
Linear Algebra and its Applications 314 (2000) 75–89
www.elsevier.com/locate/laa

Construction of the Jordan decomposition by
means of Newton’s method

Dieter Schmidt
Fachbereich 6, Mathematik und Informatik, Universität GH Essen, 45117 Essen, Germany

Received 10 August 1998; accepted 13 March 2000

Submitted by H. Schneider

Abstract

Newton’s method is applied to construct the semi-simple part of the Jordan decomposi-
tion of an algebraic element in an arbitrary algebra and to derive an efficient algorithm for
its computation. Applications on the matrix case and on differential operators are discussed.
© 2000 Elsevier Science Inc. All rights reserved.

AMS classification: 15A21; 11Cxx; 34A20; 65Fxx

Keywords: Polynomial algorithms; Normal forms of operators; Meromorphic differential operators

1. Introduction

Let K be an arbitrary field andA an algebra overK with unit 1. Subject of our
interest is the following well-known result on the Jordan decomposition, e.g., see
[1,5,13].

Theorem 1.1. If K is a perfect field, then, for each algebraicA ∈ A, there exist
uniqueS,N ∈ K[A] such thatA = S + N, S is semi-simple and N is nilpotent.

We recall that a fieldK is perfectif and only if charK =: k > 0 implies that the
function K 3 z → zk ∈ K is surjective. In particular, by definition, every fieldK

E-mail address:dieter.schmidt@uni-essen.de (D. Schmidt).

0024-3795/00/$ - see front matter(2000 Elsevier Science Inc. All rights reserved.
PII: S 0 0 2 4 - 3 7 9 5 (0 0) 0 0 1 1 1 - 7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82656189?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

76 D. Schmidt / Linear Algebra and its Applications 314 (2000) 75–89

with charK = 0 and thus every subfield ofC is perfect. Obviously, every algebrai-
cally closed field is perfect.

An elementA ∈ A is calledalgebraicif there exists a polynomialp ∈ K[x]\{0}
such thatp(A) = 0; specifically,A ∈ A is calledsemi-simpleif there exists a square-
freep ∈ K[x]\{0} such thatp(A) = 0; finally,A ∈ A is callednilpotentif there ex-
ists an integer̀ ∈ N∗ such thatA` = 0. A polynomialp ∈ K[x] is calledsquare-free
if gcd{p,p′} = 1.

We remark that in the case whenK is algebraically closed andA is a subalgebra
of the matrix-algebraKn×n, thenS is semi-simple if and only ifS is diagonaliz-
able.

Since Theorem 1.1 has various applications, it is important to have efficient al-
gorithms for the computation ofS in terms ofA. The proof of the existence ofSas
presented in the book of Hoffman and Kunze [5] is constructive and yields direct
methods for computations. An algorithm, which is essentially based on these ideas,
is given by Levelt [10]. Unfortunately, it is—as the author remarks—rather slow.
The algorithm of Bourgoyne and Cushman [2] is faster, because higher derivatives
are used. An analysis of the proof of Hoffman and Kunze shows that it is related to
Newton’s method, but their ‘Ansatz’ for the solution prevents to obtain a convergence
rate as known from Newton’s algorithm. The same holds also for [2,10].

The main goal of this article is to show that Newton’s method can be applied
directly in the present situation and that the corresponding algorithm has a well-
known good convergence rate, namely, quadratic convergence. The results regarding
this matter are to be found in Proposition 2.1, yielding a new and short proof of the
existence of the Jordan decomposition and moreover a simple algorithm to construct
it. Techniques which use Newton’s method in similar situations are common, e.g., see
[3,11]. A further important goal of the article is to make the obtained Newton-type
algorithm efficient for calculations on a computer. This is achieved by reducing the
degree of the polynomials occurring in the iteration process in an optimal manner.
The result is our Theorem 2.2. Applications of this theorem on the matrix case and
on singular differential operators are treated in a separate section. Examples prove
the efficiency of our method.

The uniqueness statement of Theorem 1.1 is valid even in the case of an arbitrary
field K and follows rather directly, e.g., [5.13]. In the following, only the questions
of existence and construction will be treated. For that we consider an arbitraryp ∈
K[x]\{0} with p(A) = 0. Following [10], we pose herewith:

Problem 1.2. Find q, s ∈ K[x] such thatq square-free,q` = 0 modp for a suffi-
ciently largè ∈ N∗, x = s modq andq(s) = 0 modp.

If such polynomialsq, s are found, we can putS := s(A), N := A − S and then
haveq(S) = 0, N` = 0, which meansS semi-simple andN nilpotent. This shows,
in particular, that the general problem considered in Theorem 1.1 can be treated
completely on the level of polynomials. (For further details see [1,5,10,13].)

D. Schmidt / Linear Algebra and its Applications 314 (2000) 75–89 77

On the other hand, Problem 1.2 can be interpreted in the frame of the quotient-
algebraK[x]/p K[x], where it just means to find the Jordan decomposition for the
special elementx + p K[x]. Everysaccording to Problem 1.2 yieldss + p K[x] as
the semi-simple part of the Jordan decomposition ofx + p K[x]. By the uniqueness
of the Jordan decomposition follows then, that there exists a uniquesp ∈ K[x] with
degree(sp) < degree(p) such thatsp + p K[x] = s + p K[x]. sp is the remainder of
sdivided byp.

Problem 1.2 can be treated in two steps: first find for a givenp an appropriateq
and afterwards determines in dependence of thisq.

For discussing the first step, we consider an arbitrary non-constantp ∈ K[x]. We
can assume thatp is monic, which means that the leading coefficient is 1. By the
unique factorisation theorem

p =
∏
q∈σ

qµ(q), (1.1)

whereσ is a finite subset of the monic prime polynomials andµ : σ → N∗. Defining

p̂ :=
∏
q∈σ

q, `p := max
q∈σ

µ(q), (1.2)

we obviously havêp`p = 0 modp. p̂ will be square-free if and only if everyq ∈ σ

is square-free. However, a prime polynomialq is square-free if and only ifq ′ /= 0,
which in particular holds true whenK is a perfect field. In the case of charK = 0
this follows immediately. In this case we also have the formula

p̂ = p/gcd{p,p′}. (1.3)

The second step in solving Problem 1.2 is the central subject of Section 2. In [10]
this step is settled with the following:

Lemma 1.3. Let q ∈ K[x] be square-free and̀ ∈ N∗. Then there existss ∈ K[x]
such thatx = s modq andq(s) = 0 modq`.

Our investigations using Newton’s method also yield a new proof of this lemma.

2. Newton’s algorithm for computing the Jordan splitting

Let K be an arbitrary field. We consider in the following a fixed non-constant
monicp ∈ K[x] and assume that̂p is square-free. Then̂p`p = 0 modp.

According to Section 1, we are interested in solving the equation

p̂(u) = 0 modp for u ∈ M := x + p̂ K[x]. (2.1)

Every solutionsof (2.1) yieldssp as the remainder ofsdivided byp.
Since gcd{p̂, p̂′} = 1, there exist uniquea, b ∈ K[x] with degree(b) < degree(p̂)

such that

78 D. Schmidt / Linear Algebra and its Applications 314 (2000) 75–89

1 = ap̂ + bp̂′. (2.2)

Herewith we introduce the operator

U : K[x] 3 u → u − b(u) p̂(u) ∈ K[x]. (2.3)

Since we haveb(u) p̂′(u) = 1 modp̂(u) by (2.2), this is the correct operator to for-
mulate Newton’s algorithm for Eq. (2.1). We discuss the mapping properties ofU.

For arbitraryu, h ∈ K[x] there obviously exists a unique polynomialp̃[u, h] such
that

p̂(u + h) = p̂(u) + h p̂′(u) + h2 p̃[u, h]. (2.4)

Inserting hereh = −b(u) p̂(u) and then using (2.2) yields

p̂(U(u)) = p̂(u)2 W(u) (2.5)

with

W(u) := a(u) + b(u)2 p̃[u,−b(u) p̂(u)] ∈ K[x].
Applying (2.4) further withu = x andh ∈ p̂ K[x] yields

p̂(u) ∈ p̂ K[x] (u ∈ M). (2.6)

With the definition ofU then follows at once

U(M) ⊂ M. (2.7)

We now consider an arbitraryu ∈ M. Then by (2.7)

un := Un(u) ∈ M (n ∈ N), (2.8)

and further by (2.6) and (2.5)

p̂(un) = 0 modp̂2n

(n ∈ N). (2.9)

Here choosingn = kp, wherekp ∈ N is uniquely determined by

2kp−1 < `p 6 2kp , (2.10)

yields:

Proposition 2.1. Ukp (u) is a solution of(2.1) for everyu ∈ M, in particular, for
u = x.

Thus, we have found solutions of our problem by Newton’s algorithm, which
moreover has the expected convergence rate. Unfortunately, the degrees of the poly-
nomialsun in (2.8) will in general become extremly large whenn increases, which
brings about that the computation ofU(un) will take a very long time. This makes
the above procedure unpracticable. In the following, we describe a modification of
the procedure where the degree of the polynomials within the iteration process is
limited by the degree ofp.

D. Schmidt / Linear Algebra and its Applications 314 (2000) 75–89 79

We define, forn ∈ N,

εn := gcd
{
p, p̂2n}

, Mn := {u ∈ M | p̂(u) = 0 modεn}. (2.11)

One verifies easily

ε0 = p̂, εn+1 = gcd
{
p, ε 2

n

}
(n ∈ N), εkp = p, (2.12)

in particularεn+1 = 0 modεn. This implies with (2.6) and (2.5) that

M0 = M, Mn+1 ⊂ Mn, U(Mn) ⊂ Mn+1 (n ∈ N), (2.13)

and moreover for the solution manifold of (2.1)

Mkp = {u ∈ M | p̂(u) = 0 modp}. (2.14)

We define further forn ∈ N andu ∈ Mn bypn(u) ∈ K[x] the remainder ofu divided
by εn, which is uniquely determined through the relationu = tεn + pn(u) where
t ∈ K[x] and degree(pn(u)) < degree(εn). Using (2.4) once more yields

p̂(pn(u)) = p̂(u) − tεnp̂
′(u) + t2ε2

np̃[u,−tεn] = 0 modεn.

Therefore, for alln ∈ N,

pn(u) ∈ Mn,

degree(pn(u)) < degree(εn) 6 degree(p) (u ∈ Mn). (2.15)

Now considering for an arbitraryu ∈ M the recursively defined sequence

u0 := U0(u) := p0(u),

un+1 := Un+1(u) := (pn+1 ◦ U)(un) (n ∈ N),
(2.16)

we have

un ∈ Mn, degree(un) < degree(p) (n ∈ N). (2.17)

This yields by (2.14) withkp according to (2.10):

Theorem 2.2. Ukp (u) = sp for everyu ∈ M, in particular, for u = x.

The construction of theun in (2.16) suggests that the following representation is
valid:

Remark 2.3. Let degree(p̂) > 1. Then forn ∈ N

un := Un(x) = x −
n−1∑
j=0

αj εj ,

where theαj can be computed recursively by

αn = remainder ofb(un) p̂(un)/εn divided byεn+1/εn (n ∈ N).

In particular, degree(αn) < degree(εn+1/εn) < degree(p) and thusαn = 0 n > kp.

80 D. Schmidt / Linear Algebra and its Applications 314 (2000) 75–89

The proof follows by induction. Forn = 0 the statementU0(x) = p0(x) = x fol-
lows directly by means ofε0 = p̂ with the assumption degree(p̂) > 1. Now letn ∈
N and assume that the representation to be valid forun ∈ Mn. With p̂(un) = rnεn,
rn ∈ K[x] follows U(un) = un − b(un)rnεn. The unique representationb(un)rn =
tn(εn+1/εn) + αn with tn, αn ∈ K[x], degree(αn) < degree(εn+1/εn) yields then

U(un) =

x −

n∑
j=0

αjεj

 − tnεn+1.

Since the degree of the term in brackets is less than the degree ofεn+1, we finally
obtain thatun+1 = (pn+1 ◦ U)(un) is equal to this term.

The special situation in Lemma 1.3 is settled with the following:

Remark 2.4. Let q ∈ K[x] be square-free and̀∈ N∗. For p := q` we obviously
havep̂ = q and`p = `. Thus by Theorem 2.2,Uk(x) = sp with k ∈ N determined
by 2k−1 < ` 6 2k. Moreover, ifN∗ 3 n < `, thensqn is the remainder ofsp divided
by qn.

The following remark clarifies, in particular, the connection with the correspond-
ing results in [2,5,10].

Remark 2.5. Let τ (n) ∈ N with τ (0) = 1 andτ (n) < τ(n + 1) 6 2τ (n) (n ∈ N).
Considerεn := gcd{p, p̂τ(n)}. Obviously,ε0 = p̂, εn+1 = 0 modεn andεk = p for
k ∈ N∗ with τ (k − 1) < `p 6 τ (k). Then, in analogy to Theorem 2.2,Uk(u) = sp
holds for everyu ∈ M. Moreover, the corresponding representation in Remark 2.3 is
valid.

Our choiceτ (n) = 2n is optimal since in this case the best possible convergence
rate is realized. The choiceτ (n) = n + 1 yields the weakest convergence rate. In
this case, one needs`p − 1 steps of iteration to obtainsp. The series representation
in Remark 2.3 becomes then

sp = x −
`p−2∑
j=0

α̃j p̂
j+1

with an analogous formula for thẽαj . This is exactly the ‘Ansatz’ for the solution
considered in [2,5,10].

We close this section with an example of a polynomialp, wheresp can be deter-
mined explicitly. It is a straightforward generalization of an example in [2]. In this
special case, the convergence rate is even better than in Theorem 2.2 and Remark 2.3
if m > 2.

Example 2.6. Let charK = k > 0, m = kν , ν ∈ N∗ and` ∈ N. We considerq :=
xm + x + 1 andp := q`. Thenp̂ = q, `p = ` and

D. Schmidt / Linear Algebra and its Applications 314 (2000) 75–89 81

sp = x −
n−1∑
j=0

(−1)jqmj

with n ∈ N determined bymn−1 < ` 6 mn.

The proof follows by induction considering the Newton iterations and using the
formula

q(u + h)=(u + h)m + u + h + 1 = um + hm + u + h + 1

=q(u) + h + hm,

which is valid whenm = kν .

3. Applications and programs

First we give a program inMAPLE for the calculation ofsp in the caseK = Q

using the algorithm in Theorem 2.2. The program begins with the calculation ofp̂

as in (1.3) and determines after thata, b as in (2.2). Then, starting with

ε0 = p̂, u0 = rem(x, ε0),

the quantities

εn+1 = gcd
{
p, ε2

n

}
,

ũn = rem(b(un) p̂(un), εn+1),

un+1 = un − ũn,

αn = quo(ũn, εn)

are recursively calculated forn ∈ N until εn = p. The final value ofun yields sp.
When the degree ofp is large, the evaluation of̃un = rem(b(un) p̂(un), εn+1) takes,
in general, a long time. Thus, it is recommendable to evaluate these quantities by
using the Horner form and taking the remainder byεn+1 in each step. The call
s_poly(p,x) returnssp = sp(x).

> s_poly:=proc(p,x)
> local d,p1,r,q,q1,a,b,v,s,ss,e,ee,n,l,j;
> d:=degree(p,x); p1:=diff(p,x); r:=gcd(p,p1); q:=quo(p,r,x);
> q1:=diff(q,x); gcdex(q,q1,x,’a’,’b’);
> v:=sort(expand(q*b),x); n:=degree(v,x);
> e:=q; l:=degree(e,x); s:=rem(x,e,x);
> while l < d do ee:=gcd(p,e*e); ss:=coeff(v,x,n);
> for j from 1 to n do ss:=coeff(v,x,n-j)+rem(ss*s,ee,x); od;
> s:=s-ss; e:=ee; l:=degree(e,x) od;

82 D. Schmidt / Linear Algebra and its Applications 314 (2000) 75–89

Table 1

(k, `,m) (3, 4, 2) (5, 2, 4) (6, 8, 4) (7, 5, 11) (9, 11, 9) (16, 13, 9) (15, 15, 15)

degree(p)/kp 20/2 20/3 40/3 40/4 60/4 80/4 90/4
Time (s) 0.260 0.982 5.167 9.544 23.504 35.090 42.982

> s:=sort(expand(s));
> s
> end:

As an example, we consider the polynomials

p = ukv`wm with u = x2 − 2, v = x3 − 3, w = x − 7 (3.1)

for some special values ofk, `,m. Table 1 shows the computing time for the calcu-
lation of sp by using the procedures_poly.

When using (an improved version of) the original Levelt algorithm the computing
time for the first two cases was 98 and 280 s, respectively.

All calculations were done by usingMAPLE V.5 under Windows NT on a PC with
Pentium 300MMX processor and 64 MB RAM.

In the following, we discuss how the Jordan decomposition of matrices can be
calculated by using the previous results. As already mentioned in Section 1, the semi-
simple partS =: SA of the Jordan decomposition of a matrixA can be obtained by
the following scheme:

A → p := characteristic polynomial ofA → s := sp → S := s(A). (3.2)

In particular, forA ∈ Qn×n, all of these three steps can principally be settled by us-
ing MAPLE procedures: the first byp:=linalg[charpoly](A,x), the second by the
procedures:=s_poly(p,x) and the last step byS:=evalm(subs(x=A,s)). Unfor-
tunately,MAPLE’s builtin procedurep:=linalg[charpoly](A,x) is extremly slow.
Furthermore, in particular, in the case of a big (say size 20× 20) and dense matrixA,
the computation ofS := s(A) by usingevalm(subs(x=A,s)) takes a large amount
of time. Thus, though the routines_poly is very fast, the calculation ofSby this way
remains unsatisfactory, in particular, as other strong algorithms are available. A good
reference in this connection is the ‘normform’ package of Mulders and Levelt in the
theMAPLE V share library. This package contains a very fast routine to calculate the
rational Jordan normal formJ of a matrixA and the corresponding transformation
matricesC,C−1 such thatC−1 ◦ A ◦ C = J . Since the semi-simple partSJ of J can
be obtained directly fromJ by taking the diagonal blocks, one gets then immediately
SA = C ◦ SJ ◦ C−1.

The algorithms of the normform package are described in [12]. From this it fol-
lows that the computation of the rational Jordan normal formJ is carried out in three
steps. First (based on the idea of cyclic vectors) a special ‘cyclic form’F = FA and
the corresponding transformation matricesW,W−1 such thatW−1 ◦ A ◦ W = F are

D. Schmidt / Linear Algebra and its Applications 314 (2000) 75–89 83

computed. Then (by using the usual routine for computing the Smith normal form)
the Frobenius normal form and after that finally the rational Jordan normal form
(each with corresponding transformation matrices) are determined. Since the compu-
tation of the Smith normal form takes a large amount of time, it will be of advantage
in any case if this step can be avoided (see [12, p. 95]).

The calculation of the ‘cyclic form’F plus transformation matricesW,W−1 is
carried out in theMAPLE procedure ‘normform/cyclic_vectors’.F has the block
structureF = (Fij), whereFij = 0 for i > j , the diagonal blocksFjj are compan-
ion matrices of monic polynomialspj andFij for i < j have zero columns except
(at most) for the last column. From this follows immediately that the product of the
pj yields the characteristic polynomial ofF, which is also the characteristic poly-
nomial ofA. It is thus reasonable to modify the ‘normform/cyclic_vectors’ program
of Levelt and Mulders slightly in order to obtain a fast routine for the calculation
of the characteristic polynomial. The followingMAPLE procedurecyclic_form re-
alizes this idea. The callcyclic_form(A,x,’U’,’V’,’W’,’F’,’f’,’ind’) with
A ∈ Qn×n computes and returns the characteristic polynomialp = p(x) of A. Be-
sides that it computes the ‘cyclic normal form’F, the transformation matrixW, an
LU-type decomposition,W = U ◦ V and the integer-valued vectorsf, ind which
are required for later calculations. These quantities are assigned to the variables
U,V,W,F, f, ind in the argument ofcyclic_form.

> cyclic_form:=proc(A,x,U,V,W,F,f,ind)
> local n,i,j,k,r,r1,r2,u,v,w,m,a,temp,p,q,p0;
> n:=linalg[rowdim](A);
> U:=array(1..n,1..n); V:=array(1..n,1..n);
> W:=array(1..n,1..n); F:=array(1..n,1..n);
> u:=array(1..n); v:=array(1..n); w:=array(1..n); q:=array(1..n);
> ind:=array(sparse,1..n); f:=array(sparse,1..n);
> r:=0; p:=1;
> while r < n do r1:=r;
> for i to n while ind[i] <> 0 do od;
> for j to n do w[j]:=0 od; w[i]:=1;
> do u:=copy(w);
> for i to n do v[i]:=0 od;
> for i to n do k:=ind[i];
> if k <> 0 and u[i] <> 0 then
> a:=u[i]/U[i,k]; u[i]:=0;
> for j from i+1 to n do u[j]:=u[j]-a*U[j,k] od;
> v[k]:=a fi;
> od;
> i:=1; while i<=n and u[i]=0 do i:=i+1 od;
> if i <= n then r:=r+1; ind[i]:=r;
> for j to n do W[j,r]:=w[j] od;

84 D. Schmidt / Linear Algebra and its Applications 314 (2000) 75–89

> for j from i to n do U[j,r]:=u[j] od;
> for j to r-1 do V[j,r]:=v[j] od;
> for i to n do temp:=0;
> for j to n do temp:=temp+A[i,j]*w[j] od;
> u[i] := temp od; w:=copy(u)
> else break fi
> od;
> r2:=r-r1; f[r]:=1;
> for j to r do temp:=v[r+1-j];
> for m from r+2-j to r do temp:=temp-V[r+1-j,m]*q[m] od;
> q[r+1-j]:=temp; F[r+1-j,r]:=temp od;
> p0:=sort(x^r2-sum(’q[r+1-j]*x^(r2-j)’,(’j’)=1..r2));
> p:=sort(expand(p*p0))
> od;
> p
> end:

The following MAPLE procedurechar_poly is just a simplified call to
cyclic_form. The callchar_poly(A,x) with A ∈ Qn×n returns the characteristic
polynomialp = p(x) of A.

> char_poly:=proc(A,x)
> cyclic_form(A,’x’,’U’,’V’,’W’,’F’,’f’,’ind’);
> end:

With reference to [8], one of the referees pointed out that the idea of computing
the characteristic polynomial by using the cyclical form is classical.

The calculation ofSA according to (3.2) by usingchar_poly for the first,s_poly
for the second and the Horner form for the third step yields quite satisfactory results
in the case whenA is not too large (say size<10) or in the case whenA has a
special structure (say lower or upper block triangular form and/or a band structure).
In the case whenA is a large and dense matrix, it is reasonable to make use of the
additional results furnished by the procedurecyclic_form. The concept is then as
follows: calculate firstp,F,W, . . . with cyclic_form. Then calculates = sp with
s_poly as before. SinceF has a simple structure, the calculation ofSF = s(F) can
be organized in a very efficient way. Herewith calculate finallySA = W ◦ SF ◦ W−1

by using the decompositionW = U ◦ V . This concept is realized in the following
MAPLE procedure SND. The call SND(A) with A ∈ Qn×n returns the semi-simple
partSA of A.

> SND:=proc(A::matrix)
> local n,i,j,k,l,ind,U,V,W,F,f,S,S1,U1,W1,m,a,temp,p,s;
> n:=linalg[rowdim](A);

D. Schmidt / Linear Algebra and its Applications 314 (2000) 75–89 85

> U:=array(1..n,1..n); V:=array(1..n,1..n); W:=array(1..n,1..n);
> U1:=array(1..n,1..n); W1:=array(1..n,1..n); F:=array(1..n,1..n);
> p:=cyclic_form(A,’x’,’U’,’V’,’W’,’F’,’f’,’ind’);
> s:=s_poly(p,x); l:=degree(s,x);
> S1:=array(1..n,1..n); S:=array(sparse,1..n,1..n);
> a:=coeff(s,x,l); for i to n do S[i,i]:=a od;
> for k from 1 to l do a:=coeff(s,x,l-k);
> for i to n do for j to n do
> if f[j]=1 then temp:=0;
> for m to j do temp:=temp+S[i,m]*F[m,j] od;
> S1[i,j]:=temp
> else
> S1[i,j]:=S[i,j+1] fi;
> if i=j then S1[i,j]:=S1[i,j]+a fi;
> od; od; S:=copy(S1);
> od;
> for i to n do for j to n do temp:=0;
> for m to n do temp:=temp+W[i,m]*S[m,j] od;
> W1[i,j]:=temp od; od;
> for i to n do U1[i,1]:=W1[i,1] od;
> for j from 2 to n do for i to n do temp:=W1[i,j];
> for k to j-1 do temp:=temp-U1[i,k]*V[k,j] od;
> U1[i,j]:=temp od; od;
> l:=ind[n]; for i to n do S[i,n]:=U1[i,l]/U[n,l] od;
> for j to n-1 do l:=ind[n-j]; for i to n do temp:=U1[i,l];
> for k from n-j+1 to n do temp:=temp-S[i,k]*U[k,l] od;
> S[i,n-j]:=temp/U[n-j,l] od; od;
> S
> end:

Table 2 shows the computing time for the calculation ofSA for some examples
A ∈ Zn×n by using the procedure SND. The second column ‘inner structure’ shows
the structure of the Frobenius normal form ofA, which has a strong influence on the
computing time. Here[p1, . . . , pk] means that the Frobenius normal form ofA is
diag(comp(p1), . . . , comp(pk)), where comp(pj) denotes the companion matrix of
the monic polynomialpj . The total computing time for SND is given in column t3. It
includes the computing time forchar_poly ands_poly which are shown separately
in the columns t1 and t2, respectively. t4 gives the computing time for the rational
Jordan normal formJ of A plus corresponding transformation matricesC, C−1 by
using the normform package. Actually, the correct competition to t3 is not just t4,
since the time for evaluating the productSA = C ◦ SJ ◦ C−1 must also be taken into
account. WhenC, C−1 are large and dense matrices, this enlarges t4 once more
considerably.

86 D. Schmidt / Linear Algebra and its Applications 314 (2000) 75–89

Table 2

n Inner structure t1 t2 t3 t4

10 [u5] 0.270 0.030 0.791 1.561
10 [u2, u3] 0.101 0.030 0.571 0.962
10 [u, u2, u2] 0.090 0.170 0.500 1.022
15 [v5] 1.121 0.041 5.368 11.665
15 [v2, v3] 1.142 0.030 4.927 8.322
20 [u10] 8.463 0.050 34.089 81.147
20 [v3, uv3] 5.057 0.511 21.161 37.242
20 [u2, u2, u2, u2, u2] 2.093 0.050 9.434 18.315
25 [u5v5] 32.667 1.122 131.339 322.664
25 [u2v2, u3v3] 25.277 1.382 105.121 186.749
30 [v10] 91.161 0.281 367.879 896.359
30 [uv, u2v2, u3v3] 65.495 1.612 342.172 470.426

The examples have been calculated withu, v from (3.1). Similar results were ob-
tained with other choices ofu andv. In any of the treated cases, our ‘direct’ method
is faster than the roundabout way via the computation of the rational Jordan normal
form.

Finally, we show that how our method can be applied very successfully in the
case of meromorphic differential operators. Originally, this was the actual starting
point for our investigations. Fundamental papers in connection with the Jordan de-
composition of differential operators are [4,9]. A short presentation of the theoretic
background of the following investigations is to be found in [6,7].

We consider the (formal) differential operator

LY := −z
d

dz
Y + ω(z) ◦ Y, ω(z) =

∞∑
j=0

zjωj , ωj ∈ Km×m (3.3)

with a singularity of the first kind at 0. For the moment letK be any perfect field. An
important special case of (3.3) is

LY := −z
d

dz
Y + (ω0 + zω1) ◦ Y, ω0, ω1 ∈ Km×m. (3.4)

The corresponding differential equationLY = 0 is known as Birkhoff’s equation.
Special cases hereof are the confluent hypergeometric differential equation and the
Bessel equation.

The central problem in the study of (3.3) is to determine the structure of the fun-
damental solutionsYof the corresponding differential equationLY = 0. The really
interesting case arises whenω0 has eigenvalues which differ by integers/= 0. It turns
out that this problem can be solved by calculating the Jordan decomposition of a
specific matrix.

D. Schmidt / Linear Algebra and its Applications 314 (2000) 75–89 87

In [6] is shown that the operatorL admits a generalized Jordan decomposition
and that the corresponding semi-simple partS = SL has the same structure asL,
namely,

SY := −z
d

dz
Y + σ(z) ◦ Y, σ(z) =

∞∑
j=0

zjσj , σj ∈ Km×m. (3.5)

In order to obtain the firstk + 1 coefficientsσ0, . . . , σk of σ , one considers the lower
triangular block-matrix

A :=

ω0 0 0 · · · 0

ω1 ω0 − 1
...

...
...

ω2 ω1 ω0 − 2
...

...
. ..

. . .
. . .

...

ωk−1
...

...
. . . 0

ωk ωk−1 · · · ω1 ω0 − k

∈ Kn×n, n = m(k + 1). (3.6)

A has a band structure. Then (3.5) yields thatSA has the same band structure with
ωj replaced byσj . Thus,σ0, . . . , σk can be determined by calculating the first block
column ofSA. Considering the caseK = Q this can principally be done by using the
procedure SND. However, since the sizen = m(k + 1) of A is in general very large,
it is better to make here an individual approach.

The characteristic polynomialp of A in (3.6) is obviously

p(x) =
k∏

j=0

q(x + j), (3.7)

whereq is the characteristic polynomial ofω0. The concept is then as follows: cal-
culate the firstq with char_poly and thenp with (3.7). The calculation ofs = sp
is carried out withs_poly as before. By the band structure ofA, the calculation
of SA = s(A) requires only the calculation of the first block column. This concept
is realized in the followingMAPLE procedure ODE. The call ODE(L, k) with L =
[ω0, . . . , ωr], ωj ∈ Qm×m (j = 0, . . . , r) and r, k ∈ N∗ calculates the firstk + 1
coefficientsσ0, . . . , σk of σ in (3.5).

> ODE:=proc(L::list,k)
> local r,m,n,p0,p,s,t,l,i,j,a,d,temp,A,S,S1;
> r:=nops(L); m:=rowdim(L[1]); n:=m*(k+1);
> p0:=char_poly(L[1],x); p:=p0;
> for j to k do p0:=subs(x=x+1,p0); p:=p0*p; od;
> p:=sort(expand(p));
> s:=s_poly(p,x); d:=degree(s,x);
> A:=array(sparse,1..n,1..n);
> for t to r do for l to k+2-t do

88 D. Schmidt / Linear Algebra and its Applications 314 (2000) 75–89

Table 3

m Structure ofω0 k t1 t2 t3

2 [x2] 4 0.191 0.300 0.561
2 [(x − 2)(x + 2)] 4 0.230 0.321 0.931
2 [x(x + 3)] 4 0.120 0.311 0.791
4 [(x2 + 2)(x2 − 6x + 11)] 4 2.183 3.284 15.733
6 [x2, x2(x − 3)(x − 4)] 4 15.593 23.934 44.865
8 [x(x − 3), x4(x − 2)(x − 3)] 4 62.610 260.255 440.834

> for i to m do for j to m do
> if i=j and t=1 then temp:=l-1 else temp:=0 fi;
> A[(t-1+l-1)*m+i,(l-1)*m+j]:=L[t][i,j]-temp
> od; od;
> od; od;
> S1:=array(1..n,1..m); S:=array(sparse,1..n,1..m);
> for l from 0 to d do a:=coeff(s,x,d-l);
> for i to n do for j to m do
> if i=j then temp:=a else temp:=0 fi;
> for t to n do temp:=temp+A[i,t]*S[t,j] od;
> S1[i,j]:=temp od; od;
> S:=copy(S1);
> od;
> S
> end:

Table 3 shows the computing time for calculating the firstk + 1 coefficients of
(3.5) for some special cases of (3.4). The meaning of the columns is as follows:m

andk are as before; t1 gives the total computing time by using the procedure ODE;
t2 the total computing time by using SND for the corresponding matrixA in (3.6);
t3 contains the computing time for the rational Jordan normal formJ of the sameA
plus transformation matricesC, C−1 by using the normform package.

The routine ODE is in any case much faster than the other routines.
A final remark concerning theMAPLE programs might be useful in order to avoid

misunderstandings. The goal of this section was not to deliver a package of well-
implemented routines. The programs are rather coarse and bare of sophisticated tech-
niques. For example, no special techniques for handling fractions with large numbers
have been used. A professional implementation in particular of the routines SND and
ODE will furnish even much better results than those presented in the tables.

In the last section, we have restricted our considerations to the caseK = Q. Anal-
ogous treatments in the cases whenK is an algebraic extension ofQ or a field of ra-
tional functions in one or more variables overQ or even in the non-zero characteristic
caseK = Z/pZ, wherep is a prime number, are possible.

D. Schmidt / Linear Algebra and its Applications 314 (2000) 75–89 89

Acknowledgement

I thank the referees for their valuable criticism concerning the discussion of the
applications, in particular for pointing out the role and the technique of efficiently
computing the characteristic polynomial.

References

[1] N. Bourbaki, Éléments de Mathématique; Algèbre, Hermann, Paris, 1958 (Chapter 7, Section 5;
Chapter 8, Section 9).

[2] N. Burgoyne, R. Cushman, The decomposition of a linear mapping, Linear Algebra Appl. 8 (1974)
515–519.

[3] K.O. Geddes, S.R. Czapor, G. Labahn, Algorithms for Computer Algebra, Kluwer Academic
Publishers, Dordrecht, 1992 (Chapter 4, Section 9).

[4] R. Gerard, A.H.M. Levelt, Sur les connexions a singularités régulières dans le cas de plusieurs
variables, Funkcial. Ekvac. 19 (1973) 149–173.

[5] K. Hoffman, R. Kunze, Linear Algebra, second ed., Prentice-Hall, Englewood Cliffs, NJ, 1971
(Chapter 7, Section 7).

[6] P.F. Hsieh, M. Kohno, Y. Sibuya, Construction of a fundamental matrix solution at a singular point
of the first kind by means of the SN decomposition of matrices, Linear Algebra Appl. 239 (1996)
29–76.

[7] P.F. Hsieh, Y. Sibuya, Basic Theory of Ordinary Differential Equations, Springer, New York, 1999
(Chapter 5, Sections 3 and 4).

[8] W. Keller-Gehring, Fast algorithms for the characteristical polynomial, Theoret. Comput. Sci. 36
(1985) 309–317.

[9] A.H.M. Levelt, A descent theorem for differential operators of the first kind, Proc. K. Ned. Akad.
Wet., Amsterdam Ser. A 81 (2) (1978) 260–268.

[10] A.H.M. Levelt, The semi-simple part of a matrix, Algoritmen In De Algebra, A Seminar on Alge-
braic Algorithms, University of Nijmegen, 1993.

[11] J.D. Lipson, Newton’s Method: A Great Algebraic Algorithm, in: R.D. Jenks (Ed.), Proceedings of
the SYMSAC ’76, ACM, New York, 1976, pp. 260–270.

[12] T. Mulders, Computation of normal forms for matrices, Algoritmen In De Algebra, A Seminar on
Algebraic Algorithms, University of Nijmegen, 1993.

[13] T.A. Springer, Linear Algebraic Groups, Birkhäuser, Basel, 1981 (Chapter 2, Section 4).

