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Self-similarity of Siegel disks and Hausdorff

dimension of Julia sets

Curtis T. McMullen∗
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Abstract

Let f(z) = e2πiθz + z2, where θ is an irrational number of bounded type. According
to Siegel, f is linearizable on a disk containing the origin. In this paper we show:

• the Hausdorff dimension of the Julia set J(f) is strictly less than two; and

• if θ is a quadratic irrational (such as the golden mean), then the Siegel disk for f
is self-similar about the critical point.

In the latter case, we also show the rescaled first-return maps converge exponentially
fast to a system of commuting branched coverings of the complex plane.
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1 Introduction

Let f : C → C be the quadratic polynomial

f(z) = e2πiθz + z2,

where θ has continued fraction expansion

θ = [a1, a2, a3, · · · ] =
1

a1 +
1

a2 +
1

a3 + · · ·

Assume θ is an irrational of bounded type, meaning supai < ∞. Then by a classical result of
Siegel, the map f is conformally conjugate to a rotation near the origin [Sie]. The maximal
domain D on which this conjugacy takes place is the Siegel disk for f ; it is the component
of the interior of the filled Julia set K(f) containing the origin.

Let c0 = −e2πiθ/2 denote the critical point of f , let ci = f i(c0), and let

P (f) = {c1, c2, c3, . . .}

be the postcritical set. By work of Herman and Świa̧tek, ∂D = P (f) and ∂D is a quasicircle
passing through the critical point.

The behavior of f is dominanted by the transition between linear and nonlinear dynamics
that occurs at the boundary of the Siegel disk. In this paper we study that transition and
prove:

Theorem 1.1 The Julia set J(f) has Hausdorff dimension strictly less than two.

Theorem 1.2 If θ is a quadratic irrational, then the boundary of the Siegel disk for f is
self-similar about the critical point.

Here is a more precise statement of the second Theorem. Suppose θ is a quadratic
irrational; its continued fraction expansion is then preperiodic, satisfying an+s = an for all
n $ 0. For simplicity assume the period s is even. Then we find the periodicity of 〈an〉
allows one to construct a symmetry of f , namely a homeomorphism ψ : C → C satisfying

ψ ◦ f qns(z) = f qn(s+1) ◦ ψ(z)

for n $ 0 and z near c0, where pn/qn = [a1, · · · , an]. We show ψ stabilizes the Siegel disk
and fixes the critical point; its complex derivative ψ′(c0) exists; we have 0 < |ψ′(c0)| < 1;
and ψ behaves like a C1+α diffeomorphism near the critical point.
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Since ψ′(c0) is contracting, all features of ∂D repeat at every scale, and the Siegel disk
exhibits a self-similar shape (§7). For example, the successive closest returns of the critical
orbit 〈cqn

〉 shadow geometric series converging to c0.
The dynamical system generated by f is also self-similar: when suitably rescaled, the

maps 〈f qns+i(z)〉 converge exponentially fast to a self-similar family 〈gi(z)〉 of commuting
holomorphic branched coverings of the plane (§8). Conceptually this means f is attracted
to a fixed point of renormalization.

For θ of bounded type, we also prove a form of universality holds (§5):

Theorem 1.3 Let g : U → V be a quadratic-like map with a fixed point of multiplier e2πiθ.
Then there is a conjugacy between f and g which is C1+α and conformal on the boundary
of the Siegel disk.

This result shows the fine-scale behavior of f |∂D depends only on the combinatorics of f ,
not on its explicit analytical form. For example, the Hausdorff dimension of the boundary
of the Siegel disk for ga(z) = e2πiθz + z2 + az3 is constant for small values of a.

In the course of the discussion, we also find (§4):

1. The Julia set of f is shallow (or porous): there is an ε > 0 such that any r-ball in C

contains an εr-ball disjoint from J(f). On the other hand:

2. The critical point is a Lebesgue density point of the filled Julia set; in fact,

area(B(c0, r) − K(f)) = O(r2+α)

for some α > 0.

3. The dynamical system (F(f), J(f)) is uniformly twisting: at every scale near every
point in the Julia set, one can find a degree two branched covering h : U → V with
bounded geometry, contained in the full dynamics 〈f−i ◦ f j〉.

The golden mean. All these assertions apply to the golden mean Siegel disk, where
θ = (

√
5−1)/2 = [1, 1, 1, · · · ]; see Figure 1. The critical point is in the center of the picture,

which depicts the filled Julia set in gray; the quasicircle bounding the Siegel disk is outlined
in black at the lower left.

We also show the boundary of the golden mean Siegel disk does not spiral about the
critical point (Corollary 7.5). This means any continuous branch of arg(z−c0) defined along
∂D − {c0} is bounded. The same result holds whenever the continued fraction expansion
of θ has odd period.

Empirically, the golden mean Siegel disk has the stronger property that D contains a
triangle with one vertex at c0.
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Figure 1. The golden mean Siegel disk and blowup around the critical point.
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Sources of rigidity. Convergence of the renormalized dynamics for the golden mean
Siegel disk and its cousins may at first sight appear unrelated to considerations such as the
dimension of the Julia set. In fact a principal goal of this paper is to give an explanation
for convergence of renormalization directly in terms of the geometry of the filled Julia set
K(f) and its boundary J(f). Here is a sketch of the argument.

Since ∂D is a quasicircle, there is definite space inside K(f) near every z ∈ ∂D. The
dynamics propagates this space throughout the Julia set, and we conclude that dimJ(f) < 2
(Theorem 1.1).

The picture is enhanced by the observation that the critical point (indeed every z ∈ ∂D)
is a Lebesgue density point of K(f). To see this, note that points just outside the Siegel
disk must visit the critical point many times before they can escape to infinity. On each
visit, there is a definite chance of landing in the pre-image D′ of D. Thus a random point
close to ∂D has a high probability of eventually landing in D′, so the density of K(f) tends
to one. (The study of f near ∂D is facilitated by working in the linear coordinate system,
a quasiconformal chart in which D is the unit disk, f |D is a rigid rotation, and the iterates
of f are uniformly quasiregular.)

Next we discuss universality. Consider a quadratic-like map g(z) with a fixed point
of multiplier e2πiθ. By a basic result of Douady and Hubbard, g = φ ◦ f ◦ φ−1, where φ
is conformal on K(f). Measure-theoretically, the filled Julia set is sufficiently dense near
z ∈ ∂D that the conformal behavior of φ dominates; we conclude φ′(z) exists and φ|∂D is
C1+α for some α > 0.

A similar argument provides smoothness of the conjugating map ψ between two renor-
malizations of f . Thus ∂D is self-similar when θ is a quadratic irrational (Theorem 1.2).
To construct these renormalizations, which are variants of de Faria’s commuting pairs [dF],
we use Petersen’s result on local connectivity of J(f) [Pet].

Finally we describe the limiting dynamics. By smoothness of ψ and a harmonic measure
argument, one finds for i ∈ Z, the rescaled first return maps f qns+i converge exponentially
fast as n → ∞. Their limit gi : Wi → C is an infinite-sheeted branched covering of the
plane, with ∂Wi as its natural boundary; moreover, gi can be expressed as a countable
union of proper maps. We have gi+s = A ◦ gi ◦A−1, where A is the linearization of ψ; thus
the limiting dynamical system is a fixed point of renormalization. By universality, the same
limit arises starting with any quadratic-like map with a fixed point of multiplier e2πiθ.

Notes and references. Various forms of the universality and self-similarity results we
establish here were conjectured and observed numerically more than a decade ago in the
physics literature [MN], [Wid]. Petersen proved that the Lebesgue area of J(f) is zero
and J(f) is locally connected when θ has bounded type [Pet]. On the other hand, if
θ = [a1, a2, · · · ] and an → ∞ sufficiently fast, then there is no Siegel disk, J(f) is not locally
connected and Shishikura shows the Hausdorff dimension of J(f) is two [Shi]. The regime
of unbounded type still presents many mysteries.
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This paper is a sequel to [Mc4], which develops the theme of rigidity and inflexibility
in conformal dynamics and hyperbolic geometry. Most of our results for the golden mean
Siegel disk have parallels for the Feigenbaum polynomial f(z) = z2 + cF (the unique real
quadratic polynomial such that fn(z) is renormalizable for n = 1, 2, 4, 8, . . .). These parallel
results are established in [Mc4] and are summarized in Table 2.

Parallels

Infinitely renormalizable map Siegel linearizable map
f(z) = z2 + c, c ∈ R f(z) = e2πiθz + z2, θ ∈ R/Z

Tuning invariant Continued fraction

c = s1 ∗ s2 ∗ s3 · · · θ = [a1, a2, · · · ]
Bounded combinatorics Bounded type

P (f) = quasi-Cantor set P (f) = quasi-circle

Quadratic-like map Holomorphic pair

Feigenbaum polynomial Golden mean polynomial

(Z2, x + 1) (S1, x + θ)

fn, n = 1, 2, 4, 8, 16, . . . fn, n = 1, 2, 3, 5, 8, 13, . . .

(F(f), J(f)) is uniformly twisting

The critical point of f is a deep point of K(f)

Conjugacies are C1+α on P (f)

Table 2.

A critical circle map is a smooth homeomorphism f : S1 → S1 with a single critical
point. The self-similarity of Siegel disks is also related to convergence of renormalization
for critical circle maps, studied in [dF] and [dFdM].

I would like to thank de Faria, de Melo and Petersen for useful conversations about their
work, and Petersen and the referee for helpful suggestions and corrections.

2 Rotations of the circle

Let S1 = R/Z, let θ ∈ (0, 1) be an irrational number with continued fraction expansion
θ = [a1, a2, · · · ], and let F : S1 → S1 be the rotation F (x) = x + θ. In this section we will
briefly summarize some relations between the dynamics of F and the continued fraction
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expansion of θ. See [HW, Ch. X] for a detailed treatment of continued fractions.
For x ∈ S1 let {x} denote the unique real number representing x in (−1/2, 1/2], and let

‖x‖ = |{x}| denote the distance from x to 0.
Let

pn

qn
= [a1, · · · , an]

denote the rational approximations to θ (in lowest terms) obtained by truncating its con-
tinued fraction expansion.

The points qnθ, n = 1, 2, . . . are successive closest returns of the origin to itself under
rotation by θ. That is,

θ > ‖q1θ‖ > ‖q2θ‖ > ‖q3θ‖ > · · ·

and the qn’s can be defined inductively as the smallest integers so the above inequalities
hold.

The closest returns occur alternately to the right and left of the origin. In fact,
(−1)n{qnθ} > 0, and the fractional part is given by

{qnθ} = qnθ − pn. (2.1)

The an are related to qn and pn by the recursive formulas

pn = anpn−1 + pn−2,

qn = anqn−1 + qn−2,
(2.2)

where p−1/q−1 = 1/0 and p0/q0 = 0/1. Since an ≥ 1, this recursion shows qn grows at least
as fast the Fibonacci sequence 1, 2, 3, 5, 8, . . ., and therefore qn → ∞ at least as fast as the
nth power of the golden mean.

Figure 3. Renormalized rotation.

First return maps. For x, x′ ∈ S1 with x -= 1/2+x′, let [x, x′] denote the shorter interval
bounded by these points. (Note that [x, x′] = [x′, x].)
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Let In = [qnθ, qn+1θ] be the interval bounded by two successive closest returns to the
origin. Note that 0 lies in In. Let us consider the dynamics induced by the first return map
on In; that is, for x ∈ In we consider the least i > 0 such that F i(x) ∈ In. The result is the
renormalized dynamical system generated by the two transformations:

F qn : [0, qn+1θ] → [qnθ, xn], and

F qn+1 : [qnθ, 0] → [xn, qn+1θ]
(2.3)

where xn = (qn + qn+1)θ. This pair of transformations is an interval exchange map; see
Figure 3.

The orbit of every point x ∈ S1 is dense, so x eventually enters In. How long does it
take to do so? We claim

F i(x) = x + iθ ∈ In for some i, 0 ≤ i < qn+1.

To see this, first choose j < 0 such that F j(x) ∈ In. The generators of the renormalized
dynamics 〈F qn , F qn+1〉 map In onto itself, so we may apply them one at a time to replace
j by j + qn or j + qn+1 while keeping F j(x) ∈ In. When j first becomes nonnegative it lies
in the range [0, qn+1) as claimed.

Now let Jn be the interval centered in In with length |Jn| = |In| − ‖qn+1θ‖. In other
words, Jn excludes the outer halves of the two short black intervals appearing in Figure 3.

We claim
F i(x) = x + iθ ∈ Jn for some i, 0 ≤ i < qn + qn+1.

To find F i(x) with this property, begin by choosing j with 0 < j < qn+1 and F j(x) ∈ In. If
F j(x) ∈ Jn we are done. Otherwise F j(x) lies near one of the endpoints of In. If F j(x) is
closer to qn+1θ, then F j+qn(x) ∈ Jn, and since

j + qn < qn+1 + qn

we are done. Finally if F j(x) is closer to qnθ, then both x + (j + qn+1)θ and x + (j − qn)θ
lie in Jn; the first of these works if j < qn, and the second if j ≥ qn.

Univalent branches. We will eventually apply these results to the quadratic polynomial
f , using the fact that (F, S1) is topologically conjugate to f on the boundary of the Siegel
disk. In this application 0 ∈ S1 will correspond to the critical point of f , and we will be
interested in constructing a univalent restriction of f i sending x into In. Now the critical
values of f i correspond to θ, 2θ, . . . iθ; since i < qn + qn+1, there are no critical values in the
interior of the interval In, and therefore f−i| int(In) has univalent branches. The fact that
f i(x) lands in the strictly smaller interval Jn provides Koebe space for the inverse univalent
map.

Bounded type. The orbits of a bounded type rotation are especially evenly distributed.
The following are equivalent characterizations of an irrational θ of bounded type:
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1. The partial quotients an of θ are bounded.

2. The number θ is Diophantine of exponent two; i.e. there is a C > 0 such that
∣∣∣∣θ −

p

q

∣∣∣∣ >
C

q2

for every rational p/q.

3. The denominators qn increase no faster than a geometric series; that is, qn < Cn for
some C > 1.

4. Adjacent closest returns of F i(0) are approximately evenly spaced; that is,

‖qnθ‖ > ‖qn+1θ‖ > C‖qnθ‖

for some C > 0.

5. For any k > 0, the orbit F i(0), i = 1, . . . , k cuts the circle into intervals of approx-
imately the same size; i.e. the ratio of the longest to the shortest is bounded above
independent of k.

6. We have |Jn|/|In| > C > 0 for all n.

The constants appearing above can be chosen to depend only on sup an.

Preperiodic continued fractions. Finally we describe the self-similar behavior of rota-
tions where the continued fraction of θ is preperiodic.

Theorem 2.1 Let θ = [a1, a2, · · · ], where an+s = an for n ≥ N . Then there is a γ ∈ (0, 1)
such that

{qn+sθ} = (−1)sγ {qnθ}

for n ≥ N .

Proof. For any continued fraction, one has

An =

(
an −1

−1 0

)

· · ·

(
a1 −1

−1 0

)

=

(
qn −pn

−qn−1 pn−1

)

by (2.2). In addition, it is easy to prove by induction that

An

(
θ

1

)

= (−1)nθ1θ2 · · · θn

(
θn+1

1

)

,
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where θi = [ai, ai+1, ai+2, · · · ].
Now suppose the continued fraction for θ is periodic with period s. Then

An+s

(
θ

1

)

= AnAs

(
θ

1

)

= (−1)sγAn

(
θ

1

)

, (2.4)

where γ = θ1θ2 · · · θs. Equivalently,

(
qn+s −pn+s

−qn+s−1 pn+s−1

)(
θ

1

)

= (−1)sγ

(
qn −pn

−qn−1 pn−1

)(
θ

1

)

.

By (2.1), {qnθ} = qnθ − pn, so the Theorem follows by multiplying through above.
The preperiodic case is similar.

Example. Let θ = [1, 1, 1, · · · ] = (
√

5−1)/2 be the golden mean. Then γ = θ, 〈q1, q2, . . .〉 =
〈1, 2, 3, 5, 8, 13, . . .〉, and we have {qnθ} = (−1)nθn+1. In this example (or any other with
period one) the closest returns occur along a geometric series.

To obtain a more complete dynamical picture, for n ≥ 3 let rn = qn−1 − qn, Ln =
[rn+1θ, rnθ], and define the extended renormalization Rn(F ) to be the pair of mappings

F qn : [0, rnθ] → [qnθ, qn−1θ] ⊂ Ln and

F qn+1 : [rn+1θ, 0] → [qnθ, qn+1θ] ⊂ Ln.
(2.5)

Then Ln ⊃ In and the maps above extend the interval exchange dynamics defined by (2.3).
The choice of the domains for F qn and F qn+1 is dictated by branching considerations,

again under the topological conjugacy between F and the quadratic polynomial f acting
on the boundary of its Siegel disk. If x = 0 corresponds to the critical point of f , then the
critical values of f i on the boundary of the Siegel disk correspond to {θ, 2θ, . . . , iθ} ⊂ S1.
Thus the interval [qnθ, qn−1θ] comprising the range of F qn above is the maximal interval
containing x = 0 and with no critical values in its interior. Similarly, the domain [0, rnθ] is
a maximal interval whose interior is disjoint from the critical points of F qn , and the same
considerations dictate the domain and range of F qn+1 .

Corollary 2.2 The similarity x 1→ (−1)sγx sends Ln to Ln+s and conjugates Rn(F ) to
Rn+s(F ), for all n ≥ max (N, 3).

Proof. This follows from the Theorem and the fact that x 1→ αx conjugates rotation by t
to rotation by αt.
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The functional equation. The renormalization theory has a nice description on the
universal cover of the circle. Let T ∼= R be the group of translations of the real line, let
V = Hom(Z2, T ) ∼= R2 and let ρθ ∈ V be given by ρθ(i, j) = iθ + j. Then ρθ represents
the combined dynamics of the rotation x 1→ x + θ and the deck transformation x 1→ x + 1
acting on the universal cover of S1 = R/Z.

Let G ∼= R∗ be the group of similarities x 1→ αx, and let V = V//G ∼= RP1 be the
quotient of the nontrivial representations under conjugation by G. Then GL2(Z) = Aut(Z2)
acts on V by [ρ] 1→ [ρ ◦ A−1]; this agrees with its usual action on RP1 by fractional linear
transformations.

A representation [ρ] is fixed by A if and only if there is a similarity α ∈ G such that

ρ ◦ A−1 = αρα−1.

This functional equation says the renormalized dynamical system ρ ◦A−1 is just a rescaling
of the original dynamical system ρ. It can be compared to the Cvitanović-Feigenbaum
equation

F p(z) = α−1F (αz)

for unimodal maps, and the fixed point equation

ρ ◦ ψ−1
∗ = αρα−1

for a hyperbolic 3-manifold which fibers over the circle, discussed in [Mc4].

Theorem 2.3 Let θ be irrational. Then:

[ρθ] is fixed by an automorphism A -= id in GL2(Z) ⇐⇒
θ is a quadratic irrational ⇐⇒
the continued fraction expansion of θ is preperiodic.

Proof. If A[ρθ] = [ρθ], then (θ, 1) is an eigenvector for A, so θ is quadratic over Q.
A quadratic irrational has a preperiodic continued fraction [HW, §10.12], and by (2.4) a
preperiodic continued fraction expansion gives a representation fixed by an automorphism.

3 Visiting the critical point

We now turn to the study of the polynomial f(z) = e2πiθz + z2, where θ = [a1, a2, a3, · · · ]
is an irrational of bounded type.
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The usual notations A = O(B) and A 5 B mean A < CB and B/C < A < CB, for
an implicit constant C. In this section, the implicit constants depend only on θ. (In fact,
a detailed examination of the proofs shows the bounds only depend on supan.)

To study f we will use the Koebe distortion theorem, the Poincaré metric and quasi-
conformal maps. See [Ah1], [Ah2], [LV] and [Mc3, Ch. 2] for background on these methods.

Metrics. We will use d(x, y) to denote the Euclidean metric in the plane, and dU (x, y) for
the hyperbolic metric on a region U ⊂ Ĉ.

The Siegel disk. The filled Julia set K(f) is defined by

K(f) = {z ∈ C : the forward orbit f(z), f2(z), f3(z), . . . is bounded};

it is bounded by the Julia set J(f). The Siegel disk D of f is the component of the interior
of K(f) containing the origin. The critical point c0 lies in ∂D and ∂D = P (f).

The central result which brings quasiconformal methods into play is:

Theorem 3.1 (Herman-Świa̧tek) The Siegel disk of f is bounded by a quasicircle.

See [Dou], [Her], [Sw].
For a pointed disk (U, u) ⊂ C, let

in-radius(U, u) = sup{r : B(u, r) ⊂ U}, and

out-radius(U, u) = inf{r : B(u, r) ⊃ U}.

The main result we will establish in this section is:

Theorem 3.2 (Nearby critical visits) For every z ∈ J(f) and r > 0, there is a univa-
lent map between pointed disks of the form

f i : (U, y) → (V, c0) (i ≥ 0)

such that in-radius(U, y) 5 r, and |y − z| = O(r).

Thus the geometry of J(f) near the critical point is replicated with bounded distortion
everywhere in the Julia set.

The linear coordinate. By the Herman-Świa̧tek Theorem, the Riemann mapping from
(D, 0) to the unit disk (∆, 0) extends to a quasiconformal mapping Φ : (C, 0) → (C, 0). Let
us normalize this mapping so that Φ(c0) = 1. It is useful to work in both the coordinate
system z where f is conformal, and the coordinate system w = Φ(z), where f |D is linear.
Since Φ is quasiconformal, many properties can be passed from one coordinate system to
the other with a bounded change in constants.

11



For clarity we will denote the domain and range of Φ by Cz and Cw respectively. We
refer to w as the linear coordinate. In the w coordinate system, D is the unit disk, and
f : Cw → Cw is a map whose iterates f i are uniformly quasiregular.

We identify the circle S1 = R/Z with the unit circle in Cw, via the map t 1→ exp(2πit).
For two points x, x′ ∈ S1 we continue to use the notation [x, x′] ⊂ S1 to denote the shorter
arc containing them.

Define F : Cw → Cw by F (w) = e2πiθw. Clearly F i = f i on D. We will see that F i

and f i tend to be close near ∂D as well. To prove this, it is convenient to introduce some
hyperbolic geometry.

Figure 4. The region Hα(I).

Let H denote the hyperbolic plane, bounded by the circle S1
∞. For any closed interval

I ⊂ S1
∞, let Hα(I) ⊂ H be the region bounded by I and a circular arc with endpoints ∂I,

meeting S1
∞ in angle α (see Figure 4.) For example, Hπ/2(I) is the half-space formed by

the convex hull of I.

Lemma 3.3 Let g : Hα(I) → H be a K-quasiconformal map which extends continuously to
the identity on I. Then for all x ∈ Hβ(I), β < α, we have

dH(g(x), x) < C

where C depends only on K, β and α.

Proof. The image of ∂Hβ in H is a quasiarc, converging radially to S1
∞ because β < α.

This implies g|Hβ can be extended to a K ′-quasiconformal map h : H → H with h|S1
∞ = id.

Such a mapping moves points only a bounded hyperbolic distance.

Approximate rotations. Let
Ω = Cz − D
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denote the exterior of the Siegel disk in the plane. Let us say f i : U → V is an approximate
rotation if U and V are disks in Cz, f i is univalent and

dΩ(f i(x), F i(x)) = O(1)

for all x ∈ Ω ∩ U . Of course f i(x) = F i(x) for x -∈ Ω, so this condition says f i nearly
matches up with the rotation F i throughout U .

Theorem 3.4 (Approximate rotations) For any r > 0 and z ∈ P (f), there is an ap-
proximate rotation

f i : (U, y) → (V, c0) (i ≥ 0)

such that [y, z] ⊂ U , mod(U − [y, z]) > C > 0 and in-radius(U, z) 5 r.

Remarks.

1. The proof will also show f j|U is an approximate rotation for j = 1, 2, . . . , i.

2. The notation mod(U − [y, z]) denotes the conformal modulus of the annulus between
the arc [y, z] ⊂ P (f) and ∂U . The lower bound C for this modulus depends only on
θ. It follows that the hyperbolic distance dU (y, z) = O(1).

3. One also has in-radius(U, y) 5 r.

4. The Theorem easily implies a slightly stronger statement, namely that U and V can be
chosen as K-quasidisks, K = O(1), with out-radius(U, z) 5 r. To see this, replace U
by a large ball about y in the hyperbolic metric on U , and apply the Koebe distortion
theorem.

Figure 5. An approximate rotation in the linear coordinate w.

Proof. By general properties of quasiconformal mappings applied to the change of coor-
dinates Φ : Cz → Cw, it is sufficient to prove the Theorem in the linear coordinate w. For
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example, a quasiconformal map H → H is uniformly continuous in the hyperbolic metric,
so it suffices to verify the approximate isometry condition dΩ(f i(x), F i(x)) = O(1) using
the hyperbolic metric coming from the w-coordinate. Similarly, if there are approximate
isometries at every scale r in the w-plane, then the same is true in the z-plane.

Letting w = Φ(z), we now proceed to prove the Theorem at every scale r about w. In
this coordinate system, f |S1 = F |S1 is rotation by angle θ. Thus the results of §2 apply to
the dynamics of f on S1.

The case r ≥ 1 can be handled trivially by taking y = c0, U = V = B(w, 10r) and i = 0
(so f i = F i = id.) So assume 0 < r < 1.

Choose n such that ‖qnθ‖ 5 r; this is possible because θ has bounded type. For
convenience, also choose n large enough that ‖qnθ‖ < 1/8. Next choose the least i ≥ 0 such
that

f i(w) ∈ Jn ⊂ In = [qnθ, qn+1θ] ⊂ S1.

The critical point of f is at angle zero on S1, so c0 ∈ Jn.
As we saw in §2, f i has no critical values in int(In) because i < qn + qn+1. Let V be the

round disk orthogonal to S1 and with V ∩ S1 = int(In). Then there is a unique univalent
branch

f−i : V → U

such that f−i(f i(w)) = w. See Figure 5.
Now consider the region Hα(In) ⊂ Ω determined by the hyperbolic geometry of Ω =

Cw − ∆. (This region is constructed by lifting In to an interval on the boundary of the
universal cover of Ω, forming Hα(Ĩn) there and projecting down. We choose α small enough
that the projection is an embedding.) One can find universal angles π/2 < β < α < π such
that

V ∩ Ω ⊂ Hβ(In) ⊂ Hα(In).

Indeed, when |In| is small, we have V ⊂ Hπ/2+ε(In).
Since the iterates of f are uniformly quasiregular in the w-coordinate, the map f−i is K-

quasiconformal on Hα(In) with K = O(1). Furthermore, F i is conformal and F i ◦ f−i = id
on In. Therefore Lemma 3.3 shows dΩ(F i(x), f i(x)) = O(1) for all x ∈ U∩Ω. In other words,
f i : U → V is an approximate isometry. By the same reasoning, f j|U is an approximate
isometry for 0 < j < i.

Finally, setting y = f−i(c0), we show the annulus U − [w, y] has definite modulus, and
in-radius(U,w) 5 r. To prove these statements, recall that Jn is shorter than In by a definite
factor (because θ has bounded type). Thus the annulus V − Jn has definite modulus. But

mod(U − [w, y]) ≥ K−1 mod(V − [f i(w), c0]) ≥ K−1 mod(V − Jn),

so U − [w, y] has definite modulus as well. Similarly, in-radius(V, f i(w)) 5 |In| 5 r.
From the quasiconformality of f−i and the fact that f |S1 is an isometry, we conclude
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that in-radius(U,w) 5 r as well.

The hyperbolic geometry of Ω. By the thick part of Ω we will mean the region where
the injectivity radius of the hyperbolic metric exceeds some small constant ε0 > 0. Since Ω
is a punctured disk, its thin part is simply a standard horoball neighborhood of the cusp at
z = ∞. We choose ε0 small enough that J(f) is contained in the thick part.

The hyperbolic metric ρΩ in the thick part is comparable to the 1/d metric (cf. [Mc3,
Thm 2.3]); that is,

ρΩ(z)|dz| 5 |dz|
d(z, ∂Ω)

.

The pre-Siegel disk. Let ι be the involution of the z-plane given by ι(z) = 2c0 − z. This
rotation about the critical point exchanges the two sheets of f ; that is, f(ι(z)) = f(z).

Let D′ = ι(D) be the pre-Siegel disk. Then f(D′) = D and D ∩ D′ = {c0}.

Figure 6. A lemniscate models ∂(D ∪ D′).

The two quasidisks D and D′ meet “radially” at c0. More precisely, there is a quasicon-
formal homeomorphism of the plane sending D∪D′ to the region bounded by the lemniscate
L = {z : |z2 − 1| = 1} (see Figure 6). Indeed, the critical value of f lies in the quasicircle
∂D, so f−1(∂D) = ∂(D ∪ D′) is quasiconformally homeomorphic to the square-root of a
circle passing through the origin, which is L. Thus with respect to the hyperbolic metric
on Ω, the disk D′ is contained in a bounded neighborhood of a geodesic ray terminating at
the critical point c0.

With this background in mind we can now prove:

Proposition 3.5 For any x in the thick part of Ω, there is an embedded hyperbolic ball B
centered at y, and an i ≥ 0, such that

f i : (B, y) → (B′, c0)

is univalent, diamΩ B 5 1 and dΩ(x, y) = O(1).
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Figure 7. Univalent maps near points in the boundary of the pre-Siegel disk D′.

Proof. In brief, B is constructed as follows. Apply the dynamics to rotate x until it is
close to the pre-Siegel disk; then find a nearby point in ∂D′. After one iterate, the nearby
point maps to ∂D, and after a suitable further iterate it rotates into a ball B′ containing
the critical point. The pre-image of B′ near x is the desired ball B.

For the detailed proof, we first suppose x ∈ ∂D′. Let x′ = ι(x) ∈ ∂D = P (f). For any
r > 0, Theorem 3.4 (and the remarks following) provide a univalent map f i : (U ′, y′) →
(V, c0) such that dU ′(x′, y′) = O(1) and in-radius(U ′, y′) 5 out-radius(U ′, y′) 5 r. With
suitable r we obtain in-radius(U ′, y′) 5 d(y′,D′) and out-radius(U ′, y′) < d(y′,D′). In
particular, U ′ and D′ are disjoint.

Now let (U, y) = (ι(U ′), ι(y′)). Then (U, y) also maps to (V, c0) under f i, and U ∩D = ∅,
so U ⊂ Ω. Since ι is an isometry,

in-radius(U, y) 5 d(y,D) = d(y, ∂Ω).

But the hyperbolic metric on Ω is comparable to |dz|/d(z, ∂Ω), so there is a hyperbolic ball
B of definite radius centered at y and contained in U (see Figure 7); by the Schwarz lemma,

dΩ(x, y) ≤ dU (x, y) = dU ′(x′, y′) = O(1),

completing the proof of the Proposition for x ∈ ∂D′.
The general case of an arbitrary x in the thick part of Ω is conveniently visualized in

the linear coordinate.
For w ∈ S1, let γ(w) = {rw : 1 < r < ∞} ⊂ Cw denote the ray joining w to infinity.

With respect to the hyperbolic metric on Ω = {w : |w| > 1}, this ray is a geodesic. Since
D′ tends to c0 radially, there is a C such that

D′ ⊂ K = {w ∈ Ω : dΩ(w, γ(c0)) < C}.
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By the first part of the proof, we may also choose C so the cone K is uniformly filled with
hyperbolic balls (B, y) of definite radius mapping univalently over the critical point. See
Figure 8.

Figure 8. Pulling back from the cone at the critical point.

Given x in the thick part of Ω, choose w ∈ S1 = ∂D so x ∈ γ(w). By Theorem 3.4 there
is a p ∈ S1 and an approximate rotation

f i : (U, p) → (V, c0)

such that 2|x−w| < in-radius(U,w) and |w − p| = O(|w − x|). In particular, dΩ(x, γ(p)) =
O(1). But F i(γ(p)) = γ(c0), and since f i|U is an approximate isometry, we also have
dΩ(f i(x), γ(c0)) = O(1). Thus f i(x) is near the cone K, so there is a hyperbolic ball
(B0, y0) ⊂ K∩V of definite radius with dΩ(x,B0) = O(1), such that f j : (B0, y0) → (B′

0, c0)
is univalent for some j > 0. Then f−i(B0) contains a hyperbolic ball B of definite radius
centered at y = f−i(y0), we have dΩ(x,B) = O(1), and

f i+j : (B, y) → (B′, c0)

is the desired univalent mapping.

Expansion in the Julia set. To establish Theorem 3.2, we need to find disks mapping
univalently over the critical point at every scale near every point in the Julia set. To
populate small scales, we will use expansion relative to the hyperbolic metric on Ω.

Quite generally, for any polynomial map f : C → C with |P (f)| > 1, we have ‖f ′(x)‖ ≥ 1
with respect to the hyperbolic metric on C − P (f) (so long as f(x) -∈ P (f)). Moreover,
if x ∈ J(f), then either the forward orbit of x lands in P (f) or ‖f i(x)‖ → ∞. These
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statements follow from the Schwarz lemma, the forward invariance of P (f) and the fact
that J(f) ⊂

⋃
f−i(P (f)). See [Mc3, §3.2].

In the case at hand, C − P (f) = Ω ∪ D. Of course f |D is an isometry, but f expands
the hyperbolic metric on Ω. Note too that J(f) ⊂ P (f) ∪ Ω, so the orbit of a point in the
Julia set can exit Ω only by landing in the boundary of the Siegel disk.

For a vector v in the tangent space to a point z ∈ C, we let |v| and ,(v) denote the
lengths of v in the Euclidean metric and in the hyperbolic metric on C−P (f) respectively.
We set ,(v) = ∞ if z ∈ P (f).

We may now complete the:

Proof of Theorem 3.2 (Nearby critical visits). Let z0 = z ∈ J(f) and r > 0 be a
given point in the Julia set and a given scale. Let v0 ∈ TzC be a vector with |v0| = r, let
zi = f i(z0) and let vi ∈ Tzi

C be the image of v0 under (f i)′. Then

,(v0) ≤ ,(v1) ≤ ,(v2) ≤ · · · and ,(vi) → ∞.

We wish to find a univalent map f i : (U, y) → (V, c0) with in-radius(U, y) 5 r and
|y − z| = O(r). To do so, we distinguish three cases.

I. !(v0) ≥ 1. (We include the case ,(v0) = ∞, which arises when z0 ∈ P (f).) In this
case, there is a point z′ ∈ P (f) with |z − z′| = O(r), since the hyperbolic metric on Ω
at z is comparable to the 1/d-metric. Applying Theorem 3.4, we obtain a univalent map
f i : (U, y) → (V, c0) with in-radius(U, y) 5 r and |y − z′| = O(r). Then |z − y| = O(r) and
we are done.

II. There exists a j such that !(vj−1) ≤ ε but !(vj) ≥ 1. Here ε > 0 depends only
on θ; its value is chosen below.

By case I there is a univalent map f i : (U ′, y′) → (V, c0) with in-radius(U ′, y′) 5 |vj |
and |y′ − zj | = O(|vj |). Replacing U ′ with a ball centered at y, we may also assume
diam(U ′) 5 |vj |.

We claim (U ′, y′) can be pulled back by f j to yield the desired disk (U, y) for z0. To see
this, first note that the condition

ε > ,(vj−1) 5
|vj−1|

d(zj−1, P (f))

implies there is a ball Bj−1 = B(zj−1, s), disjoint from the postcritical set P (f), with
s 5 |vj−1|/ε. Then f |Bj−1 is univalent. By the Koebe 1/4-theorem, Bj = f(Bj−1) contains
a ball of radius comparable to |vj |/ε centered at zj . Thus we may choose ε sufficiently small
(depending only on θ) such that U ′ is contained well within Bj.

Let f−j : Bj → B0 be the univalent inverse branch of f j sending zj to z0. This map
exists because Bj−1 is disjoint from P (f), and because f : Bj−1 → Bj is univalent. Let
(U, y) = f−j(U ′, y′). By the Koebe distortion theorem, f−j is approximately a similarity
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with factor |v0|/|vj | near zj. Since U ′ is contained well within Bj, we have in-radius(U, y) 5
|v0|, |z0 − y| = O(|v0|), and f i+j : (U, y) → (V, c0) is univalent. This completes the proof of
case II.

III. There exists a j such that ε < !(vj) < 1. By Proposition 3.5, there is a
centered hyperbolic ball (B, y′) ⊂ Ω with diamΩ(B) 5 1 and dΩ(zj , y′) = O(1), such that
f i : (B, y′) → (B′, c0) is univalent. Let γ be a minimal length geodesic segment joining
zj to B. Then γ ∪ B is simply-connected and disjoint from P (f), so it supports a unique
branch of f−j sending zj back to z0.

Let (U, y) = f−j(B, y′); then f i+j : (U, y) → (V, c0) is univalent. To complete the
proof of this case, we just need to check in-radius(U, y) 5 |v0| and |z − y| = O(|v0|).
Equivalently, in the hyperbolic metric on Ω, it suffices to check that dΩ(z, y) = O(,(v0))
and in-radiusΩ(U, y) 5 ,(v0).

Now (f−j)′(zj) sends the vector vj with ,(vj) 5 1 to the vector v0. Since diamΩ(γ∪B) =
O(1), and the Julia set is contained in the thick part of Ω, the map f−j is approximately a
contraction by the constant factor ,(v0) on γ ∪ B (cf. [Mc3, Thm. 3.8]). But the bounds
provided for (B, y) by Proposition 3.5 then imply

in-radiusΩ(U, y) 5 ,(v0) · in-radiusΩ(B, y′) 5 ,(v0) and

dΩ(z, y) 5 ,(v0) · dΩ(zj , y′) = O(,(v0))

as desired.

End of the proof. Since ,(vj) → ∞, one of the three cases above must hold, and the
proof of the Theorem is complete.

The argument above follows the proof that there are “small Julia sets everywhere” for
certain infinitely renormalizable quadratic polynomials, given in [Mc4, §8.3].

4 Geometry of the Julia set

In this section we prove the dimension of the Julia set is less than two, the critical point
is a deep point of K(f), and the full dynamics of f is uniformly twisting on J(f). A more
complete development of the ideas of shallow and deep points, geometric limits of dynamical
systems and uniform twisting appears in [Mc4].

Dimension. The Hausdorff dimension of a compact metric space X, denoted H.dim(X),
is the infimum of those δ > 0 such that X can be covered by balls B(xi, ri) with

∑
rδi

arbitrarily small. The (upper) box dimension is given by

box-dim(X) = lim sup
r→0

log N(X, r)

log(1/r)
,
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where N(X, r) is the minimum number of r-balls required to cover X. Let us identify the
Riemann sphere Ĉ with the sphere at infinity S2

∞ for hyperbolic space H3. A closed set
Λ ⊂ S2

∞ is shallow if every point in its hyperbolic convex hull K ⊂ H3 is within a uniformly
bounded distance of ∂K. (Such sets are also called porous.)

A compact set Λ ⊂ C is shallow if and only if for any z ∈ Λ and r < 1, there is a ball
B disjoint from Λ with diamB 5 r and d(z,B) = O(r). For example, any quasicircle is
shallow. The inequality H.dim(X) ≤ box-dim(X) holds for any metric space, and it is easy
to see that box-dim(Λ) < 2 if Λ ⊂ S2

∞ is shallow.

Theorem 4.1 (Dimension of J) The Julia set J(f) is shallow, and thus

H.dim(J(f)) ≤ box-dim(J(f)) < 2.

Proof. Since the Siegel disk D is a quasidisk, it fills definite space at every scale around
the critical point c0 ∈ ∂D. More precisely, for any s < 1 there is a ball B ⊂ B(c0, s) ∩ D
with diamB 5 s.

Now consider a point z ∈ J(f) and a scale r < 1. By Theorem 3.2, there is a univalent
map

f i : (U, y) → (V, c0)

with |y − z| = O(r) and in-radius(U, y) 5 r. Let s = in-radius(c0, V ). Choose a ball
B ⊂ B(c0, s) ∩ D with diamB 5 s. By the Koebe distortion theorem, f−i(B) contains a
ball B′ with diam B′ 5 r and d(y,B′) = O(r). Since f i(B′) ⊂ D, this ball is disjoint from
the Julia set, and since d(z,B′) ≤ d(z, y) + d(y,B′) = O(r), we have shown the Julia set is
shallow.

As remarked above, the dimension bounds follow.

Deep points. Let Λ ⊂ S2
∞ be a compact set with convex hull K ⊂ H3. A point x ∈

Λ ⊂ S2
∞ is a deep point of Λ if there is a geodesic ray γ : [0,∞) → K, converging to x and

parameterized by hyperbolic arclength, such that

d(γ(s), ∂K) ≥ εs > 0

for all s > 0.
One can easily check that x ∈ Λ ⊂ C is deep if and only if there is a δ > 0 such that for

all r < 1,
B(y, s) ⊂ B(x, r) − Λ =⇒ s = O(r1+δ).

For example, a shallow set has no deep points.
By the classification of stable regions, every point in the interior of K(f) lands in the

Siegel disk D under forward iteration. Thus D acts like an attractor. Let

Kε(f) = {z ∈ C : d(fn(z),D) ≤ ε for all n ≥ 0}.

Clearly Kε(f) ⊂ K(f); it consists of points whose orbits stay near the Siegel disk.
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Theorem 4.2 (Deep points) The critical point c0 is a deep point of K(f). More gener-
ally, z is a deep point of Kε(f) for any z ∈ P (f) and any ε > 0.

A point x ∈ Λ ⊂ C is a measurable deep point if for some δ > 0 we have

area(B(x, r) − Λ) = O(r2+δ)

for all r > 0. This condition means the density of Λ in B(x, r) tends to 1 exponentially fast
(it is bounded below by 1− Crδ).

The next result also appears in [Mc4, Prop. 2.24].

Proposition 4.3 If x is a deep point of Λ and ∂Λ is shallow, then x is a measurable deep
point of Λ.

Proof. Consider a square S of size r centered at x. Since x is a deep point, there is an
α > 0 such that every point of X = (S − Λ) lies within distance r1+α of ∂Λ. On the other
hand, since ∂Λ is shallow, there is a δ < 2 such that if we cut S into subsquares of size
5 r1+α, whose total number is O(r−2α), it only takes O(r−δα) of them to cover X∩S. Thus
the area of X ∩ S is O(r2+(2−δ)α), and x is a measurable deep point.

Since J(f) = ∂K(f) is shallow, we may deduce:

Corollary 4.4 A random z near the critical point has a high probability of lying in K(f).
More precisely, there is a δ > 0 such that for small r, we have

area(B(c0, r) − K(f)) = O(r2+δ).

More generally one sees:

Corollary 4.5 Every z ∈ P (f) is a measurable deep point of Kε(f).

Proof. Choose a smoothly bounded disk A with D in its interior, lying within an ε-
neighborhood of D and outside the part of C−J(f) where the hyperbolic injectivity radius
is less than one. Let KA(f) =

⋂
f−n(A). Then Kδ(f) ⊂ KA(f) ⊂ Kε(f) for some δ > 0.

Since z is a deep point of Kδ(f), to prove the Corollary it suffices to show ∂KA(f) is shallow.
Consider a point w ∈ ∂KA(f) and a scale r < 1. We must find a ball disjoint from

∂KA(f), within distance r of w and with radius 5 r.
By shallowness of the Julia set, there is such a ball B(z1, r1) disjoint from J(f). If

B(z1, r1/2) is disjoint from ∂KA(f) we are done; otherwise, there is a B(z2, r1/2) ⊂ B(z1, r1)
with z2 ∈ ∂KA(f) − J(f). Then fn(z2) ∈ ∂A for some n. The ball U = B(z2, r1/10) has
diameter less than one in the hyperbolic metric on C − J(f), so fn|U is injective. Since
∂A is smooth, fn(U) − A contains a ball B with diamB 5 diam fn(U), and by Koebe
f−n(B) ⊂ U contains a ball B(z3, r3) disjoint from KA(f) with r3 5 r.
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Escape from the Siegel disk. To prove c0 is a deep point of K(f), we will analyze the
orbit of a point z that starts near c0 but escapes to infinity. While the orbit is near D, it
shadows a rotating orbit until it comes close to the critical point. As it passes the critical
point, the orbit can move much closer to D, but it can only move farther away by a bounded
factor. Thus before f i(z) can escape from the influence of D, it must make many visits to
the critical point. It turns out each visit results in definite expansion with respect to the
hyperbolic metric on Ω = C − D. On the last visit, there is a point y′ in ∂D′ = ι(∂D) at a
bounded hyperbolic distance from f i(z). Pulling this point back by f−i, we obtain a point
y ∈ K(f) very close to z. This point limits the radius of a ball B(z, s) ⊂ B(c0, r) − K(f),
and shows c0 is deep.

To measure the rate of escape from the influence of Siegel disk D, we will work in the
linear coordinate w. Let L(w) = log d(w,D); that is,

L(w) =

{
log(|w| − 1) |w| > 1

−∞ otherwise.

If w ∈ U , w is near D and f i|U is an approximate rotation (in the sense of §3), then

L(f i(w)) = L(w) + O(1);

while for all w near D we still have the weaker statement

L(f(w)) ≤ L(w) + O(1). (4.1)

To see 4.1, first note that near the critical point (recalling c1 is the critical value),

|f(w) − c1| 5 |w − c0|,

because f is quasiregular and f |S1 is an isometry. (The branching behavior of f is similar
to that of the map (r, θ) 1→ (r, 2θ) in polar coordinates.) If d(w,D) 9 d(w, c0), then
f is an approximate rotation at w, so L(f(w)) = L(w) + O(1); otherwise d(f(w),D) ≤
d(f(w), c1) 5 d(w, c0) 5 d(w,D), which gives (4.1).

Proof of Theorem 4.2 (Deep points). We will first prove that every point of P (f) is a
deep point of K(f), deferring the case of Kε(f) to the end.

We will actually show there is an α > 0 so for all z in the thick part of Ω, we have

dΩ(z,K(f)) = O(d(z,D)α). (4.2)

Since the Poincaré metric on Ω is comparable to the 1/d metric, this bound implies
d(z,K(f)) = O(d(z, P (f))1+α), from which it follows easily that every point in the post-
critical set is (uniformly) deep in K(f).
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Let us also remark that

f : (C − D ∩ D′) → (C − D) = Ω

is a covering map, hence an isometry between the respective hyperbolic metrics. The
inclusion between domain and range is a contraction, by the Schwarz lemma. The amount
of contraction is bounded in terms of dΩ(z,D′). Thus the expansion of f , measured by
‖f ′(z)‖ using the hyperbolic metric of Ω at both z and f(z), satisfies

‖f ′(z)‖ > C(d) > 1,

where d = dΩ(z,D′). Compare [Mc4, Prop. 4.4.2].
We now turn to the proof of (4.2). Let z0 = z, and zj = f j(z0) for j > 0. Applying

Theorem 3.4 to the point p in P (f) nearest z0, we obtain an approximate rotation f i1 :
U → V such that z0 ∈ U and dΩ(zi1 , ∂D

′) = O(1). (Here we use the fact that D′ converges
radially to c0). Then ‖f ′(zi1)‖ > η > 1, where η depends only on the rotation number θ.
On the other hand, |L(zj) − L(z0)| = O(1) for 0 ≤ j ≤ i1, and by (4.1) we have

L(zi1+1) ≤ L(z0) + O(1).

Now repeat the argument starting with zi1+1, to obtain a second visit zi2 within a
bounded distance of D′. Continuing in this way, we construct a sequence of visits zik
along which L(zik) increases at most linearly in k. The construction terminates when the
orbit gets a definite distance from D, say when L(zik) > 0. Because of the linear increase
of L(zik), the sequence is defined at least for k = 1, 2, . . . ,N where N 5 −L(z0). But
L(z0) 5 log d(z0,D) (by Hölder continuity of the quasiconformal map Φ : Cz → Cw), and
thus

N 5 log

(
1

d(z0,D)

)
. (4.3)

Since there are N − 1 visits past D′, we have ‖f iN (z0)‖ ≥ ηN−1. Join ziN to a point
y′ ∈ ∂D′ by an arc γ′ of hyperbolic length O(1). Then y′ ∈ K(f), and since γ′ is disjoint
from P (f) it lifts under f−iN to an arc γ joining z0 to y ∈ K(f) with hyperbolic length
O(η−N ). Thus by (4.3),

dΩ(z0,K(f)) ≤ dΩ(z0, y) = O(η−N ) = O(d(z0,D)α)

for some α > 0 depending only on θ. This completes the proof that each point in the
postcritical set is a deep point of K(f).

To handle the case of Kε(f), we modify the construction so it terminates when L(zik) >
M(ε). Then L(zj) < M(ε) + O(1) for j = 0, . . . , iN . For suitable choice of M(ε), this
condition insures zj lies well-within an ε-neighborhood of D. Now each yj = f j(y), j =
0, . . . , iN , is a bounded hyperbolic distance from zj , so it too is no farther than ε from D.
Finally f iN (y) = y′ ∈ ∂D′, so d(f j(y),D) = 0) for j > iN . Thus y ∈ Kε(f) and we have
shown every point of P (f) is also a deep point of Kε(f).
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To conclude this section we will prove:

Theorem 4.6 (Uniform twisting) The holomorphic dynamical system (F(f), J(f)) is
uniformly twisting.

This Theorem illustrates one of the parallels summarized in Table 2. Although the
result is not used in the sequel, we include it because the same result holds for any infinitely
renormalizable real quadratic map f(z) = z2 + c with bounded combinatorics [Mc4, §9.4].

A dynamical system (F ,Λ) is uniformly twisting if there is robust nonlinearity at every
scale about every point in Λ. This concept is naturally formulated in terms of geomet-
ric limits; a complete development appears in [Mc4, §9]. For the purpose of the present
discussion, we will simply state a sufficient criterion for uniform twisting.

Let H denote the space of all holomorphic maps g : U → Ĉ such that U is an open set of
Ĉ. We give H the following (non-Hausdorff) topology: gn : Un → Ĉ tends to g : U → Ĉ if
for every compact K ⊂ U , we have K ⊂ Un for all n sufficiently large and gn → g uniformly
on K.

Given a rational map f : Ĉ → Ĉ, let

F(f) = {g : U → Ĉ : for some i, j ≥ 0, f i ◦ g = f j} ⊂ H.

Proposition 4.7 Let Λ ⊂ C be compact. Suppose for any sequence

An(z) = αn(z − βn)

with αn → ∞ and βn ∈ Λ, there exist gn ∈ F(f) such that after passing to a subsequence,

An ◦ gn ◦ A−1
n → h ∈ H,

where h : U → V is a nonconstant map with a critical point.
Then (F(f),Λ) is uniformly twisting.

This criterion reduces the proof of uniform twisting to:

Proposition 4.8 For every x ∈ J(f) and r < 1, there is a proper degree two map g ∈ F(f),

g : (U, u) → (V, v)

such that U and V are disks, g′(u) = 0, in-radius(U, u) 5 in-radius(V, v) 5 r, |x−u| = O(r)
and |x − v| = O(r).
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Proof. First assume x = c0. Then g can be taken to be a first return map near the critical
point. To make this precise, we prove the result in the linear coordinate w. Choose n such
that ‖qnθ‖ 5 r. Let V be the round disk orthogonal to S1, meeting the circle in the interior
of the arc [qnθ, qn+1θ], and let i = qn + qn+1. Then f i has a unique critical value v ∈ V ,
with angular coordinate (qn + qn+1)θ. Since θ has bounded type, in-radius(V, v) 5 r. Let
U be the unique component of f−i(V ) containing c0. Then

g = f i : (U, c0) → (V, v)

is proper of degree two, and it is easy to see in-radius(U, c0) 5 r, so the result is established
for x = c0. Moreover, we can shrink U and V slightly so their diameters are comparable to
r.

To treat the case of an arbitrary z ∈ J(f), we use Theorem 3.2 to find a univalent map
f j : (U, u) → (V, c0) at scale r near z. Pulling back a map g̃ = f i which works at a scale
s 5 in-radius(V, c0) near the critical point, we obtain a map g = f−j ◦ f i+j which works at
scale r near z, completing the proof.

Proof of Theorem 4.6 (Uniform twisting). Given An(z) = αn(z−βn) as in Proposition
4.7, apply the preceding proposition with x = βn and r = 1/αn to obtain a sequence of
maps gn ∈ F(f) such that

hn = An ◦ gn ◦ A−1
n : (Un, un) → (Vn, vn)

is proper of degree two, h′
n(un) = 0, in-radius(U,un) 5 in-radius(Vn, vn) 5 1, |un| = O(1)

and |vn| = O(1). In the Carathéodory topology, a subsequence hnk
converges to a degree two

proper map h : (U, u) → (V, v) with h′(u) = 0 [Mc3, Thm 5.6], and the same subsequence
tends to h in H.

5 Universality

A polynomial-like map g : U → V is a proper holomorphic map between disks in C, such
that U is a compact subset of V . A quadratic-like map is a polynomial-like map of degree
two.

The filled Julia set K(g) is the set of points which never escape under iteration; it is
defined by

K(g) =
∞⋂

1

g−i(V ).

Similarly, the postcritical set P (g) is the closure of the forward orbit of the critical points
of g.
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Let gi : Ui → Vi, i = 1, 2 be polynomial-like maps of the same degree. A hybrid conjugacy
is a quasiconformal map φ between neighborhoods of K(g1) and K(g2), conjugating g1 to
g2, with ∂φ = 0 a.e. on K(g1). We say g1 and g2 are hybrid equivalent if such a conjugacy
exists.

A fundamental result of Douady and Hubbard states that every polynomial-like map
g is hybrid equivalent to a polynomial of the same degree. If K(g) is connected then f is
unique up to conformal conjugacy [DH1, Thm. 1].

Theorem 5.1 (Universality) Let θ be an irrational of bounded type, and let g and h be
quadratic-like maps with fixed points of multiplier exp(2πiθ). Then:

1. there is a hybrid conjugacy φ between g and h;

2. the complex derivative φ′(z) exists for all z ∈ P (g); and

3. there are M,α, δ > 0 so for all z ∈ P (g) and all t with |t| < δ, we have:

∣∣∣∣
φ(z + t) − φ(z)

t
− φ′(z)

∣∣∣∣ ≤ M |t|α. (5.1)

By the Whitney extension theorem [St, §VI.2.3] we have:

Corollary 5.2 The derivative φ′(z) is Hölder continuous on P (g), and φ|P (g) extends to
a continuous, C1+α function on the whole plane.

Corollary 5.3 The Hausdorff dimension of P (g) is equal to that of P (f), where f(z) =
e2πiθz + z2.

Proof. By (5.1) a hybrid conjugacy from f to g is bi-Lipschitz on the postcritical set, and
such maps preserve dimension.

We now proceed to the proof of Theorem 5.1.
The quadratic-like maps g and h are each hybrid equivalent to a quadratic polynomial.

It is not hard to see that a hybrid conjugacy preserves the multiplier of any indifferent cycle;
thus g and h are hybrid equivalent to f(z) = e2πiθz + z2, and hence to each other.

For convenience we let φ : C → C denote a quasiconformal map of the whole plane
which restricts to a hybrid conjugacy from g to h. Let us say φ is C1+α-conformal at z if
φ′(z) exists and

φ(z + t) = φ(z) + φ′(z) · t + O(|t|1+α).

Thus (5.1) says φ is uniformly C1+α-conformal on P (f).
The following result appears in [Mc4, §2.6]:
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Theorem 5.4 (Boundary conformality) Let φ : C → C be a quasiconformal map with
∂φ = 0 on a measurable set Ω, and let x be a measurable deep point of Ω. Then φ is
C1+α-conformal at x.

Corollary 5.5 The hybrid conjugacy φ is C1+α at the critical point c0(g).

Proof. By Corollary 4.4, the critical point c0(f) is a measurable deep point of the interior of
K(f) (since J(f) has measure zero). This deepness property is preserved by quasiconformal
maps (using e.g. the estimates of [Ast]), so c0(g) is a measurable deep point of Ω = intK(g).
But φ is conformal on Ω, so φ is C1+α at c0(g).

One way to now complete the proof of Theorem 5.1 is to observe that all points in
P (f) are measurable deep points of K(f), with uniform bounds, so φ is uniformly C1+α

on P (f), by an effective version of Theorem 5.4. We will proceed differently, however, to
illustrate directly that smoothness along the post-critical set is inherited from smoothness
at the critical point.

Distortion of triangles. Let

Dt(z) =
φ(z + t) − φ(z)

t
,

and define

Nt(z) = sup
1
2<|t/s|<2

∣∣∣∣
Dt(z)

Ds(s)
− 1

∣∣∣∣ .

By a calculus argument (controlling logDt(z) with a geometric series) one has:

Lemma 5.6 Suppose Nt(z) < C|t|α for all z in a compact set K and all t sufficiently small.
Then φ is uniformly C1+α on K.

Now think of an ordered triple of points T = (a, b, c) ⊂ C as a triangle, with shape
determined (up to similarity) by the ratio σ(T ) = (b − a)/(c − a). Then

Nt(z) ≤ 2 sup
T

|σ(φ(T )) − σ(T )|,

where the sup is over all triangles T = (z, z + t, z + s) with |σ(T )| in [1/2, 2]. So to show φ
is uniformly C1+α on P (f), we need only check that

|σ(φ(T )) − σ(T )| = O(|t|α) (5.2)

when z ∈ P (f) and t is sufficiently small.
To obtain this estimate, we will use the dynamics to move T and φ(T ) close to the

critical point. By the Koebe distortion theorem, the shapes of these triangles are almost
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Figure 9. Nearly similar triangles.

preserved if the dynamics is univalent on a large neighborhood. On the other hand, φ is
smooth at the critical point, so the shape is nearly preserved there as well. See Figure 9.

Completion of the proof of Theorem 5.1 (Universality). By Corollary 5.5, there is
a β > 0 such that φ is C1+β-conformal at the critical point c0(g).

Consider a small ε > 0, whose value is to be chosen shortly. Since g is hybrid equivalent
to a quadratic polynomial, Theorem 3.4 provides an approximate rotation

gi : (U, y) → (V, c0(g))

with dU (y, z) = O(1) and in-radius(U, z) 5 |t|1−ε. For small t, U contains a large neighbor-
hood of T .

Let T ′ = gi(T ). Since diam(T )/d(T, ∂U) 5 |t|ε, the Koebe distortion theorem shows

|σ(T ′) − σ(T )| = O(|t|ε).

Let T ′′ = φ(T ′). Since φ is C1+β at c0(g), we have

|σ(T ′′) − σ(T ′)| = O

(
(d(T ′, c0(g)) + diam(T ′))1+β

diam(T ′)

)
.

Because g|P (g) is quasiconformally conjugate to a rotation, there is a γ > 0 such that
diam(T ′) = O(diam(T )γ) = O(|t|γ). Since |t|εd(T, y) = O(diam(T )), Koebe again implies
|t|εd(T ′, c0(g)) = O(diam(T ′)). Combining these inequalities and choosing ε suitably small,
we obtain

|σ(T ′′) − σ(T ′)| = O(|t|βγ−ε(1+β)) = O(|t|βγ/2).
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Finally consider φ(T ) = h−i(T ′′). Since φ is K-quasiconformal, from diam(T ) =
O(|t|εd(T, ∂U)) we deduce diam(φ(T )) = O(|t|ηd(φ(T ), ∂φ(U))), where η = ε/K. Applying
Koebe once more to the univalent map hi : φ(U) → φ(V ), we conclude

|σ(φ(T )) − σ(T ′′)| = O(|t|η).

All three bounds on the change in the similarity invariant are in terms of powers of |t|,
so we obtain an α > 0 such that |σ(φ(T )) − σ(T )| = O(|t|α). This establishes (5.2) and
thereby completes the proof of Theorem 5.1.

6 Renormalization

In §2 we constructed renormalizations of rigid rotations on the circle. Since f |∂D is topo-
logically conjugate to a rotation, it too admits such renormalizations.

In this section we show the renormalizations of f |∂D can be complexified to yield holo-
morphic pairs (f qn : U1 → V, f qn+1 : U2 → V ). These renormalizations are variants of the
holomorphic commuting pairs introduced in [dF]. We then use the results of §4 to study
the Lebesgue density of the escape loci for these renormalized dynamical systems.

Holomorphic pairs. Let gi : Ui → V , i = 1, 2, be univalent maps between quasidisks in C

with Ui ⊂ V . Each gi extends to a homeomorphism Ui → V which we denote by the same
letter.

We say (g1, g2) is a holomorphic pair if (as in Figure 10),

• V − U1 ∪ U2 is also a quasidisk;

• Ui ∩ ∂V = Ii is an arc;

• gi(Ii) ⊂ I1 ∪ I2, for i = 1, 2; and

• U1 ∩ U2 = {c} is a single point.

A holomorphic pair is designed to complexify the boundary dynamics of (g1, g2) on I1∪I2.
Note that the interval I1 ∪ I2 inherits an orientation from V .

Let us say a map between sets in C is quasisymmetric if it extends to a quasiconformal
homeomorphism of the plane. We next show boundary conjugacies can be promoted to the
complex domain.

Theorem 6.1 Let φ : (I1 ∪ I2) → (I ′1 ∪ I ′2) be an orientation-preserving quasisymmetric
map conjugating the boundary dynamics of one holomorphic pair (g1, g2) to that of another
(g′1, g

′
2). Then φ extends to a quasiconformal conjugacy φ : V → V ′.
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Figure 10. A holomorphic pair.

Proof. Choose any extension of φ to a quasisymmetric map ∂V → ∂V ′. Define φ on ∂Ui

by φ(x) = (g′i)
−1 ◦φ◦gi(x). This definition is consistent with the values already specified on

∂Ui ∩ ∂V = Ii by the conjugacy condition on φ. An orientation-preserving quasisymmetric
map between the boundaries of quasidisks extends to the interior, so we may further prolong
φ to a quasiconformal map φ0 : V → V ′ which is a conjugacy on ∂U1 ∪ ∂U2.

Define φ1 : V → V ′ by

φ1(x) =

{
(g′i)

−1 ◦ φ0 ◦ gi(x) if x ∈ Ui,

φ0(x) otherwise.

Then φ1 is quasiconformal, and it agrees with φ0 on ∂V . Therefore φ1 is isotopic to φ0 rel
the ideal boundary of V .

The map (g1 ∪ g2) : (U1 ∪ U2) → V is a holomorphic covering, and in the language of
the Appendix, (φ0, φ1) is a combinatorial conjugacy between (g1 ∪ g2) and (g′1 ∪ g′2). By
Theorem A.1, there is a quasiconformal conjugacy φ : V → V ′ with φ = φ0 = φ on ∂V .

Siegel renormalization. Consider once again the quadratic polynomial f(z) = e2πiθz+z2,
where θ has bounded type and pn/qn → θ are its continued fraction approximants. Let c−i

be the unique point in the boundary of the Siegel disk D such that f i(c−i) = c0.
We say f is (qn, qn+1)-renormalizable if there is a holomorphic pair of the form

(f qn : U1 → V, f qn+1 : U2 → V )

such that

• V ∩ D = ∅,

• U1 ∩ U2 = c0, the critical point of f , and

• I1 = U1 ∩ ∂V = [crn
, c0], while I2 = U2 ∩ ∂V = [c0, crn+1 ].
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(As before, [a, b] ⊂ ∂D denotes the interval of shorter length in the linear coordinate, and
rn = qn−1 − qn.) The boundary dynamics of (f qn , f qn+1) on I1 ∪ I2 agrees, in the linear
coordinate, with the extended renormalization Rn(F ) discussed at the end of §2.

Theorem 6.2 (Siegel renormalizations) The map f(z) = e2πiθz + z2 is (qn, qn+1)-
renormalizable for every n ≥ 3.

These renormalizations are conveniently constructed using external rays. To apply this
method we need the following result from [Pet]:

Theorem 6.3 (Petersen) The Julia set J(f) is locally connected.

By local connectivity, the Riemann mapping

ω : (C −∆) → (C − K(f)),

normalized so ω(z2) = f(ω(z)), extends continuously to a semiconjugacy S1 → J(f). The
external rays Rt and equipotentials Cs are defined to be the images of the rays arg(z) = 2πt
and the circles |z| = exp(2πs) under ω. (The term equipotential comes from the fact that
Cs is a level set for the Green’s function of K(f).)

Proof of Theorem 6.2 (Siegel renormalizations). Let Jn = [c0, crn
] ⊂ ∂D. The

critical value c1 is disjoint from
⋃

n≥3 Jn.
Consider the annulus A between the boundary of the Siegel disk and a fixed equipotential

CS , S > 0. Let Rt be the external ray landing at the critical value c1. Let V be a quasidisk
obtained by removing from A a slight thickening of Rt. The thickening need only be small
enough that ∂V is disjoint from every external ray landing in

⋃
Jn.

The critical point c0 lies in ∂V , but V itself is disjoint from the postcritical set. Thus
every component of f−i(V ) is a quasidisk mapping univalently to V , and there is one
component touching each element of f−i(c0).

Let Un be the component of f−qn(V ) with c−qn
∈ ∂Un. The critical values of f i are

{c1, c2, . . . ci}, so [cqn
, cqn−1 ] is the maximal interval around c0 in ∂D with no critical values of

f qn in its interior. We have f qn(Jn) = [cqn
, cqn−1 ] (by the definition of rn), so Un∩∂D = Jn.

Since Un ⊂ f−qn(A−Rt), Un lies between a pair of external rays landing in Jn, and within
the equipotential Cs, s = 2−qnS. Therefore ∂Un ∩ ∂V = ∂Un ∩ ∂D = Jn.

By similar reasoning, Un and Un+1 meet only at the critical point c0. It is also easy to
check that V −Un ∪ Un+1 is a quasidisk; for example, ∂Un and ∂Un+1 meet nontangentially
at the critical point because the quasidisk D′ = ι(D) comes between them. Thus the
holomorphic pair

(f qn : Un → V, f qn+1 : Un+1 → V )

provides the desired renormalization of f .
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Figure 11. Renormalization of the golden mean Siegel disk.

Figure 12. Schematic of the renormalization.
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Example. A (3, 5)-renormalization of the golden mean Siegel disk is depicted in Figure 11.
The external ray Rt landing at the critical value c1 enters at the bottom edge of the picture;
it crosses the equipotentials C2−3S and C2−5S , where exp(2πS) = 2. (The equipotential CS

is outside the frame.) Approximations to U3 and U5 appear to the left and right of the
critical point respectively. The boundary of each approximate Un consists of external rays
(landing at certain preimages of the critical point not on the boundary of the Siegel disk),
several arcs running along preimages of ∂D, and the interval Jn in ∂D. To obtain the actual
renormalization, one must cut along slight thickenings of each external ray, as suggested in
Figure 12.

Escape loci. Let (g1, g2) be a holomorphic pair. Let U = U1 ∪ U2 and define

g = (g1 ∪ g2) : U → V.

By analogy with a polynomial-like map, we define the filled Julia set of (g1, g2) by

K(g1, g2) =
⋂

n>0

g−n(U).

If (g1, g2) is a renormalization of f , then K(g1, g2) ⊂ J(f), because under iteration these
points stay bound, but they never reach the Siegel disk D. In particular, the filled Julia set
of a renormalization is nowhere dense and of measure zero.

It is also useful to include points which escape from U but do so by landing within
distance ε of the “critical point” {c} = U1 ∩ U2. To this end we define

Kε(g1, g2) = K(g1, g2) ∪
⋃

n>0

g−n(B(c, ε) − U).

Proposition 6.4 For any renormalization

(f qn : Un → V, f qn+1 : Un+1 → V )

of f , the critical point c0 lies in the interior of D ∪ D′ ∪ U1 ∪ U2.

Proof. Since f qn and f qn+1 each map c0 into the interior of the arc ∂V ∩∂D, a neighborhood
of c in ∂(U1 ∪ U2) is contained in ∂(D ∪ D′).

Corollary 6.5 For all ε > 0 sufficiently small, there is a δ > 0 such that

Kδ(f) ∩ (U1 ∪ U2) ⊂ Kε(f
qn , f qn+1) ⊂ K(f).
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Proof. Let U = U1 ∪U2. For ε small enough, the part of V −U within distance ε of c = c0

lies in the pre-Siegel disk D′. Thus points which escape from U by landing in B(c, ε) must
also lie in K(f).

Now consider a point z ∈ Kδ(f) ∩ U that escapes under iteration of the renormalized
map, by landing at z′ ∈ V − U . By assumption z remains close to ∂D, and thus close to
I1 ∪ I2, until the moment it escapes. Thus z′ is close to f qn(I1) ∪ f qn+1(I2) = J . But J is
contained in the interior of I1 ∪ I2, so V − U ∩ J = {c}, and thus for δ sufficiently small we
must have z′ ∈ B(c, ε).

Corollary 6.6 The critical point c0 is a measurable deep point of D ∪ D′ ∪ Kε(f qn , f qn+1)
for every ε > 0.

Proof. By Corollary 4.5, c0 is a measurable deep point of Kδ(f).

7 Self-similarity

In this section we show the Siegel disk of f(z) = e2πiθz + z2 is self-similar when θ is a
quadratic irrational.

A succinct description of this self-similarity can be formulated as follows. Suppose
θ = [a1, a2, · · · ], where an+s = an for all n ≥ N . Let F (x) = x + θ be the standard rotation
on S1 = R/Z. By Corollary 2.2 there is a γ ∈ (0, 1) such that near x = 0, the contraction
ψ̃(x) = (−1)sγx conjugates F qn to F qn+s for n $ 0. The topological conjugacy from 〈S1, F 〉
to 〈∂D, f〉, normalized to send x = 0 to the critical point, transports ψ̃ to a quasi-symmetric
mapping ψ defined on a neighborhood of c0 in ∂D. Then we have:

Theorem 7.1 (Self-similarity) The mapping ψ is C1+α-conformal or anticonformal at
the critical point. That is, for all z in a neighborhood of c0 in ∂D, we have

ψ(z) =

{
c0 + λ(z − c0) + O(|z − c0|α), for s even, or

c0 + λ(z − c0) + O(|z − c0|α), for s odd,

where α > 0, λ ∈ C and 0 < |λ| < 1.

Here is a more complete statement which extends ψ to a conjugacy between holomorphic
pairs. By results of the preceding section, we may choose a sequence of renormalizations

(f qn : Un
1 → V n, f qn+1 : Un

2 → V n)

for all n ≥ 3.
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Theorem 7.2 For any n ≥ max(N, 3), there exists a homeomorphism

ψ : V n → V n+s,

fixing the critical point c0 and conjugating the (qn, qn+1)-renormalization of f to its (qn+s, qn+s+1)-
renormalization. For even s, the conjugacy can be chosen so:

1. ψ extends to a quasiconformal map on V n ∪D, conformal on a neighborhood of c0 in
D;

2. the extended mapping is C1+α-conformal at the critical point; and

3. ψ′(c0) is independent of n and satisfies 0 < |ψ′(c0)| < 1.

For odd s, ψ is orientation-reversing, and the same statements hold for ψ(z).

Proof. The idea is the same as that used in the proof of universality: a conjugacy between
two successive renormalizations is smooth at the critical point because it is conformal on a
set of high density.

We first assume s is even.
Let Un = Un

1 ∪ Un
2 , and let Ln = Un ∩ ∂D = [crn

, crn+1 ]. Consider the dynamics in the
linear coordinate system Cw. On the disk {w : |w| ≤ 1}, we have f(w) = F (w) = e2πiθw.
The arc Ln is contained in the circle |w| = 1, and the boundary dynamics of (f qn , f qn+1)
is the same as that of the extended renormalization Rn(F ) discussed in §2. By Corollary
2.2, there is a γ ∈ (0, 1) (depending only on θ) such that the map φ : Ln → Ln+s given by
φ(w) = wγ conjugates Rn(F ) to Rn+s(F ). (Here φ is normalized to fix the critical point,
so φ(1) = 1.)

Since the linearizing map Φ : Cz → Cw is quasiconformal, φ is quasisymmetric in
the original coordinate Cz. By Theorem 6.1, φ extends to a quasiconformal conjugacy
φ0 : V n → V n+s.

Next we modify this conjugacy so it is conformal on a neighborhood of the critical point
in D ∪ D′. Since Φ|D is conformal, there is a quasiconformal map β : D → D, prolonging φ0

on ∂V ∩∂D, such that β(z) is conformal on a neighborhood of the critical point. Indeed, near
c0 we may simply take β(z) = Φ−1(Φ(z)γ)). Conjugating by the involution ι : D → D′, we
obtain a map β′ : D′ → D′ which is conformal near c0 and agrees with φ0 on a neighborhood
of c0 in ∂(V n − Un). Thus we may modify φ0 to a quasiconformal map φ1 : V n → V n+s

such that

• φ1(z) = φ0(z) on Un ∪ ∂Vn; and

• φ1(z) = β′(z) on a neighborhood of c0 in V n − Un.

35



The pair (φ0, φ1) is a combinatorial conjugacy between the two renormalizations, in the
sense of the Appendix. By Theorem A.1, there is a quasiconformal conjugacy

ψ : V n → V n+s,

equal to φ1 on V n −Un. In particular, ψ is conformal on B(c0, ε)∩ (V −U) for some ε > 0.

Figure 13. A neighborhood of the critical point.

The points of conformality are invariant under the dynamics, so ψ is also conformal a.e.
on Kε(f qn , f qn+1). (Since K(f qn, f qn+1) ⊂ J(f) has measure zero, almost every point in
Kε(f qn , f qn+1) escapes through B(c, ε) − Un.)

The extended map

ξ = ψ ∪ β : V n ∪ D → V n+s ∪ D

is conformal on
E = Kε(f

qn, f qn+1) ∪ (B(c0, ε) ∩ (D ∪ D′))

(see Figure 13). By Corollary 6.6, c0 is a measurable deep point of E, so ξ is C1+α-conformal
at the critical point, by the Boundary Conformality Theorem 5.4.

Since in the linear coordinate, ψ|S1 is a contraction by γ, 0 < γ < 1, we have 0 <
|ψ′(c0)| < 1. The germ of ψ|∂D at c0 is independent of n, so ψ′(c0) is also independent of
n.

Finally, when s is odd the map φ : Ln → Ln+s conjugating Rn(F ) to Rn+s(F ) has the
form φ(w) = wγ . Thus we may promote φ(z) to a quasiconformal conjugacy ψ(z) between
(f qn(z), f qn+1(z)) and the complex conjugate dynamical system (f qn+s(z), f qn+s+1(z)). Then
ψ(z) has the same properties enjoyed by ψ(z) for s even.

Let

A(z) =






c0 +
∂ψ

∂z
(c0)(z − c0), s even,

c0 +
∂ψ

∂z
(c0)(z − c0), s odd,

(7.1)
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denote the linearization of ψ at the critical point.

Corollary 7.3 The blowups A−n(∂D) of the boundary of the Siegel disk converge exponen-
tially fast to an A-invariant quasicircle through ∞, in the Hausdorff metric on compact
subsets of the sphere.

Proof. Fix any conjugacy ψ as in the Theorem and let λ = |ψ′(c0)| or |ψ ′
(c0)|, depending

on whether s is even or odd. Then λ < 1. For n $ 0 choose a segment I ⊂ ∂D of diameter
about λn such that A−nI is the component of A−n(∂D) ∩ B(c0, 1) passing through the
critical point. Then ψ(I) ⊂ ∂D and since ψ is C1+α, the Hausdorff distance dH satisfies

dH(A−nI,A−(n+1)ψ(I)) ≤ λ−ndH(I,A−1ψ(I)) = O(λ−n(diam I)1+α) = O(λαn).

Thus the blowups of ∂D converge exponentially fast at scale 1 around the critical point. A
similar argument holds on the sphere.

Using the fact that ψ(cqn
) = cqn+s

for all n $ 0, it is also easy to verify:

Corollary 7.4 There exist d0, . . . ds−1 ∈ C such that the closest returns of the critical orbit
satisfy

cqn
= Am(di) + O(|c0 − cqn

|1+α),

where n = ms + i.

Spiraling. A Jordan curve C in the plane spirals about c ∈ C if any continuous branch of
arg(z − c) on C −{c} is unbounded. The curve C does not spiral if and only if there exists
an n such that one petal of n

√
C − c lies in a half-plane.

Corollary 7.5 If the period s is odd, then the boundary of the Siegel disk does not spiral
about the critical point.

Proof. It suffices to show the Hausdorff limit X = lim A−n(∂D) does not spiral about c0.
Pick any point p in the limiting disk D∞ = int limA−n(D), and let γ ⊂ D∞ be a path
joining p to A(p). Then

δ = γ ∪ A(γ) ∪ A2(γ) ∪ · · ·

converges to c0 without spiraling, since alternate segments wind in opposite directions.
Since δ is disjoint from X, the latter does not spiral either.
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8 The limiting dynamics

In this section we describe more completely the limiting dynamical system obtained by
rescaling the first return maps around the critical point. As in the preceding section,
f(z) = e2πiθz + z2, where θ = [a1, a2, . . .] and ai = ai+s for i $ 0.

Let bi, i ∈ Z be the unique sequence with period s that agrees with ai for i $ 0. Let
θi = [bi, bi+1, · · · ], and define ti so t0 = θ1 and ti = −θi+1ti−1.

Let A(z) be the linearization of the contracting self-similarity map given by (7.1). Let
D∞ ⊂ C denote limit of the rescaled Siegel disks; it is the unique quasidisk such that
A−n(D) → D∞ in the Hausdorff topology.

Theorem 8.1 (Limiting dynamics) There exists a sequence of analytic functions gi :
Wi → C, i ∈ Z, such that

1. Wi is an open disk with D∞ ⊂ Wi ⊂ C;

2. ∂Wi is the natural boundary of gi;

3. gi is a σ-proper branched covering of the plane;

4. gi(z) = limn→∞ A−n ◦ f qns+i ◦ An(z);

5. on each compact subset of Wi, this limit converges uniformly and exponentially fast;

6. for all z ∈ Wi, gi(z) = gbi

i−1 ◦ gi−2(z) = A−1 ◦ gi+s ◦ A(z); and

7. there is a Riemann mapping D∞ → H which conjugates the mappings 〈gi(z)〉 to the
translations 〈Ti(z) = z + ti〉.

Remark on universality. By the results of §5, any quadratic-like map h with a fixed
point of multiplier e2πiθ is C1+α-conjugate to f on the boundary of its Siegel disk. Thus
P (h) is self-similar about c0(h) with the same rescaling factor as P (f), Corollaries 7.3, 7.4
and 7.5 also hold for h, and the rescalings of hqn converge to the same dynamical system
〈gi〉 as above.

Before embarking on the proof a few preliminaries are in order.

Branched coverings and σ-proper maps. Let g : X → Y be a holomorphic map
between Riemann surfaces. Then g is:

• proper, if g−1(K) is compact for each compact K ⊂ Y ;

• σ-proper, if each component of g−1(K) is compact for each compact K ⊂ Y ; and

• a branched covering, if each y ∈ Y has a neighborhood V such that g : U → V is
proper for each component U of g−1(V ).
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It is not hard to show that each condition implies the next. Also, g is σ-proper if and
only if X and Y can be expressed as increasing unions of subsurfaces Xi, Yi such that
g : Xi → Yi is proper (hence the terminology). The trigonometric function sin : C → C is a
branched covering which is not σ-proper, because sin−1([−1, 1]) = R is not compact. The
maximal analytic continuation F̃ of the Feigenbaum fixed-point, on the other hand, is a
σ-proper branched covering of the plane (cf. [Mc4, §7]). The composition of two σ-proper
maps is also σ-proper; this property fails for branched coverings.

Proposition 8.2 Let g : U → C be a branched covering. Then every p ∈ ∂U is a singular
point of g.

Proof. Suppose to the contrary there exists a p ∈ ∂U and an analytic function h extending
g near p. Then the branched covering condition implies g−1(h(p)) accumulates on p, so h
is constant, which is impossible.

Carathéodory convergence. A sequence of pointed open disks (Un, un) in Ĉ converges
to (U, u) in the Carathéodory topology if un → u, and if for any Hausdorff limit K =
lim (Ĉ − Unk

), U is the component of Ĉ − K containing u.

Theorem 8.3 (Limits of proper maps) Let

gn : (Un, un) → (Vn, vn)

be a sequence of proper maps between pointed disks, with deg(gn) ≤ d. Suppose un → u, gn

converges uniformly to a nonconstant limit on a neighborhood of u, and (Vn, vn) → (V, v).
Then (Un, un) converges to a pointed disk (U, u), and gn converges uniformly on compact
subsets of U to a proper map

g : (U, u) → (V, v)

with 1 ≤ deg(g) ≤ d.

Proof. By [Mc3, Theorems 5.2 and 5.6], we can obtain convergence of (Un, un) and gn after
passing to a subsequence. But any two subsequences have the same limit, by convergence
near u.

Harmonic measure and exponentially fast convergence. Let E ⊂ X be a closed
subset of a Riemann surface. The harmonic measure ωE(z) is the probability that a Brow-
nian path starting at z will land in E before exiting X. It is a harmonic function on X −E.
If ωE(z) > 0 then E has positive harmonic measure. The “two-constant theorem” controls
a bounded holomorphic function on X in terms of its behavior on E.
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Theorem 8.4 Let f : X → C be an analytic function, with |f(z)| bounded by M on X and
by m on E. Then |f(z)| ≤ M1−δmδ on {z : ωE(z) ≥ δ}.

See [Ah2, Theorem 3-2].
Let us say fn → f exponentially fast on E if there exist C and λ < 1 such that

sup
E

|fn(z) − f(z)| < Cλn.

Corollary 8.5 Let f and 〈fn〉 be analytic functions, uniformly bounded on compact subsets
of X, and suppose fn → f exponentially fast on a set E ⊂ X of positive harmonic measure.
Then fn → f exponentially fast on any compact subset of X.

Of course the C and λ depend on the compact set in question.

Proof of Theorem 8.1 (Limiting dynamics). To simplify notation, we will discuss the
branched covering g0 : W0 → C in detail, the case of gi being analogous.

Let ψ : D → D be a self-similarity homeomorphism of the type provided by Theorem
7.2. That is, for n $ 0, ψ conjugates f qn to f qn+s on a neighborhood of c0, and

ψ(z) = A(z) + O(|z − c0|1+α). (8.1)

We first show for z ∈ D∞,

limA−n ◦ f qns ◦ An(z)

exists, and the convergence is exponentially fast on compact subsets of D∞. Let Dn =
A−n(D) denote the nth dilate of the Siegel disk, and let

f0,n = A−n ◦ f qns ◦ An : Dn → Dn.

Then
ψn = A−n ◦ (A−1 ◦ ψ) ◦ An : Dn → Dn+1

conjugates f0,n to f0,n+1 on a definite neighborhood of c0; on the other hand, ψn converges
to the identity exponentially fast by (8.1). Thus 〈f0,n(z)〉 converges exponentially fast on
some compact ball B ⊂ D∞.

Now each f0,n is a conformal rotation of a quasidisk, so it can be extended to a K0-
quasiconformal map of the plane, where K0 is independent of n. By convergence of f0,n|B,
the sequence 〈f0,n〉 is bounded and equicontinuous on compact subsets of D∞. By Corollary
8.5 above, 〈f0,n〉 converges exponentially fast on compact subsets of D∞.

To proceed further we need some additional notation. For i ∈ Z, let

di = limA−n(cqns+i
) ∈ ∂D∞
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denote the limiting position of the rescaled closest returns of the critical point (cf. Corollary
7.4). Then di+s = A(di), and {di : i ∈ Z} is a finite union of geometric sequences converging
to the critical pont.

Just as the boundary of the Siegel disk divides C into two domains, D and Ω, the quasiarc
∂D∞ divides C into two domains, D∞ and Ω∞. Mimicking the notation [ci, cj ] ⊂ ∂D, we
let [di, dj ] ⊂ ∂D∞ denote the unique quasiarc in ∂D∞ with endpoints di and dj .

We now extend the domain of convergence of A−n◦f qns ◦An beyond D∞. Let Ω′ = Ω−S
where S is an arc (e.g. an external ray) connecting c1 to ∞ through Ω. By cutting along S
we make Ω simply-connected. Consider the open disk

Vk,n = intA−n(D ∪ Ω′ ∪ [cqns−k
, cqns−k−1 ]),

obtained by joining D and Ω′ together along an open arc in ∂D, then rescaling. Note that
Vk,n ⊃ Dn. Picking basepoints pn ∈ Dn converging to p ∈ D∞, we have

(Vk,n, pn) → (Vk, p) = int(D∞ ∪ Ω∞ ∪ [d−k, d−k−1])

in the Carathéodory topology. Note that the slit S moves off to infinity and disappears in
the limit. There is a unique disk Uk,n ⊃ Dn such that

fk,n = A−n ◦ f qns ◦ An : Uk,n → Vk,n

is a proper map. (The disk Uk,n is a component of the preimage of Vk,n under A−n◦f qns◦An.)
We claim that for fixed k, the degree of the proper map fn,k is eventually constant as

n → ∞. Indeed, the domain and range of fk,n are simply connected, so deg(fk,n) is one
more than the number of its critical values. But the critical values of fk,n correspond to a
subset of the critical values {c1, c2, . . . , cqns

} of f qns , namely those lying in the interior of the
arc [cqns−k

, cqns−k−1 ]. Since the continued fraction expansion of θ is preperiodic, this subset
has constant cardinality for all n sufficiently large, and thus deg(fk,n) is also eventually
constant.

Now we already have convergence of fk,n|Dn as n → ∞, so by Theorem 8.3 there is a
pointed disk (Uk, p) and a proper map

fk : (Uk, p) → (Vk, p)

such that fk,n → fk uniformly on compact sets of Uk as n → ∞. Each of these limits
extends the domain of convergence of A−n ◦ f qns ◦ An.

Clearly Vk,n ⊂ Vk+1,n and thus Vk ⊂ Vk+1. Similarly Uk ⊂ Uk+1 and fk = fk+1|Uk.
Letting W0 =

⋃
Uk, and noting C =

⋃
Vk, we obtain a branched covering

g0 : W0 → C
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by setting g0 =
⋃

fk. Since each fk is proper, the map g0 is σ-proper, and by Proposition
8.2) ∂W0 is its natural boundary. Since D∞ ⊂

⋃
Vk, we also have D∞ ⊂ W0. Finally we

have shown above that A−n ◦ f qns ◦An → g0 exponentially fast on compact subsets of D∞,
so by Corollary 8.5 the convergence is also exponentially fast on compact subsets of W0.

This completes the proof of statements (1) – (5) of Theorem 8.1. Statement (7) follows
easily by a linear computation similar to Theorem 2.1.

To verify (6), we must show gbi

i−1 ◦ gi−2 and A−1 ◦ gi+s ◦A are defined on Wi. First note
that

gi = gbi

i−1 ◦ gi−2

when restricted to D∞. Since each gi is σ-proper, the composition on the right defines a
branched covering of the plane, as does the map on the left. A branched covering of the
plane admits no analytic continuation, so the domains of these two mapping must agree,
and thus equality holds on Wi.

The same principle establishes the rescaling equation gi = A−1 ◦ gi+s ◦ A.
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A Appendix: Promoting combinatorial equivalence to con-

jugacy

Let X = ∆/Γ be a hyperbolic Riemann surface, presented as the quotient of the unit disk
by a Fuchsian group Γ. Let Ω ⊂ S1 be the complement of the limit set of Γ. Then (∆∪Ω)/Γ
is a surface with boundary Ω/Γ, the ideal boundary of X.

Any quasiconformal homeomorphism between hyperbolic surfaces extends to the ideal
boundary.

Let X1 ⊂ X0 be a pair of complex 1-manifolds (perhaps disconnected) with each com-
ponent hyperbolic, and let f : X1 → X0 be a holomorphic covering map. A combinatorial
equivalence from f to another such dynamical system g : Y1 → Y0 is a pair of quasiconformal
maps φi : X0 → Y0, i = 0, 1, such that

X1
f−−−−→ X0

φ1

3 φ0

3

Y1
g−−−−→ Y0

commutes, and φ0 is isotopic to φ1 rel the ideal boundary of X0. If φ0 = φ1 then φ0 is a
quasiconformal conjugacy.

Theorem A.1 (Combinatorial promotion) Any combinatorial equivalence (φ0, φ1) is
isotopic, rel ideal boundary, to a quasiconformal conjugacy ψ. Moreover ψ can be chosen
to agree with φ1 on X0 − X1.

Proof. The proof relies on some basic facts about natural extensions and quasiconformal
isotopies treated in detail in [DE] and [EaM].

Using [EaM, Thm 1.3 and Prop 2.3], the initial isotopy φ : [0, 1] × X0 → Y0 may be
chosen to be uniformly continuous in the hyperbolic metric. That is, we can arrange that

dY0(φt(x), φs(x)) ≤ δ(|s − t|) (A.1)

where δ(r) → 0 as r → 0, and distance is measured along the geodesic arc homotopic to
the trace of the isotopy.

Roughly speaking, φ1 gives a map on the “fundamental domain” X0 − X1 which is a
conjugacy on the ideal boundary, so it can be pulled back repeatedly to obtain conjugacies
on larger and larger regions. In the limit one obtains a conjugacy outside a region Ω mapped
to itself by f . A canonical representative of the map on Ω will automatically commute with
coverings, and give a conjugacy there.
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More formally, let Xn = f−n(X0) and Yn = g−n(Y0). Then there is a unique extension
of φt to an isotopy defined for all t ∈ [0,∞) such that

· · ·X2
f−−−−→ X1

f−−−−→ X0

φt+2

3 φt+1

3 φt

3

· · · Y2
g−−−−→ Y1

g−−−−→ Y0

commutes for t ∈ [0, 1], and φt(x) = φn(x) for t > n and x -∈ Xn. Here we use the fact that
the hyperbolic metric on Xn blows up at ∂Xn to insure that φt(x) and φn(x) agree there
for t ∈ [n, n + 1]. Indeed, we have

dYn
(φt(x), φs(x)) ≤ δ(|s − t|)

for x ∈ Xn and s, t ≥ n, because the covering maps f and g are local hyperbolic isometries.
Since inclusions are contracting, (A.1) also holds for all s, t ≥ 0 and x ∈ X0.

We have K(φn) ≤ K(φ0) for all n, and all φn are in the same isotopy class, so after
passing to a subsequence we can construct a limiting combinatorial equivalence

(α0, α1) = lim (φn, φn+1).

Here we use (A.1) to obtain, along a further subsequence, a bounded isotopy αt = limφt+n

connecting α0 to α1.
Let Ω = int

⋂
Xn. Then α0(x) = α1(x) outside Ω. Moreover, αt stabilizes Ω and αt|Ω is

an isotopy rel ideal boundary. On each component of Ω, replace α0 with the unique Douady-
Earle map in the same isotopy class. (This map is obtained by lifting to the universal covers,
and applying the Douady-Earle extension to the boundary values on S1.) Since f : Ω → Ω
is a holomorphic covering and the Douady-Earle extension is natural, these replacements
are compatible with the dynamics and the resulting map ψ is a quasiconformal conjugacy.

Remark. The dilatation of the conjugacy ψ is bounded in terms of K(φ0). The only
increase in dilatation comes by applying the Douady-Earle extension.

Examples.

1. Let f be a critically finite rational map on the sphere. Then f : X1 → X0 is a cov-
ering map, where X0 = Ĉ − P (f) and X1 = f−1(X0). In this setting, the notion
combinatorial equivalence was introduced by Thurston, who proved that combinato-
rially equivalent rational maps are conformally conjugate, apart from certain Lattès
examples [DH2], [Mc3, §B].
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2. A similar principle holds when P (f) is infinite. Namely, given a pair of isotopic
quasiconformal maps φi : (Ĉ, P (f)) → (Ĉ, P (g)), i = 1, 2 with g ◦ φ1 = φ0 ◦ f , there
is a quasiconformal conjugacy in the same isotopy class. This principle is used by
Sullivan in his proof of rigidity of the Feigenbaum polynomial [Sul].

3. Consider a holomorphic family fλ(z) of rational maps such that the critical orbit re-
lations are locally constant. By the theory of holomorphic motions, any two members
of the family are combinatorially equivalent. Then they are also quasiconformally
conjugate, by the Theorem. Compare [McS, Thm 7.1].

4. If X0 is connected and X1 is a proper compact subset of X0, then f : X1 → X0 is an
expanding conformal dynamical system. That is, ‖f ′‖ > c > 1 in the hyperbolic metric
on X0. This expansion implies, for example, that K(f) =

⋂
f−n(X0) is a compact

nowhere dense set of Hausdorff dimension < 2. The Theorem provides structural
stability for these mappings, since it is easy to construct a combinatorial equivalence
from f to a small perturbation g of f .

5. The mapping f(z) = z2 + λ/z3, where λ is small but not zero, is described in [Mc2].
For a suitable annulus A centered at zero, we have f−1(A) = I ;O ⊂ A, where I and
O are annuli covering A with degree 3 and 2 respectively. It is easy to construct a
combinatorial equivalence from f : (I ; O) → A to g : (I ′ ; O′) → A′, where I ′, O′

and A′ are round annuli centered at z = 0, g(z) = z2 in O′ and g(z) = λ/z3 in I ′.
Clearly K(g) is a Cantor set of round circles, so K(f) is a Cantor set of quasicircles.

A rather different approach to this example appears in [Bea].

A prototype of Theorem A.1 appears in [Mc1, Proposition 8.1].
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