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Abstract

Hydrological extremes, such as droughts and floods, can trigger a complex web of compound and cascading impacts due to

interdependencies between coupled natural and social systems. However, current decision-making processes typically only

consider one impact and disaster event at a time, ignoring causal chains, feedback loops, and conditional dependencies between

impacts. Analyses capturing these complex patterns across space and time are thus needed to better inform effective adaptation

planning. This perspective paper aims to bridge this critical gap by presenting methods for assessing the dynamics of the multi-

sector compound and cascading impacts (CCI) of hydrological extremes. We discuss existing challenges, good practices, and

potential ways forward. Rather than pursuing a single methodological approach, we advocate for methodological pluralism. We

see complementary roles for analyses building on quantitative (e.g. data-mining, systems modeling) and qualitative methods

(e.g. mental models, qualitative storylines). We believe the data-driven and knowledge-driven methods provided here can serve

as a useful starting point for understanding the dynamics of both high-frequency CCI and low-likelihood but high-impact CCI.

With this perspective, we hope to foster research on CCI to improve the development of adaptation strategies for reducing the

risk of hydrological extremes.
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Abstract 18 

Hydrological extremes, such as droughts and floods, can trigger a complex web of compound 19 

and cascading impacts due to interdependencies between coupled natural and social systems. 20 

However, current decision-making processes typically only consider one impact and disaster 21 

event at a time, ignoring causal chains, feedback loops, and conditional dependencies between 22 

impacts. Analyses capturing these complex patterns across space and time are thus needed to 23 

better inform effective adaptation planning. This perspective paper aims to bridge this critical 24 

gap by presenting methods for assessing the dynamics of the multi-sector compound and 25 

cascading impacts (CCI) of hydrological extremes. We discuss existing challenges, good 26 

practices, and potential ways forward. Rather than pursuing a single methodological approach, 27 

we advocate for methodological pluralism. We see complementary roles for analyses building on 28 

quantitative (e.g. data-mining, systems modeling) and qualitative methods (e.g. mental models, 29 

qualitative storylines). We believe the data-driven and knowledge-driven methods provided here 30 

can serve as a useful starting point for understanding the dynamics of both high-frequency CCI 31 

and low-likelihood but high-impact CCI. With this perspective, we hope to foster research on 32 

CCI to improve the development of adaptation strategies for reducing the risk of hydrological 33 

extremes. 34 

 35 



2 
 

1 Introduction 36 

Future climate projections show an intensification of variations in the hydrological cycle, with 37 

more droughts and floods expected to occur in many regions (Cook et al., 2020; IPCC, 2021; 38 

Merz et al., 2021; Pokhrel et al., 2021; Samaniego et al., 2018; Simpson et al., 2021). In this 39 

context, understanding the magnitude and distribution of the impacts of these hydrological 40 

extremes becomes crucial to inform adaptation planning. Impact assessments can facilitate the 41 

identification of areas that are disproportionately affected, aiming to support the allocation of 42 

resources (Hammond et al., 2015). They can further provide baseline information for evaluating 43 

whether adaptation measures effectively reduce loss and damage. Spatio-temporal impact 44 

datasets can also improve our understanding of risk drivers (Kellermann et al., 2020) and serve 45 

as ground truth information for impact-based early warning systems (Hobeichi et al., 2022). 46 

In today’s interconnected world, assessing the risks and impacts of floods and droughts has 47 

become increasingly complex as these events often have far-reaching consequences that spread 48 

throughout various sectors and systems, leading to ‘compound and cascading impacts’ 49 

(CCI) (Fig. 1 and Box 1). Indeed, natural, technological, and social systems are deeply 50 

intertwined, and the adverse outcomes of hydrological extremes heavily depend on how the 51 

elements of the affected systems interact with each other (Matanó et al., 2022; Raymond et al., 52 

2020; Ruiter et al., 2020; Zscheischler et al., 2018). For example, during the 2021 flood event in 53 

Europe, the flood waters damaged major access routes and destroyed most of the bridges in the 54 

flooded area in Ahr valley (Schäfer et al., 2021). This reduced the accessibility for rescue cars and 55 

fire brigades, leading to cascading impacts.  56 

 57 

Figure 1 Schematization of compound and cascading impacts (CCI) for a fictitious flood followed by a drought 58 
event. The impacts triggered by different hazards interact, compound, and cascade. Unrelated events or pre-59 

existing vulnerabilities, such as pandemics and conflicts, can also contribute to the impacts. 60 
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 61 
Flood and drought impacts can also spill over beyond their initial geographical location through 62 

the interconnectivity of socioeconomic sectors and ecosystems (UNDRR, 2021a). As a result, 63 

some of the most affected areas can be those not directly affected by the physical hazard (e.g. 64 

flood waters). For instance, the extremely low soil moisture values in the summer of 2018 in 65 

Germany caused severe crop failures, leading to fodder shortages and the consequent early 66 

slaughtering of animals. As a consequence, farmers restrained from investing in fertilizers and 67 

machinery, resulting in ripple effects along supply chains (de Brito, 2021). 68 

 69 
Box 1 Defining compound and cascading impacts (CCI) 

‘Socioeconomic impacts’ are defined as the adverse effects of floods and droughts on society. 
They can include but are not limited to casualties, infrastructure collapse, increased demand for 
water, need for credit, increased commodity prices, migration, food insecurity, conflicts, reduced 
quality of life, crop yield losses, and mental health problems. Hydrological extremes can, in 
exceptional cases, lead to positive consequences. For instance, drought combined with heat waves 
can benefit fruit growers and winemakers depending on the onset of the event, as they can increase 
the sugar concentration in fruits. 

The term ‘compound impact’ is used to denote impacts that temporally and spatially coincide. 
These could be, for instance, a drought that simultaneously impairs the transportation of goods and 
affects tourism via restrictions on boat cruises. The impacts of hydrological extremes can also 
compound with the effects of other  ‘compounding hazards’ or events (i.e. multi-hazard events) 
and/or circumstances (e.g. conflicts). Even unrelated events, such as the Covid-19 pandemic, can 
amplify the impacts of droughts and floods and vice versa (UNDRR, 2021c). 

‘Cascading impact’ refers to consecutive impacts triggered or amplified by other impacts or 
processes. For instance, the delay in sowing and transplanting crops caused by droughts can reduce 
employment in agriculture, which in turn further reduces employment due to the reduced need of 
labor for harvesting. Similarly, the direct impacts of floods and droughts on ecosystems and their 
services can lead to cascading impacts on livelihoods. Cascading impacts can also ripple within and 
across economic sectors. Energy outages very often impact other services, such as healthcare 
facilities. Upstream and downstream relations also lead to cascading impacts. For instance, low flows 
can impair shipping and lead to increased commodity prices.  

The concept of ‘systemic impact’ is based on the notion that the impacts of a hazard can be 
influenced by how the elements of the affected system interact. These interactions can either increase 
or decrease the overall impact. The interactions between sectors and systems and associated impacts 
create mutual dependencies, where actions and outcomes in one sector or system can lead to actions 
and outcomes in another. The term ‘systemic impact’ encompasses both compound and cascading 
impacts, therefore, both coincidental and consecutive impacts. 

 70 

A better understanding of CCI’s characteristics and underlying drivers can, therefore, inform the 71 

ex-ante management of systemic risks. The need to investigate CCI has been underscored by the 72 

UNDRR (2021) and has recently been included in the research agenda of the Integrated Research 73 

on Disaster Risk 2021-2030 (ISC-UNDRR-IRDR, 2021). Likewise, the IPCC is moving from a 74 

static understanding of risk to a dynamic framing that considers compounding, cascading, and 75 

systemic effects (IPCC, 2022). 76 
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Inspired by these calls, research on CCI of floods and droughts is on the rise. In recent years, 77 

scientists have addressed CCI to specific sectors and hazard types, especially critical 78 

infrastructure (Fekete, 2020; Guimarães et al., 2021; Rohr et al., 2020), water quality (Mishra 79 

et al., 2021), agriculture (Christian et al., 2020) as well as cascading impacts linked to the 80 

COVID-19 pandemic and its policy responses to it (UNDRR, 2021c). Interactions between 81 

hydrological extremes have also been investigated. For instance, Matanó et al. (2022) and Ward 82 

et al. (2020) provide examples of interactions between flood and drought impacts. Despite these 83 

advances, research on CCI remains highly fragmented, and an overview of available methods to 84 

study them is missing. 85 

In this perspective, we discuss key approaches for investigating CCI dynamics within the context 86 

of climate change and an increasingly connected world. Our goal is to help researchers navigate 87 

the emerging field of CCI by providing a synthesis of existing methods. We first highlight 88 

persisting challenges, such as the lack of multi-sector and longitudinal impact data. Then, we 89 

present a range of qualitative and quantitative methods that can be used to analyze CCI 90 

dynamics, drawing on case study examples. Based on these, we end with six recommendations 91 

to advance this field of research. While the set of methods discussed here is not exhaustive, it 92 

provides a holistic view of how to tackle CCI and serves as a useful starting point for researchers 93 

studying the systemic risks and impacts of droughts and floods on coupled social, technological, 94 

and natural systems. 95 

2 Challenges in the understanding of CCI 96 

Due to the complexity of CCI, our ability to identify and understand them is still in its infancy. 97 

While there has been notable progress in compound hazards research (e.g. Batibeniz et al., 2023; 98 

Bevacqua et al., 2021; Singh et al., 2021; Sutanto et al., 2020), the socioeconomic CCI of droughts 99 

and floods remain relatively unexplored (Naumann et al., 2021; Ward et al., 2022; Zscheischler 100 

et al., 2020). One of the reasons for the limited exploration of CCI patterns is the scarcity of data 101 

on the socioeconomic impacts of floods and droughts, especially in the global South. Impact 102 

assessments are often conducted for single hazard types, and standardized, methodologically 103 

comparable impact information for multiple disaster types is hardly available. 104 

In this context, we present five challenges that need to be addressed to provide targeted 105 

information to understand CCI (Fig. 2). It should be highlighted that the field of CCI research 106 

encompasses many more challenges than those depicted in Fig. 2, such as the understanding of 107 

the risk drivers of CCI. However, these aspects fall outside the scope of this perspective paper. 108 



5 
 

 109 

 Figure 2 Set of challenges and needs that must be addressed to provide targeted information to understand 110 
CCI. In this study, we focus on methods that can be used to address the needs of challenges 3 to 5, which are 111 

related to dynamic aspects. 112 

 113 

Challenge 1 is linked to the focus of existing impact assessments on single socioeconomic 114 

sectors or systems and tangible losses (Fronzek et al., 2019; Ward et al., 2022). Studies 115 

typically address isolated impacts to single sectors, including damage to critical infrastructure 116 

(Qiang et al., 2020), agriculture losses (H. Chen et al., 2019; Rahman & Di, 2020; Tapia-Silva et 117 

al., 2011), damage to buildings (Gerl et al., 2014; Serpico et al., 2012), and fatalities (e.g. 118 

Papagiannaki et al., 2022). Furthermore, existing databases are almost exclusively limited to 119 

impacts measured in monetary terms (Ding et al., 2011), which are more easily quantified 120 

compared to intangible losses, such as societal and cultural impacts (e.g. decrease of subjective 121 
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well-being and growing lack of trust in institutions) (Ding et al., 2011). However, these intangible 122 

losses can be just as severe, if not more so. As a result, a holistic understanding of all sectors and 123 

systems affected is missing. This gap is related to difficulties in deriving reliable estimates of 124 

indirect or intangible losses such as adverse social, psychological, and environmental 125 

consequences (Allaire, 2018; Walz et al., 2021). Exceptions include initiatives such as the 126 

HOWAS21 database (Kellermann et al., 2020), which includes detailed data on objects affected 127 

by European floods. For drought events, the few existing multi-sector impact databases are 128 

based on the analysis of news (e.g. U.S. Drought Impact Recorder (NDMC, 2019), European 129 

Drought Impact Inventory – EDII (Stahl et al., 2016), and country specific databases (de Brito 130 

et al., 2020)). While these studies represent significant methodological advances, they are 131 

currently not widespread. Hence, multi-sector impact databases encompassing 132 

underrepresented sectors such as health, tourism, energy and forestry, are needed. 133 

Related to this issue is the lack of longitudinal impact datasets encompassing both 134 

large and small-scale events (Challenge 2) (de Brito et al., 2020; R. L. Jones et al., 2022). 135 

Impact assessments are conducted mostly ad hoc, following a specific disaster (Ding et al., 2011). 136 

Existing impact datasets covering multiple years are limited to large-scale disasters (e.g. EM-137 

DAT, NatCatSERVICE) and suffer from underreporting (R. L. Jones et al., 2022). As such, they 138 

may overlook the risks posed by smaller, more frequent events that can be equally damaging 139 

when considering their cumulative occurrence (UNDRR & CRED, 2020). According to the 140 

UNISDR (2015), 99.7% of all disasters between 1990 and 2013 were smaller-scale disasters, with 141 

fewer than 30 deaths or less than 5,000 affected buildings. Thousands of these smaller-scale 142 

events are unreported as they do not result in high impacts at the national or international levels. 143 

Nevertheless, they bring a constant stream of local losses and damages (UNDRR, 2021b) and are 144 

thus relevant for understanding local patterns of CCI. Therefore, impact datasets covering low 145 

and high-impact events over multiple years are required to understand the cumulative and long-146 

term consequences of floods and droughts. 147 

Challenge 3 refers to the lack of understanding regarding the relationships between the 148 

socioeconomic impacts of hydrological extremes (Pescaroli & Alexander, 2016; Simpson et 149 

al., 2021; UNDRR, 2021c). Impact outputs from one sector or system can become inputs into 150 

other sectors or systems depending on system/sector dependencies (Ding et al., 2011; UNDRR 151 

& UNU-EHS, 2022). For example, droughts can lead to crop failures, food shortages, and 152 

increased prices, resulting in ripple effects and social and political instability. Empirical studies 153 

investigating CCI relationships have often focused on single and small-scale case studies (e.g. 154 

Fekete, 2020; Gonzva et al., 2017; Zeng et al., 2021). Research addressing how impacts to one 155 

sector or system can lead to consequences in others is thus needed to support effective mitigation 156 

measures. 157 

Challenge 4 is linked to the limited research on the interconnectivity between impacts 158 

across regions, borders, and spatial scales (Andrew J. Challinor et al., 2017; Helbing, 159 

2013). Namely, cascading impacts spread not only across sectors and systems but also spill 160 
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beyond geographical scales and administrative or national borders, and can lead to globally 161 

networked impacts (UNDRR, 2021a). For instance, drought-related harvest failures in Russia in 162 

2010, combined with an export ban, led to a global spike in cereal prices. This amplified the food 163 

security risk in Pakistan and is associated with an increase in the use of food banks in the U.K. 164 

(Andy J. Challinor et al., 2018; Hunt et al., 2021). Upstream and downstream relations can also 165 

exacerbate the impacts of floods and droughts. For instance, low flows in the Rhine impaired 166 

shipping during the 2018 drought in Germany (Erfurt et al., 2019), increasing fuel prices in 167 

Switzerland. As such, analyses of the interplay between CCI across local, regional, and even 168 

global spatial scales (e.g. Lawrence et al., 2020; Mishra et al., 2021) are needed to identify critical 169 

nodes in the system that can lead to higher impacts. 170 

Finally, research on the effects of response measures (i.e. impacts linked to risk 171 

management or adaptation interventions) on CCI is scarce (Challenge 5). While humans 172 

influence the propagation of extreme events, they also respond to their impacts (AghaKouchak 173 

et al., 2021). Within this context, risk management and adaptation responses to one impact may 174 

inadvertently lead to unintended consequences such as an increased vulnerability in the long 175 

run (e.g. Giuliani et al., 2022; Niggli et al., 2022; Schipper, 2022; Simpson et al., 2023). For 176 

instance, temporary water abstraction licenses may exacerbate underlying water scarcity as they 177 

can be difficult to reverse when the drought ends (Di Baldassarre et al., 2018). Therefore, it is 178 

difficult to measure to which extent adaptation measures reduce impacts or lead to unintended 179 

consequences. Thus, a parallel investigation of impacts and response measures adopted is crucial 180 

to understand how they co-evolve. 181 

Challenges 1 and 2 are closely tied to the quality and availability of socioeconomic impact data, 182 

whereas challenges 3 to 5 relate to understanding CCI dynamics. Since significant research has 183 

already been conducted on improving impact data collection (Alfieri et al., 2016; Allaire, 2018; 184 

Ding et al., 2011; Enenkel et al., 2020; Merz et al., 2020), we focus here on methods that can be 185 

used to address challenges 3 to 5, which are rooted in the complexity of CCI interactions.  186 

3 Key methods for investigating CCI patterns and relationships 187 

Several recent studies have provided valuable guidelines on how to assess compound hazard 188 

interrelationships (e.g. Bevacqua et al., 2021; Tilloy et al., 2019), the dynamics of risk 189 

components (e.g. De Angeli et al., 2022; de Ruiter and van Loon, 2022; Terzi et al., 2019) and 190 

multi-sector dynamics (e.g. Reed et al., 2022). However, similar syntheses that incorporate both 191 

qualitative and quantitative approaches are still missing for research on CCI. 192 

In the subsequent sections, we present an overview of knowledge-driven, data-driven, and mixed 193 

methods that hold the potential to enhance our understanding of the dynamic nature of CCI 194 

(Table 1). These were selected based on the experience of the co-authors, which come from 195 

different fields, including sociology, engineering, physics, geography and economics. A general 196 

description is provided for each method, followed by applications in CCI or related fields and 197 
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how the method can address challenges 3 to 5 in Fig. 2. Besides considering the strengths of each 198 

analytical approach, the choice for a specific method should be guided by the study’s objective, 199 

data requirements, and complexity level as illustrated in Fig. 3. 200 

Although the examples of applications here focus on drought and flood hazards, these methods 201 

can be used for other hazard types (e.g. earthquakes, storms, heatwaves, and landslides). Also, 202 

many of these methods can also be applied to understand the relationship between risk drivers 203 

(e.g. vulnerability, exposure, and hazard) and their corresponding CCI. 204 

It is worth highlighting that this overview is not intended to encompass all existing methods 205 

which can be used to understand complex relationships. Rather, we strive to emphasize key 206 

approaches that can aid in comprehending CCI dynamics. Additionally, the articles presented 207 

here represent only a fraction of the extensive literature on climate change impacts in a broader 208 

sense. 209 

3.1 Knowledge-driven methods 210 

Knowledge-driven methods rely on expert judgment and domain-specific information to analyze 211 

complex phenomena. These methods leverage existing knowledge, whether formal or informal, 212 

theoretical or practical, to delve into the systemic aspects of CCI. Their foundation lies in 213 

recognizing the significance of tacit and explicit knowledge, collective wisdom, and context-214 

specific expertise in generating insights into complex systems (Aminpour et al., 2020). As their 215 

development can be done in a co-creation process with relevant actors, they also allow the 216 

integration of perspectives of vulnerable and marginalized groups, often overlooked in more 217 

data-driven approaches. In this section, we focus on methods such as mental models, visual 218 

techniques, and qualitative scenarios and storylines. 219 
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Table 1 Overview of methods that can be used to investigate CCI dynamics. The groups of methods here are, to some extent, subjective, and 220 
overlap exists between them. Thus, they should be used as a general guide rather than a definitive categorization. 221 

 
Group of 

methods 
Methods and key references Strengths Weaknesses 

K
n

o
w

le
d

g
e

-d
r

iv
e

n
 

Mental 

models 

 Causal loop diagrams (Groesser & Schaffernicht, 

2012; Rest & Hirsch, 2022) 

 Fuzzy cognitive maps (Ballesteros-Olza et al., 

2022; Mehryar & Surminski, 2022) 

 Impact chains (Hagenlocher et al., 2018; Zebisch et 

al., 2022)  

 Impact webs (Sparkes et al., 2023)  

Visualize the interplay between CCI 
(Challenge 3). When built in a participatory 
way, it enables the inclusion of 
perspectives of marginalized and 
vulnerable groups. It also facilitates 
mapping CCI to responses (Challenge 5) 

Criticized as subjective representations 
of reality. Risk of oversimplification as 
it is difficult to map the full complexity 
of a system. Spatial and temporal 
dynamics are usually not explicitly 
addressed (Challenge 4) 

Visual 

techniques 

 Rich pictures (Suriya & Mudgal, 2013) 

 Event timelines (Matanó et al., 2022; Seebauer et 

al., 2023) 

 Qualitative matrices (Gill & Malamud, 2014, 2016; 

Matanó et al., 2022) 

 Network diagrams (Gill & Malamud, 2014, 2016) 

Simplify complex ideas and enhance 
their comprehensibility for a wider 
audience. Visualize relationships 
between CCI and response measures 
over time (Challenges 3 and 5) 

Can carry ethical risks (e.g. power 
relations). Comparability between 
studies is limited. Are often unsuitable 
for addressing spatial dynamics 
(Challenge 4) 

Qualitative 

storylines 

and 

scenarios 

 Qualitative storylines (van den Hurk et al., 2023) 

 (Semi)-qualitative scenarios (Di Baldassarre et 

al., 2021; Rusca et al., 2023) 

Allow to take into account political, 
cultural, and economic contexts. Give 
more power to participants to shape the 
story. Spatial and temporal changes play 
a key role in these methods (Challenge 4) 

Highly context-specific. Risk of making 
arbitrary assumptions and 
oversimplification. Limited ability to 
predict outcomes. 

D
a

ta
- 

d
r

iv
e

n
 Multivariate 

statistics 

 Logistic regression and other machine 

learning algorithms (Ben-Ari et al., 2018; Martius 

et al., 2016) 

 Markov chains (Ronizi et al., 2022) 

 Co-occurrence analysis (de Brito, 2021) 

Capable of capturing non-linear 
relationships between CCI (Challenges 3 and 

5). Can handle large and complex 
datasets with numerous variables 

Data-intensive. Sensitive to data biases 
and dependency on historical 
observations, which leads to limitations 
in a changing climate and/or contexts of 
under-reporting 

Data mining 

 Dimensionality reduction (Anowar et al., 2021) 

 Clustering (Lam et al., 2016) 

 Sequential pattern mining (de Brito, 2021) 

Extracting key patterns from high-
dimensional and noisy data (Challenge 3) . 

Allow uncovering hidden dependencies, 
also spatially (Challenge 4) 

Potential loss of complexity and details 
when reducing high-dimensional data 
to lower-dimensional representation 

M
ix

e
d

 

Systems 

modelling 

 Agent-based modelling (ABM) (Wijermans et al., 

2022) 

 System dynamics and multi-sector dynamics 

models (Savelli et al., 2023; Yoon et al., 2021) 

Can portray the temporal dynamics of 
complex systems (Challenges 3). Allow the 
assessment of the effects of different 
adaptation measures (Challenges 5). AMB 
can account for spatial dynamics 
(Challenge 4) 

Empirical models require 
comprehensive data coverage of the 
underlying system. Require careful 
calibration and validation. Models 
without empirical components run at 
risk of being ‘toy’ models 

Network 

analysis 
 Network analysis (Naqvi & Monasterolo, 2021) 

Intuitive visualization of interconnected 
systems (Challenges 3 and 5). Enable the 
identification of key nodes within the 

Requires data and knowledge on both 
impacts and causal relationships 
between impacts 
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network. Allow investigating spatial 
patterns (Challenge 4)  

Economic-

based 

models 

 Input-output analysis  (Koks et al., 2019) 
 Computable general equilibrium model 

(Bachner et al., 2023) 

Allow identifying how changes in one 
sector can propagate through the 
economy, affecting other sectors and 
causing cascading effects (Challenge 3). Can 
analyze cross-sectoral and cross-regional 
economic impacts (Challenge 4) 

Can represent an oversimplistic view of 
the economy. Data-intensive 

 222 

 223 

 224 

 Figure 3 Synthesis of methods used in CCI research to brainstorm, identify system linkages and patterns, quantify relationships, and run 225 
simulations. Some methods can be used for multiple purposes. 226 
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3.1.1. Mental models 227 

Mental models are schematic representations of the world as perceived by humans. By 228 

articulating complex relationships between system components (Levy et al., 2018) they aid in 229 

comprehending how systems respond to risks and factors such as human activity or 230 

environmental changes. However, since individuals’ perspectives differ, mental models are 231 

subjective depictions of reality (N. A. Jones et al., 2011). They are typically constructed through 232 

stakeholder involvement (Romero-Lankao & Norton, 2018) and are often paired with other 233 

methods, such as system dynamics (Perrone et al., 2020).  234 

Several approaches are used to elicit mental models, ranging from causal loop diagrams 235 

(CLD) to free drawing (see Doyle et al., 2022 for a review). CLD are a popular method that 236 

demonstrates how changes in one variable can influence others by reinforcing (positive link) or 237 

balancing them (negative link). CLD have been widely applied to understand the relationships 238 

between socioeconomic impacts (Challenge 3), including the investigation of cascading impacts 239 

of hydrological extremes on transport infrastructure, electricity, and healthcare systems (e.g. 240 

Berariu et al., 2015; Rest and Hirsch, 2022), as well as multi-sectoral impacts (e.g. Montgomery 241 

et al., 2012; Perrone et al., 2020). CLD have also been used to analyze coping and adaptation 242 

strategies and their effectiveness in mitigating impacts (Challenge 5) (e.g. Armah et al., 2010; 243 

Sanga et al., 2021; Song et al., 2018). While CLD can represent temporal dynamics adequately, 244 

spatial aspects are usually not explicitly addressed (Challenge 4). Furthermore, due to their 245 

reliance on human interpretation may, their ability to capture the nuances of real-world CCI is 246 

compromised, potentially leading to oversimplification. 247 

Fuzzy cognitive maps (FCM) are CLD that account for uncertainty by using weights to define 248 

relationship strengths (Challenge 3). FCM have been employed to study drought and flood 249 

adaptation solutions and their effect on socioeconomic impacts (e.g. Ballesteros-Olza et al., 250 

2022; Chandra and Gaganis, 2016; Mehryar and Surminski, 2022) (Challenge 5). They have been 251 

used to examine past disasters as well as to simulate plausible CCI futures (e.g. D’Agostino et al., 252 

2020). Vanwindekens et al. (2018) incorporated spatial dynamics into the FCM by coupling it 253 

with geolocated data to analyze crops’ vulnerability to soil moisture drought. Recently, FCM have 254 

also been used to address CCI interactions across neighborhood, city, and regional scales (e.g. 255 

White et al., 2021) (Challenge 4). 256 

Impact chains are conceptual models used to capture the interplay of hazard, vulnerability, 257 

and exposure factors that lead to a specific risk or impact (Menk et al., 2022). This mixed-258 

methods approach draws on elements of CLD and network analysis to investigate complex 259 

systems. Impact chains have been applied in various contexts and settings (e.g. Fritzsche et al., 260 

2014; Hagenlocher et al., 2018; Zebisch et al., 2022). For instance, Kabisch et al. (2014) used 261 

impact chains to identify the relationships between direct and indirect impacts on multiple 262 

sectors resulting from heatwaves, floods, and storm surges (Challenge 3). One of the strengths 263 

of impact chains is their ability to link impacts and adaptation strategies (Challenge 5) directly. 264 
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However, it is important to note that impact chains often neglect or overly simplify complex 265 

systemic interrelations, including transboundary relationships (Menk et al., 2022), which poses 266 

a challenge in addressing Challenge 4. 267 

More recently, an approach called impact webs was explicitly designed to tackle the complex 268 

nature of CCI risks (UNDRR, 2021c). Drawing on the foundations of CLD, impact chains, and 269 

network analysis, impact webs provide a comprehensive framework for characterizing the 270 

interconnected components of multiple systems, capturing their underlying risk drivers, and 271 

visualizing the dynamics of cascading effects (Challenge 3). Unlike impact chains, which often 272 

converge towards a single risk, impact webs offer a holistic overview of system interactions 273 

without directional constraints. While they have been initially used to understand CCI linked to 274 

the COVID-19 pandemic and responses to it, impact webs are now finding application in the 275 

study of CCI related to droughts and their compounding hazards, along with exploring potential 276 

adaptation options  (Challenge 5) (Cotti et al., 2023; Sparkes et al., 2023). 277 

3.1.2. Visual techniques 278 

In addition to mental models, visualization techniques, such as rich pictures, event timelines, 279 

and qualitative matrices, are used for visually capturing the elements of a system. They are often 280 

part of brainstorming processes and aim to simplify complex ideas and enhance their 281 

comprehensibility for a wider audience. However, while these tools help synthesize information 282 

at a high level, they may not provide a detailed understanding of the underlying dynamics of CCI. 283 

Another concern pertains to the transferability and generalisability of results. While visual 284 

techniques facilitate a deep qualitative understanding of a given CCI event, the challenge lies in 285 

identifying comparable and scalable results that can be applied more broadly. 286 

Rich pictures are visual depictions of a system, portraying elements and actors involved in a 287 

problematic situation (Barbrook-Johnson & Penn, 2022). When used in a participatory setting, 288 

this technique enables participants to share experiences about a certain problem and learn from 289 

each other (Bell et al., 2019). For instance, Suriya and Mudgal (2013) used the rich pictures 290 

method to examine the factors contributing to toxic floods and how their effects cascade 291 

downstream (Challenge 4). Similarly, Bunch (2003) used it to investigate the interactions 292 

between drought and flood impacts (Challenge 3). In both cases, this brainstorming exercise 293 

facilitated the development of a shared understanding of the situation. Although rich pictures 294 

are a useful visual aid, comparing their results is challenging since they are typically created 295 

without a structured approach. 296 

Event timelines or timelining are another visualization method for representing the sequence 297 

of events over time. This approach involves plotting events related to a problem on a graph by 298 

considering participants’ storytelling as a means to document past experiences (Sheridan et al., 299 

2011), present, or project possible futures. Timelining has been successfully used in group 300 

settings to examine climate change impacts (e.g. Dolan and Walker, 2006; Schmook et al., 2023) 301 

and to understand the impact of recovery measures on disaster occurrence (e.g. Sword-Daniels 302 
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et al., 2015) (Challenge 5). Timelines can also be developed using document analysis. For 303 

instance, Matanó et al. (2022) conducted an extensive literature review to develop event 304 

timelines exploring the temporal interactions between floods and droughts (Challenge 3). 305 

Similarly, Seebauer et al. (2023) combined document analysis and interviews to create a timeline 306 

depicting the sequence of flood events and adaptation measures from 1980 to 2020 in Austria 307 

(Challenge 5). While timelines are an effective tool for visualizing cascades of events, they are 308 

constrained by their linearity and, thus, unsuitable for depicting interactions across regions 309 

(Challenge 4). 310 

Qualitative matrices and network diagrams offer another approach to studying CCI. 311 

Originally proposed by Gill and Malamud (2016, 2014) for visualizing hazard interactions, these 312 

tools were later adapted to investigate disaster impacts. The matrices illustrate how a primary 313 

impact can trigger and increase the probability of a secondary impact, thus revealing the strength 314 

of these relationships. Clark-Ginsberg (2017) used these tools in a participatory setting to 315 

examine how multi-hazard events can lead to multiple socioeconomic impacts (Challenge 3). 316 

Meanwhile, Chen et al. (2022) reconstructed how the 1920 drought in China affected multiple 317 

socioeconomic sectors building qualitative matrices based on newspaper articles. Multiple 318 

hazards can also be considered. For instance, Matanó et al. (2022) developed matrices of floods 319 

and droughts CCI using stakeholder interviews and a literature review. The matrix results can 320 

serve as input for network diagrams, which present the same information in a network format. 321 

Since spatial dynamics are usually not addressed in qualitative matrices and their resulting 322 

diagrams, they are often unsuitable for addressing Challenge 4. 323 

3.1.3. Qualitative storylines and scenarios 324 

Qualitative storylines and scenarios are commonly used in social sciences to understand the 325 

temporal dynamics of systems (Shanahan et al., 2018). These methods have recently gained 326 

popularity in climate change science as an alternative approach to studying human-327 

environmental dynamics when information is scarce (van den Hurk et al., 2023; Shepherd et al., 328 

2018). They are often derived in participatory settings i.e. through narrative interviews or 329 

workshops (Shanahan et al., 2018), document analysis, or modeling. 330 

Qualitative storylines are temporal accounts of a series of interrelated events, often presented 331 

in a storytelling format (Andrews et al., 2013). They provide descriptive narratives of CCI 332 

developments without specific quantification, emphasizing plausibility and contextual 333 

understanding (Rounsevell & Metzger, 2010). They allow exploring how impacts have occurred 334 

in the past or can unfold in the future, highlighting the causality and temporal dimensions. 335 

Through qualitative storylines, participants can describe the trickle-down effects and 336 

propagation of impacts to one sector through a system (Challenge 3) and between regions – or 337 

even across borders (Challenge 4) (e.g. Carter et al., 2021; Liguori et al., 2021; van Delden and 338 

Hagen-Zanker, 2009). The synthesis of a collection of storylines enables the extraction of generic 339 

principles and can inform the definition of both qualitative and quantitative scenarios (e.g. 340 
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Lottering et al., 2021; Rounsevell and Metzger, 2010), as well as conceptual system dynamic 341 

models. A protocol for constructing storylines in the field of CCI is provided by van den Hurk et 342 

al. (2023).  343 

Findings from qualitative storylines can be used to feed into (semi)-qualitative scenarios, 344 

which are alternative representations of plausible futures. Scenarios can encompass qualitative 345 

or quantitative elements, involve structured assumptions and models, and offer a broader range 346 

of possible future trajectories for analysis (Rounsevell & Metzger, 2010; Wiebe et al., 2018). They 347 

can be instrumental in developing descriptions of how CCI can succeed through the cross-scale 348 

interaction of actors and networks in a system (Challenge 4). Qualitative scenarios are recently 349 

gaining momentum in CCI research. For example, Rusca et al. (2021) developed qualitative 350 

scenarios of unprecedented flood events and societal recovery trajectories for them (Challenge 351 

5). To this end, the authors relied on a series of qualitative and quantitative data from interviews, 352 

focus groups, and empirical analysis. Similarly, Liguori et al. (2021) developed qualitative 353 

scenarios to imagine future adaptation scenarios (Challenge 5). 354 

 3.2 Data-driven methods 355 

Data-driven methods rely on analyzing and extracting insights from large amounts of data to 356 

understand complex systems. Their foundation lies in the principle that data contains valuable 357 

insights that can be harnessed to uncover hidden relationships and patterns. In this section, we 358 

focus on multivariate statistics and data mining approaches, but many others exist. These 359 

methods allow quantifying interdependencies between impacts and response measures, 360 

enabling a comprehensive understanding of CCI dynamics (Challenges 3 and 4). However, a 361 

significant challenge of these methods lies in their reliance on the quality and quantity of 362 

available impact data. 363 

3.2.1. Multivariate statistics 364 

A broad range of tools are available to study multivariate statistics in climate data (e.g. Bevacqua 365 

et al., 2022; Jane et al., 2020), many targeted specifically at extreme events (e.g. Salvadori and 366 

De Michele, 2013). Recent years have also seen the rapid growth of machine learning 367 

applications (e.g. Feng et al., 2021). However, the above approaches are often data-intensive, 368 

especially when both temporal and spatial components need to be accounted for (Liu et al., 2021; 369 

Messori & Faranda, 2021). The lack of impact datasets covering multiple sectors and over many 370 

years (Challenges 1 and 2) and the difficulty of accounting for the effect of response measures 371 

(Challenge 5) in past data in practice means that many of these approaches have limited 372 

applicability for analyzing CCI. We, therefore, propose here simple statistical methods that may 373 

be used to investigate CCI in data-limited contexts and that can be applied to multiple types of 374 

data and spatial and temporal scales. 375 

Regression models, specifically logistic regressions, have proven to be effective in examining 376 

temporally successive or spatially co-occurring climate hazards (e.g. Ben-Ari et al., 2018; 377 
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Martius et al., 2016). Data-efficient machine-learning models, including random forests, have 378 

also been used to link hydroclimatic indicators to socioeconomic impacts (e.g. Bachmair et al., 379 

2017; Torelló-Sentelles and Franzke, 2022). These same models could profitably be applied to 380 

quantitative socioeconomic impact data, for example, to quantify changes in the odds of a given 381 

impact occurring prior to, concurrently, or after another impact (Challenge 3). A further 382 

application could be to investigate the spatial propagation of impacts (Challenge 4). 383 

In a similar vein, Markov chains can be used to describe systems that transition between 384 

different states over time. This method has proven effective in examining the succession of 385 

interactions between multiple climate drivers and events (e.g. Sedlmeier et al., 2016) and could 386 

be directly ported to the analysis of CCI (Challenge 3). For example, Markov chains have recently 387 

been  used to predict the impact of drought changes on water and soil quality (Ronizi et al., 388 

2022). Markov chains offer particular advantages in addressing spatial changes (Challenge 4) 389 

and generating scenarios with different response measures (Challenge 5), as has been 390 

demonstrated in neighboring fields (e.g. Rifat and Liu, 2022). 391 

The above methods may still struggle in extremely data-limited contexts, and in such cases, even 392 

simpler co-occurrence analyses may be favored. These provide a statistical indication of 393 

whether the spatial or temporal concurrence of specific impacts is larger than one may expect by 394 

random, helping to address Challenge 3. A number of co-occurrence indicators have been 395 

developed explicitly for extreme events, exactly by virtue of their effectiveness, even when 396 

applied to small data samples. For example, Kornhuber and Messori (2023) used co-occurrence 397 

statistics to identify regions of significant concurrence of climate extremes in Europe and North 398 

America, and a similar approach could be applied to their impacts. In CCI research, de Brito 399 

(2021) conducted a co-occurrence analysis to identify drought impact types often reported 400 

together by the media. While this method is useful for identifying relationships between two 401 

variables, it has limitations when dealing with patterns that emerge from multiple variables. 402 

3.2.2. Data mining 403 

Data mining methods such as dimensionality reduction, clustering, and sequential pattern 404 

mining are well-suited for identifying patterns in complex and high-dimensional datasets. These 405 

methods help transform datasets with many variables into interpretable information, making it 406 

easier to understand relationships among multiple observations (Challenge 3). However, the 407 

data transformation may lead to the loss of relevant information. Similar to other data-driven 408 

methods (see section 3.2.1), the application of data mining in CCI research is constrained by the 409 

availability of multi-sector and longitudinal data (Challenges 1 and 2).  410 

Dimensionality reduction methods allow for simplifying the analysis of high-dimensional 411 

data by transforming them into lower-dimensional representations while retaining the most 412 

informative aspects (Anowar et al., 2021).  These transformations enable to capture a high share 413 

of the original dataset’s variance using fewer dimensions, thereby maintaining its key 414 

characteristics. Principal component analysis, self-organizing maps, and t-SNE (t-distributed 415 
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stochastic neighbor embedding) are a few examples of such techniques. By leveraging these 416 

methods, researchers can better understand the relationships between multiple socio-economic 417 

impacts (Challenge 3). Although dimensionality reduction methods have been successfully 418 

applied to identify underlying risk patterns (e.g. hazard, vulnerability) that drive impact 419 

occurrence (e.g. Johnson et al., 2020; Maity et al., 2013), their application in the field of CCI is 420 

yet to be explored. Adopting dimensionality reduction approaches in CCI research holds promise 421 

for gaining a comprehensive perspective on the relationships between different multi-sector 422 

impacts (Challenge 3) as well as across different regions (Challenge 4). Furthermore, indicators 423 

developed through dimensionality reduction could act as holistic measures for tracking 424 

developments through time and space or evaluating the effects of response measures (Challenge 425 

5). 426 

Clustering methods are another powerful tool for discovering underlying patterns in high-427 

dimensional data. Unlike dimensionality reduction methods, clustering seeks to group similar 428 

data points based on their characteristics. Popular clustering methods include k-means, 429 

hierarchical clustering, or density-based clustering. Although hardly applied in CCI research, 430 

inspiration for application to CCI can be drawn from other fields, especially hazard research (e.g. 431 

Brunner and Stahl, 2023). For example, a study by Lam et al. (2016) leveraged clustering 432 

analysis to assess resilience to climate-related hazards for U.S. counties based on 28 variables. 433 

For CCI, similar research designs could allow researchers to better understand how CCI impacts 434 

affect regions in complex ways and whether these impacts occur in similar patterns across time 435 

and space (Challenge 4).  436 

Sequential pattern mining methods are effective for identifying rules which describe 437 

frequent temporal patterns (e.g. sequences or cascading events) in a dataset. Respective 438 

algorithms such as SPADE or generalized sequential pattern aim at finding events that occur in 439 

predictable orders throughout a given dataset. By leveraging these methods, researchers can 440 

uncover important temporal relationships and dependencies. Indeed, the application of 441 

sequential pattern mining to CCI of hydrological extremes has been demonstrated by de Brito 442 

(2022), who detected cascading drought impact patterns for the case of Germany in 2018 and 443 

2019 (Challenge 3). Given datasets of sufficient geographic scope, sequential pattern mining 444 

could also investigate interrelationships of CCI spanned between regions (Challenge 4). 445 

3.3 Mixed approaches 446 

Mixed approaches refer to methods that combine both qualitative and quantitative data to 447 

understand complex systems. These approaches leverage the strengths of both data-driven 448 

methods, which rely on patterns and insights derived directly from the data, and knowledge-449 

driven methods, which incorporate domain knowledge, rules, or expert opinions. By doing so, 450 

these approaches offer a holistic perspective on the phenomenon under study. 451 



17 
 

3.3.1. Systems modelling 452 

Systems modeling encompasses a range of methods for understanding complex systems 453 

through mathematical and computational models. Here, we focus on two widely used methods: 454 

system dynamics and agent-based modeling (ABM). These methods have gained popularity due 455 

to their capacity to incorporate the interplay between social and natural system components  (de 456 

Brito, 2023). A limitation, however, is that they often require large amounts of data to be 457 

effective (Challenges 1 and 2). In such cases, the accuracy and reliability of the models may be 458 

compromised. 459 

Agent-based modeling (AMB) is used to study the behavior of individuals or agents within 460 

a social system. The agent’s behavior is described by a set of rules implemented by the researcher 461 

to fit the system under investigation. They often combine data from behavioural experiments or 462 

survey data (Wijermans et al., 2022). ABM can help to answer questions on how and why social 463 

systems react in response to different stimuli compared to counterfactuals. ABMs represent a 464 

well-established method for studying social-ecological systems (Biggs et al., 2021). For CCI 465 

research, models for varying purposes have been developed which capture the interactions of a 466 

social and hydrological system. For example, Michaelis et al. (2020) developed an ABM to 467 

capture processes between floods, impacts, and vulnerability. Galán et al. (2009) investigated 468 

domestic water demand using an ABM that reflects individual households. The model allowed 469 

the testing of different what-if scenarios concerning varying socioeconomic indicators and urban 470 

dynamics. Both applications highlight the capabilities of ABM to reflect on spatial 471 

interconnectivity (Challenge 4) and its effectiveness in evaluating policy measures (Challenge 5). 472 

Systems dynamics and multi-sector dynamic models focus on studying the complexity 473 

of a system through understanding causal relationships and feedback patterns (Yoon et al., 474 

2022). Gaining such understanding is beneficial for predicting future system behavior, 475 

identifying detrimental or supportive system components, and evaluating the likely impact of 476 

policy strategies. System dynamic models are typically based on a set of mathematical equations 477 

and can incorporate various data types to derive model-specific parameters as well as qualitative 478 

data from surveys. Integrative models based on both qualitative and quantitative data are 479 

increasingly being applied in the context of floods and drought impacts (e.g. Savelli et al., 2023; 480 

Yoon et al., 2021). For example, water supply and demand dynamics have been studied for 481 

varying climate change scenarios and management decisions (ElSawah et al., 2015). For CCI, 482 

these models can help identify how cascades propagate and how impacts across different sectors 483 

are connected through complex causal structures (Challenge 3). Additionally, integrated system 484 

dynamics models excel in evaluating response measures across different social-ecological 485 

systems (Challenge 5) and have already been used to evaluate the efficience of future adaptation 486 

strategies (e.g. Giuliani et al., 2022). The development of system dynamics models is, however, 487 

often constrained by the availability of data to sufficiently parametrize all model components 488 

and their causal relationships. 489 
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3.2.2. Network analysis 490 

Network analysis is a frequently employed method for examining the connections between 491 

variables. It involves representing network structures using nodes and links, which help reveal 492 

the relationships between variables in a system and capture their associations (Bodin et al., 493 

2019). These structures can be derived from various methods such as CLDs, FCM, co-occurrence 494 

analysis, or observational data. In flood and drought research, network analysis can provide 495 

insights into the interrelationships among individual actors or the flows between impacts, 496 

response measures, and risk drivers. While the conceptual (and metaphorical) idea of thinking 497 

of CCI as a network is widely adopted throughout CCI studies, few have adopted network analysis 498 

as an empirical approach.  499 

In CCI research, network analysis metrics can be leveraged for understanding cascading patterns 500 

among manifold socio-economic impacts of hydrological extremes (Challenge 3). Graph theory 501 

measures can reveal highly central, relevant, or influential variables in these mental models 502 

(Olazabal & Pascual, 2016). For example, de Brito (2021) used network structures to capture and 503 

visualize the cascading impacts of drought, while graph theory measures were used to identify 504 

highly central variables. Network analysis can also help to understand the spatial 505 

interconnectivity of CCI, particularly when networks represent a spatial dimension through 506 

which impacts cascade (Naqvi & Monasterolo, 2021) (Challenge 4).  507 

3.3.3. Economic-based models 508 

Macro-economic models have been widely applied to identify and quantify the cross-sectoral 509 

and cross-regional economic impacts due to hydrological extremes. The most commonly applied 510 

models are input-output and computable general equilibrium models. Both models describe our 511 

economy through a set of inter-relations between economic actors (e.g. industries, households, 512 

and governments) (E. E. Koks et al., 2016). These models are particularly helpful in identifying 513 

potential spillover effects across regions (Challenge 4). However, a key limitation is that they 514 

may rely on assumptions that do not always hold in reality (e.g. either no or full substitution 515 

between production inputs). Additionally, they may not fully capture intangible impacts, such as 516 

the psychological distress experienced by individuals affected by extreme events. To cope with 517 

some of these limitations, economic models are increasingly being used together with 518 

noneconomic methods. 519 

Traditional input-output (IO) models are static linear models in which substitution between 520 

products is not possible, and price effects are disregarded. Due to these characteristics, IO 521 

models often overestimate the economic losses due to their linearity and lack of substitution. In 522 

general, they are considered to best represent the economic situation in the short term, in which 523 

the economy is generally inflexible to large changes. While there are no clear examples of 524 

applications within CCI, IO models have been used to, for example, assess the cascading effects 525 

of flooding towards business disruptions and economy-wide impacts (e.g. Koks et al., 2019)  and 526 

to analyze global supply-chain effects due to COVID-19 (Guan et al., 2020). 527 
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Computable general equilibrium (CGE) models mostly assume a market with perfect 528 

competition and are generally built around the rationale that: (i) firms aim to maximize profits 529 

and minimize costs and (ii) households aim to maximize their utility within their budget 530 

constraint. As such, CGE models may underestimate the economic losses due to ‘over’-531 

optimizing the economic situation (E. E. Koks et al., 2016). They are thus most suitable for 532 

assessing the long-term impacts of droughts and floods on a national economy and the potential 533 

of welfare impacts. For example, García-León et al. (2021) assessed the impacts of droughts on 534 

the Italian economy, and Bachner et al. (2023) applied a CGE model to highlight the cross-535 

sectoral impacts of flood events within Austria.   536 

Capturing CCI of hydrological extremes requires economic-based models capable of coupling a 537 

physical footprint of the event to disruptions within our economy. This means that CGE and IO 538 

models should be extended to convert physical asset damages and employment reductions (i.e., 539 

because of casualties and/or displacement) into a ‘shock’ affecting economic activity. This could 540 

either mean disruptions on the supply side of our economy (i.e., reduction in production output) 541 

or disruption on the demand side of our economy (i.e., reduction in demand for goods and 542 

services). Moreover, capturing cross-regional economic impacts (Challenge 4) requires using 543 

multi-regional economic trade data. Finally, a time dimension should be included to assess the 544 

effects of cascading events.  545 

4 Pathways for future research 546 

The above synthesis highlights the diversity of methods used to study CCI dynamics. In general, 547 

while methods supporting the identification of patterns between impacts (Challenge 3) are well-548 

represented and widely applied, progress in measuring the strength of the causal relationships 549 

between socioeconomic impacts has been limited. Furthermore, while most methods are used to 550 

study interactions within one geographical scale, relatively few methods support the analysis of 551 

cross-scale dynamics (Challenge 4), as shown in Table 1. Also, the majority of the reviewed 552 

applications primarily address past or present CCI (e.g. de Brito, 2021; Matanó et al., 2022), with 553 

few examining plausible futures (e.g. D’Agostino et al., 2020; Liguori et al., 2021). The analysis 554 

of interactions between the impacts of hydrological extremes and response measures is also in 555 

its early stages (Challenge 5). Considering these gaps, we point towards recommendations for 556 

advancing the field of CCI research. 557 

(1) Systematic efforts to collect data on impacts across multiple sectors, systems, 558 

and years are needed 559 

The quality and quantity of longitudinal and multi-sector impact data constrain our 560 

understanding of CCI dynamics. Although a wide range of approaches exists to study complex 561 

systems, CCI research tends to rely on simple methods due to data availability limitations. Thus, 562 

systematic efforts must be made to collect drought and flood impact data. Emerging impact 563 

assessment methods that use text, digital traces, new sensors, and citizen science data are 564 
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potential ways forward. For instance, newspaper and social media data can provide a fine-scale 565 

mapping of socioeconomic impacts across sectors (e.g. de Brito et al., 2020; Erfurt et al., 2020; 566 

Sodoge et al., 2023). Drones and satellite data can support detailed property and infrastructure 567 

damage assessment (e.g. West et al., 2019; Wouters et al., 2021). Moreover, digital traces such 568 

as credit card transactions and online communications can enable rapid impact assessments 569 

(e.g. Jackson and Gunda, 2021; Yuan et al., 2022b, 2022a). The adoption of these new methods 570 

presents valuable opportunities for gathering crucial data to address CCI, especially in currently 571 

underrepresented regions. 572 

(2) Disciplinary diversity should be promoted to foster innovation 573 

To better understand the complexity of CCI, engaging in interdisciplinary collaboration among 574 

scientists from different fields, such as ecology, economics, engineering, geography, hydrology, 575 

law, political sciences, and social sciences, is crucial. Although interdisciplinary research 576 

positively correlates with research impact and innovation (Okamura, 2019), evidence suggests 577 

that researchers in natural hazards research often work within their own disciplinary silos 578 

(Vanelli et al., 2022). This may limit the scope of their analyses, overlooking crucial 579 

interdependencies and multi-sectoral impacts. By breaking down these barriers and 580 

collaborating across disciplines, CCI research can be decompartmentalized and offer a more 581 

comprehensive explanation of how droughts and floods impact critical infrastructure, people, 582 

and assets, reducing the potential for disciplinary bias in findings. By working together, 583 

interdisciplinary teams can thus advance the understanding of compound and cascading impacts 584 

of hydrological extremes. Numerous of the applications highlighted in this paper are already 585 

moving in this direction, showcasing the positive outcomes of embracing interdisciplinary 586 

collaboration  (e.g. Matanó et al., 2022; Rusca et al., 2023). 587 

(3) Methodological pluralism is necessary to fully address the complexity of CCI 588 

and their underlying risk drivers 589 

Data and knowledge-driven approaches are commonly used separately in CCI research, and 590 

integration of methods is limited. However, no single method can by itself capture all aspects of 591 

the intertwined nature of CCI and its underlying risk drivers. We, thus, advocate for 592 

epistemological and methodological pluralism to consider the different aspects of CCI. Since 593 

each method has its own assumptions, strengths, and weaknesses (Table 1), combining different 594 

methods can help reveal various facets of CCI and compensate for the limitations of individual 595 

methods. For instance, while quantitative assessments allow us to identify generalizable patterns 596 

and dynamics, qualitative analyses help to contextualize and interpret them (Di Baldassarre et 597 

al., 2021; Rusca et al., 2021). Hence, by triangulating the outcomes of these approaches, several 598 

lines of evidence can be delivered (Raymond et al., 2020). This can strengthen the research 599 

confidence as results that agree across different methods are less likely to be artefacts (Munafò 600 

& Davey Smith, 2018). The outcomes from one method can be used as input for others. For 601 

instance, information obtained from questionnaires and focus group discussions can be used to 602 
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build agent-based models. By using multi and mixed method approaches, researchers can be 603 

more flexible and take advantage of the strengths of particular methods while still grounding the 604 

research in biophysical and socioeconomic realities. The examples of methodological pluralism 605 

discussed in our paper suggest the feasibility and added value of this approach (e.g. Savelli et al., 606 

2023; Yoon et al., 2021). 607 

(4) Generalizable theories of how socioeconomic impacts compound, cascade, and 608 

interact with response measures are required 609 

Studies expressing an explicit ambition to develop theories about the dynamics of drought and 610 

flood socioeconomic impacts and their response measures  with an understanding of CCI as 611 

described above, are still needed. The heterogeneity among case studies has prevented 612 

researchers from engaging in comparative analyses. Therefore, we advocate for building a corpus 613 

of empirical data on the dynamics of droughts and floods CCI with the specific aim of seeking 614 

generalizations across multiple case studies. This effort will support the development of a 615 

generalizable theory about CCI dynamics and their interactions with response measures. To 616 

achieve this, the findings of multiple case studies could be synthesized, aiming to identify 617 

common patterns and draw conclusions that can be applied across a broader range of contexts 618 

(Kuhlicke et al., 2023). This task involves disentangling the idiosyncrasies of case-specific 619 

findings by considering various contextual and research design factors (Bodin et al., 2019). A 620 

way forward would be combining empirical explanations of observed and/or anticipated 621 

phenomena with modelling (e.g. ABM or FCM) to test and explore possible explanations. 622 

Developing such theories can help overcome the limitations of individual case studies and 623 

provide a more comprehensive and nuanced understanding of causality and dynamic 624 

interactions in droughts and floods CCI research. 625 

(5) Investigation of the risks of future CCI should be guided not only by probability 626 

but also by plausibility considerations 627 

When investigating the risks of CCI and their root causes, attention should also be paid to less 628 

frequent impact types, whose probability may be lower but with higher consequences (Shepherd 629 

et al., 2018; Sillmann et al., 2021). In an increasingly interconnected world, the complexity of 630 

coupled natural-technological-social systems can make probability calculations futile (Engels & 631 

Marotzke, 2023). Therefore, understanding CCI entails recognizing that they cannot be fully 632 

predicted and that uncertainty is inherent. Instead, we can explore different possibilities for the 633 

evolution of CCI under different conditions. This also requires a deep understanding of the 634 

underlying risk drivers of different sectors and systems and their interlinkages. To address the 635 

plausibility question and better prepare for potential CCI, knowledge-driven tools can be 636 

instrumental. They enable us to explore the range of possible outcomes and the associated 637 

uncertainty while also offering explanations of why CCI might occur. For instance, mental 638 

models and qualitative storylines can be coupled with theories about transformative social 639 

change, disruptive change, social inertia, and path dependency. This can help us identify key 640 
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drivers that can lead to high impacts in a given future scenario as well as adaptation measures 641 

that can support risk reduction. 642 

In summary, the overview of methods and linked recommendations for future research 643 

described here can contribute to an improved characterization and understanding of CCI 644 

dynamics and hence support the reduction of CCI risks linked to hydrological extremes. In doing 645 

so, this perspective aims to enable researchers to make informed decisions about the choice of 646 

methods (or the combination of them) to be used.  647 
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Abstract 18 

Hydrological extremes, such as droughts and floods, can trigger a complex web of compound 19 

and cascading impacts due to interdependencies between coupled natural and social systems. 20 

However, current decision-making processes typically only consider one impact and disaster 21 

event at a time, ignoring causal chains, feedback loops, and conditional dependencies between 22 

impacts. Analyses capturing these complex patterns across space and time are thus needed to 23 

better inform effective adaptation planning. This perspective paper aims to bridge this critical 24 

gap by presenting methods for assessing the dynamics of the multi-sector compound and 25 

cascading impacts (CCI) of hydrological extremes. We discuss existing challenges, good 26 

practices, and potential ways forward. Rather than pursuing a single methodological approach, 27 

we advocate for methodological pluralism. We see complementary roles for analyses building on 28 

quantitative (e.g. data-mining, systems modeling) and qualitative methods (e.g. mental models, 29 

qualitative storylines). We believe the data-driven and knowledge-driven methods provided here 30 

can serve as a useful starting point for understanding the dynamics of both high-frequency CCI 31 

and low-likelihood but high-impact CCI. With this perspective, we hope to foster research on 32 

CCI to improve the development of adaptation strategies for reducing the risk of hydrological 33 

extremes. 34 

 35 
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1 Introduction 36 

Future climate projections show an intensification of variations in the hydrological cycle, with 37 

more droughts and floods expected to occur in many regions (Cook et al., 2020; IPCC, 2021; 38 

Merz et al., 2021; Pokhrel et al., 2021; Samaniego et al., 2018; Simpson et al., 2021). In this 39 

context, understanding the magnitude and distribution of the impacts of these hydrological 40 

extremes becomes crucial to inform adaptation planning. Impact assessments can facilitate the 41 

identification of areas that are disproportionately affected, aiming to support the allocation of 42 

resources (Hammond et al., 2015). They can further provide baseline information for evaluating 43 

whether adaptation measures effectively reduce loss and damage. Spatio-temporal impact 44 

datasets can also improve our understanding of risk drivers (Kellermann et al., 2020) and serve 45 

as ground truth information for impact-based early warning systems (Hobeichi et al., 2022). 46 

In today’s interconnected world, assessing the risks and impacts of floods and droughts has 47 

become increasingly complex as these events often have far-reaching consequences that spread 48 

throughout various sectors and systems, leading to ‘compound and cascading impacts’ 49 

(CCI) (Fig. 1 and Box 1). Indeed, natural, technological, and social systems are deeply 50 

intertwined, and the adverse outcomes of hydrological extremes heavily depend on how the 51 

elements of the affected systems interact with each other (Matanó et al., 2022; Raymond et al., 52 

2020; Ruiter et al., 2020; Zscheischler et al., 2018). For example, during the 2021 flood event in 53 

Europe, the flood waters damaged major access routes and destroyed most of the bridges in the 54 

flooded area in Ahr valley (Schäfer et al., 2021). This reduced the accessibility for rescue cars and 55 

fire brigades, leading to cascading impacts.  56 

 57 

Figure 1 Schematization of compound and cascading impacts (CCI) for a fictitious flood followed by a drought 58 
event. The impacts triggered by different hazards interact, compound, and cascade. Unrelated events or pre-59 

existing vulnerabilities, such as pandemics and conflicts, can also contribute to the impacts. 60 
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 61 
Flood and drought impacts can also spill over beyond their initial geographical location through 62 

the interconnectivity of socioeconomic sectors and ecosystems (UNDRR, 2021a). As a result, 63 

some of the most affected areas can be those not directly affected by the physical hazard (e.g. 64 

flood waters). For instance, the extremely low soil moisture values in the summer of 2018 in 65 

Germany caused severe crop failures, leading to fodder shortages and the consequent early 66 

slaughtering of animals. As a consequence, farmers restrained from investing in fertilizers and 67 

machinery, resulting in ripple effects along supply chains (de Brito, 2021). 68 

 69 
Box 1 Defining compound and cascading impacts (CCI) 

‘Socioeconomic impacts’ are defined as the adverse effects of floods and droughts on society. 
They can include but are not limited to casualties, infrastructure collapse, increased demand for 
water, need for credit, increased commodity prices, migration, food insecurity, conflicts, reduced 
quality of life, crop yield losses, and mental health problems. Hydrological extremes can, in 
exceptional cases, lead to positive consequences. For instance, drought combined with heat waves 
can benefit fruit growers and winemakers depending on the onset of the event, as they can increase 
the sugar concentration in fruits. 

The term ‘compound impact’ is used to denote impacts that temporally and spatially coincide. 
These could be, for instance, a drought that simultaneously impairs the transportation of goods and 
affects tourism via restrictions on boat cruises. The impacts of hydrological extremes can also 
compound with the effects of other  ‘compounding hazards’ or events (i.e. multi-hazard events) 
and/or circumstances (e.g. conflicts). Even unrelated events, such as the Covid-19 pandemic, can 
amplify the impacts of droughts and floods and vice versa (UNDRR, 2021c). 

‘Cascading impact’ refers to consecutive impacts triggered or amplified by other impacts or 
processes. For instance, the delay in sowing and transplanting crops caused by droughts can reduce 
employment in agriculture, which in turn further reduces employment due to the reduced need of 
labor for harvesting. Similarly, the direct impacts of floods and droughts on ecosystems and their 
services can lead to cascading impacts on livelihoods. Cascading impacts can also ripple within and 
across economic sectors. Energy outages very often impact other services, such as healthcare 
facilities. Upstream and downstream relations also lead to cascading impacts. For instance, low flows 
can impair shipping and lead to increased commodity prices.  

The concept of ‘systemic impact’ is based on the notion that the impacts of a hazard can be 
influenced by how the elements of the affected system interact. These interactions can either increase 
or decrease the overall impact. The interactions between sectors and systems and associated impacts 
create mutual dependencies, where actions and outcomes in one sector or system can lead to actions 
and outcomes in another. The term ‘systemic impact’ encompasses both compound and cascading 
impacts, therefore, both coincidental and consecutive impacts. 

 70 

A better understanding of CCI’s characteristics and underlying drivers can, therefore, inform the 71 

ex-ante management of systemic risks. The need to investigate CCI has been underscored by the 72 

UNDRR (2021) and has recently been included in the research agenda of the Integrated Research 73 

on Disaster Risk 2021-2030 (ISC-UNDRR-IRDR, 2021). Likewise, the IPCC is moving from a 74 

static understanding of risk to a dynamic framing that considers compounding, cascading, and 75 

systemic effects (IPCC, 2022). 76 
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Inspired by these calls, research on CCI of floods and droughts is on the rise. In recent years, 77 

scientists have addressed CCI to specific sectors and hazard types, especially critical 78 

infrastructure (Fekete, 2020; Guimarães et al., 2021; Rohr et al., 2020), water quality (Mishra 79 

et al., 2021), agriculture (Christian et al., 2020) as well as cascading impacts linked to the 80 

COVID-19 pandemic and its policy responses to it (UNDRR, 2021c). Interactions between 81 

hydrological extremes have also been investigated. For instance, Matanó et al. (2022) and Ward 82 

et al. (2020) provide examples of interactions between flood and drought impacts. Despite these 83 

advances, research on CCI remains highly fragmented, and an overview of available methods to 84 

study them is missing. 85 

In this perspective, we discuss key approaches for investigating CCI dynamics within the context 86 

of climate change and an increasingly connected world. Our goal is to help researchers navigate 87 

the emerging field of CCI by providing a synthesis of existing methods. We first highlight 88 

persisting challenges, such as the lack of multi-sector and longitudinal impact data. Then, we 89 

present a range of qualitative and quantitative methods that can be used to analyze CCI 90 

dynamics, drawing on case study examples. Based on these, we end with six recommendations 91 

to advance this field of research. While the set of methods discussed here is not exhaustive, it 92 

provides a holistic view of how to tackle CCI and serves as a useful starting point for researchers 93 

studying the systemic risks and impacts of droughts and floods on coupled social, technological, 94 

and natural systems. 95 

2 Challenges in the understanding of CCI 96 

Due to the complexity of CCI, our ability to identify and understand them is still in its infancy. 97 

While there has been notable progress in compound hazards research (e.g. Batibeniz et al., 2023; 98 

Bevacqua et al., 2021; Singh et al., 2021; Sutanto et al., 2020), the socioeconomic CCI of droughts 99 

and floods remain relatively unexplored (Naumann et al., 2021; Ward et al., 2022; Zscheischler 100 

et al., 2020). One of the reasons for the limited exploration of CCI patterns is the scarcity of data 101 

on the socioeconomic impacts of floods and droughts, especially in the global South. Impact 102 

assessments are often conducted for single hazard types, and standardized, methodologically 103 

comparable impact information for multiple disaster types is hardly available. 104 

In this context, we present five challenges that need to be addressed to provide targeted 105 

information to understand CCI (Fig. 2). It should be highlighted that the field of CCI research 106 

encompasses many more challenges than those depicted in Fig. 2, such as the understanding of 107 

the risk drivers of CCI. However, these aspects fall outside the scope of this perspective paper. 108 
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 109 

 Figure 2 Set of challenges and needs that must be addressed to provide targeted information to understand 110 
CCI. In this study, we focus on methods that can be used to address the needs of challenges 3 to 5, which are 111 

related to dynamic aspects. 112 

 113 

Challenge 1 is linked to the focus of existing impact assessments on single socioeconomic 114 

sectors or systems and tangible losses (Fronzek et al., 2019; Ward et al., 2022). Studies 115 

typically address isolated impacts to single sectors, including damage to critical infrastructure 116 

(Qiang et al., 2020), agriculture losses (H. Chen et al., 2019; Rahman & Di, 2020; Tapia-Silva et 117 

al., 2011), damage to buildings (Gerl et al., 2014; Serpico et al., 2012), and fatalities (e.g. 118 

Papagiannaki et al., 2022). Furthermore, existing databases are almost exclusively limited to 119 

impacts measured in monetary terms (Ding et al., 2011), which are more easily quantified 120 

compared to intangible losses, such as societal and cultural impacts (e.g. decrease of subjective 121 
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well-being and growing lack of trust in institutions) (Ding et al., 2011). However, these intangible 122 

losses can be just as severe, if not more so. As a result, a holistic understanding of all sectors and 123 

systems affected is missing. This gap is related to difficulties in deriving reliable estimates of 124 

indirect or intangible losses such as adverse social, psychological, and environmental 125 

consequences (Allaire, 2018; Walz et al., 2021). Exceptions include initiatives such as the 126 

HOWAS21 database (Kellermann et al., 2020), which includes detailed data on objects affected 127 

by European floods. For drought events, the few existing multi-sector impact databases are 128 

based on the analysis of news (e.g. U.S. Drought Impact Recorder (NDMC, 2019), European 129 

Drought Impact Inventory – EDII (Stahl et al., 2016), and country specific databases (de Brito 130 

et al., 2020)). While these studies represent significant methodological advances, they are 131 

currently not widespread. Hence, multi-sector impact databases encompassing 132 

underrepresented sectors such as health, tourism, energy and forestry, are needed. 133 

Related to this issue is the lack of longitudinal impact datasets encompassing both 134 

large and small-scale events (Challenge 2) (de Brito et al., 2020; R. L. Jones et al., 2022). 135 

Impact assessments are conducted mostly ad hoc, following a specific disaster (Ding et al., 2011). 136 

Existing impact datasets covering multiple years are limited to large-scale disasters (e.g. EM-137 

DAT, NatCatSERVICE) and suffer from underreporting (R. L. Jones et al., 2022). As such, they 138 

may overlook the risks posed by smaller, more frequent events that can be equally damaging 139 

when considering their cumulative occurrence (UNDRR & CRED, 2020). According to the 140 

UNISDR (2015), 99.7% of all disasters between 1990 and 2013 were smaller-scale disasters, with 141 

fewer than 30 deaths or less than 5,000 affected buildings. Thousands of these smaller-scale 142 

events are unreported as they do not result in high impacts at the national or international levels. 143 

Nevertheless, they bring a constant stream of local losses and damages (UNDRR, 2021b) and are 144 

thus relevant for understanding local patterns of CCI. Therefore, impact datasets covering low 145 

and high-impact events over multiple years are required to understand the cumulative and long-146 

term consequences of floods and droughts. 147 

Challenge 3 refers to the lack of understanding regarding the relationships between the 148 

socioeconomic impacts of hydrological extremes (Pescaroli & Alexander, 2016; Simpson et 149 

al., 2021; UNDRR, 2021c). Impact outputs from one sector or system can become inputs into 150 

other sectors or systems depending on system/sector dependencies (Ding et al., 2011; UNDRR 151 

& UNU-EHS, 2022). For example, droughts can lead to crop failures, food shortages, and 152 

increased prices, resulting in ripple effects and social and political instability. Empirical studies 153 

investigating CCI relationships have often focused on single and small-scale case studies (e.g. 154 

Fekete, 2020; Gonzva et al., 2017; Zeng et al., 2021). Research addressing how impacts to one 155 

sector or system can lead to consequences in others is thus needed to support effective mitigation 156 

measures. 157 

Challenge 4 is linked to the limited research on the interconnectivity between impacts 158 

across regions, borders, and spatial scales (Andrew J. Challinor et al., 2017; Helbing, 159 

2013). Namely, cascading impacts spread not only across sectors and systems but also spill 160 
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beyond geographical scales and administrative or national borders, and can lead to globally 161 

networked impacts (UNDRR, 2021a). For instance, drought-related harvest failures in Russia in 162 

2010, combined with an export ban, led to a global spike in cereal prices. This amplified the food 163 

security risk in Pakistan and is associated with an increase in the use of food banks in the U.K. 164 

(Andy J. Challinor et al., 2018; Hunt et al., 2021). Upstream and downstream relations can also 165 

exacerbate the impacts of floods and droughts. For instance, low flows in the Rhine impaired 166 

shipping during the 2018 drought in Germany (Erfurt et al., 2019), increasing fuel prices in 167 

Switzerland. As such, analyses of the interplay between CCI across local, regional, and even 168 

global spatial scales (e.g. Lawrence et al., 2020; Mishra et al., 2021) are needed to identify critical 169 

nodes in the system that can lead to higher impacts. 170 

Finally, research on the effects of response measures (i.e. impacts linked to risk 171 

management or adaptation interventions) on CCI is scarce (Challenge 5). While humans 172 

influence the propagation of extreme events, they also respond to their impacts (AghaKouchak 173 

et al., 2021). Within this context, risk management and adaptation responses to one impact may 174 

inadvertently lead to unintended consequences such as an increased vulnerability in the long 175 

run (e.g. Giuliani et al., 2022; Niggli et al., 2022; Schipper, 2022; Simpson et al., 2023). For 176 

instance, temporary water abstraction licenses may exacerbate underlying water scarcity as they 177 

can be difficult to reverse when the drought ends (Di Baldassarre et al., 2018). Therefore, it is 178 

difficult to measure to which extent adaptation measures reduce impacts or lead to unintended 179 

consequences. Thus, a parallel investigation of impacts and response measures adopted is crucial 180 

to understand how they co-evolve. 181 

Challenges 1 and 2 are closely tied to the quality and availability of socioeconomic impact data, 182 

whereas challenges 3 to 5 relate to understanding CCI dynamics. Since significant research has 183 

already been conducted on improving impact data collection (Alfieri et al., 2016; Allaire, 2018; 184 

Ding et al., 2011; Enenkel et al., 2020; Merz et al., 2020), we focus here on methods that can be 185 

used to address challenges 3 to 5, which are rooted in the complexity of CCI interactions.  186 

3 Key methods for investigating CCI patterns and relationships 187 

Several recent studies have provided valuable guidelines on how to assess compound hazard 188 

interrelationships (e.g. Bevacqua et al., 2021; Tilloy et al., 2019), the dynamics of risk 189 

components (e.g. De Angeli et al., 2022; de Ruiter and van Loon, 2022; Terzi et al., 2019) and 190 

multi-sector dynamics (e.g. Reed et al., 2022). However, similar syntheses that incorporate both 191 

qualitative and quantitative approaches are still missing for research on CCI. 192 

In the subsequent sections, we present an overview of knowledge-driven, data-driven, and mixed 193 

methods that hold the potential to enhance our understanding of the dynamic nature of CCI 194 

(Table 1). These were selected based on the experience of the co-authors, which come from 195 

different fields, including sociology, engineering, physics, geography and economics. A general 196 

description is provided for each method, followed by applications in CCI or related fields and 197 
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how the method can address challenges 3 to 5 in Fig. 2. Besides considering the strengths of each 198 

analytical approach, the choice for a specific method should be guided by the study’s objective, 199 

data requirements, and complexity level as illustrated in Fig. 3. 200 

Although the examples of applications here focus on drought and flood hazards, these methods 201 

can be used for other hazard types (e.g. earthquakes, storms, heatwaves, and landslides). Also, 202 

many of these methods can also be applied to understand the relationship between risk drivers 203 

(e.g. vulnerability, exposure, and hazard) and their corresponding CCI. 204 

It is worth highlighting that this overview is not intended to encompass all existing methods 205 

which can be used to understand complex relationships. Rather, we strive to emphasize key 206 

approaches that can aid in comprehending CCI dynamics. Additionally, the articles presented 207 

here represent only a fraction of the extensive literature on climate change impacts in a broader 208 

sense. 209 

3.1 Knowledge-driven methods 210 

Knowledge-driven methods rely on expert judgment and domain-specific information to analyze 211 

complex phenomena. These methods leverage existing knowledge, whether formal or informal, 212 

theoretical or practical, to delve into the systemic aspects of CCI. Their foundation lies in 213 

recognizing the significance of tacit and explicit knowledge, collective wisdom, and context-214 

specific expertise in generating insights into complex systems (Aminpour et al., 2020). As their 215 

development can be done in a co-creation process with relevant actors, they also allow the 216 

integration of perspectives of vulnerable and marginalized groups, often overlooked in more 217 

data-driven approaches. In this section, we focus on methods such as mental models, visual 218 

techniques, and qualitative scenarios and storylines. 219 
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Table 1 Overview of methods that can be used to investigate CCI dynamics. The groups of methods here are, to some extent, subjective, and 220 
overlap exists between them. Thus, they should be used as a general guide rather than a definitive categorization. 221 

 
Group of 

methods 
Methods and key references Strengths Weaknesses 

K
n

o
w

le
d

g
e

-d
r

iv
e

n
 

Mental 

models 

 Causal loop diagrams (Groesser & Schaffernicht, 

2012; Rest & Hirsch, 2022) 

 Fuzzy cognitive maps (Ballesteros-Olza et al., 

2022; Mehryar & Surminski, 2022) 

 Impact chains (Hagenlocher et al., 2018; Zebisch et 

al., 2022)  

 Impact webs (Sparkes et al., 2023)  

Visualize the interplay between CCI 
(Challenge 3). When built in a participatory 
way, it enables the inclusion of 
perspectives of marginalized and 
vulnerable groups. It also facilitates 
mapping CCI to responses (Challenge 5) 

Criticized as subjective representations 
of reality. Risk of oversimplification as 
it is difficult to map the full complexity 
of a system. Spatial and temporal 
dynamics are usually not explicitly 
addressed (Challenge 4) 

Visual 

techniques 

 Rich pictures (Suriya & Mudgal, 2013) 

 Event timelines (Matanó et al., 2022; Seebauer et 

al., 2023) 

 Qualitative matrices (Gill & Malamud, 2014, 2016; 

Matanó et al., 2022) 

 Network diagrams (Gill & Malamud, 2014, 2016) 

Simplify complex ideas and enhance 
their comprehensibility for a wider 
audience. Visualize relationships 
between CCI and response measures 
over time (Challenges 3 and 5) 

Can carry ethical risks (e.g. power 
relations). Comparability between 
studies is limited. Are often unsuitable 
for addressing spatial dynamics 
(Challenge 4) 

Qualitative 

storylines 

and 

scenarios 

 Qualitative storylines (van den Hurk et al., 2023) 

 (Semi)-qualitative scenarios (Di Baldassarre et 

al., 2021; Rusca et al., 2023) 

Allow to take into account political, 
cultural, and economic contexts. Give 
more power to participants to shape the 
story. Spatial and temporal changes play 
a key role in these methods (Challenge 4) 

Highly context-specific. Risk of making 
arbitrary assumptions and 
oversimplification. Limited ability to 
predict outcomes. 

D
a

ta
- 

d
r

iv
e

n
 Multivariate 

statistics 

 Logistic regression and other machine 

learning algorithms (Ben-Ari et al., 2018; Martius 

et al., 2016) 

 Markov chains (Ronizi et al., 2022) 

 Co-occurrence analysis (de Brito, 2021) 

Capable of capturing non-linear 
relationships between CCI (Challenges 3 and 

5). Can handle large and complex 
datasets with numerous variables 

Data-intensive. Sensitive to data biases 
and dependency on historical 
observations, which leads to limitations 
in a changing climate and/or contexts of 
under-reporting 

Data mining 

 Dimensionality reduction (Anowar et al., 2021) 

 Clustering (Lam et al., 2016) 

 Sequential pattern mining (de Brito, 2021) 

Extracting key patterns from high-
dimensional and noisy data (Challenge 3) . 

Allow uncovering hidden dependencies, 
also spatially (Challenge 4) 

Potential loss of complexity and details 
when reducing high-dimensional data 
to lower-dimensional representation 

M
ix

e
d

 

Systems 

modelling 

 Agent-based modelling (ABM) (Wijermans et al., 

2022) 

 System dynamics and multi-sector dynamics 

models (Savelli et al., 2023; Yoon et al., 2021) 

Can portray the temporal dynamics of 
complex systems (Challenges 3). Allow the 
assessment of the effects of different 
adaptation measures (Challenges 5). AMB 
can account for spatial dynamics 
(Challenge 4) 

Empirical models require 
comprehensive data coverage of the 
underlying system. Require careful 
calibration and validation. Models 
without empirical components run at 
risk of being ‘toy’ models 

Network 

analysis 
 Network analysis (Naqvi & Monasterolo, 2021) 

Intuitive visualization of interconnected 
systems (Challenges 3 and 5). Enable the 
identification of key nodes within the 

Requires data and knowledge on both 
impacts and causal relationships 
between impacts 
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network. Allow investigating spatial 
patterns (Challenge 4)  

Economic-

based 

models 

 Input-output analysis  (Koks et al., 2019) 
 Computable general equilibrium model 

(Bachner et al., 2023) 

Allow identifying how changes in one 
sector can propagate through the 
economy, affecting other sectors and 
causing cascading effects (Challenge 3). Can 
analyze cross-sectoral and cross-regional 
economic impacts (Challenge 4) 

Can represent an oversimplistic view of 
the economy. Data-intensive 

 222 

 223 

 224 

 Figure 3 Synthesis of methods used in CCI research to brainstorm, identify system linkages and patterns, quantify relationships, and run 225 
simulations. Some methods can be used for multiple purposes. 226 
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3.1.1. Mental models 227 

Mental models are schematic representations of the world as perceived by humans. By 228 

articulating complex relationships between system components (Levy et al., 2018) they aid in 229 

comprehending how systems respond to risks and factors such as human activity or 230 

environmental changes. However, since individuals’ perspectives differ, mental models are 231 

subjective depictions of reality (N. A. Jones et al., 2011). They are typically constructed through 232 

stakeholder involvement (Romero-Lankao & Norton, 2018) and are often paired with other 233 

methods, such as system dynamics (Perrone et al., 2020).  234 

Several approaches are used to elicit mental models, ranging from causal loop diagrams 235 

(CLD) to free drawing (see Doyle et al., 2022 for a review). CLD are a popular method that 236 

demonstrates how changes in one variable can influence others by reinforcing (positive link) or 237 

balancing them (negative link). CLD have been widely applied to understand the relationships 238 

between socioeconomic impacts (Challenge 3), including the investigation of cascading impacts 239 

of hydrological extremes on transport infrastructure, electricity, and healthcare systems (e.g. 240 

Berariu et al., 2015; Rest and Hirsch, 2022), as well as multi-sectoral impacts (e.g. Montgomery 241 

et al., 2012; Perrone et al., 2020). CLD have also been used to analyze coping and adaptation 242 

strategies and their effectiveness in mitigating impacts (Challenge 5) (e.g. Armah et al., 2010; 243 

Sanga et al., 2021; Song et al., 2018). While CLD can represent temporal dynamics adequately, 244 

spatial aspects are usually not explicitly addressed (Challenge 4). Furthermore, due to their 245 

reliance on human interpretation may, their ability to capture the nuances of real-world CCI is 246 

compromised, potentially leading to oversimplification. 247 

Fuzzy cognitive maps (FCM) are CLD that account for uncertainty by using weights to define 248 

relationship strengths (Challenge 3). FCM have been employed to study drought and flood 249 

adaptation solutions and their effect on socioeconomic impacts (e.g. Ballesteros-Olza et al., 250 

2022; Chandra and Gaganis, 2016; Mehryar and Surminski, 2022) (Challenge 5). They have been 251 

used to examine past disasters as well as to simulate plausible CCI futures (e.g. D’Agostino et al., 252 

2020). Vanwindekens et al. (2018) incorporated spatial dynamics into the FCM by coupling it 253 

with geolocated data to analyze crops’ vulnerability to soil moisture drought. Recently, FCM have 254 

also been used to address CCI interactions across neighborhood, city, and regional scales (e.g. 255 

White et al., 2021) (Challenge 4). 256 

Impact chains are conceptual models used to capture the interplay of hazard, vulnerability, 257 

and exposure factors that lead to a specific risk or impact (Menk et al., 2022). This mixed-258 

methods approach draws on elements of CLD and network analysis to investigate complex 259 

systems. Impact chains have been applied in various contexts and settings (e.g. Fritzsche et al., 260 

2014; Hagenlocher et al., 2018; Zebisch et al., 2022). For instance, Kabisch et al. (2014) used 261 

impact chains to identify the relationships between direct and indirect impacts on multiple 262 

sectors resulting from heatwaves, floods, and storm surges (Challenge 3). One of the strengths 263 

of impact chains is their ability to link impacts and adaptation strategies (Challenge 5) directly. 264 
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However, it is important to note that impact chains often neglect or overly simplify complex 265 

systemic interrelations, including transboundary relationships (Menk et al., 2022), which poses 266 

a challenge in addressing Challenge 4. 267 

More recently, an approach called impact webs was explicitly designed to tackle the complex 268 

nature of CCI risks (UNDRR, 2021c). Drawing on the foundations of CLD, impact chains, and 269 

network analysis, impact webs provide a comprehensive framework for characterizing the 270 

interconnected components of multiple systems, capturing their underlying risk drivers, and 271 

visualizing the dynamics of cascading effects (Challenge 3). Unlike impact chains, which often 272 

converge towards a single risk, impact webs offer a holistic overview of system interactions 273 

without directional constraints. While they have been initially used to understand CCI linked to 274 

the COVID-19 pandemic and responses to it, impact webs are now finding application in the 275 

study of CCI related to droughts and their compounding hazards, along with exploring potential 276 

adaptation options  (Challenge 5) (Cotti et al., 2023; Sparkes et al., 2023). 277 

3.1.2. Visual techniques 278 

In addition to mental models, visualization techniques, such as rich pictures, event timelines, 279 

and qualitative matrices, are used for visually capturing the elements of a system. They are often 280 

part of brainstorming processes and aim to simplify complex ideas and enhance their 281 

comprehensibility for a wider audience. However, while these tools help synthesize information 282 

at a high level, they may not provide a detailed understanding of the underlying dynamics of CCI. 283 

Another concern pertains to the transferability and generalisability of results. While visual 284 

techniques facilitate a deep qualitative understanding of a given CCI event, the challenge lies in 285 

identifying comparable and scalable results that can be applied more broadly. 286 

Rich pictures are visual depictions of a system, portraying elements and actors involved in a 287 

problematic situation (Barbrook-Johnson & Penn, 2022). When used in a participatory setting, 288 

this technique enables participants to share experiences about a certain problem and learn from 289 

each other (Bell et al., 2019). For instance, Suriya and Mudgal (2013) used the rich pictures 290 

method to examine the factors contributing to toxic floods and how their effects cascade 291 

downstream (Challenge 4). Similarly, Bunch (2003) used it to investigate the interactions 292 

between drought and flood impacts (Challenge 3). In both cases, this brainstorming exercise 293 

facilitated the development of a shared understanding of the situation. Although rich pictures 294 

are a useful visual aid, comparing their results is challenging since they are typically created 295 

without a structured approach. 296 

Event timelines or timelining are another visualization method for representing the sequence 297 

of events over time. This approach involves plotting events related to a problem on a graph by 298 

considering participants’ storytelling as a means to document past experiences (Sheridan et al., 299 

2011), present, or project possible futures. Timelining has been successfully used in group 300 

settings to examine climate change impacts (e.g. Dolan and Walker, 2006; Schmook et al., 2023) 301 

and to understand the impact of recovery measures on disaster occurrence (e.g. Sword-Daniels 302 
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et al., 2015) (Challenge 5). Timelines can also be developed using document analysis. For 303 

instance, Matanó et al. (2022) conducted an extensive literature review to develop event 304 

timelines exploring the temporal interactions between floods and droughts (Challenge 3). 305 

Similarly, Seebauer et al. (2023) combined document analysis and interviews to create a timeline 306 

depicting the sequence of flood events and adaptation measures from 1980 to 2020 in Austria 307 

(Challenge 5). While timelines are an effective tool for visualizing cascades of events, they are 308 

constrained by their linearity and, thus, unsuitable for depicting interactions across regions 309 

(Challenge 4). 310 

Qualitative matrices and network diagrams offer another approach to studying CCI. 311 

Originally proposed by Gill and Malamud (2016, 2014) for visualizing hazard interactions, these 312 

tools were later adapted to investigate disaster impacts. The matrices illustrate how a primary 313 

impact can trigger and increase the probability of a secondary impact, thus revealing the strength 314 

of these relationships. Clark-Ginsberg (2017) used these tools in a participatory setting to 315 

examine how multi-hazard events can lead to multiple socioeconomic impacts (Challenge 3). 316 

Meanwhile, Chen et al. (2022) reconstructed how the 1920 drought in China affected multiple 317 

socioeconomic sectors building qualitative matrices based on newspaper articles. Multiple 318 

hazards can also be considered. For instance, Matanó et al. (2022) developed matrices of floods 319 

and droughts CCI using stakeholder interviews and a literature review. The matrix results can 320 

serve as input for network diagrams, which present the same information in a network format. 321 

Since spatial dynamics are usually not addressed in qualitative matrices and their resulting 322 

diagrams, they are often unsuitable for addressing Challenge 4. 323 

3.1.3. Qualitative storylines and scenarios 324 

Qualitative storylines and scenarios are commonly used in social sciences to understand the 325 

temporal dynamics of systems (Shanahan et al., 2018). These methods have recently gained 326 

popularity in climate change science as an alternative approach to studying human-327 

environmental dynamics when information is scarce (van den Hurk et al., 2023; Shepherd et al., 328 

2018). They are often derived in participatory settings i.e. through narrative interviews or 329 

workshops (Shanahan et al., 2018), document analysis, or modeling. 330 

Qualitative storylines are temporal accounts of a series of interrelated events, often presented 331 

in a storytelling format (Andrews et al., 2013). They provide descriptive narratives of CCI 332 

developments without specific quantification, emphasizing plausibility and contextual 333 

understanding (Rounsevell & Metzger, 2010). They allow exploring how impacts have occurred 334 

in the past or can unfold in the future, highlighting the causality and temporal dimensions. 335 

Through qualitative storylines, participants can describe the trickle-down effects and 336 

propagation of impacts to one sector through a system (Challenge 3) and between regions – or 337 

even across borders (Challenge 4) (e.g. Carter et al., 2021; Liguori et al., 2021; van Delden and 338 

Hagen-Zanker, 2009). The synthesis of a collection of storylines enables the extraction of generic 339 

principles and can inform the definition of both qualitative and quantitative scenarios (e.g. 340 
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Lottering et al., 2021; Rounsevell and Metzger, 2010), as well as conceptual system dynamic 341 

models. A protocol for constructing storylines in the field of CCI is provided by van den Hurk et 342 

al. (2023).  343 

Findings from qualitative storylines can be used to feed into (semi)-qualitative scenarios, 344 

which are alternative representations of plausible futures. Scenarios can encompass qualitative 345 

or quantitative elements, involve structured assumptions and models, and offer a broader range 346 

of possible future trajectories for analysis (Rounsevell & Metzger, 2010; Wiebe et al., 2018). They 347 

can be instrumental in developing descriptions of how CCI can succeed through the cross-scale 348 

interaction of actors and networks in a system (Challenge 4). Qualitative scenarios are recently 349 

gaining momentum in CCI research. For example, Rusca et al. (2021) developed qualitative 350 

scenarios of unprecedented flood events and societal recovery trajectories for them (Challenge 351 

5). To this end, the authors relied on a series of qualitative and quantitative data from interviews, 352 

focus groups, and empirical analysis. Similarly, Liguori et al. (2021) developed qualitative 353 

scenarios to imagine future adaptation scenarios (Challenge 5). 354 

 3.2 Data-driven methods 355 

Data-driven methods rely on analyzing and extracting insights from large amounts of data to 356 

understand complex systems. Their foundation lies in the principle that data contains valuable 357 

insights that can be harnessed to uncover hidden relationships and patterns. In this section, we 358 

focus on multivariate statistics and data mining approaches, but many others exist. These 359 

methods allow quantifying interdependencies between impacts and response measures, 360 

enabling a comprehensive understanding of CCI dynamics (Challenges 3 and 4). However, a 361 

significant challenge of these methods lies in their reliance on the quality and quantity of 362 

available impact data. 363 

3.2.1. Multivariate statistics 364 

A broad range of tools are available to study multivariate statistics in climate data (e.g. Bevacqua 365 

et al., 2022; Jane et al., 2020), many targeted specifically at extreme events (e.g. Salvadori and 366 

De Michele, 2013). Recent years have also seen the rapid growth of machine learning 367 

applications (e.g. Feng et al., 2021). However, the above approaches are often data-intensive, 368 

especially when both temporal and spatial components need to be accounted for (Liu et al., 2021; 369 

Messori & Faranda, 2021). The lack of impact datasets covering multiple sectors and over many 370 

years (Challenges 1 and 2) and the difficulty of accounting for the effect of response measures 371 

(Challenge 5) in past data in practice means that many of these approaches have limited 372 

applicability for analyzing CCI. We, therefore, propose here simple statistical methods that may 373 

be used to investigate CCI in data-limited contexts and that can be applied to multiple types of 374 

data and spatial and temporal scales. 375 

Regression models, specifically logistic regressions, have proven to be effective in examining 376 

temporally successive or spatially co-occurring climate hazards (e.g. Ben-Ari et al., 2018; 377 
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Martius et al., 2016). Data-efficient machine-learning models, including random forests, have 378 

also been used to link hydroclimatic indicators to socioeconomic impacts (e.g. Bachmair et al., 379 

2017; Torelló-Sentelles and Franzke, 2022). These same models could profitably be applied to 380 

quantitative socioeconomic impact data, for example, to quantify changes in the odds of a given 381 

impact occurring prior to, concurrently, or after another impact (Challenge 3). A further 382 

application could be to investigate the spatial propagation of impacts (Challenge 4). 383 

In a similar vein, Markov chains can be used to describe systems that transition between 384 

different states over time. This method has proven effective in examining the succession of 385 

interactions between multiple climate drivers and events (e.g. Sedlmeier et al., 2016) and could 386 

be directly ported to the analysis of CCI (Challenge 3). For example, Markov chains have recently 387 

been  used to predict the impact of drought changes on water and soil quality (Ronizi et al., 388 

2022). Markov chains offer particular advantages in addressing spatial changes (Challenge 4) 389 

and generating scenarios with different response measures (Challenge 5), as has been 390 

demonstrated in neighboring fields (e.g. Rifat and Liu, 2022). 391 

The above methods may still struggle in extremely data-limited contexts, and in such cases, even 392 

simpler co-occurrence analyses may be favored. These provide a statistical indication of 393 

whether the spatial or temporal concurrence of specific impacts is larger than one may expect by 394 

random, helping to address Challenge 3. A number of co-occurrence indicators have been 395 

developed explicitly for extreme events, exactly by virtue of their effectiveness, even when 396 

applied to small data samples. For example, Kornhuber and Messori (2023) used co-occurrence 397 

statistics to identify regions of significant concurrence of climate extremes in Europe and North 398 

America, and a similar approach could be applied to their impacts. In CCI research, de Brito 399 

(2021) conducted a co-occurrence analysis to identify drought impact types often reported 400 

together by the media. While this method is useful for identifying relationships between two 401 

variables, it has limitations when dealing with patterns that emerge from multiple variables. 402 

3.2.2. Data mining 403 

Data mining methods such as dimensionality reduction, clustering, and sequential pattern 404 

mining are well-suited for identifying patterns in complex and high-dimensional datasets. These 405 

methods help transform datasets with many variables into interpretable information, making it 406 

easier to understand relationships among multiple observations (Challenge 3). However, the 407 

data transformation may lead to the loss of relevant information. Similar to other data-driven 408 

methods (see section 3.2.1), the application of data mining in CCI research is constrained by the 409 

availability of multi-sector and longitudinal data (Challenges 1 and 2).  410 

Dimensionality reduction methods allow for simplifying the analysis of high-dimensional 411 

data by transforming them into lower-dimensional representations while retaining the most 412 

informative aspects (Anowar et al., 2021).  These transformations enable to capture a high share 413 

of the original dataset’s variance using fewer dimensions, thereby maintaining its key 414 

characteristics. Principal component analysis, self-organizing maps, and t-SNE (t-distributed 415 
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stochastic neighbor embedding) are a few examples of such techniques. By leveraging these 416 

methods, researchers can better understand the relationships between multiple socio-economic 417 

impacts (Challenge 3). Although dimensionality reduction methods have been successfully 418 

applied to identify underlying risk patterns (e.g. hazard, vulnerability) that drive impact 419 

occurrence (e.g. Johnson et al., 2020; Maity et al., 2013), their application in the field of CCI is 420 

yet to be explored. Adopting dimensionality reduction approaches in CCI research holds promise 421 

for gaining a comprehensive perspective on the relationships between different multi-sector 422 

impacts (Challenge 3) as well as across different regions (Challenge 4). Furthermore, indicators 423 

developed through dimensionality reduction could act as holistic measures for tracking 424 

developments through time and space or evaluating the effects of response measures (Challenge 425 

5). 426 

Clustering methods are another powerful tool for discovering underlying patterns in high-427 

dimensional data. Unlike dimensionality reduction methods, clustering seeks to group similar 428 

data points based on their characteristics. Popular clustering methods include k-means, 429 

hierarchical clustering, or density-based clustering. Although hardly applied in CCI research, 430 

inspiration for application to CCI can be drawn from other fields, especially hazard research (e.g. 431 

Brunner and Stahl, 2023). For example, a study by Lam et al. (2016) leveraged clustering 432 

analysis to assess resilience to climate-related hazards for U.S. counties based on 28 variables. 433 

For CCI, similar research designs could allow researchers to better understand how CCI impacts 434 

affect regions in complex ways and whether these impacts occur in similar patterns across time 435 

and space (Challenge 4).  436 

Sequential pattern mining methods are effective for identifying rules which describe 437 

frequent temporal patterns (e.g. sequences or cascading events) in a dataset. Respective 438 

algorithms such as SPADE or generalized sequential pattern aim at finding events that occur in 439 

predictable orders throughout a given dataset. By leveraging these methods, researchers can 440 

uncover important temporal relationships and dependencies. Indeed, the application of 441 

sequential pattern mining to CCI of hydrological extremes has been demonstrated by de Brito 442 

(2022), who detected cascading drought impact patterns for the case of Germany in 2018 and 443 

2019 (Challenge 3). Given datasets of sufficient geographic scope, sequential pattern mining 444 

could also investigate interrelationships of CCI spanned between regions (Challenge 4). 445 

3.3 Mixed approaches 446 

Mixed approaches refer to methods that combine both qualitative and quantitative data to 447 

understand complex systems. These approaches leverage the strengths of both data-driven 448 

methods, which rely on patterns and insights derived directly from the data, and knowledge-449 

driven methods, which incorporate domain knowledge, rules, or expert opinions. By doing so, 450 

these approaches offer a holistic perspective on the phenomenon under study. 451 
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3.3.1. Systems modelling 452 

Systems modeling encompasses a range of methods for understanding complex systems 453 

through mathematical and computational models. Here, we focus on two widely used methods: 454 

system dynamics and agent-based modeling (ABM). These methods have gained popularity due 455 

to their capacity to incorporate the interplay between social and natural system components  (de 456 

Brito, 2023). A limitation, however, is that they often require large amounts of data to be 457 

effective (Challenges 1 and 2). In such cases, the accuracy and reliability of the models may be 458 

compromised. 459 

Agent-based modeling (AMB) is used to study the behavior of individuals or agents within 460 

a social system. The agent’s behavior is described by a set of rules implemented by the researcher 461 

to fit the system under investigation. They often combine data from behavioural experiments or 462 

survey data (Wijermans et al., 2022). ABM can help to answer questions on how and why social 463 

systems react in response to different stimuli compared to counterfactuals. ABMs represent a 464 

well-established method for studying social-ecological systems (Biggs et al., 2021). For CCI 465 

research, models for varying purposes have been developed which capture the interactions of a 466 

social and hydrological system. For example, Michaelis et al. (2020) developed an ABM to 467 

capture processes between floods, impacts, and vulnerability. Galán et al. (2009) investigated 468 

domestic water demand using an ABM that reflects individual households. The model allowed 469 

the testing of different what-if scenarios concerning varying socioeconomic indicators and urban 470 

dynamics. Both applications highlight the capabilities of ABM to reflect on spatial 471 

interconnectivity (Challenge 4) and its effectiveness in evaluating policy measures (Challenge 5). 472 

Systems dynamics and multi-sector dynamic models focus on studying the complexity 473 

of a system through understanding causal relationships and feedback patterns (Yoon et al., 474 

2022). Gaining such understanding is beneficial for predicting future system behavior, 475 

identifying detrimental or supportive system components, and evaluating the likely impact of 476 

policy strategies. System dynamic models are typically based on a set of mathematical equations 477 

and can incorporate various data types to derive model-specific parameters as well as qualitative 478 

data from surveys. Integrative models based on both qualitative and quantitative data are 479 

increasingly being applied in the context of floods and drought impacts (e.g. Savelli et al., 2023; 480 

Yoon et al., 2021). For example, water supply and demand dynamics have been studied for 481 

varying climate change scenarios and management decisions (ElSawah et al., 2015). For CCI, 482 

these models can help identify how cascades propagate and how impacts across different sectors 483 

are connected through complex causal structures (Challenge 3). Additionally, integrated system 484 

dynamics models excel in evaluating response measures across different social-ecological 485 

systems (Challenge 5) and have already been used to evaluate the efficience of future adaptation 486 

strategies (e.g. Giuliani et al., 2022). The development of system dynamics models is, however, 487 

often constrained by the availability of data to sufficiently parametrize all model components 488 

and their causal relationships. 489 
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3.2.2. Network analysis 490 

Network analysis is a frequently employed method for examining the connections between 491 

variables. It involves representing network structures using nodes and links, which help reveal 492 

the relationships between variables in a system and capture their associations (Bodin et al., 493 

2019). These structures can be derived from various methods such as CLDs, FCM, co-occurrence 494 

analysis, or observational data. In flood and drought research, network analysis can provide 495 

insights into the interrelationships among individual actors or the flows between impacts, 496 

response measures, and risk drivers. While the conceptual (and metaphorical) idea of thinking 497 

of CCI as a network is widely adopted throughout CCI studies, few have adopted network analysis 498 

as an empirical approach.  499 

In CCI research, network analysis metrics can be leveraged for understanding cascading patterns 500 

among manifold socio-economic impacts of hydrological extremes (Challenge 3). Graph theory 501 

measures can reveal highly central, relevant, or influential variables in these mental models 502 

(Olazabal & Pascual, 2016). For example, de Brito (2021) used network structures to capture and 503 

visualize the cascading impacts of drought, while graph theory measures were used to identify 504 

highly central variables. Network analysis can also help to understand the spatial 505 

interconnectivity of CCI, particularly when networks represent a spatial dimension through 506 

which impacts cascade (Naqvi & Monasterolo, 2021) (Challenge 4).  507 

3.3.3. Economic-based models 508 

Macro-economic models have been widely applied to identify and quantify the cross-sectoral 509 

and cross-regional economic impacts due to hydrological extremes. The most commonly applied 510 

models are input-output and computable general equilibrium models. Both models describe our 511 

economy through a set of inter-relations between economic actors (e.g. industries, households, 512 

and governments) (E. E. Koks et al., 2016). These models are particularly helpful in identifying 513 

potential spillover effects across regions (Challenge 4). However, a key limitation is that they 514 

may rely on assumptions that do not always hold in reality (e.g. either no or full substitution 515 

between production inputs). Additionally, they may not fully capture intangible impacts, such as 516 

the psychological distress experienced by individuals affected by extreme events. To cope with 517 

some of these limitations, economic models are increasingly being used together with 518 

noneconomic methods. 519 

Traditional input-output (IO) models are static linear models in which substitution between 520 

products is not possible, and price effects are disregarded. Due to these characteristics, IO 521 

models often overestimate the economic losses due to their linearity and lack of substitution. In 522 

general, they are considered to best represent the economic situation in the short term, in which 523 

the economy is generally inflexible to large changes. While there are no clear examples of 524 

applications within CCI, IO models have been used to, for example, assess the cascading effects 525 

of flooding towards business disruptions and economy-wide impacts (e.g. Koks et al., 2019)  and 526 

to analyze global supply-chain effects due to COVID-19 (Guan et al., 2020). 527 
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Computable general equilibrium (CGE) models mostly assume a market with perfect 528 

competition and are generally built around the rationale that: (i) firms aim to maximize profits 529 

and minimize costs and (ii) households aim to maximize their utility within their budget 530 

constraint. As such, CGE models may underestimate the economic losses due to ‘over’-531 

optimizing the economic situation (E. E. Koks et al., 2016). They are thus most suitable for 532 

assessing the long-term impacts of droughts and floods on a national economy and the potential 533 

of welfare impacts. For example, García-León et al. (2021) assessed the impacts of droughts on 534 

the Italian economy, and Bachner et al. (2023) applied a CGE model to highlight the cross-535 

sectoral impacts of flood events within Austria.   536 

Capturing CCI of hydrological extremes requires economic-based models capable of coupling a 537 

physical footprint of the event to disruptions within our economy. This means that CGE and IO 538 

models should be extended to convert physical asset damages and employment reductions (i.e., 539 

because of casualties and/or displacement) into a ‘shock’ affecting economic activity. This could 540 

either mean disruptions on the supply side of our economy (i.e., reduction in production output) 541 

or disruption on the demand side of our economy (i.e., reduction in demand for goods and 542 

services). Moreover, capturing cross-regional economic impacts (Challenge 4) requires using 543 

multi-regional economic trade data. Finally, a time dimension should be included to assess the 544 

effects of cascading events.  545 

4 Pathways for future research 546 

The above synthesis highlights the diversity of methods used to study CCI dynamics. In general, 547 

while methods supporting the identification of patterns between impacts (Challenge 3) are well-548 

represented and widely applied, progress in measuring the strength of the causal relationships 549 

between socioeconomic impacts has been limited. Furthermore, while most methods are used to 550 

study interactions within one geographical scale, relatively few methods support the analysis of 551 

cross-scale dynamics (Challenge 4), as shown in Table 1. Also, the majority of the reviewed 552 

applications primarily address past or present CCI (e.g. de Brito, 2021; Matanó et al., 2022), with 553 

few examining plausible futures (e.g. D’Agostino et al., 2020; Liguori et al., 2021). The analysis 554 

of interactions between the impacts of hydrological extremes and response measures is also in 555 

its early stages (Challenge 5). Considering these gaps, we point towards recommendations for 556 

advancing the field of CCI research. 557 

(1) Systematic efforts to collect data on impacts across multiple sectors, systems, 558 

and years are needed 559 

The quality and quantity of longitudinal and multi-sector impact data constrain our 560 

understanding of CCI dynamics. Although a wide range of approaches exists to study complex 561 

systems, CCI research tends to rely on simple methods due to data availability limitations. Thus, 562 

systematic efforts must be made to collect drought and flood impact data. Emerging impact 563 

assessment methods that use text, digital traces, new sensors, and citizen science data are 564 
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potential ways forward. For instance, newspaper and social media data can provide a fine-scale 565 

mapping of socioeconomic impacts across sectors (e.g. de Brito et al., 2020; Erfurt et al., 2020; 566 

Sodoge et al., 2023). Drones and satellite data can support detailed property and infrastructure 567 

damage assessment (e.g. West et al., 2019; Wouters et al., 2021). Moreover, digital traces such 568 

as credit card transactions and online communications can enable rapid impact assessments 569 

(e.g. Jackson and Gunda, 2021; Yuan et al., 2022b, 2022a). The adoption of these new methods 570 

presents valuable opportunities for gathering crucial data to address CCI, especially in currently 571 

underrepresented regions. 572 

(2) Disciplinary diversity should be promoted to foster innovation 573 

To better understand the complexity of CCI, engaging in interdisciplinary collaboration among 574 

scientists from different fields, such as ecology, economics, engineering, geography, hydrology, 575 

law, political sciences, and social sciences, is crucial. Although interdisciplinary research 576 

positively correlates with research impact and innovation (Okamura, 2019), evidence suggests 577 

that researchers in natural hazards research often work within their own disciplinary silos 578 

(Vanelli et al., 2022). This may limit the scope of their analyses, overlooking crucial 579 

interdependencies and multi-sectoral impacts. By breaking down these barriers and 580 

collaborating across disciplines, CCI research can be decompartmentalized and offer a more 581 

comprehensive explanation of how droughts and floods impact critical infrastructure, people, 582 

and assets, reducing the potential for disciplinary bias in findings. By working together, 583 

interdisciplinary teams can thus advance the understanding of compound and cascading impacts 584 

of hydrological extremes. Numerous of the applications highlighted in this paper are already 585 

moving in this direction, showcasing the positive outcomes of embracing interdisciplinary 586 

collaboration  (e.g. Matanó et al., 2022; Rusca et al., 2023). 587 

(3) Methodological pluralism is necessary to fully address the complexity of CCI 588 

and their underlying risk drivers 589 

Data and knowledge-driven approaches are commonly used separately in CCI research, and 590 

integration of methods is limited. However, no single method can by itself capture all aspects of 591 

the intertwined nature of CCI and its underlying risk drivers. We, thus, advocate for 592 

epistemological and methodological pluralism to consider the different aspects of CCI. Since 593 

each method has its own assumptions, strengths, and weaknesses (Table 1), combining different 594 

methods can help reveal various facets of CCI and compensate for the limitations of individual 595 

methods. For instance, while quantitative assessments allow us to identify generalizable patterns 596 

and dynamics, qualitative analyses help to contextualize and interpret them (Di Baldassarre et 597 

al., 2021; Rusca et al., 2021). Hence, by triangulating the outcomes of these approaches, several 598 

lines of evidence can be delivered (Raymond et al., 2020). This can strengthen the research 599 

confidence as results that agree across different methods are less likely to be artefacts (Munafò 600 

& Davey Smith, 2018). The outcomes from one method can be used as input for others. For 601 

instance, information obtained from questionnaires and focus group discussions can be used to 602 
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build agent-based models. By using multi and mixed method approaches, researchers can be 603 

more flexible and take advantage of the strengths of particular methods while still grounding the 604 

research in biophysical and socioeconomic realities. The examples of methodological pluralism 605 

discussed in our paper suggest the feasibility and added value of this approach (e.g. Savelli et al., 606 

2023; Yoon et al., 2021). 607 

(4) Generalizable theories of how socioeconomic impacts compound, cascade, and 608 

interact with response measures are required 609 

Studies expressing an explicit ambition to develop theories about the dynamics of drought and 610 

flood socioeconomic impacts and their response measures  with an understanding of CCI as 611 

described above, are still needed. The heterogeneity among case studies has prevented 612 

researchers from engaging in comparative analyses. Therefore, we advocate for building a corpus 613 

of empirical data on the dynamics of droughts and floods CCI with the specific aim of seeking 614 

generalizations across multiple case studies. This effort will support the development of a 615 

generalizable theory about CCI dynamics and their interactions with response measures. To 616 

achieve this, the findings of multiple case studies could be synthesized, aiming to identify 617 

common patterns and draw conclusions that can be applied across a broader range of contexts 618 

(Kuhlicke et al., 2023). This task involves disentangling the idiosyncrasies of case-specific 619 

findings by considering various contextual and research design factors (Bodin et al., 2019). A 620 

way forward would be combining empirical explanations of observed and/or anticipated 621 

phenomena with modelling (e.g. ABM or FCM) to test and explore possible explanations. 622 

Developing such theories can help overcome the limitations of individual case studies and 623 

provide a more comprehensive and nuanced understanding of causality and dynamic 624 

interactions in droughts and floods CCI research. 625 

(5) Investigation of the risks of future CCI should be guided not only by probability 626 

but also by plausibility considerations 627 

When investigating the risks of CCI and their root causes, attention should also be paid to less 628 

frequent impact types, whose probability may be lower but with higher consequences (Shepherd 629 

et al., 2018; Sillmann et al., 2021). In an increasingly interconnected world, the complexity of 630 

coupled natural-technological-social systems can make probability calculations futile (Engels & 631 

Marotzke, 2023). Therefore, understanding CCI entails recognizing that they cannot be fully 632 

predicted and that uncertainty is inherent. Instead, we can explore different possibilities for the 633 

evolution of CCI under different conditions. This also requires a deep understanding of the 634 

underlying risk drivers of different sectors and systems and their interlinkages. To address the 635 

plausibility question and better prepare for potential CCI, knowledge-driven tools can be 636 

instrumental. They enable us to explore the range of possible outcomes and the associated 637 

uncertainty while also offering explanations of why CCI might occur. For instance, mental 638 

models and qualitative storylines can be coupled with theories about transformative social 639 

change, disruptive change, social inertia, and path dependency. This can help us identify key 640 



22 
 

drivers that can lead to high impacts in a given future scenario as well as adaptation measures 641 

that can support risk reduction. 642 

In summary, the overview of methods and linked recommendations for future research 643 

described here can contribute to an improved characterization and understanding of CCI 644 

dynamics and hence support the reduction of CCI risks linked to hydrological extremes. In doing 645 

so, this perspective aims to enable researchers to make informed decisions about the choice of 646 

methods (or the combination of them) to be used.  647 
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