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Abstract. We characterize monomorphisms in rLLoc, the category of reg-
ular Lindelöf locales. Though somewhat complicated, the characterization is
intrinsic in the sense that it refers only to the properties of the morphism itself,
rather than to properties of some lifting of it to a distant category.

Monomorphisms in rLLoc cannot be said to be well understood, despite their
characterizations in [2] and [7]. The problem with these characterizations is that,
although in each case the condition is simple enough (injectivity of a functorially
associated spatial map in the case of [2], and surjectivity of a functorially associated
frame map in the case of [7]), it is applied in a category su¢ ciently remote from
rLLoc to make veri�cation troublesome.
On the other hand, there are two categories closely related to rLLoc in which

(the morphisms corresponding to) monomorphisms are well understood. Epimor-
phisms inW, the category of archimedean lattice-ordered groups with weak order
unit, have a rich theory, and W is related to Loc, the category of locales with
locale maps, by the contravariant adjunction

W
Y
�
C
Loc:

Here C associates with a given locale L theW-object CL of locale morphisms from
L into the (localic) reals, and Y associates with a givenW-object A its Yosida locale
Y A ([8], [1]). Restricting the adjunction to the ranges of the functors provides a
contravariant equivalence between CL, the full subcategory ofW consisting of the
objects isomorphic to CL for L 2 Loc, and rLLoc.
Given this equivalence, one might wonder why the rich theory ofW-epimorphisms

is not immediately available for analysis of rLLoc-monomorphisms. The reason is
that this theory is framed in terms of the classical (pointed) Yosida representation
of W-objects, and does not translate across the localic Yosida adjunction. What
has been lacking is a characterization ofW-epimorphisms in purely algebraic terms,
without reference to the classical (pointed) Yosida representation, so that one could
hope to translate it into localic terms. Such a characterization has recently become
available ([3]), and this article performs the translation. The translation itself makes
heavy use of the machinery developed in [5].
The resulting condition has the advantage of being intrinsic, in the sense that it

refers only to the properties of the underlying frame morphism, as opposed to the
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extrinsic conditions mentioned above. The condition has the disadvantage of being
complicated. The authors hope it proves to be as useful for the study of locales as
its progenitor has proven to be for the study of archimedean `-groups.
The second category, closely related to rLLoc and having tractable monomor-

phisms, is LSpFi, the category of compact Hausdor¤ spaces endowed with �lters
of dense open subsets such that the �lters are generated by their Lindelöf members.
From the point of view of calculation, this category provides perhaps the most
perspicuous context for the analysis of monomorphisms, and this analysis applies
immediately to both W and rLLoc. (A full treatment may be found in [4].) In
fact, it was by means of �SpFi, the generalization of LSpFi to arbitrary regular
cardinals �, that monomorphisms in Loc were characterized in [2].
We work mainly in the category rFrm�, of regular �-frames and �-frame homo-

morphisms, and inW. We begin by identifying a property of �-frame morphisms,
here termed uplifting, which implies (Proposition 1.1), but is not implied by (Exam-
ple 1.2), their surjectivity. Although this property has been analyzed in connection
with C- and C�- frame quotients (Theorem 1.3), our purpose in introducing this
notion is only to motivate a generalization, here termed weakly uplifting, which
characterizes �-frame epimorphisms (Theorem 5.2). The argument that weakly
uplifting �-frame morphisms are epimorphisms is relatively straightforward and
direct (Proposition 2.1); the converse requires an excursion intoW (Section 3).
Because we took considerable pains to provide motivation, background, and

examples in the articles upon which this one is based, namely [5] and [4], we chose
not to do so here. Thus this article may best be understood as an addendum to
these papers. The exception is Section 4. This section contains a few technical
computations in CL which, though �rmly rooted in the notation and technique of
[5], do not appear there. For that reason they are worked out in full here. Thus
this article completes a detailed proof of the result it announces, but the details are
distributed over three papers. Nevertheless, the reader who is willing to buy the
(very few) results cited from [5] and [4] should be able to understand this article
completely.

1. Uplifting �-frame morphisms

A �-frame morphism m : L ! M is said to be uplifting if for all ai 2 M such
that a1 _ a2 = > there exist ci 2 L such that c1 _ c2 = > and m (ci) � ai. We
conform to the standard notation a � b for a being well below b, and a �� b for a
being completely below b.

Proposition 1.1. An uplifting �-frame morphism into a regular �-frame is sur-
jective.

Proof. Suppose m : L!M is uplifting, and consider a 2M . Express a in the form
a =

W
N ai, where ai � a for all i 2 I. For each i choose bi satisfying a^ai = ? and

a_ bi = >. Then use the uplifting property to �nd ci; di 2 L such that ci _ di = >,
m (ci) � bi, and m (di) � ai. Then since m (ci) _m (di) = >,

ai = ai ^ > = ai ^ (m (ci) _m (di))
= (ai ^m (ci)) _ (ai ^m (di))
� (ai ^ bi) _ (ai ^m (di))
= m (di) � a;
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so that

a � m

0@ _
a�m(d)

d

1A �
_
N

ai = a;

i.e., a 2 m (L). �
The converse of Proposition 1.1 does not hold.

Example 1.2. Take m to be the frame counterpart of the inclusion�
0;
1

2

�
[
�
1

2
; 1

�
� [0; 1] :

Since the spaces are metric, every open set is a cozero, and so the frames are �-
frames, the map m is a �-frame morphism which is evidently onto, and the frames
are regular. But elements

a1 �
�
0;
1

2

�
; a2 �

�
1

2
; 1

�
violate the uplifting condition.

Frame morphisms f : L ! M whose cozero part coz f : cozL ! cozM is
uplifting have received some attention in the literature. We quote Theorem 7.1.1
of [5] by way of example, referring the interested reader to that paper for unde�ned
terminology.

Theorem 1.3. The following are equivalent for a frame surjection m : L!M .
(1) cozm : cozL! cozM is uplifting.
(2) m is a C�-quotient, i.e., every element of CM extends over m. This

means that for every frame map h : O [0; 1] ! M there is a frame map
k : O [0; 1]! L such that mk = h.

(3) In M , b0 �� b1 i¤ b0 ��m b1.
(4) Two completely separated elements of M are m-completely separated.
(5) Two completely separated quotients of M are m-completely separated.
(6) Every binary cozero cover of M is re�ned by the image of a binary cozero

cover of L.
(7) Every �nite cozero cover of M is re�ned by the image of a �nite cozero

cover of L.
(8) Every binary cozero cover of M is the image of a binary cozero cover of L.
(9) (C�m) (C�L) is uniformly dense in C�L.
(10) C�m : C�L! C�M is surjective.

When L and M are completely regular and endowed with their µCech-Stone unifor-
mities, these conditions are equivalent to the following.
(11) m is a uniform surjection.

2. Weakly uplifting �-frame morphisms

For a �-frame M , an indicator is a function r : N2 ! M such that r (i; j) �
r (i; j + 1) for all i and j, and such that

W
j r (i; j) = > for all i. A choice function

is a map t 2 NN. For an indicator r, choice function t, and positive integer k, we
let

r (k; t) �
^

1�i�k
r (i; t (i)) :
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A �-morphism m : L!M is said to be weakly uplifting if for every pair of elements
xi 2M with x0 _ x1 = > there is an indicator r such that for each choice function
t there exists an integer k 2 N and elements yi 2 L satisfying y0 _ y1 = > and

(�) m (yi) ^ r (k; t) � xi:

Proposition 2.1. A weakly uplifting �-morphism is an epimorphism.

Proof. For a weakly uplifting �-morphism m : L ! M , consider �-morphisms
ni : M ! N such that n1m = n2m. Suppose for the sake of argument that there
is some x0 2 M for which n1 (x0) � n2 (x0). Since x0 is the join of elements well
below it, there must exist a � x0 such that n1 (a) � n2 (x0). Find x1 2 M such
that x0 _ x1 = > and a ^ x1 = ?, then �nd an indicator r which witnesses the
weakly uplifting property of m as applied to x0 and x1.
Inductively de�ne a choice function t satisfying

(�) n1 (r (n; t)) ^ n2 (r (n; t)) ^ n1 (a) � n2 (x0)

for all n 2 N, and let k and yi be the entities gotten from t satisfying (�). Then

a ^ r (k; t) = a ^ r (k; t) ^ >
= a ^ r (k; t) ^m (>)
= a ^ r (k; t) ^m (y0 _ y1)
= (a ^ r (k; t) ^m (y0)) _ (a ^ r (k; t) ^m (y1))
� (a ^ r (k; t) ^m (y0)) _ (a ^ x1)
= a ^ r (k; t) ^m (y0) � r (k; t) ^m (y0) :

Therefore

n2 (x0) � n2 (r (k; t) ^m (y0))
� n2 (r (k; t)) ^ n1 (r (k; t)) ^ n2m (y0)
= n2 (r (k; t)) ^ n1 (r (k; t)) ^ n1m (y0)
= n2 (r (k; t)) ^ n1 (r (k; t) ^m (y0))
� n2 (r (k; t)) ^ n1 (a ^ r (k; t) ^m (y0))
= n2 (r (k; t)) ^ n1 (a ^ r (k; t))
= n1 (r (k; t)) ^ n2 (r (k; t)) ^ n1 (a) :

This contradicts (�). We conclude that no such element x0 can exist in M , i.e.,
that n1 (x0) � n2 (x0) for all x0 2M . A parallel argument establishes the opposite
inequality, thus proving that m is an epimorphism. �

3. Epimorphisms in W

In this section we succinctly outline the (pointed Yosida) representation-free
characterization ofW-epimorphisms from [3], and in subsequent sections we trans-
late it into the language of �-frames. The characterization is in terms of density
with respect to a particular convergence, called epi-convergence. In aW-object B,
let

B _ 1 � fb 2 B : b � 1g :
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For a countable subset R = frn : n 2 Ng � B _ 1, choice function t 2 NN, " > 0,
and positive integer k, let B (tjk; "; b) designate the set of those elements a 2 B
which satisfy ^

1�i�k
(t (i)� ri) ^ jb� aj � ":

Then set
B (t; "; b) �

[
k�1

B (tjk; "; b) :

The �lter F (R; b) has base sets of the form B (t; "; b), t 2 NN, " > 0. We say of
an arbitrary �lter F on B that F epi-converges to b with indicators R, and write

F R! b, provided that F � F (R; b). We say that F epi-converges to b, and write

F ! b, provided that F R! b for some countable subset R � B_1. A subset A � B
is said to be dense if for every b 2 B there is a �lter F on B such that A 2 F and
F ! b.
Here is the representation-free characterization of W-epimorphisms which we

need. Its proof can be assembled from results in [3]; we o¤er brief instructions for
doing so here.

Theorem 3.1. AW-subobject A � B is epically embedded i¤ it is dense, provided
A is divisible.

Proof. Together with the introductory comments about dominion at the beginning
of Section 2, Corollary 2.6 establishes that A is epically embedded in B i¤ A is
dense in B with respect to the closure operator clB . The fact that this closure
operator coincides with the de�nition presented above is the content of Theorem
4.7. �

4. Some calculations in CL

We assume the results and notation of [5] in order to prove several technical
lemmas. In particular, Ri � R r fig for i 2 f0; 1g. In the following lemmas L
designates a regular �-frame, f , g and h designate elements of CL, " designates a
positive real number and "R designates the open set R r [�"; "], and symbols U ,
Ui and V designate open subsets of R. The �rst lemma generalizes Lemma 4.1.1 of
[5].

Lemma 4.1. The following are equivalent.
(1) g ^ jf j � ".
(2) f ("R) ^ g (";1) = ?.

Proof. Keeping in mind that

" (U) =

�
> if " 2 U
? if " =2 U ;

Lemma 3.2.4 of [5] says that (1) is equivalent to

? = (g ^ jf j) (";1) = (g ^ (f _ �f)) (";1)

=
_

U1^(U2_(�U2))�(";1)

g (U1) ^ f (U2) :

But U1 ^ (U2 _ (�U2)) � (";1) i¤ U1 � (";1) and U2 � "R. Thus the condition
displayed above is equivalent to (2). �
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The next lemma generalizes Lemma 4.1.2 of [5].

Lemma 4.2. The following are equivalent.

(1) g ^ jf � hj � ".
(2) f (U1) ^ h (U2) ^ g (";1) = ? for all pairs Ui which are at least " units

apart.

Proof. By Lemma 4.1, (1) is equivalent to

? = (f � h) ("R) ^ g (";1)

=

0@ _
(U1�U2)�"R

f (U1) ^ h (U2)

1A ^ g (";1)
=

_
(U1�U2)�"R

f (U1) ^ h (U2) ^ g (";1) :

But the last supremum cannot be ? unless each of its terms is ?, and this is (2). �

We remind the reader that, for open subsets U; V � R, U �" V means that

fy : 9 x 2 U (jx� yj < ")g � V:

Lemma 4.3. If g ^ jf � hj � " then

h (U) ^ g (";1) � f (V )

for all U and V such that U �" V .

Proof. For an open interval U2 � R such that U2 �� U for some � > 0, let U1
designate the union of all open intervals R � R such that U2 and R are at least "
units apart. Then by Lemma 4.2,

f (U1) ^ h (U2) ^ g (";1) = ?;

and since

f (U1) [ f (V ) = f (U1 [ V ) = f (>) = >;

it follows that h (U2) ^ g (";1) � f (V ). Therefore

h (U) ^ g (";1) =

0@_
�>0

_
U2��U

h (U2)

1A ^ g (";1)
=
_
�>0

_
U2��U

h (U2) ^ g (";1)

� f (V ) :

This proves the lemma. �

Lemma 4.4. For any n 2 N,

(n� f) (";1) = f (�1; n� ") :
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Proof. According to Proposition 3.1.1 of [5],

(n� f) (";1) =
_

(U1�U2)�(";1)

n (U1) ^ f (U2)

=
_
�>0

_
U2�(�1;n�"��)

f (U2)

= f (�1; n� ") :
A term contributes nontrivially to the �rst join only if

(n� �; n+ �) � U1
for some � > 0, and in this circumstance the displayed condition forces U2 to be
contained in (�1; n� "� �). �

Lemma 4.5. (f ^ g) (";1) = f (";1) ^ g (";1).

Proof. According to Proposition 3.1.1 of [5],

(f ^ g) (";1) =
_

(U1^U2)�(";1)

f (U1) ^ g (U2)

=
_

Ui�(";1;)

f (U1) ^ g (U2)

=
_

U1�(";1;)

f (U1) ^
_

U2�(";1;)

g (U2)

= f (";1) ^ g (";1) :
The key observation is that (U1 ^ U2) � (";1) i¤ each Ui � (";1). �

5. �-frame epimorphisms are weakly uplifting

Proposition 5.1. Let m : L ! M be a �-frame morphism, and let Cm : CL !
CM be the associated W-morphism. If (Cm) (CL) is dense in CM then m is
weakly uplifting.

Proof. Let A � (Cm) (CL) and B � CM . Consider xi 2 M such that x0 _ x1 =
>. Use (the �-frame version of) Proposition 5.1.2 in [5] to �nd b 2 B such that

b (Rr [i]) = xi. By the density of A in B, there is a �lter F such that A 2 F R! b
for some countable subset

R = frn : n 2 Ng � B _ 1:
De�ne indicator r by the rule

r (m;n) � rm (�1; n) ; m; n 2 N:
Consider now a choice function t 2 NN, and let s designate the choice function

n 7�! t (n) + 1. Since A 2 F and[
k�1

B (sjk; 1; b) � B (s; 1; b) 2 F (R; b) � F ;

it follows that there is some a 2 A and integer k such that a 2 B (sjk; 1; b), i.e.,^
1�i�k

(s (i)� ri)+ ^ jb� aj � 1:
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We note that0@ ^
1�i�k

(s (i)� ri)+
1A (1;1) = ^

1�i�k
(s (i)� ri)+ (1;1) by Lemma 4.5

=
^

1�i�k
ri (�1; s (i)� 1) by Lemma 4.4

=
^

1�i�k
ri (�1; t (i)) =

^
1�i�k

r (i; t (i)) = r (k; t)

Now a is of the form m (c) for some c 2 CL. Fix a real number �, 0 < � < 1, and
set

y0 � c (�R) ; y1 � c (Rr [1� �; 1 + �]) :
Observe that yi 2 L satisfy y0 _ y1 = >, and that

m (y0) = a (�R) �� R0;
so that from Lemma 4.3 we get

m (y0) ^ r (k; t) = a (�R) ^

0@ ^
1�i�k

(s (i)� ri)+
1A (1;1)

� b (R0) = x0:
The argument that m (y1) ^ r (k; t) � x1 is similar. �

We can now state and prove the main result.

Theorem 5.2. The following are equivalent for a morphism m : L!M in rFrm�.

(1) m is an epimorphism.
(2) Cm is an epimorphism in CL.
(3) Cm is an epimorphism in W.
(4) (Cm) (CL) is dense in CM .
(5) m is weakly uplifting.

Proof. The fact that CL is categorically equivalent to rFrm� makes the equiva-
lence of (1) and (2) obvious, and the fact that the functor C re�ects and preserves
epimorphisms makes the equivalence of (2) and (3) obvious. The equivalence of (3)
and (4) is Theorem 3.1. The implication from (5) to (1) is Proposition 2.1, and the
implication from (4) to (5) is Proposition 5.1. �

The �nal corollary follows immediately from the equivalence of rFrm� with
rLFrm.

Corollary 5.3. A morphism m : L!M in rLFrm is an epimorphism i¤ cozm :
cozL! cozM is weakly uplifting.
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