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Abstract

Essays on information acquisition

Weijie Zhong

This dissertation studies information acquisition when the choice of information is fully

flexible. Throughout the dissertation, I consider a theoretical framework where a decision

maker (DM) acquires costly information (signal process) about the payoffs of different al-

ternatives before making a choice. In Chapter 1 ., I solve a general model where the DM

pays a cost that depends on the rate of uncertainty reduction and discounts delayed pay-

offs. The main finding is that the optimal signal process resembles a Poisson signal —

the signal arrives occasionally according to a Poisson process, and it drives the inferred

posterior belief to jump discretely. The optimal signal is chosen to confirm the DM’s

prior belief of the most promising state. Once seeing the signal, the decision maker is

discretely surer about the state and stops learning immediately. When the signal is oth-

erwise absent, the decision maker becomes gradually less sure about the state, and con-

tinues learning by seeking more precise but less frequently arriving signals. In Chapter 2 .,

I study the sequential implementation of a target information structure. I characterize

the set of decision time distributions induced by all signal processes that satisfy a per-

period learning capacity constraint on the rate of uncertainty reduction. I find that all

decision time distributions have the same mean, and the maximal and minimal elements

by mean-preserving spread order are exponential distribution and deterministic distri-

bution. The result implies that when the time preference is risk loving (e.g. standard or

hyperbolic discounting), Poisson signal is optimal since it induces the riskiest exponential

decision time distribution. When time preference is risk neutral (e.g. constant delay cost),

all signal processes are equally optimal. In Chapter 3., I relax the assumption on informa-

tion cost by assuming that the measure of signal informativeness is an indirect measure



from sequential minimization. I first show that an indirect information measure is sup-

ported by sequential minimization iff it satisfies: 1) monotonicity in Blackwell order, 2)

sub-additivity in compound experiments and 3) linearity in mixing with no information.

Then I study a dynamic information acquisition problem where the cost of information

depends on an indirect information measure and the delay cost is fixed (the DM is time-

risk neutral). The optimal strategy is to acquire Poisson type signals. The result implies

that when the cost of information is measured by an indirect measure, Poisson signals

are intrinsically cheaper than other signal processes. Chapter 4. introduces a set of useful

technical results on constrained information design that is used to derive the main results

in the first three chapters.
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Introduction

This dissertation considers the following question: what is the optimal way to acquire

information over time to learn about the payoffs of different options? This is a very clas-

sic question that has been extensively studied in the literature starting from Wald (1947.)

and Arrow, Blackwell, and Girshick (1949.). However, we still do not have a complete

answer to this question, as the conventional approaches have been searching within very

limited types of information, e.g. many models consider only Brownian motion type in-

formation. Typically, papers in the literature study the optimal choice of “when to stop

learning” taken a specific process of information as given, or the optimal control of a

specific parameter of a given parametric family of information processes.

The goal of this dissertation is to answer the question by searching among all con-

ceivable types of information, and completely endogenize the information acquisition

strategy.

The practical motivation for permitting such flexibility in the type of information is

that in practice the process of information acquisition can often be controlled in multi-

ple aspects. The rapid development in statistics, data science and computer science is

making information acquisition increasingly more flexible. For example, nowadays if a

tech company wants to figure out the market’s response to an internal innovation, it can

launch an A-B test on an online marketing platform, fine-tune hundreds of parameters of

the test design and change them adaptively when data arrives. Another example is that

FDA recently published its guidance of adaptive design for clinical trials (see FDA (2018.)).

The guidance states that clinical trial designs with adaptive sample size, adaptive dose

selection and response-adaptive randomization might improve the efficiency of the trials.

In these examples, there is no a priori reason why some ad hoc restrictions on the type of

information, e.g. the acquired data is generated from a normal distribution, are satisfied.

1



The optimal information acquisition process might generate skewed and fat-tailed data,

which can only be fully covered in a completely flexible information acquisition model.

The theoretical framework for the entire dissertation is a sequential decision making

model building upon the Wald framework. I consider a decision maker who makes a

one-time choice from a set of actions, whose payoffs depend on a state unknown to the

decision maker. The state is initially selected by the nature and remains fixed over time.

At any instant of time, the decision maker chooses whether to stop learning and select an

action or continue learning by choosing nonparametrically an informative signal structure

for the next moment of time. Both delaying the decision and acquiring information are

costly. Of course, hardly any prediction can be made in a model with such generality.

I will proceed by solving this optimization problem, keeping the full generality in the

decision problem and information acquisition, but imposing three different sets of more

restrictive assumptions on the cost of delay and the cost of information in the following

three chapters.

In Chapter 1 ., entitled “Optimal dynamic information acquisition”, I study the case that

(i) the decision maker discounts delayed utilities in a standard way, (ii) the cost of in-

formation depends on how fast the uncertainty about the unknown state is decreasing

(also known as posterior separability). The goal of Chapter 1 . is to fully solve for the op-

timal dynamic information acquisition strategy in a fairly general model with standard

assumptions (discounting and posterior separable cost structure).

There are two main results. The first result states that although the model is non-

parametric and allows fully flexible strategies, the optimal information acquisition strat-

egy modeled as the induced posterior belief process can be restricted to a simple jump-

diffusion process without loss. The second result fully characterizes the optimal belief pro-

cess, which involves only a compensated Poisson jump process almost surely. In other

words, it is optimal to conduct experiments that generate skewed and fat-tailed data.

2



Such experiment can be a stress test against the most promising state: Passing the test

is rare but a pass is a conclusive proof that the state is very likely and a corresponding

action should be adopted immediately. Otherwise, failing the test does not immediately

end the test. I also show that conditional on failures, the future tests have higher difficulty

— passing rate is lower but a pass is more precise.

The analysis in Chapter 1 . illustrates that the optimality of Poisson type signal pro-

cesses is a joint implication of the two assumptions in the model: exponential discount-

ing and the information cost structure. Discussion in Appendix A.1.4.1. suggests that the

posterior separability assumptions is essentially a neutrality condition: learning a target

information structure through all equally costly strategies takes the same amount of time

on average. To further understand the roll played by the two assumptions, I generalize

each of them in the following two chapters.

In Chapter 2 . on “Time preference and information acquisition”, I keep the assumption on

information cost and generalize the cost of delay to general convex or concave time cost.

To get tractability in the model with further generality, I impose additional restrictions

that (i) the flow cost of information acquisition is fixed (ii) the target decision rule is fixed.

These restrictions shut down the dynamics of target decision rule and flow cost level, and

highlight the implication of information on decision time. The main result of Chapter 2.

is that for all convex time cost functions, the optimal dynamic information acquisition

strategy is a Poisson signal process that either implements the target decision rule at a Pois-

son rate or generates no information with large probability. For any concave time cost,

the optimal dynamic information acquisition strategy is a pure accumulation strategy that

only accumulates information but makes no decision until a deterministic date. Noticing

that the neutrality condition makes all information acquisition strategy equally efficient

on average. So the key implication of difference strategies is that the Poisson signal pro-

cess induces decision in a riskiest way on the dimension of time: decision is either taken

3



very early on or there is a long delay. On the contrary, the pure accumulation strategy

minimizes time-risk involved in decision making.

Chapter 2 . reveals a key implication of information acquisition: it determines the risk

in the decision making time. Therefore, under the neutrality condition (posterior separa-

bility assumption), all information acquisition strategies induce the same expected deci-

sion time and they only differ in the risks. Then, the preference on information acquisition

strategies is solely pin down by the preference on time risk.

To deepen our understanding about the cost of information, I generalize the assump-

tion on information cost in Chapter 3 . on “indirect information measure and dynamic learn-

ing”. I assume that (i) the cost of delay is linear in time (time-risk neutral) and (ii) the

cost of information depends on an indirect information measure. An indirect information

measure takes an arbitrary cost function of information as primitive, and for each signal

structure derives the minimized expected total cost from a sequence of signal structures

that replicates the original signal structure. In other words, the assumption I put on the

cost of information is essentially that (i) I allow within period sequential minimization

of information measure, (ii) there is increasing marginal cost to the information measure

per period. The main result of Chapter 3 . is that the optimal signal process is a direct

compound Poisson signal: signal arrives according to a Poisson counting process and the

arrival of signal suggests the optimal action directly, where the optimal action profile can

be solved in an equivalent static rational inattention problem.

The analysis in Chapter 3 . suggests that Poisson type information acquisition is not

only the “riskiest” when we restrict the information cost to satisfy neutrality i.e. all learn-

ing strategies to be equally fast, it is also the “fastest” when we relax such restrictions on

information cost, as long as the cost can be justified by within period information measure

minimization.

Chapter 4. introduces a set of useful technical results on constrained information de-
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sign, which are used to characterize the optimal strategies in Chapters 1 . and 3.. I character-

ize the set of all combinations of expected value of finite objective functions from design-

ing information. I show that the set is compact, convex and can be implemented by signal

structures with finite support when the state space is finite. Moreover, the set as a corre-

spondence of prior belief is continuous. Based on this result, I develop a concavification

method of Lagrangian that works with general constrained optimization. Other appli-

cations of the results include persuasion of receivers with outside options and screening

using information.
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Chapter 1

Optimal dynamic information acquisition
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1.1. Introduction

1.1 Introduction

When individuals make decisions, they often have imperfect information about the

payoffs of different alternatives. Therefore, the decision maker (DM) would like to ac-

quire information to learn about the payoffs prior to making a decision. For example,

when comparing new technologies, a firm may not know the profitability of alternative

technologies. The firm often spends a considerable amount of money and time on R&D

to identify the best technology to adopt. One practically important feature of the infor-

mation acquisition process is that the choice of “what to learn” often involves considering

a rich set of salient aspects. In the previous example, when designing the R&D process, a

firm may choose which technology to test, how much data to collect and analyze, how in-

tensive the testing should be, etc. Other examples include investors designing algorithms

to learn about the returns of different assets, scientists conducting research to investigate

the validity of different hypotheses, etc.

To capture such richness, in this chapter, I consider a DM who can choose “what to

learn” in terms of all possible aspects, as well as “when to stop learning”. The main goal is

to obtain insight into dynamic information acquisition without restriction on what type of

information can be acquired. In contrast to my approach, the classic approach is to focus

on one aspect while leaving all other aspects exogenously fixed. The seminal works by

Wald (1947.) and Arrow, Blackwell, and Girshick (1949.) study the choice of “when to stop”

in a stopping problem with all aspects of the learning process being exogenous. Building

upon the Wald framework, Moscarini and Smith (2001.) endogenize one aspect of learn-

ing, the precision, by allowing the DM to control a precision parameter of a Gaussian signal

process. Che and Mierendorff (2016.) endogenize another aspect of learning, the direction,

by allowing the DM to allocate limited attention to different news sources, each biased in

a different direction. Here, by allowing all learning aspects to be endogenous, the current
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chapter contributes by studying which learning aspect(s) is(are) endogenously relevant

for the DM and how the optimal strategy is characterized in terms of these aspects.

In the model, the DM is to choose from a set of actions, whose payoffs depend on

a state unknown to the DM. The state is initially selected by nature and remains fixed

over time. At any instant of time, the DM chooses whether to stop learning and select

an action or to continue learning by nonparametrically choosing the evolution of the belief

process. The choice of a nonparametric belief process models the choice of a dynamic

information acquisition strategy with no restriction on any aspect. I introduce two main

economic assumptions. (i) The DM discounts delayed payoffs. (ii) Learning incurs a flow

cost, which depends convexly on how fast the uncertainty about the unknown state is

decreasing. The main model is formulated as a stochastic control-stopping problem in

continuous time.

The main result shows that the optimal strategy is contained in a simple family char-

acterized by a few endogenously relevant aspects (Theorem 1.1.) and fully solves for the

optimal strategy in these aspects (Theorems 1.2 . and 1.3.). Specifically, the first result states

that although the model is nonparametric and allows for fully flexible strategies, the belief

process can be restricted to a simple jump-diffusion process without loss. In other words, a

combination of a Poisson signal—a rare and substantial breakthrough that causes a jump in

belief—and a Gaussian signal—frequent and coarse evidence that drives belief diffusion—

is endogenously optimal. A jump-diffusion belief process is characterized by four param-

eters: the direction, size and arrival rate of the jump, and the flow variance of the diffusion.

The four parameters represent four key aspects of learning: the direction, precision and

frequency of the Poisson signal, and the precision of the Gaussian signal. The first result

suggests that the DM need consider only the trade-offs among these aspects; any other

aspect is irrelevant for information acquisition.

The second result fully characterizes the parameters of the optimal belief process. I
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find that the Poisson signal strictly dominates the Gaussian signal almost surely, i.e. no

resources should ever be invested in acquiring the Gaussian signal. The optimal Poisson

signal satisfies the following qualitative properties in terms of the three aspects and the

stopping time:

• Direction: The optimal direction of learning is confirmatory– the arrival of a Poisson

signal induces the belief to jump toward the state that the DM currently finds to be

most likely. As an implication of Bayes rule, the absence of a signal causes the belief

to drift gradually towards the opposite direction, namely, the DM gradually becomes

less certain about the state.

• Precision: The optimal signal precision is negatively related to the continuation value.

Therefore, when the DM is less certain about the state, the corresponding continuation

value is lower, which leads the DM to seek a more precise Poisson signal.

• Frequency: The optimal signal frequency is positively related to the continuation value.

In contrast to precision, the optimal signal frequency decreases when the DM is less

certain.

• Stopping time: The optimal time to stop learning is immediately after the arrival of

the Poisson signal. Therefore, the breakthrough happens only once at the optimum.

Then, the DM stops learning and chooses an optimal action based on the acquired

information.

The optimal strategy is very heuristic and easy to implement. In the previous example,

the firm can choose the technology to test, as well as the test precision and frequency. As

a result, the optimal strategy is implementable. The optimal R&D process involves test-

ing the most promising technology. The optimal test is designed to be difficult to pass,

so good news comes infrequently, as in a Poisson process. A successful test confirms
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the firm’s prior conjecture that the technology is indeed good and the firm immediately

adopts the technology. Otherwise, the firm continues the R&D process. No good news

is bad news, so the firm becomes more pessimistic about the technology and revises the

choice of the most promising technology accordingly. The future tests involve higher

passing thresholds and lower testing frequency. As illustrated by the example, although

this chapter studies a benchmark with fully flexible information acquisition, the optimal

strategy applies to more general settings where information acquisition is not fully flexi-

ble, but involves these salient aspects.

The main intuition behind the optimal strategy is a novel precision-frequency trade-off.

Consider a thought experiment of choosing an optimal Poisson signal with fixed direc-

tion and cost level. The remaining two parameters—precision and frequency—are pinned

down by the marginal rate of substitution between them. Importantly, the trade-off de-

pends on the continuation value. Due to discounting, when the continuation value is

higher, the DM loses more from delaying the decision. Therefore, the DM finds it op-

timal to acquire a signal more frequently at the cost of lowering the precision to avoid

costly delay. In other words, the marginal rate of substitution of frequency for precision

is increasing in the continuation value. As a result, frequency (precision) is positively

(negatively) related to the continuation value.

In addition to precision and frequency, this intuition also explains other aspects. First,

the Gaussian signal is equivalent to a special Poisson signal with close to zero precision

and infinite frequency. The previous intuition implies that infinite frequency is generally

suboptimal except when the continuation value is so high that the DM would like to sac-

rifice almost all signal precision. As a result, the Gaussian signal is strictly suboptimal

except for the non-generic stopping boundaries. Second, for any fixed learning direction,

Bayes rule implies that the absence of a signal pushes belief away from the target direc-

tion; to ensure the same level of decision quality the signal precision should increase over
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time to offset the belief change. By acquiring a confirmatory signal, the DM becomes more

pessimistic and, consequently, more patient over time. Therefore she can reconcile both

incentives through reducing the signal frequency and increasing the signal precision. By

contrast, if the DM acquires a contradictory signal, she becomes more impatient over time

and prefers the frequency to be increasing. The two incentives become incongruent, thus,

learning in a confirmatory way is optimal.

This intuition suggests that the crucial assumption for the optimal strategy is dis-

counting — discounting drives the key precision-frequency trade-off. This observation

highlights the deep connection between dynamic information acquisition and the DM’s

attitude toward time-risk. Discounting implies that the DM is risk loving toward payoffs

with uncertain resolution time, as the exponential discounting function is convex. Intu-

itively, the riskiest information acquisition strategy is a “greedy strategy” that front-loads

the probability of success as much as possible, at the cost of a high probability of long

delays. The confirmatory Poisson learning strategy in this chapter exactly resembles a

greedy strategy. The key property of the strategy is that all resources are used in verify-

ing the conjectured state directly and no intermediate step occurs before a breakthrough.

By contrast, alternative strategies, such as Gaussian learning and contradictory Poisson

learning, involve accumulating substantial intermediate evidence to conclude a success.

The intermediate evidence in fact hedges the time risk: the DM sacrifices the possibility

of immediate success to accelerate future learning.

Extensions of the main model further illustrate the role played by each key assump-

tion. The first extension replaces discounting with a fixed flow delay cost. In this spe-

cial case, all dynamic learning strategies are equally optimal, as the crucial precision-

frequency trade-off becomes value independent. This extension also illustrates that all

learning strategies in the model are equally “fast” on average and differ only in “riski-

ness”. This result further illustrates that the preference for time risk pins down the opti-
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mal strategy. Second, I consider general cost structures and find that the (strict) optimality

of a Poisson signal over a Gaussian signal is surprisingly robust: it requires a minimal con-

tinuity assumption. Third, I study an extension where the flow cost depends linearly on

the uncertain reduction speed. In this special case, learning has a constant return to signal

frequency. As a result, the optimal strategy is to learn infinitely fast, that is, acquire all

information at period zero.

This chapter provides rich implications by allowing learning to be flexible in all as-

pects. First, the main results highlight the optimality of the Poisson signal compared to

the widely adopted diffusion models. Specifically, the diffusion models are shown to be

justified only under the lack of discounting. Second, the characterization of the optimal

strategy unifies and clarifies insights from some existing results. In these results, although

the DM is limited in her learning strategy, she actually implements the flexible optimum

whenever feasible and approximates the flexible optimum when infeasible. Moscarini

and Smith (2001.)’s insight that the “intensity” of experimentation increases in continu-

ation value carries over to my analysis. I further unpack the design of experiment and

show that higher “intensity” contributes to faster signal arrival but lower signal precision.

Che and Mierendorff (2016.) make same prediction about the learning direction as that of

my analysis when the DM is uncertain about the state. But they predict the opposite

when the DM is more certain about the state– the DM looks for a signal contradicting the

prior belief. I clarify that the contradictory signal is an approximation of a high-frequency

confirmatory signal when the DM is constrained in increasing the signal frequency.

The rest of this chapter is structured as follows. The related literature is reviewed in

Section 1.2.. The main continuous-time model and illustrative examples are introduced

in Section 1.3.. The dynamic programming principle and the corresponding Hamilton-

Jacobi-Bellman (HJB) equation are introduced in Section 1.4.. I analyze an auxiliary discrete-

time problem and verify the HJB equation in Section 1.5 .. Section 1.6 . fully characterizes
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the optimal strategy and illustrates the intuition behind the result. In Section 1.7. I discuss

the key assumptions used in the model. Section 1.8. explores the implications of the main

model on response time in stochastic choice and on a firm’s innovation. Further discus-

sions of other assumptions are presented in Appendix A.1 ., and key proofs are provided

in Appendix A.2.. All the remaining proofs are relegated to Appendix B..

1.2 Related literature

1.2.1 Dynamic information acquisition

This chapter is closely related to the literature about acquiring information in a dy-

namic way to facilitate decision making. The earliest works focus on the duration of

learning. Wald (1947.) and Arrow, Blackwell, and Girshick (1949.) analyze a stopping prob-

lem where the DM controls the decision time and action choice given exogenous informa-

tion. Moscarini and Smith (2001.) extend the Wald model by allowing the DM to control

the precision of a Gaussian signal. A similar Gaussian learning framework is used as the

learning-theoretic foundation for the drift-diffusion model (DDM) by Fudenberg, Strack,

and Strzalecki (2018.). Following a different route, Che and Mierendorff (2016.), Mayskaya

(2016.) and Liang, Mu, and Syrgkanis (2017.) study the sequential choice of information

sources, each of which is prescribed exogenously.

Other frameworks of dynamic information acquisition include sequential search mod-

els (Weitzman (1979.), Callander (2011.), Klabjan, Olszewski, and Wolinsky (2014.), Ke and

Villas-Boas (2016.) and Doval (2018.)) and multi-arm bandit models (Gittins (1974.), Weber

et al. (1992.), Bergemann and Välimäki (1996.) and Bolton and Harris (1999.)). These frame-

works are quite different from my information acquisition model. However, the forms

of information in these models are also exogenously prescribed, and the DM has control

over only whether to reveal each option.

Compared to the canonical approaches, the key new feature of my framework is that
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the DM can design the information generating process nonparametrically. In a similar

vein to this chapter, two concurrent papers Steiner, Stewart, and Matějka (2017.) and

Hébert and Woodford (2016.) model dynamic information acquisition nonparametrically;

however they focus on other implications of learning by abstracting from sequentially

smoothing learning. In Steiner, Stewart, and Matějka (2017.) the linear flow cost assump-

tion makes it optimal to learn instantaneously, whereas in Hébert and Woodford (2016.),

the no-discounting assumption makes all dynamic learning strategies essentially equiva-

lent.1 . By contrast, the main focus of this chapter is on characterizing the optimal way to

smooth learning. I analyze the setups of these two papers as special cases in Sections 1.7.1 .

and 1.7.3..

A main result of this chapter is the endogenous optimality of Poisson signals. Sec-

tion 1.7.2 . shows a more general result: a Poisson signal dominates a Gaussian signal for

generic cost functions that are continuous in the signal structure. This result justifies Pois-

son learning models, which are used in a wide range of problems, e.g., Keller, Rady, and

Cripps (2005.), Keller and Rady (2010.), Che and Mierendorff (2016.), and Mayskaya (2016.);

see also a survey by Hörner and Skrzypacz (2016.).

1.2.2 Rational inattention

This chapter is a dynamic extension of the static rational inattention (RI) models,

which consider the flexible choice of information. The entropy-based RI framework is

first introduced in Sims (2003.). Matějka and McKay (2014.) study the flexible information

acquisition problem using an entropy-based informativeness measure and justify a gen-

eralized logit decision rule. Caplin and Dean (2015.) take an axiomatization approach and

1Steiner, Stewart, and Matějka (2017.) assume the decision problem to be history dependent. Therefore,
non-trivial dynamics remain in the optimal signal process. However, the dynamics are a results of the his-
tory dependence of the decision problem rather than the incentive to smooth information. In the dynamic
learning foundation of Hébert and Woodford (2016.), all signal processes are equally optimal because of a
key no-discount assumption. They select a Gaussian process exogenously to justify a neighbourhood-based
static information cost structure.
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characterize decision rules that can be rationalized by an RI model. On the other hand,

this chapter also serves as a foundation for RI models, as it characterizes, in detail, how

the reduced-form decision rule is supported by acquiring information dynamically. In

several limiting cases, my model completely reduces to a standard RI model.

The RI framework is widely used in models with strategic interactions (Matějka and

McKay (2012.), Yang (2015a.), Yang (2015b.), Matějka (2015.), Denti (2015.), etc). My work

is different from these works as no strategic interaction is considered and the focus is on

repeated learning. Despite the strategic component, Ravid (2018.) also studies a dynamic

model with repeated learning. In Ravid (2018.), an RI buyer learns sequentially about the

offers from a seller and the value of the object being traded. Similar to the DM in my

model, the buyer systematically delays trading in equilibrium, and the stochastic delay

resembles the arrival of a Poisson process.2 . However, in Ravid (2018.), the delay is an

equilibrium property that ensures the buyer’s strategy is responsive to off-path offers. By

contrast, the stochastic delay in my work is a property of an optimally smoothed learning

process.

I use the reduction speed of uncertainty as a measure of the amount of information

acquired per unit time. This measure captures the posterior separability from Caplin and

Dean (2013.). The posterior separable measure nests mutual information (introduced in

Shannon (1948.)) as a special case and is widely used in Gentzkow and Kamenica (2014.),

Clark (2016.), Matyskova (2018.), Rappoport and Somma (2017.), etc. I provide an axiom-

atization for posterior separability based on the chain rule in Appendix A.1.4.1 .. Caplin,

Dean, and Leahy (2017.) axiomatize (uniform) posterior separability based on behavior

data. Morris and Strack (2017.) provide a dynamic foundation for posterior separability

based on implementing an information structure with Gaussian learning. In addition to

2Precisely speaking, in the analysis of Proposition 2, Ravid (2018.) shows that when quality is determin-
istic, the delay time distribution is exponential, which is the same as the stopping time induced by a Poisson
signal process.
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axiomatizing posterior separability, Frankel and Kamenica (2018.) relates to my work in

another interesting way. The valid measure of information defined in their paper coincides

with the uncertainty reduction speed per unit arrival rate of a Poisson signal derived in

this chapter.

1.2.3 Information design

In this chapter, I use a belief-based approach to model the choice of information.

This approach is widely used for studying Bayesian persuasion models (Kamenica and

Gentzkow (2011.), Ely (2017.), Mathevet, Perego, and Taneva (2017.), etc.). An impor-

tant methodology in this literature is the concavification method developed in Aumann,

Maschler, and Stearns (1995.) (based on Carathéodory’s theorem). An alternative ap-

proach to model information is the direct signal approach 3
. used in both information

design problems, such as Bergemann and Morris (2017.), and rational inattention prob-

lems. However, neither of the two methods applies to my dynamic information acqui-

sition problem. I take the belief-based approach as in Bayesian persuasion models, but

utilize a generalized concavification method developed in Chapter 4 ..

1.2.4 Stochastic control

Methodologically, this chapter is closely related to the theory of continuous-time stochas-

tic control. The early theories study control processes measurable to the natural filtration

of Brownian motion (see Fleming (1969.) for a survey). The application of Bellman (1957.)’s

dynamic programming principle leads to the HJB equation characterization of the value

function. On the contrary, the main stochastic control problem of this chapter has general

martingale control process, which is a variant of the (semi)martingale models of stochastic

control studied in Davis (1979.), Boel and Kohlmann (1980.), Striebel (1984.), etc. However,

3This approach applies to settings where without loss of generality we can restrict the problem to con-
sidering only signals that are direct recommendations of actions.
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none of the existing theories are sufficiently general to nest the stochastic control problem

studied in this chapter. I introduce an indirect method that proves a verification theorem

for a tractable HJB equation.

1.3 Model setup

The main model is a continuous-time stochastic control problem. A DM chooses an

irreversible action at an endogenous decision time. The DM can control the information

received before the decision time in a flexible manner, bearing a cost on information.

Decision problem: Time t P r0, `8q. The DM discounts the delayed utility with rate

ρ ą 0. The DM is a vNM expected utility maximizer with Bernoulli utility associated with

action-state pair pa, xq P A ˆ X at time t being e´ρtupa, xq. Both the action space A and the

state space X are finite. The DM holds a prior belief µ P ∆pXq about the state. Define

Fpνq fi maxaPA Eνrupa, xqs given belief ν P ∆pXq.

Information: I model information using a belief-based approach. A distribution of

posterior beliefs is induced by an information structure according to Bayes rule iff the

expectation of posterior beliefs is equal to the prior. Hence, in a static environment the

choice of information can be equivalently formulated as the choice of a distribution of

posterior beliefs (see Kamenica and Gentzkow (2011.) for example). Extending this for-

mulation to the dynamic environment studied here, I assume that the DM chooses the

entire posterior belief process xµty in a nonparametric way. Now Bayes’ rule should be

satisfied at every instant of time—@s ą t, the expectation of µs is µt. Thus, I restrict xµty

to be a martingale, with xFty as its natural filtration. A formal justification that choosing

a belief martingale is equivalent to choosing a dynamic information structure is provided

in Appendix A.1.4..
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It is useful to define the following operator Lt for any xµty and f : ∆pXq Ñ R:

Lt f pµtq “ E
„

d f pµtq

dt

ˇ

ˇ

ˇ

ˇ

Ft

ȷ

fi lim
t1Ñt`

E
„

f pµt1q ´ f pµtq

t1 ´ t

ˇ

ˇ

ˇ

ˇ

Ft

ȷ

By definition, Lt f captures the expected speed at which f pµtq increases. Let Dp f q be the

domain of xµty on which Lt f pµtq is well defined.4 . For well-behaved Markov process xµty

and Cp2q smooth f , L f is the standard infinitesimal generator (subscript t omitted).

Cost of information: I assume that the flow cost of information depends on how fast

the information reduces uncertainty. The flow cost of information is CpItq, where:

Assumption 1.1. It “ ´LtHpµtq, where H : ∆pXq Ñ R is concave and continuous.

I call H an uncertainty measure—because H is concave iff ErHpµqs captures the Black-

well order on the belief distribution. By Assumption 1.1 ., It is the speed at which un-

certainty falls when the belief updates. I call It the (flow) informativeness measure. One

example of H is the entropy function Hpµq “ ´
ř

µx logpµxq. Revelation of information

reduces entropy; hence, the entropy reduction speed is a natural measure of the amount

information. Assumption 1.1 . is the main technical assumption in my analysis. I general-

ize this assumption in Section 1.7.2.. For further discussions, see Appendix A.1.4., where

I show that it is the continuous-time analog of “posterior separability” and provide an

axiom for posterior separability.

Stochastic control: The DM solves the following stochastic control problem:

Vpµq “ sup
xµtyPM,τ

E
„

e´ρτFpµτq ´

ż τ

0
e´ρtCpItqdt

ȷ

(1.1)

4Formally, xµty P Dp f q if the uniform limit (w.r.t t) exists almost surely. Let D “
Ş

f PCp∆Xq Dp f q. D

contains all Feller processes, whose transition kernels are stochastically continuous w.r.t. t and continuous
w.r.t. state µ. However, D is much more general than Feller processes as it allows the transition kernel to
be discontinuous in state µ.
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where M is the set of all martingales xµty in DpHq with cadlag5
. path and satisfying µ0 “ µ,

and τ is a xFty-measurable stopping time.6 .

The objective function in Equation (1.1) . is fairly standard in canonical information ac-

quisition problems. The DM acquires information that affects xµty and chooses stopping

time τ to maximize the expected stopping payoff E
“

e´ρτFpµτq
‰

less the total information

cost E
“şτ

0 e´ρtCpItqdt
‰

. The novel feature is that the DM is allowed to fully control xµty, in

contrast to canonical models, where the DM controls only a few parameters determining

xµty. The nonparametric control of the belief process exactly captures the flexible design

of information by the DM.

I make the following assumption on the cost function CpIq to generate incentive to

smooth learning over time.

Assumption 1.2. C : R` Ñ R` is weakly increasing, convex and continuous. lim
IÑ8

C1pIq “ 8.

The increasing and continuous cost function assumption is standard. The convex-

ity of CpIq and the condition lim C1pIq “ 8 give the DM strict incentive to smooth the

acquisition of information. Given Assumption 1.2., if the DM acquires all information im-

mediately then uncertainty falls at infinite speed and the marginal cost C1pIq is infinite,

hence suboptimal.7 . I solve a special case violating Assumption 1.2. in Section 1.7.3., where

I assume C to be linear. In this case the optimal strategy is to acquire all information at

t “ 0 (a static strategy).

5cadlag: µt : t ÞÑ ∆pXq is right continuous with left limits. Note that assuming martingale xµty being
cadlag can be weakened to assuming xFty being right continuous (see the martingale modification theorem
in Lowther (2009.)).

6I postpone the formal definition of integrability in Equation (1.1) . to Section 1.5.1 .. For now, assume that
the integral is well defined for all admissible strategies. Further discussions in Remark A.2 . provide a formal
justification that ignoring the integrability is innocuous.

7A weaker sufficient condition can guarantee information smoothing: supI λI ´ CpIq ą ρ sup F, where
λ “ limIÑ8

CpIq
I . This condition explicitly states that when I is sufficiently large, C is sufficiently convex

that the utility gain from smoothing information dominates the loss from waiting longer. All the following
theorems in this chapter are proved under this weaker condition.
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In Example 1.1 ., I present a few examples of canonical Wald-type sequential learning

models, each of which is a variant of Equation (1.1). with additional constraints on the set

of admissible belief processes. Example 1.1 . first illustrates how different learning tech-

nologies can be systematically compared under the same framework with an entropy-

based cost function. The comparison also illustrates why a fully flexible learning frame-

work is useful.

Example 1.1. Let the state be binary X “ tl, ru. The prior belief of state x “ r is µ P p0, 1q.

A “ tL, Ru. The DM wants to choose an action that matches the state: upL, lq “ upR, rq “

1; upL, rq “ upR, lq “ ´1. The discount rate ρ “ 1, H is the standard entropy function:

Hpµq “ ´µ logpµq ´ p1 ´ µq logp1 ´ µq, and the information cost CpIq “ 1
2 I2.

I consider three simple heuristic learning technologies: Gaussian learning, perfectly

revealing breakthroughs and partially revealing evidence. A DM who uses a specific

learning technology is modeled by restricting the admissible control set M to include

only the corresponding family of processes. In each case, the DM controls a parameter

that represents one aspect of learning.

1. Gaussian learning: The signal follows a Brownian motion whose drift is the true state,

and whose variance is controlled by the DM. Therefore, the posterior belief follows a

diffusion process (Bolton and Harris (1999.)), so the set of admissible controls are:

MD “ txµty|dµt “ σtdWtu

The DM controls the signal precision xσty. According to Ito’s lemma, It “ ´1
2 σ2

t H2pµtq “

σ2
t

2µtp1´µtq
. This problem is studied in Moscarini and Smith (2001.)8

., where the value func-

8With “belief elasticity” defined as E pµq “ µp1 ´ µq in my model.
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tion is characterized by HJB:

ρVDpµq “ sup
σą0

1
2

σ2V2
Dpµq ´

1
2

ˆ

σ2

2µp1 ´ µq

˙2

The solution VDpµq is plotted as the blue curve in Figure 1.1 .. The shaded region is the

experimentation region and the non-shaded region is the stopping region.

σt dWt
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Figure 1.1: Incremental information
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Figure 1.2: Breakthroughs

2. Breakthroughs: The DM observes breakthroughs that perfectly reveal the true state with

arrival rate λt. Then, belief follows a Poisson process that jumps to 1 if the state is r and

to 0 if the state is l. The set of admissible control is:

MB “

!

xµty|dµt “ p1 ´ µtqdJ1
t pλtµtq ` p0 ´ µtqdJ0

t pλtp1 ´ µtqq

)

xJi
tp¨qy are independent Poisson counting processes with Poisson rate p¨q. The DM con-

trols the signal frequency xλty. The Entropy reduction speed is λtHpµq. The HJB equa-

tion is as follows:

ρVBpµq “ sup
λą0

λpµFp1q ` p1 ´ µqFp0q ´ VBpµqq ´
1
2

pλHpµqq
2

The solution VB is plotted as the red curve in Figure 1.2.. The two arrows show the belief

jumps induced by breakthroughs at µ.
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Chapter 1. Optimal dynamic information acquisition

3. Partially revealing evidence: The DM allocates one unit of total attention to two news

sources, each revealing one state with arrival rate γ “ 2. Then belief follows a compen-

sated Poisson process, and the set of admissible belief processes is:

MP “

$

’

&

’

%

xµty

ˇ

ˇ

ˇ

ˇ

dµt “p1 ´ µtqpdJ1
t pαtγµtq ´ αtγµtdtq

`p0 ´ µtqpdJ0
t pp1 ´ αtqγp1 ´ µtqq ´ p1 ´ αtqγp1 ´ µtqdtq

,

/

.

/

-

xJi
tp¨qy are independent Poisson counting processes with Poisson rate p¨q. The DM con-

trols xαty, the attention allocated to the signal revealing state r. This control process is

identical to that in Che and Mierendorff (2016.). Applying their analysis, optimal αt is a

bang-bang solution, and the HJB equation is:

ρVPpµq“max
!

γµ
`

Fp1q´VPpµq´V1
Ppµqp1´µq

˘

´
1
2
`

γµpHpµq`H1pµqp1´µqq
˘2,

γp1´µq
`

Fp0q´VPpµq´V1
Ppµqp0´µq

˘

´
1
2
`

γp1´µqpHpµq`H1pµqp0´µqq
˘2
)

The solution VP is plotted as the black curve in Figure 1.3 .. The optimal strategy is qual-

itatively the same as in Che and Mierendorff (2016.). In the deep gray region, optimal

learning direction is confirmatory: the arrival of news reveals the a priori more likely

state (represented by solid arrows). In the light gray region, optimal learning direction

is contradictory: the arrival of news reveals the a priori less likely state (dashed arrows).
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Figure 1.3: Partially revealing evidence
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Figure 1.4: Comparison
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1.3. Model setup

In this example, the three learning technologies are analyzed for the same underlying

decision problem and the same entropy cost function. Therefore, the utilities are directly

comparable. I plot all three value functions in Figure 1.4 . and use differently colored re-

gions to illustrate the order of utility. Each color corresponds to a learning strategy be-

ing optimal: blue—Gaussian learning, red—breakthroughs, and gray—confirmatory evi-

dence.9 . As shown in Figure 1.4 ., allowing the DM to use a rich set of strategies improves

the decision-making quality.

More interestingly, there appears to be a pattern when optimizing in different aspects.

When the prior belief is highly uncertain, a fully revealing Poisson signal that can bring

the DM directly to a conclusion is optimal. When the prior belief is quite uncertain but

asymmetrically in favor of one state, allocating attention to the more promising direction

becomes optimal. When the prior belief is very certain, an imprecise but frequent Gaus-

sian signal becomes optimal. The formal analysis for fully flexible information acquisition

in Section 1.6. illustrates that this pattern is systematic: the optimal direction, precision

and frequency of learning are exactly the relevant aspects and are closely related to the

location of the prior belief.

1.3.1 Motivation for a flexible model

Example 1.1 . implies that single-aspect models are insufficient for modeling a dynamic

information acquisition problem with a rich strategy set. For instance, the model consid-

ering only partially revealing evidence predicts that seeking contradictory evidence is

generally optimal when the belief is uncertain. However, further analysis shows that

this prediction is misleading when Gaussian signals are also feasible. Studying a model

where information acquisition is flexible in all aspects enables us to obtain insights about

information acquisition without interference from any ad hoc restriction. Such insights

9In this example, whenever contradictory learning dominates confirmatory learning, contradictory
learning is dominated by Gaussian learning, thus, contradictory learning is not optimal in any region.
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Chapter 1. Optimal dynamic information acquisition

include which aspect(s) is(are) endogenously salient for information acquisition and how

each of these aspects is determined by the DM’s incentives.

Although the results are derived in a fully flexible model, they apply to much more

general settings where information acquisition is not flexible in all aspects. First, all re-

sults directly apply to all settings where information acquisition is flexible in those en-

dogenously salient aspects, as all other aspects are redundant for implementing the un-

constrained optimum. Second, even for settings where some of the relevant aspects are

constrained, the intuitions from the flexible model identify the DM’s most important in-

centive and how the hypothetically ideal strategy might be approximated by adjusting

other aspects. In fact, the analysis of the flexible model in Sections 1.4 . and 1.6. shows that

the set of endogenously salient aspects is quite small, and the optimal strategy satisfies

very simple qualitative properties in these aspects. Therefore, the findings of this chapter

are useful in a very wide range of settings.

1.4 Dynamic programming and HJB equation

Solving Equation (1.1). is not an easy task due to the abstract strategy space. To the

best of my knowledge, no general theory applicable to this stochastic control problem

exists. The most closely related problems are studied in a set of remarkable papers on the

martingale method in stochastic control (Davis (1979.),Boel and Kohlmann (1980.),Striebel

(1984.)). These papers introduce abstract formulations of stochastic control problems with

general (semi)martingale control processes. The problems have finite horizon and specific

objective functions; hence, they do not nest Equation (1.1)..

Nevertheless, it is useful to introduce the general dynamic programming principle

and HJB characterization. On the basis of the intuition of dynamic programming, the
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1.4. Dynamic programming and HJB equation

conjecture that Vpµtq satisfies the following HJB is reasonable:

max
␣

Fpµtq ´ Vpµtq
looooooomooooooon

stopping value

, ´ρVpµtq
looomooon

discount

` sup
dµt

␣

LtVpµtq
looomooon

continuation value

´ Cp´LtHpµtqq
looooooomooooooon

control cost

((

“ 0 (1.2)

HJB Equation (1.2). is conceptually the same as the standard HJB equation. Recall the def-

inition for operator Lt, LtVpµtq is the flow utility gain from continuing. The exact form

of LtV and LtH depends on the probability space, the filtration and the control process

in the neighbourhood of t (which are summarized by the symbol dµt). Therefore, Equa-

tion (1.2) . essentially states the dynamic programming principle: at any instance when the

control is chosen optimally, either stopping is optimal (the first term is 0) or continuing is

optimal and the net continuation gain equals the loss from discounting (the second term

is 0).

For a simple example, let M be a family of Markov jump-diffusion belief processes,

characterized by the following SDE:

dµt “ pνpµtq ´ µtqpdJtpppµtqq ´ ppµtqdtq
looooooooooooooooooooomooooooooooooooooooooon

compensated Poisson part

` σpµtqdWt
loooomoooon

Gaussian diffusion

(1.3)

where pp, ν, σq : µt ÞÑ R` b ∆pSupppµqq b R|Supppµq|´1 are control parameters, Jtp¨q is a

Poisson counting process with Poisson rate p¨q, and Wt is a standard one-dimensional

Wiener process. Note that this example also nests all three families of strategies in Ex-

ample 1.1 . as special cases10
.. Itô’s lemma implies an explicit form for the infinitesimal

generator:

10The admissible control sets in the second and third cases in Example 1.1 . are not exactly nested in
Equation (1.3).. However, they can be viewed as mixed strategies of pure Poisson-jump processes defined
by Equation (1.3)..
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Chapter 1. Optimal dynamic information acquisition

LVpµq “ ppVpνq ´ Vpµq ´ ∇Vpµqpν ´ µqq
loooooooooooooooooooomoooooooooooooooooooon

flow value of Poisson jump & drift

`
1
2

σTHVpµqσ
loooooomoooooon

flow value of diffusion

where ∇ and H are the gradient and Hessian operators, respectively. By replacing L in

Equation (1.2). with its explicit expression, we obtain a parametrized HJB Equation (1.4).:

ρVpµq“max
"

ρFpµq, sup
p,ν,σ

ppVpνq´Vpµq´∇Vpµqpν´µqq`
1
2

σTHVpµqσ (1.4)

´C
ˆ

ppHpµq´Hpνq`∇Hpµqpν´µqq´
1
2

σTHHpµqσ

˙*

On the other hand, when M is the jump-diffusion family, the jump-diffusion control

theory (see textbooks, e.g., Hanson (2007.)) provides a verification theorem that proves that

the value function for Equation (1.1) . is exactly characterized by HJB Equation (1.4) ..

This simple example illustrates how a specific stochastic control problem relates to an

HJB equation. Now, consider the general problem Equation (1.2) . without any restriction

on the admissible belief process. First, we require a verification theorem stating that the

HJB Equation (1.2) . characterizes the solution of Equation (1.1) .. Second, a representation

theorem for the abstract operator Lt is also necessary to make Equation (1.2) . practically

tractable. The existing theories on martingale methods have little power for both tasks.11
.

In Theorem 1.1 ., I achieve both goals by showing that the solution of Equation (1.1) . is

characterized by a simple parametric HJB equation:

Theorem 1.1. Assume H is strictly concave and Cp2q smooth on interior beliefs in ∆pXq, As-

sumptions 1.1 . and 1.2. are satisfied. Let Vpµq P Cp1q∆pXq be a solution12
. to HJB Equation (1.4).;

11First, the existing martingale methods verify the HJB equation for different sets of problems that do not
cover this specific problem. Moreover, the martingale method only states the existence of such LtV (for
example theorem 4.3.1 of Boel and Kohlmann (1980.)) and does not provide an explicit representation. This
issue is considered to be the main drawback of the martingale method (see discussions in Davis (1979.)).

12The Cp1q solution to the second-order ODE is not well defined. To be precise, V is a viscosity solution
(see Crandall, Ishii, and Lions (1992.)). In the viscosity solution, σTHVpµqσ is replaced by D2Vpµ, σq||σ||2,
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1.4. Dynamic programming and HJB equation

then Vpµq solves Equation (1.1)..

Theorem 1.1 . first states that Vpµq is characterized by a HJB equation. More surpris-

ingly, Theorem 1.1 . also states that the HJB is exactly Equation (1.4) .. As a direct corollary,

Equation (1.1) . can be solved by considering only the family of Markov jump-diffusion

processes characterized by SDE (1.3.). The compensated Poisson jump part and Gaussian

diffusion part in SDE (1.3.) each represents a simple learning strategy.

• Poisson learning: The DM uses Poisson learning or acquires a Poisson signal when a

compensated Poisson part exists in the belief process. A Poisson jump in the belief

process can be induced by observing non-conclusive news whose arrival follows a

Poisson process. The compensating belief drift is induced by observing no news

arriving. The control variables for Poisson learning are pp, νq, which represent three

endogenously relevant aspects of Poisson learning. The arrival rate p represents

the frequency of learning. The direction of belief jump represents the direction of

learning. The magnitude of belief jump represents the precision of learning.

• Gaussian learning: The DM uses Gaussian learning or acquires a Gaussian signal

when a diffusion part exists in the belief process. Gaussian diffusion in the be-

lief process can be induced by observing the realization of a Gaussian process, with

state x being the unobservable drift. The flow variance σ represents the signal pre-

cision.

Equation (1.4). suggests that to determine the optimal strategy in all relevant aspects,

the DM considers four types of trade-offs : (i) the standard continuing-stopping trade-

off in optimal stopping problems, captured by the outer-layer maximization; (ii) the in-

formation cost-utility gain trade-off, which determines the total cost spent on learning;

where D2Vpµ, σq “ lim
δÑ0

2 Vpµ`δσq´Vpµq´∇Vpµqδσ

δ∥σ∥2 .
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Chapter 1. Optimal dynamic information acquisition

(iii) the Poisson-Gaussian trade-off, which determines the proportion of cost allocated to

the Poisson signal pp, νq and the Gaussian signal σ; (iv) the precision-frequency trade-

off, which determines the marginal rate of substitution of signal frequency for precision.

These trade-offs, especially the precision-frequency trade-off, will be discussed in detail

to characterize the solution to Equation (1.4) . in Section 1.6..

The proof of Theorem 1.1 . uses an indirect method. I characterize Equation (1.1) . as

the limit of a series of auxiliary discrete-time problems. The discrete-time analyses are

presented in Section 1.5.. Readers interested in the solution of HJB Equation (1.4). can

jump to Section 1.6 ..

1.5 The auxiliary discrete-time problem

In this section, I introduce the steps for proving Theorem 1.1. using an auxiliary discrete-

time problem. First, in Section 1.5.1 . I introduce a discrete-time stochastic control problem

that converges to the continuous-time problem. Then I characterize the Bellman equation

for the discrete-time problem in Section 1.5.2 .. In Section 1.5.3 ., I introduce a key lemma

that links all the discrete-time analyses and proves Theorem 1.1..

1.5.1 Discrete-time problem

I consider a stochastic control problem that is a discrete-time analog of Equation (1.1) ..

Then I illustrate the discretization of the original problem. The discretization serves as a

useful intermediary showing that the discrete-time problem converges to the continuous-

time problem.

Decision problem: The primitives pA, X, u, µ, ρq are the same as those in Section 1.3 ..

Time is discrete t P N, and the period length dt ą 0. The payoff delayed by t periods is

discounted by e´ρdt¨t.

Information: The DM chooses the posterior belief process xpµty in a nonparametric

way. xpµty is restricted to be a martingale. Let x pFty be the natural filtration of xpµty.
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1.5. The auxiliary discrete-time problem

Cost of information: Define CdtpIq fi C
` I

dt

˘

dt. The per-period cost of information is

assumed to be CdtpErHppµtq ´ Hppµt`1q| pFtsq. Note that this is exactly the finite-difference

analog of the flow cost Cp´LtHpµtqq in the continuous-time problem.

Optimization problem: The DM solves the following stochastic control problem:

Vdtpµq “ sup
xpµtyPxM,pτ

E

«

e´ρdt¨pτFppµ
pτq ´

pτ´1
ÿ

t“0

e´ρdt¨tCdt

´

E
”

Hppµtq ´ Hppµt`1q| pFt

ı¯

ff

(1.5)

where xM is the set of discrete-time martingales satisfying pµ0 “ µ, and τ is a x pFty´measurable

stopping time. Note that in this section, all discrete-time stochastic processes and random

variables are labeled with “hat” to differentiate them from continuous-time processes.

The purpose of analyzing the discrete-time problem is to characterize the continuous-

time value function Vpµq. Therefore, the first step is to show that Vdtpµq approximates

Vpµq. To study the relation between Vdtpµq and Vpµq, let us discretize the objective func-

tion in Equation (1.1) .. For any admissible strategy pxµty, τq, consider the Riemann sum:

Wdtpµt, τq “

8
ÿ

i“1

Probpτ P rpi ´ 1qdt, idtsqE
„

e´iρdtFpµidtq ´

i´1
ÿ

j“0

e´jρdtC
`

Ijdt
˘

dt
ȷ

where Ijdt “ E
”Hpµjdtq´Hpµpj`1qdtq

dt

ˇ

ˇFjdt

ı

. The objective function in Equation (1.1) . is defined

in the notion of the Riemann-Stieltjes integral as limdtÑ0 Wdtpµt, τq. I call the martingale

xµty integrable if the limit limdtÑ0 Wdtpµt, τq exists.13
. Unless otherwise stated, M is re-

stricted to contain integrable processes, an innocuous restriction that enables me to avoid

technical discussions of integrability.14
. Then it follows that Vpµq “ supxµtyPM,τ limdtÑ0 Wdtpµt, τq.

13The standard definition for integrability also requires the limit to exist uniformly for all alternative
nonuniform discretizations of the time horizon and all alternative measurable stopping times. Here I use
the weaker integrability requirement for notational simplicity. The optimal strategy actually satisfies the
stronger integrability requirements, so the current definition can be used without loss. The discretization
of xIty is WLOG given the uniform convergence in the definition of DpHq.

14The detailed discussion of why restricting belief to be integrable is innocuous is in Remark A.2 ..
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Now, consider the relation between Wdt and Vdt. I argue that the objective function

in Equation (1.5) . is equivalent to Wdtpµt, τq. This result can ben verified by noting that if

pxµty, τq and pxpµty, pτq jointly satisfy pµt “ µt¨dt and pτ “ rτ{dts, then:

Wdtpµt, τq “ E

«

e´ρdtpτFppµ
pτq ´

pτ´1
ÿ

t“0

e´ρdt¨tCdt

´

E
”

Hppµtq ´ Hppµt`1q| pFt

ı¯

ff

Given feasible strategy pxµty, τq, such pxpµty, pτq can be constructed by simply discretiz-

ing the continuous-time strategy. Given feasible strategy pxpµty, pτq, such pxµty, τq can be

constructed by the Kolmogorov extension theorem. Therefore, it follows that Vdtpµq “

supxµtyPM,τ Wdtpµt, τq. Now that both V and Vdt are characterized using Wdt, Wdt can be

used as an intermediary to link V and Vdt:

$

’

’

’

&

’

’

’

%

Vpµq “ sup
xµty,τ

lim
dtÑ0

Wdtpµt, τq

lim
dtÑ0

Vdtpµq “ lim
dtÑ0

sup
xµty,τ

Wdtpµt, τq

Clearly, V and lim Vdt are obtained by taking the limit of Wdt in different orders. Therefore,

Vdt approximates V when the two limits are interchangeable, which is indeed true as

proved in Lemma 1.1.:

Lemma 1.1. Given Assumption 1.1 ., @µ P ∆pXq, limdtÑ0 Vdtpµq “ Vpµq.

1.5.2 Discrete-time Bellman equation

Equation (1.5) . is a discrete-time sequential optimization problem with bounded pay-

offs and exponential discounting. Therefore, standard dynamic programming theory ap-

plies and provides the Bellman equation that characterizes Vdt.

Lemma 1.2 (Discrete-time Bellman). Vdt is the unique solution in Cp∆Xq of the following

functional equation:
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1.5. The auxiliary discrete-time problem

Vdtpµq “ max
"

Fpµq, max
pi,νi

e´ρdt
N
ÿ

i“1

piVdtpνiq ´ Cdt

´

Hpµq ´
ÿ

piHpνiq
¯

*

(1.6)

s.t.
ÿ

piνi “ µ

where N “ 2|X|, p P ∆pNq, νi P ∆pXq.

Equation (1.6) . is a standard Bellman equation, except that it covers a restricted space

of strategies. The choice of signal structure is restricted to have support size no larger

than 2|X|, while the original space contains signal structures with an arbitrary number

of realizations. This simplification is based the generalized concavification methodology

developed in Theorem 2 of Chapter 4.. The standard concavification methodology is an

application of the Carathéodory theorem to the graph of the objective function in the

belief space.15
. Equation (1.6) . involves an additional term CdtpHpµq ´

ř

piHpνiqq, which

makes the standard method inapplicable. The general method suggests that the maxi-

mum is characterized by concavifying a linear combination of Vdt and H.

1.5.3 Convergence and verification theorem

The following figure illustrates the roadmap for proving Theorem 1.1 ..

V Vdt
Lemma 1.1.

Continuous-
time HJB

Discrete-time
Bellman

Lemma 1.3.

Theorem 1.1. Lemma 1.2.

Theorem 1.1 . is represented by the red dashed arrow on the left. The discrete-time prob-

lem’s value function Vdt is the solution of the Bellman equation Equation (1.6) . (the dou-

ble arrow on the right, proved in Lemma 1.2.). I have shown that Vdt converges to the

continuous-time optimal control value V (the arrow on the top, proved in Lemma 1.1.). In

15See Aumann, Maschler, and Stearns (1995.) and Kamenica and Gentzkow (2011.))
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the next lemma, I show that solution of HJB Equation (1.4) . is the limit of solution of Equa-

tion (1.6) . (the arrow on the bottom, to be proved in Lemma 1.3 .). Therefore, the function

solving HJB Equation (1.4). is the value function of the continuous-time stochastic control

problem Equation (1.1)..

Lemma 1.3. Assume H is strictly concave and Cp2q on interior beliefs, Assumption 1.2. is satisfied.

Suppose Vpµq P Cp1q is a solution to Equation (1.4).. Then Vdt
L8

ÝÝÝÑ
dtÑ0

V.

Lemma 1.3. proves that whenever Equation (1.4). has a solution, the solution is unique

and coincides with the limit of solution to discrete-time problem Equation (1.6) .. Verifica-

tion theorem Theorem 1.1. is a direct corollary of Lemmas 1.1., 1.2. and 1.3..

1.6 Optimal information acquisition

In this section I prove the existence of the solution to the continuous-time HJB Equa-

tion (1.4) . and fully characterize the value and policy functions, assuming binary states

and two forms of flow cost function: a hard cap and a smooth convex function. In both

cases, the optimal strategies share the same set of qualitative properties. Then in Sec-

tion 1.6.2 ., I discuss the key trade-offs in the optimization problem and provide the intu-

ition for the optimal strategy. First, I introduce the assumptions for tractability:

Assumption 1.3.

1. (Binary states): |X| “ 2.

2. (Positive payoff): @µ P r0, 1s, Fpµq ą 0.

3. (Uncertainty measure): H2pµq ă 0 and locally Lipschitz on p0, 1q, lim
µÑ0,1

|H1pµq| “ 8.

Assumption 1.3 . comprises three parts. First, I restrict the state space to be binary.

Therefore, the belief space is one dimensional, and I can use ODE theory to construct a

candidate solution. Although the existence of the solution technically relies on the binary

state assumption, the characterization generalizes to general state spaces, as discussed in
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Appendix A.1.3.. Second, I assume that the utility from decision making is strictly positive

so that “delay forever” is strictly suboptimal. This restriction is made without loss of

generality in the sense that we can always add a dummy “outside action” that gives ε

payoff. Third, I assume that H is sufficiently smooth, strictly convex (which rules out

free information) and satisfies an Inada condition (which guarantees a non-degenerate

stopping region).

1.6.1 Main characterization theorem

Theorem 1.1 . states that to characterize Vpµq, it is sufficient to find a smooth solution

to HJB Equation (1.4).. I prove the existence of a solution and characterize the optimal

strategy under Assumption 1.2-a . or Assumption 1.2-b ., two slightly stronger variants of

Assumption 1.2..

Assumption 1.2-a (Capacity constraint). There exists c s.t. CpIq “

$

’

&

’

%

0 when I ď c

`8 when I ą c

Assumption 1.2-a . restricts the cost function C to be a hard cap: information is free

when its measure is below capacity c and infinitely costly when it exceeds this capacity.16
.

This condition forces the DM to smooth the information acquisition process over time.

Theorem 1.2. Given Assumptions 1.1., 1.2-a. and 1.3., there exists a quasi-convex value function

V P Cp1qp0, 1q solving Equation (1.4).. Let E “ tµ P r0, 1s|Vpµq ą Fpµqu be the experimentation

region. There exists policy function ν : E Ñ r0, 1s satisfying:

ρVpµq “ ´ c
Fpνpµqq ´ Vpµq ´ V1pµqpνpµq ´ µq

Hpνpµqq ´ Hpµq ´ H1pµqpνpµq ´ µq

where νpµq is unique a.e. and satisfies the following properties. Dµ˚ P arg min V s.t.

16limIÑ8 C1pIq is not well defined with Assumption 1.2-a.. However, it is not hard to see that Assump-
tion 1.2-a . still satisfies the weaker formulation discussed in Footnote 7 .. As a result, Theorem 1.1 . applies
with Assumption 1.2-a..
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1. Poisson learning: ρVpµq ą ´c V2pµq

H2pµq
@µ P Ezµ˚.

2. Direction: µ ą µ˚ ùñ νpµq ą µ and µ ă µ˚ ùñ νpµq ă µ.

3. Precision: |νpµq ´ µ˚| is decreasing in |µ ´ µ˚| on each interval of E.

4. Stopping time: νpµq P EC (a successful experiment lands in the stopping region).

Theorem 1.2 . proves the existence of a solution to Equation (1.4) . and characterizes

the optimal policy function. The theorem first states that the optimal value function is

implemented by a Poisson signal, i.e., seeking a breakthrough that causes the belief to

jump to νpµq. Moreover, property 1 states that the Gaussian signal is strictly dominated,

except for at most one critical belief. Therefore, as discussed in Section 1.4., the optimal

strategy is Poisson learning, which can be characterized by three aspects of learning and

the stopping time.

Direction: Property 2 states that the optimal direction is confirmatory: when µ ą µ˚,

the DM holds a high prior belief for state 1 and acquires a signal whose arrival induces

an even higher posterior belief νpµq and vice versa for µ ă µ˚.

Precision: Property 3 states that the optimal precision measured by |νpµq ´ µ˚| is neg-

atively related to how certain the belief is (measured by |µ ´ µ˚|). Since µ˚ P arg max V, the

property equivalently states that precision is negatively related to the continuation value.

Frequency: With Assumption 1.2-a ., frequency is automatically determined given the

precision, according to ppµq “ ´ c
Hpνpµqq´Hpµq´H1pµqpνpµq´µq

. Thus, the optimal frequency is

positively related to the continuation value.

Stopping time: Property 4 states that the image of ν is always in the stopping region.

In other words, the optimal stopping time is exactly the signal arrival time.

By combining these properties, we can qualitatively determine the optimal learning

dynamics. The DM seeks a signal that arrives according to a Poisson process. The arrival

of the signal confirms the DM’s prior belief and is sufficiently accurate to warrant an im-
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mediate action. Absent the arrival of a Poisson signal, the DM becomes less certain about

the state, following Bayes’ rule. The DM’s continuation value decreases correspondingly;

hence, she continues seeking a Poisson signal with lower frequency and higher precision.

Assumption 1.2-b (Convex cost). C P Cp2qR`, Cp0q “ 0, C1pIq ě 0, C2pIq ą 0, lim
IÑ8

C1pIq “

8.

Assumption 1.2-b. restricts the cost function C to be Cp2q smooth and strictly convex:

acquiring an additional unit of information is of strictly increasing marginal cost. The

condition on lim C1pIq in Assumption 1.2 . is retained. If we replace Assumption 1.2 . with

Assumption 1.2-b., we obtain the following characterization theorem:

Theorem 1.3. Given Assumptions 1.1 ., 1.2-b. and 1.3., there exists a quasi-convex value function

V P Cp1qp0, 1q solving Equation (1.4).. Let E “
␣

µ P r0, 1s
ˇ

ˇVpµq ą Fpµq
(

be the experimentation

region. There D policy functions ν : E Ñ r0, 1s and I P Cp1qpEq17
. satisfying:

ρVpµq “ ´ Ipµq ¨
Fpνpµqq ´ Vpµq ´ V1pµqpνpµq ´ µq

Hpνpµqq ´ Hpµq ´ H1pµqpνpµq ´ µq
´ CpIpµqq

where ν and I are unique a.e. and satisfy the following properties. Dµ˚ P arg min V s.t.

1. Poisson learning: ρVpµq ą max
σ

1
2 σ2V2pµq ´ Cp´1

2 σ2H2pµqq @µ P Ezµ˚.

2. Direction: µ ą µ˚ ùñ νpµq ą µ and µ ă µ˚ ùñ νpµq ă µ.

3. Precision: |νpµq ´ µ˚| is decreasing in |µ ´ µ˚| on each interval of E.

4. Stopping time: νpµq P EC.

5. Intensity: Ipµq is increasing in Vpµq .

With the exception of property 5, the optimal strategy has the same set of properties as

Theorem 1.2.. Property 5 states that the informativeness measure I of the optimal signal

17Note that given ν, selecting I or p is equivalent. They uniquely pin down each other according to
equation Ipµq “ ppµqp´Hpνpµqq ` Hpµq ` H1pµqpνpµq ´ µqq.
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is higher when the continuation value is higher. Since the belief process drifts down-

ward the value function conditional on continuation, the DM invests less in information

acquisition as time passes.

The intuition for property 5 is discussed in Moscarini and Smith (2001.). The marginal

gain from experimentation is proportional to the continuation value while marginal cost

is increasing in I. Therefore, the optimal cost is increasing in the value function. This

property is called “value-level monotonicity” in Moscarini and Smith (2001.), where the

level (flow variance of the diffusion process) is a parameter for both the cost and precision

of a Gaussian signal. My analysis identifies this intuition separately from another impor-

tant trade-off between signal precision and frequency. I refer to property 5 as “value-

intensity monotonicity”. Here I rename parameter I the intensity of learning, which is

more intuitive and concise than “informativeness measure”.

Examples

In this section, I first provide a minimal working example that illustrates Theorem 1.3 .

in Example 1.2 .. Then I provide supplementary examples to illustrate a rich set of impli-

cations of my model, including multiple phases of learning in Example 1.3. and learning

from a one-sided search in Example 1.4..

Example 1.2. Consider the problem studied in Example 1.1 .. Fpµq “ maxt2µ ´ 1, 1 ´ 2µu,

Hpµq “ ´µ logpµq ´ p1 ´ µq logp1 ´ µq, ρ “ 1, and CpIq “ 1
2 I2. No parametric assumption

is placed on the set of admissible belief process.

The solution is presented in Figures 1.5 . and 1.6.. In Figure 1.5 .-(a), dashed lines depict

Fpµq, the blue curve depicts Vpµq, and the blue shaded region is experimentation region

E. Figure 1.5 .-(b) shows the optimal posterior νpµq as a function of the prior. As stated in

Theorem 1.3 ., the policy function is piecewise smooth and decreasing. The three arrows in

Figure 1.5 .-(a) depict the optimal strategies prescribed at three different priors. The arrows
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start at the priors and point to the optimal posteriors. The blue curve in Figure 1.5 .-(c)

shows the optimal intensity Ipµq as a function of the prior. Clearly, Ipµq is isomorphic to

Vpµq in the experimentation region.
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Figure 1.5: Value and policy functions

Figure 1.6 . illustrates the dynamics of the optimal policy. Figure 1.6 .-(a) depicts the op-

timal belief process. Conditional on no signal arrival, the posterior belief drifts towards

the critical belief level µ˚ “ 0.5. In this example, two phases of learning occur (represented

by different colors of shaded regions in Figure 1.6 .-(a)). In the first phase (blue region),

the DM seeks a Poisson signal to confirm the most likely state. As time passes, the signal

precision increases while signal frequency and learning intensity decreases (as in Fig-

ure 1.6 .-(b)&(c)). Eventually, the DM believes that the two states are equally likely and

switches to the second phase (gray region). In the second phase, she seeks two signals

that confirm each state in a balanced way such that before any signal arrives her posterior

belief is stationary.

Recall the three learning technologies in Example 1.1.. They approximate the full solu-

tion in Example 1.2 .. In general, the optimal signal is a confirmatory Poisson signal with

varying precision and frequency. However, in Example 1.1 ., the precision and frequency of

the confirmatory Poisson signal are exogenously fixed. Therefore, for very certain prior

beliefs, the ideal high-frequency Poisson signal is approximated by a Gaussian signal.

For very uncertain prior beliefs, the ideal signal is approximated by acquiring perfectly
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Figure 1.6: Dynamics of optimal policy

revealing breakthroughs with low frequency.

Example 1.3 (Multiple phases). Figure 1.7 . depicts an example with four actions, whose

expected payoffs are represented by the four dashed lines in Figure 1.7 .-(a). The two blue

dashed lines are called riskier actions, and the two red dashed lines are called safer ac-

tions. The upper envelope of the four lines is Fpµq. The experimentation region contains

three disjoint intervals. For the middle interval, in the red regions, the DM has a more

extreme belief and searches for a signal that confirms a safer action (red arrow). In the

blue region, the DM has a more ambiguous belief and searches for a riskier action (blue

arrow). Figure 1.7 .-(c) depicts the optimal belief process with a prior belief in the red re-

gion. The experimentation follows three phases, the DM searches for a safer action in

phase 1, searches for a riskier action in phase 2 and searches in a balanced way in phase

3.
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Figure 1.7: Example with four alternatives
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Example 1.4 (One-sided search). Figure 1.8 . depicts an example where the optimal strat-

egy includes only one-sided search. A safe action with deterministic payoff and a risky

action whose payoff is higher than that of the safe action in state 1 exists. As illustrated in

Figure 1.8.-(a), both Fpµq and Vpµq are monotonically increasing. According to property

1, µ ą µ˚ in the entire experimentation region E. Figure 1.8 .-(b) shows that the optimal

strategy is always to search for a Poisson signal that induces a posterior belief higher than

the prior. Figure 1.8.-(c) shows that in this example, only one phase occurs. If no signal

arrives before the belief reaches to the critical belief, the optimal solution is for the DM to

stop learning and choose the safe action.

This example illustrates more precisely the definition of confirmatory evidence: the

optimal belief jump is in the direction of a more profitable state. The profitability of a

state depends jointly on its likelihood and the corresponding payoff of the actions. In this

example, consider a prior belief less than 0.5. Although state 0 is more likely, since it is

dominated by state 1 for any action, state 1 is unambiguously more profitable to learn

about. Therefore, the optimal confirmatory evidence is always revealing state 1.
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Figure 1.8: Example with one-sided search

1.6.2 Proof methodology and key intuitions

In Section 1.3 ., I introduce four types of trade-offs. Now, I discuss the trade-offs in

detail and illustrate how they determine the optimal strategy in each salient aspect. I
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first derive a geometric characterization of the optimal policy in Section 1.6.2.1 .. Then,

I discuss how the key trade-offs are represented by the geometric characterization and

provide intuitions for the optimal policy. In Section 1.6.2.2 ., I present the sketch of a proof

for Theorem 1.2 ..

1.6.2.1 Geometric representation and key trade-offs

A though experiment is useful to gain intuition. Fix the value function V and consider

a simplified optimization problem:

sup
pě0,ν

p
`

Vpνq ´ Vpµq ´ V1pµqpν ´ µq
˘

´ C
`

p
`

Hpµq ´ Hpνq ` H1pµqpν ´ µq
˘˘

(1.7)

Equation (1.7). is more restrictive than Equation (1.4).. I assume that the DM acquires

only a Poisson signal. Let us temporarily ignore the Gaussian signal. Define:

$

’

’

&

’

’

%

Upµ, νq “ Vpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq “ Hpµq ´ Hpνq ` H1pµqpν ´ µq

The interpretation of Upµ, νq is the flow value per unit arrival rate from a Poisson signal

with posterior ν. Similarly, Jpµ, νq is the flow uncertainty reduction per unit arrival rate

from the Poisson signal. Then Equation (1.7) . can be rewritten as:

sup
pě0,ν

p ¨ Upµ, νq ´ Cpp ¨ Jpµ, νqq

Ifip¨Jpµ,νq
ðùùùùùñ sup

Iě0,ν

ˆ

Upµ, νq

Jpµ, νq

˙

¨ I ´ CpIq
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The problem is separable in choosing I and ν. The solution pν˚, I˚q is characterized by:

$

’

’

&

’

’

%

ν˚ P arg max
ν

Upµ,νq

Jpµ,νq

C1pI˚q “ max
ν

Upµ,νq

Jpµ,νq

The optimal posterior ν˚ maximizes Upµ,νq

Jpµ,νq
—the value to uncertainty reduction ratio. Let

λ “ C1pI˚q “ max Upµ,νq

Jpµ,νq
; then, Upµ, νq ď λJpµ, νq and the equality holds at ν˚.18

. Define

Gpµq “ Vpµq ` λHpµq. I call Gpµq the gross value function. Then, the definition of U and V

implies Upµ, νq ´ λJpµ, νq “ Gpνq ´ Gpµq ´ G1pµqpν ´ µq. Hence, Upµ, νq ď λJpµ, νq implies

that the gross value function has the following property:

$

’

&

’

%

Gpνq ď Gpµq ` G1pµqpν ´ µq @ν P r0, 1s

Gpν˚q “ Gpµq ` G1pµqpν˚ ´ µq

(1.8)

Equation (1.8) . states that Gpνq is everywhere (weakly) below the tangent line of G at µ,

except Gpµq and Gpν˚q touch the tangent line. The tangent line is linear (hence concave)

and thus weakly dominates G’s upper concave hull copGq. Therefore, Gpµq “ copGqpµq

and Gpν˚q “ copGqpν˚q. See Figure 1.9. for a graphical illustration.
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μ
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Figure 1.9: Concavification of the gross value function

18With Assumption 1.2-a., I˚ “ c and λ “ max Upµ,νq

Jpµ,νq
is the Lagrangian multiplier for constraint I ď c.
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Figure 1.9 .-(a) and Figure 1.9 .-(b) depict the value function V and the uncertainty mea-

sure H, respectively. Figure 1.9 .-(c) depicts the gross value function G “ V ` λH, where

λ is calculated for the prior µ. As discussed, G touches the upper concave hull at both µ

and ν˚. When ν˚ is unique, µ and ν˚ are the two boundary points of the concavified region

(the interval pµ, νq on which G ă copGq).

Equation (1.8) . is called a concavification characterization as it is an analog to the con-

cavification method in Bayesian persuasion problems. The difference is that in a Bayesian

persuasion problem, the boundary points of a concavified region are optimal posteriors,

whereas in the current problem, the prior is also on the boundary of a concavified region.

This property has clear economic meaning. G is called the gross value function because

it integrates value function V and uncertainty measure H using marginal cost level λ.

λ is a multiplier that captures the marginal effect of reducing uncertainty on flow cost.

Therefore, solving:

sup
pě0,ν

ppGpνq ´ Gpµq ´ G1pνqpν ´ µqq (1.9)

is equivalent to solving Equation (1.7).. Whether Equation (1.9). yields a positive payoff

depends on whether Gpµq ă copGqpµq. Suppose Gpµq ă copGqpµq. Then, there is a strictly

positive gain from information and Equation (1.9) . is strictly positive. However, Equa-

tion (1.9) . is linear in the signal arrival rate p. As a result the DM has incentive to increase

p, which drives up marginal cost C1p¨q. Thus, when the optimum is reached, C1p¨q (or

λ) must be such that solving Equation (1.9). yields exactly zero utility: Gpµq “ copGqpµq.

This characterization illustrates that in the continuous time limit, information is smoothed

such that uncertainty is reduced by only an infinitesimal amount at every instant of time.

Now, suppose that the HJB is satisfied, i.e., Equation (1.7) . equals the flow discounting
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loss ρVpµq. Then applying I˚ “ p˚ ¨ Jpµ, ν˚q and C1pI˚q “
Upµ,ν˚q

Jpµ,ν˚q
to the HJB implies:

ρVpµq “ p˚ ¨ Upµ, ν˚q ´ Cpp˚ ¨ Jpµ, ν˚qq

ùñ ρVpµq “ I˚C1pI˚q ´ CpI˚q (1.10)

Combining Equation (1.8) . and Equation (1.10) . dentifies the value function V and cor-

responding strategies p, ν.19
. Now, I analyze key trade-offs in the dynamic information

acquisition problem by studying Equations (1.8). and (1.10)..

1. Utility gain vs. information cost

Equation (1.10) . illustrates the utility gain vs. information cost trade-off. Since C is a

convex function, IC1pIq ´ CpIq is increasing in I20
., that is, the optimal flow informative-

ness measure I is isomorphic in continuation value Vpµq. This property is exactly the

”value-intensity monotonicity“ I introduced in Section 1.6.1..

The intuition for this property is simple. The marginal cost of increasing the intensity

of the signal proportionately is IC1pIq. The marginal gain is obtained from increasing the

arrival rate proportionately (keeping the signal precision fixed, as in the envelope the-

orem). Increasing the arrival rate by a unit proportion reduces the waiting time by the

same proportion, so the marginal gain from increasing I by a unit proportion is discount

ρV plus cost CpIq. At the optimum, the maginal cost equals the margina gain; therefore,

we obtain Equation (1.10) . and the flow informativeness is monotonic in value function.

If we consider the case with Assumption 1.2-a ., then λ in Equation (1.8) . is replaced by

the shadow cost of increasing informativeness (see Footnotes 18 . and 19.). Equation (1.10) .

can be written as ρVpµq “ cλ. Although the intensity is fixed, in this case, a monotonicity

between the shadow cost and value function remains.

19 With Assumption 1.2-a ., CpI˚q “ 0 and I˚ “ c. Thereofre, ρVpµq “ λc.
20 d

dI pIC1pIq ´ CpIqq “ IC2pIq ě 0
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In summary, by studying the utility gain vs. information cost trade-off, I established

a monotonicity between the shadow/marginal cost λ and the continuation value Vpµq. (I

refer to both as the “value-intensity monotonicity” for notational simplicity.) Now that I

characterized λ, we can proceed to Equation (1.8)..

2. Precision vs. frequency

A novel trade-off characterized by Equation (1.8). is the precision vs. frequency trade-

off. The value-intensity monotonicity determines I from the value function. Now, the

DM allocates total intensity I to precision (parametrized by the size of belief jumps) and

frequency (parametrized by the arrival rate of jumps). Equation (1.8). suggests that the

optimal signal precision can be solved by concavifying the gross value function Gpµq. In

this section, I illustrate how this trade-off changes for different priors and explain the

intuition.

0 μ ν 1
μ

G

0 1
μ

G

0 μ' ν' 1
μ

G

Figure 1.10: Precision-frequency trade-off

Figure 1.10 . shows how varying λ affects the optimal jump size. In Figure 1.10 .-(a) the

blue curve is Gpµq, and the dashed curve is copGq. I call the blue region, where Gpµq ă

copGqpµq, the concavified region and the white region, where Gpµq “ copGqpµq, the globally

concave region. The prior µ and optimal posterior ν are on the boundary of a concavified

region. Consider G1 “ V ` λ1H, where λ1 ą λ. Figure 1.10 .-(b) depicts both G (the dashed

curve) and G1 (the blue curve). Since G1 is G plus a strictly concave function, any belief in

the globally concave region of G is still in the globally concave region of G1. As a result, as
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λ increases, the white region is expands and the blue region contracts (see Figure 1.10 .-(c)).

Thus, the prior and optimal posterior move closer together. Recall that λ is monotonic in

V, which means the DM is more willing to choose a signal that induces shorter belief

jump when the continuation value is higher.

The intuition for this property is as follows. When the DM is more certain about the

state, the continuation value is higher; hence, the utility loss from discounting is higher.

The DM wants to receive a signal more frequently to benefit from the high value sooner.

In other words, the marginal rate of substitution of frequency for precision is increasing in

the continuation value. In this analysis, the continuation value is isomorphic to λ, which

controls the shape of G. The marginal rate of substitution of frequency for precision is

exactly captured by the global concavity of the gross value function; thus, the analysis

presented by Figure 1.10 . exactly illustrates the intuition.

Confirming vs. contradicting: The analysis above determines the magnitude of the op-

timal belief jump. The optimal jump direction remains to be determined to pin down the

optimal posterior. Now, I show that the precision-frequency trade-off also implies the

optimality of confirmatory learning.

Let us hypothetically consider a belief µ at which jumping toward the right is optimal

(weakly). In both panels of Figure 1.11 ., µ is the prior and νL, νR are optimal posteriors on

each side of µ. Jumping to νR (the black arrow) is better than jumping to νL (the dashed

black arrow). Let V be increasing around µ. Now consider the DM’s incentive at µ1

slightly larger than µ (in Figure 1.11 .-(a)). Although the corresponding optimal posteriors

could also move, keeping them fixed at νL and νR has only a second-order effect on utility.

We can compare νL and νR to pin down the optimal posterior for µ1. Since µ1 ą µ, νR is

closer to prior, and νL is farther from prior. Moreover, Vpµ1q ą Vpµq implies that the DM

has a stronger preference for frequency to precision with belief µ1. Since V1 ą 0, the effect

is first order. Therefore, νR is strictly preferred to νL at µ1. Consider µ2 slightly smaller
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than µ (in Figure 1.11 .-(b)). A similar analysis shows that now size of jump to νR is larger,

and the DM has a stronger preference for precision with belief µ2. Thus, νR is also strictly

optimal for µ2.

μνL νRμ1
μ1

μνL νR
μ2

Figure 1.11: Confirmatory v.s. contradictory

In this analysis, jumping in the direction of increasing value function means the sig-

nal is confirmatory. When value function is quasi-convex, this property is equivalent to

property 2 of Theorems 1.2 . and 1.3.. Therefore, the precision-frequency trade-off implies

that the incentive for confirmatory learning is self-enforcing.

3. Poisson vs. Gaussian

Thus far, I have ignored the possibility of Gaussian signals. In fact, Gaussian signals

are implicitly modeled in Equation (1.8) .. Consider the optimization w.r.t. Gaussian sig-

nals:

sup
σ

σ2V2pµq ´ Cp´σ2H2pµqq

ùñ FOC : V2pµq ` λH2pµq “ 0

ðñ G2pµq “ 0 (1.11)

where λ “ C1p´σ2H2pµqq with Assumption 1.2-a . or λ “
ρ
c Vpµq with Assumption 1.2-b ..

Comparison of Equations (1.8) . and (1.11). shows that Equation (1.11). is exactly the limit of

Equation (1.8) . when optimal posterior ν converges to prior µ. This result is intuitive since

a Gaussian signal can be approximated as a Poisson signal with very low precision and

high arrival rate.
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The comparison of Gaussian and Poisson signals is effectively the comparison of a

special imprecise Poisson signal and other Poisson signals. Therefore, this trade-off is a

special case of the precision-frequency trade-off. Selecting a Gaussian signal is a corner

solution when the DM wants to sacrifice almost all precision for frequency—a slightly less

patient DM is willing to avoid any waiting and stop immediately, while a slightly more

patient DM is willing to wait for a more precise Poisson signal. Therefore, the Gaussian

signal is optimal only on the boundaries of the experimentation regions. Given this in-

tuition, one could imagine that the Gaussian signal is generically suboptimal except for

special cases where the precision-frequency trade-off is invariant. Since the preference

between precision and frequency depends on the loss from delaying, the trade-off is in-

variant only when the DM does not discount future payoffs. This intuition is confirmed

in a no-discounting special case in Section 1.7.1., as well as in the model of Hébert and

Woodford (2016.).

4. Continuing vs. stopping

Consider the optimal stopping time. Theorems 1.2. and 1.3. states that repeated jumps

are suboptimal. I prove by showing that repeated jumps can be improved by a direct

jump. Let ν be the optimal posterior for prior µ (see Figure 1.12 .). Then, Equation (1.8) .

implies that U0
J0

“
U1

0
J1
0

“ λpµq.
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Figure 1.12: Continuing vs. stopping
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Hypothetically, imagine that at ν, it is optimal to continue, and the optimal posterior

is ν1. Then, U1
J1

“ λpνq, and λpνq ą λpµq by the confirmatory evidence property and value-

intensity monotonicity. I want to show that this result implies Upµ,ν1q

Jpµ,ν1q
“

U1`U1
1

J1`J1
1

ą λpµq,

i.e., jumping to posterior ν1 directly is strictly better than a two-step jump. By elementary

geometry, there exists α s.t U1
1 “ αU0 and J1

1 “ αJ0.21
. Therefore, the value to uncertain

reduction ratio Upµ,ν1q

Jpµ,ν1q
“

U1`αU0
J1`αJ0

is a weighted average of U0
J0

and U1
J1

, which is larger than

λpµq.

The intuition for the stopping rule is now clear. If we combine a two-step jump into

a direct jump, the flow utility gain is a weighted sum of that of the two jumps. The

flow uncertainty reduction is exactly the same weighted sum of that of the two jumps.

Therefore, the net value from a direct jump is a weighted average of the net values from

each jump. As a result, sequentially jumping to higher values is dominated by directly

jumping to the highest value.

Remark 1.1.

The intuition behind the value-intensity monotonicity is driven purely by convexity of

cost function h and is clearly independent of the formulation of the information measure.

The intuition behind the optimality of a Poisson signal over a Gaussian signal is the use of

the precision-frequency trade-off to compare a generic Poisson signal with an extremely

imprecise Poisson signal. The result does not depend on the exact form of I. I generalize

the optimality of a Poisson signal to the generic cost of information in Theorem 1.5 ., Sec-

tion 1.7.2 .. I also discuss confirmatory evidence and immediate stopping properties with

generic cost functions in Section 1.7.2 ..

The precision-frequency trade-off also does not depend on the size of the state space.

I confirm this result via a general characterization of optimal strategy with more states

21See Figure 1.12 .. U0
J0

“
U1

0
J1
0

“ λpµq implies U1
1

J1
1

“ λpµq, hence, U1
1

U0
“

J1
1

J0
. I assume the ratio to be α.
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(Theorem A.3 .) in Appendix A.1.3 .. However, the binary states assumption is crucial for

proving the existence of the solution to the HJB equation. A constructive proof of the

binary state case based on ODE theory is introduced in Section 1.6.2.2 ..

Our discussion thus far does not rely on the exact form of λ. The qualitative properties

of all these trade-offs depend only on the monotonicity of λ in continuation value, which

is true with both Assumptions 1.2-a. and 1.2-b.. Therefore, when I introduce the sketch of

the proof, I discuss only Theorem 1.2 ., and the proof extends to Theorem 1.3 ..

1.6.2.2 Sketched proof of Theorem 1.2.

I prove Theorem 1.2. by construction and verification. I conjecture that the optimal

policy for Equation (1.4) . takes the form of Theorem 1.2 .: a single confirmatory signal as-

sociated with an immediate action. I first construct Vpµq and νpµq via three steps:

• Step 1. Determine µ˚. Since µ˚ P arg min V, except for the special case where V is strictly

monotonic, µ˚ is essentially the unique belief at which V1pµ˚q “ 0, and searching for

posteriors on either side of µ˚ is equally good. The HJB equation implies:

sup
νďµ˚

Fpνq

1 `
ρ
c Jpµ˚, νq

“ sup
νěµ˚

Fpνq

1 `
ρ
c Jpµ˚, νq

Vpµ˚q and νpµ˚q are pinned down correspondingly. The special case occurs when F

is strictly monotonic. Take F1 ą 0 for example. µ˚ is the smallest belief that ρFpµq ď

sup
νěµ

´c Fpνq´Fpµq´F1pµqpν´µq

Jpµ,νq
, and vice versa for F1 ă 0.

• Step 2. Solve for the value function while holding the action fixed. Let a be the optimal

action for optimal posterior ν solved in step 1. Let Fapµq “ Eµrupa, xqs. Now, solve for

the value function given payoff Fapνq:

ρVpµq “ max
νěµ

´c
Fapνq ´ Vpµq ´ V1pµqpν ´ µq

Hpνq ´ Hpµq ´ H1pµqpν ´ µq
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The primitives in the objective function are all sufficiently smooth in ν. Then, the first-

order condition w.r.t. ν yields a well-behaved ODE characterizing νpµq with initial

condition νpµ˚q. Therefore, we can solve for the optimal policy ν and calculate value

Vpµq accordingly for µ ě µ˚. Vpµq and νpµq for all µ ď µ˚ are solved by a symmetric

process.

• Step 3. Update the value function w.r.t. all alternative actions and smoothly paste the

solved value function piece by piece. This step begins with solving the ODE defined in

step 2 at µ˚. Then, I extend the value function towards µ “ t0, 1u. Whenever I reach

a belief at which two actions yield the same payoff, I setup a new ODE with the new

action. This process continues until the calculated value function Vpµq smoothly pastes

to Fpµq. This procedure generates a quasi-convex value function (minimized at µ˚).

Solving the ODE characterizing νpµq directly implies monotonicity of νpµq in each con-

nected experimentation region. Now, I need to verify the optimality of the constructed

strategy. The verification takes three steps, which rule out repeated jumps, contradic-

tory evidence and Gaussian signals. The intuition for the suboptimality of these three

alternative strategies is explained in Section 1.6.2 .. The formal proof is relegated to Ap-

pendix A.2.3..

1.7 Discussion

In this section, I discuss, in detail, the assumptions I make in the baseline model, which

can be categorized into three classes.

1. Economic assumptions:

• Discounting (positive ρ).

• Informativeness measure (Assumption 1.1.).

• Convexity of cost function (Assumption 1.2.).

2. Restrictive assumptions: Finite actions and binary states (Assumption 1.3.).
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1.7. Discussion

3. Technical assumptions: Smoothness and positiveness assumptions (Assumption 1.3 .).

The economic assumptions are crucial for my results and deserve an in-depth dis-

cussion. To illustrate the role of discounting, in Section 1.7.1 ., I discuss the case with no

discounting but a flow waiting cost, and show that without discounting, the trade-off

between precision and frequency diminishes and the dynamics of information become

irrelevant. In Section 1.7.2 ., I generalize Assumption 1.1 . to general information measures

and show that a Poisson signal almost always strictly dominates a Gaussian signal. I also

explain that immediate action and confirmatory learning properties are tightly tied to As-

sumption 1.1.. To illustrate the role of Assumption 1.2., I discuss the case where the cost

function is linear in Section 1.7.3. and show that without convexity, the optimal strategy is

static.

The restrictive assumptions do limit the generality of the model. However, relaxing

them does not fundamentally alter the key intuition, and the methodology generalizes.

The discussion of these assumptions is relegated to the appendix. In Appendix A.1.2 ., I

relax the finite action assumption and show that the problem with a continuum of ac-

tions can be approximated well by adding actions. In Appendix A.1.3., I relax the binary

state assumption. Although the constructive proof of existence no longer works with the

general state space, I show that all the properties in Theorem 1.2. extend. The technical as-

sumptions do not restrict my model in a meaningful way and are therefore not discusses.

1.7.1 Linear delay cost

As is discussed in Section 1.6.2., discounting is the key factor driving all the dynamics.

With exponential discounting, the trade-off between the arrival frequency and precision

of signals changes according to the continuation value. A sensible conjecture is that if

we replace exponential discounting with linear discounting, i.e., the DM pays a fixed

flow cost of delay, the time distribution of the utility gain and information cost no longer
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matters to the DM. In fact, this conjecture is correct. Consider the following problem:

Vpµq “ sup
xµtyPM,τ

E
„

Fpµτq ´ mτ ´

ż τ

0
CpItqdt

ȷ

(1.12)

Theorem 1.4. Given Assumptions 1.1. and 1.2., suppose Vpµq solves Equation (1.12).; then:

Vpµq “ sup
PP∆2pXq,λą0

EPrFpνqs ´
m ` Cpλq

λ
EPrHpµq ´ Hpνqs

Theorem 1.4 . illustrates that solving Equation (1.12). is equivalent to solving a static ra-

tional inattention problem, with m`Cpλq

λ being the marginal cost on the information mea-

sure (see Caplin and Dean (2013.) and Matějka and McKay (2014.)). The optimal value

function can be obtained through various learning strategies. Assuming pP˚, λ˚q to be the

solution to the problem in Theorem 1.4 ., then all dynamic information acquisition strate-

gies that eventually implement P˚ (i.e., µ8 „ P˚) and incur flow cost λ˚ achieve the same

utility level Vpµq.22
.

Note that in Equation (1.12) ., the utility depends on the decision time only through ex-

pected delay Erτs. Therefore, the previous analysis implies that all dynamic information

acquisition strategies that eventually implement P˚ and incur flow cost λ˚ have the same

expected delay. This result suggests that the cost structure specified by Assumptions 1.1 .

and 1.2. has the property that all learning strategies are equally fast on expectation, but

they might differ in terms of riskiness. The linear delay cost case is a knife-edge case where

the DM is risk neutral on the time dimension and, consequently, all learning strategies are

equally good.

When the DM discounts delayed payoffs, as is assumed in the main model, she is risk

loving on the time dimension; therefore, the DM prefers a riskier strategy. Intuitively,

22This result is stated and proved formally in Chapter 3 ..

52



1.7. Discussion

the riskiest information acquisition strategy is a “greedy strategy” that maximizes the

probability of early decision (at the cost of a high probability of long delays as the ex-

pected delay is fixed). The confirmatory Poisson learning strategy exactly resembles such

a greedy strategy. The key property of the strategy is that all resources are used in verify-

ing the conjectured state directly, and no intermediate step exists before a breakthrough.

Alternative strategies, such as Gaussian learning and contradictory Poisson learning all

involve the accumulation of substantial intermediate evidence to conclude a success. The

intermediate evidence accelerates future learning and hence hedges the risk of decision

time. Moreover, the decision time is further dispersed by acquiring signals with decreas-

ing frequency.

Equation (1.12) . is the dynamic learning foundation provided in Hébert and Woodford

(2016.) to justify Gaussian learning.23
. The analysis of Equation (1.12). suggests that a linear

delay cost is a knife-edge case.

1.7.2 General information measure

Technically, Assumption 1.1 . helps throughout the entire analysis. The methodology

of concavifying ”the gross value function“ is possible only when the expected utility gain

and information measure take consistent forms. However, I want to show that one key

feature of the baseline model—the optimality of Poisson learning—does not depend on

this assumption. Let Jpµ, νq and κpµ, σq be bivariate functions. Consider the following

functional equation:

ρVpµq “ max
"

ρFpµq, sup
p,ν,σ2

p
`

Vpνq ´ Vpµq ´ V1pµqpν ´ µq
˘

`
1
2

σ2V2pµq

*

(1.13)

s.t. pJpµ, νq ` κpµ, σq ď c

23In Hébert and Woodford (2016.), informativeness measures that are more general than Assumption 1.1 .

are also considered in the Appendix.
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The objective function of Equation (1.13) . is exactly the same as that of Equation (1.4) . with

Assumption 1.2-a .. I assume that the DM controls a jump-diffusion belief process. The

gain from information is the same as before. I assume Jpµ, νq to be an arbitrary function

that is both prior and posterior dependent. The cost of the diffusion signal is κpµ, σq. I

impose the following assumptions on Jpµ, νq and κpµ, σq.

Assumption 1.4.

1. J P Cp4qp0, 1q2.

2. @µ P p0, 1q, Jpµ, µq “ J1
νpµ, µq “ 0, and J2

ννpµ, µq ą 0.

3. κpµ, σq “ 1
2 σ2 J2

ννpµ, µq.

First, J is assumed to be sufficiently smooth to eliminate technical difficulties. Jpµ, µq “

0 is the implication of “an uninformative Poisson signal is free”.24
. J1

νpµ, µq “ 0 and

J2
ννpµ, µq ą 0 are implications of “any informative Poisson signal is costly”. Within this

continuous time framework, these assumptions are imposed on J without loss of general-

ity. The crucial assumption is the third condition: κpµ, σq “ 1
2 σ2 J2

ννpµ, µq. This assumption

states that the cost functional is “continuous” in the space of the signal structures. Con-

sider a Poisson signal pp, νq. When ν Ñ µ, the utility gain from learning this signal is:

p
`

Vpνq ´ Vpµq ´ V1pµqpν ´ µq
˘

“ p
ˆ

1
2

V2pµqpν ´ µq2 ` O|ν ´ µ|3
˙

Therefore, pp, νq approximates a Gaussian signal with flow variance ppν ´ µq2. Mean-

while, the cost of this signal is:

pJpµ, νq “p
ˆ

Jpµ, µq ` J1
νpµ, µqpν ´ µq `

1
2

J2
ννpµ, µqpν ´ µq2 ` Op|ν ´ µ|3q

˙

“
1
2

ppν ´ µq2 J2
ννpµ, µq ` pOp|ν ´ µ|3q

24In this setup, Jpµ, µq “ 0 is WLOG. If an uninformative signal has a strictly positive cost, we can always
shift the capacity constraint c to normalize Jpµ, µq to 0.
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Hence, if the cost of a Gaussian signal is consistent with the cost of imprecise Poisson

signals in the limit, κpµ, σq “ 1
2 σ2 J2

ννpµ, µq.

Theorem 1.5. Given Assumption 1.4 ., suppose V P Cp3qp0, 1q solves Equation (1.13)., and let

Lpµq be defined by:

Lpµq “
ρ

c
J2
ννpµ, µq2 ´

2Jp3q
ννµpµ, µq2 ` Jp3q

νννpµ, µqJp3q
ννµpµ, µq

J2
ννpµ, µq

` Jp4q
νννµpµ, µq ` Jp4q

ννµµpµ, µq

Then in the open region: D “

!

µ
ˇ

ˇ

ˇ
Vpµq ą Fpµq and Lpµq ‰ 0

)

, the set of µ s.t.:

ρVpµq “ c
V2pµq

J2
ννpµ, µq

is of zero measure.

The interpretation of Theorem 1.5 . is that a Poisson signal is almost always strictly

superior to the diffusion signal. In the experimentation region where Lpµq ‰ 0, Vpµq

can be achieved by a diffusion signal only at a zero measure of points. Lpµq “ 0 is a

partial differential equation on Jpµ, νq in the diagonal of space. Therefore, the set of points

that Lpµq “ 0 could contain an interval only when Jpµ, νq is a local solution to the PDE.

The solution to a specific PDE is a non-generic set in the set of all functions satisfying

Assumption 1.4 .. In this sense, for an arbitrary information measure Jpµ, νq, the optimal

policy function contains a diffusion signal almost nowhere.

A trivial sufficient condition for Lpµq ‰ 0 is Assumption 1.1 .. Assumption 1.1 . implies

that Jp2q
νν pµ, νq is invariant in µ. In this case Lpµq “

ρ
c J2

ννpµ, µq2 ą 0 for certain. The first

corollary of Theorem 1.5 . characterizes D when J is almost locally posterior separable.

@ f P Cp1qp0, 1q2, define a norm ∥ f p¨q∥δ “ supxPrδ,1´δs

␣

| f px, xq|, ∥∇ f px, xq∥L2

(

.

Corollary 1.5.1. Given Assumption 1.4 ., suppose V P Cp3qp0, 1q solves Equation (1.13).; then, for
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any δ ą 0, there exists ε s.t. if
∥∥∥Jp3q

ννµ

∥∥∥
δ

ď ε, then in the interval rδ, 1 ´ δs the set of µ s.t.:

ρVpµq “ c
V2pµq

J2
ννpµ, µq

is of zero measure.

The condition in Corollary 1.5.1 . states that J2
ννpµ, νq is approximately constant over µ

for ν close to µ. This result verifies my analysis in Section 1.6.2.1. that the comparison

of Poisson and Gaussian signals relies only on the local properties of J. Another simple

sufficient condition for Lpµq ‰ 0 is high impatience or low learning capacity.

Corollary 1.5.2. Given Assumption 1.4 ., suppose V P Cp3qp0, 1q solves Equation (1.13).. Then,

for any δ ą 0, there exists ∆ s.t. if ρ
c ě ∆, then in the interval rδ, 1 ´ δs, the set of µ s.t.:

ρVpµq “ c
V2pµq

J2
ννpµ, µq

is of zero measure.

Corollaries 1.5.1 . and 1.5.2. complement the discussion in Section 1.7.1 . and illustrate the

complete picture of how the DM’s incentives pin down the optimal learning dynamics.

First, when Assumption 1.1 . holds, Theorem 1.4 . implies that the cost structure does not

favor any learning strategy. Any positive discount rate gives the DM incentive to choose

a Poisson signal. All learning strategies, including Gaussian learning, become equally op-

timal only when time preference is risk neutral. Second, when Assumption 1.1 . is violated

by a small amount, then even though the cost structure might favor a Gaussian signal,

the incentive is dominated by discounting. Third, when the cost structure provides arbi-

trarily strong incentive for a Gaussian signal, sufficiently high discount rate overweights

the incentive.
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Although Poisson learning is generally optimal, immediate action and confirmatory evi-

dence are implications of Assumption 1.1.. Imagine a case in which high-precision signals

are relatively inexpensive (e.g., Jpµ, νq is truncated both below and above). Then, when

the prior is close to the boundary of the stopping region, seeking confirmatory evidence

(with low precision and high frequency) results in very high cost, whereas seeking for a

precise contradictory signal is inexpensive. Searching for a contradictory signal causes

the belief to drift rapidly toward the more likely state, which effectively enables quick

confirmation. Therefore, the contradictory signal becomes optimal. In fact, this example

has the same intuition as the findings in Che and Mierendorff (2016.). In their setup, the

DM allocates limited attention to two exogenous Poisson signals, each revealing a state.

When the DM is more uncertain, their model predicts that the DM acquires a confirma-

tory signal. However, near the stopping boundary, their model predicts a contradictory

signal, as the contradictory signal approximates an infeasible confirmatory signal with

low precision and high frequency.

On the other hand, consider the immediate action property. Imagine a case in which

low-precision signals are inexpensive. Then, breaking a long jump into multiple short

jumps may be profitable. The immediate action property is called the single experiment

property (SEP) in Che and Mierendorff (2016.). In their paper, SEP is also shown not to be

a robust property in a generic Poisson learning model.

1.7.3 Linear flow cost

In this subsection, I study the case where the flow cost CpIq is a linear function. As-

sumption 1.2. is replaced by the following assumption:

Assumption 1.21 (Linear flow cost). Function h is defined by CpIq “ λI, λ ą 0.

The convexity of CpIq in Assumption 1.2 . gives the DM incentive to smooth the acqui-

sition of information. When CpIq is a linear function, the optimal value is achieved by
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acquiring all the information and immediately making a decision.

Theorem 1.6. Given Assumptions 1.1. and 1.21
., suppose Vpµq solves Equation (1.1)., then:

Vpµq “ sup
PP∆2pXq

EPrFpνqs ´ λEPrHpµq ´ Hpνqs (1.14)

The intuition for this result is simple. At any instant in time, suppose that the optimal

decision is to continue learning for a positive amount of time. The value is the discounted

future value at the next instant of time pt ` dtq less the flow cost of information. Now, con-

sider moving the learning strategy at t ` dt to the current period. Then, both the future

value at t ` dt and the cost are discounted by dt less. If the net utility gain from learn-

ing at t ` dt is nonnegative, then this operation increases the current utility by reducing

the waiting time.25
. If the net utility gain from learning at t ` dt is negative, then stop-

ping learning immediately increases current utility. This operation can always be applied

recursively and strictly improves the strategy until all information is acquired at period

0.26
.

In fact, given Assumptions 1.1 . and 1.21
., Equation (1.1) . is a variant of the more gen-

eral model in Steiner, Stewart, and Matějka (2017.), which considers a varying state and

repeated decision making. With linear cost function CpIq, no motivation for smoothing

the learning behavior exists. The dynamics in Steiner, Stewart, and Matějka (2017.) are a

result of the intertemporal dependence of decision problems.

25This step utilizes Assumption 1.21
., which implies that the cost of a combined signal structure is the sum

of the cost of each of them.
26Strictly speaking, an immediate learning strategy is not admissible because its belief path is not cadlag.

However, there always exists a way to implement a signal structure in an arbitrarily short period of time,
and the payoff approximates the immediate learning payoff.
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1.8 Applications

1.8.1 Choice accuracy and response time

The two-choice sequential decision making problem has been extensively studied in

the psychological and behavioral studies. One of the key objective is to explain the data on

choice accuracy and response time from experiments. The drift-diffusion model (DDM)

has been the most popular theoretical model for these decision problems, for the reason

that DDM is very tractable and fits the accuracy/ response time data well. However,

accounting for the joint distribution of choice accuracy and response time remains a chal-

lenge for DDM. In this section, I apply my model to predict a systematic feature in the

data: the crossover of response time-accuracy relationship.

The crossover happens when the difficulty of decision problem varies: the error re-

sponses are faster than the correct responses when the task is easy; the error responses

are slower than the correct responses when the task is hard (see Luce et al. (1986.), Rat-

cliff, Van Zandt, and McKoon (1999.)). First, I illustrate the crossover of time-accuracy

relationship in Example 1.5..

Example 1.5. Consider the same decision problem as in Example 1.1.. Fpµq “ maxt1 ´ 2µ, 2µ ´ 1u

and ρ “ 1. Assume prior belief µ0 “ 0.5 and let H0pµq be the entropy function. Define

uncertainty measure Hpµq as:

Hpµq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

H0pµq if µ P r0.5, 0.65s

H0pµq ´ |µ ´ 0.5|
3 if µ ă 0.5

H0pµq ´ 4|µ ´ 0.65|
3 if µ ą 0.65

Hpµq is an asymmetric uncertainty measure, and Hpµq is slightly more concave than H0

when µ ă 0.5 or µ ą 0.65. The different difficulty levels are modeled as different capacity
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constraints on ´LHpµtq, the higher the capacity constraint is, the easier the decision prob-

lem is. I study the joint distribution of choice and decision time conditional on the true

state being r (µ “ 1). Figure 1.13 . depicts the latency-probability (LP) and quantile-probability
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Left panel: The latency-probability function (the thin line) and the data points simu-
lated from 8 difficulty levels. Right panel: The quantile-probability functions (the thin
lines, from bottom to top: 0.1, 0.3, 0.5, 0.7, 0.9 quantile) and the data points simulated
from 8 difficulty levels. The correct responses are to the right of 0.5, the errors are to
the left of 0.5. Red points: the errors have shorter response times. Blue points: the
errors have longer response time.

Figure 1.13: LP and QP plots

(QP) plots. The horizontal coordinates of the points to the right of p “ 0.5 shows the

choice probability of the action R (the correct choice). Each such point has a correspond-

ing point to the left of p “ 0.5 showing the remaining probability of the action L (the

error). The vertical coordinates of all points show the response time measured by mean

(in LP plot) or by quantiles (in QP plot).

The crossover of time-accuracy relationship is illustrated by the differently colored

points. The red points are data points where the errors happen earlier than the correct

responses (measured by both mean or quantiles). They are simulated with high capacity,

thus are of higher accuracy in general. On the contrary, the blue points are data points

where the errors happen later than the correct responses. They are simulated with low
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capacity, and of low accuracy in general. In fact, Figure 1.13 . is qualitatively the same as

the LP and QP plots documented in Ratcliff and Rouder (1998.) and Ratcliff, Van Zandt,

and McKoon (1999.).
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Figure 1.14: The critical beliefs of different difficulty levels

The main reason for the crossover is explained in Figure 1.14 .. When the capacity is

low (the task difficulty is high), the optimal size of belief jump is small. By construction

of Hpµq, when the posterior belief is not far away from µ0, learning the state L is more

costly than learning the state R. As a result, the critical belief µ˚ at which searching for

both direction is indifferent is biased toward left. Since µ0 ą µ˚, the correct responses

are font-loaded. Applying the same intuition, when the capacity is high, µ0 ă µ˚ and the

errors are font-loaded.

Applying the idea from Example 1.5 ., creating a crossover of µ˚ and µ0 is necessary for

creating a crossover of the response time-accuracy relationship.

Proposition 1.1. Suppose |A| “ 2, Assumption 1.2-a . is satisfied. H0pµq and Fpµq are symmetric

around µ0 “ 0.5 and satisfy Assumption 1.3 .. @ partition of R` : t0, c1, ¨ ¨ ¨ , ck, 8u, there exists

uncertainty measure Hpµq satisfying Assumption 1.3. such that:

1. When c P tcku, µ˚ “ µ0, and the optimal strategy at µ0 is the sames as that with H0pµq.

2. When c increases on R`, the sign of µ˚ ´ µ0 alternates on each partition.
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Proposition 1.1. states that the flexible learning model can fit an arbitrary number of

crossovers of the response time-accuracy relationship at given difficulty levels. The stan-

dard DDM predicts identical decision time distribution for the correct responses and the

errors (Ratcliff (1981.)). To accommodate a non-trivial speed-accuracy trade-off/complementarity,

DDM with varying boundary (Cisek, Puskas, and El-Murr (2009.)) or DDM with random

starting point and drift (Ratcliff and Rouder (1998.)) are proposed, and there are a lot of de-

bate about which variation works better. Fudenberg, Strack, and Strzalecki (2018.) shows

that the collapsing (expanding) boundary maps exactly to the complementarity (trade-

off), and in an uncertain-difference DDM with endogenous stopping, decision boundary

collapses to zero asymptotically and accuracy declines over time. These analyses sug-

gest that DDM is able to fit the crossover, however at the cost of adding trial dependent

parameters. Meanwhile, it remains to be disentangled which set of parameters in DDM

are task specific and which set are subject specific. On the contrary, the flexible learning

model predicts the crossovers clearly with varying only a task difficulty parameter, while

keeping the task payoffs and the learning technology constant across trials.

1.8.2 Radical innovation

An important question in the study of innovation is to understand what characteristics

of a firm foster innovation. The second application relates the radicality of firm’s R&D

and innovation to its safe option. I consider two firms: an incumbent (I) and an entrant (E).

They face the identical set of risky new products. The only difference between the two

firms is that the incumbent has a better existing safe product. I am interested in which

firm innovates more radically in the R&D process. Intuitively, there are two competing

incentives:

1. Impatience effect: The incumbent has an overall higher continuation value than the

entrant. Therefore, by the value-precision monotonicity, the more impatient incum-
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bent should prefer the frequency of signal to the precision of signal. So the impa-

tience effect suggests that the entrant innovates more radically.

2. Threshold effect: The incumbent has a better outside option. Therefore, it has a higher

threshold of belief for accepting a risky option. The relative value of a precise signal

to an imprecise signal is higher for the incumbent. Therefore, the threshold effect

suggests that the incumbent innovates more radically.

I model the problem using the following setup. There is one safe product Ps and K

risky products tP1, ¨ ¨ ¨ , PKu. The state is x P tG, Bu. x “ G means the new technology is

good, and the new products are better than the safe product: @i, k uipPk, Gq ą uipPs, Gq.

When x “ B, the new technology fails, and @i, k uipPk, Bq ă uipPs, Bq. @x, k, uIpPk, xq “

uEpPk, xq and uIpPsq ą uEpPsq. The two firms share the same Hpµq function and capacity

constraint c.27
. Let νipµq be the two firms’ optimal strategies. I define that a firm is looking

for more radical innovation given belief µ iff |νipµq ´ µ| ą |ν´ipµq ´ µ|, namely firm i is

searching for a more precise Poisson signal.

Example 1.6. I calculate a simple example. There is only one risky product and K “ 1. The

incumbent’s safe option pays uIpPs, xq “ 0.3 and the entrant’s safe option pays uEpPs, xq “

0.15. The risky option pays 1 when x “ G and ´1 when x “ B. H is the standard entropy

function, ρ “ 1, c “ 0.3.

Figure 1.15. depicts the value functions (red curve: incumbent; blue curve: entrant).

The two dashed lines are the payoffs of the corresponding safe options. Figure 1.16 . de-

picts the policy functions (red curve: incumbent; blue curve: entrant). There is clearly a

crossover of the policy functions. In the union of the two firm’s experimentation regions,

27It is straightforward that if the cost of R&D is flexible, the incumbent invests (strictly) more as a di-
rect implication of the value-intensity monotonicity. So I fix the capacity and focus on the choice of signal
precision. It is not hard to extend the results to the flexible cost case.
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Figure 1.15: Value function
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Figure 1.16: Policy function

when µ ă µc the entrant seeks more radical innovation, when µ ą µc the incumbent seeks

more radical innovation.

The result of Example 1.6 . can be summarized by the following proposition. Suppose

K “ 1, let E0 be the union of the two firms’ experimentation regions.

Proposition 1.2. There exists µc s.t. @µ P E0, µ ą µc ùñ |νIpµq ´ µ| ą |νEpµq ´ µ| and

µ ă µc ùñ |νIpµq ´ µ| ă |νEpµq ´ µ|. Moreover, E0
Ş

p0, µcq ‰ H and E0
Ş

pµc, 1q ‰ H.

Proposition 1.2 . first states that there exist a threshold belief that the incumbent looks

for more radical innovation if (and only if) the belief is higher than the threshold. More-

over, there exist none degenerate regions that either firm is innovating more radically

than the other. Therefore, the order of radically of the two firms’ innovations switches ex-

actly once when the belief changes. Here is the intuition for the crossover. The entrant’s

value function is always steeper than the incumbent’s, hence, the difference in the contin-

uation value is decreasing in the belief. As a result, the impatience effect is diminishing

when µ increases. On the other hand, when µ is higher, it is ex ante more likely that the

risky arm will be chosen. As a result, the threshold effect outweighs the impatience effect

when µ increases. Therefore, when µ increases, the incumbent is increasingly favoring a

more precise signal, comparing to the entrant. Thus, there is a crossover.
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Proposition 1.2. extends to multiple risky products as well. When K ą 1, the exper-

imentation regions are no longer simple intervals. Instead, they are unions of open in-

tervals. In any experimentation interval where V never touches Fs, the two firms use the

identical strategy (since the outside option is never triggered). So we only consider the

leftmost interval in each firm’s experimentation region. Let E0 be the union of the two

firms’ leftmost intervals of the experimentation region.

Proposition 1.3. There exists µc s.t. @µ P E0, µ ą µc ùñ |νIpµq ´ µ| ą |νEpµq ´ µ| and

µ ă µc ùñ |νIpµq ´ µ| ă |νEpµq ´ µ|. Moreover, E0
Ş

p0, µcq ‰ H and E0
Ş

pµc, 1q ‰ H.

1.9 Conclusion

This chapter provides a dynamic information acquisition framework which allows

fully general design of signal processes, and characterizes the optimal information ac-

quisition strategy. My first contribution is an optimization foundation for a family of

simple information generating processes: for an information acquisition problem with

flexible design of information, the optimal information structure causes beliefs to follow

a jump-diffusion process. Second, I characterize the optimal policy: seeking a Poisson

signal whose arrival confirms the prior belief is optimal. The arrival of the signal leads

to an immediate action. The absence of the signal is followed by continued learning with

increasing precision and decreasing frequency.
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Time preference and information acquisition
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2.1 Introduction

Consider a decision maker (DM) who is making a one-shot choice of action. The pay-

off of each action depends on an unknown state of the world. The DM can design a

sequence of signal structures as her information source subject to a flow informativeness

constraint. The informativeness of a signal structure is measured by a posterior separable

measure. The DM is impatient and discounts future payoffs. Here I want to study the fol-

lowing question: fix a target information structure, what is the optimal learning dynamics

that implements this target information structure?

In Example 2.1 ., I analyze this problem in a very simple toy model. In the example,

I consider three simple dynamic signal structures: (i) pure accumulation of information

before decision making, (ii) learning from a decisive signal arriving at a Poisson rate and

(iii) learning from observing a Gaussian signal. This example suggests that different dy-

namic signal structures mainly differ in the induced decision time distribution. Since the

form of discounting function prescribes the risk attitude on the time dimension, the dis-

counting function (or time preference) is a key factor determining the optimal dynamic

signal structure.

Example 2.1. The unknown state of the world can take two possible values x “ t0, 1u.

Prior belief is µ “ 0.5 (the probabiltiy that x “ 1). Suppose that the target information

structure is full revelation (induced posterior belief is either 0 or 1). I consider a model

in continuous time. The flow information measure of belief process µt is assumed to be

Er´ d
dt Hpµtq

ˇ

ˇFts (the uncertainty reduction speed, introduced in Chapter 1 .), where Hpµq “

1 ´ 4pµ ´ 0.5q2. Assume that the flow cost constraint is c ď 1. The DM has exponential

discount function e´t. I assume the utility from the optimal actions associated with each

state to be 1. In this example, I compare three different learning strategies:

1. Pure accumulation: the DM uses up all resources pushing her posterior beliefs towards
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the boundary. This strategy is a continuous time extension of the suspense maximizing

strategy introduced in Ely, Frankel, and Kamenica (2015.). At each prior µ, the strategy

is to seek a signal that induces posterior belief ν “ 1 ´ µ with arrival probability p “

1
4p1´2µq2

1
.. The DM makes decision once her posterior arrives at 0 or 1. The posterior

belief will either drift along one of two deterministic iso-time curve or jump between

the two curves at the Poisson rate.

0 1
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Figure 2.1: Belief trajectory

Figure 2.1 . illustrates the two iso-time curves (thick dashed curves) and a possible path

of belief (blue curve). By the standard property of compensated Poisson process, the

DM’s posterior belief drifts towards the boundary with speed 1
4p2µ´1q

. Therefore, one

of the belief trajectory follows the following ODE:

$

’

’

&

’

’

%

9µ “ 1
4p2µ´1q

µp0q “ 0.5

It is easy to solve that µptq “ 1`
?

t
2 . As a result, the DM’s decision time i.e. the time that

belief process hits 1 is deterministic at t “ µ´1p1q “ 1. Then the expected utility from

1This can be calculated using the cost of Poisson signals Er´
dHpµq

dt s “ pHpµq ´ Hpνqp ` H1pµqpν ´ µqqp ď

c
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the pure accumulation strategy is discounted by one unit of time: VA “ e´1 « 0.368.

2. Gaussian learning: the DM observes a Gaussian signal, whose drift is the true state and

variance is a control variable. By the standard property of Gaussian learning, the DM’s

posterior belief process follows a martingale Brownian motion. The flow variance of

the posterior belief process satisfies the information cost constraint Er´ d
dt Hpµtq

ˇ

ˇFts “

´1
2 σ2H2pµq ď c. Therefore, we can solve for σ2 “ 1

4 when the constraint is binding.

It is obvious that it is optimal to have the constraint binding. The value function is

characterized by the following HJB:

Vpµq “
1
2

σ2V2pµq “
1
8

V2pµq

with boundary condition Vp0q “ Vp1q “ 1. There is an analytical solution to the ODE:

Vpµq “
e2

?
2 ` e4

?
2x

1 ` e2
?

2
e´2

?
2x

ùñ VG “ Vp0.5q « 0.459

3. Poisson learning: the DM learns the state perfectly at Poisson rate λ. If no information

arrives, her belief stays at the prior. By the flow informativeness constraint Er´ d
dt Hpµtq

ˇ

ˇFts “

λpHpµtq ´ 1
2 Hp1q ´ 1

2 Hp0qq ď c ùñ λ “ 1. The value function is characterized by the

HJB:

ρVP “ λp1 ´ VPq

ùñ VP “ 0.5
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Clearly:

VP ą VG ą VA

Now we introduce the intuition why the values are ordered in this way. First, all of

the three strategies induce the same expected decision time 1. This is due to the linearity

of posterior separable information measure in compound experiments. The measure of

a signal structure that fully reveals the state at prior 0.5 is exactly 1, and it must equal

the expected sum of the total learning costs. Since in each continuing unit of time flow

cost 1 is spent, expected learning time must be exactly 1. Therefore, what determines the

expected decision utility is the dispersion of decision time distributions. Since exponen-

tial discount function e´t is a strictly convex function, a learning strategy that creates the

most dispersed decision time attains the highest expected utility. Now let us study the

decision time distribution induced by the three strategies:

1. Pure accumulation: t “ 1 with probability 1. The decision time is deterministic.

2. Gaussian learning: The decision time is the first passage time of a standard Brownian

motion at either of the two absorbing barriers:

τ “ min
"

t
ˇ

ˇ

ˇ

ˇ

1
2

`
1
2

Bt “ 0 or 1
*

The distribution of τ is characterized by a heat equation with two-sided boundary

conditions at x “ 0, 1. This equation has no analytical solution (solution can be charac-

terized by series). Here I numerically simulate this process:

Figure 2.2 . depicts the evolution of the distribution of posterior beliefs over time. We

can see that at any time, the distribution over posteriors is a Normal distribution cen-
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Figure 2.2: Belief distribution of Gaussian learning

sored at the two absorbing barriers 2
.. The normal part is becoming flatter over time

because learning leads to mean preserving spread of posterior beliefs.

3. Poisson learning: As is calculated, the Poisson signal arrives at a fixed arrival fre-

quency λ “ 1. The stopping time distribution can be calculated easily:

Fptq “ 1 ´ e´t

Evolution of posterior beliefs is shown in Figure 2.3.: Figure 2.3. depicts the evolution of

the distribution of posteriors over time. At any time, distribution over posteriors has

three mass points at the prior and the two target posteriors. The mass on prior is de-

creasing over time (following an exponential distribution) and the mass on posteriors

is increasing over time.

Obviously, pure accumulation is always the worst in this example since it induces

deterministic decision time. By comparing Figures 2.2 . and 2.3., one can easily see the dif-

2The distribution has point mass at 0, 1, represented by the straight lines in Figure 2.2 .. The relative
height represents the size of the probability mass. But the point mass part and Normal part does not share
the same scale.
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Figure 2.3: Belief distribution of Poisson learning

ference between Gaussian learning and Poisson learning: Gaussian learning accumulates

some information that induces intermediate beliefs over time, while Poisson learning uses

up all resources to draw conclusive signals. It seems that Poisson learning induces higher

decision probability in the beginning while Gaussian learning induces higher decision

probability later on (when prior becomes more dispersed). Therefore, Poisson learning

has more dispersed decision time. We can verify this conjecture by plotting the PDFs and

the integral of CDFs:
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Figure 2.4: PDFs
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Figure 2.5: Integral of CDFs
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In figure Figures 2.4 . and 2.5., the black curves represent Poisson learning, the red

curves represent Gaussian learning and the dashed lines represent pure accumulation.

It is not hard to see from Figure 2.5 . that the decision time of Poisson learning is in fact

a mean-preserving spread of that of Gaussian learning. So Poisson learning dominates

Gaussian learning for not only exponential discounting, but also any other convex dis-

counting function.

In Example 2.1 ., I compare three kinds of dynamic learning strategies. These three

strategies are chosen to be representative. First, the three strategies are simple heuristics

that are very tractable. Second, these three strategies are also representative for three

kinds of learning frameworks widely used in the literature:

• Pure accumulation has a flavor of the static rational inattention models. Like in

Matějka and McKay (2014.), decision is made once and there is no dynamics. Even

in dynamic rational inattention model like Steiner, Stewart, and Matějka (2017.), in-

formation is acquired in one period, and there is no smooth of information. In this

example, the belief processes induced by learning has neither time dispersion nor

cross-sectional dispersion when using the pure accumulation strategy.

• Gaussian learning itself is well studied in the literature, for example by Moscarini

and Smith (2001.), Hébert and Woodford (2016.). On the other hand, Gaussian learn-

ing is one kind of symmetric drift-diffusion model (Ratcliff and McKoon (2008.)).

Gaussian learning captures the idea of gradual learning both over time and over

beliefs.

• Poisson learning has been studied in Che and Mierendorff (2016.). Poisson bandit is

also used as a building block for strategic experimentation models (see a survey by

Hörner and Skrzypacz (2016.)). My example considers a simplest stationary Poisson
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stopping strategy that stochastically reveals the true state. Poisson learning is only

gradual over time, but is lump sum in the belief space.

Example 2.1 . suggests a key trade-off to be studied: gradual accumulation of infor-

mation v.s. seeking decisive evidence. I want to study how the choice between gradual

accumulation and decisive evidence seeking determines the decision time distribution.

In Section 2.2 ., I develop an information acquisition problem that imposes no restriction

on the specific form of information a decision maker can acquire. The DM can choose an

arbitrary random process as signals, and she observes the signal realizations as her infor-

mation. There are two constraints on the signal process. First, flow informativeness of the

process is bounded. Second, the signal distribution conditional on stopping is fixed. If

the DM chooses to learn gradually, then she is able to accumulate sufficient information

before making any decision. After accumulating information, she can run the target ex-

periment successfully with very high probability and achieves close to riskless decision

time. On the contrary, if the DM chooses to only seek decisive signals, then the signals

arrive only with low probabilities. So the corresponding decision time is riskier.

The main finding of this chapter is that among all decision time distributions induced

by feasible and exhaustive3
. learning strategies, the most dispersed decision time distri-

bution is induced by decisive Poisson learning–only decisive signals arrive as Poisson

process. Meanwhile, the least dispersed time distribution is induced by pure accumula-

tion, as I have already shown in Example 2.1..

This chapter is structured as follows. Section 2.2 . setups a general discrete time infor-

mation acquisition framework. Section 2.3 . proves the main theorem. Section 2.4 . extends

the result to a continuous time model. Section 2.6. concludes.

3A feasible strategy is exhaustive if it is not leaving any capacity unused or acquiring unrelated infor-
mation.
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2.2 Setup of model

The model is in discrete time. Consider a decision maker who has a discount function

ρt decreasing and convex (both weakly) in time t and limtÑ8

ř8
s“t ρs “ 0. There is a finite

state space X and action space A. The prior belief of the unknown payoff-relevant state

is µ P ∆pXq. The DM’s goal is to implement a signal structure that induces distribution

π P ∆2pXq over posterior beliefs4
.. By implementing a target signal structure, I mean

conditional on stopping, the signal structure in the current period must be a sufficient

statistics for the target information structure. The informativeness of signal structure is

measured by a posterior separable function Ippi, νi|µq “
ř

pipHpµq ´ Hpνiqq. In each

period, the DM can acquire information for no more than c unit, i.e. E
“

Ippt
i , νt

i |µ
tq
‰

ď c.

The optimization problem is:

sup
St,T

ErρT upA,X qs (2.1)

s.t.

$

’

’

’

’

’

&

’

’

’

’

’

%

IpSt;X |St´1, 1T ětq ď c

X Ñ St Ñ A conditional on T “ t

X Ñ St Ñ 1T ět

where T P ∆N is a random stopping time. St´1 is defined as summary of past infor-

mation pS1, . . . ,St´1q. S0 ” c0 is assumed to be degenerate. The objective function in

Equation (2.1) . is the expected discounted utility from taking the action. The first con-

straint is the flow information cost constraint, it states that conditional on any history, the

information cost incurred in a period is less than the constraint c. The second constraint

is the target information structure constraint. It states that at each period, conditional

on stopping the acquired information structure is statistically sufficient for the target ac-

4State and signal realization can be equivalently represented as a pair of random variables pX ,Aq.
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tion profile. The remaining constraint is a natural information process constraint (or the

standard measurability constraint for stopping time).

Remark 2.1. This model is restrictive in the design of information in the following sense:

At any instant in time, conditional on stopping, the information acquired must be statis-

tically sufficient for a time invariant random variable A. Other than this restriction, the

DM can freely choose her learning dynamics. The interpretation of this constraint is not

easy, as it is an aggregate constraint for each period, unconditional on the history of past

signals. This model does not necessarily cover Gaussian learning in general, but it does

in a symmetric cases (i.e. target posterior distribution and H are symmetric around prior

µ, like in Example 2.1 .).

The main reason for imposing this constraint is for tractability. I restrict learning dy-

namics in this way to abstract away from the fact that the optimal target information

structure itself is changing over time, which creates time varying incentive for search di-

rection, search precision and search intensity (highlighted in Chapter 1.). In the current

chapter, I want to focus on the trade-off between gradual information accumulation and

decision evidence seeking.

I assume that the DM follows the suggestion of signal structure A in choosing the

action. This is WLOG since given any signal structure, the induced optimal action itself

forms a Blackwell less informative signal structure. Therefore, the original learning strat-

egy is still statistically sufficient for the direct signal structure. So if we take the optimiza-

tion of A also into account, then it is WLOG to assume that A is a direct signal. Then the

optimal implementation of A still follows a solution to Equation (2.1) .. The optimization

of A is studied in Section 2.5.1..
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2.3 Solution

2.3.1 An auxiliary problem

Let Ī “ IpA;X q and V˚ “ ErupA,X qs. Consider a relaxed problem which only tracks

the average accumulated information measure I at every time t, rather than the entire

signal process conditional on all histories:

sup
pt

8
ÿ

t“1

ρtp1 ´ Pt´1qptV˚ (2.2)

s.t.

$

’

’

’

’

’

&

’

’

’

’

’

%

p Ī ´ Itqpt ` pIt`1 ´ Itqp1 ´ ptq ď c

Pt “ Pt´1 ` p1 ´ Pt´1qpt

P0 “ 0, I1 “ 0

where pt P r0, 1s and It ě 0. 1 ´ Pt´1 is the surviving probability at period t, pt is the

conditional stopping probability. It is the total expected information measure of the entire

path of non-stopping signals up to period t.

The constraints in the relaxed problem Equation (2.2) . capture a key feature of posterior

separable information measure: It is accumulated linearly over time and the information

measure required to implement S is exactly the remaining information measure Ī ´ It.

It is more relaxed than Equation (2.1). in the following sense: in Equation (2.1)., the flow

informativeness constraint is imposed on all histories of St´1 and 1T ďt. However, in

Equation (2.2) ., the first constraint is imposed only on each period unconditional on the

history. In other words, the first constraint in Equation (2.2) . is an average version of the

flow informativeness constraint in Equation (2.1).. pt can be interpreted as the expected

stopping probability and It’s as the expected accumulated informativeness.

Lemma 2.1. Equation (2.1). ď Equation (2.2).
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Lemma 2.1. verifies the previous intuition, that Equation (2.2). is a relaxation of Equa-

tion (2.1) .. Now I first solve Equation (2.2) .. Then we can use the auxiliary problem to

provide some clue for solving the original problem Equation (2.1) ..

Theorem 2.1. pt ” c
Ī solves Equation (2.2)..

Theorem 2.1 . states that the relaxed problem Equation (2.2). has a simple solution: no

information should ever be accumulated. It directly implies that It ” 0 and the optimal

value equals
ř8

t“0 ρt

´

1 ´ c
Ī

¯t´1 c
Ī V˚. I prove Theorem 2.1 . by approximating the convex

discount function ρt with a finite summation of linear functions. Then for each linear

discount function, I prove by backward induction that choosing It ” 0 is optimal.

2.3.2 Optimal learning dynamics

By Lemma 2.1. and Theorem 2.1 ., to solve Equation (2.1) ., it is sufficient to show that

8
ÿ

t“1

ρt

´

1 ´
c
Ī

¯t´1 c
Ī
V˚ (2.3)

is attainable by a feasible strategy in Equation (2.1) .. Consider the following experimen-

tation strategy: A is observed with probability c
Ī in each period. If A is successfully

observed, the corresponding action is taken. If not, go to the next period and follow the

same strategy. Formally, St and T are defined as follows. Let s0, c0 R A be two distinct

degenerate signals.

St “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

s0 with probability 1 if St´1 P A
Ť

ts0u

A with probability c
Ī if St´1 “ c0

c0 with probability 1 ´ c
Ī if St´1 “ c0

(2.4)

T “t if St P A
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Here signal s0 means stopping. Signal c0 means continuation. Any signal in A indicates

the action to take. Then it is not hard to verify that:

• Objective function:

ErρT upA, Xqs

“

8
ÿ

t“1

ρtPpSt P AqErupA,X qs

“

8
ÿ

t“1

ρt

t´1
ź

τ“0

PpSτ “ c0|Sτ´1 “ c0qPpSt P A|St´1 “ c0qErupA,X qs

“

8
ÿ

t“1

ρt

´

1 ´
c
Ī

¯t c
Ī
V˚

• Capacity constraint:

IpSt;X |St´1, 1T ětq

“1St´1“c0 IpSt;X |tc0u, 1q ` 1St´1‰c0 Ips0;X |St´1, 0q

“1St´1“c0pPpSt P AqIpA;X q ` PpSt “ c0qIpc0;X qq ` 1St´1‰c0 ¨ 0

“1St´1“c0 ¨
c
Ī

¨ Ī ď c

• Decision time distribution:

Pt “ PpT ď tq “ 1 ´

´

1 ´
c
Ī

¯t
(2.5)

I show that Equation (2.4) . implements the expected utility level Equation (2.3) ., hence

solves Equation (2.1) .. It is easy to see that Equation (2.4) . induces expected decision time

Ī
c . By Lemma 2.2., which is stated below, Ī

c is the lower bound of expected decision time

for all feasible strategies. In fact, the proof of Lemma 2.2 . suggests that ErT s ą Ī
c only
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when there is some waste of information: either capacity constraint c is not fully used, or

St contains strictly more information than A conditional on taking action.

Lemma 2.2. Let pSt, T q be a strategy that satisfies the constraints in Equation (2.1)., then ErT s ě

Ī
c .

I call an information acquisition strategy exhaustive if the corresponding ErT s “ Ī
c . The

decision time distribution Pt induced by strategy Equation (2.4) . is a exponential distribu-

tion with parameter c
Ī . Equation (2.4) . being the optimal strategy, independent of choice

of ρt implies that @ρt, @ information acquisition strategy p rSt, rT q:

Erρ
rT upA;X qs ď ErρT upA;X qs

ùñ Erρ
rT s ď ErρT s

Since ρt ranges over all positive decreasing convex functions, Pt as distribution over time

is second order stochastically dominated. Summarizing the analysis above, I get Theo-

rem 2.2..

Theorem 2.2. Equation (2.4). solves Equation (2.1).. The decision time distribution of any feasible

and exhaustive information acquisition strategy is a meas preserve contraction of Pt.

2.3.3 Gradual learning v.s. decisive evidence

My analysis illustrates the gradual learning v.s. decisive evidence trade-off in the

flexible learning environment. The trade-off is: the speed of future learning depends on

how much information the DM has already possessed. Accumulating more information

today speeds up future learning. So the DM is choosing between naively learning just for

today or learning for the future. If all resources are invested in seeking decisive evidence,

then signal arrives at a constant low probability, and the decision time distribution is

dispersed. If some resources are invested in information accumulation, then learning will
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accelerate, at a cost of lower (or even zero) arrival rate of decisive signals in the early

stage. As a result the decision time is less dispersed.

When the decision maker has convex discounting function, decisive evidence seeking

is optimal. The intuition behind this result is natural. Convex discounting function means

that the decision maker is risk loving towards decision time. Seeking decisive evidence is

the riskiest learning strategy one can take: it payoffs quickly with high probability, but if it

fails, learning is very slow in future. In practice, evidence seeking is a very natural learn-

ing strategies. A researcher tends to form a hypothesis, then seeks evidence that either

confirms or contradicts the hypothesis. Usually there is a clear target of what to prove

(the hypothesis), and what kind of signals (data from experiments) proves/contradicts

the hypothesis. Running the research protocol itself is usually more mechanical than the

designing stage. What is common in natural science is that the principal investigator(PI)

designs the whole research plan. Then all experiments, data collections and computa-

tions are run by doctoral students. The PI usually has a permanent position and there is

no deadline, so he can enjoy the expected payoff from this risky project design.

Two elements in my framework are crucial to this result. The first is the flexibility in

the design of signal process. In contrast to my framework, if one considers a dynamic in-

formation acquisition problem with highly parametrized information process, then other

kind of trade-offs tied to the parametrization constraints might have first order effects.

For example, if one only allows Poisson learning or Gaussian learning, then the trade-off

of gradual learning and decisive evidence is directly assumed away. As a result the choice

among signal types (Che and Mierendorff (2016.),Liang, Mu, and Syrgkanis (2017.)) or the

trade-off between intensity and information cost (Moscarini and Smith (2001.)) becomes

first order important. If one only allows DM to choose between to learn or not to learn

in each period, then the trade-off between exploration and exploitation becomes first or-

der. Meanwhile, in my framework, the DM can freely design the optimal signal type, and
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hence the corresponding decision time5
.. So the aforementioned trade-offs actually do not

exist, the trade-off between gradual learning and decisive evidence becomes central to

the analysis.

The second is the posterior separability assumption on information measure. Pos-

terior separability is equivalent to the linear additivity of compound signal structures

(see the discussion in Section 1.7.1 .). This assumption restricts the relative price between

gradual learning and evidence seeking. Any amount of informativeness invested today

to accumulate information transfers one-to-one to the amount of reduction of informa-

tion cost tomorrow. Lemma 2.2. shows that the expected decision time is identical for

all feasible and exhaustive learning strategy. As a result the trade-off between gradual

learning and decisive learning translates to choice of dispersion of decision time distribu-

tion. If one assumes either sub-additivity or super-additivity in informativeness measure,

then choosing different learning strategies might also change the expected decision time,

which makes my key trade-off entangled with other effects.

2.4 Continuous time model

In this section, I study a continuous time version of Equation (2.1) .. Let ρt : R˚ Ñ R˚ be

a decreasing and convex discounting function. Let Fpµq “ supa Eµrupa, xqs, the expected

utility from choosing the optimal action given a belief. Consider the following stochastic

control problem:

sup
xµtyPM,τ

ErρτEπrFpµqss (2.6)

s.t.

$

’

’

&

’

’

%

´E
”

d
dt Hpµtq

ˇ

ˇ

ˇ
Ft

ı

ď c

µ0 “ µ, µt
ˇ

ˇ

τ“t „ π

5The DM can affect the decision time distribution by choosing the information acquisition strategy.
However, not all decision time distributions are implementable.
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where τ is a stopping time measurable to the natural filtration of µt. The objective func-

tion of Equation (2.6) . is the same as that of Equation (2.1) .. In the stochastic control prob-

lem, the decision maker chooses the optimal posterior belief process xµty and stopping

time τ, subject to the 1) stopping time is measurable to belief process. 2) belief process is

a martingale. 3) flow increase in informativeness measure is bounded by c. 4) conditional

on stopping time, µt has distribution π.

It is not hard to see that Equation (2.6) . is a continuous time extension of Equation (2.1) ..

I take a belief based approach when formulating Equation (2.6) .. However, I did not for-

mally proof how a stochastic process of posterior beliefs can be induced by a stochastic

information acquisition strategy. Equation (2.6). is constructed by taking analog of Equa-

tion (2.1).. Let V˚ “ EπrFpµqs. Then

Lemma 2.3. Equation (2.6). ď Equation (2.7)..

V “ sup
pt

ż 8

0
ρtp1 ´ PtqptV˚dt (2.7)

s.t.

$

’

&

’

%

I0 “ 0, It ě 0, 9It ď c ´ ptp Ī ´ Itq

P0 “ 0, 9Pt “ p1 ´ Ptqpt

where pt is a positive integrable function.

Theorem 2.3. pt ” c
Ī solves Equation (2.7)..

Lemma 2.3. and Theorem 2.3. are exactly the continuous time analogs of Lemma 2.1.

and Theorem 2.1 .. Lemma 2.3 . states that Equation (2.7) . is a relaxed problem of Equa-

tion (2.2) .. Theorem 2.3 . characterizes the solution of Equation (2.7) .: no information should

ever be accumulated. It ” 0 and the optimal value equals
ş8

0 ρte
´ c

I
t c

I
V˚dt. Theorem 2.3 .

is proved by discretizing the continuous time problem and invoking the result of Theo-

rem 2.1..
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2.4.1 Implementation

By Lemma 2.3. and Theorem 2.3 ., to solve Equation (2.6) ., it is sufficient to show that:

ż 8

0
ρte´ c

Ī tdt
c
I
V˚

can be attained in Equation (2.6).. Consider the following information acquisition strategy.

Let ν be a random variable with distribution π and define:

$

’

&

’

%

dµt “ pν ´ µtq ¨ dNt

τ “ t if dNt=1
(2.8)

where Nt a standard Poisson counting processes with parameter c
Ī and independent to ν.

xµty is by definition a stationary compound Poisson process. The jump happens when the

Poisson signal arrives and belief jumps to posteriors according to distribution π. Once the

jump occurs, decision is made immediately. It is easy to verify:

• Martingale property: We know that each compensated Poisson process dNt ´ c
Ī dt is

martingale, therefore:

Erdµt|µts “Erpν ´ µtq ¨ dNts

“EπrErpν ´ µq ¨ dNt|νss

“Eπ

”

pν ´ µq ¨ E
”

dNt ´
c
Ī
dt
ıı

` Eπ

”

pν ´ µq ¨
c
Ī
dt
ı

“0

therefore, µt is a martingale. The second equality is the law of iterated expectation.

Third equality is by Erνs “ µ and dNt ´ c
Ī dt being martingale.

• Capacity constraint: If Nt ě 1, then Er´
dHpµtq

dt |µts “ 0 ď c. If Nt ă 1, then by the Ito
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formula for jump process:

dHpµtq “pHpνq ´ Hpµqq ¨ dNt

ùñ Er´
dHpµtq

dt
|µts “Eπ

„

E
„

pHpµtq ´ Hpνqq ¨
dNt

dt
|ν

ȷȷ

“Eπ

”c
Ī
pHpµtq ´ Hpνqq

ı

“c

The second equality is the law of iterated expectation. The third equality is the

martingale property of dNt ´ c
Ī dt.

• Decision time distribution:

Pt “ 1 ´ e´ c
Ī t

Therefore, Equation (2.8) . implements utility level
ş8

0 ρt
c
Ī e´ c

Ī tV˚dt.

Lemma 2.4. Let pµt, τq be a strategy that satisfies the constraints in Equation (2.6)., then Erτs ě

Ī
c .

As in the discrete time case, I call an information acquisition strategy exhaustive if the

corresponding Erτs “ Ī
c . Since Equation (2.8) . is optimal independent of the choice of

convex ρt, previous analysis implies Theorem 2.4..

Theorem 2.4. Equation (2.8). solves Equation (2.6).. The decision time distribution of any feasible

and exhaustive information acquisition strategy is a mean preserving contraction of Pt.
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2.5 Discussion

2.5.1 Optimal target signal structure

In this section, I solve for the optimal target signal structure in decision problem Equa-

tion (2.6) .. Assume that ρt is differentiable. By Theorem 2.4 ., the optimization problem can

be written as:

sup
πP∆2pXq

ż 8

0
ρte

´ c
Hpµq´EπrHpνqs

tdt ¨
c ¨ EπrFpνqs

Hpµq ´ EπrHpνqs
(2.9)

s.t. Eπrνs “ µ

Define f pV1, V2q “
ş8

0 ρte
´ c

Hpµq´V1 t
dt ¨ c¨V2

Hpµq´V1 . Then it is not hard to verify that f pV1, V2q

is differentiable6
. in V1, V2. Optimization problem Equation (2.9). fits in Theorem 4.2.

from Chapter 4 .. Applying the theorem gives a necessary condition for π˚ solving Equa-

tion (2.9).:

π˚ P arg max
πP∆2pXq
Eπrνs“µ

Eπ

»

—

–

Fpνq `

ş8

0 p´ 9ρtqe
´ c

Hpµq´Eπ˚ rHpνqs
t Eπ˚ rFpνqs

Hpµq´Eπ˚ rHpνqs
tdt

ş8

0 ρte
´ c

Hpµq´Eπ˚ rHpνqs
t
dt

¨ Hpνq

fi

ffi

fl

Notice that the objective function is the expectation of the linear combination of two belief

dependent functions. If we define:

gpxq “

ş8

0 p´ 9ρtqe´ c
Hpµq´x t t

Hpµq´x dt
ş8

0 ρte
´ c

Hpµq´x tdt

Then by the standard argument in Bayesian persuasion, π˚ can by characterized by con-

cavifying the gross value function F ` pgpEπ˚rHpνqsq ¨ Eπ˚rFpνqsqH. Moreover, by Theo-

6Differentiabiliy can be shown by definition, noticing that e
´ c

Hpµq´V1 t
¨ t is absolutely integrable. .
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rem B.1 ., there exists π˚ with support size 2|X| solving Equation (2.9) .. So I get the follow-

ing characterization:

Proposition 2.1. There exists π˚ solving Equation (2.9). and |supppπ˚q| ď 2|X|. Let λ “

gpEπ˚rHpνqsq ¨ Eπ˚rFpνqs, any maximizer π˚ satisfies:

π˚ P arg max
πP∆2pXq
Eπrνs“µ

EπrFpνq ` λ ¨ Hpνqs

Suppose the discounting function is a standard exponential function: ρt “ e´ρt, then

gpxq “
ρ

c`ρpHpµq´xq
. Notice that the objective function:

Vpµq “

ż 8

0
e

´

ˆ

ρ` c
Hpµq´Eπ˚ rHpνqs

˙

t c ¨ Eπ˚rFpνqs

Hpµq ´ Eπ˚rHpνqs
dt “

c ¨ Eπ˚rFpνqs

c ` ρpHpµq ´ Eπ˚rHpνqsq

Therefore, the optimality condition becomes:

π˚ P arg max
πP∆2pXq
Eπrνs“µ

Eπ

”

Fpνq `
ρ

c
VpµqHpνq

ı

(2.10)

Equation (2.10) . is very similar to the optimality condition I derived in Chapter 1 ., where

the optimal posterior is solved from concavifying Vp¨q `
ρ
c VpµqHp¨q. The problem solved

in Chapter 1 . is the continuous time limit of Equation (2.1) . without the restriction on con-

stant target signal structure and with exponential discounting. In both problems, ρ
c Vpµq is

adjusting the concavity of the gross value function. Therefore, higher continuation value

corresponds to more concave gross value function and less informative signal structure.

This suggests that the monotonicity in precision-frequency trade-off is extended to our

model as well. In Chapter 1 ., the trade-off is illustrated as decrease in precision of target in-

formation structure at each decision time. In the current chapter, target information struc-
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ture is forced to be constant over time. However, if I endogenize the target information

structure, then at more extreme prior beliefs associated with higher decision value, less

informative target information structure is optimal (and corresponding expected waiting

time is shorter).

2.6 Conclusion

In this chapter, I characterize the decision time distributions that can be induced by a

dynamic information acquisition strategy, and study how time preference determines the

optimal form of learning dynamics. No restriction is placed on the form of information

acquisition strategy, except for a time invariant target signal structure and a flow informa-

tiveness constraint. I find that all decision time distributions have the same expectation,

and the maximal and minimal elements by mean-preserving spread order are exponential

distribution and deterministic distribution. The result implies that when time preference

is risk loving (e.g. standard or hyperbolic discounting), Poisson signal is optimal since it

induces the riskiest exponential decision time distribution. When time preference is risk

neutral (e.g. constant delay cost), all signal processes are equally optimal.
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Indirect information measure and dynamic learning

89



Chapter 3. Indirect information measure and dynamic learning

3.1 Introduction

Information plays a central role in economic activities. It affects both strategic in-

teraction in games and single agent decision making under uncertainty. Information is

often endogenously acquired by a decision maker, as opposed to being exogenously en-

dowed. Therefore, it is important to understand how information is acquired. This boils

down to a simple trade-off: the value of information and the cost of acquiring informa-

tion. The value of information is often unambiguous in a single agent decision problem

with uncertainty. It is measured by the increased expected utility from choosing optimal

actions measurable to informative signal realizations(see Blackwell et al. (1951.)). How-

ever, there has been less consensus on the proper form of information acquisition cost.

One (probably most) popular measure of informativeness being used in many informa-

tion acquisition models is the Entropy based mutual information and its generalizations.

This approached was initiated by Sims (1998., 2003.), and is applied to a wide range of

problems (Matějka and McKay (2014.), Steiner, Stewart, and Matějka (2017.), Yang (2015a.),

Gentzkow and Kamenica (2014.), etc.). Despite its great theoretical tractability, Entropy

based models suffer from criticism on its unrealistic implications, including prior depen-

dence, invariant likelihood ratio of action, etc.

Two approaches can be taken to build a solid foundation for studying information ac-

quisition. One approach is to fully characterize the behavior implications associated with

mutual information and its generalizations. Then we will be able to empirically test the

behavior validity of these models. Caplin, Dean, and Leahy (2017.) takes this approach

and proposes testable axioms for the Shannon model of rational inattention and its gen-

eralizations. The other approach is to impose only minimal assumptions on the cost of

information and study the robust predictions in an information acquisition problem. In

this chapter I take the second robust approach and focus on a dynamic information acqui-
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sition problem: a decision maker acquires information about a payoff relevant state before

choosing an action. She can choose an arbitrary random process as observed information,

subject to cost on information and cost on waiting.

I accomplish two main goals. First, I characterize the “minimal assumptions” on a

(static) information measure if a decision maker can choose from not only all information

structures but also all sequential combinations of them to minimize expected information

measure. I show that an indirect information measure is supported by expected learning

cost minimization— given any general measure of information, and for any informa-

tion structure (Blackwell experiment), the DM minimizes the expected total measure of a

compound experiment which replicates the original information structure— if and only

it satisfies three simple conditions. 1) Monotonicity: Blackwell more informative experi-

ment has higher measure. 2) Sub-additivity: the expected total measure of a replicating

compound experiment is weakly higher than the measure of the original experiment. 3)

C-linearity: mixing uninformative experiment with a proportion of informative experi-

ment has measure proportional to the mass on the informative part.

Second, I solve a dynamic information acquisition problem with those assumptions

imposed on the flow information measure. I prove that solving the dynamic problem can

be divided into two steps. The first step is to solve a static rational inattention problem

for an optimal static information structure. The second step is to solve for the optimal

dynamic implementation of the solution from the first step. The optimal information

process involves direct Poisson signals: signal arrives according to a Poisson counting

processes and the arrival of signal suggests the optimal action directly. When no signal

arrives, posterior belief process stays at prior.
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Related Literature

This chapter is closed related to two sets of works that aim at understanding the mea-

sure of information. The first tries to characterize implications (testable or non-testable)

of commonly used information measures. Basic mathematical implications and charac-

terizations for Entropy and Entropy based mutual information was provided in standard

information theory text books like Cover and Thomas (2012.). Matějka and McKay (2014.)

and Caplin and Dean (2013.) study the behavior implications of rational inattention model

based on Mutual information and posterior separable information measure respectively.

Caplin and Dean (2015.) studies the implications of rational inattention model based on

general information measure. A set of full behavior characterizations for mutual infor-

mation, posterior separable information cost and their generalizations are provided in

Caplin, Dean, and Leahy (2017.), Denti (2018.), and Frankel and Kamenica (2018.). Mean-

while, the second set of works seeks to build a dynamic foundation for common informa-

tion measures. Morris and Strack (2017.) shows that the posterior separable function can

be represented as the induced cost from random sampling. Hébert and Woodford (2016.)

justifies a class of information cost function (including mutual information) based on a

continuous-time sequential information acquisition problem. This chapter contributes

to this literature by providing a new optimization foundation for posterior separabil-

ity. Posterior separability is actually equivalent to additivity — both sub-additivity and

sup-additivity — in the expected measure of compound experiments. I show that sub-

additivity is justified by expected information cost minimization.

This chapter is also closely related to the dynamic information acquisition literature,

in which the main goal is to characterize the learning dynamics. A common approach

in this literature is to model information flow as a simple family of random process.

The decision maker can control parameters which represents aspects of interest. Wald
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(1947.) first studies stopping problem with exogenous information process. Moscarini

and Smith (2001.) and Che and Mierendorff (2016.) go further by edogenizing information

process into optimization problem in Brownian motion framework and Poisson bandits

framework to study dynamics of learning intensity and direction respectively. Some re-

cent papers edogenize the random process family as well and give decision maker full

flexibility in designing information. Chapter 1 . studies flexible dynamic information ac-

quisition with a posterior separable information measure and shows that confirmatory

Poisson signal is optimal. Steiner, Stewart, and Matějka (2017.) studies a repeated rational

inattention problem with mutual information as cost. This chapter contributes by relax-

ing the restriction on information cost to only minimal assumptions. I show that when

impatience is measure by fixed delay cost, the dynamic problem is closely related to the

static rational inattention problem, and Poisson learning is robustly optimal.

The rest of this chapter is structured as follows. Section 3.2 . introduces the characteriza-

tion of indirect information measure based on expected information measure minimiza-

tion. Section 3.3 . setups a dynamic information acquisition problem and characterizes the

solution.

3.2 Indirect information measure

3.2.1 Information structure and the measure of informativeness

In this subsection, I formally define “information” and a “measure of informative-

ness” in decision making problems. I extract key factors in any abstract “information”

that matters in a decision making problem and characterize a well defined equivalence

class that characterizes all information structures. Then, I use an “indirect information

measure” characterization to derive the minimal assumptions that we should impose on

an information measure.
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Definition 3.1.

1. Bayesian plausible posteriors: Let ∆X Ă R|X| be the belief space over X. Let ∆2X be

the space of probability measures over ∆X. Πpµq “
␣

π P ∆2X
ˇ

ˇ

ş

νdπpνq “ µ
(

is the set of

Bayesian plausible posterior distributions. Let Γ “
␣

pπ, µq P ∆2X ˆ ∆X
ˇ

ˇπ P Πpµq
(

2. Information structure: Let S be an arbitrary set (set of signals). Let p P ∆S ˆ X be a

conditional distribution over S on x P X. pS, pq is an information structure. pS, pq can be

equivalently represented as S , a random variable whose realization is determined by p.

I would like to study the “set” of all information structures as a choice set for deci-

sion maker. However, since S is an arbitrary set, the “set” of all possible S is not even a

well-defined object from the perspective of set theory. Instead, I use Πpµq to equivalently

characterize the “set” of all information structures. @ pS, pq, @s P S, the posterior belief

from observing s can be calculated according to Bayes rule. The distribution of all such

posteriors forms a Bayesian plausible distribution as defined in Definition 3.1 .. Since dif-

ferent signals inducing the same posterior belief affect neither the choice of action nor the

expected utility, I claim that Πpµq already summarizes all possible information structures

(up to the equivalence of posterior beliefs). Γ is defined as the set of all pairs pπ, µq where

π represents an information structure given prior belief µ.

Definition 3.2. An information measure is a mapping I : Γ Ñ R`. I will represent Ipπ, µq

using IpS ;X |µq in an interchangeable way, where µ is the distribution of X and S induces belief

distribution π.

Information measure I is defined as a mapping from prior-information structure pairs

in Γ to extended non-negative real numbers. The only (implicit) restriction I put on I is

that different information structures that induce the same distribution of posterior π at µ

have the same measure. This restriction is actually without loss of generality because the
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induced distribution of posterior of an information structure is always a sufficient statis-

tics for any feasible decision rule. Suppose different information structures have different

measure, then the DM is always able to choose an appropriate information structure with

the lowest information measure.1 . Definition 3.2. is the same as information cost function

defined in Caplin and Dean (2015.). The only difference is that I explicitly modeled prior

dependence of I: µ is an argument in I. In Caplin and Dean (2015.) prior is chosen and

fixed in the beginning so there is no need to explicitly specify information cost function

for different priors.

From this point on, for simplicity I represent the choice set of DM with information

structures S . However, I don’t differentiate two information structures that induces same

distribution of posterior beliefs. By using notation ¨
ˇ

ˇS , I mean conditional on the posterior

beliefs induced by realization of S . The next step is to impose some restrictive assump-

tions on I. The restrictions I impose is about comparing measure of information structure

when they satisfies some information order. So first let’s formally define the information

order.

Definition 3.3 (Information processing constraint). Given random variables X ,S , T and

their joint distribution ppx, s, tq. Let ppt|sq, ppt|s, xq be the conditional distribution defined by

Bayes rule: ppt|sq “

ş

ppt,s,xqdx
ş

ppt,s,xqdxdt and ppt|s, xq “
ppt,s,xq

ş

ppt,s,xqds and:

ppt|s, xq “ ppt|sq

for s, x with positive probability, then the triple X ,S , T is defined as a Markov chain:

X Ñ S Ñ T

1Discussing this issue formally leads to the problem of choosing inf from all possible S , which is not a well defined set. I avoid
dealing with this problem by making this restriction explicitly.
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The information processing constraint in Definition 3.3 . defines a most natural con-

straint in the acquisition of information: When decision time T is chosen based on in-

formation S , the choice should be purely a result of information. Therefore, conditional

on knowing the information, choice should not be dependent to the underlying state any

more. This is the key constraint I’m going to impose in Section 3.3 .. The information

processing constraint has several equivalent characterizations:

Proposition 3.1. The following statements are equivalent:

1. X Ñ S Ñ T .

2. X and T are independent conditional on S .

3. S is a sufficient statistics for T w.r.t. X .

4. S is Blackwell more informative than T about X .

Proposition 3.1 . comes mostly from Blackwell et al. (1951.) and links the information

processing constraint to other well-known notions in probability theory and information

theory. It is intuitive that these notions are equivalent. They essentially all characterize

the fact that S carries more information about X than T . From this point on, I use the

four equivalent notions in an inter-changeable way.

Now I can define what I refer to as the minimal assumptions on the measure of infor-

mation.

Assumption 3.1. IpS ;X |µq satisfies the following axioms:

1. (Monotonicity) @µ, if X Ñ S Ñ T , then:

IpT ;X |µq ď IpS ;X |µq

2. (Sub-additivity) @µ, @ information structure S1 and information structure S2|S1 whose
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distribution depends on the realization of S1:

IppS1,S2q;X |µq ď IpS1;X |µq ` ErIpS2;X |S1, µqs

3. (C-linearity) @µ, @ information structure S „ pµi, piq. @λ P r0, 1s, consider Sλ „

pµi, µ, λpi, 1 ´ λq 2
., then:

IpSλ;X |µq “ λIpS ;S |µq

Assumption 3.1. imposes three restrictions on the information measure I. Monotonic-

ity states that if an information structure S is Blackwell more informative than (statis-

tically sufficient for) information structure T , then the information measure of S is no

lower than that of T . Sub-additivity states that if one breaks a combined information

structure into the two components sequentially, then the information measure of the com-

bined information structure is no higher than the expected total measure of the two com-

ponents. C-linearity is a strengthen of sub-additivity in a special case: if a combined

information structure can be decomposed into pure randomness and an informative in-

formation structure, then its information measure is exactly the expected total measure of

these components.

With Assumption 3.1 ., my model nests some standard measures of information. Mono-

tonicity directly states that my information measure is consistent with the Blackwell par-

tial order of information (Blackwell et al. (1951.)). My model includes the mutual infor-

mation measure used in rational inattention models ( Sims (2003.), Matějka and McKay

(2014.) etc. ) as a special case. Mutual information is a case where my sub-additivity

2Sλ is defined that with 1 ´ λ probability, the posterior is identical to the prior. With the remaining λ
probability, the distribution of posteriors is identical to that of S . That is to say, Sλ is obtained by mixing S
with a constant signal by weight pλ, 1 ´ λq.
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assumption is replaced by additivity and an extra logarithm structure is imposed on the

information measure. In Gentzkow and Kamenica (2014.) and Chapter 1 ., a posterior sep-

arable information measure, which is more general than mutual information is used to

model the cost of information. Posterior separability is equivalent to additivity (see the

discussion in Chapter 1.), thus a special case of sub-additivity. Generally speaking, As-

sumption 3.1. nests most information measures used in the recent “information design”

literature, where information is modeled in a non-parametric way. However, it still ex-

cludes many interesting settings. For example, it’s hard to verify whether Assumption 3.1 .

is satisfied in a parametric model. It also fails the prior independence, which is a very nat-

ural assumption when we think of information as objective experimentations.

3.2.2 Information cost minimization

Imagine that a decision maker is allowed to flexibly choose any information structure

to learn. The cost of information is captured by a general measure of information as de-

fined in Definition 3.2 .. Consider the information measure as the cost paid by the DM.

Then if the decision maker is further allowed to choose any (sequential) combinations

of a set of information structures, then she might be able to replicate a single informa-

tion structure using a combination of information structures with paying a lower cost on

expectation. For each single information structure, I call the minimal expected sum of in-

formation measure of any sequential replication the Indirect information measure. In fact, if

we consider the indirect information measure as the effective measure of informativeness

of information structures, then Assumption 3.1. is without loss of any generality:

Proposition 3.2. Information measure I˚pS ;X |µq satisfies Assumption 3.1 . iff there exists an

information measure IpS ;X |µq s.t. @µ,S :

I˚pS ;X |µq “ inf
pS i,Nq

E

«

N
ÿ

i“1

I
´

S i;X |S1, . . . ,S i´1
¯

ff
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3.2. Indirect information measure

s.t. X Ñ

´

S1, . . . ,SN
¯

Ñ S

Proposition 3.2. states that when a DM can choose from all sequential combinations

of information structures that replicate a given information structure to minimize the ex-

pected total measure, then the effective measure for a piece of information satisfies As-

sumption 3.1 .. The intuition for Proposition 3.2 . is quite simple. Consider the expected

information measure as a cost of information. If a Blackwell less informative information

structure has a higher measure, then it is never chosen because by choosing the more

informative structure, a DM can still accomplish any decision rule feasible with the less

informative structure and pays a lower cost. This implies both monotonicity and sub-

additivity. C-linearity is in fact an implication of sub-additivity when adding irrelevant

noise to information. On the one hand, combining noise with an information structure S ,

one can create Sλ, implying inequality from one direction. On the other hand, by repeat-

edly acquiring Sλ conditional on observing only noise, one can replicate S . Therefore,

additivity from both direction implies C-linearity.

In practice, there are many scenarios in which such minimization of expected infor-

mation measure is present. If we consider information as a product provided in a compet-

itive market, then the minimization problem in Proposition 3.2 . is very natural. The price

of information is the marginal cost of information. And cost minimization on the sellers’

side implies that the price of information satisfies Assumption 3.1 .. ( In a monopolistic

market there might be positive markups and varying information rents so pricing might

be very different, as is discussed in Zhong (2018.). ) Another example is information pro-

cessing of a computer. Modern computer programs are designed to balance work loads

from independent processes onto nodes/threads. As a result what matters is the aver-

age informational bandwidth, (as opposed to the peak bandwidth or other measures). If
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Chapter 3. Indirect information measure and dynamic learning

we consider information as data processed by a computer, then in each CPU tick time,

an optimally designed algorithm will minimize expected bandwidth required to process

information.

3.3 Dynamic decision problem

In this section, I study the implication of the indirect information measure in a dy-

namic information acquisition problem. I consider a decision maker (DM) acquiring in-

formation about the payoffs of different alternatives before making a choice. She can

choose the information structure flexibly within each period, contingent on the history of

signals. The cost of information acquired within a period depends on an indirect infor-

mation measure, and the DM pays a constant cost of delay per period. The major finding

is that this model justifies learning by acquiring Poisson type signals.

3.3.1 Model

Assume that the DM faces the following dynamic information acquisition problem:

• Decision problem: The time horizon t “ 0, 1, . . . , 8 is discrete. Length of each time in-

terval is dt. The utility associated with action-state pair pa, xq is upa, xq. The DM pays

a constant cost m for delaying on period. If the DM takes action a P A at time t condi-

tional on state being x P X, then her utility gain is upa, xq ´ mt. I assume that the utility

gains from actions are bounded: supa,x upa, xq ă 8.

• Uncertainty: Not knowing the true state, the DM forms a prior belief µ P ∆X about the

state. Her preference under uncertainty is expressed as von Neumann-Morgenstern

expected utility. I am going to use two essentially equivalent formulations to express

expected utility. 1) Given belief µ, the expected utility associated with each action a P A

is Eµrupa, xqs. 2) State and action are represented by random variables X ,A. Expected

utility is denoted by ErupA,X qs.
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3.3. Dynamic decision problem

• Information Cost: I use the information measure I defined as in Definition 3.2. as a flow

measure of information within a period, and define a time separable information cost

structure. In each period, with prior belief µ, the DM pays information cost f pIpS ,X |µqq

which transforms the measure of information acquired in the period into utility loss.

f : R` Ñ R` is a non-decreasing convex function which maps to extended real values.

• Dynamic Optimization: The dynamic optimization problem of the DM is:

Vpµq “ sup
S t,At,T

E

«

u
´

AT ,X
¯

´ mT ´

8
ÿ

t“0

f
`

I
`

S t;X
ˇ

ˇS t´1, 1T ďt
˘˘

ff

(P)

s.t.

$

’

’

&

’

’

%

X Ñ S t´1 Ñ 1T ďt

X Ñ S t´1 Ñ At conditional on T “ t

where T P ∆N, t P N. S´1 is defined as a degenerate random variable that induces

belief same as prior belief µ of the DM (just for notational simplicity). S t´1 is defined as

the summary of all past information
`

S1, . . . ,S t´1˘. The DM chooses the decision time

T , the choice of action conditional on stopping At and the signal structure S t subject to

information cost, waiting cost and two natural constraints for information processing:

1. The information received in last period is sufficient for stopping in current period.

2. The information received in last period is sufficient for action in current period. 3
.

In Equation (P)., the DM is modeled as choosing the information process S t, decision time

T and choice of action At jointly, to maximize utility gain from action profile net waiting

cost and total information cost. Within each period, informativeness is measured by I and

incurs cost f pIq. Across period, information costs are aggregated by the expected sum

of f . Since the information measure is defined on information structure-prior pairs. It’s

3Noticing that in every period, the information in current period has not been acquired yet. So decision can only be taken based
on the information already acquired in the past. So the Markov chain property on information and action time/action will have
information lagged by one period. This within-period timing can be defined in different ways and it doesn’t affect the main results.
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Chapter 3. Indirect information measure and dynamic learning

important to define clearly how prior is determined. In each period, information measure

is evaluated conditional on the realization of past signals and choice of stopping. This is

a natural setup since past information plus whether action is taken in current period is

exactly what the DM “knows” in current period. Therefore this is the finest filter on which

she evaluates information cost.

Let me illustrate the cost structures of dynamic information acquisition with a simple

two period model: t P t0, 1u and the DM has prior belief µ. The timing is as following:

when t “ 0, the DM first chooses whether to take an action and which action to take.

Second she decides what information to acquire. When t “ 1, DM takes action based on

information acquired in period 0. First let’s consider deterministic continuation decision.

In period 0 no information has been acquired yet so if DM want to make a choice, her

expected utility will be calculated with the prior µ: Eµrupa,X qs and there is no waiting

or information cost. If DM wants to collect information before decision making, she can

acquire information structure S , now it’s for sure T “ 1 and X Ñ S Ñ A. Therefore she

gets expected utility ErupA,X qs, pays waiting cost m and information cost f pIpS ;X |µqq.

The problem becomes less trivial when continuation is random: suppose DM chooses

to continue with probability p (independent to states because she has no information yet

about state). Only conditional on continuation, she acquires S . Within my framework, to-

tal cost is p ¨ f pIpS ;X , µqq ` p1 ´ pq ¨ 0 by calculating conditional cost on 1T ď0. One might

think that just conditional on information but not continuation decision, the same infor-

mation structure is essentially Sp and cost is f
`

I
`

Sp;X |µ
˘˘

. However, this is saying that

when DM is choosing information after decision making in period 0, she acquires a signal

correlated to her previous choice of continuation. This piece of randomness (whether to

continue) is already resolved. Since our DM can not revert time, this case is physically

impossible. f pIpSp;X |µqq will be the right cost if the decision of continuation is delayed

to the next period.
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3.3. Dynamic decision problem

3.3.2 Solution

In this section, I solve the dynamic information acquisition problem Equation (P). un-

der Assumption 3.1. on the information measure. First, I characterize the optimal expected

utility as a solution to a simple static information acquisition problem. Second, I provide

a simple stationary strategy that implements the expected utility from choosing any in-

formation and action strategy in the equivalent static problem.

Theorem 3.1. If I satisfies Assumption 3.1 ., @µ P ∆X, suppose the expected utility level Vpµq

solves Equation (P)., then:

Vpµq “ max

#

sup
aPA

Erupa,X qs, sup
IpA;X |µqěλ

ErupA,X qs ´

ˆ

m
λ

`
f pλq

λ

˙

IpA;X |µq

+

(3.1)

The first superemum is taken over a, the second superemum is take over both λ and A.

Theorem 3.1 . states that solving the optimal utility level in Equation (P). is equivalent

to solving a static problem under Assumption 3.1 .. In the static problem, the DM pays

a fixed marginal cost
´

m
λ `

f pλq

λ

¯

on each unit of information measure IpA;X |µq. Notice

that the optimal parameter λ depends on only m, f when the constraint IpA;X |µq ě λ

doesn’t bind. There is an explicit algorithm to solve Equation (3.1) .:

Proposition 3.3. If I satisfies Assumption 3.1 ., Vpµq solves Equation (P). if and only if it solves

the following problem: Let λ˚ “ sup
␣

λ P R`
ˇ

ˇm ` f pλq ą λ ¨ B f pλq
(

and solve for

V0pµq “ sup
aPA

Erupa,X qs

V1pµq “ sup
A

ErupA,X qs ´

ˆ

m
λ˚

`
f pλ˚q

λ˚

˙

IpA;X |µq (3.2)

V2pµq “ sup
A

ErupA,X qs ´ m ´ f pIpA;X |µqq (3.3)
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Let A be the set of maximizers of Equation (3.2).

4
., then

Vpµq “

$

’

’

&

’

’

%

max
!

V0pµq, V1pµq

)

if sup
APA

IpA;X |µq ě λ˚

max
!

V0pµq, V2pµq

)

otherwise

Proposition 3.3 . states that the value function in Equation (P). can be solved by solv-

ing three static problems. The first value V0 is a no-information benchmark when value

equals expected utility from choosing the optimal action according to only the prior. The

second problem Equation (3.2). is a standard rational inattention problem with marginal

cost m
λ˚ `

f pλ˚q

λ˚ on information measure I. The interpretation is that under Assumption 3.1 .,

the dynamic information acquisition problem is separable in two parts. The first part is

the dynamic allocation of information, keeping the aggregate information fixed. Marginal

cost of increasing the aggregate information is reflected by m
λ˚ `

f pλ˚q

λ˚ , which measures

both the impatience and the smoothing incentive jointly. The second part is a static prob-

lem that optimizes the aggregate information. The third problem Equation (3.3) . is a spe-

cial case when there is under-smoothing. This happens only when waiting is so costly that

it is optimal for decision maker to scale up information cost and wait for less than one pe-

riod. Since fractional period length is not feasible, in this case decision maker solves a

one-period problem.

Once the static problems Equations (3.2). and (3.3). are solved, let A be an optimal in-

formation structure of the static problem, then A can be modified to construct an optimal

dynamic information structure in Equation (P)..

Proposition 3.4. If I satisfies Assumption 3.1., @µ P ∆X, A P ∆A ˆ X and λ˚ ă IpA;X |µq, let

4If λ˚ “ `8, define A “ H. Here A includes both A’s that exactly solve Equation (3.2) . and sequences
!

Ai
)

that approach

Equation (3.2).. Given a sequence
!

Ai
)

P A, IpA;X |µq is defined as lim sup IpAi ,X |µq
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`

S t,At, T
˘

be defined by5
.:

1. S´1 “ c0.

2. S t “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

s0 if S t´1 P A
Ť

ts0u

A with probability λ˚

IpA;X |µq
if S t´1 “ c0

c0 with probability 1 ´ λ˚

IpA;X |µq
if S t´1 “ c0

3.

$

’

’

&

’

’

%

T “ t

At “ S t´1
if S t´1 P A.

Then:

ErupA,X qs ´

ˆ

m
λ˚

`
f pλ˚q

λ˚

˙

IpA;X |µq “ E

«

u
´

AT ,X
¯

´ mT ´

8
ÿ

t“0

f
`

I
`

S t;X
ˇ

ˇS t´1, 1T ďt
˘˘

ff

Proposition 3.4 . complements Theorem 3.1 . by showing that the optimal value from

Equation (3.1) . can be implemented using a simple stationary experimentation strategy

that is feasible in Equation (P).. The information structure S t explicitly codes three kinds

of signals: Stop s0, Wait c0 and Action in A. The first condition defines the initial informa-

tion. The second condition defines the information structures in the following periods by

induction: If S t´1 “ s0 or A it means that action is already taken and information acquisi-

tion stops from now on so S t “ s0 and so on so forth. If S t´1 “ c0 it means that do nothing

and delay all decision to the current period. Conditional on continuation, S t realizes as

A with λ˚

IpA;X |µq
probability. And in the next period the action is taken according to the

realization of S t. With 1 ´ λ˚

IpA;X |µq
probability c0 realizes and the decision is delayed to

the next period. The Third condition explicitly defines T : when action is taken in period t

as indicated by S t´1, then T “ t. It’s easy to verify the information processing constraints

5s0 and c0 are chosen to be distinguishable from any element in action set A.
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Chapter 3. Indirect information measure and dynamic learning

in Equation (P). are satisfied. First, conditional on S t´1, the distribution of 1T ďt is degen-

erate. When S t´1 “ c0 it’s 0 and 1 otherwise. So S Ñ S t´1 Ñ 1T ď t. Second, conditional

on S t´1 and knowing T “ t, At is also degenerate. It is exactly the realization of S t´1.

Therefore X Ñ S t´1 Ñ At.

Sketched proof.

Here I provide a simplified proof which illustrates the main intuition for Theorem 3.1 .

and Proposition 3.4 .. Since there is no discounting on the utility gain from actions, given

an action profile AT , the expected utility is completely determined by 1) the aggregate

distribution of actions A. 2) the expected waiting time ErT s. How actions are allocated

over time doesn’t affect the expected utility at all. Since actions are driven by information,

this observation indicates that solving Equation (P). can be divide into three steps: Step 1 is

to solve for the optimal distribution of information over time to minimize the information

cost given any aggregate information structure and expected waiting time. Step 2 is to

solve for the optimal waiting time given any fixed aggregate information structure. Step

3 is to solve for the optimal aggregate information structure and the associated action

profile.

Step 1. Given any strategy
`

S t,At, T
˘

, the DM can implement the same action distri-

bution AT and expected waiting time ErT s with a information process of lower cost. First,

consider combining all information S “
`

S1, . . . ,S t, . . .
˘

. By sub-additivity IpS ;X |µq ď

ř

E
“

I
`

S t;X
ˇ

ˇS t´1˘‰. Then consider averaging IpS ;X |µq into ErT s periods:

IpS ;X |µq

ErT s
ď

ř

E
“

I
`

S t;X
ˇ

ˇS t´1˘‰

ErT s

ùñ f
ˆ

IpS ;X |µq

ErT s

˙

ď

ř

E
“

f
`

I
`

S t;X
ˇ

ˇS t´1˘˘‰

ErT s

ùñ ErT s f
ˆ

IpA;X |µq

ErT s

˙

ď
ÿ

E
“

f
`

I
`

S t;X |S t´1˘˘‰
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The second inequality is first by monotonicity of f then by convexity of f . That is to say:

there is incentive to combine small information (by sub-additivity of I) and smooth infor-

mation over time (by convexity of f ). The last inequality is from IpS ;X |µq ď IpA;X |µq

and the Blackwell monotonicity of I. Then an ideal strategy is to spend f
´

IpA;X |µq

ErT s

¯

on

information acquisition every period.

Then I implement the aforementioned information cost using a strategy defined as

in Proposition 3.4 .. By C-linearity, acquiring A with probability 1
ErT s

exactly has cost

f
´

IpA;X |µq

ErT s

¯

. On the other hand, taking action with probability 1
ErT s

in each period ex-

actly the implements aggregate action distribution A and the expected waiting time ErT s.

Then it is WLOG to consider:

sup
A,T

ErupA,X qs ´ mT ´ T f
ˆ

IpA;X |µq

T

˙

where ErT s is replaced by T for notational simplicity.

Step 2. Maximizing over ErT s (or T in the simplified problem). This can be done easily

by solving the first order condition w.r.t. T: ´m ´ f
` I

T
˘

` I
T f 1

` I
T
˘

“ 0. Replace λ “ I
T , we

get the expression for λ: m ` f pλq “ λ f 1pλq and further simplified problem:

sup
A

ErupA,X qs ´

ˆ

m
λ

`
f pλq

λ

˙

IpA;X |µq

The formal theorem covers general cases without smoothness assumption so f 1 is re-

placed with sub-differentials B f .

Step 3. I will refer to the Weierstrass theorem to show the existence of solution. See

Proposition 3.5. for detailed discussion.

In the sketched proof I implicitly assumed f to be differentiable, first order condition

has solution and optimal T ě 1. The formal proof for more general cases is provided in
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Appendix D.2.1.

3.3.3 Existence and uniqueness

In this section, I first show a general existence result for the solution of Equations (3.2) .

and (3.3).. Then I established its uniqueness in different dimensions. By toggling the

inequalities defining the monotonicity of I, the concavity of f and the sub-additivity of

I to strict inequalities, my model predicts unique belief profile, unique information cost

allocation and unique strategy correspondingly.

Proposition 3.5. If A, X are finite sets, I satisfies Assumption 3.1., then

• Existence: @ε ą 0, let ∇ε “ tA|Pra|xs ě εu, then there exists a non-empty, convex and

compact set of solution Aε to Equation (3.1). subject to A P ∇ε.

– If Dε ą 0, Aε
Ş

∇o
ε ‰ H, then

Ť

ε1ďε Aε1 is the maximizer of Equation (3.1)..

– If @ε ą 0, Aε
Ş

∇o
ε “ H, then any sequence in

ś

Aε approaches Vpµq.

• Uniqueness:

– If I satisfies strict-monotonicity, then posterior belief νpaq associated with any action

a is unique for all optimal A.

– If f p¨q satisfies strict-convexity, then @ optimal strategy
`

S t,At, T
˘

to Equation (P).,

I
`

S t;X |S t´1, 1T ďt
˘

is the same.

– If I satisfies strict-sub-additivity, then the solution
`

S t,At, T
˘

to Equation (P). is

unique.

Proposition 3.5 . first states the existence of solution to Equation (3.1) . and the unique-

ness of different aspects of the solution. First, with Assumption 3.1 ., very mild extra as-

sumptions (finite A and X) can guarantee the existence of solution to Equation (3.1) . (and
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solution to Equation (P). as well). Second, when strictly more informative information

structure has strictly larger information measure, the belief inducing each action can be

uniquely pinned down by optimization. Third, when the information cost function f

is strictly convex, then the optimal cost level incurred in each experimentation period

is constant over time. Finally, if a combination of informative experiments has strictly

larger measure than the expected summation of each component’s measure, then whole

dynamic strategy is uniquely pinned down.

The existence result is non-trivial in the sense that I don’t impose any continuity as-

sumption on I. However, I being an indirect information measure function actually guar-

antees it to be convex in an appropriate space. In Equation (3.1)., the strategy space is all

random variable A. If we consider the space of all conditional distribution over A on X

(Markovian transition matrices), then this is an Euclidean space and any indirect infor-

mation measure I is a convex function on this space: if S is a linear combination of S1

and S2, then S can be implemented as randomly using S1 or S2 (and not knowing the

choice of experiment). Therefore, monotonicity and sub-additivity guarantees S to have

weakly lower measure than the linear combination of measures of S1, S2. Convexity of

I implies both objective function to be continuous and choice set to be compact on any

interior closed subset of the strategy space.

The incentive for inter-temporal smoothing of information is clearly illustrated in the

proof of Proposition 3.4 . and Theorem 3.1 .: The convexity of information cost f implies the

incentive to smooth the cost over time. Sub-additivity of I implies incentive to smooth

the choice of information structure over time. The incentive for choice of aggregate infor-

mation structure is illustrated in the proof of existence: monotonicity and sub-additivity

implies a concave objective function. Now if any of aforementioned incentives is strict,

then the solution is uniquely pinned down in the corresponding aspect. First, consider

the proof for convexity of I in the last part. Randomly using S1 or S2 (and knowing
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choice of experiment) carries strictly more information than S (which discards informa-

tion about which experiment is used). Therefore, strict monotonicity implies that he ob-

jective function is strict concave (except when S1 and S2 have the same row vectors).

Second, consider step 1 in the proof of Theorem 3.1 .. Suppose f is strictly convex, when-

ever information cost is not constant over time, the total cost is strictly dominated by a

stationary strategy. Third, when there is strict sub-additivity, then any non-stationary ex-

perimentation strategy is dominated by the stationary one I constructed. Moreover, the

objective function in Equation (3.1) . is strictly concave w.r.t any A. In this case, the whole

solution is uniquely pinned down.

3.4 Conclusion

In this chapter, I explore the robust predictions we can make when the measure of

signal informativeness is an indirect measure from sequential cost minimization. I first

show that an indirect information measure is supported by sequential cost minimization

iff it satisfies: 1) monotonicity in Blackwell order, 2) sub-additivity in compound experi-

ments and 3) linearity in mixing with no information. In a sequential learning problem,

if the cost of information depend on an indirect information measure and delay cost is

fixed, then the optimal solution involves direct Poisson signals: arrival of signal directly

suggests the optimal action, and non-arrival of signal provides no information. I also

characterize the existence and uniqueness of the optimal learning dynamics.
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Information design possibility set
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4.1 Introduction

Let X be a non-empty finite set (state space). ∆pXq P R|X| is the set of all probability

measures on X. Let µ denote an element in ∆pXq. ∆2pXq is the set of all probability

measures (standard Borel sigma algebra) on ∆pXq. Let P denote an element in ∆2(X).

Let
␣

Vi(n
i“1 be a finite set of continuous functions on ∆pXq. Let f : Rn Ñ R denote a

continuous function. Let Dpµq : ∆pXq Ñ Rn be a closed valued correspondence.

My objective is to solve the following constrained maximization problem:

sup
PP∆2pXq

f
´

EPrV1s, . . . , EPrVns

¯

(4.1)

s.t.

$

’

&

’

%

´

EPrV1s, . . . , EPrVns

¯

P Dpµq

EPrνs “ µ

Suppose n “ 1 and D ” R, then Equation (4.1). can be solved by concavifying V1pµq (Ka-

menica and Gentzkow (2011.), Aumann, Maschler, and Stearns (1995.)). And Theorem 4.8 .

implies that it is without loss to consider information structures with no more than |X| sig-

nals. This gives tractability both analytically and computationally. However, even when

n “ 2, with a general f or a nontrivial constraint D, concavification no longer works and

we might need to search over an infinite dimensional space to solve Equation (4.1) ..

To solve Equation (4.1) ., I study the set of all possible expected valuation vectors that

can be implemented by designing the information structure P — the information design

possibility set. In Section 4.3 ., I proved a two-step concavification method: First, the in-

formation design possibility set itself can be implemented by combining finite number of

information structures that implement its extreme points. Second, each extreme point can

be implemented by concavifying a linear combination of Vi’s, hence involving only finite

number of signals.
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The general concavification method developed in this chapter can be applied to a wide

range of information design problems. In Section 4.4 ., I first provide two applications

on static information acquisition and dynamic information acquisition to show that the

optimal solutions have a nice Lagrange multiplier characterization. Then I provide an

application on persuading receivers with outside options to illustrate how the Lagrange

characterization can simplify the optimal persuasion problem. Finally I provide an ap-

plication of Lemma 4.1 . on screening using information structures, to illustrate how the

theory developed in this chapter reduces the dimensionality of the problem and makes

the problem tractable.

4.2 Information possibility set

Notations used in this section: given a convex set C, let extpCq be the set of all extreme

points of C, let extkpCq be the set of all k-extreme points of C 1
.. Let exppCq be the set of

exposed points of C. FpCq is set of faces of C.

Definition 4.1. Information possibility set Vpµq P Rn is defined as:

Vpµq “

"

´

EPrV1s, . . . , EPrVns

¯

ˇ

ˇ

ˇ

ˇ

P P ∆2pXq, EPrνs “ µ

*

Lemma 4.1. @µ, Vpµq is a compact and convex set. @v P extkpVpµqq, there exists P P ∆2pXq

such that:

$

’

’

&

’

’

%

v “
`

EPrV1s, . . . , EPrVns
˘

|supppPq| ď pk ` 1q|X|

Proof. First of all, we prove that Vpµq is compact and convex.

1extpCq “ ext0pCq and C “
Ť

kďn extkpCq.
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• Boundedness: @P P ∆2pXq, minµP∆pXq Vipµq ď EPrVis ď maxµP∆pXq Vipµq. Therefore,

@v P Vpµq, it is bounded from 0 by maxµP∆pXq,i
ˇ

ˇVipµq
ˇ

ˇ by sup norm. So Vpµq is a

bounded set.

• Convexity: @v1, v2 P Vpµq, there exists P1, P2 P D2pXq s.t. vi “
`

EPirV
1s, . . . , EPirV

ns
˘

.

Since ∆2pXq is a linear space and expectation operator is linear functional, @β P r0, 1s,

Pβ “ βP1 ` p1 ´ βqP2 P ∆2pXq and:

vβ “

´

EPβ
rV1s, . . . , EPβ

rVns

¯

“β
´

EP1rV1s, . . . , EP1rVns

¯

` p1 ´ βq

´

EP2rV1s, . . . , EP2rVns

¯

“βv1 ` p1 ´ βqv2

Therefore, βv1 ` p1 ´ βqv2 P Vpµq so Vpµq is a convex set.

• Closeness: ∆pXq is a finite dimensional simplex. If we consider the Prokhorov met-

ric on ∆2pXq, then ∆2pXq is a complete and separable space (Theorem 6.8 of Billings-

ley (2013.)). Now since ∆pXq is compact, by Theorem 4.9 ., ∆2pXq is a compact, com-

plete and separable space with the Prokhorov metric. Prokhorov metric induces a

topology equivalent to weak˚ topology(by Theorem 6.8 of Billingsley (2013.)). So

@vk P Vpµq, if vk Ñ v, then consider the sequence Pk such that vk “ EPk

“

pViq
‰

. By

compactness of ∆2pXq, pick a subsequence Pk
w´˚

ÝÝÝÑ P. Then @Vi, since Vi is contin-

uous, EPkrVis Ñ EPrVis. So v P Vpµq and Vpµq is a closed set.

• Compactness: Vpµq is a finite dimensional bounded and closed set, so it is compact.

@v P extkpVpµqq, v is an interior point of a k-dimensional face F of Vpµq. Then by

Theorem 4.7., v P convpextpFqq. By Theorem 4.8 ., there exists
␣

vj
(k`1

j“1 Ă extpFq and
ř

πj “ 1

s.t.
ř

πjvj “ v. By Lemma 4.4 .,
␣

vj
(

Ă extpVpµqq. The next step is to prove that @j, there

exists Pj P ∆2pXq s.t. vj “
`

EPrV1s, . . . , EPrVns
˘

and
ˇ

ˇsupppPjq
ˇ

ˇ ď |X|.
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Lemma 4.2. @µ, @v P exppVpµqq, DP P ∆2pXq and |supppPq| ď |X| s.t. v “ EP
“

pViq
‰

.

Proof. By definition of exposed points, there exists a linear function l P LpRnq s.t.

lpvq ą lpv1q @v1 P Vpxq, v1 ‰ v

In finite dimensional space, a linear function lpvq can be equivalently written as
ř

λivi ` c.

Consider the following maximization problem:

sup
PP∆2pXq

EP

”

ÿ

λiVi ` c
ı

(4.2)

s.t. EPrνs “ µ

By Theorem 4.8 ., Equation (4.2) . can be solved by convexifying the graph of
ř

λiVipµq ` c.

The maximum is achieved by a P s.t. |supppPq| ď |X|. Of course EPrpViqs P Vpµq. Then

by definition of l, lpvq ě EP
“
ř

λiVi ` c
‰

. On the other hand, there exists P1 P ∆2pXq s.t.

v “ EP1

“

pViq
‰

, by optimality of P, lpvq ď EP
“
ř

λiVi ` c
‰

. Therefore, since v is the unique

element in Vpµq achieving lpvq, we have EPrpViqs “ v and |supppPq| ď |X|. �

@vj P extpVpµqq, by Theorem 4.6 ., there exists
␣

vjl(8

l“1 Ă exppVpµqq and limlÑ8 vjl “ vj.

By Lemma 4.2 ., there exists Pjl P ∆2pXq s.t.
ˇ

ˇsupppPjlq
ˇ

ˇ ď |X| and vjl “ EPjl
“

pViq
‰

. Now

each Pjl can be represented as
´

pjl
t , µ

jl
t

¯|X|

t“1
P R2|X|, where:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ř

t pjl
t “ 1

ř

t pjl
t µ

jl
t “ µ

ř

t pjl
t Vipµ

jl
t q “ vjl

i @i

Since
´

pjl
t , µ

jl
t

¯

is in finite dimensional vector space, there exists a subsequence converging
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to
´

pj
t, µ

j
t

¯

when l Ñ 8. Therefore, since Vi is each continuous, it is easy to verify that:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ř

t pj
t “ 1

ř

t pj
tµ

j
t “ µ

ř

t pj
tV

ipµ
j
tq “ vj

i @i

Therefore, vj is implemented by Pj P ∆2pXq and
ˇ

ˇsupppPjq
ˇ

ˇ ď |X|. So P “
ř

πjPj P

∆2pXq and |supppPq| ď pk ` 1q ¨ |X|. By linearity of expectation operator, EP
“

pViq
‰

“

ř

πjEPj
“

pViq
‰

“
ř

πjvj “ v. �

Lemma 4.3. Correspondence V : ∆pXq Ñ Rn is continuous. GrpVq is convex and compact.

Proof.

• Boundedness: ∆pXq is a bounded set. @µ P ∆pXq, V is uniformly bounded by ra-

dious maxµP∆pXq,i
ˇ

ˇVipµq
ˇ

ˇ by sup norm. So GrpVq is bounded.

• Convexity: @pµ1, v1q, pµ2, v2q P GrpVq. @α P r0, 1s. Since ∆pXq is convex, µα “

αµ1 ` p1 ´ αqµ2 P ∆pXq. Now we prove that vα “ αv1 ` p1 ´ αqv2 P Vpµαq. By defi-

nition, there exists P1, P2 P ∆2pXq s.t. EP1r
`

Vi˘s “ v1, EP1rνs “ µ1 and EP2

“

pviq
‰

“ v2,

EP2rνs “ µ2. Define Pα “ αP1 ` p1 ´ αqP2, then by linearity of the expectation

operator, EPαrνs “ αEP1rνs ` p1 ´ αqEP2rνs “ µα. EPα

“

pViq
‰

“ αEP1rpViqs ` p1 ´

αqEP2rpViqs “ vα. Therefore, vα P Vpµαq. So pµα, vαq P GrpVq.

• Closedness: @
␣

pµj, vjq
(

Ă GrpVq, suppose µj Ñ µ, vj Ñ v. Want to show that

µ P ∆pXq and v P Vpµq. First of all, since ∆pXq is complete, µ P ∆pXq. Now by
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Lemma 4.1 ., there exists
`

pj, νj
˘

such that:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

řpn`1q|X|

k“1 pk
j “ 1

řpn`1q|X|

k“1 pk
j νk

j “ µj

řpn`1q|X|

k“1 pk
j Vipνk

j q “ vi
j

Now since pj P ∆ppn ` 1q|X|q and νj P ∆pXq are both compact spaces. Consider

stadard Euclidean metric on product space ∆ppn ` 1q|X|q ˆ ∆pXqpn`1q|X|, it is also

compact. Therefore there exists convergincing subsequence pj Ñ p and νk
j Ñ νk.

Then

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

řpn`1q|X|

k“1 pk “ limjÑ8

řpn`1q|X|

k“1 pk
j “ 1

řpn`1q|X|

k“1 pkνk “ limjÑ8

řpn`1q|X|

k“1 pk
j νk

j “ limjÑ8 µj “ µ

řpn`1q|X|

k“1 pkVipνkq “ limjÑ8

řpn`1q|X|

k“1 pk
j Vipνk

j q “ limjÑ8 vi
j “ vi

Therefore, pp, νq implements v at µ. So v P Vpµq.

• Compactness: Since GrpVq is closed and bounded, it is compact.

• Continuity: Since GrpVq is compact, Vpµq is upper hemicontinuous. Now we only

need to show lower hemicontinuity. @pµmq Ă ∆pXq, µm Ñ µ P ∆pXq. @v P Vpµq. By

Lemma 4.1., v is impelemnted by pp, νq with support size pn ` 1q|X|. There exists a

stochastic matrix qjk such that:

$

’

’

&

’

’

%

νj “ 1
ř

k µkqjk
pµ1qj1, . . . , µ´1qj,´1q

pj “
ř

k µkqjk
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ùñ

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Bpj

µk
“ qjk

Bνjl

Bµk
“

$

’

’

’

’

&

’

’

’

’

%

pjqjl ´ µlq2
jl

p2
j

when k “ l

´µlqjlqjk

p2
j

when k ‰ l

Therefore, since each pj ą 0, when µm is sufficiently close to µ, corresponding

ppm, νmq will be bounded from pp, νq by |µ ´ µm|. By continuity of Vi, vm “
`
ř

pmVipνmq
˘

Ñ

`
ř

pVipνq
˘

“ v. Therefore, Vpµq is both upper hemicontinuous and lower hemicon-

tinuous.

�

4.3 Main theorem

4.3.1 Existence and finite support

Theorem 4.1. Let X be finite and non-empty,
␣

Vi(n
i“1 Ă C∆pXq, f P CRn. @µ P ∆pXq, suppose

Vpµq
Ş

Dpµq ‰ H, then there exists P˚ P ∆2pXq solving Equation (4.1). and |supppP˚q| ď

pn ` 1q ¨ |X|.

Proof. By definition of Vpµq, Equation (4.1). is equivalent to the following problem:

sup
vPD

Ş

Vpµq

f pvq (4.3)

By Lemma 4.1., Vpµq is a compact set. Then Vpµq
Ş

Dpµq is compact and non-empty. By

Weierstrass’s theorem, there exists v˚ P Vpµq
Ş

Dpµq solving Equation (4.3) .. Then by

Lemma 4.1., there exists P˚ P ∆2pXq s.t. v˚ “
`

EP˚rV1s, . . . , EP˚rVns
˘

and |supppP˚q| ď

pn ` 1q ¨ |X|. Therefore, P˚ solves Equation (4.1) .. �
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4.3. Main theorem

4.3.2 Necessary condition for the maximizer

Theorem 4.2. Let X be finite and non-empty,
␣

Vi(n
i“1 Ă C∆pXq, f : Rn Ñ R is differentiable.

Let D ” Rn. Then a necessary condition for P˚ solving Equation (4.1). is:

P˚ P arg max
PP∆2pXq
EPrνs“µ

∇ f pEP˚rV1s, . . . , EP˚rVnsq ¨

´

EPrV1s, . . . , EPrVns

¯

(4.4)

Proof. Solving Equation (4.1) . is equivalent to solving Equation (4.3) .. Suppose by contra-

diction that Equation (4.4) . is violated at optimal P˚. Then it is equivalently saying that

there exists v P Vpµq such that:

∇ f pv˚q ¨ v˚ ă ∇ f pv˚q ¨ v

By Lemma 4.1 ., Vpµq is a convex set. Therefore vα “ p1 ´ αqv˚ ` αv P Vpµq. Consider

hpαq “ f pvαq. Then h1p0q “ ∇ f pv˚q ¨ pv ´ v˚q ą 0. So there exists α1 ą 0 s.t. hpα1q ą hp0q.

Then f pv˚q ă f pvα1q. Contradicting optimality of v˚. �

Theorem 4.3. Let X be finite and non-empty,
␣

Vi(n`m
i“1 Ă C∆pXq, f : Rn`m Ñ R is constant

in the last m arguments. Let D ”
␣

v|vi ě 0 @i ą n
(

. Then there exists P˚ solving Equation (4.1).

and λ P Bm`n such that:

P˚ P arg max
PP∆2pXq
EPrνs“µ

EP

”

ÿ

λiVi
ı
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Proof. @P˚ solving Equation (4.1) ., let v˚ be corresponding value. Define:

vα “ v˚ ` αp0, . . . , 0
loomoon

n

, 1, . . . , 1
loomoon

m

q

Then by definition f pvαq “ f pv˚q. v0 “ v˚ P Vpµq. Since Vpµq is bounded, for large

enough α, vα R Vpµq. Then since Vpµq is compact, there exists α s.t. vα P BVpµq. Since Vpµq

is convex, there exists l P LpRm`nq s.t. vα P arg maxvPVpµq lpvq. Let l “
ř

λivi, then:

vα P arg max
vPVpµq

ÿ

λivi

Let Pα be the corresponding information structure implementing vα (existence of Pα guar-

anteed by Lemma 4.1 .). Then

Pα P arg max
PP∆2pXq
EPrνs“µ

EP

”

ÿ

λiVi
ı

Since f pvαq “ f pv˚q, Pα solves Equation (4.1). as well. �

4.3.3 Convex optimization

Theorem 4.4. Let X be finite and non-empty,
␣

Vi(n
i“1 Ă C∆pXq, D ” tv|gpvq ě 0u. If both

f and g are quasi-concave and continuous, then there exists P˚ solving Equation (4.1)., v˚ “

pEPrVisq and λ P Bn such that:

$

’

’

’

’

&

’

’

’

’

%

P˚ P arg max
PP∆2pXq
EPrνs“µ

EP

”

ÿ

λiVi
ı

v˚ P arg min
f pvqě f pv˚q,vPD

λ ¨ v
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Proof. First, by Theorem 4.1 ., P˚ solving Equation (4.1) . exists. Then by optimality of P˚:

Vpµq
č

tv|v P D, f pvq ą f pv˚qu “ H

Since f and g are quasi-convex, tv|v P D, f pvq ą f pv˚qu is a convex set. Then by separating

hyperplane theorem, there exists c and λ s.t. @v P Vpµq, v1 P D and f pv1q ą f pv˚q:

λ ¨ v ď c and λ ¨ v1 ą c

By continuity of f and g, v˚ P clptv|v P D, f pvq ą f pv˚quq. So λ ¨ v˚ “ c. Then it is easy to

verify that λ satisfies the conditions in Theorem 4.4 .. �

Corollary 4.4.1. Let X be finite and non-empty,
␣

Vi(n
i“1 Ă C∆pXq, f : Rn Ñ R is quasi-

concave. Let D ” tv|gpvq ě 0u, g is quasi-concave. If f and g are both differentiable, then there

exists P˚ solving Equation (4.1)., v˚ “ pEPrVisq and γ, η ě 0 such that:

P˚ P arg max
PP∆2pXq
EPrνs“µ

pη∇ f pv˚q ` γ ¨ Jgpv˚qq ¨

´

EPrV1s, ¨ ¨ ¨ , EPrVns

¯

Proof. By Theorem 4.4.:

v˚ P arg min
f pvqě f pv˚q,vPD

λ ¨ v (4.5)

It is easy to verify that Equation (4.5) . as a dual problem is a convex optimization problem.

Since both f and g are differentiable, by Kuhn-Tucker condition, there exists γ, η ě 0 such
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that:

λ ´ η ¨ ∇ f pv˚q ´ γ ¨ Jgpv˚q “ 0

Then by definition of λ:

P˚ P arg max
PP∆2pXq
EPrνs“µ

pη∇ f pv˚q ` γ ¨ Jgpv˚qq ¨

´

EPrV1s, ¨ ¨ ¨ , EPrVns

¯

�

4.3.4 Maximum theorem

Theorem 4.5. Let X be finite and non-empty,
␣

Vi(n
i“1 Ă C∆pXq, f P CRn. Suppose Dpµq is

a continuous correspondence and @µ P ∆pXq, Vpµq
Ş

Dpµq ‰ H. Let κpµq be the maximum of

Equation (4.1). and Ppµq be the maximizer of Equation (4.1)., then κpµq is continuous and Ppµq

is compact-valued and upper hemicontinuous2
..

Proof. Theorem 4.5. is an application of the maximum theorem. Since by Lemma 4.3.

Vpµq and Dpµq are both continuous, Vpµq
Ş

Dpµq is non-empty, compact valued and con-

tinuous. Equation (4.1). is equivalent to maximizing f pvq on Vpµq
Ş

Dpµq. Therefore, by

maximum theorem, κpµq is continuous and the argmax correspondence V˚pµq is comapct-

valued and upper hemicontinuous.

Now we show that Ppµq is compact valued and upper hemicontinuous.

• compactness: (sequential comapctness will be sufficient) @tPmu Ă Ppµq, consider

vm “ EPm

“

pViq
‰

. Then vm P V˚pµq, so there exists subsequence (without loss assume

2with respect to Prokhorov metric.
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to be vqm itself) vm Ñ v P V˚pµq. Then since ∆2pXq is compact by Theorem 4.9., there

exists subsequence Pm
w´˚

ÝÝÝÑ P P ∆2pXq. Then EPrpViqs “ lim EPmrpViqs “ lim vm “

v P V˚pµq. So P P Ppµq.

• upper hemicontinuity: @µm Ñ µ, Pm
w´˚

ÝÝÝÑ P and Pm P Ppµmq. Then vm “ EPmrpViqs P

V˚pµmq. By definition of w-˚ convergence, vm Ñ v “ EPrpViqs. By upper hemiconti-

nuity of V˚pµq, v P V˚pµq. Therefore, P P Ppµq.

�

4.4 Applications

4.4.1 Costly Information acquisition

A direct application of Theorem 4.1 . is costly information acquisition problems. Con-

sider a variant of the rational inattention model. Decision utility at each belief is Fpµq “

maxa Eµrupa, xqs. The information measure of any experiment P is IpP|µq “ EPrHpµq ´

Hpνqs where H is the standard entropy function. Assume that the cost of experiments is

convex in their measure, the decision problem can be written as:

sup
PPD2pXq
EPrνs“µ

EPrFpνqs ´ f pEPrHpµq ´ Hpνqsq (4.6)

In a standard rational inattention problem, f is linear. Then standard concavification

method suggests that optimal experiment involves signals no more than |X|. The reason

why we want to deviate from a linear f is that standard RI has two kind of debatable pre-

dictions: 1) prior invariant choice of optimal posteriors (see Caplin and Dean (2013.)). 2)

no dynamics if we allow repeated experiments (see Steiner, Stewart, and Matějka (2017.)).

However, when f is more general, say convex, we knew little about how to solve Equa-

tion (4.6).. Theorem 4.2. becomes useful.
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Proposition 4.1. There exists P˚ solving Equation (4.6)., |supppP˚q| “ 2|X|. Moreover, if f is

differentiable, P˚ solves:

P˚ P arg max
PP∆2pXq
EPrνs“µ

EP
“

Fpνq ´ f 1pEP˚rHpµq ´ Hpνqsq ¨ Hpνq
‰

4.4.2 Dynamic information design

Consider the following Bellman equation:

Vpµq “ max
"

Fpµq, sup
PP∆2pXq

e´ρdtEPrVpνqs ´ f pEPrHpµq ´ Hpνqsq

*

(4.7)

s.t.

$

’

&

’

%

EPrνs “ µ

EPrHpµq ´ Hpνqs ď C

Proposition 4.2. If F, H P C∆pXq, f P CR. Fpxq, f pxq, C ě 0. Then there exists unique

V P C∆pXq solving Equation (4.7)..

Proof. Let Z “ tV P C∆pXq|F ď V ď copFqu. We define operator:

TpVqpµq “ max
"

Fpµq, sup
PP∆2pXq

e´ρdtEPrVpνqs ´ f pEPrHpµq ´ Hpνqsq

*

(4.8)

s.t.

$

’

&

’

%

EPrνs “ µ

EPrHpµq ´ Hpνqs ď C

By Theorem 4.1 ., the max operator is well defined. When P “ δµ, EPrνs “ µ and EPrHpµq ´

Hpνqs “ 0 so the sup operator is also well defined. Now we prove that T is a contraction

mapping on pZ , L8q.

• TpZq Ă Z : First of all, given the outter max operator in Equation (4.8) ., TpVqpµq ě
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Fpµq. Then @P P ∆2pXq such that EPrνs “ µ and EPrHpµq ´ Hpνqs ď C:

e´ρdtEPrVpνqs ´ f pEPrHpµq ´ Hpνqsq

ďe´ρdtEPrVpνqs

ďEPrcopFqpνqs

“copFqpµq

First inequality is from f being non-negative, second inqeuality is from V being

non-negative, e´ρdt ă 1 and V ď copFq. Last equality is from copFq being linear.

Last step is to show TpZqpµq P C∆pXq. This is directly implied by Theorem 4.5 ..

• TpVq is monotonic: Suppose Upµq ě 0 and U ` V P Z If TpVqpµq “ Fpµq, then by

construction TpV ` Uq ě Fpµq “ TpVqpµq. If TpVqpµq ą Fpµq, let P be solution to

Equation (4.8) . at µ for V:

TpV ` Uqpµq ěe´ρdtEPrVpνq ` Upνqs ´ f pEPrHpµq ´ Hpνqsq

“TpVqpµq ` e´ρdtEPrUpνqs

ěTpVqpµq

And constraints EPrHpµq ´ Hpνqs ď C and EPrνs “ µ are independent of choice of

V so still satisfied.

• TpVq is contraction. We claim that TpV ` αqpµq ď TpVqpµq ` e´ρdtα. Suppose not

true at µ. Obviously TpV ` αqpµq ą Fpµq. Then let P be the solution of Equation (4.8) .

at µ for V ` α.

TpVqpµq ěe´ρdtEPrVpνqs ´ f pEPrHpµq ´ Hpνqsq
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“e´ρdtEPrVpνq ` αs ´ f pEPrHpµq ´ Hpνqsq ´ e´ρdtα

“TpV ` αqpµq ´ e´ρdtα

ąTpVqpµq

Similar to last part, constraints EPrHpµq ´ Hpνqs ď C and EPrνs “ µ are still satisfied.

Contradiction.

Therefore, by Blackwell condition, TpVq is a contraction mapping on Z . There exists a

unique solution V P Z solving the fixed point problem TpVq “ V. �

4.4.3 Persuade voters with outside options

Consider a politician who can strategically design a public signal to voters to influence

their voting behavior (the setup in Alonso and Câmara (2016.)).

Voting game: There are n ě 1 voters who chooses from a binary policy set A “ ta0, a1u.

There are two states X “ tx0, x1u. Each voter gets Bernoulli utility uipa, xq from voting

for the policy a. Assume that a1 is unanimously preferred to a0 when x1 is the true state

and vice versa. The politician has state independent utility over policies and prefers a1

strictly to a0. I assume that a0 is a default policy. For a1 to be proved, the politician

needs more than m pm ď nq voters to voter for a1. The politician can design a signal

structure to influence voters’ decisions. Equivalently, I assume that the politician chooses

a distribution over posterior beliefs P P ∆2pXq.

Outside option: Different from Alonso and Câmara (2016.), where number of potential

voters is fixed, I assume that each voter has opportunity cost ci of participating in the

voting game. Therefore, to approve the new policy, the politician should first attract at

least m voters to the game and then persuade them to vote for a1.

To simplify notation, I write all voter’s utility as functions of belief Fipµq. Let µi be the

threshold belief for each voter to vote for a1 The politician’s optimization problem can be
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written as:

sup
i1,...,ik,P

EP

”

1#pµěµij
qěm

ı

(4.9)

s.t.

$

’

&

’

%

EPrFijs ě cij

EPrνs “ µ

Notice that in Equation (4.9)., the politician doesn’t necessarily need to exclude voters

outside of ti1, . . . , iku, so the maximum from Equation (4.9) . must be weakly larger than

the politician’s optimal utility. On the other hand, for any strategy in Equation (4.9).,

potentially including more voters to the voting game can only make the politician better

off. So Equation (4.9). exactly characterizes the politician’s optimization problem.

For any voter, except for µi, there is another critical belief rµi:

rµi ´ µ

rµi
Fip0q `

µ

rµi
Fiprµiq “ ci

Suppose voter observes information structure inducing posterior belief 0 and rµi, then the

voter is exactly indifferent between paying the opportunity cost and entering the voting

game and not.

Proposition 4.3. Let µ˚ be the smallest belief s.t. #ti|µi ě µ˚u ě m and #ti|rµi ě µ˚u ě m, then

the optimal strategy for Equation (4.9). is:

$

’

’

&

’

’

%

Pp0q “
µ˚´µ

µ˚

Ppµ˚q “
µ

µ˚

and ti1, . . . , iku “ ti| mintrµi, µiu ě µ˚u.

Proposition 4.3. states that when voters must pay opportunity cost to enter the voting
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game, then there are potentially two pivotal voters. One is the one who’s most difficult to

persuade to adopt a1, and the other is the one who’s most difficult to attract to the voting

game. Both difficulty levels are measured by the location of the critical beliefs.

Proof. The key step of proving Proposition 4.3. is to apply Corollary 4.4.1 . to Equation (4.9)..

Notice that the objective function is Equation (4.9) . is in fact an indicator function with

some threshold belief level (say µ1, which is the lowest belief to persuade at least m voters

to vote for a1). So Corollary 4.4.1 . is directly applicable to Equation (4.9) ., and the objective

function is in the form of:

ÿ

λij max
!

0, µ ´ µij

)

` 1µěµ1 (4.10)

It is easy to see that Equation (4.10) . is a convex function on µ P r0, µ1s and a linear function

on µ P rµ1, 1s (there is no point to include voters who will never vote for a1.). So optimal

persuasion strategy must induce either belief 0 or interior belief ν ą µ1. Of course since at

least m voters are included and persuaded, ν ě µ˚. On the other hand, it is easy to verify

that the strategy define by µ˚ induces at least m voters to participate, so µ˚ is optimal. �

4.4.4 Screening with information

Consider a problem of Bayesian persuasion with unknown receiver types. Let Θ be

the set of receiver types, X be the finite set of states and A be the set of actions. @θ P Θ,

decision utility at each belief is Fθpµq “ maxa Eµrupa, x, θqs. Sender’s utility at each belief

given receiver type θ is Vθpµq. Assume that the type distribution is πpθq P ∆pΘq. The

sender can screen the receivers by providing a menu of information structures. Then by

revelation principle, sender’s optimization problem is:

sup
PθPΘˆ∆2pXq

ż

EPθ
rVθsπpθqdθ (4.11)
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s.t.

$

’

&

’

%

EPθ
rFθs ě EPθ1 rFθs @θ, θ1 P Θ

EPθ
rνs “ µ @θ P Θ

When Θ and A are both infinite, solving Equation (4.11) . is difficult due to the dimension-

ality of strategy space. When A is finite, it is WLOG to restrict the sender to use direct

message which suggests the actions being played conditional on the state. Then Equa-

tion (4.11) . reduces to a screening problem with finite dimensional strategy function (plus

a few more obedience constraints). In the remaining case where Θ is finite but A is infi-

nite, it is still unclear whether it is WLOG to consider only finite dimensional screening

mechanisms.

Now consider the finite Θ case. Suppose Θ “ t1, . . . , Nu. Define:

$

’

’

&

’

’

%

Vipµq “

"

EPrVis, EPrF1s, . . . , EPrFNs

ˇ

ˇ

ˇ

ˇ

P P ∆2pXq, EPrνs “ µ

*

Dpµq “

!

v P RpNˆpN`1qq
ˇ

ˇ

ˇ
vi`1

i ě vi`1
j @i, j

)

Then Equation (4.11). is equivalent to the following problem:

sup
vPDpµq

Ş

ˆN
i“1Vipµq

πiv1
i (4.12)

By Lemma 4.1 ., each Vipµq is compact set. Therefore, Dpµq
Ş

ˆVipµq is compact. It is easy

to see that Dpµq
Ş

ˆVipµq is non-empty. By Weierstrass’s theorem, there exists v˚ solving

Equation (4.12).. Then by Lemma 4.1 ., there exists P˚
i P ∆2pXq s.t. v˚

i “

´

EP˚
i

rVis, EP˚
i

rF1s, . . . , EP˚
i

rFNs

¯

and
ˇ

ˇsupppP˚
i q
ˇ

ˇ ď pN ` 2q ¨ |X|. Therefore,
`

P˚
1 , . . . , P˚

N
˘

solves Equation (4.11) . and we get

the following proposition:

Proposition 4.4. If Θ is finite, then @µ P ∆pXq, there exists
`

P˚
1 , . . . , P˚

N
˘

P ∆2pXqN solving

Equation (4.11). and each
ˇ

ˇsupppP˚
i q
ˇ

ˇ ď pN ` 2q ¨ |X|.
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Proposition 4.4 . states that it is WLOG to consider only mechanisms with finite support

when solving Equation (4.11).. Therefore, it is sufficient to maximize over NpN ` 2q ¨ |X|

posterior beliefs and NpN ` 2q ¨ |X| corresponding probabilities to solve constrained opti-

mization problem Equation (4.11) ., which is a computationally tractable problem.

4.5 Conclusion

In this chapter, I study the set of all possible combinations of expected valuations that

can be implemented by designing information. I show that the set can be implemented

only using information structures with finite realizations, and all extreme points of the

set can be characterized using a concavification characterization. I developed a Lagrange

method in the information design setup, and applied the results to various applications

including static and dynamic information acquisition, persuasion of receivers with out-

side options and screening using information.

4.6 Theorems used in proof

Here I list the key theorems used for my proof. Theorem 4.6. is Straszewicz’s theorem

(Straszewicz (1935.), see Theorem 18.6 of Rockafellar (1969.)). Theorem 4.7. is Krein-Milman

theorem(see Theorem 3.23 of Rudin (1991.)). Theorem 4.8 . is Carathéodory’s theorem

(Carathéodory (1907.)).Theorem 4.9 . is Prokhorov’s theorem (see Theorem 5.1 of Billingsley

(2013.))

Theorem 4.6. Let C P Rn be a closed convex set, clpexppCqq “ extpCq.

Theorem 4.7. Let C P Rn be a compact and convex set, C “ convpextpCqq.

Theorem 4.8. Let C P Rn, if x P convpCq then x P convpRq for R Ă C, |R| ď n ` 1.

Theorem 4.9. A tight set Π of probability measures on Borel sets of metric topological space X is

relative compace in weak-˚ topology.
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Lemma 4.4. Let C be a convex set in Rn. Then @F P FpCq, extpFq Ă extpCq.

Proof. @x P extpFq there exists affine f defining face F. @y, z P C. Suppose y P F, then

f pxq “ f pyq. If there exists α P p0, 1q s.t. αy ` p1 ´ αqz “ x, then α f pyq ` p1 ´ αq f pzq “

f pxq ùñ f pzq “ f pxq “ f pyq so z P F. Since x P extpFq, x P ty, zu. Suppose y R F,

then f pxq “ α f pyq ` p1 ´ αq f pzq ă f pxq by definition of f , contradiction. To sum up,

x P extpCq. �
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A.1 Further discussions

In Appendix A.1 ., I first discuss the convergence of discrete-time optimal policy in

Appendix A.1.1.. It is shown that the discrete-time optimal policy’s support as a corre-

spondence of prior belief converges to that of the continuous-time optimal policy. Then I

complete the discussion in Section 1.7 . by generalizing each of the restrictive assumptions.

Appendix A.1.2 . generalizes the finite actions assumption and shows that the solution of

a problem with infinite actions can be approximated by solutions to a series of problems

with increasing number of actions. Appendix A.1.3. generalizes the binary states assump-

tion in Assumption 1.3. and shows that the properties of optimal policy in Theorem 1.2. all

extend in a problem with general finite state space. The proofs of theorems stated in this

section are relegated to Appendix B.5 ..

A.1.1 Convergence of policy

By Theorems 1.2 . and 1.3., the optimal policy solving Equation (1.4) . is essentially unique

in the jump-diffusion class. However, Theorem 1.1 . does not rule out other possible op-

timal policies for the original stochastic control problem Equation (1.1) .. To get behavior

predictions from my model, additional refinement of optimal policy of Equation (1.1) . is

necessary. In this discussion, I show that the discrete-time optimal policy of Equation (1.6) .

converges to the solutions defined in Theorems 1.2 . and 1.3.. I define a modified version of

Lévy distance that characterizes the difference between two policy correspondences:

Definition A.1 (Lévy metric). Let F, G: r0, 1s Ñ 2r0,1s be two correspondences. The Lévy metric

dL pF, Gq is defined as:

dL pF, Gq :“ inf
"

ε ą 0
ˇ

ˇ

ˇ

ˇ

inf
|y´x|ďε

dHpFpxq, Gpyqq ď ε, @x P r0, 1s

*

where dH is the standard Hausdorff metric on R.
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dL pF, Gq “ a means that @µ P r0, 1s, @y P Fpµq, there exists some µ1 in a-neighbourhood

of µ such that y is in the a-neighbourhood of Gpµ1q. When G is continuous at µ, and a is

sufficiently small, it simply states that the images of F and G at µ are close to each other

(measured by dH). If dL pF, Gq “ 0 then F and G are identical.

Theorem A.1 (Convergence of policy). Given either Assumptions 1.1 ., 1.2-a. and 1.3. or As-

sumptions 1.1., 1.2-b. and 1.3., let νpµq be the policy correspondence solving Equation (1.4).. Let

Npµq “ tµu
Ť

νpµq. Let Ndtpµq be the support of optimal posteriors solving Equation (1.6).. Then:

lim
dtÑ0

dL pN, Ndtq “ 0

Theorem A.1. states that the graph of policy function of discrete-time problem Equa-

tion (1.5’) . converges to the graph of the continuous solution defined in Theorems 1.2 .

and 1.3.. The convergence is illustrated in Figure A.1 .. I calculate the discrete-time policy

function using parameters in Example 1.2.. The red, blue and green lines represent the

set of optimal posteriors as functions of prior when Vdt ą F with dt “ 10´5, 10´3 and

10´2. As is shown in the figure, when dt Ñ 0, one of optimal posterior is converging to

the prior, and the other optimal posterior is converging to the continuous time solution.

The posterior converging to prior captures a drift term and the other posterior captures a

Poisson jump in the limit.

A.1.2 Infinite action space

In this section, I extend my model to accommodate infinite actions (or even contin-

uum of actions) in the underlying decision problem, i.e. |A| “ 8. Mathematically, the

difference is that the value from immediate action Fpµq “ supaPA Erupa, xqs is no-longer a

piecewise linear function. There are several technical problems arising from a continuum

of actions. For example whether the supremum is indeed achieved and whether F has
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Figure A.1: Convergence of policy function

bounded subdifferentials. I impose the following assumption to rule out these technical

issues:

Assumption A.1. Fpµq “ maxaPA Erupa, xqs has bounded subdifferentials.

Assumption A.1 . rules out two cases. The first case is that the supremum is not achiev-

able. The second case is that some optimal action being infinitely risky: the optimal action

with belief approaching x “ 0 has utility approaching ´8 at state 1 (and similar case with

states swapped). A sufficient condition for Assumption A.1. is:

Assumption A.11. A is a compact set. @x P X, upa, xq P CpAq
Ş

TBpAq.

It is useful to notice that the proof of Theorem 1.1 . does not rely on the fact that Fpµqis

piecewise linear. Actually the only necessary properties of Fpµq are boundedness and

continuity in Lemma 1.2 ., which prove the existence of solution to discrete time func-

tional equation Equation (B.1) .. Therefore Assumption A.1 . guarantees that Lemma 1.2 .

and Lemma B.8 . still hold when there is a continuum of actions. With Assumption A.1 ., the

problem with continuum of actions can be approximated well by a sequence of problems

with discrete actions. I first define the following notation: @F satisfying Assumption A.1.,

VdtpFq is the unique solution of Equation (1.6). and VpFq “ limdtÑ0 VdtpFq1
..

1The existence of limit is guaranteed by monotonic convergence theorem.
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Lemma A.1. Given Assumption A . and Assumptions 1.2. and A.1., V is a Lipschitz continuous

functional under L8 norm.

Lemma A.1. implies that a problem with continuum of actions can be approximated

well by a sequence of problems with discrete actions in the sense of value function conver-

gence. Next, I push the convergence criteria further to the convergence of policy function.

Theorem A.2. Given Assumptions 1.1 ., 1.2-a., 1.3. and A.1., let tFnu be a set of piecewise linear

functions on [0,1] satisfying:

1. ∥Fn ´ F∥8 Ñ 0;

2. @µ P r0, 1s, lim F1
npµq “ F1pµq.

Then |VpFq ´ VpFnq| Ñ 0 and:

1. VpFq solves Equation (1.4)..

2. @µ s.t. Vpµq ą Fpµq, if each νn is maximizer of VpFnq and ν “ limnÑ8 νn exists, then ν is

the optimal posterior in Equation (1.4). at µ.

Theorem A.2. states that to solve the problem with a continuum of actions, one can

simply use both value function and policy function from problems with finite actions to

approximate. As long as the immediate action values Fn converge uniformly in value

and pointwise in first derivative, the optimal value functions have a uniform limit. The

limit solves Equation (1.4) . and the optimal policy function is the pointwise limit of policy

functions from the finite action problems.

Figure A.2 . illustrates this approximation process. On both panels, only µ P r0.5, 1s is

plotted (policy and value on r0, 0.5s are symmetric). On the right panel, the thin black

curve shows a smooth Fpµq associated with continuum of actions. Since optimal policy

only utilizes a subset of actions, I approximate the smooth function only locally as the

upper envelope of dashed lines (each represents one action). The optimal value function

with continuous actions is the blue curve and the discrete action approximation is the red
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Left panel shows the optimal policy function of discrete actions
(red) and continuous actions (blue). The dashed line is ν “ µ.
Right panel shows the optimal value function. The thin black
line is value from immediate action Fpµq, the dashed lines are
discrete approximations of the continuous function F.

Figure A.2: Approximation of a continuum of actions

curve. The left panel shows the approximation of policy function. The blue smooth curve

is the optimal policy of the continuous action problem and the red curve with breaks is

the optimal policy of the discrete action problem.

To approximate a smooth Fpµq, one can simply add more and more actions to the finite

action problem and use F’s supporting hyper planes to approximate it. Then the optimal

policy functions have more and more breaks as optimal policys involve more frequent

jumps among actions. In the limit, as number of breaks grows to infinity, the size of

breaks shrinks to zero and approaches a continuous policy function.

A.1.3 General state space

In this section, I extend the size of state space. The constructive proof for Theorems 1.2 .

and 1.3. relies on the ODE theory to guarantee existence of solution. With a larger state

space, construction of value function relies on existence of PDE. There is no general theory

ensuring existence of solution.2 . Nevertheless, the verification part still works. In fact, the

2The maximization problem can be translated into a PDE system. What is problematic is the bound-
ary conditions. In fact, to solve for Vpµq searching over one action, I need to use the value function at
regions where DM is indifferent between two actions as a boundary condition. That boundary condition is
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discussion in Section 1.6.2. seems to extend to higher dimensional spaces in a natural way.

I formalize a partial characterization theorem in the section.

Let n “ |X|. Consider value function Vpµq on ∆pXq. Let Vpµq P C∆pXq and Cp2q

smooth when Vpµq ą Fpµq. Consider the following HJB equation:

ρVpµq “ max
"

ρFpµq, max
ν,p,σ

ppVpνq´Vpµq´∇Vpµq¨pν´µqq`σTHVpµqσ

*

(A.1)

s.t. ´ppHpνq´Hpµq´∇Hpµq¨pν´µqq´σTHHpµqσ ď c

where ν P ∆psupppµqq, p P ∆I and σ P R|supppµq|. Equation (A.1). comes from applying

Assumption 1.2-a. and smoothness condition to Equation (1.4).. 3
. I only discuss Assump-

tion 1.2-a . because the intuition is the same and similar proof methodology can be applied

to Assumption 1.2-b . to show an analog result.

Theorem A.3. Let E “ tµ P ∆pXq|Vpµq ą Fpµqu be the experimentation region. Suppose there

exists Cp2q smooth Vpµq on E solving Equation (A.1)., then D policy function ν : E ÞÑ ∆pXq s.t.

ρVpµq “ ´c
Fpνpµqq ´ Vpµq ´ ∇Vpµqpνpµq ´ µq

Hpνpµqq ´ Hpµq ´ ∇Hpµqpνpµq ´ µq

and ν satisfies the following properties:

1. Poisson learning: ρVpµq ě sup
σ

´c σTHVpµqσ

σTHHpµqσ
.

2. Direction: Dνpµq´µVpµq ě 0.

3. Precision: Dµ´νpµqνpµq ¨ HHpνqpν ´ µq ď 0.

4. Stopping time: νpµq P EC.

There exists a nowhere dense set K s.t. strict inequality holds on EzK in property 1,3 and 4.

unknown, in contrast to the one dimensional analog Vpµ˚q which can be easily calculated.
3HHpµq is defined on boundary where Vpµq “ Fpµq as continuous extension of interior Hessian’s by

Kirszbraun theorem.
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Theorem A.3 . states that if a solution Vpµq to Equation (A.1) . exists, then Vpµq can be

solved with only Poisson signals. The four properties are extensions to the four properties

in Theorem 1.2 . respectively. Property 1 and 4 are exactly the suboptimality of Gaussian

signal and the immediate action property. Property 2 and 3 are weaker than the cor-

responding properties in Theorem 1.2 .. Property 2 is the extension to the confirmatory

signal property. It states that optimal direction of jump is in the myopic direction that

value function increases. Property 3 is the extension to the increasing precision property.

Dµ´ννpµq is the direction ν is moving when µ is moving against ν. HHpνqpν ´ µq is the

direction pν ´ µq distorted by a negative definite matrix HHpνq. In a special case when

Hpµq “ ∥µ ´ µ0∥2
2, HHpνqpν ´ µq is in the same direction as pµ ´ νq, which implies (to-

gether with property 3) that the distance between µ and ν is increasing when µ is drifting

against ν. In a generic case, this property does not directly predict how ∥ν ´ µ∥ changes.

Figure A.3: Value function with 3 states

Figures A.3. and A.4. illustrate Theorem A.3 . in a numerical example. There are three

states and three actions. Belief space is a two-dimensional simplex. Fpµq is assumed to

be a centrally symmetric function on belief space (Figure A.3 .-(a)). Value function Vpµq is

the meshed manifold in Figure A.3 .-(c). Each blue curve in Figure A.3 .-(b) shows a drifting

path of posterior beliefs. Take a prior in lower right region. The optimal policy is to

search for one posterior (red points in lower right corner of Figure A.4.-(c)), and posterior

belief conditional on receiving no signal drifts along the curve in arrowed direction as
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in Figure A.4 .-(c). Once belief reaches the boundary, optimal policy becomes searching

for two posteriors in a balanced way and posterior drifts towards center of belief space

(see Figure A.4.-(b), arrowed blue curve is belief trajectory and dashed arrows points to

optimal posterior). Finally, if belief reaches center, optimal policy is to search for three

posteriors in a balanced way (Figure A.4.-(a)).
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Dashed arrows start from priors and point to optimal posteriors. Blue arrows repre-
sents drift of posrtior beliefs conditional on no signal arrival. Left panel shows a point
at which a balanced search over three posteriors is optimal. MIddle panel shows a
curve along which searching over two posteriors is optimal. Right panel shows curves
along witch searching over one unique posterior is optimal.

Figure A.4: Policy function with 3 states

A.1.4 Discrete-time information acquisition

In this section, I introduce a general discrete-time information acquisition problem. In

the general problem, information is explicitly modeled as state-dependent signal process,

and the cost of information is defined using a posterior separable function. I show that the

discrete-time auxiliary problem Equation (1.5) . introduced in Section 1.5.1 . is a reduced

form of the general problem. In Appendix A.1.4.1., I axiomatize posterior separability.

Decision problem: Time is discrete t P N. Period length is dt ą 0. The other primitives

pA, X, u, µ, ρq are the same as in Section 1.3 .. The Bernoulli utility of action-state pair pa, xq

in period t is e´ρdt¨tupa, xq.

Strategy: a strategy is a triplet pS t, τ,Atq. S t is a random process correlated with

the state, called an information structure. The realization of S t is called a signal history.
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The signal history up to period t is denoted by S t. Each S t specifies the signal structure

acquired in period t conditional on all histories up to period t.4 . τ is a random variable

whose realization is in N. τ specifies a random decision time. The action choice At is a

random process whose realization is in A. Each At specifies the joint distribution of action

choice and state conditional on making decision in period t. Let the marginal distribution

of the state be denoted by random variable X .

Cost of information: Define CdtpIq “ C
` I

dt

˘

dt. The per-period cost of information is

CdtpIpS t;X |S t´1, 1τďtqq,5 . where the measure of signal informativeness I is defined as:

Assumption A. IpS ;X |µq “ EsrHpµq ´ Hpνp¨|sqqs, where ν is the posterior belief about x

according to Bayes rule.

It is not difficult to see that IpS t;X |S t´1, 1τďtq is exactly the finite difference formulation

of ´LtHpµtqdt. Assumption A . is called (uniform) posterior separability in the literature. If

H is the standard entropy function, then I is the mutual information between signal S t

and unknown state X (conditional on history).

Dynamic optimization: The dynamic optimization problem of the DM is:

Vdtpµq “ sup
S t,τ,At

E

«

e´ρdt¨τupAτ,X q ´

8
ÿ

t“0

e´ρdt¨tCdt
`

I
`

S t;X |S t´1, 1τďt
˘˘

ff

(1.5.’)

s.t.

$

’

&

’

%

X Ñ S t´1 Ñ 1τďt

X Ñ S t´1 Ñ At conditional on τ “ t

The two constraints in Equation (1.5’) . are called the information processing constraints. No-

tation X Ñ S Ñ T means X |ù T |S . The first constraint states that signal history prior

4S´1 is defined as a degenerate random variable that induces belief same as prior belief µ for notation
simplicity.

51τďt is an indicator whether learning is already stopped up to current period, which is known to the
DM. So pS t´1, 1T ďtq summarizes all knowledge of the DM.
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to action time is sufficient for action time. The second constraint states that signal history

prior to period t is sufficient for action at time t.6 . They are extensions to the standard mea-

surability requirement, allowing randomness unrelated to unknown state to be added.

Equation (1.5’). is more general than Equation (1.5). in that it explicitly models the fully

flexible choice of information. Take any strategy in Equation (1.5) ., if we consider belief

as direct signal, then it resembles a special kind of strategy which is feasible in Equa-

tion (1.5’) .. These special strategies involve no irrelevant randomness and unused informa-

tion, which are permitted in Equation (1.5’) .. In fact, Equation (1.5’) . is more general than

Equation (1.5) . only in permitting irrelevant randomness and unused information. It is

quite intuitive that allowing those more general strategies doesn’t improve utility at all.

In fact, it is proved in Lemmas B.4 . and B.5. that Vdt defined by Equation (1.5’) . is identical

to that defined by Equation (1.5) ., for which reason I do not differentiate the notation.

Given the discussion above, Equation (1.5’) . serves as a formal justification for using a

belief based approached to model dynamic information acquisition. Moreover, it also re-

lates Assumption 1.1 . to posterior separable function — a measure for information widely

used in rational inattention problems. In addition to existing attempts to axiomatize or

microfound Assumption A ., I provide a different axiomitization based on sequential in-

formation decomposition in Appendix A.1.4.1 ..

A.1.4.1 Axiom for Assumption A.

Theorem A.4. IpS ;X |µq is a non-negative function of information structure and prior belief. I

satisfies Assumption A. if and only if the following axiom holds:

Axiom: @µ, @ information structure S1 and information structure S2|S1 whose distribution de-

6Notice that in every period, the information in current period has not been acquired yet. So decision can only be taken based
on the information already acquired in the past. As a result in the information processing constraints information is advanced by one
period. This within period timing issue does not make a difference when going to continuous-time limit.
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pends on realization of S1:

IppS1,S2q;X |µq “ IpS1;X |µq ` ErIpS2;X |S1, µqs

Theorem A.4 . states that the chain rule (the name for a key property of mutual informa-

tion in Cover and Thomas (2012.)) is not only a necessary condition but also a sufficient

condition for posterior separability. Given any experiment, we can divide it into multiple

stages of “smaller“ experiments. This axiom requires that the total informativeness of

this sequence of small experiments is ”path-independent“: it always equals to the infor-

mativeness of the compound experiment.
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A.2 Omitted proofs

A.2.1 Roadmap for proofs

Figure A.5: Roadmap for proofs
Theorem B.1., P186.

Corollary of Theorem 4.4., Chapter 4.

Theorem 1.1 ., P26.

Lemma 1.2 ., P30. Lemma B.4 ., P202. Lemma B.1 ., P185.

Lemma B.5 ., P205.

Lemma B.6 ., P207.

Theorem B.1 ., P186.

Lemma 1.1 ., P30. Lemma 1.2 ., P30.

Lemma B.3 ., P194.

Lemma B.8 ., P210. Lemma B.3 ., P194.

Lemma 1.2 ., P30.
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Lemma B.231
., P265.
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Theorem 1.4 ., P52.
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Theorem A.2 ., P142.
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Lemma B.27 ., P297. Lemma B.26 ., P296. Lemma A.2 ., P177.Theorem A.3 ., P144.

Theorem A.4 ., P148.
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Figure A.5 . illustrates the roadmap for proofs in Chapter 1 .. Each node in the figure

displays a theorem/lemma’s name and its page number. Proof of each node depends

(indirectly) on all nodes linked (indirectly) to it on the right. From top to bottom, the

nodes are ordered by order of proofs: each node only depends on nodes on the right of

it or above it. So it is clear that there is no circular argument. Dependent nodes that

have been proved earlier are boxed by dashed lines. From left to right, the nodes are

ordered by importance. Lemmas in the first layer are conceptually important and are

directly supporting the proof for theorems. Lemmas in the second layer or above are

more technical lemmas.

A.2.2 Proof of Theorem 1.1.

The general road map for proving Theorem 1.1. is introduced in Section 1.5.3.. The

proof relies on three lemmas. Lemma 1.1. proves that the value function Vdt of discrete-

time optimization problem Equation (1.5’). converges to the value function V of continuous-

time optimization problem Equation (1.1). as dt Ñ 0. Lemma 1.3. proves that the solution

of discrete time Bellman Equation (1.6) . converges to the solution of continuous time HJB

Equation (1.4) . as dt Ñ 0. Lemma 1.2 . proves that Vdt is also the solution of Bellman Equa-

tion (1.6).. Therefore, V is the solution of HJB Equation (1.4) ..

Among the three lemmas, Lemmas 1.1 . and 1.2. are quite standard, and the proofs are

mostly variations of standard arguments. In Appendices A.2.2.1 . and A.2.2.2., I discuss

only the main proof ideas and some non-standard details and relegate the standard parts

and purely technical details to Appendix B.2.1..

Lemma 1.3. is the key lemma for Theorem 1.1., as it provides an important link between

discrete time Bellman and continuous time HJB. Proof of Lemma 1.3 . is provided in details

in Appendix A.2.2.3 .. The discussion also formalizes the definition of HJB Equation (1.4) .

by clarifying the notion of viscosity solution I am using.
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A.2.2.1 Proof of Lemma 1.1.

Remark A.1. The proof of Lemma 1.1 . uses Lemma 1.2 . for some minor technical arguments.

However the main proof idea does not conceptually depend on Lemma 1.2 .. So I show the

proof of Lemma 1.1. first.

Proof. As already stated in Section 1.5.1 ., it is sufficient to show that the order of limits

can be switched:

sup
xµty,τ

lim
dtÑ0

Wdtpµt, τq “ lim
dtÑ0

sup
xµty,τ

Wdtpµt, τq (A.2)

Here Wdtpµt, τq is defined in Section 1.5.1 . as the discretized payoff of continuous time strat-

egy xµty, τ. The inner limit of LHS in Equation (A.2). is then by definition the payoff of

strategy xµty, τ in the continuous time problem Equation (1.1) .. So the LHS is Vpµq. The

inner limit of RHS is Vdtpµq (as the problem optimizing Wdt is a discrete time problem

equivalent to Equation (1.5’)., formally shown in Lemma B.5., a dependence lemma for

Lemma 1.2 .). So RHS is lim Vdt (a technical lemma Lemma B.8 . guarantees existence of

such limit).

I prove by showing inequality in two directions. The direction Vpµq ď lim Vdtpµq is

trivial since Wdtpµt, τq ď Vdtpµq for all xµty, τ, dt. The key is to prove the other direction

Vpµq ě lim Vdtpµq. I prove this claim by showing that @dt ą 0, there exists a continuous

time strategy that achieves a payoff in Equation (1.1). no less than Vdtpµq.

Given time period dt, by Lemma 1.2 . there exists discrete time optimal solution µ˚
t and

τ˚, where µ˚
t`1|Ft has support size N. The goal is to construct an admissible continuous-

time belief process xµty, which satisfies two properties: 1) at each discrete time idt, µt

has exactly the same distribution as µ˚
i , 2) within each dt period, uncertainty reduc-

tion speed of µt is exactly ErHpµ˚
i q ´ Hpµ˚

i`1q|Fis{dt. Such xµty with stopping time τ˚
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achieves higher payoff than Vdtpµq. Now this construction can be done by a technique

introduced in Lemma B.3.. @i and conditional on Fi, apply Lemma B.3. to the distribution

of µ˚
i`1 to smooth it on ridt, pi ` 1qdts. Lemma B.3. states that there exists a continuous-

time martingale xrµty (with a corresponding probability space) satisfying: @s, t P r0, 1s,

s ą t: ErHpµtq ´ Hpµsq|Fts “ ps ´ tqErHpµ˚
i q ´ Hpµ˚

i`1q
ˇ

ˇFis. For t P ridt, pi ` 1qdts, define

µt
ˇ

ˇFidt “ rµ t´idt
dt

ˇ

ˇFi. Therefore, @t P ridt, pi ` 1qdtq:

´LtHpµtq “ lim
sÑt`

E

«

Hpµtq ´ Hpµsq

s ´ t

ˇ

ˇ

ˇ

ˇ

ˇ

Ft

ff

“ lim
sÑt`

ps ´ tqE
“

Hpµ˚
i q ´ Hpµ˚

i`1q
ˇ

ˇFi
‰

s ´ t

“Hpµ˚
i q ´

ÿ

pj
i Hpµ

˚j
i`1q

Let τ “ τ˚dt. It is easy to see that by construction τ is measurable to the natural

filtration of µt. Therefore:

Vpµq ěE
„

e´ρτFpµτq ´

ż τ

0
e´ρtCpItqdt

ȷ

“E

«

e´ρdt¨τ˚

Fpµτ˚q ´

τ˚´1
ÿ

t“0

C

˜

Hpµ˚
i q ´

ř

pj
i Hpµ

˚j
i`1q

dt

¸

e´ρdt¨t ¨
1 ´ e´ρdt

ρ

ff

ěE

«

e´ρdt¨τ˚

Fpµτ˚q ´

τ˚´1
ÿ

t“0

C

˜

Hpµ˚
i q ´

ř

pj
i Hpµ

˚j
i`1q

dt

¸

e´ρdt¨t ¨ dt

ff

“E

«

e´ρdt¨τ˚

Fpµτ˚q ´

τ˚´1
ÿ

t“0

Cdt

´

Hpµ˚
i q ´

ÿ

pj
i Hpµ

˚j
i`1q

¯

e´ρdt¨t

ff

“ Vdtpµq

Second inequality is from 1 ´ e´x ď x. Therefore, Vpµq ě lim Vdtpµq. �

Remark A.2 (Non-integrable xµty). In fact, the integrability requirement introduced in

Equation (1.1). (defined as existence of lim Wdt in Section 1.5.1.) is not necessary for my

analysis of Theorem 1.1 .. Suppose now I extend the set of admissible belief profiles M to
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satisfy only the first two conditions: cadlag path, martingale property and initial value

µ0 “ µ. Then the limit of finite Riemann sum Wdtpµt, τq might not exist (although each

finite Riemann sum is always well defined). Whenever this is the case, I define the payoff

of strategy xµty, τ as:

E
„

e´ρτFpµτq ´

ż τ

0
e´ρtCp´LtHpµtqqdt

ȷ

fi lim sup
dtÑ0

Wdtpµt, τq (A.3)

Since Wdtpµt, τq is bounded above by max F, Equation (A.3) . is always well defined. Equa-

tion (A.3) . is the essential upper-bound of payoff of an ill-behaved strategy, and when xµty

is integrable it is consistent with the original definition of V. Obviously, such extension of

admissible strategy set weakly increases the value of Vpµq. Here I call the extended value

function pVpµq “ sup
xµty,τ

lim sup
dtÑ0

Wdtpµt, τq.

In the proof of Theorem 1.1 ., Lemmas 1.2 . and 1.3. are not affected at all since they are

about the discrete-time problem and corresponding value function Vdt. If Lemma 1.1 . can

be extended to pVpµq “ limdtÑ0 Vdt, then Theorem 1.1. still holds with V replaced with

pV. This extension is quite trivial by observing @xµty, τ, dt, Wdtpµt, τq ď Vdtpµq ùñ

lim sup Wdtpµt, τq ď lim Vdtpµq ùñ pVpµq “ lim sup ď lim Vdtpµq.

To sum up, if we extend the admissible strategy set, and relax the definition of the ob-

jective function to its essential upper-bound, a solution to HJB Equation (1.4) . still achieves

the value function. Therefore, it is WLOO to eliminate all those ill-behaved strategies from

the admissible control set.

A.2.2.2 Proof of Lemma 1.2.

Remark A.3. The proof presented here is stronger than the statement of Lemma 1.2 . in Sec-

tion 1.5.2 .. It proves that the Bellman Equation (1.6) . characterizes both Equations (1.5) .

and (1.5’). (while Lemma 1.2. only states that Equation (1.5). is characterized by Equa-

tion (1.6).). The first step of the proof shows that Vdt defined by Equations (1.5). and (1.5’).
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are identical (Lemmas B.4. and B.5.), and can be rewritten as a recursive problem (Lemma B.6.).

To proof the Lemma 1.2 . exactly stated in Section 1.5.2 ., one can simply skip Lemmas B.4 .

and B.5. and start with Lemma B.6., noticing that Equation (B.9). is simply rewriting Equa-

tion (1.5)..

Proof. The proof of Lemma 1.2. is mostly the standard theory of discrete-time dynamic

programming with a few tweaks. The proof involves 4 steps:

Step 1. Rewrite the sequential problem into the recursive problem. The technical de-

tails of the rewriting of problem is shown in Lemmas B.4 ., B.5. and B.6.. The only non-

standard analysis is to show that in Equation (1.5’) ., St may contain unused information/

randomness which can be discarded without loss of utility. Then the sequential prob-

lem without any redundant information can be represented in the belief space and easily

written as a recursive problem.

Step 2. Verify the standard transversality condition. This is trivial as the payoff is

bounded by max F and discounted exponentially.

Step 3. Verify the Blackwell contract mapping condition. The contraction parameter

in Equation (1.6) . is trivially the discount factor e´ρdt. The non-standard analysis is to

show that the optimization operation is into the domain Cp∆Xq. To show this I invoke a

maximum theorem in information design problems (Theorem 4.5. of Chapter 4., it shows

the existence of maximum as well).

Step 4. With steps 1-3, I invoke the standard contract-mapping fixed point theorem and

show that value function Vdt is the unique solution to Equation (1.6) .. The final bits show

that I can restrict the optimal strategy of Equation (1.6) . to have support size N. This part

is proved using a generalized concavification result: Notice that the objective function

in Equation (1.6) . is not in the standard “expected valuation” form as in the literature of

information design (see Kamenica and Gentzkow (2011.)). Instead, there is an extra Cdtp¨q
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term. However, intuitively this problem can be handle using a Lagrange method and

take the term inside Cdtp¨q to combine it with ErVs linearly. This intuition is formalized

by Theorem B.1 ., which is a corollary of a more general result in Chapter 4 .. �

A.2.2.3 Proof of Lemma 1.3.

Before going to the proof of Lemma 1.3., I first formally rewrite the problem to accom-

modate viscosity solutions (see Crandall, Ishii, and Lions (1992.)). First define a space of

functions on ∆pXq:

L “

#

V : ∆pXq ÞÑ R`

ˇ

ˇ

ˇ

ˇ

@µ P ∆X, µ1 P ∆psupppµqq, lim sup
µ1Ñµ

|Vpµ1q ´ Vpµq|

∥µ1 ´ µ∥ P R

+

where ∥¨∥ is Euclidean norm on ∆X. By definition, L is the set of pointwise Lipschitz

functions on ∆pXq. Two technical lemmas Lemmas B.8 . and B.9. guarantee that lim Vdt is

well defined, and there exists V P L which is the uniform limit of Vdt. Now I show that

V coincides with the solution of the HJB equation. Consider the following HJB equation

defined on L:

ρVpµq “ max

#

ρFpµq, sup
νiP∆psupppµqq,

piPR`,
pσPR|supppµq|

ÿ

pipVpνiq ´ Vpµqq ´ DV
´

µ,
ÿ

piνi ´ µ
¯∥∥∥´ÿ piνi ´ µ

¯∥∥∥
`

1
2
∥pσ∥2D2Vpµ,pσq (A.4)

´ C
ˆ

´
ÿ

pipHpνiq ´ Hpµq ´ ∇Hpµq ¨ pνi ´ µqq ´
1
2
pσT ¨ HHpµq ¨ pσ

˙

+

∇ and H denote gradient and Hessian operator (well-defined on all interior points). Since

V is not necessarily differentiable, I use operator D and D2 to replace the Jacobian and

Hessian operators on V. D and D2 are defined as follows. @y P B|supppxq|´1 (Unit ball in

|supppxq| ´ 1 dimensional space):
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Definition A.2 (General differentials). @ f P L:

$

’

’

&

’

’

%

D f px, yq “ lim infδÑ0
f pxq´ f px´δyq

δ∥y∥

D2 f px, yq “ lim supδÑ0 2 f px`δyq´ f pxq´δ¨D f px,yq¨∥y∥
δ∥y∥2

Notice that if f P Cp1qp∆Xq, then D f px, yq “
∇ f pxq¨y
∥y∥ . If f P Cp2qp∆Xq then D2 f px, yq “

yT¨H f pxq¨y
∥y∥2 . It is not hard to verify that for Cp1q smooth value function Vpµq, Equation (A.4) .

is equivalent to Equation (1.4)..

Proof.

Consider Lemma 1.3 . by replacing Equation (1.4) . with Equation (A.4).. If the statement

is proved with Equation (A.4) ., then since V “ V is Cp1q smooth, V is smooth and Equa-

tion (1.4) . automatically holds. I prove by induction on dimensionality of supppµq. First

of all, Lemma 1.3 . is trivially true when µ “ δx since Vpµq “ Vpµq “ Fpµq when the state is

deterministic. Now it is sufficient to prove V “ V on interior of ∆X conditional on V “ V

being true on B∆X (boundary of ∆X).

The proof takes three steps. Before going to the details, I introduce the steps briefly.

The first step is to show that V is unimprovable in HJB Equation (A.4) .. The proof is quite

standard as any continuous-time strategy that improves V can be approximated by a

discrete-time strategy. The second step shows V ě V. Proof is by a standard contradiction

argument. If V ă V, then there exists a belief s.t. the same strategy implements strictly

higher HJB with V, which violates unimprovability. The last and most difficult step is to

show that V ě V.

Unimprovability: First I show that V is unimprovable in Equation (A.4) .. Suppose

for the sake of contradiction that V is improvable at interior µ, then there exists pi, νi,pσ, I
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such that:

ρVpµq ă
ÿ

pi
`

Vpνiq ´ Vpµq
˘

´ DVpµ, µ ´
ÿ

piνiq
∥∥∥ÿ piνi ´ µ

∥∥∥ `
ÿ

D2Vpµ,pσjq∥pσ∥2
j ´ CpIq

where I “ ´
ÿ

pipHpνiq ´ Hpµq ´ ∇Hpµq ¨ pνi ´ µqq ´
ÿ

pσT
j HHpµqpσj

Then if we compare the following two ratios:

ř

pi
`

Vpνiq ´ Vpµq
˘

´ DVpµ,
ř

piνi ´ µq∥
ř

piνi ´ µ∥
´
ř

pipHpνiq ´ Hpµq ´ ∇Hpµq ¨ pνi ´ µqq
;

D2Vpµ,pσq∥pσ∥2

´pσTHHpµqpσ

At least one of them must be larger than ρVpµq`CpIq

I .

• Case 1:

ř

pi
`

Vpνiq ´ Vpµq
˘

´ DVpµ,
ř

piνi ´ µq∥
ř

piνi ´ µ∥
´
ř

pipHpνiq ´ Hpµq ´ ∇Hpµq ¨ pνi ´ µqq
ą

ρ

I
Vpµq `

CpIq

I

By Definition A.2 ., there exists δ, ε ą 0 s.t. :

ř

pi
`

Vpνiq ´ Vpµq
˘

´
Vpµq´Vpµ´δp

ř

piνi´µqq

δ
ř

pipHpµq ´ Hpνiqq `
Hpµq´Hpµ´δp

ř

piνi´µqq

δ

ě
ρ

I
Vpµq `

CpIq

I
` ε (A.5)

where δ is sufficiently small that µ0 “ µ ´ δp
ř

piνi ´ µq P ∆Xo. Then by construction, if

we assume:

$

’

’

&

’

’

%

p1
0 “ 1

1`δ

p1
i “ δ

1`δ pi
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Then
`

p1
i, ν1

i
˘

is Bayesian plausible:

$

’

’

&

’

’

%

ř

p1
i “ 1

ř

p1
iνi “ µ

where 0 is also included in indices i’s. Replacing terms in Equation (A.5) . and let

Ipνi|µq “ Hpµq ´
ř

p1
iHpνiq:

ř

p1
iVpνiq ´ Vpµq

´
ř

p1
iHpνiq ` Hpµq

ě
ρ

I
Vpµq `

CpIq

I
` ε

ùñ
ÿ

p1
iVpνiq ´

Ipνi|µq

I
CpIq ě

ˆ

1 ` ρ
Ipνi|µq

I

˙

Vpµq ` εIpνi|µq (A.6)

It is easy to verify that Ipνi|µq is continuous in δ and it is zero when δ “ 0. So δ can be

chosen sufficiently small that

eρ
Ipνi|µq

I ´

ˆ

1 ` ρ
Ipνi|µq

I

˙

“

8
ÿ

k“1

1
pk ` 1q!

´ρ

I

¯k`1
Ipνi|µq

k
¨ Ipνi|µq ď

εIpνi|µq

4 sup F
(A.7)

The equality is from Taylor expansion of exponential function. Plug Equation (A.7). into

Equation (A.6).:

ÿ

p1
iVpνiq ´

Ipνi|µq

I
CpIq ě eρ

Ipνi|µq

I Vpµq `
ε

4
Ipνi|µq

ùñ e´ρ
Ipνi|µq

I

´

ÿ

p1
iVpνiq

¯

´
Ipνi|µq

I
CpIq

ě Vpµq ` e´ρ
Ipνi|µq

I
εIpνi|µq

4
´

ˆ

1 ´ e´ρ
Ipνi|µq

I

˙

Ipνi|µq

I
CpIq (A.8)

Noticing that
ˆ

1 ´ e´ρ
Ipνi|µq

I

˙

Ipνi|µq is a second order small term. Then we can pick δ
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such that Equation (A.8). implies:

e´ρ
Ipνi|µq

I

´

ÿ

p1
iVpνiq

¯

´
Ipνi|µq

I
CpIq ě Vpµq `

ε

8
Ipνi|µq

From now on, we fix ε and δ. Pick dt “
Ipνi|µq

I , dtm “ dt
m . By uniform convergence, there

exists N s.t. @m ě N:

e´ρdt
´

ÿ

p1
iVdtmpνiq

¯

´ dt ¨ C
ˆ

Ipνi|µq{m
dtm

˙

ą Vdtmpµq

ùñ e´ρmdtm
´

ÿ

p1
iVdtmpνiq

¯

´

m´1
ÿ

τ“0

e´ρτdtm Cdtm

ˆ

Ipνi|µq

m

˙

ą Vdtmpµq

That is to say we find a feasible experiment, whose cost can be spread into m periods

(the split of experiment is done by applying Lemma B.3 .). This experiment strictly dom-

inates the optimal experiment at µ for discrete time problem with dtm. Contradiction.

Therefore, V must be unimprovable at µ.

• Case 2:

D2Vpµ,pσq∥pσ∥2

´pσTHHpµqpσ
ą

ρ

I
Vpµq `

CpIq

I

Then by the definition of operator D2 in Definition A.2., there exists pσ, δ, ε ą 0 s.t.:

Vpµ ` δpσq ´ Vpµq ´ δDVpµ,pσq∥pσ∥
´Hpµ ` δpσq ` Hpµq ` δ∇Hpµq ¨ pσ

ě
ρ

I
Vpµq `

CpIq

I
` 2ε

Then by the definition of operator D in Definition A.2., there exists δ1 s.t.:

Vpµ ` δpσq ´ Vpµq ´ δ
Vpµq´Vpµ´δ1

pσq

δ1

´Hpµ ` δpσq ` Hpµq ` δ
Hpµq´Hpµ´δ1

pσq

δ1

ě
ρ

I
Vpµq `

CpIq

I
` ε
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Let µ1 “ µ ´ δ1
pδ and µ2 “ µ ` δpσ, p1 “ δ1

δ`δ1 , p2 “ δ
δ`δ1 , then:

ÿ

piVpνiq ě

ˆ

1 ` ρ
Ipνi|µq

I

˙

Vpµq `
Ipνi|µq

I
CpIq ` εIpνi|µq (A.9)

Noticing that Equation (A.9) . is exactly the same as Equation (A.6) . in Case 1. Then using

same argument, This case is also ruled out.

Equality: I show that @ smooth function V solving Equation (A.4)., V “ V. Notice that

this automatically proves the uniqueness of solution of Equation (A.4).. I prove inequality

from both directions for µ P ∆pXqo:

• Vpµq ě Vpµq: Suppose not, then consider Upµq “ Vpµq ´ Vpµq. Since both V and

V are continuous, U is continuous. Therefore arg min U is non empty and min U ă

0 according to our assumption. Choose µ P arg min U (µ P ∆Xo since V “ V on

boundary). Since Vpµq ě Fpµq, Vpµq ą Fpµq. Let ppi, νi, σ̂q be a strategy solving Vpµq:

ρVpµq “
ÿ

pipVpνiq ´ Vpµqq ´ DV
´

µ,
ÿ

piνi ´ µ
¯∥∥∥ÿ pipνi ´ µq

∥∥∥
`

1
2

D2Vpµ,pσq∥σ̂∥2 (A.10)

´ C
ˆ

´
ÿ

pipHpνiq ´ Hpµq ´ ∇Hpµqpνi ´ µqq ´
1
2
pσTHHpµqpσ

˙

Now compare DV and DV:

Vpµq ´ Vpµ1q

∥µ ´ µ1∥ “
Vpµq ´ Vpµ1q ` Upµq ´ Upµ1q

∥µ ´ µ1∥ ď
Vpµq ´ Vpµ1q

∥µ ´ µ1∥

ùñ lim inf
Vpµq ´ Vpµ1q

∥µ ´ µ1∥ ď lim
Vpµq ´ Vpµ1q

∥µ ´ µ1∥

ùñ DVpµ, µ1 ´ µq
∥∥µ1 ´ µ

∥∥ ď ∇Vpµq ¨ pµ1 ´ µq
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Compare D2V and D2V:

Vpµ1q ´ Vpµq ´ DVpµ, µ1 ´ µq∥µ1 ´ µ∥
∥µ1 ´ µ∥2 ě

Vpµ1q ´ Vpµq ´ ∇Vpµq ¨ pµ1 ´ µq ` Upµ1q ´ Upµq

∥µ ´ µ1∥2

ùñ D2Vpµ,pσq ěD2Vpµ,pσq

Therefore Equation (A.10). implies:

ρVpµq ď
ÿ

pi
`

Vpνiq ´ Vpµq ´ pUpνiq ´ Upµqq
˘

´ DVpµ,
ÿ

νi ´ µq

∥∥∥ÿ νi ´ µ
∥∥∥ `

1
2

D2Vpµ,pσq∥pσ∥2

´ C
ˆ

´
ÿ

pipHpνiq ´ Hpµq ` ∇Hpµqpνi ´ µqq ´
1
2
pσTHHpµqpσ

˙

ďρVpµq

The first inequality comes from replacing DV and D2V with DV and D2V. The second

inequality comes from Upνiq ´ Upµq ě 0 and unimprovability of V. Contradiction.

• Vpµq ě Vpµq: I prove by showing that @dt ą 0, V ě Vdt. Suppose not, then there

exists µ1, dt s.t. Vdtpµ1q ą Vpµ1q. Let dtn “ dt
2n . Since Vdtn is increasing in n, there exists

ε ą 0 s.t. Vdtnpµ1q ´ Vpµ1q ě ε @n P N. Now consider Un “ V ´ Vdtn . Un is continuous

by Lemma 1.2 . and Unpµ1q ď ´ε. Pick µn P arg min Un. Since ∆pXq is compact, there

exists a converging sequence lim µn “ µ. By assumption, Unpµnq ď ´ε, therefore since

Upµq “ lim Unpµnq ď ´ε, µ must be in interior of ∆pXq. So without loss, µn can be

picked that µn P ∆pXqO. Now consider the optimal strategy of discrete time problem:

$

’

’

’

’

’

&

’

’

’

’

’

%

Vdtnpµnq “ e´ρdtn
ÿ

pn
i Vdtnpνn

i q ´ dtnCpInq

ÿ

pn
i pHpµnq ´ Hpνn

i qq “ Indtn
ÿ

pn
i νn

i “ µn;
ÿ

pn
i “ 1
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By definition of Unpµq:

ÿ

pn
i pVpνn

i q ´ Vpµnqq “
ÿ

pn
i
`

Vdtnpνn
i q ´ Vdtnpµnq ´ Unpµnq ` Upνn

i q
˘

ě
ÿ

pn
i
`

Vdtnpνn
i q ´ Vdtnpµnq

˘

“

´

eρdtn ´ 1
¯

Vdtnpµnq ` eρdtn dtnCpInq

ěρdtnVdtnpµnq ` eρdtn dtnCpInq

ěρdtnε ` ρdtnVpµnq ` eρdtn dtnCpInq

ùñ ρVpµnq ď ´ ρε `
ÿ pn

i
dtn

pVpνn
i q ´ Vpµnqq ´ eρdtn CpInq

ùñ ρVpµnq ď ´ ρε `
ÿ pn

i
dtn

pVpνn
i q ´ Vpµnqq ´ CpInq (A.11)

The first equality is by the definition of Un. The first inequality is from µn P arg min Un.

The second inequality is from ex ´ 1 ě x. The third inequality is from Unpµnq ď ´ε.

Now since the number of posteriors νn
i is no more than 2|X|, we can take a subsequence

of n such that all lim νn
i “ νi. Partition νn

i into two kinds: lim νn
i “ νi ‰ µ, lim νn

j “ µ.

Since V is unimprovable, @c,pσ we have D2Vpµ,pσq∥pσ∥2
ď ´pσTHHpµqpσ

´

ρ
I Vpµq `

CpIq

I

¯

.

Since V P Cp1q, H P Cp2q, @η, there exists δ s.t. @|µ1 ´ µ| ď δ:

$

’

’

&

’

’

%

∥HHpµq ´ HHpµ1q∥ ď η

|Vpµq ´ Vpµ1q| ď η

ùñ D2Vpµ1,pσq ď

ˆ

ρ

I
Vpµ1q `

CpIq

I

˙

˜

´
pσTHHpµ1qpσ

∥pσ∥2

¸

ď

ˆ

ρ

I
Vpµq `

CpIq

I

˙

˜

´
pσTHHpµqpσ

∥pσ∥2

¸

`

ˆ

ρ

I
sup F `

CpIq

I

˙

η `
ρ

I
η∥HHpµq∥
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If we pick η and δ properly:

D2Vpµ1,pσq ď

ˆ

ρ

I
Vpµq `

CpIq

I

˙

˜

´
pσTHHpµqpσ

∥pσ∥2

¸

`
1 ` CpIq

I
η

Then there exists N s.t. @n ě N,
ˇ

ˇ

ˇ
νn

j ´ µ
ˇ

ˇ

ˇ
ă δ, |µn ´ µ| ă δ. Now I want to do a second-

order approximation of Vpνn
j q ´ Vpµnq ´ ∇Vpµnqpνn

j ´ µnq. To apply Taylor expansion

to a not necessarily twice differentiable function V, I invoke a technical Lemma B.10 . to

gpαq “ Vpανn
j ` p1 ´ αqµnq:

Vpνn
j q ´ Vpµnq ´ ∇Vpµnqpνn

j ´ µnq “ gp1q ´ gp0q ´ g1p0q

ď
1
2

sup
αPp0,1q

D2gpα, 1q “ sup
αPp0,1q

lim sup
dÑ0

gpα ` dq ´ gpαq ´ g1pαqd
d2

“ sup
ξPpµn,νn

j q

lim sup
dÑ0

Vpξ ` dpνn
j q ´ µnq ´ Vpξq ´ dJVpξqpνn

j ´ µnq

d2

ď
1
2

sup
|ξ´µ|ďδ

D2Vpξ, νn
j ´ µnq

∥∥∥νn
j ´ µn

∥∥∥2

ď ´
1
2

ˆ

ρ

I
Vpµq `

CpIq

I

˙

pνn
j ´ µnqTHHpµqpνn

j ´ µnq `
1 ` CpIq

2I
η
∥∥∥νn

j ´ µn
∥∥∥2

(A.12)

Therefore, by applying Equation (A.12) .:

ÿ

pn
i,j

´

Vpνn
i,jq ´ Vpµnq

¯

“
ÿ

pn
i pVpνn

i q ´ Vpµnq ´ ∇Vpµnqpνn
i ´ µnqq `

ÿ

pn
j

´

Vpνn
j q ´ Vpµnq ´ ∇Vpµnq

´

νn
j ´ µn

¯¯

ď
ÿ

pn
i pVpνn

i q ´ Vpµnq ´ ∇Vpµnqpνn
i ´ µnqq

´
1
2

ˆ

ρ

I
Vpµq `

CpIq

I

˙

ÿ

pn
j

´

νn
j ´ µnqTHHpµqpνn

j ´ µnq

¯

`
1 ` CpIq

2I
η
ÿ

pn
j

∥∥∥νn
j ´ µn

∥∥∥2

(A.13)

Notice that Equations (A.12) . and (A.13). are true uniform to I, so we can replace I with
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In and Equation (A.13). is still true. Now let pn
i “

pn
i

dtn
,

´pσT
n HHpµnqpσndtn “

ř

pn
j

´

Hpµnq ´ Hpνn
j q ` ∇Hpµqpνn

j ´ µnq

¯

, we have:

ÿ

pn
i
`

Hpµnq ´ Hpνn
i q ` H1pµnqpνn

i ´ µnq
˘

´ pσT
n HHpµnqpσn “ In (A.14)

`

pn
i , νn

i ,pσn
˘

is a feasible experiment for Equation (A.4) .. Therefore, by optimality of V at

µn, we have

$

’

’

’

&

’

’

’

%

ÿ

pn
i pVpνn

i q ´ Vpµnq ´ ∇Vpµnqpνn
i ´ µnqq ď

´

In ` σ̂nTHHpµnqpσn
¯

ˆ

ρ

In
Vpµnq `

CpInq

In

˙

D2Vpµn,pσnq ď ´
pσnTHHpµqpσn

∥pσn∥2

ˆ

ρ

In
Vpµnq `

CpInq

In

˙

(A.15)

Then we study term
ř

pn
j pνn

j ´ µnq2. Apply Lemma B.10. to gpαq “ Hpανn
j ` p1 ´ αqµnq:

ÿ

pn
j

´

Hpµnq ´ Hpνn
j q ` ∇Hpµnqpνn

j ´ µnq

¯

ě
1
2

inf
ξn

j Prµn,νj
ns

ÿ

pn
j

´

´pνn
j ´ µnqTHHpξn

j qpνn
j ´ µnq

¯

ě ´
1
2

ÿ

pn
j ppνn

j ´ µnqTHHpµqpνn
j ´ µnqq ´

1
2

η
ÿ

pn
j

∥∥∥νn
j ´ µn

∥∥∥2
(A.16)

Therefore, to sum up:

ÿ pn
i,j

dtn

´

Vpνn
i,jq ´ Vpµnq

¯

ď
ÿ

pn
i pVpνn

i q ´ Vpµnq ´ ∇Vpµnqpνn
i ´ µnqq

`
1
2

ÿ pn
j

dtn

ˆ

´pνn
j ´ µnqTHHpµqpνn

j ´ µnq

ˆ

ρ

In
Vpµq `

CpInq

In

˙˙

`
ÿ pn

j

dtn

ˆ

1 ` CpInq

2In
η
∥∥∥νn

j ´ µn
∥∥∥2
˙

ď

´

In ` pσnTHHpµnqpσn
¯

ˆ

ρ

In
Vpµnq `

CpInq

In

˙
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`

˜

ÿ pn
j

dtn
pHpµnq ´ Hpνn

j q ` ∇Hpµnqpνn
j ´ µnqq

`
1

dtn

η

2

ÿ

pn
j

∥∥∥νn
j ´ µn

∥∥∥2
˙ˆ

ρ

In
Vpµq `

CpInq

In

˙

`
1

dtn

ÿ

pn
j

∥∥∥νn
j ´ µn

∥∥∥2 1 ` CpInq

2In
η

“

´

In ` pσnTHHpµnqpσn
¯

ˆ

ρ

In
Vpµnq `

CpInq

In

˙

`

ˆ

´pσnTHHpµnqpσn `
1

dtn

η

2

ÿ

pn
j

∥∥∥νn
j ´ µn

∥∥∥2
˙ˆ

ρ

In
Vpµq `

CpInq

In

˙

`
1

dtn

ÿ

pn
j

∥∥∥νn
j ´ µn

∥∥∥2 1 ` CpInq

2In
η

ďρVpµnq ` CpInq `
1

dtn

ÿ

pn
j

∥∥∥νn
j ´ µn

∥∥∥2
ˆ

1 ` ρVpµq ` 2CpInq

2In

˙

η ` ρη

The first inequality is Equation (A.13).. The second inequality comes from Equation (A.15).

and Equation (A.16).. The next equality comes from definition of pσ2
n. The last inequal-

ity comes from canceling out terms and ´pσnTHHpµnqpσn ď In (Notice the difference

between Vpµq and Vpµnq). Then by plug into Equation (A.11).:

ρVpµnq ď ´ρε ` ρVpµnq `
1

dtn

ÿ

pn
j

∥∥∥νn
j ´ µn

∥∥∥2
ˆ

1 ` ρVpµq ` 2CpInq

2In

˙

η ` ρη

Moreover:

ÿ

pn
j

∥∥∥νn
j ´ µn

∥∥∥2
inf

σ

ˇ

ˇσTHHpµqσ
ˇ

ˇ

∥σ∥2

ď
ÿ

pn
j pνn

j ´ µnqHHpµqpµn ´ µnq ď Indtn ` η
ÿ

pn
j

∥∥∥νn
j ´ µn

∥∥∥2

ùñ
ÿ

pn
j

∥∥∥νn
j ´ µn

∥∥∥2
ď

Indtn

infσ
|σTHHpµqσ|

∥σ∥2 ´ η

ùñ ρε ď
1
2

p1 ` ρVpµq ` 2CpInqq
η

infσ
|σTHHpµqσ|

∥σ∥2 ´ η
` ρη
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By Lemma B.7., CpInq is uniformly bounded above. Since H is strictly concave infσ
|σTHHpµqσ|

∥σ∥2

is positive. The inequality holds when η is chosen smaller than infσ
|σTHHpµqσ|

∥σ∥2 . By tak-

ing η Ñ 0, the LHS is eventually larger than the RHS. Contradiction. Therefore:

Vpµq “ lim sup
dtÑ0

Vdtpµq “ Vpµq

�

A.2.3 Proof of Theorem 1.2.

Proof. I prove Theorem 1.2 . by guess and verification. To simplify notation, I define a

flow version of information measure:

Jpµ, νq “ Hpµq ´ Hpνq ` H1pµqpν ´ µq

Then total flow information cost is p ¨ Jpµ, νq. Let Fm “ Eµrupam, xqs and reorder am s.t. F1
m

is increasing in m. Let µ
k

be each kink points of F: Fpµq “ Fkpµq ðñ µ P

”

µ
k´1

, µ
k

ı

. m is

the smallest index s.t. F1
m ě 0.

Algorithm:

In this part, I introduce the algorithm for constructing Vpµq and νpµq. I only discuss the

case µ ě µ˚. The remaining case µ ď µ˚ follows by a symmetric method. The main steps

are illustrated in Figure A.6.. The first step is to find critical the belief µ˚ at which two

sided stationary Poisson signal is optimal (µ˚=0.5 in a symmetric problem). Then value

function is solved by searching over optimal posterior beliefs, given choosing an action

(say am). Then the remaining actions are added one by one to consideration. And value

function is updated when each additional action is added. Finally, after all actions have

been considered, I complete the construction of value function.
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The two black (dashed and solid) lines are Fm´1pµq, Fmpµq.
The blue line is optimal value function from taking immediate action m.
The red line is optimal value function from taking immediate action m ´ 1.

Figure A.6: Construction of optimal value function.

• Step 1: Define:

V`pµq “ max
νěµ

Fmpνq

1 `
ρ
c Jpµ, νq

V´pµq “ max
νďµ

Fmpνq

1 `
ρ
c Jpµ, νq

In Lemma A.2 . I analyze the technical details of V` and V´. The main property is that:

V` is increasing and V´ is decreasing. There exists µ˚ P r0, 1s s.t. V`pµq ě V´pµq when

µ ě µ˚ and V´pµq ď V´pµq when µ ď µ˚. Define Vpµq “ max
␣

V`pµq, V´pµq
(

.

• Step 2: I construct the first piece of Vpµq to the right of µ˚. There are three possible cases

of µ˚ to be discussed (I omitted µ˚ “ 1 by symmetry).

Case 1: Suppose µ˚ P p0, 1q and Vpµ˚q ą Fpµ˚q. Then, there exists m and νpµ˚q P pµ˚, 1q
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s.t.

Vpµ˚q “
Fmpνpµ˚qq

1 `
ρ
c Jpµ˚, νpµ˚qq

Initial condition
`

µ0 “ µ˚, V0 “ Vpµ˚q, V1
0 “ 0

˘

satisfies Lemma A.3 ., which states that

there exists Vmpµq solving:

Vmpµq “ max
νěµ

c
ρ

Fmpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq

This refers to Figure A.6 .-1. Define

Vµ˚pµq “

$

’

’

&

’

’

%

Fpµq if µ ď µ˚

Vmpµq if µ ě µ˚

Be Lemma A.3 ., when Vµ˚pµq ą Fpµq, Vµ˚ is smoothly increasing and optimal νpµq is

smoothly decreasing.

Now update Vµ˚pµq with respect to more actions (in the order of decreasing index m).

First consider Fm´1 and let µ̂m be the smallest µ ě µ˚ such that:

Vµ˚ppµmq “ max
νěpµm

c
ρ

Fm´1pνq ´ Vµ˚ppµmq ´ V1
µ˚ppµmqpν ´ pµmq

Jppµm, νq
(A.17)

At pµm, searching posterior on Fm´1 first dominates searching posterior on Fm
7

.. This

step refers to Figure A.6 .-2. pµm is the smallest intersection point of blue curve (Vµ˚pµq,

LHS of Equation (A.17) .) and thin red curve (RHS of Equation (A.17) .). If Vmppµmq ą

Fm´1ppµmq then solve for Vm´1 with initial condition µ0 “ µ̂m, V0 “ Vmpµ̂mq, V1
0 “ V1

mpµ̂mq

7Existence is guaranteed by smoothness of Vµ˚ and J. Noticing that Vmpµ̂mq ě Fm´1ppµmq. Otherwise,
there will be a pµ1

m ă pµm s.t. Vmppµ1
mq “ Fm´1ppµ1

mq and it is easy to verify that Vm is weakly larger than the
maximum. So there is an even smaller pµm, contradiction.
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according to Lemma A.3 . and redefine Vµ˚pµq “ Vm´1pµq when µ ě pµm. Otherwise skip

to looking for pµm´1. If m ´ 1 ą m, continue this procedure by looking for µ̂m´1 and

update Vµ˚ |µěpµm´1
with corresponding Vm´2 . . . until m “ m (No action with the slope

of F1
m being negative is considered). This refers to Figure A.6.-3. Now suppose Vm first

hits Fpµq at some point µ˚˚ (µ˚˚ ą µ˚ since Vmpµ˚q ą Fpµ˚q). Vµ˚ is a (piecewise) smooth

function on rµ˚, µ˚˚s such that:

Vµ˚pµq “

$

’

’

&

’

’

%

Fpµq if µ ď µ˚ or µ ě µ˚˚

Vkpµq if µ P rpµk, pµk´1s8
.

By construction, optimal posterior νµ˚pµq is smoothly decreasing on each ppµk`1, pµkq and

jumps down at each pµk
9

.. Notice that it is not yet proved that this order of value function

updating is WLOO. It is possible that optimal policy function is non-monotonic. This

is taken care of by Lemma B.18 ., which proves the order of updating being WLOO.

I relegate the proof of Lemma B.18 . to supplemental materials to conserve space, but

it uses exactly the techniques of the verification step 2. Now I can claim that @µ P

rµ˚, µ˚˚s:

Vµ˚pµq “ max
νěµ,k

c
ρ

Fkpνq ´ Vµ˚pµq ´ V1
µ˚pµqpν ´ µq

Jpµ, νq
(A.18)

Case 2: Suppose µ˚ P p0, 1q but Vpµ˚q “ Fpµ˚q, let µ˚˚ “ inf
␣

µ ě µ˚|Vpµq ą Fpµq
(

.

Case 3: Suppose µ˚ “ 0, then F1p0q ě 0 (by Lemma A.2.). Consider

rVpµq “ max
νěµ,k

c
ρ

Fkpνq ´ F1pµq ´ F1
1pν ´ µq

Jpµ, νq

8Define pµm`1 “ µ˚ and pµm “ µ˚˚ for consistency.
9Since Fk´1 always crosses Fk from above, when indifference between choosing Fk´1 and Fk, the posterior

corresponding to Fk´1 must be smaller.
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Define, µ˚˚ “ inf
!

µ|rVpµq ą F1pµq

)

. By Assumption 1.3 ., limµÑ0|H1pµq| “ 8, then there

exists δ s.t. @µ ă δ, @ν ě µ
2
, sup F

Jpµ,νq
ď inf F. Therefore µ˚˚ ě δ ą 0. This step refers to

Figure A.6.-4.

• Step 3: Solve for V to the right of µ˚˚. For all µ˛ ě µ˚˚ such that:

Fpµ˛q “ max
νěµ,k

c
ρ

Fkpνq ´ Fpµ˛q ´ F1´pµ˛qpν ´ µ˛q

Jpµ˛, νq
(A.19)

Let m be the index of optimal action. Solve for Vm with initial condition µ0 “ µ˛, V0 “

Fpµ˛q, V1
0 “ F1´pµ˛q. 10

. Then take same steps in Step 2 and solve for pµk and Vk´1

sequentially until Vm0 first hits F. This step refers to Figure A.6 .-4,5. Now suppose Vm0

first hits Fpµq at some point µ˛˛ (can potentially be µ), define:

Vµ˛pµq “

$

’

’

&

’

’

%

Fpµq if µ ă µ˛ or µ ą µ˛˛

Vkpµq if µ P rpµk`1, pµks11
.

By Lemma A.3 ., Vµ is piecewise smooth are pasted smoothly. So Vµ is a smooth func-

tion on rµ, µ2s. Optimal posterior νµ˛pµq is smoothly decreasing on each ppµk`1, pµkq and

jumps down at each pµk. By Lemma B.18. and our construction, @µ P rµ˛, µ˛˛s:

Vµpµq “ max
νěµ˛,k

c
ρ

Fkpνq ´ Vµ˛pµq ´ V1
µ˛pµqpν ´ µq

Jpµ, νq
(A.18.)

Let Ω be the set of all such µ˛’s.

10By definition of µ˚˚, µ0 is bounded away from t0, 1u and Equation (A.19) . implies conditions in
Lemma A.3. are satisfied.

11Define pµm`1 “ µ˛ and pµm0 “ µ˛˛ for consistency.
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• Step 4: Define:

Vpµq “

$

’

’

&

’

’

%

Vµ˚pµq if µ P rµ˚, µ˚˚s

sup
µ˛PΩ

␣

Vµ˛pµq
(

if µ ě µ˚˚
(A.20)

In the algorithm, I only discussed the case µ˚ ă 1 and constructed the value function on

the right of µ˚. On the left of µ˚, V can be defined using a totally symmetric argument by

referring to Lemma A.31
. and Lemma B.181

..

Smoothness:

I need to verify that Vpµq that defined as Equation (A.20). is a Cp1q smooth function on

r0, 1s. This claim is purely for technical use (for example, the validity of using V1 and

V2). I relegate this technical proof to Appendix B.2.1 . in Lemmas B.11 ., B.12., B.13. and B.14..

In addition, it is shown in Appendix B.2.1. that there exists a set of µ0 such that on each

interval when Vpµq ą Fpµq, Vpµq is defined as one Vµ0 .

Unimprovability:

Finally, I prove unimprovability of Vpµq.

• Step 1: I first show that Vpµq solves the following problem:

Vpµq “ max
"

Fpµq, max
ν,m

c
ρ

Fmpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq

*

(P-C)
$

’

’

&

’

’

%

ν ě µ when µ ě µ˚

ν ď µ when µ ď µ˚

Equation (P-C). is the maximization problem over all confirmatory evidence seeking

with immediate decision making upon arrival of signals. Equation (P-C) . is implied by

Equation (A.18) . for µ P E. So it is sufficient to prove Equation (P-C) . for µ P EC. Suppose

for the sake of contradictoin that there exists µ ě µ˚ s.t. Equation (P-C). is violated. Let
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Fpµq “ Fkpµq. Then it is equivalently stating that:

Upµq “ max
ν,k1ąk

c
ρ

F1
kpνq ´ Fkpµq ´ F1

kpν ´ µq

Jpµ, νq
ą Fkpµq

Consider µ
k

(the intercection of Fk and Fk´1). By Lemma B.11 ., there exists Ik s.t. µ
k

P Ik.

At bk “ sup Ik, Upbkq ď Fkpbkq. Therefore, since Upµq is continuous, by intermediate

value theorem there exists largest µ1 between µ
k

and µ s.t .Upµ1q “ Fkpµ1q. Then Equa-

tion (A.19) . is satisfied at µ1 so consider Vµ1 . Sicne Vµ1pµq ď Vpµq “ Fkpµq, there exists

µ2 P pµ1, µq s.t. Vµ1pµ2q ď Fkpµ2q and V1
µ1pµ2q ď Fkpµ2q. Therefore Upµ2q ą Fkpµ2q im-

plies Vµ1pµ2q ą Fkpµ2q, contradiction. Apply a symmetric argument to µ ď µ˚, I prove

Equation (P-C)..

• Step 2: I show that Vpµq solves the following problem:

Vpµq “ max
"

Fpµq, max
ν

c
ρ

Vpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq

*

(P-D)
$

’

’

&

’

’

%

ν ě µ when µ ě µ˚

ν ď µ when µ ď µ˚

Equation (P-D) . is the maximization problem over all confirmatory learning strategies.

It has less constraint than Equation (P-C).: when a signal arrives and posterior belief ν

is realized, the DM is allowed to continue experimentation instead of being forced to

take an action.

I only show the case µ ě µ˚ and a totally symmetric argument applies to µ ď µ˚.

Suppose Equation (P-C). is violated at µ, then there exists ν1 such that:

Vpµq “ max
νěµ,m

c
ρ

Fmpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq
ă

c
ρ

Vpν1q ´ Vpµq ´ V1pµqpν1 ´ µq

Jpµ, ν1q
(A.21)
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Let rV “ Vpµq. Suppose the maximizer is ν, m. Optimality implies first order conditions

Equation (A.27). and Equation (A.26) .:

$

’

&

’

%

F1
m `

ρ

c
rVH1pνq “ V1pµq `

ρ

c
rVH1pµq

´

Fmpνq `
ρ

c
rVHpνq

¯

´

´

Vpµq `
ρ

c
rVHpµq

¯

“

´

V1pµq `
ρ

c
VpµqH1pµqpν ´ µq

¯

We define LpV, λ, µqpνq and GpV, λqpµq as:

$

’

’

&

’

’

%

LpV, λ, µqpνq “ pVpµq ` λHpµqq ` pV1pµq ` λH1pµqqpν ´ µq

GpV, λqpνq “ Vpνq ` λHpνq

(A.22)

Then L is a linear function of ν and GpFm, ρ
c
rVqpνq is a strictly concave smooth function

of ν. Consider:

L
´

V,
ρ

c
rV, µ

¯

pνq ´ G
´

Fm,
ρ

c
rV
¯

pνq

Equation (A.27). implies that it attains minimum 0 at ν. For any m1 other than m,

L
´

V,
ρ

c
rV, µ

¯

pνq ´ G
´

Fm1 ,
ρ

c
rV
¯

pνq

is convex and weakly larger than zero. However by Equation (A.21) .:

L
´

V,
ρ

c
rV, µ

¯

pν1q ´ G
´

V,
ρ

c
rV
¯

pν1q “ ´

´

Vpν1q ´ Vpµq ´ V1pµqpν1 ´ µq ´
ρ

c
rV Jpµ, ν1q

¯

ă 0

Therefore L
´

V, ρ
c
rV, µ

¯

pνq ´ G
´

V, ρ
c
rV
¯

pνq has strictly negative minimum. Suppose it’s

minimized at rµ (rµ ą µ since LpV, λ, µqpµq ” GpV, λqpµq). Then FOC is a necessary
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condition:

V1pµq `
ρ

c
rVH1pµq “ V1prµq `

ρ

c
rVH1prµq

Consider:

L
´

V,
ρ

c
rV, rµ

¯

pνprµqq ´ G
´

Fm,
ρ

c
rV
¯

prνq

“L
´

V,
ρ

c
rV, µ

¯

pνprµqq ´ G
´

Fm,
ρ

c
rV
¯

pνprµqq

` Vprµq ´ Vpµq `
ρ

c
rVpHprµq ´ Hpµqq ´

´

V1pµq `
ρ

c
rVH1pµq

¯

prµ ´ µq

ěVprµq ´ Vpµq `
ρ

c
rVpHprµq ´ Hpµqq ´

´

V1pµq `
ρ

c
rVH1pµq

¯

prµ ´ µq

“G
´

V,
ρ

c
rV
¯

prµq ´ L
´

V,
ρ

c
rV, µ

¯

prµq ą 0

In the first equality I used Equation (A.27) . at rµ. In first inequality I used suboptimality

of rµ at µ. However for m1 and νprµq being optimizer at rµ:

0 “L
´

V,
ρ

c
Vprµq, rµ

¯

pνprµqq ´ G
´

Fm1 ,
ρ

c
Vprµq

¯

pνprµqq

“L
´

V,
ρ

c
rV, rµ

¯

pνprµqq ´ G
´

Fm1 ,
ρ

c
rV
¯

pνprµqq

`
ρ

c
pVprµq ´ rVqpHprµq ´ Hpνprµqq ` H1prµqpνprµq ´ rµqq

ą
ρ

c
pVprµq ´ rVqJprµ, νprµqq

Contradiction. Therefore, I proved Equation (P-D)..

• Step 3: I show that V satisfies Equation (A.4) ., which is less restrictive than Equation (P-

D). by allowing 1) diffusion experiments. 2) evidience seeking of all possible posteriors

instead of just confirmatory evidence.

First, since V is smoothly increasing and has a piecewise differentiable optimizer ν,
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envelope theorem implies:

V1pµq “
c
ρ

´V2pµqpν ´ µq

Jpµ, νq
` Vpµq

´H2pµqpν ´ µq

Jpµ, νq

“ ´
c
ρ

ν ´ µ

Jpµ, νq

´

V2pµq `
ρ

c
VpµqH2pµq

¯

ą 0

ùñ V2pµq `
ρ

c
VpµqH2pµq ă 0

Therefore, allocating to diffusion experiment is strictly suboptimal. Moreover, consider:

V´pµq “ max
νďµ

c
ρ

Vpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq

ùñ V´1pµq “ ´
c
ρ

ν ´ µ

Jpµ, νq

´

V2pµq `
ρ

c
V´H2pµq

¯

V´pµq is by definition the utiltiy gain from searching contradictive evidence, given

value function Vpµq. By definition of µ˚, V´pµ˚q “ Vpµ˚q and whenever Vpµq “ V´pµq

V´1pµq ă 0. Therefore, V´pµq can never cross Vpµq from below — V´pµq is lower than

Vpµq and Vpµq is unimprovable with contraditive evidence. That is to say:

ρVpµq “ max
"

ρFpµq, max
ν,p,σ

ppVpνq ´ Vpµq ´ V1pµqpν ´ µqq `
1
2

V2pµqσ2
*

s.t. pJpµ, νq `
1
2

H2pµqσ2 ď c

To sum up, I construct a policy function νpµq and value function Vpµq solving Equa-

tion (A.4) .. Now consider the four properties in Theorem 1.2 .. First, by my construction

algorithm, in the case µ˚ P t0, 1u, I can replace µ˚ with µ˚˚ P p0, 1q. Therefore WLOG

µ˚ P p0, 1q. Second, E “
␣

µ P r0, 1s
ˇ

ˇVpµq ą Fpµq
(

is a union of disjoint open intervals

E “
Ť

Im. By my construction, Vpµq “ Vµmpµq|µPIm . On each Im, νµmpµq is sctrictly de-

creasing and jumps down at finite pµk’s. Finally, uniqueness argument in Lemma A.3 .
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implies that ν is uniquely determined by FOC. Therefore, except for those discountinous

points of ν, ν is uniquely defined. Number of such discontinuous points is countable,

thus of zero measure. �

Lemma A.2. Define V` and V´:

V`pµq “ max
νěµ,m

Fmpνq

1 `
ρ
c Jpµ, νq

V´pµq “ max
νďµ,m

Fmpνq

1 `
ρ
c Jpµ, νq

There exists µ˚ P r0, 1s s.t. V`pµq ě V´pµq @µ ě µ˚; V`pµq ď V´pµq @µ ď µ˚.

Proof. I define function U`
m and U´

m as follows:

U`
mpµq “ max

νěµ

Fmpνq

1 `
ρ
c Jpµ, νq

U´
mpµq “ max

νďµ

Fmpνq

1 `
ρ
c Jpµ, νq

First of all, I solve U`
m , U´

m on interior µ P p0, 1q. Since Fmpµq is a linear function, Jpµ, νq ě 0

is smooth, the objective function is a continuous function on compact domain. Therefore

both maximization operators are well defined. Existence is already guaranteed, therefore

I can refer to first order condition to characterize the maximizer:

FOC : F1
m

´

1 `
ρ

c
Jpµ, νq

¯

` Fmpνq
ρ

c
`

H1pνq ´ H1pµq
˘

“ 0 (A.23)

SOC :
ρ

c
F1

m
`

H1pνq ´ H1pµq
˘

(A.24)

First discuss solving for ν ě µ. Since p1 `
ρ
c Jq ą 0, H2 ă 0, H1pνq ´ H1pµq ď 0 and

inequality is strict when ν ą µ. Therefore, if F1
m ă 0, FOC being held will imply SOC
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being strictly positive at ν ą µ. So @F1
m ă 0, optimal ν is a corner solution. Moreover:

Fmpµq

1 `
ρ
c Jpµ, µq

“ Fmpµq ą Fmp1q ą
Fmp1q

1 `
ρ
c Jpµ, 1q

So U`
mpµq “ Fmpµq. If F1

m “ 0, then @ν ą µ:

Fmpµq

1 `
ρ
c Jpµ, µq

“ Fmpµq “ Fmpνq ě
Fmpνq

1 `
ρ
c Jpµ, νq

Therefore @F1
m ď 0, U`

mpµq “ Fmpµq. Then consider the case F1
m ą 0. It can be easily

verified that SOC is strictly negative when FOC holds and ν ą µ. Therefore solution of

FOC characterizes maximizer. Consider:

lim
νÑµ

F1
mp1 `

ρ

c
Jpµ, νqq ` Fmpνq

ρ

c
pH1pνq ´ H1pµqq “ F1

m ą 0

lim
νÑ1

F1
mp1 `

ρ

c
Jpµ, νqq ` Fmpνq

ρ

c
pH1pνq ´ H1pµqq “ ´8

Therefore be intermediate value theorem a unique solution ν P pµ, 1q exists by solving

FOC. Since FOC is a smooth function of µ, ν and SOC is strictly negative, implicit function

theorem implies ν being a smooth function of µ. This is sufficient to apply envelope

theorem:

d
dµ

U`
mpµq “

Fmpνqp´H2pµqpν ´ µqq
`

1 `
ρ
c Jpµ, νq

˘2 ą 0

Moreover, Equation (A.23). is strictly positive when ν “ µ. This implies U`
mpµq ą Fmpµq

when F1
m ą 0.

New consider limit of U`
m when µ Ñ 0, 1. When µ Ñ 1, U`

mpµq ď maxνěµ Fmpνq “ Fp1q.
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When µ Ñ 0, consider FOC Equation (A.23) .:

lim
µÑ0

F1
m

´

1 `
ρ

c
Jpµ, νq

¯

` Fmpνq
ρ

c
`

H1pνq ´ H1pµq
˘

“ lim
µÑ0

F1
m

´

1 `
ρ

c
Jpν, µq

¯

` Fmpµq
ρ

c
`

H1pνq ´ H1pµq
˘

“F1
m

´

1 `
ρ

c
Jpν, 0q

¯

` lim
µÑ0

Fmpµq
ρ

c
`

H1pνq ´ H1pµq
˘

“ ´8

Therefore, when µ Ñ 0, optimal ν Ñ 0. Therefore Fmpνq

1`
ρ
c Jpµ,νq

ď Fmpνq Ñ Fmp0q. To conclude,

U`
mpµq “ Fmpµq when µ “ 0, 1. Let m be the first F1

m ą 0 (not necessarily exists). Let:

U`pµq “ max
měm

U`
mpµq

Then U`pµq is a strictly increasing function when m exists. Symmetrically I can define m

to be last F1
m ă 0 and:

U´pµq “ max
mďm

U´
mpµq

There are three cases:

• Case 1: when F is not monotonic, then both U` and U´ exists. Moreover, Fp0q ą

Fmp0q and Fp1q ą Fmp1q. Therefore, U`p0q ă U´p0q and U`p1q ą U´p1q. There must

exists unique µ˚ P p0, 1q s.t. U`pµ˚q “ U´pµ˚q.

• Case 2: when F1 ě 0, then define µ˚ “ 0.

• Case 3: when F1 ď 0, then define µ˚ “ 1.

Finally, define V:

V`pµq “ max
␣

Fpµq, U`pµq
(
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V´pµq “ max
␣

Fpµq, U´pµq
(

Vpµq “ max
␣

V`pµq, V´pµq
(

Given our construction, µ˚ always exists and satisfies the conditions in Lemma A.2 ..

�

Lemma A.3. Assume µ0 ě µ˚, F1
m ě 0, V0, V1

0 ě 0 satisfies:

$

’

’

&

’

’

%

Vpµ0q ě V0 ě Fmpµ0q

V0 “ max
νěµ0

c
ρ

Fmpνq ´ V0 ´ V1
0pν ´ µ0q

Jpµ0, νq

Then there exists a Cp1q smooth and strictly increasing Vpµq defined on rµ0, 1s satisfying

Vpµq “ max
νěµ

c
ρ

Fmpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq
(A.25)

and initial condition Vpµ0q “ V0, V1pµ0q “ V1
0. Maximizer νpµq is Cp1q and strictly decreasing

on tµ|Vpµq ą Fmpµqu.

Proof. I start from deriving the FOC and SOC for Equation (A.25).:

FOC:
F1

m ´ V1pµq

Jpµ, νq
`

Fmpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq2

`

H1pνq ´ H1pµq
˘

“ 0

SOC:
H1pνq ´ H1pµq

Jpµ, νq

ˆ

F1
m ´ V1pµq

Jpµ, νq
`

Fmpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq2

`

H1pνq ´ H1pµq
˘

˙

`
H2pνq

Jpµ, νq

`

Fmpνq ´ Vpµq ´ V1pµqpν ´ µq
˘

ď 0

If feasibility is imposed:

Vpµq “
c
ρ

Fmpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq
(A.26)
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FOC and SOC reduces to:

FOC: F1
m ´ V1pµq `

ρ

c
VpµqpH1pνq ´ H1pµqq “ 0 (A.27)

SOC:
ρ

c
H2pνqVpµq ď 0 (A.28)

Let us proceed as follows. I use FOC and feasiblity to derive an ODE system with in-

tial value defined by V0, V1
0. Then I prove that the solution V must be strictly positive.

Therefore, SOC is strict at the point where FOC is satisfied, the solution must be a lo-

cal maximizer. Moreover, since H1pνq ´ H1pµq ă 0, when FOC is negative, SOC must

be strictly negative, then FOC can cross zero only from above and hence the solution to

FOC is unique. Therefore the solution I get from the ODE system is the maximizer in

Equation (A.25)..

$

’

’

&

’

’

%

Equation (A.26) . ùñ Vpµq “
Fmpνq ´ V1pµqpν ´ µq

1 `
ρ
c Jpµ, νq

Equation (A.27) . ùñ V1pµq “ F1
m `

ρ

c
VpµqpH1pνq ´ H1pµqq

ùñ

$

’

’

’

&

’

’

’

%

Vpµq “
Fmpµq

1 ´
ρ
c Jpν, µq

V1pµq “ F1
m `

ρ
c FmpµqpH1pνq ´ H1pµqq

1 ´
ρ
c Jpν, µq

(A.29)

Consistency of Equation (A.29) . implies that ν “ νpµq is characterized by the following

ODE:

B

Bµ

Fmpµq

1 ´
ρ
c Jpν, µq

`
B

Bν

Fmpµq

1 ´
ρ
c Jpν, µq

9ν “ F1
m `

ρ
c FmpµqpH1pνq ´ H1pµqq

1 ´
ρ
c Jpν, µq

(A.30)

181



Appendix A. Appendix for Chapter 1 .

Simplifying Equation (A.30) .:

F1
m

1 ´
ρ
c Jpν, µq

`

ρ
c FmpµqpH1pνq ´ H1pµqq

`

1 ´
ρ
c Jpν, µq

˘2 `

ρ
c FmpµqH2pνqpµ ´ νq

`

1 ´
ρ
c Jpν, µq

˘2 9ν

“
F1

m `
ρ
c p´F1

m Jpν, µq ` FmpµqpH1pνq ´ H1pµqqq

1 ´
ρ
c Jpν, µq

ùñ FmpµqpH1pνq ´ H1pµqq ` FmpµqH2pνqpµ ´ νq 9ν

“ p´F1
m Jpν, µq ` FmpµqpH1pνq ´ H1pµqqqp1 ´

ρ

c
Jpν, µqq

ùñ FmpµqH2pνqpµ ´ νq 9ν “ ´F1
m Jpν, µqp1 ´

ρ

c
Jpν, µqq ´

ρ

c
Jpν, µqFmpµqpH1pνq ´ H1pµqq

ùñ 9ν “ Jpν, µq
F1

m
`

1 ´
ρ
c Jpν, µq

˘

`
ρ
c FmpµqpH1pνq ´ H1pµqq

FmpµqH2pνqpν ´ µq

Since I want to solve for V0 on rµ0, 1s, I solve for ν0 at µ0 as the initial condition of ODE

for ν. The technical details proving the existence of solution to the ODE is relegated to

Lemma B.16 ., which checks standard conditions and invokes the Picard-Lindelof theorem.

Lemma B.16. requires an inequality condition and I show it here:

The FOC characterizing ν is Equation (A.29) .:

pF1
m ´ V1

0q

´

1 ´
ρ

c
Jpν0, µ0q

¯

`
ρ

c
Fmpµ0q

`

H1pν0q ´ H1pµ0q
˘

“ 0

ðñ F1
m

´

1 `
ρ

c
Jpµ0, ν0q

¯

`
ρ

c
Fmpν0qpH1pν0q ´ H1pµqq “ V1

0

´

1 ´
ρ

c
Jpν0, µ0q

¯

ðñ Fmpµ0q

´

F1
m

´

1 `
ρ

c
Jpµ0, ν0q

¯

`
ρ

c
Fmpν0qpH1pν0q ´ H1pµqq

¯

“ V1
0Fmpµ0q

´

1 ´
ρ

c
Jpν0, µ0q

¯

Since V0 “
Fmpµ0q

1´
ρ
c Jpν0,µ0q

ě 0, LHS is weakly positive. This satisifes the condition in Lemma B.16..

Then Lemma B.16 . guarantees existence of unique νpµq, and νpµq is continuously decreas-

ing from µ0 until it hits ν “ µ. Suppose νpµq hits ν “ µ at µm ă 1, define Vpµq as
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following:

Vpµq “

$

’

’

&

’

’

%

Fmpµq

1 ´
ρ
c Jpνpµq, µq

if µ P rµ0, µmq

Fmpµq if µ P rµm, 1s

Then I prove the properies of V:

1. V is by construction smooth except for at µ. When µ Ñ µm, νpµq Ñ µ. Therefore

Jpν, µq Ñ 0. This implies Vpµq Ñ Fmpµq. So V is continuous.

2. By Equation (A.29)., when µ P rµ0, µmq:

V1pµq “ F1
m `

FmpµqpH1pνpµqq ´ H1pµqq
c
ρ ´ Jpνpµq, µq

When µ Ñ µm, H1pνpµqq ´ H1pµq Ñ 0, Jpνpµq, µq Ñ 0. Thus V1pµq Ñ F1
m. So V1 P

Crµ0, 1s ùñ V P Cp1qrµ0, 1s.

3. Rewrite Equation (A.29) . on rµ0, 1s:

V1pµq “
F1

m
`

1 `
ρ
c Jpµ, νq

˘

` FmpνqpH1pνq ´ H1pµqq

1 ´
ρ
c Jpν, µq

(A.31)

According to proof of Lemma B.16 ., V1pµq ą 0 @µ P pµ0, 1s. Moreover since V0 ě 0,

@µ P pµ0, 1s Vpµq ą 0 .

�
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B.1 Proofs in Section 1.5.

This section contains formal proofs for theorems and lemmas in Section 1.5..

B.1.1 Useful lemmas

I first establish a useful Lemma B.1 .. Lemma B.1 . is an analog to three key theorems on

mutual information proved in Cover and Thomas (2012.), generalizing the log-sum struc-

ture in mutual information to any function while keeping the key posterior separabiltiy.

B.1.1.1 Information theory resutls

Lemma B.1. Information measure IpS ;X |µq satisfies the following properties:

1. Markov property: If X Ñ S Ñ T , then IpT ;X |Sq “ 0.

2. Linear additivity: IpS , T ;X |µq “ IpS ;X |µq ` ErIpT ;X |S , µqs.

3. Information processing inequality: If X Ñ S Ñ T , then IpT ;X |µq ď IpS ;X |µq.

Proof.

1. Markov property: Suppose the signal realization of S , T are denoted by s, t. Then:

IpT ;X |Sq “ EsrHpµpx|sqq ´ EtrHpµpx|t, sqq|sss

“ EsrHpµpx|sqq ´ EtrHpµpx|sqq|sss

“ 0

First equality is by definition of I. Second equality is by T KX
ˇ

ˇS , then conditional on

s, t will not shift belief of X at all.

2. Chain rule: Suppose the signal realization of S , T are denoted by s, t. Then:

IpS , T ;X |µq “ Es,trHpµq ´ Hpµpx|s, tqqs

“ Es,trHpµq ´ Hpµpx|sqq ` pHpµpx|sqq ´ Hpµpx|s, tqqqs
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“ pHpµq ´ EsrHpµpx|sqqsq ` pEsrHpµpx|sqq ´ EtrHpµpx|s, tqq|sssq

“ IpS ;X |µq ` ErIpT ;X |S , µqs

First equality is by definition. Second equality is trivial. Third equality is by chain rule

of conditional expectation.

3. Information processing inequality:

IpS ;X |µq “ IpS , T ;X |µq ´ IpT ;X |S , µq

“ IpS , T ;X |µq

“ IpT ;X |µq ` IpS ;X |T , µq

ě IpT ;X |µq

First and third equalities are from chain rule. Second equality is from Markov property.

�

B.1.1.2 Concavification theorem

Theorem B.1 (Concavification). Let X be a finite state space, V P Cp∆Xq, µ P ∆X. H P Cp∆Xq

is non-negative. f : R` ÞÑ R` continuous, increasing and convex. Then there exists P s.t.

|supppPq| ď 2|X| solving:

sup
PP∆2X

EPrVpνqs ´ f pHpµq ´ EPrHpνqsq (B.1)

s.t. EPrνs “ µ

Let I˚ “ Hpµq ´ EPrHpνqs, there exists λ P d f pI˚q such that:

copV ` λHqpµq “ EPrpV ` λHqpµqs
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Proof. Theorem B.1 . is a corollary of Lemma 4.1. and Theorem 4.4 . of Chapter 4 ..

Support size: since objective function is monototic in pEPrVs, EPrHsq, optimal solution

must be on the boudary of set tpEPrVs, EPrHsq|EPrνs “ µu. Lemma 4.1 . implies that there

exists P solving Equation (B.1) . and |supppPq| ď 2|X|.

Concavification: Suppose f pIq “ 8 ðñ I ą I. Since v ´ f pHpµq ´ hq is a concave

function in pv, hq, and Hpµq ´ h ď I is a linear constraint, we can apply Theorem 4.4. of

Chapter 4.: let V˚ be maximum of Equation (B.1) ., there exists λ s.t.

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

P P arg max
PP∆2pxq
EPrνs“µ

EPrλ1V ´ λ2Hs

pEPrVs, I˚q P arg min
IďI

v´ f pIqąV˚

λ1v ´ λ2 I

Then by Kuhn-Tucker condition (generalized to subgradients), there exists η, γ ě 0 such

that:

$

’

&

’

%

λ1 “ η

λ2 P ´ηB f pI˚q ´ γ

If η “ 0, then γ ą 0 and P maximizes EPrγHs, then optimal P is uninformative and I˚ “ 0,

contradiction. So η ą 0. If γ “ 0, then we can normalize pλ1, ´λ2q to p1, λq and λ P B f pI˚q.

If γ ą 0, the complementary slackness condition implies that I˚ “ I and λ2{η P B f pI˚q.

So we can also normalize pλ1, ´λ2q to p1, λq and λ P B f pI˚q. �

B.1.1.3 Decomposition of information

In this section, I prove two important lemmas. Lemmas B.2 . and B.3. shows that any

static information structure can be decomposed into a continuous time belief process on

unit time interval such that the flow reduction of informativeness is constant.
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Lemma B.2. @µ P ∆pXq, @π P ∆2pXq,
ş

πpνqdν “ µ and |π| is finite. Then there exists

probability space pΩ,F , Pq and stochastic process xµty s.t.:

1. xµty is a Markovian martingale.

2. µ0 “ µ, µ1 „ π.

3. @t1, t2 P r0, 1s and t1 ă t2, ErHpµt1q ´ Hpµt2q|Ft1s “ pt2 ´ t1qErHpµ0q ´ Hpµ1qs.

Proof. Define πpνq as pνi, πiq
N
i“1. Let M “

ř

πiHpνiq ´ Hpµq. Consider the space ∆pNq.

Let xi “ p0, ¨ ¨ ¨ , 0, 1, 0, ¨ ¨ ¨ , 0q, which is an N dimensional vector with only ith element

being 1. Then txiu
N
i“1 is an orthogonal normal base of ∆pNq. Let xµ “ pπ1, ¨ ¨ ¨ , πNq. Then

it is easy to see that xµ P ∆pNq. @λi P r0, 1s, let xi,λi “ λixµ ` p1 ´ λiqxi P ∆pNq.

Define map f : ∆pNq Ñ ∆pXq as f pxq “
řN

j“1 xjνj ( f is a linear map). Then consider

Qipλiq “
ÿ

xj
i,λi

pHp f pxi,λiqq ´ Hpνjqq (B.2)

Now consider properties of Qi. First of all, since H is continuous and f is linear, Qipλiq is

continuous in λi. Second, suppose λ1
i ą λi and λi,α “ αλi ` p1 ´ αqλ1

i, consider:

Qipλi,αq ´ αQipλ1
iq ´ p1 ´ αqQipλiq

“Hp f pxi,λi,αqq ´ αHp f pxi,λiqq ´ p1 ´ αqHp f pxi,λ1
i
qq

´
ÿ

´

xj
i,λi,α

´ αxj
i,λi

´ p1 ´ αqxj
i,λ1

i

¯

Hpνjq

“Hp f pxi,λi,αqq ´ αHp f pxi,λiqq ´ p1 ´ αqHp f pxi,λ1
i
qq

“Hp f pαxj
i,λi

` p1 ´ αqxj
i,λ1

i
qq ´ αHp f pxi,λiqq ´ p1 ´ αqHp f pxi,λ1

i
qq

“Hpα f pxj
i,λi

q ` p1 ´ αq f pxj
i,λ1

i
qq ´ αHp f pxi,λiqq ´ p1 ´ αqHp f pxi,λ1

i
qq

ě0

The first equality is by definition of Qi. The second and third equalities is from linearity
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of xi,λi in λi. The forth equality is from linearity of f . The last equality is from concavity

of H. Hence, Qipλiq is concave in λi. It is easy to verify that when λi “ 0, xi,λi “ xi and

f pxi,λiq “ νi so Qip0q “ 0. When λi “ 1, xi,λi “ xµ and f pxi,λiq “ µ so Qip1q “
ř

πjpHpµq ´

Hpνjqq “ M. Since Qi is concave, the only possibility is that Qi is first increasing then

decreasing. Since Qi is a continuous function, @t P r0, 1s, there exists λi in increasing

region of Qi s.t.:

Qipλiptqq “ p1 ´ tqM

Since p1 ´ tqM is strictly decreasing M, λiptq is strictly decreasing in M. When t P p0, 1s,

λiptq P r0, 1q. Let f pxi,λiptqq “ µiptq. Define:

πiptq “

πi
1´λiptq

ř

j
πj

1´λjptq

It is easy to verify that:

ÿ

πiptqµiptq “ f
´

ÿ

πiptqxi,λiptq

¯

“ f
´

ÿ

πiptqpλiptqxµ ` p1 ´ λiptqqxiq
¯

“ f

¨

˝

ř πiλixµ

1´λiptq `
ř

πixi
ř πi

1´λi

˛

‚

“ f

˜
ř πiλi

1´λi
` 1

ř πi
1´λi

xµ

¸

“ f pxµq “ µ
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Now for any t, t1 P p0, 1s, and t1 ą t, define:

πjpt1|µiptqq “

$

’

’

&

’

’

%

λiptq ´ λipt1q

1 ´ λipt1q
πjpt1q if i ‰ j

λiptq ´ λipt1q

1 ´ λipt1q
πipt1q `

1 ´ λiptq
1 ´ λipt1q

if i “ j

It is easy to verify that:

ÿ

j

πjpt1|µiptqqµjpt1q “ f
ˆ

1 ´ λiptq
1 ´ λipt1q

xi,λipt1q `
λiptq ´ λipt1q

1 ´ λipt1q

ÿ

πjpt1qxj,λjpt1q

˙

“ f
ˆ

1 ´ λiptq
1 ´ λipt1q

xi,λipt1q `
λiptq ´ λipt1q

1 ´ λipt1q
xµ

˙

“ f
ˆ

1 ´ λiptq
1 ´ λipt1q

`

λipt1qxµ ` p1 ´ λipt1qqxi
˘

`
λiptq ´ λipt1q

1 ´ λipt1q
xµ

˙

“ f
`

λiptqxµ ` p1 ´ λiptqqxi
˘

“µiptq

(B.3)

and:

ÿ

j

πjptqπipt1|µjptqq “
1

ř πj
1´λjptq

¨

˝

1 ´ λiptq
1 ´ λipt1q

πi

1 ´ λiptq
`
ÿ

j

λjptq ´ λjpt1q

1 ´ λjpt1q

πj

1 ´ λjptq
πipt1q

˛

‚

“
1

ř πj
1´λjptq

˜

πi

1 ´ λipt1q
`

˜

ÿ πj

1 ´ λjptq
´
ÿ πj

1 ´ λjpt1q

¸

πipt1q

¸

“

πi
1´λipt1q
ř πj

1´λjptq

` πipt1q ´

πi
1´λipt1q
ř πj

1´λjptq

“πipt1q

(B.4)
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Now we verify the dynamic consistency of πi. @r ą s ą t:

ÿ

j

πjps|µiptqqπkpr|µjpsqq

“
ÿ

j

λiptq ´ λipsq

1 ´ λipsq
πjpsqπkpr|µjpsqq `

1 ´ λiptq
1 ´ λipsq

πkpr|µipsqq

“
λiptq ´ λipsq

1 ´ λipsq
πkprq `

1 ´ λiptq
1 ´ λipsq

λipsq ´ λiprq

1 ´ λiprq
πkprq ` 1k“i

1 ´ λiptq
1 ´ λipsq

1 ´ λipsq

1 ´ λiprq

“
λiptq ´ λiprq

1 ´ λiprq
πkprq ` 1k“i

1 ´ λiptq
1 ´ λiprq

“πkpr|µiptqq

(B.5)

The second equality is from Equation (B.4) .. Now define the stochastic process xµty. First,

I complete the definition of µiptq and πiptq. Let µp0q “ µ, πipt|µp0qq “ πiptq. @t ą 1, define

µiptq “ νi, πjpt|µip1qq “ 1i“j. Define Si “ tµiptq|t P p0, 1su. Since νi are distinct, Si are

disjoint sets. Since λiptq is strictly decreasing, µiptq is a one-to-one map from p0, 1s to Si.

Let S “ p
Ť

Siq
Ť

tµu. Define: τ : S Ñ r0, 1s:

τpνq “

$

’

&

’

%

µiptq´1pνq if µ P Si

0 if ν “ µ

Now we can define the Markov transition kernel of xµty: @x, y P S, t P R`,

Ptpx, yq “
ÿ

i

1y“µipτpxq`tqπipτpxq ` t|xq

We verify the Chapman-Kolmogorov equation: @x, z P S, t, s P R`:

• If τpxq ` t ` s ď 1, then:

ż

Ptpx, yqPspy, zqdy “
ÿ

i,j

1z“µipτpµjpτpxq`tqq`sqπjpτpxq ` t|xqπi
`

τpµjpτpxq ` tqq ` s|µjpτpxq ` tq
˘
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“
ÿ

i,j

1z“µipτpxq`t`sqπjpτpxq ` t|xqπipτpxq ` t ` s|µjpτpxq ` tqq

“
ÿ

i

1z“µipτpxq`s`tqπipτpxq ` t ` s|xq

“Pt`spx, zq

The second equality is from definition of τ. The third equality is from Equation (B.5) ..

• If τpxq ` t “ 1, then:

ż

Ptpx, yqPspy, zqdy “
ÿ

i,j

1z“µipτpµjpτpxq`tqq`sqπjpτpxq ` t|xqπi
`

τpµjpτpxq ` tqq ` s|µjpτpxq ` tq
˘

“
ÿ

i,j

1z“νi πjp1|xqπip1 ` s|νjq

“
ÿ

i

1z“νi πip1|xq

“
ÿ

i

1z“µipτpxq`t`sqπipτpxq ` t ` s|xq

“Pt`spx, zq

• If τpxq “ 1, then the C-K equation is trivially satisfied:

ż

Ptpx, yqPspy, zqdy “
ÿ

i,j

1z“νi 1νi“νj 1νj“x “ 1z“x “ Pt`spx, zq

• Now for any general case τpxq ă 1 and τpxq ` t ` s ą 1, we can add 1, and apply

the C-K equation in the last two cases jointly to establish the C-K equation in the

general case.

Since we verified the C-K equation for Markov transition kernel Ptp¨, ¨q, it is easy to see
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that @t1, . . . , tn, the measure given by:

Pt1,...,tnpx1, . . . , xnq “ Pt1pµ, x1q
ź

Pti`1´tipxi, xi`1q

satisfies the conditions in Daniell-Kolmogorov theorem (see Dellacherie and Meyer (1979.)).

Then, a simple corollary of Daniell-Kolmogorov theorem states that there exists a proba-

bility space pΩ,F , Pq and stochastic process xµty such that any finite dimensional marginal

distribution of xµty is given by P. Now Equation (B.3) . implies xµty is a martingale and the

C-K equation implies that xµty is Markovian.

What remains to be verified is the third property of Lemma B.3 .. @t1, t2 P r0, 1s and

t1 ă t2, @µt1 P tµipt1qu,

ErHpµt1q ´ Hpµt2q|Ft1s “Hpµt1q ´ ErHpµt2q|µt1s

“Hpµt1q ´

ż

Pt2´t1pµt1 , µt2qHpµt2qdy

“Hpµt1q ´
ÿ

i

πipτpµt1q ` t2 ´ t1|µt1qHpµipτpµt1q ` t2 ´ t1qq

“Hpµt1q ´
ÿ

i

πipt2|µt1qHpµipt2qq

“Hpµt1q ´
ÿ

i

πipt2|µt1q

¨

˝

ÿ

j

πjp1|µipt2qqHpνjq

˛

‚

´
ÿ

i

πipt2|µt1q

¨

˝Hpµipt2qq ´
ÿ

j

πjp1|µipt2qqHpνjq

˛

‚

“

¨

˝Hpµt1q ´
ÿ

j

πjp1|µt1qHpνjq

˛

‚´
ÿ

i

πipt2|µt1qQipλipt2qq

“p1 ´ t1qM ´
ÿ

i

πipt2|µt1qp1 ´ t2qM

“pt2 ´ t1qpHpµ0q ´ ErHpµ1qsq
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�

Lemma B.3. @µ P ∆pXq, π P ∆2pXq and
ş

πpνqdν “ µ. Then there exists probability space

pΩ,F , Pq and stochastic process xµty s.t.:

1. xµty is a martingale.

2. µ0 “ µ, µ1 „ π.

3. @t1, t2 P r0, 1s and t1 ă t2, ErHpµt1q ´ Hpµt2q|Ft1s “ pt2 ´ t1qErHpµ0q ´ Hpµ1qs.

Proof. If |Supppπq| is finite, the Lemma B.3. is identical to Lemma B.2. and the proof

is done. Now I discuss the general case where Supppπq is an infinite set. Let M “

ş

πpνqpHpµq ´ Hpνqqdν.

Step 1. Discretizing ∆pXq. Since Hpµq is a continuous function on ∆pXq, by Heine-

Cantor theorem Hpµq is uniformly continuous. Pick εk “ M
2k and let δk be corresponding

continuity parameter for εk. Discretize ∆pXq into a set of nested grids with grid size

dk ď δk. Let Dk
ν be each dk-cube containing µ. Then @µ P ∆pXq, @π1 P ∆pDk

µq:

ż

π1pνqpHpµq ´ Hpνqq ď εk

Step 2. Index all d1-cubes as
!

D1
i1

)

i1PI1
. @i1 P I1, define:

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

µ1
i1 “

ş

νPD1
i1

νπpνqdν
ş

νPD1
i1

πpνqdν

π1
i1pνq “

1νPD1
i1

πpνq
ş

νPD1
i1

πpνqdν

q1
i1 “

ż

νPD1
i1

πpνqdν

and

$

’

’

’

&

’

’

’

%

M1
i1 “

ż

π1
i1pνqpHpµ1

i1q ´ Hpνqqdν

M0 “
ÿ

i1

q1
i1

´

Hpµq ´ Hpµ1
i1q

¯

194



B.1. Proofs in Section 1.5 .

It is easy to verify that:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ÿ

q1
i1µ1

i1 “ µ
ż

π1
i1νdν “ µ1

i1

ÿ

q1
i1π1

i1pνq “ πpνq

M1
i1 ď ε1

M1 `
ÿ

q1
i1 M1

i1 “ M

Now consider distribution pq1
i1

, µ1
i1

q. Let xi1 “ p0, . . . , 0, 1, 0, . . . , 0q where only i1th element

is 1. Then
␣

xi1
(

is an orthogonal normal base of ∆pI1q. Let xµ “ pq1
1, . . . , q1

I1
q. Then it is

easy to see than xµ P ∆pNq. @λ P r0, 1s, define xi1,λ “ λxµ ` p1 ´ λqxi1 .

Define linear map f : ∆pI1q Ñ ∆pXq as f pxq “
řI1

i“1 xi1µ1
i1

(xi1 is i1th coordinate of

vector x). Then consider:

Qi1pλq “

I1
ÿ

j“1

xj
i1,λpHp f pxi1,λqq ´ Hpµ1

j q ` M1
j q

Now consider properties of Qi1 . First of all, since H is continuous and f is linear, Qi1pλq

is continuous in λ. Second, Qi1p0q “ M1
i1

and Qi1p1q “ M. Since M ą ε1 ě M1
i1

, by

intermediate value theorem there exists λi1 s.t. Qi1pλi1q “ ε1. Now define:

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

rµ1
i1 “ f pxi1,λi1

q

rq1
i1 “

q1
i1

1´λi1

řI1
j“1

π1
j

1´λj

rπ1
i1pνq “

I1
ÿ

j“1

xj
i1,λi1

π1
j pνq

and

$

’

’

’

&

’

’

’

%

ĂM1
i1 “

ż

rπ1
i1pνqpHprµ1

i1q ´ Hpνqqdν

ĂM0 “
ÿ

I1

rq1
i1

´

Hpµq ´ Hprµ1
i1q

¯
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It is easy to verify that:

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

ÿ

rq1
i1
rµ1

i1 “ µ
ż

rπ1
i1νdν “ rµ1

i1

ÿ

rq1
i1
rπ1

i1pνq “ πpνq

ĂM1
i1 ”

M
2

, ĂM0 “
M
2

Step 3. Recursively apply step 2. Suppose I have defined a discrete time stochastic

process for i P t0, . . . , ku satisfying µ0 “ µ, µk „ π and:

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

ˇ

ˇ

ˇ
Supppµiq

ˇ

ˇ

ˇ
Fi

ˇ

ˇ

ˇ
ď Ii ă 8 @i ă k

E
”

µi
ˇ

ˇ

ˇ
Fj

ı

“ µi @j ă i

E
”

Hpµjq ´ Hpµiq
ˇ

ˇ

ˇ
Fj

ı

“

i´1
ÿ

l“j

M
2l`1

E
”

Hpµkq ´ Hpµiq
ˇ

ˇ

ˇ
Fi

ı

“
M
2i

(B.6)

Noticing that I have verified that
´

µ, prqi
i1

, rµ1
i1

q, rπ1
i1

¯

we find in step one satisfies this con-

dition for k “ 1. Now we prove that we can construct a discrete time stochastic process

with k ` 1. Define a new process xµiy exactly as in the assumption for i ă k. Now for any

sample path in Fk´1, applying the procedure in step 2 to prior µk´1 and distribution of
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pµkq. Then I get prqk
ik

, rµk
ik

, rπkik q satisfying:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

ÿ

rqk
ik
rµk

ik “ µk´1

ż

rπk
ikpνq “ rµk

ik

ÿ

rqk
ik
rπk

ikpνq „ µk|Fk´1
ż

rπk
ikpνqpHprµk

ikq ´ Hpνqqdν ”
M
2k “

ÿ

IK

rqk
ik

´

Hpµk´1q ´ Hprµk
ikq

¯

,

(B.7)

In the new process, let µk|Fk´1 „ prqk
ik

, rµk
ik

q and µk`1|Fk´1, rµk
ik

„ rπk
ik

. Now let us verify

Equation (B.6).. The first condition is trivially satisfied for i ă k. If i “ k, by construc-

tion the support size of rµk
ii

is finite. The second condition is true for i “ k, k ` 1 given

Equation (B.7) .’s first two properties. The third and forth condition are implied the last

condition of Equation (B.7).. µ0 is still µ and µk`1 „ π by third property of Equation (B.7)..

Hence, for any positive K, a xµiyiďK is well defined. And by construction, for any

K1 ă K2, the two processes have exactly same path distribution for i ă K1. So except if I

need to explicitly use the distribution of µK, otherwise I refer to xµiy as an infinite process.

Step 4. Extension to continuous time. Let Tk “ 1 ´ 1
2k . The main idea is to define

finite dimensional joint distribution at Tk’s according to xµky. Then within each interval

rTk, Tk`1s, the process is defined using Lemma B.2.. For any sequence of µ0, . . . , µTk , define:

PpµTk “ µkˇ
ˇµ0, . . . µTk´1q “ Ppµk

ˇ

ˇ

ˇ
µl

il “ µTl , @l ă kq

Now for any t1, . . . , tk and µt1 , . . . , µtk , I define the joint distribution of the sample path.

First assume tk ă 1. Then there exists a unique sequence of:

0 ¨ ¨ ¨ Tl1 , t1 ¨ ¨ ¨ tm1 , Tl1`1
loooooooooomoooooooooon

Interval 1

¨ ¨ ¨ Tl2 , tm1`1 ¨ ¨ ¨ tm2 , Tl2`1
looooooooooooomooooooooooooon

Interval 2

¨ ¨ ¨ Tln , tmn´1`1 ¨ ¨ ¨ tk
looooooooomooooooooon

Interval n
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Noticing that tms`1 can be same as Tls`1 and tms can be same as Tls`1. Now for any se-

quence of pµTls
q, apply Lemma B.2 . to prior µTls

and distribution PpµTls`1

ˇ

ˇµ0, . . . , µTls
q.

Lemma B.2 . implies that there exists a space pΩ,F , Pq and xrµty s.t. rµ0 “ µTls
and rµ1 „

PpµTls`1q (the dependence of all terms on pµTls
q is omitted for notational simplicity). De-

fine:

P
´

µtms´1`1 , . . . , µtms , µTls`1

ˇ

ˇ

ˇ
µ0, . . . , µTls

¯

“P
´

rµ2ls ¨ptms´1`1´Tls q “ µtms´1`1 , . . . , rµ2ls ¨ptms ´Tls q “ µtms , rµ1 “ µTls`1

ˇ

ˇ

ˇ
µ0, . . . , µTls

¯

Now we can define the finite joint distribution of µtk :

P
`

µ0, . . . , µtk

˘

“

ż n´1
ź

s“1

»

–

¨

˝

ls`1
ź

j“ls`1

PpµTj |µ0, . . . , µTj´1q

˛

‚¨ P
´

µtms , . . . , µtms`1
, µTls`1`1

ˇ

ˇ

ˇ
µ0, . . . µTls`1

¯

fi

fldµT1 , . . . µTln`1

Noticing that by definition of xµky, each PpµTj |µ0, . . . , µTj´1q is a probability measure. By

definition of xrµty, each P
´

µtms , . . . , µtms`1
, µTls`1`1

ˇ

ˇ

ˇ
µ0, . . . µTls`1

¯

is a joint probability mea-

sure. Therefore, Ppµ0, . . . , µtkq is a joint probability measure.

Now consider the case tk “ 1. Since tk´1 ă 1, there must be some finite Tl ą tk´1.

There exists a unique sequence of:

0 ¨ ¨ ¨ Tl1 , t1 ¨ ¨ ¨ tm1 , Tl1`1
loooooooooomoooooooooon

Interval 1

¨ ¨ ¨ Tl2 , tm1`1 ¨ ¨ ¨ tm2 , Tl2`1
looooooooooooomooooooooooooon

Interval 2

¨ ¨ ¨ , tk´1, Tln`1 ¨ ¨ ¨ tk

Pick K “ ln ` 2, for any given sequence of µ0, . . . , µTln`1 , @S Ă ∆pXq define:

P
´

S
ˇ

ˇ

ˇ
µ0, . . . , µTln`1

¯

“ P
´

µK P S
ˇ

ˇ

ˇ
µl

il “ µTl , @l ă K
¯
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Now we can define the finite joint distribution of µtk :

P
`

µ0, . . . , µtk

˘

“

ż n´1
ź

s“1

»

–

¨

˝

ls`1
ź

j“ls`1

PpµTj |µ0, . . . , µTj´1q

˛

‚¨ P
´

µtms , . . . , µtms`1
, µTls`1`1

ˇ

ˇ

ˇ
µ0, . . . µTls`1

¯

fi

fl

¨ P
´

S
ˇ

ˇµ0, . . . , µTln`1

¯

dµT1 , . . . µTln`1

Same as the previous case, each PpµTj |µ0, . . . , µTj´1q and P
´

µtms , . . . , µtms`1
, µTls`1`1

ˇ

ˇ

ˇ
µ0, . . . µTls`1

¯

are joint probability measures. Moreover, PpS|µ0, . . . , µTK´1q is a probability measure. Im-

portantly, by definition of xµky, for K1 ă K, P is defined consistently:

PpS|µ0, . . . , µK1´1q “

ż

PpS|µ0, . . . , µK´1qdµK1 , . . . , µK´1

Therefore, Ppµ0, . . . , µtkq is a joint probability measure. To sum up, we defined a finite

dimensional joint probability measure satisfying the conditions in Daniell-Kolmogorov

theorem. Hence, there exists probability space pΩ,F , Pq and xµtytPr0,1s satisfying all finite

distributions.

Step 5. Verify that xµty satisfies Lemma B.3.. µ0 “ µ is true by construction. @S Ă ∆pXq:

PpSq “ Ppµ1 P Sq “ πpSq

So µ1 „ π. Now I verify property 1 and property 3. @t1, t2 P r0, 1s and t2 ą t1,

• Case 1. If Dk s.t. Tk ď t1 ă t2 ď Tk`1, then by construction of xµty in rTj, Tj`1s, µt is

Markovian and Erµt2 |Ft1s “ Erµt2 |µt1s “ µt1 .

ErHpµt1q ´ Hpµt2q|µt1s “2kpt2 ´ t1qErHpµtkq ´ Hpµtk`1q|Ftks

“pt2 ´ t1q2k ¨
M
2k
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“pt2 ´ t1qM

• Case 2. There exists a unique sequence of:

0 ¨ ¨ ¨ Tj, t1, Tj`1 ¨ ¨ ¨ Tk, t2, Tk`1

By construction, for all path on r0, t1s,

E
“

µt2

ˇ

ˇFt1

‰

“E
”

E
“

µt2

ˇ

ˇFTk

‰

ˇ

ˇ

ˇ
Ft1

ı

“E
”

µTk

ˇ

ˇ

ˇ
Ft1

ı

...

“E
”

µTj`1

ˇ

ˇFt1

ı

“µt1

and

Hpµt1q ´ E
“

Hpµt2q
ˇ

ˇFt1

‰

“Hpµt1q ´ E
”

HpµTj`1q
ˇ

ˇFt1

ı

` E
”

HpµTj`1q
ˇ

ˇFt1

ı

´ E
“

Hpµt2q
ˇ

ˇFt1

‰

“2jpTj`1 ´ t1q ¨
M
2j ` E

”

E
”

HpµTj`1q ´ Hpµt2q
ˇ

ˇFTj`1

ıˇ

ˇ

ˇ
Ft1

ı

“pTj`1 ´ t1qM ` E
”

HpµTj`1q ´ E
”

HpµTj`2q
ˇ

ˇFTj`1

ı

` E
”

HpµTj`2q ´ Hpµt2q
ˇ

ˇFTj`1

ıˇ

ˇ

ˇ
Ft1

ı

“pTj`1 ´ t1qM ` E
„

M
2j`2 ` E

”

HpµTj`2q ´ Hpµt2q
ˇ

ˇFTj`1

ıˇ

ˇ

ˇ
Ft1

ȷ

...

“p1 ´
1

2j`1 ´ t1qM `

k´1
ÿ

j`1

M
2l`1 ` E

”

E
“

HpµTkq ´ Hpµt2q
ˇ

ˇFTk

‰

ˇ

ˇ

ˇ
Ft1

ı
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“p1 ´
1

2j`1 ´ t1qM `

k´1
ÿ

j`1

M
2l`1 `

ˆ

t2 ´ 1 `
1
2k

˙

M

“pt2 ´ t1qM

Case 3. t2 “ 1. Then there exists k s.t Tk ď t1 ă Tk`1. By construction, for all path on

r0, t1s:

Erµ1|Ft1s “E
“

E
“

µt|FTk`1

‰

|Ft1

‰

“E
“

µTk`1 |Ft1

‰

“µt1

and

Hpµt1q ´ ErHpµ1q|Ft1s

“Hpµt1q ´ E
“

HpµTk`1q|Ft1

‰

` E
“

E
“

HpµtK`1q ´ Hpµ1q|FTk`1

‰

|Ft1

‰

“

ˆ

1 ´
1

2k`1 ´ t1

˙

M `
M

2k`1

“pt2 ´ t1qM

�

B.1.2 Proof of Lemma 1.2 .

Proof. I break the proof of Lemma 1.2 . into three lemmas. Lemma B.4 . shows that solving

Equation (1.5’). is equivalent to solving Equation (B.8)., which reduces the signal struc-

ture to be nested, and containing only action as direct signals and continuation signals.

Then Lemma B.5 . shows that solving Equation (B.8) . is equivalent to solving Equation (B.9) .,

which transforms signal process formulation to conditional distribution formulation. Then
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Lemma B.6. shows that solving functional equation Equation (B.10). is equivalent to solv-

ing sequential problem Equation (B.9) . using the standard methodology. Finally, we apply

Theorem B.1. to Equation (B.10). to further reduce the dimensionality of strategy space to

Equation (1.6).. �

Lemma B.4 (Reduction of redundency).
`

S t, T ,AT ˘ solves Equation (1.5’). if and only if there

exists
´

rS t, T ,AT
¯

solving :

sup
S t,T ,AT

8
ÿ

t“0

e´ρdt¨t
´

PrT “ ts
`

E
“

upAt,X q|T “ t
‰˘

´ PrT ą tsE
”

Cdt

´

I
´

rS t;X
ˇ

ˇ rS t´1
¯¯

ˇ

ˇT ą t
ı¯

s.t. rS t “

$

’

’

’

’

’

&

’

’

’

’

’

%

s0 when T ă t ` 1

At`1 when T “ t ` 1

S t when T ą t ` 1

(B.8)

What’s more, the optimal utility level is same in Equation (1.5’). and Equation (B.8)..

Proof. Suppose
`

S t, T ,At˘ is a feasible strategy to Equation (1.5’).. I first show that it is

WLOO that the DM discards all information after taking an action: take given T and At,

let s0 be a degenerate signal, define signal process pS t as:

pS t “

$

’

’

&

’

’

%

S t when T ě t ` 1

s0 when T ď t

By definition, pS t “ S t conditional on T ě t ` 1. Therefore:

I
´

pS t;X | pS t´1, 1T ďt

¯

“

$

’

’

&

’

’

%

I
`

S t;X |S t´1, 1T ďt
˘

when T ě t ` 1

0 when T ď t

X Ñ pS t Ñ At`1 conditional on T “ t
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1. By definition, when T ě t ` 1, pS t “ S t. So conditional on T “ t ` 1, X Ñ S t Ñ

At`1 implies X Ñ pS t Ñ At`1.

2. When pS t´1 “ s0, 1T ďt “ 1. When pS t´1 ‰ s0:

Prob
´

T ą t|S t´1
¯

“ Prob
´

T ą t|S t´1,X , T ě t
¯

Prob
´

T ě t|S t´1,X
¯

“ Prob
´

T ą t|S t´1,X , T ě t
¯

ùñ Prob
´

T ą t| pS t´1,X
¯

“ Prob
´

T ą t| pS t´1
¯

which is independent to realization of X . So X Ñ pS t´1 Ñ 1T ďt. The first equality

is by the law of total probability (conditional on T ě t), X Ñ S t´1 Ñ 1T ďt and

when pS t´1 ‰ s0, ProbpT “ tq “ 0. The second equality is by when pS t´1 ‰ s0,

ProbpT ě tq “ 1.

3. Total information cost:

E

«

8
ÿ

t“0

e´ρdt¨tCdt

´

I
´

pS t;X
ˇ

ˇ pS t´1, 1T ďt

¯¯

ff

“ E

«T ´1
ÿ

t“0

e´ρdt¨tCdt

´

I
´

pS t;X
ˇ

ˇ pS t´1, 1T ďt

¯¯

ff

“E

«T ´1
ÿ

t“0

e´ρdt¨tCdt
`

I
`

S t;X |S t´1, 1T ďt
˘˘

ff

ď E

«

8
ÿ

t“0

e´ρdt¨tCdt
`

I
`

S t;X |S t´1, 1T ďt
˘˘

ff

The first equality is by pS t being degenerate when t ě T . The second equality is from

pS t “ S t when T ą t. Therefore,
´

pS t,At, T
¯

is a feasible strategy dominating
`

S t,At, T
˘

.

Now we define rS t:

rS t “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

s0 when T ă t ` 1

At`1 when T “ t ` 1

pS t when T ą t ` 1
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Initial information rS´1 is defined as a degenerate(uninformative) signal and induced be-

lief is the prior. rS t replaces the signal defined in pS t by a direct signal that suggests the

corresponding action profile in next period when T “ t ` 1. Verify that the rS t satisfies

the information processing constraints in Equation (1.5’). and improves utility:

1. When rS t´1 P ts0u
Ť

A, it’s for sure that T ď t. Otherwise, T ą t. Therefore 1T ďt is a

direct garbling of rS t´1. So X Ñ rS t´1 Ñ 1T ďt.

2. When T “ t, At “ rS t´1. Therefore S Ñ pS t´1 Ñ At implies X Ñ rS t´1 Ñ At

conditional on T “ t.

3. Information measure associated with
´

rS t,At, T
¯

when T ą t:

I
´

rS t;X
ˇ

ˇ rS t´1, T ą t
¯

“1T “t`1 I
´

At`1;X
ˇ

ˇ rS t´1, T “ t ` 1
¯

` 1T ąt`1 I
´

rS t;X
ˇ

ˇ rS t´1, T ą t ` 1
¯

“1T “t`1 I
´

At`1;X
ˇ

ˇ pS t´1, T “ t ` 1
¯

` 1T ąt`1 I
´

pS t;X
ˇ

ˇ pS t´1, T ą t ` 1
¯

ď1T “t`1 I
´

pS t;X
ˇ

ˇ pS t´1, T “ t ` 1
¯

` 1T ąt`1 I
´

pS t;X
ˇ

ˇ pS t´1, T ą t ` 1
¯

“I
´

pS t;X
ˇ

ˇ pS t´1, T ą 1
¯

First equality is simply rewriting two possible cases of T . Second equality is from def-

inition of rS t when T ą t ` 1. The inequality is from X Ñ pS t Ñ At`1 conditional on

T “ t ` 1. Therefore,
´

rS t, T ,At
¯

dominates the original solution in Equation (1.5’) . by

achieving same action profile at lower costs.
´

rS t, T ,At
¯

is a feasible solution to Equa-

tion (B.8) .. Therefore solving Equation (B.8) . yields a weakly higher utility than Equa-

tion (1.5’) .. What remains to be proved is that any
´

rS t, T ,At
¯

feasible in Equation (B.8) .

can be dominated by some strategy feasible in Equation (1.5’) .. It’s not hard to see that

the strategy is feasible in Equation (1.5’).. Finally we show that the two formulation gives

204



B.1. Proofs in Section 1.5 .

same utility:

E

«

e´ρdt¨T ErupAT ,X qs ´

8
ÿ

t“0

e´ρdt¨tCdt

´

I
´

rS t;X
ˇ

ˇ rS t´1, 1T ďt

¯¯

ff

“

8
ÿ

t“0

e´ρdt¨t
´

PrT “ ts
`

E
“

upAt,X q|T “ t
‰˘

´ E
”

Cdt

´

I
´

rS t;X
ˇ

ˇ rS t´1, 1T ďt

¯¯ı¯

“

8
ÿ

t“0

e´ρdt¨t
´

PrT “ ts
`

E
“

upAt,X q|T “ t
‰˘

´ PrT ą tsE
”

Cdt

´

I
´

rS t;X
ˇ

ˇ rS t´1
¯¯ˇ

ˇ

ˇ
T ą t

ı¯

First equality is from rewriting the utility part conditional on decision time T “ t. Second

equality is from rewriting the information cost part conditional on decision time T ď t

and T ą t. Therefore, Equation (1.5’). is equivalent to Equation (B.8).. �

Lemma B.5 (Tranformation of space). With Assumption A . satisfied,
`

S t, T ,AT ˘ solves Equa-

tion (1.5’). if and only if there exists pt`µt`1|µt˘ : ∆X ÞÑ ∆2X and qt
spµtq : ∆X ÞÑ r0, 1s solving:

sup
ppt,qt

sq

8
ÿ

t“0

e´ρdt¨t
ż

∆X

»

–

¨

˝max
a

ÿ

j

upa, xjq ¨ µj

˛

‚qt
spµtq

´ Cdt

ˆ

Hpµtq ´

ż

∆X
Hpµt`1qptpµt`1|µtqdµt`1

˙

p1 ´ qt
spµtqq

fi

fl (B.9)

˜

ż

∆Xt´1

t´1
ź

τ“0

pτpµτ`1|µτqp1 ´ qτ
s pµτqqdµ1 . . . µt´1

¸

dµt

s.t.
ż

∆X
µptpµ|µtqdµ “ µt

What’s more, the optimal utility level is same in Equation (1.5’). and Equation (B.9)..

Proof. Let ptp¨|µtq be the distribution of posteriors generated by rS t
ˇ

ˇ

T ąt, rS t´1“rSt´1 , where µt

is posterior belief associated with signal rSt´1. Let qt
spµtq “ P

”

T “ t
ˇ

ˇ rS t´1 “ rSt´1, T ě t
ı

.

Now we can explicitly represent the distribution of rS , T ,A with the conditional distribu-
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tions. First, PrT “ ts and PrT ą ts can be calculated by integrating qt
spµtq:

PrT “ ts “E
”

PrT “ t| rS´1s

ı

“E
”

P
”

T “ t
ˇ

ˇ rS´1, T ą 0
ı

P
”

T ą 0
ˇ

ˇ rS´1
ıı

“p1 ´ q0
s pµ0qqP

“

T “ t
ˇ

ˇT ą 0
‰

“p1 ´ q0
s pµ0qqE

”

P
”

T “ t
ˇ

ˇT ą 0, rS0
ıı

“p1 ´ q0
s pµ0qq

ż

P
”

T “ t
ˇ

ˇT ě 1, rS0
ı

p0pµ1|µ0qdµ1

“p1 ´ q0
s pµ0qq

ż

P
”

T “ t
ˇ

ˇT ą 1, rS0
ı

P
”

T ą 1
ˇ

ˇT ě 1, rS0
ı

p0pµ1|µ0qdµ1

“p1 ´ q0
s pµ0qq

ż

E
”

P
”

T “ t
ˇ

ˇT ą 1, rS1
ı

ˇ

ˇµ1
ı

p1 ´ q1
s pµ1qqp0pµ1|µ0qdµ1

“ ¨ ¨ ¨

“

ż t´1
ź

τ“0

pτpµτ`1|µτqp1 ´ qτ
s pµτqqqt

spµtqdµ1 . . . µt

Similarly, we can get:

PrT ą ts “

ż t´1
ź

τ“0

pτpµτ`1|µτqp1 ´ qτ
s pµτqqp1 ´ qt

spµtqqdµ1 . . . µt

Then we can calculate the joint distribution of T and µt:

$

’

’

’

’

’

&

’

’

’

’

’

%

P
“

T “ t, µt “ ν
‰

“

ż t´1
ź

τ“0

pτpµτ`1|µτqp1 ´ qτ
s pµτqqqt

spµtqdµ1 . . . µt´1

P
“

T ą t, µt “ ν
‰

“

ż t´1
ź

τ“0

pτpµτ`1|µτqp1 ´ qτ
s pµτqqp1 ´ qt

spµtqqdµ1 . . . µt´1
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Therefore:

$

’

’

’

’

&

’

’

’

’

%

Atˇ
ˇ

T “t „

ş
śt´1

τ“0 pτpµτ`1|µτqp1 ´ qτ
s pµτqqdµ1 . . . µt´1qt

spµtq
ş
śt´1

τ“0 pτpµτ`1|µτqp1 ´ qτ
s pµτqqqt

spµtqdµ1 . . . µt

rS tˇ
ˇ

T ąt „

ş
śt´1

τ“0 pτpµτ`1|µτqp1 ´ qτ
s pµτqqdµ1 . . . µt´1p1 ´ qt

spµtqq
ş
śt´1

τ“0 pτpµτ`1|µτqp1 ´ qτ
s pµτqp1 ´ qt

spµtqqdµ1 . . . µt

This implies:

PrT “ tsE
”

upAt,X q
ˇ

ˇ rS t´1, T “ t
ı

“

ż

∆X
max

a

ÿ

j

upa, xjqµt
j

ż

∆Xt´1

t´1
ź

τ“0

pτpµτ`1|µτqp1 ´ qτ
s pµτqqqt

spµtqdµ1 . . . µt´1dµt

PrT ą tsE
”

Cdt

´

I
´

rS t;X
ˇ

ˇ rS t´1
¯¯

ˇ

ˇT ą t
ı

“

ż

∆X
Cdt

ˆ

Hpµtq ´

ż

∆X
Hpµt`1qptpµt`1|µtqdµt`1

˙

ˆ

ż t´1
ź

τ“0

pτpµτ`1|µτqp1 ´ qτ
s pµτqqp1 ´ qt

spµtqqdµ1 . . . µt´1dµt

To sum up, we showed that starting from rS , T ,A solving Equation (B.8)., we can construct

pt, qt
s such that the value of Equation (B.8) . is achieved in Equation (B.9) .. Next, we start

from
`

pt, qt˘ solving Equation (B.9).. We can easily define T : T
ˇ

ˇ

T ět,µt „ Bpqt
spµtqq condi-

tionally independent across all t, µt. rS t
ˇ

ˇ

T ąt,µt „ ptp¨|µtq, At
ˇ

ˇ

T “t,µt “ arg max
ř

upa, xjqµt
j.

Therefore, the previous calculation shows that the value of Equation (B.9) . is also achieved

in Equation (B.8) .. Combining with the previous result, we conclude that Equation (B.8) .

and Equation (B.9) . are equivalent in the sense that
´

rS , T ,A
¯

solves Equation (B.8) . if and

only if the corresponding ppt, qt
sq solves Equation (B.9).. �

Lemma B.6 (Recursive representation). Vdtpµq is the optimal utility level solving Equation (B.9).
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given initial belief µ if and only if Vdtpµq satisfies the following functional equation:

Vdtpµq “ max

#

max
a

Erupa, xq|µs, sup
pP∆2X

e´ρdt
ż

∆X
Vdtpµqppµqdµ ´ Cdt

ˆ

Hpµq ´

ż

∆X
Hpνqppνqdν

˙

+

(B.10)

s.t.
ż

∆X
νppνqdν “ µ

Proof. We first derive the recursive representation of Equation (B.9) .. Consider the fol-

lowing functional equation:

Vdtpµq “ sup
qspµq,pp¨|µq

qspµq

´

max
a

ÿ

upa, xjqµj

¯

` p1 ´ qspµqq

„
ż

∆X
Vdtpνqppν|µqdν ´Cdt

ˆ

Hpµq ´

ż

∆X
Hpνqppν|µqdν

˙ȷ

s.t.
ż

∆X
νppν|µqdν “ µ

Since RHS is linear in qspµq, it will be WLOG that we only consider boundary solution

qspµq P t0, 1u. Therefore, it is be exactly the same as Equation (B.10)..

Now consider the equivalence between the sequential problem and the recursive prob-

lem. By assumption Erupa, xq|µs is bounded above by maxa,x upa, xq. Therefore, e´ρdt¨tErupa, xq|µs

is uniformly (for all choice of µ, a) converging to zero when t Ñ 8. Then Vdtpµq is the so-

lution of Equation (B.9). by the standard theory of dynamic programming. �

B.1.3 Convergence

I first prove two useful lemmas. Lemma B.7. shows that optimal strategy has informa-

tiveness of signal in each period of same order of dt. Lemma B.8 . shows that there exists a

unique limit of Vdt in L8 norm.
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B.1.3.1 Bounded flow cost

Lemma B.7 (Bounded flow cost). With Assumption 1.2 . satisfied, there D∆ P R` s.t. I˚
dtpµq ď

∆dt. @µ, dt. Where I˚
dtpµq “

ř

pipHpµq ´ Hpνiqq for optimal ppi, νiq in Equation (1.6).

Proof. @ ppi, νiq which solves Equation (1.6)., assume the value is Vdtpµq and I˚
dtpµq “

ř

pipHpµq ´ Hpνiqq. Now for I ă I˚
dt, consider a different information acquisition strategy:

• At prior µ, use the following information structure:

$

’

’

&

’

’

%

µ1
i “ νi with probability I

I˚
dt

pi

µ1
0 “ µ with probability 1 ´ I

I˚
dt

This information structure mixes uninformative signal into ppi, νiq with probability

1 ´ I
I˚
dt

ą 0. It is Bayes plausible by definition.

• At any posterior other than µ, follow the original strategy.

Now let’s calculate the expected utility of this strategy. The utility gain from experimen-

tation is:

V1pµq “e´ρdt I
I˚
dt

ÿ

piVpνiq ` e´ρdt
ˆ

1 ´
I

I˚
dt

˙

V1pµq

“

´

ÿ

piVpνiq
¯

¨
e´ρdt I

I˚
dt

1 ´ e´ρdt
´

1 ´ I
I˚
dt

¯

ùñ
ÿ

piVpνiq ´ eρdtV1pµq “

´

ÿ

piVpνiq
¯

¨

`

1 ´ e´ρdt˘
´

1 ´ I
I˚
dt

¯

1 ´ e´ρdt
´

1 ´ I
I˚
dt

¯

ď max v ¨

`

1 ´ e´ρdt˘
´

1 ´ I
I˚
dt

¯

1 ´ e´ρdt
´

1 ´ I
I˚
dt

¯

ď max v ¨ 2ρdt
ˆ

I˚
dt
I

´ 1
˙
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The first inequality is from bounding V with max v. The second inequality is from 1 ´

e´ρdt ă 2ρdt, e´ρdt ă 1 and 1 ´ I
I˚
dt

ą 0. On the other hand, the discounted total cost of this

strategy is:

Cost1pµq “CdtpIq ` e´ρdt
ˆ

1 ´
I

I˚
dt

˙

Cost1pµq “
CdtpIq

1 ´ e´ρdt
´

1 ´ I
I˚
dt

¯

ùñ CdtpI˚
dtpµqq ´ Cost1pµq “CdtpI˚

dtq ´
CdtpIq

1 ´ e´ρdt
´

1 ´ I
I˚
dt

¯

ěCdtpI˚
dtq ´

CdtpIqI˚
dt

I

The inequality is from e´ρdt ă 1 and 1 ´ I
I˚
dt

ą 0. Therefore, by optimality of ppi, νiq at µ,

the new strategy I defined should not improve the expected utility:

e´ρdt
´

ÿ

piVpνiq
¯

´ V1pµq ´
`

CdtpI˚
dtq ´ Cost1pµq

˘

ě 0

ùñ
ÿ

piVpνiq ´ eρdtV1pµq ´ pCdtpI˚
dtq ´ Cost1pµqq ě 0

ùñ max v ¨ 2ρdt
ˆ

I˚
dt
I

´ 1
˙

ě CdtpI˚
dtq ´

CdtpIqI˚
dt

I

ùñ max v ¨ 2ρ

ˆ

1 ´
I

I˚
dt

˙

ě
I

I˚
dt

C
ˆ

I˚
dt

dt

˙

´ C
ˆ

I˚
dt

dt
¨

I
I˚
dt

˙

(B.11)

By Assumption 1.2 ., D ∆ s.t. @
I˚
dt

dt ě ∆, there exists α P p0, 1q s.t. αC
´

I˚
dt

dt

¯

´ C
´

α
I˚
dt

dt

¯

ą

2ρ max v. Let I “ αI˚
dt, then I ă I˚

dt and Equation (B.11) . is violated. By contradiction,

I˚
dt ď ∆dt. �

B.1.3.2 Convergence of Vdt

Lemma B.8. With Assumption A . and Assumption 1.2 . satisfied. Let Vpµq “ lim supdtÑ0 Vdtpµq.

Then lim
dtÑ0

∥∥Vdtpµq ´ Vpµq
∥∥

8
“ 0.

Proof. We break down the proof of Lemma Lemma B.8. into three steps:
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• Step 1: Prove that if Vdt “ lim supnÑ8 Vdt
2n

, then
∥∥∥Vdt ´ Vdt

2n

∥∥∥ Ñ 0. First Vdt
2n

is an increasing

sequence, because every experimentation strategy associated with dt
2n can be replicated in

a problem with dt
2n`1 : the DM can always split the experiment into two stages with equal

cost in two periods and get an identical distribution of posterior beliefs at the end of

second period (Lemma B.3 .). Moreover, Vdt
2n

is always bounded above by fully informed

utility. Then existence of Vdt “ lim Vdt
2n

is guaranteed by monotonic convergence theorem.

Now let’s prove the convergence is uniform in sup norm, i.e. Vdt
2n

is a Cauchy sequence

under sup norm. @m ą n, @µ0, consider the problem with dt
2m , consider the optimal ex-

perimentation ppipµq, νipµqq and associated action rule AT, information measure IT, the

expected utility is:

V dt
2m

pµ0q “
ÿ

e´ρT dt
2m Eµ0

”

upAT, Xq ´ C dt
2m

pITq

ı

.

“
ÿ

e´ρT dt
2n

2m´n´1
ÿ

τ“0

e´ρτ dt
2m Eµ0

”

upA2m´nT`τ, Xq ´ C dt
2m

pI2m´nT`τq

ı

(B.12)

The second equality is get by rewriting T “ 2m´nT1 ` τ. Then take summation first over

τ then over T1 (and relabel T1 to be T).

Now we construct an experimentation strategy for problem with dt
2n . We combine all ex-

periments between 2m´nT and 2m´npT ` 1q, and get the joint distribution of posteriors.

We use this as the signal structure in each period T. Given this construction, at the end

of each 2m´nT, the posterior distribution will be exactly same as that using original ex-

periment. Then we assign same action as before to each posterior. By construction this

action profile satisfies Markov property of information (i.e. signal realization is a suffi-

cient statistics for action). Therefore if we let Upµ0q be the discounted expected utility
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associated with the aforementioned strategy at µ0:

Vdt
2n

pµ0q

ěUpµ0q

“
ÿ

e´ρT dt
2n

¨

˝

2m´n´1
ÿ

τ“0

e´ρ dt
2n Eµ0rupA2m´nT`τ, Xqs ´ Eµ0

»

–C dt
2n

¨

˝

2m´n´1
ÿ

τ“0

Eµ2m´nT
rI2m´nT`τs

˛

‚

fi

fl

˛

‚

ě
ÿ

e´ρT dt
2n

¨

˝

2m´n´1
ÿ

τ“0

e´ρ dt
2n Eµ0rupA2m´nT`τ, Xqs ´ Eµ0

»

–C dt
2n

¨

˝

2m´n´1
ÿ

τ“0

I2m´nT`τ

˛

‚

fi

fl

˛

‚

ě
ÿ

e´ρT dt
2n

¨

˝

2m´n´1
ÿ

τ“0

e´ρ dt
2n Eµ0rupA2m´nT`τ, Xqs ´ Eµ0

»

–

2m´n´1
ÿ

τ“0

1
2m´n C dt

2n

`

2m´n ¨ I2m´nT`τ

˘

fi

fl

˛

‚

“
ÿ

e´ρT dt
2n

¨

˝

2m´n´1
ÿ

τ“0

e´ρ dt
2n Eµ0rupA2m´nT`τ, Xqs ´ Eµ0

»

–

2m´n´1
ÿ

τ“0

C dt
2m

pI2m´nT`τq

fi

fl

˛

‚ (B.13)

“e´ρ dt
2n
ÿ

e´ρT dt
2n

2m´n´1
ÿ

τ“0

Eµ0rupA2m´nT`τ, Xqs ´
ÿ

e´ρT dt
2n

2m´n´1
ÿ

τ“0

Eµ0C dt
2m

pI2m´nT`τq

ąe´ρ dt
2n
ÿ

e´ρT dt
2n

2m´n´1
ÿ

τ“0

e´ρτ dt
2m Eµ0rupA2m´nT`τ, Xqs

´ eρ dt
2n
ÿ

e´ρT dt
2n

2m´n´1
ÿ

τ“0

e´ρτ dt
2m Eµ0

”

C dt
2m

pI2m´nT`τq

ı

ěV dt
2m

pµ0q ´

´

1 ´ e´ρ dt
2n
¯

max v ´

´

eρ dt
2n ´ 1

¯

max v

“V dt
2m

pµ0q ´

´

eρ dt
2n ´ e´ρ dt

2n
¯

max v (B.14)

Where max v is an upper bounded of total utility from action. The second and third

inequalities are from concavity of f . Equation (B.13) . is obtained by definition of Cdtp¨q “

dt ¨ C
`

¨
dt

˘

. Noticing that Equation (B.13) . is different from Equation (B.12) . by only one term:

the discounting term in inner summation (e´ρ dt
2m instead of e´ρ dt

2n ). This characterizes the

experiment design in problem dt
2n . In each period T, actions are all postponed to the end
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of period. Therefore they are discounted by at most dt
2n , which is period length and costs

are shifted to the beginning of each period. The next inequality is from e´ρ dt
2m ă 1 and

m ą n. By Lemma 1.2 ., both utility gain and information cost are uniformly bounded by

max v, then
∥∥∥Vdt

2n
´ V dt

2m

∥∥∥ ď max v
´

eρ dt
2n ´ e´ρ dt

2n
¯

Ñ 0 when n Ñ 0.

• Step 2: Prove that @dt ą 0, Vdt are identical, WLOG we can call it Vpµq. @dt, dt1 ą 0, @n,

consider Vdt
2n

. Pick m large enough that there exists N s.t. dt
2n`1 ď N dt1

2m ď dt
2n ď pN ` 1q dt1

2m .

Consider optimal experimentation and action associated with dt
2n , we construct experi-

mentation strategy for problem with dt1

2m . For each time period T in the original problem,

split the experiment in period T into N ` 1 periods and take any action at the end of

N ` 1th period (apply Lemma B.3. recursively). In the new experiment strategy, the ef-

fective period length will increase from dt
2n to pN ` 1q dt1

2m . First, suppose the information

measure incurred in any period is I in problem with dt
2n . Then per-period information

measure from the aforementioned strategy is I
N`1 ď 2n´m dt1

dt I. This leads to per-period

cost dt1

2m ¨ C
´

I¨2m

pN`1qdt1

¯

ď 1
N

dt
2n ¨ C

´

2n¨I
dt

¯

. Therefore, the total cost from experimentation will

increase by no more than N`1
N times and that will be bounded by 1

N max v. Second, since

induced posterior distribution and action distribution are still the same, Markov property

still holds. Finally:

Vdt1
2m

pµ0q ´ Vdt
2n

pµ0q ě
ÿ

e´ρTpN`1q dt1
2m Eµ0rupAT, Xqs ´

ÿ

eρT dt
2n Eµ0rupAT, Xqs ´

1
N

max v

“ ´
ÿ

ˆ

e´ρT dt
2n ´ e´ρTpN`1q dt1

2m

˙

Eµ0rupAT, Xqs ´
1
N

max v

ě ´ max v
ˇ

ˇ

ˇ

ˇ

ÿ

e´ρT dt
2n ´

ÿ

e´ρTpN`1q dt1
2m

ˇ

ˇ

ˇ

ˇ

´
1
N

max v

“ ´ max v
e´ρ dt

2n ´ e´ρpN`1q dt1
2m

´

1 ´ e´ρ dt
2n
¯´

1 ´ e´ρpN`1q dt1
2m
¯ ´

1
N

max v

ě ´ max v
e´ρN dt1

2m ´ e´ρpN`1q dt1
2m

p1 ´ e´ρ dt
2n q2

´
1
N

max v
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“ ´ max v
e´ρN dt1

2m

p1 ´ e´ρ dt
2n q2

peρ dt1
2m ´ 1q ´

1
N

max v

ě ´ max v

¨

˝

e´ρ dt
2n`1

p1 ´ e´ρ dt
2n q2

peρ dt1
2m ´ 1q `

dt1

dt ¨ 2m´n´1

˛

‚

First inequality is from suboptimality of the constructed experiment and bound of cost

difference. Second inequality is from e´ρT dt
2n ě e´ρTpN`1q dt1

2m . Third inequality is from

dt
2n ě N dt1

2m . Last inequality is from N dt1

2m ě dt
2n`1 . Take m Ñ 8 on both side, we have

Vdt1pµ0q ě Vdt
2n

pµ0q. Then take n Ñ 0 on both side Vdt1pµ0q ě Vdtpµ0q. Since this holds for

arbitrary dt, dt1 and µ0, we conclude that Vdt “ Vdt1 .

• Step 3:
∥∥Vdt ´ V

∥∥ Ñ 0 when dt Ñ 0. Fix any dt ą 0, then @ε ą 0, there exists N s.t.

@n ě N,
∥∥∥Vdt

2n
´ V

∥∥∥ ă ε
2 . Then given the proof in last part, for any dt1 ă dt

2n , suppose there

exists N s.t. dt
2n´1 ď Ndt1 ď dt

2n ď pN ` 1qdt1, then the difference between Vdt
2n

and Vdt1 will

be bounded by:

max v

¨

˝

e´ρ dt
2n`1

p1 ´ e´ρ dt
2n q

peρdt1

´ 1q `
2n`1

dt
dt1

˛

‚

Actually such N “

”

dt
2ndt1

ı

exists for any dt1 ď dt
2n . Thus there exists δ s.t. @dt1 ă δ,∥∥∥Vdt1 ´ Vdt

2n

∥∥∥ ă ε
2 , then

∥∥Vdt1 ´ V
∥∥ ă ε.

�

B.1.3.3 Lemmas for Lemma 1.3.

Lemma B.9. With Assumption A . and Assumption 1.2. satisfied. Let Vpµq “ limdtÑ0 Vdtpµq.

Then V P L (pointwise Lipschitz function).

Proof. We prove by induction on dimensionality of µ. When µ “ δx, supppµq is single-

ton. So Lemma B.9 . is trivially satisifed. Now it is sufficient to prove that V is pointwise
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Lipschitz at any interior µ.

First, since V is the uniform limit of continuous Vdt, V is continuous. @µ P ∆Xo,

suppose by contradiction V is not pointwise Lipschitz. Then D µn Ñ µ, |Vpµnq´Vpµq|
∥µn´µ∥ ě n.

There are two possibilities:

• Vpµnq´Vpµq

∥µn´µ∥ ě n. Now let νn be a point in B∆X s.t. µn, µ, νn are three ordered points on

a straight line. Let pn, qn be such that pn ` qn “ 1, pnµn ` qnνn “ µ. Pick any I s.t.

CpIq ă 8 We have:

I
Vpνnq ´ Vpµq `

Vpµnq´Vpµq

∥µn´µ∥ ∥νn ´ µ∥

Hpµq ´ Hpνnq ´
Hpµnq´Hpµq

∥µn´µ∥ ∥νn ´ µ∥
ě I

Vpνnq ´ Vpµq ` n∥νn ´ µ∥
Hpµq ´ Hpνnq ´

Hpµnq´Hpµq

∥µn´µ∥ ∥νn ´ µ∥

Noticing that the only difference between LHS and RHS is that Vpµnq´Vpµq

∥µn´µ∥ is replaced

with n on RHS. Since the nominator is bounded, µ being interior suggesting ∥νn ´ µ∥ is

strictly positive in the limit. Take n Ñ 8 on RHS, we observe that RHS goes to infinity.

Therefore, there exists N s.t. @n ě N, RHS is larger than 3ρ sup F ` 2CpIq.

I
Vpνnq ´ Vpµq `

Vpµnq´Vpµq

∥µn´µ∥ ∥νn ´ µ∥

Hpµq ´ Hpνnq ´
Hpµnq´Hpµq

∥µn´µ∥ ∥νn ´ µ∥
ě 3ρ sup F ` 2CpIq

ùñ
p∥µn ´ µ∥qVpνnq ` ∥νn ´ µ∥Vpµnq ´ p∥µn ´ µ∥ ` ∥νn ´ µ∥qVpµq

´∥µn ´ µ∥Hpµnq ´ ∥νn ´ µ∥Hpµnq ` p∥µn ´ µ∥ ` ∥νn ´ µ∥qHpµq
ě

3ρ

I
sup F `

2CpIq

I

ùñ
pnVpµnq ` qnVpνnq ´ Vpµq

´pnHpµnq ´ qnHpνnq ` Hpµq
ě

3ρ

I
sup F `

2CpIq

I

ùñ
pnVpµnq ` qnVpνnq ´ Vpµq

Ipµn, νn|µq
ě

3ρ

I
sup F `

2CpIq

I

ùñ pnVpµnq ` qnVpνnq ´ Vpµq ě
3ρ

I
sup FIpµn, νn|µq ` 2CpIq

Ipµn, νn|µq

I

ùñ pnVpµnq ` qnVpνnq ´ 2CpIq
Ipµn, νn|µq

I
ě Vpµq

´

1 ` 2
ρ

I
Ipµn, νn|µq

¯

` sup F
ρ

I
Ipµn, νn|µq

ùñ pnVpµnq ` qnVpνnq ´ 2CpIq
Ipµn, νn|µq

I
ě Vpµqe

ρ
I Ipµn,νn|µq ` sup F

ρ

I
Ipµn, νn|µq
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Last inequality comes from @x ą 0, 1 ` 2x ą ex. Now we have:

e´ρ
Ipµn ,νn|µq

I
`

pnVpµnq ` qnVpνnq
˘

´ 2e´ρ
Ipµn ,νn|µq

I CpIq
Ipµn, νn|µq

I

ěVpµq ` e´ρ
Ipµn ,νn|µq

I sup F
ρ

I
Ipµn, νn|µq

Since µn are converging to µ, limnÑ8 Ipµn, νn|µq “ 0. Then we can pick N sufficiently

large that @n ě N:

e´ρ
Ipµn ,νn|µq

I
`

pnVµn ` qnVpνnq
˘

´
Ipµn, νn|µq

I
CpIq ě Vpµq `

ρIpµn, νn|µq

2I
sup F

From now on, we keep n fixed. Then we pick dt “
Ipµn,νn|µq

I and dtm “ dt
2m . m is chosen

sufficiently large that
ˇ

ˇV ´ Vdtm

ˇ

ˇe
ρ
I Ipµn,νn|µq ă

ρIpµn,νn|µq

8c sup F, then:

e´ρ
Ipµn ,νn|µq

I
`

pnVdtmpµnq ` qnVdtmpνnq
˘

´ dtC
ˆ

Ipµn, νn|µq

dt

˙

ě Vdtmpµq `
ρdt
4

sup F

We consider an experimentation strategy that divides information measure Ipµn, νn|µq

into 2m periods uniformly, and wait until the end of the 2m periods to take action:

e´ρdt`pnVdtmpµnq ` qnVdtmpνnq
˘

´

2m´1
ÿ

τ“0

e´ρτdtm dtm ¨ C
ˆ

Ipµn, νn|µq{2m

dtm

˙

ąe´ρdt`pnVdtmpµnq ` qnVdtmpνnq
˘

´

2m´1
ÿ

τ“0

e´ρdtdtm ¨ C
ˆ

Ipµn, νn|µq{2m

dtm

˙

“e´ρdt
ˆ

pnVdtmpµnq ` qnVdtmpνnq ´ dt ¨ C
ˆ

Ipµn, νn|µq

dt

˙˙

ěVdtmpµq `
ρdt
4

sup F

First line is expected utility from taking the aforementioned experiment at µ. Second

line is replacing all discounting in cost with a term larger than 1. Taking m sufficiently
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large, last line will be strictly larger than Vdtmpµq. Thus this experiment dominates

optimal value of dtm problem at µ. Contradiction.

• Vpµnq´Vpµq

∥µn´µ∥ ď ´n. Then pick νn P B∆X s.t. µ, µn, νn are three ordered points on a straight

line. Let pn, qn be such that pn ` qn “ 1, pnµ ` qnνn “ µn. Pick any I s.t. CpIq ă 8. We

have:

I
Vpνnq ´ Vpµnq `

Vpµq´Vpµnq

∥µn´µ∥ ∥νn ´ µn∥

Hpµnq ´ Hpνnq ´
Hpµq´Hpµnq

∥µn´µ∥ ∥νn ´ µn∥
ě I

Vpνnq ´ Vpµnq ` n∥νn ´ µn∥
Hpµnq ´ Hpνnq ´

Hpµq´Hpµnq

∥µn´µ∥ ∥νn ´ µn∥

Take n Ñ 8 on RHS, we observe that RHS goes to infinity. Therefore, there exists N s.t.

@n ě N, RHS is larger than 3ρ sup F ` 2CpIq.

ùñ pnVpµq ` qnVpνnq ´ 2CpIq
Ipµ, νn|µnq

I
ěVpµnq ` 3

ρIpµ, νn|µnq

I
sup F

ěeρ
Ipµ,νn|µnq

I Vpµnq `
ρIpµ, νn|µnq

I
sup F

Similar to last part, N can be chosen sufficiently large that:

e´ρ
Ipµ,νn|µnq

I
`

pnVpµq ` qnVpνnq
˘

´
Ipµ, νn|µnq

I
CpIq ě Vpµnq `

ρIpµ, νn|µnq

I
sup F

Then pick dt “
Ipµ,νn|µnq

I and dtm “ dt
2m . m can be chosen sufficiently large that:

e´ρdt`pnVdtmpµq ` qnVdtmpνnq
˘

´ dtCpIq ě Vdtmpµnq `
ρdt
2

sup F

We consider a similar experimentation strategy as before that divides experiment uni-

formly:

e´ρdt`pnVdtmpµq ` qnVdtmpνnq
˘

´

2m´1
ÿ

τ“0

e´ρτdtm dtm ¨ C
ˆ

Ipµ, νn|µnq{2m

dtm

˙
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ě Vdtmpµnq `
ρdt
4

sup F

RHS is strictly larger than Vdtmpµnq. This experiment dominates optimal experiment of

dtm problem at µn. Contradiction.

�

Lemma B.10. @ f pxq differentiable on pa, bq. @x, y P pa, bq,

1
2

inf
zPpx,yq

D2 f pz, yq|y ´ x|
2

ď f pyq ´ f pxq ´ f 1pxqpy ´ xq ď
1
2

sup
zPpx,yq

D2 f pz, yq|y ´ x|
2

Proof.

• First inequality: let D “ infzPpx,yq D2 f pz, yq. Suppose by contradiction the statement

is not true, then there exists ε s.t. D´ε
2 |y ´ x|

2
ą f pyq ´ f pxq ´ f 1pxqpy ´ xq. Let

hpwq “ f pwq ´ f pxq ´ f 1pxqpw ´ xq ´
D´ε

2 pw ´ xq2. Then hpxq “ 0, h1pxq “ 0 and

hpyq ă 0. Now consider maxz hpzq ´
hpyq

y´x pz ´ xq. By continuity of h, maximizer z˚

exists in rx, ys. FOC implies h1pz˚q “
hpyq

y´x so z˚ ‰ x. The objective function is 0 at

both x, y so z˚ ‰ y. Then optimality of z˚ implies @dz sufficiently small:

hpz˚ ` dzq ´
hpyq

y ´ x
pz˚ ` dz ´ xq ď hpz˚q ´

hpyq

y ´ x
pz˚ ´ xq

ùñ f pz˚ ` dzq ´ f pz˚q ´ f 1pxqdz ´
D ´ ε

2
p2z˚ ´ 2x ` dzqdz

ď dzp f 1pz˚q ´ f 1pxq ´ pD ´ εqpz˚ ´ xqq

ùñ
f pz˚ ` dzq ´ f pz˚q ´ f 1pz˚qdz

dz2 ď
D ´ ε

2

ùñ D2 f pz˚, yq ă D

Contradiction.
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• Second inequality: let D “ supzPpx,yq D2pz, yq. Suppose by contradiction the state-

ment is not true, then there exists ε s.t. D`ε
2 |y ´ x|

2
ă f pyq ´ f pxq ´ f 1pxqpy ´ zq. Let

hpwq “ f pwq ´ f pxq ´ f 1pxqpw ´ xq ´ D`ε
2 pw ´ xq2. Then hpxq “ 0, h1pxq “ 0 and

hpyq ą 0. Now consider minz hpzq ´
hpyq

y´x pz ´ xq. By continuity of h, minimizer z˚

exists in rx, ys. FOC implies h1pz˚q “
hpyq

y´z so z˚ ‰ x. Then optimality of z˚ implies

@dz sufficiently small:

hpz˚ ` dzq ´
hpyq

y ´ x
pz˚ ` dz ´ xq ě hpz˚q ´

hpyq

y ´ x
pz˚ ´ xq

ùñ f pz˚ ` dzq ´ f pz˚q ´ f 1pxqdz ´
D ` ε

2
p2z˚ ´ 2x ` dzqdz

ě dzp f 1pz˚q ´ f 1pxq ´ pD ` εqpz˚ ´ xqq

ùñ
f pz˚ ` dzq ´ f pz˚q ´ f 1pz˚qdz

dz2 ě
D ` ε

2

ùñ D2 f pz˚, yq ą D

Contradiction.

�

B.2 Proofs in Section 1.6.

B.2.1 Proof and lemmas of Theorem 1.2 .

Proof of smoothness in Theorem 1.2.

I first show that there exists a set of µ0 such that on each interval when Vpµq ą Fpµq,

Vpµq is defined a Vµ0 . Then I utilize this result to show that V is Cp1q smooth on r0, 1s.

Proof. This is true when µ ď µ˚˚ by definition of Vµ˚ . So I prove this for µ ą µ˚˚. First

prove some useful lemmas:

Lemma B.11. @k, there exists µ0 P Ω s.t. Vµ0pµ
k
q ą Fpµ

k
q.
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Proof. Suppose F “ Fk´1 at µ˚˚. Equation (A.18) . implies µ
k

ą µ˚˚ ą µ
k´1

. Consider:

Ukpµq “ max
νěµ

c
ρ

Fpνq ´ Fpµq ´ F1´pµqpν ´ µq

Jpµ, νq

Uk is continuous by maximum theorem on rµ˚˚, µ
k
q. Since Ukpµ˚˚q “ Fpµ˚˚q, limµÑµ

k
Ukpµq “

`8, there exists µ0 s.t. Ukpµ0q “ Fpµ0q and Ukpµq ą Fpµq @µ P pµ0, µ
k
q. Now consider

Vµ0pµq. I claim that Vµ0pµq ą Fpµq @µ P pµ0, µkq. Suppose not, then by intermediate value

theorem, there exists µ1 s.t. Vµ0pµ1q ď Fpµq and V1
µ0

pµ1q ď Fpµq. However, this implies

Vµ0pµ1q “ max
νěµ

c
ρ

Fpνq ´ Vµ0pµ1q ´ V1
µ0

pν ´ µ1q

Jpµ1, νq
ě Ukpµ1q ą Fpµ1q

Contradiction. Now assume Vµ0 hits F at µ1
0. Then Uk`1pµ1

0q ď 0 and limµÑµ
k`1

pµq “ `8,

so we can find Vµ1pµ
k`1

q ą Fpµ
k`1

q. By induction on k, Lemma B.11. is true. �

Lemma B.12. @µ0 ď µ1 P Ω, let Ii “
␣

µ|Vνipµq ą Fpµq
(

. Then either I0
Ş

I1 “ H, or I1 Ă I0

and Vµ0 ě Vµ1 .

Proof. The only possible contradiction of Lemma B.12 . is that Dµ1 P I0
Ş

I1 s.t. Vµ1pµ1q ą

Vµ0pµ1q. Since at µ1, Vµ0pµ1q ą Vµ1pµ1q “ Fpµ1q, by intermediate value theorem, there

exists ξ P pµ1, µ1q s.t. Vµ1pξq ą Vµ0pξq and V1pµ1qpξq ą V1pµ0qpξq. Since ξ P I1, there exists

ν, m solving Equation (A.18) . for Vµ1pξq:

Vµ0pξq ě
c
ρ

Fmpνq ´ Vµ0pξq ´ V1
µ0

pξqpν ´ ξq

Jpξ, νq

ą
c
ρ

Fmpνq ´ Vµ1pξq ´ V1
µ1

pξqpν ´ ξq

Jpξ, νq
“ Vµ1pξq ą Vµ0pξq

Contradiction. So Lemma B.12. is true. �

Lemma B.13. V “
␣

maxn
i“1

␣

Vνi

((

νiPΩ,nPN
is totally bounded and equi-continuous on rµ˚˚, 1s.
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Proof. Vµ˛ is bounded above by sup Fpµq and below by inf Fpµq. Consider V1
µ˛ . When

Vµ˛pµq “ Fpµq, obviously direvative is bounded by max|F1|. When Vµ˛pµq ą Fpµq. Sup-

pose V1
µ˛pµq ą max|F1|, then Fpνq ´ Vµ˛pµq ´ V1

µ˛pµqpν ´ µq ă Fpνq ´ Fpµq ´ F1pνqpν ´ µq ď

0, contradiction. By Lemma A.3 ., V1
µ˛ ě 0. So V1

µ˛ are uniformly bounded in r0, max|F1|s.

Now consider @n, @νi P Ω, Vνi P rinf F, sup Fs ùñ maxi
␣

Vνi

(

P rinf F, sup Fs. By

Lemma B.12., max
␣

Vνi

(

is piecewisely defined as Vνi on finite disjoint intervals. So its

derivative is piecewisely defined as V1
νi

, therefore bounded in r0, max|F1|s. Therefore V is

totally bounded and equi-continuous on rµ˚˚, 1s. �

Lemma B.14. There exists ∆ s.t. @νi P Ω, on
␣

µ|Vνipµq ą Fpµq
(

, V1pµq has Lipschitz parameter

∆.

Proof. @µ P ppµk`1, pµkq, ν is smooth in µ and V1
νi

ą 0, by envelope theorem:

V1
νi

pµq “ ´
c
ρ

ν ´ µ

Jpµ, νq

´

V2
νi

pµq `
ρ

c
VpµqH2pµq

¯

ą 0

ùñ V2
νi

pµq `
ρ

c
VνipµqH2pµq ă 0

Vνipµq is bounded by sup F. It is easy to see that sup Ω ă µ
n

(where n is the largest

index). By Lemma B.11 ., there is µ0 P Ω s.t. Vµ0pµ
n
q ą Fpµ

n
q. By Lemma B.12 ., sup Ω “

sup
␣

µ|Vµ0pµq ą Fpµq
(

ă νpµ0q ă 1. Therefore, µ is bounded away from 1. Then by

Assumption 1.3., ´H2pµq is bounded above. Therefore, ∆ exists for all such µ.

Then consider µ “ pµk, since V2
νi

is bounded on both side by ∆, V2
νi

pµq ď ∆. Therefore

at µ V1
νi

has Lipschitz parameter ∆ by Kirszbraun theorem. �

• Step 1: prove V P Crµ˚˚, 1s.

Sort all rational numbers in rµ˚˚, 1s as trnu. @N, there exists µn,M P Ω s.t. Vprnq ´
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Vµn,Mprnq ď 1
N . Let VN “ maxn

␣

Vµn,N

(

, then tVNu Ă V and VN converges to V point-

wisely on trnu. Let pV “ lim Vn, by Lemma B.13 ., pV P Crµ˚˚, 1s. By definition pV ď V.

Suppose pVpµq ă Vpµq, then there exists Vµ0pµq ą pVpµq. Since both Vµ0 and pV are

continuous, Vµ0 ą pV on an open interval, containing some rn. Contradiction. So

pV “ V P Crµ˚˚, 1s. Let tµ ě µ˚˚|Vpµq ą Fpµqu “
Ť

Im where Im are disjoint open

intervals.

• Step 2: prove @Im, exists µn P Ω s.t. Vpµq “ lim Vµnpµq and V1pµq “ lim V1
µnpµq on Im.

Pick any µ P Im. Let Θpµq “
␣

µ˛ P Ω|Vµ˛pµq ą Fpµq
(

. Then by definition of Vpµq,

Θpµq is non-empty. Let rV “ supµ˛PΘpµq Vµ˛ . @N, there exists µn,M P Θpµq s.t. rVprnq ´

Vµn,N prnq ď 1
N . Since Vµn,N pµq ą Fpµq, by Lemma B.12 ., there exists VµN “ max

␣

Vµn,N

(

.

Therefore, lim VµN “ rV on trnu. By Lemma B.13 .

rV “ lim VµN P Crµ˚˚, 1s. Now suppose

Vpµq ą rVpµq, then there exists Vµ˛pµq ą Vµnpµq ą Fpµq. Then µ˛ P Θpµq by Lemma B.12.,

contradiction. Therefore, lim Vµn “ V on Im.

Let Im “ pam, bmq. Now consider tV1
µnu. V1

µnpamq “ F1pamq. Lemma B.14. implies that V1
µn

are totally bounded and equi-continuous on Im. Therefore, there exists subsequence

V1
µn being Cauchy w.r.t. sup norm on ram, bms. So V as limit of Vµn is differentiable on

ram, bms and V1 “ lim V1
µn .1 .

• Step 3: prove @Im, exists µm P Ω s.t. Vpµq “ Vµm on Im.

Let µm “ inf Im. By step 2, it is easy to verify that µn Ñ µm. Then since Equation (A.19) .

is continuous in µ, it is satisfied at µm and µm P Ω. Since both Vµn and V1
µn converges

on Im, Equation (A.18) . is satisfied for V on Im. Let Fpµmq “ Fkpµmq.

As an intermediate step, I first prove that Equation (A.18) . is solved for k1 ą k in a non-

degenerate neighbour of µm. Take any µ1 ą µm s.t. Vpµ1q ą Fpµ1q, since Vpµmq “ Fkpµmq,

there exists µ‹ P pµm, µ1q and ε ą 0 s.t @µ P pµm, µ‹q Vpµq ´ Fkpµq ă Vpµ1q ´ Fkpµ1q ´ ε.

1This result is ex. 14.2.7 from Tao (2016.).
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I claim that Equation (A.18) . is solved at all µ P pµm, µ‹q with k1 ą k. Suppose not, then

for n sufficiently large:

Vµnpµq “
c
ρ

Fkpνq ´ Vµnpµq ´ V1
µnpµqpν ´ µq

Jpµ, νq

ď
c
ρ

Fkpνq ´ Fkpµq ´ V1
µnpµqpν ´ µq

Jpµ, νq

“pF1
k ´ V1

µnpµqq
ν ´ µ

Jpµ, νq

Therefore F1
k ě V1

µnpµq. By construction of Vµn at any µ2 ě µ Equation (A.18) . is solved

with k, therefore F1
k ě Vµnpµ2q holds for all µ2 ě µ. This implies @µ2 ě µ, Vµnpµ2q ´

Fkpµ2q ď Vµnpµq ´ Fkpµq ă Vpµ1q ´ Fkpµ1q ´ ε. Take n Ñ 8 and µ2 “ µ1, contradiction.

Therefore, Equation (A.18). is solved at all µ P pµm, µ‹q for Vpµq with k1 ą k.

Now consider Vµmpµq. By my construction, suppose Vµm is updated up to action k ` 1.

I claim that Vµm “ V when µ P rµm, µ‹q. Suppose not true, then there exists µ at which

Vµmpµq ă Vpµq, V1
µmpµq ă V1pµq. It is easy to verify that Equation (A.18). is violated at

Vµmpµq. Therefore, if Vµm “ V, it must happen in pµ‹, bmq. Again we can find µ P pµ‹, bmq

s.t. Vµmpµq ă Vpµq, V1
µmpµq ă V1pµq, which is not possible. So Vpµq “ Vµmpµq on Im.

To sum up, V can be represented as:

Vpµq “

$

’

’

’

’

’

&

’

’

’

’

’

%

Vµ˚pµq if µ P rµ˚, µ˚˚s

Vµmpµq if µ P Im

Fpµq otherwise

Now I prove smoothness of Vpµq on rµ˚, 1s. By Lemma B.14 ., @µ P Im:

F1pamq ´ ∆|µ ´ am| ď V1pµq ď F1pamq ` ∆|µ ´ am|
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F1pbmq ` ∆|µ ´ bm| ě V1pµq ě F1pbmq ´ ∆|µ ´ bm|

Therefore |V1pµq ´ F1pµq| is bounded by ∆|In|. Define:

Vnpµq “

$

’

&

’

%

Vµmpµq when µ P Im, m ď n

Fpµq otherwise

Then Vnpµq Ñ Vpµq. By Lemma B.11., we can without loss assume first n Vµm have Im

covering µ
m

. Fix n, @µ, @m ě n, if µ P Im and m ď n or µ R
Ť

Im, then V1
npµq “ V1

mpµq,

else if µ P Im, m ą n, then |V1
npµq ´ F1pµq| and |V1

mpµq ´ F1pµq| are all bounded by ∆|Im|.

Therefore, V1
npµq is a Cauchy sequence. Then V1

npµq Ñ V1pµq pointwise. Since each V1
n is

continuous, V is a smooth function on r0, 1s and V1 “ F1 when V “ F. �

Other lemmas for Theorem 1.2.

Lemma B.15. @δ, η ą 0, @µ, ν s.t. µ, ν P pδ, 1 ´ δq, |Fmpµq| ą η,

Lpµ, νq “ Jpν, µq
F1

m
`

1 `
ρ
c Jpµ, νq

˘

`
ρ
c FmpνqpH1pνq ´ H1pµqq

pν ´ µqFmpµqH2pνq

Lpµ, νq is uniformly Lipschtiz continuous in ν and continuous in µ.

Proof. There exists σ, ∆ ą 0 s.t. @µ P pδ, 1 ´ δq

$

’

’

’

’

’

&

’

’

’

’

’

%

∆ ě |Fmpµq| ě η

∆ ě
ˇ

ˇH2pµq
ˇ

ˇ ě ε

∆ ě
ˇ

ˇH1pµq
ˇ

ˇ, |Hpµq|,
ˇ

ˇF1
m
ˇ

ˇ

Since rδ, 1 ´ δs is compact, H2 is Lipschitz continuous on rδ, 1 ´ δs with Lipschitz param-
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eter ∆. Then:

ˇ

ˇLpµ, νq ´ Lpµ, ν1q
ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

Jpν, µq

pν ´ µqFmpµq

ˇ

ˇ

ˇ

ˇ

¨

ˇ

ˇ

ˇ

ˇ

ˇ

F1
m
`

1 `
ρ
c Jpµ, νq

˘

`
ρ
c FmpνqpH1pνq ´ H1pµqq

H2pνq
´

F1
m
`

1 `
ρ
c Jpµ, ν1q

˘

`
ρ
c Fmpν1qpH1pν1q ´ H1pµqq

H2pν1q

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

Jpν, µq

ν ´ µ
´

Jpν1, µq

ν1 ´ µ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

F1
m
`

1 `
ρ
c Jpµ, ν1q

˘

`
ρ
c Fmpν1qpH1pν1q ´ H1pµqq

H2pν1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2∆
ηε

ˇ

ˇ

ˇ

ˇ

F1
mp1`

ρ
c Jpµ,νqq`

ρ
c FmpνqpH1pνq´H1pµqq

´F1
mp1`

ρ
c Jpµ,ν1qq`

ρ
c Fmpν1qpH1pν1q´H1pµqq

ˇ

ˇ

ˇ

ˇ

`
2∆
η

ˇ

ˇ

ˇ

ˇ

H2pν1q ´ H2pµq

H2pν1qH2pµq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
F1

m

´

1 `
ρ

c
Jpµ, ν1q

¯

`
ρ

c
Fmpν1qpH1pν1q ´ H1pµqq

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

Jpν, µq

ν ´ µ
´

Jpν1, µq

ν1 ´ µ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

F1
m
`

1 `
ρ
c Jpµ, ν1q

˘

`
ρ
c Fmpν1qpH1pν1q ´ H1pµqq

H2pν1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2∆
ηε

ˇ

ˇ

ˇ

ˇ

F1
mp1`

ρ
c Jpµ,νqq`

ρ
c FmpνqpH1pνq´H1pµqq

´F1
mp1`

ρ
c Jpµ,ν1qq`

ρ
c Fmpν1qpH1pν1q´H1pµqq

ˇ

ˇ

ˇ

ˇ

`
2∆
η

ˇ

ˇ

ˇ

ˇ

H2pν1q ´ H2pµq

H2pν1qH2pµq

ˇ

ˇ

ˇ

ˇ

´

∆ `
ρ

c
5∆2

¯

`

ˇ

ˇ

ˇ

ˇ

Jpν, µq

ν ´ µ
´

Jpν1, µq

ν1 ´ µ

ˇ

ˇ

ˇ

ˇ

∆ `
ρ
c 5∆2

ε

ď
2∆
ηε

ˇ

ˇ

ˇ
F1

m

´ρ

c
H1pνq

¯

`
ρ

c
FmpµqH2prνq

ˇ

ˇ

ˇ

ˇ

ˇν ´ ν1
ˇ

ˇ`
2∆2 ` 10 ρ

c ∆3

ηε2 ∆
ˇ

ˇν1 ´ ν
ˇ

ˇ

`
∆ `

ρ
c 5∆2

ε

ˇ

ˇ

ˇ

ˇ

´H2prν ´
Jprν, µq

prν ´ µq2 q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇν1 ´ µ
ˇ

ˇ

ď
2∆
ηε

ˇ

ˇ

ˇ
2

ρ

c
∆2

ˇ

ˇ

ˇ

ˇ

ˇν ´ ν1
ˇ

ˇ`
2∆2 ` 10 ρ

c ∆3

ηε2 ∆
ˇ

ˇν1 ´ ν
ˇ

ˇ`
∆ `

ρ
c 5∆2

ε

ˇ

ˇ

ˇ

ˇ

´H2prνq `
1
2

H2prrνq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇν1 ´ µ
ˇ

ˇ

ď

˜

4ρ
c ∆3

ηε
`

2∆3 ` 10ρ
c ∆4

ηε2 `
2∆2 ` 10ρ

c ∆3

ε

¸

ˇ

ˇν1 ´ ν
ˇ

ˇ

Therefore, Lpµ, νq is uniformly Lipschitz continuous in ν. It is easy to see that Lpµ, νq is

continuous in µ when µ is bounded away from ν. Now we only need to consider µ Ñ ν:

ˇ

ˇ

ˇ

ˇ

Lpµ, νq

ν ´ µ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

pµ ´ νqH2pν̃q
ρ
c Fmpν̃1qpν ´ µq

ρ
c pν ´ µq2FmpµqH2pνq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
∆2

η
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Therefore, Lpν, µq is uniformly Lipschitz continuous in ν and continuous in µ.

�

0.2 0.4 0.6 0.8 1.0
μ

0.2

0.4

0.6

0.8

1.0

ν

⋁(μ)=μ v(μ) ⋁m*(μ)

νpµq is defined by: ρ
c Jpνpµq, µq “ 1.

ν˚
mpµq is defined by: F1

m
`

1 `
ρ
c Jpµ, ν˚

mpµqq
˘

`
ρ
c Fmpν˚

mpµqqpH1pν˚pµqq ´ H1pµqq “ 0.
The red line and blue lines are solution path of ODE 9µ “ Lpµ, νq with initial value satis-
fying Lemma B.16 ..

Figure B.1: Phase diagram of p 9µ, 9νq.

Lemma B.16. Assume µ0 P rµ˚, 1q, Fmpµ0q ‰ 0, F1
m ě 0, ν0 P rµ0, 1q satisfies:

Fmpµ0q

´

F1
m

´

1 `
ρ

c
Jpµ0, ν0q

¯

`
ρ

c
Fmpν0qpH1pν0q ´ H1pµ0qq

¯

ě 0
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Then there is a continuous function ν on rµ0, 1s satisfying initial condition νpµ0q “ ν0. On

tµ|νpµq ą µu, ν is differentiable, strictly decreasing and satisfis ODE:

9ν “ Jpν, µq
F1

m
`

1 `
ρ
c Jpµ, νq

˘

`
ρ
c FmpνqpH1pνq ´ H1pµqq

pν ´ µqFmpµqH2pνq

Proof. Before we proceed to solving the ODE, we characterize the dynamics of pµ, νq on

r0, 1s2. Figure B.1. shows the phase diagram of 9µ, 9ν on r0, 1s2 and some important functions

that determines the dynamics of pµ, νq. The horizongtal axis is µ and vertical axis is ν. The

black line is ν “ µ. The two thin black lines characterizes νpµq as the solutions to:

1 ´
ρ

c
Jpνpµq, µq “ 0

The two dashed black lines characterizes ν˚pµq as the two solutions to:

F1
m

´

1 `
ρ

c
Jpµ, ν˚pµqq

¯

`
ρ

c
Fmpν˚pµqqpH1pν˚pµqq ´ H1pµqq “ 0

Since we are discussing the case ν ě µ, we only focus on the upper left half of the graph:

• Fpµ0q ă 0. This corresponds to the left half of the graph.

F1
m

´

1 `
ρ

c
Jpµ0, ν0q

¯

`
ρ

c
Fmpν0qpH1pν0q ´ H1pµ0qq ď 0

ùñ ν0 ě ν˚pµ0q

Therefore our initial condition means pµ0, ν0q lies in the red region. 9ν “ 0 when νpµq “

ν˚. otherwise 9ν ă 0. When Fpµq is close to 0, 9ν goes to negative infinity if ν ą ν˚pµq. So

the dynamics of ν in this region must have ν strictly decreasing and reaches ν˚ when

Fpµq “ 0. Intuitively, ν will never reach the region ν ą ν0. Then uniform Lipschtiz

continuity of Lpµ, νq on ν P rµ, ν0s, for µ P rµ0, F´1p´ηqs will be enough to guarantee
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existence of solution.

• Fpµ0q ą 0. This corresponds to the right half of the graph.

F1
m

´

1 `
ρ

c
Jpµ0, ν0q

¯

`
ρ

c
Fmpν0qpH1pν0q ´ H1pµ0qq ě 0

ùñ ν0 ď ν˚pµ0q

Our intial condition will lie below the dashed line in blue region. Lpµ, νq ă 0 in this

region and Lpµ, ν˚q “ 0. So the dynamics of ν in this region must have ν strictly decreas-

ing until it reaches ν “ µ. Then uniform Lipschtiz continuity of Lpµ, νq on ν P rµ, ν0s for

µ P rµ0, 1s will be sufficient ot guanrantee existence of solution.

Then we characterize formally the solution of ODEs:

• Fmpµ0q ą 0. Our conjecture is that solution ν will be no larger than ν0 within the region:

µ P rµ0, ν0s, ν P rµ0, ν0s. Therefore, we modify Lpµ, νq to define L̃pµ, νq on the whole

space:

L̃pµ, νq “ Lpmaxtmintµ, ν0u, µ0u, maxtmintν, ν0u, µ0uq

It’s not hard to see that L̃ is uniformly Lipschtiz continuous w.r.t ν P R for µ P r0, 1s and

continuous in µ P r0, 1s. We can apply Picard-Lindelof to solve for ODE 9̃ν “ L̃pµ, ν̃q on

the space with initial condition ν̃pµ0q “ ν0.

– Consider ν̃ on rµ0, 1s, it starts at ν0 ą µ0. It first reaches ν “ µ at µ P pµ0, 1s (we

define it to be 1 when it doesn’t exist). Then for µ P pµ0, µq, we must have Lpµ, ν̃q ă

0. Suppose not, then there exists ν̃pµq ě ν˚
mpµq ą ν0. We pick a smallest µ such that

this is true. Then this µ must be strictly larger than µ0 because Lpµ,0 , ν0q “ 0 ă
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9ν˚
mpµ0q. Then at µ, 9̃vpµq “ 0 but 9ν˚

mpµq ą 0. It’s impossible that ṽ crosses ν˚
m from

below. Contradiction. Then 9̃ν ă 0 until it hits ν “ µ.

– µ ă ν0. Suppose µ ě µ0, since ν̃ ă 0 on pµ0, µq, ν̃pµq ă ν0. Contradiction. There-

fore, ν̃ on rµ0, µs will be with region rµ0, ν0s.

In the region rµ0, µs ˆ rµ0, ν0s, L̃ coincides L. Therefore, ṽ is a solution to original ODE

Equation (A.30).. We define ν:

νpµq “

$

’

’

&

’

’

%

ν̃pµq if µ P rµ0, µs

µ if µ P rµ, 1s

It’s easy to verify that ν satisfies Lemma B.16 .. The blue line on Figure B.1 . illustrates a

solution in this case.

• Fmpµ0q ă 0. Define µ0 “ F´1p0q, our conjecture is that solution ν will be decreasing on

rµ0, µ0q. @η ą 0, define µη “ F́ 1p´ηq, we modify Lpµ, νq to define L̃pµ, νq on the whole

space:

L̃pµ, νq “ Lpmaxpminpµ, µηq, µ0q, maxtmintν, ν0u, ν˚
mpµquq

It’s not hard to see that L̃ is uniformly Lipschtiz continuous w.r.t. ν P R for µ P r0, 1s

and continuous in µ P r0, 1s. We can apply Picard-Lindelof to solve for ODE 9̃ν “ L̃pµ, ν̃q

on the space with initial condition ν̃pµ0q “ ν0. ν̃ will be strictly decreasing on pµ0, µηs.

Because when ν̃ first touches ν˚
m is must crosses from below and this is not possible.

Then, when µ P rµ0, µηs, we have Lpµ, ν̃q “ L̃pµ, ν̃q. Therefore ν̃ is a solution to original

ODE Equation (A.30) ..
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Then we extend ν̃ to rµ0, µ0q by taking η Ñ 0 and define:

νpµq “

$

’

&

’

%

ν̃pµq if µ P rµ0, µ0q

limµÑF´1p0qν̃pµq if µ “ F´1p0q

First since ν̃ is decreasing, the sup limit will actually be the limit and ν P Crµ0, µ0s. Then

we show that this extension is left differentiable at µ0. Consider:

Vpµq “
Fmpµq

1 ´
ρ
c Jpνpµq, µq

By Equation (A.31) ., we know that on rµ0, µ0q sign of V1 is determined by sign of 1 ´

ρ
c Jpνpµq, µq. At initial value, V0 ě 0 ùñ 1 ´

ρ
c Jpν0, µ0q ą 0. On the other hand, Vpµq

will be bounded above by V. So 1 ´
ρ
c Jpνpµq, µq as a continuous function of µ has to

stay above 0. Therefore V1pµq ą 0 on rµ0, µ0q. By monotonic convergence, there exists

limµÑµ0´ Vpµq. Define it as Vpµ0q. We define:

9νpµ0q “

F1
m

Vpµ0q
`

ρ
c
`

H1pνpµ0qq ´ H1pµ0q
˘

ρ
c H2pνpµ0qqpνpµ0q ´ µ0q

Now we show that 9νpµ0q “ limµÑµ0
νpµq´νpµ0q

µ´µ0 . Suppose not, there exists ε ą 0, µn Ñ µ0

s.t.
ˇ

ˇ

ˇ

9νpµ0q ´
νpµnq´νpµ0q

µn´µ0

ˇ

ˇ

ˇ
ą ε. Suppose νpµnq ą νpµ0q `

`

9νpµ0q ´ ε
˘

pµn ´ µ0q:

Vpµnq ă
Fmpµq

1 ´
ρ
c Jpν0 ` p 9νpµ0q ´ εqpµn ´ µ0q, µnq

ùñ lim
nÑ8

Vpµnq ď
F1

m
ρ
c p´H1pνpµ0qq ` H1pµ0q ` H2pνpµ0qqpνpµ0q ´ µ0qp 9νpµ0q ´ εqq

ă
F1

m
ρ
c p´H1pνpµ0qq ` H1pµ0q ` H2pνpµ0qqpνpµ0q ´ µ0q 9νpµ0qq

“Vpµ0q
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First strict inequality is from 1 ´
ρ
c Jpν, µq strictly increasing in ν. When Fmpµq ă 0,

Fmpµq

1´
ρ
c Jpν,µq

will be decreasing in ν. Second inequality is by taking limit of lower bounded

of Vpµnq with L’Hospital rule. Third strict inequality is from ε ą 0, H2 ă 0. Last

equality is from definition of 9νpµ0q. We get contradiction. Similarly, we cna rule out

νpµnq ă νpµ0q ` p 9νpµ0q ` εqpµn ´ µ0q. Therefore, we extended ν to rµ0, µ0s such that it’s

differentiable on rµ0, µ0s and smooth on pµ0, µ0q.

Let µ0 “ µ0, ν0 “ νpµ0q, ν1
0 “ 9νpµ0q, then ν0 ą µ0 and

$

’

’

&

’

’

%

1 ´
ρ
c Jpν0, µ0q “ 0

0 ă
F1

m
ρ
c pH1pµ0q´H1pν0q`H2pν0qpν0´µ0qν1

0q
“ Vpµ0q ď Vpµ0q

Then by Lemma B.17 ., we can solve for νpµq on rµ0, 1s satisfying the conditions in

Lemma B.17 .. Moreover, 9νpµ0q “ ν0, then ν is differentiable at µ0. For any other points in

tµ|νpµq ą µu, ν is Cp1q smooth. Since ν1
0 ă 0, then the solved ν will be strictly decreasing.

�

Lemma B.17. Assume Fmpµ0q “ 0, F1
m ą 0, ν0 P rµ0, 1q, ν1

0 satisfies

$

’

’

&

’

’

%

1 ´
ρ
c Jpν0, µ0q “ 0

0 ă
F1

m
ρ
c pH1pµ0q´H1pν0q`H2pν0qpν0´µ0qν1

0q
ď Vpµ0q

Then there is a continuous function ν on rµ0, 1s satifying initial condition νpµ0q “ ν0, 9νpµ0q “ ν1
0.

On tµ|νpµq ą µu, ν is differentiable, strictly decreasing and satisfies ODE:

9ν “ Jpν, µq
F1

m
`

1 `
ρ
c Jpµ, νq

˘

`
ρ
c FmpνqpH1pνq ´ H1pµqq

pν ´ µqFmpµqH2pνq

Proof. @ µ1 P pµ0, 1q, @ν1 P rµ1, ν˚
mpµ1qq, we consider the solution of ODE with initial
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condition pµ0, ν0q. @η ą 0, define µη “ F´1pηq. Then like the proof of Lemma B.16 ., we

can solve for a smooth ν on rµη, µs. ν will be strictly decreasing below ν˚
m and strictly

increasing over ν˚
m. Consider the slope of ν:

9ν “
H1pνq ´ H1pµq

H2pνqpν ´ µq
“ Lpµ, νq

ν itself satisfies ODE Equation (A.30) ., then uniqness of solution to ODE implies ν ă ν

@µ P rµη, µs. So solution must lies in the blue region in Figure B.1.. Let

Vpµq “
Fmpµq

1 ´
ρ
c Jpνpµq, µq

When ν1 Ñ νpµ1q, 1 ´
ρ
c Jpνpµq, µq Ñ 0. Thus Vpµq Ñ 8. On the other hand, when

µ1 Ñ µ0, ν1 “ µ1, Vpµq Ñ Fmpµ0q “ 0. Define

V0 “
F1

m
ρ
c
`

H1pµ0q ´ H1pν0q ` H2pν0qpν0 ´ µ0qν1
0
˘

I want to show that there exists there exists µ1, ν1 s.t. Vpµq Ñ V0 when µ Ñ µ0.

Index Vpµ0q by initial value pµ1, ν1q: V0pµ1, ν1q. I claim that V0pµ1, ν1q is continuous

in pµ1, ν1q. Suppose not, then there exists limµn
1 ,νn

1 Ñµ1,ν1 V0pµn
1 , νn

1 q ‰ V0pµ1, ν1q. On the

other hand, index Vpµηq by initial value pµ1, ν1q: Vηpµ1, ν1q, then continuous dependence

of ODE guanrantees that limµn
1 ,νn

1 Ñµ1,ν1 Vηpµn
1 , νn

1 q “ Vηpµ1, ν1q. Therefore, @N, there exists

η s.t.

ˇ

ˇ

ˇ
limµn

1 ,νn
1 Ñµ1,ν1 V0pµn

1 , νn
1 q ´ V0pµ1, ν1q

ˇ

ˇ

ˇ

|µ0 ´ µη|
ą 3N
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Then by continuity, we can have η sufficiently small that:

ˇ

ˇ

ˇ
limµn

1 ,νn
1 Ñµ1,ν1 V0pµn

1 , νn
1 q ´ Vηpµ1, ν1q

ˇ

ˇ

ˇ

|µ0 ´ µη|
ą 2N

Then we can have n sufficiently large that:

ˇ

ˇV0pµn
1 , νn

1 q ´ Vηpµn
1 , νn

1 q
ˇ

ˇ

ˇ

ˇµ0 ´ µη

ˇ

ˇ

ą N

Then there must exists µ̃N s.t. |V1pµ̃Nq| ą N. On the other hand, |V1| must be bounded

because:

Vpµq “
Fmpνq ´ V1pµqpν ´ µq

1 `
ρ
c Jpµ, νq

When V1 going to positive infinity, Vpµq will go to Fmpµq. When V1 going to negative

infinity, Vpµq will go to positive infinity. Both cases are impossible. Therefore, V0pµ1, ν1q

will be a continuous function on initial value. There exists µ1, ν1 such that limηÑ0 Vpµηq “

V0. Apply L’Hospital rule to Vpµq “
Fmpµq

1´
ρ
c Jpνpµq,µq

, we ge that:

V0 “
F1

m
ρ
c
`

H1pµ0q ´ H1pν0q ` H2pν0q limµÑµ0 ν1pµq
˘ ùñ lim

µÑµ0
ν1pµq “ ν1

0

Smoothly extend νpµq to µ0. Therefore, νpµq associated with initial value pµ1, ν1q satisfies

9νpµ0q “ ν1
0. Since ν satisfies F1

m
ρ
c pH1pµ0q´H1pνpµ0qqq

“ Vpµ0q, the assumption in Lemma B.17.

implies ν1
0 ď 0. �
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Lemma A.31. Assume µ0 ď µ˚, F1
m ď 0, V0, V1

0 satisfies:

$

’

’

&

’

’

%

Vpµ0q ě V0 ě Fmpµ0q

V0 “ max
νďµ0

c
ρ

Fmpνq ´ V0 ´ V1
0pν ´ µ0q

Jpµ0, νq

Then there exists a Cp1q smooth and strictly decreasing Vpµq defined on r0, µ0s satisfying

Vpµq “ max
νďµ

c
ρ

Fmpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq
(A.25’)

and initial condition Vpµ0q “ V0, V1pµ0q “ V1
0.

Lemma B.161. Assume µ0 P p0, µ˚s, Fmpµ0q ‰ 0, F1
m ď 0, ν0 P p0, µ0s satisfies:

Fmpµ0q

´

´F1
m

´

1 `
ρ

c
Jpµ0, ν0q

¯

`
ρ

c
Fmpν0qpH1pµ0q ´ H1pν0qq

¯

ě 0

Then Dν P Cr0, µ0s satisfying initial condition νpµ0q “ ν0. On tµ|νpµq ą νu, ν is differentiable,

strictly decreasing and satifies ODE:

ν “ Jpν, µq
F1

m
`

1 `
ρ
c Jpµ, νq

˘

`
ρ
c FmpνqpH1pνq ´ H1pµqq

pν ´ µqFmpµqH2pνq

Lemma B.171. Assume Fmpµ0q “ 0, F1
m ă 0, ν0 P p0, µ0s, ν1

0 satisfies

$

’

’

&

’

’

%

1 ´
ρ
c Jpν0, µ0q “ 0

0 ą
ρ
c pH1pµ0q ´ H1pν0q ` J2pν0qpν0 ´ µ0qν0q ě

Vpµ0q

F1
m

Then D ν P Cr0, µ0s satifying initial condition νpµ0q “ ν0, 9νpµ0q “ ν1
0. On tµ|νpµq ą µu, ν is
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differentiable, strictly decreasing and satisfies ODE:

ν “ Jpν, µq
F1

m
`

1 `
ρ
c Jpµ, νq

˘

`
ρ
c FmpνqpH1pνq ´ H1pµqq

pν ´ µqFmpµqH2pνq

Lemma B.18. Suppose at µ0, V0, V1
0, k ě 1 satisfies:

$

’

’

&

’

’

%

V0 “ max
νěµ0

c
ρ

Fm´kpνq ´ V0 ´ V1
0pν ´ µ0q

Jpµ0, νq
ě max

νěµ0

c
ρ

Fmpνq ´ V0 ´ V1
0pν ´ µ0q

Jpµ0, νq

Vpµ0q ě V0 ě Fm´kpµ0q

Vm´k is the solution as defined in Lemma A.3 . with initial condition V0, V1
0, then @µ P rµ0, νpµ0qs:

Vm´kpµq ě max
νěµ,m1Prm´k,ms

c
ρ

Fm1pνq ´ Vm´kpµq ´ V1
m´kpµqpν ´ µq

Jpµ, νq

Proof. I first claim that:

V0 ě max
νP

”

µ0,µ
m

ı

c
ρ

Vm´kpνq ´ V0 ´ V1
0pν ´ µ0q

Jpµ0, νq

Suppose not, then there exists µ1 s.t.

V0 ă
c
ρ

Vm´kpµ1q ´ V0 ´ V1
0pµ1 ´ µ0q

Jpµ0, µ1q
(B.15)

By definition of V0, we must have Vm´kpµ1q ą Fm´kpµ1q. The inequality is trivial because

if Fm´kpµ1q “ Vm´kpµ1q, then choosing µ1 will be suboptimal. Therefore νpµ1q ą µ1. Opti-

mality implies Equation (A.27) . and Equation (A.26) . at µ “ µ0:

$

’

&

’

%

F1
m´k `

ρ

c
V0H1pνpµqq “ V1

0 `
ρ

c
V0H1pµq

´

Fm´kpνpµqq `
ρ

c
V0Hpνpµqq

¯

´

´

V0 `
ρ

c
V0Hpµq

¯

“

´

V1
0 `

ρ

c
V0H1pµq

¯

pνpµq ´ µq
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We define LpV, λ, µqpµ1q as a linear function of µ1:

LpV, λ, µqpµ1q “ pVpµq ` λHpµqq ` pV1pµq ` λH1pµqqpµ1 ´ µq (B.16)

Define GpV, λqpµq as a function of µ:

GpV, λqpµq “ Vpµq ` λHpµq (B.17)

Then GpFm´k, ρ
c Vm´kpµ0qqpµ1q is a concave function of µ1. Consider:

L
´

Vm´k,
ρ

c
Vm´kpµ0q, µ0

¯

pµ1q ´ G
´

Fm´k,
ρ

c
Vm´kpµ0q

¯

pµ1q

This is a convex function and have unique minimum. Therefore, the minimum will be de-

termined by FOC. Simple calculation shows that it is minimized at νpµ0q and the minimal

value is 0.

FOC : V1
m´kpµ0q `

ρ

c
Vm´kpµ0qH1pµ0q “ F1

m´k `
ρ

c
Vm´kpµ0qH1pµ1q

It’s easy to see that this equation is identical to the FOC for νpµ0q. Now consider:

L
´

Vm´k,
ρ

c
Vm´kpµ0q, µ0

¯

pµ1q ´ G
´

Vm´k,
ρ

c
Vm´kpµ0q

¯

pµ1q

“

´

Vm´kpµ0q `
ρ

c
Vm´kpµ0qHpµ0q

¯

`

´

V1
m´kpµ0q `

ρ

c
Vm´kpµ0qH1pµ0q

¯

pµ1 ´ µ0q

´

´

Vm´kpµ1q `
ρ

c
Vm´kpµ0qHpµ1q

¯

“ ´

´

Vm´kpµ1q ´ Vm´kpµ0q ´ V1
m´kpµ0qpµ1 ´ µ0q ´

ρ

c
Vm´kpµ0qJpµ0, µ1q

¯

ă 0

The last inequality is from rewriting Equation (B.15) .. Therefrore, LpVm´k, ρ
c Vm´kpµ0q, µ0qpµ1q ´

GpVm´k, ρ
c Vm´kpµ0qqpµ1q will have minimum strictly negative. Suppose it’s minimized at
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µ1 (Since Lpµ0q ´ Gpµ0q “ 0, µ1 must be bounded away from µ0). Then FOC implies:

V1
m´kpµ0q `

ρ

c
Vm´kpµ0qH1pµ0q “ V1

m´kpµ1q `
ρ

c
Vm´kpµ0qHpµ1q

Consider:

L
´

Vm´k,
ρ

c
Vm´kpµ0q, µ1

¯

pνpµ1qq ´ G
´

Fm´k,
ρ

c
Vm´kpµ0q

¯

pνpµ1qq

“L
´

Vm´k,
ρ

c
Vm´kpµ0q, µ0

¯

pνpµ1qq ´ G
´

Fm´k,
ρ

c
Vm´kpµ0q

¯

pνpµ1qq

` Vm´kpµ1q ´ Vm´kpµ0q `
ρ

c
Vm´kpµ0qpHpµ1q ´ Hpµ0qq ´ pV1

m´kpµ0q `
ρ

c
H1pµ0qqpµ1 ´ µ0q

ěVm´kpµ1q ´ Vm´kpµ0q `
ρ

c
Vm´kpµ0qpHpµ1q ´ Hpµ0qq ´ pV1

m´kpµ0q `
ρ

c
H1pµ0qqpµ1 ´ µ0q

“G
´

Vm´k,
ρ

c
Vm´kpµ0q

¯

pµ1q ´ L
´

Vm´k,
ρ

c
Vm´kpµ0q, µ0

¯

pµ1q ą 0

In the first equality we used FOC. In the first inequality we used suboptimality of νpµ1q at

µ0. However:

0 “L
´

Vm´k,
ρ

c
Vm´kpµ1q, µ1

¯

pνpµ1qq ´ G
´

Fm´k,
ρ

c
Vm´kpµ1q

¯

pνpµ1qq

“L
´

Vm´k,
ρ

c
Vm´kpµ0q, µ1

¯

pνpµ1qq ´ G
´

Fm´k,
ρ

c
Vm´kpµ0q

¯

pνpµ1qq

`
ρ

c
pVm´kpµ1q ´ Vm´kpµqq

`

Hpµ1q ´ Hpνpµ1qq ` H1pµ1qpνpµ1q ´ µ1q
˘

ą
ρ

c
pVm´kpµ1q ´ Vm´kpµqqJpµ1, νpµ1qq ą 0

Contradiction.

Now we show Lemma B.18 .. Suppose that it is not true, then there exists µ1 P pµ0, νpµ0qq

and µ2 ě µ
m1

s.t.:

Vm´kpµ1q ă
c
ρ

Fm1pµ2q ´ Vm´kpµ1q ´ V1
m´kpµ1qpµ2 ´ µ1q

Jpµ1, µ2q
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Then by definition:

0 ďL
´

Vm´k,
ρ

c
Vm´kpµ0q, µ0

¯

pµ2q ´ G
´

Fm1 ,
ρ

c
Vm´kpµ0q

¯

pµ2q

“L
´

Fm´k,
ρ

c
Vm´kpµ0q, νpµ0q

¯

pµ2q ´ G
´

Fm1 ,
ρ

c
Vm´kpµ0q

¯

pµ2q

0 ďL
´

Vm´k,
ρ

c
Vm´kpµ0q, µ0

¯

pµ1q ´ G
´

Vm´k,
ρ

c
Vm´kpµ0q

¯

pµ1q

“L
´

Fm´k,
ρ

c
Vm´kpµ0q, νpµ0q

¯

pµ1q ´ G
´

Vm´k,
ρ

c
Vm´kpµ0q

¯

pµ1q

ùñ L
´

Fm´k,
ρ

c
Vm´kpµ1q, νpµ0q

¯

pµ2q ´ G
´

Fm1 ,
ρ

c
Vm´kpµ1q

¯

pµ2q

“L
´

Fm´k,
ρ

c
Vm´kpµ0q, νpµ0q

¯

pµ2q ´ G
´

Fm1 ,
ρ

c
Vm´kpµ0q

¯

pµ2q

`
ρ

c
`

Vm´kpµ1q ´ Vm´kpµ0q
˘

Jpµ0, µ2q

ą0

L
´

Fm´k,
ρ

c
Vm´kpµ1q, νpµ0q

¯

pµ1q ´ G
´

Vm´k,
ρ

c
Vm´kpµ1q

¯

pµ1q

“L
´

Fm´k,
ρ

c
Vm´kpµ0q, νpµ0q

¯

pµ1q ´ G
´

Vm´k,
ρ

c
Vm´kpµ0q

¯

pµ1q

`
ρ

c
`

Vm´kpµ1q ´ Vm´kpµ0q
˘

Jpµ0, µ1q

ą0

Now we consider L
`

Vm´k, ρ
c Vm´kpµ1q, µ1

˘

p¨q:

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

L
´

Vm´k,
ρ

c
Vm´kpµ1q, µ1

¯

pµ1q “ G
´

Vm´k,
ρ

c
Vm´kpµ1q

¯

pµ1q

L
´

Vm´k,
ρ

c
Vm´kpµ1q, µ1

¯

pνpµ0qq ě G
´

Vm´k,
ρ

c
Vm´kpµ1q

¯

pνpµ0qq

L
´

Fm´k,
ρ

c
Vm´kpµ1q, νpµ0q

¯

pµ1q ą G
´

Vm´k,
ρ

c
Vm´kpµ1q

¯

pµ1q

L
´

Fm´k,
ρ

c
Vm´kpµ1q, νpµ0q

¯

pνpµ0qq “ G
´

Vm´k,
ρ

c
Vm´kpµ1q

¯

pνpµ0qq

ùñ

$

’

&

’

%

L
´

Vm´k,
ρ

c
Vm´kpµ1q, µ1

¯

pνpµ0qq ě L
´

Fm´k,
ρ

c
Vm´kpµ1q, νpµ0q

¯

pνpµ0qq

L
´

Vm´k,
ρ

c
Vm´kpµ1q, µ1

¯

pµ1q ă L
´

Fm´k,
ρ

c
Vm´kpµ1q, νpµ0q

¯

pµ1q
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The two equalities are directly from definition of L and G. First inequality is from subopti-

mality, second inequality is from previous calculation. Therefore L
`

Vm´k, ρ
c Vm´kpµ1q, µ1

˘

p¨q

is lower at µ1 and L
`

Fm´k, ρ
c Vm´kpµ1q, νpµ0q

˘

p¨q is lower at νpµ0q. Since both of them are lin-

ear fuinctions, then L
`

Vm´k, ρ
c Vm´kpµ1q, µ1

˘

p¨q must be higher at any µ2 ą νpµ0q. Therefore,

this implies:

L
´

Vm´k,
ρ

c
Vm´kpµ1q, µ1

¯

pµ2q ą G
´

Fm1 ,
ρ

c
Vm´kpµ1q

¯

pµ2q

Contradicting that µ2 is superior than νpµ1q. �

Lemma B.181. Suppose at µ0, V0, V1
0, k ě 1 satisfies:

$

’

’

&

’

’

%

V0 “ max
νďµ0

c
ρ

Fm´kpνq ´ V0 ´ V1
0pν ´ µ0q

Jpµ0, νq
ď max

νěµ0

c
ρ

Fmpνq ´ V0 ´ V1
0pν ´ µ0q

Jpµ0, νq

Vpµ0q ě V0 ě Fm`kpµ0q

Vm`k is the solution as defined in Lemma A.3 . with initial condition V0, V1
0, then @µ P rνpµ0q, µ0s:

Vm`kpµq ě max
νďµ,m1Prm,m`ks

c
ρ

Fm1pνq ´ Vm´kpµq ´ V1
m´kpµqpν ´ µq

Jpµ, νq

B.2.2 Proof of Theorem 1.3.

Proof. In this part, we introduce the algorithm to construct Vpµq and νpµq. We only dis-

cuss the case µ ě µ˚ and the case µ ď µ˚ will follow by a symmetric method.

Algorithm:

• Step 1: Define:

V`pµq “ max
νěµ

Fmpνq ´
CpIq

I Jpµ, νq

1 `
ρ
I Jpµ, νq
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V´pµq “ max
νďµ

Fmpνq ´
CpIq

I Jpµ, νq

1 `
ρ
I Jpµ, νq

V` is increasing and V´ is decreasing. There exists µ˚ P r0, 1s s.t. V`pµq ě V´pµq

when µ ě µ˚ and V´pµq ď V´pµq when µ ď µ˚ (See Lemma B.20 .). Define Vpµq “

max
␣

V`pµq, V´pµq
(

.

• Step 2: I construct the first piece of Vpµq to the right of µ˚. By Lemma B.20 ., there are

three possible cases of µ˚ to discuss (µ˚ “ 1 is omitted by symmetry).

Case 1: Suppose µ˚ P p0, 1q and Vpµ˚q ą Fpµ˚q. Then there exists pm, νpµ˚q ą µ˚, Iq s.t.

Vpµ˚q “
Fmpνpµ˚qq ´

CpIq

I Jpµ˚, νpµ˚qq

1 `
ρ
I Jpµ˚, νpµ˚qq

With initial condition pµ0 “ µ˚, V0 “ Vpµ˚q, V1
0 “ 0q, we solve for Vmpµq on rµ˚, 1s as

defined by Lemma B.22 .. Define

Vµ˚pµq “

$

’

’

&

’

’

%

Fpµq if µ ď µ˚

Vmpµq if µ ě µ˚

Be Lemma B.22 ., when Vµ˚pµq ą Fpµq, Vµ˚ is smoothly increasing and optimal νpµq is

smoothly decreasing.

Now update Vµ˚pµq with respect to more actions. Let µ̂m be the smallest µ ě µ˚ that:

Vmpµq “ max
νěµ,I

I
ρ

Fm´1pνq ´ Vmpµq ´ V1
mpµqpν ´ µq

Jpµ, νq
´

CpIq

ρ

If Vmppµmq ą Fm´1ppµmq we solve for Vm´1 with initial condition µ0 “ µ̂m, V0 “ Vmpµ̂mq, V1
0 “

V1
mpµ̂mq. Then redefine Vµ˚pµq|µěpµm “ Vm´1pµq. Otherwise skip to looking for pµm´1. If

m ´ 1 ą m, we continue this procedure by looking for µ̂m´1 until m “ m. Now suppose
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Vm first hits Fpµq at µ˚˚ ą µ˚. Vµ˚ is a smooth function on rµ˚, µ˚˚s such that:

Vµ˚pµq “

$

’

’

&

’

’

%

Fpµq if µ ď µ˚ or µ ě µ˚˚

Vkpµq if µ P rpµk, pµk´1s2
.

By construction, optimal posterior νµ˚pµq is smoothly decreasing on each ppµk`1, pµkq and

jumps down at each pµk. By Lemma B.23. and our construction, @µ P rµ˚, µ˚˚s:

Vµ˚pµq “ max
νěµ,k,I

I
ρ

Fkpνq ´ Vµ˚pµq ´ V1
µ˚pµqpν ´ µq

Jpµ, νq
´

CpIq

ρ
(B.18)

Case 2: Suppose µ˚ P p0, 1q but Vpµ˚q “ Fpµ˚q, let µ˚˚ “ inf
␣

µ|Vpµq ą Fpµq
(

.

Case 3: Suppose µ˚ “ 0, consider:

rVpµq “ max
νěµ,k,I

I
ρ

Fkpνq ´ F1pµq ´ F1
1pν ´ µq

Jpµ, νq
´

CpIq

ρ

Define µ˚˚ “ inf
!

µ
ˇ

ˇ rVpµq ą F1pµq

)

ą 0.

• Step 3: Solve for V to the right of µ˚˚. For all µ˛ ě µ˚˚ such that:

Fpµ˛q “ max
νěµ,k

I
ρ

Fkpνq ´ Fpµ˛q ´ F1´pµ˛qpν ´ µ˛q

Jpµ˛, νq
´

CpIq

ρ
(B.19)

Let m be the index of optimal action. Solve for Vm with initial condition µ0 “ µ˛, V0 “

Fpµ˛q, V1
0 “ F1´pµ˛q. Then take same steps in Step 3 and solve for pµk and Vk´1 sequen-

tially until Vm0 first hits F. This step refers to Figure A.6 .-4,5. Now suppose Vm0 first hits

1Define pµm`1 “ µ˚ and pµm “ µ˚˚ for consistency.

241



Appendix B. Supplemental materials for Chapter 1.

Fpµq at some point µ˛˛ (can potentially be µ), define:

Vµ˛pµq “

$

’

’

&

’

’

%

Fpµq if µ ă µ˛ or µ ą µ˛˛

Vkpµq if µ P rpµk`1, pµks3
.

By Lemma B.21 ., Vµ is piecewise smooth are pasted smoothly. So Vµ is a smooth func-

tion on rµ, µ2s. Optimal posterior νµ˛pµq is smoothly decreasing on each ppµk`1, pµkq and

jumps down at each pµk. By Lemma B.23. and our construction, @µ P rµ˛, µ˛˛s:

Vµpµq “ max
νěµ˛,k

I
ρ

Fkpνq ´ Vµ˛pµq ´ V1
µ˛pµqpν ´ µq

Jpµ, νq
´

CpIq

ρ
(B.18.)

Let Ω be the set of all such µ˛’s.

• Step 4: Define:

Vpµq “

$

’

’

&

’

’

%

Vµ˚pµq if µ P rµ˚, µ˚˚s

sup
µ˛PΩ

␣

Vµ˛pµq
(

if µ ě µ˚˚

Smoothness:

I want to show that Vpµq is piecewisely defined as Vµ0’s. This is true when µ ď µ˚˚ by

definition of Vµ˚ . So I prove this for µ ą µ˚˚. First it is easy to verify that Lemmas B.11 .,

B.12. and B.13. still hold. The original proof directly applies by replacing Equation (A.18) .

with Equation (B.18). and Lemma A.3 . with Lemma B.21..

Lemma B.19. There exists ∆ s.t. @µi P Ω, on
␣

µ|Vµipµq ą Fpµq
(

, V1pµq has Lipschitz parameter

∆.

3Define pµm`1 “ µ˛ and pµm0 “ µ˛˛ for consistency.
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Proof. @µ P ppµk`1, pµkq, ν is smooth in µ and V1
µi

ą 0, by envelope theorem:

V1
µi

pµq “ ´
I
ρ

ν ´ µ

Jpµ, νq

´

V2
µi

pµq ` C1pIqH2pµq

¯

ą 0

ùñ V2
µi

pµq ` C1pIqH2pµq ă 0

C1pIq is bounded since CpIq is bounded by sup F. It is easy to see that sup Ω ă µ
n

(where n

is the largest index). By Lemma B.11 ., there is µ0 P Ω s.t. Vµ0pµ
n
q ą Fpµ

n
q. By Lemma B.12 .,

sup Ω “ sup
␣

µ|Vµ0pµq ą Fpµq
(

ă νpµ0q ă 1. Therefore, µ is bounded away from 1. Then

by Assumption 1.3 ., ´H2pµq is bounded above. Therefore, ∆ exists for all such µ.

Then consider µ “ pµk, since V2
µi

is bounded on both side by ∆, V2
µi

pµq ď ∆. Therefore

at µ V1
µi

has Lipschitz parameter ∆ by Kirszbraun theorem. �

• Step 1: V P Crµ˚˚, 1s. Sort all rational numbers in rµ˚˚, 1s as trnu. @N, there exists µn,M P

Ω s.t. Vprnq ´ Vµn,Mprnq ď 1
N . Let VN “ maxn

␣

Vµn,N

(

, then tVNu Ă V and VN converges

to V pointwisely on trnu. Let pV “ lim Vn, by Lemma B.13 ., pV P Crµ˚˚, 1s. By definition

pV ď V. Suppose pVpµq ă Vpµq, then there exists Vµ0pµq ą pVpµq. Since both Vµ0 and

pV are continuous, Vµ0 ą pV on an open interval, containing some rn. Contradiction.

So pV “ V P Crµ˚˚, 1s. Let tµ ě µ˚˚|Vpµq ą Fpµqu “
Ť

Im where Im are disjoint open

intervals.

• Step 2: @Im, exists µn P Ω s.t. Vpµq “ lim Vµnpµq and V1pµq “ lim V1
µnpµq on Im. Pick any

µ P Im. Let Θpµq “
␣

µ˛ P Ω|Vµ˛pµq ą Fpµq
(

. Then by definition of Vpµq, Θpµq is non-

empty. Let rV “ supµ˛PΘpµq Vµ˛ . @N, there exists µn,M P Θpµq s.t. rVprnq ´ Vµn,N prnq ď 1
N .

Since Vµn,N pµq ą Fpµq, by Lemma B.12 ., there exists VµN “ max
␣

Vµn,N

(

. Therefore,

lim VµN “ rV on trnu. By Lemma B.13 .

rV “ lim VµN P Crµ˚˚, 1s. Now suppose Vpµq ą

rVpµq, then there exists Vµ˛pµq ą Vµnpµq ą Fpµq. Then µ˛ P Θpµq by Lemma B.12.,

contradiction. Therefore, lim Vµn “ V on Im.
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Let Im “ pam, bmq. Now consider tV1
µnu. V1

µnpamq “ F1pamq. Lemma B.19. implies that V1
µn

are totally bounded and equi-continuous on Im. Therefore, there exists subsequence

V1
µn being Cauchy w.r.t. sup norm on ram, bms. So V as limit of Vµn is differentiable on

ram, bms and V1 “ lim V1
µn .

• Step 3 @Im, exists µm P Ω s.t. Vpµq “ Vµm on Im. Let µm “ inf Im. By step 2, it is easy to

verify that µn Ñ µm. Then since Equation (B.19) . is continuous in µ, it is satisfied at µm

and µm P Ω. Since both Vµn and V1
µn converges on Im, Equation (B.18). is satisfied for V

on Im. Let Fpµmq “ Fkpµmq.

As an intermediate step, I first prove that Equation (B.18) . is solved for k1 ą k in a non-

degenerate neighbour of µm. Take any µ1 ą µm s.t. Vpµ1q ą Fpµ1q, since Vpµmq “ Fkpµmq,

there exists µ‹ P pµm, µ1q and ε ą 0 s.t @µ P pµm, µ‹q Vpµq ´ Fkpµq ă Vpµ1q ´ Fkpµ1q ´ ε. I

claim that Equation (B.18) . is solved at all µ P pµm, µ‹q with k1 ą k and I. Suppose not,

then for n sufficiently large:

Vµnpµq “
I
ρ

Fkpνq ´ Vµnpµq ´ V1
µnpµqpν ´ µq

Jpµ, νq
´

CpIq

ρ

ď
I
ρ

Fkpνq ´ Fkpµq ´ V1
µnpµqpν ´ µq

Jpµ, νq

“

´

F1
k ´ V1

µnpµq

¯ ν ´ µ

Jpµ, νq

Therefore F1
k ě V1

µnpµq. By construction of Vµn at any µ2 ě µ Equation (B.18) . is solved

with k, therefore F1
k ě Vµnpµ2q holds for all µ2 ě µ. This implies @µ2 ě µ, Vµnpµ2q ´

Fkpµ2q ď Vµnpµq ´ Fkpµq ă Vpµ1q ´ Fkpµ1q ´ ε. Take n Ñ 8 and µ2 “ µ1, contradiction.

Therefore, Equation (B.18). is solved at all µ P pµm, µ‹q for Vpµq with k1 ą k.

Now consider Vµmpµq. By my construction, suppose Vµm is updated up to action k ` 1.

I claim that Vµm “ V when µ P rµm, µ‹q. Suppose not true, then there exists µ at which

Vµmpµq ă Vpµq, V1
µmpµq ă V1pµq. It is easy to verify that Equation (B.18) . is violated at
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Vµmpµq. Therefore, if Vµm “ V, it must happen in pµ‹, bmq. Again we can find µ P pµ‹, bmq

s.t. Vµmpµq ă Vpµq, V1
µmpµq ă V1pµq, which is not possible. So Vpµq “ Vµmpµq on Im.

To sum up, V can be represented as:

Vpµq “

$

’

’

’

’

’

&

’

’

’

’

’

%

Vµ˚pµq if µ P rµ˚, µ˚˚s

Vµmpµq if µ P Im

Fpµq otherwise

Now I prove smoothness of Vpµq on rµ˚, 1s. By Lemma B.19 . |V1pµq ´ F1pµq| is bounded by

∆|In|. Define:

Vnpµq “

$

’

&

’

%

Vµmpµq when µ P Im, m ď n

Fpµq otherwise

Then Vnpµq Ñ Vpµq. By Lemma B.11., we can without loss assume first n Vµm have Im

covering µ
m

. Fix n, @µ, @m ě n, if µ P Im and m ď n or µ R
Ť

Im, then V1
npµq “ V1

mpµq,

else if µ P Im, m ą n, then |V1
npµq ´ F1pµq| and |V1

mpµq ´ F1pµq| are all bounded by ∆|Im|.

Therefore, V1
npµq is a Cauchy sequence. Then V1

npµq Ñ V1pµq pointwise. Since each V1
n is

continuous, V is a smooth function on r0, 1s and V1 “ F1 when V “ F.

Unimprovability

Finally, I prove unimprovability of Vpµq.

• Step 1: We first show that Vpµq solves the following problem:

Vpµq “ max
"

Fpµq, max
ν,m,I

I
ρ

Fmpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq
´

CpIq

ρ

*

(P-C1)
$

’

’

&

’

’

%

ν ě µ when µ ě µ˚

ν ď µ when µ ď µ˚
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We still focus on the case µ ě µ˚. For the case µ ď µ˚, a totally symmetric argument

applies by referring to Lemma B.231
.. Equation (P-C1). is implied by Equation (B.18) . for

µ P E. So it is sufficient to prove Equation (P-C1) . for µ P EC. Suppose there exists

µ ě µ˚ s.t. Equation (P-C) . is violated. Let Fpµq “ Fkpµq. Then without loss we can

assume that:

Upµq “ max
ν,k1ąk,I

I
ρ

F1
kpνq ´ Fkpµq ´ F1

kpν ´ µq

Jpµ, νq
´

CpIq

ρ
ą Fkpµq

By Lemma B.11 ., there exists Ik s.t. µ
k

P Ik. At bk “ sup Ik, Upbkq ď Fkpbkq. Therefore,

since Upµq is continuous there exists largest µ1 ă µ s.t .Upµ1q “ Fkpµ1q. Then Equa-

tion (B.19) . is satisfied at µ1 so consider Vµ1 . Sicne Vµ1pµq ď Vpµq “ Fkpµq, there exists

µ2 P pµ1, µq s.t. Vµ1pµ2q ď Fkpµq and V1
µ1pµ2q ď Fkpµq. Therefore Upµ2q ą Fkpµ2q im-

plies Vµ1pµ2q ą Fkpµ2q, contradiction. Apply a symmetric argument to µ ď µ˚, I proved

Equation (P-C)..

• Step 2: Then we show that Vpµq solves the following problem:

Vpµq “ max
"

Fpµq, max
ν,I

I
ρ

Vpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq
´

CpIq

ρ

*

(P-D1)
$

’

’

&

’

’

%

ν ě µ when µ ě µ˚

ν ď µ when µ ď µ˚

Suppose not, then there exists:

rV “ max
νěµ,I

I
ρ

Fmpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq
´

CpIq

ρ

ď Vpµq ă
I2

ρ

Vpµ2q ´ Vpµq ´ V1pµqpµ2 ´ µq

Jpµ, µ2q
´

CpI2q

ρ
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Suppose the optimizer is ν, m, I. Optimality implies Equation (B.22) .:

Vpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq
“ C1pI1q

Together with Equation (B.20) ., we have I1C1pI1q “ ρ rV ` CpI1q. Then combine with

Equation (B.21)., we get:

$

’

’

&

’

’

%

F1
m ` C1pIqH1pνq “ V1pµq ` C1pI1qH1pµq

pFmpνq ` C1pI1qHpνqq ´ pVpµq ` C1pI1qHpµqq “ pV1pµq ` C1pI1qH1pµqqpν ´ µq

We define L and G as in Theorem 1.2 .. Then L will be linear and GpFm, C1pI1qqpνq will be

a concave function of ν. Consider:

LpV, C1pI1q, µqpνq ´ GpFm, C1pI1qq

FOC implies that it will be convex and attains minimum 0 at ν. For any m1 other than

m,

LpV, C1pI1qqpνq ´ GpFm1 , C1pI1qqpνq

will be convex and weakly larger than zero. However:

LpV, C1pI1q, µqpµ2q ´ GpV, C1pI1qqpµ2q

“ ´ pVpµ2q ´ Vpµq ´ V1pµqpµ2 ´ µq ´ C1pI1qJpµ, µ2qq

ă0

247



Appendix B. Supplemental materials for Chapter 1.

The inequality is from definition of I1:

I1C1pI1q ´ CpI1q ă I2C1pI2q ´ CpI2q

ùñ C1pI1q ă C1pI2q

ùñ C1pI1q ă
Vpµ2q ´ Vpµq ´ V1pµqpµ2 ´ µq

Jpµ, µ2q

Therefore, LpV, C1pI1q, µqp¨q ´ GpV, C1pI1qqp¨q will have a strictly negative minimum. Sup-

pose it’s minimized at rµ, Then FOC implies:

V1pµq ` C1pI1qH1pµq “ V1prµq ` C1pI1qH1prµq

Consider:

L
`

V, C1pI1q, rµ
˘

pνprµqq ´ G
`

Fm, C1pI1q
˘

prνq

“L
`

V, C1pI1q, µ
˘

pνprµqq ´ G
`

Fm, C1pI1q
˘

pνprµqq

` Vprµq ´ Vpµq ` C1pI1qpHprµq ´ Hpµqq ´
`

V1pµq ` C1pI1qHpµq
˘

prµ ´ µq

ěVprµq ´ Vpµq ` C1pI1qpHprµq ´ Hpµqq ´
`

V1pµq ` C1pI1qH1pµq
˘

prµ ´ µq

“G
`

V, C1pI1q
˘

prµq ´ L
`

V, C1pI1q, µ
˘

prµq

ą0

Let m1, νprµq, rI be maximizer at rµ, rIC1prIq “ ρVprµq ` CprIq:

0 “LpV, C1prIq, rµqpνprµqq ´ GpFm1 , C1prIqqpνprµqq

“LpV, C1pI1q, rµqpνprµqq ´ GpFm1 , C1pI1qqpνprµqq

` pC1prIq ´ C1pI1qqJprµ, νprµqq

ąpC1prIq ´ C1pI1qqJprµ, νprµqq
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Since rµ ą µ, we have C1prIq ´ C1pI1q ą 0. Contradiction. Therefore we proved Equa-

tion (P-D1)..

• Step 3: We show that V satisfies Equation (1.4) .. First, since V is smooth, envelope

theorem implies:

V1pµq “ ´
I
ρ

ν ´ µ

Jpµ, νq
pV2pµq ` C1pIqH2pµqq

ą 0

ùñ V2pµq ` C1pIqH2pµq ă 0

Therefore, allocating to diffusion experiment will always be suboptimal. What’s more,

consider:

V´pµq “ max
νďµ,I

I
ρ

Vpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq
´

CpIq

ρ

ùñ V1´pµq “ ´
I
ρ

ν ´ µ

Jpµ, νq
pV2pµq ` C1pIqH2pµqq

V´pµ˚q “ Vpµ˚q and whenever Vpµq “ V´pµq, we will have V´1pµq ă 0. Therefore,

V´pµq can never cross from below, that is to say:

ρVpµq “ max
"

ρFpµq, max
ν,p,σ,I

ppVpνq ´ Vpµq ´ V1pµqpν ´ µqq ` V2pµqσ2 ´ CpIq

*

s.t. pJpµ, νq ` H2pµqσ2 “ I

�

Lemma B.20. Define V` and V´ :

V`pµq “ max
νěµ,m,I

IFmpνq ´ CpIqJpµ, νq

I ` ρJpµ, νq
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V´pµq “ max
νďµ,m,I

IFmpνq ´ CpIqJpµ, νq

I ` ρJpµ, νq

There exists µ˚ P r0, 1s s.t. V`pµq ě V´pµq @µ ě µ˚; V`pµq ď V´pµq @µ ď µ˚. Moreover

Vpµ˚q ą 0.

Proof. We define function U`
m and U´

m as following:

U`
mpµq “ max

νěµ,I

IFmpνq ´ CpIqJpµ, νq

I ` ρJpµ, νq

U´
mpµq “ max

νďµ,I

IFmpνq ´ CpIqJpµ, νq

I ` ρJpµ, νq

Since CpIq, Fmpµq and Jpµ, νq are all smooth functions, the objective function will be smooth.

First consider FOCs and SOCs:

FOC-ν :F1
m

´

1 `
ρ

I
Jpµ, νq

¯

´

ˆ

CpIq

I
`

ρ

I
Fmpνq

˙

pH1pµq ´ H1pνqq “ 0

FOC-I :ρFmpνq ` CpIq ´ C1pIqpI ` ρJpµ, νqq “ 0

SOC : H “

»

—

–

IpρFmpνq ` CpIqqpI ` ρJpµ, νqqH2pνq 0

0 ´Jpµ, νqpI ` ρJpµ, νqq2C2pIq

fi

ffi

fl

Noticing that SOC is evaluated at the pairs pν, Iq at which FOC holds.

Remark B.1. Details of calculation of second derivatives:

• Hν,ν:

B2

Bν2
IFmpνq ´ CpIqJpµ, νq

I ` ρJpµ, νq

“
1

pI ` ρJpµ, νqq
3

„

2ρ2pIFmpνq ´ CpIqJpµ, νqqpH1pµq ´ H1pνqq2

´ 2ρpI ` ρJpµ, νqqpH1pµq ´ H1pνqq
`

IF1
m ´ CpIqpH1pµq ´ H1pνqq

˘
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` ρpI ` ρJpµ, νqqpIFmpνq ´ CpIqJpµ, νqqH2pνq

`pI ` ρJpµ, νqq2CpIqH2pνq

ȷ

FOC-ν ùñ F1
m “

pCpIq ` ρFmpνqqpH1pµq ´ H1pνqq

I ` ρJpµ, νq

ùñ
B2

Bν2
IFmpνq ´ CpIqJpµ, νq

I ` ρJpµ, νq

“
1

pI ` ρJpµ, νqq
3

„

2ρ2pIFmpνq ´ CpIqJpµ, νqqpH1pµq ´ H1pνqq2

` 2ρpI ` ρJpµ, νqqCpIqpH1pµq ´ H1pνqq2

´ 2ρpCpIq ` ρFmpνqqpH1pµq ´ H1pνqq2

` ρpI ` ρJpµ, νqqpIFmpνq ´ CpIqJpµ, νqqH2pνq

`pI ` ρJpµ, νqq2CpIqH2pνq

ȷ

“
1

pI ` ρJpµ, νqq
3

„

ρpI ` ρJpµ, νqqpIFmpνq ´ CpIqJpµ, νqqH2pνq

`pI ` ρJpµ, νqq2CpIqH2pνq

ȷ

“pI ` ρJpµ, νqqH2pνqpρIFmpνq ´ ρCpIqJpµ, νq ` ICpIq ` ρCpIqJpµ, νqq

“
IpρFmpνq ` CpIqqpI ` ρJpµ, νqqH2pνq

pI ` ρJpµ, νqq3

• HI,I :

B2

BI2
IFmpνq ´ CpIqJpµ, νq

I ` ρJpµ, νq

“
1

pI ` ρJpµ, νqq3

„

2pIFmpνq ´ CpIqJpµ, νqq

´ 2pI ` ρJpµ, νqqpFmpνq ´ C1pIqJpµ, νqq

´ Jpµ, νqpI ` ρJpµ, νqq2C2pIq

ȷ

FOC-I ùñ IFmpνq ´ CpIqJpµ, νq “ pI ` ρJpµ, νqqpFmpνq ´ C1pIqJpµ, νqq
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ùñ
B2

BI2
IFmpνq ´ CpIqJpµ, νq

I ` ρJpµ, νq

“
1

pI ` ρJpµ, νqq3

„

2pI ` ρJpµ, νqqpFmpνq ´ C1pIqJpµ, νqq

´ 2pI ` ρJpµ, νqqpFmpνq ´ C1pIqJpµ, νqq

´ Jpµ, νqpI ` ρJpµ, νqq2C2pIq

ȷ

“
´Jpµ, νqpI ` ρJpµ, νqq2C2pIq

pI ` ρJpµ, νqq3

• Hν,I :

B2

BIBν

IFmpνq ´ CpIqJpµ, νq

I ` ρJpµ, νq

“
1

pI ` ρJpµ, νqq3

„

2ρpIFmpνq ´ CpIqJpµ, νqqpH1pµq ´ H1pνqq

´ ρpI ` ρJpµ, νqqpFmpνq ´ C1pIqJpµ, νqqpH1pµq ´ H1pνqq

´ pI ` ρJpµ, νqqpIF1
m ´ CpIqpH1pµ ´ H1pνqqqq

` pI ` ρJpµ, νqq
2`F1

m ´ C1pIqpH1pµq ´ H1pνqq
˘

ȷ

“
1

pI ` ρJpµ, νqq3

„

2ρpIFmpνq ´ CpIqJpµ, νqqpH1pµq ´ H1pνqq

´ ρpIFmpνq ´ CpIqJpµ, νqqpH1pµq ´ H1pνqq

´ pI ` ρJpµ, νqqpI
pCpIq ` ρFmpνqqpH1pµq ´ H1pνqq

I ` ρJpµ, νq
CpIqpH1pµ ´ H1pνqqqq

` pI ` ρJpµ, νqq
2
ˆ

pCpIq ` ρFmpνqqpH1pµq ´ H1pνqq

I ` ρJpµ, νq
´ C1pIqpH1pµq ´ H1pνqq

˙ȷ

“
H1pµq ´ H1pνq

pI ` ρJpµ, νqq3 pρIFmpνq ´ ρCpIqJpµ, νq ´ IpCpIq ` ρFmpνqq

`pI ` ρJpµ, νqqCpIq ` pI ` ρJpµ, νqpCpIq ` ρFmpνqqq ´ pI ` ρJpµ, νqq2C1pIq

¯

“0
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The only term we don’t know its sign is

ρFmpνq ` CpIq “
I ` ρJpµ, νq

H1pµq ´ H1pνq
F1

m

Therefore, H will be ND if ν ą µ and F1
m ą 0, or ν ă µ and F1

m ă 0. In these cases, FOC

uniquely characterizes the maximum. Suppose ν ą µ and F1
m ă 0 or ν ă µ and F1

m ą 0, the

H will never be ND, and choice of ν will be on boundary. What’s more, simple calculation

shows that choosing ν “ µ will dominate choosing ν “ 0, 1. Therefore:

U`
mpµq “ Fmpµq when F1

m ă 0

U´
mpµq “ Fmpµq when F1

m ą 0

When F1
m ą 0, envelope condition implies:

d
dµ

U`
mpµq “

´H2pµqpν ´ µq
`

CpIq `
ρ
I Fmpνq

˘

`

1 `
ρ
I Jpµ, νq

˘2 ą 0

Similarly, when F1
m ă 0, envelope condition implies:

d
dµ

U´
mpµq “

´H2pµqpν ´ µq
`

CpIq `
ρ
I Fmpνq

˘

`

1 `
ρ
I Jpµ, νq

˘2 ă 0

Therefore, U`
m and U´

m have exactly the same properties as in Lemma A.2., the rest of

proofs simply follow Lemma A.2 .. What’s more, we define ν˚
m and I˚

m as the maximizer in

this problem.

Now I prove that Vpµ˚q ą 0. We know that Vpµ˚q solves:

Vpµ˚q “ max
νěµ˚,I

Fpνq ´
CpIq

I Jpµ˚, νq

1 `
ρ
I Jpµ˚, νq

“ max
νďµ˚,I

Fpνq ´
CpIq

I Jpµ˚, νq

1 `
ρ
I Jpµ˚, νq
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Consider the following term:

V “ max
µi,pi,I

p1Fpµ1q ` p2Fpµ2q ´
CpIq

I Ipµi|µ
˚q

1 `
ρ
I Ipµi|µ˚q

Suppose µi, pi, I solves V. Then:

ρ

I
V `

CpIq

I
“

p1Fpµ1q ` p2Fpµ2q ´ V
´p1Hpµ1q ´ p2Hpµ2q ` Hpµ˚q

I want to claim that V ď Vpµ˚q. Suppose not, then:

p1Fpµ1q ` p2Fpµ2q ´ Vpµ˚q

´p1Hpµ1q ´ p2Hpµ2q ` Hpµ˚q
ą

p1Fpµ1q ` p2Fpµ2q ´ V
´p1Hpµ1q ´ p2Hpµ2q ` Hpµ˚q

ě
ρ

I
Vpµ˚q `

CpIq

I

Then at least one of the following:

Fpµ1q ´ Vpµ˚q

´Hpµ1q ` Hpµ˚q ` H1pµ˚qpµ1 ´ µ˚q
;

Fpµ2q ´ Vpµ˚q

´Hpµ2q ` Hpµ˚q ` H1pµ˚qpµ2 ´ µ˚q

is larger than ρ
I Vpµ˚q `

CpIq

I . Suppose the fisrt term does, then:

ρVpµ˚q ă I
Fpµ1q ´ Vpµ˚q

Jpµ˚, µ1q
´ CpIq

Contradicting optimality of Vpµ˚q. Same argument applies to the second term. So Vpµ˚q ě

V. However:

lim
cÑ0

p1Fpµ1q ` p2Fpµ2q ´
CpIq

I
Ipµi|µ

˚q “ p1Fpµ1q ` p2Fpµ2q ´ C1p0qIpµi|µq ą 0

Therefore, Vpµ˚q ě V ą 0. �
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Lemma B.21. Assume µ0 ě µ˚, F1
m ě 0, V0, V1

0 satisfies:

$

’

’

&

’

’

%

Vpµ0q ě V0 ą Fmpµ0q

V0 “ max
νěµ0,I

I
ρ

Fmpνq ´ V0 ´ V1
0pν ´ µq

Jpµ, νq
´

CpIq

ρ

Then there exists a Cp1q smooth and strictly increasing Vpµq defined on rµ0, 1s satisfying:

Vpµq “ max
νěµ,I

I
ρ

Fmpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq
´

CpIq

ρ
(A.25.-c)

and initial condition Vpµ0q “ V0, V1pµ0q “ V1
0.

Proof. We start from deriving FOC and SOC for Equation (A.25-c) .:

FOC-ν:
I
ρ

ˆ

F1
m ´ V1pµq

Jpµ, νq
`

Fmpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq2 pH1pνq ´ H1pµqq

˙

“ 0

FOC-I:
1
ρ

ˆ

Fmpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq
´ C1pIq

˙

“ 0

SOC: H “

»

—

–

´2pH1pµq´H1pνqqpFOC-νq

Jpµ,νq
` I

ρ
pFmpνq´Vpµq´V1pµqpν´µqqH2pνq

Jpµ,νq2
1
I FOC-ν

1
I FOC-ν ´

C2pIq

ρ

fi

ffi

fl

Noticing that HI,I ă 0, therefore I satisfying FOC will be unique given µ, ν. On the other

hand, FOC-ν is independent of I. Hν,ν ă 0 when FOC-ν ě 0. Therefore, solution of F)C-

ν will be unique. When FOCs are satisfied, H is strictly ND, then the solution of FOCs

are going to be maximizer. Therefore, FOC-ν and FOC-I uniquely characterize optimal

choice of ν, I. Now we impose feasibility:

Vpµq “
I
ρ

Fmpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq
´

CpIq

ρ
(B.20)
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FOCs reduces to:

FOC-ν:pF1
m ´ V1pµqq `

ρVpµq ` CpIq

I
pH1pνq ´ H1pµqq “ 0 (B.21)

FOC-I: IC1pIq “ ρVpµq ` CpIq (B.22)

Differentiate FOC-I, we get:

$

’

’

&

’

’

%

Vpµq “
IC1pIq ´ CpIq

ρ

V1pµq “
IC2pIq

ρ
9I

(B.23)

Plug Equation (B.23). into Equation (B.21). and Equation (B.20).:

$

’

’

&

’

’

%

9I “
ρ

IC2pIq

`

F1
m ` C1pIqpH1pνq ´ H1pµqq

˘

Jpν, µq “
1
ρ

ˆ

I ´
CpIq ` ρFmpµq

C1pIq

˙ (B.24)

We obtained an equation system with one ODE of pc, 9Iq and one regular equation for ν.

Since Jpν, µq is strictly monotonic for ν ě µ, we can also define an implicit inverse function

M to eliminate ν in the equation.

JpMpy, µq, µq “ y

Therefore we get an ODE:

9I “
ρ

IC2pIq

ˆ

F1
m ` C1pIq

ˆ

H1

ˆ

M
ˆ

1
ρ

ˆ

I ´
CpIq ` ρFmpµq

C1pIq

˙˙

, µ

˙

´ H1pµq

˙˙

(B.25)

We define Impµ0qC1pImpµ0qq ´ CpImpµ0qq “ ρFmpµq when this equation has solution and

Impµq “ 0 when ρFmpµq is so small that this equation has no solution. Since Fmpµq is
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increasing in µ, Impµq is increasing and strictly increasing when Impµq ą 0. We consider

the initial conditions:

Fmpµ0q ă V0 “
I0C1pI0q ´ CpI0q

ρ
ď Vpµ0q

ùñ Impµ0q ă I0 ď I˚
mpµ0q

Then Lemma B.22. guaranteed the existence of an increasing function Ipµq on rµ0, 1s. �

Lemma B.22. Define M as JpMpy, µq, µq “ y. Assume µ0 P rµ˚, 1q, I0 satisfies:

Impµ0q ă I0 ď I˚
mpµ0q

Then there exists a Cp1q and strictly increasing I on rµ0, 1s satisfying initial condition Ipµ0q “ I0.

On tµ|Ipµq ą Impµqu, I solves:

9I “
ρ

IC2pIq

ˆ

F1
m ` C1pIq

ˆ

H1

ˆ

M
ˆ

1
ρ

ˆ

I ´
CpIq ` ρFmpµq

C1pIq

˙˙

, µ

˙

´ H1pµq

˙˙

(B.25)

Proof. We first characterize some useful properties of the ODE. We denote the ODE by

9I “ Rpµ, Iq.

• Domain: By definition of Impµq, @µ P p0, 1q

Impµq ´
CpImpµqq ` ρFmpµq

C1pImpµqq
“ 0

Since Im ě 0, then CpImpµqq ` ρFmpµq ě 0. Therefore at I “ Impµq:

B

BI

ˆ

I ´
CpIq ` ρFmpµq

C1pIq

˙

“
CpIq ` ρFmpµq

C1pIq2 C2pIq ą 0

257



Appendix B. Supplemental materials for Chapter 1.
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Figure B.2: Phase diagram of
´

9µ, 9I
¯

.
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Therefore, @I ě Impµq, I ´
CpIq`ρFmpµq

C1pIq
ě 0. Strictly inequality holds when I ą Impµq. On

the other hand, when I ă Impµq, if Fmpµq ě 0, then I ´
CpIq`ρFmpµq

C1pIq
ă 0. Else if Fmpµq ď 0,

then Impµq “ 0. Since M only applies to non-negative reals, we know that the ODE is

only well defined in the region: tI|I ě Impµqu.

• Continuity: It is not hard to verify that the ODE is well behaved (satisfying Picard-

Lindelof) when µ is strictly bounded away from t0, 1u, I is uniformly bounded away

from Impµq. One just need to calculate Mypy, µq by implied function theorem:

B

By
Mypy, µq “ ´

1
H2pMpy, µqqpMpy, µq ´ µq

Mpy, µq “ µ implies Jpν, µq “ 0, implies 1
ρ

´

I ´
CpIq`ρFmpµq

C1pIq

¯

“ 0. Since I is uniformly

bounded away from Impµq, then Mpy, µq ´ µ is uniformly bounded away from 0.

• Monotonicity: When I “ I˚
mpµq, 9I “ 0. This can be shown by considering FOC on I˚

m:

$

’

&

’

%

F1
m ´ C1pIqpH1pµq ´ H1pνqq “ 0

pI ` ρJpµ, νqqC1pIq “ CpIq ` ρFmpνq

ùñ pI ´ ρJpν, µqqC1pIq “ CpIq ` ρFmpµq ` ρF1
mpν ´ µq ` C1pIqpH1pνq ´ H1pµqqpν ´ µq

ùñ pI ´ ρJpν, µqqC1pIq “ CpIq ` ρFmpµq

ùñ F1
m ` C1pIq

ˆ

H1

ˆ

M
ˆ

1
ρ

ˆ

I ´
CpIq ` ρFmpµq

C1pIq

˙

, µ

˙˙

´ H1pµq

˙

“ 0

ùñ 9I “ Rpµ, Iq “ 0

Then we consider the monotonicity of Rpµ, Iq:

B

BI
Rpµ, Iq “ C2pIq

`

H1pMq ´ H1pµq
˘

` C1pIq
H2pMq

H2pMqpµ ´ Mq

1
ρ

CpIq ` ρFmpµq

C1pIq2 C2pIq ă 0
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Therefore, Rpµ, Iq will be positive in tImpµq ă I ď I˚
mpµqu. This refers to the blue region

in Figure B.2 ..

@δ ą 0, we consider solving the ODE 9I “ Rpµ, Iq in region: µ P rδ, 1 ´ δs, I P rImpµq `

δ, I˚
mpµqs. The initial condition pµ0, I0q is in the blue region of Figure B.2 .. (When H1 is

finite, we can take µ P r0, 1s.) Picard-Lindelof guarantees a unique solution satisfying

the ODE in the region. What’s more, it’s straight forward that the solution Ipµq will be

increasing. A solution is a blue line with arrows in Figure B.2 .. A solution Ipµq will lie

between Impµq and I˚
mpµq until it hits the boundary of region.

Now we can take δ Ñ 0 and extend Ipµq towards the boundary. Since the end point

of Ipµq has both µ, I monotonically increasing, there is a limit I, µ with Impµq “ I. Then

since Rpµ, Iq has a limit ρF1
m

Ih2pIq
, we actually have limµÑµ V1pµq “ F1

m by Equation (B.23).. So

the resulting Vpµq calculated from

Vpµq “
IpµqC1pIpµqq ´ CpIpµqq

ρ

will be smooth on rµ0, 1s. �

Lemma B.211. Assume µ0 ď µ˚, F1
m ě 0, V0, V1

0 satisfies:

$

’

’

&

’

’

%

Vpµ0q ě V0 ą Fmpµ0q

V0 “ max
νďµ0,I

I
ρ

Fmpνq ´ V0 ´ V1
0pν ´ µq

Jpµ, νq
´

CpIq

ρ

Then there exists a Cp1q smooth and strictly decreasing Vpµq defined on r0, µ0s satisfying:

Vpµq “ max
νďµ,I

I
ρ

Fmpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq
´

CpIq

ρ
(A.25.-I’)

and initial condition Vpµ0q “ V0, V1pµ0q “ V1
0.
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Lemma B.221. Define M as JpMpy, µq, µq “ y. Assume µ0 P p0, µ˚s, I0 satisfies:

Impµ0q ă I0 ď I˚
mpµ0q

Then there exists a Cp1q and strictly decreasing I on r0, µ0s satisfying initial condition cpµ0q “ I0.

On tµ|Ipµq ą Impµqu, I solves:

9I “
ρ

IC2pIq

ˆ

F1
m ` C1pIq

ˆ

H1

ˆ

M
ˆ

1
ρ

ˆ

I ´
CpIq ` ρFmpµq

C1pIq

˙˙

, µ

˙

´ H1pµq

˙˙

(B.25’)

Lemma B.23. Suppose at µ0, V0, V1
0, k ě 1 satisfies:

$

’

’

&

’

’

%

V0 “ max
νěµ0,I

I
ρ

Fm´kpνq ´ V0 ´ V1
0pν ´ µ0q

Jpµ0, νq
´

CpIq

ρ
ě max

νěµ0,I

I
ρ

Fmpνq ´ V0 ´ V1
0pν ´ µ0q

Jpµ0, νq
´

CpIq

ρ

Vpµ0q ě V0 ě Fm´kpµ0q

Vm´k is the solution as defined in Lemma B.22 . with initial condition µ0, V0, V1
0, then @µ P

rµ0, νpµ0qs:

Vm´kpµq ě max
νěµ,m1Prm´k,ms,I

I
ρ

Fm1pνq ´ Vm´kpµq ´ V1
m´kpµqpν ´ µq

Jpµ, νq
´

CpIq

ρ

Proof. We first show that:

V0 ě max
νPrµ0,µms,I

I
ρ

Vm´kpνq ´ V0 ´ V1
0pν ´ µ0q

Jpµ0, νq
´

CpIq

ρ

Suppose not, then there exists ν, I1 s.t.

$

’

’

’

&

’

’

’

%

V0 ă
I1

ρ

Vm´kpνq ´ V0 ´ V1
0pν ´ µ0q

Jpµ0, νq
´

CpI1q

ρ

Vm´kpνq ´ V0 ´ V1
0pν ´ µ0q

Jpµ0, νq
“ C1pI1q

(B.26)
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Let I0C1pI0q “ ρV0 ` CpI0q, then optimality implies Equation (B.20) . and Equation (B.21) . at

µ “ µ0:

$

’

&

’

%

F1
m´k ` C1pI0qH1pνpµqq “ V1

0 ` C1pI0qH1pµq

`

Fm´kpνpµqq ` C1pI0qHpνpµqq
˘

´
`

V0 ` C1pI0qHpµq
˘

“
`

V1
0 ` C1pI0qH1pµq

˘

pνpµq ´ µq

We define LpV, λ, µqpνq and GpV, λqpµq as Equation (B.16)., Equation (B.17) .. Consider:

L
`

Vm´k, C1pI0q, µ0
˘

pνq ´ G
`

Fm´k, C1pI0q
˘

pνq

L is a linear function and G is a concave function. Therefore this is a convex function and

have unique minimum determined by FOC. Simple calculation shows that it is minimized

at νpµ0q and the minimal value is 0. Now consider

L
`

Vm´k, C1pI0q, µ0
˘

pνq ´ G
`

Vm´k, C1pI0q
˘

pνq

“ ´ pVm´kpνq ´ Vm´kpµ0q ´ V1
m´kpµ0qpν ´ µ0q ´ C1pI0qJpµ0, νqq

ă0

The inequality is from Equation (B.26). and definition of I0:

I0C1pI0q ´ CpI0q ă I1C1pI1q ´ CpI1q

ùñ C1pI0q ă C1pI1q

ùñ C1pI0q ă
Vm´kpνq ´ V0 ´ V1

0pν ´ µ0q

Jpµ0, νq

Therefore LpVm´k, C1pI0q, µ0qpνq ´ GpVm´k, C1pI0qqpνq will be strictly negative at ν and will

have minimum strictly negative. Suppose it’s minimized at µ2 (µ2 ą µ0), then FOC im-
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plies:

V1
m´kpµ0q ` C1pI0qH1pµ0q “ V1

m´kpµ2q ` C1pI0qHpµ2q

Let I2C1pI2q “ ρVm´kpµ2q ` CpI2q, then we have I2 ą I0 and C1pI2q ą C1pI0q. Consider:

LpVm´k, C1pI0q, µ2qpνpµ2qq ´ GpFm´k, C1pI0qqpνpµ2qq

“LpVm´k, C1pI0q, µ0qpνpµ2qq ´ GpFm´k, C1pI0qqpνpµ2qq

` Vm´kpµ2q ´ Vm´kpµ0q ` C1pI0qpHpµ2q ´ Hpµ0qq ´ pV1pµ0q ` C1pI0qqpµ2 ´ µ0q

ěVm´kpµ2q ´ Vm´kpµ0q ` C1pI0qpHpµ2q ´ Hpµ0qq ´ pV1pµ0q ` C1pI0qqpµ2 ´ µ0q

“GpVm´k, C1pI0qqpµ2q ´ LpVm´k, C1pI0q, µ0qpµ2q ą 0

However:

0 “LpVm´k, C1pI2q, µ2qpνpµ2qq ´ GpFm´k, C1pI2qqpνpµ2qq

“LpVm´k, C1pI0q, µ2qpνpµ2qq ´ GpFm´k, C1pI0qqpνpµ2qq

` pC1pµ2q ´ C1pI0qqpHpµ2q ´ Hpνpµ2qq ` H1pµ2qpνpµ2q ´ µ2qq

ąpC1pI2q ´ C1pI0qqJpµ2, νpµ2qq ą 0

Contradiction.

Now we show Lemma B.23.. Suppose it’s not true, then there exists ν P pµ0, νpµ0qq,

µ2 ě µ
m

, and I2 s.t.

$

’

’

’

&

’

’

’

%

Vm´kpνq ă
I2

ρ

Fm1pµ2q ´ V1
m´kpνq ´ V1

m´kpνqpµ2 ´ νq

Jpν, µ2q
´

CpI2q

ρ

Fm1pµ2q ´ V1
m´kpνq ´ V1

m´kpνqpµ2 ´ νq

Jpν, µ2q
“ C1pI2q
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If we let I1C1pI1q “ ρVpνq ` CpI1q, then I1 ą I0 and C1pI1q ą C1pI0q. By definition:

0 ďLpVm´k, C1pI0q, µ0qpµ2q ´ GpFm1 , C1pI0qqpµ2q

“LpFm´k, C1pI0q, νpµ0qqpµ2q ´ GpFm1 , C1pI0qqpµ2q

0 ďLpVm´k, C1pI0q, µ0qpνq ´ GpFm1 , C1pI0qqpνq

“LpFm´k, C1pI0q, νpµ0qqpνq ´ GpFm1 , C1pI0qqpνq

ùñ LpFm´k, C1pI1q, νpµ0qqpµ2q ´ GpFm1 , C1pI1qqpµ2q

“LpFm´k, C1pI0q, νpµ0qqpµ2q ´ GpFm1 , C1pI0qqpµ2q

` pC1pI1q ´ C1pI0qqJpµ0, µ2q

ą0

LpFm´k, C1pI1q, νpµ0qqpµ2q ´ GpFm1 , C1pI1qqpµ2q

“LpFm´k, C1pI0q, νpµ0qqpνq ´ GpFm1 , C1pI0qqpνq

` pC1pI1q ´ C1pI0qqJpµ0, νq ą 0

No we consider LpVm´k, C1pI1q, νqp¨q and LpFm´k, C1pI1q, νpµ0qqp¨q:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

LpVm´k, C1pI1q, νqpνq “ GpVm´k, C1pI1qqpνq

Lpvm´k, C1pI1q, νqpνpµ0qq ě GpVm´k, C1pI1qqpνpµ0qq

LpFm´k, C1pI1q, νpµ0qqpνq ą GpVm´k, C1pI1qqpνq

LpFm´k, C1pI1q, νpµ0qqpνpµ0qq “ GpVm´k, C1pI1qqpνpµ0qq

ùñ

$

’

’

&

’

’

%

LpVm´k, C1pI1q, νqpνpµ0qq ě LpFm´k, C1pI1q, νpµ0qqpνpµ0qq

LpVm´k, C1pI1q, νqpνq ă LpFm´k, C1pI1q, νpµ0qqpνq

Since both functions are linear: d
dµ LpVm´k, C1pI1q, νqpµq ą d

dµ LpFm´k, C1pI1qνpµ0qqpµq, then
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LpVm´k, C1pI1q, νqp¨q must be larger than LpFm´k, C1pI1q, νpµ0qqp¨q at any µ2 ě νpµ0q. This

implies:

LpVm´k, C1pI1q, νqpµ2q ą GpFm1 , C1pI1qqpµ2q

Contradicting the assumption. �

Lemma B.231. Suppose at µ0, V0, V1
0, k ě 1 satisfies:

$

’

’

&

’

’

%

V0 “ max
νďµ0,I

I
ρ

Fm`kpνq ´ V0 ´ V1
0pν ´ µq

Jpµ0, νq
´

CpIq

ρ
ě max

νďµ0,I

I
ρ

Fmpνq ´ V0 ´ V1
0pν ´ µ0q

Jpµ0, νq
´

CpIq

ρ

Vpµ0q ě V0 ě Fm`kpµ0q

Vm`k is the solution as defined in Lemma B.22 . with initial condition µ0, V0, V1
0, then @µ P

rνpµ0q, µ0s:

Vm`kpµq ě max
νďµ,νPrm,m`ks,I

I
ρ

Fm1pνq ´ Vm´kpµq ´ V1
m´kpµqpν ´ µq

Jpµ, νq
´

CpIq

ρ

B.3 Proofs in Section 1.7.

B.3.1 Linear delay cost

B.3.1.1 Proof of Theorem 1.4.

Proof. @xµy P M, τ,

E
„
ż τ

0
CpItqdt

ȷ

ěC

˜

E
“şτ

0 Itdt
‰

E
“şτ

0 dt
‰

¸

E
„
ż τ

0
dt
ȷ

“ C

¨

˝

E
”

şτ
0 ´E

”

dHpµtq
dt

ˇ

ˇFt

ı

dt
ı

Erτs

˛

‚Erτs

“C

¨

˝

E
”

´
şτ

0
dHpµtq

dt dt
ı

Erτs

˛

‚Erτs “ C
ˆ

ErHpµq ´ Hpµτqs

Erτs

˙

Erτs
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First inequality is by Jensen’s inequality. First equality is by definition of It. Second

inequality is by iterated law of expectation. Last equality is straight forward. Since xµty P

M, Erµτs “ µ. Let µτ „ P and λ “ ErHpµq ´ Hpµτqs{Erτs, then:

E
„

Fpµτq ´ mτ ´

ż τ

0
CpItqdt

ȷ

ď EPrFpνqs ´
EPrHpµq ´ Hpνqs

λ
pm ` Cpλqq

ùñ Vpµq ď sup
PP∆2pXq,λą0

EPrFpνqs ´
m ` Cpλq

λ
EPrHpµq ´ Hpνqs

On the other hand, @P P ∆2pXq, λ ą 0, let xµty be a compound Poisson process which

realizes according to P with Poisson rate λ
EprHpµq´Hpνqs

, τ is jump time of xµty. Then it is

easy to verify that:

E
„

Fpµτq ´ mτ ´

ż τ

0
CpItqdt

ȷ

“ EPrFpνqs ´
m ` Cpλq

λ
EprHpµq ´ Hpνqs

�

B.3.2 General information measure

B.3.2.1 Proof of Theorem 1.5.

Proof. Consider Equation (1.13) ., it’s sasy to see that both the inner maximization prob-

lem and the constraint are linear in pi and σ2. Therefore, Equation (1.13) . can be written

equivalently as choosing either one posterior or a diffusion experiment:

ρVpµq “ max
"

ρFpµq, sup
ν

cpVpνq ´ Vpµq ´ V1pµqpν ´ µqq

Jpµ, νq
,

cV2pµq

J2
ννpµ, µq

*

Now suppose µ P D and ρVpµq “ c V2pµq

J2
ννpµ,µq

. This is saying, the maximization problem:

sup
ν

cpVpνq ´ Vpµq ´ V1pµqpν ´ µqq

Jpµ, νq
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will be solved for ν Ñ µ. Therefore, consider the FOC:

FOC:
V1pνq ´ V1pµq

Jpµ, νq
´

J1
νpµ, νq

Jpµ, νq2

`

Vpνq ´ Vpµq ´ V1pµqpν ´ µq
˘

It must be ď 0 when ν Ñ µ` and ě 0 when ν Ñ µ´. Otherwise, the diffusion experiment

will be locally dominated by some Poisson experiment. When ν Ñ µ, Jpµ, νq Ñ 0, V1pνq Ñ

V1pµq, Vpνq ´ Vpµq ´ V1pµqpν ´ µq Ñ 0. Therefore, we can apply L’Hospital’s rule:

lim
νÑµ

FOC “
limνÑµ

´

V2pνq ´ J2
ννpµ, νq

Vpνq´Vpµq´V1pµqpν´µq

Jpµ,νq
´ J1

νpµ, νq ¨ FOC
¯

limνÑµ J1
νpµ, νq

“
1
2

limνÑµ

´

V2pνq ´ J2
ννpµ, νq

Vpνq´Vpµq´V1pµqpν´µq

Jpµ,νq

¯

limνÑµ J1
νpµ, νq

“
1
2

limνÑµ

´

Vp3qpνq ´ Jp3q
νννpµ, νq

Vpνq´Vpµqpν´µq

Jpµ,νq
´ J2

ννpµ, νq ¨ FOC
¯

limνÑµ J2
ννpµ, νq

“
1
3

Vp3qpµq ´ Jp3q
νννpµ, µq

V2pµq

J2
ννpµ,µq

J2
ννpµ, µq

(B.27)

Now consider Vpµq ´ c
ρ

V2pµq

J2
ννpµ,µq

. By assumption, it’s non-negative and achieves 0 at µ.

Therefore it is locally minimized at µ:

d
dµ

ˆ

Vpµq ´
c
ρ

V2pµq

J2
ννpµ, µq

˙

“ 0

ùñ
ρ

c
V1pµq ´

Vp3qpµq

J2
ννpµ, µq

`
V2pµq

J2
ννpµ, µq2

´

Jp3q
νννpµ, µq ` Jp3q

ννµpµ, µq

¯

“ 0

ùñ
Vp3qpµq ´ Jp3q

νννpµ, µq
V2pµq

J2
ννpµ,µq

J2
ννpµ, µq

“
ρ

c
V1pµq ` V2pµq

Jp3q
ννµpµ, µq

J2
ννpµ, µq2

ùñ
Vp3qpµq ´ Jp3q

νννpµ, µq
V2pµq

J2
ννpµ,µq

J2
ννpµ, µq

“
ρ

c
V1pµq `

ρ

c
Vpµq

Jp3q
ννµpµ, µq

J2
ννpµ, µq

(B.28)
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By smoothness of V and J, for FOC to be non-positive when ν Ñ µ` and non-negative

when ν Ñ µ´. So Equations (B.27) . and (B.28). implies:

V1pµqJ2
ννpµ, µq ` VpµqJp3q

ννµpµ, µq “ 0

Now suppose there exists µn Ñ µ s.t. ρVpµnq “ c V2pµnq

J2
ννpµn,µnq

, we have:

V1pµnqJ2
ννpµn, µnq ` VpµnqJp3q

ννµpµn, µnq “ 0

By differentiability of the whole term, we have:

d
dµ

´

V1pµqJ2
ννpµ, µq ` VpµqJp3q

ννµpµ, µq

¯

“ 0

ùñ V2pµqJ2
ννpµ, µq ` V1pµq

´

2Jp3q
ννµpµ, µq ` Jp3q

νννpµ, µq

¯

` Vpµq

´

Jp4q
νννµpµ, µq ` Jp4q

ννµµpµ, µq

¯

“ 0

ùñ
ρ

c
VpµqJ2

ννpµ, µq2 ´
Vpµq

J2
ννpµ, µq

´

2Jp3q
ννµpµ, µq2 ` Jp3q

νννpµ, µqJp3q
ννµpµ, µq

¯

` Vpµq

´

Jp4q
νννµpµ, µq ` Jp4q

ννµµpµ, µq

¯

“ 0

ùñ
ρ

c
J2
ννpµ, µq2 ´

2Jp3q
ννµpµ, µq2 ` Jp3q

νννpµ, µqJp3q
ννµpµ, µq

J2
ννpµ, µq

` Jp4q
νννµpµ, µq ` Jp4q

ννµµpµ, µq “ 0

By assumption, µ P D, therefore the differential equation must not be satisfied. This

implies that there doesn’t exist such µn Ñ µ. So the set:

"

µ P D
ˇ

ˇ

ˇ
ρVpµq “ c

V2pµq

J2
ννpµ, µq

*

is a closed set (closed w.r.t. D) containing no limiting point. That is to say, within any

compact subset of D, this set is finite. This set is a Borel set, thus Lebesgue measurable.

By definition of Lebesgue measure, the measure of a set can be approximated by compact

subsets from below. Therefore, this set has zero-measure. �
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B.3.2.2 Construction of a special cost function

Take any general cost structure Jpµ, νq and κpµ, σq that satisfies Assumption 1.4.. In

the section, I introduce the method to construct a cost structure such that (i) the cost of

Gaussian learning is κpµ, σq and (ii) the DM is exactly indifferent between using Guassian

learning and Poisson learning.

Step 1. Let gpµq “ J2
ννpµ, µq (then κpµ, σq “ 1

2 gpµqσ2). Restrict the DM to using only

Gaussian learning, then Equation (1.13) . becomes:

ρVpµq “ max
"

ρFpµq,
c

gpµq
V2pµq

*

(B.29)

Equation (B.29). can be solved by solving the following ODE and applying smooth past-

ing:

Vpµq “
c
ρ

V2pµq

gpµq
(B.30)

Change parameter and let vpµq “ d
dµ logpVpµqq, then vpµq satisfies the following ODE:

v1pµq ` vpµq2 “
ρ

c
gpµq (B.31)

By Assumption 1.4 ., gpµq is a smooth function on p0, 1q. Therefore it is easy to verify that

on any closed sub-interval of p0, 1q, Picard-Lindelöf is satisfied that there exist unique

solution to Equation (B.31) . given initial condition. Let vpµ, C1q be the solution indexed

by free parameter C1, then Vpµq “ C2e
şµ
0 vpC1,νqdν. The two free parameters pC1, C2q can be
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pinned down by two smooth pasting conditions:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

C2e
şµ1
0 vpC1,νqdν “ Fpµ1q

C2e
şµ1
0 vpC1,νqdνvpC1, µ1q “ F1pµ1q

C2e
şµ2
0 vpC1,νqdν “ Fpµ2q

C2e
şµ1
0 vpC1,νqdνvpC1, µ2q “ F1pµ2q

Notice that smooth pasting need to be checked for at most C2
|A|

pairs of actions, index all

solutions by Vi. Then Vpµq “ maxtVipµqu solves Equation (B.29) .. Let E “ tµ|Vpµq ą Fpµqu.

Step 2. @µ P E, define J0pµ, νq as:

J0pµ, νq “
c
ρ

Vpνq ´ Vpµq ´ V1pµqpν ´ µq

Vpµq

It is easy to verify that J0 ą 0. Now let us verify the solution of Equation (1.13).:

ρVpµq “ max
"

ρFpµq, sup
p,ν,σ2

p
`

Vpνq ´ Vpµq ´ V1pµqpν ´ µq
˘

`
1
2

σ2V2pµq

*

s.t. pJ0pµ, νq `
1
2

J0ννpµ, µqσ2 ď c

First of all, by definition, Vpµq, p ” 0 and σ2 “ c
J0ννpµ,µq

is feasible and satisfies the equality

condition. Now @ν P r0, 1s:

c
Vpνq ´ Vpµq ´ V1pµqpν ´ µq

J0pµ, νq
“ ρVpµq

Therefore, any Poisson learning strategy is as good as the Gaussian learning strategy. By

definition of J0, 1
2 J0ννpµ, µqσ2 “ 1

2 gpµqσ2 “ κpµ, σq.

Step 3. Smooth extension of J0. So far, J0 is only defined on E. J0 can be extended
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smoothly onto r0, 1s satisfying @µ P EC:

$

’

’

&

’

’

%

J0ννpµ, µq “ gpµq

J0pµ, νq ě
c
ρ

Vpνq ´ Vpµq ´ V1pµqpν ´ µq

Vpµq
, @ν

The extension is intuitively simple but quite technical, which is ommited here.

Such a J0pµ, νq is uniquely defined for µ P E. For µ P EC, there can be many de-

grees of freedom because Gaussian learning is anyway strictly dominated by stopping.

So it is sufficienly to make Poisson learning also dominated. Now, suppose Jpµ, νq and

κpµ, σq are such that Gaussian learning is weakly optimal. Then Jpµ, νq must be pointwise

weakly higher than J0pµ, νq, @µ P E. On the other hand, since Jννpµ, µq “ J0ννpµ, µq, this

implies Jν3pµ, µq “ J0ν3pµ, µq. That is to say, assuming Gaussian learning being weakly

optimal is imposing an additional third derivative constraint on Jpµ, νq on the constriants

in Assumption 1.4., making the set of cost functions non-generic.

B.3.3 Linear cost function

B.3.3.1 Proof of Theorem 1.6.

Proof. I first prove a result in discrete time. Take any information acquisition strategy
`

S t,At, T
˘

that satisfies the constraints in Equation (1.5’) .. The achieved expected utility

will be:

E

«

e´ρdt¨T upAT ,X q ´

8
ÿ

t“0

e´ρdt¨tλI
`

S t;X |S t´1, 1T ďt
˘

ff

We can separate the utility gain part and information cost part. Utility gain part is:

E
”

e´ρdt¨T u
´

AT ,X
¯ı
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It’s easy to see that this is determined only by action time T and action process AT . Let

rS t´1 “
`

1T “t,At
ˇ

ˇ

T “t

˘

. Then by information processing constraint in Equation (1.5’) ., we

have:

Prob
´

rS tˇ
ˇS t,X

¯

“Prob
`

1T “t`1,At`1ˇ
ˇS t,X

˘

“ Prob
`

1T ďt`1,At`1ˇ
ˇS t,X

˘

“Prob
`

1T ďt`1,At`1ˇ
ˇS t˘ “ Prob

´

rS tˇ
ˇS t

¯

ùñ X Ñ S t Ñ rS t

Therefore:

8
ÿ

t“0

e´ρdt¨tλE
“

I
`

S t;X
ˇ

ˇS t´1, 1T ďt
˘‰

“λ
8
ÿ

t“0

e´ρdt¨tE
“

I
`

S t, 1T ďt;X
˘

´ I
`

S t´1, 1T ďt;X
˘‰

“λ
8
ÿ

t“0

e´ρdt¨tE
“

I
`

S t;X
˘

` I
`

1T ďt;X
ˇ

ˇS t˘´ I
`

S t´1;X
˘

´ I
`

1T ďt;X
ˇ

ˇS t´1˘‰

“λ
8
ÿ

t“0

e´ρdt¨tE
“

I
`

S t;X
˘

´ I
`

S t´1;X
˘‰

“λ
8
ÿ

t“0

e´ρdt¨tE
”

I
´

rS t;X
¯

` I
´

S t;X
ˇ

ˇ rS t
¯

´ I
´

rS t;X
ˇ

ˇS t
¯ı

´ λ
8
ÿ

t“0

e´ρdt¨tE
”

I
´

rS t´1;X
¯

` I
´

S t´1;X
ˇ

ˇ rS t´1
¯

´ I
´

rS t´1;X
ˇ

ˇS t´1
¯ı

“λ
8
ÿ

t“0

e´ρdt¨tE
”

I
´

rS t;X
¯

` I
´

S t;X
ˇ

ˇ rS t
¯ı

´ λ
8
ÿ

t“0

e´ρdt¨tE
”

I
´

rS t´1;X
¯

` I
´

S t´1;X
ˇ

ˇ rS t´1
¯ı

“

8
ÿ

t“0

e´ρdt¨tλE
”

I
´

rS t;X
ˇ

ˇ rS t´1, 1T ďt

¯ı

` λ
ÿ

e´ρdt¨t
´

1 ´ e´ρdt
¯

E
”

I
´

S t;X
ˇ

ˇ rS t
¯ı

ě

8
ÿ

t“0

e´ρdt¨tλE
”

I
´

rS t;X
ˇ

ˇ rS t´1, 1T ďt

¯ı
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Therefore, by replacing signal process S t with rS t, the DM can achieve the same utility

gain and pay a weakly lower information cost. Now consider:

E
”

e´ρdt¨T u
´

AT ,X
¯ı

´ λ
8
ÿ

t“0

e´ρdt¨tE
”

I
´

rS t;X
ˇ

ˇ rS t´1, 1T ďt

¯ı

“ProbpT “ 0qE
”

u
´

A0,X
¯ı

` ProbpT ě 1qE
”

e´ρdt¨T u
´

AT ,X
¯

ˇ

ˇT ě 1
ı

´ λI
´

rS0;X
ˇ

ˇµ
¯

´ λ
8
ÿ

t“1

e´ρdt¨tE
”

I
´

rS t;X
ˇ

ˇ rS t´1, 1T ďt

¯ı

“ProbpT “ 0qE
”

u
´

A0,X
¯ı

` ProbpT “ 1qE
”

e´ρdtu
´

A1,X
¯

ˇ

ˇT “ 1
ı

´ λI
´

rS0;X
ˇ

ˇµ, T ą 0
¯

` ProbpT ě 2qE
”

e´ρdt¨T u
´

AT ,X
¯

ˇ

ˇT ě 2
ı

´ λ
8
ÿ

t“1

e´ρdt¨tE
”

I
´

rS t;X
ˇ

ˇ rS t´1, 1T ďt

¯ı

Suppose the term:

ProbpT ě 2qE
”

e´ρdt¨T u
´

AT ,X
¯

ˇ

ˇT ě 2
ı

´ λ
8
ÿ

t“1

e´ρdt¨tE
”

I
´

rS t;X
ˇ

ˇ rS t´1, 1T ďt

¯ı

(B.32)

is negative, then discard all actions and information after first period will give the DM

higher expected utility. This information and action process satisfies this theorem. There-

fore, WLOG we assume Equation (B.32) ., as well as all continuation payoffs are non-

negative. Then:

E
”

e´ρdt¨T u
´

AT ,X
¯ı

´ λ
8
ÿ

t“0

e´ρdt¨tE
”

I
´

rS t;X
ˇ

ˇ rS t´1, 1T ďt

¯ı

“ProbpT “ 0qE
”

u
´

A0,X
¯ı

` ProbpT “ 1q

´

E
”

e´ρdtu
´

A1,X
¯

ˇ

ˇT “ 1
ı

´ λI
´

rS0;X
ˇ

ˇµ, T ą 0
¯¯
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` ProbpT ě 2qE
”

e´ρdt¨T u
´

AT ,X
¯

ˇ

ˇT ě 2
ı

´ λ
8
ÿ

t“1

e´ρdt¨tE
”

I
´

rS t;X
ˇ

ˇ rS t´1, 1T ďt

¯ı

ďProbpT “ 0qE
”

u
´

A0,X
¯ı

` ProbpT “ 1q

´

E
”

e´ρdtu
´

A1,X
¯

ˇ

ˇT “ 1
ı

´ λI
´

rS0;X
ˇ

ˇµ, T ą 0
¯¯

` ProbpT ě 2qE
”

e´ρdt¨pT ´1qu
´

AT ,X
¯

ˇ

ˇT ě 2
ı

´ λ
8
ÿ

t“1

e´ρdt¨pt´1qE
”

I
´

rS t;X
ˇ

ˇ rS t´1, 1T ďt

¯ı

“ProbpT “ 0qE
”

u
´

A0,X
¯ı

` ProbpT “ 1q

´

E
”

e´ρdtu
´

A1,X
¯

ˇ

ˇT “ 1
ı

´ λI
´

rS0;X
ˇ

ˇµ, T ą 0
¯¯

` ProbpT “ 2q

´

E
”

e´ρdtu
´

A2,X
¯

ˇ

ˇT “ 2
ı

´ λI
´

rS1;X
ˇ

ˇ rS0, T ą 1
¯¯

` ProbpT ě 3qE
”

e´ρdt¨pT ´1qu
´

AT ,X
¯

ˇ

ˇT ě 3
ı

´ λ
8
ÿ

t“2

e´ρdt¨pt´1qE
”

I
´

rS t;X
ˇ

ˇ rS t´1, 1T ďt

¯ı

ďProbpT “ 0qE
”

u
´

A0,X
¯ı

` ProbpT “ 1q

´

E
”

e´ρdtu
´

A1,X
¯

ˇ

ˇT “ 1
ı

´ λI
´

rS0;X
ˇ

ˇµ, T ą 0
¯¯

` ProbpT “ 2q

´

E
”

e´ρdtu
´

A2,X
¯

ˇ

ˇT “ 2
ı

´ λI
´

rS1;X
ˇ

ˇ rS0, T ą 1
¯¯

` ProbpT ě 3qE
”

e´ρdt¨pT ´2qu
´

AT ,X
¯

ˇ

ˇT ě 3
ı

´ λ
8
ÿ

t“2

e´ρdt¨pt´2qE
”

I
´

rS t;X
ˇ

ˇ rS t´1, 1T ďt

¯ı

...

ďProbpT “ 0qE
”

u
´

A0,X
¯ı

` ProbpT ě 1q

˜

E
”

e´ρdtu
´

AT ;X
¯

ˇ

ˇT ě 1
ı

´ λ
8
ÿ

t“0

E
”

I
´

rS t;X
ˇ

ˇ rS t´1, 1T ďt, T ě 1
¯ı

¸

“ProbpT “ 0qE
”

u
´

A0,X
¯ı

` ProbpT ě 1q

ˆ

E
”

e´ρdtu
´

AT ;X
¯

ˇ

ˇT ě 1
ı

´ λ lim
tÑ8

I
´

rS t;X
ˇ

ˇT ě 1
¯

˙

“ProbpT “ 0qE
”

u
´

A0,X
¯ı

` ProbpT ě 1q

´

E
”

e´ρdtu
´

AT ;X
¯

ˇ

ˇT ě 1
ı

´ λI
´

AT ;X
ˇ

ˇT ě 1
¯¯
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Therefore:

E
”

e´ρdt¨T u
´

AT ,X
¯ı

´ λ
8
ÿ

t“0

e´ρdt¨tE
”

I
´

rS t;X
ˇ

ˇ rS t´1, 1T ďt

¯ı

ďPrT “ 0sFpµq ` p1 ´ PrT “ 0sq

´

E
”

e´ρdtu
´

AT ,X
¯ı

´ λI
´

AT ;X
ˇ

ˇµ
¯¯

ď max
"

Fpµq, sup
A

E
”

e´ρdtupA,X q

ı

´ λIpA;X q

*

Therefore, we showed that any dynamic information acquisition strategy solving Equa-

tion (1.5’). will have weakly lower expected utility level than a static information acquisi-

tion strategy solving Equation (1.14)..

Now let us consider the continuous time problem. It is clear by Lemma B.5. that any

discretization of Equation (1.1) . can be implemented by Equation (1.5’).. Hence,

Vpµq ď lim Vdtpµq ď lim max
"

Fpµq, sup
A

E
”

e´ρdtupA,X q

ı

´ λIpA;X q

*

“ sup
A

ErupA,X qs ´ λIpA;X q

“ sup
PP∆2pXq

EPrFpνq ´ λpHpµq ´ Hpνqqs

On the other hand, take any P and dt ą 0, by Lemma B.3., there exists xµty P M such that:

E

«

e´ρdtFpµdtq ´

ż dt

0
e´ρtλ

EPrHpµq ´ Hpνqs

dt
dt

ff

“ EPre´ρdtFpνqs ´
1 ´ e´ρdt

ρdt
λEPrHpµq ´ Hpνqs

ùñ Vpµq ě sup
PP∆2pXq

lim
dtÑ0

EPre´ρdtFpνqs ´
1 ´ e´ρdt

ρdt
λEPrHpµq ´ Hpνqs

ùñ Vpµq ě sup
PP∆2pXq

EPrFpνq ´ λpHpµq ´ Hpνqqs
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Combining the two inequalities, Equation (1.14). is proved. �

B.4 Proofs in Section 1.8.

B.4.1 Choice accuracy and response time: proof of Proposition 1.1 .

Proof. Since both H0pµq and Fpµq are symmetric functions around µ0 “ 0.5, by symmetry

and quasi-concavity of value function (Theorem 1.2 .), @ck, µ˚ “ µ0. Let the expected utility

of the action favoring beliefs ą 0.5 be Frpµq, and the utility of the other action Flpµq. @ck,

by the proof of Lemma A.2., there exists unique νl
k and νr

k “ 1 ´ µr
k s.t.

$

’

’

’

&

’

’

’

%

νr
k P arg max

νěµ

Frpνq

1 `
ρ
ck

J0pµ0, νq

νl
k P arg max

νďµ

Flpνq

1 `
ρ
ck

J0pµ0, νq

Where J0pµ, νq “ H0pµq ´ H0pνq ` H1
0pµqpν ´ µq. Now I determine the location of

␣

νl
k, νr

k

(

by studying the following cross derivative:

d2

dc, dν

Frpνq

1 `
ρ
c J0pµ, νq

ˇ

ˇ

ˇ

ˇ

ν“νr˚,µ“µ0

“
ρ2

c3
FrpνqpH1

0pµq ´ H1
0pνqqpFrpµqpH1

0pµq ´ H1
0pνqq ` F1

r J0pν, µqq

F1
r
`

1 `
ρ
c J0pµ, νq

˘

ˇ

ˇ

ˇ

ˇ

ν“νr˚,µ“µ0

ą 0

The equality is by plug the FOC determining ν˚ into the cross derivative. The inequality

follows by H0pµq being strictly concave, F1
r ą 0 and Frpµ0q “ Fpµ0q ą 0. Since the cross

derivative w.r.t. ν and c is strictly positive at νr˚, the standard comparative statics analysis

suggests that the optimal belief νr˚ is strictly increasing in parameter c. A completely

symmetric argument applies to νl˚ and νl˚ is strictly decreasing in parameter c. Therefore,
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all the
␣

νr
k, νl

k

(

are ordered on r0, 1s:

0, νl
k, ¨ ¨ ¨ , νl

1, µ0, νr
1, ¨ ¨ ¨ , νr

k, 1

Moreover, @c P pci, ci`1q, νr˚pcq P pνr
i , νr

i`1q and νl˚pcq P pνl
i`1, νl

i q. Now assume that the

goal is to make the sign of µ˚ ´ µ0 strictly positive (negative) when c P pc2i, c2i`1q (c P

pc2i´1, c2iq). To achieve this goal, define Hpµq based on H0pµq. Let Ma,bpµq be a function

on R with the following properties:

• Parameter a, b P R and a ă b.

• @a, b, µ, Ma,bpµq ă 0 if µ P pa, bq and Ma,b “ 0 otherwise.

• @a, b, Ma,bpµq is Cp2q smooth on R and |M2
a,bpµq| is bounded by 1.

The choice of function M can be quite arbitrary. For example, it is not hard to verify that:

Ma,bpµq “ ´1aăµăb
pb ´ aq4

256e
´ 16

pb´aq2
e´

´

1
µ´a ` 1

b´µ

¯2

satisfies these properties. Define νr
k`1 “

1`νr
k

2 and νl
k`1 “

νl
k

2 . Since H0pµq satisfies As-

sumption 1.2-a., there exists ε s.t. @µ P

”

νl
k`1, νr

k`1

ı

, H2pµq ď ´2ε. Now define Hpµq:

Hpµq “ H0pµq `
ÿ

Mνr
2i,ν

r
2i`1

pµq `
ÿ

Mνl
2i,ν

l
2i´1

pµq

I verify that Hpµq satisfies the conditions in Proposition 1.1 .. It is easy to verify that

Jpµ0, νq “ Jpµ0, νq when ν R
Ť

pνr
2i, νr

2i`1q or
Ť

pνl
2iq, νl

2i´1. Jpµ0, νq ą J0pµ0, νq otherwise.

First, when c P tcku:

sup
νěµ

Frpνq

1 `
ρ
c Jpµ0, νq

ě sup
νěµ

Frpνq

1 `
ρ
c J0pµ0, νq

ě
Frpνr

i q

1 `
ρ
ci

Jpµ0, νr
i q

“
Frpνr

i q

1 `
ρ
ci

J0pµ0, νr
i q

ě sup
νěµ

Frpνq

1 `
ρ
c Jpµ0, νq
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sup
νďµ

Flpνq

1 `
ρ
c Jpµ0, νq

ě sup
νďµ

Flpνq

1 `
ρ
c J0pµ0, νq

ě
Flpνl

i q

1 `
ρ
ci

Jpµ0, νl
i q

“
Flpνl

i q

1 `
ρ
ci

J0pµ0, νl
i q

ě sup
νďµ

Flpνq

1 `
ρ
c Jpµ0, νq

ùñ
Frpνr

i q

1 `
ρ
ci

Jpµ0, νr
i q

“
Flpνl

i q

1 `
ρ
ci

Jpµ0, νl
i q

“ sup
νěµ

Frpνq

1 `
ρ
c J0pµ0, νq

“ sup
νďµ

Flpνq

1 `
ρ
c J0pµ0, νq

Therefore, µ˚ “ µ0 and the optimal strategy at µ0 is the same as that with H0pµq.

Now I prove that the sign of µ˚ ´ µ0 strictly positive (negative) when c P pc2i, c2i`1q

(c P pc2i´1, c2iq). For the first case c P pc2i, c2i`1q, since Jpµ0, νr˚pcqq ą J0pµ, νr˚pcqq and

Jpµ0, νl˚pcqq “ J0pµ0, νl˚pcqq,

V`pµ0q “ max
νěµ

Frpνq

1 `
ρ
c Jpµ0, νq

ă max
νěµ

Frpνq

1 `
ρ
c J0pµ0, νq

V´pµ0q “ max
νďµ

Flpνq

1 `
ρ
c Jpµ0, νq

“ max
νďµ

Frpνq

1 `
ρ
c J0pµ0, νq

The first strict inequality is from uniqueness of optimal νr˚pcq, Jpµ0, νr˚pcqq ą J0pµ, νr˚pcqq

and continuity of the objective function in ν. Therefore, V`pµ0q ă V´pµ0q. Since V`pµq is

increasing in µ and V´pµq is decreasing in µ, their crossing point µ˚ ą µ0. For the other

case c P pc2i´1, c2iq, Jpµ0, νr˚pcqq “ J0pµ, νr˚pcqq and Jpµ0, νl˚pcqq ă J0pµ0, νl˚pcqq. Therefore,

V`pµ0q “ max
νěµ

Frpνq

1 `
ρ
c Jpµ0, νq

“ max
νěµ

Frpνq

1 `
ρ
c J0pµ0, νq

V´pµ0q “ max
νďµ

Flpνq

1 `
ρ
c Jpµ0, νq

ă max
νďµ

Frpνq

1 `
ρ
c J0pµ0, νq

Therefore, V`pµ0q ą V´pµ0q. Since V`pµq is increasing in µ and V´pµq is decreasing in µ,

their crossing point µ˚ ă µ0. �

B.4.2 Radical innovation: proof of Propositions 1.2. and 1.3.

Proof. Consider the solution to the problem of firm L, where the payoff to riskless arm

is uLpPsq. By Theorem 1.2 ., the policy function νLpνq is a strictly decreasing function on
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experimentation region EL. νLpµq is piecewise smooth. Each discrete point of νLpµq cor-

responds to a critical point where the DM is indifferent between confirming two beliefs

associated with two different actions. Now I call the set of those critical beliefs
␣

µj
(J

j“1,

where µJ is the smallest and µ1 is the largest. I first prove the following useful lemma.

Lemma B.24. At each µj, let ν
j
L ă ν

j
L be the smallest and largest optimal posterior beliefs for firm

L. Then either νSpµjq ă ν
j
L or νSpµjq ą ν

j
L.

Proof. Define LpV, λ, µqpνq and GpV, λ, µqp˚qν and GpV, λqpµq as Equation (A.22).. Con-

sider:

L
´

VL,
ρ

c
VLpµjq, µj

¯

pνq ´ G
´

F,
ρ

c
VLpµjq

¯

pνq (B.33)

Optimality condition Equations (A.26). and (A.27). implies that it attains minimum 0 at

both ν
j
L and ν

j
L (and at no other beliefs outside of the range pν

j
Lq, ν

j
Lq. Now consider:

L
´

VS,
ρ

c
VLpµjq, µj

¯

pνq ´ G
´

F,
ρ

c
VLpµjq

¯

pνq

Since in L’s experimentation region VL ą VS, the term is strictly positive for ν ą µj. Now

the optimality condition implies that

L
´

VS,
ρ

c
VSpµjq, µj

¯

pνq ´ G
´

F,
ρ

c
VSpµjq

¯

pνq (B.34)

attains minimum 0 at νSpµjq. Notice that Equation (B.34) . is equivalent to:

L
´

VS,
ρ

c
VLpµjq, µj

¯

pνq ´ G
´

F,
ρ

c
VLpµjq

¯

pνq

“L
´

VL,
ρ

c
VLpµjq, µj

¯

pνq ´ G
´

F,
ρ

c
VLpµjq

¯

pνq

`
`

VSpµjq ´ VLpµjq ` pV1
Spµjq ´ V1

Lpµjqqpν ´ µjq
˘
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`
ρ

c
pVSpµjq ´ VLpµjqq

`

Hpµq ´ Hpνq ` H1pµqpν ´ µq
˘

Notice that the second term is linear in ν and the third term is concave in µ. Since Equa-

tion (B.33) . is minimized at ν
j
L and ν

j
L, the two points share the same supporting hyper-

plane. Now Equation (B.34) . equals Equation (B.33) . plus a strictly concave term. As a

result, Equation (B.34) . has positive first derivative at ν
j
L and negative first derivative at

V j
L. Therefore, the posterior belief that minimizes Equation (B.34) . is either strictly less

than ν
j
L or strictly larger than ν

j
L. �

Step 1. I prove that in the region µ ě µ1, there exists critical belief µc that the satisfies

the property of Proposition 1.3 .. By Lemma B.24 ., there are two possible cases.

The first case is that νSpµ1q ă ν1
L. Now if at belief µ1, firm S’s optimal posterior is already

associated with a less risky action, then since by definition of µ1 firm L doesn’t use any

action less risky than that associated with µ1
L

at all. So µc “ µ1. If otherwise firm S’s and

firm L’s optimal beliefs are associated with the same action, then by the previous analysis,

νSpµjq ă ν
j
L. Now I prove that νSpµq ă νLpµq for all µ ě µj. This can be easily seen from

the phase diagram Figure B.1 .. Since the two firms are using the same action, their optimal

belief is characterized by the same set of ODEs (except for different in initial value). Since

we know that VL ą VS, then the policy function νL must touch the diagonal line later

than νS. By Picard-Lindelof solution to ODE doesn’t cross, νLpµq ą νSpµq for µ ě µ0 and

νLpµq ă νSpµq for µ ď µ0 (µ0 is the critical belief the action giving zero expected payoff).

Giving this single crossing property, since νLpµ`
1 q ą νSpµ`

1 q, νLpµq ą νSpµq for all µ ě µ1.

The second case is that νSpµ1q ą ν1
L. Now for some µ ą µ1, νSpµq stays above νLpµq

whenever it corresponds to a more risky action. However, the analysis in the first case

shows that when firm S switches action, it either jumps to a strictly less risky action, or

stays at the same action as firm L for some beliefs (but νLpµq and νSpµq crosses once). In
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either cases, the single crossing property holds. So there exists such critical belief µc.

Notice that the analysis in this region is already sufficient to prove Proposition 1.2..

Step 2. I prove Proposition 1.3 . by induction. I prove the following statement that if for

µj, there are two possibles cases: νSpµjq ă ν
j
L and νSpµq ă νLpµq @µ ě µj; or νSpµjq ą ν

j
L

and there exists µc ą µj, then the same statement is true for µj`1.

If νSpµj`1q ă ν
j`1
L , then the argument is simple. Case 1 is that firm S has already switched

to a less risky action, then before the firm H switches, νLpµq ą νSpµq for sure, up to µj.

Then νLpµq ą νSpµq for µ ě µj as well by assumption in induction. Case 2 is that firm S is

using the same action as firm L. The by the argument in step 1, before either firm switches

to a less risky action, νLpµq ą νSpµq. Suppose by contradiction that firm L first switches to

a less risky action at µj, then by Lemma B.24., νSpµ´
j q ą νLpµ´

j q, contradiction. Therefore,

to sum up νSpµq ă µLpµq @µ ą ν
j`1
L .

If νSpµj`1q ą ν
j`1
L , the we only need to discuss that firm S ever uses the same action as

firm (because otherwise either single crossing happens and we are in the case νSpµjq ă ν
j
L,

then the induction assumptions shows νSpµq ă νLpµq for all µ ě µj; or crossing doesn’t

happen, then the induction assumptions shows that single crossing happens for µc ą µj).

In this case, the analysis in step 1 shows that νLpµq and νSpµq crosses at most once, and

afterwards, the induction assumptions shows νSpµq ă νLpµq for all µ ě µj. To sum up,

I prove that νL and νS crosses at most once in firm L’s experimentation region. Notice

that VL ą VS, therefore, there exists µ in L’s experimentation region where VSpµq “ Fpµq

already. Obviously for such belief νLpµq ą νSpµq. On the other hand, on the left end of L’s

experimentation region:

Fpνq ´ VLpµq

Hpµq ´ Hpνq ` H1pµqpν ´ µq
ă

Fpνq ´ VSpµq

Hpµq ´ Hpνq ` H1pµqpν ´ µq
ď VSpµq

So since VLpµq ą VSpµq it must be that V1
Spµq ą 0. Therefore, there exist µ in S’s experi-
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mentation region where VLpµq “ Fpµq. This proves that E0
Ş

p0, µcq ‰ H and E0
Ş

pµc, 1q ‰

H. �

B.5 Proofs in Appendix A.1.

B.5.1 Convergence of policy

B.5.1.1 Proof of Theorem A.1.

Proof. The original statement in Theorem A.1 . is equivalent to: @ε ą 0, there exists δ

s.t. @dt ď δ, @µ P r0, 1s, there exists |µ1 ´ µ| ď ε and any optimal posterior induced

in discrete time problem with period length dt will be within either rµ1 ´ ε, µ1 ` εs or

rνpµ1q ´ ε, νpµ1q ` εs.Now pick any ε ą 0, let’s discuss two cases separately:

Case 1: µ P r0, 1szE. I first prove the case with Assumption A . and Assumptions 1.2-a .

and 1.3.. I will show that for any dt, any informative experiment is suboptimal. Suppose

not, and there exists νi ‰ µ s.t.:

e´ρdt
ÿ

piVdtpνiq ě Vdtpµq

and

$

’

’

&

’

’

%

ř

piνi “ µ

Hpµq ´
ř

piHpνiq ď cdt

Now consider a problem with dt
2 . Consider the following strategy: mix experiment pi, νi

and prior with probability 1
2 . Then obviously Bayes plausibility and capacity constraint

are satisfied. The expected utility from this strategy is:

Vdt
2

pµq ě
ÿ

t“1

e´ρ dt
2 ¨t

ÿ

piVdt
2

pνiq ¨
1
2t “

1

2 ´ e´
ρdt
2

ÿ

piVdt
2

pνiq
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ąe´ρdt
ÿ

piVdt
2

pνiq

ěe´ρdt
ÿ

piVdtpνiq

ěFpµq

First inequality is from optimality of Vdt
2

. Second inequality is from 1
2´x ą x2 for x P p0, 1q.

Third inequality is from Vdt
2

ě Vdt. Last inequality is from assumption. Therefore Fpµq “

Vpµq ě Vdt
2

ą Fpµq. Contradiction. So for µ P r0, 1s, Ndtpµq “ tµu for any dt ą 0. Noticing

that this satisfies Theorem A.1. independent of choice of dt and ε.

Then consider the case with Assumption A . and Assumptions 1.2-b . and 1.3.. Suppose

not true, and there exists νi ‰ µ s.t.:

e´ρdt
ÿ

piVdtpνiq ´ dt ¨ C
ˆ

I
dt

˙

ě Vdtpµq

and

$

’

’

&

’

’

%

ř

piνi “ µ

Hpµq ´
ř

piHpνiq “ I

Now consider a problem with dt
2 . Consider the following strategy: mix experiment pi, νi

and prior with probability 1
2 . Then obviously Bayes plausibility and capacity constraint

are satisfied. The expected utility from this strategy is:

Vdt
2

pµq

ě
ÿ

t“1

e´ρ dt
2 ¨t

ÿ

piVdt
2

pνiq ¨
1
2t ´

ÿ

t“0

e´ρ dt
2 t 1

2t
dt
2

C
ˆ

I
dt

˙

“
eρdt

2 ´ e´
ρdt
2

ˆ

e´ρdt
ÿ

piVdt
2

pνiq ´ e´
3ρdt

2 dtC
ˆ

I
dt

˙˙
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ąe´ρdt
ÿ

piVdt
2

pνiq ´ dtC
ˆ

I
dt

˙

ěe´ρdt
ÿ

piVdtpνiq ´ dtC
ˆ

I
dt

˙

ěFpµq

First inequality is from optimality of Vdt
2

. Second inequality is from 1
2´x ą x2 for x P p0, 1q.

Third inequality is from Vdt
2

ě Vdt. Last inequality is from assumption. Therefore Fpµq “

Vpµq ě Vdt
2

ą Fpµq. Contradiction. So for µ P r0, 1s, Ndtpµq “ tµu for any dt ą 0. Noticing

that this satisfies Theorem A.1. independent of choice of dt and ε.

Case 2: µ P E. Suppose Theorem A.1 . is not true. Then there exists ε s.t. @dt, there exists

µdt P E s.t. Dνdt P Ndtpµdtq and @µ P Bεpµdtq, dHpνdt, Npµqq ą ε. Now pick dtn “ 2´n Ñ 0.

Since pµdtn , νdtnq is an infinite sequence in compact space r0, 1s2, we can WLOG assume
`

µdtn , νdtn

˘

Ñ pµ, νq. @µ1 P B ε
2
pµq, there exists N sufficiently large that @n ě N, µ1 P Bεpµdtnq

and dH
`

νdtn , Npµ1q
˘

ą ε. N can be picked sufficiently large that
ˇ

ˇνdtn ´ ν
ˇ

ˇ ă ε
2 . Therefore

dHpν, Npµ1qq ą ε
2 . To sum up, we find a converging sequence

`

µdtn , νdtn

˘

to pµ, νq, which

is bounded away by ε
2 from the graph of Np¨q.

Let rν be the non-empty set of optimal posteriors (including µ itself) at µ solving Equa-

tion (1.4).. Let

λ “

$

’

&

’

%

ρ

c
Vpµq with Assumption 1.2-a.

C1pIpµqq with Assumption 1.2-b.

Consider:

Gp¨q “ Vp¨q ` λHp¨q
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Then optimality condition implies that:

$

’

&

’

%

Gpνq “ Gpµq ` G1pµqpν ´ µq @ν P rν

Gpνq ă Gpµq ` G1pµqpν ´ µq otherwise
(B.35)

By Theorem B.1., @dt, there exists λdtn s.t. Equation (1.6) . is solved by concavifying Gn “

Vdtn ` λdtn H at µdtn .

Obviously λdtn is non-negative. Suppose it diverges to `8. Then consider function

Gdtnp¨q “ Vdtnp¨q ` λdtn Hp¨q. Let νdtn,1 and νdtn,2 be two optimal posterior. Let ν1
dtn

“

1
2

`

νdtn,1 ` νdtn,2
˘

. By
ˇ

ˇνdtn ´ µdtn

ˇ

ˇ ą ε
2 , we know that

ˇ

ˇνdtn,1 ´ νdtn,2
ˇ

ˇ ą ε
2 by Lemma B.25 ..

Gdtn

`

ν1
dtn

˘

´
1
2
`

Gdtnpνdtn,1q ` Gdtn

`

νdtn,2
˘˘

“Vdtnpν1
dtn

q ´
1
2
`

Vdtnpµdtn,1q ` Vdtnpνdtn,1q
˘

` λdtn

ˆ

Hpν1
dtn

q ´
1
2
`

Hpνdtn,1q ` Hpνdtn,2q
˘

˙

ď sup F ` λdtn

1
8

sup H2
`

νdtn,1 ´ νdtn,2
˘2

Ñ ´8

So for n sufficiently large, µ1
dtn

will be higher than the connected straight line of µdtn and

νdtn on Gdtn . Contradicting optimality of νdtn . So λdtn is a bounded sequence.

Suppose there exists convergent subsequence lim λdtn ă λ. If µ ‰ µ˚ then pick µ1 such

that µ1 is in the same interval as µ in E and lim λdtn ă λpµ1q ă λ, let λ1 “ λpµ1q. If µ “ µ˚

then let λpµ˚q ą λ1 ą lim λdtn . Now consider concavifying V ` λ1H. By monotonicity

in Theorem 1.2 . and definition of µ˚, we know that optimal posteriors are bounded away

from µ. Moreover, Vpµq ` λ1Hpµq ă covpV ` λ1Hqpµq. Pick ε ą 0 sufficiently small such

that optimal posteriors of V ` λ1H are bounded away from µ by ε and Vpµq ` λ1Hpµq ` ε ă

covpV ` λ1Hqpµq. Let ν1 ă µ ă ν2 be two optimal posterios for V ` λ1H closest to µ. By

continuity, there exists δ s.t @|µ2 ´ µ| ă δ, Vpµ2q ` λ1Hpµ2q ` ε
2 ă covpV ` λ1Hqpµ2q. Pick
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dtn s.t. ∥Vdtn ´ V∥ ă ε
8 , then

Vdtnpµ2q ` λ1Hpµ2q

ăVpµ2q ` λ1Hpµ2q `
ε

8

ăcovpV ` λ1Hqpµ2q ´
3ε

8

ďcovpVdtn ` λ1Hqpµ2q ´
ε

4

The last inequality comes from the fact that any convex combination of points on V ` λ1H

is less than ε
8 higher than convex combination of those points on Vdtn ` λ1H, therefore

less than cov
`

Vdtn ` λ1H
˘

` ε
8 . Therefore, we showed that any point µ2 within δ ball of µ

can’t be on supporting hyperplane of Vdtn ` λ1H. So any optimal posterior of Vdtn ` λ1H

is bounded away from µ by δ. Pick N sufficently large than @n ě N,
ˇ

ˇµdtn ´ µ
ˇ

ˇ ă δ
2 .

Then, optimal posterior of Vdtn ` λ1H is bounded away from µdtn by δ
2 . By definition of

λ1, N can be picked sufficently large that @n ě N λdtn ď λ1. Therefore, by Lemma B.25 .,

optimal posteriors are even further from µdtn . To sum up, we found N s.t. @n ě N, the

optimal posteriors from concavifying Vdtn ` λdtn H are bounded away from µdtn by δ
2 . The

experimentation cost of any such information structure is:

ÿ

pi
`

Hpµdtnq ´ Hpνdtn,iq
˘

“
ÿ

pi

ˆ

H1pµdtnq
`

µdtn ´ νdtn,i
˘

´
1
2

H2pξiq
`

νdtn,i ´ µdtn

˘2
˙

ě ´ sup H2 δ2

4
ą 0

Therefore, for sufficently large n, experimentation cost will eventually exceed cdtn. Con-

tradiction.

Suppose there exists subsequence lim λdtn “ λ1 ě λ. By definition, there exists linear
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function Lnpµq s.t.

$

’

’

’

’

’

&

’

’

’

’

’

%

Gnpνdtnq “ Lnpνdtnq

Gnpµdtnq “ Lnpµdtnq

Gnpνq ď Lnpνq

Since λdtn Ñ λ1, Gn is bounded at µdtn and νdtn . Therefore, Ln has bounded slope and

constant term. It’s easy to see that Ln will converge uniformly to linear function L8 on

belief space ∆X. Moreover, @ν P ∆X:

Gnpνq “ Vdtnpνq ` λdtn Hpνq Ñ Vpνq ` λ1Hpνq “ rGpνq ď L8pνq

Gnpµdtnq “ Vdtnpµdtnq ` λdtn Hpµdtnq Ñ rGpµq “ L8pµq (B.36)

Gnpνdtnq “ Vdtnpνdtnq ` λdtn Hpνdtnq Ñ rGpνq “ L8pνq

Second and third convergence comes from Vdtn uniformly convergent and V continuous.

rGpµq “ Gpµq ` pλ1 ´ λqHpµq. Equation (B.36). implies that L8 is a supporting hyperplane

of graph of rG, tangents rG at µ and ν. Since rG is a smooth function, we know that rG1pµq “

rGpνq´ rGpµq

ν´µ . On the other hand, Equation (B.35) . implies that:

Gpνq ă Gpµq ` G1pµqpν ´ µq

ùñ

´

rGpνq ´ rGpµq

¯

´
`

λ1 ´ λ
˘

pHpνq ´ Hpµqq ă

´

rG1pµq ´
`

λ1 ´ λ
˘

H1pµq

¯

pν ´ µq

ùñ rGpνq ´ rGpµq ă rG1pµqpν ´ µq

Contradiction. Last inequality is from concavity of H : Hpνq ´ Hpµq ă H1pµqpν ´ µq.

Therefore Theorem A.1. is true.

�
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Lemma B.25. Let X be closed interval in R. Let V be a continuous function on X, H be a concave

function on X. Let Eλ “
␣

x P X
ˇ

ˇcovpV ` λHqpxq ą Vpxq ` λHpxq
(

. Then tEλu are ordered

monotonically as λ by set inclusion: if λ ě λ1, then @ interval I in Eλ, there exists interval I1 in

Eλ1 s.t. I Ă I1.

Proof. @λ, take any I P Eλ. Let I “ rx, ys. Define:

Lpzq “ Vpxq ` λHpxq `
Vpyq ´ Vpxq ` λHpyq ´ λHpxq

y ´ x
pz ´ xq

Then @z P X:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Lpxq “ Vpxq ` λHpxq

Lpyq “ Vpyq ` λHpyq

Lpzq ą Vpzq ` λHpzq if z P px, yq

Lpzq ě Vpzq ` λHpzq if z ă x or z ą y

Now take any λ1 ă λ and consider V ` λ1H. Let:

rLpzq “ Vpxq ` λ1Hpxq `
Vpyq ´ Vpxq ` λ1Hpyq ´ λ1Hpxq

y ´ x
pz ´ xq

“ Lpzq ` pλ1 ´ λq

ˆ

Hpxq `
Hpyq ´ Hpxq

y ´ x
pz ´ xq

˙

$

’

&

’

%

ě Lpzq ` pλ1 ´ λqHpzq if z P rx, ys

ď Lpzq ` pλ1 ´ λqHpzq if z R rx, ys

ùñ

$

’

’

’

’

’

&

’

’

’

’

’

%

rLpxq “ Vpxq ` λ1Hpxq

rLpyq “ Vpyq ` λ1Hpyq

rLpzq ą Vpzq ` λ1Hpzq if z P px, yq

Therefore, @z P px, yq, covpV ` λ1Hqpzq ą Vpzq ` λ1Hpzq. So there exists interval I1 P Eλ1
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s.t. I Ă I1. �

B.5.2 Continuum of actions

B.5.2.1 Proof of Lemma A.1.

Proof. We prove with two steps:

Step 1: We first show that if we let VdtpFq be the solution to Equation (1.6)., then Vdt is

Lipschitz continuous in F under L8 norm. @F1, F2 convex and with bounded subdifferen-

tials, consider F “ maxtF1, F2u, F “ mintF1, F2u. Then by properties of convex functions,

F, F are convex. BFpµq, BFpµq Ă BF1pµq
Ť

BF2pµq. Therefore F and F are both within the

domain of convex and bounded subdifferential functions with the following quantitative

property:

$

’

&

’

%

F ě F1, F2 ě F
ˇ

ˇF ´ F
ˇ

ˇ “ |F1 ´ F2|

It’s not hard to see that V is monotonicaly increasing in F. Therefore, we have:

VdtpFq ď VdtpF1q,VdtpF2q ď VdtpFq

Now let ppi, µiq be the policy solving VdtpFq. Let Vdt “ VdtpFq, Vdt “ VdtpFq. Let C be total

expected cost associate with this strategy. Then consider:

Vdtpµq ě1VdtpµqďFpµqFpµq ` 1VdtpµqąFpµqe
´ρdt

ÿ

p1
i pµqVdtpµ1

i q ´ C

ě1VdtpµqďFpµqFpµq ` 1VdtpµqąFpµqe
´ρdt

ÿ

p1
i pµq1Vdtpµ1

i qďFpµ1
i qFpµ1

i q ´ C

` 1VdtpµqąFpµqe
´2ρdt

ÿ

p1
i pµq1Vdtpµ1

i qąFpµ1
i q

ÿ

p2
i pµ1

i qVdtpµ2
i q ´ C

ě ¨ ¨ ¨
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“
ÿ

t
e´ρt¨dt

ÿ

i1,...,it´1

ź

pτ
i pµτ´1

i q1Vdtpµτ
i qąFpµτ

i q

ÿ

pt
ipµt´1

i q1Vdtpµt
i qďFpµt

i q
Fpµt

iq ´ C

ě
ÿ

t
e´ρt¨dt

ÿ

i1,...,it´1

ź

pτ
i pµτ´1

i q1Vdtpµτ
i qąFpµτ

i q

ÿ

pt
ipµt´1

i q1Vdtpµt
i qďFpµt

i q
Fpµt

iq ´ C

´
ÿ

t

ÿ

i1,...,it´1

ź

pτ
i pµτ´1

i q1Vdtpµτ
i qąFpµτ

i q

ÿ

pt
ipµt´1

i q1Vdtpµt
i qďFpµt

i q

ˇ

ˇF ´ F
ˇ

ˇ

“Vdtpµq ´
ˇ

ˇF ´ F
ˇ

ˇ

Therefore,
ˇ

ˇVdt ´ Vdt
ˇ

ˇ ď
ˇ

ˇF ´ F
ˇ

ˇ ùñ |VdtpF1q ´ VdtpF2q| ď |F1 ´ F2|. VdtpFq has Lipschitz

parameter 1.

Step 2: @F1, F2, @ε ą 0, by Lemma 1.3 ., there exists dt s.t. |VpFiq ´ VdtpFiq| ď ε|F1 ´ F2|.

Therefore:

|VpF1q ´ VpF2q| ď|VpF1q ´ VdtpF1q| ` |VpF2q ´ VdtpF2q| ` |VdtpF1q ´ VdtpF2q|

ďp1 ` 2εq|F1 ´ F2|

Take ε Ñ 0, since LHS is not a function of ε, we conclude that VpFq is Lipschitz continuous

in F with Lipschitz parameter 1. �

B.5.2.2 Proof of Theorem A.2.

Proof. We prove the three main results in following steps:

• Lipschitz continuity. By Lemma A.1., we directly get Lipschitz continuity of operator V

on tFn, Fu and the Lipschitz parameter being 1.

• Convergence of derivatives. Let Vn “ VpFnq, V “ VpFq, we show that @µ s.t. Vpµq ą Fpµq,

V1pµq “ lim V1
npµq. Since Vpµq ą Fpµq, by continuity strict inequality holds in an closed

interval rµ1, µ2s around µ. Then by Lemma B.27 ., limnÑ8 V1
npµ1q exists @µ1 P rµ1, µ2s.

Now consider function V1
npµq. Since V2

n pµq is uniformly bounded for all n, V1
npµq are
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uniformly Lipschitz continuous, thus equicontinuous and totally bounded. Therefore

by lemma Arzela-Ascolli, V1
n converges uniformly to lim V1

n. By convergence theorem

of derivatives, V1 “ lim V1
n on rµ1, µ2s. Therefore, V1pµq “ limnÑ8 V1

npµq.

• Feasibility. For µ s.t. Vpµq “ Fpµq, feasibility is trivial. Now we discuss the case Vpµq ą

Fpµq. We only prove for µ ą µ˚ and µ “ µ˚, the case µ ă µ˚ follows by symmetry. If

µ ą µ˚, there exists N s.t. @n ě N, µ ą µ˚
n. N can be picked large enough that in a

closed interval around µ, Vnpµq ą Fnpµq. Therefore, there exists νn being maximizer for

Vnpµq bounded away from µ and satisfying:

Vnpµq “
c
ρ

Fnpνnq ´ Vnpµq ´ V1
npµqpνn ´ µq

Jpµ, νnq

Pick a converging subsequence νn Ñ ν:

c
ρ

Fpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νnq

“ lim
nÑ8

c
ρ

Fnpνnq ´ Vnpνq ´ V1
npνqpνn ´ µq

Jpµ, νnq

“ lim
nÑ8

Vnpµq

“Vpµq

Therefore Vpµq is feasible in Equation (A.4)..

Suppose µ “ µ˚. Then there exists a subsequence of µ˚
n converging from one side of

µ˚. Suppose they are converging from left. Then µ ě µ˚
n. Previous proof still works.

Essentially, what we showed is that the limit of strategy in discrete action problem

achieves Vpµq in the continuous action limit.

• Unimprovability. First, when µ P t0, 1u, information provides no value but discounting

is costly, therefore Vpµq is unimprovable. We now show unimprovability on p0, 1q by
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adding more feasible information acquisition strategies in several steps.

– Step 1. Poisson experiments at Vpµq ą Fpµq. In this step, we show that @µ ě µ˚ and

Vpµq ą Fpµq:

ρVpµq “ max
νěµ

c
Fpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq

Suppose not true, then there exists ν s.t.:

lim
nÑ8

ρVnpµq “ρVpµq

ăc
Fpνq ´ Vpµq ´ V1pνqpν ´ µq

Jpµ, νq

“ lim
nÑ8

c
Fnpνq ´ Vnpµq ´ V1

npµqpν ´ µq

Jpµ, νq

ď lim
nÑ8

ρVnpµq

Second line is by the contradictory assumption. Third line is by convergence of Fn by

assumption, convergence of Vn by Lemma A.1 . and convergence of V1
n by Lemma B.27 ..

Last inequality is by suboptimality of ν.

Similarly, for the case µ ď µ˚, we can apply a symmetric argument to prove.

– Step 2. Poisson experiments at Vpµq “ Fpµq. In this step, we show that @µ ě µ˚ and

Vpµq “ Fpµq (The symmetric case µ ď µ˚ is ommited).

First of all, we show that V is differentiable at µ and V1pµq “ F1pµq. Suppose not,

then since Vpµq “ Fpµq and V ě F, we know that V ´ F is locally minimized at µ.

Therefore DV`pµq ą DV´pµq. By Definition A.2., there exists ε ą 0, µn
1 Õ µ and

µn
2 Œ µ s.t. Vpµn

2 q´Vpµq

µn
2 ´µ ě ε `

Vpµq´Vpµn
1 q

µ´µn
1

. Let δn
1 “ µ ´ µn

1 , δn
2 “ µn

2 ´ µ, this implies:

µ ´ µn
1

µn
2 ´ µn

1
pVpµn

2q ´ Vpµqq `
µn

2 ´ µ

µn
2 ´ µn

1
pVpµn

1q ´ Vpµqq ě ε
pµn

2 ´ µqpµ ´ µn
1q

µn
2 ´ µn

1
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ùñ
µ ´ µn

1
µn

2 ´ µn
1

Vpµn
2q `

µn
2 ´ µ

µn
2 ´ µn

1
Vpµn

1q ě Vpµq ` ε ¨ mintδn
1 , δn

2 u

On the other hand:

µ ´ µn
1

µn
2 ´ µn

1
pHpµq ´ Hpµn

2qq `
µn

2 ´ µ

µn
2 ´ µn

1
pHpµq ´ Hpµn

1qq

“
µ ´ µn

1
µn

2 ´ µn
1

ˆ

H1pµqpµ ´ µn
2q `

1
2

H2pξn
2 qpµ ´ µn

2q

˙

`
µn

2 ´ µ

µn
2 ´ µn

1

ˆ

H1pµqpµ ´ µn
1q `

1
2

H2pξn
1 qpµ ´ µn

1q2
˙

“
1
2

pµn
2 ´ µqpµ ´ µn

1q

µn
2 ´ µn

1

`

H2pξn
2 qpµn

2 ´ µq ` H2pξn
1 qpµ ´ µn

1q
˘

ξn
1 and ξn

2 are determined by applying intermediate value theorem on H1. Now we

can choose N s.t. @n ě N, maxµ1Prµn
1 ,µn

2 stH2pµ1qu ď 2H2pµq. Therefore:

µ ´ µn
1

µn
2 ´ µn

1
pHpµq ´ Hpµn

2qq `
µn

2 ´ µ

µn
2 ´ µn

1
pHpµq ´ Hpµn

1qq

ďH2pµqpµn
2 ´ µqpµ ´ µn

1q

“H2pµqδn
1 δn

2

Now we consider a stationary experiment at µ that takes any experiment with poste-

riors pµn
1 , µn

2q with flow probability c
H2pµqδn

1 δn
2

. Then by definition the flow cost of this

information acquisition strategy is less than c, thus is feasible. The expected utility

is:

rVpµq “
c
ρ

µ´µn
1

µn
2 ´µn

1
Vpµn

2q `
µn

2 ´µ
µn

2 ´µn
1
Vpµn

1q ´ rVpµq

µ´µn
1

µn
2 ´µn

1

`

Hpµq ´ Hpµn
2q
˘

`
µn

2 ´µ
µn

2 ´µn
1

`

Hpµq ´ Hpµn
1q
˘

ě
Vpµq ´ rVpµq ` ε min

␣

δn
1 , δn

2
(

H2pµqδn
1 δn

2

293



Appendix B. Supplemental materials for Chapter 1.

ùñ rVpµq ě
Vpµq ` ε min

␣

δn
1 , δn

2
(

1 `
ρ
c H2pµqδn

1 δn
2

“Vpµq `
ε min

␣

δn
1 , δn

2
(

´
ρ
c H2pµqδn

1 δn
2

1 `
ρ
c H2pµqδn

1 δn
2

“Vpµq ` mintδn
1 , δn

2 u
ε ´ H2pµq max

␣

δn
1 , δn

2
(

1 `
ρ
c H2pµqδn

1 δn
2

n can be pick large enough that ε ´ H2pµq max
␣

δn
1 , δn

2
(

is positive. Therefore rVpµq ą

Vpµq. Now fix n and define:

rVmpµq “
c
ρ

µ´µn
1

µn
2 ´µn

1
Vmpµn

2q `
µn

2 ´µ
µn

2 ´µn
1
Vmpµn

1q ´ rVmpµq

µ´µn
1

µn
2 ´µn

1

`

Hpµq ´ Hpµn
2q
˘

`
µn

2 ´µ
µn

2 ´µn
1

`

Hpµq ´ Hpµn
1q
˘

ùñ lim
mÑ8

rVmpµq “ rVpµq ą lim
mÑ8

Vmpµq

There exists m large enough that rVmpµq ą Vmpµq, violating optimality of Vm. Contra-

diction. Therefore, we showed that V1pµq “ F1pµq.

Next we show unimperovability. Suppose not, then Dν s.t.:

Fpµq ă
c
ρ

Fpνq ´ Fpµq ´ F1pµqpν ´ µq

Jpµ, νq

By continuity of V, Dε and a neighbourhood µ P O, @µ1 P O:

Vpµ1q ` ε ď
c
ρ

Fpνq ´ Vpµ1q ´ F1pµqpν ´ µ1q

Jpµ1, νq

By uniform convergence of Fn and Vn, there exists ε ą 0 and N s.t. @n ě N:

Vnpµ1q `
ε

2
ď

c
ρ

Fnpνq ´ Vnpµ1q ´ F1pµqpν ´ µ1q

Jpµ1, νq

ùñ
c
ρ

Fnpνq ´ Vnpµ1q ´ V1
npµ1qpν ´ µ1q

Jpµ1, νq
`

ε

2
ď

c
ρ

Fnpνq ´ Vnpµ1q ´ F1pµqpν ´ µ1q

Jpµ1, νq
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ùñ V1
npµ1q ě F1pµq `

ρε

2c
Jpµ1, νq

ν ´ µ1

In an interval around µ, V1
npµ1q ´ F1pµq ě

ρε
2c

Jpµ1,νq

ν´µ1 , which is a positive number inde-

pendent of n and uniformly bounded away from 0 for all µ1. Then it’s impossible

that V1pµq “ F1pµq. Contradiction.

What’s more, since V1 is Lipschitz continuous at any Vpµq ą Fpµq, it can be extended

smoothly to the boundary. Since V1 “ F1 at Vpµq “ Fpµq, then the limit of this smooth

extension has lim V1pµq “ F1pµq. Therefore V is Cp1q smooth on r0, 1s.

– Step 3. Repeated experiments and contradictory experiments. With the convergence

result we have on hand, we can apply similar proof by contradiction method in step

1 and 2 to rule out these two cases. We omitted the proofs here. Therefore:

Vpµq “ max
"

Fpµq, max
ν

c
ρ

Vpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq

*

– Step 4. Diffusion experiments. Suppose at µ, diffusion experiment is strictly optimal:

Vpµq ă ´
c
ρ

D2Vpµq

H2pµq

Then by Definition A.2 ., there exists ε, δ1 s.t.:

Vpµq ` ε ď
c
ρ

Vpµ ` δ1q ´ Vpµq ´ V1pµqδ1

Hpµq ´ Hpµ ` δ1q ` H1pµqδ1

Then by definition of derivative, there exists δ2 s.t.:

Vpµq `
ε

2
ď

c
ρ

δ2
δ1`δ2

pVpµ ` δ1q ´ Vpµqq `
δ2

δ1`δ2
pVpµ ´ δ2q ´ Vpµqq

δ2
δ1`δ2

pHpµq ´ Hpµ ` δ1qq `
δ2

δ1`δ2
pHpµq ´ Hpµ ´ δ2qq
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By convergence of Vn, there exists n s.t.:

Vnpµq `
ε

4
ď

c
ρ

δ2
δ1`δ2

pVnpµ ` δ1q ´ Vnpµqq `
δ2

δ1`δ2
pVnpµ ´ δ2q ´ Vnpµqq

δ2
δ1`δ2

pHpµq ´ Hpµ ` δ1qq `
δ2

δ1`δ2
pHpµq ´ Hpµ ´ δ2qq

ùñ
δ2

δ1 ` δ2
Vnpµ ` δ1q `

δ1

δ1 ` δ2
Vnpµ ´ δ2q

ěVnpµq

ˆ

1 `
ρ

c

ˆ

Hpµq ´
δ2

δ1 ` δ2
Hpµ ` δ1q ´

δ1

δ1 ` δ2
Hpµ ´ δ2q

˙˙

`
ρ

c

ˆ

Hpµq ´
δ2

δ1 ` δ2
Hpµ ` δ1q ´

δ1

δ1 ` δ2
Hpµ ´ δ2q

˙

ε

4

If we consider the experiment with posterior beliefs µ ` δ1, µ ´ δ2 at µ. Taking this

experiment at µ with flow probability:

c

Hpµq ´
δ2

δ1`δ2
Hpµ ` δ1q ´

δ1
δ1`δ2

Hpµ ´ δ2q

Then the flow cost constraint will be satisfied and the utility gain is:

rVnpµq “

δ2
δ1`δ2

Vnpµ ` δ1q `
δ1

δ1`δ2
Vnpµ ´ δ2q

1 `
ρ
c

´

Hpµq ´
δ2

δ1`δ2
Hpµ ` δ1q ´

δ1
δ1`δ2

Hpµ ´ δ2q

¯

ěVnpµq `

ρ
c

´

Hpµq ´
δ2

δ1`δ2
Hpµ ` δ1q ´

δ1
δ1`δ2

Hpµ ´ δ2q

¯

1 `
ρ
c

´

Hpµq ´
δ2

δ1`δ2
Hpµ ` δ1q ´

δ1
δ1`δ2

Hpµ ´ δ2q

¯

ε

4

ąVnpµq

Contradiction.

To sum up, we proved that Vpµq solves Equation (A.4) ..

�

Lemma B.26 (Convergence of µ˚). Suppose Assumption A . and Assumptions 1.3 ., 1.2-a. and A.1.

are satisfied. Let Fn be piecewise linear function on [0,1] satisfying:
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1. |Fn ´ F| Ñ 0;

2. @µ P r0, 1s, lim F1
npµq “ F1pµq.

Let µ˚
n be as defined in Lemma A.2. associated with Fn. Suppose µ˚ “ lim µ˚

n. Then,

1. @µ ą µ˚, DN s.t. @n ě N, νnpµq ě µ.

2. @µ ă µ˚, DN s.t. @n ě N, νnpµq ď µ.

Proof. @µ ą µ˚, by definition lim µ˚
n “ µ˚, there exists N s.t. @n ě N: |µ˚

n ´ µ˚| ă |µ ´ µ˚|.

Therefore µ ą µ˚
n and thus νnpµq ě µ. Same argument applies to µ ă µ˚. �

Lemma B.27. Suppose Assumption A . and Assumptions 1.3 ., 1.2-a. and A.1. are satisfied. Let Fn

be piecewise linear function on [0,1] satisfying:

1. |Fn ´ F| Ñ 0;

2. @µ P r0, 1s, lim F1
npµq “ F1pµq.

Define Vn “ VpFnq and V “ VpFq. Then: @µ P r0, 1s s.t. Vpµq ą Fpµq, D lim V1
npµq.

Proof. With Lemma B.26 ., we can define µ˚ P r0, 1s (we pick an arbitrary limiting point

when there are multiple ones). First by assumption lim F1
npµq “ F1pµq, and V1

n “ F1
m

on the boundary by construction in Theorem 1.2 ., the statement is automatically true for

µ P t0, 1u. We discuss three possible cases for different µ P p0, 1q separately.

• Case 1: µ ą µ˚. If Vpµq ą Fpµq, then by convergence in L8 norm, there exists N

and neighbourhood µ P O s.t. @n ě N, µ1 P O, Vnpµ1q ą Fnpµ1q. We know that by

no-repeated-experimentation property of solution νnpµq to problem with Fn, νnpµq ą

sup O. Now consider V1
npµq. Suppose V1

npµq have unlimited limiting point. Then exists

subsequence lim V1
npµq “ 8 or ´8. If lim V1

npµq “ 8, consider ν “ 0, else if lim V1
npµq “

´8, consider ν “ 1:

Vpµq “ lim
nÑ8

Vnpµq
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ě lim
nÑ8

c
ρ

Fnpνq ´ Vnpµq ´ V1
npµqpν ´ µq

Jpµ, νq

“
c
ρ

Fpνq ´ Vpµq

Jpµ, νq
´

c
ρ

lim
nÑ8

V1
npµq

ν ´ µ

Jpµ, νq

“ ` 8

Contradiction. Therefore we know that V1
npµq must have finite limiting points. Now

suppose V1
npµq doesn’t converge, then there exists two subsequences lim V1

npµq “ V1
1

and lim V1
mpµq “ V1

2, V1
1 ‰ V1

2 P R. Suppose V1
1 ą V1

2. Now take a converging subse-

quence of optimal policy at µ νnk Ñ ν1. By previous result ν1 ě sup O. Therefore ν1

will be bounded away from µ. Consider:

Vpµq “ lim
kÑ8

Vnkpµq

ě lim
kÑ8

c
ρ

Fmkpν1q ´ Vmkpµq ´ V1
mk

pµqpν1 ´ µq

Jpµ, ν1q

“
c
ρ

Fpν1q ´ Vpµq ´ V1
2pν1 ´ µq

Jpµ, ν1q

“ lim
kÑ8

Fnkpνnkq ´ Vnkpµq ´ V1
nK

pµqpνnk ´ µq

Jpµ, νnkq
`

pV1
1 ´ V1

2qpν1 ´ µq

Jpµ, ν1q

ąVpµq

Contradiction. Therefore, limit point of V1
npµq must be unique. Such limit point exists

since V1
n are uniformly bounded. To sum up, there exists lim V1

npµq.

• Case 2: µ “ µ˚. Since Vpµ˚q ą Fpµ˚q. This implies that DN s.t. @n ě N, Vnpµ˚q ą Fnpµ˚q.

In this case, by Lemma A.2 ., µ˚
n are unique. Since µ˚

n is the unique intersection of Un`

and Un´ (Definition of Un`, Un´1 are as in Lemma A.2 ., n is index), we can first establish
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convergence of µ˚ through convergence of Un` and Un´1. By definition:

U`pµq “ max
µ1ěµ,měµ

Fmpµ1q

1 `
ρ
c Jpµ, µ1q

Therefore, suppose the maximizer for index n is νn, mn, then for index n1:

Un1`pµq ě
Fn1pνnq

1 `
ρ
c Jpµ, νnq

ěUn`pµq `
Fnpνnq ´ Fn1pνnq

1 `
ρ
c Jpµ, νnq

ěUn`pµq ´ |Fn ´ Fn1 |

Since n and n1 are totally symmetric, we actually showed that the functional map from

Fn to Un` is Lipschitz continuous in Fn with Lipschitz parameter 1. Symmetric argu-

ment shows that same property for Un´. Since by assumption Fn is uniformly con-

verging, we can conclude that Un` and Un´ are Cauchy sequence with L8 norm.

Therefore converging. Then Un` ´ Un´ uniformly converges and their roots will be

UHC when n Ñ 8. To show convergence of µ˚
n, it’s sufficient to show that such

limit is unique. This is not hard to see by applying envelope theory to Un` and Un´:

d
dµUn`pµq “ ´

ρ
c

FpνnqH2pµqpνn´µq

Jpµ,νnq2 . Therefore Un` ´ Un´1 will have slope bounded below

from zero, therefore the limit will also be strictly increasing. So µ˚ is unique.

Since µ˚
n Ñ µ, and V2

n pµq are all bounded from above:

V1
npµ˚q “V1

npµ˚
nq ` V2

n pξnqpµ˚ ´ µ˚
nq

“V2
n pξnqpµ˚ ´ µ˚

nq Ñ 0

• Case 3: µ ă µ˚. We can apply exactly the symmetric proof of case 1.
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�

B.5.3 General state space

B.5.3.1 Proof of Theorem A.3.

Proof. @µ P E, consider X “ supppµq (This is without loss since we can always focus on

only the support of µ). Let pp, ν, Σq be optimal policy at µ.

Step 1. Derive optimality condition. Suppose p ‰ 0:

ρVpµq “ ´c
Vpνq ´ Vpµq ´ ∇Vpµqpν ´ µq

Hpνq ´ Hpµq ´ ∇Hpµqpν ´ µq
(B.37)

Now let p “ ´ c
Hpνq´Hpµq´∇Hpµqpν´µq

. As an analog to Equation (1.8) ., first order condition

implies:

FOC ´ ν :∇Vpνq ´ ∇Vpµq ` λp∇Hpνq ´ ∇Hpµqq “ 0

FOC ´ p :Vpνq ´ Vpµq ´ ∇Vpµqpν ´ µq ` λppHpνq ´ Hpµq ´ ∇Hpµqpν ´ µqq “ 0

G“V`λH
ùùùùùùñ

$

’

&

’

%

∇Gpνq “ ∇Gpµq

Gpνq ´ Gpµq ´ ∇Gpµqpν ´ µq “ 0
(B.38)

Feasibility condition Equation (B.37) . implies λ “
ρ
c Vpµq.Moreover, optimality implies

@ν1 P ∆pXq:

ρVpµq ě ´c
Vpν1q ´ Vpµq ´ ∇Vpµqpν1 ´ µq

Hpν1q ´ Hpµq ´ ∇Hpµqpν1 ´ µq

ùñ Gpν1q ´ Gpµq ´ ∇Gpµqpν1 ´ µq ď 0 (B.39)

Suppose p “ 0, then Σ ‰ 0. Pick any non-zero row σ, then feasibility condition of
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Equation (A.1). implies:

ρVpµq “ ´c
σTHVpµqσ

σTHHpµqσ

Optimality condition also implies Equation (B.39)..

Step 2. Prove Vpνq ą Vpµq. Suppose by contradiction that Vpνq ď Vpµq. Consider

Vpµαq where µα “ αν ` p1 ´ αqµ, α P p0, 1q. Since ∆pXq is convex, µα P ∆pXq. Now by

Equation (B.39)., Gpµαq ď Gpµq ` ∇Gpµqpµα ´ µq. For α sufficiently small, µα P E. @λ1 ă λ,

let G1 “ V ` λ1H. Then since H is strictly concave, G1 is more convex that G, therefore

$

’

&

’

%

G1pµαq ´ G1pµq ´ ∇G1pµqpµα ´ µq ă 0

G1pµαq ´ G1pνq ´ ∇G1pνqpµα ´ νq ă 0

ùñ G1pµαq ` ∇G1pµαqpµ ´ µαq ă G1pµq

or G1pµαq ` ∇G1pµαqpν ´ µαq ă G1pνq

So optimality condition is not satisfied at µα. Suppose Vpµαq is achieved with non-zero pi,

Then λ characterizing FOC at µα must be strictly larger than λ. Therefore Vpµαq ą Vpµq.

Suppose Vpµαq is achieved with zero pi. Then Vpµαq ď Vpµq again implies Equation (B.39) .

violated. So Vpµαq ą Vpµq. This implies

d
dα

Vpµαq ě 0

ðñ ∇Vpµqpν ´ µq ě 0

ùñ Vpνq ´ Vpµq ´ ∇Vpµqpν ´ µq ď 0

Contradicting Equation (B.37) ..

Step 3. Prove Vpνq “ Fpνq. Suppose by contradiction that Vpνq ą Fpνq. By the analysis

301



Appendix B. Supplemental materials for Chapter 1.

in step 2, let λ “
ρVpµq

c and G “ V ` λH. Let λ1 “
ρVpνq

c and G1 “ V ` λ1H. Then

@ν1 P ∆pXq, ν1 ‰ ν:

Gpν1q ďGpνq ` ∇Gpνqpν1 ´ νq

ùñ G1pν1q “Gpν1q ` pλ1 ´ λqHpν1q

ďGpνq ` ∇Gpνqpν1 ´ νq ` pλ1 ´ λqHpν1q

ăGpνq ` ∇Gpνqpν1 ´ νq ` pλ1 ´ λqHpνq ` ∇Hpνqpν1 ´ νq

“G1pνq ` ∇G1pνqpν1 ´ νq

On the other hand, @ν1, Gpν1q ď Gpνq `∇Gpνqpν1 ´ νq implies HGpνq being negative semi-

definite. Then @σ, σTHGpνqσ ď 0. Therefore, @σ, σTHGpνqσ ` pλ1 ´ λqσTHHpνqσ ă 0 ùñ

ρ
c Vpνq ă ´

σTHVpνqσ
σTHHpνqσ

. Contradicting Vpνq being sovled in Equation (A.1) ..

Step 4. Prove that the set of µ at which ρ
c Vpµq “ ´

σTHVpµqσ

σTHHpµqσ
is no where dense.

Suppose by contradiction that there exists an open ball O Ă E on which @µ, ρ
c Vpµq “

maxσ ´
σTHVpµqσ

σTHHpµqσ
. Let O be a non-degenerate closed ball contained in O. Since V is contin-

uous on V, there exists µ˚ P arg minµPO Vpµq. @µ P O, by definition HVpµq `
ρVpµq

c HHpµq

is negative semi-definite. Therefore, HVpµq `
ρVpµ˚q

c HHpµq is negative semi-definite.

Now consider Gpµq “ Vpµq `
ρ
c Vpµ˚qHpµq on O. Gpµq has pointwise negative semi-

definite Hessian. So Gpµq is a convex function. On the other hand, optimality of Gaus-

sian signal at µ˚ implies Gpµq to be concave. Therefore Gpµq is linear on O. So Vpµq “

Lpµq ´
ρ
c Vpµ˚qHpµq on O, where Lpµq is a linear function.

Now I show that Vpµq is a constant on O. Suppose not, Vpµq ą Vpµ˚q. Then Vp¨q `

ρVpµq

c Hp¨q “ Lp¨q `
ρ
c pVpµq ´ Vpµ˚qqHp¨q has negative-definit Hessian at µ. So there ex-

ists no σ s.t. σTHVpµqσ `
ρVpµq

c σTHHpµqσ “ 0. Contradiction. However, Vpµq being a

constant on O implies HVpµq ” 0 on O, contradiction.

Step 5. Prove that @µ P E, exists ν P EC satisfying Equation (B.37) .. Suppose p ą 0,
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then as discussed in step 1, proof is done. Now suppose p “ 0. Then by step 4, there is

a converging sequence of µn Ñ µ and νn satisfying Equation (B.37) . for each µn. By step

3, νn P EC so νn are bounded away from µn by positive distance. Since νn P EC and EC is

closed subset of ∆pXq, there exists converging subsequence νn Ñ ν P EC. Therefore, by

smoothness of V and H,

Vpµq “ lim
nÑ8

Vpµnq “ lim
nÑ8

´c
Vpνnq ´ Vpµnq ´ ∇Vpµnqpνn ´ µnq

Hpνnq ´ Hpµnq ´ ∇Hpµnqpνn ´ µnq

“ ´ c
Vpνq ´ Vpµq ´ ∇Vpµqpν ´ µq

Hpνq ´ Hpµq ´ ∇Hpµqpν ´ µq

Step 6. Prove the strict inequality. Define K “

!

µ
ˇ

ˇ

ˇ
ρVpµq “ supσ ´c σTHVpµqσ

σTHHpµqσ

)

. Then by

step 4, K is a nowhere dense set and the inequality in property 4 is satisfied by construc-

tion. Now I prove property 1 on EzK:

Dνpµq´µVpµq “pνpµq ´ µqT ¨ ∇Vpµq “ pνpµq ´ µqT ¨
B

Bµ

ˆ

´
c
ρ

Fpνpµqq ´ Vpµq ´ ∇Vpµqpνpµq ´ µq

Hpνpµqq ´ Hpµq ´ ∇Hpµqpνpµq ´ µq

˙

“pνpµq ´ µqT

˜

´
c
ρ

´HVpµqpνpµq ´ µq `
ρ
c Vpµqp´HHpµqpνpµq ´ µqq

Hpνpµqq ´ Hpµq ´ ∇Hpµqpνpµq ´ µq

¸

ą 0

Now I prove property 3 on EzK: Define Jpµ, νq “ Hpµq ´ Hpνq ` ∇Hpµqpν ´ µq. Then

Equations (B.37). and (B.38). implies

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Vpµq “
Fpνq ´ pν ´ µqT ¨ ∇Vpµq

1 `
ρ
c Jpµ, νq

∇Vpµq “

´

p∇Hpνq ´ ∇Hpµqqpν ´ µqT ` p1 `
ρ

c
Jpµ, νqqI

¯´1

¨

´

Fpνqp∇Hpνq ´ ∇Hpµqq ` p1 `
ρ

c
Jpµ, νqq∇F

¯

ùñ

$

’

’

’

&

’

’

’

%

Vpµq “
Fpµq

1 ´
ρ
c Jpν, µq

∇Vpµq “ ∇F `

ρ
c Fpµqp∇Hpνq ´ ∇Hpµqq

1 ´
ρ
c Jpν, µq
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Then ν “ νpµq satisfies the following PDE @α:

αT ¨
B

Bµ

Fpµq

1 ´
ρ
c Jpν, µq

` Dαν
B

Bν

Fpµq

1 ´
ρ
c Jpν, µq

“ αT ¨

˜

∇F `

ρ
c Fpµqp∇Hpνq ´ ∇Hpµqq

1 ´
ρ
c Jpν, µq

¸

ùñ FpµqDαν ¨ HHpνqpν ´ µq “ Jpν, µq

´

αT∇F
´

1 ´
ρ

c
Jpν, µq

¯

`
ρ

c
FpµqαTp∇Hpνq ´ ∇Hpµqq

¯

ùñ Dαν ¨ HHpνqpν ´ µq “
Jpν, µq

Fpµq
`

1 ´
ρ
c Jpν, µq

˘DαVpµq

ùñ Dµ´νν ¨ HHpνqpν ´ µq “
Jpν, µq

Fpµq
`

1 ´
ρ
c Jpν, µq

˘

`

´Dν´µVpµq
˘

ă 0

The inequality comes from Vpµq ą 0 and Dν´µVpµq ą 0. �

B.5.4 Axiom for posterior separability

B.5.4.1 Proof of Theorem A.4.

Proof. Let S0 be a fully revealing information structure i.e. with any prior belief µ, each

signal induces posterior belief δxi with probability µpxiq. @µ P ∆X, define:

Hpµq “ IpS0;X |µq

@S which induces ν with probability hpνq with prior µ:

IpS0;X |µq “IpS ;X |µq ` ErIpS0;X |S , µqs

“IpS ;X |µq `

ż

IpS0;X |νqhpνqdν

“HpS ;X |µq ` EhrIpS0;X |νqs

ùñ IpS ;X |µq “Hpµq ´ EhrHpνqs

Moreover, HpEhrνsq ´ EhrHpνqs ě 0 for all distribution h implies that H is a concave func-

tion on ∆X. �
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C.1 Omitted proofs

C.1.1 Proof of Lemma 2.1.

Proof.

Step 1. Value from solving Equation (2.1) . is no larger than value from solving Equa-

tion (C.1).:

sup
St,T

ErρT upA,X qs (C.1)

s.t.

$

’

’

’

’

’

&

’

’

’

’

’

%

E
“

IpSt;X |St´1, 1T ětq
ˇ

ˇT ě t
‰

ď c

X Ñ St Ñ A conditional on T “ t

X Ñ St Ñ 1T ět

Equation (C.1) . is more relaxed than Equation (2.1) . in the first constraint. In Equation (2.1) .,

the flow cost constraint is imposed on each prior induced by previous information and

decision choice. Equation (C.1) . only requires the average cost conditional on not having

stopped yet being bounded by c:

IpSt;X |St´1, 1T ětq ď c

ùñ E
“

IpSt;X |St´1, 1T ětq
ˇ

ˇT ě t
‰

ď Erc|T ě ts “ c

Therefore, any feasible strategy for Equation (2.1) . is feasible for Equation (C.1) .. So

Equation (C.1). is a more relaxed problem than Equation (2.1) ..

Step 2. Value from solving Equation (C.1) . is no larger than value from solving Equa-.
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tion (2.2).. @ pSt, T q satisfying constraints in Equation (C.1)., define:

$

’

’

’

’

’

&

’

’

’

’

’

%

It “ IpSt´1;X |T ě tq

pt “ PpT “ t|T ě tq

Pt “ PpT ď tq

Want to show that pIt, ptq is feasible and implements same utility in Equation (2.2). as

pSt, T q in Equation (C.1).. First, consider the objective function:

ErρT upA;X qs

“

8
ÿ

t“0

PpT “ tqρtErupA;X q|T “ ts

“

8
ÿ

t“0

PpT “ t|T ě tqPpT ě tqρtV˚

“

8
ÿ

t“0

ρtp1 ´ Pt´1qptV˚

Second, consider feasibility constraint:

c ěE
“

IpSt;X |St´1, 1T ětq
ˇ

ˇT ě t
‰

“PpT “ t|T ě tqErIpSt;X |St´1, 1T ětq|T “ ts

`PpT ą t|T ě tqErIpSt;X |St´1, 1T ětq|T ą tqs

“ptpIpSt, 1T ět;X |T “ tq ´ IpSt´1, 1T ět;X |T “ tqq

`p1 ´ ptqpIpSt, 1T ět;X |T ą tq ´ IpSt´1, 1T ět;X |T ą tqq

“pt IpSt;X |T “ tq ` p1 ´ ptqIpSt;X |T ą tq

´ppt IpSt´1, 1T ět;X |T “ tq ` p1 ´ ptqIpSt´1, 1T ět;X |T ą tqq

ěpt IpA;X q ` p1 ´ ptqIt`1 ´ IpSt´1, 1T ět;X |T ě tq
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“pt Ī ` p1 ´ ptqIt`1 ´ It

First inequality is feasibility constraint. Fist equality is law of iterated expectation. Second

equality is chain rule from posterior separability. Third equality is rewriting terms. Notic-

ing that condition on T “ t ` 1, 1T ďt is degenerate. Second inequality is from information

processing inequality and applying chain rule again. Last equality is by definition. It is

easy to verify by law of total probability that:

Pt “PpT ď tq “ PpT “ tq ` PpT ď t ´ 1q

“PpT ě tqPpT “ t|T ě tq ` PpT ď t ´ 1q

“p1 ´ Pt´1qpt ` Pt´1

Then we verify initial conditions:

$

’

’

&

’

’

%

I1 “ IpS0;X |T ě 1q “ 0

P0 “ PpT ď 0q “ 0

�

C.1.2 Proof of Theorem 2.1.

Proof. First, assume ρt “ max
␣

0, T´t
T
(

. We show that the statement in Theorem 2.1 . is

correct with the assumed ρt. Since ρt “ 0 when t ě T, Equation (2.2) . is finite horizon. So

we can apply backward induction. Define:

VtpIq “ sup
pτ

T
ÿ

τ“t

T ´ τ

T
p1 ´ Pτ´1qpτV˚
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s.t.

$

’

’

’

’

’

&

’

’

’

’

’

%

p Ī ´ Iτqpτ ` pIτ`1 ´ Iτqp1 ´ pτq ď c

Pτ “ Pτ´1 ` p1 ´ Pτ´1qpτ

Pt´1 “ 0, It “ I

Then Vt solves functional equation:

VtpIq “ sup
p

T ´ t
T

pV˚ ` p1 ´ pqVt`1pI1q (C.2)

s.t. p Ī ´ Iqp ` pI1 ´ Iqp1 ´ pq ď c

I conjecture that for I ě 0:

rVtpIq “

$

’

’

’

&

’

’

’

%

T ´ t
T

c ` I
Ī

V˚ `

ˆ

1 ´
c ` I

Ī

˙ T
ÿ

τ“t`1

T ´ τ

T
V˚ c

Ī

´

1 ´
c
Ī

¯τ´t´1
when

c ` I
Ī

ă 1

T ´ t
T

V˚ when
c ` I

Ī
ě 1

(C.3)

solves Equation (C.2) .. This is clearly true for t “ T ´ 1. Since when t “ T ´ 1, Vt`1 ” 0

so there is no utility gain from accumulating I. Now we prove the conjecture by back-

ward induction on t. Suppose the conjecture is true for t. Consider solving Vt´1 from

Equation (C.2)..

• Case 1: Ī ď c ` I. Then choosing p “ 1 gives utility T´τ
T V˚ immediately, thus optimal

and VtpIq “ T´t
T V˚ “ rVtpIq.

• Case 1: Ī ą c ` I. Consider the one-step optimization problem choosing I1:

VtpIq “ sup
I1ě0

T ´ t
T

c ` I ´ I1

Ī ´ I1
V˚ `

Ī ´ I ´ c
Ī ´ I1

rVt`1pI1q
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When I1 ď Ī ´ c, the objective function is:

T ´ t
T

c ` I ´ I1

Ī ´ I1
V˚ `

Ī ´ I ´ c
Ī ´ I1

T ´ t ´ 1
T

V˚

ùñ FOC : ´
1
T

Ī ´ I ´ c
p Ī ´ I1q2 V˚ ď 0

When I1 ą Ī ´ c, the objective function is:

T ´ t
T

c ` I ´ I1

Ī ´ I1
V˚ `

Ī ´ I ´ c
Ī ´ I1

˜

T ´ t ´ 1
T

c ` I1

Ī
V˚ `

ˆ

1 ´
c ` I1

Ī

˙ T
ÿ

τ“t`2

T ´ τ

T
V˚ c

Ī

´

1 ´
c
Ī

¯τ´t´2
¸

ùñ FOC : ´

´

1 ´
c
Ī

¯T´t´1 Ī ´ I ´ c
Tp Ī ´ I1q2 V˚ ă 0

To sum up, decreasing I1 is always utility improving. So optimal I1 “ 0 and optimal

solution of Equation (C.2) . is

VtpIq “
T ´ t

T
c ` I

Ī
V˚ `

ˆ

1 ´
c ` I

Ī

˙

˜

T ´ t ´ 1
T

c
Ī
V˚ `

´

1 ´
c
Ī

¯

T
ÿ

τ“t`2

T ´ τ

T
V˚ c

Ī

´

1 ´
c
Ī

¯τ´t´2
¸

“
T ´ t

T
c ` I

Ī
V˚ `

ˆ

1 ´
c ` I

Ī

˙ T
ÿ

τ“t`1

T ´ τ

T
V˚ c

Ī

´

1 ´
c
Ī

¯τ´t´1

“rVtpIq

Therefore, rVtpIq solves Equation (C.2).. So with ρt defined by max
␣

0, T´t
T
(

, Equation (2.2).

is solved by strategy It ” 0 (i.e. pt “ c
Ī ) and optimal utility is rV1p0q.

Now, consider a general convex ρt. We want to show that pt “ c
Ī is still optimal

strategy for Equation (2.2) .. By definition limtÑ8

ř

τět ρτ “ 0, so @ε there exists T s.t
ř

těT ρt ă ε. Pick T to be an even number. Now define ρt
τ recursively:

• ρT
τ “ maxtρT ` pτ ´ TqpρT ´ ρT´1q, 0u. Define pρT

τ “ ρτ ´ ρT
τ when τ ď T and pρT

τ “ 0

otherwise. It is not hard to verify that pρT
τ is convex in τ and pρT

τ “ 0 @τ ě T ´ 1.

• ρT´2
τ “ max

␣

pρT
T´2 ` pτ ´ T ` 2qppρT

T´2 ´ pρT
T´3q, 0

(

. Define pρT´2
τ “ pρT

τ ´ ρT´2
τ . It is not
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hard to verify that pρT´2
τ is convex in τ and pρT´2

τ “ 0 @τ ě T ´ 3.

• ¨ ¨ ¨

• ρT´2k
τ “ max

!

pρT´2k`2
T´2k ` pτ ´ T ` 2kq

´

pρT´2k`2
T´2k ´ pρT´2k`2

T´2k´1

¯

, 0
)

. Define pρT´2k
τ “ pρT´2k`2

τ ´

ρT´2k
τ .

@p1
t satisfying constraints in Equation (2.2). and corresponding P1

t :

8
ÿ

t“1

ρtp1 ´ P1
t´1qp1

tV
˚

“

8
ÿ

t“1

¨

˝

rT{2s
ÿ

k“1

ρT´2k
t `

¨

˝ρt ´

rT{2s
ÿ

k“1

ρT´2k
t

˛

‚

˛

‚p1 ´ P1
t´1qp1

tV
˚

ă

rT{2s
ÿ

k“1

8
ÿ

t“1

ρT´2k
t p1 ´ P1

t´1qp1
tV

˚ ` εV˚

ď

rT{2s
ÿ

k“1

8
ÿ

t“1

ρT´2k
t p1 ´ Pt´1qptV˚ ` εV˚

ď

8
ÿ

t“1

ρtp1 ´ Pt´1qptV˚ ` εV˚

First inequality is from
ř

těT ρt ă ε. Second inequality is from optimality of pt in last part.

Last inequality is from
ř

těT ρt ě 0. Therefore, by taking ε Ñ 0, we showed that:

8
ÿ

t“1

ρtp1 ´ P1
t´1qp1

tV
˚ ď

8
ÿ

t“1

ρtp1 ´ Pt´1qptV˚

�
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C.1.3 Proof of Lemma 2.2.

Proof. First of all, redefine rSt s.t.

rSt “

$

’

’

&

’

’

%

St conditional on T ě t

s0 conditional on T ă t

where equality is defined as signal distribution conditional on X and T being identical.

It is not hard to verify that rSt, T still satisfies constraints in Equation (2.1).:

• If T ă t, Ip rSt;X | rSt´1, 1T ětq “ 0 since rSt is degenerate. If T ě t, then T ě t ´ 1 so

Ip rSt;X | rSt´1, 1T ětq “ IpSt;X |St´1, 1T ětq ď c.

• Conditional on T “ t, rSt “ St so X Ñ rSt Ñ A.

• If rSt “ s0, then T ă t for sure, so 1T ět is independent to X . If rSt ‰ s0, then T ě t

for sure, so 1T ět is independent to X .

So replacing S with rS we still get a feasible strategy and induced decision time distribu-

tion T is unchanged. From now on, we assume WLOG that St ” s0 when T ă t. I only

discuss the case ErT s ă 8. If ErT s “ 8 then Lemma 2.2 . is automatically true.

ErT s “

8
ÿ

t“1

PpT “ tq ¨ t “

8
ÿ

t“1

PpT “ tq
t
ÿ

τ“1

1 “

8
ÿ

τ“1

8
ÿ

t“τ

PpT “ tq

“

8
ÿ

t“1

PpT ě tq “
1
c

8
ÿ

t“0

PpT ě tq ¨ c

ě
1
c

8
ÿ

t“1

PpT ě tqE
“

IpSt;X |St´1, 1T ětq
ˇ

ˇT ě t
‰

“
1
c

8
ÿ

t“1

`

PpT ě tqE
“

IpSt;X |St´1, 1T ětq
ˇ

ˇT ě t
‰

` PpT ă tqE
“

IpSt;X |St´1, 1T ětq
ˇ

ˇT ă t
‰˘

“
1
c

8
ÿ

t“1

ErIpSt;X |St´1, 1T ětqs “
1
c

8
ÿ

t“1

pIpSt;X q ´ IpSt´1;X qq
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“
1
c

˜

lim
tÑ8

IpSt;X q ` lim
τÑ8

8
ÿ

t“τ

IpSt;X q ´ IpSt´1;X q

¸

ě
1
c

lim
τÑ8

τ
ÿ

t“1

PpT “ tqE
“

IpSt;X |T “ tq
ˇ

ˇT “ t
‰

ě
1
c

lim
τÑ8

τ
ÿ

t“1

PpT “ tqIpA;X q

“
IpA;X q

c

Third line is from flow informativeness constraint. Forth line is from St
ˇ

ˇ

T ăt ” s0. Fifth

and sixth line is from chain rule of posterior separable information measure. Seventh line

is from information process inequality and law of interated expectation. Second last line

is from information processing constraint. �

C.1.4 Proof of Lemma 2.3.

Proof. Take any strategy pµt, T q feasible in Equation (2.6).. Define

$

’

&

’

%

Pt “ PpT ď tq

It “ E
“

Hpµq ´ Hpµtq
ˇ

ˇT ą t
‰

(C.4)

Now we prove that Equation (C.4) . is a feasible strategy in Equation (2.7) . and implements

same value. First, since H is concave, then It ě 0. Since µ0 “ µ, I0 “ 0. Since µt|T “t “ π

and µ0 “ µ, then P0 “ 0. Now we verify 9It ď c ´ ptp Ī ´ Itq

ErHpµt`dtq|T ą ts “ ´ Hpµq ´ ErHpµt`dtq|T ą t ` dtsPpT ą t ` dt|T ą tq

´ErHpµt`dtq|T P pt, t ` dtssPpT P pt ` dts|T ą tq

ùñ It`dt “Hpµq ´
1 ´ Pt

1 ´ Pt`dt

ˆ

ErHpµt`dtq|T ą ts ´
Pt`dt ´ Pt

1 ´ Pt
ErHpµt`dtq|T P pt, t ` dtss

˙

ùñ It`dt ´ It “ErHpµtq|T ą ts
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´
1 ´ Pt

1 ´ Pt`dt

ˆ

ErHpµt`dtq|T ą ts ´
Pt`dt ´ Pt

1 ´ Pt
ErHpµt`dtq|T P pt, t ` dtss

˙

“
1 ´ Pt`dt

1 ´ Pt
pErHpµtq ´ Hpµt`dtq|T ą tsq

´
1 ´ Pt`dt

1 ´ Pt

Pt`dt ´ Pt

1 ´ Pt
ppErHpµq ´ Hpµt`dtq|T P pt, t ` dtssq ´ ErHpµq ´ Hpµtq|T ą tsq

´

ˆ

Pt`dt ´ Pt

1 ´ Pt

˙2

ErHpµtq|T ą ts

ùñ dIt “Er´dHpµtq|T ą ts ´
dPt

1 ´ Pt
pEπrHpµq ´ Hpνqs ´ Itq

ùñ 9It ďc ´
9Pt

1 ´ Pt
p Ī ´ Itq

First equality is law of iterated expectation. Second, third and forth equalities are rear-

ranging terms. Fifth equality is from taking dt Ñ 0. Inequality is from ErdHpµtq|µts ď

ddt.

Finally, deifne pt “
9Pt

1´Pt
. Then

ErρT s “

ż 8

0
ρtdPt “

ż 8

0
ρtp1 ´ Ptqptdt

To sum up, for any feasible strategy in Equation (2.6)., there exists an feasible strategy in

Equation (2.7). attaining same value. So the statement in Lemma 2.3 . is true. �

C.1.5 proof of Theorem 2.3.

Proof. It is easy to verify that pt ” c
Ī is feasible in Equation (2.7) . and the objective function

is exactly
ş8

0 ρte´ c
Ī t c

Ī dt. Therefore, it is sufficient to show that V ď
ş8

0 ρte´ c
Ī t c

Ī dt. Pick any

pt satisfying constraints in Equation (2.7) .. Now since pt and ρt are integrable, @ε ą 0,

there exists T s.t.

ż 8

0
ρtp1 ´ Ptqptdt ď

ż T

0
ρtp1 ´ Ptqptdt ` ε
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Then there exists dt ą 0 s.t.:

ż T

0
ρtp1 ´ Ptqptdt ď

rT{dts
ÿ

k“1

ρkdt

ż pk`1qdt

kdt
p1 ´ Pτqpτdτ ` ε

“

rT{dts
ÿ

k“1

ρkdt

ż pk`1qdt

kdt
e´

şτ
0 psds pτdτ ` ε

“

rT{dts
ÿ

k“1

ρkdt

ˆ

e´
şkdt
0 pτdτ ´ e´

şpk`1qdt
0 pτdτ

˙

` ε

“

rT{dts
ÿ

k“1

ρkdte´
şkdt
0 pτdτ

ˆ

1 ´ e´
şpk`1qdt

kdt pτdτ

˙

` ε

“

rT{dts
ÿ

k“1

ρkdtPkdt

ˆ

1 ´ e´
şpk`1qdt

kdt pτdτ

˙

` ε

Now consider the following sequence:

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

pρk “ ρk¨dt

ppk “ 1 ´ e´
şpk`1qdt

kdt pτdτ

pPk´1 “ Pkdt

pIk “ Ikdt

pc “ cdt

We verify that:

$

’

&

’

%

p Ī ´ pIkqppk ` ppIk`1 ´ pIkqp1 ´ ppkq ď pc

pPk “ pPk´1 ` p1 ´ pPk´1qppk

• Solve ODE defining Pt, we get Pt “ 1 ´ e´
şt
0 pτdτ. Apply this to calculate pPk ´ pPk´1 “

Ppk`1qdt ´ Pkdt “ p1 ´ Pkdtq
´

1 ´ e´
şpk`1qdt

kdt pτdτ
¯

“ p1 ´ pPk´1qppk.
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• Solve ODE defining It, we get:

It “

ż t

0
e
şt

τ psdspc ´ Ī pτqdτ

ùñ Ipk`1qdt ´ Ikdt “

ż pk`1qdt

0
e
şpk`1qdt

τ psdspc ´ Ī pτqdτ ´

ż kdt

0
e
şkdt

τ psdspc ´ Ī pτqdτ

“

ż pk`1qdt

kdt
e
şkdt

τ psdspc ´ Ī pτqdτ `

´

e
şpk`1qdt

kdt psds ´ 1
¯

ż pk`1qdt

0
e
şt

τ psdspc ´ Ī pτqdτ

“

´

e
şpk`1qdt

kdt psds ´ 1
¯

Ikdt ` e
şpk`1qdt

kdt psds
ż pk`1qdt

kdt
e
şkdt

τ psdspc ´ Ī pτqdτ

ùñ ∆pIkp1 ´ ppkq “

´

1 ´ e´
şpk`1qdt

kdt psds
¯

pIk ` c
ż pk`1qdt

kdt
e
şkdt

τ psdsdτ ´ Ī
ż pk`1qdt

kdt
e
şkdt

τ psds pτdτ

“ppk

´

pIk ´ Ī
¯

` c
ż pk`1qdt

kdt
e
şkdt

τ psdsdτ ´ Ī

˜

ż pk`1qdt

kdt
e
şkdt

τ psds pτdτ ´ ppk

¸

First, since when τ P rkdt, pk ` 1qdts,
şkdt

τ psds ď 0,
şpk`1qdt

kdt e
şkdt

τ psdsdτ ď dt. Then we

consider

ż pk`1qdt

kdt
e
şkdt

τ psds pτdτ ´ ppk

“

ż pk`1qdt

kdt
e
şkdt

τ psds pτdτ ´ 1 ` e´
şpk`1qdt

kdt psds

Let

Hpt, t1q “

ż t1

t
e
şt

τ psds pτdτ ´ 1 ` e´
şt1

t psds

ùñ
BHpt, t1q

Bt1
“0&Hpt, tq “ 0

ùñ Hpt, t1q ”0

Therefore, to sum up:

∆pIkp1 ´ ppkq ` ppkp Ī ´ pIkq ď pc
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We have checked that ppk, pPk, pIk is feasible in problem Equation (2.2) . with parameter pρk and

pc. Then by Theorem 2.1 .:

rT{dts
ÿ

k“1

pρk

´

1 ´ pPk´1

¯

ppk ď

8
ÿ

k“1

pρt

ˆ

Ī ´ pc
Ī

˙k´1
pc
Ī

ùñ

ż 8

0
ρtp1 ´ Ptqptdt ď

8
ÿ

k“1

pρt

ˆ

Ī ´ pc
Ī

˙k´1
pc
Ī

` 2ε

“

8
ÿ

k“1

ρkdt

´

1 ´
c
Ī
dt
¯k c

Ī
dt ` ε

Since logp1 ´ xq ď ´x,
´

1 ´ cdt
Ī

¯k
ď e´ c

Ī kdt Then:

ż 8

0
ρtp1 ´ Ptqptdt ď

8
ÿ

k“1

ρkdte
´ c

Ī kdt c
Ī
dt ` 2ε

On the other hand, since ρte´ c
Ī t is integrable, there exists dt sufficiently small that:

8
ÿ

k“1

ρkdte
´ c

Ī kdt c
Ī
dt ď

ż 8

t“0
ρte´ c

Ī tdt ` ε

ùñ

ż 8

0
ρtp1 ´ Ptqptdt ď

ż 8

0
ρte´ c

Ī tdt ` 3ε

Let ε Ñ 0, then we showed that:

V ď

ż 8

0
ρte´ c

Ī tdt

�
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C.1.6 Proof of Lemma 2.4.

Proof. Similar to discussion in proof of Lemma 2.2., I only prove for ErT s ă 8. Let:

$

’

&

’

%

Pt “ PpT ď tq

It “ ErHpµq ´ Hpµtq|T ą ts

Then be proof of Lemma 2.3 .:

dIt “ Er´dHpµtq|T ą ts ´
dPt

1 ´ Pt

`

Ī ´ It
˘

(C.5)

Consider ErT s:

ErT s “
1
c

ż 8

0
p1 ´ Ptqcdt

ě
1
c

ż 8

0
p1 ´ PtqEr´dHpµtq|T ą ts

“
1
c

ˆ
ż 8

0
p1 ´ PtqdIt `

ż 8

0
p Ī ´ ItqdPt

˙

“
Ī
c

`

ż 8

0
pp1 ´ PtqdIt ` Itdp1 ´ Ptqq

“
Ī
c

` Itp1 ´ Ptq
ˇ

ˇ

8

0

“
Ī
c

Inequality is flow informativeness constraint. Second equality is by Equation (C.5).. Forth

equality is by intergral by part. �
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D.1 Proof in Section 1.3.

D.1.1 Proof of Proposition 3.2.

Proof. (Necessity) First suppose I˚pS ;X |µq satisfies Assumption 3.1.. Then choose I˚ it-

self as I. @µ and S . @X Ñ
`

S1, . . . ,SN˘ Ñ S :

E

«

N
ÿ

i“1

I˚
´

S i;X |S1, . . . ,S i´1
¯

ff

ěI˚
´´

S1, . . . SN
¯

;X |µ
¯

ěI˚pS ;X |µq

ùñ inf
pS i,Nq

E

«

N
ÿ

i“1

I˚
´

S i;X |S1, . . . ,S i´1
¯

ff

ěI˚pS ;X |µq

First inequality is from sub-additivity. Second inequality is from monotonicity. On the

other hand, let S1 “ S , N “ 1, then

E

«

N
ÿ

i“1

I˚
´

S i;X |S1, . . . ,S i´1
¯

ff

“ I˚pS ;X |µq

ùñ inf
pS i,Nq

E

«

N
ÿ

i“1

I˚
´

S i;X |S1, . . . ,S i´1
¯

ff

ď I˚pS ;X |µq

Combining the two direction of inequality:

inf
pS i,Nq

E

«

N
ÿ

i“1

I˚
´

S i;X |S1, . . . ,S i´1
¯

ff

“ I˚pS ;X |µq

(Sufficiency) On the other hand, suppose given IpS ;X |µq,

I˚pS ;X |µq “ inf
pS i,Nq

E

«

N
ÿ

i“1

I
´

S i;X |S1, . . . ,S i´1
¯

ff

s.t. X Ñ

´

S1, . . . ,SN
¯

Ñ S
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Then

0. Uninformative signal: First it’s not hard to observe that acquiring no informaiton

is sufficient for an uninformative signal S . Therefore if choose N “ 0 we have,

0 ě I˚pS ;X |µq. Then:

I˚pS ;X |µq “ 0

1. Monotonicity: @
`

S i˘ s.t. X Ñ
`

S1, . . . ,SN˘ Ñ S . Since X Ñ S Ñ T , we have

X Ñ
`

S1, . . . ,SN˘ Ñ T . Therefore:

inf
pT i,Nq

E

«

N
ÿ

i“1

I
´

T i;X |T 1, . . . , T i´1
¯

ff

s.t. X Ñ

´

T 1, . . . , T N
¯

Ñ T

ďE

«

N
ÿ

i“1

I
´

S i;X |S1, . . . ,S i´1
¯

ff

ùñ inf
pT i,Nq

E

«

N
ÿ

i“1

I
´

T i; T |T 1, . . . , T i´1
¯

ff

s.t. X Ñ

´

T 1, . . . , T N
¯

Ñ T

ď inf
pS i,Nq

E

«

N
ÿ

i“1

I
´

S i;X |S1, . . . ,S i´1
¯

ff

s.t. X Ñ

´

S1, . . . ,SN
¯

Ñ S

ùñ I˚pT ;X |µq ď I˚pS ;X |µq

First inequality comes from that factor that
`

S i˘ serves as one feasible group of
`

T i˘ in the minimization. Second inequality comes from taking inf on RHS. Final

inequality comes from definition of I˚.

2. Sub-additivity: Suppose S “ pS1,S2q. @

´

S1
1 , . . . ,SN1

1

¯

s.t. X Ñ

´

S1
1 , . . . ,SN1

1

¯

Ñ S1.

@

´

S1
2 , . . . ,SN2

2

¯

conditinal on S1 s.t. @ realization of S1, X Ñ

´

S1
2 , . . . ,SN2

2

¯

Ñ S2.
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Therefore:

X Ñ

´

S1
1 , . . . ,SN1

1 ,S1
2 , . . . ,SN2

2

¯

Ñ pS1,S2q Ñ S

ùñ I˚pS ;X |µq ď E

«N1
ÿ

i“1

IpS i
1;S |S1

1 , . . . ,S i´1
1 q

ff

` E

«N2
ÿ

i“1

IpS i
2;X |S1,S1

2 , . . . ,S i´1
2 q

ff

ùñ I˚pS ;X |µq ď inf E

«N1
ÿ

i“1

IpS i
1;S |S1

1 , . . . ,S i´1
1 q

ff

` inf E

«N2
ÿ

i“1

IpS i
2;X |S1,S1

2 , . . . ,S i´1
2 q

ff

ùñ I˚pS ;X |µq ď I˚pS1;X |µq ` ErI˚pS2;X |S1, µqs

3. C-linearity: @S , consider S1 “ pt0, 1u, λ, 1 ´ λq being an uninformative binary signal.

S2 “ S when S1 “ 0 and constant when S1 “ 1. Therefore
`

S1,S2˘ “ Sλ. By sub-

additivity:

I˚pSλ;X |µq ď λI˚pS ;X |µq

On the other hand, consider S1 conditional on Sλ. If Sλ induces ν ‰ µ, then S1 is

uninformative. Otherwise S1 “ S . Then
`

Sλ,S1˘ “ S , by sub-additivity:

I˚pS ;X |µq ď I˚pSλ;X |µq ` p1 ´ λqI˚pS ;X |µq

ùñ λI˚pS ;X |µq ď I˚pSλ;X |µq

To sum up, λI˚pS ;X |µq “ I˚pSλ;X |µq.

�
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D.2 Proof in Section 3.3.

D.2.1 Proof of Theorem 3.1.

Proof. Let Vpµq be expected utility in Equation (P).. Then by assumption Vpµq ě 0. Sup-

pose Vpµq “ 0, then Theorem 3.1. is straight forward. Vpµq is achieved by choosing doing

nothing and acquiring no information. From now on, we assume Vpµq ą 0. Pick any

ε ă Vpµq, we want to show that there exists A, T s.t.:

Vpµq ´ ε ď ErupA,X qs ´ mT ´ T f
ˆ

IpA;X |≼q

T

˙

Suppose
`

S t,At, T
˘

solves Equation (P). approches Vpµq up to ε
2 :

Vpµq ´
ε

2
ďE

«

u
´

AT ,X
¯

´ mT ´

8
ÿ

t“0

f
`

I
`

S t;X
ˇ

ˇS t´1, 1T ďt
˘˘

ff

where

$

’

’

&

’

’

%

X Ñ S t´1 Ñ 1T ďt

X Ñ S t´1 Ñ At conditional on T “ t

Lemma D.1 . shows that we can assume that the signal structure WLOG takes the following

form:

S t “

$

’

’

&

’

’

%

s0 when T ď t

At`1 when T “ t ` 1

Therefore, At`1,1T ďt and 1T “t`1 are all explicitly signal realizations included in S t. We

discuss two cases separately:

Case 1. ErT s ě 1: Consider ST “
`

S0,S1, ¨ ¨ ¨ ,ST˘ as a combined information structure of

323



Appendix D. Appendix for Chapter 3.

all signals in first T periods. By sub-additivity in Assumption 3.1.:

E

«

8
ÿ

t“0

I
`

S t;X
ˇ

ˇS t´1, 1T ďt
˘

ff

“E

«

8
ÿ

t“0

I
`

S t;X
ˇ

ˇS t´1˘
ff

“I
´

S0;X
ˇ

ˇµ
¯

` E

«

8
ÿ

t“1

I
`

S t;X
ˇ

ˇS t´1˘
ff

“I
´

S0;X
ˇ

ˇµ
¯

` E
”

I
´

S1;X
ˇ

ˇS0
¯ı

` E

«

8
ÿ

t“2

I
`

S t;X
ˇ

ˇS t´1˘
ff

ěI
`

S1;X
ˇ

ˇµ
˘

` E

«

8
ÿ

t“2

I
`

S t;X
ˇ

ˇS t´1˘
ff

ě . . .

ěI
´

ST;X |µ
¯

` E

«

8
ÿ

t“T`1

I
`

S t;X
ˇ

ˇS t´1˘
ff

ùñ

8
ÿ

t“0

E
“

f
`

I
`

S t;X
ˇ

ˇS t´1˘˘‰ ě I
´

ST;X
ˇ

ˇµ
¯

@T (D.1)

Now consider:

8
ÿ

t“0

E
“

I
`

S t;X
ˇ

ˇS t´1˘‰

“

8
ÿ

t“0

`

ProbpT ď tqE
“

I
`

S t;X
ˇ

ˇS t´1˘ˇ
ˇT ď t

‰

` ProbpT ą tqE
“

I
`

S t;X
ˇ

ˇS t´1˘ˇ
ˇT ą t

‰˘

“

8
ÿ

t“0

`

ProbpT ď tqE
“

I
`

s0;X
ˇ

ˇS t´1˘ˇ
ˇT ď t

‰

` ProbpT ą tqE
“

I
`

S t;X
ˇ

ˇS t´1˘ˇ
ˇT ą t

‰˘

“

8
ÿ

t“0

ProbpT ą tqE
“

I
`

S t;X
ˇ

ˇS t´1˘ˇ
ˇT ą t

‰

(D.2)
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Since Vpµq ´ ε ą 0, then:

m ¨ ErT s ď max v

ùñ ProbpT ą Tq ¨ T ¨ m ď max v

ùñ ProbpT ą Tq ď
max v

mT

ùñ ProbpT ď TqE
”

u
´

AT ,X
¯

ˇ

ˇT ď t
ı

ě E
”

u
´

AT ,X
¯ı

´ ProbpT ą Tq ¨ max v

ùñ ProbpT ď TqE
”

u
´

AT ,X
¯

ˇ

ˇT ď t
ı

ě E
”

u
´

AT ,X
¯ı

´
max v2

mT

Choose T ` 1 ą mε
max v2 . Now combine Equations (D.1) . and (D.2)., and

ř8
t“0 ProbpT ą tq “

ErT s, then we have:

I
´

ST;X
ˇ

ˇµ
¯

ď

8
ÿ

t“0

ProbpT ą tqE
“

I
`

S t;X
ˇ

ˇS t´1˘ˇ
ˇT ą t

‰

ùñ
IpST;X |µq

ErT s
ď

8
ÿ

t“0

ProbpT ą tq
ř

ProbpT ą τq
E
“

I
`

S t;X
ˇ

ˇS t´1˘ˇ
ˇT ą t

‰

ùñ f
ˆ

IpST;X |µq

ErT s

˙

ď

8
ÿ

t“0

ProbpT ě tq
ř

ProbpT ą τq
f
`

E
“

I
`

S t;X
ˇ

ˇS t´1˘ˇ
ˇT ą t

‰˘

ùñ ErT s f
ˆ

IpST;X |µq

ErT s

˙

ď

8
ÿ

t“0

ProbpT ą tqE
“

f pIpS t;X |S t´1, 1T ątqq
‰

ùñ ErT s f
ˆ

IpST;X |µq

ErT s

˙

ď E

«

8
ÿ

t“0

f pIpS t;X |S t´1, 1T ďtqq

ff

Consider AT`1 “
`

A0,A2, ¨ ¨ ¨ ,AT`1˘ as a random variable which summarizes realiza-

tions of all At. Since At`1 are directly included in S t, we have X Ñ ST Ñ AT`1. There-

fore, by Assumption 3.1 .:

I
´

AT`1;X |µ
¯

ď I
´

ST;X |µ
¯
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ùñ ErT s f
ˆ

IpAT`1;X |µq

ErT s

˙

ď E

«

8
ÿ

t“0

f pIpS t;X |S t´1qq

ff

That’s to say, if we can implement AT`1 with expected waiting time ErT s and information

cost ErT s f
´

IpAT`1;X |µq

ErT s

¯

, then utility level will be weakly higher than V. We define the

new strategy as follows:

1. In each period, acquire a combined information structure by mixing AT`1 with

probability 1
ErT s

and uninformative signal structure with probability 1 ´ 1
ErT s

.

2. Following arrival of signal AT`1, choosing the corresponding action.

3. If no informative signal arrive, do nothing and go to next period.

It’s not hard to see that in this strategy, action and signal are identical thus the three

information processing constraint are naturally satisfied. In each period, the probabiltiy

of decision making is 1
ErT s

and the distribution of actions is AT`1. Therefore, totally utility

gain is:

8
ÿ

t“0

ˆ

1 ´
1

ErT s

˙t 1
ErT s

ErupAT`1,X qs “ E
”

upAT`1,X q

ı

Expected waiting time is:

8
ÿ

t“0

ˆ

1 ´
1

ErT s

˙t 1
ErT s

¨ t “ ErT s

Expected experimentation cost is:

8
ÿ

t“0

ˆ

1 ´
1

ErT s

˙t
f
ˆ

IpAT`1;X |µq

ErT s

˙

“ ErT s f
ˆ

IpAT`1;X |µq

ErT s

˙
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Therefore, we find a strategy which is no worse than original strategy than ε
2 . Then:

Vpµq ďErupAT`1,X qs ´ mErT s ´ ErT s f
ˆ

IpAT`1;X |µq

ErT s

˙

` ε

ď sup
A,T

ErupA,X qs ´ mT ´ T f
ˆ

IpA;X |≼q

T

˙

` ε @ε

ùñ Vpµq ď sup
A,T

ErupA,X qs ´ mT ´ T f
ˆ

IpA;X |≼q

T

˙

Therefore, we proved Theorem 3.1 . when ErT s ě 1.

Case 2. ErT s ă 1: Since T P N, ErT s ă 1 means PpT “ 0q ą 0. When T “ 0, no

informatin is acquired yet and decision making is based on prior. Therefore:

E

«

upAT ,X q ´ mT ´

T
ÿ

t“0

f
`

IpS t;X |S t´1q
˘

ff

“ProbpT “ 0qE
”

upA0,X q|T “ 0
ı

` ProbpT ě 1qE

«

upAT ,X q ´ mT ´

T
ÿ

t“1

f
`

IpS t;X |S t´1q
˘

ˇ

ˇ

ˇ

ˇ

ˇ

T ě 1

ff

ďProbpT “ 0q max
a

Eµrupa,X qs

` ProbpT ě 1qE

«

upAT ,X q ´ mT ´

T
ÿ

t“1

f
`

IpS t;X |S t´1q
˘

ˇ

ˇ

ˇ

ˇ

ˇ

T ě 1

ff

First equality is from law of iterated expectation. Inequality is from when T “ 0, choice

of A0 is not necessarily optimal. Suppose:

max
a

Eµrupa,X qs ě E

«

upAT ,X q ´ mT ´

T
ÿ

t“1

f
´

IpS t;X |S t´1q

¯

ˇ

ˇ

ˇ

ˇ

ˇ

T ě 1

ff

ùñ E

«

upAT ,X q ´ mT ´

T
ÿ

t“0

f
´

IpS t;X |S t´1q

¯

ff

ď max
a

Eµrupa,X qs
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Then strategy pS t,At, T q is dominated by acquiring no information and this already

proves Theorem 3.1.. Suppose on the other hand:

max
a

Eµrupa,X qs ă E

«

upAT ,X q ´ mT ´

T
ÿ

t“1

f
´

IpS t;X |S t´1q

¯

ˇ

ˇ

ˇ

ˇ

ˇ

T ě 1

ff

ùñ E

«

upAT ,X q ´ mT ´

T
ÿ

t“0

f
´

IpS t;X |S t´1q

¯

ff

ăE

«

upAT ,X q ´ mT ´

T
ÿ

t“1

f
´

IpS t;X |S t´1q

¯

ˇ

ˇ

ˇ

ˇ

ˇ

T ě 1

ff

Then we define strategy S t
1,At

1, T1 where: pS t
1,At

1, T1q “ pS t,At, T
ˇ

ˇ T ě 1q. Then it’s

straight foward that:

E

«

upAT1
1 ,X q ´ mT1 ´

T1
ÿ

t“0

f
´

IpS t
1;X |S t´1

1 q

¯

ff

“E

«

upAT ,X q ´ mT ´

T
ÿ

t“1

f
´

IpS t;X |S t´1q

¯

ˇ

ˇ

ˇ

ˇ

ˇ

T ě 1

ff

We only need to verify the information processing constraints.

• When T1 ď t: S t
1 “ s0

• When T1 “ t ` 1: S t
1 “ S t “ At`1 “ At`1

1 .

• T1 “ 0 happen with zero probability.

However, in this case ErT ě 1s. Therefore this goes back to case one. To sum up, we

showed that:

Vpµq ď max

#

sup
A

ErupA,X qs, sup
A,Tě1

ErupA,X qs ´ mT ´ T f
ˆ

IpA;X |≼q

T

˙

+
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On the other hand the inequality of the other hand is straight foward, any strategy achieve

the RHS can be achieved in origianl problem Equation (P).. Therefore:

Vpµq “ max

#

sup
A

ErupA,X qs, sup
A,Tě1

ErupA,X qs ´ mT ´ T f
ˆ

IpA;X |≼q

T

˙

+

(D.3)

Finally, we consider solving optimal T in Equation (3.1).. Fix I, consider:

inf
Tě1

ˆ

mT ` T f
ˆ

I
T

˙˙

I first show that the objective function is quasi-convex. mT is already linear, so it’s suf-

ficient to show quasi-convexity of T
` I

T
˘

. By transforming argument, it’s not hard to see

that it’s equivalent to show quasi-convexity of f pIq

I w.r.t. I. Now consider I1 ă I2 and

λ P p0, 1q. Suppose by contradiction:

f pI1q

I1
“

f pI2q

I2
ă

f pλI1p1 ´ λqI2q

λI1 ` p1 ´ λqI2

ùñ
λ f pI1q ` p1 ´ λq f pI2q

λI1 ` p1 ´ λqI2
ă

f pλI1p1 ´ λqI2q

λI1 ` p1 ´ λqI2

contradicting convexity of f pIq. Therefore, mT ` T
` I

T
˘

is quasi-convex in T. Since f is

convex, it always has one-side derivatives well defined. So an necessary condition for T

solving the problem will be:

m ` f
ˆ

I
T

˙

´
I
T

f 1
`

ˆ

I
T

˙

ď 0 ď m ` f
ˆ

I
T

˙

´
I
T

f 1
´

ˆ

I
T

˙

λ“ I
T

ðùñ m ` f pλq ´ λ f 1
`pλq ď 0 ď m ` f pλq ´ λ f 1

´pλq

ðñ
m ` f pλq

λ
P B f pλq
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What’s more, since f is convex, the correspondence f pλq ´ λ f 1pλq is increasing (in set

order). Therefore, the set of λ such that m` f pλq

λ P B f pλq must be an connected interval.

Therefore, m` f pλq

λ P B f pλq is actually also sufficient for minimizing mT ` T f p I
T q.

Case 1.: tλ|m ` f pλq P λB f pλqu ‰ H: Since f is convex, B f is a continuous correspondence,

therefore the set is closed. Pick the smallest λ:

mT ` T f
ˆ

I
T

˙

“m
I
λ

`
I
λ

f pλq

“

ˆ

m
λ

`
f pλq

λ

˙

I

Therefore, the total cost paid can be summarized by:

ˆ

m
λ

`
f pλq

λ

˙

IpA;X |µq

Finally, the constraint T ě 1 can be replaced by:

IpA;X |µq

λ
ě 1

ðñ IpA;X |µq ě λ

Theorem 3.1. is proved.

Case 2.: m ` f pλq ´ λB f pλq ą 0 @λ. That is to say:

mT ` T f
ˆ

I
T

˙

is strictly increasing in T @I. Therefore, independent of choice I, choosing smaller T will

yield higher utility. T will eventually be smaller than 1. So we can rule out this case.
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Case 3.: m ` f pλq ´ λB f pλq ă 0 @λ. That is to say:

mT ` T f
ˆ

I
T

˙

is strictly decreasing in T @I. However this is not possible since:

lim
TÑ8

mT ` T f
ˆ

I
T

˙

“ `8

To sum up, if tλ|m ` f pλq P λB f pλqu “ H, then we define λ “ 8. Then the constraint for

second term in Equation (D.3) . can never be satisfied and Vpµq “ supa Erupa,X qs. �

Lemma D.1 (Reduction of redundency).
`

S t, T ,AT ˘ solves Equation (P). if and only if there

exists
´

rST, T ,AT
¯

solving :

sup
S t,T ,AT

8
ÿ

t“0

ˆ

PrT “ ts
`

E
“

upAt,X q|T “ t
‰

´ m ¨ t
˘

(D.4)

´ PrT ą tsE
”

f
´

I
´

rS t;X
ˇ

ˇ rS t´1
¯¯

ˇ

ˇT ą t
ı

˙

s.t. rS t “

$

’

’

’

’

’

&

’

’

’

’

’

%

s0 when T ă t ` 1

At`1 when T “ t ` 1

S t when T ą t ` 1

What’s more, the optimal utility level is same in Equation (P). and Equation (D.4)..

Proof. Suppose
`

S t, T ,At˘ is a feasible strategy to Equation (P).. Let first show that it’s

WLOG that the DM can discard all information after taking an action: take given T and
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At, take s0 as a given degenerate signal, define pS t as:

pS t “

$

’

’

&

’

’

%

S t when T ě t ` 1

s0 when T ď t

By definition, pS t “ S t conditional on T ě t ` 1. Therefore:

I
´

pS t;X | pS t´1, 1T ďt

¯

“

$

’

’

&

’

’

%

I
`

S t;X |S t´1, 1T ďt
˘

when T ď t

0 when T ě t ` 1

X Ñ pS t Ñ At`1 conditional on T “ t

To show that the first information processing constraint is satisfied, we discuss the case

pS “ s0 and pS ‰ s0 separately:

• When pS t´1 “ s0, T ď t ´ 1. Therefore:

Prob
´

T ą t
ˇ

ˇ pS t´1 “ s0,X
¯

“ 0

Prob
´

T ď t
ˇ

ˇ pS t´1 “ s0,X
¯

“ 1

which is independent of realization of X .

• When pS t´1 ‰ s0, T ě t. Then by law of total probability:

Prob
´

T ą t
ˇ

ˇS t´1
¯

“Prob
´

T ą t
ˇ

ˇS t´1,X
¯

“Prob
´

T ą t
ˇ

ˇS t´1,X , T ě t
¯

ProbpT ě t|S t´1,X q
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` Prob
´

T ą t
ˇ

ˇS t´1,X , T ă t
¯

ProbpT ă t|S t´1,X q

“Prob
´

T ą t
ˇ

ˇS t´1,X , T ě t
¯

ProbpT ě t|S t´1,X q

ùñ Prob
´

T ą t
ˇ

ˇ pS t´1,X
¯

“
Prob

´

T ą t| pS t´1
¯

Prob
´

T ě t| pS t´1,X
¯

“Prob
´

T ą t| pS t´1
¯

which is independent of realization of X .

Therefore, we proved that:

X Ñ pS t´1 Ñ 1T ďt

Therefore
´

pS t,At, T
¯

is feasible and :

E

«

8
ÿ

t“0

f
´

I
´

pS t;X
ˇ

ˇ pS t´1, 1T ďt

¯¯

ff

“E

«T ´1
ÿ

t“0

f
´

I
´

pS t;X
ˇ

ˇ pS t´1, 1T ďt

¯¯

ff

“E

«T ´1
ÿ

t“0

f
`

I
`

S t;X |S t´1, 1T ďt
˘˘

ff

ďE

«

8
ÿ

t“0

f
`

I
`

S t;X |S t´1, 1T ďt
˘˘

ff
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Therefore,
´

pS t,At, T
¯

is a feasible strategy dominating
`

S t,At, T
˘

. Now we define rS t:

rS t “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

s0 when T ă t ` 1

At`1 when T “ t ` 1

pS t when T ą t ` 1

Initial information rS´1 is defined as a degenerate(uninformative) signal and induced be-

lief is the prior. Verify the properties of rS t:

1. When rS t´1 P ts0u Y A, it’s for sure that T ď t. Otherwise, T ą t. Therefore 1T ďt is a

direct garbling of rS t´1. So we must have X Ñ rS t´1 Ñ 1T ďt.

2. When T “ t, At “ rS t´1. Therefore X Ñ rS t´1 Ñ At conditional on T “ t.

3. Information measure associated with
´

rS t,At, T
¯

when T ą t:

I
´

rS t;X
ˇ

ˇ rS t´1, T ą t
¯

“1T “t`1 I
´

At`1;X
ˇ

ˇ rS t´1, T “ t ` 1
¯

` 1T ąt`1 I
´

rS t;X
ˇ

ˇ rS t´1, T ą t ` 1
¯

“1T “t`1 I
´

At`1;X
ˇ

ˇ pS t´1, T “ t ` 1
¯

` 1T ąt`1 I
´

pS t;X
ˇ

ˇ pS t´1, T ą t ` 1
¯

ď1T “t`1 I
´

pS t;X
ˇ

ˇ pS t´1, T “ t ` 1
¯

` 1T ąt`1 I
´

pS t;X
ˇ

ˇ pS t´1, T ą t ` 1
¯

“I
´

pS t;X
ˇ

ˇ pS t´1, T ą 1
¯

First inequality is simply rewriting two possible cases of T . Second equality is from def-

inition of rS t when T ą t ` 1. First inequality is from X Ñ pS t Ñ At`1 conditional on
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T “ t ` 1. Therefore,
´

rS t, T ,At
¯

dominates the original solution in Equation (P). by

achieving same action profile but lower costs.
´

rS t, T ,At
¯

is a feasible solution to Equa-

tion (D.4).. Therefore solving Equation (D.4). yields a weakly higher utility than Equa-

tion (P).. What remains to be proved is that any
´

rS t, T ,At
¯

feasible in Equation (D.4) .

can be dominated by some strategy feasible in Equation (P).. It’s not hard to see that it’s

feasible in Equation (P).. Finally we show that the two formulation gives same utility:

E

«

ErupAT ,X qs ´ m ¨ T ´

8
ÿ

t“0

e´ρdt¨t f
´

I
´

rS t;X
ˇ

ˇ rS t´1, 1T ďt

¯¯

ff

“

8
ÿ

t“0

´

PrT “ ts
`

E
“

upAt,X q|T “ t
‰

´ m ¨ t
˘

´ E
”

f
´

I
´

rS t;X
ˇ

ˇ rS t´1, 1T ďt

¯¯ı¯

“

8
ÿ

t“0

´

PrT “ ts
`

E
“

upAt,X q|T “ t
‰

´ m ¨ t
˘

PrT ą tsE
”

f
´

I
´

rS t;X
ˇ

ˇ rS t´1
¯¯ˇ

ˇ

ˇ
T ą t

ı¯

Therefore, Equation (P). is equivalent to Equation (D.4) .. �

D.2.2 Proof of Proposition 3.3.

Proof. The outer maximization of Equation (3.1) . is trivial. We focus on solving:

Vpµq “ sup
IpA,X |µqěλ

ErupA,X qs ´

ˆ

m
λ

`
f pλq

λ

˙

IpA;X |µq (D.5)

Case 1. λ˚ ă 8. By definition of λ˚, we know that

λ˚ “ inf arg min
λ

ˆ

m
λ

`
f pλq

λ

˙

Let

gpIq “

ˆ

m ` f pmintI, λ˚uq

mintI, λ˚u

˙

I
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Then m` f pλ˚q

λ˚ I ď gpIq ď m ` f pIq and gpIq is a convex function on r0, 8q.Equation (D.5) .

can be rewritten as:

Vpµq “ sup
A

ErupA,X qs ´ gpIpA;X |µqq (D.6)

Therefore by definition:

V2pµq ď Vpµq ď V1pµq

Now it is sufficient to show that if supAPA IpA;X |µq ě λ˚ then Vpµq ě V1pµq, other-

wise Vpµq ď V2pµq. First of all, suppose supAPA IpA;X |µq ě λ˚, then by definition of

supAPA IpA;X |µq there exists
!

Ai
j

)

s.t:

ErupAi
j,X qs ´

ˆ

m
λ˚

`
f pλ˚q

λ˚

˙

I
´

Ai
j,X |µ

¯

ě V1pµq ´
1
i

IpAi
j;X |µq ě λ˚ ´

1
j

´
1
i

ùñ

$

’

&

’

%

ErupAi
i,X qs ´

m ` f pλ˚q

λ˚
I
´

Ai
i;X |µ

¯

Ñ V1pµq

IpAi
i;X |µq Ñ λ˚

ùñ V2pµq ě ErupAi
i,X qs ´ m ´ f

´

I
´

Ai
i;X

ˇ

ˇ

ˇ
µ
¯¯

“ErupAi
i,X qs ´

m ` f pλ˚q

λ˚
I
´

Ai
i;X

ˇ

ˇµ
¯

`

¨

˝

m ` f
´

I
´

Ai
i;X

ˇ

ˇ

ˇ
µ
¯¯

I
´

Ai
i;X

ˇ

ˇ

ˇ
µ
¯ ´

m ` f pλ˚q

λ˚

˛

‚I
´

Ai
i;X

ˇ

ˇ

ˇ
µ
¯

ÑV1pµq

ùñ V2pµq “ Vpµq

Now suppose supAPA IpA;X |µq ă λ˚. Assume by contradiction that Vpµq ą V2pµq. Then

I first claim that @Ai solving Equation (D.6) ., lim sup IpAi;X |µq ď λ˚. If this claim is true,
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then there is immediately a contradiction:

$

’

&

’

%

lim IpAi;X |µq “ λ˚

lim ErupAi,X qs ´ g
´

I
´

Ai;X |µ
¯¯

“ Vpµq

ùñ lim ErupAi,X qs ´ gpλ˚q “ Vpµq

ùñ lim ErupAi,X qs ´ f
´

IpAi;X |µq

¯

“ Vpµq ą V2pµq

Suppose the claim is not true, then Vpµq ă V1pµq and there exists:

$

’

&

’

%

lim IpAi
1;X |µq “ λ1 ą λ˚

lim ErupAi
1,X qs ´

m ` f pλ˚q

λ˚
I
´

Ai
1;X |µ

¯

“ Vpµq

$

’

&

’

%

lim IpAi
2;X |µq “ λ2 ă λ˚

lim ErupAi
2,X qs ´

m ` f pλ˚q

λ˚
I
´

Ai
2;X |µ

¯

“ V1pµq

@α P r0, 1s consider compound experiment: S0 is an unrelated random draw with out-

come 1 with probability 1 ´ α and 2 with α. Conditional on 1, do experiment Ai
1 and

follow recommendation. Otherwise do Ai
2 and follow recommendation. Call this infor-

mation structure Ai
α. Then Assumption 3.1 . implies:

IpAi
α;X |µq ď p1 ´ αqIpAi

1;X |µq ` αIpAi
2;X |µq

Since l1 ą λ˚ ą λ2, WLOG we can assume IpAi
j;X |µq is bounded within λ1, λ2 by ε

and 2ε ă λ1 ´ λ˚. Now consider the utlity of strategy Ai
α in Equation (D.6) .. Suppose

IpAi
α;X |µq ă λ˚ for all α ą 0, then:

lim
αÑ0

E
”

upAi
α;X q

ı

´ g
´

IpAi
α;X |µq

¯
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ěE
”

u
´

Ai
1

¯

;X
ı

´ gpλ˚q

ěVpµq `
`

gpλ1 ´ εq ´ gpλ˚q
˘

´
1
i

Since g is a strictly increasing function with λ ą λ˚, given any δ ă gpλ1 ´ εq ´ gpλ˚q, there

exists αi s.t.

E
”

upAi
αi ;X q

ı

´ g
´

IpAi
αi ;X |µq

¯

ě Vpµq ´
1
i

` δ

Suppose there exists αi s.t. IpAi
αi ;X |µq “ λ˚, then:

E
”

upAi
αi ;X q

ı

´ g
´

IpAi
αi ;X |µq

¯

“E
”

upAi
αi ;X q

ı

´
m ` f pλ˚q

λ˚
IpAi

αi ;X |µq

ěVpµq ` αpV1pµq ´ Vpµqq ´
1
i

`
m ` f pλ˚q

λ˚

´

p1 ´ αqIpAi
1;X |µq ` αIpAi

2;X |µq ´ IpAi
αi ;X |µq

¯

ě max

$

’

&

’

%

Vpµq ` αpV1pµq ´ Vpµqq ´
1
i

Vpµq ´
1
i

`
m ` f pλ˚q

λ˚

`

p1 ´ αqpλ1 ´ εq ` αpλ2 ´ εq ´ λ˚
˘

“Vpµq ´
1
i

` max
"

αpV1pµq ´ Vpµqq,
m ` f pλ˚q

λ˚

`

λ1 ´ αpλ1 ´ λ2q ´ ε ´ λ˚
˘

*

The maximum is independent to i and strictly positive for any α. Therefore:

lim
iÑ8

E
”

upAi
αi ;X q

ı

´ g
´

IpAi
αi ;X |µq

¯

ą Vpµq

Contradicting optimality of Vpµq. To sum up, I show that when supAPA IpA;X |µq ă λ˚,
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Vpµq “ V2pµq. Therefore:

Vpµq “

$

’

’

’

&

’

’

’

%

V1pµq if sup
APA

IpA;X |µq ě λ˚

V2pµq if sup
APA

IpA;X |µq ă λ˚

Case 2. λ˚ “ `8. By definition of λ˚,
´

m
λ `

f pλq

λ

¯

is strictly decreasing in λ. @A, λ being

feasible in Equation (D.5)., it can be improved by replacing λ with IpA;X |µq (feasibility is

still satisfied). Therefore, it is without loss of optimality to assume constraint binding and

Equation (D.5). becomes:

sup
A

ErupA,X qs ´ m ´ f pIpA;X |µqq

which is exactly Equation (3.3).. �

D.2.3 Proof of Proposition 3.5.

Proof. Existence: Equations (3.2) . and (3.3). can be solved prior by prior. Therefore, I some-

times don’t explicitly include prior any more in this proof. It’s not hard to see that it’s

sufficient to prove existence of solution to:

sup
A

ErupA,X q ´ f pIpA;X |µqqs (D.7)

where A P ∆A ˆ X and f is convex. Equation (D.7) . can be modified to accommodate

Equation (3.2). by setting f to be a linear function. This can be WLOG directly modeled

by changing the information measure I. Equation (D.7) . is different from Equation (3.3) . by

only a constant. Therefore, it is sufficient to show existence of solution to Equation (D.7) .

under Assumption 3.1 ..

Next let’s explicitly model the set of all feasible A’s as Markovian transition matrices:
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∆A ˆ X P Rp|A|´1qˆ|X|. Let’s call this set Λ and any conditional distribution ppa|xq P Λ.

We define rI : Λ Ñ R`:

rIppp¨|¨qq “ Ipγq

where γ “ pπ, µq P Γ and π is defined by distribution of posteriors induced by p:

$

’

’

&

’

’

%

µspxq “
pps|xqµpµq

ř

y pps|yqµpµq

πpµsq “
ř

y pps|yqµpyq

Our original problem Equation (D.7). can be written as:

sup
pPΛ

ÿ

a,x
ppa|xqµpxqupa, xq ´ f

´

rIppq

¯

To prove Proposition 3.5 ., it is sufficient to show the convexity of rI. If rI is convex, the

objective function is continuous in p on the interior of Λ and any space Λε is compact (a

closed and bounded set in Euclidean space). Now let’s study the convexity of rI. Consider

@ p1, p2 P Λ. Let p “ λp1 ` p1 ´ λqp2. It’s not hard to verify that p P Λ as well. Want to

show:

rIppq ď λrIpp1q ` p1 ´ λqrIpp2q

Now define p1 on A ˆ t1, 2u “ ta1, a2, . . .u with twice number of signals than A. Let

λ1 “ λ, λ2 “ 1 ´ λ, @a, x

p1pai|xq “ λi pipa|xq
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Then p1 will be Blackwell more informative than p:

»

—

—

—

—

—

—

—

–

1 1 0 0 ¨ ¨ ¨ 0 0

0 0 1 1 ¨ ¨ ¨ 0 0
...

... . . . ...

0 0 0 0 ¨ ¨ ¨ 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

¨ p1 “ p (D.8)

On the other hand, p1 can be written as combination of p1 and p2. Let S0 be randomly

t1, 2u with probability λ1, λ2. Let pS1|1, µq „ p1 and pS1|2, µq „ p2. Then it’s easy to see

that pS0,S1, µq „ p1. Therefore:

rIppq ďrIpp1q

“IpS0,S1;X |µq

ďIpS0;X |µq ` λ1 IpS1|1;X |µq ` λ2 IpS1|2;X |µq

“λrIpp1q ` p1 ´ λqrIpp2q

First inequality is from monotonicity, second inequality is from sub-additivity. Therefore

rI is a convex (and continuous) function. It’s easy to see that Λ is a compact set. So we can

apply Weierstrass theorem to conclude existence of solution.

Now suppose p1,p2 are two distinct maximizer. Consider p “ αp1 ` p1 ´ αqp2. By

convexity of rI and f :

Eµrupa, xqppa, xqs “αEµrupa, xqp1pa, xqs ` p1 ´ αqEµrupa, xqp2pa, xqs

f
´

rIppq

¯

ďα f
´

rIpp1q

¯

` p1 ´ αq f
´

rIpp2q

¯

Therefore p weakly dominates p1 and p2 and p P A. A is convex.

Uniqueness: Now suppose I also satisfies strict-monotonicity. Then consider proof
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in last section. First, let p1 ‰ p2. Suppose equality rIppq “ rIpp1q holds, then strict-

monotonicity implies that p is Blackwell sufficient for p1:

M ¨ p “ p1

Where M is a stochastic matrix. Consider the following operation: If p1
1 „ p1

2, then proof is

done. Otherwise, first remove replication of p1 (when two rows of p1 are mutiplications of

each other, then add them up) and get rp1. Since p1
1 ȷ p1

2, we can assume rp1
1 “ p1

1, rp1
2 “ p1

2.

Define pp1 “ p1
1 ` p1

2 and ppi “ rp1
i`1. By definition rp1 Blackwell dominates pp. On the other

hand, pp Blackwell dominates p, so dominates p1, and rp1. By Lemma D.2., rp1 and pp are

identical up to permutation. Then p1
1 must equal to some ppi.

• Case 1. If i “ 1, then p1
1 ` p1

2 is a multiplication of rp11
1 , which is a multiplication of

rp1
1. This means p1

1 and p1
2 are replication, contradiction.

• Case 2. If i ą 1, then rp1
1 is a multiplication of ppi, which is a multiplication of rp1

i`1.

Contradicting definition of rp1.

Therefore, p1
1 and p1

2 are replications. Now permute p1 and apply the same analysis on all

p1
2i´1, p1

2i. We can conclude that any row of p1 is a replication of that of p2. To sum up, a

necessary condition for rIppq “ αrIpp1q ` p1 ´ αqrIpp2q is that each row in p1 and p2 induces

same posterior belief ν.

Now consider A being set of solutions to Equation (3.1) .. Suppose by contradiction

there exists A1 and A1 and a such that they induces different posterior with realization

a. Let p1, p2 be corresponding stochastic matrices, consider any A „ αp1 ` p1 ´ αqp2. By

previous proof, IpA;X |µq ă αrIpp1q ` p1 ´ αqrIpp2q. In first part, we show that A is convex,

so A is feasible. This contradicts unimprovability.

To sum up, solutions to Equation (D.7) . always have the same support. Of course if A

342



D.2. Proof in Section 3.3 .

is uninformative, then it induces prior µ. In both case, support of posteriors is uniquely

determined.

�

Lemma D.2 (Blackwell equivalence). Let P and P1 be two stochastic matrices. P has no repli-

cation of rows. Suppose there exists stachatic matrices MPP1 and MP1P s.t.:

P1 “ MP1P ¨ P

P “ MPP1 ¨ P1

Then MPP1 and MP1P are permutation matrices.

Proof. Let Pi “ ppi1, pi2, . . .q be ith row of P. Suppose Pi can not be represented as positive

combination of P´i’s. Then by construction Pi “ MPP1i ¨ MP1P ¨ P, we have:

MPP1i ¨ MP1P “ p0, ¨ ¨ ¨ , 0
looomooon

i´1

, 1, 0, ¨ ¨ ¨ , 0q

Then by non-negativity of stochastic matrices, suppose MPP1ij ą 0, then MP1Pj are all 0

except MP1Pji. Then for all such rows j, we have MPP1 j be a vector with only ith column

being non-zero. However this suggests they are replicated rows. So the only possibility

is that j s.t. MPP1ij ą 0 is unique. And

MPP1ij ˆ MP1Pji “ 1

Since stochastic matrices have elements no larger than 1, it must be MPP1ij “ MP1Pji “ 1.

This is equivalently saying P1
j “ Pi. Since permutation of rows of P1 doesn’t affect our

statement, let’s assume P1
i “ Pi afterwards for simplicity.

So far we showed that if Pi is not a positive combinations of P´i’s, then P1
i “ Pi. We do
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the folloing transformation: rP, rP1 are P, P1 removing ith row. ĂMPP1 , ĂMP1P are MPP1 , MP1P

removing ith row and column. It’s easy to verify that we still have:

rP1 “ ĂMP1P ¨ rP

rP “ ĂMPP1 ¨ rP1

and ĂMPP1 , ĂMP1P still being stochastic matrices since previous argument shows MPP1ii and

MP1Pii being the only non-zero element in their rows. Since they are both 1, they must also

be only non-zero element in their columns. So removing them doesn’t affect the matrices

being stochatic matrices.

Now we can repeat this process iteratively until any row rPi will be a positive combi-

nation of rP´i. If rP has one unique row, then the proof is done. We essentially showed that

P “ P1 (up to permutation of rows). Therefore we only need to exclude the possibility of

rP having more than one rows.

Suppose rP has n rows. Then rP1 is a posistive combination of rP´i’s:

rP1 “

n
ÿ

i“2

a1
i
rPi

and rP2 is a positive combination of rP´i’s:

rP2 “

n
ÿ

i‰2

a2
i
rPi

“a2
1
rP1 `

n
ÿ

ią2

a2
i
rPi

“a2
1a1

2
rP2 `

n
ÿ

ią2

´

a2
i ` a2

1a1
i

¯

rPi

Since all rows in rP are non-negative (and strictly positive in some elements). This is
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possible only in two cases:

• Case 1. a2
1a1

2 “ 1 and
ř

ią2
`

a2
i ` a2

1a1
i
˘

“ 0. This implies rP1 “ a1
2
rP2. Contradicting

non-replication.

• Case 2. a2
1a1

2 ă 1. Then rP2 is a positive combination of rPią2. Of course rP1 is also a

positive combination of rPią2.

Now by induction suppose rP1, . . . , rPi are positive combinations of rPjąi. Then:

rPi`1 “

i
ÿ

j“1

ai`1
j

rPj `

n
ÿ

j“i`1

ai`2
j

rPj

“

n
ÿ

k“i

¨

˝

i
ÿ

j“1

ai`1
j aj

k

˛

‚
rPk `

n
ÿ

j“i`2

rPj

“

i
ÿ

j“1

ai`1
j aj

i`1
rPi`1 `

n
ÿ

k“i`2

¨

˝

i
ÿ

j“1

ai`1
j aj

k ` ai`1
j

˛

‚
rPj

Similar to previous analysis, non-replication implies
ři

j“1 ai`1
j ă 1 and rPi`1 is a positive

combination of rPjąi`1. Then by replacing rPi`1 in combination of all rPjďi, we can conclude

that rP1, . . . , rPi`1 are all positive combinations of rPjąi`1. Finally, by induction we have all

rPiăn being positive combination of rPn. However, this contradicts non-replication. To sum

up, we proved by contradiction that rP has one unique row. Therefore, P must be identical

to P1 up to permutations. �
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