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Abstract

Newton’s method is applied to construct the semi-simple part of the Jordan decomposi-
tion of an algebraic element in an arbitrary algebra and to derive an efficient algorithm for
its computation. Applications on the matrix case and on differential operators are discussed.
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1. Introduction

Let I be an arbitrary field and/ an algebra ovel with unit 1. Subject of our
interest is the following well-known result on the Jordan decomposition, e.g., see
[1,5,13].

Theorem 1.1. If K is a perfect fieldthen for each algebraicA € .«7, there exist
uniques, N € [K[A] such thatd = S + N, Sis semi-simple and N is nilpotent.

We recall that a field< is perfectif and only if charl =: £ > 0 implies that the
function I 3 z — zF € IK is surjective. In particular, by definition, every field
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with charl< = 0 and thus every subfield &f is perfect. Obviously, every algebrai-
cally closed field is perfect.

An elementA € o/ is calledalgebraicif there exists a polynomigh € K[x]\{0}
such thap(A) = 0O; specifically,A € .7 is calledsemi-simpléf there exists a square-
freep € K[x]\{0} such thatp(A) = O; finally, A € <7 is callednilpotentif there ex-
ists an integet € N* such thatA® = 0. A polynomialp € K[x]is calledsquare-free
if gcd{p, p'} = 1.

We remark that in the case whéhis algebraically closed and is a subalgebra
of the matrix-algebra<"*", thenSis semi-simple if and only iSis diagonaliz-
able.

Since Theorem 1.1 has various applications, it is important to have efficient al-
gorithms for the computation &in terms ofA. The proof of the existence &as
presented in the book of Hoffman and Kunze [5] is constructive and yields direct
methods for computations. An algorithm, which is essentially based on these ideas,
is given by Levelt [10]. Unfortunately, it is—as the author remarks—rather slow.
The algorithm of Bourgoyne and Cushman [2] is faster, because higher derivatives
are used. An analysis of the proof of Hoffman and Kunze shows that it is related to
Newton’s method, but their ‘Ansatz’ for the solution prevents to obtain a convergence
rate as known from Newton'’s algorithm. The same holds also for [2,10].

The main goal of this article is to show that Newton’s method can be applied
directly in the present situation and that the corresponding algorithm has a well-
known good convergence rate, namely, quadratic convergence. The results regarding
this matter are to be found in Proposition 2.1, yielding a new and short proof of the
existence of the Jordan decomposition and moreover a simple algorithm to construct
it. Techniques which use Newton’s method in similar situations are common, e.g., see
[3,11]. A further important goal of the article is to make the obtained Newton-type
algorithm efficient for calculations on a computer. This is achieved by reducing the
degree of the polynomials occurring in the iteration process in an optimal manner.
The result is our Theorem 2.2. Applications of this theorem on the matrix case and
on singular differential operators are treated in a separate section. Examples prove
the efficiency of our method.

The uniqueness statement of Theorem 1.1 is valid even in the case of an arbitrary
field K and follows rather directly, e.g., [5.13]. In the following, only the questions
of existence and construction will be treated. For that we consider an arhjitrary
K[x]\{0} with p(A) = 0. Following [10], we pose herewith:

Problem 1.2. Find ¢, s € K[x] such thaty square-freeg’ = 0 modp for a suffi-
ciently large¢ € N*, x = s modg andg (s) = 0 modp.

If such polynomialsy, s are found, we can puf := s(A), N := A — S and then
haveg(S) = 0, N = 0, which means semi-simple and\ nilpotent. This shows,
in particular, that the general problem considered in Theorem 1.1 can be treated
completely on the level of polynomials. (For further details see [1,5,10,13].)
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On the other hand, Problem 1.2 can be interpreted in the frame of the quotient-
algebraK[x]/p K[x], where it just means to find the Jordan decomposition for the
special element + p [K[x]. Everysaccording to Problem 1.2 yields+ p K[x] as
the semi-simple part of the Jordan decompositiomn @f p KK[x]. By the uniqueness
of the Jordan decomposition follows then, that there exists a unjgael[x] with
degregs,) < degre¢p) suchthak, + p K[x] = s + p K[x]. s, is the remainder of
sdivided byp.

Problem 1.2 can be treated in two steps: first find for a gjvan appropriate|
and afterwards determirsan dependence of thig.

For discussing the first step, we consider an arbitrary non-constari[x]. We
can assume that is monic, which means that the leading coefficient is 1. By the
unique factorisation theorem

p=[]a"?, (1.1)

geo
whereo is a finite subset of the monic prime polynomials ando — N*. Defining
p :qu;lfq’ tp = max pu(q), (1.2)

we obviously havep’» = 0modp. p will be square-free if and only if every € o
is square-free. However, a prime polynontgak square-free if and only i’ + O,
which in particular holds true whekK is a perfect field. In the case of clidar= 0
this follows immediately. In this case we also have the formula

p = p/gcdp, p'}. (1.3)
The second step in solving Problem 1.2 is the central subject of Section 2. In [10]
this step is settled with the following:

Lemma 1.3. Letg € K[x] be square-free and € N*. Then there exists € K[x]
such thatr = s modg andg(s) = 0 modg*.

Our investigations using Newton’s method also yield a new proof of this lemma.

2. Newton’s algorithm for computing the Jordan splitting

Let K be an arbitrary field. We consider in the following a fixed non-constant
monic p € KK[x] and assume that is square-free. Thep’» = 0 modp.
According to Section 1, we are interested in solving the equation

p(w)=0modp for ue M :=x+ pK[x]. (2.1)

Every solutiors of (2.1) yieldss,, as the remainder afdivided byp.
Since gcdp, p'} = 1, there exist unique, b € K[x] with degre€b) < degreép)
such that



78 D. Schmidt / Linear Algebra and its Applications 314 (2000) 75-89

l=ap+bp. (2.2)
Herewith we introduce the operator
@ K[x]>u — u—>bu) pu) € Kx]. (2.3)

Since we haveé (1) p'(u) = 1 modp(u) by (2.2), this is the correct operator to for-
mulate Newton’s algorithm for Eq. (2.1). We discuss the mapping properti@s of

For arbitraryu, h € [K[x] there obviously exists a unique polynomjsl:, 4] such
that

Pl +h) = pQu) +h p'(w) + h? plu, h]. (2.4)
Inserting heréh = —b(u) p(u) and then using (2.2) yields
P(Pw) = p(u)? P(w) (2.5)

with
Y (u) = a(u) + bw)? plu, —bu) pw)] € K[x].
Applying (2.4) further withu = x andh € p K[x] yields

pw) € pK[x] (ue M). (2.6)
With the definition of® then follows at once

(M) C M. (2.7)
We now consider an arbitrarye M. Then by (2.7)

up ;= 0" w)eM (neN), (2.8)
and further by (2.6) and (2.5)

p(up) =0modp?  (n € N). (2.9)
Here choosing = k,, wherek, € N is uniquely determined by

2l <g, <28, (2.10)
yields:

Proposition 2.1. &7 (x) is a solution of(2.1) for everyu € M, in particular, for
u=2Xx.

Thus, we have found solutions of our problem by Newton’s algorithm, which
moreover has the expected convergence rate. Unfortunately, the degrees of the poly-
nomialsu,, in (2.8) will in general become extremly large wheimncreases, which
brings about that the computation @fu,,) will take a very long time. This makes
the above procedure unpracticable. In the following, we describe a modification of
the procedure where the degree of the polynomials within the iteration process is
limited by the degree gb.
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We define, fom € N,
en :=ged{ p, p%' ), M, :={u € M| p(u) = 0mode,}. (2.11)

One verifies easily

so=p,  ea=gedpe’} meN), e, =p (2.12)
in particulars,, ;1 = 0 modg,. This implies with (2.6) and (2.5) that

Mo=M, M1 C My, P(My,) C Myt1 (n €N), (2.13)
and moreover for the solution manifold of (2.1)

My, = {u € M| p(u) = 0modp}. (2.14)

We define further for € N andu € M, by r, (1) € K[x]the remainder af divided
by ¢,, which is uniquely determined through the relatior= ¢, + w, (1) where
t € K[x] and degreer, (1)) < degreés,). Using (2.4) once more yields

Py () = p(u) — tegp' (u) + 1262 plu, —te,] = 0mode,,.
Therefore, for alk € N,
T (u) € My,
degreén, (u)) < degreés,) < degre€p) (u € My). (2.15)
Now considering for an arbitrany € M the recursively defined sequence

ug := Po(u) :=no(u),

2.16
lni1 = Poy1 () 1= (Tus1 0 D) un) (1 € N, (2.16)

we have
u, € M,, degreéu,) < degre¢p) (n e N). (2.17)

This yields by (2.14) wittk,, according to (2.10):
Theorem 2.2. &, (u) = s, for everyu € M, in particular, for u = x.

The construction of the,, in (2.16) suggests that the following representation is
valid:

Remark 2.3. Let degre¢p) > 1. Then forn € N
n—1

up = Pp(x) =x — Zajsj,
j=0

where thex; can be computed recursively by
a, = remainder ob(u,) p(u,)/s, divided bye,+1/e, (n € N).
In particular, degre@,,) < degreés,1/¢,) < degregp) and thusy, =0n > k.



80 D. Schmidt / Linear Algebra and its Applications 314 (2000) 75-89

The proof follows by induction. For = 0 the statemen®g(x) = mp(x) = x fol-
lows directly by means ofp = p with the assumption degré®) > 1. Now letn €
N and assume that the representation to be valid fox M,,. With p(u,) = r,e,,
r, € K[x] follows @(u,)) = u,, — b(u,)r,&,. The unique representatiéniu,)r, =
tw(ens1/en) + o With 1, o, € K[x], degreéx,,) < degreés, +1/¢,) yields then

n
D(up) = | x — Z(X./Ej — InEns1.
j=0
Since the degree of the term in brackets is less than the degege ofwe finally
obtain thatu,, 11 = (1,41 o @)(u,) is equal to this term.
The special situation in Lemma 1.3 is settled with the following:

Remark 2.4. Letq e K[x] be square-free antle N*. For p := ¢* we obviously
havep = g and¢, = ¢. Thus by Theorem 2.2p; (x) = s, with k € N determined
by 2=1 < ¢ < 2k, Moreover, ifN* 5 n < ¢, thens,» is the remainder of,, divided
by g”.

The following remark clarifies, in particular, the connection with the correspond-
ing results in [2,5,10].

Remark 2.5. Lett(n) e Nwitht(0) =1andt(n) <t(n+1) < 2t(n) (n € N).
Considerg, := gcd{p, p*™}. Obviously,eg = p, €441 = 0mode, ande; = p for

k € N* with t(k — 1) < £, < t(k). Then, in analogy to Theorem 2.2 (u) = s,
holds for every: € M. Moreover, the corresponding representation in Remark 2.3 is
valid.

Our choicer (n) = 2" is optimal since in this case the best possible convergence
rate is realized. The choice(n) = n + 1 yields the weakest convergence rate. In
this case, one needs — 1 steps of iteration to obtait),. The series representation
in Remark 2.3 becomes then

£,—2

— x — 5:hi 1
Sp=2x Za]p
j=0

with an analogous formula for the;. This is exactly the ‘Ansatz’ for the solution
considered in [2,5,10].

We close this section with an example of a polynorpiakheres, can be deter-
mined explicitly. It is a straightforward generalization of an example in [2]. In this
special case, the convergence rate is even better than in Theorem 2.2 and Remark 2.3
if m > 2.

Example 2.6. Let charK =k > 0,m = k", v € N* and¢ € N. We consideg :=
x™+x +landp :=g* Thenp =¢, ¢, = ¢and
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n—1
Sp =X — Z(—l)quj
j=0
with n € N determined byn" ! < £ < m”".

The proof follows by induction considering the Newton iterations and using the
formula

qgu+h=w+hn"+u+h+1=u"+h"+u+h+1
=q) +h+h",

which is valid whem = k".

3. Applications and programs

First we give a program imAPLE for the calculation of,, in the casek = Q
using the algorithm in Theorem 2.2. The program begins with the calculatign of
as in (1.3) and determines after thatb as in (2.2). Then, starting with

€0 = p, up = rem(x, o),
the quantities

2
Entl = ng{p, €n},
iy = remb(u,) ﬁ(u}’l)v en+1),
Upyl = Up — Uy,

an = qUO(ﬁn, &n)

are recursively calculated far € N until ¢, = p. The final value o, yieldss,,.

When the degree qf is large, the evaluation 6f, = rem(b(u,,) p(uy), en+1) takes,

in general, a long time. Thus, it is recommendable to evaluate these quantities by
using the Horner form and taking the remainderdyy; in each step. The call
s_poly(p,x) returnss, = s,(x).

s_poly:=proc(p,x)

local d,pl,r,q,ql,a,b,v,s,ss, e, ee,n,l,j;

d:=degree(p,x); pl:=diff(p,x); r:=gcd(p,pl); g:=quo(p,r,X);
gl:=diff(q,x); gcdex(q,ql,x,’a’,’'b");

v:=sort (expand (g*b),x); n:=degree(v,Xx);

e:=q; l:=degree(e,x); s:=rem(x,e,x);

while 1 < d do ee:=gcd(p,e*e); ss:=coeff(v,x,n);

for j from 1 to n do ss:=coeff(v,x,n-j)+rem(ss*s,ee,x); od;
S:=s-ss; e:=ee; l:=degree(e,x) od;

V V.V V V V V V V
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Table 1
(k, €, m) 3,4,2 (52,49 (6,84 (7,511 (9,119 (16,139 (151515
deg reép)/kp 20/2 20/3 40/3 40/4 60/4 80/4 90/4
Time (s) 0.260 0.982 5.167 9.544 23.504 35.090 42.982

> s:=sort (expand(s));
> s
> end:

As an example, we consider the polynomials
p=ufvfw™ with u=x>-2 v=x3-3, w=x—-7 (3.2)

for some special values &f ¢, m. Table 1 shows the computing time for the calcu-
lation ofs,, by using the procedure poly.

When using (an improved version of) the original Levelt algorithm the computing
time for the first two cases was 98 and 280 s, respectively.

All calculations were done by usingAPLE V.5 under Windows NT on a PC with
Pentium 300MMX processor and 64 MB RAM.

In the following, we discuss how the Jordan decomposition of matrices can be
calculated by using the previous results. As already mentioned in Section 1, the semi-
simple partS =: S4 of the Jordan decomposition of a matAxcan be obtained by
the following scheme:

A — p = characteristic polynomial A — s :=s5, — S:=5(4). (3.2)

In particular, forA € @"*", all of these three steps can principally be settled by us-
ing MAPLE procedures: the first by: =1inalg[charpoly] (A, x), the second by the
procedures:=s_poly(p,x) and the last step by:=evalm(subs (x=2,s)). Unfor-
tunately,MAPLE’s builtin procedure:=1inalg[charpoly] (&,x) is extremly slow.
Furthermore, in particular, in the case of a big (say size 20) and dense matri,

the computation of := s(A) by usingevalm(subs (x=3,s)) takes a large amount

of time. Thus, though the routine poly is very fast, the calculation &by this way
remains unsatisfactory, in particular, as other strong algorithms are available. A good
reference in this connection is the ‘normform’ package of Mulders and Levelt in the
theMAPLE V share library. This package contains a very fast routine to calculate the
rational Jordan normal formh of a matrixA and the corresponding transformation
matricesC, C~! suchthalC~1 o A o C = J. Since the semi-simple pasy of J can

be obtained directly frord by taking the diagonal blocks, one gets then immediately
SA=C0S10C71.

The algorithms of the normform package are described in [12]. From this it fol-
lows that the computation of the rational Jordan normal fdiscarried out in three
steps. First (based on the idea of cyclic vectors) a special ‘cyclic férm’ F4 and
the corresponding transformation matriégsWw — such thatV 1 o A o W = F are
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computed. Then (by using the usual routine for computing the Smith normal form)
the Frobenius normal form and after that finally the rational Jordan normal form
(each with corresponding transformation matrices) are determined. Since the compu-
tation of the Smith normal form takes a large amount of time, it will be of advantage
in any case if this step can be avoided (see [12, p. 95]).

The calculation of the ‘cyclic formF plus transformation matriced, W1 is
carried out in themAaPLE procedure ‘normform/cyclic_vectorsk has the block
structureF’ = (F;;), whereF;; = 0 fori > j, the diagonal block$’;; are compan-
ion matrices of monic polynomialg; and F;; for i < j have zero columns except
(at most) for the last column. From this follows immediately that the product of the
p; Yields the characteristic polynomial & which is also the characteristic poly-
nomial of A. It is thus reasonable to modify the ‘normform/cyclic_vectors’ program
of Levelt and Mulders slightly in order to obtain a fast routine for the calculation
of the characteristic polynomial. The followingaPLE procedurecyclic_form re-
alizes this idea. The callyclic_form(a,x,'U’,'V’,'W’ ,'F’, £, ind’) with
A € Q" computes and returns the characteristic polynomial p(x) of A. Be-
sides that it computes the ‘cyclic normal for, the transformation matrixV, an
LU-type decomposition = U o V and the integer-valued vectoysind which
are required for later calculations. These quantities are assigned to the variables
U,V,W,F, f,ind in the argument ofyclic_form.

> cyclic_form:=proc(a,x,U,V,W,F,f,ind)
> local n,i,j,k,r,rl,r2,u,v,w,m,a,temp,p,q,p0;
n:=linalg[rowdim] (&) ;
U:=array(l..n,1l..n); V:=array(l..n,1l..n);
W:=array(l..n,1l..n); F:=array(l..n,1l..n);
u:=array(l..n); v:=array(l..n); w:=array(l..n); qg:=array(l..n);
ind:=array(sparse,l..n); f:=array(sparse,l..n);
r:=0; p:=1;
while r < n do rl:=r;
for i to n while ind[i] <> 0 do od;
for j ton do w[j]:=0 od; w[i]:=1;
do u:=copy(w);
for i ton do v[i]:=0 od;
for i to n do k:=ind[i];
if k <> 0 and u[i] <> 0 then
a:=ul1]/U[1,k]; uli]:=0;
for j from i+l to n do uljl:=uljl-a*Ul[j, k] od;
vik]:=a fi;
od;
i:=1; while i<=n and u[i]=0 do i:=i+1 od;
if 1 <= n then r:=r+1; ind[i]:=r;
for j ton do W[j,r]l:=w[j] od;

V V V V V V V V V V V V V V V V V V V VvV
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> for j from i to n do U[j,r]:=ulj] od;

> for j to r-1 do VI[j,r]:=vI[j] od;

> for 1 to n do temp:=0;

> for j to n do temp:=temp+A[i,Jjl*w[j] od;

> ul[i] := temp od; w:=copy(u)

> else break fi

> od;

> r2:=r-rl; flr]:=1;

> for j to r do temp:=v[r+l-j];

> for m from r+2-j to r do temp:=temp-V[r+l-j,m]l*q[m] od;
> qlr+l-jl:=temp; F[r+l-j,r]:=temp od;

> pO:=sort(x*r2-sum('qg[r+l1-j]1*x"(r2-3)", ('j')=1..r2));

> p:=sort (expand(p*p0))

> od;

> p

> end:

The following MAPLE procedurechar_poly is just a simplified call to
cyclic_form. The callchar_poly(a,x) with A € Q"*" returns the characteristic
polynomialp = p(x) of A.

> char_poly:=proc(A,x)
> cyclic_form(a,'x’,'U’,'v','wWw ,'F","£',"ind");
> end:

With reference to [8], one of the referees pointed out that the idea of computing
the characteristic polynomial by using the cyclical form is classical.

The calculation of4 according to (3.2) by usinghar_poly for the first,s_poly
for the second and the Horner form for the third step yields quite satisfactory results
in the case whem\ is not too large (say size10) or in the case wheA has a
special structure (say lower or upper block triangular form and/or a band structure).
In the case whed is a large and dense matrix, it is reasonable to make use of the
additional results furnished by the proceduyelic_form. The concept is then as
follows: calculate firstp, F, W, ... with cyclic_form. Then calculate = s, with
s_poly as before. SincE has a simple structure, the calculationSef = s(F) can
be organized in a very efficient way. Herewith calculate fin8jly= W o Sy o W1
by using the decompositioW = U o V. This concept is realized in the following
MAPLE procedure SND. The call SNR) with A € @"*" returns the semi-simple
partSs of A.

> SND:=proc(A::matrix)
> local n,i,j,k,1,ind,U,V,W,F,£,S,S1,U1,Wl, m,a, temp,p,s;
> n:=linalg[rowdim] (A);
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> U:=array(l..n,1..n); V:=array(l..n,1l..n); W:=array(l..n,1..n);
> Ul:=array(l..n,1..n); Wl:=array(l..n,l..n); F:=array(l..n,1l..n);
> p:=cyclic_form(a,’'x’,'U’,'V','wW','F’,’f’,"ind") ;
> g:=s_poly(p,x); l:=degree(s,x);
> Sl:=array(l..n,1l..n); S:=array(sparse,l..n,l..n);
> a:=coeff(s,x,1); for i to n do S[i,i]:=a od;
> for k from 1 to 1 do a:=coeff(s,x,1-k);
> for 1 ton do for j to n do
> if f[j]=1 then temp:=0;
> for m to j do temp:=temp+S[i,m]*F[m,j] od;
> S1[i,j]:=temp

> else

> S1[i,j1:=S[i,j+1] fi;
> if i1=j then S1[i,3j]:=S1[1i,jl+a fi;
> od; od; S:=copy(Sl);
> od;

> for 1 ton do for j to n do temp:=0;

> for m to n do temp:=temp+W[i,m]*S[m,j] od;

> Wl[i,j]:=temp od; od;

> for i ton do ULl[i,1]:=W1[i,1] od;

> for j from 2 to n do for 1 to n do temp:=W1[i,j];

> for k to j-1 do temp:=temp-Ul[i,k]*VI[k,j] od;

> Ul[i,j]:=temp od; od;

> l:=ind[n]; for i to n do S[i,n]:=U1[1,1]/U[n,1] od;

> for j to n-1 do l:=ind[n-j]; for i1 to n do temp:=U1[i,1];
> for k from n-j+1 to n do temp:=temp-S[i,k]*U[k,1] od;

> S[i,n-jl:=temp/U[n-j,1] od; od;

> S

> end:

Table 2 shows the computing time for the calculationSgffor some examples
A € 7" by using the procedure SND. The second column ‘inner structure’ shows
the structure of the Frobenius normal formAgfwhich has a strong influence on the
computing time. Herép1, ..., pr] means that the Frobenius normal formAofs
diaglcomp(py), ..., comp(pi)), where compp ;) denotes the companion matrix of
the monic polynomiap ;. The total computing time for SND is given in column t3. It
includes the computing time fehar_poly ands_poly which are shown separately
in the columns t1 and t2, respectively. t4 gives the computing time for the rational
Jordan normal fornd of A plus corresponding transformation matriggs C 1 by
using the normform package. Actually, the correct competition to t3 is not just t4,
since the time for evaluating the produigt = C o S; o C 1 must also be taken into
account. WherC, €1 are large and dense matrices, this enlarges t4 once more
considerably.
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Table 2

n Inner structure tl t2 t3 t4

10 [1°] 0.270 0.030 0.791 1.561
10 (w2, u3] 0.101 0.030 0.571 0.962
10 [, u?, u?] 0.090 0.170 0.500 1.022
15 w91 1.121 0.041 5.368 11.665
15 [v2, v3] 1.142 0.030 4.927 8.322
20 [110 8.463 0.050 34.089 81.147
20 w3, uv3] 5.057 0.511 21.161 37.242
20 (12, u?, u?, u?, u?] 2.093 0.050 9.434 18.315
25 RIS 32.667 1.122 131.339 322.664
25 [u2v2, u3v3 25.277 1.382 105.121 186.749
30 [v19] 91.161 0.281 367.879 896.359
30 [uv, u?v?, u3v3] 65.495 1.612 342.172 470.426

The examples have been calculated withy from (3.1). Similar results were ob-
tained with other choices af andv. In any of the treated cases, our ‘direct’ method
is faster than the roundabout way via the computation of the rational Jordan normal
form.

Finally, we show that how our method can be applied very successfully in the
case of meromorphic differential operators. Originally, this was the actual starting
point for our investigations. Fundamental papers in connection with the Jordan de-
composition of differential operators are [4,9]. A short presentation of the theoretic
background of the following investigations is to be found in [6,7].

We consider the (formal) differential operator

d O

LY = —zd—ZY—i-a)(z)oY, 0@) =) o o K" (3.3)
j=0

with a singularity of the first kind at 0. For the momentiebe any perfect field. An

important special case of (3.3) is

d
LY = _Zd_zY +(wo+zw1) oY, wp, w1 € K", (3.4)

The corresponding differential equaticsfiY = 0 is known as Birkhoff’s equation.
Special cases hereof are the confluent hypergeometric differential equation and the
Bessel equation.

The central problem in the study of (3.3) is to determine the structure of the fun-
damental solution¥ of the corresponding differential equatisfiY = 0. The really
interesting case arises whep has eigenvalues which differ by integetd0. It turns
out that this problem can be solved by calculating the Jordan decomposition of a
specific matrix.
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In [6] is shown that the operata? admits a generalized Jordan decomposition
and that the corresponding semi-simple péarE % » has the same structure &3
namely,

d S
SYi=—1p ¥ +o@oY, 0@ =Y Zoj, oj e K™, (3.5
j=0
In order to obtain the first + 1 coefficientsy, ..., o; of o, one considers the lower
triangular block-matrix
o 0 0 e 0
w1 wo—1 :
A=| ®» @ w-2 e K™ n=mk+1). (3.6)
Wk -1 i . i . . . O
Wk wp—1 S w1 wo—k
A has a band structure. Then (3.5) yields thathas the same band structure with
w; replaced by ;. Thus,oy, .. ., ox can be determined by calculating the first block

column ofS4. Considering the cade = Q this can principally be done by using the
procedure SND. However, since the size- m(k 4+ 1) of Ais in general very large,
it is better to make here an individual approach.

The characteristic polynomiglof Ain (3.6) is obviously

k
px) =[]+ (3.7)
j=0

whereq is the characteristic polynomial afy. The concept is then as follows: cal-
culate the firsg with char_poly and thenp with (3.7). The calculation of = s,

is carried out withs_poly as before. By the band structure Af the calculation

of S4 = s(A) requires only the calculation of the first block column. This concept
is realized in the followinguAPLE procedure ODE. The call OOE, k) with L =

[wo, ..., o/, wj € Q" (j =0,...,r) andr, k € N* calculates the firsk + 1
coefficientsoy, ..., or of o in (3.5).

> ODE:=proc(L::1list, k)

local r,m,n,p0,p,s,t,1,1,j,a,d,temp,A,S,S1;
r:=nops(L); m:=rowdim(L[1]); n:=m*(k+1);
p0:=char_poly(L[1],x); p:=p0;

for j to k do p0:=subs(x=x+1,p0); p:=p0*p; od;
p:=sort (expand (p)) ;

s:=s_poly(p,x); d:=degree(s,x);
A:=array(sparse,l..n,1l..n);

for t to r do for 1 to k+2-t do

vV V. V V V V V V
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Table 3
m Structure ofwg k t1 t2 t3
2 [x2] 4 0.191 0.300 0.561
2 [(x —2)(x +2)] 4 0.230 0.321 0.931
2 [x(x + 3)] 4 0.120 0.311 0.791
4 [(x2 +2)(x2 — 6x + 11)] 4 2.183 3.284 15.733
6 [x2, x2(x — 3)(x — )] 4 15.593 23.934 44.865
8 x(x —3), x4(x — 2)(x — 3)] 4 62.610 260.255 440.834
> for 1 tom do for j to m do
> if i=j and t=1 then temp:=1-1 else temp:=0 fi;
> Al (t-1+1-1)*m+1i, (1-1)*m+3j]:=L[t][1,]]-temp
> od; od;
> od; od;
> Sl:=array(l..n,1l..m); S:=array(sparse,l..n,l..m);
> for 1 from 0 to d do a:=coeff(s,x,d-1);
> for 1 to n do for j to m do
> if i=j then temp:=a else temp:=0 fi;
> for t to n do temp:=temp+A[i,t]*S[t,j] od;
> S1[i,j]l:=temp od; od;
> S:=copy(Sl);
> od;
> S
> end:

Table 3 shows the computing time for calculating the ftrst 1 coefficients of
(3.5) for some special cases of (3.4). The meaning of the columns is as fottows:
andk are as before; t1 gives the total computing time by using the procedure ODE;
t2 the total computing time by using SND for the corresponding maétrix (3.6);
t3 contains the computing time for the rational Jordan normal fdohthe sameA
plus transformation matrices, C~! by using the normform package.

The routine ODE is in any case much faster than the other routines.

A final remark concerning theAPLE programs might be useful in order to avoid
misunderstandings. The goal of this section was not to deliver a package of well-
implemented routines. The programs are rather coarse and bare of sophisticated tech-
niques. For example, no special techniques for handling fractions with large numbers
have been used. A professional implementation in particular of the routines SND and
ODE will furnish even much better results than those presented in the tables.

In the last section, we have restricted our considerations to thé<cas&. Anal-
ogous treatments in the cases wiiers an algebraic extension @f or a field of ra-
tional functions in one or more variables ogpor even in the non-zero characteristic
caselKk = Z/pZ, wherep is a prime number, are possible.
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