	0.0375	● ⁸⁵ Kr IT Decay (4.48 h 1)	I (min) = 0.10%
Maxin	mum γ±-intens	ity = 54.34%		%IT Dec Feeds ⁸	cay = 21.1 6 ⁵ Kr (10.72 y)		
- 84				See also	⁸³ Kr β [∞] Deca	ay (4.48 h)	
● Rb β ⁻ Decay %β ⁻ D	(32.9 d 2) Decay = 4.0 3	I (min	1) = 0.10%	Auger-L	1.5	7.6 5	0,0002
See als	so ⁸⁴ Rb β^+ Dec	ay		Auger-K	10.8	2.10 19	0.0005
		٠		ce-L+ 1	302.949 20	0.90 4	0.0367
β−1 max avq	890 4 331.2 15	4.0 3	0.0282	ce-MNO- 1	304.582 20	0.295 12	0.0019
,				X-rav L	1.59	0.10 4	~0
		•		X-ray Kaz	12.5980 20	0 1.12 7	0.0003
● ⁸⁵ Br β ⁻ Decay	(172 s 2)	l (min) = 0.10%	X-ray Kα ₁ X-ray Kβ	12.6490 20	0 2.16 13	0.0006
% Feed % Feed	ling to ⁸⁵ Kr (10 ling to ⁸⁵ Kr (4.	0.72 y) = 0.163 48 h) = 99.837	13 13	γ 1	304.870 20	14.0 5	0.0908
6- 1 max	660 100				,		
avg	220 40	0.41 3	0.0019	• ⁸⁵ Kr β^- Decay (4.48 h 1)	I (min)	= 0.10%
avg	260 40	2.23 16	0.0123	%µ De See alco	cay = 78.9 6 ⁸⁵ Kr IT Dece	W (448 b)	
8-3 max	860 100 300 50	0.110.12	0.0007			·, (
$\beta = 4 \max$	1580 100	V I IV 12	0.0007	Auger-L	1.68	3.85 13	0.0001
avg 8-5 max	610 50 1690 100	0.52 5	0.0068	Auger-K	11.4	1.04 4	0.0003
avg	660 50	0.85 10	0.0119	ce+L- 2	149.115 10	0.350 11	0.0091
				ce-MNO- 2	150.858 10	0.115	0.0004
							(Continued)

(Continued)

⁸⁵ Kr-⁸⁶ Y

Radiation	Energy	Intensity	∆(g-rad/	Radiation	Energy	Intensity	∆(g-rad/
	(Kev)	(70)	μαι-ιτή	туре Туре	(Kev)	(70)	μοι-ιιγ
⁸⁵ Kr β ⁻ Decay ((4.48 h 1)	(Continued)		Auger-K ce-K- 2 ce-K- 3	12 215.59 10 222.55 15	0.68 7 1.69 11 0.509 16	0.0002 0.0077 0.0024
B− 1 max avg	710.8 20 238.2 8	0.290 9	0.0015	ce-L- 2	229.47 10	0.195 14	0.0010
8- 2 max avg total 8-	840.7 20 290.4 9	78.6 6	0.486	$\begin{array}{c} X - ray L \\ X - rav K\alpha_2 \end{array}$	1.8 14.09790	1.1 4 2 0.44 3	≈0 0.0001
avg	290.2 9	78.9 6	0.488	X-ray Kα ₁ X-ray K8	14.16500 15.8 231.69 10	2 0.85 6 0.228 15 84.72 13	0.0003 ≈0 0 // 18
1 we Ξβ	ak B's omitters (avg) = 74.	ed: 6; ΣΙβ= 0.02%		7 3	238.65 15	0.322	0.0016
X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 1 γ 2	13.33580 13.39530 15 129.850 20 151.180 10	2 0.612 23 2 1.18 4 0.310 12 0.301 8 75.3 6	0.0002 0.0003 ≈0 0.0008 0.242	● ⁸⁶ Rb β ⁻ Decay %β ⁻ D %EC D	(18.66 d 2) ecay = 99.9948 ecay = 0.0052	l (min) 5 5	= 0.10%
2 we	ak y's omitte	ed:		β− 1 max	697.6 19		
κ.γ	(avg) = 581.	3; ΣΙγ= 0.02%		avg β-2 max	232.5 8 1774.4 19	8.78 8	0.0435
• ⁸⁵ Sr EC Decay (64 84 d 3)	L (min)	= 0.10%	total 8- avg	667.4 10	91.22 8	1.30
• or Lo Decay (04.04 0 5)	1 (()))))	- 0.1076				
Auger-L Auger-K ce-K- 1	1.68 11.4 498.790 10	108.2 19 29.1 7 0.625 19	0.0039 0.0071 0.0066	r 1	1076.63 10	8.78 8	0.201
Y-ray L Y-ray Kg	1.69 13.33580	1.6 6	≈0 0.00#8	● ⁸⁶ Υ β ⁺ Decay (1	4.74 h 2)	1 (min)	= 0.10%
X-rav Ka X-rav Ka X-rav KB Y 1	13.39530 13.39530 15 513.990 10	2 33.0 5 8.66 20 99.270 22	0.0094 0.0028 1.09	Auger-L Auger-K	1.79 12	70 4 18.1 16	0.0027 0.0047
1 we; Е ү	ak γ's omitte (avg)= 868.5	ed: 5; ΣΙγ= 0.01%	,	B+ 1 max avg	420 10 187 5	0.31 4	0.0012
				β+ 2 max avg	485 10 215 5 606 10	0.33 3	0.0015
⁸⁵ Sr EC Decay (67.66 m 7)	l (min)	= 0.10%	avg β+ 4 max	267 5 889 10	0.371 25	0.0021
%EC De See also	ecay ≈ 12.7 ⁸⁵ Sr IT Decay	/ (67.66 m)		avg β+ 5 max	389 5 933 10	0.198 16	0.0016
Auger-I.	1-68	14.22.24	0 0005	avg β+ 6 max	408 5 1066 10	1.28 20	0.0111
Auger-K ce-K- 1	11.4 135.980 10	3.84 10 0.507 16	0.0009	6+7 max avg	1195 10	1.41 12	0.0199
X-ray I.	1.69	0.22 8	a 0	6+ 8 max avg	1254 10 550 5	12.4 5	0.145
X-rav Kaz X-ray Kaz	13.33580 2 13.39530 2	2 2.26 5 2 4.37 7	0.0006	β+ 9 max avg	1373 10 603 5	0.72 12	0.0092
X-ray KB 7 1	15 151.180 10	1.15 3 12.125	0.0004 0.0390	B+10 max avg	1578 10 696 5	5.6 5	0.0830
			, l	β*11 max avg A+12 mar	783 5 2021 10	1.7 10	0.0284
• ⁸⁵ Sr IT Decay (6	97.66 m 7)	l (min)	= 0.10%	8+13 max	899 5 2397 10	3.6 9	0.0689
%IT Dec Feeds ⁸⁵	ay = 87.3 Sr (64.84 d)		[avg B+14 max	1093 5 3174 10	1.0 10	0.0233
See also	⁸⁵ Sr EC Decay	(67.66 m)		avg total B+	1452 5	2.0 12	0.0619
Auger-L	1.79	69.9 6 68 5 5	0.0027	avg	672 6	33.2 23	0.475
ce-M- 1 ce-NOP- 1	6.60 18 6.92 18	13.7 4 4.52 13	0.0019 0.0007	9 We 26	(avg) = 355.	ο; ΣΙβ= 0.27%	(Continued)

8	6	Y	_8	7	к	r
---	---	---	----	---	---	---

Radiation	Energy	Intensity	Δ (g-rad/	Radiation	Energy	Intensity	$\Delta(q-rad/$
Type	(keV)	(%)	uCi-h)	Туре	(keV)	(%)	uCi-h)
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				.,,,,			
X-ray L	1.8	1.1 4	≈0	γ <u>8</u> 2	1854.38 13	17.2 5	0.678
X-ray Kaz	14.09790	2 11.7 6	0.0035	γ 83	1920.72 13	20.8 7	0.851
X-ray Ka	14.16500	2 22.6 11	0.0068	γ 85	2017.1 6	0.132 17	0.0057
X-ray KB	15.8	6.1 3	0.0020	γ 86	2088.09 25	0.247 25	0.0110
γ ¹	132.34 10	0.165 9	0.0005	y 89	2291.8 5	0.124 9	0.0060
y 3	182.34 20	0.11 4	0.0004	v 90	2482.08 17	0.115 9	0.0061
v u	187.87 13	1.26 5	0.0051	y 92	2567.97 18	2.25 11	0.123
7 5	100 90 13	1 0 1 0	0.0001	~ 93	2610 11 20	1 24 8	0 0688
~ 6	200 00 73	0 206 17	0.0041	₩ 9(I	2610.11 20	0 16 5	0.0000
, ,	203.00 23	0 306 17	0.0010	~ 96	2704 0 4	0.206 17	0.0172
1 1	233.37 23	0.370 17	0.0020	7 90	2754.5 4	0.200 7	0.0123
γ 8	237.9 3	0.132 25	0.0007	7 99	2000.9 3	0.36 /	0.0232
7 9	252.05 13	0.3/1 1/	0.0020	7 101	3009.7 4	0.115 17	0.0076
y 11	264.53 13	0.536 25	0.0030	7 102	3334.0 5	0.124 1/	0.0088
γ 12	307.00 10	3.46 9	0.0227			-	
y 13	331.08 23	0.83 3	0.0059	23 we	ak γ's omitte	ed:	
γ 15	370.28 17	0.82 5	0.0065	El	(avg)= 1366.'	l; ΣIγ= 1.03%	
γ 16	380.4 3	0.45 4	0.0037	Maxim	um γ±-intensi	ty = 66.37%	
y 17	382.86 23	3.63 12	0.0296				
γ 18	425.97 23	0.305 17	0.0028				
y 19	439.5 3	0.20 7	0.0019				
y 20	443.13 10	16.9 5	0.160	°(
v 21	444.18.23	0.64 17	0 0061	● °°Zr EC Decay	(16.5 h 1)	I (min) = 0.10%
¥ 23	469 24 25	0.297 25	0.0030	Feeds ⁸	⁶ Y (14.74 h)		
7 25 7 26	515 19 20	1 90 15	0.0537				
7 20	500 57 10	4.03 15	0.0537				
7 27	500.57 10	4.70 13	0.0392	Auger-L	2	189 11	0.0077
y 28	608.29 10	2.01 15	0.0261	ce-K- 1	12.06 10	70 6	0.0180
γ 24	618.2 4	0.21 4	0.0028	Auger-K	12.7	47 6	0.0126
γ 30	627.72 10	32.6 10	0.436	ce-L- 1	26.73 10	8.7 7	0.0050
y 32	644.82	2.2 4	0.0306	ce-MNO- 1	28.71 10	1.95 14	0.0012
γ 33	645.87	9.2 11	0.126	Ce-K- 9	225.76 10	3.56 10	0.0171
γr 35	689.29 25	0.17 4	0.0025	ce-1 - 9	240.43 10	0.446 13	0 0023
γ 36	702.2 6	0.25 9	0.0037		240.45 10	0 1 117 11	0.00025
γ 37	703.33 10	15.4 5	0.231	Ce into 4	242.47 10	0.14/ 4	0.0000
γ 38	709.90 10	2.62 8	0.0397				
v 39	719, 17 23	0.22 4	0.0034	Y-ray I	2	n 3 1u	0 0002
× 40	740 81 13	1.36 5	0 0215	Y-ray E	1 00200 2	22 1 10	0.0105
v 41	767 63 13	2.4.4	0.0391		14.00290 2		0.0103
v 42	768 25	0 32 11	0 0052		14.90040 2	47 5 4 4	0.0203
r 42	700.23	22 11	0.0000	x-ray KB	10.7	17.5 11	0.0062
7 45 ~ 0h	703 6 3	0.76 1	0.072	7	29.10 10	21.6 15	0.0134
7 44 7 11E	/03.0 3	0.20 4	0.0044	7 4	135.60 10	0.47 5	0.0014
Y 45	820.02 13	3.30 9	0.0581	γq	242.80 10	95.80 10	0.495
γ 46	833.72	1.5 4	0.0264	γ 10	612.00 10	5.7 3	0.0743
γ 47	835.67	4.4 6	0.0778	γ 11	620.60 20	0.27 3	0.0036
γ 48	882.96 17	0.25 9	0.0047				
γ 49	887.40 17	0.44 5	0.0083	7 we	ak γ's omitte	d :	
y 50	955.35 20	1.04 5	0.0212	Εγ	(avg) = 169.3	; EIY= 0.45%	
y 51	971.43 18	0.27 4	0.0056				
γ 52	1017.93 23	0.18 12	0.0039				
γ 53	1024.04 10	3.79 17	0.0828				
γ 54	1076.63 10	82.5 4	1.89	• 87 Kr 2- D-	76.0	• / •	0 100
γ 56	1092.68 13	0.69 5	0.0161	● ^{or} κr β Decay (/0.3 m 5)	I (min) = 0.10%
y 57	1102.02 23	0.198 25	0.0046	Feeds ⁸	⁷ Rb		
γ 58	1133.3 10	0.297 25	0.0072				
v 61	1153.05 10	30.5 10	0.750		1		
× 63	1163 03 10	1 19 5	0 0202	Auger-L	1.68	0.194 8	≈0
7 05	105.05 10	1 6 7 6	0.0292	ce-K- 2	387.378 20	0.174 6	0.0014
7 04	1203.11 10		0.0410				
7 00	12/0.10 13	0.05 10	0.01/6	0- 1	500 F		
γ 66	1283.96 13	0.29 11	0.0079	s- 1 max	580 5		
γ 67	1294.9 3	0.29 9	0.0080	avg	187.8 19	0.50 3	0.0020
γ 68	1296.03 23	0.54 4	0.0150	8-2 max	834 5		
7 70	1349.15 10	2.95 10	0.0846	avg	287.5 21	0.108 12	0.0007
γ 71	1404.8 4	0.18 5	0.0054	6- 3 max	928 5		
γ 72	1415.20 23	0.33 9	0.0099	avq	326.4 21	4.4 3	0.0306
γ 73	1507.86 10	0.35 5	0.0114	8- 4 max	1078 5		
v 74	1533 19 13	0.22 4	0.0073	ava	389.3 22	0.58 4	0.0048
v 75	1535.67 13	0.12 4	0.0039	8- 5 mar	1334 5		
- 76	156/1 // 5	0 1 2 4	0 00000		500.4.22	9.5 6	0.101
, ¹⁰	1606 25 12	0.10 0	0.0000	avy R→ K maw	1475 5	J.J. U	0. 701
7 77	1040.20 13	0.035 1/	0.0230		541J J	E E 1 00	0 0660
7 /8 70	1/11.6 /	0.1/ 4	0.0063	avg	302.0 23	3.31 42	0.0000
y 79	1724.15 10	0.55 5	0.0203	o" / max	1511 5		
γ 80	1790.90 10	1.00 5	0.0381	avg	578.7 23	0.42 6	0.0052
γ 80 γ 81	1790.90 10 1801.70 10	1.00 5 1.65 5	0.0381	avg	578.7 23	0.42 6	0.0052 (Continued)

⁸⁷ Kr—⁸⁸ Kr

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ µCi-h)
^{8 7} Kr β ⁻ Decay	(76.3 m 5)	(Continued)		● ^{8 7} Sr IT Decay (2.805 h 3)	l (mir	n) = 0.10%
				%IT Dec	cay = 99.70 8		
8- 8 max	2148 5			See also	⁸⁷ Sr EC Deca	y (2.805 h)	
avg	870.0 24	0.62 10	0.0115				
er y max avg	2311 5	0.16 6	0 0032	Auger-L	1.79	17.9 10	0.0007
8-10 max	2499 5		0.0052	Auger-K	12	4.5 4	0.0012
avg	1033.7 24	0.124 11	0.0027	Ce-K- 1	372.30 8	14.0 4	0.115
8-11 max	3044 5	694	0 190	ce-M NO - 1	388.04 8	0.704 21	0.0058
8-12 max	3486 5	0., 4	0.190				
avg	1502.0 24	40.7 14	1.30	X-rav L	1.8	0.29 10	*0
A DU CI CO	1694.8 24	30.4 24	1.10	$X = ray Ka_2$ X = ray Ka_	14.16500	2 2 9 2 15	0.0009
total B-				X-ray KB	15.8	1.51 8	0.0005
avg	1324 3	100 3	2.82	γ 1	388.40 8	82.3 4	0.680
y 2	402.578 20	49.5 16	0.424				
7 6	673.87 4	1.91 10	0.0274	BTV EC Decay	803 5 3)	l (mir	= 0.10%
7 / 7 B	814.25 /	0.168 12	0.0029	Feeds 8	⁷ Sr (2.805 b)	• (000	1) - 0.10%
7 9	845.43 4	7.3 4	0.131	i ccus	31 (2.005 11)		
γ 12	946.64 15	0.139 11	0.0028		4 70		
γ 15 15	1175.40 8	1.12 6	0.0281	Auger-L Auger-K	1.79	27.0 23	0.0040
7 10 7 17	1382.53 7	0.287 18	0.0085	ce-K- 2	468.60 20	0.235 7	0.0023
7 18	1389.91 16	0.124 11	0.0037				
y 20	1531.2 4	0.36 6	0.0116	B+ 1 max	451.3 13		
7 21	1577.99 14	0.129 11	0.0043	avg	200.5 6	0.160 20	0.0007
y 22 y 23	1740.52 8	2.05 10	0.0760				
7 24	1842.61 24	0.139 11	0.0054	X-ray L	1.8	1.7 6	≈ 0
y 25	2011.88 12	2.90 14	0.124	X-ray Kaz	14.09790	2 17.5 7	0.0053
γ 27 ~ 29	2408.50 20	0.213 17	0.0109	X-ray Ke	15.8	9.1 4	0.0031
r 29	2558.10 20	3.9 3	0.213	γ 2	484.70 20	93.94 9	0.970
γ 31 γ 31	2811.40 20	0.317 23	0.0190	Maxim	um γ±-intensi	ity = 0.32%	
13		-4.					
15 wee Εγ	(avg) = 1620.	1; ΣIγ= 0.65%		● ⁸⁸ Kr β ⁻ Decay	(2.84 h 3)	l (min) = 0.10%
				Feeds ⁸	^{s ®} Rb		
⁸⁷ Rb β ⁻ Decay	(4.73E10 v 3)	L (min) = 0.10%	Auger-L	1.68	14.9 7	0.0005
	(. (,,	Auger-K	11.4	4.04 21	0.0010
A- 1 may	273.3 19			Ce-K- 1	12.313 14	10.7 6	0.0028
avq	78.8 7	100	0.168	ce-L- 1	25.448 14	1.23 7	0.0007
,				ce-NNO- 1	27.191 14	0.273 16	0.0002
				ce-K- 4	150.78 4	0.208 21	0.0007
870 -				ce-L- 7	194.255 15	0.138 15	0.00044
● ° 'Sr EC Decay (%EC De	2.805 h 3) ecay = 0.30 8	I (min) = 0.10%		440.47		
Feeds 8	⁷ Rb				142 17	0.353.25	0.0003
See also	⁸⁷ Sr IT Deca	y (2.805 h)		β− 2 max	365 17	0000020	0.0000
		-		avg	109 6	2.65 16	0.0062
Auger-L	1.68	0.32 8	æ0	β^{-3} max	521 17	67 H	0 225
				β-4 max	681 17	0/ 4	0.235
				avg 8-5 max	227 7 824 17	9.1 5	0.0440
				avg	284 7	0.14 3	0.0008
					355 8	0.204 19	0.0015
				B-7 max avg	1198 17 441 8	1.92 11	0.0180
				β-8 max avσ	1252 17 464 8	0.23 4	0.0023
			l				(Continued)

(Continued)

^{8 8} Kr-^{8 8} Y

Badiation	Energy	Intensity	A/a rad/	Radiation	Energy	Intensity	
Туре	(keV)	(%)	μCi-h)	Туре	(keV)	(%)	⊥(grad/ μCi-h)
8− 9 mav	1471 17			v 84	2408.91 7	0.104 12	0.0053
avg	561 8	0.22 3	0.0026	γ 86	2548.40 3	0.62 3	0.0338
β-10 max	1731 17	0 00 <i>c</i>		γ 87	2771.02 5	0.149 10	0.0088
θ−11 max	1772 17	0.90 6	0.0130	37 ¥	eak y' s omitt	ed:	
avg	697 8	0.10 6	0.0015	E	$\gamma(avg) = 1003.$	2; ΣIγ= 1.88%	
8-12 max	2051 17	1 2 2	0 0000				
ß−13 max	2522 17	1.5 3	0.0228				
avg	1052 8	0.26 9	0.0058	• ^{8 8} Rb β^- Decay	(17.8 m 1)	l (min) = 0.10%
b-14 max avor	1136 8	1.8 3	0,0436				
8-15 max	2913 17			6- 1 max	462 5		
avg total A-	1233 8	14 4	0.368	avg	143.6 18	0.66 5	0.0020
avg	359 13	100 6	0.766	B-2 max avg	146.3 19	0.362 25	0.0011
2		- 1 - ¹		6- 3 max	572 5		
2 WG 26	B(avg) = 233.	ea: 8: ΣΙΒ= 0.10%		e avg	184.3 19	0.143 11	0.0006
	,	• • •		avg	273.7 21	2.13 13	0.0124
X-ray L	1.69	0.23 8	s :0	8-5 max	901 5	0 2 10 19	0.001#
X-ray Kaz	13.33580	2 2.37 12	0.0007	$\beta = 6 \text{ max}$	2097 5	0.210 18	0.0014
χ-ray κα _ι Χ-ray κθ	13.39530	2 4.59 22	0.0013	avg	844.5 24	0.98 7	0.0176
γ 1	27.513 14	2.06 12	0.0012	$\beta = 7 \text{ max}$	2587 5	13.3 8	0.303
γ 3 ~ "	122.27 6	0.197 12	0.0005	β-8 max	3479 5	1343 0	0.505
γ 7	196.320 15	26.0 13	0.109	avg	1496.5 24	4.1 4	0.131
7 8	240.71 4	0.253 14	0.0013	B-9 max avg	2372.4 24	78.0 12	3.94
γ 9 γ 10	311.69 3	0.107 9	0.0007	total 8-			
y 12	362.226 13	2.25 12	0.0174	avg	2072 4	99.9 15	4.41
γ 14 γ 16	390.543 11	0.64 6	0.0054	4 w	eak β's omitte	ed:	
y 17	471.80 3	0.73 4	0.0073	E	$\beta(avg) = 526$	4; ΣΙβ= 0.06%	
γ 25 20	677.34 5	0.235 18	0.0034				
γ 30 γ 31	790.32 7	0.53 3	0.0089	γ 5 • 8	898.021 19	14.0 8	0.269
γ 34	834.830 3	13.0 7	0.231	γ 9	1382.39 5	0.74 5	0.0219
γ 35 γ 36	850.34 5	0.173 14	0.0031	y 11	1779.83 7	0.216 18	0.0082
γ 39	944.92 4	0.294 20	0.0059	γ 13 γ 14	2111.22 12	21.4 13	0.837
γ 42	985.780 16	1.31 7	0.0276	γ 15	2118.85 7	0.42 3	0.0190
γ 43 γ 44	990.09 9 1039.59 3	0.142 19	0.0030	γ 17	2577.72 6	0.180 14	0.0099
γ 45	1049.48 12	0.142 13	0.0032	γ 18 γ 19	2734.03 7	0.109 9	0.0064
7 48 7 49	1141.33 6	1.28 7	0.0312	γ 20 π 22	3009.43 7	0.244 17	0.0156
y 50	1184.95 4	0.69 5	0.0174	r 22 r 23	3486.46 9	0.131 9	0.0097
γ 51 - 52	1209.84 8	0.14 3	0.0037	y 26	4742.69 11	0.143 11	0.0145
γ 52 γ 54	1245.22 4	0.363 25	0.0036	13 94	eak r's omitte	ed :	
γ 55	1250.67 4	1.12 6	0.0299	E	y (avg) = 1474.0	6; ΣΙγ= 0.33%	
γ 58 γ 60	1324.98 4	0.16 4	0.0045				
γ 61	1369.50 20	1.48 9	0.0431				
γ 62	1406.94 10	0.218 20	0.0065	● ⁸⁸ Y EC Decay	(106.60 d 4)	L (min) = 0.10%
γ 63 γ 64	1518.39 3	2.15 12	0.0696		••••		,
γ 65	1529.77 3	10.9 6	0.356	Auger-L	1.79	105 6	0.0040
γ 66 γ 69	1603.79 5. 1685 6 4	0.46 4	0.0156	Auger-K	12	26.9 23	0.0069
y 73	1892.76 13	0.14 3	0.0056				
γ 74	1908.7 4	0.100 15	0.0041	B† 1 max avo	355.2 15	0.217 16	0.0016
י ד ד 76	2029.84 3	4.53 23 3.74 21	0.196		· · · · · · · · · · · · · · · · · · ·	······································	(Continued)
77 Y	2186.5 3	0.29 6	0.0134				,
γ 78 ~ 70	2195.842 7	13.2 7	0.617				
γ 81	2352.08 4	3.39 1/ 0.73 4	0.0366				
γ 83	2392.11 4	34.6 16	1.76	ļ			
			[I			

.

⁸⁸Y–⁸⁹Kr

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
88V 50 Decen	100 00 1 4)			0-15	1000 60		
•• Y EC Decay (106.60 a 4)	(Continued)		8-15 max avg 8-16 max	360 30	0.20 3	0.0015
X-ray L	1.8	1.7 6	≈0 0 0050	avq	390 30	0.17 3	0.0014
$X = ray K\alpha_2$ X = ray K\alpha_1	14.16500	2 33.7 13	0.0102	6-17 max avg	1250 60 460 30	2.36 17	0.0231
X-ray KO	15.8	9.0 4 93.4 4	0.0030	8-18 max	1250 60		
γ 5	1836.01 4	99.380 20	3.89	avg 8-19 max	1440 60	0.33 5	0.0032
γ 6	2734.03 7	0.596 20	0.0347	avg 8-20 may	550 30 1500 60	1.49 12	0.0175
4 we	ak γ 's omitte	ed:		avg	580 30	0.31 4	0.0038
B) Maxim	um γt-intens	1 + y = 0.43%		β-21 max avg	1610 60 620 30	1,55 13	0-0205
				8-22 max	1600 60		
				avg β-23 max	620 30 1640 60	2.09 15	0.0276
• ⁸⁸ Zr EC Decay	(83.4 d 3)	I (min) = 0.10%	avo 8-2/1 mar	640 30 1720 60	2.00 15	0.0273
Feeds	⁸⁸ Y			avg	670 30	0.27 4	0.0039
Inder-T	2	105 6	0.0043	8-25 max	1950 60 780 30	0.85 13	0.0141
Auger-K	12.7	26 3	0.0069	8-26 max	2100 60		0.0141
ce-K- 1 ce-L- 1	375.86 10 390.53 10	2.26 7 0.312 9	0.0181 0.0026	avg 8-27 max	850 30 2190 60	4.0 3	0.0724
ce-MNO- 1	392.51 10	0.103 3	0.0009	avg 6-28 may	890 30 2180 60	1.51 13	0.0286
X-ray I.	2	2.4 8	≈0	avg	890 30	0.28 4	0.0053
X-ray Kaz	14.88290 2	18.2 9	0.0058	8-29 max avg	2370 60 970 30	14.4 10	0.298
х-гау ка ₁ Х-гау КӨ	14.95840 2	9.6 5	0.0034	8-30 max	2570 60	6 7 6	0 120
γ 1	392.90 10	97.32 8	0.814	8~31 max	2580 60	3. ' 3	0.130
				avg 6-32 max	1070 30	0.31 4	0.0071
● ⁸⁹ Kr ^g ⁻ Decov	(3.16 m 4)	l (min)	= 0 10%	avg	1080 30	0.19 3	0.0044
Feeds ⁸	³⁹ Rb	_ 1 \11111	- U.10 /0	avg	1150 30	0.224 22	0.0055
				8-34 max avg	2810 60 1180 30	3.09 23	0,0777
Auger-L Auger-K	1.68 11.4	0.7 4 0.21 11	≉0 ≋0	8-35 max	2970 60	2 53 20	0 0679
ce-K- 4	205.70 7	0.6 4	0.0027	8-36 max	3110 60	2.53 20	0.0879
A∽ 1 max	340 60			8-37 max	1320 30 3150 60	0.47 6	0.0132
avg	101 21	0.57 7	0.0012		1340 30	0.17 9	0.0049
B-2 max avg	480 60	0.36 4	0.0012	avg	1400 30	10.2 10	0.304
8- 3 max	490 60	0.32 //	0 0011	8-39 max	3440 60	202	0.0010
β∽ 4 max	570 60	0.32 4	0.0011	β-40 max	3630 60	2	0.0314
avg 8-5 max	182 23 600 60	0.172 24	0.0007	avg β-41 max	1570 30 3650 60	0.62 10	0.0207
avg	196 24	0.59 5	0.0025	avg	1580 30	3.6 4	0.121
b- 6 max avg	206 24	0.214 20	0.0009	avg	1730 30	1.3 3	0.0479
β -7 max	630 60 207 24	0.158 23	0.0007	β-43 max avg	4040 60 1770 30	0.44 18	0.0166
β− 8 max	660 60			6-44 max	4380 60	2.2.44	0.00%
avg 8-9 max	740 60	0.14 3	0.0007	8-45 max	4390 60	2.3 11	0.0946
avg A-10 max	249 24 750 60	0.20 6	0.0011	8-46 max	1940 30 4470 60	4.4 5	0.182
avg	255 25	0.180 20	0.0010	avg	1980 30	1.2 6	0.0506
B~11 max avq	830 60 284 25	0.58 6	0.0035	avg	2210 30	23 4	1.08
8-12 max	890 60 310 25	0 68 7	0 0015	total 8-	1360 50	100 5	2.90
β +13 max	920 60		0.0045				40 /0
avg 8-14 max	320 30 990 60	0.49 6	0.0033		$B\beta$ (avg) = 478	τed: .8; ΣΙβ= 0.29%	
avg	350 30	0.45 6	0.0034				(Continued)

⁸⁹ Kr--

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	$\Delta(extbf{g-rad}/ extbf{\muCi-h})$
X-ray Kaz	13.33590	2 0.12 7	re ()	γ 119	1468.5 3	0.19 3	0.0059
X-ray Kaı	13.39530	2 0.23 13	≈0	γ 120	1472.76 10	6.9 6	0.216
v 2	190.2 5	1.82.18	0.0009	v 124	1500.96 10	0.112 21	0.0422
y 3	205.03 20	0.124 25	0.0005	y 125	1530.04 15	3.3 3	0.108
γ 4	220.90 7	20.0 17	0.0941	γ 126	1533.68 15	5.1 4	0.167
γ 6	264.11 10	0.66 6	0.0037	γ 127	1555.28 20	0.152 20	0.0050
y 12	338.20 10	0.34 4	0.0025	γ 128	1573.78 20	0.190 21	0.0064
γ 13 ~ 1/I	345.03 10		0.0087	7 131	1634.06 10	0.82 8	0.0285
γ 15	364.88 10	0.90 8	0.0314	r 134	1667.51 20	0.128 16	0.0045
γ 16	369.30 10	1.38 11	0.0109	γ 135	1676.9 3	0.140 24	0.0050
γ 18	402.25 20	0.32 4	0.0027	y 137	1683.8 4	0.13 3	0.0047
γ 19	411.42 10	2.56 20	0.0224	γ 138	1692.0 12	0.26 11	0.0094
τ 21 τ 22	438.08 10	0.96 9	0.0090	γ 139 γ 1 μ 2	1693.70 10	4.4 4	0.158
v 24	490.76 20	0.32 5	0.0079	r 146	1777.60 10	0.76 8	0.0288
y 25	497.5 3	6.6 7	0.0704	y 147	1788.2 3	0.106 17	0.0040
y 26	498.6 4	1.14 21	0.0121	γ 150	1810.73 20	0.140 18	0.0054
y 30	557.30 20	0.160 19	0.0019	γ 154	1837.5 4	0.12 3	0.0046
γ 31 ~ 32	576.96 10	5.6 5	0.0693	γ 155	1839.72 25	0.35 4	0.0137
y 32 y 35	626.20 10	0.60 6	0.207	v 159	1879.80 25	0.158 19	0.00/8
γ 36	629.75 20	0.34 4	0.0046	y 162	1903.40 10	1.04 12	0.0422
γ 40	665.72 20	0.114 18	0.0016	y 165	1939.11 15	0.64 6	0.0264
y 42	671.40 20	0.106 21	0.0015	y 166	1966.55 20	0.132 16	0.0055
γ 43 ~ 115	674.11 20	0.23 3	0.0033	γ 168	1998.6 5	0.118 23	0.0050
7 45 7 46	707 01 20	0 50 5	0.0264	v 171	2012.23 10	1.00 14	0.0669
y 47	710.05 20	0.78 8	0.0118	Y 173	2046.47 15	0.262 25	0.0114
γ 48	729.63 20	0.30 4	0.0046	y 176	2100.63 8	0.94 8	0.0421
γ 49	738.39 7	4.2 4	0.0661	γ 180	2160.02 9	0.53 5	0.0243
γ 50 5 52	747.4 3	0.11 3	0.0018	γ 183	2195.8 4	0.13 6	0.0060
γ 52 γ 53	762.9 3	0 9 13	0.0065	v 190	2200.2 5	0.80 8	0.0099
γ 54	776.49 20	1.12 19	0.0145	y 191	2400.99 9	0.72 8	0.0368
γ 56	826.75 10	0.76 8	0.0134	y 201	2597.92 20	0.108 17	0.0060
r 57	835.53 10	1.10 10	0.0196	γ 203	2645.26 15	0.42 4	0.0237
γ 58 - 50	857.37 15	0.29 3	0.0052	γ 2 08	2750.9 3	0.124 16	0.0073
7 59 7 60	870 42 20	5.9 5 0 160 20	0.109	v 214	2782.11 10	0.76 8	0.0450
γ 61	904.27 7	7.2 6	0.138	y 216	2819.58 25	0.132 18	0.0079
y 63	930.95 10	0.62 6	0.0123	Y 217	2853.3 3	0.24 4	0.0146
γ 66	944.19 15	0.164 19	0.0033	γ 218	2866.23 10	1.74 14	0.106
γ 61 7 69	953.18 20	0.106 17	0.0022	Y 220	2878.69 25	0.32 4	0.0199
γ 71	974.39 10	0.98 8	0.0203	y 225	3029.16 25	0.27 3	0.0174
y 72	997.37 10	0.66 6	0.0140	γ 228	3107.26 25	0.194 21	0.0128
γ 73	1010.84 20	0.108 16	0.0023	¥ 229	3140.26 20	1.04 10	0.0696
γ /5 ~ 90	1044.40 10	0.41 4	0.0091	γ 232 γ 234	31/2.1 3	0.100 15	0.0068
y 81	1088.07 10	0.36 4	0.0054	y 243	3361.70 20	1.04 10	0.0745
y 83	1103.18 20	0.90 8	0.0211	y 244	3371.1 4	0.62 7	0.0445
γ 84	1107.78 10	2.92 25	0.0689	γ 245	3399.9 3	0.136 16	0.0098
γ 85 2 96	1116.61 7	1.66 14	0.0395	γ 249 251	3532.88 20	1.34 11	0.101
γ αο γ 88	1131.51 20	0.160 24	0.0039	y 251	3717.8 L	0.84 8	0.0197
γ 90	1172.33 20	0.98 10	0.0245	y 260	3732.5 6	0.14 5	0.0110
γ 91	1182.38 20	0.166 24	0.0042	y 262	3781.4 4	0.132 14	0.0106
γ 92	1186.54 20	0.184 21	0.0047	y 264	3827.4 4	0.138 18	0.0113
y 96 ~ 97	1228.8 3	0.144 20	0.0038	γ 266 ~ 269	3842.7 4	0.110 14	0.0090
v 101	1233.02 10	1.36 11	0.0369	v 270	3923.0 4	0.134 22 0.41 4	0.0346
y 104	1302.7 3	0.100 15	0.0028	7 271	3965.5 4	0.208 20	0.0176
γ 106	1324.28 7	3.06 25	0.0863	r 272	3977.5 4	0.27 6	0.0229
γ 107	1335.4 3	0.13 3	0.0038	γ 274	3996.0 4	0.142 15	0.0121
γ 108 • 109	1340.0 3	0.19 3	0.0055	v 211 ∞ 200	4048.0 5 4341 1 6	0.116 14	0.0100
y 110	1372.16 20	0.126 18	0.0043	v 295	4489.2 8	0.134 14	0.0128
y 112	1412.59 15	0.26 3	0.0079	, 2,5		38 134 IH	
y 113	1421.64 20	0.224 24	0.0068	159	weak γ's omitted	1:	
y 117	1461.3 5	0.122 25	0.0039		Eγ(avg) = 2181.1:	$\Sigma I \gamma = 7.12\%$	
איו עד	1404.2 3	0.18 3	0.0056	1			

⁸⁹ Rb-⁹⁰ Kr

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆{g-rad, μCí-h
● ⁸⁹ Rb β ⁻ Decay	/ (15.44 m 22)	I (mir	ı) = 0.10%	● ⁸⁹ Zr β ⁺ Decay ((78.43 h 8)	I (min) = 0.10%
Feeds	⁸⁹ Sr						
				Auger-L	2	80 4	0.0032
β- 1 max	994 5	1 52 16	0 0114	ce-K- 1	892.06 10	0.7 15 22	0.0136
8-2 max	1275 5	1, 52 10	0.0114				
avg	473.6 22	33 3	0.333	8+ 1 max	904.7 23		
8-3 max avg	1/96 5	2.19 23	0.0330	avg	396.9 10	22.94 24	0.194
8- 4 max	1933 5			V-ray I	2	106	. 0
avg A- 5 max	769.1 23	3.0 8	0.0491	X-ray Kaz	14.88290	2 14.0 7	0.0044
avg	903.1 24	34 4	0.654	X-ray Ka	14.95840	2 26.9 12	0.0086
8-6 max	2446 5			γ 1	76.7 909.10 10	7.4 4 99.04 3	0.0026
avg 8-7 max	1007.1 24	0.46 13	0.0099	7 4	1712.9 8	0.76 7	0.0278
avg	1030.4 24	0.49 20	0.0108	γ 5	1744.50 20	0.129 10	0.0048
8-8 max	2563 5	0 22 4	0.0050	2 * 6	eak γ's omitt	ed:	
avg 89 max	3030 5	0.22 4	0.0050	EJ	r(avg) = 1642.	1; EIY= 0.17%	
avg	1284.8 24	0.24 5	0.0066	Maxin	num γ±-intens	ity = 45.88%	
8-10 max	4503 5	25 5	1.06				
total 8-	130704 24	23 5					
avg	1015 3	100 8	2.17	 ⁹⁰ Kr β⁻ Decay 	(32.32 s 9)	l (min) = 0.10%
7 w	eak 8's omitte	ed:		% Feed	ling to ⁹⁰ Rb (1	(57 s) = 88.1 14	
E	$\beta(avg) = 272.$	4: ΣΙβ= 0.37%		% reed	ling to ""Rb (2	(58 s) = 11.9 14	
				huger-T	1.68	11 7	0.000#
γ <u>3</u>	272.45 10	1.42 14	0.0082	Auger-K	11.4	2.8 19	0.0007
γ 4 ~ 8	289.76 10	0.54 10	0.0033	ce-K- 1	90.85 3	0.15 11	0.0003
γ 10	766.79 15	0.162 23	0.0027	ce-K- 3	105.72 3	0.7 5	0.0015
γ 14	947.69 7	9.2 10	0.186	ce-L- 4	119.75 3	1.1 9	0.0027
γ 16 γ 17	1025.3 5	0.23 9	0.0049	ce-11 NO- 4	121.50 3	0.20 15	0.0005
y 23	1220.32 10	0.22 3	0.0057				
γ 24	1228.40 15	0.122 21	0.0032	8- 1 max	510 30		
γ 26 γ 29	1473.22 20	42 5	0.0111	avg	161 12	0.140 20	0.0005
γ 30	1501.07 20	0.197 25	0.0063	B-2 max avg	690 30 228 12	0,16 4	0,0008
γ 31	1538.08 10	2.6 3	0.0836	8- 3 max	760 30		
γ 35 γ 37	2007.54 10	2.4 3	0.102	avg	260 12	0.100 20	0.0006
γ <u>38</u>	2058.0 11	0.23 9	0.0102	874 max avor	421 13	0.18 4	0,0016
γ 40 ~ #2	2196.00 15	13.3 15	0.624	6- 5 max	1300 30		
y 42 y 45	2570.14 10	9.9 10	0.540	avg	484 14	0.66 8	0.0068
γ 48	2707.20 10	2.03 21	0.117	B 6 Max avg	488 14	1.84 21	0.0191
y 51	3508,84 25	1.15 13	0.0858	β- 7 max	1960 30		
41 we	eak γ's omitte	ed:		avg 8-9 mar	781 14	0.29 4	0.0048
B	$\gamma(avg) = 1950.3$	3; $\Sigma I \gamma = 1.18\%$			856 14	0.10 3	0.0018
				β- 9 max	2260 30		
				e-10 may	923 14	2.25 25	0.0442
⁸⁹ Sr β ⁻ Decay	(50.55 d 9)	L (min	u) = 0.10%	avg	1029 14	0.34 5	0.0075
.,	(. (.,	8-11 max	2610 30		
6- 1 max	1491 4			avg 8−12 max	1086 15	62 7	1.43
avg	583.0 15	99.985 5	1.24	avg	1129 15	0.17 4	0.0041
1	cat Rte ami++	· he		8-13 max	3460 30		0 0470
E	$\beta(avg) = 187_{\bullet}$	6; ΣΙβ= 0.02%		8-14 max	3550 30	U.35 /	0.01/4
-		. – .		avg	1533 15	0.14 6	0.0046
1 w	eak γ's omitte	ed:		β-15 max	3650 30	0 33 7	0 0111
E	$\gamma(avg) = 909.7$	1; $\Sigma I \gamma = 0.02\%$		β-16 max	3680 30	0.33 /	0+0111
			l.	avg	1593 15	0.19 4	0.0064
				β−17 max	3710 30	0.16 5	0.0055
				avy	1011 13	U DI .V	(Continued)

.

•							⁹⁰ Kr— ⁹⁰ RI
Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad, µCi-h
8-18 max	3780 30			v 90	2726-68-11	0.84 10	0 0485
avg	1640 15	0.19 7	0.0066	y 92	2855.4 3	0.31 7	0.0188
8-19 max	4390 30			γ 93	2865.73 21	0.179 24	0.0109
avg	1935 15	29 4	1.20	y 100	3344.3 3	0.108 19	0.0077
otal 8-	4347 47	· · · · · · · · · · · · · · · · · · ·	~~ ~ ~ ~ ~	γ 102	3855.3 4	0.116 17	0.0095
avg	131/ 1/	99 8	2.78	40 4	eak vis omiti	· 6d ·	
4 we Ef	eak β 's omitt $\beta(avg) = 925$.	ed: 6; ΣΙβ= 0.24%		 इ	γ (avg) = 1518.	8; ΣΙγ= 1.81%	
Y-ray L X-ray Koa	1.69 13.33580	0.16 11	≈0 0.0005	● ⁹⁰ Rh <i>β</i> ⁻ Decay	(157 c 3)	L (min) - 0 10%
-ray Kai	13.39530	2 3.2 21	0.0009	Eeeds	90Cr	i (mn)) = 0.10%
-ray KB	15	0.8 6	0.0003	reeus	31		
r 1	106.05 3	0.38 5	0.0009				
Y 3	120.92 3	2.7 4	0.0070	8-1 max	731 15		
. 7	121.82 3	32 4	0.0833	avg	246 6	U. 20 8	0.0010
. 8	22/10 8 234 hh 2	0.119 17	0.0006		326 7	0 11 / 10	A AA34
9	242.19 3	9.6 11	0.0125	6-3 max	1122 15	V. 44 12	0.0031
r 10	249.32 3	1.28 17	0.0068	avq	407 7	0.34 5	0.0029
/ 12	309.07 9	0.131 18	0.0009	β- 4 max	1220 15		
r 13	356.00 20	0.10 4	0.0008	avg	450 7	0.52 5	0.0050
y 14	386.48 9	0.123 17	0.0010	6-5 max	1299 15		
γ 1/ ~ 19	419.12 5	0.31 4	0.0027	avg	484 7	1.42 13	0.0146
7 18 • 19	429.93 14 433 47 C	0.14 4	0.0013	p- 6 max	1300 15	<i>I</i> I 9 <i>I</i> I	0 0635
r 22	470,34 9	1.23 14	0.0115	8-7 mar	1579 15	4.7 4	0.0535
y 23	476.10 11	0.127 18	0.0023	avo	608 7	0.68 10	0.0088
r 24	492.63 5	1.16 13	0.0121	8- 8 max	1634 15		
25	498.59 12	0.145 19	0.0015	avg	633 7	0.37 4	0.0050
27	539,49 4	29 4	0.339	8- 9 max	1763 15	A AC "	
28	554.37 5	4.8 6	0.0573	avg 8-10	691 7 1969 15	0.16 4	0.0024
30	569.20 E	0.20 3	0.0024	אנא תיים הערב	739 7	0.140 22	0 0022
33	614.38 9	0.20 3	0,0026	8-11 max	1907 15	VE 14V 22	0.0022
34	619.08 5	1.04 12	0.0137	avg	757 7	3.1 3	0.0500
36	626.49 8	0.27 4	0.0036	B-12 max	1972 15		
38	661.23 5	0.32 4	0.0045	avg	787 7	0.36 6	0.0060
39 40	611.69 7 690 72 7	0.37 5	0.0053	8-13 max	2187 15	14 2 12	0.000
41	705.47 12	0.119 17	0.0056	avg A−14 ma v	2417 15	14.2 12	0.208
42	731.33 4	1.42 16	0.0221	avo	994 7	8.5 8	0.180
45	925.49 9	0.21 3	0.0042	8-15 max	2516 15		
46	941.86 5	1.28 14	0.0257	avg	1040 7	1.35 13	0.0299
48 49	967.33 11	0.21 3	0.0042	B-16 max	3170 15	636	0 101
51	1039,11 8	0.179 24	0.0037	. avg 8-17 mav	3514 15	0.3 0	0.181
52	1103.92 7	0.33 4	0.0077	avq	1513 8	0.48 7	0.0155
53	1118.69 5	37 4	0.889	8-18 max	4056 15		
54	1165.56 6	0.79 9	0.0196	avg	1772 8	0.15 8	0.0057
55	1240.34 11	0.34 5	0.0089	B-19 max	4661 15	# 7 E	0 207
, 50 , 59	1309.00 10	0.10 4	0.0074	avg A−2∩ mav	2003 8 5721 15	4.7 3	0.207
60	1386.62 15	0.19 3	0.0043	avor	2574 8	14.3.16	0.784
61	1423.77 6	2.8 3	0.0852	β-21 max	6553 15		
r 63	1466.26 15	0.23 3	0.0073	avg	2976 8	37 5	2.35
65	1537.85 5	9.3 10	0.303	total β-	1062 11	100 6	
· 67	1620-22 22	2.10 23	0.0694	avor	11 6071		4.17
68	1658.18 6	1.27 14	0.0448	3 W A	ak 8's omitte	ed:	
7 2	1780.04 6	6.4 7	0.243	Eß	(avg) = 785.	B; ΣIB= 0.23%	
r 74	1885.42 15	0.22 3	0.0087				
75	1899.61 16	0.183 25	0.0074	y R	824:23 10	0.75 8	0.0132
r 76	1980.99 15	0.164 21	0.0069	y 9	831.69 5	33 3	0.578
79	2006.00 14	0.112 22	0.0048	y 14	997.85 6	0.51 5	0.0107
79	2127.52 /	1.32 15	0.0597	γ 17	1038.63 7	0.35 3	0.0076
81	2191,46 25	0.108 16	0.0050	γ 18	1060.70 4	7.8 7	0.176
84	2417.33 23	0.183 25	0.0094	y 20	1140.50 6	0.132 12	0.0032
86	2432.78 21	0.145 22	0.0075	γ 24 ~ 25	1302.2 3	0.117 19	0.0033
r 87	2468.56 11	0.45 6	0.0235	7 20	1320.30 20	0.14/ 20	0.0041
							(Continued)

(Continued)

⁹⁰ Rb~

Radiation Type	Energy (keV)	Intensity (%)	$\Delta(ext{g-rad}/ \mu ext{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
⁹⁰ Rb β [−] Decay	(157 s 3)	(Continued)		● ⁹⁰ Rb β ⁻ Decay %β ⁻ D	(258 s 4) ecay = 97.7 6	I (min) = 0.10%
γ 26 γ 33 γ 34	1375.36 3 1590.3 3 1631.78 20	0.35 4 0.156 24 0.189 23	0.0102 0.0053 0.0066	Feeds ⁹ See also	' ^o Sr o ⁹⁰ Rb IT De	cay (258 s)	
γ 35 γ 36 γ 40	1665.61 7 1668.9 6 1804.10 7	0.37 3 0.17 6 0.67 6	0.0130 0.0059 0.0258	β 1 max avg	832 15 286 7 975 15	1.27 25	0.0077
γ 41 γ 44	1829.80 20 1892.28 8	0.173 22	0.0067	8−2 max avg	304 7	0.35 11	0.0023
y 49	2139.33 19	0.36 4	0.0165	6-3 max	1102 15	0.59 6	0.0050
γ 50 γ 51	2148.2 5	0.51 5	0.0238	β- 4 max	1374 15	1.66.11	0.0.00
γ 52 γ 53	2216.29 15 2239.7 8	0.59 6	0.0277	avg β=5 max	1571 15	1.00 11	0.0183
γ 58	2473.90 20	0.68 9	0.0359	avg 8− 6 max	604 7 1619 15	1.42 10	0.0183
γ 59 γ 61	2476.7 11 2688.9 5	0.12 8 0.14 3	0.0064	avg	626 7	6.2 3	0.0827
γ 62	2724.30 20	0.160 24	0.0093	β^{-7} max	1633 15	0.53 7	0.0071
γ 65 γ 65	2980.7 6	0.104 25	0.0066	β- 8 max	1713 15		
γ 67 - 69	3039.17 12	0.82 8	0.0534	avg 6-9 max	668 7 1806 15	0.51 10	0.0073
γ 69 γ 69	3205.09 16	0.55 6	0.0378	avg	711 7	0.35 7	0.0053
70 ק 71 ק	3295.09 14 3303.91 13	0.95 9	0.0668	avg	732 7	0.70 11	0.0109
y 72	3317.00 12	0.31 3	0.0221	P−11 max	1855 15 733 7	0 4 6 5	0 0072
γ 73 γ 74	3361.88 13	1.08 10	0.0770	8-12 max	1856 15	0.40 5	0.00/2
γ 75 ~ 75	3534.24 13	4.5 4	0.336	avg 8−13 max	734 7	0.50 10	0.0078
77 Y	3627.4 7	0.14 6	0.0108	avg 8=14 mar	906 7	0.96 13	0.0185
γ 79 γ 83	3814.36 20 4061.7 3	0.65 7 0.264 21	0.0524	avg	918 7	1.66 11	0.0325
y 84	4087.30 20	0.28 3	0.0247	β-15 max avg	2325 15	9.6 4	0.194
γ 85 γ 88	4332.10 20	0.43 4	0.0400	8-16 max	2467 15		
γ 89 ~ 90	4355.80 20	0.49 5	0.0457	avg 8-17 max	1017 7	0.88 7	0.0191
γ 90 γ 92	4599.4 3	0.166 19	0.0163	avg	1038 7	16.2 6	0.358
7 94 7 99	4646.45 20 4974 1 3	2.48 22	0.245	avg	1129 7	0.80 22	0.0192
γ 101	5070.2 3	0.160 13	0.0173	8-19 max	3075 15	14 8 10	0 411
γ 102 γ 103	5187.40 20 5254.3 3	1.29 12 0.26 3	0.142	$\beta=20$ max	3210 15	14.0 10	V• 4 1 1
γ 105	5333.00 20	0.48 5	0.0544	a⊽g 8-21 max	1368 8	6.4 3	0.186
54 w	eak v's omitte	ed :		avg	1514 8	0.30 6	0.0097
E	$\gamma(avg) = 2427.5$	7; ΣIγ= 2.59%		β−22 max avg	3627 15 1567 8	1.03 10	0.0344
			ĺ	8-23 max	3732 15		
				avg 8-24 max	4089 15	1.08 14	0.0372
• ⁹⁰ Rb IT Decay	(258 s 4)	l (min)	= 0.10%	avg	1789 8	1.38 12	0.0526
%II D Feeds	$e_{Cay} = 2.3 b$			p∠5 max avg	1809 8	2.10 11	0.0809
See als	so 90 Rb β^- Dec	ay (258 s)		8-26 max	4163 15	0 87 22	0 0337
	·	• • •		β-27 max	4453 15	0.07 22	0.0337
Auger-L	1.68	2.2 5	≈0	avg 8-28 max	1959 8 4768 15	3.7 10	0.154
ce-K- 1	91.72 15	1.7 5	0.0033	avg	2110 8	4.1 4	0.184
ce-L- 1	104.85 15	0.34 9	0.0007	8−29 max avor	5004 15 2229 8	2.3 5	0.109
X-rav Ka-	13.33580	2 0.33 9	≉0	8-30 max	5828 15	15 0	0 977
Х-гау Ка	13.39530	2 0.64 17	0.0002	avg total β-	2020 8	5 5	0.837
$\gamma 1$	106.92 15	0.20 6	≈0 0.0005	a∀g	1419 10	98 4	2.95 (Continued)

∆(g-ra µCi	Intensity (%)	Energy (keV)	Radiation Type	$\Delta(extbf{g-rad}/ \mu extbf{Ci-h})$	Intensity (%)	Energy (keV)	Radiation Type
0.046	0 60 22	2620 0 11			0 20 (406 0 4	
0.0460	0.60 23	3620.8 11	γ 88 - 90	0.0013	0.30 6	196.8 4	7 1
0.031	0.37 7	3972.2 5	v 91	0.0050	0.12 3	514.5 5 1112 3 11	, L
0.031	0.36 6	1115 6 H	~ 92	0.0016	0.12 3	442.5 4 522 10 12	, <u> </u>
0.078	0.88 7	4192.80 20	v 93	0.0040	0.41 3	551 2 3	
0.083	0.93 9	4209.5 3	v 94	0.0087	0.57 4	720.70 9	, 7
0.068	0.75 6	4257.30 20	y 95	0.0046	0.28 6	779.9 4	/ 10
0.115	1.21 9	4454.07 21	y 97	0.131	7,5 5	824.23 10	11
0.0113	0.11 3	4726.1 7	y 99	1.65	93 4	831.69 5	12
				0.0100	0.54 4	872.00 15	/ 13
	ed:	ak γ's omitte	19 we	0.0046	0.23 4	921.20 20	1 5
	2; $\Sigma I \gamma = 0.83\%$	(avg) = 2072.2	Εı	0.0352	1.73 8	952.44 7	16
				0.0056	0.26 3	1013.95 19	· 19
				0.0031	0.14 3	1027.1 4	21
				0.214	9.5 4	1060.70 4	22
= 0.10%	I (min)	28.6 y 3)	• ⁹⁰ Sr β^- Decay (0.0199	0.82 6	1140.50 6	24
		^o Y (64.1 h)	Feeds 9	0.0827	3.12 20	1242.04 4	
				0.0057	0 21 //	1298 5 5	20
		5 H C 0 00		0.497	17.0 8	1375.36 3	31
0 4 1 7	100	546.0 20	8- 1 max	0.0684	2.3 8	1377.2 5	32
0.41/	100	195.8 8	avg	0.0133	0.45 8	1391.6 3	33
				0.0085	0.28 3	1425.2 3	34
				0.0081	0.26 7	1456.7 3	36
				0.0061	0.20 5	1460.1 6	37
= 0.10%	l (min)	64.1 h 1)	• ⁹⁰ Υ β ⁻ Decay (0.0068	0.21 7	1485.6 7	38
				0.0112	0.35 5	1489.0 4	39
		2283.9 25	8- 1 max	0.0041	0.12 4	1576.9 7	40
1.99	99.988 1	934.8 12	avq	0.0162	0.48 5	1603.52 20	41
				0.0158	0.45 0	1655 61 7	42
	d:	ak 8's omitte	1 we	0 0 10 1	0.28 5	1692.1 3	- <u>uu</u>
	$\Sigma IB = 0.01\%$	(avg) = 186.5	Eß	0.0613	1.70 8	1696.16 7	45
				0.0728	1.97 10	1738.93 9	46
				0.0097	0.26 4	1747.3 3	47
				0.0331	0.87 6	1793.89 11	49
= 0.10%	l (min)	.19 h 1)	• 90 Y IT Decay (3	0.0332	0.85 7	1838.15 14	50
		Y (64.1 h)	Feeds ⁹⁰	0.0183	0.46 5	1877.40 20	51
				0.0263	0.65 7	1892.28 8	52
0 0005	11 0 7	2	lugon-I	0.0057	0.14 6	1903.1 6	53
0.000	29 h	12 7	Auger-E	0.0262	0.63 6	1941.81 17	54
0-0105	2.65 15	185.47 3	ce+K- 1	0.243	5.3/ 22	2128.30 /	55
0.0013	0.307 20	200.14 3	ce-L- 1	0.0232	0.49 6	2737.33 17	57
0.0004	0.102 7	202.12 3	ce-MNO- 1	0.0078	0.166 13	2207.47 11	58
0.0721	7.32 22	462.49 4	ce-K- 2	0.0143	0.30 18	2245.2 9	59
0.0104	1.03 3	477.16 4	ce-L- 2	0.0327	0.68 5	2256.55 17	60
0.0035	0.338	4/9.14 4	Ce-MNO- 2	0.0187	0.38 20	2298.1 9	61
				0.0147	0.30 10	2311.2 6	62
≈0	0.27 9	2	X-ray L	0.0107	0.21 9	2335.2 10	63
0.0006	2.05 11	14.88290 2	X-ray Kaz	0.0392	0.21 1	2442.9 5	66
0.0013	3.95 21	14.95840 2	X-ray Kaı	0.0096	0.18 7	2537.8 9	67
0.0004	1.09 6	16.7	X-ray KB	0.0308	0.57 7	2543.9 3	68
0.417	90.0 4	202.51 3	7 1	0.0365	0.66 7	2592.30 20	69
0.929	90.99 24	4/9.03 4	γ 2 7 3	0.0353	0.63 9	2617.8 3	70
0.0040	0.52 5	002	7 3	0.0297	0.51 6	2724.27 21	71
				0.0087	0.15 8	2741.0 12	72
				0.694	11.8 5	2752.68 9	73
= 0 10%	1 (min)	14 60 h 15)	. 90 NIL OT Dage	0.115	1.90 13	2834.43 13	74
- 0.10%	i (min)	14.00 11 15/	• ND p Decay	0.0069	0.11 7	2900.3 13	75
				0.0081	0.13 7	2911.7 11	76
0.0033	77 5	2	Auger-L	0.0209	0.271 22	3032.1 5	79
0.0051	17.8 23	13.4	Auger-K	0.171	2.55 13	3148,58 12	79
0.0212	8.7 23	114.60 3	ce-K- 1	0.0102	0.15 6	3197.9 10	80
0.0489	18.6 12	123.151 20	ce-K- 2	0.0096	0.14 6	3214.5 11	81
0.00/1	2.0 0	130.07 3	ce-L- 1	1.04	14.7 6	3317.00 12	82
0.0015	0.53 11	132.17 3	ce-MNO- 1	0.0294	0.41 6	3370.8 4	83
0.0082	2.1/18	130.017 20	Ce-L- 2	0.0309	0.429 19	3383.24 12	84
	0.00 3	1706/13 20	Cernau - Z	0.182	2.43 13	3503.52 15	85
ICantin							
⁹⁰Nb--⁹¹Y

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
⁹⁰ Nb β⁺ Decay	(14.60 h 15)	(Continued)		total B- avg	658.5 23	99.2 14	1.39
8+1 max avg	1500 4 662.2 18	53 3	0.748	3 we 8 A	eak β's omitt 3(avg)= 110.	ed: 2; ΣΙβ= 0.13%	
$\begin{array}{c} 3 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	eak β's omitta β(avg) = 363. 2 15.69090 2 15.77510 2 17.7 132.60 3 141.149 20 329.10 15 371.28 7 518.22 25 561.52 8 827.71 8 890.60 8 1051.67 12 1129.14 8 1270.41 12 1470.40 20 1575.00 20 1611.80 15 1658.0 3 1716.40 20 1843.30 20 1913.30 20 1984.7 3 200.0000	ed: 3; $\Sigma I\beta = 0.08\%$ 2.2 8 2 13.9 9 2 26.6 17 7.5 5 4.1 4 69 4 0.110 19 1.90 14 0.49 10 0.129 19 0.90 8 1.73 12 0.23 3 92.0 9 1.21 9 0.42 6 0.47 6 2.21 19 0.31 5 0.52 5 0.65 7 1.23 13 0.63 8	<pre>*0 0.0046 0.0090 0.0028 0.0117 0.207 0.0008 0.0150 0.0054 0.0015 0.0159 0.0328 0.0052 2.21 0.0329 0.0133 0.0157 0.0157 0.0758 0.0110 0.0192 0.0256 0.0502 0.0268</pre>	γ 2 γ 3 γ 4 γ 6 γ 14 γ 16 γ 17 γ 19 γ 21 γ 22 γ 24 γ 26 γ 29 γ 33 γ 34 γ 35 γ 39 γ 46 γ 47	$261.20 20 272.7 4 274.70 20 379.90 10 620.10 10 631.30 10 652.3 3 652.90 20 653.0 20 749.80 10 761.40 10 820.80 20 879.70 10 925.80 20 1024.30 10 1054.60 10 1440.80 10 1280.90 10 1413.40 10 1473.80 10 1651.4 5 1724.0 5 84 \gamma's omitt(avg) = 776.$	2; $\Sigma I \beta = 0.13 \%$ 0.435 14 0.25 4 1.00 4 0.143 6 1.72 6 0.539 18 2.89 19 7.8 4 0.45 7 23.0 7 0.559 19 0.156 6 0.182 6 3.74 11 32.5 9 0.218 7 0.123 5 0.91 3 0.95 3 0.156 6 0.283 9 0.156 6 ed: 3; $\Sigma I \gamma = 1.19 \%$	0.0024 0.0015 0.0059 0.0012 0.0228 0.0073 0.0402 0.108 0.0063 0.367 0.0091 0.0027 0.0034 0.0737 0.709 0.0030 0.0247 0.0287 0.0287 0.0287 0.0051 0.0099 0.0057
γ 25 γ 26 γ 27	2186.40 20 2222.5 3 2319.20 20	18.0 10 0.63 8 82.0 9	0.840 0.0296 4.05	● ⁹¹ Υ β ⁻ Decay (!	58.51 d 6)	l (min)	= 0.10%
5 We Bi Maxir	eak γ's omitte y(avg) = 1272.6 num γ±-intensi	d: ; ΣΙγ= 0.16% ty =106.16%		8- 1 max avg β- 2 max avg total β- avg	338.1 22 99.9 8 1543.0 20 603.8 9 602.3 9	0.30 3 99.70 3 100.00 5	0.0006 1.28 1.28
● ⁹¹ Sr β ⁻ Decay % Feed % Feed	(9.5 h 2) ling to ⁹¹ Y (58. ling to ⁹¹ Y (49.	l (min 51 d) = 42.6 16 71 m) = 57.4 1) = 0.10% 5 6	y 1	1204.9 8	0.30 3	0.0077
β- 1 max avg β- 2 max avg	405 4 122.9 14 477 4 148.8 15	0.231 10 1.44 5	0.0006 0.0046	• ⁹¹ Y IT Decay (4 Feeds ⁹¹	1 9.71 m 4) Y (58.51 d)	l (min)	= 0.10%
β 3 max avg β 4 max avg β 5 max avg	617 4 200.9 16 704 4 234.3 16 1104 4 398.9 17	2.02 6 0.361 12 33.9 10	0.0086 0.0018 0.288	Auger-L Auger-K ce-K- 1 ce-L- 1 ce-MNO- 1	2 12.7 540.53 555.20 557.18 5	5.0 3 1.21 14 4.17 12 0.561 17 0.185 6	0.0002 0.0003 0.0480 0.0066 0.0022
$\begin{array}{cccc} \beta^{-} & 6 & \max \\ & avg \\ \beta^{-} & 7 & \max \\ & avg \\ \beta^{-} & 8 & \max \\ & avg \\ \beta^{-} & 9 & \max \end{array}$	1138 4 413.4 18 1210 4 444.5 18 1379 4 518.0 18 1497 4 50 5 10	1.77 6 0.185 9 24.4 8	0.0156 0.0018 0.269	Χ-ταγ L Χ-ταγ Κα ₂ Χ-ταγ Κα ₁ Χ-ταγ Κβ γ 1	2 14.88290 14.95840 16.7 557.57 5	0.11 4 2 0.86 5 2 1.65 9 0.45 3 95.08 14	*0 0.0003 0.0005 0.0002 1.13
avg β-10 max avg β-11 max avg	2031 4 812.9 19 2684 4 1121.2 19	3.3 4 30.8 4	0.0571				

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad µCi-h
⁹¹ Nb EC Decay	(∼1E4 y)	I (mir	n) = 0.10%	9 we	ak β's omit	ted:	
				Ef	3(avg) = 609	.3; ΣI8= 0.05%	
Auger-L	2	100 6	0.0043				
Auger-K	13.4	23 3	0.0067	X-ray L	2.17	0.19 7	≈ 0
				X-ray Ka ₂	16.52100	2 1.17 6	0.0004
8+ 1 max	234 3		1	X-ray Ka _l	16.61510	2 2.25 11	0.0008
avg	108.7 12	0.164 8	0.0004	x-ray to	1581 50 10	0.00 3	0.0003
				γ 8	1637.30 10	0.329 17	0.0115
X-ray L	2	2.8 10	0.0001	γ 13	2632.10 20	0.118 7	0.0066
X-ray Kaz	15.69090	2 18.3 9	0.0061				
X-ray Kaı	15.77510	2 35.2 16	0.0118	18 we	ak γ's omit	ted:	
X-ray KB	1/./	9.9 5	0.003/	Ej	r(avg) = 2233	•2; ΣΙγ= 0.30%	
(1 d X L II	um yr-incens	109 - 0.55%		BAXI	du yr-inten	sicy -10/.5/%	
¹ Nb EC Decay	(61 d)	l (mir	n) = 0.10%	• 9^{2} Sr β^{-} Decay (2.71 h 1)	L (min)) = 0.10%
%EC [)ecay = 3.5			Feeds ⁹	² Y		
See als	₀ ⁹¹ Nb IT De	cay (61 d)					
		•		8− 1 max	550 30		
Auger-T.	2	3.48 18	0.0001	avg	174 12	96 11	0.356
Auger-K	13.4	0.80 10	0.0002	6- 2 max	980 30		
3				avq	345 13	0.3 3	0.0022
Y-ray Kg-	15.69090	2 0.63 3	0 0002	8- 3 max	1040 30		
X-rav Ka.	15.77510	2 1.20 6	0.0004	avg 8- // apr	371 13	0.21 6	0.0017
X-ray KB	17.7	0.338 16	0.0001	p 4 max ava	777 14	u u	0.0662
γ 1	1204.9 8	3.5	0.0898	total 8-		• •	0.0002
				avg	199 14	101 12	0.426
				v 1	241.52 3	3.0 4	0.0153
' Nb IT Decay	(61 d)	l (min	n) = 0.10%	v 3	430.56 5	3.3 5	0.0305
%IT De	cay = 96.5			γ 4	491.30 20	0.26 5	0.0027
Feeds ⁹	¹ Nb (1E4 y)			γ 5	650.70 20	0.37 5	0.0051
See also	⁹¹ Nb EC De	cay (61 d)		γ 7	953.32 9	3.6 5	0.0731
			[]	γ 8	1142.30 10	2.9 4	0.0701
hugor-I	2 15	Q1 /I	0 0002	y 9	1383.94 0	90 10	2.00
Auger-K	14	16.5 21	0.0042	2 40	ak vis omitt	• fo	
ce-K- 1	85.51 10	65.6 7	0.120	Ēγ	(avq) = 664.	6; $\Sigma I \gamma = 0.17\%$	
ce-L- 1	101.80 10	24.7 6	0.0536				
ce-M- 1	104.03 10	4.73 14	0.0105				
ce-NOP- 1	104.44 10	0.86 3	0.0019				
				• ^{9 2} Υ β ⁻ Decay (3	3.54 h 1)	l (min)) = 0.10%
x-ray L X-ray X-	2.17	2.8 10	0.0001				
X-LAA Ku'	16-61510	2 27.1 13	0.0050	β- 1 max	814 16		
X-ray KB	18.6	7.8 4	0.0031	avg	278 7	0.100 13	0.0006
γ 1	104.50 10	0.578 18	0.0013	β− 2 max	1294 16		
				avg	480 7	0.5 7	V.V665
				אנאות כיס מערג	601 R	0.24 3	0-0031
				6- 4 max	1787 16	V# 2 7 J	0.0001
¹ Mo β ⁺ Decay	(15.49 m 1)	I (min) = 0.10%	avg	700 8	0.43 8	0.0064
% Feed	ing to ⁹¹ Nb (1	(E4 y) = 99.965	8 22	β- 5 max	2138 16		
				avg	869 8	1.16 20	0.0215
Auger-L	2.15	6.2 4	0.0003 ll	x 5 m d Td	2231 10 920 9	- 7 .3 3	0.0451
Auger-K	14	1.37 18	0.0004	avy 8-7 mar	2700 16	2033	0.0401
-				avg	1123 8	3.4 10	0.0813
	1779 13			8- 8 max	3634 16	05 7 16	2 0E
At 1 mar		0 2 2/1 1 2	0.0038	avg	א נסכו	85. / 16	2.85
β+ 1 max avor	790 6	V . Z Z . 14					
β+ 1 max avg β+ 2 max	790 6 1835 13	0.224 12		avo	1447 9	99.9 21	3.08
β+ 1 max avg β+ 2 max avg	790 6 1835 13 815 6	0.147 10	0.0026	avg	1447 9	99.9 21	3.08
β+ 1 max avg β+ 2 max avg β+ 3 max	790 6 1835 13 815 6 3416 13	0.147 10	0.0026	avg 4 we	1447 9 akβ's omitt	99.9 21	3.08
 β+ 1 max avg β+ 2 max avg β+ 3 max avg β+ 3 max 	790 6 1835 13 815 6 3416 13 1553 7	0.147 10 93.36 10	0.0026 3.09	avg 4 we Ββ	1447 9 ak β 's omitt (avg) = 183.	99.9 21 ed: 4; ΣΙβ= 0.04%	3.08

^{9 2} Y—^{9 3} Sr

Radiation Type	Energy (keV)	Intensity (%)	$\Delta(extbf{g-rad}/ \mu extbf{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
1^{92} Y β^- Decay (3.54 h 1)	(Continued)		8- 4 max	510 120		
· · · p 2000, (avg	160 50	0.19 3	0.0006
γ 1	448.50 10	2.3 3	0.0223	β -5 max	560 120	0.20 #	0 0008
¥ 2	492.60 10	0.49 6	0.0051	8-6 max	1260 120	0.20 4	0.0000
γ 3 ~ "	561.10 10	2.4 3	0.0287	avg	470 60	0.38 4	0.0038
γ 4 γ 5	912.60 20	0.63 8	0.0122	β -7 max	1370 120	1 3 2 9	0 0146
γ 6	934.46 7	13.9 16	0.277	6-8 max	1490 120	1.52 0	0.0140
γ 8	1132.40 10	0.24 3	0.0059	avg	570 60	1.28 7	0.0155
γ 9 γ 10	1847.30 10	0.36 4	0.0142	8- 9 max	1560 120		0 0400
•				e-10 max	1600 120	3.11 22	0.0482
10 we	eak γ 's omitt	ed:		avg	610 60	3.12 14	0.0405
БJ	y(avg) = (64)	$2; 21\gamma = 0.155$		8-11 max	1610 120		0 400
			1	avg 8-12 max	1600 120	1.6 3	0.100
				avg	620 60	0.10 4	0.0013
• ^{9 2} Nb EC Decay	(3.6E7 y 3)	I (min) = 0.10%	8-13 max	1690 120		
				avg e-14 may	660 60 1800 120	17.9 5	0.252
Auger-L	2	100 6	0.0043		710 60	11.3 4	0.171
Auger-K	13.4	23 3	0.0067	8-15 max	1810 120		
ce-K- 1	543.10 10	0.261 8	0.0030	avg	710 60	11.5 5	0.174
	_			p-io max avor	720 60	3.78 21	0.0580
X-ray L X-ray Kg.	2	2.8 10	0.0001	β-17 max	2020 120		
X-ray Ka,	15.77510	2 35.2 16	0.0118	avg	810 60	1.14 8	0.0197
X-ray KB	17.7	9.9 5	0.0037	p-is max avor	810 60	2.01 10	0.0347
γ 1 ~ 2	561.10 10	99.699 9	1.19	8-19 max	2250 120	2001 10	
7 2	934.40 /	99.921 2	1.99	avg	910 60	0.36 17	0.0070
				$\beta=20$ max	2470 120	1.46.20	0.0317
				8-21 max	2590 120	1.40 20	0.0517
• ^{9 2} Nb EC Decay	(10.15 d 2)	l (min	= 0.10%	avg	1070 60	0.25 10	0.0057
				6-22 max	2680 120	0.25 //	0 0000
Auger-L	2	100 6	0.0043	8-23 max	2730 120	0.35 4	V. 0003
Auger-K	13.4	23 3	0.0067	a⊽g	1140 60	15.5 13	0.376
1 we	ak B's omitte	eđ:		8-24 max	3070 120	1 11 25	0 0200
Eβ	(avg) = 88.	7; ΣIB= 0.06%		θ -25 max	3080 120	1.44 23	0.0399
				avg	1300 60	3.9 13	0.108
X-ray L	2	2.8 10	0.0001	8-26 max	3100 120	• • • • • • •	0 0 0 0 0
$X - ray Ka_2$	15.77510	2 18.3 9	0.0119	avg A−27 max	3240 120	0+44 11	0.0124
X-ray KB	17.7	9.9 5	0.0037	avg	1380 60	2.3 5	0.0676
γ 1	912.60 20	1.68 9	0.0326	8-28 max	3500 120		
7 2 7 3	934.46 /	99.15 4	0.0336	avg 8-29 max	1510 60 3620 120	2.2 15	0.0708
1 3				avg	1560 60	7.1 23	0.236
				total 8-		444	
			11	avg	880 80	102 4	1.90
• 93 Sr β^- Decay ((7.3 m 3)	I (min	= 0.10%				
Feeds ⁹	³ Y			X-ray L X-fay Ka	2	0.3813	≈0 ∩ ∩ ∩ ∩ 9
				X-ray Ka,	14.95840	2 5.3 5	0.0017
Auger-L	2	17.1 13	0.0007	Х-гау КВ	16.7	1.47 12	0.0005
Auger-K	12.7	3.9 5	0.0011	γ 1 ~ 2	166.6 3	0.62 17	0.0022
ce-L- 2	166.32 5	2.91 19	0.0103	γ 2 γ 3	260.12 5	7.3 5	0,0406
ce-MNO- 2	168.30 5	0.96 6	0.0034	γ 4	285.65 7	0.269 21	0.0016
ce-K- 24	573.24 5	0.130 13	0.0016	γ 5 5	332.04 7	0.35 3	0.0025
				γ / γ R	340.49 5 377.36 6	3.24 18 1.46 10	0.0239
8- 1 max	120 120			y 9	406.71 10	0.42 4	0,0037
avg	30 40	0.50 4	0.0003	γ 10	424.70 13	0.26 4	0.0023
p= 2 max	200 120 70 40	0.140 20	0.0002	γ 11 ~ 12	428.03 21	0.15 3	0.0013
β− 3 max	490 120	Ve 170 20	0.0002	γ 13	440.80 18	0.19 4	0.0018
avg	150 50	0.24 4	0.0008	γ 14	446.20 6	2.33 14	0.0222
							(Continued)

93	Sr	_°	3	Υ
----	----	----	---	---

Radiation Type	Energy (keV)	Intensity (%)	$\Delta(extbf{g-rad}/ \mu extbf{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
γ 15	481.96 10	1, 12, 11	0,0115	γ 101	1538.71 25	0.101 21	0.0033
γ 16	483.73 8	1.65 13	0.0170	γ 103	1551.59 9	1.01 7	0.0333
y 17	486.7 4	0.12 5	0.0013	γ 104	1609.77 20	0.195 21	0.0067
γ 18	518.50 15	0.128 21	0.0014	$\gamma 105$	1634.05 8	1.43 9	0.0498
γ 19 γ 20	541.89 6	0.72 5	0.0083	v 109	1668.7 5	0.16 9	0.0309
γ 20 γ 21	559 92 8	0.39 3	0.0045	y 110	1684.84 13	0.71 6	0.0253
r 22	571.96 16	0.202 21	0.0024	y 111	1694.07 9	2.55 15	0.0921
y 23	586.5 4	0.44 16	0.0055	γ 1 12	1699.06 9	3.29 21	0.119
γ 24	590.28 5	67.2 12	0.845	y 113	1706.59 10	1.10 7	0.0398
γ 25	593.81 18	1.10 15	0.0139	γ 115	1765.36 9	1.06 6	0.0397
γ <u>26</u>	596.15 13	1.32 15	0.0167	γ 1 16 ~ 1 19	1774.83 16	0.161 21	0.0061
γ 27 π 29	610.93 6	1.08 7	0.0140	γ 1 19	1816.12 19	0.23 3	0.0537
γ 28 γ 29	633 5 3	0.19.3	0.0026	y 120	1894.1 3	0.121 21	0.0049
y 30	650,56 15	0.188 21	0.0026	y 122	1907.73 23	0.175 21	0.0071
y 31	658,56 11	0.42 4	0.0058	γ 123	1928.79 10	1.16 7	0.0475
γ 32	663.58 6	1.63 10	0.0230	γ 125	1944.75 12	0.55 5	0.0228
γ <u>33</u>	687.79 11	0.66 7	0.0096	7 131	2010.80 25	0.120 17	0.0052
γ 34	690.06 12	1.00 9	0.0147	γ 132 ~ 133	2054.08 25	0.134 21	0.0059
γ 35 • 36	692.0 4 710 //0 F	0.22 6	0.0033	r 136	2104.78 15	0.82 5	0.0272
r 30 r 37	716.8 5	0.29 16	0.325	y 138	2129.2 5	0.10 4	0.0046
γ 38	718.33 12	1.48 21	0.0226	7 140	2179.49 20	0.29 4	0.0134
γ 40	771.19 6	1.15 7	0.0189	γ 143	2230.27 12	1.53 9	0.0728
γ 41	776.07 13	0.26 3	0.0043	γ 144	2296.13 14	0.73 5	0.0358
γ 42	782.83 15	0.22 3	0.0036	γ 145	2364.72 11	1.56 9	0.0785
γ 44	788.68 8	0.76 5	0.0128	7 140 ~ 1/18	2410.3 3	0.108 21	0.0055
γ 45 ~ #6	791.10 14	0.26 3	0.0043	¥ 149	2545.04 11	2.99 17	0.162
γ 40 γ 48	834 89 5	1 65 9	0.0039	y 152	2688.65 12	2.10 13	0.120
γ 49	837.85 19	0.116 17	0.0234	y 156	2828.54 20	0.169 17	0.0102
γ 50	858.47 7	0.72 5	0.0131	γ 158	2985.72 21	0.19 3	0.0124
γ' 51	875.73 6	24.2 14	0.451	γ 160	3006.86 22	0.116 12	0.0074
γ 52	888.13 5	21.8 12	0.413	#1			
γ 53	900.98 7	0.69 5	0.0132	41976	γ s omitt $(\gamma \sigma) = 1901$	ed: 5. STan 2 200	
γ ⊃4 γ 55	910.18 8	0.81 5	0.0158		(avg) - 1001.	J; ZIY- 2.50%	
¥ 56	927.69 8	0.63 5	0.0125				
γ 57	930.91 10	0.40 4	0.0080				
γ 58	952.58 23	0.108 21	0.0022	● ⁹³ ¥ ^β ⁻ Decay (101h2)	t (min	1 = 0.10%
γ 59	991.59 21	0.121 21	0.0026	Feeds ⁹	³ 7r		., 0.10%
γ 60	1032.4 5	0.10 4	0.0022	1 0000	21		
7 61	1035.5 3	0.20 4	0.0044		•		
7 62 7 65	1040.03 0	3.10 Z1 0.34 3	0.077	Auger-L	2 249 90 10	0.16 3	*0
γ 66	1064.37 9	0.37 3	0.0084		240.50 10	0.13 3	0.0008
y 67	1077.86 16	0.24 3	0.0054	8- 1 may	1132 20		
γ 68	1094.00 7	1.74 11	0.0406		132 8	0.187 11	0 0005
γ 69 γ 71	1104.69 23	0.15 3	0.0035	β- 2 maπ	705 20		0.0005
r 72	1136.77 20	0.195 21	0.0047	avg	235 8	1.60 8	0.0080
y 73	1180.76 17	0.24 3	0.0061	6-3 max	1420 20		
y 74	1196.23 6	0.97 6	0.0247	avg	535 9	0.145 9	0.0017
γ 76	1215.48 7	2.47 14	0.0639		5440 20	0 277 20	0.000
γ 77	1239.15 25	0.12 3	0.0032	8-5 máx	1465 20	0.577 20	0.0044
γ /8 ~ 91	1243.41 8	0.79 5	0.0210	avg	555 9	0.266 14	0.0031
v 82	1260.30 10	· · · · · · · · · · · · · · · · · · ·	0.0297	β -6 max	1943 20		
γ 83	1277.99 9	0.86 7	0.0234	avg	771 10	2.51 12	0.0412
γ 84	1308.60 9	0.40 3	0.0111	β − 7 max	2623 20		
γ 85	1321.24 7	2.58 14	0.0726	avg	1087 10	4.6 4	0.107
γ 88	1332.5 5	0.5 3	0.0134		2090 20	00 2 E	2 22
γ 89	1334.50 10	0.67 5	0.0191	total 8-	1217 10	30.4 3	2.33
γ 90 ~ 01	13/8.98 10	0.35 3	0.0103	avq	1173 11	100.0 7	2.50
7 91 7 92	1434_01 8	3.43 21 0.89 6	0.101				
y 93	1438.93 9	0.50 4	0.0152	4 we	ak β's omitte	ed:	
y 94	1466.2 3	0.101 21	0.0031 l	Eβ	(avg) = 310.5	5; ΣΙβ= 0.12%	
γ 95	1469.50 12	0.52 4	0.0162				(Continued)
y 96	1483.3 3	0.101 21	0.0032				
γ ·97	1492.13 12	0.54 4	0.0173				
7 100	1520.1 5	0.32 7	0.0102	I			

^{9 3} Y—^{9 5} Nb

Radiation Type	Energy (keV)	Intensity (%)	$\Delta(extbf{g-rad}/ \mu extbf{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
93 Y β^- Decay (1 y 1 y 2	0.1 h 2) 266.90 10 680.20 10	Continued) 6.9 4 0.61 3	0.0389 0.0088	 ⁹⁴Nb IT Decay (%IT De Feeds ⁹ See also 	6.26 m 1) cay = 99.53 9 ⁴ Nb (2.03E4 γ o ⁹⁴ Nb β Dec	l (mir /) cay (6.26 m)	h) = 0.10%
7 4 7 11 7 13 7 14 7 19	947.10 10 1203.30 10 1425.40 10 1450.50 10 1917.80 10	0.103 7 0.238 14 0.336 19 1.40 8	0.0393 0.0026 0.0072 0.0104 0.0574	Auger-L Auger-K ce-K-1	2.15 14 21.96 4 38 25 0	91 4 14.4 19 57.1 7 33.6 7	0.0042 0.0043 0.0267
γ 20 γ 21	2184.60 10 2190.80 10	0.155 13 0.171 11	0.0072 0.0080	ce-MNO- 1	40.48 4	8.71 24	0.0075
14 wea Еу(k γ's omitte (avg) = 1413.3	d: ; ΣΙγ= 0.33%		X-ray L X-rav Kα ₂ X-ray Kα ₁ X-ray K8	2.17 16.52100 16.61510 18.6	2.8 10 2 12.3 6 2 23.6 11 6.8 4	0.0001 0.0043 0.0084 0.0027
 ⁹³Zr β⁻ Decay (Feeds ⁹³ 	1.53E6 y 10) ³ Nb (14.6 y)	L (min) = 0.10%	1 wea ਤਾ	ak γ's omitte (avg) = 41.(ed:); ΣΙγ= 0.08%	
₿- 1 max avg	61.5 19 19.5 7	100	0.0415	● ⁹⁴ Nb β ^{-−} Decay (%β ^{-−} De See also	(6.26 m 1) ecay = 0.47 9 o ⁹⁴ Nb IT Dec	l (min ay (6.26 m)	a) = 0.10%
• ⁹³ Nb IT Decay (14.6 y 13)	1 (min) = 0.10%	B−1 max avg	1215 3 444.0 12	0.47 9	0.0044
Auger-L ce-K- 1 Auger-K ce-L- 1 ce-M- 1	2.15 11.784 20 14 28.072 20 30.302 20	79.4 15 15.0 4 3.8 5 66.1 7 14.2 4	0.0036 0.0038 0.0011 0.0395 0.0092	τ 2	871.099 18	0.47 9	0.0087
ce-NOP- 1 X-ray L X-ray Kaz	30.712 20 2.17 16.52100 2	4.69 13 2.5 9 3.23 17	0.0031 0.0001 0.0011	● ⁹⁵ Zr β ⁻ Decay ((% Feedi % Feedi	64.02 d 4) ng to ^{9 s} Nb (3 ng to ^{9 s} Nb (8	l (min 5.06 d) = 99.22 6.6 h) = 0.78 4	a) = 0.10% 2 4
X-ray Κα ₁ X-ray Κβ	16.61510 2 18.6	6.2 4 1.78 10	0.0022 0.0007	β- 1 max avg β- 2 max	366 3 109.3 10 399 3	55.4 11	0.129
 ⁹³Mo EC Decay Feeds 	(3.5E3 y 7) ³ Nb (14.6 y)	t (min	} = 0.10%	avg 6-3 max avg	120.4 10 887 3 327.0 11	43.7 8 0.78 4	0.112 0.0054
Auger-L	2.15	98 5	0.0045	$\begin{array}{cccc} & B^+ & 4 & max \\ & & avg \\ & total & \beta^- \end{array}$	405.4 12	0.10 3	0.0009
Auger-K	14	21 3	0.0063	avg	116.1 11	100.0 14	0.247
X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ	2.17 16.52100 2 16.61510 2 18.6	3.0 11 18.1 9 34.8 16 10.0 5	0.0001 0.0064 0.0123 0.0040	γ 2 γ 3	724.184 12 756.715 15	43.7 8 55.3 11	0.673 0.892
				● ⁹⁵ Nb β ⁻ Decay ((35.06 d 9)	l (min) = 0.10%
 ⁹⁴Nb β⁻ Decay (2.03E4 y 16)	l (min) = 0.10%	Auger-L ce-K- 3	2.27 745.790 10	0.126 9 0.128 4	≈0 0.0020
Auger-L ce-K- 1	2.27 682.627 19	0.159 11 0.161 5	^{№0} 0,0023	β∽ 1 max avq	159.8 5 43.35 15	99,970 5	0.0923
β− 1 max avg	471 3 145.8 10 1	00	0.311	1 wea ВВ (k β 's omitte avg) = 321.9	ed:); ΣΙβ= 0.03%	
γ 1 γ 2	702.627 19 1 871.099 18 1	00	1.50 1.86	γ 3	765.790 10	99-808.6	1.63
·		-	(2 wea B7 (k γ's omitte (avg)= 389.2	ed: 2; ΣΙγ= 0.03%	

⁹⁵Nb—⁹⁶Nb

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
• ⁹⁵ Nb IT Doony	(966 b 9)	I (mir	$ - 0.10^{\circ} $	84 1	512 0		
%IT C	Decay = 94.5 4	1 (1111	1) - 0.10%		230 4	0.234 18	0.0011
Feeds See al	95 Nb (35.06 d)	cav (86.6 b)		BT 2 max avg	341 4	0.28 5	0.0020
		cay (00.0 m)		total 8+ avg	290 5	0.51 6	0.0032
Auger-L	2.15	67 4 13 8 18	0.0030	V-nov T	2 20	4 0 13	0 0000
ce-K- 1	216.704 20	54.9 7	0.253		2.27	18 8 10	0.0002
ce-L- 1	232.992 20	11.0 3	0.0544	X-ray Kg.	17.47930 1	36.0 19	0.0134
ce-MNO- 1	235.222 20	3.62 11	0.0181	X-ray KS	19.6	10.6 6	0.0044
				y 1	204.117 5	61.9 19	0.269
X-ray L	2.17	2.1 7	≈ 0	γ 3	252.950 10	0.598 19	0.0032
X-ray Kaz	16.52100	2 11.8 6	0.0042	7 0	582.070 10	29.3 9 1.26 H	0.0165
X-ray Ka ₁	16.61510	2 22.7 11	0.0080	Y 8	786.184 17	8.5 3	0.142
x-ray KB	235 690 20	25.0 6	0.0020	y 10	820.610 10	4.61 14	0.0806
, ,	255.070 20	23.00	0.120	y 11	835.130 10	26.1 8	0.464
				γ 13	1039.250 20	2.72 9	0.0602
● ⁹⁵ Nb β ⁻ Decay	(86.6 h 8)	l (mir	n) = 0.10%	12 wea	ak γ's omitte (avg)= 883.1	d: : $\Sigma T \gamma = 0.13\%$	
%β− ί	Decay = 5.5 4			Maxim	im γ±-intensi	ty = 1.03%	
See al	so ⁹⁵ Nb IT Dec	ay (86.6 h):					
β− 1 max	957.2 5			• ⁹⁵ To IT Decay (61 d 2)	l (min) = 0.10%
avg	334.97 21	0.134 12	0.0010		u = A	1 (1111)	7 - 0.10%
6-2 max	1161.3 5	c "	0.050	Foods 2	ay - 4 δτ. (20.0 μ)		
avg total 8-	43/-80 21	5.4 4	0.0504	Feeus See alco	95 To EC Door	v (61 d)	
avg	435.08 21	5.5 4	0.0513		TC EC Deca	y (01 d)	
v 1	204.117 5	0.130 11	0.0006	Auger-L	2.17	3.25 8	0.0002
· ·				ce-K- 1	17.86 10	0.908 20	0,0003
				ce-L- 1	35.86 10	2.49 3	0.0019
• ⁹⁵ Tc EC Decay	(20.0 h 5)	l (mir	n) = 0.10%	ce-MNO- 1	38.36 10	0.728 16	0.0006
				X-ray L	2.42	0.15 6	≈0
Auger-L	2.27	96 6	0.0047	X-ray Kaz	18.2508 8	0.203 10	≈ 0
Auger-K	14.8	20 3	0.0065	X-ray Kai	18.3671 8	0.388 19	0.0002
ce-K- 9	745.790 10	0.120 4	0.0019	X-ray KB	20.6	0.116 6	≈ U
X-ray L	2.29	4.0 14	0.0002				
X-ray Kg.	17.47930	136.5 16	0.0136	• ⁹⁶ Nb β ⁻ Decay	(23.35 h 5)	l (min) = 0.10%
X-ray K6	19.6	10.7 5	0.0045				,
γ 3	204.117 5	0.31 4	0.0013		· · -		
γ 8	604.040 20	0.304 9	0.0039	Auger-L	2.27	0.51 4	ະ0 ~0
γ 9	765.790 10	93.82 20	1.53	ce-K- 5	199,10 20	0.100 6	0.0004
γ () ~ 13	785.930 ZU	0 317 8	0.0024	ce-K- 21	440.03 6	0.150 7	0.0014
γ 13 γ 14	947.670 20	1.951 19	0.0394	ce-K- 25	548.86 6	0.150 11	0.0018
γ 16	1073.710 20	3.74 4	0.0856	cé+K- 31	758.220 20	0.120 4	0.0019
14 we	ak y's omitte	ed :		6- 1 max	312 4		
۲۵	r(avg) = 693.	γ ; $\Sigma 1 \gamma = 0.15\%$,	avg	90.7 14	0.59 6	0.0011
				β^{-2} max	432 4	0 65 9	0 0018
				6-3 max	746 4	0.01 3	0.0010
• ⁹⁵ Tc EC Decay	(61 d 2)	l (mir) = 0.10%	avg 8- 4 may	249.7 16 👈	2.8 5	0.0149
%EC [Decay = 96	av (61 d)	<i>,</i>	avg	250.6 16	95.9 5	0.512
See al		ay (01 0)		total 8- avg	248.8.16	100.0 8	0.530
Auger-L	2.27	95 6 20 2	0.0046	 1 wex	ik 8°s omitte	d:	
AUGER-K	14.8 184.117 5	20 5 2.81 12	0.0064	EB	(avg) = 59.0	; ΣIβ= 0.02%	
ce-L- 1	201.251 5	0.359 16	0.0015			-	(Continued)
ce-11 NO- 1	203.612 5	0.118 5	0.0005	1			

⁹⁶Nb--⁹⁷Zr

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
⁹⁶ Nb β [−] Decay	(23.35 h 5)	(Continued)		● ⁹⁶ Tc EC Decay %EC D	(51.5 m 10) ecay = 2.0 5	I (mii	n) = 0.10%
X-ray Ka ₂ X-ray Ka ₁	17.3743 14 17.47930 1	0.114 6	≈0 ≈0	See also	o ⁹⁶ Tc IT Deca	y (51.5 m)	
γ 5 γ 8 γ 12	219.10 20 241.40 20 349.90 20	3.78 20 3.87 20 0.73 8	0.0176 0.0199 0.0054	Auger-L Auger-K	2.27 14.8	2.0 4 0.42 11	≈0 0.0001
γ 13 γ 14 γ 15 γ 16 γ 19	350.32 15 352.50 15 369.67 12 371.81 10 434.71 5	1.11 12 0.82 10 0.12 6 2.81 20 0.53 6	0.0083 0.0062 0.0009 0.0222 0.0049	X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 16	17.3743 14 17.47930 1 19.6 480.68 8	0.39 8 0.75 16 0.22 5 0.34 9	0.0001 0.0003 ≈0 0.0035
γ 21 γ 22 γ 23 γ 25 γ 27	460.03 6 477.67 6 480.68 8 568.86 6	28.2 10 0.12 5 6.3 4 55.7 20	0.276 0.0012 0.0644 0.674	7 21 7 23 7 25 7 26 7 26	719.55 5 778.220 20 847.67 11 849.86 4	0.30 8 1.9 5 0.12 3 0.28 8	0.0045 0.0310 0.0021 0.0051
γ 27 γ 28 γ 29 γ 30	591.20 15 593.30 20 719.55 5 721.5 3	0.9720 0.31 8 7.3 4 0.8 3	0.0122 0.0039 0.111 0.0119	γ 3/ γ 41 39 wea	1200.19 6 1497.68 8 ak γ's omitted	1.1 3 0.12 3	0.0273 0.0037
γ 31 γ 32 γ 33 γ 34	778.220 20 810.25 7 812.54 4 847.67 11	96.80 20 9.9 6 3.4 5 1.6 4	1.60 0.170 0.0586 0.0297	Εγ	(avg)≈ 887.6;	; ΣΙγ= 0.56%	
γ 35 γ 37 γ 38 γ 40 γ 43	849.86 4 1091.30 4 1126.85 6 1200.19 6 1441.14 10	20.7 10 49.4 20 0.53 8 20.0 10 0.40 4	0.375 1.15 0.0128 0.512 0.0122	 ⁹⁶ Tc IT Decay (§ %IT De Feeds ⁹ See also 	51.5 m 10) cay = 98.0 5 ⁶ Tc (4.28 d) 9 ^{9 6} Tc EC Deca	l (mir y (51.5 m)	n) = 0.10%
ץ 44 19 אופ 19	1497.68 8 eak γ's omitte γ(avg)= 589.2	3.00 20 d: ; ΣΙγ= 0.53%	0.0957	Auger-L ce-K- 1 Auger-K ce-L- 1 ce-M- 1	2.17 13.4 4 15.5 31.4 4 33.9 4	83 3 43.6 8 9.6 14 42.7 8 8.71 24	0.0038 0.0124 0.0032 0.0285 0.0063
• ⁹⁶ Tc EC Decay	(4.28 d 6)	t (min)	= 0.10%	ce-NOP- 1	34.3 4	2.87 9	0.0021
Auger-L Auger-K ce-K- 29	2.27 14.8 758.220 20	95 7 20 3 0.124 4	0.0046 0.0064 0.0020	X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray K8	2.42 18.2508 8 18.3671 8 20.6	3.9 13 9.7 5 18.6 9 5.6 3	0.0002 0.0038 0.0073 0.0025
X-ray L X-ray Ka ₂ X-ray Ka ₁ X-ray Kß	2.29 17.3743 14 17.47930 1 19.6	4.0 14 18.8 12 36.0 22 10.6 7	0.0002 0.0070 0.0134 0.0044	1 wea B7	ak γ's omitted (avg) = 34.49	1: ; ΣΙγ= 0.03%	1
7 10 7 11 7 17 7 19 7 22 7 23	314.27 5 316.50 6 434.71 5 460.03 6 535.78 8 568.86 6	2.4324 1.4020 0.755 0.434 0.414 0.926	0.0163 0.0094 0.0069 0.0042 0.0047 0.0111	● ⁹⁷ Zr β ⁻ Decay(% Feedi % Feedi	16.90 h 5) ing to ⁹⁷ Nb (72 ng to ⁹⁷ Nb (60	l (mir 1 m) = 5.3 3 s) = 94.7 3	n) = 0.10%
τ 25 τ 27 τ 28	591.20 15 719.55 5 721.5 3	0.11 6 0.20 5 0.12 5	0.0014 0.0031 0.0018	β- 1 max avg 6- 2 max	409.9 20 124.3 7 551.5 20	0.49 4	0.0013
γ 29 γ 30 ~ 31	778.220 20 810.25 7 812 54 4	99.760 8 0.21 9 82 #	1.65	avg 8-3 max	175.3 8 893.0 20	5.5 4	0.0205
γ 33 γ 35	849.86 4 1091.30 4	98 4 1.10 8	1.77	avg β- 4 max	309.2 9 906.9 20	1.88 21	0.0124
γ 36 γ 38	1126.85 6 1200.19 6	15.2 12 0.37 3	0.364 0.0094	avg β~5 max	1004.7 21	0.19 6	0.0034
25 we	ak γ's omitte	d:		ανς β-6 max avα	1109.1 20 399.4 9	0.38 8	0.0014
Eŋ	r(avg)= 650.9	; ΣIγ= 0.89%		β+ 7 max avg	1109.6 20 399.6 9	0.65 7	0.0055
				β− 8 max avg	1381.3 20 517.2 9	0.21 11	0.0023
				β-9 max avg	1406.4 20 528.3 9	4.4 6	0.0495 (Continued)

⁹⁷ Zr—⁹⁷ Ru

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
8-10 max avg total 8-	1914.1 20 756.6 10	86.0 6	1.39	 ⁹⁷Nb IT Decay (Feeds ⁹ 	60 s 8) ⁷ Nb (72.1 m)	F (min) = 0.10%
total β^{-} avg $\gamma = \frac{4}{2}$	696.1 11 202.2 6	100.2 11 0.10 3	1.49 0.0004	Auger-I. Auger-K ce-K- 1	2.15 14 724.37 10	1.99 12 0.44 6 1.74 5	≈0 0.0001 0.0268
7 5 7 6 7 7	218.68 15 254.15 20 272.27 20	0.23 6 1.25 14 0.25 4	0.0011 0.0068 0.0015	ce-L- 1	740.66 10	0.225 7	0.0035
7 10 7 11 7 12 7 13 7 14 7 15 7 16	330.43 20 355.39 10 400.39 20 507.63 10 513.47 20 602.52 15 690.63 20	0.11 3 2.27 24 0.32 5 5.3 6 0.51 10 1.39 14 0.25 4	0.0008 0.0172 0.0028 0.0572 0.0056 0.0179 0.0037	X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 1	16.52100 2 16.61510 2 18.6 743.36 10	2 0.375 20 2 0.72 4 0.207 12 97.96 6	0.0001 0.0003 ≈0 1.55
γ 17 γ 18 γ 20	699.2 3 703.80 10 795.7 8	0.121 19 0.93 10 0.121 19	0.0018 0.0139 0.0020	● ^{9 7} Tc EC Decay(2.6E6 y 4)	L (min	= 0.10%
γ 21 γ 23 γ 24 γ 25	804.53 10 829.80 10 854.90 10 971 39 10	0.65 7 0.223 19 0.33 4	0.0111 0.0039 0.0061	Auger-L Auger-K	2.27 14.8	96 6 20 3	0.0046 0.0064
7 26 7 27 7 28 7 29 7 30 7 31 7 32	1021.3 3 1119.1 4 1147.95 10 1276.09 10 1362.66 10 1750.46 10	1.21 19 0.111 19 2.6 3 0.97 10 1.35 14 1.35 14	0.0263 0.0227 0.0647 0.0265 0.0391 0.0502	X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray K8	2.29 17.3743 14 17.47930 1 19.6	4.0 14 18.9 9 36.1 16 10.6 5	0.0002 0.0070 0.0134 0.0044
7 ¥ E	eak γ's omitt γ(avg)= 344.	ed: 1; ΣΙγ= 0.21¶	0.0139	• ⁹⁷ Tc IT Decay (8 Feeds ⁹⁷	9 d З) Тс (2.6Е6 у)	l (min)	= 0.10%
• ⁹⁷ Nb β^- Decay	(72.1 m 7) 2.27	l (mir 0. 175 12	n) = 0.10%	Auger-L Auger-K ce-K- 1 ce-L- 1 ce-M- 1 ce-NOP- 1	2.17 15.5 75.46 10 93.46 10 95.96 10 96.43 10	89 4 14.0 21 63.2 7 29.4 6 5.90 17 1.17 3	0.0041 0.0046 0.102 0.0585 0.0121 0.0024
ce-K- 5 β- 1 max avg β- 2 max avg β- 3 max	637.90 10 303.8 20 88.2 7 417.3 20 126.6 7 664.3 20	0.177 6 0.118 17 0.167 22	0.0002	X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray K8 γ 1	2.42 18.2508 8 18.3671 8 20.6 96.50 10	4.2 14 14.1 7 27.0 12 8.1 4 0.324 9	0.0002 0.0055 0.0106 0.0036 0.0007
avg β-4 max avg β-5 max avg	217.6 8 908.4 21 314.9 9 1274.9 20 469.8 9	0.206 22 1.08 10 98.30 12	0.0010 0.0072 0.984	● ^{9 7} Ru EC Decay (/ % Feedi	2.9 d 1) ng to ⁹⁷ Tc (2.	l (min) 6E6 y) = 99.93	= 0.10% 1 4
total 8- avg 1 w E	466.4 9 eak β's omitte β(avg)= 277.3	99.96 16 ed: 3; ΣΙβ= 0.09%	0.993	Auger-L Auger-K ce-K- 5 ce-L- 5	2.17 15.5 194.64 4 212.64 4	97 6 20 3 2.83 4 0.340 6 0.145 7	0.0045 0.0065 0.0117 0.0015
7 3 7 5 7 9 7 12 7 13	480.90 10 657.90 10 1024.5 3 1268.60 10 1515.60 20	0.147 20 98.09 11 1.08 10 0.157 20 0.118 20	0.0015 1.37 0.0235 0.0042 0.0038	X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ	2.42 18.2508 8 18.3671 8 20.6	4.6 16 20.0 9 38.3 16 11.5 6	0.0002 0.0078 0.0150 0.0050
9 we B1	eak γ's omitte γ(avg)= 798.3	ed: 3; ΣΙγ= 0.49%		7 2 7 5 7 6 7 7 7 11	108.80 4 215.68 4 324.48 5 460.55 5 569.27 5	0.108 12 85.50 18 10.86 18 0.117 6 0.872 18	0.0002 0.393 0.0750 0.0011 0.0106
				14 vea By (k γ 's omitte avg) = 599.3	d: ; ΣΙγ= 0.37%	

 $E\gamma(avg) = 599.3; \Sigma I\gamma = 0.37\%$

⁹⁸Tc-¹⁰¹Mo

· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			
Radiation En Type (k	ergy Intensity eV) (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
- <u></u>	<u></u>				<u> </u>	
• ⁹⁸ Tc β^- Decay (4.2E6	y 3) I (mir	n) = 0.10%	• ⁹⁹ Tc IT Decay ((%IT Dec	6.02 h 2) cay = 99.99990	l (min) 12 7	= 0.10%
Auger-L 2.	53 0.358 24	~0	Feeds ⁹	'Tc (2.13E5 y)		
ce-K-1 630.	29 5 0.221 7	0.0030	%β ⁻ De	cav = 0.000098	37	
ce-K- 2 723.	23 5 0.156 5	0.0024				
6-1 max 394	8		ce-M- 1 ce-NOP- 1	1.626 10 2.102 11	74.5 23 24.6 7	0.0026
avg 118	3 100	0.251	Auger-L	2.17	10.3 7	0.0005
		1	Auger-K	15.5	2.1 3	0.0007
X-ray Ka ₁ 19.2	27920 2 0.163 8	≈0	ce-K- 2	119.464 4	8.79.25	0.0224
y 1 652.0	41 5 99.745 8	1.39	Ce-k- 3	121.59 3	0.01 4	0.0016
γ 2 745.3	35 5 99.819 5	1.58	Ce-L- 2	137.405 4	1.00 3	0.0031
			ce-MNO- 2	139.964 5	0.230 7	0.0008
● ^{.99} Mo β ⁻ Decay (66.02	h 1) l (min) = 0.10%	X-ray L	2.42	0.48 17	≈0
% Feeding to	$99 T_{C} (2.13E5 v) = 11 v$	1 9	$X - ray K\alpha_2$	18.2508	8 2.10 11	0.0008
% Fooding to	$99T_{-}(600 \text{ b}) = 89.6 \text{ f}$		X-ray Kai	18.3671	8 4.02 20	0.0016
% reearing to	$r = 88.6 \$,	X-ray KB	20.6	1.21 7	0.0005
Auger-L 2.	17 4.4 5	0,0002	γ 2	140.508 4	89.07 24	0.267
Auger-K 15.5	5 0.89 16	0.0003	2 wea	ak y's omitte	ed:	
ce-K- 2 19.	5400 22 2.9 4	0.0012	Εγ	(avg) = 142.0	5; $\Sigma I \gamma = 0.02\%$	
ce-L- 2 37.5	5415 21 0.35 5	0.0003				
ce-K- 3 119.0	464 4 0.37 5	0.0010				
ce-K- 6 160.0	019 8 0.79 6	0.0027				
ce-L- 6 178.(020 8 0.117 9	0.0004	● ¹⁰¹ Mo β ⁻ Decav	(14.61 m 7)	L (min)	= 0.10%
0. 4			Feeds	¹⁰¹ Tc	,	011070
β max 214.0		0.0001				
avg 59.8		0.0001	Auger-L	2.17	140 5	0.0065
p 2 max 352.		0 0000	ce-L- 1	3.238 7	61 3	0.0042
avg 104.2		0.0003	ce-MNO- 1	5.737 7	14.7 17	0.0018
p J Max 430.0	0 IU 0 A 17 3 13	0 0000	ce-L- 2	6.274 10	75 3	0.0101
	5 10	0.0490	ce-MNO- 2	8.773 10	18.1 18	0.0034
p 4 max 047.0	5 11 1 76 17	0 0.08%	ce-L- 3	12.563 15	1.45 24	0.0004
A-5 may 1210 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0004	ce-MNO- 3	15.062 15	0.36 6	0.0001
3 max 1214.0	7 5 92 7 12	0 7 9 0	Auger-K	15.5	1.6 3	0.0005
avy ++22	5 02. 12	0.700	ce-K- 4	59.88 3	2.7 4	0.0034
	9 6 101 7 17	0 0 20	ce-L- 4	77.88 3	0.37 9	0.0006
avg 5001.	0 101.7 17	0.030	ce-K- 10	170.89 4	4.7 3	0.0173
4 weak Ats	omitted.	1	ce-L- 10	188.89 4	0.66 4	0.0027
Bβ (avg) =	180.9; ΣΙβ= 0.06%		ce-M NO-10	191.39 4	0.145 8	0.0006
X-ray L 2.4	0.20 8	a:0	β- 1 max	152 24	0 470 44	
X-ray Ka2 18.2	508 8 0.90 10	0.0004	avg	41 /	0.1/8 14	0.0002
$X = Tay K\alpha_1$ 18.3	5671 8 1.73 19	0.0007		230 24	0 24 4	0 0005
x-ray KB 20.0		0.0002	A-3 may	253 24	0.34 4	0.0005
~ 3 140 5	0040200.00012	0.0008		72 8	1.36.10	0 0021
γ 5 140.5 ~ 6 191.0	100 4 3.0 J	0.0113	8- 4 may	392 24	1.50 10	0.0021
~ 9 366 //	12 2 1 27 12	0.0240		118 9	0.120.12	0 0003
~ 21 730 5	13 5 1 . 57 12	0.202	8- 5 max	457 24	00 (2) 12	0.0000
v 23 778.0	10 20 4.5 4	0.0742	avg	140 9	0.17 6	0.0005
y 24 822.9	0 20 0.133 13	0.0023	8- 6 max	573 24		
22 weak y's	omitted:		avg β−7 max	593 24	0.56 4	0.0022
$E\gamma(avg) =$	680.1; ΣIγ= 0.26%		avg 8- 8 max	190 9 662 24	0.17 4	0.0007
			avg 8- 9 max	216 10 682 24	0.129 21	0.0006
 ⁹⁹Tc β⁻ Decay (2.13E5) 	y 5) I (min)	= 0.10%	avg 8-10 mav	224 10	2.30 12	0.0110
			a⊽g 811 ma¥	252 10	3.13 16	0.0168
β- 1 max 293.6 avg 84.6	5 6 99.998	0.180	avg	256 10	20.7 9	0.113
-			₿-12 max avg	810 24 274 10	0.93 5	0.0054
			β−13 max avg	849 24 290 10	11.7 4	0.0723

¹⁰¹Mo-

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
8-1/1 may	992.24			10			
avor	303 10	0.67 5	0.0043	y 18 y 19	327.68 13	0.21/ 16	0.0015
8-15 max	913 24		000045	y 21	352.90 17	0.144 14	0.0011
avg	316 10.	3.3 5	0.0222	γ 23	367.9 7	0.11 3	0.0009
β-16 max	918 24	0 105 10	0 0010	γ 24 25	370.0 8	0.16 5	0.0013
6-17 max	1003 24	0.145 10	0.0010	7 25 7 26	3/1.6 8	0.17 5	0.0012
avg	353 10	0.41 6	0.0031	r 27	379.3 3	0.23 10	0.0013
8-18 max	1005 24			y 29	381.23 14	0.311 24	0.0025
avg 8=10 ===	354 10	3.37 14	0.0254	γ 31	398.70 7	0.92 6	0.0078
D-19 max	367 10	1.55.19	0 0121	γ 32	408.53 6	1.63 9	0.0142
8-20 max	1133 24		010121	r 35	432.9 4	0.113 8	0.0038
avg	408 11	0.23 15	0.0020	γ 37	448.49 6	0.70 4	0.0067
8-21 max	1167 24			γ 39	469.04 22	0.119 12	0.0012
avg 8-22 mar	422 11	1.00 20	0.0090	γ 43	497.0 8	0.14 5	0.0014
avq	434 11	8.4 14	0.0777	y 44 y 45	505.05 18	1.3 6	0.0145
8-23 max	1196 24			y 46	505.88 5	12.1 8	0.130
avg	435 11	1.83 11	0.0170	γ 47	510.14 14	1.00 8	0.0108
8-24 max	1212 24	0 1 2 7	0 0010	γ 48	512.18 17	1.79 13	0.0195
8-25 max	1217 24	0.13 /	0.0012	γ 49 ~ 50	514.1 4	0.83 8	0.0090
avg	444 11	1.45 13	0.0137	γ 50 γ 51	523.80 12	0.177 14	0.0020
8-26 max	1246 24			γ 52	533.51 11	0.41 3	0.0046
avg	456 11	0.27 3	0.0026	γ 55	566.51 10	0.75 12	0.0090
p-2' max	1363 24	0 35 #	0 0039	γ 56	571.69 19	0.190 14	0.0023
8-28 max	1491 24	0.33 4	0.0030	7 50	590.82 5	16.7 16	0.0724
avg	564 11	6.9 3	0.0829	y 60	602.98 24	0.104 14	0.0013
β -29 max	1579 24			γ 61	606.8 3	0.217 18	0.0028
avg	603 11	0.20 4	0.0026	7 62	608.32 8	1.09 7	0.0142
	643 11	0-280 18	0.0038	γ 63 γ 64	611.6 5	0.15 3	0.0019
β-31 max	1783 24	00200 10	0.0050	γ 66	642.58 5	1.27 7	0.0173
avg	694 11	6.9 16	0.102	γ 69	660.61 10	0.228 15	0.0032
$\beta=32$ max	2189 24	0 <i>u c r</i>	0.0000	y 72	695.53 7	6.0 6	0.0882
avo; A−33 max	2195 24	0.40 5	0.0086	γ 73 ~ 75	701.80 13	0.34 3	0.0051
avg	883 11	1.12 11	0.0211	7 77	732.92 25	0.27 4	0.0042
8-34 max	2205 24		-	γ 79	739.54 13	0.307 21	0.0048
avg	887 11	6.7 16	0.127	γ 80	773.81 17	0.34 3	0.0056
אנה מככס מערה	927 12	1.2.6	0 0237	γ 81 ~ 92	779 17 9	0.109 20	0.0018
6-36 max	2417 24	1.2 0	0.0257	v 83	790.01 18	0.129 12	0.0022
avg	986 12	0.50 14	0.0105	γ 85	804.19 8	1.02 7	0.0174
B-37 max	2522 24	2 1 7	0 0 1 6 3	.γ 86	815.20 18	0.182 16	0.0032
6-38 max	2603 24	2	0.0403	v 90	859.09 19	0.113 10	0.0043
avg	1073 12	11.0 15	0.251	γ 91	869.7 3	0.35 6	0.0064
total 8-				7 92	871.11 10	1.57 11	0.0292
avg	504 15	103 4	1.10	γ 93 ~ 0/	877.37 9	3.15 21	0.0588
3 we	ak 8's omitt	ed:		7 74	887.0 3	0.24 4	0.0121
Eβ	(avg) = 310.	1; ΣΙβ= 0.26%	•	y 96	888.7 3	0.23 3	0.0044
		· · · ·		γ 98	896.3 4	0.22 4	0.0041
X-ray L	2.42	6.6 22	0.0003	γ 99 	903.41 15	0.205 16	0.0040
γ 1	6.281 7	0.54 8	R 0	7 100	933.3 3	0.35 3	0.0153
γ 2 Χατα π. Κα	9.317 10	1.94 24	0.0004	r 103	980.40 12	0.271 17	0.0057
X-ray Koz X-ray Koz	18.2508	8 3 19 24	0.0006	y 104	987.94 17	0.161 14	0.0034
X-ray KG	20.6	0.95 8	0.0004	y 105	1007.4 3	0.180 18	0.0039
γ ΄4	80.92 3	5.4 4	0.0093	γ 106	1011.05 14	1.8 4	0.0385
γ 5	104.70 B	0.163 20	0.0004	v 108	1012,50 8	13.1 9	0.282
γ 6 ~ 7	105.95 5	0.24 3	0.0005	7 109	1018.58 25	0.65 10	0.0142
y 9	187.41 20	0.48 6	0.0019	γ 110	1020.0 3	0.48.8	0.0104
y 10	191.93 4	19.2 11	0.0785	γ 112	1049.75 10	0.353 21	0.0079
y 11	195.94 5	2.92 17	0.0122	γ 1 15 ~ 1 14	1064.2 3	0.22 4	0.0050
γ 12	212.00 8	0.52 6	0.0023	γ 115	1160.92 9	4.05 23	0.100
γ 13 γ 17	221.80 23	0.102 12	0.0005	γ 116	1168.99 17	0.240 18	0.0060
,	÷. • • • • • • • • • • • • • • • • • • •		0,0070	1			

¹⁰¹Mo-¹⁰³Ru

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
^{101} Mo β Decay	(14.61 m 7)	(Continued)		β−1 max	624 24		
				A-2 max	201 10	1.2 4	0.0051
γ 117 - 119	1184.19 23	0.200 18	0.0050	avg	225 10	0.82 5	0.0039
γ 119	1199.87 8	1.79 11	0.0456	8-3 max	696 24 229 10	0 300 10	0 0015
γ 120 122	1209.88 22	0.134 12	0.0035	β−4 max	782 24	0.509 19	0.0015
γ 122 γ 123	1251.10 9	4.73	0.125	avg	263 10	1.94 7	0.0109
y 124	1260.5 3	0.156 18	0.0042		312 10	0.16 3	0.0011
γ 125 γ 126	1286.26 17	0.146 10	0.0040	8-6 max	1080 24		
γ 127	1293.29 17	0.213 15	0.0059	8-7 max	385 11 1318 24	6.5 3	0.0533
γ 128 γ 131	1304.03 9	2.84 17	0.0789	avg	487 11	89 5	0.923
y 133	1326.1 6	0.17 6	0.0049	total β-	469 12	100 5	0.999
γ 134	1336.6 3	0.142 14	0.0040	avy	405 12	100 5	0.999
γ 135 γ 136	1339.36 20	0.179 14	0.0253	X-ray L	2.56	0.10 4	æ ()
y 138	1355.99 11	1.71 12	0.0494	X-ray Kaz	19.15040	2 0.43 3	0.0002
γ 139 1/10	1377.72 20	0.250 18	0.0073	X-ray Kaı	19.27920	2 0.81 5	0.0003
y 140 y 141	1382.73 10	1.17 7	0.0345		127.24 4	2.82 12	0.0001
γ 143	1394.91 13	0.62 4	0.0185	γ 2	179.57 5	0.58 3	0.0022
γ 144	1414.16 10	0.51 3	0.0154	γ 3	184.11 5	1.62 7	0.0063
γ 145 γ 147	1430.0 6	0.14 3	0.0043	γ4 γ5	233.71 7	0.275 15	0.0014
y 148	1432.05 25	0.37 4	0.0112	γ 8	306.81 5	88 5	0.577
y 150	1440.85 15	0.161 11	0.0049	γ 9	311.5 3	0.140 22	0.0009
γ 152 γ 154	1485.90 20	0.190 14	0.0033	γ 11 γ 13	393.33 17	0.112 16	0.0009
y 155	1517.8 4	0.225 24	0.0073	γ 14	531.49 6	1.02 6	0.0116
γ 156	1520.4 5	0.24 4	0.0078	γ 15	545.14 6	6.0 3	0.0697
γ 157 ~ 159	1523.0 3	0.30 3	0.0096	γ 18 ~ 21	627.05 13	0.42 4	0.0055
γ 159	1530.3 5	0.28 5	0.0091	y 21	715.52 11	0.69 4	0.0105
y 160	1532.45 8	6.0 6	0.194	y 23	720.00 20	0.19 3	0.0028
γ 163 ~ 165	1548.68 24	0.154 14	0.0051	γ 25 25	842.79 10	0.230 14	0.0041
γ 165 γ 167	1599.22 8	1.79.11	0.0608	¥ 20	920.71 15	0.12/12	0.0025
γ 174	1662.43 9	0.13 6	0.0048	10 we	ak γ's omit	ted:	
γ 175 γ 176	1662.43 9	0.56 12	0.0197	Βγ	(avg) = 617	.8; $\Sigma I \gamma = 0.48\%$	
γ 177	1712.76 17	0.205 15	0.0075				
γ 179	1754.84 12	0.355 21	0.0133				
γ 180 ~ 191	1759.69 9	0.36 20	0.0137	● ¹⁰³ Ru β ⁻ Decay	(39.35 d 5)	l (min	a) = 0.10%
y 182	1768.22 19	0.152 11	0.0057	% Fee	eding to ¹⁰³ RI	h (56.119 m) = 9	99.737 14
γ 183	1840.21 9	0.17 8	0.0068				
γ 184 ~ 193	1840.21 9	1.23 20	0.0482	Auger-L	2.39	1.01 8	≈ 0
y 195	2032.04 10	7.1 4	0.307	Auger-K	17	0.21 4	≈0
γ 195 ÷	2038.4 5	0.22 3	0.0095	ce-K- 3	30.055 10	0.68 5	0.0004
γ 196	2041.22 11	2.15 13	0.0935	Ce-k- (J	4/3.000 20	0.407 21	0.0041
7 196 7 199	2112.77 25	0.15 3	0.0059	A- 1 may	113 //		
γ 200	2114.49 16	0.46 3	0.0208	avg	29.8 10	6.4 4	0.0041
γ 203	2223.28 14	0.169 11	0.0080	β− 2 max	226 4		
66 weal	k v's omitted	1:		avg A-3 mav	63.2 12 468 #	90 5	0.121
Bγ (a	avg) = 1109.9;	ΣIY= 4.05%		avg	143.8 13	0.238 13	0.0007
				6- 4 max	723 4		
				avg total A-	239.2 14	3.5	0.0178
• ¹⁰¹ Tc B Decay (142 m 1)	L (min)	= 0 10%	avg	67.4 13	100 5	0.144
		· (min)	0.10/0		h at		
Auger-L	2.53	1.92 14	0.0001	J Wea	ik p'S omitt (avg)= 38	eα: 7: ΣτΑ= Δ.10«	
Auger-K	16.2	0.39 6	0.0001	42	(-, 219- Ve IUM	(Continued)
ce-K- 1	105.12 4	0.56 5	0.0012				(Continued)
ce-K- 3 ce-K- 8	101.99 5	0.121 19 1.20 7	0.0004				
ce-L- 8	303.59 5	0.140 9	0.0009				

¹⁰³Ru-¹⁰⁵Ru

Radiatie Type	on Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	R	adiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
X-rav	Kan 20.07370 2	2 0-251 16	0.0001	8-	4 max	541 4		
X-ray X-ray	Kα ₁ 20.21610 2 K8 22.7	2 0.48 3 0.149 10	0.0002 ≈0	e-	avg 5 max	170.1 14 573 4	1.32 5	0.0048
γ ³	53.275 10 294.980 20	0.373 23	0.0004	e-	avg 6 max	181.8 14 596 4	4.47 16	0.0173
γ 12 γ 13	443.800 20	0.320 16	0.0030	8-	avg 7 max	190.7 14 703 4	0.500 25	0.0020
γ 15 γ 17	557.040 20	0.83 5	0.0098	e-	avg 8 max	231.1 15	0.113 12	0.0006
,	a work at a opition	J. U	0.0720	н н–	avg	329.3 16	5.22 24	0.0366
	$E\gamma$ (avg) = 486.9	9; ΣΙγ= 0.12%			avg 10 max	397.5 16	20.0 8	0.169
					avg	406.0 16	18.1 5	0.157
● ¹⁰³ Rh IT I	Decav (56.119 m 9)	L (min) = 0.10%		avg	416.2 16	0.29 3	0.0026
	,	. (,	8-	12 max avg	432.2 16	49.9 20	0.459
Auger-I ce-K-	2.39 1 16.528 8	76.6 16 9.5 3	0.0039 0.0034	н н	13 max avg	1525 4 576.8 17	0.5 4	0.0061
Auger-K ce-L-	17 1 36.336 8	1.8 3 71.3 6	0.0007 0.0552	tot	al 8- avg	397.7 17	101.2 23	0.857
ce-M- ce-NCP-	1 39.121 8 1 39.667 8	14.4 4 4.75 14	0.0120 0.0040		2 we Ef	ak β's omitt (avg)= 140.	ted: .3; ΣΙβ= 0.16%	
X-ray	L 2.7	4.0 13	0.0002		av Ka	20 07370	2 0 1 7 6	~ 0
X-ray X-ray	$\kappa \alpha_2 = 20.07370 2$ $\kappa \alpha_1 = 20.21610 2$	4.18 20	0.0009	X-r	ay K α_1	20.21610	2 0.32 10	0.0001
x-ray	КВ 22	1.30 /	0.0006	y 7	13	149.20 20	1.67 5	0.0053
	T weak γ 's omitte E γ (avg) = 39.7	d: ; $\Sigma I \gamma = 0.07\%$		7	15	183.60 20	0.100 7	0.0004
				7	19	262.90 20	7.2 3	0.0403
• ¹⁰³ Pd EC [Decay (16.961 d 16)	L (min)	= 0.10%	7 7	20	316.50 20	1.18 6	0.0789
, in 10	6 Feeding to ¹⁰³ Rh	(56.119 m) = 9	9.9740 10	77	22 23	330.90 20	0.30 10	0.0056
Auger-T	2,39	91 6	0.0046	7 7	24 27	350.20 20 393.40 20	4.20 20	0.0082
Auger-K	17	17 3	0.0060	7 7 7	28 29 30	407.5 3 413.50 20 469 40 20	0.180 20 2.48 12 17.5 10	0.0016 0.0218 0.175
X-ray	L 2.7	4.8 16	0.0003	7	31	470 3	1.30 20	0.0130
X-ray X-ray	$K\alpha_2 = 20.07370 2$ $K\alpha_1 = 20.21610 2$	37.7 15	0.0085	Ŷ	33	499.20 20	2.40 12	0.0255
x-ray	KB 22.1	11.7 5	0.0057	γ	35	513.70 20	0.36 4	0.0039
	9 weak γ 's omitte E γ (avg) = 359.6	a: ; ΣΙγ= 0.03%		γ	38	575 5	0.13 5	0.0016
				7 7	42 42	632.30 20	0.230 20	0.0031
● ¹⁰⁵ Bu 8 ⁻ 1	Decay (4.44 h 2)	L (min)	= 0 10%	γ γ	43	638.60 20 652.60 20	0.28 3	0.0038
a na p	% Feeding to ¹⁰⁵ Rh	(35.36 h) = 75.	5 11	7	45	656.10 20	2.40 9	0.0028
q	% Feeding to ¹⁰⁵ Rh	(45 s) = 24.5 1	1	7	47	676.40 20 724.50 20	16.7 7	0.241 0.756
Auger-I	2.39	0.67 22	≈0	γ γ	52 53	822.10 20 845.90 20	0.190 10	0.0033
ce-K-	5 62.7 3	0.35 23	0.0005	r T	56	875.80 20 907.70 20	3.40 14 0.59 3	0.0634 0.0114
ce-K- 1 ce-K- 1	3 125.98 20 9 239.68 20	0.2C4 20 0.167 8	0.0005	7	58 59	969.40 20 1017.20 20	2.34 9 0.340 17	0.0483 0.0074
A- 1 m	ax 220 4		•.	γ	64	1321.10 20	0.230 10	0.0065
بر الم - د – م	vg 61.3 12	0.108 9	0.0001		30 we Εγ	ak γ 's omitt (avg) = 707.	ed: 4; ΣΙγ= 1.28%	
p∘∠m a	vg 130.8 13	0.340 17	0.0009				·	
na t −a a	vg 147 4	0.20 5	0.0006					

¹⁰⁵Rh-¹⁰⁶Ag

,

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
● ¹⁰⁵ Rh β ⁻ Decay	/ (35.36 h 5)	I (mir) = 0.10%	B−6 max avg	3541 9 1509 5	78.7 7	2.53
Auger-L	2.5	0.38 4	re 0	total 8-	1411 5	100 0 10	2 01
ce-K- 1	14.42 7	0.136 25	≈0 0.0019	avy	1411 5	100.0 10	3.01
CE-K- 4	294.55 10	0.288 10	0.0018	33 we Ер	ak $B's$ omitt (avg) = 404.	ed: 7; ΣΙβ= 0.42%	
avg	69.9 9	19.7 4	0.0293		544 05 0		
β − 2 max	261 3	F 00 00	0.0000	y 12	616.17 3	20.0 0	0.225
er 3 max	567 3	5.22 22	0.0082	y 13	621.84 10	9.8 5	0.130
avg	179.4 11	75.0 5	0.287	γ 21 γ 25	873.60 20	0.416 21	0.0077
total β-	150 2 10	100 0 7	0 324	y 29	1128.02 7	0.396 15	0.0095
avy	132.3 12	,00.0 /	0.524	y 50	1562.20 6	0.157 12	0.0052
1 we Εβ	eak β's omitt 3(avg)= 33.	ed: 0; ΣΙβ= 0.04%		101 we Βγ	ak γ's omitt (avg)= 1357.	ed: 0; ΣΙγ= 0.58%	
X-ray Ka	21.17710	2 0.188 14	≈ 0				
r 2	280.10 20	0.167 10	0.0010				
7 3 7 4	306.10 20 318.90 10	5.13 21 19.2 3	0.0334 0.130	• ¹⁰⁶ Ag EC Decay	(8.46 d 10)	L (min)) = 0.10%
2 we	ak γ's omitte	ed:		Auger-L	2.5	89 F	0.0047
Εγ	(avg) = 294	9; $\Sigma I \gamma = 0.06\%$		Auger-K	17.7	15 3	0.0058
				ce-R- 3	197.351 15	0.251 11	0.0011
				ce-R- 17	487.50 3	0.424 19	0.0044
• 105 Rh IT Decay	(45 s)	I (min) = 0.10%				
Feeds	¹⁰⁵ Rh (35.36	h)		X-ray L	2.84	5.3 19	0.0003
				X-ray Kaz	21.02010	2 20.0 8	0.0089
Auger-L	2.39	70 4	0.0035	X-ray Kai X-ray KB	21.17/10	2 37.9 15	0.01/1
Auger-K	17	9.9 16 51 2 7	0.0036	γ 2	195.07 5	0.31 5	0.0013
ce-L- 1	126.16 8	23.0 5	0.0618	γ 3	221.701 15	6.6 3	0.0311
ce-M- 1	128.94 8	4.48 13	0.0123	γ 4 γ 5	328,463 23	1.14 6	0.0103
Ce-NCP- 1	129.49 8	7.11 23	0.0214	γ 7	374.46 13	0.26 4	0.0021
Y	• •		0.0000	γ 8 ~ 9	391.04 3	3.68 18	0.0307
X-ray L X-ray Kga	20.07370	2 11.8 6	0.0002	γ 10	418.55 23	0.33 7	0.0030
Y-ray Ka	20.21610	2 22.5 10	0.0097	γ 12	429.646 22	13.2 4	0.120
X-ray KO	22.7	7.0 3	0.0034	7 15 ~ 16	450.976 22	28.2 8	0.271
Y 1	129.57 0	20.4 5	0.0503	γ 17	511.85 3	88 3	0.956
				γ 19	585.97 10	0.44 10	0.0055
				7 20	601.17 7	1.61 9 21.6 7	0.0207
• ¹⁰⁶ Ru β^- Decay	(368.2 d 12)	l (min) = 0.10%	y 23	646.03 5	1.46 10	0.0200
Feeds	¹⁰ °Rh (29.92	s)		y 24	680.19 10	2.18 8	0.0316
				7 25 7 26	717.27 3	4.4/18 28.9 8	0.06/0
£− 1 max	39.4 3	100	0.0214	y 27	748.36 11	20.6 7	0.329
avy	10.05 0	100	0.0214	y 28	793.17 10	5.9 3	0.0993
			1	y 29 y 30	804.28 10	12.4 0	0.212
				γ 31	824.69 7	15.3 5	0.270
• 106 Rh β^- Decay	(29.92 s 23)	L (min	= 0.10%	γ <u>32</u>	847.6	2.456 14	0.0443
~ ^	4540 0			7 33 7 34	874.81 18	1.929 11	0.0349
r‴l max avc	1540 9 582 4	0.427 21	0.0053	γ 35	949.5 3	0.19 4	0.0039
β− 2 max	1979 9	V. 7 6 1 2 1	V. 0000	γ 36	956.22 23	0.47 8	0.0096
avg	780 5	1.92 10	0.0319	y 38	1045.83 8	29.6 10	0.0227
β− j max	2407 9	9,8 5	0.204	7 39	1050.47 7	0.26 14	0.0059
$\beta = 4 \text{ max}$	2413 9	J. U. J.	0.207	γ 40 1 12	1053.77 21	0.96 14	0.0217
avg	979 5	0.58 7	0.0121	7 42	1128.02 7	11.8 6	0.0136
avor Novo	3029 9 1267 5	8.2 4	0,221	γ 45	1136.85 19	0.23 3	0.0055
	<i>•</i>						(Continued)

Radiation Energy Type (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad, µCi-h)
γ 47 1178.07 21 γ 48 1199.39 10 γ 49 1222.88 12 γ 50 1349.5 6	0.19 3 11.2 6 7.0 4 0.12 5	0.0048 0.287 0.183 0.0035	 ¹⁰⁸ Ag EC Decay %EC See al 	(127 y 21) Decay = 90.7 7 so ¹⁰⁸ Ag T D	l (mir) Decay (127 y)	n) = 0.10%
γ 51 1394.35 14 γ 54 1527.65 19 γ 56 1565.4 3 γ 57 1572.35 15 γ 59 1722.76 18	1.49 18 16.3 14 0.48 5 6.6 6 1.40 18	0.0443 0.531 0.0161 0.220 0.0515	Auger-L Auger-K ce-K- 1 ce-K- 2	2.5 17.7 409.577 9 590 02 10	81 5 14.1 24 0.707 22	0.0043 0.0053 0.0062
γ 62 1839.05 10	2.0 3	0.0790	ce-K- 3	698.60 8	0.172 6	0.0026
18 weak γ's omitt Εγ(avg)= 1043.	ed: 2; ΣΙγ= 0.63%	5	X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 1	2.84 21.02010 21.17710 23.8 433.927 9	4.8 17 2 18.2 8 2 34.6 14 11.0 5 89.9 7	0.0003 0.0082 0.0156 0.0056 0.831
β^{7} Pd β^{-} Decay (6.5E6 y 3)	I (mir	n) = 0.10%	γ 2 γ 3	614.37 10 722.95 8	90.4 7 90.5 7	1.18 1.39
8−1 max 33 3 avg 9.3 10	100	0.0198				
^{2*} Ag EC Decay (2.37 m 1) %EC Decay = 2.3 3	l (mir	n) = 0.10%	● ¹⁰⁸ Ag IT Decay %IT D Feeds See als	(127 y 21) ecay = 9.3 7 ¹⁰⁸ Ag (2.37 m co ¹⁰⁸ Ag EC D	l (min) Jecay (127 y)	a) = 0.10%
See also $108 \text{ Ag} \beta^-$	Decay (2.37 m)		Auger-I	2.6	8.5.6	0 0005
Auger-L 2.5 Auger-K 17.7	1.9 3 0.33 8	≈0 0.0001	ce-K- 1 Auger-K ce-L- 1	4.87 6 18.5 26.57 6	0.245 20 0.37 6 6.8 6	≈0 0.0001 0.0038
8+ 1 max 899 7 avg 400 3	0.22 5	0.0019	ce-K- 2 ce-L- 2	29.66 6 53.69 5 75.39 5	2.26 18 1.93 16 0.238 19	0.0014 0.0022 0.0004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	≈0 0.0002 0.0004 0.0001 0.0047 0.0035	X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 2	3 21.9903 22.16290 24.9 79.20 5	0.57 20 3 0.51 4 1 0.97 8 0.314 25 7.1 6	∞0 0.0002 0.0005 0.0002 0.0120
10 weak γ's omitt Εγ(avg)= 913. Maximum γ±-intens	ed: 4; ΣΙγ= 0.03% ity = 0.44%		● ¹⁰⁹ Pd β ⁻ Decay % Fee	(1 3.453 h 11) ding to ¹⁰⁹ Ag	l (min (39.6 s) = 99.94) = 0.10% 49 5
⁸ Ag β ⁻ Decay (2.37 m 1) %β ⁻ Decay = 97.7 3	l (mir	n) = 0.10%	β∼ 1 max avg	1027.9 20 361.0 9	99.879 17	0.768
See also ¹⁰⁸ Ag EC	Decay (2.37 m)		12 wea Вв	ak β's omitte (avg)= 139.9	ed:); ΣΙβ= 0.11%	
6-1 max 1017 8 avg 356 4	1.75 10	0.0133	36 wea Bri	$x \gamma^* s \text{ omitte}$ (avg) = 508.6	d: : ΣΙγ= 0.14%	
g^{-2} max 1650 8 avg 629 4	95.9 3	1.28	-, ·	,	,,	
total B- avg 624 4	97.6 4	1.30	- 109 A- IT D	120 6 - 21	1. <i>1</i> *) - 0.10%
γ 1 632.98 5	1.74 17	0.0235	- Ag il Decay	(39.0 5 2)	i (min	/ = 0.10%
			Auger-L Auger-K ce-K- 1 ce-L- 1 ce-M- 1 ce-NCP- 1	2.6 18.5 62.5180 21 84.2262 21 87.3145 21 87.9368 21	79 3 7.1 11 41.7 7 44.0 7 8.94 24 1.6C 5	0.0044 0.0028 0.0555 0.0789 0.0166 0.0030

¹⁰⁹Ag-¹¹¹Ag

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
¹⁰⁹ Ag IT Decay	/ (39.6 s 2)	(Continued)		X-ray Ko X-ray Ko X-ray Ko	2 21.9903 4 22.16290 24.9	3 0.196 17 1 0.37 3 0.119 10	≈0 0.0002 ≈0
X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray K8	3 21.9903 22.16290 24.9	5.3 18 3 9.9 4 1 18.7 7 6.03 24	0.0003 0.0046 0.0088 0.0032				~ 0
γ 1	88.0320 20	3.72 11	0.0070	● ^{1 1 0} Ag β ⁻ Dec %β ⁻ See	a y (249.85 d 8) * Decay = 98.67 also ¹¹⁰ Ag IT D	l (min 10 Decay (249.85 d)) = 0.10%
• ¹⁰⁹ Cd EC Deca Feed	y (464 d 1) s ¹⁰⁹ Ag (39.6 s)	l (miı)	n) ≈ 0.10%	Auger-L ce-K- 26	2.72 631.038 10	0.228 17 0.257 9	≈0 0.0035
Auger-L	2.6	87 5	0.0048	8- 1 max	83.9 19	(7) "	0 0 2 4 2
Auger-K	18.5	13.4 20	0.0053	β-2 max	133.8 19	67.3 4	0.0313
Y-rav I.	3	5.8.20	0.0004	avg	35.7 6	0.407 12	0.0003
X-ray Kaz	21.9903 3	18.6 7	0.0087	p=3 max avg	165.6 7	30.5 4	0.108
X-ray Kai	22.16290 1	1 35.3 12	0.0166	total β-			
x-ray np	24.9	11.4 5	0.0000	avg	66.6 14	98.4 6	0.140
				5	weak B's omitt	ed:	
					$E\beta\left(avg\right)=92.$	8; $\Sigma I \beta = 0.19\%$	
• ¹¹⁰ Ag EC Decay	y (24.57 s 23)	l (mir	n) = 0.10%	V.m. v.	22 47260	2 2 4 4 6	<u>^</u>
%EC	Decay = 0.30 6			$\gamma 12$	365,441 15	0.1(6 9	≈0 0.0008
See a	also ····Ag ρ U	ecay (24.57 s)		7 17	446.797 8	3.64 4	0.0347
1	- -	A 27 F		γ 23 24	620.346 11	2.77 3	0.0365
Auger-L	2.5	0.27 5	≈0	7 24 7 26	626.246 10	94.4 10	1.32
V-FAU Ka	21. 17710 2	0.115.24	~0	y 27	676.60 10	0.142 19	0.0020
v-ray dai	21. 17/10 2	0.115.24	*00	γ 28	677.606 11	10.68 11	0.154
				7 29 7 30	706.670 13	16.68 17	0.0946
- 110	(0457 00)		1 0 1000	γ 31	708.115 20	0.28 10	0.0043
	$y (24.57 \ s \ 23)$	r (mir	1) = 0.10%	7 32	744.260 13	4.64 5	0.0736
70µ See a	$110 \Delta n = 50.70$	0 Decay (24.57 s)		γ 35 γ 35	818.016 12	7.30 8	0.127
000 0		(24.07 S)		γ 36	884.667 13	72.6 8	1.37
e~ 1 max	2235.0 19			γ <u>3</u> 7 ~ 30	937.478 13	34.2 4	0.682
avg	894.1 9	4.42 22	0.0842	γ 49	1334.304 17	0.132 10	0.0038
β~ 2 max	2892.8 19	05 10 22	2 4 2	γ 50	1384.270 13	24.26 25	0.715
total β∽	1127.3 7	55015 25	2.43	γ 52 γ 53	14/5./59 22	3.97 4	0.125
avg	1185.1 9	99.7 4	2.52	γ 54	1562.266 22	1.180 13	0.0393
8 we Bf	eak β's omitte 3(avg)= 406.8	d: ; ΣΙβ= 0.09%		40	weak y's omitt By(avg)= 734.	ed: 5; ΣΙγ= 0.91%	
γ 2	657.749 10	4.49 22	0.0629				
12 we Bj	eak y's omitte r(avg)= 1046.0	d: ; ΣΙγ= 0.10%		● ¹¹¹ Ag β ⁻ Dec	ay (7.46 d 1)	L (min)	= 0.10%
				ce-K- 4	315.419 20	0.102 6	0.0007
● ¹¹⁰ Ag IT Decay	(249.85 d 8)	l (mir	(1) = 0.10%	β- 1 max	686 3		
%IT [Decay = 1.33 10		.,	avg	223.5 12	7.0 4	0.0333
Feeds	¹¹⁰ Ag (24.57 s)		E~ 2 max avg	183 3 278.9 12	1.10 7	0.0065
See al	Iso ¹¹⁰ Ag β^- De	ecay (249.85 d)		β~ 3 max avg	1028 3 360.4 13	91.9 4	0.705
ce-MNO- 1	0.56 10	1.33 10	* 0	total β-	280 0 42	100 1 6	0 745
Auger-L	2.6	1.11 8	n 0	avg	349.8 13	100.1 6	0.745
Auger-R	18.5	0.140 24	≈0	3	weak β's omitt	ed:	
ce-K- 2 ce-L- 2	90.97 5	0.39 3	0.0016		$E\beta(avg)=67.$	8; ΣIβ= 0.06%	
							(Continued)

 111 Ag $-^{114}$ In

			and the second sec					
	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiatio Type	n Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
	γ 1 γ 2	96.750 20 245.390 20	0.120 15 1.23 7	0.0002	● ¹¹³ In IT Dec	caγ (1.658 h 1)	l (mir	ı) = 0.10%
	γ 4 8 we Βγ	342.130 20 eak γ 's omitte $\gamma(avg) = 654.7$	6.7 4 ed: /; ΣΙγ= 0.06%	0.0487	Auger-L Auger-K ce-K- 1 ce-L- 1 ce-M- 1 ce-NCP-	2.84 20 363.748 15 387.450 15 390.862 15 1 391.566 15	29.7 19 4.2 9 28.2 6 5.48 16 1.11 3 0.245 7	0.0018 0.0018 0.218 0.0452 0.0092 0.0020
• 11	¹¹ Cd IT Decay	(48.7 m 2)	I (min) = 0.10%	X-ray L	3.29	2.3 8	0.0002
	Auger-L Auger-K ce-K- 1 ce-L- 1 ce-M- 1	2.72 19.3 124.10 3 146.79 3 150.04 3	63 4 7.8 15 43.8 7 20.4 5 4.13 12	0.0037 0.0032 0.116 0.0638 0.0132	Х-гаў К Х-гаў К Х-гаў К Х-гаў К У 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2 6.8 3 2 12.9 6 4.27 19 64.9 7	0.0035 0.0066 0.0025 0.541
	ce-NCP- 1 ce-K- 2 ce-L- 2 ce-NNO- 2	150.70 3 218.679 20 241.372 20 244.620 20	0.778 23 5.03 14 0.785 23 0.182 5	0.0025 0.0234 0.0040 0.0009	● ¹¹³ Sn EC De %	cay (115.1 d 3) Feeding to ¹¹³ In	l (min (1.658 h) = 99.	ı) = 0.10% 999996 2
	X-ray L X-ray Ka ₂ X-ray Ka ₁	3.13 22.98410 2 23.17360 2	4.5 15 11.7 5 22.1 9	0.0003 0.0057 0.0109	Auger-L Auger-K	2.84 20	85 6 12.8 25	0.0052 0.0055
	X-ΓάΫ ΚΒ΄ γ 1 γ 2	26 150.81 3 245.390 20	7.2 3 30.9 7 94.00 17	0.0040 0.0993 0.491	X-ray L X-ray K X-ray K X-ray K γ 1	$\begin{array}{r} 3.29\\ a_2 & 24.00200\\ a_1 & 24.20970\\ 8 & 27.3\\ 255.120 & 20\end{array}$	6.7 23 2 20.7 8 2 39.0 14 12.9 5 1.93 10	0.0005 0.0106 0.0201 0.0075 0.0105
• 11	¹ In EC Decay	(2.83 d 1)	l (min) = 0.10%				
	Auger-L Auger-K ce-K- 2 ce-L- 2	2.72 19.3 144.57 3 167.26 3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.0058 0.0065 0.0259 0.0037	● ¹¹⁴ In EC De %E See	cay (71.9 s 1) C Decay = 0.54 1 e also $^{11.4}$ In β^- De	l (min Ο ecaγ (71.9 s)	ı) = 0.10%
	ce-MNO- 2 ce-K- 3 ce-L- 3 ce-NNO- 3	170.51 3 218.679 20 241.372 20 244.620 20	0.245 7 5.04 16 0.785 24 0.181	0.0009 0.0235 0.0040 0.0009	Auger-L Auger-K	2.72 19.3	0.82 10 0.13 3	≈0 ≈0
	X-ray L X-ray Ka ₂ X-ray Ka ₁	3.13 22.98410 2 23.17360 2	7.1 24 23.6 9 44.6 16	0.0005 0.0116 0.0220	X-ray Ko X-ray Ko X-ray Ki	22.98410 2 23.17360 2 3 26	2 0.195 22 2 0.37 4 0.120 14	≈0 0.0002 ≈0
	X-ray Kβ γ 2 γ 3	26 171.28 3 245.390 20	14.6 6 90.2 4 94.00 17	0.0081 0.329 0.491	2	weak γ 's omitte E γ (avg) = 567.4	id: ; ΣΙγ= 0.01%	
• 11	³ Cd β ⁻ Decay	(9.3E15 y 19)	I (min)) = 0.10%	● ¹¹⁴ In β ⁻ Dec %β See	xay (71.9 s 1) ⁻ Decay = 99.46 1 also ¹¹⁴ In EC De	l (min ∣0 ecay (71.9 s)) = 0.10%
	β−1 max avg	322 5 93.3 17	100	0.199	ß− 1 max ave β− 2 max	c 685 3 g 222.3 11 c 1985 3	0.199 12	0.0009
• 11	³ Cd β^- Decay	(13.7 y 4)	I (min)	= 0.10%	avc total β^- avc	g 775.8 13	99.26 10 99.46 10	1.64
	%)T C	Decay = 0.023			γ 1	1299.83 7	0.199 14	0.0055
	β− 1 max avg	586 5 185.4 19	100	0.395				

¹¹⁴ In-¹¹⁵ In

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
● ¹¹⁴ In EC Decay %EC See a	/ (49.51 d 1) Decay ≈ 4.5 3 Iso ¹¹⁴ In IT De	l (min cay (49.51 d)	n) = 0.10%	γ 10 γ 11	492.351 4 527.901 7	8.5 3 29.1 11	0.0893 0.328
			1	ι 12 we Εγ	(avg) = 296	9; $\Sigma I \gamma = 0.11\%$	
Auger-L Auger-K	2.72 19.3	3.9 4 0.61 12	0.0002 0.0003				
X-ray L X-ray Kα _z X-ray Kα ₁ X-ray Kβ	3.13 22.98410 23.17360 26	0.28 10 2 0.91 7 2 1.73 13 0.56 5	≈0 0.0004 0.0009 0.0003	● ¹¹⁵ Cd β ⁻ Decay % Fee	eding to ¹¹⁵ In	l (min (4.6E15 y) = 99) ≈ 0.10%).993
y 1 y 2	558.43 3 725.24 3	4.5 3 4.5 3	0.0533 0.0693	8- 1 max avg β- 2 max	202.7 21 55.8 6 330.4 21 96.0 7	0.196 4	0.0002
				β- 3 max	687.2 21	0.005 15	0.0012
¹¹⁴ In IT Decay %IT [(49.51 d 1) Decay = 95.5 3	l (mi	n) = 0.10%	avg β-4 max avg	241.7 8 1621.0 21 615.0 9	1.145 6 98	0.0059
Feeds	¹¹⁴ In (71.9 s)	(10 54))		total 8-	606 D 40	100 000 17	
See al	so 114 in EC De	cay (49.51 d)		avg	606.2 10	100.002 17	1.29
Auger-L Auger-K	2.84 20	64 3 6.0 12	0.0039	4 we Ер	ak β 's omitt (avg) = 124.	ed: 7; ΣΙβ= 0.06%	
ce-K- 1 ce-L- 1	162.33 3 186.03 3	39.9 7 31.7 7	0.138	y 11	484.471 15	0.193 4	0.0020
ce-M- 1 ce-NCD- 1	189.44 3 190 15 3	6.65 19	0.0268	γ 17 γ 21	933.838 4	1.330 4	0.0265
X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 1	3.29 24.00200 2 24.20970 2 27.3 190.27 3	5.1 17 9.7 4 18.2 8 6.1 3 15.9 4	0.0004 0.0049 0.0094 0.0035 0.0646	22 we Βγ ● ¹¹⁵ In β ⁻ Decay	ak y's omitt (avg)= 932. (4.6E15 y 3)	:ed: 7; ΣΙγ= 0.10% Ι(min) = 0.10%
					·		
 ¹¹⁵Cd β⁻ Decay % Fee 	/ (53.46 h 8) eding to ¹¹⁵ In (l (mir 4.36 h) = 99.9	n) = 0.10% 9993 1	£−1 max avg	495 8 152 3	100	0.324
Auger-L ce-R- 1 Auger-K ce-L- 1 ce-MNO- 1	2.84 7.574 3 20 31.276 3 34.688 3	4.6 3 4.14 15 0.62 13 1.04 7 0.272 21	0.0003 0.0007 0.0003 0.0007 0.0002	 ¹¹⁵ In IT Decay %IT De Feeds ¹ See also 	(4.36 h 10) ecay = 96.3 8 15 ln (4.6E15 o 215 ln β^- De	l (min y) ecay (4.36 h)) = 0.10%
β- 1 max avg β- 2 max avg β- 3 max avg β- 4 max	583.4 20 184.6 8 618.9 20 197.8 8 850.4 20 287.5 8 1111.3 20	35.2 12 3.4 3 1.25 7	0.138 0.014 <u>3</u> 0.0077	Auger-L Auger-K ce-K- 1 ce-L- 1 ce-M- 1 ce-NCP- 1	2.84 20 308.361 3 332.063 3 335.475 3 336.179 3	42 3 5.9 12 39.2 8 8.27 25 1.69 5 0.373 12	0.0025 0.0025 0.257 0.0585 0.0120 0.0027
avg	394.4 9	60.1 12	0.505				
total β- avg	312.5 10	100.0 18	0.665	X-ray L X-ray Ka ₂ X-ray Ka ₁	3.29 24.00200 24.20970	3.3 11 2 9.5 4 2 17.9 8	0.0002 0.0049 0.0092
3 we Ер	ak β's omitte (avg)= 70.4	d: ; ΣΙβ= 0.02%		X-ray КВ у 1	27.3 336.301 3	5.9 3 46.7 8	0.0035 0.335
X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 1 γ 2 γ 4	3.29 24.00200 2 24.20970 2 27.3 35.514 3 231.443 3 260.896 3	0.36 12 1.00 6 1.89 10 0.63 4 0.446 16 0.78 3 2.06 8	≈0 0.0005 0.0010 0.0004 0.0003 0.0039 0.0114				

¹¹⁵In-¹¹⁷Cd

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
● ¹¹⁵ In β ⁻ Decay %β ⁻ See a	7 (4.36 h 10) Decay = 3.7 8 Iso ¹¹⁵ In IT Dec	l (min cay (4.36 h)) = 0.10%	● ¹¹⁷ Cd β ⁻ Decay % Fee % Fee	(2.49 h 4) eding to ¹¹⁷ ln eding to ¹¹⁷ ln	l (min (43.8 m) = 8.3 (116.5 m) = 91.) = 0.10% 4 .7 4
8- 1 max avg 1 w E	861 8 291 4 eak β's omitte β(avg)= 107.0	3.6 8 ed:); ΣΙβ= 0.05%	0.0223	Auger-L Auger-K ce-K- 1 ce-K- 2 ce-L- 2 ce-MNO- 2	2.84 20 43.180 20 61.790 10 85.492 10 88.904 10	7.3 6 0.96 20 0.155 23 5.3 4 1.69 12 0.40 3	0.0004 0.0004 0.0001 0.0070 0.0031 0.0008
1 ਢ. ਤੁ	eak γ's omitte γ(avg)= 497.4	ed: ; ΣΙγ= 0.05%		се+К+ 12 се-L- 12 8- 1 max	245.409 18 269.111 18 72 14	0.95 15 0.13 4	0.0050 0.0008
● ¹¹⁶ In β ⁻ Decay	(54.15 m 6)	l (min) = 0.10%	avg β−2 max avg β−3 max avg	19 4 183 14 50 5 200 14 55 5	0.11 4 0.35 9 0.40 7	≈0 0.0004 0.0005
Auger-L Auger-K ce-K- 5 ce-L- 5 ce-K- 15	3 21 109.126 8 133.861 8 387.79 4	1.13 10 0.16 4 0.86 8 0.152 18 0.297 18	≈0 ≈0 0.0020 0.0004 0.0025	β - 4 max avg β - 5 max avg avg	216 14 60 5 356 14 105 5 415 14	6.6 3 1.87 15	0.0084 0.0042
e−1 max avg e−2 max	304 8 87 3 354 8	0.36 4	0.0007	β avg β -7 max avg β -8 max	125 5 418 14 126 5 464 14	0.13 9 1.64 13	0.0003
θ-3 max avg β-4 max avg	395 8 118 3 599 8 190 3	0.44 6	0.0011 0.0413	8-9 max avg 8-10 max avg 4-11 max	506 14 156 5 531 14 165 5 636 14	2.15 15 8.2 4	0.0071
β^{-} 6 max β^{-} 6 max avg total β^{-}	295 4 1009 8 351 4	32.8 14 50.8 20	0.206	$\beta - 12 \text{ max}$ $\beta - 12 \text{ max}$ $\beta - 13 \text{ max}$	204 6 743 14 245 6 815 14 274 6	32.2 11 0.55 9	0.140 0.0029
avg 1 we Ej	300 4 eak β's omitte β(avg)= 416.0	97.4 25 ed:); ΣΙβ= 0.07%	0.030	β-14 max avg β-15 max avg	916 14 314 6 919 14 315 6	0.34 11 0.36 22	0.0023
X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 5 γ 9	25.04400 2 25.27130 2 28.5 138.326 8 262.95 8	0.284 22 0.53 4 0.180 14 3.30 17 0.144 17	0.0002 0.0003 0.0001 0.0097 0.0008	avg β-17 max avg β-18 max	337 6 1089 14 385 6 1152 14	0.11 7	0.0008
7 12 7 14 7 15 7 18 7 27	303.80 7 355.36 4 416.99 4 463.31 10 689.0 3	0.118 17 0.84 6 27.8 14 0.84 6 0.194 17	0.0008 0.0064 0.247 0.0083 0.0029	β-19 max avg β-20 max avg	1779 14 685 7 1868 14 726 7	13.0 9 1.7 8	0.0028 0.190 0.0263
7 28 7 31 7 32 7 33 7 37	705.7 3 779.5 8 781.1 8 818.67 8 972.550 25	0.19 3 0.27 5 0.110 21 11.6 6 0.46 4	0.0028 0.0045 0.0018 0.202 0.0095	avg β-22 max avg total β-	758 7 2213 14 882 7	4.1 5 21.0 20	0.0662
7 39 7 42 7 44 7 46 7 48	1097.21 18 1293.54 4 1507.57 5 1752.39 10 2112.30 8	55.3 20 84.5 6 9.9 5 2.39 12 15.4 7	1.29 2.33 0.317 0.0893 0.692	Χ-ray L' Χ-ray Κα2 Κ-ray Κα1 Χ-ray Κβ	3.29 24.00200 2 24.20970 2 27.3	0.57 20 1.55 11 2.92 21 0.97 7	*0 0.0008 0.0015 0.0006
32 ve B1	eak y's omitte (avg)= 707.4	d: ; ΣΙγ= 1.34%		7 1 7 2 7 6 7 10 7 12 7 14	71.120 20 89.730 10 160.8 3 220.92 3 273.349 18 279.80 10	0.39 6 3.26 22 0.25 12 1.17 9 27.9 8 0.11 6	0.0006 0.0062 0.0009 0.0055 0.162 0.0007

¹¹⁷Cd--

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
¹¹⁷ Cd β ⁻ Decay	7 (2.49 h 4)	(Continued)	:	● ¹¹⁷ Cd β ⁻ Decay % Fee	(3.36 h 5) eding to ¹¹⁷ In	l (min (43.8 m) = 98.5	a) = 0.10%
γ 16 γ 20	292.05 3 344.459 10	0.64 9 17.9 7	0.0040	% Fe	eding to 117In	(116.5 m) = 1.5	5 2
γ 22	387.96 4	0.31 6	0.0025	Augoral	2 94	105	~0
γ 23 25	397.20 10	0.20 6	0.0017	Auger-K	20	0.14 7	*0 *0
7 25 7 26	419.79 4	9.8 5	0.0016	ce-K- 3	69.76 4	0.9 5	0.0014
7 27	439.39 7	0.11 6	0.0010	ce-L- 3	93,46 4	0.22 16	0.0004
y 29	463.04 3	0.75 6	0.0074				
7 30	497.77 10	0.11 6	0.0012	β−1 max	124 14		
γ 33 ► 35	527.0 5	0.14 6	0.0016	avg	33 4	0.23 6	0.0002
r 37	660.83 8	0.11 3	0.0016	2 max avor	51 5	0.24 4	0.0003
γ 39	699.58 8	0.24 4	0.0036	β- 3 max	202 14		
7 40	712.71 5	0.56 17	0.0085	avg	56 5	0.212 24	0.0003
7 41 ~ 82	728 6N 7	0.20 4	0.0031	$\beta^- 4 \max$	247 14	1 70 11	0 0025
y 42	748.06 3	0.56 20	0.0089	Ar 5 max	259 14	1.70 11	0.0025
y 47	831.80 3	2.26 11	0.0400	avg	73 5	3.7 4	0.0058
γ 48	840.21 4	0.81 6	0.0145	8- 6 max	264 14		
γ 49 5 50	850.72 8	0.12 4	0.0022	avg	75 5	1.23 11	0.0020
γ 50 γ 51	862.60 5	0.61 6	0.0113		342 14	8.6.3	0.0183
γ 52	880.710 17	3.96 23	0.0743	β-8 max	568 14	0.0 5	0.0105
γ 53	945.67 3	1.53 10	0.0309	avg	179 6	8.34 24	0.0318
γ 54 γ 55	949.63 8	0.22 4	0.0045	6-9 max	569 14	21 6 0	0 000#
r 56	963.11 6	0.61 6	0.0126	e-10 max	667 14	21.6 9	0.0824
y 59	969.30 5	0.45 6	0.0092	avg	216 6	46.9 13	0.216
γ 65	1035.61 7	0.24 4	0.0053	β-11 max	707 14		
γ 67 × 69	1051.70 10	3.79 23	0.0850	avg	231 6	1.02 16	0.0050
γ CS γ 70	1116.60 5	1.03 7	0.0246		445 6	1.5 9	0.0142
7 71	1120.05 7	0.24 4	0.0057	β -13 max	1430 14		010112
y 72	1125.10 6	0.45 6	0.0107	avg	531 7	0.9 5	0.0102
γ 73 ~ 70	1142.43 3	1.67 13	0.0407	β-14 max	1455 14	0 H 7 0H	0.0054
7 75	1183.40 10	0.13 4	0.0033	avg 8−15 max	1598 14	0.4/24	0.0054
y 76	1229.11 7	0.61 6	0.0161	avg	605 7	1.4 8	0.0180
77 Y	1232.30 20	0.28 6	0.0073	β-16 max	1916 14		
γ /8 γ 80	1247.89 4	1.20 /	0.0319	avg	750 7	1.2 11	0.0192
γ 81	1272.73 3	0.73 6	0.0197		204 7	99.2.25	0.431
y 83	1291.00 4	0.67 6	0.0184	~ . ,			•••••
y 84	1294.3 3	0.446 13	0.0123	X-TAV Ka-	24.00200	2 0.23 11	0.0001
7 85 7 86	1303.27 3	0.59 6	0.510	X-ray Ka	24.20970	2 0.43 20	0.0002
v 89	1337.57 7	1.62 12	0.0461	Х-гау КВ	27.3	0.14 7	≈0
γ 90	1362.40 8	0.24 4	0.0070	γ 3	97.70 4	1.05 14	0.0022
7 91	1404.40 10	0.12 3	0.0036	7 4	168.63 5	0.29 6	0.0002
γ 92 γ 93	1408.72 3	0.33 6	0.0385	y 11	220,92 3	0.24 16	0.0011
y 94	1430.97 5	0.98 7	0.0298	y 12	273.349 18	0.29.14	0.0017
γ 95	1433.50 20	0.11 9	0.0034	γ 13	292.05 3	0.10 11	0.0007
7 96	1450.15 7	0.61 6	0.0190	7 14	299.45 10	0.50 11	0.0028
$\gamma 98$ ~ 101	14/5.46 /	0.42 6	0.0132	γ 18	325.30 20	0.13 6	0.0009
γ 1C3	1576.62 3	11.2 4	0.376	y 19	344.459 10	0.26 16	0.0019
y 104	1578.4 3	0.14 6	0.0047	γ 20	366.91 3	3.33 24	0.0260
y 108	1652.10 20	0.28 12	0.0098	7 24	439.39 /	0.18 8	0.0017
γ 109 × 111	1082-07 5	1.00 7	0.0250	y 28	484.79 3	1.02 14	0.0106
y 112	1723.06 3	2.01 11	0.0737	γ 30	545.0 4	0.16 8	0.0018
y 113	1739.13 9	0.13 4	0.0047	γ 31	564.397 16	5 14.7 8	0.176
y 116	1856.40 10	0.25 6	0.0099	$\gamma 32$	597.34 20	0.1J1 1 0.3/ 0	0.0017
γ 117 ~ 119	1867.30 10	0.11 3	0.0042	γ 33 γ 34	627.26 15	0.236 3	0.0032
7 1 10	2012.47 0	0.109 23	0.0047	y 35	631.80 4	2.80 19	0.0377
47 we	ak γ's omitte	d:		γ 36	663.50 6	0.68 8	0.0096
Εγ	(avg) = 959.7	'; ΣΙγ= 2.12%		7 38 7 79	730.8 4	1.00 14	0.00151
				II / 33			

¹¹⁷Cd-¹¹⁷Sn

Radiation Type	Energy (keV)	Intensity (%)	Δ (g-rad/ μ Ci-h)	RadiationEnergyIntensity Δ (g-radType(keV)(%) μ Ci-h
γ 40	748.06 3	4.5 11	0.0710	• ¹¹⁷ In IT Decay (116.5 m 7) I (min) = 0.10%
γ 41 γ 42 γ 43 γ 43	762.72 4 788.16 13 827.60 10	1.73 14 0.50 11 0.26 8	0.0281 0.0084 0.0046	% IT Decay = 47.1 15 % Feeds ¹¹⁷ In (43.8 m) See also ¹¹⁷ In β^- Decay (116.5 m)
γ 45 γ 46	880.710 17 886.00 10	0.7 3 0.39 8	0.0133	
γ 48 γ 49 γ 50	929.30 10 931.37 4 957.20 10	0.79 14 3.64 24 0.39 11	0.0156 0.0722 0.0080	Auger-K 20 3.3 7 0.0014 Auger-K 20 3.3 7 0.0014 ce-K-1 287.362 13 21.7 8 0.133 ce-L-1 311.064 13 4.76 21 0.0315
γ 52 γ 54 γ 55 γ 56	1065.98 3 1170.71 10 1196.20 10	23.1 6 0.65 14 0.39 11	0.256 0.523 0.0163 0.0100	ce-N- 1 314.476 13 0.97 5 0.0065 ce-NCP- 1 315.180 13 0.215 10 0.0014
7 57 7 59 7 60 7 61	1205.5 3 1209.0 4 1209.0 4 1234.59 3	0.13 4 0.13 8 0.18 8 11.0 4	0.0034 0.0034 0.0047 0.289	X-rayL 3.29 1.8 7 0.0001 X-ray $K\alpha_2$ 24.00200 2 5.3 3 0.0027 X-ray $K\alpha_1$ 24.20970 2 9.9 5 0.0051 X-ray $K\beta$ 27.3 3.29 18 0.0019
7 62 7 63 7 64 7 66	1256.90 20 1339.3 5 1365.54 5 1432 91 3	0.18 8 2.07 24 1.65 11	0.0049 0.0590 0.0480	γ 1 315.302 13 19.5 7 0.131
γ 68 γ 69 γ 70 γ 71	1652.24 11 1669.5 3 1957.50 20	0.47 11 0.63 8 0.16 4	0.0166 0.0224 0.0066	• ¹¹⁷ In β^- Decay (116.5 m 7) I (min) = 0.10% % β^- Decay = 52.9 15 See also ¹¹⁷ In IT Decay (116.5 m)
יד ד דיד ד דיד די	2096.40 4 2322.75 8	7.44 18	0.332	
γ 74 γ 76	2400.45 16 2417.40 10	0.76 6 1.02 6	0.0388 0.0526	Auger-L 3 2.0224 0.0001 Auger-K 21 0.307 0.0001 ce-K 129.36215 2.1424 0.0059
7 78 7 79 7 80	2462.5 3 2476.20 20 2540.73 14	0.212 24 0.186 19 0.149 19	0.0111 0.0098 0.0081	ce-L- 1 154.097 15 0.27 3 0.0009
24 w E	eak γ 's omitte γ (avg) = 865.4	d: ; ΣΙγ= 0.71%		β-1 max 1612 8 avg 610 4 18.3 19 0.238 β-2 max 1770 8
				avg 680 4 34.5 25 0.500 total β^- avg 655 4 53 4 0.738
● ^{1 1 7} In β [−] Decay % Fe	/ (43.8 m 7) eding to ¹¹⁷ Sn (l (min 13.60 d) = 0.32	a) = 0.10% 2	2 weak β's omitted: Εβ(avg) = 249.4; ΣΙβ= 0.03%
Auger-L Auger-K ce-K- 2	3 21 129.362 15	11.7 7 1.7 4 11.6 3	0.0007 0.0008 0.0320	X-ray L 3.44 0.18 7 ≈ 0 X-ray K α_2 25.04400 2 0.52 6 0.0003 X-ray K α_2 25.27130 2 0.98 12 0.0005
ce-L+ 2 ce-MNO- 2 ce-K- 4	154.097 15 157.678 15 523.80 10	1.47 4 0.352 11 0.48 5	0.0048 0.0012 0.0053	x - zay KB 28.5 0.33 4 0.0002 γ 1 158.562 15 15.9 17 0.0536
β− 1 max avg	743 8 245 4	99.83	0.521	$E\gamma(avg) = 918.6; \Sigma I\gamma = 0.03\%$
6- 2 max avg total 8-	1140 8 406 4	0.17	0.0015	11/2 = 11/2 = 17 Decov (12.60 d 4) $1/2 = 0.10%$
avg	245 4	100	0.522	• Shift Decay (13.00 0 4) 1 (min) - 0.10%
X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 2 γ 3 γ 4	3.44 25.04400 2 25.27130 2 28.5 158.562 15 396.6 4 553.00 10	1.0 4 2.96 13 5.55 24 1.87 9 86 9 0.14 4 99 10	≈0 0.0016 0.0030 0.0011 0.292 0.0012 1.17	Auger-L 3 91 5 0.0057 Auger-K 21 10.8 22 0.0048 ce-K-1 126.82 3 64.8 7 0.175 ce-K-2 129.362 15 11.7 3 0.0322 ce-L-1 151.56 3 26.1 6 0.0843 ce-L-2 154.097 15 1.48 4 0.0049 ce-M-1 155.14 3 5.64 16 0.0186 ce-NCP-1 155.88 3 1.35 4 0.0045
				Ce-mNU- 2 157.678 15 0.354 11 0.0012 (Continued)

¹¹⁷Sn–¹²¹Te

Radiation Type	Energy (keV)	Intensity (%)	$\Delta(extbf{g-rad}/ \mu extbf{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
	<u></u>		·····				
¹¹⁷ Sn IT Decay	(13.60 d 4)	(Continued)		ce-K- 2	35.057 13	0.49 3	0.0004
	×			ce-K- 4	477.100 11	0.127 3	0.0013
X-ray L	3.44	83	0.0006	ce-k- 5	542.648 11	0.367 14	0.0042
X-ray Kaz	25.04400 2	2 18.7 7	0.0100	V-TON T	7 6	0 7	0 0006
X-ray Kon X-ray Kon	25.27130 2	11.8 5	0.0072	X-ray L X-ray Ka ₂	26.11080 2	2 21.4 8	0.0119
· γ 1	156.02 3	2.11 6	0.0070	X-ray Kaı	26.35910	2 40.2 14	0.0225
γ 2	158.562 15	86.4 4	0.292	X-ray KB	29.7	13.7 6	0.0087
				r 2	65.548 13	0.259 9	0,0004
				γ 3	470.472 13	1.41 4	0.0141
● ¹¹⁷ Sh_EC_Decay	(2.80 b 1)	L (min)	= 0.10%	γ 4 -	507.591 11	17.7 4	0.191
	(2.00 11 1)	. (0.10%	7 5	573.139 11	80.3 18	0.980
Auger-L	3	94 6	0.0059				
Auger-K	21	14 3	0.0061				
CE-K- 2	129.302 15	11.6 4	0.0320	• 121 Te EC Decay	(154 d 7)	l (mir	n) = 0.10%
ce-MNO-2	157.678 15	0.353 1	0.0012	EC I	Decay = 11.4 1	1 (154 1)	
				See al	so ff le li D	ecay (154 d)	
<u>β</u> + 1 max avg	564 18 258 8	1.70 22	0,0093	Auger-L	3	18.0 19	0.0012
				ce-K- 1	6.647 10	9.0 13	0.0013
X-ray L	3.44	83	0.0006	Auger-K	21.8	2.5 6	0.0011
X-ray Kaz	25.04400 2	23.5 9	0.0125	ce-L- (36.194 10	0.31 5	0.0008
X-ray Ka ₁	25.27130 2	44.1 16	0.0237				
γ 2	158.562 15	86.1 4	0.291	X-ray L	3.6	1.7 6	0.0001
7 6	861.35 5	0.31 4	0.0057	X-rav Kaz	26.11080 2	2 4.6 5	0.0026
ר ד	1004.51 15	0.21 3	0.0044	X-rav Kaı	26.35910 2	2 8.6 9	0.0048
y 8 y 9	1020.0 5	0.112 18	0.0022	$\gamma 1$	37,138,10	0.94 14	0.0019
, ,				γ 8	1102.149 18	2.5 3	0.0596
11 We Ej Maxis	eak γ's omitte (avg)= 1037.4 num γ±-intensi	z_{1} z_{2} ; ΣΙγ = 0.26% z_{2} z_{3} , 40%		8 we Έγ	ak γ 's omitte (avg) = 953.6	ed: 5: $\Sigma I_{7} = 0.16\%$	
					•		
● ¹¹⁹ Sn IT Decay	(293.0 d 13)	l (min)	= 0.10%	• ¹²¹ Te IT Decay	(154 d 7)	I (mir	i) = 0.10%
				81T D	ecay = 88.6 11		
Auger-L	3	137 5	0.0086	Feeds	¹²¹ Te (16.8 d)		
ce-L- 1 Auger-K	19.405 8	66.6 7 [.]	0.0275	See als	o ¹²¹ Te EC De	ecay (154 d)	
ce-NNO- 1	22.986 8	17.3 4	0.0085				
ce-K- 2	36.460 10	32.2 7	0.0250	Auger-L	3.19	72 4	0.0049
ce-L- 2	61.195 10	52.3 7	0.0682	ce-K- 1	49.974 15	34.5 8	0.0367
ce-NCP-2	65,523 10	3.10 9	0.0043	ce-L- 1	76.849 15	41.6 8	0.0680
				ce-M- 1	80.782 15	9.9 3	0.0171
Х-гау Т.	3,44	12 4	0.0009		81.620 15	2.65 9	0.0046
γ 1	23.870 8	16.1 4	0.0082	ce-L- 2	207.25 3	0.81 3	0.0036
X-ray Kaz	25.04400 2	7.9 4	0.0042	ce-MNO- 2	211.18 3	0.214 7	0.0010
X-ray Ka _i X-ray Ka	25.27130 2	14.8 5	0.0080				
A Luy ND	20.5	4. 7 22	0.0050	X-ray L	3.77	7.1 24	0.0006
1 ¥e	ak γ's omitte	d:		$X - ray Ka_2$	27.47230 2	2 10.1 4	0.0059
Εŋ	(avg) = 65.7	; $\Sigma I \gamma = 0.02\%$		Х-гау КВ	31	6.5 3	0.0043
				y 2	212.19 3	81.5 11	0.368
• ¹²¹ Te EC Decay	(16.8 d 4)	t (min)	= 0.10%	1 wea Er	ak γ's omitte (avg)= 81.8	ed: 3; ΣΙγ= 0.05%	
Auger-L	3	84 5	0.0055				
Auder-K	21.8	11.6 25	0.0054				
ce-L- 1	32.440 10	0.145 6	0.0001	11			
				11			

i

1

^{1 2 2}Sb-^{1 2 2}Xe

Radiatio Type	on Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)		Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
• ¹²² Sb EC	Decay (2.70 d 1) %EC Decay = 2.42 See also 122 Sb β^{-}	l (mi 12 Decay	n) = 0.10%	X X X X	-ray L -ray Kα ₂ -ray Kα ₁ -ray K8	3.77 27.20170 2 27.47230 2 31	2.0 7 5.2 4 9.7 7 3.37 24	0.0002 0.0030 0.0057 0.0022
Auger- Auger-	L 3 K 21	2.02 17 0.29 7	0.0001 0.0001		γ 1 γ 3 γ 4 γ 5	563.93 19 683.5 3 692.8 3 793.2 3	0.97 20 1.5 3 1.7 4	0.252 0.0141 0.0220 0.0280
₹-ray X-ray ₹-ray X-rav γ 1		0.18 6 2 0.50 4 2 0.94 8 0.32 3 0.77 9	≈0 0.0003 0.0005 0.0002 0.0188		γ 8 γ 11 γ 15 γ 19 γ 22 γ 28	1075.2 1257.0 3 1499.5 3 1747.2 3 1843.8 3 2193.0 4	0.34 7 0.31 7 0.18 4 0.38 9 0.16 4 0.36 8	0.0077 0.0084 0.0058 0.0141 0.0062 0.0167
• ¹²² Sb β^-	Decay (2.70 d 1) $\%\beta^{-}$ Decay = 97.58	l (mii 12	n) = 0.10%		37 we By Maxit	eak γ's omitte (avg)= 1861.9 num γ±-intensi	d: ; ΣΙγ= 0.81% ty =152.06%	
Auger-1 ce-K-	L 3.19	0.293 21 0.353 11	≈0 0.0040	• 122)	(e EC Decay Feeds	y (20.1 h 1)	1 (min	ı) = 0.10%
8- 1 τ β- 2 τ β- 3 τ total f	max 724 4 avg 236.5 15 max 1417 4 avg 522.4 17 max 1981 4 avg 772.1 17 3- avg 574.9 18 2 weak β 's omitt $B\beta(avg) = 138$.	4.5 3 67.3 5 25.7 5 97.5 8 ed: 8; Στβ= 0.02%	0.0227 0.749 0.423 1.19		uger-L uger-K e-K- 2 e-K- 3 e-L- 2 e-L- 3 e-L- 3 e-L- 6 e-L- 6 e-L- 6 e-L- 10 e-L- 10 e-K- 18	3.3 23.6 24.93 20 28.63 20 39.43 20 52.91 20 56.61 20 57.53 20 85.51 20 115.63 20 143.61 20 317.03 20	84 13 10 3 0.31 11 1.2 3 0.40 10 0.14 12 0.19 6 0.71 18 0.75 8 0.81 19 0.11 3 0.20 4	0.0059 0.0052 0.0002 0.0003 0.0002 0.0002 0.0009 0.0003 0.0003 0.0020 0.0003 0.0013
X-ray		2 0.164 8 70.6 4 3.7 3 0.78 7 ed: 2; ΣΙγ= 0.02%	≈0 0.849 0.0553 0.0208	X X X X	-ray L -ray Kα ₂ -ray Kα ₁ -ray K8 γ 3 γ 5 γ 6 γ 9 γ 10	4 28.3172 4 28.6120 3 32.3 61.80 20 72.60 20 90.70 20 116.3 3 148.80 20	9 4 22 4 41 7 14.5 24 0.44 10 0.23 5 0.72 15 0.12 3 3.7 9	0.0007 0.0134 0.0252 0.0100 0.0006 0.0004 0.0014 0.0013 0.0117
● ^{1 2 2} Ι β ⁺ De	cay (3.62 m 6)	l (mir	n) = 0.10%		γ 11 γ 12 γ 13 γ 14	163.30 20 174.7 4 175.7 4 187.10 20	0.17 4 0.18 6 0.39 9 0.74 16	0.0006 0.0007 0.0014
Auger-1 Auger-K ce-K-	3.19 22.7 1 532.12 19	19.8 16 2.6 6 0.105 21	0.0013 0.0013 0.0012		γ 15 γ 16 γ 17 γ 17 γ 18	201.60 20 253.70 20 288.40 20 350.20 20	0.16 4 0.14 4 0.55 13 9.2 18	0.0007 0.0007 0.0034 0.0686
8+1 m a 8+2 m	lax 1180 40 lvg 528 18 lax 1760 40	0.16 4	0.0018		γ 19 γ 20	355.2 3 416.90 20	0.21 5 2.1 5	0.0016 0.0184
а в+3 m а	uvg 789 19 lax 1860 40 lvg 834 19	0.54 13 0.26 8	0.0091		5 we 197	$ak \gamma$'s omitte (avg) = 79.4	3: ; ΣΙγ= 0.27%	
8+4 m a	ax 2550 40 .vg 1152 19	12 3	0.294					
8+5m a	ax 3120 40 Vg 1414 19	63 4	1.90					
total ß a	vg 1363 20	76 5	2.21					
1	0 weak β's omitt Εβ(avg) = 443.	ed: 1; ΣΙβ= 0.07%						

^{1 2 3} Sn—^{1 2 3} Xe

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
● ¹²³ Sn β ⁻ Decay	(129.2 d 4)	l (mir	n) = 0.10%	X-ray L X-ray Kα ₂	3.77 27.20170	9 4 2 24.6 9	0.0007 0.0143
β−1 max avg	308 4 88-6 13	0.6	0,0011	Х-гау Ка ₁ Х-гау Кв	27.47230 31	2 46.0 16 16.0 6	0.0269
B-2 max avg	1397 4 523.1 17	99.4	1.11	$\gamma = 2$ $\gamma = 20$ $\gamma = 23$	159.00 3 346.35 5	83.4 4 0.126 5 0.129 10	0.282
total B- avg	520.3 18	100	1.11	γ 26 γ 27	505.33 5 528.96 5	0.316 10	0.0034
4 wea E8	ak β's omitt (avg)= 101.	ed: 8; ΣΙβ= 0.03%	1	γ 28 40 ¥6	538.54 5	0.382 13	0.0044
γ 4	1088.64 10	0.6	0.0139	Εγ	(avg) = 494.	4; ΣΙγ= 0.48%	
8 жеа Вү	ak γ's omitt (avg)= 992.	ed: 9; ΣΙγ= 0.04%		• ^{1 2 3} Xe β^+ Decay Feeds	(2.14 h 5) ^{1 2 3}	l (min)	= 0.10%
• ¹²³ Te EC Decay	(~1E13 y)	l (mir	n) = 0.10%	Auger-L Auger-K	3.3 23.6	81 5 9.9 24	0.0057
Auger-L	3	78 6	0.0051	ce-K- 3 ce-L- 3	115.73 20 143.71 20	15.9 6 3.95 15	0.0392
Auger-K	21.8	7.3 17	0.0034	ce-N- 4 ce-M- 3 ce-NCP- 3	144.93 20 147.83 20 148.71 20	2.3 5 0.82 3 0.192 7	0.0072 0.0026 0.0006
X-ray L X-rav Kα ₂	3.6 26.11080	7.2 25 2 13.6 11	0.0006 0.0075	ce-L- 4	172.91 20	0.41 18	0.0015
Х-гау Ка Х-гау Кв	26.35910 29.7	2 25.4 21 8.7 8	0.0143 0.0055	ce-K- 6	297.03 20	0.210 13	0.0013
				e+ 1 max avg	1324 15 593 7	1.06 13	0,0134
• 1 2 3 Te IT Decay ((119.7 d 1)	I (min) = 0.10%	β + 2 max	1476 15	3.9 и	0 0549
Feeds ¹	²³ Te (1E13 y)		β+3 max avg	1505 15 674 7	17.2 6	0.247
Auger-L Auger-K	3.19 22.7	88 4 7.0 16	0.0060	total B+ avg	666 7	22.3 8	0.316
ce-K- 1 ce-L- 1 ce-M- 1	56.65 3 83.52 3 87.45 3	42.7 7 44.1 7 10.4 3	0.0515 0.0785 0.0194	9 же ≣в	ak B's omitte (avg)= 257.	ed: 4; ΣΙβ= 0.10%	
ce-K-2	127.19 3	13.7 4	0.0371	X-ray L	4	83	0.0007
ce-MNO+2	157.99 3	0.436 13	0.0015	$X + ray K\alpha_2$ $X - ray K\alpha_1$ $X - ray K\alpha_2$	28.31/2 28.6120 32.3	4 21.0 8 3 39.1 15 13 7 6	0.0238
X-ray L	3.77	93	0.0007	γ 2 γ 3	138.10 20	0.240 25	0.0007
X-ray Kaz X-ray Ka ₁	27.20170	2 14.0 6 2 26.2 10	0.0081 0.0153	γ 4 ~ 5	178.10 20	14.6 8	0.0555
X-ray K8 γ 2	31 159.00 3	9.1 4 84.1 4	0.0060	γ 7	474.20 20	0.101 15	0.0010
2 wea	k γ's omitte	ed:		γ 10 γ 11	691.5 3 718.50 20	0.110 15	0.0016
Εγ(avg) = 89.1	l; ΣΙγ= 0.09%		γ 12 γ 14	728.30 20	0.120 15	0.0019
				y 24 y 25	870.7 3	0.28 4	0.0052
• ¹²³ 1 EC Decay (1	3.13 h 10)	(min) = 0.10%	γ 28 γ 31	934.9 3 964.0 3	0.31 4	0.0061
% reedin	ig to ⁻⁻ie (i	LIS VI - 99.98	UJ 4	γ 32 γ 34	979.4 3 1011.3 5	0.28 4	0.0058
Auger-L Auger-K	3.19 22.7	94 6 12 3	0.0064	γ 35 γ 37	1013.5 5 1048.9 3	0.115 15	0.0025
ce-K- 2 ce-I- 2	127.19 3	13.59 11	0.0368	γ 38 • 39	1060.7 4	0.77 10	0.0174
ce-MNO-2	157.99 3	0.433 5	0.0015	γ 40 γ 41	1093.4 3	2.74 25	0.0637
				γ 44 γ 44	1161.3 3	0.101 10	0.0025
			I	r 40	12420 4	Vetil Z	(Continued)

122 RADIOACTIVE DECAY DATA TABLES

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad μCi-h
				······			
γ 49	1242.0 4	0.442 10	0.0117	r 21	713.82 4	2.38 10	0.0362
γ 53	1310.3 3	0.130 10	0.0036	γ 22	722.78 4	11.10 10	0.171
γ 56	1390.9 3	0.115 10	0.0034	γ 23	735.67 10	0.127 10	0.0020
γ 58	1534.9 3	0.30 3	0.0097	γ <u>2</u> 7	790.74 5	0.744 10	0.0125
γ 59	1603.9 3	0.168 15	0.0057	y 34	968.20 4	1.92 5	0.0396
γ 60	1625.9 3	0.58 5	0.0199	γ 38	1045.16 5	1.86 4	0.0414
γ 61	1656.8 4	0.130 15	0.0046	γ 51	1325.50 4	1.50 8	0.0423
γ 62	1686.8 3	0.60 8	0.0216	γ 52	1355.24 5	1.00 6	0.0288
γ 63	1715.9 3	0.187 25	0.0068	γ 54	1368.21 5	2.51 13	0.0730
γ 64	1732.2 3	0.139 20	0.0051	y 55	1376.25 6	0.440 20	0.0129
γ 68	1807.3 3	1.22 13	0.0471	γ 58	1436.60 5	1.14 11	0.0347
γ 69	1822.3 3	0.120 15	0.004/	7 54	1445.15 11	0.215 20	0.0006
γ /2 	1884.5 3	0.62 8	0.0250	γ 61	1489.00 8	0.03 0	0.0199
γ /5 . 77	1934.2 3	0.216 25	0.0089	7 63	1526.35 9	0.401 10	0.0130
γ // τ. 70	1974.3 3	0.134 20	0.005/	γ 00 	1579.90 20	10 0 C	1 77
~ 90	2003.3 4	0.102.25	0.000	~ 79	2091.02 4	57311	0 255
✓ 81	2037.0 4	0.163.20	0 0072	7 , 3	2091.00 5	5.75 14	0.255
7 04 7 85	2071.3 4	0 154 20	0.0069	68 40	ak vie omitte	d •	
1 00	2101.5 4	0.154 20	0.000	Βγ	(avg) = 1208.5	; ΣΙγ= 1.34%	
67 wea	k γ's omitt	ed:					
Eγ(Mavimu	avg) = 1446.	8; $\Sigma T \gamma = 2.70\%$					
ndxiau	m /1 -Intens.	1 Uy — 44.92%		● ^{1 2 4} Ι β ⁺ Decay (4	4.18 d 3)	I (min) = 0.10%
Sb eta^- Decay (60.20 d 3)	I (min) = 0.10%	Auger-L	3.19	63 5	0.0043
				Auger-K	22.7	8.3 19	0.0040
Nugor-T	2 10	0 2 10 24	- 0	ce-K- 16	570.894 23	0.248 23	0.0030
nuger-5 re−K- 16	570.894 23	0.411 13	0 0050				
	5,0,004 25	0.411 15	0.00.00	8+ 1 max	809 4		
				avg	365.7 18	0.27 3	0.0021
8- 1 max	130.1 19			8+ 2 max	1532 4		
avq	34.6 6	0.52 4	0.0004	avq	685.9 18	11.0 10	0.161
p= ∠ max	203.2 19	0 5 02 22	0 0000	8+ 3 max	2135 4		
avy 8-3 may	211 3 19	0.002 25	0.0000	avq	973.6 18	12.0 19	0.249
	58.3 6	8.76 19	0.0109	total p+	030 E 10	<u></u>	0 11 10
8- 4 max	421.6 19	0.70 19		avg	030.5 19	23.3 22	0.412
avq	126.2 7	0.37 10	0.0010				
8- 5 max	611.3 19			X-ray L	3.77	6.2 22	0.0005
avq	194.0 7	52.8 6	0.218	X-ray Kaz	27.20170 2	16.5 11	0.0096
$\beta = 6 \text{ max}$	722.4 19			X-ray Ka ₁	27.47230 2	30.8 20	0.0180
avq	236.0 8	0.258 11	0.0013	Х-гау КВ	31	10.7 7	0.0071
β- 7 max	813.2 19			γ 13	541.20 10	0.183 17	0.0021
avq	271.3 8	0.64 5	0.0037	γ 14 16	554.0 10	0.10 4	0.0012
β- 8 max	865.7 19			y 10	615 95 3	09 0	0.757
avg	292.0 8	4.09 17	0.0254	~ 20	695 0 10	0.92 9	0.0127
o≕ ч max	947.T 19	3 13 14	0 0407	r 20 r 23	713,82 4	0.106 15	0.0016
avg e-10 more	J24.7 8	2.13 10	0.014/	y 24	722.78 4	9.7 9	0,150
a i v liid.X a va	593.4 9	5.18.22	0.0650	Y 37	968.20 4	0.40 4	0.0083
avy A-11 mav	1656-4 19	J. 17 44	0.0000	γ <u>38</u>	976.32 14	0.100 15	0.0021
ava	627.3 9	2.53 13	0,0338	γ 41	1045.16 5	0.41 5	0.0092
6-12 max	2302.3 19		0.0000	y 42	1054.00 20	0.118 12	0.0026
ava	918.6 9	21.9 7	0.428	y 49	1325.50 4	1.40 13	0.0395
total B-				γ 52	1368.21 5	0.28 3	0.0081
avo	377.6 14	100.0 10	0.805	γ <u>53</u>	1376.25 6	1.62 14	0.0476
				γ 58	1489.06 8	0.177 17	0.0056
8 wea	k B's omitte	ed:		γ 59	1509.49 4	2.91 25	0.0937
E 8 (avg) = 138.	Β; ΣΙΒ= 0.39%		γ 60	1559.80 20	0.10 3	0.0053
				7 02 ~ KI	1675.9 #	0.109 20	0.0000
(-ray Kas	27.20170	2 0.102 5	≈0	7 04 7 65	1691.02 4	10.1 9	0.0000
(-ray Ka	27.47230	2 0.191 9	0.0001	x 67	1720.20 8	0.165 19	0,0061
γ 7	400.03 6	0.129 15	0.0011	~ 70	1851-50 20	0.20 3	0.0079
7 8	443.99 5	0.21 8	0.0019	v 71	1918.58 4	0.165 23	0.0068
γ 14	525.50 10	0.17 5	0.0019	y 73	2038.3 3	0.33 4	0.0143
γ 16	602.708 23	97.87 8	1.26	v 75	2078.86 7	0.34 3	0.0149
γ 17	632.36 10	0.147 20	0.0020	γ 76	2091.00 5	0.55 5	0.0247
γ 18	645.85 3	7.26 11	0.0999	Υ 77	2099.09 9	0.136 13	0.0061
γ 20	709.31 5	1.42 5	0.0214	γ 78	2144.320 10	0.106 11	0.0049
				•			

¹²⁴ I—¹²⁵ Te

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
¹²⁴ β ⁺ Decay	(4.18 d 3)	(Continued)		• ¹²⁵ Sb β^- Decay	(2.77 y 4)	I (min) = 0.10%
~~	2222 25 7		0.000	70 Fee	ung to rea	(50 u) = 25.1 c	
γ 80 γ 82 γ 89	2232.25 7 2283.25 8 2746.90 10	0.55 5 0.64 7 0.45 5	0.0264 0.0313 0.0262	Auger-L ce-K- 2	3.19 3.6781 6	50 4 5 50.0 24	0.0034
59 w	eak γ's omitt	ed:		Auger-K	22.7	6.4 15	0.0031
E	γ (avg) = 1139.	6; $\Sigma I \gamma = 1.27\%$		ce-L- 2	30.5527 6	5 7.9 11	0.0051
Maxi	mum γ±-intens	1ty = 46.55%		ce-M- 2	34.4859 6	5 1.58 22	0.0012
				Ce-NOP- 2 Ce-K- 9	144,520 11	1.03.21	0.0032
				ce-L- 9	171.395 11	0.19 9	0.0007
• ¹²⁵ Sn β^- Decay Feeds	y (9.64 d 3) s ¹²⁵ Sb	l (min) = 0.10%	ce-K- 19	396.075 15	0.337 18	0.0028
			ł.	β−1 max	95.4 20	13 60 22	0 0072
8~ 1 max	62 6			8−2 max	124.7 20	13.00 22	0.00/2
avg	16.0 16	0.22 7	≈0	avo	33.1 6	5.81 9	0.0041
8- 2 max	75 6	0 10 6	~ 0	8-3 max	130.8 20	10 1 -	0.000
avg 8~3 max	96 6	0 81.0	×5 V	avg A- // may	34.8 6 241.6 20	18,1.3	0.0134
avg	25.2 17	0.11 4	≈0		67.5 7	1.59 3	0.0023
β- 4 max	110 6	0 53 44		6-5 max	303.4 20		
avo; 8∼5 max	28.91/	0.53 16	0.0003	avg	87.0 7	39.9 4	0.0739
avg	101.7 20	2.2 7	0.0048		134.5 7	7.4 5	0.0212
8-6 max	367 6	2 2	0.0000	8- 7 max	622.0 20		
avor 8~7 max	460 6	3.9 12	0.0090	avg	215.5 8	13.5 5	0.0620
avg 6~8 max	139.8 21	5.9 18	0.0176	avg	86.5 11	99.9 9	0.184
avq	169.6 22	0.13 5	0.0005			4 D 47	0 000
6- 9 max	1001 6			X-rav L X-rav Ka-	27.20170	4.917	0.0004
avq A−10 may	347.3 25	0.31 10	0.0023	X-ray Kai	27.47230	2 23.9 14	0.0140
avq	456 3	2.7 9	0.0262	Х-гау Кв	31	8.3 5	0.0055
8-11 max	2350 6			γ 2 ~ 5	35.4919	5 4.16 15 0.261 9	0.0031
avg	938 3	83 5	1.66	γ 8	172.615 15	0.181 7	0.0007
avq	813 5 <i>i</i>	99 6	1.72	γ 9	176.334 11	6.89 22	0.0259
,				γ 12	204.129 25	0.323 12	0.0014
3 we	eak B's omitt	ed:		γ 13 γ 14	208.088 25	0.131 6	0.0006
EI	b(avg) = 114.	9; LID= 0.08%		γ 16	321.03 4	0.417 8	0.0029
. 0	224 00 20	1 2 5	0 0001	γ 17	380.435 20	1.496 25	0.0121
y 9 y 10	350.9 5	0.22 7	0.0017	γ 10 γ 19	427.889 15	29.33 25	0.267
γ 15	469.7 5	1.3 5	0.0129	y 20	443.50 4	0.302 12	0.0029
γ 20	800.5 5	0.9 3	0.0161	y 21	463.383 15	10.35 18	0.102
$\gamma 21$ $\gamma 22$	842.0 5	3+8 12 0-23 8	0.0004	γ 23 γ 24	606.641 19	5.02 9	0.0649
y 23	915.5 5	3.8 12	0.0738	γ 25	635.895 18	11.32 20	0.153
γ 25	934.7 5	0.15 5	0.0029	γ 26	671.409 20	1.81 3	0.0259
γ 26 ~ 27	1017.1 5	0.26 8	0.0056	0 40	at ale amitte	od •	
γ 2 ^γ γ 28	1087.4 10	0.9 3	0.0219	5 we	(avg) = 159.0	eu. 0: ΣΙγ= 0.07%	
y 29	1088.9 10	4.0 13	0.0937		(- , ,	
γ <u>32</u>	1151.3 5	0.10 4	0.0025				
7 34 7 38	1221.0 5	0.21 7	0.0056				
γ 41	1419.5 5	0.46 15	0.0140	• ¹²⁵ Te IT Decay	(58 d 1)	l (min) = 0.10%
γ 44	1805.7 5	0.15 5	0.0056				
γ 4/ γ 50	2001./ 5	2.1 / 0.18 6	0.0080	Auger-L	3.19	153 9	0.0104
1 50				Ce-K- 1 Auger-K	3.0781 6 22.7	16 4	0.0061
31 we	eak y's omitte	ed:		ce-L- 1	30.5527 6	12.3 16	0.0080
Εĵ	r(avg) = 833.2	$2; \Sigma I \gamma = 0.70\%$	4	ce-M- 1	34.4859 6	2.5 4	0.0018
				ce-NCP- 1	35.3236 6	0.81 12 51 9 7	0.0006
			1	ce-1 2	104.337 15	37.3 7	0.0829
				ce-M- 2	108.270 15	8.59 24	0.0198
			1	ce-NOP- 2	109.108 15	2.25 7	0.0052

Туре	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad µCi-h
X-rav I.	3,77	15 5	0 0012	\bullet ¹²⁶ Sp. β^- Decay	(~1 0E5 v)	1 () - 0.10%
X-ray Ka,	27,20170 2	32.3 15	0.0187	 Silp Decay Ecode 	12655 (100 m	.)) - 0.10%
X-ray Ka	27.47230 2	60 3	0.0353	reeas	°5b (19.0 m	1)	
X-ray KS	31	20.9 10	0.0138				
γ 1	35.4919 5	6.49 21	0.0049	Auger-L	3	120 7	0.0079
γ 2	109.276 15	0.283 8	0.0007	ce-K- 5	12.149 10	3.2 4	0.0008
				ce-L- 2	16.952 10	2.1 3	0.0008
	•			ce-L- 3	18.00 7	58 5	0.0222
				ce-L- 4	18.582 10	32 4	0.0125
EC Decay (6	0.14 d 11)	l (min)	= 0.10%	ce-M- 2	20.706 10	0.41 6	0.0002
• •	•	- (,		ce-NOP-2	21.498 10	0.136 18	≈0
Nugor-T	2 10 1	EC 10	0.000	Ce-m- 3	21.70 /	12.4 10	0.0057
10901-1 10-K- 1	3 6781 6	78 1	0.0100	ce-M- I	27.0	4.5 10 6 3 0	0.0021
Juger-K	22.7	20 5	0.0005	Ce-NCP- 3	22.55 7	11 3	0.0030
e-L- 1	30,5527 6	12.3 16	0.0080	ce-NOP- 4	23, 128, 10	2.1 3	0.0020
:e-M- 1	34.4859 6	2.5 4	0.0018	ce-K- 6	33,789 10	5.4 7	0.0039
e-MCP- 1	35.3236 6	0.81 12	0.0006	ce-L- 5	37.942 10	0.41 6	0.0003
		–		ce-MNO- 5	41.696 10	0.108 14	*0
				ce-K- 7	56.449 10	16.4 21	0.0197
-rav L	3.77	15 6	0.0012	ce-K- 8	57.079 10	8.8 7	0.0107
-ray Kora	27.20170 2	39.2 17	0.0227	ce-L- 6	59.582 10	0.72 9	0.0009
TAV KOL	21.4/230 2	13 3	0.0428	ce-11 NO - 6	63.336 10	0.171 21	0.0002
	31 35 8010 E	25.4 11	0.0168	ce-L- 7	82.242 10	6.3 8	0.0111
, ,	55.4515 5	0.49 21	0.0049	ce-L- 8	82.872 10	1.13 9	0.0020
				ce-M- 7	85.996 10	1.30 17	0.0024
				Ce-MNO - 8	86.626 10	0.270 19	0.0005
- FO D	100 0 0			Ce-NCP- /	86.788 10	0.28 4	0.0005
E EC Decay (10.8 N 2)	I (min)	= 0.10%				
⊢eeds '	1			8-1 max	250 30	100	
				avg	70 10	100	0.149
uger-L	3.3 1	09 7	0.0077				
e-K- 1	21.791 15	21.8 13	0.0101	X-rav L	3.6	11 4	0.0009
uger-K	23.6	14 4	0.0068	γ 2	21.650 10	1.24 16	0.0006
e-K- 2	41.691 20	0.345 23	0.0003	γ 4	23.280 10	6.4 8	0.0032
e-L- 1	49.772 15	2.89 14	0.0031	X-IAV Kaz	26.11080	2 8.3 7	0.0046
e-M- 1	53.888 15	0.58 3	0.0007	X-ray Kai	20.35910	2 15.6 12	0.0088
e=NOP- 1	54.774 15	0.142 7	0.0002	x-Lay KD	42 640 10	2+3 5 0 50 7	0.0034
e-L- 2	80 10 2	0.194 13	0.0003	γ 6	64,280 10	9.6.12	0.0005
e-K- 4	155 26 3	6 39 21	0.0004	x 7	86,940 10	8.9 11	0.0165
e-1 4	183.24 3	0.904 12	0.0035	y 8	87.570 10	37.0 25	0.0690
e-11 NO - 4	187.36 3	0.226 3	0.0009				
e-K- 6	210.23 4	1.89 9	0.0085	2 we	ak γ's omitte	ed :	
e-L- 6	238.21 4	0.344 16	0.0017	Εγ	(avg) = 22.	7; $\Sigma I \gamma = 0.10\%$	
.				•			
-ray L -ray Korz	28.3172 4	11 4 28.9 12	0.0010	a 126 Ch 8÷ Danne	(10 4 4 4)		0.400/
-rav Ka ₁	28.6120 3	53.9 21	0.0328	• SD B Decay	(12.4 0 1)	i (min)	= 0.10%
-rav K8	32.3	18.9 8	0.0130				
γ 1	54.960 15	6.0 3	0.0070	Auger-L	3.19	1.58 11	0.0001
γ 2	74.860 20	0.118 7	0.0002	Auger-K	22.7	0.22 5	0.0001
γ 3	113.57 3	0.479 23	0.0012	ce-K- 5	264.7 3	0.143 14	0.0008
γ 4	188.43 3	55.1 6	0.221	ce-K- 7	382.89 20	0.99 4	0.0081
γ. 6 7	243.40 4	28.9 10	0.150	ce-L- 7	409.76 20	0.145 6	0.0013
7 / 2 0	572.00 0 h52.03 E	0.248 12	0.0020	ce-K- 15	634.517 6	0.324 10	0.0044
7 0 ~ 11	433.03 D	4.24 10	0.0410	ce-K- 17	663.19 20	0:291 9	0.0041
1 11	635 8 4	0.121.11	0.0014				
	846.5 4	1.04 4	0.0197	6- 1 max	90 40		
γ 12 γ 17	901.5 4	0.540 23	0.0104	avq	24 9	0.50 10	0.0003
γ 12 γ 17 γ 18	937.3 4	0.116 11	0.0023	8-2 max	110 40		
γ 12 γ 17 γ 18 γ 19	· · · · · · · · · · · · · · · · · · ·	0.105 6	0.0022	avg	30 9	2.09 14	0.0013
γ 12 γ 17 γ 18 γ 19 γ 20	992.5 4			8-3 max	370 40		
γ 12 γ 17 γ 18 γ 19 γ 20 γ 21	992.5 4 1007.5 4	0.143 12	0.0031 II				
Y 12 Y 17 Y 18 Y 19 Y 20 Y 21 Y 27	992.5 4 1007.5 4 1138.4 4	0.143 12 0.287 17	0.0031	avq	109 11	ר 29	0.0673
Y 12 Y 17 Y 18 Y 19 Y 20 Y 21 Y 27 Y 28	992.5 4 1007.5 4 1138.4 4 1181.0 4	0.143 12 0.287 17 0.63 3	0.0031 0.0069 0.0159	avq β-4 max	109 11 390 40	29 7	0.0673
Y 12 Y 17 Y 18 Y 19 Y 20 Y 21 Y 27 Y 28	992.5 4 1007.5 4 1138.4 4 1181.0 4	0.143 12 0.287 17 0.63 3	0.0031 0.0069 0.0159	avo; β=4 max avo; β=5 maz	109 11 390 40 117 11 490 40	29 7 5.9 10	0.0673 0.0147
Y 12 Y 17 Y 18 Y 19 Y 20 Y 21 Y 27 Y 28 20 weal Ry 12	992.5 4 1007.5 4 1138.4 4 1181.0 4 $k \gamma$'s omitted:	0.143 12 0.287 17 0.63 3 : $\Sigma T = 0.40$	0.0031 0.0069 0.0159	avg β-4 max avg β-5 max avg	109 11 390 40 117 11 490 40 152 12	29 7 5.9 10 8.4 4	0.0673 0.0147 0.0272
γ 12 γ 17 γ 18 γ 19 γ 20 γ 21 γ 27 γ 28 20 weal Βγ(a	992.5 4 1007.5 4 1138.4 4 1181.0 4 $k \gamma$'s omitted; vg) = 904.8;	0.143 12 0.287 17 0.63 3 : ΣΙγ= 0.40%	0.0031 0.0069 0.0159	avor 8-4 max 8-5 max 8-5 max avor 8-6 max	109 11 390 40 117 11 490 40 152 12 580 40	29 7 5.9 10 8.4 4	0.0673 0.0147 0.0272

.

¹²⁶Sb-¹²⁶I

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	$\Delta(extbf{g-rad}/ \mu extbf{Ci-h})$
¹²⁶ Sb β^- Decay	(12.4 d 1)	(Continued)		• ^{1 2 6} Sb β^- Decay % β^- D	(19.0 m 3) Decay = 86 4 to 12.6 Sh IT Deca	I (min)	= 0.10%
8- / max avq	204 12	0.56 23	0.0024			ay (10.0 m)	
β-8 max avg 8-9 max	730 40 237 13 730 40	0.50 21	0.0025	Auger-L Auger-K	3.19 22.7	1.42 11 0.19 5	≈0 ≈0
avg 9-10 max	238 13	0.48 11	0.0024	ce-L- 1	409.76 20	0.149 12	0.0013
avq	248 13	8.1 6	0.0428	ce-K- 3 ce-K- 4	634.517 6 663.19 20	0.278 16	0.0038
8−11 max avfg	266 13	4.9 4	0.0272	a 1 a a	750 40		
8-12 max avg	1070 40 374 14	16 8	0.127	B- 1 max avg	245 13	0.86 13	0.0045
β-13 max avg	1170 40 416 14	0.9 4	0.0080	B-2 max avg	880 40 297 13	1.3 3	0.0082
8-14 max	1790 40	19 3	0.279	β-3 max avσ	1190 40 424 14	3.3 3	0.0298
total 8-	000 14	100 40	0.010	9~ 4 max	1810 40	01 /	1 00
avg	289 21	100 12	0.619	total β^-	694 15	81 4	1.20
X-ray L	3.77	0.16 6	≈0	and	673 16	86 4	1.24
$ \begin{array}{c} x - ray \\ x - ray $	27. 20170 27. 47230 31 149. 30 20 208.6 8 223. 80 20 278.60 20 296.5 3 297.1 8 414. 70 20 415.3 8 555.20 20 573.80 20 593.00 20 639.70 20 656.30 20 665.301 6 675.00 20 695.00 20 695.00 20 695.00 20 695.00 20 695.00 20 954.00 20 954.00 20 959.60 20 989.30 20 1034.80 20 1061.30 20 1213.00 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0003 0.0005 0.0002 0.0013 0.0022 0.0066 0.0142 0.0283 0.0032 0.736 0.0088 0.0200 0.0816 0.0944 0.0118 0.0122 0.0306 1.41 0.0530 1.47 0.429 0.826 0.322 0.0243 0.0102 0.143 0.0220 0.0045 0.0203 0.0618	X-Tay L X-Tay K α_2 X-Tay K α_1 X-Tay K β γ 1 γ 2 γ 3 γ 4 γ 5 γ 6 γ 7 γ 8 • ¹²⁶ EC Decay (%(EC + See also Auger-L Auger-K ce-K- 1 β + 1 max avg β + 2 max avg	3.77 27.20170 2 27.47230 2 31 414.70 20 620.00 20 666.331 6 695.00 20 928.2 3 1034.80 20 1061.30 20 1476.20 20 12.93 d 6) β^+) Decay = 61 ^{12.6} β^- Decay 3.19 22.7 634.517 6 468 5 216.8 22 134 5 530.2 22	0.14 5 0.386 24 0.72 5 0.250 16 86 6 1.54 19 86 4 1.3 3 1.80 19 0.51 9 0.34 9 I (min) 3 48 5 6.4 15 0.131 8 0.244 17 0.83 17	$\begin{array}{c} & & & & & & \\ & & & & & & & \\ & & & & $
γ 28	14/6.20 20	0.28 3	0.0088	total B+ avg	459 3	1.07 17	0.0105
 ¹²⁶Sb IT Decay %ⁱT D Feeds See als Auger-L ce-L- 1 	(19.0 m 3) ecay = 14 4 ¹²⁶ Sb (12.4 d) to ¹²⁶ Sb β^- D 3 13.0 3	l (min) ecay (19.0 m) 10 3 11 3	0.0006 0.0029	X-ray L X-ray K α_2 X-ray K α_1 X-ray K β γ 1 γ 2 γ 5 Maxim	3.77 27.20170 2 27.47230 2 31 666.331 6 753.819 7 1420.19 3 um y±-intensit	4.8 17 12.7 11 23.7 19 8.2 7 40.2 21 5.1 3 0.358 20 cy = 2.15%	0.0004 0.0074 0.0139 0.0054 0.571 0.0812 0.0108
ce-M- 1 ce-NOP- 1	16.8 3 17.5 3	2.5 8 0.84 25	0.0009 0.0003				
X-rav L	3.6	0.9 4	*0				

¹²⁶I–¹²⁷Sb

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
• ^{1 2 6} β^- Decay % β^- D See also	(12.93 d 6) ecay = 39 3 o ¹²⁶ I EC Dec	l (min) = 0.10%	γ 19 γ 20 γ 23	1958.90 20 2067.00 20 2407.1 3	0.19 5 0.30 7 0.13 3	0.0079 0.0134 0.0064
Auger-L ce-K- 1	3.43 354.072 (0.37 4 5 0.45 4	≈0 0.0034	7 we Εγ Maxim	ak γ's omitt (avg)= 1849. um γ±-intens	ed: 6; ΣΙγ= 0.38% ity =164.11%	
8- 1 max avg 8- 2 max avg	371 5 108.9 17 862 5 289.7 20	3.10 25	0.0072	● ^{1 2 7} Sb β ^{-−} Decay	(3.85 d 5)	l (min)	= 0.10%
B-3 max avg	1251 5 458.6 21	9 4	0.0879	% Fee	ding to ¹²⁷ Te	(109 d) = 16.9 f	5
total 8- avg	314.1 23	39 5	0.263	Auger-L Auger-K	3.19	3.9 3 0.53 13	0.0003
$\begin{array}{ccc} x - ray & K\alpha_2 \\ x - ray & K\alpha_1 \\ \gamma & 1 \\ \gamma & 2 \\ \gamma & 3 \end{array}$	29.4580 29.7790 388.633 491.243 879.876	10 0.115 11 10 0.213 19 5 29.1 24 1 2.43 20 3 0.64 6	≈0 0.0001 0.241 0.0254 0.0121	андег-к се-к- 1 се-к- 1 се-к- 6 се-к- 19 се-к- 30	29.29 10 56.16 10 220.6 3 441.19 20 653.4 3	0.53 13 3.47 20 0.45 3 0.43 5 0.220 17 0.121 18	0.0003 0.0022 0.0005 0.0020 0.0021 0.0017
• ¹²⁶ Cs β^+ Decay	(1.64 m 2)	l (min)) = 0.10%	8 ⁻ 1 max avg 8 ⁻ 2 max avg	258 5 72.7 16 291 5 82.9 16	0.110 20 0.61 5	0.0002 0.0011
Auger-L	3.43	15.0 15	0.0011	avq	425 5 127.5_18	0.8 3	0.0022
Auger-K ce-K- 2	24.6 354.072 6	1.8 4 0.59 11	0.0009	8-4 max avg	441 5 132.8 18	1.25 20	0.0035
				avg	504 5 155.1 18	5.22 15	0.0172
B+ 1 max avg	1460 140 660 70	0.13 6	0.0018	β-6 max avg	657 5 211.1 19	1.25 25	0.0056
β+ 2 max avg	2130 140 960 70	1.1 3	0.0225	6-7 max avq	795 5 264.0 20	7.80 23	0.0439
8+ 3 max avg	2490 140 1120 70	3.1 8	0.0740	β- 8 max avq	798 5 265.1 20	17.2 4	0.0971
8+4 max avg	2930 140 1330 70	2.5 6	0.0708	6-9 max avg	896 5 304.1 20	34.9 4	0.226
β+ 5 max avg	3420 140 1560 70	24 5	0.797	β−10 max avg	950 5 325.8 21	4.10 21	0.0285
8* 6 max avg	3810 140 1740 70	51 7	1.89	8-11 max avg	1108 5 390.9 21	22.8 9	0.190
total 8+ avg	1640 80	82 9	2.86	8−12 max avg	1240 5 446.5 22	2.4 3	0.0228
5 we	ak B's omitt	ed:		A-13 max avg	1493 5 561.9 21	2.0 5	0.0239
Eβ	3(avg) = 652.	4; ΣΙβ= 0.23%		total 8- avg	309.2 22	100.6 14	0.662
X-ray L X-rav Ka ₂ X-ray Ka ₁	4.1 29.4580 1 29.7790 1	1.7 6 0 4.1 4 0 7.6 8	0.0001 0.0026 0.0048	2 we 58	ak β's omitt (avg)= 164.	ed: 4; ΣΙβ= 0.14%	
$ \begin{array}{cccc} $	33.6 364.6 388.633 5434.00 20 491.243 4548.7 3553.4 573.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0019 0.0032 0.315 0.0429 0.0429 0.0071 0.0036 0.0080 0.0222 0.0884 0.0059 0.0059 0.0039 0.0077 0.0068 0.0257	$\begin{array}{cccc} X - ray & L \\ X - ray & Ka_2 \\ X - ray & Ka_1 \\ X - ray & KB \\ \gamma & 1 \\ \gamma & 5 \\ \gamma & 6 \\ \gamma & 7 \\ \gamma & 8 \\ \gamma & 9 \\ \gamma & 10 \\ \gamma & 11 \\ \gamma & 12 \\ \gamma & 13 \\ \gamma & 15 \\ \gamma & 16 \end{array}$	3.77 27.20170 27.47230 31 61.10 154.3 5252.4 3280.4 5290.8 5290.8 5293.3 9310.0 7391.8 5405.0 10 411.60 20 440.7 7 444.9 3	$\begin{array}{c} 0.39 \ 14\\ 2 \ 1.06 \ 7\\ 2 \ 1.97 \ 12\\ 0.68 \ 4\\ 1.42 \ 7\\ 0.11 \ 3\\ 8.39 \ 17\\ 0.54 \ 4\\ 1.82 \ 8\\ 0.29 \ 15\\ 0.20 \ 4\\ 0.93 \ 8\\ 0.114 \ 18\\ 3.43 \ 19\\ 0.25 \ 11\\ 4.21 \ 12 \end{array}$	<pre>≈0 0.0006 0.0012 0.0005 0.0018 0.0004 0.0451 0.0032 0.0113 0.0018 0.0013 0.0017 0.0010 0.0300 0.0023 0.0399</pre>

^{1 2 7}Sb-^{1 2 8}I

.

Radiation Type	Energy (keV)	Intensity (%)	$\Delta(extbf{g-rad}/ \mu extbf{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
^{1 2 7} Sb β ⁻ Decay γ 17	(3.85 d 5) 451.0 7	(Continued)	0-0017	• ¹²⁷ Te β^- Decay ($\%\beta^-$ De See also	109 d 2) ecay = 1.83 24 o ^{1 2 7} Te IT Dec	l (min) cay (109 d)	= 0.10%
7 19 7 19 7 20 7 21 7 22 7 23	456.0 10 473.00 20 502.8 6 543.00 20 584.2 11 603.60 20	0.11 8 25.0 8 0.61 11 2.64 12 0.32 18 4.25 12	0.0010 0.252 0.0065 0.0306 0.0040 0.0546	Auger-L Auger-K ce-K- 1 ce-L- 1	3.3 23.6 24.431 20 52.412 20	1.16 21 0.14 5 1.21 24 0.17 4	≈0 ≈0 0.0006 0.0002
γ 25 γ 26 γ 27 γ 29 γ 30	637.8 5 653.5 7 666.9 3 682.3 10 685.2 3	0.36 4 0.25 4 0.54 18 0.54 25 35.7 4	0.0048 0.0035 0.0076 0.0078 0.521	β- 1 max avg 3 wea	725 5 252.9 19 k β's omitte	1.82 24	0.0098
7 31 7 32 7 33 7 35 7 37 7 38 7 39	698.2 3 722.2 5 745.9 5 783.8 3 817.3 5 820.1 3 923.5 7	3.39 19 1.75 8 0.11 4 14.7 4 0.27 3 0.114 22 0.46 3	0.0505 0.0269 0.0017 0.245 0.0047 0.0020 0.0091	$\begin{array}{c} x - rav L \\ x - rav K\alpha_2 \\ x - rav K\alpha_2 \\ x - rav K\alpha_1 \\ x - rav K\beta \\ \gamma 1 \end{array}$	4 28.3172 4 28.6120 3 32.3 57.600 20	$\begin{array}{c} \Sigma I \beta = \ 0.01\% \\ 0.12 \ 5 \\ 0.30 \ 6 \\ 0.57 \ 12 \\ 0.20 \ 4 \\ 0.38 \ 8 \end{array}$	≈0 0.0002 0.0003 0.0001 0.0005
γ 40 γ 42 10 we	1141.2 7 1290.3 8 $ak \gamma's omitters (avg) = 736$	$0.36 \ 8$ $0.35 \ 4$ ed: $7. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.0087 0.0095	4 wea 57(kγ's omitte avg)= 648.6	d: ; ΣΙγ= 0.01%	
- 1277 - 0	(avg) = 730.	, <i>211 - 0.00</i>	0.100/	• ¹²⁷ Xe EC Decay	(36.406 d 16)	1 (min)	= 0.10%
 The β Decay B- 1 max avg β- 2 max avg total β- avg 3 we Eβ 	(9.35 n 7) 276 5 78.2 16 694 5. 224.7 19 222.9 20 ak β's omitted (avg) = 148.3	1.184 13 98.789 19 100.000 23 ed: 3; ΣΙβ= 0.03%	= 0.10% 0.0020 0.473 0.475	Auger-L Auger-K ce-K-1 ce-L-1 ce-MNO-1 ce-K-3 ce-K-3 ce-L-2 ce-L-3 ce-K-4	3.3 23.6 24.431 20 52.412 20 56.528 20 112.05 3 138.93 3 140.03 3 166.91 3 166.91 3 169.67 3	96 6 12 3 4.2 3 0.60 4 0.151 10 1.53 9 3.53 18 0.387 23 0.462 19 6.61 14 0.115 5	0.0068 0.0059 0.0022 0.0007 0.0002 0.0036 0.0105 0.0012 0.0016 0.0239
γ 6 γ 8	360.30 10 417.90 10	0.134 1 0.988 10	0.0010 0.0088	ce-L- 4 ce-MNO- 4 ce-K- 5	197.65 3 201.77 3 341.79 5	0.97 4 0.245 9 0.292 19	0.0041 0.0011 0.0021
7 we Εγ • ¹²⁷ Te IT Decay %IT De Feeds See als	ak γ's omitte (avg) = 172.7 (109 d 2) ecay = 98.17 2 ¹²⁷ Te (9.35 h) o ¹²⁷ Te 6 ⁻ De	ed: 7; ΣΙγ= 0.13% 1 (min) 4 ecay (109 d)	= 0.10%	X-ray L X-rav Kα ₂ X-ray Kα ₁ X-rav Kθ γ 1 γ 2 γ 3 γ 4 γ 5	4 28.3172 4 28.6120 3 32.3 57.600 20 145.22 3 172.10 3 202.84 3 374.96 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0003 0.0151 0.0284 0.0112 0.0016 0.0131 0.0905 0.294 0.139
Auger-L Auger-K ce-K- 1	3.19 22.7 56.45 8	74 4 5.2 12 41.8 7	0.0050 0.0025 0.0503	1 wea 57(k γ's omitte avg)= 618.4	d: ; ΣΙγ= 0.01%	
ce-L- 1 ce-M- 1 ce-NCP- 1	83.32 8 87.25 8 88.09 8	43.3 7 10.2 3 2.72 8	0.0768 0.0190 0.0051	● ^{1 2 8} I EC Decay (24 %EC Deca See also	4.99 m 2) ay = 5.0 2 ^{1 2 8} Ι β ⁻ Decay	l (min)	≈ 0.10%
X-rav L X-rav Kα ₂ X-ray Kα ₁ X-ray K8	3.77 27.20170 2 27.47230 2 31	7.325 210.44 219.48 6.73	0.0006 0.0060 0.0114 0.0045	Auger-L Auger-K	3.19 22.7	4.1 3 0.53 13	0.0003 0.0003
1 we Εγ	ak γ's omitte (avg)= 88.3	ed: 3; ΣΙγ= 0.09%					(Continued)

¹²⁸I–¹²⁹Sb

Radiation Type	Energy (keV)	Intensity (%)	$\Delta(g ext{-rad}/\mu ext{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ µCi-h)
X-ray I.	3, 77	0.40 14	~0	8-13 may	1096 21		
X-ray Ka ₂ X-ray Ka ₂	27.20170	2 1.06 6	0.0006	avg	386 9	0.59 14	0.0049
X-ray K8	31	0.69 4	0.0005	avq	408 9	2.1 17	0.0182
y i	/43.24 4	0-130 24	0.0021	avg	520 10	3.2 7	0.0354
				B-16 max avg	1564 21 587 10	10.1 15	0.126
• ^{1 2 8} β^- Decay	(24.99 m 2)	I (min) = 0.10%	B-17 max avg	1617 21 610 10	4.3 3	0.0559
See also	o ¹²⁸ 1 EC Deca	v		6-18 max avg	1743 21 666 10	2.7 5	0.0383
	2 4 2			8-19 max avg	1832 21 706 10	7.7 20	0,116
Auger-L ce-K- 1	3.43 408.35 7	0.124 15 0.152 16	≈0 0.0013	B-20 max	1912 21	0.9 4	0 0142
Q− 1 may	1150 5			8-21 max	2132 21	0.07.10	0.0142
	410.1 21	1.72 22	0.0150	$\beta=22$ max	2271 21	0.27 13	0.0048
B-2 max avg	1684 5 637.3 23	13.0 14	0.176	avg total 8-	901 10	3.8 14	0.0729
β- 3 max avg	2127 5 835.7 23	80.2 15	1.43	avg	355 12	101 4	0.762
total 8- avg	800.7 24	94.9 21	1.62	1 we B	eak B's omit B(avg)= 68	ted: .0: ΣΙΒ= 0.05%	
2 we	eak B's omitt	ed:			,		
E	3(avg) = 164.	8; ΣΙΒ= 0.01%		χ -ray $K\alpha_1$ γ 1	27.47230 96.1 7	2 0.18 4 0.18 5	0.0001 0.0004
y 1	442.91 7	14.2 15	0.134	γ 3 γ 4	116.2 7 146.6 7	0.18 5 0.23 5	0.0005
γ 2 γ 4	526.62 10 969.4 4	1.37 19	0.0153	γ 6 ~ 11	180.8 5	2.70 15	0.0104
, 	ak vis omitte			γ 12 γ 13	268.6 8	0.27 5	0.0016
E)	r(avg) = 1051.2	3; $\Sigma I \gamma = 0.01\%$		γ 13 γ 14	313.5	0.91 10	0.0069
				γ 15 γ 16	332.5 359.4 5	0.23 10 3.0 3	0.0016 0.0231
● ^{1 2 9} Sh β ⁻ Decay	(4.40 h 2)	L (min) = 0.10%	γ 17 γ 18	363 405.0 7	0.457 9 1.46 14	0.0035 0.0126
% Fee	ding to ¹²⁹ Te	(69.6 m) = 83.4	11	γ 20 γ 21	453.5 10 499.6	0.82 23 0.23 10	0.0079 0.0024
% Fee	eding to ¹²⁹ Te	(33.6 d) = 16.6	11	γ 22 γ 23	523.8 5 544.7 3	1.69 15 19.1 11	0.0189 0.221
Auger-L	3.19	0.31 8	≈0	γ 24 γ 25	633.7 5	2.92 24	0.0395
ce-K- 6	149.0 5	0.38 9	0.0012	γ 26 γ 27	669.8 10 683.6 3	0.87 19	0.0124
β−1 max avg	264 21 74 7	1, 10, 17	0.0017	γ 28	683.6 3	5.4 17	0.0792
8-2 max	292 21	0 // 1 21	0 0007	γ <u>30</u>	761.0 5	4.0 3	0.0652
8-3 max	307 21	0.41 21	0.0007	γ 31 γ 32	786.6 6	2.01 19	0.0482
avg 8-4 max	506 21	2.0 4	0.0037	γ 33 γ 34	812.8 5 876.2 7	45.7 9 2.74 24	0.791 0.0512
avg β= 5 max	156 8 534 21	0.94 14	0.0031	γ 35 γ 36	914.6 5 939.7 7	21.3 13 0.78 19	0.415 0.0156
avg 8-6 max	166 8 625 21	22.5 13	0.0796	γ 38 γ 39	966.4 6 995.4 11	8.2 6 0.14 10	0.168
aνς β-7 max	199 8 650 21	3.4 3	0.0144	γ 40 γ 42	1030.1 6	13.4 9	0.294
avo; 8-8 max	208 8 722 21	26.6 13	0.118	γ 43 ~ #5	1104.3 10	0.23 10	0.0054
	236 8	1.05 23	0.0053	γ 46	1139.2	0.18 5	0.0044
	244 9	1.74 17	0.0090	γ 48 γ 49	1167.8 10	0.114 23	0.0028
p−iu max avoj	258 9	1.10 17	0.0060	- γ 50 γ 51	1208.5 7 1223.3	0.96 14 0.18 5	0.0247 0.0048
ß−11 max avg	895 21 304 9	0.27 10	0.0017	γ 52 γ 53	1237.4 15 1257.0 18	0.27 10	0.0072
8-12 max avo	1060 21 371 9	4.0 4	0.0316	γ 54 ~ 55	1261.3 10	0.78 19	0.0209
					12-340 13	002/14	(Continued)

^{1 2 9} Sb-^{1 2 9} l

.

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
¹²⁹ Sb β^{-} Decay , 7 56 7 57 7 58 7 59 7 60 7 61 7 62 7 64 7 65 7 66 7 66 7 66 7 66 7 67 7 70 7 72 7 74 7 75 7 76 7 81 7 83	(4.40 h 2) 1280.8 10 1300.0 12 1317.2 10 1325.9 10 1418.6 11 1436.1 12 1479.7 10 1525.9 10 1540.0 15 1568.7 8 1598.5 9 1621.1 12 1654.6 10 1724.1 20 1736.5 10 1841.8 1869.9 11 2069.6 15 2113.0 15 eak y's omitte	(Continued) 0.59 14 0.27 10 0.37 10 0.55 10 0.55 10 0.55 23 0.46 14 0.14 5 0.73 10 0.55 14 0.27 14 1.05 23 0.27 14 1.05 23 0.27 14 6.4 8 0.23 10 0.32 10 0.59 14 0.37 14 ed:	0.0162 0.0076 0.0103 0.0155 0.0166 0.0098 0.0158 0.0149 0.0045 0.0244 0.0187 0.0095 0.0244 0.0187 0.0095 0.0370 0.0101 0.235 0.0090 0.0127 0.0262 0.0165	• ¹²⁹ Te IT Decay β %IT De Feeds ¹ See also Auger-L Auger-K ce-K-1 ce-K-1 ce-K-1 ce-H-1 ce-M-1 ce-MOP-1 X-ray L X-ray K α_2 X-ray K α_1 X-ray K α_2 X-ray K α_3 Y-Tay K β_1 Y 1	(33.6 d 2) cay = $62.9 \ 24^{29}$ Te ($69.6 \ m$) p^{129} Te β^- De 3. 19 22.7 73.69 5 100.56 5 104.49 5 105.33 5 3.77 27.20170 27.47230 31 105.50 5 (33.6 d 2)	I (min) 2000 (33.6 d) 48 3 4.0 9 31.6 13 24.0 11 5.6 3 1.46 7 4.8 16 2 7.9 5 2 14.7 8 5.1 3 0.147 8 I (min)	$0.0033 \\ 0.0019 \\ 0.0497 \\ 0.0515 \\ 0.0124 \\ 0.0033 \\ 0.0046 \\ 0.0046 \\ 0.0034 \\ 0.0034 \\ 0.0003 \\ = 0.10\%$
 • ¹²⁹ Te β[~] Decay 	γ (avg) = 1310. (69.6 m 4)	7; ΣΙγ= 0.98%	= 0.10%	%β⁻ Du Feeds ¹ See also	ecay = 37.1 24 ²⁹ 1 p ¹²⁹ Te IT De	4 ecaγ (33.6 d)	
Feeds	129			Auger-L ce-L- 1	3.3 22.582 20	0.105 16 0.116 17	≈0 ≈0
Auger-L ce-L-1 ce-M-1 ce-MOP-1 θ -1 max avg θ -2 max avg θ -3 max avg θ -3 max avg θ -4 max avg θ -5 max avg θ -6 max avg θ -6 max avg θ -8 max avg θ -9 max avg δ -9 max avg δ -9 max avg δ -9 max avg δ -9 max avg δ -10 max avg δ -10 max δ -1	3.3 22.582 20 26.698 20 27.584 20 386 4 114.1 14 668 4 214.9 15 938 4 320.6 17 1011 4 350.0 17 1220 4 437.0 17 1220 4 437.0 17 1470 4 544.5 18 522.4 19 eak B's omitte 3(avg) = 74.5	59 10 65 11 13.0 22 4.3 7 0.81 10 0.196 23 0.23 3 8.6 10 0.52 7 90 10 100 10 5; $\Sigma I \beta = 0.06\%$ 6.2 23	0.0041 0.0312 0.0074 0.0025 0.0020 0.0009 0.0016 0.0641 0.0048 1.04 1.12	 β- 1 max avg β- 2 max avg β- 3 max avg β- 4 max avg	202 4 55.5 12 874 4 294.8 16 908 4 308.3 16 1604 4 607.3 17 571.0 18 ak β 's omitt (avg) = 232. 556.652 695.832 20 729.570 20 ak γ 's omitt (avg) = 742.	0.166 21 0.76 10 3.3 4 32.8 25 37 3 e1: 5: $\Sigma I B = 0.08\%$ 0.129 17 3.3 4 0.76 10 ed: 5; $\Sigma I \gamma = 0.31\%$	0.0002 0.0048 0.0217 0.424 0.451 0.0015 0.0485 0.0119
x-ray L y 1 y 2 y 5 y 7 y 8 y 15 y 16 y 32 y 42 y 43 37 we B1	4 27.770 20 208.960 15 250.615 15 278.430 10 281.262 15 459.600 10 487.390 20 802.100 20 1083.850 20 1111.640 20 sak y's omitte r(avg) = 656.5	$6 \cdot 2 23$ $16 \cdot 3 25$ $0 \cdot 166 20$ $0 \cdot 35 5$ $0 \cdot 52 6$ $0 \cdot 152 18$ $7 \cdot 1 8$ $1 \cdot 31 16$ $0 \cdot 177 21$ $0 \cdot 45 6$ $0 \cdot 176 21$ ed: $25 \Sigma I \gamma = 0 \cdot 38 \%$	0.0005 0.0096 0.0007 0.0019 0.0031 0.0009 0.0695 0.0136 0.0030 0.0105 0.0042	• 129 β^- Decay (1 Auger-L ce-K- 1 Auger-K ce-L- 1 ce-M- 1 ce-MCP- 1 β^- 1 max avg	.57E7 y 4) 3.43 5.020 15 24.6 34.128 15 38.439 15 39.373 15 152 4 40.9 12	I (min) 74 4 78.9 5 8.8 16 10.7 3 2.16 7 0.7 14 22	= 0.10% 0.0054 0.0084 0.0046 0.0078 0.0018 0.0018 0.0006 0.0871 (Continued)

¹²⁹I–¹³¹Te

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
X-ray L X-ray Kg-	4.1	8.2 25 0 20.0 6	0.0007	• ¹³⁰ Ι β ⁻ Decay	(12.36 h 1)	I (min)	= 0.10%
X-ray Kai	29.7790 1	0 37.0 10	0.0235	1	3 4 3	1 35 0	. 0
X-ray K9	33.6	13.2 4	0.0094	Auger+L	3.43	1+35 9 0.19 L	≈0 ~0
γ 1	39.581 15	7.52 23	0.0063	ce-K- 9	383.449 20	0.47 5	0.0039
				ce-K- 14	501.529 20	0.623 20	0.0967
				ce-K- 20	633.979 10	0.341 11	0.0046
● ¹²⁹ Xe IT Decay	(9, 90, 4, 2)	I (min	-0.10%	ce-K- 23	704.919 20	0.229 8	0.0034
• At IT Decay	(0.05 u 2)	• (110) – U.IU/				
Auger-L	3.43	147 8	0 0108	87 1 max avg	232 10 64 3	0.316 16	0 0000
ce-K- 1	5.020 15	78.9 5	0.0084	8-2 max	355 10	0.010 10	0.0004
Auger-K	24.6	16 3	0.0083	avq	103 4	0.328 17	0.0007
ce-L- 1	34.128 15	10.7 3	0.0078	6-3 max	376 10		
ce-M- 1	38.439 15	2.16 7	0.0018	avg	110 4	0.492 14	0.0012
ce-mop- 1	39.373 15	0.714 22	0.0006	8- 4 max	55/ 10	0 104 5	0 0007
ce-k- 2	162.00 3	63.9 7	0.220	a.vo; A− 5 mav	622 10	0.184 5	0.000/
Ce-L- 2	191.11 3	24.4 6	0.0993	אזעג כ <u>י</u> איזעג	197 L	4673	0 196
	195.42 5	3.40.10	0.0220	8- 6 max	812 10	40.7 3	0.190
	100.00	1.40 4	0.0002	ava	270 4	2.14 3	0.0123
				A- 7 max	902 10		0.0125
X-rav L	4.1	16 5	0.0014	avo	306 4	0.173 16	0.0011
X-rav Kaz	29.4580 10) 36.1 10	0.0227	8- 8 max	1040 10		
	29.7790 10	0 6/.0 1/	0.0425	avg	361 5	47.5 8	0.365
v 1	30 581 15	43.0 / 7 52 22	0.0063	. 6 - 9 max	1176 10		
y 2	196.56 3	4.74 13	0.0198	avq	418 5	1.43 5	0.0127
· -				total 5- avg	279 5	99.5 9	0.591
							0.071
• 129 Cs EC Decay	(32.06 h 6)	l (min) = 0.10%	5 we 86	ak 8's omitte 3(avg)= 91.4	d: ; ΣΤβ= 0.27%	
				¥		0.45.5	•
Auger-L	3.43	110 8	0.0080	X-ray L	4.1		≈0
ce-K- 1	5.020 15	32 3	0.0034		29.4580 10	0.422 1/	0.0003
Auger-K	24.6	13.1 25	0.0068	X-ray KB	33.6	0.278 12	0.0002
Ce-1,- 1	39.120 15	4.3 4	0.0031	y 9	418.010 20	34.15 20	0.304
Ce-NOP- 1	39.373 15	0.287 22	0.0002	γ 12	457.720 20	0.237 15	0.0023
ce-K- 3	58.768 4	0.58 5	0.0007	7 13	510.350 20	0.852 21	0.0093
ce-K- 12	337.3566 23	0.59 4	0.0043	y 14	536.090 20	99.0 7	1.13
ce-K- 13	376.9286 23	0.33 4	0.0026	γ 15	539.10 3	1.396 7	0.0160
				r 16	553.900 10	0.662 17	0.0078
X-ray L	4.1	12 4	0.0011	γ 17 - 19	586.050 20	1.693 22	0.0211
X-ray Kaa	29.4580 10	29.7 18	0.0187	7 18	668.540 10	96.1 8	1 37
X-ray Kri	29.7790 10	55 4	0.0350	y 21	685,990 10	1.069 21	0 0156
X-rav KS	33.6	19.6 12	0.0140	v 23	739.480 20	82.3 8	1.30
y 1	39.581 15	3.02 23	0.0025	y 26	800.23 3	0.101 5	0.0017
γ <u>3</u>	93.329 3	0.66 5	0.0013	γ 27	808.290 20	0.236 6	0.0041
γ 4 5	177.036 10	0.274 18	0.0010	y 32	877.35 4	0.191 8	0.0036
Y 5	200.820 /	0.277 18	0.0016	γ 35	967.020 20	0.877 14	0.0181
~ 7 ~ 7	270.352 5	1.34 10	0.0012	7 39	1096.48 3	0.552 10	0.0129
7 8	282.131 6	0.246 17	0.0015	γ 40 1	1122.15 3	0.253 8	0.0061
y 9	318.1800 20	2.49 17	0.0169	γ 41 ~ //2	1222 56 2	0 170 5	0.279
γ 12	371.9180 20	31.1 19	0.246	7 42	1272 120 20	0 7/19 12	0.0047
γ 13	411.4900 20	22.7 15	0.199	r 45	1403.900 20	0.345 12	0.0203
7 17	548.945 8	3.45 22	0.0404	1 43	14031 700 20	0.343 12	0.0105
y 22	588.549 8	0.61 5	0.0077	32 we	ak y's omitte	đ:	
γ 27	906.425 6	0.224 15	0.0043	En	(avg) = 813.0	: ΣIγ= 0.85%	
15 we	ak γ's omitte (avg) = 636 5	d: • 57~= 0 28%					
5 7	14+y) - 030+3	· 211- 0.20%		- 131	(05.0		
				● ' ³ ' Te β ^{-−} Decay Feeds	(25.0 m 1) ¹³¹	I (min)	= 0.10%
				Lugo-T	3 3	13 8 10	0 0010
				Auger-L	23.6	1.7 5	0.0010
				Ce-K- 4	116.547 5	14.5 5	0.0359
			-				(Continued)
							(Contracta)

TABLES OF RADIOACTIVE DECAY DATA 131

^{1 3 1} Te—

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
¹³¹ Te β^{-} Decay	/ (25.0 m 1)	(Continued)	0 0057	¹³¹ Te IT Decay (%IT Dec Feeds ¹	30 h 2) cay = 22.2 16 31 Te (25.0 m)	I (mir	n) = 0.10%
ce-K- 24	148.644 419.1536	5 0.467 7 21 0.193 17	0.0015 0.0017	See also	¹³¹ Te β^- Dec	ay (30 h)	
8 - 1 max	748 6			Auger-T. Auger-K	3,19 22.7	16.9 13 1.8 5	0.0011
əvg 8- 2 max	245.6 24 805 6 267 6 24	1.199 22	0.0063	ce-k- ce-L- 1 ce-N- 1	177.311 20 181.244 20	5.4 5 1.20 10	0.0462
β = 3 max avq avq avq	822 6 274,2 24	1.34 3	0.0078	ce-70P- 1	182.082 20	0.304 24	0.0012
8-4 max avq	903 6 306.2 24	0.119 9	0.0008	X-ray L X-ray Kg-	3.77	1.7 6	0.0001
8-5 max avg	951 6 325,6 25	0.54 9	0.0037	$X - ray K\alpha_1$ X - ray K α_1	27.47230 2	6.7 6 2.32 19	0.0039
ß−6 max avg	1102 6 387.7 25	9.99 16	0.0825	γ 1	182,250 20	0.85 7	0.0033
β - 7 max avg	1151 6 408 3	2.59 5	0.0225				
B-8 max avg	502 3	1.178 23	0.0126	• ¹³¹ Te β^- Decay (30 h 2	I (min	n) = 0.10%
8-10 max	622 3 1756 6	21.8 3	0.289	Feeds ¹	$\frac{31}{31}$		
avg 8-11 max	670 3 2099 6	0.78 5	0.0111	See also	i e li Dec	ay (30 fi)	
avg total A-	825 3	59.2 16	1.04	Auger-K Auger-K	3.3 23.6	10.6 7	0.0007
avq 5 u	696 4	100.1 17	1.48	ce-K- 14 ce-K- 21	47.971 20 68.891 10 75 952 20	4.80 21 4.88 22	0.0049
D We	B(avg) = 136	0; ΣΙβ= 0.21%		ce-1 14 ce-1 NO - 14 ce-1 - 21	80.068 20 96.872 10	0.05 5	0.0003
X-ray L	4	1.4 5	0.0001	ce-MNO-21 ce-K- 36	100.988 10	0.159 5	0.0003
X-ray Kaz X-ray Kaz	28.31/2 28.6120	4 3.68 18 3 6.9 4	0.0022	ce-L- 36 ce-K- 48	144.528 5 167.461 20	0.138 19 0.191 8	0.0004 0.0007
γ 4 γ 5	149.716 5	68.9 9 0.17 7	0.220	ce-K- 58 ce-K- 75	207.761 10 301.101 10	0.117 5 0.234 10	0.0005 0.0015
γ 15 γ 19	342.945 4 384.059 3	0.703 12	0.0051	8∼ 1 max	161 6		
γ 24 γ 25	452.3230 2 492.660 10	0 18.22 25 4.84 7	0.176 0.0508	avg 8- 2 max	43.3 18 190 6	0.56 4	0.0005
γ 29 γ 32	544.880 10 567.33 4	0.427 15 0.103 7	0.0050	avg 8~ 3 max	51.8 18 255 6	0.31 4	0.0003
γ 34 γ 35	602.039 3 605.550 20	4.20 6	0.0538	avo 8-4 max	71.5 19 261 6	0.20 4	0.0003
γ 36 γ 37	696.190 20	1.530 25 0.179 14	0.0213	avor 8~5 max	73.3 19 263 6 70 0 19	0.45 4	0.0007
γ 40 γ 45 γ 48	841.990 20	0.200 8	0.0036	8-6 max avg	317 6	1.65 21	0.0032
γ 50 γ 51	898.54 3 934.483 5	0.138 8	0.0026	8-7 max avg	368 6 108.0 20	0.341 25	0.0008
γ 52 γ 53	948.542 4 951.390 20	2.26 4 0.331 9	0.0457 0.0067	8-8 max avg	420 6 125.6 21	2.27 17	0.0061
γ 54 γ 57	997.250 10 1007.960 10	3.34 5 0.799 13	0.0710	8- 9 max avg	430 6 129.0 21	5.4 4	0.0148
γ 60 γ 61 ~ 62	1146.960 10	4.96 7	0.121	erti max avg	451 6 136.2 21	36.9 10	0.107
γ 68 γ 69	1277.440 10	0.118 5	0.0032	B-12 max	155.7 22 532 6	2.14 13	0.0071
γ 73 γ 74	1427.140 20 1500.62 3	0.105 4	0.0032	avg 8-13 max	164.8 22 544 6	16.6 6	0.0583
56 we	ak γ's omitt	ed:		avσ β-14 max	169.0 22 785 6	1.50 8	0.0054
Ey	(avg) = 696.	0; ΣΙγ= 1.19%		avd	259.9 24	2.5 3	0.0138 (Continued)

(beunitnoD)							
L100 °0	0.251 6	11 187.255	21 1	0100.0	0.39 20	822.21 3	061 4
9920.0	8 50 9	284.298 11		0.0028	h SL 0	02 06 178	129
0100-0	17 592°0	177.210 10		L01-0	81 61-9	822-78	
9000 *0	5 CFC	01 501 00	х- тау к а	051.0	52 64 °L	t 5L 80L	5CL ~ カフレ ん
9100.0	5°20 6	01 0644 °62	X-LSY KG	6800.0	8 15 0	OL OL TLL	EZIL
8000.0	5 56-1	01 08S# 6Z	X-Lay Kaz	0.630	11 2 86	E 19.ETT	221 4
0≈	L1 55°0	. L* 11	X-LGY L	0.0252	9 65"	\$ 02°\$\$	1 1 20
			·	0.0218	91 Et "L	1 OL .EIT	811 4
	\$L0.0 =813	(4Ad) = 500.2:	d 2	6500-0	22 16E 0	L 05°20L	
	:	bettimo zº8 As	θAL.	£200 0	5L 96 F 0	01 06*589	SII 4
			1	5190.0	ηι ηε•η	E S0*S99	ELLA
785.0	11 6.66	181.70 24	SAG TROOP	8100.0	91 6EL*0	01 01 609	OLLA
#Z00*0	91 565 *0	67 67 697	-9 [6+0+	0100.0	0.31.12	602.039 3	601 A
40000	JI 202 U	9 h*908	X.60 C -8	0°05#1	01 86 1	E 0E*985	LOLL
ħ9€°0	LL E*68	101*28 53	DAB	2100.0	17C CLL "U		
		9 6*909	xem 4 -8	5100-0	91 961 0	01 08 725	
1210.0	01 9E .T	96°62 20	pv5	1 100.0	h 16.0	6 91.934	16 A
7100.0	(.70.00	9 8 EEE		0810.0	1.82 6	s 26°29n	96 L
2100 0	6 LC 9 U	0 6*50F		6110.0	_ħ S*L	#25°3530 50	56 L
1500.0	5°12 3	61 98 69	6AB G TO	1900-0	th 99°0.	L 01°2E1	176 L
		541.9 6	X6M 1 -8	9100-0	10 0LC U	1 06 . 66	ε υ ~
	•		-	ε600.0	91 02 1	01 86 495	58 L
6100.0	8 tht Z*O	11 LZ0.62E	hl -1- 00	4100.0	EL 622.0	01 0L \$5E	28 ×
8010.0	5 75°L	329.919 11	tıL -¥-∂⊃	9100.0	0 2 00 20	01 08.125	OB A
0.0013	0 S #8 8	249.737 11	L -X-80	8200-0		5 26 202	
2000-0	0.117 2	01 100 62	L - ON M - 22	1890.0	10 90 F 0	01 017 \$55	
1000 0	91 E917'U	01 779*60	1 -7-90	5200.0	1 8E.O	· 9 L1 60E	
£000 *0	11 65 0	9°hZ	y-lebny	0.0023	1 68.0	583.20 20	19 A
n000°0	2*0 3	٤ * * 3	J-Jepu	9010-0	9 8L°L	278.560 20	59 A
				9000.0	E 801°U	569.2 3	t19 Å
13	980.1 = (p ±8.	() ax., of bu	N Feed	2100 0	11 ULE U	L 1717 556	09 A 66 A
%0L'0 =	(uiu) 1	(5 D 0+0.8) Appending the	0660.0	12 65*1	01 026 017	89 ~
	, .			0100.0	EL 161.0	5 59*022	SS L
				6100.0	0°#56 55	213°88 3	£5 Å
				0.0323	1.56 23	200 630 20	8n 4
	\$87°E =413	n*8E9 = (DAE)	1	5000-0	91 911-0	9 25 061	L17 A
	: 1	bettino 2'7 Vis	8 M 801	6000.0	1 05 0 EL ELZ®O	7 9L 08L	911 A Ch Á
				0.0006	07 551 0	8 11.581	517 ~ 1717 Å
9810-0	22 PRF 0	6 59 0LCC	681 4	6200°0	0"14 50	185.250 20	Et 4
55000 5580°0	1 10.7	9 15 091C	881 ~ /81 Å	#000°0	0.128 16	n 99°oSL	6E 4
5050.0	9 96 1	L 0L L861	£81 A	2910.0	L L*S	S 912.641	96 4
SE#0*0	5 hZ*L	5 10.9491	6L1 L	5,10.0	E 12-0	02 098 1121	<u>ال</u> ال
0.0032	6 80L°O	6 E8 16EL	SLL 4	1000.0	91 041 0	£ 9°LOL	ΰZ L
0.0029	21 101 0	01 09.0461	211 4	£000 °C	9 Lh1 0	86.430 20	ŠĨ Å
5010 0	8 02°0	8 91 9121 C 70 1/071	891 ~	0100.0	EL LO"#	02 041-18	7L ~
192.0	£ 8 6	n 09*907L	291 Å	0.0002	0 128 2	E 61.61	Et L
SE00 0	EL 6EL 0	01 05 5911	091 ×		6 58°L	35"3	X-LGA KG
1910.0	8 99 ° 0	6 06 °0511	851 4	4100.0	EL EN*Z	t 7/15*87	V-LGA KUS
\$600°0	0.38 12	L 68*8111	LSL	0*	h 1°1	n CLIC 0C	J ÁEJ-X
0220-0		L 68 8011	951 4				
t/7 °0	5 <u>7</u> 6 0	9 90 LCII	115 L ~		\$8Z*0 =Ø17	1 . 777 = (DAR)	da
0520.0	9 55 1	h 69°6501	671 4		:	pertino s d XI	20 A G
0.0023	6 501.0	1032 01 5201	811 4				
9500.0	02 0110 20	51 92 666	En L A	80E •0	ti 9°92	E 681	PVS
100°0	EL 551 0	01 08 186		6010.0		C 0.7	-9 T940+
£510°0	₩ 82°0 117 0LI•0	5 LC 170	U77 L ペ 95 L Å	1 2870.0	77 B-E	£ 016	71918 CI 0 DV6
9620.0	6 ÛZ*L	5 29*026	LELA	0.0022	9 02.0	2 1010 E 670	P75 01-9
0.0638	3. 29 12	£ 00.010	98 L A			9 SZ#L	XEW 71-8
6100.0	21 101 0	872.3 3	NEL L	010010	SI LE"U	E 205	6A 8
9800 0	ħ 6L °O	865.10 20	EEL 4			1312 6	X60 81-8
ELLO O	5 29.0	E 80 958	261 4	8100.0	0.22 21	£ 16E	DAB NDB CI C
225-0	Z L-02	F 10.528	121 ×			9 9111	xem 21-8
น-เวท	(%)	(K6V)	əd A ı	(น-เวช	(%)	(K6A)	ı Abe
(DB1-0)	Ausualui	τ⊏ustgy	noiseiben	(1:0) (pgj-6)	י ט רפעצונ א	κριου	nonsusr
/V	1.450.0401						aniteihe 9

·

1¹⁵¹—97¹⁵¹

TABLES OF RADIOACTIVE DECAY DATA 133

¹³¹I-¹³²Te

Radiation Type	Energy (keV)	Intensity (%)	Δ (g-rad/ μ Ci-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
¹³¹ Ιβ ⁻ Decay	(8.040 d 3)	(Continued)		X-ray L	4.29	13 4	0.0012
· · ·				X-rav Krz	30.6251	3 27.7 7	0.0180
γ 14	364.480 11	81.2 11	0.630	X-rav Kai	30.9728	3 51.2 12	0.0338
γ 16	502.991 11	0.361 6	0.0039		78.764 16	0.730 25	0.0012
Y 17	636.973 10	7.26 10	0.0985	y 4	92.289 14	0.64 9	0.0013
γ 18	642.703 11	0.220 4	0.0030	γ 5	123.802 8	29.0 9	0.0764
y 14	122.093 10	1.003 25	0.0278	γ 7 	133.612 14	2.16 7	0.0061
10 w	eak y's omitte	ed:		7 9	216.073 B	19.7 5	0.0006
3	$\gamma(avg) = 329.4$	1: ΣTγ= 0.23%		7 11	239.623 8	2.40 5	0.0123
				y 12	246.879 12	0.641 20	0.0034
				γ 13	249.426 8	2.82 7	0.0150
				γ 14 7	294.508 20	0.167 5	0.0010
• ¹³¹ Xe IT Decay	(11.84 d 7)	ł (min) = 0.10%	7 15 7 17	351.188 24	14 0 4	0.0008
				y 18	404.036 11	1.306 20	0.0112
Auger-L	3.43	75 4	0.0055	7 21	461.246 24	0.103 1	0.0010
Auger-K	24.6	6.8 13	0.0036	γ 23	480.395 13	0.323 9	0.0033
ce-K- 1	129.369 13	61.2 7	0.169	γ 24	486.510 12	2.07 4	0.0215
ce-M- 1	162.788 13	40.0 0 6.50 18	0.0225	7 25 ~ 29	490.313 13	40.8 5	0.495
ce-"0P- 1	163.722 13	1.78 5	0.0062	r 30	585.026 15	1.221 13	0.0152
				r 31	620.095 17	1.36 9	0.0180
X-rav I.	4.1	я з	0 0007	y 32	674.415 20	0.133 4	0.0019
Y-ray Kaz	29.4580 10	0 15.5 5	0.0097	γ <u>33</u> ~ 37	696.470 20	0.149 5	0.0022
X-rav Ka _l	29.7790 10	28.7 8	0.0182	y 40	923.846 22	0.730 21	0.0144
X-ray KB	33.6	10.2 4	0.0073	y 44	1047.571 25	1.170 13	0.0261
<i>,</i> ,	103.930 13	1. 70 0	0.0000	23 ve	ak r's omitte	ed :	
				Eγ	(avg) = 501.	B; ΓΙγ= 0.58%	
• 131 Cs EC Decay	(9.688 d 4)	I (min) = 0.10%				
Auger-L Auger-K	3.43 24.6	79 4 9.3 17	0.0058	• 132 Te β^- Decay	(78.2 h 8)	l (mir	n) = 0.10%
				10003	1 (2.00 1)		
X-rav L	4.1	93	0.0008	huger-I		69 6	0 00#9
X-ray Kaz	29,4580 10	21.1 6	0.0132	ce-K-1	16.551 10	64 4	0.0226
X-rav Kaı	29.7790 10	39.1 10	0.0248	Auger-K	23.6	8.6 21	0.0043
х−гау КВ	33.6	13.9 4	0.0100	ce-L- 1	44.532 10	8.5 6	0.0080
				ce-M- 1	48,648 10	1.70 11	0.0018
				ce-K- 2	78.59 8	0.88 10	0.0015
- 131D- FC D	(110 .1 .)	I forming	- 0 10%	ce-K- 3	83.13 8	0.82 10	0.0015
• ···· Ba EC Decay	(11.8 d Z)	I (min)	= 0.10%	ce-L- 2	106.57 8	0.114 14	0.0003
Feeds	1 J Cs			ce-L- 3	111.11 8	0.107 12	0.0003
				Ce-k- 4	194.99 6	1 311 9	0.0295
Auger-L	3.55	103 5	0.0078	ce-MNO-4	227.09 6	0.338 20	0.0016
Ce-K- 1	18.98 11	0.58 4	0.0002				
ce-K-2	42.779 16	1.14 6	0.0010	8-1 max	215 4		
ce-L- 1	49.25 11	0.76 5	0.0008	avg	59.4 12	100	0.127
ce-11 NO - 1	53.74 11	0.206 11	0.0002				
ce-K- 4	56.304 14	0.64 9	0.0008	X-rav L	4	7.3 25	0.0006
ce-1- 2	/3.050 16	0.154 6	0.0002	Y-ray Kaz	28.3172 4	18.3 12	0.0110
ce-K- 7	97.627 14	0.807 25	0.0017	X-ray Ka	28.6120 3	34.1 21	0.0208
ce-L- 5	118.088 8	6.0 3	0.0151	X-ray KB	32.3	11.9 8	0.0082
ce-11- 5	122.585 8	1.27 6	0.0033	y 2	111.76 8	1.85 21	0.0139
ce-NOP- 5	123.571 8	0.316 14	0.0008	y 3	116.30 8	1.94 21	0.0048
Ce+L+ / Ce-K- 10	127.090 (4	1.82 7	0.0004	γ 4	228.16 6	88 5	0.428
ce-K- 11	203.638 8	0.168 6	0.0007				
ce-I- 10	210.359 8	0.241 10	0.0011				
ce-K- 13	213.441 8	0.177 7	0.0008				
ce-K- 17	337.252 11	0.28 3	0.0020				
CESN- 23	400.340 13	01 CUL+U	0.000				

.

¹³²I–¹³²Cs

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
• ${}^{1}3^{2}l\beta^{-}$ Decay (2.30 h 3) $l(min) = 0.10\%$				γ 24 γ 25	416.8 4 431.9 4	0.47 6 0.48 6	0.0042 0.0044
Auger-L ce-K- 32 ce-K- 48	3.43 488.09 9 633.13 8	0.55 4 0.138 17 0.351 11	≈0 0.0014 0.0047	γ 27 γ 29 γ 29	446.0 4 473.9 6 478.5 6	0.60 6 0.18 4 0.15 5	0.0057 0.0018 0.0015
ce-K- 58	738.05 8	0.190 8	0.0030	$\begin{array}{c} \gamma & 30 \\ \gamma & 31 \\ \gamma & 32 \\ \gamma & 33 \end{array}$	488.2 4 505.90 15 522.65 9 535.5 4	5.03 20 16.1 6	0.0043 0.0542 0.179
avg A-2 max avg	92 7 353 20 103 7	0.26 4 0.12 3	0.0005 0.0003	γ 34 γ 35 γ 39	540.0 6 547.10 20 600.0 6	0.109 20 1.25 9 0.14 3	0.0012 0.0146 0.0018
9- 3 max avg 8- 4 max	424 20 127 7 503 20	0.19 3	0.0005	$\begin{array}{c} \gamma 42 \\ \gamma 43 \\ \gamma 44 \\ \gamma 46 \end{array}$	620.8 3 621.2 10 630.22 9	0.39 20 1.58 20 13.7 6	0.0052 0.0209 0.184
avg 6=5 max avg 6=6 max	154 8 522 20 161 8 689 20	0.33 4	0.0017 0.0011	γ 40 γ 47 γ 48 γ 49	659.0 7 667.69 8 669.8 3	2.66 20 0.394 98.70 10 4.9 8	0.0369 0.0055 1.40 0.0704
aνσ β-7 max aνσ	223 8 741 20 242 8	0.76 6 12.4 8	0.0036 0.0639	γ 50 γ 54 γ 55	671.6 3 727.0 3 727.2 3	5.2 4 3.2 6 2.2 6	0.0748 0.0489 0.0336
8-8 max avg 8-9 max	740 20 242 8 826 20	1.90 8	0.0098	γ 56 γ 57 γ 58	728.50 20 764.5 772.61 8	1.1 3 0.394 76.2 18	0.0168 0.0064 1.25
avg 8~10 max avg 8-11 max	275 B 910 20 309 8 966 20	0.32 5 3.55 14	0.0019 0.0234	γ 54 γ 60 γ 62 γ 63	780.2 3 784.5 4 809.80 20 812.20 20	1.23 6 0.42 5 2.9 3 5.6 5	0.0205 0.0071 0.0494 0.0973
avg B-12 max avg	331 9 991 20 342 9	8.1 4 2.75 16	0.0571 0.0200	γ 66 γ 68 γ 72	863.30 20 876.80 20 910.30 20	0.58 4 1.08 5 0.92 4	0.0107 0.0201 0.0178
8-13 max avg . β-14 max	996 20 343 9 1155 20	3.36 23	0.0245	γ 73 γ 75 γ 77 γ 77	927.6 3 954.55 9 983.7 4 1034 70 20	0.41 4 18.1 6 0.56 5	0.0082 0.367 0.0118
β-15 max avq 8-16 max	1185 20 422 9 1229 20	18.9 6	0.170	γ 91 γ 92 γ 93	1136.03 12 1143.40 20 1147.4 6	2.96 20 1.35 4 0.28 7	0.0716 0.0329 0.0068
avg 8-17 max avg	440 9 1393 20 510 9	0.95 15 0.113 13	0.0089 0.0012	γ 94 γ 100 γ 101	1173.20 20 1272.7 4 1290.7 3	1.09 10 0.18 3 1.14 6	0.0271 0.0048 0.0312
8-18 max avg 8-19 max	1413 20 519 9 1470 20	1.7 6	0.0188	7 102 7 103 7 105 7 107	1295.3 3 1297.6 4 1317.80 20 1372 07 13	1.97 10 0.89 10 0.118 20 2.47 10	0.0545 0.0246 0.0033
avg e−20 max avg e−21 max	1468 20 543 9 1540 20	2.0 8	0.0231	γ 109 γ 111 γ 114	1398.57 10 1442.56 10 1476.80 20	7.1 3 1.42 6 0.135 12	0.0121 0.212 0.0437 0.0043
avg B-22 max avg	574 9 1617 20 608 9	0.14 3 12.4 7	0.0017 0.161	γ 133 γ 142 γ 146	1757.50 20 1921.08 12 2002.2 5	0.30 3 1.18 9 1.09 10	0.0111 0.0485 0.0463
8-23 max avg total 8-	2140 20 841 9 482 11	16.9 23	0.303	γ 147 γ 148 γ 150 γ 154	2086.82 15 2172.68 15 2223.17 15 2390.48 15	0.237 20 0.197 20 0.118 20	0.0105 0.0091 0.0056 0.0085
11 weak β's omitted: Ββ(avg) = 134.5; ΣΤβ= 0.50%				107 weak γ 's omitted: B γ (avg) = 1014.6; Σ I γ = 3.19%			
X-rav Kα ₂ X-rav Kα ₁ X-rav Kβ γ 2 γ 3 γ 7	29.4580 10 29.7790 10 33.6 147.20 10 183.3 254.80 20	$\begin{array}{c} 0.172 & 7 \\ 0.319 & 13 \\ 0.113 & 5 \\ 0.237 & 20 \\ 0.138 & 20 \\ 0.19 & 3 \\ 0.19 & 3 \\ 0.19 & 3 \end{array}$	0.0001 0.0002 *0 0.0007 0.0005 0.0010	• ^{1 3 2} Cs EC Decay %(EC + See also	(6.475 d 10) - β ⁺) Decay = 9 ο ¹³² Cs β ⁻ Dec	l (min) 17.96 10 cay	= 0.10%
γ 8 γ 10 γ 16 γ 20 γ 22	262.70 10 284.80 10 316.5 4 363.5 4 387.8 4	0.72 7 0.14 3 0.49 10 0.30 5	0.0081 0.0044 0.0009 0.0038 0.0024	4uger-L 4uger-K ce-K- 4	3.43 24.6 633.13 8	78 4 9.3 17 0.347 11	0.0057 0.0049 0.0047 (Continued)
^{1 3 2}Cs-^{1 3 3}Te

.

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	$\Delta(g-rad/\mu Ci-h)$
^{1 3 2} Cs EC Decay	(6.475 d 10)	(Continued)		6- 8 max	1660 60	7	
				B- 9 max	630 30 2180 60	/.0 8	0.0939
8+1 max	421 23	0 36 9	0 0015	avg	860 30	1.3 8	0.0238
449	190 10	0.50 ,	0,0015	B-10 max avo	2250 60 890 30	33.3 10	0.631
X-rav L	4.1	93	0.0008	8-11 max	2660 60		
X-ray Ko ₂ X-ray Ko ₂	29.4580 10	0 21.1 6	0.0132	total B-	1080 30	28,6 12	0.658
X-ray K9	33.6	13.9 4	0.0100	avg	810 40	100.0 23	1.74
7 2	505.90 15	0.80 10	0.0086				
y 4	667.69 8	97.42 11	1.39	X-ray L X-ray Ka	4 28 3172	0.25 9	≈0 ∩ ∩ ∩ ∩ (I
γ 6 ~ 9	1136.03 12	0.51 4	0.0123	X-ray Ka	28.6120	3 1.17 5	0.0007
r ?	1317.50 20	0.30 3	0.0104	X-rav K8	32.3	0.410 16	0.0003
4 we	eak γ's omitte	ed:		7 2	384.6 5	0.28 7	0.0023
Maxin	num v±-intensi	$5; 21\gamma = 0.27\%$		γ <u>3</u>	392.9 6	0.57 22	0.0047
	•	-		γ 4	407.63 /	1.2 3	0.261
				7 6	546.4 6	0.57 22	0.0066
• 132 Cs β^- Decay	(6 175 d 10)	L (min	- 0 10%	γ 7 γ 8	587.1 5	0.50 15	0.0062
• Cs p Decay %B~ [20.475 d 107	1 (1110)) = 0.10%	γ۹	719.65 10	6.7 5	0.102
See al	so ¹³² Cs EC De	ecay		γ 10 γ 11	786.77 10	5.6 5	0.0937
				r 12	930.67 10	4.5 6	0.0884
8- 1 max	247 24			γ 13 - 10	1000.77 11	6.2 8	0.133
avq Ar 2 max	69 8 814 24	0.37 4	0.0005	y 15	1061.8 8	1.27 22	0.0288
avq	270 10	1.61 16	0.0093	y 16	1252.20 20	1.13 15	0.0302
+otal 8-	777 17	2 04 17	0 0099	γ 17 γ 18	1313.5 8	0.8 3	0.0256
449	22, 12	2.04 ()	0.00,	y 19	1333.23 12	9.9 6	0.281
1 we	ak 8's omitte	ed:		y 20 y 21	1405.70 20	0.57 15	0.01/0
БĻ	(avy) - 41.0	7; XIB- 0.00%		Y 22	1518.6 8	0.50 7	0.0160
v 1	464.55 6	1.89 17	0 0 187	7 23 7 24	1588.2 9	0.28 15	0.0096
y 2	567.14 3	0.24 4	0.0029	γ 25	1825.1 10	0.57 22	0.0220
γ 4	1031.70 3	0.123 13	0.0027	r 26 r 27	1881.5 4	1.42 22	0.0567
1 we	ak y's omitte	: b		y 28	2228.0 13	0.28 15	0.0134
Eγ	(avg) = 663.1	$; \Sigma I \gamma = 0.06\%$		1 ve	ak v's omit	ted:	
				37	(avg) = 2540	.6; ΣΙγ= 0.07%	
• 133 Te β^- Decay	(12.45 m 28)	l (min)	= 0.10%				
Feeds	133			• 133 Te IT Decay	(55.4 m 4)	I (min) = 0.10%
Ingor-I		2 24 15	0 0000	%IT D	ecay = 13 3		,
Auger-K	23.6	0.30 7	0.0002	Feeds	¹³³ Te (12.45	m)	
ce-K- 1	278.82 8	2.082 22	0.0124	See als	o ¹³³ Teβ∼ [Decay (55.4 m)	
ce-K- 4	374.46 7	0.42 3	0.0020	•	2 44		
				Auger-L Auger-K	3.19 22.7	6.7 12 0.73 24	0.0004
β- 1 max	430 60			ce-K- 1	302.33 7	5.8 14	0.0377
avg 8-2 max	129 21	0.35 15	0.0010	ce-L- 1 ce-MNO- 1	329.20 7	1.4 4	0.0096
avg	256 24	1.8 3	0.0098	00-000-1	333813 /	V.JO 7	0.0025
6- 3 max	830 60 279 2m	0.85.23	0 0051	K-ray L	3.77	0.60 24	≈ 0
ervg ef= 4 max	1250 60	V.03 23	0.0001	X-ray Kaz	27.20170	2 1.5 4	0.0008
avg	450 30	8.7 7	0.0834		21.41230	0.94 22	0.0016
β− 5 max avor	520 30	4 . 4 4	0.0487	r 1	334.14 7	5.4 13	0.0387
8-6 max	1600 60 600 30	0.50 15	0,0064				
8- 7 max	1640 60	12 2 7		}			
avg	620 30	13.2 7	0.174				

¹³³Te-¹³³I

$ \begin{array}{c} \end{tabular} \end{tabular} \\ \begin{tabular}{ \begin{tabular}{ \begin{tabular}{l \lineskew} \beskew} \begin{tabular}{l \lineskew} \begi$	Radiation	Energy	Intensity	$\Delta(g-rad/$	Radiation	Energy	Intensity	$\Delta(g-rad/$
• ${}^{12}{}^{12}{}^{16}$ β Decay (55.4 m 4) (min) = 0.10%, ${}^{M_{0}}$ Decay (55.4 m 7) For the sector of t	Туре	(KeV)	(%)	μCi-h)	lype	(keV)	(%)	μCi-h)
$ \frac{1}{2} = 1$	- 133- 0- 0							
$ \begin{array}{c} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $		y (55.4 m 4)	l (min) = 0.10%	γ 43	863.91 13	19.5 11	0.359
$ \begin{array}{c} \mbox{Feeds} & 131 \\ \mbox{Setup} & 131 \\ \$	%β-	Decay = 87 3			7 44 7 45	997 7 4	5.7 0 0.435 15	0.100
See also ¹³³ Te IT Decay (55.4 m) kuger-t 3.3 16 3 0.0011 kuger-t 3.3 16 3 0.0011 xuger-t 3.3 16 3 0.0011 xuger-t 3.4 33 20 0.7 3 0.0002 $ce-t-1 4 20.13 20 0.7 3 0.0002ce-t-1 4 20.13 20 0.7 3 0.0002 ce-t-1 4 20.13 20 0.7 3 0.0002ce-t-1 4 20.13 20 0.7 3 0.0002 ce-t-1 4 20.13 20 0.7 3 0.0002ce-t-1 4 20.13 20 0.7 7 0.0002 ce-t-1 4 20.13 20 0.7 7 0.0002r 53 1024 80 20 1.2 3 0.0024 r 55 1024 80 20 1.3 5 0.0224r 56 1517.6 4 0.47 3 0.0224r 57 1531.6 4 0.47 3 0.0224r 59 1007.5 10 1.0 4 0.0224r 59 1007.5 10 1.0 4 0.0224r 59 1007.5 10 2.5 7 7 0.200r 59 1007.5 10 2.5 7 7 0.0002r 59 1007.5 10 2.5 7 7 0.0002r 59 1007.4 13 0.06 2 0.7 7 0.0002r 59 1007.4 13 0.06 2 0.7 7 0.0002r 59 1007.4 0 2.5 2 7 0 0.0024r 59 1007.4 0 2.5 7 7 0.0002r 59 1000 2.5 7 7 0.0002r 60 2009.7 2 4 1.0 3 0.0002r 7 7 170 40 0 7 4 1.44r 7 7 170 40 0 7 4 1.44r 7 7 170 40 0 7 4 1.44r 7 7 170 40 0 7 1 4 0.00012r 10 132.2 10 0.6 3 0.0002r 10 132.2 10 0.6 3 0.0002r 10 132.2 10 0.0 5 0.00021r 10 132.2 10 0.6 3 0.0002r 10 132.2 10 0.6 2 11 0.0002r 10 132.2 10 0.0 5 0.0007r 10 223.3 0.0017r 10 223.5 7 112 1.5 1 0.00002r 10 223.1 0 0.0000$	Feeds	s ¹³³			y 45 y 46	912.58 10	87 3	1.69
Luger-L3.31630.0011Luger-L23.61.760.0006 $\alpha = r = 1$ 40.33208.30.0065 $\alpha = r = 1$ 40.33200.530.0065 $\alpha = r = 1$ 40.33200.530.0055 $\alpha = r = 1$ 40.33200.530.0055 $\alpha = r = 1$ 68.91202.3580.0025 $\alpha = r = 1$ 68.91202.3590.0034 $\alpha = r = 1$ 700.003475514.551020 $\alpha = 1 = 1$ 89.71200.430.00777514.5510202.7590.0226 $\alpha = 1 = 1$ 89.71200.430.00677514.551.130.02777514.550.02770.02777514.550.02770.02777514.550.02770.02777514.550.02770.02777514.550.02770.02777614.851.130.06577614.851.130.02777614.851.130.02777614.851.150.02777614.851.150.02777614.851.150.02777614.850.02777614.850.02777614.850.02777714.250.02777614.850.02777614.850.02777614.850.02777614.850.02	See a	also ¹³³ Te IT De	ecay (55.4 m)		y 47	914.72 13	16.5 6	0.322
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$					y 48	934.4 3	1.30 5	0.0260
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	Auger-I	2 2	16 2	0 0011	y 49	978.19 9	9.5 11	0.198
$\begin{array}{c} \begin{array}{c} c = r = 1 \\ c = r $	Auger-K	23.6	1.7 6	0.0008	y 50	980.40 20	2.35 8	0.0491
$ \begin{array}{c} re-k-2 \\ re-k-3 \\ re-k-3 \\ re-k-4 \\ re-k-3 \\ re-k-4 \\ re-k$	ce-K- 1	40.93 20	8 3	0.0069	γ 51	982.90 20	1.13 4	0.0237
$\begin{array}{c} c = K^{-} 3 & 54, 63 & 20 & 1, 7 & 3 & 0.0020 \\ c = K^{-} 4 & 61, 73 & 20 & 4.1 & 5 & 0.0034 \\ c = L & 4 & 61, 20 & 2, 3 & 9 & 0.0034 \\ c = L & 3 & 22, 51 & 0.0 & 4 & 3 & 0.0077 \\ c = L & 3 & 22, 51 & 0.0 & 4 & 3 & 0.0077 \\ c = L & 3 & 22, 51 & 0.0 & 4 & 3 & 0.0077 \\ c = L & 3 & 22, 51 & 0.0 & 4 & 3 & 0.0077 \\ c = L & 3 & 22, 51 & 0.0 & 14, 5 & 11 & 0.237 \\ r & 1 & rrg & 570 & 30 & 19, 5 & 11 & 0.237 \\ r & 1 & rrg & 570 & 30 & 19, 5 & 11 & 0.237 \\ r & 2 & rrg & 700 & 0 & 7 & 4 & 1.44 \\ r & 3 & 2036 & 0.0 & 38, 2 & 25 & 0.781 \\ r & 2 & rrg & 770 & 40 & 87 & 4 & 1.67 & 7 & 0.0017 \\ r & 2 & rrg & 770 & 40 & 87 & 4 & 1.44 \\ r & rrg & 770 & 40 & 87 & 4 & 1.44 \\ r & rrg & 770 & 40 & 87 & 4 & 1.44 \\ r & rrg & 770 & 40 & 87 & 4 & 1.44 \\ r & rrg & rrg & 28, 3172 & 4 & 3.6 & 6 & 0.0022 \\ r & ray & rg & 28, 5172 & 4 & 3.6 & 6 & 0.0022 \\ r & ray & rg & 28, 5172 & 4 & 3.6 & 6 & 0.0022 \\ r & ray & rg & 28, 502 & 0.071 & 1.44 \\ r & 14 & 10 & 20 & 1.3 & 5 & 0.0016 \\ r & 1 & rrg & 75 & 164, 34 & 9 & 2.3 & 3 & 0.0052 \\ r & 1 & 19, 502 & 20 & 0.7 & 4 & 0.0017 \\ r & 1 & 19, 200 & 0.221 & 15 & 4 & 0.0012 \\ r & 1 & 19, 200 & 0.221 & 15 & 4 & 0.0012 \\ r & 1 & 19, 200 & 0.221 & 15 & 4 & 0.0022 \\ r & 1 & 19, 200 & 0.31 & 0.221 & 10 & 0.022 \\ r & 1 & 19, 200 & 0.31 & 0.221 & 10 & 0.0053 \\ r & 10 & 13, 220 & 0.013 & 0.314 & 12 & 0.0013 \\ r & 13 & 220, 041 & 0.48 & 12 & 0.0017 \\ r & 13 & 220, 041 & 0.348 & 12 & 0.0017 \\ r & 13 & 220, 041 & 0.348 & 12 & 0.0017 \\ r & 13 & 220, 041 & 0.348 & 12 & 0.0017 \\ r & 13 & 220, 041 & 0.348 & 12 & 0.0017 \\ r & 13 & 220, 041 & 0.348 & 12 & 0.0017 \\ r & 13 & 220, 041 & 0.348 & 12 & 0.0017 \\ r & 13 & 220, 041 & 0.348 & 12 & 0.0017 \\ r & 13 & 220, 041 & 0.348 & 12 & 0.0017 \\ r & 13 & 220, 041 & 0.348 & 12 & 0.0017 \\ r & 13 & 220, 041 & 0.0552 & 18 & 0.0017 \\ r & 13 & 220, 041 & 0.0552 & 18 & 0.0017 \\ r & 13 & 220, 041 & 0.0552 & 18 & 0.0017 \\ r & 13 & 220, 041 & 0.522 & 18 & 0.0017 \\ r & 13 & 220, 041 & 0.522 & 18 & 0.0017 \\ r & 13 & 220, 041 & 0.522 & 18 & 0.0017 \\ r & 13 & 220, 041 & 0.522 & 18 &$	ce-K- 2	48.33 20	0.5 3	0.0005	y 52	1007.5 10	1.0 4	0.0224
$\begin{array}{c} c = K^{-} & 4 \\ c = k^{-} & 4 \\ c = k^{-} & 1 \\ c = k^{$	ce-K- 3	54.83 20	1.7 3	0.0020	γ 53	1029.80 20	1.3 5	0.0286
$\begin{array}{c} c=11 \\ c=13 \\ c=14 \\ g=73 \\ c=14 \\ c=73 \\ c=7$	ce-K- 4	61.73 20	4.1 5	0.0054	γ 54	1348,90 20	2.52 9	0.0725
$\begin{array}{c} ce-L-3 \\ ce-L-3 \\ ce-L-3 \\ ce-L-4 \\ se-7, 120 \\ ce-L-4 \\ se-7, 120 \\ ce-L-4 \\ se-7, 120 \\ ce-1, 120 \\ ce-7, 120 \\ ce-7,$	ce-L- 1	68.91 20	2.3 9	0.0034	γ 55	1439.10 20	2.17 8	0.00/6
$\begin{array}{c} c=1-4 & 89.77 & 20 & 1.9 & 7 & 0.0037 \\ \hline & c=1 & ax & 1530 & 60 & 29.3 & 21 & 0.418 \\ \hline & s=2 & ax & 1740 & 60 & 29.3 & 21 & 0.418 \\ \hline & s=2 & ax & 1740 & 60 & 29.3 & 21 & 0.418 \\ \hline & s=2 & ax & 1740 & 60 & 29.3 & 21 & 0.418 \\ \hline & s=2 & ax & 1740 & 60 & 29.3 & 21 & 0.418 \\ \hline & s=2 & ax & 1740 & 60 & 29.3 & 21 & 0.418 \\ \hline & s=2 & ax & 770 & 40 & 87 & 4 & 1.44 \\ \hline & total = & avg & 960 & 30 & 38.2 & 25 & 0.781 \\ \hline & s=7 & 770 & 40 & 87 & 4 & 1.44 \\ \hline & total = & avg & 960 & 30 & 38.2 & 25 & 0.781 \\ \hline & total = & avg & 960 & 30 & 38.2 & 25 & 0.781 \\ \hline & total = & avg & 960 & 30 & 38.2 & 25 & 0.781 \\ \hline & total = & avg & 960 & 30 & 38.2 & 25 & 0.781 \\ \hline & total = & avg & 960 & 30 & 38.2 & 25 & 0.781 \\ \hline & total = & avg & 960 & 30 & 38.2 & 25 & 0.0022 \\ \hline & total = & avg & 770 & 40 & 87 & 4 & 1.44 \\ \hline & total = & avg & 770 & 40 & 87 & 4 & 1.44 \\ \hline & total = & avg & 770 & 40 & 87 & 4 & 1.44 \\ \hline & total = & avg & 770 & 40 & 87 & 4 & 1.44 \\ \hline & total = & avg & 770 & 10 & 0.0016 \\ \hline & \tau & 19 & 82.0 & 20 & 2.1 & 3 & 0.0022 \\ \hline & \tau & 19 & 80.00 & 2.1 & 3 & 0.0025 \\ \hline & \tau & 19 & 80.00 & 2.1 & 3 & 0.0025 \\ \hline & \tau & 19 & 80.00 & 2.1 & 3 & 0.0025 \\ \hline & \tau & 19 & 80.20 & 2.1 & 3 & 0.0025 \\ \hline & \tau & 173.20 & 20 & 0.64 & 10 & 0.0022 \\ \hline & \tau & 173.20 & 20 & 0.64 & 12 & 0.0033 \\ \hline & \tau & 19 & 205.7 & 15.7 & 15 & 0.0020 \\ \hline & \tau & 19 & 205.7 & 15.7 & 15 & 0.0026 \\ \hline & \tau & 19 & 205.7 & 15.7 & 15 & 0.0026 \\ \hline & \tau & 19 & 205.7 & 15.7 & 15 & 0.0026 \\ \hline & \tau & 19 & 205.7 & 15.7 & 15 & 0.0026 \\ \hline & \tau & 19 & 205.7 & 15.7 & 15 & 0.0026 \\ \hline & \tau & 19 & 205.7 & 15.7 & 15 & 0.0027 \\ \hline & \tau & 12 & 204.22 & 11 & 1.22 & 18 & 0.017 \\ \hline & \tau & 12 & 204.22 & 11 & 1.22 & 18 & 0.0126 \\ \hline & \tau & 19 & 205.57 & 15.7 & 15 & 0.0028 \\ \hline & \tau & 19 & 205.57 & 15.7 & 15 & 0.0028 \\ \hline & \tau & 19 & 205.57 & 15.7 & 15 & 0.0028 \\ \hline & \tau & 19 & 205.57 & 15.7 & 15 & 0.0028 \\ \hline & \tau & 19 & 205.57 & 15.7 & 15 & 0.0028 \\ \hline & \tau & 19 & 205.57 & 15.7 & 15 & 0.0028 \\ \hline & \tau & 19 & 205.57 & 15.7 & 15 & 0.0028 \\ \hline & \tau & 19 & 205.57 & 15.7 & 15 & 0.0028 \\ \hline & \tau & 19 & 205.57 & 15.7 & $	ce-L- 3	82.81 20	0.4 3	0.0007	r 50 ▼ 57	1570.1 5	0.90 4	0.0309
$ \begin{array}{c} \begin{array}{c} 3 \\ - 1 \\ x \\$	ce-L- 4	89.71 20	1.9 7	0.0037	7 58	1683.30.20	5.77	0.206
$\begin{array}{c} \begin{array}{c} -1 \ nax \ 530 \ 60 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ 19.5 \ 11 \ 0.237 \ 19.5 \ 11 \ $					v 59	1704.4 3	0.96 4	0.0347
$\begin{array}{c} & \arg & \operatorname{str} &$	8- 1 max	1530 60			r 60	1885.7 3	1.13 4	0.0454
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	avg	570 30	19.5 11	0.237	y 61	2004.9 3	3.3 4	0.141
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8- 2 max	1740 60			γ 62	2027.7 4	2.1 4	0.090'
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	avg	670 30	29.3 21	0.418	γ 63	2049.2 4	1.0 3	0.045
$ \begin{array}{c} \mbox{total } a^{\rm avr} & 960 \ 30 & 36.2 \ 23 & 0.791 \\ \mbox{total } a^{\rm avr} & 770 \ 40 & 87 \ 4 & 1.44 \\ \mbox{total } a^{\rm avr} & 770 \ 40 & 87 \ 4 & 1.44 \\ \mbox{total } x^{\rm tray} \ K_{\pi_2} & 28.3172 \ 4 & 3.6 \ 8 & 0.0022 \\ \mbox{totar} & 71 & 72 & 36.312 \ 4 & 3.6 \ 8 & 0.0012 \\ \mbox{totar} & 71 & 72 & 36.312 \ 4 & 3.6 \ 8 & 0.0012 \\ \mbox{totar} & 71 & 72 & 36.312 \ 4 & 3.6 \ 8 & 0.0012 \\ \mbox{totar} & 71 & 71 & 71 & 71 & 71 & 0.0017 \\ \mbox{totar} & 71 & 71 & 71 & 71 & 0.0 & 0.7 \ 4 & 94.90 \ 20 & 8.7 \ 10 & 0.0076 \\ \mbox{totar} & 7 & 6 & 166.87 \ 9 & 11.5 \ 14 & 0.0013 \\ \mbox{totar} & 7 & 7 & 177 \ 10 \ 20 & 1.5 \ 4 & 0.0025 \\ \mbox{totar} & 7 & 177 \ 10 \ 20 & 0.87 \ 3 & 0.0033 \\ \mbox{totar} & 7 & 177 \ 102 \ 20 \ 0.87 \ 3 & 0.0033 \\ \mbox{totar} & 7 & 177 \ 102 \ 20 \ 0.87 \ 3 & 0.0025 \\ \mbox{totar} & 7 & 177 \ 122 \ 20.5 \ 68 \ 2.9 \ 3 \ 3 & 0.0025 \\ \mbox{totar} & 7 & 177 \ 122 \ 20.5 \ 68 \ 2.9 \ 3 \ 3 \ 0.0025 \\ \mbox{totar} & 7 \ 11 \ 138.20 \ 20 \ 0.87 \ 3 \ 0.0025 \\ \mbox{totar} & 7 \ 12 \ 226.36 \ 8 \ 2.9 \ 3 \ 3 \ 0.0025 \\ \mbox{totar} & 7 \ 12 \ 226.36 \ 8 \ 2.9 \ 3 \ 3 \ 0.0025 \\ \mbox{totar} & 7 \ 12 \ 226.36 \ 8 \ 2.9 \ 3 \ 3 \ 0.0025 \\ \mbox{totar} & 7 \ 12 \ 226.36 \ 8 \ 2.9 \ 3 \ 3 \ 0.0025 \\ \mbox{totar} & 7 \ 12 \ 226.5 \ 7 \ 15.7 \ 15 \ 0.6712 \\ \mbox{totar} & 7 \ 12 \ 226.5 \ 7 \ 15.7 \ 15 \ 0.6712 \\ \mbox{totar} & 7 \ 13 \ 226.5 \ 7 \ 15.7 \ 15 \ 0.6712 \\ \mbox{totar} & 7 \ 13 \ 226.5 \ 7 \ 15.7 \ 15 \ 0.6713 \\ \mbox{totar} & 7 \ 13 \ 226.5 \ 11 \ 1.5 \ 4 \ 0.0026 \\ \mbox{totar} & 7 \ 13 \ 226.5 \ 11 \ 1.5 \ 4 \ 0.0027 \\ \mbox{totar} & 7 \ 13 \ 226.5 \ 11 \ 1.5 \ 4 \ 0.0026 \\ \mbox{totar} & 7 \ 7 \ 33 \ 3.5 \ 4.6 \ 10 \ 0.0027 \\ \mbox{totar} & 7 \ 7 \ 33 \ 1.6 \ 10 \ 0.5 \ 11 \ 1.3 \ 4 \ 0.0026 \\ \mbox{totar} & 7 \ 7 \ 33 \ 1.6 \ 10 \ 0.5 \ 11 \ 1.5 \ 4 \ 0.0026 \\ \mbox{totar} & 7 \ 13 \ 226.5 \ 11 \ 1.5 \ 4 \ 0.0027 \\ \mbox{totar} & 7 \ 13 \ 226.5 \ 11 \ 1.5 \ 4 \ 0.0026 \\ \mbox{totar} & 7 \ 13 \ 226.5 \ 10 \ 0.5 \ 11 \ 1.5 \ 0.0027 \\ \mbox{totar} & 7 \ 13 \ 3.$	8- 3 max	2390 60	30 0 05					
$ \begin{array}{c} 1^{3} 3^{3} 1 & 3^{2} \\ 3^{3} 7 & 3^{3} 7 & 4 \\ x^{-rav} X_{\pi_{2}} & 28.3172 & 4 & 3.6 & 8 \\ x^{-rav} X_{\pi_{2}} & 28.3172 & 4 & 3.6 & 8 \\ x^{-rav} X_{\pi_{2}} & 28.3172 & 4 & 3.6 & 8 \\ x^{-rav} X_{\pi_{2}} & 28.3172 & 4 & 3.6 & 8 \\ x^{-rav} X_{\pi_{2}} & 28.5172 & 4 & 3.6 & 8 \\ x^{-rav} X_{\pi_{2}} & 28.5172 & 4 & 3.6 & 8 \\ x^{-rav} & x^{-}_{\pi_{2}} & 28.6120 & 3 & 6.614 \\ x^{-rav} & x^{-}_{\pi_{2}} & 28.6120 & 3 & 6.614 \\ x^{-rav} & x^{-}_{\pi_{2}} & 28.6120 & 3 & 6.614 \\ x^{-rav} & x^{-}_{\pi_{2}} & 28.6120 & 3 & 6.614 \\ x^{-rav} & x^{-}_{\pi_{2}} & 28.6120 & 3 & 6.614 \\ x^{-rav} & x^{-}_{\pi_{2}} & 28.6120 & 3 & 6.614 \\ x^{-rav} & x^{-}_{\pi_{2}} & 28.6120 & 3 & 6.014 \\ x^{-rav} & x^{-}_{\pi_{2}} & 31.6020 & 2.7 & 3 \\ x^{-rav} & x^{-}_{\pi_{2}} & 31.6020 & 2.7 & 3 \\ x^{-rav} & x^{-}_{\pi_{2}} & 31.6020 & 2.7 & 3 \\ x^{-rav} & x^{-}_{\pi_{2}} & 31.6020 & 2.7 & 3 \\ x^{-rav} & x^{-}_{\pi_{2}} & 31.6020 & 2.7 & 3 \\ x^{-rav} & x^{-}_{\pi_{2}} & 31.6020 & 2.7 & 3 \\ x^{-rav} & x^{-}_{\pi_{2}} & 31.6020 & 3 \\ x^{-rav} & x^{-rav} & 46 & 9 \\ x^{-rav} & x^{-rav} & 46 & 9 \\ x^{-rav} & 46 & 9 & 0 & .410 & 14 \\ x^{-rav} & 46 & 300 \\ x^{-rav} & 10 & 10 & .24 & 4 \\ x^{-rav} & 10 & 10 & .24 & 4 \\ x^{-rav} & 10 & 10 & .24 & 4 \\ x^{-rav} & x^{-rav} & x^{-rav} & x^{-rav} & x^{-rav} & x^{-rav} \\ x^{-rav} & x^{-rav} & x^{-rav} & x^{-rav} & x^{-rav} & x^{-rav} & x^{-rav} \\ x^{-rav} & x^{-r$	avg	960 30	38.2 25	0.781				
$ \begin{array}{c} 1^{13} 16^{10} 0^{10} 1^{10$	total BT	770 00	97 li	1 00				
x - tay $x - tay$ $x - tay$ <td>C V</td> <td>110 40</td> <td>0/ 4</td> <td>1.44</td> <td>● ¹³³ β⁻ Decay (</td> <td>20.8 h 1)</td> <td>L (min</td> <td>) = 0.10%</td>	C V	110 40	0/ 4	1.44	● ¹³³ β ⁻ Decay (20.8 h 1)	L (min) = 0.10%
$ \begin{array}{c} x = x \ r \ r \ r \ r \ r \ r \ r \ r \ r \$					% Eeedi	ng to 133 Xe (F	5245 d = 971'	7 2
$ \begin{array}{c} x = x & x & x \\ x = x & x \\ x $	X-ray L	4	1.7 7	0.0001	% Food	ng to 133 Vo (C	0.10 = 0.00	r 2 n
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	X-rav Kaz	28.3172	4 3.6 8	0.0022	76 Feeu	ing to the (2	(.19 u) - 2.00 A	2
$ \begin{array}{c} x \ 1 \ 7 \ 1 \ 1$	X-ray Ka ₁	28.6120	3 6.6 14	0.0040				
$\begin{array}{c} 7 & 1 & 1 & 1 & 2 & 3 & 0 & 0 & 0 & 1 & 2 \\ 7 & 3 & 8 & 0 & 0 & 2 & 0 & 1 & 3 & 0 & 0 & 0 & 0 & 0 \\ 7 & 4 & 9 & 0 & 0 & 0 & 8 & 7 & 10 & 0 & 0 & 17 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	x-Lαy ηρ	32.5	2.3 5	0.0016	Auger-L	3.43	0.48 3	≈0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	v 2	81 50 20	07 1	0.0021	ce-K- 16	495.311 4	0.598 9	0.0063
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	v 3	88.00 20	2.1 3	0.0012				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	y 4	94.90 20	8.7 10	0.0176	6-1 max	170 30		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	γ 5	164.34 9	2.3 3	0.0082	avg	46 9	0.410 14	0.0004
77177.10201.540.005578177.20200.8730.003379184.45100.348120.0014710193.22100.630.0022711198.20200.522180.0022712213.3682.930.0130713220.94130.435150.0020714224.03130.348120.0017715244.28100.60210.0022716251.69100.522180.0028718261.55715.7150.0071716251.69100.522180.0028718261.55715.7150.0072718261.55718.7150.0073723362.81150.6640.0121723362.81150.6640.0121723362.81150.622180.0122724462.111.5760.0121723362.81150.60210.022172442.000.01212.7723362.811.640.012272442.000.0212.033725366.9691	γ 6	168.87 9	11.5 14	0.0413	6-2 max	370 30		
78178.20200.8730.0033 $a a x q$ 4103079184.45100.881120.0014 $a x q$ 12110.377100.0010710133.22100.630.0025 $a v q$ 140113.7550.0010711198.20200.522180.0022 $a v q$ 140113.7550.0112712213.3682.930.0130 $a v q$ 140113.7550.0112713220.94130.435150.0020 $a v q$ 162113.1360.0104714224.03130.435150.0022 $a v q$ 162113.1360.0107715244.28100.669210.0023 $a v q$ 230120.4021 $a v q$ 230120.0027716251.69100.652180.0053 $a v q$ 2301840.0126719285.750.87180.0053 $a v q$ 4411383.540.784723362.81150.0024 $a v q$ 4411383.540.784724376.83140.522180.0021 $a v q$ 40715100.050.86772	ד ק	177.10 20	1.5 4	0.0056	avq	110 10	1.24 4	0.0029
79184.45100.348120.0014avg122110.349100.0010711198.20200.522180.0022avg10113.7550.0112712213.3682.930.0020avg10113.7550.0112712213.3682.930.0020avg10113.7550.0112713220.94130.435150.002086max103.1360.0108714224.03130.435120.001786max103.1360.0108716251.49100.522180.002887max88030avg230124.16100.0265718261.55715.715.00.087287max10.20302416100.0265718261.55718.715.00.0872878max10203030311.0740.0136720344.50202230.0112861333030311.0740.013172235.57141.540.0125330311.0740.01317 <td>γ 8</td> <td>178.20 20</td> <td>0.87 3</td> <td>0.0033</td> <td>6-3 max</td> <td>410 30</td> <td></td> <td></td>	γ 8	178.20 20	0.87 3	0.0033	6-3 max	410 30		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 9	184.45 10	0.348 12	0.0014	avg	122 11	0.397 10	0.0010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 10	193.22 10	0.6 3	0.0025	p− 4 max	460 30	3 76 6	0 0112
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	γ II - 12	198.20 20	0.522 18	0.0022	8-5 may	520 30	3.13.3	0.0112
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 12 7 13	213.30 8	2.9 3	0.0130	9 9 mux	162 11	3, 13 6	0.0108
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	v 1/4	220.94 13	0.435 15	0.0020	8-6 max	710 30	5.15 0	0.010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	v 15	244.28 10	0.609 21	0.0032	avq	230 12	0.542 19	0.0027
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	γ 16	251.49 10	0.522 18	0.0028	8- 7 max	880 30		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	y 17	257.64 9	0.87 3	0.0048	avq	299 12	4.16 10	0.0265
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	γ 18	261.55 7	15.7 15	0.0872	$\beta = 8 \text{ max}$	1020 30		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	γ 19	285.7 5	0.87 18	0.0053	avg	352 13	1.81 4	0.0136
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	γ 20 21	344.50 20	2.3 8	0.0166	D' 7 max	1230 30	92 5 4	A 790
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 21 7 22	347.22 9	1.13.4	0.0084	6-10 mar	1530 30	03.5 4	0.784
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 22 ~ 23	353.37 14	1.5 4	0.0112		573 13	1.07 4	0.0131
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	v 24	376 93 10	0.50 4	0.00/4	total 8-	0.0 10		0.0151
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r 25	396.96 9	1.48 5	0.0042	avq	407 15	100.0 5	0.867
γ 27 435.4 7 1.0 4 0.0097 γ 28 444.90 9 2.3 3 0.0214 $B\beta(avg) = 284.0; \SigmaI\beta = 0.03\%$ γ 29 462.11 16 2.0 3 0.0197 Z Z $SPain\gamma30471.8592.0070.0201X-rayK\alpha_229.4580100.1515\infty 0\gamma30471.8592.0070.0201X-rayK\alpha_229.4580100.1515\infty 0\gamma31478.59101.5760.0160X-rayK\alpha_229.4580100.1515\infty 0\gamma32519.60200.435150.0048\gamma5262.70260.357100.0020\gamma33534.85111.7460.0198\gamma5262.70260.357100.0020\gamma33534.85111.7460.0287\gamma7345.4350.104180.0007\gamma36647.40829.3210.404\gamma8361.0850.11480.0028\gamma37702.75123.74130.0231\gamma13422.91012418.04715$	γ 26	429.02 11	1.22 18	0.0111	,			
7 28 444.90 9 2.3 3 0.0214 7 29 462.11 16 2.0 3 0.0197 7 30 471.85 9 2.00 7 0.0201 $X-ray$ Ka_2 29.4580 10 0.151 5 $*0$ 7 31 478.59 10 1.57 6 0.0160 $X-ray$ Ka_2 29.4580 10 0.151 5 $*0$ 7 32 519.60 20 0.435 15 0.0048 γ 5 262.702 6 0.357 10 0.0020 7 33 534.85 11 1.74 6 0.0198 γ 5 262.702 6 0.357 10 0.0020 7 34 574.04 10 2.3 4 0.0287 γ 7 345.43 5 0.104 18 0.0008 7 35 622.03 16 1.39 5 0.0184 γ 7 345.43 5 0.104 18 0.0008 7 36 647.40 8 29.3 21 0.404 γ 12 418.047 15 0.153 11 0.0019 7 37 702.75 12 3.74 13 0.0560 γ 13 422.910 12 0.028 7 39 733.69 15 1.48 5 0.0231 γ 16 529.872 386.3 4 0.9	y 27	435.4 7	1.0 4	0.0097	1 we	ak 8's omitt	ed:	
γ 29 462.11 16 2.0 3 0.0197 γ 30 471.85 9 2.00 7 0.0201 $X-ray$ $K\alpha_2$ 29.4580 10 0.151 5 $*0$ γ 31 478.59 10 1.57 6 0.0160 $X-ray$ $K\alpha_1$ 29.7790 10 0.281 8 0.0002 γ 32 519.60 20 0.435 15 0.0048 γ 5 262.702 6 0.357 10 0.0020 γ 33 534.85 11 1.74 6 0.0198 γ 5 262.702 6 0.357 10 0.0020 γ 34 574.04 10 2.3 4 0.0287 γ 7 345.43 5 0.104 18 0.0008 γ 35 622.03 16 1.39 5 0.0184 γ 8 361.08 5 0.117 6 0.0098 γ 36 647.40 8 29.3 21 0.404 γ 12 418.047 15 0.153 11 0.0018 γ 37 702.75 12 3.74 13 0.0231 γ 13 422.910 12 0.309 8 0.0028 γ 38 731.69 15 1.48 5 0.0231 γ 15 510.530 4 1.81 4 0.0197 γ 39 733.89 <th< td=""><td>y 28</td><td>444.90 9</td><td>2.3 3</td><td>0.0214</td><td>Ef</td><td>(avg) = 284.</td><td>0; ΣΙβ= 0.03%</td><td></td></th<>	y 28	444.90 9	2.3 3	0.0214	Ef	(avg) = 284.	0; ΣΙβ= 0.03%	
γ 30 471.85 9 2.00 7 0.0201 $X-ray$ $K\alpha_2$ 29.4580 10 0.151 5 $*0$ γ 31 478.59 10 1.57 6 0.0160 $X-ray$ $K\alpha_2$ 29.4580 10 0.151 5 $*0$ γ 32 519.60 20 0.435 15 0.0048 γ 5 262.702 6 0.357 10 0.0020 γ 33 534.85 11 1.74 6 0.0198 γ 6 267.173 19 0.117 6 0.0007 γ 34 574.04 10 2.3 4 0.0287 γ 7 345.43 5 0.104 8 0.0009 γ 36 647.40 8 29.3 21 0.404 γ 8 361.08 5 0.11 4 0.0009 γ 36 647.40 8 29.3 21 0.404 γ 12 418.047 15 0.153 11 0.0014 γ 37 702.75 12 3.74 13 0.0560 γ 13 422.910 12 0.309 8 0.0028 γ 38 731.69 15 1.48 5 0.0231 γ 16 529.872 3 86.3 4 0.974 γ 40 797.75 10 3.99 12 0.0564 γ 20 617.974 14 0.539 13 0.0071 γ 42 800.51 12 1.9	y 29	462.11 16	2.0 3	0.0197				
γ 31 478.59 10 1.57 6 0.0160 $X-ray$ $R\alpha_1$ 29.7790 10 0.281 8 0.0002 γ 32 519.60 20 0.435 15 0.0048 γ 5 262.702 6 0.357 10 0.0020 γ 33 534.85 11 1.74 6 0.0198 γ 5 262.702 6 0.357 10 0.0020 γ 34 574.04 10 2.3 4 0.0287 γ 7 345.43 5 0.104 18 0.0008 γ 35 622.03 16 1.39 5 0.0184 γ 8 361.08 5 0.114 4 0.0009 γ 36 647.40 8 29.3 21 0.404 γ 8 361.08 5 0.114 4 0.0008 γ 37 702.75 12 3.74 13 0.0560 γ 13 422.910 12 0.309 8 0.0028 γ 38 731.69 15 1.48 5 0.0231 γ 15 510.530 4 1.81 4 0.0197 γ 30 77.7 1 3.39 12 0.0564 γ 20 677.73 386.3 4 0.974 γ 41 795.7 4 1.30 5 0.0221 γ 24 680.247 11 0.645	r 30	471.85 9	2.00 7	0.0201	X-Tay Kga	29,4580 1	0 0.151 5	æ0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	y 31	478.59 10	1.57 6	0.0160	X-ray Ka,	29.7790 1	0 0.281 8	0.0002
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	y 32	519.60 20	0.435 15	0.0048	γ 5	262.702 6	0.357 10	0.0020
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	γ <u>3</u> 3	534.85 11	1.74 6	0.0198	γ 6	267.173 19	0.117 6	0.0007
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 54	574.04 10 633 A3 44	2.3 4 1 30 F	0.0287	γ 7	345.43 5	0.104 18	0.0008
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 30 7 76	044.U3 10 647 40 0	1.37 3	0.0184	. 7 .8	361.08 5	0.11 4	0.0009
7 38 731.69 15 1.48 5 0.0231 7 13 422.910 12 0.309 8 0.0028 7 39 733.89 10 2.87 10 0.0449 7 15 510.530 4 1.81 4 0.0197 7 40 779.75 10 3.39 12 0.0564 7 20 617.974 14 0.539 13 0.0071 7 41 795.7 4 1.30 5 0.0221 7 24 680.247 11 0.645 15 0.0093 7 42 800.51 12 1.91 7 0.0326 7 25 706.578 8 1.49 4 0.0225	v 37	702,75 12	2703 21	0.404	γ 12	418.047 15	0.153 11	0.0014
γ 39733.8910 2.87 10 0.0449 γ 15 510.530 4 1.81 4 0.0197 γ 40779.7510 3.39 12 0.0564 γ 20 617.974 14 0.539 13 0.0071 γ 41 795.7 4 1.30 5 0.0221 γ 24 680.247 11 0.645 15 0.0093 γ 42 800.51 12 1.91 7 0.0326 γ 25 706.578 8 1.49 4 0.225	y 38	731.69 15	1.48 5	0.0231	γ 13	422.910 12	0.309 8	0.0028
7 40 779.75 10 3.39 12 0.0564 7 10 529.872 3 80.3 4 0.974 7 41 795.7 4 1.30 5 0.0221 7 24 680.247 11 0.645 15 0.0093 7 42 800.51 12 1.91 7 0.0326 7 25 706.578 8 1.49 4 0.0225	y 39	733.89 10	2.87 10	0,0440	y 15	510.530 4	1.81 4	0.0197
7 41 795.7 4 1.30 5 0.0221 7 24 680.247 11 0.645 15 0.0091 7 42 800.51 12 1.91 7 0.0326 7 25 706.578 8 1.49 4 0.0225	y 40	779.75 10	3.39 12	0.0564	7 16	529.872 5	0 5 20 13	0.9/4
γ 42 800.51 12 1.91 7 0.0326 γ 25 706.578 8 1.49 4 0.0225	γ 41	795.7 4	1.30 5	0.0221	~ 24	680.247 11	0.645 15	0.0071
	γ 42	800.51 12	1.91 7	0.0326	y 25	706.578 8	1.49 4	0.0225

^{1 3 3} I—^{1 3 4} Te

Radiation Type	Energy (keV)	Intensity (%)	Δ (g-rad/ μ Ci-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
^{1 3 3} Ιβ ⁻ Decay	(20.8 h 1)	(Continued)		● ¹³³ Ba EC Decay	(10.5 y 1)	I (min)	= 0.10%
7 26 7 28 7 29 7 30 7 31 7 35 7 36 7 38 7 39 7 40 21 46 8	768.382 15 820.506 22 856.278 7 875.329 5 909.67 3 1052.296 18 1060.07 6 1236.411 6 1298.223 5 1350.38 3 eak y's omitt y(avg) = 535.	0.457 12 0.154 6 1.23 4 4.47 9 0.212 8 0.552 13 0.137 6 1.49 4 2.33 5 0.148 5 ed: 2; $\Sigma T \gamma = 0.61\%$	0.0075 0.0227 0.0225 0.0834 0.0041 0.0124 0.0031 0.0644 0.0043	Auger-L ce-K - 1 Auger-K ce-K - 2 ce-K - 3 ce-L - 1 ce-L - 2 ce-L - 3 ce-T - 2 ce-L - 3 ce-M - 3 ce-NOP - 3 ce-K - 4 ce-K - 6	3.55 17.170 16 25.5 43.636 11 45.012 5 47.441 16 51.938 16 73.907 11 75.283 5 78.404 11 79.780 5 80.766 5 124.62 4 240.412 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.0103\\ 0.0038\\ 0.0077\\ 0.0036\\ 0.0462\\ 0.0016\\ 0.0004\\ 0.0004\\ 0.0118\\ 0.0002\\ 0.0118\\ 0.0026\\ 0.0026\\ 0.007\\ 0.0004\\ 0.0016\end{array}$
• ¹³³ Xe β^{-} Decay	v (5.245 d 6)	1 (min) = 0.10%	ce-K- 7 ce-K- 8 ce-K- 9 ce-L- 8	266,854 8 320.020 17 347,866 20 350.291 17	0.67 4 1.28 7 0.147 9 0.211 12	0.0038 0.0087 0.0011 0.0016
Auger-L Auger-K ce-K - 1 ce-K - 2 ce-L - 2 ce-M - 2 ce-NOP - 2 $B^- 1$ max avg	3.55 25.5 43.636 11 45.012 5 75.283 5 79.780 5 80.766 5 267 3 75.1 10	49.7 25 5.6 7 0.33 3 53.3 19 8.14 16 1.67 4 0.434 9 0.69 6	0.0038 0.0031 0.0003 0.0511 0.0130 0.0028 0.0007	X-ray L X-ray Kα2 X-ray Kα1 X-ray K8 Y 1 Y 2 Y 3 Y 5 Y 6 Y 7	4.29 30.6251 30.9728 35 53.155 16 79.621 11 80.997 5 160.60 4 223.11 4 276.397 12 302.839 83	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0015 0.0223 0.0418 0.0170 0.0024 0.0043 0.0569 0.0020 0.0021 0.0406 0.115
β- 2 max avq total β- avg	346 3 100.6 10 100.4 10	99.30 6 100.00 9	0.213	7 B 7 9	356.005 17 383.851 20	60 3 8.7 4	0.459 0.0709
$\begin{array}{c} x - ray L \\ \overline{x} - ray K\alpha_2 \\ \overline{x} - ray K\alpha_1 \\ \overline{x} - ray K\beta \\ \overline{\gamma} 1 \\ \overline{\gamma} 2 \end{array}$	4.29 30.6251 30.9728 35 79.621 11 80.997 5	6.1 17 3 13.6 6 3 25.3 10 9.1 4 0.217 19 36.5 7	0.0006 0.0089 0.0167 0.0068 0.0004 0.0629	● ¹³³ Ba IT Decay(%IT De Feeds ¹ %EC De	38.9 h 1) cay ≈ 99.9890 ^{3 3} Ba (10.5 y) ecay = 0.0110	l (min) 6 6	= 0.10%
4 wd E ⁻ • ^{1 3 3} Xe 1T Decay Feeds	eak γ's omitt γ(avg) = 177. (2.19 d 3) ¹³³ Xe (5.245 c	ed: 7;ΣΙγ= 0.07% Ι (min)	= 0.10%	Auger-L ce-L- 1 ce-MNO- 1 Auger-K ce-K- 2 ce-L- 2 ce-M- 2 ce-MCP- 2	3.67 6.30 4 11.00 4 26.4 238.65 15 270.10 15 274.80 15 275.84 15	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.0102 0.0104 0.0049 0.0033 0.299 0.104 0.0235 0.0068
Auger-L Auger-K ce-K- 1 ce-L- 1 ce-M- 1 ce-NOP- 1	3.43 24.6 198.660 15 227.768 15 232.079 15 233.013 15	70 4 7.0 13 63.3 7 20.6 5 4.56 13 1.22 4	0.0051 0.0037 0.268 0.0999 0.0225 0.0061	X-ray L γ 1 X-ray Kα ₂ X-ray Kα _t X-ray K8 γ 2	4.47 12.29 4 31.8171 32.1936 36.4 276.09 15	18 5 1.35 6 3 15.1 6 3 27.8 9 10.1 4 18.0 5	0.0017 0.0004 0.0102 0.0191 0.0079 0.106
K-ray L K-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 1	4.1 29.4580 10 29.7790 10 33.6 233.221 15	7.8 24) 16.0 5) 29.7 8 10.6 4 10.3 3	0.0007 0.0100 0.0188 0.0076 0.0512	● ¹³⁴ Te β Decay (Feeds ¹	41.8 m 8) ^{3 4} l (52.6 m)	l (min)	= 0.10%
				Auger-L Auger-K ce-K- 3 ce-K- 4 ce-K- 5	3.3 23.6 43.66 6 46.276 12 68.25 3	33.8 23 4.1 10 0.56 21 27.1 10 0.29 11	0.0024 0.0021 0.0005 0.0267 0.0004 (Continued)

¹³⁴Te-¹³⁴I

			:				16- 1
Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
ce-L- 3	71.64 6	0.22 17	0.0003	8- 1 max	770 60		
се- <u>1</u> - 4 се-М- 4	74.257 12	4.2 6	0.0066	avg 8-2 mar	255 24	1.48 9	0.0080
ce-NOP- 4 ce-K- 8	79.259 12	0.20 3	0.0003	avg 8-3 mar	261 24	0.33 4	0.0018
ce-K- 10	168.066 15	0.94 14	0.0034	avq avq	279 24	0.153 19	0.0009
ce-K- 11	177.296 16	2.06 25	0.0078	8-4 max avq	372 25	1.22 7	0.0097
ce-L- 10	196.047 15	0.12 5	0.0005	875 max avg	1280 60 460 30	32.5 8	0.318
ce-L- 11 ce-K- 13	205.277 16 244.782 8	0.35 11 0.88 5	0.0015	8-6 max avg	1380 60 500 30	0.53 4	0.0056
ce-L- 13 ce-K- 14	272.763 8 401.89 4	0.132 24 0.218 21	0.0008	8-7 max avg	1500 60 550 30	8.1 5	0.0949
ce-K- 15 ce-K- 17	427.828 22 532.823 13	0.109 10 0.112 14	0.0010	6-8 max avg	1560 60 580 30	16.3 5	0.201
8- 1 may	103 534 33			8÷ 9 max avg	1600 60 600 30	3-67 17	0.0469
	52.941 7	14.7 7	0.0166	8-10 max	1740 60	765	0 107
5-2 max avg	110.830 5	42.9 15	0.101	8-11 max	1800 60	11 2 7	0.107
873 max avq	453.312 16 136.986 6	41.1 13	0.120	B−12 max	1850 60	11.2	0.165
total 8- avg	113.100 7	98.7 21	0.238	β=13 max	2230 60	1.12 1/	0.0169
Y-ray I	<i>h</i>	2 5 12	0.0000	avg β-14 max	880 30 2420 60	3.7 9	0.0694
Y-ray Kaz	28.3172 4	8.8 5	0.0053	avg total 8-	970 30	11.5 15	0.238
X-ray Kg	32.3	5.7 3	0.0039	avq	610 40	99.6 23	1.28
γ 2 γ 3	76.83 6	0.279 25	0.0001	u we Ef	ak 8*s omitt (avg)= 263.	ed: 5; Στβ= 0.23%	
7 4 7 5	101.42 3	0.33 6	0.0355	Y-nov I	h 4	0 17 (
γ 6 γ A	131.05 20	0.18 6 18.0 B	0.0005	X-ray Kaz	29.4580 1	0 0.432 23	*0 0.0003
7 9 7 10	183.05 13 201.235 15	0.6 3 8.7 4	0.0023 0.0373	Y-ray Kai Y-ray KB	33.6	0.285 16	0.0005
γ 11 γ 12	210.465 16 259.8 3	21.9 6 0.48 9	0.0982 0.0027	γ 1 γ 2	135.399 22	3.76 22	0.0108
γ 13 γ 14	277.951 8 435.06 4	21.3 8 18.6 10	0.126	γ 3 γ 4	151.98 15 162.48 7	0.106 12 0.26 3	0.0003 0.0009
γ 15 γ 16	460.997 22 464.64 5	10.8 4 5.10 17	0.106	775 776	188.47 4 217.00 20	0.70 4 0.25 3	0.0028 0.0011
γ 17 γ 18	565.992 13 636.26 10	18.9 8 1.71 22	0.228	י ד ד ד	235.47 3 278.80 15	1.98 16 0.131 15	0.0100 0.0008
γ 19 γ 20	645.40 10 665.85 10	0.90 10 1.20 19	0.0124	γ 9 γ 10	319.81 6 351.08 10	0.52 5 0.50 6	0.0035 0.0037
r 21 r 22	712.97 5	4.2 4	0.0638	γ 11 γ 12	405.451 20 411.00 8	7.3 4 0.61 6	0.0634
γ 23 γ 24	767.196 21	30.0 10	0.490	γ 13 γ 14	433.35 3 458.92 6	4.19 24	0.0387
y 25 y 26	896.02 10 925.55 7	0.45 12	0.0086	γ 15 γ 16	465.50 10 488.88 4	0.36 4	0.0036
γ 27	1027.00 10	0.45 12	0.0098	γ 17 γ 18	514.40 3 540.825 25	2.34 14	0.0256
2 we	ak γ 's omitte	d:	-	γ 19 γ 20	565.52 4 570.75 15	0.88 6	0.0106
rs j	(avg) = (37.0	; 217= 0.09%		γ 21 γ 22	595.362 20	11.4 6	0.144
				γ 23 γ 24	627.96 3	2.37 14	0.0316
• ¹³⁴ I β^- Decay	(52.6 m 5)	l (min)	= 0.10%	γ 25 γ 25	706.65 10	0.83 6	0.0125
Auger-L	3.43	1.52 11	0.0001	y 27	739.18 8	0.76 8	0.0120
Auger-K ce-K- 1	24.6 100.838 22	0.19 4 1.14 8	≈0 0.0025	7 28 7 29	700.68 4 816.38 7	4.1 3 0.52 5	0.0670
ce-L- 1 ce-K- 7	129.946 22 200.91 3	0.150 10 0.141 14	0.0004	γ 30 γ 31	847.025 25 857.29 3	95.41 23 6.96 20	1.72 0.127
ce-K- 11 ce-K- 30	370.890 20 812.46 3	0.112 10	0.0009	γ 32 γ 33	864.0 3 884.090 25	0.19 3 65.3 10	0.0035 1.23
ce-K- 33	849.53 3	0.119 4	0.0022	y 34	922.6 3	0.14 3	0.0028 (Continued)

134 - 135

.

A.

Radiation	Energy	Intensity	Δ (g-rad/	Radiation	Energy	Intensity	∆(g-rad/
Туре	(keV)	(%)	μCi-h)	Туре	(keV)	(%)	μCi-h)
¹³⁴ Ιβ ⁻ Decay	(52.6 m 5)	(Continued)		γ 6 γ 7	604.699 15 795.845 22	97.6 3 85.4 4	1.26
γ 35	947.86 4	4.04 20	0.0815	78 79	1038.57 3	1.000 10	0.0221
т 36 ~ 37	966.90 5	0.35 4	0.0073	γ 10	1167.94 3	1.80 3	0.0448
y 38	1040,25 10	1.91 19	0.0423	γ 11	1365.15 3	3.04 4	0.0884
γ 41	1072.55 3	15.3 8	0.349	2 we	ak r's omitte	eđ:	
γ 43	1100.07 12	0.69 6	0.0161	En	(avg) = 276.9	9; $\Sigma I \gamma = 0.049$	6
γγ 44 γ 45	1103.18 12 1136 16 a	9.7 5	0.01/0				
γ 45 γ 45	1159.10 8	0.35 3	0.0087				
y 47	1164.0 3	0.13 3	0.0033				
y 49	1190.03 8	0.35 3	0.0089	• ¹³⁴ Cs IT Decay	(2.90 h 1)	l (min) = 0.10%
7 51 7 53	1269.49 5	0.21 6	0.0055	Feeds '	³⁴ Cs (2.062 y)		
τ 54	1322.4 3	0.10 4	0.0030				
γ 55	1336.00 20	0.14 3	0.0041	Auger-L	3.55	133 5	0.0100
7 DO 7 50	1352.62 8	0.45 4	0.0129	ce-M- 1	10.043 20	15.9 10	0.0034
7 60	1428.2 3	0.17 4	0.0052	ce-NOP- 1	11.029 20	5.2 4	0.0012
γ 61	1431.35 25	0.17 4	0.0052	Auger-K	25.5	3.7 5	0.0020
γ 62 ~ 63	1455.24 5	2.29 15	0.0710	ce-K- 2	102.70 3	0.43	0.0010
τ 64	1505.5 4	0.11 4	0.0037	ce-L- 2	121.71 3	40.4 8	0.105
γ 65	1541.51 7	0.51 4	0.0166	ce-M- 2	126.20 3	9.0 3	0.0242
γ 66 γ 67	1613.80 5	4.36 24	0.150	ce-L- 3	132.97 3	0.27 17	0.0062
y 68	1644.25 7	0.40 5	0.0140				
r 69	1655.19 10	0.23 3	0.0081	X-ray L	4.29	16 5	0.0015
γ 7() ~ 71	1741.49 5	2.67 19	0.0991	γ 1	11.260 20	0.94 7	0.0002
y 74	1925.88 10	0.181 19	0.0074	X-ray Raz	30.6251	3 8.9 3	0.0058
γ 75	2020.6 3	0.172 19	0.0074	K-ray Ke	35	5.95 19	0.0044
τ 77 τ 90	2159.9 3	0.21 3	0.0097	γ 2	127.42 3	12.9 3	0.0350
y 83	2467.4 3	0.153 19	0.0080				
20							
20 4	γ (avg) = 1787.	eu: 2; Στγ= 1.33%		● ¹³⁵ Iβ ⁻ Decay (6 % Feedir % Feedir % Feedir	5.61 h 1) ng to ¹³⁵ Xe (9. ng to ¹³⁵ Xe (19	l (min 11 h) ≈ 83.5 5 5.36 m) = 16.5) = 0.10% 5 5
	(2.062	(min)	- 0.10%				
- C3 μ Decay %β ⁻ 1	Decav ≈ 99 9997	/ 1	- 0.10%	Auger-L	3.43	0.220 17	≈0 0 000¢
%EC	Decay = 0.0003	1		ce-K- 11	253.890 16	0.121 5	0.0007
	,						
Auger-L	3.67	0.66 5	≈0	6-1 max	240 30		
ce-K- 5	531.874 15	0.125 1	0.0014	a⊽g A−2 mav	66 10 200 30	0.140 13	0.0002
ce-K- 7	758.404 22	0.220 7	0.0039	avq	68 10	0.126 13	0.0002
•••				8-3 max	260 30		
6- 1 max	88.5 4			avg	74 10	0.140 23	0.0002
avg	23.06 11	27.40 13	0.0135	ava ava	86 10	1.08 6	0.0020
β - 2 max	415.1 4	5 4 8 E	0.00/5	β -5 max	340 30		
8-3 max	657.9 4	2.40 5	0.0065	avg	98 10	0.91 4	0.0019
avg	210.11 15	70.1 5	0.314		103 10	1.39 6	0.0030
total 8-	456 0 0			β- 7 max	460 30		0.0000
avg	156.8 3	100.0 6	0.334	a⊽g	138 11	4.73 14	0.0139
2 w	eak B's omitt	ed:		p= 8 max	480 30	7.33.21	0.0226
E	B (avg) = 335.	3; ΣIβ= 0.05%		5-9 max	620 30	·•JJ 21	0.0220
				avg	196 12	1.57 7	0.0066
X-ray Kaz	31.8171	3 0.214 8	0.0001	8-10 max	670 30 213 12	1 10 5	0 0050
X-ray Ka ₁	32.1936	3 0.396 15	0.0003	8-11 max	740 30		0.0000
γ 3	475.35 5	1.46 4	0.0148	avq	243 12	7.9 3	0.0409
γ 4	563.227 15	8.38 5	0.101	8-12 max	820 30	0 6 1 4	0 0035
γ 5	569.315 15	15.43 11	0.187	avg	212 12	0.01 4	(Continued)

¹³⁵I-¹³⁵Cs

Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
920 30 313 12	8-73	0 0580	• ¹³⁵ Xe β^- Decay	(9.11 h 2)	, l (min) = 0.10%
1030 30	0, , 5	0.0580	Feeds	133Cs (2.3E6 y	()	
359 13	21.8 5	0.167	hugor-T	3 55	533	0.000/
405 13	7.9 3	0,0681	Auger-K	25.5	0.60 7	0.0004
1250 30	•••		ce-K- 3	213.809 15	5.68 7	0.0259
451 13	7.4 3	0.0711	ce-L- 3	244.080 15	0.92 19	0.0048
1260 30	0 10 5	0 0010	Ce-MNO- 3	248.577 15	0.23 5	0.0012
1450 30	0.10 5	0.0010	A 1 - - - -	07 0		
535 13	23.6 4	0.269	B- 1 max	25.3.25	0.123 4	~0
1580 30			$\beta = 2 \text{ max}$	551 9	00123 4	~~
591 14 2180 30	1.2 8	0.0151	avg	171 4	3.13 10	0.0114
858 14	1.9 6	0.0347	6-3 max	751 9	0 5 95 17	0 0034
			ervg β−4 max	240 4 909 9	V.505 1/	0.0031
369 16	99.8 14	0.784	avg	308 4	96.1 5	0.630
ak 8's omi++	ed:		total 8-	202		
(avg) = 207.	2; ΣIB= 0.15%		avg	303 4	100.0 6	0.645
-			1 we	ak β's omitte	ed :	
29.7790 1	0 0.127 8	≈0	Eβ	(avg) = 48.0); ΣΙβ= 0.08%	
220.502 15	1.75 6	0.0082				
264.26 9	0.232 9	0.0011	X-ray L	4.29	0.66 18	*0
288.451 16	3.09 12	0.0190	X-ray Kaz	30.6251 3	1.45 4	0.0009
290.27 4	0.303 21	0.0019	X-TAY KO _l X-rav KA	30.9728 3	0.961 24	0.0018
361.85 14	0.19 3	0.0014	γ 1	158.197 18	0.289 10	0.0010
403.03 4 414 83 3	0.232 9	0.0020	γ 3	249.794 15	89.9 3	0.478
417.63 3	3.52 12	0.0313	γ <u>4</u>	358.39 4	0.220 9	0.0017
429.93 3	0.303 23	0.0028	γ δ	407.990 20	0.358 13 2.89 9	0.0031
433.741 19	0.552 24	0.0051	7	000.100 10	2.09 7	0.03/3
451.63 3	0.315 18	0.0030	8 we	ak γ's omitte	đ:	
540.55/16	7.12 24	0.0829	5 <i>7</i>	(avg) = 684.3	; $\Sigma I \gamma = 0.21\%$	
649.85 4	0.45 3	0.0063				
690.13 6	0.129 15	0.0019				
707.92 5	0.66 6	0.0099	. 135 Xe IT Decor	(15.36 m 14)) = 0.10%
703.48 5 797.71 R	0.152 20	0.0025		10.00 m 14	1 (min	, - 0.10%
836.804 16	6.67 24	0.119	Feeds	$135 X_{P}$ (Q 11 h)		
961.46	0.15 3	0.0030	- CCUS %R- D	hecay = 0.0036		
972 972 6	0.89 6	0.0184	ע קא	000y - 0.0000		
995.09 10	0.15 3	0.0033	Auger-I.	3.43	14.9 9	0.0011
1038.760 21	7.9 3	0.175	Auger-K	24.6	1.7 3	0.0009
1101.58 4	1.60 6	0.0376	ce-K- 1	492.000 17	15.2 4	0.159
1124.00 4	3.60 12 22 5 P	0.0863	ce-L- 1	521.108 17	2.89 8	0.0321
1159.90 20	0.103 23	0.0025	Cé-WNO- I	525.419 11	V+95 3	0.0107
1169.04 4	0.87 4	0.0217	. -	<i></i>		
1240.470 20	0.90 4	0.0238	X-ray L	4.1	1.7 5	0.0001
1260.409 17	28.6 4	0.768	X-TAV Ka2	29.4580 10	3.84 15 7.1 3	0.0024
1448.35 10	0.31 3	0.0097	X-ray KB	33.6	2.54 10	0.0018
1457.56 3	8.6 3	0.268	γ 1	526.561 17	81.0 5	0.908
1502.79 4	1.07 5	0.0343				
1566.41 3	1.29 6	0.0430				
10/8.03 3	9.5 4 4.09 18	0.347	- 1350- 0- D-			
1791.20 3	7.70 25	0.294	• •••• Us β^- Decay	(2.3E0 Y 3)	 I (min)) = 0.10%
1830.69 4	0.58 3	0.0225				
1927.30 3	0.295 15	0.0121	β -1 max	205 5		
2045.88 4	0.87 4	0.0379	avg	56.3 15	100	0.120
4433490 3	0.01 5	0.0294				
	(keV) 920 30 313 12 1030 30 359 13 1150 30 405 13 1250 30 405 13 1260 30 451 13 1260 30 454 13 1260 30 535 13 1580 30 591 14 2180 30 591 14 2180 30 591 14 2180 30 591 14 2180 30 591 14 2180 30 591 14 2180 30 858 14 369 16 ak β 's omitt (avg) = 207. 29.7790 1 220.502 15 229.72 3 264.26 9 288.451 16 290.27 4 361.85 14 403.03 4 414.83 3 417.63 3 429.93 3 433.741 19 451.63 3 546.557 16 575.97 8 649.85 4 690.13 6 707.92 5 785.48 5 797.71 8 836.804 16 961.46 972 972.6 995.09 10 1038.760 21 101.58 4 1124.00 4 1131.511 18 1159.90 20 1169.64 13 1678.03 1 1502.79 4 1566.41 3 1678.03 1 1791.20 3 1830.69 4 1927.30 3 2045.88 4	(keV)(%)920 30 313 128.7 31030 30 359 13 21.8 51150 30 405 13 7.9 31250 30 451 13 7.4 31260 30 454 13 0.10 5451 13 7.4 31260 30 451 13 7.4 31260 30 535 13 23.6 41580 30 591 14 1.2 82180 30 858 14 1.9 6369 16 99.8 14ak β 's omitted: (avg) = 207.2; Σ Is= 0.15%29.7790 10 0.127 8 220.502 15 1.75 6 229.72 3 0.232 9 264.26 9 0.184 7 288.451 16 3.09 12 290.27 4 0.303 21 361.85 14 0.19 3 403.03 4 0.232 9 414.83 3 0.300 18 417.63 3 3.52 12 429.93 3 0.303 23 433.741 19 0.552 24 451.63 3 0.315 18 546.557 16 7.12 24 575.97 8 0.129 23 649.85 4 0.445 3 690.13 6 0.129 15 707.92 5 0.66 6 785.48 5 0.152 20 797.71 8 0.17 3 836.804 16 6.67 24 961.46 0.15 3 972 0.89 6 972.6 1.20 6 972.6 3 8.6 3 1502.79 4 1.07 5 1566.41 3 1.29 6 1678.03 3 9.5 4 1706.46 3 4.09 18 1791.20 3 7.70 25 1830.69 4 0.58 3 1927.30 3 0.295 15 2045.88 4 0.87 4	1.10331.103131.10313 (keV) $(\%)$ μ Ci-h)92030313128.730.05801030303591321.8405137.930.0681125030451137.430.0711126030451130.105351323.640.1450305351323.640.269158030591141.280.03473691699.8140.7790100.127829.7790100.127829.7790100.127829.77901029.77230.23290.0011264.2690.18470.0010288.451163.03210.019361.85140.193200.2740.303210.019361.85140.193200.2740.303230.0027417.6330.30323.741190.52240.0030546.557161450.0025797.7180.12915	1.13 (keV)1.13 (k)1.13 (k)Type920 30313 128.7 30.05801.35 Xe β Decay Feeds130 303021.8 50.167Auger-L Auger-KAuger-K Ce-K-3 Ce-K-3150 30405 137.9 30.0681Auger-K Ce-K-3451 137.4 30.0711Ce-Mo-31260 30-535 1323.6 40.269535 1323.6 40.269 β^- 1 max arg marg591 141.2 80.0151 β^- 2 max arg marg280 51699.8 140.784ak β 's omitted: (avg) = 207.2; SIB= 0.15%-1240.26 90.18470.0010 X-ray241.63 30.302 290.0011 X-rayK-ray Ka Tag29.7790 100.127 8 s 0.0227 40.019 0.023 21X-ray 0.0010 X-ray29.7790 100.127 8 s 0.022 70.0011 X-rayK-ray Ka Tag29.7790 100.127 8 s 0.0120.0014 Y-rayTag X-ray X 7 3417.63 30.532 20 	1.19.71.19.71.19.71.19.7 (keV) $(\%)$ μ Ci-h) $Type$ (keV) 9203033128.730.058010303030321.850.167 $krgr = kr$ 2.3551250307.430.0681 $krgr = kr$ 2.551250307.430.0711 $ce-r-3$ 248.090 151450300.1050.0010 $krgr = kr$ 2.551450300.1050.0010 $B^ rarg$ 2.5, 31450300.1050.0010 $B^ rarg$ 2.7, 314501.280.0151 arg $27, 3 \cdot 25$ $B^ 2arg$ 79 1850141.960.0347 $B^ arg$ $27, 3 \cdot 25$ 290.70100.127 arg arg 30 arg $246, 487$ 290.7160.2320.0016 $rrarg$ $karg$ $30, 34$ arg 291.27140.303210.0016 $rrarg$ $karg$ $30, 6251$ $rrarg$ 292.27150.752 0.0127 $rrarg$ $karg$ $30, 6251$ $rrarg$ $rrarg$ $karg$ 292.27150.2120.0027 $rrarg$ $rarg$ arg arg arg arg 294.27160.3320.0027 $rrarg$ $rarg$ arg arg arg arg 291.27 <td< td=""><td>IncomeLingerLingerLinger(keV)(%)μCi-h)Type(keV)(%)92030313128.730.0580333128.730.0580333128.730.0580359132.1.850.167126030126030128531128030128030128030</td></td<>	IncomeLingerLingerLinger(keV)(%) μ Ci-h)Type(keV)(%)92030313128.730.0580333128.730.0580333128.730.0580359132.1.850.167126030126030128531128030128030128030

¹³⁵Ba—¹³⁶I

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Ra	diation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
• ¹³⁵ Ba IT Decay	(28.7 h 2)	l (mir	n) = 0.10%	β-	26 max	5690 100		
				+ .+	avg	2500 50	30.4 19	1.62
Auger-L	3.67	63 4	0.0050	.00	ar b avo	1980 60	102 3	4.31
Auger-K	26.4	5.9 16	0.0033					
ce-K- 1	230.797 10	59.9 / 18 7 5	0.294		9 W	eak 8's omitt	ed:	
ce-M- 1	265,945 10	4.19 12	0.0238		E	$\beta(avg) = 459.$	3; ΣIβ= 0.28%	
ce-NCP- 1	267.985 10	1.20 4	0.0068					
				γ (1	219.33 15	0.85 7	0.0040
X-ray L	4.47	8.6 22	0.0008	γ	2	240.50 20	0.24 5	0.0012
X-ray Kaz	31.8171 3	15.3 6	0.0104		5 11	309 10 20	0.35 0	0.0012
X-ray Ka ₁	32.1936 3	28.3 10	0.0194	1 7	5	344.72 10	2.50 21	0.0183
X-ray KB	36.4	10.3 4	0.0080	T T	6	362.5 4	0.132 21	0.0010
T I	205.230 10	10.0 4	0.0914	η γ	7	381.37 6	0.86 9	0.0070
				γ	8	396.00 20	0.44 6	0.0037
				Y Y	10	431.30 12	0.83 7	0.0019
• 1361 B ⁻ Decay (83 s 1)	t (min	0 = 0.10%	Y Y	11	597.80 20	0.37 5	0.0048
· · · · · · · · · · · · · · · · · · ·		. (.,	Υ Υ	12	682.7 3	0.19 3	0.0028
A- 1 may	380 100			ץ	13	812.63 8	0.9 3	0.0156
avor	110 40	0.54 4	0.0013	Ŷ	14	865.5 3	0.67 6	0.0123
8-2 max	800 100			, , , , , , , , , , , , , , , , , , ,	16	994.20 20	1.68.10	0.0356
avq	270 40	0.200 20	0.0012	¥	17	1057.4 4	0.30 5	0.0067
5−3 max avα	290 40	0 10 3	0 0006	γ	18	1101.4 3	0.50 8	0.0117
8- 4 max	900 100	0210 5	0.0008	γ	19 20	1178.6 3	0.23 4	0.0057
avq	300 40	0.24 3	0.0015	7	20	1222.0 4	2.36.13	0.0042
β− 5 max	950 100	_		11 y	22	1313.02 10	69.4 6	1.94
avg	320 40	0.170.20	0.0012	γ	23	1321.08 10	25.8 19	0.726
n max	410 50	0 1 10 20	0 0010	γ	24	1399.9 5	0.11 3	0.0033
8-7 max	1200 100	0.110 20	0.0010	γ	25	1536.41 10	1.35 8	0.0441
avg	430 50	0.31 3	0.0028	7	20	1583.50 20	0.26 4	0.0089
β- 8 max	1240 100			i y	28	1624.8 3	0.24 4	0.0084
avg A- 9 max	440 50	0.13 3	0.0012	۲	29	1635.20 20	0.39 5	0.0135
ava Dv - max	510 50	0.25 6	0.0027	γ	30	1639.8 5	0.19 5	0.0068
8-10 max	1680 100				33	1686.1 3	0.32 4	0.0115
avg	630 50	0.25 3	0.0034	γ	34	1689.0 3	0.27 4	0.0097
אַרָּאַת וו־־מ מער	770 50	0 5 2 9	0 0095	ץ	35	1709.40 20	0.72 5	0.0263
β -12 max	2050 100	0.52 7	0.0005	7	36	1738.1 3	0.17 3	0.0062
avq	800 50	0.17 3	0.0029	γ	39	1962.2 3	2.37 14	0-0992
8-13 max	2460 100			γ	40	1968.4 4	0.17 3	0.0073
avg 8-14 mar	990 50	0.157 24	0.0033	۲	41	1979.6 3	0.139 21	0.0059
ava ava	1020 50	0.38 3	0,0083	Υ Υ	42	2039.2 4	0.17 3	0.0072
8-15 max	2550 100			, Y	45	2289.60 20	10.8 6	0.528
avg	1030 50	1.38 7	0.0303	Ϋ́Υ	48	2382.7 3	0.22 3	0.0113
d to max	2730 100	4 91 16	0 116	γ	49	2414.60 20	7.1 4	0.364
8-17 max	3130 100	4.91 10	0.110	Y Y	50	2427.8 3	0.19 3	0.0097
avg	1300 50	0.19 8	0.0053	1 ×	52	2548.2 4	0.13 3	0.0073
6-18 max	3790 100			7	54	2601.8 9	0.12 7	0.0069
avg A-10 mor	1600 50	0.24 7	0.0082	۲	55	2634.20 20	7.0 4	0.393
	1710 50	0.33 5	0.0120	γ	58	2828.5 3	0.104 14	0.0063
6-20 max	4130 100			7	60 62	2868.90 20	4.1 4	0.250
avg	1770 50	4.8 4	0.181	r r	63	2979.1 3	0.32 3	0.0203
β-21 max	4150 100	1 17 10	0 0 11 1 1	y	65	3141.1 3	0.72 5	0.0483
8-22 max	4370 100	1.17 10	0.0441	γ	66 60	3195.4 4	0.173 21	0.0118
avg	1880 50	35.4 19	1.42	γ ~	70	3211.8 3	0.53 4	0.0366
6-23 max	4440 100			, 'r	73	3626.4 4	0.173 14	0.0134
avg	1890 50	2.83 18	0.114	γ γ	75	3634.6 5	0.125 14	0.0097
p-24 max אשת	4390 100	6.3 4	0 266) γ	76	3673.9 4	0.173 14	0.0136
$\beta=25$ max	4710 100	0.5 4	0.200	۲ ~	୪ <i>୪</i> ୫5	4063.9 4	0.173 21	0.0150
avg	2040 50	10.4 7	0.452	4	87	4473.8 3	0.139 14	0.0132
			1	'r	95	4739.1 5	0.111 14	0.0112

¹³⁶I—¹³⁷Ba

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
7 99 7 100 7 108	4889.3 4 4929.4 3 5608.0 4	0.153 21 0.119 13 0.15 4	0.0159 0.0125 0.0182	• ¹³⁷ Xe β^- Decay Feeds	(3.83 m 1) ^{1 3 7} Cs	I (min) = 0.10%
γ 109 γ 114	5800.5 4 6104.2 6	0.13 3	0.0163 0.0180	Auger-L ce-K- 3	3.55 419.505 3	0.29 5 0.36 6	≈0 0.0032
51 we	ak γ 's omitt	ted:					
ц,	(avy) = 4120.	50, 21 <i>1</i> - 2.420		β 1 max avg	1494 23 553 10	0.72 7	0.0085
				B-2 max avq	902 11	0.136 16	0.0026
• ¹³⁶ Cs β^- Decay	(13.16 d 3)	I (min)	= 0.10%	β-3 max avq	2561 23 1032 11	0.38 4	0.0084
Auger-L	3.67	20.7 13	0.0016	6-4 max	2769 23	0.172 20	0.0041
Auger-K	26.4	1.9 5	0.0011	85 max	3495 23	0.1.2.2.5	0.0011
ce-K- 1 ce-K- 2	29.47 5	7.3 7	0.0046	avg 8-6 may	1465 11	0.64 7	0.0200
ce-L- 1	60.92 5	1.04 9	0.0014	avg	1649 11	30 3	1.05
ce-MNO- 1 ce-K- 3	65.62 5 72.22 10	0.267 22	0.0004	β-7 max	4344 23	67 3	2.66
ce-L- 2	80.30 5	0.253 15	0.0004	total B-	1862 11	6/ 3	2.00
ce-L- 3	103.67 10	0.154 9	0.0003	avg	1774 11	100 5	3.76
ce-K- 5	126.45 5	4.97 19	0.0134	25 we	ak 8's omitt	eđ:	
ce-K- 6	129.09 10	0.141 15	0.0004	Ef	(avg) = 783.	5; ΣIB= 0.57%	
ce-L- /	147.23 5	0.551 19	0.0016				
ce-MNO- 4	151.93 5	0.181 4	0.0006	X-ray Kai	30.9728	3 0.17 3	0.0001
ce-L- 5	157.90 5	3.98 15	0.0134	r 1 r 2	298.00 /	0.11/ 14	0.0007
ce-NCP- 5	163.64 5	0.233 9	0.0008	r 3	455.490 3	31 3	0.298
ce-K- 10	236.21 4	0.158 6	0.0008	γ 11	848.95 6	0.61 7	0.0111
ce-K- 14 ce-L- 14	303.13 5	1.21 4	0.0078	y 13	1119.33 6	0.105 12	0.0043
ce-K- 18	781.06 4	0.241 8	0.0040	r 27	1273.23 10	0.22 3	0.0061
ce-K- 19	1010.63 7	0.112 4	0.0024	γ 35 γ 37	1576.75 10	0.101 13	0.0034
0- 1	17/ 1 20			y 46	1783.43 6	0.41 5	0.0155
o- i max avg	47.2 6	2.49 10	0.0025	רק א	2849.80 10	0.181 19	0.0110
A- 2 max	191.6 20			83 we	ak γ's omitt	eđ:	
avo; 8-3 max	52.3 6 341.0 20	0.21 3	0.0002	Eγ	(avg) = 1490.	6; $\Sigma T \gamma = 1.31\%$	
avq	98.8 7	95.1 18	0.200				
8-4 max	681.5 20 219.0 8	2.2.18	0.0103				
total B-				• 137 Cs β^- Decay	(30.17 y 3)	l (min)	= 0.10%
avg	100.1 8	100 3	0.213	% Feec	ling to ¹³⁷ Ba	(2.522 m) = 94.0	ö 5
X-ray L	4.47	2.8 8	0.0003	β- 1 max	511.6 9		
X-ray Ka ₂	32.1936	3 9.1 5	0.0063	A-2 max	156.8 4 1173.2 9	94.6 5	0.316
Х-гау КВ	36.4	3.32 16	0.0026	avg	415.2 4	5.4 5	0.0478
γ 1 γ 2	86.29 5	6.3 3	0.01/8	total 8-	170.8 5	100.0 7	0 364
γ 3	109.66 10	0.409 20	0.0010	uvy	1.0.0	100.0	0.504
γ 4 7 5	153.22 5	7.46 16	0.0243				
γ 6	166.53 10	0.63 3	0.0022	• 137 Po IT Doory	(2 552 m 2)	1 (min)	- 0 10%
γ 7 ~ 8	176.55 5	13.56 20	0.0510	• Dali Decay	(2.552 m 2)	1 (11111)	- 0.10%
γ 10	273.65 4	12.66 20	0.0738	Auger-L	3.67	7.6 5	0.0006
γ 13 ~ 1#	319.87 10	0.60 6	0.0041	Auger-K	26.4	0.80 22	0.0004
γ 14 γ 16	507.21 10	40.5 5 0.98 5	0.0106	ce-K- 1 ce-L- 1	524.208 5 655.660 5	8.08 22 1.46 4	0.107
γ 18	818.50 4	99.700 10	1.74	ce-MNO- 1	660.356 5	0.480 14	0.0068
γ 19 γ 20	1048.07 7	79.6 8 19.7 8	0.519				
, 20				X-ray L	4.47	1.0 3	≈0 0.001#
8 we: ₽~	ak γ's omitt (avg)= 787	ed: 2: 5Tr= 0.33%		X-ray Ka	32.1936	3 3.82 16	0.0026
50 y	(wey) .07.	ω, υ⊥; - V∙JJ m	1	Ι X-ray Kβ γ 1	36.4 661.649 5	1.39 6 89.98 24	0.0011 1.27

¹³⁸Xe-¹³⁸Cs

Radiation Energy Type (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
• 138 Ye B- Denny (1/ 12 - E	5) I (min)	= 0.10%	~ 21	537.76 13	0 117 17	0 0012
• • • • Ke p Decay (14.13 m 5)	, - 0.10%	r 23	555,95 9	0.117 14	0.0013
Feeds South (32.2	2 m)		7 24	568.53 6	0.306 19	0.0037
			7 27	588.84 8	0.123 11	0.0015
Auger-L 3.55	49 4	0.0037	y 30	654.08 8	0.145 14	0.0020
ce-M- 1 3.63	5 32 5	0.0025	y 47	865.82 7	0.296 22	0.0055
ce-NOP-1 4.62	5 10.6 17	0.0010	γ 49	869.35 6	0.62 4	0.0115
ce-L- 2 5.14	5 51 3	0.0056	γ 50	896.87 12	0.132 14	0.0025
ce-M- 2 9.63	5 10.4 6	0.0021	y 52	912.51 7	0.328 22	0.0064
Ce-NOP-2 10.62	5 3.43 20	0.0008	γ 53	917.13 6	0.92 4	0.0180
Augel-R 23.3	3 1 6 1 2 5	0.0002	7 54	936.36 11	0.135 14	0.0027
Ce-T-5 148-04	3 0.34 16	0.0011	7 55	1003 97 0	0.430 10	0.0046
ce-K- 7 206.58	5 0.241 11	0.0011	r 61	1093.07 11	0 2 14 18	0.0050
ce-K- 8 222.33	5 1.80 9	0.0085	v 62	1102.24 17	0.107 14	0.0025
ce-L- 8 252.60	5 0.29 6	0.0016	r 63	1114.29 10	1.47 9	0.0350
ce-K- 14 360.45	5 0.108 13	0.0008	γ 64	1141.64 9	0.51 4	0.0125
ce-K- 17 398.51	5 0.27 4	0.0023	γ 65	1145.44 18	0.132 20	0.0032
			γ 80	1571.84 16	0.26 3	0.0089
6-1 max 230 50			γ 82	1614.57 18	0.24 3	0.0081
avg 64 16	0.227 17	0.0003	γ 84	1768.26 13	16.7 7	0.630
8-2 max 250 50			γ 87	1812.54 18	0.180 20	0.0069
avg 7016	0.46 4	0.0007	γ 88	1850.86 13	1.42 7	0.0561
8-3 max 400 50			7 90	1920.30 14	0.00 4 5 35 33	0 2231
avg 119 17	3.06 13	0.0078	7 77 ~ 92	2004.75 14	12 2 5	0.229
$\beta^{-} 4 \max 480 50$	0 E #	0 0202	y 94	2079.17 14	1.44 7	0.0639
avg 145 18 2-5 may 710 50	9.5 4	0.0293	y 95	2252.26 14	2.29 11	0.110
ava 231 20	32.6.13	0.160	י 97	2321.90 16	0.62 4	0.0307
6~ 6 max 720 50	52.0 15	0.100	P9 Y	2475.26 16	0.312 20	0.0164
avg 233 20	0.28 3	0.0014	γ 101	2497.56 17	0.173 14	0.0092
B- 7 max 950 50						
avg 323 21	0.23 3	0.0016	57 w	eak γ's omitte	d:	
6- 8 max 1370 50			9.5	y(avg) = 1118.6	; $\Sigma I \gamma = 2.66 \%$	
avg 498 22	0.16 3	0.0017				
6-9 max 1530 50						
avg 5/1 22	0.19 4	0.0023				
p=10 max 1/90 30	0 27 11	0 0039	• 138 Cs β^- Decay	(32.2 m 1)	I (min) = 0.10%
6-11 max 2290 50	0.27 4	0.0037				
avg 908 23	20.1 9	0.389	Auger-L	3.67	0.93 12	≈0
8-12 max 2330 50			Auger-K	26.4	0.10 3	≈ 0
avg 92523	13.8 7	0.272	ce-K- 2	100.66 6	0.58 10	0.0012
β-13 max 2480 50			ce-L- 2	132.11 6	0.14 7	0.0004
avg 996 23	5.1 10	0.108	ce-K- 6	190.32 6	0.133 4	0.0005
β -14 max 2730 50			ce-K- 14	425.344 5	0.317 13	0.0029
avg 1099 23	5 5	0.11/				
B-15 max 2/20 50		0 212	8- 1	700 00		
avg 110/23	9 /	0.212		226 16	0.257 25	0 0012
ava 610 40	100 9	1, 31	6-2 max	820 40	0025 25	
419 010 40			avq	273 16	0.163 14	0.0009
3 weak 8's om:	itted:		8-3 max	1090 40		
EB(avg) = 6	37.2: ΣIB= 0.17%		avq	380 17	0.100 8	0.0008
			8-4 max	1250 40		
¥ === X # 20	6 1 17	0 0006	avg	447 17	0.19 3	0.0018
x-ray L 4.29	5 0 10 3	~0	8-5 max	1390 40		
v 2 10.85	5 0.70 4	0.0002	avg	509 18	0.48 6	0.0052
X-ray Kg 30.625	1 3 1.03 7	0.0007	B-6 max	1410 40	0 204 25	0 0000
X-ray Kg. 30.972	8 3 1.90 13	0.0013	avg	514 18	0.204 25	0.0022
X-ray K8 35	0.68 5	0.0005	b wax	614 18	0.30 3	0 0039
γ 5 153.75	3 5.95 25	0.0195	8-8 max	1680 40	0.00	0.0055
γ 7 242.56	5 3.50 14	0.0181	avo	634 18	0.43 7	0.0058
γ 8 258.31	5 31.5 13	0.173	B- 9 max	1960 40		
γ 9 282 . 51	6 0.428 20	0.0026	avg	759 18	0.227 14	0.0037
r 12 335.28	9 0.107 11	0.0008	8-10 max	1990 40		
γ 13 371.44	5 0.50 3	0.0040	a v g	771 18	0.171 20	0.0028
γ 14 396.43	5 0.3 3	0.0532	β−11 max	2090 40		
7 10 401.50 ~ 17 honing	5 20 2 0	0.188	avg	815 18	0,273 20	0.0047
v 18 500-22	6 0.362 18	0.0039	B-12 max	2170 40	0.20.2	0 0060
y 19 530.07	7 0.252 16	0.0028	avg	020 19	0.34 3	0.0082
, , , , , , , , , , , , , , , , , , , ,						(Continued)

¹³⁸Cs-¹³⁹Cs

Radiation	Energy	Intensity	Δ (g-rad/	Radiation	Energy	Intensity	∆(a-rad/
Туре	(keV)	(%)	μCi-h)	Туре	(keV)	(%)	μCi-h)
······							
8-13 max	2280 40			x 52	1717.1 3	0.107 23	0.0039
avg	902 19	0.169 24	0.0032	γ 53	1727.68 18	0.111 13	0.0041
β-14 max	2340 40			γ 55	1778.25 23	0.137 23	0.0052
avg 8∼15 max	929 19 2400 40	0.65 4	0.0129	γ 60	2023.93 20	0.118 16	0.0051
avq	956 19	0.20 4	0.0041	7 61	2062.34 1/	0.11112	0.0049
8-16 max	2450 40	•••••		γ 65	2218.00 10	15.2 4	0.717
avg	979 19	0.37 20	0.0077	γ 67	2499.4 3	0.17 5	0.0089
8-17 max	2480 40	0 00 F	0 0000	γ 69	2583.15 13	0.239 16	0.0131
avg 8-18 max	2550 40	0.20 5	0.0042	γ /1 τ 72	2639.59 13	7.6 3	0.429
avg	1025 19	1.60 8	0.0349	7 72 7 78	2/31.12 15	0.120 8	0.0070
8-19 max	2690 40			γ 80	3366.98 25	0.227 14	0.0163
a vg	1090 19	8.8 3	0.204				
5-20 max	2750 40	1 6 0 0	0 0200	39 w	eak γ's omitte	ed:	
8−21 max	2880 40	1.00 0	0.0399	E E	γ (avg) = 1613.	2; $\Sigma I \gamma = 1.62\%$	
avq	1179 19	44.1 10	1.11				
B-22 max	2910 40						
avq	1193 19	0.66 6	0.0168		(9.40 m 12)	L (min)	= 0.10%
B-23 max	3020 40	7 3 3	0 192	Eeeds	139Ba	• (11017)	- 0.10%
8-24 max	3110 40	100 J	JU- 193		Du		
avg	1284 19	12.8 4	0.350	A- 1 -	520 7		
8-25 max	3430 40				166 3	0.15 10	0.0005
avg	1433 19	13.8 7	0.421	$\beta = 2 \max$	740 7	0.15 10	0.0005
avo	3890 40	<i>t</i> L /L 18	0 155	avg	241 3	0.16 7	0.0008
total 8-			0.155	β^{-3} max	840 7	0 0 0 4	0 0000
avq	1218 20	100.2 23	2.60	A-4 may	280 3	0.10 4	0.0006
6 400	k Ala onit			avg	429 3	0.13 8	0.0012
o wea RAI	$av\sigma = 679$. teu: . 6• ΣΤΑ= 0.29%		6-5 max	1210 7		
17 P ()	ury, 0,	•••••		avg	430 3	0.13 5	0.0012
V-ray I	4 47	0 1 2 //	- 0	avo	493 3	0.10 7	0.0011
X-ray G	31.8171	3 0.26 3	° 0,0002	8- 7 max	1555 7		0.0011
X-ray Kai	32.1936	3 0.49 5	0.0003	avq	578 3	0.23 10	0.0028
X-ray K6	36.4	0.177 18	0.0001	$\beta^{-} 8 \max$	1598 7	A 50 m	
γ 1 2 2	112.60 13	0.130 23	0.0003	avg 8-9 may	1672 7	0.56 21	0.00/1
7 2 7 3	191.96 6	1.49 9 0.50 4	0.0044	avg	630 3	0.53 21	0.0071
γ 4	193.89 8	0.328 24	0.0014	8-10 max	1674 7		
γ 5	212.32 8	0.175 14	0.0008	avg	631 3	0.12 5	0.0016
γ <u>6</u>	227.76 6	1.51 5	0.0073	8-11 max	1823 7	0 15 6	0 0000
γ / γ 9	324.90 8	0.290 19 0.200 20	0.0020	B-12 max	1854 7	V. 13 0	0.0022
y 10	365.29 13	0.191 23	0.0015	avq	710 4	1.3 5	0.0197
γ 12	408.98 6	4.66 12	0.0406	8-13 max	1985 7		
γ 13	421.59 7	0.427 24	0.0038	A-14 may	769 4 2030 7	0.10 4	0.0016
γ 14 γ 15	402. /85 516.74 12	5 30•7 8 0.43 5	0.303	avo	789 4	0.29 11	0.0049
y 16	546.94 7	10.8 3	0.125	6-15 max	2093 7		
γ 19	683.59 15	0.108 14	0.0016	avg	817 4	0.8 3	0.0139
γ 23	766.10 12	0.146 15	0.0024	8-16 max	2114 7	0 10 F	0 0000
γ 24 ~ 25	73.31 10	0.233 19	0.0038	A-17 may	0 <u>27</u> 4 2166 7	0.12 5	0.0021
7 20 7 31	871.80 P	U.35 5 5.11 16	0.0055	avg	850 4	0.21 8	0.0038
γ 32	880.8 3	0.11 3	0.0021	6-18 max	2183 7		
γ 33	935.03 12	0.181 17	0.0036	avg	858 4	0.16 8	0.0029
γ 36 1	1009.78 8	29.8 8	0.642	B-14 max	2255 7 890 H	0 27 14	0 0051
γ 38 1 γ 30 1	1054.32 15	U.159 20	0.0036	8-20 max	2271 7	0.2/ 11	0.0051
γ 40 1	1199.15 24	0.17 3	0.0043	avg	898 4	0.31 12	0.0059
y 41 1	1203.69 13	0.40 4	0.0102	β-21 max	2316 7		
γ 42 1	264.94 16	0.137 17	0.0037	avg	918 4 2327 7	0.29 11	0.0057
γ 43 1 ~ με	1343.59 9	1.14 6	0.0328		923 4	0.36 14	0.0071
γ 40 1 γ 47 1	1435.86 9	76.3 20	2.33	8-23 max	2353 7		
γ 48 1	445.04 25	0.97 20	0.0298	avg	935 4	0.12 5	0.0024
γ 49 1	495.63 23	0.18 4	0.0058	8-24 max	2505 7	0 15 5	0 0 0 0 0 0
γ 50 1	1555.31 10	0.366 24	0.0121	avg	1005 4	0.15 6	0.0032
ר וכיץ 1	1014.09 20	0.137 23	0.0047	J			(Continued)

TABLES OF RADIOACTIVE DECAY DATA 145

¹³⁹Cs-¹⁴⁰Ba

Radiation Type	Energy (keV)	Intensity (%)	$\Delta(extbf{g-rad}/ \mu extbf{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
¹³⁹ Cs β^- Decay	(9.40 m 12)	(Continued)		8⊤ 1 max avg	885 5 297,4 20	0.32 10	0.0020
8-25 max avg	2523 7 1013 4	0.45 17	0.0097	B-2 max avg	2140 5 837.0 23	22 7	0.392
8-26 max avg	2583 7 1040 4	0.38 15	0.0084	avq + 0+al 8-	912.0 23	78 5	1.52
B-27 max avg	2783 7 1132 4	0.38 16	0.0092	avq	893.2 23	100 9	1.91
β−29 max avg	2896 7 1184 4	0.24 10	0.0061	14 we ចេស	ak β 's omitt (avg) = 304.	ed: 7: Στ8= 0.06%	
β-29 max avg	2921 7 1196 4	6.3 24	0.160		· · · •		
8-30 max avg	4204 7 1794 4	84 6	3.21	X - rav L $X - rav K\alpha_2$	4.65 33.03410	0.48 18 2 0.9 3	≈0 0.0007
total 8- avg	1656 5	100 7	3.52	$X = ray K\alpha_1$ X = ray KB	33.44180 37.8	2 1.7 6	0.0012
30 we Bi	eak β 's omit: $\beta(avg) = -508$	ted: 4: ΣΤΒ= 1.27%		γ 1 γ 12	1420.50 20	0.28 8	0.0085
				26 we Βγ	ak γ 's omitt (avg) = 1271.	ed: 1; $\Sigma T \gamma = 0.11\%$	
γ 20 γ 24 γ 29 ~ 37	454.66 5 531.98 4 567.72 5 627 24 2	0.13 5 0.21 9 0.13 6	0.0013 0.0024 0.0016				
γ 54 γ 61	827.52 7 929.18 6	0.11 5	0.0019 0.0046	• ¹³⁹ Ce EC Decay	(137.66 d 13)	l (min)	= 0.10%
γ 63 γ 80 γ 84	946.46 8 1190.42 6 1283.23 5	0.10 9 0.18 7 7 3	0.0020 0.0047 0.197	Auger-L Auger-K	3.8 27.4 125.928 7	88 5 8.2 23 16 8 4	0.0072 0.0048 0.0454
γ 85 γ 86	1306.09 11 1308.13 6	0.11 4 0.37 15	0.0029	ce-I- 1	159.587 7	2.25 7	0.0076
γ 88 γ 93 ~ 91	1321.77 6 1410.58 7 1420.55 5	0.23 9 0.15 6 0.8 3	0.0066	ce-MOP- 1	165.583 7	0.129 4	0.0005
γ 107 γ 109	1620.74 6	0.42 16	0.0144	X-ray L X-ray Ka	4.65	13 4	0.0013
$\frac{1}{7}$ 111 $\frac{1}{22}$	1698.66 7 1877 45 7	0.18 7	0.0064	X-ray Kai	33.44180	2 41.4 15	0.0295
$\gamma 123 \gamma 124 \gamma 125$	1887.57 7 1904.50 7 1933.48 7	0.22 9 0.12 5 0.24 10	0.0088	γ 1	165.853 7	80.35 8	0.284
γ 130 γ 134 γ 136 γ 139 γ 139	2020.76 25 2089.91 9 2110.91 6 2173.98 7 23/9 92 6	0.13 0.14 0.66 0.20 0.55 0.20	0.0056 0.0061 0.0295 0.0093	• ¹⁴⁰ Ba β^- Decay Feeds	(12.789 d 6) ¹⁴⁰ La	l (min)	= 0.10%
γ 150 γ 155	2380.66 7	0.19 8	0.0095	Auger-L	3.8	98 16	0.0080
y 156 y 157	2605.75 6 2649.32 7	0.24 10	0.0135	ce-L- 1 ce-M- 1	7.58 5 12.49 5	51 13 10 3	0.0082 0.0029
7 161 ~ 172	2847.63 8	0.10 7	0.0061	ce-NOP- 1 ce-L- 2	13.58 5 23.70 5	3.4 9 61 12	0.0010 0.0306
γ 174	3665.61 8	0.14 10	0.0107	Auger-K ce-M- 2	27.4 28.61 5	0.19 6 12-5 25	0.0001
148 we	ak γ's omitt	ed:		ce-NOP- 2 ce-K- 5	29.70 5 123.72 5	4.1 9 1.60 23	0.0026
R)	r(avg) = 1569.	5; $\Sigma I \gamma = 3.87\%$		ce-L- 5	156.37 5	0.22 3	0.0007
				ce-K- 10	498.40 8	0.27 4	0.0028
● ¹³⁹ Ba β ⁻ Decay	(83.1 m 8)	l (min)	= 0.10%	B−1 max avg	454 10 136 4	26 4	0.0753
Auger-L Auger-K	3.8 27.4	3.2 10 0.34 15	0.0003	β - 2 max avg	567 10 177 4	10.2 14	0.0385
ce-K- 1 ce-L- 1	126.928 7 159.587 7	3.6 12 0.49 16	0.0098 0.0017	θ - 3 max avg	872 10 306 4	4.4 7	0.0287
ce-MNO- 1	164.492 7	0.13 5	0.0005	8-4 max avg	991 10 340 4	37 4	0.268
				β -5 max avg	1005 10 357 4	22 6	0.167
			1	total 8- avg	272 5	100 9	0.578 (Continued)

¹⁴⁰Ba—¹⁴¹Ba

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)		Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
$ \begin{array}{ccc} x - ray & L \\ \gamma & 1 \\ \gamma & 2 \\ x - ray & K\alpha_2 \\ x - ray & K\alpha_1 \\ x - ray & K\beta \end{array} $	4.65 13.85 5 29.97 5 33.03410 33.44180 37.8	15 5 1.2 3 14 3 2 0.53 7 2 0.98 12 0.36 5	0.0015 0.0003 0.0090 0.0004 0.0007 0.0003		Y 20 Y 21 Y 23 Y 24 Y 27 Y 29	919.63 15 925.24 9 950.9 3 1596.49 24 2348.8 6 2521.7 5	2.88 9 7.09 11 0.53 5 95.49 7 0.851 18 3.46 8	0.0565 0.140 0.0108 3.25 0.0426 0.186
7 4 7 5 7 6 7 7 7 9 7 9 7 10	132.84 12 162.64 5 304.840 20 423.70 3 437.55 3 467.57 5 537.32 8	$\begin{array}{c} 0.21 & 4 \\ 6.7 & 10 \\ 4.5 & 6 \\ 3.2 & 5 \\ 2.0 & 3 \\ 0.15 & 3 \\ 25 & 4 \end{array}$	0.0006 0.0233 0.0293 0.0293 0.0186 0.0015 0.292		γ 31 16 w Έ	2547.1 8 eak γ's omit γ(avg) = 1208	0.104 3 tel: .0; ΣIγ= 0.42%	0.0056
1 we Вр	eak γ 's omitter (avg) = 118.	ed: 8; Στγ= 0.07%		• 141	Ba β^- Decay Feeds	/ (18.27 m 7) ¹⁴¹ La	l (min) = 0.10%
● ¹⁴⁰ La β ⁻ Decay	(40.22 h 2)	l (min)	= 0.10%		Auger-L Auger-K ce-K- 4 ce-L- 4 ce-L- 4	3.8 27.4 151.30 8 183.95 8 188.86 8	6.7 6 0.71 21 7.5 6 1.01 8 0.266 19	0.0005 0.0004 0.0244 0.0039
Auger-L ce-L- 1	4 18 046 4	1.71 12	0.0001		Ce-MMO- 4	100.00 0	0.200 19	0.0011
Auger-K ce-K- 3 ce-K- 4	28.4 28.473 6 68.974 6	0.16 5 0.19 4 0.15 3	≈0 0.0001 0.0002		β-1 max avg β-2 max avg	174 19 590 50 184 19	0.62 7	0.0023
ce-K- 5 ce-K- 10	90.678 8 288.325 12	0.24 5 0.81 3	0.0005		β-3 max avg	640 50 205 19	0.17 4	0.0007
ce-K- 15	446.586 19	0.440 15	0.0007		8-4 max avg	650 50 208 19	0.82 14	0.0036
8- 1 max avg	1213.1 21	0.64 5	0,0060		$\beta = 5 \max$ $\delta = 6 \max$	269 20 850 50	0.65 7	0.0037
8-2 max avg	1238.8 20 441.1 9	11.11 17	0.104		avg β-7 max	283 20 1100 50	0.48 6	0.0029
6-3 max avg	1244.4 20 443.5 9	5.89 10	0.0556		avg β−8 max	386 21 1160 50	2.26 16	0.0186
8~ 4 max avq 8− 5 max	1279.3 20 458.2 9 1296 2 21	1.19 10	0.0116		avg 6-9 max avg	408 21 1190 50 420 21	4.1 3 2.60 16	0.0356
avg B= 6 max	465.3 9 1348.2 20	5.63 8	0.0558		β-10 max avg	1290 50 463 22	2.51 18	0.0248
avg β-7 max	487.4 9 1412.3 20	44.5 6	0.462		8-11 max avg	1400 50 511 22	2.32 19	0.0253
avg 8-8 max avg	514.7 9 1677.0 20 629 5 9	5.08 11	0.0557		8-12 max avg 8-13 max	538 22 1530 50	0.21 5	0.0024
B−9 max avq	2164.0 20 846.2 9	5.2 9	0.0937		avg 8-14 max	566 22 1600 50	6.7 5	0.0808
total B- avg	526.9 10	100.1 14	1.12		avg β-15 max	599 22 1840 50	0.39 8	0.0050
5 we	ak β's omitte	d:			avg β-16 max avg	1860 50 711 23	0.34 /	0.0051
م ت	(avg) = 328.9	, 210= 0.10%		e e	8-17 max avg	1960 50 758 23	3.7 3	0.0597
X-ray L X-ray Ka ₂	4.84 34.27890 2	0.25 6	≈0 0.0003		8-18 max avg	2040 50 791 23	0.19 6	0.0032
X-ray Ka _t X-ray KB	34.71970 2 39.3	0.87 5	0.0006		β-19 max avg A-20 max	2100 50 819 23	12.6 7	0.220
γ 5 γ 6	131.121 8 173.550 11	0.55 4	0.0015	ana an Taona an	8-21 max	863 23 2200 50	2.13 18	0.0392
ד י ד 8	241.966 12 266.551 14	0.43 6 0.49 6	0.0022		avg β-22 max	866 23 2380 50	0.54 16	0.0100
γ 10 γ 12	328.768 12 432.53 3	20.5 3 2.94 4	0.144 0.0271		avg β-23 max	947 23 2560 50	24.5 13	0.494
γ 15 γ 17 ~ 19	487.029 19 751.79 8 815 85 7	45.5 7 4.40 9	0.473		aýg 6-24 max	1029 23 2840 50	19.0 16	0.416
γ 19	867.82 14	23.0 D 5.63 8	0.104	•	avg otalβ- avg	840 30	12 4 101 5	0.295 1.80

(Continued)

TABLES OF RADIOACTIVE DECAY DATA 147

¹⁴¹Ba-¹⁴¹Ce

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
141 Ba β^- Decay	(18.27 m 7)	(Continued)		γ 80 γ 81	1345.27 25 1357.5 5	0.23 4 0.17 5	0.0067
X-rav L	4.65	1.00.25	æ0	y 82	1376.99 14	0.74 8	0.0218
X-ray Kaz	33.03410 2	2 1.95 16	0.0014	γ 83 γ 84	1405.59 25	0.29 5	0.0086
X-ray Kai	33.44180 2	2 3.6 3	0.0026	γ 85	1458.56 14	0.71 8	0.0222
x-ray KB v 1	3/.8 112.94 9	1.32 11	0.0011	γ 86	1501.82 21	0.33 5	0.0104
γ 2	162,96 12	0.47 5	0.0016	7 88 7 89	1550.55 19	0.33 4	0.0108
γ 3	180.50 9	0.52 5	0.0020	y 94	1653.95 12	0.79 7	0.0277
¥ 4 ¥ 7	276.99 8	24.6 16	0.145	γ 95 1 05	1682.35 10	1.41 11	0.0507
γ <u>9</u>	304.24 8	26.6 17	0.172	y 98	1735.6 4	0.18 3	0.0056
γ 10 γ 11	343.71 8	15.0 10	0.110	γ 99	1740.83 21	0.33 5	0.0123
γ 12	364.38 10	0.61 6	0.0048	γ 100 ~ 100	1795.85 18	0.51 6	0.0195
γ 13	381.31 22	0.121 25	0.0010	y 106	1990.3 3	0.19 3	0.0082
γ 14 γ 16	389.78 9 457.58 8	1.39 10	0.0116	γ 107	2026.56 23	0.40 5	0.0172
y 17	462.15 8	5.1 4	0.0498	y 111 y 112	2136.7 4	0.117 20	0.0053
γ 18 ~ 20	467.26 8	5.8 4	0.0576	y 115	2278.9 5	0.102 25	0.0050
y 20 y 21	524.20 20	0.43 6	0.0048	γ 116	2469.0 4	0.19 4	0.0102
γ 22	527.42 13	0.40 5	0.0045	28 v	eak y's omitt	ed:	
γ 25 γ 26	561.9 5	0.10 4	0.0012	E	$\gamma(avg) = 1252.$	0; ΣIγ= 1.73%	
y 27	572.09 19	0.27 4	0.0033				
γ 29 ~ 30	599.28 19	0.25 4	0.0032				
γ 30 γ 31	625.23 8	3.45 23	0.0460	• ¹⁴¹ La β^- Decay	(3.94 h 5)	I (min) = 0.10%
γ 32	636.05 20	0.30 5	0.0040	Feeds	¹⁴¹ Ce		
γ 33 γ 34	641.38 16 647.88 8	0.38 5 5.9 4	0.0052				
γ 35	670.04 24	0.19 4	0.0027	ß− 1 max	740 30		
γ 36 v 37	674.2 10	0.11 12	0.0016	A-2 max	239 12	0.120 10	0.0006
γ 3/ γ 38	685.7 6	0.14 6	0.0033	avg	373 13	2.61 18	0.0207
γ 39	687.8 7	0.11 5	0.0016	β-3 max	2430 30	07	2.00
γ 40 ~ #1	698.5 4 700 0 5	0.30 12	0.0044	total 8-	90/ 14	97	2.00
γ 42	704.80 14	0.32 4	0.0047	avg	948 15	99.99 18	2.02
γ 43	739.10 8	4.5 3	0.0712	13 8	eak A's omitt	• 64	
γ 45 γ 46	762.2 4	0.10 4	0.0016	E	$\beta(avg) = 125.$	4; ΣΙβ= 0.26%	
Y 47	778.2 5	0.11 4	0.0019	6			
γ 49 • 50	805.4 5	0.10 4	0.0018	γ 14	1354.52 9	2.62 18	0.0756
γ 51	831.72 9	1.60 12	0.0283	γ 19	1693.31 11	0.118 10	0.0043
γ 52 ~ 50	832.6 8	0.17 10	0.0030	25 w	eak y's omitt	ed:	
γ 54 γ 55	876.29 8	3.60 24	0.0029	8	$\gamma(avg) = 1678.$	7; $\Sigma I \gamma = 0.31\%$	
γ 56	880.6 3	0.21 5	0.0039				
γ 58 γ 59	908.8 6 929.47 10	0.13 5	0.0025				
γ 60	943.25 12	0.77 7	0.0154	• ¹⁴¹ Ce β^- Decay	(32.50 d 4)	I (min) = 0.10%
y 62	981.63 13	0.82 8	0.0172				
γ 64	1012.3 6	0.13 4	0.0028	Auger-L	4	16.3 9	0.0014
γ 65	1034.49 24	0.31 5	0.0069	Auger-K	29.4	1.6 5	0.0010
γ 66 γ 67	1040.4 7	0.10 5	0.0023	ce-L- 1	138.605 10	2.594 22	0.0414
γ 68	1094.0 3	0.23 5	0.0054	ce-M- 1	143.929 10	0.542 17	0.0017
γ 69 ~ 70	1160.8 5	0.25 10	0.0062	ce-MOb- 1	145.135 10	0.149 5	0.0005
y 71	1197.47 8	0.97 TT 4.9 4	0.0240	8-1	434 6 15	7	
y 72	1224.79 16	0.43 5	0.0113		129.6 6	70.5 6	0.195
γ 73 ~ 7/1	1235.5 4	0.15 4	0.0040	B-2 max	580.0 15	00 F -	
y 75	1273.64 19	0.54 7	0.0148	avg total A~	180.7 6	29.5 6	0.114
γ 76	1278.24 16	0.69 8	0.0189	avg	144.7 7	100.0 9	0.308
γ // γ 78	1309.1 7	0.25 12	0.0069				(Continued)
7 79	1323.72 10	1.00 8	0.0281	Į			

^{1 4 1} Ce-^{1 4 2} La

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h}
Y-ray 1	5	271	0 0003	~ 21	379 10 10	0 46 10	0 0037
X-Lay L X-Tay Ka.	35 55020 2	2	0.0003		417 9 3	0 38 0	0.0037
Y-ray Ka	36 02630 2		0.0037	23	425 03 6	5 0 11	0.0050
	30.02030 Z	2 0.9 4	0.0069	7 23	423.03 0	0 0 0 11	0.0451
K-ray Ko	40.7	3.30 13	0.0029	7 24	432.3 3	0,20 21	0.0090
7 1	145.440 10	48.4 4	0.150	7 25	434.4 4	0.30 7	0.0028
				7 20	440.1 3	0.21 /	0.0020
				7 27	457.30 20	0.39 10	0.0038
				7 28	4/3.40 20	0.30 /	0.0031
• 142 Ba β^- Decay	(10.70 m 10)	t (min	1 = 0.10%	1 7 29	488.3 5	0.11 8	0.0011
Foods	14210	- (,	7 30	513.3 5	0.23 10	0.0025
1 6603	La			7 32	537.5 5	0.11 8	0.0012
				7 33	556.3 3	0.30 /	0.0036
Auger-L	3.8	26 8	0.0021	11 7 34	590.7 3	0.25 /	0.0031
Auger-K	27.4	2.0 7	0.0012	7 <u>35</u>	599.84 8	1.6 3	0.0205
ce-K- 3	38,68 10	22 5	0.0177	7 36	604.2 3	0.32 9	0.0041
ce-L- 3	71.33 10	11 8	0.0161	r 3/	769.40 20	0.61 12	0.0099
ce-M- 3	76.24 10	2.3 19	0.0037	1 7 38	786.4 3	0.25 8	0.0042
ce-NOP- 3	77.33 10	0.6 5	0.0010	r 39	/92.2 4	0.21 8	0.0036
				7 40	823.4 3	0.41 10	0.0072
	740 400			γ 41 #2	840.23 /	3.0 /	0.0542
B- I max	740 100			7 43	894.90 10	11.0 20	0.210
avg	240 40	12.6 21	0.0644	γ 44	948.75 6	8.9 18	0.180
β−2 max	920 100			7 45	1000.86 5	/.8 16	0.167
avg	310 40	0.16 8	0.0011	γ 46	1032.8 3	0.48 10	0.0106
8- 3 max	1000 100			7 47	1078.48 5	9.3 20	0.213
avg	340 40	40 7	0.290	7 48	1093.62 6	2.2 5	0.0514
8- 4 max	1120 100			η γ 49	1122.6 3	0.30 7	0.0072
avg	390 50	18 4	0.150	7 50	1126.54 8	1.5 3	0.0367
b max	1330 100				1148.3 3	0.39 8	0.0096
avg	480 50	0.44 14	0.0045	7 52	1202.20 10	5.3 11	0.137
p-6 max	1390 100			7 53	1204.06 8	14 3	0.352
avg	510 50	0.30 7	0.0033	7 54	1283.4 5	0.15 8	0.0044
p ⁻ /max	510 50	0 74 47	0 0000		1379.90 10	3.4 /	0.0999
	1610 100	0./11/	0.00//	2 40	ak ale onitte		
	600 50	0 37 14	0 0007	2	(ax y = 695 1		
A- Q may	1770 100	0.3/14	0.0047	µ □ 1	(avg) - 005+1	. 219- 0.104	
2 7 Max	670 50	# 5 10	0 0656				
8-10 max	1770 100	4.0 10	0.0000				
avg	670 50	3.1 6	0.0442	• 142 La 8- Decay	(95 A m 18)	1 (min	1 = 0.10%
8-11 max	1900 100				(55.4 11 16)	. (, 0.10/0
avg	730 50	0.27 7	0.0042				
β−12 max	2050 100			Auger-L	4	0.191 17	≈0
avg	790 50	0.16 10	0.0027	Ce-K- 11	600.73 3	0,250 14	0.0032
β-13 max	2120 100						
avg	830 50	18 14	0.318	$\beta = 1 \max$	474 6		
total 8-		~~ ~ ~	0.070	avg	143.3 21	1.5 3	0.0046
avg	460 50	99 17	0.960	β -2 max	542 6		
				avg	167.1 22	0.10 6	0.0004
X-ray L	4.65	3.8 15	0.0004	B J max		0.00.00	
X-ray Kaz	33.03410 2	5.5 12	0.0039		700 6	0.20 11	0.0012
X-ray Ka _l	33.44180 2	10.2 21	0.0073		262 6 20	0 59 16	0 0022
X-ray KB	37.8	3.8 8	0.0030	8-5 may	800 6	0.50 10	0.0032
γ 1	69.4 3	0.36 6	0.0005	ava	263.5 24	0.58 19	0.0033
γ 2	76.8 6	0.89 13	0.0015	6-6 max	842 6		0.0005
γ 3	77.60 10	9.6 14	0.0159	avo	279.6 24	1.2 3	0.0071
7 4	122.89 8	0.93 19	0.0024	β-7 max	884 6		
7 5	154.22 9	0.52 11	0.001/	avg	296.4 24	1.5 3	0.0095
7 0	176 00 20	1 5 2	0.0004	β-8 max	904 6		
~ 9	216 20 10		0.0000	avg	304.2 24	4.3 5	0.0279
7 8. ∼ 9	270.50 10	0.27 7	0.0013	6-9 max	905 6		
7 10	231.52 4	10.1 21	0.0500	avg	304.6 24	1.7.3	0.0110
γ 11	242.70 20	0.16 8	0.0008	8-10 max	1047 6		
y 12	255.12 4	18 3	0.0967	avg	361.9 25	0.63 17	0.0049
γ 13	269.33 9	0.68 14	0.0039	B-11 max	1058 6		0 0 1
γ 14	283.9 3	0.18 8	0.0011	avg	JOD. 1 25	1.8 4	0.0140
γ 15	286.20 10	0.93 20	0.0056		382.1 25	25 "	0 0 20 2
γ 16	309.02 5	2.3 5	0.0149	A-13 may	JOZ+1 20 1517 K	4.J 4	0.0203
y 17	334.80 10	1.2 3	0.0089		560 3	1.36 24	0,0162
7 18	337.10 20	0.25 7	0.0018	8-14 may	1775 6	1.30 24	0.0102
γ <u>19</u>	346.7 5	0.14 8	0.0011	l avo	673 3	1.31 25	0.0188
γ 20	303.80 5	3.9 8	0.0303	,			(Continued)

14	12	La
----	----	----

Radiation Type	Energy (keV)	Intensity (%)	$\Delta(g extsf{rad}/\mu extsf{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
¹⁴² La β^- Decay	(95.4 m 18)	(Continued)		γ 44	1389.30 10	0.47 16	0.0140
0-15	1001 6			γ 45 γ 46	1402.20 20	0.21 11	0.0062
B-15 max avor	1821 6	8.1 7	0,120	γ 47	1445.5 3	0.16 11	0.0048
8-16 max	1850 6			γ 48 γ 49	1455.1 3	0.10 6	0.0033
avg A-17 max	706 3 1974 6	3.7 5	0.0556	γ 50	1516.30 20	0.47 16	0.0153
avg	761 3	20.1 19	0.326	γ 51	1535.5 3	0.26 11	0.0086
8-18 max	2119 6	24 5 24	0.070	7 52 7 53	1540.20 15	3.3 5	0.109
avg 8-19 max	2153 6	21.5 20	0.378	γ 54	1618.20 20	0.31 11	0.0109
avq	841 3	2.0 4	0.0358	γ 55 γ 56	1651.4 3	0.21 11 0.26 11	0.0074
8-20 max	2330 6	6 9 10	0 125	y 57	1722.90 15	1.7 3	0.0617
8-21 max	2513 6	0.9 (0	0.135	γ 58	1752.4 7	0.10 6	0.0039
avg	1004 3	2.1 5	0.0449	γ 59 γ 60	1768.0 5	3.3 5 0.21 11	0.0079
β=22 max avor	2864 6	0.87	0.0199	y 61	1771.0 5	0.21 11	0.0079
B=23 max	2981 6	0.0	0.0155	γ 62	1793.8 8	0.10 6	0.0040
avg A=24 mpm	1219 3	3.0 12	0.0779	γ 64	1817.1 6	0.10 6	0.0041
p-24 max avq	1634 3	5.2 17	0.181	γ 65	1885.4 7	0.58 16	0.0232
8-25 max	4517 6			r 65	1901.32 8	8./ 8 0.26 11	0.353
avg total 8-	1910 3	75	0.285	γ 68	1933.5 5	0.16 11	0.0065
avq	848 4	100 7	1.80	γ 69 γ 70	1948.2 4	0.52 16	0.0218
				γ 71	2004.20 15	1.05 22	0.0448
X-ray Kaı	34.71970	2 0.119 8	* 0	y 72	2025.50 14	1.36 22	0.0589
γ 1 ~ 2	106.1 4 174.1 4	0.16 11	0.0004	γ 13 γ 74	2038.70 20	1.10 22	0.0479
γ 3	367.30 20	0.10 6	0.0004	y 75	2055.17 7	2.9 4	0.129
γ 4	393.7 3	0.10 6	0.0009	7 76	2076.90 20	0.73 17	0.0325
γ 5 20 6	420.80 10	0.26 11	0.0024	γ 77 ~ 79	2086.10 20	0.42 16	0.0187
7 0 7 7	433.34 /	0.16 11	0.0039	y 79	2126.2 3	0.37 16	0.04/0
γ 8	532.00 20	0.16 11	0.0018	y 80	2139.30 20	0.58 16	0.0263
γ 9	578.09 4	1.36 22	0.0168	γ 81	2180.30 20	0.58 16	0.0268
γ 10 ~ 11	619.50 10	0.16 6	0.0021	γ <u>92</u> ~ 93	2187.20 10	5.8 8	0.271
y 11	861.57 7	2.0 4	0.0366	γ 84	2358.40 20	0.84 17	0.0422
γ 13	878.2 3	0.21 11	0.0039	γ 85	2364.4 3	0.47 16	0.0238
γ 14	894.85 4	9.4 12	0.179	γ 86	2397.72 10	16.3 18	0.831
γ 15 ~ 16	946.5 3	0.10 6	0.0021	γ 8/	2419.5 4	0.21 11 0 42 16	0.0108
γ 18 γ 17	991.2 3	0.10 6	0.0086	γ 89	2513.2 6	0.16 11	0.0084
γ 18	1006.70 20	0.26 11	0.0056	y 90	2532.3 7	0.10 6	0.0057
γ 19	1011.38 6	4.4 6	0.0939	y 91	2539.4 5	0.79 17	0.0426
$\gamma 20$	1039.2 3	0.10 6	0.0023	γ 42 ~ 03	2542.65 9	11.2 16	0.608
y 22	1061.80 20	0.16 11	0.0036	y 94	2666.80 15	1.9 3	0.107
γ 23	1070.3 3	0.16 11	0.0036	y 95	2672.6 4	0.21 11	0.0120
γ 24	1074.2 3	0.10 6	0.0024	γ 96	2782.3 4	0.31 11	0.0187
γ 25 γ 26	1088.90 15	0.26 11	0.0061	7 97	2800.8 4	0.84 22	0.03/6
y 27	1116.7 3	0.10 6	0.0025	7 99	2828.60 20	0.26 11	0.0158
y 28	1130.60 15	0.52 16	0.0126	γ 100	2970.0 7	0.79 17	0.0498
γ 29 N 30	1144.50 20	0.16 11	0.0038	7 101	2972.00 20	3.3 4	0.209
γ 30 γ 31	1174:3 3	0.16 11	0.0039	y 102	2999.90 20	0.52 16	0.0007
γ 32	1190.90 20	0.42 16	0.0107	y 104	3007.1 5	0.21 11	0.0135
y 33	1231.5 5	0.31 11	0.0083	y 105	3012.90`20	0.73 17	0.0472
γ 34 ~ 25	1233.11 8	2.0 4	0.0538	γ 106 ~ 107	3022.3 7 3034 30 20	0.10 6	0.0068
7 35 7 36	1264.7 3	0.10 6	0.0028	γ 108	3046.90 20	0.42 16	0.03/3
7 37	1270.1 4	0.10 6	0.0028	y 109	3075.9 3	0.16 11	0.0103
y 38	1288.0 3	0.10 6	0.0029	γ 1 10	3155.0 3	0.21 11	0.0141
7 39 7 //0	1323.20 20		0.0104	γ 111	3181.0 3	0.37 11	0.0213
γ 40 γ 41	1354.6 5	0.10 6	0.0030	y 113	3242.4 3	0.21 11	0.0145
γ 42	1362.95 5	2.4 4	0.0686	γ 114	3273.2 3	0.16 11	0.0110
γ 43	1373.6 7	0.21 11	0.0061	γ 115	3314.70 20	1.36 22	0.0964
							(Continued)

^{1 4 2} La—^{1 4 4} Ce

Radiation	Energy	Intensity	Δ (g-rad/	Radiation	Energy	Intensity	$\Delta(q-rad/$
Туре	(keV)	(%)	μCi-h)	Туре	(keV)	(%)	μCi-h)
<u></u>							
v 116	3401.9 3	0.31 11	0.0228	v 1	57.3650 1	0 11.8 17	0.0144
× 117	3459.30.20	0.37 16	0.0271	~ "	169.0 10	0.29 5	0.0011
	3612.10 20	0.89 22	0.0687	, , , , , , , , , , , , , , , , , , ,	216.0 10	0.21 3	0.0009
v 119	3632.70 20	1.15 22	0.0894	r 6	231.56 3	2.0 3	0.0099
v 120	3719.10 20	0.31 11	0.0250	x 7	293.262 21	42 4	0.262
y 121	3850.4 3	0.26 11	0.0215	7 8	338.0 10	0.29 4	0.0021
,				γ 9	350.59 5	3.4 5	0.0251
				γ 15	433.02 7	0.13 4	0.0012
				y 16	439.0 10	0.118 17	0.0011
- 1430 0- 0	(40.40.1.4)			γ 18	490.36 7	2.0 3	0.0206
• • • Pr β^- Decay	(19.13 h 4)	1 (min) = 0.10%	y 22	587.28 15	0.24 5	0.0030
%β-	Decay = 99.9836	8		y 24	664.55 10	5.2 8	0.0743
%EC	Decav = 0.0164	8		y 26	721.96 11	5.1 7	0.0788
		•		y 31	880.39 13	0.92 13	0.0173
				γ 38	1102.98 18	0.37 7	0.0086
8- 1 max	583 3						
avg	181.5 10	3.7 5	0.0143	26 we	ak y' s omitt	ed:	
₿~~2 max	2159 3			Εγ	(avg) = 610.	6: $\Sigma I \gamma = 0.89\%$	
avg	832.8 12	96.3 5	1.71		,		
total B-	000 5 40						
avg	808.5 13	100.0 /	1. /2				
1 w	eak 8's omitte	ed:		• ¹⁴³ Pr β^- Decay	(13.56 d 2)	l (min) = 0.10%
E	8 (avg) = 19.2	2; ΣI8= 0.03%					
				8- 1 may	935.3 19		
v 2	1575.75 5	3.7 5	0 124		315.6 8	100	0.672
, -	(3)3, (3) 5	5. 5	0.124	4.9	5.550 0		0.072
1 w	eak γ's omitte	ed:					
E	γ (avg) = 508.8	3; ΣΙγ= 0.02%					
				a 143 pm EC Death	(265 d 10)	1 /min	0 10%
				• Phil EC Decay	(205 0 10)	1 (1010)	/ - 0.10%
				1			
• ¹⁴³ Ce β^- Decay	(33.0 h 2)	L (min) = 0.10%	Auger-L	4.23	72 4	0.0065
Feeds	143pr			Auger-K	30.5	6.6 20	0.0043
1 6643				ce-K- 1	698.41 4	0.141 10	0.0021
Auger-L	4	59 8	0.0051	X-ray L	5.23	12.7 18	0.0014
ce-K- 1	15.3744 12	2 66 10	0.0215	X-ray Kap	36.8474	3 21.7 10	0.0170
Auger-K	29.4	5.8 19	0.0036	X-ray Ka	37.3610	3 39.6 18	0.0315
ce-L- 1	50.5302 12	9.3 14	0.0100	X-ray KB	42.3	15.1 7	0.0136
ce-M- 1	55.8540 13	2.0 3	0.0023	r 1	741.98 4	38.3 24	0.605
ce-NOP- 1	57.0605 14	0.53 8	0.0006				
ce-K- 6	189.57 3	0.20 4	0.0008				
ce-k- /	251.2/1 21	2.20 21	0.0118	1			
ce-L- /	286.427 21	0.34 4	0.0021	• 144 Ca 8− Dacav	294 2 4 2)	1 (min)	- 0 10%
					204.3 U 3)	1 (1111)	
8− 1 max	57 4			% Feed	ing to Pr (17.28 m) = 98.	5/ 19
avg	14.7 11	0.38 5	0.0001	% ⊢eed	ing to 144Pr (7.2 m) = 1.43 ′	19
6-2 max	295 4						
avg	83.6 13	0.51 8	0.0009	Auger-I.	4	9.7 6	0.0008
	517 4 150 3 15	1 / 2 17	0 0000	ce-K- 3	11.441 10	0.64 6	0.0002
avg	158.2 15	1.42 17	0.0048	ce-L- 1	26.785 20	1.12 10	0.0006
p = 4 max	175 0 15	0.00 (0.0045	Auger-K	29.4	0.79 24	0.0005
avg	175.0 15	0.39 0	0.0015	ce-MNO- 1	32.109 20	0.31 3	0.0002
	733 4 337 # 16	12 1 14	0.0610	ce-L-2	34.10 3	0.82 11	0.0006
A- 6 may	110/ /	12.1 14	0.0012	ce-K- 5	38,115 5	3.4 3	0.0028
	384 6 17	49 5	6 202	ce-NNO- 2	39.42 3	0.23 3	0.0002
8- 7 max	1398 4	40 5	0.375	ce-L- 5	73.271 5	0.47 4	0.0007
ava ava	507.5 17	38 11	0.411	ce-MNO- 5	78.595 5	0.125 9	0.0002
total 8-				ce-K- 7	91.553 5	5.3 4	0.0104
ava	405.7 19	101 13	0.873	ce-L- 7	126.709 5	0.73 6	0.0020
¢.				ce-MNO-7	132,033 5	0.195 13	0.0005
3 we	eak β's omitte	d:					
E ¢	8 (avg) = 51.7	: ΣΙβ= 0.19%		β−1 max	184.7 20		
				avg	50.2 6	19.6 13	0.0210
X-rav L	5	9.6 19	0.0010	"β-2 max	238.1 20	. . .	
X-ray Kas	35.55020 2	18 3	0.0134	avg	66.1 6	4.7 4	0.0066
X-ray Ka.	36.02630 2	32 5	0.0249	8-3 max	318.2 20	77 0 46	0 450
X-ray KB	40.7	12.2 18	0.0105	avg	91.1 7	17.2 15	0.150
-			[total p-	82 0 7	101 5 21 .	0.177
				avq.	02.00 /	10145 21 1	0.177
							(Continued)

TABLES OF RADIOACTIVE DECAY DATA

151

¹⁴⁴Ce-¹⁴⁶Pm

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	$\Delta(extbf{g-rad}/ \mu extbf{Ci-h})$
¹⁴⁴ Ce β^- Decay	(284.3 d 3)	(Continued)		● ¹⁴⁴ Pm EC Decay	(363 d 14)	l (min)	= 0.10%
X-ray L γ 1 X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 2	5 33.620 20 35.55020 2 36.02630 2 40.7 40.93 3	1.58 24 0.283 25 2.43 15 4.5 3 1.67 10 0.39 5	0.0002 0.0002 0.0018 0.0034 0.0015 0.0003	Auger-L Auger-K ce-K-2 ce-K-4 ce-K-6	4.23 30.5 433.21 3 574.44 3 652.921 20	73 4 6.8 21 0.466 17 0.561 18 0.425 13	0.0066 0.0044 0.0043 0.0069 0.0059
γ 5 γ 7 3 we Βγ	30.106 - 5 133.544 5 ak γ 's omittee (avg) = 67.3	10.60 12 10.8 7 1: ; $\Sigma T \gamma = 0.13\%$	0.0307	$\begin{array}{c} X - ray L \\ X - ray K\alpha_2 \\ X - ray K\alpha_1 \\ X - ray K\beta \\ \gamma 1 \\ \gamma 2 \\ \hline \gamma $	5.23 36.8474 3 37.3610 3 42.3 301.70 20 476.78 3 592.40 20	12.9 18 22.2 8 40.5 13 15.4 6 0.18 4 42.0 8 0 199 20	0.0014 0.0174 0.0322 0.0139 0.0012 0.426
• ¹⁴⁴ Pr β^- Decay	(17.28 m 3)	1 (min)	= 0.10%	7 4 7 4 7 5 7 6 7 7	618.01 3 694.00 20 696.490 20 778.57 6	98.6 10 0.55 10 99.492 15 1.51 5	1.30 0.0081 1.48 0.0251
6- 1 max avg 6- 2 max avg β- 3 max	810 3 266.6 12 2300 3 894.4 13 2996 3	1.08 5 1.17 5	0.0061 0.0223	γ 8 2 we Βγ	814.14 6 ak γ 's omitte (avg) = 897.6	0.55 3 d: ; ΣΙγ= 0.04%	0.0095
avg total 8- avg	1221.4 14 1207.2 15	97.74 10 100.00 13	2,54 2,57	• ¹⁴⁵ Pm EC Decay	(17.7 y 4)	l (min)	= 0.10%
5 ¥e Eß	$ak \beta's omitted (avg) = 369.2;$	ΣIβ= 0.01%		%α De	ecay = 2.8E-7		
γ 4, γ 9, γ 11 10 we Βγ	696.490 20 1489.15 5 2185.70 6 ak γ's omitted (avg)= 1058.6;	1.48 6 0.300 13 0.77 4 : : $\Sigma I \gamma \approx 0.02\%$	0.0220 0.0095 0.0360	Auger-L ce-K- 1 ce-K- 2 Auger-K ce-L- 1 ce-L- 2 ce-M- 1 ce-MOP- 1	4.23 23.63 10 28.83 10 30.5 60.07 10 65.27 10 65.62 10 66.88 10	82 4 2.31 14 7.1 5 6.7 20 3.34 19 1.73 25 0.76 5 0.201 13	0.0074 0.0012 0.0043 0.0043 0.0043 0.0024 0.0011 0.0003
 ¹⁴⁴ Pr IT Decay %IT Decay Feeds ¹ %β⁻ Decay 	(7.2 m 3) ecay = 99.94 4 44 Pr (17.28 m) ecay = 0.06 4	l (min)	= 0.10%	ce-M- 2 ce-NOP- 2 X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray K8	70.82 10 72.08 10 5.23 36.8474 3 37.3610 3 42.3	0.37 7 0.103 18 14.5 20 21.7 7 39.7 12 15.1 5	0.0006 0.0002 0.0016 0.0171 0.0316 0.0136
Auger-L ce-K- 1 Auger-K ce-L- 1 ce-M- 1	4 17.04 3 29.4 52.20 3 57.52 3	68.1 22 33.4 7 2.8 9 50.2 7 12.5 3	0.0059 0.0121 0.0018 0.0558	γ 1 γ 2	67.20 10 72.40 10	0.69 4 2.31 16	0.0010 0.0036
ce-NOP- 1 X-ray L	58.73 3 5	3.83 11 11.1 16	0.00133	• ¹⁴⁶ Pm EC Decay %EC 1 See al	(2020 d 18) Decay = 63.7 20 so 146 Pm β^- D	l (min)) lecay	= 0.10%
X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ 1 we Βγ	35.55020 2 36.02630 2 40.7 ak γ's omitted (avg) = 59.0	8.7 4 15.9 6 5.97 23 $\Sigma \Gamma \gamma = 0.08\%$	0.0066 0.0122 0.0052	Auger-L Auger-K ce-K- 2 ce-L- 2	4.23 30.5 410.33 20 446.77 20	46 4 4.3 14 0.80 4 0.134 6	0.0042 0.0028 0.0070 0.0013
				X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 1 γ 2 γ 3 γ 4	5.23 36.8474 3 37.3610 3 42.3 146.2 13 453.90 20 589.0 10 735.90 20	8.2 13 13.9 10 25.4 18 9.7 7 0.21 4 62.7 20 0.58 9 22 3	0.0009 0.0109 0.0202 0.0087 0.0006 0.606 0.0072 0.344

¹⁴⁶Pm—¹⁴⁸Pm

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
 ¹⁴⁶ Pm β Decay %β See a 	7 (2020 d 18) Decay = 36.3 2 Iso ¹⁴⁶ Pm EC [l (min 0 Decav) = 0.10%	● ¹⁴⁷ Pm β ⁻ Decaγ Feeds	γ (2.6234 γ 2) : ^{1 4 7} Sm	l (min)	= 0.10%
Auger-L ce-K+ 2	4.53 700.30 10	0.103 9 0.144 9	≈0 0.0021	β− 1 max avg	224.7 4 61.96 12	99.9942 2	0.132
β−1 max avg 8−2 max	162 3 43.5 9 795 3	2.2 4	0.0020	 ¹⁴⁷Sm α Decay 	(1.06E11 y 2)	l (min)	= 0.10%
avg total 8-	259.9 12	34.1 19	0.189	α 1	2247.6 15	100	4.79
avg ~ 1	240.0 14	30.3 20	0.0207				
y 2	747.13 10	36.1 20	0.575	● ¹⁴⁸ Pm β [−] Decay	/ (5.37 d 1)	l (min)	= 0.10%
• 147 N.1 0- Deca	(10.00 + 1)			Auger-L ce-K- 3	4.53 503.44 3	0.130 9 0.182 7	≈0 0.0019
Feeds	(10.98 d 1) ¹⁴⁷ Pm	i (min) = 0.10%	8-1 max avg	406 9 120 3	1.36 4	0.0035
Auger-L Auger-K	4.38 31.5	41.6 23 3.7 12	0.0039 0.0025	β-2 max avg β-3 max	340 4 1040 9	33.3 8	0.241
ce-K- 2 ce-L- 1	45.922 20 75.30 5 83.678 20	48.7 17 0.31 4 7.11 14	0.0005	avg 6-4 max avg	356 4 1914 9 728 4	0.235 9 9.4 3	0.0018 0.146
ce-M- 1 ce-NOP- 1 ce-K- 5	89.457 21 90.776 21 274.227 18	1.52 3 0.431 9 0.102 7	0.0029 0.0008 0.0006	β- 5 max avg total β-	2464 9 975 4	55.5 11	1.15
ce-K- 10	485.832 22	0.183 11	0.0019	avg	726 6	100.0 14	1.55
β- 1 max avg β- 2 max	209.9 9 57.6 3 364.8 9	2.22 9	0.0027	⊃we Eβ	$ax \beta's omitte(avg) = 191.$	ed: 7; ΣΙβ= 0.23%	
avg 8-3 max avg	106.1 3 406.5 9 119.9 3	15.3 8 0.81 7	0.0346	γ 3 γ 4	550.27 3 592.83 3	22.0 6 0.353 11	0.258 0.0045
β - 4 max avg	485.3 9 146.7 4 804 7 9	0.58 16	0.0018	γ 5 γ 7 γ 8	611.26 3 874.18 3 896.42 3	1.02 3 0.235 9 0.981 24	0.0133 0.0044 0.0187
p $maxavgtotal B^-$	264.0 4	81.1 15	0.456	γ 10 γ 15	914.85 3 1465.12 3	11.5 3 22.2 5	0.223 0.693
avg 1 we	ak β's omitte	ed:	0.497	13 we Ey	ak γ 's omitte (avg) = 1293.9	ed: 9; ΣΙγ= 0.30%	
Еβ	(avg) = 59.2	2; ΣΙβ= 0.07 %		•	•		
X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 1 γ 2	5.43 38.1712 5 38.7247 5 43.8 91.106 20 120.48 5	7.9 11 5 13.0 6 5 23.6 11 9.1 5 28.0 5 0.40 5	0.0009 0.0105 0.0194 0.0084 0.0543 0.0010	¹⁴⁸ Pm IT Decay %IT D Feeds See als	(41.3 d 1) hecay = 4.2 6 148 Pm (5.37 d so 148 Pm β^- D	l (min)) . Jecay (41.3 d)	= 0.10%
7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 7 12 7 14	196.64 4 275.374 15 319.411 18 398.155 20 410.48 3 439.895 22 489.24 3 531.016 22 594.80 3 685.90 4	0.204 18 0.80 5 1.96 12 0.87 6 0.140 9 1.20 9 0.154 9 13.1 8 0.266 18 0.81 6	0.0009 0.0047 0.0133 0.0074 0.0012 0.0113 0.0016 0.149 0.0034 0.0119	Auger-L ce-K-2 Auger-K ce-L-1 ce-N-1 ce-NOP-1 ce-L-2 ce-MNO-2	4.38 30.52 10 31.5 54.07 10 59.85 10 61.17 10 68.27 10 74.05 10	4.9 5 2.8 4 0.21 8 3.1 5 0.87 13 0.24 4 0.39 6 0.106 16	0.0005 0.0018 0.0001 0.0035 0.0011 0.0003 0.0006 0.0002
2 we Βγ	ak γ's omitte (avg)= 616.6	d: ; ΣΙγ= 0.07%		X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 2	5.43 38.1712 5 38.7247 5 43.8 75.70 10	0.94 15 5 0.73 11 5 1.32 20 0.51 8 0.93 14	0.0001 0.0006 0.0011 0.0005 0.0015

¹⁴⁸Pm—¹⁴⁹Nd

Radiatio Type	on Energy (keV)	Intensity (%)	$\Delta(extbf{g-rad}/ \mu extbf{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
148 0 0-) 0.10%				
• • • • • • • • β	Decay (41.3 d 1)	I (min) = 0.10%	ce-L- 2	51.455 20	0.223 14	0.0002
	$\%\beta^{-}$ Decay = 95.8	6			51.823 15	2.21 21	0.0024
	See also 148 Pm IT	Decay (41.3 d)		Ce-L- 4	60.90 3	1.7 4	0.0025
)		69 127 18	17 1 20	0.0008
hugor-	T 11 50	5 2 3	0 0005		73 69 3	0.30 0	0.0231
Ruger-	L 4.JJ	J.Z J 0 // 6 15	0.0003	Ce-m- 4	72.00 3	0 106 28	0.0008
auger-	1 51 65 5	0.40 13	0.0003		74.00 3	0.100 24	0.0002
ce-n-	1 00 70 3		0.0041		00 570 15	0.10 14	0.0003
Ce-L-	-1 96 76 3		0.0003	Ce-L- 8	105 992 10	262	0.0006
ce-HNU	2 10 90 10		0.0003	Ce-L- 10	110 692 10	2.0 5	0.00.39
Ce-K-	2 142.00	0.234	0.0001	Ce-K- 10	110.032 10	0.55 7	0.0010
	3 280 37 3		0.0008		112 001 15	0 157 19	0.0015
Ce-K-	7 367.24	0.107 4	0.0008	Ce-K- 19	103.051 0	0.15/10	0.0011
CO-K-	11 503 44 3	0 78 3	0.0084	C = K = 20	146 813 9	0 100 11	0.0003
CO-T-	11 542,53	0 1 30 5	0 0015		153 744 9	0.100 11	0.0000
Ce-K-	16 583,14 3	0.527 17	0.0065	$Ce^{-K} = 27$	162 964 10	0 kh q	0.0009
Ce-K-	18 678.87 7	0.140 5	0 0020	Ce-K=22	166 123 8	1 4 3	0.0015
<i>CC</i> - <i>N</i> -	10 010+01 5	0.140 5	0.0020	ce = 19	191 212 0	0 109 10	0.0135
				Ce-L- 15	105 034 0	2 17 22	0.0004
8-1	max 407 9				203 870 8	2.1/22	0.0090
i	avg 1203	54.0 7	0.138		203.079 0	0.03 3	0.0020
8-2	max 506 9			Ce-HNO-23	209.000 10	0.177 13	0.0008
	avg 154 4	18.6 3	0.0610		222.000 9	0.52 0	0.0025
β− 3 i	max 695 9			$Ce^{-R} = 32$	224.301 0	0 30 4	0.0008
;	avg 222 4	22.0 4	0.104		232.790 0	0.39 4	0.0019
ß− 4 i	max 1007 9			Ce-HN0-20	230.309 10	0.109 11	0.0008
ä	avg 343 4	0.92 22	0.0067 [
total	B-		j	8-1 max	377 4		
i	avg 152 4	95.5 9	0.310	avg	110.0 14	0.154 11	0.0004
				8-2 max	455 4	0 0 2 6	0 0007
X-ray	L 5.64	1.07 14	0.0001	8−3 max	1034 4	0.92 0	0.0027
X-ray	Kaz 39.5224	3 1.67 8	0.0014	avo	354.7 17	19.2 14	0.145
X-ray	Kα ₁ 40.1181	3 3.03 14	0.0026	8-4 max	1151 4		
X-ray	KB 45.4	1.17 6	0.0011	avg	402.4 17	24.0 19	0.206
γ 1	98.48 3	2.47 5	0.0052	8−5 max	1264 4		
γ 2	189.63	1.10 3	0.0045	avg	449.2 17	0.94 9	0.0090
y 3	288.11 3	12.56 16	0.0771	8-6 max	1292 4		
y 5	311.63	3.92 6	0.0260	avg	461.1 17	3.9 5	0.0383
y 6	362.09 3	0.178 18	0.0014	8- 7 max	1329 4		
7 ק	414.07 3	8 18.66 24	0.165	avg	476.6 17	0.55 14	0.0056
γ 8	432.78 3	5.35 9	0.0493	8- 8 max	1419 4		
y 9	460.57 3	0.418 19	0.0041	avo	514.7 17	18.9 17	0.207
γ 10	501.26 3	6.75 10	0.0720	8- 9 max	1478 4		
y 11	550.27	94.9 12	1.11	avg	539.8 18	26.4 22	0.304
γ 12	553.24	0.40 4	0.0047	6-10 max	1500 4		
γ 13	571.95 3	0.214 10	0.0026	avo	549.5 18	3.0 13	0.0351
γ 14	599.74	12.54 17	0.160	total 8-			
γ 15	611.26	5.48 11	0.0714	avo	456.4 18	98 4	0.953
y 16	629.97	89.0 9	1.19	,			
γ 18	725.70	32.8 5	0.508	2 we	ak B's omitte	ed:	
γ 19 ~ 20	915.33 3	3 17.17 25	0.335	ES	(avg) = 39.	5; ΣIB= 0.02%	
¥ 20	1013.01	20.3 3	0.430				
	3 weak vis omit	ted:		X-ray L	5.43	6-6 9	0,0008
	$E_{\gamma}(aya) = 710$. 8. STr= 0. 19%		X-ray Kga	38, 1712	5 9 1 6	0.0074
	2,(4,9)	,		X-ray Kg.	38.7247	5 16 5 11	0.0136
				X-ray KB	43. R	6.4 5	0.0059
				× 2	58,883 20	1.51 8	0.0019
				· <u> </u>	74,33 3	1.25.20	0.0020
● ¹⁴⁹ Nd β ⁻	Decay (1.73 h 1)	l (min) ≈ 0.10% (v 5	74.66 10	1.0 3	0.0016
1	Feeds ¹⁴⁹ Pm		j	y 6	75.74 4	0.33 11	0.0005
				' × Ř	97.007 15	1.52 13	0.0031
				y 10	114, 321 14	18.8 21	0.0457
Auger-1	L 4.38	34.5 22	0.0032	v 11	116.93 3	0.117 23	0-0003
ce-K-	2 13.699 2	0 1.41 9	0.0004	y 12	122.416 14	0.231 25	0,0006
ce-L-	1 22.57 3	4.8 3	0.0023	1 y 13	126,630 19	0.114 13	0.0003
ce-M-	1 28.35 3	1.10 7	0.0007	→ 15	139.210 14	0.48 5	0.0014
ce-K-	4 29.15 3	3.7 6	0.0023	v 16	155, 976 10	6.0 7	0.0200
ce-K-	5 29.48 10	0.49 16	0.0003	v 17	177, 931 10	0.167 14	0.0200
ce-NOP	- 1 29,67 3	0.361 24	0.0002	v 19	188,640 0	1.90.74	0.0000
ce-K-	6 30.56 4	0.9 4	0.0006	2 20	102 027 0	1077 24 0 50 7	0.0000
Auger-1	K 31.5	2.6 9	0.0018) , 20	1766021 7	v	(Continued)

¹⁴⁹Nd-¹⁵¹Pm

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	Δ (g-rad/ μ Ci-h)
γ 21 γ 22 γ 23	198.928 9 208.148 10 211.307 8	1.44 16 2.9 4 27.2 19	0.0061 0.0129 0.122	● ¹⁵¹ Pm β ^{-−} Decay Feeds	(28.40 h 4) ^{1 5 1} Sm	۱ (min) = 0.10%
γ 24	213.946 17	0.41 5	0.0019				
γ 25 26	226.846 21	0.16 4	0.0008	ce-MNO- 1	3.098 4	50.8 25	0.0034
γ 26 	240.218 8	3.9 4	0.0202	Auger-L	4.53	27.5 15	0.0026
¥ 30	243.099 8	1.03 12	0.0054	ce-t- 2	17,943 20	1.49 14	≈0 0.0006
γ 31	267.692 9	6.0 7	0.0344	ce-K- 7	18.053 14	10.0 9	0.0038
γ 32	270.165 8	10.6 12	0.0610	ce-K- 8	19.000 14	5.7 6	0.0023
γ 33	273.25 4	0.23 5	0.0013	ce-K- 9	22.884 16	1.99 22	0.0010
γ 34 25	275.445 13	0.60 12	0.0035	ce-MNO-2	23.957 20	0.43 4	0.0002
γ 3⊃ γ 36	276.960 19	0.32 7	0.0019	Ce-K- 10	27.41 7	0.02 3	0.0004
γ 30 γ 37	288.192 12	0.67 8	0.0037	Auger-K	32.6	2.2 7	0.0003
γ 38	294.807 12	0.58 7	0.0036	ce-MNO- 3	33.43 5	0.188 8	0.0001
γ 39	301.133 16	0.38 4	0.0024	ce-K- 16	53.183 6	3.7 3	0.0042
γ 40	310.982 14	0.52 5	0.0034	ce-K- 18	55.099 6	0.290 21	0.0003
γ 41 τ #2	326.556 11	4.7 5	0.0324	Ce-L=7	57.150 14	1.54 15	0.0019
γ 42 γ 43	341.833 23	0.18 9	0.0014	ce-t- 8	58,097 14	4.5 4 0.82 8	0.0056
γ 44	360.055 20	0.163 14	0.0013	ce-L- 9	61.981 16	0.32 4	0.0004
γ 45	366.637 15	0.66 8	0.0052	ce-11 NO - 7	63.164 14	0.42 4	0.0006
γ 46	384.691 18	0.33 4	0.0027	ce-MNO- 8	64.111 14	0.223 20	0.0003
γ 47	423.554 10	9.4 10	0.0849	Ce-L- 10	68.482 18	0.67 6	0.0010
γ 48 ~ 50	443.550 12	1.50 16	0.0141		74.496 18	0.195 17	0.0003
γ 50 γ 51	540.510 10	7.7 8	0.0012	ce-K- 31	92.451 8	0.286 21	0.0010
γ 52	556.43 5	1.2 5	0.0139	ce-K- 33	96.337 11	0.102 16	0.0002
γ 55	630.238 21	0.220 25	0.0030	ce-L- 20	97.102 6	0.65 5	0.0013
γ <u>56</u>	635.482 25	0.112 13	0.0015	ce-MNO-16	98.294 6	0.146 11	0.0003
γ 57 ~ 59	654.831 14	7.3 8	0.102	ce-MNO-20	103.116 6	0.180 13	0.0004
7 50 ~ 59	696 266 25	0.103 12	0.0015	Ce-K = 42	120.931 15	0.59 4	0.0015
y 71	808.834 22	0.169 19	0.0025	ce-K- 44	121.55 5	0.30 3	0.0003
Y 77	923.876 25	0.114 13	0.0022	ce-K- 46	130.325 9	1.10 7	0.0030
γ 81	979.02 4	0.112 13	0.0023	ce-K- 55	162.176 8	0.329 24	0.0011
γ 83	1022.78 3	0.120 13	0.0026	ce-L- 46	169.422 9	0.173 12	0.0006
y 9/	1234.12 5	0.29 3	0.0077	Ce - k = - 70	229 270 11	0.145 15	0.0006
57 w	eak v 's omitte	a :		ce-K- 99	293.247 6	0.211 11	0.0005
E	$\gamma(avg) = 634.0$; ΣIγ= 1.58%					0.0015
				8-1 max	224 10		
				avg	62 3	0.159 15	0.0002
- 1495	/			β−2 max	235 10		
• • • • • Pm β^- Deca	ay (53.08 h 5)	l (mir	n) = 0.10%	A-3 may	301 10	1.04 6	0.0014
				avq	85 4	0.32 4	0.0006
Auger-L	4.53	0.287 24	≈0	β- 4 max	310 10		
Ce-L- 1	239.07 5	0.135 21	*0	avg	88 4	2.35 14	0.0044
Cen y	237.01 5	0.244 10	0.0012	β 5 max	365 10	6 2 4	0 0440
0- 1 maw	100 #			8-6 max	414 10	0.2 4	0.0140
p i max ava	189 4 51.4 12	0.126.19	0 0001	avg	122 4	1.15 8	0.0030
8-2 max	785 4	0.120 10	0.0001	β- 7 max	447 10		
avg	256.1 16	3.39 22	0.0185	avg	133 4	3.16 17	0.0090
8- 3 max	1071 4			β^{-8} max	524 10	0 205 14	0 0007
avg	369.0 17	96.23 25	0.756	avg 8−9 max	667 10	0.205 14	0.0007
avg	364.2.17	100.0 4	0.776	avg	212 4	0.75 15	0.0034
				β-10 max	698 10		
7 .	eak 8's omitted	1:		avg	223 4	0.44 4	0.0021
B	β (avg) = 133.4;	; ΣIβ= 0.25%		B-11 max	742 10		0 0363
			1	B-12 may	792 10	/.14	0.0303
X-ray Ka ₁	40.1181 3	0.117 9	≈ 0	avg	259 4	1.95 11	0.0108
γ 9	285.90 5	3.10 20	0.0189	8-13 max	843 10		
y 21	859.4 5	0.102 17	0.0019	avg	278 4	42.7 18	0.253
26 w	eak r's omitted	l .		8-14 max	864 10 297 4	2 22 10	0 0 0 0 0 4
E	y(avg) = 598.3;	$\Sigma I \gamma = 0.30\%$		8−15 max	881 10	3.33 17	0.0204
				avg	293 4	1.85 14	0.0115
			1	۲			

¹⁵¹Pm—¹⁵²Eu

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
 151 Pm 8~ Decen	(28 40 h 4)	(Continued)		~ 130		1 5 2 1 1	0.0100
Fill p Decay	(20.40 // 4/	(Continued)		1 7 130 n 132	440.000 11	1.5511	0.0144
				γ 132	445.093 10	4.1 3	0.038/
8-16 max	885 10			7 134	431.420 20	0.300 22	0.0029
avo	295 4	0.19 7	0.0012	$ \begin{array}{c} \gamma & 140 \\ 1 & 155 \end{array} $	490.30 3 516 35 6	0.120 11	0.0013
8-17 max	979 10			7 153	565 01 5	0.202 10	0.0022
avq	332 4	2.42 17	0.0171	Y 102	570 07 7	0.30 3	0.0044
8-18 max	1020 10			7 105	636 23 5	1 47 11	0.0014
avq	348 4	1.43 20	0.0106	~ 180	654 25 7	0 250 10	0 0035
8-19 max	1020 10			v 185	668.70 20	0.36 5	0.0052
avg	348 4	8.5 7	0.0630	1 1 86	669.20 20	0.29 5	0.0041
8−20 max	1083 10			y 187	671.30 6	0.93 7	0.0133
avg	374 4	3.3 8	0.0263	190 y 190	704.22 9	0.353 25	0.0053
B-21 max	1118 10			1 y 191	709.29 6	0.149 11	0.0022
avg	388 4	2.7 13	0.0223	y 192	712.02 8	0.105 8	0.0016
8-22 max	1188 10			y 194	717.75 9	4.1 3	0.0630
avg	417 5	10 3	0.0888	197 y	736.13 10	0.49 4	0.0076
total B-	000 F			γ 199	752.83 10	1.33 9	0.0213
avg	278 5	102 4	0.001	γ 202	769.10 9	0.110 24	0.0018
11		~ . .		γ 203	772.80 11	0.96 7	0.0158
11 10	dx B'S UMITT(avg) = 101	eu: 2. 570- 0 220		γ 204	785.07 8	0.229 19	0.0038
ър	(avg) - 191.	3; 21p~ V.32M		γ 207	807.91 6	0.53 8	0.0091
				γ 209	817.650 20	0.17 4	0.0030
X-ray L	5.64	5.6 8	0.0007	γ 212	848.67 7	0.300 22	0.0054
γ 2	25.680 20	0.94 8	0.0005	γ 216	877.69 11	0.101 8	0.0019
X-ray Kaz	39.5224	3 8.1 4	0.0068	γ 2 28	948.71 6	0.36 3	0.0074
X-ray Ka _l	40.1181	3 14.6 7	0.0125	162		.	
X-ray KB	45.4	5.7 3	0.0055	102 We	ak y's omitte	4 5 T 4 36 Ø	
γ <u>6</u>	62.903 16	0.218 19	0.0003		(avg) = 420.0	; 21y= 4.30%	
y 7	64.887 14	1.97 18	0.0027]]			
γ 8 2 0	65.834 14	1.1/11	0.0016				
7 9	59.718 15	0.48 5	0.0007	11			
y 10	70.219 18	0.211 18	0.0003	II ● ¹⁵¹ Sm β ⁻ Decay	(90 y 6)	l (min	a) = 0.10%
7 14	98.04 3	0.37 4	0.0008				
7 10 ~ 19	101 077 6	2.00 19	0.0000	huger-L	4.69	0.48 11	×0
7 10 ▼ 20	101.933 6	3 55 25	0.0028	ce-L- 1	13.488 6	0.59 13	0.0002
y 20 y 31	139.285 8	0.51 4	0.0015	ce-MNO-1	19.740 6	0.20 4	R 0
7 33	143, 171 11	0.218 17	0.0007				
· 7 36	147.55 3	0.149 11	0.0005	0- 1	5 h c c		
y 40	156.18 5	0.151 15	0.0005		24.0 0 12 06 16	0 0 0 6	0 0003
γ 41	162.950 20	0.89 8	0.0031	8-2 may	76 1 6	V.00 U	0.0003
γ 42	163.591 14	1.63 12	0.0057		19,68 16	99.12 6	0.0415
γ 43	167.765 15	8.8 7	0.0314	total 8-			010415
γ 44	168.38 5	0.92 8	0.0033	ava	19.63 16	100.00 9	0.0418
γ 45	176.54 3	0.87 8	0.0033				
γ 46	177.159 9	3.87 24	0.0146				
γ 47	186.603 14	0.169 16	0.0007	X-ray L	5.85	0.11 3	≈0
γ 50	201.959 8	0.94 7	0.0041				
γ 51	204.15 3	0.131 11	0.0006	l ve	ak y's omitte	a: 	
γ 55 Γ	209.010 8	1.79 1.2	0.0080	57 B	$\{avg\} = 21.5$	217 = 0.03	
γ 51 1 CO	227.204 17	0.34 4	0.001/				
7 60 ~ 63	232.42 3	1.05 10	0.0052				
y 63	230.00 20	0.103 20	0.0008				
Y 04	230.10 20	0.52.10	0.0010	• ¹⁵² Eu EC Decay	(13.6 y 2)	I (min) = 0.10%
¥ 05	237.02 3	2 00 20	0.0027	%/EC	$+ \beta^+$) Decay =	72 2 1	,
~ 70	254 300 25	0 165 16	0.0199	Soo ol	152 Eu 2- De	$(12 \in \mathbb{N})$	
~ 71	258, 127 11	0.60 5	0.0003	Jee al	so e Eu p De	(13.0 y)	
v 74	275.213 11	7.2 5	0.0420				
77	280, 102 24	0.227 19	0.0014	Auger-L	4.53	73 4	0.0071
y 78	290.756 10	0.88 7	0.0054	Auger-K	32.6	5.7 19	0.0039
y 87	306.74 6	0.236 17	0.0015	се-К- 1	74.9451 6	19.5 8	0.0311
γ <u>9</u> 4	323.946 R	1.21 9	0.0084	ce-L- 1	114.0425 6	10.6 4	0.0258
y 96	325.80 10	0.108 15	0.0007	ce-M- 1	120.0565 9	2.43 9	0.0062
γ 98	329,761 15	0.211 16	0.0015	ce-NOP- 1	121.4336 10	0.668 25	0.0017
y 99	340.081 6	22.9 9	0.166	ce-K- 12	197.8585 10	0.609 23	0.0026
ý 101	344.913 7	2.18 15	0.0160	ce-L- 12	236.9559 10	0.156 6	0.0008
γ 104	349.833 22	0.135 15	0.0010				
γ 106	353.32 10	0.114 13	0.0009	2 wea	ak 8's omitted	l :	
γ 114	379.87 3	0.97 7	0.0078	EB	(avg) = 331.5:	ΣΙβ= 0.04%	
γ 121	407.018 25	0.188 14	0.0016		-		(Continued)

¹⁵²Eu—

Radiation	Energy	Intensity	∆(g-rad/	Radiation	Energy	Intensity	$\Delta(g-rad/$
туре 	(KeV)	(%)	μCI-n)	l ype	(KeV)	(%)	μcι-n)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.64 39.5224 3 40.1181 3 45.4 121.7793 3 244.6927 8 295.930 17 329.35 5 415.943 13 443.979 6 443.979 6 443.98 5 488.66 3 564.03 6 566.410 10 656.440 10	15.0 19 $20.8 7$ $37.7 12$ $14.6 5$ $28.4 7$ $7.49 16$ $0.427 10$ $0.125 11$ $0.161 9$ $2.81 7$ $0.3 C 4$ $0.413 11$ $0.482 15$ $0.129 4$ $0.142 5$	0.0018 0.0175 0.0322 0.0737 0.0391 0.0027 0.0009 0.0266 0.0029 0.0043 0.0058 0.0016 0.0020	X-ray L X-ray K σ_2 X-ray K σ_1 X-ray K β γ 8 γ 10 γ 11 γ 15 γ 20 γ 24 γ 27 γ 28 γ 35 γ 36 γ 39	6 42.3089 42.9962 48.7 344.2724 1 367.710 10 411.111 8 503.385 12 586.26 3 678.580 10 764.840 20 778.890 9 1089.680 10 1109.07 24 1299.04 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>%0 0.0002 0.0004 0.0002 0.194 0.0067 0.0194 0.0016 0.0057 0.0068 0.0027 0.211 0.0390 0.0039 0.00444</pre>
7 54 7 56 7 58 7 62 7 64 7 65	674.610 20 688.630 20 719.33 7 810.430 10 841.540 20 867.320 10	0.148 24 0.837 23 0.265 20 0.310 9 0.161 6 4.16 14	0.0021 0.0123 0.0041 0.0054 0.0029 0.0769	32 we By	eak γ 's omitt (avg) = 631.	ed: 4; ΣΙγ= 0.71%	5
7 64 7 70 7 72 7 73 7 75 7 79	919.310 10 926.250 10 963.39 5 964.01 3 1005.17	0.401 11 0.255 8 0.114 16 14.4 3 0.66 6	0.0079 0.0050 0.0023 0.297 0.0141	● ¹⁵² Eu EC Decay %(EC See al	(9.32 h 2) + β^+) Decay = so ¹⁵² Eu β^- D	l (min 29 3 ecay (9.32 h)) = 0.10%
7 79 7 80 7 85 7 86 7 87 7 92 7 95	1084.91 1085.780 10 1112.020 10 1212.842 15 1249.80 11 1292.670 20 1407.954 10 1457.540 20	0.246 8 10.0 3 13.3 3 1.38 4 0.178 6 0.101 5 20.7 5 0.488 19	0.0057 0.230 0.315 0.0357 0.0047 0.0028 0.622 0.0151	Auger-L Auger-K ce-K- 1 ce-L- 1 ce-M- 1 ce-NCP- 1	4.53 32.6 74.9451 114.0425 120.0565 121.4336 1	27 4 2.2 8 6 5.1 10 6 2.8 6 9 0.64 13 0 0.18 4	0.0026 0.0015 0.0081 0.0068 0.0016 0.0005
γ 96 69 we Εγ	1528.07 7 ak γ's omitted (avg)= 685.8;	0.257 15 1: ; ΣΙγ= 0.87%	0.0084	X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 1 γ 10 γ 17	5.64 39.5224 40.1181 45.4 121.7793 562.920 10 841.540 20	5.5 11 $3 7.9 14$ $3 14.3 25$ $5.5 10$ $3 7.4 14$ $0.23 5$ $15 3$	0.0007 0.0066 0.0122 0.0054 0.0193 0.0028 0.270
• ¹⁵² Eu β^- Decay % β^- D Feeds	(13.6 y 2) Decay = 27.8 4 ^{1 5 2} Gd	l (min)	= 0.10%	7 19 7 20 7 24	961.06 22 963.39 5 1389.11 7	0.21 4 12.4 23 0.88 17	0.0043 0.255 0.0261
See als	so ¹⁵² Eu EC De	cay (13.6 γ) ·		21 we B7	ak γ 's omitte (avg) = 794.3	ed: 2; ΣΙγ= 0.41%	
Auger-L ce-K- 8 ce-L- 8	4.84 294.0333 18 335.8968 18	0.71 4 0.82 3 0.181 6	≈0 0.0052 0.0013	• ¹⁵² Eu β^- Decay	(9.32 h 2)	l (min) = 0.10%
β - 1 max avg	176 4 47.5 10 295 "	1.78 4	0.0018	Feeds	15^{2} Gd	1900y (9.32 h)	
6-3 max	112.5 11 696 4	2.40 5	0.0058	Jee dis		ecdy (9.32 11)	
avg 6- 4 max	221.8 13 710 4	13.6 3	0.0643	β- 1 max avg	550 4 168.9 12	1.67 25	0.0060
avg β-5 max	227.0 13 889 4 295 3 13	0.23 4	0.0011	er 3 max	267.5 13 1521 4	0.131 21	0.0007
β= 6 max avg	1064 4	0.89 3	0.0069	avg 6-4 max	554.1 14 1865 4	1.8 3	0.0212
β - 7 max avg	1475 4 535.6 14	8.44 21	0.0963	avg total β-	704.1 15	673 713	1.00
τοται β- avg 6 we Εβ	300.8 19 ak B's omitted (avg) = 74.3;	27.8 4 1: ; ΣΙβ= 0.19%	0.178	2 we Bß	ak β's omitte (avg)= 46.	ed: 7; ΣΙβ= 0.06%	(Continued)
			Į	I .			

¹⁵²Eu-¹⁵⁴Eu

Radiation	Energy (keV)	Intensity (%)	Δ (g-rad/	Radiation	Energy (keV)	Intensity (%)	Δ (g-rad/
				.,,,,			
152 Eu eta^- Decay (9.32 h 2)	(Continued)		• ¹⁵³ Gd EC Decay	(241.6 d 2)	l (min)	= 0.10%
γ 6	344.2724 1	7 2.5 4	0.0183	Auger-L	4.69	114 6	0.0113
γ 18 γ 21	1314.670 10	0.98 15	0.0273	ce-L- 2	11.758 20	0.40 9	*e0 *e0
21	k ula omitt			. ce-MNO- 2	18.010 20	0.12 3	≈0 0.0052
21 wea Έγ	(avg) = 676.	7; ΣIγ= 0.32%		Auger-K	33.7	9.3 21	0.0067
				ce-K- 5	34.8475 1	0 0.52 7	0.0004
				ce-K- 7	48.9109 1	2 8.1 6	0.0084
• 152 Gd α Decay (1	.1E14 v)	I (min)	= 0.10%	ce-K- 8	54.6601 1	2 32.2 23	0.0375
	,,,	. (,		ce-M- 3	67.8723 1	0 0.41 4	0.0025
α 1	2150 4	100	4.58	ce-NCP- 3	69.3121 1	1 0.115 9	0.0002
				ce-L- 5	89.3779 1	2 1.20 9	0.0023
				Ce-L- 8	95.1271 1	2 4.8 4	0.0098
• 153 Sm β^- Decay	(46.7 h 1)	l (min)	= 0.10%	ce-N-8	95.6299 1	2 0.329 20	0.0007
				ce-NCP- 8	102.8189 1	3 0.302 22	0.0007
Auger-L	4.69	54 3	0.0054				
ce-L- 2 ce-K- 5	21.1533	9 23.2 14	≈0 0.0104	X-ray L X-ray Kga	5.85	25 3 3 35,8 14	0.0031
Auger-K	33.7	4.5 10	0.0032	X-ray Kaı	41.5422	3 64.7 23	0.0573
ce-K- /	40.9648 1	2 0.34 3	0.0003	X-ray KB	47 69.6723	25.3 10 8 2.57 19	0.0254
ce-K- 10	48.9109 1	2 0.165 8	0.0002	γ 5	83.3665	9 0.22 3	0.0004
ce-K- 11	54.6601 1	2 41.0 15	0.0478)) 7 7	97.4299 1	1 31.3 19	0.0650
ce-M- 5	67.8723 1	0 0.83 5	0.0012		103 - 1791 1	1 2242 13	0.0400
ce-NCP- 5	69.3121 1 75.3145 1	1 0.233 14	0.0003	5 wei	ak γ 's omitt	ed:	
ce-NNO- 7	81.5665 1	1 0.133 20	0.0002		(avg) - 35.	0, 217- 0.22%	
ce-L- 11 ce-M- 11	95.1271 1	2 6.17 23	0.0125				
ce-NCP-11	102.8189 1	3 0.385 15	0.0008	• 154 Ful 8- Decen	(0.9 1)	t (main)	- 0 10%
					(0.0 y I) ecay = 99.986	14	~ 0.10%
β-1 max avor	632 3 198.6 11	34.1 17	0.144	%EC D	ecay = 0.014	4	
6-2 max	702 3		0.044				
avg 8-3 max	708 3	44.1 24	0.211	Auger-L	4.84	32.5 16	0.0034
avg	226.5 11	0.55 5	0.0027	Auger-K ce-K- 3	34.9 72.831 4	1.8 6	0.0013
B∽ 4 max avor	805 3	21.0 17	0.118	ce-L- 3	114.694 4	16.8 8	0.0410
total B-				ce-M- 3	121.189 4 122.694 4	3.90 19	0.0101
avg	223.6 12	100 4	0.476	ce-K- 21	197.700 8	0.54 3	0.0023
10 wea	k β's omitt	eđ:		ce-L- 21	239.563 8	0.149 8	0.0008
Έβ((avg) = 80.	9; ΣIβ= 0.15%		8- 1 max	247.4 20		
Y-ron T	5 85	11.0 14	0.0015	avg	68.8 6	27.9 10	0.0409
X-ray Ka ₂	40.9019	3 17.3 7	0.0150	β^{-2} max avg	306.1 20	0.77 3	0.0014
X-ray Kai	41.5422	3 31.2 12	0.0276	8-3 max	321.2 20		
γ 5	69.6723	8 5.2 3	0.0077	avg 8-4 max	91.7 7 349.8 20	0.149 5	0.0003
γ 6 7 7	75.4220 1	0 0.194 19	0.0003	avg	100.9 7	1.58 6	0.0034
γ 8	89.4838 1	1 0.158 13	0.0003	$\beta = 5 \max_{avg}$	407.4 21	0.117 8	0 0003
γ 10 ~ 11	97.4299 1	1 0.718 22	0.0015	8-6 max	435.7 20		
7 11	103.1771 1	1 2005 0	0.0022	8-7 may	129.3 7 548.6 20	0.281 16	0.0008
54 vea	k γ 's omitt	ed: 7, ST~= 0 200		avg	168.3 7	0.188 6	0.0007
57(u-y) - 7220	· · · · · · · · · · · · · · · · · · ·		6-8 max avg	569.4 20 175.7 8	36.5 14	0,137
				β- 9 max	703.2 20	2002 14	
				avg 6-10 max	224.5 8 715.4 20	0.64 3	0.0031
				avg	229.0 8	0.245 11	0.0012

¹⁵⁴Eu-¹⁵⁶Eu

					·····			
	Badiation	Energy	Intensity	$\Delta(a-rad/$	Radiation	Eneray	Intensity	∆(o-rad/
	Type	(ko)/)	(%)	-(grice)	Type	(ke)/)	(%)	uCi.h)
	iyhe	(KeV)	(707	μοι-ιη	l iype	(KeV)	(70)	μοι-ιι)
	4-11 may	920 2 20				22.05 5	0 38 14	0 0002
		276 0 8	17 1 7	0 102		23.05 5	0.30 14	~0
	avy 8−12 mav	970.7 20	1/••	0.102		29.55 5	0.12 4	≈0 ~0
	2 12 11 44	327.5 8	205	0 0140	Auger-K	34.9	1.6 6	0.0012
	A⊷13 may	1151.5 20	2.0 5	0.0140	Ce-K- 10	35,823 5	0.40 5	0.0003
	ava	400.4 9	0.29 6	0.0025	Ce-K- 11	36,306 3	11.2 8	0.0087
	8-14 may	1596.0 20	0.2, 0	0.0025	Ce-1- 7	36,9216 1	4 0.6 3	0.0005
	200	587.4 9	0.24 20	0.0030	Ce-MNO- 7	43.4164 1	4 0.18 8	0.0002
	A-15 max	1843.9 20	0.24 20	0.0000	Ce-L- 9	51,6344 1	9 1.67 11	0.0018
	avo	695.0 9	11.4.18	0 169	CE-K- 12	55,069 3	<u>u.u.u</u>	0.0052
	total 8-	0,5.0	1104 10	0.105	Ce-M- 9	58, 1292 1	9 0.369 24	0.0005
	avo	225.4 12	100 3	0.480	Ce-NOP- 9	59.6342 2	0 0.105 7	0.0001
	uvy	22314 12	100 3	0.400	ce-L- 11	78,169 3	1.72 12	0.0029
	9 we	ak 8's omitt	ed:		ce-M- 11	84.664 3	0.37 3	0.0007
	Ef	3(ava) = 131.	3: STA= 0.21%		CE-NCP-11	86,169 3	0.104 8	0.0002
		(u.y)	••••••••		ce-t- 12	96,932 3	0.66 5	0.0014
					Ce-NN0-12	103.427 3	0.184 12	0.0004
	X-rav L	6	7.6 9	0.0010	00 1100 12			••••••
	X-ray Kaz	42.3089	3 7.3 4	0.0065	[]			
	X-ray Ka _l	42.9962	3 13.1 7	0.0120	6-1 max	100 3		
	Х-гау КВ	48.7	5.2 3	0.0054	avg	26.1 8	0.72 8	0.0004
	γ 3	123.070 4	40.5 15	0.106	₿-2 max	128 3		
	γ 14	188.246 13	0.227 10	0.0009	avg	33.9 9	2.2 6	0.0016
	γ 21	247.939 8	6.60 25	0.0349	0 -3 max	141 3		
	γ 46	401.30 5	0.209 10	0.0018	avg	37.4 9	46 5	0.0366
	γ 51	444.50 5	0.504 22	0.0048	β-4 max	159 3		
	γ 55	478.26 5	0.217 10	0.0022	avg	42.8 9	26 5	0.0237
	γ 68	557.56 5	0.256 11	0.0030	β − 5 max	186 3		
	γ 70	582.00 5	0.84 4	0.0104	avg	50.4 9	7.7 6	0.0083
	γ 71	591.81 4	4.83 19	0.0609	8−6 max	246 3		
	γ 78	625.22 5	0.309 15	0.0041	avg	68.3 9	18 5	0.0262
	γ 85	676.59 5	0.140 6	0.0020	total 8-			
	7 87	692.41 5	1.69 7	0.0250	avg	45.2 10	101 9	0.0968
	γ 89	715.76 5	0.174 9	0.0027				
	γ 91	723.30 4	19.7 8	0.303	Y-ray T	6	8.0.11	0.0010
	γ 93	756.87 5	4.33 18	0.0698	ˆ _* ¯¯′ ₅ ¯	26.513 21	0.318 24	0.0002
	γ <u>98</u>	815.55 5	0.465 21	0.0081	X-ray Kga	42, 3089	3 6.5 4	0.0058
	γ 100	845.39 5	0.550 25	0.0099	X-ray Kg.	42.9962	3 11.7 6	0.0107
	y 101	850.64 5	0.231 10	0.0042	···································	45,2972 1	3 1.29 10	0.0012
	γ 102	873.19 5	11.5 5	0.214	Y-ray KA	43.25.2	4.60.23	0.0048
	γ 104	892.73 5	0.461 21	0.0088		60.0100 1	8 1.11 7	0.0014
	γ 106	904.05 5	0.82 4	0.0159	v 10	86.062 5	0.151 18	0.0003
	y 114	996.32 4	10.3 4	0.218	1 y 11	86.545 3	30.9 19	0.0570
	· γ 115	1004.76 4	17.9 7	0.383	1 1 1	105.308 3	20.7 14	0.0464
	y 119	1047.40 10	0.142 5	0.0032	, .2			
	γ 124	1118.50 10	0.103 5	0.0025	7 40	ak r's omitt	ed:	
	γ 126	1128.40 10	0.266 11	0.0064	EY	(avg) = 69.	3: $\Sigma I_{T} = 0.18\%$	
	γ 128	1140.90 10	0.21/ 10	0.0053				
	γ 134	1241.60 20	0.131 6	0.0035				
	γ 135	1246.20 20	0.90 4	0.0238				
	γ 135	12/4.45 9	35.5 13	0.964	• 156 Fre 8- Deserve	(1E 10 J C)	1 (- 0 10%
	7 101	1494.4 3	0.05 3	0.0207		(15.19 0 0)	1 (mm)	- 0.10%
	γ 15/ 150	1593.00 20	1.03 12	0.0349				
	7 158	1590.53 15	1.85 12	0.0628	Auger-L	4.84	23 3	0.0024
	4.7.4				Auger-K	34.9	1.0 4	0.0007
	131 w e	ak γ's omitt	ed:		ce-K- 1	38.7246 2	5 14.3 22	0.0118
	Eγ	r(avg) = 710.	5; $\Sigma I \gamma = 1.58\%$		ce-L- 1	80.5881 2	5 16.4 25	0.0281
					ce-M- 1	87.0829 2	5 3.8 6	0.0071
					ce-NCP- 1	88.5879 2	5 1.07 17	0.0020
					ce-K- 5	148.971 10	0.125 16	0.0004
• 1	^{5 5} Eu β ⁻ Decav	(4.96 v 1)	l (min)	= 0.10%		4		
-	,	(
				_	β -1 max	183 9		
	ce-L- 1	2.024 20	1.2 4	`≈0	avg	50 3	4.6 5	0.0049
	Auger-L	4.84	34 3 .	0.0035	β≓ 2 max	248 9		
	ce-MNO- 1	8.519 20	0.35 12	≈0	avg	69 3	2.4 3	0.0035
	ce-K- 9	9.7709 1	9 8.3 6	0.0017	8 −3 max	250 9		
	ce-L- 3	10.37 3	14 4	0.0030	avg	69 3	0.16 4	0.0002
	ce-L- 4	12.644 20	0.95 9	0.0003	β− 4 max	266 9		
	ce-M- 3	16.87 3	3.2 8	0.0011	l avg	75 3	11.3 13	0.0181
	ce-L- 5	18.137 21	0.49 4	0.0002	β≁ 5 max	332 9	·	
	ce-NCP- 3	18.37 3	1.04 24	0.0004	avg	95 3	0.127 18	0.0003
	ce-MNO- 4	19.139 20	0.29 3	0.0001	11			(Continued)

¹⁵⁶Eu—¹⁵⁹Gd

•

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
							. <u> </u>
¹⁵⁶ Eu β ⁻ Decay	(15.19 d 6)	(Continued)		7 79 7 80	1946.34 13 1965.95 12	0.189 25 4.2 5	0.0078
9 - 6	1176 0			y 81	2026.61 10	3.5 4	0.153
p o max avg	126 3	6.0 7	0.0161	γ 82	2032.51 12	0.130 18	0.0056
β- 7 max	487 9			γ 83 - 05	2097.68 10	4.3 5	0.191
avg	147 4	32 4	0.100	7 88	2110.49 13	2.4 3	0.0057
6- 8 max	501 9	0 06 13	0 0031	γ 89	2186.71 11	4.0 6	0.184
avg A- 9 may	152 4	0.96 12	0.0031	γ 90	2205.38 13	1.00 12	0.0469
avq	154 4	0.44 6	0.0014	γ 94	2269.90 12	1.12 13	0.0543
8-10 max	1087 9			l) 47 44	ak ate omitte	• 50	
avg	374 4	2.4 4	0.0191	E	r(avg) = 1102.	eu. 7: ΣΙγ= 1.59%	
p-ii max	1211 9	5 1 10	0 0462				
- 8-12 max	1285 9	J •1 10	0.0402				
avg	456 4	4.5 7	0.0437				
β-13 max	1404 9	_		 ¹⁵⁷Tb EC Decay 	[,] (150 y 30)	l (min)	= 0.10%
avg	505 4	1.45 19	0.0156				
8-14 max	2453 9	27 9	0.556	Auger-L	4.84	60 5	0.0062
total 6-	900 4	21 3	0.550	Auger-K	34.9	0.7 4	0.0005
avg	394 9	99 10	0.828				
				X-ray L	6	14.1 19	0.0018
5 w (eak 8's omitte	ed:		X-ray Kaz	42.3089	3 2.7 14	0.0024
5,	B(avg) = 44.6	5; 21B= 0.20%		X-ray Kai	42,9962	3 4.8 24	0.0044
				K-ray KB	48. /	1.9 10	0.0020
X-ray L X-ray Ka	6 000 2	5.4 9	0.0007				
$X - ray Ka_2$	42.9962 3	6.911	0.0035				
X-ray KB	48.7	2.7 5	0.0028	• ¹⁵⁷ Dv EC Decay	/ (8.06 h 8)	L (min)	= 0.10%
γ 1	88.9637 24	9.0 14	0.0171	Feeds	¹⁵⁷ Tb		
γ 5	199.210 10	0.79 10	0.0034				
γ 14 γ 15	434.40 9	0.22 3	0.0020	Anger-I	5	71 4	0 0076
y 16	490.34 6	0.182 23	0.0019	ce-K- 1	8.82 7	3.6 23	0.0007
γ 21	599.47 5	2.3 3	0.0295	ce-K- 2	31.01 4	1.9 5	0.0012
γ 23	646.29 5	7.1 8	0.0976	Auger-K	36	5.6 20	0.0043
γ 26 - 27	709.80 5	0.92 11	0.0138	ce-L- 1	52.11 7	0.6 4	0.0007
v 30	797.73 6	0.110 18	0.0019		20.05 / 74.30 L	0.17 11	0.0002
ý 31	811.77 5	10.4 11	0.180	ce-K- 7	274.16 20	1.08 5	0.0063
γ <u>32</u>	820.36 5	0.160 20	0.0028	ce-L- 7	317.45 20	0.149 7	0.0010
γ 35 26	841.10 9	0.23 4	0.0040				
γ 30 ~ 37	858.30 12	0.120 19	0.0023	X-ray L	6.27	17.8 20	0.0024
v 38	867.01 8	1.40 20	0.0259	X-ray Ka ₂	43.7441	3 23.5 12	0.0219
γ 43	944.35 7	1.39 17	0.0280		44.4816	3 42.3 20	0.0400
γ 44	947.46 15	0.31 10	0.0063	γ 1	60.82 7	0.5 3	0.0006
γ 45 ~ 116	960.50 8	1.62 20	0.0332	y 2	83.01 4	0.58 15	0.0010
7 40 7 47	969.83 6	0.39 5	0.0032	γ 4	182.20 20	1.65 16	0.0064
γ 48	1011.87 5	0.34 5	0.0073	γ 5 	265.34 21	0.18 4	0.0010
y 50	1027.39 8	0.120 17	0.0026	Υ '	320.16 20	94 3	0.652
γ 52	1040.44 7	0.53 7	0.0118	21 💘	eak v's omitt	eð:	
γ ⊃4 ★ 55	1005.14 5	5.2 b 0.37 g	0.119	E	r(avg) = 593.	8; ΣIY= 0.47%	
γ 56	1079.16 5	4.9 7	0.112				
γ 59	1129.47 7	0.142 19	0.0034				
γ 60	1140.51 5	0.30 4	0.0072	150			
γ 61 - 62	1153.47 7	7.2 11	0.176	l ● ¹ ³ ⁹ Gd β [−] Decay	(18.56 h 8)	l (min)	= 0.10%
7 62 7 63	1156.0 3	0.14 3	0.0035				
γ 66	1169.12 5	0.29 4	0.0073	Auger-L	5	13 4	0.0014
γ 69	1230.71 6	8.9 10	0.234	ce-K- 1	6.004 10	16 6	0.0020
γ 70	1242.42 5	6.8 8	0.179	Luger-W	21.51 12	0.12 5	*U 0 0000
7 12 7 73	12/1.43 5	3.2 4 1.76 20	0.0512	ce-L- 1	49,292 10	2.7 10	0.0008
r 75	1682.11 23	0.30 6	0.0108	ce-M- 1	56.032 10	0.60 22	0.0007
y 76	1857.42 11	0.25 4	0.0101	ce-NCP- 1	57.602 10	0.17 6	0.0002
7 77	1877.03 14	1.73 20	0.0690				(Continued)
y 78	1937.68 10	2.14 25	0.0884				

¹⁵⁹Gd-¹⁶²Tb

Padiation	Enormy	Intensity	A (a rad/	Radiation	Enoray	Intensity	∆(a-rad/
Radiation	Energy				Chergy	(0/)	
l ype	(keV)	(%)	μCi-h)	li iype	(KeV)	(%)	μC1-n)
9- 1 mar	611 3 10			N	6 6	10 7 12	0 0015
	100 # 7	0 7	0 0365		0.0	10.7 12	0.0015
avg	636 5 10	9 3	0.0305		45.2078	4 0.0 4	0.0058
	020.5 18				43.9904	4 10.0 7	0.0108
avg	190.0 /	0.22 8	0.0009	K-ray ND	52 06 7000 0	4.3 3	0.0048
β− 3 max	916.7 18			y	86.7880 2	0 13.3 8	0.0246
avg	305.7 7	21 8	0.137	$\gamma 4$	197.035 7	4.90 21	0.0206
β- 4 max	974.7 18			y 5	215.646 8	3.71 17	0.0171
avg	328.6 8	70 10	0.490	γ 10	298.573 5	27.1 14	0.172
total B-				γ 11	309.557 18	0.82 4	0.0054
avor	310.9 8	100 14	0.664	7 12	337.32 3	0.332 23	0.0024
				1 y 15	392.494 23	1.28 7	0.0107
ü ve	ak A's omitt	• ed •		v 18	682.33 5	0.55 4	0.0080
Pé	A(ava) = 07	6. 5TA= 0 08%		1 1 1	765.28 5	1.93 10	0.0314
ш µ.	5 (avg) - 57.	0, 210- 0.00%		- 20	972 03 6	0 170 17	0 0033
				1 20	072.05 0	20 5 11	0.0000
X-rav L	6.27	3, 3, 11	0.0004	7 21	0/3+304 10	20.0 1	0.334
Y-ray Ka-	43.7441	3 4 3 16	0.0040	7 22	962.295 20	9.0 6	0.185
V-ray Kuz	45.1441	2 9 2	0.0072	γ 23	966.151 20	24.2 11	0.499
X-Lay Kui	44.4010	3 0 3	0.0073	γ 24	1002.87 4	0.97 6	0.0207
K-ray Ko	50.4	3.1 11	0.0033	γ 26	1102.61 4	0.52 4	0.0123
7 1	58.000 10	1.8 /	0.0022	y 27	1115.12 4	1.50 7	0.0357
y 5	226.00 4	0.16 6	0.0008	y 28	1177.934 24	14.4 8	0.362
7 10	348.17 8	0.17 6	0.0012	29	1199.89 4	2.36 12	0.0602
y 11	363.56 3	83	0.0650	v 31	1271.85 3	7.0 4	0.190
				- 34	1312 16 5	2 85 16	0 0797
14 we	ak v' s omitt	ed:		1 1 34	1312.10 5	2.05 10	0.0157
Er	(ava) = 364.	0: $\Sigma T \gamma = 0.21\%$		14	ak		
	(219) 5010	.,,		14 We	$a \times \gamma \cdot s caltt$	ea: #. 57 0 619	
				[] ⁵⁷	(avg) = 651.	4; $21\gamma = 0.51\%$	
	(70.0.1.0)	1 (!)	- 0 1 00/	1			
• 10° Ib β Decay	(72.3 d 2)	i (min)	= 0.10%				
				• 162 Gd $\beta^{}$ Decay	(9.7 m 10)	l (min)	= 0.10%
hugor-I	5 16	10 2 22	0.0000	Foods	162 mh		
Auger-L	22 0005 2	40.02 22	0.0044	reeus	10		
	32.3333 2	1 3 //	0.0149				
Auger-K	31+2	1.3 4	0.0011	Auger-L	5	23 5	0.0025
ce-L- I	11.1422 2	1 31.7 21	0.0524	Cesta 1	30 09 20	28 7	0 0182
ce-m- 1	84.7412 2	1 /.5 5	0.0136		26 93 20	6 2 1/1	0 0000
ce-NCP- 1	86.3717 2	1 2.07 14	0.0038		30.03 20	2 0 5	0.0048
ce-K- 4	143.246 7	0.82 5	0.0025		30.40 20	2.0 0	0.001/
ce-K- 5	161.857 8	0.126 7	0.0004	Ce-K- 2	350.8 3	0.318 19	0.0024
ce-L- 4	187.989 7	0.315 17	0.0013	ce-K- 3	389.6 3	0.30 4	0.0025
ce-K- 10	244.784 5	0.401 24	0.0021	11			
				d - 1	960 100		
					330 100	100	0 6 9 2
β− 1 max	299.0 17			avg	320 40	100	0.002
avg	84.6 6	0.218 14	0.0004				
β− 2 max	434.5 17			X-ray L	6.27	5.8 14	0.0008
avg	128.6 6	4.40 21	0.0121	ll 7 1	38.80 20	6.5 15	0.0053
β− 3 max	447.0 17			X-TAV KOA	43.7441	3 0.164 12	0.0002
avg	132.8 6	0.93 5	0.0026	Y-ray Kg.	44 4816	3 0 204 20	0 0003
8- 4 max	474.8 17			Yeray KA	50.4	0 1 17 8	0.0001
avo	142.3 6	9.4 4	0.0285		#00 0 0	46 2 24	0.0000
6- 5 max	545-8 17				402.0 3	40.2 Z4	0.390
ava	166.9 6	3, 31, 15	0.0118	7 3	441.0 3	23 0	0.500
6- 6 may	569 7 17	3.31 13		1 ·			
	176 0 6	45 6 20	0 170	l.			
avg	1/3.0 0	45.0 20	0.170				
p-/max	6//•/ 1/ -			■ 162 Th B- Decay	(7.76 m 10)	L (min)	= 0.10%
avg	214.4 7	0.170 21	0.0008	U ID Decay	(7.70 m 10)	1 (11017)	- 0.10%
6~ 8 max	784.4 17						
avg	254.3 7	.5.8 5	0.0314	Auger-T.	5.16	35.5 21	0.0039
β- 9 max	867.3 17			Ce-K- 1	26.8715.2	1 15 7 12	0-0090
avg	286.0 7	24.6 14	0.150	Auger-K	37.2	1.1 4	0 0009
8-10 max	1549.6 17			auger n	71 6102 2	1. 29 5 22	0.0005
avo	565.2 8	0.38 15	0.0046		70 6132 2	1 20.0 22	0.0433
8-11 may	1746.6 17			Ce-M- 1	18.0132 2		0.0114
	649.9 9	5 //	0.0692	Ce-NOP- 1	80.2437,2	1 1.85 14	0.0032
avy + + + - 1 -	UT 20 2 U	J 4	0.0072	ce-K- 2	131.216 3	0.54 4	0.0015
CULAI D-	226 3 A	100 5	A #04	·ce-K- 3	131.500 5	0.72 6	0.0020
avg	220.3 8	100 D	V. 401	ce-L- 2	175.959 3	0.221 16	0.0008
		_		ce-L- 3	176.243 5	0.104 8	0.0004
1 we	eak β's omitt	ed:		ce-K- 4	206.281 6	1.65 12	0.0072
E¢	B(avg) = 167.	6; ΣIβ= 0.01%		ce-L- 4	251.024 6	0.234 18	0.0013
				Ce-K- 9	753.74 8	0.169 10	0.0027
				Ce-K- 13	834.41 8	0.124 8	0.0022
				II Ce-K- 13	034.41 0	V. 127 U	0.0022
							(Continued)

¹⁶²Tb-¹⁶⁶Ho

Radiation Type	Energy (keV)	Intensity (%)	$\Delta(extbf{g-rad}/ \mu extbf{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
$\beta^{-1} \text{ Tb } \beta^{-} \text{ Decay}$ $\beta^{-1} \text{ max}$ avg $\beta^{-2} \text{ max}$ avg $\beta^{-3} \text{ max}$ avg $\beta^{-4} \text{ max}$ avg $\beta^{-5} \text{ max}$	(7.76 m 10) 750 80 240 30 780 80 250 30 840 80 270 40 1250 80 440 40 1380 80	(Continued) 0.136 8 0.164 10 0.315 20 0.133 14	0.0007 0.0009 0.0018 0.0012	$\begin{array}{cccc} X - ray & L \\ X - ray & K\alpha_2 \\ X - ray & K\alpha_1 \\ X - ray & K\beta \\ \gamma & 7 \\ \gamma & 27 \\ \gamma & 27 \\ \gamma & 29 \\ \gamma & 39 \\ \gamma & 41 \\ \gamma & 46 \\ \gamma & 50 \end{array}$	6.72 46.6997 4 47.5467 4 53.9 94.700 3 279.763 12 361.680 20 545.834 20 565.718 20 633.415 20 715.328 20	2.1 4 2.6 4 4.6 6 1.86 25 3.6 5 0.50 7 0.84 11 0.162 20 0.128 16 0.57 7 0.53 7	0.0003 0.0026 0.0047 0.0021 0.0072 0.0030 0.0065 0.0019 0.0015 0.0077 0.0081
avg B- 6 max avg total B- avg 8 we	490 40 2530 80 980 40 490 40	96 6 0.4 97 6 ed:	1.00 0.0083 1.02	55 wea Βγ(● ¹⁶⁶ Dy β [−] Decay	k γ's omitted avg) = 641.4; (81.6 h 2)	l: ; ΣΙγ= 0.67% (min)	= 0.10%
Eß	(avg) = 235.	6; ΣΙβ= 0.22%		Feeds	⁶⁶ Ho (26.80 h)	
X-ray L X-ray K α_2 X-ray K α_1 X-ray K β γ 1 γ 2 γ 3 γ 4 γ 5 γ 6 γ 7 γ 6 γ 7 γ 9 γ 12 γ 13 γ 18	6.5 45.9984 52 80.6600 21 185.005 3 185.289 5 260.070 6 543.2 6 622.52 10 697.35 10 807.53 8 882.32 8 888.20 8 1067.55 10	9.4 11 4 5.1 4 4 9.1 6 3.64 24 0 8.5 6 2.65 17 14.2 11 79 6 0.106 13 0.88 5 2.54 13 42.1 22 13.2 7 38.1 20 0.55 3	0.0013 0.0049 0.0089 0.0040 0.0146 0.0105 0.0560 0.0012 0.0116 0.0377 0.724 0.248 0.720 0.0124	Auger-L Ce-L-1 ce-M-1 ce-K-3 ce-NCP-1 Auger-K ce-L-2 ce-M-2 ce-NCP-2 ce-NCP-3 $\beta-1$ max	5.33 18.833 5 26.099 5 26.8523 21 27.791 5 38.4 44.8450 8 52.1109 10 53.8035 11 73.0758 21 80.3417 21 82.0343 22 58 5 14.9 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0071 0.0055 0.0017 0.288 0.0006 0.0024 0.0161 0.0045 0.0013 0.0117 0.0028 0.0008
γ 28 γ 34 34 we Βγ	1287.6 5 1610.7 3 ak γ 's omitto (avg) = 1453.3	$\begin{array}{c} 0.152 & 18 \\ 0.140 & 8 \end{array}$ ed: 3; $\Sigma I \gamma = 1.14\%$	0.0042 0.0048	$\begin{array}{c} \beta - 2 \max \\ avg \\ \theta - 3 \max \\ avg \\ avg \\ total \beta - \end{array}$	402 5 117.5 17 484 5 145.3 18	92 7 7 7	0.230
● ¹⁶⁵ Dy β ⁻ Decay	(2.334 h 6)	l (min)	= 0.10%	avor 1 wea BB	118.3 18 k B's omitted avg)= 29.1	100 1C 1: ; ΣΙβ= 0.01%	0.252
$ce-K- 2$ Auger-L Auger-K $ce-K- 7$ $ce-K- 7$ $ce-K- 29$ $\beta^{-1} \max_{avg}$ $\beta^{-2} \max_{avg}$ $\beta^{-3} \max$	2.246 5 5.33 38.4 39.082 3 85.306 3 92.572 3 306.062 20 205 4 56.1 12 290 4 81.7 13 1190 4	0.15 3 7.5 9 0.55 22 9.3 13 1.50 20 0.43 6 0.19 3 0.152 19 1.67 21	≈0 0.0008 0.0004 0.0077 0.0027 0.0008 0.0013 0.0002 0.0002	$\begin{array}{cccc} X - ray & L \\ \gamma & 1 \\ X - ray & K\alpha_2 \\ X - ray & K\alpha_1 \\ X - ray & K\beta \\ \gamma & 2 \\ \gamma & 3 \\ \gamma & 6 \\ \gamma & 7 \\ 2 & wea \\ E\gamma & (\end{array}$	6.72 28.227 5 46.6997 4 47.5467 4 53.9 54.2392 7 82.4700 20 371.75 3 425.99 3 k y's omitted avg) = 333.9	18 3 1.0 3 14 3 24 6 9.8 22 0.70 8 13 3 0.49 6 0.54 7 1: ; $\Sigma I \gamma = 0.07\%$	0.0025 0.0006 0.0135 0.0245 0.0112 0.0008 0.0227 0.0039 0.0049
avg β-4 max avg	414.1 16 1285 4 453.1 17	14.6 19 83.4 21	0.129 0.805	● ¹⁶⁶ Ho β ⁻ Decay	26.80 h 2)	l (min)	= 0.10%
total 8- avg 10 we Εβ	440.2 18 ak β's omitte (avg)= 165.4	100 3 ed: 4; ΣΙβ= 0.15%	0.937	Auger-L ce-K- 1 Auger-K ce-L- 1 ce-N- 1 ce-NOP- 1	5.5 23.104 5 39.7 70.838 5 78.382 5 80.140 5	25.7 16 10.6 8 0.58 23 24.5 18 5.9 5 1.62 12	0.0030 0.0052 0.0005 0.0370 0.0099 0.0028 (Continued)

¹⁶⁶Ho-¹⁶⁹Er

Radiation	Energy	Intensity	$\Delta(g\text{-rad}/$	Radiation	Energy	Intensity	$\Delta(g-rad/$
1 ype	(KeV)	(%)	μCi-h)	Туре	(keV)	(%)	μCi-h)
β~ 1 max	191.8 17			X-ray L	7	21.2 20	0.0031
avg	52.1 5	0.304 8	0.0003	X-ray Kaz	48.2211	4 10.9 5	0.0112
5-2 max	394.4 17	0.05 5	0 0000		49.1277	4 19.3 8	0.0202
A~ ∃ max	1773.7 17	V. 75 5	0.0023		80 589 5	12.7 5	0.0094
avg	651.1 7	48 4	0.666	y 3	94.65 3	0.160 9	0.0003
β− 4 max	1854.3 17			γ 5	119.04 3	0.161 9	0.0004
avg	693.8 8	51 4	0.754	γ 6	121.16 3	0.245 12	0.0006
total B-	665 7 0	100 6	1 4 2	γ 12	184.415 6	72.6 19	0.285
avy	003.7 0	100 0	1.42	7 13 7 14	214 76 5	0 425 19	0.0009
3 we	ak β's omitt	ed:		y 15	215.88 3	2.57 10	0.0118
E¢	(avg) = 77.	6; ΣI8= 0.04%		γ 16	231.28 4	0.206 12	0.0010
				r 17	259.716 20	1.05 4	0.0058
X-ray L	7	7.7 8	0.0011	γ 18 - 10	280.450 8	29.6 12	0.177
X-ray Ka ₂	48.2211	4 2.86 22	0.0029	7 20	339.78 8	0.170 12	0.0238
X-ray Ka ₁	49.1277	4 5.1 4	0.0053	y 21	365.777 16	2.42 10	0.0188
x-ray KB ~ 1	55.7 80 580 5	2.0/16	0.0025	γ 23	410.941 25	11.1 5	0.0972
γ 8	1379.43 6	0.93 5	0.0273	y 24	451.524 25	2.92 12	0.0281
y 12	1581.89 8	0.183 6	0.0062	7 25	464.83 4	1.20 5	0.0119
γ 13	1662.44 8	0.121 4	0.0043	7 20	490.70 10 520 81 3	0.22 0	0.0023
		-		y 29	571.00 3	5.47 22	0.0665
11 we	ak γ 's omitt (avg) - 1192	ed: 2. STa- 0.098		γ 30	594.37 3	0.56 3	0.0071
57	(avg) = 1102.	2, 217- 0.00%		y 31	611.52 7	1.42 6	0.0184
				γ 34	644.45 10	0.155 15	0.0021
				7 35 7 36	691.21 5	5.35 21	0.0764
• ¹⁶⁶ Ho β^- Decay	(1.20E3 v 18)	l (min)	= 0.10%	γ 38	711.69 4	54.1 21	0.820
	• •			γ 39	712.40 20	0.22 7	0.0033
Auger-I.	5.5	71 3	0.0083	γ 40	736.67 8	0.367 20	0.0058
ce-K- 2	23.104 5	21.7 11	0.0107	7 41	752.27 4	12.1 5	0.193
ce-K- 3	37.16 3	0.34 15	0.0003	γ 42 γ μμ	778.82 4 810 31 4	3.03 12	0.0502
Auger-K	39.7	2.2 9	0.0019	γ 45	830.56 4	9.7 4	0.171
ce-K- 5	61.55 3	0.18 7	0.0002	y 46	875.64 5	0.72 3	0.0134
ce-t- 2	70.838 5	50.2 25	0.0757	γ 47	950.94 6	2.69 11	0.0546
ce-11- 2	78.382 5	12.2 6	0.0203	γ 49	1120.31 7	0.237 12	0.0057
ce-NCP- 2	80.140 5	3.33 17	0.0057	γ ⊃0 γ 51	1241 44 6	0.83 3	0.0048
ce-L- 3	84.90 3	0.18 13	0.0003	γ 51	1282.12 7	0.179 10	0.0049
ce-L- 6	111.41 3	0.10 5	0.0002	γ 53	1400.72 8	0.498 20	0.0149
CE-K- 12 CE-K- 15	120.930 0	0.337 17	0.0406	γ 54	1427.05 8	0.484 20	0.0147
ce-L- 12	174.664 6	7.1 3	0.0263				
ce-M- 12	182.208 6	1.68 7	0.0065	14 We Br	$a \kappa \gamma' s outto(avg) = 416.5$	ea: 6: Στγ= 0.63%	
ce-NCP-12	183.966 6	0.464 19	0.0018	,	(•••••••	
Ce-L- 13	200.13 3	1.82 9	0.0087				
ce-K- 19	243.258 20	0.188 10	0.0010				
ce-L- 18	270.699 8	0.55 3	0.0032	• ¹⁶⁹ Er β^- Decay	(9.40 d 2)	I (min) = 0.10%
ce-MNO-18	278.243 8	0.163 7	0.0010				
ce-K- 28	472.32 3	0.108 6	0.0011	ce-MNO- 1	6.094 8	45 5	0.0058
ce-K- 44	752.82 4	0.249 10	0.0040				
				6-1 max	341.8 15		
A-1 max	32 3			avg	97.9 5	45 5	0.0938
avg	8.0 7	17.2 6	0.0029	β−2 max	350.2 15		
6- 2 max	72 3			total A-	100.6 5	כ ככ	0.118
avg	18.7 7	73.4 25	0.0292		99.4 5	100 7	0.212
β− j max	304 J 85.0.0	0.404 22	0.0007				
A- 4 max	483 3			~ 1	0 KO1 9	0 156 19	~0
avg	144.9 9	0.9 5	0.0028		0.401 0		~ ~
β− 5 max	643 3						
avg	201.3 10	2.13 25	0.0091				
p- 6 max	948 J 316 / 11	1.12.10	0 0075				
8-7 max	1314 3	1014 10	0.0015				
avg	464.1 11	3.4 11	0.0336				
total B-							
avg	41.0 18	99 3	0.0860 I	l			

¹⁶⁹Yb-¹⁷¹Er

Radiation Type	Energy (keV)	Intensity (%)	$\Delta(extbf{g-rad}/ \mu extbf{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
• 169 Yh FC Decay	(31.97 d 5)	1 (min)	= 0.10%	6- 1 max	883.6 9		
	(0.107 u 0,	,	0	avg g-2 max	290.4 4 967.9 9	24.0 10	0.148
ce-K- 3 Auger-1.	3.729 5.67	7 39.9 18	0.0032	avg	323.1 4	76.0 10	0.523
ce-MNO- 1	6.094 8	95 3	0.0123	total B avg	315.3 4	100.0 15	0.671
ce-L- 2 ce-M- 2	10.63 5	9.3 5 2.07 11	0.0021				
ce-NOP-2	20.28 5	0.68 4	0.0003	X-ray L	7.42	4.0 6	0.0006
Ce-K- 4 Auger-K	34.223 7 40 9	8.37 25	0.0061	$X-ray Ra_1$	52.3889	5 2.25 14	0.0025
ce-K- 5	50.387	34.9 9	0.0375	Х-гау КВ	59.4	0.93 6	0.0012
ce-L- 3	53.003	7.1 4	0.0081	γ 1	84.255 /	3.20 10	0.0058
ce+M- 3	60.812	1.33 6	0.0017				
ce-NOP- 3	62.647	0.429 19	0.0006				
ce-K- 8	71.130 7	6.0 3	0.0092	• ¹⁷¹ Er β^- Decay	(7.52 h 3)	l (min)	= 0.10%
ce-11 110-4	91.306	0.420 13	0.0008	Feeds	'''Tm		
ce-L- 5	99.661 7	5.64 15	0.0120		2 26 0		
ce-L- 7	108.071 7	1.37 6	0.0029	ce-NNO- 1	2.269 8	6.2 9 91 5	0.0003
ce-NCP- 5	109.305 7	0.368 10	0.0009	Auger-L	5.67	46 3	0.0055
ce-MNO- 7 ce-K- 10	115.880 7		0.0010	ce-NNO-2	10.078 8	1.8 3	0.0004
ce-L- 8	120.404 7	5.2 3	0.0132	Auger-K	40.9	2.5 10	0.0022
ce-M- 8 ce-NCP- 8	128.213 7	1.25 7	0.0034	ce-K- 4	52.231 4	39.2 23	0.0436
ce-K- 12	138.563 7	12.7 5	0.0376	ce-K- 6	64.627 4	5.7 3	0.0078
ce-L- 10	167.094 7	1.84 5	0.0065	Ce-L- 4	101.505 4	6.4 4	0.0137
ce-NCP-10	176.738 7	0.119 4	0.0004	ce-M- 4	109.314 4	1.42 7	0.0040
ce-L- 12	187.837 7	2.10 7	0.0084	ce-NCP-4	111.149 4	0.414 24	0.0010
ce-M- 12 ce-NCP-12	195.646 7	0.468 16	0.0019	ce-L- 6 ce-M- 5	113.901 4	5.3 3	0.0129
ce-K- 19	248.340 7	0.524 20	0.0028	ce-NOP- 5	116.184 6	0.121 6	0.0003
ce-L- 19	297.614 7	0.151 6	0.0010	ce-M- 6	121.710 4	1.29 7	0.0033
	7 40	<i></i>		ce-K- 14	236.511 14	0.486 20	0.0024
x-ray L v 1	7.18 8.401 8	0.330 15	0.00// ×0	ce-K- 15	248.901 18	0.99 4	0.0052
γ 2	20.75 5	0.213 11	s : 0	Cé+F- 12	298.175 18	0.144 6	0.0009
X-ray Ka ₂ X-ray Ka.	49.7726	4 52.8 18	0.0560	8- 1 max	205.4 12		
X-ray KB	57.5	38.314	0.0469	avg	56.0 4	0.333 15	0.0004
γ 3 	63.119 7	43.7 15	0.0588	8-2 max	491.8 12	0 50 3	0 0016
γ 4 γ 5	109.777 7	17.4 5	0.0406	β−3 max	577.4 12	0.00 3	0.0010
7 7	118.187 7	1.88 5	0.0047	avg	177.4 5	2.18 8	0.0082
7 8 7 10	130.520 7	21.4 6	0.0307	B-4 max avo	264.5 5	0.188 17	0.0011
y 12	197,953 7	34.9 12	0.147	β- 5 max	1065.5 12		
γ 14 ~ 15	240.30 10	0.122 7	0.0006	avg 8-6 max	362.2 5	94 4	0.725
γ 19	307.730 7	10.81 25	0.0708	avg	534.7 5	2.30 20	0.0262
32 we	ak γ's omitt	ed:		avg	359.5 6	100 4	0.763
Ŀγ	(avy) - 344.	1; 217- 0.10%		7 we Ββ	ak β's omitt (avg)= 182.	ed: 0; ΣΙβ= 0.18%	
• ¹⁷⁰ Tm <i>B</i> ⁻ Decay	(1286 d 3)	L (min)	= 0.10%	X-rav L	7.18	14.4 20	0.0022
- π, β 2000, %β ⁻ (Decay = 99.85	4 2	00,0	X-ray Ka ₂	49.7726	4 13.1 7	0.0139
%EC	Decay = 0.146	2		X-ray Ka ₁ X-ray KB	50.7416 57.5	4 23•2 13 9•5 6	0.0250
				γ 4	111.621 4	20.5 10	0.0487
Auger-L	5.84	12.1 8	0.0015	γ 5 ~ 6	116.656 6	2.30 10	0.0057
Ce-K- 1 Auger-K	22.921 7 42.2	4.7 3	0.0023	γ 10	210.60 3	0.64 3	0.0240
ce-L- 1	73.767 7	12.2 7	0.0192	ý 11	237.14 4	0.302 14	0.0015
ce-M- 1	81.855 7	3.01 18	0.0052	γ 12	277.43 5	0.58 3 28.9 12	0.0034 0.182
CHENCHE I	00,000 1	v•03 7	0.0015	, , , , , , , , , , , , , , , , , ,	2200701 14		(Continued)

	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy , (keV)	Intensity (%)	∆(g-rad µCi-h
γ 15 γ 17	308.291 18 371.96 9	64 3 0.257 13	0.423 0.0020	● ¹⁷⁷ Lu β ⁻ Decay	(6.71 d 1)	I (min) = 0.10%
γ 33 γ 35	670.70 20 676 1 3	0.252 9	0.0036	Auger-L	6.18	8.8 6	0.0012
γ 41	784.10 20	0.240 9	0.0040	ce-K- 1	6.2952 2	1 0.116 8	≈0
γ 42	796.60 20	0.640 24	0.0109	Auger-K	44.8	0.27 12	0.0003
y 47	907.7 4	0.635 23	0.0123	ce-K- 2	4/.601 3	5.2 4	0.0053
50 M 0	ak ale omitte	а.		ce-M- 2	110.351 3	1.74 11	0.0132
	(avg) = 535.2	α. : ΣΤν= 1.09%	11	ce-NCP-2	112.414 3	0.50 4	0.0012
		,,		ce-K- 4 ce-L- 4	143.010 7 197.090 7	0.59 7 0.100 15	0.0018 0.0004
⁷¹ Tm β^- Decay	(1.92 y 1)	I (min)	= 0.10%	β−1 max avor	175.8 10	12.3 5	0.0124
				6-2 max	384.1 10	12.5	0.0124
ce-K- 1	5.386 7	1.076 7	0.0001	a v q	111.3 4	9.0 12	0.0213
Auger-L	5.84	1.23 6	0.0002	β− 3 max	497.1 10		
Ce-L- I Ce-MNO- 1	50.232 / 64.320 7	0.747 10	0.0009	ava total e-	148.9 4	78.7 14	0.250
ee ano i	04.520	0.230 1	0.0003	avq	133.0 5	100.0 20	0.283
β− 1 max	30.0 10			1 ម ค.	ak A's omitte	- 5-	
avg 8-2 max	7.5 3 96.7 10	2.2	0.0004	EB	(avg) = 78.2	; ΣIβ= 0.05%	
	25.2 3	97.8	0,0525				
total B-				X-rav L	7.9	3.3 4	0,0005
avg	24.8 4	100	0.0529	X-ray Kaz	54.6114 8	1.63 11	0.0019
				X-rav Kai	55.7902.8	2.85 18	0.0034
X-ray L	7.42	0.41 5	≈0	X-ray K8	63.2	1.20 8	0.0016
X-ray Ka ₂	51.3540 5	0.293 8	0.0003	v 1	112,952 3	6.4 4	0.0002
X-Lay Kai	59.4	0.213 6	0.0008	γ <u>4</u>	208.361 7	11.0 4	0.0488
γ 1	66.718 7	0.158	0.0002	γ 5	249.686 25	0.212 14	0.0011
				γ 6	321.313 9	0.219 14	0.0015
⁵ Yb β^- Decay	(4.19 d 1)	L (min)	= 0.10%	1 wea Εγ	ak γ's omitte (avg) = 136.7	d: ; ΣΙγ= 0.05%	
	(. (,					
Auger-L Auger-K	6 43.5	3.1 4	0.0004	• ¹⁷⁷ In IT Decay	(160 10 4 18)	l (min)	- 0 10%
	50.489 4	3.6 5	0.0039	%IT De	cav = 215.12	1 (1111)	- 0.1076
ce-K- 1		0.116 21	0.0002	Feeds 1	771 (6.71 d)		
ce-K- 1 ce-K- 2	74.342 6				\sim LU to r D		
ce-K- 1 ce-K- 2 ce-L- 1 ce-NNO- 1	74.342 6 102.933 4 111.312 4	0.86 11	0.0019	See also	β^{177} Lu β^- De	cay (160.10 d)	
Ce-K- 1 Ce-K- 2 Ce-L- 1 Ce-MNO- 1 Ce-K- 6	74.342 6 102.933 4 111.312 4 333.008 20	0.86 11 0.26 4 0.24 4	0.0019 0.0006 0.0017	See also	$^{177}Lu \beta^{-}$ De	cay (160.10 d)	
ce-K- 1 ce-K- 2 ce-L- 1 ce-MNO- 1 ce-K- 6	74.342 6 102.933 4 111.312 4 333.008 20	0.86 11 0.26 4 0.24 4	0.0019 0.0006 0.0017	See also	$5^{177}Lu \beta^- De$	cay (160.10 d) 25.1 18	0.0032
ce-K- 1 ce-K- 2 ce-L- 1 ce-TNO- 1 ce-K- 6 β - 1 max	74.342 6 102.933 4 111.312 4 333.008 20 71.6 15	0.86 11 0.26 4 0.24 4	0.0019 0.0006 0.0017	Auger-L Auger-K	$\int_{0}^{177} Lu \beta^{-} De$ $\frac{6}{43.5}$	cay (160.10 d) 25.1 18 0.9 4	0.0032
$Ce^{-K} - 1$ $ce^{-K} - 2$ $ce^{-L} - 1$ $ce^{-TNO} - 1$ $ce^{-K} - 6$ $\beta^{-} 1 \max_{a \neq q}$	74.342 6 102.933 4 111.312 4 333.008 20 71.6 15 18.4 4 354.1 15	0.86 11 0.26 4 0.24 4	0.0019 0.0006 0.0017 0.0040	Auger-L Auger-K ce-K-1 ce-K-2	$\begin{array}{c} 6\\ 43.5\\ 58.306\\ 2\end{array}$	cay (160.10 d) 25.1 18 0.9 4 1.41 16 9 0 10	0.0032 0.0008 0.0016
$Ce^{-K} - 1$ $Ce^{-K} - 2$ $Ce^{-L} - 1$ $Ce^{-K} - 6$ $\beta^{-} 1 \max_{a \lor q}$ $\beta^{-} 2 \max_{a \lor q}$	74.342 6 102.933 4 111.312 4 333.008 20 71.6 15 18.4 4 354.1 15 101.7 5	0.86 11 0.26 4 0.24 4 10.3 13 3.3 5	0.0019 0.0006 0.0017 0.0040 0.0071	Auger-L Auger-K ce-K-1 ce-K-2 ce-K-3	$\begin{array}{c} \text{Lu } (0.71 \text{ d}) \\ 0 & 1^{77} \text{Lu } \beta^- \text{ De} \\ 6 \\ 43.5 \\ 52.52 \\ 43.5 \\ 58.306 \\ 38.851 \\ 58.3851 \\ 58$	25.1 18 0.9 4 1.41 16 9.0 10 3.2 4	0.0032 0.0008 0.0016 0.0112 0.0058
ce-K-1 ce-K-2 ce-L-1 ce-K-6 β-1 max avg β-2 max avg β-3	74.342 6 102.933 4 111.312 4 333.008 20 71.6 15 18.4 4 354.1 15 101.7 5 467.9 15	0.86 11 0.26 4 0.24 4 10.3 13 3.3 5	0.0019 0.0006 0.0017 0.0040 0.0071	Auger-L Auger-K ce-K- 1 ce-K- 2 ce-K- 3 ce-L- 1	$\begin{array}{c} & 10, (0, 7) & 0 \\ & 0 & 1^{77} \text{Lu} & \beta^- & \text{De} \\ & & 43.5 \\ & 52.52 & 4 \\ & 58.306 & 3 \\ & 83.851 & 5 \\ & 104.96 & 4 \end{array}$	25.1 18 0.9 4 1.41 16 9.0 10 3.2 4 14.4 16	0.0032 0.0008 0.0016 0.0112 0.0058 0.0323
Ce-K-1 Ce-K-2 Ce-L-1 Ce-K-6 β-1 max avg β-2 max avg β-3 max avg	74.342 6 102.933 4 111.312 4 333.008 20 71.6 15 18.4 4 354.1 15 101.7 5 467.9 15 139.2 5	0.86 11 0.26 4 0.24 4 10.3 13 3.3 5 86.5 17	0.0019 0.0006 0.0017 0.0040 0.0071 0.256	Auger-L Auger-K ce-K- 1 ce-K- 2 ce-K- 3 ce-L- 1 ce-K- 4	$\begin{array}{c} & \text{Lu} \ (0.71 \text{ d}) \\ & 577 \text{Lu} \ \beta^- \ \text{De} \\ & 43.5 \\ & 52.52 \ 4 \\ & 58.306 \ 3 \\ & 83.851 \ 5 \\ & 104.96 \ 4 \\ & 108.549 \ 6 \end{array}$	25.1 18 0.9 4 1.41 16 9.0 10 3.2 4 14.4 16 2.8 5	0.0032 0.0008 0.0016 0.0112 0.0058 0.0323 0.0055
Ce-K- 1 Ce-K- 2 Ce-L- 1 Ce-K- 6 β - 1 max avg β - 2 max avg β - 3 max avg total β -	74.342 6 102.933 4 111.312 4 333.008 20 71.6 15 18.4 4 354.1 15 101.7 5 467.9 15 139.2 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0019 0.0006 0.0017 0.0040 0.0071 0.256	Auger-L Auger-K ce-K- 1 ce-K- 2 ce-K- 3 ce-L- 1 ce-K- 4 ce-L- 2	$\begin{array}{c} \text{Lu } (0.71 \text{ d}) \\ 5 & 1^{77} \text{Lu } \beta^- \text{ De} \\ 6 \\ 43.5 \\ 52.52 \\ 83.851 \\ 58.306 \\ 38.851 \\ 5104.96 \\ 4 \\ 108.549 \\ 6 \\ 110.750 \\ 31 \\ 13.34 \\ \end{array}$	cay (160.10 d) 25.1 18 0.9 4 1.41 16 9.0 10 3.2 4 14.4 16 2.8 5 2.2 3 3.8 5	0.0032 0.0008 0.0016 0.0112 0.0058 0.0323 0.0065 0.0053
Ce-K- 1 Ce-K- 2 Ce-L- 1 Ce-K- 6 β - 1 max avg β - 2 max avg β - 3 max avg total β - avg	74.342 6 102.933 4 111.312 4 333.008 20 71.6 15 18.4 4 354.1 15 101.7 5 467.9 15 139.2 5 125.5 7 1	$\begin{array}{cccc} 0.86 & 11 \\ 0.26 & 4 \\ 0.24 & 4 \\ 10.3 & 13 \\ 3.3 & 5 \\ 86.5 & 17 \\ 00.1 & 22 \\ \end{array}$	0.0019 0.0006 0.0017 0.0040 0.0071 0.256 0.268	Auger-L Auger-K ce-K- 1 ce-K- 2 ce-K- 3 ce-L- 1 ce-K- 4 ce-L- 2 ce-M- 1 ce-NOP- 1	$\begin{array}{c} \text{Lu} (0.71 \text{ d}) \\ ^{177} \text{Lu} \beta^{-} \text{ De} \\ \\ 6 \\ 43.5 \\ 52.52 \\ 83.851 \\ 50.851 \\ 5104.96 \\ 4 \\ 108.549 \\ 6 \\ 110.750 \\ 3 \\ 113.34 \\ 4 \\ 115.32 \\ 4 \end{array}$	cay (160.10 d) 25.1 18 0.9 4 1.41 16 9.0 10 3.2 4 14.4 16 2.8 5 2.2 3 3.8 5 1.07 12	0.0032 0.0008 0.0016 0.0112 0.0058 0.0323 0.0065 0.0053 0.0053 0.0091 0.0026
Ce-K- 1 Ce-K- 2 Ce-L- 1 Ce-K- 6 β - 1 max avg β - 2 max avg β - 3 max avg total β - avg X-ray L	74.342 6 102.933 4 111.312 4 333.008 20 71.6 15 18.4 4 354.1 15 101.7 5 467.9 15 139.2 5 125.5 7 1 7.66	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0019 0.0006 0.0017 0.0040 0.0071 0.256 0.268 0.0002	Auger-L Auger-K ce-K- 1 ce-K- 2 ce-K- 3 ce-L- 1 ce-K- 4 ce-L- 2 ce-M- 1 ce-NOP- 1 ce-M- 2	$\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	<pre>cay (160.10 d) 25.1 18 0.9 4 1.41 16 9.0 10 3.2 4 14.4 16 2.8 5 2.2 3 3.8 5 1.07 12 0.53 7</pre>	0.0032 0.0008 0.0016 0.0112 0.0058 0.0323 0.0065 0.0053 0.0053 0.0091 0.0026 0.0013
Ce-K- 1 Ce-K- 2 Ce-L- 1 Ce-K- 6 β - 1 max avg β - 2 max avg β - 3 max avg total β - avg X-ray L X-ray K α_2	74.342 6 102.933 4 111.312 4 333.008 20 71.6 15 18.4 4 354.1 15 101.7 5 467.9 15 139.2 5 125.5 7 1 7.66 52.9650 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0019 0.0006 0.0017 0.0040 0.0071 0.256 0.268 0.268 0.0002 0.0012	Auger-L Auger-K ce-K-1 ce-K-2 ce-K-3 ce-L-1 ce-K-4 ce-L-2 ce-M-1 ce-NOP-1 ce-NOP-2	$\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	<pre>cay (160.10 d) 25.1 18 0.9 4 1.41 16 9.0 10 3.2 4 14.4 16 2.8 5 2.2 3 3.8 5 1.07 12 0.53 7 0.146 18 </pre>	0.0032 0.0008 0.0016 0.0112 0.0058 0.0058 0.0053 0.0053 0.0053 0.0091 0.0026 0.0013 0.0004
Ce-K- 1 Ce-K- 2 Ce-L- 1 Ce-K- 6 β - 1 max avg β - 2 max avg β - 3 max avg total β - avg X-ray L X-ray K α_2 X-ray K α_1	74.342 6 102.933 4 111.312 4 333.008 20 71.6 15 18.4 4 354.1 15 101.7 5 467.9 15 139.2 5 125.5 7 1 7.66 52.9650 5 54.0698 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0019 0.0006 0.0017 0.0040 0.0071 0.256 0.268 0.268 0.0002 0.0012 0.0022	Auger-L Auger-K ce-K- 1 ce-K- 2 ce-K- 3 ce-L- 1 ce-K- 4 ce-L- 2 ce-M- 1 ce-NCP- 1 ce-NCP- 1 ce-NCP- 2 ce-K- 5 ce-L- 3	$\begin{array}{c} \mbox{Lu} (0.71 \ d) \\ \mbox{5} \\ \mbox{177 \ Lu} \ \mbox{β} \\ \mbox{6} \\ \mbox{5} \mbox{5} \\ \mbox{5} \mbox{5} \\ \mbox{5} $	cay (160.10 d) 25.1 18 0.9 4 1.41 16 9.0 10 3.2 4 14.4 16 2.8 5 2.2 3 3.8 5 1.07 12 0.53 7 0.146 18 0.37 6 0.7 1 9	0.0032 0.0008 0.0016 0.0112 0.0058 0.0053 0.0065 0.0053 0.0091 0.0026 0.0013 0.0004 0.0010
Ce-K- 1 Ce-K- 2 Ce-L- 1 Ce-K- 6 β - 1 max avg β - 2 max avg β - 3 max avg β - 3 max avg total β - avg X-ray L X-ray K α_2 X-ray K β	74.342 6 102.933 4 111.312 4 333.008 20 71.6 15 18.4 4 354.1 15 101.7 5 467.9 15 139.2 5 125.5 7 1 7.66 52.9650 5 54.0698 5 61.3	0.86 11 0.26 4 0.24 4 10.3 13 3.3 5 86.5 17 100.1 22 1.08 17 1.09 14 1.91 24 0.79 10 1 88 25	0.0019 0.0006 0.0017 0.0040 0.0071 0.256 0.268 0.0002 0.0012 0.0022 0.0010 0.0016	Auger-L Auger-K ce-K- 1 ce-K- 2 ce-K- 3 ce-L- 1 ce-K- 4 ce-L- 2 ce-M- 1 ce-MCP- 1 ce-MCP- 1 ce-MCP- 2 ce-K- 5 ce-L- 3 ce-MNO- 3	$\begin{array}{c} \mbox{Lu} (0.71 \ d) \\ \mbox{5} \\ \mbox{177 \ Lu} \ \mbox{β} \\ \mbox{6} \\ \mbox{5} \\ \mbox{10} \\ \mbox{10} \\ \mbox{5} \\ \mbox{10} \mbox{10} \\ \mbox{10} \mbox{10} \mbox{10} \\ \mbox{10} 1	cay (160.10 d) 25.1 18 0.9 4 1.41 16 9.0 10 3.2 4 14.4 16 2.8 5 2.2 3 3.8 5 1.07 12 0.53 7 0.146 18 0.37 6 0.71 9 0.208 24	0.0032 0.0008 0.0016 0.0112 0.0058 0.0053 0.0065 0.0053 0.0091 0.0026 0.0013 0.0004 0.0010 0.0021 0.0006
Ce-K- 1 Ce-K- 2 Ce-L- 1 Ce-K- 6 β^- 1 max avg β^- 2 max avg β^- 2 max avg β^- 3 max avg total β^- avg χ^- ray L χ^- ray K α_2 χ^- ray K α_1 χ^- ray K β^- γ 1 γ^- 2	74.342 6 102.933 4 111.312 4 333.008 20 71.6 15 18.4 4 354.1 15 101.7 5 467.9 15 139.2 5 125.5 7 1 7.66 52.9650 5 54.0698 5 61.3 113.803 4 137.656 6	0.86 11 0.26 4 0.24 4 10.3 13 3.3 5 86.5 17 100.1 22 1.08 17 1.09 14 1.91 24 0.79 10 1.88 25 0.104 19	0.0019 0.0006 0.0017 0.0040 0.0071 0.256 0.268 0.0002 0.0012 0.0022 0.0012 0.0022 0.0010 0.0046 0.0003	Auger-L Auger-K ce-K-1 ce-K-2 ce-K-3 ce-L-1 ce-K-4 ce-L-2 ce-M-1 ce-MCP-1 ce-K-5 ce-L-3 ce-K-6	$\begin{array}{c} \mbox{Lu} (0.71 \ d) \\ \mbox{5} \\ \mbox{177 \ Lu} \ \mbox{β} \\ \mbox{6} \\ \mbox{5} \\ \mbox{10} \\ \mbox{5} \\ \mbox{5} \\ \mbox{10} \\ \mbox{5} \\ \mbox{5} \\ \mbox{10} \\ \mbox{5} \\ \mbox{10} \\ \mbox{5} \\ \mbox{10} \\ \mbox{5} \\ \mbox{10} \mbox{10} \\ \mbox{10} \mbox{10} \\ \mbox{10} $10$$	cay (160.10 d) 25.1 18 0.9 4 1.41 16 9.0 10 3.2 4 14.4 16 2.8 5 2.2 3 3.8 5 1.07 12 0.53 7 0.146 18 0.37 6 0.71 9 0.208 24 0.91 14	0.0032 0.0008 0.0016 0.0112 0.0058 0.0053 0.0053 0.0091 0.0026 0.0013 0.0026 0.0013 0.0021 0.0021 0.0006 0.0030
$\begin{array}{c} ce-K-1\\ ce-K-2\\ ce-L-1\\ ce-MND-1\\ ce-K-6\\ \end{array}$ $\begin{array}{c} \beta^{-} 1 \max \\ a v g\\ \beta^{-} 2 \max \\ a v g\\ \beta^{-} 2 \max \\ a v g\\ \beta^{-} 3 \max \\ a v g\\ \beta^{-} 3 \max \\ a v g\\ total \\ \beta^{-} 3 \max \\ a v g\\ total \\ \beta^{-} 3 \max \\ a v g\\ \hline x - ray \\ K - ray \\ \gamma \\ 3 \end{array}$	74.342 6 102.933 4 111.312 4 333.008 20 71.6 15 18.4 4 354.1 15 101.7 5 467.9 15 139.2 5 125.5 7 7.66 52.9650 5 54.0698 5 61.3 113.803 4 137.656 6 144.861 5	0.86 11 0.26 4 0.24 4 10.3 13 3.3 5 86.5 17 100.1 22 1.08 17 1.09 14 1.91 24 0.79 10 1.88 25 0.104 19 0.34 6	0.0019 0.0006 0.0017 0.0040 0.0071 0.256 0.268 0.0002 0.0012 0.0022 0.0010 0.0046 0.0003 0.0010	See also Auger-L Auger-K ce-K-1 ce-K-2 ce-K-3 ce-L-1 ce-K-4 ce-L-2 ce-M-1 ce-MOP-1 ce-MOP-2 ce-K-5 ce-L-3 ce-K-5 ce-L-3 ce-K-6 ce-L-4	$\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	cay (160.10 d) 25.1 18 0.9 4 1.41 16 9.0 10 3.2 4 14.4 16 2.8 5 2.2 3 3.8 5 1.07 12 0.53 7 0.146 18 0.37 6 0.71 9 0.208 24 0.91 14 0.58 7	0.0032 0.0008 0.0016 0.0112 0.0058 0.0023 0.0065 0.0053 0.0091 0.0026 0.0013 0.0024 0.0010 0.0021 0.0020 0.0030 0.0020
$\begin{array}{c} ce-K-1\\ ce-K-2\\ ce-L-1\\ ce-TMO-1\\ ce-K-6\\ \end{array}$ $\begin{array}{c} \beta^{-} 1 \max \\ a v g\\ \beta^{-} 2 \max \\ a v g\\ \beta^{-} 3 \max \\ a v g\\ \beta^{-} 3 \max \\ a v g\\ total \\ \beta^{-} 3 \max \\ a v g\\ total \\ \beta^{-} 3 \max \\ a v g\\ total \\ \beta^{-} 3 \max \\ a v g\\ \end{array}$	74.342 6 102.933 4 111.312 4 333.008 20 71.6 15 18.4 4 354.1 15 101.7 5 467.9 15 139.2 5 125.5 7 7.66 52.9650 5 54.0698 5 61.3 113.803 4 137.656 6 144.861 5 282.517 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0019 0.0006 0.0017 0.0040 0.0071 0.256 0.268 0.0002 0.0012 0.0022 0.0010 0.0046 0.0046 0.0003 0.0010 0.0182	See also See also Auger-L Auger-K Ce-K-1 ce-K-2 ce-K-3 ce-L-1 ce-K-4 ce-L-2 ce-M-1 ce-MOP-1 ce-MOP-1 ce-MOP-2 ce-K-5 ce-L-3 ce-K-5 ce-L-3 ce-K-6 ce-L-4 ce-MO-4	$\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	cay (160.10 d) 25.1 18 0.9 4 1.41 16 9.0 10 3.2 4 14.4 16 2.8 5 2.2 3 3.8 5 1.07 12 0.53 7 0.146 18 0.37 6 0.71 9 0.208 24 0.91 14 0.58 7 0.172 22 0.25	0.0032 0.0008 0.0016 0.0112 0.0058 0.0323 0.0065 0.0053 0.0091 0.0026 0.0013 0.0021 0.0021 0.0020 0.0020 0.0020
$\begin{array}{c} ce-K-1\\ ce-K-2\\ ce-L-1\\ ce-TNO-1\\ ce-K-6\\ \end{array}$ $\begin{array}{c} \beta^{-1} \max \\ avg\\ \beta^{-2} \max \\ avg\\ \beta^{-3} \max \\ avg\\ \beta^{-3} \max \\ avg\\ total \\ \beta^{-3} \max \\ avg\\ total \\ \beta^{-3} \max \\ avg\\ k-ray \\ K \\ \gamma \\ \gamma$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0019 0.0006 0.0017 0.0040 0.0071 0.256 0.268 0.0002 0.0012 0.0022 0.0010 0.0046 0.0003 0.0010 0.0182 0.0549	See also See also Auger-L Auger-K ce-K-1 ce-K-2 ce-K-3 ce-L-1 ce-K-4 ce-L-2 ce-M-1 ce-MOP-1 ce-MOP-2 ce-K-5 ce-L-3 ce-K-5 ce-L-3 ce-K-6 ce-L-4 ce-MO-4 ce-K-7 ce-L-6	$ \begin{array}{c} & & & & \\ & & $	cay $(160.10 d)$ 25.1 18 0.9 4 1.41 16 9.0 10 3.2 4 14.4 16 2.8 5 2.2 3 3.8 5 1.07 12 0.53 7 0.146 18 0.37 6 0.71 9 0.208 24 0.91 14 0.58 7 0.172 22 0.248 25 0.164 24	0.0032 0.0008 0.0016 0.0112 0.0058 0.0323 0.0065 0.0053 0.0091 0.0026 0.0013 0.0021 0.0021 0.0020 0.0020 0.0020 0.0006 0.0011 0.0007
$\begin{array}{c} ce-K-1\\ ce-K-2\\ ce-L-1\\ ce-K-6 \end{array}$ $\begin{array}{c} \beta^{-} 1 \max \\ avg\\ \beta^{-} 2 \max \\ avg\\ \beta^{-} 2 \max \\ avg\\ \beta^{-} 3 \max \\ avg\\ total \\ \beta^{-} 3 \max \\ avg\\ total \\ \beta^{-} 3 \max \\ avg\\ k^{-}ray \\ $	74.342 6 102.933 4 111.312 4 333.008 20 71.6 15 18.4 4 354.1 15 101.7 5 467.9 15 139.2 5 125.5 7 7.66 52.9650 5 54.0698 5 61.3 113.803 4 137.656 6 144.861 5 282.517 14 396.322 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0019 0.0006 0.0017 0.0040 0.0071 0.256 0.268 0.0002 0.0012 0.0022 0.0010 0.0046 0.0003 0.0010 0.0182 0.0549	See also See also Auger-L Auger-K Ce-K-1 ce-K-2 ce-K-3 ce-L-1 ce-K-4 ce-L-2 ce-M-1 ce-M-2 ce-MCP-2 ce-K-5 ce-L-3 ce-K-5 ce-L-3 ce-K-6 ce-L-4 ce-MO-4 ce-K-7 ce-K-8	$ \begin{array}{c} \begin{array}{c} 6\\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	cay $(160.10 d)$ 25.1 18 0.9 4 1.41 16 9.0 10 3.2 4 14.4 16 2.8 5 2.2 3 3.8 5 1.07 12 0.53 7 0.146 18 0.37 6 0.71 9 0.208 24 0.91 14 0.58 7 0.172 22 0.248 25 0.164 24 0.47 5	0.0032 0.0008 0.0016 0.0112 0.0058 0.0053 0.0053 0.0091 0.0026 0.0013 0.0021 0.0021 0.0020 0.0020 0.0006 0.0011 0.0020 0.0006 0.0011 0.0007 0.0026
$\begin{array}{c} ce-K-1\\ ce-K-2\\ ce-L-1\\ ce-K-6\\ \end{array}$ $\begin{array}{c} \beta^{-1} \max \\ avg\\ \beta^{-2} \max \\ avg\\ \beta^{-2} \max \\ avg\\ \beta^{-3} \max \\ avg\\ b^{-3} \max \\ avg\\ total \\ \beta^{-3} \max \\ avg\\ total \\ \beta^{-3} \max \\ avg\\ \end{array}$ $\begin{array}{c} \kappa^{-rav} K \\ \kappa^{-rav} K \\ \kappa^{-rav} K \\ \kappa^{-rav} K \\ \gamma \\ \kappa^{-rav} K \\ \gamma \\$	74.342 6 102.933 4 111.312 4 333.008 20 71.6 15 18.4 4 354.1 15 101.7 5 467.9 15 139.2 5 125.5 7 7.66 52.9650 5 54.0698 5 61.3 113.803 4 137.656 6 144.861 5 282.517 14 396.322 20 k γ 's omitted avg) = 251.5:	0.86 11 0.26 4 0.24 4 10.3 13 3.3 5 86.5 17 100.1 22 1.08 17 1.09 14 1.91 24 0.79 10 1.88 25 0.104 19 0.34 6 3.0 4 6.5 8 : ΣΙγ= 0.09%	0.0019 0.0006 0.0017 0.0040 0.0071 0.256 0.268 0.0002 0.0012 0.0022 0.0010 0.0046 0.0003 0.0010 0.0182 0.0549	See also See also Auger-L Auger-K Ce-K-1 ce-K-2 ce-K-3 ce-L-1 ce-K-4 ce-L-2 ce-M-1 ce-M-2 ce-MCP-2 ce-K-5 ce-L-3 ce-K-5 ce-L-3 ce-K-6 ce-L-4 ce-MO-4 ce-K-7 ce-K-8 ce-L-8	$ \begin{array}{c} 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,$	cay $(160.10 d)$ 25.1 18 0.9 4 1.41 16 9.0 10 3.2 4 14.4 16 2.8 5 2.2 3 3.8 5 1.07 12 0.53 7 0.146 18 0.37 6 0.71 9 0.208 24 0.91 14 0.58 7 0.172 22 0.248 25 0.164 24 0.47 5 0.144 15	0.0032 0.0008 0.0016 0.0112 0.0053 0.0065 0.0053 0.0091 0.0026 0.0013 0.0021 0.0021 0.0020 0.0020 0.0020 0.0006 0.0011 0.0021 0.0001 0.0021 0.0001 0.0001 0.0007 0.0026 0.0009

¹⁷⁷Lu-¹⁸¹Hf

Radiation Type	Energy (keV)	Intensity (%)	$\Delta(extsf{g-rad}/ \mu extsf{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
⁷⁷⁷ Lu IT Decay	(160.10 d 18)	(Continued)		ce-L- 21 ce-M- 20	222.575 7 225.84 6	0.277 20 0.49 4	0.0013 0.0023
X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kθ γ 1	7.66 52.9650 5 54.0698 5 61.3 115.83 4	8.8 12 5.1 4 9.0 6 3.8 3 0.68 8	0.0014 0.0058 0.0104 0.0049 0.0017	ce-K- 29 ce-K- 29 ce-L- 23 ce-K- 33 ce-L- 24 ce-IN0-24	227.90 b 231.10 8 238.42 3 262.335 9 270.516 8 279 186 8	0.138 10 0.31 3 0.232 19 0.76 6 0.334 24 0.103 7	0.0015 0.0012 0.0043 0.0019 0.0006
γ 2 γ 3 γ 4 γ 5 γ 6	121.620 3 147.165 5 171.863 6 195.568 7 218.093 7	5.9 6 3.6 4 4.9 5 0.86 11 3.0 5	0.0152 0.0112 0.0179 0.0036 0.0139	ce+L- 28 ce-K- 35 ce-L- 33 ce-K- 37 ce-L- 35	285.18 8 313.155 9 316.415 9 353.179 11 367.235 9	0.106 10 0.84 7 0.238 17 0.47 4 0.230 17	0.0006 0.0056 0.0016 0.0035 0.0018
γ 7 γ 8 γ 9 γ 10	268.793 8 319.022 8 367.428 10 413.654 10	3.4 4 10.3 10 3.0 3 16.4 16	0.0194 0.0699 0.0232 0.144	ce~L- 37 β~ 1 max	407.259 11 151.8 10 40.5 3	0.118 9	0.0010
				A VI	70.5	10.J 14	0.0079
● ^I ^{7 7} Lu β ⁻ Decay %β ⁻ See al	(160.10 d 18) Decay = 78.5 12 so 177 Lu JT Dec	l (min) av (160.10 d)	= 0.10%	$\begin{array}{c} x - \tau a y & \xi \alpha_2 \\ x - \tau a y & \xi \alpha_2 \\ \gamma & 2 \\ x - \tau a y & \xi \alpha_1 \\ \end{array}$	54.6114 8 55.150 20 55.7902 8	40 33.4 12 1.20 25 58.4 19	0.0388 0.0014 0.0695
ce-L- 1 Auger-L	2.8893 4 6.18	23.4 14 125 7	0.0014 0.0164	$\begin{array}{c} \gamma \\ \gamma $	03.2 71.6460 20 105.344 5 112.952 3	24.5 4 0.89 10 12.0 6 21.5 15	0.0330 0.0014 0.0269 0.0517
ce-K- 4 ce-MNO- 1 ce-K- 6 ce-L- 2	6.2952 21 11.5591 4 39.993 5 43.879 20	0.64 / 7.5 5 32.9 16 0.31 7	≈0 0.0018 0.0280 0.0003	γ 9 γ 10 γ 11	128.495 5 136.730 6 145.59 6	0.24 3 15.3 11 1.37 15 0.90 11	0.0008
Auger-K ce-K- 7 ce-L- 4 ce-K- 9	44.8 47.601 3 60.3753 21 63.144 5	5.6 24 17.7 12 0.121 15 23.6 16	0.0054 0.0179 0.0002 0.0318	γ 12 γ 13 γ 14 γ 15	153.290 4 159.92 8 174.403 6 177.05 8	0.60 8 12.6 9 3.5 3	0.0388 0.0020 0.0468 0.0131
ce-K- 10 ce-K- 11 ce-K- 12 ce-L- 6	71.379 6 80.24 6 87.939 4 94.073 5	0.77 13 0.101 13 16.8 12 6.8 4	0.0012 0.0002 0.0316 0.0137	7 17 7 18 7 19 7 20	204.094 208.361 214.431 7 228.44 6	61 4 6.6 5 37.2 24	0.0821 0.272 0.0302 0.181
ce-k- 13 ce-L- 7 ce-M- 6 ce-NOP- 6	94.57 8 101.681 3 102.743 5 104.806 5	0.24 13 23.6 17 1.59 8 0.468 23	0.0005 0.0512 0.0035 0.0010	7 21 7 23 7 24 7 25	233.846 249.686 25 281.787 8 283.42 13	5.6 4 6.1 5 14.1 9 0.52 8	0.0281 0.0326 0.0843 0.0031
ce-K- 14 ce-M- 7 ce-K- 15 ce-NCP- 7	109.052 6 110.351 3 111.70 8 112.414 3	8.3 6 5.8 4 0.235 20 1.68 11	0.0192 0.0137 0.0006 0.0040	7 26 7 27 7 28 7 29	291.42 10 292.51 10 296.45 8 299.03 10	0.80 10 5.4 5 1.72 15	0.0083 0.0050 0.0341 0.0109
се-L- 9 се-L- 10 се-M- 9 се-NOP- 9	117.224 5 125.459 6 125.894 5 127.957 5	4.6 3 0.62 8 1.05 8 0.310 21	0.0114 0.0017 0.0028 0.0008	τ 30 τ 31 τ 32 τ 33	305.52 8 313.69 8 321.313 9 327.686 9	1.74 17 1.38 12 1.39 13 17.5 12	0.0113 0.0092 0.0095 0.122
ce-MNO-10 ce-K- 17 ce-L- 12 ce-K- 18	134.129 6 138.743 7 142.019 4 143.010 7	0.196 23 6.0 5 3.12 22 3.3 5	0.0006 0.0177 0.0094 0.0101	γ 34 γ 35 γ 36 γ 3 ⁷	341.64 8 378.506 9 385.02 8 418.530 11	1.79 18 27.9 19 2.94 24 20.1 14	0.0130 0.225 0.0241 0.179
ce-L- 13 ce-K- 19 ce-M- 12 ce-NCP-12	148.65 8 149.080 7 150.689 4 152.752 4	0.13 3 2.49 19 0.72 5 0.211 15	0.0004 0.0079 0.0023 0.0007	γ 38 γ 39 5 we	426.29 10 465.96 12 ak γ's omitte	0.41 6 2.33 20	0.0037 0.0231
ce-K- 20 ce-L- 14 ce-K- 21	163.09 6 163.132 6 168.495 7	4.4 3 1.46 10 0.62 5	0.0151 0.0051 0.0022	Εγ	(avg) ≈ 167.1	; ΣΙγ= 0.19%	
ce-K- 23 ce-L- 17	184.34 3 192.823 7	0.43 3	0.0022	● ¹⁸¹ Hf β ⁻ Decay	(42.39 d 8)	l (min)	= 0.10%
ce~L~ 18 ce~MNO-17 ce~L- 19 ce~MNO-18	197.090 7 201.493 7 203.160 7 205.760 7	0.56 9 0.304 22 0.41 3 0.165 22	0.0023 0.0013 0.0018 0.0007	ce-MNO- 1 ce-MNO- 2 Auger-L	1.19 10 3.50 3 6.35	5 3 0.47 11 37.6 21	0.0001 *0 0.0051
ce-MNO-19 ce-K- 24 ce-L- 20	211.830 7 216.436 8 217.17 6	0.120 9 0.92 7 2.01 15	0.0005 0.0042 0.0093	Auger-K ce-K- 3 ce-K- 4 ce-K- 5	46.2 65.604 20 68.834 20 69.44 4	1.4 5 20.7 10 7.4 5 1.06 22	0.0014 0.0289 0.0109 0.0016

(Continued)

166 RADIOACTIVE DECAY DATA TABLES

¹⁸¹Hf—¹⁸²Ta

Radiati Type	on E	nergy keV)	Intensity (%)	∆(g-rad/ µCi-h)		Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
ce-L-	3 12	1.338 20	24.3 12	0.0627	11	ce-MCP- 4	67.154 7	0.436 25	0.0006
ce-L-	4 12	4.568 20	1.43 9	0.0038		ce-L- 5	72.580 7	4.08 14	0.0063
ce-L-	5 12	5.18 4	0.20 5	0.0005		ce-M- 5	81.860 7	0.96 4	0.0017
ce-M-	3 130	0.312 20	6.0 3	0.0168	11	ce-K- 10	82.903 7	0.76 4	0.0013
ce-NCP	2 - 3 13	2.454 20	1.75 9	0.0049	11	ce-NCP- 5	84.085 7	0.287 10	0.0005
ce-MNC)-4 13:	3.542 20	0.431 25	0.0012		ce-K- 11	86.858 7	0.268 13	0.0005
ce-K-	6 27	8.43 20	0.66 3	0.0039	11	ce-L- 6	88.004 7	32.5 16	0.0609
ce-L-	6 330	4.17 20	0.206 10	0.0015	11	ce-M- 6	97.284 7	8.2 4	0.0169
ce-K-	8 410	4.61 10	1.508 16	0.0133	11	ce-NCP- 6	99,509 7	2.39 12	0.0051
ce-L-	8 470	0.35 10	0.344 3	0.0034	11	ce-L- 8	101,569 7	1.03 5	0.0022
CO-11 NO	- 9 479	9 32 10	0 100	0 0011		CO-K- 12	109 865 7	1 66 15	0.0022
00 1100	, , , ,,		0.104	0.0011			110 0/10 7	A 21H 1H	0.00039
					11		100.077 7	0 262 14	0.0007
9- 1	max 403	5 4			11	ce-n 13	1/10 220 7	0 1 2 6 2 1 4	0.000/
	avg 117	.5 13	73	0.0175		ce-L- 10	140.320 /	0.120 9	0.0004
8-2	max 407	4				Ce-K- 14	152.578 7	0.304 12	0.0010
	avo 118	.7 13	93 3	0.235	11	ce-K- 15	159.791 8	0.430 21	0.0015
t otal	A-		<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.200	lt	ce-L- 12	167.290 7	0.459 22	0.0016
	ava 119	6 13	100 5	0 253		ce-MNO-12	176.570 7	0.142 7	0.0005
	ary in	.0 15	100 5	0.233	11	ce-L- 13	186.248 7	0.167 9	0.0007
						ce-K- 16	194.544 8	0.293 15	0.0012
X-ray	L 8	3.15	14.6 17	0.0025		ce-L- 15	217.216 8	0.223 11	0.0010
X-rav	Κα- 56	5.2770 10	8.6 4	0.0103	11	ce-L- 16	251.969 8	0.127 7	0.0007
X-rav	Ka. 51	5320 10	15.0 7	0.0184	11	ce-K- 25	1051.75 3	0.104 5	0.0023
Y-ray	K8 69	2	6.3.3	0.0088				0.000	000025
~ 147	135	0.20 20	u1 7 16	0.0000					
~ "	124	250 20	5 2 3	0.0150	11	<u>8-</u> 1 max	258 3		
y 4	130	66 H	0 76 10	0.0132	n	avq	71.6 9	28.9 10	0.0441
Y 5	130		17 2 6	0.0022		8- 2 max	301 3		
γņ	343	. 85 20	17.2 0	0.125	1	avq	84.8 9	0.128 7	0.0002
γ /	476	5.00 20	0.42 9	0.0042	11	6-3 max	324 3		
7 8	482	2.03 10	82.8 8	0.851	II .	avo	91.9 10	2.4 7	0.0047
γ٩	615	5.5 5	0.143 6	0.0019	J.	A- 4 max	368 3	2	
					11	2	106 0 10	0 6 96 24	0 0016
	3 weak γ'	's omitte	đ:			A- 5 may	127 2	0.000 24	0.0010
	Eγ(avg)	= 522.6	; $\Sigma I \gamma = 0.03\%$				120 6 10	21 0 0	0 0575
					11	avy,	120.0 10	21.0 9	0.05/5
					11	D Max	400 5	<u> </u>	0 0070
						avg	142.9 10	2.3 3	0.0070
101						8- 7 max	522 3		
• 181W EC E	Decay (120.9)5d2)	l (min)	= 0.10%	[[avq	157.2 10	40.8 25	0.137
						6-8 max	590 3		
""						avg	180.7 11	3.2 22	0.0123
ce-m NO		3.50 3	80 30	0.0063	11	total 6-			
Auger-	L C	1.35	5/ 4	0.0078	11	avg	124.7 11	99 4	0.264
Auger-	к 46	• 2	3.0 13	0.0029					
					11	V-new V	0 /	25 2	0 0005
. 1	c	21 2	0 00 20	0 0001	1]	X-ray L	8.4	25 3	0.0045
Y-ray	т <u>с</u>	15	22 3	0.0001	11	τ 1 τ 2	31.737 7	0.80 8	0.0005
V-rav	ы с. Ка 56	2770 10	1076	0.0039	1	γ <i>ζ</i>	42./14 /	0.245 10	0.0002
X-Ldy	ra2 30	5.2770 10	10.7 0	0.0224	11	x-ray Ka ₂	57.9817 5	10.4 4	0.0129
X-ray	κα ₁ 5/	.5320 10	32.6 9	0.0400		X-ray Kaı	59.31820 1	18.1 6	0.0229
x-ray	KB 65	• 2	13.8 5	0.0191		γ 3	65.721 7	2.80 16	0.0039
		-			1	X-ray KB	67.2	7.7 3	0.0110
	2 weak γ'	s omitted	1:		{}	y 4	67.749 7	42.3 21	0.0611
	Eγ(avg)	= 147.7	; $\Sigma I \gamma = 0.14\%$			γ 5	84.680 7	2.74 9	0.0049
					1	γ 6	100.104 7	14.1 5	0.0300
						γ 8	113.669 7	1.90 8	0.0046
						y 9	116.417 7	0.441 18	0.0011
• 182 To P- 1	Danau /114 -	74 J O)	1 (:)	- 0 100/	11	r 10	152.428 7	7,17 24	0.0233
	Decay (114.)	/4 0 6/	i (min)	= 0.10%]	v 11	156 383 7	2.72.10	0.0091
						× 12	179 300 7	3 18 14	0 0122
luger-	т. 6	53	50 3	0 0082		~ 13	100 200 7	1 51 7	0.0122
nuger .	ິ ເ	155 7	16 3 6	0.0002		y (3	130.340 7		0.0004
ceala	1 10	427 7	1 02 10	0.00033		7 14	222.103 /		0.0358
CE-F.	- 1 19	1031 1 017 7		0.0004	ii .	7 15 1 17	227.310 8	3.04 14	0.0178
ce-m NO	- 1 28		0.51 5	0.0002	II	y 10	204.009 8	3.64 14	0.0205
ce-K-	<u>ь</u> 30	-579 7	12.6 6	0.0082	II · · · · ·	γ 19	927.99 7	0.623 20	0.0123
ce-L-	2 30	.614 7	0.138 10	~0	11	γ 20	959.74 7	0.350 12	0.0072
ce-K-	8 44	.144 7	4.88 21	0.0046	11	γ 21	1001.68 7	2.09 6	0.0447
Auger-1	K 45	.7	1.6 8	0.0016	H ·	γ 23	1044.43 9	0.237 8	0.0053
ce-L-	3 53	.621 7	6.5 4	0.0074	11	γ 24	1113.38 10	0.441 18	0.0105
ce-L-	4 55	.649 7	6.7 4	0.0079	ll	γ 25	1121.28 3	35.0 9	0.836
ce-∦-	3 62	.901 7	1.48 9	0.0020	li	Y 27	1157.30 20	0.63 14	0.0155
ce-M-	4 64	.929 7	1.52 9	0.0021		y 28	1158.10 20	0.35 11	0.0086
ce-NOP	- 3 65	.126 7	0.45 3	0.0006	11	r 30	1189.05 4	16.3 5	0.413
					11	, 30	.,0,.0, 4		Continual'
									(Continued)

TABLES OF RADIOACTIVE DECAY DATA 167

¹⁸²Ta-¹⁸²Re

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCí-h)	Radiation Type	Energy (keV)	Intensity (%)	$\Delta(g-rad/\mu Ci-h)$
¹⁸² Ta β^- Decay	(114.74 d 8)	(Continued)		γ 16 γ 17	264.069 8 470.26 20	0.26 5 1.98 22	0.0015
~ 31	1221 #18 25	27.1 8	0 704	γ 18	536.C4 20	0.21 4	0.0024
y 31	1223.9	0.21 4	0.0055	$\gamma 19$	555.0 10	0.11 4	0.0013
γ 33	1230.97 3	11.5 4	0.302	r 20	649.73 20	0.35 7	0.0049
γ 34	1257.47 5	1.49 5	0.0400	y 22	734.53 20	0.38 5	0.0060
γ 35 ~ 36	12/3./5 6	1.35 4	0.0372	γ 23	787.11 20	0.26 4	0.0043
γ 30 γ 37	1342.72 6	0.252 8	0.0072	γ 24 τ 25	800.0 10	0.15 4	0.0026
γ 38	1373.80 7	0.220 7	0.0064	r 25	835,98 20	0.48 7	0.0085
				y 28	894.85 20	2.11 22	0.0401
9 W @	$a_{x} \gamma' s omitting (a_{x} \gamma' s) = 0/13$	ea: 0• 5T~= 0 00%		γ 29	900.80 20	0.35 7	0.0067
57	(avg) = 945.	0, 211- 0.40%		γ 30 ~ 31	927.99 7	0.51 7	0.0101
				y 32	1001.68 7	0.220 17	0.0047
				γ 33	1044.43 9	0.179 24	0.0040
• 182 Re EC Decay	(12.7 h 2)	l (min)	= 0.10%	7 34	1121.28 3	31.9 16	0.762
				γ 35 	1157.30 20	0.70 20	0.0173
Auger-L	6.53	104 7	0.0145	7 5' 7 38	1189.05 4	15.2 10	0.384
ce-K- 5	15.155 7	15.8 16	0.0051	γ 39	1221.418 25	24.7 13	0.642
ce-L- 1	19.637 7	0.94 10	0.0004	γ 41	1230.97 3	1.31 10	0.0343
ce-K- 6	30.579 7	12.8 12	0.0002	γ 42	1257.47 5	1.40 10	0.0376
ce-L- 2	30.614 7	0.130 17	°∎0	γ 43 γ 44	12/3.75 5	1.21 9	0.0147
ce-K- 8	44.144 7	1.07 18	0.0010	γ 45	1294.2	0.175 21	0.0048
Auger-K	40.7	4.721	0.0046	γ 46	1373.80 7	0.188 25	0.0055
ce-L- 4	55.649 7	6.2 5	0.0073	γ 56 ~ 57	1771.00 20	0.29 4	0.0108
ce-MNO- 3	62.901 7	0.172 22	0.0002	γ 59	1870.9 5	0.29 3	0.0117
ce-M- 4	64.929 7	1.41 12	0.0020	γ 63	1957.3 4	0.46 4	0.0192
ce-1- 5	72,580 7	3.9 4	0.0061	γ 65	2016.2 5	0.78 8	0.0336
ce+M- 5	81.860 7	0.93 10	0.0016	γ 6 ⁹	2047.3 5	0.83 14	0.0363
ce-K- 10	82.903 7	0.71 8	0.0013	y 76	2207.7 5	0.102 11	0.0048
Ce-NCP- 5	84.085 7	0.28 3	0.0005				
ce-M- 5	97.284 7	8.38	0.0173	29 We	$ak \gamma' S Omitte (avg) = 1790 1$	24: • 57~= 0 89%	
ce-NOP- 6	99.509 7	2.44 22	0.0052	Maxim	um γ±-intensi	tv = 3.79%	
ce-L- 8	101.569 7	0.23 4	0.0005		·	-	
ce-L- 10	140.328 7	0.117 15	0.0004				
ce-K- 15	159.791 8	0.25 6	0.0009	182	·		
ce-L- 15	217.216 8	0.13 3	0.0006	• ¹ ⁸ ² Re EC Decay	(64.0 h 5)	I (min)	= 0.10%
ce-K- 1/	400.73 20	0.113 13	0.0010				
8+ 1 may	1739 20			Auger-L	6.53	167 10	0.0232
avor	789 9	1.8 5	0.0303	Ce-K- 9	15.155 7	15.9 11	0.0012
				ce-MNO- 2	17.020 20	2.202 13	0.0008
2 we	ak β's omitt	ed:		ce-L- 3	19.637 7	0.55 6	0.0002
цд	(avy) = 254	4; 21p- 0.10%		Ce-L- 4	27.000 20	3.1 /	0.0018
				ce-K- 10	30.579 7	13.0 11	0.0085
Y-ray L	8.4	45 5	0.0080	ce-L- 5	30.614 7	0.157 13	0.0001
r 2	42.714 7	0.23 3	0.0002	ce-MNO- 4	36.280 20	0.93 20	0.0007
X-ray Kaz	57.9817	5 30.0 18	0.0371	ce-K-12	39.025 20	2,15,23	0.0025
X-ray Kaı	59.31820	1 52 3	0.0660	ce-K- 15	44.144 7	11.3 8	0.0106
γ 3 Verav Ke	65./21 /	0.25 4	0.0003	Auger-K	45.7	8 4	0.0076
γ 4	67.749 7	39 3	0.0566	Ce-K- 16	46.892 7	0.103 10	0.0001
γ 5	84.680 7	2.6 3	0.0048	ce-L- 7	53.621 7	6.1 6	0.0070
γ 6	100.104 7	14.4 12	0.0306	ce-L- 8	55.649 7	3.5 3	0.0041
γ 9	116.417 7	0.35 10	0.0009	ce-K- 17	61.275 20	11.9 11	0.0156
y 10	152.428 7	6.7 8	0.0217	CE-K- 19	64,245 20	4.05 13	0.0019
γ 11 1	156.383 7	0.41 10	0.0014	ce-11- 8	64.929 7	0.79 7	0.0011
γ 12 • 13	119.390 7	0.18 3	0.0009	ce-NOP- 7	65.126 7	0.42 5	0.0006
y 14	222.103 7	0.67 8	0.0032	Ce-NCP- 8	67.154 7	0.227 19	0.0003
.γ 15	229.316 8	2.1 5	0.0104	ce-K- 21	78.095 20	0.86 11	0.0014
				H · -·			(Continued)

¹⁸²Re-

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCí-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
ce-K- 22	79.295 20	1.57 17	0.0027	ce-L- 51	244 330 20	0 453 24	0 0024
ce-K- 23	79.915 20	1.08 13	0.0018	ce-L- 52	251.969 8	0.132 6	0.0007
ce-K- 25	81.605 20	0.42 6	0.0007	ce-11N0-51	253.610 20	0.134 6	0.0007
ce-N- 9	81.860 7	0.94 6	0.0016	ce-L- 53	264.180 20	0.265 11	0.0015
CE-N-26 CE-NOP- 9	82.903 /	0.88 8	0.0016	ce-L-54	269.320 20	0.159 7	0.0009
ce-K- 27	84.425 20	0.23 9	0.0005	Ce-K- 01	209.545 20	0.103 0	0.0013
ce-K- 28	86.858 7	0.73 4	0.0013	ce-K-64	281.545 20	0.394 14	0.0024
ce-L- 10	88.004 7	34 3	0.0629	ce-L- 64	338.970 20	0.126 5	0.0009
ce-K- 29	90.585 20	0.19 6	0.0004				
Ce-L- 11	95.050 20	1.40 12	0.0028	X-ray L	8.4	71 8	0.0128
ce-M- 10	97.284 7	8.4 7	0.0175	γ 3	31.737 7	0.43 5	0.0003
ce-NOP-10	99.509 7	2.47 20	0.0052	γ 4	39.100 20	0.30 7	0.0002
ce-K- 30	99.645 20	10.5 3	0.0222	Υ 5 Υ - Γ - Γ - Γ	42.714 7	0.278 22	0.0003
Ce-L- 15	101.569 7	2.38 17	0.0051	X-ray Kg.	59.31820	1 86-8 25	0.0616
ce-M- 11	103.335 20	2.04 13	0.0062	γ 6	60.560 20	0.11 7	0.0001
ce-MNO-12	105.730 20	0.163 22	0.0004	γ 7	65.721 7	2.6 3	0.0037
ce-NOP-11	106.555 20	0.101 9	0.0002	X-ray KB	67.2	36.9 12	0.0528
ce-K- 32	108.915 20	0.154 12	0.0004	7 8	6/./49 / 8/ 680 7	22.0 18	0.0318
ce-11- 15	110.849 7	1.52 16 0.56 h	0.0036	7 10	100.104 7	14.5 11	0.0310
ce-NCP-15	113.074 7	0.168 12	0.0004	γ 11	107.150 20	1.37 11	0.0031
ce-L- 17	118.700 20	2.66 24	0.0067	Y 12	108.550 20	0.77 7	0.0018
ce-L- 18	119.220 20	0.107 4	0.0003	γ 13 \sim 14	110.40 20	0.100	0.0002
ce-1 19	120.075 20	0.1/12	0.0004	r 15	113.669 7	4.4 3	0.0005
ce-K- 37	121.835 20	4.92 12	0.0128	γ 16	116.417 7	0.49 5	0.0012
ce-M- 17	127.980 20	0.62 6	0.0017	γ 17	130.800 20	7.3 7	0.0202
ce-K- 38	128.823 7	0.71 4	0.0019	γ 18	131.320 20	0.160	0.0004
CE-NOP-12	130.205 20	0.188 17	0.0005	7 19	145.400 20	2.46 /	0.0070
ce-L- 21	135.520 20	0.229 9	0.0006	γ 21	147.620 20	0.88 9	0.0028
ce-L- 22	136.720 20	0.48 5	0.0014	γ 22	148.820 20	1.71 13	0.0054
ce-L- 23	137.340 20	0.190 22	0.0006	γ 23 ~ 2"	149.440 20	0.88 9	0.0028
Ce-K- 41	138.695 20	0.229 20	0.0007	r 24	151.130 20	0.49 5	0.0016
ce-K- 42	139.895 20	0.16 9	0.0003	γ 26	152.428 7	8.3 7	0.0271
ce-L- 26	140.328 7	0.146 14	0.0004	r 27	153.950 20	0.24 9	0.0008
ce-L- 28	144.283 7	0.119 6	0.0004	γ 28 - 20	156.383 7	7.4 3	0.0247
Ce-K- 43	144.775 20	0.49 5	0.0015	y 30	169.170 20	11.7 3	0.0008
ce-K- 44	146.195 20	0.104 10	0.0005	γ 31	172.880 20	3.48 15	0.0128
ce-K- 45	147.995 20	0.135 10	0.0004	y 32	178.440 20	2.20 15	0.0084
ce-K- 46	152.095 20	0.250 19	0.0008	γ 33 ~ 3/1	179.390 7	2.93 20	0.0112
Ce-K- 47	152.578 7	0.34 4	0.0011	γ 35	188.54 5	0.128 13	0.0012
ce-L- 30	157.070 20	1.70 5	0.0057	γ 36	189.600 20	0.38 17	0.0016
ce-K- 49	159.791 8	2.95 12	0.0100	γ <u>37</u>	191.360 20	7.69 18	0.0314
ce-L- 31	160.780 20	0.488 22	0.0017	γ 38 ~ 30	198.348 7	4.08 18	0.0172
Ce-N- 30 Ce-L- 33	166.350 20	0.387 11	0.0014	y 40	205.950 20	0.45 5	0.0072
ce-NOP-30	168.575 20	0.117 4	0.0004	y 41	208.220 20	0.60 5	0.0027
ce-MNO-31	170.060 20	0.145 10	0.0005	γ 42	209.420 20	0.47 5	0.0021
ce-MNO-33	176.570 7	0.131 9	0.0005	γ 43 ~ 11	214.300 20	1.07 9	0.0049
ce-L- 37	177.925 20	0.47 4	0.0018	γ 44 γ 45	217,520 20	3, 18 22	0.0034
ce-L- 38	186.248 7	0.453 24	0.0018	y 46	221.620 20	6.2 5	0.0293
ce-K- 51	186.905 20	2.88 15	0.0115	γ 47	222.103 7	8.3 9	0.0394
ce-MNO-37	188.540 20	0.232 6	0.0009	γ 48 ~ #9	226.170 20	3.25 15	0.0156
Ce-K- 52	194.544 8	0.303 13	0.0013	y 47	229.310. 8	25.0 / 11.0 h	0.122
ce-K- 53	206.755 20	0.644 25	0.0028	y 51	256.430 20	10.0 5	0.0549
ce-K- 54	211.895 20	0.394 17	0.0018	γ <u>52</u>	264.069 8	3.76 11	0.0212
ce-L- 48	214.070 20	0.208 12	0.0009	γ 53	276.280 20	9.02 22	0.0531
CE-K- 55 CE-T- 40	21/.055 20	0.487 23	0.0023	γ 04 γ 55	286.580 20	⊃•/>18 7.5 3	0.0347
ce-M- 49	226.496 8	0.378 15	0.0071	γ 56	295.67 10	0.19 7	0.0012
ce-NOP-49	228.721 8	0.110 5	0.0005	y 57	300.000 20	1.2 3	0.0078
ce-K- 58	230.955 20	0.31 8	0.0015	γ 58	300.480 20	1.6 4	0.0105
ce-L- 50	235.350 20	0.221 18	0.0011	γ 60	313.900 20	0.00 5	0.0040
			11	,		10 / 0 / 1	(Continued)

¹⁸² Re--¹⁸⁴ Re

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
1 8 2 Re EC Decay γ 61 62 7 63 γ 63 7 64 7 65 7 67 7 68 7 69	(64.0 h 5) 339.070 20 342.040 20 345.400 20 351.070 20 357.120 20 927.99 7 943.01 20 959.74 7	(Continued) 5.60 16 1.03 9 0.47 5 10.32 18 0.51 5 0.36 4 0.22 4 0.19 4	0.0404 0.0075 0.0035 0.0772 0.0039 0.0071 0.0044 0.0040	ce-7 - 10 $ce-NOP - 10$ $ce-K - 16$ $ce-K - 19$ $ce-L - 13$ $ce-L - 15$ $ce-7 - 15$ $ce-NOP - 15$ $ce-K - 23$ $ce-L - 19$	106.909 3 109.134 3 123.118 6 139.2870 21 148.429 4 150.223 5 159.503 5 161.728 5 176.5370 21 196.7122 21	0.339 13 0.104 4 0.130 6 1.38 8 0.162 7 4.07 11 0.94 3 0.283 8 0.423 17 0.241 7	0.0008 0.0002 0.0003 0.0041 0.0005 0.0130 0.0032 0.0010 0.0016 0.0010
7 70 Y 71 Y 72 Y 73 Y 73 Y 74 Y 75 Y 75 Y 76 Y 77 Y 78 Y 79 Y 80 Y 81 Y 82 Y 83 Y 86 Y 87 Y 88 Y 89 Y 90 Y 91	$\begin{array}{ccccc} 1001.68 & 7 \\ 1044.43 & 9 \\ 1076.30 & 20 \\ 1088.20 & 20 \\ 1113.38 & 10 \\ 1121.28 & 3 \\ 1157.30 & 20 \\ 1158.10 & 20 \\ 1158.10 & 20 \\ 1189.05 & 4 \\ 1221.418 & 25 \\ 1223.9 \\ 1230.97 & 3 \\ 1257.47 & 5 \\ 1273.75 & 6 \\ 1289.17 & 7 \\ 1292.00 & 20 \\ 1294.20 & 20 \\ 1331.00 & 20 \\ 1342.72 & 6 \\ 1373.80 & 7 \end{array}$	2.41 9 0.278 11 10.2 3 0.192 18 4.57 9 21.37 12 0.855 5 0.545 22 8.76 22 16.52 24 0.185 1 14.4 3 1.03 5 0.92 5 0.737 16 0.227 22 1.58 5 0.35 3 2.69 7 0.288 11	0.0515 0.0062 0.234 0.045 0.108 0.510 0.0211 0.0137 0.222 0.430 0.048 0.378 0.0277 0.0249 0.0249 0.0249 0.0202 0.0062 0.0436 0.0770 0.0084	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.4 46.4837 10 52.5950 20 57.9817 5 59.31820 1 67.2 82.9180 20 84.7110 20 99.0790 20 107.9320 20 107.9320 20 107.9320 20 109.729 3 144.129 5 160.529 4 161.342 5 162.323 5 192.643 6 205.085 7 208.8120 20 209.879 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0007 0.0079 0.0025 0.0423 0.0752 0.0362 0.0004 0.0016 0.0057 0.0050 0.0068 0.0004 0.0012 0.0808 0.0011 0.0012 0.0132 0.0012
γ 92 γ 93 γ 94 γ 95 8 we Βγ	1387.40 8 1410.10 10 1427.30 20 1439.40 20 ak γ's omitte (avg) = 1073.6	0.26 3 0.278 15 9.45 18 0.156 11 d: ; $\Sigma \Sigma \gamma = 0.40\%$	0.0076 0.0083 0.287 0.0048	γ 21 γ 22 γ 23 γ 24 γ 25 γ 26 7 wea Εγ	244.266 3 245.239 6 246.0620 20 291.723 7 313.021 5 353.998 5 $k \gamma$'s omitte (avg) = 254.0	0.412 14 0.26 4 1.32 5 3.17 8 0.415 15 0.536 17 d: $\Sigma I \gamma = 0.19\%$	0.0021 0.0013 0.0069 0.0197 0.0028 0.0040
• ¹⁸³ Re EC Decay	(70 d 2)	J (min)	= 0.10%	- 184D- 50 D-			0.40%
Auger-L ce-K- 4 ce-K- 5 ce-L- 1 ce-K- 6 ce-L- 2 ce-K- 9 ce-K- 9 ce-K- 10 ce-L- 3 ce-MNO- 2 Auger-K ce-M- 3 ce-NOP- 3 ce-L- 4	$\begin{array}{c} 6.53\\ 13.3930 \ 21\\ 15.1860 \ 21\\ 28.8760 \ 11\\ 29.5540 \ 21\\ 34.3839 \ 11\\ 38.4070 \ 21\\ 40.204 \ 3\\ 40.4952 \ 21\\ 43.6641 \ 11\\ 45.7\\ 49.7754 \ 21\\ 52.0000 \ 21\\ 70.8182 \ 21\\ 70.8182 \ 21\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0194 0.0004 0.0018 0.0001 0.0015 0.0383 0.0056 0.0076 0.0091 0.0148 0.0052 0.0026 0.0026 0.0008 0.0009	• WE EC Decay Auger-L ce-K- 1 Auger-K ce-L- 1 ce-M- 1 ce-M- 1 ce-K- 7 ce-K- 7 ce-K- 7 ce-K- 15 ce-K- 17	(38.0 d 5) 6.53 41.682 7 99.107 7 108.387 7 110.612 7 183.320 10 240.745 10 722.542 22 833.757 19 8.4	I (min) 81 5 12.5 7 4.0 18 24.3 13 6.1 4 1.80 10 0.27 3 0.125 12 0.223 10 0.172 8 35 4	= 0.10% 0.0113 0.0111 0.0039 0.0514 0.0141 0.0042 0.0011 0.0042 0.0011 0.0034 0.0031
$\begin{array}{c} ce-L-5\\ ce-K-12\\ ce-MNO-4\\ ce-MNO-5\\ ce-L-6\\ ce-K-13\\ ce-K-13\\ ce-K-15\\ ce-L-9\\ ce-L-9\\ ce-L-9\\ ce-L-6\\ ce-L-10\\ ce-NCP-6\\ ce-MNO-9\end{array}$	72.6112 21 74.604 5 80.0984 21 81.8914 21 91.004 4 91.817 5 92.798 5 95.8322 21 96.2594 21 97.629 3 98.4840 21 105.1124 21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0015 0.0003 0.0005 0.0121 0.0003 0.0007 0.0432 0.0026 0.0034 0.0031 0.0010 0.0008	$\begin{array}{c} x - ray & K\alpha_2 \\ x - ray & K\alpha_1 \\ x - ray & K\alpha_1 \\ x - ray & K\alpha_1 \\ \gamma & 1 \\ \gamma & 7 \\ \gamma & 11 \\ \gamma & 12 \\ \gamma & 11 \\ \gamma & 12 \\ \gamma & 14 \\ \gamma & 15 \\ \gamma & 16 \\ \gamma & 17 \end{array}$	57.9817 5 59.31820 1 67.2 111.207 7 252.845 10 539.220 25 641.915 20 769.778 17 792.067 22 894.760 19 903.282 19	25.5 10 44.3 17 18.8 8 17.1 8 3.0 3 0.327 19 1.94 6 0.67 3 37.5 12 15.6 5 37.9 12	0.0315 0.0560 0.0270 0.0406 0.0162 0.0038 0.0265 0.0109 0.632 0.297 0.729 (Continued)

170 RADIOACTIVE DECAY DATA TABLES

¹⁸⁴Re-¹⁸⁵Os

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
γ 20 γ 23 γ 26 16 κα	1022.63 3 1275.11 3 1386.33 3 εak γ's omitte	0.52 4 0.119 7 0.103 6	0.0112 0.0032 0.0030	● ¹⁸⁴ Re IT Decay %IT De Feeds ¹ See also	(169 d 8) ecay = 74.7 6 ^{8 4} Re (38.0 d) o ^{18 4} Re EC D	l (min ecay (169 d)) = 0.10%
• 184 Re EC Decay %EC See al Auger-L ce-K- 3 ce-K- 4 ce-K- 5 ce-L- 1 Auger-K ce-L- 2 ce-NOP- 1 ce-NOP- 1 ce-NOP- 2 ce-NOP- 2 ce-NOP- 2 ce-NOP- 2 ce-NOP- 2 ce-NOP- 2 ce-K- 9 ce-L- 4 ce-K- 9 ce-L- 5 ce-K- 10 ce-K- 11 ce-K- 11 ce-K- 14 ce-K- 14 ce-K- 14 ce-K- 15	r (avg) = 787.3 r (avg) = 787.3 r (169 d 8) Decay = 25.3 6 lso 184 Re IT Decay 6.53 17.927 10 21.745 10 41.682 7 43.178 5 45.7 51.615 15 52.458 5 54.683 5 60.895 15 63.120 15 79.170 10 88.450 10 91.744 15 99.107 7 108.387 7 110.612 7 145.801 12 147.022 12 149.169 15 158.449 15 183.320 10 204.447 12 240.745 10 248.483 10	B; $\Sigma I \gamma = 0.29 \%$ I (min ecay (169 d) 41.3 24 0.166 9 1.06 9 4.3 4 8.8 11 1.3 6 7.5 13 2.00 24 0.61 8 1.9 4 0.54 10 0.42 4 0.132 11 5.8 4 8.4 7 2.11 18 0.62 6 0.123 9 1.33 9 1.25 8 0.379 25 0.99 7 0.74 5 0.237 15 0.45 3 0.101 6	$\begin{array}{l} 0.0057\\ & 0.0057\\ & 0\\ 0.0005\\ 0.0038\\ 0.0081\\ 0.0081\\ 0.0082\\ 0.0022\\ 0.0022\\ 0.0007\\ 0.0024\\ 0.0007\\ 0.0024\\ 0.0007\\ 0.0002\\ 0.0114\\ 0.0177\\ 0.0002\\ 0.0114\\ 0.0177\\ 0.0004\\ 0.0015\\ 0.0015\\ 0.0042\\ 0.0040\\ 0.0013\\ 0.0032\\ 0.0013\\ 0.0032\\ 0.0015\\ 0.0032\\ 0.0015\\ 0.0023\\ 0.0005\end{array}$	Auger-L $ce - K - 1$ $ce - K - 2$ Auger-K $ce - I - 1$ $ce - N OP - 2$ $V - Ta V$ $X - Ta Y$ Ka_1 $X - Ta Y$ Ka_1 $X - Ta Y$ Y Y Y S^0 Y S^0 Y S^0 Y S^0 S^0 S^0 S^0 S^0 S^0 S^0 <t< td=""><td>6.7 11.60 4 33.053 7 47 70.75 4 80.35 4 82.65 4 92.202 7 101.797 7 104.104 7 8.65 59.7179 61.1403 69.3 104.729 7 75.1 d 3) 432.4 10 126.8 4 ak β's omitta (avg) = 96.1 ak γ's omitta (avg) = 125.1</td><td>70 4 1.41 6 49.5 25 2.1 10 50.4 20 16.8 7 5.50 22 9.1 4 2.11 9 0.65 3 31 4 6 14.1 8 6 24.4 13 10.4 6 13.3 6 I (min) 99.921 9 ed: 9; $\Sigma I \beta = 0.08\%$ ed: 4; $\Sigma I \gamma = 0.02\%$</td><td>$\begin{array}{c} 0.0100\\ 0.0003\\ 0.0349\\ 0.0021\\ 0.0759\\ 0.0287\\ 0.0097\\ 0.0179\\ 0.0046\\ 0.0014\\ 0.0058\\ 0.0179\\ 0.0318\\ 0.0154\\ 0.0296\\ \end{array}$ $= 0.10\%$ 0.270</td></t<>	6.7 11.60 4 33.053 7 47 70.75 4 80.35 4 82.65 4 92.202 7 101.797 7 104.104 7 8.65 59.7179 61.1403 69.3 104.729 7 75.1 d 3) 432.4 10 126.8 4 ak β 's omitta (avg) = 96.1 ak γ 's omitta (avg) = 125.1	70 4 1.41 6 49.5 25 2.1 10 50.4 20 16.8 7 5.50 22 9.1 4 2.11 9 0.65 3 31 4 6 14.1 8 6 24.4 13 10.4 6 13.3 6 I (min) 99.921 9 ed: 9; $\Sigma I \beta = 0.08\%$ ed: 4; $\Sigma I \gamma = 0.02\%$	$\begin{array}{c} 0.0100\\ 0.0003\\ 0.0349\\ 0.0021\\ 0.0759\\ 0.0287\\ 0.0097\\ 0.0179\\ 0.0046\\ 0.0014\\ 0.0058\\ 0.0179\\ 0.0318\\ 0.0154\\ 0.0296\\ \end{array}$ $= 0.10\%$ 0.270
$\begin{array}{c} ce-K-15\\ ce-MNO-14\\ \hline X-ray \ L\\ \gamma \ 1\\ \hline X-ray \ K\alpha_2\\ \hline \gamma \ 2\\ \hline X-ray \ K\beta\\ \gamma \ 2\\ \hline X-ray \ K\beta\\ \gamma \ 3\\ \gamma \ 4\\ \gamma \ 5\\ \gamma \ 6\\ \gamma \ 4\\ \gamma \ 5\\ \gamma \ 6\\ \gamma \ 9\\ \gamma \ 10\\ \gamma \ 11\\ \gamma \ 12\\ \gamma \ 10\\ \gamma \ 11\\ \gamma \ 12\\ \gamma \ 14\\ \gamma \ 15\\ \gamma \ 17\\ \gamma \ 18\\ \gamma \ 20\\ \gamma \ 21\\ \gamma \ 22\\ \gamma \ 23\\ \gamma \ 24\\ \gamma \ 25\\ \gamma \ 26\\ \gamma \ 28\\ \gamma \ 29\\ \gamma \ 29\\ \end{array}$	248.483 10 250.025 10 8.4 55.278 5 57.9817 5 59.31820 1 67.2 87.452 10 91.270 10 11.207 7 124.060 20 161.269 15 215.326 12 216.547 12 226.748 10 252.845 10 318.008 10 384.250 12 536.674 15 641.915 20 792.067 22 857.25 3 894.760 19 903.282 19 920.933 21 1022.63 3 1110.08 3	$\begin{array}{c} 0.101 & 6 \\ 0.143 & 9 \\ \hline \\ 17.7 & 19 \\ 2.4 & 3 \\ 8.5 & 3 \\ 14.8 & 5 \\ 0.38 & 7 \\ 6.29 & 23 \\ 0.244 & 19 \\ 0.260 & 19 \\ 5.9 & 5 \\ 0.152 & 12 \\ 6.6 & 4 \\ 2.84 & 18 \\ 9.6 & 6 \\ 1.51 & 10 \\ 10.9 & 7 \\ 5.9 & 4 \\ 3.20 & 19 \\ 3.37 & 20 \\ 0.352 & 23 \\ 0.240 & 21 \\ 3.77 & 23 \\ 0.240 & 21 \\ 3.77 & 23 \\ 0.166 & 11 \\ 2.81 & 19 \\ 3.82 & 23 \\ 8.3 & 5 \\ 0.184 & 19 \\ 0.60 & 5 \\ \end{array}$	0.0005 0.0032 0.0028 0.0105 0.0187 0.0090 0.0005 0.0090 0.0005 0.0005 0.0140 0.0228 0.0130 0.0228 0.0130 0.0444 0.0073 0.02444 0.0073 0.0398 0.0262 0.0398 0.0039 0.0637 0.0030 0.0536 0.0734 0.0040 0.0040 0.0040	• 185 Os EC Decay (Auger-L Auger-K ce-K-2 ce-L-1 ce-MNO-1 ce-K-3 ce-L-2 ce-K-4 ce-K-6 ce-L-6 X-ray K α_2 X-ray K α_1 X-ray K β Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 Y 11 Y 12 4 wea	(93.6 d 5) 6.7 47 53.682 3 58.7863 2 91.176 7 112.831 3 162.481 9 574.440 9 63.589 9 8.65 59.7179 6 61.1403 6 69.3 71.3130 20 125.358 3 162.852 7 234.157 9 592.066 10 646.116 9 717.424 12 874.813 13 880.272 19 k r's omitte	I (min) 57 4 3.1 14 0.781 11 1 0.5 3 1 0.15 8 0.611 10 0.133 2 0.152 3 0.757 24 0.157 5 26 3 5 21.0 6 5 36.4 9 15.5 5 0 0.25 13 0.346 5 0.556 8 0.412 7 1.315 14 80.2 7 4.08 4 6.54 7 4.95 5	= 0.10% 0.0082 0.0031 0.0009 0.0006 0.0002 0.0012 0.0003 0.0005 0.0093 0.0021 0.0021 0.0047 0.0267 0.0474 0.0229 0.0004 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0022 0.0021
γ 30 7 we	1173.77 3 ak γ 's omitte	1.24 10 a:	0.0310	Ξγ([avg] = 910.0); ΣΙγ= 0.06%	

7 weak γ 's omitted: E γ (avg) = 647.4; Σ I γ = 0.27%
¹⁸⁶ Re~¹⁸⁷ Re

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
● ¹⁸⁶ Re EC Decay %EC See al	(90.64 h 9) Decay = 6.8 20 so ¹⁸⁶ Re β ⁻ D	l (min))ecay (90.64 h)) = 0.10%	ce-L- 6 ce-MNO- 4 ce-K- 12 Auger-K ce-L- 7	31.13 6 33.30 6 42.074 20 47 59 533 10	0.13 14 0.134 25 0.251 15 1.1 5	≈0 ≈0 0.0002 0.0011
Auger-L Auger-K ce-K- 1 ce-L- 1 ce-MNO- 1	6.53 45.7 52.77 10 110.20 10 119.48 10	4.5 11 0.25 14 0.42 14 0.64 22 0.21 7	0.0006 0.0002 0.0005 0.0015 0.0005	ce-K- 14 ce-MNO- 7 ce-L- 14 ce-M- 14 ce-NCP-14	62.544 10 69.128 10 121.693 10 131.288 10 133.595 10	17.6 9 0.49 3 2.99 13 0.69 3 0.210 9	0.0021 0.0234 0.0007 0.0077 0.0019 0.0006
X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ	8.4 57.9817 59.31820 67.2	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.0003 0.0020 0.0035 0.0017	ce-K- 28 ce-L- 28 ce-K- 39	407.854 10 467.003 10 546.694 10	0.396 22 0.427 22 0.109 6 0.17 3	0.0037 0.0011 0.0020
7 1	122.30 10	0.70 23	0.0018	β - $a v g$ β - 2 max a v g β - 3 max	127.0 6 448.0 18 131.9 6 495.9 18	0.484 20 0.67 3	0.0013 0.0019
● ¹ °° Re β ⁻ Decay %β ⁻ [Feeds See st	(90.64 h 9) Decay = 93.2 20 ¹⁸⁶ Os So ¹⁸⁶ Be EC C	l (min))ecay (90.64 b)	} = 0.10%	avg 9-4 max avg 8-5 max	148.0 7 539.6 18 163.0 7 626.7 18	0.20 18 4.3 3	0.0006 0.0149
Auger-L Auger-K	6,88 48,3	6.5 8 0.16 8	0.0009	aνφ β=6 max avg β=7 may	193.5 7 687.0 18 215.1 7 694.1 18	58.7 23 5.5 6	0.242 0.0252
ce-K- 1 ce-L- 1 ce-M- 1	63.286 8 124.189 8 134.108 8	4.2 7 6.1 10 1.54 25	0.0056 0.0161 0.0044	avg 8-8 max avg	217.6 7 800.7 18 256.8 7	3.5 6 0.10 4	0.0162 0.0005
β ⁻ 1 max	939.4 18 308.8 7	22 4	0.145	B- 9 max avg B-10 max avg	401.7 7 1312.5 18 457.1 8	2.3 9 25.1 24	0.0197 0.244
B- 2 max avg total B-	1076.6 18 362.0 7	71 4	0.547	tota <u>l</u> β- avg 7 we	263.8 9 ak 8's omitte	101 4 ed:	0.567
avy 2 we BB	eak β 's omitte $\beta(avg) = 87$.	93 6 ed: 1; ΣΙβ= 0.06%	0.092	ВВ X-гау L	(avg) = 55. 8.65	7; ΣΙβ= 0.02% 8.7 10	0.0016
$\begin{array}{cccc} X - ray & L \\ X - ray & K\alpha_2 \\ X - ray & K\alpha_1 \\ X - ray & K\beta \\ \gamma & 1 \\ \end{array}$ $\begin{array}{c} 5 & we \\ B\gamma \end{array}$	9 61.4867 63.0005 71.4 137.157 ak γ 's omitte (avg) = 702.2	3.0 5 7 1.16 19 7 2.0 4 0.86 14 9.5 15 ed: 2; $\Sigma I \gamma = 0.06\%$	0.0006 0.0015 0.0027 0.0013 0.0278	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59.7179 61.1403 69.3 72.060 10 134.220 10 206.29 3 246.180 10 479.530 10 551.550 10 551.550 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0097 0.0172 0.0083 0.0183 0.0270 0.0007 0.0007 0.239 0.0075 0.0075 0.0639
• ³⁸⁶ Os.α Decay (2 α 1	2.0E15 y 11) 2756 3	I (min)	= 0.10% 5.87	γ 39 γ 40 γ 44 γ 46 γ 48 γ 53	618.370 10 625.520 10 685.810 10 745.210 20 772.870 20 864.550 10	6.7 3 1.16 5 29.2 13 0.318 14 4.40 19 0.359 16	0.0884 0.0155 0.426 0.0051 0.0725
				γ 54 44 wea	879.43 5 ak γ's omitte	0.359 16 0.151 7	0.0008
 ¹⁸ 'W β⁻ Decay (Feeds ¹ 	2 3.83 h 9) ⁸⁷ Re	l (min)	= 0.10%	Βγ	(a v g)= 276.2	2; ΣΙγ=:0.42%	
ce-K- 7 ce-MNO- 1 Auger-L	0.384 10 4.1683 4 6.7	8.7 5 3.5 6 19.3 13	≈0 0.0003 0.0028	• ¹⁸⁷ Re β ⁻ Decay	(4.7E10 y 8)	l (min)	= 0.10%
ce-L- 3 ce+L- 4	23.70 6	0.42 8	0.0002	avg svg	2.64 4	100	0.0014

~ -

172 RADIOACTIVE DECAY DATA TABLES

.

¹⁸⁸W-¹⁹⁰Ir

Radiation Type	Energy (keV)	Intensity (%)	Δ (g-rad/ μ Ci-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
• ^{1 8 8} W β^- Decay Feeds	(69.4 d 5) ¹⁸⁸ Re	l (min) = 0.10%	• ¹⁹⁰ Os IT Decay	(9.9 m 1)	l (min) = 0.10%
				Auger-L	6.88	71 4	0.0104
Auger-L ce-L- 1	6.7 51.056 3	0.20 4 0.29 5	≈0 0.0003	ce-L- 1 ce-MNO- 1 Auger-K	25.9320 35.8515 48.3	4 74.2 6 4 25.8 6 0.8 4	0.0410 0.0197 0.0008
8- 1 max	58 3			ce-K- 2 ce-L- 2	112.85 3 173.76 3	14.3 4 11.7 3	0.0344 0.0433
avg 8-2 max	285 3	0.84 5	0.0003	ce-M- 2	183.68 3	2.93 9	0.0115
avg	89.9 10	0.14 8	0.0003	ce-K- 3	287.22 5	3.54 10	0.0217
o's max avg	99.7 10	99.01 9	0.210	Ce-L- 3 Ce-MNO- 3	348.12 5	1.20 4	0.0089
total 8-	99 0 11	100 00 12	0 211	ce-K- 4	428.68 8	1.66 5	0.0152
avy	33.0 11	100.00 15	0.211	ce-L- 4 ce-MNO- 4	489.58 8 499.50 8	0.421 13	0.0044
γ 1	63.583 3	0.108 17	0.0001	ce-K- 5	542.21 14	1.07 3	0.0124
γ 5 γ 6	227.082 7 290.669 13	0.220 13 0.399 23	0.0011	ce-L- 5	603.11 14	0.235 7	0.0039
3	ank ala anist			X-ray L	9	33 4	0.0064
5 We E1	$\gamma(avg) = 165.2$	ea: 2; ΣΙγ= 0.02%		X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 2	61.4867 63.0005 71.4 186.725 25	7 5.70 18 7 9.8 3 4.23 14 70.2 6	0.0075 0.0132 0.0064 0.279
	(1608 b 2)	L (min)	- 0.10%	γ 3 γ 4	361.09 5 502.55 8	94.88 14 97.78 7	0.730
ne p Decay	(10.96 11 2)	r (min)	- 0.10%	y 5	616.08 14	98.62 4	1.29
Auger-L	6.88	6.5 5	0.0010	1 we	ak γ's omitte	ed:	
Auger-K	48.3	0.19 9	0.0002	Eγ	(avg) = 38.	9; $\Sigma I \gamma = 0.10\%$	
ce-L- 1	142.062 10	5.6 4	0.0168				
Ce-M- 1 Ce-NOP- 1	151.981 10	1.41 9	0.0046				
	134.370 10	0.422 23	0.0014	• ¹⁹⁰ Ir EC Decay	(11.78 d 10)	l (min)	= 0.10%
8- 1 max	178.6 9				6 80	(0.10	0 0 0 0 0
8-2 max	48.1 3 354.3 9	0.108 /	0.0001	ce-K- 1	24.06 15	0.27 21	0.0101
avg	101.3 3	0.187 10	0.0004	Auger-K	48.3	3.5 17	0.0036
avor	657.2 9 204.0 4	0.52 3	0.0023	ce-L- 1 ce-K- 2	84.96 15 112.85 3	10.1 6	0.0003
6-4 max	1033.4 9		0.0023	ce-K- 4	122.98 15	1.4 6	0.0037
avg 8-5 mar	345.1 4	0.64 3	0.0047	ce-K- 5	124.21 20	0.33 5	0.0009
avq	527.5 4	1.61 14	0.0181	ce-K- 8	134.04 6	0.176 25	0.0004
8- 6 max	1964.7 9			ce-K- 9	149.94 5	0.147 10	0.0005
avg 8-7 - 7	728.6 4	25.3 13	0.393	ce-L- 2	173.76 3	8.2 5	0.0305
avor	795.1 4	71.4 15	1.21	ce-L-4	183.88 15	0.40 5	0.0016
total 8-		,		ce-L- 5	185.11 20	0.24 3	0.0009
avq	764.2 5	100.0 20	1.63	ce-NCP-2	186.07 3	0.62 4	0.0025
10 we	ak A's omitte	eđ:		ce-L- 8	194.94 6	0.119 17	0.0005
Ef	B(avg) = 141.	1; ΣΙβ= 0.26%		ce-K- 14	214.35 10	0.25 15	0.0011
		•		ce-K- 15	220.88 12	0.38 4	0.0018
X-ray L	9	3.1 4	0.0006	Ce-L- 15	281.78 12 287 22 E	0.163 17	0.0010
X-rav Kaz	61.4867	7 1.36 9	0.0018	ce-K- 17	297.37 5	0.780 24	0.0049
X-rav Ka ₁	63.0005	/ 2.35 15	0.0032	ce-K- 20	323.49 6	0.183 10	0.0013
ν-ταγ ΝΒ γ 1	155.030 10	15.0 8	0.0015	ce-K- 21	333.35 6	0.144 25	0.0010
γ 5	477.96 3	1.04 6	0.0106	ce-K- 22	333.35 6	0.84 17 0 157 9	0.0060
γ 10	633.1 3	1.26 13	0.0169	ce-L- 17	358.27 5	0.251 11	0.0012
γ 11 γ 12	635.0 5	0.15 5	0.0020	ce-L- 22	394.25 6	0.211 22	0.0018
γ 12 γ 15	829.51 3	0.117 6	0.0016	ce-K- 31	444.68 7	0.191 11	0.0018
γ 17	931.32 3	0.565 25	0.0112	ce-K- 32	484.11 6 495.43 7	0.382 20	0.0039
35	ak vie onice			ce-K- 34	531.27 7	0.427 23	0.0037
ວວ we - 12 γ	(avg) = 1133.6	5; $\Sigma I \gamma = 0.72\%$		1 40	ak Rig omi+++	• •	
- -				iwe Ββ	(avg) = 370.0); ΣΙβ= 0.03%	
							(Continued)

¹⁹⁰ lr - ¹⁹¹ Os

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
¹⁹⁰ lr EC Decay χ-ray L χ-ray Κα ₂	(11.78 d 10) 9 61.4867	(Continued) 32 6 25 4	0.0061 0.0324	 ¹⁹⁰ Ir EC Decay (%EC De Feeds ¹ See also 	3.2 h 2) ecay = 94.9 ⁹⁰ Os (9.9 m) ¹⁹⁰ Ir IT Deca	l (min) ay (3.2 h)	= 0.10%
X-ray Kα ₁ X-ray KB γ 2 γ 3	63.0005 71.4 186.725 25 190.52 20	43 7 18 3 49.7 24 0.127 24	0.0573 0.0279 0.198 0.0005	Auger-L Auger-K	6.88 48.3	52 5 2.9 14	0.0077 0.0030
γ 4 γ 5 γ 6 γ 7 γ 8 γ 9 γ 10	196.85 15 198.08 20 199.3 3 207.91 6 223.81 5 235.50 12	3.2 4 1.84 23 0.22 7 0.32 11 1.12 16 3.54 20 0.40 4	0.0136 0.0077 0.0009 0.0014 0.0050 0.0169 0.0020	X-ray L X-rav Ka ₂ X-ray Ka ₁ X-ray K8	9 61.4867 7 63.0005 7 71.4	25 3 7 20.5 14 7 35.4 24 15.2 11	0.0047 0.0269 0.0475 0.0231
γ 12 γ 13 γ 14 γ 15 γ 16 γ 17 γ 18	248.2 3 282.93 6 288.22 10 294.75 12 361.09 5 371.24 5 380.03 12	0.114 20 0.45 9 1.56 14 6.2 6 12.3 5 21.6 6 1.92 11	0.0006 0.0027 0.0095 0.0386 0.0949 0.171 0.0156	 ¹⁹⁰Ir IT Decay (3 %IT Dec Feeds ¹⁹ See also 	3.2 h 2) ay = 5.1 ⁰ Ir (1.2 h) ¹⁹⁰ Ir EC Deca	1 (min) 1y (3.2 h)	= 0.10%
γ 20 γ 21 γ 22 γ 23 γ 25 γ 26 γ 27	397.36 6 407.22 6 407.22 6 420.63 12 431.62 7 447.81 8	6.2 3 4.3 7 22.7 13 1.56 8 2.59 17 2.42 15	0.0525 0.0375 0.197 0.0139 0.0238 0.0231	Auger-L ce-R-2 ce-L-2 ce-M-2 ce-NOP-2	7 72.5890 5 135.2815 3 145.5263 7 148.0099 4	2.50 12 5 1.10 3 3 2.85 4 7 0.862 21 4 0.284 9	0.0004 0.0017 0.0082 0.0027 0.0009
γ 28 γ 29 γ 30 γ 31 γ 32 γ 33	477.8 3 485.23 20 490.76 7 502.55 8 518.55 7 557.98 6 569.30 7	0.69 16 0.74 5 1.19 8 32.2 14 28.5 12 27.0 12	0.0071 0.0077 0.0127 0.355 0.339 0.327	X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ	9.18 63.2867 7 64.8956 7 73.6	1.23 12 7 0.306 10 7 0.527 17 0.227 8	0.0002 0.0004 0.0007 0.0004
γ 34. γ 35 γ 36 γ 37	605.14 7 615.39 15 628.4 3 630.91 16	37.8 17 0.44 3 0.71 9 2.8 4	0.487 0.0058 0.0095 0.0374	Εγ	(avg) = 148.7	7: ΣΙγ= 0.01%	
γ 39 γ 41	656.02 8 690.04 8	1.10 8 0.27 3	0.0154	● ¹⁹¹ Os β ⁻ Decay	(15.4 d 1)	l (min)	= 0.10%
γ 43 γ 45 γ 45 γ 47 γ 48 γ 49 γ 50 γ 51 γ 52 γ 56 γ 58 γ 59 γ 62 γ 63 γ 65 γ 66	726.22 8 740.19 14 768.57 8 821.78 14 828 828.99 7 839.14 12 916.75 25 1036.05 20 1133.77 20 1147.3 3 1200.24 12 1324.30 18 1386.95 12 1397.24 14	$\begin{array}{c} 3.59 & 15 \\ 0.184 & 16 \\ 2.10 & 11 \\ 0.307 & 22 \\ 0.54 & 13 \\ 3.3 & 3 \\ 1.08 & 6 \\ 0.119 & 14 \\ 2.29 & 15 \\ 0.41 & 3 \\ 0.125 & 14 \\ 0.417 & 3 \\ 0.125 & 14 \\ 0.417 & 6 \\ 0.147 & 12 \\ 0.143 & 12 \\ \end{array}$	0.0555 0.0029 0.0343 0.0054 0.0095 0.0580 0.0193 0.0023 0.0505 0.0098 0.0031 0.0107 0.0129 0.0043 0.0043 0.0042	ce-K-3 Auger-L ce-L-1 ce-L-2 ce-NNO-1 ce-MNO-2 Auger-K ce-K-4 ce-L-3 ce-L-4 ce-NOP-4 6-1 max	6.287 7 7 28.431 10 33.63 3 38.676 10 43.88 3 49.6 53.289 7 68.979 7 115.981 7 126.226 7 128.710 7	$\begin{array}{c} 0.17 & 3\\ 87 & 5\\ 71.1 & 6\\ 0.311 & 12\\ 28.9 & 6\\ 0.105 & 2\\ 2.2 & 11\\ 57.5 & 15\\ 0.106 & 19\\ 12.3 & 4\\ 2.93 & 9\\ 0.909 & 25 \end{array}$	*0 0.0132 0.0431 0.0002 0.0238 *0 0.0023 0.0653 0.0002 0.0305 0.0079 0.0025
16 ម ខ	eak γ's omitte r(avg) = -823.7	d: • Σ⊺γ= 0.79%		a√q	36.7 9	100	0.0782
• ¹⁹⁰ ir IT Decay	(1.2 h)	t (min)	= 0.10%	X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 4	9.18 63.2867 7 64.8956 7 73.6 129.400 7	43 4 16.0 6 27.6 9 11.9 5 25.9 6	0.0084 0.0216 0.0381 0.0186 0.0714
Auger-L ce-L+ 1 ce-MNO- 1	7 12.8815 23.1263 7	47.022 70.26 29.86	0.0071 0.0193 0.0147	3 wea By (kγ's omitte (avg)= 73.2	d: ; ΣΙγ= 0.04%	
X-ray L	9.18	23.2 22	0.0045				

¹⁹¹Os-¹⁹²Ir

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
• ¹⁹¹ Os IT Decay Feeds	(13.03 h 21) ¹⁹¹ Os (15.4 d)	l (mir	n) = 0.10%	γ 16 γ 17 γ 18	219.65 5 221.74 8 223.67 8	0.82 21 0.12 4 0.11 3	0.0039 0.0005
ce-K- 1 Auger-L Auger-K ce-L- 1 ce-UNO- 1	0.509 10 6.88 48.3 61.412 10 71.331 10	7.2 7 49.6 23 0.28 14 67.0 7 25.8 6	≈0 0.0073 0.0003 0.0876 0.0392	γ 20 γ 21 γ 23 γ 24 γ 28 γ 31	267.92 268.71 351.17 359.88 409.440 456.47 5	0.78 21 1.6 5 3.5 9 6.0 16 8.0 20 3.4 9	0.0044 0.0094 0.0259 0.0460 0.0698 0.0327
X-ray L X-ray Ka ₂ X-ray Ka ₁ X-ray K8	9 61.4867 63.0005 71.4	23.3 22 7 1.99 20 7 3.4 4 1.48 15	0.0044 0.0026 0.0046 0.0023	γ 35 γ 36 γ 38 γ 40 γ 42	538.87 5 541.64 10 576.46 8 587.95 8 624.06 6	14 4 0.37 10 0.12 3 0.14 4 1.4 4	0.157 0.0042 0.0014 0.0017 0.0187
1 we Εγ	ak γ 's omitt (avg) = 74.	ed: 4; ΣΙγ= 0.06%	6	29 we Βγ	ak γ 's omitt (avg) = 404.	eđ: 2; ΣΙγ= 0.79%	
● ¹⁹¹ Pt EC Decay	(2.71 d 6)	l (min	n) = 0.10%	● ¹⁹² Ir EC Decay %EC D	(74.02 d 18) ecay = 4.69 10	l (min) = 0.10%
ce-K- 4 Auger-L	6.287 7 7	30 8 102 11	0.0040	See also	ο ¹⁹² Ir β Dec	ay (74.02 d)	
ce-K- 5 ce-K- 6 ce-L- 1 ce-L- 3 ce-TNO- 1 ce-MNO- 3	9.04 8 20.406 9 28.431 10 36.17 3 38.676 10 46.42 3	0.28 24 19 5 0.72 19 0.38 14 0.29 8 0.12 5	≈0 0.0083 0.0004 0.0003 0.0002 0.0001	Auger-L Auger-K ce-K- 2 ce-L- 2 ce-MNO- 2	6.88 48.3 131.9247 192.8275 202.7470	3.11 19 0.16 8 5 0.52 3 4 0.365 18 4 0.118 5	0.0005 0.0002 0.0015 0.0015 0.0005
Auger-K ce-K- 7 ce-K- 9 ce-L- 4 ce-L- 5 ce-M- 4 ce-NOP- 4 ce-N- 6	49.6 53.289 7 64.773 15 68.979 7 71.73 8 79.224 7 81.708 7 83.098 9 93.343 9	5 3 6.6 17 0.13 6 19 5 0.23 17 4.7 13 1.4 4 3.4 9 0.79 20	0.0055 0.0075 0.0278 0.0278 0.0003 0.0080 0.0025 0.0060	$\begin{array}{cccc} X - rav & L \\ X - rav & K\alpha_2 \\ X - rav & K\alpha_1 \\ Y - rav & K\beta \\ \gamma & 1 \\ \gamma & 2 \\ \gamma & 3 \\ \gamma & 5 \end{array}$	9 61.4867 63.0005 71.4 201.306 7 205.79549 283.257 17 374.476 7	1.46 15 7 1.13 4 7 1.96 7 0.84 3 0.467 22 3.29 13 0.261 15 0.73 3	0.0003 0.0015 0.0026 0.0013 0.0020 0.0144 0.0016 0.0058
ce-NOP-6 ce-K-10 ce-K-11 ce-K-12 ce-L-7 ce-M-7 ce-NOP-7	95.827 9 96.079 20 102.85 3 111.58 4 115.981 7 126.226 7 128.710 7	0.25 7 3.7 10 0.81 23 0.26 7 1.4 4 0.34 9 0.10 3	0.0005 0.0077 0.0018 0.0006 0.0035 0.0009 0.0003	γ 7 γ 8 3 we Βγ	484.5780 489.06 3 $ak \gamma's omitter (avg) = 423.$	4 3.16 11 0.398 15 ed: 1; ΣΙγ= 0.08%	0.0326 0.0042
ce-K- 16 ce-L- 10 ce-L- 11 ce-MNO-10 ce-K- 21 ce-K- 23 co-K- 24	143.54 5 158.771 20 165.54 3 169.016 20 192.60 8 275.06 3	0.11 3 0.61 16 0.18 5 0.18 5 0.13 4 0.54 14	0.0003 0.0020 0.0006 0.0007 0.0005 0.0032	● ¹⁹² Ir β Decay (΄ %β De See also	74.02 d 18) cay = 95.31 10 ¹⁹² lr EC Dec	l (min)) ay (74.02 d)	= 0.10%
ce-K- 28 ce-L- 24 ce-K- 31 ce-L- 28 ce-K- 35	333.329 20 346.46 3 380.36 5 396.021 20 462.76 5	0.88 22 0.14 4 0.24 7 0.13 4 0.58 16	0.0060 0.0010 0.0019 0.0011 0.0057	Auger-L Auger-K ce-K- 1 ce-L- 1 ce-K- 2 ce-K- 3	7.24 51 57.951 3 122.466 3 217.5634 8 230.0621 8	7.6 5 0.35 13 0.12 5 0.130 11 3 1.924 14 3 1.790 25	0.0012 0.0004 0.0001 0.0003 0.0089 0.0088
X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 4 γ 6 γ 7 γ 10 γ 10 γ 11 γ 12 γ 14	9.18 63.2867 64.8956 73.6 82.398 796.517 9129.400 7172.190 20 178.96 3 187.69 4 208.96 15	50 7 $7 38 4$ $7 65 7$ $28 3$ $5.0 13$ $3.4 9$ $3.0 8$ $3.3 9$ $1.0 3$ $0.42 11$ $0.14 5$	0.0098 0.0511 0.0902 0.0442 0.0088 0.0069 0.0082 0.0123 0.0039 0.0017 0.0006	ce-K- 4 ce-L- 2 ce-L- 3 ce-L- 4 ce-MNO- 3 ce-M+ 4 ce-NOP- 4 ce-K- 6 ce-L- 6 ce-K- 10	238.1131 8 282.0783 5 294.6622 5 302.6280 5 305.1609 10 313.2119 10 313.2119 10 315.7859 7 389.6767 8 454.1916 5 526.0194 9	4.47 14 5 0.88 3 0.286 1 5 1.95 6 0.251 1 0.484 15 0.148 5 1.02 4 0.295 10 0.151 7	0.0226 0.0053 0.0018 0.0126 0.0016 0.0032 0.0010 0.0085 0.0028 0.0017 (Continued)

¹⁹² lr-¹⁹³ Pt

Radiation Type	Energy (keV)	Intensity (%)	$\Delta(extbf{g-rad}/ \mu extbf{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
¹⁹² Ir β^- Decay (74.02 d 18)	(Continued)		6-5 max	575 5	2 4 2 10	0 0000
				β-6 max	672 5	2.43 19	0.0090
8- 1 max ∋¤a	256 4	5.65 9	0.0085	ava	208.9 18	8.0 5	0.0356
β- 2 max	536 4	3.03	0.0000	8- / max avo	244.7 19	0.79 7	0.0041
avq 8-3 may	161.2 14	41.4 3	0.142	8-8 max	952 5		
avq	208.9 15	48.3 8	0.215	avg β∽9 max	313.0 20 993 5	2.02 25	0.0135
n− 4 max avo	845 4 275-9 15	0.40.23	0.0024	avg	328.8 20	12.6 10	0.0882
total β^-				B-10 max avq	354.4 20	19.4 14	0.146
avg	180.2 16	95.8 9	0.368	β−11 max	1132 5	F.7 7	0 4 2 2
2 we	ak B's omitte	d :		total 8-	383.1 20	53 3	0.432
Eß	(avg) = 24.9	; EIA= 0.10%		avq	344.9 21	100 4	0.735
Y-FOR S	9 11 11	11 1 5	0.0008	4 we	ak 8's omitt	ed:	
X-ray Ka ₂	65.1220 20	2.63 7	0.0037	Eβ	(avg) = 68.	1; ΣIB= 0.04%	
X-ray Kai	66.8320 20	4.52 11	0.0064				
X-ray K8 ~ 1	75.7	1.97 6	0.0032	X-ray L	9.18	9.6 10	0.0019
y 2	295.95825 1	29.02 15	0.183	X-ray Kaz	63.2867	7 3.57 19	0.0048
γ <u>3</u>	308.45689 1	29.68 13	0.195	$X-ray K\alpha_1$	64.8956 73 012 7	7 6.1 3	0.0085
γ 4 5	316.50789 1	82.85 24	0.559	X-ray KB	73.6	2.65 14	0.0042
γ	4/8.460 8	48.1 8	0.479	γ 4	96.82 3	0.100 10	0.0002
γ 8	588.5845 7	4.57 9	0.0573	γ 6	106.993 10	0.64 5	0.0015
γ 10	604.4142 5	8.20 25	0.106	$\begin{bmatrix} & \gamma & 8 \\ & \gamma & 11 \end{bmatrix}$	138.892 /	4.3 3 0.184 22	0.00128
γ 11 ·	612.4650 8	5.34 13	0.0696	γ 12	181.81 3	0.196 23	0.0008
γ 12	884.514 12	0.302 6	0.0057	γ 16	219.13 5	0.280 25	0.0013
5 we	ak γ's omitte	d:		γ 19	251.62 4	0.220 20	0.0012
Eγ	(avg) = 871.7	; $\Sigma I \gamma = 0.10\%$		$\gamma 19$	280.43 3	1.26 9	0.0075
				r 21	298.83 5	0.188 19	0.0012
				γ 23	321.56 3	1.29 9	0.0088
1930 0 5	(00 0 1 0)			γ 28	361.81 5	0.30 3	0.0023
• 193 Os β^- Decay	(30.0 h 3)	I (min)	= 0.10%	γ 32 γ 36	387.46 4	1.28 9	0.0105
% Feed	ling to 1991r (1	1.9 d = $0.35 d$	3	r 38	460.49 3	4.00 20	0.0392
			1	γ 39	484.25 5	0.172 15	0.0018
Auger-L	7	19.4 12	0.0029	γ 47	557.36 8	1.32 14	0.0157
ce-K- 4	20.71 3	0.55 6	0.0002	γ 48	559.26 8	0.49 6	0.0059
Auger+K	49.6	0.49 24	0.0005	44 ve	ak r 's omitt	ed :	
ce-L- 2	59.593 7	16.4 10	0.0208	Έγ	(avg) = 400.	7; EIY= 0.67%	
ce-K- 8	62.781 7	8.1 6	0.0108		-		
ce-K- 9	66.019 8	0.140 18	0.0002	- E -			
ce-NOP- 2	72.322 7	1.23 8	0.0019				
ce-L- 4	83.40 3	0.104 11	0.0002	• 1931r IT Decay (1	1.9 d 5)	I (min)	= 0.10%
ce-L- 6	93.574 10	0.47 4	0.0009				
ce-MNO- 6	103.819 10	0.144 11	0.0003	ce-K- 1	4.16 4	0.507 15	≈0
ce-K - 12	105.70 3	0,183 21	0.0003	Auger-L	7	45.9 21	0.0069
ce-L- 8	125.473 7	1.59 11	0.0042	Ce-L- 1 Ce-M- 1	77.10 4	23.5 5	0.0386
ce-M- 8	135.718 7	0.37 3	0.0011	ce-NOP-1	79.58 4	7.93 22	0.0134
ce-NOP-8	138.202 7	0.116 8	0.0003				
Ce-K- 19 Ce-K- 23	204.32 3	0.255 20	0.0013	X-ray L	9.18	22.6 21	0.0044
ce-K- 32	311.35 4	0.149 12	0.0010	X-rav Kaz	63.2867	7 0.141 6	0.0002
ce-K- 38	384.38 3	0.256 14	0.0021	X-rav Ka	64.8956	7 0.242 9	0.0003
				X-ray K8	73.6	0.105 4	0.0002
β− 1 max	392 5						
avq	113.3 17	0.35 4	0.0008				
p= 2 max avo	420 5	0.55 4	0.0014	• ¹⁹³ Pt EC Decav (50 y 9)	ł (min)	= 0.10%
8- 3 max	437 5				• •		
avg	128.0 17	0.104 13	0.0003	Auger-I,	7	45.8 21	0.0069
p= 4 max avor	174.0 18	0.74 7	0.0027	-			
	· · · · · · ·			W X-ray L	9.18	22.6 21	0.0044

.

¹⁹³Pt-¹⁹⁴Au

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
• ¹⁹³ Pt IT Decay Feeds	(4.33 d 3) ¹⁹³ Pt (50 y)	l (min)) = 0.10%	• ¹⁹⁴ Ir β ⁻ Decay	(171 d 11)	I (min) = 0.10%
				Auger-L	7.24	22.8 16	0.0035
ce-NOP-1	0.9200 2	1100	0.0020	ce-K- 1	33.3 5	5.6 3	0.0039
Auger-L	7.24	47 3	0.0072	Auger-K	51	0.64 23	0.0007
ce-MNO- 2	9.338 8	99.260 20	0.0197		97.8 5	16.9 10	0.0352
Auger-K	51	0.5/21	0.0006		110 7152	4.3/24	0.0101
	5/.11 3	15.5 4	0.0189	Ce-NOP-1	111 0 5	134 9	0.0007
Ge-L- 3	121.02 3	10 6 F	0.154	Ce-L- 3	175, 2301	L 0.29 6	0.0032
	132+20 3	6 25 19	0.0524	Ce-K- 6	250.053 14	4 58 13	0.0011
Ceewope 3	134.70 3	0.40 10	0.0179	Ce-K- 7	260.4 5	2 51 16	0.0244
				ce-K- 8	312.4 5	0.414 25	0.0028
X-ray L	9.44	25 3	0.0051	ce-L- 6	314,568 14	1.90 6	0.0127
γ 2	12.634 8	0.736 22	0.0002	ce-L- 7	324.9 5	1.01 7	0.0070
X-rav Kaz	65.1220 2	0 4.31 14	0.0060	ce-M- 6	325.152 14	0.473 14	0.0033
X-ray Kai	66.8320 2	0 7.40 23	0.0105	ce-NOP- 6	327.726 14	0.145 4	0.0010
X-ray KB	75.7	3.22 11	0.0052	ce-NNO-7	335.5 5	0.326 18	0.0023
γ 3	135.50 3	0.114 3	0.0003	ce-K- 10	404.46 3	1.93 12	0.0166
				ce-L- 10	468.98 3	0.54 4	0.0054
				ce-MNO-10	479.56 3	0.172 9	0.0018
				ce-K- 11	484.0 5	0.49 3	0.0051
• 194 Ir β^- Decay	(19.15 h 3)	L (min)	= 0.10%	ce-K- 12	484.0 5	0.190 12	0.0020
		1 (11/11/)	0.1070	ce-K- 13	522.1 5	0.77 5	0.0085
	_			ce-L- 11	548.5 5	0.122 7	0.0014
Auger-L	7.24	0.60 7	≈0	ce-L- 13	586.6 5	0.180 11	0.0023
ce-K- 8	215.146 14	0.169 22	0.0008	ce-K- 16	609.4 5	0.55 4	0.0071
ce-K- 11	250.053 14	0.65 9	0.0034	ce-L- 16	673.9 5	0.119 7	0.0017
Ce-L- 11	314.568 14	0.2/ 4	0.0018				
				β− 1 max	252.5 22		
6- 1 max	453.6 20			avg	69.7 7	100	0.148
avg	133.4 7	0.34 5	0.0010	1			
β− 2 max	628.9 20			V-TAT I	0 0 0	10 0 15	0 0005
avg	193.4 7	0.173 22	0.0007	Veray L	5 1000 0/	12+3 13	0.0025
β− 3 max	739.1 20			Y-ray Ka2	66 9320 20	0 0 0 0 10 10 10 10 10 10 10 10 10 10 10	0.0007
avg	233.0 8	0.56 7	0.0028	Y-ray KA	75.7	3 59 12	0.0058
8- 4 max	771.8 20				111.7 5	8 9 L	0.0000
avg	244.9 8	0.62 8	0.0032		189.1	1.6 3	0.0064
8-5 max	983.8 20			y 5	324.0 5	2	0.0138
avg	324.7 8	1.77 22	0.0122	y 6	328.448 14	92,90 20	0.650
8- 6 max	1328.3 20			1 y 7	338.8 5	55 3	0.397
avg	454.0 8	0.30 4	0.0029	γ 8	390.8 5	35.1 18	0.292
B- / max	1629.0 20			7 10	482.86 3	97 5	0.998
avg e- 9 mar	283.9 9	1.34 21	0.016/	y 11	562.4 5	34.7 17	0.416
ava ava	707.2 9	9 2 12	0 139	γ 12	562.4 5	35.2 18	0.422
6- 9 max	2251.0.20	J. L 12	0.157	γ 13	600.5 5	62 3	0.793
avo	847.5 9	85.4 19	1.54	γ 16	687.8 5	59 3	0.864
total 8-				1 ⁷ 17	1011.8 5	3.60 20	0.0776
avg	807.8 10	100.0 23	1.72			.	
-				· ⊃¥e	$a x \gamma' S Omitte (a x q) = 356 B$	a: • 57~= 0 19€	
15 we	eak 8's omitte	ed:		5 /	(a+g) = 550+0	, LIT- 0.198	
Ef	$\beta(avg) = 123.5$	5; $\Sigma IB = 0.29\%$					
						• ¹	
X-ray L	9.44	0.32 5	≈0	194 Au EC Deenu	(20 5 6 5)		- 0 10%
X-ray Kaz	65.1220 20	0.227 25	0.0003	Au LC Decay	(33.5 11 5)		- 0.10%
X-ray Ka ₁	66.8320 20	0.39.5	0.0006				
X-ray KB	75.7	0.169 19	0.0003	Auger-L	7.24	54 4	0.0084
y 8	293.541 14	2.6 4	0.0160	ce-L- 1	35.7701 4	0.19 6	0.0001
γ 9	300.741 14	0.35 5	0.0022	Auger-K	51 :	3.0 11	0.0033
7 <u>11</u>	328.448 14	13.1 17	0.0916	ce-K- 7	62.1452 7	0.130 15	0.0002
y 1 7	589.179 17	0.140 18	0.0018	[] се-к- 8	73.4352 7	0.100 14	0.0002
y 21	621.971 19	0.34 5	0.0044	ce-K-10	85.5552 7	0.168 18	0.0003
γ 22	645.146 20	1.17 15	0.0161	ce-K- 26	215.146 14	0.74 4	0.0034
γ 32	938.71 3	0.60 8	0.0120	ce-K- 29	250.053 14	3.15 11	0.0168
γ 39 11 11 2	1150.78 5	0.60 8	0.0146	ce-L-26	279.661 14	0.348 22	0.0021
7 42	1103.52 5	0.30 4	0.0077	ce-MNO-26	290.245 14	0.114 7	0.0007
7 00	1400.07 0	V. 191 25	0.0060	Ce-L- 29	314.568 14	1.31 5	0.0088
76 40	ak vie omitto	- F		Ce-nN0-29	323.152 14	0.424 /	0.0029
े जा स्ट हिक	$r(av_0) = 1092_6$	$\Sigma T \gamma = 0.88 $					(Continued)
-,		,,		••			,

¹⁹⁴Au--¹⁹⁵Pt

Radiation Type	Energy (keV)	Intensity (%)	Δ (g-rad/ μ Ci-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
¹⁹⁴ Au EC Decay	(39.5 h 5)	(Continued)		y 109	1602.01 10	0.26 4	0.0087
				r 110	1617.73 15	0.22 4	0.0075
8+ 1 max	1159 15			$\gamma 1 11$	1622.20 8	0.198 20	0.0068
avg	535 7	0.64 4	0.0073	y 113	1670.72 10	0.181 17	0.0064
8* 2 max	1487 15	1 0 2 9	0.01/18	y 114	1675.7 3	0.144 17	0.0051
total β+	073 7	1.02 0	0.0140	γ 115 × 115	1689.70 20	0.18 3	0.0064
avg	623 7	1.66 9	0.0220	y 118	1735.31 10	0.30 3	0.0201
				γ 123	1785.47 7	0.41 5	0.0155
X-ray L	9.44	29 4	0.0059	γ 124	1797.31 8	0.61 5	0.0232
X-ray Ka ₂	65.1220 2	0 22.8 7	0.0316	y 125 y 126	1805.75 9	0.19 6	0.0074
χ-ταν και χ-ταν και	75.7	17.0 5	0.0356	y 129	1829.41 10	0.249 20	0.0097
γ 10	164	0.128 13	0.0004	γ 130	1835.33 7	0.42 3	0.0165
γ 16	203.01 10	0.34 4	0.0015	γ 132 	1885.9	1.85 20	0.0743
γ 24 ~ 26	290.76	0.11 3	0.0007	r 135	1911.30 15	0.134 13	0.0055
r 27	300.741 14	0.92 8	0.0059	γ 136	1924.18 5	2.11 12	0.0863
γ 28	318.14 8	0.33 6	0.0022	γ 137	1958.74 20	0.172 20	0.0072
γ 29	328.448 14	63.8 10	0.446	γ 138 ~ 140	1969.65 7	0.46 3	0.0193
γ 30 ~ 33	364.86/15	1.54 10	0.0120	y 145	2114.20 14	0.281 10	0.0126
γ 34	482.86 3	1.19 7	0.0122	γ 147	2215.5	0.179 13	0.0084
γ 35	528.76	1.72 3	0.0194	γ 149	2312.01 15	0.177 11	0.0087
γ 36 \sim 20	530.17 3	0.56 5	0.0063	70 ve	ak r's omitte	ð :	
τ 40	593.35	0.351 6	0.0044	Εγ	(avg) = 1020.2	; $\Sigma I \gamma = 2.33\%$	
γ 41	594.291 19	0.166 20	0.0021	Maxím	um γt-intensi	ty = 3.32%	
γ 42	607.54 8	0.319 20	0.0041				
γ 43 γ 44	621.29 15	1.47 12	0.0106				
y 45	645.146 20	2.31 12	0.0317	A 195 Pt IT Decay	(1 02 d 1)	L (min)	= 0.10%
γ 46	668.27 10	0.116 8	0.0017	• FUIL Decay ((4.02 U I)	i (mm)	- 0.10%
γ 51 ~ 52	703.54 5	0.45 4	0.0067	50-1-1	6 0001 0	0 1 25 4	0
γ 52 γ 53	810.65 8	0.20 3	0.0034	Auger-L	7.24	136 9	0,0209
γ 55	843.89	0.134 20	0.0024	ce-MNO- 1	16.6040	9 0.104 5	RE ()
r 57	855.8	0.11 4	0.0020	ce-L- 3	16.996 6	68.6 25	0.0248
γ 60 γ 62	925.26 6	0.31 3	0.0031	Ce-K- 4 Ce-MNO- 3	20.485 20	00 4 21.1 9	0.0286
7 63	938.71 3	1.19 7	0.0239	Auger-K	51	3.0 11	0.0032
γ 64	948.29 4	2.37 13	0.0478	ce-K- 5	51.11 20	13.4 6	0.0145
γ 65 γ 68	1000.12 4	0.22 5	0.0046	ce-K- 6	51.362 20	1.33 9	0.0015
γ 69	1048.58 5	0.90 6	0.0201	ce-M- 4	95.584 20	2.68 15	0.0054
y 71	1104.06 5	2.16 12	0.0509	ce-NOP- 4	98.158 20	0.85 5	0.0018
γ 72	1119.7 4	0.13 3	0.0032	ce-L- 5	115.62 20	60.7 22	0.149
r 75	1156.61 6	0.45 5	0.0112	ce-M- 5	126.20 20	19.0 9	0.0007
γ 76	1175.34 5	2.10 12	0.0525	ce-M- 6	126.461 20	0.69 5	0.0019
τ 77 00	1183.52 5	0.66 7	0.0167	ce-NOP- 5	128.78 20	6.4 3	0.0177
γ 80 γ 82	1218.70 5	0.11 3	0.0308	ce-NOP- 6	129.035 20	0.213 14	0.0006
γ 83	1293.67 6	0.18 5	0.0049		0 44	72 0	0 0447
y 84	1302.29 8	0.28 4	0.0078	X-ray L	9.44 30.876 6	2 27 11	0.0147
γ 85 ~ 97	1308.15 12	0.16 3	0.0044	X-ray Ka,	65.1220 20	22.4 12	0.0310
7 87 7 88	1342.16 6	1.25 11	0.0357	X-ray Kai	66.8320 20	38.3 19	0.0546
γ 89	1421.65 7	0.34 4	0.0104	X-ray KB	75.7	16.7 9	0.0269
y 90	1431.4 3	0.15 4	0.0047	7 4 7 6	129.757 20	2.81 17	0.0239
7 42 7 93	1441.78 14	0.338 20	0.0059	, -			
y 94	1463.45 10	0.77 20	0.0239	6 we	ak γ's omitte	d:	
y 95	1468.89 5	6.8 4	0.212	Eγ	'(avg)= 1/4.4	$2.1\gamma = 0.21\%$	
γ 97 ~ 99	1487.05 8	0.14 4	0.0044				
γ 99	1500.5	0.402 21	0.0128				
Y 104	1562.8 3	0.33 3	0.0108				
γ 106	1592.4	1.1 6	0.0368				
γ 10/ γ 108	1595.77 10	0.0 4 1.9 6	0.0629				
,							

¹⁹⁵Au-¹⁹⁷Pt

Radiation Type	Energy (keV)	Intensity (%)	Δ (g-rad/ μ Ci-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
• ¹⁹⁵ Au EC Decay	(183 d 2)	I (min) = 0.10%	ce-L- 2	319.15 5	0.459 18	0.0031
				ce-MNO-2	329.73 5	0.148 4	0.0010
Auger-L	7.24	105 8	0.0162	Ce-1,- 3	341.85 5	1.35 4	0.0098
ce-L- 1	16.996 6	5 22.6 12	0.0082	ce-NOP-3	355.01 5	0.103 3	0.0008
Ce-X-2	20.485 20	5 6.9 4	0.02/4				
Auger-K	51	3.9 14	0.0042	X-ray L	9.44	28 4	0.0056
ce-K- 3	51.362 20	0.386 19	0.0004	X-ray Kaz	65.1220 2	0 22.0 5	0.0305
ce-L- 2	85.000 20) 11.1 7	0.0201	X-ray $K\alpha_1$	66.8320 2	0 37.7 7	0.0537
ce-NOP-2	98, 158 20) 0.81 5	0.0052	X-ray KB	75.7	16.4 4	0.0265
ce-L- 3	115.877 20	0.78 4	0.0019	γ 3	355.73 5	87.72 22	0.665
ce-MNO- 3	126.461 20	0.263 10	6.0007	γ 13	1091.40 20	0.150 7	0.0035
X-ray L	9.44	57 7	0.0114	12 we	ak y's omitte	ed:	
y 1	30.876 6	0.75 4	0.0005	57	(avg) = 543.	$0; 21\gamma = 0.1/\%$	
X-ray Kaz	65.1220 2	20 29.0 14	0.0402				
X-ray Ka	75.7	21.6 11	0.0349				
γ ² 2	98.880 20	10.9 7	0.0229	● ¹⁹⁶ Au β Decav	(6.183 d 10)	l (min)	= 0.10%
γ 3	129.757 20	0.81 3	0.0023	%3 ⁻ D	$e_{cay} = 6.93 1$	7	•••••
2 40	ak y's omitt	ed:		See als	o ¹⁹⁶ Au EC E)ecay (6.183 d)	
Eγ	(avg) = 206.	1; ΣΙ γ = 0.02%					
			¥	ce-K- 1	342.99 8	0.186 8	0.0014
105	(aa a)			8- 1 max	258 4		
¹⁹ Au IT Decay	(30.6 s 2)	l (min) = 0.10%	avg	71.3 12	6.93 17	0.0105
reeds	Au (183 u)			~ 1	426.09 8	6-66 17	0.0604
Auger-L	7.42	62 4	0.0098	, ,	420.09	0.00 1	0.0004
ce-L- 1	42.45 3	71.5 6	0.0646				
ce-L- 2	47.11 3	1.50 15	0.0015	10.5			
ce-M- 1	53.38 3	21.2 5	0.0241	● ¹⁹⁷ Pt β ⁻ Decay (18.3 h 3)	I (min)	= 0.10%
ce-NOP- 1	56.04 3	6.81 19	0.0081				
ce-M- 2	58.04 3	0.37 4	0.0005	Auger-L	7.42	37 3	0.0059
Ce-K- 3	119.66 4	0.11012	0.0007	Ruger-K	52.4	0.12 0	0.0001
ce-K- 4	181.03 4	23.5 7	0.0905	ce-M- 1	73.9271 2	1 13.2 6	0.0208
ce-L- 3	186.03 4	0.241 25	0.0010	ce-NOP- 1	76.5932 21	4.15 19	0.0068
ce-K- 5		0.22 3	0.0011	ce-K- 2	110.70 3	3.3 3	0.0079
ce-11- 4	258.33 4	1.03 3	0.0057	ce-MNO- 2	188.00 3	0.174 15	0.00022
ce-NOP- 4	260.99 4	0.324 10	0.0018				
ce-L- 5	304.25 10	0.139 20	0.0009	β−1 max	450.2 6		
				avg	132.13 20	7.9 7	0.0222
X-ray L	9.7	35 4	0.0072	8- 2 max	641.6 6	07 N	0 345
γ 2 X-ταν Κα-	01.40 J 66.9895	U. 103 1/ 8 6.68 25	0.0002	avg 8-3 max	719.0 6	02 4	0.340
X-ray Ka.	68.8037 ⁻	8 11.4 4	0.0167	avg	225.32 22	11 3	0.0509
X-ray KB	78	5.00 19	0.0083	total 8-			
γ 3 γ 4	200.38 4 261.75 4	1.56 15 68.2 7	0.0067	avg	195.43.22	100 5	0.418
, · 	ak ato aniii			X-ray L	9.7	20.8 25	0.0043
∠ ¥e; R•	$a = 7 \cdot S Omitt $ (a v g) = 196	eu: 7: ΣΙν= 0.07%	11	X-ray Kaz	66.9895 8	0.93 9	0.0013
11			- 11	x-ray Kal	68.8037 8	1.60 14	0.0023
				X-rav KB	78	0.70 7	0.0280
				γ ² 2	191.42 3	3.5 3	0.0142
¹⁹⁶ Au EC Decay	(6.183 d 10)	L (min)	= 0.10%	γ 3	268.73 3	0.27 4	0.0016
See als	196 Au β^{-} [Decay (6.183 d)					
_							
Auger-L Auger-K	7.24 51	52 4 2.9 11	0.0080				
ce-K- 2	254.64 5	1.20 3	0.0065				
ce-K- 3	277.34 5	3.56 11	0.0210				

;

¹⁹⁷Pt—¹⁹⁸Au

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ µCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
• ¹⁹⁷ Pt IT Decay %IT Di Feeds	(94.4 m 8) ecay = 96.7 10 1^{97} Pt (18.3 h)	I (mii	n) = 0.10%	● ¹⁹⁷ Hg EC Decay %EC D See also	(23.8 h 1) ecay = 7.0 10 p ¹⁹⁷ Hg IT De	I (min) ecay (23.8 h)	= 0.10%
See als	io 'γ'Pt β ⁼ Deca	y (94.4 m)					
Auger-L ce-L- 1	7.24 39.07 5	90 6 71.7 10	0.0138 0.0596	Auger-L ce-K- 2 Auger-K	7.42 49.70 7 52.4	7.7 8 0.23 4 0.25 12	0.0012 0.0002 0.0003
ce-M- 1	49.65 5	18.4 6	0.0194	ce-L- 2	116.07 7	4.8 7	0.0118
Auger-K	51	1.8 7	0.0020	ce-NOP- 2	129.66 7	0.42 7	0.0035
ce-K-2	268.11 20	48.6 9	0.278	ce-K- 4	198.29 5	1.53 23	0.0065
ce-L- 2	332.62 20	27.1 7	0.192	ce-L- 4	264.66 5	0.27 4	0.0015
ce-M- 2	343.20 20	7.26 22	0.0531				
ce-NOP- 2	345.78 20	2.30 8	0.0170	X-ray L	9.7	4.3 6	0.0009
				X-ray Kaz	66.9895	8 1.91 22	0.0027
X-ray L	9.44	48 6	0.0097	X-ray Rai	68.8037	8 3.3 4	0.0048
γ 1	52.95 5	1.07 4	0.0012	X-ray KB	78	1.43 17	0.0024
X-ray Ka ₂	65.1220 20	13.5 4	0.0188	y 2 y 4	279.01 5	5.0 8	0.0296
X-Lay Kai	75.7	23.2 0	0.0350	,			
y 2	346.50 20	11.4 4	0.0842	3 wea E7	ak γ 's omitte (avg) = 194.	ed: 6; Σ <u>Σ</u> γ= 0.10%	
• ¹⁹⁷ Pt β ⁻ Decay	(94.4 m 8)	I (mi	n) = 0.10%				
%β ⁻ D)ecay ≈ 3.3 10			• • Hg II Decay (23.8 h 1)	I (min)	= 0.10%
See als	io ¹⁹⁷ Pt IT Deca	y (94.4 m)		%IT Der Feeds ¹ See also	cay = 93.0 10 ⁹⁷ Hg (64.14 h u ¹⁹⁷ Hg (⁶⁻ De) heav (23.8 b)	
Auger-L	7.42	2.0 5	0.0003		ng p De	.cay (23.0 m)	
ce-K- 2	49.70 7	0.11 4	0.0001	1	7 6	70 5	0 0113
ce-L- 2	127.00 7	2.2 /	0.0056	ce-K- 1	7.0 50.78 5	70 5 16 3 6	0.0113
ce-NOP-2	129.66 7	0.20 6	0.0005	Auger-K	53.8	1.2 7	0.0014
ce-K- 4	198.29 5	0.72 22	0.0031	ce-K- 2	81.87 7	20.6 6	0.0358
ce-L- 4	264.66 5	0.13 4	0.0007	ce-L- 1	119.04 5	33.2 8	0.0842
				Ce-n- I	130.32 5	8.63 7779	0.0240
8- 1 max	709.1 7	2 2 4 2	0.0050	ce-L- 2	150.13 7	51.1 9	0.163
avg	221. /0 23	3.3 10	0.0156	ce-M- 2	161.41 7	15.7 4	0.0540
V-nov T	0.7	1 1 3	0 0000	ce-NOP- 2	164.17 7	5.36 16	0.0187
X-Lay L X-ray Ka	66,9895 8	0.23 7	0.0002				
X-ray Ka	68.8037 8	0.40 11	0.0006	X-ray L	10	43 5	0.0091
X-ray KB	78	0.17 5	0.0003	X-ray Ka ₂	68.8950 2	0 9.8 3	0.0143
γ 2	130.42 7	0.11 4	0.0003		80.3	7.31.24	0.01257
7 4	2/9.01 5	2.3 8	0.0139	y 1	133.88 5	34.0 8	0.0971
3 we Εγ	ak γ's omitted (avg)= 194.6;	: ΣΙγ= 0.04%	5	γ 2	164.97 7	0.274 9	0.0010
				• 198 Au 8- Doom	(2 EDE 2)	L (min)	- 0 109/
• ¹⁹⁷ Hg EC Decay	(64.14 h 5)	l (min) = 0.10%		7 (- 0.10%
Auger-I.	7.42	89 7	0-0141	Auger-L	0.1 128.7021	2.08 16	0.0003
Auger-K	52.4	2.7 13	0.0030	ce-L- 1	396,9651 1	1 1.02 3	0.0086
ce-L- 1	62.9992 21	59 3	0.0797	ce-MNO- 1	408.2428 1	2 0.333	0.0029
ce-M- 1	73.9271 21	14.4 7	0.0227				
Ce-NOP- 1	110 70 3	4.5121 0.48 5	0.0074	6 . 1 max	284.8 7		
00-n- 2	110.70 3	0.40 0		avg	79.41 22	1.32 6	0.0022
¥ *	07	50 4	0.010	8- 2 max	960.7 7		
A-LAY L X-rav Ka	7.7 66.9895 8	20.7 13	0.0295	avg	314.6 3	98.65 14	0.661
X-rav Ko.	68.8037 8	35.4 22	0,0518	total B-	311 6 3	00 00 16	0 6 6 4
γ 1	77.3520 20	18.5 8	0.0305	ανψ	311.3 3	37.77 ID	V.004
X-ray KB Y 2	78 191.42 3	15.5 10	0.0257	1 wea	k β's omitte	ed:	
, ~ 1 web:	ak vis omitted	•		Eβ	(avg) = 467.7	c; 218= 0.03%	(Continued)
Eγ	(avg) = 268.7;	ΣΙγ= 0.04%					

180 RADIOACTIVE DECAY DATA TABLES

198	Au-	_2 (1 0	ΤI
-----	-----	------	-----	----

Radiation	Energy Intensi	tv ∆(a-rad/	Badiation	Energy	Intentity	A (a rod /
Type	(keV) (%)	.,(g (uu) "Ci.h)	Type		(0/)	∆(y-rau/
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(10)	- μοι-ιι)	Type	(Kev/	(%)	μCI-n/
]]			
X-ray L	10 1.27	15 ' 0.0003	X-ray L	10	33 U	0 0069
X-ray Kaz	68.8950 20 0.81	4 0.0012	X-ray Kga	68,8950 20	23.6 9	0.0347
X-ray Ka	70.8190 20 1.37	6 0.0021	X-ray Kg.	70.8190 20	40.2 15	0.0606
Х-гау КВ	80.3 0.602	25 0.0010	X-ray KB	80.3	17.7 7	0.0302
y 1	411.80441 1 95.51	12 0.838	r 3	116.51 15	0.11 4	0.0003
γ 2	675.8874 7 1.06	5 0.0153	γ 5	140.898 12	0.17 7	0.0005
γ 3	1087.663 24 0.229	20 0.0053	r 10	151.932 5	0.15 4	0.0005
			y 13	164.544 6	0.21 4	0.0007
			γ 25	251.969 7	0.38 6	0.0021
			γ 33	289.425 9	0.52 5	0.0032
● ¹⁹⁹ Au β ⁻ Decay	(3 139 d 7)	(min) = 0.10%	γ 38	309.209 8	0.26 4	0.0017
p ,	(0.100 u /)	0.10%	γ 52	367.942 10	87.3 5	0.684
			γ 56	387.345 9	0.16 3	0.0013
Auger-L	7.6 21.8 1	6 0.0035	γ 80	476.815 13	0.32 4	0.0033
ce-L- 1	34.986 7 2.92	14 0.0022	γ 93	521.41 7	0.25 4	0.0028
ce-MNO-1	46.263 7 0.91	5 0.0009	γ 104	579.300 17	13.8 7	0.170
Auger-K	53.8 0.6	4 0.0007	γ 106	591.66 3	0.29 6	0.0036
ce-K- 2	75.273 7 10.9	5 0.0175	μ γ 111	612.12 3	0.24 4	0.0032
ce-K- 3	125.099 7 6.4	3 0.0171	7 114	628.80 3	1.00 8	0.0134
ce-L- 2	143.536 7 17.0	8 0.0519	γ 124 125	661.36 3	2.28 13	0.0321
ce-M- 2	154.813 / 4.38	19 0.0144	7 125	688.94 3 701 56 3	0.11 4	0.0017
Ce-NOP-2	157.575 7 1.38	6 0.0046	7 130	701.00 3	1.29 10	0.0193
	193.362 / 1.19	/ 0.0049	τ 1.55 τ 1.66	711.70 5	0.27 4	0.0041
Ce-mNO= 3	204.639 / 0.36/	16 0.0016	$ \begin{array}{c} 7 & 146 \\ \sim & 147 \end{array} $	703.71 4	1 03 10	0.0095
			~ 152	929 27 H	1.05 10	0.01/3
β- 1 max	244.8 10		~ 155	996 20 H	2 03 12	0.191
avq	67.3 3 20.5	3 0.0294	γ 156	898.56 7	0.62 5	0.0302
<u>8-</u> 2 max	294.6 10		v 164	1147.20 8	0.12 4	0.0030
avg	82.4 3 66.2 20	0.116	y 165	1167.1 3	0.10 4	0.0026
β- 3 max	453.0 10		v 166	1180.5 3	0.11 4	0.0029
avg	132.9 4 13 3	0.0368	y 168	1202.35 7	0.11 3	0.0029
total B-			y 169	1205.75 7	29.9 18	0.769
avg	85.9 4 100 4	0.182	y 170	1225.44 8	3.36 21	0.0877
			γ 171	1254.14 10	0.93 7	0.0250
X-ray L	10 13.3 15	0.0028	γ 172	1262.96 8	0.79 7	0.0211
γ 1	49.825 7 0.328	15 0.0003	γ 174	1273.52 10	3.32 21	0.0900
X-ray Kaz	68.8950 20 4.84 2	0 0.0071	γ 175	1291.11 11	0.60 6	0.0166
X-ray Kai	70.8190 20 8.2 4	0.0124	γ 177	1350.35 16	0.148 14	0.0043
Х-гау КВ	80.3 3.62 1	5 0.0062	γ 178	1363.20 20	3.4 4	0.0989
r 2	158.375 7 36.8 11	0.124	7 179	1366.8 7	0.9 3	0.0254
γ 3	208.201 7 8.4 4	0.0370	7 181	1407.64 11	1.45 14	0.0435
			γ 182	14//.78 14	0.152 14	0.0048
	,		7 183	1514.90 10	4.0 3	0.130
			7 185	1604.50 14	1.17 10	0.0091
²⁰⁰ TI EC Decay	(26.1 h 1) I	(min) = 0.10%	v 191	1718.35 14	0.33 3	0.0121
			y 193	1759.15 14	0.18 4	0.0069
Inder-I	7.6 53 5	0 0.086	y 198	1906.30 18	0.114 10	0.0046
ce-K- 3	33.41 15 0.49 1	6 0.0004				
Auger-K	53.8 2.9 17	0.0033	164 we	ak γ's omitte	1:	
ce-K- 4	54.398 20 0.12 1	0 0.0001	Ξγ	(avg) = 771.5	; ΣIy= 3.12%	
ce-K- 5	57.796 12 0.25 2	1 0.0003	Maxim	um γ±-intensi	ty = 0.75%	
ce-L- 1	62.018 5 0.24 2	1 0.0003				
ce-K- 9	65.398 6 0.11 1	0 0.0002				
ce-K- 10	68.830 5 0.18 1	4 0.0003				
ce-K- 13	81.442 6 0.21 1	5 0.0004	• • ²⁰¹ TI EC Decay (73.06 h 22)	L (min)	= 0.10%
ce-K- 25	168.867 7 0.12	8 0.0004			• (,	0.10/0
ce-K- 33	206.323 9 0.175	16 0.0008				
ce-K- 52	284.840 10 3.41 1	1 0.0207	ce-NOP-1	0.770 20	11.3 12	0.0002
ce-L- 52	353.103 10 1.37	5 0.0103	Auger-L	7.6	73 6	0.0117
ce-M- 52	364.380 10 0.344	11 0.0027	ce-L- 2	15.76 3	8.1 9	0.0027
ce-NOP-52	367.142 10 0.107	4 0.0008	Ce+L+ j	1/.35 3	/.0 8	0.0026
ce-K-104	496.198 17 0.197	12 0.0021		27.04 3	2.5 3	0.0015
ce-K-152	/45.1/ 4 0.229	13 0.0036		20.03 J 52 24 4	2.11 23 ·	0.0013
C6-4-103	1122.00 / 0.24	4 0.005/	Augor-K	52.24 4	7.3 20	0.0083
			CA-K- 5	82 79 7	0 240 24	0.0030
8+ 1 max	1064 8		Ce-K- 6	84.33 7	15.4 9	0.0004
avg	495 4 0.32	3 0.0034	ce-1 4	120.50 4	1.27 9	0.0033
	1		ce-MNO-4	131.78 4	0.39	0,0011
1 Ve	ak p's omitted;					(Continued)
Eß	$(avg) = 000.0; \Sigma I \beta = 0$	• 05 %	l			(Continueu)

²⁰¹TI—²⁰⁵Pb

Badiation	Energy	Intensity	Δ(α-rad/	Radiation	Energy	Intensity	Δ (g-rad/
Туре	(keV)	(%)	μCi-h)	Туре	(keV)	(%)	μCi-h)
				ll			<u> </u>
²⁰¹ TI EC Decay	(73.06 h 22)	(Continued)		X-ray L	10.3	39 5	0.0086
·····,				X-ray Kaz	70.8319 9	26.6 7	0.0402
1 6	150 50 7	2 62 14	0 0005	X-ray Kai	72.8715 9	45.1 10	0.0701
ce-L- 6	152.39 /	2.02 14	0.0085	Х-гау КВ	82.6	20.0 6	0.0351
Ce-NOP- 6	166 63 7	0.196 10	0.0007	// y 1	279.189 5	76.8 8	0.457
	100.05	0	0.000	γ 2	401.315 12	3.30 16	0.0282
	4.4			γ 3	680.502 15	0.6/ 8	0.009/
X-ray L	10	44 5	0.0095				
γ 2	30.60 3	0.220 23	0.0001	<u>}</u> }			
γ 3	32.19 3	0.220 23	0.0002				
X-ray Ka2	70 9100 20) 2/04 12	0.0401	• ²⁰⁴ TI EC Decay	(3.779 y 10)	I (min)	≈ 0.10%
	90 3	20 5 0	0.0350	%EC D	ecay = 2.58 6		
	135.34 4	2.65 19	0.0076	See also	2^{04} TI β^- Dec	av	
v 5	165.88 7	0.160 13	0.0006			-,	
τ 6	167.43 7	10.0 5	0.0357				
,				Auger-L	7.6	1.24 10	0.0002
				X-rav L	10	0.76 9	0.0002
- 2027 EC Deseu	(12.22 4 2)	1 (min)	- 0 10%	X-ray Kaz	68.8950 20	0.425 15	0.0006
• • • • • • • • EC Decay	(12.23 0 2)	1 (11111)	- 0.10%	X-ray Kai	70.8190 20	0.723 25	0.0011
				X-ray K8	80.3	0.318 12	0.0005
Auger-L	7.6	51 4	0.0083				
Auger-K	53.8	2.8 17	0.0032				
ce-K- 1	356.458 10	2.38 8	0.0181	11			
ce-L- 1	424.721 10	0.79 3	0.0071	• ²⁰⁴ TI β ⁻ Decay	3.779 v 10)	l (min)	= 0.10%
ce-MNO- 1	435,998 10	0.256 3	0.0024	%R- De	ray = 97.42.6		
				Soo also	204TI EC Doo	214	
X-rav L	10	31 4	0.0067	Jee also		ay	
X-ray Kaa	68.8950 20	22.8 7	0.0335				
X-ray Ka	70.8190 20	38.8 11	0.0586]] β−1 max	763.40 20		
X-ray KB	80.3	17.1 6	0.0292	avg	243.93 7	97.42 6	0.506
γ 1	439.560 10	91.5 10	0.857				
γ 2	520.13 7	0.9 3	0.0101	()			
y 3	959.7 4	0.12 3	0.0024				
				• ²⁰⁴ Pb IT Decay	66.9 m 1)	ſ(min)	= 0.10%
• 20344 0- Decen	(40.00 + 5)	1 (- 0.10%	Auger-L	8	7.1 5	0.0012
• Pering p Decay	(40.00 a 5)	r (min)	- 0.10%	Auger-K	56.7	0.29 12	0.0004
				ce-K- 2	286.74 10	3.70 12	0.0226
Auger-L	7.78	10.8 9	0.0018	ce-L- 2	358.88 10	1.61 5	0.0123
Auger-K	55.2	0.6 3	0.0007	ce-M- 2	370.89 10	0.406 13	0.0032
ce-K- 1	193.659 5	16.9 8	0.0697	ce-NOP-2	373.85 10	0.131 4	0.0010
ce-L- 1	263.842 5	4.35 13	0.0244	[] ce-K- 5	811.15 10	0.648 20	0.0112
Ce-M- 1	275.485 5	1.06 3	0.0062	ce-k- 6	823.74 15	4.83 15	0.084/
Ce-NOP- 1	2/8.343 5	0.340 10	0.0020	ce-L- 5	883.29 10	0.133 4	0.0025
					07 90 15	2.03 J	0.0176
β− 1 max	212.2 20			Ce-1110-0	301.03 13	0.911 3	0.01/0
avg	57.7 6	100	0.123	ll			
				X-ray L	10.6	4.9 5	0.0011
X-ray L	10.3	7.2 8	0.0016		72.8042 9	2.58 8	0.0040
X-ray Kaz	70.8319 9	4.75 25	0.0072		74.9094 9 94 0	4.30 12	0.0070
X-ray Ka ₁	72.8715 9	8.0 4	0.0125		299 25 15	1.94 0 0 172 22	0.0035
Х-гау КВ	82.6	3.55 19	0.0063		207.23 13	0.17222	0.751
γ 1	279.189 5	77.3 8	0.460	v 3	622.2 7	0.22 3	0.0029
				7 5	899.15 10	99.164 25	1.90
				7 6	911.74 15	91.1 3	1.77
- 20306 EC Da	(52 02 L E)	I /	- 0.10%	2	k ale anista	a .	
- FD EC Decay	(JZ.UZ N D)	r (mm)	- 0.10%	Εγ	(avg) = 779.7	; ΣIγ= 0.06%	
Auger-T.	7.78	59 5	0.0097				
Auger-K	55.2	3.1 15	0.0037	11			
ce-K- 1	193.659 5	16.8 8	0.0694	B			
ce-L- 1	263.842 5	4.32 7	0.0243	• ²⁰⁵ Pb EC Decay	(1.51E7 y 4)	l (min)	= 0.10%
ce-M- 1	275.485 5	1.052 14	0.0062				
ce-NOP- 1	278.343 5	0.338 5	0.0020	Auger-L	7.78	34.0 23	0,0056
ce-K- 2	315.785 12	0.50 3	0.0034				
				ll X-ray L	10.3	22.7 23	0.0050

182 RADIOACTIVE DECAY DATA TABLES

²⁰⁶Bi-²⁰⁸Tl

Radiation Type	Energy (keV)	Intensity (%)	Δ (g-rad/ μ Ci-h)		Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
• ²⁰⁶ Bi EC Decay	(6.243 d 3)	l (min)) = 0.10%		γ 64	1565.34 8	0.304 15	0.0101
Auger-L	8	70 5	0.0120		γ 66 γ 67 γ 68	1595.27 8 1718.70 7 1844.49 10	5.01 6 31.8 4 0.569 25	0.170 1.17 0.0223
Auger-K ce-K- 5 ce-K- 6	56.7 70.60 10 96.02 3	3.6 15 0.174 17 22.2 5	0.0044 0.0003 0.0453		γ 69 γ 70 ~ 75	1878.65 8 1903.56 10 2589.60 20	2.01 4 0.349 15 0.130 10	0.0803
ce-K- 10 ce-L- 6 ce-K- 11	146.26 7 168.16 3 174.71 5	0.170 9 3.84 14 1.57 3	0.0005		37 ¥	eak γ 's omitte	ed:	0.0072
ce-M-6 ce-NOP-6	180.17 3 183.13 3	0.900 17 0.296 6	0.0035		E	γ (avg) = 928.	7; ΣΙγ= 1.24%	
ce-L- 3 ce-K- 13 ce-L- 11 ce-K- 15	100.58 3 225.67 7 246.85 5 255.51 3	0.106 11 0.116 5 0.270 5 5.58 10	0.0004 0.0006 0.0014	• 207	TI β ⁺ Decay	(4.77 m 2)	t (min)	= 0.10%
ce-K- 18 ce-L- 15 ce-MND-15	310.00 3 327.65 3 339.66 3	1.81 6 0.973 15 0.302 5	0.0120 0.0068 0.0022		8-1 max avg	524 6 156.3 21	0.25 5	0.0008
ce-L- 18 ce-K- 25	382.14 3 409.06 4	0.309 10 1.428 15	0.0025		B- 2 max avg total 8-	494.1 25	99.75 5	1.05
ce-K- 26 ce-K- 27 ce-L- 25	428.18 4 449.45 4 481.20 4	1.94 2.15 0.242 8	0.0176 0.0206 0.0025		avg	493 3	100.00 7	1.05
ce-L- 26 ce-MNO-26 ce-L- 27 ce-K- 31	500.32 4 512.33 4 521.59 4 532.48 5	1.21 4 0.399 4 0.369 7 0.295 8	0.0129 0.0044 0.0041		γ 3	897.83 3	0.24 4	0.0046
ce-K- 37 ce-K- 32 ce-K- 39	533.60 4 544.25 5 715.10 5	0.121 2 0.217 7 0.799 24	0.0014 0.0025 0.0122	• 207	Bi EC Decay	(33.4 y 8)	I (min)	= 0.10%
ce-L- 39 ce-K- 42 ce-K- 43	787.24 5 793.01 5 807.12 5 930.63 8	0.174 6 0.449 15 0.318 10	0.0029 0.0076 0.0055		Auger-L Auger-K ce-K- 2	8 56.7 481.665 20	52 4 2.5 10 1.55 5 0 # 35 13	0.0088 0.0030 0.0159
X-ray L	10.6	49 5	0.0110		ce-NNO- 2 ce-K- 4 ce-L- 4	565.819 20 975.615 20 1047.759 20	0.1436 1 7.04 23 1.78 6	0.0017 0.146 0.0398
X-ray Ka ₂ X-ray Ka ₁ X-ray K8	74.9694 84.9	9 54.1 10 24.0 6	0.0497		ce-MNO- 4	1059.769 20 eak β's omitte	0.587 8	0.0132
γ 8 γ 10 γ 11	184.02 3 234.26 7 262.71 5	0.241 12 3.02 5	0.0012		E	β(avg)= 386.(); ΣΙβ= 0.04%	
γ 13 γ 15 γ 17 γ 18 γ 22	313.67 343.51 386.20 7 398.00 3 452.84 8	0.359 10 23.4 3 0.516 10 10.74 10 0.156 8	0.0024 0.171 0.0042 0.0910 0.0015		X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 2	10.6 72.8042 74.9694 84.9 569.670 20	36 4 21.8 6 36.8 9 16.3 5 97.72 7	0.0081 0.0338 0.0588 0.0296 1.19
7 25 7 26 7 27	497.06 4 516.18 4 537.45 4 576.26 10	15.31 15 40.7 4 30.5 3	0.162 0.448 0.349		γ 3 γ 4 γ 5	897.83 3 1063.620 20 1442.20 20	0.147 10 74.9 10 0.147 20	0.0028
γ 30 γ 31 γ 32	581.97 8 620.48 5 632.25 5	0.485 25 5.76 6 4.47 5	0.0060 0.0761 0.0602		γ o	1770.23 4	0.04 20	0.250
γ 33 γ 35 γ 36	657.16 5 739.24 8 754.96 7	1.91 3 0.157 8 0.527 10	0.0267 0.0025 0.0085	• 208	TI β ⁻ Decay	(3.053 m 3)	I (min)	= 0.10%
γ 38 γ 39 γ 41 γ 42 γ 43 γ 46	784.58 7 803.10 5 841.28 7 881.01 5 895.12 5 1018.63 8	0.536 10 98.89 3 0.186 9 66.2 7 15.65 16 7.59 8	0.0090 1.69 0.0033 1.24 0.298 0.165		Auger-L Auger-K ce-K-1 ce-K-2 ce-K-3 ce-K-4	8 56.7 123.40 15 145.36 15 164.61 10 189.347 10	4.2 4 0.23 10 0.162 20 0.13 10 0.27 20 3.05 17	0.0007 0.0003 0.0004 0.0004 0.0010 0.0123
τ 50 τ 51 τ 53 τ 54	1098.26 7 1142.37 10 1194.69 8 1202.58 10	13.50 15 0.111 5 0.277 15 0.105 6	0.316 0.0027 0.0070 0.0027		ce-L- 4 ce-MNO- 4 ce-K- 6 ce-L- 6	261.490 10 273.500 10 422.84 8 494.98 8	0.52 3 0.162 8 1.88 8 0.317 14	0.0029 0.0009 0.0169 0.0033
γ 58 γ 59 γ 62 γ 63	1332,33 10 1405.01 8 1496.18 8 1560.30 8	0.282 15 1.434 25 0.176 10 0.378 20	0.0080 0.0429 0.0056 0.0126		ce-K- 7 ce-MNO- 6 ce-L- 7	495.134 23 506.99 8 567.278 23	1.28 5 0.104 5 0.350 12	0.0135 0.0011 0.0042 (Continued)

²⁰⁸TI~²⁰⁹Po

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Rad T	iation ype	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
²⁰⁸ ΤΙ β [~] Decay	/ (3.053 m 3)	(Continued)		● ²⁰⁹ TIβ ⁻	Decay Feeds	(2.20 m 7) ²⁰⁹ Pb	l (min)	= 0.10%
се-толо- 7 се-к- 15 се-к- 27 в- 1 max	579.288 23 772.37 8 2526.66 10 812 4	0.115 2 0.280 10 0.160 5	0.0014 0.0046 0.0086	Augo ce-1 Augo ce-1	er-L (- 1 er-K L- 1	8 29.207 21 56.7 101.350 21	12.5 10 18.3 5 0.7 3 3.54 10	0.0021 0.0114 0.0008 0.0076
avg β=2 max avg β=3 max avg	257.8 15 867 4 278.2 15 1031 4 340.2 16	0.222 16 0.164 13 2.92 24	0.0012 0.0010 0.0212	Ce-1 Ce-1 Ce-1 Ce-1	1 - 1 1 - 2 1 - 2 1 - 2 1 - 2 1 - 2	113.360 21 116.317 21 377.06 3 449.20 3 461.21 3 1478 95 6	0.831 25 0.266 8 2.36 7 0.799 24 0.263 8 0.234 7	0.0020 0.0007 0.0190 0.0076 0.0026
β+ 4 max avg β- 5 max avg β- 6 max	1072 4 356.0 16 1283 4 438.7 16 1517 4	0.58 5 23.2 11	0.0044 0.217	β-	1 max avg	1825 15 659 7	100	1.40
avg β-7 max avg total β- avg	532.5 17 1794 4 646.5 17 558.8 18	22.7 6 49.3 18 99.3 22	0.257 0.679 1.18	X - 12 X - 12 X - 12 X - 12 X - 12	LY L LY Kaz LY Kaz LY KB	10.6 72.8042 9 74.9694 9 84.9 117.211 21	8.7 9 5.88 19 9.9 3 4.41 15 77.0 5	0.0020 0.0091 0.0159 0.0080 0.192
6 1	veak β's omitt Eβ(avg)= 223.	ed: 5; ΣΙβ= 0.20%		Y Y	2 3	465.0 65 25 1566.95 6	96.58 10 99.689 9	0.957 3.33
X-ray L X-ray Ka ₂ X-ray Ka X-ray Kß Y 1	10.6 72.8042 74.9694 84.9 211.40 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0007 0.0031 0.0055 0.0028 0.0008	• ²⁰⁹ Pb β	Decay	(3.253 h 14)	l (min)	= 0.10%
γ 2 γ 3 γ 4 γ 6 γ 7	233.36 15 252.61 10 277.351 10 510.84 8 583.139 23	0.31 3 0.80 5 6.8 3 21.6 9 84.2 14	0.0015 0.0043 0.0401 0.235 1.05		avg	197.6 5	100	0.421
, 11 7 13 7 15 7 17 7 18 7 19	722.04 12 763.13 8 860.37 8 927.60 20 982.70 20 1093.90 20	0.203 14 1.64 9 12.46 21 0.125 11 0.197 15 0.37 4	0.0031 0.0266 0.228 0.0025 0.0041 0.0086	• ²⁰⁹ Ρο α	Decay ($\%\alpha$ Dec Feeds 2 See also	102 y 5) ay = 99.74 3 ⁰⁵ Pb o ²⁰⁹ Po EC Deca	l (min) ay	= 0.10%
γ 27 14 w	2614.66 10 eak γ 's omitte	99.800 10	5.56	ce-1 ce-1	10P-1 (- 3	1.434 7 172.50 5	50 50 0.129 15	0.0015 0.0005
Ľ	γ(avg) = 840.0	4; Σιγ= 0.36%		α	1 2	4617 5 4882 3	0.565 14 99.17 4	0.0555 10.31
• ²⁰⁸ Bi EC Decay	(3.68E5 y 4)	l (min)	= 0.10%	7	3 9 w	260.50 5 eak γ 's omitte	0.262 13	0.0015
Auger-K ce-K- 1	56.7 2526.66 10	1.4 6 0.160 5	0.0017 0.0086		E.	y (avg) = 266.1	; ΣΙγ= 0.09%	
X-ray L X-ray Kaz X-ray Ka X-ray Ka X-ray Ka y 1	10.6 72.8042 74.9694 84.9 2614.66 10	31 3 9 12.3 4 9 20.8 6 9.2 3 99.800 10	0.0070 0.0191 0.0332 0.0167 5.56	● ²⁰⁹ Po E	C Decay %EC I See al	(102 y 5) Decay = 0.26 3 so ²⁰⁹ Po α Deca	l (min) Iy	= 0.10%
				Auge	r-L	8,15	0.119 15	re 0
				Ŷ	1	896.40 20	0.25 3	0.0049

²¹⁰TI-²¹¹Pb

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
• ²¹⁰ Ti β ⁻ Deca Feed	y (1.30 m 3) s ²¹⁰ Pb	l (min) = 0.10%	ß− 1 max avg 8− 2 max	16.5 5 4.14 13 63.0 5	80.2 16	0.0071
• • • • •	•			avq	16.13 14	19.8 16	0.0068
Auger-L ce-K- 1 Auger-K	8 10 30 56.7	18 6 2.1 11 0.29 13	0.0031 0.0004 0.0003	total 8- avg	6.51 18	100.0 23	0.0139
ce-M- 1 ce-NOP- 1 ce-K- 2 ce-K- 3	90 30 100 30 210.0 10 268 10	5 3 1.7 9 5.3 7 0.9 5	0.0345 0.0104 0.0035 0.0236 0.0052	X-ray L γ 1	10.8 46.503 15	24.3 25 4.05 8	0.0056 0.0040
ce-L- 2 ce-M- 2 ce-NOP- 2 ce-L- 3 ce-K- 7 ce-L- 7	282.1 10 294.1 10 297.1 10 340 10 711.70 10 783.84 10	3.1 4 0.80 11 0.26 4 0.15 8 0.807 25 0.176 6	0.0187 0.0050 0.0016 0.0011 0.0122 0.0029	• ²¹⁰ Bi β^- Decay % β^- De Feeds ² % α Dec	(5.013 d 5) ecay = 99.9998 ^{:10} Po :ay = 0.00013	l (min 17 1) = 0.10%
β-1 max avg β-2 max	1320 100 450 40 1870 100	25	0.240	8∼ 1 max avg	1161.4 10 389.0 4	99.9998	0.829
8-3 max 8-3 max avg total 8-	2340 100 870 50	58 19	0.352	● ²¹⁰ Ρο α Decay (1	138.378 d 7)	L (min)) = 0.10%
avg	660 50	100	1.40				
X-ray L X-ray Ka	10.6 2 72.8042	13 5 9 2.5 4	0.0028	α 1	5304.51 7	99.9989	11.30
x-ray κα X-ray K8 γ 1 γ 2 γ 3	1 74.9694 84.9 100 30 298.0 10 356 10	9 4.3 7 1.9 3 4.0 20 79 10 4.0 20	0.0069 0.0035 0.0082 0.503 0.0300	• ²¹¹ Pb β^- Decay Feeds ²	(36.1 m 2) ²¹¹ Bi	l (min)	= 0.10%
7 4 7 5 7 6 7 7 7 8	382 10 480 20 670 20 799.70 10 860 30	3.0 20 2.0 10 2.0 10 98.96 5 6.9 20	0.0242 0.0202 0.0282 1.69 0.127	Auger-L ce-L- 1 ce-K- 11 ce-K- 12	8.15 49.032 14 314.317 10 336.552 10	0.38 8 0.31 10 0.24 7 0.20 6	≈0 0.0003 0.0016 0.0014
γ 9 γ 10 γ 11	910 30 1060 20 1110 20	3.0 20 12 5 6.9 20	0.0575 0.268 0.164	β− 1 max avg β− 2 max	264 6 72.8 18 541 6	0.66 19	0.0010
γ 12 γ 13	1310 20	21 5	0.580	avg	161.9 21	5.0 15	0.0172
γ 14 γ 15	1410 20 1490 20	4.9 20 2.0 10	0.149 0.0628	B∼ 3 max avg	968 6 315.6 23	1.3 4	0.0087
γ 16 γ 17	1540 30 1590 30	2.0 10	0.0649	8-4 max avg	473.3 24	93.0 20	0.938
γ 18 7 10	1650 30	2.0 10	0.0696	total B-	453 3	100 3	0, 965
7 19 7 20 7 21 7 22	2010 30 2090 30 2280 30 2360 30	4.9 20 3.0 20 8 3	0.297 0.220 0.144 0.398	5 we В В	ak β 's omitt (avg) = 70.	ed: 9; ΣΙβ= 0.09%	
γ 23 • ^{2 1 0} Pb β [−] Deca %β [−] Feed: %α [2430 30 y (22.26 y 22) Decay = 99.9999 s ²¹⁰ Bi (5.013 d) Decay = 0.000001	93 I (min) 9983 3) 73	0.461 = 0.10%	$\begin{array}{cccc} & x - ray & L \\ & x - ray & K\alpha_2 \\ & x - ray & K\alpha_1 \\ & \gamma & 11 \\ & \gamma & 12 \\ & \gamma & 22 \\ & \gamma & 23 \\ & \gamma & 24 \end{array}$	10.8 74.8148 1 77.1079 1 404.843 10 427.078 10 704.59 3 766.47 3 831.96 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>≈0 0.0002 0.0003 0.0254 0.0120 0.0055 0.0088 0.0507</pre>
Auger-L ce-L- 1 ce-MNO- 1	8.15 30.115 15 42.504 15	34 3 57.9 21 18.1 4	0.0058 0.0372 0.0164	28 wea E7	ak y's omitt (avg)= 517.	ed: 6; ΣΙγ= 0.47%	

^{2 1 1} Bi-^{2 1 2} Bi

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
• ²¹¹ Bi α Decay (%α Dec	(2.13 m 2) ay = 99.727 4	I (mir	n) = 0.10%	• ²¹² Pb β ⁻ Decay Feeds	(10.643 h 12) ^{2 2} Bi	l (min)	= 0.10%
Feeds * See also	o ²¹¹ Βiβ ⁻ Deca	ý		Auger-L	8.15	21.4 18	0.0037
				ce-K- 1 Auger-K	24.664 6 58.2	3.48 11 1.2 6	0.0018 0.0015
Auger-L ce-K- 1	265.54 5	1.57 12	0.0003	ce-L- 1	98.802 6	0.61 3	0.0013
ce-L- 1	335.72 5	0.462 15	0.0033	ce-MNO- 1	111.191 6	0.192 6	0.0005
ce-MNO-1	347.37 5	0.142 5	0.0011	ce-K- 4	209.561 10	1.34 6	0.0060
				ce-L- 3	222.238 6	5.71 22	0.0271
α 1 ~ 2	6278.8 6	16.23 20	2.17	ce-M- 3	234.626 6	1.35 5	0.0067
u 2	0023.1 0	03.30 20	11,70	ce-L- 4	283.699 10	0.232 10	0.0014
Y-ray I.	10.3	1.05 12	0 0002				
X-ray Ka ₂	70.8319 9	0.75 3	0.0011	8- 1 max	158 4		
X-ray Ka	72.8715 9	1.27 5	0.0020	avg	41.9 11	5.22 15	0.0047
X-ray KB	82.6	0.560 20	0.0010	β -2 max	334 4	05 4 00	
7	331.07 3	12.74 10	0.0900	8-3 max	573 4	85.1 20	0.171
				avg	172.7 13	9.9 20	0.0364
				total β-	00 4 40		
• ^{2 1 1} Bi β ⁻ Decay %β ⁻ [(2.13 m 2) Decay = 0.273 4	l (mii	ı) = 0.10%	avg	99.4 13	100 3	0.212
Feeds	211 Po (0.516 s)			X-ray L	10.8	15.5 16	0.0036
See al	so ²¹¹ Biα Deca	v		X-ray Ka ₂ Y-ray Ka	74.8148 10	10.7 5	0.0170
				X-ray KB	87.3	8.0 4	0.0149
8- 1 max	579 6			y 1	115.190 6	0.602 18	0.0015
avg	174.6 21	0.273 4	0.0010	γ 3 γ 4	238.625 6	44.6 10	0.227
				, .			0.0210
	(0.516 - 2)	1 (.) - 0.10%	2 We E1	p(avg) = 176.7	ea: '; ΣΙγ= 0.05%	
• Po a Decay	(0.516 \$ 3)	I (mir	1) = 0.10%				
α 1	6570.0 25	0.537 19	0.0751	212-0			
α 2	6892.8 18	0.546 19	0.0802	• ²¹² Bi α Decay (60.55 m 6)	I (min)	= 0.10%
α 3	/450.4 10	98.92 3	15.70	%α Deca	1y = 35.936		
	560 670 20	0 5 20 10	0.0005	Feeds -	212D: 0- Door		
γ 2 γ 3	897.83 3	0.538 19	0.0100	See also	-γ-Βιβ Deca	Ŷ	
				Auger-L	7.78	11.5 9	0.0019
				ce-L- 1	24.510 5	19.1 8	0.0100
• ²¹¹ At α Decay	(7.214 h 7)	l (mir	n) = 0.10%	ce-K- 4	202.54 7	0.118 8	0.0046
%α Dec	ay = 41.7 2						
Feeds ²	⁰⁷ Bi			α 1	5607.1 3	0.402	0.0481
See also	o ²¹¹ At EC Deca	ау		α 2	5768.1 3	0.600 8	0.0737
				α 3 π 4	6050.77 7	25.22 9	3.25
α 1	5867.0 20	41.70 20	5.21	u 4	0090.00 8	7.03 3	1.25
				4 we	ak α's omitte	d:	
				Ea	(avg)= 5612.7	; ΣΙα= 0.07%	
 ²¹¹At EC Decay 	(7.214 h 7)	I (min) = 0.10%	X-ray L	10.3	7.7 9	0.0017
%EC	Decay = 58.3 2			γ ¹ 1	39.857 5	1.02 4	0.0009
Feeds	²¹¹ Po (0.516 s)			γ 4	288.07 7	0.317 17	0.0019
See al	so ²¹¹ At α Deca	iy	11	7 0 7 8	327.96 10 452.83 10	0.348 18	0.0009
				, ,			0.0004
Auger-L Auger-K	8.33 59.7	26.1 20 1.3 7	0.0046	5 we Ey	ak γ's omitte (avg)= 379.5	d: : ΣΙγ= 0.09%	
_				-,			
X-ray L X-ray K-	11 76,862 5	19.7 20	0.0047				
X-ray Ka	79.290 5	21.3 4	0.0359				
X-ray Kβ	89.8	9.55 22	0.0183				
γ 1	687.00 10	0.245 16	0.0036				

186 RADIOACTIVE DECAY DATA TABLES

²¹²Bi-²¹⁴Pb

Radiat Typ	tion e	Energy (keV)	Intensity (%)	$\Delta(extbf{g-rad}/ \mu extbf{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
• ²¹² Βί β ⁻	Decay (60 $\%\beta^-$ Deca Feeds ²¹² See also	0.55 m 6) ay = 64.07 ² Po ^{2 1 2} Bi α Dec	l (min) 6 say	= 0.10%	• ²¹³ Bi β^- Decay % β^- Feeds See a	(45.65 m 5) Decay = 97.84 1 (^{213}Po) Ilso 213 Bi α Deca	l (mi 1 Iy	n) = 0.10%
се-К- 8- 1	- 1 3 weak Βα(a	634.06 10 α's omit vg)=10367.	0.125 5 ted: .5; ΣΙα= 0.01%	0.0017	Auger-L Auger-K ce-K- 1 ce-K- 2 ce-L- 2 ce-L- 2 ce-MNO- 2	8.33 59.7 199.75 10 347.315 21 423.481 23 436.271 21	2.4 3 0.13 7 0.34 6 4.1 4 0.72 7 0.226 21	0.0004 0.0002 0.0014 0.0302 0.0065 0.0021
в- 2 в- 3 в- 4	avg max avg max avg max	128.1 13 567 4 170.3 14 625 4 190.6 14 733 4	1.17 5 0.43 3 3.44 10	0.0032 0.0016 0.0140	β- 1 max avg β- 2 max avg β- 3 max	320 10 90 3 980 10 319 4 1127 10	1.06 10 32 3	0.0020 0.217
β- 5 β- 6	avg 5 max 1 avg 6 max 2 avg	228.7 15 519 4 530.7 17 246 4 831.6 17	2.61 7 8.0 3 48.4 3	0.0127 0.0904 0.857	avg β-4 max avg totalβ- avg	376 4 1420 10 491 4 430 5	0.70 19 64 3 98 5	0.0056 0.669 0.894
total	. β- avg 1 weak Eβ(a	717.3 21 B's omitt Vg) = 129.	64.1 5 ed: 7; ΣΙβ= 0.05%	0.979	X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray K8 γ 1	11 76.862 5 79.290 5 89.8 292.86 10	1.83 23 1.25 12 2.10 19 0.94 9 0.74 13	0.0004 0.0020 0.0035 0.0018 0.0046
7 7 7 7 7 7	2 3 4 6 1 7 1 8 1	727.17 10 785.46 7 893.43 9 952.10 10 078.62 10 512.75 10 620.62 10	11.8 3 1.97 5 0.652 20 0.313 18 0.95 3 0.56 5 2.75 10	0.183 0.0329 0.0124 0.0064 0.0219 0.0179 0.0949	7 2 7 3 7 4 7 5	659.81 10 807.36 4 1100.14 6	28.0 25 0.148 19 0.44 4 0.48 5	0.262 0.0021 0.0076 0.0112
γ (γ 1)	9 1 1 1 2 weak	679.5 5 806.0 5 y's omitt	0.121 20 0.20 4	0.0043 0.0076	• ²¹³ Po α Decay Feeds	(4.2E-6 s 8) ²⁰⁹ Pb	l (mi	n) = 0.10%
	Εγ(a	vg)= 1074.	0; $\Sigma I \gamma = 0.03\%$		a 1	8377 5	99.996 1	17.84
• ^{2 1 2} Po α D	ecay (2.98	3E—7 s 3)	l (min)	= 0.10%	• ²¹⁴ Pb β^- Decay Feeds	γ (26.8 m) s ^{2 1 4} Bi	I (mi	n) = 0.10%
α 1 • ^{2 3} Βία [% F S	8 Decay (45.) هم Decay Feeds ²⁰⁹ T See also ²¹	784.90 12 65 m 5) = 2.16 11 ⁻¹ ⁻³ Βiβ ⁻ Dec	100 I (min) ay	18.71 = 0.10%	Auger-L ce-L- 1 ce-N- 1 ce-NOP- 1 Auger-K ce-K- 5 ce-K- 6 ce-K- 8	8.15 36.838 14 49.227 14 52.288 14 58.2 151.455 8 168.26 6 204.687 8	18.6 15 10.7 6 2.51 13 0.84 5 0.7 4 5.29 16 0.19 14 7.5 4	0.0032 0.0084 0.0026 0.0009 0.0008 0.0171 0.0007 0.0326
α 1 α 2	5 5	549 10 870 6	0.16 4 2.00 11	0.0189	ce-MNO- 5 ce-K- 12 ce-L- 8 ce-M- 8	237.982 8 261.395 8 278.825 8 291.214 8	0.290 9 9.1 6 1.34 5 0.316 11	0.0015 0.0506 0.0079 0.0020
·					ce-L- 12 ce-M- 12 ce-NOP-12 β ⁻ 1 max	335.533 8 347.922 8 350.983 8	1.60 7 0.376 13 0.125 5	0.0114 0.0028 0.0009
					avg 8-2 max avg	50 4 490 12 145 4	2.55 8 0.83 6	0.0027 0.0026

(Continued)

TABLES OF RADIOACTIVE DECAY DATA 187

^{2 1 4} Pb-^{2 1 4} Bi

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
<u></u>						· · · · · · · · · · · · · · · · · · ·	······
²¹⁴ Pb β^{\sim} Decay	(26.8 m)	(Continued)		ß−13 max	x 1122 12		
				avo 8~14 mat	g 374 5 r 1151 12	0.43 6	0.0034
8-3 max	672 12 207 5	48.0 14	0 212	av	g 385 5	4.43 15	0.0363
$\beta = 4 \text{ max}$	729 12	40.0 14	0.212	β~15 ma:	x 1181 12 7 397 5	0.144 9	0.0012
avg 8- 5 may	227 5	42.5 12	0.205	B-16 ma	x 1253 12		
avg	337 5	6.3 20	0.0452	ave 8~17 mag	g 425 5 r 1259 12	2.50 8	0.0226
total 8-	219 6	100 3	0 469	av	g 427 5	1.50 6	0.0136
449	213 0	100 3	0.400	B~18 ma:	x 1275 12	1.10 5	0.0110
X-ray L	10.8	13.5 14	0.0031	β-19 ma	x 1380 12	1013 5	0.0110
_γ ΄1	53.226 14	1.11 6	0.0013	av.	g 475 5	1.59 7	0.0161
Χ-ταγ Κα ₂ Χ-ταν Κα.	74.8148 1	0 6.21 23	0.0099		q 492 5	8.34 23	0.0874
Х-гау КВ	87.3	4.67 18	0.0087	B~21 mat	1505 12		
γ 5 • 6	241.981 8	7.49 21	0.0386	avo 8−22 mat	g 525 5 x 1527 12	1/./ 5	0.198
γ Ť	274.53 5	0.33 5	0.0019	ave	g 534 5	0.256 18	0.0029
γ 8 ~ 12	295.213 8	19.2 6	0.121	β -23 max	x 1540 12 x 539 5	17.9 5	0.206
y 13	462.10 20	0.17 3	0.0017	₿-24 max	k 1609 12		00200
γ 14	480.42 8	0.340 20	0.0035	av.	g 567 5	0.88 12	0.0106
γ 17	533.69 8	0.190 15	0.0046	ave a	g 615 5	3.38 12	0.0443
ý 20	580.15 4	0.365 18	0.0045	β-26 max	x 1855 12	1 0 1 6	0.0100
y 21 y 22	839.025 15	1.10 4	0.0183	8-27 max	k 1892 12	1.01 0	0.0144
				av(g 684 5	7.86 24	0.115
୧୨ କେଳ ଅନ	$(av_{0}) = 280$	ed: 7: $\Sigma T r = 0.33\%$			q 726 5	0.22 6	0.0034
		,,		6-29 may	2661 12	0 6 3	0 0 1 2 0
				8-30 max	x 3270 12	0.6 3	0.0129
● ²¹⁴ Bi β ⁻ Decay	(19.9 m 4)	1 (min)	= 0.10%	avo	g 1269 6	17.2 22	0.465
%β ⁻ C	ecay = 99.979	1	0.10,0		a 632 6	100.0 24	1.35
Feeds	^{2 1 4} Po				· · · · · · · · · · · · · · · · · · ·		
%α De	cay = 0.021 1			18	$E\beta(avg) = 158.$	ced: 6; ΣΙβ= 0.36%	5
Auger-L	8.33	0.69 6	0.0001	V-PAR T	11	0 5 7 6	0 0001
ce-K- 30	516.207 8	0.69 3	0.0076	X-ray L X-ray Ko	r ₂ 76.862 5	0.360 13	0.0001
ce-K- 78	1027.182 11	0.192 12	0.0042	X-ray Ko	79.290 5	0.603 20	0.0010
ce-K- 98	1322.695 4	0.385 17	0.0109	$\gamma 1$	273.7 4	0.271 10	0.0005
				y 11	387.0 3	0.37 6	0.0030
β−1 max avα	541 12 162 4	0.41 3	0.0014	γ 12	389.1 3 405.74 3	0.41 5	0.0034
β - 2 max	551 12	0.41 5	0.0014	y 16	426.5 5	0.11 3	0.0010
avg	165 4	0.211 15	0.0007	γ 18	454.77 12	0.320 16	0.0031
	173 5	0.118 11	0.0004	y 20	474.38 10	0.118 13	0.0012
β - 4 max	762 12			γ <u>30</u>	609.312 7	46.3 12	0.601
avg 8 - 5 max	239 5	0.11 3	0.0006	y 39 y 44	703.11 4	0.474 23	0.0222
avg	240 5	0.205 21	0.0010	γ 46	719.86 3	0.405 23	0.0062
β ⁻ 6 max	788 12	1.07 5	0,0057	γ 51 γ 52	752.84 3 768.356 10	0.133 11 5.04 15	0.0021
β - 7 max	822 12			y 53	786.1 4	0.32 10	0.0053
avg	261 5	2.81 13	0.0156	y 55 y 57	806.174 18 821.18 3	1.23 5	0.0212
e a max	318 5	0.56 4	0.0038	7 61	904.25 25	0.106 14	0.0020
8- 9 max	1003 12	0 1 4 5	0 0010	γ 63	934.061 12	3.21 10	0.0638
avg 6-10 max	1061 12	0.14 3	0.0010	γ 73	1051.96 3	0.317 16	0.0079
avg	350 5	0.336 22	0.0025	γ 75 70	1069.96 8	0.286 21	0.0065
β~11 max avo	1066 12	5.61 17	0.0421	7 /8 7 80	1133.66 3	0.256 18	0.361
6-12 max	1077 12			y 81	1155.190 20	1.70 7	0.0418
avg	357 5	0.89 4	0.0068 I	ι γ 83	1207.68 3	0.462 22	0.0119

²¹⁴Bi-²¹⁹Rn

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radia Typ	tion E	nergy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
γ 86 γ 87 γ 88 γ 93 γ 94	1238.110 12 1280.960 20 1303.76 8 1377.669 12	5.94 17 1.48 7 0.121 12 4.11 13	0.157 0.0404 0.0034 0.120	• ²¹⁷ At α [F	Decay (0.0323 Feeds ^{2 3} Bi	3 s 4)	l (min)) = 0.10%
7 94 7 96 7 97 7 102 7 103 7 104 7 105 7 106 7 107	1401.50 4 1407.98 4 1509.228 15 1538.50 6 1543.32 6 1583.22 4 1594.73 8 1599.31 6	1.39 2.49 8 2.22 7 0.41 6 0.36 5 0.72 4 0.266 21 0.336 22	0.0230 0.0415 0.0746 0.0714 0.0136 0.0117 0.0243 0.0091 0.0114		3 weak α Βα(avg) 5 weak γ Εγ(avg)	s omitte = 6622.3 s omitte = 594.5	d: ; $\Sigma I \alpha = 0.07\%$ d: ; $\Sigma I \gamma = 0.04\%$	15.04
7 110 7 111 7 112 7 113 7 116 7 116 7 117 7 118 7 120	1661.28 6 1683.99 4 1729.595 15 1764.494 14 1838.36 5 1847.420 25 1873.16 6 1896.3 3	1.15 5 0.237 21 2.97 11 15.8 5 0.385 22 2.09 7 0.227 21 0.178 21	0.0409 0.0085 0.109 0.595 0.0151 0.0823 0.0091 0.0072	Φ ²¹⁸ Ροα [% F %	Decay (3.05 m 6α Decay = 9 ⁶ eeds ²¹⁴ Pb 6β ⁻ Decay =	n) 19.980 2 0.020 2	l (min)	= 0.10%
7 132 7 136 7 142 7 151	2118.55 3 2204.22 4 2293.36 12 2447.86 10	1.17 4 4.98 16 0.326 22 1.56 5	0.0530 0.234 0.0159 0.0813	a 1	600	2.55 9	99.978 2	12.78
131 we ביי	ak γ's omitte (avg)= 1158.0	1: ; ΣΙγ= 3.51%		• ^{2 8} Rn α [F	Decay (0.035 Teeds ²¹⁴ Po	s 5)	l (min)	= 0.10%
• ^{2 4} Po α Decay (1 Feeds ²	1.637E-4 s 2) [°] Pb	l (min)	= 0.10%	α 1 α 2	653 713	5.0 20	0.127 5 99.873 7	0.0177
α 1	7687.09 6	99.989	16.37	7	1 60'	9.312 7	0.124 5	0.0016
2 we Ba	ak α's omitted (avg)= 6892.4	l: ; ΣΙα= 0.01%		• ^{2 t 9} Rn α [F	Decay (3.96 s eeds ²¹⁵ Po	1)	l (min)	= 0.10%
2 wea Ey	ak γ's omitted (avg) = 797.3	1: ; ΣΙγ= 0.01%		Auger ce-K- ce-L- ce-K-	-L 8 2 3 2 11 4 17 4 25	3.33 7.49 3 3.65 4 3.128 11	1.38 12 0.40 5 0.111 12 1.23 10 0.72 3	0.0002 0.0003 0.0003 0.0047
• ²¹⁵ Po α Decay (0 %α Deca Feeds ²¹	0.001778 s 5) y = 99.99977 2 'Pb	ł (min)	= 0.10%	Ce-NN Ce-K- Ce-L-	0-4 26 12 308 12 38	084 11 .706 11 .872 15	0.249 10 0.230 13 0.101 6	0.0014 0.0015 0.0008
%β⁻ Dec α 1	7386.4 8	99.9437	15.72	α 1 α 2 α 3 α 4	6424 6529 6552 6819	7 8 3 3	7.5 5 0.12 12.9 6 79.6 10	1.03 0.0167 1.80 11.56
2 wea Eoc	ak α's omitted (avg)= 6954.1;	1: ; ΣΙα= 0.06%.			8 veak œ Eœ(avg)	s omitte = 6230.7	d: ; ΣΙα= 0.09%	
1 wea By(ak γ's omitted (avg)= 438.7;	ΣΙγ= 0.03%		X-ray X-ray X-ray X-ray	L 11 Kaz 76 Kai 70 Ka 20	• 862 5 • 290 5	1.04 11 0.53 4 0.88 6 0.395 25	0.0002 0.0009 0.0015 0.0008
• ²¹⁶ Po α Decay (0 Feeds ²¹	. 146 s 3) ² Pb	l (min)	= 0.10%	7 7 7 7	2 130 4. 27 2 40	.59 3 .233 10 .811 10	0.116 12 10.6 4 6.5 3	0.0003 0.0612 0.0556
α 1	6778.5 5	99.998	14.44		19 weak γ Eγ(avg)	s omitted = 388.4	1: ; ΣΙγ= 0.20%	

²²⁰ Rn-²²³ Fr

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
• ^{2 2 0} Rn α Decay Feeds	(55.61 s 4) ²¹⁶ Po	l (min)	= 0.10%	 ^{2 2 2} Ra α Decay Feeds ² 	(38.0 s 5) ^{1 8} Rn	l (min) = 0.10%
α 1 1 w	6288.29 10 eak a's omitte a (avg) = 5747.0	99.903 8 ed:); ΣΙα= 0.10%	13.38	Auger-L ce-K- 2 ce-L- 2	8.7 225.82 6 306.17 7	0.126 13 0.163 7 0.107 5	≈0 0.0008 0.0007
1 w B	$eak \gamma's omittesy(avg) = 549.7$	ed: 7; ΣΙγ= 0.10%		α 1 α 2 3 we	6235 4 6556 5 eak a's omittee (200) = 5907	3.05 5 96.90 10	0.405 13.53
• 221 Fr α Decay (Feeds 2	(4.8 m 1) ¹⁷ At	I (min)	= 0.10%	Х-гау L ү 2	11.7 324.22 5	0.112 13 2.77 8	∞0 0.0191
ce-K- 2 Auger-L ce-K- 3 ce-K- 4 ce-L- 2 ce-MNO- 2 ce-K- 6 ce-L- 6 ce-M- 6 ce-NOP- 6	3.77 20 8.52 22.47 20 54.27 20 82.01 21 95.18 20 121.87 20 200.11 21 213.28 20 216.56 20	0.6 4 2.8 4 0.22 12 0.11 5 0.69 19 0.24 7 1.75 8 2.17 10 0.57 3 0.196 9	<pre>≈0 0.0005 0.0001 0.0001 0.0001 0.0005 0.0045 0.0093 0.0026 0.0026</pre>	5 ττε Ε1 • ^{2 2 3} Fr β ⁻ Decay %β ⁻ D Feeds %α De	eak γ's omitte (avg) = 499. (21.8 m 4) ecay = 99.994 ²²³ Ra cay = 0.006	ed: I; ΣΙ.y= 0.01% I (min)	= 0.10%
α 1 α 2 α 3 α 4 α 5 α 6 α 7 7 γι Β.	5938.0 20 5965.0 25 5979.0 20 6075.0 20 6125.5 20 6241.8 20 6339.8 20 eak a's omitte a (avg) = 5833.2	0.130 10 0.100 20 0.49 3 0.130 20 15.10 20 1.35 7 83.4 8 d: ; $\Sigma \Gamma \alpha = 0.12\%$	0.0164 0.0127 0.0624 0.0168 1.97 0.179 11.26	Ce-L-5 Ce-TNO-1 Auger-L Ce-L-7 Ce-L-8 Ce-L-9 Ce-MNO-5 Ce-MNO-7 Ce-MNO-8 Ce-MNO-9 Ce-MNO-13	1.06 20 1.5 3 9 10.3633 11 10.673 11 12.393 20 15.48 20 24.7780 11 25.088 11 26.808 20 20 66 10	$\begin{array}{c} 4.4 & 13 \\ 5.54 & 25 \\ 34 & 5 \\ 5 & 1.97 & 11 \\ 20 & 4 \\ 4.0 & 24 \\ 1.5 & 5 \\ 5 & 0.63 & 3 \\ 7.0 & 12 \\ 1.4 & 8 \\ 0.7 & 2 \\ 0.7 &$	*0 0.0002 0.0065 0.0004 0.0045 0.0011 0.0005 0.0003 0.0003 0.0003
X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 2 γ 6 γ 11 8 w. E	11.4 78.950 10 81.520 10 92.3 99.50 20 217.60 20 412.0 20 eak y's omitte y(avg) = 211.0	2.3 3 0.77 12 1.29 20 0.58 9 0.16 3 12.5 4 0.100 20 d: ; $\Sigma I \gamma = 0.33\%$	0.0006 0.0013 0.0022 0.0011 0.0003 0.0579 0.0009	Ce-L- 14 Ce-L- 17 Ce-M- 13 Ce-M- 14 Ce-NOP-14 Ce-L- 20 Ce-M- 17 Ce-NOP-17 Ce-L- 22 Ce-M- 20 Auger-K Ce-K- 28	30.66 10 30.66 10 42.26 20 45.08 10 45.28 10 49.46 10 56.68 20 60.29 20 60.56 10 63.88 10 65.9 67.49 10 69.48 20	$\begin{array}{c} 0.4 & 3 \\ 16.9 & 9 \\ 1.8 & 10 \\ 0.10 & 8 \\ 4.12 & 22 \\ 1.39 & 8 \\ 5.1 & 22 \\ 0.49 & 25 \\ 0.18 & 9 \\ 1.17 & 14 \\ 1.3 & 6 \\ 0.13 & 8 \\ 0.46 & 20 \\ 0.19 & 17 \end{array}$	$\begin{array}{c} 0.0003\\ 0.011\\ 0.0016\\ \pm 0\\ 0.0040\\ 0.0014\\ 0.0053\\ 0.0006\\ 0.0002\\ 0.0015\\ 0.0015\\ 0.0018\\ 0.0002\\ 0.0007\\ 0.0003\\ \end{array}$
 ²²² Rn α Decay Feeds ² α 1 	(3.8235 d 3) ¹⁸ Po 5489.7 3	l (min) 99.920 10	= 0.10%	ce-MNO-22 ce-L- 25 ce-M- 25 ce-NOP-25 ce-K- 33 ce-K- 39 ce-L- 33	74.98 10 81.2 5 95.6 5 99.2 5 101.08 20 131.0 3 185.76 20	0.38 5 6.6 8 1.81 21 0.65 8 1.79 20 3.2 4 0.34 4	0.0006 0.0115 0.0037 0.0014 0.0039 0.0088 0.0014
2 w E	eak α's omitte α(avg)= 4986.0 eak γ's omitte	d: ; ΣΙα= 0.08% d:		ce-MNO-33 ce-L- 39 ce-NNO-39	200.18 20 215.7 3 230.1 3	0.112 11 0.61 7 0.197 20	0.0005 0.0028 0.0010
 B	y (avg) = 512.0	; ΣΙγ= 0.08%		p- i max avg β- 2 max avg β- 3 max avg	221 3 60.1 9 322 3 90.2 9 344 3 97.1 9	0.124 9 0.49 5 0.108 14	0.0002 0.0009 0.0002 (Continued)

.

^{2 2 3} Fr-^{2 2 4} Ra

Badiation	Eneray	Intensity	Alg_red/	Radiation	Eneral	Intensity	A (a rad/
Type	(keV)	(%)	μCi-h)	Type	(keV)	(%)	⊥(g-rau/ μCi-h)
···							
8- // so#	770 2						
avor	243.0 10	1.35 10	0.0070	ce-NOP-21	153.112 12	0.272 6	0.0009
β− 5 max	813 3			ce-K- 37	171.058 16	9.04 23	0.0330
avg	255.7 11	0.151 25	0.0008	ce-K- 40	225.466 16	1.54 8	0.0074
B- 6 max	913 3	10 2 0	0 06#0	ce-K- 43	239.88 10	0.95 7	0.0049
8-7 max	1017 3	10.5 5	0.0840	Ce-L- 3/	251.41 4	1.66 4	0.0089
avg	330.9 11	17 4	0.120	ce-NOP-37	268.365 12	0.135 3	0.0008
β- 8 max	1068 3	_		ce-K- 48	273.271 20	0.126 10	0.0007
avg	349.9 11	12.7 15	0.0947	ce-L- 40	305.82 4	0.281 11	0.0018
avg	361.1 11	57 4	0.438	Ce-L- 43	320.23 11	0.174 9	0.0012
total 8-	3/13 0 10	100 6	0 700			002000	0.0015
avy	343.0 12	100 8	0.728	α 1	5288 3	0.16	0.0180
12 wea	ak 8's omitte	ed:		α 2	5339 3	0.13	0.0148
Eß	(avg) = 208.	2; $\Sigma I \beta = 0.39\%$			5435 3	2,27,20	0.263
				α 5	5501 3	1.00 15	0.117
γ 1 	6.3 3	0.120 6	≈0	α 6	5537 3	9.2 3	1.08
x⇒ray L ≁ 5	12.3	34 5	0.0088	α 7	5606 3	24.2 4	2.89
γ 13	49.90 10	0.8 6	0.0008		5745 0 20	52.5 8 9 5 6	0.39
γ 14	50.10 10	31.7 14	0.0338	α 10	5857.5	0.32 4	0.0399
γ 20	68.70 10	0.38 16	0.0006	α 11	5870.0 20	0.85 4	0.106
γ 22 Χ-Γ2Χ Χ-	79.80 10	7.6 9	0,0129				
$X - ray K\alpha$.	88.470 10	2.42.22	0.0027	15 we	ak α's omitte	d: • 57 0.200	
X-ray KB	100	1.11 10	0.0024		(avg) = 5546.2	210 = U.29%	
γ 25	100.4 5	0.95 11	0.0020				
$\gamma 26$	134.60 10	0.51 6	0.0015	X-ray L	11./	25 3	0.0062
γ 20 γ 30	184-80 20	0.12/14	0.0005	X-TAV Kga	81.070 20	14.9 4	0.0257
γ 33 γ 33	205.00 20	1.08 11	0.0047	X-ray Ka	83.780 20	24.7 5	0.0441
γ 39	234.9 3	2.8 3	0.0141	X-ray KB	94.9	11.2 3	0.0226
γ 52	289.5 3	0.228 25	0.0014	r 12	98.234 18	0.45 5	0.0009
γ 59 ~ 65	319.40 20	0.51 6	0.0035	γ 18 γ 20	122.319 10	1.190 20	0.0031
γ 65 γ 104	775.30 20	0.39 5	0.0008	r 21	154.209 10	5.58 11	0.0183
1		0.39	0.0004	y 22	158.634 10	0.683 14	0.0023
118 wea	ik γ's omitte	ed:		y 27	179.52 6	0.136 14	0.0005
Eγ	(avg) = 482.0); $\Sigma I \gamma = 1.23\%$		γ 37	269.462 10	13.6 3	0.0781
				μ τ 38 τ μη	200.10 3	3.88 12	0.0009
				1 7 41	328.38 3	0.195 10	0.0014
• 223 Da o Danny (1	1 424 2)	1 (- 0.10%	γ 43	338.28 10	2.73 12	0.0197
• • • • • • • • • α α Decay (1	1.434 0 Z)	I (min)	= 0.10%	γ 44	342.90 4	0.220 15	0.0016
reeds	1411			1 7 43 7 48	349.80 20	0.34 8	0.0025
				γ 56	445.031 12	1.18 5	0.0112
Ce-NOP- 1 Ce-MNO- 2	3,34 5	51.8	0.0037			_	
ce-K- 14	8.38 4	0.17 3	*0 ·	50 ve	ak γ's omitte	d: • FT • 250	
Auger-L	8.7	28 3	0.0052	57	(avg) = 292.1	$z_{1\gamma} = 1.35\%$	
ce-MNO- 3	9.95 6	12.6746	0.0027		•		
ce-L- 4 ce-K- 19	13.55 11	1.2 4	0.0003				
ce-MNO-4	27.12 10	0.42 13	0.0002	• ^{2 2 4} Ba α Decay (3.6Ż d 1)	L (min)	= 0.10%
ce-K- 20	45.831 16	12.5 3	0.0122	Feeds ²	² ⁰ Rn	. ()	011070
ce-K- 21	55,805 16	18.1 4	0.0215	i ceus			
ce-K- 22	60.230 16	1.97 7	0.0025	l	07	0 11 5 15	- 0
Auger-K	62. 81 12 7	1.5 8	0.0020	ce-K- 1	142,577 14	0.442 20	°≊0 0-0013
ce-L- 15	92.81 4	0.176 15	0.0003	ce-L- 1	222.93 4	0.490 22	0.0023
ce-L- 18	104.27 4	1.38 5	0.0031	ce-MNO- 1	236.499 8	0.174 6	0.0009
ce-M- 18	117.837 12	0.330 6	0.0008				
ce-NOP-18	121.222 12	0.115 2	0.0003	α 1	5449	4.9 4	0.569
ce-L- 20	120.19 4 136.16 a	2.33 5	0.0063	α 2	5685.56 20	95.1 4	11.52
ce-M- 20	139.753 12	0.554 21	0.0016		- 1	• .	
ce-L- 22	140.58 4	0.377 9	0.0011	3 ve	ak a's omitted	1:	
ce-NOP-20	143.138 12	1.93 5	0.0059	Εα	(avy) = 3043.0	, ∠⊥α = U•U2%	(Continued)
ce-M- 21	149.727 12	0.79 3	0.0025				(continued)

²²⁴Ra-²²⁶Ra

				P			
Radiation	Enerov	Intensity	Δ (a-rad/	Badiation	Energy	Intensity	Δ (o-rad/
Tune		(0/)		Turne		/0/ \	
туре	(Kev)	(70)	$\mu CI-III$	type	(KeV)	(70)	μ0-η)
				f			·····
²²⁴ Ra α Decay (:	3.62 d 1)	(Continued)		ce-L- 22	82.16 11	0.188 6	0.0003
•				ce-MNO-17	82.73 5	0.31 4	0.0006
				ce-L- 24	89.76 11	0.66 8	0.0013
X-ray L	11.7	0.40 5	# 0	ce-MNO-18	90.25 20	0.14 6	0.0003
X-ray Ka ₂	81.070 20	0.126 7	0.0002	C8-K- 40	94.55 8	0.17 5	0.0003
X-ray Ka _l	83.780 20	0.209 10	0.0004	Ca=N= 20	94.90.10	0.38 5	0 0008
y 1	240.981 6	3.95 13	0.0203	CA-NOR-20	98 0 10	0 135 15	0 0003
·					103 75 10	0.135 15	0.0003
ű ve	ak r's omitt	eđ:	}	Ce-MN0-24	103.75 10	0.225 25	0.0005
Ēv	(ava) = 464.	9: $\Sigma T = 0.029$		Ce-L- 35	138.01 /	0.195 20	0.0006
- 1	(4.3)	.,,					
				a 1	5286 3	0.230 10	0.0259
				n 2	5444 3	0.130 10	0.0151
					5553 /	0.10	0.0118
• ^{2 2 5} Ra β^- Decay	(14.8 d 2)	l (min) = 0.10%		5570 2	1 20 10	0 1/13
Eeeds	225 00	•			5575 5	1 10 10	0.143
1 6603				a 5	5000 5		0.131
				a 6	5030.2 20	4.4 3	0.520
Auger-L	9.28	15.1 19	0.0030	a /	5681.0 20	1.40 20	0.169
ce-1- 1	20.16 20	30.9.22	0.0133	α 8	5/22.6 25	2.9 5	0.353
CO-MNO- 1	35 00 20	10 1 7	0 0076	α 9	5731.0 20	10.00 10	1.22
Ce-nuo 1	33.00 20		0.0070	a 10	5791 4	8.6	1.06
				α 11	5792 3	18.1 20	2.23
8- 1 max	322 12			ar 12	5829.0 20	51.6 15	6.41
avo	90 4	72 5	0.138				
6- 2 max	362 12			24 •	eak α's omitte	ed:	
avg	103 4	28 5	0.0614	(E.	$x(av_{0}) = 5450.4$: ΣIα= 0.38%	
total 8-					- (
ava	94 4	100 7	0, 199				
219	J . (100		X-ray L	12	21 4	0.0054
				γ ⁷	62,90 5	0.55 5	0.0007
X-ray L	12.7	15.8 19	0.0043	γ 13	73.83 5	0.32 3	0.0005
y 1	40.00 20	31.0 20	0.0264	γ 16	82.9	0.15 4	0.0003
				X-ray Kaa	83.230 20	1.02 9	0.0018
				X-ray Kg.	86.100 20	1.68 15	0.0031
				r 17	87.38 5	0.29 3	0.0005
				v 18	94,90,20	0.16 6	0.0003
• 225 Ac α Decay (10.0 d 1)	l (min) = 0.10%	Y-ray RA	97.5	0.77 7	0.0016
Eeeds 2	21 Er			~ 20	00 55 10	A 65 7	0.0010
1 0003	,,			r 20	00 00 10	1 70 20	0.0014
				y 21	109 40 10	0 20 20	0.0030
ce-K- 24	7.26 10	2.15 23	0.0003	7 24	108.40 10	0.20 3	0.0000
ce-L- 1	7.36 11	7 4	0.0011	7 25	111.00 10	0.32 3	0.0008
Auger-T	8.0	22 L	0.0042	γ <u>28</u>	123.80 10	0.190 20	0.0005
ruger 1	17 96 11	13 3	0.0050	γ 31	138.2	0.20 10	0.0006
	10 96 11	6 1 1 1	0 0027	γ 32	145.00 20	0.13 3	0.0004
Ce-L- 5	17.00 11	7 7 15	0.0027	7 33	150.09 5	0.71 8	0.0023
Ce-MNU- 1	21.35 10	2.3 15	0.0011	γ 34	154.00 10	0.19 5	0,0006
ce-K- 29	23.66 10	0.1/10	NU	y 35	157.25 5	0.31 3	0.0010
ce-MNO-2	31.95 10	4.6 9	0.0032	r 39	188.00 10	0.46 5	0.0018
ce-MNO- 3	33.85 10	2.3 5	0.0016	Ý 40	195.69 7	0.140 20	0.0006
ce-L- 7	44.26 7	4.8 5	0.0045	× 46	253.50 7	0.100 10	0 0005
ce-L- 8	45.46 11	0.9 4	0.0009	- 50	452 40 10	0.110 10	0 0011
ce-K- 33	48,95 6	0.101 12	0.0001	1 50	452.40 10	0.110 10	0.0017
ce-L- 9	51,16 11	0.15 3	0.0002	20.00	ak ala anista		
ce-L- 11	53.06 11	0.290 25	0.0003	34 10	an y's outlie		
ce-1- 12	54,96 11	0.48 15	0.0006	57	r(avg) = 105.2	217 = 0.93%	
ce-1- 14	55.76 21	1.3 16	0.0015	1			
Co-K- 35	56 11 6	0.97 12	0.0012	1			
CC K 35	56 26 21	065	0 0007]			
	50 25 21	1 1/1 11	0.001/	• 226 Ba a Decay (1600 v 7)	1 (min)	= 0.10%
	50.25 S	0 33 43	0.0014	- Ha & Decay (1200 9 77	1 (11111)	0.10/0
Ce-11N0 - 8	59.45 10	0.32 12	0.0004	Feeds 2	* * Kn		
ce-NOP- /	61./5 5	0.40 4	0.0005				
ce-L- 16	64.26 4	1.5 10	0.0021	• • • • •		0 00 0	
ce-MNO-11	67.05 10	0.106 10	0.0002	Auger-L	0. /	0.90 9	0.0002
ce-L- 17	68.74 7	0.97 10	0.0014	ce-K- 1	87.807 16	0.633 20	0.0012
ce-MNO-12	68.95 10	0.18 5	0.0003	ce-L- 1	168.16 4	1.20 4	0.0043
ce-M- 14	69.75 20	0.3 5	0.0005	ce-M- 1	181.729 12	0.319 10	0.0012
ce-MN0-15	70.25 20	0.22 16	0.0003	ce-NOP-1	185.114 12	0.111 4	0.0004
Ce-NOP-14	73.25 20	0.12 15	0.0002	ł			
ce-1 - 18	76, 26, 21	0.44 17	0.0007	1			
	77 66 21	0.15 3	0.0003	j α 1	4601.9 5	5,55 5	0.544
	70 3HO E	0 11 2	0.0003	α 2	4784.50 25	94.45 5	9.63
	10.240 0	1 60 40	0.0007	ł			(Continued)
Ce-L- 20	00.91 11	1.30 18	0.0027				(20
ce-L- 21	81.16 11	0.140 17	0.0002	1			
ce-NOP-16	81.747 5	0.13 10	0.0002				

.

^{2 2 6} Ra-^{2 2 7} Th

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ µCi-h)
X-ray L X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ γ 1	11.7 81.070 20 83.780 20 94.9 186.211 10	0.80 9 0.180 7 0.299 11 0.136 6 3.28 3	0.0002 0.0003 0.0005 0.0003 0.0130	B- 1 max avg B- 2 max avg B- 3 max avg total B- avg	19.2 20 4.8 5 34.4 20 8.7 6 43.7 20 11.1 6	10 35 54	0.0010 0.0065 0.0128
• ^{2 2 6} Th α Decay Feeds	(30.9 m) ^{2 2 2} Ra	l (min)	= 0.10%	X-ray L	13	1.15 11	0.0003
ce-K- 1 Auger-L ce-L- 1 ce-M- 1 ce-NOP- 1	7.20 4 9 91.88 3 106.30 3 109.91 3	0.98 7 7.5 9 14.3 10 3.9 3 1.41 10	0.0002 0.0015 0.0280 0.0088 0.0033	3 we Ey	ak y's omitte (avg) = 17.4	ed: μ; ΣΙγ= 0.04%) - 010%
α 1 α 2 α 3 α 4 α 5	6025 5 6040 5 6100 5 6234 5 6338 5	0.205 8 0.187 6 1.27 5 22.80 20 75.5 3	0.0263 0.0241 0.165 3.03 10.19	ce-L- 4 ce-MNO- 1 ce-MNO- 3	1.06 20 1.5 3 3.48 10	1.1 4 0.46 3	*0 *0 *0 0.0002
$\begin{array}{cccc} X - ray & L \\ X - ray & K\alpha_2 \\ X - ray & K\alpha_1 \\ X - ray & K\beta \\ \gamma & 1 \\ \gamma & 1 \\ \gamma & 2 \\ \gamma & 4 \\ \gamma & 5 \\ \gamma & 5 \end{array}$	12.3 85.430 10 88.470 10 100 111.12 3 131.02 5 190.30 5 206.23 5	7.5 9 0.281 20 0.46 4 0.212 16 3.29 20 0.278 13 0.109 6 0.189 8	0.0020 0.0005 0.0005 0.0005 0.0078 0.0008 0.0008 0.0004	Auger-L $ce-K-57$ $ce-L-6$ $ce-L-7$ $ce-L-8$ $ce-L-12$ $ce-L-12$ $ce-L-14$ $ce-L-14$ $ce-L-16$	9 9.18 10 10.3633 15 10.673 11 12.393 20 15.48 20 24.46 20 24.7780 15 24.8633 15 25.1 5	42 8 0.152 21 5 0.532 16 42 13 14 4 0.40 12 0.177 24 0.17 0.7 3 1.7 16	$\begin{array}{c} 0.0081 \\ \approx 0 \\ 0.0001 \\ 0.0095 \\ 0.0038 \\ 0.0001 \\ \approx 0 \\ \approx 0 \\ 0.0004 \\ 0.0009 \end{array}$
 ²²⁷ Ac α Decay %α Dec Feeds ² See also 	(21.773 y 3) $ay = 1.380 4^{-23}$ Fr b^{-227} Ac β^- Deca	I (min)	= 0.10%	ce-HNO-7 ce-MNO-8 ce-L-18 ce-L-20 ce-L-21 ce-L-22 ce-L-24 ce-L-26 ce-NNO-14	25.088 11 26.808 20 28.96 10 30.66 10 31.5 5 34.9633 15 37.3133 15 39.2780 15	15 5 5.0 14 2.1 4 0.11 9 4.5 3 1.6 15 0.119 4 0.29 3 0.24 11	$\begin{array}{c} 0.0078\\ 0.0028\\ 0.0013\\ \approx 0\\ 0.0029\\ 0.0011\\ \approx 0\\ 0.0002\\ 0.0002\\ 0.0002\end{array}$
ce-MNO- 1	8.048 5	0.50 7	sz 0	ce-MNO-16 ce-L- 28 ce-MNO-18	39.5 5 42.26 20 43.38 10	0.6 6 6.4 15 0.75 11	0.0005 0.0058 0.0007
α 1 α 2 17 we Βα	4938.1 20 4950.5 20 eak a's omitte x (avg) = 4836.8	0.50 5 0.68 5 d: ; ΣΙα= 0.19%	0.0523 0.0713	ce-L-31 ce-M-21 ce-M-22 ce-NOP-21 ce-L-35 ce-NOP-22	43.5 3 45.28 10 45.9 5 48.89 10 49.46 10 49.5 5	0.11 5 1.09 7 0.4 5 0.369 21 0.44 14 0.16 15	0.0001 0.0004 0.0004 0.0005 0.0005
31 we B1	eak γ's omitte γ(avg)= 115.3	d: ; ΣΙγ= 0.10%		Ce-MNO-26 Ce-L- 38 Ce-L- 39 Ce-M- 28 Ce-NOP-28 Ce-L- 42	51.7280 15 53.66 10 54.46 10 56.68 20 60.29 20 60.56 10	0.103 9 0.15 11 0.36 25 1.7 4 0.63 14 0.31 4	0.0001 0.0002 0.0004 0.0021 0.0008 0.0008
• ^{2 2 7} Ac β^- Decay % β^- [Feeds See al:	(21.773 y 3) Decay = 98.620 4 ²²⁷ Th so ²²⁷ Ac α Deca	l (min) 4 Ay	= 0.10%	ce-M NO - 35 Auger-K ce-M NO - 39 ce-L-44 ce-L-45 ce-L-49	63.88 10 65.9 68.88 10 74.76 10 75.96 20 81.2 5	0.15 5 0.13 8 0.13 10 0.140 15 0.107 19 0.56 12	0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0010
ce-L- 3 ce-MNO- 1 Auger-L ce-MNO- 2 ce-MNO- 3	4.03 20 4.12 10 9.48 10.02 10 19.32 20	2.2159 41.420 1 1.06 11 6.875 0.7337	0.0002 0.0036 0.0002 0.0015 0.0003	$\begin{array}{c} ce-L-56\\ ce-MNO-49\\ ce-K-80\\ ce-K-90\\ ce-K-91\\ ce-K-91\\ ce-K-94\\ ce-K-98\end{array}$	93.86 10 95.6 5 101.08 20 108.28 10 131.0 3 132.08 10 146.18 10 152.28 10	0.7 4 0.21 5 0.28 6 0.25 15 0.52 10 0.57 3 0.27 23 0.66 6	0.0014 0.0004 0.0006 0.0014 0.0016 0.0018 0.0008

^{2 2 7} Th-^{2 2 8} Ac

.

Radiation	Energy	Intensity	Δ (g-rad/	Radiation	Energy	Intensity	$\Delta(g-rad/$
Туре	(keV)	(%)	µCi∘h)	Туре	(keV)	(%)	μCι-h)
^{2 2 7} Th α Decay	(18,718 d 5)	(Continued)		γ 118	304.40 20	1.35 11	0.0088
				γ 121	312.60 20	0.43 4	0.0029
ce-K-111	182.18 10	0.98 6	0.0038	y 122	329.70 10	2.90 16	0.0028
ce-K-115	192.68 20	0.24 3	0.0010	r 129	334.20 10	1.15 10	0.0082
ce-K-118	200.48 20	0.64 6	0.0027	y 132	342.40 10	0.34 3	0.0025
ce-K-121	208.68 20	0.221 24	0.0010	γ 135	350.50 20	0.118 12	0.0009
.ce-L- 91	216.76 10	0.10/ 6	0.0005			-	
Ce-K-129	230.28 10	0.38 4	0.0019	205 we	ak γ 's omitt	ed: 0. 57 1 72#	
Ce-MNO-98	251.38 10	0.260 17	0.0014	<u>Εγ</u>	(avg) = 185.	$0; 21\gamma = 1.73 \pi$	1
ce-L-111	266.86 10	0.192 11	0.0011				
ce-L-118	285.16 20	0.130 11	0.0008				
~ 1	5585.9 16	0,176 6	0.0209	• ^{2 2 8} Ra β^- Decay	(5.75 y 3)	I (min) = 0.10%
a 2	5600.6 18	0.170 17	0.0203	Feeds	^{2 2 °} Ac		
α 3	5613.3 16	0.216 8	0.0258				
α 4	5668.0 15	2.06 12	0.249	ce-MNO-2	1.668 5	100	0.0036
α 5	5693.0 16	1.50 10	0.182				
ar 6	5700.8 10	3.63 20	0.941	8~ 1 max	38.9 10		
a , a 8	5713.2 16	4,89 20	0.595	avg	9.9 3	100	0.0211
a 9	5757.06 15	20.3 10	2.49				
α 10	5762.3 15	0.228 10	0.0280	l			
α 11	5795.5 15	0.311 5	0.0384	2.2.0			
α 12	5807.5 15	1.270 20	0.157	• ² ² ⁸ Ac β^- Decay	(6.13 h)	l (min) = 0.10%
α 13	5000.0 15	2.42 10	0.302	Feeds 4	²²⁸ Th		
a 14	5916.0 15	0.78 3	0.0983				
α 16	5959.7 15	3.00 15	0.381	Auger-L	9.48	36 5	0.0073
α 17	5977.92 10	23.4 10	2.98	ce-K- 3	19.43 5	0.75 23	0.0003
α 18	6008.8 15	2.90 15	0.371	ce-L- 1	37.31 5	57 4	0.0454
α 19	6038.21 15	24.5 10	3.15	ce-K- 7	44.5 3	0.13 4	0.0001
26	aab ala anist			Ce-M- 1	52.60 5	15.6 9	0.01/5
20 W	$eak ars omitte\alpha(awa) = 5562$	eu: 5• ∑Ta= 0.20€		LucerNOP- I	69.2	0.18 15	0.0003
D	u (avg) - 55024.	5, 21u - 0.10%		ce-K- 9	74.85 20	5 4	0.0077
	0 30 40	0.4"	•	ce-L- 2	78.98 8	4.0 16	0.0067
7 3 V-737 1	12 3	12 8	×0 0 0110	ce-M- 2	94.27 8	1.0 4	0.0019
	20.30 20	0,20 6	*0	ce-NCP-2	98.12 8	0.36 14	0.0007
y 7	29.910 10	0.10 3	RE ()	Ce-K- 13	99.63 10	0.30 10	0.0006
γ 12	43.70 20	0.23 3	0.0002	Ce-L- 3	123.90 5	2.0 6	0.0052
y 20	49.90 10	0.20 15	0.0002	ce-NOP-3	127.75 5	0.73 23	0.0020
y 21	50.10 10	8.4 4	0.0090	ce-K- 20	160.58 10	0.14 3	0.0005
7 30	52.20 10 79 90 10	0.24 3	0.0003	ce-L- 9	164.03 20	1.0 7	0.0034
ү 42 Хагах Ки-	85.430 10	2.00 20	0.0026	ce-K- 21	169.3 10	0.19 6	0.0007
$X - rav K\alpha$	88.470 10	2.32 14	0.0044	ce-mNO- 9	179.32 20	0.30 20	0.0011
γ 44 ·	94.00 10	1.40 14	0.0028	Ce-K- 27	220.07 10	0.12 10	0.0073
Х-гау Кв	100	1.06 7	0.0023	ce-K- 41	353.35 10	0.140 16	0.0011
r 56	113.10 10	0.17 10	0.0004	ce-K- 87	685.05 20	0.15 10	0.0022
γ 57	113.10 10	0.54 7	0.0013	ce-K-100	801.42 3	0.252 12	0.0043
γ 58 γ 65	117.20 10	0.180 20	0.0004	ce-K-110	859.46 10	0.135 15	0.0025
v 79	204.30 20	0.23 4	0.0010				
γ 80	205.00 20	0.17 3	0.0007	β- 1 max	127 7		
y 81	206.00 20	0.26 4	0.0011	avg	33.3 20	0.197 22	0.0001
γ 83	210.60 10	1.26 9	0.0057	β−2 max	193 7		
y 90	234.9 3	0.46 8	0.0023	avq	51.7 20	0.29 4	0.0003
γ 91 ~ 01	236.00 10	11.5 5	0.0578	5-3 max	23/ /	0 160 22	0 0002
γ 94 γ 96	252.50 20	0.11 3	0.0006	8-4 max	244 7	00100 22	0.002
γ 97 γ 98	254.7 3 256.20 10		0.0049 0.0344	avg 8-5 may	66.7 21 377 7	0.215 20	0.0003
γ 99	262.90 20	0.100 10	0.0006	avg	107.2 22	0.216 25	0.0005
γ 104 γ 108	273.00 20 281.30 10	0.49 7	0.0028 0.0010	β−6 max avg	393 7 112.3 23	0.37 5	0.0009
y 111 y 115	286.10 10 296.60 20	1.60 8 0.42 4	0.0098	β -7 max avg	401 7 114.9 23	0.158 21	0.0004
y 116	299.80 10	1.84 14	0.0117	β- 8 max	413 7	1 50 20	0 0000
y 117	300.3 3	0.28 4	0.0018	avg	110.5 23	1.39 20	(Continued)

^{2 2 8} Ac—^{2 2 8} Th

Radiation Type	Energy (keV)	Intensity (%)	Δ (g-rad/ μ Ci-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
β- 9 max	449 7	·····		r 28	341.1 3	0.42 12	0- 0030
avg	130.0 23	2.42 11	0.0067	y 35	409.51 10	2.13 24	0.0186
avg	131.7 23	1.54 14	0.0043	γ 38 γ 41	463.00 10	4.4 5	0.0013
8-11 max	491 7	4 0 6	0 0150	γ 44 7 19	478.2 8	0.23 5	0.0023
β−12 max	494 7	4.9 0	0.0150	γ 40	509.6 10	0.47 12	0.0022
avg A-13 may	144.9 23	0.78 8	0.0024	γ 52	523.0 10	0.12 3	0.0013
avq	146.4 23	1.30 17	0.0041	y 56	562.3 5	0.94 15	0.0113
β−14 max avor	598 7 179.6 24	0.26 7	0.0010	γ 57 γ 58	570.7 10 572.1 10	0.18 6	0.0022
β -15 max	606 7	0.20		γ 59	583.20 20	0.14 5	0.0019
avg 8-16 max	182.1 24 687 7	8 3	0.0310	γ 62 γ 75	623.8 5 701.5 5	0.11 3 0.19 4	0.0015
avg	210.0 25	0.22 7	0.0010	γ 76	707.10 20	0.15 5	0.0023
avg	247 3	0.14 3	0.0007	γ 91	755.18 10	0.78 23	0.0120
β-18 max	910 7	0 0 1 1 2	0 0051	γ 82 γ 81	772.17 10	1.55 23	0.0255
β-19 max	962 7	0.82 12	0.0051	γ 87	794.70 20	4.6 5	0.0088
avg 8−20 mav	309 3 969 7	0.19 5	0.0013	γ 91 ~ 92	830.5 3	0.59 7	0.0104
avg	311 3	3.3 4	0.0219	γ 93	840.0 4	0.94 9	0.0169
β−21 max avor	983 7 317 3	7 4	0.0473	$\gamma 99$ $\gamma 100$	904.5 3 911.07 3	0.83 9	0.0160
β -22 max	1014 7		0.04/5	y 106	944.1 8	0.102 20	0.0021
avg 8−23 max	328 3 1046 7	6.6 7	0.0461	$\gamma 107$ $\gamma 108$	948.0 8 958.5 5	0.116 23	0.0023
avg	340 3	0.24 21	0.0017	y 109	964.6 3	5.2 6	0.107
b°24 max avq	366 3	3.4 7	0.0265	γ 113	987.80 20	0.18 3	0.343
β-25 max	1121 7	0 11 6 9	0 0036	γ 1 18 ~ 1 22	1033.2 3	0.22 4	0.0048
8-26 max	1158 7	0.40 8	0.0038	γ 123	1095.7 5	0.127 20	0.0032
avg 8-27 max	382 3 1168 7	0.21 5	0.0017	γ 125 γ 130	1110.40 20	0.33 6	0.0079
avg	386 3	32 5	0.263	γ 135	1246.40 20	0.54 6	0.0143
β−28 max avq	1193 7 396 3	0.15 4	0.0013	γ 138 γ 149	1287.5 5 1459.30 20	0.114 18	0.0031
β-29 max	1618 7			γ 152	1495.8 5	1.00 12	0.0318
8-30 max	538 3 1741 7	0.11 10	0.0013	γ 153 γ 159	1501.5 5	0.19 4	0.0177 0.0064
avg	611 3	12 3	0.156	y 161	1580.2 5	0.69 12	0.0233
avg	748 3	86	0.127	γ 162 γ 164	1624.7 5	3.5 6 0.30 7	0.0105
total 8- avg	375 4	97 10	0.778	γ 165 γ 166	1630.4 4 1638.0 5	1.86 8	0.0646
,		-	0.,,,0	y 167	1666.30 20	0.20 4	0.0071
2 we Ef:	$a \kappa \beta' s omitt \delta(a v q) = 78.$	ed: 8: ΣΙ8= 0.10%		7 183	1887.00 20	0.105 23	0.0042
		•		122 we	ak γ's omitte	d:	
X-ray L	13	39 5	0.0108	ь. Б	r(avg) = 947.8	$z_1 \gamma = 4.12\%$	
γ ' X-ray Kα ₂	89,9530 20	0.501 23	0.0006	-			
$X-ray$ $K\alpha_1$	93,3500 20	0 3.5 15	0.0069	• 228 Th or Decay	1 9 1 3 2 1 9 0	(min)	= 0.10%
X-ray Ke	105	1.6 7	0.0036	Feeds ²	² ⁴ Ra	1 (111117)	- 0.10%
γ 3 γ 6	129.08 5 146.1 3	2.8 9 0.21 6	0.0076				
ý 7	154.2 3	0.9 3	0.0031	Auger-L	9	9.6 11	0.0019
$\gamma 10$ $\gamma 11$	191.20 20 199.70 20	0.12 4 0.33 12	0.0005	ce-M- 2	79.549 4	5.2 3	0.0285
γ 12	204.40 20	0.16 6	0.0007	ce-NOP- 2	83.163 4	1.88 11	0.0033
7 13 7 14	209.28 10	4.4 14 0.216 8	0.0010	1	5175	0.10	0 0100
γ 20 ~ 31	270.23 10	3.6 8	0.0207	α 2	5212	0.36	0.0400
γ 23	321.7 6	0.24 5	0.0013	α 3	5340.54 15 5423.33 22	26.70 20	3.04
γ 24 ~ 26	327.64 10	3.2 7	0.0224	α · ·	5423033 22	-2	0.40
y 27	338.32 10	11.4 23	0.0818	5 We Ba	aκ α's omitte (avg)= 5138.7	α: ; ΣΙα= 0.05%	

•

^{2 2 8} Th—^{2 2 9} Th

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
²²⁸ Th α Decay (1.9132 y 9)	(Continued)		ce-L- 23	137.24 4	0.772 24	0.0023
				Ce-MNO-19	138.13 10	0.1230	0.0004
X-ray L	12.3	9.6 11	0.0025		151 66 4	0.155010	0.0003
γ 2	84.371 3	1.21 6	0.0022		153.66 10	0.116 4	0.0004
γ 3	131.610 4	0.124 6	0.0003	Ce-L- 25	160.56 20	0.255 8	0.0009
γ 8	215.979 5	0.239 13	0.0011	ce-L- 27	164.76 10	0.104 4	0.0004
				ce-L- 28	174.39 6	1.73 6	0.0064
10 we	ak γ 's omitte	d:		ce-M- 28	188.81 6	0.413 13	0.0017
Εγ	(avg) = 1/2.5	$\Sigma \Sigma \gamma = 0.11\%$		ce-L- 29	191.73 10	0.97 3	0.0039
				ce-NOP-28	192.42 6	0.146 5	0.0006
				ce-MNO-29	206.15 10	0.311712	0.0014
• ²²⁹ Th α Decay (7.34E3 y 16)	I (min)	= 0.10%	- 1	1699	0 15	0 0150
Feeds ²	^{2 5} Ra			a 2	4000	0.63	0.0639
				a 3	4797-8 12	1.27	0.130
	2 25 5	0 1 2	0 0006	a 4	4809	0.22	0.0225
	6 153 20	9.1 J	0.0008	a 5	4814.6 12	9.30 8	0,954
I - repui	Q 20	81 9	0.0157	α 6	4833	0.29	0.0299
ce-L- 4	12.06 20	7.59 23	0.0019	α 7	4837	4.8	0.495
ce-MNO-2	12.54 3	24.45	0.0065] α 8	4845.3 12	56.20 20	5.80
ce-11 NO - 3	20.568 20	17.243	0.0076	α 9	4861	0.18	0.0186
ce-K- 15	20.58 10	8.7 3	0.0038	α 10	4901.0 12	10.20 8	1.06
ce-K- 16	20.78 10	4.33 13	0.0019	α 11	4929 3	0.1	0.0115
ce-L- 5	23.52 3	10.1 3	0.0051	α 12	4967.5 12	5.97 6	0.632
ce-11 NO- 4	26.48 20	2.51736	0.0014		49/8.5 12	3.17 4	0.336
ce-K- 17	28.05 5	1.96 6	0.0012		5055	5 3	0.025/
ce-K- 18	33.11 6	8.8 3	0.0052	a 15	5050	5.2 1.6	0.559
ce-L- 8	37.30 3	4.28 13	0.0034	a is	5052	1.0	0.172
$Ce^{-n}NO = 5$	37.94 3	3.44352	0.0028	12 ve	ak a's omitte	ed:	
Ce-K- 19	111 38 20/	0 200 7	0.0017	Βα	(avg) = 4765.	5: ΣΙα= 0.27%	
Ce 1 20	44.30 20	1.08 4	0.0011			•	
ce-L- 10	49.66 4	4.66 14	0.0049	Veret I	10 0	01 0	0 0212
ce-K- 22	50.48 7	2.55 8	0.0027		12.3	0 1 72 1	0.0212
ce-M- 8	51.78 3	1.02 3	0,0011	7 4	31.30 20	ц ц	ດັ້ດດວາ
ce-K- 23	52.56 4	4.16 13	0.0047	1 - 5	42.76 3	0, 1632	0.0001
ce-MOP- 8	55.39 3	0.362 11	0.0004	y 8	56.60 3	0.3264	0.0004
ce-L- 11	55.96 7	14.2 5	0.0169	η γ 9	68,18 7	0.1	0.0001
Ce-MNO- 9	63.36 7	0.36516	0.0005	γ 10	68.90 4	0.1122	0.0002
Ce-M- 10	64.08 4	1.20 4	0.001/]] γ 11	75.20 7	0.52	0.0008
Auger-K	67 06 10	1.5 7	0.0021	X-ray Kaz	85,430 10	16.5 4	0.0300
ce-L- 13	67.20 5	11.6 4	0.0166	7 12	86.30 10	0.3774	0.0007
ce-NCP-10	67.69 4	0.452 14	0.0007	$\gamma 13$	86.44 5	3	0.0056
ce-K- 25	68.98 10	0.626 19	0.0009		88.470 10	2/.1 0	0.0511
ce-M- 11	70.38 7	3.85 12	0.0058	~ 10	107 17 5	0.8364	0.0205
ce-NOP-11	73.99 7	1.38 5	0.0022	1 7 15	124.50 10	1.224	0 0032
ce-K- 27	80.08 10	0.324 10	0.0006	1 y 16	124.70 10	0.612	0.0016
ce-M- 12	81.48 10	0.710 22	0.0012	7 17	131.97 5	0.3264	0.0009
ce-11- 13	81.62 5	2.78 9	0.0048	7 18	137.03 6	1.632	0.0048
Ce-NOP-12	85.09 10	0.255 8	0.0005	γ 19	142.95 10	0.4284	0.0013
CE-NUP-13	85.23 5	0.99 3	0.0018	γ 20	148.30 20	1.3872	0.0044
$Ce^{-L} = 14$	8/.93 5		0.0032	y 22	154.40 7	0.663	0.0022
Ce-N- 20	102435 5	7.5 5 0 807 13	0.0009	γ <u>23</u>	156.48 4	1.122	0.0037
ce-1- 15	105.26 10	1.62 5	0.0036	η γ 25	172.90 10	0.2244	0.0008
ce-L- 16	105.46 10	0.808 25	0.0018	γ 26	179.80 20	0.5	0.0020
ce-NOP-14	105.96 5	0.146 5	0.0003	7 2/	184.00 10	0.2346	0.0009
ce-K- 29	107.05 10	5.19 16	0.0118	7 28	193.03 0	4.59	0.0189
ce-L- 17	112.73 5	0.366 11	0.0009	1 23 N 30	218,10 20	0.1428	0.0007
ce-K- 30	114.18 20	0.207 7	0.0005		210.10 20	Ve (729	0.000/
ce-L- 18	117.79 6	1.65 5	0.0041	11 ve	ak y's omitte	ed:	
ce-M- 15	119.68 10	0.388 12	0.0010	[] R•	(avg) = 130_F	3: ΣIY= 0.07%	
ce-MNO-16	119.88 10	0.262	0.0007]]		,	
ce-NOP-15	123.29 10	0.138 5	0.0004				
ce-L- 19	123.71 10	0.381 12	0.0010	11			
Ce-mNO-1/	14/015 5	0.118483	0.0003	}			
Ce-0- 18	132.21 0	U.JY2 12 0 1172 15	0.0011	11			
CC-D-22 CC-NOD-19	135,82 6	0.140 5	0.0004				
00 HVE - 10			0.0004	81			

^{2 3 0} Th-^{2 3 0} U

Radiation Type	Energy (keV)	Intensity (%)	$\Delta(extsf{g-rad}/ \mu extsf{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
 ²³⁰ Th α Decay Feeds % Sport 	(7.7E4 y 3) ^{2 2 6} Ra ntaneous Fission	I (min ≤ 5E–11	o) = 0.10%	γ 41 γ 43 γ 46 γ 47	728.23 7 781.35 5 898.65 10 918.50 10	1.87 15 1.47 12 5.8 5 8.1 7	0.0291 0.0244 0.110 0.159
Auger-L ce-L- 1 ce-M- 1 ce-NOP- 1	9 48.4353 2 62.8500 2 66.464 3	8.4 10 5 16.9 11 5 4.6 3 1.64 11	0.0016 0.0174 0.0061 0.0023	γ 48 γ 49 γ 50 γ 51 γ 54 γ 55	951.95 10 953.0 10 956.3 3 959.3 3 1009.60 20 1026.05 10	28.8 20 0.16 4 1.6 3 0.49 12 1.07 9 1.44 12	0.584 0.0033 0.0321 0.0100 0.0230 0.0316
α 1 α 2 α 3	4476 4621.0 15 4687.5 15	0.12 23.40 10 76.3 3	0.0114 2.30 7.62	γ 56 28 v	$1074.68 \ 10$ weak y's omit: (avg) = 537.	0.74 6 ted: 2; ΣΙγ= 0.925	0.0170 K
5 we Bo	eak α's omitt x(avg)= 4367.	ed: 8; Σ <u>τ</u> α= 0.31%					
X-ray L y 1	12.3 67.6720 2	8.4 10 0 0.373 21	0.0022 0.0005	● ^{2 3 0} Pa β ⁻ Decay %β ⁻ Feeds	(17.4 d 5) Decay = 9.5 6 ^{2 3 0} U	l (min) = 0.10%
10 we B1	eak γ's omitt r(avg)= 168.	ed: 1; ΣΙγ= 0.07%		See al %α De	lso ²³⁰ Pa EC De ecay = 0.0032 1	есау	
• ²³⁰ Pa EC Decay %EC E	(17.4 d 5) Decay = 90.5 6	l (min)) = 0.10%	Auger-L ce-L- 1 ce-M- 1 ce-MOP- 1	9.89 29.99 5 46.20 5 50.31 5	3.0 7 6.8 12 1.9 4 0.70 13	0.0006 0.0044 0.0018 0.0008
See als %α De	β^{230} Pa β^{-} Decay = 0.0032 1	есау		8- 1 max avg β- 2 max	192 5 51.6 15 507 5	0.20 4	0.0002
Auger-L ce-L- 1 ce-M- 1	9.48 32.73 5 48.02 5	55 7 41 5 11 1 12	0.0111 0.0283	avg total 8- avg	148.7 17 146.1 18	9.3 16 9.5 16	0.0295 0.0297
ce-NOP- 1 Auger-K ce-L- 2	51.87 5 69.2 100.428 20	4.1 5 1.6 11 1.19 21	0.0045 0.0023 0.0025	1 w E	eak β's omitt β(avg)= 36.	ed: 2; ΣΙβ= 0.05%	
ce-M- 2 ce-K- 6 ce-NCP- 2 ce-K- 20	115.718 20 118.3 4 119.570 20 290.30 10	0.33 6 0.32 5 0.121 22 0.157 14	0.0008 0.0008 0.0003 0.0010	X-ray L 7 4	13.6 314.8 3	3.8 8 0.106 20	0.0011 0.0007
ce-K- 23 ce-K- 26 ce-L- 23 ce-K- 37	334.10 5 353.95 10 423.28 5 514.8 3	1.11 11 0.157 16 0.219 21 0.18 6	0.0079 0.0012 0.0020 0.0020	5 w ច	eak γ's omitt γ(avg)= 297.	ed: 6; ΣΙγ= 0.17%	
X-ray L	13 525.25 20	0.12 3 60 7	0.0014	• ²³⁰ U α Decay (2 Feeds ²²	2 0.8 d) ° Th	l (min)	= 0.10%
$\begin{array}{ccccc} \gamma & 1 \\ \chi - ray & \kappa \alpha_2 \\ \chi - ray & \kappa \alpha_1 \\ \chi - ray & \kappa \beta \\ \gamma & 2 \\ \gamma & 13 \\ \gamma & 18 \\ \gamma & 19 \\ \gamma & 20 \\ \gamma & 22 \\ \gamma & 23 \\ \gamma & 25 \\ \gamma & 26 \\ \gamma & 29 \\ \gamma & 30 \\ \gamma & 31 \\ \gamma & 32 \\ \gamma & 33 \end{array}$	53.20 5 89.9530 2(93.3500 2(105 120.900 20 316.80 20 380.15 10 397.80 20 399.95 10 440.8 10 443.75 5 454.95 5 463.60 10 508.20 5 518.50 10 556.00 10	$\begin{array}{c} 0.24 & 3 \\ 0.18.8 & 16 \\ 0.30.7 & 25 \\ 14.2 & 12 \\ 0.34 & 6 \\ 0.16 & 3 \\ 0.30 & 6 \\ 1.85 & 17 \\ 0.62 & 5 \\ 0.11 & 4 \\ 5.4 & 5 \\ 6.2 & 5 \\ 0.81 & 8 \\ 0.22 & 11 \\ 3.5 & 3 \\ 1.95 & 17 \\ 0.20 & 3 \\ 0.7 & 0 \end{array}$	0.0003 0.0360 0.0610 0.0317 0.0009 0.0011 0.0024 0.0156 0.0053 0.0010 0.0513 0.0600 0.0080 0.0024 0.0382 0.0216 0.0023	Auger-L ce-L- 1 ce-N- 1 ce-NOP- 1 ce-L- 3 α 1 α 2 α 3 α 4 3 we Educe	9.48 51.73 4 67.02 4 70.87 4 133.76 3 5662.6 7 5667.2 7 5817.7 7 5888.5 7 eak α's omitter x(avg) = 5583.5	11.3 15 23.4 17 6.4 5 2.37 18 0.146 13 0.26 3 0.38 4 32.00 20 67.4 4 ed: 9; $\Sigma I \alpha = 0.01\%$	0.0023 0.0257 0.0092 0.0036 0.0004 0.0314 0.0459 3.97 8.45
Y 23 Y 25 Y 26 Y 29 Y 30 Y 31 Y 32 Y 33 Y 34 Y 36	443.75 5 454.95 5 463.60 10 508.0 10 508.20 5 518.50 10 556.00 10 571.10 10 581.80 20 619.69 10	5.4 5 6.2 5 0.81 8 0.22 11 3.5 3 1.95 17 0.20 3 1.07 9 0.130 14 0.163 25	0.0513 0.0600 0.0080 0.024 0.0382 0.0216 0.0023 0.0130 0.0016 0.0022	α 3 α 4 Β Ε	5817.7 7 5888.5 7 eak α's omitte x(avg) = 5583.9	32.00.20 67.4 4 ed: 9; ΣΙα= 0.01%	3 8 (Co

^{2 3 0}U-^{2 3 1}Pa

Radiation Type	Energy (keV)	Intensity (%)	$\Delta(extsf{g-rad}/ \mu extsf{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
^{2 3 0} U α Decay (2	:0.8 d) (Co	ntinued)		X-ray L	13.3	71 8	0.0200
	43	40.0.45	0 0000	γ 5	25.640 20	14.7 12	0.0080
X-rav L	13 72 20 //	12.2 15	0.0034	7 8	58.570 20	0.48 3	0.0006
7 I 7 7	154.23 3	0.126 11	0.0009	γ 11	72.780 20	0.248 18	0.0004
v 7	230.37 5	0.122 10	0.0006	γ 12	81.240 20	0.88 6	0.0015
•	200000			y 13	82.110 20	6 4 5	0.0007
8 we	ak γ's omitte	ed:		× 15	89.950 20	0.93 7	0.0018
Eŋ	r (avg) = 169.4	9; $\Sigma I \gamma = 0.08\%$		X-ray Kga	92.2870 20	0.35 4	0.0007
				X-ray Kai	95.8680 20	0.57 6	0.0012
) γ 17	99.280 20	0.119 9	0.0003
				γ 18	102.270 20	0.41 4	0.0009
• 2 31 Th β^- Decay	(25.52 h 1)	J (min)	= 0.10%	X-ray KB	108	0.26 3	0.0006
Feeds	^{2 3 1} Pa			7 50	103-120 20	0.155 11	0.0005
a - NNO - 1	2 0221 14			37 we	ak γ 's omitte	: 	
ce-t- 5	4,535 20	49 4	×U 0.0047	57	(avy) - 114.3	· 217- 0.5/%	
ce-MNO-2	4.8831 10	5 0.75 9	*0				
Auger-L	9.68	60 8	0.0124				
ce-NNO- 3	11.8331 10	5 40 30	0.0092	• 231 Pa or Decay /3	27654 11	L (min)	= 0.10%
ce-MNO- 4	12.7031 16	5 29 17	0.0077		7 A a	I (11111)	- 0.10%
ce-MNO- 5	20.273 20	16.7 14	0,0072	reeus	AC ET 1	C 0F 40	
ce-K- 25	23.079 21	0.50 9	0,0002	% Sponta	aneous Fission ≤	≈ 3E−10	
ce-K- 29	33.339 21	0.11 4	*0				
ce-L- 8	37.465 20	55 4	0.0436	ce-L- 3	3.760 18	0.755	*0 *
ce-L- 9	42.76 3	0.6 3	0.0005	ce-L- 4	4.86 11	0.668 20	≈0
ce-L- 10	47.40 10	0.31 8	0.0003		7 520 21	25 1 8	0.0017
ce-K- 30	50.519 21	0.60 8	0.0006	Auger-I.	9.28	42 5	0.0082
Ce-NOP- 8	57, 183, 20	564	0.0068	ce-L- 7	10.11 3	20.2 21	0.0044
ce-MNO- 9	58,49 3	0.20 10	0.0003	ce-MNO- 2	13.898 5	41.564	0.0123
ce-L- 12	60.135 20	8 3	0.0102	ce-L- 11	18.36 3	8.0 9	0.0031
ce-L- 13	61.005 20	2.37 21	0.0031	ce-MNO-3	18.598 5	0.24	≈0
ce-L- 14	63.105 20	14.5 18	0.0195	$Ce \sim MNO = 4$	19.70 10	0.214	*0
ce-MNO-10	63.13 10	0.12 3	0.0002	$Ce^{-M}NO = 6$	20.358 12	4.300	0.0019
Ce-L- 15 Ce-M- 12	00.845 20 75 873 20	2 0 8	0.0002	ce-L- 16	24.32 3	1.80 22	0.0009
ce-M- 13	76.743 20	2.0 0	0.0003	ce-MNO- 7	24.948 21	6.9 7	0.0037
ce-L- 17	78.175 20	0.54 5	0.0009	ce-L- 17	26.53 3	0.140 5	≈0
ce-M- 14	78.843 20	3.7 7	0.0062	ce-L- 19	32.90 3	1.50 17	0.0011
ce-NOP-12	79.853 20	0.8 4	0.0013	Ce-MN0-11	33.198 21	2.6 3	0.0018
ce-NOP-13	80.723 20	0.210 18	0.0004	Ce-L- 22	37.35 4	0.70 435	0.0005
Ce-NUP-14 Ce-NNO-17	82.823 20	0.84 15	0.0015	ce-MNO-16	39.158 21	0.57 7	0.0005
ce-L- 25	114.575 20	0.114 13	0.0003	ce-L- 25	43.83 4	3.3 4	0.0031
ce-L- 30	142.015 20	0.129 10	0.0004	ce-M- 19	47.738 21	0.36 4	0.0004
				ce-NCP-19	51,471 21	0.131 15	0.0001
6- 1 max	141.7 18			Ce-MNU-22	52.10 10	0.25 20	0.0003
avq	37.4 5	2.7 4	0.0022	ce-L- 29	54.34 5	0.79 10	0.0003
8 -2 max	170.8 18			ce-NCP-23	55,92 3	0.42 5	0.0005
avg	45.5 5	0.32 22	0.0003	ce-L- 30	57.52 4	0.39 5	0.0005
8- 3 max	205.5 18	45 4	0 0 0 7 7	ce-M- 25	58.67 3	0.89 10	0.0011
avg	55.4 b	15 4	0.01//	ce-NOP-25	62.40 3	0.32 4	0.0004
p v max vu	58.1 6	1.25.24	0,0015	Ce-MNO-29	09.18 4 77 Al 4	0.29 4	0.0004
6- 5 max	287.6 18		0.0015	Ce-1- 31	81 08 5	0.79 9 0.24 h	0.0013
avq	79.6 6	49 22	0.0831	ce-L- 33	82.7 4	0.30 11	0.0005
8-6 max	304.8 18			ce-MNO-31	91.88 3	0.29 3	0.0006
avg	84.8 6	35 20	0.0632	ce-K- 52	193.32 6	1.51 8	0.0062
p− / max	311.3 18 86 9 4	0 /1 11	0 0000	ce-K- 59	223.315 6	0.66 11	0.0031
avg total e-	00.00	0.41 11	0.0008	ce-L- 52	280.24 7	0.281 15	0.0017
avg	76.4 7	100 30	0.169	Ce-L- 59	310.230 18	0.122 20	0.0008
h	ak Ala ani++-			α 1	4631.0 20	0.10	0.0099
4 W e 17 A	$a_{N} p \cdot S \cup mitte$ $(a_{N} q) = - 32 H$	αι 1 Στα= 0.12⊈		α 2	4642.0 20	0.10	0.0099
4 ti	(~.2) 20.44	, sep ver24		α 3	4680.0 20	1.5	0.150
				α 4	4712.0 20	1	0.100
			ļ	α 5	4/30.0 20	8.4	0.847

^{2 3 1} Pa—^{2 3 3} Th

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
α 6 α 7 α 8 α 9 α 10 α 11 α 12	4851.0 20 4933.0 20 4950 4974.0 20 4984.0 20 5011.0 20 5028	1.4 3 22.8 0.4 1.4 25.4 20	0.145 0.315 2.40 0.0424 0.149 2.71 2.14	 ^{2 3 2} Th α Decay Feeds ² % Spor Auger-L ce-L- 1 	(1.405E10 y 6) ²²⁸ Ra Itaneous Fission 9 39.8 10	I (min < 1E–9 8.4 14 16.7 22) = 0.10% 0.0016 0.0141
α 13 α 14	5030.5 20 5057.3 20	2.5 11	0.268 1.18	ce-M- 1 ce-NOP- 1 ce-L- 2	54.2 10 57.8 10 105.7633 1	4.5 6 1.62 22 5 0.11 5	0.0052 0.0020 0.0002
6 we Bo	eak α's omitte x(avg)= 4706.2	d: ; ΣΙα= 0.07%		a 1	3830	0.20 9	0 0163
X-ray L 7 2 7 6	12.7 18.9 27.360 10	43 5 0.35 9.3	0.0117 0.0001 0.0054	α 2 α 3	3953 4010 5	23 3 77 3	1.94 6.58
γ 11 γ 17 X-ray Kα ₂ X-ray Kα ₂	38.200 20 46.370 20 87.670 10 90.884 6	0.149 15 0.208 2 0.62 4 1.02 7	0.0001 0.0002 0.0012 0.0012	X-rav L y 1	12.3 59.0 10 eak y's omitt	8.4 14 0.19 3 ed:	0.0022 0.0002
X-ray K8 γ 45 γ 47 γ 51	102 255.80 7 260.22 8 283.67 6	0.47 3 0.101 6 0.173 11 1.60 10	0.0020 0.0010 0.0006 0.0010 0.0097	ह- -	y (avg) = 125.	0; ΣΙγ= 0.04%	
γ 52 γ 54 γ 59 γ 60 γ 64	300.08 6 302.67 6 330 340.81 7 357.16 7	2.30 10 2.30 10 1.30 20 0.165 8 0.173 10	0.0147 0.0148 0.0091 0.0012 0.0013	 ^{2 3 2} U α Decay (7 Feeds ^{2 2} % Sponta 	7 2 y 2) ⁸ Th aneous Fission =	l (min) • 9E—11 7	= 0.10%
76 we Bj	eak γ's omitte r(avg)= 165.5	d: ; ΣΙγ= 1.45%		Auger-L ce-L- 1 ce-M- 1 ce-NCP- 1 ce-L- 2	9.48 37.31 5 52.60 5 56.45 5 108.61 5	11.1 14 22.9 14 6.3 4 2.29 14 0.174 11	0.0022 0.0182 0.0070 0.0028 0.0004
• ^{2 3 1} U EC Decay Feeds ²	(4.2 d 1) ²³¹ Pa	l (min)	= 0.10%	α 1 α 2 α 3	5139.0 20 5263.54 9 5320.30 14	0.280 20 31.2 4 68.6 4	0.0306 3.50 7.77
ce-MNO- 1 ce-L- 4 Auger-L ce-MNO- 2	3.8331 16 4.535 20 9.68 11.8331 16	0.52 39.8 12 84 10 0.17	≈0 0.0038 0.0174 ≈0	X-rav L y 1	13 57.78 5 -	12.0 14 0.201 10	0.0033 0.0002
ce-MNO- 3 ce-MNO- 4 ce-L- 6 ce-L- 7 ce-M- 6	12.7031 16 20.273 20 37.465 20 47.40 10 53 203 20	1 13.68 50.6 16 0.299 9 13.9 5	0.0003 0.0059 0.0404 0.0003	14 we B1	eak γ's omitte r(avg)= 142.0	ed: 0; ΣΙγ= 0.07%	
ce-NOP- 6 ce-L- 8 ce-L- 9 ce-L- 10	57.183 20 60.135 20 61.005 20 63.105 20	5.15 16 0.13 5 0.113 15.8 15	0.0063 0.0002 0.0001 0.0213	• ^{2 3 3} Th β^- Decay Feeds	(22.3 m 1) ^{2 3 3} Pa	l (min)	= 0.10%
ce-MNO- 7 Auger-K ce-M- 10 ce-NOP-10	63.13 10 70.8 78.843 20 82.823 20	0.11275 1.4 10 4.0 7 0.91 14	0.0002 0.0021 0.0067 0.0016	ce-MNO- 1 ce-MNO- 2 ce-L- 4 Auger-L ce-MNO- 3	1.31 5 2.85 5 8.268 11 9.68 12.03 5	52 8 16.3 5.85 18 8.1 10 0.12	0.0015 0.0010 0.0010 0.0017 ≈0
$\begin{array}{ccc} X - ray & L \\ \gamma & 4 \\ \gamma & 6 \\ \gamma & 10 \\ X - ray & K\alpha_2 \end{array}$	13.3 25.640 20 58.570 20 84.210 20 92.2870 20	99 10 12 0.44 7 17.3 21	0.0280 0.0066 0.0005 0.0126 0.0340	ce-MNO-4 ce-L-7 ce-M-7 ce-L+10 ce-NOP-7 ce-L-12	24.006 11 36.05 4 51.78 4 53.60 20 55.76 4 65.398 20	2 7.02 21 1.93 6 1.1 8 0.713 22 3.05 22	0.0010 0.0054 0.0021 0.0013 0.0008 0.0042
x-ray κα ₁ X-ray Kβ γ 18 γ 19	95.8680 20 108 217.94 3 236.01 3	28 4 13.1 16 0.8 0.18	0.0575 0.0300 0.0037 0.0009	ce-K- 29 ce-M- 10 ce-NOP-10 ce-K- 32	66.40 20 69.33 20 73.31 20 77.94 8	0.104 4 0.31 21 0.11 8 0.357 11	0.0001 0.0005 0.0002 0.0006
17 we Ξγ	ak γ's omitted (avg)= 178.4;	l: ; ΣΙγ= 0.22%		ce-M- 12 ce-NOP-12 ce-K- 63	81.136 20 85.116 20 346.60 20	0.74 5 0.262 17 0.343 11	0.0013 0.0005 0.0025 (Continued)

^{2 3 3} Th-^{2 3 3} U

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
a <u></u>							
²³³ Th β^- Decay	(22.3 m 1)	(Continued)	j	ce-L- 7	53.523 10	10.7 8	0.0122
				Ce-L- 8	64.833 10	10.6 14	0.0147
8- 1 max	260.4 21		ļ	Ce-M- /	69.732 10 72.6	2,59 18	0.0039
avg Ar Dinor	71.5 7	0.25	0.0004	ce-NOP- 7	73.839 10	0.94 7	0.0015
p~ 2 max	433.0 21	0.5	0.0014	ce-M- 8	81.042 10	2.6 4	0.0045
8- 3 max	480.7 21		0.0014	ce-L- 10	82.103 20	2.7 5	0.0048
avg	140.2 7	1.6	0.0048	ce-M- 10	98.312 20	0.95 12	0.0014
8-4 max	659.7 21 200.3 8	0.23	0 0010	ce-NOP-10	102.419 20	0.24 4	0.0005
8- 5 max	691.3 21	0.25	0.0010	ce-K- 15	184.51 3	5.6 4	0.0220
avg	211.2 8	1.7	0.0076	ce-K- 18	224.89 4	29.4 10	0, 123
8-6 max	790.6 21	0.20	0 0015	ce-L- 15	278.36 3	1.09 7	0.0065
8-7 max	797.4 21	0.29	0.0015	ce-L- 16	290.22 3	5.71 19	0.0353
a⊽g	248.6 8	1.2	0.0064	Ce-MNO-15	294.57 3	0.359 18	0.0023
8- 8 max	1076.0 21			ce-M- 16	306.43 3	1.37 5	0.0090
avg A-9 may	350.5 8	1.9	0.0142	ce-NOP-16	310.54 3	0.502 16	0.0033
avq	378.5 8	13	0.105	ce-L- 17	318.74 4	0.47 7	0.0032
β-10 max	1238.6 21			Ce-mNO-17	334.95 4	0.158 22	0.0011
avg Arti morr	412.1 8	51	0.448		154 5 04		
p=11 max איס	414.6 8	30	0,265	β - 1 max avα	156.5 24	24 3 12	0 0215
total 8-		50	0.205	$\beta = 2 \max$	173.8 24	27.5 12	0.0215
avg	394.3 9	101.852	0.855	avg	46.3 7	15.7 20	0.0155
3 we	ak A's omitte	• 6-	1	β^{-3} max	231.8 24	28 11	0 0376
Eß	(avg) = 227.9	9; ΣIβ= 0.17%		6- 4 max	260.4 24	20 4	0.05/0
				avg	71.4 8	33 4	0.0502
X-ray L	13.3	9.6 10	0.0027	total B-	58 0 8	101 7	0 125
7 4	29.373 10	2.5	0.0016	avy	30.0 0	101 /	0.125
γ 12 γ 13	88.04 16	2.7	0.0050	X-ray L	13.6	49 7	0.0142
X-ray Kaz	92.2870 20	0.232 7	0.0005	γ 7	75.280 10	1.26 8	0.0020
γ 14 	94.66 5	0.8	0.0016	γ 8	86.590 10	1.89 24	0.0035
X-ray Ka ₁ X-ray KA	95.8680 20	0.175 6	0.0008		94.0050 20	10.8 4	0.0219
γ 25	162.50 6	0.17	0.0006	γ 10	103.860 20	0.74 8	0.0016
γ 26	162.5	0.15	0.0005	Х-гау КВ	111	8.2 3	0.0193
γ 27 ~ 29	169.17 5	0.34	0.0012	γ 13 ~ 15	271.48 8	0.30 4	0.0018
γ 28 γ 32	190.54 8	0.13	0.0005	γ 16	311.98 3	38.6 4	0.257
γ 33	195.096 20	0.16	0.0007	γ 17	340.50 4	4.5 5	0.0328
γ 49	359,90 20	0.12	0.0009	γ 18 10	375.45 4	0.62 12	0.0049
7 60 7 61	447.7 3	0.15	0.0022	7 19 7 20	415.76 4	1.62 16	0.0108
γ 63	459.20 20	1.4	0.0137	,			0.0144
γ 66	490.8 3	0.17	0.0018	10 wea	k γ's omitte	d:	
γ 68 ~ 78	499.0 3	0.2	0.0022	E Y I	(avg) = 120.5	21y = 0.21%	
γ 83	669.80 20	0.68	0.0097				
γ 96	764.4 4	0.12	0.0020				
γ 111	890.1 5	0.14	0.0027	• ²³³ U α Decay (1.5	592E5 y 7)	I (min)	= 0.10%
110 we	ak γ's omitte	d:		Feeds ²²⁹	Th		
Εγ	(avg) = 484.7	'; ΣΙγ= 1.88%					
			1	ce-L- 2	4.80 12	0.20 4	≈ 0
				Ce-L- 5	8.68 9	0.73 15	0.0001
• $233 \text{ Pa} \beta^-$ Decay	(270 4 1)	L (min)	= 0.10%	ce-L- 10	22.01 3	5.8 21	0.0027
Feeder 2	331	• \	0.10/0	ce-MNO5	23.97 9	0.23 5	0.0001
1 6603	÷			Ce-L- 15	34.27 5	0.54 11	0.0004
ca-t - 7	6 70 E	17 1 21	0 0025	ce-110-10	37.30 3	2.1 8 0.19 4	0,0015
Auger-L	9.89	38 6	0.0025	ce-L- 22	51.37 4	0.102 21	0.0001
ce-MNO- 1	11.7120 4	1.949 21	0.0005	ce-L- 36	76.67 5	0.20 4	0.0003
ce-L- 3	18.593 10	96	0.0037				(Continued)
Ce-MNO- 2	22.99 5	5.8 8 3.5.21	0.0028				
ce-L- 6	36.1426 3	0.122 4	80				

200 RADIOACTIVE DECAY DATA TABLES

^{2 3 3}U–^{2 3 4}Pa

Radiation Type	Energy (keV)	Intensity (%)	Δ (g-rad/ μ Ci-h)	Radiat Typ	ion Energy e (keV)	Intensity (%)	∆(g-rad/ μCi-h)
	····			<u> </u>			
~ 1	4729	1 6	0 162		h 36 hh 6	1 13 N	0 0009
a 2	4729	0-163	0.0165	ce-K-	18 37.09 3	1.51 13	0.0009
α 3	4783.5 12	13.20 20	1.34	ce-MNC) - 2 37.932 10	0 23.7456	0.0192
α 4	4796	0.28	0.0286	ce-MN0	0-3 39.64 5	1.8	0.0015
α 5	4824.2 12	84.4 5	8.67	ce-L-	5 41.24 20	1.05 8	0.0009
				ce-L-	6 45.34 7	2.47 8	0.0024
26	weak a's omitte	ed:		ce-M-	4 52.65 6	0.312 10	0.0004
	$\mathbf{E}\alpha(\mathbf{a}\mathbf{v}\mathbf{g})=4673.$	6; ΣIα= 0.28%		ce-K-	21 55.09 20	2.1 5	0.0024
				ce-NO	- 4 56.76 6	0.116 4	0.0001
Y-ray I	13	3 0 12	0 0011	ce-MNC	5 57.45 20	0.346 22	0.0004
a Luy L	15	J. 7 12	0.0011	ce-L-	8 57.93 8	3.51 11	0.0043
149	weak vis omitte	eđ:		ce-K-	22 59.0 3	0.4 4	0.0005
	$E_{\gamma}(avg) = 114$	5: $\Sigma I \gamma = 0.18\%$		Ce-M-	6 61.55 /	0.674 21	0.0009
	- () (-,,		ce-NC		0.249 8	0.0003
				L Ce-k-	23 70.39 20 7 72 6	1 2 0	0.0098
				Ruger-	9 74 14 8	0 97 3	0.0016
● 234 Th @- Door		1 (maim)	- 0 10%	Ce-K-	24 78.0 3	1.8 3	0.0073
• mp Deca	1y (24.10 0 3)	r (min)	- 0.10%	Ce-L-	9 78,103 1	1 48.6 15	0.0809
Feed	is ²³ Pa (1.17 m)			ce-NCE	- 8 78.25 8	0.364 11	0,0006
				ce-K-	25 80.79 20	1.00 3	0.0017
ce-L- 2	8.385 20	4.4 4	0.0008	ce-L-	10 81.65 10	1.03 3	0.0018
Auger-L	9.68	8.1 10	0.0017	ce-K-	26 84.09 20	1.3 4	0.0023
ce-MNO+ 1	14.653 20	1.7 5	0.0005	ce-K-	27 85.37 5	0.18 5	0.0003
ce-MNO- 2	24.123 20	1.58 14	0.0008	ce-K-	28 87.4 3	1.08 19	0.0020
ce-L- 4	41.755 20	0.35 6	0.0003	ce-M-	9 94.312 10) 13.5 4	0.0270
ce-L- 5	42.185 20	1.18 10	0.0011	ce-M-	10 97.86 10	0.286 9	0.0006
ce-MNO-4	57.493 20	0.120 21	0.0001	Ce-NUE	9 98.419 10) 5.09 16	0.0107
ce-n-s	57.923 20	0.289 24	0.0004	Ce-MOL		2 5 11	0.0002
Ce-NOF- 5	71 275 11	11 5 10	0.0001	Ce-L-	30 104 2 3	0 4 1 21	0.0078
Ce-L- 11	71.695 20	0.30 3	0,0005	Ce-t-	12 109.44 20	0.96 3	0.0022
ce-M- 10	87.013 11	2.78.24	0.0052	ce-K-	31 110.8 4	5.46 17	0.0129
ce-NOP-10	90,993 11	1.02 9	0.0020	ce-K-	32 111.59 20	10.3 3	0.0244
			•••	ce-L-	13 112.61 14	0.338 11	0.0008
0- 1	75 0 20			ce-L-	15 118.54 20	1.66 20	0.0042
	10 5 6	2 A E	0 0000	ce-M-	11 119.9 3	1.0 3	0.0025
A+ 2 max	95.8.20	2.0 5	0.0008	ce-L-	16 122.2 5	0.57 14	0.0015
2 10 1	24.8 6	6.8 7	0 0036	ce-NOF	-11 124.0 3	0.37 12	0.0010
6- 3 max	96.2 20	0.0	0.0000	ce-m NC	125.65 20	0.3162	0.0008
avq	24.9 6	18.5 15	0.0098	Ce-L→	17 128.4426	3 0.314 10	0.0009
8- 4 max	188.6 20			Ce-Hind	33 120.02 14	1 1 3	0.0003
avg	50.6 6	72.5 20	0.0781	ce-L-	18 130,94 3	9.8 8	0.0273
total β+				ce-K-	34 133.29 20	0.136 15	0.0004
avg	43.5 7	100 3	0.0924	ce-M-	15 134.75 20	0.44 6	0.0013
				ce-MNC	-16 138.5 5	0.20 6	0.0006
X-ray L	13.3	9.6 11	0.0027	ce-NOF	-15 138.86 20	0.165 19	0.0005
γ 5	63.290 20	3.8 3	0.0051	ce-M-	18 147.15 3	2.71 22	0.0085
7 10	92.380 10	2.72 22	0.0054	ce-L-		0.41 9	0.0013
y 11	92.800 20	2.69 21	0.0053		22 152 9 3	0.16 //	0.0033
ci y	112.01 5	0.242 19	0.0006	Ce-K-	36 156.49 20	1.13 4	0.0038
13 .	weak wie omitte	• 5e		ce-K-	37 159.9 8	0.16 15	0.0005
13	$E_{\gamma}(av_{f}) = 76.8$	8. 5Tv= 0.13%		Ce-L-	23 164.24 20	1.28 20	0.0045
		5, 21/* 0 . 13%		ce-MNC	-21 165.15 20	0.13 3	0.0005
		•		ce-L-	24 171.8 3	0.34 6	0.0013
		•		ce-L+	25 174,64 20	0.193 6	0.0007
• 234 Da /- Daga	. (670 L E)	1 /m; in)	- 0 10%	ce-L-	26 177.94 20	0.25 8	0.0010
• ra p Decay	(0.70 n 5)	i (min)	- 0.10%	, ce-K-	41 178.1 3	1.79 15	0.0068
Feeds	i ²³⁴ U .			ce-L-	27 179.22 5	0.48 14	0.0019
		*		ce-M-	25 180.45 20	0.31 5	0.0012
ce-K- 11	9.8 3	0.22 7	se O	Ce+L+	-23 101.2 3	V. 34 9 0 113 10	0.0021
Auger-L	9.89	89 13	0.0188	Ce-NUP	-24 188 1 2	0 113 18	0.0004
ce-L- 1	12.54 4	6.03 18	0.0016	ce-MNO	-27 195_43 5	0.18 5	0.0008
ce-K- 12	15.59 20	4.24 13	0.0014	ce-K-	43 196.8939 1	6 0.13 11	0.0005
ce-K- 13	18.76 14	1.73 6	0.0007	ce-MNO	-28 197.5 3	0.19 4	0.0008
ce-L- 2	21.723 10	64.9 20	0.0300	ce-L-	31 204.6 4	1.85 6	0.0081
ce-L- 3	23.43 5	4.93 15	0.0025	ce-L-	32 205.44 20	2.00 6	0.0088
CE-K- 13	24.07 20 28 4 5	2. 4 1. 2 12	0.0014	ce-K-	47 215.0 4	0.22 19	0.0010
ce-MNO- 1	28.75 4	2.2	0.0013	ce-M-	31 220.9 4	0.474 15	0.0022
				••			

.

2	3	4	Pa-
---	---	---	-----

Туре	Energy (keV)	Intensity (%)	∆(g-rad/ µCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad µCi-h
34 Pa β^- Decay	(670 b 5)	(Continued)		+ o+ a] A-			
	(0.70 11 3)	(Continued)		avg	223.6 22	99.7	0.475
ce-M- 32	221.65 20	0.484 15	0.0023				
Ce-L- 33 Ce-NOP-31	223.44 20	0.27 6	0.0013	x-ray L	13.6	114 13	0.0329
ce-NCP-32	225.76 20	0.176 6	0.0008	γ 2 γ 5	63.00 20	3.26 21	0.0044
ce-L- 36	250.34 20	0.220 7	0.0012	γ 7	69.9	0.2346	0.0003
ce-K- 49	254.2 4	1.42 16	0.0077	γ 8	79.69 8	0.1224	0.0002
Ce-K- 50	256.8 4	0.51 8	0.0028	X-ray Ka ₂ X-ray Ka	94.0650 2	0 15./ /	0.031/
ce-MNO-41	288.2 3	0.178 14	0.0011	γ 9 (a)	99.860 10	4.9	0.0104
ce-K- 56	343.2 3	0.185 14	0.0014	γ 10	103.41 10	0.1224	0.0003
ce-L- 49	348.0 4	0.27 3	0.0020	X-ray KB	111	11.8 5	0.0280
ce-L- 50	350.6 4	0.105 17	0.0008	γ 11 γ 12	125.4 3	1.0 3	0.0027
ce-K- 69	412.4 10	0.15 15	0.0012	γ 12 γ 13	134.37 14	20.4	0.0570
ce-K- 73	450.3 10	0.16 7	0.0015	γ 14	137.7 5	0.153	0.0004
ce-K- 74	453.1 5	0.459 14	0.0044	γ 15	140.30 20	0.92 11	0.0027
ce-K- 75	453.9 5	1.63 5	0.0157	γ 16 	144.0 5	0.36 5	0.0011
ce-t- 75	495.9 6	0.70 5	0.0036	7 18	150.2	0.2	0.0007
ce-MNO-75	564.0 5	0.1	0.0012	γ 19	159.1 4	0.71 21	0.00222
ce-K- 99	577.1 5	0.14 5	0.0017	γ 21	170.70 20	0.51 11	0.0019
ce-K-100	583.4 5	0.41 3	0.0051	γ 22	174.6 3	0.20 5	0.0008
CE-K-105	617.4 5	0.67 7	0.0088	γ 23 γ 24	186.00 20	2.0 3	0.0081
ce-K-120	688.7 7	0.184 6	0.0027	y 26	199.70 20	0.49 16	0.0025
ce-K-122	692.64 15	0.186 6	0.0027	7 27	200.98 5	1.1 3	0.0048
ce-K-123	694.4 7	0.152	0.0022	γ 28	203.0 3	1.22 21	0.0053
ce-K-12/	710.7 6	0.14 10	0.0021	γ 30 ~ 31	219.8 3	0.20 11	0.0010
ce-K-136	767.63 4	0.13 5	0.0021	γ 32	227.20 20	5.6	0.0290
ce-K-141	810.4 8	0.109 20	0.0019	γ 33	245.20 20	0.92 21	0.0048
ce-K-144	833.3939 1	6 0.20 13	0.0035	γ 34	248.90 20	2.9 3	0.0151
			11	γ 35 γ 36	267.1 8	0.1734	0.0010
8- 1 max	64 5			7 30 7 37	275.5 8	0.27 9	0.0039
avg	16.3 14	0.47	0.0002	γ 39	286.1 8	0.1428	0.0009
p−∠max avor	326 5 91-0 16	1.2	0.0023	Y 40	289.6 8	0.1122	0.0007
β - 3 max	396 5	1.2	0.0023	γ 41 ~ //2	293.7 3	4.0 3	0.0249
avg	112.7 16	0.98	0.0024	7 43	312.5	0.3	0.0007
6- 4 max	424 5			y 44	316.3 8	0.1224	0.0008
avy Ar 5 may	445 5	4	0.0104	γ 45	320.7 8	0.1224	0.0008
avq	128.6 17	2	0.0058	γ 46 τ 47	328	n. 3 0. 6 10	0.0021
β- 6 max	469 5			7 47 7 48	351.9 3	0.012	0.0043
avg	136.3 17	2.3	0.0067	y 49	369.8 4	3.0 3	0.0233
p / max	484 5	24	0 0721	γ 50	372.4 4	1.33 21	0.0105
8-8 max	484 5	24	0.0721	γ 51 ~ 52	409.8 4	0.41 21	0.0036
avg	141.2 17	11	0.0331	7 52 7 53	410.3	0.6 3	0.0009
8- 9 max	514 5			γ 55	446.5 5	0.1224	0.0012
avg e-10 may	150.8 1/	4.2	0.0135	γ 56	458.8 3	1.53 11	0.0150
avq	198.1 18	16	0.0675	γ 57	461.8 10	0.1632	0.0016
8-11 max	711 5			7 DB 7 59	407.5 10	0.4 3	0.0041
avg	217.6 18	3.8	0.0176	γ 60	473.5 10	0.1836	0.0019
5-12 max	932 5 296 6 19	0.96	0 0061	y 61	478.7 10	0.3	0.0031
β ~13 max	1115 5	V# 20	0.0001	γ 62	480.4 8	0.41 11	0.0042
avg	364.3 19	7.7	0.0597	7 03 7 64	482+5 / 498.9 10	0.31 11	0.0031
8-14 max	1138 5	2 2		γ 65	506.8 5	1.6 3	0.0176
avg 8~15 m≏¥	372•9 19 1183 5	2.3	0.0183	γ 66	513.7 5	1.33 21	0.0145
אסשמים אין מעס	390.0 19	10	0.0831	γ 67	520.2 5	0.612	0.0068
8-16 max	1238 5			7 08 7 69	521.0 5	0.918	0.0102
avg	410.7 19	6.2	0.0542	y 70	533.2 10	0.2	0.0023
8-17	1244 5			~ 71	537.1 10	0 1632	0 0019
	112 2 20	1 7		, ,,	55.01 10	041032	0.0012
avg β~18 max	413.3 20 1259 5	1.7	0.0150	y 72	557.0 10	0.2652	0.0031

^{2 3 4} Pa—

Radiation Type	Energy (keV)	Intensity (%)	Δ (g-rad/ μ Ci-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
γ 75 γ 76	569.5 5 574.0 10	11 2	0.132 0.0249	γ 154 γ 155	1044.9 1074.6 10	0.5	0.0114
γ 77 γ 79 γ 80	585.8 8 596.6 5 602.8 5	0.153 0.51 21 0.9 4	0.0019 0.0065 0.0118	γ 156 γ 157 γ 158	1083.2 8 1108.5 8 1122.3 8	0.76 11 0.31 11 0.51 11	0.0177 0.0072 0.0122
γ 81 γ 82	611.5 6 616.2 5	0.8 4	0.0106	γ 159 γ 160	1126.0 6 1153.1 7	0.82 11 0.31 11	0.0122 0.0196 0.0075
γ 83 γ 84 γ 85	623.6 5 627.5 5 630.6 10	0.82 21 0.82 21 0.4	0.0108 0.0109 0.0055	γ 161 γ 162 γ 163	1208 1217.5 10	0.24 10 0.3 0.38 7	0.0079 0.0098
у 86 у 87 у 88	634.5 10 639.7 10 643.2 10	0.3 0.2 0.2	0.0041 0.0028 0.0028	γ 164 γ 165 γ 166	1229 1240.5 8 1251	0.3 0.5 3 0.3	0.0080 0.0135 0.0082
γ 89 γ 90 γ 91	646.0 10 653.7 6 655.0 8	0.3 0.9 4 0.61 21	0.0042 0.0128 0.0085	γ 167 γ 168 γ 169	1277.4 8 1292.7 8 1353.3 6	0.20 8 0.61 21 1.7 5	0.0056 0.0169 0.0500
γ 92 γ 93 γ 94	658.0 5 660.6 10 664.8 10	0.9 4 0.3 1.3 4	0.0129 0.0043 0.0188	γ 170 γ 171 γ 172	1358.5 10 1394.1 5 1399.7 10	0.1224 3.1 10 0.23 5	0.0035 0.0909 0.0070
γ 95 γ 96 γ 97	666.7 6 669.9 5 683.3 8	1.6 4 1.4 4 0.2448	0.0232 0.0204 0.0036	γ 173 γ 174 γ 175	1427.5 10 1446.0 8 1452.7 10	0.204 0.4111 1.0221	0.0062 0.0126 0.0316
γ 98 γ 99 ~ 100	687.0 20 692.7 5 699.0 5	0.2856	0.0042	γ 176 γ 177 γ 178	1460 1493.7 10 1516	0.3	0.0095
$\gamma 101 \\ \gamma 103 \\ \sim 100$	706.1 3 711.2 8 713.8 8	3.2 7 0.2	0.0476	γ 179 γ 180 γ 181	1549.4 10 1579.7 10 1585 // 10	0.10 4 0.17 9	0.0034
γ 105 γ 106 γ 107	733.0 5 738.0 8 742.81 3	8.8 9 1.0 4 2.0 9	0.137	γ 182 γ 183 γ 183	1593.8 8 1627.9 10	0.61 21 0.15 3	0.0208
γ 108 γ 109 γ 110	746.5 8 755.6 10	0.1326	0.0021 0.0230	γ 185 γ 185 γ 186 ~ 187	1656 3 1668.5 10	0.153	0.0054
γ 110 γ 111 γ 113	766.360 20 768.7 10	0.3	0.0028	γ 188 γ 189 γ 181	1694.6 8 1699.8 10	1.2 5 0.15 5	0.0442
y 114 y 115 y 116	780.7 6	0.2 1.1 4 0.5	0.0034 0.0187 0.0085	γ 191 γ 192 γ 194	1741.7 10 1756	0.10 5	0.0038
γ 117 γ 118 γ 119	793.6 10 796.3 5	1.4 4 1.53 3.9 5	0.0239 0.0259 0.0657	γ 196 γ 197 γ 202	1797.3 10 1890.1 10	0.10 8	0.0039
7 120 7 121 7 124	804.3 7 805.6 3 812.5 15	0.4 3.4 5 0.5	0.0070 0.0578 0.0088	γ 203 γ 204 γ 205	1997.1 10 1905 1926.0 6	0.15 4 0.2856 0.51 21	0.0062 0.0116 0.0209
γ 125 γ 127 γ 128	819.6 6 826.3 6 831.6 8	4.1 9 5.6 8	0.0463 0.0718 0.0994	27 w E	eak γ's omitte γ(avg)= 955.6	d: ; ΣΙγ= 1.01%	
γ 129 γ 130 γ 131	841.9 10 844.0 10 851.70 10	0.1428 0.51 21 0.1224	0.0026 0.0092 0.0022				
γ 132 γ 133 γ 134	872.9 10 876.4 8 880.5	4.1 21	0.0762	● ²³⁴ Pa IT Decay %IT D	(1.17 m 3) becay = 0.160 18	I (mi	n) = 0.10%
γ 135 γ 136 γ 137	880.51 4 883.24 4 899.0 5	12.24 12 4 4.2 9	0.230 0.230 0.0801	See al	so ²³⁴ Pa β^- Dec	ay (1.17 m)	
γ 138 γ 139 γ 140	904.37 15 920 925.0 10	0.51 21 0.41 21 3	0.0098 0.0080 0.0583	ce-L- 1	52.815 20	0.111 13	0.0001
7 141 7 142 7 143	926.0 8 926.72 15 946.00 3	11.2 21 9 3 12 7	0.221 0.181, 0.247	1 w B	eak γ's omitte γ(avg)= 73.9	d: ; ΣΙγ= 0.01%	
γ 144 γ 145 γ 146	949 960.0 10 966.0 5	8.16 0.1 0.612	0.165 0.0021 0.0126				
γ 147 γ 148 γ 149	978.8 10 980.5 5 980.5 5	1.4 8 3 2	0.0298 0.0639 0.0426				
γ 151 γ 152 γ 153	984.0 10 1022.6 8 1028.3 8	1.97 0.63 0.83	0.0406 0.0133 0.0179				

^{2 3 4} Pa--^{2 3 5} U

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ µCi-h)
● ^{2 3 4} Pa β Decay	(1.17 m 3)	l (mi	n) = 0.10%	ce-L- 5	30.83 10	43	0.0027
%β D	ecay = 99.840	18	11	ce-L- 6	33.6279	5 1.74 22	0.0012
Feeds	^{2 3 4} U			ce-K- 16	34.109 20	1.72 15	0.0013
See als	o ²³⁴ Pa IT De	cav (1.17 m)		ce-MNO- 3	36.2 3	0.4 3	0.0003
	0 14 11 20	ou, (117, 111,		Ce-MNU- 4	30.78 15	6.7 5	0.0052
			//		41.209 20	1 1 0	0.0002
Auger-L	9.89	0.35 5.	≈0	Ce-M- 5	40.12 10	3 0 45 7	0.0011
Ce-L- 1	21.723 10	0.476 15	0.0002	Ce-NCP- 5	49.97 10	0.43	0.0000
CE-MNO- I	37.932 10	0.1/43	0.0001	ce - 1 - 7	52.23 20	4,15,13	0.0046
C6-V- 04	094.4	0.3992	0.0059	ce-NCP- 6	52.7705	4 0.163 24	0.0002
				ce-K- 19	53.699 20	0.57 6	0.0007
β− 1 max	1236 5			ce-M- 7	67.52 20	1.13 4	0.0016
avg	410.2 19	0.74	0.0065	Auger-K	69.2	0.23 16	0.0003
8- 2 max	1471 5			ce-NOP- 7	71.37 20	0.419 13	0.0006
avg	500.8 20	0.62	0.0066	ce-K- 22	73.05 20	0.6 6	0.0009
B- 3 max	2281 5	00 r		ce-K- 23	74.064 5	4.96 15	0.0078
avg	023.4 21	98.0	1.73	ce-L- 10	75.618 20	0.87 12	0.0014
total p	910 2 21	100 10792	1 75	ce-L- 11	88.668 20	0.107 15	0.0002
avy	019.2 21	100.14/02	• • • 5	ce-MNO-10	90,908 20	0.33 5	0.0006
19 we	ak A's omitt	ed:		Ce-K- 26	92.469 20		0.0022
Ef	(avg) = 208.	8: XI8= 0.199	; 11	$Ce^{-K^2} \ge 7$	95.000 10	0.33 3 5 0.531 7	0.0007
	()/		ļ.	Ce-L- 13	114 9177	3 0 1 96 5	0.0011
				ce-L- 16	123.288.20	0.37 3	0.0000
X-ray L	13.6	0.44 5		ce-11N0-16	138.578 20	0,120,10	0.0004
	94.0050 2		0.0002	ce-L- 19	142.878 20	0.118 11	0.0004
~ 57	766 410 20	0 0.107 4	0.0004	ce-L- 22	162.23 20	0.22 3	0.0008
y 82	1001.03 3	0.5890 1	0.0126	ce-L- 23	163.243 5	1.00 3	0.0035
,				ce-MNO-23	178.533 5	0.32778	0.0012
125 we	ak 7's omitte	ed:		ce-L- 26	181.648 20	0.38 5	0.0015
Eγ	(avg) = 926.2	2; ΣΙγ= 0.37%		ce-MNO+26	196.938 20	0.133 14	0.0006
				α 1 ~ 2	4150 5	0.90 20	0.0796
• 23411 or Deepy /2	AAEEE 10)	1 /	-) - 0.10%	a 3	4217 5), () () ()	0.012
	0.71	I (10)	1/ - 0.10%	a 4	4271 5	0.4	0.0364
Feeds -	°in Th			a 5	4325	4.6 5	0.424
% Sponta	neous Fission =	1.2E-9 6		α 6	4344	1.5	0.139
			11	α 7	4364 5	11	1.02
Auger-L	9,48	9.7 14	0.0020	α 8	4370 4	6	0.558
ce-L- 1	32.73 5	20.1 18	0.0140	α 9	4396 3	55 3	5.15
ce-M- 1	48.02 5	5.5 5	0.0056	α 10	4414 4	2.10 20	0.197
ce-NOP- 1	51.87 5	2.02 19	0.0022	α 11	4435 5	0.7	0.0661
ce-L- 2	100.428 20	0.139 15	0.0003	α 12	4502.0 20	1.70 20	0.163
				02 1.3	4550.0 20	4.2 3	0.408
~ 1	4604.7.20	0.24 3	0 0 2 3 5	α 14	4598.0 20	5.0 5	0.490
a 2	4723.7 20	27.4 15	2.76				
α 3	4775.8 20	72.4 20	7.36	X-ray L	13	31 11	0.0086
				γ 7	72.70 20	0.1	0.0002
.	• •	10 F 4"		X-ray Kaz	89.9530 2	0 2.7 4	0.0052
X-ray L	13 63 30 E	10.5 14	0.0029	X-ray Kaı	93.3500 2	0 4.5 6	0.0089
7 1	53.20 5	0.118 10	0.0001	X-rav KB	105	2.1 3	0.0046
9 40	ak wie omitte		[]	γ 11 12	109.140 20	1.50 20	0.0035
7 we R~	$(av\alpha) = 121$	su. ι. γτν= Λ Λμζ		γ 13 15	140 77 0	0.15	0.0004
12	(4,4) = (2,1)	·, 21/- 0.04%		γ 15 ~ 16	140.77 8	10 5 9	0.0007
				~ 19	163 350 20	47 6	0.0322
			11	~ 22	182 70 20	0 40 5	0.0016
- 235 (-				r 23	185.715 5	54	0.211
• ²³³ U α Decay (7.	038E8 y 5)	l (mir	n) = 0.10% [[γ 24	194,940 10	0.59 6	0.0024
Feeds ^{2 3}	¹ Th			y 26	202.120 20	1.00 10	0.0043
% Sponta	neous Fission <	4.2E-8	ll II	γ 27 γ 29	205.311 10	4.7 4	0.0206
• · · · •	0 / 0	20.44	0.0050	1 47	221.300 20		0.0003
Auger-L	9.48 11 0770 F	29 10	0.0058	42 we	ak y's omitte	eđ:	
Ce-L- Z	11.0779 5) (0 1 9) (0 1	0.0042	Eγ	(avg) = 190.	3; $\Sigma I \gamma = 0.92\%$	
	14.4077 3 20 G 3	17 P	0.0209				
Ce-L-)	20.7 J 21_49 15	19.6 10	0.0005				
Ce-MNO- 2	26.3677 3	1 7 7	0.0037	*Correction made	in September 1983 pr	inting.	
00 (110 2	2013077		· · · · · ·				

^{2 3 5} Np-^{2 3 6} Np

Radiation Type	Energy (keV)	Intensity (%)	Δ (g-rad/ μ Ci-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
• ^{2 3 5} Np EC Deca %EC Feed %α	ay (396.1 d 12) : Decay = 99.998 Is ²³⁵ U Decay = 0.0014	I (mi 36 2 2	n) = 0.10%	● ^{2 3 6} Np β ⁻ Dec %β ⁻ Fee See	cay (1.15E5 y 12) ⁻ Decay = 8.9 20 ds ²³⁶ Pu also ²³⁶ Np EC E	l (m Decay (1.15E5	nin) = 0.10% v)
Auger-L	9.89	30 4	0.0062	Auger-L	10.3	5.9 15	0.0013
				ce-L- 1	21.50 10	6.5 15	0.0030
X-ray L	13.6	38 5	0.0109	ce-x- 3	38 6	0.3 3	0.0002
X-ray Ka.	94.0050 2	0 0.83 24	0.0010	ce-L- 2	77 3	6.0 14	0.0099
Х-гау КВ	111	0.39 11	0.0009	ce-M- 2 ce-NOP- 2 ce-L- 3	94 3 98 3 137 6	1.7 4 0.65 15 2.0 21	0.0034 0.0014 0.0058
				ce-NCP- 3	154 6	0.6 6	0.0018
• ²³⁶ U α Decay	(2.3415E7 y 14)	l (mi	n) = 0.10%		,50 0	0.21 22	0.0007
Feeds ²	³² Th			β-1 max	195 5		
				avg	52.3 15	55	0.0056
Auger-L	9.48	9.2 17	0.0019	β^{-2} max	355 3	5 5	0 0112
ce-11NO- 1	44.187 9	6.9 11	0.0065	total 8-	103.0 9	5 5	0.0112
ce-L- 2	92.278 15	0.159 7	0.0003	avg	78.9 15	10 7	0.0168
~ 1	(1222 0	0 360 10	0 0 0 0 0 0	X-ray I	14.3	8.8.20	0 0027
α 2	4445 5	26 4	2.46	γ 2	100 3	0.52 12	0.0011
α 3	4494 3	74 4	7.08	X-ray Kα γ 3	1 103.76 5 160 6	0.13 14 1.4 15	0.0003 0.0049
X-ray L	13	10.0 18	0.0028	1	weak y's omitte	ed :	
2 W E	eak γ 's omitte $\gamma(avg) = 68.2$	eđ: 2; ΣΙγ= 0.11%			£7(dvy)- 44.0	ο; 21γ= 0.015	ð
• ²³⁶ Np EC Deca	y (1.15E5 y 12)	l (mir	n) = 0.10%	• ^{2 3 6} Np EC Dec %E0 Fee	ay (22.5 h 4) C Decay = 52 1 ds ^{2 3 6} U	l (m	in) = 0.10%
%EC Feeds	Decay = 91.1 2 s 236 U also 236 Np $B^ \Gamma$	U Jecay (1 1555 v)		See	also ^{2 3 6} Np β^- D	ecay (22.5 h)	
1		ecay (1.15E5 y)		Auger-L	9.89	20 3	0.0042
Anger-T.	9.89	103 15	0 0217	ce-L- 1	23.485 6	5.4 3	0.0027
ce-L- 1	23.485 6	66.6 16	0.0333	Auger-K	72.6	0.9 7	0.0013
ce-MNO- 1 ce-K- 3	39.694 6 44.704 9	24.4 8	0.0206	ce-K- 4	526.72 10	0.155 16	0.0017
Auger-K	72.6	1.6 12	0.0024	V-FOR I	13 c	76 7	0 0075
ce-L- 2	82.476 5	60.6 15	0.106	X-ray Ka	94.6650 20	11.26 24	0.0227
ce-NCP- 2	102.792 5	6.32 23	0.0352	Х-гау Ка	98.4390 20	18.2 4	0.0382
ce-L- 3	138.553 8	31.7 12	0.0937		111 642-33-10	8.50 20	0.0201
ce-M- 3 ce-NCP- 3	154.762 8 158.869 8	8.8 4 3.28 13	0.0290 0.0111	γ 5	687.52 10	0.367 21	0.0054
.				3	eak γ's omitte	d:	
x-ray L Y 1	13.6	131 15	0.0380		$s\gamma(avg) = 304.6$	$z \Sigma \gamma = 0.03\%$	i
X-ray Kaz	94.6650 20	20.7 5	0.0417		• • • ·	• .	
$x - ray K\alpha_1$	98.4390 20	33.6 7	0.0703			•	
X-rav KB	104.233 5	15.6 4	0.0369	• ^{2 3 6} Np β ⁻ Deca	iy (22.5 h 4)	l (mi	n) = 0.10%
γ 3	160.310 8	27.6 6	0.0943	%β ⁻	Decay = 48 1		
				See	also ²³⁶ Np EC De	ecay (22.5 h)	
				Auger-L	10.3	2.4 4	0.0005
				ce-L- 1	21.50 10	6.06 23	0.0028
				ce-m NO- 1	38.67 10	2.24 5	0.0018
				1			(Continued)

^{2 3 6}Np-^{2 3 7}Np

Radiation Type	Energy (keV)	Intensity (%)	$\Delta(extbf{g-rad}/ \mu extbf{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
²³⁶ Np β [~] Decay	(22.5 h 4)	(Continued)		β−1 max avg A−2 max	148.5 11 39.2 3 150.8 11	0.185 14	0.0002
β− 1 max avg	491 8 143 3	8.3	0.0253	avg 6-3 max	39.9 3 187.0 11	0.248 16	0.0002
$\beta = 2 \max_{a \neq a}$	536 8 158 3	39.7	0.134	avg	50.1 4	3.4 3	0.0036
total B-	155 3	18	0 150	avg	64.8 4	53.1 20	0.0733
uvy	135 3	40	0.135	B≕ 5 max avg	251.9 11 68.8 4	43.7 19	0.0640
X-ray L	14.3	3.6 4	0.0011	total β- avg	65.9 4	101 3	0.141
1 weak γ's omitted: Εγ(avg) = 44.6; ΣΙγ= 0.01%				γ 1 X-ray L γ 2 γ 3	13.810 2 13.9 26.3450 33.205 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	≈0 0.0211 0.0013 ≈0
• 236 Pu α Decay (2.851 y 8)	l (mir	n) = 0.10%	γ 7 γ 8	51.01 3 59.5370	0.21 10 10 34 4	0.0002 0.0431
Feeds 4 % Spon	³² U taneous Fission	= 8.1E—8 23		γ 9 X-ray Kα ₂ X-ray Kα ₁	64.830 2 97.08 4 101.07 4	0 1.18 13 16.3 7 26.3 11	0.0016 0.0337 0.0567
Auger-L	9.89	10.2 15	0.0022	X-ray Kβ γ 14	114 164.610 2	12.3 6 0 1.86 7	0.0299 0.0065
ce-L- 1 ce-MNO- 1	42.10 5	23.3 / 8.5 3	0.0128	γ 15 γ 18	208.005 2 267.54 3	3 22.0 5 0.723 21	0.0976 0.0041
~ 1	5614	0.18	0.0215	γ 20 γ 24	332.350 2 370.93 3	0 1.22 6 0.112 7	0.0086 0.0009
α 2 α 3	5721.9 10 5770.1 10	31.8 9 68.1 8	3.88 8.37	13 weak γ 's omitted: E γ (avg) = 262.9; $\Sigma T \gamma = 0.25\%$			
X-ray L	13.6	13.0 15	0.0038				
7 weak γ's omitted: Βγ(avg) = 60.9; ΣΙγ≈ 0.08%				• ^{2 3 7} Np α Decay (2 Feeds ^{2 3}	. 14E6 y 1) ³ Pa	I (min) = 0.10%
				% Sponta	neous Fission	≤ 2E-10	
• ^{2 3 7} U β ⁻ Decay (Feeds ²	(6.75 d 1) ³⁷ Np	l (min) = 0.10%	ce-MNO- 1 ce-MNO- 2	1.31 5 2.85 5	2.5 5 4.8 7	*0 0.0003
$\begin{array}{c} ce-L- & 2\\ ce-MNO- & 1\\ Auger-L\\ ce-L- & 3\\ ce-MNO- & 2\\ ce-L- & 6\\ ce-MNO- & 3\\ ce-L- & 7\\ ce-L- & 8\\ ce-MNO- & 6\\ ce-L- & 9\\ ce-K- & 14\\ ce-M- & 8\\ ce-NOP- & 8\\ ce-NOP- & 8\\ ce-NOP- & 8\\ ce-K- & 15\\ ce-K- & 15\\ ce-K- & 15\\ ce-K- & 16\\ ce-NOP- & 15\\ ce-NOP- & 15\\ ce-L- & 18\\ \end{array}$	3.9182 1 8.087 21 10 10.778 10 20.622 4 20.996 10 27.482 11 28.58 3 37.1102 1 37.700 11 42.403 20 45.93 4 53.814 4 58.0363 1 59.107 21 74.3 89.33 4 155.72 6 142.183 20 148.86 5 158.887 21 163.109 20 185.578 23 202.282 24 206.504 23 245.11 3	$\begin{array}{c} 4 & 15.3 & 18 \\ 53.4 & 20 \\ 52 & 9 \\ 16 & 7 \\ 5.2 & 7 \\ 4.1 & 5 \\ 5.3 & 23 \\ 0.12 & 6 \\ 4 & 29 & 4 \\ 1.45 & 15 \\ 0.36 & 4 \\ 0.370 & 18 \\ 7.2 & 10 \\ 3 & 2.6 & 4 \\ 0.120 & 13 \\ 1.2 & 9 \\ 55.0 & 21 \\ 0.116 & 9 \\ 2.09 & 10 \\ 0.56 & 4 \\ 0.58 & 3 \\ 0.220 & 11 \\ 1.1 & 5 \\ 2.71 & 11 \\ 1.01 & 4 \\ 0.181 & 11 \\ \end{array}$	0.0013 0.0092 0.0111 0.0036 0.023 0.0018 0.0231 0.0231 0.0012 0.0012 0.0031 0.0012 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0033 0.0032 0.0033 0.0032 0.0033 0.0032 0.0033 0.0033 0.0032 0.0033 0.0032 0.0033 0.0033 0.0033 0.0033 0.0032 0.0033 0.0033 0.0033 0.0039 0.0048 0.0019 0.0008 0.00439 0.0117 0.0044 0.0009	$\begin{array}{c} ce-L - 4\\ Auger-L\\ ce-MNO- 3\\ ce-K-19\\ ce-MNO- 4\\ ce-K-21\\ ce-L-6\\ ce-K-22\\ ce-L-7\\ ce-L-7\\ ce-L-9\\ ce-K-22\\ ce-L-9\\ ce-MNO-6\\ ce-MNO-6\\ ce-MNO-7\\ ce-MNO-7\\ ce-MNO-7\\ ce-MNO-9\\ ce-L-11\\ Auger-K\\ ce-M-11\\ ce-L-14\\ ce-NOP-11\\ ce-L-15\\ ce-L-17\\ ce-MNO-17\\ ce-L-19\\ ce-L-21\\ ce-L-22\\ ce-MNO-21\\ \end{array}$	$\begin{array}{c} 8.268 \\ 9.68 \\ 12.03 \\ 521.63 \\ 4 \\ 24.061 \\ 30.61 \\ 3 \\ 36.05 \\ 4 \\ 38.77 \\ 4 \\ 41.4 \\ 5 \\ 42.83 \\ 6 \\ 49.65 \\ 10 \\ 51.78 \\ 4 \\ 57.1 \\ 5 \\ 58.56 \\ 62.54 \\ 6 \\ 62.54 \\ 6 \\ 65.38 \\ 10 \\ 65.398 \\ 20 \\ 70.8 \\ 81.136 \\ 20 \\ 85.02 \\ 5 \\ 85.116 \\ 20 \\ 86.8954 \\ 96.58 \\ 3 \\ 100.75 \\ 58.5116 \\ 20 \\ 86.8954 \\ 96.58 \\ 3 \\ 100.75 \\ 58.5116 \\ 20 \\ 86.8954 \\ 3 \\ 100.75 \\ 58.31 \\ 100.75 \\ 58.31 \\ 100.75 \\ 58.31 \\ 100.75 \\ 58.31 \\ 100.75 \\ 58.31 \\ 100.75 \\ 31.33 \\ 4 \\ 122.10 \\ 3 \\ 130.27 \\ 4 \\ 37.84 \\ 3 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0058 0.0104 0.0065 0.0001 0.0057 0.0016 0.0415 0.0010 0.0006 0.0011 0.0005 0.0164 0.0005 0.0164 0.0002 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0005

^{2 3 7}Np-^{2 3 8}Np

Radiation Type	Energy (keV)	Intensity (%)	Δ (g-rad/ μ Ci-h)	Radiation Type	e Energy (keV)	Intensity (%)	⁄β-rad/µCi-h)	
α 1 α 2 α 3 α 4	4581.1 20 4598.7 20 4639.5 20 4659.2 20	0.40 4 0.34 4 6.18 12 0.57	0.0390 0.0333 0.611 0.0566	• ${}^{238}U \propto Decay (4.468E9 y 3)$ I (min) = 0.10% Feeds ${}^{234}Th$ % Spontaneous Fission = 5.4E-5 8				
α 5 α 6 α 7 α 8 α 9 α 10	4664.1 20 4694.5 20 4708.3 20 4712.4 4766.1 15 4771.1 15	3.32 10 0.48 20 1 0.126 8 3 25 6	0.330 0.0480 0.100 0.0126 0.812 2.54	Auger-L ce-L- 1 ce-MNO- ce-L- 2	9.48 29.08 6 1 44.37 6 90 7	8.2 17 17 3 6.1 11 0.15 5	0.0016 0.0104 0.0058 0.0003	
α 11 α 12 α 13 α 14 α 15 α 16	4788.1 15 4803.4 20 4817.4 20 4862.9 20 4871 3 4873.1 20	47 9 1.56 2.5 4 0.24 0.3 2.60 20	4.79 0.160 0.257 0.0249 0.0311 0.270	α 1 α 2 α 3	4039 5 4147 5 4196 5	0.23 7 23 4 77 4	0.0198 2.03 6.88	
5 v f	reak α 's omitte S α (avg) = 4587.	ed: 3; ΣΙα= 0.19%	6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
X-ray L 7 4 7 5 7 6 7 11	13.3 29.373 10 46.53 4 57.15 4 86.503 20	59 8 14.0 25 0.140 25 0.42 6 12.6 13	0.0168 0.0088 0.0001 0.0005 0.0232	● ^{2 3 8} Np β ⁻ De Fee	cay (2.117 d 2) eds ²³⁸ Pu	l (mi	n) = 0.10%	
γ 12 X-ray Kα ₂ γ 13 X-ray Kα ₁ X-ray Kβ γ 17 γ 21 γ 22 γ 35	88.04 16 92.2870 20 94.66 5 95.8680 20 108 117.68 3 143.208 25 151.37 4 195.096 20	$\begin{array}{c} 0.16 & 3 \\ 1.58 & 18 \\ 0.83 & 13 \\ 0.66 & 3 \\ 1.20 & 14 \\ 0.17 & 3 \\ 0.42 & 6 \\ 0.25 & 4 \\ 0.21 & 3 \end{array}$	0.0003 0.0031 0.0017 0.0053 0.0027 0.0004 0.0013 0.0008 0.0009	Auger-L ce-L-1 ce-MNO- ce-L-2 ce-M-2 ce-L-4 ce-NOP- ce-K-26	$ \begin{array}{r} 10.3\\ 20.98\\ 38.15\\ 78.783\\ 95.947\\ 2\\ 97.04\\ 52\\ 100.321\\ 20\\ 862.63\\ 5\end{array} $	25 4 60 3 22.0 11 2.24 11 0.63 3 0.262 17 0.241 11 0.228 9	0.0055 0.0266 0.0178 0.0038 0.0013 0.0005 0.0005 0.0005	
γ 41 38 w E	212.415 25 eak y's omitte y(avg)= 163.6	0.16 3 ed: 5; ΣΙγ= 1.05%	0.0007	се-к- 28 8- 1 ma аv	906.72 5 x 89.3 11 g 23.0 3	0.154 11 0.48 3	0.0030	
• 237 Pu EC Decay (45.3 d 2) I (min) = 0.10% %EC Decay = 99.995 2 Feeds 237 Np % 237 Decay = 0.005 2				β-2 ma av β-3 ma av β-4 ma av β-5 ma	x 222.0 11 g 60.0 4 x 263.4 11 g 72.2 4 x 306.4 11 g 85.1 4 x 308.9 12 g 85.8 4	10.8 5 42.4 15 0.51 3	0.0138 0.0652 0.0009	
ce-L- 1 Auger-L ce-L- 2	3.9182 14 10 10 778 10	1.61 15 38 6 11 7 9	0.0001	β-6 ma av β-7 ma av	x 329.1 11 g 91.9 4 x 1247.8 11 g 412.4 5	1.21 6 45 3	0.0024	
ce-MNO - 1 $ce-MNO - 2$ $ce-L - 6$	20.622 4 27.482 11 37.1102 14	0.55 6 3.9 3 2.82 24	0.0027 0.0002 0.0023 0.0022	total 8- av 2	g 223.2 9	101 4 ed:	0.479	
Ce-M- 6 53.814 4 0.70 6 0.0008 ce-NCP- 6 58.0363 13 0.246 22 0.0003 Auger-K 74.3 0.9 7 0.0015				Bβ(avg) = 204.4; ΣΙβ= 0.12%				
X-ray L γ 1 γ 6 X-ray Kα ₂ X-ray Kα ₁ X-ray Kβ	13.9 26.3450 10 59.5370 10 97.08 4 101.07 4 114	53 6 0.240 16 3.28 20 12.8 6 20.6 9 9.7 5	0.0156 0.0001 0.0042 0.0264 0.0444 0.0235	$ \begin{array}{c} x - ray \\ \gamma \\ x - ray \\ x - ray \\ x - ray \\ \gamma \\ \gamma \\ \gamma \\ \gamma \\ \gamma \\ \gamma \\ 18 \end{array} $	14.3 44.08 3 99.55 5 101.880 20 103.76 5 561.15 7 882.63 3 918.69 4	37 4 0.102 6 0.111 5 0.209 8 0.179 8 0.102 6 0.76 5 0.51 3	0.0114 *0 0.0002 0.0005 0.0004 0.0012 0.0143 0.0101	
10 w B	eak γ°s omitte γ(avg)= 33.2	ed: 2; ΣΙγ= 0.08%		γ 19 γ 21 γ 23 γ 24	923.980 20 936.61 6 941.38 5 962.77 3	2.48 14 0.331 19 0.45 3 0.61 4	0.0487 0.0066 0.0091 0.0125 (Continued)	
^{2 3 8}Np~^{2 3 9}Np

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ µCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
2.38 No. 2: Decen	. (0.117 + 0)	(Captiourd)					
$100 \text{ Np} \beta^{-1} \text{ Decay}$	y (2.117 d 2)	(Continued)	l. li	γ 7	74.670 3	48.0 20	0.0763
				γ () ~ 60	11/.00 3	0.139 0	0.0003
γ 26	984.450 20	23.8 6	0.499	¥ 04	7/18 08 //	0 101 5	0.0025
r 27	1025.870 20	8.2 5	0.179	v 84	819.22 4	0.144 6	0.0025
γ 28	1028.540 20	17.4 11	0.381	y 87	844.10 4	0.158 7	0.0028
16 w	reak γ 's omitte (γ (avg) = 503.9	ed: $\Sigma I r = 0.54\%$		111 we	ak γ's omitte	ed:	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,		5¥	(avg) - 611.	2; 219- 0.92%	
• ^{2 3 8} Pu α Decay Feeds	(87.75 y 3) ^{2 3 4} ∪	l (mir	n) = 0.10%	● ²³⁹ Np β ⁻ Decay Feeds	(2.355 d 4) ^{2 3 9} Pu	I (min	a) = 0.10%
% Spor	ntaneous Fission -	= 1.84E-7 6	1				
				ce-MNO- 1	1.927 4	62 5	0.0025
Auger-L	9.89	9.1 14	0.0019	Ce-K- 13	2.00 5	0.119 21 h1 7	8U 0 0000
ce-L- 2	21./23 10	20./ 11	0.0096	Auger-L	12.4671 1	41.7 1.7 7	0.0090
ce-mino- 2	31.932 10	1.0 4	0.0001	ce-L- 3	21.566 6	6.4 17	0.0029
				ce-L- 4	26.315 5	9.5 22	0.0053
α 1	5357.7	0.10 3	0.0114	ce-L- 5	34.176 5	25 4	0.0180
α 2	5456.5 4	28.3 6	3.29	ce-L- 6	34.2028 1	6 0.10 8	≈0
α 3	5499.21 20	71.6 6	8.39	ce-L- 7	38.383 5	0.34 6	0.0003
				ce-MNO-3	38.730 6	2.2 6	0.0018
X-ray L	13.6	11.6 14	0.0034		43+479 3	3.4 8	0.0032
		_		Ce-L- 8	51.340 5	6.9 10	0.0003
35 v	eak γ 's omitte				55.547 5	0.116 18	0.0001
E	$\gamma(avg) = 55.2$	S_{1}^{*} $\Sigma_{1}^{*}\gamma = 0.05\%$		ce-NOP- 5	55.714 4	2.6 4	0.0031
				ce-K- 15	59.90 5	0.45 6	0.0006
				ce-M- 8	61.908 8	1.8 5	0.0024
12944 0 0	(00.40 5)			ce-NCP- 8	66.282 7	0.70 18	0.0010
• 239 U β^- Decay	(23.40 m 5)	I (mir	i) = 0.10%	Auger-K	76	1.0 11	0.0016
Feeds	²³⁹ Np			ce-L- 11	83.033 11	5 5	0.0088
				Ce = L = 12	87 97 5	0+42 8 8 9 8	0.0007
ce-L- 1	8.67 15	7.0 4	0.0013	Ce n 10	100,197 10	1.4.14	0.0029
Auger-L	10	9.6 14	0.0021	ce-11 NO - 12	100.57 3	0.16 3	0.0003
ce-L- 2	20.6732) 1.94 9	0.0009	ce-K- 17	104.57 5	0.58 9	0.0013
ce-L- 3	21.107 4	3.72 23	0.0017	ce-NOP-11	104.571 10	0.5 5	0.0011
ce-MNO- 1	25.38 15	2.41 18	0.0013	ce-K- 18	106.37 5	23.0 14	0.0522
ce-mNO- 2	37.377 4	0.08 4	0.0005	ce-K- 19	132.59 10	0.16 3	0.0004
ce-mau- 3	37.011 3 Ng 7723 0	1.24 /	0.0010	ce-K-20	151.02 9	0.102 14	0.0003
$Ce^{-1} = 7$	52.243 L	10.1 6	0 0112	ce-k- 21	155.79 5	1/.2 5	0.05/1
ce-M- 7	68,947 5	2.49 13	0.0037	Ce-L- 16	180.000 11	1.78 15	0.00/1
ce-NOP- 7	73.169 4	0.88 5	0.0014	Ce-L- 1/	203.200 13	0.43 4	0.0008
				- ce-L- 18	205.087 13	4.6 3	0.0202
0- 1 may	202 2			ce-NCP-16	208.191 10	0.161 13	0.0007
אסמי שמא	87.7 8	0.2	0.0004	ce-N- 18	222.251 12	1.13 8	0.0053
8- 2 max	422 3	··-		ce-NOP-18	226.625 12	0.42 3	0.0020
ava	120.9 8	0.24	0.0006	ce-L- 21	254.507 16	3.47 10	0.0188
β− 3 max	447 3			ce-M- 21	271.671 16	0.847 25	0.0049
avg	128.8 8	0.26	0.0007	Ce-wcp-21	2/0.045 10	0.310 9	0.0019
$\beta^- 4 \text{ max}$	604 3 180.5 9	0.25	0.0010	e= 1 ===	200 6 10		
8- 5 max	1148 3	0.25	0.0010		56.5 6	1.96 19	0.0028
avq	375.8 10	2.8	0.0224	6-2 max	329.8 19		0.0024
β-6 max	1191 3			avg	92.1 6	35 7	0.0687
avg	392.0 10	68 3	0.568	6-3 max	391.3 19		
β- 7 max	1265.8 25			avg	111.2 6	7.1 22	0.0168
avg	420.3 10	28 3	0.251	β^{-4} max	435.9 19	50 -	
total B-	396 / 10	100 5	0.845	avg	125.3 6	52 8	0.139
avg	J70.44 IV		0.043		713.5 19 217 g 7	4.0.20	0 0106
17 w	eak β's omitte	ed :	1	total 8-	21/00 /	₩.0 20	0.0100
E	β (avg) = 177.5	5; ΣΙβ= 0.28%		avg	115.0 7	100 11	0.245
.	42.5			4 vo	ak Als omitte	- f.	
x-ray L	13.9 43.534 3	13.3 15	0.0039	Έβ	(avg) = 59.8	3; ΣΙβ= 0.03%	
, ,	101004 0						(C

^{2 3 9} Np-^{2 4 0} Np

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
X-ray L 7 4 7 5	14.3 49.412 4 57.273 4	62 8 0.100 22 0.151 21	0.0188 0.0001 0.0002	● ²⁴⁰ Np β [−] Decay Feeds	^{2 4 0} Pu	L (mii	n) = 0.10%
γ 7 X-ray Kα ₂ X-ray Kα ₁	61.480 4 99.55 5 103.76 5	0.96 15 14.7 6 23.7 10	0.0013 0.0312 0.0523	Auger-L ce-L- 1 ce-K- 4	10.3 19.727 9 25.38 5	73 12 73.0 6	0.0160
X-ray KB γ 15 γ 16	108.130 10 117 181.715 10 209.750 10	$\begin{array}{c} 22 \cdot 7 & 13 \\ 11 \cdot 1 & 5 \\ 0 \cdot 111 & 15 \\ 3 \cdot 24 & 25 \end{array}$	0.0513	ce-K- 5 ce-MNO- 1 ce-K- 8	30.81 5 36.891 9 70.9 3	1.67 5 27.0 6 12 12	0.0011 0.0212 0.0184
γ 17 γ 18 γ 19	226.383 12 228.184 12 254.41 8	0.34 5 10.7 7 0.100 18	0.0016 0.0521 0.0005	ce-L- 2 Auger-K ce-M- 2	75.763 13 76 92.927 13	62.5 7 0.6 7 17.5 5	0.101 0.0009 0.0347
γ 21 γ 22 γ 24 ~ 25	277.604 16 285.41 3 315.88 4	14.1 4 0.78 8 1.59 11	0.0834 0.0047 0.0107	ce-NCP- 2 ce-L- 4 ce-L- 5 ce-M- 4	97.301 13 124.1028 16 129.533 20 141.2671 14	6.70 19 2.4 4 14.1 5 0.54 14	0.0139 0.0064 0.0389 0.0019
26 we	eak γ 's omitte $\gamma(avg) = 151.5$	2.03 18 ed: 5; ΣΙγ= 0.39%	0.0145	ce-NOP- 4 ce-M- 5 ce-K- 9	145.6414 8 146.697 20 149.0 3	0.24 6 3.95 12 6 5	0.0007 0.0123 0.0185
				ce-NOP- 5 ce-L- 8 ce-K- 11 ce-K- 12	151.071 20 169.6 3 173.18 5 185.18 5	1.50 5 4.4 4 0.688 21 0.105 4	0.0048 0.0159 0.0025
 ^{2 3 9} Pu α Decay (Feeds ² % Spont 	24131 y 16) ^{3 5} U taneous Fission =	l (min) = 4.4E—10 13	= 0.10%	ce-M- 8 ce-NCP- 8 ce-L- 9	186.8 3 191.1 3 247.7 3	1.150 7 0.432 6 1.8 5	0.0046 0.0018 0.0092
ce-MNO- 2 ce-L- 3	7.3920 8.33 10	19.0 12 0.18 17	0.0030 ×0	ce-M- 9 ce-NOP- 9 ce-L- 11 ce-L- 12	264.9 3 269.2 3 271.9028 16 283.9028 16	0.44 10 0.17 4 0.136 4 0.127 4	0.0025 0.0010 0.0008 0.0008
Auger-L ce-L- 4 ce-L- 6	9.89 16.93 3 24.46 5	3.5 6 2.8 6 0.11 10	0.0007 0.0010 *0	ce-K- 15 ce-K- 20 ce-K- 22	326.4 3 444.58 21 479.28 5	0.240 8 2.7 22 0.167 5	0.0017 0.0255 0.0017
ce-L- 8 ce-NNO- 4 ce-M- 8 ce-NOP- 8	29.86 3 33.14 3 46.07 3 50.18 3	4.78 21 1.00 24 1.32 6 0.493 22	0.0030 0.0007 0.0013 0.0005	ce-K- 33	543.30 20 560.47 20 865.94 8	0.6 4 0.22 11 0.12 8	0.0072 0.0026 0.0021
α 1 α 2	5104.6 10 5142.9 8	11.50 20 15.10 20	1.25 1.65	β−1 max avg	780 60 241 22	100	0.513
α 3 20 we Έα	5155.4 7 eak a's omitte (avg) = 5007.5	73.3 7 ed: $\Sigma T \sigma = 0.11\%$	8.05	$\begin{array}{c} X - ray L \\ \gamma 1 \\ \gamma 2 \\ X - ray Ka_{-} \end{array}$	14.3 42.824 8 98.860 13 99.55 5	109 13 0.11124 5 9 4	0.0333 0.0001 0.0107 0.0181
X-ray L	13.6	4.4 6	0.0013	X-гау Кац X-гау Кв X-гау Кв γ З	103.76 5 117 134.6	14 7 6 3 0.37	0.0303 0.0161 0.0011
173 we Еу	$ak \gamma's omitte(avg) = 112.9$	d: ; ΣΙγ= 0.05%	• •	7 4 7 5 7 6 7 7	147.2 152.630 20 175 182.6	1.4 8.343 6 0.927	0.0044 0.0271 0.0225 0.0036
● ²⁴⁰ U β ⁻ Decay ((14.1 h 2)	l (min)	= 0.10%	7 8 7 9 7 10 7 11	192.7 3 270.8 3 280.20 20 295	6.767 8.343 0.37 0.6489	0.0278 0.0481 0.0022 0.0041
Feeds ²	⁴⁰ Np (7.4 m)	31 5	0:0067	γ 12 γ 15 γ 16	307 448.2 3 462.2	1.4 16.686 1.4	0.0091 0.159 0.0137
ce-L- 2 ce-MNO- 2	21.67 7 38.38 7	74.3 6 24.0 5	0.0343 0.0196	γ 17 γ 18 γ 20 ~ 22	467.4 507.20 10 566.40 20 601	2 1.854 26.883 20.4	0.0203 0.0200 0.324 0.261
β−1 max avg	440 60 125 20	100	0.266	γ 23 γ 24 γ 24 γ 25	606.10 7 847 867.40 20	1.5759 4.635 8.343	0.0203 0.0836 0.154
X-ray L γ 2	13.9 44.10 7	43 5 1.65 5	0.0128 0.0015	7 26 7 27 7 28 7 29 7 30 7 32	884.9 888.80 5 896.5 5 915.98 9 959.1 3 973.90 20	3.7 1.1124 13 1.4 2.3175 21.32	0.0699 0.0211 0.248 0.0271 0.0473 0.442

²⁴⁰Np-²⁴⁰Pu

Radiation Type	Energy (keV)	Intensity (%)	Δ (g-rad/ μ Ci-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
²⁴⁰ Np β^- Decay	(65 m 3)	(Continued)		β−14 max avg	2070 60 733 25	52 3	0.812
γ 33	987.76 6	4.635	0.0975	total β- avg	600 30	98 4	1.26
γ 34 γ 35 γ 36 γ 38 ~ 39	1074.4 1088.5 3 1131.30 20 1163 1157 6 6	0.927 0.4635 0.6489 0.6489	0.0212 0.0107 0.0156 0.0161	7 we Bj	eak β's omitt 3(avg)= 214.	ed: 8; ΣΙβ= 0.33%	
γ 40 γ 42 7 42	1180.3 3 1223.2 3 eak γ's omitte	0.6489 0.4635	0.0163 0.0121	X-ray L γ 2 γ 3 X-ray Kα ₂	14.3 66.50 10 98.860 13 99.55 5	34 13 0.27 3 0.17 3 0.129 5	0.0103 0.0004 0.0004 0.0003
• ²⁴⁰ Np IT Decay	r (avg) = 422.* (7.4 m 2)	7; ΣΙγ= 0.20% Ι (min) = 0.10%	$\begin{array}{cccc} X - ray & K\alpha_1 \\ \gamma & 4 \\ \gamma & 5 \\ \gamma & 6 \\ \gamma & 10 \\ \gamma & 16 \end{array}$	103.76 5 189.50 10 251.46 7 263.35 7 302.98 7 507.20 10	0.208 8 0.250 20 0.96 7 1.17 8 1.12 6 0.79 4	0.0005 0.0010 0.0051 0.0066 0.0072 0.0085
%IT D Feeds See als	Decay = 0.11 3 240 Np (65 m) so 240 Np β^- De	ecay (7.4 m)		γ 18 γ 19 γ 20 γ 22 γ 23	554.60 7 597.40 7 606.10 7 758.62 8 789.59 10	22.4 11 12.5 6 0.74 5 1.19 6 0.210 20	0.264 0.159 0.0095 0.0192 0.0035
• 240 Np β^- Decay	(7.4 m 2)	0.11 3 I (min)	≈ 0 = 0.10%	7 24 7 25 7 27 7 28 7 32	813.43 14 817.88 11 841.11 10 857.46 10 900.46 11	0.211 25 1.24 6 0.166 12 0.47 3 0.130 20	0.0037 0.0216 0.0030 0.0086 0.0025
%β ⁻ E Feeds See als	Decay = 99.89 3 ²⁴⁰ Pu so ²⁴⁰ Np IT De	ecay (7.4 m)		γ 33 γ 34 γ 35 γ 36 γ 37 γ 40	915.98 9 915.98 9 928.59 10 938.04 10 942.37 11 961.64 11	0.170 20 1.04 6 0.170 20 1.29 5 0.110 20 0.144 10	0.0033 0.0203 0.0034 0.0257 0.0022 0.0029
Auger-L ce-L- 1 ce-MNO- 1 ce-L- 3 ce-M- 3 ce-NOP- 3	10.3 19.727 9 36.891 9 75.763 13 92.927 13 97.301 13	22 9 54 21 20 8 2.1 4 0.58 11 0.22 4	0.0049 0.0225 0.0156 0.0034 0.0012 0.0005	γ 64 γ 66 γ 67 γ 69 γ 76	1445.30 10 1488.20 10 1496.90 10 1539.64 9 1633.26 10	0.36 3 0.210 20 1.31 7 0.79 10 0.144 15	0.0111 0.0066 0.0417 0.0259 0.0050
ce-L- 4 ce-K- 18 ce-K- 19 ce-K- 29	166.40 10 432.78 9 475.58 9 738.88 5	0.164 14 0.213 13 0.104 6 0.1262	0.0006 0.0020 0.0010 0.0020	54 we Bj	eak γ's omitte r(avg) = 1020.6	ed:); ΣΙγ= 1.26%	
β- 1 max avg β- 2 max	480 60 138 20 550 60	0.235 20	0.0007	• ²⁴⁰ Pu α Decay (6 Feeds ²³ % Const	6569 y 6) °°∪	I (min) = 0.10%
avg 8-3 max	163 20 570 60	0.342 24	0.0012	% Spont	aneous Fission -	= 4.95E—0 2U	
avg 8-4 max avg	169 21 580 60 174 21	2.22 13 0.205 22	0.0080	Auger-L ce-L- 1 ce-MNO- 1	9.89 23.485 6 39.694 6	8.7 13 19.7 7 7.20 8	0.0018 0.0098 0.0061
$\beta = 5 \mod x$ avg $\beta = 6 \mod x$	620 60 186 21 670 60	0.57 4	0.0023	α 1	5123.43 23	26.39 21	2.88
$\beta = 7 \max$	203 21 700 60	0.378 24	0.0016	α 2	5168.30 15	73.5 4	8.09
avg β−8 max	213 21 1020 60	0.21 3	0.0010	3 we Ea	ak α's omitte (avg) = 5017.(ed:); ΣΙα= 0.07%	
avg 8-9 max	327 23 1150 60 376 23	0.62 5	0.0043	X-ray L	13.6	11.0 13	0.0032
ery β−10 max avor	1170 60 384 23	1.45 6	0.0119	9 we	ak γ's omitte	ed:	
β-11 max avg	1210 60 398 23	3.50 13	0.0297	57	'(avg)= 54.:	ο; 217= 0.05%	
β -12 max avg	1250 60 413 23	2.65 11	0.0233				
8-13 max avg	1510 60 514 24	31.9 13	0.349				

²⁴¹Pu-²⁴²Am

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
 ²⁴¹Pu β Decay %β Feeds %α D 	y (14.4 y 2) Decay = 99.9975 s ^{2 4 1} Am Decay = 0.00245 8	I (min 58 3	n) = 0.10%	X-ray L 3 we E	13.6 eak γ's omitte y (avg) = 56.5	9.1 13 ed: 5; ΣΙγ= 0.04	0.0026
β−1 max avg	20.81 20	99.9975	0.0111	• ²⁴² Am EC Deco	· (16.02 F 2)	1 /	(a) - 0 10%
,				* Am EC Decay %EC Feeds	Decay = 17.3 3 ²⁴² Pu	i (m	in) = 0.10%
• ²⁴¹ Am α Decay Feeds	^{2 3 7} Np	I (min	n) = 0.10%	See a	Iso ²⁴² Am β^-	Decay (16.02 ŀ	1)
% Spo	ontaneous Fission	= 3.77E-10 8		Auger-L	10.3	8.4 13	0.0019
				ce-L- 1	21.448 10	7.7 3	0.0035
ce-L- 2	3.9182 14	16.1 12	0.0013	Auger-K	76	0.3 3	0.00023
Auger-L	10	31 5	0.0067				
ce-L- 5	10.778 10	14.8 17	0.0034	X-ray L	14.3	12.7 14	0,0039
ce-MNO- 2	20.50 5	1.0 4	0.0007	X-ray Kaz	99.55 5	3.66 17	0.0078
ce-L- 8	20.996 10	9.1 10	0.0040	X-ray Kai	103.76 5	5.9 3	0.0130
ce-MNO- 5	27.482 11	5.0 6	0.0029	Х-гау КВ	117	2.77 13	0.0069
ce-L- 10	33.133 20	0.89 12	0.0006	1 44	ak vis omitte	- ħ	
ce-L- 12	37.1102 14	30.9 19	0.0005	Bi	(avg) = 44.5	5; $\Sigma I \gamma = 0.019$	5
ce-MNO-8	37.700 11	3.2 4	0.0026				
ce-MNO-10	49.837 21	0.33 4	0.0003				
ce-M- 12	53.814 4	7.6 5	0.0088				
ce-L- 18	58.0353 13 76.543 20	2.69 19	0.00033	I ● ^{2 4 2} Am β ⁻ Decay	(16.02 h 2)	l (mi	n) = 0.10%
ce-MNO-18	93.247 21	0.104 22	0.0002	%β− l Feeds	Decay = 82.7 3 ^{242}Cm		
α 1	5388.0 10	1.40 20	0.161	See al	so ²⁴² Am EC [Decay (16.02 h)
α 2	5442.98 13	12.8C 20	1.48				
α 3	5485.74 12	85.2 8	9.96	Auger-L	10.7	11.1 22	0.0025
α 4	5544.3 3	0.34 5	0.0235	ce-MNO- 1	35.86 11	11.4 12	0.0087
20 ж	ask als omitta	a •					
20 # E	$\alpha(av_{0}) = 5308.2$	$\Sigma T \alpha = 0.03\%$		e-1 max	619.0 18 19# 0 6	110 H	0 165
	, ,,	•		e− 2 max	661.2 18	42 4	0.105
X-ray L	13.9	43 5	0.0126	avg	199.0 7	41 5	0.174
γ 2	26.3450 10	2.40 10	0.0013	tctal 6-	101 0 7	on 7	0 3 3 0
γ 5 ~ 12	33.205 10	0.106 11	*0	avy	191.0 /	03 /	0.334
1 12	5545570 10		0.0455	X-ray L	15	20 3	0.0063
137 w	eak γ 's omitte	d:		· · ·		۹.	
D,	7 (avy) - 04.2	; 217- U. 104		ι we	(avg) = 42.2	α: : ΣΙγ= 0.04%	i
			1. A.			, .,	
• ^{2 4 2} Pu α Decay Feeds ²	(3.758E5 y 26) ^{2 3 8} U	ł (min) = 0.10%	● ^{2 4 2} Am α Decay (152 y 7)	I (mii	ı) = 0.10%
% Spor	ntaneous Fission =	5.50E-4 6		%α Dec. Feeds ²	ay = 0.476 14 ³⁸ Np		
Inder-T	0 90	7 2 12	0 0015	See also	²⁴² Am IT Dec	cay (152 y)	
ce-L- 1	23.158 13	16.3 15	0.0080	% Spon	taneous Fission	= 1.6E-8 6	
ce-MNO- 1	39.367 13	6.0 5	0.0050	.	10	0 00 11	- 0
		· · '		Auger-L	26,94 3	0.122 6	≈∪ sx()
α 1	4856.3 12	22.4 20	2.32	ce-L- 7	45.4732 9	0.30 23	0.0003
a 2	4900.6 12	78 3	8.14	ce-L- 10	64.2732 9	0.237 10	0.0003
2 w	eak α's omitted α(avg) = 4752.5	l: ; ΣΙα= 0.10%		α 1	5205	0.424 13	0.0470
				10 we	ak α 's omitte (avg) = 5227-5	d: : Στα= 0-05%	
			ļ			, ;;;;;;	(Continued)

²⁴²Am-²⁴³Am

Radiation	Energy	Intensity	$\Delta(g-rad/$	Radiation	Energy	Intensity	∆(g-rad/
Туре	(keV)	(%)	μCi-h)	Туре	(keV)	(%)	μCi-h)
242	450 7)						
Am α Decay (152 y 7)	(Continued)		p= 1 max avg	116 4 30.3 11	1.23 14	0.0008
X-ray I	13.9	0.38 14	0.0001	β -2 max	473 4	0 05 47	
γ 3	49.37 3	0.195 6	0.0002	avg A-3 max	486 4	0.25 17	0.0007
• 21 wea	ak y's omit:	ted :		avg	141.0 13	44	0.0132
Εγ	(avg) = 108	3; ΣΙγ= 0.16%	· (1	p= 4 max avq	145.1 13	29 3	0.0896
			j)	β- 5 max	540 4	c h	0 0202
				β−6 max	582 4	04	0.0203
^{2 4 2} Am IT Decay	(152 y 7)	l (mi	n) = 0.10%	avg	172.7 14	59 4	0.217
%IT D	ecay = 99.524	14		avg	160.6 15	100 8	0.342
Feeds See als	- ²⁴² Am (16.02 ο ²⁴² Am α Γ	(h)	11	2 40	at fle omitte	- i -	
% Spor	ntaneous Fissio	n = 1.6E - 8.6		2 WQ Eß	(avg) = 13.	eu: 9; Σ1β= 0.02%	
			()				
Auger-L	10.5	18 3	0.0041	X-ray L	14.6 #1 80 20	11.9 21	0.0037
ce-L- 1 ce-MNO- 1	24.82 6 42.50 6	48.3 7	0.0255	γ 6	67	0.23 12	0.0003
				γ 7 Χατοπ Κ-	84.00 20	23.0 20	0.0412
X-ray L	14.6	30 3	0.0093	γ 10	109.30 20	0.161 22	0.0004
				γ 13 γ 14	356.4 3 381.7 3	0.131 17	0.0010
				, ,,	301.7 3	0.55	0,0045
²⁴² Cm α Decay (163.2 d 4)	I (mi	n) = 0.10%	13 we Ev	ak γ 's omitte (avg) = 137.2	ed: 2: Στγ= 0.18%	
Feeds ²³	³⁸ Pu	- 695 6 7		-,	(419) 10/11		
% Spont	aneous Fission	1 = 0.6E - 0 /					
Auger-L	10.3	7.7 14	0.0017	• ^{2 4 3} Am α Decay	(7.38E3 y 4)	I (mii	n) = 0.10%
ce-L- 1	20.98 3	19.2 19	0.0086	Feeds ²	³⁹ Np	•••••	
ce mo i	30.15 3	·•• / /	0.0038				
α 1	6069.63 12	25.9 5	3.35	ce-L- 1 Nucer-I	8.67 15	40 30	0,0074
α 2	6112.92 8	74.1 5	9.65	ce-L- 2	20.6732	9 7.8 4	0.0034
6 wea	k a's omitt	ed:)j	ce-1- 3	21.107 4	4.8 5	0.0022
Έα	(avg) = 5948.	5; $\Sigma I \alpha = 0.04\%$		ce-L- 5	32.9732	9 0.85 5	0,0006
Y-ray T	14.3	11.5 16	0.0035	$c \in M = 2$	37.377 4		0.0022
x lug b	14.5		0.0035	ce-MNO- 5	49.677 4	0.317 15	0.0003
9 wea Rea	$x \gamma' s \text{ omitt}$	ed: 2. 5T~= 0 04%		ce-L- 6	52.243 4	13.9 8	0.0154
570	(avg) = 57.	2, 211- 0.04%		ce-NCP- 6	73.169 4	1.21 7	0.0050
				ce-L- 8	76.0732	9 0.106 6	0.0002
²⁴³ Ρυ β ⁻ Decay (4.956 h 3)	L (mi	n) = 0.10%	~ 1	5181 0 10	1	0 121
Feeds ²	^{4 3} Am	. (α 2	5233.5 10	10.6	1.18
			l)	α 3	5275.4 10	87.9	9.88
ce-L- 2	10.194 17	2.17 20	0.0005	α 4	5350.0 10	0.16	0.0182
Auger-L ce-L- 3	10.5	7.3 16 0.77 10	0.0016	9	ak ata aminte		
ce-L- 4	18.4 5	9.0 9	0.0035	Ξα	(avg) = 5032.0); ΣΙα= 0.02%	
ce-NNO- 2 ce-1- 5	27.875 12	0.80 7	0.0005				
ce-MNO- 3	35.68 20	0.26 4	0.0002	X-ray L	13.9	39 19	0.0116
ce-m.vo- 4 ce-m 5	36.1 5	3.1 3	0.0024	γ 3 γ 6	43.534 3 74.670 3	5.5 5 66 3	0.0051
ce-NCP-5	52.384 20	0.3 3	0.0004	, 7	86.72 7	0.34 4	0.0006
ce-L- 7	60.19 20 72 6 #	3.7 4	0.0048	γ 9 ~ 10	117.66 3	0.55 9	0.0014
Ce-L- 0	77.88 20	0.93 9	0.0015	7 10	144.10 13	V. 123 13	0.0004
ce-m- /			0 0000 11	0	ak whe omitte		
ce-n- / ce-NCP- 7	82.38 20	0.33 3	0.0006	9 We	(ang) =	54.5 1. 57 Å 46	

²⁴³Cm–²⁴⁴Cm

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
				.,,,-			
• ^{2 4 3} Cm α Decay %α Decay	(28.5 y 2) ecay = 99.76	I (mi	n) = 0.10%	• ^{2 4 4} Pu α Decay (%α Dec	(8.26E7 y 9) ay = 99.875 6	L (mi	in) = 0.10%
Feeds %EC	Decay = 0.24			Feeds ² % Spon	⁴⁰ U taneous Fission	= 0.125 6	
ce-MNO- 1	1.927 4	67-8368	0.0028	huger-T	0 90	629	0 0013
Auger-L	10.3	41 7	0.0089	ce-L- 1	22.2 10	14.2 6	0.0067
ce-MNO- 2	12.4671 14	• 7	0.0019	ce-MNO- 1	38.5 10	5.19 25	0.0043
ce-L- 3	21.566 6	8.5 15	0.0039				
ce-L- 4	26.315 5	9.5 20	0.0053		NEN6 0 10	10 4 0	1 00
ce-L- 5	34.1/5 5	22.9 18	0.0167		4548.0 10	80 5 8	7 87
Ce-MNO- 3	38 730 6	205	0.0013	~ ~	4307.0 10	0045 0	,.0,
ce-MNO- 4	43.479 5	2.9 5	0.0024				
ce-L- 8	44.744 8	9,99,9	0.0095	X-ray L	13.6	7.9 10	0.0023
ce-M- 5	51.340 5	6.4 5	0.0070				
ce-M- 6	51.3671 14	0.5 4	0.0006		eak y's omitte	cea:	,
ce-NCP- 5	55.714 4	2.43 19	0.0029	Б	$\gamma(avg) = 44$	$0; 21\gamma = 0.037$	6
ce-NCP- 6	55.7414 8	3 0.20 16	0.0002				
ce-MNO- 8	61.908 8	2.79 7	0.0037				
Ce-NCP- 8	66.282 /	1.06 3	0.0015	2440 00 00	(40.4 + 4)		1 0 0 000
cert - 12	93 40 3	1.0 10	0.0016	• - · · Am ^B Decay	/ (10.1 n 1)	I (mi	n) = 0.10%
ce-K- 14	87.93 5	9.0 4	0.0168	Feeds	2 ° ° Cm		
ce-K- 15	106.37 5	22.7 7	0.0515				
ce-K- 16	132.59 10	0.172 16	0.0005	Auger-L	10.7	66 11	0.0150
ce-K- 17	151.02 9	0.105 14	0.0003	ce-L- 1	18.37 11	72.7 6	0.0284
ce-K- 18	155.79 5	17.0 5	0.0565	ce-K- 3	25.7 10	3.18 9	0.0017
ce-L- 14	186.653 11	1.80 8	0.0072	ce-MNO-1	36.56 11	27.2 6	0.0212
ce-a- 14	203.81/ 10	0.438 19	0.0019		74.8/ 11	0 15 16	0.109
Ce-NCP-14	205.087 15	4.50 15	0.0199	Ce+M+ 2	93.06 11	19.3 5	0.0383
ce-M- 15	222.251 12	1.11 5	0.0053	ce-NCP-2	97.71 11	7.59 21	0.0158
ce-NCP-15	226.625 12	0.413 17	0.0020	ce-L- 3	129.5 10	34.4 5	0.0949
ce-L- 18	254.507 16	3.44 10	0.0186	ce-11- 3	147.7 10	9.7 3	0.0306
ce-M- 18	271.671 16	0.839 25	0.0049	ce-NCP- 3	152.3 10	3.79 11	0.0123
ce-NCP-18	276.045 16	0.313 9	0.0018	ce-L- 4	181 4	0.143 3	0.0006
				ce-K- 6	617.7 10	4.2 3	0.0555
α 1	5639 3	0.14	0.0168	Ce-L- b	721.5 10	0.93 4	0.0143
α 2	5682 3	0.2	0.0241		771 7 10	0.300 10	0.0048
α 3	5686 3	1.6	0.193	ce-L- 7	875.5 10	0.100 3	0.0019
a 4	5741.6 10	11.4724	1.40				0.0019
α 5	5784.5 10	73.3236	9.03				
a o a 7	5003 3	0.6	0.0749		387.0 23	100	0 222
a 8	6010 3	1.0	0.128	avy.	109.0	100	0.233
α 9	6057 3	4.68872	0.605				
α 10	6067 3	1.5	0.193	x-ray L	15	117 11	0.0374
		_	. 1	X-ray Re-	104.61 5	2.26 11	0.0102
19 w	eak a's omitte	d:		X-ray Kg.	109.29 5	3.61 16	0.0084
E	$\alpha (avg) = 5700.1$; $21\alpha = 0.34\%$		X-ray KB	123	1.71 9	0.0045
				γ 3	154.0 10	18	0.0590
X-ray L	14.3	61 7	0.0185	γ 4	206 4	0.26	0.0011
γ 3	44.663 5	0.120 20	0.0001	7 5	540.0 20	0.38	0.0044
γ 5	57.273 4	0.140 10	0.0002	7 6	746.0 10	67	1.06
· 7 8	67.841 7	0.14	0.0002	, , ,	900.0 10	28	0.537
X-ray Ka ₂	99.00 0 103.76 5	14.5 5	0.0303	1 4 6	ak vis omitt	eđ•	
ν 11	106,130 10	23.0 /	0.0006	R w	(avg) = 42.	9: ΣIY= 0_09%	
- X-rav KA	117	10.8 4	0.0269). · · .	• • • •		
γ 14	209.750 10	3.29 10	0.0147				
y 15	228.184 12	10.6 3	0.0514	·	. *		
y 16	254.41 8	0.110 10	0.0006	• • ²⁴⁴ Cm α Decay (18.11 v 2)	J (min) = 0.10%
γ <u>18</u>	277.604 16	14.0 4	0.0826	Foods 2	⁴⁰ Pu		.,
γ 19	285.41 3	0.728 20	0.0044	% Snon	taneous Fission	= 1.347E-4 2	
14 w	eak γ's omitte	đ:					
E	$\gamma(avg) = 167.0$; $\Sigma I \gamma = 0.33\%$		Auger-L	10.3	6.9 11	0.0015
			ļ	ce-L- 1	19.727 9	17.20 21	0.0072
					30.031 7	0.00 10	0.0000

-

²⁴⁴Cm–²⁴⁵Am

r

Radiation Type	Energy (keV)	Intensity (%)	$\Delta(g ext{-rad}/\mu ext{Ci-h})$	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
2440	(10.11			_			
- Cm a Decay	(18.11 y 2)	(Continued)		7 3	280.29 20	1.4 4	0.0082
				7 6	308.11 20	5.2 13	0.0343
α 1	5762.84 3	23.6C 20	2.90	v 10	341.00 20	0.11 3	0.0008
α 2	5804.96 5	/6.40 20	9.45	y 11	348.73 20	1.0 3	0.0076
6 w	eak a's omitt	· fo		γ 13	376.58 20	3.4 9	0.0274
Ē	α (avg) = 5633.	0: ΣΙα= 0.03%		y 15	387.88 20	0.31 10	0.0025
		•		γ 17 - 19	395.87 20	0.11 5	0.0009
Y-ray T	14.3	10 3 11	0 0031	7 18	411.74 20	0.52 13	0.0046
v ral p	1443	10.5 11	0.0051	r 23	445.34 20	0.32 9	0.0031
16 w	eak γ's omitt	ed:		7 29	491.50 20	2.9 8	0.0302
E	γ (avg) = 56.	9; ΣIγ= 0.03%		γ 31	514.60 20	0.18 6	0.0020
				7 33	525.08 20	0.29 8	0.0032
				γ 36	560.03 20	5.8 14	0.0687
				γ 38 - "0	591.6 3	0.18 6	0.0023
• ^{2 4 5} Pu β^- Decay	(10.57 h 4)	I (min)	= 0.10%	y 40	590.0 J	0.13 5	0.0016
Feeds	²⁴⁵ Am			y 42	630.04 20	2.9.8	0.0386
				y 45	657.2 7	0.14 8	0.0020
cete 1	H 2 10	2 0 12	0 0000	y 46	660.20 20	0.90 24	0.0127
Auger-L	10.5	11 7	0.0002	7 48	669.28 20	0.36 10	0.0051
ce-MNO- 1	21.9 10	0.7 4	0.0003	γ 53	707.98 20	0.29 9	0.0043
Auger-K	77.8	0.5 6	0.0009	γ 55	730.40 20	0.20 6	0.0031
ce-K- 3	155.29 21	1.2 4	0.0041	7 5/	737.96 20	0.23 8	0.0037
ce-K- 6	183.11 21	4.2 15	0.0163	v 59	743.70 20	0.16 5	0.0023
Ce-K- 8	202.31 21	18 8	0.0756	v 62	762.73 20	0.76 19	0.0123
Ce-K- 13	223.73 21	0.4 4	0.0020	γ 63	766.59 15	0.38 10	0.0062
ce-L- 3	256.48 20	0.31 9	0.0092	γ 64	776.66 20	0.22 6	0.0036
ce-MNO- 3	274.16 20	0.11 3	0.0006	γ 66	786.54 20	0.40 11	0.0066
ce-L- 6	284.30 20	0.9 3	0.0057	γ 67	796.37 20	0.27 10	0.0046
ce-MNO- 6	301.98 20	0.32 9	0.0021	7 60	99.87 20		0.0285
ce-L- 8	303.50 20	4.0 13	0.0262	72	833.14 20	0.56 14	0.0099
ce-K- 21	303.51 21	0.13 11	0.0008	7 74	840.56 20	1.4 4	0.0245
ce-I- 11	321, 10 20	1.0 3	0.0068	7 75	859.53 20	0.54 14	0.0099
ce-NCP- 8	325.69 20	0.38 11	0.0026	y 76	868.8 4	0.13 5	0.0023
ce-L- 13	352.77 20	0.36 11	0.0027	7 78	874.16 20	0.14 5	0.0027
ce-K- 29	366.50 21	0.10 3	0.0008	γ 81	887.14 20	0.76 19	0.0143
ce-MNO-13	370.45 20	0.12 4	0.0010	7 84	910.46 20	1.5 4	0.0286
ce-K- 36	435.03 21	0.18 5	0.0017	7 90	941.0 10	0.27 19	0.0218
C6-K- 42	505.04 21	0.35 13	0.0037	y 93	957.59 20	1.0 3	0.0213
				y 97	975.0 10	0.27 19	0.0056
B-1 max	70 30			γ 98	977.20 20	0.41 21	0.0086
8-2 may	150 30	0.12 5	78 ()	7 101	987.60 20	1.4 4	0.0295
ava	39 9	0.68 19	0,0006	7 102	996.0 3	0.22 6	0.0046
6- 3 max	190 30			× 105	1007.31 20	0.43 15	0.0002
avg	52 9	1.7 4	0.0019	r 106	1013.2 3	0.11 5	0.0023
8− 4 max	240 30			7 107	1018.33 20	1.1 3	0.0238
avg	64 9	1.1 4	0.0015	γ 108	1023.32 20	0.58 17	0.0126
p c max	270 30	210	0.0050			_	
e⊤ 6 max	300 30	3.1 0	0.0050	66 We	ak γ 's omitte	ed:	
avq	84 9	8.3 19	0.0149	57	(avg) = 702.0	$21\gamma = 2.35\%$	
6- 7 max	340 30			1			
avg	95 10	2.5 6	0.0051				
β- 8 max	370 30			• 245 Am 8- Daga	(122 A m 12)	I (main	1 - 0 10%
avg	105 10	15 4	0.0335	• Am p Decay	245.0	េសារ	11 = 0.10%
p- y max	930 30	67 [°] 0	0.250	Feeds	2 TO Cm		
erno avg erno mav	1210 30	5, 6	V-358				
ava ava	398. 12	11 9	0.0933	Auger-L	10.7	6.2 12	0.0014
total B-				CE-L- 1	18.28 8	4.0 10	0.0015
avg	240 15	100 13	0.514	ce-L- 2	30.20 8	0.88 20	0.0006
					50.4/ 8 119.30 0	1.3 3	0.0010
X-ray L	14.6	17 5	0.0054	Ander-K	79.6	0.25.25	0.0003
γ 1	28.0 10	0.7 4	0.0004	ce-K- 4	112.94 11	0.61 20	0.0015
X-ray Kaz	102.05 3	7.5 22	0.0164	ce-K- 5	124.59 7	11.5 12	0.0306
X-ray Kaı	106.49 3	12 4	0.0274	ce-K- 6	167.58 7	0.26 9	0.0009
x-ray KB	120	5. / 17	0.0146				(Continued)

			n		245	Am— ²⁴⁶ Am
Radiation Ene Type (ke	rgy Intensity V) (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
ce-L- 4 216.	67 11 0-14 4	0,0007	6-2 max	150 10		
ce-L- 5 228.	32 6 2.40 24	0.0117	avg	40 3	73	0.0622
ce-M- 5 246. ce-NCP- 5 251.	51 6 0.59 6 16 6 0.223 22	0.0031	β⊤3 max avg	330 10	27	0.0529
			total B-		_	
β-1 max 600.	3 21		avg	54 4	100.8	0.115
avg 1/8. β−2 max 643.	5 7 7.0 14 2 21	0.0266	n 2	27.580 20	4.2 5	0.0025
avg 192.	9 7 15.6 19	0.0641	γ 3	43.810 20	30.0 15	0.0280
ti di max 896. avg 281.	121 0877,423	0.463	γ 4 7 5	66.600 20 75 640 20	0.306 21	0.0004
total 8-		0.405	γ 8	179.940 20	11.6 6	0.0446
avg 260.	1 8 100 4	0.554	γ 10 7 11	216.55 4	0.135 21	0.0006
¥	44 0 44	0 0005	7 13	255.54 3	0.276 21	0.0015
X-ray L 15 X-ray Kα ₂ 104.6	51 5 3. 6 4	0.0035	6		.	
X-ray Kai 109.2	29 5 5.8 6	0.0135	B We	(avq) = 202.9	$\Sigma I \gamma = 0.30\%$	
x - ray KB = 123 y = 4 = 241.2	2.7 3 20 10 0.34 8	0.0072	,		••	
γ 5 252.8	85 5 6.1 6	0.0329				
γ 6 295.8	84 5 0.22 7	0.0014	■ ²⁴⁶ Am ^{β−} Decay	(25.0 m 2)	l (min) = 0.10%
3 weak γ's Eγ(avg)=	omitted: 95.9; ΣΙγ= 0.10%		Feeds	²⁴⁶ Cm		, 0.10%
			CE-L- 1	10.27 4	3.9 4	0.0009
			Auger-L	10.7	22 4	0.0050
• ²⁴⁵ Cm α Decay (8.5E3 y	1) I (min) = 0.10%	CE-L- 2	18.32 4	51.8 9	0.0202
Feeds ²⁴ Pu		,	ce-MNO+ 2	36.516 19	19.4 6	0.0151
			ce-K- 8	42.76 12	0.15 16	0.0001
Auger-L 10.3	3 42 17	0.0093	ce-M- 5	92.86 20	2.39 20	0.0038
ce-L- 1 18.9	2 10 30 40 9 10 47 24	0.0075	ce-NCP- 5	97.51 20	0.265 22	0.0006
ce-MNO-1 36.	1 10 17 9	0.0131	ce-K- 11 ce-K- 12	108.97 6	0.17 16	0.0004
ce-R- 3 52.2	2 10 15 15	0.0171	ce-K- 13	115.77 6	0.8 7	0.0019
ce-L- 2 109.9	9 10 16 7	0.0382	ce-K- 16	133.47 7	0.14 13	0.0004
ce-M- 2 127.1	1 10 4.3 19	0.0115	ce-L- 13	219.50 5	0.25 7	0.0042
ce-L-3 150.9	4 10	0.0046	ce-L- 20	245.54 5	0.311 13	0.0016
ce-M- 3 168.1	1 10 1.6 5	0.0056	ce-K- 98	263.73 4 623.80 6	0.107 4	0.0006
ce-NCP- 3 172.0	4 10 0.60 20	0.0022	ce-K-104	670.54 6	0.131 5	0.0019
α 1 5234.6	0.32	0.0357	β− 1 max	520 50 .		
a 3 5362	93.18	10.64	$\beta = 2 \max$	152 17 620 50	0.283 12	0.0009
α 4 5488.7 α 5 5529.2	0.83 2 0.58	0.0970 0.0683	avg A-3 max	185 17 630 50	0.167 21	0.0007
4 weak α's	omitted:		A- 4 max	188 17	0.427 16	0.0017
$E\alpha (avg) =$	5318.9; ΣΙα= 0.12%		avg	191 17	0.361 11	0.0015
X-ray L 14.3	64 24	0.0194	avg	201 18	0.66 4	0.0028
γ 1 42.0 X-ray Kα ₂ 99.5	0 10 0.12 12	0.0001	e o max avg	205 18	1.00 3	0.0044
X-ray Kai 103.7 X-ray K6 117	76 5 22 17 10 P	0.0484	$\beta = \gamma \max_{a v g}$	211 18	0.209 7	0.0009
γ 2 133.0 γ 3 174.0	0 10 6.3 21 0 10 6.4 20	0.0178	β= 8 max avg	700 50 212 18	0.967 25	0.0044
			p= 9 max avg	710 50 214 18	1.85 6	0.0084
• 246 Du 8- Decent (40.05)	a)	- 0.10%	β−1C max avg	770 50 238 18	1.67 4	0.0085
μ β Decay (10.85 d Feeds ²⁴⁶ Am (∠) l`(min) 25.0 m)	= 0.10%	β-11 max ··· avg	850 50 264 18	0.118 12	0.0007
β-1 max 75 1	0		β=12 max avg	930 50 294 18	1.13 25	0.0071
avg 19	3 0.8	0.0003	p=13 max avg	301 19	4.8 8	0.0308

²⁴⁶Am—²⁴⁷Cm

Radiati Type	on	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
²⁴⁶ Am β^-	Decay	(25.0 m 2)	(Continued)		γ 183 γ 185 γ 190	1637.95 5 1661.63 5 1737.94 5	0.162 20 0.227 8 0.112 8	0.0056 0.0080 0.0041
8-14	max avg	980 50 312 19	0.279 9	0.0019	202 ₩	eak γ's omitted	a:	
β-15	max avg	1050 50 337 19	0.49 18	0.0035	.g	y(avg) = 914.7	; ΣIγ= 2.96%	
β −16	max avg	1170 50 382 19	1.90 19	0.0155				
£-17	max avq	1180 50 383 19	0.192 16	0.0016	• ²⁴⁶ Cm α Decay	(4.75E3 y 5)	I (mir	n) = 0.10%
e-1e	max avq	1200 50 390 19	14.9 9	0.124	%a Dea Fooda	cay = 99.97386 5	5	
6-19	max avg	1220 50 400 19	37.6 12	0.320	% Spor	ntaneous Fission =	= 0.02614 5	
₽-2 C	max	1420 50	7.0 5	0.0711		40.3		0 0040
8-21	max	1460 50	16 3 6	0.170	Auger-L ce-L- 1	10.3	15.3 8	0.0013
₽-22	avg max	2160 50	10.3 5	0.170	ce-MNO- 1	38.612 10	5.6 3	0.0046
₿-23	avg max	723 20 2260 50	0.6 3	0.0092	α 1	5343	21.0 10	2.39
total	avg β−	804 20	7	0.120	α 2	5386	/9.0 10	9.05
	avg	426 21	100.6 20	0.913	X-ray L	14.3	9.2 11	0.0028
~	30 we Eß	ak β 's omiting (avg) = 215.	ted: .2; ΣΙβ= 0.69%		1 w E	eak γ's omitte γ(avg)= 44.5	d: ; ΣΙγ= 0.03%	5
X-ray_	L	15	39 4	0.0125				
γ 5 X-ray	Kaz	99.20 20 104.61 5	0.167 13	0.0004	• ²⁴⁷ Cm α Decay	(1.56E7 y 5)	E (mii	n) = 0.10%
X-ray X-ray	Κα1 ΚΒ	109.29 5 123	1.4 4 0.67 17	0.0033 0.0018	Feeds	^{2 4 3} Pu		
γ 11 γ 12	2	237.23 4 238.64 3	0.144 8 0.147 8	0.0007 0.0007	Auger-I	10.3	4.0 7	0.0009
ý 13 v 16	l .	244.03 3	0.68 3 0.157 6	0.0036	ce-L- 2	34.8028 16	5.83 7	0.0043
γ 20 21	,)	270.07 3	1.03 4	0.0059	ce-NCP-2	56.3414 8	0.61 8	0.0007
γ 25 γ 45		401.68 3	0.266 9	0.0023	ce-K- 6 ce-K- 7	153.28 21 156.2 8	0.4 4	0.0012
γ 64 γ 80))	493.46 4 602.54 6	0.108 4 0.234 13	0.0011	ce-K- 8 ce-K- 10	165.6 3 211.2 10	2.2 7 0.14 14	0.0078 0.0006
γ 83 γ 87	1	649.48 4 684.28 5	0.369 14	0.0051	ce-L- 6	252.00 20	0.10 5	0.0006
γ 88	1	698.27 5	0.117 8	0.0017	ce-K- 13	280.8 3	1.29 12	0.0077
7 69 7 90		724.79 4	0.214 8	0.0033	ce-MNO- 8 ce-L- 13	281.5 3 379.5 3	0.14 5 0.245 22	0.0008
γ 93 γ 94	l L	734.41 4	1.17 4 0.237 8	0.0183		H 0 4 0 H		
γ 98 γ 99))	752.06 4 759.59 4	0.82 4 0.645 22	0.0132	a 1 a 2	4818 4 4868 4	4.7 3	0.482 7.36
γ 102 γ 102	2	781.28 6	0.169 13	0.0028	α 3	4941 4 4983 4	1.60 20	0.168
y 104 y 108	, }	833.60 4	1.79 6	0.0318	α 5	5145 4	1.20 20	0.132
γ 115 γ 117	5	986.03 4 1036.00 4	0.96 4 12.7 4	0.0202 0.281	α 6 α 7	5210 4 5265 4	5.7 5 13.8 7	0.633 1.55
ý 120 7 121)	1062.04 4	17.2 4	0.389 0.641	Į			
y 122		1081.40 6	0.249 3	0.0057	X-ray L X-ray Ka ₂	14.3 99.55 5	5.9 8 1.20 23	0.0018 0.0025
y 123	,	1124.29 4	0.261 11	0.0063	X-ray Ka ₁ X-ray KA	103.76 5 117	1.9 4 0.91 18	0.0043
γ 136 γ 139))	1206.96 4 1249.79 4	0.149 6 0.149 6	0.0038 0.0040	γ 6	275.10 20	0.52 19	0.0030
γ 141		1274.72 4	0.269 9	0.0073	7 8	218.0 8 287.4 3	2.0 3	0.0201
γ 149 γ 158	, }	1479.43 4	0.229 8	0.0035	7 10 7 11	333.0 10 346.0 8	0.34 17 1.3	0.0024
γ 163 γ 169	;	1529.00 7 1550.94 9	0.224 11 0.27 3	0.0073	7 13	402.6 3	72 6	0.617
γ 177 • 177	1	1590.68 5	0.52 4	0.0177	7 46	ak γ's omitted	1:	
y 181		1618.80 4	0.116 5	0.0040	E)	r (avg) = 116.1;	; $\Sigma I \gamma = 0.11\%$	

ĥ

216 RADIOACTIVE DECAY DATA TABLES

²⁴⁸Cm–²⁴⁹Cf

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
 ²⁴⁸Cm α Decay %α Dec Feeds % Spor 	(3.39E5 y 3) cay = 91.74 3 ²⁴⁴ Pu ntaneous Fission	l (mir = 8.26 3	n) = 0.10%	$\begin{array}{cccc} X-ray & L \\ X-ray & K\alpha_1 \\ \gamma & 14 \\ \gamma & 22 \\ \gamma & 24 \\ \gamma & 25 \end{array}$	15.3 112.14 5 368.76 6 560.39 6 621.87 6	0.38 7 0.120 17 0.350 20 0.84 6 0.182 13 1.50 10	0.0001 0.0003 0.0027 0.0100 0.0024
Auger-T	10.3	4.8.8	0.0011	γ 25 γ 26	652.80 6	0.143 10	0.0203
ce-L- 1 ce-MNO- 1	21.1 4 38.3 4	12.11 17 4.49 11	0.0054 0.0037	21 wea By	$lk \gamma "s omitte(avg) = 389.9$	ed: 9; ΣΙγ= 0.24%	
α 1	5035.06 25	16.54 18	1.77				
a 2	5078.58 25	75.1 4	8.13				
1 we Bo	eak α's omitt x(avg)= 4931.	ed: 1; ΣΙα= 0.07%		 ^{2 4 9} Bk β⁻ Decay %β⁻ Decay Feeds ² 	320 d 6) ecay = 99.9985 ^{4 9} Cf	I (min 5 8) = 0.10%
X-ray L	14.3	7.3 8	0.0022	%α Dec	ay = 0.00145	8	
2 44	ak vie omitt	• 60		% Spon	taneous Fission	= 4.7E-8 2	
2 E	y(avg) = 56.	2; ΣΙγ= 0.03%		e~ 1 max avg	126.4 19 33.0 6	99.9985	0.0703
 ^{2 4 8} Cf α Decay (%α Deca Feeds ² % Spont 	333.5 d 28) ay = 99.9971 3 ⁴⁴ Cm taneous Fission	l (mir = 0.0029 3	n) = 0.10%	 ²⁴⁹Cf α Decay (3) Feeds ²⁴⁹ % Sponta 	5 0.6 y 21) ⁵ Cm neous Fission =	l (min = 5.2E—7 2) = 0.10%
Auger-L	10.7	4.4 8	0.0010	Auger-T.	10.7	17 4	0-0039
ce-L- 1	18.37 11	12.4 4	0.0048	ce-L- 2	18.28 8	2.61 18	0.0010
CE-MNO- 1	30.50 11	4.62 1/	0.0036	ce-L- 4	30.20 8 30.20 4	34 4	0.0221
α 1	6220	17.0 5	2.25	ce-MNO- 2	36.47 8	0.85 5	0.0007
α 2	6260 30	83.0 5	11.07	ce-L- 6 ce-L- 8	41.34 16 42.18 16	0.7 5	0.0006
				ce-8- 4	48.39 8	9.5 12	0.0098
X-ray L	15	7.9 8	0.0025	ce-MNO- 5 ce-NCP- 4	48.394 18 53.04 8	0.28 4 3.7 5	0.0003
1 We Bj	eak γ's omitt y(avg)= 42.	ed: 9; ΣΙγ= 0.02%		ce-MNO- 6 ce-M- 8 ce-NCP- 8 Auger-K	59.53 16 60.37 16 65.02 16 79.6	0.26 20 0.37 10 0.14 4 0.15 15	0.0003 0.0005 0.0002 0.0003
- 249				ce-L- 11 ce-K- 14	97.0 4 112.94 11	0.26 8 0.40 9	0.0005
• ² • ³ Cm β ⁻ Decay	249 PL	I (min	() = 0.10%	ce-K- 15	124.59 7	5.16 21	0.0137
i eeus	DK			ce-K- 18 ce-K- 20	205.18 7	0.428 19	0.0006
ce-MNO- 1	2.26 11	99.976 3	0.0048	ce-L- 15	228.32 6	1.08 5	0.0052
ce-L- 2	5.57 6	0.255 23	*0	ce-K- 21	259.69 7	1.34 6	0.0074
ce-L- 5	59.92 8	0.19 5	-0.0001	ce-L- 21	363.42 6	0.265 12	0.0020
ce-K- 14	237.18 8	0.122 23	0.0006				
ce-k- 22	428.81 8	0.13 3	0.0012	α 1	5694.0 20	0.2	0.0243
e- 1 max	238 9			α 3	5783.5	0.26	0.0320
avg	65 3	0.36 3	0.0005	a 4	5813.5 10	84.4	10.45
₿÷ 2 max avg	257 9 70 3	1.80 15	0.0027	α 6	5903.4 10	2.79	0.351
8−3 max	331 9			a 7	5946.2 10	4	0.507
avg 8- 4 mav	92 3 522 9	1.04 8	0.0020	a 9	6139.5 7	1.1	0.145
avg	153 3	0.49 5	0.0016	α 10	6194.0 7	2.17	0.286
β− 5 max avg	891 9 279 u	96.27 15	0.572	22 wea	k α's omitte	ed :-	
total β-		30027 13		Βα	(avg) = 5662.3	3; ΣΙα= 0.14%	
avg	272 5	99.96 24	0.579				(Continued)

²⁴⁹Cf²⁵¹Cf

.

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)
$\begin{array}{c} 24.9 \text{ Cf } \alpha \text{ Decay} \\ \hline X - ray L \\ \gamma & 4 \\ \gamma & 9 \\ \hline X - ray K \alpha_1 \\ \hline X - ray K \beta \\ \gamma & 74 \\ \hline \gamma & 15 \\ \gamma & 17 \\ \gamma & 18 \\ \gamma & 20 \\ \gamma & 21 \end{array}$	(350.6 y 21) 15 $54.73 7$ $92.30 5$ $104.61 5$ $109.29 5$ 123 $241.20 10$ $252.85 5$ $266.73 5$ $295.84 5$ $333.44 5$ $387.95 5$	(Continued) 30 4 0.211 10 0.297 12 2.19 9 3.5C 14 1.66 8 0.224 8 2.73 11 0.75 3 0.143 6 15.5 5 66.0 20	0.0097 0.0002 0.0005 0.0049 0.0081 0.0044 0.0012 0.0147 0.0042 0.0009 0.110 0.545	$\begin{array}{cccc} X - Tay & L & & & 2 \\ Y - Tay & K\alpha_2 & & \\ X - Tay & K\alpha_1 & & \\ X - Tay & K\beta & & \\ \gamma & - Tay & K\beta & & \\ \gamma & 3 & & & \\ \gamma & 4 & & & \\ \gamma & 5 & & & \\ \gamma & 7 & & & \\ \gamma & \gamma & & & \\ \gamma & \gamma & & & \\ \gamma & \gamma &$	15.7 98.2 5 109.87 5 129 889.98 15 929.28 15 988.96 15 1028.58 15 1031.76 15 ak y's omitte (avg) = 42.2	31 4 0.120 5 0.262 10 0.415 14 0.199 9 1.64 5 1.37 5 45.1 7 4.39 12 35.1 4 ed: 2; $\Sigma I \gamma = 0.04\%$	0.0104 0.0003 0.0006 0.0010 0.0005 0.0311 0.0271 0.950 0.0961 0.771
26 w E	teak γ 's omitt $\gamma(avg) = 283$.	ed: 7; ΣΙγ= 0.43%	.) - 0.10%	 ²⁵⁰Cf α Decay (1 %α Deca Feeds ²⁴ % Sponta 	3.08 y 9) y = 99.923 3 ⁶ Cm aneous Fission =	ł (mii = 0.077 3	n) = 0.10%
 The constraint of the constraint o	$(\sim 6.9E3 \text{ y})$ ecay = 25 (Systerm 246 Pu so 250 Cm β^- D intaneous Fission	ematics) ecay = 61 (Systemat	ics)	Auger-L ce-L- 1 ce-MNO- 1 ce-L- 2	10.7 18.32 4 36.516 19 74.67 21	4.4 8 12.0 9 4.5 4 0.2C4 1	0.0010 0.0047 0.0035 0.0003
α 1	5190 50	25	2.76	α 1 α 2 α 3	5890 5989.1 6 6030.8 6	0.29976 16.2 12 83.4 12	0.0376 2.07 10.72
 ²⁵⁰Cm β⁻ Decar %β⁻ Feeds See a % Sp 	y (~ 6.9E3 y) Decay = 14 (Sy s ²⁵⁰ Bk also ²⁵⁰ Cm α D pontaneous Fissio	l (mir ystematics) ecay on = 61 (Systema	n) = 0.10% atics)	X-ray L 3 we Ey	15 ak γ's omitte (avg) = 76.8	7.8 10 ed: 5; ΣΙγ≈ 0.03%	0.0025
β~ 1 max avg	37 12 9 4	14	0,0027	 ^{2 5 1} Bk β⁻ Decay Feeds ² 	(57.0 m 17) ²⁵¹ Cf	I (mii	ר) = 0.10%
 ²⁵⁰Bk β⁻ Decay Feeds 	′ (3.222 h 5) ²⁵⁰ Cf [.]	I (min	a) = 0.10%	β−1 max avg	1120 360.46	100	0.768
Auger-L ce-L- 1 ce-MNO- 1	11.2 16.2 5 35.4 5	15 4 42.8 6 16.2 4	0.0035 0.0147 0.0122	• ^{2 5 1} Cf α Decay (9 Feeds ^{2 4}	. 0E2 y 4) ⁷ Cm	l (mir	ו) = 0.10%
ce-L- 2 ce-M- 2 ce-NCP- 2 ce-K- 5 ce-K- 7 ce-L- 5 ce-L- 7	72.2 5 91.4 5 96.4 5 853.99 16 896.79 16 962.94 16 1005.74 16	2.14 7 0.610 24 0.243 10 0.519 18 0.376 12 0.152 5 0.107 4	0.0033 0.0012 0.0005 0.0094 0.0072 0.0031 0.0023	Auger-L ce-L- 1 ce-K- 8 ce-M- 1 ce-NCP- 1 Auger-K ce-K- 10 ce-L- 5	10.7 37.0 3 48.34 11 55.2 3 59.8 3 79.6 98.7 10	34 7 13 5 3.0 3 3.2 13 1.2 5 1.1 11 50 9 0 240 11	0.0076 0.0102 0.0031 0.0037 0.0015 0.0018 0.105
 β⁻ 1 max avg β⁻ 2 max avg β⁻ 3 max avg β⁻ 4 max avg β⁻ 4 max avg β⁻ 4 max avg 	709 4 214.4 14 748 4 228.0 14 1780 4 574.4 15 1737 4 594.1 16 266.4 16	5.89 15 83.1 11 5.5 5.5 100.0 12	0.0269 0.404 0.0673 0.0696 0.567	ce-NRO-5 ce-L-8 ce-N-8 ce-NCP-8 ce-L-10 ce-L-10 ce-NCP-10	128.664 18 152.07 11 170.26 11 174.91 11 202.5 10 220.7 10 225.3 10	0.137 18.8 17 5.3 5 2.05 19 19 4 5.1 10 2.0 4	0.0004 0.0608 0.0191 0.0076 0.0831 0.0242 0.0096 (Continued)
β- 4 max avg total β- avg	1737 4 594.1 16 266.4 16	5.5 100.0 12	0.0696 0.567	ce-NCP-10	225.3 10	2.0 4	0. (Con

.

^{2 5 1}Cf—^{2 5 4}Cf

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Energy Intensity ∆(g-rad/ Type (keV) (%) μCi-h)
α 1 α 2 α 3 α 4 α 5	5501 5 5566.0 20 5603 7 5632.0 10 5648.0 10	0.30 10 1.50 20 0.22 4.5 10 3.5 13	0.0352 0.178 0.0263 0.540 0.421	α 1 5979 5 0.29 4 0.0374 1 weak α's omitted: Βα(avg)= 5921.0; ΣΙα= 0.02%
α 6 α 7 α 8 α 9 α 10	5677.0 10 5738 7 5762 3 5793.0 10 5814 4	35.0 10 1.0 3 3.8 4 2.0 3	4.23 0.122 0.466 0.247	X-ray L 15 0.134 22 ≈0
α 11 α 12 α 13 α 14	5852.0 10 5943 4 6014 3 6074 3	27.0 10 0.60 10 11.6 5 2.7 3	3.37 0.0760 1.49 0.349	• 253 Cf β^- Decay (17.81 d 8) I (min) = 0.10% % β^- Decay = 99.69 4 Feeds 253 Es See also 253 Cf α Decay
X-ray L y 1 y 2 y 3 y 4 X-ray Ka2	15 61.5 3 68 73 83 104.61 5	60 9 0.56 22 0.2 0.3 0.10 15 3	0.0190 0.0007 0.0003 0.0005 0.0002 0.0345	β-1 max 287 10 avg 79 3 99.69 4 0.168
X-ray Kα X-ray Kθ γ 5 γ 6 γ 7	109.29 5 123 135 144 154	25 5 11.7 20 0.10 0.10 0.2	0.0575 0.0307 0.0003 0.0003 0.0003	 2 5 3 Es α Decay (20.467 d 24) I (min) = 0.10% Feeds ^{2 4 9} Bk % Spontaneous Fission = 8.7E-6 3
7 8 7 9 7 10 7 11 7 12 7 13	176.60 10 214 227.0 10 255 262 266.0 3	17.7 15 0.2 6.3 11 0.2 0.2 0.2 0.50 20	0.0666 0.0009 0.0305 0.0011 0.0011 0.0028	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
γ 14 γ 15 γ 16	270 285.C0 20 291.0 3	0.2 1.4 3 0.4C 20	0.0012 0.0085 0.0025	ce-L-5 26.68 5 0.233 25 0.0001 ce-MNO-3 35.24 6 1.55 16 0.0012 ce-MNO-4 36.43 4 0.234 24 0.0002
 ²⁵²Cf α Decay (%α Dec Feeds ² % Spon 	2.639 y 5) ay = 96.908 8 ⁴⁸ Cm taneous Fission =	l (mii = 3.092 8	n) = 0.10%	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Auger-L ce-L- 1 ce-MNO- 1 ce-L- 2	10.7 18.87 5 37.06 4 76.07 4	4.1 7 11.22 23 4.18 13 0.16 3	0.0009 0.0045 0.0033 0.0003	21 weak α 's omitted: $B\alpha$ (avg) = 6358.7; $\Sigma I\alpha$ = 0.27%
α 1 α 2 α 3	5976.6 6075.7 5 6118.3 5	0.23 4 15.2 3 81.6 3	0.0296 1.97 10.63	72 weak γ's omitted: Εγ(avg) = 203.0; ΣΙγ= 0.14%
X-ray L 2 w E	15 eak γ's omitte γ(avg)= 68.	7.3 7 ed: 2; ΣΙγ= 0.03%	0.0023	• 254 Cf α Decay (60.5 d 2) I (min) = 0.10% % α Decay = 0.310 16 % Spontaneous Fission = 99.690 16
 ²⁵³Cf α Decay (%α Deca Feeds ² See also 	17.81 d 8) ay = 0.31 4 ⁴⁹ Cm , ²⁵³ Cf β ⁻ Deca	y I (mir	n) = 0.10%	α 1 5834 5 0.257 15 0.0320 1 weak α 's omitted: E α (avg) = 5792.0; $\Sigma I \alpha$ = 0.05%
ce-L- 1 ce-MNO- 1	24 7 43 7	0.21 3 0.101 14	00001 ≈0	

²⁵⁴Es-²⁵⁴Fm

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	
• 254 Es α Decay (275.7 d 5) Feeds 250 Bk 1 (min) = 0.10%			• 254 Es β^- Decay $\%\beta^-$ [Feeds	(39.3 h 2) Decay = 99.59 1	I (mir	n) = 0.10%		
ce-MNO- 2 ce-L- 3 ce-L- 4	1.755 18 9.13 11 10.23 11	96.1 10 21.9 7 50.1 5	0.0036 0.0043 0.0109	See al %EC (so ²⁵⁴ Es α Deca Decay = 0.078 7	ay (39.3 h)		
ce-L- 5 ce-MNO- 3 ce-MNO- 4	17.33 11 27.85 11 28.95 11	72.8 19 8.1 8 19.9 5	0.0269 0.0048 0.0123	$\begin{array}{c} Auger-L\\ ce-L-2\\ ce-MNO-2\\ ce-L-3 \end{array}$	11.6 17.40 3 37.782 16 76 77 3	16 6 50 7 19.2 25	0.0039 0.0185 0.0154	
ce-L- 6 ce-L- 7 ce-L- 8	37.7 20 44.43 11 45.13 11	0.73 8 0.712 8 2.136 21	0.0207 0.0006 0.0007 0.0021	ce-M- 3 ce-NCP- 3 ce-K- 5	97.154 17 102.406 24 442.35 6	0.98 13 0.40 5 0.111 13	0.0020 0.0009 0.0010	
ce-L- 9 ce-MNO- 6 ce-L- 10 ce-MNO- 7	55.53 11 56.5 20 59.83 11 63.15 11	0.704 6 0.246 25 0.700 8 0.27 3	0.0008 0.0003 0.0009 0.0004	ce-K- 7 ce-K- 7 ce-K- 8 ce-L- 6	546.71 6 551.81 6 621.21 6	0.35 4 0.68 8 0.42 5	0.0041 0.0079 0.0056	
ce-M- 8 ce-NCP- 8 ce-MNO- 9 ce-MNO-10	63.85 11 68.65 11 74.25 11 78.55 11	0.59 0.23 0.27 3 0.27 3	0.0008 0.0003 0.0004 0.0005	ce-L- 7 ce-L- 8	661.09 6 666.19 6	0.140 15 0.154 17 0.30 4	0.0022 0.0042	
α 1 α 2 α 3	6048 5 6105.0 20 6266.0 20	0.16 0.340 20 0.22 4	0.0206 0.0442 0.0294	β 1 max avg β 2 max avg	437 6 124.7 17 477 6 137.3 18	19.0 19 67 6	0.0505 0.196	
α 4 α 5 α 6 α 7	6275 6347.0 20 6358.6 20 6415.8 20	0.140 20 0.75 5 2.6 3 1.80 10	0.0187 0.101 0.352 0.246	β- 3 max avg total β- avg	1126 6 360.6 20 164.2 20	13 8 99 11	0.0999 0.346	
α 8 6428.8 20 93.1 10 12.75 α 9 6476 0.23 4 0.0317 9 weak α 's omitted:				X-Γαγ L γ 3 X-Γαγ Κα ₂	16.4 104.360 12 115.32 4	40 8 0.21 3 0.60 4	0.0140 0.0005 0.0015	
X-ray L	α (avg) = 6225.8 15.3 42.60 10	3; ΣΙα= 0.22% 99 11 0 14 12	0.0322	X-ray Kα _t X-ray Kβ γ 4 γ 5	121.10 4 136 544.46 5 584.32 5	0.95 7 0.46 4 1.07 13 3.4 4	0.0024 0.0013 0.0124 0.0428	
γ 6 γ 19 20 w	63.0 20 316.0 20 eak r's omitte	2.00 20 0.15	0.0027 0.0010	7 6 7 7 7 8	648.80 5 688.68 5 693.78 5	34 4 14.8 16 29 3	0.475 0.217 0.434	
$E_{\gamma}(avg) = 221.8; \Sigma I_{\gamma} = 0.44\%$				2 weak γ 's omitted: E γ (avg) = 45.0; EI γ = 0.06%				
• 254 Es α Decay (39.3 h 2) I (min) = 0.10% % α Decay = 0.33 1 Feeds 250 Bk See also 254 Es β^{-} Decay (39.3 h)				● ^{2 5 4} Fm α Decay %α Dec Feeds	(3.240 h 2) cay = 99.9408 2 ^{2 5 0} Cf	l (min)	= 0.10%	
%EC D	ecay = 0.078 7	y (33.5 fi)		% Spor	ntaneous Fission	= 0.0592 2		
α 1	6382.0 20	0.247 9	0.0336	Auger-L ce-L- 1 ce-MNO- 1	11.2 16.2 5 35.4 5	3.79 10.98 4.13	0.0009 0.0037 0.0031	
Ē	α (avg) = 6452.9	; ΣΙα= 0.08%		ce-L- 2 ce-MNO- 2	72.2 5 91.4 5	0.62 7 0.25 3	0.0010 0.0005	
15 w B	eak γ's omitte γ(avg)= 159.4	d: ; ΣΙγ= 0.23%		α 1 α 2 α 3	7050 7147 7189 5	0.90 10 14.0 10 84.9 10	0.135 2.13 13.01	
				X-ray L	15.7	7.8 10	0.0026	
				2 we B1	eak γ's omitte r(avg)= 84.9	d: ; ΣΙγ= 0.05%		

²⁵⁵Es-²⁵⁶Fm

Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	Radiation Type	Energy (keV)	Intensity (%)	∆(g-rad/ μCi-h)	
• 255 Es α Decay (39.8 d 12) I (min) = 0.10% % α Decay = 8.0 4 Feeds 251 Bk See also 255 Es β^- Decay % Spontaneous Fission = 0.0041 2				ce-M- 4 ce-M- 5 ce-M- 6 ce-L- 9 ce-L- 10 ce-NCP- 4	51.147 24 51.722 24 53.249 24 54.90 6 55.46 4 56.092 25	1.07 16 5.7 3 1.07 24 11.9 4 34.4 11 0.42 7	0.0012 0.0063 0.0012 0.0139 0.0407 0.0005	
Auger-L ce-L- 1 ce-L- 2 ce-MNO- 1	10.9 14.73 4 22.73 4 33.455 18	0.29 7 0.72 5 0.146 8 0.27 3	**0 0.0002 **0 0.0002	ce-NCP-5 ce-NCP-6 ce-L-11 ce-MNO-8 ce-M-9 ce-M-10 ce-M-10	58.194 25 59.98 11 66.29 4 74.16 6 74.72 3 79.11 6	2.20 10 0.41 10 0.15 8 0.171 12 3.37 11 9.8 3 1.35 4	0.0005 0.0002 0.0002 0.0053 0.0156 0.0023	
α 1 α 2 α 3	6213 6260 6299.5 15	0.2C0 10 0.78 4 7.0 4	0.0265 0.105 0.941	ce-NCP-10 a 1 a 2	79.67 3 6807.0 20 6892.0 20	3.91 12 0.110 6 0.620 10	0.0066	
X-ray L	15.3	0.57 7	0.0002	α 2 α 4 α 5 α 6	6963.0 20 6963.0 20 6983.0 20 7022.0 20 7080.0 20	5.04 6 0.130 10 93.4 3 0.4C 3	0.747 0.0193 13.97 0.0603	
• 255 Es β^- Decay (39.8 d 12) % β^- Decay = 92.0 4 Feeds 255 Em				16 weak α's omitted: Εα(avg)= 6923.4; ΣΙα= 0.34%				
See als % Spor	o ²⁵⁵ Es α Decay ntaneous Fission =	, = 0.0041 2		X-ray L 7 1 7 2	15.7 23.001 17 24.824 15 57 902 15	60 7 0.15 3 0.2	0.0202 ≈0 0.0001	
β−1 max avg	280 76.69	92.0 4	0.150	7 5 7 6 7 9 7 10	58.477 15 60.004 15 80.92 5 81.477 20	0.67 0.120 20 0.27 0.8	0.0008 0.0002 0.0005 0.0014	
• 255 Fm α Decay (20.07 h 7) I (min) = 0.10% Feeds 251 Cf % Spontaneous Fission = 2.4E-5 10				42 weak γ 's omitted: E γ (avg) = 142.8; $\Sigma I \gamma$ = 0.15%				
Auger-L ce-MNO- 1 ce-MNO- 2 ce-L- 3 ce-L- 4 ce-L- 5 ce-L- 6 ce-MNO- 3 ce-L- 8	11.2 16.246 25 18.069 24 21.81 4 31.88 4 32.46 4 33.98 4 41.075 24 47.03 5	28 7 27 6 93 10.3 12 4.3 6 23.0 8 4.2 10 3.9 4 0 50 4	0.0068 0.0092 0.0358 0.0048 0.0029 0.0159 0.0030 0.0034	 ²⁵⁶ Fm α Decay %α Dec Feeds ² % Spor α 1 	(157.6 m 13) :ay = 8.1 3 ^{5 2} Cf taneous Fission = 6915 5	l (min = 91.9 3 8.1 3) = 0.10% 1.19	

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

.