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Fuzzing or fuzz testing generates a lot of test cases and 
monitors the executions for defects[1]
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Fuzzing has been very successful in looking for 
vulnerabilities for user applications
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https://fuzzing-survey.org/ https://github.com/google/oss-fuzz



Fuzzing has been heavily applied to low-level system 
software (Operating System, Hypervisor, etc.)
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https://github.com/google/syzkaller ViDeZZo



Hypervisor must guarantee the isolation between the 
guests and the host
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Type-I Hypervisor runs directly on hardware, 
e.g., Hyper-V, VMware ESXi

Type-II Hypervisor runs on the host OS, e.g., 
QEMU/KVM, VirtualBox, VMWare 

Workstation

Hypervisor



Virtual Device = Legacy Virtual Device + VirtIO Device

What virtual devices are

8

Guest OS

Hypervisor
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Legacy Virtual Device VirtIO Device



Guests interact with virtual devices through structural and 
sequential virtual device messages
There are different ways to interact with virtual devices

- I/O Accesses
- Memory-Mapped I/O (MMIO)
- Port-Mapped I/O (PIO)
- DMA channels

- Time Management Operations
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dmaw addr value mmiow addr value

Data embedded into a messageAddress to be operated
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Hypervisor

Guest OS Guest OS

VM_EXIT VM_ENTRY

① ③

Virtual 
Device

②

How a virtual device work

① dma_write(addr=0x1000, value=’\xde\xed\xbe\xef’)
     mmio_write(addr=0xffff00b0, value=0x1000)

② Virtual device handles the messages

③ Return to the Guest OS

void mmio_write_handler(uint64_t addr, uint64_t value) {
       switch(addr) {
               case 0xb0; 
                        dma_start=value; 
                        dma_read(dma_start, &deadbeef);
                        break;



There are so many vulnerabilities in virtual devices

- 57.4% (252/439) QEMU vulnerabilities were in virtual devices
- 41.5% (22/53) of VM escapes were due to vulnerabilities in virtual devices

Virtual device remains the biggest attack surface
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Outline

Key Challenges

- Intra-Message Dependency
- Inter-Message Dependency

Corresponding Solutions

- Intra-Message Annotation
- Inter-Message Mutation
- Fuzzing Workflow

Evaluation
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Key Challenge 1: Intra-Message Dependency

A field in a virtual device message may be dependent on another field

Example 1

- Pointer points to something
- It depends on the value of command
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object1
object2

dmaw addr pointer

&7 == 1
&7 == 2

command



A message may depend on a previously issued message

Example 2 Example 3

Key Challenge 2: Inter-Message Dependency 
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dmaw dma_start
Write data
to dma_start

mmiow Pass dma_start to
the virtual device

mmio Load data
from dma_start

mmio state
Set state A

mmio Check state
If A, go to state B

mmio Check state
If B, go to state C



Solution 1: Semi-automatically construct intra-message 
annotation from source code 
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vd0=Model(‘tx’, 0)
vd0.add_struct(‘tx_t’, {})
vd0.add_flag(‘tx_t.command’, {})

vd0.add_point_to(‘tx_t.address’, …)

Virtual Device Source Code

Generated Messages w/
Intra-Message Dependency

Intra-Message Annotation



Intra-message annotation

- Type system: FLAG, POINTER, etc.
- APIs for intra-message dependencies
- Programming model: Model()
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Automatic extraction is based on taint analysis

- Start from pci_dma_read()
- Get the type of the destination buffer
- Decide a flag if a field flows to binary operations
- Decide a pointer if a field flows to specific functions

17

pci_dma_read(from=addr, to=&tx);

structs/enums

pci_dma_[read|write](
    from=tx.array_addr)            

tx.command & 0x3              



Current intra-message annotation is a good start, but can 
be improved

- Be more formal
- Support C structs/enums 
- Support more types of dependencies
- Simplify the programming model
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Solution 2: Automatically learn the dependency with new 
mutators during fuzzing
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Multi-level Mutators

Raw Virtual Device 
Messages

Mutated Messages 
(saved if interesting)

Message Level ChangeAddr, etc.

Sequence Level ShuffleMessages, etc.

Group Level GroupMessage



Inter-message mutators are beneficial but can be 
improved
Benefits

- Go beyond the byte mutators
- Capture different granularities
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Inter-message dependency is far away being 
addressed (will discuss later)

Some ideas

- Support weighted mutators
- Support dictionaries
- Support better mutator scheduling



Fuzzing Workflow
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Fuzzing Workflow
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ChangeValue
EraseMessage
InsertRepeatedMessage



Fuzzing Workflow
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ChangeValue
EraseMessage
InsertRepeatedMessage

Inject Messages
with Intra-Message
Dependency



Fuzzing Workflow
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GroupMessageChangeValue
EraseMessage
InsertRepeatedMessage

Inject Messages
with Intra-Message
Dependency



Evaluation

Be scalable and efficient                    Be effective

25



Evaluation

ViDeZZo-ARP v.s. ViDeZZo-RP

- Intra-message annotation contributes!
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Inter-Message Dependency

Intra-Message Dependency



Evaluation

ViDeZZo-ARP v.s. ViDeZZo-AP

- Inter-message mutators contribute!
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Inter-Message Dependency

Intra-Message Dependency



Evaluation

ViDeZZo-ARP and ViDeZZo-RP/P

- ARP > RP=P
- Inter-message mutators are more 

effective when the intra-message 
annotation is supported
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Inter-Message Dependency

Intra-Message Dependency



ViDeZZo: Dependency-aware Virtual Device Fuzzing

Fuzzing virtual device must consider 

● Intra-message and inter-message dependencies

ViDeZZo addresses them with 

● Intra-message annotation and inter-message mutators

ViDeZZo found 28 new bugs in both QEMU and VirtualBox



Backup Slides

30



Encoded intra-message dependency: 
flag/tag-pointer dependency
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Encoded intra-message dependency: 
head-tail-pointers dependency
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Encoded intra-message dependency: 
len-buffer dependency
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Encoded intra-message dependency: 
dependency in MMIO accesses
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