

4540 WEST 50TH AVENUE ANCHORAGE, ALASKA

2010 SITE CHARACTERIZATION REPORT

JULY 2011

Submitted to:

Diana Pfeiffer/Alaska Sales & Service

Submitted by:

BGES, INC.

1042 East 6th Avenue Anchorage, Alaska 99501 Ph: (907) 644-2900 Fax: (907) 644-2901

www.BGESINC.com

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
2.0	BACI	KGROUND	1
3.0	FIEL	D ACTIVITIES	2
	3.1	Modifications to the Workplan	2
	3.2	Evaluation of Existing Groundwater Monitoring Well (MW1)	3
	3.3	Soil Boring Advancement & Sampling	3
	3.4	Monitoring Well Installation	5
	3.5	Monitoring Well Surveying, Development and Sampling	5
4.0	EVA	LUATION OF LABORATORY DATA	6
	4.1	Soil Samples	7
	4.2	Water Samples	8
5.0	LAB	ORATORY DATA QUALITY REVIEW	
	5.1	Laboratory Samples	9
6.0	CON	CEPTUAL SITE MODEL	
7.0	CON	CLUSIONS AND RECOMMENDATIONS	14
8.0	EXC	LUSIONS AND CONSIDERATIONS	16

FIGURES (Located at End of report)

Figure 1	Site Vicinity Map
Figure 2	Soil Boring Locations & Sampling Results
Figure 3	Monitoring Well Locations & Groundwater Sampling Results
Figure 4	August 2010 Groundwater Elevation Map

TABLE (Located at End of Report)

Table 1	Monitoring Well Sampling Data
---------	-------------------------------

- Table 2
 Analytical Results Soils
- Table 3
 Analytical Results Water

APPENDICES (Located at End of Report)

Appendix A	Site Photographs
Appendix B	Soil Boring Logs/Well Completion Log/Water Sampling Logs/Field Notes
Appendix C	Laboratory Analytical Data
Appendix D	Laboratory Analytical Data Quality Control Checklists
Appendix E	Conceptual Site Model

AAC	-	Alaska Administrative Code
ADEC	-	Alaska Department of Environmental Conservation
AFSC	-	Anchorage Fueling & Service Company
AK	-	Alaska Method
AS&S	-	Alaska Sales & Service
bg	-	Below Grade
BGES	-	Braunstein Geological and Environmental Services
BTEX	-	Benzene, Toluene, Ethylbenzene, and Total Xylenes
CSM	-	Conceptual Site Model
DRO	-	Diesel Range Organics
EDB	-	1,2-Dibromoethane
EDC	-	1,2-Dichloroethane
EPA	-	Environmental Protection Agency
GRO	-	Gasoline Range Organics
mg/Kg	-	Milligrams per Kilogram
mg/L	-	Milligrams per Liter
MRLs	-	Method Reporting Limits
MS	-	Matrix Spike
MSD	-	Matrix Spike Duplicate
PID	-	Photoionization Detector
ppm	-	Parts per Million
QC	-	Quality Control
RI	-	Release Investigation
RPD	-	Relative Percent Difference
RRO	-	Residual Range Organics
UST	-	Underground Storage Tank
VOCs	-	Volatile Organic Compounds

ACRONYMS

1.0 INTRODUCTION

BGES, Inc. (BGES) was retained by Diana Pfeiffer of Alaska Sales & Service (AS&S) to conduct additional release investigation (RI) activities at 4540 West 50th Avenue in Anchorage, Alaska, hereafter referred to as the subject property (Figure 1). A limited assessment was requested by Ms. Pfeiffer to further characterize the nature and extent of contamination that potentially originated from gasoline releases from a former underground storage tank (UST) previously utilized at the subject property to refuel rental cars.

Field activities were accomplished in August of 2010. The 2010 Additional RI Activities Workplan (dated June 23, 2010) describing the investigation activities for the subject property was submitted to the Alaska Department of Environmental Conservation (ADEC) on June 23, 2010; Bill Petrik provided approval of the workplan on August 4, 2010. Additionally, an Anchorage International Airport building permit/application was submitted by Diana Pfeiffer, President of Alaska Sales & Service, on August 4, 2010. Approval of the building application/permit was granted by airport personnel on August 17, 2010.

2.0 BACKGROUND

The subject property, operated as National Car Rental, is an active Contaminated Site as listed in the ADEC Contaminated Sites database (File Number 2100.26.133), and is currently owned by AS&S. Two USTs, a 500-gallon waste oil UST and a 3,000-gallon gasoline UST, were removed from the property in 1991. No evidence of release was noted in association with the waste oil UST at the time of decommissioning; however, evidence of contamination was discovered during the decommissioning of the 3,000-gallon gasoline UST. Evidence of perforation to the gasoline UST's check valve was noted, a crack was noted in one of the product line's elbows, and corrosion was present around the UST's bung fittings.

Contaminated soil was subsequently excavated from beneath the UST, to a depth of approximately 13.5 feet below grade (bg), the extent of the excavator used during soil removal. The total area of the excavation was approximately 400 square feet (20 feet long by 20 feet wide). The contaminated soils were transported offsite for disposal.

In January of 2000, five soil borings were advanced at the site, including one that was completed as a monitoring well within the former area of excavation. Soon after installation, free product was

observed within the well. The product was sampled and analyzed, and reportedly determined to be unleaded gasoline; however, the report prepared for this characterization effort states that the product was analyzed for "lead, diesel range organics (DRO), and flash point", and it is unclear how the above determination was made based on these analyses.

Soils containing concentrations of gasoline range organics (GRO) and benzene, toluene, ethylbenzene and xylenes (BTEX) that exceeded the applicable ADEC cleanup criteria were identified at various depths within each of the five borings advanced at the site in 2000.

Reports associated with investigations at the Anchorage Fueling and Service Company (AFSC) Tank Farm Site show that releases from the tank farm site have impacted the subject property. Three monitoring wells and several soil borings have been installed on the subject property in conjunction with investigation and remediation efforts associated with the tank farm site. Two of the three monitoring wells have since been decommissioned and the remediation and recovery of free phase fuel from the former tank site was curtailed in 2004 or 2005.

Based on the results obtained from previous site investigations, as described above, BGES recommended that the existing groundwater monitoring well (MW1) be evaluated for the presence of free product; additionally, it was also recommended that two additional soil borings completed as groundwater monitoring wells be advanced at the site to further characterize the extent of the soil and groundwater contamination at the subject property. The evaluation of Monitoring Well MW1 and the advancement of two soil borings completed as groundwater monitoring wells are the subject of this report.

3.0 FIELD ACTIVITIES

As described above in Section 2.0, BGES recommended the evaluation of an onsite groundwater monitoring well (MW1) for the presence of free product and the advancement of two soil borings completed as groundwater monitoring wells to evaluate the extent of soil and groundwater contamination at the site.

3.1 Modifications to the Workplan

The following minor modifications to the work plan occurred for various reasons, as described below:

• As described below in Section 3.2, water samples were not collected from Monitoring Well

BGES, INC.

MW1 due to the damaged well casing.

 As described below in Section 3.5, due to the presence of sheen observed during the purging of Monitoring Wells MW-3 and MW-4, the stabilization parameters (pH, conductivity, total dissolved solids, and temperature) were not collected.

3.2 Evaluation of Existing Groundwater Monitoring Well (MW1)

BGES was onsite on August 10, 2010 to evaluate Monitoring Well MW1 for the presence of free product and, if possible, to collect a water sample for laboratory analysis (Photograph 1 in Appendix A). During field activities, the upper 6 feet to 8 feet of the PVC casing was observed to be damaged. Utilizing an oil/water interface probe, the depth to water was measured at 53.64 feet bg and the product thickness was approximately 0.13 foot. Upon retrieval of the oil/water interface probe, an unknown substance emitting a strong fuel odor was observed adhered to the probe (Photograph 2 in Appendix A). A standard disposable polyethylene bailer was lowered into the well in an attempt to obtain a water sample; however, the monitoring well casing was damaged and the bailer could not be lowered past approximately 4.5 feet bg.

3.3 Soil Boring Advancement & Sampling

BGES observed and documented the advancement of two soil borings at the subject property on August 20, 2010 (Figure 2). The borings were advanced using a GeoProbe 6620DT direct-push drilling rig provided by GeoTek Alaska, Inc. (GeoTek) of Anchorage. Static and percussion forces were utilized to advance a 5-foot long sampling spoon into the subsurface soils (Photographs 3 and 4 in Appendix A).

The sampling spoon contained a fitted plastic sleeve used to capture the soils continuously from the surface to the maximum depth of each boring. Upon retrieval of the sampling spoon, a soil-screening sample was collected and placed into a sealable plastic bag using a clean, stainless steel spoon and labeled with a unique sample number and the time of collection. Soils in each plastic bag were screened with a photoionization detector (PID) that was calibrated prior to use with 100 parts per million (ppm) isobutylene calibration gas. The samples were allowed to warm in the heated shop for at least 10 minutes, and then the plastic bags were agitated for approximately 15 seconds within 1 hour of collection, at which point the probe of the PID was inserted into the bag and the greatest reading was recorded. A second portion of the sample was placed in laboratory-supplied containers for laboratory

analysis. Sample portions slated to be analyzed for volatile compounds were collected first and deposited directly into a methanol-preserved sample container. The samples were labeled, placed in ice-filled coolers, and delivered by BGES personnel under chain of custody protocol to Test America Environmental Laboratories, Inc. (Test America) of Anchorage, Alaska, an ADEC-approved laboratory. After the laboratory containers were filled, the remaining soil in the split-spoon sampler was described and recorded in a geologic log (Appendix B).

Prior to sampling activities, it was determined that five sampling depths (5 feet, 15 feet, 25 feet, 35 feet, and within the smear zone (zone of water table fluctuation) anticipated to be at approximately 50 to 55 feet bg) would be investigated during the advancement of the borings. During the advancement of the southern soil boring (SB1) no olfactory or visual evidence of contamination was identified until the smear zone was encountered at 53 to 57 feet bg; an indiscernible fuel odor was observed emanating from the retrieved soils. Additionally, a PID reading taken from the soils in ambient air was 133 ppm; the PID reading from the heated headspace field screening sample collected from the soils read 1000+ ppm. Soil samples were collected from each predetermined depth, including one soil sample (SB1-5-0820) which was collected from the visually impacted material at an approximate depth range of 53 feet to 55 feet bg.

During the advancement of the northern soil boring (SB2), an indiscernible fuel odor was initially observed upon retrieval of the soils obtained from approximately 23 to 27 feet bg. Additionally, obviously contaminated soils were identified at the subsequent depth ranges of 33 feet to 37 feet and 51 feet to 55 feet bg. PID readings in ambient air of soil samples obtained from these depths, ranged from 42 ppm to 218 ppm; heated headspace field screening samples collected from the above-listed depths ranged from 868 ppm to 1000+ ppm. Soil samples were collected from each predetermined depth, including one soil sample and a duplicate sample (SB2-5-0820 and SB-6-0820, respectively) which were collected from the visually impacted soils at approximately 51 to 55 feet bg.

In accordance with the client's request, four soil samples (SB1-5-0820, SB2-3-0820, SB2-4-0820, and SB2-5-820) were submitted to the Zymax Forensics laboratory to undergo fingerprint analysis to evaluate the potential presence of aviation fuel in the soils as a result of possible onsite migration of contamination from an historical release of contaminants during the Good Friday earthquake in 1964, as described above in Section 2.0. According to the Zymax Forensics laboratory, no evidence of aviation fuel was identified in the soils submitted to the laboratory, and the hydrocarbons present in the samples more than likely represent the higher boiling end (lighter components) of gasoline.

Page 4 of 16

3.4 Monitoring Well Installation

Upon completion of the advancement of Soil Borings SB1 and SB2, groundwater monitoring wells were installed in each boring (Figure 3). The monitoring wells were constructed with approximately 49 feet of 2-inch diameter PVC casing and 10 feet of 2-inch diameter, 10-slot PVC well screen, which were positioned at a total depth of approximately 59 feet bg. The wells were then completed by backfilling the annular spaces with sand to approximately 2 feet above the screen and casing interfaces, followed by approximately 2-foot thick bentonite chip seals. Sand was added to the annular spaces above these seals to approximately 3 feet bg, at which point additional 2-foot thick bentonite chip seals were placed. Finally, cement was placed around flush-grade casings at the ground surface (Photographs 5 and 6 in Appendix A).

Investigation-derived wastes (drill cuttings) were separated by boring and containerized in five, 55gallon drums; the investigation-derived wastes were stored onsite, pending laboratory analyses. Each 55-gallon drum was clearly labeled with the soil boring identification number, BGES' contact information, and a description of the contents.

3.5 Monitoring Well Surveying, Development and Sampling

Prior to the sampling of the monitoring wells, BGES returned to the site on August 25, 2010 to survey the top of casings and ground elevations for each of the monitoring wells and to develop each monitoring well; the wells were surveyed to the nearest vertical 0.01 foot, utilizing a fixed, permanent or semi-permanent reference point (Table 1); the reference point for the survey is the southeast corner of the building located at the subject property. Utilizing the groundwater elevations obtained during surveying activities (Table 1), the groundwater flow direction at the site was calculated to be generally northerly, at a gradient of approximately 0.003 foot per linear foot (Figure 4).

Upon completion of surveying activities, and in accordance with the ADEC Monitoring Well Guidance (dated February 2009), the newly-installed monitoring wells (MW-3 and MW-4) were developed using a disposable polyethylene bailer. The bailers were surged in the wells to remove silt and sediment; this process was continued until approximately 4 gallons of water were removed from each monitoring well.

BGES returned to the site on August 26, 2010 to collect groundwater samples from the previously installed monitoring wells. Prior to sampling, the depth to water and the total depth of the wells and

the depths to water were measured using an electronic water level indicator; which was decontaminated prior to each use by washing it in an Alconox (laboratory grade detergent) solution, followed by a distilled water rinse. The depths to groundwater in Monitoring Wells MW3 and MW4 were approximately 51.90 feet, and 51.26 feet, respectively (Table 1).

Prior to the collection of groundwater samples, the volume of water in each well was calculated based on the depth to water in the well, the total depth of each well, and the respective diameters of the well casings. Each well was then purged of a minimum of three well volumes. During the initial purging activities a sheen was identified in the containerized purged water; for this reason, the stabilization parameters (pH, conductivity, total dissolved solids, and temperature) were not collected. A positivedisplacement bladder pump and dedicated tubing were used during the low-flow purging and sampling activities. The field data gathered during purging are listed in Table 1.

During sampling, the pumping rate was approximately 100 to 150 milliliters per minute (ml/min). After completion of the purging activities, groundwater was pumped directly into the laboratory-supplied sample containers, in which case the containers for volatile analyses were filled first. Care was exercised during the sampling process to minimize the potential that headspace was created within the sample containers, and that none of the preservative was spilled from the vials destined for volatiles laboratory analyses. The samples were stored and transported in a chilled cooler and delivered under chain of custody protocol to Test America in Anchorage.

Investigation-derived waste (purge water) was separated by boring and containerized in five, 4-gallon buckets; the investigation-derived wastes were stored onsite, pending laboratory analyses. Each 5-gallon bucket was clearly labeled with the soil boring identification number, BGES' contact information, and a description of the contents.

4.0 EVALUATION OF LABORATORY DATA

Soil and water samples were analyzed for GRO by Alaska (AK) Method 101; DRO by AK 102; residual range organics (RRO) by AK 103; and total lead by Environmental Protection Agency (EPA) Method 6020. In addition to the analyses described above, Soil Samples SB2-5-0820 and SB2-6-0820; and water samples MW3-0826 and MW5-0826 were also analyzed for the volatile organic compounds (VOCs) 1,2-dibromoethane (EDB) by EPA 8011; and naphthalene and 1,2-dichlorethane (EDC) by EPA 8260B.

Trip blanks accompanied all samples scheduled for volatile analyses at all times from sample collection until submission to the laboratory, and were analyzed for GRO and VOCs by the same methods described above, to determine if cross-contamination of the samples had occurred.

The soil samples collected from the subject property were numbered SB1-1-0820, where the prefix SB1 indicates the boring from which the soil sample was collected; -1 indicates the sample number within the soil boring; and -0820 indicates the month and day the sample was collected. For brevity in the text and in the associated figures, these samples are referred to as SB1-1 with the date omitted.

The water samples collected from the subject property were numbered MW3-0826, where the prefix MW3 indicates the groundwater monitoring well from which the water sample was collected; and - 0826 indicates the month and day the sample was collected. For brevity in the text and in the associated figures, these samples are referred to as MW3 with the date omitted.

Soil sample results were compared to the ADEC Method 2 Cleanup Criteria listed in 18 AAC 75.341 – Tables B1 and B2 (migration to groundwater) for soils, as revised on October 9, 2008. The cleanup concentrations were obtained from these tables listed in the "migration to groundwater" column for soils; except for RRO which was obtained from the "under 40-inch zone" but from the more conservative ingestion value. Water sample results were compared to the ADEC Method 2 Cleanup Criteria listed in 18 AAC 75.341—Table C for groundwater.

Results of the laboratory analyses are discussed below. The analytical results for the soil and groundwater samples are listed in Tables 2 and 3, respectively. The complete laboratory data package is included in Appendix C.

4.1 Soil Samples

A total of 11 soil samples, including one duplicate sample, were collected from the two soil borings (SB1 and SB2) from the following approximate depths: 5 feet, 15 feet, 25 feet, 35 feet, and within the smear zone at approximately 50 to 55 feet bg. Soil Samples SB1-1 through SB1-5 exhibited a range of benzene concentrations from 0.153 milligrams per kilogram (mg/Kg) to 172 mg/Kg (concentrations increased with depth) all of which exceed the ADEC cleanup criterion of 0.025 mg/Kg. In addition, Soil Sample SB1-5 exhibited concentrations of GRO, toluene, ethylbenzene, and total xylenes at 4,430 mg/Kg, 613 mg/Kg, 130 mg/Kg, and 674 mg/Kg, respectively; all of which greatly exceed ADEC cleanup criteria. All other analytes were exhibited at concentrations below the laboratory's method

reporting limits (MRLs) and/or below ADEC cleanup criteria.

Soil Samples SB2-1, SB2-2, SB2-3, SB2-4, and SB2-5 exhibited a range of benzene concentrations from 0.475 mg/Kg to 12.8 mg/Kg; all of which exceed the ADEC cleanup criterion. Soil Samples SB2-3 through SB2-6 also exhibited ranges of concentrations exceeding ADEC cleanup criteria for GRO (435 mg/Kg to 966 mg/Kg), toluene (50.3 mg/Kg to 90 mg/Kg), ethylbenzene (8.52 mg/Kg to 26 mg/Kg), and total xylenes (70.3 mg/Kg to 199 mg/Kg). All other analytes were exhibited at concentrations below the laboratory's MRLs and/or below ADEC cleanup criteria.

Analytical results for soil samples are listed in Table 2, the laboratory results are included in Appendix C, and the sampling locations are shown on Figure 2.

4.2 Water Samples

Three water samples, including a duplicate sample, were collected from the two newly installed monitoring wells at the site. Water Sample MW3 and/or its Duplicate MW5 (the greatest concentrations are listed below), collected from the monitoring well installed in Soil Boring SB1, exhibited concentrations of GRO, benzene, toluene, ethylbenzene, total xylenes, EDC, and lead of 570 milligrams per liter (mg/L), 118 mg/L, 110 mg/L, 5.51 mg/L, 33.2 mg/L, 0.000153 mg/L, and 0.038 mg/L; all of which exceed ADEC cleanup criteria. Alternatively, water Samples MW3 and MW5 exhibited non-detectable concentrations of EDC and naphthalene below the laboratory's MRLs.

Water Sample MW4 exhibited concentrations of GRO, benzene, toluene, ethylbenzene, and total xylenes at 523 mg/L, 64.5 mg/L, 122 mg/L, 8.79 mg/L, and 45.4 mg/L; all of which exceed ADEC cleanup criteria. Water Sample MW4 exhibited a non-detectable concentration of lead below the laboratory's MRLs and below the ADEC cleanup criterion.

Analytical results for the groundwater samples are listed in Table 3, the laboratory results are included in Appendix C, and the sampling locations are shown on Figure 2.

5.0 LABORATORY DATA QUALITY REVIEW

Data quality was reviewed in accordance with ADEC guidance and standard industry practices. ADEC laboratory data review checklists completed for each of the laboratory work order numbers provide an overview of the quality of the laboratory data and are attached in Appendix D. The laboratory qualified some of the data. The following is a discussion of our evaluation of sample conditions and laboratory procedures during the August 2010 RI activities.

5.1 Laboratory Samples

Sample analyses were provided by Test America of Anchorage, or Test America's "network" laboratories, all of which are approved to conduct the specified analyses by the ADEC. The samples were hand-delivered to Test America in Anchorage by BGES personnel under chain of custody protocol.

The temperature of the sample cooler submitted upon completion of the soil sampling activities (August 20, 2010) was measured at the laboratory at the time of receipt, to be 1.4° C, which is below the allowable temperature range of 4 degrees +/- 2 degrees C. However, because the recorded temperature was slightly below the acceptance range, there is a reduced potential for contaminant concentration loss within the samples due to natural attenuation. For this reason, it is our opinion that this quality control (QC) failure does not affect the acceptability of the data for their intended use.

The sample cooler submitted upon completion of the groundwater sampling activities (August 26, 2010) was within the allowable temperature range of 4 degrees +/- 2 degrees. The samples contained the proper preservatives for the requested analyses and no unusual sample conditions were noted by the laboratory. Trip blanks accompanied the volatile samples (GRO and VOCs) through the entirety of the sampling process and delivery to the laboratory. Case narratives were included with all of the laboratory data. Quality Control (QC) failures identified in the case narratives are separated by work order numbers and are described below.

Work Order ATH0063

The case narrative for Work Order Number ATH0063 (soil samples collected on August 20, 2010) noted that there were some QC failures identified by Test America.

The reported concentration of 1,2-dibromo-3-chloropropane for Field Sample SB2-5 was detected at a concentration less than the laboratory's MRL and greater than or equal to the laboratory's method detection limit (MDL); for this reason, the concentration of the analyte listed above should be considered an estimated value and is qualified with "J" in Table 1. It should be noted that there is no published ADEC cleanup criterion for 1,2-dibromo-3-chloropropane.

According to the laboratory, the laboratory control sample (LCS) exhibited a recovery percentage that

exceeded the laboratory's acceptance range for the surrogate 4-bromofluorobenzene (BFB) as measured by a flame ionization detector (FID), with respect to the GRO analysis; indicating a potential for the reported concentrations of GRO within Field Samples SB2-3 through SB2-6 to be biased high for GRO. For this reason, the GRO concentrations in the field samples are qualified with "J" in Table 2, indicating that the reported concentrations should be considered to be estimates. However, because Field Samples SB2-3 through SB2-6 exhibited concentrations of GRO which were well above the ADEC cleanup criterion, it is our opinion that the data are acceptable for their intended use.

Detectable concentrations of benzene, toluene, and total xylenes were identified in the trip blank sample; indicating a potential for the reported concentrations of these analytes within field samples (SB1-1 through SB1-5 and SB2-1 through SB2-6) to be biased high. For this reason, the benzene, toluene, and total xylenes concentrations in the field samples identified above are qualified with "J" in Table 2 and should be considered estimates. However, because multiple field samples (SB1-5, SB2-4, SB2-4, SB2-5, and SB2-6) exhibited concentrations of BTEX which, in some cases, greatly exceed ADEC cleanup criteria, it is our opinion that the data are acceptable for their intended use.

The percent recoveries for BTEX in the matrix spike (MS) and matrix spike duplicate (MSD) samples (laboratory sample numbers 10H0091-MS1, 10H0091-MSD1, respectively) exceeded the laboratory's acceptance limits. The percent recoveries for BTEX were within their acceptance limit ranges for the LCS and laboratory control sample duplicate (LCSD). Because the MS and MSD samples were derived from field samples collected as part of another project, it is our opinion that there is an increased potential for the data QC failure to be due to matrix effects. For the above-stated reasons, it is our opinion that this QC failure does not affect the acceptability of the data for their intended use.

The laboratory reported that the DRO concentration in Sample SB2-4 was partly due to hydrocarbons outside of the DRO range, however, the reported concentration was below the ADEC cleanup criterion, therefore, it is our opinion that the data are acceptable for their intended use.

Due to sample matrix effects, the percent recoveries for the surrogates a,a,a-trifluorotoluene (TFT), as measured by an FID, and a,a,a-TFT, as measured by a PID; exceeded their acceptance limit ranges in Field Samples SB1-5, SB2-3, SB2-4, and SB2-6 with respect to the GRO and BTEX analysis, indicating a potential for the field samples to be biased high for these analytes; for this reason the GRO and BTEX concentrations in the field samples listed above are qualified with "J" in Table 2, indicating that the reported concentrations should be considered estimates. However, because the recovery

percentages for the additional surrogates (4-BFB by FID and 4-BFB by PID) were within their acceptance limit ranges, and because all of these analytes were considerably above the ADEC cleanup criteria, it is our opinion that the data are acceptable for their intended use.

Due to sample matrix effects, the percent recoveries exceeded their acceptance limits for the surrogate toluene-d8 in Field Samples SB2-5and SB2-6 with respect to the EDC and naphthalene analyses, indicating a potential for the field samples to be biased high for these analytes; for this reason the EDC and naphthalene concentrations for Field Samples SB2-5 and SB2-6 are qualified with "J" in Table 2. However, because Field Samples SB2-5 and SB2-6 exhibited concentrations of EDC and naphthalene below ADEC cleanup criteria and because the percent recoveries of the additional surrogates (dibromofluoromethane and 4-bromofluorobenzene) were within their acceptance limit ranges, it is our opinion that the data are acceptable for their intended use.

With the exception of naphthalene, the relative percent differenced RPDs as calculated between the reported analyte concentrations within the original sample SB2-5 and the duplicate sample (SB2-6) were below the ADEC recommended acceptable limit of 50 percent (Table 2), indicating an acceptable level of precision with respect to the field sampling procedures.

Work Order ATH0076

The case narrative for Work Order Number ATH0076 (water samples collected on August 26, 2010) noted that there were some QC failures identified by Test America.

A detectable concentration of benzene was identified in the laboratory method blank sample, indicating a potential for the field samples (MW3 through MW5) to be biased high for this analyte; for this reason, the benzene concentrations in the field samples identified above are qualified with "J" in Table 3. However, because the field samples exhibited concentrations of benzene at concentrations five to six orders of magnitude above the ADEC cleanup criterion, it is our opinion that the data are acceptable for their intended use.

The MRLs for EDC and naphthalene, and associated surrogate compounds, were raised in Field Samples MW3 and MW5 (a duplicate sample of MW3), due to high concentrations of non-target analytes; however, the MRLs for naphthalene in both of the field samples (MW3 and MW5) were below the ADEC cleanup criterion of 20 mg/L. With regards to the contaminant constituent EDC, it cannot be determined if actual concentrations of EDC within Field Samples MW3 and MW5 exceed

Page 11 of 16

BGES, INC.

their respective ADEC cleanup criteria; however, because the field samples exhibited concentrations of GRO, benzene, toluene, ethylbenzene, and total xylenes which in some cases, greatly exceeded ADEC cleanup criteria, it is our opinion that the lack of information concerning EDC does not affect the interpretation of the data for their intended use.

According to the laboratory, the LCS and LCSD (laboratory sample numbers 10H0126-BS2 and 10H0126-BSD2, respectively) exhibited recovery percentages that exceeded the laboratory's acceptance limits for the surrogate a,a,a-TFT by FID, with respect to the GRO analysis, indicating a potential for the reported concentrations of GRO within the field samples (MW3 through MW5) to be biased high for GRO. For this reason, the GRO concentrations in the field samples are qualified with "J" in Table 2, indicating that the reported concentrations should be considered estimates. Samples which were run within the same analytical batch but were not impacted by the QC failure described above were assigned the qualifier "L" by the laboratory. Because Field Samples MW3 through MW5 exhibited concentrations of GRO two orders of magnitude greater than the ADEC cleanup criterion, it is our opinion that the data are acceptable for their intended use.

The RPD for GRO in the laboratory-prepared duplicate sample (1010032-DUP1) exceeded its acceptance limit (195 percent; acceptance limit 35 percent), with respect to the GRO analysis; indicating poor laboratory precision for this analyte. For this reason, the GRO concentrations in the field samples (MW3 through MW5) are qualified with "J" in Table 3. However, because the RPDs for GRO were within their acceptance limits in the LCSDs and the additional laboratory-prepared duplicate samples, it is our opinion that the data are acceptable for their intended use.

The percent recoveries for the surrogates 4-BFB(FID) and 4-BFB(PID) in the laboratory prepared duplicate sample, were below their acceptance limit ranges (40.1 percent and 41.4 percent; acceptance limit range 50 percent to 150 percent) with respect to the GRO/BTEX analysis; indicating a potential for the field samples to be biased low for these analytes. However, because all of the field samples (MW3 through MW5) exhibited concentrations of GRO and BTEX well above ADEC cleanup criteria, it is our opinion that the data are acceptable for their intended use.

Due to sample matrix effects, the MRL for lead was raised for Field Sample MW4; however, the MRL was below the ADEC cleanup criterion of 0.015 mg/L. For this reason, it is our opinion that the data are acceptable for their intended use.

The reporting limits for EDC in Field Samples MW3 and MW5 exceeded their applicable ADEC

cleanup criteria; as such it cannot be determined if actual concentrations of EDC within Field Samples MW3 and MW5 exceed the ADEC cleanup criterion for EDC. Because Field Samples MW3 and MW5 exhibited concentrations of GRO, benzene, toluene, ethylbenzene, total xylenes, and EDB that, in some cases, greatly exceeded ADEC cleanup criteria, it is our opinion that the lack of information concerning EDC does not affect the interpretation of the data for their intended use.

The RPDs calculated utilizing the duplicate sample (MW5) collected in association with Water Sample MW3 were below the ADEC recommended acceptable limit of 30 percent (Table 3), indicating an acceptable level of precision with respect to the field sampling procedures.

6.0 CONCEPTUAL SITE MODEL

Utilizing on-site observations and ADEC guidance documents, a conceptual site model (CSM) has been developed to depict contaminant exposure routes for human receptors identified or suspected for the subject property (Appendix E).

As discussed above in Section 2.0, GRO and BTEX contamination at the subject property potentially originated from historical releases from a former 3,000-gallon gasoline UST previously located at the subject property. Adversely-impacted soils and groundwater were identified in association with the former gasoline UST. Although some of the impacted soils were removed during the excavation and removal of the former gasoline UST, subsurface soils and groundwater still exhibit concentrations of contaminants which, in some cases, greatly exceed ADEC cleanup criteria.

Based on the presence of elevated concentrations of contaminants in the groundwater and subsurface soils at the site, the potential transport mechanisms for the migration of contamination include the continuing migration through subsurface soil to groundwater, and volatilization. The potential exposure pathways for human receptors include the following: incidental soil ingestion and dermal absorption of contaminants from soil (construction workers); ingestion of groundwater, dermal absorption of contaminants in groundwater, inhalation of volatile compounds from groundwater; and inhalation of outdoor air, indoor air, and fugitive dust. The potential receptors for the exposures listed above include future construction workers that may disturb surface and subsurface soils, and/or use groundwater. Complete and incomplete, current and future human pathways for exposures to these contaminants are described below.

As discussed above, adversely-impacted soils were identified at the site beneath the asphalt parking lot,

from 4 feet bg to 55 feet bg. In addition, the vertical and lateral extent of the contamination has not been defined at the site; therefore, human receptors potentially affected by the exposure pathways of incidental soil ingestion and dermal absorption of contaminants from soil include future construction workers during future excavation and/or construction activities.

Two groundwater monitoring wells were installed at the subject property during August field activities. Two groundwater samples, collected from the monitoring wells (MW3 and MW4), exhibited concentrations of contaminants which, in some cases, greatly exceed ADEC cleanup criteria (Table 3). No water supply wells were readily apparent in the vicinity of the subject property. For this reason, and due to the relatively great depth to groundwater at the site (51 feet bg), only current and future commercial and industrial workers, and future construction workers are listed as human receptors for the potential pathways of ingestion of groundwater and dermal absorption of contaminants in groundwater.

Based on analytical results from these RI activities, contaminants identified in the impacted soils at the site have the potential to volatilize. Because the identified contamination at the site was discovered beneath the asphalt encased parking area, there is a reduced potential for human receptors to be affected via the pathways associated with volatilization. Additionally, in 2006 AS&S conducted ambient indoor air sampling utilizing dosimeter badges for BTEX; the dosimeters exhibited concentrations of BTEX below detection limits. However, because the vertical and lateral extent of the contamination has not been defined at the site, inhalation of outdoor air, inhalation of indoor air, and/or fugitive dust are considered to be potential exposure pathways. Human receptors potentially affected via these pathways include future construction workers. A copy of the graphical representation of the conceptual site model is included in Appendix E.

7.0 CONCLUSIONS AND RECOMMENDATIONS

As described above in Section 3.2, BGES evaluated Monitoring Well MW1 for the presence of free product and attempted to collect a water sample for laboratory analysis. During field activities, the product thickness was measured at approximately 0.13 foot in Monitoring Well MW1. Because the monitoring well's casing was damaged, it is recommended that the well either be repaired, for possible use in future sampling events, and for potential free-product removal, or properly decommissioned and replaced in accordance with ADEC regulations.

As described above in Sections 3.3 and 3.4, two soil borings completed as groundwater monitoring

2010 Site Characterization Report 4540 West 50th Avenue, Anchorage, Alaska

BGES, INC.

wells were advanced at the site to further characterize the extent of the soil and groundwater contamination at the subject property (Figure 2). Soil Samples collected from Soil Boring SB1 (SB1-1 through SB1-5) exhibited a range of benzene concentrations from 0.153 mg/Kg to 172 mg/Kg. Additionally, the soil sample (SB1-5) collected from 53 feet to 55 feet bg (smear zone) exhibited concentrations of GRO, toluene, ethylbenzene, and total xylenes which, in some cases, greatly exceed ADEC cleanup criteria (Table 2). The concentrations of contaminants generally increased with depth, culminating in the greatly elevated concentrations of contaminants exhibited by Soil Sample SB1-5. The increased contaminant concentrations near the water table in this well suggest that it is not located precisely in the source area of the release. Groundwater Samples (MW3 and MW5) collected from the monitoring well installed in Soil Boring SB1 exhibited elevated concentrations of GRO, benzene, toluene, ethylbenzene, total xylenes, 1,2-dibromoethane, and lead; which in some cases, greatly exceed ADEC cleanup criteria.

Soil Samples collected from Soil Boring SB2 (SB2-1 through SB2-6) exhibited a range of benzene concentrations from 0.475 mg/Kg to 12.8 mg/Kg; all of which exceed the ADEC cleanup criterion of 0.025 mg/Kg. Additionally, Soil Samples SB2-3, SB2-4, and SB2-5 exhibited concentrations of GRO, toluene, ethylbenzene, and total xylenes which, in some cases, greatly exceed ADEC cleanup criteria (Table 3). Concentrations of contaminants generally increased with depth until approximately 35 feet bg; dissimilar to Soil Boring SB1, the greatest concentrations of contaminants in Soil Boring SB2 were exhibited by the sample (SB2-4) collected from approximately 34 feet to 36 feet bg. Groundwater Sample (MW4) collected from the monitoring well installed in Soil Boring SB2 exhibited concentrations of GRO, benzene, toluene, ethylbenzene, and total xylenes; which in some cases, greatly exceed ADEC cleanup criteria.

Additionally, four soil samples (SB1-5-0820, SB2-3-0820, SB2-4-0820, and SB2-5-0820) were submitted to Zymax Forensics laboratory to undergo fingerprint analysis, as described above in Section 3.3. According to Zymax Forensics laboratory, no evidence of aviation fuel was identified in the soils submitted to the laboratory.

Based on the results of this assessment, continued monitoring of the contaminants identified in the groundwater at the site to further evaluate temporal trends of contaminant concentrations in the local aquifer is recommended. MW-1 should be repaired and free product should be periodically removed from this well to determine if it is present in a sufficient quantity to maintain a measurable level in the well. If the free product is removed and does not return to the well, then this well should also be

Page 15 of 16

included in the groundwater monitoring program. Furthermore, groundwater elevations should be measured in all wells and the groundwater flow direction should be evaluated during each monitoring round.

8.0 EXCLUSIONS AND CONSIDERATIONS

This report presents facts, observations, and inferences based on conditions observed during the period of our project activities, and only those conditions that were evaluated as part of our scope of work. Our conclusions are based solely on our observations made and work conducted, and only apply to the immediate vicinities of the locations where soil and general vicinities of where groundwater samples were collected. In addition, changes to site conditions may have occurred since the completion of our project activities. These changes may be from the actions of man or nature. Changes in regulations may also impact the interpretation of site conditions. BGES will not disclose our findings to any parties other than our client as listed above, except as directed by our client, or as required by law.

This report was prepared by Sean Peterson, Environmental Scientist II with BGES. Mr. Peterson has conducted numerous site characterization and remedial projects throughout Alaska. This report was reviewed by Robert Braunstein, C.P.G., Principal Geologist of BGES. Mr. Braunstein has more than 30 years of geological/environmental consulting experience and has conducted and managed thousands of environmental projects involving site characterization and remediation efforts, throughout Alaska and the lower 48 states.

Prepared By:

Sean Peterson Environmental Scientist II

Reviewed By:

Robert h. Broumstern

Robert N. Braunstein, C.P.G. Principal Geologist

Note: The soils samples from each boring which exhibited the greatest exceedances of ADEC cleanup criteria are listed.

BGES, INC. July 2011

& Sample Results

LEGEND Second Sampled	Approximate Scale in Feet			
 Water Sample Exceeded ADEC Cleanup Criteria mg/L = milligrams per liter 	4540 West 50 th Avenue Anchorage, Alaska Groundwater Monitoring			
Notes: The greatest concentrations from a duplicate pair are listed.	Well Lo	cations & Samp	le Results	
Monitoring Wells MW3 and MW4 were installed in Soil Borings SB1 and SB2, respectively.	BGES, INC.	July 2011	Figure 3	

TABLE 1 4540 WEST 50TH AVENUE ANCHORAGE, ALASKA MONITORING WELL SAMPLING DATA

Well Number	MW-02	. MW-03	MW-04
Date Sampled	e dan mendera an an an an	08/26/10	08/26/10
Date of Depth and Elevation Measurement	08/26/10	08/26/10	08/26/10
Time of Depth to Water Measurement	13:56	10:57	11:25
Time Sample Collected		12:20	13:28
Top of Casing Elevation (feet)	99.32	99.20	98.38
Depth to Water (feet below top of casing)	51.97	51.90	51.26
Water Elevation (feet)	47.35	47.30	47,12
Total Depth of Well (feet below top of casing)	56.07	58.60	59.44
Ground Elevation	99.66	99.52	99,10
Depth to Water (feet below top of ground surface)	51.97	51.90	51.26
Well Casing Diameter (Inches)	2	2	2
Standing Water Well Volume (gallons)	0.67	1.09	1.33
Purge Volume-Actual (gallons)		4.5	4.0 Charles
Notes: Sampler: S. Peterson			
Weather conditions on August 26, 2010 were sunny with an ambient temperature of approximately 58 degrees Fahrenheit	Well was not sampled.	No stabilization parameters were collected due to a sheen being observed on the water.	No stabilization parameters were collected due to a sheen being observed on the water.

TABLE 2						
4540 WEST 50TH AVENUE, ANCHORAGE, ALASKA						
ANALYTICAL RESULTS - SOILS						

		and a second				CONTRACTOR AND
	Gasoline Range Organics	3.09	2.23	-	300	AK101
	Diesel Range Organics	ND	21.5	-	250	AK102
SB1-1-0820	Residual Range Organics	ND	53.7	-	10,000	AK103
(PID = 0 ppm)	Benzene	0.153 J	0.00893	-	0.025	EPA 8260B
Depth = 4-6 feet bg	Toluene	0.236 J	0.0223	-	6.5	EPA 8260B
	Ethylbenzene	ND J	0.0223	-	6.9	EPA 8260B
	Xylenes (total)	ND J	0.0335	-	63	EPA 8260B
	Lead	3.41	0.522	-	800	EPA 6020
	Gasoline Range Organics	9.36	2.14	-	300	AK101
	Diesel Range Organics	ND	21.1	-	250	AK102
SB1-2-0820	Residual Range Organics	ND	52.8	-	10,000	AK103
(PID = 0 ppm)	Benzene	0.402 J	0.00858	-	0.025	EPA 8260B
Depth = 14-16 feet bg	Toluene	0.713 J	0.0214	-	6.5	EPA 8260B
	Ethylbenzene	0.0311 J	0.0214	•	6.9	EPA 8260B
	Xylenes (total)	0.124 J	0.0322	-	63	EPA 8260B
	Lead	4.34	0.522	-	800	EPA 6020
	Gasoline Range Organics	2.88	2.35	-	300	AK101
	Diesel Range Organics	ND	21.2	-	250	AK102
SB1-3-0820	Residual Range Organics	ND	53.1	-	10,000	AK103
(PID = 0 ppm)	Benzene	0.113 J	0.00938	-	0.025	EPA 8260B
Depth = 24-26 feet bg	Toluene	0.212 J	0.0235	-	6.5	EPA 8260B
	Ethylbenzene	ND J	0.0235	-	6.9	EPA 8260B
	Xylenes (total)	0.0617 J	0.0352	-	63	EPA 8260B
	Lead	4.93	0.527	•	800	EPA 6020
	Gasoline Range Organics	15.5	2.43	-	300	AK101
	Diesel Range Organics	ND	24.1	-	250	AK102
SB1-4-0820	Residual Range Organics	ND	60.3	-	10,000	AK103
(PID = 0 ppm)	Benzene	0.797 J	0.00974	-	0.025	EPA 8260B
Depth = 34-36 feet bg	Toluene	1.31 J	0.0243	-	6.5	EPA 8260B
	Ethylbenzene	0.0591 J	0.0243	-	6.9	EPA 8260B
	Xylenes (total)	0.242 J	0.0365	-	63	EPA 8260B
	Lead	4.93	0.527	-	800	EPA 6020
· · · · · · · · · · · · · · · · · · ·	Gasoline Range Organics	4,430	382	-	300	AK101
	Diesel Range Organics	ND	25.0	-	250	AK102
SB1-5-0820	Residual Range Organics	ND	62.4	-	10,000	AK103
(PID = 1000 + ppm)	Benzene	172 J	1.91	-	0.025	EPA 8260B
Depth = 53-55 feet bg	Toluene	613 J	3.82	-	6.5	EPA 8260B
	Ethylbenzene	130 J	3.82	-	6.9	EPA 8260B
	Xylenes (total)	674 J	5.73	-	63	EPA 8260B
	Lead	7.97	0.614	-	800	EPA 6020

TABLE 2 4540 WEST 50TH AVENUE, ANCHORAGE, ALASKA ANALYTICAL RESULTS - SOILS

三部時 許之的 建分子的						
解於自立使常常等的论						
	Gasoline Range Organics	38.2	2.04	-	300	AK101
	Diesel Range Organics	ND	22.6	-	250	AK102
SB2-1-0820	Residual Range Organics	ND	56.5	-	10,000	AK103
(PID = 0 ppm)	Benzene	2.42 J	0.00816	-	0.025	EPA 8260B
Depth = $4-6$ feet bg	Toluene	3.31 J	0.0204	-	6.5	EPA 8260B
, -	Ethylbenzene	0.152 J	0.0204	-	6.9	EPA 8260B
	Xylenes (total)	0.619 J	0.0306	-	63	EPA 8260B
	Lead	6.64	0.574		800	EPA 6020
	Gasoline Range Organics	11.5	1.7	-	300	AK 101
	Diesel Range Organics	ND	21.3	-	250	AK102
SB2-2-0820	Residual Range Organics	ND	53.3	-	10,000	AK103
(PID = 0 ppm)	Benzene	0.475 J	0.00678	•	0.025	EPA 8260B
Depth = 14-16 feet bg	Toluene	0.723 J	0.0170	-	6.5	EPA 8260B
	Ethylbenzene	0.0582 J	0.0170	-	6.9	EPA 8260B
	Xylenes (total)	0.201 J	0.0254	-	63	EPA 8260B
	Lead	4.20	0.540		800	EPA 6020
	Gasoline Range Organics	435 J	43.5	-	300	AK101
	Diesel Range Organics	ND	24.6	-	250	AK102
SB2-3-0820	Residual Range Organics	ND	61.5	-	10,000	AK103
(PID = 1000+ ppm)	Benzene	8,43 J	0.218	-	0.025	EPA 8260B
Depth = 24-26 feet bg	Toluene	50.3 J	0.435	-	6.5	EPA 8260B
	Ethylbenzene	8.52 J	0.435	-	6.9	EPA 8260B
]	Xylenes (total)	82.2 J	0.653	-	63	EPA 8260B
	Lead	8.70	0.631	-	800	EPA 6020
	Gasoline Range Organics	966 J	35.6	•	300	AK101
	Diesel Range Organics	64.4	23.9	-	250	AK102
SB2-4-0820	Residual Range Organics	ND	59.7	-	10,000	AK103
(PID = 1000 + ppm)	Benzene	12.8 J	0.178	-	0.025	EPA 8260B
Depth = 34-36 feet bg	Toluene	90.0 J	0.713	-	6.5	EPA 8260B
	Ethylbenzene	26.0 J	0.356	-	6.9	EPA 8260B
	Xylenes (total)	199 J	1.07	-	63	EPA 8260B
	Lead	5.83	0.557	•	800	EPA 6020

TABLE 2						
4540 WEST 50TH AVENUE, ANCHORAGE, ALASKA						
ANALYTICAL RESULTS - SOILS						

				+ Jugarthan		
de les sans trade to be les					R B. C. Harris	
	Gasoline Range Organics	529 J	38.0	-	300	AK101
	Diesel Range Organics	ND	23.9	-	250	AK102
SB2-5-0820	Residual Range Organics	ND	59.7	-	10,000	AK103
(PID = 868 ppm)	Benzene	6.00 J	0.190	-	0.025	EPA 8260B
Depth = $51-55$ feet bg	Toluene	71.00 J	0.380	-	6.5	EPA 8260B
, i i	Ethylbenzene	17.9	0.380	-	6.9	EPA 8260B
	Xylenes (total)	96.8 J	0.57	-	63	EPA 8260B
	1.2-Dichloroethane (EDC)	L DN	0.0118	-	0.016	EPA 8260B
	Naphthalene	0.356 J	0.157	-	20	EPA 8260B
	1,2-Dibromoethane (EDB)	ND	0.00117	0.0000993	0.00016	EPA 8011
	1,2-Dibromo-3-Chloropropane	0.000513 J	0.00117	0.000126	N/A	EPA 8011
	Lead	6.15	0.569	-	800	EPA 6020
SB2-6-0820						
(Duplicate of SB2-5-0820)						
RPD = 8.27%	Gasoline Range Organics	487 J	37.0	-	300	AK101
	Diesel Range Organics	ND	24.2	-	250	AK102
	Residual Range Organics	ND	60.4	-	10,000	AK103
RPD = 45.06%	Benzene	9,49 J	0.185	-	0.025	EPA 8260B
RPD = 8.52%	Toluene	65.2 J	0.370	-	6.5	EPA 8260B
RPD = 30.23%	Ethylbenzene	13.2 J	0.370	-	6.9	EPA 8260B
RPD = 31.72%	Xylenes (total)	70.3 J	0.555	-	63	EPA 8260B
	1,2-Dichloroethane (EDC)	ND J	0.0115	-	0.016	EPA 8260B
RPD = 71.94%	Naphthalene	0.756 J	0.154	-	20	EPA 8260B
	1,2-Dibromoethane (EDB)	ND	0.00119	0.000100	0.00016	EPA 8011
	1,2-Dibromo-3-Chloropropane	ND	0.00119	0.000127	N/A	EPA 8011
RPD = 22.83%	Lead	4.89	0.563		800	EPA 6020
¹ Soil cleanup criteria from ADEC 1	Soil cleanup criteria from ADEC 18AAC 75.341, Tables B1 and B2, Method 2, Under 40-Inch Zone, Migration to Groundwater, except for RRO, which					
is based on the more stringent Ingestion Pathway, which is based on the Direct Contact Pathway.						
MRL = method reporting limit; mg/l	Kg = milligrams per kilogram, PID = photoio	mization detector				
J = estimated value; ppm = parts per	million; bg = below grade					
lialic	= The MRL exceeds the applicable ADE	C cleanup criterion.				

Bold results = Concentration exceeds the corresponding ADEC Method 2 cleanup criterion for under 40-inch zone, migration to groundwater

	T.	
TABLE 3		
4540 WEST 50TH AVENUE, ANCHORAGE, ALASK	A	
ANALYTICAL RESULTS - WATER		

ALYTICAL	RESULTS	- WATER
----------	---------	---------

	and the second				
	Gasoline Range Organics	535 J	50.000	1.5	AK 102
	Benzene	115 J	0.500	0.005	EPA 8021
MW3-0826	Toluene	104	0.500	1.0	EPA 8021
	Ethylbenzne	5.51	0.0500	0.7	EPA 802
	Xylenes (total)	29	1.5	10	EPA 802
	1,2-Dibromoethane (EDB)	0.00015	0.0000100	0.00005	EPA 801
	1,2-Dichloroethane (EDC)	ND	0.0100	0.00012	EPA 826
	Naphthalene	ND	0.0200	Varies	EPA 826
	Lead	0.03800	0.00500	0.015	EPA 602
MW5-0826					
licate of MW3-0826)					
RPD = 6.33%	Gasoline Range Organics	570 J	50.000	1.5	AK 102
RPD = 2.58%	Benzene	118 J	0.500	0.005	EPA 802
RPD = 5.60%	Toluene	110	0.500	1.0	EPA 802
RPD = 0.91%	Ethylbenzne	5.46	0.0500	0.7	EPA 802
RPD = 13.50%	Xylenes (total)	33.2	1.5	10	EPA 802
RPD = 1.98%	1,2-Dibromoethane (EDB)	0.000153	0.0000100	0.00005	EPA 80
	1,2-Dichloroethane (EDC)	ND	0.0100	0.00012	EPA 826
	Naphthalene	ND	0.0200	Varies	EPA 826
RPD = 23.53%	Lead	0.0300	0.00500	0.015	EPA 603
· · · · · · · · · · · · · · · · · · ·	Gasoline Range Organics	523 J	50.000	1.5	AK 10
	Benzene	64.5 J	0.500	0.005	EPA 802
MW4-0826	Toluene	122	0.500	1.0	EPA 802
	Ethylbenzne	8.79	0.0500	0.7	EPA 802
	Xylenes (total)	45.4	1.5	10	EPA 802
	Lead	ND	0.00500	0.015	EPA 80
oundwater cleanup criteria has	ed on 1844C 75 345 Table C				

 Italic
 = The MRL exceeds the applicable ADEC cleanup onterion.

 Bold results
 = Concentration exceeds the corresponding ADEC Method 2 cleanup oriterion for under 40-inch zone, migration to groundwater.

BGES, INC.

APPENDIX A SITE PHOTOGRAPHS

the second s

Photo 1. Monitoring Well MW1 (facing west)

Photo 3. Advancement of Soil Boring SB1 (facing south)

Photo 5. Groundwater Monitoring Well MW-3

Photo 2. Substance Adhered to Oil/Water Interface Probe

Photo 4. Advancement of Soil Boring SB2 (facing east)

Photo 6. Groundwater Monitoring Well MW-4

4540	0 West 50 th Aver	nue
A S	nchorage, Alaska ite Photographs	1
BGES, INC.	July 2011	Figure A-1

BGES, INC.

APPENDIX B SOIL BORING LOGS/WELL COMPLETION LOGS/WATER SAMPLING LOG/ FIELD NOTES

(V 7		
BGES, INC.		BGES, INC. SOIL BORING LOG	
		CLIENT: ALASCA SAKS & SERVICE	
BORING NUMBE	R: <u>-</u>	BORING LOCATION: 4540 LO. 50TH ALE.	
Date: 2 80 10	Weather Co	nditions: $(12A12 + 55)^{2}F$	
Time: <u>0428</u>		Drilling Company/Rig Type: CECTEC 6620 DT	
Observer: <u>S ?e te</u> ?s=~	Drilling	Sampling Method: DPT / MACRO CINE	
Sample No. DEPTH	PID (ppr Spoon/Sm	n) pl. DESCRIPTION	Blow Count
$\begin{array}{c c} & & \\ \hline & \\ \hline & \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$	\$ t	3 5' RACIERT O-35. FANE CRAINED STUDIO/SICT	N/A
(¥-16) From:(3 to: 18) 2 Time: 0943	¥ Ø	4 & RECUYERAN 0-4.2 FINE GRAINED SAND, (2000)	N/A
$\begin{array}{c c} \hline & \\ \hline & \\ \hline & \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$	4	4' DACUMENTY 0-4' FINE CRAINED SAME (BROOM)	N/+
4 26 From:33 to: 37 (4) Time: 1039	. Yh	4.1 LEC 0 3.4 FINE CHAINED SATUR 2.7-4.1. FINE OPAINED SAND COLSICE I SOURCE CEANER	NIA
63-55 From: 53 to: 57 Time: 1014	133	4 · Ric (STRIC GRAMED SOND (DAMP) (STRIC GURC) On lo TIME GRAMED SOND (DAMP) .6 4 · FONE GRAMED SAME W/ SILT & SOME CUAL (WET)	x/A
From: to: Time:			
Notes:			
Boring Log Form, Revised 4/04		Page 1 of 1 Project Number: 10 - c	059-01

BGES, INC.		BGES, INC. SOIL BORING LOG	
		CLIENT: ACAJER SALES & SERVICE	
BORING NUI	MBER: <u>2</u>	BORING LOCATION: 4540 W. SUT AVE	
Date: 8/20/19	Weather Co	onditions: <u>CLEAR</u> 60° F	
Time: 10300	5	Drilling Company/Rig Type: <u>GEDTER</u> 6620 DT	
Observer: <u>S_PETE</u> A	می Drillin	g/Sampling Method: DPT / MACRO CORE	
ample No. DEPTH	P1D (pp) Spoon/Sn	n) npl. DESCRIPTION	Blow Count:
A-6 From: 3 to: Time: [34	7 4	O 4' FINE CAMED STAP OF SILT	N/A
14-16 (2) From: 1'3 to: Time: 1 6C	17 6	3 7 REC 0.39 - FINE GRAINED Stars (B.200)	NA
$\frac{24.26}{2} = \frac{\text{From: } 2.3 \text{ to:}}{\text{Time: } 1/3^{\circ}}$	17 122	403 REC 042 FINE GRAINED SAME CA/SILT (SPECK, FUT (2012))	N/A
ين - عن الجن - ين - عن - عن - عن - عن - عن - عن - ع	37- 28	YREC (STRUM FULL 0-2 FOUR UNIONS SAUS W/ SILT (LAL) 2-4 FINE GRANDS SAUS W/ SULL SILT	N/A
<1-55 From: 5₽ to: Time: [55:5]	5E 42 268	4'IREC 0-4 FINE GRAINED SAND -/ SILT (BROWN) (STRONG FUEL ODLZ) DAMP > WET	N/A
From: to: Time:			
From: to Time:	:		
Notes:	, Jugart	E FROM 51-55 (582-670800)	
Learning to the former of the second starts		Page 1 of 1 Project Number: 10 · (059-01

Project Number:10-059-01

Well Completion Log Form, Revised 7/03

Page 1 of 1

Project Number: 10-059-01

BGES, INC. WATER MONITORING LOG

Well Number: <u>MW-3</u>

	· · · · · · · · · · · · · · · · · · ·	<u> </u>
Time Arrived On Site: 10.10 Date of Depth to Water Measurement: $8/_2$	We روم کار ک	ather Conditions: JUNNY 756 F e of Depth to Water Measurement: 1057
Top of Casing Elevation: Depth to Water (feet below TOC): Water Elevation:		Type of Sampling Equipment: QED SUBMERSIBLE BLADDER PUMP
Total Depth of Well (feet below TOC): Depth to Water (feet below TOC): Water Column (feet):	<u>58.6</u> <u>51.9</u> 53.6 6. 3	
Volume of well (gals)	1.092	=0.1632 X Water Column (For 2-inch well) =0.6528 X Water Column (For 4-inch well) =1.4688 X Water Column (For 6-inch well)
Time Purging Began: <u> 30</u> Time of Sampling: <u> 220</u> Volume purged <u>4-5 Grace</u> ~S	PURGE A MINIM	IUM OF THREE WELL VOLUMES
pH Conductivity Turbidity Temperature TDS	IE pH Conductivity Turbidity Temperature TDS	VOLUME SIX
pH VOLUM Conductivity VOLUM Turbidity TWO Temperature TDS	pH Conductivity Turbidity Temperature TDS	VOLUME SEVEN
pH VOLUM Conductivity VOLUM Turbidity THRE Temperature TDS	pH IE Conductivity E Turbidity Temperature TDS	VOLUME EIGHT
pH VOLUM Conductivity VOLUM Turbidity FOUR Temperature TDS	pH Conductivity Turbidity Temperature TDS	VOLUME NINE
pH VOLUM Conductivity VOLUM Turbidity FIVE Temperature TDS	pH E Conductivity Turbidity Temperature TDS	VOLUME TEN
A SHEW WAS OBJERVED OF THE I PAJAMETERS INFORE GATHELED.	232620 LATER S	3 1V0 S7434C174715~

Page 1 of

Project Number 10-057-01
BGES, INC. WATER MONITORING LOG

Well Number: MW-2 (Source Side of Burg)

Time Arrived On Site: 10/0Date of Depth to Water Measurement: 8/26/10 Weather Conditions: SUNNY ~ 56°F Time of Depth to Water Measurement: 1129

Type of Sampling Equipment:

Top of Casing Elevation: Depth to Water (feet below TOC): Water Elevation:

Volume of well (gals)

Time Purging Began: Time of Sampling:

Volume purged

Total Depth of Well (feet below TOC): Depth to Water (feet below TOC): Water Column (feet): <u>56.07</u> 51.97 4.1

0.669

=0.1632 X Water Column (For 2-inch well) =0.6528 X Water Column (For 4-inch well) =1.4688 X Water Column (For 6-inch well)

PURGE A MINIMUM OF THREE WELL VOLUMES

pH Conductivity Turbidity Temperature TDS		VOLUME ONE	pH Conductivity Turbidity Temperature TDS	 VOLUME SIX
pH Conductivity Turbidity Temperature TDS		VOLUME TWO	pH Conductivity Turbidity Temperature TDS	 VOLUME SEVEN
pH Conductivity Turbidity Temperature TDS		VOLUME THREE	pH Conductivity Turbidity Temperature TDS	 VOLUME EIGHT
pH Conductivity Turbidity Temperature TDS		VOLUME FOUR	pH Conductivity Turbidity Temperature TDS	VOLUME NINE
pH Conductivity Turbidity Temperature TDS NO Sampute 3		VOLUME FIVE	pH Conductivity Turbidity Temperature TDS	 VOLUME TEN
	· · · · · · · · · · · · · · · · · · ·			 <u> </u>

Page 1 of _/__

Project Number /0.059-0

BGES, INC. WATER MONITORING LOG

Well Number: Ma)-4

	_		<u>11100</u>	
Time Arrived On Site Date of Depth to Wa	e: /010 ter Measurement	:: <u>8/24/</u> 1	0	Weather Conditions: $30my \sim 51^{\circ}F$ Time of Depth to Water Measurement: (125)
Top of Casing Eleva Depth to Water (feet Water Elevation:	tion: below TOC):		51.26	Type of Sampling Equipment: QED SUBMELSTRUE TLAPPER PUMP
Total Depth of Well (Depth to Water (feet Water Column (feet)	feet below TOC) below TOC):	SP)	<u>59.44</u> 51.26 59.•8.18	
Volume of well (gals))		1.33	=0.1632 X Water Column (For 2-inch well) =0.6528 X Water Column (For 4-inch well) =1.4688 X Water Column (For 6-inch well)
Time Purging Began Time of Sampling: Volume purged	1243 1328 4 carcons		PURGE A MI	NIMUM OF THREE WELL VOLUMES
pH Conductivity Turbidity Temperature TDS		VOLUME ONE	pH Conductivity Turbidity Temperature TDS	VOLUME SIX
pH Conductivity Turbidity Temperature TDS		VOLUME TWO	pH Conductivity Turbidity Temperature TDS	VOLUME SEVEN
pH Conductivity Turbidity Temperature TDS		VOLUME THREE	pH Conductivity Turbidity Temperature TDS	VOLUME EIGHT
pH Conductivity Turbidity Temperature TDS		VOLUME FOUR	pH Conductivity Turbidity Temperature TDS	VOLUME NINE
pH Conductivity Turbidity Temperature TDS		VOLUME FIVE	pH Conductivity Turbidity Temperature TDS	VOLUME TEN
PARAMETERS	DISTRUED O	ECTED	JURCEP U	ATER : Nº STARALIZATION
••••			<u> </u>	

Page 1 of _____ Project Number __/0-959-0 }

LANAGUE TO CAT STRUMMU 173" INTUR. From were bart and in hith CHECK BUCKING MW DU THE REPUS HERVE 34 21641 Mount & ASPART PADIATLY CRACKING AUTY FROM FOR MNW SEE PHANS. TOP 6 81 JF PUC PIPE CONCENS DOWN AREAS TO HAVE SIN MUST PROST THO CAP INTACT EXCEPT FOR METAL of Frank maisury is the to a PLUSE HADA MILKY SLIME ON 17 UNA A GASSLINE JONE NATIONAL CAR RENTH - 504 AVE. Tor MW SIETLE CATINE INISSING & 56°F, cloud & windy J. MARIM QUENE V 110000 GEL MARCH Denty To Product 53.51' THE ENTI SIDE Paul will . درم 5/10/10

2/23/10 S. PETERIN 4540 W Don Ave BIDO S PETERDON 4540 00 DON AVE REES ONSITE AT 0960 UPON COMPLETION OF SOLK BORING GEDTER WSITE AT UPSO ACTIVITIES AT 1600. THE ROLING GAS COMPLETED AS COLLECTED FINM SOIL SANIPLE, MONITORING WELL MW-4. (SEE FROM OLICINAL SUL BULING (50 AT view completion LOG). 1014 , SOIL SAMPLE WAS CULECEAP GEOTER OFFISITE AT 1700 FROM ~ 53-55' BG, SOILS WRILL BGES OFFSITE AT 1730 UISUALLY CONTAMINATED AND A STRONG INDISCERNIBLE FUEL OUL WAS EMANATING FROM THRM. 3 mi . GROUNDWATER WAS INENTIFIED AT N 53'B6. UPON COMPLETION OF JUL BORING ACTIVITIES. NONITULING WELL MW-3 WAS INSTALLED IN THE BUHNGAT 1220. (SEE WELL COMPLETION 600). CUTTING FRENC POTA WELLS (MW-3+ MUL WERE STURED IN 5 55-6ALLON DRUMS ONSITE. FACH DRUM WAS LABELED AVPROPRIATELY. BEES OFFSITE AT 1710.

A L					·····
BIJS/10 S. PRTRESSIN 4510 W. SATA BGED ONLITE AT 1000.	FLEGERS RUTH IMM 2 & MW-4 FEMELTES APPILISK 4 GMILENS FILAN EACH WELL A SHEEN WAS EVIDENT ON THE REVER	LATRE LAS STORED IN THIS 4 COLLON AUCHERS ONSITE RACH BUCKET LAS LABRIED ANPROPHLATELY	BGES OFFITE AT 1700.		
i Ser Ave	4- MW 6 C-95)		(2-m + 1-85)	N N	T UCTION
2 H340 (9	(mu	•	715.25	- To Minutes
S. PETTER	×	• 		× - 2 2 33	eren crect
5)25/10	-Z	Scilt	2	NU SS	SURVIEYED

B/26/10 S.PETERAN 4540 W SZ" AL FROM WELL. NO STORALIZATION PARAMETERS WERE COURCTED 4 CALLONS AUGA WELL. COLLECTED mw.2, + mw-4 (51.57, 51.9, + neasurements Fresh MW - 21. WATCH SMARL MW-41 AT 1338. BEGAN BURGING OF MW-2 AT DUE TO A SHEEN ON PURCED SAMPLE NW-3 47 1220 (AUS) 130 PURERO & 4.5 GALLONS AT 1248. No STABALIZATION BURGED WATER PURCED ~ PARAMETERS WHE COLLECTED CULLECTED DUPLICATE SAMPLE BEAN RUDENCOF MW-4 CULLECTED DEPTH TO WATER DUE TO A SHEEN ON THE WATER. COLLECTED WATER BUES YFFSITE AT 1415. 51.26, 1225 PECTIVELY). BUES ENSITE AT /OUD. MW-S).

BGES, INC.

APPENDIX C LABORATORY ANALYTICAL DATA

0

ANCHORAGE, AK 2000 W INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

December 15, 2010

Sean Peterson BGES, INC. 1042 E 6th Ave Anchorage, AK 99501

RE: 4540 W.50th Ave

Enclosed are the results of analyses for samples received by the laboratory on 08/23/10 11:09. The following list is a summary of the Work Orders contained in this report, generated on 12/15/10 09:19.

If you have any questions concerning this report, please feel free to contact me.

 Work Order
 Project
 ProjectNumber

 ATH0063
 4540 W.50th Ave
 10-059-01

TestAmerica Anchorage

Johanna Dhehar

Johanna L Dreher, Client Services Manager

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC.	Project Name:	4540 W.50th Ave	
1042 E 6th Ave	Project Number:	10-059-01	Report Created:
Anchorage, AK 99501	Project Manager:	Sean Peterson	12/15/10 09:19

	ANALYTICAL REPORT FOR SAMPLES										
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received							
SB1-1-0820	ATH0063-01	Soil	08/20/10 09:38	08/23/10 11:09							
SB1-2-0820	ATH0063-02	Soil	08/20/10 09:43	08/23/10 11:09							
SB1-3-0820	ATH0063-03	Soil	08/20/10 10:01	08/23/10 11:09							
SB1-4-0820	ATH0063-04	Soil	08/20/10 10:39	08/23/10 11:09							
SB2-1-0820	ATH0063-05	Soil	08/20/10 10:47	08/23/10 11:09							
SB2-2-0820	ATH0063-06	Soil	08/20/10 11:09	08/23/10 11:09							
SB2-3-0820	ATH0063-07	Soil	08/20/10 11:39	08/23/10 11:09							
SB2-4-0820	ATH0063-08	Soil	08/20/10 12:10	08/23/10 11:09							
SB2-5-0820	ATH0063-09	Soil	08/20/10 15:55	08/23/10 11:09							
SB1-5-0823	ATH0063-10	Soil	08/23/10 10:14	08/23/10 11:09							
Trip Blank	ATH0063-11	Soil	08/23/10 00:00	08/23/10 11:09							
Trip Blank	ATH0063-12	Soil	08/23/10 00:00	08/23/10 11:09							
SB2-6-0820	ATH0063-13	Soil	08/20/10 16:00	08/23/10 11:09							

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC.	Project Name:	4540 W.50th Ave	
1042 E 6th Ave	Project Number:	10-059-01	Report Created:
Anchorage, AK 99501	Project Manager:	Sean Peterson	12/15/10 09:19

Analytical Case Narrative TestAmerica - Anchorage, AK

ATH0063

Revised report issued 15 December 2010

MDL values included for EDB by EPA method 8011.

TestAmerica Anchorage

Johanna Dhehar

Johanna L Dreher, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

www.testamericainc.com

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 C5 Approval Number: UST-067

BGES, INC.	Project Name:	4540 W.50th Ave	
1042 E 6th Ave	Project Number:	10-059-01	Report Created:
Anchorage, AK 99501	Project Manager:	Sean Peterson	12/15/10 09:19

Gasoline Range Organics (C6-C10) and BTEX per AK101 TestAmerica Anchorage												
Anatyte	· · · · · · · · · · · · · · · · · · ·	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ATH0063-07	(SB2-3-0820)			Soil		Sampled: 08/20/10 11:39						
Gasoline Range Or	ganics	AK101/EPA 8021B	435		43.5	mg/kg drv	15x	1010004	09/01/10 13:17	09/01/10 19:51	JJB	RL7
Benzene		"	8.43		0.218		м				Ъ	RL7
Toluene		N	50.3		0.435	н		٠	×	н	11B	RL7
Ethvibenzene		B.	8,52		0.435		٠	н	н	*	JЭВ	RL7
Xylenes (total)		D	82.2		0.653		м			м	ЪЪВ	RL7
Surrogate(s):	4-BFB (FID)				<u>.</u>	50 - 1	150 %	н			"	LI
	a,a,a-TFT (FID)			286%	i	50 - 1	150 %	"			"	Z5
	4-BFB (PID)			110%	i	50 - 1	150 %					
	a,a,a-TI-T (PID)			166%	5	50 - 1	150 %	"			"	25
ATH0063-08	(SB2-4-0820)		:	Soil		5	Sampleo	1: 08/20/10 1	2:10			
Gasoline Range O	rganics	AK101/EPA 8021B	966		35.6 mg/kg 15			1010004	09/01/10 13:17	09/01/10 20:16	JJB	RL7
Benzene		н	12.8		0.178	н			*	N	JJB	RL7
Ethylbenzene		"	26.0		0.356	-	٠	н	м	м	118	RL7
Surrogate(s):				102%	- 6	50	150 %				"	ม
	a,a,a-TFT (FID)			447%	6	50	150 %	"			"	Z5
	4-BFB (PID)			1019	6	50 - 1	150 %	"				
	a,a,a-TFT (PID)			180%	6	50 - 1	50 %	"			"	25
ATH0063-08RE	1 (SB2-4-0820)		1	Soil		Sampled: 08/20/10 12:10						
Toluene		AK101/EPA	90.0		0.713	mg/kg	30x	1010009	09/03/10 09:30	09/03/10 10:13	ĴĴВ	RL7
Xylenes (total)		80215	199		1.07		•	н	н	9	JJB	RL7
Surrogate(s):	4-BFB (FID)			97.3%	6	50 -	150 %	"				
	a a a TFT (FID)			483%	6	50 -	150 %	12			"	Z5
	4-BFB (PID)			97.7%	6	50	150 %	"			н	
	a.a.a-TFT (PID)			221%	6	50 -	150 %	"			n	Z5
ATH0063-09	(SB2-5-0820)		1	Soil		:	Sample	d: 08/20/10 1	5:55			
Gasoline Range O	rganics	AK101/EPA 8021B	529		38 0	mg/kg drv	15x	1010004	09/01/10 13:17	09/01/10 20:42	JJB	RL7
Benzene			6.00		0 190			U	"	v	JJB	RL7
Toluene			71,0		0.380	v	•	n	ø	8	JJB	RL 7
Ethylbenzene		0	17.9		0.380	u	н	"		.,	JJB	RL7
Xylenes (total)			96.8		0.570	n			"	"	JJB	RL7
Surrogate(s):	4-BFB (FID)			1029	6 6	50 -	150 %				"	LI
•	a,a,a-TFT (FID)			1249	6	50 -	150 %	11				
	4-BFB (PID)			1029	6	50 -	150 %	"			н	

TestAmerica Anchorage

Johanna Drehar

Johanna L Dreher, Client Services Manager

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC.	Project Name:	4540 W.50th Ave	
1042 E 6th Ave	Project Number:	10-059-01	Report Created:
Anchorage, AK 99501	Project Manager:	Sean Peterson	12/15/10 09:19

TestAmerica Anchorage												
Analyte	• •	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ATH0063-09 (SB	2-5-0820)		s	oil		!	Sampled	: 08/20/10 1	5:55			
a,a	ı,a-TFT (PID)			80.8%	-	50	150 %	15x		09/01/	10 20:42	
ATH0063-10RE1 (8	SB1-5-0823)		S	oil		:	Sampled	: 0 <mark>8/23/10</mark> 1	0:14			
Gasoline Range Organi	ics	AK101/EPA 8021B	4430		382	mg/kg dry	150x	1010009	09/03/10 09:30	09/03/10 11:53	JJB	RL7
Benzene			172		1.91	"	•	•	H	"	JJB	RL7
Foluene			613		3.82		-	•	-		JJB	RL7
Ethylbenzene		u	130		3.82		"		"	*	JJB	RL7
Xylenes (total)		n	674	*****	5.73	U	н	в		H	JЈВ	RL7
Surrogate(s): 4-1	BFB (FID)			89.1%		50 -	150 %	"			"	
a,c	1,a-TFT (FID)			1090%		50 -	150 %	*				Z5
4-1	BFB (PID)			89.2%		50 -	150 %	"				
a,a	n,a-TFT (PID)			504%		50 -	150 %	"			"	Z5

ATH0063-11	(Trip Blank)		S	oil		5	Sampled	1: 08/23/10 (0:00			
Gasoline Range Or	ganics	AK101/EPA 8021B	ND		3.33	mg/kg dry	lx	1010004	09/01/10 13:17	09/01/10 21:57	JJB	
Benzene		"	0.0433		0.0 66		1.		и		JJB	R1
Toluene		в	0.207		0.0333	D	н	н	н	14	JJB	
Ethylbenzene		н	ND		0.0333	H		"	м	h	JЈВ	
Xylenes (total)		•	0.0778		0.0500	в			"	•	JJB	RI
Surrogate(s):	4-BFB (FID)			104%	6	50 - 1	150 %	"			"	L
	a,a,a-TFT (FID)			99 .69	6	50 - 1	150 %	"			"	
	4-BFB (PID)			1049	6	50 - 1	150 %	"				
	a,a,a-TFT (PID)			98.0%	6	50 - 1	150 %	"			"	

ATH0063-13		Soil			Sampled: 08/20/10 16:00							
Gasoline Range O	rganics	AK101/EPA 8021B	487		37.0	mg/kg dry	15x	1010004	09/01/10 13:17	09/01/10 21:32	JJB	RL 7
Benzene			9,49	•	0.185	н	в	•	*	v	JJB	RL7
Toluene			65.2		0.370	•				v	JJB	RL7
Ethylbenzene		Ð	13.2		0.370		•	•	*	"	JJB	RL7
Xylenes (total)		n	70,3		0.555	*	•	м	N	н	ĴĴΒ	RL7
Surrogate(s):	4-BFB (FID)			1109	6	50 - 1	150 %	"			"	LI
	a,a,a-TFT (FID)			3699	6	50 - 1	150 %				"	25
	4-BFB (PID)			1099	6	50 - 1	150 %	"				
	a,a,a-TFT (PID)			1719	К	50 - 1	150 %	"			"	Z5

TestAmerica Anchorage

Johanna Drehar

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC.	Project Name:	4540 W.50th Ave	
1042 E 6th Ave	Project Number:	10-059-01	Report Created:
Anchorage, AK 99501	Project Manager:	Sean Peterson	12/15/10 09:19

	Diesel Range Organics (C10-C25) per AK102 with Silica Gel Cleanup TestAmerica Anchorage										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ATH0063-01 (SB1-1-0820)		1	Soil		Sampled: 08/20/10 09:38						
Diesel Range Organics	AK 102	NÐ		21.5	mg/kg dry	İx	1010005	08/26/10 [1:48	09/01/10 18:59	ЯŃ	-
Surrogate(s): I-Chlorooctadeca	ne		90.1%		50 -	150 %	"				

Surrogate(s): 1-Chlorooctadecane

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC. 1042 E 6th A	Ve			Proje Proje Proje	ect Name: ect Number:	454 10-4 See	0 W.50	Oth Ave			Report C	reated:
Anchorage, A				i toj.		504						
	Diesel Range	e Organics (C	10-C25) :	a nd Re TestA	sidual R merica Ar	ange (Organ :	nics (C25-	C36) per A	K102/RRO	•	
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ATH0063-01	(SB1-1-0820)		ł	Soil			Sample	d: 0 <mark>8/20/10</mark> 0	9:38			
Diesel Range Organ	nics	AK102/103	ND		21.5	mg/kg	1x	10H0105	08/26/10 11:48	08/27/10 19:04	JN	
Residual Range Org	ganics		ND		53.7	dry *	•	"	a		JN	
Surrogate(s):	I-Chlorooctadecane Triacontane			86.9% 87.J%		50 - 50 -	150 % 150 %	"			u 11	
ATH0063-02	(SB1-2-0820)		1	Soil			Sample	d: 08/2 0/10 0	9:43			
Diesel Range Orga	nics	AK102/103	ND		21.1	mg/kg	lx	10H0105	08/26/10 11:48	08/31/10 19:47	JN	
Residual Range Or	ganics	"	ND		52.8	dry °	4			a1	JN	
Surrogate(s):	I-Chlorooctadecane			94.0%		50 -	150 %	"			"	
	Triacontane			109%		50 -	150 %	N				
ATH0063-03	(SB1-3-0820)		Soił Sampled: 08/20/10 10:01									
Diesel Range Orga	mics	AK102/103	ND		21.2	mg/kg	١x	10H0105	08/26/10 11:48	09/01/10 14:03	JN	
Residual Range Or	ganics	п	ND		53.1		и			۲	JN	
Surrogate(s):	1-Chlorooctadecane			95.3%		50 -	150 %	"			H	
	Triacontane			106%		50 -	150 %	м			"	
ATH0063-04	(SB1-4-0820)		:	Soil			Sample	d: 08/20/10 1	0:39			
Diesel Range Orga	nics	AK102/103	ND		24.1	mg/kg	łx	10H0105	08/26/10 11:48	09/01/10 14:36	JN	
Residual Range Or	ganics	u	ND		60.3	ary "	a,	в		v	JN	
Surrogate(s):	1-Chlorooctadecane			86.5%		50 -	150 %	и			"	•••••
	Triacontane			97.9%		50 -	150 %	"			"	
ATH0063-05	(SB2-1-0820)		;	Soil			Sample	d: 08/20/10 1	10:47			
Diesel Range Orga	mics	AK102/103	NĎ		22.6	mg/kg	lx	10H0105	08/26/10 11:48	09/01/10 14:36	JN	
Residual Range Or	ganics		ND		56.5	dлу "			м	•	JN	
Surrogate(s):	I-Chlorooctadecane Triacontane			92.4% 107%		50 - 50 -	150 % 150 %	"		· · · · · ·	"	-
ATH0063-06	(SB2-2-0820)			Soil			Sample	d: 08/20/10 1	1:09			
Diesel Range Orga	unics	AK102/103	ND		21.3	mg/kg	lx	10110105	08/26/10 11:48	09/01/10 15:09	JN	
Residual Range Or	rganics		ND		53.3	dry "	"	ú	n	*	JN	
A 1 HUUDJ-UD Diesel Range Orga Residual Range Or	(302-2-0020) Inics rganics	AK102/103 	ND		21.3	mg/kg dry	1x "	10H0105	08/26/10 11:48	09/01/10 15:09 +	ИL	

TestAmerica Anchorage

Johanna Dreher_

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC.			Project Name:	4540	W.50	th Ave				
1042 E 6th Ave			Project Number:	10-05	9-01				Report C	reated:
Anchorage, AK 99501			Project Manager:	Sean	Peterso	m			12/15/10	09:19
Diesel Ran	ge Organics (C	10-C25) and	l Residual R TestAmerica Ai	Lange O nchorage	rgan	ics (C25-	C36) per A	K102/RRC)	
Analyte	Method	Result M	DL* MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ATH0063-06 (SB2-2-0820)		Soil		Sa	mpled	I: 0 8/20 /10 1	1:09			·
Surrogate(s): I-Chlorooctadecane Triacontane			83.4% 93.3%	50 - 150 50 - 150)%)%	lx "		09/01/	'10 15:09 "	
ATH0063-07 (SB2-3-0820)		Soil		Sa	mpled	I: 08/20/10 1	1:39			
Diesel Range Organics	AK102/103	ND -	24.6	mg/kg drv	lx	10H0105	08/26/10 11:48	09/01/10 15:09	ЛĻ	
Residual Range Organics		ND	61.5	"			н	٣	JN	
Surrogate(s): I-Chlorooctadecane		·	94.9%	50 - 150	7%	"			"	
Triacontane			107%	50 - 150	7%	n			u	
ATH0063-08 (SB2-4-0820)		Soit Sampled: 08/20/10 12:10								
Diesel Range Organics	AK102/103	64.4	23.9	mg/kg dry	١x	10H0105	08/26/10 11:48	09/01/10 15:42	JN	QP
Residual Range Organics	H.	ND ·	59.7			*		•	JN	
Surrogate(s): 1-Chlorooctadecane	· · · · ·		83.7%	50 - 150	7%	"			"	
Triacontane			95.0%	50 - 150)%				N	
ATH0063-09 (SB2-5-0820)		Soil		Sa	mpled	: 08/20/10 1	5:55			
Diesel Range Organics	AK102/103	ND ·	23.9	mg/kg dry	İx	10110105	08/26/10 11:48	09/01/10 15:42	JN	
Residual Range Organics	19	ND ·	59.7	н			a	в	JN	
Surrogate(s): 1-Chlorooctadecane			88.1%	50 - 150	9%	n	•• •		"	
Triacontane			101%	50 - 150	1%	ø				
ATH0063-10 (SB1-5-0823) Soil				Sa	mpled	I: 08/23/10 1	0:14			
Diesel Range Organics	AK102/103	ND ·	25.0	mg/kg drv	lx	10H0105	08/26/10 :48	09/01/10 16:15	JN	
Residual Range Organics	4	ND	62.4	N	ø	•			JN	
Surrogate(s): 1-Chlorooctadecane			84.3%	50 - 150	9%	"			"	
Triacontane			96.0%	50 - 150	9 %	"			"	
ATH0063-13 (SB2-6-0820)		Soil		Sampled: 08/20/10 16:00						

	(-					
Diesel Range Organ	ics	AK102/103	ND		24.2	mg/kg drv	ìx	10H0105	08/26/10 11:48	09/01/10 16:15	JN	
Residual Range Org	anics	"	ND		60.4		-	U	м	a	JN	
Surrogate(s):	I-Chlorooctadecane			95.0% 110%		50 - 1 50 - 1	150 % 150 %	,, ,,			<i>"</i>	
	Triacomane											

TestAmerica Anchorage

Johanna Dreher

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC	1		Proje	et Name:	454	40 W.50t	h Ave				
1042 E 6th	Ave		Ртоје	et Number:	10-	059-01				Report Cr	eated:
Anchorage,	AK 99501		Proje	ct Manager:	Sea	n Peterson	ר			12/15/10	09:19
Ł								· · · ·			
		Physic	al Parameters b	у АРНА	AS7	ГМ/ЕР.	A Metho	ds			
<u>_</u>	<u></u>		TestA	nerica And	cnorag	e	· · · · ·				
Analyte		Method	Result MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ATH0063-01	(SB1-1-0820)		Soil			Sampled:	08/20/10 0	9;38			
Dry Weight		TA-SOP	92.6	1.00	%	lx	10H0095	08/24/10 17:28	08/25/10 07:50	JN	
ATH0063-02	(SB1-2-0820)		Soil			Sampled:	08/20/10 0	9:43			
Dry Weight		TA-SOP	93.9	1.00	%	lx	10H0095	08/24/10 17:28	08/25/10 07:50	JN	
ATH0063-03	(SB1-3-0820)		Soil			Sampled:	08/20/10 1	0:01			
Dry Weight		TA-SOP	91.0	1.00	%	1x	10H0095	08/24/10 17:28	08/25/10 07:50	JN	
ATH0063-04	(SB1-4-0820)		Soil Sampled: 08/20/10 10:39								
Dry Weight		TA-SOP	81.6	1.00	%	1x	10110095	08/24/10 17:28	08/25/10 07:50	JN	
ATH0063-05	(SB2-1-0820)	·=·-·	Soil			Sampled	08/20/10 1	0:47			
Dry Weight		TA-SOP	87.1	1.00	%	lx	10H0095	08/24/10 17:28	08/25/10 07:50	лf	
ATH0063-06	(SB2-2-0820)		Soil			Sampled	08/20/10 1	1:09			
Dry Weight		TA-SOP	91.8	1.00	%	١x	10H0095	08/24/10 17:28	08/25/10 07:50	JN	
ATH0063-07	(SB2-3-0820)		Soil			Sampled	: 08/20/10 1	1:39			
Dry Weight		TA-SOP	80.6	1.00	%	İx	10140122	08/30/10 12.08	08/31/10 08:15	JN	
ATH0063-08	(SB2-4-0820)		Soil			Sampled	: 08/20/10 1	2:10			
Dry Weight		TA-SOP	83.4	1.00	%	lx	10H0122	08/30/10 12:08	08/31/10 08:15	JN	
ATH0063-09	(SB2-5-0820)		Soil			Sampled	: 08/20/10 1	5:55			
Dry Weight		TA-SOP	82.1	1.00	%	lx	10H0094	08/24/10 16:23	08/25/10 07:50	JN	
ATH0063-10	(SB1-5-0823)		Soil			Sampled	: 08/23/10 1	0:14		=.=	
Dry Weight		TA-SOP	79,1	1.00	*	lx	10H0094	08/24/10 16:23	08/25/10 07:50	JN	
ATH0063-11	(Trip Blank)		Soil			Sampled	: 08/23/10 0	0:00			

Dry Weight TA-SOP 100 ---- 1.00 % 1x 10H0094 08/24/10 16:23 08/25/10 07:50 JN

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC.	Project Name:	4540 W.50th Ave	
1042 E 6th Ave	Project Number:	10-059-01	Report Created:
Anchorage, AK 99501	Project Manager:	Sean Peterson	12/15/10 09:19
T T T T T T T T T T T T T T T T T T T	thusiaal Davamatava hu ADUA	ACTN/EDA Mathada	

	TestAmerica Anchorage												
Analyte		Method	Result MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes		
ATH0063-12	(Trip Blank)		Soil Sampled: 08/23/10 00:00										
Dry Weight		TA-SOP	100	1.00	%	١x	10H0094	08/24/10 16:23	08/25/10 07:50	JN			
ATH0063-13	13 (SB2-6-0820) Soil Sampled: 08/20/10 16:00												
Dry Weight		TA-SOP	81.7	1.00	%	łx	10H0094	08/24/10 16:23	08/25/10 07-50	JN			

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 995Q2-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: U5T-067

BGES, INC.	Project Name:	4540 W.50th Ave	
1042 E 6th Ave	Project Number:	10-059-01	Report Created:
Anchorage, AK 99501	Project Manager:	Sean Peterson	12/15/10 09:19

Gasoline Range Organics (C6-C10) by AK101-MS and BTEX by EPA Method 8260B TestAmerica Anchorage

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ATH0063-01	(SB1-1-0820)		S	oil		1	Sampled	; ; 08/20/10 0);38			
Gasoline Range O	ganics	AK101-MS/EPA 8260B	3.09		2.23	mg/kg dry	İx	10H0091	08/24/10 10:15	08/24/10 16:57	JB	
Benzene		•	0.153		0.00893	•		•	•	"	JB	
Toluene			0,236		0.0223	в	н	•		"	JB	
Ethylbenzene		N	ND		0.0223		M	и	н	я	JB	
Xylenes (total)		**	ND		0.0335	v	м	н	*		JB	
Surrogate(s):	Dibromofluoromethan	;		117%		75 - ,	125 %	0.03x			"	·
	a.a.a-TFT			102%		50 - 1	150 %	lx			"	
	Toluene-d8			96.6%		75 - ,	125 %	0.03x			"	
	4-BFB			104%		75	125 %	n			"	
ATH0063-02	(SB1-2-0820)		S	ioil			Sampleo	d: 08/20/10 0	9:43			
Gasoline Range O	rganics	AK101-MS/EPA 8260B	9.36		2.14	mg/kg dry	lx	10H0091	08/24/10 10:15	08/24/10 17:31	ĴΒ	
Benzene		a	0.402		0.00858	"	N	0	at	н	JB	
Toluene			0,713		0.0214			•		•	JB	
Ethylbenzene			0.0311		0.0214	н	"	н			JB	
Xylenes (total)		м	0.124		0.0322	•		м	H	a	JB	

					· · · · · · · · · · · · · · · · · · ·
Surrogate(s):	Dibromofluoromethane	116%	75 - 125 % 0.	.03x	п
	a,a, a- TFT	112%	50 - 150 % 15	r	"
	Toluene-d8	<i>95.8%</i>	75 - 125 % Q.	.03x	"
	4-BFB	102%	75 - 125 % "		"

ATH0063-03	(SB1-3-0820)	Soil			Sampled: 08/20/10 10:01							
Gasoline Range Or	ganics	AK101-MS/EPA 8260B	2,88		2.35	mg/kg dry	lx	10H0091	08/24/10 10:15	08/24/10 18:04	ĴΒ	
Benzene		н	0.113		0.00938		٠	*	•		78	
Toluene			0,212		0.0235	۲		a	"	в	JB	
Ethylbenzene			ND		0.0235		H		a		JВ	
Xylenes (total)		BI	0,0617	****	0.0352	•	"		ti	P	JB	
Surrogate(s):	Dibromofluoromethane			116%	6	75 - 1	125 %	0.03x				
	a,a,a-TFT			103%	6	50 - 1	150 %	1x				
	Toluene-d8			95.0%	6	75 - 1	125 %	0.03x			ı.	
	4-BFB			104%	б	75 - 1	125 %	"				

TestAmerica Anchorage

Johanna Dheher

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Johanna L Dreher, Client Services Manager

Page 11 of 37

2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC.	Project Name:	4540 W.50th Ave	
1042 E 6th Ave	Project Number:	10-059-01	Report Created:
Anchorage, AK 99501	Project Manager:	Sean Peterson	12/15/10 09:19

Gasoline Range Organics (C6-C10) by AK101-MS and BTEX by EPA Method 8260B TestAmerica Anchorage

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ATH0063-04	(SB1-4-0820)			Soil		5	Sample	d: 08/20/10 1	0:39			
Gasoline Range O	rganics	AK101-MS/EPA 8260B	15.5		2.43	mg/kg dry	łx	[0H009]	08/24/10 10:15	08/24/10 18:38	JB	
Benzene		Ð	0.797		0.00974		-	n	•	•	JB	
Toluene		Ð	1.31		0.0243	"		•		*	JB	
Ethylbenzene		P	0.0591		0.0243	۳	٠	٠	H	*	JB	
Xylenes (total)		Ð	0.242		0.0365		•		٠	۲	JB	
Surrogate(s):	Dibromofluoromethane			116%	\$	75 - 1	25 %	0.03x			и	• •
	a,a,a-TFT			98.2%	\$	50 - 1	50 %	lx -			<i>n</i>	
Ta	Toluene-d8			96.1%	ç	75 - 1	25 %	0.03x			*	
	4-BFB		106%			75 - 1	25 %	"			*	

ATH0063-05 (SB2-1-0820)			Soil			Sampled: 08/20/10 10:47					
Gasoline Range O	rganics A	K101-MS/EPA 8260B	38.2		2.04	mg/kg dry	lx	10H0091	08/24/10 10:15	08/24/10 19:12	JB
Benzene		P	2.42		0.00816	ы	н	۲	н		JB
Toluene			3.31		0.0204	P	н	•	*	14	JB
Ethylbenzene			0.152		0.0204		*	٠	×	-	JB
Xylenes (total)		v	0.619		0.0306		•			•	JB
Surrogate(s):	Dibromofluoromethane			1149	6	75 - 1	125 %	0.03x			N
	a.a.a-7777			86.39	6	50 - 1	150 %	Ix			82
	Toluene-d8			94.5%	6	75 - 1	125 %	0.03x			"
	4-BFB			1069	6	75 - 1	125 %	"			n

ATH0063-06	(SB2-2-0820)		S	oil		8	Sample	d: 08/20/10 1	1:09		
Gasoline Range Or	ganics	AK101-MS/EPA 8260B	11.5		1.70	mg/kg dry	İx	10H0091	08/24/10 10:15	08/24/10 19:46	JB
Benzene		•	0.475		0.00678	•	•	н	۲	•	JB
Toluene		•	0,723		0.0170				н		JB
Ethylbenzene		×	0.0582		0.0170		n	٠	H	*	JB
Xylenes (total)		×	0.201		0.0254	•	0	×	•	đ	JB
Surrogate(s):	Dibromofluoromethane			117%	6	75 - 1	25 %	0.03x			,
	a,a,a-TI-T			105%	í	50 - 1	50 %	lx			,
	Toluene-d8			95.I%	6	75 - 1	25 %	0.03x		,	,
	4-BFB			104%	í	75 - 1	25 %	N			,

TestAmerica Anchorage

Johanna Drehar

Johanna L Dreher, Client Services Manager

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC.	Project Name:	4540 W.50th Ave	
1042 E 6th Ave	Project Number:	10-059-01	Report Created:
Anchorage, AK 99501	Project Manager:	Sean Peterson	12/15/10 09:19
	EDB by EPA Met TestAmerica Spo	t hod 8011 okane	
/*************************************			· · · · · · · · · · · · · · · · · · ·

Analyte	Method	Result M	1DL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ATH0063-09 (SB2-5-0820) Soil				Sampled: 08/20/10 15:55							
1,2-Dibromoethane	EPA 8011	ND Ø	7.0993	1.17	ug/kg dry	lx	10H0151	08/30/10 11:10	08/30/10 19:18	mrs	
1,2-Dibromo-3-chloropropane		0.513 0	0.126	1.17	•1	н	N	•	•	mrs	J
ATH0063-13 (SB2-6-0820)		Soi	il			Sampled	: 08/20/10 1	6:00			
1,2-Dibromoethane	EPA 8011	ND (0.100	1.19	ug/kg dry	İx	10H0151	08/30/10 11.10	08/30/10 20:33	mrs	
1,2-Dibromo-3-chloropropane	4	ND (0.127	1.19	•					mrs	

TestAmerica Anchorage

Johanna Drehar

Johanna L. Dreher, Client Services Manager

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC.	Project Name:	4540 W.50th Ave	
1042 E 6th Ave	Project Number:	10-059-01	Report Created:
Anchorage, AK 99501	Project Manager:	Sean Peterson	12/15/10 09:19
			· · ·

Volatile Organic Compounds by EPA Method 8260B TestAmerica Spokane												
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ATH0063-09	(SB2-5-0820)		1	Soil		Sampled: 08/20/10 15:55						
1,2-Dichloroethan	e (EDC)	EPA 8260B	ND		0.0118	mg/kg dry	١x	10H0156	08/31/10 09:23	08/31/10 13:19	CBW	
Naphthalene		D	0.356		0.157	в	۳		"		CBW	
Surrogate(s):	Dibromofluoromethane Toluene-d8 4-bromofluorobenzene			86.6% 137% 119%		42.7 - 50.8 - 51 -	151 % 132 % 136 %	17 17 17			" ZX	
ATH0063-12	(Trip Blank)		:	Soil		Sampled: 08/23/10 00:00						
1,2-Dichloroethan	: (EDC)	EPA 8260B	ND		0.0150	mg/kg wet	lx	10H0156	08/31/10 09:23	08/31/10 13:47	CBW	
Naphthalene		U	ND		0.200		٠		H	м	CBW	
Surrogate(s):	Dibromofluoromethane Toluene-d8 4-bromofluorobenzene			85.6% 101% 113%		42.7 50.8 51	151 % 132 % 136 %	u 11 11			n n H	
ATH0063-13	(SB2-6-0820)		1	Soil		:	Sample	d: 08/20/10 1	16:00			
1,2-Dichloroethan	e (EDC)	EPA 8260B	ND		0.0115	mg/kg dry	İx	10H0156	08/31/10 09:23	08/31/10 14:16	CBW	

					dry					
Naphthalene	×	0.756		0.154	۳			u	CBW	
Surrogate(s):	Dibromofluoromethane		86.0%		42.7 - 15	1%	"		"	
	Toluene-d8		174%		50.8 - 15	2%			"	ZX
	4-bromofluorobenzene		134%		51 - 13	6%	n		"	

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC.	Project Name:	4540 W.50th Ave	
1042 E 6th Ave	Project Number:	10-059-01	Report Created:
Anchorage, AK 99501	Project Manager:	Sean Peterson	12/15/10 09:19

	Conventional Chemistry Parameters by APHA/EPA Methods TestAmerica Spokane												
Analyte		Method	Result MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes		
ATH0063-09	(SB2-5-0820)		Soil	5	Sampled	: 08/20/10 1							
% Solids		TA SOP	80.3	0.0100	% by Weight	١x	1010009	08/30/10 14:30	08/31/10 14:15	MS			
ATH0063-13	(SB2-6-0820)		Soil		5	Sampled	: 08/20/10 1						
% Solids		TA SOP	81.1	0.0100	% by Weight	ìx	1010009	08/30/10 14:30	08/31/10 14 15	MS			

TestAmerica Anchorage

Johanna Dheher

Johanna L Dreher, Client Services Manager

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563,9200 fax: (907) 563,9210 CS Approval Number: UST-067

BGES, INC 1042 E 6th / Anchorage,	2. Ave AK 99501		Proj Proj Proj	ect Name: ect Number; ect Manager;	45 10 Se	40 W.50th -059-01 an Peterson	Ave			Report C 12/15/10	reated:) 09;19
		Tota	Il Metals per E Test	PA 6000 America P	/ 7000 ortland	Series M	ethods	5			
Analyte		Method	Result MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ATH0063-01	(SB1-1-0820)	. <u></u>	Soil			Sampled: 0	8/20/10 0	9:38			
Lead		EPA 6020	3.41	0.522	mg/kg dry	lx	10H1001	08/31/10 10:16	08/31/10 21:42	TNL	
ATH0063-02	(SB1-2-0820)		Soil			Sampled: 0	8/20/10 0	9:43			
Lead		EPA 6020	4.34	0.522	mg/kg dry	Ix	10 H 1001	08/31/10 10:16	08/31/10 21:58	TNL	
ATH0063-03	(SB1-3-0820)		Soil			Sampled: 0	8/20/10 1	0:01			
Lend		EPA 6020	4.93	0.527	mg/kg dry	Ix	10111001	08/31/10 10:16	08/31/10 22:01	TNL	
ATH0063-04	(SB1-4-0820)		Soil			Sampled: 0	8/20/10 I	0:39			
Lead		EPA 6020	6.16	0.588	mg/kg dry	1x	10H1001	08/31/1010:16	08/31/10 22:05	TNL	
ATH0063-05	(SB2-1-0820)		Soil			Sampled: 0	8/20/10 1	0:47			
Lead		EPA 6020	6.64	0.574	mg/kg dry	lx	10111001	08/31/10 10:16	08/31/10 22:09	TNL	
ATH0063-06	(SB2-2-0820)		Soil			Sampled: 0					
Lead		EPA 6020	4.20	0.540	mg/kg dry	lx	10H1001	08/31/10 10:16	08/31/10 22:21	TNL	
ATH0063-07	(SB2-3-0820)		Soil			Sampled: 0	8/20/10 1	1:39			
Lead		EPA 6020	8.70	0.631	mg/kg dry	Ix	10H1001	08/31/10 10:16	08/31/10 22:25	TNL	
ATH0063-08	(SB2-4-0820)		Soil			Sampled: 0	8/20/10 1	2:10			
Lead		EPA 6020	5.83	0.557	mg/kg dry	lx	10H1001	08/31/10 10:16	08/31/10 22:28	TNL	
ATH0063-09	(SB2-5-0820)		Soil			Sampled: 0	8/20/10 1	5:55			
Lead		EPA 6020	6.15	0.569	mg/kg dry	lx	10H1001	08/31/10 10:16	08/31/10 22:32	TNL	
ATH0063-10	(SB1-5-0823)		Soil			Sampled: 0	8/23/10 1	0:14			
Lead		EPA 6020	7,97	0.614	mg/kg dry	lx	10H1001	08/31/10 10:16	08/31/10 22:36	TNL	
ATH0063-13	(SB2-6-0820)		Soil			Sampled: 0	8/2 0/10 1	6:00			

TestAmerica Anchorage

Johanna Dreher

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 C\$ Approval Number: UST-067

BGES, INC.	Project Name:	4540 W.50th Ave	
1042 E 6th Ave	Project Number:	10-059-01	Report Created:
Anchorage, AK 99501	Project Manager:	Sean Peterson	12/15/10 09:19

	Total Metals per EPA 6000/7000 Series Methods TestAmerica Portland													
Analyte		Method	Result MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes			
ATH0063-13	(SB2-6-0820)		Soil		1	Sampled	: 0 <mark>8/20/10</mark> 1	6:00						
Lead		EPA 6020	4.89	0.563	mg/kg dry	lx	10H1001	08/31/10 10:16	08/31/10 22:40	TNL				

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

www.testamericainc.com

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC 1042 E 6th Anchorage,	BGES, INC. 1042 E 6th Ave Anchorage, AK 99501		Ргојес Ртојес Ртојес	et Name: et Number: et Manager:	45 10 Se	40 W.50 -059-01 an Peterso	th Ave			Report Ci 12/15/10	reated: 09:19	
		Per	cent Dry Weight TestA	(Solids) merica Po	per A	ASTM	D2216-8	0				
Analyte		Method	Result MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes	
ATH0063-01	(SB1-1-0820)		Soil			Sampled	: 08/20/10 0	9:38				
% Solids		ASTM D2216-80	93.9	0.0100	% by Weight	lx	10H0881	08/26/10 14:50	08/27/10 07:10	JJM		
ATH0063-02	(SB1-2-0820)		Soil		Sampled: 08/20/10 09:43							
% Solids		ASTM D2216-80	94.8	0.0100	% by Weight	lx	10H0881	08/26/10 14:50	08/27/10 07:10	MLL		
ATH0063-03	(SB1-3-0820)		Soil			Sampled	: 08/20/10 1	0:01				
% Solids		ASTM D2216-80	92.1	0.0100	% by Weight	lx	10H0881	08/26/10 14:50	08/27/10 07:10	JJM		
ATH0063-04	(SB1-4-0820)		Soil			Sampled	: 08/20/10 1	0:39				
% Solids		ASTM D2216-80	ASTM 83.4 0.0100 D2216-80				10H0881	08/26/10 14:50	08/27/10 07:10	JJM		
ATH0063-05	(SB2-1-0820)		Soil		Sampled: 08/20/10 10:47							

08/26/10 14:50 ASTM 0.0100 10H0881 08/27/10 07:10 JJM % Solids 83.0 % by 1x **** D2216-80 Weight ATH0063-06 (SB2-2-0820) Soil Sampled: 08/20/10 11:09 ASTM 08/26/10 14:50 JJM % Solids 91.6 0.0100 % by ١x 10H0881 08/27/10 07:10 ___ D2216-80 Weight

ATH0063-07	(SB2-3-0820)		Soil	Sampled: 08/20/10 11:39)
% Solids		ASTM D2216-80	7 9.2 0.0100	% by 1x 10H0881 04 Weight	/26/10-14:50 08/27/10-07:10 JJM
ATH0063-08	(SB2-4-0820)		Soil	Sampled: 08/20/10 12:10)
% Solids		ASTM D2216-80	85.4 0.0100	% by 1x 10H0881 ⁽⁾ Weight	/26/10 14:50 08/27/10 07:10 JJM
ATH0063-09	(SB2-5-0820)		Soil	Sampled: 08/20/10 15:55	5
% Solids		ASTM D2216-80	84.5 0.0100	% by 1x ±0H0881 Of Weight	3/26/10 14:50 08/27/10 07:10 JJM
ATH0063-10	(SB1-5-0823)		Soil	Sampled: 08/23/10 10:14	1
% Solids		ASTM D2216-80	77.6 0.0100	% by ix 10H0881 08 Weight	3/26/10 14:50 08/27/10 07:10 JJM
ATH0063-13	(SB2-6-0820)		Soil	Sampled: 08/20/10 16:00)

TestAmerica Anchorage

Johanna Dreher

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC.	Project Name:	4540 W.50th Ave	
1042 E 6th Ave	Project Number:	10-059-01	Report Created:
Anchorage, AK 99501	Project Manager:	Sean Peterson	12/15/10 09:19
	-		

	Рег	cent Dry Weigh	t (Solid tAmerica	s) per A Portland	STM	D2216-8	0			
Analyte	Method	Result MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Analyst	Notes
ATH0063-13 (SB2-6-0820)		Soil		Sampled	l: 08/20/10 1	6:00				
% Solids	ASTM D2216-80	84.6	0.0100	% by Weight	lx	10H0881	08/26/10 14:50	08/27/10 07:10	MLL	

TestAmerica Anchorage

Johanna Dheher

Johanna L Dreher, Client Services Manager

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC					Project N	ame: 4	540 V	V.50th Av	ve						
1042 E 6th	Ave				Project N	umber: 1	0-059-	01						Report Create	ed:
Anchorage,	AK 99501				Project M	lanager: S	ean Pe	terson						12/15/10 09:	:19
	G	soline Range (Organics (C6-C10)	and BTEX	k per AK10	- L	aborator	v Oua	litv C	ontrol F	Results			
				,	TestAmeri	ca Anchorage									
QC Batc	h: 1010004	Soil Pre	paration M	lethod: /	K101 Field	l Prep									
Analyte		Method	Result	MD	L* MRI	L Units	Dil	Source Result	Spike Amt	REC	(Limits)	м RPD	(Limits)) Analyzed	Notes
Blank (101000)4-BLK1)								Ext	racted:	09/01/101	3:17			
Gasoline Range Org	anics	AK101/EPA 8021B	ND		3.33	mg/kg wet	lx				-			09/01/10 15:46	
Benzene			ND		0.0166	1	0							•	
Toluene		н	ND		0.0333	•								•	
Ethylbenzene		-	ND		0.0333		•			~	-			Pİ	
Xylenes (total)		H	ND		0.0500		•							н	
Surrogate(s):	4-BFB (FID)		Recovery	101%		Limits: 50-150%	"							09'01/10 15:46	
	a.a.a-TFT (FID)			101%		50-150%	"								
	4-BFB (PID)			100%		50-150%									
	a.a.a-111 (112)			99.076		20+1202									
LCS (1010004	-BS1)								Ext	racted:	09/01/10 1	3:17			<u>-</u>
Benzene		AK101/EPA 8021B	0.660		0.0166	mg/kg wet	lx		0.800	82.5%	(70-130)			09/01/10 14:06	
Toluene			0.643		0.0333	н	я			80.4%	a	**		м	
Ethylbenzene		в	0.699		0.0333	-	•		•	87.4%	•				
Xylenes (total)		D	2.14		0.0500	•	۲	-	2.40	89.1%	-				
Surrogate(s).	4-BFB (FID)		Recovery:	101%		Limits: 60-120%	u							09/01/10 14:06	
	a.a.a-TFT (FID)			99.8%		60-120%	a							ч	
	4-BFB (PID)			100%		60-120%	"								
	a.a.a-11-1 (PID)			98.9%		60-120%								-	
LCS (1010004	-BS2)					.			Ext	racted:	09/01/10 1	3:17			
Gasoline Range Org	anics	AK101/EPA 8021B	17.4		3.33	mg/kg wei	lx		22.0	79.0%	(60-120)			09/01/10 14:55	
Surrogate(s):	4-BFB (FID)	00210	Recovery:	107%		Limits: 60-120%								09/01/10 14:55	<u>.</u>
	a.a.a-TFT (FID)		-	110%		60-120%	"							"	
	4-BFB (PID)			105%		60-120%								*	
	a.a.a-TFT (PID)			99.0%		60-120%	"							4	
LCS Dup (10)	(0004-BSD1)								Ext	racted:	09/01/10 (3:17			
Benzene		AK101/EPA	0.697	·	0.0166	mg/kg wet	١x		0.800	87.1%	(70-130)	5.519	6 (20)	09/01/10 14:30	
Toluene		8021B	0.681		0.0133	в	в			85 1%		5719	<u>د</u>	19	
Ethylbenzene		11	0.741		0.0333					97.6%		5 8 59		P	
Xylenes (total)		o	2.27		0 0500	н			2,40	94.6%	٠	5.95%	. "	•	
Surrogate(s)	4-BFB (FID)		Recovery	107%		Limits: 60-120%					•• ••	• • • • •	••••	09/01/10 14:30	
3	a.a.a-TFT (FID)			103%		60-120%	"							"	
	4-BFB (PID)			107%		60-120%	"							"	
	a.a.a-TFT (PID)			102%		60-120%								"	

TestAmerica Anchorage

Johanna Drehar

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>TestAmerica</u>

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC. 1042 E 6th Ave Anchorage, AK 99501					Project Na Project Nu Project Ma	ime: 4 imber: 1 anager: S	540 V 0-059- ican Pe	V.50th Av 01 sterson	/e					Report Create 12/15/10 09:	d: 19
	Ga	soline Range (Organics (C6-C10)	and BTEX TestAmeric	per AK10 a Anchorage	1 - L ;	aborator	y Qual	ity Co	ntrol R	esults			
QC Batc	h: 1010004	Soil Pre	paration M	iethod: A	AK101 Field	Ргер									
Analyte		Method	Result	MD	L* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD ((Limits)) Analyzed	Notes
LCS Dup (10)	0004-BSD2)								Extr	acted:	09/01/10 13	:17			
Gasoline Range Org	anics	AK101/EPA 8021B	19.4		3.33	mg/kg wet	١x		22.0	88.2%	(60-120)	11.0%	(20)	09/01/10 15:21	
Surrogate(s):	4-BFB (FID) a.a.a-TFT (FID) 4-BFB (PID) a.a.a-TFT (PID)		Recovery:	123% 119% 120% 107%	L	imits: 60-120% 60-1209 60-1209 60-1209	5 " 6 " 6 "							09/01/10 15:21 " "	Li
Duplicate (10)	1000 <u>4-DUP1)</u>	.			QC Sourc	e: ATH0050-1	17		Ext	racted:	09/01/10 13	:17			· · ·
Gasoline Range Org. Benzene Toluene Ethylbenzene Xylenes (total) Surrogate(s): Matrix Spike Benzene Toluene Ethylbenzene Xylenes (total) Surrogate(s):	4-BFB (FID) a.o.a-TFT (FID) 4-BFB (PID) a.a.a-TFT (PID) (1010004-MS1) 4-BFB (FID) a.a.a-TFT (FID) a.a.a-TFT (FID)	AK 101/EPA 8021B " " " " " " " " " " " " " " "	ND 0.0151 0.0486 ND ND Recovery: 0.354 0.354 0.373 1.13 Recovery:		0.00942 0.0188 0.0188 0.0283 <i>L</i> QC Sourc 0.00849 0.0170 0.0170 0.0170	mg/kg dry 	1x 	0.0146 0.0447 ND ND 0.00149 0.00530 ND ND	 0.373 , , 1.12		 (60-140) " "	3.04% 8.32% 13.2% 11.2%	(200) " " " " " " " " " " " " " " " " " " "	09/01/10 17:23 " " " " " " " " " " " " " " " " " " "	
Matrix Spike I	4.8.4-177 (PN) 4-BFB (PID) a.a.a-TFT (PID) Dup (1010004-MS	SD1)		110% 110%	QC Source	50-150 50-150 50-150	% " % " 18		Ext	racted:	09/01/10 13	5:17		n n	
Benzene		AK101/EPA	0.327	-*-	0.00849	mg/kg dry	1x	0.00149	0.373	87.2%	(60-140)	7.95%	(30)	09/01/10 18:37	
Toluene Ethylbenzene Xylenes (total)	<u>.</u>	8021B " "	0.318 0.346 1.06		0.0170 0.0170 0.0255	N N	* * *	0.00530 ND ND	1.12	83.7% 92.9% 94.7%		7.76% 7.46% 6.56%	u U U		
Surrogate(s):	4-BFB (FID) a.a.a-IFT (FID) 4-BFB (PID) a.a.a-TFT (PID)		Recovery:	2% 08% 2% 08%		Limits: 50-1509 50-150 50-150 50-150	%" %" %"							19-07-10-18:37 " " "	

TestAmerica Anchorage

Johanna Drehar

The results in this report apply to the samplex analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, IN	C.				Pro	iect N	ame 4	540	W.50th Av	/e						
1042 E 6th	Ave				Pro	iect Ni	umber: 1	0-05	9-01						Report Creat	ed:
Anchorage,	AK 99501				Proj	ject M	anager: S	ean l	Peterson						12/15/10 09	:19
	G	asoline Range	Organics	(C6-C1	0) and B TestA	TEX. meric	per AK10 a Anchorage	1 -	Laborator	y Qua	lity C	ontrol R	esults	6		
QC Bate	h; 1010009	Soil Pre	eparation N	1ethod:	AK101	Field	Prep									
Analyte		Method	Result	I	MDL*	MRL	. Units	Ďi	ij Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
Blank (10100	09-BLK1)									Ext	racted:	09/03/10 0	9:30			
Gasoline Range Org	anics	AK101/EPA	ND			3.33	mg/kg wet	ìx							09/03/10 13:12	
D		8021B														
Benzene					(0122				-					-	
Ethulbanzana		н			(.0333										
Vulence (total)			ערי אדא		(0500	u	P							н	
Ayreles (total)					•• (.0300			*	-		-				
Surrogate(s):	4-BFB (FID)		Recovery	98.9% 1104		L	imits: 50-150%. 50-150%	, n							09/03-10-13:12 "	
	4.4,4-171 (P1D) J-RFR (P1D)			08 7%			50-150% \$0-150%	. "								
	a.a.a-TI-T (PID)			109%			50-150%								fi.	
LCS (101000	9-BS1)									Ext	racted:	09/03/10 0	9:30			
Benzene		AK101/EPA 8021B	0.620		(0.0166	mg/kg wet	١x		0.800	77.5%	(70-130)			09/03/10 11:03	
Toluene		aor i b	0.638		(0.0333		ø			79.7%					
Ethylbenzene		н	0.632		(0.0333	ø			۲	78.9%					
Xylenes (total)		м	2.00		(0.0500		•		2.40	83 5%				м	
Surrogate(s)	4-BI-B (FID)		Recoverv:	78.1%		1		"							09 03 10 11.03	
	a.a.a-TFT (FID)		,	81.4%			60-120%	. "								
	4-BI·B (PID)			78.2%			60-120%	. "							"	
	a.a.a-TFT (PID)			81.4%			60-120%	. "							20	
LCS (1010009	9-BS2)									Ext	racted:	09/03/10 09	9:30			
Gasoline Range Org	ganics	AK101/EPA 8021B	21.5			3.33	mg/kg wet	lx		22.0	97.7%	(60-120)			09/03/10 12:23	
Surrogate(s):	4-BFB (FID)		Recovery	99.5%		t	.imits: 60-120%	"							09/03/10 12:23	
	a,a,a-TFT (FID)			110%			60-120%	i "							**	
	4-BFB (PID)			98.4%			60-120%	. "							*	
	a,a,a-TFT (PID)			104%			60-120%	, "							"	
LCS Dup (10	10009-BSD1)									Ext	racted:	09/03/10 09	9:30			
Benzene		AK101/EPA	0.649		(0.0166	mg/kg wet	lx		0.800	81.1%	(70-130)	4.57%	6 (20)	09/03/10 11:28	
Toluene			0.658		(0.0333	u	"		н	82.2%	, a	3.13%	6 ×	*	
Ethylbenzene		۰	0.652		(0.0333		e			81.5%	. "	3.17%	6 "		
Xylenes (total)			1.98		(0.0500	-			2.40	82.6%	, a	1.06%	6 ×	м	
Surrogate(s):	4-BFB (FID)		Recovery	80.9%		l	imits: 60-120%	"						•	09/03/10 11:28	. <u> </u>
0.7	a.a.a-TFT (FID)		,	83.6%			60-120%	. "							"	
	4-BFB (PID)			81.8%			60-120%	. "							"	
	a.a.a-TFT (PID)			83.5%			60-120%	. "							*	

TestAmerica Anchorage

Johanna Dreher

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 22 of 37

Johanna L Dreher, Client Services Manager

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC					Pı	roject Na	me:	4540 V	V.50th Av	e						
1042 E 6th	Ave				Pr	roject Nu	mber:	10-059-	-01						Report Create	ed:
Anchorage,	AK 99501				Pr	roject Ma	inager:	Sean Pe	eterson						12/15/10 09	:19
			0! (<u> </u>	0	DTEV	A 1/16	14 T				menol D.	aasalta		- m	
	Ga	soune Range	organics (0-01	Test	DI LA Americ	a Anchorag	ји - 1. је	avorator	y Quai	ny Ci		CSUILS			
QC Batc	h: 1010009	Soil Pre	paration M	ethod:	AK10	1 Field	Prep									
Analyte		Method	Result		MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Límits)	Analyzed	Notes
LCS Dup (10)	10009-BSD2)						_			Extr	acted:	09/03/10 09	:30			
Gasoline Range Org	anics	AK101/EPA 8021B	21.5			3.33	mg/kg wet	lx		22.0	97.8%	(60-120)	0.104%	i (20)	09/03/10 12:47	
Surrogate(s)	4-BFB (FID)		Recovery:	98.3%		L	imits: 60-1209	κ "							09/03/10-12:47	
	a.a.a-TFT (FID)			115%			60-120	% "								
	4-BFB (PID)			97.3% 105%			60-120 60-120	%" %"							"	
	u,u,u+(r) (111)			10376			00-110									
Duplicate (10	10009-DUP1)					QC Source	e: ATH0072-	23		Extr	acted:	09/03/10 09	30			
Gasoline Range Org	anics	AK101/EPA	ND			3.42	mg/kg dry	١x	ND				4.00%	(35)	09/03/10 15:16	
Benzene		802113	ND			0.0171	•		ND				NR	(200)	*	
Toluene			ND			0.0342			ND				NR		•	
Ethylbenzene		u	ND			0.0342	н	•	ND				NR	н	u	
Xylenes (total)		*	ND			0.0513			ND				NR	n	U	
Surrogate(s):	4-BFB (FID)		Recovery:	96, 3%		L	imits: 50-1509	% "		_					09/03 10 15-16	
	a.a.a+TFT (FID)			98.9%			\$0-150	%"							"	
	4-BFB (PID)			96.2%			50-150	% "							"	
	a.a.a-TFT (PID)			98.7%			50-150	%								
Matrix Spike	(1010009-MS1)					QC Sourc	e: ATH0072-	-22		Ext	acted:	09/03/10 09	:30		<u>. </u>	
Benzene		AK101/EPA 8021B	0.670			0.0164	mg/kg dry	1x	0.00122	0.580	115%	(60-140)		~*	09/03/10 16:06	
Toluene			0.702			0.0328			0.00729	u	120%	•				
Ethylbenzene		μ	0.700			0.0328		•	ND	a	121%	•		••	u	
Xylenes (total)		и	2.19			0.0493	"	a	ND	1.74	126%	9			(*	
Surragate(s):	4-BFB (FID)		Recovery:	101%		I	imits: 50-150	% "							09/03/10 16:06	
	a.a.a-TFT (FID)			109%			50-150	1% "							**	
	4-BFB (P1D)			102%			50-150	1% " 1% "							a	
	a,a.a~11*1 (P1D)			10976			50-150									
Matrix Spike	Dup (1010009-MS	5 D 1)				QC Sourc	e: ATH0072	-22		Ext	racted:	09/03/10 09	9;30			
Benzene		AK101/EPA 8021B	0.661			0.0164	mg/kg dry	l×	0.00122	0.580	! 4%	(60-140)	1.37%	(30)	09/03/10 16:31	
Toluene		٠	0.697			0.0328	"		0.00729	"	119%	e	0.7709	6 "		
Ethylbenzene		۳	0.696		***	0.0328	a		ND		120%	ь	0.480%	6 •		
Xylenes (total)		*	2.18			0.0493		н	ND	1.74	125%		0.1649	6 °		
Surrogate(s):	4-BFB (FID)		Recovery:	101%		L	.imits: 50-150	% "							09/03/10 16:31	
	a.a.a-TFT (FID)			109%			50-150	0% " 0% "								
	4-BEB (PID) a a a-TET (PID)			101%			50-150 50-150	7% "							"	
	······································															

TestAmerica Anchorage

Johanna Dreher

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC.				Project N	ame:	4540 W	.50th Av	e						
1042 E 6th Ave				Project N	umber:	10-059-0	01						Report Create	d:
Anchorage, AK 99501				Project M	anager:	Sean Pe	terson						12/15/10 09:	19
Diesel Ra	nge Organic	s (C10-C2:	5) per A	K102 with S	Silica Gel (Cleanup	p - Labo	orator	y Qua	lity Con	trol R	esults		
				TestAmeri	ca Anchorag	ge						-		
QC Batch: 1010005	Soil Pr	eparation N	iethod:	EPA 3545										
Analyte	Method	Result	N	idl* mri	L Units	Dil	Source Result	Spike Amt	REC	(Limits)	% RPD	(Limits	a) Analyzed	Notes
Blank (1010005-BLK1)								Ext	racted:	08/26/10 08	3:30			
Diesel Range Organics	AK 102	ND		20.0	mg/kg wet	lx							09/01/10 17:54	
Surragate(s): I+Chloroactadecane		Recovery	85.3%		Limits: 50-1509	% *							09/01/10 17:54	
Blank (1010005-BLK2)								Ext	racted:	08/26/10 11	1:48			
Diesel Range Organics	AK 102	ND	-	20.0	mg/kg wet	lx							09/01/10 17:54	
Surrogate(s). 1-Chlorooctadecane		Recovery:	89.7%		Limits: 50-150	% "							09/01/10/17:54	
LCS (1010005-BS1)								Ext	racted:	08/26/10 08	B:30			
Diesel Range Organics	AK 102	105		20.0	mg/kg wet	lx		139	75.7%	(75-125)	••		09/01/10 17:21	
Surrogate(s). I-Chlorooctadecane		Recovery:	88.9%		Limits: 60-120	% "							09:01:10:17:21	<u></u>
LCS (1010005-BS2)								Ext	racted:	08/26/10 11	:48			
Diesel Range Organics	AK 102	125		20.0	mg/kg wet	lx		139	90.3%	(75-125)	••		09/01/10 17:21	
Surrogate(s): I-Chlorooctadecane		Recovery	95.1%		Limits: 60-120	% "							09:01:10 17:21	
LCS Dup (1010005-BSD1)								Ext	racted:	08/26/10 08	8:30			
Diesel Range Organics	AK 102	106		20.0	mg/kg wet	lx		139	76.3%	(75-125)	0.803%	(20)	09/01/10 16:48	
Surrogate(s) I-Chlorooctadecane		Recovery:	86.6%		Limits: 60-120	% "							09/01/10 16:48	
LCS Dup (1010005-BSD2)								Ext	racted:	08/26/10 11	1:48			
Diesel Range Organics	AK 102	127		20.0	mg/kg wet	lx	••	139	91.8%	(75-125)	1.65%	(20)	09/01/10 16:48	
Surrogate(s): 1-Chloronciadecane		Recovery:	98.6%	······	Limits: 60-120	% "							09/01/10 16:48	
Duplicate (1010005-DUP1)				QC Sour	ce: ATH0049-	10		Ext	racted:	08/26/10 08	8:30			
Diesel Range Organics	AK 102	ND	-	24.5	mg/kg dry	١x	ND				NR	(20)	09/01/10 18:26	
Surrogate(s): 1-Chlorooctadecane		Recovery	83.6%		imits: 50+150	~ "							09:01:10 18:26	·· · ·
Duplicate (1010005-DUP2)				QC Sour	ce: ATH0063-	-01		Ext	racted:	08/26/10 1	:48			
Diesel Range Organics	AK 102	ND		21.6	mg/kg dry	١x	ND				NR	(20)	09/01/10 18:26	
Surrogate(s): 1-Chloronciadecane		Recovery:	92.8%		Limits: 50-150	% "							09/01/10 18:26	
Matrix Spike (1010005-MS1)				QC Sour	ce: ATH0049-	10		Ēxt	racted:	08/26/10 08	8:30			
Diesel Range Organics	AK 102	145	-	24.8	mg/kg dry	lx	ND	172	84.1%	(75-125)		h	09/01/10 20:05	
Surrogate(s): I-Chlorooctadecane		Recovery:	92.1%		Limits: 50-150	% "							09/01/10 20:05	
<u>Matrix Spike (1010005-MS2)</u>				QC Sour	ce: ATH0063-	-01		Ext	racted:	08/26/10 11	:48			
Diesel Range Organics	AK 102	152	-	21.5	mg/kg dry	lx	ND	149	102%	(75-125)			09/01/10 20:05	
Surrogate(s) I-Chlorooctadecane		Recovery:	101%		Limits: 50-150	% "							09:01/10 20:05	

TestAmerica Anchorage

Johanna Drehar

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC.			Р	Project Name:			4540 W.50th Ave							
1042 E 6th Ave			Р	roject Numi	ber:	10-059-0	01						Report Cre	ated:
Anchorage, AK 99501			P	roject Mana	ager:	Sean Per	terson						12/15/10 ()9:19
Diesel	Range Organic	es (C10-C25) pe	r AK102 Tes	with Sili tAmerica	ca Gel (Anchora)	Cleanup ge	o - Labe	oratory	Quali	ty Cor	itrol F	lesults		
QC Batch: 1010005	Soil Pr	eparation Metho	d: EPA	3545										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	REC (Limits)	% RPD	(Limits)	Analyzed	Notes

Matrix Spike Dup (1010005-MSD1) Extracted: 08/26/10 08:30 QC Source: ATH0049-10 173 82.8% (75-125) 1.47% (25) 09/01/10 20:38 AK 102 ND Diesel Range Organics 24.9 mg/kg dry 143 ---ix Recovery: 91.0% Limits: 50-150% ,, 09/01/10 20:38 Surrogate(s) I-Chlorooctadecane Matrix Spike Dup (1010005-MSD2) QC Source: ATH0063-01 Extracted: 08/26/10 11:48

Diesel Range Organics	AK 102	129		21.4	mg/kg dry	١x	ND	148	86.8%	(75-125)	16.6% (25)	09/01/10 20:38
Surrogate(s): 1-Chlorooctadecane	_	Recovery: 92.	9%	L	imits: 50-150%	и						09:01-10:20:38

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

www.testamericainc.com

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC					Project N	ame:	4540 W	/.50th Av	ve						
1042 E 6th /	Ave				Project N	umber:	10-059-	01						Report Create	ed:
Anchorage,	AK 99501				Project M	lanager:	Sean Pe	terson						12/15/10 09:	:19
Dies	el Range Organi	cs (C10-C25)	and Resid	lual Ra	n ge Organic TestAmeri	s (C25-C3 ca Anchora	6) per #	AK102/R	RO -	Labo	ratory ()uality	/ Contr	ol Results	
QC Bate	h: 10H0105	Soil Pre	paration N	lethod:	EPA 3545									·	
Analyte		Method	Result	М	DL* MRI	. Units	Dil	Source Result	Spike Amt	* REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (10H01	05-BLK1)	Extracted: 08/26/10 11:48													
Diesel Range Organi	cs	AK102/103	ND	-	- 20.0	mg/kg wet	ìx							08/27/10 16:57	
Residual Range Orga	Inics	•	ND	-	- 50.0	0	0		-				-	×	
Surrogate(s):	I-Chlorooctadecane Triacontane		Recovery:	89.4% 89.2%		Limits: 50-150 50-150	%" 1%"							08:27 10 16:57 "	
LCS (10H010	5-BS1)								Ext	racted:	08/26/10 11	:48			
Diesel Range Organi	cs	AK102/103	136		- 20.0	mg/kg wet	İx		139	98.1%	(75-125)			08/27/10 17 28	
Residual Range Orga	unics	"	128	-	- 50.0	•	•		129	99.5%	(60-120)			•	
Surrogate(s):	I-Chlorooctadecane Triacontane		Recovery:	95.6% 87.8%		Limits: 60-120 60-120	% * 7% "							08/27/10 17:28 "	
LCS Dup (10)	10105-BSD1)								Ext	racted:	08/26/10 11	:48			
Diesel Range Organi	cs	AK102/103	133		- 20.0	mg/kg wet	١x	**	139	96.0%	(75-125)	2.11%	(20)	08/27/10 18:00	
Residual Range Orga	unics	н	126	-	- 50.0				129	97.9%	(60-120)	1.55%	*	н	
Surrogate(s):	I-Chlorooctadecane		Recovery	91.4%		Limits: 60-126	% "	-						08/27/10 18:00	
	Triacontane			86.3%		60-12	9% "							"	
Duplicate (10)	H0105-DUP1)				QC Sour	ce: ATH0063	-01		Ext	racted :	08/26/10-1	1;48			
Diesel Range Organi	cs	AK102/103	ND	-	- 21.6	mg/kg dry	lx	ND		••		NR	(20)	08/27/10 18:32	
Residual Range Orga	anics	•)	ND	-	- 53.9	٠	•	ND	-•				(50)		
Surrogate(s):	1-Chlorooctadecane		Recovery:	85.2%		Limits: 50-150	% "			-	• • •			08/27/10 18:32	
	Triacontane			85.3%		50-15	0% "							"	
Matrix Spike	(10H0105-MS1)				QC Sour	ce: A'TH0063	-01		Ext	racted:	08/26/10-1	1;48			
Diesel Range Organi	cs	AK102/103	151		21.5	mg/kg dry	lx	ND	149	101%	(75-125)			08/27/10 19:37	
Residual Range Orga	аліся		146	-	53.7	•	•	ND	138	106%	(60-120)			-	
Surrogate(s):	1-Chlorooctadecane		Recovery:	94.2%		Limits: SO-150	% "							08/27/10 19:37	
	Triacontane			85.5%		SO- 1 S	0% "							"	
Matrix Spike D	up (10H0105-MS	SD1)			QC Sour	ce: ATH0063	-01		Ext	racted:	08/26/10 1	:48			
Diesel Range Organi	cs	AK 102/103	138	-	21.4	mg/kg dry	١x	ND	148	93.1%	(75-125)	9.08%	(25)	08/27/10 20:09	
Residual Range Orga	anics	"	133	-	53.4		*	ND	138	96,8%	(60-120)	9.49%	. "	ø	
Surrogate(s)	1-Chlorooctadecane		Recovery	89.1%		Limits: 50-156	% "							08/27/10-20:09	.
	Triacontane			82.8%		50-15	0% "							"	

TestAmerica Anchorage

Johanna Drehar

Johanna L Dreher, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC.			1	Project Nam	ie:	4540 W	.50th A	/e							
1042 E 6th Ave			1	Project Nun	nber:	10-059-0	01						Report Crea	ited:	
Anchorage, AK 99501		i	Project Manager:		Sean Peterson					12/15/10 09:19					
	Physical Para	meters by A	PHA/AST	M/EPA N	fethods	- Labo	oratory (Quality	Соп	trol Res	ults				
			Te:	stAmerica	Anchora	ige									
QC Batch: 10H0094	Soil Pre	paration Met	hod: ***	DEFAUL	Г PREP										
Апаlyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	"% REC	(Limits)	% RPD	(Limits	s) Analyzed	Notes	
Duplicate (10H0094-DUP1)		033-01 Extracted: 08/24/10 16:23													
Dry Weight	TA-SOP	93.5		1.00	%	lx	92.9		-		0 639	% (25)	08/25/10 07:50		
QC Batch: 10H0095	Soil Pre	paration Met	hod: ***]	DEFAUL	T PREP										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes	
Duplicate (10H0095-DUP1)				QC Source:	ATH004	3-01	Extracted: 08/24/10 17:28								
Dry Weight	TA-SOP	96.5		1.00	%	lx	96.3				0.210	% (25)	08/25/10 07:50		
QC Batch: 10H0122	Soil Pre	paration Met	hod: ***	DEFAUL	T PREP										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	REC	(Limits)	°∕ RPD	(Limit	s) Analyzed	Notes	
Duplicate (10H0122-DUP1)				QC Source:	ATH006	3-07		Ext	racted:	08/30/10 1	2:08			<u>-</u>	
Dry Weight	TA-SOP	80.5		1.00	%	lx	80.6				0.017	5% (25)	08/31/10 08:15		

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC.	Project Name:	4540 W.50th Ave	
1042 E 6th Ave	Project Number:	10-059-01	Report Created:
Anchorage, AK 99501	Project Manager:	Sean Peterson	12/15/10 09:19
Gasoline Range Organics (C6-0	C10) by AK101-MS and BTEX by EI	PA Method 8260B - Laboratory	Ouality Control Results

	ansonne Mange U	- Builles (CO-	520) NJ N		Tes	tAmeric	a Anch	orage					., z um	,				
QC Batc	h: 10H0091	Soil Pre	paration M	lethod:	EPA	5030B												
Analyte		Method	Result	Ņ	NDL*	MRL	Uni	ts	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes	
Blank (10H00	91-BLK1)										Extr	acted:	08/24/10 10	1.15				
Gasoline Range Org	anics	AK101-MS/E PA 8260B	ND			3.33	mg/kg v	wet	lx				-	-	 1	08/24/10 12:59		
Benzene		н	ND			0.0133	9		•		•-					м		
Toluene		м	ND			0.0333	"		•									
Ethylbenzene		н	ND		•	0.0333	"		a			•				"		
Xylenes (total)		п	ND			0.0500	Ħ		•									
Surrogate(s):	Dibromofluoromethane		Recovery:	115%		L	imits: 75	-125%	0.03x							08/24/10 12:59 "		
	a,a,a-iri Tohung AN			98 7%			7	5-125%	0.032							"		
	4-RFR			105%			7.	5-125%	N							"		
LCS (10H0091-BS1)											Extracted: 08/24/10 10:15							
Benzene		AK101-MS/E PA 8260B	0.866			0.0133	mg/kg v	wet	lx		0 800	108%	(70-130)			08/24/10 11:54		
Toluene		н	0.840			0.0333						105%	•					
Ethylbenzene			0.845			0.0333	٠				"	106%	•			P.		
Xylenes (total)			2.60		•••	0.0500	•		•		2.40	108%				н		
Surrogate(s)	Dibromofluoromethane		Recovery:	113%		1	imits: 75	-125%	0.03x							08:24-10-11:54		
G	a,a,a-TFT			102%			5	0-150%	1x							"		
	Toluene-d8			95.4%			7.	5-125%	0.03x							"		
	4-BFB			103%			7.	5-125%	"							"		
LCS (10H009	1-BS2)										Exti	acted:	08/24/10-10):15				
Gasoline Range Org	anics	AK101-MS/E PA 8260B	20.8			3.33	mg/kg	wet	lx		20.0	104%	(60-120)			08/24/10 10:49		
Surrogate(s)	Dibromofluoromethane		Recovery:	114%		1	imits: 75	5-125%	0.03x							08/24:10-10:49		
	a.a.a-TFT			84.0%			5	0~150%	/x							и		
	Toluene-d8			97.0%			7.	5-125%	0.03x									
	4-BFB			99,9%			7	5-125%	"							"		
LCS Dup (10	H0091-BSD1)			_							Ext	acted:	08/24/10 10	0:15				
Benzene		AK101-MS/E PA 8260B	0.946			0.0133	mg/kg	wet	Ix	-	0.800	118%	(70-130)	8.82%	(20)	08/24/10 12:26		
Toluene		0	0.943			0.0333	•			-	n	118%	۹	11 5%		a		
Ethylbenzene			0.931			0.0333	-				9	116%	6	9.71%	. "	a.		
Xylenes (total)		"	2.89			0.0500	•		ø		2.40	121%	ъ	10.8%	. "			
Surrogate(s)	Dibromofluoromethane		Recovery:	113%			amits: 7	5-125%	0.03x							08:24 10 12:26		
	a.a.a-TFT			111%			5	0-150%	1x							*		
	Tobene_d8			98 1%			7	5-125%	0.03x							"		

TestAmerica Anchorage

Johanna Dheher

4-8FB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 28 of 37

Johanna L Dreher, Client Services Manager

www.testamericainc.com

105%

75-125% "

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC					Project Na	me:	4540 W	.50th A	ve						
1042 E 6th /	Ave				Project Nu	unber:	10-059-0	н						Report Create	d
Anchorage,	AK 99501				Project Ma	anager:	Sean Pet	erson						12/15/10 09:	19
	Gasoline Range O	rganics (C6-	C10) by A	K101-N	AS and BTE TestAmeric	X by EP. a Anchora	A Metho age	d 8260B	i - Lai	orato	ory Qua	lity Co	ontrol I	Cesults	
QC Batc	h: 10H0091	Soil Pre	paration M	lethod:	EPA 5030B										
Analyte		Method	Result	М	DL* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
LCS Dup (10)	H0091-BSD2)								Ext	acted:	08/24/10 10	0:15			
Gasoline Range Org	anics	AK101-MS/E PA 8260B	20.4		- 3.33	mg/kg wet	lx		20.0	102%	(60-120)	1.89%	á (20)	08/24/10 11:21	
Surrogate(s):	Dibromofluoromethane		Recovery:	111%	L	imits: 75-12	5% 0.03x							08/24/10 11:21	
	a.a.a-TFT			77.9%		50-15	50% Ix							"	
	Toluene-d8 1 BEB			97.3% 10.1%		75-12	25% 0.03x 25% "							"	
	4-01-0			10174											
Duplicate (10	H0091-DUP1)			_	QC Sourc	e: ATH006	1-10		Ext	racted:	08/24/10 10	D:15			
Gasoline Range Org	anics	AK101-MS/E	14.2	-	- 5.80	mg/kg dry	1x	13.5				5.41%	6 (35)	08/24/10 14:13	
Benzene		FA 8200B	ND	-	0.0232		•	ND	•-			NR	(25)		
Toluene		M	ND	-	0.0580		•	NÐ				6.06%	6 "	14	
Ethylbenzene		н	0.518	-	0.0580	u	•	0,504				2.72%	<i>`</i> o "	14	
Xylenes (total)		al.	3.03		0.0869	н	а	2.99				1.50%	6 "	•	
Surrogate(s)	Dibromofluoromethane		Recovery:	114%	L	imits: 75-12	5% 0.03x	-						08/24/10 14:13	
	a.a.a-TFT			82.8%		50-1.	50% Ix								
	Toluenc-d8			97 1%		75-1	25% 0.03x							"	
	4-BFB			103%		75-1	25%								
Matrix Spike	(10H0091-MS1)				QC Source	e: ATH006	il-10		Ext	racted:	08/24/10 1	0:15			
Benzene	<u> </u>	AKIOI-MS/E PA 8260B	1.08	-	0.0232	mg/kg dry	lx	ND	0.672	161%	(60-140)			08/24/10 14:45	M7
Toluene			1.07	-	0.0580	e	в	0.0197	9	157%					М7
Ethylbenzene			1.56	-	0.0580	•		0.504		157%	•				M7
Xylenes (total)		и	6.26	-	0.0869			2.99	2.02	162%					M7
Surrogate(s):	Dibromofluoromethane		Recovery:	115%		Limits: 75-12	25% 0.03x							08/24/10/14:45	
	a,a,a-TI-T			79.9%		50-1	50% Ix							"	
	Toluene-d8			93.9% 10.1%		75-1	25% 0.03x 75% "							"	
	4-BFB			10470		/0-1	2,976								
Matrix Spike I	Dup (10H0091-MS	D1)			QC Sour	e: ATH000	51-10		Ext	racted:	08/24/10 1	0:15			
Benzene		AK101-MS/E	1.80		0.0232	mg/kg dry	łx	ND	0.672	267%	(60-140)	49.79	% (25)	08/24/10 15:18	M7, R2
Toluene		PA 8260B	1.75		0.0580	•	-	0.0197	h	257%		47.89	% *	н	M7, R2
Ethylbenzene		н	2.26		0.0580			0.504	м	261%	•	36.69	% *	-	M7, R2
Xylenes (total)		*	8.40		0.0869	•		2.99	2.02	269%	M	29.39	% "	н	M7, R2
Surrogate(s):	Dibromofluoromethane		Recovery:	115%		Limits: 75-12	25% 0.03x							08/24/10 15:18	
	a.a.a-TFT			80.3%		50-1	50% Ix							"	
	Toluene-d8			95.2%		75-1	25% 0.03x							"	
	4-BI-B			104%		/3-1	2370								

TestAmerica Anchorage

Johanna Dreher Johanna L Dreher, Client Services Manager

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563,9200 fax: (907) 563,9210 C5 Approval Number: UST-067

BGES, INC. 1042 E 6th Ave]	Project Na Project Nu Project Ma	me: mber:	4540 W 10-059-0 Sean Pet	7 .50th A v 01	/e					Report Crea	ted:
Alicholage, AK 99501					inager.	Scan Fei	leison						12/15/10 0	7.17
	E	DB by EPA	Method 8 T	6011 - L estAmerio	aborato ca Spoka	ory Quali ne	ity Conti	rol Res	ults					
QC Batch: 10H0151	Soil Pre	paration Me	thod: EPA	3550B										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	™ RPD	(Limit	i) Analyzed	Notes
Blank (10H0151-BLK1)								Ext	acted:	08/30/10 11	1:10			
1,2-Dibromoethane	EPA 8011	ND	0.0845	1.00	ug/kg wet	lx							08/30/10 18:28	
1.2-Dibromo-3-chłoropropane		ND	0.107	1.00	н								P	
LCS (10H0151-BS1)								Exti	racted:	08/30/10-11	1:10			
1,2-Dibromoethane	EPA 8011	5 14	0.0845	1.00	ug/kg wet	İx		5 00	103%	(60-140)			08/30/10 18:53	
),2-Dibromo-3-chloropropane	a	4.78	0.107	1.00	N			•	95.6%	•				
LCS (10H0151-BS2)								Exti	racted:	08/30/10	l:10			
I.2-Dibromoethane	EPA 8011	5.00	0.0845	1.00	ug/kg wei	lx		5.00	100%	(60-140)	·		08/30/10 17:39	
1,2-Dibromo-3-chloropropane	н .	5.08	0.107	1.00	м	-		۲	102%		••			
Matrix Spike (10H0151-MS1)				QC Source	: ATH006	3-09		Ext	racted:	08/30/10 11	1;10			
1,2-Dibromoethane	EPA 8011	7.17	0,107	1.26	ug/kg dry	lx	ŃD	6.31	114%	(60-140)			08/30/10 19:43	
1.2-Dibromo-3-chloropropane	v	6.17	0,135	1.26	•	•	0.513		89,7%					
Matrix Spike Dup (10H0151-M	SD1)			QC Source	: ATH006	i 3-09		Ext	racted:	08/30/10 1	1:10	<u> </u>		
1,2-Dibromoethane	EPA 8011	7.09	0.107	1.27	ug/kg dry	lx	ND	6.36	112%	(60-140)	1.03%	6 (20)	08/30/10 20.08	

0.136

6.08

1.27

н

...

0.513

* 87.5%

9

1.54% "

TestAmerica Anchorage

1,2-Dibromo-3-chloropropane

Johanna Dreher

Johanna L Dreher, Client Services Manager

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

1042 E 6th AveProject Number:10-059-01Report Created:Anchorage, AK 99501Project Manager:Sean Peterson12/15/10 09:19	BGES, INC.	Project Name:	4540 W.50th Ave	
Anchorage, AK 99501 Project Manager: Sean Peterson 12/15/10 09:19	1042 E 6th Ave	Project Number:	10-059-01	Report Created:
	Anchorage, AK 99501	Project Manager:	Sean Peterson	12/15/10 09:19

	Volatile Organ	uic Compounds	by EP	A Metho estAmeri	od 8260B ca Spokane	- Labo	oratory (Quality	Cont	rol Resu	ılts			
QC Batch: 10H0156	Soil Pre	paration Method	l: GC/	'MS Vola	tiles									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (10H0156-BLK1)								Extr	acted:	08/31/10 09	:23			
Dichlorodifluoromethane	EPA 8260B	ND		0.100	mg/kg wet	١x						(8/31/10 11.52	
Chloromethane	*	ND		0.500	v	e							•	
Vinyl chloride	11	ND		0.00900	v	0							×	
Bromomethane		ND		0.500										
Chloroethane	u	ND		0,100	•									
Trichlorofluoromethane	N	ND		0.0300	•									
1,1-Dichloroethene	н	ND		0.0300		а	-						в	
Carbon disulfide	H	ND		0.100		•							U	
Methylene chloride	м	ND		0.0910	۲						-		a	
Acetone	v	ND		1.00	٠	м								
trans-1,2-Dichloroethene		ND		0.300									•	
Methyl tert-bulyl ether	u	ND		0.100	•							••	м	
1,1-Dichloroethane	11	ND		0.100		-							•	
cis-1,2-Dichloroethene	n	ND		0.200	0	P								
2,2-Dichloropropane	н	ND		0.100	a					-			н	
Bromochloromethane	н	ND		0.100									•	
Chloroform	м	ND		0.100										
Carbon tetrachloride	н	ND		0.0300	•	-	+							
1.1.1-Trichloroethane	н	ND		0.100	•	н								
2-Butanone		ND		1.00										
1.1-Dichloropropene	ø	ND		0,100	P	-							a	
Benzene		ND		0.0200		н							м	
1 2-Dichloroethane (EDC)	v	ND		0.0150	-	в							н	
Trichloroethene		ND		0.0270		в			. -					
Dibromomethane		ND		0.100										
1.2-Dichloropropane	•	ND		0.0170	۳	0				•-			н	
Bromodichloromethane	a	ND		0,100	v			+					м	
cis-1.3-Dicbloropropene	"	ND		0.0200		9							н	
Toluene		ND		0.100	4								н	
4-Methyl-2-pentanone	м	ND		1.00	"									
trans-1.3-Dichloropropene	н	ND		0.0200	ŀ	a							u	
Tetrachloroethene	-	ND		0.0300	н								н	
1 2-Trichloroethane	м	ND		0.0170		۳								
Dibromochloromethane	M	ND		0.100		٠								
1.3-Dichloropropane	M	ND		0.0200										
1.2-Dibromoethane	•	ND		0.100										
2-Hexanone	U	ND		1.00										
Ethvibenzene	U	ND		0.100	в	v		-						
Chlorobenzene	u	ND		0.100		v							n	

TestAmerica Anchorage

Johanna Dheher

Johanna L Dreher, Client Services Manager

<u>TestAmerica</u>

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC.	Project Name:	4540 W.50th Ave	
1042 E 6th Ave	Project Number:	10-059-01	Report Created:
Anchorage, AK 99501	Project Manager:	Sean Peterson	12/15/10 09:19

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results TestAmerica Spokane

QC Batch:	10H0156	Soil Pre	paration M	ethod: GC	C/MS Volat	tiles						_			
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (10H015	6-BLK1)								Extr	acted:	08/31/10 09	:23			
1,1,1,2-Tetrachloroeth	ane	EPA 8260B	ND		0,100	mg/kg wet	١x							08/31/10 11:52	
m,p-Xylene		N	ND		0.400	н	'n						**	n	
a-Xylene		•	ND		0.200	u									
Styrene		M	ND		0.100	a	-				-			м	
Bromoform			ND		0.100	н	•							в	
lsopropylbenzene		"	ND		0.100 .	•	•		••						
n-Propylbenzene			ND		0.100	н	۲								
1.1.2.2-Tetrachloroeth	але	U	ND		0.0170		٣							н	
Bromobenzene		a	ND		0,100		•						*-	м	
1,3,5-Trimethylbenzer	e	۳	ND		0.100	v	в							-	
2-Chlorotoluene			ND		0.100	4	•							н	
1,2,3-Trichloropropan	e	н	ND	-**	0 1 00		-						**		
4-Chiorotoluene		e.	ND		0.100	-	۲								
tert-Butylbenzene		u	ND		0.100								••	n	
1,2,4-Trimethylbenzer	e		ND		0.100	0	Ð					••		•	
sec-Butylbenzene		н	ND		0.100		•							-	
p-lsopropyltoluene		×	ND		0.100	4	•	••							
1,3-Dichlorobenzene			ND		0.100	N	•							4	
1,4-Dichlorobenzene		n	ND		0 100	M	•							•	
n-Butylbenzene		v	ND		0.100	٠	۰							14	
1,2-Dichlorobenzene		"	ND		0.100	в								9	
1,2-Dibromo-3-chloro	рторале	۳	ND		0.500		0	-		••				•	
Hexachlorobutadiene		M	ND		0,100		"					••		•	
1,2,4-Trichlorobenzen	e	м	ND		0.100	•	м				••			•	
Naphthalene		P	ND		0.200	*								*	
1,2,3-Trichlorobenzer	e	в	ND		0.100		٠			**					
Surrogate(s):	Dibromofluoromethane		Recovery:	90.4%	Lin	nits: 42.7-151%	"							08:31:10 11:5	2
	Toluene-d8			89.0%		50.8-132%	"							"	
	4-hromofluorohenzene			99.8%		51-136%	"							"	

TestAmerica Anchorage

Johanna Dreher-

Johanna L Dreher, Client Services Manager

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC.	Project Name:	4540 W.50th Ave	
1042 E 6th Ave	Project Number:	10-059-01	Report Created:
Anchorage, AK 99501	Project Manager:	Sean Peterson	12/15/10 09:19

	•		ine comp	541145 0	TestA	meri	ca Spokane									
QC Batc	h: 10H0156	Soil Pre	paration N	lethod:	GC/MS	/ola	tiles									
Analyte		Method	Result	M	IDL* N	1RL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
LCS (10H015	6-BS1)									Extr	acted:	08/31/10 09	:23			
1.1-Dichloroethene		EPA 8260B	0.245	-	0.0	300	mg/kg wet	1x		0.300	81.6%	(54.2-150)			08/31/10 12:21	
Benzene		и	0.252	-	0.0	200	м			v	84.0%	(75.8-122)			м	
Trichloroethene		и	0.264		0.0	270		-		v	88.0%	(78-122)			н	
Toluene			0.283	-	· 0.	100	-	-		0	94.3%	(80-124)	••		н	
Chlorobenzene			0.278	-	0.	100	۳	×	-	•	92.6%	(80-120)				
Surrogate(s):	Dibromofluoromethane		Recovery:	89.6%		Lin	niis: 42.7-151%	"							08:31/10/12:21	
	Tolucne-dă			95.8%			50.8-132%	"								
	4-bromofluorobenzene			102%			51-136%	"							"	
LCS Dup (10)	H0156-BSD1)									Exti	acted:	08/31/10 09	:23			-
1,1-Dichloroethene		EPA 8260B	0.236	-	0.0	300	mg/kg wet	ix.		0.300	78.6%	(54.2-150)	3.64%	6 (25)	08/31/10 12:50	
Benzene		M	0.252	-	0.0	200	•	11		•	84.2%	(75.8-122)	0.2489	/a *	"	
Trichloroethene			0.262	-	0.0	270	a	a		-	87.4%	(78-122)	0.7139	Va "	"	
Toluene			0.283	-	0.	100	u	•		-	94.3%	(80-124)	0.00%	- "	4	
Chlorobenzene		и	0.280	-	0.	100		•		۲	93.2%	(80-120)	0.673	ו "		
Surrogate(s):	Dibromofluoromethane		Recovery:	89.4%		Lin	nits: 42.7-151%	"			-				08/31/10 12:50	
	Toluene-d8			95.4%			50.8-132%	u							"	
	4-bromofluorobenzene			103%			51-136%	"							"	

TestAmerica Anchorage

Johanna Dreher

Johanna L Dreher, Client Services Manager

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC.	Project Name:	4540 W.50th Ave	
1042 E 6th Ave	Project Number:	10-059-01	Report Created:
Anchorage, AK 99501	Project Manager:	Sean Peterson	12/15/10 09:19
		thada Laboratara Ovalita Card	tual Danulta

Conventional Chemistry Parameters by AFHA/EFA Methods - Laboratory Quality Control Results TestAmerica Spokane													
QC Batch: 1010009	Soil Pre	paration Met	hod: Wet	Chem									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt RE	C (Limits)	% RPD	(Limits)	Analyzed	Notes
Duplicate (1010009-DUP1)				QC Source:	ATH0063-1	3		Extracted	1: 08/30/10 1	4:30			
% Solids	TA SOP	80.8		0.0100 %	6 by Weight	1x	81.1			0.3719	% (5)	08/31/10 14:15	

TestAmerica Anchorage

Johanna Dheher

Johanna L Dreher, Client Services Manager

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC.	Project Name:	4540 W.50th Ave	
1042 E 6th Ave	Project Number:	10-059-01	Report Created:
Anchorage, AK 99501	Project Manager:	Sean Peterson	12/15/10 09:19
Total Metals	per EPA 6000/7000 Series Methods	- Laboratory Quality Control Res	sults

			T	estAmeri	ca Portland									
QC Batch: 10H1001	Soil Pre	paration Meth	iod: EPA	3050										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (10H1001-BLK1)								Extr	acted:	08/31/10 10	:16			
Lead	EPA 6020	ND		0.476	mg/kg wet	İx		-	-				08/31/10 21:34	
LCS (10H1001-BS1)				•				Extr	acted:	08/31/10 10	:16			
Lead	EPA 6020	51.6		0.476	mg/kg wet	١x		47.6	108%	(80-120)			08/31/10 21:38	
Matrix Spike (10H1001-MS1)				QC Source	e: ATH0063-0	n .		Extr	acted:	08/31/10 10	:16			
Lead	EPA 6020	60.1		0.532	mg/kg dry	lx	3.41	53.2	106%	(75-125)			08/31/10 21:50	
Matrix Spike Dup (10H1001-MS	<u>D1)</u>			QC Source	e: ATH0063-0	1		Extr	acted:	08/31/10 10	:16			
Lead	EPA 6020	69.4		0.532	mg/kg dry	lx	3.41	53.2	124%	(75-125)	14.5%	% (40)	08/31/10 21:54	

TestAmerica Anchorage

Johanna Dheher

Johanna L Dreher, Client Services Manager

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, INC.	Project Name:	4540 W.50th Ave	
1042 E 6th Ave	Project Number:	10-059-01	Report Created:
Anchorage, AK 99501	Project Manager:	Sean Peterson	12/15/10 09:19
Parcant Dry W	eight (Solids) per ASTM D2216.20	- Laboratory Quality Control Re	-sults
reiceat Diy w	right (Souria) her Wallin D7510-00	- Davoratory Quanty Control Ke	-94113

	-		Т	estAmeric	a Portland		•	-				
QC Batch: 10H0881	Soil Pre	paration Meth	nod: Dry	Weight								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt RE	C (Limits)	% (Lim RPD	its) Analyzed	Notes
Duplicate (10H0881-DUP1)				QC Source:	ATH0063-01	l I		Extracted	: 08/26 /10 I	4:50		
% Solids	ASTM D2216-80	94.2		0.0100 %	6 by Weight	l x	93.9		-*	0.271% (20)	08/27/10 07:10	
Duplicate (10H0881-DUP2)				QC Source:	ATH0063-02	2		Extracted	: 08/26/10 L	4:50		
% Solids	ASTM D2216-80	94.8		0.0100 %	6 by Weight	1x	94.8		-	0.0635% (20)	08/27/10 07:10	

TestAmerica Anchorage

Johanna Drehar

Johanna L Dreher, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

www.testamericainc.com

ANCHORAGE, AK 2000 W. INTERNATIONAL AIRPORT ROAD, SUITE A-10 ANCHORAGE, AK 99502-1119 ph: (907) 563.9200 fax: (907) 563.9210 CS Approval Number: UST-067

BGES, IN	C.		Project Name:	4540 W.50th Ave	
1042 E 6th	Ave		Project Number:	10-059-01	Report Created:
Anchorage	, AK	99501	Project Manager:	Sean Peterson	12/15/10 09:19
<u> </u>		N	lotes and Definit	ions	
Report Sp	ecifi	c Notes:			
J	-	Estimated value. Analyte detected at a level less that (MDL). The user of this data should be aware that the	an the Reporting Lim	it (RL) and greater than or equal to the freliability.	Method Detection Limit
L	-	Laboratory Control Sample and/or Laboratory Cont detected, data not impacted.	rol Sample Duplicate	e recovery was above the acceptance lim	its. Analyte not
LI	-	Laboratory Control Sample and/or Laboratory Cont	rol Sample Duplicat	e recovery was above acceptance limits.	
M7	-	The MS and/or MSD were above the acceptance lin	nits. See Blank Spik	e (LCS).	
QP	-	Hydrocarbon result partly due to individual peak(s)	in quantitation range	e.	
R1	-	The RPD between the primary and confirmatory and	alysis exceeded 40%	Per method 8000B, the higher value w	as reported.
R2	•	The RPD exceeded the acceptance limit.			
RL7	-	Sample required dilution due to high concentrations	of target analyte.		
Z5	-	Due to sample matrix effects, the surrogate recover acceptance limits.	y was outside accept	ance limits. Secondary surrogate recove	ry was within the
ZX	-	Due to sample matrix effects, the surrogate recover	y was outside the acc	ceptance limits.	
Laborator	w Re	morting Conventions:			
DET	<u>y I</u> (Angles DETECTED at as about the Reporting Limit	Qualitative Analys	ees only	
DEI	-	Analyte DETECTED at of above the reporting Links		oc appropriate)	
ND	-	Analyte NOT DETECTED at or above the reporting t		as appropriate).	
NR/NA	-	Not Reported / Not Available		_	
dry	-	Sample results reported on a Dry Weight Basis. Results	ilts and Reporting Li	mits have been corrected for Percent Dr	y Weight.
wet	-	Sample results and reporting limits reported on a Wet on a Wet Weight Basis.	: Weight Basis (as re	ceived). Results with neither 'wet' nor 'd	iry' are reported
RPD	-	RELATIVE PERCENT DIFFERENCE (RPDs calcu	lated using Results,	not Percent Recoveries).	
MRL	-	METHOD REPORTING LIMIT. Reporting Level at	t, or above, the lowe	st level standard of the Calibration Table	
MDL*	-	METHOD DETECTION LIMIT. Reporting Level at *MDLs are listed on the report only if the data has be as Estimated Results.	t, or above, the statis een evaluated below	tically derived limit based on 40CFR, Pa the MRL. Results between the MDL and	rt 136, Appendix B. d MRL are reported
Dil	-	Dilutions are calculated based on deviations from the found on the analytical raw data.	standard dilution pe	rformed for an analysis, and may not rep	present the dilution
Reporting Limits	-	Reporting limits (MDLs and MRLs) are adjusted bas percent solids, where applicable.	ed on variations in s	ample preparation amounts, analytical di	lutions and
Electronic Signature	-	Electronic Signature added in accordance with TestA Application of electronic signature indicates that the Electronic signature is intended to be the legally bind	merica's <i>Electronic</i> report has been revie ling equivalent of a t	Reporting and Electronic Signatures Pol ewed and approved for release by the lab	licy. poratory.

TestAmerica Anchorage

Johanna Drehar

Johanna L Dreher, Client Services Manager

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
 42

 11922 E. First Ave, Spokane, WA 99206-5302
 50

 9405 SW Nimbus Ave,Beaverton, OR 97008-7145
 50

 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119
 90

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

		·· ·			C	HAI	NOF	CUST	ODY	REP	ORT	• 				Work O	rder #:	ATHAO63	
CLIENT: KGES						INVOIO	CE TO:										TURNAL	ROUND REQUES	т
ADDRESS: S. PETER	th An RSON	ute					•	Ĩ	SGE	S						X	in l Organic & l	Business Days *	កគោ
PHONE: 644-2900	FAX: Se	Can Bibles	s/NC	. con	/	P.O. NU	MBER:			-					· · · ·	STD.	Petroleum)	Hydrocarbon Analyses	
PROJECT NAME: 4540 W.	. 5074	ANE	[PRE	SERVATT	VE						V	111	3 2 1	<1
PROJECT NUMBER: 10-05	59-01	//···		Muite				M. OH								370			
		1			r	·		REQUES	TED ANA	LYSES						6 o	THER :	Specify:	
SAMPLED BY: S. PETELS	jan_		4	1 ph	1	Ne VE	3	A								* Turnaround	Requests less	than standard may incur	Rush Charge:
CLIENT SAMPLE IDENTIFICATION		SAMPLING DATE/TIME	Pase	6 p BAE	05	NATION	¥ [*]	ONE STATE								MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WOID
531-1-0820	8/201	10 6938	X	Y.			*						•			S	В		01
2SB1-2-0820		6943	×	×			X							•		S	6		02.
3581-3-0820		1001	×	×			¥									2	6		03
581-4-0820		1039	1	¥			X									2	6		04
582-1-5820		_1047	۴	X			x									S	6		05
582-2-0820		1169	×	*			X	·								5	6		06
1582-3-0820		1139	X	×			×									Š	6		07
532.4-0320		1210	4	X			×			·			_			S	Ģ		08
285-2-0820	V	1555	x	ىر	×	×	×	メ								S	$\left \phi \right $		09
10 SBI-5-0823	1	23/10 1014	×	×			7									<u>S</u>	$ \varphi $		10
PRINT NAME: SEANS PETRAS	⊳ √	FIRM: ZO	SES			DATE TIME	= 8[¥: - 1109	3/10	_	RECEIVE PRINT N	AME: R	sheet S	<u>}</u> i∮n			FIRM	TA-A		8123110 11:09
RELEASED BY:						DATE	2			RECEIVE	DBY:							DATE:	
ADDITIONAL REMARKS:		FIRM:				TIME	£	· ·· ·		PRINT N	AME:					FIRM	:	TIME:	
DED/RED VIT AK 102	103;6	PAREN UA AKI	1 /824	N or B	02 <i>[b</i>	r Leto	VIA	6020; N	LAPYTH	HINE	-VAA	8270	SIM	EQB	VM B	olled	-	TBID 7 PAC	μ / _{OF} Ζ
1,2-DICHLORDETHANE	(DCA)	VIA 8260	1			-		-								•			TAL~1000(04

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

			C	HAIN	IOF	CUST	FODY	REP	ORT				· Work O	rder #:	•		
CLIENT: BGES				INVOIO	CE TO:							· ·		TURNA	ROUND REQUEST	r I	
REPORT TO: 1042 E. 674 AUE ADDRESS: S. PRETERSON					Ì	B66	5							in Business Days * Organic & Inorganic Analyses			
PHONE: 644-2900 FAX: SPAND 605414	r (a	×.		PO NU	MBER					·				Petroleum	4 3 2 1 Hydrocarbon Analyses		
ROJECT NAME: 4540 W- Sota ANE				1		PR	ESERVA	TVE					` x	11	3 2 1 <	1	
PROJECT NUMBER: 10-659-01									·				, जिन्हे			_	
			.		,	REQUE	STED AI	ALYSES			r	····-	(o	THER	Specify:	· .	
SAMPLED BY: S. PETERSON	(and	1	p	J. Shi	1.0								* Turnaround i	Requests le:	ss than standard may incur i	Rush Charges.	
CLIENT SAMPLE SAMPLING IDENTIFICATION DATE/TIME	5161	OF THE PART	pro	Watthe	LEAN	400							MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WOID	
1 TRIP BLANK	x	X													· _ · · _	11,12	
· 582-6-0520 sp/10 1600	×	×	×	×	×	4	ļ	-					<u> </u>	6		13	
3			1 1														
4		ŀ					•										
5		·															
6																	
8									,								
9						-											
10																	
RELEASED BY:	0			DATE	8/2	3/13		RECEIVE	DBY:	tole 1	2				DATE &	312310	
PRINT NAME: SEAN PETERSON FIRM: 2	JGE-	>	•	TIME	100	<u> </u>		PRINT N	AME:	Robert	Tim		FIRM	TA-J	K TIME:	1.09	
PRINT NAME: FIRM:				TIME	с 9			PRINT N	AME:				FIRM		DATE: TIME:		
ADDITIONAL REMARKS:								:							TEMP. TBID.7 KAGE	2. 2.	

		` /		
<u>Test America Anchorage</u>	Cooler R	<u>Receipt Fo</u>	rm	
WORK ORDER # ATHING 3 CLIENT:	BUDES	PROJEC	T: 4540	W. 50th Are
Date /Time Cooler Arrived 8 / 2.3 / 16 /1 .09	Cooler signed i	—— forby: КьЪр	+ Tsin	
	000000 005000	(Print name	e)	<u></u>
Preliminary Examination Phase:				
Date cooler opened: X same as date received or/_		A. Patt 2		
Cooler opened by (print) <u>NUDEFP ISIN</u>	(sign)	WOLM OF		
1. Delivered by ALASKA AIRLINES Fed-Ex UPS	NAC LIN	IDEN LACLIEN	T Other	<u>. </u>
Shipment Tracking # if applicable	_ (include copy of	shipping papers in f	file)	
2. Number of Custody Seals <u>U</u> Signed by		_ Date/	<u>/</u>	
Were custody seals unbroken and intact on arrival?	Yes	No		
3. Were custody papers sealed in a plastic bag?	🕅 Yes	No		
4. Were custody papers filled out properly (ink, signed, etc.)?	Ves	No		
5. Did you sign the custody papers in the appropriate place?	Yes	🗌 No		
6. Was ice used? XYes No Type of ice: blue ice	ce realice	<u>dry ice</u> Condit	ion of Ice:	
Temperature by Digi-Thermo Probe <u>0,7</u> °C Therr Acceptance Criteria: 0 - 6°C	nometer #	5		
7. Packing in Cooler: Dubble wrap styrofoam Acardboard	Other:			
8. Did samples arrive in plastic bags?	🗌 Yes	Σ́No		
9. Did all bottles arrive unbroken, and with labels in good condition	? 💢 Yes	No		
10. Are all bottle labels complete (ID, date, time, etc.)	Yes	🗌 No		
11. Do bottle labels and Chain of Custody agree?	Yes Yes	🗌 No		
12. Are the containers and preservatives correct for the tests indicate	d? 🕅 Yes	🗌 No		
13. Conoco Phillips, Alyeska, BP H2O samples only: pH < 2?	Yes	No	X N/A	
14. Is there adequate volume for the tests requested?	Yes	🗌 No		
15. Were VOA vials free of bubbles? $\mathbf{X} \mathbf{N} \mathbf{A}$	🗌 Yes	[] No		
If "NO" which containers contained "head space" or bubble	es?			
Log-in Phase:				
Date of sample log-in $8/23/10$	Л	nta.		,
Samples logged in by (print) <u>Robert Tsp</u>	(sign) <u>//</u>	olel 72	<u> </u>	
1. Was project identifiable from custody papers?	Yes	🗌 No		
2. Do Turn Around Times and Due Dates agree?	Yes	🗌 No		
3. Was the Project Manager notified of status?	∐.Yes	🗌 No		
4. Was the Lab notified of status?	Yes Yes	∐ No		
5. Was the COC scanned and copied?	Yes	□ No		

Client Sample ID: MW3-0826

SDG: .	ATH0076
Lab Sample ID: ATH	0076-01

TestAmerica Job ID: ATH0076

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
Ethylbenzene	5510	RL7	50.0		ug/l	100	_	AK101/EPA 8021B	total
Xylenes (total)	28500	RL7	150		ug/t	100		AK101/EPA 8021B	total
Benzene - RE1	115000	RL7	500		ug/l	1000		AK101/EPA 8021B	total
Ethylbenzene - RE1	4360	RL7	500		ug/l	1000		AK101/EPA 8021B	total
Gasoline Range Organics - RE1	535000	RL7	50000		ug/l	1000		AK101/EPA 8021B	total
Toluene - RE1	104000	RL7	500		ug/l	1000		AK101/EPA 8021B	total
Xylenes (total) - RE1	29000	RL7	1500		ug/l	1000		AK101/EPA 8021B	totał
Lead	0.0380		0.00500		mg/l	5		EPA 6020	total
1,2-Dibromoethane	0.150		0.0100		ug/i	1		EPA 8011	total

Client Sample ID: MW4-0826

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
Ethylbenzene	8790	RL7	50.0		ug/l	100	-	AK101/EPA 8021B	total
Xylenes (total)	44200	RL7	150		ug/l	100		AK101/EPA 8021B	total
Benzene - RE1	64500	RL7	500		ug/l	1000		AK101/EPA 8021B	total
Ethylbenzene - RE1	7810	RL7	500		ug/i	1000		AK101/EPA 8021B	total
Gasoline Range Organics - RE1	523000	RL7	50000		ug/l	1000		AK101/EPA 8021B	total
Toluene - RE1	122000	RL7	500		ug/i	1000		AK101/EPA 8021B	total
Xylenes (total) - RE1	45400	RL7	1500		ug/i	1000		AK101/EPA 8021B	total

Client Sample ID: MW5-0826

Analyte	Result	Qualifier	RL	MOL	Unit	Dil Fac	D	Method	Prep Type
Ethylbenzene	5460	RL7	50.0		ug/i	100	_	AK101/EPA 8021B	total
Xylenes (total)	28100	RL7	150		ug/l	100		AK101/EPA 8021B	total
Benzene - RE1	118000	RL7	500		ug/i	1000		AK101/EPA 80218	total
Ethylbenzene - RE1	5300	RL7	500		ug/l	1000		AK101/EPA 8021B	total
Gasoline Range Organics - RE1	570000	RL7	50000		ug/l	1000		AK101/EPA 8021B	total
Toluene - RE1	110000	RL7	500		ug/l	1000		AK101/EPA 8021B	total
Xylenes (total) - RE1	33200	RL7	1500		ug/l	1000		AK101/EPA 8021B	total
Lead	0.0300		0.00500		mg/l	5		EPA 6020	total
1,2-Dibromoethane	0.153		0.0100		ug/l	1		EPA 8011	total

Client Sample ID: Trip Blank

No Detections.

Client Sample ID: Trip Blank

No Detections.

Client Sample ID: Trip Blank

No Detections.

Lab Sample ID: ATH0076-03

Lab Sample ID: ATH0076-02

Lab Sample ID: ATH0076-04

Lab Sample ID: ATH0076-05

Lab Sample ID: ATH0076-06

	× 2	A	Analytical Da	ata					
Client: BGES, INC. Project/Site: [none]							TestAm	erica Job ID: A ⁻ SDG: A ⁻	TH0076 TH0076
Client Sample ID: MW3-0826 Date Collected: 08/26/10 12:20 Date Received: 08/26/10 14:45		•					Lab Samp	le ID: ATH0(Matrix	076-01 :: Water
Method: EPA 8260B - Volatile Orga	anic Compou Result	inds by EP Qualifier	A Method 8260E	3 MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.2-Dichloroethane (EDC)	ND	RL3	100		ug/i		08/27/10 14:41	08/27/10 19:41	100
Naphthalene	ND	RL3	200		ug/l		08/27/10 14:41	08/27/10 19:41	100
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	83.6	RL3	62.2 - 128				08/27/10 14:41	08/27/10 19:41	100
Toluene-d8	89.2	RL3	67.8 - 120				08/27/10 14:41	08/27/10 19:41	100
4-bromofluorobenzene	91.6	RL3	77.3 - 129				08/27/10 14:41	08/27/10 19:41	100
Method: AK101/EPA 8021B - Gaso	line Range C	Organics (C	6-C10) and BTE	X per AK10	1		Business	4 b	Dil Ess
	Result	Quaimer	RL	·	Unit	_	09/31/10 08:33	00/01/10 02:52	100
Ethylbenzene	5510	RL7	50.0		ug/1		08/31/10 08:32	09/01/10 02:52	100
Xylenes (total)	28500	RL/	150		ugn		00/31/10 00.32	09/01/10 02:52	100
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	108		50 - 150				08/31/10 08:32	09/01/10 02:52	100
4-BFB (PID)	107		50 - 150				08/31/10 08:32	09/01/10 02:52	100
a,a,a-TFT (FID)	105	L1	50 - 150				08/31/10 08:32	09/01/10 02:52	100
a,a,a-TFT (PID)	104		50 - 150				08/31/10 08:32	09/01/10 02:52	100
Method: AK101/EPA 8021B - Gasc	line Range C	Organics (C	6-C10) and BTE	X per AK10	1 - RE1		Property	Analyzad	Dil Eac
Analyte	Result	Quaimer		MDL	Unit			00/06/10 11:42	1000
Gasoline Range Organics	535000	RL7	50000		ug/i		09/03/10 16.37	09/06/10 11:42	1000
Benzene	115000		500		ugn		09/03/10 16:37	09/06/10 11:42	1000
Toluene	104000	RL7	500		ug/i		09/03/10 16:37	09/06/10 11:42	1000
Ethylbenzene	4360	RL7	500		ug/i		09/03/10 16:37	09/06/10 11:42	1000
Xylenes (total)	29000	RL/	1500		uyn		08/03/10 10.37	03/00/10 11.42	1000
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	80.4		50 - 150				09/03/10 16:37	09/06/10 11:42	1000
4-BFB (PID)	82.4		50 - 150				09/03/10 16:37	09/06/10 11:42	1000
a,a,a-TFT (FID)	102		50 - 150				09/03/10 16:37	09/06/10 11:42	1000
a,a,a-TFT (PID)	104		50 - 150				09/03/10 16:37	09/06/10 11:42	1000
Method: EPA 8011 - EDB by EPA	Method 8011	Qualifiar	Di	MD	Linit	Б	Prenared	Ansivzed	Dil Eac
	0.150		0.0100		ua/l	-	08/30/10 08:15	08/30/10 15:32	1
1,2-Dibromoethane	0.150	7000 6	u.u.u		- 1 2				
Method: EPA 6020 - Fotal Metals p	Der EPA 6000	Ouslifier	RI	MD	Unit	р	Prepared	Analyzed	Dil Fac
Lead	0.0380		0.00500		mg/l	-	09/02/10 08:00	09/03/10 14:58	5
Olivert Commission, MMMA 0000	ñ						l ab Sami		076-02
Date Collectory 09/36/40 42:00							Las Jam	Matrix	x. Water
Date Received: 08/26/10 14:45									(, tracor
Method: AK101/EPA 8021B - Gaso	oline Range (Organics (C	C6-C10) and BTE	X per AK10)1		Brances	Analyzad	Dil Ess
Analyte	Result		KL	MDL		-	08/31/10 09:33	09/01/10 03/17	
Ethylbenzene	8790	KL/	150		ugn		08/31/10 08:32	09/01/10 03:17	100
Xylenes (total)	44200	KL/	100		ugn			*=-1	D# 7-
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	UII Pac
4-BFB (FID)	109	1	50 - 150				08/31/10/08:32	09/01/10/03:17	100
4-BFB (PID)	108	ſ	50 - 150				08/31/10 08:32	09/01/10/03:17	100

TestAmerica Anchorage 09/17/2010 5

TestAmerica Job ID: ATH0076 SDG: ATH0076

Client Sample ID: MW4-0826

Date Collected: 08/26/10 13:28 Date Received: 08/26/10 14:45

Lab Sample ID: ATH0076-02 Matrix: Water

Method: AK101/EPA 8021B	- Gasoline Range	Organics (C6-C10)	and BTEX per AK101	(Continued)
-------------------------	------------------	-------------------	--------------------	-------------

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
a.a.a-TFT (FID)	110	L1	50 - 150	08/31/10 08:32	09/01/10 03:17	100
a.a.a-TFT (PID)	105		50 - 150	08/31/10 08:32	09/01/10 03:17	100

Method: AK101/EPA 8021B - Gasoline Range Organics (C6-C10) and BTEX per AK101 - RE1

Analyte	Result	Qualifier	RL	MOL	Unit	D	Prepared	Analyzed	Dii Fac
Gasoline Range Organics	523000	RL7	50000		ug/l	_	09/03/10 16:37	09/06/10 12:07	1000
Benzene	64500	RL7	500		ug/l		09/03/10 16:37	09/06/10 12:07	1000
Toluene	122000	RL7	500		ug/l		09/03/10 16:37	09/06/10 12:07	1000
Ethylbenzene	7810	RL7	500		ug/l		09/03/10 16:37	09/06/10 12:07	1000
Xylenes (total)	45400	RL7	1500		ug/l		09/03/10 16:37	09/06/10 12:07	1000
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	80.7		50 - 150				09/03/10 16:37	09/06/10 12:07	1000
4-BFB (PID)	82.8		50 - 150				09/03/10 16:37	09/06/10 12:07	1000
a,a,a-TFT (FID)	106		50 - 150				09/03/10 16:37	09/06/10 12:07	1000
a,a.a-TFT (PID)	106		50 - 150				09/03/10 16:37	09/06/10 12:07	1000

Method: EPA 6020 - Total Metals p	er EPA 6000/	/7000 Series	Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND	RL1	0.00500		mg/l	_	09/01/10 07:40	09/01/10 17:57	5

Client Sample ID: MW5-0826

Lab Sample ID: ATH0076-03

Matrix: Water

.

Date Collected: 08/26/10 12:25 Date Received: 08/26/10 14:45

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane (EDC)	ND	RL3	100		ug/i		08/27/10 14:41	08/27/10 20:09	100
Naphthalene	ND	RL3	200		ug/l		08/27/10 14:41	08/27/10 20:09	100
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	86.6	RL3	62.2 - 128				08/27/10 14:41	08/27/10 20:09	100
Toluene-d8	90.2	RL3	67.8 - 120				08/27/10 14:41	08/27/10 20:09	100
4-bromofluorobenzene	93.0	RL3	77.3 - 129				08/27/10 14:41	08/27/10 20:09	100

Method: AK101/EPA 8021B - Gasoline Range Organics (C6-C10) and BTEX per AK101

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	5460	RL7	50.0	··· ·	ug/l	_	08/31/10 08:32	09/01/10 03:42	100
Xylenes (total)	28100	RL7	150		ug/ł		08/31/10 08:32	09/01/10 03:42	100
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	105		50 - 150				08/31/10 08:32	09/01/10 03:42	100
4-BFB (PID)	105		50 - 150				08/31/10 08:32	09/01/10 03:42	100
a.a.a-TFT (FID)	101	L1	50 - 150				08/31/10 08:32	09/01/10 03:42	100
a,a,a-TFT (PID)	101		50 - 150				08/31/10 08:32	09/01/10 03:42	100

Method: AK101/EPA 8021B - Gasoline Range Organics (C6-C10) and BTEX per AK101 - RE1

MELIOU, AN IVINERA OVE ID . V	sasonne runge o	i gaineo (e	• • • • • • • • • •						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	570000	RL7	50000		ug/l		09/03/10 16:37	09/06/10 12:31	1000
Benzene	118000	RL7	500		ug/l		09/03/10 16:37	09/06/10 12:31	1000
Toluene	110000	RL7	500		ug/l		09/03/10 16:37	09/06/10 12:31	1000
Ethylbenzene	5300	RL7	500		ug/l		09/03/10 16:37	09/06/10 12:31	1000

TestAmerica Anchorage

Y

Vinyl chloride

Chloroethane

Bromomethane

Trichlorofluoromethane

1,1-Dichloroethene

Carbon disulfide

TestAmerica Job ID: ATH0076 SDG: ATH0076

Client Sample ID: MW5-0826 Date Collected: 08/26/10 12:25 Date Received: 08/26/10 14:45

Lab Sample ID: ATH0076-03 Matrix: Water

5

Analyte	Result	Qualifier	RI	MDI	Unit	n	Prenared	å na lv zori	Dil Ear
Xylenes (total)	33200	RL7	1500			_	09/03/10 16:37	09/06/10 12:31	1000
					Ū.				
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dii Fac
4-BFB (FID)	78.7		50 - 150				09/03/10 16:37	09/06/10 12:31	100
4-BFB (PID)	80.7		50 - 150				09/03/10 16:37	09/06/10 12:31	100
a,a,a-TFT (FID)	104		50 - 150				09/03/10 16:37	09/06/10 12:31	100
a,a,a-TFT (PID)	105		50 - 150				09/03/10 16:37	09/06/10 12:31	100
Method: EPA 8011 - EDB by EPA I	Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	0.153		0.0100		ug/l	-	08/30/10 08:15	08/30/10 15:56	
Method: EPA 6020 - Total Metals p	er EPA 6000	7000 Serie:	s Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Oil Far
Lead	0.0300	· · · ·	0.00500	·	mg/l	_	09/02/10 08:00	09/03/10 15:02	
lient Sample ID: Trip Blank							Lab Samp	ole ID: ATH0	076-04
ate Collected: 08/26/10 00:00								Matrix	: Wate
ate Received: 08/26/10 14:45									
Method: AK101/EPA 8021B - Gaso	line Range C	rganics (Cl	5-C10) and BTE	X per AK101		_	- .		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fat
Gasoline Range Organics	ND		50.0		ug/l		09/03/10 16:37	09/06/10 12:56	
					554				
Method: AK101/EPA 8021B - Gaso	line Range C	Oughter	S-CTU) and BIE	X per AK101	- KE1				
Gasoline Range Organice	ND		RL.		Linit	n	Branamad	Analyzad	
	NU		50.0	MDL.	Unit	D	Prepared	Analyzed	Dil Fa
	ND		50.0	MDL.	Unit ug/i	D	Prepared 09/08/10 09:55	Analyzed	Dil Fac
	ND		50.0	MDL.	Unit ug/i ug/i	D	Prepared 09/08/10 09:55 09/08/10 09:55	Analyzed 09/08/10 15:42 09/08/10 15:42	Dil Fac
	ND ND		50.0 0.500 0.500	MDL.	Unit ug/i ug/i ug/i	<u>D</u>	Prepared 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55	Analyzed 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42	Dil Fa
l oluene Ethylbenzene	ND ND ND		50.0 0.500 0.500 0.500	MUL.	Unit ug/i ug/i ug/i	D —	Prepared 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55	Analyzed 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42	Dil Fac
i oluene Ethylbenzene Xylenes (total)	ND ND ND ND		50.0 0.500 0.500 0.500 0.500 1.50	MDL	Unit ug/i ug/i ug/i ug/i	D	Prepared 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55	Analyzed 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42	Dil Fa
Toluene Ethylbenzene Xylenes (total) Surrogate	ND ND ND % Recovery	Qualifier	50.0 0.500 0.500 0.500 1.50 <i>Limits</i>		Unit ug/i ug/i ug/i ug/i	<u>D</u>	Prepared 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 Prepared	Analyzed 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 Analyzed	Dil Fac
Toluene Ethylbenzene Xylenes (total) Surrogate 4-BFB (FID)	ND ND ND % Recovery 75.4	Qualifier	50.0 0.500 0.500 0.500 1.50 <i>Limits</i> 50 - 150		Unit ug/i ug/i ug/i ug/i	D	Prepared 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 Prepared 09/08/10 09:55	Analyzed 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 Analyzed 09/08/10 15:42	Dil Fac
Toluene Ethylbenzene Xylenes (total) Surrogate 4-BFB (FID) 4-BFB (PID)	ND ND ND % Recovery 75.4 76.8	Qualifier	50.0 0.500 0.500 1.50 <i>Limits</i> 50 - 150 50 - 150		Unit ug/1 ug/1 ug/1 ug/1	D	Prepared 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 Prepared 09/08/10 09:55 09/08/10 09:55	Analyzed 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42	Dil Fa
Toluene Ethylbenzene Xylenes (total) Surrogate 4-BFB (FID) 4-BFB (PID) a.a.a.TFT (FID)	ND ND ND % Recovery 75.4 76.8 112	Qualifier	50.0 0.500 0.500 1.50 <i>Limits</i> 50 - 150 50 - 150 50 - 150		Unit ug/1 ug/1 ug/1 ug/1	D	Prepared 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 Prepared 09/08/10 09:55 09/08/10 09:55	Analyzed 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42	Dil Far
Toluene Ethylbenzene Xylenes (total) Surrogate 4-BFB (FID) 4-BFB (PID) a.a, a-TFT (FID) a.a, a-TFT (PID)	ND ND ND % Recovery 75.4 76.8 112 110	Qualifier	50.0 0.500 0.500 1.50 <i>Limits</i> 50 - 150 50 - 150 50 - 150 50 - 150	<u>mul</u>	Unit ug/l ug/l ug/l ug/l	D	Prepared 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 <i>Prepared</i> 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55	Analyzed 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42	Dil Fa
I oluene Ethylbenzene Xylenes (total) Surrogate 4-BFB (FID) 4-BFB (PID) a.a.a-TFT (FID) a.a.a-TFT (FID)	ND ND ND % <i>Recovery</i> 75.4 76.8 112 110	Qualifier	50.0 0.500 0.500 1.50 <i>Limits</i> 50 - 150 50 - 150 50 - 150 50 - 150		Unit ug/l ug/l ug/l	<u>D</u>	Prepared 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 <i>Prepared</i> 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55	Analyzed 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42	Dil Fac
Toluene Ethylbenzene Xylenes (total) Surrogate 4-BFB (FID) 4-BFB (PID) a.a.a-TFT (FID) a.a.a-TFT (FID) Ilient Sample ID: Trip Blank	ND ND ND % Recovery 75.4 76.8 112 110	Qualifier	50.0 0.500 0.500 1.50 <i>Limits</i> 50 - 150 50 - 150 50 - 150 50 - 150		Unit ug/l ug/l ug/l	<u>р</u> 	Prepared 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 <i>Prepared</i> 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55	Analyzed 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42	Dil Fac
Toluene Ethylbenzene Xylenes (total) Surrogate 4-BFB (FID) 4-BFB (PID) a.a.a-TFT (FID) a.a.a-TFT (FID) lient Sample ID: Trip Blank ate Collected: 08/26/10 00:00	ND ND ND % Recovery 75.4 76.8 112 110	Qualifier	50.0 0.500 0.500 1.50 <i>Limits</i> 50 - 150 50 - 150 50 - 150 50 - 150		Unit ug/l ug/l ug/l	D 	Prepared 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 <i>Prepared</i> 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55	Analyzed 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42	Dil Fa Dil Fa Dil Fa 076-05 : Wate
Toluene Ethylbenzene Xylenes (total) Surrogate 4-BFB (FID) 4-BFB (PID) a.a,a-TFT (FID) a.a,a-TFT (FID) Itent Sample ID: Trip Blank ate Collected: 08/26/10 00:00 ate Received: 08/26/10 14:45	ND ND ND % Recovery 75.4 76.8 112 110	Qualifier	50.0 0.500 0.500 1.50 <i>Limits</i> 50 - 150 50 - 150 50 - 150 50 - 150	<u>mut</u>	Unit ug/l ug/l ug/l ug/l	<u>р</u>	Prepared 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 <i>Prepared</i> 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55	Analyzed 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42	Dil Fa Dil Fa Dil Fa
Toruene Ethylbenzene Xylenes (total) Surrogate 4-BFB (FID) 4-BFB (PID) 9.a,a-TFT (FID) a.a,a-TFT (FID) Ilient Sample ID: Trip Blank ate Collected: 08/26/10 00:00 ate Received: 08/26/10 14:45 Method: EPA 8260B - Volatile Orga	ND ND ND % Recovery 75.4 76.8 112 110	Qualifier nds by EP4	50.0 0.500 0.500 1.50 <i>Limits</i> 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150		Unit ug/1 ug/1 ug/1 ug/1	<u>р</u> 	Prepared 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 Prepared 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55	Analyzed 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42 09/08/10 15:42	Dil Fa Dil Fa Dil Fa)76-05 : Wate
Toluene Ethylbenzene Xylenes (total) 4-BFB (FID) 4-BFB (PID) a.a, a-TFT (FID) a.a, a-TFT (FID) a.a, a-TFT (PID) lient Sample ID: Trip Blank ate Collected: 08/26/10 00:00 ate Received: 08/26/10 14:45 Method: EPA 8260B - Volatile Orga Analyte	ND ND ND % Recovery 75.4 76.8 112 110 110 anic Compou Result	Qualifier nds by EPA Qualifier	50.0 0.500 0.500 1.50 <i>Limits</i> 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150	MDL	Unit	D	Prepared 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 <i>Prepared</i> 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 Lab Samp	Analyzed 09/08/10 15:42 09/08/10 l Fac Dil Fac Dil Fac Dil Fac	
Tollene Ethylbenzene Xylenes (total) Surrogate 4-BFB (FID) 4-BFB (PID) a.a.a-TFT (FID) a.a.a-TFT (PID) Client Sample ID: Trip Blank ate Collected: 08/26/10 00:00 ate Received: 08/26/10 14:45 Method: EPA 8260B - Volatile Orga Analyte Dichlorodifluoromethane	ND ND ND % Recovery 75.4 76.8 112 110 110 anic Compou Result ND	Qualifier Inds by EPA Qualifier	50.0 0.500 0.500 1.50 <i>Limits</i> 50 - 150	MDL	Unit ug/l ug/l ug/l ug/l ug/l	<u>р</u>	Prepared 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 <i>Prepared</i> 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 09/08/10 09:55 Lab Samp Prepared 08/27/10 14:41	Analyzed 09/08/10 15:42 09/08/10 l Fa Dil Fa)76-05 : Wate Dil Fa	

08/27/10 16:25

08/27/10 16:25

08/27/10 16:25

08/27/10 16:25

1

1

1

1

1

1

08/27/10 14:41 08/27/10 16:25

08/27/10 14:41 08/27/10 16:25

08/27/10 14:41

08/27/10 14:41

08/27/10 14:41

08/27/10 14:41

0.200

5.00

1.00

1.00

1.00

1.00

ug/i

ug/i

ug/i

ug/l

ug/l

ug/l

ND

NØ

ND

ND

ND

ND

Client Sample ID: Trip Blank

Date Collected: 08/26/10 00:00 Date Received: 08/26/10 14:45

5

Lab Sample ID: ATH0076-05 Matrix: Water

Analyte	Result	Qualifier	RL RL	MDI	Unit D	Prepared	Analyzed	Dil Eac
Methylene chloride	ND		10.0			08/27/10 14:41	09/27/10 16:25	1
Acetone			25.0		ug/i	08/27/10 14:41	08/27/10 16:25	1
trans_1 2-Dichloroethene			1 00		ug/i	09/27/10 14:41	08/27/10 10.25	1
			1.00		ug/i	08/27/10 14:41	08/27/10 16:25	1
			1.00		ug/i	00/27/10 14:41	08/27/10 16:25	1
	ND		1.00		ug/1	08/27/10 14:41	08/2//10 16:25	1
	ND		1.00		ug/I	08/2//10 14:41	08/2//10 16:25	1
2,2-Dichloropropane	ND		1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
Bromochloromethane	ND		1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
Chioroform	ND		1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
Carbon tetrachlonde	ND		1.00		ug/i	08/27/10 14:41	08/27/10 16:25	1
1,1,1-Trichloroethane	ND		1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
2-Butanone	ND		10.0		ug/l	08/27/10 14:41	08/27/10 16:25	1
1,1-Dichloropropene	ND		1.00		ug/I	08/27/10 14:41	08/27/10 16:25	1
Benzene	ND	В	0.200		ug/l	08/27/10 14:41	08/27/10 16:25	1
1,2-Dichloroethane (EDC)	ND		1.00		ug/i	08/27/10 14:41	08/27/10 16:25	1
Trichloroethene	ND		1.00		ug/1	08/27/10 14:41	08/27/10 16:25	1
Dibromomethane	ND		1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
1,2-Dichloropropane	ND		1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
Bromodichloromethane	ND		1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
cis-1,3-Dichloropropene	NÐ		1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
Toluene	ND		1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
4-Methyl-2-pentanone	ND		10.0		ug/l	08/27/10 14:41	08/27/10 16:25	1
trans-1,3-Dichloropropene	ND		1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
Tetrachloroethene	ND		1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
1,1,2-Trichloroethane	ND		1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
Dibromochloromethane	ND		1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
1,3-Dichloropropane	ND		1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
1,2-Dibromoethane	ND		1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
2-Hexanone	ND		10.0		ug/l	08/27/10 14:41	08/27/10 16:25	1
Ethylbenzene	ND		1.00		ua/l	08/27/10 14:41	08/27/10 16:25	1
Chlorobenzene	ND		1.00		ua/l	08/27/10 14:41	08/27/10 16:25	1
1.1.1.2-Tetrachioroethane	ND		1.00		ua/l	08/27/10 14:41	08/27/10 16:25	1
m.p-Xviene	ND		2.00		ua/l	08/27/10 14:41	08/27/10 16:25	1
o-Xvlene	ND		1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
Styrene	ND		1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
Bromoform	ND		1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
Isopronyloenzene			1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
			1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
1 1 2 2 Tetrachloroethane			1.00		ug/l	08/27/10 14:41	08/27/10 16:25	,
Promobenzese	ND		1.00		ug/l	08/27/10 14:41	08/27/10 16:25	,
			1.00		ug/l	09/27/10 14:41	08/27/10 16:25	,
			1.00		ug/i	08/27/10 14:41	08/27/10 16:25	1
			1.00		ug/i	08/27/10 14:41	08/07/10 10:20	1
	NU		1.00		ug/i	09/27/10 14:41	09/07/10 46:25	1
	NU		1.00		ug/f	08/27/10 14:41	09/27/10 10:20	1
	ND 		1.00		ug/i	08/27/10 14:41	00/27/10 10:25	1
1,2,4- I rimethylbenzene	ND 		1.00		ug/I	08/27/10 14:41	08/2//10 16:25	1
sec-Butylbenzene	ND		1.00		ug/I	08/27/10 14:41	08/27/10 16:25	1
p-isopropyltoluene	ND		1.00		ug/l	08/27/10 14:41	08/2//10 16:25	1
1,3-Dichlorobenzene	ND		1.00		ug/l	08/27/10 14:41	08/27/10 16:25	1
1,4-Dichlorobenzene	ND		1.00		ug/i	08/27/10 14:41	08/27/10 16:25	1

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Anchorage 2000 West International Airport Road Suite A10 Anchorage, AK 99502-1119 Tel: (907) 563-9200

TestAmerica Job ID: ATH0076 TestAmerica Sample Delivery Group: ATH0076 Client Project/Site: [none] Client Project Description: 4540 W.50th Ave

For: BGES, INC. 1042 E 6th Ave Anchorage, AK 99501

Attn: Sean Peterson

LINKS

Review your project results through

Total Access

Have a Question?

www.testamericainc.com

Visit us at:

Johanna Dreher

Authorized for release by: 9/17/2010 7:27 PM

Johanna L Dreher Client Services Manager johanna.dreher@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

2

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Detection Summary	4
Client Sample Results	5
Surrogate Summary	10
QC Sample Results	12
QC Association	23
Chronicle	27
Certification Summary	29
Method Summary	30
Sample Summary	31
Chain of Custody	32

Qualifiers

GCMS Vol	atiles
Qualifier	Qualifier Description
В	Analyte was detected in the associated Method Blank.
RL3	Reporting limit raised due to high concentrations of non-target analytes.
GC Volatil	es
Qualifier	Qualifier Description
Ĺ	Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted.
L1	Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above acceptance limits.
R2	The RPD exceeded the acceptance limit.
RL7	Sample required dilution due to high concentrations of target analyte.
Z6	Surrogate recovery was below acceptance limits.
Metals	
Qualifier	Qualifier Description
RL1	Reporting limit raised due to sample matrix effects.
Glossar	
Glossary	Glossary Description

à

Listed under the "D" column to designate that the result is reported on a dry weight basis.

Analytical	Data
------------	------

TestAmerica Job ID: ATH0076 SDG: ATH0076

Client Sample ID: Trip Blank Date Collected: 08/26/10 00:00 Date Received: 08/26/10 14:45

Lab Sample ID: ATH0076-05 Matrix: Water

5

Method: EPA 8260B - Volatile Organic Compounds	by EPA Method 8260B (Continued)
--	---------------------------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
n-Butylbenzene	ND		1.00		ug/l	_	08/27/10 14:41	08/27/10 16:25	1
1,2-Dichlorobenzene	ND		1.00		ug/l		08/27/10 14:41	08/27/10 16:25	1
1,2-Dibromo-3-chloropropane	ND		5.00		ug/l		08/27/10 14:41	08/27/10 16:25	1
Hexachlorobutadiene	ND		2.00		ug/l		08/27/10 14:41	08/27/10 16:25	1
1,2,4-Trichlorobenzene	ND		1.00		ug/l		08/27/10 14:41	08/27/10 16:25	1
Naphthalene	ND		2.00		ug/l		08/27/10 14:41	08/27/10 16:25	1
1,2,3-Trichlorobenzene	ND		1.00		ug/1		08/27/10 14:41	08/27/10 16:25	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	82.8		62.2 - 128				08/27/10 14:41	08/27/10 16:25	1
Toluene-d8	93.4		67.8 - 120				08/27/10 14:41	08/27/10 16:25	1
4-bromofluorobenzene	99.4		77.3 - 129				08/27/10 14:41	08/27/10 16:25	1
Client Sample ID: Trin Blank							Lab Sam	ole ID: ATHO	076-06
Date Collected: 08/26/10 00:00								Matrix	: Water
Date Received: 08/26/10 14:45									
Method: EPA 8011 - EDB by EPA	Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.2-Dibromoethane	ND		0.0100		ug/l		08/30/10 08:15	08/30/10 16:21	1

Client: BGES, INC. Project/Site: [none]

TestAmerica Job ID: ATH0076 SDG: ATH0076

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B

Prep Type: total Matrix: Water Percent Surrogate Recovery (Acceptance Limits) DBFM TOL BFB (62.2-128) (67.8-120) (77.3-129) **Client Sample ID** Lab Sample ID 10H0146-BLK1 85.6 88.4 88.6 10H0146-BLK1 86.4 83.8 88.2 10H0146-BS1 10H0146-BS1 STH0136-02 83.4 93.0 109 10H0146-MS1 STH0136-02 85.6 89.8 94.0 10H0146-MSD1 83.6 RL3 89.2 RL3 91.6 RL3 MW3-0826 ATH0076-01 93.0 RL3 86.6 RL3 90.2 RL3 ATH0076-03 MW5-0826 99.4 ATH0076-05 Trip Blank 82.8 93.4

Surrogate Legend

DBFM = Dibromofluoromethane

TOL = Toluene-d8

Matrix: Water

BFB = 4-bromofluorobenzene

Method: AK101/EPA 8021B - Gasoline Range Organics (C6-C10) and BTEX per AK101

Prep Type: total

		Percent Surrogate Recovery (Acceptance Limits)					
		4-BFB (FID)	4-BFB (PID)	TFT(FID)	a,a-TFT (Pil		
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)		
10H0126-BLK1	10H0126-BLK1	119	117	117 L1	114		
10H0126-DUP1	ATH0064-03	113	111	111 L	109		
1010014-BLK1	1010014-BLK1	84.8	86.6	108	108		
1010014-DUP1	ATH0091-01	79.0	80.7	107	107		
1010014-MS1	ATH0091-02	85.3	87.5	108	108		
1010014-MS2	AT10011-03	80.0	82.3	107	107		
1010014-MSD1	ATH0091-02	78.9	81.3	105	106		
1010014-MSD2	AT10011-03	83.2	85.3	108	109		
1010032-BLK1	10 0032-BLK1	74.4	75.9	103	102		
1010032-DUP1	ATI0010-02	40.1 Z6	41.4 Z6	63.4	63.5		
ATH0076-01	MW3-0826	108	107	105 L1	104		
ATH0076-01 - RE1	MW3-0826	80.4	82.4	102	104		
ATH0076-02	MW4-0826	109	108	110 L 1	105		
ATH0076-02 - RE1	MW4-0826	80.7	82.8	106	106		
ATH0076-03	MW5-0826	105	105	101 L1	101		
ATH0076-03 - RE1	MW5-0826	78.7	80.7	104	105		
ATH0076-04 - RE1	Trip Blank	75.4	76.8	112	110		

Surrogate Legend

ATH0076-04 - RE1

Matrix: Water

4-BFB (FID) = 4-BFB (FID) 4-BFB (PID) = 4-BFB (PID) TFT(FID) = a,a,a-TFT (FID)

a,a,a-TFT (PID) = a,a,a-TFT (PID)

Trip Blank

Method: AK101/EPA 8021B - Gasoline Range Organics (C6-C10) and BTEX per AK101

Prep Type: total

		Percent Surrogate Recovery (Acceptance Limits)						
		4-BFB (PID)	a,a-TFT (PII					
Lab Sample ID	Client Sample ID	(60-120)	(60-120)					
10H0126-BS1	10H0126-BS1	116	119					
10H0126-BSD1	10H0126-BSD1	105	107					
1010032-BS1	1010032-BS1	63.7	89.9					

6

TestAmerica Anchorage 09/17/2010

Method: AK101/EPA 8021B - Gasoline Range Organics (C6-C10) and BTEX per AK101 (Continued) Matrix: Water

			F	ercent Surrogate Recovery (Acceptance Limits)
		4-BFB (PID)	a,a-TFT (Pil	
Lab Sample ID	Client Sample ID	(60-120)	(60-120)	
1010032-BSD1	1010032-BSD1	70.7	101	
Surrogate Legend				

a,a,a-TFT (PID) = a,a,a-TFT (PID)

Method: AK101/EPA 8021B - Gasoline Range Organics (C6-C10) and BTEX per AK101 Matrix: Water

Prep Type: total

Prep Type: total

				Percent Surrogate Recovery (Acceptance Limits)
		4-BFB (FID)	TFT(FID)	
Lab Sample ID	Client Sample ID	(60-120)	(60-120)	
10H0126-B\$2	10H0126-BS2	109	121 L1	
10H0126-BSD2	10H0126-BSD2	113	125 L1	
1010032-BS2	1010032-BS2	69.3	106	
1010032-BSD2	1010032-BSD2	70.5	106	
Surrogate Legend				

Surrogate Legend

4-BFB (FID) = 4-BFB (FID) TFT(FID) = a,a,a-TFT (FID)

Method: AK101/EPA 8021B - Gasoline Range Organics (C6-C10) and BTEX per AK101 Matrix: Water

Prep Type: total

		Percent Surrogate Recovery (Acceptance Limits)						
		4-BFB (FID)	4-BFB (PID)	TFT(FID)	a,a-TFT (Pli			
Lab Sample ID	Client Sample ID	(60-120)	(60-120)	(60-120)	(60-120)			
1010014-BS1	1010014-BS1	79.3	81.8	99.2	99.7			
1010014-BS2	1010014-BS2	81.4	82.9	111	106			
1010014-BSD1	1010014-BSD1	82.2	84.7	104	105			
10/0014-BSD2	1010014-BSD2	84.3	85.6	116	110			

Surrogate Legend

4-BFB (FID) = 4-BFB (FID)

4-BFB (PID) = 4-BFB (PID)

TFT(FID) ≈ a,a,a-TFT (FID)

a,a,a-TFT (PID) ≍ a,a,a-TFT (PID)

TestAmerica Job ID: ATH0076 SDG: ATH0076

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B

Lab Sample ID: 10H0146-BLK1 Matrix: Water Analysis Batch: 10H0146

Client Sample ID: 10H0146-BLK1
Prep Type: total
Prep Batch: 10H0146_P

	Blank	Blank						
Analyte	Result	Qualifier RL	MÐL	Unit	D	Prepared	Analyzed	Dii Fac
Dichlorodifluoromethane	ND	1.00		ug/l		08/27/10 14:41	08/27/10 18:45	1
Chloromethane	ND	3.00		ug/l		08/27/10 14:41	08/27/10 18:45	1
Vinyl chloride	ND	0.200		ug/l		08/27/10 14:41	08/27/10 18:45	1
Bromomethane	ND	5.00		ug/l		08/27/10 14:41	08/27/10 18:45	1
Chloroethane	ND	1.00		ug/l		08/27/10 14:41	08/27/10 18:45	1
Trichlorofluoromethane	ND	1.00		ug/l		08/27/10 14:41	08/27/10 18:45	1
1,1-Dichloroethene	ND	1.00		ug/l		08/27/10 14:41	08/27/10 18:45	1
Carbon disulfide	ND	1.00		ug/l		08/27/10 14:41	08/27/10 18:45	1
Methylene chloride	ND	10.0		ug/l		08/27/10 14:41	08/27/10 18:45	1
Acetone	ND	25.0		ug/l		08/27/10 14:41	08/27/10 18:45	1
trans-1,2-Dichloroethene	ND	1.00		ug/l		08/27/10 14:41	08/27/10 18:45	1
Methyl tert-butyl ether	ND	1.00		ug/l		08/27/10 14:41	08/27/10 18:45	1
1.1-Dichloroethane	ND	1.00		ug/l		08/27/10 14:41	08/27/10 18:45	1
cis-1,2-Dichloroethene	ND	1.00		ug/l		08/27/10 14:41	08/27/10 18:45	1
2.2-Dichloropropane	ND	1.00		ua/l		08/27/10 14:41	08/27/10 18:45	1
Bromochloromethane	ND	1.00		ua/l		08/27/10 14:41	08/27/10 18:45	1
Chloroform	ND	1.00		ua/l		08/27/10 14:41	08/27/10 18:45	1
Carbon tetrachloride	ND	1.00		ua/l		08/27/10 14:41	08/27/10 18:45	1
1.1.1-Trichloroethane	ND	1.00		ua/l		08/27/10 14:41	08/27/10 18:45	1
2-Butanone	ND	10.0		ua/l		08/27/10 14:41	08/27/10 18:45	1
1.1-Dichloropropene	ND	1.00		uo/l		08/27/10 14:41	08/27/10 18:45	1
Benzene	0.280	B 0 200		uo/i		08/27/10 14:41	08/27/10 18:45	1
1 2-Dichloroethane (EDC)	ND	1.00		ug/!		08/27/10 14:41	08/27/10 18:45	1
Trichloroethene	ND	1.00		ug/1		08/27/10 14:41	08/27/10 18:45	1
Dibromomethane	ND	1.00		ug/1		08/27/10 14:41	08/27/10 18:45	1
1 2-Dichloropropage	ND	1.00		ug/l		08/27/10 14:41	08/27/10 18:45	1
Bromodichloromethane	ND	1.00		ug/l		08/27/10 14:41	08/27/10 18:45	1
cis-1 3-Dichloropropene	ND	1.00		ug/l		08/27/10 14:41	08/27/10 18:45	1
Toluene		1.00		ug/l		08/27/10 14:41	08/27/10 18:45	1
4-Methyl-2-pentanone	ND	10.0		ug/i		08/27/10 14:41	08/27/10 18:45	1
trans.1.3 Disbloropropose	ND	100		ugri		08/27/10 14:41	08/27/10 18:45	1
Tetrachloroethene		1.00		ug/i		08/27/10 14:41	08/27/10 18:45	1
	ND	1.00		ug/l		08/27/10 14:41	08/27/10 18:45	1
Dibromochloromethane		1.00		ugn		08/27/10 14:41	08/27/10 18:45	1
1.3 Disblorononono		1.00		ug/i		08/27/10 14:41	08/27/10 18:45	1
		1.00		ugn		08/27/10 14:41	08/27/10 18:45	
	ND	1.00		ug/i		08/27/10 14:41	08/27/10 18:45	1
	ND	10.0		ug/i		08/27/10 14:41	08/27/10 18:45	1
Ethylbenzene	ND	1.00		ug/i		08/27/10 14:41	08/27/10 18:45	1
	ND	1.00		ug/i		08/2//10 14:41	08/27/10 18:45	1
1,1,1,2-letrachoroethane	ND	1.00		ug/i		08/27/10 14:41	08/27/10 18:45	1
m,p-Xylene	ND	2.00		ug/i		08/27/10 14:41	08/27/10 18:45	1
o-xylene		1.00		ug/i		08/27/10 14:41	08/27/10 18:45	1
Styrene		1.00		ug/i		08/27/10 14:41	08/27/10 18:45	1
Biomotorm	NU	1.00		ug/I		00/2//10 14:41	00/27/10 10:45	1
	ND	1.00		ug/l		08/27/10 14:41	00/27/10 10:45	1
	ND	1.00		ug/l		08/27/10 14:41	08/27/10 18:45	1
1,1,2,2- i etrachioroethane	ND	1.00		ug/I		08/27/10 14:41	00/27/10 18:45	1
	ND	1.00		ug/i		08/27/10 14:41	00/27/10 10:45	1
r, ə, ə- i nmetnyidenzene	ND	1.00		ug/l		00/2//10 14:41	U0/∠// 10 10:45	1

TestAmerica Job ID: ATH0076 SDG: ATH0076

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 10H0146-BLK1 Matrix: Water Analysis Batch: 10H0146 Client Sample ID: 10H0146-BLK1 Prep Type: total Prep Batch: 10H0146_P

	Blank	Blank						
Analyte	Result	Qualifier	RL	MDL	Unit D	Prepared	Analyzed	Dii Fac
2-Chlorotoluene	ND		1.00		ug/l	08/27/10 14:41	08/27/10 18:45	1
1,2,3-Trichloropropane	ND		1.00		ug/l	08/27/10 14:41	08/27/10 18:45	1
4-Chlorotoluene	ND		1.00		ug/l	08/27/10 14:41	08/27/10 18:45	1
tert-Butylbenzene	ND		1.00		ug/l	08/27/10 14:41	08/27/10 18:45	1
1,2,4-Trimethylbenzene	ND		1.00		ug/l	08/27/10 14:41	08/27/10 18:45	1
sec-Butylbenzene	ND		1.00		ug/l	08/27/10 14:41	08/27/10 18:45	1
p-Isopropyltoluene	ND		1.00		ug/l	08/27/10 14:41	08/27/10 18:45	1
1,3-Dichlorobenzene	ND		1.00		ug/l	08/27/10 14:41	08/27/10 18:45	1
1,4-Dichlorobenzene	ND		1.00		ug/l	08/27/10 14:41	08/27/10 18:45	1
n-Butylbenzene	ND		1.00		ug/l	08/27/10 14:41	08/27/10 18:45	1
1,2-Dichlorobenzene	ND		1.00		ug/l	08/27/10 14:41	08/27/10 18:45	1
1,2-Dibromo-3-chloropropane	ND		5.00		ug/l	08/27/10 14:41	08/27/10 18:45	1
Hexachlorobutadiene	ND		2.00		ug/l	08/27/10 14:41	08/27/10 18:45	1
1,2,4-Trichlorobenzene	ND		1.00		ug/l	08/27/10 14:41	08/27/10 18:45	1
Naphthalene	ND		2.00		ug/l	08/27/10 14:41	08/27/10 18:45	1
1,2,3-Trichlorobenzene	ND		1.00		ug/l	08/27/10 14:41	08/27/10 18:45	1
	Blank	Blank						

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	85.6		62.2 - 128	08/27/10 14:41	08/27/10 18:45	1
Toluene-d8	88.4		67.8 - 120	08/27/10 14:41	08/27/10 18:45	1
4-bromofluorobenzene	88.6		77.3 - 129	08/27/10 14:41	08/27/10 18:45	1

Lab Sample ID: 10H0146-BS1

Matrix: Water Analysis Batch: 10H0146

Client Sample ID: 10H0146-BS1 Prep Type: total

Client Sample ID: STH0136-02

Prep Type: total

Prep Batch: 10H0146_P

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
1,1-Dichloroethene	10.0	9.99		ug/l	_	99.9	60.4 - 140	
Benzene	10.0	10.2		ug/l		102	72.9 - 120	
Trichloroethene	10.0	10.4		ug/l		104	73.7 - 120	
Toluene	10.0	11.5		ug/l		115	72.4 - 132	
Chlorobenzene	10.0	10.0		ug/l		100	80 - 120	
	(00.100							

	LUS	L 4 3	
Surrogate	% Recovery	Qualifier	Limits
Dibromofluoromethane	83.8		62.2 - 128
Toluene-d8	88.2		67.8 - 120
4-bromofluorobenzene	86.4		77.3 - 129

Lab Sample ID: 10H0146-MS1

Matrix: Water

Analysis Batch: 10H0146									Prep Batch	: 10H0146_P
	Sample	Sample	Spike	Matrix Spike	Matrix Spi	ke		% Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
1,1-Dichloroethene			10.0	9.22		ug/l		92.2	52.5 - 135	
Benzene			10.0	9.32		ug/l		93.2	72.3 - 120	
Trichloroethene			10.0	9.58		ug/l		95.8	80 - 120	
Toluene			10.0	10.6		ug/l		104	62.7 - 137	
Chlorobenzene			10.0	9.21		ug/l		92.1	78.9 - 120	

Xylenes (total)

TestAmerica Job ID: ATH0076 SDG: ATH0076

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 10H0146-MS1 Matrix: Water Analysis Batch: 10H0146

Client Sample ID: STH0136-02 Prep Type: total Prep Batch: 10H0146_P

Prep Type: total

RPD

4.87

5.83

5.68

3.99

7.42

RPD

Limit

10.5

10.7

10

13

11.2

Prep Batch: 10H0146_P

% Rec.

Limits

52.5 - 135

80 - 120

62.7 - 137

	Matrix Spike	Matrix Spik	e
Surrogate	% Recovery	Qualifier	Limits
Dibromofluoromethane	83.4	<u> </u>	62.2 - 128
Toluene-d8	9 3.0		67.8 - 120
4-bromofluorobenzene	109		77.3 - 129

Lab Sample ID: 10H0146-MSD1 Client Sample ID: STH0136-02 Matrix: Water Analysis Batch: 10H0146 Sample Sample Spike Matrix Spike Dup Matrix Spike Dup Analyte Result Qualifier Added Result Qualifier Unit D % Rec 1,1-Dichloroethene 10.0 9.68 ug/l 96.8 Benzene 10.0 9.88 98.8 72.3 - 120 ug/l Trichloroethene 10.0 10.1 ug/l 101 Toluene 10.0 11.0 ug/l 109 Chlorobenzene 10.0 9.92 ug/l 99.2 78.9 - 120 Matrix Spike Dup Matrix Spike Dup

	······································	······································				
Surrogate	% Recovery	Qualifier	Limits			
Dibromofluoromethane	85.6		62.2 - 128			
Toluene-d8	89.8		67.8 - 120			
4-bromofluorobenzene	94.0		77.3 - 129			

Method: AK101/EPA 8021B - Gasoline Range Organics (C6-C10) and BTEX per AK101

Lab Sample ID: 10H0126-BLK1							с	lient Sa	mple ID: 10H01;	26-BLK1
Matrix: Water									Prep Ty	pe: tota
Analysis Batch: T000441									Prep Batch: 10	10126 F
	Blank	Blank							•	-
Analyte	Result	Qualifier	RL	N	IDL	Unit D		Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		50.0			ug/l	08/3	1/10 08:32	08/31/10 17:04	1
Benzene	ND		0.500			ug/l	08/3	1/10 08:32	08/31/10 17:04	1
Toluene	ND		0.500			ug/l	08/3	1/10 08:32	08/31/10 17:04	1
Ethylbenzene	ND		0.500			ug/l	08/3	1/10 08:32	08/31/10 17:04	1
Xylenes (total)	ND		1.50			ug/l	08/3	1/10 08:32	08/31/10 17:04	1
	Blank	Blank								
Surrogate	% Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
4-BFB (FID)	119		50 - 150				08/3	1/10 08:32	08/31/10 17:04	1
4-BFB (PID)	117		50 - 150				08/3	1/10 08:32	08/31/10 17:04	1
a.a.a-TFT (FID)	117	L1	50 - 150				08/3	1/10 08:32	08/31/10 17:04	1
a,a,a-TFT (PID)	114		50 - 150				08/3	1/10 08:32	08/31/10 17:04	1
Lab Sample ID: 10H0126-BS1								Client S	ample ID: 10H0	126-BS1
Matrix: Water									Prep Ty	pe: total
Analysis Batch: T000441			Spike	LCS	LCS				Prep Batch: 10ł % Rec.	10126_F
Analyte			Added	Result	Qualifier	Unit	D	% Rec	Limits	
Benzene			20.0	23.3		ug/l		116	70 - 130	
Toluene			20.0	21.6		ug/l		108	70 - 130	
Ethylbenzene			20.0	23.6		ug/l		118	70 - 130	

TestAmerica Anchorage 09/17/2010

71.9

ug/l

120

70 - 130

60.0

TestAmerica Job ID: ATH0076 SDG: ATH0076

Method: AK101/EPA 8021B - Gasoline Range Organics (C6-C10) and BTEX per AK101 (Continued)

Lab Sample ID: 10H0126-BS1							(Client S	ample ID: 1	0H0126	BS1،
Matrix: Water									Pre	р Туре:	. total
Analysis Batch: T000441									Prep Batch	: 10H01	26_P
	LCS	LCS									
Surrogate	% Recovery	Qualifier	Limits								
4-BFB (PID)	116		60 - 120								
a,a,a-TFT (PID)	119		60 - 120								
Lab Sample ID: 10H0126-BS2							(Client S	ample ID: 1	0H0126	3-BS2
Matrix: Water									Pre	р Туре:	: total
Analysis Batch: T000441									Prep Batch	: 10H01	126_P
			Spike	LCS	LCS				% Rec.		
Analyte			Added	Result	Qualifier	Unit	D	% Rec	Limits		
Gasoline Range Organics		· · · · · · · · · · · · · · · · · · ·	500	594		ug/l		119	60 - 120		
	LCS	LCS									
Surrogate	% Recovery	Qualifier	Limits								
4-BFB (FID)	109		60 - 120								
a,a,a-TFT (FID)	121	L1	60 - 120								
Lab Sample ID: 10H0126-BSD1							CI	ient Sa	mple ID: 10	H0126-	BSD1
Matrix: Water									Pre	р Туре:	: total
Analysis Batch: T000441									Prep Batch	: 10H01	126_P
			Spike	LCS Dup	LCS Dup				% Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Benzene			20.0	21.1		ug/l		106	70 - 130	9.74	20
Toluene			20.0	19.6		ug/l		98.0	70 - 130	9.86	20
Ethylbenzene			20.0	21.3		ug/l		107	70 - 130	9.98	20
Xylenes (total)			60.0	64.9		ug/l		108	70 - 130	10.2	20
	LCS Dup	LCS Dup									
Surrogate	% Recovery	Qualifier	Limits								
4-BFB (PID)	105		60 - 120								
a,a,a-TFT (PID)	107		60 - 120								
Lab Sample ID: 10H0126-BSD2							С	lient Sa	mple ID: 10	H0126-	BSD2
Matrix: Water									Pre	р Туре	: total
Analysis Batch: T000441									Prep Batch	: 10H0 ⁻	126_P
······································			Spike	LC\$ Dup	LCS Dup				% Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Gasoline Range Organics			500	588		ug/l		118	60 - 120	0.96	20
		1.00.0								3	
Summerte	K Basawaay	Cuslifier	Limite								
	70 ROLUVOIY	quamici									
	113		60 - 120								
a,a,a-1+1 (+10)	125	LI	00-120								
Lab Sample ID: 10H0126-DUP1								Client	Sample ID:	ATHOO	64-03
Matrix: Water									Pre	р Туре	: total
Analysis Batch: T000441									Prep Batch	1: 10H0	126_P
	Sample	Sample		Duplicate	Duplicate						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Gasoline Range Organics	933			947		ug/l				1.44	35
Benzene	0.218			0.217		ug/l				0,46	200
Toluene	0.756			0.813		ug/ł				0 7.27	200
Ethvibenzene	33.6			34.2		ug/l				1.65	200
- Xylenes (total)	120			122		ug/l				1.68	200

Method: AK101/EPA 8021B - Gasoline Range Organics (C6-C10) and BTEX per AK101 (Continued)

Lab Sample ID: 10H0126-DUP1 Matrix: Water										Client S	ample ID: ATH Prep Typ	0064-03 be: total
Analysis Batch: T000441										P	rep Batch: 10H	0126_P
	Duplicate	Dupi	licate									
Surrogate	% Recovery	Quai	lifier	Limits								
4-8FB (FID)	113			50 - 150								
4-BFB (PID)	111			50 - 150								
a,a,a-TFT (FID)	111	L		50 - 150								
a,a,a-TFT (PID)	109			50 - 150								
Lab Sample ID: 1010014-BLK1									c	lient Sa	mple ID: 101001	4-BLK1
Matrix: Water											Prep Ty	be: total
Analysis Batch: T000457											Prep Batch: 10	10014_P
	E	Blank	Blank									
Analyte	R	esult	Qualifier	RL	M	DL	Unit	D		Prepared	Analyzed	Dil Fac
Gasoline Range Organics		ND		50.0			ug/l		09/03	/10 16:37	09/06/10 10:52	1
Benzene		ND		0.500			ug/i		09/03	/10 16:37	09/06/10 10:52	1
Toluene		ND		0.500			ug/l		09/03	/10 16:37	09/06/10 10:52	1
Ethylbenzene		ND		0.500			ug/l		09/03	/10 16:37	09/06/10 10:52	1
Xylenes (total)		NĎ		1.50			ug/l		09/03	/10 16:37	09/06/10 10:52	1
	E	Blank	Blank									
Surrogate	% Reco	overy	Qualifier	Limits						Prepared	Analyzed	Dil Fac
4-BFB (FID)		84.8		50 - 150					09/03	8/10 16:37	09/06/10 10:52	1
4-BFB (PID)		86.6		50 - 150					09/0:	3/10 16:37	09/06/10 10:52	1
a,a,a-TFT (FID)		108		50 - 150					09/03	3/10 16:37	09/06/10 10:52	1
a,a,a-TFT (PID)		108		50 - 150					09/0	3/10 16:37	09/06/1 0 10:52	1
Lab Sample ID: 1010014-BS1										Client S	ample ID: 1010)14-BS1
Matrix: Water											Prep Ty	pe: total
Analysis Batch: T000457				Snike	LCS	1.08					Prep Batch: 10 % Rec.	10014_P
Ansluta				Added	Result	Qualifier	Unit		D	% Rec	Limits	
Benzene				20.0	19.9		ua/l			99.6	70 - 130	
Toluene				20.0	20.2		uo/i			101	70 - 130	
Fihylbenzene				20.0	20.0		ua/l			100	70 - 130	
Xvlenes (total)				60.0	62.0		ua/l			103	70 - 130	
Aylenes (lotal)	1.05	1.05		00.0			- 4 - 1					
Surrogate	% Recovery	Qua	lifier	l imits								
A-BEB (EID)	79.3			60 - 120								
	81.8			60 - 120								
	99.2			60 - 120								
a.a.a-TFT (PID)	99.7			60 - 120								
										<i></i>		
Lab Sample ID: 1010014-BS2										Client S	ample ID: 1010	014-852
Matrix: Water											Prep ty	pe: total
Analysis Batch: T000457											Prep Batch: 10	10014_P
				Spike	LCS	LUS	11-14			N/ Dee	% RCC.	
Analyte	<u> </u>			Added	Result	Qualitier				% Rec	EIMIUS	
Gasoline Range Organics				550	498		ug/i			90.0	00-120	
	LCS	LCS	5									
Surrogate	% Recovery	Que	lifier -	Limits								
4-BFB (FID)	81.4			60 - 120 00 - 120								
4-BFB (PID)	82.9			00 - 120 50 - 120								
	~ 4 4			$r_{1}I = I I I$								
a,a,a-TFT (FID)	111			60 120								

TestAmerica Anchorage 09/17/2010 a,a,a-TFT (FID)

a,a,a-TFT (PID)

a,a,a-TFT (FID)

a,a,a-TFT (PID)

Method: AK101/EPA 8021B - Gasoline Range Organics (C6-C10) and BTEX per AK101 (Continued)

Lab Sample ID: 1010014-BSD1							C	lient Sa	mple ID: 1 Pre	010014- p Type	BSD1
Maulia, Waler Analysis Detaby T000457									Pren Batc	6 1010/	014 P
Analysis Batch: 1000457			Spike	LCS Dup	LCS Dup				% Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Benzene			20.0	20.7		ug/l		103	70 - 130	3.64	20
Toluene			20.0	20.8		ug/l		104	70 - 130	2.84	20
Ethylbenzene			20.0	20.7		ug/l		103	70 - 130	3.08	20
Xylenes (total)			60.0	63.8		ug/l		106	70 - 130	2.82	20
	LCS Dup	LCS Dup									
Surrogate	% Recovery	Qualifier	Limits								
4-BFB (FID)	82.2		60 - 120								
4-BFB (PID)	84.7		60 - 120								

							ſ	lient Sa	mole ID [.] 1	010014-	BSD2
Lab Sample ID: 1010014-BSD2									napie iD. i D		
Matrix: Water									Pre	p type	; totai
Analysis Batch: T000457									Prep Bato	h: 1010	014_P
····· ·			Spike	LCS Dup	LCS Dup				% Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Gasoline Range Organics	······		550	508		ug/l		92.3	60 - 120	1.88	20
	LCS Dup	LCS Dup									
Surrogate	% Recovery	Qualifier	Limits								
4-BFB (FID)	84.3		60 - 120								
4-BFB (PID)	85.6		60 - 120								

60 - 120

60 - 120

60 - 120

60 - 120

104

105

116

110

Lab Sample ID: 1010014-MS1 Matrix: Water

Analysis Batch: T000457	Sample	Sample	Spike	Matrix Spike	Matrix Spli	(0			Prep Batch % Rec.	: 1010014_P
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Benzene	ND		20.0	22.2		ug/l		111	60 - 140	
Toluene	ND		20.0	21.9		ug/l		110	60 - 140	
Ethylbenzene	ND		20.0	21.5		ug/l		107	60 - 140	
Xylenes (total)	NĎ		60.0	65.1		ug/l		109	60 - 140	
	Matrix Spike	Matrix Spike								

Surrogate	% Recovery	Qualifier	Limits
4-BFB (FID)	85.3		50 - 150
4-BFB (PID)	87.5		50 - 150
a,a,a-TFT (FID)	108		50 - 150
a.a.a-TFT (PID)	108		50 - 1 50

Lab Sample ID: 1010014-MS2

Matrix: Water

Matrix: Water										
Analysis Batch: T000457									Prep Batch	i: 1010014_P
·····,···	Sample	Sample	Spike	Matrix Spike	Matrix Spi	ke			% Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Benzene	ND		20.0	21.4		ug/l		107	60 - 140	
Toluene	ND		20.0	21.5		ug/l		107	60 - 140	
Ethylbenzene	ND		20.0	21.0		ug/l		105	60 - 140	
Xylenes (total)	ND		60.0	64.1		ug/l		107	60 - 140	

Client Sample ID: ATI0011-03

Prep Type: total

Client Sample ID: ATH0091-02

Prep Type: total

TestAmerica Job ID: ATH0076 SDG: ATH0076

Method: AK101/EPA 8021B - Gasoline Range Organics (C6-C10) and BTEX per AK101 (Continued)

Lab Sample ID: 1010014-MS2
Matrix: Water
Analysis Batch: T000457

Client Sample ID: ATI0011-03 Prep Type: total Prep Batch: 10I0014_P

Client Sample ID: ATH0091-02

Prep Type: total

Strategolo Datan. 1000401			
	Matrix Spike	Matrix Spike	
Surrogate	% Recovery	Qualifier	Limits
4-BFB (FID)	80.0		50 - 150
4-BFB (PID)	82.3		50 - 150
a,a,a-TFT (FID)	107		50 - 150
a.a.a-TFT (PID)	107		50 - 150

Lab Sample ID: 10I0014-MSD1 Matrix: Water

Analysis Batch: T000457									Prep Batc	h: 1010	014_P
	Sample	Sample	Spike Ma	itrix Spike Dup	Matrix Spil	ke Dup			% Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Benzene	ND		20.0	21.6		ug/i		108	60 - 140	2.49	25
Toluene	ND		20.0	21.3		ug/i		106	60 - 140	3.05	25
Ethylbenzene	ND		20.0	20.8		ug/l		104	60 - 140	3.34	25
Xylenes (total)	ND		60.0	62.8		ug/l		105	60 - 140	3.65	25
	Matrix Spike Dup	Matrix Spike	ə Dup								
Curromoto.	N Bacavan	Overlifier	l ionite								

	• •	
Surrogate	% Recovery Qualifier	r Limits
4-BFB (FID)	78.9	50 - 150
4-BFB (PID)	81.3	50 - 150
a,a,a-TFT (FID)	105	50 - 150
a,a,a-TFT (PID)	106	50 - 150

Lab Sample ID: 1010014-MSC	2							Client	Sample ID	: ATI00	11-03
Matrix: Water									Pre	ртуре	: total
Analysis Batch: T000457									Prep Batc	h: 10100	014_P
	Sample	Sample	Spike	Matrix Spike Dup	Matrix Spi	ke Dup			% Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Benzene	ND		20.0	21.6		ug/l		108	60 - 140	0.61	25
Toluene	ND		20.0	21.7		ug/l		108	60 - 140	0.82 9	25
Ethylbenzene	ND		20.0	21.3		ug/l		106	60 - 140	1.28	25
Xylenes (total)	ND		60.0	65.2		ug/l		109	60 - 140	1.67	25
	Matrix Spike Dup	Matrix Spike Dup	,								

Surrogate	% Recovery	Qualifier	Limits
4-BFB (FID)	83.2		50 - 150
4-BFB (PID)	85.3		50 - 150
a,a,a-TFT (FID)	108		50 - 150
a,a,a-TFT (PID)	109		50 - 150

Lab Sample ID: 10I0014-DUP1

Matrix: Water

Anab	vsis	Batch:	T000457

					Prep Batch: 1010	014_P
Sample	Duplicate	Duplicate				RPD
Qualifier	Result	Qualifier	Unit	Ð	RPD	Limit
	5.96		ug/l		20.4	35
	ND		ug/l			200
	ND		ug/i			200
	ND		ug/1			200
	ND		ug/l			200
	Sample Qualifier	Sample Duplicate Qualifier Result 5.96 ND ND ND ND ND ND ND ND ND ND ND ND ND	Sample Duplicate Duplicate Qualifier Result Qualifier 5.96 ND ND ND ND ND ND ND ND ND ND ND ND ND	Sample Duplicate Duplicate Qualifier Result Qualifier Unit 5.96 0 ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l	Sample Duplicate Duplicate Qualifier Result Qualifier Unit D 5.96 ug/l ug/l Image: Second Se	Sample Duplicate Duplicate Duplicate Qualifier Result Qualifier Unit D 5.96 ug/l 20.4 ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l

Client Sample ID: ATH0091-01

Prep Type: total

7

Method: AK101/EPA 8021B - Gasoline Range Organics (C6-C10) and BTEX per AK101 (Continued)

Lab Sample ID: 1010014-DUP1								Client S	ample ID: ATH	091-01
Matrix: Water									Prep Typ Pren Batch: 10I	e: total
Analysis Batch: 1000457	Duolicate Du	olicate							Prep Baton. 10	
Surrogate	% Recovery Ou	alifier	Limits							
	70.0		50 - 150							
	80.7		50 - 150							
	107		50 - 150							
	107		50 - 150							
a,a,a-1F1 (P1D)	107		30-750							
Lab Sample ID: 1010032-BLK1							С	lient Sa	mple ID: 101003	2-BLK1
Matrix: Water									Prep Typ	e: total
Analysis Batch: T000465									Prep Batch: 10	0032_P
	Blan	k Blank								
Analyte	Resu	t Qualifier	RL	M	DL	Unit D		Prepared	Analyzed	Dii Fac
Gasoline Range Organics	N	2	50.0			ug/l	09/08	10 09:55	09/08/10 13:39	1
Benzene	N	2	0.500			ug/l	09/08	10 09:55	09/08/10 13:39	1
Toluene	N	2	0.500			ug/l	09/08	/10 09:55	09/08/10 13:39	1
Ethylbenzene	N	C	0.500			ug/l	09/08	/10 09:55	09/08/10 13:39	1
Xylenes (total)	N	2	1.50			ug/l	09/08	/10 09:55	09/08/10 13:39	1
	Blan	k Blank						. .		D2 5
Surrogate	% Recover	y Qualifier	Limits					Prepared	Analyzed	
4-BFB (FID)	74.	4	50 - 150				09/08	10 09:55	09/08/10 13:39	
4-BFB (PID)	75.	9	50 - 150				09/08	10 09:55	09/08/10 13:39	,
a,a,a-TFT (FID)	10	3	50 - 150				09/08	/10 09:55	09/08/10 13:39	1
a,a,a-TFT (PID)	10	2	50 - 150				09/08	v10 09:55	09/08/10 13:39	1
Lab Sample ID: 1010032-BS1								Client S	ample ID: 10100)32-BS1
Matrix: Water									Prep Ty	pe: total
Analysis Batch: T000465									Prep Batch: 10	10032_P
·			Spike	LCS	LCS				% Rec.	
Analyte			Added	Result	Qualifier	Unit	<u>D</u>	% Rec	Limits	
Benzene			20.0	19.8		ug/i		99.2	70 - 130	
Toluene			20.0	20.7		ug/l		103	70 - 130	
Ethylbenzene			20.0	20.4		ug/l		102	70 - 130	
Xylenes (total)			60.0	62.1		ug/l		103	70 - 130	
	LCS L	s								
Surrogate	% Recovery Q	ualifier	Limits							
4-BFB (PID)	63.7		60 - 120							
a,a,a-TFT (PID)	89.9		60 - 120							
Lah Sample ID: 1010032-BS2								Client S	Sample ID: 1010)32-BS2
Matrix: Water									Prep Ty	pe: totał
Analysis Batch: T000465									Prep Batch: 10	10032_P
			Spike	LCS	LCS				% Rec.	
Analyte			Added	Resuit	Qualifier	Unit	D	% Rec	Limits	
Gasoline Range Organics			550	463		ug/l		84.2	60 - 120	
-	LCS L	cs								
Surrogate	% Recovery Q	ualifier	Limits							
4-BFB (FID)	69.3		60 - 120							
a,a,a-TFT (FID)	106		60 - 120							

Method: AK101/EPA 8021B - Gasoline Range Organics (C6-C10) and BTEX per AK101 (Continued)

Lab Sample ID: 1010032-BSD1							C	Client Sa	Imple ID: 1	010032-	-BSD1
Analyzia Potoby T000465									Pren Bate	b 1010	032 P
Analysis Batch, 1000405			Spike	LCS Du	LCS Dup				% Rec.		RPC
Analyte			Added	Resul	t Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Benzene			20.0	20.1		ua/l		103	70 - 130	3.68	20
Toluene			20.0	21.	5	ua/l		107	70 - 130	3.83	20
Ethylbenzene			20.0	21.3	•	ua/l		106	70 - 130	3.89	20
Yvlanes (total)			60.0	64		ua/l		107	70 - 130	3 73	20
	I CS Dun	LCS Dup	00.0	••••							
Sumate	K Basayany	Ouslifier	l imite								
	70.7		Ennits								
	70.7		60 120								
a,a,â-1+1 (PID)	101		60 - 120								
Lab Sample ID: 1010032-BSD2							(Client Sa	ample ID: 1	010032	-BSD2
Matrix: Water									Pre	эр Туре	: total
Analysis Batch: T000465									Prep Bate	:h: 1010	032_P
			Spike	LCS Du	> LCS Dup				% Rec.		RPD
Analyte			Added	Resu	t Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Gasoline Range Organics			550	46	1	ug/i		83.8	60 - 120	0.44 6	20
	LCS Dup	LCS Dup									
Surrogate	% Recovery	Qualifier	Limits								
4-BFB (FID)	70.5		60 - 120								
a,a,a-TFT (FID)	106		60 - 120								
Lab Sample ID: 1010032-DUP1								Client	t Sample II): ATIO	010-02
Matrix: Water									Pr	ер Туре	e: total
Analysis Batch: T000465									Prep Bate	:h: 1010	032_P
	Sample	Sample		Duplicat	e Duplicate						RPD
Analyte	Result	Qualifier		Resu	t Qualifier	Unit	D			RPO	Limi
Gasoline Range Organics	442			5.9	4 R2	ug/l				195	35
Benzene	ND			N)	ug/l					200
Toluene	2.11			N	2	ug/l					200
Ethylbenzene	29.4			N	2	ua/l					200
Yvlenes (total)	165			N	- 1	ua/l					200
Aylenes (total)	Dunlicete	Dunlicate			-						
Sumo anto	Nopricate N Becovery	Ouplicate	l imite								
		76	50 150								
	40.1	∠0 7£	50-150								
	41.4	70 20	50-100								
a,a,a-1+1 (+1U)	03.4		50-150								
a,a,a-TFT (PID)	63.5		50 - 150								
Nethod: EPA 8011 - EDB	oy EPA Me	thod 8011									
Lab Sample ID: 10H0147-BLK1	ļ						c	lient Sa	mple ID: 1	0H0147	/-BLK1
Matrix: Water									Pr	ер Тур	e: tota
Analysis Batch: 10H0147									Prep Batc	h: 10H()147_F
		Blank Blank					_			- 1	DU 6-
Analyte	F	Result Qualifier		RL	MDL	Unit	U — —	Prepare	a An	alyzed	UIIFac
1 0 Dibromeethene		ND		0.0100		ua/l	08/3	su/10 08:1:	5 08/30/10	14.45	

7

7

Method: EPA 8011 - EDB by EPA Method 8011 (Continued)

Lab Sample ID: 10H0147-BS1								Client S	ample IU: 1	UHU14	7-851
Matrix: Water									Pre	р Туре	e: tota
Analysis Batch: 10H0147									Prep Batch	: 10H0	147_F
			Spike	LCS	LCS	1114	_	e Dee	% KeC.		
				Result	Quaimer	Unit		% Rec			
1,2-Dibromoethane			0.125	0.110		ug/i		66.3	60 - 140		
Lab Sample ID: 10H0147-BS2								Client S	ample ID: 1	0H014	7-BS2
Matrix: Water									Pre	р Туре	e: tota
Analysis Batch: 10H0147									Prep Batch	: 10H0	147_F
			Spike	LCS	LCS				% Rec.		
Analyte			Added	Result	Qualifier	Unit	_ <u>P</u>	% Rec	Limits		
1,2-Dibromoethane			0.125	0.113		ug/l		90.6	60 - 140		
Anthod: EDA 6020 Total Ma	tale nor		1000 Sari	oe Mothod							
rethou. EFA 0020 - Total Me	itais per	EFA 0000//	UUU Sen		.						
Lab Sample ID: 1010001-BLK1							(Client Si	ample ID: 1	010001	-BLK1
Matrix: Water									Pre	р Туре	e: tota
Analysis Batch: 10I0001									Prep Batc	h: 1010	001_F
	E	llank Blank									
Analyte	R.	esult Qualifier		RL M	DL	Unit D		Prepareo	Anal	yzed	DII Fa
Lead		ND	0.00	0100		mg/l	09/0	1/10 07:40	09/01/10 1	6:55	
Lab Sample ID: 1010001-BS1								Client	Sample ID:	101000	1-BS1
Matrix: Water									Pre	р Туре	e: tota
Analysis Batch: 1010001									Prep Batc	h: 1010	001_F
*			Spike	LCS	LCS				% Rec.		_
Analyte			Added	Result	Qualifier	Unit	D	% Rec	Limits		
Lead			0.100	0.0909		mg/l		90.9	80 - 120		
Lab Sample ID: 100001-MS1								Client	Sample ID:	ртно	846-03
Matrix: Water								0	Pre	n Typ	e: tota
Analysis Batch: 1010001									Prep Batc	h: 1010	001 6
Analysis Baton. Torover	Sample	Sample	Spike	Matrix Spike	Matrix Spli	0			% Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits		
Lead			0.100	0.0910		mg/l		91.0	75 - 125		
Lab Sample ID: 1000001-MS2								Client	Sample ID:	ртно	981-01
Matrix: Water									Pre	σΤνο	e: tota
Analysis Batch: 10i0001									Prep Batc	h: 1010	001 1
······,·······························	Sample	Sample	Spike	Matrix Spike	Matrix Spik	e			% Rec.		-
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits		
Lead			0.100	0.0896		mg/l		89.6	75 - 125		
Lab Sample ID: 1010001-DUP1								Client	Sample ID:	PTH0	846-0 ⁻
Matrix: Water									Pre	α Τν ρ	e: tota
Analysis Batch: 1010001									Prep Batc	h: 1010	001
	Sample	Sample		Duplicate	Duplicate						RP
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limi
· · · · · · · · · · · · · · · · · · ·											

TestAmerica Job ID: ATH0076 SDG: ATH0076

Method: EPA 6020 - Total Metals per EPA 6000/7000 Series Methods (Continued)

Lab Sample ID: 1010029-BLK1										C	lient Sa	mple ID: 10	010029	BLK1
Matrix: Water												Pre	р Гуре	: total
Analysis Batch: 1010029												Prep Batcl	h: 1010	029_P
	В	lank	Blank											
Analyte	Re	sult	Qualifier		RL.	м	DL	Unit	D		Prepared	Anal	yzed	Dil Fac
Lead		ND		0.	00100			mg/l		09/01	1/10 15:15	09/03/10 1	4:46	1
Lab Sample ID: 1010029-BS1											Client \$	Sample ID:	101002	9-BS1
Matrix: Water												Pre	р Туре	: total
Analysis Batch: 1010029				Spike		LCS	LCS					Prep Batcl % Rec.	h: 1010	029_P
Analyte				Added		Result	Qualifier	Unit		D	% Rec	Limits		
Lead				0.100		0.101		mg/l			101	80 - 120		
Lab Sample ID: 1010029-MS1											Client	Sample ID	: PTI0	008-02
Matrix: Water												Pre	р Туре	e: total
Analysis Batch: 1010029												Prep Batc	h: 1010	029_P
	Sample	Sam	ple	Spike	Ма	trix Spike	Matrix Spik	e				% Rec.		
Analyte	Result	Qual	lifier	Added		Result	Qualifier	Unit		D	% Rec	Limits		
Lead				0.100		0.127		mg/l			114	75 - 125		
Lab Sample ID: 1010029-MSD1											Clien	t Sample ID	: PTIO	008-02
Matrix: Water												Pre	р Туре	e: total
Analysis Batch: 1010029												Prep Batc	h: 1010	029_P
	Sample	Sam	ple	Spłke	Matrix S	Spike Dup	Matrix Spli	ke Dup				% Rec.		RPD
Analyte	Result	Qual	lifier	Added		Result	Qualifier	Unit		D	% Rec	Limits	RPD	Limit
Lead				0.100		0.112		mg/i			99.4	75 - 125	12.0	20

QC Association Summary

TestAmerica Job ID: ATH0076 SDG: ATH0076

GCMS Volatiles

Analysis Batch: 10H0146

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
ATH0076-05	Trip Blank	total	Water	EPA 8260B	10H0146_P
10H0146-MS1	STH0136-02	total	Water	EPA 8260B	
10H0146-MSD1	STH0136-02	total	Water	EPA 8260B	
10H0146-BLK1	10H0146-BLK1	total	Water	EPA 8260B	
10H0146-BS1	10H0146-BS1	total	Water	EPA 8260B	
ATH0076-01	MW3-0826	total	Water	EPA 8260B	10H0146_P
ATH0076-03	MW5-0826	total	Water	EPA 8260B	10H0146_P
Prep Batch: 10H014	6_P				
Lab Sample ID	Cilent Sample ID	Prep Type	Matrix	Method	Prep Batch
ATH0076-05	Trip Blank	total	Water	GC/MS Volatiles	
10H0146-MS1	STH0136-02	total	Water	GC/MS Volatiles	
10H0146-MSD1	STH0136-02	total	Water	GC/MS Volatiles	
10H0146-BLK1	10H0146-BLK1	total	Water	GC/MS Volatiles	
10H0146-BS1	10H0146-BS1	total	Water	GC/MS Volatiles	
ATH0076-01	MW3-0826	total	Water	GC/MS Volatiles	
ATH0076-03	MW5-0826	total	Water	GC/MS Volatiles	
GC Volatiles					
Prep Batch: 10H012	6_P				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
10H0126-BS1	10H0126-BS1	total	Water	EPA 5030B	

10H0126-BS1	10H0126-BS1	total	Water	EPA 5030B
10H0126-BSD1	10H0126-BSD1	total	Water	EPA 5030B
10H0126-BS2	10H0126-BS2	total	Water	EPA 5030B
10H0126-BSD2	10H0126-BSD2	total	Water	EPA 5030B
10H0126-BLK1	10H0126-BLK1	total	Water	EPA 5030B
10H0126-DUP1	ATH0064-03	total	Water	EPA 5030B
ATH0076-01	MW3-0826	total	Water	EPA 5030B
ATH0076-02	MW4-0826	total	Water	EPA 5030B
ATH0076-03	MW5-0826	total	Water	EPA 5030B

Prep Batch: 10l0014_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
10/0014-BS1	1010014-BS1	total	Water	EPA 5030B	
1010014-BSD1	1010014-BSD1	total	Water	EPA 5030B	
1010014-BS2	1010014-BS2	total	Water	EPA 5030B	
1010014-BSD2	1010014-BSD2	total	Water	EPA 5030B	
1010014-BLK1	1010014-BLK1	total	Water	EPA 5030B	
ATH0076-01 - RE1	MW3-0826	total	Water	EPA 5030B	
ATH0076-02 - RE1	MW4-0826	total	Water	EPA 5030B	
ATH0076-03 - RE1	MW5-0826	total	Water	EPA 5030B	
ATH0076-04	Trip Blank	total	Water	EPA 5030B	
1010014-DUP1	ATH0091-01	total	Water	EPA 5030B	
1010014-MS1	ATH0091-02	total	Water	EPA 5030B	
1010014-MSD1	ATH0091-02	total	Water	EPA 5030B	
1010014-MS2	ATI0011-03	total	Water	EPA 5030B	
1010014-MSD2	ATI0011-03	total	Water	EPA 5030B	
Prep Batch: 10l0032_	P				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
1010032-BS1	1010032-BS1	total	Water	EPA 5030B	

TestAmerica Anchorage 09/17/2010

8

Client: BGES, INC. Project/Site: [none] TestAmerica Job ID: ATH0076 SDG: ATH0076

GC Volatiles (Continued)

Prep Batch: 10I0032_P (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
1010032-BSD1	1010032-BSD1	total	Water	EPA 5030B	
1010032-BS2	1010032-BS2	totai	Water	EPA 5030B	
1010032-BSD2	1010032-BSD2	total	Water	EPA 5030B	
1010032-BLK1	1010032-BLK1	total	Water	EPA 5030B	
ATH0076-04 - RE1	Trip Blank	total	Water	EPA 5030B	
1010032-DUP1	AT10010-02	total	Water	EPA 5030B	
Analysis Batch: T000	441				

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
10H0126-BS1	10H0126-BS1	total	Water	AK101/EPA	10H0126_P
				8021B	
10H0126-BSD1	10H0126-BSD1	total	Water	AK101/EPA	10 H 0126_P
				8021B	
10H0126-BS2	10H0126-BS2	total	Water	AK101/EPA	10H0126_P
				8021B	
10H0126-BSD2	10H0126-BSD2	total	Water	AK101/EPA	10H0126_P
				8021B	
10H0126-BLK1	10H0126-BLK1	total	Water	AK101/EPA	10H0126_P
				8021B	
10H0126-DUP1	ATH0064-03	total	Water	AK101/EPA	10H0126_P
				8021B	
ATH0076-01	MW3-0826	total	Water	AK101/EPA	10H0126_P
				8021B	
ATH0076-02	MW4-0826	total	Water	AK101/EPA	10H0126_P
				8021B	
ATH0076-03	MW5-0826	total	Water	AK101/EPA	10H0126_P
				8021B	

Analysis Batch: T000457

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
1010014-BS1	1010014-BS1	total	Water	AK101/EPA	1010014_P
1010014-BSD1	1010014-BSD1	total	Water	AK101/EPA	1010014_P
1010014-BS2	1010014-BS2	total	Water	AK101/EPA 8021B	1010014_P
1010014-BSD2	1010014-BSD2	total	Water	AK101/EPA 8021B	1010014_P
1010014-BLK1	1010014-BLK1	total	Water	AK101/EPA 8021B	10\0014_P
ATH0076-01 - RE1	MW3-0826	total	Water	AK101/EPA 8021B	1010014_P
ATH0076-02 - RE1	MW4-0826	total	Water	AK101/EPA 8021B	1010014_P
ATH0076-03 - RE1	MW5-0826	total	Water	AK101/EPA 8021B	1010014_P
ATH0076-04	Trip Blank	total	Water	AK101/EPA 8021B	1010014_P
1010014-DUP1	ATH0091-01	total	Water	AK101/EPA 8021B	1010014_P
1010014-MS1	ATH0091-02	total	Water	AK101/EPA 8021B	1010014_P
1010014-MSD1	ATH0091-02	total	Water	AK101/EPA 8021B	1010014_P
1010014-MS2	AT10011-03	total	Water	AK101/EPA 8021B	1010014_P
1010014-MSD2	AT10011-03	total	Water	AK101/EPA 8021B	1010014_P
Analysis Batch: T000	0465				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
1010032 BS1	1010032-BS1	total	Water	AK101/EPA	1010032_P

AK101/EPA Water total 1010032-BS1 1010032-BS1 8021B
QC Association Summary

Client: BGES, INC. Project/Site: [none]

TestAmerica Job ID: ATH0076 SDG: ATH0076

GC Volatiles (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
1010032-BSD1	1010032-BSD1	total	Water	AK101/EPA 8021B	10l0032_P
1010032-BS2	1010032-BS2	total	Water	AK101/EPA 8021B	1010032_P
1010032-BSD2	1010032-BSD2	total	Water	AK101/EPA 8021B	1010032_P
1010032-BLK1	1010032-BLK1	total	Water	AK101/EPA 8021B	1010032_P
ATH0076-04 - RE1	Trip Blank	total	Water	AK101/EPA 8021B	1010032_P
1010032-DUP1	AT10010-02	total	Water	AK101/EPA 8021B	1010032_P

Semivolatiles

Analysis Batch: 10H0147

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
10H0147-BS2	10H0147-BS2	total	Water	EPA 8011	
10H0147-BLK1	10H0147-BLK1	total	Water	EPA 8011	
10H0147-BS1	10H0147-BS1	total	Water	EPA 8011	
ATH0076-01	MW3-0826	total	Water	EPA 8011	10H0147_P
ATH0076-03	MW5-0826	total	Water	EPA 8011	10H0147_P
ATH0076-06	Trip Blank	total	Water	EPA 8011	10H0147_P

Prep Batch: 10H0147_P

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
10H0147-BS2	10H0147-BS2	total	Water	EPA 3510/600	
				Series	
10H0147-BLK1	10H0147-BLK1	total	Water	EPA 3510/600	
				Series	
10H0147-BS1	10H0147-BS1	total	Water	EPA 3510/600	
				Series	
ATH0076-01	MW3-0826	total	Water	EPA 3510/600	
				Series	
ATH0076-03	MW5-0826	total	Water	EPA 3510/600	
				Series	
ATH0076-06	Trip Blank	total	Water	EPA 3510/600	
-	,			Series	

Metals

Analysis Batch: 1010001

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
1010001-BLK1	1010001-BLK1	total	Water	EPA 6020	
1010001-BS1	1010001-BS1	total	Water	EPA 6020	
1010001-DUP1	PTH0846-01	total	Water	EPA 6020	
1010001-MS1	PTH0846-02	total	Water	EPA 6020	
ATH0076-02	MW4-0826	total	Water	EPA 6020	1010001_P
1010001-MS2	PTH0981-01	total	Water	EPA 6020	

Prep Batch: 10I0001_P

Lab Sample ID	Cilent Sample ID	Prep Type	Matrix	Method Prep B	Batch
1010001-BLK1	1010001-BLK1	total	Water	EPA 200/3005	
1010001-BS1	1010001-BS1	total	Water	EPA 200/3005	
1010001-DUP1	PTH0846-01	total	Water	EPA 200/3005	
1010001-MS1	PTH0846-02	total	Water	EPA 200/3005	
ATH0076-02	MW4-0826	total	Water	EPA 200/3005	

QC Association Summary

Client: BGES, INC. Project/Site: [none]

TestAmerica Job ID: ATH0076 SDG: ATH0076

Metals (Continued)

Prep Batch: 10I0001_P (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
1010001-MS2	PTH0981-01	total	Water	EPA 200/3005	

Analysis Batch: 1010029

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
1010029-BLK1	1010029-BLK1	totai	Water	EPA 6020	
1010029-BS1	10 0029-BS1	total	Water	EPA 6020	
ATH0076-01	MW3-0826	total	Water	EPA 6020	1010029_P
ATH0076-03	MW5-0826	total	Water	EPA 6020	1010029_P
1010029-MS1	PTI0008-02	total	Water	EPA 6020	
1010029-MSD1	PT10008-02	total	Water	EPA 6020	

Prep Batch: 1010029_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
1010029-BLK1	1010029-BLK1	total	Water	EPA 200/3005	
1010029-BS1	1010029-BS1	total	Water	EPA 200/3005	
ATH0076-01	MW3-0826	total	Water	EPA 200/3005	
ATH0076-03	MW5-0826	total	Water	EPA 200/3005	
1010029-MS1	PTI0008-02	total	Water	EPA 200/3005	
1010029-MSD1	PT10008-02	total	Water	EPA 200/3005	

Client Sample ID: MW3-0826 Date Collected: 08/26/10 12:20 Date Received: 08/26/10 14:45

Lab Sample ID: ATH0076-01 Matrix: Water

	Batch	ch Batch	Dilution Batch	Prepared				
Ргер Туре	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
total	Prep	GC/MS Volatiles			10H0146_P	08/27/10 14:41	CBW	TestAmerica Spokane
total	Analysis	EPA 8260B		100	10H0146	08/27/10 19:41	CBW	TestAmerica Spokane
total	Ргер	EPA 5030B		1	10H0126_P	08/31/10 08:32	JJB	TestAmerica Anchorage
total	Analysis	AK101/EPA 8021B		100	T000441	09/01/10 02:52	JJB	TestAmerica Anchorage
total	Prep	EPA 5030B	RE1	1	1010014_P	09/03/10 16:37	JJB	TestAmerica Anchorage
total	Analysis	AK101/EPA 8021B	RE1	1000	T000457	09/06/10 11:42	JJB	TestAmerica Anchorage
total	Prep	EPA 3510/600 Series		1	10H0147_P	08/30/10 08:15	MS	TestAmerica Spokane
total	Analysis	EPA 8011		1	10H0147	08/30/10 15:32	mrs	TestAmerica Spokan e
total	Prep	EPA 200/3005		1	1010029_P	09/02/10 08:00	JMF	TestAmerica Portland
total	Analysis	EPA 6020		5	1010029	09/03/10 14:58	kah	TestAmerica Portland

Client Sample ID: MW4-0826

Date Collected: 08/26/10 13:28 Date Received: 08/26/10 14:45 Lab Sample ID: ATH0076-02 Matrix: Water

Lab Sample ID: ATH0076-03

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
total	Prep	EPA 5030B		1	10H0126_P	08/31/10 08:32	JJB	TestAmerica Anchorage
total	Analysis	AK101/EPA 8021B		100	T000441	09/01/10 03:17	JJB	TestAmerica Anchorage
total	Prep	EPA 5030B	RE1	1	1010014_P	09/03/10 16:37	JJB	TestAmerica Anchorage
total	Analysis	AK101/EPA 8021B	RE1	1000	T000457	09/06/10 12:07	JJB	TestAmerica Anchorage
total	Prep	EPA 200/3005		1	1010001_P	09/01/10 07:40	JMF	TestAmerica Portland
total	Analysis	EPA 6020		5	1010001	09/01/10 17:57	kaah	TestAmerica Portland

Client Sample ID: MW5-0826

Date Collected: 08/26/10 12:25 Date Received: 08/26/10 14:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
total	Prep	GC/MS Volatiles		1	10H0146_P	08/27/10 14:41	CBW	TestAmerica Spokane
total	Analysis	EPA 8260B		100	10H0146	08/27/10 20:09	CBW	TestAmerica Spokane
total	Prep	EPA 5030B		1	10H0126_P	08/31/10 08:32	JJB	TestAmerica Anchorage
total	Analysis	AK101/ËPA 8021B		100	T000441	09/01/10 03:42	ĴĴΒ	TestAmerica Anchorage
total	Prep	EPA 5030B	RE1	1	1010014_P	09/03/10 16:37	JJB	TestAmerica Anchorage
total	Analysis	AK101/EPA 8021B	RE1	1000	T000457	09/06/10 12:31	JJB	TestAmerica Anchorage
total	Ргер	EPA 3510/600 Series		1	10H0147_P	08/30/10 08:15	MS	TestAmerica Spokane
total	Analysis	EPA 8011		1	10H0147	08/30/10 15:56	mrs	TestAmerica Spokane
total	Prep	EPA 200/3005		1	1010029_P	09/02/10 08:00	JMF	TestAmerica Portland
total	Analysis	EPA 6020		5	1010029	09/03/10 15:02	kah	TestAmerica Portland

Page 27 of 33

......

Client: BGES, II Project/Site: [no	NC. ne]							TestAmerica Job ID: ATH0076 SDG: ATH0076
Client Sampl	le ID: Trip B	llank						Lab Sample ID: ATH0076-04
Date Collected	: 08/26/10 00:0	0						Matrix: Water
Date Received:	08/26/10 14:4	5						
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
total	Prep	EPA 5030B			1010014_P	09/03/10 16:37	JJB	TestAmerica Anchorage
total	Analysis	AK101/EPA 8021B		1	T000457	09/06/10 12:56	JJB	TestAmerica Anchorage
total	Prep	EPA 5030B	RE1	1	1010032_P	09/08/10 09:55	JJB	TestAmerica Anchorage
total	Analysis	AK101/EPA 8021B	RE1	1	T000465	09/08/10 15:42	JJB	TestAmerica Anchorage
Client Samp Date Collected Date Received	le ID: Trip E : 08/26/10 00:0 : 08/26/10 14:4	Blank 50 15						Lab Sample ID: ATH0076-05 Matrix: Water
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
total	Prep	GC/MS Volatiles		1	10H0146_P	08/27/10 14:41	CBW	TestAmerica Spokane
total	Anatysis	EPA 8260B		1	10H0146	08/27/10 16:25	CBW	TestAmerica Spokane
Client Samp	le ID: Trip E	Blank						Lab Sample ID: ATH0076-06
Date Collected	: 08/26/10 00:	00						watrix: water
Date Received	: 08/26/10 14:4	45			4 			·
	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
total	Prep	EPA 3510/600 Series		1	10H0147_P	08/30/10 08:15	MS	TestAmerica Spokane
total	Analysis	EPA 8011		1	10H0147	08/30/10 16:21	mrs	TestAmerica Spokane

Lab Chronicle

9

Certification Summary

Client: BGES, INC. Project/Site: [none]

TestAmerica Job ID: ATH0076 SDG: ATH0076

Laboratory	Authority	Program	EPA Region	Certification ID	Expiration Date
TestAmerica Anchorage	Alaska	Alaska UST	10	UST-067	06/16/11
TestAmerica Anchorage	Alaska	State Program	10	AK00975	06/30/11
TestAmerica Portland		USDA		P330-07-XXXXXX	11/13/10
TestAmerica Portland	Alaska	Alaska UST	10	UST-012	12/26/10
TestAmerica Portland	Alaska	State Program	10	OR00040	04/21/11
TestAmerica Portland	California	State Program	9	2597	09/30/11
TestAmerica Portland	Oregon	NELAC Primary AB	10	OR100021	01/09/11
TestAmerica Portland	Washington	State Program	10	C586	06/23/11
TestAmerica Spokane	Alaska	Alaska UST	10	UST-071	10/31/10
TestAmerica Spokane	Washington	State Program	10	C569	01/06/11

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

andar (

	· · · · · · · · · · · · · · · · · · ·		
Method	Method Description	Protocol	Laboratory
EPA 8260B	Volatile Organic Compounds by EPA Method 8260B	······································	TAL SPK
AK101/EPA 8021B	Gasoline Range Organics (C6-C10) and BTEX per AK101		TAL ANC
EPA 8011	EDB by EPA Method 8011		TAL SPK
EPA 6020	Total Metals per EPA 6000/7000 Series Methods		TAL PTL

Protocol References:

=

Laboratory References:

TAL ANC = TestAmerica Anchorage, 2000 West International Airport Road Suite A10, Anchorage, AK 99502-1119, TEL (907) 563-9200

TAL PTL = TestAmerica Portland, 9405 SW Nimbus Avenue, Beaverton, OR/USA 97008, TEL (503) 906-9200

TAL SPK = TestAmerica Spokane, 11922 E. 1st Ave., Spokane, WA/USA 99206, TEL (509) 924-9200

.

TestAmerica Job ID: ATH0076 SDG: ATH0076

 \mathbf{P}

Lab Sample ID	Client Sample iD	Matrix	Collected	Received
ATH0076-01	MW3-0826	Water	08/26/10 12:20	08/26/10 14:45
ATH0076-02	MVV4-0826	Water	08/26/10 13:28	08/26/10 14:45
ATH0076-03	MW5-0826	Water	08/26/10 12:25	08/26/10 14:45
ATH0076-04	Trip Blank	Water	08/26/10 00:00	08/26/10 14:45
ATH0076-05	Trip Blank	Water	08/26/10 00:00	08/26/10 14:45
ATH0076-06	Trìp Blank	Water	08/26/10 00:00	08/26/10 14:45

TootA			~								·;	· · · · · · · · · · · · · · · · · · ·				-		•	
		NTAL TEST	ING		•					1 2000 W	l 1720 No / Internat	rth Creek 1 9405 ional Airp	Pkwy N 1922 E. I SW Nim ort Rd Si	Suite 400, 1 First Ave, S bus Ave, Be e A10, And	Bothell, V pokane, V averton, (chorage, A	VA 98011-82 VA 99206-53 DR 97008-71 XK 99502-11	44 02 45 19	425-420-9200 FAX 42 509-924-9200 FAX 92 503-906-9200 FAX 90 907-563-9200 FAX 50	0-9210 4-9290 6-9210 53-9210
			•		C	HAI	∛OF	CUSI	CODY	Y REP	ORT	۰				Work O	rder #	: ATH0076	
CLIENT: KGES						INVOI	CE TO:								·		TURNA	ROUND REQUES	r · · ·
REPORT TO: $1042 E$. (Address:	Gu ANE		• .	•			-		B61	ES						$\mathbf{X}_{\mathbf{F}}$	ii Organic &	Business Days •	
PHONE: 644-2900	FAX: SEAN	12 baca	INC. CO	sn		P.O. NU	MBER:					······				CSTD.	yetroleun	Hydrocarbon Analyses	
project name: 4540 w	0.30TH AN			1			1	PR	ESERVA	TIVE	·· -							321<	1 2
PROJECT NUMBER:			Ha	Hu		AUD	Mu	Wal								/ STD			
AMPLED BY: S. PETH	FIZSON							REQUE	STED A	NALYSES	1	т –	1			* Turnamund	THER Requests le	Specify:	Ruch Charges
CLIENT SAMPLE IDENTIFICATION	SAM DAT	IPLING E/TIME	S'A	PRO PRO	401 401	No ²	Ward U	JK J	P			· .				MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WOID
MW3-0826	8/20/10	220	×	x	ĸ	X	x	×								3	0		01
MW4-0826		1328	₩.	×		×										З	6		OZ
MW5-0826	V	1225	×	×	\mathbf{X}_{i}	V	×	Ý						· .		ω	10		03
TRIP BLANK			×		\sim		x	×										12	04,05,06
5											<u> </u>		<u> </u>						
6						}													
7																			
							ĺ												
9											<u> </u>								
10				1 .	1	<u>†</u> . − −					1		. /	B	-		<u> </u>		* {
RELEASED BY:	<u> </u>	<u> </u>		1	-l		1/2/20	5/10	<u> </u>	RECEIVI	ED BY:	ty	ly	\mathcal{F}			<u> </u>	DATE 4	the to
PRINT NAME: SEAN PETE	RON_	FIRM:	B6E	<u>δ</u>		TIME	јцц	5		PRINTN	iame: 1	ray 5	mash	m_	· ·	FIRM	TAL	- ANC TIME:	14345
PRINT NAME:		FIRM:					× ·			PRINT N	ыр ну: IAME: —	l	,			FIRM		DATE: TIME:	
GRO BIDY VUY AKIOI	1 EPA 8260 0	r BO216;	0e2	RAU Y	(MAK	102/	123 6	EOB	VIA	8D11	5 NA	PHTH	ALESSE	+ Da	CA UI	a 820	.0	2,9°C PAGE	of

13

Page 32 of 33

Test America Anchorage	Cooler F	<u>Receipt </u>]	Form	
(Army corps. co)	BIJES	רסמת	ron. 4540 W	CATL AVP
WORK ORDER # $\underline{A h a / b}$ CLIENT:		PROJ	ECT: 1510 WI	<u>. 1000</u>
Date /Time Cooler Arrived 8/20/10 17:15	Cooler signed	for by: <u>rro</u> (Print ne	<u>y Engstrom</u> ame)	
Preliminary Examination Phase:				
Date cooler opened: 🕅 same as date received or/	/	TE	A	
Cooler opened by (print) Troy Engstrom	(sign)	Ing ing	\mathcal{L}	
1. Delivered by ALASKA AIRLINES Fed-Ex UPS	NAC LYN	UDEN KICL	IENT Other:	
Shipment Tracking # if applicable	(include copy of	f shipping papers	in file)	
2. Number of Custody Seals <i>G</i> Signed by		_ Date/_		
Were custody seals unbroken and intact on arrival?	Yes	No	to ra	
3 Were custody papers sealed in a plastic bag?	۲γes	[]] No		
5. Word outstood y papers source in a plante ong,				
4. Were custody papers filled out property (ink, signed, etc.)?	Le res			
5. Did you sign the custody papers in the appropriate place?	L¥cs .	[]No	<u>ب</u> ر	N. 11
6. Was ice used? Yes No Type of ice: blue ice decline	e 🗌 real ice (<u>dry ice</u> Con	dition of Ice:	
Temperature by Digi-Thermo Probe <u>2,9</u> °C Therm Acceptance Criteria: 0 - 6°C	ometer #	5		
7. Packing in Cooler: 🔀 bubble wrap 🔲 styrofoam 🗍 cardboard 🗌	Other:		· · · · · · · · · · · · · · · · · · ·	-
8. Did samples arrive in plastic bags?	🔀 Yes	🗌 No		
9. Did all bottles arrive unbroken, and with labels in good condition?	🔀 Yes	No		
10. Are all bottle labels complete (ID, date, time, etc.)	₩ Yes	No		
1. Do bottle labels and Chain of Custody agree?	7 NI Yes	□No		
1. So both house and common called a group of the tests indicated	2N Ver			
2. Are the containers and preservatives correct for the tests indicated				
3. Conoco Phillips, Alyeska, BP H2O samples only: pH < 2?	Yes 🗌	[]No	<u>k</u> N/A	
4. Is there adequate volume for the tests requested?	🕅 Yes	🗌 No		
5. Were VOA vials free of bubbles? If "NO" which containers contained "head space" or bubbles	Yes ?	∐ No		
Log-in Phase:				
Date of sample log-in $8 / 26 / 10$. +		
Samples logged in by (print) Robert Tim	(sign)	del 2	· 	
Was project identifiable from custody papers?	Yes	No		
Do Turn Around Times and Due Dates agree?	Yes	 No		
Was the Project Manager notified of status?	🗙 Yes	No		
Was the Lab notified of status?	🗶 Yes	🗌 No		
Was the COC scanned and copied?	X Yes	□ No		
Page	33 of 33	-		

..

• ·

13

BGES, INC.

APPENDIX D LABORATORY ANALYTICAL DATA QUALITY CONTROL CHECKLISTS

•

Laboratory Data Review Checklist

Completed by: Sean Peterson
Title: Environmental Scientist II Date: May 13, 2011
CS Report Name: 2010 Site Characterization Report Report Date: July 2011
Consultant Firm: BGES, Inc.
Laboratory Name: Test America Laboratory Report Number: ATH0063
ADEC File Number: 2100.26.133 ADEC Hazard ID #: 24091
 Laboratory Laboratory
 2. <u>Chain of Custody (COC)</u> a. COC information completed, signed, and dated (including released/received by)? Yes No NA (Please explain.) Comments:
b. Correct analyses requested? Yes No NA (Please explain.) Comments:
3. <u>Laboratory Sample Receipt Documentation</u> a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)? Yes No NA (Please explain.) Comments: The temperature of the sample cooler was measured at the laboratory at the time of receipt to be 0.7° Celsius (C). This temperature was below the above-listed acceptance range; however, because the recorded temperature was below the acceptance range, there is a reduced potential for contaminant concentration loss within the samples due to natural attenuation.

Version 2.7

data for their intended use.

For this reason it is our opinion that this QC failure does not affect the acceptability of the

-	Yes No NA (Please exp	lain.) Comments:
с.	Sample condition documented – bro Yes No NA (Please exp	ken, leaking (Methanol), zero headspace (VOC vials)? lain.) Comments:
Ν	o irregularities or abnormalities wi	th respect to sample containers were reported.
d.	If there were any discrepancies, were containers/preservation, sample temp samples, etc.?	e they documented? For example, incorrect sample perature outside of acceptable range, insufficient or miss
	Tes NO (MA) (Flease ex	
لے e.	Data quality or usability affected? (I	Please explain.) Comments:
1	Ň/A	
ase l	Narrative Present and understandable?	

b. Discrepancies, errors or QC failures identified by the lab? Yes No NA (Please explain.) Comments:

The reported concentration of 1,2-dibromo-3-chloropropane for Field Sample SB2-5 was detected at a concentration less than the laboratory's MRL and greater than or equal to the laboratory's method detection limit (MDL); for this reason, the concentration of the analyte listed above should be considered an estimated value and is qualified with "J" in Table 1. It should be noted that there is no published ADEC cleanup criterion for 1,2-dibromo-3-chloropropane.

According to the laboratory, the laboratory control sample (LCS) exhibited a recovery percentage that exceeded the laboratory's acceptance range for the surrogate 4bromofluorobenzene (BFB) as measured by a flame ionization detector (FID), with respect to the GRO analysis; indicating a potential for the reported concentrations of GRO within Field Samples SB2-3 through SB2-6 to be biased high for GRO. For this reason, the GRO concentrations in the field samples are qualified with "J" in Table 2, indicating that the reported concentrations should be considered to be estimates. However, because Field Samples SB2-3 through SB2-6 exhibited concentrations of GRO which were well above the ADEC cleanup criterion, it is our opinion that the data are acceptable for their intended use.

Detectable concentrations of benzene, toluene, and total xylenes were identified in the trip blank sample; indicating a potential for the reported concentrations of these analytes within field

samples (SB1-1 through SB1-5 and SB2-1 through SB2-6) to be biased high. For this reason, the benzene, toluene, and total xylenes concentrations in the field samples identified above are qualified with "J" in Table 2 and should be considered estimates. However, because multiple field samples (SB1-5, SB2-4, SB2-4, SB2-5, and SB2-6) exhibited concentrations of BTEX which, in some cases, greatly exceed ADEC cleanup criteria, it is our opinion that the data are acceptable for their intended use.

The percent recoveries for BTEX in the matrix spike (MS) and matrix spike duplicate (MSD) samples (laboratory sample numbers 10H0091-MS1, 10H0091-MSD1, respectively) exceeded the laboratory's acceptance limits. The percent recoveries for BTEX were within their acceptance limit ranges for the LCS and laboratory control sample duplicate (LCSD). Because the MS and MSD samples were derived from field samples collected as part of another project, it is our opinion that there is an increased potential for the data QC failure to be due to matrix effects. For the above-stated reasons, it is our opinion that this QC failure does not affect the acceptability of the data for their intended use.

The laboratory reported that the DRO concentration in Sample SB2-4 was partly due to hydrocarbons outside of the DRO range, however, the reported concentration was below the ADEC cleanup criterion, therefore, it is our opinion that the data are acceptable for their intended use.

Due to sample matrix effects, the percent recoveries for the surrogates a,a,a-trifluorotoluene (TFT), as measured by an FID, and a,a,a-TFT, as measured by a PID; exceeded their acceptance limit ranges in Field Samples SB1-5, SB2-3, SB2-4, and SB2-6 with respect to the GRO and BTEX analysis, indicating a potential for the field samples to be biased high for these analytes; for this reason the GRO and BTEX concentrations in the field samples listed above are qualified with "J" in Table 2, indicating that the reported concentrations should be considered estimates. However, because the recovery percentages for the additional surrogates (4-BFB by FID and 4-BFB by PID) were within their acceptance limit ranges, and because all of these analytes were considerably above the ADEC cleanup criteria, it is our opinion that the data are acceptable for their intended use.

Due to sample matrix effects, the percent recoveries exceeded their acceptance limits for the surrogate toluene-d8 in Field Samples SB2-5 and SB2-6 with respect to the EDC and naphthalene analyses, indicating a potential for the field samples to be biased high for these analytes; for this reason the EDC and naphthalene concentrations for Field Samples SB2-5 and SB2-6 are qualified with "J" in Table 2. However, because Field Samples SB2-5 and SB2-6 exhibited concentrations of EDC and naphthalene below ADEC cleanup criteria and because the percent recoveries of the additional surrogates (dibromofluoromethane and 4-bromofluorobenzene) were within their acceptance limit ranges, it is our opinion that the data are acceptable for their intended use.

c. Were all corrective actions documented?

Yes No (NA) (Please explain.)

Comments:

d. What is the effect on data quality/usability according to the case narrative?

Comments:

See 4.b, above.

Samples Results

 a. Correct analyses performed/reported as requested on COC?

Yes) No	NA (Please explain.)	Comments:	

b. All applicable holding times met?	Commontor
(res) No NA (rease explain.)	
All soils reported on a dry weight basis?	
Yes No NA (Please explain.)	Comments:
I. Are the reported PQLs less than the Cleanup Level of	or the minimum required detection level for
project?	Commenter
	Comments.
e. Data quality or usability affected?	Comments
N // /	Comments.
Yes No NA (Please explain.)	Comments:
ii. All method blank results less than PQL?	a
Yes No NA (Please explain.)	Comments:
See 4.b, above.	
iii. If above PQL, what samples are affected?	
	Comments:
See 4.b, above.	
iv Do the affected sample(s) have data flags and	d if so are the data flags clearly defined?
iv. Do the affected sample(s) have data flags and Yes No NA (Please explain.)	d if so, are the data flags clearly defined? Comments:
See 4.b, above. iv. Do the affected sample(s) have data flags and Yes No NA (Please explain.) See 4.b, above.	d if so, are the data flags clearly defined? Comments:
 See 4.b, above. iv. Do the affected sample(s) have data flags and Yes No NA (Please explain.) See 4.b, above. v. Data quality or usability affected? (Please explain.) 	d if so, are the data flags clearly defined? Comments:
 See 4.b, above. iv. Do the affected sample(s) have data flags and Yes No NA (Please explain.) See 4.b, above. v. Data quality or usability affected? (Please explain) 	d if so, are the data flags clearly defined? Comments: xplain.) Comments:
 See 4.b, above. iv. Do the affected sample(s) have data flags and Yes No NA (Please explain.) See 4.b, above. v. Data quality or usability affected? (Please explain.) See 4.b, above. 	d if so, are the data flags clearly defined? Comments: xplain.) Comments:

6.

.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes No NA (Please explain.)	Comments:
 ii. Metals/Inorganics – one LCS and one sa samples? 	ample duplicate reported per matrix, analysis and 20
Yes No NA (Please explain.)	Comments:
 iii. Accuracy – All percent recoveries (%R) And project specified DQOs, if applicab AK102 75%-125%, AK103 60%-120%; Yes No NA (Please explain.) 	reported and within method or laboratory limits? ole. (AK Petroleum methods: AK101 60%-120%, ; all other analyses see the laboratory QC pages) Comments:
See 4.b above	
iv. Precision – All relative percent difference laboratory limits? And project specified LCS/LCSD, MS/MSD, and or sample/sa other analyses see the laboratory OC par	ces (RPD) reported and less than method or DQOs, if applicable. RPD reported from ample duplicate. (AK Petroleum methods 20%; all ges)
Yes No NA (Please explain.)	Comments:
See 4.b above	
v. If %R or RPD is outside of acceptable li	imits, what samples are affected? Comments:
See 4.b above	
vi. Do the affected sample(s) have data flag	gs? If so, are the data flags clearly defined? Comments:

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

See 4.b above

c. Surrogates - Organics Only

i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory samples? (Yes) No NA (Please explain.) Comments:

Version 2.7

 Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

Yes No NA (Please explain.)

Comments:

iii. Do the sample results with failed surrogate flags clearly defined?	e recoveries have data flags? If so, are the data
Yes No NA (Please explain.)	Comments:
iv. Data quality or usability affected? (Use the	e comment box to explain.) Comments:
ee 4b, above.	
Trip blank – Volatile analyses only (GRO, BTEX, <u>Soil</u>	, Volatile Chlorinated Solvents, etc.): <u>Water and</u>
i. One trip blank reported per matrix, analysi (If not, enter explanation below.)	is and for each cooler containing volatile sampl
Yes No NA (Please explain.)	Comments:
 ii. Is the cooler used to transport the trip blan (If not, a comment explaining why must be Yes No NA (Please explain.) 	k and VOA samples clearly indicated on the Co e entered below) Comments:
 ii. Is the cooler used to transport the trip blan (If not, a comment explaining why must by Yes No NA (Please explain.) iii. All results less than PQL? Yes No NA (Please explain.) 	k and VOA samples clearly indicated on the Co e entered below) Comments: Comments:
 ii. Is the cooler used to transport the trip blan (If not, a comment explaining why must be Yes No NA (Please explain.) iii. All results less than PQL? Yes No NA (Please explain.) 	k and VOA samples clearly indicated on the Co e entered below) Comments: Comments:
 ii. Is the cooler used to transport the trip blan (If not, a comment explaining why must be Yes No NA (Please explain.) iii. All results less than PQL? Yes No NA (Please explain.) See 4.b, above. 	k and VOA samples clearly indicated on the Co e entered below) Comments: Comments:
 ii. Is the cooler used to transport the trip blan (If not, a comment explaining why must by Yes No NA (Please explain.) iii. All results less than PQL? Yes No NA (Please explain.) See 4.b, above. iv. If above PQL, what samples are affected? 	k and VOA samples clearly indicated on the Co e entered below) Comments: Comments:
 ii. Is the cooler used to transport the trip blan (If not, a comment explaining why must by Yes No NA (Please explain.) iii. All results less than PQL? Yes No NA (Please explain.) See 4.b, above. See 4.b, above. 	k and VOA samples clearly indicated on the Co e entered below) Comments: Comments: Comments:
 ii. Is the cooler used to transport the trip blan (If not, a comment explaining why must by Yes No NA (Please explain.) iii. All results less than PQL? Yes No NA (Please explain.) See 4.b, above. iv. If above PQL, what samples are affected? See 4.b, above. v. Data quality or usability affected? (Please 	k and VOA samples clearly indicated on the Co e entered below) Comments: Comments: Comments: explain.) Comments:

e. Field Duplicate

Yes No NA (Please explain.)	Comments:	
ii. Submitted blind to lab?	Commenter	

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration Yes No NA (Please explain.) Comments:

With the exception of naphthalene, the relative percent differenced RPDs as calculated between the reported analyte concentrations within the original sample SB2-5 and the duplicate sample (SB2-6) were below the ADEC recommended acceptable limit of 50 percent (Table 2), indicating an acceptable level of precision with respect to the field sampling procedures.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

See 6.e(iii), above.

f. Decontamination or Equipment Blank (If not used explain why).

Yes No NA (Please explain.)

Comments:

Not applicable. A decontamination or equipment blank was not collected; not part of our approved scope of work.

i. All results less than PQL?

Yes No NA (Please explain.)

Comments:

N/A

ii. If above PQL, what samples are affected?

Comments:

N/A

Version 2.7

iii. Data quality or usability affected? (Please explain.)

Comments:

N/A

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes No NA (Please explain.)

Comments:

Laboratory Data Review Checklist

Completed by:	Sean Peterson
Title:	Environmental Scientist II Date: May 13, 2011
CS Report Name	: 2010 Site Characterization Report Report Date: July 2011
Consultant Firm:	BGES, Inc.
Laboratory Name	e: Test America Laboratory Report Number: ATH0076
ADEC File Num	ber: 2100.26.133 ADEC Hazard ID #: 24091
 Laboratory Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a Did a <lidid a<="" li=""></lidid>	n ADEC CS approved laboratory receive and perform all of the submitted sample analyses?YesNoNA (Please explain.)Comments:samples were transferred to another "network" laboratory or sub-contracted to an alternate atory, was the laboratory performing the analyses ADEC CS approved?YesYesNoNA (Please explain.)Comments:
2. <u>Chain of Cus</u> a. COC	tody (COC) information completed, signed, and dated (including released/received by)? Yes No NA (Please explain.) Comments:
b. Corre	ect analyses requested? Yes No NA (Please explain.) Comments:
3. <u>Laboratory S</u> a. Samp	Cample Receipt Documentation De/cooler temperature documented and within range at receipt (4° ± 2° C)? Yes No NA (Please explain.) Comments:
b. Samı Vola (ole preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, tile Chlorinated Solvents, etc.)? Yes No NA (Please explain.) Comments:
L <u></u>	

N	o irregularit	ties or :	abnormalities with respect to	sample containers were reported.
d.	If there wer containers/j	re any c preserv c ?	liscrepancies, were they docum ation, sample temperature outsi	ented? For example, incorrect sample de of acceptable range, insufficient or missi
	Yes	No	(NA) (Please explain.)	Comments:
e.	Data qualit	y or usa	ability affected? (Please explain	n.) Comments:
e.	Data qualit	y or usa	ability affected? (Please explain	n.) Comments:
e. I ase 1 a.	Data quality N/A Narrative Present and	y or usa	ability affected? (Please explain	i.) Comments:

b. Discrepancies, errors or QC failures identified by the lab?

(Yes) No NA (Please explain.)

Comments:

A detectable concentration of benzene was identified in the laboratory method blank sample, indicating a potential for the field samples (MW3 through MW5) to be biased high for this analyte; for this reason, the benzene concentrations in the field samples identified above are qualified with "J" in Table 3. However, because the field samples exhibited concentrations of benzene at concentrations five to six orders of magnitude above the ADEC cleanup criterion, it is our opinion that the data are acceptable for their intended use.

The MRLs for EDC and naphthalene, and associated surrogate compounds, were raised in Field Samples MW3 and MW5 (a duplicate sample of MW3), due to high concentrations of non-target analytes; however, the MRLs for naphthalene in both of the field samples (MW3 and MW5) were below the ADEC cleanup criterion of 20 mg/L. With regards to the contaminant constituent EDC, it cannot be determined if actual concentrations of EDC within Field Samples MW3 and MW5 exceed their respective ADEC cleanup criteria; however, because the field samples exhibited concentrations of GRO, benzene, toluene, ethylbenzene, and total xylenes which in some cases, greatly exceeded ADEC cleanup criteria, it is our opinion that the lack of information concerning EDC does not affect the interpretation of the data for their intended use.

According to the laboratory, the LCS and LCSD (laboratory sample numbers 10H0126-BS2 and 10H0126-BSD2, respectively) exhibited recovery percentages that exceeded the laboratory's acceptance limits for the surrogate a,a,a-TFT by FID, with respect to the GRO analysis, indicating a potential for the reported concentrations of GRO within the field samples (MW3 through MW5) to be biased high for GRO. For this reason, the GRO concentrations in the field samples are qualified with "J" in Table 2, indicating that the reported concentrations should be considered estimates. Samples which were run within the same analytical batch but were not impacted by the QC failure described above were assigned the qualifier "L" by the laboratory.

Because Field Samples MW3 through MW5 exhibited concentrations of GRO two orders of magnitude greater than the ADEC cleanup criterion, it is our opinion that the data are acceptable for their intended use.

The RPD for GRO in the laboratory-prepared duplicate sample (1010032-DUP1) exceeded its acceptance limit (195 percent; acceptance limit 35 percent), with respect to the GRO analysis; indicating poor laboratory precision for this analyte. For this reason, the GRO concentrations in the field samples (MW3 through MW5) are qualified with "J" in Table 3. However, because the RPDs for GRO were within their acceptance limits in the LCSDs and the additional laboratory-prepared duplicate samples, it is our opinion that the data are acceptable for their intended use.

The percent recoveries for the surrogates 4-BFB(FID) and 4-BFB(PID) in the laboratory prepared duplicate sample, were below their acceptance limit ranges (40.1 percent and 41.4 percent; acceptance limit range 50 percent to 150 percent) with respect to the GRO/BTEX analysis; indicating a potential for the field samples to be biased low for these analytes. However, because all of the field samples (MW3 through MW5) exhibited concentrations of GRO and BTEX well above ADEC cleanup criteria, it is our opinion that the data are acceptable for their intended use.

Due to sample matrix effects, the MRL for lead was raised for Field Sample MW4; however, the MRL was below the ADEC cleanup criterion of 0.015 mg/L. For this reason, it is our opinion that the data are acceptable for their intended use.

c. Were all corrective actions documented? Yes No NA (Please explain.)

Comments:

d. What is the effect on data quality/usability according to the case narrative?

Comments:

Comments:

See 4.b, above.

5. Samples Results

- a. Correct analyses performed/reported as requested on COC?
 - Yes No NA (Please explain.)

b.	All applicable holding times met? (Yes) No NA (Please explain.)	Comments:
с.	All soils reported on a dry weight basis? Yes No NA (Please explain.)	Comments:
d.	Are the reported PQLs less than the Cleanup Level	or the minimum required detection level fo
	project? Yes No NA (Please explain.)	Comments:
cr	iteria, it is our opinion that the lack of information of the date for their intended use	ation concerning EDC does not affect t
e.	Data quality or usability affected?	******
e.	Data quality or usability affected?	Comments:
in e.	Data quality or usability affected?	Comments:
in e. <u>S</u> <u>C Sa</u> a.	Data quality or usability affected? See 5.d above. <u>umples</u> Method Blank i. One method blank reported per matrix, anal	Comments:
in e. Sa c Sa a.	Data quality or usability affected? See 5.d above. <u>umples</u> Method Blank i. One method blank reported per matrix, anal Yes No NA (Please explain.)	Comments: ysis and 20 samples? Comments:
in e. S C Sa a.	Data quality or usability affected? See 5.d above. umples Method Blank i. One method blank reported per matrix, anal Yes No NA (Please explain.)	Comments: ysis and 20 samples? Comments: Comments:
in e. S	Data quality or usability affected? See 5.d above. umples Method Blank i. One method blank reported per matrix, anal Yes No NA (Please explain.) ii. All method blank results less than PQL? Yes NA (Please explain.) ee 4.b, above.	Comments: ysis and 20 samples? Comments: Comments:
in e. S C Sa a.	Data quality or usability affected? See 5.d above. umples Method Blank i. One method blank reported per matrix, anal Yes No NA (Please explain.) ii. All method blank results less than PQL? Yes NA (Please explain.) ee 4.b, above. iii. If above PQL, what samples are affected?	Comments: ysis and 20 samples? Comments: Comments:
in e. S <u>C Sa</u> a.	Data quality or usability affected? See 5.d above. umples Method Blank i. One method blank reported per matrix, anal Yes No NA (Please explain.) ii. All method blank results less than PQL? Yes NA (Please explain.) ee 4.b, above. iii. If above PQL, what samples are affected? See 4.b, above.	Comments: ysis and 20 samples? Comments: Comments:

v.	Data quality	or usability	affected?	(Please explain.)
----	--------------	--------------	-----------	-------------------

Comments:

See 4.b, above.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) Comments:
 - NA (Please explain.) (Yes) No
 - ii. Metals/Inorganics one LCS and one sample duplicate reported per matrix, analysis and 20 samples? NA (Please explain.)

(Yes) No

Comments:

iii. Accuracy - All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes No NA (Please explain.) Comments:

See 4.b above

- iv. Precision All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
 - Yes (No) NA (Please explain.)

Comments:

See 4.b above

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

See 4.b above

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? (Yes) No NA (Please explain.) Comments:

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

See 4.b above

c. Surrogates - Organics Only

i. Are surrogate recoveries reported for organic Yes No NA (Please explain.)	analyses – field, QC and laboratory samples? Comments:
 ii. Accuracy – All percent recoveries (%R) report And project specified DQOs, if applicable. (A analyses see the laboratory report pages) Ves (No) NA (Please explain) 	ted and within method or laboratory limits? K Petroleum methods 50-150 %R; all other
See 4b. above.	
flags clearly defined?	coveries have data flags? If so, are the data
Yes No NA (Please explain.)	Comments:
iv. Data quality or usability affected? (Use the co	omment box to explain.) Comments:
See 4b, above.	
 i. One trip blank reported per matrix, analysis at (If not, enter explanation below.) Yes No NA (Please explain.) 	nd for each cooler containing volatile samples Comments:
 ii. Is the cooler used to transport the trip blank at (If not, a comment explaining why must be er Yes No NA (Please explain.) 	nd VOA samples clearly indicated on the CO ntered below) Comments:
iii. All results less than PQL? Yes No NA (Please explain.)	Comments:
iv. If above PQL, what samples are affected?	Comments:

v. Data quality or usability affected? (Please explain.)

Comments:

·····	 	
N/A		

e. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples? Yes No NA (Please explain.) Comments:

ii. Submitted blind to lab? Yes No NA (Please explain.)

Comments:

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$

Where R_1 = Sample Concentration
 R_2 = Field Duplicate ConcentrationYesNoNA (Please explain.)Comments:

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

The RPDs calculated utilizing the duplicate sample (MW5) collected in association with Water Sample MW3 were below the ADEC recommended acceptable limit of 30 percent (Table 3), indicating an acceptable level of precision with respect to the field sampling procedures.

f. Decontamination or Equipment Blank (If not used explain why).

Yes	No	NA (Please explain.)	Com
-----	----	----------------------	-----

Comments:

Not applicable. A decontamination or equipment blank was not collected; not part of our approved scope of work.

i. All results less than PQL?

Yes No NA (Please explain.)

Comments:

N/A

ii. If above PQL, what samples are affected?

		Comments:	
	N/A		
	iii. Data quality or usability affected? (Please	explain.)	
		Comments:	
	N/A	******	
7. <u>C</u>	Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Species) a. Defined and appropriate? Yes No NA (Please explain.)	fic, etc.) Comments:	

BGES, INC.

APPENDIX E CONCEPTUAL SITE MODEL

.

HUMAN HEALTH CONCEPTUAL SITE MODEL

Site: _____4540 West 50th Avenue, Anchorage, Alaska

Follow the directions below. <u>Do not</u> consider engineering or land use controls when describing pathways.

Completed By: Sean Peterson, Environmental Scientist II Date Completed: May 13, 2011 (5) Identify the receptors potentially affected by each exposure pathway: Enter "C" for current (1) (3) (4) (2)receptors. "F" for future receptors, or "C/F" for Check the media that For each medium identified in (1), follow the Check exposure media Check exposure pathways that are complete both current and future receptors. could be directly affected top arrow and check possible transport identified in (2). or need further evaluation. The pathways Current & Future Receptors by the release. mechanisms. Briefly list other mechanisms identified must agree with Sections 2 and 3 or reference the report for details. of the CSM Scoping Form. Subsistence consumer_t Farmers or subsistence Construction workers Site visitors, trespass or recreational users Residents (adults or children) Commercial or industrial workers Exposure **Exposure Pathways** Media **Transport Mechanisms** Media Direct release to surface soil check soil 1 Migration or leaching to subsurface check so 1 Surface Other Soil Migration or leaching to groundwater check groundwater 1 (0-2 ft bgs) 1 Volatilization check al Runoff or erosion check surface wa Incidental Soil Ingestion F 1 soil Uptake by plants or animals sheck biot Dermal Absorption of Contaminants from Soil F Other (list): Direct release to subsurface soil 1 check soil F Ingestion of Groundwater C/F Subsurface Migration to groundwater 1 check groundwater Dermal Absorption of Contaminants in Groundwater Soil C/F F 1 Volatilization ✓ groundwater check air (2-15 ft bgs) Other (list): Inhalation of Volatile Compounds in Tap Water C/F F Direct release to groundwater check groundwate Volatilization Inhalation of Outdoor Air F Ground-Flow to surface water body surface wate water Inhalation of Indoor Air F 1 air Flow to sediment check sedimer F Inhalation of Fugitive Dust Uptake by plants or animals check biot Other (list): Ingestion of Surface Water Direct release to surface water check surface water Volatilization check air Dermal Absorption of Contaminants in Surface Water surface water Surface Sedimentation check sedimen Water Inhalation of Volatile Compounds in Tap Water Uptake by plants or animals check biot Other (list): sediment **Direct Contact with Sediment** Direct release to sediment check sedime Resuspension, runoff, or erosion ck surface wate Sediment Uptake by plants or animals check biota Ingestion of Wild Foods biota Other (list):