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Abstract

This is a project in an introductory abstract algebra course. In this paper, I present notions
that help us understand why some real-valued functions of real variable do not possess an
antiderivative. When I took calculus II, my professor mentioned in a lecture that

∫
e−x2

dx
canot be integrated and that it has been proven. When I looked up the proof on the internet,
I could not understand the math behind it. Because of this project, I am several steps closer
to completely understand it. Beware that this is a basic exposure to elementary differential
Galois theory and, consequently, Liouville’s theorem (our main theorem) will not be proved.
The purpose of this paper is to demonstrate that e−x2

does not have an antiderivative, i.e.,
there is not a real-valued function whose derivative is e−x2

.

Introduction

In an average calculus class, it is customary to work with familiar functions f : R → R whose
antiderivatives or derivatives can be computed nicely. We sometimes encountered functions
whose integral or derivative was hard to find; however, we could always eventually find it.
Nevertheless, it turns out that some functions that we saw in calculus do not have an an-
tiderivative (such as e±x2

, sin x
x , and 1

ln x ), and that is why we were never asked to find them.
Not all functions possess an antiderivative, and the elementary calculus does not have the tools
to prove this fact.
Since our main interest is the study of the existence of integrals of functions, by nicely we mean
that the integral (or antiderivative) of f is another familiar function. For example, the func-
tions cos x, 1

x2+1 , xx(ln x + 1), and sech2 x have nice antiderivatives (in their respective domains
of x) because sin x, arctan x, xx, and tanh x are functions that we are also familiar with. Note
that the functions we are going to be dealing with have antiderivatives that are finite sums of
functions. This means that, for example, we will think of the integral of cos x as sin x rather

than ∑∞
n=0

(−1)nx2n+1

(2n+1)! because its McLaurin series expansion is an infinite sum of powers of x,
which are familiar functions nonetheless. Also note that we are using the words antiderivative
and integral indistinctly, even though we know that if a function g′ has an antiderivative g, then
it has infinitely many more antiderivatives of the form g + C where C is a constant. Moreover,
the antiderivatives of a function are the result of an indefinite integral not just an integral. We
will not pay attention to these semantic subtleties in this paper. Additionally, beware that we
are not going to deal with analysis concepts such as differentiability or Riemann-integrability,
but rather with the notion of existence of antiderivatives.
If we could come up with a set R, which contains all of these familiar functions, with certain
properties (such as closure under a derivative operator), then we could certainly determine
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whether a function possesses an antiderivative by realizing that this integral cannot be ex-
pressed as a finite sum of familiar functions that belong to this set R. Surprisingly (at least
to me), it turns out that we can determine whether a function has an antiderivate with the
aid of abstract algebra. This is why we begin the next section by introducing the concept of a
differential ring.

Basic Notions

Definition 1. A set R is a differential ring if R is itself a commutative ring of characteristic zero and
possesses a map δ : R→ R where δ(r) = r′. This map δ satisfies the following two properties

(r + s)′ = r′ + s′

(rs)′ = r′s + rs′

for all r, s ∈ R. We call δ a derivation on R.

Note that δ is an additive group homomorphism between R and itself, which ensures that the
for an element r ∈ R we also have r′ ∈ R. The homomorphism property does not hold for
multiplication, and this multiplication property of a differential ring with its derivation is also
known as the product rule in calculus. Furthermore, a differential field is a differential ring that
is a field.

Theorem 1. Let R be a differential ring where 0 and 1 are the zero element and unity respectively, then
the following hold

(i) 1′ = 0

(ii) (rn)′ = nrn−1r′ for r ∈ R and n ∈ Z+.

Proof.

(i) Since 1′ = (1 · 1)′ = 1 · 1′ + 1′ · 1 = 2(1 · 1′) = 2(1′), it follows that 1′ must be 0.

(ii) We will induct on n. For n = 1, the result is trivial. Assume the claim holds for n = k ≥ 1,
so (rk)′ = krk−1r′. Consider now

(rk+1)′ = (rrk)′ = r(rk)′ + r′rk = rkrk−1r′ + r′rk = krkr′ + r′rk = (k + 1)rkr′.

Therefore, the result follows by mathematical induction.

Example 1. The polynomial ring that we are all familiar with R[x] is a differential ring where
the derivation δ = d

dx is our usual derivative operator on p(x) ∈ R[x] from calculus. Note that
any differential ring R has the trivial derivation δ0 : R→ {0R}.
We have seen that R[x] is not a field but an integral domain. We will present a field that contains
R[x] as a subring after the next definition.

Definition 2. Let F be a field, then F(x) is the field of rational polynomial functions of one indeterminate
on F (also called the fraction field of F[x]).
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Example 2. Note that R[x] is a subring of the field R(x), for R(x) contains all polynomials of
the form p(x)

q(x) where p(x), q(x) ∈ R[x] and q(x) 6= 0, i.e., the zero polynomial in R[x]. Hence, if
we use the same derivation δ from R[x], it is easy to check that the derivative of an element in
R(x) is also in R(x).

Example 3. Since C is an extension field of R, we have that C(x) is a field.

Theorem 2. Let R be a differential field, then if r, s ∈ R and s 6= 0R (so it makes sense to speak of 1/s)
we have

( r
s
)′
= r′s−rs′

s2 .

Proof. Since s 6= 0R, then s 1
s = 1R. Hence, by Theorem 1 (i) we have (s 1

s )
′ = 1′R = 0R, so

s′ 1s + s(1
s )
′ = 0R. Thus, (1

s )
′ = − s′

s2 . Finally, consider
( r

s
)′

= r(1
s )
′ + r′(1

s ) = − rs′
s2 + r′(1

s ) =
r′s−rs′

s2 , as desired.

Note that Theorem 1 (ii) and Theorem 2 are also known as the power rule and the quotient rule,
respectively, in calculus.
Before we begin to formalize what we initially referred to as familiar function, we make clear
that the functions that we are going to deal with here are complex-valued functions of real vari-
able f : R→ C. This will strengthen our theory because if we incorporate complex numbers in
the outputs of our functions, we can express any familiar function f (x) in terms of exponentials
eg(x) and natural logarithms ln h(x), where g(x), h(x) ∈ C(x), as well as other combinations of
roots and ratios between polynomials in C(x). From now on we will denote the complex unit
by i =

√
−1.

Example 4. Recall Euler’s identity eix = cos x + i sin x. With this, we can express the sine and
cosine functions as follows

sin x =
eix − e−ix

2i
, cos x =

eix + e−ix

2
.

Note that we can represent all six trigonometric functions like this by using trigonometric iden-
tities such as tan x = sin x

cos x , etc.

In the case of other functions, such as arctan x, we will need to first accept that any function
f : R→ C can be expressed as f (x) = u(x) + iv(x) where u, v : R→ R, and that the derivative
of f (x) is f ′(x) = u′(x) + iv′(x) if it exists. Hence, we find that C(x) is a differential ring.
Furthermore, we accept that the same reasoning applies to the antiderivative of f .

Example 5. We know that arctan x =
∫ x

0
1

1+t2 dt. Splitting 1 + t2 = (1 + it)(1 − it) in C and
integrating 1 we find that arctan x = i

2 [ln(1 − ix) − ln(1 + ix)]. We can represent all six in-

verse trigonometric identities like this by using identities such as arcsin x = arctan
(

x√
1−x2

)
,

arccos x = arctan
(√

1
x2 − 1

)
, arcsec x = arccos 1

x , etc.

Notice that all hyperbolic and inverse hyperbolic functions are already defined in terms of
exponentials and natural logarithms, so we should not worry about them.
We would like to remark that all the functions mentioned are well-defined in their respective
domains, and we will assume this for all functions encountered in this paper. Having said all
of this, we introduce the following definition.

1In this type of integration, we assume that the antiderivative of 1/z is ln z not ln |z| since z can be complex.
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Definition 3. Let R be a differential field and let E be a differential field extension of R with a common
derivation δ. If for some f ∈ E and g ∈ R with g 6= 0R we have

δ( f ) =
δ(g)

g

then we say f is a logarithm of g. Additionally, we say that g is an exponential of f .

There are two thinks to remark now. First, note that Definition 3 also works if R = E. Secondly,
notice that the only differential rings we know so far are R(x) and C(x) and we cannot find
elements that are logarithms or exponentials of other elements in these two differential rings.
We have not yet built a differential field whose elements are functions other than rational poly-
nomial functions; however, we are one step closer to this. Assume for now that the functions in
the next examples belong to some differential rings and that the derivation is the familiar one
δ = d

dx .

Example 6. The most intuitive example would be ln x, which is a logarithm of x since (ln x)′ =
x′
x = 1

x . Also, x is the exponential of ln x. This can be verified by noting x = eln x.

Example 7. A more interesting example is arctan x, which is a logarithm of 1
2i

(
x−i
x+i

)
.

In Example 5, we showed that arctan x can be expressed in terms of logarithms of functions in
C(x) by integrating it. Notice that if we use Definition 3 instead, then we avoid issues like the
one in the footnote in page 3. We now enhance our theory with the following definition.

Definition 4. A meromorphic function is a function defined on an open interval I of the real numbers
whose values are also real numbers or ±∞ with the property that sufficiently close to any x0 ∈ I the
function is given by a convergent Taylor series in x− x0.

This definition says that all functions in R[x] are well-defined in some interval. This means
that the functions in R(x) and C(x) are also well-defined in some interval. Moreover, ln f (x)
and e f (x) for f (x) ∈ C(x) are well-defined in some interval. Hence, we are ensured that any
root of any linear combination of terms from C(x) and its logarithms and exponentials is well-
defined in some interval. Definition 4 is important because that is why we know these objects,
which are elements of differential rings such as C(x), are genuine functions. In other words,
this definition allows us to go on with our theory.
Before we move on to the next section, let us introduce some new fields through examples.

Example 8. We know that C(x) is a field with indeterminate x. We can then construct an ex-
tension field C(x)(y) by introducing a new indeterminate y. For example, some elements in

C(x)(y) are 3ix
i+x − xy2 and 1+(ix2−1)y+(x6+x+1)y3

1
xi−iy

. Note that C(x)(y) is isomorphic to C(x, y). We

will generalize this in the next theorem.

Theorem 3. Let F be a field and x1, x2, . . . , xn be indeterminates. Then, the extension field F(x1)(x2) · · · (xn)
is isomorphic to F(x1, x2, . . . , xn).

Proof. It suffices to show that F(x1)(x2) ∼= F(x1, x2) since we may repeat the argument setting
Fn−1(xn) = F(x1, x2, · · · , xn−1)(xn). Define the map ι : F(x1)(x2) → F(x1, x2) by the identity
mapping. It is clear that ι is a well-defined ring homomorphism and a one-to-one correspon-
dence, therefore, the result follows.
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Example 9. Let K = C(x) and note it is a differential field with the usual calculus derivation.
Now consider the extension field K(sin x, cos x) = C(x, sin x, cos x), i.e., the field generated by
x, sin x, and cos x. We know C(x, sin x, cos x) is a field because it is isomorphic to C(x, y, z)
and we are treating sin x and cos x as the indeterminates y and z respectively. The elements
C(x, sin x, cos x) are of the form

p(x, sin x, cos x)
q(x, sin x, cos x)

=
∑i,j,k aijkxi sinj x cosk x

∑p,q,r bpqrxp sinq x cosr x

where aijk, bpqr ∈ C and the denominator does not equal to the zero of the field. An example of

an element in C(x, sin x, cos x) is x+i sin3 x cos x+x3 cos2 x
−i−x sin x cos5 x . It is important to see that C(x, sin x, cos x)

is a differential field since it is closed under differentiation (this will be proved in the next
section). Finally, note that C(x, sin x, cos x) = C(x, eix) because of the identities in Example 4.
In general, if f1, f2, · · · , fn are meromorphic functions, then the field C(x, f1, f2, · · · , fn) consists
meromorphic functions.

Elementary Fields

So far, we only know three types of differential fields, i.e., R(x), C(x), and C(x, eix). In this
section we will learn how to construct as many differential fields as we want.

Definition 5. Let f1, f2, · · · , fn be meromorphic functions. A field of meromorphic functions K is an
elementary field if K = C(x, f1, f2, · · · , fn) and only one of the following hold

(i) each f j is a logarithm or an exponential of an element in Kj−1 = C(x, f1, f2, · · · , f j−1), or

(ii) each f j is algebraic over Kj−1.

Moreover, functions from an elementary field are called elementary functions.

The above definition tells us that we can construct an elementary field from C(x) in finitely
many steps by adjoining special meromorphic functions f j in the same manner we adjoin the
indeterminate y to C(x) to form C(x, y). Hence, we have the following tower of fields consisting
of elementary fields

K = C(x, f1, f2, · · · , fn−1, fn) ⊃ C(x, f1, f2, · · · , fn−1) ⊃ · · · ⊃ C(x, f1) ⊃ C(x)

for functions f j satisfying properties (i) and (ii) in our last definition.

Example 10. We see that C(x, eix) is an elementary field since eix is an exponential of ix ∈ C(x).

Likewise, C(x, ln x) and C(x, e
x2

i+x ) are also elementary fields. These two examples satisfy con-
dition (i) in Definition 5. We will see next the meaning of condition (ii).

Example 11. We know that
√

x /∈ C(x). However, consider the polynomial ring with indetermi-
nate T denoted by C(x)[T] and note that T2− x ∈ C(x)[T]. Since

√
x is a root of T2− x, we have

that
√

x is algebraic over C(x). Hence, C(x,
√

x) is an elementary field, which is an example of
condition (ii) in Definition 5.
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Example 12. The function f (x) = 3

√
ln x + cos

(
x

x2+i

)
is an elementary function of

C(x, ln x, e
x

x2+i , f (x)) ⊃ C(x, ln x, e
x

x2+i ) ⊃ C(x, ln x) ⊃ C(x).

Example 13. The function f (x) = xx is an elementary function of C(x, ln x, ex ln x).

Just as we mentioned in the introduction, we are interested in sets of functions that allow us to
determine whether one of its elements can be integrated in terms of other elements in the set.
We are ready now to present our next theorem, which allows us to construct sets of functions
that are closed under differentiation, that is, differential fields of functions. From now on, we
assume the derivation δ is the usual calculus differentiation d

dx . This convention serves our pur-
poses since all meromorphic functions have a derivative in some interval, and this derivative is
another meromorphic function.

Theorem 4. An elementary field K is closed under the derivation δ( f ) = f ′ where f ∈ K. This means,
elementary fields are differential fields.

Proof. Let K = C(x, f1, · · · , fn) for n ≥ 0. We will prove the theorem by induction on n. For n =
0, we have K = C(x) which we know is a differential field, so it is closed under the derivation
δ. Assume the claim is true for K0 = C(x, f1, · · · , fn−1) with n − 1 ≥ 0, that is, assume K0 is
closed under differentiation. Thus, we want to prove that K0( fn) = C(x, f1, · · · , fn−1, fn) is also
closed under differentiation 2. Let fn be a logarithm of an element in K0, an exponential of an
element in K0, or algebraic over K0. First, we prove that f ′n ∈ K0( fn) by cases.

Case 1 If fn is a logarithm of g ∈ K0, then f ′n = g′/g. Since K0 ⊂ K0( fn) and g′/g ∈ K0 by
hypothesis, then g′/g ∈ K0( fn). Hence, it follows that f ′n ∈ K0( fn).

Case 2 If fn is an exponential of g ∈ K0, then g′ = f ′n/ fn so f ′n = fng′. Since g′ ∈ K0 by hypothesis,
then f ′n ∈ K0( fn).

Case 3 If fn is algebraic over K0, then there exists a polynomial P(T) ∈ K0[T] such that P( fn) = 0.
Let P(T) = amTm + am−1Tm−1 + · · ·+ a1T + a0 where ai ∈ K0. Thus,

P( fn) = am f m
n + am−1 f m−1

n + · · ·+ a1 fn + a0 = 0.

Differentiating both sides using Definition 1, noting 0′ = 0, and applying Theorem 1 (ii)
several times, we obtain

(a′m f m
n + a′m−1 f m−1

n + · · ·+ a′1 fn + a′0) + f ′n[mam f m−1
n + (m− 1)am−1 f m−2

n + · · ·+ a1] = 0,

hence,

f ′n = −
a′m f m

n + a′m−1 f m−1
n + · · ·+ a′1 fn + a′0

mam f m−1
n + (m− 1)am−1 f m−2

n + · · ·+ a1
.

The reason we know the denominator above is not the zero is simple. We know that the
leading coefficient of P(T) is not zero because it has a root, i.e., am 6= 0. Hence, since K0 has
characteristic zero by Definition 1, the leading coefficient of P′(T) is not zero, i.e., mam 6= 0
which means the denominator is not zero. Finally, clearly we note that fn ∈ K0( fn).

2In this sentence, the equal sign actually means ’isomorphic to’ by Theorem 3. However, we treat those two
fields as if they were equal for the sake of our proof.
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Now that we know f ′n ∈ K0( fn), we show that for any f ∈ K0( fn), we have f ′ ∈ K0( fn).
Let ∑s

k=0 ckTk, ∑t
k=0 dkTk ∈ K0[T], hence we know that any element f ∈ K0( fn) has the form

f = ∑s
k=0 ck f k

n

∑t
k=0 dk f k

n
with the denominator nonzero. Consider

f ′ =

(
∑s

k=0 ck f k
n

∑t
k=0 dk f k

n

)′

=

(
∑s

k=0 ck f k
n
)′

∑t
k=0 dk f k

n −
(
∑t

k=0 dk f k
n
)′

∑s
k=0 ck f k

n(
∑t

k=0 dk f k
n
)2

by Theorem 2. Therefore,

f ′ =
[
c′0 + ∑s

k=1(c
′
k f k

n + kck f k−1
n f ′n)

]
∑t

k=0 dk f k
n −

[
d′0 + ∑t

k=1(d
′
k f k

n + kdk f k−1
n f ′n)

]
∑s

k=0 ck f k
n(

∑t
k=0 dk f k

n
)2

which shows f ′ ∈ K0( fn) since ck, c′k, dk, d′k, f k
n , f ′n ∈ K0( fn) for all corresponding k.

We have proved a big result in our theory since we are now able to create any differential field
of meromorphic functions we want. Note that we have finally formalized what we meant by
familiar function in the beginning of the paper because our familiar functions are functions that
belong to some elementary field. Before we proceed to present our main theorem, we will
introduce our last definition which formalizes what we meant by having a function that has a
nice antiderivative.

Definition 6. A meromorphic function f can be integrated in elementary terms if there exists g in some
elementary field such that f = g′.

Example 14. The meromorphic function f (x) = xex can be integrated in elementary terms since
g(x) = xex − ex is in the elementary field C(x, ex) and f = g′. Note that in Definition 6, g can
be in any elementary field and is not restricted to f .
Example 15. The function f (x) = 1

1+x2 can be integrated in elementary terms since g(x) =

arctan x is in the elementary field C(x, ln(1−ix
1+ix )) by Example 5 and f = g′.

Because we are working with complex-valued functions, our theory of integration in elemen-
tary terms is stronger than if we worked with only real-valued functions. In fact, it turns out
that all of our theory that we have constructed in this paper would be invalid if we only worked
in R since we would not be able to build fields containing, for example, arctan x or sin x in terms
of other elementary functions, such as logarithmic and exponential functions.

Liouville’s Theorem

Here, we present our star theorem without a proof since it involves concepts from differential
Galois theory, a subject in mathematics that is beyond the scope of this article.

Theorem 5. (Liouville) Let f be an elementary function and let K be any elementary field containing f .
Then f can be integrated in elementary terms within some elementary extension field of K if and only if
there exist nonzero c1, · · · , cn ∈ C, nonzero g1, · · · , gn ∈ K, and an element h ∈ K such that

f =
n

∑
j=1

cj
g′j
gj

+ h′.
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Proof. Omitted.

Since the purpose of the article is to show that e−x2
does not have an antiderivative, i.e. it does

not integrate in elementary terms, then we will use the following corollary which serves us for
a particular family of functions.

Theorem 6. (Corollary to Liouville’s theorem) Let K = C(x, eg(x)) be an elementary field such that
g(x) ∈ C(x). Then, an element in K of the form f (x)eg(x), where f (x), g(x) ∈ C(x), can be integrated
in elementary terms within some extension field of K if and only if there exists r(x) ∈ C(x) such that
r′(x) + g′(x)r(x) = f (x).

Proof. (⇒) Suppose f (x)eg(x) can be integrated in elementary terms in some field extension of
K. Then by Theorem 5, there exist nonzero c1, · · · , cn ∈ C, nonzero g1(x), · · · , gn(x) ∈ K, and
an element h(x) ∈ K such that

f (x)eg(x) =
n

∑
j=1

cj
g′j(x)

gj(x)
+ h′(x).

Note that all gj(x) and h(x) are of the form P(eg(x))

Q(eg(x))
, where P(T), Q(T) ∈ C(x)[T] and Q(T) 6= 0.

Hence, for each j we have

g′j(x)

gj(x)
=

[P(eg(x))/Q(eg(x))]′

P(eg(x))/Q(eg(x))
=

[P(eg(x))]′

P(eg(x))
− [Q(eg(x))]′

Q(eg(x))

by Theorem 2 and dividing. Notice that the only polynomials in C(x)[eg(x)] that make [P(eg(x))]′

a multiple of P(eg(x)) are monic. Similarly, eg(x) is the only possible monic irreducible factor in a

denominator of the partial fraction decomposition expansion of h(x). Thus, ∑n
j=1 cj

g′j(x)
gj(x) + h′(x)

can be expressed in the form [∑t
j=−t k j(x)(eg(x))j]′ for k j(x) ∈ C(x), which is its partial fraction

decomposition. Finally, after differentiating the terms in the sum

f (x)eg(x) =
t

∑
j=−t

[(k′j(x) + jg′(x)k j(x))(eg(x))j].

By matching the coefficients of eg(x) in both sides, we obtain f (x) = k′1(x) + g′(x)k1(x). Let
r(x) = k1(x), so the result follows.
(⇐) Suppose there exists such r(x) ∈ C(x), hence, f (x)eg(x) = (r(x)eg(x))′, so it can be inte-
grated in elementary terms since r(x)eg(x) ∈ C(x, eg(x)).

The proof of Theorem 5 and the details of Theorem 6 that we did not justify may be found
among the cited sources (Churchill, Conrad, and Rosenlicht) in great detail. We have obtained
a strong result since we know that if e−x2

can be integrated in elementary terms, then this
antiderivative must be of the form p(x)e−x2

for some rational polynomial p(x) ∈ C(x) just like
in Example 14, where the antiderivative of xex ∈ C(x, ex) is (x− 1)ex ∈ C(x, ex).

Example 16. The function e−x2
cannot be integrated in elementary terms.
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Proof. Suppose e−x2
can be integrated in elementary terms. Then letting f (x) = 1 and g(x) =

−x2 there exists r(x) ∈ C(x) such that r′(x)− 2xr(x) = 1 by Theorem 6. Let r(x) = p(x)/q(x)
where p(x) and q(x) are relatively prime elements of C[x] with q(x) 6= 0. Hence, by Theorem 2
we obtain

p′(x)q(x)− p(x)q′(x)
q2(x)

− 2x
p(x)
q(x)

= 1,

so
p′(x)q(x)− p(x)q′(x)− 2xp(x)q(x) = q2(x),

and after reordering we get

q(x)[p′(x)− 2xp(x)− q(x)] = p(x)q′(x).

Since q(x) does not divide p(x), it follows that q(x) divides q′(x), so q(x) is a nonzero constant
c ∈ C. Hence, we have

p′(x)− 2xp(x) = c.

The degree of the left-hand side is at least 1 or it is the zero polynomial, whereas the right-
hand side is a nonzero constant. We have arrived at a contradiction, therefore, e−x2

cannot be
integrated in elementary terms.

Note that if we attempted to find r(x) in r′(x) − 2xr(x) = 1 by using our tools for solving
differential equations, we would obtain r(x) =

∫
e−x2

dx, which is not helpful. This is why we
need to develop the theory in this paper to demonstrate such antiderivative does not exist.

Exercises

1. Give an elementary field of the form C(x, f1, · · · , fn) which contains the following func-
tions.

(a) xπ.

(b)
√

2πx2−3x ln x√
ex−sin(x/(x3−7))

.

Also, indicate the tower of fields in which the elementary field you have given is the
biggest extension (Hint: See Example 12).

2. Prove that for any p(x) ∈ C(x), p(x) divides p′(x) if and only if p(x) ∈ C. We used this
fact in the proof of Example 16.

3. Prove that the function
∫ dx

ln x , which is an important analysis tool in number theory, cannot
be integrated in elementary terms (Hint: make a substitution and work as in Example 16).

4. Even though some functions do not possess an antiderivative, we can compute particular
definite integrals of these functions. Find the given definite integrals of the following
functions which lack an antiderivative.

(a)
∫ ∞
−∞ e−x2

dx (Hint: Let I =
∫ ∞
−∞ e−x2

dx and consider I2 =
∫ ∞
−∞

∫ ∞
−∞ e−(x2+y2) dx dy,

then change to polar coordinates using multivariable calculus).
(b)

∫ ∞
−∞

sin x
x dx (Hint: Consider the function F(x, y) = e−xy sin x and integrate it over the

entire plane R2 in two different ways).
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