
ViDeZZo: Dependency-aware
Virtual Device Fuzzing

Qiang Liu (Zhejiang University; EPFL) Flavio Toffalini (EPFL)
Yajin Zhou (Zhejiang University) Mathias Payer (EPFL)

Who I Am

Qiang Liu

Visiting Ph.D. student -> Post.Doc. from 2023.11

- HexHive, led by Prof. Mathias Payer, EPFL, Switzerland
- Topics: Hypervisor Fuzzing (S&P’23), OS Fuzzing, Network Protocol Fuzzing

Ph.D. student since 2018.09

- BlockSec, led by Prof. Yajin Zhou, Zhejiang University, China
- Topics: Rehosting (FirmGuide ASE’21, ECMO CCS’21)

2

ViDeZZo: Dependency-aware

Virtual Device Fuzzing
Part 1Part 2

Part 3

Fuzzing or fuzz testing generates a lot of test cases and
monitors the executions for defects[1]

4

Input
Generator

[1] Xiaogang Zhu, et. al. 2022. Fuzzing: A Survey for Roadmap. ACM Comput. Surv.

Feedback

Executor

Fuzzing has been very successful in looking for
vulnerabilities for user applications

5

https://fuzzing-survey.org/ https://github.com/google/oss-fuzz

Fuzzing has been heavily applied to low-level system
software (Operating System, Hypervisor, etc.)

6

https://github.com/google/syzkaller ViDeZZo

Hypervisor must guarantee the isolation between the
guests and the host

7

Hardware
Hypervisor

Guest OS Guest OS

Hardware
Host OS

Guest OS Guest OS

Type-I Hypervisor runs directly on hardware,
e.g., Hyper-V, VMware ESXi

Type-II Hypervisor runs on the host OS, e.g.,
QEMU/KVM, VirtualBox, VMWare

Workstation

Hypervisor

Virtual Device = Legacy Virtual Device + VirtIO Device

What virtual devices are

8

Guest OS

Hypervisor

Hardware

Request Handler
Legacy Virtual

Device

Guest OS

Hypervisor

Hardware

VirtIO Interface
VirtIO Device

VirtIO DriverGuest OS

Legacy Virtual Device VirtIO Device

Guests interact with virtual devices through structural and
sequential virtual device messages
There are different ways to interact with virtual devices

- I/O Accesses
- Memory-Mapped I/O (MMIO)
- Port-Mapped I/O (PIO)
- DMA channels

- Time Management Operations

9

dmaw addr value mmiow addr value

Data embedded into a messageAddress to be operated

10

Hypervisor

Guest OS Guest OS

VM_EXIT VM_ENTRY

① ③

Virtual
Device

②

How a virtual device work

① dma_write(addr=0x1000, value=’\xde\xed\xbe\xef’)
 mmio_write(addr=0xffff00b0, value=0x1000)

② Virtual device handles the messages

③ Return to the Guest OS

void mmio_write_handler(uint64_t addr, uint64_t value) {
 switch(addr) {
 case 0xb0;
 dma_start=value;
 dma_read(dma_start, &deadbeef);
 break;

There are so many vulnerabilities in virtual devices

- 57.4% (252/439) QEMU vulnerabilities were in virtual devices
- 41.5% (22/53) of VM escapes were due to vulnerabilities in virtual devices

Virtual device remains the biggest attack surface

11

Outline

Key Challenges

- Intra-Message Dependency
- Inter-Message Dependency

Corresponding Solutions

- Intra-Message Annotation
- Inter-Message Mutation
- Fuzzing Workflow

Evaluation
12

Key Challenge 1: Intra-Message Dependency

A field in a virtual device message may be dependent on another field

Example 1

- Pointer points to something
- It depends on the value of command

13

object1
object2

dmaw addr pointer

&7 == 1
&7 == 2

command

A message may depend on a previously issued message

Example 2 Example 3

Key Challenge 2: Inter-Message Dependency

14

dmaw dma_start
Write data
to dma_start

mmiow Pass dma_start to
the virtual device

mmio Load data
from dma_start

mmio state
Set state A

mmio Check state
If A, go to state B

mmio Check state
If B, go to state C

Solution 1: Semi-automatically construct intra-message
annotation from source code

15

vd0=Model(‘tx’, 0)
vd0.add_struct(‘tx_t’, {})
vd0.add_flag(‘tx_t.command’, {})

vd0.add_point_to(‘tx_t.address’, …)

Virtual Device Source Code

Generated Messages w/
Intra-Message Dependency

Intra-Message Annotation

Intra-message annotation

- Type system: FLAG, POINTER, etc.
- APIs for intra-message dependencies
- Programming model: Model()

16

Automatic extraction is based on taint analysis

- Start from pci_dma_read()
- Get the type of the destination buffer
- Decide a flag if a field flows to binary operations
- Decide a pointer if a field flows to specific functions

17

pci_dma_read(from=addr, to=&tx);

structs/enums

pci_dma_[read|write](
 from=tx.array_addr)

tx.command & 0x3

Current intra-message annotation is a good start, but can
be improved

- Be more formal
- Support C structs/enums
- Support more types of dependencies
- Simplify the programming model

18

Solution 2: Automatically learn the dependency with new
mutators during fuzzing

19

Multi-level Mutators

Raw Virtual Device
Messages

Mutated Messages
(saved if interesting)

Message Level ChangeAddr, etc.

Sequence Level ShuffleMessages, etc.

Group Level GroupMessage

Inter-message mutators are beneficial but can be
improved
Benefits

- Go beyond the byte mutators
- Capture different granularities

20

Inter-message dependency is far away being
addressed (will discuss later)

Some ideas

- Support weighted mutators
- Support dictionaries
- Support better mutator scheduling

Fuzzing Workflow

21

Fuzzing Workflow

22

ChangeValue
EraseMessage
InsertRepeatedMessage

Fuzzing Workflow

23

ChangeValue
EraseMessage
InsertRepeatedMessage

Inject Messages
with Intra-Message
Dependency

Fuzzing Workflow

24

GroupMessageChangeValue
EraseMessage
InsertRepeatedMessage

Inject Messages
with Intra-Message
Dependency

Evaluation

Be scalable and efficient Be effective

25

Evaluation

ViDeZZo-ARP v.s. ViDeZZo-RP

- Intra-message annotation contributes!

26

Inter-Message Dependency

Intra-Message Dependency

Evaluation

ViDeZZo-ARP v.s. ViDeZZo-AP

- Inter-message mutators contribute!

27

Inter-Message Dependency

Intra-Message Dependency

Evaluation

ViDeZZo-ARP and ViDeZZo-RP/P

- ARP > RP=P
- Inter-message mutators are more

effective when the intra-message
annotation is supported

28

Inter-Message Dependency

Intra-Message Dependency

ViDeZZo: Dependency-aware Virtual Device Fuzzing

Fuzzing virtual device must consider

● Intra-message and inter-message dependencies

ViDeZZo addresses them with

● Intra-message annotation and inter-message mutators

ViDeZZo found 28 new bugs in both QEMU and VirtualBox

Backup Slides

30

Encoded intra-message dependency:
flag/tag-pointer dependency

31

Encoded intra-message dependency:
head-tail-pointers dependency

32

Encoded intra-message dependency:
len-buffer dependency

33

Encoded intra-message dependency:
dependency in MMIO accesses

34

