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ABSTRACT

This work consists of two parts. one concerns the

development of the University of Adelaide Computer Assisted

Instruction SysÈem (UACAIS) and the other is an investigation

lnto the problem of supervising trigonometric proofs in CAI.

UACAIS is a dedicated CAI system based on a Control Data

6400 Computer and is designed to support a large number of

student consoles. The associated author language ALFIE is

cue-oriented. An experimental version of UACAIS has been

successfully implemented.

proof supervision refers to the dual task of checking

and of assísting trigonometric proofs. The problems are

confined to the single argument case. To sinplify treatment,

proofs are assumed to have the form eo+eI+"'+ên where the

expresÊtions e0 and en are directly related to the identity

befng proved and !ìthere each ei+ei+l is a step deriving ei+1

from ei.

Proofs are checked step-by-step as they are entered.

Each step must be both correct and small. The correctness

of a step is a problem in expression equivalence. Step-size

is however elusive, being largely dependent on subjective

J udgement.

The step-by-step checking of a proof can help the

student considerably in his proofs by preventing them from

going astray. More explicit types of assistance can take



the form of a set of relevant identities for substitution,

a next-step to help him continue his proof, or information

that no further trigonometric substitution is required.

Much of such forms of assistance can be provided with Èhe

aid of an automatic proof generator.

Although proof supervision is essentially a symbolic

problem, the main emphasis in the solutions proposed is on

the use of numeric techniques. The numeric approach is

advocated in the belief that it is superior to a purely

symbolic one. Several numeríc techniques are discussed,

including a simple test for deciding the correctness of a

step. The most inportant of these is C-set determinat'ion

which enables the supervisor to discover a minimum sufficient

set of basic ídentities for proving a given problem identity.

An identity requíring no substitution for its proof has an

empty C-set. Some theoretical justification for the theory

oi C-sets ís given, using algebraic geometry. Hilbert's

Nullstellensatz plays an important role. The relevance of

C-sets in proof-checking and in proof construction are

discussed.

A schemÂ for defining models of small steps has been

developed. Two models based on it have been selected for

closer study. A survey of human opinions on step-size was

conducted to provide data for gauging the adequacy of these

models. Good agreement between both models and the human

data was obtained.



The main

in a program

efficiently

also been considered.

ideas for proof-checking have been implemented

called Super-2. The problem of implenùenting

the various numeric techniques advocated has



DECLARATION

To tl¡e best of my knowledge and belief , ttris ttresis
containg no maÈerLal which has been previouely
publtehed or vrttten by anottrer person, except lrhere
due refcrence le made in the text.
None of the materÍal ln this thesis has been accepted
for the award of any ottrer degree or diploma in any
UnJ.veref.ty.

Lee KÍm Cheng



ACKNOWLEDGEMENTS

I am indebted to Professor J.A. Ovenstone and Dr. J.G.
Sanderson, my original and current supervisors respectively,
for their advice and sympathetic support during my research.
Dr. J.L.C. Macaskill, in his capacity as acting head of the
Department of Computing Science, has also been very helpful to
me.

It was indeed a pleasure to work with Mr. Peter Perry on

ttre CAI proJect and I have benefitted gr""tÞ fron this
aggociation.

Mrs. Gerry Wellings has undertaken a difficulÈ tlping
assignment and I am immensely grateful to her for having done

a good job of it.

I gratefully acknowledge my indebtedness to the University
of Adelaide for supporting my research, since October L967,

wl-th a Postgraduate Scholarship under the Uníversity Research

Grant.





2-

progr¿rme for machine presentaÈion that were characterised by linearity,

small steps, constructed (i.e. overt) responses, low error rate, immediate

knorrledge of result¡ and the reinforcement of correct responses. Courses

prepared in this !úay are referred to as linear or skinnerian programs.

Fo1lowing the development of the linear program, ottrer instructional

paradigrms have been devised. Crowder t14l introduced the intrinsic

programming technique which features branching, larger steps, multiple-choice

response and remedial seguences. T"rvo ottrer important instructional methods

are the mathetics of Gilbert and structural communication of Bennet et al.

(see 14277.

Early auto-instructional materials r¡üere presented by mechanical devices.

These devices, called teaching machines, can display a segTment of a course,

and have provisions for accepting answers, usually of ttre multiple-choice

type. Subsequent work has shown that instructional material can often be

presented as effectively in the book medium as by teaching machines.

Schra¡run [62] sums up the essentials of PI as :-

(a) an ordered sequence of stimulus items

(b) to each of which the student responds in some specified way

(c) his responses being reinforced by inmediate knowledge of results

(d) so that he moves by small steps

(e) thereby making few errors a¡rd practising mostly correct responses

(f) from what he knows, by a process of successively closer approximation

towards what he is supposed to learn from ttre program.
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I
OnIy a few prototype Èystems were reported by Ratþ t5b] to exist over-(

the 1968-61 periodt each had no more than a few simple typewriter terminals"

Today Èhere appears to be more than a hr:ndred institutions in the United

States engaged in CAI activity. The New York City Board of Educationrs RCA

Instructional 70 System [7] supported 192 terminals serving sixteen schools

and there were plans to expand it. More recently, the University of Illinois

was reported t18l to be planning for a system with more than 4000 stations

using the "Digivue" display device.

Despite a decade of research and development (R & D), results obtained

in CAI have been neagre t34l " Nevertheless the works of many centres

including those of Hansen and Dick [31] at the Florida State University'

and Suppes and his associates 167l at Stanford have clearly demonstrated

the technical feasibility of CAI.

There is a small, but rapidly growing, number of studies on the com-

parative effectiveness of CAI. Their findings, although preliminary in

nature, are encouraging and suggest tJ:at CAI is at least as effective as

the other instructional mett¡ods under comparison. V'Ie cite a few such

studl-es below.

One of the earliest studies, by Grubb and Selfridge Í291 reported very

marked superiority of CAI over conventional instruction. They taught six

college students a half-semester course on statistics by CAI and another

group by conventional lectures. The CAI group took an average of only 5.33

hours to cornplete the half-semester course and scored an average of 94.3s"
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in an achievement test'compared with an average of 58.4t for the conventional

Lecture group. The smallness of the cAr group must be borne in mind.

Resurts from similar subsequent studies have been more modest.

Suppes and Jerman t68l at Stanford taught thirty students a computer-

based course on elementary Russian. A control group received the same course

in a conventional way. The CAI group was taught solely via teletype with

Cyrlllic keyboard and audio-tapes with earphones, fifty minutes daily, five

days per week throughout the academic year. At ttre end of the year the CAI

group was found to perform at a statistically higher level ttran the control

group and to suffer a much lower dropout rate.

Love t40l presented a cAr course on Boolean algebra to groups of

students, one group received tt¡e lessons individually whereas the other

group did so in pairs. Both groups were later found on the average to perform

equally well with respect to scores, time and error rate. This finding could

mean a significant improvement in the cost-effectiveness of cAr.

Expressed student attitudes towards CAI have been very favourable.

thus Borman [5], Oldehoeft 152), Butter [7], Love I40l and BetI l.2l are just

a few investigators to report very positive reactions to CAr by their subjects.

Wlth the Èechnical feasibility of CAI well-established, R & D efforts

have now been directed towards tJle wider problem of making CAf more effective

and more widely applicable. Areas under investigation include instructional

strategies, suitabitity of subject areas, hardware, software and economics.

$eedless to say, these problems are generarly crosely interrelated.
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aspect of the computerrs versatility, to facilitate a form of teaching for

which it is best suited" Thus we have the inquiry/dialogue, simulation and

gamJ-ng, information retrieval and the computational-aid modes of computer-

assisted teaching.

In t].e dialogue mode the student is encouraged to undertake greater

initiative in the learning; to direct queries on points of difficulty or

doubt¡ in general to engage the system in some form of restricted discussion'

It is exemplified by tfie medical diagnosis exercise of Feurzeig Í231 and the

work of Taylor [69]. However tTre dialogue capability is still primitive'

The computer is a powerful medium for conducting gaming and simulation

exercises. unlike the dritl, tutorial and dialogue modes' student inÈer-

actions for these exercises are not prograruned step-by-step. Rather, the

rules of the game and the model underlying the simulation are incorporated

into the program. This mode of CAI is useful in imparting decision-making

skills in management sciences and rnilitary exercises. Examples of gaming

and simulation programs can be found in t38l and l32l '

Information retrieval is another way in which the computer can aid

Iearning. with carefulty organised data, students c¿m use their own initia-

tive to search for the information they require. one important work in this

direction is tÏ¡at of Gn:bb [28] in his learner-controlled statistics course'

which is organised as non-linear files of text a¡¡d a series of maps with

which the students can chart their own paths. An advantage of this approach

is that detailed frame-by-frame programming becomes unnecessary.
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Desk-calculator facilities are provided in PLANIT I21l and several

other systems. A more sophisticated form of computational aid are tì-e

systems of Culler and Fried II5l and Oliver and Brooks 1531. These systems,

tttough not designed specifically for CAI usage, can provide a useful on-line

dlsplay and computation facility for teaching numerical ana1ysis.
\

CAI systems employ two basic levels of software :-

(f) the operating system that drives the hardware

(2) the teaching programs.

The operating system usually includes programs for presenting

instructional materials; accepting, analysing and recording student responsesi

and various peripheral equipment drivers. There are also softwares for course

preparation amd validation, on-line or off-line.

To facilitate and simplify ttre task of preparing courses for computer

presentation, author languages have been developed. Zínn Í731 is so far the

most comprehensive document on languages for instructional programming. In

it more ttran Èhirty languages have been studied., classified a¡rd assessed.

r-le notes that despite their variety, many of their differences are superficial,

leaving some user needs still unmet. He notes four classes of instructional

languages according to their operational characteristics .-

(1) presentation by successive frames

(2) conversation within a limited context

(3) presentation of a curriculum file by a standard procedure, and

(4) data analysis and revision of materials.
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Tvpe of Matctt

Exact string

keyword

selected string

PercenÈage

partial string

phonetic

algebraic e>çression

numeric (within specified linits)

calculated numeric

Language

aII languages

all langnrages

CAL, COURSE!ìIRITER

couRsE!{RrTER, LYRIC

cAI,, couRSE$rRrrER

E,LTZA, PLANIT

PLANIT

LYRIC, PI,ANIT

CATO, PLANIT

Cost has been a severe constraint on ttre implementation of CAI.

Estimates for the cost per student console hour vary from as low as 20ê

(see t741 ) to as high as over $80 t91. These differences in estimates are

due to variations in assumptions regarding hardware, course development,

operational and other costs. The reader is referred to Chapin [9] r and

Kopstein and Seidel t36l for their treatments on ttre problems in estimating

costs in CAI and on ttre economics of CAI generally.

It is widely agreed that CAI ca¡rnot at present be justified purely on

ttre basis of cost. Indeed there are some who do not even regard it to be a

partial replacement for traditional teaching; rather they see it as an

experimental learning and teaching laboratory in which learning and

instructional hypotheses ca¡¡ be tested under a fairly realisticr and yet

controllable, learning environment. There are also those who see CAI as a
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A Brief History of this V'Iork:

While CAr systems \^Iere growing rapidly in number and sophistication

overseas, none existed* in Australia in 1966. That year ovenstone t54l

outllned how a large CAI system might be implemented on the University of

AdelaLders control Data 6400 computer. The following year, p.G. perry and

K.C. Lee t55l undertook** to design and implement a CAI system based on the

CDC 6400 as part of their graduate research program. This work was under

the supervision of Professor J.A. ovenstone. Terminal and interface hardware

was developed by Dr. R.J. Potter t56] and became available at the end of 1969.

The first phase of UACAIS has been completed. It includes the development

of the operating system and an author language calted ALFIE (Ade1aide

Language for Instruction e Education). These will be described in the next

two chapters.

As the development of UACAIS progressed, a number of problems confronting,

CAI became obvious. one of these lies in the area of response processing

and concerns the analysis of certain types of responses occurring in

mathematical instruction.

i rn L967 a eimpLe cAr eapabíLí.ta uas incorporated into a time-shared
PDP-6 eonputer at the Uniuey,eíty of l{estem Aust?aL¿a.

The deuelopment, of UACAIS has been a joint, eoopenatðue effort betaeen
Petex Penry and the authoy,. ft is not ttribute jon
portí.on of thí,s deueLopment eonrpLeteLg e of us. - 

pLayed
the maion no\e ín the ouenalL deuelopm e LargeLy nï¿øi"
fon the intpLementation of the cAr opè2, êffi, ineLu he resid,ent
eenty,aL p?og?am, eyetem monítor úld ¿n iuen. Th or
deoeLoped -the Languqge ALFLE and ite assoe¿ated eompiler,. He aLso
p?og?Øtrned the nesident dise dntuer ø¿d díspLay pnoþrøns aa u)eLL as a
rulnben of routinee in the operatíng system.

t*



15-

It has been noted by Glaser f27l ttrat an essential component of the

auto-instrucÈional process is performance assessme.nt. The system must

continually deternuine whether the desired learning goals are being attained

or not, and this requires response processing. However when we consider the

teaching of mathematics, we find that existing capabilities are inadequate

for assessing certain kinds of performance. Problem solving and proof

construction are skills fundamental in mathematical training. To determine

whether a student can solve a problem* or not, it is normally quite sufficient

to check. only his answer - usually a nunber, an expression or some similar

entity. on the other hand there is no similar simple quantity which a student

nay type in to indicate tl¡at he can prove a proposition. 'wfr.t is required in

this case is a supervisory sub-system for following through and validating a

proof.

A similar supervisor for checking problem soLutions would be both very

useful and desirabte - especially when incorrect ans\¡rers are received. This

is because in programmed instruction, the knowled.ge that a studentts answer

is wrong helps hi¡n discover where, v¡hy or how his sotution has been incorrect.

This is made possible by the smallness of a Pr frame. However the solving of

a problem is generally a large multi-step process and tlle knowledge of

incorrectness of the answer often sheds very little light on the nature and

location of the error" An anslÁIer can be h¡rong sirnply because of a trivial

* H.ere ue take a p,obLem to be one uhose soLution yíeld' ø,ín eontnast to a pnoposítion ov. a theonem ahose Truth has
de.monstrated in a pnoof and yieLds no tantsu)ert.

| ØLstùen I

to be
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form of a useful identity for sul¡stitution, a Inext stepr to enahle him to

continue, suggestions about the method to employ in the proof or some other

relevant information. I¡{hen the student gives up, t}re system may either give

him a proof or complete his proof from where he left off. When his proof is

unduly long, the system may bring this to his attention. It should also be

appreciated tl" at tl¡e student is receiving very important aid from the fact

t¡at his steps are analysed immediately on input.

As an illustration, we offer the following hlpothetical TPS-student

interactions. The replies from TPS are assumed to be based on standard

messages stored in the system.

TPS show that cot4A-csc4A = 1-2*csc2A

STUD : cot4A-.".44

"os4AsinsA

.os4A-l= -;Tm_
(cos2A-1 * co=24+l

sLn A

I
-....Fsl-n'A

sin2A* (cos2e+t)
= 

-sl;r--TPS : Incorrect

sruD 2 ()ops! Forgot the minus sígn - erase Last eæpressíon)

-sin2A* cos2A+
srn A

- (cos2e+1)
sinzA

- ( cos2A+sin2a-s in2A+ I
srn A
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- (z-sin2a)
= 
-I;Fã-_2

= I ----r-sin'A

= f - 2*csc2L

QED

Correct. But look at the following proof:

cot4A-csc\A

= (csc2A-I) 2 -csc A

=, .s.44-2*csc2A+l-.s.4A

= I-2*csc2Pr 9ED

1+tanA-secAShow that secA*tanA-1
I+secA-tanA
secA+tanA+I

l+tanA-secA
secA+tanA-I

cosA

lPS

TPS

STUD :

rPs

STUD !

TPS

rPS

STUD

I/cosA+s cosA-1

cosA+sinA-1
cosA

1+sinA-cosA
cosA

cosA*sinA-l
1*sinA-cosA

#HELP

It is easier to prove this identity by showing that LS/RS=I.

#seræ (nequeeting funther heþ)

You need only use tle identity: sec2A=tan2A+1

Prove: (l-cotA) * (I-ta¡¡e)=2:secA*cscA

(l-cotA) * (l-tanA)

= 2-secA*cscA

QED
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assistance has not been implemented. However ttre practical a¡rd theoretical

problems associated with it have been considered in some detaif and are

described in the thesis. A novel method for determining reference identities

rrelevantr to a proof has been developed"

This work on proof supervision constitutes the major part of this thesis

and may be regarded as a contribution towards ttre development of intelligent

CAI systems.

To recapitulate, this thesis comprises essentially two parts :-

(f) the development of UACAIS' includingt ALFIE

(ii) an investigation into ttre problem of supervising trigonometric proofs.

Although they appear unrelated, it was the pursuance of (i) which led to

the problem (ii).
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CHAPTER II

THE UNIVERSITY OF ADELAIDE COMPUTER-ASSISTED INSTRUCTION SYSTEM

This chapÈer is essentially a revised and expanded version of tåe paper

t55l by Perry and Lee. It describes the August L969 version of the University

of Adelaicle Computer-Assisted Instruction System (UACAIS). The main emphasis

is on external rather than internal features and only a general outline of

the internal organísation will be given.

UACAIS is implemented on a Control Data 6400 computer tfIl. The aims

of the system are to provide 3-

(a) a flexible medium for the presentation of teaching proçtramsi

(b) authors and instructional researchers with useful statistics on

the effectiveness of their teaching programsi

(c) a general experimental tool for the investigation of teaching and

learning processes.

Basic System Features

UACAIS is based on existing equipment and its available software

togettrer with locally-developed interface and terminal hardware and its

supporting software.

In the initial stages of the implementation, the CDC 6400 installed at

the Unlversity had the minímum 32K of 6o-bit central memory, a central

processor (cn¡ , and ten peripheral and control processors (PP), each of which

is an autonomous computer with its own store of 4096 12-bit words and an

unlimited access to the central memory by the use of read and write instructions.

The 6400 also had Èwelve bidirectional 12-bit data channels, cornmon to all
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PPs and connected to the various peripheral equipment.

The main peripheraL I/o devices were :-

(a) a dual-screen CRT display console with ma¡rual keyboard. Display modes

are dot and character¡ characters comprising 26 alphabetics, l0 numerics

and 11 specials, in three sizesi

(b) a mass storage discfile providing nominal storage of 50O million bits;

(c) six magnetic tape units, with three recording densities on half-inch

tapes of up to 240O feet;

(d) one card reader with a maximum speed of 1200 cpm;

(e) one card punch;

(f) two 80o'1pm line-prinÈers;

(S) one lO-inch CALCOMP incremental plotter.

The CDC 6400 has since been upgraded by the addition of :-

(a) 32K of 60-bit central memory.

(b) three remote terminals each with a CRT display console, a card

reader and a line-printer.

(c) four removable disc-pack units.

(d) a 3O-inch CALCOMP plotter.

Some of the peripheral I/O devices were not required in the CAI systemt

although the card reader a¡rd the line-printers were used for certain off-line

CAI applicatíons such as course preparation. The remote CRT terrninals and

t¡e disc-packs vüere acquired too late to be incorporated into the system, but

should prove extremely important for future versions of UACAIS. The CRTs

would be a useful replacement for the noisier and slower tlpewriters now in
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uae. The use of removable disc-packs would enable a virtually unlimited

number of qourses to be available on-line very conveniently and rapidly.

At present, required courses have first to be loaded onto the discfile from

tapes.

The major perJ.pheral devíce in UACAIS is the discfite which serves as

a ra¡¡dom access, high-speed transfer, mass storage unit. It is used in Èhe

CAI system in three main ways:-

(a) The complete operating system is copied onto the discfile from tape

as it is loaded. This allows the system to be recovered without a

complete reload in the event of a hang-up. It also facilitates rapid

access to PP subprograms when they are needed.

(b) AII teaching progra¡ns are stored on the discfile when needed. A

system of directories gives access to any course segment by name.

(c) The disc is used as a backing store for student operating information.

Each console is allocated the required amount of space by the system.

The implemenÈation of the CAI system represents considerable programming

effort"* The entire software has been developed by P.G. Perry and Èhe author,

and has been coded completely ín the central and the peripheral assembly

languages tf2l of the CDC 6400. The size of the system precludes a detailed

description of the programs in the system; only an outline of tåe more

lmportant ones will be given.

Ae 6rt indieation. of thí,a, the system took moye than Lwo Uears to deuelop"
In te?rne of eand uoLume, the softutate, ineLudì,ng t\rc eompiler fon ALFIø,
oecup¿es about 25r000 eands.

*
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The system includes the monitor, Èhe disptay and ttre disc driver

progr¡rms, each residíng in a separate PP. The remaining seven PPs form a

pool on which the monitor can draw, for the execution of any of a suite of

utility sr:bprograms, including equipment drivers and general routines for

performing jobs which cannot be carried out conveniently by the CP. The

main programs in tJle system are outlined belou¡.

MTR MTR is the monitor program and resides in PP-O. It controls the assign-

ment and release of pool PPs, data channels, disc space and peripheral

equipment¡ and coordinates their activities. ft also maintains a real-

time clock and services CP and PP requests for the loading and execution

of utility progra¡ns.

RDD This is the disc driver program. It resides in PP-9 and communícates

with the discfile via channel-OO. RDD queues and processes all access

to the discfile. PP requests to RDD are for data to be read from the

disc, for data to be written on tTre disc, for the loading of PP overlays

and for the release of disc tracks. CP requests Çoncern mainly the

Ioading of course segments on central memory, and the transfer to and from

the disc, of student record information. RDD maintains a request stack,

1 for PP and up to 8 for CP, servicing them on the basis of their required

dísc access times, rather than on the first-come-first-served principle.

Thus for two competing requests, the one entailing less track select and

disc group-head switching time, will be serviced first. The reason for

adopting such a priority system is to ensure optimum throughput between

the disc and central memory.
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Resident in PP-I, DSP is the system display progr¿rm, driving the 6400

CRT scope via cha¡¡ne1-10. It monitors system status and activity and

permits operator control of the system from t}re keyboard. Among the

operations it can handle are the activation and deactivation of channels,

the assignment a¡rd the swÍtching on and off of equipment, the modification

of central memory and the despatching of equipment function codes. These

control functions of DSP had proved invaluable in tl.e debugging of the

CAI system - during the various phases of its implementation. The

display console has also been used Èo simulate the student terminals

before they became operational.

RCP is ttre major resident central memory program. It contains various

monitor a¡¡d student conununication tables as well as student working

areas. Figure 2.1 ís an outline of the central memory in RCP and gives

an inslght into the internal structure of the program.

RCP ís also responsible for ttre presentation of courses. The system

was designed to have eighÈ student areas to be time-shared by up to 512

students through swapping. Course segrments not irmnediately required in

core are rolled out to the disc, while segments that require processing

are loaded from the disc. Since we do not expect to have more than a

few dozen consoles for some considerable time, this version of UACAIS

has been modifLed to have arbitrarily, forty student areas. This means

that for up to a maximum of forty consolesr Do,swapping of student

working records will be necessary. RCP accepts and processes, using an

interpreter subroutine, the instructions of ttre teaching progran. It
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analyses student ans\^Iers, performs the appropriate branching, records

on tape student responses and performance data when so directed, a¡rd also

handles the sign-on and sigm-off protocoJ-. RCP also maintains a desk

calculator facility for servicing simple computational needs. The student

uses this facÍIity through the #CO¡IpUTE command¡ the syntax for the

expressions to be evaluated resembles the one for the register expression

in ALFIE. (See Appendix A)

The system software also contains many other programs. These include

those for drivíng the login tape, the logout tape and the student response-

performance tape. AIso included are Èhe remoÈe console/interfaçe driver-

scheduler and the course and system loaders.

1460

Free Storage

Central Program Student
lrlorking Area
(n x 1000 words)

Resident Central
Program

Student Communication
Tables

Monitor Tables

5520

TL740

L77777

(The memory locations refer to a recent
version of RCP¡ n is the nr¡niber of
stud.ent areas. )

0

Figure 2.la Central Memory Utilisation
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Link Status Table

Monitor Request Table

File nane and Program
name tableg
(r,ibrary Directory)

Display Buffer Area

Equipnent Status Table

PP Control Area

Message Areas for PP-l to
PP-9

Pointers and Channel
status Table
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0

10

Locnr 0 is set Eo zero¡ contains
pointers to library directorY,
display buffer area, status of
each of 12 data channels.

8 word block per PP. Each block
has a 6-word message buffer area
in wTrích PP and monitor can insert
a message.

4 word block per PP for PP to
communicate with monitor regarding
request to execute Programs etct

Status of equipment: disc filet
dis¡llay console, interface, card
punch, card reader, plotter, printer
a¡rd MTU ptus dummY entries.

For the insertion of message for
A-display by DSP.

Directory of system routines
Iike CLR, BKP, ExJ, SIM'
a¡rd directory of courses loaded
in the system.

Status of each link (active,
inactive) .

Area whiclr MTR examines for systems
requests, inserts/updates clock,
and CP disc I/O requests.

Exchange Jump Package for ldting
program.

L20

L70

210

s54

1400

L420

1440

1460

Figure 2.Ib Monitór Tables
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lltrc CÀI Coneoleg

The CAr congoles a¡¡d their interface with ttre computer have been

deel.gmed a¡rd bullt within the Unfversity t561. The interface is designed

'to have up to 64 external tinks, two of which have now been implemented.

Eaah lfnk is capable of controrring g consoles, giving a mar<ímum of 512

congolee.

A console is a unit v¡hich can contain up to seven pieces of equipment,

only one of which can be operating at a time. The consoles available at
present have only a tlpewriter (for input a¡rd output) buÈ it is hoped that
future consoles wl-lL Lncorporate a slide projector, a computer-controlled

tape-recorder, for the playback of pre-recorded messages only, and a cRT

dieplay ln lieu of the t¡pewriter.

The coneoles work on a basic seven bit code, with an eighth bít for
lndLcatlng control functLons, such as status response and unit serect, and

thrce bfts for tÌre console address. fhe seven bit format allows for a¡r

fmprlclt case bft tn tå.e typewriter code (see Appendix A).

All consoleg are rr'ur by a single driver subprogram which schedules the

console to be proceleed on each link at each cycle and performs certain
automatLc functions such as deactivating faurty consoles and Iinks.

Although only four c-onsoleg have been built, the system is theoreticatly
capabre of processlng the fulr comprement of 5r2 consores.

Input messages are ter¡ninated by a carriage return (c/r) and are not
recogmLsed by the system untir ttris is received. The student can derete single
charactera by backspacing, and erase a whole message by using a character
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only a list of the active consoles would be needed to effect a recovery.

Student ülorking Record Format

Some further insight into the internal arrangement of the system can

be gained from Èhe format of the information used to process an individual

student. (See figure 2.1d.) This is best described in three separate

phases:

(a) At Sign-on Time

When the student types in his registration code, a record with that

code name is searched for on the login tape. This record should con-

tain the studentrs name, his mode (whether he is a student, author or

a proctor), the contents of various counters and a list of all the

courses for which he is enrolled. Each item in this list includes the

course, chapter and page names, the total time spent on the course so

far, and the content of counters for Ètre course.

(b) During Operation

The student working record during operation can be divided into two

main parts:

I. Header, containing the studentrs n¿rme, various counters and flags,

the course nane and the position in ttre course. This section is

derived initially from ttre information found in (a) above, and is

altered as the student progresses.

2. Body, which is a copy of ttre cuÍrent segrment of the course. By

keeping this copy with ttre information concerning ttre particular

student, it is not necessary to search for it each time the student

is processed.
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with a totar record tength of 512 6o-bit words and the header

Èaking up 48 words, a maximum segment length of 464 words is reft.

A full segment containing onry textual data and the necessary data

transmission commands courd contain up to 20oo characters, and

these wourd take about, 2* minutes to present. During the swapping

to and from the disc of the student working record, the fulr record

need be written on the disc only oncei subsequent transfers to the

disc, for a given page of the course, need invorve onry the first

one or more disc segments (64 words each) of the course required to

cover the header. This is because onry the header portion is

variabre during operation, and once a copy is on the disc, only the

header segments need be altered" (oisc transfers are carried out

in segments.) since in a furry impremented 5r2-consore system a

great deal of disc swappíng operation can be expected, varua_bte time

would be saved by not retransferring the non-varying segments of the

record to the disc.

(c) After sign-off

Íùhen the student signs-off the record head,er information is dumped on

another tape, the logout tape, in its finar form. The information it
novl contains is the studentrs code, time spent during the session,

ttre new counter values, the name of the course a¡rd the new position in
it. This information is used to produce an updated master record (or

login) tape so that when the student next signs on, the new course

position is known. However tåis updating is made only after the cAr
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system has finished runningt by using disc packs instead of two mag-

netic tapes in future, immediate updating of the student master record

car¡ be made.

the Author and the Studentrs Views of the System

To the author, the system is essentially a means of presenting a course.

This he can achieve ttrrough the author language ALFIE. At present courses

are prepared off-line on cards and assembled by the ALFIE course compiler

onto tape"

A student signs-on at the console by typing in his registration code.

He then selects from among the courses for which he is enrolled the one he

wishes to pursue. This course is presented to him according to the authorrs

instructions: he may be offered informative material explaining a concept,

then presented with questions to probe his grasp of the concept and additional,

remedial, material íf necessary.

The student has some control over the presentation by use of command

words, such as LOC'oUT, STOP, GO, LOCATE, COMPIIIE and HELP. These may be

abbreviated to any extent by dropping the end characters. For instance,

IIELP could be shortened to HEL, HE or simply H; the requirement that the,

abbreviation should uniquely identify the command is obvious - failure to do

this will cause the use of ttre first comma¡rd word in the table which could

satisfy the message.

The student uses LOGOUT to sign off from the session. The STOP suspends

the presentation of the course, until a GO is received. The GO also over-

rides any system,/course interrupts, causing the lesson to continue. The
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sign-off.

The development of the preliminary version of UACAIS has also led to

ideas for useful additions to the software. This includes expansion and

J-mprovements to the author language, the development of an on-line course

corçilation, testing and revision capability. The set of keyboard commands

should be expanded. Application packages for extracting student performance

statistics should be developed¡ preferably these should be accessible from

the keyboard" Also basic statistics like time spent in the current session,

performance leve1 and so on, should be inunediately availal¡Ie to the student

when he signs-off.
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compller (or assembler) ALF, then converts ttre course in CONCODE into the

obJect codes. It can be seen that we have in tl.is way, made provisions for

the lmptementation of other course-preparation media. All tt¡at is required

for a new medium is a correspondlng preprocessor for convertlng a course in

that medLum into coNcoDE. Figure 4.3 (Appendix A) illustrates the approach

Just discussed.

Inthecompilationrtwolistingsarealsoproduced:-

(1) the source card listing produced by LKc (see Figure 4.1); and

(21 the assenbly listing produced by ALF (see Figure A'2) '

The preprocegsor LKC distinguiShes between five kinds of course cards

by examining ttreir first columns. They are:-

(1) Ll-stinq Con trol Card (LCC): This has a 2-8 (D on IBM 029) punch on

column I. It is used for producing and suppressing source card listing'

(2) Comme nt Card (CC): A CC is characterised by an r*r on column I. The

(3)

characters on the remaining 79 colunns are treated as comments, and

appear on the source card and assembly listings.

EdltCard(EC):Carriesêr=roncolumnland|EDlTlonthenextfour

columns. The EC is used as an aid for line truncation and text justi-

fl-catíon.

(4) Keyword Card (Kwc): A KWC has a '$t or r+r (w on rBM 029) on column It

or a rcr if it is a continuation IGrlC. KWCs are for carrying instructions,

each of which is identified by a keyword.

Textbody card (TBC): A TBC is normally one with column I blank¡ however

any card which is not an LCC, CC, EC or KlrtC is a TBC. TBCs are used

for coding typewriter Èexts streans. A text stream is a string of

(s)
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(2)

(3)
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typewriter codes to be output on the typewriter, and consists of a

set of successive TBCs bonded by Èwo Kt'üCs.

The characters available on ttre console typewriters are the usual:-

Alphabetic; ABC...XYz abc "".xYz

Numeric: L23 7890

Special: +-rt/()$=bIa¡rkr tl# .t

& "t@+? ! ì

Available controL functions are: carriage return, index*r tabr backspace

and the btack and red ribbon select.

Textual material must be composed from this set of characters and

functions only. Since many of these are not available on a standard card

punch, a card code for representing then is required.. Tabfe A.l gives the

list of aII available typewriter characters and functions, their card codes

based on the IBM 029 punch, as well as other codes.

A course in ALFIE is essentially a sequence of directives or instructions

and texts. The directives are KVICs while texts are made up of TBCs¡ CCs,

ECs and LCCs may be included as comments and to control source and listing

and text editing.

A course is organised into an arbitrary number of named chapÈers, each

of which may have up to sixtyfour named pages. Figure 4.4 in Appendix A

shows schematically ttre organisation of a tlpical course into chapters and

pages. The arrows indicate tÌ¡e various kinds of branching permitted in ALFIE"

t Depreeeing the indeæ keg posí,tions t\te typa'triter earr¿age on the søne

eoLwrm on the neæt Line"
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The r+t used instead of the t$ I on column I of a K!{C defines an implicit

label (q"r"). All non-implicit labels in a page must be unique.

A command directs the course interpreter to perform certain operations.

CoÍìmands are normally executed one by one down the Pager continuing on the

next page. This strictly sequential execution is interrupted by branch

instructions. Certain critical (q.v.) commands like the CUE, also have

special meaning which wiIl be e>çlained later.

Vrlhen a command is executed, the next one witl- be executed immediately

unless the command contains a delay - whether explicit or implicit. A delay

is a period that must elapse before the next comma¡rd is executed, but it

can be overriden by an interrupt from the student, typing in an answer or

a I #Gor.

The various conmands in ALFIE wiII now be briefly described. The

reader may refer to Appendix A for further details.

The IEXT command instructs the system to present the inmediately

accompðurying text stream. A TEXT without an accompanying text stream is

ignored. rlowever a text stream need not be preceded by a TEXT cardr in

which case a t $TEXT. r card is assumed" A delay of up to 999 seconds can be

specified via the T-parameter. If not specified, as in r$TEXT.r' a I second

delay is assumed, while T=* implies an infinite delay.

The SIGNOFF command signs off the student, who c¿ìnnot then resume his

course until he signs on again. fhe student can also sign himself off by

Lyping in r#LoGoUTr.
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The COMpLETED command directs the system to sigrn-off the student, and

informs it that he has finished his course. There may be more tha¡r one

COMPLETED and SIGNOFF in a course.

The CUE, ANSI,{ER, ENDANS, V'IAITCUE and GIVECUE commands may be used onJ-y

in a prob.Lem environment, a rather loose concept which will be explained

later"

The CUE is the command which directs the system to accept and analyse

an õ¡nsu¡er from the student. The answer should be entered within the

permitted delay; otherwise the system will execute the next command- The

<1elay can be optionally specified by the T-parameter; if this parameter is

absent as in !$CUE.', then an infinite delay is assumed. A repetition

factor is also allowed in a CUE, e.g. r$CUE'4(T=IO)' is equivalent to four

successive r gCUE (T=IO) | cards. The actual interpreter action on the CUE

will be explained in the section on the problem block.

The 
^NSWER 

a¡rd ENDANS commands enable the author to specify one or

more ans\ders against $¡hich the studentrs responses are to be compared. The

M-parameter specifies the answer recognition mode, the default mode being

M=3. At present only the modes OrIr2, ... 14 are implemented. These cover

the following kinds of matches: catch-all (in which any answer matches) r

exact string match without prior editing of student answer, after removal

of blanks or some specifiable class of characters, truncated string match,

unordered list match, numeric match with specifiabl-e numeric limits and

algebraic expression match.

For each problem btock, the author supplies a sequence of answers, the

last of which must be an ENDANS. Thus if there is only one answer specified,
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it must be an ENDAIIS. Only the ENDANS can have M=Or Èhe catcl-all mo<1e'

An answer command also carries a C-parameter which can take any of

the values OrLr2, 63¡ the default value is O. The C-palameter wil-I be

included in a recording of a response match witf¡ the answer. It is useful

as a means of categorising anshrers in ttre course - for expediting subsequent

analysis of recordings of student performance data.

Although the answer recognition capabitities available are adequate in

meeting a wide range of needs, there are many answer processing needs that

have stil I to be caÈered for. The modes so far implemented have been

chosen to meet ttre immediate needs of the current phase of the CAI project.

Three examples of the ans\¡rter command are:-

(1) $ANSV'IER(M=2,C=3) *PERMUTATION*

(2) $ANSWER (C=4) =¡¡¡R¡4=FRIENDLY=GENIAL

D
( 3) $ENF¡\NS. *UBTQUTTOUS*

The I¡IAITCUE and GI\IECUE colnmands carry no parameters. The I\IAITCUE

instructs the system to re-execute ttre last-executed cue in the problem

block. The cIVEcuE differs from WAITCUE in that it instructs the system ;

to execute the conmand immediately following the last-executed cue; this

is usually some cueing text.

The TII"IE instruction, e.çJ. t$TIME T2XX. 
t, instructs the system to record

the current time, at which the present course position, specified by the

name in the instruction, is reached. This is useful in investigating the

time taken by different students to reach various course positions.

The DIILAy comm¿rnd instructs the system to pause for a specified period.
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'I'hus | $DELAY ('r'=IO0) ' is a request to wait for tOO seconds to elapse before

resuming course execution, unless there is a student-initiated interrupt.

The I¡IAIT command instructs the system to output in red the character

overprint rWr on the typewriter as a signal to the student to press the

carriage return key when he is ready to resume. The VIAIT may not be imbedded

in a prob-Lem block.

The PROBLEM card carries two parameters - a problem block name and a

recording or R-parameter, enabling the author to name a problem btock, and

to specify the recording mode. Student responses and other performance data

wiII be recorded according to the associated PROBTEM card.

There are three kinds of unconditional branching :-

(1) Intra-page e.çJ. $GOTOrL2.

(2') Inter-page but intra chapter e.g" gGOTOTpAcE(TX2)

(3) Intra-chapter e.g. GOTOTCHAPTER(p2) rPAGE (U26').

The intra-page branch enables the author to specify a transfer to any-

where in a page by specifying the lal¡e1 of the destination. The special case

'$GOTOT+' is a branch to the next implicit label, i.e. r-+r, below in the

page. The other branch instructions permit transfer to any named page in

the same chapter, or the first or ¿rny named page of any other named chapter.

Register Arithmetic

The author is provided with fifteen registers (or counters), ArBrcr...

MrNrO. Each register is used to hold a 60-bit real number. By means of

register statements (see Appendix A), the author can set register values and

perform floating-point arithmetic on numeric constants and register values.
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\ll regisLers are zeroed at the beginnjng of a course. Registers may be

Lrsed to keep track of individuat student progress. An example of the

register statement is:' $A=B-4*F/G.

conditional branching based on register values are allowed' The general

form of the conditional branch is:- rF(relational expression)Br where rBrr

stands for any unconditional branch statement. The relational expressiont

which can be true or false, is a statement about relative register values'

,Ihe rBr, is taken only if the relational expression is true' Examp'Ies of

conditional branching are:-

(r) $rF(Ir.Ltr.G)GOTOrK44.

(21 $rr (cj.GT.12) GOTOTPAGE (JA3) -

hle should also mention here t].at some keyurords have equivalent alter-

natives. Thus all the foÌlowing keywords in a parenthetical group are

equivalent: (CUETEXPLAINTEXP); (PROBLEM'BLOCKTPRB'BLK); (ANSlrIEn'ANS);

(END¡\NIs,ENs) .

tùe have now covered briefly all the commands in ALFIE' The important

concept of the problem block will now be described and this is quite vital

in the understanding of the language'

'I'he Problem Block

The cue, ansvter, V'IAITCUE and GIVECUE coflunands are criticat instructions

intlattheymaybeusedonlyinthecontextofaproblemenvironment,and

not arbitrarily. Here, rcue' refers to CUE'EXPLAIN or EXP; ransvtrert to any

of ANSWERTANS, ENDANS and ENS.

A cue sequence is a set of one or more cues, possibty interspersed with
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text and non-critical commands. It has the form:

$cun---

$

$

CUE

CUE

e.9. $CUE,2 (T=10)
ft begins with a rCl

$CUE (T=t5)
sTrME rfuc2.

Try again.
$sxP.

The answer is lcrisist.

An answêr sequence is either an ENDANS or a set of answers (not ENDANS)

terminated by an ENDANS. The sequence may be interspersed with text and

other instructions, but excluding cues and the WAIT.

e.9. $¡Ns (¡,1=Z) *coMMoN*

NearJ-y correct. Try again.
SI'IAITCUE.
$nl¡S (¡l=Z ) *ORDINARY *

Correct.

À cue sequence followed by an answer sequence constitutes a problem

block. The cue sequence and the ans$rer sequence have no independent standing;

every cue sequence must be accompanied by an ansÌárer sequence.

Any answer sequence not immediaÈeIy preceded by an unconditional branch,

wi'll have a TGOTOT+| automatically inserted there. Thus

$cun---

$ats---
is equivalent to $cuE---

$Goto,-+
$ens---

The problem block is a paradigrm for posing a question to the student
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What usually follows the cue is some prompting or explanatory text - hence

the keyword CUB and its equivalent EXPI"AIN.

!'lhen an answer command is executed., the studentrs answer is compared

with the authorrs ansvrer(s), under the specified mode. The outcome of this

comparison is either a (successful) match or a mismatch. If there is no

student ansh¡er to be compared, e.g. when his answer has already been matched

with a preceding answer in the same ans\¡rer sequence, then a match with the

answer(s) is assumed. If there is a mismatch, then the answer pointer is

reset to the next answer command; this next ansr¡ùer is then executed. If no

next answcr exists, then the course resumes from the cue which has led to

thc execution of tJ. is answer command. If there is a match, then the course

c<¡ntinues from immediately after the answer command jusË executed.

A problem block may not be split over two or more pages. I,rlhen an

autÌ¡or-defined paçJe exceeds the page limit, the assembler will attempt to

spread it over two or more pages without splitting any problem block.

Specimen Course and Interaction:

Figure 3.1a is the source listing of a course which has only one chapter

and one page. The course is named TSPECIMENT, the chapter 'ONE| and the

page rRR4r. The Inon-standardr characters in the texts are mainly codes

for indicating upper and Lower cases in alphabetics and for terminating text

cards. (See Table A.f") They appear in a more natural form in Figure 3.Ib

which is an assembly listing of the page. The assembly listing of text

simulates as far as the line printer permits, its appearance on the typewriter;

thus while spacing, backspace, tab etc. are reflected exactly, this listing
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PAGE r RR4 .

*
ë THIS IS A DEMONSTRAIION PAOE
r

PRll . Q¿2 ( R=8 )

I¡HICII ELEMENT hAS THE AlOHIC SYHBOL ÉPItt
CUE.

PL-------. TfiY A0AIN.
CUE ( Tá20 )

Pl Is A MEIALT MaINLY USED AS AN INDUSÌR¡AL CAtALySti
EXP(T=¡O}

THE ANSI{ER ISs PLATINUII
GoTO r PJ .
ANS(M=E){PLAfINUMö

GOOD. PLATINUI.I IS CORRECT.
GoTO r PJ.
ANS (M=2 } }PLUIONIUM} \

PLUTONIUM ¡S 
'PU"GIVECUE.

ENS (I'I=2 ) $PHOSPHOFUS$
PHOSPIIORUS IS 

'P*.G I VECUE .
ÈPJITEXT.

aBcD... .. .. .
ENO

385 IJNUSED I,]ORDS FOR ABOVE PAGE

3. lb Assêmblv Listine
SCOURSE'SPECIMEN.
$CHAP fER r ONE .
$PAGE r RR4 ¡

PA6E (¡¡ CHAPTER ONE RR{ OOOT

RR4
RR4
RR4
RR4
RR4
RR4
RR4
RR4
RR4
RR4
RR4
R ll4
RR4
RR4
RRô
RR4
RR4
RR4
RR4
llR4
RR4
tìR4
RRó
RR4
RR4

0
Õ

ë
THIS IS A OEMONSIÍIATION PAGE

CARD
CARO
CARI)
CARD
CARD
CARO
CARO
C ARO

C ARO

CARI)
cÀR0
CARO
CA RO
CARO
CÂRD
CARO
CARD
CARO
CARD
CARO
CARD
CARD
CARO
can0
CARO
CARU
CARD
CAPO

000¡
000e
0J03
000a
0005
0006
000t
0008
0009
00I0
001¡
00te
00t3
0014
0015
0016
00t7
00¡e
00¡9
00e0
002¡
00e?
00e3
00er
00?5
0026
0027
0048

$PRB r 0?? ( R=8 )

lIX=HICH ELEMENI HAS THE AIOM¡C SYHBOL JlP=T*¿^^
SCUE.
1P=L^7.. 1T=RY AGAIN.^^

$CUE I l=20 )

1P=T IS A METALT MAINLY USED AS AII INDUSTR¡AL CATALYSl.^^
$EXP(f=10)

1T=HE ANSwER Isl +PLATINUI.{^^
$G0T0 r PJ.
SANS (M=21 TPLATINUM*

1G=OOO. 1P=LAT¡NUM ¡S CORRECT.^^
$G0T0 r P J.
SANS (MrZ) üPLUTONIUMT

+P=LUTON¡UM I5 É1P=U*.^^
$G I VECUE .
$ENS (M!2) $PH0SPHORUS$

1P:HOSPHoRUS I5 *tPt.^^
$6 I VECUE .
ilPJ I TEXT.
+ABCO..rrr...ÂÂ

$ENO

3 .l-a Source Listine

Figuré 3 .l- Samþ1e Listing from ALFIE
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cannot show the effccts of case changes in atphabetics, and of ribbon

changes.

Note the three comment cards with an I'tt on column l. The page location

into which each instruction is compiled. is also shown in the assembly listing.

At the bottom of this tisting, the nrunlcer of unused. words in the page is

printed.

Page RR4 is essentially a problem block and the following are three

student interactions with it. Every student response is terminated with a

carriage return, but this is not shown. student type-ins are given here

in italics.

(a) Which element has the atomic slzmbol rptr?
?P1.41'INUM
Good" Platinum is correct.
ABCD. " ..

(b) Whictr element has the atomic symbol rptr ?
.?I)O'I'ASSTUM

Incorrect.
PI_. Try again.
? (SLude.nb faiLs to resporld uithi,n 20 seconds)
Pt is a metal, often used as an industriat catalyst.
?PLA 1N UM

Goo<l. l)l.atinum is correct.
ABCD....

(c) Which clemcnt has the atomic slzmbol tPtr?
?I'IIOSI'IIONU{;
Phosphorous is tPt.
P1--. try again.
?PUII'ONTUM
PluÈonium is rPur.
Pt is a metal, mainly used as an industrial catalyst.
?P],ATTTNIIM
Incorrect
The answer is: PLATINUM.

Crreing Feature of ALFIE

Unlikc most CAf languages, ALFIE is a cue-oriented language, especially
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suited to the presentation of hints or cues. It is an easy matter to program

a problem which allows ttre student say three attempts at it, with a hint to

follow each of the first two unsuccessful attempts. It is of course also

possible to do the same ttring in other CAI languages, but usually with less

convenience.

one potentially useful application of the cueing feature of ALFrE is in

the investigation of guided discovery learning. Suppose it is d.esired to

teach a concept, which is small in some sense. A common approach in pI is

to present a unit U of information, usually a paragraph or two, to describe

or explain the concept. An evaluative question Q is then presented to assess

thc studentrs understanding. The student may be allowed several attempts,

with or without hints. If the student fails to a¡rswer correctly, he will be

given the correct answer. This conventional approach to instruction may be

::eferred to as the IFTL or inform-first-test-Ìater paradigm.

An interesting variation of the IFTL approach is the TFIL or test-first-

inform-later paradigm. In this approach, Q is presented first and the unit

of information U presented later only wherr necessary, i.e. when the student

shows he <loes not already know the concept by failing to answer Q correctly.

T.'he two approaches can be shown diagrammatically in Figure 3.2.

'fFfl, in effect does not present to the student what tre atready knows,
ì :1,,r

l>ut gives only those information he needs. It is ttrerefore an adaptive

instructional technique in which good students could save much valuable time

by not having to go over familiar material. At the same time students not
.i

familiar with a given concept is not penalised - but has the chance of J-earning
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used for teaching as well as for revision, using the same material, since

only those materials that have not been properly learnt or remenbered witl

be re-presented.

TFIL also enables the student to learn by discovery, since in being

tested on a concept even before it is introduced a¡rd explained, the student

ls required to rdiscoverr the ansïrer. Materials learnt by discovery are

often better retained, although there is no general agreement on this [16l.

Betvreen ttre tr¡¡o extremes of IFTL and TFIL there is a rich spectrum of

allied instructional paradigms. In fact it is often possible to break U

into subunits of information, u1, rJ2, ... u¡, not necessarily of equal sub-

stance. The student can ttren be taught a concept, by being presented with

the evaluative question e, a¡rd ttren tJI, tJ2, ... U¡ in that order for each

successive incorrect attempt. If U1 is more substa¡¡tial than the other

subunits u2, .". u*, then by presenting firstly u1, and tllen e, and if

necessary, successively tJ2, lJg, ... Uk r,tre have a cue-oriented approach to

instruction. One could think of various alternatives to these - all having

the feature of teaching by guided discovery.

There is still considerable confusion over whether discovery learning

refers to a method of teaching, a method of learning or something one learns.

De Cecco t101 defines it as pertaining to those teaching situations in which

the student achieves the instructional objectives with linited. or no guidance

from ttre teacher. It is characterised by the amou¡¡t of guidance tÏ¡e teacher

provLdes.

Bruner t61 claims four advantages for discovery learning. It :-
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(c)

(d)
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increases intellectual potency

increases intrinsic motivation

teaches discovery techniques, and

improves retention.

These various aspects of discovery learning can be investigated

the TFIL and other related cue-oriented techniques for teaching that

just been discussed. In particular tt¡e effect of varying degrees of

on the effecÈiveness of learning can be studied very conveniently in

Useful changes that could be made to ALFIE include .-

(1) on-line facility: The development of an on-line keyboard-entry

through

have

gmidance

ALFIE.

course

preparation facility would be very useful. No special complicated

card code for tlpewriter characters and functions would be needed.

More importantly, in conjunction with immediate testing of course seg-

ments as they are built, the course can be quickly debugged and

revision effected inmediately.

(2\ Answer processing: Present facilities are stiIl rather primitive and

sufficient to meet only immedíate need,s. However, these will have to

be expanded. This expansion should not be done by simply adding more

answer recognition modes. Rather what is required is a concerted

examination of the answer processing problem so that simple and consistent

methods for specifying acceptable answers, and the corresponding processors

for recognising matching ¿mswers, can be developed.

(3) Course Structure¡ It would be far more convenient to the author if the

organisation of a course into chapters and pages were left to the

compiler. The author can then regard a course as a continuous sequence
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of text and instructions.

(4') Imbedding problems: At present problem blocks may not be nested"

T'he removal of this restriction will enable a richer variety of
programming techniques to be implemented.

(5) Edit Feature: The edit card has proved to be very usefur, but does

not provide enough features. It should therefore be expanded to include

two-sided justification (at present all lines start on column 1) and

richer options for text editing"

(6) Keywords: Some of the kelnr,rords ca¡ be simplified, e

instead of the current $GOTOTCHAPTER(ONE) , pAcE (tWO)

.9. $GTC (ONETTV,TO)

, and $cTP(P22)

instead of gGOTO,PAGE (p22) .

(7') Performance Data: At present student responses can be recorded. But

there are no packages for extracting useful information from the

recorded data a¡rd performing other usefur analyses. such packages

should therefore be developed, with special emphasis on ease of use by

interested parÈies. Simple performance sunmaries should also be

available from the keyboard.
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CHAPTER TV

I'XPRESSION EOUIVALENCE AND CONSI STENCY SETS

our aim in this and the next three chapters is to investigate

some of the main problems in deveroping a trigonometric proof super-

visor (TPS) and to suggest possible solutions. As indicated previously

we envisage students inputting proofs from remote CAI terminals. The

function of TPS is to check the incoming proofs step by step and to

assist and guide the students as required.

For TPS to be of practicar varue in cAr, students shourd. be

serviced without unbearable delay. Therefore we should seek solutions

which are practical and efficient enough to meet this real-time require-

ment.

Problem Scope

lfe confine our investigation to the class of mono-argument problems.

This means that alr the trigonometric functions wil_l be of a single

argument o. our class &. of all allowab1e trigonometric expressions

will be as given by ttre BNF definitíon bélow.

<disit> ::= olrlzl...lzlalo
<unsigned int> : := <digit> l.unsigned int><digit>

<trig fn> ::= sinelcoseltanelcscelsecelcotê

<AOP> :3= +l-

<¡,tOP> ,r= *ll

<primary> ::= <trig fn>l<unsigned int>l {.trig exp>)

<factor> : := <primary> 
| <primary>t<unsigned int>

<term> ::= <factor> l.tar*t.Mop><factor>
<trig exp> ::= <term> l.trig exp><Aop><term> l.Aopr.t..*t
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A corresponds to the syntactic class <trig exp>. However r¡re

exclude from 0. e>çressions rike sine/(tane-sine/cose) which are

mat't¡ematicatly ill-defined. The symbol r 1 r denotes exponentiation.

we have excluded variabres from our expressions, but this is merely

to simplify the presentation of our theory of consistency sets.

e.g. (sin9+2*cosê)12 and (cscê+1)/(l-seceî2+coÈel but not

sin(e+¡)-ÈanC and B*sine+c/cose, are valid expressions in 0..

In the subsequent we may use the more usual and convenient

notations ab and a.b for a*b, a2 for ar2 and so on. Also when brevity

is desired we may write sine, cose, as sin, cos, ... without the O.

lable 4.1 lists the basic identities IL, f2, 18 and the

supplementary identities Jl J2' J3, J4 in their standard form These

are tt¡e identities which we permit the student to assume in his proofs.

Except for the supplementary ones, this choice of reference identities

Is fairly standard in textbooks. We all-ow these identities to be used

(in substitution) in their various simple variants. Thus II may be

used in the form cscO-lr/sin€=O a¡rd csc€sing=l while 16 may be used in

such forms as sin2g=l-cos2e and (cos2e-l) /sin2e=-L. Note that the

reference identíties are by no means independent since, given LL, I-2,

13, 14 and 16, we can derive the remaining identities in the table.

Non-Pythagorean

csce=l/sine
sec€3I/cose

cotê=Irltanê
tan9=sine /cose
cot9=cose /síne
Pytltagorean

sin2e+cos2e=1

sec2e=tan2e+1

csc2e=cotl e+1

Supplementary

tang=sinê. sece

tan6=sece/csce

cotê=cose. csce

cotê=csce /secê
Reference Identities

r1

T2

I3
T4

I5

T7

I8

JI
J2

J3

J4r6

Table 4.1
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Difficulty in proof-Check rng

Let e[ ' er (eure, e&) be a problem identity. The aim of a

proof is to show the equivalence of eU and er. There .are various
waysof doing this, the most direct being to derive 

", 
fro* 

"U.
other approaches incrude deriving o from .¿-., and deriving I from

np./"r-, flo\dever t]ris is a question of proof strategy which we will
{or ^o.^r ;^* +-€-:''.¡ c\q.'o.l .r^.f,..=... .

ignorec. !{ithout r-oss of generality we will assume a proof to be a

chain of steps which derives a target expression from an initiar
expression using only algebraic manipuration and trigonometric
substitution. Each step derives one expression from another.

L'he task of proof-checking is then essentiarly to verify the

correctness and acceptability of each step in a proof. The difficurty
is that in our algebraic system, the various basic rules and axioms,

especiarry of commutativity, associativity and distributivity., give

rise to a proliferation of informal rul_es. These informal rules
.have become standard in algebraic reasoning because of their rong-

standing. usage. Thus the step sin2e-cos29+(sine-cosê) *(cose+sine)

uses an informal rure which may be regarded as a combination of the

factorisation rule r¿,2-g2 - (a+n¡*(A-B)' and the commutativity of
r+r and'*r. The factorísation rule is itself based on the axiom of
distributivity, the definition of indices and so on. Because there

are so many of these informar rules it would be impracticar, if not
futiLe, to check their explicit use in a step.

some formal systems, rike the predicate carcur-us, do not have so

many informal- rures because of the nature of their axioms and inference

rures- rt may therefore be a reasonabre approach in such systems, to
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check a proof by verifying explicitly that only valid inference
rules have been used and valid premises assumed.

It is suggested that a direct approach for checking trigonometric
proofs would not be very promising. rn particular this means that a

purely symbolic approach shou]d. be avoided. rn this thesis we have

opted for an approach which is largely numeric.

Preliminary No tions and Definitions

By the we shall niean those

operations that conform to the raws of equatity of expressions which

are consequences of the basic laws of equarity, the fiel_d axioms* and

the definitions of subtraction, division and indices. This mea¡s that
trigonometric substitutions are excruded. vùe rist berow some examples

of rational algebraic operation. arbrc and d stand for expressions,

terms, or factors as appropriate a¡rd m and n are integers.

. ax(-b) = -âxb . (-a)x(-b) = axb . axo = o

. (-a)+(-b) = -(a+b) . -(a-b) = _(b_a) . _o = o

. (am)n = a¡nn . (axb)m - amxbm . aoxan - -mfn

.-0=1 . aþ+c¡d= (ad+bc)/bd

Let us now define a few terms- A1r expressions are from 0..
Defn: 'lwo expressions f and g are equivarenÈ, denoted f=g, if one is
derivable from the other sorery by rational argebraic operations and

substitution of reference identities.

The field asíoms,,are the ,i.ng anioms (see Appendiæ B) togethet,uith the h¡o addítional oxioms :
(9) If cl) ond o.e-: c.b then a:, (canceLLation)

(10) vaeR, al7r-i a-L e R sueh that a'l.a=1 {rm,ttttpttéatiue inue,se)
tÌ is then a fieLd, if these anioms hold.

*
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e.9. (r)

(2)

(3)

e.9. (1)

(2)

(l-sino/cose) *sec2e= (I-tane) * (l+tan2e)

(t-sin2e) 
= 

(t-sine) * ( r+sine)

( t-sin2e) ltane-cot€

Def¡r. f and g are atgebraically equivalent or A-eoui valent denoted
A

f=9, íf one is derivabre from t]le other sorely by rational argebraic

operations;

( t-sin2e) è 1 r-"irr") * (t+sine)

(I-sino/cose) *sec eå(r-tute) * (t+tan2e)

Defn: f and g are trigonometricallv eouivalent or T-eou ivalent.
T

denoted f=gr if they are equivalent but not A-equivalent. This means

that substitution is'required to derive a T-equivalent expression.

ê.9. (l-sinê/cose) *sec2eE(f-t.rre) * (l+tan2e)

Defn: A step is an ordered pair of expressions

by f*S. The step is said to be correct if f+g.

a T-step according as fêg or fES.

(frg), and. is denoted

It is an A-step or

Notn: Let eo+er+e2-'. . .+êrrr

sequence of steps a.*"l, al

abbreviated.'Èo 
"O$.rr, represent the

-)ê'2' ê ->ên-l n

Defn: A proof is a chain of steps e'le' which derives a target
expression e' from a¡r initiar expression eo. (rt is:assumed that
eO and en are appropriate for the problem identity.)

Under our formulation a proof 
"Ol.r, is valid if and only if

(1)

(2',)

each step e..I

each step e.

(i=0, lr.. .n-l)

(i=0rIr.."n-1)

is correct and+g
í+1

->g
i+1 is small.
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our primary task in checking a proof is accordingry one of

verifying the correctness and smalrness of each step in the proof.

step correctness is a question of expression equivalence. The

main difficurty in deciding equivalence is that a given expression

can appear in any of an infinite number of equivalent ways. A purely

symbolic approach to this probtem wourd suffer not onty from

inefficiency, but the more serious problem of undecidability as well.

Expression equivalence will be discussed in the next section.

A step is said to be small if its correcÈness is readily verifiable.

But what is readily verifiabte is rather subjective. The step

"1-cote->1-cosêr/sinê" would probably be regarded as small whereas

"cotê*tano-)csco*secet' would probably be considered large (i.e. not

small). Hol^tever it is not obvious whett¡er "I-tan€-cotg+tallecote+

2-I/ (cososine) " should be regarded as large or small. Chapter V is

devoted to this step-size problem.

Expression Equivalence

Quite apart from its applícation in proof-checking, expression

equivalence is an important problem in the following.

(1) Ansr^¡er Recoqnition In CAf-based mathematics where a required

answer happens to be an algebraic expression, it is clearry

impossible for the author to a¡rticipate arl possibre correct
answers- The ansrârer processor should be able to recognise

expression equivalence 
"

(2') object code optimisation:* To produce efficient object codes

I øn gnateful to Dt,. J.G.
bo ntA attention.

* Søtd.erson foz, bninging this applícation
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efficiently some compilers perform conmon subexpression detection,

e.9. in array subscripts, so that the generation of duplicative

machine codes can be minimized, avoided or speeded up. For this

optimisation to be worthwhile, we may need a very cheap rnethod

for deciding equivalencer e.9. a numeric one.

Formulâ Manipuration: Expressions generated by formula manipura-

tion systems (see t101 ) are often very long and unwieldy.

Different systems generate different, but equivalent, formulae for

the same problem. There is often a need to establish the equivalence

of two different formulae.

The expression equivalence (decision) problem has been approached

in various ways. Simplification techniques in formula manipulation

languages t10l provide an indirect algebraic method. However these have

enjoyed only partial success because simplification is an ill-defined

concept. As an arternative to simplification B.F. caviness tgl proposed

ttre well-defined concepts of normal and canonical forms for expressions.

!{e shall noh¡ exarrine briefly Cavinessrs work.

The Work of Caviness

Let Ë be a we1l-defined class of expressions in which Èhe members

are formed from a finite set of atomic symbols, a subset of which are

variables. The expressions are to be regarded as functions over some

donain I .

TÌvo expressions El and E2 are identicar, written EI=Ð (note ,=r

not used for equivalence here), if they are the same string of atomic

symbols. They are said to be equivalent if for all as signments of

varues in$ to their variables , for which they are defined, they
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are equal. hle write El=82 if Et and E2 are equivalent.

A computabre function f is a normar form for Ë. ir it i= "
mapping from Ë. to €- satisfying: (t) f (a) =¡ Ee€ and (2) f (E) =o if

E=0. rf fur.ther¡ (3) f (Er)=f(Ez) whenever El = E2 then it is an

f-canonical form for € . An expression E is in f-ca¡ìonical form

if f(E)=E. The normar form, unrike t]le ca¡ronicar, is too generar

to be useful for deciding eguivalence. rts requirements (r) and (2)

can be triviarry satisfied by the mapping: f(E)=E, but wittr f(E)=o

whenever E=O.

rn a crass for which a canonical form exists, caviness has

shown that expressions can be reduced to the standard normal from

P/Q ín which P and Q are canonical. This provides an indirect method

for deciding equivalence. But this mettrod is not suitabre for our

probrem because our class CI- has no canonical form. Even if Q, tas

a ca¡¡onical form, the derivation of the standard form is by no means

an easy task.

Richárdson (cited by caviness) has shown that for the class Qr,
generated by 3

(I) the rationals, n a¡rd 1o9.2

(2) the variable x

(3) the operations *, * and composition

(4) the sine, exponential a¡rd absolute functions.

the predicate "E=0" for E in Q.2 is recursivery undecidabLe.

caviness has also shown that R.2 has no canonical form. Note that

our 6l is a richer class than 6¿2.

(
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A major objection to using a symboric approach to the equivarence
probrem is that it wourd be very inefficient. An expression can appear

in far too many distinct forms. A more serious objection however is
Richardsonrs undecidability result which shows that expression equiva-
lence cannot always be resolved symbolically.

while purely algebraic and symbolic techniques are unsuitable,

a numeric one can be a very elegant and practicar alternative. NumerÍc

methods for deciding equivarence have arready been adopted by oldehoeft

1,52J , Martin l44l and others.

one class of expressions considered by oldehoeft is the Tl-class.
The expressions are constructed from variables, constants and the

following operators and functions: +t -, *, /, composition, î (to an

integer power), sin, cos, tan, csc, sec, cot, 
"*p, ,* (r>O) , sinh,

cosh, tanh, csch, seih and coth. oldehoeft has shown that to test for
the equivalence of two T1-expressions, it is sufficient to compare ttreir
values computed at one random point. The expressions are equivalent
if and onry if their varues are equar. Thê probability of an inoorrect
decision in this random evaluation method is zero. The numeric approach

can be seen as a direct consequence of the alternative definition for
equivalence: two expressions are equivaLent over some domain if they

are equar at every point of the domain where they are defined.

oldehoeftrs method is applicable to our problem since his crass

T1 includes our class 0-. Hor¡/ever we have developed a more general

numeric technique which enables us not onry to decide equivalence but
also to determine a minimum sufficient set of basic identities for
proving an identiy. This set is the consistency set of the identity.
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ou¡: techniQue enables us to distinguish between A-equivalence and

T-equivalence. Note that c/avinessrs technique appries onry to

A-equivalence.

The Theory of Consistency Sets

we have O-our set of expressions. Let Qo be the field of

rational functions* i. I wittr rationar number coefficients. ë is
the row vector (xtrx2r"..xrr)**. Members of 0È will be called

0-e essions and will be said to be in the 0:form. Simitarly members

of (1.," will be called X-expreSsions a¡rd are in the X-form.

Consider the mapping I of fl- 1¡1o G." which transforms O-expressions

inÈo X-expressions by substituting x).tx2r...x6 for any occurrence of

sin0, cosO, ...cot0 respectively. !ùe can denote this rnapping by
5f (e ) + f"(I). vÍe sharr denote ttre X-form of f under J ¡y f" and the

0-form of go by g, provided g" is known.

e"g. f: 0-form fo: X-form

5*sec0-2*sin0r/cosO 5x5-2x1/x2

I24 :-24

2-sec0*csc01 2 2-x5xi

The X-form of the basic identities are NoT identities but the

rational equations R-I, R-2r...R-8 below" Let ri, ti, ."" represent

the reference rationals (x4xl -Ll /xl, (x5x2-t) /xz, o... .

In keeping with our notation 11 is (csc0sin0-I)rzsin0 and so on.

t' A rationaL funetíon is one ühieh is erpressibLe as the ratio of
h'to polynowiaL furnetions

t'* sinee oun trigonometrie erpnessions do not haue uar,¿abLes.¡ &r¡î2t
...æ6 uouLd be suffieient actuaLLy.
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Consider the correspond,ing polynomial equations P-I rP-2r -.P-8.

Here the reference polynomials are represented by pï, på, .. pE.

ri (X) 
= 

(x¡*x1-I) /*t=O .. R-l

rf (x) 
= 

(x5x2-I) /xz=o . . R-2

r! (x) 
= 

(x6x3-1) /x3=O R-3

rfi ([)= (x3x2-x1)'/xz=O .. R-4

r$ (x) 
= 

(x5,x1-x2 ) /x¡=Q

r$ (x) =*?+*|-t=o

ri ({) =x!-xt-r=o
r$ ({) =xzr-xl-t=o

pg (ï) =x¡x2-x2=o

på (I) =xl+x/-r=o

p? (I) =x!-x!-r=o
pE (I) =x2r-xl-t=o

.. R-5

.. R-6

R-7

.. R-8

P:6

Pi (I) -x4x1-1=0

På (T) :x5x2-l=o

På (I) ,:x6x:¡.-1=o

Pt (I) rx3x2--x1=O

. P-I

.. P-2

.. P-3

.. P-4

The reference rationals and polynomials may be taken as functions

which map Cn into C.* For practical purposes \¡re shall take tt¡e

mapping to be from R.n inÈo R..

Define: M(fo) = {Ie c.lf"([):o]

M(f ') denotes ttre solution set of the equation f" (ì()=O in Cn.

I¡et: N* = { L 12 ,3 14 15 ,6 ,7 ,8}

Bi = M(r?) ieN*

ai = M(p?) ieN*
(È = {i8r¡Biln'll'ti

.lÁ = {r$eilr'rcN*}

*lR and c denote the fieLds of compLes and real nwnbers respectiuely.
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Members of .Å t ê.9. Al-, AInA6, A2ôA3nA6, will be cal-Ied

sanpling sets or S-sets whíIe members of G, e.9. Cn, a2nag, will

be carred R-sets. The S-sets are algebraic manifolds.* The largest

S-set, Ct, corresponds to t.l.e empty system of equations while AlnA2^. "0AB

is the smallest s-set. This latter set is non-empty since the
)

equations P-L, P-2r...p-8 are consistent.

If St and 52 are S-sets and S1c.S2 then we say that 51 is an

s-subset of s2 and that s2 is an s-superset of s1.AlnA2fr...0Ag is

an s-subset of every s-set while Ct is an s:superset of every S-set.

let Íl*={rl ,r2t...r8} and €= {$ l9c_l*} a,r" set of aII subsets

of $*. Theoretically there are 28=256 subsets. However ín € we shall

not distinguish between any two elements $r. = {rilieNl} and

tz_ = {r:-lieu2}, Nr¡N2cN*, it i|r, Bi = -Q*,,ai. The etements of É will
be carled consistency sets or c-sets. vùe represent a c-set by the

Iargest set of basic identities if it is not unique.

e.g" The sets {l3rr4}, {r3,rs}, {r4,r5} and {r:rrarr5} are not distin-
guished since B3nB4 = 83Â85 = B4nB5 = B3nB4nB5, and are represented

by the C-set {f:rfarfs}.

Because our eight basic identities are not independent, there

are onry 98 distinct c-sets. These are given in Tabre 4.2 where they

are sequenced 0 rr12r...97 representing the c-sets corcr,c2r...c97¡

e.g. Cl8, the C-set {ttrtZrl4} is shown as lIr2r4l in ttre ta-ble. Note

the empty c-set c0 which is a c-subset of every c-set, and c97 the

* An aLgebnaíc nønífoLd is the soLution set of a system of polynomíaL
equations. See Appendiæ B"



[2r7r8l49
50
5l
s2
53
54
55
56
57
58
59
ó0
ól
6?
63
6ô
65
óó
6l
ó8
ó9
70
7l
7?
73
f1
f5
76
77
78
79
80
8l
a2
83
84
85
8ó
87
88
89
90
9I
92
93
9+
95
9ó
97

(EMPTY SET'
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C.SET TABLE

Flgure 4.2

2t
3l
4¡
s¡
3l
4t
51
4r5
2r3
?;4
2¡5
3r4
3r4
2¡3
fl
8¡
8¡
7r8
6t
ó¡
ót
ót
ó¡
7¡
7t
7t
7t
7¡
8l
8t
8¡
8¡
8I
6¡7
6tl
6¡7
órB
6rB
órB
7r8

r¡
il¡
I ?-t
t3l
r.4t
r5l
tól
t7¡
t8¡
Ilr
IIr
Ilr
Ilr
12¡
[?r
t?¡
[3r(Ir
Ilr
IIr
Ilr
12¡
llr
[ór
[ór
17ç
[ór
IIr
l?t
[3r
[4r
[5r
IIr
1,?¡
[3r
[4r
[5r
tlr
t?t
[3r
1,4 t
[5r(lr
[3r
[5r
f2¡
[3r
14ç
Ilr

I2
l3
T4
l5
ló
I7
t8
I9

0

t
2
3
4
5
ó
7
E

9
IO
II

20
AI
?2
23
?4
25
26
?f
28
?e
30
3l
32
33
34
35
3ó
37
38
39
40
4l
12
ô3
4+
45
aó
4f
48

[3r7rBl
[4r7r8l
[5r7r8l
Ilr2ról
Ilr3ról
Ilr4ról
[?r3ról
[2r5ról
tl ¡2¡71
Ilr3r7l
IIr4r7I
IIr5r7l
t2r3r7l
[2r5r7l
Il¡2rBl
IIr3rtl
Ilr4rBl
[2r3rBl
[?r4r8l
[2r5rBl
t3r0r5r6l
I I r2r3ról
[3rlr5r7l
t I r2r3r7¡
IIr2r5r?l
l3r4r5r8¡
I I rZr3rSl
I I r2r4r9¡
tlr2r4rór7l
llr3rór7l
Ilr5¡6r7r8l
[2r3r4r5¡ór7l
12¡4rór7l
tlr2r5rórBl
I I r3r4r5¡ór8l
tlr5r6r8l
[2r3rórBl
l?¡Ôr ór 7r8l
Il¡?r7r0l
IIr3r7rBl
I I r4r7r8]
l2r3¡7r81
[2r5r7r8¡
t3rór7r8l
Ilr3r4r5r7l
(2r3r4r5rBl
[3r4r5r7rBl
tlrZr3r4r5ró¡7rBl

It

5
5
4

I
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largest C-set which is a C-superset of every C-set.

We define c(s), the C-set of rhe S-set S by C(s)={ri llai=s},
c.g. c(A3nA4)=C(A3nA4ne5)={r¡r14rr5}. rf S1 and 52 are s-sets

and stcs2, then c(s1) : (s2); small-er s-sets correspond to larger

c-sets and vice versa. The smalrest s-set has the largest c-set c97.

A step f (0)-+S(0) is said to hold over a set i,I if f" (X)=g. (X)

for every xehl, !ùcÇn, provided both fo and go are werl defined. at X.*

rf f(0)-àl(0) hords over !ù, then f(0)= s(o) wirr be said to hotd over

bl. rf üI is also an s-set, then the step f-+g (as well as f=g) is said

to hold on the C-set C (w).

Remark: If f -> g holds over S = $*Ot, then f.(I)=g"(I) (pwd) is true

where ri(x)=0 (ieu) is true. rn effect thís means that c(s) makes

fo=9o (pwd) "consistent" - hence ttre name consistency set.

on Appendix B

In Appendix B we derive tt¡e ttrree theorems below.

Thm l: Let w(X) =u(X) /v(\) where u and v are relatively prime poly-

nomLals" If a polynomial vanishes on M(w) ttren it vanishes on M(u).

Thm 2: Let w1 tw2t-..w¡ be rational expressions in which w. = u1,/v1

(í=Lt2r"--k), u1 and vi (I-<i'i(k) being relatively prime polynomials.

Then any polynomiat vanishing on $roo,rr, also vanishes on -Är",,rrr.
Thm 3: Let w1 tw2t...w¡ be rational expressions in which r,ri=ui,/vi

(i=1r2,--"k), u1 and vi (1<iri<k) being relatively prime polynomials.
krf r is any rational expression which vanishes (pwd) on .llru(w1) then

t'This medns uheneuer f"(p and go(x) are ueLL-defined,, they ane
egua,L, Lte shaLL abbreuiate thls QuaLifyíng eLause to pui
(prouided ueLl-defíneil .
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m
k
)t

i=I
r si.wi where m is a positive integer and each si is a

rational expressíon srhich is not ill-defined all over M(wi).

Appendix B begins with a brief sunmary of relevant definitions

and úasic results in algebraic geometry. The summary includes

definitions of rings, ideals and manifolds as well as Hilbertrs

Nullstellensatz (zero ttreorem) which states: if a polynomial p

vanishes where tJle polynomía1s üI, ü2, .. uk jointly vanish, then
k

p* = ilf ?i.ui where m is a positive integer and si (i=lr2,..k) are

porynomials. Arr polynomials are in ä a¡rd over the complex field C.

, To prove the ttrree theorems, Appendix B establishes two 1emmas

first. Lemna l- states ttrat if ArB1rB2r...B¡ are irreducible manifolds

(see Defn. 8.7 in Appendix B) and C is a manifold which covers

À-(B1UB2U...UBk) then c covers A. This lemma says in effect that,

un<ler the given. conditions, there is no manifold smaller than A that

covers a-(BluB2U...uB¡). Lemma 2 extends this result to the case

where A is replaced by a collection of irreducible manifolds which

are distinct from BlrB2r...B¡. The significance of Lemma 2 is that

an arbitrary polynomial which vanishes where a rational function u/v

vanishes, u and v being relatively prime polynomials, must also vanish

where u itself does. This is in fact what Thm I is about. Note that

M(u,/v)=M(u)-l.l(v) and M(u) and M(v) are expressible as the union of

irreducible manifolds (see Res-Il, Appendíx B), the irreducible

manifolds of M(u) and M(v) being distinct. The conditions of Lemma 2

are therefore satisfied.

Ttrm 2 is an extension of Thm I. It shows that if a polynomial

vanishes on a R-set .Q^,t(r:) (i"e. -tl,.si) then it actually vanishes on1eN i' - ieN
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the corresponding s-set -Q-ttpil. consequently there is no need to
<listinguish between an R-set and its corresponding 5_set when a

rational expression vanishes on the R_set.

Thm 3 is based on Hirbert's Nurlsterrensatz and Thm 2. rt
connects a ratÍonal to a set of rational_s on whose common zeroes it
vanishes by expressing it as a "rínear combination,,of the rationars
in the set. rn this relation , viz. r* = ,fr- "i."i,, we shall say that
r].s essed in terms of " This relationship is
non-trivial. A word of explanation is in order.

The rationar expressions in x over a ring form a fierd and as

such every non'zero rationar has an inverse. A consequence of this
is that given an arbitrary set of rational expressions R,RI ,R2r..\,
which are non-zeror rüe can L-express R in terms of R1 ,R2r..R¡r viz.

k
as R = ilr Ti'Ri $there T1 = RzkRi. But this L-expression is trivial
since each coefficient T1 is íll-defined everywhere on M(ni). In
Thm 3, the coefficient si may be irl-defined on ¡¿(wi), but not arr
over it.

The rerevance of Thm r, Thm 2 and Ttrm 3 wirr become clear shortry.
Tr ic Sr¡bstitution

suppose f (e)+s(e) is a T-step invorving Ètre sr¡bstitution of
eâyr rl. Let h denote f-g. The substitution can be made in any of
the permitted varfants* of rr: csce-+r,/sing, csco-r/sine+o,

cscêsine-l+O and so on. In general for X from C., f. (X) and go (X)

¡,Srze rlefini.tion of perrni.tted uayùætts in Chaptez, V.
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are unequal, i.e. ho(X)/O.* If the substitution is made in the

stanciard form csc8+I,/sine as in sin2e+csc9tanê+sin2e+taner/sine,

then f'(X) = g'([) provided x4=l/x¡, i.e. ho (X)=0 on the R:set BI.

By Thm t, this means h"(I)=O on the S-set 41. If the substÍtution

is made in another variant, then ho vanishes on the set of zeroes

of (xr¡x1-t)/q'([) r** i.e. P! (4) /1" (5), where q" is some polynomia]-

relatively prime to pi. By Thm 1, ho also vanishes on the S-set

41. If the sr:bstitution is made in several places, employing k

distinct forms, then h" vanishes on the conmon zeroes of the

corresponding set of k rational expressions eilti te\/tir...Pilt"¡,

the ti (i=Ir2r...k) being polynomía1s relatively prime to p!. By

Thn 2, ho vanishes on the common zeroes of pirpi'...pÏ, which is

the S-set Al.

In general lf f (e)-rg(e) is a T-step ínvolvÍng the substitution

c¡f the identities Ii (ieNrNeN*), in whatever permitted variants,

then i.t can be shown by Thm 2, that ho vanishes on the S-set rfÀot.
We remind the rea<ler here that when we say ho vanishes on the S-set,

it is its numerator polynomial which does and in fact ho is iII-

defined where its denomínator polynomial vanishes.

It follows that the ho of every correct step vanishes on some

S-set. An A-step vanishes on the S-set dn. If a step involves the

i.e. pnou¿ded f"(P and go([) ane both ueLL-defined. In this
aection ue shaLL take euch quaLifieations as undenstood to auoid
the ft,equent need to specify them by 'pud' etc.

'Íhe equation defíned by q pewnitted uariqnt of 11, ín its X-fonm,
ùe of bhùs forrn. Fon cac0-L/sin0+0, go ís X7 and fon sín? 7/csce,
it ía X4,

*

Iri¡
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substitution of ri(ie*) then its h" vanishes on the s-set $"oi.
[Iowever in generat the h" of an incorrect step does not vanish on

any s-set- rt may be regarded as an arbitrary rationar expression

unrelated to any S-set.

The above resurt rerates a step to the s-set of the identities
it uses for substitution. Thm 3 provid.es a converse resurt as we

shall see.

As before let f+g be a step with h denoti_ngf_g. .suppose ho

vanishes where üre rationars r? (ieN) jointry vanish, i.e. ho vanishes

on .lrì*Bi (and ttrerefore on -ll-ei, by Thn l). By Thrn 3 (h")m =

ifru"i-r? where m is a positive integer and s! is a rational expression
which is not everlnitrhere i11-defined on Bi. Converting this relation
into the ê-form we obtain h(e)In = il'o si(e).rr(e). rt fottows that
if r' (e) = o (ien), then h(e) = or i.e. f (e) = s(e). This shows that
if we use the rerations r. (e) = o (ieN), then the step f-)g is correct.
But r' (ê) = o (ie¡¡) are reference identities. what we have in fact
shown is therefore that the C-set C(.l-\_ai

IEN ) are sufficient for ng

the problem identi tv f (e) = s(e).
To recapitulate we have derived the two results:-

(r) Let f(e)->g(e) ¡e a correct step involving substitution for the

basic identities {rilien}r NcN,t, then ho (where h is f_9)

vanishes on the S-set ,-$""t.
(2) rf f"-n" vanishes on the s-set s then the identities of the

C-sct C(S) are sufficient for proving the identity f(e) = S(e).
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Illustrative E s

This shows that the basic identities seco = l/cosê and csco 
=

\rlsin9 are sufficient for proving that sec6csc9 = -å. 
-- cosesing '

(l) Step: secOcscg * ;""#e
Then ho = x5x4-L , which vanishes (pwd) on BI'rfJ2, ca¡¡ be

expressed "r ;ft*u-f + *5t*a-;f), i.e. ! rl+x5ri.
rhus sec€csco - ;;;foh" = ;}6- (sece ;j* ) + seco{"r"e-f;.

(2') step:

ho=

( r-core ) ( r-tane) * t r-Fi J ( r-äF" I .
(f-x6) (1-x3)-Ã-x2/x¡) (L-x1/x) vanishes (pwd) on 84n 85

and is expressible as ,Ërrf+(x3-r)rB. h is expressible as

sinê {tar,e3il9^-¡ + ( rane-t ) (cote-P^) . rhe problemcostt sj-ne' -

identity f=g can therefore be proved by using 14 and 15 onry.

(3) The identity 17 is derivabre from the three identities ],2, 14

and 16. In fact ri which is x!-x!-I vanishes on B2f\B4tìg6.rr¿

xf-*{-r=x2txl+D (x2x5+t) t"s- ;rlrl +x2xf,(x3x2+x1) (x3-42) +x!t*l+*l-tl .

cose-sine

l.e. r +1 +l t -x x +1 t This shows

the relationship between 17 and T2, 14 and 16.

C-set of a Step

If ho va¡rishes (pwd) on an S-set t]:en it also does on every of

its s-subsets. correspondingly a step which holds on a c-set also

holds on every of its c-supersets. since tt¡ere are onry 9g s-sets,

then for the ho of a correct step, there must be a maximar one, s

say, on which ho vanishes (pwd) a¡rd such that there is no s-superset

of S on which it does. C(S) is then the corresponding minimal C-set

on which the step f+g holds.
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Defn: Let f+g hold on a C-set C, but not on any C_subset of C.

Then C is called a C-set of the step f+g (or of f=g).
A C-set o{ an identity is a minimum sufficient set of basic

identities for proving it. rt is minimum in the sense that we

cannot prove it by using a proper c-subset of this c_set. An

incorrect step does not have a c-set. The c-set of an A-step is
the empty C-set Co.

we have used "a" rather than "the" c-set of a step because

it is not always unique. Some steps have more than one c-set. An

example is (I+tan2e) /(I+cox2e)->sín2e/cos2e which has two c_sets,

ví2. {r:rt4rr5} and {t.rt2rrTrrg}. rn practice an overwhelming

majority of the correct steps have only one c-set. For this reason,

we sometimes, if only loosely, talk of "the C_set of a step,,.

The Representative Point Technigue

Let po (X) be an arbitrary polynornial, one that occurs ,,at

random". Then since p" is in general not rerated. to any reference

polynomial, it is a reasonable assumption that there is a o-probability
that M(p') covers any component (a component is an irreducible ma¡rifold)

of an s-set- Now if a maniford M1 does not cover a component M2, then

their intersection is "negrigible,' compared to M2. rn fact the

dímension of the components of M1l-ì M2 is lower ttran the dimension of
M2 - Given the above assumption, there is an o-probabirity that

P" (Io)=o for 16 sarnpled randomly from an s-set. This yierds the

random evaluation criterion: A porynomiar vanishes at a random point
from an s-set s if and onry if it vanishes arr over s. There is an

o-probalrility of the concrusion of this test being hrrong.
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This test can be extended to a rationar expression ro since

this is expressibre as p" /q" where po and q" are rerativery prime

polynomials. The criterion now reads. r" (ð )=O for random point
X6 from s-set s if and onry if ro vanishes on s, whenever it is
not ill-defined. There is a zero probability of this test being

incorrect and an o-probabirity that the test breaks down due to r"(16)
being ilr-defined. This forrows if we assume qo to be arbitrary.
This random evaruation criterion is similar to that of ordehoeftrs,

except that his s-set is only c n. lve do not adopt this random

evaluation test because of two objections: (1) it is not practical
to randomly sample a point from an S_set and (2) sampling is a time_

consuming procêss.

As a simple arternative to the above test, we ,'permanently

preselect a random point" $.(g) for each S_set S. ð(S) is calted
the represéntative point (Rp) of S. ð(S) is selected to satisfy:
(r) g(s)es and (2) I(s)/s, if s, is a proper s-subser of s.
our representative point technique (RpT) then adopts the following
criterion: A rational expression ro vanishes (pwd) on an S_set S if
and only if ro(¡(s))=o- rn practice hre choose our Rps to be rear
nu¡nbers- To reduce the chance of a breakdown in the test as werr

as an erroneous conclusion, rÂ/e give these numbers several decimar

figures- This takes advantage of the fact that in practice our

e>çressions have sinple integer coefficients. The Rps we have actually
used in our experiments are described in Chapter VIf.

The RPT gives us a very simpre numeric techníque for finding
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the c-set of a step. rn particular ttre step f (e)+s(e) holds over

the sampling set S if a¡rd onty if f"(X(S))=g"(X(S)).

Sinple Illustrations

!{e show berow how we may determine "the" c-set of a step by

the RPT. This is however not our adopted approach for c-set

determination (see Chapter VII). Our aim here is to show the

principles involved. only the essential numeric tests are shown.

The RPs are assigned simple values to simplify manuar carculations.

The underlined numbers in an RP must satisfy the relevant equations"

As an example the Rp for A2(\A7, ví2" {2}//2r]-r5,t/213} satisfies

the equations x5=1 /x2 and. *3= *3+f.

C-set S-set

cn

A3

A2N A4

A2N A6

A2A A7

A4N A6

A4rì A7

A6^ A7

A2nA4lìA6nA6

Representative Point

ø

{r¡}

{tz,x+}

{tz,tøl,

{tz,tz}

{ra,ro}

{t+,tl}
{to,tl}

{t2 rt[ 116 rr7I

ät r {L 12 13 r4 15 t6}

\z¿ {l1213r4t5rr/3}

IS t {L,2,L/2 ,4,L/2,6}

S+ r {3/5 ,4/5 ,r,2,s/4,6}

ðs t {z ,t//z,t 15 ,lz ,3}

Io t {3/5 ,4/5 ,3/4 t6 ,7 ,8}

[z , {2,3 ,2/3 ,3 ,,/L3/3 ,B}

5s, {3/5,4/5,Lp,/2 $}

ðg t {t/2,/z/z,L//3,5,2/t/3,3}

(1) Step: ta¡re-sing/cose+(tangcose-sin9) /cose

f " ({r) =3'I/4=Il/4, 9" $r ) = (3x4-1) /4=LL/4

this has
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no C-subset.

¡: The C-set of the step is Ø and, râre have an A-step.

(2) Step: (I-tane),/(I+ta¡¡e)+(cotê-I)/(cote+t)

f" (I2¡ = (1-3) / (L+3)=-I/2=(I/3-Il / $/3+L) =9o (ðz)

f" (It ) = (1-3) / (I+3)=-I/2/5/7= (6-I) / (6+L) =9' (5r )

The only C-subset of {r3} is Øi sÈep holds on {t3} but not

on ø. Therefore it is not an A-step a¡rd its C-set is {f3}.

(3) Step: (tan€+sece-D / (tane-sece+1)+(l+sine),/cose.

f " (Xe) =G//s+z//s-r) / I//z-z//s+t¡=,/3=(r+L/21 / (/3/2)=vo ({s)

f " ([:l=(l/2+L/2-Ll /(L/2-I/3+1)=Qlf=(1+1) /2=9" (\31

f'(|+) =(t+5/4-L) / (L-5/a+L)=5/3/2=(L+3/s) / (4/sl =e" (5+)

f " (Is ) = (t+/z-tl / l-/z,+Ll =/z+tlg//z= (L+21 / I//3') =9o (ðs )

r'(Ie )=ß/4+l-L') / (3/4-7+L)=-9/712=(I+3/5) / (4/5) =eo (ðo)

r" (Iz)=Q/3+/ts/3-L) / (2/z-/tz/3+rl=1/rs-l) / (s-/tzlfr=(L+2, /3=g" ([t)

f " (Is ¡ = 1t+/z-t) / Q-/z+tl=/2+tl2= (I+3/s) / G/5) =9o (Ie )

Thus the step holds on {I2 t14rI6rl7} but not over any of its

immediate c-subsets {xz rta} , {t2,16} ,. .. {r0 ,t7}. This means that

rrthefr C-set of the step is {tZrt4rÍ.6rf7} and this can be shown to be

the C-set of tfie step.

Table 4.3 contains a selection of identities and their C-sets,

found with the aid of the C-set search ta-ble (Table C.2) described

in Chapter VII. Note that identities 7 and 11 have non-unigue C-sets.

It would be interesting to prove some of the identiÈies in the table

and verify tJ:at the ídentities in their C-sets are indeed "necessary"

and sufficient.



80

Identity
r. .o=44-"ir,4A+l-2.o=2A
2. (sinÀ+cosA) (l-sin¡cosA)=sin3A+cos3A

^ sinA l+cosA- -----:--= Z cscÀ,l+cosA ' srn¿,

4. cosGA+sin6e=l-3sin2Acos2A

5. I-sinA= (secA-t,anA) (I+sine)

- cscA cscA nþ' cstA-I * ¿;ãã = 2sec'A

- cscA
t. --:-=:-- = COSÀ

coEA+E.anA

B. (secA*cosA) (secA-cosA)=tan2A+sin2A

oL_e' 
""tAl-t-""A 

= sinAcosA

r0. 1-tanA cotA-l
l+tanA = õã;I
I+tan2A sin2A
l+coE = ;ã;ã-

L2. secA-tanA:-: = 1 -2çgs[tanA+2tan2AsecA+tanA

tan{_ * cotÀ
I-."tA * I:ãã= secAcscA+l

( s inA+cosA) ( cotA+tanA) =secA+cs cA

"."t*A-d."24 = tarr4A+tan2A

cs"2A-1 = cosAcscA

( I+cotA-cs cA) ( l+tanA+secA) 
=2

cotAcosA cotA-cosA
cotA+cosAE cotAcosA

13.

19" cosAcscA-sinAsecA
cosA*sinA

tanA+secA-l

= cscA-secA

20
tanA-secA+1

1+sinA
cosA

C-set

{ro}
{ro}

{rtrro}

{ro}
{tz rtL,T-6 rT7}

{r:rrzrrs}

{t2,t3r17,rB} &

{rtrr: ,T4 rrs ra6Ì}

{te ,tz}
{r3,T4,r5,16}

{r¡ }

{t3,t4,r5} & {trrtz,r7,rg}

{rz}

{t3rr7rra}

{tL rtz ,r3 ,f4 rTs tr6 ,r7 ,lg}
{tt }

trl,rol
{rtrrzrre}

{rs,ro}

{tt,tz}

{xz rt[,T-6 rr7}

r1.

L4.

15.

16.

L7.

18.

Table 4.3 Identities and Their C-sets
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Chapter V

THE STEP-SIZE PROBLEM

This chapter is an attempt Èo answer the question : $lhat is a

small step? First we shall discuss some of the considerations that

night enter into the human analysis of step-size. We shall then

introduce the idea of O-equivalence a¡rd use it to define three basic

expression forms: the additive, the multiplicative a¡rd the exponential.

These forms are ttren used to describe a schema for defining empirical

models for small steps. It will be shown that we can derive small-

step models from this schema which agree well wiÈh human analysis.

Human data for assessing agreement are obtained by a survey of human

analysis of step-size.

Discussion

A teacher checking a trigonometric proof would usually examine

it for completeness, correctness of step and elegance. He is seldom

conscÍous of the question of step-size since in practice students

usually show their steps in sufficient detail. In fact in ttre opinion

survey, many of the participants could not understand at first what

we meant by a large step and a small step. Perhaps step-size is an

artificial problem peculiar to ttre needs of our trigonometric proof

checker¡ used to assess the acceptabílity of a proof.

Step-size may be considered as referring to the verifiability of

a stêp. A step whose correctness is obvious or readily verified may

be considered small. But what is obvious or readily verified is

ratl¡er subJective, depending atso on the teacherrs otvn ability.
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The teacherrs assessment is infruenced by other factors. His
opinion of a student may influence his judgement. He may regard
a step from one student as small and an identical step from another

as rarge if he is not convinced that the latter can demonstrate it.
1'he preceding steps of the proof may also infruence him. Even the
nature of the problem identity may be taken into account. A ,,Èriviar,,

one wourd be expected to be proved in greater detair than usuar.

Alth.ugh it is subjective, h¡e believe there is a consensus of
opinion on step-size. rndeed our survey supports this berief. There

wourd be littre basis for deveroping a proof-checker if teachers do

not agree well among ttremselves.

!ùhire it may be desirable for a proof-checker to agree croseJ_y

with human adjudication, closeness of agreement shourd not be a¡r

overriding factor, The possibre harmfur effect on the student of a

"controversial" decision shourd be considered. one way of reducing
this possibirity is to ask the student to show his step in greater
detair rather than to decrare it rarge (he rnight not agree!).

Although incorrect steps can be crassified for step-size, we

sharl confine step-size analysis to ttre correct steps onry.

rt was thought at one time tl¡at step-size might somehow be

directly rerated to the c-set. Large steps courd perhaps be associated

with certain large c-sets. But such a possibirity was soon dismissed

when it was found that targe steps can have smal1 c-sets and vice versa.
A good example is the following



-83-

(1) 1+tane-sece l+sece-tane
sece+tane-l sece+tanetl

(2) tano+csce*sece-sin2e+cote+se"2e-l_+csc2Orcote ->

sin9 I I
äit* ;1#-* *"" - (r-cos2e) . ffi+ tar,2e+cot2e+r+-L-

The C-sets of (I) and (2) are respectively {r7} anA {tt,tZr..r8}.
Yet clearly (r) is large while (2) is smal1. rt is interesting to

note the large proportion of students who could not prove-the identity

associated with the step (l-), although it requires only the

substitution of f7.

'lhe tr^ro steps above provide a vital insight into the nature of

step-size. The first is not obvious as it stands and cannot be

broken into substeps. The second, arthough invorving a1l eight

basic identities, can be easily followed because it can be resolved

into the eight substeps : tan$>sinO,/cos€, cscO-+I/sinO, . . . cot}->I/tane ,

each of which is obvious. The fotrowing appears to be a reasonabre

description of the human analysis of step-size.

Each teacher has his own corpus of primitive steps. These

primitive steps are those he regards as being obviousry smal]-. when

a teachcr is analysing a non-primitive step, he will attempt to

resolve it into primitive substeps. rt will be considered large if

and only if such a resolution is not possible.

fùe sha1l develop a scheme for empiricar models of smarl steps,

based on the above conception of the human step-size analyser. As

a preliminary we shall define the O-operations and use them to define

the three basic erçression forms mentioned previously.
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0-Operations

The rational operations enabl_e a very large number of distinct
expressions to be derived from a given expression, in fact arr the

expressions A-equivalent to it. we wish to consider here a more

restricted class, 0, of rationar operations, by excluding certain

rationar operations. These operations, carled the o-operations,

enable us to derive onry a small, finite* number of e-derivatives

from an expression. They enable us to :

(a) rearranje terms and factors in any order,

(b) add and subtract an.arbitrary nurnber of zeroes, and to murtipJ-y

and divide by, an arbitrary number of I's.
(c) remove or add redundant parentheses and many + or _

(d) collect common terms and factors and

(e) to add, sübtract, multiply and divide (provided division is

exact) integers.

4' is essentially the set of rules of algebraic operation which follows

from the field axioms, the definitions of subtraction, division and

indices (powers) together with certain notations. The distributivity

axiom is excluded, but arithmetic operations on integers and the

colrection of common terms and factors are permitted. rt should be

noted that addition and multiplication are inherent operations of a

fierd. The absence of the di'stributivity axiom means that the

* Finibe if we diseount the tniuially distinet eæptessions deriued
by l;he nedundøtt or repeated use ol panentheses', id.entity eLements
0 and 1, qd theunany + øñ _ as ini f,(f),((f)),(((f)))",.."",
+( f),+(+( f) ),....,f*1,f*1x1,¡x1*7+0,... ., -(-f+o_o+li,. ..-.
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important operations of expression etçansion and factorisation are

exclu<led from 0. Thus it is not possible to derive by O-operations

only, a2+2^b+b2 from (a+bl2 or ca*ab from a(brc).

To be more precise, we give belo\¡ù some of the basic rules of

tÞ. lrte donote expressions by ere1re2r..., terms by triul ,t2r.r.,

factors by frf¡rf2r... and integers by nrmrnl ¡Ír2¡i.. . The words

t'cxpressionsrt, t'termsttand ttfactors" are used here in the sense of

the BNF definitions in chapter rv. The rules are written as "f + g',

or "f .-t 9.", where "f + n', means that g is derived from f while

"f <.-) g" implies tf..e two rules "f -) ç1" and "g -+ f". The rules written

in the unidirectional form are meant to be strictly unidirectional.

Thus with the ru1e "¡m rt ft -, fm*n,,r,rre can d.erive f2+3 u.rrd f5 from

f 3+2 br-,t ,rot fl+4 , ,7-2, fl * f4 and t7 /t2

If g is derivable from f by O-operations ttren we shatl denote
00

Èhis by f -t g; f I S indicates that g is not a e-derivative of f.

t1 +t2 <-> t2*t1 ft*fZ +fZ*fI

t1+ (t2+t3 ) +-+ (tf +t2 ) +t3+-+ t1+t2+t3

f1* (f2_*f ,¡) +-+ (f t*f)*f3 ( > ft*f2*f 3

t+0 <-> t f*l <-> f

o <-> -0 0-t <_> -t <-+ -(t)

(e) <-> e <-+ s (e) tr+ (-tz) <--+ tt-tz

-(-t) <-> t -(t) <--+ -t

-(t¡+t2+...+tn) ( t -tI-1u2-...-tn

rf't¡}*....fT +-> (ffrz*...*fn)m

f r <-> f f-n +-> L/fn
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\/tz * rt*ffr f*f*...*f + fm (m-told)

fm*fn * f**t t^/fn + ¡m-n

t-t + 0 ¡/f -> I (f I o)

n1*f*n2*f+...+n**f + (n1+n2+...+nn)*f

Exampres: (arbrcrd denote factors, terms or e)qpressions as appropriate)
(r)

(2)

(3)

(4)

(s)

(6)

I
0-)

3+2-4 9 z*:-¿ I s-¿ 9 , Ï u-n

((a)) I a

a- (b-c+d)

-(-a) 9+(a) 9 (a+o+o)l

a-d- (b-c)

(¿*¿rtþ3)2 I 1"2*531 z I b6*ah

(a+u¡ 3 | a3+z^2a+3ab2+b3

(a+b) /c fl a/c+b/c Ï G+Ð /c

Three Basic Forms

Defn: 
Ílìat, also written as t1 (+)rz(+)... (+)rn ancl (+){rili=t,2,...n},

stands for the expression t1*t2*...+tn or any of its O-derivatives.
n

Íllat 
is said to be in the additive form and 11 rt2,...r' are irs

additive components or te rmg.

e.g. Let EI = a*b/ct t2 = G2lU¡ and t3 = (-c*(b-q¡¡. rtren .tÍ)t1 can

be (a*b/c)+ (-2l]bl+ (-s* (b-c) ) or -2þ.,a*b/c-ctc(b-c) or b*a/c-;;-".(c-b) .

n
Defn: 

Ílltt, 
also written as f1 $)f.2(*)... (*)f' and (*){fili=t,...n}

stands for the expression f1*f2*...*fn or any expression Õ-derivabte
n

from lt. 
Ílltt 

is said to be in the multipricative {orm and f1,f,2r,."fn
are l-ts multiptricative components or factors.

ê.9. Let f1 = (a+b) an f2 = (a-b). Then (?lr. can be (a+b)*(a-b)
i=l t

or (a-b) * (b+a) but not a2-b2.
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Defn: f(t)n sta¡rds for ftn or any of its o-derivatives and is said

to be in ttre exponential form, n being the exponent of f.

ê.9. (2r'a2/b) (t) 3 can be 23*a2*3Æ3 .na B*a6/b3.

A Schema for Smal 1 SÈcps

we present here a method for formulating empirical models for
small steps. A model in this formulation consists of specifications

for defining a subset of the set of arl correct steps, this su-bset

contalning arr and only the small steps in the ngdel. Each model

contains a set of primitive smarr steps together with a set of rures

for conposing smalr steps from other smalr steps. These ideas may

be formalised as follows :

Let X be Èhe set of all correct steps,

II a set of primitive small steps and

f,l a set of rules for the composition of steps.

Then the set of srall steps in the model, Xo(IIre), also written
as Xo, is defined by :

(1) sell + seX"

Q) sef,o if s is derived from members of X" by rules of e

(3) sexo if and onry if sex" by virtue of (r) a¡rd (2) onry.

lo (IlrCI) does not, however, define a smarl-step moder until the

set II of primitive steps a¡rd the set e of step-composition rules

are specified" until then it may be regarded as simpry a schema for
small-step mod,els.

It can be seen that this fomulation is based on our conception

of tl¡e human analysis of step-size discussed, earlier. The set II
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corresponds to the corpus of primitive steps of a teachdr ánd fJ is

the set of rules he will allow the student to use for composing a

small step from other small steps. Together II and fl generate the

set I" of all the small steps. A teacher whose I" is a proper subset

of the I" of another teacher is a stricter judge than the other.

By a careful choice of II and fì we can produce a good model for

small steps, one which agrees well with hurnan analysis. We have

investigated two models, called ModeI-A and ¡[oãeI-S. ModeI-B is a

modification of Model-A.

Model-n .. A Mode1 for Small StePs

Model-A will be denoted by xå,(IIrç¿) or Iå and the corresponding

lI and fì are subscripted with an rAr. The specifications for iIA and

Íl¡ are empirical, but they have been chosen to ensure a good model

for small steps.

The Set lle

lI¡ can be divided into two distinct classes: (I) the prinitive

A-steps and (2) ttre primitive T-steps. The prinitive A-steps will

be defined by their component count. l¡(e) the component count of

an expression e is defined as :

(1) N(e)=0 if e is a constant or a trigonometrie'function.

(21 N (etn)=

n
(3) N((+)e

i=l

l¡ (e) if e is a const¿rnt or if e is a trigonometric
function and n=O rI or 2.

l¡ (e) +1 otherwise
n

= nt f, l¡(e.)
i=l I
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n n
I l¡(e.)

i=l rn+(4) N((*)e*)
Il-=I

e.g. N (sinO* (sec0) +2* (I+3*cosO) t3)

= 3 + N(sin0) + ¡t((secg)+Z) + N((f+3*cosg)f3)

= 3 + 0 + N(sec0) + N((I+3*cos0)) + I
= 4 + N(secO) + u(l+3*cos0)

= 4 + o + 2 + N(1) + N(3*coso)

= 4 + O + 2 + O + 2 + N(3) + n(coso)

=4+O+2+O+2+O+0

=$

The component count of a step f+ 9 is defined as N(f)+N(S).
N (e) gives a rough indication of the size and comprexity of the
expression e- !{e define a primitive A-step f. -> g to be one with
N(f)+u(s)<k. !{hether or not an "optimar" value for k exists is not
clear, but the closeness of agreement moder-A has with human analysis
is not very sensitive to variations in the value of k, provided it
is neither too large nor too small. From our investigation, we

have found 20 to be a good, although rather arbitrary, value for k.
We shall take t]:is to be our value of k.
ê'9' (l) tanO+sino /cos} is a T-step and cannot therefore be a

primitive A_step.

(2) sin' (l+sing)+5i¡6asin20 is an A-step with á component

cor¡¡rt of 6, and is therefore a primitive A_step.
( 3 ) ( 1+sec0 ) / (sec0 tanO+tane+2tan0 _2sinO 

) + ( I+sec0 ) / ( sec0 tan0
+3tan0-2sin0) is not a prirnitive A_step since it has a
component count of. 25 (>2O). (It is however a small step
in Modet-A.)
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rn Model-A, a priml-tive T-step must have a singleton c-setr*

i.e. one containing only one reference identity. rn a primitive

T-step ttre reference identity must be substituted in its standard

form (as in Table 4.1) or in one of its permitted variants out lined

belor^¡. Let Fì[ + Er be the reference identity substituted in t]¡e

standard form. Then :

(1) f + g is a permitted variant if f-g or g-f is Õ'-derivable**

from EU-E'.

(2) f. -> g is a permitted variant íf f/g is Õr-derivabte from

ft /g' (g' I 0) , and f,+g, is itself a permitted variant.

(3) f + O is a permitted variant if f./E+O is a permitted variant.

e.g. (1) tanO+cot0+l/(sinO*cos0) has the c-set {r3r14,15r16} and

cannot be a primitive T-step"

(21 lrlsinO+cscO, csc0-l,/sinO+o, sinO+l/csc0 r (csc0 "sin0-I) /csc}-+o

and cscO"sin0-1+0 are primitive T-steps, being permitted

variants of the sÈandard form csc0+I,/sin0.

(3) Perml-tted variartts of sin20+cos2e*l include sin20-1+-cos20

and (l-cos20 ) /sin2o->I.

The Set Q¡

Oa consists of the foltowing rules for step-composition :

from e.¡+e ]tl- (+) e
i=I
(F).
i=1

ht¡ :

vI2 : from .i*.i

(i=Lr2r..n) derive

(i=lr2r..n) derive
l_ i'

-> (+) e
i=1

* (P)e
i=1

L l_

t' Here ue ineLude the suppLementary singLe c-sets ULI, {Jz}, tJs}
ø¿d U4I.

** ot íe the set of zaLes a uith rationaLisatíon incLuded. RationaLi-
aation refera to opez,ations Like a+b/e-+(a*c+b)/e and
a/b+c/d->(a*d+b*e) / (b*il .
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r+tg : from e + er derive e(t)m + er (t)m (m an integer);

wq ¡ from f (*)ei+gi (i=tr2r..D) derive f (*) ((l)ei) -> fllsi,
i-l i=l

$t5 : from e + er derive er + e, - e + et, e-er+Or e,/er->I(et/O)

and reciprocal of e + reciprocal of er.

The rule w1 in effect says that if each of tlre steps "i . .j.
(i-Ir2r.,n) is small then so is any step of the form Jiì., + (+)ei.

i=l -
To ilrustrate, if 1-cos20+sin20 and tan0-+sin0secO are smalr then

so arer sâyr 1-cos2e+tan0+sin20+sin0secO and t+(tan0-cos20) +

sinOsecO+sin2e, since they have the form (l-coszO) (+) ta¡rO ->

sin20(+)sin0sec0. lrtre interpretation of w2, w3 ëÌnd w5 should now

be obvious. w4 perhaps requires some elaboration and this is best

done by an example.

suppose sin0secO+tanO a¡rd sinOsec20+(l+tan2e)/cscg are smalr,

Then sinO(secO+sec2e)*t"trO+(l+tan2e)/csc} is small since it has

the form sin0 (*¡ (sec0 (+) (sec2e)+tan6 (+) (I+tanze) /csc1.
rn the same hray (tanO*sec0)/secO+sinO+l nay bë regarded as being

derived from tan0r/sec0+sinQ and secQr/secQ+l using the composition

rule w4.

By a composite application of the step-composition rules \.re c¿ur

obtain small steps of considerable complexity from very simple ones.

(I+sec0 ) / (sec0 tanO -2sinO -tanO ) + (I+1/cos0 ) / (L/cosl*si n0lcoso-2sino-

sinO/cos0) is a fairry complex step built up from the "irreducible"
steps¡ 1+1 , sec0+I/cos0, sec0+l,/cosO, tanO+sinOr/cos0 , 2-+2, sin0+sinO

and tan0+sínOr/cosO.
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To test for ttre use of the step-composition rufes $r1 rrrr2 rw3

and wr. we need to decompose a step into its component substeps.

lfe call this process sr¡bs resolution. Each of ttie rules has

the corresponding resolution indicated below.

(1) Additive Resolution:

with ei = ",i 
(i=1,2,..n) then e

steps

(2) Multiplicative Resolu tion:
n

Í:Ìt'1 
with ei r e'i

are substeps.

rf a step is expressible as tll " 
n

i=1 
,i*{]1. 'i

nIf a step is expressible as (*)e. -+

i=i't
(i=I ,2r..n) then e1 * e'i (i=I ,Zr..ni)

(3) Exponential Resolution: If a step is expressible as e(î)m ->

e'(1)mwithere'

a substep.

(4) Factored Resolution:
n

(or e I -e') then e + e' (or e -+ -er) is

If a step is expressible as f (*l tll e. -)
i=l r

(i=l ,2,..n) tt¡en f(*)er*Sr'(!=I ,2,..n)Ílìnt with f(*)er=s'

are substeps.

rn anarysíng a step there are two basic approaches that we

can adopt. one is to check a step or sr¡bstep for primitiveness

(incruding the use of w5) first and performing substep resolution

only when ttris test fairs. The rationaré here is to avoid unnecessary

resolution on a step when it is already primitive. This is especialry

important for Èhe primitive A-steps since they are often resolvable.

The second approach is to resolve a step as far as possible

until every derived substep is irresolvable. These sr:bsteps are then

tested for primitiveness. rn ttris approach we economise on the

tests for primitiveness. rt should be noted that sometimes a step
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is not uniquery resorvable since at each sÈage of sr¡b.step resolution
more than one kind (multipJ-icative,

may be possible.

additive, factored) of resolution

I¡'lith eitt¡er approach we end up with two possibilities. Eittrer
(1) we have a resoLution into primitive steps only or (2) it is not
possibre to resorve tt¡e step into prímitive steps onry. vte concrude
that the step is small if case (l) prevails and that the step is
large in case (2) .

t'Ihether the first approach is preferable to the second or not
depends on ttre type of expressions normal1-y encountered as welr as

the relative eosts of testing for primitiveness and performing sub-
step resolution. However these two approaches represent extremes

between which intermediate approaches are possjJcle.

Moder-A has not yet been impremented. However, its precursor,
Moder-o has already been written as a FORTRAN program carred super_2

and this is briefry described in chaptef Vrr. Model-o has much in
co*mon wittr Moder-A, differing from it mainly in the foÌrowing :

(f) a1l A-steps are primitive;
(21 factored resolution is not allowed,.

(3) resolution is done at the primary level only (see Chapter VII);
(4) the criteria for primitive T-steps in Moder-A are approximated

by nurneric ones (see description of Super-2).

super-2 can be modified quite easily to imprement Moder-A,

alttrough the prograrnming effort required wourd be substantial.
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The criteria for primitive T-steps would be rattrer messy to implement

because of the number of permitted variants to be corisidered.

The unwieldiness of the definition of primitive T-steps in

tilodel-A led us to tÌ¡e alternative def inition: A T-step is Primitive

if and onlvifithasas ingleton C-set and a compotÌent count not

exceedinq 5. This definition wilt be very cheap to implement. It

will also be found to be a good empirical criterion. üIe shall

designate as Modet-B this new model derived from Model-A by this

alternative definition for primitive T-steps.

Adeouacv of Model-A and Modef-B

The adequacy of a given model can be gauged by comparing its

anal.ysis with the corresponding human analysis. The necessary

comparative data can be generated by choosing (1) a sample of steps

and (21 a sample of human judges who are required to express their

opinions on the size of each sample step. The opinion data obtained

ln tt¡is way may be treated as a sample of human analysis to be

compared wiËh the corresponding analysis in the model.

Table C.3 shows the 207 steps we have chosen as our sample.

These steps have been generated from tkre expressions contained in

tt¡e sixteen proofs shown in the same table. Each proof e1+e2+..-+st

/n\
generates th"\Z)steps ei*ej (l-<i<j.<n). rn the table¡ step ei+ei rs

shown as Id.J.

Atthough we could have chosen our sample steps to reflect more

realistically the kind of steps TPS would normally expect we have not

done ttris. such a sample night fail to show up adequately any

'

I

I

l

I

L

1

I
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serious weakness our models may have. lve want our sampre steps to

cover a rich variety of step-sizes so that our models may be subjected

to a severe test.

our sample of human judges consists of fourteen students and

teachers familiar with etementary trigonometry. They are designated

Ho-I' Ho-2t .. Ho-14. Table c.l shows their expressed opi4ions on the

sampre steps with ttre entríes'o' and'1r indicating'small' and rrargel

respectively. The same tabl-e also displays the corresponding data for

six machine-related opinÍons which we designate Mo-r , Mo-2, .. Mo-6.

Mo-rr Mo-2 and Mo-3 are from three variants of Moder-o, and for them

we enter algebraic steps as '2r rather than rO'.

The entries for MO-4 represent the analysis of Modet-A performed

by hand simulatíon. Mo-5 does not represenÈ any smarr step model.

rts data are assigned by hand to ensure the best possible agreement

wittr the available human data. Each entry is O or I whichever has the

largest number of agreements with the corresponding human entries.

The data for MO-6 are assigned at random.

The figures under AGREEMENT COITNT refer to ttre nuriber of matches

tl¡e entries of the Mo-i (i=1,2,..6) have wittr the corresponding human

entries. As an exampre Mo-2 has an agreement count of 6 for step

34 while MO-5 has a count of 8.

A hand-simulation of Moder-B has arso been performed on the

sample steps. The resurts have not been separately represented in

the table because (for our sample steps ) they happen to coincide with

the analysis of Model-A. Thus MO-4 also represents ModeI-8.
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Evalua tinq Agreement

One difficulty in evaluating the agreement between a machine

opinion and the human opinions is the apparent lack of a standard

method for interpreting the data. In view of this we used the

intuitive index given by ttre percentage of agreement counts between

a machine opinion and the human opinions.

HO VS HO AGREEMENT

MO-1
MO-2
MO-3
MO-4
Mo-s
MO-6

COI'NT
2275
233 3

2305
2607
2655
1337

PERCENT
78. 50
80. 50
79.54
89 .96
91.61
46.14

HO. I
HO- 2
HO- 3

HO- 4
HO- 5
HO- 6
HO- 7

HO- 8
HO- 9
HO-10
HO-ll
HO-12
HO-13
HO-14

COIJNT
2342
2332
2300
2334
2366
2388
2392
24LO
2386
2242
2396
24LO
2382
2360

PERCENT
87.03
86 .66
85.47
a6.73
87 .92
88.7 4
88. 89
89.56
88.6 7
83. 3r
89. 04
89.56
88.52
87 .70

MO VS HO AGREEMENT

MEAI.Í = 87.70 STD DEV = L.'74

Table 5.I Aqreement Percentages

Tabte 5.1 gives the Èotal agreement count of, each machine opinion

(under "MO VS HO AGREEMENT") as well as the correspo.nding percentage

agreement on the base of 2898 (=I4x2O7) ' The Èab1e also gives (under

"HO VS HO AGREEMENT") the agreement count and percentage of each Ho-

Here the count is taken over the matches each HO enjoys wittr the

remaining ttrirteen HOs and the percentage is computed on the base of

26gL (=13x207). The HO-VS-HO agreement percentage has the average

value 87.7O t L.742. The small standard deviation indicates a good

agreement among the human judges, a state of affai¡:s we expegt.
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The percentage agreement 46.L4* for MO-6 gives the figure for

purely random data, and serves as a useful "lower bound" for the

agreement perôentage. The figure 9I.61t for MO-5 gives the "best

possible" figure for the given human data. The value for Mo-4 is

89.96t is very close to the highest possible value and is better than

the best figure for the HOs, viz. 89.56t for HO-I2. It is also higher

than the value 87.7O t L.742. The figures for MO-l' MO-2 and MO-3,

Èhough lower than for MO-4 and tþe HO-VS-HO values, are respectably

higher than the one for the random data MO-6. The "poor" agreement

for MO-], MO-2 and MO-3 are mainly because they are more rrforgiving"

especially in treating aII A-steps as small.

Because we do not know the underlying statistical behaviour of

our opinion data r¡ve have not been able to make precise statements on

them. We could noÈ say that the agreement between MO-4 and tt¡e human

judges is significantly better than that which exists between HO-I2

and ttre remaining judges. Neverttreless because of ttre size of our

sample (207 steps and 14 judges) we feel justifted in claiming tt¡at

ModeI-A and Model-B agree well with the human judges, and in fact

better than they do among themselves. Thus Modef-A and Model-B are

indeed adequate models for small steps.
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Chapter VI

Assistinq Proof Cons tructi on

r¡úe shall consider how h/e canIn this chaPter

student in his Proof.

any information that

proof.

assist the

of assistancelrle shall regard as a form

can guide him to construct an acceptable

AmajorSourceofassistancealreadyexi-stsintheproof-

checking process. In informing the student that his step is

incorrect TPS enables him to locate his error quickly and

also prevents him from propagating the error' The proof-

checker can also be nodified to provide an identity-checking

sqrvice. Whenever the student is uncertain about an identity'

such as a basic one, he can enter it for verification'

There are more direct forms of assistance which I/lre

shalt discuss shortly. But first lve introduce a few more

terms. !{e have the usual initial and target expressions

êo and en and a proof for it has the f,orm eo # en' Let

.o ï e1 be the current stage of a proof ' Then we have ei* ê¡

as the current residual s tep or residual - shall denote

the jth residual .j + en by led-j-' The aim a proof can

be considered to be one of whittling down the current

residual into one which is a small step'

TpSican be designed'to render the following forms of

assistance : -

(1) To present the student with a set of basic identities
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which are relevant for completing his proof. This set

can be the C-set of the current residual or an appropriate

subset of it. If the C-set is empty then the student

may be'advised that no further substitut'ions are required.

To provide the student with a "next-step" "i'* ei+I to

enable him to continue. To be useful this next-step

must bring him closer to the target expressiop en.

To locate the incorrect substeps in a step. Thisr ean be

useful when the step itself is rather and complex

and the incorrect parts are not obvious from inspection.

This can be effected with the help of substep resolutio-n.

To suggest a promising proof strategy. As a case in

point this is useful when the student gannot 9et started.

This often happens when the direct derivation of one side

from the other does not appear to be feasible. On the

other hand the student may also be discouraged from pursu-

Íng any, further a strategy Èhat is not'promising;

To give the student tirnely warning that his proof is

"going astrây". This happens when the last expressions

derived 
"L_2rei_1,ei 

are getting further and further

a$ray from the target expression.

To complete the studentrs partial proof'from where he

gives up. This may be preferable to giving him an

entírely fresh proof in that he has the benefit of

seeing how he could have completed the proof himself.

(4)

(s)

(6)

In trying to provide the above forms of assistance TPS
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faêes'one major problem. Thisrthe lack of a sens-!tive
ltt

"measureI of the ,,distance" between two expressions. This

makes it rather difficult to automatically co¡lstruct a next

step, to determine vrhether the proof is straying - in fact

makes it difficult to generate a proof automaticalIy. Much

of this difficultY can be overcome with the aid of a companion

proof Eo + Em for the problem identity eo = €n'

that Eo and eo are identical as are Em and en'

$¡e are assuming that it is of the same strategy

proof. üIe also assume that it is a good proof

We assume

This means that

as the studentts

in that

useful basic

C-set

Eo rE 1 tE2 t . . . are progressively closer to Em'

By comparing ei against EorE!tÐ2¡.., in turn (we can

st,art with an expression later than Eo if \ÁIe already know the

stage the Student's proof last "reached") h/e can find one'

E,
l

Sây, which is not the same as ei but which is closest to

It on the target expression side of e1.

identities for the student may be taken

el * 
"j, 

ot of e1 * Ej+lr"' ot of ei ->

appropriate. If the current residual .i

Then

as the

Em wh i cheve r

E* has an

of

ís most

empty-)

c-set then it is argebraic' rf ei -> Ej is a small step' then

it can be presented to the sÈudent as a next step. If it is

not small then it is still nearer from.i Èhan the target

expression and the student may be prompted to derive ei first'

thus bringing him a stage closer to Em. If the sÈudent aban-

dons his proof then TPS may complete it as

->Em, filling in an intermediate step or

ei -> ei+I +

s hou Id
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be large

If the studentrs proof is diverging from the t
expression, then.i will be further arÁray from it than ei_r
and/or ei-2 and/or ei-2 and so on. However because we rack
a sensiti.ve measure f,or distance, we may fail to discover
the divergence solely by comparing ei, ei_1, ei_2, . . . with
Em since when two expressions are sufficientr.y remote from
a third, it, rnight be difficurt to find out which of them is
nearer to the third. Therefore the comparison may have to
be made against some other intermediate expressions of the
companion proof.

one vray of making a companion proof avairabre is to
store it with the problem identity. An obvious disadvantage
here is that Tps must confine its assistance to those em

identities for which comparison proofs have been prepared.
Another disadvantage is that the student may use a strategy
different from that of a companion proof ; it is not easy to
modify a companion proof to suit the student,s strategy.
Because of these objections vre propose instead to incorporate
an automatic proof construction capabirity into Tps. This
would be more flexib1e, and powerful and obviates any need
to restrict the student's proofs.

Problem-SoIvin g Svstems

Automatic problem-solving and theorem_proving are
already important areas of investigation in artificiar
intelrigence. rn theorem-proving most of the effort has

t':

arge t
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theoretical in nature. The works in problem-solving

been more practical. Examples can be found in Newell

and. Quinlan and Hunt t571..et aI. [51], S1agIe [66]

Surprisingly little ûork has been done in the area of

trigonometry r possibly because the problem appears to be

trivial. Johnson and Holden t35l and NeweIl et al_. t5Il

have deal-t briefry with the subject. rn both cases trigo-

nometry has been only an area of appJ-ication for a more

general system. ble shall discuss only the work of Johnson

and tlofden because they have treated Èhe subject moïe fulty.

rn Johnson and Holden's system an identity is cónverted

into a standard form before it is proved. This makes it

very much easier to prove. rn the standard form, trigonometric

functions are ordered, parentheses removed., negative terms

transposed and denomínators eliminated by rationalisation

and cross-murtiprication. As an exampre the standard form
- tan0-sin0for --- = 1+sec0 is sin0tan0+cos0*cos0sec0 = sec0+I.l.-cos()

This approach is however unsuitable for TpS because

th<,' ¡>roofs produced are stereotype. Johnson and Hol-den r^¡ere

mainry concerned with establishing the correctness of an

identity, and not the elegance of

correctness of an identity can be

in TL)S using our numeric test.* In

coul-d have simplified their task even

its proof.

determined

But the

very trivially

f ac t Johnson and Hol-den

further by

of sin0 and

expressrng

cosO. InaIl trigonometric functions in terms



103

this way the only substitution that may be required would

be for sin2o+côs2o = 1.

Most p.roblem-solving systems adopt a heuristic search

approach. A heuristic is a problem-solving strategy with a

good chance of success but success is not guaranteed. It

ínvolves tríal-and-error search of profitable paths.

Ernst and Newell t20l regard a heuristic search as

consisting of operators and objects. An operator may or may

not be applicable to a given object. Applied to an object

it produces another object. A heuristic search problem

hae the form:

Given! an initial situation represented as an object,

, a desired situation represented as an object,

a set of operators.

To Find: a sequence of operators that will transform the

initial situation into the desired situation.

To solve a problem is

tree defined

initial situation and the

by the

operators

for

to

ff

a path from the initial situation

the goal situation. For instance

the desired situation is aB and

to search

the solution Ø¡

Øs

Ø3

Ø2

4

the initial situation "o
are operators (see fígure

right) then Èhe sequence

and

on

of

Øt,Ø2,Ø3, - .

the

operators

I

9
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Øt''92,Ø11'99 i,s a solution since 9g(Øa(92 (Ø3 (ao) ) ) ) = a6.

Applied to our problem the objects are trigonometric

expressions while the operators are the varioqs rational

algebraic operîaÈions and trigonometric substitutions.

An important requirement in heuristic probrem-sorving

is a criterion for sorution progress so that the search

can be guided efficiently and effectively. cpS t2Ol

emproys means-ends analysis Èo guide the tree search. This

is done by taking the difference between what is given and

what is desired, the difference indicating s.ome discrepancy

to be removed. The probrem may also be broken down into

simpler subproblems. Differences are removed progressively

with the aid of a Èable-of-connections which associates with

each difference type a rist of operators ca¡rable of reducing

the di fference.

Heuristic Generation of Tr igonome tr i c Proofs

To develop a heuristic generator of trigonometric proofs,

h/e must first of all decide on our choice of indicators of

expression differences. This choice determines our criteria

for proof progress as welr as our choice of operators for

removing the differences indicated. preferabJ_y the types

of differences chosen should be :

(1) sensitive to changes in the difference; and l

(2) simple and cheap to compute.

We propose

two expressions

the following indicators of difference between

fandg
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of f + g into subst,eps,the resolvability

the C-set of f ->

the primiÈiveness

the presence of a

9t

of f + gt

latent structure (S.t. )

l{e sha1l now examine our criteria for progress. Let

ei ->

residual. The ne$r step ei + ei+I will be regarded as having

made progress if any of the following happens :

(1) ei ->

(2') the C-set of ui+l -> en is a proper subset of the

C-set of ei + €n,

(3) ei t €n is not primitive but ei+I ->

(4') ei ->

unlike proof-checking, in which we need to be concessive,

we will have a stricter requirement for primitiveness. rt

wirl be similar to that in Model-B except that for a T-step

to be primitive, f.ts component count must be less than 5,

while primitive A-steps should not have a count exceeding ro.

The above criteria reflects our conception of the proof

process as one of removing the differences that exist between

two equivalent expressions. There are t\tro kinds of dif f erences,

algebraic or A-differences and trigonometric er T-differences.

The T-differences are represented by the C-set of the

expressions. The A-differences refer to structurat dissirni-

larity. l¡lhen a step is resolvable it indicates some structural
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can be used to break it into smaller sub-

structure can be used to guide substitution.

To effect the above forms of

following classes of operations 3

(1) substep resolution,

(2') C-se.t reduction,

(3) algebraic manipulation, and

(4) latent structure probing.

proof p rogre s s we have the

Substep Resolutfon

If the current residual eÍ + en is resolvable, then the

problem of proving ei Ê en can be converted into the problem

of proving the "subidentities" corresponding to the substeps.

Thls latter problem is normally very much simpler than the

original one. For this reason, \de shaIl treat resolution as

one of the most important heuristics for proof generation.

An Írresolvable step may become resolvable after

suiÈable algebraic manipulation anð./ot trigonometric substi-

tution. The four types of resolution may be tried in turn

as appropriate and as required. The practical problems of

resolution are considered in the next chapter.

C-set Reduction

fhis is done by substituting for basic identities beLong-

Íng to the C-set of the current residual. The substitution

process is not an easy one. Various algebraic manipulations

may have to be attempted first before substitution is
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posEfbIe. Thi

an ldentÍty to

favourable for

fot 17 ín (sec
1+-tq4e-sec0 _

s ls because

be substÍtut

subs ti tution
2e-t) /sínê =

1+ se c0 - tan0
sec0+tane-1 sec0+tane+I

(4) When C-set contains f3 r I 4,LS r âDd

removed Índividually, then remove

s'ubs ti tutÍng f or 14 and 15 only .

the functions, correspond,íng to

ed f,or, may occur in a form not

. As an example we can substitute
tan20/sinO but not in

as it stands. Even when a

they have not been

them together by

favourable situation exists, there may be several alternatives
for eubstitutLon and many trial-and-error efforts may have to
be made before the basic identity being substituted for can

be removed from the c-set. Even when a substitutÍon is
done correctly, c-set reduction may not occur. This happens

when further substitutions for the same identit.y are required¡
often in conjunction with some argebraic manipuration.

1o expedite the c-set reduction process hr.e suggest the
following guidelines : -
(1) Attenpt the elimínation of one basic identity at a time.
(2', Attempt removLng the identities in the order r1rr2r],3r..

T.7,18- This means trying for the non-pythagorean ones

first - these are simprer to eriminate than the
Pythagoreans. rt shourd be understood that we try onry
fÖr members of the C-set.

(3) To remove r1, replace csc0 by L/sj,nl rather than
by l/csc0. Similar remarks for 12 rL3,I4 and I5.
last two; replace tanO by sÍn0/cosO and cotO by

consistently.
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sparse* with

in terms of

to the C:set express

cos0.

respe c t

sin0 and

Alqebraic Manipulation

As hre have mentioned earlier, algebraic manipulation

(AM) may make a step resolvable or favourable for substitu-

tion. For our workr vle restrict our AM to a small repertoire

of algebraic operations such as the sim¡>Iification, rationafi-

sation, simpte factorisation and expansion of expressions.

We,have chosen only those useful operations whích are

relatively cheap to apply. Thus atthough a much more general

factorisation capability than we have would

for substep resolution, hte have not included

is relatively costly to implement.

Reducing the size

terms and factors, and

of an expression by

removing zero terms

very useful

because it

collecting common

and unit factors

our repertoire of algebraic operations wiIl be the

following:

AM-I: Simplífication

and powers.

e.g. a-bc+2a -)

a*b- a ->

ax/ (aYl +

a.b2 .2a

3a-bc

x/y

2a2b
b

* A step is spa?se u¿th respect to its C-set
funotíon in the C-set absent in the step'
eBco/(eoto+ta,nï)->cos0 does not conta¿n the
uhùeh oeeL¿Ts ín its C-set {I2'I3'I7rIB}.

í.f there
e,g.
funetion

is d.

sec0,
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AM-2: Rati ona 1i s ation

Reducing a

expressions.
a ad- 2bc+ 2bdee.g. -> 2b d2b

AM-3: Unrati ona 1i s ation

e+
c
ã

Converse of
cd-bc+ (2-e)

rationa Ii s ation .

cd bc (2-e)
'd d d

Converting a multi-level expression into a single or

two- leve I one .
(a+b/ cl * (ac+b ) Pqv':' c+d (c+d)c

AM-4: Levellinq

AM- 5: Simple Factorisation

Factorisation based on any of

?-n-o?-n -' (.t-bt) ( an+bn) (n is an

3n-b3n 
->

t) (.2t--tb

-) a(*) [ f
l-

k
+ )b;l1-

the following formulae

integer, omitted if 1)

pq

a

a

a

(

1

t+b2t)

AM-6: Gui ded Factorisation

Here we try to derive a factor in one expression of a

step, which is already present in the other expression'

I¡lhether or not a given expression is a factor can be determined

by the remainder theorem (again using a numeric test) .

e.g. In the step sin30-cos30*(sin0-cos0) (1+sin0cos0),

(sin0-cos0) is a factor to test for in sin30-cos30.
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AM-7: Expánsion

A single-level expansion of expressions of the form

and distribution of powers in
L(+)b+

j=l r
k((+)ai)*(

i=I
k n

kn) and ((+lti)'
I=I

e.9. (a+b)(c-a) + ac-ad+bc-bd

(an?/cl3 + 
^356¡ç3

AS-8: Addition of Identity

(r)

(2')

This can be rôughly repres'ented as

e + e+a-a

e + e*a/a (a I o)

The ta t above is

a factor in the target

e.g. e a

cs c-cot csc*cot

I sec+tan

not arbitrary, but may be a term oü

expression

result
(csc-cot) * (csc+cot) I

(csc+cot)
(sec+tan)

cs c+ cot

= (sec+tan)sec-tan (sec-tan) (sec+tan)

Latent Stru ture Prob n

C-set determination enables a proof constructor to find

the basic identities required to prove an identity. fhis

gives it a very good measure of look-ahead; But even sor

the task of proving the identity is in general not trivial.

It is difficult, merely by inspecting the identity, to predict

a sequence of algebraic transformaÈions and trigonometric

substitutions that wiIl constitute a proof. .However, for

an identity whose c-set is singleton, it is sometimes possibre

to predict a useful form into which it can be converted.
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As a case in point, cot40-csc40 = l-2csc2g, which

has the singleton C-set {fg}, is expressible in the form:

f-(csc2o-y¡2 = f- (cot2g')2. The f can be shown to be

cotrr0-2cs"2-o+r in this case. This shows that the identity

can be proved by deriving f - (cs e2g-t')2 from cot40-csc40

via a sequence of A-steps, adding the known T-step

f- (cs 
"?-0-I) 

2*f- (cot2 012, and then deriving l-2csc20 from

t-(cot2g)2- via another sequence of A-steps. Note that

cs"20-r.. cot20 impried in the above form ís a permitted

variant of 18. The above form is a special case of the

structure f tn; = ftST where n is some positive integer and

is a permitted variant of a ref erence identity. I^re

have found the following eight structures to be usefur; f

is an arbitrary expression and sL = 9, is a permitted variant.

(I) +g^:+s (5) f *q1: f *qh-"y" - rL'' rr
(2) tt9¿'tn9r (6) flgr.,ft9r
( 3 ) tsi,ts| (7) rte;: rte}
(4) t't9['t*9r (8) flnsl,ftn9,

sL " 9,

The structure (t) is

as (6) is a special
(r),(2),(31 and (7),

in (4) and (5) they

I /g

a special case

are

are determined

of (2') and of (3), just

(8) . In the structures

determined uniquely. But

up to gtU ,and 9', where

are

case of (7) and

gL and

/9, (n, / o)* and in (6) and (8), rhey

c''r

L r

*

kn*f. q speeiaL

Pt,oo.f :- Suppose g i
sÌ'-[ls. 

¡n r¡ ,"k!t"u. ¡
in uhich n=1..

-Kg
Then

and
*g' n

t"
(

ka
40

thus
stl-LL

^, :
ç ¿+2 ,nJVT
)is

þ
satí.sfying:
of the form
ease of ( 5)4



determined up t" Sd and g', where 9f -9'r r 9g,-9t.*

An identity which can be transformed into one of these

structures is said to Posse

cot4o-.""tto = r-2cscZo has

identity, witl¡ a singleton

noÈ can be found by simple

TLz -

ss a latent s ture. Thus

a latent structure. lrlhether an

C-set, has a latent struc.ture or

numeric tests.

The rationalé Uehind latent structures can be briefly explained

as follows. Suppose identity fU = ft has a singleton C-set

corresponding to ttre reference identity r = 0. In the X:form,

Thm 3 tells us that f U-f, is related to r. Ho\Âtever this relation

is too general. SupPos" 9g, 9¡ is a permitted variant of r = O,

and let f be a¡¡ arbitrary expression and n a posiÈive integer.

Then ít may be possible to express fn:f, in terms of go and'gr in

one of the structures above.

Let u¡ ¡v2 tv¡ and v2 be the values of fi ,t"r,S;" arid gi computed

at an arbitrary point. Then frzf, has one of the st¡ructures

shown in Table 6.1, if its values satisfy the corresponding

numeric test indicated.

To probe an identity fl" = f, for a latenÈ structure, it must

first be verified to have a singleton C-set. If the series of

tests in Table 6.1 fails for a given permitted

* Ptoof: Suppose g
aLao of the forTn
ftn( g' t-go) . reL

'-.L-9' r i I t-Tn. Then ftng' 9.: flng'z' is
fÏ"s r.-t ft"¡; uhene f = ftn(s 

""-e 

e.) :
gíues the case (6).
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varl-ânt, then it may be repeated for another. rn each series

of tests, the n may be varied to take any desired va1ue, ín

practtce n=2¡3r4r..9 would be quite adequate. If, all

posslble tests for fg,zfr fail, then they may be rePeated

for fr:f* and for L/fUzI/fr. However for ceitain tests,

a repetition for t/fl,zL/f., would be redundant. Similarly

for Bome structures, there is no need to test for every

permltted variant. As an example, for the structure

tttgß. ¡*gr, it would be useless to repeat a test f or permitted

varl-ants which are multiples ot. g ßrgt.

uI-Évt & u2=!vz (i.e- u1=vl &

the structufe 9C,9r and ul=-vl
f or -9 pz-g¡l

ut=tnvl & u2=tnv2 (for given

u1=tvf & u2=två

ut/uz=vr/v2(Provided uzlo) and

Étatisfied

uL/!z= (vr /uz)n (provided u2lo)
not satisfied

ut-u2=*(vt-v2) and tll not' satisfied
,nn.uI-u2=t(vi-vä) and t31 not satisfied

ut-u2=t(nvI-nv2) and l2l not satisfied

'J2=Y Z f or
& u2--v2

t 11 not

and t3I

I11tss;tter

[2]tns¿:tngr

t3ltsl'tsl
l4lt,*Sr, ' ¡*9r

t5lfrøf,:r'ts|

Í,61f,¡s, ¡ ft9.r

zl rlsf' rJsl

8l ftng': ftng,

t

t

Numeric TestStructure

TabLe 6.1 Test for Latent Structures
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It is clear that latent structures give a proof

congtructor an addltional measure of look-ahead, enabling

tt to perform goal-oriented algebraÍc manipulations '

Table6.2containsseveralexamplesoflatentstr.uctures.

TâbIe C .4 in Appendix C shows the results of a latent

ettucture analysis on the sample steps ' Here the

or on the

that most

probe s

steps if

of the

substeps

identities.

are performed on the derived substeps ¡

they are not res.olved. It can be

structures are of tYPe (1) ' This

are often the Permitted variants

seen

is because the

of the reference

2. sin. cos+ (s
-2sin. cos+1

cos*se") 2*i2

in2+cos2 )

(

(tan4+ - (sec2-tatt2-t)
tan4

tan2 )

+tan2

i

I

I

I

t

Ic-tan sec-tan

sec . tan+tan- 2sin) - 2tan
(sec. tan+tan-2sin)'

cot+ -2csc2 +Ll - (csc2-l) ?-i.otu 
- z.sc2+l) - lco,t2 ) 

2f_ (csc2-l l2rt_ 1cot2 )(7)

Eec. tan-2sfn-taû
(I+sec) (tan-2sin)

-cs"4*l-2"""2

f*I->f * (sec2-tan2 )

(equiv. to

SE -tan f'
f-2tan+f-2sin. sec( I )

( 4 )
I

gec-t¡n + sec*tan

f- (sec2-tan2-r¡*¡-9(6)(tan2 +1 ) 
2' a""Zti.;^nh +t"tt2

eified-"a"2*tarr4 -tatt2

(cos*sec¡ 2-ri2(3)2 *s""2*r

f+ (sin2+cos2 )*f+l(6)(Eln-cos ) 
2*I-2sitt. cos

Actual StructureDetected StructureStep

Table 6.2 Ies of Latent Structure
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A Heuristic Proof ConEtructor

The flowchart in FLgure 6.1 shows the general set-up

of a heuristic proof constructor (HPc) . The formulation

ls ån ad hoc one and needless to say there are other yayg

of organlsing our varíous heurístics Ínto a.proof generator;

But our Lmmedlate aim is to demonEtrate the feasibility,of

constructing a proof generator using our heuristícs.

HPC maintains an identity llst which starts off

the f dentÍty to be proved. Let t (O) = R(e). be this

ldentity. The proof strategy chosen is r,(e) I R(0) r

equlvalentll¡ R(e) + t(e) since the proof will be essentially

btdfrectional in the constructíon.

If t(e) + R(e) is already primitive then there is

to prove. If it Ls a large A-step then the prqof will

of algebraic manipulatÍons to reduce the step size. If

a sparse step then the trigonometric furrctions wilI all

converted into thelr sín0rcos0 equlvalents.

nothing

consist

it Ís

HPC contLnually tries to decompose the ídentity into

subLdentltÍes. In fact substep resolution is given top

prLorlty fn HPC. If an identity is resolvable into sub-

lôentfties ' then it is deactivated and the subidentities

appended to the llst to be proved ín turn. Although sub-

ldentitfes are proved índividually the proof dis¡llayed to the

Etudent t et any part of it, will have the usual form. This

le done by conbining the various substeps of a step.



sRjl(
Try

applicable
current

c
. Èo this

Latent

L (e) -R(e) $o

Exit
ailure

Alvlx

lry

Try
cRx

Try
SRK

ter¡ns of
Express

manipulation

Red.uce step if
Iarge be

rimitive
Step

Successproblem from
State current

Initialise
Problem

Use strategy
L(e)+R(e)

Start
HPC

No

116

Yes

Yes No

Yes

Yes

No

No

Note: Step refers to step formed
by the thro expressions of the
identity being proved. C-set
refers to its C-seÈ"

Algebraic Manipulation

No

Latent Structure
Probing

T

Main Flowchart

Fiqure 6.1 Heuristic Proof Constructor



Fail

Perform
Su.bstitution

ail

.TT7.

V
Yes

Yes

substep Resolution

Yes

Yes

No

Yes

NO

No

Yes

Yes

Exit

Fttobe

try?

Try
sRx

LSX
Try

substn.
turn

e
ecurren

success

Try reducing
one element at a

in the

Entry

ful?

SimplÍfy e
try substep
resoLution

?

implifi

Try next
secondary
Resolution

into
List

ties

Primary

RK
Entry

Rêduction

Fiqure 6.1 continued



-tr8-

'The resolution is carried out in stages if necessâr! r

starting with a primary one (see Chapter VII). lVhen a given

sÈage of resolution is unsuccessful another stage is attempted.

The reason for resolving in stages is to takg advantage of
the way in which subexpressions occur. often a primary

resolution .has as much chance of succeeding as the comprete

resolution,. A complete resolution is on the average much

costlier to perform than a primary one.

c-set reduction and ratent structure probing can be

carried out as explained earrier. For algebraic manipulation
each applicable AM may have to be attempted in turn, each

such AM, e.g. factorisation or simplification, being

immedlately folrowed by an attempt at resorution and c-set
reduction.

The originar identity is proved when the identity list

fs empty, Í.e. has no actíve entries. fî the list is not

empty then each entry must be proved in turn.. rf the rist
cannot be emptied in this wêy, then the original identÍty

wf11 be proved all over again, this time using the strategy
L (0) -R (0) + 0. rf this again faÍls no new strategy wirt be

attenpted, and no proof is produced.

!'le have hand-s imulated HpC

identities and have succeeded

The following illustrates our

IN

on some si4ty

producing a

problen

proof f o.r

on three

each.

ofhand- s imu lation
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the identlties. rn order to be brief Ì^re have omitted much

of the details of the simuration, especiarry in the second
and thírd probrems. we use the forrowing abbreviations:
X=unsuccessful at,ternpi-, '/="uccessfuI, p empÈy,set, SR=

substep resolution, cR=c-set reductionr AM=a.rgebraic mani-
pulationr LS=left side.

Hand Simulation of HPC

(I) Prove: cos40-sin4 0+1 
=

2cos2 o

Select strategy LS + RS

C-set of step LS + RS is {rO}
Step not prÍmitive
C-set not empty
Step not sparse
TrySR-X
Try CR - probe latent structure - X

. Substitute in LS to give (l-sin2O¡z_sin20+t
' (new tentative residual is (I-sin2e)2-

I'iii';i.,:;':::."'',
. Detected structure is 2* (L_sin2O)-Z*cos2O
. Convert tentative residuaf tó this form.

. Deactivate current problem identity
problem List empty

understandably many of the non-essentiar steps in
the simulation have been omitted in this description.
The derived proof (suitable for disptäy to the student)
is constructed from this internar sorution. overlapping
of "internar steps" are avoided in constructing this
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120

"externalr' proof .

Derived proof
cos4o-sin4e+t
= (r-sin2e)2-sin4e+I
= r-2sin2e+sin40-sin40+l

2-2sin2 e

2 (t-sin2 e )

2cos2o eED

, I-sin0. 2
= f-ì' cos0 '

(1-sin0) 2

-

cosz0

Prove ¡ ]-s-in-et+sine = 
(sec0-tan0 ¡2

C-set is {I2,f 4,16,T.7} (not empty)
Step not primitíve
Step sparse - convert identity to

, L sinO.2
'cos0 cos0'

New C:set is {fO}
TrySR-X
Try CR probe latent structure

. Detected structure ie

De rive d oof

(sec0-tane ¡ 2

=( I sin0
cos 0cos 0

(substitution)
(goal-dir.ected trans-

forma tion
guided by detected
Iatent structure)

nelr identi ty I-s in0
l+s in0

f *]+f :t (
cosz0

with f = 
(1-sin0)
( 1+sin0 )

Guided by detected structure, transform
ner.r ldentity to the above form.

2

l-sin0
I+sin0



L2T -

1-s in0
l-+sin0
I-sin0
I+sin0

1-sin20
cos e

QED

(3) Prove: co +s 6 o = r-3sin2

C-set is
I den ti ty
Try SR

Try CR

Try AM

Prove:
C-set
Try SR

Try CR Probe latent
. Detect f +

. Transform

2o

s tructure
(sín2o+cos2o)2 -+ f.+L2

subidentity to this structure

6

{fe1 (singleton, non-empty)
not sparse
x

X (no latent structure)
. applying AM-5 (factorisation) to LS we

derive (cos20+sinzo) ("o"40-sin20cos20+sin4o)
. Try SR -./ obtaining the substeps

.os2 0+sin20 -+ r (this is primitive) and

cos40-sitr2e. "os2o+sin4o 
-+ r-3sin20cos2o

. Append new subidentities to problem list
and deactivate current identity (1st one

need no further action)

New Subidentity

cos40-sin20cos2o+sín40 = l-3sin2ecos20
is {re}
-x

Derived proof:
cos6o+sin6o

= (cos20+sin2o) (cos40+sin4o-"os2osin20)
= 1* ( cos4e+sin4o-cos2osín2e)
= (cos2o+sin2o)2-3sin2ocos2o

= 1-3sin2ecos2o eED

In our

the program

hand-simulation !{e have found some sections o.f

and several minor heuristics to be of little

use. Perhaps some of these may be removed w,iÈhout detriment



to the effectiveness of
adequate fietit study vÍe

reorganise HpC.

In this chapter h¡e

proofs. This method we

Such a proóf-generating

dispensing of assistance
the chapter.
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HPC. But unti I we have

are not certain how we

carried out

can best

have proposed a methoá

have demons.trated to be

capacity can be used to
for proof as explained

f or çlenerati ng

effective.

aid in thç

earli_er in
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Chapter VII

PRACTICAT, CONSIDERATIONS

Although there was time for irnplementing only the proof-checking

program Super-2, we have consídered many of the practical problems

of implenenting TPS. In particular we have looked. into ttre question

of C-set, determination, subset resolution a¡¡d data structures. Some

of the solutions we propose have already been ad.opted in Super-2.

fn the final section of ttris chapter, Super-2/will be briefly described.
/

C-Set Determination

The purpose of C-set determination is to find a minimal C-set

on which a step holds. This involves testing the step, using the

representative poinÈ technique, over various S-sets to find a maximal

one over which it holds.

In Super-2 the representative points are based on a small set

of values. These values, thirty tr¡o of them, are shown in Table 7.I,

lfeted to 9 decimal places only. The first six are arbitrary and are

desigrnated as sino rcoso r...coto (srw. ,cos. ,...coT. in the table) .

The remaini-ng values are derived as shown¡ X, Y and. Z represent three

arbitrary arguments. As an illustration, entry 11 has the value

coso,/sl-no while entry 30 has the value cosXr/cotY.

Each representative point is made up of six values from the

table. In the C-set search table (Table C.2, see later) each RP

is represented by its substitution set which is simply an ordered

sextuple of pointers to the sr:bstitution table.
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NO

t
?
3
4
5
6
f
I
9

l0
II
le
t3
l4
ls
ló
t7
¡8

FUNCTTON VALUE

le
?0
2t
??
23
?4
¿5
?6
?7
?8
29
30
3l
3z

SINTSIN.
C0S-COS.
TANTTAN.
CSC¡CSC.
SECTSEC.
C0T¡COT.
CSCII /SIN.
SEC¡ I /C0S .
C0T= I /TAN.
TANrS I N. /COS r
corrcos. /s I N.
SINr$IN(X)
COS=COS ( X )
TAN¡TAN ( X )
CSCTCSC ( X )

sEcrSEC ( x )
coTrCOT ( X l
SINTSIN(Y)
COS.COS ( y )

TAN¡TAN ( Y )
CSCTCSC ( Y )

SECr$fQ I Y ¡

COT=COT ( Y I
TANTTAN ( Z I
SECTSEC ( Z )
COTTCOS(X)/SIN.
SINTCOS./COT(X)
SINTCOS.*TAN(X)
CSCrI / ( COS. rTAN ( x, ,
SlNrC0S(X)/C01(Y)
TAN=$IN(X)./COS.
C0STSIN(X)/fAN(Yl

3.0 I 74?9760
?.Tll¡óó337
4.9271Ió030
7.001775e10

15.331701000
I I .030379¡ 00

.331407840

.3ó884+94ó

.e029584t4
I . I le9ó371ó

.89850 I A68

.9370e0590
,349e74 I 23

2 . ó8e7ó55óó
I .0672 I 2407
2.8ó3080ó98

.3f2749619

.7?I5e339+

.692390 058
I .0óe076{79
I .38595ó4ó8
l.++ó272ó¡ó

.959ó22+ó5

.ó370I1085
I.09t319700
.1t575eI97

7 . ?73423ó93
7. ?73423ó93

. I 37486835

.3ó39703+8
,345ó I 5309
¡89918ó009

(l{HERE Xrl.2L1¡ Yr0.B0ór Z:¡0.4lZl
SUBST¡TUT¡ON TASLË

Table 7.I



Examples

C-set
co=ø

c22={TL rI2 rT3,Í.4 rts}

C42={IL tI6 ,T'1}

C94={ Ilr13 tT4rI5,L7}

L25 -

Substitution Set Representative Point
(L r2 ,3 ,4 ,5 ,6)
(L r2 ,LO t'7 , g, 11)

(I2 rL3 r24,L5,25 t6l,

(28,2 tL4 r2g rL6 tI7)

(sino , coso , tano , csco , seco , coto )

(sin",coso rsino/coso ,I/sín" ,
L/cos" , cos o/sin" 

)

(sinX, cosx ,EarrZ, cscx ,secz, coto )

I(coso tanX , coso , tanX
secX rcotX)

(cos"tanX)'

The RPs a.bove can be easily shown to satisfy their respective

requirements. As an exampJ-e, the Rp for C42 satisfies TlrI6 and 17

(cscX=l/sinxrsin2x+cos2x=I and sec2z=Ean2Z+!) but not 12 rI3r14r15 and.

I 8 ( s e cZlI / cosX, c ot " f L / tanz, LanZ/ s i-nX / co sX, cot " /cosX,/ s i nX,

csc2xlcoto2+I). From the a]¡ove examples ttre reader should have ari

insight into the way in which we have assigned vaiues to the various

representative points in the search table.

Zero Approximation

In tesÈing for a step f + g over a sampling set S, RpT uses the

críterion f" (I(s))=9" (l(S) ) or equivalently f" (I(s) )-ø. ([(s¡¡=s, X(S)

being the RP of S. However when the test is performed on a computer,

we should alLow for errors due to timited precision arithmetic by

replacing tt¡e crÍterion by lf"(I(s))-S"(x(s)) 1.., rh.re e is a

tolerance factor. e should neither be too large nor too smalI.

Our experiment has shown ttrat for a fairty broad range of values

for e no incorrect conclusions are incurred. This invorves a test

on some I0r000 steps for various values of e and using the Rps we

have just descrjlced. The computation \^/as performed in single-precision
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arithmetic on a CDC 6400. In this experiment, no error occurred for

10-11<c<fo-tl. rn Super-2 we adopt e=lO*8.

Finding the C-set of a Step

The set (t 
"an be arranged into a network whose nodes are C-sets

and whose directed edges join C-sets to their immediate C-subsets.

A portion of this network is shown in Figure 7.1. C97 ttre largest

C-set is the "earliest" node while the empty C-set CO is terminal,

having no C-subsets.

Using this network we have the following atgorithmn for finding

"the" C-set of a step:

tf] 'Iest step at initial node C97. If test succeeds set i<-97

and go to [21 ¡ otherwise step is incorrect. Exit.

I2l Test step at each immediate successor node of Ci in turn until

either [a] it succeeds at Cj or tbl each test fails and there

is no other successor node to test at. If [a], set i<-j and go

to [2]; else it ís tbl and the desired C-set is Ci. Exit.

It may be noted that this procedure produces only one C-set of

a step.

This search algorithm is not the best possible since it requires

more tests than are normally necessary. It initiates the search at

C97 and this has more than twenty successor nodes. This means that

a C-set search may require more than thirty tests since the earlier

nodes have many successors. However most of the steps encountere<l

in practice have a rather small (few elements) C-set and therefore a

very significant saving is made in the required number of tests if we
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can somehor^r initiate tht: search aL a later node than C97. Such

an improved procedure can indeed be devised requiring on the

average less tl.an six tests to effect a search. It is based on the

configuration (see below) of a step, i.e. the types of functions

occurring in it.

Conf iguration-Directed Search

The binary sequence b1b2...b5 defines ùhe configuration of a

step; b1 is I or O depending on whether or not the ith trigonometric

function occurs in the step. Thus sinOrcoser...cotO are flagged by

blrbz¡...b6 respectively. As an example the configuration of (1-tan0)

(1-cot0)+2-sec0cscg is O0I111.

The largest C-set a (correct) step may have depends on its

configuration, but it usually much smaller than C97. A step in

which only sinO and cose occur cannot have a C-set which is a super-

set of {r0}. This is because if its C-set is larger than (is a

superset of) 16 then the correctness of the step must depend on

some governing relation (i.e. basic identity) involving some function

other than sinO and cosO. But this is impossible since this step

contains only these two functions and so cannot be dependent on any

other function. Thus a step with the configuration 110000 must either

be an A-step or have the C-set {f6}, provided it is correct.

Given a set of basic identities we may, by substitution among

tltem, eliminate certain functions to derive new relations. As an

example, we can derive L/csc2}+L/sec2a=1, involving only cscO and

secO, from {TLtT2rI6}. A step wit}r tt¡-e configuration 0001-10 could
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therefore be dependent on L/csc2\+L/sec2O=1 for its correctness.

Expressed in terms of our basic identities, this means its correct-

ness could depend on {rt,r2tr6}.

We shall refer to our basic identities and all those identities

derivable from among thern by substitution as operating identities.

These incrucle Jlr"."J4. The basic identities from which an operating

identity is derived will be calred its spanning identities. Thus

the spanning identities of L/esc2o+r/sec20=r are TLtT2 and 16.

For a given configuration, the largest C-set possible for a

step may be obtained in the folrouring manner. collect all_ the

operatLng identities ("implied" ones may be omitted) whose functions

are indicated in ttre configuration. Then the spanning identities of

this corlection is the required largest c-set. hle shall call this

largest C-set the entry C-set of the conf iguration;

e.g. configuration :

Operating identities:

Spanning identities :

Entry C-set .

0r0110

seco=I/coso , cos2o+ L/csczo=r

csc0= 1/sin0, secO 
= 

I / cos}, sin20+cos2 0 
= 

1

{t:-rtzr16}.

In a configuration-directed search, we avoid a great number of

tests by initiating the c-set search at the entry c:set. The method

we have actually experimented with is a configurationtirected one,

but it is based on a c-set search table instead of the network.

The C-set Search Table

The C-set search table, given in Table C.2 is a,modification

of the network onganised as a tabre. rt has 153 entries, beginning
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The spanning c-sets of those entries in Èhe table, for which

their configurations are indicated, are the entry c-sets of the

configurations. rt wilt be seen on inspection that in each section

of the c-set searctr tabre the entries are ordered by configuration

from the densest* to the sparsest (not including entries without

configuration shown). vüithin configurations of a given density,

the ordering is numeric, from larger dovm to smaller.

The following procedure for finding the c-set of a step, using

the C-set search table has been used. In testing at a given entry,

the computation of expression varues is made at the representative

point indicated by the substitution set.

tll (sÈep correct?) Test at entry-152. rf successful, 9o to [2],

otherwise step is incorrect and there is no c-set. Exit.

l,2l (A-stepz) Test at entry-O. If test fails go:to [3], otherwise

step is algebraic and C-set ís Ø, the empty set. nxit.

t3] (non-Pythagorean?) Test at entry-r. rf test fail-s, go to t4l t

ottren¡¡ise step is non-pythagorean. Enter this section of table

at entry with a matching configuration with the step. Let this

be entry-i. Go to [6].

t4l (Pythagorean?) Test at entry-47. If test fails go to [5],

othenrise it is Pythagorean. Enter this section of table at

entry-i, where the configurations of the step and this entry

agree most closely. (rf these configurations are respectively

Fl and F2, ttren they must satisfy F2=F1.A.F2 where.A. is the

* }ne configuratí,on is saòd to be densen thqn qr¿othez, íf it has
more tlt Ítits.
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FORTRAN .AND. masking fr¡nction) . Lìo to [0.¡ .

(Step is hybrid). Attempt enteríng this section of table at

entry-i, r^rhose configuration matches that of the step. If

succegd in locating such an entry, go to t6]. El_se test at

entries-97 r98 ì...116 and entries-L49r150,15I (configuration

shov¡n as xxxxxX) in turn until either [a] it succeeds at some

entry, say entry-i or tbl all the tests fail. 
'r, 

tal is the

case 90 to[6]; if tbl then required C-set is the largest, C97.

Exit.

Itrack down C-set). Tr¡ro cases are possible: tal entry-i has no

successor (immediate C-subset) or [b] entry-i has one or more

successors. In the case [a], the C-set of entry-i is the

.requined one. In case [b], test for each of the successors in

turn. Then either ti] it succeeds at say entry-j or [iil at1

successors fail. In case [i], set i<-j and go to beginning of

t61. rn case tiil the step fails to hold on any of the c-subsets

of the c-set of entry-i and so the latter is the required. c-set.

Exit.

Remarks on the Search Table

(1) Every C-set is represented in the search table.

(2) The folrowing entries have the speciar functions indicated.

Entry Corresponding C-set For Testi V'lhether or not S

0tl
L52 lL,2 13 ,4 15 ,6 ,7 ,gl
1 tLì21314r5J
47 [6 t7 ,81

algebraic
correct
non-Pythagorean

PytJragorean

l_s:
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(3) The successors of enËry-L52 are tt¡ose with configuration shown

as XXXXXX. Because there are so many of them, they are not

indicated in the fietd for successor nodes for entry-152.

The entries t49,I5O and 151 shoulo have been placed with Èhose

other entries with configuration shown as XXXXXX. However their

omission was discovered only after the tabte has been constructed.

This explains the break in the sequence of successors of C97-

Some configurations, e.g. I1110I and 001111, are absent in the

hybrid section" However they are already covered by some other

entries.

Some confignrrationsr ê.g. entries-88 and 93, have multiple entry

C-sets. In fact implicitly, 111111 in ttre hybrid section has

several entry c-sets Èoo.

A full C-set search table is not required for proof-checking.

Since in ttris case, Èhe system is interested only in whether or

not a step is correct, algebraic or has a singleton C-set, only

èntries for Corcl rc2r...C8¡ änd c97 (ana {¡1}r.".{¡¿}) are

(4)

(s)

(6)

(7)

necessary.

Substep Resolution

There are four types of resolution to implement. Exponential

resolution presents little problem. FacÈored resolution can be

converted, either explicitly or implicitly, into the additive case

kk
by expanding f (*) ((ller) into the form (+)f (*)ei. Vrte are left with'i=I r' i=l
ttre nultiplicative and additive cases to consider, but since these

are very similar, we shall treaÈ only tJ.e additive case.
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The additive resolution problem may be stated as follows: given

two equivalent expressions e and er, resolve e and er into k terms

each, giving elte2r.o.€¡ and el, e)r...e[ respectively, such that

ei:-e: (í=Ir2r",.kl . The difficutty is that k is not known before

hand. The components derived from the expressions of a step have

to be regrouped into matching terms.

Expression Decomposition

Given ¿m expression remove all its outermost parentheses, if

âny, and separate the resultant expression into its terms. This

process is called a primary decomposition. The decomposition of

ab-(c-d) into ab and -(c-d) is primary, but not the decomposition

of say, ab-(c-d) into abr-c and d or of a+(b+c) into arb and c.

If an expression undergoes two or more successive primary decomposi-

tions, tJlen the resultant decomposition will be called secondary

províded it is not the same as the primary decomposition. Thus a+b-c

has no secondary decomposiÈion.

Components will be described as primary or Secondary depending

on whether they are derived by a primary or a secondary decomposition.

Component Matching

Let e + er be a correct step and let the sets 6 = {eI ¡82t...en}

and c' = {el re)r....å,} ¡e t}re derived components of e and er' i

respectively. Thus (+)e=(+)e' ((+)e means tll"i). To resolve the
i=1

step into k sr:bsteps we impose a k-partition on e and er. Let this
k

partition yield {81 ,e2 , . . .Ek} ana {nl ,r,r, .. .ui} where Ê=iUIEi '
k

t'=r!r-ui, EilEl=Ø and n!nej=Ø (í/j). Furthermore \.re require the

(+)Ei (í=L12'...k) . Thus I^Ie arepartition to satisfy: (+)Ei =
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kk
converting the step into the form tÏl (+)Ei) -+(+) (+lell

i=l - i=I r

There are S (nrf) ways of distributing n distinct objects into

k"non-distincÈ cells such that none is empty and such thaÈ the order

of the obJects in a cell is irrelevant. Here S(nrk) is Stirling's

number of the second kind and is given by the formula
-n.
f tlr(-1)i(1)t"-ilt (see Liu [39], p. 38). rt follows that then¡ \¡,

number of ways of partitioning a set of n distinct elements into

k classes is also S(nrk).

Assuming distinct components, \^re have S(nrk) and S(nr,k) ways

of k-partitioning e and e' . For each such partitioning of e and of e'

there are kl possible 1-1 mappings beÈween ttre two sets of classes.

Considering all possible k-partiÈionings there are a total of

Tl = S (n,k) xS (nr ,k) xk! such mappings. From among these mappings we

seek oner 9 sayr satísfyinS: S(Ei) = Ei and (+)Ei = (+)ni

(i=lr2r...k)... (*). Tl represents the number of l--l mappings we may

have to try before finding one satisfying the requirements (*), or

discovering that no such match exists. Considering all possible

values of k, we may have to :cry 12 = i: S(nrk)xS(n'rk)xk! such
k=O

mappings, where no = minimum (nrnr) before \^/e are assured that no

resolution of ttre step e + er is possible. Tal¡le 7.2 shows some

Stirling numbers of ttre second kind, Èo indicate how steeply T2

grows with n and nr.

The above formulation assumes a partitioning in which no class

is empty. But this fails to account for the case of implicit substeps

as is found in say sin20+(tan0-sin0,/cos0¡-+(1-cos20). Here
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Table 7.2 Some Values of S(n'k)

(tan0-sín0,/cos0)+o is a substep although t]-e 0 is present only

implicitly in the right expression. (In multiplicative resolution

we have an implicit match with t I). The number of k-partitions of
k

n distinct objects, permitting empty classes, is .I,S(nri), this
a=r

being also ttre number of ways of distributing n distinct objects

into k non-distinct cells, with enpty cells allowed (see Liu t39l).

The effect of this revision is to greatly increase the size of'I2

derived above.

The aim of our brief combinatorial exercise has not been so

much to derive specific formulae as to show that to carry out a

substep resolution, a very large number of trial-and-error operations

might be required, this number growing dramatically (exponentially)

with the number of components obtained from the step expressions.

There is therefore a need for a very efficient method for deciding

expression equivalence r and Èhis is one application in which our
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numeric approach has a big edge over a purely symbolic one. The choice

of data structures used in the implementation also becomes very

important; we shall discuss this topic later.

Primary and S econdary Resolution

substep resolution based on primary components of the step

expressions will be called a primary resorution¡ similarly a

secondary resolut ron is based on secondary components on1y. Our ad

hoc approach is to perform a primary resolution first. If this fails,

then a secondary resolution is attempted. If a secondary resolution

fail-s, Èhen another (based on a further secondary d.ecomposition of the

expressions) is attempted, unless this is not possible.

The rationaré for this approach is ttrat a primary resorution

involves fewer components ttran a secondary one, and therefore is

much faster to carry out, since the effort required to perform a

resolution increases exponentiarly with the number of components.

Besides, by ttre way subexpressions occur, a primary resorution has

a relatively high cha¡rce of succeeding. rt would be inefficient

therefore to attempt a secondary one straight away.

Non-uniqueness

The resolution of a step is not always unique, but where all

possible resolutions lead to the same concrusion regard.ing step-size,

tÌ¡en we have no probrem. However a smal1 step may give rise to a

resolution which causes it to be regarded as large. one such case

ís the following: a+b+c+d+dr being resolved. into a+c*dr and b+d with

both substeps small, and into a-+c+d and b-+d.r in which b+dr is large.
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rn practice the proportion of cases incorrectry analysecl in consequence

of non-uniqueness is so small that we can ignore it without serious
consequence- There are v¡ays in which this probrem can be handred, but
we shalr not consider any of them here. vrle merery wish to point out
tt¡e existence of the problem.

Sequential Resolution procedure

so far our formulation has more or r-ess assumed simurtaneous

resolution- But there is no need for deriving a1r- the substeps of
a resolution at once. rnstead rde can obtain the same resur_ts

sequentially, and this approach is simpler to implement. rn sequentiar
resolutionr r¡¡e remove a substep from the step as it is detected,

continuing in rike manner with ttre remaining step. This is in fact
the approach used in Super-2.

sequential resorution may be described briefly as forrows. Let
the components of the step expressions be, as usualr E={e1rê2t...+}
and e '=tei ,e1 ,...";Ì" üIe attempt to d.etect substeps by a sequence

of schedules l_-l_ ,l'-Z ,2-I ,2-2 ,1-3 ,. . . . . A schedul_e r_s is a program

for seekinq out a substep invotving r components of e and s components

of er. The (l) crasses of r components of e are matched against ttre

(!)"r.="es of s components of e'in turn until there is a successfur

match or until all attempts fail. A successful match indicates a

substep and this is removed" The matching comparison is done

numerically, using maximum consistency (q.v.) varues. vühen a substep

is removed, n-r components of e and nr-s components of er remain.

The search for another substep under the same schedule continues with
these remaining components provided there ¿rre enough of them, i.e.
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n-rlr and nrts)s. If this schedule no longer appliesr the-. Ììerxt ()tìrr

is tried until no further schedules are applicable, by reason of

insufficient number of colnponents. !ùhen a given class of r components

is initiated, a test for an implicit test is also made by testing it

against O.

In Super-2 only the 9 schedules I-LrL-2r2-Lr2-2rL-3t3-Lr2-3r3-2

and 3-3 are used, in that order. In analysing the 207 sample steps,

it was found that the removal of the last fíve schedules did not

affect the result of the analysis. This is because tl-e number of

components involved in the expressions are small, (Super-2 does not

perform secondary resolution) and the substeps themselves involve

relatively few components. If the first four schedules prove adequate,

then a significant improvement to the resolution algorithmn is achieved,

sínce the last five schedules often involve ru more tests than the

first four.

Data Structures

IIow efficiently and elegantly we can irnplement a program will

depend to a large extent on our choice of the underlying data

sÈructures. In TPS this consideration is vital if we are to expect

the full advantages of our largely numeric approach. There are

several important factors to bear in mind.

Our approach involves a large number of computations for deriving

expression values at various selected points. A standard approach for

evaluating an expression is to convert it first into a Polish form

and then to carry out the computation interpretively. There are
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several forms of the Polish notatiolr (st"r: Il;rttùrlin t-ìOl)

used. In Super-2 r^¡e choose the early prefix Polish.

Hxpressions under investigation should be carried in the Polish

form to avoid repeating the costty process of converting an expression

ínto this form every time it is to be evaluated. Polish expressions

should be maintained internally as a simple doubly-linked list to

ex¡redite the insertion and deletion of subexpressions. The latter

operations occur duríng sequential substep resolution.

A doubly-linked list consists of a sequence of cells, each linked

to its left and right neighbours; the first and the last ce1ls have

only one link each. The diagram below shor¡rs sinO+cosO*11-t*t20)-tanO

maintained in its Potish form as a doubly-linked list ('-'-t' represents

a double link).

[ - ] <-' [ + l <-] [ sin0 ] <-+ [ * ] <-+ [ cos 0 ] <--+ [ - ] +-+ [ I ] <--+ t t l ++ [ tanO ] <+ [ 2 ] <--+ [ tan0 l

TPS requires the vaLues of expressions and subexpressions at

Various representative points. Of these the most important are the

maximum consistency (MXC) values computed at the RP of C97 and the

minimum consistency (MNc) values computed at the RP of C0. Since the

MXC and MNC values are used very frequently they are Çarried permanently

with the Potish list in Super-2. The diagram below shows how the

fictitious MNC values of tJ-e last expression (assuming sin0=I, cos0=l

*d tatrt)=3¡ may be stored with the list. Note that each ceIl carries
-lB -ls 1 -16 2 -B 1 9 3 2 3

[-J.-r [+] *+ tsinQl <--+[*] <--+ [ cos$ ]++[-]<--+ [1]<--+ [t]ê [tan01<+ [2] <+ [tanO ]

the value of the subetçression it initiates. In particular the values

of all the components are no\¡¡ known and this is a great advantage
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sl.nce these values are required again and again during substep

resolution. The dramatic improvement derived by this saving of

the MXC and MNC values will be shown in our discussion on Super-2.

For the same reason as for the MXC and MNC values, \^/e should

also derive the component counts of the various elements and sub-

expressions only once and save them in the list, ready for use when

required.

Two basip formula manipulation operations in resolution are

the locating of components and the detaching of matched components.

In both we want to find the iniÈial and terminal cel-ls of a desired

component so that we can read off its MXC or MNC value, or compute

its value as some RP or to remove it from the parent l-ist. To ensure

efficiencyr we should perform our formula manipulations in the Polish

form only so that we do not need to operate at the usual infix form

as well. Unfortunately, a Polish erçression, maintained as a simple

doubly-linked list is highly unstructured. It does not reveal easily

the Location of desired components.

Furthermore, during component detachment, and attachment, certain

of the values and component counts in the resultant list become

incorrect and must be recomputed. To avoid unnecessary corrections,

we should recompute only those affected quantities. There is then

the problem of locating the affected cells.

In the following section, we develop a simple nunbering scheme

whích imposes a useful structure on the list by assigning an index

to each ceII. The indices enable us to develop very simple algorithms
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for the various formula manipulation operations' The indices are

carried with the list, in the same !vay, and for much tlte same

reasons, as for the other appended quantities'

Index Theory

VüeshalldefineanindexschemeforprefixPotishandstudy

someofitsproperties.lleshallthenshowtherelevanceofthese

properties ín our formula manipulation operations'

Basic Definitions

D.l A slmbol is a member of a set {s1¡s27s3r"'} of primitive

operands. e. 9. A, ZR rI2 ,5

D.2 An operator is a meñber of a set {Ø,Ø1,Ø2r" '} of operators'

D.3

D.4

D.5

e. g. + ,- ,* ,1 , -, sin r sec. ( - is the unary minus)

An element is a slrmbol or an operator'

A string is a sequence of elements

rhe degree D(e) of an element e is given by: (1) D(e)=O if e

ís a symbol and (2) D(e)=m íf e is an m-ary operator'

e.9. D(sec)=D(-)=1, D(A)=D(5)=O and D(*)=D (+)=Z'

The rank R(e) of an elernent e is D(e)-l '

The rank of a string S is the sum of the ranks of its elements'

D.6

D.7

D.8 Well-Eormed Formula (wff)

(a) a single slzmbol is a wff ;

(b) íf Ø is an m-ary operator and F1 ,12r" 'F* are wffs then

ØF1F z...Fm is a wf f ;

(c) a string is a wff if and only if it is so by virtue of

(a) and (b).

Note: D.B defines a well-formed expression in the prefix Polish
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form. Note that the rightmost el-ement of a wff is always

a symbol.

D.9 A substring of a wff wtrich is also a wff is called its well-

formed subformula (wfsf) .

e.g. .tat and t-bcr are wfsfs of the wff '+a/-bcd.l

Notation: I¡Ie will usually denote a wff F by e1e2e3...en where

eL ¡e2r...êr, are elements.

D.I0 W (e ) or w(i) denotes tt¡-e wfsf of e1 e2...e' beginning with ei..

D.1I

e.g. If e1e2...e7 is r*a/-bcdr then W(2) is 'a' , lrl(4) is r-bcr

and V,I(9) is undefined.

The problem of locating Vl(i) is to find its .rightmost element.

One way of locating this element is to use the Rank Theorem (see

Nelson [50], p.45) which states: The rank of a well-formed

formula is -1. Since W(i) is unique all we have to do then is

to add the ranks of the string elements beginning with e. and

proceeding to the right until the sum is -I. Ho\^/ever we shalf

use an alternative approach based on indices (q.v.).

Definition of Index

The index of the element e1 in the string ele2...en' denoted by

r(e;) or r(i) is given by:

(a) r (i)=r (i+1) -R(ei)

(b) I (n+1) =lt

N, the index base, is an arbitrary integer value to be set. The

standard index has the base N=0. Unless otherwise specified, all

indices wiII be assumed to be standard, as in Super-2.

e.g. The Polish string and its associated indices for the expression
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A+(B-C) /(2tcA-p/(Q+R)) is as follows. The indices are computed from

the right.

I(i): L 2 L 2 3 2 I 2 3 2 I 2 I 2 t

e
I

+A/ BC tr2A/P+aR

D.l2 The rigtrtmost and ttre Ieftmost elements en and e1 of ttre string

S: e1e2...en are denoted by Rrn(S) and Lm(S) respectively- If S

is an element then Rm(S) and Ln(S) are the same element-

We shall nor^/ derive a number of simple index-theoretic resufts

which are useful for our numeric heuristics. These results will be

calted observations or obsns for short. They pertain to expressions

and subexpressions which are well-formed. It woul-d be helpful to the

reader to consult the last example when reading the observations.

The Indices of I¡'lell-formed Expressions

Obsn 1: Let F1F.*rr where Fi¡Fia1 are wffs, be a substring of a wff'

Then r(Lm(F.+1)) = r(Rm(Fi) )-1.

Proof: As noted earlier the rightmost elemènt of a wff is always a

symbol and therefore has the rank -1. It follows from the definition

of índex, that r(Rm(Fi)) = I(Lm(ti*f))-R(Rm(Fi) ) = r(Lm(F'+t))+1.

I{ence the observation. QED.

Obsn 2: If F ís a wff t]len I(Rn(F)) = I(r,m(F)).

Proof: t{e prove this observation by induction on the length of F.

If F is of length I, then result is obviously true since r,m(F) and

Rm(F) are the same element (true for n=I).

suppose observation holds for all F's of length <n. Let F be

of length n+1. since F has at feast two elements it has the form
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ØF1Fz...Fm where / is an m-ary operator and F1 ¡F2t...F* are aII well-

formed. Since each F1 is of length r(nr I (nn(f i) )=I (Lm(Fi) ) (i=Ir 2,...m) ,

by the induction hypothesis. Let I(Ln(Fm))=k. Then by Obsn ].r

I(Lm(r_,))=k+1, I(Lm(F* .))=k+Z | ...rr(Lm(Fr ))=k+(m-f¡. By definition,m-r m-z

I (Lm (F) ) =r (Ø)=I (Lm (FI ) ) +R(ø) =k+ (m-1) - (m-I) =k=I (Lm(F ) ) =I (Rn (F ) ) =

I(Rn(F)). QED. ,o/

obsn 2 states that the extremal elements of a- wff have eqr.rat'

indices. This moÈivates the next definition.

D.13 The index of a wff is the co¡nmon index of its extremal elements.

Thus if F is a wff, then I(F)=I(Rm(F))=I(Lm(F)).

Obsn 3: Le|- Ø be ar¡ m-ary operator and F1 ¡î2r...F* wffs. Then ttre

indices of QrE1rEz,...F* in the wff ØP;.FZ...Fm are respectively

lrmrm-Irm-2, . . . 3,2 rJ-.

Proof: See proof for Obsn 2.

Note tJ..at all standard indices are positive and the index of a

wff, not treated as a wfsf of another wff, is 1.

Obsn 4: Let F = ete2...en be a wff. Then I(i)>I (i=1r2r...n)

Proof: Follows from Obsn 3 and induction.

Obsn 4 states that no standard index in a wff can be less than l-.

In fact in any wfsf of a wff, the indices are no less than those of

the extremal elements of the wfsf.

Obsn 5: Let F = ele2...en be a wff. Then Rm(W(i)) is the first

element ej to the right of e, satisfying I (j+I) <I (i) or if this e .

does not exist, it is err.

Proof: Either (1) W(i) has a right-hand neighbour in F or (21 it <loes
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not. fn the case (2), !ù(i) is e
n

rn the case (1), since !ù(i) has a right neighbour it must have
a wfsf as a right neighbour. By obsn 1, the index of the right neigh_
bour must be k-I if the index of !v(i) is k. By obsn 4, every element
in vr(i) has an index ) k- Therefore the right neighbour of !ù(i) is
the first element on its right with a smarler index than its own. QED.

This observation enables us to rocate the right extremity of a
component in a polish expression very easiry. There is no need to
apply the Rank Theorem.

D'14 Let ØF.oz"'Fm be a wff in which operator p is m-ary and

FlrF2 r...F* are we1l-formed. Then Ø is call_ed the governina
operator of F1r.2r...F*r which in turn are the operands of Ø

ØE¡Fz...Fm will be call_ed the governing wff of Q,F1¡r.2r...F^.

D'15 The operator op maps a wff on its governing operator. Thus
(cf D.14) op (Ft ) =op (Fz) =. . .=op (F*) =Ø. opi*I (r,) denotes
op(opi(F)). A wff of length t has no governing operator.

obsn 6: rf øErF2"'F* is a wff, then F1 ,F2r--.F* are respectively

-'-"i, l,'^'*' ",' )';*:ï.Jr,j';l,.,:''-' 
is the first elemenr

Proof: very simirar to proof for obsn 7 be]ow.

This observation gives us a simple index-directed method for
locating the operands of an operator in a polish string.
obsn 7: The governing operator of a wfsf F' of a wff is the first
element on its reft h'ith an index not greater than its own.
Proof: F1 must be in the context -. -ØEÊ2..-Fm--! as one of Fl ,F2r..rFm.
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Let I (Ø)-U. Then F1 ,82,...F* have the indices k+ (tn-l) ,k+ (m-2) r.. .

...k+2rk+lrk(cf Obsn 3). By Obsn 4, aLL the elements in FIrF2rr.Fm_l

have indices greater than k. Hence the observation. eED.

obsn 8: rf we replace any wfsf in a wff with a wff, then the resurtant

string is a wff.

Proof: Definition of well-formed formula.

Us Indices in our Data Structures

In TPS the operators encountered are the arithmetic ones + - *

/ ,l , - and V (reciprocal) . Sínce vre are treating sinO rcosO, ...cotO as

the special variabl-es SfN'COSr...COT (i.e. xlrx2r...x6) we do not

concern ourselves with trigonometric operators. our operators are

all of degree L or 2 and although our index theory appties to general

m-ary operators, m<2 is adequate for TpS.

We maintain an expression internally as a prefix polish string

e¡e2...en" To each element ei \¡ùe append its MXC and MNC values, its

index I (i) and lts component count N (i) . To simplJ_fy descrípÈion

u/e represent ttre MXC and MNC values by a single one V(i) which can

be regarded as being derived for some given su_bstitution.

hle sharl refer to a string e1e2...en in which e, is associated

with I(i)rv(i) and N(i) as a structure. If the string is a wff and

I(i)rV(i) and N(i) (i=1r...n) are all correct and consistent then

we shall call the structure well-formed.

Let e1e2...en be a wff. Then V(i) the value of element e. under

some given substitution is given by the following.
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Figure 7.2 below shows tlre structure of S = A-g+ (C-D)+p/(C_e*g¡,

assuming the substitution A=2tB=4rC=6rD=5rp=5 and g=4.

Remark: The indices carried in a string are rerative to the base N.

The follov¡ing diagram shows three varid assignments for the string
of A* (B/C+D,I .

-3 -2
*

If

The

(1)

(2t

(3)

(4)

(s)
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(1) e. is a numeric constant, V(i) is ttrat number;

(21 e- is a variable, V(i) is the substituted va_i __ _ --__<r.ore, v tl_, l_s tn rlue of er;
(3) e. is an operator, V(i) is the value obtained by applying

the operator to the varues of its operands. (rr e. is +,

then addition is implied, etc.)

compofient count N (i) of e. is defined as follows :

e. is a variable or constant then tt(i)=O;

e. is I and its left operand is SINrCOSr...or COT, and the

right operand is OrL or 2, then N(i)=O.

e. is I and tfie operands are not of the type in (2), then

N(i) is the component count of its left operand plus 1,

i. e. N (i+1) +1.

e. is +, -t * or / then if "inl i= of tlre same hierarchy*

then N (í) is the sum of the component count of its 2

operands plus I;

e, is *t -t * or / but does not satisfy condition (4) t then

N(i) is the sum of the component count of its two opêrands

plus 2.

-3
D

-2
c

-1
B

-3
+

-2
A

6767876
*A+/BCD

L2I2321
rl¡+/BCD

(N=0) (N=5) (N= -4)
t t qnd - haue equq,L hieroteÍry as

are of a highen hieraz,ehy thøt
but the Latter paiz,haue x and /,

the fonmen.
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i:
r(i) :

ei:
v(i):

N(i):

L234567
1234323
++-AB-C

-'l o^#-r -2 2 4 I 6
L4

L2520020

1I 13

I I

5-L4620

8

2

D

5

o

9

I

-5

I412

2

c

10

2

P

2

P

5

0

*

15

1

a

4

0

L4

60402

232
/Bc

Fi e7 2 A Structured List

The subexpression B/C in the first assignment has the indices

and this can be regarded as being relative to a base of 1

]- Index The to Formula in Prefix Polish

!{e shall- now consider several important applications of our

index-theoretic results to subexpression manípulation.

Expression Decomposition

In Super-2 an expression is decomposed only implicitly. The

components äre located and their positions in the string noted in

a comPonent table. Obsn 5 and Obsn 6 enable us to locate the operands

of an operator.

If the operator is unary then its only operand begins immediately

on its right, the right extremity of this operand being easily found

by using Obsn 5. If the operator is binary, of index k say, ttren it

has a left and a right operand. The teft operand is located in t-hre

s¿rme $ray as the operand of a unary operator. The right operand begins

with the element which is the first to the right of the operator to

have the index k+1. Its right extremiÈy can again be found by using

Obsn 5.

e.g. In Figure 7.2 tJ::e operands of. e2 are W(3) ¡ -AB and W(6): -CD,
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and the left and right operands of e1 are W(2) and W(9).

lvhen an expression is in tt¡e additive or murtipricative form,

several components are often involved. The operands of ¿my one

operator do not yietd directly the desired components. To illustrate,

the primary components of 5 are Ar-8, (C-o) and. p/ (C-p*e) but the

operands of say e1 (cf polish string of $) are Vù(2) and W(9) but not

the components. !{e sharr now present an argorithm for deriving the

primary components using indices. lVe shall trea.t only the additive

cage as the multiplicative one is similar.

To locate tJ-e primary additive components, scan the string

ele2...en from the left for the leading chain e1e2...er of additive

operators. If there is no such chain, then the expression is its onJ-y

component. otherwise, the primary components are vr(i0), w(i1) r...w(ir)

where i6 is r+I and eij (j=Lr2t...r) is the first éIement to the

right of e for which I(i-)=I(j). This follows from a repeated- r '-j'-\J'

application of Obsn 6.

An expression suctr as -(A+B-P/Q) is not in tÌ¡e additive form

strictly speaking" However by taking care of the siqns separately,

t¡re can derive tJ-e components by bypassing the unary minus. At the

Polish level this means applying our algorithm to e2ej.. "en.

Applied to 5 ttre primary components are, ignoring signs,

vù(4) 'W(9),vt(6) and Vü(5), i.ê. Ar /P-c*Pg, -CD and B. Note that

V(4) 
'V(9) ,V(6) and V(5) are the values of these components. When

taking into account the signs, a component should be negated only if

it is the right operand of a r-r. In our example only B should be

negated"
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completely the appended quantities since normally not many of them

are incorrect.

If it is F1 which is detached, then no index correction is

required since ØE1FZ is replaced by a wfsf of the same index. lf. Fz

is the component detached, then only the indices of the elements of

F1 which replaces ØE:,Fz need be corrected. This is done by reducing

each incorrect index by 1, to make the new index of F1 the same as

that of the wfsf it replaces.

The only "V(i)" and,,N(i)" that are incorrect are those of the

governing operators of the affected wfsf in the resultant string.

Thus if F2 has been detached, then the affected opelators are Op(Ff),

op2 (r1 ) , op3 (F1 ) ... (till there are no more) . These operators can

be easity located using Obsn 7. The correction for the "V(i)" and

"N (i) " should be made in the order of the governing operators strown.

Figure 7.3 illustrates the detachment of (C-D) from the expression

li, in three stages. The first shows the well-for¡ned structure prior

to the detachment. The second shows the effect of delinking r-CDr and

its governing r+r; The affected appended quantities are shown in

italics and they are rectified in stage three.

Table 7.3 summarises the actions necessary to effect the detach-

ment of a subexpression under various conditions. Note that the rkr

and rk+1t on the expressions are indices.

So far we have considered only the detachment of a single component.

When several components are involved it would not be a good approach

to handle the detachment by detaching each component independently;
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7.8 tDe tachment

This is because the "v(i)" and "N(i)" of affected operators may be

corrected more ¡.¡an once. Affected indices may' as before' be

correctedaftereachcomponentisdetached.Ho\¡reverthecorrection

of affected,rv(i),,and "N(i)" should be deferred until all detachable

components have been removed'

AsaniltustrationconsiderttredetachmenÈ*ofDandofP(the

first one) from $. we detach D first say' and then P flagging

affectedoperatorsineachcase.Affected.'V(i)''.and''N(i)'.arethen

corrected. Figure 7"4 shows what happens in three stages'

the outermost
in TPS.

* In 'IPS, ue d.etaeh onLA eorTlponents at
e*^pt'L ís mov'e genen:aL tÍian ue need

LeueL; so this
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(III) : A-B*C+(v(C-P*Q) )
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x

A
7

P P

Fiqure 7.4 Multiple Component Detactxient
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The first shows 5 as a tree prior to the removal of D. The second

ghows the effect of Drs removal, the affected operators being flagged

with an rXr. The situation after P is removed is given in the third

stage, affected operators are again flagged. Note that the uppermost

r+t (node 1) is flagged twice showing ttrat by deferring correction,

we have avoided one correction of its value and component count.

The affected values and component counts can no!ìI be recomputed

by traversing down the final tree. Thus Vr (l)=V'(2)+V'(5) 
'

vt (2)=v(3)+v(c) and v'(s¡=1r,'o(6), where v'(i) is the correcÈed value

of V(i) . Note that V'(I) cannot be evaluated until Vr (2) and Vr (5)

have been computed. The component counts can be recomputed in a

similar way.

Super-2

Super-2 is a FORTRAN program written to implemenÈ the step-size

model Model-O, a precursor to Model-A. ft runs on a CDC 6400 in about

35K (octa1) of central memory although this requirement can be reduced

to about 25K by removing the many diagnostic and debugging codes and

revising the program. A listing of Super-2, together with its data of

sixteen proofs, are given in Appendix Þ.

The main aims of Super-2 have been the following.

(1) To checl< out an actual step-size model, in fact ,one which has

many features in conmon with Model-A and Model-B.

(2) To verify ttre effectiveness of the various ideas we have proposed.

These include C-setsr our representative poinÈ technique and

substep resolution.
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To give us some idea of the programming efforts required to

implemenÈ TPS fully and an appreciation of ttre practical

problems that may be expected.

To provide us with some data on ttre likely performance of TPS,

at least in its proof-checking aspects. Vüe are ërnxious to

confl-rm that it will be efficient enough to meet our real-time

objectives.

The Program

Super-2 reads in a proof re1=sr=...-e-r and generates the (ll

steps e.->e, (L<i<J-<n). The proof expressions are checked for correct--al

ness of syntax. Each step is analysed for step-size in turn.

When a step is analysed its expressions are first converted inÈo

early prefix Polish and maintained as a dor¡bly-linked list. The con-

version is done by scanning an expression backwards, using an operator

stack and a table of operator hierarchies. Íhe Polish string is thus

generated in reverse. As each element of the string is producedr its

index and its [4XC and MNC values are computed and appended.

Figure 7.5 below shows one cell of a list made up of four words

ACTBCTIC and KC. AC a¡rd BC hold ttre MXC and MNC values while KC

holds the index.* IC contains the teft and right links as well as

identifying information for ttris element of the Polish string. Super-2

does not use any component count although this can be easily packed

into IC if required" For the computation of the index' MXC and MNC

values three stacks are used.

An indeæ, bedng noma,LLV q. smq,LL integez,, shouLd be packabLe tnto
the epate b[ts of IC. Houeuer in Super-Z, the índiees ave nega.tiue
beeause ue used qn eavLiez' definítíon of índeæ in
Tff+L)+R(e¿l ? (see 0.1-Ll.

*

uhieh tI(¿)
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Index

Rl, LLx

MNC value
q q 9

MXC value RL - right link (9 birs)
LL - left link (9 btts)
X - identifier for number

constant, operator and
trig. function.

A List CelI

When the expressions of a step are converted into their polish

ll-sts, their MNC values are compared. rf they are equal (subject to

a tolerance factor of tO-8) then the step is algebraic and it is not

analysed any further. rf the MNC values are unequal, then the MXC

varues are compared; non-equality impries that the step ís incorrect.

Super-2 performs only the additive, multiplicative and exponential

resolutions, and these are done at the primary lever onry. The

sequential resolution method is used. Super-2 employs the schedul-es

l-Lrr-2r2-L,.."2-313-2 and 3-3. rn the analysis of the 2o7 sampre

steps, the last five schedures were found to be redundant.

super-2 decomposes a sÈep as far as possibre into its substeps

before testing for primitiveness. A-steps, being regarded as smarl,

are not tested for primitiveness. To be primitive, ttie c-set of a

step nust be singleton. Furthermore it must satisfy one of the

<liscrepancy tests explained below.

Let Ft>G be a permitted variant of the reference identity ri (or

J*) and let u be an arbitrary point from n6 that is not from an s-set_, - -- -------r

(apart from tl'n) . Define the dif ference discrepa¡rcy DD as lt" (u) -G" (g) 
|

and the ratio discrepancy RR as lr"tgl /G" (g) l(frovì-aea c"(U)lO). DD would

in general be nonzero and RR not equal

Fiqure 7.5



to l. Let f->g be a step whose C-set is {ri}. Then we have the

following criteria of prinitiveness.

(1) ¡+g is primitive if and only if lf"Cgl-9'(g) l=pp (difference

criterion) .

(21 f-rg is primirive if and only if I t' tgl /s" $¿) l=nn ot

lg ' (u) /r" $! l=Rn (ratio criterion) .

(3) f-)g is prinitive if it is so by (1) or (2) (mixed criterion).

These criteria roughly cover the specifications in Model-A for

prinitive T-steps together with the step composition rule I,rI5, without

rigorously implementing the model.

Since standard FORTRAN has no list-processing facility, Super-2

has provided its own. It maintains an availal¡l-e cells list (ACL) which

is initialised Èo 511 cells of four words each. IdIe celts are returned

to the bottom of ACL while cells requested are released from the top.

Various subroutines and fr:nctions perform the list-processing functions

such as the linking and delinking of cells. In our experiment on the

207 steps, it was found that not more than 160 cells were in use at any

one time. This shows that we can easily reduce the size of our ACL if

desired.

Elxperiments Vlith Super-2

Super-2 was used to analyse the steps generated from the sixteen

¡>roofs shown in Table c.3. The analysis was carried out under the

three different criteria for primitive T-steps listed above. The

results under each criterion are shown in the table under the headings

RIJN-I, RUN-2 and RUN-3" These correspond to the mixed,'the difference
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and the ratio criteria respectively.

RtN-1 was performed ur¡der the two different conditions:

(f) the MXC and MNC values are recomputed whenever reç[uired;

(2) ttre MXC and MNC are computed only once ar¡d saved.

The aim of this experiment is to assess Èhe gain in speed derived

from saving the MXC a¡rd MNC values. The times taken to check each

step are shown in the table, TII,IE-A for condition (1) and TI¡,8-B

for condition (2). N-COMP in the tabte gives approximately the

number of numeric tests involved in the analysis of each step

under RUN-I.

Ignoring the algebraic steps, it can be seen that TIME-A is

about 2t to 3 times as large as TIME-B and that this ratío tends

to be higher as the value of N-COMP gets larger. This experi:nent has

demonstrated a significant gain in speed in saving the MXC and MNC

values. It also shows that most of Èhe steps can be checked in less

Èhan 0.1 second and often much Iess.

Super-2 has also been modified to perform the latent structure

analysis shown in Table C.4.
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Chapter VIII

CONCLUDING RNMARKS AND RECOMMENDATIONS

we have described ouï work in computer-assisted

ins.truction and our investigation into the problem of
supervising trigonometric proofs in CAf.

chapter rr described uAcArs, our experimental cAr

system and offered some suggestions for its modification and

extenst:". rn chapter rrr the author ranguage ALFrE was

described. chapter rv introduced the problem of supervising
trigonometrÍc proofs and discussed its context and ="åp".
rt also examined the problem of expression equivalence and

developed the theory of consisÈency sets. chapt"r v ì-=
devoted to the step-size probrem. rt described a schema

for defining sma1l step models. chapter vr considered the
problem of assisting the student in his proof and described
an approach for deveroping an automatic proof constructor.
chapter vrr dealÈ with some of the important practical
problems in the imprementatíon of our proposed proof super-
vi sor ,

Arthough we have spent far more time developing our

cAr system than investigating proof supervision, it is the
latter that is more imporÈant and original. The forrowing
points summarize the main significance of our work.
(r) uAcArs is the first major effort in cAr in AusÈraria.

,(21 ALFrE is a cue-oriented author language. This special
feature makes it especiarty suitable for programming
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the test-first-inform-1ater instructional paradigm.

TFIL can be used as a vehicle for guided discovery

teaching and for course revision. It is also a very

cheap htay of preparing adapt,ive, branching programs.

The fuII potential of TFIL has yet to be explored.

(3) TPS is one of the earliest specific proposals for a

mathematical supervisory subsystem for CAI.

(4) One of the most important contributions of this work is

the development of a very simple numeric test for deter-

mining a set of basic identities that is "necessary and

sufficient" for proving a given problem identity. This

test is based on our theory of consistency sets and the

representative point technique. The test also enables

us to determine very cheaply whether a step is correct

or not and to distinguish between A-steps and T-steps.

Clearly the C-set of an identity gives the identity

prover valuable look-ahead. However our numeric tech-

nique is appropriate only for a computer and not the

human solver since a considerable amount of numeric

computation is involved.

(5) We have been able to relate our theory of consistency

sets and the associated numeric test to algebraic

geometry. In particular the application of Hilbertrs

Nullstellensatz is interesting.

(6) lrle have developed a schema for defining smalI steps

and we h¡ere able to derive good empirical mod,els f.ot
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step-size from it. In particular lve have derived

ModeI-A and ModeI-8, the latter being'much easier to

implernent than the former since it has a simpler

def inition f or prirn'itive T-steps.

ule have proposed an approach for generating trigonometric

proofs which we believe to be effective and feasible.

rt utilises several numeric-oriented heuristics incruding

C-set determination and latent structure probing.

Latent structure is itself an interesting concept anil

it is very useful because it can be detected by simple

numeric tests. IÈ provides the identity prover with an

additional measure of look-ahead.

Our indexing scheme is a novel technique for imposing

rerevant structures on the polish string of an expression,

thereby expediting the various subexpression manipulation

tasks encountered ín TPS. such an indexing scheme courd

weII find new applications in the area of formula

manipulation.

The most significant contribution of our work in proof-

supervision is perhaps in its indirect; long term

implications. We have adopted a largely numeric approach

for solving problems that are essentially symbotic.

The numeric approach should be used for detecting

subexpression equivalence in program compilation where

the potential benefits have to be traded-off against

the cost of deriving them. More importantly however
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it is hoped that our work here will stimulate

to look ínto the possibility of using numeric

niques for solving symbolic problems.

SugqesÈions for Further h7ork

others

tech-

In this research we have not been able to carry out

fuIIy the various experiments and i nvestigations. AIso

our ef forts so f ar have opened up new areas to explore. - V,te

would like to suggest follow-up studies in the following:

(1) In the area of CAI, to investigate the test-first-

inform-Iater instructional technique using ALFIE.

Experiments should be conducted to assess the compara-

tive effectiveness of TFIL. Other areas of potential

apptication of TFIL should also be examined.

(2) TPS should be implemented. InitiaIIy this may be done

off-line to check out the proof-checking and proof-

çtenerating components first. Eventually however it

should be integrated into UACAIS so that its performance

in a CAI environment may be studied. In particular we

wish to ensure its real-time capability. Many of the

essential- ideas of TPS have already been successfully

implemented in Super-2. Several others have also been

tested separately. lrle theref ore f oresee no f easibif ity

problem in the implementation of TPS. For step-size

analysis, we would urge the adoption of Model-8.

( 3 ) V'Ie should investigate the ef f ectiveness of TpS as an
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aid in the teaching of trigonometry. How does TpS_

assisted teaching compare with the traditional method

of teaching the subject? rs the effectiveness of TFS

adversely affected by its communication interface?
rs the keyboard a serious impediment to the usefurness
of TPS?

Extend our numeric approach for proof supervision to
the multi-argument trigonometric problems, in which
the addition, product and multipte argument formulae
are permitted. Here we are no longer working with only
twelve reference identities. An indefinite number of
reference identities may have to be considered since
the number of arguments may vary. We have already
looked into the problem partialry and have found the
idea of independence and interdependence of cr-asses of
arguments relevant. This is to detect classes of
relevant reference identities.

Attempt extending our numeric approach to other areas
of mathematics. The most immediate area" +tu tn"
hyperbolic functions since these in many ways resembre
the trigonometric functions. Hohrever it would be

interesting if h¡e courd devise cheap numeric techniques
to aid in symbol-ic (i.e. formal) differentiation and

integration, in contrast to the approach of Slagle t661.
Attempt to extend our numeric approach phitosophy to
traditionally symbotic problems with the aim of
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I NTRODUCTION

ALFIE, the Adelaide Language for Instruction and Education is the
'language for writing teaching programs for the University of Adelaide
computer-Assísted Instruction system (uAcAIS). The version being
described is designated ALFIE 1.0 and represents the latest development
in the 'language as of October .l970.

This manual is intended to be both an author guide and a descrip-
tion of ALFIE. Course preparation will be described in the context of
the card medium only; paper tape and on-rine keyboard entry facilities
are not yet available.

An author language is an integral part of a cAI system. It is
designed to give the author convenient access to the various cAI
facilities in a system. These facilities usually include those for
presenting stimulus material (e"g. typewriter text, cRT display, etc.),
anaìysing student responses, sequencing course materÍal, branching, and
recording student responses and performance data.

In designing cAI languages, a popular objective has been to make

them easy to learn and convenient to use. Thus users are not required
to be familiar with computers. As far as possible, subject to the
limitations imposed by available hardware, ALFIE has been designed with
this ín mind.

OVERVIE!'l OF UACAIS

UACAIS is a dedicated cAI system based on the computing centre's
cDC 6400 machine. Thus when under cAI operation, it may not process
non-cAl iobs. The system has been designed to drive up to 5lz remote
student consoles - of which four are impremented at present. Each con-
sole consists of an IBM Selectric typewriter, but other pieces of
terminal equipment may be added in future.

courses are prepared off-line on cards and are then assemb'led by

the ALFIE course compiìer onto magnetic tape for subsequent use under
JACAIS. During CAI operation, required courses are loaded from magnetic
bape onto the disc, ready for use.
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Students sitting at the remote consoles receive their lessons on

the typewriter and communicate with the system via the keyboard.

Different students may be receiving different segments of a course
simultaneously and independentìy. More than one course may be conducted
by the system at any one time.

TYPEI,IRITER CHARACTERS & CONTR0L FUNCTIONS

The characters available on the typewriters are :-
(l )

(2)

(3)

Al phabeti c ABC XYZ a b c .". x y z

Available control functions are: carriage return, index, tab,
backspace and black and red ribbon select.

Textual material must be composed from this set of characters and

functions on'ly. Since not all these are available on a standard card
punch, a card code for representing them is required. Table A.l gives

the list of all available typewriter characters and functions and their
card codes, based on the IBM 029 punch, as weìl as other codes, as

explained below:-

Tabl e Col umn Descri ption
Hol I erith Punch

Key or key combination on IBM 029 which
gives this Hollerith punch

corresponding CDC 6400 display code

corresponding I ine-printer character
corresponding 7-bit typewriter code

corresponding typewriter character or function

Numeri c 1 2 3 ... 7 8 9 0

+ - * / ( ) $ = blank , . t 1 # : ' o &eci alS

_" % @ 0 t t ;

I

2

3

4

5

6

HOLLERITH 029 KEY DC DC CHAR TI,.I CODE TI^J CHAR REMARK

12-1
12-2
12-3
12-4
12-5

A
B

C

D

E

A
B

c
D

E

0l
02
03
04
05

xl6
x0l
xl5
x55
x5l

Ala
Blb
clc
Dld
Ele

x=0 for upper and
x=l for I ower cases
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I ank

0
I
2
3
4
5
6
7
I
9
+

;
/
(

)

I
b

t

t
#

I

oo

k

F

G

H

I
J
K

L
M

N

0
P

a
R

S

T
U

V

ht

X

Y

z
0
I
2
3
4
5
6
7
8
9
+

;
/
(

)

I
an
I

x34
x74
x4l
x12
x70
xl'l
x45
x76
x3'l
x46
x50
xl0
x56
x42
x71
x35
x36
x02
x75
x40
x73
143
177
133
137
147
153
il3
157
117
ì03
030
100
017
144
003
043
047
130
020
014
032

077
037
054
152
072

t/t
Gls
Hlh
Uiuj
K/t
Ll1
M/m
N/n
olo
P/p
Q/q
R/r
S/s

u/u
Y/v
w/w
xlx
Y/y
Uz

Ib

06
07
t0
ll
12
't3

14
t5
l6
17
20
21
22
23
24
25
26
27
30
3l
32
33
34
35
36
37
40
41
42
43
44
45
46
47
50
5t
52
53
54
55
56
57
60
6l
62
63
64
65

F

G

H

I
J
K

L
M

N

0
P
q
R

s
T
U

V

l,1I

X

Y

z
0
l
2
3
4
5
6
7
I
9
+

;
/
(

)

I
I ank

t

s
c
1
D
T

fr

b

2-6
2-7
2-8
2-
l-
t-
t-
t-
l-
l-'t-
l-

I
I
I
'l

I
t
1

I
'l

ì
ì
I

9
I
2
3
4
5

6
7
I

Tlt

lt-9
0-2
0-3
0-4
0-5
0-6
0-7

I l -8-4
0-t
0-8-4
12-8-4
I I -8-3
8-3
no punch
0-8-3
I 2-8-3
0-8-6
8-7
0-8-2
8-2
8-4
0-8-5

0-8
0-9
0
1

2
3
4
5
6
7
I
9
12
lì

I ower case fl ag

f
->

single quote
r\
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lt-0
I 1'8-5
I I -8-6
12-0
I I -8-7
8-5
I 2-8-s
12-8-6
12-8-7

upper case flag
doubl e quote
nul I character

021

carriage return
i ndex
red ribbon
bl ack ribbon
tab
underscore
end -of-card
a backspace

The specificatlon Rny or lnny where n is any digit 0'1 ""9 and

y is any of CrArIrRrBrT, - and blank means n or nn Xyrs where the

meaning of Ry for various y is as given above. Any Xv not corresponding

to any of the above combinations will be treated as XX - the end-of-card

code.
TABLE A.I CARD CODES

The ,x,used in column 5 takes the value 0 0r l, depending ori

whether the tetter is in the upper or the lower case. In co'lumn 2'

D (d-bar) refers to the upper case of the D key on the IBM 029; similarly

for S, E, R, etc. l refers to the lower case of ther=rkey'

There are tv,,o case flags: the upper, E, and the lower S' The

presence of an E in a text stream (see below) indicates that all subsequent

letters are in the upper case until an S is encountered' Similarly when

an S occurs the lower case prevails until an E appears.

The R punch is for the null character - and is used to suppress a

space. It is useful for card correction" For instance' if we have

TSPEED'on a card' but discover that it should have been'SPED'instead'

B

E

F

R

G

H

ñ

ï
NA

XC

XT

RN

Rg
Xr
x-
XX

I

66
70
71
72
73
74
75
76
77

053
0'13
044
172
154
033
024
023
026
027
025
000

t
+

I

t

&057

052

%

L
?

lor Þ.

t

0
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ure can effect the necessary correttion by dup'licating the card, but
repìacing one of the E's with an R as in ,SPERD,.

xR selects the red ribbon and xg the black. xT sends a tab
function. It is assumed that the tab spacing has been set at columns
ll' 2ìr 31,41, etc. xc, the carriage return, positions the type-
writer carriage to the left margin of the next line. xx l-s the end_of_
card code, and indicates that subsequent punches on the card are to be
i gnored .

tlhether we get a ,4 or " for the code 072 depends on the typebaì 1 ;
some carry 'while others carry the h" Similar remarks apply to the
TlW code 172.

The remaining codes in the table should be now se]f-explanatory.

ÏHE TEXT STREAM

A text stream is a string of typewriter (r¡w) codes to be output
on the typewriter. It is punched as a set of successive textbody cards
(rgcs), bounded by two keyword cards (Kl.lcs). A line or a paragraph of
text may be coded on one or more TBCs. The followÍng example illustrates
the coding of text in ALFIE. we assume all punches begin on co'lumn Z

of the cards here.

e.q. I Intended T/l,l output:
"The vowels of the alphabet are a, e, i, o and u.,, This may be
coded as:

ETSHE VOWELS OF THE ALPHABET ARE A, E, I, O AND U.XX

The same output may be more wastefully coded on two cards as

card 2

ETSHc VO!'IELS OF THE ALPXN card I

The lst punch E caìls for capitaì letters, but this affects onìy
the lst letter'T' since an 5 is ímmediately encountered, setting
all subsequent letters to the lower case. Note the use of XX.

HABET ARE A, E, I, O AND U.XX
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e.9.2 To output the fol'lowing tabular text:
Country CaÞital
Austral ia Canberra

China Peking

Canada 0ttawa

U.A.R. Cairo

with the two columns set at ll and 3.|. This table may be

coded as : -

EpS ¡ rI NeX cXTECSANADAXTNTEOSTTAI¡JAX c xTE u . R . R. X 2 TcSA I RO X X 2nd card

EXICOUNIRYNT N7.XzTCAP ITALNT X7-XcXTASUSTRAL IAXzTEcSANBERRAXcXT " . .

(Note the use of i,Xt, lC and X- for backspace, tab, c/r and
underscore. )

e.g. 3 To output 'sin(Ø+0)=0"1624" we need punch only:

Sslt't(EoX /+oX - )=0. 1624NN

A basic probìem in the off-'line preparation of text concerns the
line limit and iustification. It is indeed a tedious job for the author
to keep track of his text, making sure that each line does not exceed

the limit set; line-justification is even more involved. With an on-l'ine
keyboard entry faci'lity, a larger part of this problem would simp'ly be

non-existent, As an aid for the ALFIE author, we have included a simp'le

text-editing faci'lity through the EDIT card"

=EDIT(n,m)

n, which takes a value between 40 and 80 inclusive, specifies the
width over which a line of text is to be truncated and justified, If
justified, the text will be dispersed randomly over columns I through n

subject to mode m, where m can be one of the foìlowing:

m=0 - break string and resume on the next'line when current word
extends beyond column n" Do not distribute the words.

m=l - truncate current line and continue on the next line when
current word exceeds column n. Distribute words over the
fÌeld (columns I to n) overriding any c/r which occurs
after column n-7.
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n--2 - as for m=l , but do not override any c/r'

Each EDIT specifícation hotds at a new text stream, and applies to

all subsequent text until a new EDIT is encountered. The default EDIT

speclfication is'=EDIT(80,.| )'.
The fotlowing listings (Figures A.t and 4.2) illustrate the use of

the EDIT card. They a'lso show the two listings produced by ALFIE .. one'

Figure A.l, by the course preprocessor, and this is the source deck

'llsilng¡ the other, Flgure A.?, is produced by the compiler proper.

Note that in the source deck listing Í is shown as¡, E as +, and so on'

as shown in Table A'1.

COMPILA TION OF ALFIE PROGRAMS

In preparing a course, we must first of all code it in detail'

This course is then punched on cards, and the course deck is set up as

a Job deck (computer program) to be read by the card reader. Before it
can'be used, it must be checked and if satisfactory, converted into its

object code form and output on magnetic tape" The course in its obiect

code form, frâV then be loaded during a CAI run, to be executed inter-

pretively by a resident central program.

The process of converting a course on deck into its obiect code

form ls called an assembly or a compilation, and the computer program

which actua'l1y carries this out is called an assembler or a compi'ler.

A course is assembled in two stages. The first stage is performed

by LKC, a preprocessor program for trans'lating the course in its card

format into a common intermediate code catled CONCODE' The actual

assembler ALF then carries out the second stage by accepting a course in

CONCODE and producing the object codes. It can be seen that we have made

provisions for a course to be prepared in other media; all that would be

required for a neç medium is a corresponding preprocessor for converting

a course in that medium into the C0NC0DE. Figure 4.3 i'llustrates the

approach iust discussed.
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ÍC0URSE r DEM0N
SCHAPTERTONE.
$PAGE r R55.
1I=hl 1O=i.4EGA/55 IFoRTRAN 

=YOU 
CAN HAVE A MAXIMUtt OF FIFTEEN rDo-iLoOPS fIIHIN 0

NE NESIr ALIHOUGH PROBLEMS SELD0l.t ARISE Tl'lAT REOUIRE MoRE THAN Tt{O 0R IHHEE 100
PS liII<<HII,I LOOPS. 1O=UIIE OFTEN YOU IILL WANT TO USE îDO-=LOOPS ENO TO END INSI
DE ANOÍHER 100-=L00P.^^

=EDIT(45r1)
STEXT.
1I=N 4o=MEGA/55 r¡6p¡¡¡¡ 

=YOU 
CAN HAVE A MAXll,luM OF FIFTEEN 1D0-=L00PS wIIHIN 0

NE NESfI ALTHOUCH PROBLEMS SELDOM ARISE ÍHAT REOUIRE I{ORE ÎHAN TIIO OR THREE LOO
PS I{IT<<HIN LOOPS. IO=UIIE OFTEN YOU TILL T'ANT TO USE TDO.=LOOPS END TO END INSI

OE ANOIHER lDO-=LOOP.^^
=EDIT(70r?)

^2C rl=HE SEQTJENCE^C^3TlD0 l0 Ir¡il0^C^3T00 I0 J!1r10^C^3f^3 l0 A(I)¡A(Il.B
¡¡¡rZC :WILL CAUSE STATEIIENT t0 T0 SE EXECUTEO ONE HUNDRED TIMES¡¡a

=E0If (65r I )

$TEXT.
1T=HE TFORIRAN 

=RULE 
OF II¡ERARCHY CONSJSIS' ÎHENI OF IHREE PARIS'^2C I.1A=LL

ExP0NENTIAfI0l.l (IF ANYI IS 00NE FIRST¡aC e. 1A=LL MULTIPLICAIIoN AND/oR DIVIS¡
ON (¡F ANY) IS DONE SECONO.^C 3. TA=LL ADDITION AND/OR ^^SUtsIRACIIOI.,] ( IF ANY) IS <<<< DONE LASI.^^

=EDIT(40rI)
5TEXT.

1T=HE IFoRTRAN 
=RULE 

0F TIIERARCHY CONSISfSr THENr oF TIIREE PARTSI^2C l.1A=LL
EXPONEI!IIAIJOhI {IF ANY) IS DONE FIRSÌ.¡C 2. 1A=LL MULIIPL¡CAT¡ON ANO,/OR DIVISI
ON (IF ANY) IS OONE SECOND.^C 3. 1A=LL ADD¡TTON ÀND/OR ^^SUBTIIACTION ( ¡F ANYI IS <<<< DONE LASI.^^

=E0I1(ó0rt)
$TEXI.

1I=N EVERYDAY PRACÍICE' THIS PROBLEI.I IS AGGRAVAIEO 8Y IHE^CFACT THAT SOI,IE O

F THE ôCAI 
=LANGUAGES 

THICII THE INSTRUCTOR^CI.IU5I USE IO SPEC¡FY I{I5 REOUIREI,IENT
5 FOR ACCEPTAI]LE^CRESPONSES DO NOI ALLOII EVEN THE PRIMITIVE LEVEL OF ANALYSIS^C
REPRESENTED BY SUCH PR0CEDURES AS SCANNING FOR KEYLoRDSi^CE0ITINc 0UT PUNCItJAII
ONr ALLOt{II'lc CERTAIN FLEXIBTLITY IN 

^CSPELLINGT 
ETC.¡¡

=EDIT(60r2)
$TEXT.

1I=N EVERYOAY PRACIICEI 1H¡S PROELEM IS AGGRAVATED 8Y IHE^CFACT THAT SOI4E O

F IHE lCAI:LANGUAGES I{IIICH IHE INSTRUCÍOR^CMU5T USE TO SPECIFY HIS REOU¡REMEI\T
5 FOR ACCEPIABLE^CRESPONSES DO NOf ALLOTJ EVEN THE PRIMITIVE LEVEL OF ANALYSIS^C
REPRESENIED 8Y SUCH PROCEOURES AS SCANNIN6 FOR KEYIiORDS.^CEOITtNG OUI PUNCIIJATI
0Nr ALLO'¡lING CERTAIN FLEXIBILITY IN 

^CSPELLINOT 
EIC.^^

$END

Fiqure A.l Source Card Listinq of a Course

CAR D

CARIJ
CA RO

CA RD

C ARfJ
CARI)
CARD
CARD
CARO
CARI)
CARO
CARD
CARD
CA RD
CARD
CARI)
CARO
CA RO

CARO
CA RD
CARD
CARI)
CARD
CARI)
CARD
CARD
CAIID
CARD
CARO
CARD
CARI]
CARD
CARD
CARD
CARI)
CARI)
CARD
CÂRD
CARD
CARD
C ARD
CARt)
CARI)
CARD

0001
0002
0003
0004
0005
000ó
0007
0008
0009
00I0
00It
00le
0013
00I4
0015
001ó
00I7
0018
0019
0020
0021
0022
0023
00?4
0025
o0?6
00?7
0028
0029
0030
003t
0tr32
0033
0034
0035
0036
0037
0038
0039
0040
004t
0042
0043
0044

fric

TtsC
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TEXI.

TEXT.

IEXI.

lExt.

TEXT.

ENf,)
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PAoE 0l CHAPIER ONE

IN OMEOA,/s5 FORTRAN YOU CAN HAVE A I,IAX¡I,IUI,i OF FIFTEEN DO.LOOPS TJÍHIN ONE NESÍ
ALÎHOUOH PROBLI.MS SELDOI{ AR¡SE ÍIIAT REOUTRÉ XORE ÎHAN IHO OR THREE LOOPS lllIIHI
LOOPS. OU¡TE OFÎEN YOU IILL IdANT 10 USE OO.LOOPS END TO END INSIOE ANOTHE
D0-L00P.

¡N OMEGA/55 FORTRAN YOU CAN HAYE A ¡IAXTI,tUtl OF
FIFTËLN DO.LOOPS ¡ItTHTN ONE NESTT ALÎHOUOH
PROELEMS SELOO|I AR¡SE IHAl REOUTRE I{ORE IHAN
II¡IO OR THREE LOOPS HITHIN'LOOPS. OUtfE OFTEN
YoU l,iILL rANl 10 USE 0O-L00PS ENO lO END
Il{SIDE ANOÎHER D0-L00P¡

THE SEQUENCE

D0 l0 I¡Irl0
D0 l0 J¡lrl0

l0 A(¡lrA(¡1.8(J)
I¡]ILL CAUSE SIATEI,IENT IO 1O BE EXECUIED ONE IIUNDRED TtI{ES.

IHE FoRIRAN RIJLE 0F HtERARCHY CONSISTST TH6N¡ OF Ti{REE pARTSI

I. ALL EXPOITENTIAIION fTF ANY' IS OONE F¡RST.
¿. ALL MULTIPLICATION ÀND/OR D¡VIS¡ON (IF ANY) tS OONE SECOT,¡O.
3. ALL AODIT¡ON AND/OR SUEÎRACT¡ON (¡F ANYI IS DONE LAST.

THË F0RTRAN RULE OF HIERARCHY CONStSTST
II]EN, OF THREE PARTST

I. ALL EXPONENITATTON (IF ANY) ¡S OONE
FIRST.

2. ALL MULTIPLICAIION AND/OR DIVTS¡ON(IF ANY) IS OONE SECOND.
3. ALL ADDITION AND/OR SUBIRACI¡ON (¡F

ANY) IS DONE LASÌ.

IN EVERYDAY PRACTJCE, YHIS PROSLEM tS AOORAVAIEO BY fHE
FACI THAT SOHE OF IHE CA¡ LANGUAOES IHICH IHE INSÎRUCIOR
trtJsl USE l0 SPECIFy itIS REoUIRET'tENtS FoR ACCEpIA6LE
RESPONSES DO NOT ALLOI EVEN THE PRIH¡T¡VE LÉV€L OF ANALYS¡S
REPRESENTEO BY SUCH PROCEDURES AS SCANN¡NE FOR XEYIORDSI
EI,ITING OUT PUNClUAT¡ON, ALLOI¡NO CERTAIN FLEX¡ETLTIY tN
SPELLIN6i ETC.

IN EVERYOAY PRACTICE¡ THIS PROELEH ¡S AOORAVATED BY fHE
FACf THAT SOML OF IHE CAI LANGUAG€S HHICH IHE TNSTRUCIOR
MUST USE TO SPLCIFY HIS REOU¡REHENfS FOR ACCEPIABLE
RESPONSES DO NOI ÀLLO!, EVEN IHE PRIIT'IIIIVE LEVEL OF ANALYSIS
REPRESENIE0 BY SUCH PRoCEOURES AS SCANNIN0 F0R KEYTORDST
EDIIING 0Uï PUI{CTUATI0NT ALL0HING CERTA¡N FL€rIÊ¡LIIY IN
SPELLII.]G, EfC;

038 UNUSED WOROS FOR ABOVE PAGE

Figure 4.2 Assemblv Listing of ã Counse

R55 0001

R55
R55
R55
R55
R55
R55
R55
R55
R55
R55
H55
R55
R55
R55
tì5 5
R55
R55
R55
R55
R55
R55
R55
R55
R55
R5:
R53,
il5 5
R55
R55
R55
¡t55
;.ì55
,?55
r{ 51
r 5._
R55
R55
i55
i55
R59
t5f
R55
R55
R5 r)

R55
R55
rì55
R55
,.ì55
R55
i55
rl55

0002
0003
0004
0005
0006
0007
0008
0009
00t0
00tl
0012
0013
00¡4
00ts
OOIó
00t7
0018
00¡9
00¿0
00¿t
002?.
0023
0tì¿4
0025
00e6
0027
00¿8
0029
0030
OOJI
003e
0033
0034
00J5
003ô
00 J7
001¡.
01J39
0040
0041
tJÙ42
0043
00{4
0045
004r)
0047
004t|
00e9
0050
0051
0052
00s3

R55 00s4
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0bject Program on
Tape

Course on Cards

Course on paper
tape

0r any
other medlum

Fiqure 4.3 Comoillnq an ALFIE Course

Two kinds of tistings are produced when a course Ìs compiled. One

is the course card listing produced by LKC as Íllustrated in Figure A.l.
The source card tlsting can be produced or suppressed by the listing
control card (see below). When no LCC is present, the listing status

is assumed to be'ont. The other listing is the assembly listing'
produced by ALF as shown in Figure 4.2. It wilì be seen that this ìisting
of the text simulates as closely as the line-printer will permit' its
appearance on the typewriter. Thus while spacing, backspace and tab etc.

are reflected exactly, this listing is unable to show alphabetic case

changes, rlbbon changes and certain special typewriter characters like
t&'and'?'. The assembly listing can be suppressed and reinstated at

wl'll by the LIST and NOLIST cards. The initial setting is for listing
to be produced.

The assembler listing is an important debugging aid for ALFIE programs

and greatly compensates for the very ungainly card codes for text.

Trans-
ì ator
XXX

t
urce
sti n

XXX

i sting
y ALF

ALF
Course in
CONCODE

LKC
iìstin
rd
rce
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LKC distlnguishes five kinds of course cards, by examining the

first column of the cards. These five kinds are :-

(t) Listing Control Card (LCC): This has a 2-B (D on IBM 0?9) punch

(2)

does not produce any object code"

Corment Card (CC): A comment card is characterised by a * on
column I and is used for passing comments on the source and assembly
listings. The whoìe 80 columns of a CC ís lísted' if the listing
status îs 'on'. No obiect code is produced for the CC"

(3) Edlt Card (EC): Has r=ron column I and'EDIT'on the next four
columns. Its use has been expìained above.

on column I " The LCC acts as a source
the listlng status to 'on' if it is 'of

listing switch, turning
fr and vice versa. It

k. If column I is not blank,
ide its source listing. If

(4) Ke.wvord Card (KtlC): A card with a ,$,orr+r (fl on 029) on column
l, and a 'C' lf it is a continuation KtlC. KblCs are used for
speclfying course directives. .In a KWC, blanks are ignored except
in an answer string.

Textbody Card (TBC): A TBC is a card which is not an LCC, CC, EC(5)
or Kl^lC and usually with column 1 blan
then a warning rTBC' is tagged alongs
column I of a TBC is blank, then its contents are assumed to begin
on column 2 and end on the first end-of-card code XX, or on column
80 in the absence of the lX.

ALFIE THE LANGUAGE

A course in ALFIE Ís a sequence of directives and texts. Directives
are KWCs while texts are made up of TBCs, as explained earlier. 'A course

is organised into an arbitrary number of named chapters, each of which

comprise of from one to sixty-four named pages.

A KWC beglns with a'$'or a r+' (fl on the IBM 029) on column l,
and any contlnuation KWC must bear a 'Cron coìumn l" Except in answer

speclfications, all blanks in a KIJC are ignored.

Each directive is associated with a keyword and belongs to one of
the three categories :-

I isting control
course organisational
command.

(t )

(2)

(3)
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t^le sha'lì now describe the various KWCs in ALFIE and their syntax.

Some BNF Definitiohs:

<alphabetic> ::= AlBlClDl....lXlYlZ
.digit' ::= 011121..". 71819

.alphanumeric> : := <alphabetict l.digitt

.special> ::= +l-l*l/l(l)l$l=l I,l.l=l tlll:lll-lvl^l+l+l.l'lsl'_l-l;

.display code> ::= .alphabetic> | <digit> l.special'
<Ídentifiert : := <al phanumeric> | <identifier><al phanumeric'

'.t, trt,t::=tandtltabove are called metalinguistic symbols and

<alphabetic> and <identifier> etc., are metalinguistic variables.
<aìphabetic> ::= AlBlCl....lXlYlZ simply means that the variable
'.alphabetic>' may take the letter 'A' or 'B' or 'C' or .... or '7'.
Similarìy the variable identifier represents any non-nul'l alphanumeric

string. Note that the ìatter variable is defined recursiveìy - i.e. in
terms of itself.
e.g. of '<identifier>' : 'A', '232', 'PN24' and 'FREDERICI'.

l,.Ie shall also define <name> to be any <identifier> not exceeding

6 characters ìong. A <name> is used for a'label, chapter name or page

name. Thus we take <pagename> and <chapter name> to be <name>.

In ALFIE command KÌ,'lC's may be labelìed" A label is any <name>

followed by a colon, preceding a keyword.

$lxe:PR0BLEM,Qoz. A label may also appear by itse'lf
$rex:

e. g.

as in and serves to define a page location. Apart
from the imp'licit label '*'which appears on column I of a KWC, a'l'l labels
in a given page must be unique. The use of the implicit label will
beconre cì ear I ater 

"

We shaìl now describe each keyword and the form of its associated

command. Before doing so, we explain the 'metalanguage' used. The

metalinguistic variable <--> has been exp'lained earlier. The brace pair
{--} means that one of its contained options must occur. txl means that
the x may, but need not occur. Other characters shown must occur
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ìiterally. Blanks not in ansurer specifications, will be ignored in a

KWC. The column I characters of the Kt¡lC (viz. '$', r+r or 'C') will not
be shown, but is taken as understood.

e.g. : G0T0TCHAPTER({*l.chaptername>}) t,PAGE({*l.pagename'})l
means that the string'GOTO,CHAPTER('must occur, to be fol:lowed by

either â r*¡ or a <chaptername>, and then ')', to be further followed
optional ìy by: 'TPAGE(', an'*'or a <pagename>, and then a')'.

Examples of this command are:-

G0T0,CHAPTER ( S7 ), PAGE ( X02 )

G0T0 , CHAPTER ( PTz )

c0T0,CHAPTEn (*¡,PAGE( I 2 )

But the following are invalid:-
GOT0CHAPTER(PTz) (no comma)

c0T0,CHAPTER(VERY LONG) (chapter name too long)

Any command not terminated by a')'may be terminated, but only if
desired, by any special character, usually the period. Thus 'LIST',
'LIST.' and rLIST*' are all equivalent.

The 'listing control ke¡ruords are LIST and NOLIST. These control
only the assembler'list'ing and should not be confused with the LCC which

affects only the source card listing" We shall refer to non-ìisting
control KWCs as proper.

LIST

e.s" $LIST

This is a request to the assembler to produce the assembler listing of
all subsequent sectionsof the course, until a NOLIST is encountered.

NOLI ST

E.g. $NOLIST

This directive is a request to suppress assembler listing of all
subsequent course material until a LIST is encountered.

The course organisational keywords are COURSE, CHAPTER, PAGE and

END.



A-t4

COURSE . <coursename>

e.g. $COURSE,ALGEBRA

$couRsE, B00LEAN

This card begins and names a course. The <coursename> is any

<ldentifler> not exceeding l0 characters. The COURSE must be the first
KhlC of a course. Following a course Kt{C, the next KtlC, other than list-
lng control, must be the CHAPTER. In a given CAI run, all course names

must be distfnct.

CHAPTER, <chaptername>

e.g. $CHAPTER,PD003.

Thls Kl.lC begins and names a new chapter and ends the previous chapter

(if any). In a given course, chapter names must be unique. If a chapter

name ls not acceptabl.*irf,.g. reason of syntax or multiplicity, the system

generates a name of thbìSySCHn where n = I for the first system'given

chapter name in a cours€, n = 2 for the second and so on. The proper Kl^lC

which immediately succeeds a CHAPTER must be a PAGE. A course is allowed

any number of chapters"

PAGE, <pagename>

e"g. $PAGE(RR22)

This KWC begins and names a new page of a course, and terminates

the previous page (if any). Each chapter may contain as many as 64 pages'

but at least one. Page names within a chapter must be unique. If the

author-supp'lied pagename is unacceptable for some reason, then a system-

defined name of the form SYSxxx is substituted. The first such page in a

chapter is SYSOOI, the next SYS002 and so on.

A page is a unit of a course which can be assembled into a block

of central memory words'less than or equal to the'limit PGSIZE (currentìy

PGSIZE = 464). A page constitutes a segment of a course that may reside

ln core at any one time during CAI operation. It is also the unit of

course which is swapped between disc and core. The first word of a page

contains its name, i.e. <pagenamet, in display code, left iustified zero

fllled.
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If the author attempts to assemble more than PGSIZE words of code

into a page, the assembler will try to sp]it in into two (or more)

pages, if possÌble. It does this by accommodating as much into the

current page as possible, and attempts to place the remaining codes in

a new system-defined page. In splitting a page, a problem block (see

later) must not be split between pages. A page which cannot be split
without violating this requirement will be abandoned.

The assembler automatically assembles at the end of each page an

exit to the next pâ9ê, unless this is the ìast page, or its last KWC

is C0MPLETE or END. The next page above includes the first page of the

next chapter,'if the current page is the last in a chapter. In the

assembler listing of a page, the location at which each command in the

page is assembled is also shown. The listing ends with the number of
unused centraì memory words in the page (see Figure 4.2).

END

This keyword ends the current course - this means also that the

current page and chapter are also terminated.

As a further illustration of the organisational KWCs, the course

listed in Figure A.l consists of only one chapter, and one page.

The remaining keywords are mainìy command keyv'rords. Each is assembled

into one or more central words, the first of which must bear a 6-bit
opcode, to the far left. Succeedìng cards in a page are assembled into
succeeding locations, in their order of appearance, All KWCs assemble

into one central memory word unless stated otherwise.

SIGNOFF opcode: 00

e.g. $12:SIGNOFF.

Thjs conrmands the CAI system to sign-off the student. l^lhen a

student is signed off he cannot resume his lesson until he signs on

again.

TEXT IT=<del ay> I o

e.s. $TEXT(T=24)

-'TEXT (t=*¡

pcode: 01
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ïhis modifies the immediateìy foìrowing text stream. If the nextcard is not a TBC, i.e. no such text stream follows, then the KtdC isignored. However a text stream need not be preceded by a TEXT card,in which case'$TEXT.'is assumed to occur. <deray> is a number takingan integer varue from 0 through ggg, and represents the time the system
must wait on presenting the text stream, before resuming the execution(interpretation) of the course. If no T-parameter Ís specified, T=ìis assumed; i.e. ,$tEXt, is equivaìent to ,$TfXT(t=l¡,. 

The speciaì formT=* implies an infínite delay. The system wiìl resume execution of the
course prior to the expiry o'r tne delay, if the student types in ,#G0,.

A rTExl without an accompanying text stream causes no object codeto be produced. t^rith its text stream, it is assembred as foilows. Thetypewriter codes of the text stream are assembred into as many text
groups as required. Each text group contains two header words followed
by up to 16 central memory words in which the T/w codes are packed 5 perword. ftrus eacþ text n.ouo can accommodate up to g0 T/t,J codes and atext stream with n T/r,r codes occupies N ôentrar memory words where:

N = lB x rnl801 + r|(n-t-80 x rnlgol)t + t.
txl stands for the largest integer not exceeding x.

8.9. 97 IlW codes wiìl take up lg + flx l6f + I = 22 words.

The cuE, ANSÌ^JER, ENDANS, t,rAITcuE and GIVECUE comrnands must be used
onìy in a problem environment - a roose concept to be expìained rater.
{ CUE I EXPLAIN EXP } I r<h> ] t (T=. del ayt )r opcode: 02
e.g. $tx:cu¡(T=.l5)

$CUE,4(T=ì0)

$¡xP.

This instructíon wi|r be referred to as a cue. The keywords cuE,
EXPLAIN and EXp are treated as equivalent. <n> takes any integer from rto 99. <delay> is as for TEXT; if the T_parameter is not specified, T=*is assumed' The <n> is a repetition factor and indicates the number of'single' cues intended" Thus ,$CUE ,4(T=12), is equivalent to four
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successive '$cuE,(f=ì2)' cards saving three cards. Each singìe cue
assembres into r word; thus '$cuE,3., takes three words.

A cue must be part of a probrem brock (q.v.). t^rhen it is executed,
a red question mark is typed out on the left margin of a new 1ine,
indicating to the student to respond with an answer. The student must
then respond within the delay time of the cue or else he forfeits his
chance to answer; in this latter case the course execution will resume
from immediately after the cue. t^lhen an answer is received, the system
next executes the first answer command in the associated answer sequence(q.v"). This then in effect triggers off (see execution of answer
command) a comparison of the student's answer againstthe author answers,
one after another in the answer sequence, untÍl either (a) a match is
made or (b) there is no more author answer to compare. In the case (a)
the course will continue from immediately after the matching answer
command. In the case (b), no match has been achieved and the system
types out the message "Incorrect" and then resumes execution from the cuejust executed" t^lhat follows the cue would usualìy be a piece of expìa_
natory or prompting text - whence the keywords cuE and EXpLAIN.

The following is a simpìe example of the use of cues in the context
of a problem block. This is followed by two hypothetica'l student inter-
actions' The italicised texts within square brackets are comments for
the reader"

COURSE S EGMENT

$rExr.
Kuala Lumpur is the capital of

$cu¡.
M----. pl ease try agai n.

$cur1T=to)

MAL_. Try again"

$EXPLATN(T=lo)

The answer is MALAYSIA"

$c0T0,L20.
$ANSt^JE R (M= 3 ) 

*MALAYA*

?



Not quite.
$GI VECUE.

$ENS ( M=3 ) $MALAYS rAg

Very good"

$120: TEXT.

In what year ......

Interaction ì

A-'t8

Maìaya is now part of another country.

SYSTEM:

STUDENT:

SYSTEM:

SYSTEM:

STUDENT:

SYSTEM:

Interaction 2

SYSTEM:

STUDENT:

SYSTEM:

STUDENT:

SYSTEM:

STUDENT:

SYSTEM:

Kuala Lumpur is the capital of ?

?BURMA [The ,?, from tlze sgstem is in red.; student end.s

answer with a cartiage return.l
Incorrect,

Please try again"
? ¡Student faijs to restr)ond within I0 seconds.l
MAL_. Try again"
?MALAYA

Not quite. Maìaya_,is_now part of another country.
The answer is MALAYSIA.

In what year .....

Kuaìa Lumpur is the capital of ?

?S I NGAPORE

I ncorrect.
M Please try again"
?MALAYA

N9t quite. Malaya.is now part of another country.MAL_. Try again.
?MALAYSIA

Very good.

In what year 
" "...

{ ANShIER I ANS I ENDANS I erus){ r. t'l l( fM= <mode>l [, C= <cateqor.y> I ) ] <answer
E. g. $AI'IS (N=Z,C=3)*PERMUTATION*

$ANSl.lER( C=4 ) 
*Ì,tARI4*FRIENDLy*GEN IAL*

$ENS. =BIG=LARGE=

$ANSt^lER (M=6 ) $l 2356s$2434$

opcode: 03

specn>
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The keywords ANShIER and ANS are equivalent; so are ENDANS and ENS,
The instruction forms are only approximateìy represented by the above
specification; so further expìanation is in order" <t> is either ,,,
or'.'. <mode> is an integer, at present taking one of the vaìues 0,1,2,
...9,ì0,.l.l,12,13. 0ther modes have not been yet implemented. <category>
may take any of the integer values 0,1 ,2,...63. t^lhen not specified, the
default values for M is 3 and c is 0. The c-parameter and M-parameter
may appear in any order.

An <answer specn> consists of one or more answer strings bounded
and separated by a common delimitter character. An answer string is
made up of any CDC 6400 display code characters. Imbedded bìanks are
significant. A delimitter can be any display code character not used
in the answer strings. An ansv,rer specification has the form:
$.answer string lt$.answer string 2t$."...$.answer string n>$ where $ is
the delimitter character. The second and subsequent answer strings, if
present, ffiây not begin with a blank - if one does, then it, and all
subsequent strings in the specification will be ígnored. Thus

$AttlS(N=Z)*AA* AB*AC* wiìl be treated as gANS(M=Z¡,t44* only. An answer
instruction with n answer strings is equivaìent to n separate answer
instructions, containing only one of the n answer strings each, and with
the same M and C parameters. Thus $ANS(M=2,C=5)*A0l*A0Z*A03* is equi-
valent to the three successive instructions: $ANS(ll=z,c=5)*A0l*,
$ANS(t'4=e,C=5)*402*, and $AtrlS(l',t=Z,C=g)*¡g3*. But note that gENS(--)*JRCf*
JILL* is equivalent to $ANS(--)*¿nCf* and $ENS(--)*¡ILL* in that order.

The c-parameter is included in any recording of a response match
against an answer. It is useful for classifying answers in a course.
For instance, the author may designate the categories o,l,z and 3 for
incorrect, partially correct, acceptable and best-match answers
respectiveìy.

lrlhen an answer command (ANSI,'IER or ENDANS) is executed, the student,s
input string wiìl be compared with the author's answer string (or strings),
under the prescribed mode" The outcome is either a match or a mismatch.
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A match is always obtained when an answer cofirmand is executed in the
absence of a student.answer. If a match is made, the next comrnand to
be executed ls the one i¡unediately following the answer command. If
there is a mlsmatch then the next action depends on whether or not this
ls the last answer command in the problem bìock. If it is, then the
message "Incorrect" is output and the course resumes immediately after
the last cue executed. We have not discussed answer recording here to
avold complicatlng the above explanations.

To understand the execution of an answer command in the absence of
a student answer, consider the answer sequence :

$ANs(t"t=3¡t'¡*

Message-l

$ANs (N=3 ¡*3*
Message-2

$ENs (l't=3¡ *'g*

Message-3 
"

If the student's answer is rA', and the first answer command is
executed, a match is obtained" The next command to be executed is the
one lmmediately fotlowing this first answer command, and this is the
text "Message-]"¡ this text is typed out. The next command is then
executed - this is the second answer, and since there is now no student
answer (his answer rA' has been successfully matched with the first answer
command and is no longer active), a match is assumed, and therefore
"l',lessage-2" is next typed out, followed thereafter by ,'Message-3,', since
a match is again assumed with the last answer command (ENS)

currently we have only the answer processing modes M=Orl rz...
12r13r14 to meet the immediate needs of an experimental system. These
modes have the functions described betow :-
Mode Function
0 Permitted only in an ENDANS. In Mode 0, there is no answer

string associated with the instructÌon. Any response will
match a mode 0 answer - i.e. it is a catch-all. e.g. $ENS(N=o).
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Functi on

Perform an exact string match of the student,s response,
without prior edit/ing, against the author answers, ê.g.
$ANS(M=l)*NEIN* wiìì match ,NEIN, but not 'NE IN, nor 'MEIT'.

As for M=ì, but remove blanks from student response prior to
string matchirì9, €.9. $AtlS(N=Z)*ALPHA* wiì ì match any of
'ALPHA', 'AL PH A' and 'ALP HA'but not ,BETA,or ,GAMMA'.

This is the defau'lt mode - i.e. if no mode is specified by

the author, M=3 is assumed. As for M=2, but in addition, any

, i : ? " ' and . are removed from the student string before
it is matched. e.g" $AnS(l'l=S¡ZALpHAZ will match ,AL,.pHA'

and 'ALPHA. '.
Remove from student's answer any non-alphanumeric before
comparison. Clearly then $ANS(M=4)*F44.6* will never match

any student response as any'.' present in it will be removed.

As for M=4, a'lphanumerics on1y. But student responses may be

truncated on the right before matching. Thus the response

'PR0GRAMME' will match r$ANS(M=5)*PROGRAM*.

Aìl non-numeric characters to be removed prior to matching.
Thus an author answer strÍng containing a non-numeric wìll
fail to match all student answers.

Remove any bìank, tr', ';'and':tbefore matching. Thus

'Tl"l0;THREE' but not'Tl"l0.THREE' will match $rrus(N=z)tTWOTHREE+.

Remove blanks and if necessary truncate trailing zeroes, before
matching. Thus r46.2300' but not ,46.23243, will match

$Ans (t'l=e ¡*46.23*.

This mode is for the recognition of a list of answer items,
which may be separated by blanks, tr', ';'or':,, and in
which the items are allowed to occur in any order. In the
author list, the items are separated Uy T (f-Uar on IBM-029).

I

2

3

4

5

6

7

8

9
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Mode Functi on

ê.e. (r )

(2)

$A¡ls(l¡=g)BLUEIREDTGREEN* matches' BLUE,cREEN,RED,

and 'RED; BLUE: ,GREEN' .

$At'ts (tul=g )*ALPTBETTcAM*enTQQTRRTss* i s equi vat enr
to $ANS(M=9)*AIPTGAMTBET* and $ANS(M=9)*ppîQQïRRTSs*
in succession.

l0 This is for keyword match; author strings and keyr^rords, whose

occurrence are searched for in the student string; if search
is successfu'l , a match is said to be made.

e.g. $R¡ls(t'l=10)*¡¡ppy* matches ' I AM HAppy,.

ìl This is for matching a number; the student's number must be

less than the author answer. e.g. ,14.64, and '7, match

$ANS(M=ll )*1S.0* but not ,15.01 , nor ,ZO, .

12 Same as for M=l I , except that the student answer must be

greater than the author,s number.

l3 In this mode, each answer string is two numbers separated by

a semi-colon. Student answers match if they are between

these two numbers in value. The author does not have to place
the number pair in numerical order. Thus $ANS(tvl=13)*lZ;13*
and $ANS(M=.l3)*]3;12* are equivalent and wiil match ,12.23,

but not 'l 3.4' .

ì4 This is for algebraic expression match. The author string ìs
an algebraic expression. A student answer matches if it is
aìgebraically equivalent to it"
e"g. $Attts(N=14)*(A+g)+2* matches '(B+A)r2, , , A+2+Bt2+2*A*B'

and '1z'tA+(A-B) )"(3+A), but not '2't(fl+B)' .

In an answer sequence (q.v.), the'last answer instruction must be

an ENDANS. Thus an ansuler sequence with only one ansrÁ,er instruction
consists of on'ly an ENDANS.

The number of words taken to assemble an ansb,er instruction depends
on the number of answer strings and the lengths of these strings. Each
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string is assembled as a separate answer block, made up of one header

word, and one or more words to accommodate the actual answer stri ng,
packed l0 per word, with a zero byte (6-bits) to terminate it. Thus
*ANSWER(M=3)*SHORT* takes 2 words, $ANS(M=2)*BELLYLONGSTLING* requires
3 full words and $ENS(M=0) I word.

Unconditional Branch:

There are three unconditional branch instructions, facilitating
(a) i ntra-page,
(b) inter-page, but intra-chapter, and

(c) inter-chapter transfers.

G0T0{<name>l.l*l-'} opcode: 04

e.s. (l) $eOto't+ (2) $eolo*

This instruction effects a branch to another instruction within a

page. <name> refers to a label in the page. l¡lhen executed, the system

continues the course at the instruction bearing the label. + is an

implicit label. '$G0T0*' or '$G0T0,*' causes the execution of the
course to be transferred to the first instruction below in the same page

which bears a -+ on column l. If no + existsr then the branch will be to
the last instructíon assembled in the course - this is normally a

system-supp'lied transfer to the next page.

G0T0 ,PAGE ( {.paqenamet I 
*} ) opcode: 05

e.s. (r ) $c0T0,pAGE(T004) (2) *G0T0,pAGE(*)

Here <pagename> refers to another page in the same chapter; the
execution of this instruction causes a transfer to be made to the beginning
of that netv page. $G0T0,PAGE(I') is a transfer to the next page in the
cha pter.

G0T0,CHAPTER( {<chaptername> I 
*l ) t,PAGE( {<paqenamer | 

*}) I opcode: 06 or I 5

e.s. (r ) $c0T0,cHAprER(FrvÐ,PAGE(14)
(2) $Goto,cHAPTER(T664)

(3) $c0T0,CHAPTER(r.),PAGE(SrX)

This instruction causes a transfer to the named page of the named
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chapter. r*r refers to the next chapter or page as the case may be.

When no page is mentioned (as in the 2nd example above) the first page

of the chapter fs intended. Assembles ín one or two words depending

on the instructlon.

[^IAITCUE opcode: 07

This is a command to re-execute the last cue executed in the
problem block - in effect giving the student another chance to answer.

Thls ls not the same as an expìicit branch $LI:CUE

to a cue (see example on right) as ín :- $CUE.

slnce thìs involves a particular cue, whereas $G0T0,Ll.
WAITCUE "transfers" to the last 'active' cue"

GIVECUE opcode: 07 (as for WAITCUE)

This commands the system to cgntinue from immedÌately after the

last cue executed. hlhat folìows is usually a'line or bvo of cueing

text - hence the keyword GIVECUE.

TIME. <name> opcode : 'l 3

e.g" (l ) +TIME¡XX2 (2) $TIME,L0C4.

This instructs the system to record on the student performance tape,
the current tlme, using the specified name to identify the'location in
the course. This facilitates an investigation by researchers into
varlous routes taken by the different students, and their'arrival'time
at the various sections"

TDELAY I DEL] (T=<del av> ) opcode: 04

e.g. $DELAY(T=200)

This instructs the system not to continue executing the course until
the specifled delay (in seconds) has elapsed, unless the student
lnterrupts during this time, with an input requiring processirg, €.9. #G0"

t,lALT opcode: l4
This instructÍon Ìs equivalent to the three successive instructions:-

$TEXT.

RRwR 
" 

XT

$cug.

$ens (u=o¡
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This cornnand causes a'W' in red to be output on a new line,
which acts as a signal to the student to press the carriage return key

(or any input followed by the c/r) to indicate his readiness to continue.

Thls instruction may be used to wait on the student until he is ready

to continue" The I¡IAIT may not be used in a problem environment.

iCO]',|PLETED I FINISHED} opcode: l7
Thls command indlcates that the student's course terminates here.

There may be more than one 'COMPLETED' in a course, since a course may

termlnate at severat different points. The system also automaticalìy

assembles a COMPLETED instruction on encountering $END. as a precaution"

The system actlon ls to sign-off the student and to flag the end-of-course

status.

{PROBLEM I PRB I BLOCKI gLrl [<name> t (R=<recordins mode>) ] l opcode: l2

e.s. (t ) $PRoBLEM,Q002(R=$) (2) $PRB.

Thls command al'lows the author to name a problem block and to

specify the recording mode for the students'responses to it. In the CAI

system, there ls a location in the student area, called the b'lockname

locatlon - for saving a blockname and the recording mode. The effect of

executlng a PRB ls to reset this location with a new name and R-value.

l,lhen a student answer is received, the system examines this location.
If it ls zero in value, no recording of his response is made. Otherwise

a recordlng of the response with this blockname and under the recording

mode indlcated ls made.

ldhen a new page is assembled, a flag F=PRB is set to zero. When a

PRB command is encountered, this flag is set, and when a problem block

ls encountered, this flag is cleared; but before being cleared, the

system ensures that it is set, If not, the system assembles a'$PRB.'

so that no recording for this block is made.

The PRB command must be used with care -
belng executable" Thus if the example (see

opposlte) shown, is executed, responses to

the problem block could be recorded under the

name Ql and mode 2, instead of the presumably-

lntended name Q7 and mode 8.

$Pna,qt (R=2)

$Goro,12.

$PRB,Q7(R=8)

$12:TEXT.

trlhat is ..o?
$cuE.
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BNF Grammar for Reqister Statement

<digi t>
.regi s ter>
<aop>

<mop>

<unsi gned int>
. fracti on >

.unsigned no>

<factor>
<term>

.expressi ont

.register statement>

<rel oPt

<sign op>

<cons tant>

olìl2l...7l8le
AlBlcl...MlNlo
+l-
*l/
.di gi t> | <unsi gned i nt><di gi t>

<unsigned int>
<unsigned int>l <fraction> l.unsigned intt. 

I

<unsi gned int><fraction>
.regi ster> | (.expressiont) | (.regi ster statement>)

< factor> | .termt.mop>< factor>
< term> I .e*press i on> <aop> < term> |'aopt' termt

<regi ster>=<express i ont | <regi ster>=<reg'i ster>

statement>

EQlNElerllrlLElGE

PSINGINZIzRINPINN

.unsigned notl*.unsigned no>l -.uns'igned not

Conditional Branching

The conditional branch statement has the general form :-
IF( <re'l ational exPression') Br

Here 'Brr stands for an unconditional branch statement. The relational

expression has either TRUE or FALSE as value; if TRUE, the branch 'Br'
is taken; otherwise the next instruction below is executed. The

relational expression has one of the three forms below :-

.register>.<rel op>..register> e.g. A.LE. F

<register>.<rel op>.<constant> e.g. B.NE.l2.6

.register> rcsign op> e.g. M'NG

The relatíonal operators have the meanings:- EQ (equa'l), NE (not

equal), GT (greater than), GE (greater than or equaì to), LT (tess than),

LE (less than or equal to); PS (is positive), NG (negative), NZ (non-zero),

ZR (zero), NP (non-positive) and NN (non-negative).

l)
2)

3)
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Examples of Conditional Bnanch

(l) $Ir(n.LE.F)G0T0,16.
(2) $rr(e.GT. -6.4)G0T0,PAGE(rWO¡

(3) $rF(D,NZ)c0T0,CHAPTER(XA7)

In examp'le (l), if the value of A is 7 and if F is ì3,
rG0T0rL6' will be executed.

The Problem Block

then

The rather loose concep t of a problem bìock is now discussed. A

"cue" refers to a CUE, EXP or EXPLAIN instruction; an "answer" refers
to ANS!'IER, ANS, ENDANS or ENS instruction while "endanswer" refers to
ENS or ENDANS. Because the cue, answer, h,AITCUE, GIVECUE (and even I,JAIT)

instructions cannot be used as freely as the other instructions, they

are said to be critical.

A cue sequence is a set of one or more cues , possib'ly interspersed
with non-critical instructions. It has the form

$cuE. .. . )
I

$cuE a cue sequence

$cuE. ...
e.g. $CUE,2(T=10)

It begins with a 'C'
$cur1T=15)

$TIME,ABB

Try again.

$EXP.

The answer i s 'cri si s' .

The following is not a cue sequence :-
$cur.

$Al'tS(tut=4)*PQn* (because it imbeds an answer)

$cug,2.
Try again.

$EXP.



A-30

An answer sequence is either an end answer or a set of an swers
(which are not end answers) terminated by an end answer. An answer
sequence may be interspersed by other instructions, excluding cues and

hIAIT.

e. g" (l ) $ENS(M=2).ALPHA. BETA.

(2) $Alts(N=21*coMMoN*

Not quite - try again.

$WAITCUE

$rrus (N=z ) 
*onoINARY*

Very good - correct.

(3) $Altls (N=z )*PoRt*

$fruS1U=S¡*GORT* (is not an answer sequence)

$¡Ns (lvl=z )*l'loRT*

A cue sequence followed by an answer sequence constitutes a problem

block. The problem block is a means for posÍng a question to the student
and for accepting and anaìysing his responses against author ansv\,ers.

The cue sequence and the answer sequence have no independent standing.
Every cue sequence must be followed by an answer sequence. This answer

sequence is said to be associated with the cue sequence.

A probìem block may not be split over two or more pages; it must be

fully accommodated in one page. t^lhen an author-defined page is too long,
the compiler will try to spìit into two or more pages without splitting
a probìem block.

It is normal for an answer sequence to be immediately preceded by

an unconditional branch, to lead the student out of the problem block.
If such a branch statement is absent, then a,$G0T0,*,is automatically
inserted just above the first answer.

e.s. $cuE. .... $CUE"....
XXXXXX XXXXXX

$ANS..... is equivalent to gG0T0,-'

$ANS.. .. .
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P rammt n Exam les

(l) Specification: Present student with a question rQ...' and give
him one chance to answer. There is onìy one current answer'xxx';
if the ansuJer given is correct, reinforce student, else if
incor.rect inform him so. No time limit for answering. 2 possible
codes are : -
(a) 4.... (b) A....

$cur cuE.

$coTO,L4 $E¡s(N=z)*XXX*
$rns(N=z¡*XXX* Good. Correct.
Good. Correct" ->

$L q : trxt.
(2) Speci fi cation: Give student question; three attempts, with a time

limit of l0 seconds each; no prompting materiar. Two possible
codes are :-
(a) ...question.. " (b) ...question...

$cue(r=lo) $cuE,3(T=to)
$Cur(r=to¡ The answer is
$cuE(T=ro) $nns( ) ....
The answer is $fruS( ) ....

$ANS( ) .... ->

$ens1 ) ....

(3) Specification: Let student try a question again and again; if
inconrect ansuJer, teìl student to 'try again'. No cueing text.
No time limit for attempts. Two ways to do this are :-
(a) ...questiolì...

$cur.
Try again.

$t^lAI TCUE .

(b) . ".question...

$ANS( )....

$ENS( )....
..>

$cuE.

$ANS( )

$Ens (N=o) .

No. Try again.

$tIAITCUE.



A-32

(4) Specification: Let student try a question th
specified in registèr G - but at least once.
each attempt.

..,question...
$A=0

$I-OOP : CUE.

$A=A+t

$IF(A.LT.c)G0T0,LOoP

e nugÞer of times
ttls ]46¡¡4 I imi t for

$Al'ts 1

$ENS (

+

)....

)...o

(5) Speciflcation: 6 attempts, without time timit. If correct in
first attempt, type out lvery Good,¡ if correct on 2nd or 3rd
attempt output'Good', and if correct only after three or more
incorrect attempts, type out 'correct,. No cueing materiaì" As
usual' output tlncorrectt for each wrong answer received.

...questiolì...
$I=0

$cur.
$ I= I+l
$rF(r.cr.s)c0T0,4.
$ANS( )....

$ensl )....
$IF(I.cT.l )c0T0,2.
Very Good"

$Goro,*

$z:tr1I.GT.3)coro,3.
Good.

$Goro,4 "

$3:TEXT

Correct.
+4.
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Structu¡e "of .a 
'Course

An ALFIE course has the deck structure shown below. The card inden-
tation is intended to emphasise the division of a course into chapters
and pages. The vertical dots indicá'te intervening cards which are assumed
not to be '$COURSE' or '$END,.

$cOuRSE,

$CHAPTER,

$PAGE,

$PAGE,_

GE$Pn

TERCHAP$

$cúRprun,

t

:

$cHAPTER,

$PAGE,

$PAGE,

$END
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SC0PE 3 Job card. (beginning card of job deck)
RFL, I 00.

REQUEST,XAoLR. K55 READ ONLY

RFL,30000.

REt,lIND(XAoLR)

C0PYBF(XA0LR,LKC) (copy off program LKC)

C0PYBF(XA0LR,ALF) (copy off program ALF)
LKC. (pre-process course)
REQUEST,XAoBJ. K40 ttlTH RING

ALF. (assemble course onto K40)
End-of;-'Record Card

(
(

your course deck

End-of-Flle Card.

It ls posslble to compiìe more than one course in one run. This is
done simply by placlng the several courses to be compiìed, one after
another, and placlng them in the job-deck (see above) where the single
course deck ls. The object codes of each course will be output on the
course obJect tape, and treated as a file (i.e" terminated with an EOF

mark) - wlth the last course having a double EOF terminator.

!0w: T'lt'e uer1ion of ALE on K55 doee not pernùt qnsuer pnoeessíng
modee 70, i.l, 72, 73, 14,
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A CHAPTER TER
A CHAPTER

AP

APa

APa
A Page

AP

A Page AP

Fiqure A 4 Schematic of a Course

Job Deck Structure For Course Compilation

To compile a course onto a magnetic tape, the course deck must be

organlsed with other cards to form a iob - for running under the SCOPE

operating system of the CDC 6400. The obiect code is output on the

file XAQBJ, which is a tape fite if a tape is assigned to it.

A typical job deck for compiling an ALFIE course has the structure

shown below. The tape K55, contains the preprocessor LKC, and assembler

program ALF in their binary form, as the first and second tape files.
Tape K40 is assigned to XAOBJ.

A
A

e

APa
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APPENDIX B

THEORETICAL DEVELOPMENT

Résumé of Aì geb raic Geometry

This section reviews some of the main ideas and resuìts from
the theory of rings and aìgebraic geometry which are especiarìy
relevant to the derivation of our Thm l, Thm 2 and Thm 3. The main
sources of reference are ß126r371461.

Commutative Rino

a non-empty set of elements arb,cr... in which the
e product a'b of any two erements a and b of R are
R is a commutati ve rin with uni if the following

(l) V a,beR ä+beR and a.beR tclosurel
(2) v ara'rbrbteR where a=at and b=br, a+b=ar+br and a.b=a,.b,

luni queness I

V a,beR ¿+þ=þ+¿ and a.b=b.a tcommutativityl
V a,b,ceR ¿+(b+c)=(a+b)+c and a. (b.c)=(a.b).c tassociativityl
v a,b,ceR a. (b+c)=a.b+a.c tdistributivityl
a oeR such that V aeR a*o=a tzerol
3 leR, llo such that V aeR a,l=a tunitl
VaeR il xeR such that a+x=o tadditive inversel.
The folìowing are exampres of commutative rings with unity :-
the set Zof all integers
the field Rof real numbers

the complex fieìd C, and
(4) the ring R.r¡r of all polynomiaìs in x with real coefficients.

Henceforth all our rings will be assumed to be commutative rings
wi th uni ty.

Defn. B.l A non-empty subset I of a ring R is an idear if and onryif for every arbel and reR, a-bel and â.Fe[.
e'9. The set of ail even integers is an ídear of the ring z"

(3)

(4)

(5)

(6)

(7)

(8)

(l)
(2)

(3)
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Every ideal contains 0 (since 0 = a-a) and the additive
inverse of every of its elements (since -a = 0-a)" Every ring
R contains at least two ideals, viz. the trivial ideals {0} and

R. {0} which contains on'ly the zero element is also called the

zero ideal An ideal that'is non-trivial is said to be a proper

ideal "

Defn. 8"2 Let S = {Sr,S2,...sr} be a set of elements of R. Then
k--r\

the set {1E., ai.s¡ lall a¡eR¡ s.¡eS} of all "linear combinations"

of the elements of S is an ideal, called the idea'l qenerated b.v S'

S is called a basis of the ideal. The ideal is denoted by

(sr,sz,"..tk). An ideal like this, with a finite basis is said to
be finitely qenerated.

e.g. The idea'l (2) of a'll even integers is generated by {2}.

Dgf¡, !:9 A Noetherian ring is one in which every ideal is
f i ni te:ly generated. l,lhi I e not all rinqs ,are Noetherian. all our

rings of interest are"

Notation: Let R be a ring. Then Rt[] = R[xr txz,...xn] denotes

the ring of all polynomials iñ X1¡X2r...X¡ over the ring R -
i.e" the set of all poìynomials ih X1¡X2r.."X¡ with coefficients
from R. Commonly used rings are the integer, the real and the

complex rings Z R and C.

Defn" 8.4 'a' is a root of FeRtxl if F = (x-a)'G for some GeRtxl.

A field K is a'lgebraically closed if any non-constant FeKtxl has

a root. Thus C is closed but not IR. A point [ee R.n ts a zero

of the poìynomial FeRt[l if F([0) = 0. If F is not a constant then

the set of all zeroes of F, denoted Hp is called the hypersurface

of F.

More generally a set S = {Fr,Fzr...Fk} of polynomiaìs from

RtI: defines the set M(S) {9¡ {feRnlfi(I) = 0 for i=1,2,...k}
lynomia'ls F1 ,F2,...F¡. We note

te M(S) = M({Fr,F2,.".Fk}) as



Defn.8.5 A subset A of Rn is called an algebraic manifold (or
simply a manifold) if A = M(S) for some set S of polynomials in
RrIl.

The set of al'l common zeroes of a set of polynomiaì is a

manifo'ld" A hypersurface in particular is a manifold.

Notation: If I is an ideal then M (t) @f=n {[eRn I F(I)=0 V FeI].

We now present some well-known results of algebraic geometry.

Res-l: If I is the ideal generated by S then M(I)=M(S). Thus

every manifold ís equal to M(I) for some ideal I"

Res-2:
kIf {Ir,Í2,...It} is any set of ideals of Rt[t then M(iU1Ii)
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So the intersection of an.y collection of manifoìds is
k

.nl= lM(ri )

a manifold.

Res-3: If IcJ then M( I)=M(J).

Res-4: M(F.G)=M(F)rj'a(G) for any polynomials F and G. M(I)'M(J)

= M({F.Gl

manl fol d.

FeI,GeJ)). Thus any finite union of manifolds is a

Res-5: M(0)=pn and M(1)=Ø. M(x1-a1,xz-ãz,...Xn-ôn)={(ar ¡d2t...an)}
for aieR.

Defn.8.6:

So any finite subset of Rn is an alqebraic manifold.

Let AcRn. The set I (A) of al I po'lynomi al s i n R tXI

which vanish on A form an ideal ca'lled the ideal of A

Res-6: If AcB, then I (A)= I (B).

Res-7: I(g)=RtI: and I(nn)=(O¡ if R is an infinite field.
I({ (ar ¡d2s.. "ân)})=(xl -à¡¡x2-d2,". "Xn-ân) for aieR.

Res-8: I(M(S)) S for every set S of polynomials. M(I(A))' A for
every set AcRn.

Res-9: M(I(M(S)))=M(S) for every set S of polynomials and I(M(I(A)))
= I(A) for every subset A of Rn. So if M' is a manifold then

M(I(M'))=M'and if I'is the ideal of a manifold, then I(M(I'))=I'.
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Defn. 8.7: A manifold M is irreducible if it is not possible to
express it as the union of two proper submanifoìds - i.e. M=M1L}M2

where Mt,M2lM, Ml rM2cM and M1 and M2 are manifolds.

Defn. 8"8: An ideal I is prime if for every a.bel, either ael or
beI.

Res-]0: A manifold M is reducibte if and onìy if there exists two
polynomials f and g such that neither one vanishes all over M,

but such that f.g does.

Res-l I : Every manifold is uni quel y expressible as the union of
irreducible manifolds M r .Mr .. . .Mr,: i . e. M=Mr rr Mcrr ... tlMr, and

{i_é_N¡ for eve I
k

The Mi's are called the irreducibre components of M and ¡l=rU_r¡ll'l=l I

is said to be the decomposition of M into its components. If M is
itself irreducible then it is its on'ly component.

Res-12: If vcw and vrl,rl are two manifolds of Rn then each irreducible
component of v is contained in some irreducibìe component of !rJ.

Defn.8.9: Let I be an ideal of R. The radical of I rad(I) is
defined as the set {aeRlarel for some integer r>0}.

It can be shown easiìy that rad(I) is itself an ideal. An

ideal which coincides wÍth its radical is called a radical ideal.

Res-ì3: Let v be an irreducibre manifold of dimension r in Cn.
Let Fe Ct[J be such that VfìHf I Ø and V 4 Hf. Then alt rhe
components of Vcr H¡ have dimension r-.|.

Res-14: Hiìbert's Nullstellensatz: Let I' be an ideal of Ktfl
where K is algebraically closed. Then Rad(I,) = I(N(t,¡¡.

This is a central result in argebraic geometry and is aìso
vital to our work. This zero-theorem says that if GrrKtxl vanishes
where Fr ,F^,...Fk e K[{] vanish joinily, then Gm =

1
IItifi(Hilbert's Formula) for some oositive interqe

Note that K must be a closed field.
rt¡andf e KtIl .
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This theorem'gives the form of the set of all polynomials

whfch vanish on the set of common zeroes of a set of polynomials.

Corol I ari es

(a) If I'is a radical ideal in Kt[] then I(M(I'))=I'. So there
is a 1-l correspondence between radical ideals and manifolds.
Also if (Fr,F2,"".Ff) is a prime ideal, thenm=l in Hilbert's
formul a.

(b) If I' is prime then M(I') is irreducib'le. Thus there is a l-l
correspondence between prime ideals and irreducible manifolds.

(c) Let FeRt[l where F = Flt.Frh...o .tlk ts the decomposition

of F into its irreducible factors Ft,tz,.."Fk. Then N(f) =
k

i9lM(F1) is the decomposition of M(F) and I(M(F) )=Fr. Fz. . "..Ft).
There exists thus a l-l correspondence between irreducible
polynomials in Rt[] (up to a nonzero constant) and irreducibìe
hypersurfaces in Rn.

Resul ts Derived

In this section we derive Thm l; Thm 2 and Thm 3, the last of
which concerns the relationship between an arbitrary rational function
and a set of reference rationals on whose corffnon zeroes it vanishes.

But flrst we establish two lemmas.

Lemma I : Let A,Br,Bz,...Bk be distinct. irreducible manifolds and

let C be any manifold such that C=A-tr{.,u11. Then C=4.
k

Proof: If A-(#rtt) = A then the lemma is triviaìly true.
Therefore assudre'otherwise, i.e. An(r1., B¡) f 9"

Let D = Au(r,lreil. Then by Res-ll, itrå unique decomposition

theorem, AuB,u B"u .". uB¡ is the unique decomposition of D.

Suppose the lemma is fal se, i "e. C+A.

But c= o-rü.' tt (hypothesi s ) 
k

A-i_UtBi.
I,K
Èta¡)u tiYrs'¡l



B-b

ce AOCc,A.

Bil = D since Ac, B and A--lB +

A=8.

Now by assumption ArrC I A tcf. C/tN and whether AôC is irreducible
or not, we have dispìayed two distinct decompositions of D - a

contradiction of Res-ll. Therefore C1A. QED

Lemma 2: Let A and B be any two manifolds with no irreducible
components in common. Then for any manifold for which C=A-8, Cf,A.

k1
Proof: Let. A=rUrA¡ and B=¡918¡ be the unique decompositions of A

and B. Then by the hypothesis A¡ I B¡ for a'll l<i<k and l.j.l.
c r !n' - rjtj (hyporhesis)

' J'r
CrAi (i=ì,2,...k) by Lemma l.

k
C r itllAi QED.

Thm l: Let r(X)=p(I)/q(I) where p and q are relative'ly prime poly-

nomials. Then if any polynomial p' vanishes on M(r)* it also vanishes

on M(p) "

Proof: Let the unique factorisatio
hZ ô+ hr

ana ,Xir¡J. Then M(n) = ¡liN(pi) a

M(pi )l¡l(q¡)" Furthermore M(p')= M(r)=l',11p)-lvt(q) " Therefore by ìemma 2

M(p'):M(p); i.e. p' vanishes on M(p). QED"

Thm 2: Let 11 ,rz,...rO be rational expressions in which r.¡ = pilg¡
(i=1,2,...k), pi and qi being relatively prime polynomials. The pi

and q¡ (1.i,i¡k) have no common factors. Then any polynomial p which

vanishes on .,örM(ri) atso vanishes on iólM(pi).

* M(r) is the set of zeroes of n in C', i.e. {{et.nlr,(x)=0}.
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Proof: ìM(ri) = Qru(pi)-M(q.¡)l
= I ,t(pi )C\ ¡¡' (qi ) I

= 1t(ni)ñt?M'(qi)l
(pi ) rl M(qi)r'QN

t
.n-
It I

Íl
I

M(Pi ) -.u-l=l

Let the distinct prime factors of p1,P2,"..pk and of qr,92,...9¡
be pi ,p) ,. " . nfi and qi ,qå. . "Ci respecti veìy. By hypothesi s , these

two groups of factors are distinct and therefore M(pi) I m(lj)
for all i and j. Therefore N(qi),M(qå)'...M(qÅ) and the components

ot .,ö.,u(ni) are distinct. This is because if m=1 , then it is

alråaåy true while if m>ì, the components of iö1M(pi) 
are of lower

dimension (cf Rep-13) than M(ql) (i
disrinct. aut -Ä.,m(P¡ ) = iölu[p'r )l=l r l=, 

k

Thm 3: Let 11,12,...r¡ be rational expressions where ri = pi/qi
(i=1,2,...k), the p¡ and q.¡ being relatively prime polynomials. The

pi and q¡ (l<i,i<k) have no cornmon factors. If r is anyrrational

expression which vanishes on .,4.,t{"r) (pwd), then rm = i[lsi.ri
where m is a positive integer and each si is a rational expression

which is not ill-defined all over M(ri). (Al'l poìynomials are

assumed to be from CtIl)
proof: Let r = p/q. If r vanishes on * = röru(ri) 

then it is p

which vanishes on M. By Thm 2, p vanishes on iôlM(pi)" By Hilbert's
nullstellensatz, pffi = i[lhi.p.¡ where m is a posiiive integer (m=l if
the ideal (pr,pz,...pk) is prime) and h¡ (i=1,2,...k) are polynomials"

Therefore pm/qm = i[l(hi.pi)/qm = 
r-h., 

ftnt.qi)/qm).(pilqi). This is
of form.t = i!1t.¡lri wtrere si = (Å1.ci)/qm.and is therefore not

ill-defined eicept where q vanishes. But M(q) á M(rj) for else it
is not possibìe for r to vanish on M. Therefore as required s¡ is
not i I I -defined al I over M(ri ). qED.

u(e¡ ) (*)
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t5 I6
15 5t
4 16 t

15 ló L

15 5l

73 ?l

Tabl-e C.2 C-set Search Tåbl-e



OPERAlING IOENItIIES

c-5

SPANN¡No C-sEf Nl SUBSÍIlulloN SEl CoNFIG ¡rxED¡AÌE C-St¡8sElS

¡00
100
0tl
0t0
010

001
000

000

010
001
000
¡00
00t

¡00
IIO

0ll

I /sEC1? ¡s ¡N12r ¡
I /S INi?rcolr 2. t
l/C0Ste.lAN12.¡
C0s12.I/CSCr?.t
¡/c0s1e.l/c0f1?.1

csc12.¡/ÎÂNî2.1
I / CSc+2. ¡ /S€Cr2r ¡

sEcle.L/c0Í12.t

134
¡ 34
¡3s

t39 I36
l3a
¡35
141

l4l l¿8 ¡eö
t38 ¡23 ¡19

¡35
I34

7Z

:

,:

:
r33
II?
tr8
t33
lt9

80
123
58

t2t
t4l
t21
¡20

65
t24
68
6¡
59
6'¿
65
6b
85
8ô

r42
¡ 43

85
7S
fE
79

I45
I46

86
79
72
7t

t4¿
I43

d5
79

70

7?
7'r

145

',

60
t,0

l¿2

¡31 t32
l¿0 ¡19
LZ6 lZ5
¡ó0 ¡37
ì3I l¿4
¡33 t2¡
t34 ¡2E
134 t32
t37 ¡29
t3l I39
t40 130
123 t22
¡23 ¡2t
128 125
LzA t21
130 129
58 6l
63 6t

¡33 127
I33 t2I
I43 t42
l4ó 145

144
144
144
¡43
144
t45
147
147
147
141
¡48
t48
I45
la6

I X XXXX
xx xxxx
xxxxxx
xxtxxx
xx xxx x
xx xx xx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxr
xxxx xx
xxxxxx
xxxxxx
xxxxrx
xx x xxx
xxxxxx
xxxtxx

xxxxx l4
xxxxx t3
xxxxx

¡314 ató 6
13 3 aló ó
2 315 5t7

1314 {Ió ó
¡3 3I5 5 ó
¡3¡ó a¡617
13 315 5t7
21115 st7

13 3t5t6 ó
2¡41516t7

¡3 3 {¡617
214 a1617
2l415ló17
2¡ft5 817
2L429t6tf

t9 14 t5 t6 t7
¡3 l4 2¡ t6 23
13 14 15 t6 t7
¡3 14 2l t6',23
l3 ¡4 2¡ ¡6 23
¡3 20 2¡ Ió 23
13 24 t5 25 t7
¡3 ¿o ¡5 22 23
u 3r15 817
2¡415 8¡7

13 ¡4 7 16 26
1314 71617
¡3 3Istó 9
¡3¡415t6 ó
¡3 31516t?
2 t4 15 16 17

¡3 I4 l5 l6 l7
2 14 IS 5 17
214 41617
2 315 8t7
2l,ol5 817
2 I+ 15 I I7
2 3¡ t5 s 17
2 3 !5 I 17

13 14 4 ló 2ó
2 14 7 ló ll
2142916 6
214 7t6tf

¡3 l4 7 16 ó
13 3 4tó 9
¡3 3¡5 5 9
2¿415251?
2t421t623
2 t4 ts ¡6 t7

13 14 2¡ 16 23
2¿4152517

t3 ¡,4 2¡ 5 23
¡3¿021 523
13 32It623
13¿4 42517
t320 42223
13241525 ó
2 3t5 517
2 I0 15 5 17
2 3 ¡5 I t7
2 ¡4 A tó ll
214 1t6 6
214 ft6 6

t3 3 ó 5 9
13 14 4 ló ¡7
t3 14 15 5 17
32 ¿0 t5 2? t7
¡3 t4 15 ¡6 17

82 12
2A t2
37 IZ
33 I
27 L2
62 I
85 l?
39 I
53 I2
s0t
s7 l?
34 I
96 2g
95 ZA
94 ?A
93 lå
92 30
9lt
86 t8
a7 L2
8ó t2
80 t2
79 tz
77 12
f6 l2
74 I
73 I
7¡ 12
78 L2
83 t2
69 t2
9¡ I
f5 ¿8
f2 2a
69 27
ó8 I
67 I
66 ¡?
64 t2
ó3 I6t 1

ó0 26
59t
58 I
56 12
54 12
52 2f
51 28
50 I
49 I48 12
47 t2
4ó I e
45 l?
44 I2
43 L?
42 12
41 ?7
40 I
38 I
3ó I
35 ?A
32 I
29 12
8t r¿
84 L2
90 t2
91 t2

7642
62
6¡
12
6l

f32
8651

83
ó2I
873
642

73
875{3
85432
75{3¡

8763
875?
8732
8721

8764?
8ó32

ê7ósl
763t
8421
83et
75¿l
7321
ó3¿1

7ó42t
86521

873t
8732
8543
7543

852
84?
832
841
82 t
15?
7sl
74 t
7lt
7¿t
ó32
631
875
a7 4
873
E7 ?
87I
864
863
86a
765
763
7ó I

a5
84
a2
75
7l
63

65432
6543t

874t
f ... 2 |

NO

89
90
9¡
92
93

94
95

9ó

97
9S
99

I00
10I
102
103
I04
¡06
l0ó
107
l0s
¡09
¡10
lr¡
lr2
¡t3
ll4
It5
ll6
¡If
llB
It9
120
I2l
t22
123
124
125
t?6
t27
128
t29
130
t3I
132
133
134
135
¡36
¡3?
¡38
¡ 39
140
l4l

I50
l5¡
l5?

8ó

47
43
48
44
45
48
47

o ¡39 130 ltB 59 ó8
7 ¡3ó l3o It7 ó5 62

¡35 132 126

'l

I
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l.

c-6

COHPILAT¡ON IIMET ¡021 SECo

STEP N-CO|4P T Il'lE-A

ETP
EXP
ETP

Lù2
t rf 3
2rÒ3

lr2
I '.32ù3

-(l¡t (sIN-cost12
- (21 I SlNl2-2rSINIçOS.C0Sr2
-13¡ r I-zrsINfcos

I
7

?6

T I nE-É

T ! ME-B

T ¡ I,IE.B

ALOEB
SMALL
S'.IALL

SMALL
LAROE
SI,IALL

ALOEB
SI,IALL
SMALL

StIALL
LARGE
SI,IALL

ALGEB
LARCE
SHALL

RUN-l RUN-2 RUN-3

I
2
3

.007 SEC¡

.0eó sEcr

.0Ó0 sEct

2. EXP-lll | (l-SIN+2lr(I.TANlel
EXP- (2) | CoSlzrSECr2
ExP-(31 ¡ I

COI.IPILAT¡ON TTME I .O19 SEC.

STEP N-C0l.tP llME.A

.07I SEC.

.04+ sEc.

.047 sEcl

3

o007 SEC.
r0l4 SEC.
r02l sEc.

RUN-l RUN-2 RUN-3

4
5
6

24
l0
l0

30 sEC.
07 sEC.l4 SEC.

¡0
r0
.0

SI{ALL
LARGE
SI,IALL

EXP-(l)
ExP- (21
EXP-(3t
E)(P- ( 4 )

EXP-(5)

ExP-(Il ¡

EXP- (21 I
EXP- (3) ¡

ExP- (4, ¡

C0T r4-GSC+ó
( c0T+2-csc+2¡ l ( coT12.csc12 ¡
-lr (COT+2rGSC12)
-lr(CSC12-liCSC+2l
l -?rCSCr2

COMP¡LATION TIME ¡ .0{8 SEC.

STEP N-C0HP I IME.A RUN-¡ RUN-? RUN.3

ALOEB
LARGE
LARGE
LARGE
SMALL
SMALL
StIALL
SI.TALL
SMALL
ALOEB

7
I
9

l0
ll
t2
l3
¡4
l5
Ió

I
29
49
l6
I4
34
34
e3
27

I

.006

.0gg

.150

.052

.048

. 104

.I¡T

.0ó3

.087

.00ó

sEC.
sEc.
sEC.
SEC.
sEC.
SEG ¡
sEC.
sEc.
sEC.
sEC.

r00ó
.031
r 039
¡019
.023
.039
¡ 038
.024
.029
.00ó

sEc.
sEC.
sEc.
SEC r
sEc.
sEC.
sEc.
SEC ¡
sEc,
SEC ¡

ALßEB
SMALL
LAROE
LAROE
SMALL
SI,IALL
SMALL
SI'IALL
S14ALL
ALOEB

ALGEB
SMALL
LÂRGE
LARGE
SI.IALL
SMALL
LARGE
SMALL
LARGE
ALGEB

lù2
ll)3
lr)4
I f|5
2r3
2r.4
?r.5
3r.4
3n5
4ù5

4 ( l-SINô2)ICSC12
c0s12+csc12
COSa¿75 ¡ ¡n2
c0T 12

TãbIe C.3 SteÞ: Sí2e Analysis



I7
I8
l9
20
2L
22

l4
l6
l0

5
IO
l0

.045

.05ó

.033

.026

.036

.033

SEC ¡
sEC.
sEC.
sEc.
SEC.
sEc.

.01

.02

.0¡
r0l
.02

St4ALL
SMALL
LARGE
SMALL
SMALL
SIIALL

SI,IALL
SMATL
LARGE
SIIALL
SI,IALL
SMALL

SI.IALL
SMALL
L ARGE
SMALL
SMALL
SMALL

c-7

COMPILAfION TIMã t .025 sEc.

STEP N-CoMP ll¡1E-A I I ME-B

.ol6 sEc.

( TAN13-C0T+3 ¡ / ( TAN-COT,
( (TAN-CoTl + (TAN12+COTô2+TAN*CoI) ) / (TANiCoT)
(TAN-C0T, t¡ (TANr2.ÇOT12.l I / (TAN-COÍ t
TANl2+COTô?. I

COHPILATION TIME! .052 SECo

STEP N.COMP T I ME.A

EXP- (l ) I (TAN+59ç¡ /(TAN.SEC-COSI
ExP- (2) ! (SIN/COS+l/COs, / (SIN/C0S.t/C0S-Ç0Sl
ExP-13¡ ¡ (sINrI)/(SIN+SIN12l
EXP-(4) | (SIN.t)/(SINr(SINr¡¡ ¡

ExP- (5) ! l,/SIN
EXP-(6) ! CSq

COMPILATION TIME: .047 SEC.

SI EP N.COMP T I ME-A T I ME-B

RUN- I RUN-2 RUN-3

RUN-I RUN-Z RUN-3

RUN- I RUN-2

tþ2
I ô3
I È4
2ì3
2è4
3Ê4

tþ?.
tÈ3
lrr4
?,r3
214
3È4

l¡r?
l¿3
lrr4
I r|5
lÈ6
2Ê3
?tr4
2ù5
2è6
3Ê4
3rr5
3Éó
4ì5
4þ6
5Èó

9 SEC.
ó SEç.
6 SECr
3 SEC,
0 sEc.

5 EXP- ( t,
EXP-(2)
EXP-(3)
EXP-(4)

23
24
z5
26
27
28

I
30
30
2l
48

I

.006

.L2?.
r 097
.079
.l4t
.00ó

sEC.
SEC r
sEc.
SEC.
sEc.
SEC ¡

I I HE-B

.00ó sE

.035 sE

.030 sE

.037 SE

.034 sE

.00ó sE

ALOEF
LAROE
SMALL
SMALL
SMALL
ALGEE

ALGEB
LARGE
sHALL
SMALL
SI{ALL
ALCEB

ALGEB
LARGE
LARGE
SMALL
SMALL
ALGEB

c
c
c
c
c
c

ó

29
30
3l
32
33
34
35
36
37
38
39
40
4¡
42
43

43
I6
l6
z5
l0
ló
Ió
25
l0
I
I

IO
I

l0
I

.l 14

.078
,07 4
.0ó8
.031
.08ó
.082
.092
.041
.0 0ó
.0 05
.030
.005
.0?8

SEC.
sEc.
gEC r
sEc.
sEc.
SEC r
SEC.
SEC.
sEC.
sEC.
sEc.
SEC.
SEC.
sEc.
sEC.

silALt,
LAR6E
LARGE
LAROE
LARGE
LARGE
LARCE
LAßGE
LARCE
ALGEB
ALOEB
SMALL
ALGEB
SMALL
St,tALL

SI,IALL

LARGE
LAROE
LARGE
LARGE
LAROE
LARGE
LARGE
LARGE
ALGEB
ALGEB
strALL
ALGEB
SMALL
SHATL

RUN-3

SMALL
LARGE
LARçE
LARGE
LARGE
LARGE
LARGE
LARGE
LARGE
ALGEB
ALGEB
SMALL
ALGEB
SMALL
SMALL

.0

.0
r0
.0
.0
.0
.0
¡0
.0
.0

5?
3ó
35
30
I
3
3
3
I
0

4
2
2
0
I
ó
5
3
5
3
9

SEC r
SEC.
sEC.
sEC.
sEc.
sEc.
SEC.
SEC.
SEC o

sEc.
sEC.
sEC.
sEc.
sEC.
SEC ¡. 017

.00

.01

.00

.0I
¡00

Tabl-e C. 3 Continued



f. ExP-(I)
ExP- (2)
ExP-(3)
ExP-(4)
ExP-(5)
ExP-(6)
EXP-(7)

C-B

(l-TAN){(l-COTt
I.T AN-COT T TAN*COT
l -CoT-TAl.l.I
2-C0SlSIN-SIN/COS
2- (cos12+sIN12) / (SIN{CoSl
2-Il(SIN*COS)
2-llc0srfl/sIN
2-sE Cr+CSC

.05ó SECr

EXP-(8) !

COMPILATION IIMEI

STEP N.COMP T I ME-A I I ME-B RUN-I RUN-Z RUN-3

44
45
46
47
48
49

5l
5?
53
54
55
56

li?
tÈ3
lÈ4
lrts
lr,6
TÈ7
lr)8
2r3
2ì4
2ù5
2ù6
2è7
?þ8
3ð4
3rr5
3ró
3Ê7
3È8
4ù5
4ì6
4i7
4r8
5ró
5ù7
5r8
6è7
6Ê8
7È8

50

57

I
ó9
30
l5
l5
l5
ls
l9
5I
66
59
69
46
33
63
56
66
lr3

I
39
49
?6
t7
l1
3t

I
26
?4

.00?

.103

.080

.070

.047

.0sl

.045

.034

.086

.224

.132

. 154

.099

.059

.201

.ll4

. 134

.081

.006

. l0I

.ll8

.0ó7

.058

.0ó0

.082

.005

.05ó

.049

SEC.
SEC o

SEC.
SEC o

sEC.
sEc.
sEC.
sEC.
sEC.
SEC.
SEC.
gEC r
SEC r
S€C.
sEc.
sEC.
SEC.
SEC r
sEC.
sEc.
sEC.
sEc.
sEC.
sEC.
sEc.
SEC.
SEC.
sEC.

.007

.034

.031
r 034
.024
.026
¡ 025
¡ 020
.037
.059
.045
.047
¡ 037
.027
.053
.038
. 041
.031
.00ó
.033
.034
.025
,024
.025
.036
.005
.024
¡023

sEC.
SECo
sEc.
sEc.
sEC.
sEC.
SEC o

SEC o

sEc.
sEC.
sEc.
sEc.
sEC.
SEC.
sEC.
sEc.
SEC ¡
SEC ¡
sEC.
sEC.
SEÇ.
SEC ¡
SEC ¡
SEC.
SEC.
SEC.
sEC.
sEc.

ALGEB

SMALL
LARGE
LAROE
LARGE
LARGE
LAR6E
SMALL
SMALL
LARGE
LARGE
LAROE
LARgE
SMALL
LAROE
LAR6E
LARGE
LARCE
AL6EB
SMALL
SMALL
LARGE
SMALL
SMALL
SMALL
ALGEB
SMALL
SMALL

ALGEB

SMALL
LARGE
LARGE
LARGE
LARGE
LARGE
SMALL
SMALL
LARGE
LAROE
LARGE
LAR6E
SMALL
LARGE
LARGE
LARGE
LARGE
ALGEB
LARGE
LARGE
LAR6E
SIIALL
SMALL
St.IALL
AL6E8
SMALL
SMALL

ALGEB

LARGE
LARCE
LAR6E
LARG€
LARGE
LAR6E
SMALL
LARGE
LARGE
LARGE
LARGE
LARGE
SMALL
L ARGE
LARCE
LARGE
LARGE
ALGEB
SMALL
SMALL
LIRGE
SMALL
SMALL
SMALL
ALGEB
SMALL
St.lALL

58
59
60
6I
6?
ó3
64
ó5
óó
61
ó8
ó9
70
7t

I ExP-u) 3

EXP- ( 2) :

EXP-(3):
EXP- (4) |

EXP- (5) !

EXP. (ó) :

( ( I +TAN-SEC) / (SEC.TAN-t ) ) / ( ( l+SEC-lANl / (SEC'1AN'l ) )

( ( I +1AN-SEC ) ö ( SEC+TAN+ I ) ) / ( (SEC+TAN-t ) + ( 1+SEC-TAN)'
( ( I +TAN) 12-SEC12) / lSECr?- (TAN-l ) 12t
i ¡ iact¡tr.raN+2-sEci2) // ( sEcl2-TANa2+2rTAN-l )

2lrTAN/ (2èTANI
I

.086 SEC.COMPILATION TIME!

STEP N-COMP TIME'A

SEC ¡
SEC.
sEc.
sEC.
SEC.

è2
r3
ì4
rt5
rtó
r)3

I
I
I

Ít?
?6

I

.007

.005

.0 05

.215

.l ló

.00ó

.007

.005

.005

.053

.032
¡ 00ó

sEC.
SEC.
sEC.
s€c.
sEC.
SEC.

ALGEB
ALGEE
ALGEB
L ARGE
LARGE
ALGEB

ALGEE
ALGEB
ALGEB
LARGE
LARGE
ALGEB

ALGEE
ALGEE
ÂLGE8
LARGE
LARGE
ÂLGEB

1 I ME-B

sEC.

RUN-I RUN-Z RUN.3

12
73
74
75
76
17

Tabl-e C. 3 Continued



c-9

l8
l9
80
8¡
8?
83
a1
85
fìó

I
ól
?6

I
46
l0

128
l0
t

.005

. ¡ó0

.115

.00ó

.l?4

.049

.296

.0ó7

.007

.005

.05ó

.033

.006

.045

.025

.0f 7

.032

.007

sEC.
sEC.
SEC o

SEC.
SEC.
SEC.
SEC ¡
sEC.
sEc.

ALGEB
SMALL
LAhOE
ALOEB
SMALL
LARGE
SMALL
LARGE
AL6EB

ALGEB
SMALL
LARGE
ALGEB
S¡{ALL
LARGE
SI,IALL
LAR6E
ALOEB

ALOEE
LARGE
LARGE
ALGEE
LARGE
LARGE
LARGE
LAR6E
ALGEB

7s
9S
3S
ls
4s
8S

sEC.
sEc.
sEC.
SEC ¡
sEC.
SEC.

7S
9S
4S
ós
8S

7s
ós9s
8S
2S
2S
4S
7S
5S
6S

?tr4
2þ5
?t 6
3Ê4
3Ê5
3È6
4tr5
4tt6
5Êó

lù2
¡¿3
I è4
2¿3
2ù4
3r.4

lù2
l13
I r|4
I Ê5
2¿3
2,.4
2ù5
3è4
3È5
4tr5

SEC.

sEc.
sEc.

9 EXP-n)t
ExP- (2) ¡

ExP-(3) !

EXP-(4) !

EXP-(l)¡
EXP-(2) 3

EXP- (3) I

EXP- (4) ¡

ExP-(5) ¡

ExP-(6):
ExP-(7) !

n+sIN.cos) 12
I +s I N12+COS12.2rS ¡N.2ÕC0So2rS INTCoS
2+2+S INr2rC0S.2rS INTC0S
2nn+sINl*(l+Cos)

87
88
89
90
9I
92

I
ó¡
22
99

189
I

.00

.17

.05

.19

.80

EC.
EC.
EC.
EC.
EC.

.00

.03

.02

.05

.09

.00

EC.
EC.
EC.
EC.
EC.
EC.

ALGEB
SMALL
SMALL
SMALL
SMALL
ALGEB

ALGEB
SI,IALL
SMALL
SMALL
SMALL
ALCEB

ALGEB
LARGE
LARGE
LARGE
LARGE
ALCEB

COMPILATION TIMEI o043 SEC¡

STEP N-COMP T I ME.A T I ME.B

.008 sEC.

10. EXP-(t) ! (l+SEC)/(SEC+TAN-2rSIN-TAN)
EXp- (Z) ! ( I.SEC)/(SECr¡TAN+TAN-?rTANúATSIN¡
EXP- (3) : ( t.SEC)/ (SECÕTAN+TAN-?TSECTSIN-zrSINt
ExP-(4) r (l.SEC)/( (t+SEC¡r(TAN-z¡SINt l
ExP- (5) ¡ I,/ (TAN-z*SlNl

COMPILATIoN TIME: .055 SEC.

S TEP N.COMP T I ME.A 1 I ME.B

RUN- I RUN-2 RUN-3

RUN-2 RUN-3

ALGEB
LAR6E
LARGE
LAROE
SMALL
LARGE
LARG€
ALGEB
ALGEB
ALGEB

93
94
95
96
97
98
99

I00
t0l
102

¡
24
34
25
26
69
25

I
I
I

.00

.07

.ll

.09

.08

.26

.tl

.00

.00

.00

EC.
EC¡
ECo
EC.
ECo
EC.
EC¡
EC.
EC.
EC.

,007
.032
.036
.035
.039
r 054
.039
.007
.005
.006

sEC.
SEC.
sEC.
sEc.
SEC.
SEC.
SEC.
SEC.
sEC.
sEc.

RUN.I

ALGEB
LARGE
LARGE
LARGE
SMALL
LARGE
LARCE
ALGEB
ALGEB
ALGEB

ALGEB
LARGE
LARGE
LARGE
SMALL
LARGE
LARGE
ALGEE
AL6EB
ALGEB

ll. ( I +SEC ) / ( SEC1ffAN.2}SIN.TAN )

( I + I /C0S) / ( l/C0S*SIN,/CoS-2lSIN-SIN/CoS )

( (cos.t ) /c0s) / ( (sIN-2rsIflrco$+2-SINrC0S, /C0S12l
(c0sÒI ) icosl2/ (COSi (sIN-2.SINÕCOS12-SINTCOS' )
( I +c0s ) t+cos/ ( sINr ( l-2rcos12-c0s l )

( l.cos) / ( slN/c0sr ( l-2rcos) r ( I +c0Sl )

I/(TAN.2*SINI

Table C.3 Continued



c- 10

COMPILATION TIMEi .105 SEC.

SIEP N-COMP T IME.A

¡ 03
104
t05
I06
¡07
108
109
tl0
¡rl
llz
rt3
t t4
r l5
ll6
ll7
I I8
I le
I20
lzl
l2?
123

.146

.253

.254

.I95

.l l6

.098

.00ó

.005

.005

.005

. 123

.007

.005

.005

.308

.00ó

.006

.308

.006

.238

.I07

SEC ¡
SEC.
SEC.
sEc.
SEC o

sEC.
sEC.
SEC.
SEC ¡
SEC.
sEc.
sEC.
sEC.
sEC.
SEC.
SEC.
SEC.
SEC.
sEc.
sEC.
SEC ¡

l1'2
l'|3
I f|4
l¿5
lÊó
l¿7
?è3
?ù4
??,5
2ù6
2rr1
3rf4
3r.5
3r6
3rr7
4È5
4tr6
4¡, I
5nó
5È7
6è7

55
62
36
36
Ió
?5

I
I
I
1

25
t
I
I

6l
I
I

50
54
ls
l5
I5
I
I

.0ó0 SEC ¡
SEC ¡
sEC.
SEC.
SEC.
SEC ¡
sEC.
sEC.
sEC.

.083

.071
o 0ó0
.051
.035
¡006
.005
¡ 005
.005

T I I.IE.B RUN- I

SMALL
SMALL
LAROE
LARGE
LARGE
LARGE
ALGEB
ALGEB
ALOEB
ALOEB
LAR6E
ALOEB
ALGEE
ALGEB
LAR6E
ALGEB
ALGEB
LARGE
ALGEE
LARGE
LARGE

RUN-2

SMALL

SMALL
LARGE
LAR6E
LARGE
LARGE
ALOEB
ALGEB
ALOEB
ALOEB
LARGE
ALOEB
ALGEB
ALGEB
LARGE
ALCEB
ALGEB
LARGE
ALGEE
LAR6E
LARGE

RUN-3

r 037
.00?
.005
¡ 005
.053
.00ó
¡ 00ó
.05ó
.006
¡047
.033

sEC.
SEC¡
sEC.
SEC ¡
sEC.
sEC.
sEC.
sEC.
SEC r
SEC.
SEC ¡
SEC o

SMALL

LARGE
LARGE
LAR6E
LARGE
LAR6E
ALGEB
ALGEB
ALCEB
AL6EB
LARGE
ALGEB
ALGEB
ALGEB
LARCE
ALGEB
ALGEB
LAR6E
ALGEB
LARGE
LARGE

ól
I

6l
?5

12, EXP-(I) I

EXP- (2) ¡

EXP- (3) !
EXP- (4) :

ExP-(5) I

EXP-(ó):

csc/ (csc-t ) +csc/ (csc.l I

( l/sIN¡ / ( 1/sIN-l ) Ò ( I/SIN) / ( l/SIN'll
1/ ( l-s¡Nl +l/ (l+slNl
( I +SIN+ I -SIN) / ( I-SIN+2 l
?/cos+2
2nsEc12

COHPILATION IIMEI .052 SEC¡

SI EP N-COMP 1I I,IE-A 1 I ME-B RUN- I RUN-2 RUN-3

124
l2s
126
I21
t2q
lze
t30
I3t
¡32
I33
I34
I35
136
t3?
138

. 138

.L24

.068

.040

.039

.00ó

.005

.06ó

.052

.008
,0 47
.037
.043
.0?4
.0??

SEC.
gEC r
sEC.
SEC.
sEc.
SEC.
5EC ¡
sEC.
SEC o

SEC.
sEC.
sEC.
sEC.
SEC.
sEC.

SEC.
SEC.
sEc.
sEC.
SEC r
sEC.
SEC.
SEC.
SEC o

SEÇ¡
sEC.
SEÇ ¡
SEC.
SEC.
SEC.

SMALL
LARGE
LAROE
LARGE
LAR6E
ALGEB
ALGEE
S},tALL
LARGE
ALGEB
Sf*IALL
LARGE
SMALL
LARGE
SMALL

SI.IALL
LARGE
LARGE
LAROE
LARGE
ALGEB
ALGEB
LARGE
LARGE
AL6EB
LARGE
LARGE
SMALL
LARGE
SMALL

SMALL
LARGE
LARGE
LARGE
LARGE
ALGEE
ALGEB
SMALL
L ARGE
A LGEB
SMALL
LARGE
SMALI.
LARGE
SMALL

IÈ2
tr)3
IÈ4
I ¿5
tÈó
2þ3
?è4
?ù5
2a6
3r4
3r5
3âó
4ì5
4ù6
5Èó

l5
l5
I

l5
l5
l3

5
5

.063

.O47

.027

.0ll
¡010
.00ó
.005
t026
.0I2
o 008
.020
¡ 0I0
¡018
.010
.0ll

CSC,/ (C0T+TÂN)
( l/sINl / (cos/sIN+slN/c0s)
( l/sIN) / ( (C0s+2+SlN12) / (SINTCoS¡ )

( t/SIN) + (SINr¡COS) / (SIN12.C0Sô2)

13. ExP-(l) !

ExP-(2) I

EXP- (3) !

EXp-(¡r) ¡

Tabl-e C. 3 Continued



ExP-(5) t Cos

COMPILATION TIMEI

c-t_1

.048 SEC.

l3e
I40
l4t
L42
143
I ¡)4
t45
146
I47
148

.07?

. ¡34

.0ó9

.021

.00ó

.006

.070

.0 0ó

.095

.059

sEC.
SEC r
sEC.
sEC.
sEC.
SEC.

.03

.01

.00

.00

.02
¡00

sEC.
SEC o

SEG ¡
sEC.
sEC.
SEC r
SEC.
sEc.

SMALL
LAR6E
.SMALL

LARGE
ALGEE
AL6EB
SMALL
ALGEE
SMALL
SMALL

SMALL
LAROE
SMALL
LARGE
ALGEB
ALGEB
LARCE
ALGEB
LARGE
SMALL

SMALL
LARGE
SMALL
LARGE
ALGEB
ALGEB
SMALL
ALGEB
SMALL
SI.IALL

STEP N-COMP TIME.A T I ME.B RUN.I RUN.2 RUN-3

.033 sEC.

.026 SEC.

f I ME-B RUN-I RUN-Z RUN-3

ALOEB
ALOEB
LARGE
LARGE
ALGEB
SI{ALL
SMALL
SI.IALL
SMALL
SMALL

1 T ME.B RUN- I RUN-2 RUN.3

30
4l
2t
l0
I
I

?8
I

28
29

t
I

30
30

I
46
74
25
6?
39

lÈ2
lrr3
lÈ4
t'|5
2È3
2ù4
2ù5
3Ê4
3Ê5
4È5

tÈ2
l13
I 14
t¿5
2þ3
2è4
2þ5
3n4
3Ê5
4È5

lè?
IÈ3
I rt4
l¿5
t r¡6

.03
r05

?
I
7
?
ó
ó
f
ó

sEC
sEc
sEC
sEC

a

a

t

a

14.

I5.

EXP-(l):
EXP-(2) t
EXP-(31 ¡

ExP-(4) !
ExP- (5) ¡

EXP-(lll
ExP-(2) 3

ExP-(3) I

ExP-(4):
ExP-(51 I

ExP- (ó) ¡

ExP-(7) r

ExP-(8) I

(SEC-TAN) / (SEC.TANI
( sEc-TANI + ( SEC-lANl / ( (SEC.lANt r ( SEC-TANI I
( sECr2-2rSEC{TANTTANl2 I / ( SECl2-TAN12 I

sECl2-2.+SECoTANTTANâ2
l -?ùsEc*TAN.2rTAN12

.0ó0 SEC¡COMPILATION TIME!

STEP N-CoMP TIME-A

I49
t50
tsl
t52
I53
154
l5s
l5ó
ls7
I58

.007

.005

.t03

.097

.00ó

.172

.?52

.lI7

.??8

.l l5

SEC ¡
sEC.
sEC.
SEC ¡
sEC.
SEC ¡
sEC.
SEC.
SEC.
sEC.

.007
¡ 005
.028
,027
.0 0ó
.033
.05ó
.024
¡ 054
.031

SEC e

sEC.
SEC ¡
sEc.
SEC.
SEC.
SEC ¡
sEC.
SEC o

SEC ¡

AL6EB
ALGEE
SMALL
LARGE
ALGEB
SMALL
SMALL
SMALL
SMALL
SMALL

ALGEB
ALGEB
SMÂLL
LARGE
ALGEB
SMALL
LARGE
SMALL
LARGE
LARGE

TAN/ ( l-C01) +Co|/ I l-fANl
( sIN./CoS t / ( t-COS/sIN l t ( COS/SIN I / ( l-SIN/c0Sl
s I Nô2/ t õos* t s ¡¡t-cos ! ) f cosl2/ ( s INo ( C0s-s IN ) )

(SIN+3-COSr3¡ / (COSTSINÐ (SlN-COSI )

i ãiñ-õoõ i ¡ ( a tNra+cosrz.s tNrcos I / ( ( s IN-cos I rs INocos I

( s¡Nle.cOSô2) / ( sINÌCOS) . I SIN'C0St / ( SINlcoS)
l,/ (COSöSIN) ol
SECÕCSC Ò I

COMPILATION TIME¡

STEP N-CoMP TIME'A

. I 09 SEC.

. I5e

.157

.090

. 188

.124

SEC.
sEC.
gEC r
SEC ¡
sEc.

r 0ó4
.Q62
.041
.05ó
¡ 047

SEC ¡
SEC r
SECr
sEC.
SEC o

SMALL
LARGE
LARGE
LARGE
LARGE

SMALL
LARGE
LARGE
LARGE
LARgE

SMALL
LARGE
LARGE
LARGE
LAROE

ls9
IóO
IóI
ló2
ló3

70
36
l5
30
l6
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c-t 2

164
tó5
lóó
167
168
Ió9
170
l7I
tl2
173
t74
¡75
l7ó
t77
178
¡79
180
l8l
182
183
IF4
185
l8ó

ló.

SEC r
SEC.
SEC o

sEC.
SEC r
sEC.
SEC r
sEc.
SEC.
sEC.
SEC o

TARCE
LAROE
ALGEB
ALOEB
ALCEB
ALOEE
LARGE
LARGE
ALGEE
ALGEE
ALGEE
LARGE
LAR6E
AL6EB
AL6EB
LARGE
LARGE
ALOEB
LARGE
LARGE
sHALL
SMALL
SMALL

SMALL
LARGE
LARGE
LARGE
LAROE
LAROE
AL6EB
ALGEB
AL6EB
LARGE
LARCE
ALGEB
ALGEB
LAROE
LAR6E
ALOEB
LARGE
LARGE
SMALL
LTROE
rLOEB

I t.7
lû8
2È3
?tÒ4
2è5
2ù6
2ù7
2tr8
3È4
3'.5
3Êó
3r7
3È8
4r5
4þ6
4r.f
4È8
5ró
5''7
5Ê8
6ù7
6r8
7r|8

Lù2
I È3
I 14
I,f 5
lÊ6
l')7
2?r3
2tt4
?ù5
2rr6
2tr7
3n4
3Ê5
3ró
3r7
4ù5
4r6
4tr7
5ró
5ù7
6ù7

ló
l6
I
I
t
I

I6
ló
I
I
t

l6
Tó
I
¡

l5
I5
I

3I
3l
l8
32
25

SECr
sEC.
sEC.
sEc.
sEC.
sEC.
SEC.
SEC ¡
gEC r
SEC ¡
sEC.
sEC,
sEc.
sEC.
sEC.
sEc.
sEC.
sEc.
5EC r
sEc.
sEC.

.028
r 031
.00ó
e005
.00ó
.005
o 028
.032
.008
.005
r 005
r 028
.033
.006
.005
¡ 02ó
r 029
.00ó
¡ 040
r 043
r03l
.042
.02ó

LAROE
LAROE
ALGEB
ALOEB
ALOEB
ALGEB
LARGE
LAROE
ALOEB
ALOEB
ALOEB
LAROE
LARGE
ALGEB
ALGEB
LARGE
LAR6E
ALGEB
LAROE
LAROE
SMALL
SMALL
SMALL

LARGE
LARGE
AL6E8
ALOEB
ALGEB
ALGEB
LARCE
LARGE
ALOEB
ALOEB
ALOEB
LARGE
LARGE
ALOEB
ALOEB
LARGE
LARGE
ALGEB
LARGE
LARCE
St,IALL
SMALL
SMALL

SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE

.0ó5

.0ó2
¡ 006
.005
.00ó
.005
.075
¡ 07ó
.008
.005
.0 05

.0 0ó

.098

.04ó

.007

.0 05

. 195

.080

.007

.001

.033

.l l5

.051

.007

C.

.094 SEC¡

.0ó0 sEC.

( I.col-csc, { I I +TAN.SEC)
( I +cOS/SlN-t/SlN) r ( l.slN/cos.l/cos)
( (SINoç65-¡ I /SINI l ( (CoS.SINol t /C0S,
( (SIN+COs¡ ¡2-ll / (SINrC0S,
(sIN12+COS+2.2rSlNrcos-l I / ( sIN.cos¡
( I I2TSINICOS-l I / ( SINTCOSI
2

r078 SEC¡

.081

.081

.00ó

.005

.069

.0ó?

.00ó.l7l

. 168
,07?

fXP-(l)!
EXP-(2):
EXP' (31 ¡

EXP- (a) ¡

EXP- (5 I :

EXP-(ó) ¡

EXP- (71 t

COHPILATION TIME t

STEP N-COMP T IME.A RUN-I RUN.Z RUN.3

t87
I88
189
190
l9I
t92
193
194
195
196
197
198
le9
200
201

44
78
I6
l6
lô
IO
I
I
I

l6
l0

.lló

. 196

. 132

. I83
r 135
.038
.00ó
.005

,02
o00
.00
.00
.03

I
I
0
4
2
ó
5
ó
7

39
26
I

26
l0
45
IO
I

.023

.007

.005
¡042
.025
r007
.o3l
.016
r 043
o024
.007

I
¡

SEC ¡
SEC¡
sEC.
sEc.
sEC.
sEC.
SEC ¡
sEC.
sEC.
sEC.
sEC.
sEc.
SEC.
sEC.
sEC.
SEC ¡
sEC.
SEC ¡
sEC.
S€C r
sEC.

.0ó
r08
.lI
.08

sEc.
sEc.
sEc.
sEC.
sEC.
SEC.
sEc.
sEC.
sEC.
SEC.
SEC r
sEc.
sEC.
sEC.
SEC o

SEC.
SEC.
sEC.
s€c.
sEC.

I I ME.B

.055 sEC. SI,IALL

LAR6E
LARGE
LAROE
LARCE
LAROE
ALOEB
ALOEB
ALOEB
LAROE
LARGE
ALGEB
ALCEB
LARGE
LAROE
ALOEB
SMALL
LARGE
SMALL
LAR6E
ALOEB

St.IALL

LAROE
LAROE
LAROE
LAROE
LAROE
ALOEB
ALOEB
ALOEB
LARCE
LARGE
ALOEB
ALGEE
LAROE
LAROE
ALOEE
SMALL
LARGE
SMALL
LARGE
ALCEB

?,02
203
e04
z03
e0ó
207
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c-13

INIT TII.IE! R. R NoW= R. R FLÂPSED TI¡rE=r9309.7500 SE(

I
?
3

I. EXP-(I) I (SIN-CoS)1?
EXP- (2) ¡ SIwr2-2*SItlücOs.c0s12
FXP-(3) t l-2tSINTCOS

?, FXP-(1) : (1-SINô2)Õ(1+TANô2)
EXP- (2) ! C0S12üSECô2
ExP-(3) I I

lr.?
1l'3
2,r3

lÊ3
2ì3

1,,?
lÊ3
lâ4
I È5
2È3
2,r4

3ì4
3r)5
4Ê5

lþ2
t ¿3

I È4
2a3
2è4
3¿4

ALGEB
F(x)+G(Ll È F(XlfG(R)! sIN2+cosz,.l
G(L) È G(R)! SIN2+C0S2Êl

4

5
ó

4

l4
ls
l6

tè2 G(L) Ð GlRtl l-sIN2¿cosz
G(L) È G(R)! TAN2+l'rSEC2
¡¡g¡-gtî\lGLEl0N CSEI
G(u+2 È O(Rl12l SEC+COSÊl

3 ExP-(l)¡
EXP- (2) !

EXP- (3) I

EXP- (4) I

ExP-(5) I

c0T ô4'csc14
( COTô?-CSC+2 ) tt ( COTô2+CSC12 )

-l{ (coT12.Csc12)
-l*(CSC+?-l+CSC12)
t -2ncscô2

(l-sINa2) {rCSC1?

cosr 2ücsc1 2
cosô2/s IN12
CoTô 2

r F (X) +G (R) ! CSC2-C0T2rl
tZ ¡ F(X)+G(R'12t CSC2-I'COT2
t?- ù F(X)-G(Rla2t CSC2-trC0T2

7
I
9

l0
tl
l2

G(L} r| G(R)
G(L) t G(R)
GIL} '| G(R)

ALGEB
F(X)}G(L}
F(X)+G(L)
F(X).G(L)

t3 2 ù 5 G(L) È G(R)

CSC2-c0T2È I
CSc2-C0T2t I
C0l2¿CSC2- I
CSC2-C0T2È I

F(X)+6(L) È F(X)+G(R)r ÇScz¿coT2+l
G(L) Ê G(R)¡ COTZ¿CSC2-I
F(X)+G(L) È F(X)+G(Rt! CSCzí)COT2+l
ALGEB

EXP.(I):
ExP- ( 2) !

ExP- (3) ¡

EXP. (4} :

t9
20
2L
22

7
I

5

G(L) Ê G(R)t I-SINAI.COSa
G(L) È G(R)l ¡-SlNz')COSz
G(L) Ê G(R)¡ l/cscrsIN
NON.S I I.IGLElO¡'I CSET
G(L) È G(R)l ¡/cScÈSIN
G(L)ô2 rr G(R)ô2: COS+cSCrcOT
c(L)12 È G(R)12: COS/SINêCOT

FxP-(1) |
EXP-(2) 3

EXP-(3) ?

FxP-(4)¡

( TAt\r13-COT13 ) / ( TAN-C0T )

( ( TAN-COT) i (TAN12)COT¡l+lANrCOTl I ¿¿ (TAN-COT)
(TA^r-COT) l (TÀN+2+COT{^2.11 / (fAN-COT)
TANl2+COf12+ I
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ó

23
24
25
?6
27
?8

30
3t
3?
33
34
35
3ó
37

39
40
4t
4?
43

44
45
4ó
47
48
49
50
5t
5?

l,r?
I ¿3
I È4
?,r3
2è4
3È4

I È3
I È4
l '|5l¿6
2rr3
2,r4
2i5
?,ù6
3r4
3r5
3rr6
4.t5
4,t6
5þ6

tÈ2
I'|3
tè4
I È5
I ró
IÈ7
I È8
2è3
2,r4

c-r_4

ALGEB
I.'NCLASSIFIEI)
F(X).G(L) È F(X¡+G(R)¡ COT+ÎAN'|l
G(L) ') G(R): C010TANÈl
G(L) È G(R)! coTÕTANÈ1
ALGEB

( TA' IrSEC) / ( TAN+SEC-COS)
( SIÀ1,/CoS+ I / COSI / ( SIN/CoS. I /COS-C0S ¡

(sIrJ+1 ) / (SIN+SIfl12t
(SIi.r+l ) / ( SIN* (SIN+l ) )

I/SIN
csc

29 l¡rz

ExP-n)!
EXP.(2):
EXP-(3! !

FxP- (4) |

EXP- (s) !

EXP.(6):

ExP-(l) ¡

ExP- (2 ) 3

ExP- ( 3) !

ExP- (4 ) !
FxP- (5) |

FxP- (6) !

EXP-(7) 3

ExP- (8) :

G(L)
G (L)
G(L}
Gil_)

(R) !
(R) !
(R) !
(R) |

TAN'f S IN/COS
TANrS I N/CoS
SECÈ I /CoS
SEC¿l /Cos
CSET
CSET
csEf
CSET

¿G
ÈG
ÈG
ÐG

38

1

NON-s I t\IGLElON
NON.S I NGLEfON
NON-S I NGLETON
N0r\¡-S Ir\tGLETON
I'NCLASSIFIED
I,NCLASSIFIEO
IINCLASSIFIEO
NOr,t-s I r.lcLET0N
A LGEB
A LGEB
G(t-) '. G(R) I

ALGEB
G(L) ¿ G(R)3
G(L) ' G(R)¡

CSEÏ

I /s I NÈCsc

I /S I N.¡CSC
I /S ¡ NÈCSc

( 1-TANt) + ( l-CoT)
I -l a tl-coT + lAN+CoT
t-coT-TAN+ì
2-coslsIN-sIN,/CoS
2- ( Cosô2+sIN12) / ( SIN+C0S)
2-1l (SIN+COS)
2-1 /COSnl /S¡N
2 -SE CTICSC

53 ?ì5

A LGEB
F(X)+G(L) ¿ F(X)+G(R)! cOfrTANtl
NON-SINGLETON CSET
N0N-S Jt\l6LETOt'¡ CSET
NON-SJNGLETON CSET
ry6¡-5trr6LEToN CSET
NON-SINGLElON CSET
c(L) r G(R'¡ col+TAN¿l
G (L) r G(R) t TANTSIN/CoS
G(L) lr G(R)¡ ÇOÏ¿COS/SIN
F(XlrG(L) ¡ F(X)+G(R)t CoTrlAN'rl
F(x)+G(L) à F(X).G(R)3 COTITANÈl
G(L) l| 0(R)l sIN2+C0S2Êl
NON-SIÀIGLElON CSET
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54

55

56

57

58

?,r6

2ù7
2È8
3ì4
3¿5

c- 15

F(X)+G(L) ¿ F(X)+G(R) ¡

NOI.I.SINGLEÎON CSET
F(X)+G(Ll ¿ F(Xl+G(R):
NON-SINGLETON CSET
F (X) +0(L) È F (X) +G(R) !
NON-SINGLETON CSET

F(X)t+G(L) ¿ F(Xl*G(R) !

F(X)+G(Ll È F(X)iG(R) !
NoN-SINGLET0N CSET

ColfTANr I

colrfaN, I

COIrTAN¿ I

SIN2+C0S2'fl
SIN2+COS2¿l

G(L) Ð G(R)
G(L) È G(R)
G(L) È G(R)
NON.SINGLET
NON-S IIIGLET
NON-S INGLET
NON.S I t{GLET
ALGEB

t C0Î¿COS/SIN
¡ TAN¿SIN/C0S
! sIN2+C0S2rl
ON CSET
ON CSET
ON CSET
ON CSET

59
60
ól
6?
63
64
65
6ó
6f
ó8

3Èó
3È7
3È8
4ù5
4Èó
4ì1
4È8
5È6
5È?
5È8

l,r2
t¿3
l.t4
tl)5
lÈó
2È3
?,r4
?è5

R
R

R

R

G(L)
G(L}
G(L)
G(L)
G(L)
ALGEB
G(L)
G(L)
G(L)
G(L)

¿G
¿G
ÈG
¿G
¿0

ÊG
r)G
¿G
')G

(R¡

S I N2+Co 52È I
S I N2+ C0S2r I
S I N2 +Co52¿ I
I /S I NÈcSc
I /COS¿SEC

¡ /S I NÈCsc
I /C0S¡SEC
I /COS¿SEC
I /S I NpCSC

69
70

6þ1
6ê8

71 7 ¿ I

(Rt I
(R) ¡
(R) |
(R¡:

8. EXP-(l) !

EXP- (2) ¡

FXP- (3) !

EXP- (4 ) :
ExP-(5):
EXP- (ó) :

72
73
74
75
76
77
78
79

( ( I+1AN-SEC) / (SEC+TAN-I) ) /( (l+SEC-TAN),/ (SEC'TAN+l )

( ( I +lAN-SEC) + ( SEC+lAN+ I ) ) / ( (SEC+TAN-l ) r ( I+SEC-1AN)
( ( I+TA¡.1) 12-SEC12) / (SECl?- (TAN-l ) +21
( I +2+TAN+TAN1z-SECr2) / (SEC12-TANô2+2{rTAN-l }

2+laN/ (2rf TAN)
I

ALGEß
ALGEB
A LGEB
(JNCLASSIFIED
UNCLASSIFIEI)
ALGEB
A LGEB
F(X)+G(Ll ¿ F1t)+G(R)l SECzÈTAN2+l
F(X)+G(L) ¿ F(x)+G(R)! TANZ+lrSEC2
I,INCLASSIFIED
ALGEB
F(X)+GlL) rr F(X)+G(R)! SEC2ÈTAN?+l
F(X) +G(L) È F(X) +G(R) ¡ TANZ+l¿SEC2
IINCLASSIFIED
F(X)f(G(L) ¿ 0)r SEC2-TAN2-l¿0
F(X)rr(G(L) rf 0)t SEC2-TANZ-l¿0
UNCLÂSSIFIED
A LGEF

( tiSIN+COS) 12
I +s I Nl12.COS12+2+s I N+2*COS+zrs I N{tcos
2+?rlS I N+ 2rCQS + 2rS lNrCQS
zir(1+SIN)Õ(l+CoS)

80
8l
82

83
84

2è6
3È4
3È5

3È6
4è5
4a6
rrrr6

85
8ó

9 EXP-(l)l
FxP-(2) !

FXP- (3) ¡

ExP- (4) I

Tãble C.4 Continued



a1
88
89
90
9l
92

(Xl.G(R) !
(X) +G (R) !
(X) +G(R) ¡
(X).G(R) !

c-t_ 6

ALGEB
F f X) +G(L!
F(X) +G(L)
F(X)+G(L)
F(X)+G(L)
ALGEB

sIN2+C0S2rl
S I N2+ COS2¡¡ I
SIN2TC0S?¿l
s I N2+ COS2¿ I

10. EXP-(l)
EXP.(2)
ExP-(3)
ExP-(4)
EXP.(5}

FXP.(I)
ExP- (2)
ExP-(3)
FXP. (4)
EXP-(s)
FXP- (¡, )

EXP- ( 7)

ìF
rrF
¿F
¡F

R) 3

R) ¡

R}:
R) ¡

E TON
oF

ETON
EToN

oG
¡G
¿G
'|G

!þ2
tÈ3
I "42È3
?è+
3È4

lì2
l¿3
I ll4
I È5
?è3
2è4
2ì5
3r4
3È5
4È5

( I+SEC) / (SFC+TAN.2*SIN-TAN)
( I+SEC) / (SFCITAN+TAN.2*TAN.2ÕSIN}
( I +SEC } / ( SFC*TAN+TAN-2*SEC+SIN-2+SIN)
( t+SEC) / ( ( I +SEC) r¡ (TAN-znSIN) )

l/ ( TAN-2'lSTN)

ALGEB
rix)+znc(Ll È F(x)+2*G(Rl I
F(X) +2+G(L) Ê F(X) +2+G(R) !

IINCL^SSIFIED
G(L) È G(R)3 TAN¿SIN+SEC
F(X)+2ìG(L) È F(X)+2+G(R) !
I.JNCLASSIFIEO
ALGEB
ALGEB
ALGEE

93
94
95
9ó
97
98
99

100
t0l
t 02

S I N+SEC¿TAN
S I N*SECÈTAN

SIN+SEC¿TAN

ll.

t0s
l0ó
107
loB
109
It0
TII
I t2
It3
tt4
I l5
t ló
It7
I l8
I l9
t20
l2t
t??
123

G(L)
G(L)
G(L)
G(L)

( I +SEC ) / ( SEC*'rAN-2nslN-TAN )

( t + I /c0s ) / ( I/cOsëSIN/C0s-?osIN-S IN/COS )

t lcõs.l ) /cos) / ( (sIN-2+sINncos+2-sINncos) /c0sô2)
(cos+¡ ) rlcosl2/ (COS$ (SJN-2nsIN+C0s12-sIN',c0s) )

( l+COS ) IrCOS/ ( SINÕ ( l-2+COS42-COS) )

( t +cos) / (stN/coså ( l-2+coS) * ( l+c0s) )

I/ ( TAN.2+SIN)

103 1 ì 2

104 I È 3

T AN¿S I N/c0S
SEC¿ t /CoS
SEc¿ I /CoS
fANrS I N/COS
CSET
X} +G (R) : SEC¿I/COS
CSET
CSET

N]ON-S I ÀIGL

¡1¡¡+G(L)
NON-S I NOL
NON.S I NGL
NON.SINGLETON CSET
IJNCLASSIFIEO

l rf 4
I rts
I ¿ó
lÈ7
2ì3
?ù4
?þ5
?è6
2è7
3È4
3r5
3È6
3È7
4¿5
4è6
4þf
5Èó
5Ê7
6ù1

RCP

RCP

RCP

RCP
RCP

ALGEB
ALGEFI
A LGEB
ALGER
F(X)+G(L)
ALGEB
ALGEB
ALGEB
F(X)+G(L)
ALGEB
ALGEB
F(X)+G(L)
ALGEB
F(XlÒG(L)
F(X)+G(Ll

ê F(
rr F(

X).G(R) :
X! rG(R) !

S I N/CosÈT AN
S I N/COSÊI AN

¿ F(X) +G(R) ! SIN/COS¿TAN

¿ F(X) rG(R) : SIN/COSÈfAN

¿ F(X).G(R) : SIN/C0StTAN

Tabl-e C.4 Continued



c-L7

CSC/ (CSC-I ) +CSC/ (CSC+1 )
(t/sINt,/(l/sIN- I +(l/SIN)/(l/SINrl)
l/(l-SINlrl,z(l+SIN)
( t+sIN+l-slN) / ( I-SIN12)
2/CASia
2.rsEC12

12.

14.

r?6
t27
128
la9
130
t3l
t32
133
134
135
l3ó
¡37
138

l4?
143
I44
145
14ó
147
148

124 tì2

FxP-(l)l
FxP-(2) !

ExP-(3) !

ExP-(4) ¡

FxP- (5) |

EXP- (ó l !

EXP- ( I
EXP- ( ?
FXP- ( 3
EXP. ( 4
EXP. ( 5

G(L)
G(L)
G(L)
G(L)

IR
(R
(R
(R

G(L)
G(L)
c(L)
G(L}
G(L)

l) G(R}
¿ G (R)
È G(R}

'. G(R)
È G(R)

! cscr l,/s I N
¡ CSCÊl/SIN
¡ CSC¿1./SlN
¡ CSC¿ I /S IN
F(Xl+G(R) ! SINâ1,/CSC
F (X} +G (R) ! T/CSC¿SIN

UNCLASSIFIED
N0N-SINGLEToN cSEl
NoN-SINGLETON CsET
ALGEB
ALGEB
F(X)+G(L) r F(X)*G(R)l COS2i)l-SIN?
NON.SINGLETON CSET
ALGEB
F(X)+G(L) p F(X)IG(Rt: COS2¡I'SIN2
NON.SINGLETON CSET
G(L) Ê 0(Rlt I-SIN2¿C0S2
NON.SINGLETON CSET
G(L) f) G(Rt¡ l/CoS'SEC

CSC/ ( COT+TrtN)
( l/s IN' / ( COS//S JN+SIN,/C0S )

( t/sIN) / ( (CoS12+sIN+2¡ Z 15¡¡*ç95¡ ¡

( l/SIN) * ( SIN+C0S) / ( SIN¡2oC0S1?)
c0s

CSCI)I/SIN
COTpC0S /S I N

lAN¿S I N/CoS
CSCÈl/sIN
s IN2+cos2rl

NON-SIN6LETON CSET
G(L) û G(R)¡ CSCÈl/SlN
¡ION-SINIGLETON CSET
F(X)rlG(L) rr F(x)+G(R) : sIN2rCOS2r¡l
NON-SINGLETON CSET
ALGETì
ALGEH
F(X)*G(L) È F(X)+G(R)3 l¡SIN2+COS2
ALCEB
F(X){+G(L) ,r F(X)nG(R) l lÈSIN2+COS2
F(X){G(L) ¿ F(XtrG(R): lÈSIN2+COSz

) | (SEC-T^r't)/ (SEC.TAhl)
) : (SEC.TAN)ü(SEC.TAN}/( (SEC+TAN)''(SEC'TAN} )

) ! (sEc12-?rlsFC$TÀl'J+TAN12) / (SECô2-TAN+2)
) r sEcô2-z{+sEC{rTAN+TAN12
t ! l -2nSEClrlÂ¡\l+2+TAN12

¿G
¿G
¿G
ÈG

I25 tr3 RCP
RCP

F(Xl+G(L)
F(X)+G(L)

13. EXP-(l) |
ExP-(z) !

ExP-(3) ¡

FxP- (4 ) 3

EXP-(5) !

I ')4I Ê5
lró
2È3
2è4
?-è5
7-þ6
3Ê4
3È5
3Èó
4ì5
4ù6
5ró

lÈ5
2è3
2è4
2è5
3,r4
3È5
4Ê5

139 lù2

140 I r 3

t4I I È 4

ALGEB
ALGER

149
150

tÈ2
lr3
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¡31
ts2
t53
t54
ls5

lra
I '.32a3
2rt4
2è6

c-r_B

Ftxtr0(L, r F(r,.0lRlt l¿38C2-TAN?
uilcLASs¡FtlD
ALOEB

156
t57

158 4r5

15.

X)+G(R
X'TG(R
xlrG(R
Xt +0(R

3È4
3rr5

F(X)rOlL)
F(X)IG(L'
F(X)+G(L)
F(X)lOtLl
F(Xi.lGtL)
F (X) rG (L)
F(xl+G(L)

'.FÊF
¡F
')FÊF
l|F
PF

(x,rG(R
fx)|G(R

I aSEC2-T AN?

I ¿SEC2-T AN2
SEC2TTTAN2+ I
I ¿SEC?-TAN?
I ¿SEC2-T AN2
SEC2¿TAN2 r I
SEC2'.TAÑ2+ I

!

;

I
tXl +G(R

FxP- ( I
ExP- ( 2
EXP- (3
ExP' ¡4
f xP- (5
EXP- ( ó
ExP- ( 7

) ! TAN/(l-CoTl+COl/ (l-TAN)
) r (SIN,/C0S)/(l-COS/SIN) + (CoS/SINI 71¡-5lN.rÇ0S)
) ! SINô2./ (COSr (SIN-COS) I +COS12/ (SIN* (CoS-SIN) )

) ¡ (sIrlô3-cosà3)./ lc0s*slN* (sIN-cos) )

I : ( SIN-ç65¡ r (SINl?+cOS+2.SINrC0S ) / ( (sIN-C0s) ÌsIN{C0S t

l ¡ (sIN+2+Cosô21/ (SINrC0s! + 151¡r¡65¡ /(SlNrC0S,
) ! l/(COS*SIN)+l
) ¡ sEcrlcsc+ IP.EX I

159 t È 2

ló0 I È 3

tól
t62
1ó3
ló4
tó5
ló6
ló7
ló8
169
170
t?l
t72
173
t74
175
t76
t77
¡78
179
180
l8l
182
I83
184
185

l8ó 7 È I

G(L)
G(L)
G(L)
G (L)

(Rt I
(R) I
(R) ¡
(Rl ¡

IANÈS T N/COS
c0T¿cos,zs I N
C0TÊcos/S I N
TAN'S T N/COS
CSET
CSET
CSET
csEl
csEl
csEl
csEl

ÐG
ÈG
7|G
ÈG

I Ê4
lÈ5
lÈó
lÐ7
lâ8
2È3
2ù4
?þ5
2rr6
2,r7
?_è8
3È4
3È5
3¿ó
3r.7
3Ê8
4è5
4ù6
4è7
4È8
5Èó
5è7
5Ê8
6ù7
6r8

NON.S INGLETON
NON-S I NGLEfON
NON-S INGLET0N
NON-S I NGLETON
NON-S I NGLETON
NON.S I NGLEION
NON-S I NCLEYON
AL6EB
ÂLGEB
ALGEB
ALGEB
UNCLASSIFIED
NON.S I NGLElON
ALGEB
ALGEB
Â LGEB
TINCLASSIFJED
NON.S I NOLETON
ALGEB
ALGEB
UNCLASSIFIED
NON-S I NGLEl0N
ALGEB
UNCLASSIFIED
N0N-S INGLEI0N

CSET

CSET

csEl

csEl

ló. ExP-(l) !

EXP- (2) !

ExP-(3) ¡

EIf: !¿) ¡

FxP-(b)r
F-XP-(ó) ¡

ExP-17) !

R

R
R

R
R

R

( t +C0T-CSC ) r I I +lAN+SEC I
( I .c0S,/S IN-l /S IN ) r ( I +S IN/C0Sl l /C0S )

( (sIN+C0S-t )/SINIn( (C0S.SIN.¡)/C0S)
( (slN+cost t2-tt/ (slNrcos)
( s Ifrî2.cos12ô2.S IN)COS-l t / ( S INTCOS l
( l.?rSINrCoS-t I /(SINrCOSl
2

G(L)
6(L)
G(L'
G(L}
G(L)
G(LI

r G(

'. G(

'r G(
È G(
¡ G(
È G(

) ¡ SIN2+C0S2Èl
t I SIN2öCoS2rl
I : l/SINÊCSC
) ¡ I/COS¿SËC
) I I/COSpSEC

' 
I l/SlNûcsc
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c-l_9

ll7 I r. 2

Itl I '. 3

l¡9
Ir0
l9¡
lt2
193
l9+
ltÍ
196
t97
l9¡
199
e00
20¡
202
203
204
205
?06
207

I f)4
lf|5
tró
tÈ7
2rr3
2ù4
?ù5
2?r6
2è7
3Ê4
3È5
3ró
3È7
4ù5
4Èó
4þ7
5Èó
5r7
ó'.7

c(Lf . alRtl colrrcot/sItt
G(L) r G(Rlt TANTSIN/CoS
G (Ll û O(R) I CSCII/SlN'
G(Lt È 6tRtl sEcrl/cos
I.JON.SINGLETON CSÉT
NON.STNGLETON CSET
NON.SINOLETON CSEl
NON.SIÀ¡OLEÎON CSEÍ
NON.SINGLETON CSEÎ
NON-SIITIGLElON CSET
ALGEB
ALGEF
ALGEB
UNCLASSIFIED
UNCLÂSSIFIED
AL6ER
ALGEB
UNCLÅSS I F IED
IINCLASS I F IED
ÀLGEB
F(xl+ß(L) r F(X'+0(Rlr SlN2.C052Êl
UNCLÂSS¡FTED
G lLl , 0ltl | ,S¡Nt.CoSa'|l
UNCLTSs IF ¡ED
ALOE¡

Note: RCP stands for fnecipnocal ofl
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NOL I S-T

PROGRAM SUPER2 ( ¡ NPUT 
' 

OUTPI'T ¡ TÂPE I=INPUT )

C0¡,tM0N,/LST,/ICELL ( sl I ) r ACELL (51 I ) TBCELL (5¡ I ) ¡ KCELL ( 5] I )' TPI r TPJr
xBPITBPJ'INDEX

COMMON/POLE/I¡IP ( ]OO ) r ISTK (20 ) rSTK (20) rRTK (20) r IJ¡ IKr I I I I2TLASTTLNK
CoMMoN//lA8/H ( l4) TTRGTAtì (6)' VTAB (2ój rf ABA (6¡ t0 ) rTABB (6' l0l
C0Mi40N,/PRNI/LI ST I t 0 I . KAD ( u0 ) r IPÂK r LI r L2
C0M¡10r{,/8REG/IE ( ¿0 ) . JE (20 )

C0MM0N/4U620/aRG(20)rIRG ....(#f)....
c0hM0rl,/Tf,/Ìl'l2r l3rl4rT5rT6rvl rV2
Co¡1M0(,/xVlf (6) rv ( 32) rLA ( I 2) rJFG ( l2l r0 (36) ¡R (3ó)
C0rlr'40 !./Nov/KS ( 25 )' JÂ ( 2 r I n )' NSCH ( 2' 3, rM (2 ) r JP (2 ) r KPI r KP2
COI.4MON N¡. JPAK I ¡'IONO r ISCH I ERR
DIMENSION U(6IIO)
EoTJIVALENCE (UTTABBI
C0¡{f10N/F/IHr JHrKH r LH r MH r NH

COMMON,/FEB7 I,/NI
0IMENSI0N fX(a) rNY(41
INIEGTR TPI TIPJIBPI TEPJ
I1!IE6ER HTIRGTAE
LoGICAL JPAKTMONO
rìaTA IN/I 03Br406Sr7l 1ts' I?t4Br 15t78r20268 ¡27358r3644f1r45478r

x 5355Er50528r5660p' /
DAIA H'TRGTAB'vfAB / 6a7.Irt)2.3)3r4r5r5r3RSINr3RCOSr3RfANr

A3RCSCTf,RSECT3RC0T¡ 12.323' 2.3128r 1.934t 5(.977. .314?¡

3'01742r 2.7ll6r 4.92r11, 7.00177' 15.33170r II.03037r
ta.32341, -I.ó3l2ar 2.j1367' -0.037?5r .74I76. 4.74231t
1.23456' 2.34567¡ 3.45678r 4.56789' 5.67890r 6.7E90¡r

12.21341' 4.36724¡ -l.37ll3r 2.I6167r 9.46032r 0.42374¡(r.þ2345' I.37632' -39.n4728r I2.¡4176r 23.194?6r ?.37116¡Il.2I30{r 2.17003. -2.t45ó7r -8.44026, -6.03372' 4.?0366.
23.I2345r I9.8034t. -?.1{¡56t 3.t12?4, 8.300ó4r -2.92974.1.3602r 37.123¿r 2.9674r ¡.337{r l4.lO46r 2.Ió28¡
2.3032f 3.a042r -4.505?t 5.6062t 6.1072.t 7.808?'
8.336ór 7.3366r 6.3366r 5r3366r 4.3366' 3.3366

DATA JFG / 0102010444rJr 030405t0228r o506ltt4ll8¡ 07l0t5e07o8rx Ill2¿t2a6lBr 13202530608. 2I263I34128r 27343540058'
Y 35364I41528t 37404242258t 4t424343IóBi 43444444078 /
L0(l)=0102030705068 $ Lo(2)=01020304I0068 $ LO(3)åOt02030l05ttB
Lo(4)=102120405068 $ Lo(5)=102030405I38 s L0(6t=t415030405068
Lo(7)= 102300431068 s Lo(8)=O¡02032505278
Lo(9)=I4cZl6042O068 s L0(¡O).0tt5O3l7OS?¡B

L(J I I I ) r0102161720 06Ê $ LO ( l2 )r0¡ 02O3l72O2tB
¡¡rl.¿4$x2=0.F06çI3=0.412
v{l)=3.017a2976sv(2)=2.71t166337fV(3)=4.92711603
v(4)37.00t7752tsv(5)Ê15.33I?OISV(6)=tl.O3o379t
vr7)=I/V(l) $ vt8)=ì/v(2) Í V(9)=t,/V(3) $ V(tO)=V(t),/V(2)v(lI)=v(¿)/v(l)$v(ì2)=SIN(Xl)sv{13)=COS(Xt)
vr14)=taN(xt) s v(15ì=I/v(t2) s v(t6)=t/v(13)v().7)=I/V(I4) s V(tB)=SIN(X2t $ v(I9)=COStXZ)
V(2c)=TAN(X¿) 5 v(2t)=l/V(I¡J) t V(22)=¡./Vt19)ulz3l=I/vt2)tqv(24)=fAN(X3)¡Vt¿St=t,/COS(X3)
V(26)=v(t3)/v{l) ç u(2r)=Vtzl/utt7J s V(28)=V(2,.v(14)
v(29)=I/r(24t s v(30)=v(I3)./v(23) $ v(3I)=v t12)/ulzlv(32):v(12)/V(20)
ERR=I0E-8 s IsCn=33 ìZZ33II3AZZtt2t18

CREAIL DICREPANCY IÁBLES (0il FOR DIFFERENCES) AND R FOR RATIOS
Tt=i2.3 $ T2=3.4 $ T3=¡457 5 Tt=5.6 r l5=3I.5 3 T6=23.ó
REVERSE NEXT 2 CARDS fO REVERSE TRACING SIAfUS
CALL lIilE(trY)
IH=¿
IH=O
JH=3
KH=s .... l*21 ....

I H=JH=KH=LH=MI.I=NH=O
CSCtI/SIN - 0(l)...FJ(4) rR(l) rR(2)
0(¿)=a8s(T4sTt-I.0)$oll).D(2)/lI3D(3)=O(2)/Tf
D(4)=D(I)/T4 S P(l)=f4úTI t R(2)!I/R(Il
SEC=l/COS - D(5) ... D(8) rR(3) rR(4)
D(6)=4ts5(15+T2-1.)$0(5)'D(ó)/TZSD(?l=D(6)/T5
D(8)=D(5)/T53R(3)=Îs.T?3R(4)'llR(3)
CoT=I/fAN - 0f9) .. D(12)rR(5trR(6)
D(10)=aBS(T6Õf3-ÌllD(9)=DlI0l/l3sD(¡t)rD(I0)/ló
D(12)=D(9)/Tó$R(5)=T6.f3¡R(6).1/R(5)
TÂN=SIN/CoS - D(I3)...D(16) r R(71 rR(ê)
D(I4)=ABs(l3rT2-lt)$D(13)-D(l+)/TZSD(I5)-O(13)/l1Irr3)
D(I6l=D(1s)/T2$R(7)=13.r2lTtsR(8)!l/R(7)
col=cos/sIN - D(t7) '...0(20) 'R(9t rR(I0t
D(tgt=ABS(T6*T¡_TZ)$D(t7)=D(tô),/T¡¡D(l9tEDnBt/f6/fz
D(20)=D(I9)/TIsRt9t=T6¡Tt/T2SR(I0l!¡,/R(9)
sINl?+COS1zrl D(2t' .. Dt24)'R(tt)¡R(l.2)...Ruót
D(21)!flr.2.f2ù+2-l$R(fl)Ellta?.fZt.¿3R(12)=l/R(ll)
D (22) =aBs (t,/ (T¡{Tt.12rT2l !t) ¡ D(23)=A8S(t,r(llrT¡) -Il ( ¡-T2¡T?r t
D (24) =ABS ( t,/T2r.2-Il ( I-Tlúr2) )

R(t3)=ABS(TIÐ+Z,tlt-tZ.r¿ll S R(14)=l/R(t3)
Ru5)=ABS(f2Ò.2/11-ltr12ll S R(¡6)=I/R(15)
SECI?=TAN12.I - D(25)i .. D(28)rR(i7)..R(22)
D(25)=ABS(T5r{2-T3..2-1) S R(l7lIABStT5r.2-T3rr2)
D (26) sABS ( L/T5.12-l/ lLrt 3t.21 I t D(e7) -ABS ( l/l3rr2-1/ (f5or2-¡ ) )

D ( 28 ) =ABS ( l,/ ( T5Õr2-l3rÐ2 | - l I
R(18)=1,/R(17) $ R{I9l'ABS(T5.r2,,(f3ro2.l)) ¡ R(20)=t/R(19)
R(21)=A8S((15.r?-l'lt3rrzt i R(22t-llR(2¡)
CSC12=COÌ12.l - D(29). .. D(32rrR(23)¡.r¡ Rt28)
D(29)=agS(f4c.z-Tó¡r2-¡) S R(23)=ABS(14..2-T6ró2) -
D (30) =aBs (t/T4+{2-ll( I.l¡!r.2t I s D(31 }!aBs(l/T6rr2-l/(tfr.2-l} t
D (32) =ABS ( 1-tl (T4+.2-f6.Õ2) )

R(24)=1,/R(U3) S R(25)=ABS(f4rrz.r(l.T6112)) S R(26,'tlR(25)
R(27)=ABSlll4t|?-Il/f6.*?t S Rl28)=l/R(27)
TANESINTSEC D(33t rR(29) rR(30)
D(33)=ABS(t3-rtÕTS) s R(29)EABS{f3l(lI.T5)) S R(30)=t/R(U9)
coTEcos'csc D (34) 

'R 
(31 ) 

'R 
(32)

D(34)=ABS(T6-T2úT4)¡R(3t)=ABS(12.f4/16tSRt32)31lR(3lt
fAN=SLC/CSC D(35)rR(33),R(34)
D(35)=ABS(T3-T5/T4) $ R(33)=ABs(T3.14lT5) s R(34t=t/R(33)
coT=CSC./SEC D(36) 'R(35) rR(3ó,
D(36)=ABS(T6-T4lT5) 5 R(35)=ABS{16.f5/14t f R(36t=l/Rr35}

TA I =Tts I =f A2:182=0
NPRts=O

c

c

3.882r 14.4542¡ 3.660-l' 71.9726t 3.1212¡ 2.3042¡ a.9234t

c

B

c
f)

0
E

F
G

H

I
J
K

L

N

12.8364r -2.423. l.l92Jr 37.546
?4t3?7t -6.II32r 0.7ó32r -1I.63
AfA TA8ts /

-49132t 4.336r 9.57238¡
7.tÌ6t 2l.l?1¡ 33.505 /

c

c

L

c

FILL laELE TA8Â( , )

D0 l0 I=l'10
AI=I
lAtsA(I'I)=SIN(AIt 5
lABA (4r I ) =1/IABA ( I' I I

TABA (5' I ) =l/TABA (A,I )
to c0NTlt{tJE

fÁBA(2rI)=CoS(Al) S ÎABA(3rIl=TAN(AI)

î TABA (6r I ):1./fABA t3r I I

INITIALISE IABLF OF DICREPÁNCY VALUES
c INIIIALISE LISf AND POINI€RS

TPI=TPJ=]



BPI=511
D0 l2 I=Ir5l(t

tz ICELL(I)=I.l
PRINl I5
¡J=0

I5 FoRÞ|Al ( lHl )

CALL fIHE(OiY)

III=¡I S

42 tF (Nrt.GT.3l GOTo 400
JJJ=JJ

GÊ,T A NE* PROOF - ]NIfIALISE IO EEGINNINO

20 caLL Gr{P(IIr ....(i3)....
IFtII.E0.0)COT0 21
PRINI llrlAIrfBl r1Â2rTB2

I7 FORI{AT (

\/ / / / a 1.. / / I ox'.f olaL TIqES :' r 2Fl 0.3r /r I 0X t rNON-ÂL TII''lEs : rt2Fl 0.3 I

STOP I
NPRts=NPR8+ I
tx (I I =fx (2) :fx (3) =lx l4)=o
cALL T¡HE(()'Y)
PRINT I47 

'NPRBFORt'tAf I / / /r llì.r I3r"')
IEP:l
IRo=0
LIST(¡)=I0H EXP-(0):
LIsf (I) =LIST (l ).I0000008

L2=lO$Ll=¿5IPAK-o
CALL GETEXP(IT)
CALL PRNT(O)
IF(II.NE.O)GO TO 25
CALL POL I SH

IE ( IEP) =LAsl $ IEP=IEP.I
ICELL ( LAST) =¡CELL ( LAsT ) . 

^.771717777777777770008IF(Nx.Ea.olG0 f0 2ó
IF( (N¡,EO.IR=|.O. (NX.EO.ìR:).0. tNX.EO.lRl) )G0 fO 22
IF(NX.NE.tR>)GO rO 22
ÄBOVE SfAfEqEI!TS ARF fEMPORARY

NH=NH.Ì 5
NT=N1. I

IF (ABS (ACELL ( I I ) -ACELL ( JJ) ) .GT.ERR) 60 lO ó5
Nt =NT. I

IF ( ASS (BCELLl I I I.BCELL (JJ) ) .OT.ERR I GOIO 70
STEP ALCEBRAIC
õ¡tt ftmeto,vr ""(*4)""

NÀT=I
Tx (rl'Txi2t=Tr (3)!lx (4tãY ¡ NY (1)-NY (2)ENY(3)=NY(4)=IoHaLGEBR^

xtc s 60 lo 400
pR¡NT 60rN.Il{trJtlJiY 3 G0 T0 ¡000

60 FORHAT(?I4rÕ rrrt2róXT.ALGEBRAtCT F9.3r r SEC.rl
SIEP INCORRECT

ó5 CALL fIME(0rY) $ TXlllrTXl2lrlx(3)llx(a)tY
NY ( I ).NY (2) =NY,t,.¡v ¡4t-t 0HINCoRRECY

4OO PRtNI óTrNrIMI¡JMJTNAfTTX(t)tlX(al tNY(ll tNYl3) tNY(4)
ãr ¡onr¡rizltrr pr¡t!¡t€r4x¡Fó.3rr SEC¡r¡3x¡Fó.3rr sEC'rr3 l5xrt5l I

ão ionu¡rioi'¡2r. ¿.;Iz.4xrrtNcoRREcfr r F9.3 rr sEC¡')
GoTo 1000
PREPARE f0 CALL S/R SitALl

70 i(Pr.t ¡ KP2=2 S CALL COPYltt' 3 c^LL coPY(JJ'
KStl)!II.LSHFÍ(JJ.9)

75 CALL SMALL(KPlrJfl
,r,"".40., ¡ ¡tt=NT

¡F(Jl.EO.o)GO 10 g0

STEP LARGE
LGE.LGE. I

82 KP¡rKPl.t
lF(KPI.EO.KP?)GO fO 83

¡5=x5fxPii s tsrJs.a.7778 ¡ JS.LSHFÍ(Js¡-91 ¡1o77?B
IF (ABS (BCELL ( tS) -BCELL ( JS) ) .01.ERRl o0TO 75
PRTNT S?e ¡ OO 10 82

82A FORI'l^T I ¡0Xr¡ALOEBRAfCTI
83 IF(LGE.NE.0)74r84
73 KPtsKP¡..1 ¡ rF(KPl.E0.l(P2)GOlo 74

JJ.K5(KPt)¡I¡.JJ.Â.7779tJJ'LStlFT(JJr-91.4.7??B
CALL RÊLEASE(¡I) ¡ CÂLL RELEASEIJJ) ¡ OO 10 73

7{ CALL fIME(0rYl $ NY(NHl.¡OHLAROE 3 TI(NH)-Y ¡ 6010+2
7ó FORITAT(6XrI2t. prr¡2,4XrrLAROEr r Fl3.3rr SEC.rl

G0 10 ¡000
303 FoRlllf l?¡ar. irr l2reXtA5,

II.trI I JJ.JJJ

c
c

c

c

?l

147

??

c

c

C PRINf OUI SIUFF
JJ:IEP.I $ DO 4ô I=1 IJJ ¡ KK=IE ( I I

4o coNfINuE
CALL fIt{EIOIY)
PR INT 88 r Y

B8 FoRMAT(/7xrocoMp¡LAfIoN tIME¡ rrF9.3ró SEC..)
PRINI 90

90 FORMAI ( //7X r.Sf Ep¿ r qr..N-COMP. r5X,.f I|,lE-AÕr 8Xr.TIllE-8rr2Xr 5X r
xolrrJN- lr r 5X 

"RUN-2. 
I SX r.RtlN-3e/ )

c 90 FoRMAf(/,zr7Xr{SfEPorl5x'öPUN-1rr¡5xrrRUN-zrrl5Xr.RUN-3Irl5XrIRUN-4
C \./)

¡lSl.¡EP-l $ NS'rlrNST-l
IFfi.¡Sl.LT.2'sToP 77?
t)o t00l IMI:l 'NSTINSSEIMI.I
D0 t000 JMJ'Nss.NsT
LGE=O

NT=1
N= r+l
I n= JIi=KH=LH= MH= ô

TAI=fat+fx(l) $ fBl=TBl.lx(2)
IF(NY(I).NE.IXHALGEFRAIC )TA2=IA2'TX(I)
IF(NY{l).NE.I0HALGEFRÂIC )TB?=T82.fX(2)

C EVALUAIE ST€P IMI t J{J
Nn=0

II=IE(IMI) S JJ=IE(JqJ)

KPlrXPl.l ¡ IF(KPl.Ll.KPel60 lO 75
CÂLL TIME(0rY)
CONl INUE
fXlNtl)rY 5 NY(NH)eloHSqÂLL ¡ GOTO 42

PR¡NÌ 8SrII{IIJIJTY I GO lO 1000
FORMIT (6Xr l2r¡ Ëor I2raXrrSMÀLLrtlXrF9.3¡ Ò SEC.r)
CONI ¡ NUE
CALL RELEASE ( IE ( IMI ) I
C0NT ¡ NU€
CALL RELEASE ( IE ( JIlJ I )

GO lo 20
c0Nl ¡ NUE
PRINI 2?

c
c

80

8a

85
¡000

¡001

23
26
27 FORHAI( 5XTTSYNTÂX LOUSYTI

o0 l0 ¿f)
ENO

SUBROUIIN€ SIZE(¡IJI



COI4MON,/LST,/ICELL (51I ) ¡ÁCELL (51I ) tBC€LL (5ll ) TKCELL (5¡I ) rTPI rTPJr
XFPI '8PJI INDEX

coMHoN/Nov./Ks (25t rJA t2r I1) rNSCfr (2r3) rX (2) rJP (2) rKPl rKP2
c0ÑM0r',¡,/xvl1{6) 

' 
v (32) 

'L0 
( l2) rJFG ( 12} rD (3ól rR (36)

C0HM0N,/TT,/l I r f 2r T3 rf4 r l5 r T6r V I rV2
C0MMON NXr JPaKr t1ON0 ¡ ISCHr ERR
COMMOII/F.ZIH I JHTKHI LHr úIiI NH

C ¡]OfE ARRAY K(2I INSÎEAD OF M(2) IN VIEY OF OIIi€R USE OF M

c EVALUATE sIzE 0F STEP-I IN KS-TÀ8LE RETURNINo J=0 IF SIZE SMÂLL
Il=KS(I).A.7778 S I?=LSHFT(XS(I)r-9).A.7778
III=II 5J JJJ3I2

C GET STEP CONFIG
C ÂI SOI{E LAIER SÍA6E REHOVE CONFIG IEST FOR COHPAR¡SON

J=(FI6( I¡ ).O.KFT6I I?)
D0 l0 f=lrI2

C lEsf ¡F MIN. CoNFIG FoR IDENÍITY-H SÂfISFIED .... (#5) ....
lF( (J.a.JFG(M) ).NE. (JFG(c).Â.778) )GO fO l0
CALL SEIT II,I I
vÌ.tvaL(II, s IF{t?.NE.0)V2IXVAL(¡2}
IF(ABs(vl-v2).Lf.ERR)G0 ro l5

]O CONTINUE
IT CALL RELEASE(I¡II ¡ CALL RELÊASE(JJJ)

RE TURN
C ASSUME J NONZERO
C IDENÎIIY-M SAIISFIES SIEp

I5 T(I)=TI s rtat=rZ 5 rr3)=T3 S r(4)=f4 3 T(5)=15 3 f(6)=16
vl=xvaL(It) $ rFtIr.NE.0tvzsxvaL(l¿lt aDF=A8s(vr-v2)
¡¡:t,lPlRlIIl¡JJJ) 5 IF(N.G1.50)GOÍO l8
x2=1.0/N $ x2=aBs tv2tr.x2
IF(V1.LT.0)ÃI=-Xl r IF(V2.LÌ.0¡X2¡-x2

T8 CONTINUE
C TESl DIFFERENCE OISCREPÂÀICIES

I ¡=LSriFT ( JFG (M) r-12) .a.778
I2=LSriFT ( JFG (M)'-6) .A.778

20 IF(Nfl.EO.4)6010 26
IF (ABS(A0F-0 ( Il ) ) .Ll.t0E-8tGOfo 24
IF (N.c1.50 ) GolO 22
IF (atsS (ABS (xl-X¿)-D( I I ) ) .LT.ERR)c0T0 24

22 CONTINUE
IF(Il.Eo.I2)60T0 26 3 I1=¡l.I
GO l0 20

C STEP SIIALL
24 J=0 5 c0 T0 ll

C IRY RATIO DISCREPANCIES
C REI9EMtsER TO REMOVE II SOYE f¡ME FOR COMPARISON

2ó lF(NH.E0.3)GOT0 It
IF (A8S (V2'.Ll.lùE-t5' GoTot ¡
ADF=AtsS(vllVZ)
ITÉLSHFT{JFG(M)'-24).A.7?R S IZ=LSHFI(JFG(M}r-I8).Ar77B

26 IF(A8S(AOF-R(II) ).LT.ERR)GOTO 24
IF(N.Gf.50)G0T0 29
IF (A8S (Ats5 (Xl./X2) -R ( Il )'.LT.ERR) GOfO 24

29 C0Nl¡NUE
IF(I¡.t0.I2)G0 T0 ll s Il=Il.l
GO TO 28
ENO

FUNCtI0N itc(I)
C0f1M0N,/Lsl,/ICELL ( 5 I I )' acELL (51 I ) r EcELL ( 5I I )' KcELL I 5I I ) ¡ IPI rf PJr

xBPI rBPJr INDEx
C0MMo¡{,/P0LE./IMP(100)¡ISfx(20)rSTK(20),RTX(20trIJrIKrIl¡I2¡LASTiLNK
CoMN'lor!,/XVlT ( 6 )' v { 3¿ ) . L0 ( I 2 t' JFC ( l2 ) rD ( 36 ) rR ( 3ó )

COMI{ON/F,/I H' JH r KH r LH¡ üH r NH

INf ÉGEH RL. IJA'F8,OF.FR

IF (NH.NE.I)RETURN
I2=I 5 CALL IFF(IrJ¡K)

5 ¡I=FB(Kl r IF(It.EO.z)GOlo 20 I ¡FtIl.E0.0¡6010 ¡2
PRINT I0 s BC=1000 ¡ RETURN

IO FOR}IAf(5X¡CFN 8C - VARIABLES NOT ALLOIEDT)
I2 SIK(I2)=ACELLIKI
t3 I2=I2.1
l4 tF(K.Ea.r)GoTO l5 f K=LL(X) 3 IF(K.NE.0)GOÍO 5
I5 CONfINUE

8C=SÌK(I) $ RETURN ....(*6)'...
?0 I1=DA(K)

G0f0 (21 r 2I r 2I r ?lozl¡21t23t24;25t?6¡?7 ¡28ç29r29) r I I
2I SfK(¡2)=l(Il) ¡ G0f0 13
23 STK(I2-2)!sTK(I2-2l.STK(I?-l) ¡ GO T0 3l
24 SIK(I2-2)=STK(Iz-t)-STK(I2-?l ¡ GO 10 3l
25 STK ( I2-l ) =-STK I I2-l I $ GO 10 lt
2ó srK(I2-2)=SÎK(I2-2)rSTK(I2-ll 3 Oo lo 3l
27 SfK ( 12-21 =STK ( I2-l ) /STK ( I2-2) ¡ GO l0 3 I

REC I PROCAL
28 SÌK ( l2-I ) =I,/SÌK ( Iz-t ) s GO TO lt
29 XVAL=SÍK(I2-l) r IF(rvAL.LT.0l60T0 32 3 XVÂLIXVAL"STK(12-2,
30 IF(I¡.Eo.l4)XVAL=I/xVAL I STK(12-2)TXVAL
3r l2=t2-l 3 Go t0 14
32 J=SIK(I2-2, 5 XVAL¡(-LVALlrrJ

IF I J.l{E. l2r lJ/?, ) } XVAL=-XVAL
60 To 30 $ END

FUNCfION AC(I)
coMHoN,/Lsf ,/ ¡CELL (s¡ I ) r ÂCELL (51 t ) ¡8CELL (51 I ) TKCELL (5t I ) r lPI rTPJr

XBPI IBPJI INDEX
COMMON,/POLE/IMP ( 100) r ISIK (20) rSTK (20t rRlK (20) ¡ IJrlKrll r I2¡L¡SlrLNK
CoMMoN./XV,/T (6) rV (32) rL0 ( l2l rJFG( l2) rD(36) rR(3ól
COMHON,¿F.¿ IH r JH I KHr LH r MIi r I,.IH

INTEGER RLTDATFETDF¡FR
IF(NH.NE.I)REÍURN
I2=I t CALL l{FF(IrJrK)

s II=FBIK) 5 IF(I!.E0.2)GOTO 20 t IF(II.EO.0tGOÌO ¡2
PRINI l0 $ AC=¡000 I REIURN

IO FORIIAl(5X'TFN AC - VARIABLES NOT ALLOIED})
I2 sTK(I2)=ACELL(K)
l3 I2=I2.r
14 IF(K.E0.I)GOTO t5 r (=LL(K) 3 lF(K.NE.0tGOÌO 5
I5 CONTINUE

AC=STK(I) 3 REfIJRN
2O II=DAfK)

G0T0 ( ¿t r 2 l' 2 ¡ r 22 t 22 t 2? ¡?3 ç?4 ç25 ç26 ¡27 ¡?8 ¡ ?9 r 29 I ¡ I I
?t sTK(I¿)=sIN(.856324) S G0 lO t3
22 SIK(I2)=fAN1I.8356479) s GO fO
23 SfK(I2-2)=srK(¡2-2l.STK(t2-l) s
24 SIK ( I?-2) =SfK ( I2-l ) -STK ( I2-2) ¡
2s SIK I I2-l ) =-sTK ( IZ-l I t 60 TO ¡4
2ó SIK(IZ-2)=SlK(I2-2).slK(12-IÌ I
27 SIK(I2-2)=sfK(I2-l),¿STK(I2-2) f

R EC I PROCAL
28 SIK ( I?-l ) =I./STK I I2-l ) s G0 l0 14
¿9 XVAL=SÍX(I2-l) $ lF(XvAL.LT.0IGOTO 32 S XVAL-XVAL.TSfK(I2-2,
3o ¡F(¡l.EO.t6)xVAL=I./tvAL S STK(I2-2)=XVAL
3l lz=le-l s Go 10 14
3? J=STK(I2-2) S XVAL=(-XVALlrrJ

IF (J.NE. l?. lJ/2t ) I XVÂL=-IVAL
GO lO 30 $ ENrr
SUEROUT¡NE GNP(II)
C0i{|10N,/P0LE./IMP(I00} ¡ISfK(20) 

'STK(20) ¡RTK(20) rIJrIKrIt¡I2rL^STrLNK
C0l{í0N,/PRNl,/LIST ( I0 ) tKAD ( t0 ) r IPAK ¡Ll r L2

c

l3
GO T0 3t

G0 TO 3t

c0 T0 3t
Go lo 3t



c +.¿
c ¿rr

I
?

3

5

l0

ll
l4
30

COMMO¡l l.¡xr JPÀ(r140N0
L0GICAL JPAKr¡1ONO
INf€6ER PP
PoSITIoN a'r dEGI¡¡\IING oF pRooF aN0 tLs0 sEE iF H0ño-ÀRGUMENT
GNP SKIPS TILL A CARD EEGINNING |ITH < AS IST NON.ÊLÁi¡K

ll-2
READ 2I K,1D
FORffAI (8ORI )

IF(EoF'l)30r3 "" (*7)""
IK-l g NX=PP(X)
IF(NX.Ê0.1R<)10r4
PRINT 5.KAD
FORIIAT (* IGNOREDÔ2XTEORI )

Gof0t
I ¡=0
NX=PP(x., $ IF(Nx.EA.lR3)¡lr14
MONO=.F. $ RETIJRN
IK=IK.I $ MONO=.T.
REfURN
END

25 IMP{IJ,=JSAV S Go TO l4
ri túP1i':=JSAV $ IJ=IJ.l $ IF(È{ONO)45ró0

C NTIER':1 SIRING
35 JSAv=¡l¡-?7
36 Nx=pptx)

IFI(Nx.Ll.4:H).Ä, ;. i.328))37r+0
37 JSÂV=I.rfJSAV.NX-z" ¡ GO TO 3ó
40 IF(J5ÀV.Gt.5lllGO -r l0

IMP(IJ)=JsAv.l00 000 000
c too MILLIoN As aDDEND ... . (+8) ....

44 IJ=IJTI
45 IMP (IJ):NX 5 lJ=ÌJ-:)

C ETPECTING . - * / t = EAr, ..j
46 IF((NX.Gl.44B).a.(NX.LT,5lg))GO TO a

IF(ù¡X.ÀlE.IRl )Go TO 50
NPAR=Í.¡PAR-I $ IF(NPAR.Lf.O}GO IO TO
NX=PP(X' S GO TO 45

5D IF (NX.EO.IRlI GO TO 55
C fEST FoR E0¡1r¡rl EfC

JPAK=.F. 5 lJ=IJ-l
IF ( (NX.NE. O ) .A. (NX.hlE. j i!) .4. (NX.NE" tRl ) .4. (NX.NE. ¡ri¡ I .4. (N¡.NE.IR

x>) )Go T0 l0
IF(ÑPAR.EO.O)RETURN
60 fo t0

c ... 1 ...
55 NX=PP(XI

IFINX.NE.IR.)GO TO 57
NX=PP{X) 5 GO 10 59

57 IF lNX.NE.tR-)Go To 59
IMP(IJ-I)=IR¡ 3 NX=PP(X}

59 IF{ (NX.LT.338).O. (Nx.6T.448) }GO 10 ¡0
IMP ( ¡J) =Nx-27.100 000 000 ¡ IJ=lJ+t
ñx=PPlx) 5 Go lo a5

C ANÂLYSINO IIiE ARGUMENI SECTION OF A TRIG. FUNCÎION
ó0 ¡F(N¡.nE.lR{}Go fo l0

MPAR=I 5 JtlP ( IJ) =NX ¡ IJtlJ.l
6? NX=¡I.IPIIJI=PP(X} ¡ IJ=IJ.¡

¡F( (NX.NE.IR-).A. (Nx.NE.lR.t )O0 T0 ó5
ó4 IMP(¡Jl=NX=PP(X) S lJrlJ.t
65 IF(NX.NE.IR(IGO TO 7O

MPAR=IPAR.I ¡ GO lo ó2
70 JF(NX.Gf.328)60 TO 75

C EXPECIING .-ÕlOR)
7t NX=IMP(¡J)=PPtX) 5 IJ'IJ.t
72 IF(NX.NE.tR) )G0 T0 73

MPAR=ilPAR.I $ IMP ( IJI =NX=PP (X) Í ¡JIIJ.I
IF(MPAR.Eo.o)46,22

73 IF f (NX.LT.458) .oR. (N)(.Gl.50Bl ) l0ró4
C NUHERIC SIRING

75 IFlNX.GT.448rGO t0 ]0
JS A V=N x-27

76 NX-PP(Xt
IF( (NX.Gf .328),A. (NX.Ll.45E) 178r80

78 JSAV=JSAV}I0+NX-2? I GO lO 7ó
EO IF(JSAV.GT.5II)GO TO IO

C '+} IT ì1ÂY PROVE fO BE A SÍOOPID ÂND UNNECESSARY LIMIT -- 5TI ¡ IIEAN
IMP(IJ-l)=Jsav. to0 000 000 ¡ ¡rP(IJ)=NX ¡ IJ=lJ.l
60 lO 72
ENTI

PRoB

SUEROUfINE 'EIEXP(It,
COMMONi/L5f /ICELL (5I I ) r ACELL (5I I ) I SCELL I5I I I IKCELL (5I I ) r IPI T IPJT

XBPITBPJTINDEX
C0MM0N/P0LE/IHP ( 100 ) r ISlx (20, rSTX (U 0) 

'RTK 
120 ) r lJr IKr Il r I2rlASf¡LNK

CoMI{ON,/ÌAB,/H I t4 ) rlRGlAB I 6 )' VTAB (26 ) rTABA (6r I 0 I rlA88 lór I 0 )
COMMON NXTJPAK¡MONO
It¡IEGER PP
INfEGER ITTTRGIAB
INÍEGER TPI I IPJTBPI ¡BPJ
L0GICAL JPAKTM0N0

C PAC( CURRENÍ CHÂR FOR LÍSIING TF JPAK IS .f.
JPAK=.F. f NPAR:(PAR=IJ=O
IJ=t g ux=pp (Xt S JpAK=.T. S 60 tO 3

C EXPECT VERY ÌSl TO BE A r 0R - OR ( 0R oPERAND
¿ ¡¡=pp ( X )

cccccccccc F0LL0i{ING 3 cÄRos DEc 7o ÈroDs
3 lFlNX.E0.1R.)G0 To 4

IF(NX.NE.I:.)GO TO 6
IMPIIJ):Nx $ IJ-fJ.l

r Nx=PP(x)
C HERE IE EXPECT ONLY ( OR A OPERANO

6 IF (NX.NE. IR ( ) GO IO F

IMP(IJI=NX $ IJ=IJ.T
NPAR:I\¿PAR.I ¡ GO 10 ?

I IF(Nx.Lf.{58)G0 T0 ì5
( FRROR

I,r tr:l i REÌueN
¡( Jsav.N¡ s xoulT=? f IFlNX.Gl.3?B)GO fO 35

c ALPdASLT I c
lI \Á=PP(¡)

lt (Nx.(ìt.32n)Go lo 20
.J\AV-LSHITfJSAV.6).OR.Nx ¡ KoUNT=KoI,NT-I
tF (Ãourlt.Ll.0) l0rl7

C CH¿Cí IF ArB'... ¡.y.2 oR StN,COS....
?0 IFtKoUNT.t-0,¿tGo fo 2)

lF tK0úNt.NE.0)Go to tn
C CHËCI( LEG^L IRIG FUNcTIo\

l)r) 22 I=I 
' 

6
IF(JSav.E0.ÍRGTAB(It )GO fô 3O

22 CTJNTIl!UE
(ìo f0 t0

c0l{H0N./Ls1,/IcELL (51 t I r ACELL (51 I ) TBCELL ( 5l I I ¡KCELL (51 I ) r tpI r lpJ¡
xBPI rBPJr INDEX

SUÈROUTINE POLISH



coflMoN,/PoLElIMPlI00)lIsfK(20)ISTK(20lrRlK(20lrlJrIKrIIrI2rLASllLNK
èo,q¡loN/f¡s/n ( l4) rfRGTAE (61 ¡VfA8 (2ó) rTASA (ór l0) 'fA8B 

(6' t0 )

COMMON/AUGZU/ARG (20 ) I IRG
INf EGER IPI T TPJIBPI IBPJ
C0MHO¡'{ N¡r JPAKTMO¡|O
JÑTEG€R H'IRGTAB
LOGICAL JPAKTMONO

C iH¡S S,/R CONVERIS EXPRESSIOÑ (MOOIF¡ED) IN IHP(I) "' IHP(IJ-II
õ TO PREFIX POLISH IN I¡iE FORM OF A LISI OF CELL'PAIRS " ICELL()
C AIIO ACELL(' TIIH ACFLL() CONIA¡NING THE IIAX' CONSISIENCY VALUE
g rrr f,OMMON EtC

LÂSf-0$fl=t2=IIJJ=IJ-I
tN0EX=0
Do 1,00 ¡=l 'JJIT=IMP(IJ-I) :... (*9) ....

C lESf IF NUM|ìER
IF(Il.LT.l00u000)G0 lo lo
RIK(I2)=sTK(I2)=I1-100 000 000
caLL ÀDLSf(OI s 60 fo 100

C CHECK FOR VARIABLE arilr... XrYrZ
l0 IF(If.Gf.26)G0 l0 20

RfK ( I2 ) =5tK ( I2 ) =VfAF ( Il )

CALL ADLST(IT.¡OOF) ç 60 TO IOO
c rEsT FoR ) OR (

2o IF(lT.Gf.72tl)G0 T0 7o

lF(IT.NE.lR) )G0 f0 25
ISTK(II)=IÍ 5 I1=IIrl S G0 TO 100

25 IF(IT.r{E.lR()GO f0 30
26 It:It-t s Ir=ISlK(II)

IF(II.EO.IR) )GO TO IOO
caLL 0P(I1) f 60 10 2ó

C TESI FOR.'-'å.,/r+rr
30 IFlIT.NE.lR.)G0 TO ó0

IFII.Eo.JJ)60 T0 t00 I IR'IMP(IJ-I-Il
C ¡GNORË UNÂRY .

IF( (lR.Eu.lR( l.tlR. (lR.E0.tRl) lGo l0 100
IR¡7

C C00L FoR . IS 7
35 IF(II.EO.Ì¡GO T0 37

JX'ISfK(It-l)
IF(JK.E0.lR) )G0 fO 37

C COIIPARE HIERARCHIES
IF(H(IR).GE.H(JK) )GO TO ì'
Iì.=It-l 5 caLL oP(JX) S G0 TO 35

37 ISTK(II)=IR $ Il=rlrl r G0 To I00

4o lF(If.NE.IR-)G0 l0 5o
IF(I.NE.JJ)G0 To 42

4) JRr9 5 GO fo 35
42 IR=IMP ( lJ-I-l )

IFtIR.E0.lR()GO fo 4l
IF(IR.iiE.lRô)G0 T0 44
IMP(¡J-I-1,=¡.Re
co T0 100

44 IR=8 S G0 l0 35
c .., r

50 IF(Il.NE.tR.)G0 T0 s5
JR=10 5 Go 10 35

c ,.. / ...
55 IF(If.i!8.ÌR,/lG0 TO á0

IR-II S GO TO 35
C ... ê ...

60 IF(IÌ.\E.lRi)G0 To 65

c
IR=13 I GO 10 35Ù ."
IFIIT.NE.lRÚ)GO TO 67
IR=I4 $ GO 10 35
i*' SIIOULD NOT BE NECESS¡RY IN A ìIORKTNG VERSION

('5

c

67 PRINT 68
68 FORMÂT (,/r ... IMPoSSIBLE

REIURN
sINrCOSrfANr ...

7O CONIINUE
IF(IT.NE.3RSIN)GO fO 75
IF(r{oNo}Go f0 73 3
srI( ( ¡2r =sIN I STK ( ¡?) )

72 CALL ADLST(2OIB)
RTK( I2)=AIRG(l'STK I I2) I

73 STK(I2l=laBA(ltl)
RTl((I2)=lAgB(lrl)

?5 IF(IT.NE.3RCoS)GO To 78
tF(MONol60 T0 7?
sfK(I¿)=coslsfK(I2) )

RfK ( I2) =ATRO (2rslK ( I2) )

?6 CALL A0LST(2028) ¡
77 5lK ( I2) -TABA (2r I )

GO f0 ?6
78 IF(If.NE.3RfAN)GO TO 84

IF(r10N0)G0 lo 80
STK ( I2) =fAN (sfK ( I2) )

RIK ( I2) =AIRO (3tSfK ( I2) )

79 CALL ÂDLST(2038) t
80 STK(I2)=fABA(3¡l)

RfK(I2l=TAB8(3rll
84 IFTII.NE.3RCSC)G0 TO 8B

I F ( r"loNo ) oo T0 86
STK (I2) =l/SIN(STK( I2) I

RIK (I2l=ATRG(4rSTK (I2) )

85 CALL aDLST(2048) ¡
8ó SfK ( ¡2) =fABA (4r I )

RIK(I2)=1488(4'll
88 tF(Il.NE.3RSEC)GO To 92

IF(MONO)GO To 90
SIK ( ¡?)=: /CoS (STKI I2) I

Af POLISH 68., rll

¡2=I2-l
(*10)

s Go lo I00

s c01072

$ ¡2=12-l

GO 10 100
¡ RIK ( I2) =IABB (2r I )

I¿sI2-r

GO fO t00

s c0T079

IZ*I2-l

3

t

GO f0

¡
100

GO fO 85

¡ ¡a=I?-l

RTr( ( I2) =¡TRG (5'SfK ( I2) )

CALL aDLSt(2058) f GO fO ¡00
SIK(I2l=TABA(5'¡)
RTK(IZt=TABIì(5rI) s Go T0 89
rFf Il¡NE.3RCOÍ)GO lO 67
lF (i.ONo, GOfo 9+ t l?=l?-L
Sfl( ( I¿l!I/lÂN(SlK ( I2l )

RIK ( I¿l =AfRG l6rSTK ( I2) )

caLL A0LSI(2068' 5 GO fO ¡00
Sf[ I I2) =TÂ8/l (ór I )

Rlx(I?)=lÀ88{6¡I) 3 GO TO 93
coNlI|luE
À¡OT UNLOAD ANY REMAINING OPERAIORS SlILL IN ISIK( I
IF(Il.Eo.l)G0 lo lIn
Il=Il-t $ I1=ISIK(tl) 3 CALL Op(¡T)
RETURN
ENT)

St,tsROIJIINE PAK

c0l{H0N/PRNT,/LIST ( | 0, rKAD (c0' r lpÂKrLl rL2
corHort Nx.JPAKTHOñO

C ..r Ll lS LISI( ) POINIEeT L2 ¡O-CfR

89
90

9?

93

c
¡00

I02

lt0
¡ GOÍO 102



IPAK=LSHFT ( IPAK'6) .OR.IiX
L2=LE- I
IF (L2.Gf.O) RETURN
LISf{LI)=IPAK S

L2=10 I
IF (LI.LT.9) RETURN
PRINT li (LI5f(Il rI=lr6)
F0RMAT(6X't3410)
LISf(lr=IoH s
L1=2 $
END

IPAX=O
Ll=L1.1

IPAK=O
L2=10

IF (M.E0.I4) SIK(I2) =t /8
70 IF(RTKlI2.Il.LT.0)cc To t5

RIK ( I2) =RTK ( I2.I ) Õ*Pt( ( J2)
GO TO t5

75 B=-RfKtI2+tr 5 J=RTK(I?l
tFllJ-?þlJ/21).NE.0)8=-B 3
IF(M.€o.l4tsTKtt2t=l/B t
END

s IF(M.Eo.l4)RlK(I2)=¡/RTK(l2t

SUTROUÍINE OP (M)

COHMON,/P0LE/It1P ( 100) r ISIK t20) rSlK 120) rRlX (?0) r IJ¡ IKr I1 r I2TLASTTLNK
C TÕã JNSERÌ COMMON, I¡IlEGER ElC CAROS

r,fr{!H-6 S f2=12-2
GOTO ( I 0 r 20 r30 r 40 r50 r55r60 ró0 ) ¡ÈlH

t r.¡
sfK ( ¡¿ I =slK ( I2. I ) .S1K ( I2t
RIK ( I¿) =RlK ( I2. I I .RlX ( I2 I

CALL ÂDLsf (M'2OOB)
RE IURN

sTK ( ¡¿ ) -SÎK I I?. I ) -51l( I I2)
R'f K ( l2 ) :RlK I I2.t ) -RlK ( I? )

G0 fo 15

I2!I2.¡. S STK(I?)=-SlK(¡2)
Rfx(I2¡=-RTK(12) r ß0 lO l5

Sli I I ¿ ) =STx ( I¿. ì t.SlK I I2 r

RlÁ(¡¿):RTK(12.1'IRTK(IZ) 5/ ,..
STK (¡Z ) tSTK ( I2.l ),/StK ( I2 t
RIK(I2)ERtKtl?.I),,RtX(I¿) ¡

.... < .... RECIPROCAL OPERÂfOR
I2=I2.1 .$ sfKtÍ2t't/sf(IL?,
G0 T0 l5

I ANo r ...
IF(Sl({l¿.1).Lf.0JGo tù Aq
STK ( I 2 ¡ =slK { I2+ I ) +èsT( ( I 2 )
tF (l.1.Ê0. ¡4) SfK ( I2) =l /StK ( I¿)
8=-sfK(I2+l) s J=STK(I2l
B=B.¡SÍK(IZ)
lFllJ-¿'lJ/?l).NE.O)B:-B $

Il r I2TLASITLNK
I ) rlPIrfPJr

CALLED BY S/R POLISH TO AOD ON A CELL-OUAD AS fHE POLISH LISI
IS CRÊAIEO - BACKIARDS
LNK=6¡vE(I) ¡ ACELL(LNKI'STK(I2,
BCELLILNK¡=RTK(I2) 5 I2=I2.I
CO¡{PUIE INDEX OF CURRENÍ CELL
ICELL(LNK)=LsHFI(MrI6) . LS'IFÎ(LASÎ'9)' ICELLILNK)
INDEX=KCELL (LNK) =INDEX.RANK (LNKI
LAST=LNKTREIURN¡END

INfEGER FUNCTION GIVE (X)
COÉHON/LSI/ICELL ( sl 1, . aCELL (Sl I )' BCELL ( 5 I t t' KCELL (51 I ) rTPI' IPJ'

XBPI TBPJI INDEX
COHKON,/F./l H t JH I KH r LH r l,lH ¡ Nll

INÍEGER ÌPl TfPJTBPI rBPJ
GIVE A CELL OUADRUPLE
6TVE=IPI ¡ IPI=ICELL(TPI} 3 REIURN
END
SUBROUÎINE SAVE INI
CoH¡loN/Lsl/ICELL (sl I t .ACELL l5ll ) TBCELL (51 I l ¡KCELL (5ll I ¡lPl rlPJ¡

XBPITBPJTINDE,\
CO[i{Oñ/F/l I r JXrKH rLH rHtl. NH

INÎEOER IPI TIPJTBPI rBPJ
SAVE CELL-OUAD N
BPI=¡C€LLIBP¡l.N ¡ REIURN
END

FUNCIION PP (X }

cor{MoN,/PoLE,/¡r1p (1001 r IsTK (20) ,s1K (20} rRlK (20t rtJ¡ lxrll r 12rLASÍrLNK
COHH0N,/PRNI,'L I Sf ( I 0 t r KAD ( A0 ) ¡ IPÂK r Ll ¡ L2
COI{HON NT,JPAK,MONO
INTEGER PP
LOGICAL JPÂKTMONO

C o¡r PP RETURNS NÊXT NON-BLANK CHAR. UNLESS EOF ENCOUNIERED
IF (JPÂKI CALL PAK

C COMHON JPÂK LOGICÄL JPAK
IF(TX.LT.8I)GO IO 4

I REA0 2rKAD
2 FORMAT (EORI }

SUBROTJfINE ADLSI IMì
coMrloN/PoLEltHP ( I 00 ) . ISTK (¿0 ) r STK (20 ) ¡RTK (20 ) r I Jr
COMÍ{ON,/LST,/ICELL (5I I } 

' 
ACELL (5I I I TBCELL (5I I } TKCELL

XBPI¡EPJTINDEX
INfEGER GIVE 

'RANK

l5ró

GO 10 15

Go f0 l5

$ RIK ( I2¡.t/RTK ( l2)

G0 10 70

SfX(I2)=n

IF{EOFrl}10r3
3 IK=I
4 IF(KAO(IKI.EO.IR
5 IK=IK.¡

IF(IK.GI.8O)I,4
6 PP=KAU ( lK)

RETURN

I 0 PP-0
ENO

5

s 8=8ÕIRTK ( l2 I
RfK ( ¡2¡ -B

GO tO ¡5(il1t).

RETURN

IF IS NONZERO

(t12)

lXr
(5t

SUSROUTINE PRNI(II
COMMoN,/PlrNl/L¡Sf ( I 0 ) r KAD ( 80 ) r IPAKr L I ¡L2

C TÕT LISf CURRENI EXPRESSIO¡¡ - DO NOf ADVANCE LINE
TF(IPAK.EO.C)GO To IO
LISf (LT ) =LSHFT ( IPAK I6TL?)
IPAK=o $ L¿=I 0

C Ótcoi ABOVE CÂRD UNCERIAIN
G0 T0 ll

t 0 Ll=LI-l
1l IF(I.NE.0) I5't2
¡2 PRINT 13¡ (LISf (Jl rJ=l rL¡ I

t3 FoRrlal(6x'10410)
REIURI\

c
c

5 PRINT l6r (LISI (J) rJ=l rLl,
6 FoRt1ÂÌ ( IH.'5XtI0At 0)

REfURN $ EN')
c

c
l0

I5

20

30

50

55

60

65

c

c

c

$

3

IK=¡¡1.t

RETURN



L SHFI

I OENT
ENTRY
DATA
sÂI
SA?
s82
LXó
EO
ENI)

LSHFf
LSHFf
0
8t
g2
x2
XI¡82
LSHFI

INTEGER FUÑCÎ¡ON RANK(L)
INTEGER RLroÂtFð¡oF¡FR
ÇOl{MOlr NX r JPAKrtlON0. ISCHTERR
LOG¡CAL MONO

23 NOV ¡970
RETIJRN THE RANK OF ICELL(L)
I=FB(Lì s IF(I.Ll.2) 1'5

I RANK=.¡ ¡ RETURN
E I=DA (L)

tFlI.Ll.7lG0T09
IF f ( I.EO.9) .0R. ( I.EO. I2) | 7ig

? RANK=0 $ RETTJRÑ

8 RANK=I S REÍURN
9 IF (MONO) I n r7

l0 RANK=-1,
RETURN
ENI)
SUEROUÍINE COPY (L)
ðórruonzLsiz¡ceLL (sl I ) racELL (51 I ) 

'BcELL 
(5tt l rxcELL (5ll I rfPI rlPJr

xBPI rBPJr INDEX
COl4|tO¡{,/F./ I H t JH ¡ KH r LH r NH r ¡'lx

INTEGER RLIDATFETDFTFR
INÎEGER GIVE
CoPY IFF-L AND RETURN ÂDDRESS OF DUPLICITÉD LISI lN L

I=L 5 J.L=GIVE(Xì
GET I5T CELL OF DUPLICAfE L¡ST
LÂ51=0 t IND=xCELL(I)

s iõËr-ui¡r.r-sxFT ( ICELL ( Jt;õt.0. ( ¡CELL ( ¡ ) .4.?77 000 0008)'oR'LÂsr
ACELL(J).ACELL(I} ¡ CCELL(J}¡BCELL(TI ¡ KCELL(JITKCELL(¡I
LLL= I
Lasl=J s l=RL(It
IF(l.EO.0lGO l0 ó
i¡ txceul t t l .6f . IND¡ PR¡NT .55¡ I TKCELL ( I ) r IND

455 ÈOR$AT ( SX,TKCELL trr I 3r.) =rr l5rlGT IND=rr I5)
IF (KCELL ( I ) .GÎ. INDI GOTO Á

¡=6fvE (x)
G0T05

ó ICELL(LASTI=tcELL(LÂST).Ä.?77 000 ?7?8 I RETURN

ENTRY RELEÂSÊ
RELEÀSE LIST-L
IF(Ih.E0.0)G01O8080
PìlI,lT tlSr!

e8 FORMÂT(gXr... RELEASE..e.I5 )

80a0 c0NlINuE

I IF(I.EO.O)REÍURN
CALL SavElIl 5 I=RL(l) S 60 f0 I
END
FUNCfION LL(L)
coHMON/L5T/¡CELL (51 l 

' 
rÂCELL {51 l} TBCELL (51 I ) TICELL (5lI ¡ rlPlrlPJ¡

¡8P¡ 'gPJr INDEX
LL REIURNS LEFf-LINK
IEMPORARY DEBUOGING trSG IO 8E REXOVED

IFlL.EO.0lsToP 55
iL=ICELL (L) .4.7778 3 RETURN

äi åÈiüirii'itrË niðxr r-¡Ñr oF Lrsi-L - REluRNs 0 rF t{ol€
ENO
INTE6LR FUNCTION RL(L)
COIIMON/LST/ ICELL ( 5 I I I' ACELL (5I T I' BCELL (5I T I TXCELL 15I I } ¡ fPI TÎPJT

XAPI ¡BPJT INDEX"'rÈlrÞoiÀRv 
DEBUGGING rlsG lo BE REt{ovED

IF(L.Eo.o)a=z/(a-a) ....(*r4)...'
åLluiiËi i iCerl (L) r-er . a¡ 7778
RETURN
END
INTEGER FUNCÍION DF(L'
êorroñzusiz¡ceLL(sll t 

'^cELL 
(51 t I 

'BcELL 
l5Ill TKCELL t5ll ) rTPrrTPJr

XBPI 
'BPJI 

INOEX
OF RETURNS ÍTIE DAlÂ ÂND FLAG FTELDS

DF=LSHFf ( ICELL (Ll r-lt ) .Â.7778
REfURN
ENO
¡NIEGER FUNCI¡ON OA(LI
corilON/LST/ICELL (51 I I r 

^CELL 
(5t t l TBCELL (51 I I ¡ICELL l5ll I rlPl rYPJr

XBPITBPJt ¡NOEX
RETURNS DATA FIELD OF ICELL.L

DÁ=LSHFT ( TCELL (Ll r-rBl ¡1.778
REfURN
END
TNTEGER FUNCfION FB(L)
ðor¡o,uzusrztceLL (5tt t 

'ACELL 
151 t r 

'ECELL 
(51 I | ¡ñcELL (5lt I rlPl ¡tPJ¡

tBPITBPJTINDEI
FB=FLAG B¡fS
F8=LSHFI ( ICELL (L' r'?'I) .4.3
RETURN
ENI)
INÍEGER FUNCT¡ON FR(LI
ôdwoñ7r-siziceLL (5t t ) r acELL (51 I I TBCELL (51 I t rrcELL 15l I t rTPI rlPJr

XEPI rBPJI IIIOEX
JNTEOER RL
iËiõvÈ ¡Cõ¡¡r cELL oF L¡sr-L At{D REIuRN ilEr }GAoER roo*Ess
FR=R¡-(L} I cÂLL SÂvE(Ll
ICELL(FR)=ICELL(FRI.Â.777 777 OOOB

RETURN
END
FUt{CT¡ON NPIR(¡rJl
bórr¡oñ7usrz¡cÈLl t!tt I .¡ceut t5ll l TBGELL (5ll I rKcElL (51 I I rlPt rlPJr

XBPI ¡8PJ¡ INDET
COI¡|{ON/F/ I H ¡ JH r Kll r LH r HH r NH

INTEGER RLT0ATFBTDFTFR
Áerunt rxÈ LcH (NoÎ 0 oR l, oF lH€ PoTERS OF ErP-l 

^io 
EIP-J

. IF NONE RELEVANÎ EEIURi¡ IOOO
NPIR:¡000 $ L=I

? K=L
3 KXãUF(KI

IF( tKK.NE.2r58).A. (KK.NE.2ró8' lG0T0 20
r0R+
CALL ROP (K'KK'
IF (OF (KK) .NE.0) ST0P 474
KJ=ACELLtKK) S IF( (KJ.EA.0l.O. (KJ.EO.ll )GO fO ¡0
I F ( l( J. LT . NPIR I NPIR'KJ

l0 IF(L.NE.JtG0 TO lt
RE IURN

llL=J ¡ GOTOZ
2o IF(KK.EO.0)GO lO t0

lF I (KK.NE.2l rts l .A. (KK.NE.2t{B} ) GOÎO 30

IORD
slr¡F1 COUNT

({r3)

cc
c

c

c

c

c



K=RL(K) $ GO 10 J
30 IF{ (KK.NE.2l2rl).A. (K(.flE.2l39t )60 TO l0

SCAN fHRU LEADIN6 (+I-CHÂIN
3I K=rìL (Á) 5 KK=DF (K)

IF ( (KK.EO.2l28' .0. (KK.EO.2l38) I OO lO 3l
32 IF( (KK.NE.2l58) .A. (KK.ÀlE.2t68) tG0 fO 35

CALL ROP {K'KJ)
KK=OF(KJ} $ IF(XK.NE.N)STOP 425
KX=ACELL (KJ)
IF( (KK.E0.0t.0. (KK.EA.l) )GO TO 35
IF (I{PI{R.6f .KK) NPf R:KK

35 CALL fFF(Krl(JrKK)
IF(KJ.EO.O)GO TO IO
KJ IS ADURESS OF NEXÎ }/FF
KgKJ 5 KK=DF(K) s GO T0 32
ENO

(*ts)....

FUNCTION XVAL(II
conMoñ,/Lsf./ IcELL (51 r ) r ÂcELL (5t I I r BCELL t5t I I TKCELL (5I I ) r TPI r TPJr

XBPI ¡BPJr INDEx
COMMON,/PoLE/I¡,tP ( t00 ) r ISTK (20 ) rSlK (20 ) rRlK (20 ) r IJ¡ IK r I I r I2¡LÂSTTLNK
CoHHOT{/Xvll (6) r V (32} rLA ( 1r) rJFG I tA) ¡D(36) rR (36)
cOI,IMON,/F/ ¡ H r JH r XHr LH r .{Hr NH
INTEGER RLIOÂ'FATDFTFR
REf. vAL. OF €XP-I ASSUMT¡rG VALS 0F SIN¡COSr..¡ IN T(l) rfl2r ¡...
tE ASSUME THAÎ lE ARE DEÀLING YIÍH A SINGLE-ARG PRoBLEI{
I2=1 S CALL lFFlIrJrK)
iFF RETURNS ¡I¡GHT ENO OF TFF.I IN K

5 CONTINUE
It=FB(K) 5 IF(Il.EO.2)GOT0 20 S lFrI¡.EO.0)OOIO I?
ELSE ERROR
PRINT l0 s xvÂLsl 000 5 REIURN

l0 FORHAÍ(5xr.FN XVAL - VARIÂI¡LES NOI ALLOIEO.)
l2 sTK(¡2)=ACELL(K¡
l3 I2EI2.t
ló JF(K.É!ì.I)GoTo 16 5 K-LL(Kt 5 IF|K.NE.0'60T0 5

DEStJGGER
tF(12.E4.2)Go TO l6
PRINI 15. 12 S RETURN

l5 F0RtrAf(5xr.FN XVAL - I2=r'¡3¡
Ió XVAL¡SÎX ( ì., S REÍIJRN
¿0 Il¡DÂ(xr

(iolo | 2l r ¿l r 2l'2 I r 2t. ?l ¡?3. 2l t 25 t26 ¡21 t 26t29r29) r I I
2t SfK(I2'!TtIlr 5 GOlo 13

23 sTK(I2-2,!Sfr((12-2t.SlK{I?-¡} S G0 TO 31

?a sTK(I¿-2)=srl((I2-lì-srK(I2-2) 3 Go fo 3t

es slK(I?-l)=-stK(I2-t) $ GO TO 14

2ó sfl( ( ¡2-2) =STK 1 I2-2¡ o51¡ ¡ ¡2-1 ¡ s cO tO 3l

27 slx(I¿-2)=STK(I2-l )/SfK(t2-2) 3 G0 lO 3l
PECIPROCAL

2rl StK{I2-¡)=Ì./sTt((I?-l) $ GO TO l410R t
29 xvAL=SfK{I2-I) $ IFtXvAL.Ll.0)GOtO 32 3 XVÂLÈXVAL.}STK(IZ-Z)
301F(Il.Eo.l4lxVAL=l/xVAL S SfK(IA-Z)=XVAL
3t I2=IZ-I s Go to t4
32 J=STK ( I2-2) $ XVAL= (-XVAL) oÕJ

JF(J.NE. 12+tJ/2t ) t¡vaL=-xvAL
G0 T0 30

E NI)

SUBROtJfIi{E 5ETf(Il
coHt{oN,/xvilf(61 rV(32) rLo(I2) rJFG(12) rD(3ól rR(3ó)
sEI T(l) r...T(6) ACC0RDINÊ TO €NTRY-¡ OF Lo-TÂ8LE
COMMON./F/IH
IF { rH.EO.0} GO108080

PRIr,¡T 77' I
FORMAT(l0XrcSETf CALLEDT ARGtrr14) ""{*16)
CONf I NUE

Ix¡L0 ( I I
K=LSHFI(IXr-30).4.778 S T(l)=V(K)
K=LSHFTIIXT-24,.4.778 ß l(Zl=V(K)
K=LSllFT(Ix'-181.A.778 s T(3t.V(K)
K=LSHFT(IXr-12).4.778 I l(4t'V(X)
K=LSl.lFf(Ixr-6).A.77F ß Ì(5)'V(K)
K=I¡.4.778 s f (6) =v (K)
REÎURN 5 ENÍ)

L

7f
8080

c

FUItCfION KF¡6IJ'
tNÍEGER RLr0arFBroFrFR
6IVÊ CONFIoURAI¡ON OF IFF-I
KFIG=O ¡ J=I
IF(I.ÊO.O'REÎURN

? JGTFB(J¡ S IF(JO.EE.2ICO IO 5
3 J-RL(J, s IF(J.EO.o)REIURN 3 GO fO 2
5 JO=DÂ(Jt ¡ ¡F(Jc.GT.átG0 fO 3

KFIG='(F¡G.0. (LSHFT(l 
'6-JGt t ¡ GO l0 3

ENO

SUAROUIINE YFFfITJTKI
C NOTE.. S/R I{FF Nof IAKES 3 ARot¡I.ENÎs..ÎHERE ARE IRoN6 cALLs Io

INTEGER RL¡DAIFBTDFTFR
INfEGER RANX

C Z3NOV t{OD. K tS RICI{T END OF tFF
c G¡vEN tFF (|ELL-FoRIE0 FoRIULA, BEOINN¡NG AT ICELL(¡r¡ R€fURt{ tHEC BEG¡NNING OF fHE NEXT IIFF IN J . ZERo ¡F NoN€

K=I $ ISUM-o
I ISUM=RÂNKIK'.Isut{

IFtISUH.EO.-¡)coÌO 2(=RL(K) $ GO lO I
2 J=RL (Kt ¡ nEfun¡r s ENo

FUNCTION AlRG(L,Z)
C RET. xÂl INCoNS¡S vaL FoR TRG-FN-L YIÌH ARGUI{ENÌ Zcccccccc lHIs FUNcfIoN EXISTS - BUt ¡S Not EXPECIED TO BE USED CCCCCC

c0l{t'loN/ÀuG¿0,/ÂR6 (20 ) r IRGio.arÕrro THEREFoRE A Ouüf{y Õó+.1r...
RETURN
ENt)
SUEROIJTINE RTP (H}
REMOVE ISf LEVEL IRIVIAL POIER IF ANY IN EXP.I' ASSUX¡NG NO
EXP OF FORM ( (...)1N)'N)1M ETC
24NOV7O NOT EXPECIEÍì IO BE RELEVANT FOR PRELTI{ USE
TI-IEREFORE HAOE A DUMilY
REIURN $ END

SUBROUT JNE OIslR¡B (L.N)
COMMON/LSÌ/ICELL (5t I ) r^CELL (5lt t.BCELL (5¡ l, ,KCELL (Sll ) rtpt ¡TpJrXAPI.EPJT INDEX
INTE6ER RL,DA,FBTDFTFR
¡oflMol{/F/ lHr JHTKH,LHT4HTNH
I']lEGFR GIVE

c

c

c

c

c

c
c
c



c

7 Ir!G¡vEtÅ) s IcELL(Ir¡=21t0000008 ¡ ACELL(IX)--ACELL(I)
ECELL{IX}=-BCELLII) $ KCELL(IXl=KCELL(I) 3 CALL !NSERfII¡.I)
RE IURN
0ISfR¡8UfE < CVER .eóû.. IN CCt¡fEXT 0F 1<rr¡...

e !=RLlLl $ GALL DELEÍE(I)
IO I=RL(IJ S IN=II1-KCELL(I)
tl Ix=0F(I) r lF((Ix.E0.2¡¿Bt.o.(tx.Eo.¿t38t)I2rt4
l2 I|,¡=KCELL(I) $ ACELL{¡trlIACELL(l) ¡ BCELL(I)=!,/BCELLtlt

I=RL(I) 5 c0l0 ll
t4 tFlIX.NE.2L4B)GoTo l5 S CALL oELETE(I) ¡ CO tO I8
15 IF(IX.NE.2lItì)O0TOI7 5 IX=RL(L S IX=DFtIX)

IF(lx.NE.2r4Br60lO 17 S ACELL(¡)=I/^CeLL(¡l
BCELL(Iì=t/gCELL{l) 5 I:RL(¡) ¡ C^LL OELEÍE(I) ¡ 60T0 l8

t7 IN=IN-l S GOTO l9
IE I=RL(I) S IF(KCELL(I).NE.IN)GO TO I8
t9 IX=GIVE(X) S ICELL(IX)=2tó0000008 5 ÂCELL(lXì¡I/^CELL(I)

BCELL(IXI=Ì/8CELL(II $ KCELL(IX)=KCELL(II 9 CALL INSERÍ(IX¡I'
IF ( IN.EO. IH) RETURN T IN=¡N.! S OO TO i8
0ISfRiEUtE < OVER ....s. IN CoNIEXT¡ <r¡oÕ...

2O CALL DELETE(L) ç I=L=RL(LI
aCELL(L)=I/aCELL(L) $ BCELL(L)ElIBCELL(Ll t GOlo l0
DISIR!BUTE < 0VER ã{. IN C0NIEXTT <.ro...

30 CALL DELETE{L) I I=L=RL(L)
IM:IN=KCELL(I) S 9OTO II
ENO

SUBR0UTINE VAL (I rJrKrXrY)
C0HM0rl./LST/ ICELL (51 I ) e ACELL (5t I I .8CELL (5f I ) TKCELL t 5l I I rlPl r lPJr

xBPI rBPJr INDEX
COI.IH0N/NOV,/KS ( 25 ) r JA ( 2 r I o ) r ñSCl'l { 2 r 3 ) r M ( 2 } r JP I ? ) r KP I r KPZ
c0flr,l0N,¿F / J ti r JH r KH r LH r ¡ ti r NH

C REI't01AL VÂL OF fHE CoMÞS OF EXP-I (ItI OR ?) UNOER SUBI{AÍCIi-J
C (J=0 FoR(+i-SUBHÂTCq) r T0TAL NO OF Cor,lPS IS K (K¡lr2r3)
C IN X(MAX CONSISfENcY) AND Y(ALG-CONSISÍENCY'

iF ( J.NE.0 ) Gof0l 0
C (.1 -SUIìMÂICB

00 5 L¡l'K
Ì¡=NSCH(IrL) 5 Nì=JA(I.N1.4.7778 S NzÊJA(¡rN).4.?00008
IF(N2.NE.C)GOlo 4
Z=aC(Ni) r ¿=8C(N1)
X=X.ACELL (Nl ) 5 Y=Y+qCELL (Nl ) s G0 fO 5

C NEGATION
4 f=x-ACELLINt) s Y=Y-BCELL(Nt)

Z-AC(Ni) 5 Z=BC(NI)
5 C0Nf iNLrE

tF(KH.EG.0)G0 f0 221pRir{f 44rIcJ'K,Xçy rilSCa(irt) rNSCH(Ir2)TNSCH(Ir3}
2¿l C0NfIrlúE

RElUR i
C l e ) -SUAI4ATCÉ

¡n X=y=L
D0 I5 L=l úx

N=NSCÉ(IoL) 5 Nl=JA(rrNl.A.7??B ¡ NerJA(ltNl.A.?0000e
tF(h¡2.¡!E.0)GOlO l4
Z=AC(ltt) S Z=BCIN¡,
X=XéACELL (Nl ) I YEYTBCELL (NI ) t GO TO 15

I4 XCX./ACELL(N1) S Y=Y/8CELL(N¡I
Z=AC (Nl, 3 Z=BC (NL

I5 CONTINUE
¡F (KH.E0.0, GolO 222
PRII'¡T 44rttJtKrXrY r¡'lSCtl(Irl)¡NSCH(I¡2lrNSCHlI13l

44 FORMÂf(l0Xr.VAL - IrJrK :r¡3I7r¡ XrYr.¡ 2F20.9r3I71
222 CONT¡NUE

REIURN s ENo .. ., (t1s) ....
SUSROUTINE SMALI. ( IIr|lil)
COrll{ON¡/LSf./ICELL (51 I I TACELL(5t¡ | TBCELL(5lll rKC€LL(5ll ) ¡TPtrfPJr

XBPI rBPJr INDEI
COMIIOñ/NOV./{S (25) rJl (?¡ l0) ¡ilSCl{ (2r3) r¡a (2) rJP (2} rKPlrKP2
COI{HON NX¡ JPÂKTHONOT ISCHTERR

c0}{HON./FEB?t /Nf
COHúON/F/ I H r JH ¡ Kh r LH r Hl'l r NH

INIEGÊR RL'OA'FSToFTFR
 NALYSE SIEÞ-II ¡N XS.ÍASLE . RESOLVII{G ¡NfO SU83ÎEPS ¡F POSSIBLE
ELSE OEÍERI{INE STEP SIZE IF UITITESOVABLE
REIURN HÈt NONZERO !F LIN¡RESOLYEO AND LÀROE¡ ZEFO OÍHERi¡SE

G0f0(l'9'20t30) 'NDISTRi¿IUTE - 0VER ...+.....
I CALL CEL€fE(L)

I=L=RL(L)
? IX=DF(I) $ IF(IX.NE.2O7B)GOTO 4

IcELLII)=ICELL(ll . 10000008
3 ÀCELL{I)=-ACELL(I) T ECELL(I)=.BCELL(I'
4 lF(Ix.NE.2l0B)GoTo6 $ ICELL(I)=lCELI-(Il-1

REMoVE r IF PRECEDING lSr CO|,IP0NENT - ELSE
6IF(IX.t'lE.2tIB)GOT07 5 ,:aLL DE|-EÎE(I) ¡

. .. . (*17) . ...

¡3RL(Il 5 OO10 z
000008 J coTo 3

c

3
0
APPEND ONE

R€TURN

c

c

c

c

c
c
c

INITIAL ISE
r,tM¡0
IIKS(IIt
ú(l)ÉI"4.7778 t {(2lrLSHFl(lr-91.Â.?778
Illrx(l) $ I12''t(¿l

IF f ABS (ÂCELL ( I I I ).^CELL ( I l2) ¡ .Lf .ERR I CALL lÂ3O{ (tÍ I I ¡0 I
Nll=LSrtFf(Ir-18).Â.778 3 Nl?-LSHFI(l;-?ll.A.T7A
N2l-LSHFTt¡t-30t.A.?78 3 N2zrLSHFl(tr-3ó).1.!78
R€HOVE TRIVIAL POIERS

5 CONÌINUE
REI{OVE ÂNY HATCH¡NG LEADING < OR t It¿ TI'IE 2 EXPRESS¡OIIS.. IF A
LEÂD¡NG IBUT NON.HÂICHINßI <. €X¡STS . FLIP < ¡T'O . IO OIVE .< ÂS
STANDARO FOR¡4

I Il¡=DF(H(l)' s l2r-0F(l4(2tl
¡F(I¡t.NE.ZtIB)O0TO24 r tFÍtetôNE.eIte)COÌOl0
2I¡ts IS . AND 2I'B IS <
REHOVE LEADING OPÊRAIOR PAIR

9 H(¡)tFR(t1lll) ¡ i{(a}rFR(t'l(2¡ } r cO lO A
l0 IF(I2I.NE.2l48)G0 l0 30

I¿l¡RL(H(2r ) $ Iez,oF(¡21'
Ill=RL(H(tr) s It2!ÐF(¡Il)
IF(I¿2.NE.ztlBlGOIO 22 3 tF(It2.Eo.elaB)60 TO 20
r... vs <r.,...
INIËRCHANGE {Ht¿)t-t tIrH (M(z)l - No rORRy RE ll€t (H(e)t-!

to t3¡RL(12¡) s IF(IZZ.E0.allB)¡Srla
t5 ICELL(r2l)=ICELL(I¿1). 3 oOO O0oB

acÉLL(Izit!I/ÂcEt_L(r3) 5 BCELL{¡2r)=r/BCELL(I3)
REI4OVE LEÂOING OPERATOR PÂIR

¡.6 Mtl,sFR(M(ì) ) s M(2,.FRl!,t{z) ) $ GO TO 30l8 IcELL{ tzt ) =IcELL(I2t ) -30000008ÂCELL(I21)=-aCELL(I.l) s BCELL(i2r)=_BCELL(I3' S GOTO I6
REi,IOVE <T PAIR

20 MtI)'FR(H(i)) s M(2)=FR(M(2)J S H(¡)-FR{r1{¡)til(el:FR(X(e) ! $ 60 TO 3022 1F(I¡2.NE"2t48)OOtO 3C
I2!=¡r¡. ! ¡2e.It2 r Go To l424 IFtIII.NE.ut4s)Go ro ¿6:F(I2I.FA.2i4HlGOrO e

c
L

c



c

1F(I2l.NE.2ll8)GO fO ¿rJ

lzl=RL(M(2) ) 5 r22=DF(I2r)
Iìt=RL(Mu)) s ItZ=DF(Itl)
tF{I22.EO.2I48)GO fo 25
IF(ll2.NE.2llBlg0 To 30
INfERCHÀNGE (M(1))-I ANO (H(I}I-2
I2l=I1l s I22=Il2 $ GoTO tr ""(*19)""

25 IF (I¡2.E0.2I18)2oiI4
INIERCHÀNGE < ÂND. Iñ fHE CONTEXT <r... IN EXP-2

26 IF(I2t.NE.21.48)Co fO 3o
I2I=RL (H (2' ) S I22=DF ( I2l )

IF(I2¿.NE.¿llBtG0r0 3o 5 l2?,11'|?t
27 ICELL(I22)=ICELL(I??)-30000008 $ IlllRL(I221

ICELL ( It I I =ICELL ( ttl ) +30000008
oa¡¡¡¡¡¡1¡=-acELL{I2?) 5 BCELL(Irll:-BCELL(¡2¿} $ GOÍO 30

28 lIl=RL(Mfll) s II2=LrF(Ilt)
IF(I12.NE.2l.lB)GOÍO 30 ß ¡22=r{(l) 3 60T0 27

30 IFLAG=O S CÂLL ÍYPEtM(T) 
'I¡I) 

S CALL ÍYPE(t'I(2I TI22)
GoTO ( 40 r 4 I r +2 r 43 ç 44 ¡ 45 ¡ 46 t 4l r 48 r49 r50 r 5l r 52 r 53.54 r55 r 56 ) r I22
ERIIOR

35 5T0P 5
18M

40 Gof o I 60 r 70 r 75.77 {75.f 7. 6ñ¡ 70r80 r 80r88088¡ 8ór84¡ â4¡ 84r881 r I 1l
-1tsH

4l Gof o (70 r 35 r 77 ç35 ¡71 ¡35 ç7 q¡35 r80 r35 r88¡35r84r35r6ôr35 r g8 ) r I I t
<18M

42 GoTo ( 75r77r35r35r60r 70r 35r35r80r80r35r35r84r64r35r35r881 r lll
-<'BM

a3 GOÍO ( 77r 35r J5 ¡ il5r 70 r 35r 35r 35r80 r35r35r35r84r35r35r35r881 r I I I
+8¡a

44 GOÍO (75'77r60 r7Or60.70r75r?7r80r80r88r88r84r84rå4r84r881 r Ill
-¡Bi.l

45 GOTO (77'35r70r35r70r35r77r35r80r35r88r35¡84r35r84r35r881 I Ill
<ú8M

46 GOTO { 60 r 70 r 35 r 35r 75.77 r 35 r35 r8O r8Or35r 35 ¡84r84r35r35r88) r I I I
.<tBM

47 G0T0 ( 70 r 35r35 r 35¡ 7? r 35 r35.35r80 r 35r35r 35r84r35¡35r35r88) I I I I
¡¡¡¡¡rPQ.¡..

4B GOlO ( 80'SO' 80. 80' 80. 80 r80 r 80r80r 80 ¡80¡80 r90r90 r90 r90 ra0 ) r I I I
-.....PO....

49 Golo (dn,35r80r35r80r35rEn.35r80 r35r80r35¡90r35r90r35r80) r Ill
<+.....PO....

50 GOf O ( 8s r88 r 35 r35r 8ar 88 r 35.35r80 r80 r35r35r84¡84¡35¡35¡ 88) r I I I
a<+.....P0....

5l G0T0 (88 r35r 35 r3s r88¡ 35 r 35¡ 35r80 r 35r35r35r84r35r35r35r88) r I I I
r....PO.r.

52 Golo ( tì. r 84 rð{' 84. a4. 84' 84n84r 90r90 r84'8ó'84t84r84 rE4 r84 ) r I I I
-r...oPo...

53 (ìoro t a¡ ¡ 3s, 84.35' 84. 35, 84. 35rc0r35r84r 35r 8{¡35r8{r35r 8{)' I I t
<....éPO....

5. (iOlO ( 8a,a4 r 35¡ 35'A4. A4. 35.35'90'9O r35r 35r84¡ 8ór35r35r841' I I I
OTTIERS

55 colù ( da. 35' 35.35'84. 35' 35. 35'90 r35r35'35¡ 84 ¡35r 35r35¡44 ) r I I I
56 G0T0 ( B¿ì r88 r AB r88r 88¡ 88 r 8qr 88r80 ¡€0r88¡a8 r84¡84 r84r84r 88) r I I I

A=8 UR A=.8

IF (aBS (ABS ( acELL ( t t I ) ) -ÂBS (AcELÈi I22) t ) .Ll.¡0E-8 I 6010 ó6
ERROR
PRINT 64TACELL ( Ill )'ÀCELL ( I22)
FoRMAI((/5Xr.S/R SHALL at ó4 - VALS=.2F20.9/l
SÍOP 3

Nt=NT+l
IF (aBS ( acELL ( I I I ) -ACELL ( I?2) ) .LT.l0E-81 OOIO 69
CALL IAG0N(t{(l) r0)
NI t=NIZ=N2I=r{e2=0 .... (*20) . . ..
c0l0 5
A =-E
ÀssIGN 71 fO JBACK S GO lO ól

tiT=Nl. I
IF ( ABS (ÂCELL ( I t I ).ACELL ( I22) I .GT. t0E-8) 63r67
A=I/B OR A=-!/B
ASSIGN 76 TO JBACK S GOÎO óI
tF ( ABS (ABS (ACELL ( r t t ) ) -rIABS (ACELL t 122¡ ) ) .GT. l0E-81 6010 ó3
CALL TaGoN(r¡l (Ilrl) S I¡l=M(¿l
tF (aBS (ACELL( t t t ) -ACELL ( I2et ) .+.ERRt ó9'ó7
A=-L/S 4
ASSIGN 78 TO JEACK ¡ GO 

'O 
6I

NI=NT' I
rF (ABS (ACELL ( I tt ) ¡tIACELL ( I2et I .0t.ERR' 0O1O ó3
caLL fÀGoN(il(t) rlr S lllrt{(¡) ¡ 60T0 67
TRY (').SUBHAIC}I IF APPLICABLE
sEE ¡F ii|-SUBHATCH TR¡ED 84 - IF S0 lA5 tl OVER FEIER COtlPS.
IF(NII.EO.0)60f0 82
CALL NCOMP (M (I I ¡2o78rIll I
JF(N¡I.NE.JII)GOTO 82
caLL NCOMP ll1 (2)'er7B.lll )

IF(NI?.NE.IIl)82r83
IZ=O $ CALL SBMATCI.I(IZTJZ)
¡F(JZ.NE.O)RETURN
NIIEJP(I) $ NI2=JP(ZI

83 IF I IFLAO.EO;0 ) G0 10 e8
TRY (¡)-SUBl1ATCH

84 IFfN¡Z.EO.0'GOTO 85
CALL NCOMP(M(11 r2l2BrIIl)
IF(l¡r.NE.N21ìGO 10 å5
CALL NCol.lP (H (21 retAB' Il I I
IF(I¡I.NE.N22)GOTO 98

85 ¡Z=I 3 CALL SBI.IÂICH(IZTJZI
IF(¡H.EO.0)Gofo 909
PRINI 99

99 FORMAT(l5Xr¿....'. REÍURNED FROta S/R SBHATCH....l
909 CONTINUE

IF(JZ.NE.O)REIURN
CCCCCCCCC ¡NSER1 2.NDARY SUBHATCH HEAE
c
C IE.SI SIZE OF CURRENI STEP IF ¡I IAS NOl RESOLVABLE

N2trJP(t) 5 N22!JP(2)
88 (SIII¡=(|(s(II).4.77? V77 177 000 00OB).il(lt.ratZli¡0008

C Ë.. ABOVE CARO REDUNDANÍ ÀNO STLLY
IFtH(2).E0.0)GOTO A90

89 CALL sIZE(¡I'Mt1) ¡ RETURN
a90 IF ( IZ.NE. o ) GOl0 B9l

v¿=0. 5 G0 To 89
89I V2=1. S GO fO 89

C IRY (+)-SUttI'IAfCH ... IF FAIL IRì O-SUBHAICH
90 IFLAG=I $ 60f0 80

C UPOATE KS-TÀBLE
C .TIS *HERE I5 THIS SUPPOSED Io 60
C KS(Itr)=(KS(II).4.700 000 000 000 0OOBtrX(t) . t1(At*I0O0B

c
ó3
64

66

67
69

c
7o
7t

c
75
76

c
7l
7S

c
c

80

a2

c

c

L

f,

c

c

c
c

6ô ÀSSIGi! 62 TO JIJACK
6l CALL PwR(M(l) rlll) $

IF(IlI.NE.12¿JGO r0 88
CALL ü^NfISÀ(M(l) ) $
lll=M(I) s 122=rt(2ì

62 ¡lf=NT.l

CÂLL PlRl¡{(2)rlze)

CALL MANfISA (M (2} )
g GOTO JBACK



x + LSHFT(NtlrlS)' LsHFf(Nl2'24) r LSHFf(NZlr30l'LSHFI(N22r361

Etìf)

StJtsROUTtNE StsMAfCH(TZ'JZì
CoMHON/LSf/ICEt-t- tsrt Liãtru t5l I I TBCELL (51 I I '(CELL 

(5Il ) rfPI rTPJr

xBPl rBPJr lNOEx
.oMMo¡l/Nov/KS (25) .JA (Z' laì ¡NSCH (2r3) rl{ (?} ¡JP t2} rKPt r(PZ

iq¡¡o¡¡ ¡¡' ¡eexr{otror I scH¡ ERR

C,Jf4HO\/FE87 I /Nf'coHMóÑiF,/I¡'JHTKHTLHT{ñrNH ... ' (t2r} " "
INTEGER RLTDATFBTDFTFR
irullI¡uls¡ To No-slJBMAfcH

ãËsóuur¡o* INlo coHPo¡'lENrs s€cÎf0N
K=I s tF(IZ.NE.0'Go10 l0
AOOIfIVE COMPONENTS

2 IF (M (K) .NE.0 I G0 fo 302

JP(K)=JA(KtIl=0 5 GO r0 I
30? III=DF(H(K) )'"' iÊì tiri.eo.2078).o. llll'Eo'2I08) )GoTo 7

IF(Ilt.E0.2ll8)Golo 4

ONLY I COMPONENT
a jpir<l=i-- 5 Ja(Krl)ãM(() $ Go r0 s

i irl=nr-ir¡txlt s rll:riF(Ill)- 
iÊi r iii.¡¡È.¿078).4. I It ¡.r'¡E'2r0Bl ) Golo 3

CALL DTSTRIB (M(K) 
'l)

DISIRIBUTE . oVER r¡e¡ ""
neSOlVe INTO (')-CO|{PONENIS

7 CALL RESOLVE(M(K) i2078tK)
8 ¡F(K.Eo.2)GOf0 25

K:2 $ G0T0 2
t{ULTIPLICAT IVE COMPONEI{f S

lo IF(tl(Kl.NE.0J60T0 3n3.' 
¡Þtxl=¿¡ti'fl=o s Go To l8

303 Il.I-DF(l'l(Kl)-"- i;iriii.Eo.ztzsr.o.(Ill.Eo'2I381)G0 Ío 20

IF ( I I I.EO.2I IB) GOTO 22
IF ( IlI.NE.2I48) GOfo lô
itt.nur¡ltxll s Il2=oF(Illl- --
iii r liâ.ro.¿tzB) .0. I I I2.Fo.2r38) t l2r I3
OISIRIÈUlE < 0VER o'r .....

rz ðÀiu oiirñ¡H (r (K) r4I s Go ro 20

t3 IF(Il2.EO.2llB)GOfo l5
i" ¡piii'i $ J^(K.IlEq(K) s Go ro l8
is ita=eut¡rll 5 IìzEDF(I12)' - ii r t ¡ r¿.¡.1¿.212t1, .4. ( I I¿.{F.2I38) ) G0'r0 l4

nISTRIBUTE < IN CoNlEfl <róðr" '
c^LL DISTRtH(M(K)r3)
z.t ÂuG 70 - trJ vIFr oF <-*oc gEING REaRRÂNGEo ro '<'Õr" PRIoR fo
ðÀUT- T., S/R StJ!}ilÂTCH {ROVE SITUAT¡ON IHPOSSIBLE

It CALL Ht SoLvE (IIIt2l28rK)
¡8 IF (A.LtJ.¿)GOl0 25

x=¿ S, 60T0 I 0

20 III=H(Á) T GOTr) I7
ZU IÌt=RL(M(Kt) q It2=DF{I).I)

IF ( (¡I2.Eo.2I2lì).o. (Il2.Ea.¿t38) lG0T0 l7
IF ( II¿.NE.2I4tJ) GOfO I4
1ìz=RL(M) 5 Ilz=DF(!12)
IF ( (I¡¿.NE.¿I2B).Â. ( ll2.NE.2I38) )G0f0 14
DtSTRtuUTE < OVER r.+... !N CCNIEXT.<+ðrÕ....
caLL DlSlRlE (M (K) 

'21G0 10 l7
EXIf FROM íìiSÔLUTIO¡I SECfION

c
2s rF( ( JP(r).E0.r).À.,,"Iã1,;tÊièl'-*t*lu3lr,,,ot.* posslBLE-- iìñc¿ THeRE Is oNLY I (

l'101=N02= 0

NFI=NFZ=0
tttrá++raÕrrtl

rui'¡Prrl s NZ=JP(2) s tSCX'ISCH-
27 iãrIScx.a.78 $ ¡F(I2'Eo'O)G0 fo 32
'' i;¿i:i;i;i ( Isct,-3) Í Il=lscx'a'?B

(*22\ . . ..

¡scr=LsttFf ( IsC¡"3Ì
t
t
a
t

ÂEcaUSE 0F cllANGE lr'l HÀN|ìLING oF IXPL¡CIÌ SÍEPS - SOHE CLE^N!N6
-uP O¡ ouo CODES tN oRDER

zB IF(NI.NE.O)GO TO 29
CALL ONE(IZrH(l)) s NlÉl ¡ NFtto S JAt¡tt)tLll)

29 IF(N2.NE.0)Go To 30
cÀLL oNE(IZ't{(¿)) s Ñ2=ì $ NFZTO r JA(2'I¡=fl2)

." il?iIr.oe.nrIl.a. (t2.6E.N2) )Go fo 32
-- i¡r¡¡¡r.r'¡e.o)cÂLL RJA(NFl.IlrNI)

ir Í.¡rz.r.¡e. o I c¡LL RJÂ (NFZr I2rN2)
ñFl3NF2=0
NSCH(Irl)=0
IF(I¡.6T.Nl)GOÍO 430
irr=trcr.att'¡ltItl 5 Go To 43r

430 IMI=1 s xI=YlEsooo
43r IF ( I2.cT.N2 | GO l0 43?--- ii¡à=ñðnrirle'I¿r s Go ro 43s

32 IF(JZ.EO.O)REIURN
tTTCHECKFORALG-REt'lNAl''IfSTEPNOIDEIECÍEDBEFORETt"'r
t)l;ËliÌt,r l¡2="(tlac(rt¿) s z=Bc(¡Ir) 3 z'Bc(¡rzt

NÎ=NT. t
IF (AgS (a8s (8CELL ( I I r ) ) -ABs (BCELL ( ¡l2t ) )'LT'ERR) 0O1O 80

IF(tH.Eo.0)GoTO Bo8
PnInt lggtu(¡l rH(2) rKPZ

I99 FoRMATll6t¡rrrr Sgrrrti ABOUT fO REIURN +r t{(tt 'H(el 
rKP2!rr3Iól

8os coNlrNuE
KS(KPz)=ú(I)'LSHFI(t¡(2) rel 3 KP2rKP2'l 3 REÍURN

432 iMz=I $ X2=Y2=3000'-- i¡i Is A FLAG sET FoR aLc suBslEP
435 IFx=0
35 DO ?50 I=lrLMl

u5CH(2rll=î
IF(NI.Ll.Iì)G0T0436
CALL 6(NlrlrII)
CALL VÂL (l I IZr¡ItXl'YI)

436 CONTINUE
LrO 200 J=l rLMz
IF(r{2.LT.I2)GOÎO ô3?
caLL G(N2r2rI2)
CALL VÀL(2'IZ'I2rx2'Y2)

437 CONI Il'lUE
NOI¡ SËE IF ÍFIERE IS À MAfCH

c

c

c

c

c

c

c

c
c

c
t

c

c

(.) 0R l.) SU8MAfCH
IF(IZ.rlE.0l60 T0 40
(. ) -slr.iaTcH ATTEMPI

NT=NT.I
IF(ABS(X¡-X¿).GT.ERRIGO 1Ô loq
NFI=¡ 5 NF2=2
IS IT ALGEIìRAIC

NY!Nl. I



IF (A8S (Yl-Y2) .GT.ERRt 60 10 60
38 IFX=s s Go Ì0 60

C ({)-SIMATCH ATÍEMPÍ
40 NT=NT'ì

IF(ABS(A8S(XÌ)-ABS(X2) ).Gt.ERR)GO tO ¡50
NFI=I $ NF2=2

NÎ=NT+l
IF IABS(AtsS ( YI ) -ABS(V¿l ),Gl.ERRl60r3a

rc¡¿r.o.c I DEc 7u ðé+r+r
C Ît{Y IÈle¡¡ç1¡ (.)-MATCH

I00 IF (N02.G8.I2)G0fO 200
Nl=Nl. ¡

IF(ABSf X2),6T.ERR)G0 t0 200
C GUARO AGAIIISÍ A SELF-MAICIi .. I.E. I V5 1 OR

CALL IRV(2rI2rIIl)
¡F{IlI.NE.0)G0 TO 200
NF2=2
JZ=s S CALL ONE(IZTNXI

NT=Nf + ì
IF(A8S(Y2).GT.ERR)GO l0 120

C IMPLICII ALGEBRATC
¡OI CALL OELE'TE(NX)

tF ( I2.LT.N¿)Goto I05
cÂLL RELEASE (M(2) ) ¡ Nz=O ¡ OO t0 28

l0s ItI=1
l08IP=NSCH(UiIlI) $ IP=JA(2rIP).4.7778

CALL DETACHIIP¡M(2) I ß CALL RELEÂSE(IPI
IF(Ill.EO.t2)GO lo tt0
Ill=l¡1.1 s co l0 tn8

ll0 NZ=N?-I2 5 GO tO ?B
c Il'!PLIcIT f-fiafcH

120 IF(I2.NE.N2)60T0 I30
KS I KPz ) =M ( 2 ) .LSHFT (NX r 9)

122 KPz=KP¿.Ì $ N2=0 s G0 10 28
l3o caLL *ELo(2rIZrI2rIP)

¿=ACtIp)
IF (A8S (ACELL ( tP) +I ) .LT.ERR) CALL TAGON ( IPrO )
KS (KP¿) =IP.LSHFT (¡¡XI9I
KP?=KPz.1 S Go T0 Il0

C IMPLIC¡T ({) -HATCH
t50 IF(N02.GE.I2)G0 fo 200

l.,ll=NT. I
IF(A8S(AtsS(¡a)-t).Gl.ERRr60 fO 2OO
CÀLL fRV(?rI2rItl.)
IF(Itt.NE.0)GO TO 200
NF2=2
JZ=s S CALL ONE ( IZINX)

Nl:Nf. I
IF (ABS (AtsS (Y2) -t ) .6f.ERR ) l20, tOI

2OO CONT¡ÑUE
lF (N02.L1. I2) No2=I2
IF (N0t.GE.Il ) G0T0 25.)
IF(IZ.NE.0)G0tO 240

r!T=Nl.I
IF (A8S (XI) .GT.ERR) GOtO 2sô
CALL TRV(IIIlIIII)
IF(IIl.NE.0)G0 10 250
NFi¡I
JZ=10 S CALL oNEIIZ'{x,

NT=NTì Ì
IF(ABS(yt).Gt.ERR)Go t0 A2O

C IMPLICJI 
^LGEfIRAIC20I Ic(II.Lf.Nl)GoTo 20s

L

CaLL RELEASE(M(I)) S Nllo S GO lO 2A
?0s ll¡=¡
208IP=NSc¡t(IrIll) $ IP=JA(IrIP).4.7778

CÂLL DETACH(IP,M(II ¡ S CALL RELEASE(IP'
¡F(Il¡.E0.It)GO -ro ?t0
III=IÌÌ+I $ Go fO zn8

2I0 Nl=NI-Il S GO fO 28
T-IMPLICII

220 TF(II.NE.NI)GOTO 230
KS(KPZ)=Èl(ll.LSHFÌ(Nxrg) ""(*24)"

?22 RPZ.=RP?.\ S Nt'o ç 00 lo 28
230 CALL fELD(lrIZrJlrIÞ)

z=ac (IP)
IF { ABS (ACELL ( IP}.I } .LÎ.ERR I CALL ÎÂOON ( IPr O)
KS (KPZ) =IP+LSHFT (Nxr9)
KF,2:KP¿.I 3 GO fO Zto

240 NT=NT.I
IF(ABS(ÂBS(xtt-Il.Ol.ERRrGO TO 250
CÀLL lRVflrII¡Illt
IF(Ill.NE.0)G0 TO 250
NFI¿l
JZ-IO 5 CÂLL ONE(IZINX)

NlrNT. I
IF (AAS (ABS (yt ) -Il.Ot.ERR) 2¿0re0I

250 coNfINuE
IF(NOl.Ll.Il)No¡=Il
G0 l0 e7

55 PRINf 5ó,ACELL(IIII,ACELL(II2) t STOP
56 FORMAT(5Ir¡SUBMATCH - STEÞ BAD - VALS¡.'2F20.9'
60 JZ=24367

IF(IFX.NE.0)OO TO 7o
CHECK CASE OF Y¡IOLE.ETP MATCHING SUB-EXP
¡F(Il.NE.NI)60T0 64
Nlroslll=ü(tlsr,l(¡).0
CÂLL ¡gL0(2rIZrI?rltZ)
NZrNA - I a

óI IF (ÀBS (ACELL ( II T ) ¡ACELL (II2} ).LT.ERRI CALL IA6ON I III IO}Z3ACtIII) S Z=ACtttZ)
KS(KP¿)Elll.LSHFTtItAr9t 3 Xp2gKp2rr ¡ GO lO Aa64 IF(I2.NE.N2t60T0 ós
NZ=oSII2=H(Z)SM(Zt=o
CALL YEL0(t'IZrItrIll)
ñr=NI-It
G0 T0 ól

65 CONIINt,E
CÀLL ¡ELO(lrIZrIl.Iìlt ß CALL IELDt2¡IZtLZ¡It2t

¡.AC(llt) r Z=ôc(¡tZt
\f =Nl. ¡

tF (¡ds (Âds I ICELL { I I I ) ) -A9S t^CELL ( I¡2¡ ¡ 1,6Í.ERR' gO rO 5'C0{PEñSAIE S¡GN
I F ( A8S ( ÂCELL ( ¡ ¡ I ¡ .ACELL I I I 2 ) I .LT.ERR} CALL TAGON ( I ¡ T, O I

^s 
( r(pa ¡ r¡ I r.LsHFr I r I zr e) .LSHFT ( r ¡;ts;;Lixrriiãrz+rÀF2=l(P2.I

CNECK RET,lNANI SIEP
Il¡:M(l) s lt2=utZ)

z=SCtItt) s
NT=N1.1

Z=8C(112)

(*23).

0vs0

c

IF(ABS(A8S(BCELL(ITI) ).ÂÊS(BCELL(ITE) } ).LT.ERRIGO TO 8O¿=ACl¡tt) s Z=ÂC(ItZ)
Nl=Nli I

lF laBS (ABs (ÂCELL ( I I I ) ) -ÂFs{ACELL ( ItZ} ) ) .GT.ERRTcO TO 55CoHPENSAIE sIGN
IF (aBS (aCELL ( I1 Ì ) .ACFLL ( tt z, I .Ll.ERR) CALL fAcoN (M I I ) r0 )



c

62 Nt=NI-Il $ N2=N2-I2 S GO fO 28
RELEASE þIATCHEJ ALGEERAIC SUSSTEP

70 Il¡=1 5 r{X=Il $ Il2=I 5 NY=NI
7l IF(NX.NE.NY)GofO 72 ....(*25)

CASE OF IHOLE-EXP MAICHIÀ¡G SU8-EXP
CALL RELEASE(M(Itl)) 5 M{IlIl=0 $ Go 1o 75

t¡óÕÉ.È MAKE SURE ÂLL REFS T0 POINIER IN JA(-r-) ARE HASKED

72IP=NSCH(t11rIt2) I Ip=JA(Illr¡P).A.7?78
CALL DETACH(IPIM(IIII ) S CALL RELEASE(IP)
IF(Ile.Ea.Nx)Go l0 7s s Il2=Il2.I ¡ 60 To 72

75 IF(II1.Eo.2)GoTo 62 5 Ill=2 s N¡E12 s NY=N?
I l2=l 5 Gofo rl

80 CALL RELEASE(H(I), S CALL RELEASE(I1(2I I
RE TURN

30 K=K.l g II{=RL(IN) S It=DF(IN)
IF ( ( Iì.Eo.J) .0. ( I t.E0.J+I ) ) 30'26
EÑTRY RJA

C UPOATE JA-TABLE FOLLOUING SUBS-TEP D€TACHMENT
c I=I OR 2' J=II OR J2 ANO X=NI OR N2
C RESET K fO FORMER À¡T OR N2

.fiK=KAJ
D0 60 IN=IrJ
IM=NSCH{I'IN) S JA(IrIH}=0 .,.. (*26)....

6O CONÍINUE
IM=0
DO 7O IN=I rKK
IFIJA(IrIN).EO.0)G0 T0 7o
IM=IM.I S JA(IiIH)=JA(I'JIt)

7O CONIINUE
TEfURN
ENTRY TRV

C REÍURN K NONZERO IF ]Í{PLICIÍ MATCH IS UIÎH SELF. I.E. O VS O

c oR IVst. I IstoR2aNDJlS¡tOR12
K=O 5 ¡F(J.GT.I)REIURN
KK=NSCHII'1) S KK=JAIITKK).4.7778

C A CONSTANT HAS A ZERO DF( )

IF(DF(KK).NE.0)RETURN $ K=4 ¡ RETURN
ENù
su8RoufINE fIME (¡rlM)
DIMENSI0N Lf(4) ¡LS(2)
CALL LIIME (LI)

C IE NEEO LT(4) EVEN TI.IO I'E USE ONLY ¡ST TI'O BECÂUSE LI¡I4E EIPECYS II
TM= { LT (1 ) -LS ( I } ) .0.00 lrl Lt (2) -LSI2) ¡

IF(X.E0.0)OOT0 2
PRINT 50rLS(I) rLS(21 rLT(l ) rLf (2) rfH

50 FoRMAT (5X rsINtf T J[aE=rr t5.r..r I4 r5¡rrNOUr.t J5r..rr IIi5XTTELAPSED
xIIME=r,F10.4'o SEC|)

2 LS(I)=Lf(I) $ LS(2)=LT(2) S RETURN 3 END

SUEROUTIt{E DETACH ( T. J)
coMHON/LSt/ICELL (51 I )' ACELL (5I I ) TBCEI-L (51 r ) ¡KCELL (5ll ) r TPI rlPJr

XBPITBPJTINDEX
col.tM0N/F,/ I H

INIEGER RLrDA¡FBr0FrFR
C OETACIi I,FF-I FROH fOR¡IULA-J
C FREE I{FF- I

CALL RIFF(I'JL)
IND=KCELLII) S L-RL(JL)

C IS IFF-I FI OR F2 IN ....F1F2....
5 IF{KCELL (JL) -IND) 10.30r40

C IFF-I IS F?
I 0 KCELL (JL) =KCELL ( JL ).t

L=JL $ JL=LL(JLl t IF(KCELL(JL).LT.IND,OOl0 t0
C REMOVE fIiE OPERÂTOR ÂSSOC. IITII IFF

II CALL ÐELEIE(JL)
I2 JL=L S L=LL(L} ç IF(L.NE.O}60T0 15

J=JL $ REIURN
Is lF (KCELL (L)-IND) 12rI8rI6
ló CALL ROP(LrI6)
l8 Ll=DF (L) -206ts

GoT0(20rAl r22'23r24r25) rLI
2O ACELL(LJ=ACELL(JL)+ACELL(IG) $ ECELL(LI=BCELL(JL).BCELL(IG)

G0l0 l2
2I ACELL(L)=ÀCELL(JL)-ACELL(IG) 5 BCELL(LI=BCELL(JL}.BCELL(tG)

G0T0 t2
22 ACELL(L,=-ACELL(JL) 5 BCELL(L)=-BCELL(JLI

GOTO I2

IHERE IS S.TILL CÂSE OF ..FI¡FEÐF3... â O TO CONSIDER

ENf)

c
c

SUBRoU'IINE RESoLVE ( 1 r JrX )

COMMON/LSI/ICELL (51 t ) t ACELL (51 l. ) r BCELL (51 I ) TXCELL (51 I I rTPI ¡ TPJr
xBPITBPJTINDEX

coMüoN,/Nov/xs (25) ,JÂ t2r I n ) ¡NSCH (2r3t rM (2) rJP(2) rXPl rKPa
C0HM0N,/F/IH
INIEGER RLTDATFSTDF¡FR
RESOLVE EXPRESSION-K (K=I OR 2) EEGINNING AI I INTO (')-COI'IPS
IF J SET T0 2078 ELSE T0 ({)-col.aPs ¡F J!2128
SCAN LEADING OPERAIORS UNfIL AN OPERATOR OF A ÐIFF. CLASS
IF(IH.EO.0)Got0 ó06

PRINT TTrIrJrK
77 FoRMAT(l2XrÞS/R RES0LVET ARGSr.r3I9 )

606 CONTINUE
IN=IH=KCELL(I) s Iì=I

5 IL=II ß II=RLIII) ¡ ID=DF(11)
IF ( (IU.NE.J).4. ( ID.NE.J.l ) )G010 li)
JN=KCELL(II) $ GO TO 5

l0 IP=l $ JA(Kr¡P'=Il
¡2 r1=RL(I!)

IO 8E REMOVED
IF(II.E0.0tSToP 424
IF( KCELL(IlI.NE.IN)GOTO I2
lP=IP.I5JA(KrIP)-I1$IDãDF(ILl
IF ( I0.EO.J) GoT0 t5
TF ID.NË.J NEGATE FLAG ENIRY
JA ( K r IP )=JA ( K r IP ) r I ll0 008

t5 IF ( IN.E0. lH) C0T0 20
IN=IN.I 5 IL,LL(IL) $ G0 TO l2
CLEAN UP

2O JP(K) =IP
RElURN
CALLIITG SEAUENCE¡ NCOMPIIrJ.K)
ENIRY NCOMP
RETURN K = N0 0F (+) (J=2078) OR (¡) CoMPS IN EXPR-I
K=l $ IN=J

25 It=OF(IN)
I F ( ( I I . E 0 . J ) . 0 . ( I t . E o . J + I ) ) G0 T 0 3 0

IF(J.E0.2I¿8)60T0 27
IF(It.E0.2ltts)GoTo 28

Zô REIURI\
27 IF( (It.€o.2tlBl.0. (lt.E0.zt48))28r26
28 IN=RL(IN) $ GotO 25



c

c

23

?4

25

30

40

4I

a2

ln

Il)
¡I

l2

l3
l4
I5

ÂCELL{L)=ACELL(JL).ACELL(I6) ¡ ECELL(L)=8CELL(JL)ÕBC{LL(IG)
GoT0 12

ÂCELL(a)=rcELL(JL)/aCELL(IG) 3 ECELL(L,=BCELL(JL)/8CELL(IGl
GoTO t2

aCELL(L)=I/acELL(JL) s BCELL{L)=l/BCELL(JL}
G0f0 t2

NE I THER
LI=JL $ JL=LL(JL) S CALL DELETE(LI) S GOTO 5

IFF-I IS Fl
IG=OF ( JL )

IF( (IG.E0.2078).0. (IG.E0.2128) tGOlo tI
L=RL(JL) s Ll=DF(L)
IF(IG.NE.2108)60T0 ôE .,..(+21),...
IF(Ll.NE.2ll8lGolo 42
CALL OELETE(L)
¡=RL (JL) s G010 ll
CONVERT. TO.
ICELL ( JL ) =ICELL ( JL ). T OOOOOOB

ACELL(JL)=-ACELL(L} 5 BCELL(JL}='BCELLIL)
G0 T0 12
IF(IG.NE.2138lSTOP 42ó
¡F (L1.80.2t4ts' G0 T0 4I
coNvERf / lP <

ICELL ( JL ) =IcELL (JL ) .I 0000008
ÂCELL(JL)=l/AcELLIL) $ ECELL(JL)Ê¡lBcELL(Ll
Go l0 t2
ENO
FUNCfI0N NCM{NrM)
COMMON/F/ J H

REIURN N-COI'IBINAT ION-ü
NR=N+ISNUt{=t$t¿DEN=l
00 l0 I=l.rM
NR=NR-I$NUM=NtlMÐNRINDEN=NDENTI
C0NfINriE
REMOVE DEtsUGGING PRINI
NCM=NÚts/ND€N
IF(IH.E0.o)GoTO 505
pRINf lZrNr¡{rNCM
CONT INUE
FOR¡|AT(5X'I2'r -COMF-.rI2rr IS ÕrI3l
REIURN S ENf)

GO fo 15
IE K=K.l s Go T0 13 ... . (128) .. -.

ENt]

SUSROUÍINE TAGON(I'K)
¿OilHON/LST/ICELL (9I 1 I I ACELL (5I I ) ¡BCELL (5I T )'KCELL i5t I ) TTPt T TPJ¡

XBPI TBPJ¡ INDEX
ç0MM0N,zF,zIHr JH TKHTLHT MHrÀlH

INTEGER GIVE
c iAG OÑ Â . OR A < TO THE FRONÎ OF EXP.I !f,PENDING ON |I.IETHER I-I
C OR K.NE. O . SET I IO NEU CELL ADDRESS

IF(K.NE.0lG0 l0 Io 5 JlGlvE(Xl

I'
I}

ICELL(J)=21¡0000008 + LSriFl(Ir9)
ICELL(I)=ICELLI¡t.J s ACELL(J)E-ACELL(
Í.ICELL(J)=-8CELL(I) 5 KCELL(Jl=KCELL( S I=J

l0

c

c

II
20

c
c

RE TURN
J=GrvEtxt s ICELL(Jl=2l4000000B.LSHFTlIr9)
ICELL(I)EICELL(I).J $ ACELL(J)¡IIACELL(I)
ECELL(J)=I/BCELL(I) ¡ KCELL(J,-KCELL(¡)
REfURN
FNfRY RIFF
REI,IOVE IJFF-T AND RETURN ITS LL IN K

CALL llFF(IrJrK)
ICELL (K) =ICELL (K) .4.?770007778
K=LL(I)
ICELL(I)=lcELL(I).4.777 777 0008
PAICt'l-UP GAP
IFIK.EO.())GO TO II
ICELL (K) = I ICELL (K) .A.777 000 7778t .O.LSHFI (J.9)
IF(J.EQ.0)GolO 20
ICELL(J)=IICELL(J).Â.777 777 0008).0.K
CONT I NUE
REfL,,RN
ENTRY ONE
RETURN A I-LIST OR I-LISI OEPENDINC ON I (O OR I)
IfS ADORESS IN K

K=GIVE{X) $ ACELL(KI=8CELL(K)=I ¡ KCELL(K}¡.I
RE TURN

ENO

r l¡J

AND RETURN

¡ ICELL (llt.t

505
l2

SUtsR0rrlIl{E GlNrIrJ)
cotMor!/Nov/Ks (¿5) r JÀ (2' I ô ) 

'NSCH 
r2,3) rH (2) rJP (2) ¡KPt rKPZ

c0Mf10Íi/F/ I H

SET ThE NFXf COqEINÂTION NF J.IRI-N
1F THIS IS A ISÌ CÂLL - I\IfIALISE TO IST VALUE
lF{NSCH( Irl).NE.0)60 TO t0
TNIIIALIST ro trZr3.... J
tl{) 5 

^.1 
rJ

NSCh(lrK)=K
C()NfINUE
RÉ f URN

I F (NSCH ( I rJ) .11.N) ì I r 12
NSCd ( ¡.J) =NSCH ( I' J).1
REfURf!
(=l
IF IJ.GT.I)GOTO I3
ISCH(irl)=t f RFTIJHÌi
IF (NSCts ( LJ-( ) .LT. (N-( ) t ì a r t8
i!5CH ( I rJ-x) =NSCH ( l,J-() ¡t
¡1=K-l $ IFfK.Lf.0)G0 to ó
NSCH ( I 

' 
J-K ) =NSCB ( l r J-(-l ) . ¡

c

SU8ROUTINE DELETE {L'
CorMolr,/LSl/ICELL (5ll ) 

'ACELL 
(5lll TBCELL (5Il ) TKCELL (5ll ) rlPI ¡TPJr

TBPITBPJTINOEI
INTEGER RLr0ArFBr0FrFR
OELETE CELL-OUAD L FROM LIST
IL=LL(L) $ IR:RL(L) $ CALL SAVE(L)
IF ( IL.EO. O } GO TO 5
ICELL ( IL | = ( ICELL ( IL) .4.7770007778 ) .O.LSHFT ( IRr9l

5 IF ( IR. EO. O ì REIUF N

ICELL ( rRl =( ICELL 1IR1.4.7777770008).o.¡L
REIURN $ ENO
SUBROUf INE INSERT (L.H)
C0rlMOñ./LSl/ICELL (5I I ) TACELL (51 I ) TBCELL (5tl ) TKCELL (5ll ) ¡lPI rTPJr

rtlPI '8PJr INDE¡
INSERT 0UAD-L BEfTEEN 0UÂo -(M-I) AND OUAO-H
IL=LL (M)
ICELL (L) 

= { ICELL (L) .A. 7770000008) .0. IL.O.LsHFt (f ,9t
I CELL ( I L) = ( I CELL ( IL ) .4.77?0007778 ) .O.LSHFT t Lr9)
ICELL (r) = ( ICELL tM) .A.7777770008t .o.L
RE f URN

T:NTRY L]NK
JoIN LIST-¡1 l0 THE RIGHT oF LIST-L
CALL rFF(LrILrlX)

c



I CELL r I X ) = ( ICELL ( I X ) . A.7?70007778 ) .0.LSHFl (Èat 9)
ICELL (M) = I ICELL (H) .Â.7777770008) .0R. IX
REfURN
Er!TilY À00N
ADO'ON TO ITEAO OF LIST-L CELL-OUAD-M AND SET L=il
iòer-ltsl=lceul(H).LSHFT(Lr9) r ICELL(L)=ICELL(Ll'r'l
L=H $ REIURN 5 ENO

SUBRoUTINE MAN'ÍISÄ (L) .. -. (+29) " "
INÍEGER RL rDArFBroFrFR
ÊitnÀci ¡iÃñrIssÀ'À FRoM FxP-L rHIcll HAs oNE oF Tr{E FoRMs +aN'
.1AN'<+ANT.<1ÄN ETC AND SET L=ÂDOR. O NEII LIST
I=DF (L)
tFr (1.E0.2t58).0. (I.E0.2r681 )G0 T0 I0
IF( (I.E0.2I18).0. (I.EO.2l4B) )G0 T0 5
pRINI 3'I
FORMAT(/5Xr'S/R IIANTIsSA - CALL BAD - IAAçT3/I
sfoP 4
CÂLL OELETE (L)
¡:RL(L) S G0 T0 I
LoCATE EXPONENI r OELETE If AND 1 OR t
ð¡rl noptr-,Ir s caLL DELEfE(I) s caLL DELETE(L)
L=RL(L) S RETURN S ENO

SUBROUTINE ROP(IrJ)
cor.ttoN/LST/ICELL (51 I ) r ACELL (51 I )'8CÊLL (51 I ) TKCELL (5I I I rf P I rTPJr

20 lF( (I.a.100008).Eo.ll)Go lo 25
fac oft a <

CALL lAGoNlJ0rI)
?5 lF(KK.E0.I8)G0f0 40

KK=KK.t S I=NSCH(lIrKK)
CALL OEfACH (K0rM(II) I S

I:JÂ(IIrI) 3
CALL LIt{K(JOrKll)

KO=I.4.7778

....(t30)....

c

c
c

I

3

5

l0

c

3o

32

40

4l

44

3=GIVE ( X )

IF( (I.A.100008).NE.o)GoTo 30
aCELL (J) =ACELL (JO) íÀCELL (KO)
BCELL ( J) =BCELL ( JO) ÞBCELL (K0)
ICELL(J)=2I20000008 S GO rO 32
ACELL (J) =ACELL (JO) /ÄCELL (KO)
ECELL ( J) =tsCELL (JQI /BCELL (KQ)
ICELL(J)=2130000008
CALL ADON(JArJ) I 60 f0 25
RESEf INDICES
CALL wFF lJ0rJ;KK)
KCELL ( KK ¡ =-l
¡:KK S KK=LL(KK)
IF(KK.E0.0)G0 f0 44
KCELL(KK)TKCELL(J) . RANK(KK)
60T0 4¡
CONT ¡ NUE
RE IURN
ENO

c
c

XBPI '8PJI INDEX
C0Mr'l0N/F/IHr Jll tKH' LH' MH' NH

INTEGER RLrùarF8'DF'FR
LOCATE RIGHI OPERÄNO OF OPÊRAfOR ICELL-I
GE'T REF INOEX
J:I $ II=KCELL(J)

I J=RL(J)
IF (KCELL (J).EO.II )REIURN
Gol0l
ENO

AND REIURN IT IN J

SUBROUTIfIE rELO ( II r lZr I0' J0)
coMMON,/LST/ICELL (5I I ) IACELL (5I I )'8CELL (5I I )'KCELL I5I¡ ) TTPI ITPJI

XEPI TBPJT INDEX
got{uoruzlovzxs {25) 

'JÂ 
(2r I I ) rNSCrl (2r3) ¡M (2) rJP (21 rKPl rxPZ

C0Mr'10N,¿Fl IHr JHr KHrLH r rHr NH

INTEGER GIVE'RANK
cREATE EXP FROM COI,iPONENIS ANO DO HOUSEXEEPING
Il=l OR ¿i Io IS Il OR I2. JO RETURNED fIfH AoDRESS 0F NEI EXPR

ix=l r I=NSCH(r!¡KK) $ I=JA(II'I) 5 J0.I.4.7778
CrLL DETACH(J0rM(II))
IF{12.E0.0)2'20
(. J - CoilPS

? IF((I.À.I00008).E0.0)G0 ro 5
lÀG 0N a -
CALL TAGONiJ0T0)

S lF(XK.Eo.IJ)GOTO 40
KKsrK.t s t=NSCHIII'KX) ß I:JA(¡I'I) t KO=I.4.7778
CALL ÙETACH(ÁO'C(iI) ) ç CALL L¡NX(JO.XO)
J=GlvLtx) S IF((I.A.tn000B).N€.0lGO lo l0
ACELL (J ):ÂCELL (JO ) .ACELL ( KO )

dCELL ( J ) =I.ICELL ( JQ ) .FCELL lXO )

ICELL rJ) =2ù70000008 $ G0 f0 ¡2
IO ACELL { J) =ACELL ( JO).ACELL ((O)

HCELL i J ) =ÉìCELL (JO ) -FCELL f KO )

ICELL (J) =2100000008
I2 CÂLL ai\o¡!(J0rJ) $ .,o T0 5

l.)-Cr)iPS

SUi'ROUlINE IYPE(I,JI
coMhloN/Ls1/ ICELL (51 t ) r acELL l5I I ) TBCELL (5ll I rxcELL (51 ! ) rlPl rlPJr

XBPI '8PJT INDEX
INTEGER RL'oAtFBrDFrFR

C REÍURN THE ÍYPE NO OF EXP-I IN J
C FOR NON-EXISTANf EXPRESSION

C0MM0N,¿F,¿IHr JH rKllrLH r üHr NH

Il-DFl¡)
C LOOK AT lST LEADI¡IG OPERATOR (IF ANY)

rF(II.Gt.206ts)60 r0 s
2 J=ì7 S REIURN
5 IF( (Il.NE.207B).A. (I1.NE.2108) tGO T0 ó

J=9 S REÍURN
6 IF( (It.NE.2¡?B).a. rII.NE.2t38) )GO TO 7

J=I3 S REIURN
7 IF(It.NE.2t58rG0 fO A

J= I S REÌURN
I IF(I1.NE.2t6A)G0 TO 9

J=5 5 REIURñ
9 IF(Il.E0.2lta)60 l0 20

IFlIt.NE.2ì48)G0 f0 2
¡=RL(I) 5 Il=OF(J)

C LOOK AT zND OPERAIOR OR OPERAND
JF( (Il.NE.2078).Â.(I1.NE.2t0A')GO tO ¡0
J=] I 5 REÍURN

t0 IF((Il.NE.2t28).A.(It.NE.2I38tlGO TO ll
J=I5 $ RETURN

I I IF ( I t.NE.2l58' G0 T0 L2
J=3 $ RETUÞN

I2 IF(II.NE.2ló81G0 t0 2
J=7 $ RETURN

?0 J=RL(I) S It=oF(J)
JF ( (I1.NE.2078).A. (II.NE.2t08) )OO TO 2t
J=I U $ REIUPN

2l tF((It.NE.zt¿8).Â.(ft.NE.2t38))GO tO 22



22

24

J=14 S RETURN
Írrtl.r.E.¿tsglGo lo z3
J=2 S RETURN
IF(It.NE.2Ìó8tGO T0 24
J=6 5 RETURN
rf(Il.NE.2t4ii)G0 ro 2
J=RL (J) $ Il=DF (J)
IF( (Il.NE.?078).A. (tl.r'lE.2l0B) )GO l0 25
J=12 $ REIURñ
IF( (Il.NE.2r.¿ts).A. (Il.NE.?138) )GO T0 26
J=tó 5 REIURN
JF(It.NE.2t58)Go fo 27
J=4 5 RETURN
IF(I1.NE.2168)GÐ f0 2

25

26

27

(*31)

NOTE: AEOVE 50 OR SO CÂRD VERY ERROR-PRO¡'IE CÂUSE IH SLEEPY
J=Éi S RETURN

c
c If IS ÀSSUI'IEL) THAT. PRECEDES < IHERE THEY OccUR fOGETHER

ENTRY PIR
C REIURN IN J THE EXPoNENI 0F THE LEADING I OR + OF EXP-I

Il=I
30 J=DF(It)

lF( (J.E0.2I58).0. (J.Eo.2ì68) )G0 f0 35
Il=RLfIt) 5 G0 f0 30

35 CALL ROP(¡I'J' ç J=ACELL(J) 3 RETURN

(SIN-C0S I 12=SIN12-2éS JN.C0S.C0S+2El-2GSINtC05>
DôTÂ---_-1

<(l-sINêzt.(t.TANâz)=c0sâ2èSEc12=lr K. c. LEE
< c0f+4-csc14=(cof1z-csC17tÕ(cot1z.cscrz)=-¡Õ(COÌ1?.CSC12)=-IÞ(CSC12-t.CSC12)!
I-zecsC12 >

< ( l-S¡rur¿¡ rg5çi2=C0Sr2rCSCr2=CoSr2,/SIN+2=COT+? >
< (faNa3-c0f13¡,/ (laN-CoT' = ( ( TAN-Colt. (fAN12.cof+?.ÍAN.COT) t,/ (ÍÂN-COT) = (fAN-cOfl r
(TA\12+C0T12.I)/(-fAN-COI)=TAN+¿.C0fi2+l >
< ( lAN+SEC ) / ( TAN+SEc-cos r = ( 5IN/cos.l,/CoS | / tstN/COs.t/CoS-COS ) = (sIN. I l / ( SIN.sIN12
)= (SIN.l ),/ (5INr (SIN.¡ ) t=l/5IN=CSC >
< ( I -TAñ). ( I -CO1 I =l-lAN-CoÌ+f4,,1èCOT=1-C0l-fANa t¡2-C0S/SIN-SIN/COSE2- ( COS12.5IN12
) / ( s¡Nècos ) =2_t/ ( sIN+cos ) =2_t /cos.1,,sIN=2_sEcocsc >
< ( ( l+'raN-sEc) / (sEc.faN-l ) ) / ( ( t.SEC-TÂN) / (SEC.TAN.t, ) = ( I I.TAN-SEC) r(sEC.fAN. I ) ) /((SEC.TAN-l).(I.SEC-lAN)t= (u+TANt12-SEC+21l(SEC12-ttÂN-¡.)12) = (l.ZcfAN.TANi?
-5EC+2)/(SEC12-lAfi+2+?èTÂN-l) = zrfAN/t2.fANl = I >

<l1.SIñ.C05)ô2=l.SIN12+CoS.2.2ìSIN.?.COS.2.SINCCOS=Z.2.SJN.z.COS.2.SIN.C05¡
2é(l.sIN)+(t+C0s) >

<(l.sEc)/(sEclfar.r-2+sIN-raN) = (1.sEct/( sEc.TAN.laN-z.fAN-zrs¡N): (tisEc)/(sE
cðTAN + TAN-¿ÕSECèSIN-2èSIN) = (t.SEC'/( (t.SEC'.(tAN-2r5INt ) = ¡/ttAN-2Õ5IN) >
<(l.SEC)/ISEC*lAN-z'Sl¡J-TAN)=(ìal./CoS)/(I/COS.SIN/C05-2.SIN-SIN/CoS) = ((CoS.ll
/C0Sl ,/( (5IN-2.SINrC0512-SIN.CoSl/COS12) E (CoS.I)}COS.2 /ICOS.tSIN-zoSINÒCoS+
2-SINrcoS))=(l.C0S){C0s/(SINr(t-2.Co5+¿-C05))= (l.C0S)/(SIN/COS.(I-e+CoSl}(I.€O
s) ) =l/ (TAl!-¿.sIN) >
<csc/tcsC-Ì,).cSC/(CsC.ì)={t/sIr¡)/(I/sIN-1).ltlSIN)/(t/SIN.tt=1,/(t-slN).t,/
I l.slN ) = ( l.sIN. I-5 IN ),/ ( 1-S IN12 | =?/ COSt2=Z.5EClZ >

< cscl(coT.TaN)=(t/sIN),/(cos/sIN.sIN/cos)= (I/SIN,,/( (c
0S12.S ¡r.¡+2 ) / ( SIN"COS ) ) = I ì /S IN ) o ( SINoCoS I / ( SINr2.COSl2 ) -COS >
<ISEC-rÂN)/(SECrTarJ) = (SEC-TAÀllr(SEC-TAl.l),/((SEC.TAN)Õ(SEC-fÂN)t=(SECiA-2óSEC.T
AN .fAN12) / lSEC12-TAN+21=SECiZ-2oSECoTAN+fAN12=I-?.SECóTÀN+zofAN12>
< TAN/(I-CoT) . c0Tl(t-tÀN)=(StN,/CoS)/(l-CoS/StN).(CoS/SIN)/(l-SlN/COS)=SIN12/(
coso ( slN-cos) ).c0sr2/ ( sINc (c0s-sIN) ) = (sIN13-cos+3) / (c0sesINò (sIN-c0st ) = ( sIN-cos
) ð ( S lN+2+CoS+2.SIN{CoS ) / ( ( s IN-C0S ) rSIN}COS | = ( SINô2.C0S12, / t SINèCoS) . ( S INÕCOS),/ (

SINlc0S) =1,/(C0SüSIN).t=5EC+CSC.t >
<(l+c0T-c5c)+(l.TAN.5Ec) = (1.cOS,/sIN-I/SIN)ç(l+SIN,/COS.l,/COS)=((SIN.C0S-t)/SIN
).((cos.5Ir!.1),/c05)=((sIN+c0s)42-I),/(sIN.cos)=( sIN+2.cos12.2.5¡N.coS-l)/(sIN.c
0s)= (I.¿'sJN+cos-l),/(sINÞcosJ = 2 >
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