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Abstract

We investigate immersions of restricted growth from a�ne curves into the
complex plane. We focus on the finite order and algebraic categories.

In the finite order case we prove a generalisation of a result due to
Forstneric and Ohsawa, showing that on every a�ne curve there is a finite
order 1-form with prescribed periods and divisor, provided we restrict the
growth of the divisor at the punctures.

We also enumerate the algebraic immersions of triply punctured com-
pact surfaces into the complex plane using the theory of dessins d’enfants
and obtain an upper bound on the number of surfaces that admit such an
immersion.
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Notation

We use the standard notation Z,R, and C to denote the integers, real num-
bers and complex numbers respectively. To avoid confusion with the com-
monly used character N we always just use the words positive or non-negative
as appropriate. We also use Pn to denote complex projective n-space.

We use script characters to denote sheaves over topological spaces. For
example E is used for the smooth functions, O for the holomorphic functions,
amd M for the meromorphic functions.

The divisor of a meromorphic function f is denoted div(f). Given a
divisor D on a Riemann surface X and letting U be an open subset of X, we
define the sheaf associated to D by setting

OD(U) = {f 2 M (U) : div(f |U) � �D} .

To denote a sheaf of 1-forms we append a (1) to the script character. For
example O

(1) is used to denote the holomorphic 1-forms. We use E
0,1 to

denote the sheaf of smooth 1-forms that can locally be written as fdz̄ for
some smooth f and a local holomorphic coordinate z.

We take neighbourhoods to be connected open sets. The topological
closure of a set U is denoted using a bar over the top: U . A subset X ⇢ Y

is compactly contained in Y if X is compact and X ⇢ Y . We write this as
X b Y .

We denote the disc of radius R centred at a point p 2 C by D(p,R) and
use D to denote the unit disc centred at 0 in C. The support of a function
f is denoted by supp(f). The diameter of a subset U of a metric space with
metric d is denoted diam(U) and is defined as

diam(U) = sup{d(x, y) : x, y 2 U}.
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Chapter 1

Introduction

1.1 The setting

The idea of analytic continuation has been fundamental to the theory of
Riemann surfaces since its conception. The analytic continuation of the
square root function or the complex logarithm are often used as motivating
examples in a first introduction to the topic. It is thus natural to ask which
open Riemann surfaces can be thought of as the analytic continuation of a
holomorphic function. The answer to this question is “all of them”. In their
landmark paper [GN67], Gunning and Narasimhan showed that every open
Riemann surface admits a holomorphic immersion into C. This theorem
gives us a concrete way to view open Riemann surfaces as sitting above
domains in C by a local homeomorphism. We can thus reconstruct any
open Riemann surface simply by taking a holomorphic immersion into C,
restricting to a single coordinate chart, and then, viewing the inverse of the
restricted immersion as a function in the plane, analytically continuing.

The proof presented by Gunning and Narasimhan relies on the holomor-
phic triviality of the tangent bundle of an open Riemann surface. This
fact can be seen as an early manifestation of the Oka principle. Gunning
and Narasimhan’s theorem can further be viewed as the solution to the 1-
dimensional case of the long standing open problem of whether every Stein
manifold with trivial tangent bundle admits an immersion into complex Eu-
clidean space of the same dimension. While this problem remains unsolved,
Oka theory is known to be relevant to the higher dimensional case.

A modern development in the field of Oka theory is that of quantitative
Oka theory, where one keeps track of the size and growth of the objects
being constructed. Objects in the finite order category are of particular
importance in this field. Functions are said to be of finite order if their growth

1



2 Chapter 1. Introduction

is comparable to the exponential of an algebraic function. This category sits
between the algebraic and holomorphic categories.

In a recent paper [FO13], Forstnerič and Ohsawa proved a quantitative
version of Gunning and Narasimhan’s immersion theorem, showing that every
once-punctured compact Riemann surface admits a holomorphic immersion
into C that is of finite order at the puncture. Chapters 3 and 4 of this thesis
are devoted to filling in some omitted details in this paper and extending the
main result. We employ a variety of techniques, including the Riemann–Roch
theorem, holomorphic approximation and various results from geometry and
topology.

Also of interest is an algebraic version of Gunning and Narasimhan’s
theorem. In Chapter 5 we take steps towards classifying the a�ne curves that
admit algebraic immersions into the plane. This work still relies on results
from geometry and topology, however we also employ some very di↵erent
branches of mathematics including combinatorics and the theory of dessins
d’enfants.

1.2 The plan of the thesis

Chapter 2

In the first two sections of Chapter 2 we introduce two techniques which we
use to construct holomorphic functions with desired properties on Riemann
surfaces.

The first section focusses on the Riemann–Roch formula and Serre du-
ality. Together these theorems can be used to determine the existence of
meromorphic functions with certain restrictions on their divisors. These re-
sults are fundamental to the theory of compact Riemann surfaces. Many of
the original results in this thesis, especially those in Chapters 3 and 4, rely
on these theorems in one way or another. However, these results do not tell
us anything about functions on open Riemann surfaces in general.

In the next section we introduce terminology associated to holomorphic
approximation. We then state Runge’s theorem and the Mergelyan–Bishop
theorem. These theorems allow us to construct holomorphic functions on
open Riemann surfaces with desired local properties.

There is an interesting contrast between the flavours of mathematics used
in these first two sections. In Section 2.1 we are concerned with meromorphic
functions on compact Riemann surfaces. These objects have deep connections
to objects in algebraic geometry which we explore later in the thesis. On the
other hand, the theorems of Section 2.2 are of a hard analytic nature, their
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proofs requiring careful manipulation of estimates and inequalities. We will
see that smooth a�ne algebraic curves are the natural setting in which we
can weave these two strands of mathematics together.

The original proof of the Mergelyan–Bishop theorem involves highly mea-
sure theoretic techniques. Over the years di↵erent proofs have been discov-
ered using more elementary complex analytic techniques but a modern refer-
ence is di�cult to find. One such reference is [JP00]. Unfortunately there is
a subtle mistake in the proof given there. This mistake was noticed and cor-
rected by [Gar06]. We found the correction to be di�cult to understand. In
Appendix A we provide a complete proof using similar techniques to [JP00]
and [Gar06], which we hope clarifies exactly where the mistake was made
and how it can be rectified.

In Section 2.3 we briefly recount the proof of Gunning and Narasimhan’s
immersion theorem given in [GN67]. This theorem is the starting ingredient
used to prove the main theorem of [FO13] so is essential to the generalisation
that we prove in Chapter 4. We also provide a full proof for one of the
preliminary lemmas in [GN67] that we use later in Section 4.2.

In Sections 2.4 and 2.5 we begin to explore the connection between com-
pact Riemann surfaces and algebraic curves. In Section 2.4 we show how to
embed a compact Riemann surface with finitely many punctures into com-
plex Euclidean space. When paired with Chow’s theorem in Section 2.5.1
we see that this embedding is in fact algebraic and the punctured surface is
biholomorphic to a smooth a�ne algebraic curve. In Section 2.5.2 we develop
the theory necessary to prove Cartan’s extension theorem. This can be seen
as a higher dimensional analogue of Weierstrass’ interpolation theorem for
Riemann surfaces.

Next we discuss the theory of finite order functions in the complex plane.
In many sources this theory is developed in the context of entire functions.
We give a slightly non-standard definition of finite order growth, allowing
for functions defined on the complement of a compact set. We take this
definition with the eventual goal of developing the theory in the setting of
a�ne curves. The final result of this section is in the spirit of Hadamard’s
factorisation theorem and relates the distribution of zeros of a holomorphic
function with its growth at infinity.

In the final section of Chapter 2 we discuss finite sheeted coverings of the
sphere with finitely many punctures. We construct equivalent ways in which
we can view such a covering in terms of complex analytic, group theoretic,
and combinatorial objects. These objects provide us with a way to communi-
cate the complicated information contained in a topological covering map in
a concise and concrete manner. Moreover, they are essential to the content
of Chapter 5.
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Chapter 3

We begin Chapter 3 by extending the definition of finite order growth from
Section 2.6 to the setting of a general Riemann surface. We then quickly
specialise to the setting of a�ne curves (always smooth), which we view
as compact Riemann surfaces with finitely many punctures. We define the
sheaves of algebraic and finite order functions and 1-forms on an a�ne curve.
With these definitions in hand we begin to prove generalisations of the results
that were stated without proof in [FO13].

We first consider Proposition 2.4 of [FO13] which states that we can
represent every de Rham class on a once-punctured compact Riemann surface
by an algebraic 1-form. The authors attribute this fact to the general theory
of coherent algebraic sheaves on a�ne varieties. We generalise the result to
a general a�ne curve and give a detailed proof. The approach we take is
based on a proof in [BS49] of a similar result.

Next we consider Proposition 2.5 of [FO13] for which the authors give no
explanation. The proposition can be thought of as an algebraic version of
Runge’s theorem for a compact Riemann surface with a single puncture. As
noted by the authors, this theorem is not actually used in the proof of the
main theorem. Instead they use a stronger result: an algebraic version of
the Mergelyan–Bishop theorem. We provide proofs for algebraic versions of
both Runge’s theorem and the Mergelyan–Bishop theorem for a general a�ne
curve. We use the higher dimensional theory developed in Section 2.5. Just
before submission of this thesis I became aware of two references that prove
algebraic versions of Runge’s theorem using only one-dimensional techniques.
These sources are referred to in Remark 3.2.6.

In Section 3.3 we consider the finite order functions on a�ne curves. We
start by defining the accumulation order of a divisor on an a�ne curve (this is
our own definition). This definition is inspired by Hadamard’s factorisation
theorem and Theorem 2.6.9, the idea being that the growth of a finite order
function at a puncture should be related to the distribution of its zeros around
the puncture.

We see that this is indeed the case in Proposition 3.3.3 where we show that
we can find a finite order function with a prescribed divisor on an a�ne curve
so long as that divisor has restrictions on the accumulation order around the
punctures. Moreover the order of the function at the punctures depends on
the accumulation order of the divisor. This proposition generalises Propo-
sition 2.1 of [FO13] which only allows for divisors with finite support on
compact Riemann surfaces with a single puncture. We also prove a similar
result for finite order 1-forms on a�ne curves that generalises Proposition
2.2 of [FO13].
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Chapter 4

In Section 4.1 we present our generalisation of the main theorem of [FO13].
We show that on every smooth a�ne curve, it is possible to find an exact
finite order 1-form with a prescribed divisor so long as the accumulation
order of the divisor is finite at all punctures. If we take the divisor to be zero
everywhere we recover the main theorem of Forstnerič and Ohsawa. While
proving this we elaborate on the delicate steps that were only explained
briefly in [FO13]. The proof relies on the results proved in Chapter 3 along
with a generous helping of the Mergelyan–Bishop theorem.

In Section 4.2 we prove that the exact 1-form constructed in Section 4.1
can be altered so the resulting 1-form is still of finite order, has the same
divisor, and has prescribed periods. This result generalises Theorem 4.1 of
[FO13] which was stated without proof. It relies on the lemma from [GN67]
which we prove in Section 2.3.

Chapter 5

After understanding Forstnerič and Ohsawa’s theorem we might wonder if
we can further restrict the growth of a holomorphic immersion of an a�ne
curve. In Chapter 5 we consider algebraic immersions of a�ne curves into C.
As a consequence of the Riemann–Hurwitz formula we arrive at the following
necessary condition: any a�ne curve that admits an algebraic immersion into
C must be biholomorphic to a compact Riemann surface with at least three
punctures. Thus there are many for which a finite order immersion is the
best we can do. The three-puncture-condition is not su�cient to guarantee
the existence of an algebraic immersion. For example we show that, up to
biholomorphism, there is exactly one thrice punctured complex torus that
admits an algebraic immersion.

The rest of the chapter can be seen as the first steps toward a classification
of a�ne curves that admit an algebraic immersion into C. We only consider
those a�ne curves that are biholomorphic to a thrice punctured Riemann
surface. By the material in Section 2.7 we see that an algebraic immersion
of such a surface can equivalently be viewed as meromorphic function on the
corresponding compact Riemann surface with exactly three critical points.
We introduce the term simple Belyi function to refer to such functions. By
representing these functions as constellations (Definition 2.7.7) and dessins
d’enfants (Definition 2.7.14) we are able to show that there are only finitely
many examples for each genus.

The group-theoretic representation of these objects allows us give an ex-
plicit description of each distinct algebraic immersion. The main result of the
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chapter is an enumeration of simple Belyi functions for low genus presented
in Table 5.1. These numbers were computed with the aid of a computer. The
code used to perform these computations is provided in Appendix B. Enu-
meration of immersions for higher genus surfaces is limited by computational
power.

In the final section of the chapter we note that many of the immersions
computed in the preceding section may have the same domain. Using a
particular subgroup of the automorphisms of the sphere we are able to show
that this is in fact the case for some of the immersions. We obtain an upper
bound on the number of triply punctured surfaces that admit an algebraic
immersion. This bound is also computed using a computer.

We arrive at the somewhat surprising result that there are at most two
a�ne curves of genus two that are biholomorphic to a triply punctured com-
pact Riemann surface and admit an algebraic immersion into C. We are
unable to determine whether these curves are distinct.

1.3 Future directions

As noted in [FO13] it is not known whether higher dimensional a�ne varieties
admit finite order immersions into complex Euclidean space. The fact that
holomorphic 1-forms are no longer automatically closed in higher dimensions
poses a significant barrier that would have to be overcome if the techniques
used in the one-dimensional case were to be of any help.

One might hope that the results of Chapter 4 hold for more general tar-
get spaces as well. The notion of finite order growth can be extended to
maps from a�ne varieties to projective varieties, see [GK73]. We would then
ask which a�ne curves admit finite order immersions into which projective
curves. Of course the finite order immersions into C constructed in [FO13]
can also be thought of as immersions into P1.

The enumeration of simple Belyi functions in Chapter 5 is not complete.
One might hope to enumerate the simple Belyi functions of higher genus and
fill in more rows of Table 5.1. We believe the runtime and memory usage
of the algorithm presented in Appendix B grow factorially with the genus of
the a�ne curve. So, while there may be many opportunities to optimise the
code used, we do not expect that these will result in significant improvements
in outcome unless a more e�cient algorithm is developed or more advanced
combinatorial theory is used.

Finally it may be possible to extend the results of Chapter 5 to a full
classification of a�ne curves that admit algebraic immersions into C. The
next step in such a classification would most likely be to consider algebraic
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immersions of curves that are biholomorphic to compact Riemann surfaces
with four punctures. If we assume that the immersion cannot extend as an
immersion across any of the punctures, then it can be viewed as a mero-
morphic function on the compact surface with exactly four critical points.
By the basic theory in Section 2.7 such a function must have at least three
distinct critical values. Since the automorphism group of the sphere is triply
transitive we can fix three of these critical values and let the fourth vary. We
imagine that this would result in a moduli space of one complex dimension.
This would not completely classify the algebraic immersions, however, since
there would certainly be many immersions with the same critical values. It is
plausible that the immersions with fixed critical values could be enumerated
in a similar manner to Chapter 5.
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Chapter 2

Background

2.1 The Riemann–Roch formula

The Riemann–Roch formula and Serre duality form a cornerstone for the
theory of compact Riemann surfaces. They relate the vector spaces of mero-
morphic functions and meromorphic 1-forms with certain restrictions on their
poles and zeros.

Theorem 2.1.1 (Riemann–Roch formula with Serre duality). Let D be a

divisor on a compact Riemann surface X of genus g. Then H
1(X,OD) ⇠=

O
(1)
�D

(X)
⇤
and

dimOD(X)� dimO
(1)
�D

(X) = 1� g + degD.

The proof of this theorem can be found in any textbook on the basic
theory of Riemann surfaces, see for example [For91, Theorems 16.9 and 17.9].
The applications of this formula are of course far too numerous to account
for here. Below we state two applications that we will use later on.

Theorem 2.1.2. H1(X,OD) = 0 for D with degD > 2g � 2.

The proof of this theorem can be found in [For91, Theorem 17.16]. It

relies on two facts. Firstly there is a canonical isomorphism OK�D
⇠= O

(1)
�D

where K is a canonical divisor (that is, there is a global meromorphic 1-form
with divisor K). Secondly dimOK�D(X) = 0 when deg(K � D) < 0. The
result follows from Serre duality. The result below follows from the above.

Lemma 2.1.3. Let X be a Riemann surface and x0 2 X be a point. Then

there is a positive integer � such that the divisor D = ��x0 is ample (that

is, there is a meromorphic function whose only pole is of order � at x0).

9



10 Chapter 2. Background

2.2 Holomorphic approximation

Holomorphic approximation is an essential tool for constructing global holo-
morphic functions with prescribed properties.

Definition 2.2.1. Let K be a compact subset of a Riemann surface R. We
let

O(K) = {f |K : f 2 O(U) where U is an open neighbourhood of K}.

Then we denote by O(K) the closure of O(K) in the space of continuous
functions on K with respect to the topology of uniform convergence on K.
Finally we let

Oint(K) = {f : K ! C : f is continuous and f |K̊ is holomorphic}.

So for any compact K ⇢ R we have

O(R)
restr��! O(K) ⇢ O(K) ⇢ Oint(K).

When O(R) is dense in Oint(K) we can approximate functions on compact
sets by global holomorphic functions. Of course we cannot hope that these
restriction maps should have dense image for arbitrary K, take for example
a circle in C.

Definition 2.2.2. Let K be a compact subset of an open Riemann surface
R. The holomorphically convex hull of K is denoted K̂ and is defined as the
union of K with the relatively compact connected components of R \K. We
say that K is holomorphically convex if K = K̂.

Theorem 2.2.3 (Runge’s theorem). Let K be a holomorphically convex

compact subset of an open Riemann surface R. Then the restriction map

O(R) ! O(K) has dense image with respect to the topology of uniform con-

vergence on K.

For a proof see [For91, Section 25]. Using Runge’s theorem and the
maximum principle it can be seen that for a compact subset K of an open
Riemann surface R

K̂ =

⇢
x 2 R : |f(x)|  sup

y2K
|f(y)| for all f 2 O(R)

�
,

justifying the use of the term ‘holomorphically convex hull’.
The following theorem is a significant strengthening of Runge’s theorem.



2.3. The Gunning–Narasimhan theorem 11

Theorem 2.2.4 (Mergelyan–Bishop theorem). Let K be a holomorphically

convex compact subset of an open Riemann surface R. Then O(K) = Oint(K).
Hence, by Runge’s theorem, a function f 2 Oint(K) can be uniformly approx-

imated by a sequence (fk) in O(R).

See Appendix A for a detailed discussion of the proof.

2.3 The Gunning–Narasimhan theorem

The following theorem, proved in [GN67], is fundamental to the theory of
Riemann surfaces.

Theorem 2.3.1 (Gunning–Narasimhan theorem). Every open Riemann sur-

face R admits a holomorphic immersion into C.

This theorem gives us a concrete way to think of open Riemann surfaces
as sitting above domains in C (not necessarily as a covering space, but by a
local homeomorphism). It would be di�cult to improve upon the exposition
given in [GN67] so we only provide a sketch below.

We begin by letting !0 be a nowhere zero holomorphic 1-form on R (this
always exists by [For91, Corollary 26.6]). We aim to alter !0 so that it is
exact — or equivalently alter it so that

R
�
!0 = 0 for every loop � in R — in

such a way that we do not introduce any zeros.
Take an exhaustion R0 b R1 b · · · of R so that R0 is simply connected,

and so that Rk is open, has smooth boundary, and for every compact set
K ⇢ Rk, K̂ ⇢ Rk also, for every k. Now assume that !k 2 O

(1)(R) is exact
on Rk, that is

R
�
!k = 0 for any loop � in Rk. We claim that there is a

function fk+1 2 O(R) such that kfk+1kRk
< 2�k and

R
�
!k exp fk+1 = 0 for

all loops � in Rk+1. Then f =
1P
k=1

fk converges uniformly on compact subsets

of R so is holomorphic, and !0e
f is exact.

The construction of the functions fk is not trivial, indeed it forms the
majority of the content of [GN67]. The following lemma shows how to alter
the periods of a 1-form using continuous functions. This is an important step
towards constructing the fk. We give details of the proof as we will use it
later, in Chapter 4.

Lemma 2.3.2. Let R be a Riemann surface, c 2 C be a fixed constant, and

� : [0, 1] ! R be a simple closed piecewise di↵erentiable curve in R. Suppose

! is a holomorphic 1-form on R that is not identically zero and such that
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R
�
! 6= c. Then there is a continuous function g : �((0, 1)) ! C with compact

support such that Z

�

e
g
! = c and

Z

�

ge
g
! 6= 0. (2.1)

Proof. We begin by finding a step function u satisfying the conditions of
(2.1) and then approximate by continuous functions. Throughout, we will
use � to denote both the map [0, 1] ! R and its image.

Let I ⇢ �(0, 1) be the image of a closed subinterval of (0, 1) such that

Z

I

! 6= 0.

This always exists since ! is not identically zero on �. After choosing such
an interval we can shrink it if necessary so that

Z

�\I
! 6= c.

Now take � 2 C so that

e
� =

c�
R
�\I !R

I
!

.

Note that � 6= 0 since
R
�
! 6= c. Then, setting u = ��I , where �I is the

characteristic function of I, we have a discontinuous function satisfying the
conditions in (2.1).

Select a uniformly bounded sequence of continuous functions g⌫ : � ! C
with

supp(g⌫) ⇢ �((0, 1))

converging uniformly to u on compact subsets of �\@I. Consider the complex
analytic functions ','⌫ : C ! C defined by

'(s) =

Z

�

e
su
!, '⌫(s) =

Z

�

e
sg⌫!.

The functions '⌫ converge to ' uniformly on compact subsets of C. Since
'(1) = c and '0(1) 6= 0 there is, by Hurwitz’s theorem, a neighbourhood U

of 1 such that for all su�ciently large ⌫ there is s⌫ 2 U with '⌫(s⌫) = c and
'
0(s⌫) 6= 0. Take one such ⌫ and set g = s⌫g⌫ . Then g satisfies the desired

properties.
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2.4 Embedding a�ne curves into Cn

It is well known that a compact Riemann surface X of genus g can be em-
bedded holomorphically into PN for some N . Such an embedding can be
constructed by taking a divisor D on X of degree at least 2g + 1 and letting
f0, . . . , fN form a basis for OD(X). Then the map

F = [f0, . . . , fN ] : X ! PN

is an embedding (see [For91, Theorem 17.22] for a proof). Note that this
map is well defined on all of X, even at the poles of f0, . . . , fN . Suppose c

is a pole of at least one of the f0, . . . , fN . Then in a coordinate chart (V, z)
centred around c there is a positive integer m so that for k = 0, . . . , N we
can write zmfk = gk where gk is holomorphic on V and for at least one k we
have gk(c) 6= 0. Then we set

F (c) = [g0(c), . . . , gN(c)].

If we take a non-empty finite subset C = {c1, . . . , cM} ⇢ X we can use
a similar construction to embed the punctured surface R = X \ C into Cn

for some n. Take the divisor D = �

MP
j=1

cj where � is chosen large enough

that degD � 2g + 1 and so that there is a function h 2 M (X) whose only
poles are c1, . . . , cM and each pole has order � + 1. The existence of such a
function follows from Lemma 2.1.3. Let f0, . . . , fN form a basis for OD(X)
and F = [f0, . . . , fN ].

Now let P be the zero set of h and consider the map

E =


f0, . . . , fN ,

f0

h
, . . . ,

fN

h
,
1

h

�
: X ! P2N+2

.

We claim E is an embedding.

Take x 2 X. If x 2 P , then x is a pole of
1

h
but cannot be a pole of any

of f0, . . . , fN (since the poles of f0, . . . , fN are in C) so

E(x) = [0, . . . , 0, F (x), 1].

If x 2 C, then
E(x) = [F (x), 0, . . . , 0]

since
1

h
has zeros of order �+1 at the points of C. Otherwise x /2 P [C, so

x is not a pole of any of h, f0, . . . , fN , and

E(x) =


F (x),

1

h(x)
F (x),

1

h(x)

�
= [hF (x), F (x), 1].
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Taking y 2 X with x 6= y, it follows that E(x) 6= E(y) since F is injective.
So E is injective.

Also, E is an immersion. For k = 0, . . . , 2N + 2 let (Uk, wk) be the
coordinate chart on P2N+2 defined by Uk = {[z0, . . . , z2N+2] : zk 6= 0} and

wk[z0, . . . , z2N+2] =
1

zk
(z0, . . . , ẑk, . . . , z2N+2) .

Then for x 2 X \ (C [ P ) we have

w2N+2 � E(x) = (hf0(x), . . . , hfN(x), f0(x), . . . , fN(x)).

For x 2 C, let m be the maximum order of the poles of f0, . . . , fN . Then
in a coordinate neighbourhood (V, z) centred on x for k = 0, . . . , N we can
write z

m
fk(z) = gk(z) where gj(x) 6= 0 for some j. Then

wj � E(x) =
1

gj(x)
(g0(x), . . . , ĝj(x), . . . , gN(x), 0, . . . , 0).

Finally for x 2 P

w2N+2 � E(x) = (0, . . . , 0, f0(x), . . . , fN(x)).

In all of these cases we see that dE(x) can only be zero when dF (x) is also.
Since F is an immersion this is never the case, therefore E is an immersion.

Let H =
�
[z0, . . . , z2N+1, 0] 2 P2N+2

 
. Then E embeds X into P2N+2 in

such a way that E�1(H) = C. Thus post-composing with w2N+2 : U2N+2 !
C2N+2 results in an embedding of R = X \ C into C2N+1. So we have the
following theorem.

Theorem 2.4.1. Let X be a compact Riemann surface, C ⇢ X be a non-

empty finite subset, and R = X\C. Then R can be embedded holomorphically

into Cn
for some n, such that the components of this embedding are mero-

morphic on X.

We recall the theorem of Narasimhan [Nar60] that every open Riemann
surface can be holomorphically embedded into C3.

2.5 Higher dimensional theory

There are two main results from the theory of several complex variables which
we employ in this thesis: Chow’s theorem and Cartan’s extension theorem.
We state these theorems and outline their proofs in the subsections below.
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2.5.1 Chow’s theorem

Let U be an open subset of a complex manifold X. Then A ⇢ U is said to
be an analytic subvariety of U if A is closed in U and if for every a 2 A there
is a neighbourhood V and holomorphic functions f1, . . . , fm on V such that

A \ V = {z 2 V : f1(z) = · · · = fm(z) = 0}.

Similarly an algebraic subvariety of X = Cn or Pn is a set of the form

{z 2 X : p1(z) = · · · = pm(z) = 0}

where p1, . . . , pm are polynomials in the case of Cn, or homogeneous polyno-
mials in the case of Pn.

Theorem 2.5.1 (Chow’s theorem). Every analytic subvariety of Pn
is alge-

braic.

This theorem was originally proved by Chow in [Cho49]. We present a
simplified proof from [RS53] relying on the following theorem which we state
without proof.

Theorem 2.5.2 (Remmert–Stein extension theorem). Let X be a complex

manifold, Z be an analytic subvariety of X of dimension d and Y be an

analytic subvariety of X \ Z of dimension greater than d. Then the closure

Y of Y in X is an analytic subvariety of X.

Note that the requirement on the dimension of Y is necessary. For exam-
ple take X = C2, Z = {(0, z2) : z2 2 C}, and

Y =

⇢✓
1

n
, 0

◆
2 C2 : n = 1, 2, . . .

�
.

Then Y is an analytic subvariety of X \ Z since it is discrete, however Y is
not an analytic subvariety of X since any holomorphic function that is zero
on Y must be zero on the set {(z1, 0) : z1 2 C}.

Proof of Chow’s theorem. Let ⇡ : Cn+1 \ {0} ! Pn be the map sending a
point (z0, . . . , zn) to its equivalence class [z0, . . . , zn] in Pn. The fibres of ⇡ are
complex lines through the origin in Cn+1. Let X be an analytic subvariety
of Pn and let Y = ⇡

�1(X). So Y is a cone and an analytic subvariety of
Cn+1 \ {0} with dimension greater than 0. Then by Theorem 2.5.2, Y =
Y [ {0} is an analytic subvariety of Cn+1. Thus there is a neighbourhood U

of 0 and functions f1, . . . , fm 2 O(U) such that Y \ U = {z 2 U : f1(z) =
· · · = fm(z) = 0}.
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Now for j = 1, . . . ,m we expand fj in a Taylor series about 0. So fj =
1P
k=0

fjk where fjk is a homogeneous polynomial of degree k. Since Y is a cone,

for any z 2 Y there is some " > 0 such that for all t 2 C with |t| < " we
have tz 2 U \ Y . So for all j

fj(tz) =
1X

k=0

t
k
fjk(z) = 0.

It follows that fjk(z) = 0 for all z 2 Y and all j and k. So

Y ⇢ {z 2 Cn+1 \ {0} : fjk(z) = 0 for all j and k}.

Conversely if z 2 Cn+1 \ {0} and fjk(z) = 0 for all j and k then for t

su�ciently close to 0, tz 2 U and fjk(tz) = t
k
fjk(z) = 0 for all j and k.

Thus tz 2 Y and hence z 2 Y .
So X is the common zero locus of the homogeneous polynomials fjk. By

Hilbert’s basis theorem X is then an algebraic subvariety.

Remark 2.5.3. Let X be a compact Riemann surface, C a finite subset and
R = X \C. Consider the embedding E : X ! Pn constructed in Section 2.4
that had the property that E|R ! Cn was an embedding. The image of E
is, by the implicit function theorem, an analytic subvariety of Pn. By Chow’s
theorem it is also an algebraic subvariety. So we see that X is biholomorphic
to a projective algebraic curve. Similarly R is biholomorphic to a smooth
a�ne algebraic curve.

In fact, with more work we can say even more. Projective algebraic curves
along with algebraic maps between them form a category. It can be seen that
this category is equivalent to the category of compact Riemann surfaces and
holomorphic maps.

2.5.2 Cartan’s extension theorem

Definition 2.5.4 (Coherent sheaves). Suppose S is a sheaf of abelian groups
on Cn with an O-module structure, that is, for every open U ⇢ Cn there is
a scalar multiplication map

O(U)⇥ S (U) ! S (U)

commuting with restrictions, making S (U) into an O(U)-module. Then S

is called a sheaf of O-modules. We often simply say that S is an O-module
over Cn.



2.5. Higher dimensional theory 17

Let S be an O-module on Cn. Then S is locally finitely generated if
every point x 2 Cn has a neighbourhood U with sections f1, . . . , fk 2 S (U)
such that for all y 2 U

Sy = (f1)yOy + · · ·+ (fk)yOy

where Sy denotes the stalk of S at y and (fj)y denotes the germ of fj at y.
Given an open subset U ⇢ Cn and f1, . . . , fk 2 S (U) we define the sheaf

of relations between f1, . . . , fk, denoted R(f1, . . . , fk), by letting

R(f1, . . . , fk)(V ) = {('1, . . . ,'k) 2 O
k(V ) : '1f1 + · · ·+ 'kfk = 0}

where V ⇢ U is open.
Finally, we say S is coherent if it is locally finitely generated and if for all

open sets U ⇢ X and f1, . . . , fk 2 S (U) the sheaf of relations R(f1, . . . , fk)
is locally finitely generated as a sheaf on U .

The notion of coherence makes sense in the context of sheaves of O-
modules on arbitrary complex manifolds. For our purposes however, we only
require coherent sheaves on Cn.

Below we have two examples. The first is one of the few easy, non-trivial
examples of a coherent sheaf. The second demonstrates that the condition
on the sheaf of relations is not automatically satisfied for a locally finitely
generated O-module.

Example 2.5.5. O is a coherent O-module over C.

Proof. Firstly O is locally finitely generated by the constant section 1. Sup-
pose U ⇢ C is open and f1, . . . , fk 2 O(U) are not identically zero. We
need to show that R(f1, . . . , fk) is locally finitely generated. For each c 2
U let n1, . . . , nk be the smallest numbers such that there are functions gj

holomorphic in a neighbourhood of c with gj(c) 6= 0 and so that fj(z) =
gj(z)(z � c)nj . Suppose that n1 is the smallest of the nj. Then for any
'2, . . . ,'k 2 O(U) let

'1(z) = �'2(z)g2(z)(z � c)n2 + · · ·+ 'k(z)gk(z)(z � c)nk

g1(z)(z � c)n1
.

Then ('1, . . . ,'k) 2 R(f1, . . . , fk). This shows that '2, . . . ,'k are free and
'1 is completely determined, thus R(f1, . . . , fk) ⇠= O

k�1. So R(f1, . . . , fk) is
locally finitely generated.
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Example 2.5.6. Define a sheaf S over C as follows. Let V ⇢ U ⇢ C be
open sets and set

S (U) =

(
O(U) if 0 2 U,

0 otherwise,

and define restriction maps tU
V
: S (U) ! S (V ) by

t
U

V
(f) =

(
f |V if 0 2 V,

0 otherwise.

Then S is a locally finitely generated O-module but is not coherent.

Proof. The stalk of S at z 2 C is trivial except when z = 0. When z = 0
the stalk is O0 so clearly S is locally finitely generated.

Now take the constant function 1 2 S (C). Then for an open set U ⇢ C
we have t

C
U
(1) = 1 if 0 2 U or 0 otherwise so

R(1)(U) =

(
0 if 0 2 U,

O(U) otherwise,

and we see that R(1) is not locally finitely generated at 0.

Finding other coherent sheaves turns out to be di�cult.

Theorem 2.5.7 (Oka). O is a coherent O-module over Cn
for all n.

The proof of this theorem is much more di�cult than in the 1-dimensional
case. We refer to [GR84, Chapter 2] for a detailed discussion.

The following lemma follows immediately from the definition of coherence.

Lemma 2.5.8. Let S be a coherent O-module over Cn
and let T be a

submodule. Then T is coherent if and only if it is locally finitely generated.

Example 2.5.9 (Ideal sheaf). Let M be a closed complex d-dimensional
submanifold of Cn with d < n and define the ideal sheaf I

M to be the
submodule of O over Cn comprised of functions that vanish on M . Then
I

M is coherent.

Proof. Since I
M is a submodule of the coherent module O we only need to

show that it is locally finitely generated. For x /2 M there is a neighbourhood
U of x such that I

M(U) = O(U) so I
M is locally finitely generated and

hence coherent outside of M . Take x 2 M . Then there is a coordinate chart
(U, (z1, . . . , zn)) around x so that

M \ U = {(z1, . . . , zd, 0, . . . , 0) 2 U : z1, . . . , zd 2 C}.
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Since x 2 M , x = (x1, . . . , xd, 0, . . . , 0). Now for any neighbourhood V of x
any f 2 I

M(V ) has a power series

f(z) =
1X

i1,...,in=0

ci1,...,in(z1 � x1)
i1 · · · (zd � xd)

id
z
id+1

d+1 · · · zin
n

with ci1,...,in = 0 whenever id+1 = · · · = in = 0. So I
M

x
is generated by the

germs of the functions zd+1, . . . , zn. Clearly the germs of these functions also
generate the stalk I

M

y
for any y 2 M \ U .

Now take y 2 U \ M . We claim that the stalk I
M

y
is generated by

the germ of the function zn. To see this we only need to note that on a
su�ciently small neighbourhood V of y, zn is invertible and thus 1 2 (zn)yOy

and therefore (zn)yOy = Oy = I
M

y
.

Theorem 2.5.10 (Cartan’s theorem B). Let S be a coherent O-module over

Cn
. Then H

q(Cn
,S ) = 0 for all q � 1.

In fact this theorem holds for coherent sheaves on a particular class of
complex manifolds known as the Stein manifolds, however, for our purposes
Cn is su�cient.

The proof of this theorem is too long for us to recount here so we give a
very brief sketch below. We first show that given a coherent O-module S

on a neighbourhood of a bounded polydisc X there is an exact sequence

0 ! O
nk ! · · · ! O

n0 ! S ! 0

of O-modules on X. We then show that any coherent O-module that fits
into such a sequence has the property that Hq(X,S ) = 0 for q � 1. Then
by exhausting Cn by polydiscs and using Runge approximation we are able
to split any q-cocycle thus showing that Hq(Cn

,S ) = 0 for q � 1. To prove
the theorem for an arbitrary Stein manifold requires more work still, we refer
to [Hör90, Theorem 7.4.3].

From this theorem we have the following application.

Theorem 2.5.11 (Cartan’s extension theorem). Every holomorphic function

defined on a closed complex submanifold M of Cn
extends to a holomorphic

function on all of Cn
.

Proof. Define an O-module OM over Cn by letting

OM(U) =

(
0 if U \M = ;,
O(U \M) otherwise,
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and using the obvious restriction maps. Then we have a short exact sequence
of O-modules

0 ! I
M ! O ! OM ! 0,

where the map O ! OM is given by restriction. This induces a long exact
sequence in cohomology

0 ! I
M(Cn) ! O(Cn) ! OM(Cn) ! H

1(Cn
,I

M) ! · · · .

By Theorem 2.5.10 H
1(Cn

,I
M) = 0 so the map O(Cn) ! OM(Cn) = O(M)

is surjective. Thus every holomorphic function on M is the restriction of a
holomorphic function on Cn.

2.6 Functions of finite order

Throughout this thesis we will be interested in holomorphic functions de-
fined on a punctured Riemann surface with restricted growth at the punc-
tures. The simplest case we could consider is the complex plane, that is, the
Riemann sphere P1 with 1 removed. The theory of these functions is well
developed.

Definition 2.6.1. Suppose U is the complement of a compact set in C. A
holomorphic function f : U ! C is said to be of finite order if there are
non-negative numbers A,B,R, and ⌫ such that

|f(z)|  A exp(B|z|⌫) (2.2)

for all z with |z| � R. The order µ of f is then defined as the infimum of
numbers ⌫ � 0 such that there are non-negative numbers A,B and R such
that (2.2) holds.

We now establish some equivalent definitions that will later prove useful.

Lemma 2.6.2. A holomorphic function f defined on the complement of a

compact set in C has order µ if and only if for every " > 0 there is R > 0
such that

|f(z)|  exp |z|(µ+")

for all z with |z| > R and this property is not satisfied for any smaller µ.

Proof. The reverse direction is immediate from the definition. To prove the
forward direction we notice that for x 2 R and ", A,B, ⌫ > 0

lim
x!1

A expBx
⌫

exp x⌫+"
= 0.
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It follows that there is R > 0 such that for all |z| > R

A expB|z|⌫ < exp |z|⌫+✏.

Hence, if f has order µ, we have

|f(z)|  exp |z|µ+"

for all |z| su�ciently large. It is clear that the above inequality could not
hold for any smaller µ.

Lemma 2.6.3. A holomorphic function f has order µ if and only if

lim sup
r!1

log logM(r)

log r
= µ (2.3)

where M(r) = max{|f(rei✓)| : 0  ✓  2⇡}.

Proof. Suppose f satisfies (2.3) and take " > 0. Then there is R > 1 such
that

log logM(r)

log r
 µ+ "

for all r > R. Then, for such r,

M(r)  exp(rµ+").

This is true for all ✏ > 0, so the order of f is at most µ. It is clear that this
is not satisfied for any smaller µ, so f has order µ.

Now suppose f has order µ. Then for any " > 0, there is R > 0 such that

|f(z)|  exp |z|µ+"

for all |z| > R. Then for any " > 0,

M(r)  exp rµ+"

for all r su�ciently large. The result follows by taking logarithms.

The order of an entire function can also be found using the coe�cients of
the function’s Taylor series.

Proposition 2.6.4. Suppose f is an entire function of order µ and has

Taylor expansion f(z) =
1P
k=0

akz
k
. Then

µ = lim sup
k!1

k log k

log(1/|ak|)

where we take the quotient on the right to be 0 if ak = 0.
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Proof. We follow the proof given in [Boa54]. Let

⌘ = lim sup
k!1

k log k

log(1/|ak|)
.

First we show that µ � ⌘. Since µ is non-negative this is true if ⌘ = 0.
Suppose 0 < ⌘  1 and notice the following elementary fact for all r > 0:

|ak| =
����
f
(n)(0)

k!

���� 
1

2⇡

Z

|z|=r

����
f(z)

zk+1

���� |dz| 
M(r)

rk
. (2.4)

Take 0 < " < ⌘ and let A = ⌘� " if ⌘ < 1 and A = " if ⌘ = 1. We think of
" being small if ⌘ is finite and large if ⌘ = 1 so that A is “close” to ⌘. Then
for infinitely many k,

k log k � A log
1

|ak|
.

Then

log |ak| �
�k log k

A

so taking logarithms in (2.4) gives for all r

logM(r) � k log r + log |ak| � k log r � k log k

A

for infinitely many k. For such k we can take r = (ek)
1
A and then

logM(r) � k

A
=

r
A

eA
.

So
log logM(r)

log(r)
� A� log(eA)

log r

holds for such r. The second term in the right hand side of the above in-
equality approaches zero as r increases and since A is independent of r we
see that

µ = lim sup
r!1

log logM(r)

log r
� A =

(
⌘ � " if ⌘ < 1,

" if ⌘ = 1.

Since " was arbitrary we see that ⌘  µ.
Next we show that µ  ⌘. Of course if ⌘ = 1 there is nothing to prove

so assume otherwise. Take " > 0. Then for k large enough that log |ak| < 0
and so that

0  k log k

log(1/|ak|)
 ⌘ + "
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we have
|ak|  k

�k/(⌘+")
.

Then

M(r) 
1X

k=0

|ak|rk 
1X

k=0

k
�k/(⌘+")

r
k
.

We split the last sum into two parts and bound them separately. Let

S1(r) =
X

k<(2r)⌘+"

k
�k/(⌘+")

r
k and S2(r) =

X

k�(2r)⌘+"

k
�k/(⌘+")

r
k
.

Then we have

S2(r) =
X

k�(2r)⌘+"

(rk� 1
⌘+" )k 

X

k�(2r)⌘+"

✓
1

2

◆k

< 1.

And for S1:

S1(r) =
X

k<(2r)⌘+"

k
�k/(⌘+")

r
k

 r
(2r)⌘+"

X

k<(2r)⌘+"

k
�k/(⌘+")

 r
(2r)⌘+"

1X

k=0

k
�k/(⌘+")

.

The last series converges, so S1(r) has growth comparable to r
(2r)⌘+"

. So
when r is su�ciently large,

M(r)  S1(r) + S2(r)  r
r
⌘+2"

,

so

µ = lim sup
r!1

log logM(r)

log r
 lim sup

r!1
⌘ + 2"+

log log r

log r
= ⌘ + 2".

Since " is arbitrary, µ  ⌘.

This proposition allow us to calculate some explicit examples.

Example 2.6.5. 1. Every polynomial has order 0.

2. Let f be a polynomial of degree n. Then exp f has order n.
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3. For a complex number q with |q| < 1, the function f : C ! C defined
by

f(z) =
1X

k=0

q
k
2
z
k

has order zero.

Given two functions of finite order we can construct new finite order
functions.

Lemma 2.6.6. Suppose f and g are holomorphic functions defined on the

complement of compact sets with order µ and ⌫ respectively. Then

1. f
0
has order µ.

2. af + bg has order ⌘  max(µ, ⌫), where a, b 2 C.

3. fg has order ⌘  max(µ, ⌫).

4. if f has no zeros then 1/f has order µ.

Proof. The first property follows from Proposition 2.6.4. For the second
property we only need to note that if ↵ < � then exp |z|↵ < exp |z|� for
|z| > 1. Then for every ✏ > 0 there is R > 0 such that

|af(z) + bg(z)|  a exp |z|µ+ "
2 + b exp |z|⌫+ "

2

 (a+ b) exp |z|max(µ,⌫)+"

for |z| > R. Since this is true for all " > 0, af + bg has order at most
max(µ, ⌫).

For the third property, take " > 0. For |z| su�ciently large

|f(z)|  exp |z|µ+" and |g(z)|  exp |z|⌫+".

Then
|fg(z)|  exp(|z|µ+" + |z|⌫+")

and since " is arbitrary and for su�ciently large z, |z|↵ + |z|�  C|z|max(↵,�)

for some constant C that depends on ↵ and �, we get the result.
For the final property, note that f(1/z) is a function on a punctured

neighbourhood of 0. Hence there is a number m and a holomorphic function
h such that f(1/z) = z

m exph(z). Now for a complex number A and a
holomorphic function F , expF has the same order as expAF . So letting
k(z) = h(1/z), since f(z) = z

�m exp k(z) has order µ so too does 1/f =
z
m exp�k(z).
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It is not true that the reciprocal of a general finite order function is of
finite order, indeed the reciprocal is not even holomorphic in general. We
might hope that if we were to alter our definition of finite order functions to
include meromorphic functions that satisfy (2.2) then the reciprocal would
be of finite order. Unfortunately this is still not the case. We will see shortly
that many functions with finite order have zeros accumulating at 1. The
reciprocal of such a function would have poles accumulating at 1 and so
could not satisfy the equivalent definition of finite order given in Lemma
2.6.3.

There is an alternative definition of the order of a meromorphic function
in terms of the Nevanlinna characteristic function. Under this definition
it can be shown that the reciprocal of a finite order function is of finite
order [CY01, Proposition 1.5.2]. To develop the background needed for this
definition would take us too far afield.

Using Jensen’s formula we can relate the order of a function to the dis-
tribution of its zeros.

Theorem 2.6.7 (Jensen’s formula). Let U be an open set in C containing

D(0, R). Suppose f 2 O(U) has no zeros on the circle of radius R and

f(0) 6= 0. Denote the zeros of f by (an) repeated according to multiplicity.

Then

log |f(0)|+
X

|an|<R

log
R

|an|
=

1

2⇡

Z 2⇡

0

log |f(Re
i✓)|d✓.

Note that if f(0) = 0 there is some k such that f(z) = z
k
g(z) where

g(0) 6= 0; then Jensen’s formula can be applied to g. The proof of this
theorem can be found in almost any textbook on basic complex analysis; we
recommend [SS03, page 135].

Corollary 2.6.8. Suppose f is an entire function of order µ with infinitely

many zeros. Let (an)1n=1 be a listing of the zeros of f repeated according to

multiplicity. Then the sum

1X

n=1

|an|�(µ+")
< 1

converges for every " > 0.

Proof. Let n(r) denote the number of zeros of f inside the disc of radius r

centred on the origin. Viewed as a distribution, the derivative of n is an
infinite linear combination of delta functions. Then by integration by parts

X

|an|<R

|an|�↵ =

Z
R

0

dn(r)

r↵
=

n(R)

R↵
+ ↵

Z
R

0

n(r)

r↵+1
dr. (2.5)



26 Chapter 2. Background

We will show that in the limit as R ! 1 the right hand side of (2.5) is finite
for appropriately chosen ↵. First note that

X

|an|<R

log
R

|an|
=
X

|an|<R

Z
R

|an|

dr

r
=

Z
R

0

n(r)

r
dr.

Then

n(R) log 2 = n(R)

Z 2R

R

dr

r

and since n is non-decreasing

n(R)

Z 2R

R

dr

r

Z 2R

R

n(r)

r
dr.

Multiplication by a rational function does not change the growth of f . Thus
we can replace f by Az

�k
f where A 2 C and k a non-negative integer are

chosen so that f(0) = 1. Then, by Jensen’s formula, for every R > 0 with
R 6= |an| for every n we have

Z 2R

0

n(r)

r
dr =

X

|an|<2R

log
2R

|an|
=

1

2⇡

Z 2⇡

0

log |f(2Re
i✓)|d✓.

Then

n(R) log 2 
Z 2R

0

n(r)

r
dr  logM(2R).

Since f has order µ, for every " > 0

M(2R)  expRµ+"

holds for R su�ciently large. Thus for R su�ciently large and satisfying
R 6= |an| for every n, we have

n(R)  2µ+"

log 2
R

µ+"
.

Since n is increasing this is true for all R su�ciently large.
Finally, if we take ↵ > µ + " the right hand side of (2.5) is finite in the

limit as R ! 1. Since " is arbitrary
1P
n=0

|an|�(µ+")
< 1 for all " > 0.

Theorem 2.6.9. For a positive integer k, let

Ek(z) = (1� z) exp

✓
z +

z

2
+ · · ·+ z

k

k

◆
.
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Suppose (an)1n=1 is a sequence in C such that an ! 1 and so that there is a

number µ > 0 for which
1X

n=1

|an|�(µ+")
< 1

holds for all " > 0 but not for any " < 0. Let k be the integer such that

k  µ < k + 1. Then the function

f(z) =
1Y

n=1

Ek

✓
z

an

◆

is entire, has order µ and has zeros at the points specified by the sequence

(an) and nowhere else.

Proof. We refer to [SS03, section 5.4] for a proof that f is entire. To show
that it has order µ first note that by Corollary 2.6.8 the order of f is at least
µ. We now show that the order is at most µ. For every " > 0 there is R > 0
such that for all |z| > R,

|Ek(z)| =
����(1� z) exp

✓
1 + · · ·+ z

k

k

◆����  exp |zµ+"|.

Then for |z| > R,

|f(z)| =

�����

1Y

n=1

Ek

✓
z

an

◆�����

 exp

 
|z|µ+"

1X

n=1

|an|�(µ+")

!

 exp
�
c|z|µ+"

�

where
1P
n=1

|an|�(µ+") = c < 1. Since this is true for all " > 0 the order of f

cannot be more than µ and hence f has order µ.

2.7 Ramified coverings of the sphere
and dessins d’enfants

2.7.1 Coverings of the sphere with finitely many
punctures

Riemann surfaces and meromorphic functions

The following construction can be found in [For91, Theorem 8.4].
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Construction 2.7.1. Given a non-constant meromorphic function f on a
compact Riemann surface X we can construct a finite-sheeted covering map
of the sphere with finitely many punctures (we simply remove the critical
values of f from P1 and their preimages from X). The number of sheets of
the resulting covering map is then equal to the degree of f as a map.

Conversely, letting Y = P1 \ {c1, . . . , ck}, given an n-sheeted covering
p : X ! Y with X being path connected we can recover a meromorphic
function on a compact Riemann surface. Firstly X can be given a complex
structure by pulling back the complex structure on Y using p, so p can be
thought of as a holomorphic map from the non-compact Riemann surface X
into Y .

Now for i = 1, . . . , k, around each ci there is a neighbourhood Ui such
that, letting Vi = p

�1(Ui \ {ci}), p|Vi is a covering of Ui \ {ci}. Now let Ji be
the number of connected components of Vi and denote these components by
Wij, where j = 1, . . . , Ji. If ci = 1 define

pij =
1

p|Wij

,

otherwise set pij = p|Wij � ci. Then pij is a finite-sheeted holomorphic
covering of a punctured neighbourhood of 0, thus in suitable coordinates

pij = z
m for some integer 1  m  n. Then (pij)

1
m is single-valued and a

biholomorphism from Wij to a punctured neighbourhood of 0 2 C. We now
“fill in” the puncture in the following way. Let Pij be an abstract point and

extend (pij)
1
m to the set Wij [ {Pij} by setting (pij)

1
m (Pij) = 0. We then

equip Wij [ {Pij} with a topology by saying a subset A is open if and only if

(pij)
1
m (A) is open in C. In this way (pij)

1
m extends to a biholomorphism from

Wij [ {Pij} to a neighbourhood of 0 (so (pij)
1
m is a holomorphic coordinate

chart around Pij). And so, in precisely the same way, we see that p|Wij

extends to Wij [ {Pij} as a branched cover of Ui whose only branch point is
Pij.

Thus

X = X [
k[

i=1

Ji[

j=1

{Pij}

is a compact Riemann surface and p extends to a meromorphic function on

X whose branch points lie in the set
kS

i=1

JiS
j=1

{Pij}.

Definition 2.7.2. We say two topological covering maps p : X ! Y and
q : Z ! Y are equivalent if there is a homeomorphism h : X ! Z such that
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the following diagram commutes.

X Z

Y

h

p

q

In a similar way we say that pairs (X, f) and (Z, g) where X and Z are
Riemann surfaces, and f and g are meromorphic functions are equivalent if
there is a biholomorphism h : X ! Z such that f = g � h.

Theorem 2.7.3. Let Y = P1 \ C where C is a non-empty finite subset

of P1
. Suppose p : X ! Y and q : Z ! Y are finite sheeted covering

maps. By Construction 2.7.1 these coverings give rise to Riemann surface–

meromorphic function pairs
�
X, p̂

�
and

�
Z, q̂

�
respectively. Then p and q are

equivalent as covering maps if and only if
�
X, p̂

�
and

�
Z, q̂

�
are equivalent

as Riemann surface–meromorphic function pairs.

We refer to [For91, Theorem 8.5] for a proof.

Group-theoretic representations of coverings

Finite-sheeted coverings of the punctured sphere also have equivalent for-
mulations in terms of group-theoretic objects. Let Y = P1 \ C where
C = {c1, . . . , ck}, k � 1, is a finite subset of P1 and take a base point
y0 2 Y . Then ⇡1 (Y, y0) is isomorphic to the free group with k�1 generators.
In order to preserve the symmetry between the points in C we usually view
⇡1 (Y, y0) as the group with presentation

h�1, . . . , �k|�1 · · · �ki

and think of the generator �i as a loop based at y0 that is freely homotopic
to a small circle around ci. Suppose p : X ! Y is an n-sheeted covering map
with X being path connected. Let E = p

�1(y0) = {e1, . . . , en} denote the
fibre over y0. Using the map p we can define an action of ⇡1 (Y, y0) on E.

Construction 2.7.4. For each point ei 2 E and each generator �j of
⇡1 (Y, y0) there is a lifting by p of �j to a path �̃ij in X with starting point
ei. We define �j(ei) to be the endpoint of �̃ij. This action clearly respects
the group operation of ⇡1 (Y, y0). We call the action thus defined on E the
monodromy action of ⇡1 (Y, y0) associated to the map p.

Lemma 2.7.5. The monodromy action associated to a finite-sheeted covering

map p : X ! Y is transitive on the fibre E = p
�1(y0).
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Proof. This follows from the fact thatX is path-connected. The image of any
path joining e1, e2 2 E under p is a loop � in Y . Thus the class [�] 2 ⇡1 (Y, y0)
has �(e1) = e2.

If we identify each point in E with a unique number between 1 and n,
then the monodromy action associated to a covering map induces a group
homomorphism h : ⇡1 (Y, y0) ! Sn where the action of h(�) on {1, . . . , n}
mirrors the action of � on E. Of course h depends on how we label the points
in the set E so h is only unique up to conjugation by an element of Sn.

Later we will see that a covering map is determined by its associated
monodromy action. For this reason it is useful to decouple the two ideas.

Definition 2.7.6 (Monodromy representation). A monodromy representa-

tion of ⇡1 (Y, y0) is a group homomorphism h : ⇡1 (Y, y0) ! Sn for some n

such that the image acts transitively on {1, . . . , n}. We say that two mon-
odromy representations h1 and h2 are equivalent if there is an element ⇢ 2 Sn

such that h1 = ⇢
�1
h2⇢. Clearly the monodromy representations of equivalent

covering maps are equivalent.

Now let us fix a generating set {�1, . . . , �k} for ⇡1 (Y, y0) subject to the
relation �1 · · · �k = id. Then a given monodromy representation of ⇡1 (Y, y0)
is completely determined by the images of �1, . . . , �k. So a monodromy rep-
resentation of Y = P1 \ C determines and is determined by a sequence of k
permutations [�1, . . . , �k] such that

• �1 · · · �k = id,

• the group generated by �1, . . . , �k acts transitively on the set {1, . . . , n}.

Definition 2.7.7 (Constellation [LZ04, Definition 1.1.1]). A finite sequence
[�1, . . . , �k] of permutations in Sn for some n satisfying the above properties
is known as a constellation of length k. The constellation determined by
an n-sheeted covering map of Y is only unique up to conjugation by an
element of Sn so we will say that constellations [�1, . . . , �k] and [⌧1, . . . , ⌧k]
are equivalent if there is ⇢ 2 Sn such that �j = ⇢

�1
⌧j⇢ for all j.

Given a constellation [�1, . . . , �k] one constructs a monodromy represen-
tation of ⇡1 (Y, y0) where Y = P1 \{c1, . . . , ck} simply by mapping generators
�1, . . . , �k of ⇡1 (Y, y0) to �1, . . . , �k. It is clear that equivalent constellations
give rise to equivalent monodromy representations and vice versa. Note that
there is no canonical choice of a generating set {�1, . . . , �k} and di↵erent
choices of this set may give rise to non-equivalent constellations.
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Now given a monodromy representation h : ⇡1 (Y, y0) ! Sn and i 2
{1, . . . , n} consider the stabiliser

Stab(i) = {� 2 ⇡1 (Y, y0) : h(�)(i) = i}.

Since the image of h acts transitively, for any j 2 {1, . . . , n} there is � 2
⇡1 (Y, y0) such that �(i) = j. Thus Stab(j) = �

�1 Stab(i)� so, up to conju-
gation, this subgroup is unique.

Lemma 2.7.8. Given a monodromy representation h : ⇡1 (Y, y0) ! Sn and

i 2 {1, . . . , n}, M = Stab(i) has index n in ⇡1 (Y, y0).

Proof. Take �1, �2 2 ⇡1 (Y, y0). Then M�1 = M�2 if and only if �1�
�1
2 2 M .

This is the case only if �1(i) = �2(i). Thus the cosets of M are in bijection
to the elements of {1, . . . , n} so M has index n.

Definition 2.7.9 (Monodromy subgroup). A subgroup of ⇡1 (Y, y0) with
finite index is called a monodromy subgroup of ⇡1 (Y, y0). Two monodromy
subgroups M1 and M2 are said to be equivalent if they are conjugate.

Construction 2.7.10. Given a monodromy subgroup M < ⇡1 (Y, y0) of
index n we can construct a topological space X and an n-sheeted covering
map p : X ! Y .

Consider the set of oriented paths in Y that begin at y0. We endow
this space with a topology in the following way: take an oriented path ↵

with starting point y0 and end point x, and an open, connected, and simply
connected neighbourhood U of x. Let [U,↵] be the set of curves � with end
point lying in U and such that there is a curve u lying entirely within U

such that � is homotopic to ↵ ·u (this construction gives rise to the universal
covering of Y , see [For91, Theorem 5.3] for details).

We define an equivalence relation on this space by saying ↵ and � are
equivalent paths if they have the same endpoint and if ↵��1 2 M . Let X be
the space of equivalence classes of such paths, and define a map p : X ! Y

that sends a path to its endpoint. Then p is a covering map. In fact it can
be shown that ⇡1 (X) ⇠= M [For91, Theorem 5.9].

Theorem 2.7.11. Equivalent monodromy subgroups M1,M2 < ⇡1 (Y, y0)
give rise to equivalent covering maps under Construction 2.7.10.

Proof. Let p1 : X1 ! Y and p2 : X2 ! Y be the covering maps associated
to M1 and M2 respectively according to Construction 2.7.10, and take � 2
⇡1 (Y, y0) such that M1 = �

�1
M2�. Let ↵ 2 M1 be an equivalence class of

curves, then define h : X1 ! X2 be setting ↵ 7! �
�1
↵�. This is easily seen

to be an equivalence of covering maps.



32 Chapter 2. Background

Meromorphic func-
tions on compact
Riemann surfaces

Covering maps of Y

Monodromy
subgroups of
⇡1 (Y, y0)

Monodromy
representations
of ⇡1 (Y, y0)

Constellations
of length k

2.7.1

2.7.42.7.10

Stabiliser

2.7.7

Figure 2.1: Equivalent representations of coverings of Y = P1 \ {c1, . . . , ck}.

For more details about any of the above constructions the reader is en-
couraged to consult [GGD12], [JW16], or [LZ04].

We summarise the above results in Figure 2.1. We have shown that
equivalent objects at the base of each arrow give rise to equivalent objects at
the tip of the arrow. Since each class of objects is connected to every other
class by arrows we have shown that two equivalent objects in a given class
give rise to equivalent objects in any other class.

The results of this section can be interpreted in terms of category theory.
The classes in Figure 2.1 define the objects of categories. Constructions 2.7.1,
2.7.4 and 2.7.10, and Definition 2.7.7 define the action of functors on the
objects of categories. We have shown that these functors are essentially
surjective. A more careful treatment of this theory would also define the
morphisms in each category and the action of each functor on these mor-
phisms, and show that the functors are full and faithful, thus showing that
the categories are in fact equivalent.

2.7.2 Dessins d’enfants

The following lemma shows that every meromorphic function on a compact
Riemann surface of genus g � 1 corresponds to a covering of the sphere with
at least three punctures.

Lemma 2.7.12. Let X be a compact Riemann surface of genus g > 0 and

f : X ! P1
be a meromorphic function. Then f has three or more critical

values.



2.7. Ramified coverings of the sphere and dessins d’enfants 33

The proof of this lemma can be found in [GGD12, page 170]. We repro-
duce it here for the convenience of the reader.

Proof. If f has no critical values then it is a proper local homeomorphism and
hence a covering map. Since P1 is simply connected f is a biholomorphism
and X = P1.

If f has a single critical value then, after composing with an automor-
phism of P1 if necessary, we can say that value is 1. Then f |(X \ f�1(1))
is an unramified cover of C. Since C is simply connected this must be an
isomorphism, so X\f�1(1) = C and hence X = P1, contrary to assumption.

Suppose f has two critical values. Without loss of generality say those
values are 0 and 1. Then X \ f

�1{0,1} is a finite sheeted holomorphic

covering of C⇤ and thus biholomorphic to C⇤, so X
f�! P1 is equivalent to

P1 z
n

�! P1.

Thus, aside from self-coverings, the “simplest” coverings of punctured
spheres are those of the triply punctured sphere. Note that since the auto-
morphism group of P1 acts triply transitively, given a covering of the sphere
minus any three points, we can post-compose by an automorphism to get a
covering of Y = P1 \ {0, 1,1}.

Definition 2.7.13 (Belyi functions, surfaces and pairs). A meromorphic
function f on a compact Riemann surface X is called a Belyi function if it
has at most three critical values (which we usually assume to be 0, 1 and 1).
A compact Riemann surface X is called a Belyi surface if it admits a Belyi
function. A Belyi pair is a pair (X, f) consisting of a Belyi function and a
Belyi surface.

We now show how coverings of Y = P1 \ {0, 1,1} can be represented as
embedded graphs.

Definition 2.7.14 (Dessins d’enfants). A dessin d’enfants (or simply dessin)
is a pair (X,D) where X is an oriented compact surface and D is a finite
connected bipartite graph embedded in X such that X \ D is a union of
finitely many topological discs. We say two dessins (X,D) and (X 0

, D
0) are

equivalent if there is an orientation-preserving homeomorphism h : X ! X
0

such that the restriction h|D is a graph isomorphism.

By a bipartite graph we mean that the set of vertices can be partitioned
into two non-empty disjoint sets V1 and V2 such that every edge has one
endpoint in each of V1 and V2. We will think of the vertices as being coloured
either white or black to distinguish the two subsets.



34 Chapter 2. Background

Construction 2.7.15. Given a Belyi function f : X ! P1 ramified over the
set {0, 1,1} we can construct a bipartite graph D on X by letting f

�1(0)
be the white vertices of D, f�1(1) be the black vertices and f

�1((0, 1)) be
the edges. The edges thus defined cannot cross over one another since if they
did the intersection point would be a critical point (f must be a two-to-one
covering in a neighbourhood of the intersection) and so f would have a fourth
critical value. Thus D is an embedded finite bipartite graph on X.

The faces of D are biholomorphic to discs since on each connected com-
ponent of X \ D, f is a ramified holomorphic covering of P1 \ [0, 1] with a
single critical value.

To show that D is connected let y0 = 1/2 and Y = P1 \ {0, 1,1}, and
consider a curve � 2 ⇡1 (Y, y0). Let �̃ be a lifting of � by f . After a moment’s
reflection the reader will see that �̃ is homotopic to a path contained in
D. Since every edge in D contains a point in the preimage of 1/2 and
the monodromy action associated to f is transitive, this shows that D is
connected.

Therefore (X,D) defines a dessin. It is not di�cult to see that equivalent
Belyi pairs give rise to equivalent dessins.

Construction 2.7.16. Given a dessin (X,D) with n edges we can define a
constellation [�, ⌧, (�⌧)�1] in Sn. Let E = {e1, . . . , en} be the set of edges.
Now each edge has exactly one white and one black vertex. Suppose ei has
white endpoint v. Imagine a small positively oriented circle around v (recall
that each Riemann surface comes equipped with an orientation). Beginning
at ei, we can follow the circle until it meets another edge ej. Set �(i) = j.
Note that ei and ej are not necessarily di↵erent edges. We define the action
of � on the rest of {1, . . . , n} similarly. The action of ⌧ is defined in the same
way using the black vertices of D.

Since D is connected the permutations � and ⌧ generate a group that
acts transitively on E so [�, ⌧, (�⌧)�1] is a constellation in Sn.

Thus, in the special case of Y = P1 \ {0, 1,1} we can add the category
of dessins d’enfants to the previous diagram, resulting in Figure 2.2.

Theorem 2.7.17. The functors defined in Constructions 2.7.15 and 2.7.16

are essentially surjective.

For full details of the proof the reader may consult [GGD12, Proposi-
tion 4.29], [JW16, Theorem 3.15], or [LZ04]. After properly defining the
morphisms in these categories and the action of these functors on these mor-
phisms, one can see that they define an equivalence of categories.
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Belyi pairs Dessins
d’enfants

Covering maps of Y

Monodromy
subgroups of
⇡1 (Y, y0)

Monodromy
representations
of ⇡1 (Y, y0)

Constellations
of length k

2.7.15

2.7.16

2.7.1

2.7.42.7.10

Stab 2.7.7

Figure 2.2: Equivalent representations of coverings of Y = P1 \ {0, 1,1}.

Dessin

(X,D)

Belyi function

f : X ! P1

Constellation

[�, ⌧, (�⌧)�1] in Sn

White vertices f
�1(0) Cycles of �

Black vertices f
�1(1) Cycles of ⌧

Faces f
�1(1) Cycles of (�⌧)�1

Edges f
�1((0, 1)) The set {1, . . . , n}

Table 2.1: The relationship between di↵erent representations of coverings

Throughout this section we have constructed several equivalent represen-
tations a covering of P1 \ {0, 1,1}. Under further scrutiny, these construc-
tions reveal how certain features of a dessin manifest themselves in these
alternate representations. A short list of these correspondences is presented
in Table 2.1.

The following theorem is not strictly necessary for any later results in
this thesis, however we would be remiss to make no mention of it having
spent so much time developing related theory. It shows that Belyi surfaces
are exceptional among compact Riemann surfaces. It even caused Alexander
Grothendieck to remark:

“I do not believe that a mathematical fact has ever struck me
quite so strongly as this one, nor had a comparable psychological
impact.”[SL97, page 253]

We refer to [GGD12, chapter 3] for the proof.

Theorem 2.7.18 (Belyi’s theorem). A compact Riemann surface can be

defined (as a projective curve) over the algebraic numbers if and only if it is

a Belyi surface.
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Chapter 3

Algebraic and finite order
functions

3.1 Definitions

We begin by extending the concept of finite order growth developed in Sec-
tion 2.6 to functions on Riemann surfaces.

Definition 3.1.1 (Finite order at a point). We say that a function f defined
on a punctured neighbourhood of a point z0 2 C is of finite order at z0 if
f(1/(z � z0)) is of finite order in the sense of Definition 2.6.1. The order of
f at z0 is defined as the order of f(1/(z � z0)).

Definition 3.1.2 (Finite order on a Riemann surface). Let X be a Riemann
surface and p be a point in X. A holomorphic function f defined on a punc-
tured neighbourhood of p is said to be of finite order at p if there is a holo-
morphic coordinate neighbourhood (U, z) of p such that f � z�1|z(U \ {p}) is
of finite order at z(p). The order of f is then defined as the order of f � z�1.

All of the elementary results proved in Section 2.6 carry over to finite
order functions on Riemann surfaces.

Lemma 3.1.3. The above definition of order is independent of the chart.

Proof. Let p be a point on a Riemann surface X and f be holomorphic
in a punctured neighbourhood of p. Let (U, z) and (V,w) be coordinate
neighbourhoods of p with z(p) = 0 = w(p) and let ' = z � w

�1 be the
transition function between the two charts. Suppose f � z

�1 has order µ.
Then for " > 0 and all a 2 C su�ciently close to 0

exp |'(a)|�(µ�")  |f � z�1 � '(a)| = |f � w�1(a)|  exp |'(a)|�(µ+")
.

37
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Since ' is a biholomorphism there are numbers m,M > 0 such that m|a| 
|'(a)|  M |a| for all a. So for all a su�ciently close to 0

exp(M |a|)�(µ�")  |f � w�1(a)|  exp(m|a|)�(µ+")
.

Since " was arbitrary we see that f � w�1 has order µ also.

With the notion of finite order functions in hand we can define two sheaves
that will be of central importance throughout the rest of this thesis.

Definition 3.1.4 (The sheaf of algebraic and finite order functions). Let
X be a Riemann surface and C ⇢ X be a discrete subset. We define the
sheaves AC , the sheaf of algebraic functions, and FC , the sheaf of finite order
functions, on X as follows. Let U ⇢ X be an open subset. Define abelian
groups

AC(U) = {f 2 M (U) : f has no poles outside of C}

and FC(U) as the set of functions f 2 O(U \C) that are of finite order at all
p 2 C that are isolated boundary points of U \C (where the group operation
is addition). Along with the obvious restriction maps these groups define the
sheaves AC and FC on X.

We can also define sheaves of algebraic and finite order di↵erential forms
on a Riemann surface in a similar way.

Definition 3.1.5 (Algebraic and finite order 1-forms). Let X be a Riemann
surface, C ⇢ X be a discrete subset, and R = X \C. A holomorphic 1-form
! 2 O

(1)(R) is said to be algebraic (respectively of finite order) if for every
point c 2 C there is a holomorphic coordinate chart (U, z) centred on c such
that in local coordinates

!|U = fdz

where f 2 AC(U) (respectively f 2 FC(U)). We can then define the sheaves

A
(1)
C

of algebraic 1-forms and F
(1)
C

of finite order 1-forms by letting V ⇢ X

be open, and letting A
(1)
C

(V ) be the group of algebraic 1-forms on V and

F
(1)
C

(V ) be the group of finite order 1-forms on V .

3.2 Algebraic functions

Every algebraic function on a compact Riemann surface is, by definition,
holomorphic on the corresponding punctured Riemann surface. It is perhaps
not surprising then, that many results concerning holomorphic functions on
open Riemann surfaces also hold in the restricted case of algebraic functions.
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The sheaf of algebraic functions

As a consequence of Dolbeault’s theorem it can be seen that for an open
Riemann surface R, H1(R,O) = 0 [For91, Theorem 26.1]. A similar result
holds in the restricted setting of algebraic functions.

Lemma 3.2.1. Let X be a compact Riemann surface of genus g and C ⇢ X

a non-empty finite subset. Then

H
1(X,AC) = 0.

The proof relies on the theory of compact Riemann surfaces and the
following short lemma proved in [For91, Lemma 12.4].

Lemma 3.2.2. Let U = (Ui) and V = (Vj) be open covers of a Riemann sur-

face X such that every Vj is contained in at least one Ui and let S be a sheaf

over X. Then the map r : H1(U,S ) ! H
1(V,S ) induced by restriction is

injective, and hence, so is the canonical mapping H
1(U,S ) ! H

1(X,S ).

Proof of Lemma 3.2.1. Let V = (Uj)
n

j=1 be a finite open cover of X and let
(fjk) be a cocycle in Z

1(V,AC). Let Kjk be the order of the highest order
pole of fjk and let K = max

j,k

{Kjk, 2g � 1}.
Now using �C to denote the characteristic function of C, let D = K�C

considered as a divisor. We can then view (fjk) as a cocycle in Z
1(U,OD).

But by Theorem 2.1.2 degD > 2g� 2 implies that H1(X,OD) = 0 and since
the canonical mapping H

1(V,OD) ! H
1(X,OD) is injective we have that

H
1(V,OD) = 0. Therefore (fjk) splits in OD and hence also in AC and so

H
1(X,AC) = 0.

Prescribing the periods of algebraic 1-forms

In [BS49] Behnke and Stein showed it is possible to prescribe the periods of
a holomorphic 1-form on an open Riemann surface. We now show that this
is also possible in the algebraic setting.

Theorem 3.2.3. Given a compact Riemann surface X, a non-empty finite

subset C ⇢ X, and a group homomorphism ⇢ : ⇡1 (X) ! C, there is an

algebraic 1-form ! 2 A
(1)
C

(X) with
Z

�

! = ⇢(�) for every � 2 ⇡1 (X) .

A proof of this theorem in the holomorphic case can be found in [For91,
Theorem 28.6]. The algebraic case follows along the same lines as the more
general setting with only minor adaptations.
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Proof. Consider the universal covering map p : X̃ ! X of X. The group of
covering transformations of p is isomorphic to the fundamental group ⇡1 (X).
This isomorphism induces an action of ⇡1 (X) on X̃.

For every point x 2 X there is a neighbourhood Ux such that p�1(Ux) =F
Vx,j where Vx,j ⇢ X̃ is open and p|Vx,j is a homeomorphism. Letting

Yx = p
�1(Ux) we can thus construct a homeomorphism 'x : Yx ! Ux⇥⇡1 (X)

that is compatible with the action of ⇡1 (X) on X̃. That is, we can write
'x = (p, ⌘x) where ⌘x : Yx ! ⇡1 (X) satisfies

⌘x(�y) = � · ⌘x(y)

for every y 2 Yx and � 2 ⇡1 (X) where · denotes the group multiplication in
⇡1 (X).

Now we can define locally constant functions fx : Yx ! C by

fx(y) = ⇢(⌘x(y)).

The group ⇡1 (X) acts on Ap�1(C)(X̃) by �f = f � ��1. Thus we have

�fx(y) = fx(�
�1
y) = ⇢(⌘x(�

�1
y)) = ⇢(��1 · ⌘x(y)).

So

(fx � �fx)(y) = ⇢ (⌘x(y))� ⇢
�
�
�1 · ⌘x(y)

�

= ⇢

⇣
⌘x(y) ·

�
�
�1 · ⌘x(y)

��1
⌘

= ⇢
�
⌘x(y) · (⌘x(y))�1 · �

�

= ⇢(�)

Therefore for x, y 2 X, we have (fx � fy) = �(fx � fy) on Yx \ Yy. Then
the function gxy = fx � fy 2 Ap�1(C)(Yx \ Yy) can be considered as an
element of AC(Ux \ Uy). These gxy form a cocycle in Z

1
�
(Ux)x2X ,AC

�
. By

Lemma 3.2.1 this cocycle splits, so there are functions gx 2 AC(Ux) with
gx � gy = gxy on Ux \ Uy. Pulling back by p we get functions in Ap�1(C)(Yx)
(also denoted gx) that are invariant under the action of ⇡1 (X). Now let
Fx = fx � gx 2 Ap�1(C)(Yx). These functions satisfy Fx � �Fx = ⇢(�), and
on Ux \ Uy

Fx � Fy = fx � fy � (gx � gy) = gxy � (gx � gy) = 0.

Hence the Fx piece together to form a global function F 2 Ap�1(C)(X̃) with
F � �F = ⇢(�).
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Now consider the di↵erential dF . This 1-form is invariant under the
action of ⇡1 (X) since

dF � �dF = dF � d(�F ) = d(F � �F ) = 0,

so dF descends to a 1-form ! 2 A
(1)
C

(X) with periods
R
�
! = ⇢(�).

The corollary below, which follows immediately from the theorem above,
generalises Proposition 2.4 of [FO13] which was stated without proof.

Corollary 3.2.4. Let X be a compact Riemann surface and C be a non-

empty finite subset. Every element of H
1(X \ C,C) is represented by an

element of A
(1)
C

(X) as a de Rham cohomology class.

Algebraic approximation

To approximate a function defined on a compact subset of a compact Rie-
mann surface using global holomorphic functions we must of course allow for
some kind of singularity (otherwise the approximants would be constant).
The next theorems show that we only need to allow for the mildest kind of
singularity that we could hope for, that is, we can approximate by algebraic
functions.

Theorem 3.2.5 (Algebraic Runge). Let X be a compact Riemann surface,

C ⇢ X be a non-empty finite subset, and R = X \C. Take a holomorphically

convex compact subset K of R and f 2 O(K) (recall Definition 2.2.1). Then

f can be uniformly approximated on K by algebraic functions on R, that is,

the restriction map AC(X) ! O(K) has dense image with respect to the

topology of uniform convergence on K.

Proof. By Runge’s theorem there are functions fn 2 O(R) converging uni-
formly to f on K. A priori we cannot say anything about the growth of these
functions near the points in C.

Let E : R ! Cm be an algebraic embedding into some Cm (as per Re-
mark 2.5.3). By Theorem 2.5.11 the functions fn�E�1 extend to holomorphic
functions Fn on Cm. There are Taylor polynomials Pnk : Cm ! C converging
uniformly to Fn on compact subsets of Cm. Now define functions gn : R ! C
by

gn = Pnn � E.

These functions are algebraic. Under E, the set C is mapped to the
hyperplane at infinity so lim

x!c

kE(x)k = 1 for c 2 C. Then Pnn is either

constant, in which case gn is constant, or has a pole at the hyperplane at
infinity, in which case gn has a pole at every c 2 C.
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Finally since the functions gn converge uniformly to f on K the theorem
is proved.

Remark 3.2.6. Shortly before submitting this thesis I became aware of the
papers [Roy67] and [Sch79] in which the above theorem is proved using solely
one-dimensional theory.

Theorem 3.2.7 (Algebraic Mergelyan–Bishop). Let X be a compact Rie-

mann surface, C ⇢ X a non-empty finite subset, and R = X \ C. Take

K a holomorphically convex compact subset of R and f 2 Oint(K). Then

f can be uniformly approximated on K by algebraic functions on R, that is,

the restriction map AC(X) ! Oint(K) has dense image with respect to the

topology of uniform convergence on K.

Proof. This theorem follows from Theorem 3.2.5 once we note that by the
original Mergelyan–Bishop theorem Oint(K) = O(K). Thus we can approx-
imate f by functions in O(K) and then approximate these functions by
functions in AC(X).

3.3 Finite order functions

Prescribing the divisor of finite order functions

On an open Riemann surface we can always find a meromorphic function
with a prescribed divisor. We will now see that on an a�ne curve we can
do this in such a way that the function has finite order at the punctures
provided the divisor has restrictions on the rate of accumulation of zeros.
The following is our own definition.

Definition 3.3.1. Let X be a compact Riemann surface, C ⇢ X a non-
empty finite subset, c 2 C be a point, (U,') be a coordinate disc centred on
c with U \C = {c} and '(c) = 0, and D be a non-negative divisor on X \C.
Let (dj)

1
j=1 be a listing of the points in supp(D) \ U repeated according to

their multiplicity. We define the accumulation order of D at c as the infimum
of numbers ⌫ such that

1X

j=1

|'(dj)|⌫ < 1.

If the above sum does not converge for any ⌫ we say D has infinite accu-
mulation order. If supp(D) \ U is finite we say D has zero accumulation
order.
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Lemma 3.3.2. The accumulation order of a divisor at a point is independent

of the chart used.

Proof. The proof is similar to that of Lemma 3.1.3. Suppose X is a Riemann
surface, c 2 X is a point, and D is a divisor on X \ {c} with accumulation
order µ according to the coordinate neighbourhood (U,') of c. Let (V, ) be
another coordinate neighbourhood of c. Then since  � '�1 is a biholomor-
phism there are numbers m,M > 0 such that

m|z|  | � '�1(z)|  M |z|

for all z 2 '(U \ V ). Now let (dj)
1
j=1 be a listing of the points in supp(D)\

(U [ V ) (note that the theorem is obvious if D has finite support). Then for
⌫ > 0

m

1X

j=1

|'(dj)|⌫ 
1X

j=1

| (dj)|⌫  M

1X

j=1

|'(dj)|⌫ .

So D has accumulation order µ at c according to  also.

The above definition is inspired by Hadamard’s factorisation theorem.
Indeed we can rephrase part of Hadamard’s theorem by saying that for any
non-negative divisor D on C with accumulation order µ at 1 there is a
function f 2 F{1}(P1) of order µ with div(f) = D.

Proposition 3.3.3. Let X be a compact Riemann surface of genus g � 1,
C = {c1, . . . , ck} ⇢ X a finite non-empty subset, and R = X \ C. Take a

non-negative divisor D on R with accumulation order µj < 1 at cj for each

j = 1, . . . , k. Then there is a function f 2 FC(X) such that div(f) = D and

so that the order of f at cj is at least µj and at most µj + 2g � 1.

This proposition generalises [FO13, Proposition 2.1]. It can also be seen
as an extension of Hadamard’s theorem to a�ne curves.

Proof. By Weierstrass’ theorem there is f0 2 O(R) with div(f0) = D. For
j = 1, . . . , k let Vj be a coordinate disc centred on cj so that the Vj are
pairwise disjoint. Let Wj b Vj be a smaller disc containing cj and let V0 =
X \

S
k

j=1 W j. Then
V = {V0, V1, . . . , Vk}

is an open cover of X. By Theorem 2.6.9 there is a function fj 2 FC(Vj)
with div(fj) = D|Vj and order µj at cj for j = 1, . . . , k. Let mj denote the

winding number of
f0

fj
at cj and let hj 2 O(Vj) be a holomorphic function
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with a zero of order mj at cj and no zeros. Then
f0

fjhj

has a holomorphic

logarithm on Vj \ {cj}. Now for j = 1, . . . , k define

⇣0j = log
f0

fjhj

2 O(Vj \W j).

Since Vi \ Vj = ; for 1  i < j this defines a cocycle ⇣ = (⇣ij) 2 Z
1(V,O).

Now let E be any non-zero divisor on X supported on C with degE =
2g � 1. Then since the canonical map H

1(V,OE) ! H
1(X,OE) is injective

by Lemma 3.2.2 and H
1(X,OE) = 0 by Theorem 2.1.2, there are functions

uj 2 OE(Vj) for j = 0, . . . , k with

u0 � uj = log
f0

fjhj

(that is, the 0-cochain (u0, . . . , uk) splits ⇣). Then on Vj \W j we have

fjhj exp (�uj) = f0 exp (�u0).

Define f 2 FC(X) by f |Vj = fjhj exp (uj) for j = 1, . . . , k and f |V0 =
f0 exp (�u0). Then f has the desired properties.

Proposition 3.3.4. Let X be a compact Riemann surface of genus g � 1,
C = {c1, . . . , ck} ⇢ X a finite non-empty subset, and R = X \ C. Take

a divisor D on R with accumulation order µj < 1 at cj for j = 1, . . . , k.
There is a 1-form ! 2 FC(X) with div(!) = D and so that the order of !

at cj is at least µj and at most µj + 2g � 1.

Proof. Since H
1(X,AC) = 0 there is an algebraic 1-form !

0 2 A
(1)
C

(X) with
no zeros in R. Let f 2 FC(X) be a finite order function as constructed in
Proposition 3.3.3. Then ! = f!

0 has the desired properties.
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The theorem of Forstnerič and
Ohsawa

4.1 The main theorem

The following theorem was proved in [FO13] as Theorem 1.1.

Theorem 4.1.1 (Forstnerič and Ohsawa). If X is a compact Riemann sur-

face and x0 2 X, then the punctured Riemann surface R = X \ {x0} admits

a nowhere critical holomorphic function of finite order.

The proof presented in [FO13] relies on Theorem 3.2.3 and Proposi-
tion 3.2.7 which were stated without proof. Moreover some steps of the
proof are delicate and only discussed briefly. In this section we will provide
a full proof of a generalisation of the theorem, elaborating on those details
where we found the original exposition sparse.

The following lemma is necessary for the proof of the main theorem but
was left unstated in [FO13].

Lemma 4.1.2. Let

D = {x 2 Rn : kxk  R}

for R > 0. Suppose f : D ! Rn
is a continuous map such that kf(x)�xk <

R for all x 2 D. Then there is x0 2 D for which f(x0) = 0.

Proof. Firstly we claim that f |@D is homotopic to the inclusion map ◆ :
@D ,! Rn \ {0} as a map @D ! Rn \ {0}. To see this define

H(t, x) = f(x) + t(x� f(x))

45
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for 0  t  1 and x 2 @D. Clearly, H is continuous so defines a homotopy.
Also by the reverse triangle inequality

kH(t, x)k = kx+H(t, x)� xk

�
���kxk � kH(t, x)� xk

���

=
���kxk � (1� t)kf(x)� xk

���

> R� (1� t)R � 0

for all 0  t  1 and all x 2 @D; in particular, H(t, x) 6= 0 for all x 2 @D.
Now suppose 0 /2 f(D). Then f factors through D by ◆, that is, the

following diagram commutes.

@D D

Rn \ {0}

◆

f |@D
f

Then f is null-homotopic since D is contractible. This contradicts f being
homotopic to ◆. So there must be some x0 2 D with f(x0) = 0.

Now we letX be a compact Riemann surface of genus g, C = {c1, . . . , ck} ⇢
X be a non-empty finite subset and R = X\C. We aim to prove the following
generalisation of Theorem 4.1.1.

Theorem 4.1.3. Given a non-negative divisor D on R with finite accumu-

lation order at every point in C, there is an exact holomorphic 1-form ! on

R with div(!) = D and so that ! is of finite order at every point of C.

Proof. For a curve � : [0, 1] ! X we will use the symbol � to denote both
the map and its image in X. If � is a loop we will denote its homology class
in H1(X,Z) by [�].

Let N = 2g + k � 1. We claim there exist simple piecewise di↵erentiable
loops �1, . . . , �N in R that generate H1(R,Z) and such that, letting K =
NS
i=1

�i, R \ K has no relatively compact connected components (that is, K

is holomorphically convex in R), D(x) = 0 for all x 2 K, and so that
NT
i=1

�i = {p} for some p 2 R.

Suppose X has genus g � 1 and view X as a 4g-gon P in C or D with
sides identified in the usual way. Choose P so that the points of C and
supp(D) are contained in the interior of P .
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The boundary of P is made up of 2g curves �1, . . . , �2g that generate
H1(X,Z) (note that each side of P is identified with exactly one other).
There are k points in C. If k = 1 the loops �1, . . . , �2g will also generate
H1(R,Z). Assuming k > 1 we need to find additional loops to complete the
generating set.

We can find a neighbourhood Vi of each ci 2 C so that the Vi are pairwise
disjoint and are contained in the interior of P . These neighbourhoods will
contain all but finitely many points in supp(D).

Now we can find curves �2g+1, . . . , �2g+k�1 in P with endpoints in the
vertices of P that avoid the neighbourhoods Vi and the finitely many points
in supp(D) \

S
i

Vi. Let

K =
2g+k�1[

i=1

�i.

We can choose �2g+1, . . . , �2g+k�1 so that each connected component of P \K
contains exactly one point of C. Then the curves �1, . . . , �2g+k�1 satisfy the
desired properties. An example of a simple case is depicted in Figure 4.1.

Figure 4.1: Suppose X is a torus and C consists of three distinct points.
The fundamental domain for X is a parallelogram in C. In the above figure
the blue dots represent the three points of C, and the red dots represent the
support of the divisor D. The areas shaded in grey represent the neighbour-
hoods Vi. The lines in black represent the loops that generate the homology
group H1(R,Z).

If X = P1 and k � 2 the loops can be constructed by taking small circles
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around all but one of the points in C and deforming them so that the other
conditions are met.

Now let us take !0 2 F
(1)
C

(X) with divisor D as constructed in Proposi-
tion 3.3.4. For each curve �i there is a neighbourhood Ui ⇢ R containing �i
and a biholomorphic map 'i from an annulus Ar = {w 2 C : 1 � r < |w| <
1 + r} onto Ui for su�ciently small r > 0 such that the positively oriented
unit circle is mapped by 'i onto �i, with 'i(1) = p, and so that D|Ui = 0 for
all i.

For i = 1, . . . , N take Hi : Ar ! C so that

'
⇤
i
!0 = Hi(w)dw,

and let

ni =
1

2⇡i

Z

|w|=1

d logHi. (4.1)

By Corollary 3.2.4 there is ⇠ 2 A
(1)
C

(X) such that for i = 1, . . . , N

1

2⇡i

Z

�i

⇠ = ni.

Define u : R ! C by

u(x) = exp

✓
�
Z

x

p

⇠

◆
.

Note that u is well defined since

exp

✓
�
Z

�i

⇠

◆
= 1.

Also u is nowhere vanishing and of finite order on R.
Let ! = u!0. Then ! is a finite order 1-form with div(!) = D whose

winding numbers as defined by Equation (4.1) are all zero. Thus for every
i = 1, . . . , N there is a holomorphic function hi : Ar ! C with hi(1) = 0 and
a complex number ci such that

'
⇤
i
! = exp(hi + ci)dw.

Note that the functions hi �'�1
i

: �i ! C agree at the unique intersection
point p of the curves �i and hence define a continuous function H on K =S
i

�i.

By Proposition 3.2.7 we can find an algebraic function h 2 AC(X) that
approximates H on K arbitrarily well. The periods of the nowhere vanishing
finite order 1-form e

�h
!
Z

�j

e
�h
! = e

cj

Z

|w|=1

e
hj�h�'jdw
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can thus be made arbitrarily small by choosing h su�ciently close to H. We
will use a perturbation argument to show that such a form can be altered fur-
ther so that it is exact. The perturbation factor we will use is parameterised
by N complex numbers ⌧1, . . . , ⌧N and has the form

exp

 
NX

i=1

⌧ifi

!
,

where the fi are algebraic functions. Our goal is thus to find complex numbers
⇣1, . . . , ⇣N , and algebraic functions h, f1, . . . , fN 2 AC(X) satisfying

Z

�j

exp

 
NX

i=1

⇣ifi � h

!
! = 0

for all j = 1, . . . , N . The details in [FO13] about the construction of these
functions and numbers are quite brief. The following discussion is intended
to make this construction more explicit.

We begin by fixing the functions fi 2 AC(X) for i = 1, . . . , N so that for
j = 1, . . . , N Z

|w|=1

fi � 'j(w)dw =

(
e
�cj if i = j,

0 otherwise.

To do this take a continuous function b : S1 ! C such that b(1) = 0 and
Z

|w|=1

b(w)dw = 1.

Then for i, j = 1, . . . , N define continuous functions bi : K ! C on �j by

bi =

(
e
�cjb � 'j if i = j,

0 otherwise.

By Proposition 3.2.7 for any " > 0 we can find f̂i 2 AC(X) such that
sup
K

|f̂i � bi| < ". Take " small enough that the matrix B whose (i, j)-entry

is given by

Bij =

Z

|w|=1

f̂i � 'jdw

is invertible. Then for every i there is a linear combination fi of f̂1, . . . , f̂N
with complex coe�cients such that

Z

|w|=1

fi � 'jdw =

(
e
�cj if i = j,

0 otherwise.
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These fi will now remain fixed.
Now letting h 2 AC(X) be an arbitrary algebraic function and ⌧1, . . . , ⌧N

be arbitrary complex numbers, define functions E1 : K ! C by

E1 = exp

 
NX

i=1

⌧ifi

!
� 1�

NX

i=1

⌧ifi

and E2 : K ! C given on �i by

E2 = exp(hi � '�1
i

� h)� 1.

Note that E1 and E2 can be thought of as error terms in Taylor approxima-
tions to

exp

 
NX

i=1

⌧ifi

!
and exp(hi � '�1

i
� h)

respectively.
Consider the map � : CN ! CN defined by

⌧ = (⌧1, . . . , ⌧N) 7! (�1(⌧), . . . ,�N(⌧)),

where �j is given by

�j(⌧) =

Z

�j

exp

 
NX

i=1

⌧ifi � h

!
!.

We can rewrite �j using E1 and E2:

�j(⌧) = e
cj

Z

|w|=1

 
1 +

NX

i=1

⌧ifi + E1

!
(1 + E2) � 'jdw

= e
cj

Z

|w|=1

 
NX

i=1

⌧ifi + E2

 
1 +

NX

i=1

⌧ifi

!
+ E1 + E1E2

!
� 'jdw

= e
cj

NX

i=1

⌧i

Z

|w|=1

fi � '�1
j
dw

+ e
cj

Z

|w|=1

 
E2

 
1 +

NX

i=1

⌧ifi

!
+ E1 + E1E2

!
� 'jdw

= ⌧j + e
cj

Z

|w|=1

 
E2

 
1 +

NX

i=1

⌧ifi

!
+ E1 + E1E2

!
� 'jdw.
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Thus if we are able to take E1 and E2 to be “small” (in a sense that will
soon be made precise), we find that �(⌧) is close to ⌧ . Then by applying
Lemma 4.1.2 we will prove the existence of ⇣ 2 CN with �(⇣) = 0. It remains
to determine an algebraic function h to suit this purpose.

Choose numbers 0 < "1 < 1 and C1 > 1 such that

sup
K

|E1|  C1k⌧k2

whenever k⌧k  "1. Let c = maxi |ci|. Then for ⌧ 2 CN with k⌧k  "1,

|⌧j � �j(⌧)| =

�����e
cj

Z

|w|=1

 
E2

 
1 +

NX

i=1

⌧ifi

!
+ E1 + E1E2

!
� 'jdw

�����

 e
c2⇡ sup

K

 
|E2|

 
1 +

NX

i=1

|⌧ifi|
!

+ |E1|+ |E1E2|
!

 e
c2⇡

 
kE2kK

 
1 +

NX

i=1

sup
K

|fi|
!

+ C1"
2
1 + C1"1kE2kK

!

where kE2kK = sup
K

|E2|. Now decrease "1 if necessary so that "1 <
1

C16⇡ec
.

Then the above inequality becomes

|⌧j � �j(⌧)| < e
c2⇡kE2kK

 
1 +

NX

i=1

sup
K

|fi|
!

+
"1

3
+

kE2kK
3

.

Now choose a number "2 such that

0 < "2 <
"1

ec6⇡

✓
1 +

NP
i=1

sup
K

|fi|
◆ ,

and so that

|ez � 1|  |z| for |z| < "2.

Then take h 2 AC(R) such that sup
K

|h�H| < "2. Then kE2kK < "2 and we

find |⌧j � �j(⌧)| < "1 for all k⌧k  "1. Applying Proposition 4.1.2 we find
that there must exist ⇣ 2 CN with �(⇣) = 0, thus proving Theorem 4.1.3.
Note that Theorem 4.1.1 follows immediately by letting D = 0.
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4.2 Extensions of the main theorem

The following corollary is a generalisation of Theorem 4.1 from [FO13] which
was stated without proof.

Corollary 4.2.1. Let X be a compact Riemann surface, C = {c1, . . . , ck} ⇢
X be a non-empty finite subset, R = X \C, and D be a non-negative divisor

on R with finite accumulation order at the points of C. Every element of the

cohomology group H
1(R,C) is represented by a holomorphic 1-form ! on R

that is of finite order at the points of C and having div(!) = D.

For the proof of this corollary we use the method pioneered by Gunning
and Narasimhan in [GN67]. This method was used to prove a similar result
in [KS71].

Proof. LetN = 2g+k�1 then take complex numbers ↵1, . . . ,↵N and an exact
finite order 1-form !0 2 F

(1)
C

(X) having div(!0) = D as in Theorem 4.1.3.

Take simple piecewise di↵erentiable loops �1, . . . , �N in R so that the �i
form a basis for the groupH1(R,Z), so thatK = �1 [ · · · [ �N is holomorphi-
cally convex, and so that D|K = 0. We aim to alter !0 so that it integrates
to ↵i along the curve �i without introducing zeros or increasing the growth
at the points of C beyond finite order.

Suppose
R
�i
!0 6= ↵i for i = 1, . . . ,M and

R
�i
!0 = ↵i for i = M+1, . . . , N

where 1  M  N (if M = 0 we are done). By Lemma 2.3.2 there are
continuous functions u1, . . . , uM : K ! C such that supp(ui) \ �j = ; for
i 6= j and so that

Z

�i

e
ui!0 = ↵i

and Z

�i

uie
ui!0 6= 0

for i = 1, . . . ,M .

Now for s = (s1, . . . , sM) 2 CM define holomorphic functions

'i(s) =

Z

�i

!0 exp(s1u1 + · · ·+ sMuM).
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Then for a = (1, . . . , 1) 2 CM ,

'i(a) =

Z

�i

!0e
ui = ↵i,

@'i

@si
(a) =

Z

�i

ui!0e
ui 6= 0,

@'i

@sj
(a) =

Z

�i

uj!0e
ui = 0 for i 6= j.

Let ' = ('1, . . . ,'M) : CM ! CM . Then '(a) = (↵1, . . . ,↵M) and the

Jacobian matrix


@'

@s
(a)

�
is non-singular.

For each i = 1, . . . ,M using Proposition 3.2.7, take a sequence of algebraic
functions f

(⌫)
i

2 AC(X) indexed by ⌫, so that f
(⌫)
i

! ui uniformly on K.

Then for i = 1, . . . ,M define holomorphic functions '(⌫)
i

: CM ! C by

'
(⌫)
i
(s) =

Z

�i

!0 exp
⇣
s1f

(⌫)
1 + · · ·+ sMf

(⌫)
M

⌘

and a holomorphic map '
(⌫) = ('(⌫)

1 , . . . ,'
(⌫)
N
) : CM ! CM . Then for i =

1, . . . ,M , '(⌫)
i

converges to 'i uniformly on compact subsets of CM . So for
" > 0 and su�ciently large ⌫ there is a point p = (p1, . . . , pM) 2 CM with
kp � ak < " such that '(⌫)(p) = '(a). For such ⌫ and p define an algebraic
function f 2 AC(X) by

f = p1f
(⌫)
1 + · · ·+ pMf

(⌫)
M

.

Let ! = !0e
f . Then

R
�i
! = ↵i and ! is of finite order at each point of

C. Since ↵1, . . . ,↵N were arbitrary we can choose them so that ! represents
any class in H

1(R,C). Since div(!) = D, ! satisfies the conditions of the
corollary.

We should point out some of the di↵erences between the above corollary
and Theorem 4.1 in [FO13]. In the above we refer to elements of H1(R,C)
whereas in Theorem 4.1 of [FO13] the authors refer to elements of H1(X,C).
In the case of a single puncture the di↵erence is irrelevant since the two
cohomology groups are isomorphic by the restriction map. For subsets V ⇢
U ⇢ X let rU

V
: H1(U,C) ! H

1(V,C) denote the map induced by restriction.
Suppose for a moment that C = {c}. Take a class [!] 2 ker rX

R
and let U

be a simply connected neighbourhood of c. Then there is f 2 E (R) with
df = !|R and f̃ 2 E (U) with df̃ = !|U (since U is simply connected). Now
f and f̃ only di↵er by a constant on U \ {c} so we can piece them together
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to show that ! is exact on all of X. Thus r
X

R
is injective when C consists

of a single point. In this case we also have that R has the homotopy type
of a wedge sum of 2g circles where g is the genus of X. So H

1(R,C) and
H

1(X,C) are both 2g-dimensional and r
X

R
is an isomorphism.

Using the same argument inductively we see that rX
R

is injective for any
finite set C. When C contains more than one point, however, the dimension
of H1(R,C) increases with the number of points in C.



Chapter 5

Algebraic immersions

5.1 Elementary results

The preceding chapter showed that we can always find a holomorphic im-
mersion of an a�ne curve that has restricted growth. We might wonder if
this is the best upper bound on the growth of the immersion. For example is
it always possible to find an algebraic immersion of an a�ne curve into the
complex plane? We will see shortly that the answer, in general, is no, how-
ever we are able to say something about which a�ne curves admit algebraic
immersions.

All algebraic immersions of a�ne curves into the complex plane can be
obtained in the following way. Let X be a compact Riemann surface and
f : X ! P1 a non-constant meromorphic function. Let C ⇢ X be the finite
set of critical points and poles of f and let R = X \C. Then f |R ! C is an
algebraic immersion of the a�ne curve R.

The converse follows from Construction 2.7.1. Let R be an a�ne curve
and f : R ! C be an algebraic immersion. There is a unique compact
Riemann surface X such that X = R t {x1, . . . , xN} where x1, . . . , xN are
finitely many points that “fill in the punctures”. Then f extends across the
points x1, . . . , xN to a meromorphic function on X whose critical points and
poles lie in the finite set {x1, . . . , xN}.

For the above construction to be useful we need to know which finite
subsets of a compact Riemann surfaces are the critical sets of meromorphic
functions. A general solution to this problem is di�cult but we now present
some results that deal with special cases.

The following result was proved in [FO13].

Proposition 5.1.1. If X is a compact Riemann surface of genus g � 1 and

x0 2 X, then every algebraic function f : X \ {x0} ! C has a critical point.

55
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A stronger result can be seen to follow from Lemma 2.7.12. We provide
another proof below for the sake of variety.

Proposition 5.1.2. Let X be a compact Riemann surface with genus g � 1.
Every meromorphic function f : X ! P1

has at least three distinct branch

points.

Proof. We consider f as a branched holomorphic covering of P1. Suppose f

has n sheets. Then by the Riemann–Hurwitz formula f has total branching
order

b = 2(g + n� 1).

Each branch point x1, . . . , xN has branch order

b(f, xj)  n� 1.

We use dxe to denote the integer k with k � 1 < x  k. So f has at least⇠
b

n� 1

⇡
= 2+

⇠
2g

n� 1

⇡
� 3 branch points (note that n 6= 1 since g � 1 and

a one-sheeted holomorphic covering map is a biholomorphism).

Thus we have the following necessary condition:

Corollary 5.1.3. Let R be an a�ne curve that admits a holomorphic im-

mersion into P1
. Then there is a compact Riemann surface X with a finite

subset C ⇢ X consisting of at least three distinct points so that R ⇠= X \ C.

Remark 5.1.4. Let X be a compact Riemann surface and C ⇢ X consist of
one or two points. By Theorem 4.1.3 the a�ne curve R = X \ C admits a
holomorphic immersion into C that is of finite order at the points of C. It
follows from Proposition 5.1.2 and the chain rule that this immersion cannot
be the exponential of an algebraic function.

The following theorem due to [Mei60] will allow us to obtain an upper
bound on the number of points we need to remove in order to find an im-
mersion into P1. We use bxc to denote the integer k with k  x < k + 1.

Theorem 5.1.5. Every compact Riemann surface of genus g � 1 admits an

n-sheeted branched holomorphic covering map of P1
where

2  n 
�
g + 3

2

⌫
.

We refer to [Mei60] for the proof.
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Corollary 5.1.6. Every compact Riemann surface X of genus g � 1 admits

a branched holomorphic covering map of P1
with 3g or fewer branch points

if g is even and 3g + 1 or fewer branch points if g is odd.

Proof. By Theorem 5.1.5 there is an n-sheeted branched holomorphic cover-

ing map with n 
�
g + 3

2

⌫
. Then by the Riemann–Hurwitz formula

b  2

✓
g +

�
g + 3

2

⌫
� 1

◆
.

Then each branch point has branch order at least 1 so the result follows.

Combining the upper and lower bounds we get the following result.

Theorem 5.1.7. Every compact Riemann surface of genus g � 1 admits

a branched holomorphic covering map of P1
with between 3 and 3g branch

points if g is even and between 3 and 3g + 1 branch points if g is odd.

So for a compact Riemann surface X of genus g � 1 to accommodate a
holomorphic immersion into P1 we must remove between 3 and 3g points if g
is even or between 3 and 3g+1 points if g is odd. Finally to get an algebraic
immersion into C we remove the poles, of which there need not be more than�
g + 3

2

⌫
.

5.2 Algebraic immersions of thrice
punctured surfaces

The results of the previous section raise the question: how commonly do
compact Riemann surfaces admit meromorphic functions with exactly three
branch points? The answer is: very rarely. Using the theory of dessins
d’enfants we will now show that for a given genus there are only finitely
many Riemann surfaces that admit such functions.

Recall that a meromorphic function f on a compact Riemann surface
X is called a Belyi function if it has no more than three critical values.
A compact Riemann surface is called a Belyi surface if it admits a Belyi
function. A pair (X, f) consisting of a Belyi surface X and a Belyi function
f : X ! P1 is called a Belyi pair. Since the automorphism group of P1 acts
triply transitively we can assume that the critical values of a Belyi function
are 0, 1, and 1.



58 Chapter 5. Algebraic immersions

Definition 5.2.1. We say a Belyi function f on a Belyi surface X is simple

if X has genus g � 1, f has exactly three critical points, and its critical
values are 0, 1 and 1. We will also call a Belyi surface simple if it admits a
simple Belyi function, and a pair (X, f) simple if X and f are simple. (This
is our own definition.)

Suppose (X, f) is a simple Belyi pair of genus g. Recall that by Con-
struction 2.7.15, (X, f) can equivalently be represented as a dessin (X,D).
We saw in Table 2.1 that the white vertices, black vertices and faces of D
are in one-to-one correspondence with the points in the preimage f

�1(0),
f
�1(1) and f

�1(1) respectively. Since (X, f) is simple the associated bipar-
tite graph D has exactly one white vertex, one black vertex, and one face.
By the formula for the Euler characteristic, such a graph has n = 2g + 1
edges. Note that the formula for the Euler characteristic applies to dessins
since they are CW complexes.

By Construction 2.7.16, the pair (X, f) can also be represented as a con-
stellation [�, ⌧, (�⌧)�1] unique up to joint conjugation. Since the graph D has
n edges, the permutations � and ⌧ are elements of Sn. Again, we saw in Ta-
ble 2.1, that the cycles of �, ⌧ , and (�⌧)�1 are in one-to-one correspondence
with the white vertices, the black vertices, and the faces of D respectively.
There is only one of each of these so �, ⌧ , and (�⌧)�1 must have order n.

Clearly there are only finitely many constellations in Sn satisfying this
condition so we have the following theorem.

Theorem 5.2.2. There are only finitely many non-equivalent simple Belyi

pairs of a given genus.

The problem of enumeration of simple Belyi pairs thus boils down to a
problem in combinatorics, namely, how many non-equivalent constellations
[�, ⌧, (�⌧)�1] in Sn are composed entirely of n-cycles?

Using a brute force approach it is only feasible to explicitly compute this
number for low genera. The results of these computations are presented in
Table 5.1. Refer to Appendix B for a discussion on the approach we take.

For higher genera we will now show how to find an upper bound on this
number. There are two straightforward avenues that we can explore.

Since constellations are only unique up to joint conjugation we can fix
(�⌧)�1 = (1 2 · · · n). We then ask: in how many ways can we decompose
�⌧ as a product of two n-cycles? This question was answered in [Boc80,

Corollary 4.8]. For n = 2g + 1 there are precisely
(2g)!

g + 1
ways to decompose

an n-cycle as a product of two n-cycles.



5.2. Algebraic immersions of thrice punctured surfaces 59

Many of these decompositions will result in equivalent constellations. For
example consider the constellations

a = [(1 4 5 2 3), (1 4 2 3 5), (1 2 3 4 5)]

and

b = [(1 3 4 2 5), (1 2 5 3 4), (1 2 3 4 5)].

These constellations are equivalent since (1 2 3 4 5)a(1 5 4 3 2) = b, but

are counted as distinct decompositions. Thus there are at most
(2g)!

g + 1
non-

equivalent simple Belyi pairs.
We can find another upper bound by counting the equivalence classes of

constellations whose first two entries are n-cycles (but the third not neces-
sarily). Again, since constellations are only unique up to joint conjugation,
we can always fix the first entry to be � = (1 2 · · · n). Let ⌧ denote the
second entry of the constellation. Our only condition on ⌧ is that it be an
n-cycle so we have (n� 1)! possible candidates. Many of these will result in
equivalent constellations however. For example if we denote the centraliser of
� in Sn by CSn(�) and take ⇢ 2 CSn(�), then the constellations [�, ⌧, (�⌧)�1]
and [�, ⇢�1

⌧⇢, (�⇢�1
⌧⇢)�1] will be equivalent.

It is not di�cult to see that CSn(�) = {id, �, . . . , �n�1}: the number of
elements in the conjugacy class of � is equal to the index of the centraliser
of � in Sn. Since there are (n� 1)! elements in the conjugacy class and n! in
Sn there must be n elements in CSn(�).

Thus in order to enumerate the non-equivalent constellations in Sn whose
first two entries are n-cycles we only need to count the number of n-cycles
in Sn up to conjugation by an element of CSn(�), that is, up to conjugation
by some power of �.

This number was calculated in [GW60]. Let �(n) be the number of posi-
tive integers less than n that are relatively prime to n (� is known as Euler’s
totient function). Then, when n is odd, there are

1

n2

X

d|n

�
2
⇣
n

d

⌘
d!
⇣
n

d

⌘d
(5.1)

di↵erent possibilities. Equation (5.1) di↵ers by a factor of 2 from the formula
given in [GW60]. This is because we need to distinguish between a permuta-
tion and its inverse ([GW60] treats these as equivalent). This number serves
as another upper bound on the number of non-equivalent simple Belyi pairs.
So we have the following theorem.
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Genus g
# non-equivalent
simple Belyi pairs

(2g)!

g + 1

1

n2

P
d|n
�
2
�
n

d

�
d!
�
n

d

�d

1 1 1 2
2 4 8 8
3 30 120 108
4 900 8,064 4,492
5 54,990 604,800 329,900
6 5,263,764 68,428,800 36,846,288
7 ? 10,897,286,400 5,811,886,656

Table 5.1: Upper bounds on the number of non-equivalent Belyi pairs and
the exact number for small genus. We have set n = 2g+1 in the last column.

Theorem 5.2.3. Let g be an integer and n = 2g + 1. There are at most

min

8
<

:
(2g)!

g + 1
,
1

n2

X

d|n

�
2
⇣
n

d

⌘
d!
⇣
n

d

⌘d
9
=

;

non-equivalent simple Belyi pairs of genus g.

5.3 The action of automorphisms of P1

Having calculated the number of simple Belyi pairs for low genera we might
wonder how many of these pairs have the same underlying surface. In this
section we aim to find an upper bound on the number of simple Belyi surfaces
of a given genus.

The six automorphisms of the sphere that permute the set {0, 1,1} form
a group that is isomorphic to the dihedral group of order 6. We denote this
group by �. These automorphisms have a canonical action on the set of
equivalence classes of simple Belyi pairs. Given a simple Belyi pair (X, f)
and an automorphism ' 2 � the action is given by (X, f) 7! (X,' � f).
Clearly the underlying Belyi surface is left invariant under this action. Thus
if we had some way to compute the orbits of � and we found that the orbits
were not trivial, we would be able to attain a smaller upper bound on the
number of Belyi surfaces of a particular genus.

Without an explicit formula for a Belyi function f it is perhaps not im-
mediately obvious how to determine the orbit of f under �. We now demon-
strate how to calculate the orbit using the constellation representation of a
Belyi pair. Let [�, ⌧, (�⌧)�1] be a constellation in Sn and consider the auto-
morphism ' 2 � given by '(z) = 1� z. Clearly ' fixes 1 and swaps 0 and
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1. Since the cycles of � correspond to the preimages of 0 and the cycles of ⌧
to the preimages of 1, we might naively expect that the action of ' should
be given by

[�, ⌧, (�⌧)�1] 7! [⌧, �, (�⌧)�1].

This cannot be the case however since the result is not necessarily even a
constellation.

Fix a base point y0 2 Y . Let (X, f) be a Belyi pair and denote its
associated monodromy representation by h(X,f) : ⇡1 (Y, y0) ! Sn. We would
like to define an action of � on the set of monodromy representations so
that  (h(X,f)) = h(X, �f) for  2 �. The following proposition follows from
Construction 2.7.4 of the monodromy representation associated to a Belyi
pair.

Proposition 5.3.1. Suppose y0 2 Y is a fixed point of  2 � and let (X, f)
be a Belyi pair. Then h(X, �f) = h(X,f) �  ⇤ where  ⇤ : ⇡1 (Y, y0) ! ⇡1 (Y, y0)
is the map induced by  .

Proof. When we construct the monodromy representation of (X, � f) we
lift loops in Y to paths in X by the map  � f . This is the same as lifting
first by  and then by f .

There is no common fixed point of the elements of � so one might expect
that the above proposition can only be used to find the orbit of subgroups
of � rather than the whole group. The next proposition shows that this is
not the case.

Proposition 5.3.2. Let (X, f) be a Belyi pair and take two points a, b 2
Y . Now (X, f) determines monodromy representations h : ⇡1 (Y, a) ! Sn

and g : ⇡1 (Y, b) ! Sn. Suppose we choose generating sets {�0, �1, �1} for

⇡1 (Y, a) and {�0, �1, �1} for ⇡1 (Y, b) so that �j and �j are freely homotopic

in Y to small positively oriented circles centred on j for j = 0, 1,1, and so

that �0�1�1 = id and �0�1�1 = id. Then the constellations

ca = [h(�0), h(�1), h(�1)] and cb = [g(�0), g(�1), g(�1)]

are equivalent.

Proof. This proposition is another consequence of Construction 2.7.4. Let E
denote the preimage f�1((0, 1)), then E consists of n connected components.
Let j equal 0 or 1. Since the curves �j and �j are freely homotopic in Y their
liftings by f determine the same permutation of connected components of E.
Thus, up to relabelling of the components of E, the permutations h(�j) and
g(�j) are the same. The same must be true for h(�1) and g(�1) because of
the relation imposed on the generating sets.
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Thus we see that so long as we choose appropriate generators of funda-
mental groups we can easily calculate the action of � on the set of constel-
lations in a consistent way using Proposition 5.3.1. Take  2 �, y0 a fixed
point of  and let {�0, �1, �1} be a generating set for ⇡1 (Y, y0) satisfying the
conditions of Proposition 5.3.2. Table 5.2 shows how each element of � acts
on the generators.

 (z) ( ⇤(�0), ⇤(�1), ⇤(�1))

1� z (�1, �0, (�1�0)
�1)

1/z (�1, (�0�1)�1
, �0)

z

z � 1
((�1�1)

�1
, �1, �1)

1

1� z
(�1, �1, �0)

z � 1

z
(�1, �0, �1)

Table 5.2: The image of the elements of the generating set under the elements
of �.

With the aid of a computer we can compute the number of orbits for
low genera thus obtaining an upper bound on the number of simple Belyi
surfaces (see Appendix B). The results of these computations are presented
in Table 5.3.

Genus g # non-equivalent simple Belyi pairs # orbits of �
1 1 1
2 4 2
3 30 10
4 900 174
5 54,990 9,362
6 5,263,764 879,275

Table 5.3: The number of orbits of � for low genus. This number gives an
upper bound on the number of simple Belyi surfaces in each genus.
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In the case of genus 1 we can give an explicit description the only simple
Belyi pair.

Example 5.3.3. Let X = C/� be the complex torus with � = Z+ ⇠Z ⇢ C
where ⇠ = e

i⇡
3 , and let f : X ! P1 be the meromorphic function defined by

f =
1 + }

0
/
p
�g3

2

where } is the Weierstrass }-function and

g3 = 140
X

!2�\{0}

1

!6
.

Then (X, f) is the only simple Belyi pair of genus one up to equivalence. We
refer to [GGD12, Example 4.28] for a proof.

In the case of genus 2, � has two orbits, meaning there are at most two
simple Belyi surfaces. One of these orbits consists of a single simple Belyi
pair which we will denote (X, f), the other contains three Belyi pairs which
we will denote (Z, g1), (Z, g2), (Z, g3).

Since (X, f) is fixed by �, for each element ' 2 � there is an automor-
phism h' : X ! X such that the following diagram commutes.

X X

P1 P1

h'

f f

'

The automorphisms h' are distinct for distinct ', so X must have at least
six distinct automorphisms.

By explicit calculations we find that each of the pairs (Z, gi) for i = 1, 2, 3
is fixed by a single non-trivial element of � which we will denote 'i for
i = 1, 2, 3 respectively. Thus there are automorphisms hi : Z ! Z such that

Z Z

P1 P1

hi

gi gi

'i

commutes. However we cannot say whether the automorphisms h1, h2, h3 are
distinct. So Z is a genus two surface with at least two automorphisms.

As of yet we do not know of any way to explicitly describe the surfaces
X and Z and meromorphic functions g1, g2, g3 and f other than as constel-
lations. It may be the case that X and Z are biholomorphic. This is an
interesting avenue for future research.
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Appendix A

The Mergelyan–Bishop
theorem

A.1 A brief history of the theorem

Many of the constructions throughout this thesis have relied heavily on holo-
morphic approximation, in particular the Mergelyan–Bishop theorem (stated
again below).

Theorem A.1.1 (Mergelyan–Bishop). Let K be a holomorphically convex

compact subset of an open Riemann surface R. Then O(K) = Oint(K).
Hence, by Runge’s theorem, a function f 2 Oint(K) can be uniformly ap-

proximated by a sequence (fk) in O(R).

The proof of the above theorem for the special case where R = C is due
to [Mer53], see [Rud87] for an accessible reference. The result was extended
to the more general case of an open Riemann surface by [Bis58] using highly
measure theoretic techniques. The following theorem, which follows from
[Bis58, Lemma 6], was extracted by [Kod65].

Theorem A.1.2 (Bishop’s localisation theorem). Let K be a compact subset

of an open Riemann surface R and f : K ! C be a continuous function. If

every point x 2 K has a neighbourhood Vx b R such that f |(K \ Vx) 2
O(K \ Vx) then f 2 O(K).

The localisation theorem has since been used by [Kod65] to provide an
alternative measure theoretic proof of Theorem A.1.1, by [Gar68] to simplify
the proof of Mergelyan’s original theorem for the plane, and again by [Sak72]
to prove Theorem A.1.1 using a bounded solution to the @-problem. (See
[FFW18] for a more in-depth account of the history of holomorphic approx-
imation as a whole).
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The method used by [Sak72] was replicated in a textbook by [JP00]; how-
ever, an error was discovered when certain sets were found to be dependent
on certain parameters. A correction was presented in an unpublished report
by [Gar06]; however, we found this di�cult to understand. The purpose of
this appendix is to provide a full account of the proof and to clarify exactly
where the error was and how it may be rectified.

A.2 Local approximation

Theorem A.1.2 is of course only useful if it is possible to satisfy its hypothe-
ses. We now show that this is the case for an open Riemann surface and a
holomorphically convex subset.

Proposition A.2.1. Let K be a holomorphically convex compact subset of a

Riemann surface R. Let V = {(Vj, j)} be a finite cover of K by coordinate

discs so that  j extends as a biholomorphism to a larger disc Uj with Vj b Uj.

Take f 2 Oint(K). Then f |(V j \K) 2 O(V j \K).

Proof. If Vj ⇢ K then we can simply restrict f to a slightly larger open set
and we are done.

Suppose Vj \K 6= ;. By assumption, R \K and R \V j have no relatively
compact connected components, so the same can be said of their union (R \
K) [ (R \ V j) = R \ (V j \K). So V j \K is holomorphically convex.

Moving to the complex plane,  j(V j \ K) is a holomorphically convex
compact set in C and f � �1

j
is a continuous function that is holomorphic on

the interior of  j(V j \K). Applying Mergelyan’s theorem for the plane we
find holomorphic functions f̃n :  j(Uj) ! C uniformly converging to f �  �1

j

on V j \K.
Now let fn = f̃n �  j|Uj ! C. These functions are holomorphic on Uj

and converge uniformly to f on V j \K.

A.3 A bounded solution to the @-problem

In the complex plane

The following results were well known at the time of Sakai’s complex-analytic
proof, so were stated without proof. We provide a proof here for complete-
ness.

Lemma A.3.1. For z 2 C and fixed R > 0

sup
z2C

����
Z

D(0,R)

1

⇣ � z
d⇣ ^ d⇣

����  4⇡R.
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Proof. Let E = D(0, R) and

Iz =

Z

E

1

⇣ � z
d⇣ ^ d⇣

then letting x = Re(⇣) and y = Im(⇣)

|Iz| =
����
Z

E

1

⇣ � z
2idx ^ dy

����

 2

Z

E

����
1

⇣ � z

���� dx ^ dy.

Now letting ⇣ 0 = ⇣ � z we get

|Iz|  2

Z

E�z

1

|⇣ 0|dx ^ dy

where E � z = {w 2 C : |w + z| < R}. For ⇣ 0 /2 E we have
1

|⇣ 0| 
1

R
so

Z

E�z

1

|⇣ 0|dx ^ dy =

Z

(E�z)\E

1

|⇣ 0|dx ^ dy +

Z

(E�z)\E

1

|⇣ 0|dx ^ dy


Z

(E�z)\E

1

|⇣ 0|dx ^ dy +
1

R

Z

(E�z)\E
dx ^ dy.

Since E and E � z have the same area
Z

(E�z)\E
dx ^ dy =

Z

E\(E�z)

dx ^ dy

so
Z

E�z

1

|⇣ 0|dx ^ dy 
Z

(E�z)\E

1

|⇣ 0|dx ^ dy +
1

R

Z

E\(E�z)

dx ^ dy


Z

(E�z)\E

1

|⇣ 0|dx ^ dy +

Z

E\(E�z)

1

|⇣ 0|dx ^ dy

=

Z

E

1

|⇣ 0|dx ^ dy.

So

sup
z2C

|Iz|  2 sup
z2C

Z

E�z

1

|⇣ 0|dx ^ dy = 2

Z

E

1

|⇣|dx ^ dy = 4⇡R.

Corollary A.3.2. Let gdz̄ 2 E
0,1(C) be compactly supported and let K =

supp(g). Then there is a function f 2 E (C) such that @f = gdz̄ and such

that kfkC  diam(K)kgkK.
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Proof. Define f : C ! C by

f(z) =
1

2⇡i

Z

C

g(⇣)

⇣ � z
d⇣ ^ d⇣.

Then @f = gdz̄ (see [For91, Lemma 13.1] for a proof). In fact, since f(z) ! 0
as z ! 1, f is the unique solution to @f = gdz̄ with f(1) = 0. In particular
kfkC is finite. Take " > 0. Then by translating we can assume K ⇢ D(0, R)
where R = 1

2 diam(K) + ". We then have

kfkC =
1

2⇡
sup
z2C

����
Z

C

g(⇣)

⇣ � z
d⇣ ^ d⇣

����

 1

2⇡
kgkC sup

z2C

����
Z

D(0,R)

1

⇣ � z
d⇣ ^ d⇣

����

 2RkgkK ,

where we have used Lemma A.3.1. This is true for all " so we can conclude

kfkC  diam(K)kgkK .

Norms on E
0,1(G)

Sakai extended the above result to the setting of an open Riemann surface R
using techniques of [BS49]. The approach we take is closer to [JP00] which
we feel is more explicit.

Let G ⇢ R be open and relatively compact and suppose there is a finite
cover V = {(Vj, zj)} of G by coordinate charts. Then for any S ⇢ G we
define an operator k ·kS,V on E

0,1(G). For ! 2 E
0,1(G) take fj : Vj ! C with

!|Vj = fjdz̄j. Then we let

k!kS,V =
X

j

kfjkVj\S

where kfjkVj\S is the supremum norm. Note that k · kS,V is not a true norm
for all S since it could be infinite. It does however satisfy all other properties
of norms, most importantly the triangle inequality.

On an open Riemann surface

We now fix a cover with special properties that will allow us to prove the
existence of a bounded solution to the @ problem.
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Lemma A.3.3. Let R be an open Riemann surface and K a compact subset.

There is an open cover (Uj)Nj=1 of K and a finer cover (Vj)Nj=1, and functions

 1, . . . , N 2 O(R) such that for j = 1, . . . , N ,

•  j|Vj ! 1
2D is a biholomorphism,

•  j|Uj ! D is a biholomorphism,

•  j

✓
NS
k=1

Uk \ Uj

◆
\ D = ;.

Proof. By the theorem of Weierstrass, for every z 2 R there is a holomorphic
function  

0
z
: R ! C with a simple zero at z and no other zeros. By the

inverse function theorem there is a relatively compact open neighbourhood U
0
z

of z for which  0
z
|U 0

z
is a biholomorphism onto its image. Since  0

z
(U 0

z
) is open

in C and contains the origin we can take U
0
z
and  0

z
such that  0

z
(U 0

z
) = D.

Then G
0 =

S
z2K

U
0
z
is relatively compact in R.

Since  0
z
has no zeros except for the one at z and since G

0 is relatively
compact,  0

z
(G0 \ U

0
z
) is bounded away from zero, that is, there is some

"z 2 (0, 1] such that

| 0
z
(x)| > "z for all x 2 G

0 \ U 0
z
. (A.1)

Now define  z : R ! C by

 z =
1

"z
 

0
z
.

Then by (A.1), | z(x)| > 1 for all x 2 G
0 \ U

0
z
and D ⇢  z(U 0

z
). Now let

Uz =  
�1
z
(D) and Vz =  

�1
z
(12D) b Uz. Then since K is compact there are

z1, . . . , zN 2 K such that K ⇢ Vz1[· · ·[VzN . Letting Uj = Uzj , Vj = Vzj , and
 j =  zj , the collections (Uj)Nj=1, (Vj)Nj=1, and ( j)Nj=1 satisfy the conditions
of the lemma.

For the next proposition, fix the functions  j : R ! C and covers U =
{(Uj, j)} and V = {(Vj, j)} constructed above, and let

G =
N[

j=1

Uj, and G0 =
N[

j=1

Vj.

Proposition A.3.4. There is a constant C depending only on G and V such

that for every ! 2 E
0,1(G) there is a function u 2 E (G0) such that

@u = !|G0 and kukG0  Ck!kG,U.
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Proof. Let ('j)Nj=1 be a collection of smooth functions with 'j : R ! [0, 1],

supp('j) ⇢ Uj and such that
NP
j=1

'j = 1 on G0. For j = 1, . . . , N define

!j 2 E
0,1(R) by

!j =

(
'j! on Uj,

0 otherwise.

So supp(!j) ⇢ Uj and !|G0 =
NP
j=1

!j|G0. Then in local coordinates !j can

be written
!j =  

⇤
j
(wjdz)

where wj : D ! C can be smoothly extended by zero to wj : C ! C with
supp(wj) ⇢ D.

Now by Corollary A.3.2 there are functions gj 2 E
0,1(C) such that kgjkC 

2kwjkC. Note that for z /2 D we have wj(z) = 0 and hence
@gj

@z̄
= 0. So gj is

holomorphic on C \ D.
Consider the function ⌘j = gj �  j|G ! C. Clearly ⌘j is smooth, in fact,

since  j(G \ Uj) \ D = ; and gj is holomorphic on C \ D, ⌘j is holomorphic
on G \ Uj. Then on G

@⌘j = @(gj �  j) =  
⇤
j
(@gj) =  

⇤
j
(wjdz) = !j

and
k⌘jkG  kgjkC. (A.2)

Now let u = ⌘1 + · · ·+ ⌘N . Then u is smooth and @u|G0 = !|G0. By the
triangle inequality

kukG0  k⌘1kG0 + · · ·+ k⌘NkG0  k⌘1kG + · · ·+ k⌘NkG.

By (A.2) we then have

k⌘1kG + · · ·+ k⌘NkG  kg1kC + · · ·+ kgNkC,

and by the previous calculations

kg1kC + · · ·+ kgNkC  2(kw1kC + · · ·+ kwNkC).

Now by the definition of !j

kwjkC = k!jkG,U  k!kG,U
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so
kw1kC + · · ·+ kwNkC  Nk!kG,U.

Then letting C = 2N we have the result

kukG0  Ck!kG,U.

We now depart slightly from proof presented in [Sak72] and prove the
following corollary.

Corollary A.3.5. With R,K,G and G0 as before given " > 0 and ! 2
E

0,1(G), there is a neighbourhood A ⇢ G0 of K and a function u 2 E (G0)
such that

@u|A = !|A and kukK  C(k!kK,U + "),

where C is as in Proposition A.3.4.

Proof. By continuity there is a neighbourhood H ⇢ G0 of K for which
k!kH,U  k!kK,U + ". Let ↵ 2 E (G) be such that:

• ↵(z) = 1 for z in a neighbourhood A ⇢ H of K.

• ↵(z) = 0 for z /2 H.

• k↵kG = 1.

Then applying Proposition A.3.4 to the form ↵! we find u 2 E (G0) such
that @u|G0 = ↵!|G0 and kukG0  Ck↵!kG,U. So @u|A = !|A and since
k↵!kG,U < 1

kukK  kukG0  Ck↵!kG,U = Ck↵!kH,U

 Ck!kH,U  C(k!kK,U + ").

A.4 The localisation theorem

Finally we are in a position to prove Theorem A.1.2.

Proof of Theorem A.1.2. Let R,K,G and G0 be as before, and let f be a
continuous function on K such that f |(K \ V j) 2 O(K \ V j) for all j. Take
" > 0, then by Proposition A.2.1 there are functions fj 2 O(Uj) such that

kfj � fk
V j\K < ".
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For every j define 'j : R ! [0, 1] so that supp('j) ⇢ Uj and so that for
every z 2 G0,

P
j
'j(z) = 1. Then define functions hjk : Uk ! C by

hjk(z) =

(
'j(z)(fj(z)� fk(z)) if z 2 Uj \ Uk,

0 if z 2 Uk \ Uj.

Let hk : Uk ! C be defined by hk =
P
j

hjk. We now find bounds for

khkkV k\K and k@hkkV k\K . For z 2 V k \K we have

|hk(z)| 
NX

j=1

'j(z)|fj(z)� fk(z)|


NX

j=1

'j(z) (|fj(z)� f(z)|+ |fk(z)� f(z)|)

< 2"
NX

j=1

'j(z) = 2".

So khkkV k\K  2" for all k.

Now consider the (0,1)-form @hk. Since fj � fk is holomorphic

@hjk(z) =

(
@'j(fj � fk)(z) if z 2 Uj \ Uk,

0 otherwise.

Since 'j is smooth and compactly supported, k@'jkR is finite, so let

C1 = N max
j=1,...,N

k@'jkR.

Note that C1 depends only on the cover U and the functions 'j. Then

k@hkkV k\K 
NX

j=1

k@'kkRkfk � fjkV j\V k\K

 2C1✏.

Now on Uj \ Uk,

hj � hk =
X

l 6=j

'l(fl � fj)�
X

m 6=k

'm(fm � fk)

= 'kfk � 'jfj +
X

m 6=k

'mfk �
X

l 6=j

'lfj

= fk � fj,
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where, for ease of notation, we implicitly ignore terms that are not defined
on Uj \ Uk.

Therefore since fj, fk are holomorphic we get

@hj|Uj \ Uk = @hk|Uj \ Uk,

so we can define a (0,1)-form ! 2 E
0,1(G) by !|Uj = �@hj. By Corollary

A.3.5, there is a neighbourhood A ⇢ G0 of K and a function u 2 E (G0) such
that

@u|A = !|A
and

kukK  C(k!kK,V + ")

where C does not depend on !. But

k!kK,V  max
j=1,...,N

k@hjk  2C1"

so
kukK  C"(2C1 + 1).

Now consider the function u+ hk + fk defined on Vk. It is holomorphic since

@u+ @hk + @fk = �@hk + @hk = 0.

Also on Vj \ Vk,

hk + fk = hj + fj,

so we can piece together a function F 2 O(G0) defined by F |Vk = u+hk+fk

satisfying

kf � Fk
V k\K  kf � fkkV k\K + kuk

V k\K + khkkV k\K

 "+ C"(2C1 + 1) + 2"

= "(2CC1 + C + 3).

Therefore kf �FkK  "(2CC1+C+3) and the constant multiplying " is
independent of f . So we have shown that we can uniformly approximate f by
functions holomorphic onG0. Applying Runge’s theorem we can approximate
F by functions holomorphic on all of R. Thus we can do the same for f .

The original complex-analytic proof of [Sak72] uses the kernel methods of
[BS49]. The method used in the above proof is intended to give an explicit
local description of the solutions to the @-equation. The approach taken by
[JP00] is similar to the one presented above, however in [JP00], the neigh-
bourhoods G and G0 are dependent on the value of ". Also, Corollary A.3.5
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is not present; instead the authors use the estimate from Proposition A.3.4.
This is where the error occurs. Since G and G0 depend on ", so too does the
constant C used in the estimate on the solution. This is problematic since
C is used to bound kf � FkK .

The proof presented in [Gar06] is slightly di↵erent to the one presented
above. The neighbourhoods G and G0 still depend on the value of " used
in the proof of the Mergelyan–Bishop theorem, but the author uses a result
that is similar to Corollary A.3.5 and obtains an estimate on the solution
that is independent of the cover used. We found this corollary di�cult to
understand, so instead fixed the neighbourhoods independently of "; then,
even though the constant C depends on G and G0 it is independent of the
chosen value of ". Thus the bound on kf � FkK depends linearly on ".



Appendix B

Enumerating simple Belyi pairs
with small genus

We used the following code to compute the values in Tables 5.1 and 5.3. The
code was run using Python version 2.7.15. The goal is to enumerate the non-
equivalent simple Belyi pairs of genus g, or equivalently, the non-equivalent
constellations in Sn consisting solely of n-cycles where n = 2g + 1. We do
this using the function find_belyi_pairs(n) which we describe below.

We use a brute force algorithm. We begin by assuming that the first entry
of each constellation is given by � = (1 2 · · · n). We then make a list of all of
the n-cycles in Sn up to conjugation by some power of �. These n-cycles are
all the possible candidates for the second entry of the constellations. For each
candidate in the list, we then compute the product with the first entry. If
the product is an n-cycle the corresponding constellation represents a simple
Belyi pair so we add it to a list. Otherwise we ignore it.

Once we have a list of constellations corresponding to simple Belyi pairs
we can compute the orbit of each constellation under the action of �. For each
simple Belyi pair of a given genus we compute the orbit using the functions
group_action_2 and group_action_3 (the elements corresponding to these
operations generate �). Once again we need to take care that we do not
count equivalent constellations as being distinct. The conjugate function
takes any constellation corresponding to a simple Belyi pair and returns a
unique representative from the set of equivalent constellations.

from itertools import permutations

def rotations_of(tau):

# Takes in an n-cycle of the set 0, ..., n-1 and returns all

permutations of the form (sigma^{-k} tau sigma^k), where

75
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sigma is the permutation (0, 1, ..., n-1). (We call

conjugating by a power of sigma ’rotating’)

# tuple -> set of tuples

# Eg. (0, 1, 2, 3, 4) -> {(0, 1, 2, 3, 4)}

# (0, 3, 1, 2, 4) -> {(0, 3, 1, 2, 4), (0, 3, 4, 1, 2),(0,

1, 3, 4, 2),(0, 2, 3, 1, 4), (0, 1, 4, 2, 3)}

# Alter tau to make sure 0 is at the start.

i = tau.index(0)

pile = {tau[i:]+tau[:i]}

n = len(tau)

for i in range(1, n):

# Rotated cycles can be found by subtracting a constant,

for example subtract 1 (modulo 5) from each entry of (0,

3, 1, 2, 4) and we get (4, 2, 0, 1, 3). We can rearrange

so that it starts with 0 and get (0, 1, 3, 4, 2).

cycled = [(x - tau[i]) % n for x in tau]

pile.add(tuple(cycled[i:] + cycled[:i]))

return pile

def find_taus(n):

# Finds the second entry of all non-equivalent constellations

in S_n that have n-cycles as the first two entries and have

the first entry being (0, 1, ..., n-1).

# int -> set of tuples

# Eg. 4 -> {(0, 1, 2, 3), (0, 2, 1, 3), (0, 3, 2, 1)}

taus = set()

for p in permutations(range(1,n)):

candidate = (0,)+p

taus.add(min(rotations_of(candidate)))

return taus

def product_with_sigma_is_cyclic(tau):

# Computes the product sigma*tau where sigma = (0, 1, ...,

n-1), if the product is an n-cycle, returns the product,

otherwise returns False.

# tuple -> tuple or False

# Eg. (0, 1, 2, 3) -> False (since product is (0,2)(1,3))

# (0, 1, 2, 3, 4) -> (0, 2, 4, 1, 3)

# Note that a non-empty tuple will be evaluated as True in an

if statement.

n = len(tau)
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sigma = range(0,n)

product = [0]

is_cyclic = True

for i in range(1,n):

a = product[i-1]

b = sigma[(tau[(tau.index(a)+1)%n]+1)%n]

product.append(b)

if b==0:

return False

return tuple(product)

def invert(cycle):

# Takes in a cycle and returns its inverse.

# tuple -> tuple

# Eg. (0, 1, ..., n-1) -> (0, n-1, ..., 1)

# (0, 3, 1, 2, 4) -> (0, 4, 2, 1, 3)

return (0,) + tuple(reversed(cycle[1:]))

def find_belyi_pairs(n):

# Returns a list of all non-equivalent constellations in S_n

corresponding to simple Belyi pairs. That is all

constellations consisting only of n-cycles.

# int -> list of constellations (a constellation is a tuple of

three tuples)

sigma = tuple(range(0,n))

belyi_pairs = []

possible_taus = find_taus(n)

for tau in possible_taus:

prod = product_with_sigma_is_cyclic(tau)

if prod:

constellation = (sigma, tau, invert(prod))

belyi_pairs.append(constellation)

return belyi_pairs

def conjugate(constellation):

# Takes in a constellation (that is, a tuple of three tuples)

consisting of n-cycles then conjugates so that the first

entry is (0, 1, ..., n-1). This is only unique up to

conjugation by a power of (0, 1, ..., n-1) so we then find

all rotations of the resulting constellation and return the

minimum.

# constellation -> constellation

# Eg. ((0,3,1,2,4), (0,2,3,1,4), (0,1,2,3,4)) -> ((0,1,2,3,4),
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(0,1,3,4,2), (0,3,4,1,2))

sigma = constellation[0]

n = len(sigma)

# conj tells us what to conjugate things by to get the first

entry equal to (0, ..., n-1).

conj = [None]*n

for i in range(0, n):

a = sigma[i]

conj[a] = i

conj_constellation = []

for perm in constellation:

conj_constellation.append(tuple([conj[x] for x in perm]))

equiv_second_element = min(rotations_of(conj_constellation[1]))

return (conj_constellation[0], equiv_second_element,

invert(product_with_sigma_is_cyclic(equiv_second_element)))

def group_action_2(constellation):

# Takes in a constellation and acts on it via the map induced

by 1/z. This has the effect of swapping the first and third

entry and adjusting the second so that the result is a

constellation. We then need to conjugate so that the first

entry is (0, 1, ..., n-1).

# Eg. ((0, 1, 2, 3, 4), (0, 2, 4, 1, 3), (0, 2, 4, 1, 3)) ->

((0, 1, 2, 3, 4), (0, 1, 2, 3, 4), (0, 3, 1, 4, 2))

# We call this function group_action_2 since it has order 2.

# Note that this function assumes that the first element is (0,

1, ..., n-1) and the third element is an n-cycle.

# The new second entry will be the inverse of the product of

the first and third entries.

prod = product_with_sigma_is_cyclic(constellation[2])

new_second_element = invert(prod)

new_constellation = conjugate((constellation[2],

new_second_element, constellation[0]))

return new_constellation

def group_action_3(constellation):

# Takes in a constellation and acts on it via the map induced
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by 1/(1-z). This has the effect of permuting the all three

entries, so the first is sent to the second, the second to

the third and the third to the first. We then need to

conjugate so that the first entry is (0, 1, ..., n-1).

# constellation -> constellation

# Eg. ((0, 1, 2, 3, 4), (0, 2, 4, 1, 3), (0, 2, 4, 1, 3)) ->

((0, 1, 2, 3, 4), (0, 1, 2, 3, 4), (0, 3, 1, 4, 2))

# ((0, 1, 2, 3, 4), (0, 3, 1, 2, 4), (0, 2, 3, 1, 4)) ->

((0, 1, 2, 3, 4), (0, 1, 3, 4, 2), (0, 3, 4, 1, 2))

# We call this function group_action_3 since it has order 3.

new_constellation = conjugate((constellation[1],

constellation[2], constellation[0]))

return new_constellation

def orbit_of(constellation):

# Computes the orbit of the automorphisms of the sphere

containing the given constellation. Returns the minimum

element in the orbit.

pile = {constellation}

a = conjugate(group_action_3(constellation))

b = conjugate(group_action_3(a))

pile.add(a)

pile.add(b)

pile.add(conjugate(group_action_2(constellation)))

pile.add(conjugate(group_action_2(a)))

pile.add(conjugate(group_action_2(b)))

return min(pile)

def find_orbits(bps):

# Takes in a list of constellations and returns a set

containing a representative from each orbit of the

automorphism group

# list of constellations -> set of constellations

# Eg. [((0, 1, 2, 3, 4), (0, 2, 4, 1, 3), (0, 2, 4, 1, 3)),

# ((0, 1, 2, 3, 4), (0, 1, 3, 4, 2), (0, 3, 4, 1, 2)),

# ((0, 1, 2, 3, 4), (0, 1, 2, 3, 4), (0, 3, 1, 4, 2)),

# ((0, 1, 2, 3, 4), (0, 3, 1, 4, 2), (0, 1, 2, 3, 4))]

# ->

# {((0, 1, 2, 3, 4), (0, 1, 3, 4, 2), (0, 3, 4, 1, 2)),

# ((0, 1, 2, 3, 4), (0, 1, 2, 3, 4), (0, 3, 1, 4, 2))}

orbits = set([])
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for con in bps:

orbits.add(orbit_of(con))

return orbits
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pact Riemann surfaces and dessins d’enfants, volume 79 of London
Mathematical Society Student Texts. Cambridge University Press,
Cambridge, 2012.

[GK73] Phillip Gri�ths and James King. Nevanlinna theory and holomor-
phic mappings between algebraic varieties. Acta Math., 130:145–
220, 1973.

[GN67] R. C. Gunning and Raghavan Narasimhan. Immersion of open
Riemann surfaces. Math. Ann., 174:103–108, 1967.

[GR84] Hans Grauert and Reinhold Remmert. Coherent analytic sheaves,
volume 265 of Grundlehren der Mathematischen Wissenschaften

[Fundamental Principles of Mathematical Sciences]. Springer-
Verlag, Berlin, 1984.

[GW60] S. W. Golomb and L. R. Welch. On the enumeration of polygons.
The American Mathematical Monthly, 67(4):349–353, 1960.
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Münster No., 16:61, 1960.

[Mer53] S. N. Mergelyan. On the representation of functions by series
of polynomials on closed sets. Amer. Math. Soc. Translation,
1953(85):8, 1953.

[Nar60] Raghavan Narasimhan. Imbedding of open Riemann surfaces.
Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1960:159–165,
1960.

[Roy67] H. L. Royden. Function theory on compact Riemann surfaces. J.

Analyse Math., 18:295–327, 1967.

[RS53] Reinhold Remmert and Karl Stein. Über die wesentlichen Singu-
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