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Abstract

The goal of this thesis is to begin to lay the foundations for a theory of enriched oo-
categories. We introduce a definition of such objects, based on a non-symmetric version of
Lurie's theory of oo-operads. Our first main result is a construction of the correct homo-
topy theory of enriched oo-categories as a localization of an "algebraic" homotopy theory
defined using oo-operads; this is joint work with David Gepner.

We then prove some comparison results: When a monoidal oo-category arises from a
nice monoidal model category we show that the associated homotopy theory of enriched
oo-categories is equivalent to the homotopy theory induced by the model category of en-
riched categories; when the monoidal structure is the Cartesian product we also show that
this is equivalent to the homotopy theory of enriched Segal categories. Moreover, we prove
that the homotopy theory of (oo, n)-categories enriched in spaces, obtained by iterating our
enrichment procedure, is equivalent to that of n-fold complete Segal spaces.

We also introduce notions of natural transformations and correspondences in the set-
ting of enriched oo-categories, and use these to construct (co,2)-categories of enriched co-
categories, functors, and natural transformations, and double co-categories of enriched
oo-categories, functors, and correspondences.

Finally, we briefly discuss a non-iterative definition of enriched (oo, n)-categories, based
on a version of oo-operads over Joyal's categories On, and define what should be the correct
oo-category of these.

Thesis Supervisor: Haynes Miller
Title: Professor of Mathematics
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Chapter 1

Introduction

The language of category theory has played an important role in many areas of math-
ematics for the past half-century. In recent years, however, taking seriously the higher-
categorical nature of many structures has turned out to be a very fruitful idea. In particu-
lar, the theory of co-categories has had many applications in algebraic topology and other
areas of mathematics. Roughly speaking, the notion of co-category (or (oo, 1)-category) is a
generalization of the notion of category where in addition to objects and morphisms we
also have homotopies between morphisms, homotopies between homotopies, and so on.
One way to think of an oo-category is as a category where the morphisms between two
objects form a space rather than just a set - such topological categories, or equivalently sim-
plicial categories (where the morphisms form a simplicial set), give the simplest model of
oo-categories. However, topological and simplicial categories are very rigid, which makes
it hard to understand the homotopically correct functors between them, and in general
make homotopy-invariant constructions (such as homotopy limits and colimits); more-
over, many naturally occurring composition laws are not strictly associative, but only as-
sociative up to coherent homotopy. It is therefore usually more convenient to work with a
notion of oo-category where composition of morphisms is associative up to coherent homo-
topy. There are several ways to make this idea precise, including Segal categories, complete
Segal spaces, and quasicategories.

In some cases, the morphisms between objects in an oo-category have more structure
than just forming a space; in algebraic topology, for example, we often come across oo-
categories where the morphisms naturally form a spectrum. It is possible to think of these
objects as spectral categories, i.e. categories enriched in a model category of spectra (such
as symmetric spectra), and more generally we can consider categories enriched in nice
monoidal model categories. However, these suffer from the same problems as simplicial
categories do when considered as a model for oo-categories. This suggests that a weaker
notion of enrichment, where composition is only associative up to coherent homotopy,
should be useful. The goal of this thesis is to begin to lay the foundations for a theory
of such enriched oo-categories; specifically, we will define and study oo-categories enriched
in monoidal oo-categories, which are co-categories equipped with a tensor product that is
associative and unital up to coherent homotopy.

From an algebro-topological perspective, the most interesting monoidal co-categoryl

is the oo-category of spectra equipped with the smash product, and I expect that the the-

1Apart from the oo-category of spaces, with the Cartesian product, but enriching in this just gives ordinary
co-categories.
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ory developed in this thesis will have interesting applications in the context of spectral
oo-categories, i.e. oo-categories enriched in spectra. For instance, many naturally occurring
structures that "ought to be" spectral categories can be very difficult to define, because the
natural composition maps are only associative up to homotopy; I hope that in many cases
these structures can be more easily described as spectral co-categories.

As a specific example, it has long been expected that the spectral category of genuine
G-spectra for a finite group G "ought to be" the spectral category of spectral presheaves
on a small spectral category 3; if 3 G is the 2-category of finite G-sets, spans of finite
G-sets, and isomorphisms of spans, then 35 ought to be constructed by applying group
completion to the mapping groupoids of pG. However, in the setting of ordinary cate-
gories group completion is only a multiplicative functor when restricted to permutative cat-
egories (i.e monoidal categories where the tensor product is strictly associative); Guillou
and May have recently constructed a version of 3G by replacing 3 G by a category enriched
in permutative categories, and using this they can show that spectral presheaves on this
spectral category does indeed give genuine G-spectra [GM11b,GM11a,GM12]. However,
their construction is quite complicated - by contrast, in the setting of oo-categories it is
straightforward to see that group completion is a lax monoidal functor, and since our the-
ory of enriched oo-categories is functorial with respect to lax monoidal functors it is trivial
to construct 3B as a spectral oo-category. Moreover, it is equally easy to construct spectral
co-categories by applying other lax monoidal functors, such as topological Hochschild ho-
mology or topological cyclic homology; for example, this gives a rigorous construction of
Morava's category of TC-motives [Mor11].

We will set up our theory of enriched co-categories entirely within the context of oo-
categories (rather than working with model categories, say); apart from greater generality,
working in this setting has several advantages:

" Weak or homotopy-coherent enrichment is the only natural notion of enrichment,
which allows us to define our enriched oo-categories as certain "algebraic" objects in
the co-categorical sense.

" It is easy to consider enriched categories with spaces of objects rather than just sets,
which turns out to make the resulting homotopy theory nicer and easier to set up,
analogously to the way complete Segal spaces are better-behaved than Segal cate-
gories or simplicial categories.

" We automatically get naturality properties that would be difficult even to define in a
model-categorical framework - for example, our oo-categories are natural in func-
tors between monoidal oo-categories that are lax monoidal in the appropriate oo-
categorical sense.

" Beyond just constructing a homotopy theory, our theory gives a good setting to de-
velop co-categorical analogues of many concepts from enriched category theory. In
this thesis we will discuss analogues of natural transformations and correspondences,
and we hope to study analogues of other concepts, such as weighted colimits, in fu-
ture work.

Part of this thesis is joint work with David Gepner - specifically, the results of §3.3 and
§4.1-4.3 are taken from our article [GH], as are many of the results scattered in §2.1.
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1.1 From Enriched Categories to Enriched oo-Categories

To orient the reader, we now attempt to motivate our approach to enriched co-categories
by describing how it relates to ordinary enriched categories.

1.1.1 Multicategories and Enrichment

Let's begin with the usual definition of an enriched category: if V is a monoidal category,
a V-enriched category (or V-category) C consists of:

" a set ob C of objects,

" for all pairs x, y E ob C an object C(x, y) in V,

* composition maps C(x,y) 0 C(y, z) -4 C(x, z),

* units idx: I -+ C(x, x).

The composition must be associative (this involves the associator isomorphism for V) and
unital. When formulated in this way, it is very hard to see how this notion ought to be
generalized in the setting of oo-categories. We should therefore look for alternative ways
of defining enriched categories that have more obvious generalization; we first consider a
definition in terms of multicategories.

A multicategory (or non-symmetric coloured operad) is roughly speaking a category where
a morphism has a list of objects as its source. More precisely, a multicategory M consists of a
set of objects and for objects x1,..., xn, y a set M((x 1,..., xn), y) of "multimorphisms" from

(x1,... , xn) to y; these have an associative composition, in the sense that we can compose
multimorphisms

(zi, ... , zi)-+y1, (zi1+1,..., zi2) -+y2, ...,I (zin-+1, ...,I zin) -+ yn

with a multimorphism (yi,... ,yn) -+ x to get a multimorphism (zi,..., zi -4 x. A
multicategory with a single object is precisely a non-symmetric operad.2

If V is a monoidal category, we can view it as a multicategory by defining

V((x1,...- , xn), Y) := V(x1 9 -. -9 -@xn, Y).-

An algebra for a multicategory M in a monoidal category V is then just a functor of multi-
categories from M to V viewed as a multicategory.

Given a set X, there is a simple multicategory Ox such that Ox-algebras in a monoidal
category V are precisely V-categories: the objects of Ox are X x X, and the multimorphism
sets are defined by

Ox(((xo, y1), (x1, y2), ... , (xn-1, yn)), (yo, xn)) :(*, if yi-=xi,i =0,...,n,
0, otherwise.

Thus an Ox-algebra C in V assigns an object C(x,y) to each pair (x,y) of elements of
X, with a unit 1 -4 C(x, x) from the unique map () -+ ((x, x)), and a composition map

2Below, we will refer to (non-symmetric) coloured operads as just (non-symmetric) operads, for consis-
tency with the terminology used by Lurie [Lur1l] and Barwick [Bar13]; here we stick to the more common
terminology.
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C(x, y) 9 C(y, z) -+ C(x, z) from the unique multimorphism ((x, y), (y, z)) -+ (x, z). Look-
ing at triples of pairs we see that this composition is associative, and it is also clearly unital,
so C is precisely a V-category.

If we had an co-categorical generalization of the theory of multicategories (which in-
cluded a theory of monoidal co-categories as a special case), it would therefore make sense
to define an oo-category enriched in a monoidal co-category V with set of objects X to be an
Ox-algebra in V. To generalize multicategories to the co-categorical setting we could use
simplicial multicategories, i.e. multicategories enriched in simplicial sets. However, these
suffer from the same technical problems as simplicial categories considered as a model
for oo-categories. Just as for oo-categories, there are several better-behaved models for co-

categorical (symmetric) multicategories, namely the dendroidal sets (and related construc-
tions such as Segal operads and dendroidal Segal spaces) studied by Moerdijk together with
Berger, Cisinski, and Weiss, and the oo-operads of Lurie. In this thesis we will primarily use
a non-symmetric variant of Lurie's theory.

We can regard the multicategories Ox as non-symmetric oo-operads, and considering
algebras for these in a monoidal oo-category V does indeed give the right objects - for
example, if X is a one-element set then Ox-algebras are precisely Am-algebras in V, which
is what we expect. Moreover, the machinery of oo-operads gives oo-categories Algo, (V) of
Ox-algebras in a fixed monoidal oo-category V, and we can combine these to form an oo-
category Algcat(V), which has objects V-oo-categories and 1-morphisms V-functors in the
appropriate sense. However, a morphism f: e -+ 'D in Algcat(V) is an equivalence if and
only if it is fully faithful, i.e. C(x, y) -+ 'D(fx,fy) is an equivalence for all objects x, y of C,
and a bijection on objects. These are clearly not the correct equivalences of V-oo-categories
- these ought to be the fully faithful and essentially surjective functors. To get the right
oo-category of V-co-categories we must therefore localize Algcat(V) to invert these.

For the localized oo-category to be well-behaved we need this to be an accessible local-
ization (the oo-categorical analogue of left Bousfield localization of model categories) -
this means that the localized oo-category is a full subcategory of the original co-category
consisting of local objects. However, this is not possible for Algcat(V) as we've defined it
here: For example, if V is the category of sets, then Algcat (Set) is just the ordinary category
of categories and functors; the correct localization, on the other hand, is the (2,1)-category
of categories, functors, and natural isomorphisms, which clearly can't be a full subcategory
of the 1-category Algcat(Set).

It turns out that we can avoid this problem if we allow V-co-categories to have spaces
of objects, rather than just sets, which is also very natural from the co-categorical point of
view. We would thus like to define non-symmetric oo-operads analogous to Ox with X a
space; one way to do this is to define simplicial multicategories, taking as input simplicial
categories whose nerves are Kan complexes3, but this generalization is much easier and
more natural if we start from a slightly different approach to enriched categories.

1.1.2 Virtual Double Categories and Enrichment

Virtual double categories4 are a common generalization of double categories and multicate-
gories. Roughly speaking, a virtual double category has objects and vertical and horizontal

3We will in fact define and make brief but crucial use of these in §4.1.2 below.
4 Also known as fc-multicategories; we will later call them generalized (non-symmetric) operads, for consis-

tency with Lurie's terminology.
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morphisms between them, but in addition to a collection of "squares" there are cells with
a list of vertical arrows as source; we refer the reader to [CS10] or [Lei04] for more details.

We will instead consider virtual double categories from another perspective, by gen-
eralizing the category of operators of a multicategory: if M is a multicategory, its category
of operators M@ is a category with objects lists (xo,..., xn) of objects xi E M, and a mor-
phism (xo,..., xn) -4 (yo,... ,yn) given by a morphism 0: [m] -+ [n] in Ak and, for each
i = 0,..., , a multimorphism (xp(i),xt(i)+l, - --xt(i+1)1) -+ y; in M. We can characterize
the categories E over A*P that are categories of operators for multicategories - in particu-
lar, E n] must be equivalent to E " via the maps {i, i + 1} <-+ [n]. If we relax this to a more

general "Segal condition", E[n] El 1 x -- X E[01 E[1], we obtain precisely the analogous
"categories of operators" for virtual double categories.

Given a set X, we can define a virtual double category Dx with objects X where the ver-
tical morphisms are trivial, and there is a unique horizontal morphism between any two
elements of X. Then a functor of virtual double categories from Dx to a monoidal category
V is precisely a V-category with objects X. In terms of categories of operators, this virtual
double category corresponds to the category AZ'P whose objects are non-empty sequences

(x.,... ,xn) of elements xi E X, and a unique morphism (xo,... ,xn) -+ (xP(),.- - -,X(M))
for each (p: [m] -4 [n] in A. If V is a monoidal category, and V* is its category of op-
erators, a functor Dx -+ V corresponds to a functor C: AP -+ V® over A*P such that
C(xo,.. .,xn) = (C(xo,x 1 ),.. ., C(xn_1,xn)); it is easy to see that this is precisely a V-
category.

An oo-categorical version of the theory of virtual double categories is provided by
Lurie's generalized oo-operads. This is the setting in which we will mainly develop our the-
ory of enriched oo-categories; the advantage of working with these rather than only with
oo-operads is that there is an easy and natural co-categorical definition of co-categories AZ'P
where X is a space. If V is a monoidal oo-category we will define an oo-category enriched in
V with space of objects X to be a map of generalized oo-operads from AkP to V.

1.1.3 Lax Functors and Enrichment

A third approach to enriched categories is to consider them as certain laxfunctors. Recall
that if C and D are 2-categories, a lax functor F from C to D assigns

" to each object X E C an object F(X) in D,

" to each 1-morphism f: X -4 Y in C a 1-morphism F(f): F(X) -+ F(Y) in D,

" to each 2-morphism &: f -4 g in C a 2-morphism F(&): F(f) -4 F(g) in D,

" to each composable pair of 1-morphisms f: X -+ Y, g: Y -4 Z, a 2-morphism F(g) o
F(f) -4 F(g o f), satisfying associativity in the obvious sense for sequences of 3 com-
posable 1-morphisms,

" to each object X E C, a 2-morphism idF(X) -4 F(idx), which must be compatible with
the 2-morphisms for composable pairs of 1-morphisms.

A monoidal category V corresponds to a 2-category EV with one object, and if V and W are
monoidal categories, a lax functor EV -+ EW is precisely a lax monoidal functor V -+ W.

If X is a set, let EX denote the "codiscrete" category with objects X, and a unique
morphism between any two objects. Then a V-category with objects X, for some monoidal
category V, is the same thing as a lax functor EX -+ EV.

15



This definition is related to the definition using virtual double categories as follows: we
can regard 2-categories as double categories with no non-trivial vertical morphisms, and
thus as a special kind of virtual double categories. Under this identification, a lax functor
between 2-categories is precisely a morphism of virtual double categories. Moreover, the
virtual double category associated to EV is precisely the one we obtain by regarding V as a
multicategory. Similarly, the virtual double category associated to EX is the one we denote
Dx above - thus a lax functor EX -+ EV corresponds to a morphism of virtual double
categories from Dx to V, which was the definition of enriched category we considered
above.

In the oo-categorical context, we can similarly regard generalized (non-symmetric) oo-
operads as a natural setting for studying lax functors between (oo, 2)-categories.

1.2 Overview

The next two chapters mainly comprise background material. In Chapter 2 we review
some basic definitions and results on oo-categories and other higher-categorical structures,
and also prove some technical results we will need later on. Chapter 3 reviews Barwick's
theory of operator categories and describes how to generalize Lurie's oo-operads to this set-
ting; we also prove some results about co-categories of algebras over operads.

Chapter 4 is the heart of this thesis - here we introduce and study our theory of en-
riched co-categories. In §4.1 we use the machinery of oo-operads from Chapter 3 to set up
an "algebraic" oo-category of enriched oo-category, then in §4.2 we construct the correct
oo-category of enriched oo-categories by localizing this at the fully faithful and essentially
surjective functors - the key result is that this localization is given by restricting to "com-
plete" enriched oo-categories, which is proved analogously to the main theorem of [Rez01].
After briefly describing some simple applications of this construction in §4.3, we compare
our homotopy theory to homotopy theories of categories enriched in model categories, en-
riched Segal categories, and iterated Segal spaces in §4.4. Then we discuss natural transfor-
mations and construct the (oo, 2)-category of enriched oo-categories, functors, and natural
transformations in §4.5. We extend this to a double co-category of enriched oo-categories,
functors, and correspondences (or profunctors) in §4.6.

Finally, in Chapter 5 we begin to study the generalization of our construction to a (non-
iterative) theory of enriched (oo, n)-categories. Unfortunately we are not able to accomplish
very much in this setting, primarily because we have not yet been able to prove some key
results about the appropriate theory of oo-operads. We do, however, set up the correct
oo-category of (oo, n)-categories enriched in a given En-monoidal co-category.

1.3 Notation and Terminology

We generally recycle the notation and terminology used by Lurie in [Lur09a, Lur11]. Here
are some exceptions and reminders:

* Generic categories are generally denoted by single capital bold-face letters (e.g. V)
and generic co-categories by single caligraphic letters (e.g. V). Specific categories and
oo-categories both get names in the normal text font: thus the category of small V-
categories is denoted Catv and the oo-category of small V-oo-categories is denoted
Cat0,.
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" We make use of the elegant theory of Grothendieck universes to avoid set-theoretical
problems; specifically, we fix three nested universes, and refer to sets contained in
them as small, large and very large. When e is an oo-category of small objects of a
certain type, we generally refer to the corresponding oo-category of large objects as
C. For example, Cat, is the (large) co-category of small oo-categories, and Cat,, is the
(very large) oo-category of large co-categories.

" As far as possible we argue using the "high-level" language of co-categories, without
referring to their specific implementation as quasicategories. Following this philos-
ophy we have generally not distinguished notationally between categories and their
nerves, since categories are a special kind of oo-category. However, we do indicate the
nerve (using N) when we think of the nerve of a category as being a specific simplicial
set; by the same principle we always indicate the nerves of simplicial categories. This
should hopefully not cause any confusion.

" We will refer to the notion dual to that of Grothendieck fibration as coGrothendieck
fibration, by analogy with the terminology of Cartesian and coCartesian fibrations in
the co-categorical case.
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Chapter 2

Background on Higher Categories

This chapter contains some background material for the main part of this thesis: in §2.1 we
briefly review co-categories and prove some technical results, and in §2.2 we review some
other higher-categorical structures we will encounter.

2.1 Preliminaries on oo-Categories

In this thesis we will work throughout in the setting of co-categories. Specifically, we will
make use of the theory of quasicategories, as due to the work of Joyal and Lurie it is cur-
rently by far the best-developed theory of co-categories. In this section we briefly review
some of the main definitions and results from [LurO9a, Lur11] that we will make use of.
Along the way, we also prove a number of fairly technical results that we will need later
on.

2.1.1 Quasicategories

Quasicategories are a class of simplicial sets. Roughly speaking, the idea is that just as a
category has a nerve in simplicial sets, an co-category, however we define these, should
also have a nerve. The definition of quasicategory then characterizes those simplicial sets
that "ought to be" nerves of oo-categories.

Definition 2.1.1.1. Let A denote the simplicial indexing category, i.e. the category whose
objects are the ordered sets [n] := .0,... , n} for n = 0,1, .. ., and whose morphisms are the
order-preserving maps between these. Equivalently, we may also regard A as the category
of non-empty finite ordered sets. A simplicial set is a presheaf of sets on A, i.e. a functor
AoP -+ Set. We write SetA for the category Fun (AP, Set) of simplicial sets.

Definition 2.1.1.2. The n-simplex A" is the simplicial set corepresented by the object [n] E
A. The ith horn A7 of A" is the simplicial subset obtained by removing the face opposite
the ith vertex from A". The horn A7 is inner if 0 < i < n.

If C is a category, its nerve is the simplicial set NC with NCk := Hom( [k], C) where
[k] is the category associated to the ordered set {0, 1,... , n}. We can characterize those
simplicial sets that are isomorphic to nerves of categories in terms of certain horn-filling
conditions: a simplicial set X is the nerve of a category precisely when every map from an
inner horn An -+ X extends to a unique n-simplex A" -+ X. For example, in the smallest
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case of a map A2 -+ X this says that any pair of composable morphisms has a unique
composite.

For an oo-category we do not want such composites to be unique. Instead, a 2-simplex
should describe the data of two composable morphisms and a homotopy from their com-
posite to a third morphism; alternatively, since there is no preferred choice of composite,
we can say that a 2-simplex exhibits this third morphism as a composite. Generalizing this
idea to higher dimensions, we get the definition of a quasicategory:

Definition 2.1.1.3. A quasicategory is a simplicial set that satisfies the right lifting property
with respect to the inner horn inclusions A' - A". In other words, a simplicial set X is a
quasicategory if and only if every inner horn A' -+ X, 0 < i < n, can be extended to an
n-simplex, but the extension need not be unique.

Following Lurie, we will generally refer to quasicategories as oo-categories. If X is an
oo-category, we will often refer to its vertices as objects and its edges as morphisms.

Definition 2.1.1.4. An inner fibration is a morphism of simplicial sets that has the right
lifting property with respect to the inner horn inclusions A -4 A", 0 < i < n.

Definition 2.1.1.5. If X is an oo-category, the interior or underlying space iX of X is the largest
subspace of X that is a Kan complex. A morphism of X is an equivalence if it is contained
in iX.

There is a left proper combinatorial model structure on SetA, originally constructed by
Joyal, whose cofibrations are monomorphisms and whose fibrant objects are oo-categories
(cf. [Lur09a, Theorem 2.2.5.11). We refer to the weak equivalences in this model structure
as categorical equivalences.

The Joyal model structure is Cartesian closed. If C is an oo-category an K is any simpli-
cial set then we will denote the usual internal hom of simplicial sets by Fun(K, e); this is
an oo-category (cf. [LurO9a, Proposition 1.2.7.3]).

There is also a related model structure on marked simplicial sets:

Definition 2.1.1.6. A marked simplicial set (X, S) consists of a simplicial set X together with
a set S C X1 of edges of X that includes all the degenerate edges. We write SetA for the
category of marked simplicial sets. If X is a simplicial set, we write Xb for X equipped with
the minimal marking (X, soXo) and XO for X equipped with the maximal marking (X, X 1 ).
If X is an oo-category we write X for X marked by the set of equivalences.

There is a model structure on Set+ whose cofibrations are the monomorphisms and
whose fibrant objects are of the form X where X is an oo-category (cf. [LurO9a, Proposition
3.1.3.7]). The forgetful functor Set+ -+ SetA is a right Quillen equivalence (cf. [Lur09a,
Theorem 3.1.5.1]).

2.1.2 Simplicial Categories and Simplicial Groupoids

A simplicial category is a category enriched in simplicial sets. We write CatA for the category
of simplicial categories.

Definition 2.1.2.1. A functor of simplicial categories F: C -4 D is weaklyfullyfaithful if for
all x, y E C the map C(x, y) -+ D(Fx, Fy) is a weak equivalence of simplicial sets.
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Definition 2.1.2.2. The functor 7o: SetA -* Set is strong monoidal, and so induces a func-
tor 7ro: CatA -± Cat. We say a functor F: C -+ D of simplicial categories is essentially
surjective up to homotopy if the functor 7oF of ordinary categories is essentially surjective.

Definition 2.1.2.3. A functor of simplicial categories F: C -± D is a localfibration if for all
x, y E C the map C(x, y) -+ D(Fx, Fy) is a Kan fibration of simplicial sets.

Definition 2.1.2.4. A functor F: C -+ D of ordinary categories is an isofibration if, given
c E C and an isomorphism f: Fc -+ d there is an isomorphism f: c - c' in C such that
F(f) = f.
Theorem 2.1.2.5 (Bergner [Ber07]). There is a model structure on CatA such that a functor
F: C - D is

(W) a weak equivalence if and only if F is weakly fully faithful and essentially surjective
up to homotopy,

(F) a fibration if and only if F is a local fibration and nTOF is an isofibration.

Definition 2.1.2.6. If i < j are positive integers, let Pij be the partially ordered set of subsets
of {i, i+ 1.... j} containing i and j, regarded as a category; if i > j let Pij = 0. Let Q(A") de-
note the simplicial category with objects 0,...,n and C(A")(i, j) = NPij, with composition
defined by taking unions in the obvious way. Taking colimits, this extends to a functor

C: SetA -4 CatA

with right adjoint N: CatA -4 SetA given by

NCn = Hom(C(A"), C).

Theorem 2.1.2.7 (Joyal, Lurie [LurO9a, Theorem 2.2.5.1]). The adjunction E - N is a Quillen
equivalence between the Joyal model structure on SetA and the Bergner model structure
on CatA.

Thus if C is a simplicial category whose mapping objects are all Kan complexes, the
simplicial set NC is an co-category; this is an important way of constructing co-categories.
For example, if M is a simplicial model category, and M" denotes the full simplicial sub-
category of fibrant-cofibrant objects, then NM0 is an co-category.

Example 2.1.2.8. The co-category of spaces S can be defined as the nerve NSetj of the full
subcategory Set of SetA spanned by the Kan complexes. Similarly, the co-category of o-

categories Cat, can be defined as N(SetA) , where Set, denotes SetA equipped with the
Joyal model structure.

A simplicial category can be viewed as a simplicial object in categories whose simplicial
set of objects is constant. This suggests the following definition of a simplicial groupoid:

Definition 2.1.2.9. A simplicial groupoid is a simplicial object in groupoids with constant set
of objects.

There is a model structure on simplicial groupoids where the weak equivalences are
the weakly fully faithful and essentially surjective functors [DK84, Theorem 2.5], and the
simplicial nerve functor restricts to a right Quillen equivalence from this to the usual model
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structure on simplicial sets [DK84, Theorem 3.3]. In particular, it follows that every space is
modelled by a fibrant object in simplicial groupoids, which is a simplicial groupoid whose
mapping spaces are Kan complexes.

Remark 2.1.2.10. Since a simplicial category can be viewed as a simplicial object in cate-
gories with constant set of objects, a simplicial groupoid e can be regarded as a simplicial
category with an involution i: e -4 COP such that ioP o i = ide, which sends a morphism to
its inverse.

2.1.3 Limits and Colimits

We now recall the definition of limits and colimits in an oo-category; this requires first
reviewing some notation:

Definition 2.1.3.1. Let *: A x A -4 A denote concatenation of finite ordered sets, i.e. if I
and J are finite ordered sets then I * J is the set I II J ordered so that every element of I is
greater than every element of I. Thus [n] * [m] L [n + m + 1].

Remark 2.1.3.2. This is the restriction to a of a monoidal structure on the category A+ of
all finite ordered sets (including 0).

Definition 2.1.3.3. Suppose K and L are simplicial sets. Their join K * L is the left Kan
extension of K x L: a*P x a*P -+ Set along *: a*P x A\0P -+ A0 P. Concretely, we have

(K* L)n = Kn I1 Ln II J Ki x Lj.
i+j=n-1

Remark 2.1.3.4. This can be regarded as the Day convolution product on presheaves on
A+ with the monoidal structure given by *.

Definition 2.13.5. Let K be a simplicial set. The left cone K" on K is the join AO * K, and the
right cone K> on K is the join K * AO. We will often denote the "cone point", i.e. the vertex
coming from AO, by -- oo E K" and oo E K".

Definition 2.1.3.6. Let p: K -+ S be a map of simplicial sets. The simplicial set S, is
defined by the universal property

Hom(X, S/p) = Hom,(X * K, S),

where the right-hand side denotes the set of morphisms X * K -+ S that restrict to p on K.
Similarly, the simplicial set S, is defined by the universal property

Hom(X, S,/) = Hom,(K * X, S).

If e is an oo-category, for any map p: K -+ C the simplicial sets pl and C, are also
co-categories (cf. [LurO9a, Proposition 1.2.9.3]).

Definition 2.1.3.7. Let e be an co-category. An object X E C is a final object if the projec-
tion e/x -4 C is a categorical equivalence. Similarly, X is an inital object if eCx -4 C is a
categorical equivalence.

Equivalently, X is a final object if and only if for every object Y E e the mapping space
Map,(Y, X) is contractible (cf. [LurO9a, Corollary 1.2.12.5]).
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Definition 2.1.3.8. Let e be an oo-category and p: K -4 C a map of simplicial sets. A colimit
of p is a final object of C,, and a limit of p is an initial object of C/,.

Remark 2.1.3.9. A colimit of p can thus be regarded as a diagram p: K -+ e that restricts
to p on K. From the definition of final objects it follows immediately that an arbitrary such
diagram p is a colimit precisely when

p/ ~+ Cp,

is a categorical equivalence.

We now recall the definition of relative colimits, from [LurO9a, §4.3.1]:

Definition 2.1.3.10. Let f : C -+ D be an inner fibration of simplicial sets, and let p: K -4 C
be a diagram. A diagram p: K> -+ C extending p is an f-colimit of p if the map

p/+ ep,,, CXDf p Dfp/

is a categorical equivalence.

2.1.4 Left and Right Fibrations

Here we briefly discuss left and right fibrations, which correspond to (covariant and con-
travariant) functors to the oo-category 8 of spaces.

Definition 2.1.4.1. A morphism of simplicial sets is a leftfibration if it has the right lifting
property with respect to all horn inclusions A -+ A" with 0 < i < n, and a rightfibration
if it has the right lifting property with respect to A -+ A" with 0 < i < n.

If S is a simplicial set, there are model structures on (Set&)/s, the covariant and con-
travariant model structures, whose fibrant objects are, respectively, left and right fibrations
with target S (cf. [LurO9a, Proposition 2.1.4.7]).

Theorem 2.1.4.2 (Lurie [LurO9a, Theorem 2.2.1.2]). Let S be a simplicial set. There is a
Quillen equivalence

(SetA)/s ;- Fun(L(S)*P,SetA)

where (SetA)/s is equipped with the contravariant model structure and Fun(E(S)OP, SetA)
with the projective model structure for the usual model structure on SetA.

Corollary 2.1.4.3. Suppose e is an oo-category. Let LFib(C) denote the oo-category of left
fibrations over e (for example obtained from the covariant model structure on (SetA)/e.
There is an equivalence

LFib(C) ~ Fun(C, 8).

Proposition 2.1.4.4. Suppose given functors fg: X -4 8 and a natural transformation rj
from f to g. Let p: F -+ X and q: G -4 X be left fibrations associated to f and g, and let
e: F -+ G be a functor over X associated to rq. Then e is equivalent to a left fibration.

Proof. We may regard f and g as functors L[Xj -+ SetA; without loss of generality we may
assume f and g correspond to fibrant objects and 'i to a fibration in the projective model
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structure on Fun([X], SetA). Since unstraightening is a right Quillen functor, we obtain a
commutative diagram

F e s G

X

where p and q are left fibrations associated to f and g, and e is a fibration in the covariant
model structure associated to q. By [Lur09a, Proposition 2.1.4.9] the map e is then a left
fibration.

2.1.5 Cartesian and coCartesian Fibrations

Definition 2.1.5.1. Suppose p: X -4 S is an inner fibration of simplicial sets. We say an
edge f: x -4 y in X is p-Cartesian if the map

X/f -4 Xp XS/p(y) S/p(f)

is a categorical equivalence. Similarly, f is p-coCartesian if

Xf/ -4 Xx/ X s, p(J)/

is a categorical equivalence.

Definition 2.1.5.2. Suppose p: X -+ S is an inner fibration of simplicial sets. An edge
f: x -4 y in X is a locally p-(co)Cartesian if it is a p'-(co)Cartesian edge of X x s A, where p'
is the pullback of p along p(f): Al -4 S.

Proposition 2.1.5.3 (Lurie [Lur09a, Proposition 2.4.4.3]). Suppose p: C -+ 'D is an inner
fibration of oo-categories. A morphism f: y -+ z in e is p-Cartesian if and only if for every
x E C composition with f gives a homotopy Cartesian square

Mape(x, y) Map,(x, z)

Map,)(p(x), pI(y)) >MapD(px),p(z)).

Definition 2.1.5.4. A map p: X -+ S of simplicial sets is a Cartesian fibration if p is an inner
fibration and for every object x E X and every morphism f : s -+ p(x) in S there exists a
p-Cartesian morphism f: f*x - x with p(f) = f. Similarly, p is a coCartesian fibration if
pOP is a Cartesian fibration, i.e. if p is an inner fibration and for every object x C X and
every morphism f: p(x) -+ s in S there exists a p-Cartesian morphism f: x -+ fix with

p(f) = f.
Definition 2.1.5.5. A map p: X -+ S is a locally (co)Cartesianfibration if p is an inner fibra-
tion and for every edge o-: A' -+ S the pullback X x s A' -+ A' is a (co)Cartesian fibration.
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Corollary 2.1.5.6. Suppose given a commutative triangle

A f 1

where p and q are Cartesian fibrations and f is an inner fibration that takes p-Cartesian
edges to q-Cartesian edges. If for each c E C the pullback fc: Ac -* 3c is a Cartesian
fibration, and the functor Ac, -+ Ac induced by a morphism c -+ c' in C takes fc,-Cartesian
edges to fc-Cartesian edges, then f is also a Cartesian fibration.

Proof. We must show that for every a E A and every morphism p: b -+ f(a) in 3 there
exists an f-Cartesian morphism p*a -4 a over ip. Write -r: q(b) -+ p(a) for the image of p
in C. Since p is a Cartesian fibration, there exists a p-Cartesian morphism a: -y*a -+ a in A
over -y, and by assumption f(a) is q-Cartesian. Since q is a Cartesian fibration, it follows
that p factors as

b - f(7*a) f(a),
where p' lies over idq(b). Now as fq(b): Aq(b) ~+ 3 q(b) is a Cartesian fibration, there exists
an fq(b)-Cartesian edge p'*7*a -+ t*a. It is easy to check using the criterion of Proposi-
tion 2.1.5.3 that the composite p'*y*a -+ y*a -4 a is f-Cartesian. l

If S is a simplicial set, there are model structures on (Set')/s, the Cartesian and coCarte-
sian model structures, whose fibrant objects are, respectively, Cartesian and coCartesian
fibrations with target S, with their (co)Cartesian edges marked (cf. [LurO9a, Proposition
3.1.3.71).

Theorem 2.1.5.7 (Lurie [LurO9a, Theorem 3.2.0.11). Let S be a simplicial set. There is a
Quillen equivalence

(SetA+)/s +-- Fun(Lr(S) P,Set +)

where (SetZ)/s is equipped with the Cartesian model structure and Fun(L(S)oP,SetA)
with the projective model structure with respect to the model structure on Set+ that models
oo-categories.

Corollary 2.1.5.8. Let C be an oo-category, and write Cart(C) and CoCart(C) for the co-
categories of Cartesian and coCartesian fibrations to e, respectively, i.e. the oo-categories
associated to the Cartesian and coCartesan model structures on (SetA )/e. Then there are
equivalences

Cart(C) ~ Fun(C*P,Cato), CoCart(C) ~ Fun(C, Cat().

Definition 2.1.5.9. A morphism of co-categories p: C -+ 'D is an essentially coCartesianfibra-
tion if there exists a factorization

e-+-e' - 'D

such that e is a categorical equivalence and p' is a coCartesian fibration.

We can describe colimits in the total space of a coCartesian fibration:
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Lemma 2.1.5.10. Suppose 7r: F -+ 3 is a coCartesian fibration such that both 3 and the
fibres Eb for all b E 3 admit small colimits, and the functors fi: Lb -± E preserve colimits
for all morphisms f : b -+ b' in 3. Then F admits small colimits.

Proof. The coCartesian fibration 7r satisfies the conditions of [Luro9a, Corollary 4.3.1.111
for all small simplicial sets K, and so in every diagram

K>

there exists a lift p that is a r-colimit of p. Given a diagram p: K - we can apply this
with q a colimit of 7r o p to get a colimit p: K> -4 F of p.

It is easy to see that colimits of coCartesian edges are coCartesian:

Lemma 2.1.5.11. Suppose p: X -+ S is a coCartesian fibration, and let T: K> -4 Fun(Al, X)
be a colimit diagram such that for every i E K the edge T(i, 0) -+ f(i, 1) is coCartesian.
Then the edge f(oo,0) -+ f(co, 1) is also coCartesian.

Proof. Since colimits in functor categories are pointwise, we must show that for all x E X
the diagram

MapX (colimi f (i, 1), x) >MapX (colimi T (i, 0), x)I I
Maps (colimi p?(i, 1), p(x)) > Maps(colimi p?(i,0), p(x))

is Cartesian, which is clear since limits commute.

In good cases it is also true that the colimit of Cartesian edges is Cartesian:

Proposition 2.1.5.12. Suppose nr: F -4 3 is a Cartesian and coCartesian fibration, where
3 is an oo-category with all colimits. Let p: : -4 E be a colimit diagram; then 7r o p is

a colimit diagram in 3. Suppose the associated contravariant functor 3 0 P -+ Cat, takes
it o p to a limit diagram of oo-categories, and that p takes each edge of 3 to a it-Cartesian
morphism in E. Then p takes every edge of 9' to a it-Cartesian morphism.

Proof. Write b for it(p(oo)) and p for PIK. Then the fibre Eb is the limit of Ep(i) for i in 7.
This limit is given by the co-category of Cartesian sections 3 -+ L of it o p. Since p takes
every edge of 3 to a Cartesian edge in F, the diagram p = PIK corresponds to an object x of
L9b.
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Write ip, for the canonical map i -+ oo. Then for y in Eb we have

MapF-,(x, y) ~lim Mapp p(i), PO 0y)

~lim Map 8 O'P(), Y)

~Mapr- (colim 0i' p (i), y)

~Mapr- (o (0) .Y

Thus x ~ p(oo). In particular qp (oo) ~ p(i), or in other words the morphism p(i) -+ p(oo)
is Cartesian. 0

In the setting of ordinary categories, the total space of a coGrothendieck fibration is
the lax colimit of the associated functor. An co-categorical theory of lax colimits has not
yet been developed, but we will now prove that the total space of a coCartesian fibration
satisfies a version of the expected universal property:

Proposition 2.1.5.13. Suppose D: 0 -+ Cat, is a functor, OD -4 is the associated co-
Cartesian fibration, and C is a locally small oo-category. Let F -+ 0 be the Cartesian
fibration associated to the functor Fun(D, C) that sends x E 0 to Fun(D(x), C). Then
Fun(OD, C) is equivalent to the oo-category of sections Funo((0, E).

Proof. We first consider the case where C is an co-category 'P(D) of presheaves on an oo-
category 'D. Then we have equivalences

Fun(9D,e) ~ Fun((D x DOP,8) ~ LFib(D x D*P)

Composition with the coCartesian fibration OD x 'DOP -+ 0 x 'DOP - (0 gives a functor

LFib(D x 'DOP) -+ CoCart()/OD X DoP

since any functor between left fibrations over OD x DOP gives a coCartesian-morphism-
preserving functor - indeed, this shows that this functor is fully faithful. We claim that
under the equivalence CoCart() ~ Fun((, Cat,) this full subcategory corresponds to the
full subcategory X of Fun(0, Cato)/x2OP spanned by those natural transformations that
are pointwise left fibrations.

It is clear that LFib(D x 'DOP) lands in the full subcategory X, since left fibrations are
closed under pullback. It thus suffices to show that any object of I corresponds to a right
fibration over OD x 'DOP. The functor to OD x 'D0P is a coCartesian fibration by (the dual
of) Corollary 2.1.5.6, and its fibres are spaces since the pullbacks to D(x) x 'DOP are right
fibrations for all x E 0, thus this is true.

Write Z for the full subcategory of Fun(A, Cat.) spanned by the left fibrations. Since
left fibrations are closed under pullback, the functor Z -+ Cat. given by evaluation at
1 E A' is a Cartesian fibration. Let Z' -+ 0 be the pullback of L along D x 'D*P: 0 -+
Cato. This is the Cartesian fibration associated to the functor OOP - CatO that sends x
to LFib(D(x) x 'DOP) ~ Fun(D(x) x 'DoP,8) ~ Fun(D(x), C), i.e. L' -+ 0 is equivalent
to the Cartesian fibration 8 -+ 0. A section of L' - (0 clearly corresponds to a functor
0: 0 x A -4 Cato such that O(x,O) -+ (x,1) is a left fibration for all x E 0 and pIOx l} is
D x 'DOP. In other words, Funo(0, L') ~ X. This completes the proof when C ~ '('D).

Now suppose C is a full subcategory of 'P(D) for some oo-category 'D. Then we can
identify Fun(9D, e) with a full subcategory of Fun(OD,'('D)), and E with a full sub-
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category of ', and it is clear that under these equivalences Fun(OD, C) corresponds to
Funo (0, E) under the equivalence Fun(OD,'P('D)) ~ Funo (0, V') constructed above. Since
every locally small o-category C can be identified with a full subcategory of 'P(C) via the
Yoneda embedding, this completes the proof.

2.1.6 Adjunctions

Definition 2.1.6.1. Suppose C and 'D are oo-categories. An adjunction between C and 'D
is a map p: M -+ A' that is both a Cartesian and a coCartesian fibration, together with
equivalences C ~+ MO and D - M1 . If f: C -+ D and g: D -+ C are functors associated to
the adjunction M we say that f is left adjoint to g and g is right adjoint to f.

Definition 2.1.6.2. Suppose given a pair of functors

f: C ; 'D :g

between oo-categories. A unit transformation for fg is a natural transformation u: ide -4

g o f such that for all c E e, d E 'D, the composite

Map,(f(c), d) -4 Mape(gf(c), g(d)) -+ Map,(c,g(d))

is an equivalence of spaces.

Proposition 2.1.6.3 ([Lur09a, Proposition 5.2.2.8]). Suppose given a pair of functors

f: C + 'D :g

between oo-categories. Then f is left adjoint to g if and only if there exists a unit transfor-
mation u: ide - g o f.

Lemma 2.1.6.4. Let 8 and '3 be oo-categories and p: E -+ 'B a functor. Suppose

(1) E has finite limits and p preserves these,

(2) p has a right adjoint r: 'B -+ E such that p o r ~ idB.

Then p is a Cartesian fibration.

Proof. Given x E E and a morphism f: b -+ p(x), we must show there exists a Cartesian
arrow in F lying over f with target x. Define f: y -4 x by the pullback diagram

f

II
r(b) r) rp(x)

Since p preserves pullbacks, the morphism p(f) is equivalent to f. Moreover, for any z E 8
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we have a pullback diagram

Map, (z,y) > Map, (z, x)

I I

Under the adjunction this corresponds to the commutative diagram

Map, (z, y) - Map, (z, x)

Map 3 (p(z), b) > Map, (p (z), p(x))

induced by the functor p. But then j is Cartesian by Proposition 2.1.5.3. O

Proposition 2.1.6.5. Suppose p: E -* 3 is a functor between co-categories such that F has
pullbacks, these are preserved by p, and for all b E 3 the oo-category 8 /b has a final object,
which lies in the fibre over b of p. Then p is a Cartesian fibration.

Proof. By Lemma 2.1.6.4 it suffices to show that p has a right adjoint r: 3 -4 F that is a
section of p. Let Q -+ 3 be a coCartesian fibration associated to the functor b '-+ 

8 /1b; by
the dual of [LurO9a, Proposition 2.4.4.91 this fibration has an (essentially unique) section
3 Q Q that sends b E 3 to a final object in E/b. Combining this with the natural map
Q -4 E associated to the forgetful functors E8 b -+ E we get a section r: 3 -+ that sends
b E 3 to a final object *b of /b. Then r is a right adjoint of p: by definition all fibres of the
map Map, (x, *b) -+ Map 3 (px, b) are contractible, so this map is an equivalence. E

2.1.7 Accessible and Presentable oo-Categories

Definition 2.1.7.1. Suppose K is a regular cardinal. A simplicial set K is K-small if all the
sets K. are K-small. A K-small (co)limit is a (co)limit indexed by a K-small simplicial set.

Definition 2.1.7.2. Suppose K is a regular cardinal. An oo-category J is K-filtered if the col-
imit functor Fun(3, 8) -4 8 preserves K-small limits.

Proposition 2.1.7.3 ([LurO9a, Proposition 5.3.3.3]). An co-category 3 is K-filtered if and only
if for every K-small simplicial set K and every map f : K -+ J there exists a map f: K> -+ 9
extending f.

Definition 2.1.7.4. Suppose x is a regular cardinal. An object c in an oo-category C is K-

compact if the representable functor Map, (c, -) preserves K-filtered colimits. We denote the
full subcategory of C spanned by the K-compact objects by e.

Definition 2.1.7.5. Suppose K is a regular cardinal. If C is an co-category, we let IndK C

denote the full subcategory of 'P(C) := Fun(COP, 8) spanned by the the functors f: COP - 8
that classify right fibrations E -+ C such that 8 is x-filtered.
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Definition 2.1.7.6. Suppose K is a regular cardinal. An o-category e is K-accessible if there
exists a small co-category Co and an equivalence IndK eO -4 C

Proposition 2.1.7.7 ([Lur09a, Proposition 5.4.2.2]). Suppose K is a regular cardinal. An co-
category C is K-accessible if and only if C has -filtered colimits and contains an essentially
small full subcategory C' that consists of K-compact objects and generates C under K-filtered
colimits.

Definition 2.1.7.8. We say an oo-category is accessible if it is K-accessible for some K. If e is
an accessible oo-category, we say a functor f: e -4 D is accessible if it preserves K-filtered
colimits for some K.

Definition 2.1.7.9. Suppose K is a regular cardinal. An oo-category is K-presentable if it
is K-accessible and admits small colimits. We say an oo-category is presentable if it is K-

presentable for some K.

Theorem 2.1.7.10 (Adjoint Functor Theorem, [Lur09a, Corollary 5.5.2.9]). Suppose F: C -+
'D is a functor between presentable oo-categories. Then F has a right adjoint if and only if it
preserves small colimits, and a left adjoint if and only if it is accessible and preserves small
limits.

Lemma 2.1.7.11. Suppose F: C ; 'D : U is an adjunction such that the right adjoint U
preserves x-filtered colimits. Then F preserves K-compact objects.

Proof. Suppose X E e is a K-compact object, and p: K' -+ D is a x-filtered colimit diagram.
Then we have

Map,(F(X), colim p) ~ Mape(X, G(colim p)) ~ Mape(X, colim G o p)

~ colim Map, (X, G o p) ~ colim MapD(F(X), p).

Thus MapD(F(X), -) preserves K-filtered colimits, i.e. the object F(X) is K-compact. O

Definition 2.1.7.12. Let PrL be the oo-category of presentable oo-categories and colimit-

preserving functors.

2.1.8 Localizations

Definition 2.1.8.1. Suppose C is an oo-category and W is a subcategory of C that contains
all the equivalences. The localization C[W- 1] of C with respect to W is the oo-category with
the universal property that for any co-category F, a functor C[W-1] -+ P is the same thing
as a functor C -+ E that sends morphisms in W to equivalences in F. More precisely, we
have for every E a pullback square

Map (C[W-1], F-) > Map (W, tFE)

I I
Map (C, FE) oMap (W, E).

Definition 2.1.8.2. The inclusion 8 <-+ Cat, has left and right adjoints. The right adjoint,
t: Cat. -+ 3, sends an oo-category C to its maximal Kan complex, i.e. its subcategory of
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equivalences. The left adjoint x: Cat, -+ 8 sends an oo-category e to a Kan complex xC

such that e -+ xKC is a weak equivalence of spaces.

Remark 2.1.8.3. It follows that, in the situation above, the oo-category C[W- 1 ] is given by
the pushout square in Cat.

W >KW

C >- e[w- 1].

Using this we can prove the following basic fact about localizations of oo-categories
(generalizing [DK80b, Corollary 3.6]):

Lemma 2.1.8.4. Suppose e and 'D are oo-categories and V C e and W C 'D are subcategories
containing all the equivalences. Let e[V- 1] and 'D[W- 1] be localizations with respect to V
and W. Suppose

F: e L; 'D: G

is an adjunction such that

(1) F(V) C W,

(2) G(W) C V,

(3) the unit morphism r/: c -+ GFc is in V for all cE e,

(4) the counit morphism Yd: FGd -+ d is in W for all d E D.

Then F and G induce an equivalence e[V-1] - 'D{W-1].

Proof. Let icV and xW be Kan complexes that are fibrant replacements for V and W in the
usual model structure on simplicial sets. Then the oo-categories C[V- 1 ] and 'D[W-1] can be
described as the homotopy pushouts

V ,V W ,W

C [v-'], 'D 'D[W- 1]

in the Joyal model structure. Then from (1) and (2) it is clear that F and G induce functors
F': e[V- 1] -+ 'D[W- 1 ] and G': 'D[W-1] -+ [V-1], and the natural transformations I and
-y induce natural transformations rq': id -+ G'F' and -y': F'G' -+ id. The objects of C [V-1
and 'D[W- 1] are the same as those of C and 'D, so by (3) and (4) the morphisms i and -'y are
equivalences for all c E -[V-1] and d E 'D[W- 1]. Thus rq' and -' are natural equivalences
and F' and G' are hence equivalences of co-categories. L

Unfortunately, pushouts in Cat. are in general difficult to describe. However, in good
cases the functor C -4 e[W- 1] has a fully faithful right adjoint, i.e. we can find the localized
co-category as a full subcategory of e. In fact, all functors of this kind are localizations:
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Definition 2.1.8.5. A functor f: C -+ D is a localization if f has a fully faithful right adjoint.

Proposition 2.1.8.6 ([LurO9a, Proposition 5.2.7.12]). Suppose F: C -+ D is a localization
functor, and let W be the subcategory of C with morphisms the morphisms f : c -+ c' in C
such that F(f) is an equivalence. Then the induced functor C[W- 1] -+ 'D is an equivalence.

We now recall how to describe localizations in the presentable case:

Definition 2.1.8.7. Let C be an co-category and suppose S is a collection of morphisms in
C. An object z E e is S-local if for every s: x -+ y in S, composition with S induces an
equivalence

Mape(y, z) -+ Mape (x, z).

A morphism f: x -+ y is an S-equivalence if for every S-local object z, composition with f
induces an equivalence

Mape(y, z) - Mape(x, z).

Definition 2.1.8.8. We say a class of morphisms in an co-category satisfies the 2-out-of-3
property if for any 2-simplex

x

y -h
h

in C, if any two out of f, g, h is in the class, so is the third.

Definition 2.1.8.9. Let C be an co-category with small colimits and let S be a collection of

morphisms in C. We say S is strongly saturated if it satisfies the following conditions:

(1) S is closed under pushouts along arbitrary morphisms in C.

(2) The full subcategory of Fun(A', C) spanned by S is stable under small colimits.

(3) S satisfies the 2-out-of-3 property.

Proposition 2.1.8.10 ([Lur09a, Proposition 5.5.4.151). Let C be a presentable co-category
and suppose S is a set of morphisms of C. Let S denote the strongly saturated class of
morphisms generated by S, and let D denote the full subcategory of C spanned by the
S-local objects. Then

(i) The inclusion D -+ C has a left adjoint L.

(ii) The co-category 'D is presentable.

(iii) For every morphism f in C, the following are equivalent:

(a) f is an S-equivalence.

(b) f belongs to S.

(c) Lf is an equivalence.

We end with a few results about fibrewise localizations of coCartesian fibrations:
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Lemma 2.1.8.11. Suppose E -+ Al is a coCartesian fibration, and ' is a full subcategory of
F such that the inclusion E' -+ E1 admits a left adjoint L: 8 1 -+ E'. Then the restriction
8' -4 A' is also a coCartesian fibration.

Proof. We must show that for each x E 8 there exists a coCartesian arrow with source x
over 0 -+ 1 in Al. Suppose 0: x -+ y is such a coCartesian arrow in 8, and let y -+ Ly

be the unit of the adjunction. Then any composite x A y - Ly is a coCartesian arrow in
': by Proposition 2.1.5.3 it suffices to show that for all z E ' the map Map.,(Ly, z) -+

Map.,(x, z) is an equivalence, which is clear since Map., (Ly,z) ~ Map, (y,z) as z E 8',
Map., (x, z) ~ Maps (x, z) as 8' is a full subcategory of F, and x - y is a coCartesian
morphism in E. 0

Lemma 2.1.8.12. Let E 3 'B be a locally coCartesian fibration and 80 a full subcategory
of E such that for each b E '3 the induced map on fibres EO <-+ Eb admits a left adjoint
Lb: Eb -+ EO. Assume these localization functors are compatible in the sense that the
following condition is satisfied:

(*) Suppose f: b -+ b' is a morphism in 3 and e is an object of Eb. Let e -+ e' and
Lbe -+ e" be locally coCartesian arrows lying over f, and let Lye' -+ Lbye" be the
unique morphism such that the diagram

e - e'- Ly e'

Le >e"l Lb e"

commutes. Then the morphism Lye' -+ Lye" is an equivalence.

Then

(i) the composite map El -4 B is also a locally coCartesian fibration,

(ii) the inclusion E '-+ F admits a left adjoint L: 8 -+ 80 relative to B.

Proof. (i) is immediate from the previous lemma, and then (ii) follows from [Lur11, Propo-
sition 7.3.2.111 - condition (2) of this result is satisfied since, in the notation of condition
(*), a locally coCartesian arrow in 82 over f with source Lbe is given by the composite
Lbe -+ e - Lye". E

Proposition 2.1.8.13. Let 8 -+ B be a coCartesian fibration and 80 a full subcategory of
8. Suppose that for each b E 3 the induced map on fibres E8 -+ Eb admits a left adjoint
Lb: Eb -+ EO and that the functors 4!: Eb -+ Ey corresponding to edges 4: b -+ b' in B
preserve the fibrewise local equivalences. Then

(i) the composite map 80 -4 B is a coCartesian fibration,

(ii) the inclusion 8-0 " E admits a left adjoint L: E -+ E over B, and L preserves co-
Cartesian arrows.
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Proof. Lemma 2.1.8.12 implies (ii) and also that 80 -4 E - 'B is a locally coCartesian fi-
bration, since for a coCartesian fibration condition (*) says precisely that fibrewise local
equivalences are preserved by the functors p!. It remains to show that locally coCartesian
morphisms are closed under composition. Suppose f: b -+ b' and g: b' -+ b" are mor-
phisms in B, and that e E 80. Let e -4 e' be a coCartesian arrow in E over f, and let e' -+ e
and Lye' -4 ell be coCartesian arrows in E over g. Then a locally coCartesian arrow over
f in FO is given by e -+ e' -4 Lye' and a locally coCartesian arrow over g is given by
Lye' -- e2 4 LYre . We have a commutative diagram

e > e' - > -' Lb e'

Lye' - e )' Ly- e

Here the composite along the top row is a locally coCartesian arrow for gf, and the com-
posite along the bottom is the composite of locally coCartesian arrows for g and f. By
condition (*) the rightmost edge is an equivalence, hence the composite map e -4 Ly e' is
locally coCartesian.

2.1.9 Monads

Here we briefly review the theory of monads in the oo-categorical setting; for this we as-
sume the reader is familiar with the notions of monoidal oo-categories, associative algebra
objects, and modules from [Lur11].

Definition 2.1.9.1. Suppose C is an oo-category. The co-category Fun(C, C) has a monoidal
structure given by composition. A monad in C is an algebra object in this monoidal oo-
category. The monoidal oo-category Fun(C, C)0 acts on the co-category C; if T is a monad
on C, a T-algebra is a left module object for T in C. We write Algy(C) for the oo-category of
T-algebras.

Proposition 2.1.9.2 ([Lurl1, Proposition 6.2.2.3]). Suppose F: e -+ D is a functor between
oo-categories that has a right adjoint G. Then G o F extends canonically to a monad on C
such that G is a left module for this monad in Fun(C, D).

Definition 2.1.9.3. Suppose F: C - 'D is a functor between oo-categories that has a right
adjoint G. Let T be the monad associated to G o F. Then G factors canonically as

'D - Algr(C) -+ C,

through the forgetful functor Algy(C) -+ C. We say the adjunction F -l G is monadic if the
functor G' is an equivalence.

Definition 2.1.9.4. Let Ao be the category with objects [n], n > -1, and with mor-
phisms [m] -4 [n] given by non-decreasing maps a: [m] U {-oo} -4 [n] U {-oo} such
that t(-oo) = -oo (and -oo is regarded as less than the other elements of [m], [n]). If C is
an oo-category, we say an augmented simplicial object U.: Af -+ C is split if it extends to
a functor A*_ -+ C, and we say a simplicial object is split if it extends to a split augmented
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simplicial object. Given a functor G: D -+ e we say a simplicial object U. of D is G-split if
G(U.) is a split simplicial object of C.

Theorem 2.1.9.5 (Barr-Beck Theorem for co-Categories, [Lur11, Theorem 6.2.2.5]). Suppose
F: C -4 D is a functor between co-categories that has a right adjoint G. The adjunction
F -1 G is monadic if and only if G satisfies the following conditions:

(1) G is conservative, i.e. a morphism f in D is an equivalence if and only if G(f) is an
equivalence in C.

(2) G preserves colimits of G-split simplicial objects in D, and all G-split simplicial objects
have colimits.

Now we make some simple observations about monadic adjunctions:

Lemma 2.1.9.6. Suppose F: C ; D : U is a monadic adjunction such that C has all small
colimits, D has sifted colimits, and U preserves sifted colimits. Then D has all small colim-
its.

Proof. Since D by assumption has all sifted colimits, it suffices to prove that D has finite
coproducts. Since e has coproducts and F preserves colimits, the co-category D has co-
products for objects in the essential image of F.

Let A1 , ... , A" be a finite collection of objects in D. By [Lur1l, Proposition 6.2.2.12],
there exist simplicial objects Ai in D such that each Ak is in the essential image of F and

Ai ~ Ai. Since coproducts of elements in the essential image of F exist, we can form a
simplicial diagram H; A'. By [LurO9a, Lemma 5.52.3], the geometric realization |UH A'l is
a coproduct of the A1 's. E

Proposition 2.1.9.7. Suppose F: C - D : U is a monadic adjunction such that e is x-
presentable, V has small colimits, and the right adjoint U preserves -filtered colimits.
Then D is x-presentable.

Proof. Since e is i-presentable, every object of e is a colimit of ic-compact objects. Since U
preserves i-filtered colimits, F preserves i-compact objects by Lemma 2.1.7.11. Therefore
every object in the essential image of F is a colimit of i-compact objects. But by [Lurl,
Proposition 6.2.2.121, every object of D is a colimit of objects in the essential image of F,
so every object of D is a colimit of i-compact objects. Since by assumption D has all small
colimits, this implies that D is i-presentable. E

2.1.10 Groupoid Objects

Definition 2.1.10.1. Suppose e is an co-category. A groupoid object U of e is a simplicial
object U: NOP -4 e such that for every n > 0 and every partition [n] = S U S' such that
S n S' consists of a single element s, the diagram

U([n]) - U(S)

I I
U(S') - U({s})

is a pullback square in e.
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Definition 2.1.10.2. Suppose C is an oo-category. An augmented simplicial object

U: A* - e

is a dech nerve if Ulrp is a groupoid object, and the diagram

U1 : UO

II
Uo U 1

is a pullback square. In this case, the augmented simplicial object U is determined up to
equivalence by the map u: Uo -+ U_1, and we say that U is the dech nerve of u.

Definition 2.1.10.3. Suppose C is an oo-category and U is a groupoid object in C. We say
that U is effective if it can be extended to a colimit diagram Af' -4 C and this is a Cech
nerve, i.e. if U is the restriction to aOP of the tech nerve of Uo -+ |U.|.

Lemma 2.1.10.4. Suppose U. is an effective groupoid object in an oo-category e. The fol-
lowing are equivalent:

(i) The map Uo -+ 1|U. is an equivalence.

(ii) The map so: Uo -4 U1 is an equivalence.

(iii) The simplicial object U. is constant, i.e. for every map p: [n] -+ [m] in 
1

OP the in-
duced map tiC -4 tmC is an equivalence.

Proof. We first show that (i) implies (ii): Since U. is effective, it is equivalent to the Cech
nerve of the map Uo -+ |U. 1. Thus we have a pullback diagram

do

di I

UO IU.|,

so the maps do, di are equivalences. From the 2-out-of-3 property it follows that so is also
an equivalence.

To show that (ii) implies (iii) first observe that if so: Uo -4 U1 is an equivalence, then
by the 2-out-of-3 property do, di: U1 -+ Uo are also equivalences. Since U. is a groupoid
object we have pullback diagrams

U1 > Uo

- iU, dl I
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(corresponding to the decomposition {0,..., n} = {0,..., i - 1, i +... ,n} U {i - 1, i}),
and so the face maps di: Un -+ Un_1 are equivalences for all i and n. By the 2-out-of-3
property the degeneracies si: Un_1 - Un are also equivalences, hence ?: Un -4 Un must
be an equivalence for all 0: [n] -+ [m] in A\OP.

Finally (iii) implies (i) since the simplicial set ZCOP is weakly contractible. ]

Dually, we have the notion of a cogroupoid object:

Definition 2.1.10.5. A cosimplicial object X: A -+ C in an oo-category C is a cogroupoid
object if for every partition [n] = S U S' such that S n s' consists of a single element, the
diagram

X(S n s') -> X(S)

I I
X(S') > X([n])

is a pushout square.

Remark 2.1.10.6. We could of course have used the dual version of any of the conditions
of [Lur09a, Proposition 6.1.2.6] to define a cogroupoid object.

Lemma 2.1.10.7. If X: A -4 e is a cogroupoid object in an co-category e, then for every
object Y E e the simplicial space Mape(X, Y) is a groupoid object in spaces.

Proof. Given a partition [n] = S U S' such that S n S' consists of a single element, the
diagram

Mape(X([n]), Y) > Mape(X (S), Y)

I I
Map, (X (S'), Y) P Map,(X(' n S'), Y)

is a pullback square, by the definition of a cogroupoid object. Thus Map,(X, Y) satisfies
condition (4") of [Lur09a, Proposition 6.1.2.61. E

2.1.11 The Makkai-Pare Accessibility Theorem

An accessiblefibration is a Cartesian fibration E -+ 3 such that 3 is accessible and the asso-
ciated functor from 3OP to Cat. factors through the oo-category of accessible oo-categories,
and preserves K-filtered limits for K sufficiently large. In [MP89, Theorem 5.3.4] Makkai
and Pare prove that the total space of an accessible fibration of ordinary categories is ac-
cessible. The oo-categorical analogue of this result is surely also true; however, the proof of
Makkai and Pare unfortunately does not seem to have a direct analogue for oo-categories
using current technology. In this subsection we will instead prove the easiest special case
of this theorem, which luckily will suffice for our needs:

Theorem 2.1.11.1. Let 3 be a presentable oo-category, and let p: E -+ 8 be a Cartesian fi-
bration associated to the functor SOP -+ Cato sending X to Fun(X, 3). Then E is accessible,
and p is an accessible functor.
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The key step in the proof is identifying the total space E, which we do in the following
preliminary result:

Proposition 2.1.11.2. Suppose e is a small co-category. Let s: * -+ C' be the inclusion of
the cone point, and let s*: T(C&) -+ 8 be the functor induced by composition with s. Then:

(i) s* is a Cartesian fibration.

(ii) The fibre of s* at X E S is naturally equivalent to Fun(X, T(e)), and under these
equivalences the contravariant functor associated to s* is Fun(-, T(e)).

(iii) Suppose e admits x-small colimits, and let 8 be the full subcategory of T(e") spanned
by functors F: (eP)> -4 8 that take diagrams q*P' : K' -+ (e*P)' to limit diagrams
in 8, where q: (KOP) -+ C is a colimit diagram in e and K is a x-small simplicial set.
Then the restricted functor p: E -+ S is a Cartesian fibration.

(iv) The fibre Ex is naturally equivalent to Fun(X, IndK C), and the contravariant functor
associated to p preserves limits.

(v) The contravariant functor associated to p is the unique limit-preserving functor SOP -+

Cat, sending * to Ind, (e).

Proof. (i) follows from Proposition 2.1.6.5. The fibre T(e&)x is the full subcategory of
presheaves (e<) 0 P -+ 8 that send -oo to X. By the definition of overcategories, this is
naturally equivalent to Fun(COP, S/x). It is also clear that the functor f*: Fun(e*P, S/x) -+
Fun(CP, S/y) induced by a map f: Y -+ X corresponds to composition with pullback
along f. Now there are natural isomorphisms S/x ~ Fun(X,S), under which pullback
along f correspond to composition with f, and this induces natural equivalences

T(e<)x ~ Fun(e*P, S/x) ~ Fun(e*P x X,S) ~ Fun(X,T(e)).

This gives a natural equivalence between the functor associated to s* and Fun(-, T(e)),
which proves (ii).

To prove (iii) it suffices to show that if F E E and g: X -4 s*F is a morphism in 8, then
g*F is also in E. Identify F with a functor F': C*P -+ S/x and suppose q: K4 -± COP is a
K-small limit diagram. Then it is clear that the composite F' o q is a limit diagram in S/x if
and only if the composite

K* 4 (e*P)> + 8

is a limit diagram in S. The former condition is clearly preserved under composition with

g*: S/s*F -+ S/X, and so g*F is also in E.
Since e has K-small colimits, by [LurO9a, Corollary 5.3.5.4] we can identify IndK e with

the full subcategory of T(e) consisting of presheaves that preserve K-small limits. As we
observed above, the fibre Ex can be identified with the full subcategory of Fun(eP, S/x)
spanned by functors that preserve K-small limits. Since limits in functor categories are
computed pointwise, under the equivalence

Fun(e*P, S/x) ~ Fun(*P, Fun(X,8)) ~ Fun(e*P x X,8)

this corresponds to the full subcategory spanned by functors e*P x X -+ 8 such that for
each x E X the restriction to e*P x {x} preserves K-small limits. Under the equivalence
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Fun(COP x X, 8) ~ Fun(X, T(C)) this clearly corresponds to the full subcategory of func-
tors X -+ T(C) such that the value at each x E X is a presheaf on C that preserves ic-small
limits, i.e. a functor from X to the full subcategory IndK C of these presheaves. (iv) now
follows in the same way as (ii), and (v) is immediate from (iv).

Lemma 2.1.11.3. Suppose C is a small oo-category, and let S = {p,: K - e} be a small
set of diagrams in C. Then the full subcategory of T(C) spanned by presheaves that take
the diagrams in S to limit diagrams in 8 is accessible.

Proof. Let j: C -+ T(C) denote the Yoneda embedding. A presheaf F: COP -+ 8 takes p to
a limit diagram if and only if it is local with respect to the map of presheaves

colim(j o PIK.) -± j(co),

where oo denotes the cone point. Thus if S' is the set of these morphisms for f. E S,
the subcategory in question is precisely the full subcategory of S'-local objects. Since S,
and hence S', is by assumption a small set, it follows that this subcategory is an accessible
localization of T(C), so in particular it is itself accessible. E

Proof of Theorem 2.1.11.1. Choose ic such that 3 is x-presentable; then 3 ~ IndK(3K). By
Proposition 2.1.11.2, the oo-category E is equivalent to a full subcategory of T(SKI) spanned
by presheaves F that preserve certain limit diagrams. It suffices to take a set of such dia-
grams (for example, we can restrict ourselves to x-small coproduct diagrams and pushout
diagrams in 3K), and thus E is accessible by Lemma 2.1.11.3. E

Remark 2.1.11.4. It is not necessary to assume that C admits ic-small colimits in Propo-
sition 2.1.11.2 (cf. [MP89, §5.3.2] for the 1-categorical version), but this is the only case
we're interested in and making this assumption considerably simplifies the proof. Thus
Theorem 2.1.11.1 remains true if 3 is merely accessible instead of presentable.

2.1.12 Categorical Patterns

In this section we review Lurie's categorical patterns and the associated model structures.

Definition 2.1.12.1. A categorical pattern T = (X, M, S, {pft: K4 -+ X) consists of a simpli-
cial set X equipped with a marking M (i.e. a subset M C X, containing all the degenerate
1-simplices), a scaling T (i.e. a subset S C X2 containing all the degenerate 2-simplices)
and a collection of diagrams p,: K' -+ X such that p, takes every edge in K" to an element
of M and every 2-simplex of K' to an element of S.

Definition 2.1.12.2. Let 3 = (X, M, S, {pa: K' -4 X}) be a categorical pattern. A marked
simplicial set (Y, T) over (X, M) is T-fibrant if the following conditions are satisfied:

(1) The underlying map of simplicial sets f: Y -4 X is an inner fibration.

(2) For each edge A' -+ X in M, the pullback Y xX A' -+ A' is a coCartesian fibration.

(3) An edge e of Y belongs to M if and only if f(e) is in M and e is locally f-coCartesian.
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(4) Given a commutative diagram

A{0,1} e , y

I I
A2 

-) X

with e E M and r E S, then e determines a coCartesian edge of the pullback Y x x
A2 -+ A2 .

(5) For every a, the coCartesian fibration f : Y x x K, -4 K is classified by a limit dia-
gram K, -+ Cat,.

(6) For every a, every coCartesian section s of f, is an f-limit diagram in Y.

Remark 2.1.12.3. In all the examples of categorical patterns we will consider in this thesis,
the scaling S will simply consist of all 2-simplices in X whose edges are in M. However,
to avoid confusion with Lurie's terminology we have chosen to describe the more general
case in this review.

Examples 2.1.12.4.

(i) If C is an oo-category, let T.ocar be the categorical pattern (I, e 1, e2, 0). Then (E, T) -+

e# is Tica-fibrant if and only if 7r: E -4 e is a coCartesian fibration, and T is the set
of 7r-coCartesian edges in E.

(ii) If C is an oo-category, let T3q be the categorical pattern (C, iC1, tC 2, 0). Then (E, T) -+

e is W3-fibrant if and only if E is an oo-category, the map 7r: E -4 e is a categorical
fibration, and T is the set of equivalences in & (This follows from the description of
categorical fibrations to oo-categories in [LurO9a, Corollary 2.4.6.51.)

(iii) If C is an oo-category and D is a subcategory if C, let goa' be the categorical pat-

tern (C,'D 1,'D2 ,0). Then (E, T) -+ (C,'D 1 ) is mc*Sa,-fibrant if and only if E is an
oo-category, the map r: F -+ e is an inner fibration, and E has a r-coCartesian edge
over every morphism in 'D.

We will see more examples of categorical patterns in the next chapter.

Definition 2.1.12.5. Let C be a category with small colimits. A class S of morphisms in C
is weakly saturated if it has the following properties:

(1) S is closed under pushouts along arbitrary morphisms in C.

(2) S is closed under transfinite composition. More precisely, suppose a is an ordinal and
{ Dp}1p, is a system of objects of Cc/ indexed by a. For p <;c a we let D.p be a colimit
of {D}-,<p in ec/- If for all p < a the map D<p -4 Dp belongs to S, then the induced
map C -+ D<, belongs to S.

(3) S is closed under retracts.
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Definition 2.1.12.6. Let 3 = (X, M,S, {p,: KI -+ X}) be a categorical pattern. A mor-
phism of marked simplicial sets over (X, M) is T-anodyne if it is contained in the smallest
weakly saturated class of morphisms containing all morphisms of the following types:

(1) (A2 ) U(^2)b (A2 )b _- (A2)0, for every map A2 -+ X in S that takes every edge into M,

(2) Q -4 QO where Q = AO HlA{o2 A3 lAli,1 AO for any map Q -+ X that carries every
edge of Q into M and every 2-simplex of Q into S,

(3) {0}0 -4 (A')O for every edge in M,

(4) K4 -4 (K') for every a, where K, maps to X via pa,

(5) (AB)1 U(AOD1})b (A{ 0"})) -+ (A") ll(Al{o1)b (A' 0 11)0 for every n > 1 and every map

A" -4 X such that A{0 ,1o," belongs to S,

(6) (Af )D 1-+ (An),, for all 0 < i < n and all maps A" -4 X,

(7) for every map f : A" * K -+ X extending p,,: {n} * K - X, the inclusion

(iA" * K) 11({n}*K.)b ({n} * Ka) '-+ (An * &a), l({n}*K.)b ({n} * K&)O-

Proposition 2.1.12.7 ([Lur11, Proposition B.1.6]). Let 1P = (X, M, S, {p,}) be a categorical
pattern. Then a marked simplicial set (Y, T) over (X, M) is -fibrant if and only if it has
the right lifting property with respect to T-anodyne maps.

Definition 2.1.12.8. Let T = (X, M, S, {pa}) be a categorical pattern. A morphism f: -
Z of marked simplicial sets is a -equivalence if for every q-fibrant object W over =

(X, M) the induced map

Map (Z, W) -4 Map (Y, W)

is a weak equivalence of Kan complexes.

Theorem 2.1.12.9 ([Lur1l, Theorem B.0.19]). Let T = (X, M, S, {p,}) be a categorical pat-
tern. Then there exists a left proper combinatorial simplicial model structure on the cate-
gory (SetA)/(XM) such that:

(C) The cofibrations are the morphisms whose underlying morphisms of simplicial sets
are monomorphisms.

(W) The weak equivalences are the T-equivalences.

(F) The fibrant objects are the T-fibrant objects.

We write (Set+)p for (SetA)/(XM) equipped with this model structure.

Remark 2.1.12.10. Moreover, this model structure is enriched in the model category of
marked simplicial sets - this follows from [Lur11, Remark B.2.5] (taking T' to be the
trivial categorical pattern on AO).

Remark 2.1.12.11. Suppose T = (X, M, S, {p,}) is a categorical pattern, and let T - be
the categorical pattern (X, M, S,0). It follows from the proof of [Lurl1, Theorem B.0.191
that the model category (Set+)p is the left Bousfield localization of the model category
(Set+)p- with respect to the generating T-anodyne maps of type (4) and (7).
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Examples 2.1.12.12.

(i) If C is an oo-category, the model category (SetA)C , is the coCartesian model struc-

ture on (SetA )/e. Thus the associated co-category is the oo-category CoCart(e) of
coCartesian fibration over C, which is equivalent to Fun(C, Cato).

(ii) If C is an oo-category, the model category (SetA)T is the over-category model struc-

ture on (Set') /eh from the model structure on Set,. The associated oo-category is thus
the over-category (Cat,)/e.

(iii) If e is an co-category and D is a subcategory of C, the model category (Set4),pn.r

gives an co-category of functors F -+ C that have coCartesian morphisms over the
morphisms in 'D; we write CoCart(C, D) for this oo-category.

Definition 2.1.12.13. Let T = (X, M, S, {pa}) and 0 = (Y, N, T, {qp}) be categorical
patterns. A morphism of categorical patterns f: T -+ Q is a morphism of simplicial sets
f : X -+ Y such that f(M) C N, f(S) C T, and for every a the composite

K,, -'c4 X +4 Y

is in {qp}.

Proposition 2.1.12.14 ([Lurl1, Proposition B.2.91). Let f: 3 -+ Q be a map of categorical

patterns. Then composition with f induces a left Quillen functor

fi: (Set+)T -+ (Set+)Ja.

The right adjoint f* is given by pullback along f.

Example 2.1.12.15. If T = (X, M, S,0) is any categorical pattern with no limit diagrams,
the map X -+ AO gives a map of categorical patterns T -+ To := Te and so a colimit-

preserving forgetful functor from the oo-category associated to (Setp), to Cato.

Remark 2.1.12.16. Under certain rather complicated conditions, the functor f* is also a left
Quillen functor, i.e. it has a right adjoint f, that is a right Quillen functor - see [Lurl,
Proposition B.4.1].

2.1.13 Some Technical Results

Here we collect a small number of results that do not fit anywhere else in our discussion.
First we prove a characterization of certain colimits in relative functor categories; I thank
Jacob Lurie for explaining the proof of this result to me.

Theorem 2.1.13.1. Let K be a weakly contractible simplicial set. Suppose p: X -+ S is a
coCartesian fibration such that for all s E S the fibre X, admits K-indexed colimits, and for
all edges f: s -+ t in S the functor fi : X, -+ Xt preserves K-indexed colimits. Then for any
map g: T -+ S,

(i) the oo-category Funs(T, X) admits K-indexed colimits,
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(ii) a map K -> Funs(T, X) is a colimit diagram if and only if for all t E T the composite

K"' -4 Funs(T, X) -+ Xg(t)

is a colimit diagram,

(iii) if E is a set of edges of T, the full subcategory of Funs(T, X) spanned by functors that
take the edges in E to coCartesian edges of X is closed under K-indexed colimits in
Funs(T, X).

Proof. The oo-category Funs (T, X) is a fibre of the functor p,: Fun(T, X) -+ Fun(T, S) in-
duced by composition with p. The functor p, is a coCartesian fibration by [LurO9a, Propo-
sition 3.1.2.1]. Since the functors fi preserve K-indexed colimits, by [LurO9a, Proposition
4.3.1.10] a diagram q: K' -+ Funs(T, X) is a colimit diagram if and only if the composite
q': K"t -4 Funs(T, X) -+ Fun(T, X) is a p,-colimit diagram. By [LurO9a, Corollary 4.3.1.11],
K-indexed p,-colimits exist in Fun(T, X), which proves (i).

Moreover, a diagram in Fun(T, X) is a colimit diagram if and only if it is a p.-colimit
diagram and its image in Fun(T, S) is a colimit diagram. Since q' lands in one of the fibres
of p., the projection to Fun(T, S) is constant, which means it is a colimit as K is weakly con-
tractible. Thus q' is a p,-colimit diagram if and only if it is a colimit diagram in Fun(T, X).
By [LurO9a, Corollary 5.1.2.3] this means that q' is a colimit diagram if and only if for all
t E T the induced maps K -4 X are colimit diagrams. A diagram in X is a colimit if and
only if it is a p-colimit and the projection to S is a colimit. Since K is weakly contractible,
applying [LurO9a, Proposition 4.3.1.10] we see that this is true if and only if the induced
map K -4 Xg(t) is a colimit diagram in Xg(t). This proves (ii).

Suppose e: t -+ t' is an edge of T and q: K -+ Funs(T, X) is a diagram such that for
all vertices k C K the functor q(k): T -+ X takes e to a p-coCartesian edge of X. Let
q: K -+ Funs(T, X) be a colimit diagram extending q. To prove (iii) we must show that
the functor q(oo) also takes e to a coCartesian edge of X. From our description of colimits
in Funs (T, X) it follows that this is equivalent to showing that coCartesian edges of X are
closed under colimits, which is true by Lemma 2.1.5.11. I

Proposition 2.1.13.2. Let 3 be a category and p: 3 -+ Cat, a functor. Let 'D be an oo-
category and q: 3 x A' -+ Cat, a natural transformation from p to the constant functor
at 'D. Let X -4 3 be a coCartesian fibration associated to p; the natural transformation r7
induces a map q: X -+ D x 3 -+ 'D. Suppose each of the diagrams r7,: p(a) -+ D has a
colimit; by [LurO9a] there exists an (essentially unique) map q+: X+ -+ 'D, where

XC+:= XC x A1 II e} 3,

that restricts to q on X and to a colimit of q,, on p(a)" ~ X+ xg {a&}. Then the maps

'D <- 'D,, -+ 'Dq / are trivial fibrations.
In particular, we have equivalences colim q ~_ colim q+Ig ~_ colimaEg colimp(a) ra -

Proof. It follows from [Lur09a, Lemma 4.2.3.5] that the inclusion 3 '-+ C+ is right anodyne,
hence 'Dq/ -4 'Dq/ is a trivial fibration. On the other hand, 'Dq, -+ 'D/ is a trivial
fibration since q+ is clearly a left Kan extension of q along X '-+ X.

43



2.2 Other Higher-Categorical Structures

In this section we review some other higher-categorical structures that we will encounter,
namely Segal spaces, double oo-categories, (oo, 2)-categories, and On-spaces. We will think
of all of these as being constructed within an ambient theory of o-categories (rather than
describing them as model categories, say).

2.2.1 Segal Spaces

Segal spaces are an alternative definition of (oo, 1)-categories, introduced by Rezk [Rez01].

Definition 2.2.1.1. Suppose C is an oo-category with finite limits. A category object in I is a
simplicial object F: A*P -+ C such that for each n the map

Fn -+ F1 x F0 -.-. x Fo F1

induced by the inclusions {i, i + 1} <-+ [n] and {i} e-* [n] is an equivalence. A Segal space
is a category object in the oo-category 8 of spaces.

Let on denote the simplicial space obtained from the simplicial set A" by composing
with the inclusion Set -+ S. A simplicial space is then a Segal space if and only if it is local
with respect to the map

segn : 15n -4 8114 ,- I, b61

Definition 2.2.1.2. Let Seg(S) denote the full subcategory of Fun(A*P, 8) spanned by the
Segal spaces; this is the localization of Fun(A*P, 8) with respect to the maps seg,.

Remark 2.2.1.3. Similarly, if C is a K-presentable co-category, the oo-category Cat(e) of
category objects is the localization of Fun(A*0 P, C) with respect to the morphisms segn ® c,
where c is a K-compact object of C.

Definition 2.2.1.4. The inclusion Gpd(S) <-+ Seg(S) admits a right adjoint t: Seg(S) -+

Gpd(S). We say a Segal space F is complete if the groupoid object tF is constant.

Remark 2.2.1.5. By Lemma 2.1.10.4, a Segal space F is complete if and only if the map
iF(sO): iF[O] -+ iF[1] is an equivalence.

Definition 2.2.1.6. Let j denote the inclusion {[0]} A*P. Composition with j gives a
functor Fun(AOP,8) -+ 8, which has a right adjoint j,, given by right Kan extension. It is
clear that jX is a Segal space for all X E S. We write E" for the Segal space j,{0,..., n}.

Proposition 2.2.1.7 (Rezk [Rez01, Proposition 6.4]). A Segal space is complete if and only
if it is local with respect to the morphism El -+ EO.

Definition 2.2.1.8. Let CSS(S) denote the full subcategory of Seg(S) spanned by the com-
plete Segal spaces; by Proposition 2.2.1.7 this is the localization of Seg(S) with respect to
the morphism El -+ EO.

Theorem 2.2.1.9 (Joyal-Tierney [JT07]). The oo-category CSS(8) is equivalent to Cato,.

Lemma 2.2.1.10. Suppose X. is a Segal space. Then the following are equivalent:

(i) The functor X. is constant.

(ii) The map so: Xo -+ X1 is an equivalence.

Proof. This follows by induction using the Segal condition and the simplicial identitites.
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2.2.2 Double co-Categories and (oo, 2)-Categories

Just as a double category is an internal category in the category of categories, so a double
oo-category should be an internal category in the co-category of oo-categories:

Definition 2.2.2.1. A double oo-category is a category object in Cat.. We write Cat(Catm)
for the full subcategory of Fun(A\oP, Cat,) spanned by the double oo-categories.

Remark 2.2.2.2. Using the equivalence Fun(AOP, Cat,) ~ CoCart(A\OP), we can equiva-
lently define a double co-category to be a coCartesian fibration E -+ A\OP, such that the
functors

Eta F [1] xe -- x), 1

induced by the morphisms {i, i + 1} -+ [n] and {i} e-+ [n] are equivalences.

Definition 2.2.2.3. A double Segal space is a category object in Seg(8), i.e. a bisimplicial
space LA*P x AOP -+ 8 all of whose rows and columns are Segal spaces. We write Cat2 (8)
for the oo-category of double Segal spaces.

Using the equivalence Cat, ~ CSS(8), we can also regard a double oo-category as a
category object in complete Segal spaces, i.e. a double Segal space all of whose rows are
complete Segal spaces.

Definition 2.2.2.4. A double Segal space is complete if all its rows and columns are complete
Segal spaces.

Lemma 2.2.2.5. The following are equivalent for a double oo-category C.:

(i) e. corresponds to a complete double Segal space under the equivalence Cat(Cat,) ~
Cat(CSS).

(ii) Map(A", C.) is a complete Segal space for all n.

(iii) C. is local with respect to El x A" -+ A" for all n.

If e. satisfies these equivalent conditions, we say that C. is a complete double co-category.
Write CDble for the full subcategory of Cat(Cat.) spanned by the complete double oo-
categories; this is an accessible localization of Cat(Cato). We claim that CDblO is the "cor-
rect" oo-category of double co-categories, but will not justify this further here.

Lemma 2.2.2.6. Suppose C. is a double co-category. Then C. is complete if and only if
Map(A", e.) is a complete Segal space for n = 0,1.

Proof. Write ? for the Segal space Map(A", e.). Suppose we know ey is a complete
Segal space, where n > 1. Then the pushout diagram of oo-categories

A{n} - An,n+1}

I I
An4 An+l
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induces a pullback diagram of Segal spaces

-4n~ Cn

II
This means that in the diagram

CA +1 A nX A'

Map(E1 , C$n') Map(E1, Cey) X Map(El,CA0 ) Map(E1 , e.)

the horizontal maps are equivalences. But the right vertical map is also an equivalence,

since C ' is by assumption complete for k = 0,1, n. Thus eC"ni is also complete. By induc-

tion, C ? is therefore complete for all k, i.e. C. is a complete double oo-category. O

Just as we can think of 2-categories as a special kind of double category, we can think
of (oo, 2)-categories as a special kind of double co-category - this gives Barwick's notion
of a 2-fold Segal space:

Definition 2.2.2.7. A double Segal space X is a 2-fold Segal space if the 0th row X0 is con-
stant. Write Seg 2 (8) for the full subcategory of Cat 2 (8) spanned by the 2-fold Segal spaces.

Definition 2.2.2.8. A 2-fold Segal space X is complete if all its rows X; are complete Segal
spaces and the 0th column X.,o is a complete Segal space. We write CSS2 (8) for the full
subcategory of Seg 2(8) spanned by the complete 2-fold Segal spaces.

The co-category CSS2 (8) is the "correct" co-category of (co,2)-categories. Under the
equivalence Cat(Cato) ~ Cat(CSS(8)) it is clear that complete 2-fold Segal spaces corre-

spond to double co-categories C. such that Co is a space and Cey is a complete Segal space.
We write Cat(.,2) for the full subcategory of Cat(Cat,) spanned by these objects.

Lemma 2.2.2.9. Let X.. be a double Segal space. Suppose x, y E Xoo and 0 E Xu satisfies
dhb ~ s'x E X10 and dho ~ s'y (where the superscripts h and v refer to the horizontal
and vertical simplicial structure maps, respectively). Then 0 is an equivalence in the Segal
space X1 . if and only if ip is an equivalence in X. 1 and d;"O is an equivalence in Xo,. for
i = 0,1.

Proof. Write f = dio and g = doip. Suppose 4 is an equivalence in X1,. and let V be an
inverse. It is clear that f- 1 = d1ip and g- 1 = dop are inverses of f and g, respectively.
Consider the object of X23 represented by the diagram

id V idg ,
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Let a be a composite of the bottom row. If we compose the diagram horizontally and then
vertically it is clear that we get the vertical composite of 4 and a. On the other hand, if we
compose first vertically and then horizontally we get the horizontal composite of p and
q', which is the identity. Since these give equivalent objects of Xu we see that the vertical
composite of 4 and a is idf. Similarly, considering the object represented by

we see that the vertical composite of a and 4 is idg. Thus a is an inverse for 4 with respect
to vertical composition, i.e. 4 is an equivalence in X1..

Now suppose 4 is an equivalence in X.1 such that f and g are equivalences. Let p be a
(vertical) inverse for 4 and choose inverses f- 1 and g 1 of f and g. Considering the objects

id id-i idg id-i id-1id idf-i id
[]j Ii id i d- idfidi 4

of X24 we see that the horizontal composite idf-i o V o idg-i is a horizontal inverse of 4. ]

Lemma 2.2.2.10. Suppose C. is a double co-category such that eo is a space and (y" is

complete. Then a morphism 4 in C1 is an equivalence in (f' if and only if dio, i = 0,1, are
equivalences in (y" and 4p is an equivalence in C1 .

Proposition 2.2.2.11. Cat(s,2) is a full subcategory of CDbl,,, i.e. if e. is a double co-

category such that C0 is a space and e(" is complete, then e. is a complete double co-
category.

Proof. By Lemma 2.2.2.6 it suffices to prove that CQy is a complete Segal space. Thus we

need to show that the morphism (CAI)eq -+ CA, where (eA' )* denotes the subspace of e'
consisting of the components corresponding to equivalences in the Segal space ei, is an

equivalence of spaces. Consider the commutative square

Map(A', CO) - Map(Al, 1 )*9

1I 1
Map(A0 , Co) - Map(A, C1 )e.

Here the left vertical map is an equivalence since Co is a space and the bottom horizontal
map is an equivalence since Cef is complete. To prove that the top horizontal map is an
equivalence it therefore suffices to show that the right vertical map is an equivalence.

Observe that Map(A', (CAO)eq) is a full subcategory of Map(A', e1), as is Map(Al, e1 )*'.
By Lemma 2.2.2.10 these subcategories have the same objects, so we get an equivalence

Map(', C 1 )*I ~> Map(A', (ef")*). Since (e) is a space, it follows that Map(A', Ce) ~

(e 0 )*9, which completes the proof.

The automorphism of double Segal spaces that swaps the two simplicial directions
corresponds to an automorphism of CDblO. Under this automorphism, the double co-
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categories corresponding to complete 2-fold Segal spaces get taken to complete double

co-categories C. such that eC" is constant. Thus, these give yet another model for (oo, 2)-
categories. We will now prove a criterion for a double co-category to be an (co, 2)-category
of this kind:

Proposition 2.2.2.12. Suppose C. is a double oo-category such that so: Co -+ C1 is essen-

tially sujective (hence an isomorphism on 7to by the simplicial identities) and CA' is com-
plete. Let Ce be the subcategory of C1 whose morphisms are those that are equivalences
in Map(Al, C.). Then so: C0 -+ Ce is an equivalence of o-categories.

Proof. Since so is essentially surjective by assumption, it suffices to prove that it is fully
faithful, i.e. that for all x,y E Co the induced map Co(x,y) -+ eq(x, y) is an equivalence.
We can identify 1 (x, y) with the fibre Map(Al, C1 )"y of the projection

(CA eq - (CfO) 2

at (sox, soy), where (CA')eq denotes the subspace of CA' whose components correspond

to the equivalences in C2 . Now since C$l is a complete Segal space, the map so induces

an equivalence CA' ~ (CA')eq. Passing to fibres over (x, y) E (CAO)x2 this shows that so

indeed induces an equivalence Co(x, y) ~- Ceq(x, y).

Corollary 2.2.2.13. Suppose C. is a double co-category such that so: Co -+ C1 is essentially

surjective and CA' is complete. Then the Segal space C 0 is constant.

Proof. By Lemma 2.2.1.10 it suffices to show that C0 -" CAf" is an equivalence of spaces. By

Lemma 2.2.2.9 the inclusion C 0 -+ C1 factors through Ce, hence we have an equivalence

CA0 ~+ (Cr")e9. But the composite C _" -+ (CA)*q is an equivalence by Proposition 2.2.2.12,

hence by the 2-out-of-3 property so is the map CAO -+ C". O

Suppose X is a complete double Segal space. Then we can extract two complete 2-fold
Segal spaces from X, by restricting to the subobject lying over the constant part of the 0th
row or column. In other words, we can extract a vertical and a horizontal (oo, 2)-category
from a double oo-category.

Definition 2.2.2.14. Let Vert, Hor: CDbl, -+ Cat( ,2 ) be the corresponding functors on
complete double co-categories.

There are many other models for (co, 2)-categories in the literature. In this thesis we
will also make use of marked simplicial categories, i.e. categories enriched in the model cat-
egory Set' of marked simplicial sets; see [LurO9b] for a comparison of these with com-
plete 2-fold Segal spaces and other models, and [BSP11] for axioms characterizing the oo-
category of (oo, 2)-categories.

2.2.3 On-Spaces

We now briefly review the theory of On-spaces, which give a model for (oo, n)-categories.
These were introduced by Rezk [Rez10] (but our discussion is also based on the summary
given in [BSP11]). We first review the definition of the categories On - these were origi-
nally introduced by Joyal, but we use the inductive definition due to Berger [Ber07]:
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Definition 2.2.3.1. Let e0 = *, and for n > 0 define the category On inductively as follows:

* objects of On are of the form [n](X1,. . ., Xn), where [n] E a and Xi E On-1;

" a morphism [n](X1,..., Xn) -4 [m](Y1,..., Ym) consists of a morphism ip: [n] -4 [m]
in a and morphisms Vij: Xi 4 Yj where 0 < i < m and 4(i - 1) < j <_ q(i).

Composition is defined in the obvious way.

The category On can also be regarded as a full subcategory of the category of strict
n-categories spanned by certain free strict n-categories (cf. [Ber07, §3]).

Definition 2.2.3.2. We define the following important functors between On's:

(i) The functor in: On-1 -+ On corresponds to the inclusion of (n - 1)-categories into n-
categories; we define it inductively by letting ji: * = (- 1 = A be the inclusion
of the object [0] and defining

jn([M](X1,.. .,Xm)) = [m](jn_1X1,.. .,Ijn_1Xm)

for n > 1.

(ii) The functor en: en-1 -+ On corresponds to "suspending" an (n - 1)-category to an n-
category with two objects and that (n - 1)-category as the morphisms between them.
More precisely,

0-n(X) = [1](X).

(Notice that Cnini = jneni.)

(iii) The functor Pn: On -4 On-1 corresponds to "collapsing" the n-morphisms in an n-
category to produce an (n - 1)-category. More precisely, we define pi: a*P = e1 -+
e 0 = * to be the unique functor to the final object, and set

pn([m]-(X, ... , Xm)) = [m(pn_1X1,.. ., pnXm)

for n > 1.

Definition 2.2.3.3. The k-cell Ck (or just Ck) in On (k = 0, ... ,n) is defined by Ck = inCk
for k < n and Cn = OnCn_1 (with CO being the unique object of G0 ). Equivalently we have

Cn = jn-kAgkC. The k-cell Ck corresponds to the "free k-morphism".

Definition 2.2.3.4. Recall that a morphism 0: [n] -+ [m] in A is inert if it is the inclusion of
a subinterval of [m], i.e. if p(i) = p(O) + i for all i. By induction, we define a morphism
(0, Vij): [n](X, ... , Xn) -4 [m](Y1,..., Ym) in Ok to be inert if p: [n] -+ [m] is inert, and
fifp(i): Xi -+ Yp(i) is inert for each i = 1,...,n. Let Gn denote the subcategory of On
with objects the cells C0, ... , Cn and morphisms the inert morphisms between these. For
X E On, we write (Gn)/X for the full subcategory of Gn xe, (On)x1 spanned by the inert
morphisms Ck -4 X.

Definition 2.2.3.5. Let y: On -+ Fun(e67,8) denote the Yoneda embedding. For X in On,
the Segal morphism segx in Fun(O*P,8) is the obvious morphism

colim y(Ck) -+ y(X).
Ck-+XE(Gn)/x
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We say a presheaf T E Fun(8*P, 8) is a On-space if it is local with respect to the Segal
morphisms segX for all X E On, i.e. if the natural map

,T(X ) -+ lim T(Ck)
Ck-*XE(G.);x

is an equivalence for all X E On. We write Seg, (8) for the full subcategory of Fun(87, 8)

spanned by the On-spaces; this is an accessible localization of Fun(O8n,8) and so is a
presentable oo-category.

Remark 2.2.3.6. If n = 1, a e 1 -space is precisely a Segal space.

Definition 2.2.3.7. Composition with j: On- 1 -+ On gives a functor

1*: SegE (8) -4 Seg,,_, (8);

this corresponds to taking the underlying (oo, n - 1)-category of an (oo, n)-category. The
functor j* has left and right adjoints j! and j*, given by left and right Kan extension, respec-
tively (it is easy to see that this preserves the Segal conditions). The functor j* freely adds
n-morphisms between all parallel (n - 1)-morphisms, while the functor j! gives the inclu-
sion of (oo, n - 1)-categories into (oo, n)-categories. Similarly, the functor p: On -4 On-1
induces p*: SegE,_ ,(8) -+ Seg 0 (8) with left adjoint p!. Since p o j = id0e,_ we have

j*p* ~ id.

Definition 2.2.3.8. If X E On, let X* denote the On-rspace defined by

X*(Y) = Home,(jY, X).

We write EX for the On-space jX*, and if . is a On-space we write t.Y: OP -+ 8 for the
functor txT:= Map(EX, Y), and we define i:= pTt..

Lemma 2.2.3.9. E/X ~ yjX for X E On-1. Thus j*t.7 ~ j*. for any On-space T.

Conjecture 2.2.3.10. The functor E(): On -+ SegE, (8) is a co-On-Segal object, i.e.

colim EC -+ ELX
Ck-+Xe(Gl),x

is an equivalence for all X. Moreover, the cosimplicial object E" 1(-) is a cogroupoid object.

Corollary 2.2.3.11. If Y is a On-space, then so is t.,:.

Definition 2.2.3.12. A On-space X is complete if the natural map

j*X ~ j*.X -4 j*p*paI.X ~ p!I.X = tX

is an equivalence, and the On--space j*X is complete. (We define all e 0 -spaces to be com-
plete.) We write CSSe, (8) for the full subcategory of SegE (8) spanned by the complete
On-spaces.

Definition 2.2.3.13. The free k-equivalence Eq E Seg0 ,(8) (k = 1,...,n) is defined by
Eqn := j*(Cn)* and Eq:= j!Eq fork < n.
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Lemma 2.2.3.14. Eq ~ o)Eg_ for k > 1. In particular, Eq a j"-kofEq1.

Definition 2.2.3.15. Define morphisms ek: Eq -+ yCk_1 by letting

en: j*(Cn)* -4 i*(Cn_1)* = yCn_ 1

be induced by the unique map Cn - Cn_ 1, and ek := ji!Ck1 for k < n. Equivalently, let ei
be the unique morphism from Eq1 to the final object Co and let ek := 0,e1_1 = 4-11 for
k > 1.

Proposition 2.2.3.16. A On-space is complete if and only if it is local with respect to the
morphisms ek, k = 1,..., n.

Sketch Proof. Let us first show that a On-space T is local with respect to en if and only
if the morphism j*, -+ tY is an equivalence. From the Segal conditions it is easy to see
that a morphism of On_1-spaces 0: 9 -+ H is an equivalence if and only if 0 (Ck): 9(Ck) -4

J(Ck) is an equivalence of spaces for k = 0,... , n - 1. Observe that for any On-space 7, for
k < n - 1 the space £(Ck) = pI i.(Ck) is equivalent to IT(Ck) - tCk.Y ~ :3(Ck) since Ck

is a final object of On x e,_- (On_1)/cI (for k = n - 1 this is not the case, since e.g. Cn gives
two non-equivalent objects of this category). Thus the map j*T -+ tY is an equivalence if
and only if T(Cn-1) -+ (1)(Cn_1) = colim(XPX-+Cn. 1) T(X) is an equivalence.

Now consider o-n-1: A = a1 -+ On; this gives a cofinal map A -+ On X e,_ 1 (On_1)/Ck-
Thus it suffices to show that

,7(Cn_1) -+ |t.7T(cr--[e])| ~_ |Map(E'n"$*I,7T)J

is an equivalence if and only if T is local with respect to en. But E" '[] is a cogroupoid
object, so by Lemma 2.1.10.4 this morphism is an equivalence if and only if (Cn_1) ~

Map(yCn_1, 1) -4 Map(Ec"'1], T) ~_ Map(Eqn, T) is an equivalence, i.e. if and only if 7
is local with respect to en.

For k < n observe that j*T is local with respect to ek if and only if Y is local with respect
to jeek = ek, so by induction we conclude the T is complete if and only if it is local with
respect to ek for k = 1, . . ., n.

Definition 2.2.3.17. If Y is a On-space and x,y E T(Cn-1), write -T(x,y) for the fibre of

:(Cn) at (x, y) E :(Cn-1) x T(Cn-1). A morphism of On-spaces 0: T -+ 9 is fully faithful
if for all x,y E fT(Cn-1) the morphism T(x,y) -+ 9(4(x),4)(y)) is an equivalence. We
say that o isfullyfaithful and essentially surjective if 4p is fully faithful and the morphism of

On_1-spaces tp: tJ -+ t9 is fully faithful and essentially surjective. (We say a morphism of
e 0 -spaces is fully faithful and essentially surjective if and only if it is an equivalence.)

Lemma 2.2.3.18. A morphism of complete On-spaces is fully faithful and essentially sur-
jective if and only if it is an equivalence.

Proof. Observe that a morphism 4: 9 -+ 9 of On-spaces is an equivalence if and only if it is
fully faithful and j*o: j*' - j* 9 is an equivalence of On-1-spaces. If T and 9 are complete
it follows that 4 is an equivalence if and only if 4 is fully faithful and to is an equivalence.

Since tY and t9 are by assumption also complete, by induction we conclude that 4 is an
equivalence if and only if it is fully faithful and essentially surjective. 0

Conjecture 2.2.3.19. The fully faithful and essentially surjective morphisms between On-
spaces are precisely the morphisms in the saturated class generated by l,..., en.
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Chapter 3

oo-Operads over Operator Categories

In this chapter we indicate how to generalize Lurie's theory of oo-operads to the setting
of Barwick's operator categories. These are categories that can be used to parametrize
multiplicative structures; apart from symmetric and non-symmetric co-operads, we are
particularly interested in the interpolating oo-operads with En-symmetry, which we will
use to define enriched (oo, n)-categories in Chapter 5.

In §3.1 we review the theory of operator categories and the 1-categorical notions of op-
erads, monoids, and monoidal categories over an operator category. Then in §3.2 we define
oo-operads and monoidal oo-categories over operator categories, and in §3.3 we describe
some results for non-symmetric oo-operads that we unfortunately do not yet know how to
generalize to more general oo-operads.

3.1 Review of Operator Categories

In this section we summarize part of Clark Barwick's theory of operator categories. Much
of this material has now appeared in [Barl3]; the remainder (possibly excepting the rather
trivial material in §3.1.7 and §3.1.8) is based either on earlier preprints or on conversations
with Barwick and Chris Schommer-Pries. Since much of this section is only intended to
motivate our definitions in §3.2 of co-categorical generalizations of the concepts we discuss
here, we have often omitted proofs and even details of some definitions.

3.1.1 Basic Definitions and Examples

An operator category is a category that can be thought of as parametrizing a type of multi-
plicative structure. The definition is simple:

Definition 3.1.1.1. An operator category is a small category <D that

(i) is locallyfinite, i.e. for all I, J E <D the set Home(I, J) is finite,

(ii) has a terminal object *,
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(iii) hasfibres Ji for every morphism J -4 I at all points i: * -4 I, i.e. the pullbacks

Ji- J

exist.

Examples 3.1.1.2. The following are all operator categories:

(1) The trivial one-object category 0; this parametrizes trivial multiplicative structures.

(2) The category C of finite ordered sets (possibly empty). This parametrizes associative
monoids, monoidal categories, and non-symmetric operads.

(3) The category F of finite sets. This parametrizes commutative monoids, symmetric
monoidal categories, and symmetric operads.

The basic notion of a morphism between operator categories is an admissiblefunctor:

Definition 3.1.1.3. If CD and If are operator categories, an admissiblefunctor F: <D -+ V is a
functor that preserves the terminal object and all fibres.

However, for many purposes it is better to consider a more restricted class of mor-
phisms, the operator morphisms:

Definition 3.1.1.4. Suppose <D is an operator category. If I is an object of <D, we write II
for the set Homb (*, I). We say an admissible functor F: <D -+ Y is an operator morphism if
the map |Il -+ IF(I)I is a bijection for all I E CD.

Remark 3.1.1.5. Any admissible functor F: <D -+ Y such that Il -+ IF(I) is surjective for
all I E <D is necessarily an operator morphism (cf. [Barl3, Proposition 1.8]).

Example 3.1.1.6. For any operator category 4), the functor |-| gives an operator morphism
<D -+ F. This is the unique operator morphism from <D to F, and we will also denote it by
u*: <D -+ F.

Remark 3.1.1.7. Below, in §3.1.8, we will see that certain subcategories of operator categories
also play an interesting role, despite the inclusions not being admissible functors.

3.1.2 Wreath Products

The wreath product of operator categories gives a monoidal structure on the category of
operator categories and operator morphisms.

Definition 3.1.2.1. Let 'Y be an operator category, and let ny: FOP -+ Cat be the functor that
sends a finite set S to Fun(S, Y) - V x s 1. If 4) is another operator category, composing with
the unique operator morphism u* = |-1: 4) -+ F gives a functor <POP -4 Cat. We define
the wreath product Y 1<D -+ 4) to be a Grothendieck fibration associated to this functor.
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Remark 3.1.2.2. Thus, an object of T C < is determined by an object I E <D and, for each i E
I, an object Ji E IV. We write I(Ji)iEIJI for this object. A morphism I(Ji)ii -+ I'(J),kEIIPi

consists of a morphism f: I -+ 1' in <D and, for each i E |I|, a morphism Ji -+ in Y.

Remark 3.1.2.3. The wreath product of operator categories has a universal property: a
If ( D-algebra is, roughly speaking, a Y-algebra in CD-algebras; we will give several more
precise statements along these lines below.

Remark 3.1.2.4. The wreath product'V 0 4< is functorial with respect to all admissible func-
tors in the first variable, but only with respect to operator morphisms in the second vari-
able.

Proposition 3.1.2.5 ([Bar13, Proposition 3.9]). The operation I gives a monoidal structure
on the category of operator categories and operator morphisms.

Remark 3.1.2.6. The unit for the wreath product is the trivial operator category 0. This is
also the initial operator category (and the zero object with respect to admissible functors)
so given operator categories 4 and IF there are canonical maps

The functors iD and jy are operator morphisms, whereas po is merely an admissible func-
tor.

The wreath product allows us to define the key examples of operator categories we will
be interested in in this thesis:

Example 3.1.2.7. We write O(n) for the n-fold wreath power Ol" of the operator category
0 of finite ordered sets. In the setting of ordinary categories 0(2) parametrizes braided
monoidal categories and braided operads, while O(n) parametrizes symmetric monoidal
categories and symmetric operads for n > 2. When working with oo-categories, however,
O(n) gives En-monoidal co-categories, as we will see below.

3.1.3 Monoidal Categories and Operads

We will now justify the claim that operator categories parameterize multiplicative struc-
tures by defining <-monoidal categories and <D-operads, where <D is an operator category.

Definition 3.1.3.1. A <D-monoidal category is a category C equipped with:

(i) For each I E < a functor @1: C'Il -4 C, such that &, = id.

(ii) For each morphism f: J -4 in <D, a natural isomorphism

0 I 0h(0) ei
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These isomorphisms must be functorial, i.e. afog = af o ag and aid, = ido,. If C and D
are C-monoidal categories, a lax <-monoidalfunctor from C to D is a functor F: C -+ D
together with natural transformations O& oF -+ F o @&I, compatible with the natural iso-
morphisms af for f in <D. A strong <D-monoidalfunctor is a lax C-monoidal functor such that

these natural transformations are natural isomorphisms. We write Mon( for the category
of <-monoidal categories and strong <-monoidal functors, and Mon4,Iax for the category
of D-monoidal categories and lax <-monoidal functors.

Examples 3.1.3.2.

(1) A 0-monoidal category is a category.

(2) An 0-monoidal category is a monoidal category.

(3) An 0(2)-monoidal category is a braided monoidal category.

(4) An F-monoidal category is a symmetric monoidal category, as is an 0(n)-monoidal
category for n > 2.

More generally, we can consider <-operads; here we will restrict ourselves to <-operads
in sets:

Definition 3.1.3.3. A C-operad M consists of a set ob M of objects and, given I G <b, a
collection (x;);eIIl of objects indexed by the points of I, and an object y, a set

MI((x;), y)

of multimorphisms from (xi) to y. Given a morphism 1 -4 I in CD we have a composition
operation

171 Mh ((xj)jeIiI,yi) X MI((yi)iEII, z) -4 My((xy)ji z).
iEJI

This must be associative in the obvious sense, and there is also an identity morphism idx E

M4 (x, x) for all objects x.

Remark 3.1.3.4. For consistency with Lurie's terminology for co-categories we have cho-
sen to use the term <D-operad instead of <D-multicategory or coloured C-operad for this
concept.

Remark 3.1.3.5. An obvious variant of this definition gives a notion of CD-operads enriched
in, for example, a symmetric monoidal category. In the next section we will make use of
simplicial <-operads, which are <D-operads enriched in the category of simplicial sets.

Definition 3.1.3.6. A functor of D-operads F: M -4 N consists of a function ob M -+ ob N
and a function Mi((xi),y) -+ Ni((F(xi));,F(y) for each I E <D and xi,y E obM; these
must preserve identities and be compatible with composition in the obvious sense. We
write Opd* for the category of <-operads and functors.

Definition 3.1.3.7. If F, G: M -+ N are functors of <-operads, a natural transformation
q: F -4 G consists of, for each x E M a morphism rx E N,(Fx, Gx), compatible with com-
positions in the obvious way. We write OPD* for the 2-category of <-operads, functors,
and natural transformations.
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Example 3.1.3.8. We can consider a <D-monoidal category C as a CD-operad by defining
CI((xi),y) to be the set of morphisms C(OI(xi),y), with composition defined using the
natural isomorphisms af and ordinary composition in C. Then Mon,'a is the full subcat-

egory of OpdD spanned by 4)-operads of this form.

Examples 3.1.3.9.

(1) A 0-operad is a category.

(2) An O-operad is a multicategory or (coloured) non-symmetric operad.

(3) An 0(2)-operad is a braided multicategory or (coloured) braided operad.

(4) An F-operad is a symmetric multicategory or (coloured) symmetric operad, as is an
0(n)-operad for n > 2.

Remark 3.1.3.10. A <D-operad 0 with a single object can equivalently be described by sets
0(I) for I E <D and composition morphisms

0(I) x H O(Ji) -+ 0(1)
iEIII

for each morphism J -+ I in <D.

Definition 3.1.3.11. If C is a CD-monoidal category (or more generally a CD-operad), and 0
is a <D-operad, an 0-algebra in C is a functor of <D-operads A: 0 -+ C. We write Alg~o(C)
for the category of O-algebras in C, i.e. the mapping category OPD" (0, C).

Remark 3.1.3.12. Suppose f: <D -+ V is an operator morphism. Then f allows us to regard
a Y-operad as a <D operad, giving a functor f*: Opdy -+ Opd*: if M is a Y-operad, then
f*M has the same objects as M, and

f*MI ((X;), y) := M(1) ((Xi)' )-

This functor has a left adjoint fe: Opd* -4 OpdW, which forms the "free" Y-operad on
a <b-operad. For example, u?: Opdo -+ OpdF gives the usual way of regarding a non-
symmetric operad as a symmetric operad.

Remark 3.1.3.13. If 4) is an operator category, we let U(CD) denote the F-operad u**. For

example, U(O) is the usual associative (symmetric) operad. The functor u*: Opd* -4

Opd U() is often an equivalence, for example if CD is 0.

The wreath product of operator categories can be extended to a wreath product of
operads: If 0 is a <D-operad and Q is a Y-operad, both with a single object, then Q 1 0 is a
V I <D-operad, also with a single object, with

(Q 0)(I(Ji);iri) = O(I) x H Q(Ji).
iEIa

The general definition is somewhat more complicated:
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Definition 3.1.3.14. Suppose M is a 4-operad an N is a Y-operad. Then N Z M is a 'Y 4-
operad with objects ob M x ob N and multimorphism sets defined by

(M Z N)I(jI)((m( 1 ), n(ij)), (m', n')) := Mi((mi), m') x 17 Nji((nij), n'),

if m(ij) is equal to mi for all j E J', and 0 otherwise, with composition defined in the
obvious way.

Remark 3.1.3.15. The wreath product of operads has a universal property, which we can
roughly describe as follows: suppose M is a <D-operad, N is a Y-operad, and X is a V Z CD-

operad. Then the category Alg*D (j*,X) has a natural Y-operad structure, and there is an
equivalence

Alg y*M (X) ~Algy (Alg"g (j*X)).

3.1.4 Perfect Operator Categories and Monoids

We will now introduce the most important class of operator categories, namely the so-
called perfect operator categories, which includes all the examples we are interested in
here.

Definition 3.1.4.1. A point classifier for an operator category <D is an object (T, t: * -+ T) E
4,/ such that for any object (V, v: * -+ V) E <D, there exists a unique morphism V -+ T
in CD such that

* ? V

1 1
* - T

is a pullback square.

Definition 3.1.4.2. An operator category CD is perfect if it has a point classifier (T, t) and the
functor (-)t: 4 /T -4 <D that takes the fibre at t has a right adjoint T.: D -4 (/7. We refer
to t as the special point of T and its other points as generic points. We write T: <D -+ <D for
the composite of T, with the forgetful functor to <D.

Example 3.1.4.3. The operator categories 0 and F are perfect, with point classifiers {1} -+

{0,1, 2} and {1} -+ {0,1}, respectively.

Proposition 3.1.4.4 ([Bar13, Proposition 5.11]). If <D and YF are perfect operator categories,
with point classifiers t -+ T and t' -+ T', respectively, then Y' 1D is also perfect, with point
classifier T(I;) where It = T' and I; = * for i j4 t.

Example 3.1.4.5. The operator categories 0(n) are perfect for all n.

Theorem 3.1.4.6 ([Bar13, Theorem 6.9]). If <D is a perfect operator category, then the functor
T is a monad on 4).

Definition 3.1.4.7. Suppose CD is a perfect operator category. The Leinster category V> of 4)
is the Kleisli category of the monad T. In other words, the objects of Z' are the same as
those of 4), but morphisms are given by

Home.(I, J) = Home(I, TJ),
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with composition defined using the monadic structure of T. We will generally denote a
map from I to J in the Leinster category with a barred arrow, I -4+ J.
Example 3.1.4.8. Suppose CD is a perfect operator category. A point i: * -+ I corresponds
to a unique morphism I -+ T such that i is the pullback of t: * - T, and so to a morphism
iv: I -++ * in L".

Proposition 3.1.4.9. Let Y be an operator category, and let ny: F = (LF)OP -+ Cat be the
functor sending a pointed finite set S to the category Fun, (S, L£) of functors that take the
base point of S to * E L', i.e. (LY )xIsI-1. If 4 is another operator category, composing
with the functor L4 -+ LF induced by the unique operator morphism u* = |-1: <D -+ F
gives a functor (L*)OP -+ Cat. The Leinster category Z"' is equivalent to the total space
of the Grothendieck fibration associated to this functor.

Proof. This is a special case of [Bar13, Proposition 7.7]. O

Examples 3.1.4.10.

(i) The Leinster category £0 is just 0.

(ii) The Leinster category L0 is the opposite category AoP of the simplicial indexing cat-
egory A (cf. [Bar13, Example 7.6]).

(iii) The Leinster category LF is the category FOP of finite pointed sets (cf. [Bar13, Example

7.5]).

(iv) The Leinster category LO(n) is the opposite category OP of Joyal's category On (cf.
[Bar13, Example 7.81).

Using the Leinster category we can define <D-monoids when CD is a perfect operator
category:

Definition 3.1.4.11. Let <D be a perfect operator category, and suppose C is a category with
finite products. A <D-monoid M in C is a functor M: V* -4 C such that for every object I, the
morphism M(I) -4 ]-ie,, M(*) induced by the morphisms iv: I -+ * is an isomorphism.
We write Mnde(C) for the obvious category of <D-monoids in C.

Examples 3.1.4.12.

(i) A 0-monoid is just an object.

(ii) An 0-monoid is an associative monoid.

(iii) An F-monoid is a commutative monoid, as is an 0(n)-monoid for n > 1.

Remark 3.1.4.13. The wreath product of operator categories also has a universal property
in terms of monoids: Let <D and Y be perfect operator categories, and suppose C is a
category with finite products. Then there is an equivalence of categories

Mndoly(C) ~ Mnde(Mndy(C)),

i.e. a 4 'Y-monoid in C is equivalent to a CD-monoid in Y-monoids in C.

Remark 3.1.4.14. Let f: <D -+ Y be an operator morphism. Then composition with Vf
takes Y-monoids to <D-monoids and so induces a functor f*: Mndy (C) -+ Mn4d(C). If C
is a presentable category where the Cartesian product preserves colimits in each variable
then f* has a left adjoint fi: Mnde(C) -+ Mndy (C).
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3.1.5 The Inert-Active Factorization System

If <) is a perfect operator category, there is an important factorization system on the Lein-
ster category Z*:

Definition 3.1.5.1. Let <) be a perfect operator category. If 0: I -4 J is a morphism in Z*,
consider the pullback square

F > J

j u;

I TJ.

We say that 4, is active if the morphism F -+ I is an isomorphism, and inert if the morphim
F -4 j is an isomorphism.

Remark 3.1.5.2. A morphism 0: I -4+ j is active if and only if it is in the image of <D, i.e. it
is of the form

I -+ -4 TJ,

where f is a morphism in CD. It is clear from the definition that every active morphism is
of this form, and the converse holds because the diagram

id

id u 1

j -U-- Ti

is a pullback square in <D for all 1.

Examples 3.1.5.3.

(i) A morphism f: [n] -4 [m] in A corresponds to an active morphism in L 0 - A0 P if
and only if f(0) = 0 and f(n) = m, and an inert morphism if and only if f is the
inclusion of a subinterval, i.e. f(j) = f(0) + j for j = 0, ... , n.

(ii) A morphism f: (n) -4 (m) in FOP - LF is active if and only iff(*) = {*}, and
inert if and only if If-1(i)I = 1 for i 4 *.

Proposition 3.1.5.4 ([Bar13, Lemma 8.3]). If <D is a perfect operator category, then the inert
and active morphisms form a factorization system on L4.

Proof. We first show that any morphism. p: I -+ I has a factorization as an inert morphism
followed by an active morphism. We may regard I -+ TJ as a morphism in CD/T via the
map T(J -+ *), i.e. a morphism from I = (I -+ T) to T,(J). This is adjoint to a morphism
a: It -4 , giving a factorization

I -+ T () T(J).
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The fibre It is the fibre product F in the pullback square

F - J

'I I uj
I - TJ

in <, so we have factored 4 as a composite

1A TF TJ,

i.e. as a composite (uja) o P in L. The morphism uca is obviously active. Here F is also
the fibre of the composite 1 -4 TJ -+ T at the special point t, i.e. F is (I -4 T)t. Since the
diagram

F -
UFJ I

TF -+ TJ

is a pullback, it is clear that P is inert.
This also shows that any inert morphism p: I -++ J factors as the counit I -4 T(It)

followed by an isomorphism. Since this counit does not change when we compose with an
active map, it follows that the inert-active factorization is unique up to isomorphism. O

Remark 3.1.5.5. This factorization system is probably a particular case of that described
by Weber [WebO4] on the Kleisli categories of certain monads; this observation is due to
David Gepner. However, the "generic morphisms", which are the equivalent of our inert
morphisms, do not have as nice a description in this more general setting.

Definition 3.1.5.6. We write Z4' and Z4t for the subcategories of £* where the morphisms
are the inert and active morphisms in LO, respectively.

Definition 3.1.5.7. An object A of <D is an atom if there exists an inert morphism * -+ A in
Z*, i.e. A is the fibre at t: * -+ T of some other point * -+ T. The globular category S* is
then the full subcategory of CD spanned by the atoms. If I is an object of <b, we write 94
for 9* x . (VMD) .

Example 3.1.5.8. Suppose C and Y are perfect operator categories. Then the atoms of T 2 CD

are *(A), where A is an atom of V, and A() where A is an atom of < other than * (which
must necessarily have no points).

Examples 3.1.5.9.

(i) The unique object of 0 is an atom, and 90 is just 0.

(ii) The atoms of F are 0 and *, and S9 is

* -+ 0.
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(iii) The atoms of 0 are 0 and *, and 90 is

*0.

(iv) The atoms of 0(n) are Cn k = 0,... , n, which we can inductively define by C; 1 =

0,C =*,and

0(n) _*(C ), k = 1,..
k=O

The category g0(n) is

Cn(") = C 0(" -0-(n-- )C

i.e. GOP. In terms of the description of the objects of On as certain strict n-categories,

the object C0(n) corresponds to the k-cell or free k-morphism.

Definition 3.1.5.10. Let CD be a perfect operator category, and let C be a category with finite
limits. A <D-category object M in C is a functor M: V* -+ C such that MI, is a right Kan

extension of MI9 . In particular, for I E CD the object M(I) is the limit of Mg S.

Example 3.1.5.11. An 0(n)-category object in sets is a strict n-category.

Definition 3.1.5.12. A perfect operator category <D is self-categorical if the functor

I* := HomC.(I,-): 4 -4 Set

is a <-category object for all I E <b.

Examples 3.1.5.13. The operator categories 0(n) are self-categorical for all n, whereas F is
not.

3.1.6 The May-Thomason Category of a <D-Operad

For a perfect operator category <D we can give an alternative definition of <D-operads as
certain functors to VD, by considering the May-Thomason category of a CD-operad. This is
the definition we will generalize to define co-operads in the next section.

Definition 3.1.6.1. Let <D be a perfect operator category. If M is a CD-operad, the May-
Thomason category M@ of M has objects pairs (I, (xi)iE11 1) where I E <D and xi E M, and a

morphism (I, (xi)) -+ (1, (yj)) is given by a morphism I -+ J in Z'* and for each j E |J| a
morphism in Mi ((xi)ieII, yj), where Ij is the fibre of I -+ TJ at

* 4J m% TJ.

There is an obvious projection M* -+ VD.

Remark 3.1.6.2. If M is a C-operad enriched in a symmetric monoidal category C that
has coproducts and whose tensor product commutes with these, then the same definition
applied to M gives a C-category M@.

Proposition 3.1.6.3. A functor 7r: C -+ VD is equivalent to the May-Thomason category of
a <D-operad if and only if the following conditions hold:
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(i) If 4p: 1 -4 J is an inert morphism in Z*' and x E C, then there exists a 7r-coCartesian
morphism x -4 Oix.

(ii) For every I E ( the functor Ci -+ Hlielli C. induced by the coCartesian arrows over
iv for i E |l| is an equivalence of categories.

(iii) Given a morphism 4: I -4 J in Z* and y E C1 , the coCartesian morphisms y -+ y;
induced by the inert morphisms jv: J - * give an isomorphism

CO (X, y) ~+ Cjo0 (X, yj),

where CO(x,y) denotes the subset of C(x, y) of morphisms that map to 4 in Z*.

Moreover, a functor F: C -+ D over L* between such categories corresponds to a func-
tor of I-operads if and only if it preserves coCartesian morphisms over inert morphisms in
L'. We can thus equivalently define a 4-operad to be a functor C -+ Z' satisfying (i)-(iii).

Remark 3.1.6.4. A functor 7r: C -+ Vb is equivalent to the May-Thomason category of
a 4-monoidal category if and only if it satisfies conditions (i)-(iii) above, and is also a
coGrothendieck fibration, i.e. for any morphism 4: I -4+ 1 in L* and any x E C1 there
exists a r-coCartesian morphism x -+ 4)x. A functor F: C -+ D between such categories
over L* corresponds to a strong monoidal functor of 0-monoidal categories if and only if
it preserves all coCartesian arrows.

3.1.7 Generalized Operads and Multiple Categories

Replacing the Segal conditions for monoids with those for category objects in the char-
acterization of May-Thomason categories above gives a generalization of the notion of
O-operad:

Definition 3.1.7.1. Let 1 be a perfect operator category. A generalized 4-operad is a functor
7r: C -4 L* such that the following conditions hold:

(i) If p: I -++ J is an inert morphism in L*b and x E C1 then there exists a 7-coCartesian
morphism x -4 4)x.

(ii) For every I E <D the functor C1 -+ limI1+AA CA induced by the coCartesian arrows

over I -i+ A is an equivalence of categories.

(iii) Given a morphism 4: I -4 J in L*I and y E C1 , the coCartesian morphisms y -4 y,
induced by the inert morphisms a: -- A in 9% give an isomorphism

CO(x, y) ~+4lim C"og(x, ya).

Example 3.1.7.2. A generalized O-operad is the same as a virtual double category as defined
by Cruttwell and Shulman [CS10], or fc-multicategory as defined by Leinster [LeiO4]. Gen-
eralized 0(n)-operads for a general n may be regarded as the most general objects for
which we can define a notion of "lax functor" extending that for n-categories.
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Remark 3.1.7.3. A generalized <D-operad C -4 £* is (equivalent to the May-Thomason
category of) a CD-operad precisely when the fibre CA is equivalent to * when A E <D is an
atom other than *.

Definition 3.1.7.4. If C and D are generalized <D-operads, afunctor ofgeneralized <D-operads
F: C -+ D is a functor over Zo that preserves coCartesian arrows lying over inert mor-
phisms in L4. A natural transformation of functors between generalized CD-operads is just
an ordinary natural transformation of such functors. We write Opd('8*" for the category
of generalized <D-operads and functors, and 0 PD',*" for the 2-category of <D-operads,
functors, and natural transformations.

Definition 3.1.7.5. A 4)-multiple category is a generalized 4)-operad C -+ Z4' that is also a
coGrothendieck fibration.

Example 3.1.7.6. An 0-multiple category is a double category.

Definition 3.1.7.7. A lax monoidalfunctor between <D-multiple categories is just a functor

of generalized CD-operads; we write Mult*,' for the full subcategory of Opd*'8** spanned
by the CD-multiple categories. A strong monoidalfunctor between CD-multiple categories is a
functor over Z* that preserves all coCartesian morphisms; we write Mult for the category
of <D-multiple categories and strong monoidal functors.

Remark 3.1.7.8. An operator morphism does not generally induce a pullback functor on
generalized operads or multiple categories.

3.1.8 Subcategories of Operator Categories

We will now observe that subcategories of perfect operator categories determined by atoms
are often themselves operator categories:

Lemma 3.1.8.1. Let D be a perfect operator category. If A is an atom of 4D then A is a
subobject of *. In particular, the forgetful functor <D/A -+ ( is fully faithful.

Proof. We have a pullback diagram

A

I It

* -*: T
S

where t is the special point. Thus a morphism X - A corresponds to a commutative
diagram

X > *

I It

* -p aT.
S

Since * is the final object of D we see that such a diagram is unique if it exists. In other
words, an object of 4D admits at most one morphism to A. l
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Lemma 3.1.8.2. Let CD be a perfect operator category and A an atom of <D such that < has
A-fibres, i.e. pullbacks along morphisms from A. Then c1/A is a perfect operator category
with respect to the restriction of T.

Proof. It is clear that CD/A is an operator category if A-fibres exist in CD. We have a pullback
diagram

A UA TA

T.
t

Given a morphism Y -4 TA the pullback along A e-4 TA is therefore Y -+ A. In the
diagram

Hom(Y, X) > HomT(Y, TX)

I I
Hom(Yt, A) - Homr(Y, TA)

the horizontal morphisms are isomorphisms since (-)t is left adjoint to T. Taking fibres at
Yt -+ A we get a natural isomorphism

HomA(Yt, X) -~4 HomTA(Y,TX)

hence pullback along A -+ TA is left adjoint to T: <D/A -+ /DTA. In particular, TA is a
point classifier for <D/A. 0

Remark 3.1.8.3. In this case the induced functor G(D/A -+ Z 4' clearly preserves the inert-
active factorization system.

Restricting a <D-operad or <-monoidal category to <D/A always gives a trivial <D/A-
operad. However, in good cases we can restrict generalized <-operads to <DA:

Definition 3.1.8.4. Let <D be a perfect operator category. We say an atom A of <D is clean if

(i) <D has A-fibres.

(ii) If I is in <D/A, then 9 4 - is an equivalence.

Lemma 3.1.8.5. Let < be a perfect operator category, and suppose A is a clean atom in <.
Then pullback along the inclusion 4*>/A -+ £* induced by the inclusion j^: O/A -4 0
gives functors

: Opdgen 4 Opd/^

jA'*: Mult 4 Mult?/A.

Remark 3.1.8.6. These functors have left adjoints j^ and right adjoints jA.

Example 3.1.8.7. The atoms C"(n) in O(n) are all clean. The subcategory 0(n)/c, can
be identified with O(k), so we have inclusions jk: O(k) - O(n). The corresponding
inclusion k --+ On is the obvious inclusion of the basic k-categories as n-categories with
no non-trivial i-morphisms for i > k, i.e. j"-k in the notation of §2.2.3.
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3.2 oo-Operads

In this section we indicate how to extend parts of Lurie's theory of (symmetric) oo-operads
to the setting of operator categories. Given the material in §3.1 this is mostly a straightfor-
ward generalization of definitions and results from [Lurl] - the exception is the discus-
sion of wreath products in §3.2.6 which is based on results of Barwick from [Bar13].

3.2.1 Basic Definitions

Let <D be a perfect operator category. We will now define the basic objects we will study in
this section, as well as the appropriate morphisms between them:

Definition 3.2.1.1. A 4-oo-operad is an inner fibration p: 0* -+ Z4> such that:

(i) For each inert map : I -4+ J in Z* and every X E 00, there exists a p-coCartesian
edge X -+ p!X over p.

(ii) For every I in Z*, the map
0* -+ F1 (9?

ie|Il

induced by the inert maps iv: I - * is an equivalence.

(iii) Given C E 00 and coCartesian morphisms iv': C -4 C; for each inert map iv: -4 ,

the object C is a p-limit of the Ci's.

Remark 3.2.1.2. If 00 is a O-o-operad we will sometimes denote the fibre 0* at * E L>
by 0.

Definition 3.2.1.3. A 4-monoidal oo-category is a O-oo-operad that is also a coCartesian fi-
bration.

Definition 3.2.1.4. A generalized <D-o-operad is an inner fibration p: M -+ Z' such that:

(i) For each inert map 4: I -4 1 in V* and every X E MI, there exists a p-coCartesian
edge X -+ p!X over p.

(ii) For every I in LO, the map
M 1 -+ lim MA

I-4+AE9S

induced by the inert morphisms I -4+ A is an equivalence.

(iii) Every coCartesian section (9O) -+ M is a p-limit diagram.

Remark 3.2.1.5. Condition (iii) in the definition says, roughly speaking, that given C E MI,
D E MJ, and 0: J -+ I, the map

MapO(D, C) -+ lim Map"(D, ! C)

is an equivalence, where the superscripts denote the obvious fibres over maps in LO.

Definition 3.2.1.6. A 0-multiple co-category is a generalized 0-oo-operad that is also a co-
Cartesian fibration.
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Definition 3.2.1.7. We refer to 0-oo-operads as non-symmetric oo-operads, generalized 0-
oo-operads as generalized non-symmetric oo-operads, 0-monoidal oo-categories as monoidal
oo-categories, and 0-multiple oo-categories as double oo-categories. Similarly, we refer to F-
oo-operads as symmetric oo-operads, generalized F-oo-operads as generalized symmetric co-
operads, and F-monoidal oo-categories as symmetric monoidal oo-categories.

Definition 3.2.1.8. Let 7r: M -4 L be a generalized <D-oo-operad. We say a morphism f
in M is inert if it is coCartesian and 7r(f) is an inert morphism in L*, and active if nr(f) is
an active morphism in Z*.

Lemma 3.2.1.9. The active and inert morphisms form a factorization system on any gener-
alized <D-oo-operad.

Proof. This is a special case of [Lurl, Proposition 2.1.2.5].

Definition 3.2.1.10. Let M, N -4 L be (generalized) <D-oo-operads. A morphism of (gen-
eralized) <D-oo-operads from M to N is a commutative diagram

M F

such that F takes inert morphisms in M to inert morphisms in N. A morphism of (gen-
eralized) <D-oo-operads is a fibration of (generalized) <D-oo-operads if it is also a categorical
fibration, and a coCartesian fibration of (generalized) <-oo-operads if it is also a coCartesian
fibration.

Definition 3.2.1.11. If M and N are generalized CD-oo-operads, then an M-algebra in N is
just a morphism of generalized 4-oo-operads M -4 N. We write Alg*(N) for the full
subcategory of Func (M, N) spanned by the M-algebras. Similarly, if M and N are gener-
alized <D-oo-operads over a generalized <D-oo-operad Q, then we write AlgO1 (N) for the
full subcategory of FunQ (M, N) spanned by the functors that preserve inert morphisms.

Remark 3.2.1.12. We will also refer to a morphism of (generalized) <-o-operads between
<D-monoidal oo-categories, or more generally <D-multiple oo-categories, as a lax monoidal
functor.

Definition 3.2.1.13. A strong monoidal functor between <-multiple co-categories is a lax
monoidal functor that preserves all coCartesian morphisms. If M and N are <-multiple
oo-categories, we write Fun® (M, N) for the full subcategory of Funz (M, N) spanned by
the strong monoidal functors.

Definition 3.2.1.14. If M is a generalized CD-oo-operad, then an M-multiple co-category N is
a coCartesian fibration of generalized CD-oo-operads N -4 M. Similarly, an M-monoidal oo-
category is an M-multiple co-category Et -4 M such that E* is a 4-oo-operad. A strong
monoidal functor between M-multiple oo-categories is a morphism of generalized (D-co-
operads over M that preserves all coCartesian morphisms.

One source of <D-oo-operads is simplicial D-operads:
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Definition 3.2.1.15. A simplicial C-operad 0 isfibrant if all the simplicial sets 01 ((xi); iIii, y)
where xi, y E ob 0 are Kan complexes.

Lemma 3.2.1.16. Suppose 0 is a fibrant simplicial C-operad, and let 0* denote the simpli-
cially enriched version of the May-Thomason category. Then the projection NO® -4 Lo is
a CD-oo-operad.

Proof. As [Lur11, Proposition 2.1.1.27].

3.2.2 Model Categories of oo-Operads

Using Lurie's theory of categorical patterns, we now construct oo-categories and (co,2)-
categories of the objects defined above.

Definition 3.2.2.1. Let <D be a perfect operator category. Write Io for the set of inert mor-
phisms in L*, M for the set of 2-simplices in NZ ' all of whose edges are inert morphisms,
and for I E CD let K1 be the set of inert morphisms I -4 * in Z*. Then we define Do to be
the categorical pattern

(N , Io, M,{f K -4 L*}.

Lemma 3.2.2.2. A map (X, S) -+ (Z*, I) is Do-fibred if and only if the underlying map
X -+ Z* is a CD-oo-operad and S is the set of inert morphisms in X.

Definition 3.2.2.3. Let Dge be the categorical pattern

(NL*, Io, Mo, { (9*o)" -4 Lo}).

Lemma 3.2.2.4. A map (X, s) -4 (z, I)) is o"-fibred if and only if the underlying map
X -+ L* is a generalized <D-oo-operad and S is the set of inert morphisms in X.

Definition 3.2.2.5. Let <D be a perfect operator category. The categorical patterns Do and
OD" induce two model structures on (Set+)/g.,1). We call these the <-oo-operad model
structure and the generalized <b-oo-operad model structure, respectively.

Definition 3.2.2.6. The oo-categories Opdo and Opdo'n of <D-oo-operads and generalized
4-oo-operads are the co-categories associated to the simplicial model categories (Set )O,
and (Set,)gn, respectively. Since these model categories are enriched in marked simpli-

cial sets by Remark 2.1.12.10, they also define (oo, 2)-categories OPD and OPD '8g.

Remark 3.2.2.7. If M and N are generalized CD-oo-operads, then the oo-category Algo (N)

of M-algebras in N is the mapping oo-category in the (oo, 2)-category OPDO'ge.

Definition 3.2.2.8. Let <D be a perfect operator category. Define 9Jto to be the categorical
pattern (NZ o, (NZ*) 1, (NG*) 2, {K< - L*}).

Lemma 3.2.2.9. A map (X, S) -+ L*A' is 9D1t-fibred if and only if the underlying map
X -+ Zo is a <-monoidal oo-category and S is the set of coCartesian morphisms in X.

Definition 3.2.2.10. Let (D be a perfect operator category. Define 9Dgen to be the categorical

pattern (NZ*, (NL*) 1, (NL*) 2, {(9o/)< -+ L*})
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Lemma 3.2.2.11. A map (X, S) -+ 404 is 9 "-fibred if and only if the underlying map
X -4 £O is a 4)-multiple co-category and S is the set of coCartesian morphisms in X.

Definition 3.2.2.12. Let 4) be a perfect operator category. The categorical patterns Oo and
9X9' induce two model structures on (Set+ ) /,r4. We call these the 4-monoidal co-category
model structure and the <D-multiple co-category model structure, respectively.

Definition 3.2.2.13. The co-categories Mont and Multdof <D-monoidal co-categories and
<D-multiple co-categories, and strong monoidal functors, are the co-categories associated to
the simplicial model categories (Set+)9 ,, and (Setf),g,, respectively. Since these model
categories are enriched in marked simplicial sets by Remark 2.1.12.10, they also define

(o, 2)-categories MON*, and MULT4.

Definition 3.2.2.14. If M is a generalized <D-co-operad, we write Mon(" for the full sub-
category of CoCart(M) spanned by the M-monoidal co-categories, and MulteM for the full
subcategory spanned by the M-multiple co-categories.

Proposition 3.2.2.15. The identity is a right (marked simplicially enriched) Quillen functor
(Set)o, -4 (Set+),g and (Set')T.,t -4 (SetA )gen.

Proof. As [Lurl, Corollary 2.3.2.61. E

Corollary 3.2.2.16. The inclusions Opd4 -+ Opd~g" and Mono -+ Mult4 have left ad-
joints Opd*'en -+ Opd" and Mult( -4 Mont.

Remark 3.2.2.17. There are obvious maps of categorical patterns De - 9j and D" -+

Je?". These induce adjunctions
Opd4 ; Mon4,

Opd"gen - MultT.

Definition 3.2.2.18. We write Mon lax and Mult'l" for the full subcategories of Opd4
and Opd.'** spanned by the <D-monoidal co-categories and D-multiple co-categories, re-
spectively.

Definition 3.2.2.19. Let 4) and V be perfect operator categories, and let f: D -4 IF be an
operator morphism. Then f induces a map of categorical patterns D4 -+ Dy, and so an
adjunction

fi: Opd " -O pd y : f*.

Example 3.2.2.20. If D is a perfect operator category, the operator morphism u* induces a
functor u*: Opd4 -+ Opd.. We write U# for the symmetric co-operad u*L*.

Remark 3.2.2.21. An operator morphism does not in general induce functors between co-
categories of generalized co-operads.

Definition 3.2.2.22. Let 4D be a perfect operator category, and let A be a clean atom in 4).
Then the inclusion jA: 4 /A -4 ) induces a map of categorical patterns DOe" -+ D", and
so an adjunction

j : Opd * -4 Opd'jen *

Conjecture 3.2.2.23. The functor jA,* induced by a clean atom A in a perfect operator cat-
egory 4) also has a right adjoint j,: Opdi'D"': OpdD/A^en.
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Definition 3.2.2.24. By [Lurl, Proposition 6.3.1.14] the co-category PrL of presentable co-

categories and colimit-preserving functors has a symmetric monoidal structure (PrL)®
such that a colimit-preserving functor e 9 'D -+ F is equivalent to a functor e x 'D -+ E that
is colimit-preserving in each variable. If <D is a perfect operator category, we write Mon.Pr
for the oo-category Alg, (u*(PrL)®). We will refer to objects of Mon0Pr as presentably
CD-monoidal oo-categories. These are <D-monoidal oo-categories C0 -- G* such that C is a
presentable oo-category and the operations pi: xI ~ C# -+ C induced by active mor-

phisms 4: I - * preserve colimits in each variable. Morphisms in Mon mPr correspond to
strong monoidal functors F*: C® -4 'D such that F: C -+ 'D preserves colimits.

3.2.3 Trivial Generalized oo-Operads

Definition 3.2.3.1. Let M be a generalized <b-oo-operad. Define the generalized C-oo-

operad Miiv by the pullback diagram

mf TM M

I I
This is the trivial generalized <b-oo-operad over M.

Definition 3.2.3.2. Let D)' denote the categorical pattern

(NZ!D , (NZC> )1, (NCi))2,{(90 )< -+ Z!D1).

Remark 3.2.3.3. An object (X, S) of (Set+) / is thus D'V-fibrant if X -+ Z~ is a co-

Cartesian fibration, S is the set of coCartesian edges, and the Segal morphisms XI -4

lim(I-4 +A)e 94> XA are equivalences.

Under the equivalence between coCartesian fibrations and functors the co-category as-
sociated to the model category (SetZ)otiV therefore corresponds to the full subcategory of

Fun(L£t, Cat.) spanned by the functors that are right Kan extensions along the inclusion
(D: 9':' -+ Z T. Thus we have proved the following:

Lemma 3.2.3.4. The co-category associated to the model category (SetZ)Dtiv is equivalent

to Fun(9*, Cat(,).

The obvious map of categorical patterns DO -4 09* then induces an adjoint pair of
functors

7* : Fun (SD, Cat,,) ;I Opdo~'": 7'*

Since composition with the inclusion Z* -4 V' takes OD'-fibrant objects to D "-
fibrant objects, the left adjoint '* sends a functor 9' -4 Cato to its right Kan extension to

ZT -+ Cat., then to the composite E - Z* -+ £*, where E -+ *T is the associated co-
Cartesian fibration. In particular, if M is a generalized <D-co-operad, then Miriv is *4*,M,
and the natural map Mtriv -+ M is the adjunction morphism.

Taking the (oo, 2)-categories associated to the categorical patterns into account, we get
the following:
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Proposition 3.2.3.5. Let F: 9 -4 Cato be a functor, and let T -4 9"' be the associated
coCartesian fibration. If M is a generalized <D-oo-operad let Mgob denote the pullback

of M along S* -+ Z*. Then there is a natural equivalence between Alg(D.F(M) and the

full subcategory Fun t(T, Mglob) of Fung. (T, Mglob) spanned by functors that preserve
coCartesian arrows. In particular, if 00 is a (D-oo-operad, then

Alg .F>F(0*) ~ Fun (F (*), 0).

Corollary 3.2.3.6. Let F: 9S' -+ Cat,, be a functor, and let T -4 94* be the associated co-
Cartesian fibration. Given a morphism of generalized <D-oo-operads M -+ N there is a
natural equivalence between Alg ./N(M) and the full subcategory Funcy (:,Mgiob) of

FunN gob (,T, Mglob) spanned by functors that preserve coCartesian arrows. In particular, if

0@ -+ 'P is a morphism of (D-oo-operads, then

Algv F/ (* Funp (F() .

Proof. Apply Proposition 3.2.3.5 to identify the fibre in the pullback square

Alg F/CD (M) > Alg OF(M

7!1* - Alg (N).

3.2.4 Monoids and Category Objects

Definition 3.2.4.1. Let (D be a perfect operator category. Suppose M is a small generalized
<D-oo-operad and e an co-category with small limits. An M-monoid object in e is a functor
F: M -+ C such that its restriction FI mu is a right Kan extension of FIM. along the inclusion
M, -+ Mriv. Write Mnd4(C) for the full subcategory of Fun(M, C) spanned by the M-
monoid objects. When M is L*' we refer to L*-monoids as just (D-monoids and write
Mnd'(e) for Mnd*.(C).

Definition 3.2.4.2. Let (D be a perfect operator category. Suppose M is a small generalized
(D-oo-operad and C is an co-category with small limits. An M-category object in e is a functor
F: M -+ C such that its restriction Flm,, is a right Kan extension of Flm,,, along the

inclusion Mgob '-+ Mti,. Write CatD (C) for the full subcategory of Fun(M, C) spanned by
the M-category objects. When M is Z4" we refer to Z4*-category objects as just (D-category
objects and write Cat*'(C) for Cat. (C).

Definition 3.2.4.3. Let <D be a perfect operator category. A Segal CD-space is a CD-category

object in the oo-category 8 of spaces. We write Sego for the co-category Cat.(S) of Segal
(P-spaces.

Example 3.2.4.4. Segal 0(n)-spaces are precisely On-spaces as defined in §2.2.3.
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Proposition 3.2.4.5. Suppose C is an oo-category with small limits, and denote the pullback
of the Cartesian symmetric monoidal structure on e to a <D-monoidal structure by C '
L'. Then for any generalized <D-co-operad M we have Algo (Cx) ~ Mnd"(C).

Proof. As [Lur11, Proposition 2.4.2.5]. 0

Proposition 3.2.4.6. Let M be a (D-multiple co-category. We have equivalences Mon.' ~
Mnd"(Cato) and Mult,'M ~ Catm(Cat.).

Proof. We can identify Mono' with the full subcategory of the oo-category of coCartesian
fibrations over M spanned by the M-monoidal oo-categories. Under the equivalence be-
tween coCartesian fibrations over M and functors M -+ Cat, these correspond precisely
to those functors satisfying the condition for a monoid object. Similarly, the double co-

categories correspond to the category objects. E

Proposition 3.2.4.7. Let (D be a perfect operator category and suppose M is a generalized

(P-oo-operad. Pullback along M -4 uM gives an equivalence Mon4M Moni" . In

particular, we have an equivalence Mont ~ Mona .

Proof. Using Proposition 3.2.4.6 we have a sequence of equivalences

Mon4 , ~ Mndo (Cato) ~Alg4' (Cat,,) ~Alg F Ca

MndUyM(Cato) ~ Mono'

3.2.5 Filtered Colimits of oo-Operads

Colimits of (generalized) 0--oo-operads are in general difficult to describe explicitly. How-
ever, we will now show that filtered colimits can be computed in CatO:

Lemma 3.2.5.1. Let q be a diagram in Opd4 or Opd)o*", and let Q be a colimit of q com-
posed with the forgetful functor to Cat,; there is a canonical map Q -+ *. If Q -+ L*" is a
(generalized) <D-oo-operad, then this is the colimit of q.

Proof. By Example 2.1.12.15, the object Q -+ L* is the colimit of the diagram obtained
by composing q with the inclusion to CoCart(L*4,V"). But by Remark 2.1.12.11 the oo-

categories OpdZ and Opd*'" are localizations of CoCart(L', L' ), so the colimit of q
is obtained by localizing the colimit in CoCart(Z4>, L£D). Thus if this colimit is already
a (generalized) <D-oo-operad, it is also the colimit in the full subcategory of (generalized)
0--oo-operads. E

Lemma 3.2.5.2. The forgetful functors Opdo, Opd*.'*" -4 Cato preserve filtered colimits.

Proof. Let p be a filtered diagram in Opdo or OpdDe*, and let T be a colimit of the di-
agram obtained by composing p with the forgetful functor to Cat.. By Lemma 3.2.5.1 to
prove that T 4 LO is the colimit of the diagram p it suffices to show that T -+ LO is a
(generalized) (D-oo-operad.

In other words, we must show that Y, considered as an object of CoCart(L*, VD ), is
local with respect to the generating T-anodyne maps, where T is the categorical pattern
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D or O ". Compact objects in CoCart(L*,C £) are detected in Cato (since the right
adjoint to the forgetful functor, which sends an oo-category C to e x L -+ Z'*, clearly
preserves colimits). It is therefore clear from Definition 2.1.12.6 that for each generating q3-
anodyne map f: A -+ B both A and B are compact objects in CoCart(L*C, L ). It follows
that in the commutative diagram

Map(B,' ) > colim, Map(B, p(t))

I I
Map (A,'P) > colim, Map(A, p(a))

the horizontal maps are equivalences, since p is a filtered diagram. The right vertical map
is also an equivalence, since p(a) is a (generalized) <D-oo-operad for all a. Thus the left
vertical morphism must also be an equivalence, and so P is local with respect to f. In other
words, ' is a (generalized) <-oo-operad, as required. 0

3.2.6 Wreath Products

Definition 3.2.6.1. Suppose 4 and V are perfect operator categories. Let W: L£ x L* 4
L£Y" be the functor that sends (1, 1) to I((J)i;I) and a morphism (V: J -4+ J', p: I -4 I')
to the morphism I((J)ieI1i) --+ I'((J');Ei) corresponding to the morphism I((J);eii)+
T(I'((J');eII,)) = TI'((Ki)) (where Ki = TJ' if i E | I'l |TI'| and * otherwise) determined
by i: I -4 ' and Ji -4 Kpi) being either ip or the unique morphism to *, according to
whether (p(i) E |I'| or not.

Definition 3.2.6.2. Suppose <D and Y are perfect operator categories, and suppose X E
(Set+)o, and Y E (Set+)o,. Then we define Y I X E (SetA)o,, to be the product Y x X,

regarded as a marked simplicial set over V'y via

Y X X -+ Ly X VD -' L'Y.

Theorem 3.2.6.3 (Barwick, [Bar13, Theorem 9.6]). The functor

2: (Set+)o, x (Set+)o, -+ (Set+)o,

is a left Quillen functor in each variable.

Remark 3.2.6.4. Theorem 3.2.6.3 is proved by applying [Lurl, Proposition B.2.9], since
W gives a morphism of categorical patterns Oy x Dej -+ Oy?. This is not the case if we
consider generalized oo-operads however, and so this result does not obviously generalize
to this setting.

Consequently, I induces a functor of oo-categories

2: Opdy x Opd* -+ Opd ,

with right adjoints
Algy' y: (Opdy)OP x OpdT -+ Opd,
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Alg*'T : (Opd*)OP x OpdT -4 Opd

with respect to the two variables. In other words, if 0* is a G-oo-operad, 'PO is a YF-oo-
operad, and Q® is a Y Z 4-oo-operad, then we have canonical equivalences

Alg y" (O) ~ Algoe (Alg (yyo*))

AlgTOZOO(Q00) ~ Alg'y (Algo Y(0 )).

Lemma 3.2.6.5. The underlying oo-category of the Y-oo-operad Alg'F (Q0*) can be iden-

tified with Algo® (i* Q*), and the underlying oo-category of the c-oo-operad Alg""(Q*)

with Alg',F(j,**).

Proof. Considering * = 40 Z '* as an object of (Set')o. (whose fibrant replacement is
given by Z ) we see that

* 90 =i 0*

as functors (Set+)oe -4 (Set+)o. If C is the underlying oo-category of Alg o""o (Q*), we
thus have equivalences

-~ Alg T(Algo"(Q*)) ~ Alg (Q*) ~ Ag (QO) - Algo (i<*o ).

Similarly 'P* 2 * = jy,'P*, which gives the underlying co-category of Algy"T(Q*) in the
same way. 0

Theorem 3.2.6.3 thus gives a "universal property" for the wreath product of co-operads.

Proposition 3.2.6.6 (Barwick, [Bar13, Proposition 9.3]). Suppose F: V' -+ 0 and G: ' -+
V are operator morphisms, (0 is a V'-oo-operad and 'P* is a 'V-oo-operad. There is a
natural equivalence

(G Z F)!(O* I'P*) ~_ Gi~o I Fi'P.

Definition 3.2.6.7. If 00 and 'P* are F-oo-operads, we write 00 0 O for ul TF'o.

This is the Boardman-Vogt tensor product of F-oo-operads; it is proved in [Lur11, §2.2.5]
that this extends to a symmetric monoidal structure on Opd.

Corollary 3.2.6.8. Suppose <b and Y are perfect operator categories. Then we have a natu-
ral equivalence UO, ~ U 0 U.

Proof. By definition U4 0 U ~ uF(U2 U4). Now Proposition 3.2.6.6 gives an equiva-
lence

Corollary 3.2.6.9 (Barwick, [Bar13, Proposition 11.5]). There are equivalences U0  ~ E*

Proof. Combining [Lurl1, Proposition 4.1.2.10] and [Lurl1, Example 5.1.0.7] gives an equiv-
alence UO ~ E*. Now Corollary 3.2.6.8 and [Lurl1, Theorem 5.1.2.2] give equivalences

U ~)(Uo) "n (EO*)*~ EO .
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Definition 3.2.6.10. An operator morphism f: < -* If between perfect operator categories
is etale if the induced functor

fi: Opdo -+ (OpdY)/f,.

is an equivalence. We say a perfect operator category <D is etale if the unique operator
morphism u*D: 4 -+ F is 6tale, i.e. induces an equivalence Opd" ~+ (Opd")/g.

Theorem 3.2.6.11 (Lurie). 0 is an dtale operator category.

Proof. Combine [Lurl, Proposition 4.1.2.10] and [Lur1l, Theorem 6.1.1.10]. L

Conjecture 3.2.6.12. The operator categories O(n) are etale for all n.

In other words, the co-category Opdo ") of 0(n)-o-operads should be equivalent to
the co-category (OpdO)/EG of symmetric co-operads over E@. This may well follow from
the results of [Lurl1, §5.1.21, or variants thereof, but we will not consider this further here.

3.2.7 Colimits of Algebras

Ideally we would like to prove that colimits of algebras exist by generalizing Lurie's theory
of operadic colimits and operadic Kan extensions from symmetric co-operads to general
co-operads, but unfortunately it is not obvious how to carry out such a generalization. In
the next section we will summarize the construction for non-symmetric co-operads, where
trivial variants of Lurie's proofs work. Here, we restrict ourselves to what we can deduce
from Lurie's results using adjunctions.

We first consider the symmetric case, i.e. the existence of colimits in the co-category
Alg . /0 (CO) where e@ is an 0(0-monoidal co-category and OP is a symmetric co-operad
over the symmetric co-operad 0@. For this we need slight generalizations of the results of
[Lurl, §3.2.3]. We first consider the case of sifted colimits:

Lemma 3.2.7.1 ([Lurl, Lemma 3.2.3.7]). Suppose K is a sifted simplicial set and C® -+ 0@
is an 00-monoidal co-category that is compatible with K-indexed colimits. Then for every
morphism p: X -+ Y in 0@ the associated functor tp4: CO -4 e@ preserves K-indexed
colimits.

Proposition 3.2.7.2. Suppose K is a sifted simplicial set and C® -+ 00 is an 00-monoidal
co-category that is compatible with K-indexed colimits. Then for any morphism p: M -+

0* of generalized symmetric co-operads, we have:

(i) The co-category Fun0 e (M, CO) admits K-indexed colimits.

(ii) A map K> -4 Fun0 ® (M, e®) is a colimit diagram if and only if for every X E M the
induced diagram K -+ C® is a colimit diagram.

(iii) The full subcategory AlgM 0 0 (C®) of Fun0 e (M, C®) is stable under K-indexed colim-
its.

(iv) A map K -4 Funo® (M, CO) is a colimit diagram if and only if, for every X E 0) and

Y E Mx, the induced diagram K -+ ell is a colimit diagram.
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(v) The restriction functor Alg 1 00e (el) -+ Funo (M (1), ) detects K-indexed colim-

its.

Proof. Sifted simplicial sets are weakly contractible by [Lur09a, Proposition 5.5.8.7] so (i)-

(iii) follow from Theorem 2.1.13.1 (which is implicit in the proof of [Lurl, Proposition

3.2.3.1]). Then (iv) and (v) follow as in the proof [Lurl1, Proposition 3.2.3.1]. O

Lemma 3.2.7.3. Suppose C* is an 00-monoidal oo-category and p: M -+ 00 is a morphism
of generalized symmetric oo-operads. Then the forgetful functor

T%*: Alg /0. (CO) -+ Algi,/ 0 ('0) ~ Fun0 @(M,( ,C)

is conservative.

Proof. The o-category Alge 0 0 (C@) is a full subcategory of Fun0 o (M, C). Therefore a

map of algebras f : A -+ B is an equivalence in Algm/ 0 0 (CO) if and only if it is an equiva-

lence in Funoe (M, CO). Applying Proposition 3.2.7.2 to AO-indexed colimits, we see that a

morphism f: A - B in Fun0 e (M, CO) is an equivalence if and only if fx: A (X) -+ B(X)

is an equivalence in C@ for all X E M. Thus equivalences are detected after restricting to

Mriv.

Corollary 3.2.7.4. Suppose C@ is an 0@-monoidal co-category compatible with small col-

imits, and 'P -+ 0* is a morphism of symmetric co-operads. Then the adjunction

Te,I: AlgF (C0 ) ; AlgF

is monadic.

Proof. We showed that the functor T;® is conservative in Lemma 3.2.7.3, and that it pre-

serves sifted colimits in Proposition 3.2.7.2. The adjunction Try - T® is therefore monadic
by Theorem 2.1.9.5. E

Corollary 3.2.7.5. Suppose e@ is an 0(-monoidal co-category compatible with small col-
imits and 'PO -+ 00 is a morphism of symmetric co-operads. Then Algpo/.o (C®) has all

small colimits. Moreover, if C is presentable, so is Alg F

Proof. Apply Lemma 2.1.9.6 and Proposition 2.1.9.7 to the monadic adjunction Tye,! - T;.

O

Corollary 3.2.7.6. Let <D be a perfect operator category, and suppose C® is a U,-monoidal

co-category compatible with small colimits. If M is a generalized <-oo-operad, then the

co-category Alg,(u 4),* C®) has small colimits. Moreover, if C is presentable, then so is

Alg* (uJ* C).

Proof. Let M denote the image of M under the left adjoint of the inclusion Opd, '-+

Opd*,en. Then the result follows from Corollary 3.2.7.5 since we have an equivalence

Algza( un*o Alg /U (CO),

where L denotes the localization functor Opd,' -+ Opd*,.
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Of course, since we in general have no way of accessing u*M, this does not give us
any description of the colimits in Alg"y(u)* C). Although every 0-monoidal oo-category
is of the form u,*-C for some UO-monoidal oo-category C by Proposition 3.2.4.7, it is also
unsatisfying that we need a hypothesis on C that we do not know how to express in terms
of u*,*C.

3.2.8 The Algebra Fibration

We now construct an oo-category of algebras for all <-oo-operads in a given 0-monoidal oo-
category, and then consider its properties as we vary this <D-monoidal oo-category. Since
we do not have a theory of operadic colimits for <D-oo-operads, for most of our results
we are forced to only consider 5-monoidal oo-categories that are pulled back from U0-
monoidal oo-categories compatible with small colimits.

Definition 3.2.8.1. Let 0@ be a CD-oo-operad. By Remark 2.1.12.10 (Set+)oDe is a marked
simplicial model category, so we have a functor

(Set,)*P -4 Set+

represented by 0@. This restricts to a functor between the fibrant objects in these marked
simplicial model categories; forgetting from the marked simplicial enrichment down to
enrichment in simplicial sets (by forgetting the unmarked 1-simplices) and taking nerves
we get a functor

(Opd*)*P -+ Cato;
this sends a non-symmetric oo-operad 'P@ to Alg*D (0@). We define

Alg'*(0@) -+ Opd,

to be a Cartesian fibration corresponding to this functor. If V® is a UO-monoidal oo-
category we will abbreviate Alg* (uo,* V*) to Algo (V*).

Remark 3.2.8.2. Similarly, if 00 is a <-co-operad and 'PO is a <D-oo-operad over 00, we can
define a relative algebra fibration Alg 0 .('P) -+ (Opd*,)/oe whose fibre at QO -+ 00 is
Alge'®100 ('P@).

Moreover, if p: M -+ Z4> is a generalized <-oo-operad and N is a eneralized CD-oo-

operad over M we can define Alg/ (N) -+ (Opd*, ')/M with fibre Alg,/,(N) over 0 -4

M. If 0@ is a <D-oo-operad we abbreviate AlgD(p*00) to Alg1)(0@).

Definition 3.2.8.3. For 0(@ a CD-oo-operad, let

Al g'*(00) -+ Opd,

be the pullback of Alg4(00) along the functor *'* from Opd*, to itself that sends 'P3
to 'P . The natural maps Tro: 'O -+ 'PO then induce a functor

T*: Alg(D(0#®) -4 Alg (0*).

Remark 3.2.8.4. Similarly, if ' 4 0@ is a morphism of <D-oo-operads, we can define

Alg ,triv(00) as the pullback of Alg'%e (00) -+ (Opd*)/o along the functor that sends
0@ -4 00 to Q0 - 00.
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Lemma 3.2.8.5. Suppose V® is a U1-monoidal oo-category compatible with small colimits.

Then the projection Algo (V®) -+ Opd* is both Cartesian and coCartesian.

Proof. By [LurO9a, Corollary 5.2.2.5] it suffices to prove that for each f: 0* -+ 'Po in

Opd*D the map f*: Algo (V®) -+ Algo0 (V®) has a left adjoint. This follows from [Lur1l,
Corollary 3.1.3.4] after passing to the equivalent oo-categories of relative algebras for F-co-
operads. 0

Lemma 3.2.8.6. Suppose V® is a U*-monoidal oo-category compatible with small colimits.
Then the functor T* has a left adjoint

-z ,: Algtriv( O) -+ Alg"(V )

relative to Opd*,.

Proof. By [Lur1l, Proposition 8.3.2.6] it suffices to prove that T* admits fibrewise left ad-
joints, which follows from [Lurl, Corollary 3.1.3.41 after passing to the equivalent oo-
categories of relative algebras for F-oo-operads, and that r* preserves Cartesian arrows,
which is clear since it is the functor associated to a natural transformation between the

corresponding functors to Cat.. E

Lemma 3.2.8.7. The functor Alg*)(V®): (Opd*D)OP -+ Cat, takes colimits in Opd*, to
limits.

Proof. For any categorical pattern T, the product

SeA (Set,+)q -+ (Set,+)V

is a left Quillen bifunctor by [Lurl, Remark B.2.5]. Thus the induced functor of oo-
categories preserves colimits in each variable. In particular, the tensor functor

Cat, x OpdD -+ Opd*

preserves colimits in each variable. Now Alg_) (-) is defined as a right adjoint to this, so
for any oo-category C we have

Mapcat (C, Alg ('P®)) ~ Mapod.(C x colim ,*, T*®)

~ Mapoa.(colim(C x 0 *)IP )

~lirm Mapo , (C x 0,P*)

C*~lim Mapcat,,(e, Alg*o' ('P*))

~Mapcat .(C, ham Alg'D ('P*)).

Thus Algcolimo ('P*) ~ lime AlgD ('PO).

Proposition 3.2.8.8. Suppose V® is a U*-monoidal oo-category compatible with small col-

imits. Then Alg*(VO) admits small colimits.
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Proof. By Lemma 3.2.8.5, the fibration n: Alg' (V*) -+ Opd*, is coCartesian. Moreover, its
fibres have all colimits and the functors f! induced by morphisms f in Opd*, preserve col-
imits, being left adjoints. Thus 7 satisfies the conditions of Lemma 2.1.5.10, which implies
that Algo(V*) has small colimits. 0

Proposition 3.2.8.9. Let 'P be a F-oo-operad and suppose V* is a 'PO-monoidal co-category
compatible with small colimits. Then the forgetful functor

*: Alg F (V*) -+ AlgF ITOITOtr(V*)

preserves filtered colimits.

Proof. Suppose 0: 3 -* Alg , (V*) is a filtered diagram, sending e E 3 to

(0*, A.z: 0"* -4 V*).

Let 0@ be the colimit of the non-symmetric co-o erads 0* and write fft: 0,* -+ 0* for the
canonical maps. Then the colimit A of p in Alg/,® (V®) can be described as the colimit of

fft,!A, in Algi ITO (V®). Since Te preserves sifted colimits, we have

T* A ~- colim Te (f)A,

On the other hand, colim r*A, can be described as

colim ftrvT* A.,

where fv denotes the map 0,*, -4 0 induced by f.
To show that the natural map colim r*A, -+ r*A is an equivalence, it suffices to show

that for each x E 0 the map

colimf vAc,(x) -+ colimfc,,A,:(x)

is an equivalence, where the colimits are now occurring in V. The functor ftI!v is just a left
Kan extension, so the source of this map can be described as

colim colim A,(y)
aEJ yE(Oa)1x

and from [Lur1l, Proposition 3.1.1.16] and the definition of free algebras in terms of op-
eradic Kan extensions we know that the target can be described as

colim colim AO (Y)
aEg YE(04)ac

where we write AO*(Y) for the coCartesian pushforward of A,(Y) in VO along the given
active map in 'P*.

We have functors 3 -+ Cat. sending a to (0,)/x and (0,)o , with natural transforma-
tions to the constant functor at V. Let J, X - 3 denote coCartesian fibrations associated
to these functors, then by Proposition 2.1.13.2 the map we are interested in is the map on

colimits induced by the obvious functor a - X. It therefore suffices to prove that this
functor is cofinal.
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By [Lur09a, Theorem 4.1.3.1] ("Quillen's Theorem A" for oo-categories) it suffices to
show that for each Y E X, the oo-category gy/ is weakly contractible. We will show that this
co-category is in fact filtered. To see this we must prove that given a diagram p: K -+ dy / ,
where K is a finite simplicial set, there exists an extension p: K' -+ gy/ of p.

Since 3 is filtered, the composite K -+ /,, extends to K' -+ 3a/; let p be the image of the
cone point oo. Choosing a coCartesian lift along the maps to p, we may therefore suppose
that p factors through p': K -+ ((0*)act)g(y)//x where g: ct -+ P. On the other hand, the

composite K -+ Jy/ -+ ((00)act)fjY//x corresponds to a diagram K* -4 0a . Since filtered
colimits of symmetric co-operads are computed in Cat, by Lemma 3.2.5.2, this map factors
through 00*ad for some y, giving a map K -+ ((00)act)y'//x'. Since this oo-category has a

final object, there is an obvious extension q: K' -+ (0,act)y'//x. Now observe that there
must exist some 6 with maps -y -4 , p -4 6 such that the pushforwards of qIK and p' agree.
Then the pushforward of q induces the desired extension K' -+ gy/. [

Corollary 3.2.8.10. Suppose V® is a U-monoidal oo-category compatible with small col-

imits. Then the forgetful functor T*: Alg*(V*) -4 Alg4, (V®) preserves filtered colimits.

Proof. We can identify Algo (V@) with the pullback of AlgF & (V®) along u*: Opdo -+

(OpdF)1 g®, and similarly Alg *.>(V*) is the pullback of Algu g,triv(VO). Since u* is colimit-

preserving, it is easy to see that this follows from Proposition 3.2.8.9. 0

Next we observe that the oo-category Alg4(00) is functorial in 00:

Definition 3.2.8.11. Since the model category (SetA)o, is enriched in marked simplicial
sets, the enriched Yoneda functor

,: (Set+)*eP x (Set')o, -4 SetA'

sending (0@, 'P) to Alg' (P@) induces a functor of oo-categories (Opd4)OP x Opd4 -4
Cat.. Let AlgD -4 Opd4 x (Opdo)OP be a Cartesian fibration corresponding to this func-
tor.

The fibre of Algq> at 0@ in the second component is Algo(O@). Thus the composite

Alg' -4 (Opd,)P with projection to the second factor is a Cartesian fibration correspond-
ing to a functor Opd, -+ Cat, that sends 00 to Alg*>(00). Thus we see that Alg*"(0@) is
functorial in 00.

Definition 3.2.8.12. Let Alg* -+ Opd2 be a coCartesian fibration corresponding to the
functor 0@ -+ Alg*(0@).

Now we show that the algebra fibration is compatible with products of <-o-operads:

Proposition 3.2.8.13. Alg4(-) is lax monoidal with respect to the Cartesian product of
non-symmetric co-operads.

Proof. Observe that 5 is lax monoidal with res ect to the Cartesian product of marked
simplicial sets over L*. This induces an ((Opd.)OP x Opd) x-monoid in Cato, and so a

Cartesian fibration (Algce) x- (((Opdo)oP x Opd4)x )OP. Projecting to the second factor

gives a Cartesian fibration that corresponds to a monoid (Opd) x -+ Cato, and so a lax

monoidal functor (Opd4) X-+ Cat x. This shows that Alg"(-) is a lax monoidal functor.
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This construction gives an "external product"

M: Algo(00) x Alg(P®) -+ Algo(O* xCe 'P@),

which sends an A@-algebra A in 00 and a 'B-algebra B in 'P to the fibre product

A@ xxB ) > X x TO.

When V is Cartesian monoidal, we can equivalently work with the analogous monoid

fibration:

Definition 3.2.8.14. Suppose V is an co-category with finite products. Let Mono(V) -+

Opdo be the Cartesian fibration with fibre Mono (V) at 00 E Opdo. This is equivalent to
Alg*(V x) over Opdo.

Proposition 3.2.8.15. Suppose V is an co-category with finite products. Then the natural
symmetric monoidal structure on Alg'(Vx) is Cartesian.

Proof. By [Lurl 1, Corollary 2.4.1.8] it suffices to prove that the unit for this monoidal struc-
ture is the final object, and for each pair of objects A, B the canonical maps

A ~ A 9 * <- A 9 B -+ *9 B ~ B

exhibit A 9 B as a product of A and B. The equivalence Alg*(Vx) ~+ Mon*(V) takes the
lax monoidal structure on Alg*(-) to the natural lax monoidal structure on Mon (-). Sup-
pose given <D-o-operads 00, 'PO, and QO and monoids A E Mono® (V), B E Mon*o (V),
and C E Mont® (V). If y: V x V -+ V is the Cartesian product functor, the natural
transformation from y to the projections on the two factors of V x V induce morphisms
B 0 C -+ B, C. We must prove that the induced map

Map(A, B Z C) -+ Map(A, B) x Map(A, C)

is an equivalence. It suffices to show that it induces an equivalence on fibres over each
(f,g) E Map(00,'PO xo Q) ~ Map(00,'PO) x Map(00, Q0), i.e. we must show

Map(A,(f,g)*(B Z C) -+ Map(A,f*B) x Map(A,f*C)

is an equivalence. It is clear that (fg)*(B 0 C) ~ A* (f*B Z g*C), where A: 00 -+ 00 x,4
0@ is the diagonal map. It follows that the map in question is an equivalence, since maps
of 00-monoids are just natural transformations, and A* (f* B Z g*C) is the product of the
functors f*B and g*C: 0@ - V.

3.3 Non-Symmetric oo-Operads

In this section we discuss versions of some results from [Lur1l] for non-symmetric co-

operads that we do not know how to extend to more general co-operads. We then use
these to say a bit more about algebra fibrations in this context.
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3.3.1 Monoidal Envelopes

Definition 3.3.1.1. Let Act(A*P) be the full subcategory of Fun(Al, AP) spanned by the
active morphisms. If M is a generalized non-symmetric oo-operad, we define Env(M) to
be the fibre product

M xFun({0},AoP) Act(a*P).

Proposition 3.3.1.2. The map Env(M) -+ LIP induced by evaluation at 1 in A' is a double
o-category.

Proof. As [Lur11, Proposition 2.2.4.4]. E

Proposition 3.3.1.3. Suppose M is a generalized non-symmetric oo-operad and N is a dou-
ble oo-category. The inclusion M -+ Env(M) induces an equivalence

Fun*(Env(M),N) -+ AlgO (N).

Proof. As [Lur11, Proposition 2.2.4.9].

Corollary 3.3.1.4. Suppose 00 is a non-symmetric co-operad. Then Env(00) is a monoidal
oo-category, and if e@ is a monoidal oo-category then

Fun#(Env(0*),C*) ~ Algoo(C#).

Proof. The only object of A that admits an active map from [01 is [0], hence for any general-
ized non-symmetric co-operad M we have Env(M) [0] ~ M[o]. In particular Env(0@9) [0] *,
so the result follows from Proposition 3.3.1.2 and Proposition 3.3.1.3. E

Definition 3.3.1.5. If 0* is a non-symmetric co-operad, the monoidal oo-category Env(00)
is the monoidal envelope of 0@. This gives a monoidal structure on the subcategory 0at of
0@ determined by the active morphisms. We denote this tensor product on (aC by E.

3.3.2 Operadic Colimits

Definition 3.3.2.1. Suppose q: 0* -+ A*P is a non-symmetric oo-operad. Given a diagram
p: K -400 Gawe write Oact := 0 x o (0aC)p/. A diagram p: K> -+ 0at is a weak operadic

colimit diagram if the induced map Oact -+ 0a is a categorical equivalence

A diagram p: K' -4 't is an operadic colimit diagram if the composite functors

K>~ act act

are weak operadic colimit diagrams for all X E 00.

Remark 3.3.2.2. By [Lur09a, Proposition 2.1.2.11, the map Oact -+ Oact in the definition of
weak operadic colimits is always a left fibration, hence it is a categorical equivalence if and
only if it is a trivial Kan fibration.
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Proposition 3.3.2.3. Let 00 be a non-symmetric co-operad, and suppose given finitely
many operadic colimit diagrams Pi: Ki - (9ac, i = 0,..., n. Let K = HiKi, and let p
be the composite

K' -+ JJK ' 0 ~ Env(0* ) n] -*-
i i

Then p is an operadic colimit diagram.

Proof. As [Lur11, Proposition 3.1.1.8].

Definition 3.3.2.4. Suppose V® -+ AOP is a monoidal co-category. If K is a simplicial set,
we say that V@ is compatible with K-indexed colimits if

(1) the oo-category V] has K-indexed colimits (hence so does V ~ VO, and 0! pre-
serves them for any inert map 4)

(2) for all (active) maps 4: [n] -+ [m] in AVP, the map

[1: HV] n] [in]

preserves K-indexed colimits separately in each variable

Lemma 3.3.2.5. Suppose K is a sifted simplicial set, and V® -4 AOP is a monoidal oo-
category that is compatible with K-indexed colimits. Then 4!: V -+ V preserves K-
indexed colimits for all 4 in ALP.

Proof. As [Lur11, Lemma 3.2.3.71.

Proposition 3.3.2.6. Let V® be a monoidal oo-category, and let p: K> -4 V® be a diagram.
Then p is a weak operadic colimit diagram if and only if the composite

K -+ V(" 1- V[in

is a colimit diagram, where r is the unique active map [m] -+ [1].

Proof. This follows as in the proof of [Lurl1, Proposition 3.1.1.6].

Corollary 3.3.2.7. Let V® be a monoidal oo-category, and let p: K' -+ V(2 be a diagram.

Then p is an operadic colimit diagram if and only if for every object Y E V® with image
[n] in aOP the composites

K -4 W V 4 e
[m] [n+m|

are colimit diagrams in V, where r is the unique active map [n + m] -+ [1].

Proposition 3.3.2.8. Let q: 00 -+ aOP be a non-symmetric co-operad, and suppose given
a map h: Al x K' -4 (9a; writehi := hIli} xK, i = 0, 1. Suppose that

(a) For every vertex x of K', the restriction h I ix x} is a q-coCartesian edge of 0@.
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(b) The composite map

A' x {oo} -+ A' x K 4 0 -4 A*P

is an equivalence in A*P.

Then ho is a weak operadic colimit diagram if and only if h1 is a weak operadic colimit

diagram. Moreover, if 00 is a monoidal co-category, then ho is an operadic colimit diagram

if and only if h1 is an operadic colimit diagram.

Proof. As [Lurl, Proposition 3.1.1.15]

Corollary 3.3.2.9. Let C® and DO be monoidal oo-categories compatible with small colim-

its, and suppose FO: CO -+ 'D is a strong monoidal functor such that F: e -+ 'D preserves

colimits. Then composition with F preserves operadic colimit diagrams.

Proof. Suppose p: K' -4 e is an operadic colimit diagram. We wish to show that the

composite map K' -4 'D@ is also an operadic colimit diagram. By Proposition 3.3.2.8 we

may assume that p lands in a fibre C® We now apply Corollary 3.3.2.7 to conclude that it[II
suffices to show that the composites

K -+ CO -4'1D" 4® -D
[in] [in] [n+in]

K>4CO -4 D® 4eD -'D
In] I] [n+in]

are colimit diagrams. Observe that the functors ro (- e Y) and ro (Y e -) are equivalently

given by m (r,(-) e Y) and m,(Y e r,(-)), where m: [2] -* [1] is the unique active map.

Since m! preserves colimits in each variable in both C® and 'DO, it suffices to show that

is a colimit diagram. But we have a commutative diagram

F*

F

so this is true since K> -4 CO -4 C is a colimit diagram and F preserves colimits. O
[in]

Proposition 3.3.2.10. Let q: CO -4 Z*P be a monoidal oo-category compatible with K-

indexed colimits for some simplicial set K. Suppose given a diagram p: K' -+ COd that

sends the cone point oo to an object in e . Let q: K' -+ C® be a coCartesian lift of p along

the active maps to [1]. Then p is an operadic colimit diagram if and only if q is a colimit

diagram. In particular, given a diagram p: K' -+ C® there exists an operadic colimit

diagram p: K -+ Ct extending p that sends oo to an object of C®.

Proof. As [Lur1l, Proposition 3.1.1.20]. El
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3.3.3 Operadic Kan Extensions

In this section we work in slightly more generality than for the corresponding results in
[Lur 11 - the proof of Lurie's existence result for operadic Kan extensions can also be used
to construct operadic Kan extensions along a restricted class of morphisms of generalized
non-symmetric oo-operads that we will now define:

Definition 3.3.3.1. Let C be an oo-category. A C-family of (generalized) non-symmetric co-
operads is a categorical fibration r: (90 - 4AP x C such that:

(i) For c E C, x E 00, and a an inert morphism in A*P from the image of x, there exists a
coCartesian morphism x - y over a in Oc.

(ii) For x E 0c0 with image [n] E AP let px: K' -4 6 be a coCartesian lift of K -4 A*P

(or consider a lift of 9 -4 AP for a generalized non-symmetric oo-operad). Then[nil
px is a 7-limit diagram.

(iii) For each c E C, the induced map 0c0 4 AP is a (generalized) non-symmetric co-
operad.

A Al-family will also be referred to as a correspondence of (generalized) non-symmetric co-
operads.

Definition 3.3.3.2. A A'-family of generalized non-symmetric co-operads M -+ WP x A'
has the Kan extension property if given B E M x Ai {1 } and coCartesian morphisms B -4 Bi
over the inert maps [n] -+ [1], the induced map (Mat XAi {0})/B -4 R(Mact XA1 {0})/IB
is a categorical equivalence.

Lemma 3.3.3.3.

(i) Every A' -family of non-symmetric oo-operads has the Kan extension property.

(ii) Suppose F: A -4 3 is a morphism of generalized non-symmetric co-operads such
that A[o] is a Kan complex and roA[] - 7ro3[0] is an injection. Then the associated

correspondence M - A*P x A1 has the Kan extension property.

Proof. (i) is clear, so we suppose the hypothesis of (ii) holds. Given B E 3[n] choose co-
Cartesian maps B -+ Bi and B -+ Bi(i+ 1) along the inert maps [n] -+ [1] and [n] -+ [0].
These induce an equivalence

(Aact)/B ~ (Aact)/Boi X(Act)i. x(Aac)Bn._ (Aact)/B(_1),-

But the only active map to [0] is the identity, so (Aact)/x is (A[01)/x for X E 3[]0. This is
contractible if A [01 is a Kan complex and there's only one component that hits X. O

Definition 3.3.3.4. Let M -+ A*P x Al be a correspondence of generalized non-symmetric
oo-operads from A to 3 satisfying the Kan extension property, let 00 be a non-symmetric
oo-operad, and let F: M -4 0 be a map of generalized non-symmetric oo-operads. The
map F is an operadic left Kan extension of F = FIA if for every B E 3 1 the composite map

((Mact)/B xM A)f -+ (M/B) -+ M 4 0

is an operadic colimit diagram.
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Theorem 3.3.3.5.

(i) Suppose given a A'-family of generalized non-symmetric oo-operads M -+ AOP x Al
satisfying the Kan extension property, a non-symmetric oo-operad 00 and a commu-
tative diagram of generalized non-symmetric co-operad family maps

M XA1 {0} > 0@(

Then there exists an operadic left Kan extension f of f if and only if for every B in
M x Ai {1}, the diagram

(Mact)/B XA1 {O} -+ M XA i {O} (9

can be extended to an operadic colimit diagram lifting

((Mact)/B XA1 {0}) -4 M -4 *P.

(ii) Suppose given a A"-family of generalized non-symmetric oo-operads M -+ AoP x A"
with n > 1 such that all sub-Al-families have the Kan extension property, a non-
symmetric oo-operad 00 and a commutative diagram of generalized non-symmetric
oo-operad family maps

M XAn An > 0@

'1 1
M > OP

such that the restriction of f to M xAn A10'1 1 is an operadic left Kan extension of

f lmx(O. Then there exists a morphism f: M -4 00 extending f.
Proof. As [Lurl, Theorem 3.1.2.3].

3.3.4 Free Algebras

Let A and 3 be generalized non-symmetric co-operads, let 00 be a non-symmetric co-
operad, and let i: A -+ 3 be a map of generalized non-symmetric oo-operads. Then i

induces by composition a functor i*: Algo(0@) -+ Alg((0). In this section we will
prove that when 00 is a monoidal oo-category compatible with small colimits and i has
the Kan extension property, then this has a left adjoint it given by formingfree algebras:

Definition 3.3.4.1. Let A and 3 be generalized non-symmetric co-operads, let 00 be a
non-symmetric oo-operad, and let i: A -+ 3 be a map of generalized non-symmetric oo-
operads with the Kan extension property. Suppose A E Alg (O@), B E AlgO(00), and
4: A -4 i*B is a map of A-algebras in 0@. For b E 3[11, let (Aact)/b :- A XB (Pact) lb- Then
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A and B induce maps a, p: (Aact)/b -+ (@c and 4P determines a natural transformation

r/: -4 /P. The map P clearly extends to 3: (Aact)/b -+ (0a't)/B(b). Since the projection

(Oact)/B(b) -4 Oat XNZ, (At)[n] (where b lies over [n] E W*P) is a right fibration, we

can lift 1i to an essentially unique 1: C -+ ( (over AOP). We say that 0 exhibits B as a free
3-algebra generated by A if for every b E S[1] the map a determines an operadic q-colimit
diagram (Aact)>/b -4

Remark 3.3.4.2. The map 4: A - i*B above determines a map

H: (A x A') Uxx {1 3 4 0 x A'.

Choose a factorization of H as

H' I
H: (A x A') [lAx1}

3 
4 M -4 0 x A',

where H' is a categorical equivalence and M is an oo-category. The composite map M -

AOP x A' exhibits M as a correspondence of non-symmetric oo-operads. Then the map 4
exhibits B as a free 3-algebra generated by A if and only if the composite M -+ 0* is an
operadic left Kan extension.

Proposition 3.3.4.3. Suppose 4: A -+ i*B exhibits B as a free 3-algebra in 0 generated

by A. Then for every B' E Algo(00 ) composition with 4 induces a homotopy equivalence

Map,,,( 0®) (B, B') -+ Map go 0) (A, i*B').

Proof. As [Lur11, Proposition 3.1.3.21.

Proposition 3.3.4.4. Suppose A E Algo(09). Then there exists a free 3-algebra B gener-
ated by A if and only if for every b E 'B the induced map

(Aact)/b - Aact A 0

can be extended to an operadic colimit diagram lying over

(Aact)'/b -4 Sact -4 AT,.-

Proof. As [Lurl, Proposition 3.1.3.31. l

Corollary 3.3.4.5. Let 00 be a non-symmetric oo-operad, and suppose i: A -+ 3 is a map
of generalized non-symmetric oo-operads with the Kan extension property. The functor

i*: Algo(00) -+ Alg (00 ) admits a left adjoint ii, provided that for every A-algebra A in
0* and every b E 'B, the diagram

(Aact)/b - Aact A 0

can be extended to an operadic colimit diagram lying over

(Aact)>/b 4 3 act 4 aat-

Proof. As [Lur11, Corollary 3.1.3.4].
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Combining this with Proposition 3.3.2.10 gives the following:

Theorem 3.3.4.6. Suppose C® is a monoidal oo-category compatible with K-small colimits
for some uncountable regular cardinal K, and i: A -+ '3 is a map of generalized non-
symmetric oo-operads satisfying the Kan extension property, with A and '3 essentially x-

small. Then the functor i*: Alg (C@) -4 Algo(C®) admits a left adjoint ii.

Lemma 3.3.4.7. Suppose C® and 'DO are monoidal co-categories compatible with small
colimits, and let F®: C@ -+ D0 be a strong monoidal functor such that F: C -+ D preserves
colimits. Then the induced functor

F,: Alg'D(C@) -+ Alg ('D*)

preserves free algebras, i.e. for all maps of generalized non-symmetric co-operads f: N -+

M with the Kan extension property the natural map f!F* -+ Ffi (adjoint to F,? -+

Ff*fi ~ f*Ffi) is an equivalence.

Proof. This follows immediately from Corollary 3.3.2.9.

Suppose M is a generalized non-symmetric oo-operad such that the inclusion

TM: Miriv '-+ M

has the Kan extension property; by Lemma 3.3.3.3 this is true if M[01 is a Kan complex. Then
we can give a more explicit description of the left adjoint (Tm)!. Recall that by Proposi-
tion 3.2.3.5, if 00 is a non-symmetric oo-operad then we have Alg. (00) ~ Fun(M[l, 0).
We can therefore regard (TM)! as a functor

Fun(M[1), 0) -+ Alg ((9*).

Definition 3.3.4.8. For [n] E AOP and x E M[1], let 'PM be the full subcategory of Miriv x M
M/y of morphisms y -+ x over the active map [n] -+ [1].

Suppose C® is a monoidal oo-category and F: M[1] -+ C is a functor. Let F be the

associated Miriv-algebra in C®. We have a canonical map h: 'P x Al -4 NM, a natural
transformation from PM -+ Mtriv -+ M to the constant functor at x. Since C® -+ AVP
is coCartesian, from F o h we get a coCartesian natural transformation h from a functor
g: 'PN - ell to the constant functor at F(x). We let Pnx(F) denote a colimit of g, if it
exists.

Proposition 3.3.4.9. Suppose C® is a monoidal oo-category compatible with K-small colim-
its, and M is a K-small generalized non-symmetric oo-operad such that TM satisfies the Kan
extension property. Suppose moreover that A is an M-algebra in C® and F: M[1] -+ C is

a functor. Then a map F -4 (TM)*A is adjoint to an equivalence Tm,!F 4 A if and only if
for every x E ] the maps Px(F) -+ A(x) exhibit A(x) as a coproduct

LI pn ,x(F) -+ A(x)
[n] EAOP

Proof. As [Lur1l, Proposition 3.1.3.11]. E
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3.3.5 Colimits of Algebras in Monoidal oo-Categories

In this subsection we show that colimits exist in the oo-categories Algoo (CO) for all small
non-symmetric oo-operads 00 when C® is a monoidal oo-category compatible with small
colimits. We first consider the case of sifted colimits:

Lemma 3.3.5.1. Suppose K is a sifted simplicial set and C® -4 AVP is a monoidal co-
category that is compatible with K-indexed colimits. Then for every 0: [n] -+ [m] in AoP
the associated functor 0!: CO - C preserves K-indexed colimits.

Proof. As [Lurl, Lemma 3.2.3.7].

Proposition 3.3.5.2. Suppose K is a sifted simplicial set and C® -4 AoP is a monoidal
oo-category that is compatible with K-indexed colimits. Then for any generalized non-
symmetric oo-operad p: M -4 aOP, we have:

(i) The co-category Funop (M, C@) admits K-indexed colimits.

(ii) A map K' -+ Funer (M, C®) is a colimit diagram if and only if for every X E M the
induced diagram K' -+ C is a colimit diagram.

(iii) The full subcategory Alg 0(C@) of Funaop(M, C®) is stable under K-indexed colimits.

(iv) A map K> -+ Funaop (M, C@) is a colimit diagram if and only if, for every X E M
the induced diagram K -4 C I is a colimit diagram.

(v) The restriction functor Algo (C@) -+ Fun(M[1, C0,1 ) detects K-indexed colimits.

Proof. Sifted simplicial sets are weakly contractible by [Lur09a, Proposition 5.5.8.7] so (i)-
(iii) follow from Theorem 2.1.13.1 (which is implicit in the proof of [Lur1l, Proposition
3.2.3.1]). Then (iv) and (v) follow as in the proof [Lur11, Proposition 3.2.3.1]. O

We now use this to that show the adjunction Tm,! -i T is monadic; we first check rT is
conservative:

Lemma 3.3.5.3. Suppose M is a generalized non-symmetric oo-operad and C0 is a monoidal
oo-category. Then the forgetful functor

TA: Algo (CO) -+ Algo. (C®) ~ Fun(M 1,C)

is conservative.

Proof. The co-category Alg0 (C@) is a full subcategory of Funop (M, C®). Therefore a map
of algebras f: A -4 B is an equivalence in Algo (C*) if and only if it is an equivalence in
Funop (M, C®). Applying Proposition 3.3.5.2 to AO-indexed colimits, we see that a mor-
phism f: A -+ B in Funiop(M, C®) is an equivalence if and only if fx: A(X) -+ B(X) is
an equivalence in C® for all X E M. Thus equivalences are detected after restricting to
Miriv
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Corollary 3.3.5.4. Suppose C® is a monoidal co-category compatible with small colimits,
and M is a small generalized non-symmetric co-operad such that TM satisfies the Kan ex-
tension property. Then the adjunction

(TM)!: Alg~. (C®) # Alg (C*): (TM)*

is monadic.

Proof. We showed that the functor Ti is conservative in Lemma 3.3.5.3, and that it pre-
serves sifted colimits in Proposition 3.3.5.2. The adjunction (TM)! -1 T is therefore monadic
by [Lur1l, Theorem 6.2.2.5]. 0

Corollary 3.3.5.5. Suppose C® is a monoidal co-category compatible with small colimits
and M is a small generalized non-symmetric co-operad such that TM satisfies the Kan ex-

tension property. Then Algo(C®) has all small colimits. Moreover, if C is presentable, so

is Algo (C0).

Proof. Apply Lemma 2.1.9.6 and Proposition 2.1.9.7 to the monadic adjunction TM,! -1 TC.

Proposition 3.3.5.6. Let M be a generalized non-symmetric co-operad such that TM satisfies
the Kan extension property, and let C® and D@ be monoidal co-categories compatible with
small colimits. Suppose F*: C@ -+ 'DO is a strong monoidal functor such that F: C -4 D
preserves colimits. Then the induced functor

F*: Algo (C0) -+ Algo (D*)

preserves colimits.

Proof. Write Fo,t'v for the induced functor Algo. (C®) -4 Alg 0. (D@). Under the equiv-

alences Alg, .(C@) ~ Fun(M[ij, C) and Algo., (DO) ~ Fun(M[l ,D) this corresponds to

composition with F, and so preserves colimits. Clearly T;F,@ ~ F?~,trivr;. Since T; detects
sifted colimits, it follows that F, preserves sifted colimits. To prove that it preserves all
colimits, it remains to prove F. also preserves finite coproducts.

Since F® is strong monoidal, by Lemma 3.3.4.7 the functor F,@ preserves free algebras,
i.e. FTM,! ~ TM,!F,,trv. Therefore F, preseves colimits of free algebras. Let A and B

be objects of Algo (C@) and let A. and B. be free resolutions of A and B. Then we have
natural equivalences

F,*(A I- B) ~ F*(IA. II B.|) ~ IF?(A. II B.)I ~ |F?(A.) H F? (B.)

I F,#(A.)I H IF?(B.)~ F?(IA.I) llF,*(IB.|) F,@(A) II F,(B),

so F, does indeed preserve coproducts.

Proposition 3.3.5.7. Let C® and 'D@ be presentably monoidal co-categories and suppose
F@: C® -4 DO is a strong monoidal functor such that the underlying functor F: C -+ )
preserves colimits. Let G: D -4 C be a right adjoint of F. Then there exists a lax monoidal
functor G®: 'DO -+ C extending G such that for any small non-symmetric co-operad 0@
we have an adjunction

F,@: Algo (CO) #Algo ('D*) : G,@.
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Proof. By Proposition 3.3.5.6 the functor F® is colimit-preserving, and by Corollary 3.3.5.5
these oo-categories of 00-algebras are presentable. It follows by Theorem 2.1.7.10 that F@®
has a right adjoint

Roe: Algooo(D®) -+ Alg® (C*).

Moreover, since F® is natural in 0@ so is R*, by [Lur09a, Corollary 5.2.2.5]. Taking the
underlying spaces of the oo-categories of algebras, we see that R(-) induces a natural trans-

formation p: Map(-, DO) -4 Map(-, CO) of functors (Opdo)OP -4 S.
Since 'D is presentable, it is the union of its full subcategories 'DK of K-compact objects,

and the oo-categories 'DK are all small - i.e. 'D is the colimit of a (large) diagram of small
oo-categories 'DK indexed by cardinals K. Similarly, if we write 'DO for the full subcategory
of 'D of objects X E 'D whose components Xi E D, i = 1,..., n lie in DK, then 'DO is the

union of the small oo-categories DO. The oo-categories DO are non-symmetric oo-operads,
though not necessarily monoidal oo-categories.

Applying R2@ to the inclusion 'D -+ 'D@ gives compatible maps G(@: 'DO@ -+ e®.
Combining these we get a map G®: 'D@ -+ CO from the colimit 'DO, which is clearly a lax
monoidal functor (since each inert map in 'DO lies in some D0).

Since every map 0 -4 'DO where 00 is a small non-symmetric oo-operad factors
through DO for some K, we see that p is given by composition with G®. Moreover, the func-

tor R(-) must also be given by composition with G*, since Alg 0 (DO) is the co-category
associated to the simplicial space Map(0 0 A, ADO).

It remains to show that G* is indeed a lax monoidal extension of G. This follows
from taking 00 to be the trivial non-symmetric oo-operad A*P: then Algo (e@) ~ e
and Algo ('DO) ~ 'D and under these identifications F,0 corresponds to F and G, to

the functor G® Thus G and GI are both right adjoint to F and so must be equivalent. E

Definition 3.3.5.8. Suppose V® is a monoidal co-category. A unit for V® is an initial object

of Alg 0s (V*).

Proposition 3.3.5.9. If V® is a monoidal co-category, then V® has a unit AOP -4 V*.

Proof. As [Lur11, Proposition 3.2.1.8]. L

3.3.6 Approximations of oo-Operads

In this subsection we use Lurie's theory of approximations to give a criterion for a map
to be the operadic localization of a generalized non-symmetric oo-operad. Here we write

L: Opd'8en -4 OpdD for the left adjoint to the inclusion Opd '-+ Opd8gen.

Definition 3.3.6.1. Suppose M is a generalized non-symmetric oo-operad, 00 is a non-
symmetric oo-operad, and f: M -+ 00 is a fibration of generalized non-symmetric co-
operads. Then f is an approximation if for all C E M and a: X -4 f(C) active in 0@ there
exists an f-Cartesian morphism a: X -+ C lifting a, and a weak approximation if given
C C M and a: X -+ f(C) an arbitrary morphism in 00, the full subcategory of

M/c XOc (c)
Ic)X//f(c)
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corresponding to pairs (#: C' -+ C, -y: X -+ f(C')) with ^y inert is weakly contractible.
More generally, a map f : M -+ 00 is a (weak) approximation if it factors as a composition

M-:4 M'L--4 00

where f' is an equivalence of generalized non-symmetric co-operads and f" is a categorical
fibration that is a (weak) approximation.

Proposition 3.3.6.2. An approximation is a weak approximation.

Proof. As [Lurl, Lemma 2.3.3.10]. E

Proposition 3.3.6.3. A fibration of generalized non-symmetric co-operads f: M -+ 00,
where 0@ is a non-symmetric co-operad, is a weak approximation if and only if for every
object C E M and every active morphism a: X - f(C) in 0@, the oo-category

M/c Xo {0X}I /f(c)

is weakly contractible.

Proof. As [Lur11, Proposition 2.3.3.11].

Proposition 3.3.6.4. Let f: M -+ 00 be a fibration of generalized non-symmetric oo-
operads, where 00 is a non-symmetric co-operad. If (0 is a Kan complex, then f is a
weak approximation if and only if f is an approximation.

Proof. As [Lur11, Corollary 2.3.3.17]. E

Theorem 3.3.6.5. Suppose f: M -+ 00 is a weak approximation such thatfpj: Mil -4 l
is a categorical equivalence. Then for any non-symmetric co-operad 'PO, the induced map

f*: Algooo('P*) -+ Alg(P*)

is an equivalence.

Proof. As [Lur11, Theorem 2.3.3.23].

Corollary 3.3.6.6. Suppose f: M -+ 00 is a weak approximation such that f[ll is a cate-
gorical equivalence. Then the induced map of non-symmetric oo-operads LM -4 00 is an
equivalence.

Proposition 3.3.6.7. Suppose f: 0@ 4 'P@ is a map of non-symmetric oo-operads, and 'P

is a Kan complex. The commutative diagram

Alg (8 )x Algo (8x)

Fun('P ,8) >oFun(00 ,A
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induces a natural transformation a: Too,, o f* - f* o Tye,!. If a induces an equivalence

ro, f* A ~+ f*Tro,,A where A is the constant functor 'P 4 8 with value *, then f is an
approximation.

Proof. As [Lur1l, Proposition 2.3.4.81. O

Corollary 3.3.6.8. Let 00 be a non-symmetric oo-operad such that 0 1 is a Kan complex,

and let f: M -+ 0@ be a map of generalized non-symmetric co-operads such that the
functor fi] : M 1  0 is an equivalence. Write A for the constant functor from M[l] !!

0 to 8 with value *. If the natural map Tm,!A -+ f*Too,,A is an equivalence, then f
exhibits 00 as the operadic localization of M.

Proof. Applying Proposition 3.3.6.7 to the induced map f': LM -4 0@, we see that this
map is an approximation and induces an equivalence LM[l] 4 00 . By Theorem 3.3.6.5, it

follows that f' is an equivalence. O

Corollary 3.3.6.9. Let 0@ be a non-symmetric co-operad such that 0' is a Kan complex,

and suppose f: M -+ 00 is a map of generalized non-symmetric co-operads such that

f I: M[] -+ 0 is an equivalence. If the induced map (Mact)/x -+ (0a0c)/x is cofinal for

all x E M -~0 , then f exhibits 00 as the operadic localization of M.

Proof. By Corollary 3.3.6.8 it suffices to show that the natural map of M-algebras Tm,!A -+

f*T(o,,A is an equivalence. Since Ti detects equivalences by Lemma 3.3.5.3, to see this it
suffices to show that for all x E M[l] the map of spaces (TM,!A)(x) -4 (roo,,A)(x) is an
equivalence. Recalling the definition of an operadic Kan extension, we see that this is the
map

colim * - colim *
(Mad)/ (0*)/2

of colimits induced by (Mact)/x -+ (Oac)/x- If this map is cofinal, then the induced map
on colimits is an equivalence. E

Remark 3.3.6.10. The same argument shows that for any presentably monoidal co-category
V® the natural map Tm,!F -+ f*ToeF is an equivalence for any functor F: M[l] -+ V. It
follows that TM,! and Too,, are given by the same monad on Fun(M[1],V), hence the co-

categories of algebras AlgD (V®) and Alg 0 (V@) must be equivalent, since they are both
co-categories of algebras for this monad. An alternative proof of Corollary 3.3.6.9 (not
using the notion of approximation) results by embedding any small non-symmetric oo-
operad 'P@ in a presentably monoidal oo-category 1P@ and showing that Algo(PO) and
Alg 0 ('PO) are the same subcategory of AlgD (i0) ~ Algie (00).

3.3.7 More on the Algebra Fibration

Here we use the results of this section to say a bit more about algebra fibrations in the non-
symmetric case. First we observe that colimit-preserving strong monoidal functors induce
colimit-preserving functors on algebra fibrations:

Proposition 3.3.7.1. Let C® and 'DO be monoidal oo-categories compatible with small col-
imits, and suppose FO: C0 -+ 'D is a strong monoidal functor such that F: C -+ 'D pre-
serves colimits. Then F,@: Alg 0 (C®) -+ Algo('D@) preserves colimits.
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Proof. Since e@ and 'DO are compatible with small colimits, the projections

Alg 0 (CO),Alg 0 (DO) -4 Opd0

are coCartesian fibrations by Lemma 3.2.8.5. Thus a diagram in Alg0 ('DO) is a colimit

diagram if and only if it is a relative colimit diagram whose projection to Opdo is a colimit
diagram.

It therefore suffices to prove that F, preserves coCartesian arrows and preserves colim-
its fibrewise. The former follows from Lemma 3.3.4.7, and the latter we proved in Propo-
sition 3.3.5.6. ]

Our next goal is to prove that for algebras in monoidal co-categories the external prod-
uct Z preserves colimits in each variable:

Lemma 3.3.7.2. Suppose eO and 'DO are monoidal co-categories compatible with small
colimits. Then the external product Z preserves free algebras, i.e. given non-symmetric co-

operads 00 and 'PO, algebras A E Alge (CO) andB E Algo (D@), and morphisms of non-
symmetric oo-operads f: 00 -+ Q and g: 'P@ -+ '@, we have fiA Z g! B ~ (f x g)!(A 0 B)

in Algo (0 'DP).

Proof. This follows from considering operadic colimits in C0 Xkop 'D@. O

Proposition 3.3.7.3. Suppose CO and 'D@ are monoidal oo-categories compatible with small

colimits, and let 00 and 'PO be non-symmetric co-operads and A E Alg ® (CO) an 0*-
algebra. Then

A Z (-): Alg ('D*) -4 Algo 0 ,(C0 xao ')

preserves colimits.

Proof. First we consider the case of trival non-symmetric oo-operads. Suppose A' is an
09-algebra. Then

A' Z -: Algo ('D@) -4 Algo (CO x a 'D*)

clearly preserves colimits, since it is equivalent to the the functor

A'| x -:Fun('P ,'D) -+ Fun((9 x ' , C x D).

Since we have Tegx(A X B) ~ rgA Z TB and 'UxD detects sifted colimits, it follows that
A Z - preserves sifted colimits.

Next we consider the case where A is a free algebra Te,!A' where A' is an 00 -algebra
in C. By Lemma 3.3.7.2 we have

Te,!A' Z rD,! B', ~ e xD,!(A' Z B'),

so the functor Te,! A Z - preserves colimits of free algebras. Thus it must preserve all col-
imits, by monadicity.

Finally, suppose A. is a free resolution of A, and a i-+ B, is any diagram. Then since M
preserves sifted colimits we have

A 0 colim B, ~A.| I colim B, ~ A. Z colim B,|.
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From the case of free algebras we then see that this is equivalent to

I colim(A. Z B,)| ~ colim IA. 0 B,|1.

But since N preserves sifted colimits in each variable, this is

colim(|A.| I B,) ~- colim(A Z B,,).

Remark 3.3.7.4. The Cartesian product of non-symmetric oo-operads does not preserve
colimits, so it is not possible for the external product A M (-) to preserve colimits as a
functor Algo(D@) -+ Algo 0(C xao 'DO).

3.3.8 Modules

Here we briefly introduce a definition of modules over associative algebras, to motivate
our definition of correspondences between enriched oo-categories. Our definition is a little
different from that used by Lurie, but we will not bother to compare them here.

Definition 3.3.8.1. For [n] in /1P the functor HomaP ([n], -): aOP -+ Set satisfies the Segal
conditions. Let AOP[n] -+ AP be an associated coGrothendieck fibration - then N)P[n] is
a double co-category. If 0: [m] -+ [n] is a morphism in A\OP, then there is clearly an induced
functor 0: aOP[m] -4 aOP n].

Remark 3.3.8.2. The objects of ZAOP[n] can be described as sequences (io,..., ik) where 0 <
io < ii < ... < ik ; n. There is a unique morphism (io,..., i) -4 (if(0), - o --'c(m)) over
every map 0: [m] -+ [k] in a.

Definition 3.3.8.3. Let M be a generalized non-symmetric co-operad. A bimodule in M is a
a 0 P[1]-algebra in M. We write Bimod(M) := Algop1] (M) for the oo-category of bimod-
ules in M. If M is a bimodule in M then A = d*M and B = do M are associative algebras in
M, and we say that M is an A-B-bimodule.

Remark 3.3.8.4. Let M: AOP[1] -+ M be a bimodule; then we see that M is determined by
an object M(0, 1) E M with compatible actions of associative algebras M(0, 0) on the left
and M(1, 1) on the right.

Lemma 3.3.8.5. The projection (d*, d*): Bimod(M) -+ Algo (M) x Algo,(M) is a Carte-
sian fibration.

Definition 3.3.8.6. If A, B are associative algebra objects in a generalized non-symmetric
oo-operad M, we write BimodA,B(M) for the fibre of Bimod(M) at (A, B).

Definition 3.3.8.7. For [n] E A0 P, the inert maps [n] -+ [1], [0] determine a map of general-
ized non-symmetric co-operads xn: aLjp[n] :- A0 P[1] llop ... -Ip AOP[1] -+ A 0P[n]. We
say a A0 P [n]-algebra X in a generalized non-symmetric oo-operad M is a tensor product if X
is a left operadic Kan extension of its restriction K*X, i.e. the natural map xn,!x*X -+ X is
an equivalence.

Remark 3.3.8.8. A aOP [2]-algebra X is a tensor product if and only if the map

colim rn,X(0,1, .,1, 2) + X(0, 2),
[nleamo
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where r,, is the unique active map [n] -4 [1], is an equivalence (because this copy of A P
is cofinal in the category of active maps to (0, 2)). If M is a monoidal co-category this says
that X(O,2) is given by the bar construction IX(O,1) & X(1,1)@ 00 X(1,2)|, which is the
usual definition of the (derived) tensor product of modules.

Definition 3.3.8.9. Let BIMODn (M) be the full subcategory of Algo, (M) spanned by the

AoP [n]-algebras that are tensor products. Then BIMOD. (M) is a simplicial oo-category.

Proposition 3.3.8.10. Suppose V® is a presentably monoidal oo-category. Then for any
A [n]-algebra X in V0 the adjunction morphism X -+ K*xn,!X is an equivalence.

Proof. This is a special case of Corollary 4.6.2.6; as the proof is rather complicated (although
slightly simpler than the general case), we will not prove this case separately. [

Corollary 3.3.8.11. Suppose V® is a presentably monoidal co-category. Then BIMOD. (V0)
is a double oo-category - the double oo-category of bimodules.

Remark 3.3.8.12. Given associative algebras A, B, C in V®, looking at fibres the functor
di: BIMOD 2 (V*) -+ BIMOD1 (V®) gives a tensor product functor

®B: BimodA,B(V*) x BimodB,c(V*) -+ BimodA,c(V )-

The remaining structure of the double co-category BIMOD. (V®) shows that these relative
tensor products are coherently associative.

Definition 3.3.8.13. Suppose V® is a presentably monoidal oo-category, and let A be an
associative algebra object in V®. Let BimodA (V®) @ be the full subcategory of BIMOD. (V®)
of objects over A E Algo,(V*) ~ BIMODo(V@). This is a monoidal oo-category - the
monoidal co-category of A-bimodules.

Definition 3.3.8.14. Let LM be the full subcategory of NIP [1] spanned by objects (0, . . ,0,1)
and (0,...,o). This is a double oo-category. A left module in a generalized non-symmetric
co-operad M is an LM-algebra in M; we write LMod(M) := AlgoM(M) for the co-category
of left modules in M. The inclusion 1: A*0P -+ LM that sends [n] to (1,...,1) is a morphism
of generalized non-symmetric oo-operads. If M is a left module in M and A = l*M, then
we say that M is a left A-module.

Lemma 3.3.8.15. Let M be a generalized non-symmetric oo-operad. The functor

1*: LMod(M) -+ Alg ,(M)

is a Cartesian fibration. We write LModA (M) for the fibre of l* at A E Alg,, (M) - this is
the oo-category of left A-modules in M.

Definition 3.3.8.16. Let RM be the full subcategory of A*P [1] spanned by objects (0,1,... ,1)

and (1,...,1). This is a double oo-category. A right module in a generalized non-symmetric
oo-operad M is an RM-algebra in M; we write RMod(M) := Algg (M) for the co-category
of right modules in M. The inclusion r: A*P -+ RM that sends [n] to (0,...,0) is a
morphism of generalized non-symmetric oo-operads. If M is a right module in M and
A = r*M, then we say that M is a right A-module.
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Lemma 3.3.8.17. Let M be a generalized non-symmetric co-operad. The functor

r*: RMod(M) - Algaop(M)

is a Cartesian fibration. We write RModA (M) for the fibre of r* at A E Algio (M) - this
is the oo-category of right A-modules in M.
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Chapter 4

Enriched oo-Categories

In this, the main chapter of this thesis, we introduce our theory of enriched oo-categories.
In §4.1 we define these objects as algebras for certain non-symmetric co-operads and con-
struct an "algebraic" oo-category of oo-categories enriched in a fixed monoidal oo-category
V using the co-categories of algebras for these oo-operads. Then in §4.2 we construct the
correct oo-category of V-oo-categories by localizing this at the fully faithful and essentially
surjective functors; our main result here is that this is an accessible localization, given by
restricting to certain "complete" objects. §4.3 contains some simple applications of our
setup. We next compare our co-categories of enriched oo-categories to those coming from
model categories of enriched categories and Segal categories in §4.4, where we also show
that iterated enrichment in spaces gives an oo-category equivalent to that of complete n-
fold Segal spaces. In §4.5 we study natural transformations and functor categories, and
construct an (o, 2)-category of V-oo-categories, and in §4.6 we introduce correspondences
between V-oo-categories.

4.1 Categorical Algebras

In this section we use the theory of generalized oo-operads developed in Chapter 3 to
define categorical algebras and construct oo-categories of these.

In §4.1.1 we construct double oo-categories AZ1', where e is an oo-category; we then de-
fine co-categories enriched in a monoidal oo-category V to be AOP-algebras in V when X is a
space. Next, in §4.1.2 we identify the non-symmetric oo-operad associated to AZI) with that
arising from a certain simplicial multicategory. Then in §4.1.3 we use the algebra fibration
from §3.3.7 to construct "algebraic" co-categories of enriched co-categories. Finally in §4.1.4
we prove that oo-categories enriched in spaces are equivalent to Segal spaces.

4.1.1 The Double oo-Categories A"&

Here we introduce double oo-categories LV', observe some of their basic properties, and
define enriched oo-categories to be algebras for these when e is a space.

Definition 4.1.1.1. Let i denote the inclusion { [0]} c-+ A*P. Taking right Kan extensions
along i gives a functor i,: Cat. -4 Fun(AOP, Cat,). If e is an co-category we write A*P -+
A\0 P for a coCartesian fibration corresponding to the functor i. e.
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Remark 4.1.1.2. If C is an oo-category, then iXC is the simplicial co-category with nth space
exn+l, face maps given by the appropriate projections, and degeneracies by the appropri-
ate diagonal maps.

Lemma 4.1.1.3. Let C be an oo-category. The coCartesian fibration A&§ -+ AP is a double
oo-category.

Proof. It is clear that i.C is a category object, hence A\0" is a double co-category by Proposi-
tion 3.2.4.6. 0

Definition 4.1.1.4. Let V@ be a monoidal co-category. A categorical algebra in V@, or V-
enriched oo-category, or V-oo-category, with underlying space of objects X, is a aLP-algebra in
V@.

Remark 4.1.1.5. This definition clearly does not require V@ to be a monoidal oo-category
- we can define oo-categories with space of objects X enriched in any generalized non-
symmetric co-operad as AOP-algebras. This gives an oo-categorical version of Leinster's
notion of enrichment in an fc-multicategory [Lei02]. However, as there are technical ob-
stacles in the theory of co-operads to extending most of our results below beyond the case
of monoidal co-categories we will not consider this generalization here.

Definition 4.1.1.6. If C and 'D are V-oo-categories with spaces of objects X and Y, a V-functor
F from C to 'D consists of a map of spaces f: X -+ Y and a map of AOP-algebras from C to
(ap)*'D, i.e. a natural transformation C -4 D o A*p of functors Axp -4 V®.

Remark 4.1.1.7. The functor
a*_H: Cat, -+ OpdCO2'e

is a right adjoint to the functor OpdQ'" -+ Cat,, that sends a generalized non-symmetric
oo-operad M to its fibre M[01 at [0]: it is a composite of the right Kan extension func-
tor i,: Cat,,. -+ Dbl,, which is right adjoint to the fibre-at-[O] functor, and the inclusion

Dblo -+ Opdo'", right adjoint to the monoidal envelope functor, which preserves fibres

at [0] (cf. §3.3.1).

Proposition 4.1.1.8. The functor A _P: Cat, -+ Opdoge* preserves sifted colimits.

Proof. Suppose we have a sifted diagram of oo-categories p: ' -+ Cat. with colimit C.
Since AZj' is a generalized non-symmetric oo-operad, by Lemma 3.2.5.1 it suffices to show
that A~' is the colimit of * _, in Cato. Now this composite functor

op

Cat, - Opdo-" -4 Cato

factors as
Cat. 4 Fun(a*P, Cato) -4 CoCart(A*P) 4 Cat.,

where the rightmost functor q is the forgetful functor that sends a fibration F -+ N*P to the
oo-category . Since the oo-category CoCart(AOP) is the oo-category associated to the model
category (Set+)"d, it follows from Example 2.1.12.15 that q preserves colimits. It thus

remains to prove that i. preserves sifted colimits. Colimits in functor categories are com-
puted pointwise, so to see this it suffices to show that for each [n] the composite functor
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Cato -4 Cato induced by composing with evaluation at [n] preserves sifted colimits. This
functor sends 'D to the product 'D (n+1), and so preserves sifted colimits by [Lur09a, Propo-
sition 5.5.8.6], since the Cartesian product of oo-categories preserves colimits separately in
each variable.

4.1.2 The oo-Operad Associated to A'O

By Corollary 3.2.2.16 there is a universal non-symmetric oo-operad LA*' receiving a map
from the double oo-category AS . In this subsection we describe a concrete model for LZiA*
as a simplicial multicategory; this will allow us to conclude that the functor that sends X
to LaLXP preserves products.

Remark 4.1.2.1. Although it is obvious that the functor L*_P) preserves products, since it's

a right adjoint by Remark 4.1.1.7, it is not clear that the localization functor L: Opdo'8" -4

Opdo preserves products (and this may well be false in general).

First we define simplicial categories 'D(C) that model AZe when C is a simplicial cate-
gory:

Definition 4.1.2.2. Given a simplicial category C, the simplicial category 'D(C) has objects
finite sequences (co,..., c,) of objects of C; morphisms are given by

'D()((co,. .. ,cn),(do,. . .,dm)) := [ C ]J(cip(),di),
4p: [m] -[n] i=o

with the obvious composition maps induced by those in C.

Proposition 4.1.2.3. Suppose C is a fibrant simplicial category. Then:

(i) The projection N'D(C) -4 NAP is a coCartesian fibration.

(ii) The fibre N'D(C)[o] is equivalent to NC.

(iii) There is a natural map N'D(C) -4 Ae.

(iv) This map is an equivalence of co-categories.

Proof.

(i) It is clear that 'D(C) -4 a*P is a fibration in the model structure on simplicial cate-
gories; since N is a right Quillen functor, it follows that N'D(C) -+ NA*P is a categor-
ical fibration. It therefore suffices to check that N'D(C) has coCartesian morphisms.
Given an object C = (co,...,cn) in 'D(e) and a map p: [m] -+ [n] in A, let 0! de-
note the obvious map C -+ C' = (co(0),. ., c(m)) in 'D(C). We apply the criterion of
[Lurl, Proposition 2.4.1.10] to see that 0! is coCartesian in ND(C); thus we need to
show that for every X C 'D(C) over [k] E A*P the commutative diagram

'D(C) (C', X) D '(C) (C, X)

I I
Homzop ([m], [k]) -~Homaop([nI, [k])
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is a homotopy Cartesian square of simplicial sets. Since the simplicial category C is
fibrant, so is 'D(C), hence the vertical maps are Kan fibrations. It therefore suffices
to show that the induced maps on fibres are equivalences, which is clear from the
definition of 'D(C).

(ii) We have a pullback diagram of simplicial categories

C -' D(C)

{[0]} ~ LP.

Since the simplicial nerve is a right adjoint, it follows that Ne is the fibre of the map
of simplicial sets ND(C) -+ AZOP at [0]. Since this map is a coCartesian fibration, by
[Lur09a, Corollary 3.3.1.41 Ne is also the homotopy fibre in the Joyal model structure.

(iii) By definition A\P corresponds to the right Kan extension iNC of Ne along the inclu-
sion i: { [01 } -4 A*P. The functor i, is right adjoint to the fibre-at-[0] functor i*, and
from (ii) we know that i*D(e) ~ NC. The adjunction i* -i i, then gives the required
map 'D(e) -+ A O.

(iv) By [Lur09a, Corollary 2.4.4.41 it suffices to show that for each [n] in NOP the induced
map on fibres

(N'D(e))[n] -+ (Aoe)[n]

is a categorical equivalence. As in (ii) we can identify the fibre (N'D(C)) [n] with NC x",

via the Segal maps, so by naturality we have a commutative diagram

(N'D(C)) [n] (N){in]

I I
Nex"l > NCx",

where all but the top horizontal map are known to be categorical equivalences. Hence
this must also be a categorical equivalence, by the 2-out-of-3 property. 0

Definition 4.1.2.4. Let C be a simplicial category. The simplicial multicategory Oe has
objects ob C x ob C and multimorphism spaces defined by

Oe ((rO, y1), - ,(Xn-1, yn); (YO, Xn)) :=

C(yo, xo) x C(yi, x1) x - x C(yn1, xn1) x C(yn, xn).

Composition is defined in the obvious way, using composition in C. Write (g for the
associated simplicial May-Thomason category over aOP, defined as in Remark 3.1.6.2.

If C is a fibrant simplicial category, then Oe is a fibrant simplicial multicategory in the
sense of Definition 3.2.1.15, and so NOO is a non-symmetric co-operad by Lemma 3.2.1.16.
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The simplicial multicategory 9e is only a model for A0P when NC is a space, but is
easier to define than the version that works more generally. Indeed there is not even a
natural map from 'D(C) to 9e in general; however, we can construct one if C is a simplicial
groupoid. By Remark 2.1.2.10 we may regard a simplicial groupoid C as a simplicial cat-
egory equipped with an involution i that sends a morphism to its inverse. Using this we
can define a functor 'D(C) -+ 00:

Definition 4.1.2.5. Suppose C is a simplicial groupoid. Let <: De -4 00 be the functor
sending an object (co,..., cn) of 'D(C) to ((cO, c1 ), (ci, c2),..., (cn_1, c,)) and given on mor-
phisms by applying i on the first factor and inserting identities into the factors that are
missing in 'D(C) in the obvious way.

Theorem 4.1.2.6. Let C be a fibrant simplicial groupoid. Then the map

NC: N'D(C) -4 N(9

exhibits NOO as the operadic localization of N'D(e).

Proof. By Corollary 3.3.6.9 it suffices to show that for all (x, y) E e x C the induced map
g: (ND(C)act)/(xy) -4 (N((9)act)/(x,y) is cofinal. We will prove that g is a categorical
equivalence; to see this we show that g is essentially surjective and induces equivalences
on mapping spaces.

We first observe that g is essentially surjective: an active morphism to (x, y) in 00 is
determined by an object T = ((to, s1),(t1,s 2 ),. .. , (t_,s )) and morphisms a: x -+ to,

#1: Si - ti,..., pn_1: s_1 -4 tn_ 1 ,'Y: sn 4 y in C. Such a morphism is in the image of g
if and only if the Pi's are all identities. Since C is by assumption a simplicial groupoid all
morphisms in C are equivalences, and so the morphism

((to,sl),(s1,s2),...,(sln_1,sn)) -4 ((to,s1),(t1,s 2 ),. . N1, )

given by (id, id, A1, id, #2,... , id) is an equivalence from an object in the image of g to T.

It remains to show that g is fully faithful. Given objects Z = (zo,...,zn) and Z' =

(z',..., z') in D (C) we must show that for each active map ip: [m] -+ [n] in AOP the map

MapN (Z, Z') -+ Map'* (g(Z), g(Z'))
MaN,(e)(,() (N e ) /( ) gz)

is an equivalence, where the superscripts denote the fibres over 4 in A0 P. Let a be the
unique active map [1] -4 [n] in A; then we can identify this as a map of homotopy fibres
from the commutative square

'D (C)P(Z, Z') > '(C)"a(Z, (X, y))

I I1
(0e,)0(g(Z),g(Z')) >(0)"(g(2'),(x, y)),

where the superscripts again denote the fibres of these spaces over maps in aOP. To see

that our map of homotopy fibres is an equivalence it suffices to show that this diagram is
homotopy Cartesian.
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We have equivalences

'(C) 0(Z, Z')~ 0C(z'P(i),z Z),
i=O

'D ()"(Z, (x, y)) C (zo, x) x C(z, y),

(O0O)0(g(Z),g(Z')) ~ C(Zzo~z(0)) x (zO(0)+1,zO(0)+1) x -. -- x e(z#(1)-1,zO(1)-1)

x(z(1, ') X e(z'izo(1) X---x (m)z',

(Of)"(g(Z), (xy))~ (x, zo) x (zi,zi) x-- - xe(z-_1,zn_1) x e(zn,y).

Under these equivalences our commutative square is the product of the squares

* .- *

I I
e(zy, zj) C(zj, zj)

for j not in the image of 4,

e(zo,z') x -(zn,z' C(zo, x) X C(Zn, y)

(i,id)

and

(i,id)

(z',zo) xe(zn,z') > (x,zo) x e(zn,y),

C(zl,(i), z )>*

(id, i)eI

C(zO(i), z') x C(z"j, fi) > (zfoi),zgo))

for i=1,...,m -1.
The first squares are obviously homotopy Cartesian, the second is homotopy Carte-

sian since the maps induced by the involution i are equivalences, and the last squares are
homotopy Cartesian since e is a simplicial groupoid. O

Corollary 4.1.2.7. Let X be a space and X a fibrant simplicial groupoid such that the Kan
complex NX is equivalent to X. Then the composite map A ~ N'D(X) -4 NO induces
an equivalence of non-symmetric co-operads Lai)P ~+ N(9 .

Corollary 4.1.2.8. L8(a"P): 8 -+ Opdo preserves products.

Proof. Given spaces X and Y, there exist fibrant simplicial groupoids X and such that
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NX ~ X and N ~ Y. Then by Corollary 4.1.2.7 we have a commutative diagram

LAfOy LA o x a- LAOyP

I I
NO" y iN(O1 xao pO*)

where the vertical maps are equivalences. It is clear from the definition that Oxd ~ Ox x
(9t, so the natural map 0 -4 04 x a 0* is a weak equivalence of fibrant simplicial
categories. By the 2-out-of-3 property the top horizontal map in the commutative square
is therefore an equivalence of oo-categories.

4.1.3 The oo-Category of Categorical Algebras

In this subsection we use the algebra fibration

AlgO(V&) -+ Opdo

from §3.2.8 to define an oo-category of categorical algebras, and then show that this has
various good properties.

Definition 4.1.3.1. Suppose V® is a monoidal oo-category. The oo-category Algot(V®) is
defined by the pullback square

Algit(V,) > Alg0 (V0)

I I
-. I Opdo,

where the lower horizontal map sends a space X to the non-symmetric o-operad LAY
associated to the generalized non-symmetric oo-operad A. The objects of Algot(V®) are
thus categorical algebras in V® and its 1-morphisms are V-functors as defined above. We

will refer to Alg c(V®) as the oo-category of categorical algebras.

Remark 4.1.3.2. Since V® is a monoidal co-category, and so in particular a non-symmetric
oo-operad, we could equivalently have defined Algot(V) using the analogue of the al-

gebra fibration over the base Opd2'", since there is natural equivalence Alg oP (V®) ~

AlgOP (V).

Our next goal is to prove that the oo-category Alg ,(V0) is presentable if V® is pre-
sentably monoidal; to do this we first introduce the co-category of graphs in V:

Definition 4.1.3.3. Let V® be a monoidal oo-category. The oo-category GraphV of V-graphs
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is defined by the pullback

Graph7 - : Algo (V*)

I I
S- -: Opdo.

Thus the fibre of GraphV at X E S is Fun(X x X, V).

Lemma 4.1.3.4. Suppose V is an accessible o0-category. Then the o0-category GraphV is
accessible.

Proof. Let T -4 8 be the Cartesian fibration associated to the functor 8 -4 Cato sending X
to Fun(X, V). Then there is a pullback square

GraphV 10

where the lower horizontal map is the diagonal functor, sending X to X x X.
The oo-category T is accessible, and the projection T -4 8 is an accessible functor, by

Theorem 2.1.11.1. Moreover, the functor A clearly preserves sifted colimits, and so is ac-
cesible. The pullback GraphV is therefore accesible and the projection GraphV -4 S is an
accessible functor, by [Lur09a, Proposition 5.4.6.6]. l

Proposition 4.1.3.5. Suppose V® is a monoidal co-category compatible with small colimits.
Then Algot(V®) has all small colimits. Moreover, if V is presentable then so is Algot(V0).

Proof. By Lemma 3.2.8.5, the fibration 7r: Alg 0 (V®) -+ OpdD is both Cartesian and co-

Cartesian, hence the same is true of its pullback p: Algt (V) -+ 8. Moreover, the fibres

Alg op (V®) have all colimits by Corollary 3.3.5.5 and the functors fi induced by mor-

phisms f in 8 preserve colimits, being left adjoints. Thus p satisfies the conditions of
Lemma 2.1.5.10, which implies that Algo (V0) has small colimits.

Since the functor T*: Algo(V*) -4 Algo (V@) preserves filtered colimits by Corol-

lary 3.2.8.10, it is clear that so does its pullback U: Algo (V®) -4 GraphV. Moreover, the

pullback of the left adjoint To of r* gives a functor F: Graphs -4 Alg t(V®) left adjoint to
U; this preserves compact objects by Lemma 2.1.7.11. .

Every object of Alg0 (V®) is a (sifted) colimit of objects in the image of r,: Algiv (V®) -4

Alg (V®), hence every object of Algot(V) is a (sifted) colimit of objects in the image of
F. The co-category GraphV is accessible by Lemma 4.1.3.4; suppose it is generated un-
der colimits by K-compact objects. Since F preserves colimits it follows that every object
of Algot(V®) is the colimit of objects that are the images of K-compact objects of GraphV
under F. As the functor F preserves K-compact objects, this means there is a small sub-
category of K-compact objects of Algot(VO) - namely the images of K-compact objects of
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Graphs - such that every object of Alga (V0) is a colimit of objects in this co-category. In
other words, the oo-category Algo (V@) is ic-accessible. 0

Now we show that Algo (V0) is functorial in V@:

- 0
Definition 4.1.3.6. As in §3.2.8, let Alga -+ Opdo x (Opdo)*P be a Cartesian fibration
classifying the functor Alg(-) (-). Let Alg~aco be the pullback

Alg aco:Alg 0

8 ---- Ojlax 0--
8 x (Mon. )OP > Opdo x (Opd,)OP.

Lemma 4.1.3.7. Alg0c(V0) is functorial in V® with respect to lax monoidal functors.

0 --- .O,lax
Proof. The composite Algcatco - (Mon. )OP is a Cartesian fibration classifying a functor

00 '-+ Algo (@). El

Proposition 4.13.8. The restriction of Algot(-) to the oo-category Monofp of presentably
monoidal oo-categories factors through the oo-category PrL of presentable co-categories and
colimit-preserving functors.

Proof. If V@ is presentably monoidal, then Alg t(VO) is presentable by Proposition 4.1.3.5.
Moreover, it follows by the same proof as that of Proposition 3.3.7.1 that a strong monoidal
functor FO : V® -+ WO such that F preserves colimits induces a colimit-preserving func-

tor Algt(V@) -+ Algo (W0). E

Proposition 4.1.3.9. Alg'D (-) is lax monoidal with respect to the Cartesian product of
monoidal oo-categories.

Proof. The functor LA*_P is strong monoidal with respect to the Cartesian products of
spaces and non-symmetric oo-operads, by Corollary 4.1.2.8. The result therefore follows
by the same proof as that of Proposition 3.2.8.13. E

Proposition 4.1.3.10. Suppose V is an oo-category with finite products. Then the natural
symmetric monoidal structure on Alg0a(Vx ) is Cartesian.

Proof. This follows from Proposition 3.2.8.15, since Alga(Vx) is a full monoidal subcate-
gory of AlgO(Vx).

Proposition 4.1.3.11. Let V® be a monoidal co-category, and suppose that e is a categorical
algebra in V®. Then C 0 -: Algoa(W®) -+ Alg0D(V0 xoP W®) preserves colimits.

Proof. Since the Cartesian product of spaces preserves colimits in each variable, it suffices
to prove that e Z (-) preserves colimits fibrewise, and preserves coCartesian arrows. This
follows from Lemma 3.3.7.2 and Proposition 3.3.7.3. E
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Remark 4.1.3.12. This is where we need to know that LA*Pj preserves products, since the

Cartesian product of non-symmetric oo-operads doesn't preserve colimits in each variable.

Corollary 4.1.3.13. The functor Alg 0(-): Mon,Pr -4 PrL is lax monoidal with respect to
the tensor product of presentable oo-categories.

Proof. We have constructed a lax monoidal functor Alg'D(-): (Mon, )x -+ Cato. By

Proposition 4.1.3.11 and Propositon 4.1.3.8, the composite (Mon ,Pr)® -4 (Mon0 ) X-

Cat,, factors through (PrL

Corollary 4.1.3.14. If V@ is presentably monoidal, then Alg",(V®) is tensored and coten-

sored over Alggo(8X).

Definition 4.1.3.15. If V0 is a presentably monoidal oo-category, e is a V-oo-category, and I
is an 8-oo-category, then we denote their tensor and cotensor by X 9 C and C, respectively.

4.1.4 Categorical Algebras in Spaces

In this subsection we prove that the oo-category Algot(8 x) of categorical algebras in spaces

is equivalent to the oo-category Sego of Segal spaces.

Definition 4.1.4.1. Suppose V is an oo-category with finite products. The Cartesian fibra-

tion Mndat(V) -4 8 is defined by pulling back Mnd 0 (V) -+ Opdo along LA*_P).

Remark 4.1.4.2. There is a natural equivalence over 8 between Mndot(V) and Alg'D(VX).

We can also define a Cartesian fibration Mong'at 4 8 whose fibre at X is the oo-

category Mon2'X of AO -monoidal oo-categories. Using the equivalence between func-

tors to 8 and left fibrations, we can identify Mndat(8) with the full subcategory LMon'at
0 catof Mon.c spanned by those ALP-monoidal oo-categories that are left fibrations.

Similarly, we can identify the oo-category Sego of Segal spaces with the full subcategory
LDblo of Dbl, spanned by the double oo-categories that are left fibrations.

There is an obvious functor

p: LMonat -4 LDbloo

given by composing a AZ'-monoidal co-category C -4 AOP that is a left fibration with the

map A\P -4 A*P, which is also a left fibration and a double oo-category.

Proposition 4.1.4.3. This functor p: LMonDcat -4 LDble is an equivalence.

Proof. Let i denote the inclusion { [0] 1+ A*P. Then there is an adjunction

i*: Sego T-- 8: i,,

and A*O is the object of LDbl. corresponding to iX. Moreover, i* is a Cartesian fibration

by Lemma 2.1.6.4; if A E Sego, a Cartesian arrow with target A over X -+ i*A is given by
taking the pullback of A -+ i*i*A along iX -+ i*i*A.
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To prove that p is an equivalence, we must show that it is fully faithful and essentially
surjective. We thus have to prove that the map

MapLMsnoat (A, B) -4 MapLDbl (p(A), p(B))

is an equivalence. Since the functor p clearly preserves Cartesian morphisms over 8, it
suffices to show that the induced maps on fibres over f: i*p(A) - i*p(B) are equivalences.
But this is clear: on both sides the fibre at f can be identified with the space of those maps
over A\P from A to the pullback of B along A*P that preserve inert morphisms.i*A f

It remains to prove that p is essentially surjective. Suppose a: A -+ A*P is an object
of LDbl,. The adjunction i* -d i, induces a map h: A -+ AP; this is equivalent to a left

fibration by Proposition 2.1.4.4 and so a is in the essential image of p. 1

Corollary 4.1.4.4. The composite functor Alg (8 x ) -4 Sego is an equivalence.

Remark 4.1.4.5. It is easy to see that the Segal space corresponding to an 8-oo-category C is
MapMe( 8 .) ([*], C), cf. the more general discussion in §4.5.1.

4.2 The oo-Category of Enriched oo-Categories

Our goal in this section is to prove the first main result of this thesis: we can always lo-
calize the oo-category of categorical algebras at the fully faithful and essentially surjective
functors by restricting to the full subcategory of complete objects.

In §4.2.1 we define equivalences in enriched oo-categories and study the classifying
space for equivalences in an enriched co-category; the complete enriched oo-categories are
those whose classifying space of equivalences is equivalent to their underlying space of ob-
jects. Next we study three types of equivalences of V-oo-categories: in §4.2.2 we introduce
fully faithful and essentially surjective functors, in §4.2.3 we consider the local equivalences
(those in the saturated class of a certain map) and finally in §4.2.4 we introduce categorical
equivalences (those with an inverse up to natural equivalence). In §4.2.5 we prove that for
oo-categories enriched in a presentably monoidal oo-category the fully faithful and essen-
tially surjective functors are the same as the local equivalences, hence the full subcategory
of complete objects gives the localization. In §4.2.6 we extend this result to co-categories
enriched in a general large monoidal oo-category by embedding this in a presentable co-
category in a larger universe. Finally in §4.2.7 we prove that the localized co-category
inherits the good functoriality properties of Alg (V).

4.2.1 Equivalences in Enriched oo-Categories

In this subsection we study equivalences in enriched oo-categories. In order to define these
we must first introduce trivial enriched oo-categories:

Definition 4.2.1.1. Suppose V® is a monoidal oo-category. By Proposition 3.3.5.9 V® has
a unit, i.e. an initial associative algebra object Iv: AP -4 V®. For any space X, the trivial
V-oo-category EV with objects X is given by the composite

A* O A*P V. V*.
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We will generally drop the V from the notation and just write EX when the monoidal co-
category in question is obvious from the context. The V-oo-categories Ex are functorial in
X. We abbreviate E" := E,...,,}; restricting to order-preserving maps between the sets
{0,..., n} (n = 0,1,...) we then have a cosimplicial V-oo-category E*.

The identity map A*P -+ AP is the unique monoidal structure on the point *. This
is the unit for the Cartesian product of monoidal co-categories, and so for every monoidal

co-category V® the co-category Algot(V®) is tensored over Alg t(AOP), since Algot(-) is
lax monoidal by Proposition 4.1.3.9. Clearly the only *-oo-categories are of the form E* for
spaces X; we can identify the V-oo-category E7 with the tensor E* 0 Iv:

Lemma 4.2.1.2. For any monoidal co-category V® and space X, we have EV ~ E* 9 I0v.

Moreover, if V® is presentably monoidal (so Algo (V@) is tensored over Algo (8x)), then
EV ~ E8 9 Iv.

Proof. Considering the construction of the external product in Algo, we see that E* 0 Iv is
given by

E* xAop Iv: Ap XsoP A*P -4 *P xaop V® ~ V*.

We can factor this as

AOP x op E* X opid idxAopIv op V®,

which is clearly the same as EV.
In the presentable case, we have

E8i 0 Iv ~ (E* @ 18) @ Iv ~E* 0 (Is 0 Iv) ~E* 0 Iv ~El,

since it is easy to see that the tensorings with Alg t (AOP) and Algot(8X ) are compatible.

Definition 4.2.1.3. Suppose e is a V-oo-category. An equivalence in e is a V-functor El -+ e.

Definition 4.2.1.4. Let C be a V-oo-category. We write InC := Map(E", C). Thus Ile

Map(El, C) is the space of equivalences in C.

Lemma 4.2.1.5. Let C: AOP -- V® be a V-oo-category. Then the map

o := Map o (V®)(E0 , e) -+ Map,(*, X) ~ X

induced by the Cartesian fibration Algot(V®) -+ 8 is an equivalence.

Proof. It suffices to check that the homotopy fibres of this map are contractible. By [Lur09a,
Proposition 2.4.4.2] the homotopy fibre at a point p: * -+ X is

Mappgo (VO) (Iv, P*C),

which is contractible since the unit Iv is the initial associative algebra object of V. O

Definition 4.2.1.6. Let e be a V-co-category. The classifying space of equivalences ie of C is
the geometric realization I.CI of the simplicial space t.C := Map(E*, C).
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We regard tC as the "correct" space of objects of C, and by analogy with Rezk's notion
of complete Segal space we say that an enriched oo-category is complete if its underlying
space is the correct one:

Definition 4.2.1.7. A V-oo-category C is complete if the natural map tOC -+ tC is an equiva-
lence.

Our next goal is to prove that the simplicial space t.C is always a groupoid object; we
prove this by showing that the cosimplicial object E' satisfies the dual condition of being
a cogroupoid object:

Theorem 4.2.1.8. Let V@ be a presentably monoidal co-category. Then the cosimplicial
object E' is a cogroupoid object.

Proof. We will show that EN IIE{N} E{N,N+1} -+ EN+1 is an equivalence; as the ordering of
the objects is arbitrary, by induction this will imply that E' is a cogroupoid object. Since
V® is presentably monoidal, AlgO(V@) is tensored over Alg t(8X), and the tensoring is
colimit-preserving in each variable; if therefore suffices to prove this when V® is 8x .

Under the equivalence Algot(S) ~ Sego, the 8-oo-category EX clearly corresponds
to the Segal space i X. If S is a set it follows that in the model category structure on
bisimplicial sets modelling Segal spaces, Es corresponds to r* N*JS where Js is the ordinary
category with objects S and a unique morphism between any pair of objects, and 7r: AOP x
ZkOP -+ AOP is the projection onto the first factor.

Define GN := NJ{0,...,N}. By [Rez0l, Remark 10.21, for 0 < i < n the map 7r*An -+ n*A"
is a Segal equivalence, so (since 7r* is a left adjoint and thus preserves colimits) it suffices
to prove that GN 1 1 G{N} G{N,N+1} -+ GN+1 is an inner anodyne morphism of simplicial sets.
To prove this we consider a series of nested filtrations of the simplices of GN+1. First we
must introduce some notation:

An n-simplex o- of GN+1 can be described by a list a0 ... an Of elements ai C {0, ... , N +
1}; it is non-degenerate if ai f4 ai+1 for all i. If o- is a non-degenerate simplex, let p(o-) be
the number of times the sequence jumps between {0, ... , N} and {N, N + 1}.

Also let T(o-) be the position of the first N +1 where the sequence jumps from {N, N +
1} to {0,..., N}; if there is no such jump let r(O-) = oo and let r'(o-) denote the position of
the first jump from {0, ... , N} to {N, N + 1}. Then define

* If t 3 oo, let Sbt be the set of non-degenerate n-simplices o, in GN+1 such that p(1-) = b,
T(-) = t, and at+1 34 N. Let S'"'t be the set of non-degenerate n-simplices in GN+1
such that p(o-) = 1, T(O-) = o, T'(0-) = t, and at-. 3 N.

" If t : oo, let Tn'' be the set of non-degenerate (n + 1)-simplices o- in GN+1 such that
p(o-) = b, T(O-) = t and at+1 = N. Let Tn'"'' be the set of non-degenerate (n + 1)-
simplices c- in GN+1 such that p(o-) = 1, T(O-) = o, r'(O-) = t + 1, and at = N.

Define a filtration
GN 1 1 G{N} G{N,N+1} =: 0 C T1 C - C GN+1

by letting In be the subspace of GN+1 whose non-degenerate simplices are those of T0

together with all the non-degenerate i-simplices for i < n and the (n + 1)-simplices in T'

and T,',t for all b, t. Then GN+1 = UnYn so to prove that GN 1 -G{N} G{N,N+1} -+ GN+1 is
inner anodyne it suffices to prove that the inclusions 7n_1 -+ Yn are inner anodyne.
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Next define a filtration

by setting 3T to be the subspace of Yn containing :Y_ 1 together with the simplices in St
and Tn't for all i < b together with Sl'' and Tl',t for all t. To prove that the inclusions

,n_1 -+ T are inner anodyne it suffces to prove that the inclusions 7-T <-+ are all
inner anodyne.

Finally define a filtration

b-1 ybn+1 C Tnln C. C TbO =-n

by setting ?t to be the subspace of Tn containing :T- 1 together with the simplices in Sn,

and Tnb~ (as well as Sn and TP'' if b = 1) for all j > t. To prove that the inclusions

7%-1 <-+ Tn are inner anodyne it suffices to prove that the inclusions w'- <-+ are all
inner anodyne.

Now observe that (for b > 1) if o E Tnb,t then dto E Sbt and dioc e ESti for i A t, and o-
is uniquely determined by dtcr. Thus we get a pushout diagram

where we always have 0 < t < n +1. Thus the bottom horizontal map is inner anodyne.
The proof is similar when b = 1, expect that we must also consider the simplices in S1''0
so we conclude that GN 11 GN} G{N,N+1} -4 GN+1 is indeed inner anodyne.

Remark 4.2.1.9. We can generalize this to the case of an arbitrary large monoidal oo-
category V@ as follows: by [Lur11, Remark 6.3.1.8] there exists a presentably monoidal

structure on the (very large) presentable oo-category '(V) of presheaves of large spaces on
V, such that the Yoneda embedding V -+ '(V) is strong monoidal. This induces a fully

faithful embedding Alg at(V) -4 Algcat('P(V)O); moreover, if X a small space then E(

is clearly the image of E . Thus if a diagram of EV's is a colimit diagram in Al'gc

it must also be a colimit diagram in Alg~at(VO) - in particular E; is a cogroupoid object

in Alga( 0 )-

Corollary 4.2.1.10. The simplicial space t.e is a groupoid object in spaces for all V-oo-
categories e.

Corollary 4.2.1.11. Let C be a V-oo-category. The following are equivalent:

(i) C is complete.

(ii) The natural map so: toC -+ t1C is an equivalence.

(iii) The simplicial space t.C is constant (i.e. for every map (: [n] -+ [m] in A\OP the in-
duced map inC -+ tmC is an equivalence).
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Proof. Since S is an oo-topos, the groupoid object i.e is effective (cf. [Lur09a, Corollary
6.1.3.20]). The result therefore follows from Lemma 2.1.10.4. l

We end this subsection by showing that several other reasonable definitions of an
equivalence in an enriched co-category are equivalent to the one we introduced above:

Definition 4.2.1.12. Suppose V is presentably monoidal, and let [1]v be the V-oo-category

[1] @Iv-

The inclusion [1]v -+ El corresponding to the map from 0 to 1 induces a map ile -4
Map([1]v, C). The two inclusions of E!, into [1]v and El then give a commutative triangle

Ile i Map([l]v, C)

toe x toe.

Lemma 4.2.1.13. The fibre of Map([lv, C)x,y at points x, y E toe is Map(I, C(x, y)).

Proof. The functor t: 8 -+ V given by tensoring with I is a strong monoidal colimit-
preserving functor, and therefore the induced map t.: Algo (SX) -4 AlgzoP (V®) has

{o.1} {01}

by Proposition 3.3.5.7 a right adjoint, given by u, where u: V® -+ X is a canonical lax
monoidal structure on the functor Map(I,-).

Thus Map([1]v,C)xy ~ Map([1]s,u,)xy. Since [1]s is the free S-o-category on the
graph having a single edge from 0 to 1 this is given by uC(x, y) ~ Map(I, C(x,y)). El

Definition 4.2.1.14. Suppose C is a V-oo-category and x,y are objects of C. We denote the
subspace of Map(I, C(x,y)) consisting of the components that are in the image of iCxy
under the induced map on fibres in the diagram above by Map(I, C(x, y))eq.

Proposition 4.2.1.15. The map iex~y -4 Map(I, C(x, y))eq is an equivalence.

Proof. Observe (by Proposition 3.3.5.7 again) that it suffices to prove this for the 8-co-
category u.C obtained by composing with the lax monoidal functor u ~ Map(I,-). Using
the identification of 8-oo-categories with Segal spaces, this therefore follows from the cor-
responding statement in that setting. The latter is a consequence of [Rez01, Theorem 6.2],
since a map I -+ C(x, y) is a "homotopy equivalence" in the sense of [Rez01, §551 if and
only if it extends to a map from El, by [Rez01, Proposition 11.1]) E

Proposition 4.2.1.16. Suppose C is a V-oo-category and a: I -+ e(x, y) is a morphism in e.
Then the following are equivalent:

(i) a is an equivalence (i.e. it extends to a functor El -+ C).

(ii) For all z E toC, the composite map

e(y,z) -+ (I,(y,z)) -+ ((x, y), e(y,z)) - C(x, z)

given by composing with a is an equivalence.
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(iii) For all z E toe, the composite map

C(z,x ) -+ (C(z,x), I) -+ (C(z,x ),C(x,y )) -+ (x, y)

given by composing with a is an equivalence.

Proof. We will show that (i) is equivalent to (ii); the proof that (i) is equivalent to (iii) is
similar.

Suppose (i) holds, and let &: El -+ C be an equivalence extending a. Composing with
the inverse equivalence from y to x gives an inverse to composition with a, since the com-
posite map is composing with the composite x -+ y -+ x, which is the identity.

Now suppose (ii) holds. Without loss of generality, we may assume that V® is pre-
sentably monoidal (by embedding in a presentably monoidal oo-category of presheaves in
a larger universe, if necessary); then a map El ~ tEj -+ C is adjoint to a map El -+ u.C
where u: V -+ 8 is again the lax monoidal functor given by Map(I,-). Clearly if (ii) holds
for a then the analogous condition holds for a considered as a morphism in u.C. It thus
suffices to show that (ii) implies (i) in the case where V is S. We again use the equivalence
between 8-oo-categories and Segal spaces; the map a is clearly a "homotopy equivalence"
in the sense of [RezOl, §5.5], and so extends to a map from El by [RezOl, Theorem 6.2]. E

4.2.2 Fully Faithful and Essentially Surjective Functors

In this subsection we introduce the notions offullyfaithful and essentially surjective functors
between enriched oo-categories, and prove their basic properties.

Definition 4.2.2.1. A V-functor is fully faithful if it is a Cartesian morphism in Algo (V)
with respect to the projection Algct(V) -4 S.

Lemma 4.2.2.2. A V-functor F: C -+ 'D is fully faithful if and only if the maps e(x,y) -

'D(Fx, Fy) are equivalences in V for all x, y in toC.

Proof. If f: X -+ to'D is a map of spaces, then a Cartesian morphism over f with target
D has source f*'D = 'D o A; in particular a Cartesian morphism induces equivalences
f*'D(x, y) -+ 'D(f(x), f(y)) for all x, y E X.

Conversely, suppose F: e -+D gives an equivalence on all mapping spaces. The func-
tor F factors as

F1

e (toF)*D 4 'D,

where F" is Cartesian. The morphism F' induces an equivalence on underlying spaces and
is given by equivalences C(x, y) -+ 'D(toF(x), toF(y)) for all x, y E toe. By Lemma 3.3.5.3 it
follows that F' is an equivalence in Alg o (V@) and so in Algi(V*). In particular F' is a

Cartesian morphism and hence so is the composite F ~ F" o F'.

Definition 4.2.2.3. A functor F: C - D is essentially surjective if the induced map tC -+ t'D

is surjective on 7to.

Lemma 4.2.2.4. A functor F: C - 'D is essentially surjective if and only if for every point
x E to'D there exists an equivalence El -+ D from x to a point in the image of toF.
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Proof. Since t.D is a groupoid object, the set rot'D is the quotient of 7rotoD where we iden-
tify two components of to'D if there exists a point of t1'D, i.e. an equivalence El -+ 'D,
connecting them. Thus F: C -+ 'D is essentially surjective if and only if every point of toD
is connected by an equivalence to a point in the image of toF. 0

Proposition 4.2.2.5. If f: C -4 D is fully faithful and essentially surjective, then the in-
duced map if: tC -+ 'D is an equivalence.

Proof. The simplicial spaces i.e and t.'D are groupoid objects by Corollary 4.2.1.10, and
since f is essentially surjective the map if is by definition an effective epimorphism in
the oo-topos 8 (since these are precisely the maps of spaces that are surjective on 7o). By
[LurO9b, Remark 1.2.17] it therefore suffices to show that the diagram

Ile : i'D

I 1I
toe x toe I o'D x to'D

is a pullback square. To prove this we must show that given points x,y E toC the map
of fibres ix, y -+ i' Dfxfy is an equivalence. By Proposition 4.2.1.15, we can identify this
with the map Map(I, C(x, y))eq -+ Map(I,'D(fx,fy))eq. Since f is fully faithful the map
C(x,y) -+ 'D(fx,fy) is an equivalence in V, hence Map(I, C(x,y)) -+ Map(I,'D(x,y)) is an
equivalence in 8. To complete the proof it therefore suffices to show that

Map(I, C(x,y))eq - Map(I,'D(fx, fy))eq

is surjective on components - i.e. if a: I -+ 'D(fx,fy) is an equivalence then it is the
image of an equivalence P: I -+ C(x,y). We know that a is the image of some map P, so
it suffices to show that such a p must be an equivalence. By Proposition 4.2.1.16 the map
P is an equivalence if and only if for every z E toC the map e(z, x) -+ C(z, y) induced by
composition with p is an equivalence. Consider the diagram

e(z,x) - 'D(fz,fx)

I I
C(z,y) e C(fz,fy).

Since f is fully faithful and a is an equivalence, all morphisms in this diagram except the
left vertical map are known to be equivalences. By the 2-out-of-3 property this must also
be an equivalence for all z, so P is indeed an equivalence. E

Corollary 4.2.2.6. A fully faithful functor F is essentially surjective if and only if IF is an
equivalence.

Corollary 4.2.2.7. A fully faithful and essentially surjective functor between complete V-
co-categories is an equivalence in Alg(V0).
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Proof. This follows by combining Lemma 4.2.2.2, Proposition 4.2.2.5, and Lemma 3.3.5.3.

Proposition 4.2.2.8. Fully faithful and essentially surjective functors satisfy the 2-out-of-3
property.

Proof. Suppose we have functors F: e -+ D and G: 'D -+ E of V-oo-categories. There are
three cases to consider:

(1) Suppose F and G are fully faithful and essentially surjective. The map Algo (V0) -+
8 is a Cartesian fibration, so composites of Cartesian morphisms are Cartesian and
thus G o F is fully faithful. Since 7rotF and rotG are surjective, so is their composite
7ot(G o F), thus G o F is also essentially surjective.

(2) Suppose G and G o F are fully faithful and essentially surjective. Then F is also Carte-
sian, i.e. fully faithful, by [LurO9a, Proposition 2.4.1.7]. By Proposition 4.2.2.5 the
maps tG and t(G o F) are equivalences, hence so is iF, thus F is also essentially surjec-
tive.

(3) Suppose F and G o F are fully faithful and essentially surjective. By Proposition 4.2.2.5
the maps F and t(G o F) are equivalences, hence so is tG, thus G is essentially sur-
jective. To see that G is fully faithful, we must show that for any x,y in toG the map
D(x,y) -+ E(Gx, Gy) is an equivalence. But since F is essentially surjective there
exist objects x', y' in toC and equivalences Fx' ~ x, Fy' ~ y in D. Then we have a
commutative diagram

'(Fx', Fy') > E(GFx', GFy')

'D(x, y) E E(Gx, Gy),

where the vertical maps are equivalences by Proposition 4.2.1.16. The top horizontal
map is also an equivalence, since in the commutative triangle

C(x',y') E (GFx', GFy')

D(Fx', Fy')

the other two maps are equivalences. Thus by the 2-out-of-3 property the bottom
horizontal map 'D(x,y) -± E(Gx, Gy) is also an equivalence, hence G is fully faithful
by Lemma 4.2.2.2. 0

Remark 4.2.2.9. Under the equivalence Algot(8x) ~ Sego, the fully faithful and essen-
tially surjective functors correspond to the Dwyer-Kan equivalences in the sense of [RezOl,
§7.4].
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4.2.3 Local Equivalences

In this subsection we assume that V® is a presentably monoidal co-category, so that the
co-category Algit(VO) is presentable by Proposition 4.1.3.8.

Definition 4.2.3.1. The local equivalences in Algo (V0) are the elements of the strongly sat-
urated class of morphisms generated by the map so: El -+ EO.

Lemma 4.2.3.2. The following are equivalent, for a V-co-category C:

(i) C is complete.

(ii) e is local with respect to El -+ EO, i.e. the map Map(EO, C) -4 Map(El, C) is an
equivalence.

(iii) For every local equivalence A -+ 'B, the induced map Map(B, C) -4 Map(A, C) is an
equivalence.

Proof. (i) is equivalent to (ii) by Corollary 4.2.1.11, and (ii) is equivalent to (iii) by [LurO9a,
Proposition 5.5.4.15(4)]. O

Definition 4.2.3.3. Write CatZ for the full subcategory of Alg t(V) spanned by the com-
plete V-co-categories.

Lemma 4.2.3.4. The inclusion Cat, -+ Algot(V) has a left adjoint, which exhibits Cati, as

the localization of Algt (V) with respect to the local equivalences.

Proof. The o-category Algc (V®) is presentable by Proposition 4.1.3.8, and the local equiv-
alences are generated by a set of maps. The existence of the left adjoint therefore follows
from [Lur09a, Proposition 5.5.4.15(4)] and Lemma 4.2.3.2. O

Lemma 4.2.3.5. The co-category Cats is presentable.

Proof. This follows from [LurO9a, Proposition 5.5.4.15(3)]. L

Lemma 4.2.3.6. Cat is equivalent to Cat,.

Proof. Under the equivalence Algt (8X) ~ Sego of Corollary 4.1.4.4, the subcategory Cati
corresponds to the subcategory of complete Segal spaces. By Theorem 2.2.1.9 this is equiv-
alent to Cato. E

Lemma 4.2.3.7. The map id 0 so: El 0 El -4 El 0 E0 ~ El is a local equivalence.

Proof. It suffices to prove this when V® is 8X. We can identify El 9 E1 with E10 1 1 x ~o,'}

E3 ; under this identification the map El 0 El -+ El is induced by the map {0, 1,2,3} -+

{0, 1} sending 0,1 to 0 and 2,3 to 1. Using the equivalence

E3 ~ E10'1 UIE{i' E{1 ,21 
IE{2} E{ 2,3}

this corresponds to so U id U so: El IIEO El lEo El -4 E0 lEo El llo EO, which is clearly in
the strongly saturated class generated by s .

Lemma 4.2.3.8. If C is a complete V-co-category, then the V-co-category CE' is also com-
plete.
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Proof. We need to show that the natural map to-E t 11 CE is an equivalence. Using the
adjunction between cotensoring and tensoring we can identify this with the map

Map(El, C) -+ Map(E1 0 El, C)

induced by composition with id 0 sO. This map is an equivalence since C is complete and
id O sO is a local equivalence by Lemma 4.2.3.7.

4.2.4 Categorical Equivalences

In this subsection we study categorical equivalences between enriched oo-categories, which
are functors with an inverse up to natural equivalence. We show that categorical equiva-
lences are always local equivalences as well as fully faithful and essentially surjective.

Definition 4.2.4.1. Suppose A and 3 are V-co-categories and f,g: A -+ 3 are V-functors.
A natural equivalence from f to g is a functor H: A 0 El -+ 3 such that H o (id 9 d') ~_ f
and H o (id 0 dO) ~ g. We say that f and g are naturally equivalent if there exists a natural
equivalence from f to g.

Definition 4.2.4.2. A functor f: A -+ 3 is a categorical equivalence if there exists a functor
g: 3 -+ A and natural equivalences from f o g to ido and from g o f to idA. Such a functor
g is called a pseudo-inverse of f.

Proposition 4.2.4.3. Categorical equivalences are fully faithful and essentially surjective.

Proof. Suppose f: C -+ D is a categorical equivalence, and let g: D -4 e be a pseudo-
inverse with natural equivalences p: e 9 El - e from g o f to ide and V: D O El -4 'D
from f o g to idD. For each object x in toD the natural equivalence V supplies an equiv-
alence between x and fg(x), which is in the image of f, so f is essentially surjective by
Lemma 4.2.2.4.

By Lemma 4.2.2.2, to prove that F is fully faithful it suffices to show that for all x, y in
toC the induced map a: e(x, y) -+ 'D(fx, fy) is an equivalence.

The natural equivalence op supplies an equivalence p: C(gfx,gfy) ~+ C(x,y) and a
commutative diagram

e(x,y) > e(gfx,gfy)

id

C(x,y).

The top map is the composite

e(x,y) + D(fx,fy) - C(gfx,gfy),

and so we get that o - o a ~- id.

From f o we likewise get an equivalence e: D(fgfx, fgfy) ~+ 'D(fx, fy) and a com-
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mutative diagram

D(fx,fy) ) 'D(fgfxfgfy)

D(fx,fy).

where the top map is the composite

D(fx,fy) - e(gfx,gfy) -+'(fgfx,fgfy),

and so e o o ~ id. Moreover, we have a commutative square

e(gfx,gfy) > D(fgfx,fgfy)

e(xy) a D(fx,fy),

and so we get t o o -y e o 9 o - ~ id. This shows that o 7 is an inverse of a, and so a
is an equivalence in V. ]

Corollary 4.2.4.4. A categorical equivalence between complete V-oo-categories is an equiv-
alence.

Proof. Combine Proposition 4.2.4.3 and Corollary 4.2.2.7.

Lemma 4.2.4.5. Categorical equivalences satisfy the 2-out-of-3 property.

Proof. Suppose we have functors f: e -4 ) and f': 'D -4 F There are three cases to
consider:

(1) Suppose f has a pseudo-inverse g with natural equivalences op: C ® El -+ e and
V: 'D 0 El -+ 'D, and f' has a pseudo-inverse g' with natural equivalences 0': 'D 0
El -4 D and p': F 9 El - E. Then g o 0' o (f 9 id) is a natural equivalence from
gg'f'f to gf. Combining this with 4 gives a map (e 0 El) HeoE (e 9 El) -+ C. But
tensoring with C preserves colimits, and El UE El ~ E2 by Theorem 4.2.1.8, so we
get a map C 0 E2 -4 e. Composing with id 0 dl: C 0 El -- C 09 E2 we get a natural
equivalence from gg'f'f to the identity. Using the same argument we can also com-
bine f' o o (g' 0 id) and ip' to get a natural equivalence from f'fgg' to the identity.
Thus f'f is a categorical equivalence with pseudo-inverse gg'.

(2) Suppose f has a pseudo-inverse g with natural equivalences 4: C 0 El -+ C and
V: 'D El -4 D, and f'f has a pseudo-inverse h with natural equivalences a: e 0
El --+ C and P: F 0 El -+ F. We will show that fh is a pseudo-inverse of f'. Since # is
a natural equivalence from f'(fh) to id it remains to construct a natural equivalence
from fhf' to id. Let i denote ip o (id 0 E,), where i-: {0, 1} -+ {0, 1} is the map that
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interchanges 0 and 1 (thus i is V considered as a natural equivalence from id to fg).
Combining fhf' o 0, f o at o (g 0 id) and p we get a map

D 0 E3 ~ 'D 9 El UDD 9 El U 'D (9 El - D

and composing with 'D 9 E10,3 } - 'D @9 E3 we get the required natural equivalence.

(3) Suppose f' has a pseudo-inverse g' with natural equivalences 0': C 0 El -4 C and
p': 'D 9 El -4 D, and f'f has a pseudo-inverse h with natural equivalences &: C 0
El C C and p: 80 El - 8. We will show that hf' is a pseudo-inverse of f. Since a is
a natural equivalence from (hf')f to id it remains to construct a natural equivalence
from fhf' to id. Let 0' denote 0 o (id 0 E,); combining 0' o (fhf' 0 id), g' o 0 (f'o
id) and 0' we get a map

') 9 E3 ~ 'D 9 El 11 'D 9 El Hl D (9 El -+ D,

and composing with 'D 0 E{0 ,3} -+ 'D 0 E3 we get the required natural equivalence.

Our next goal is to prove that categorical equivalences are local equivalences; this will
require some preliminary results:

Lemma 4.2.4.6. Suppose f: S -+ T is a map of sets. Then Ef : Es -+ ET is a categorical
equivalence.

Proof. It suffices to prove this in 8 x. First suppose f is surjective; let g: T e-+ S be a section
of f. We claim that Eg is a pseudo-inverse to Ef. We have Ef o Eg ~ Efog ~ id, so it suffices
to construct a natural equivalence Es x El ~ Esx{o, 1} -4 Es from Egof to the identity. This
is given by Eh where h: S x {0, 1} -+ S sends (s, 0) to gf(s) and (s, 1) to s.

By the dual argument the result holds if f is injective. By Lemma 4.2.4.5 we can there-
fore conclude that it holds for a general f. 0

Lemma 4.2.4.7. Suppose VO is a presentably monoidal co-category and f: A -4 '3 is a
categorical equivalence of 8-oo-categories. Then for any V-o-category C the induced map
C3 

-+ CA is a categorical equivalence.

Proof. A natural equivalence A 0 El -+ A induces a natural equivalence CA 0 E1 -+ CA by
taking the adjoint of the induced map CA -+ CAOE' (CA)E'. E

Lemma 4.2.4.8. If C is a complete V-oo-category, then the natural map C -CE CE' is an
equivalence.

Proof. The map El -+ E0 is a categorical equivalence by Lemma 4.2.4.6, so it follows by
Lemma 4.2.4.7 that C -+ CEI is also a categorical equivalence. But CE' is complete by
Lemma 4.2.3.8, and a categorical equivalence between complete objects is an equivalence
by Corollary 4.2.4.4. E

Proposition 4.2.4.9. For any V-oo-category C, the map id 9 so: C 0 El -+ C 0 E0 ~ C is a
local equivalence.
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Proof. We must show that for any complete V-oo-category 'D the map

Map(C,'D) - Map(( 9 El,'D)

is an equivalence. Using the adjunction between tensoring and cotensoring with El, we
see that this map is equivalent to the map

Map(e,'D) -+ Map(C,'DE')

given by composing with the map 'D + 'DE' induced by s0 . This is an equivalence by
Lemma 4.2.4.8. l

Corollary 4.2.4.10. Suppose 'D is a complete V-oo-category; then for any V-oo-category C
we have IMap(C 9 E*,'D)I ~ Map(C,'D).

Proof. Since tensoring preserves colimits, and E' is a cogroupoid object, the simplicial
space Map(C 0 E*, D) is a groupoid object. By Lemma 2.1.10.4 it therefore suffices to
show that Map(C 0 E, D) -4 Map(C 9 E, D) is an equivalence, which is true by Proposi-
tion 4.2.4.9. 0

Lemma 4.2.4.11. Suppose D is a complete V-co-category. Then for any V-co-category C the
two maps

(id 0 do)*, (id 9 dl)*: Map(C 0 El,'D) -+ Map(e, D)

are homotopic.

Proof. Clearly (id 0 sO) o (id 0 di)*: Map(C, D) -+ Map(e, D) is homotopic to the identity
for i = 0,1. But by Proposition 4.2.4.9, the map (id 0 sO) is a local equivalence, hence
(id 0 so)* is an equivalence since D is complete. Composing with its inverse we get that
(id 0 d)* ~ (id 9 d')*. D

Theorem 4.2.4.12. Categorical equivalences are local equivalences.

Proof. Suppose f: C -+ D is a categorical equivalence with pseudo-inverse g: D -4 C and
natural equivalences q: C 9 El -+ C from gf to id and V: D 0 El -+ D from fg to id. If E
is a complete V-o-category we must show that the map

f*: Map(C, E) -+ Map('D, F)

is an equivalence of spaces. By Lemma 4.2.4.11 we have equivalences

g*f* ~p* o (id 9 dl)* ~p* o (id 0 dO)* ~ id,

f*g* ~ ** o (id 0 dl)* ~ o (id 0 do)* ~ id.

Thus g* is an inverse of f*, and so f* is indeed an equivalence. E

4.2.5 Completion in the Presentable Case

We will now construct an explicit completion functor, and use this to deduce that the local

equivalences are precisely the fully faithful and essentially surjective functors. We again
assume that V® is a presentably monoidal oo-category.
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Definition 4.2.5.1. If C is a V-oo-category, the cosimplicial S-co-category E* gives a simpli-
cial V-co-category CE. We let C denote its geometric realization E

Theorem 4.2.5.2. The natural map C -* C is both a local equivalence and fully faithful and
essentially surjective. Moreover, the V-oo-category C is complete.

Proof. The functors E" -+ E' induced by maps [n] -± [m] in a are categorical equivalences
by Lemma 4.2.4.6, so the induced functors CEm _, CE" are also categorical equivalences by
Lemma 4.2.4.7. These functors are therefore all fully faithful and essentially surjective by
Proposition 4.2.4.3, and local equivalences by Theorem 4.2.4.12. Local equivalences are by
definition closed under colimits, so it follows that the map C -+ C is a local equivalence.

By Lemma 3.2.8.7 we know that AlgDop (V@) ~ lim Algop (V®). Moreover, the maps

CEn - CEm in the simplicial diagram CE- are fully faithful, i.e. Cartesian. By Proposi-
tion 2.1.5.12 it follows that the induced maps CE" -+ C are also Cartesian. In particular, the
map e -+ C is fully faithful, and since to preserves colimits this functor is also essentially
surjective.

It remains to prove that C is complete, i.e. that the map toC - t1 C is an equivalence.
We have a commutative diagram

toCE*I to

where the top horizontal morphism is an equivalence since to preserves colimits. The left
vertical map is also an equivalence: We have equivalences tICEn ~ Map(E1 0 En, C) ~

tueE1, So I, 1E' I _ ICE', and under this equivalence the left vertical map corresponds to

that induced by the natural map C -+ CE1; we know that this is fully faithful and essentially
surjective, and so induces an equivalence on I by Proposition 4.2.2.5. In order to show that
C is complete, it thus suffices to show that the bottom vertical map i CE*1 -4 t1 C is an
equivalence.

To see this we consider the commutative diagram

Ito E Oix2 - toCx2

Here the bottom horizontal map is an equivalence, so to prove that the top horizontal
map is an equivalence it suffices to show that this is a pullback square. Since C -4 C is
essentially surjective, to see this we need only show that for all (x, y) E £oCx2 the induced
map on fibres iE C(x,y) - (,y) is an equivalence.

Since CEM _, CE" is fully faithful and essentially surjective for all [n] -4 [m] in A0 P, the
map tCE -+ eEn is an equivalence by Proposition 4.2.2.5. Since the groupoid objects t.CEm
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and t.eE" are effective, the diagram

I I
( 0CE) x 2 n ( 0CE")X2

is therefore a pullback square. In other words, the natural transformation 11CE -+ (L0OE*) X2

is Cartesian. By [LurO9a, Theorem 6.1.3.91 the extended natural transformation of functors
(AOP)> -+ 8 that includes the colimits is also Cartesian. Thus we have a pullback square

I I> 1 E*

to 1x 2  E' x2.

In particular, for (x,y) E 10(!X2 the induced map on fibres tlC(x,y) -+ |tieE*|(x'y) is an

equivalence. Since C -+ C is fully faithful and essentially surjective, the map Lie(x,y) ~+
tie(x,y) is also an equivalence. By the 2-out-of-3 property it then follows that I eE* I (xy)

tie(xy) is an equivalence too. This completes the proof that e is complete. O

Remark 4.2.5.3. The proof that C is complete closely follows Rezk's proof in [RezOl, §14]
of the equivalent statement for Segal spaces.

Corollary 4.2.5.4. The following are equivalent, for a functor f : C -+ 'D of V-oo-categories:

(i) f is a local equivalence.

(ii) f is fully faithful and essentially surjective.

Proof. By Theorem 4.2.5.2 we have a commutative diagram

e f D

I I
f

where the vertical maps are both local equivalences and fully faithful and essentially sur-
jective, and C and D are complete.

Since local equivalences form a strongly saturated class of morphisms, it follows from
the 2-out-of-3 property that f is a local equivalence if and only if f is a local equivalence,
i.e. if and only if f is an equivalence, since C and 'D are complete.

Fully faithful and essentially sujective functors also satisfy the 2-out-of-3 property,
by Proposition 4.2.2.8, so f is fully faithful and essentially surjective if and only if f is.
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But by Corollary 4.2.2.7 f is fully faithful and essentially surjective if and only if it is an

equivalence, since e and D are complete. Thus f is a local equivalence if and only if f is
an equivalence, which is true if and only if f is fully faithful and essentially surjective. El

Corollary 4.2.5.5. Cat! is the localization of Alg a(VO) with respect to the fully faithful
and essentially surjective functors.

Remark 4.2.5.6. We might expect that the fully faithful and essentially surjective functors
also coincide with the categorical equivalences, but this turns out not to be the case when
we allow spaces of objects. To see this, first observe that if f: A -+ 3 is a categorical
equivalence, then for every V-oo-category e the map f,: IMap(e 0 E', A) I -+ IMap(C 0
E*,3)I is surjective on ro: suppose g: 3 -+ A is a pseudo-inverse to f, then given a

functor p: e -+ 3 the natural equivalence from f o g to id gives a natural equivalence
from f o g o 4 to (, so up to natural equivalence 0 is in the image of f,. Now if 3 -4

B is a categorical equivalence where 3 is complete, then by Corollary 4.2.4.10 we have

|Map(e 0 E*,3)| ~ Map(e, 3), and since Map(e 0 E*,3) is a groupoid object the map
Map(e,3) -4 IMap(e 0 E*, 3)I is surjective on 7o. Thus Map(e, 3) -+ Map(e, 3) is
surjective on no.

Now suppose to3 is discrete and t3 is not; then there clearly exists for some n > 0
a map from the n-sphere S" -+ t3 that does not factor through to3. But we have a V-
oo-category S" 0 E0 such that Map(S" 0 E,3) ~ Map(S", to3) - so if 3 - 3 were a
categorical equivalence then Map(S", to3) -+ Map(S", t3) would have to be surjective
on 7o, a contradiction. This shows that completion maps 3 -3 cannot be categorical
equivalences in general.

4.2.6 The Non-Presentable Case

We now show that we can invert the fully faithful and essentially surjective functors of
V-oo-categories for a general large monoidal oo-category V@ by restricting to complete V-
co-categories:

Theorem 4.2.6.1. Let V@ be a large monoidal co-category. The inclusion of the full subcat-

egory of complete V-oo-categories CatZ '-> Alg a(VO) has a left adjoint that exhibits Cat!

as the localization of Alg~at(VO) with respect to the fully faithful and essentially surjective
functors.

Proof. Let T(V) be the oo-category of presheaves of large spaces on V. By [Lurl, Proposi-
tion 6.3.1.101 there exists a monoidal structure on '(V) such that the Yoneda embedding

j: V -+ (V) is a strong monoidal functor. Let Algat(T(V)®) be the (very large) o-category
(V)

of large categorical algebras in T(V); this is a presentable oo-category, and writing Cat,(

for its subcategory of complete '(V)-oo-categories we know from Corollary 4.2.5.5 that the

inclusion Cat,, -+ Algcat((V)) has a left adjoint L that exhibits Cat, as the localiza-
tion with respect to the fully faithful and essentially surjective functors.

If e is in the essential image of the fully faithful inclusion

Alg at(V) -+AlcaT(V()),

then the natural map C -+ Le is fully faithful and essentially surjective. But then toLC ~ te,

so toLe is an (essentially) small space, and the mapping objects in Le are in the essential
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image of V in T(V). Thus LC is in the essential image of Algca(V), and so the functor Z
restricts to a functor L: Algt (V) -+ CatZ, since CatZ is equivalent to the full subcategory

of Cato spanned by objects in the essential image of Algca(V). ]

4.2.7 Properties of the Localized Category

In this subsection we prove that the oo-category Cat inherits the naturality properties of

Algta(V*).

-----.O,1ax
Proposition 4.2.7.1. Let Algo, -+ Mon, be a coCartesian fibration corresponding to

the functor Alga(-). Define Enr. to be the full subcategory of Algot whose objects are
.---- O,1 ax

the complete enriched co-categories. Then the restricted projection Enrm -4 Mono is a
Igo------O,laxcoCartesian fibration, and the inclusion Enr. -+ Algca admits a left adjoint over Mono,

Proof. The result follows from Proposition 2.1.8.13; to apply this we must show that if

0: V0 -+ W@ is a lax monoidal functor, then 4, preserves fully faithful and essentially sur-
jective functors. It is clear that 0, preserves fully faithful functors. To see that it preserves
essentially surjective ones we note that if two points of toC are equivalent as objects of C
then they are also equivalent as objects of p,,e, since the map Iw -+ 'p(Iv) induces a functor

El -+ 0,E1 .

Lemma 4.2.7.2. Suppose V® and W* are monoidal oo-categories compatible with small
colimits, and F: e* - 'DO is a strong monoidal functor such that F[11: V -+ W preserves

colimits. Then the induced functor F,: Cats -4 Cat. preserves colimits.

Proof. The functor F, is the composite

g L CaW
Cat, <-4 Algat(VO) L$ Algca(W@) 0 Cato,

where Lw is the completion functor for W, and we write for the functor on Algt,
induced by composition with F for clarity. We know that FEIg preserves local equivalences,

so FAgLve and F*'e are locally equivalent for all e; it follows that Lw o F o Lv -

o If a e, is a diagram in Catv then its colimit is Lv(colim C,) where this
colimit is computed in Algo (VO). Thus we have

F, (colim e,,) ~LwFF Lv (colim e,,) ~- LwF*'lg(colim e,,)

~ colimLwF<I(6 ) ~ colim F0.6.

Proposition 4.2.7.3. The restriction of the functor Catoo to MonoP'r factors through PrL.

Proof. This follows from Lemma 4.2.7.2 and Lemma 4.2.3.5.

Proposition 4.2.7.4. Cat.- is a lax monoidal functor with respect to the Cartesian product
of monoidal oo-categories.
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Proof. Given a V-oo-category 3, a W-co-category C and a V x W-o-category A we clearly
have

Map(A, 3 Z C) ~ Map(7ri,,A, 3) x Map(nr2,,A, C),

where ni and nr2 denote the projections from V x W to V and W, respectively. Moreover
7i,,Ex EX for all X, so

.( 3 0 C) ~ t.3 x t.C.

It follows that the complete enriched co-categories are closed under the exterior product in

Algt, and so the definition of the lax monoidal structure on the functor Alg (-) implies

that Catt) is lax monoidal. 0

Corollary 4.2.7.5. If V® is an En-monoidal co-category, then the oo-category Cat, inherits
an En_.-monoidal structure.

Proof. By Proposition 3.2.4.5 we can identify En-monoidal co-categories with En-algebras
in Cat,. Since En ~ (E 1 )@" by [Lurl1, Theorem 5.1.2.2], we have

FEO F gF FO O x F 0
Mono ' ~ Alg 0(Al (Cat')) ~Ag (Alg'D,(Cat')) ~-Ag (Mon ).

Thus En-monoidal co-categories are equivalent to En _1 -algebras in monoidal o-categories.

Since CatH is lax monoidal, it takes En-ralgebras in monoidal oo-categories to En-r
algebras in Cato, i.e. En-rmonoidal oo-categories.

Proposition 4.2.7.6. Suppose V is an oo-category with finite products. Then the natural
symmetric monoidal structure on Catv is Cartesian.

Proof. This follows from Proposition 4.1.3.10, since the inclusion

CatZ <-+ Algot(VX )

preserves limits. 0

Definition 4.2.7.7. If V® is an En-monoidal co-category, we can iterate the enrichment
functor k times for k < n to obtain co-categories Cat(>A) of (oo, k)-categories enriched in V.

Proposition 4.2.7.8. When restricted to Mono'r, the functor Catdi is lax monoidal with
respect to the tensor product of presentable co-categories.

Proof. This follows because the complete enriched oo-categories are closed under the exte-
rior product, as in the proof of Proposition 4.2.7.4.

4.3 Some Applications

In this section we describe two simple applications of our machinery: In §4.3.1 we show
that enriching in a monoidal (n, 1)-category gives an (n + 1,1)-category, and use this
to prove the Baez-Dolan stabilization hypothesis for k-tuply monoidal n-categories, and
in §4.3.2 we prove that there is a fully faithful embedding of associative algebras in a
monoidal oo-category into pointed enriched oo-categories.
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4.3.1 The Baez-Dolan Stabilization Hypothesis

Recall that an (n, 1)-category is an oo-category where the mapping spaces are (n - 1)-types,
i.e. there are no non-trivial k-morphisms for k > n. Our first goal in this subsection is
to prove that enriching in an (n, 1)-category gives an (n + 1,1)-category of enriched oo-
categories.

Remark 4.3.1.1. Suppose V® is a monoidal oo-category such that VI is an (n, 1)-category.

Then clearly V® is also an (n, 1)-category. The phrase monoidal (n, 1)-category is thus un-
ambiguous.

Proposition 4.3.1.2. Suppose V® is a monoidal (n, 1)-category and C is a V-oo-category.
Then the space tC is an n-type.

Proof. Let s: no(toC) - toe be a section of the projection toe -+ rotoC. Then the Cartesian
morphism s*C -4 C is fully faithful and essentially surjective, and so induces an equiv-
alence t(s*C) -+ te by Proposition 4.2.2.5. Without loss of generality we may therefore
assume that the space toC is discrete.

The simplicial space i.e is a groupoid object by Corollary 4.2.1.10. By [LurO9a, Corol-
lary 6.1.3.20] this groupoid object is effective, and so we have a pullback diagram

I1le toe

toe > e.

If x is a point of toC, we get a pullback diagram

11ieJx} 'toe

-} te,

where tCx} is the fibre of tiC -+ toC at x. Since the map toe -4 tC is surjective on compo-
nents, by considering the long exact sequence of homotopy groups associated to this fibre
sequence we see that tC is an n-type provided the spaces tiClx{ are (n - 1)-types for all
x G toe.

The space tiC{xq is a union of components of tie, so it suffices to show that sie is
an (n - 1)-type. Since toe is discrete, i.e. a 0-type, by [Lur09a, Lemma 5.5.6.14] this is
equivalent to proving that the fibres of the map tie -4 toe x toe are (n - 1)-types. But
by Proposition 4.2.1.15 we can identify the fibre tiCxy at (x,y) E loex,2 with the space
Map(I, C(x, y)),q that is the union of the components of Map(I, C(x,y)) corresponding to
equivalences. Since V is by assumption an n-category, the space Map(I, e(x,y)) is neces-
sarily an (n - 1)-type, hence so is the union of any subset of its components. E

Theorem 4.3.1.3. Suppose V® is a monoidal (n, 1)-category. Then Cate is an (n + 1,1)-
category.
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Proof. We need to show that if C and 'D are complete V-oo-categories then the space

Mapcatv(C,'D) ~ Mapgo ,(V)(e,'D)

is an n-type. By Proposition 4.3.1.2, the space LoD - t'D is an n-type, hence so is the space
Maps(toC, LO'D). It then follows from [LurO9a, Lemma 5.5.6.14] that in order to prove that
MapAo (Ve) (C, D) is an n-type it suffices to show that the fibres of the map

Mapgo & (C,'D) -4 Maps(toC, to'D)

induced by the projection Algot (V) -+ 8 are n-types.

Since the projection Algt®(V®) -4 8 is a Cartesian fibration, by [Lur09a, Proposition
2.4.4.2] we can identify the fibre of this map at f: toC -4 tOD with

MapAlgop (v)(C fD)
toe

This space is the fibre of

Mapaa,(A*P x A', V) -4 Mapjop(A*P, V*) x Mapjp (A4PX, V®)

at (C,f*'D). Since n-types are closed under all limits by [LurO9a, Proposition 5.5.6.51,
it suffices to show that the spaces Map,(A0 "P,V0) and Mapop(A*Pe x Al,V®) are n-

types. Now these spaces are fibres of Map(A*P, V®) -+ Map(a*P, V®) and Map(A*P x

AlIV) -+ Map(A4P, V®), so by the same argument it's enough to show that these map-
ping spaces are n-types. But V® is by assumption an (n, 1)-category, so this holds by
[LurO9a, Proposition 2.3.4.18]. O

It follows that if V® is a symmetric monoidal (n, 1)-category, then Ek-algebras in Cat,
are equivalent to Ec-algebras for k large:

Corollary 4.3.1.4. Let V® be a symmetric monoidal (n, 1)-category. Then

(i) the map Ek -+ F*P induces an equivalence

AlgF0 (Cat!,) ~>4 AlgFo,(Cat a)

fork > n+1,

(ii) the stabilization map i: 1E, -+ E 1 (defined in [Lurl, §5.1.1]) induces an equiva-
lence

i*: Alg®E (Catl) -+ Alge (Cat o)

for k n +1.

Proof. (i) is immediate from [Lur1l, Corollary 5.1.1.7], and (ii) follows by the 2-out-of-3

property. 1

We end this subsection by observing that when V® is the monoidal coo-category of n-
categories, this yields the Baez-Dolan stabilization hypothesis, by the same proof as Lurie's
version for (n, 1)-categories [Lur09a, Example 5.1.2.3]. First we give the obvious definition
of (weak) n-categories using our machinery:
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Definition 4.3.1.5. The category Set of sets is a symmetric monoidal (1,1)-category. We
can therefore define oo-categories Catn := Catet,) of Set-(oo, n)-categories, i.e. (weak) n-
categories, as in Definition 4.2.7.7. Applying Theorem 4.3.1.3 inductively we see that Catn
is an (n + 1,1)-category. A k-tuply monoidal n-category is an Ek-algebra in Catn, i.e. an
Ek-monoidal n-category.

Corollary 4.3.1.6 (Baez-Dolan Stabilization Hypothesis). The stabilization map i: E@ -4

E* induces an equivalence

i*: AlgF® (Catx) -+ AlgFO (Catx)

fork > n + 2.

Proof. Apply Corollary 4.3.1.4 to Catn.

Remark 4.3.1.7. The Baez-Dolan stabilization hypothesis was originally stated by Baez
and Dolan in [BD95]. A version of it was proved by Simpson [Sim98], who showed that
for k > n +2 a k-tuply monoidal n-category can be "delooped" to a (k + 1)-tuply monoidal
n-category; the oo-categorical version above extends this by showing that this construction
gives an equivalence of oo-categories.

4.3.2 En-Algebras as Enriched (oo, n)-Categories

We now prove that the natural map from associative algebras in a monoidal oo-category V*
to pointed complete V-oo-categories is fully faithful; we then show by induction that the
same is true for the natural map from En-algebras to pointed complete V-(co, n)-categories.

Definition 4.3.2.1. We have a fully faithful inclusion

Algio,(V@) -4 Algoat

since Algiop(V@) is the fibre of Alg a(V@) at * in S. The unit of V® is the initial object
of Algo, (V®), so this functor factors through Algo( )Eo/- Composing this with the

localization functor we get a functor i: Algo,(V®) - (Cat )Eo.

Proposition 4.3.2.2. The functor i: Algio,(V@) -4 (Cat )Eo/ is fully faithful.

Proof. Let A and B be two ALP-algebras in V®. We have a fibre sequence

Map(CatZ),o(i(A),i(B)) -* Mapcatv(i(A),i(B)) -4 Mapcatv(E 0 ,i(B)).

Let B be the completion of B, regarded as a V-oo-category. Then we have equivalences

apd(i(A), i(B)) ~ MapAle

and

Macd(EO, i(B)) ~- MapAlge)(D B).
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The projection to: Algo (V*) -+ 8 gives a commutative diagram

Map yo) (A, B) : Map , (E, B)

Map,(*, toB) ' Map,(*, toZ)

where the right vertical map is an equivalence by Lemma 4.2.1.5 and the bottom horizontal
map is the identity, since E0 -4 A is the identity on t o. Thus we can identify the fibre
of the top horizontal map at the functor E0 -+ B corresponding to a point p: * -+ toB
with the corresponding fibre of the left vertical map, which is Map go (V.)(A, p*B) by
[LurO9a, Proposition 2.4.4.2].

Take p to be the underlying map of spaces of the completion functor B - B; since this
is fully faithful the induced map B -+ p*B is an equivalence, and in particular

Map go (VO) (A, B) -2 MapAgo ( (A, p*B).

Thus the map Maplo (V)(A,B) - Map(ca)o(i(A), i(B)) is also an equivalence, i.e. i

is fully faithful. E

Remark 4.3.2.3. A pointed V-oo-category e is in the essential image of the functor i if and
only if te is connected, since then the functor p*e -+ e induced by the chosen point p :
* -4 toe is fully faithful and essentially surjective, and p*e is a AOP-algebra. In other
words, A0P-algebras in V® are equivalent to V-oo-categories with a single object.

Definition 4.3.2.4. By Proposition 3.2.4.7, monoidal oo-categories are equivalent to E*-
monoidal co-categories, and AOP-algebras in a monoidal co-category are equivalent to E*-
algebras in the associated Eo-monoidal oo-category. Since E* @ E* ~ E*+n for all n, m
by [Lur11, Theorem 5.1.2.2], we get maps

Alg (V*) ~ Alg~® (Alg 1 (V)*) -4 Alg ((Catv) o).

We can identify (Cat!)Eao with AlgFO ((Cat.)*), so

Ag ((Cat V) ) Al (Algo ( (CatV ) )

~I_ Alg F ((Ctv )*)

~- Alg_ ((Cato)*).

Thus we have maps

AlgF. (V0) -+ AlgF. ((Cat) 0) - ... -+ AlgF ((Catv _1))*) - (CatV ,.

Applying Proposition 4.3.2.2 inductively, we get the following:

Corollary 4.3.2.5. Suppose V is an En-monoidal co-category. Then the composite functor

Alg F(V*) -4 (Catvg)Eo,
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is fully faithful.

4.4 Comparisons

Monoidal model categories are an important source of monoidal oo-categories. One of
our main goals in this section is to prove that if V is a nice monoidal model category,
then the homotopy theory of V-categories is equivalent to that of oo-categories enriched in
the monoidal oo-category associated to V. When the tensor product in V is the Cartesian
product, we will use the same method to show that the latter is also equivalent to the
homotopy theory of Segal categories enriched in V. Our other main result is that 8-(oo, n)-
categories are equivalent to n-fold Segal spaces.

In §4.4.1 we prove some technical results about oo-categorical localizations of fibrations
of categories, and in §4.4.2 we review some results on rectification of associative algebras
in monoidal model categories. Then we carry out the comparison with enriched categories
in §4.4.3 and the comparison with Segal categories in §4.4.4. Finally, in §4.4.5 we compare
8-(oo, n)-categories and n-fold Segal spaces.

Notation 4.4.0.6. In this section, if V is a model category we write V. for the associated
oo-category. This can be constructed as the localization NVCof[W 1 ] where VCof is the full
subcategory of V spanned by the cofibrant objects, and W is the class of weak equivalences
in V.

4.4.1 Fibrewise Localization

Suppose we have a functor of ordinary categories F: C -+ Cat together with a collection
of weak equivalences in each category F(c) that is preserved by the functors F(f). Then
we have two ways to construct an oo-category over C where these weak equivalences are
inverted: On the one hand we can invert the weak equivalences to get a functor C -4 Cato,
which corresponds to a coCartesian fibration F -+ C. On the other hand, if E -4 C is a
coGrothendieck fibration corresponding to F then there is a natural collection W of weak
equivalences in E induced by those in the fibres, and we can invert these to get an oo-
category E[W- 1]. Our main goal in this subsection is to prove that in this situation the
natural map E[W-1] -+ F is an equivalence of co-categories.

We will do this in two steps: first we show that the co-category E here is a fibrant
replacement in the coCartesian model structure on (SetA7)/NC for NE equipped with a
certain collection M of marked edges, and then we use an explicit model for E[W- 1] to
show that this, equipped with a natural choice of marked edges, is also weakly equivalent
to (NE, M). In addition, we will prove that when the weak equivalences in each category
F(c) come from a (combinatorial) model structure, then there is a (combinatorial) model
structure on E whose weak equivalences are the morphisms in W.

Let's explain the first step more precisely. Recall that a relative category is a category
C equipped with a collection of "weak equivalences", i.e. a subcategory W containing all
objects and isomorphisms. Write RelCat for the obvious category of relative categories; this
has been studied as a model for the theory of (oo, 1)-categories by Barwick and Kan [BK12].
The usual nerve functor from categories to simplicial sets extends to a functor L: RelCat -+
Set, that sends (C, W) to (NC, NW 1 ). In the model structure on SetA, a fibrant replacement
for L(C, W) is given by the oo-categorical localization of C that inverts the morphisms in
W (marked by the equivalences).
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In [Lur09a, §3.5.2] Lurie describes a right Quillen equivalence N+ from the projective
model structure on Fun(C, Set+) to the coCartesian model structure on (Sett )/NC. Given a
functor F: B -+ RelCat we therefore have two reasonable ways to construct a fibrant object
of (Set,)/NC:

(i) Find a fibrant replacement i for the functor LF: C -4 Set+, and then form N+F.

(ii) Construct a coGrothendieck fibration E -+ C associated to F, regarded as a functor
to categories, and write S for the collection of 1-simplices in NE that correspond to
composites of (fibrewise) weak equivalences and coCartesian morphisms. Then find
a fibrant replacement in (Set+)/Nc for (NE, S) -+ NC.

The precise statement of our first goal in this subsection is to prove that these give weakly
equivalent objects. We begin by reviewing the definition of the functor N+:

Definition 4.4.1.1. Let C be a category. Given a functor F: C -+ SetA, we define NcF to be
the simplicial set characterized by the property that a morphism A' -+ NcF, where I is a
partially ordered set, is determined by:

(1) a functor v: I -+ C,

(2) for every non-empty subset I C I with maximal element j, a map TI: Al -+ F(c-(j)),

such that for all subsets K C J 9 I with maximal elements k E K and j E J, the diagram

AK > F(o-(k))

I I1
Al >- F(o-(j))

commutes. This defines a functor Nc: Fun(C, SetA) -+ (SetA)/NC-

The functor Nc has a left adjoint, which we denote

13c: (SetA)/NC -+ Fun(C,SetA).

Proposition 4.4.1.2. Let 7r: E -+ C be a functor. Then cNE is isomorphic to the functor
O: C -4 SetA defined by c F4 NE/c.

Proof. We must show that there is a natural isomorphism Hom(NE, Nc(-)) 2 Hom(O,-);
we will do this by defining explicit natural transformations

p: Hom(O,,-) -+ Hom(NE,Nc(-))

and
V: Hom(NE,Nc(-)) -+ Hom(O,,-)

that are inverse to each other.
Given X: C -+ Set, and a natural transformation -q: , -+ X, define O(q): NE 4

NcX to be the morphism that sends a simplex o-: A' -+ NE (which we can identify with a
functor I -+ E) to the simplex of NcX determined by
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" the composite functor I -4 E -* C,

* for I C I with maximal element j, the composite Al -+ NE ,(G') 2* X(r(g'(j))).

Conversely, given a map G: NE -+ NcX of simplicial sets over NC, let p(G) be
the natural transformation O -+ X determined as follows: for c E C, the morphism
/(G)c: NEIc -4 X(c) sends a simplex o-: AI -4 NEIc, where I has maximal element i, to

the composite

A 4 X(7ra'(i)) X(c)

where

" T is the I-simplex determined by the image under G of the I-simplex a' of NE under-
lying o',

" f is the morphism 7r(o-(i)) -4 c in C from o-.

The remaining data in G o o- implies that this defines a map of simplicial sets NE/c -4 X(c),
and it is also easy to see that Vp(G) is natural in c.

Both 4 and V are obviously natural in X, and expanding out the definitions we see that
OV = id and opb = id, so we have the required natural isomorphism. O

Definition 4.4.1.3. Let C be a category. Given a functor F: C -+ Set+ we define N+F to be
the marked simplicial set (NcF, M) where F is the underlying functor C -4 SetA of F, and
M is the set of edges A' -4 NcF determined by

" a morphism f: c -4 c' in C,

" a vertex x E F(c),

e a vertex x' E F(c') and an edge F(f)(x) -4 x' that is marked in F(c').

This determines a functor N+: Fun(C, Set ) -+ (Sett)/NC-

The functor N+ has a left adjoint, which we denote j2.

Corollary 4.4.1.4. Let 7r: E -+ C be a functor, and let M be a set of edges of NE that
contains the degenerate edges. Then 3+ (NE, M) is isomorphic to the functor 0, defined
by c '-+ (NE/c, Mc), where Me is the collection of edges determined by e -+ e' in E and
7r(e) -+ 7r(e') -+ c in C such that 7r(e') = c and e -+ e' is in M.

Proof. We must show that there is a natural isomorphism

Hom ((NE, M) N+_) Hom (0,-)

Given X: C -+ SetA, with underlying functor X: C -4 SetA, and a morphism G: NE -4

NcX, it is immediate from the definitions that G takes an edge o-: e -4 e' of NE lying over
C -4 c' in C to a marked edge of N X if and only if P(G)c takes o-, regarded as an edge
of NE/c,, to a marked edge of X(c'). Thus the natural isomorphism Hom(NE,NcX) 2
Hom(O, X) of Proposition 4.4.1.2 identifies Hom((NE, M), NIX), regarded as a subset
of Hom(NE, NcX), with Hom(O, X), regarded as a subset of Hom(O,, X). O

Theorem 4.4.1.5 (Lurie, [Lur09a, Proposition 3.2.5.18]).
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(i) The adjunction ac -1 Nc is a Quillen equivalence between (SetA)/Nc equipped with
the covariant model structure and Fun(C,SetA) equipped with the projective model
structure.

(ii) The adjunction a+ -1 N+ is a Quillen equivalence between (Sett )/Nc equipped with
the coCartesian model structure and Fun(C, Set') equipped with the projective model
structure.

Recall that if C is an oo-category we write 04 for the marked simplicial set given by e
marked by the equivalences, and that if F -+ NC is a coCartesian fibration we write 8E for
the object of (SetA+) /NC given by F marked by the coCartesian morphisms.

Lemma 4.4.1.6. Let F: C -+ Cat be a functor. Write r: E -+ C for the coGrothendieck
fibration associated to F, so that E has objects pairs (c E C, x E F(c)) and a morphism

(c, x) -+ (d, y) in E is given by a morphism f: c -4 d in C and a morphism F(f)(x) -+ y in
F(d). Then:

(i) Nc(NF) -+ NC is isomorphic to N7r.

(ii) N+(NF) -4 NC is isomorphic to (NE)4 -+ NC.

Proof. It is clear from the definition of Nc that there is a natural isomorphism between n-
simplices of Nc(NF) and n-simplices of NE, which proves (i). From Corollary 4.4.1.4, an
edge of Nc+(NFP) is marked if it is given by f: c -+ c' in C, x E F(c) and F(f)(x) -+ x'
an isomorphism in F(c'). Under the identification with edges of NE, such edges precisely
correspond to the coCartesian edges. This proves (ii). ]

Proposition 4.4.1.7. Given F: C -+ RelCat, the counit map ecN+LF -+ LF is a weak
equivalence in Fun(C, Sets).

Proof. Since Fun(C,SetA) is equipped with the projective model structure, it suffices to
show that for all c E C the morphism +Nc+ LF(c) -+ LF(c) is a weak equivalence in Set+.
Let Fo be the underlying functor C -4 Cat, and let E -+ C be the canonical coGrothendieck

fibration associated to FO. Then by Lemma 4.4.1.6 we can identify N+NF with NE , and

so by Corollary 4.4.1.4 we can identify 3N+NF (c) with NE/c, marked by the set Mc of
coCartesian morphisms e -+ e' such that 7r(e') = C.

The adjunction + -l N+ is a Quillen equivalence, so since NF4 is fibrant and every

object of (Set+)/NC is cofibrant, the counit 3+N+NF -4 NF is a weak equivalence in
Fun(C, Set+). In particular, (NE1 , Mc) -+ NFo(c) is a weak equivalence.

Let M' be the set of edges of NE/c corresponding to weak equivalences in F(c). Then
we have a pushout diagram

(NE/c, Mc) >NFo (c)4

I I
(NE/c, Mc U M') > LF(c),

since both vertical maps are pushouts along HfeM, A' -4 HfEM, (Al). As the model struc-

ture on Set+ is left proper, it follows that (NE/c, Mc U M') -+ LF(c) is a weak equivalence.
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By Corollary 4.4.1.4 we can identify 3+N+LF(c) with the simplicial set NE/c, marked
by the set M" of morphisms e -+ e' with 7r(e') = c such that given a coCartesian factor-
ization e -+ 2 -+ e' the morphism e -+ e' is a weak equivalence in LF(c). The obvious
map (NE/c, Mc U M') -4 13N'LF(c) is therefore marked anodyne, since the edges in
M" are precisely the composites of edges in Me and M'. In particular this is also a weak
equivalence, and so by the 2-out-of-3 property the map a+N+LF(c) -4 LF(c) is a weak
equivalence, as required. O

Corollary 4.4.1.8. Given F: C -+ RelCat, let LF -+ F be a fibrant replacement in the pro-
jective model structure on Fun(C, Set+). Then N+ LF -+ N+P is a coCartesian equivalence
in (Set+A)/NC-

Proof. The adjunction jc -I N' is a Quillen equivalence, so since F is fibrant and every
object of (SetA ) /NC is cofibrant, the morphism N+LF -+ N+F is a weak equivalence if and
only if the adjunct morphism a+N+LF -+ F is a weak equivalence. This follows by the
2-out-of-3 property, since in the commutative diagram

a N+LF -LF

F

the morphism LF F F is a weak equivalence by assumption, and ac+N+LF -4 LF is a
weak equivalence by Proposition 4.4.1.7. E

Using Lemma 4.4.1.6 we can equivalently state this as:

Corollary 4.4.1.9. Given F: C -+ RelCat, suppose 7r: E -+ C is a coGrothendieck fibra-
tion corresponding to the underlying functor C -4 Cat. Let M be the set of morphisms
f : e -+ e' in E such that given a coCartesian factorization e -+ 7r(f) e - e', the morphism
7r(f)!e -4 e' is a weak equivalence in F(7r(e')). Then if LF -+ F is a fibrant replacement in
Fun(C, SetA ), there is a coCartesian equivalence (NE, M) -+ N+p.

Our next goal is to prove that, with F: C -+ RelCat and n: E -+ C as above, in-
verting the collection W of fibrewise weak equivalences in E gives a coCartesian fibration
E[W- 1] -4 C. As a corollary, we will also see that E[W-1] is the total space of the coCarte-
sian fibration associated to the functor obtained from F by inverting the weak equivalences
in the relative categories F(c). We will prove this result by analyzing an explicit model for
E [W- 1] as a simplicial category, namely the hammock localization. We now recall the defini-
tion of this, specifically the version defined in [DHKSO4, §35], and its basic properties:

Definition 4.4.1.10. A zig-zag type Z = (Z+, Z-) consists of a decomposition {1,...,n} =

Z+ II Z_. The zig-zag category ZZ is the category with objects zig-zag types and mor-
phisms Z -+ Z' given by order-preserving morphisms f: {1,..., n} -+ { 1,...,n'} such
that f(Z+) 9 Z' and f(Z_) C Z'_. If Z is a zig-zag type, the associated zig-zag category
|ZI is the category with objects 0,..., n and

*, i < j, k E Z+ for k = i +1,...,,
|Z|(iJ) = *, i;> j, k EZ _fork = j+1,...,Ii,

10, otherwise.
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This clearly gives a functor |-1: ZZ -+ Cat. If n is an odd integer, we abbreviate

(n) := ({2, 4,..., n - 1}, { 1, 3, ... , n})

and if n is an even integer we abbreviate

(n) := ({1,3,..., n - 1},{2,4,..., n}).

Definition 4.4.1.11. Suppose (C, W) is a relative category. For x, y E C and Z E ZZ
we define LwCz(x, y) to be the subcategory of Fun(IZ|, C) whose objects are the functors
F: IZI -+ C such that F(O) = x, F(n) = y, and F(i -+ (i - 1)) is in W for all i E Z_, and
whose morphisms are the natural transformations rq: F -4 G such that 1qo = idx, r7n = idy,
and ri is in W for all i. We write Z wCz(x, y) : NLWCz(x, y).

This construction gives a functor ZZP - Cat; we let LWC(x, y) -+ ZZ be the fibra-
tion associated to it by the Grothendieck construction. Using concatenation of zig-zags
we get a strict 2-category LwC with the same objects as C and with mapping categories
LwC(x, y); taking nerves, this gives a simplicial category ZwC whose mapping spaces are
LwC(x,y) := NLwC(x, y). This simplicial category is the hammock localization of (C, W).

Theorem 4.4.1.12 (Dwyer-Kan). Let (C, W) be a relative category. Then:

(i) The diagram

W ZLW

is a homotopy pushout square in simplicial categories.

(ii) If £wW -+ ZwW is a fibrant replacement in simplicial categories, then NIwW is a
Kan complex and NW -+ NLwW is a weak equivalence of simplicial sets.

Proof.

(i) This follows by combining [DHKSO4, Proposition 35.7], [DK80b, Proposition 2.2], and
[DK80a, §4.5] (observe that a cofibration in the model structure on simplicial cate-
gories with a fixed set of objects described in [DK80a, §7] is also a cofibration in the
model structure on simplicial categories).

(ii) It follows from [DK80a, §9.1] that £wW is a simplicial groupoid. If £wW -+ ZwW
is a fibrant replacement in simplicial categories, then NLwW is the nerve of a fibrant
simplicial groupoid, hence a Kan complex by [DK84, Theorem 3.3]. Let 0 denote
the left adjoint to the nerve of simplicial groupoids, as defined in [DK84, §3.1]; by
[DK84, Theorem 3.3] the morphism NW -+ NL wW is a weak equivalence if and only
if the adjunct ONW -+ LwW is a weak equivalence of simplicial groupoids. This
follows from [DK80a, §5.5], since this implies that the mapping spaces in both are the
appropriate loop spaces of NW. 0

Corollary 4.4.1.13. Let (C, W) be a relative category. Suppose ZwC -+ LwC is a fibrant

replacement in the model category of simplicial categories. Then

L(C,W) -4 NLwC
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is a weak equivalence in Set+.

Proof. We must show that for every co-category 'D, the induced map

Mapset (0, D ) -+ Mapst, (L (C, W),'D4)

is a weak equivalence of simplicial sets. Observe that

Mapse+ (L(C, W),'D1) ~ Mapct. (NC, D) XMapt (NWD) Mapcat (NW, D)

and Mapcat.(NW, 'D) ~ Map, (NW, 'D) ~ Mapcat. (NW, D), where NW -4 NW denotes
a fibrant replacement in the usual model structure on simplicial sets, so this is equivalent
to requiring

NW >NW

I I
NC - NwC

to be a homotopy pushout square. Theorem 4.4.1.12(i) implies that

NW >NCwW

I I
NC >NZwC

is a homotopy pushout square, since N is a right Quillen equivalence and all the objects are
fibrant. By Theorem 4.4.1.12(ii) we also have that NW -+ NLwW is a fibrant replacement
in the usual model structure on simplicial sets, so the result follows. 0

We now fix a functor F: C -+ RelCat, and let r: E -+ C be a coGrothendieck fibration
associated to the underlying functor C -4 Cat. We say a morphism f: x -+ y in E lying
over f: a -+ b in C is a weak equivalence if f is an isomorphism and fix -+ y is a weak
equivalence in F(b); write W for the subcategory of E whose morphisms are the weak
equivalences. Our goal is to show that the nerve of LwE -+ C is (equivalent to) a co-
Cartesian fibration. To prove this we need a technical hypothesis on the relative categories
F(c):

Definition 4.4.1.14. A relative category (C, W) satisfies the two-out-of-three property if given
morphisms r: A -+ B and s: B -4 C such that two out of r, s, s o r are in W, then so is the
third.

Definition 4.4.1.15. We say that a relative category C = (C, W) is a partial model category if
C satisfies the two-out-of-three property and C admits a three-arrow calculus, i.e. there exist
subcategories U, V C W such that

(i) for every zig-zag A' +- A 4 B in C with u E U, there exists a functorial zig-zag

A' 141 B' +- B with u' E U such that u'f = f'u and u' is an isomorphism if u is,
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(ii) for every zig-zag X 4 Y' +- Y in C with v E V, there exists a functorial zig-zag

X +- X' - Y with v' E V such that gv' = vg' and v' is an isomorphism if v is,

(iii) every map w E W admits a functorial factorization w = vu with u E U and v E V.

Remark 4.4.1.16. If M is a model category (with functorial factorizations), then the relative
category obtained by equipping M with the weak equivalences in the model structure is
a partial model category. Similarly, the relative categories obtained from the full subcate-
gories Mcof of cofibrant objects, Mfib of fibrant objects, and MO of fibrant-cofibrant objects
together with the weak equivalences between these objects are all partial model categories.
The term "partial model category" is taken from [BK], but we use the more general defi-
nition of [DHKS04, 36.1] since the more restrictive definition of Barwick and Kan does not
include what is for us the key example, namely Mcof for M a model category.

Theorem 4.4.1.17 (Dwyer-Kan). Suppose (C, W) is a partial model category. Then for ev-
ery pair of objects X, Y E C, the morphism CwC(,) (X, Y) -4 wC(X, Y) is a weak equiva-
lence of simplicial sets for all n > 3.

Proof. For n = 3 this is [DK80b, Proposition 6.2(i)]; the general case follows similarly. O

Proposition 4.4.1.18. Suppose F: C -+ RelCat is a functor such that F(C) is a partial model
category for each C E C. Let 0: A -4 B be a morphism in C, and let X and Y be objects
of EA and EB, respectively. Write ZwE(X,Y),p for the subspace of CwE(X,Y) over 0. The
morphism

'*: wEB(IP!X, Y) -4C wE(X, Y)O

given by composition with a coCartesian morphism 0: X -+ P! X is a weak equivalence of
simplicial sets.

Proof. It is easy to see that E is also a partial model category. The maps LwE(4) (X, Y)O -+
LWE(X, Y), and Lw(EB)( 4)(O'X, Y) -+ LwEB(P!X, Y) are therefore weak equivalences by
Theorem 4.4.1.17. Since composition with 0 gives a functor 0*: LB := LW(EB)( 4) (P!X, Y) -4
LwE(4) (X, Y)O =: L it therefore suffices to prove that this gives a weak equivalence upon
taking nerves.

We will prove this in two steps. Let Ll denote the full subcategory of L spanned by
objects

x~x0L*x 1A 2 X, f 3  
4

4 =X = X0 -f1 X1 __X2 X3 4 X4 = Y

such that Xi E EB for i > 1 and fi lies over idB in C for i > 2. Then 0* factors as

f lLB - L 4 L;

we will show that each of these functors gives a weak equivalence of nerves.
First we consider f: LB -+ L1, given by composition with 0. Define q: L -+ LB by

sending a zig-zag

X 4 Z +- Z' -+ Y' <- Y

in Ll to
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where X -+ O!X 4 Z is the coCartesian factorization of g (which exists since the other
maps lie over idB). Then it is clear that qf ~ id and fq ~ id, so f is an equivalence of
categories.

Next we want to define a functor p: L -+ L'. Given a zig-zag

X 94 Z' <- Z h y' +- y

in L, this lies over

A -+ C' +X C -4 B'4+ B

where -y and A are isomorphisms, since weak equivalences in E map to isomorphisms in
C. Thus the coCartesian maps Z' - y-Z' and B' - p 1 B' are isomorphisms, and our
zig-zag is isomorphic to the zig-zag

X -+ '1Z' <- Z 4 p Y' +-Y.

To define p we may therefore assume that p and - are identities, in which case p sends

X +Z' <-Z Y'+-Y

lying over

A ±+ C < C- B + B

to

X 4 V! Z' <-pZ -+ Y' +- Y

in Li; this is clearly functorial.
We wish to prove that p gives an inverse to i after taking nerves. It is obvious that

p o i ~ id, so it suffices to show that i o p is homotopic to the identity after taking nerves.
To see this we consider the natural transformation r/: L -+ Fun([1],LwE(6)(X,y)'P) that
sends our zig-zag to the diagram

X > Z' Z >P!Z idVZ )Y': Y

jid lid I I jid jid jid

X ) ZI o ~id Z / O ,4 Y

After composing with the inclusion LWE(6) (X, y) 0 -+ LwE(x, y),p the functor r/o is clearly
linked to the inclusion L -+ LwE(x, y),p by a sequence of natural transformations, and sim-
ilarly 1 is linked to the composite of i o p with this inclusion. Since natural transformations
give homotopies of the induced maps between nerves it follows from Theorem 4.4.1.17 that
the morphism on nerves induced by i o p is homotopic to the identity. This completes the
proof. E

Corollary 4.4.1.19. Suppose F: C -4 RelCat is a functor such that F(C) is a partial model
category for each C E C. There is an oo-category E[W- 1 ] such that L(E, W) -+ E[W-1] is a
weak equivalence in Set+, and E[W- 1] -+ NC is a coCartesian fibration.
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Proof. Let ZwE -+ ZwE -+ C denote a factorization of ZwE -+ C as a trivial cofibration
followed by a fibration in the model category of simplicial categories. Then (NZWE)
is a fibrant replacement for L(E, W) in SetA. By [LurO9a, Proposition 2.4.4.3] to prove that
NZ WE -+ NC is a coCartesian fibration it suffices to show that for each morphism f: c -4 d
in C and each x in Ec we have a homotopy pullback square of simplicial sets

ZwE(fix,y) LwE(x,y)

C(d,e) C(c,e)

for all e E C and y E Ee, where f: x -4 fix denotes a coCartesian morphism in E over f.
Since the inclusion of a point in a discrete simplicial set is a Kan fibration and the model

structure on simplicial sets is right proper, given g: d -+ e the fibres at {g} and {g o f} in
this diagram are homotopy fibres. To see that the diagram is a homotopy pullback square
it thus suffices to show that composition with f induces a weak equivalence

ZwE(fix,y)g -4 ZwE(x,y)gf

for all g: d -+ e. But by Proposition 4.4.1.18, in the commutative diagram

ZCwEe((gf)!x,y)

LwE(fix,y)g ZwE(x,y)gf

the diagonal morphisms are both weak equivalences, hence by the 2-out-of-3 property so
is the horizontal morphism. 0

Corollary 4.4.1.20. Suppose F: C -+ RelCat is a functor such that F(C) is a partial model
category for each C E C. Let LF -+ F be a fibrant replacement in Fun(C, Sett). Then there
is a weak equivalence L(E, W) -+ (NCP)4 in Set+.

Proof. The obvious map of categorical patterns p: 3eC -+ Tcoct induces a Quillen ad-
junction

pV (SetA)/NCh (SetA+)/NCO# P*

where p! is the identity on the underlying marked simplicial sets, and p* forgets the
marked edges that do not lie over isomorphisms in C. Since all objects are cofibrant, p!
preserves weak equivalences.

By Proposition 4.4.1.19, there exists a coCartesian fibration E[W- 1] -+ NC with a map
0: L(E,W) -4 E[W- 1]4 that is a weak equivalence in Set+. The map ip is also a weak
equivalence when regarded as a morphism in (SetA)/NCh, and since p! preserves weak
equivalences it is a weak equivalence in (Set)/ NC# as well.

Let M' be the set of edges of NE corresponding to coCartesian morphisms in E, and
let E[W-1]+ denote the marked simplicial set obtained from E[W-1] by also marking the
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morphisms in the image of M'. We have a pushout diagram

L(E, W) - E[W-

I I
(NE,NW1 U M') >E[W-]+,

as both vertical maps are pushouts along Hf EM, A' -4 HfEM,(A 1 ) . Since the model struc-

ture on (Set+)/NC is left proper, it follows that (NE,NW1 U M') -+ E[W-']+ is a weak
equivalence.

Let E[W- 1 ]* denote E[W- 1], marked by the coCartesian morphisms. These are com-
posites of equivalences and morphisms in the image of M', so E[W- 1 ]+ -+ E[W- 1 ]* is
marked anodyne. Moreover, NE marked by the composites of morphisms in NW1 and
M' is precisely NSF, so (NE, NW1 U M') -+ N+F is also marked anodyne. By the 2-out-
of-3 property we therefore have a weak equivalence N+LF -+ E[W-j]*. Thus E[W-1]*
and N+ are both fibrant replacements for N LF, and so are linked by a zig-zag of weak
equivalences between fibrant objects.

This implies that the underlying oo-categories E[W-1] and NcLF are equivalent, and
so by the 2-out-of-3 property the map (NE, W) -+ (NcF) is a weak equivalence in Set+,
as required. E

Although not strictly necessary for the applications we are interested in below, we will
now show that if the functor F: C -+ RelCat is obtained from a suitable functor from C to
combinatorial model categories, then the relative category structure on E considered above
also comes from a combinatorial model category.

Definition 4.4.1.21. Let ModCatR be the category of model categories and right Quillen
functors. A right Quillen presheaf on a category C is a functor COP -+ ModCatR. A right
Quillen presheaf is combinatorial if it factors through the full subcategory of combinatorial
model categories.

Definition 4.4.1.22. Suppose C is a K-accessible category. A right Quillen presheaf on C
is x-accessible if for each K-filtered diagram i: I -+ C with colimit x, the category F(x) is
the limit of the categories F(i(a)), and the model structure on F(x) is induced by those
on F(i(a)) in the sense that a map f: a -+ b in F(x) is a (trivial) fibration if and only if
F(ga)(f) is a (trivial) fibration in F(i(a)) for all a E I, where g, is the canonical morphism
i(a) -+ x. We say a right Quillen presheaf F on an accessible category C is accessible if there
exists a cardinal K such that C and F are -accessible.

Proposition 4.4.1.23. Suppose C is a complete and cocomplete category and F is a right
Quillen presheaf on C. Let 7r: E -+ C be the Grothendieck fibration corresponding to
F. Then there exists a model structure on E such that a morphism 0: x -4 y with image

f: a -+ b in C is

(W) a weak equivalence if and only if f is an isomorphism in C and the morphism fix -4 y
is a weak equivalence in F(b).

(F) a fibration if and only if x -+ f*y is a fibration in F(a).
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(C) a cofibration if and only if fix -+ y is a cofibration in F(b).

Moreover, if C is a presentable category and F is an accessible and combinatorial right
Quillen presheaf, then this model structure on E is combinatorial.

Remark 4.4.1.24. If f : a -+ b is an isomorphism in C, then f* = F(f) is an isomorphism of
model categories with inverse fi. Thus if 4: x -+ y is a morphism in E such that f = 7r(p)

is an isomorphism in C, then fix - y is a weak equivalence in Eb if and only if x -+ f*y is
a weak equivalence in Ea.

Remark 4.4.1.25. This model category structure is a particular case of that constructed by
Roig [Roi94] (though he does not consider the combinatorial case), but we include a proof
for completeness.

Proof. Limits in E are computed by first taking Cartesian pullbacks to the fibre over the
limit of the projection of the diagram to C, and then taking the limit in that fibre. Since all
the fibres Ex have limits, it is therefore clear that E has limits. Similarly, since each functor
0* for 4 in C has a left adjoint, and each of the fibres Ex has all colimits, it is clear that E
has colimits.

To show that E is a model category we must now prove that the weak equivalences
satisfy the 2-out-of-3 property, and the cofibrations and trivial fibrations, as well as the
trivial cofibrations and fibrations, form weak factorization systems. We check the 2-out-
of-3 property first: Suppose we have morphisms f: x -+ y and g: y -+ z in E lying over
f: a -+ b and g: b -+ c in C. If two out of the three morphisms f, g and gf are weak equiv-
alences, it is clear that f and g must be isomorphisms. Thus g! is an isomorphism of model
categories, and g!fix -+ gry is a weak equivalence in Ec if and only if fix -+ y is a weak
equivalence in Eb. Combining this with the 2-out-of-3 property for weak equivalences in
Ec gives the 2-out-of-3 property for E.

We now prove that the cofibrations and trivial fibrations form a weak factorization
system:

(1) Any morphism has a factorization as a cofibration followed by a trivial fibration:
Given f: x -+ y in E lying over f: a -+ b in C, choose a factorization fix -+ z -+ y of
fix -+ y as a cofibration followed by a trivial fibration in Eb. Then by definition x -* z
is a cofibration and z -+ y is a trivial fibration in E.

(2) A morphism that has the left lifting property with respect to all trivial fibrations is a
cofibration: Suppose f: x -+ y, lying over f: a -4 b in C, has the left lifting prop-
erty with respect to all trivial fibrations. Then in particular there exists a lift in all
diagrams

x - x

I I I
y - y'

where x' -+ y' is a trivial fibration in Eb. By the universal property of coCartesian
morphisms, this clearly implies that fix -+ y has the left lifting property with respect
to trivial fibrations in Eb, and so is a cofibration in Eb. Thus j is a cofibration.
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(3) Cofibrations have the left lifting property with respect to trivial fibrations: Suppose
f: x -+ y, lying over f: a -4 b in C, is a cofibration, and g: x' -4 y', lying over
g: a' - b', is a trivial fibration. Given a commutative diagram

x & ) x/

fJ
19

lying over

S a a'

fl I9
b - b'

p

we must show there exists a lift y -+ x'. Since g is a trivial fibration, g is an isomor-
phism. Pulling back along g-1 and pushing forward along ga = pf and p gives a
diagram

x A pfix >(g-1)*x' x'

Here pfix -+ p9 y is a cofibration in Ey7 since fix -+ y is a cofibration in Eb and #! is
a left Quillen functor, and (g-1 )*x' -+ (g-l)*g*y = y is a trivial fibration in E, since
x - g*y is a trivial fibration in Ea, and (g-l)* is a right Quillen functor. Thus there
exists a lift p!y -+ (g-l)*x' which gives the desired lift y -+ x'.

(4) A morphism that has the right lifting property with respect to all cofibrations is a
trivial fibration: Suppose g: x' -+ y', lying over g: a' -+ b' in C, has the right lifting
property with respect to all cofibrations. Then in particular there exists a lift in all
diagrams

x - x

I I
where x -4 y is a cofibration in Ea,. By the universal property of Cartesian mor-
phisms, this clearly implies that x' -+ g*y' has the right lifting property with respect
to cofibrations in Ea', and so is a trivial fibration in Ea,. On the other hand, there exists
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a lift in the diagram

x' x'

gx'

and projecting this down to C we see that g must be an isomorphism. Thus g is a
trivial fibration in E.

The proof that trivial cofibrations and fibrations form a weak factorization system is dual
to that for cofibrations and trivial fibrations, so we omit the details.

This completes the proof that E is a model category. Now suppose the right Quillen
presheaf F is combinatorial and accessible. It follows from [MP89, Theorem 5.3.4] that the
category E is accessible, and the functor 7r is accessible, thus E is a presentable category
since we already proved that it has small colimits.

Let K be a cardinal such that C is K-accessible and Ex is K-accessible for each K-compact
object x in C. For x E C, let Ix and Jx be sets of generating cofibrations and trivial cofibra-
tions for Ex. Let I and J be the unions of Ix and Jx, respectively, over all -compact objects
x E C; then I and J are sets.

Suppose a morphism f: x -+ y, lying over f: a -4 b in C, has the right lifting property
with respect to the morphisms in J; then x -+ f*y is a fibration in Ea: To see this let K -+ C,
a - a., be a K-filtered diagram of K-compact objects with colimit a, and let 7Y: a. -+ a be
the canonical morphism. Then 'y*x -+ y*f*y has the right lifting property with respect to
a set of generating trivial cofibrations in Ea., and hence this is a fibration in Ea.. Since the
right Quillen presheaf F is K-accessible, this implies that x -+ f*y is a fibration in Ea. This
means f is a fibration in E, so I is a set of generating trivial cofibrations.

Similarly, if f has the right lifting property with respect to the morphisms in I, then
x -+ f*y is a trivial fibration in Ea. To find a set of generating cofibrations we consider
also the set I' of morphisms 0 -+ 0c and 0 c][c -4 0c where c is a K-compact object of
C and Oc denotes the initial object of Ec. We claim that if f: x -4 y in E, with image
f: a -+ b in C, has the right lifting property with respect to the morphisms in I', then f
is an isomorphism in C. To prove this it suffices to show that for every object c E C the
map f,: Homc(c, a') -4 Homc(c, b') induced by composition with f is a bijection; since
C is K-presentable it is enough to prove this for c a K-compact object. Since f has the right
lifting property with respect to 00 -+ Oc and every morphism c -+ b induces a morphism
Oc -+ y, there exists a lift in the diagram

0 > a

, {f

c -- b

for every map c -+ b; this shows that f. is sujective. Moreover, given two morphisms
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c -+ a such that the composites c -* b are equal, we get a lift in the diagram

c II c a

f

since f has the right lifting property with respect to Ocnc -+ Oc; thus the two morphisms
c -+ a must be equal and so f, is injective. It follows that if a morphism in E has the right
lifting property with respect to the union 111 ' then it is a trivial fibration, so I I ' is a set
of generating cofibrations for E. Hence E is a combinatorial model category. [

Remark 4.4.1.26. Let F be a right Quillen presheaf on a category C, and let E -+ C be a
coGrothendieck fibration associated to the underlying functor to categories. Write G for
the associated "left Quillen presheaf" obtained by passing to left adjoints, and let GC: C -+
RelCat be the functor to relative categories obtained by restricting to cofibrant objects.
Then the full subcategory Ecof of cofibrant objects in E, with the model structure defined
above, is the total space of the coGrothendieck fibration associated to Gcof, and the weak
equivalences in ECof are precisely those considered above.

4.4.2 Rectifying Associative Algebras

In [Lur1l, §4.1.4] Lurie proves a rectification result for associative algebras: if V is a nice
symmetric monoidal model category, then the co-category of oo-categorical associative al-
gebras in V., i.e. the co-category of algebras for the non-symmetric oo-operad AOP, is
equivalent to that associated to the model category of (strictly) associative algebras in V
(constructed by Schwede and Shipley [SSOO]). This is proved by showing that both are
equivalent to the oo-category of algebras for the free associative algebra monad on V.. We
would like to use the same idea to show that the co-category associated to the model cat-
egory Catx(V) of V-categories with a fixed set X of objects is equivalent to AlgOP(V.);
to do this we need a generalization of Schwede and Shipley's results to the case of non-
symmetric monoidal model categories. Luckily this generalization has been carried out by
Muro [Mur1l] as part of his work on model structures for algebras over non-symmetric
operads. We will now review this case of Muro's work, and then observe that they allow
the technical parts of Lurie's proof to work exactly as in [Lur11].

First we recall an observation of Schwede and Shipley on model structures for algebras
over monads:

Definition 4.4.2.1. Let T be a monad on a model category C. We say that T is an admissible
monad if there exists a model structure on the category Alg(T) of T-algebras where a
morphism is a weak equivalence or fibration if and only if the underlying morphism in C
is a weak equivalence or fibration.

Write FT: C ; Alg(T): UT for the associated adjunction. If C is a combinatorial model
category with sets I and I of generating cofibrations and trivial cofibrations, we say that T
is combinatorially admissible if it is admissible and the model structure on Alg(T) is combi-
natorial with FT(I) and FT(J) as sets of generating cofibrations and trivial cofibrations.
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Lemma 4.4.2.2 (Schwede-Shipley, [SSOO, Lemma 2.3]). Suppose C is a combinatorial model
category and T is a filtered-colimit-preserving monad on C, and let J be a set of generating
trivial cofibrations for C. If every morphism in the weakly saturated class generated by
Fr(J) is a weak equivalence in C then T is combinatorially admissible.

Remark 4.4.2.3. Since weak equivalences in C are closed under retracts and transfinite
composites, the weakly saturated class generated by FT(J) will be contained in the weak
equivalences provided the pushout of any morphism in FT(J) along any morphism in
Alg(T) is a weak equivalence.

Definition 4.4.2.4. Let C be a biclosed monoidal category. If f: A -4 B and g: A' -4 B' are

morphisms in C, let fLg be the induced morphism

A 0 B' IIAOA' B 0 A' -+ B 0 B'.

Definition 4.4.2.5. Let C be a model category equipped with a biclosed monoidal structure.
We say that C is a monoidal model category if fLg is a cofibration whenever f and g are both
cofibrations, and a trivial cofibration if either f or g is also a weak equivalence.

Definition 4.4.2.6. Suppose C is a monoidal model category. Let U be the set of morphisms
in C of the form fiD ... [Ifn where each fi is either a trivial cofibration or of the form
0 -+ Xi for some Xi E C, with at least one fi being a trivial cofibration. We say that C
satisfies the monoid axiom if the weakly saturated class G generated by U is contained in
the weak equivalences in C.

Remark 4.4.2.7. If C is symmetric monoidal, then this is equivalent to the corresponding
statement where U consists of morphisms of the form f 0 idx with f a trivial cofibration.
This is the original form of the monoid axiom, due to Schwede and Shipley.

We can now state the special case of Muro's results on algebras over non-symmetric
operads that we will make use of:

Theorem 4.4.2.8 (Muro [Murl, Theorem 8.6]). Suppose C is a combinatorial biclosed
monoidal model category satisfying the monoid axiom. Write Alg(C) for the category
of associative algebra objects of C and F: C - Alg(C) : U for the free algebra functor and
forgetful functor. Let f: X -4 Y be a morphism in C and g: F(X) -+ A be a morphism in
Alg(C). If

F(X) >F(Y)

A - B

is a pushout diagram in Alg(C), then there is a sequence of morphisms in C

A = Bo -- B1 -B 2 --

such that B = colimt Bt and 't is a pushout of

H H k---...Elks
n>1 Sc{1,...,n}

|S|=t
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where

k =f i E S

0 -+ A, i t S.

Corollary 4.4.2.9. Suppose C is a combinatorial biclosed monoidal model category satis-
fying the monoid axiom. Then the free associative algebra monad on C is combinatorially
admissible.

Proof. By Remark 4.4.2.3 it suffices to show that if f: X -4 Y is a trivial cofibration in C
and g: F(X) -+ A a morphism in Alg(C), and

F(X) >)F(Y)

gjg

is a pushout diagram in Alg(C), then f' is a weak equivalence in C. By Theorem 4.4.2.8,
the morphism f' is a transfinite composite of pushouts of morphisms 4t that are clearly
contained in the class U from Definition 4.4.2.6, so f' is contained in the weakly saturated
closure U. Since C satisfies the monoid axiom, this implies that f' is a weak equivalence in
C. 0

This allows us to generalize the key technical result [Lurn1, Lemma 4.1.4.13] to non-
symmetric monoidal categories:

Definition 4.4.2.10. A model category is tractable if it is combinatorial and there exists a set
of generating cofibrations that consists of morphisms between cofibrant objects.

Lemma 4.4.2.11. Suppose C is a left proper tractable biclosed monoidal model category
satisfying the monoid axiom and I is a small category such that NI is sifted. Then the
forgetful functor U,: Alg(C). -4 C. preserves NI-indexed colimits.

The proof is almost the same as that of [Lurl1, Lemma 4.1.4.13], but we include it for
completeness:

Proof. By [Lur1l, Proposition 1.3.3.11, Proposition 1.3.3.12] it suffices to show that the
forgetful functor U preserves homotopy colimits indexed by I. Regard the categories
Fun(I, AlgM(C)) and Fun(I, C) as model categories equipped with the projective model
structures, let C: Fun(I,C) -+ C and CAig: Fun(I,Alg(C)) -+ Alg(C) be colimit func-
tors, and let Ul: Fun(I, Alg(C)) -+ Fun(I, C) be given by composition with U. Since NI
is sifted, there is a canonical isomorphism of functors a: C o UI -~ U o CAIg. We need
to prove that this isomorphism persists after deriving all the relevant functors. Let LC
and LCAig be left derived functors of C and CAIg; then a induces a natural transforma-

tion R: LC o U1 -+ U o LCAjg; we wish to prove that & is a natural weak equivalence. Let
A: I -+ Alg(C) be a projectively cofibrant functor; we must show that the natural map

LCU'(A) -+ U(LCAig(A)) 2 U(CAgg(A)) L C(U'A)

is a weak equivalence in C.
Let's call an object X E Fun(I, C) good if
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(i) the object X(i) is cofibrant in C for all i E I,

(ii) the colimit C(X) is cofibrant in C,

(iii) the natural map LC(X) -+ C(X) is a weak equivalence in C, i.e. the colimit of X is
also a homotopy colimit.

To complete the proof it suffices to show that UIA is good whenever A is a projectively
cofibrant object of Fun(I, Alg(C)).

Let's say a morphism f: X -4 Y in Fun(I, C) is good if

(i) the objects X and Y are good,

(ii) the map X(i) -+ Y(i) is a cofibration for all i E I,

(iii) the map C(f): C(X) -4 C(Y) is a cofibration in C.

We now make the following observations:

(1) Good morphisms are stable under transfinite composition: Given an ordinal a and
a direct system of objects {XP},4, of Fun(I, C) such that for every 0 < p < t the

map colim{X7},<p -+ XP is good, then the induced map X0 -+ X := colim{XP}p<
is good. The only non-obvious point is to show that the object X is good. For this
we observe that X is a homotopy colimit of the system {XP} by (u) and C(X) is a
homotopy colimit of {C(XP)} by (ii), and recall that homotopy colimit diagrams are
stable under homotopy colimits.

(2) Suppose

ffI'
is a pushout diagram in Fun(I, C) such that f is good and the object X' is good. Then
f' is also good: Again the only non-obvious point is to show the object Y' is good.
The hypotheses imply that the diagram is a homotopy pushout square, and similarly
C(Y') is a homotopy pushout of C(Y) with C(X') over C(X), so it follows that Y' is
good since homotopy colimit diagrams are stable under homotopy colimits.

(3) Let G: I -+ C be a constant functor whose value is a cofibrant object of C. Then
G is good, since NI is weakly contractible, using [Lur1l, Proposition 1.3.3.11] and
[Lur09a, Proposition 5.5.8.7].

(4) Every projectively cofibrant object of Fun(I, C) is good, and every projective cofibra-
tion between projectively cofibrant objects is good.

(5) If X and Y are good, then so is X 9 Y: The cofibrant objects of C are closed under
tensor products, and because NI is sifted, [Lur1l, Proposition 1.3.3.111 gives a chain
of isomorphisms in hC

LC(X ® Y) -- LC(X) ®9 LC(Y) - C(X) ® C(Y) c C(X 0 Y).
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(6) Let f: X -+ X' be a good morphism, and let Y be a good object. Then f 9 idy is good:
Condition (i) follows from (5), condition (ii) follows because tensoring with each Y(c)
preserves cofibrations, since Y(c) is cofibrant, and condition (iii) holds by the same
argument applied to C(Y), since C commutes with tensor products.

(7) Let f: X -+ X' and g: Y -+ Y' be good morphisms. Then fOg is good. Condition
(ii) holds since C is a monoidal model category, as does (iii) since C commutes with
pushouts and tensor products. Then (i) holds by combining (5), (6), and (2).

(8) Every retract of a good object is good: this follows since cofibrations and weak equiv-
alences are closed under retracts.

By assumption the model category C is left proper and tractable, which implies that the
projective model structure on Fun(I, C) is also tractable. Using the small object argument
this implies that for every projectively cofibrant object A E Fun(I, Alg(C)) there exists a
transfinite sequence {AP}p<,, such that

(a) A0 is an initial object,

(b) A is a retract of A',

(c) if A < a is a limit ordinal, then AA '= colim{AP}p<x,

(d) for each p < a there is a pushout diagram

F(X') F(f) iF(X)

I I
A - AP+1

where f is a projective cofibration between projectively cofibrant objects of Fun(I, C).

By (b) and (8) to prove that U'(A) is good it suffices to prove that U'(A") is good. We will
show by transfinite induction that for each -y p a the induced morphism

u7,p: U'(A7) -+ U'(AP)

is good. If # = 0 this holds since U1(AO) is good by (a) and (3). If p is a non-zero limit
ordinal, this follows from (c) and (1). It therefore suffices to consider the case where p =

p' + 1 is a successor ordinal. Moreover, we may suppose -y = p': if -y < p' then u,,p =
up,p o u,,, and composites of good morphisms are good by (1), while if ^y > p' then we

must have -r = p and we are reduced to proving that U'(AP) is good, which will follow
from up,,p being good. Invoking (d) we thus need to prove that if

F(X') F(f) F(X)

I I
V
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is a pushout diagram where f: X' -+ X is a projective cofibration between projectively
cofibrant objects of Fun(I, C) and U'B' is good, then U'(v) is good. By Theorem 4.4.2.8 the
morphism UI(v) can be identified with a transfinite composite of morphisms ipt: Bt_ 1 -4
Bt; by (1) it suffices to show that each Pt is good. But Pt is a pushout of

n>1 SC{1,...,n}
|Si=t

and since Bo = U(B') is good applying (2) inductively it suffices to prove that Vt is good.
It is clear that an arbitrary coproduct of good morphisms is good, so by (7) to see this it
suffices to show that each morphism k is good, which is true since this is either f, which
is good by (4), or 0 -4 B', which is good since B' is good. [

Remark 4.4.2.12. Applying the more general version of Theorem 4.4.2.8 actually proved
in [Murl], the same proof clearly implies, for example, that if C is a left proper tractable
simplicial biclosed monoidal model category satisfying the monoid axiom, O is a small
simplicial non-symmetric operad, and I is a small category such that NI is sifted, then the
forgetful functor Algm(C). -+ C,. preserves NI-indexed colimits.

Proposition 4.4.2.13. Suppose C is a left proper tractable biclosed monoidal model cate-
gory satisfying the monoid axiom. Then the natural map

Alg(C) -4 Algo(C*)

is an equivalence.

Proof. We apply [Lurl, Corollary 6.2.2.141 as in the proof of [Lurl, Theorem 4.1.4.4]: We
have a commutative diagram

Alg(C)O. Algo (C @)

Then we observe:

(a) The oo-category Alg(C). is presentable by [Lur1l, Proposition 1.3.3.9], and the oo-

category Alg%,(CO) is presentable by Corollary 3.3.5.5 since C. is presentable by
[Lurl 1, Proposition 1.3.3.9] and the induced tensor product on C. preserves colimits
in each variable by [Lurl, Lemma 4.1.4.8].

(b) The functor U' admits a left adjoint F' by Theorem 3.3.4.6, and Um admits a left adjoint
F. since it arises from a right Quillen functor.

(c) The functor U' is conservative by Lemma 3.3.5.3 and preserves sifted colimits by
Proposition 3.3.5.2.

(d) The functor U, is conservative by the definition of the weak equivalences in Alg(C),
and preserves sifted colimits by Lemma 4.4.2.11.
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(e) The canonical map U' o F' -+ Um o F, is an equivalence since both induce, on the
level of homotopy categories, the free associative algebra functor A 1- 1>o C@" by
Proposition 3.3.4.9.

The hypotheses of [Lurl, Corollary 6.2.2.14] thus hold, which implies that the morphism
in question is an equivalence. 0

4.4.3 Comparison with Enriched Categories

Our goal in this subsection is to show that the homotopy theory of categories enriched in
a nice monoidal model category V is equivalent to the homotopy theory of oo-categories
enriched in the monoidal co-category associated to V. More precisely, we will prove that
the oo-category obtained from the category Cat(V) of small V-categories by inverting the
homotopically appropriate version of fully faithful and essentially surjective functors is
equivalent to the co-category Cato of small V, 0.- oo-categories. We will do this in three
steps: first we apply the results of §4.4.2 to get an equivalence between the co-category
associated to a model structure on the category Catx(V) of V-categories with a fixed set of

objects X and the oo-category Algo (V.) of Aop-algebras. Next, using the results of §4.4.1,

we see that this induces an equivalence between the oo-category associated to a certain

model structure on Cat(V) and the co-category Algo (V)et of categorical algebras in
V, whose spaces of objects are sets. Finally, we complete the comparison by showing that

inverting the fully faithful and essentially surjective functors in Alg o(VO)set is equivalent

to inverting them in Algo (VO).
If V is a biclosed monoidal category and X is a set then it is well-known that there is a

monoidal structure on Fun(X x X, V), given by

(F 9 G)(x,y) = HF(x,z) 9 G(z,y),
zEX

such that an associative algebra object in Fun(X x X, V) is precisely a V-category with
objects X. This monoidal structure is well-behaved:

Proposition 4.4.3.1 (Muro [Murl, Proposition 10.31). If V is a monoidal model category
satisfying the monoid axiom, then so is Fun(X x X, V) for all sets X.

We can thus get a model structure on the category Catx(V) of V-categories with fixed
set of objects X:

Corollary 4.4.3.2. If V is a left proper tractable biclosed monoidal model category satis-
fying the monoid axiom, then there is a combinatorial model category structure on the
category Catx(V) such that a morphism is a fibration or weak equivalence if and only if
its image in Fun(X x X, V) is. Moreover, if I is a small category such that NI is sifted then
the forgetful functor Catx(V), -4 Fun(X x X, V) preserves NI-indexed colimits.

Proof. Apply Corollary 4.4.2.9 and Lemma 4.4.2.11 to Fun(X x X, V) equipped with the
monoidal structure described above, so that associative algebras are V-categories with set
of objects X. C

The co-category associated to this model category is equivalent to the oo-category of
A* -algebras in V,:
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Proposition 4.4.3.3. Suppose V is a left proper tractable biclosed monoidal model cate-
gory satisfying the monoid axiom, and let X be a set. The natural map r/x: Catx (V)o -+

Algop (V2) is an equivalence.

Proof. This follows by exactly the same argument as that in the proof of Proposition 4.4.2.13,
since the free associative algebra monad on Fun(X x X, V) is the same as the free AZ-
algebra monad by Proposition 3.3.4.9. L

Using Proposition 4.4.1.23 we can combine these fibrewise model structures to get a
model structure on the category Cat(V) of small V-categories:

Proposition 4.4.3.4. Suppose V is a left proper tractable biclosed monoidal model category
satisfying the monoid axiom. Then there is a model structure on the category Cat(V) of
small V-categories such that a morphism F: C -+ D is a weak equivalence if and only
if F is a bijection on objects and the induced morphism C(x, y) -+ D(Fx, Fy) is a weak
equivalence in V for all x, y e ob C, and a fibration if and only if C(x, y) -+ D(Fx, Fy) is a
fibration in V for all x,y E ob C.

We say that a functor F: C - D of V-categories is weaklyfullyfaithful if for all objects
x, y E C the morphism C(x, y) - D(Fx, Fy) is a weak equivalence in C; the weak equiva-
lences in this model structure on Cat(V) are thus the weakly fully faithful functors that are
bijective on objects. We therefore write Cat(V)'M for Cat(V) equipped with this model
structure.

The map r/x: Catx(V). - Algop (V2) is natural in X, so it induces a natural trans-

formation of functors Set - Set+. Applying Corollary 4.4.1.20 we get the following com-

parison of "algebraic" homotopy theories:

Theorem 4.4.3.5. The natural transformation q induces a functor

Cat(V) -* Alg'o (V®)se

and this is an equivalence.

The weakly fully faithful functors that are bijective on objects are clearly not the right
weak equivalences between V-categories - just as for ordinary categories the equiva-
lences are the functors that are fully faithful and essentially surjective, here they should
be the functors that are weakly fully faithful and essentially surjective up to homotopy, in
the following sense:

Definition 4.4.3.6. Let V be a monoidal model category. Then the projection V -+ hV to
the homotopy category is a monoidal functor; this therefore induces a functor Cat(V) -+
Cat(hV). We say a functor of V-categories is homotopically essentially surjective if its image
in Cat(hV) is essentially surjective.

Weakly fully faithful and homotopically essentially surjective functors are often called
DK-equivalences; they can also be described as the functors of V-categories that induce
equivalences of hV-categories.

Our next goal is to show that the co-category obtained by inverting the weakly fully
faithful and homotopically essentially surjective functors in Cat(V), which we will denote
by Cat(V) [FFES- 1], is equivalent to the oo-category Cat - of Vw-enriched oo-categories.
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Remark 4.4.3.7. In many cases there is a model structure on Cat(V) where the weak equiv-

alences are the weakly fully faithful and homotopically essentially surjective functors; see
[LurO9a, BM12, Sta12] for general results on such model structures (and see [BM12, §1] for
a historical discussion). If this model structure exists, then Cat(V)[FFES-1] is equivalent
to the co-category associated to this model category.

The weakly fully faithful and homotopically essentially surjective functors in Cat(V)
clearly correspond to the fully faithful and essentially surjective functors in Alg' (VW)set-
Theorem 4.4.3.5 therefore implies the following:

Proposition 4.4.3.8. Suppose V is a left proper tractable biclosed monoidal model cate-
gory satisfying the monoid axiom. Then Cat(V) [FFES-1] is equivalent to the localization

Algt(VO)set[FFES- 1 ] of Alg o(VO)set with respect to the fully faithful and essentially
surjective functors.

To prove our desired comparison result it therefore suffices to show that inverting the

fully faithful and essentially surjective functors in Alg%,(VO)set is equivalent to inverting

them in the co-category Alg O(VO) of all categorical algebras. This is true for all monoidal
co-categories:

Proposition 4.4.3.9. Suppose V* is a monoidal co-category. The inclusion

i: Algt(V*)set -+ Alg (V®)

induces an equivalence Alg t(V*)set[FFES-1] ~4 Cat. after inverting the fully faithful
and essentially surjective functors.

Proof. Considering 8 as the co-category associated to the usual model structure on sim-
plicial sets, we get a functor j: SetA -+ 8 that exhibits 8 as the localization of SetA with

respect to the weak equivalences. Let Algo (V*)A be the co-category defined by the pull-
back square

0 
it

Algt(V@)A > Algt(V*)

SetA . 8.

Then Alg a(V*)set is the pullback of Alg 0(V*)A along the inclusion Set -+ SetA of the
constant simplicial sets. This has a right adjoint (-)o: SetA -+ Set that sends a simplicial set
to its set of 0-simplices. The inclusion i': Algo (V*)set -+ Alg (V0)A therefore has a right

adjoint s: Alg~t(V®)A -+ Algo (V*)set that sends an object (X E SetA, e E Alg (V*)) to
the pullback of e along the morphism X0 -+ X -+ toC. It is clear that i' preserves fully
faithful and essentially surjective functors, as does s by the 2-out-of-3 property. Moreover,
si ~ id and the counit is: e -+ e is fully faithful and essentially surjective for all e. It then
follows from Lemma 2.1.8.4 that i' induces an equivalence

Alg) (V*)Set[FFES~ 1] ~+ Alg (V®)A[FFES-]

after inverting the fully faithful and essentially surjective functors. Moreover, Algca(V) is

the localization of Alg (V)a with respect to the morphisms that induce weak equivalences
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in SetA and project to equivalences in AlgO (V). These are obviously among the fully
faithful and essentially surjective functors, and so j' induces an equivalence

Algo (V*),[FFES~ 1J Catj.

Composing these two equivalences gives the result. O

Corollary 4.4.3.10. Suppose V is a left proper tractable biclosed monoidal model category
satisfying the monoid axiom. The functor i: Cat(V), -4 Algo (V@)st induces an equiv-
alence Cat(V) [FFES-1] Cat *-.

4.4.4 Comparison with Segal Categories

Segal categories are a model for the theory of (oo, 1)-categories where composition is only
associative up to coherent homotopy, inspired by Segal's model of Am-spaces. They were
introduced by Hirschowitz and Simpson [HS98]. A generalization to Segal categories en-
riched in a monoidal model category where the tensor product is the Cartesian product
was first given by Lurie [Lur09b], and later extensively studied by Simpson [Sim12].

Our goal in this subsection is to show that the homotopy theory of Segal categories
enriched in V is equivalent to that of co-categories enriched in V.. Segal categories are
usually regarded as fibrant objects in a certain model structure on precategories; we first re-
view the definitions of Segal categories and precategories, and show that for our purposes
we may equivalently consider Segal categories as objects in a larger category of functors.
Then we prove the comparison result, using the same strategy as for the comparison with
enriched categories.

We begin by recalling the definition of enriched Segal categories:

Definition 4.4.4.1. A model category is Cartesian if it is a monoidal model category with
respect to the Cartesian product. If V is a Cartesian model category, a V-enriched Segal
category (or Segal V-category) with set of objects S is a functor C: A*op -+ V such that
C(x, y) is fibrant for all x, y E S and for every object (xo, . - -, xn) of aZ0 the Segal morphism
C(xo,. .. ,xn) - C(xo,x 1 ) x - C(xn_1,xn) induced by the projections (xo,...,xn) -+

(xi, xi+1 ) is a weak equivalence.

Remark 4.4.4.2. We can regard (fibrant) V-categories as the Segal categories where the
Segal morphisms are isomorphisms, rather than just weak equivalences.

Now we construct a model category whose fibrant objects are Segal categories with a
fixed set S of objects; for this we first need some notation:

Definition 4.4.4.3. If X is an object of AsP, let ix: * -+ A\P denote the functor with im-
age X, write i*: Fun(A*', V) -+ V for the functor given by composition with ix, and let
ix,!: V -+ Fun(AsP, V) be its left adjoint, given by left Kan extension along ix. Then ix,! is
a left Quillen functor with respect to the projective model structure on Fun(A*P, V).

Observe that if V is a left proper combinatorial simplicial Cartesian model category,
then a functor C: As0 -+ V is a Segal category if and only if it is projectively fibrant
and local with respect to the morphisms i(xoxl),!A U - i(xn- 1,xn),!A -+ i(xo,-,xn),!A for all
(x 0,... , xn) in S and all A in a set of objects that generates V under colimits. Thus we
can define a model structure whose fibrant objects are Segal categories as a left Bousfield
localization of the projective model structure:
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Definition 4.4.4.4. The Segal category model structure on functors is the left Bousfield local-
ization of the projective model structure on Fun(AP, V) with respect to these morphisms.
We write Fun(AOP, V)seg for the category Fun(a P, V) equipped with this model structure.

Enriched Segal categories are more commonly considered as objects in a category of
precategories:

Definition 4.4.4.5. A V-precategory with set of objects S is a functor C: A01' -+ V such
that C(x,...,x) is a final object for all constant sequences (x,...,x) with x E S. Write
Precats(V) for the full subcategory of Fun(Al", V) spanned by the V-precategories, and
u*: Precats (V) -4 Fun(AZ' , V) for the inclusion. Then u* has a left adjoint, which we
denote u!.

There is a model structure on Precats(V) analogous to that for Fun(AZ",V) we de-
scribed above:

Proposition 4.4.4.6 (Simpson [Sim12, Propostion 13.4.3]). There exists a model structure
on Precats(V) where a morphism is a weak equivalence or fibration if it levelwise is one
in V. The functor u*: Precats (V) -± Fun(a\1 , V) is a right Quillen functor.

Definition 4.4.4.7. The Segal category model structure on precategories is the left Bousfield lo-
calization of the projective model structure on Precats(V) with respect to the morphisms
u! (i(),,!,, A - - H i( ,,!A) - uti( A for all (x0 ,- - xn) in S and all A in a set of
objects that generates V under colimits. We write Precats (V)seg for the category Precats (V)
equipped with this model structure.

We now prove that these two model categories in the fixed-object case are equivalent:

Proposition 4.4.4.8. The adjunction u! - u* gives a Quillen equivalence

Fun(a ',V)seg ;- Precats(V)seg

Proof. Since u * is fully faithful, the counit uu*F -+ F is an isomorphism in Precats(V) for
all F. It thus remains to show that if X is a cofibrant object of Fun(AsP, V)seg and X' is a
fibrant replacement for u!X in Precats(V)seg, then the composite X -+ u*utX -+ u*X' is a

weak equivalence in Fun(aop, V)seg.
By [Sim12, Lemma 14.2.1] the functor u! only changes the values of a functor at the

constant sequences (x,... , x) for x E S, and so preserves fibrant objects. Moreover, if F
is a fibrant object of Fun(aO", V)seg, and so in particular F(x,..., x) is weakly equivalent
to the final object, then the unit map F -+ u*u!F is a levelwise weak equivalence. Thus if
X is a cofibrant object in Fun(AZ", V)seg and X -+ F is a fibrant-cofibrant replacement for
X, then uiX -+ uF is a weak equivalence and u!F is fibrant in Precats(V)seg, i.e. u#F is a
fibrant replacement for u! X. Since X -+ F and F -+ u*u!F are weak equivalences, it follows
that the composite X -+ u*uF is also a weak equivalence, as required. O

Using Proposition 4.4.1.23 we can combine these model structures as the set S varies:

Definition 4.4.4.9. Let SegFu(V) denote the total space of the right Quillen presheaf given
by S i-> Fun(asp, V)seg and let Precat(V) denote the total space of the right Quillen
presheaf given by S - Precats(V)seg. The adjunction u! A u* is natural and so gives a
natural transformation between these right Quillen presheaves.
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Proposition 4.4.4.10. Let V be a left proper combinatorial simplicial Cartesian model cate-
gory. There exist combinatorial model structures on the categories SegFun(V) and Precat(V)
where a morphism F: C -4 D is a weak equivalence if and only if the induced morphism
f on objects is a bijection and C -4 f*D is a weak equivalence in Fun(i c, V)seg or

Precatobc(V)seg and a fibration if and only if C -+ f*D is a fibration in Fun(A cV)seg
or Precatobc(V)seg. The adjunction

uI: SegFu(V) t-i Precat(V) : u*

induced by the natural transformations u! and u* is a Quillen equivalence.

Our goal is now to prove that inverting an appropriate collection of weak equivalences
in Segg. (V) give an oo-category equivalent to Catv". As in the case of enriched categories
we begin by considering the fixed-object case, i.e. comparing the oo-category associated to
Fun(A?, V)seg to Algo (V).

We know the oo-category associated to the projective model structure on Fun(A Op, V)
is equivalent to the co-categorical functor category Fun(aL), V.). The Bousfield-localized
model category Fun(AZiP, V)seg can therefore be identified with the full subcategory of
Fun(A O, Vo) spanned by the objects that are local with respect to certain maps. We can
identify this with the oo-category of AZ'-monoids:

Definition 4.4.4.11. Suppose V is a presentable oo-category and M is a generalized non-
symmetric oo-operad. For m E M, write im: * -4 M for the inclusion of this object, and
let im,! denote left Kan extension along im. Then for any functor F: M -4 V and X E V
we have Map(im,!cx, F) ~ Map(cx, i; F) ~ Mapv(X, F(m)), where cX is the functor * -+ V
with image X.

Lemma 4.4.4.12. Suppose V is a presentable co-category such that the Cartesian product
preserves colimits separately in each variable, and M is a small generalized non-symmetric
co-operad. Then the oo-category Mnd (V) is the localization of Fun(M, V) with respect to
the morphisms imi,!X II ... II im,!X -4 im,!X for all m C M with X ranging over a set of
objects that generates V under colimits.

Proof. A functor F: M -+ V is a monoid if and only if it is local with respect to these
morphisms. [

Since Mndo (V) is equivalent to Alg'D(V), we have proved the following

Proposition 4.4.4.13. Suppose V is a left proper simplicial combinatorial Cartesian model
category. Then the natural map ax: (Fun(ZI)P, V)seg). -+ Algo (V') is an equivalence.

The map ax: (Fun(A0P,V)seg). -+ Algoc (V') is natural in X, so applying Corol-

lary 4.4.1.20 and Proposition 4.4.1.23 we get the following comparison of "algebraic" ho-
motopy theories:

Theorem 4.4.4.14. Suppose V is a left proper simplicial combinatorial Cartesian model
category. The natural transformation a induces a functor SegFu(V), -+ Alga (V2)et
and this is an equivalence.
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The weak equivalences in SegFun(V) are difficult to describe in general; however, a
morphism f : C -4 D between fibrant objects, i.e. Segal categories, is a weak equivalence
if and only if it is bijective on objects and a levelwise weak equivalence - given the Segal
conditions, it suffices for f to give a weak equivalence C(x,y) -4 D(fx,fy) for all ob-
jects x, y in C. To obtain the correct homotopy theory we clearly also need to invert the
morphisms that are fully faithful and essentially surjective in the appropriate sense:

Definition 4.4.4.15. Composition with the projection V -4 hV induces a functor

Seg..(V) -+ SegF(hV).

This takes Segal categories to categories enriched in hV. We say a morphism between
Segal categories in SegFu(V) is weakly fully faithful and homotopically essentially surjective if
its image in SegFu(hV) corresponds to a fully faithful and essentially surjective functor of
hV-categories.

This definition extends to give a notion of weak equivalence in SegFu(V), and it is
possible to construct a model structure with these weak equivalences, cf. [Lur09b, Sim12].
For our purposes, however, it suffices to regard the co-category SegFu(V). as obtained
by inverting the weak equivalences in the full subcategory of fibrant objects (i.e. Segal
categories). Then we can construct an co-category SegFun(V)[FFES-1] by further inverting
the weakly fully faithful and homotopically essentially surjective functors between Segal
categories; this is equivalent to the co-category associated to the above-mentioned model
categories.

The weakly fully faithful and homotopically essentially surjective functors between
Segal categories clearly correspond to the fully faithful and essentially surjective functors
between categorical algebras, so we get the following:

Proposition 4.4.4.16. Suppose V is a left proper simplicial combinatorial Cartesian model
category. There is an equivalence

SegFu(V)[FFES- 1] -~+ Algo (V*)set[FFES-1].

Combining this with Proposition 4.4.3.9 gives our comparison result:

Corollary 4.4.4.17. Suppose V is a left proper simplicial combinatorial Cartesian model
category. There is an equivalence

SegF.(V)[FFES-1] Cat".

4.4.5 Comparison with Iterated Segal Spaces

It follows from the results of the previous subsection that the co-category Cat's) of S-

(oo, n)-categories, obtained by iterated enrichment in spaces, is equivalent to that associ-
ated to the model category of iterated Segal categories. Our goal in this subsection is to
directly compare Cat, to another established model of (co, n)-categories, namely the
iterated Segal spaces of Barwick. We will deduce this comparison from a slightly more
general result: we will prove that if X is an absolute distributor, in the sense of [Lur09b],
then categorical algebras in X are equivalent to Segal spaces in X, and complete categori-
cal algebras are equivalent to complete Segal spaces. We begin with a brief review of the
notion of distributor:
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Definition 4.4.5.1. A distributor consists of an co-category X together with a full subcate-
gory such that:

(1) The co-categories X and ' are presentable.

(2) The full subcategory is closed under small limits and colimits in X.

(3) If X -+ Y is a morphism in X such that Y E , then the pullback functor 9 /y -4 X/x
preserves colimits.

(4) Let 0 denote the full subcategory of Fun(Al, X) spanned by those morphisms f: X -+
Y such that Y E , and let 7r: 0 -4 be the functor given by evaluation at 1 E A'.
Since I admits pullbacks, the evaluation-at-1 functor Fun(Al, 3) -4 X is a Cartesian

-op
fibration, hence so is 7r. Let x: ' -+ Cat, be a functor that classifies r. Then X
preserves small limits.

Definition 4.4.5.2. An absolute distributor is a presentable co-category X such that the unique
colimit-preserving functor 8 -4 X that sends * to the final object is fully faithful, and S C X
is a distributor.

Proposition 4.4.5.3 ([LurO9b, Corollary 1.2.5]). Suppose C X is a distributor. Let K be
a small simplicial set, and let &: p -4 q be a natural transformation between functors
p, q: K, -+ x. If q is a colimit diagram in ' and a = &IK is Cartesian, then R is Cartesian if
and only if p is a colimit diagram.

Lemma 4.4.5.4. Suppose X is an absolute distributor. Then for every space X E 8, the map
7rx: Fun(X, X) -+ XIx that sends a functor F: X -+ X to its colimit is an equivalence of
co-categories.

Proof. Let : X -4 X be the constant functor at the final object * E S C X. Since X is a
space, a functor F: X -+ X sends every morphism in X to an equivalence in X, and so the
unique natural transformation F -+ is Cartesian.

Write : X' -4 X for a colimit diagram extending . Then 'yx factors as

Fun(X, I) ~- Fun(X, I)/g ±4 Fun(X>, I)/g -:2 I/x,

where 02 is given by evaluation at the cone point. The functor o, gives an equivalence
between Fun(X, X) / and the full subcategory 81 of Fun(X, X) / spanned by the colimit
diagrams. On the other hand, the restriction of 42 to the full subcategory 82 spanned by the
Cartesian natural transformations to is also clearly an equivalence. By Proposition 4.4.5.3

E1 = 82, and so the composite yx is indeed an equivalence. 0

Proposition 4.4.5.5. Let 0 be an co-category, and let F: 0 - 8 be a functor; write 7r: OF -+
0 for the left fibration associated to F. Suppose X is an absolute distributor. Then left Kan
extension along r gives an equivalence Fun(OF, X) -~ Fun(0, X)/F-

Proof. By Proposition 2.1.5.13 the co-category Fun(OF, X) is equivalent to the co-category
of sections of the Cartesian fibration E -+ 0 whose fibre at x E 0 is Fun(F(x), X). Since X
is an absolute distributor, by Lemma 4.4.5.4 the co-category 8 is equivalent over 0 to the
total space 8' of the Cartesian fibration associated to the functor sending x to I/F(x). Then

8' is the pullback along F of the Cartesian fibration Fun(Al, X) -+ X given by evaluation
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at 1, so we have an equivalence between the oo-category Funo (0, ') of sections and the
fibre of Fun() x A1, X) ~ Fun(A 1, Fun(0, X)) -4 Fun(0, X) at F. This is clearly equivalent
to Fun(0, X)/F, which completes the proof. E

Remark 4.4.5.6. In the cases we are most interested in, where X is the distributor of n-
fold iterated complete Segal spaces in 8, we can also prove this without using Proposi-
tion 2.1.5.13, by instead rewriting everything in terms of left fibrations over products of
L'op.

Definition 4.4.5.7. Let X be an absolute distributor. A Segal space in X is a category object
F: I*P -4 X such that F([0]) is in 8 C X.

Proposition 4.4.5.8. Under the equivalence r: Fun(A)P, X) -' Fun(a*P, X)1j.x, the full

subcategory Mndop (X) of aop-monoids corresponds to Seg(X)x, the co-category of Segal

spaces with 0th space X.

Proof. It is clear that n1i takes Mono (X) into the oo-category of functors A*P -4 X that

sends [0] to X. Since Seg(X)x is a full subcategory of this, it suffices to show that F: A\I' -+
X is a A/XP-monoid if and only if rF is a Segal space in X.

We must show that the Segal morphism

nrF([n]) -4 rrF([1]) xx -- X x F([1]) =: (nJrF) [n

is an equivalence for all n if and only if F is a AOP-monoid. Since 7r is a coCartesian fibra-

tion, 7n!F([n]) ~ colimExx(n,1) F(C). It thus suffices to show that (n F) Seg is also a colimit[n]

of this diagram if and only if F is a AZxP-monoid. Using Proposition 4.4.5.3 we see that this

condition is equivalent to the natural transformation of functors (XX (n+1)), -+ X given by

F( ) >(npF)

I I[n
{{} > N1

being Cartesian. Since X is a space, it suffices to check that this square is a pullback. In

other words, we must show that the fibre of (nrF) eg -+ X x (n+1) at ( = (xo,. ., xn) is F(C)

if and only if F is a A2-monoid. Since limits commute, it is clear that this fibre is the fibre

product
(nrF[1])(xo,xi) X (nrF[0])(xl) --- X (nr:F[o])(xn-1) (n [1])(xn-1,xn)-

But by Proposition 4.4.5.3 again, the natural maps F(x,y) -+ (7rF[1])(x,y) and * = F(x) -+

(nr!F[O])x are equivalences. Thus the map F( ) -+ (r!F[n])g is equivalent to the natural
map

F( ) -4 F(xo, xi) x -x F(xn1, xn),

which is an equivalence if and only if F is a A )p-monoid. E

Corollary 4.4.5.9. Suppose I is an absolute distributor. The map Algo (Xx) -4 Seg(X)
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given by left Kan extension of the corresponding monoids along the maps Ao\P -4 aOP is
an equivalence.

Proof. The projection j*: Seg(X) -+ 8 given by composition with j: { [0]} -4 aOP has a right
adjoint j. given by right Kan extension. It follows from Lemma 2.1.6.4 that j* is a Cartesian
fibration. The functor Algot(Xx) -+ Seg(X) clearly preserves Cartesian morphisms, so it
suffices to show that this functor induces an equivalence fibrewise, which we proved in
Proposition 4.4.5.8. 0

Definition 4.4.5.10. Let X be an absolute distributor, and let A: X -+ 8 denote the right
adjoint to the inclusion 8 -4 X. The inclusion Gpd(8) <-+ Seg(S) <-+ Seg(X) admits a right
adjoint t: Seg(X) -4 Gpd(8), which is the composite of the functor A: Seg(X) -+ Seg(8)
induced by A, and t: Seg(8) -4 Gpd(S). We say a Segal space F: ZIOP -+ X is complete if
the groupoid object tF is constant.

Remark 4.4.5.11. By Lemma 2.1.10.4, a Segal space F is complete if and only if the map
iF(sO): iF[0] -+ iF[1] is an equivalence.

Definition 4.4.5.12. Let E" denote the Segal space j,{0,..., n}. If X is an absolute distrib-
utor we also write E" for E" regarded as a Segal space in I via the inclusion 8 -+ X.

Proposition 4.4.5.13. Suppose X is an absolute distributor. Then a Segal space F in X is
complete if and only if it is local with respect to the morphism El -+ EO.

Proof. It is clear that F is local with respect to El -4 EO, considered as a morphism in
Seg(X), if and only if the Segal space AF in 8 is local with respect to El -+ EO, considered
as a morphism in Seg(S). On the other hand, F is complete if and only if AF is complete,
so it suffices to prove this for Segal spaces in S. This case is part of [RezOl, Proposition
6.41. E

Definition 4.4.5.14. Let CSS(X) denote the full subcategory of Seg(X) spanned by the com-
plete Segal spaces; by Proposition 4.4.5.13 this is the localization of Seg(X) with respect to
the morphism El -4 EO.

Corollary 4.4.5.15. Let X be an absolute distributor. The equivalence Algt(Xx ) -~4 Seg(X)
induces an equivalence Cati - CSS(X).

Proof. It is clear that Er E Alg'D (Xx) corresponds to E" E Seg(X) under this equivalence.
Both sides are therefore the localization with respect to El -+ EO.

Definition 4.4.5.16. By [LurO9b, Corollary 1.3.4], if X is an absolute distributor, then CSS(X)
is also an absolute distributor. We therefore have absolute distributors CSS"(X) of n-fold
iterated complete Segal spaces in X.

Applying Corollary 4.4.5.15 inductively, we get:

Corollary 4.4.5.17. Let I be an absolute distributor. Then CatX , CSS"(X).(oo,n)

In particular, taking X to be the oo-category 8 of spaces, we obtain the desired compar-
ison with iterated Segal spaces:

Corollary 4.4.5.18. There is an equivalence Cats ~ CSS" (8).
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4.5 Natural Transformations and Functor Categories

In this section we consider two approaches to defining natural transformations in an en-
riched oo-category: In §4.5.1 we consider an internal definition; this is probably the clearer
definition, and leads to a functor oo-category that is easily seen to be an oo-category. Then
in §4.5.2 we consider an external definition, and show the resulting functor oo-category
is equivalent to the internal one; in §4.5.3 we use this definition to construct an (co, 2)-
category of enriched co-categories, functors, and natural transformations.

4.5.1 Internal Natural Transformations

In this subsection we introduce an internal definition of natural transformations between
functors between enriched co-categories. We then use this to construct oo-categories of
functors between enriched oo-categories and show that this is the underlying co-category
of the internal hom when this exists.

Definition 4.5.1.1. Let Sn denote the S-graph with objects {0,..., n} and

9n(ij) = 1 <
O, j > i.

We write [n]s for the free 8-oo-category on the graph 9n. If V® is a presentably monoidal
o-category, we write [n]v for E 0 [n]s.

Remark 4.5.1.2. Let [1] X denote the full subcategory of 8x on 0 and *. Then the graph 9,
is obviously defined over [1] x, and the V-oo-category [nlv exists provided V has an initial
object 0 and x 00 -_ 0 for all x E V.

Remark 4.5.1.3. The inclusion Set -+ 8 induces an inclusion SetA -+ Fun(A*P, 8). Let 9[n]
denote the simplicial space associated to the nerve N[n] under this functor. This is a Segal
space, and using our description of free enriched oo-categories it is easy to see that under

the equivalence Algo (8') ~ SegD the 8-oo-category [n]s is equivalent to the Segal space
6[n].

Definition 4.5.1.4. Let V® be a presentably monoidal co-category, and suppose FO and F1

are functors e -+ 'D of V-oo-categories. A natural transformation from F1 to Fo is a functor
0: e [1]v -4 D such that p o (ide 9 di) ~ Fi.

Proposition 4.5.1.5. Let V® be a presentably monoidal co-category. The simplicial V-oo-

category [elv is a coSegal object in Algo (V*).

Proof. We must show that the natural maps [1]v 1 [Ov H [0]v [1]v -4 [n]v are equivalences.

Since - 0 Es! preserves colimits, it suffices to prove this in S. By definition, [n]s is the free
8-oo-category on the graph 9n, and it is obvious that the map 91 I1s-1 - UO 91 -+ 9n is
an equivalence. Since the formation of free 8-oo-categories preserves colimits, this implies
that [*]s is a coSegal object. O

Definition 4.5.1.6. Let V® be a presentably monoidal co-category, and suppose e and 'D
are V-oo-categories. The (internal) functor oo-category Funv (e, D) is the simplicial space
MapAo(vo) (e & []s,2'D).
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Corollary 4.5.1.7. Let V® be a presentably monoidal oo-category, and suppose C and 'D are
V-oo-categories. Then Funv(C, D) is a Segal space.

Remark 4.5.1.8. Using the results of Joyal and Tierney [JT07] we can describe the quasicat-
egory associated to this Segal space as the simplicial set Hom(C 9 [*]v, D)).

Proposition 4.5.1.9. Let V® be a presentably monoidal oo-category, and suppose C and 'D
are V-oo-categories. For any Segal space X we have an equivalence

Map go (X, FunV (C, D)) ~ MapAlg(Ve) (C 0 X, D),

where on the right we regard X as an 8-co-category.

Proof. Every Segal space can be canonically written as a colimit of a diagram of the objects
b[n]. Specifically, the Segal space X is the coend of

X: A x A*P -4 SegO,, ([n], [m]) '-+ colim b[n].
X.

Since Map(b[n], FunV (C, D)) ~ Map(C 0 [n]s, D) we then have

Map(X,Funv (CD)) ~ Map(coend X, FunV (CD))

~ end Map(X, Funv (e, D))
~ end Map(C 0 X,'D)
~Map(C 9 X,'D).

Corollary 4.5.1.10. Let V® be a presentably monoidal co-category, and suppose C and 'D
are V-oo-categories. The underlying space tFunV (C, D) of the Segal space FunV (C, D) is
IMap(C 0 E, D) . In particular, if 'D is a complete V-oo-category then iFunv(C, D) is equiv-
alent to MapcatZ (e, D), so the Segal space FunV (e, D) is complete.

Proof. The underlying groupoid object of a Segal space X is Map(E*, X). By Proposi-
tion 4.5.1.9, the underlying groupoid object of Fun (C, D) is therefore Map(C 0 E, D),
and the underlying space is the colimit of this simplicial space. By Corollary 4.2.4.10 it
follows that if D is complete then IFunV(CD) ~ Map(C,'D). ]

Now suppose V® is a presentably symmetric monoidal co-category. Then Algoa( V®)
and Catz are also symmetric monoidal, and the induced tensor products preserve colimits
in each variable. This implies that Alg a(VO) and CatZ have internal hom objects; we
write DC for the internal hom object for maps C -4 D in Algca(V@).

Lemma 4.5.1.11. Let V be a presentably symmetric monoidal oo-category, and suppose 'D is
a complete V-oo-category. Then De is also a complete V-oo-category, for all V-oo-categories
C. Moreover, Ve is also the internal hom in CatZ.

Proof. We must show that Map(EO, D") 4 Map(El, DO) is an equivalence. Passing to left
adjoints this is Map(e, D) -4 Map(E' 0 C, 'D), which is an equivalence since C 0 El -4 C
is a local equivalence by Proposition 4.2.4.9.

Since DC is complete we have, for any complete V-oo-category A,

Mapcatv (A, D2e) Mapgove) (A, De) ~ MapAls (V.)(A 0 C,D)

~ Mapcat (A 0 C, 2),
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hence D' is also the internal hom in Cat .

Proposition 4.5.1.12. Let V@ be a presentably monoidal oo-category. Write t: 8 -+ V for
the unique colimit-preserving strong monoidal functor sending * to the unit I, and let
u: V -+ 8 be its lax monoidal right adjoint, given by Map(I,-). Then if C is a V-oo-category
the Segal space corresponding to the 8-oo-category uC is Map([.Iv, e).

Proof. Since [n]s is the 8-oo-category corresponding to 5[n], the Segal space corresponding
to u*C is Map([n]s, u*C) ~ Map(t*[n]8, C) ~ Map([n]v, C). 

Corollary 4.5.1.13. Let V be a presentably symmetric monoidal co-category, and suppose
C and 'D are V-oo-categories. The Segal space corresponding to the 8-co-category u,*c is

Funv (C,' D).

Proof. The Segal space associated to u, Cl is given by

Map([]v,') ~- Map(C 9 [e]s,'D). 

4.5.2 External Natural Transformations

In this section we give an external definition of natural transformations, and prove that this
is equivalent to the internal definition. We first introduce some notation:

Definition 4.5.2.1. If X: A*P -+ 8 is a Segal space, then the associated right fibration X -

AP is a double co-category. We write A*P [n] -+ A*P for the double oo-category associated
in this way to the nerve of the category [n], regarded as a Segal space via the inclusion
Set -+ S.

Remark 4.5.2.2. The oo-category A*P[n] can be identified with the category of simplices
Simp(N[n]) or Simp(A") of the nerve of [n]. Its objects can be described as sequences

(io,...,im), where 0 < ij < ij+1 n, and for every e: [k] -+ [m] in A there is a unique
morphism (io,..., im) -+ (if(0), - -i(k))-

Definition 4.5.2.3. For X a space, let A\XP [n] denote the double oo-category AZ1? x AoP A0 P [n].

Remark 4.5.2.4. Objects of AXP [n] can be described as lists ((xo, io),..., (Xk, ik)) where xi E
X and 0 < io ... ik < n.

Definition 4.5.2.5. Let V® be a monoidal co-category, and suppose e and D are V-oo-
categories. If F0 and F1 are functors C -4 D, an (external) natural transformation from F0

to F1 is a morphism of A\P [1]-algebras ij: sO'*C - O*so*'D, where p: A'Oe[1] -4 A*O[1]

is the morphism induced by (toFo, toF1): toC x [1] -+ to'D, such that q restricts to Fi when
restricted to A\P x YP

Remark 4.5.2.6. The natural transformation rj thus determines morphisms

C(x,y) -+ 'D(Fox, Fly)

in V for all x, y E C. These are compatible with composition, which implies that, as ex-
pected, they are determined by the images I -4 'D(Fox, Fix) of the identity morphisms
I -+ C(x,x) for x E C.
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Definition 4.5.2.7. Let V® be a monoidal co-category. The objects A*P [n] clearly form a
cosimplicial object in generalized non-symmetric co-operads, hence they determine a nat-
ural transformation of simplicial co-categories Alg%o (V®) -+ (Opd0'8*")/aoP[n] (cf. Re-
mark 3.2.8.2 for this notation). If e is a V-oo-category, the A* o[n]-algebras 7rn*C, where

n : [n] -+ * denotes the map of generalized non-symmetric oo-operads induced by
the unique morphism rn: [n] -+ [0] in A, determine a section. Given V-oo-categories C and
'D we therefore get a simplicial space Fun (C, 'D) with

Fun (, n Mapl, [)n Ma (7r*C, 7r*D).

This is the (external)functor oo-category from C to 'D.

Lemma 4.5.2.8. Let V® be a presentably monoidal oo-category, and suppose C is a V-co-
category. Write In for the inclusion AP [n]J * Then the functor C 0 [n] - C

determines an equivalence In* (C [n]) ~> n*C.

Proof. It suffices to observe that for i < j and any x, y E C the morphism

(C® [n])((x, i), (y, j)) -+ C(x, y)

is an equivalence.

Proposition 4.5.2.9. Let V® be a presentably monoidal co-category, and suppose C is a V-
oo-category. The morphism In,! (7r*C) -4 C [n] adjunct to the inverse equivalence 7r* -

In* (C 0 [n]) is an equivalence.

Proof. This is immediate from the description of free algebras in terms of operadic colimits.
0

Corollary 4.5.2.10. Let V® be a presentably monoidal co-category, and suppose C and 'D
are V-oo-categories. Using Lemma 4.5.2.8, the inclusions In: A*j [n] -+ induce a
natural transformation

Yn: Mapgo Aw®)(C ® [n], p*'D) -+ Map o (n*C, 7r*D),
I[n] 

n/AOP[nJ

where Pn denotes the morphism induced by the projection A0P -4 A*P, i.e. a morphism of[n]

simplicial spaces
Funv (CD) -4 Fun (C, 'D).

This is an equivalence.

Proof. To show that In is an equivalence, it suffices to show that it gives an equivalence on
the fibres over each map 0: toC x [n] -+ toD. This can be identified with

Map lgoor O (C v ( [n], p*p*'D) -+ MapDo) (vo)(7rC, Jnp p*'D).

,oex[n] oe

This is an equivalence, since C 9 [n] is In,!7r;C by Proposition 4.5.2.9.

Conjecture 4.5.2.11. Let V® be a presentably symmetric monoidal o-category. A natural
transformation rq: C 0 [1] -+ D is a natural equivalence (i.e. extends to a functor from

164



C 0 El) if and only if for each c E C the morphism [1] -+ D given by restricting to c is an
equivalence in D.

Sketch Proof. The "only if" direction is obvious. We may therefore assume given a natu-
ral transformation 17: C 0 [1] - 'D from F to G such that the induced maps [1] - 'D are
equivalences for all c E C. To show that this extends to a natural equivalence, we will
show that the adjunct morphism [1]v -+ De is an equivalence. Since [1]v is t [1]s, we may
equivalently show that the associated functor [1 ]s -+ u,e is an equivalence. By Proposi-
tion 4.2.1.16 it suffices to show that for any H E De the map u,2e(H, F) -4 u,'DC(H, G)
given by composition with ' is an equivalence.

By Corollary 4.5.2.10 and Corollary 4.5.1.13 we may identify u,9Y with the external
functor oo-category Fun (C,'D). For fixed H: C -+ D, let 4: toC x [1] -+ D be the map
determined by (H, F). Then we can identify u,'De(H, F) with the fibre of

Map oo11 (v) (r C, *7r*D) - Map(C, H*'D) x Map(C, F*'D)

at (H, F). Now Algoo [11(V@) is monadic over Fun(toC x toC x {(0,0), (0,1), (1,1)},V).

This means we can describe the mapping space as the limit of a diagram of spaces whose
vertices are mapping spaces between the free Ae [1]-algebra monad applied some num-
ber of times to the underlying functors for 7* C and ip*n*'D in this functor category. After
taking the appropriate fibres, we see that this means the map u*De (H, F) -+ u*'De(H, G)
given by composition with I is indeed an equivalence, since equivalences in functor cate-
gories are detected pointwise. E

Remark 4.5.2.12. This result should clearly also be true without the assumption that V is
symmetric monoidal, but this proof seems to rely essentially on the existence of the internal
hom Dc to reduce the construction of the inverse from V to 8.

4.5.3 The (oo, 2)-Category of V-oo-Categories

In this section we use the external definition of natural transformations to define an (o, 2)-
category of V-oo-categories, functors, and natural transformations.

It is clear that the full subcategory of (Opd'8en)/AOP[n] spanned by generalized non-

symmetric oo-operads of the form A*P [n] for some space X is equivalent to the full subcat-
egory diagn8 of S " spanned by objects of the form (X,..., X).

Definition 4.5.3.1. Suppose V@ is a monoidal oo-category. Write An for the pullback

A n o~
A, : lkian (V@)

I 1 1I
diagn8 > (lJOd'-*"/ZIO[n].

Then we define Catj[n] to be the full subcategory of An spanned by objects of the form 7rn*C

where C is a complete V-oo-category. This gives a simplicial oo-category CATV := Catl4e].
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Remark 4.5.3.2. We must restrict to complete V-oo-categories to get the right mapping
spaces: By Remark 4.2.5.6 if 'D is not complete then tFunV (C,'D) ~ Map(C 0 E*,'D) is
not in general equivalent to the space of maps from C to 'D in Cat(,.

Proposition 4.5.3.3. Let V* be a presentably monoidal o-category. The simplicial oo-
category CATS is a double co-category.

Proof. We must show that for each n the Segal morphism

Catv[n] -+ CatV[1] xca - - - X Cat Cat!0 [1]

is an equivalence. On both sides the objects are just complete V-oo-categories, so this func-
tor is clearly essentially surjective; it remains to show that it is fully faithful. Let C and 'D
be two complete V-oo-categories; we must show that the morphism

Map(7rn*C, r*'D) -4 Map(n*C, r*'D) xMap(e,) - - -Xp(e,) Map(7*C, r*'D)

is an equivalence. Using Corollary 4.5.2.10 we can identify the left-hand side here as

Map(C 0 [n], D) and the right-hand side as

Map(C 9 [11,'D) x Map(e,)'- X Map(e,D) Map( @9 [1],'D).

This map is therefore an equivalence by Corollary 4.5.1.7.

Lemma 4.5.3.4. Let V0 be a presentably monoidal co-category. Then the Segal space
Map(Al, CatZ [*]) is complete.

Sketch Proof. We must show that so: Map(A, CatZ) -+ Map(El, Map(A, Cat![*])) is an
equivalence. To see this it suffices to show that the map induces an equivalence on fibres
over all (e, D) in (CatZ)". It follows from Proposition 4.5.1.9 that over (C, D) we get the
map

so: Map(C, D) -* Map(C 0 E, 'D),

and this is an equivalence since D is by assumption complete. 0

Proposition 4.5.3.5. Let V® be a presentably monoidal co-category. Then the simplicial
space iCatl[*] is constant.

Proof. This follows by combining Lemma 4.5.3.4 and Proposition 2.2.2.13 since it is obvious
from the definition that so: CatZ [0] -+ CatZ [1] is essentially surjective. O

The simplicial co-category CAT, is thus a Segal object in oo-categories whose underly-
ing simplicial space is constant. This means that we may consider it as an (oo, 2)-category
- the (oo, 2)-category of V-oo-categories, functors, and natural transformations. The oo-
category of morphisms from C to 'D in CATV is precisely Funv(C, D), as it should be.

4.6 Correspondences

If V is a closed symmetric monoidal category and C and D are V-categories, a correspon-
dence or profunctor from C to D is a functor C 0 DOP -4 V, where V is V regarded as a
V-category via the internal hom. Our goal in this section is to introduce an oo-categorical
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version of correspondences between enriched oo-categories; our definition will be "exter-
nal", using algebras for certain double oo-categories, and is inspired by that given by Bac-
ard [BaclO] in the context of 2-categories.

4.6.1 Correspondences between V-oo-Categories

To give our definition of a correspondence, we first introduce some notation:

Definition 4.6.1.1. Given spaces X and Y, consider the functor Fx,y: {0, 1} -4 8 that sends
0 to X and 1 to Y. Let j: {0, 1} '- A0P [1] denote the inclusion of the fibre at [0). The right
Kan extension jFx,y is clearly a AOP[1]-category object. We write ZIOP y -+ A*P[1] for the

left fibration associated to jFx,y. Then ALOP y is a double o-category.

Remark 4.6.1.2. If X = Y, then LXZP'X is precisely AOp [1] as defined above.

Example 4.6.1.3. If Xo,...,Xn are sets, we can represent objects of AO. as sequences

1xi . .. ,x1x,..., xml ... |Ix1,,. .. ,xn") where x E X;.

Remark 4.6.1.4. Pulling back AOP -4 A\P[1] along the two inclusions do, dl: A*P -+X<Y

A*0P [1] clearly gives A\0P and A\OP, respectively.x Y

Definition 4.6.1.5. Let V® be a monoidal oo-category, and suppose e and 'D are V-oo-
categories. A correspondence from e to D is a A*<1 0, -algebra M: AOP<,01 -4 V0 suchloe oe<L~

that the restrictions to AIe and AOP are e and D, respectively. We will use the notation
M: e -i+ D for a correspondence M from C to 'D.

Definition 4.6.1.6. Let V® be a monoidal co-category, and suppose e and 'D are V-oo-
categories. The co-category of V-correspondences Corr (1, 'D) from e to 'D is

{e} XAlgap (Vo) Algaop (V®) XAlgop (VO) {'D}.

Remark 4.6.1.7. There should of course be an inclusion Funv (C, D) 4 Corrv (C, D), but
using our definitions it is not obvious how to construct this.

If the oo-category V is presentably monoidal, then we can compose correspondences.
To see this, we first need some more notation:

Definition 4.6.1.8. Given spaces Xo,..., X, consider the functor Fx,,...,x.: {0,..., n} -+ 8
that sends i to X;. Let j: {0,...,n} '-+ A*P[n] denote the inclusion of the fibre at [0]. The
right Kan extension jFx,...,x, is clearly a N*P [nj-category object. We write A< ... x,< -+

A*'P[n] for the right fibration associated to jFxo,...,x.. Then AOXP .. , is a double oo-
category.

Definition 4.6.1.9. Given spaces X,..., Xn, let A OP' .. <, denote the colimit of generalized
non-symmetric oo-operads

A*P IIA - -- IIgIp A%0  x,.
X<r x1 iluon x' -

Let KXO< ... <Xn (or just Kc) denote the inclusion AO".<, X<..<,
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Definition 4.6.1.10. Given spaces X,..., Xn, we say a a* .. -algebra M in V@ is a

composite if it is the left operadic Kan extension of its restriction to A* ' , i.e. if the
adjunction morphism icx*M -+ M is an equivalence.

Definition 4.6.1.11. Given V-oo-categories C,..., Cn, let CorrV (,..., en) denote the full
subcategory of

Algop (V®) XAgaop (VO)x--xA ,op (V®)

spanned by those APe< ... <10 -algebras that are composites.

Given V-oo-categories e, D, 8, the projection

CorrV (C, D, 8) -+ Corrv (C, D) x Corrv (D, 8),

given by restriction along the vertices (0,1) and (1,2) in A*OP [2] is an equivalence - this
will follow from Corollary 4.6.2.6. Since there is also a map Corrv (e,' D,8) -+ Corrv (C, E)
coming from restriction to (0, 2), this means that given correspondences e --+ 'D and D -+ E
we can compose them to get a correspondence e -++ E.

It is possible to define a Segal category using the oo-categories Corrv (C,..., en), giv-
ing a model for the (oo, 2)-category of V-oo-categories and correspondences. In §4.6.3 we
will construct a different model for this (oo, 2)-category as the subcategory of horizontal
morphisms in a double oo-category of V-oo-categories, functors, and correspondences.

4.6.2 The Double oo-Categories aOPH~XO< ... <xn

In this subsection we will give an explicit model for the pushout of generalized non-

symmetric co-operads a ' . ,which will allow us to better understand the functors
Ki.

Definition 4.6.2.1. Let A*P [n] be the full subcategory of A*P [n] spanned by those objects

(io,... , in) such that Iik+1 - ikI < 1 (i.e. the ij's can jump by at most 1 at each step).

Definition 4.6.2.2. Given spaces Xo,..., Xn, let A<. be defined by the pullback

x.< ...-<

I0..x x0<..<x.

Lemma 4.6.2.3. Given spaces Xo,..., Xn, the projection A* ... -+ A*P is a generalized
non-symmetric co-operad

Proof. A* -. La*P is the full subcategory on some of the objects in the fibre at [1]. I

Theorem 4.6.2.4. For spaces Xo, ... , Xn, let a* ',II denote the colimit in simplicial sets
X , 'a <X-

xO<1 lop... llIy Xn ?1<1
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Then the inclusion A is a trivial cofibration in the generalized non-
symmetric oo-operad model structure.

Lemma 4.6.2.5. Suppose 0: M -+ N is a left fibration of generalized non-symmetric co-
operads and T: A" -+ N is a simplex lying over o: A" -+ AOP. Let rn: A" * 90  - N be an

inert extension of T (with [r] the final vertex of o-), and let r. denote the restriction of 7r& to

* / . Let M. and A denote the pullbacks of M along rc and ro, respectively. Then

the inclusion Ma -+ M& is a trivial cofibration of generalized non-symmetric oo-operads.

Sketch Proof. Write X C M& for the subspace lying over 90 C An*90 Let { Tb} beB be the
[rJ / - [r/ t

set of non-degenerate simplices Tb: AP -4 M& such that rpTb is a degeneracy of -. Choose a
well-ordering of B such that the dimension of Tb is (non-strictly) increasing in b. For each

b c- B, define M, to be the subspace of Mc generated by M. together with the simplices
T: AP -4 ME such that for some q p the restriction rIgo,.,q factors through Ty for some
b' < b, the morphism T(q) -+ T(q') is inert, and T|,q+1,...,, factors through X. Define Mjb
similarly. Since weak equivalences are closed under transfinite composition, it suffices to

prove that the inclusions Mjb _ Mab are trivial cofibrations.

Now from [Lur1l, Lemma 3.1.2.5] we conclude that there is a homotopy pushout dia-
gram

aAP *I Mb

* Tb/ '

where XTb,/ denotes (M b)Tb, x<b X, so it suffices to prove that the inclusion iAP * XTb/ -4

AP * XTb/ is a trivial cofibration. Now choose inert morphisms extending Tb to a diagram
AP * 90 -+ M&. Then the resulting map 9 -+ Xb/ is a categorical equivalence (since

[s]/ [s]/
an object of XTb/ must be given by an inert map), hence in the diagram

aAP*9 soZAI[s]/ /

AP * 90  AP *Is]/ /

the horizontal morphisms are weak equivalences, as is the left vertical morphism. By the
2-out-of-3 property, it follows that so is the right vertical morphism, which completes the
proof.

Proof of Theorem 4.6.2.4. To make the proof slightly easier to read, we will omit mention
of the markings of the simplicial sets involved. Observe that an n-simplex of NOP[n] is
uniquely described by

" an n-simplex cr = (f1,....,fn) of AOP where each fi: [ri] -4 [ri_ 1 ] is a morphism of A,

" an object J = (jo, j,... jr) of AOP[n].
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Such an object lies in AOP[n] if and only if J and all the objects Ji = f* - fj*J are in AOP[n].
We'll say that a simplex (er, J) of AOP [n] is

* old if (o-, 1) is in Ai [n], i.e. if J E AOP [n], and new otherwise,

" narrow if rn = 1 and wide if rn > 1.

We say a morphism 4 in NOP is neutral if it is neither active nor inert.
For an object J of AOP[n] over [r], write r1 : 90 -+ AOP[n] for the diagram of inert

morphisms from a.
More generally for (o-, J) an n-simplex of AOP [n], write n(,) : An * s -+ AOP[n] for

the corresponding diagram, and nr for the restriction of nrj) to aA" * 90

We now divide the non-degenerate new simplices of AOP [n] into various groups:

* Let S1 [n] be the set of nondegenerate wide new n-simplices (o-, J) such that fn is inert.

* Let S' [n] be the set of non-degenerate new (n + 1)-simplices (o-, J) such that rn+1 is
either 0 or 1 and fne and f'7 are both inert.

" Let S''[n] be the set of non-degenerate new (n + 2)-simplices (o-, J) such that rn+1 = 1,
rn+2 = 0, and fg+1 and fn[ are both inert.

* For 1 < k < r < n, let T [n] (k, r) be the set of nondegenerate narrow new n-simplices
(o-, J) such that f[' is inert, frf is neutral, and ff is active for k < i < r and i > r. Let
T1[n](k) be the union of T1[n](k, r) for all r > k.

* For 1 K k < r < n, let Tj[n](kr) be the set of nondegenerate narrow new (n + 1)-
simplices (o-, 1) such that f[" is inert, ff is inert, and ff is active for k < i < r and
i > r. Let Tj[n] (k) be the union of Tj[n](k, r) for all r > k.

" For 1 K k < r < n, let ij[n] (k, r) be the set of nondegenerate new (n +1 )-simplices
(o-, J) such that rn = 1, rn+1 = 0, fk is inert, frf is neutral, and ff is active for k < i < r
and r < i < n + 1. Let Tij[n] (k) be the union of ij[n] (k, r) for all r > k.

" For 1 K k < r < n, let Tj' [n] (k, r) be the set of nondegenerate new (n + 2)-simplices

(o-, J) such that rn+ 1 = 1, rn+2 = 0, ff is inert, ff is inert, and ff is active for k < i < r
and r < i < n +2. Let Tj'[n](k) be the union of "[n](k, r) for all r > k.

* For 1 K k < n let T2 [n] (k) be the set of nondegenerate wide new n-simplices (0-, J)
such that ff is inert and ff is active for i > k.

" For 1 K k < n let T2[n] (k) be the set of nondegenerate new (n + 1)-simplices (0-, J)
such that rn+1 = 1 or 0, f[ and fnf+1 are inert and fF is active for k < i < n +1.

" For 1 K k < n let T2'[n](k) be the set of nondegenerate new (n + 2)-simplices (-, J)
such that rn+1 = 1, rn+2 = 0, ff" and fnf+1 are inert, and ff is active for k < i < n + 1.

" Let S2 [n](k) be the union of T1 [n] (k) and T2 [n] (k), let S'[n](k) be the union of Tj[n](k),
Tij[n] (k), and T2[n] (k), and let S" [n] (k) be the union of i" [n] (k) and T2' [n] (k). Let
S2[n], S[n] and S'[n] be the unions of S2[n](k), S [n](k), and S'[n](k), respectively,
over all k.
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" For 1 < k < n let S3 [n] (k) be the set of nondegenerate narrow new n-simplices (o-, J)
such that ff' is neutral and ff is active for i > k, and (o-, J) is not contained in T, (1)
for any 1 < k.

* For 1 < k K n let S' [n] (k) be the set of nondegenerate narrow new (n + 1)-simplices
(o-, J) such that ff is inert and ff is active for i > k, and (o-, X) is not contained in
Tj(l) for anyl <k.

* For 1 < k < n let S [n] (k) be the set of nondegenerate new (n + 1)-simplices (0, J)
such that rn = 1, rn+1 = 0, ff is neutral, and ff is active for k < i < n +1, and (o-, J)
is not contained in Tj(1) for any I < k.

" For 1 < k K n let 93[n] (k) be the set of nondegenerate new (n + 2)-simplices (o-,J)
such that rn+ 1 = 1, rn+2 = 0, f[ is inert and f! is active for k < i < n + 2, and (o-, X)
is not contained in Tj'(l) for any I < k.

* Let S3 [n] be the union of S3 [n] (k) for all k, let S' [n] be the union of S' [n] (k) and
3 [n] (k) for all k, and let S [n] be the union of 9"[n] (k) for all k.

" Let S4 [n] be the set of nondegenerate wide new n-simplices (o-, J) that are not con-
tained in Si[n] or S2[n].

* Let S'[n] be the set of nondegenerate new (n + 1)-simplices (o, J) such that ru+ = 0
or 1 and fO" is inert that are not contained in S' [n] or S'[n].

* Let S' [n] be the set of nondegenerate new (n + 2)-simplices (o, J) such that rn+1 = 1,
rn+2 = 0, and fng is inert that are not contained in S'" [n] or S' [n].

Observe that if (q, J) is an n-simplex such that all ff are active and rn = 1 or 0, then (-, J)
must be old.

Now let T(n) be the subset of A*P[n] containing the old simplices together with the
non-degenerate new n-simplices, the (n + 1)-simplices in S [n] and the (n + 2)-simplices
in S '[n] for all i, and let T(n) be the subspace of AO. over T(n). It then suffices to

prove that the inclusions A0P'.., = T(-1) C T(O) C 7(1) C ... are trivial cofibrations.X0 < ... <xn=
For k = 0,. ., 3 define Tn,k 9 T(n) to be the subset containing the simplices in Y(n -1)

together with those in Si[n], S[n], and S'[n] for i < k, and let Tnk be the subspace of
AOy.. over nk. Then it suffices to prove that the inclusions

.T(n - 1) = Tn,O 9 Yn,1 9 Tn,2 C Tn,3 9 Tn,4 = T(n)

are trivial cofibrations.
k = 1: For (o-, J) in Si [n], observe that since any narrow new n-simplex whose final map

is inert is contained in T(n - 1) = Tn,o, as is any new (n + 1)-simplex whose final map is
[1] -+ [0] and whose penultimate map is inert, the map 7c factors through T(n - 1).

Thus we have a pushout diagram

H(,j)Es1 [n] aAn * 90 U (O',)Es 1[n] A" * 90

[1n _ _ _-1
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Since the upper horizontal map is DO"-anodyne, so is the lower horizontal map. Let M(,1)
00 an*e a e[be the subspace of A . over A" * 9 and let M be the subspace over * 90

Then we have a pushout diagram

1(o-,J)ESi[n] M3L(LJ)ES1[n] M(LJ)

no >Tn,1.

By Lemma 4.6.2.5 the inclusion Ma M(,,j) is a trivial cofibration, hence so is Yn,o -

7n, 1.
k = 2: First let 9n,k be the subset of Tn,2 containing the simplices in Tn,1 together with

those in S2 [n] (i), S'[n] (i), and S' [n] (i) for all i > k, and let 9 n,k denote the subspace of

A 0 over 9 ,k. Then it suffices to prove that the inclusions

fn,1l = fn,n n,n-1 9 ... - n,1 = -n2

are trivial cofibrations. Next for i = 0,1, 2 let 9' be the subset of Snk containing then,k
simplices in 9n,k+1 together with those in T[n](k), T[n](k), Ti[n](k), and T!'[n](k) forj <

i, and let 59 be the subspace of A*P< over 9S,k. It then suffices to prove that the
inclusions

-nk+ = - -1 -2 -59n,k+1 = 9 n,k 9 9 nk Sn,A = 9nk

are trivial cofibrations. We now consider these two inclusions in turn:

i = 1: Let Jn,k,r be the subset of 9nk containing the simplices of 9 nk+1 together with

those in T1 [n] (k, s), Tf [n](k,s), Tij[n] (k, s), and ' [ n](k, s) for s < r, and let ink,r denote
the subspace of A* over Sn,k,r. It then suffices to show that the inclusions

-0 - - - -1
9 nk 3n,k,k 9 Jn,k,k+1 9 - - - n,k,n = 9 n,k

are trivial cofibrations. Finally, let ',kr be the subset of Sn,kr containing the simplices

in Snk,r-1 together with those in T [n] (k, r) and Tj [n] (k, r), and let 3'nkr denote the

subspace of A K<Xnover nr' We then wish to show that the inclusions Jn,k,r -+
nk,r e-+ n,k,r+1 are trivial cofibrations. Observe that for (a-, J) in T [n] (k, r) there exists

a unique simplex (r, K) in Tj[n] (k, r) such that (o-, J) = dr(r, K). Moreover, for j # r
the face dj(T, K) is contained in Snk,r-1:

- for i < k - 1 we have di in Tj[n - 1](k - 1,r - 1),
- we have dk_1 in S'[n - 1j(r - 1), or possibly in Tj[n - 1](k - 1,n - 1) (or in

S'[n - 1](r - 1) if k = 1)

- we have dk in S'[n - 1](r - 1),

- fork < i < r- 1wehavedi in Tjin- 1](k,r-1),

- we have dr-1 in T1[n](k, r - 1) or Tl[n - 1](k, r - 1),

- for r < i < n +1 we have di in T[n - 1](k, r),
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- we have dn+1 in T2 [r].

Thus we get a pushout diagram

IJ(T,K)E T,[n](k,r) An+ 'I(rK)E Tj[n](kr)

7n,k,r-1 )ifin,k,r

This means we have a pushout diagram

J(X,K) EfT[n](k,r) X<-X X AOP[n] An+1 X <---<XXroP[n] An+1

Jn,k,r-1 n,kr-

By [Lurl, Lemma 2.4.4.6] the upper horizontal map is a categorical equivalence,
and so a trivial cofibration, hence so is the lower horizontal map. Similarly, for
each (o-, J) in Tij[n] (k, r) there exists a unique simplex (T, K) in tj" [n] (k, r) such that
(o-, J) = dr (T, K) and for j $ r the face dj(T, K) is contained in J'n,k,r. We therefore have
another pushout diagram

UI(T,K )ET'[n|(kr) rn+ ,J(TK)ETj'[n|(kr) An+

n,k,r n,k,r-

By the same argument again, this implies that the map n,k,r -+ in,k,r is also a trivial
cofibration.

* i = 2: Observe that for (r,K) in T2[n](k) the faces d;(r, K) for i < n + 1 are in 9 ,k: for
i < n we have di in T(n - 1) since these faces are narrow with final map inert, and dn
is in Ti [n] (k, n) or Y(n - 1). The same holds for (T, K) E T2'[n] (k), thus for all (o-, J) in

T2 [n(k) themapn01 ) factors through Snk. This means we have a pushout diagram

H(c-,J)ET2[n](k) n * 9 H(o-,J)ET2 [n](k) An *

I ___n 

I ['y

0 n~k

By the same argument as in the case k = 1, it follows that 9nk -+ 9nk is a trivial
cofibration.

k = 3: Let 'Kn,k be the subset of Tn,3 containing the simplices in Tn,2 together with those
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in S3 [n] (1), S'[n](l), 9'[n](l), and 9'3[n](l) for 1 < k, and let 5?n,k denote the subspace of
AXO...KX over Kn,k. It then suffices to show that the inclusions

n,2 = Hn,O 9 Hn, C- C- fn,n = n,3

are trivial cofibrations. Let 5'VCk be the subset of n,k containing the simplices in Hn,k-1

together with those in S3 [n] (k) and S' [n] (k), and let / denote the subspace of A*.

over Kn,k. We then wish to show that the inclusions 5?n,k-1 -+ n,k k are trivial
cofibrations. Observe that for (o-, J) in S3 [n] (k) there exists a unique simplex (T, K) in

S[[n](k) such that (o-, J) = dk(T, K). Moreover, for j # k the face dj r, K) is contained in

" forj<k-1wehavedjinS'[n-1](k-1),

" we have dk_1 in S3 [n](k - 1) or S'[n - 1](k - 1), or in N if k = 1 (since all narrow
simplices all of whose maps are active are in A*j [n])

* for k < j < n +1 we have dj in S'[n - 1](k),

" we have dn+1 in T2 [n](k).

Thus we get a pushout diagram

JJ(T,K)ES3' n](k) (K)S n](k n+1

Hn,k-1 'k

Using [Lur1l, Lemma 2.4.4.6] as above, this implies that ?n,k-1 -+ n,k is a trivial cofibra-
tion. Similarly, for (o-, J) in 9' [n] (k) there exists a unique simplex (r, K) in 9'[n] (k) such
that (o-, J) = dk(T, K). Moreover, for j : k the face dj(r, K) is contained in H'0' This gives
another pushout diagram

1J(T,K)Esi' "n](k) An+2 , ~,)Ei ]k n+2

n,k {n~k .

By the same argument it follows that Hnk-4 3 n,k is a trivial cofibration.

k = 4: Observe that for (r, K) in S' [n] the faces di (r, K) for i < n + 1 are in Yn,3, since
this contains all narrow n-simplices of A*P [n]. Similarly for (r, K) in S" [n] the faces di (r, K)
for i A n + 1 are in Tn,3. Thus for all (o-, J) in S4[n], the map 7tr factors through Tn,3, and
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so we have a pushout diagram

H(O,J)Gs 4[n] aA" * 90 H>(LT,J)eS 4 [n] A" * 90

'In, 3  |'n,4.

By the same argument as in the case k = 1, it follows that n,3 -+ Tn,4 is a trivial cofibration.
E

Corollary 4.6.2.6. Suppose V® is a presentably monoidal oo-category. For any spaces

X0,... , Xn, and any A*/'... X-algebra A in V®, the adjunction morphism A -+ x*x!A

is an equivalence.

Proof. By Theorem 4.6.2.4, we may regard K as the inclusion A <...,X - AP<.. < . It is
clear that this morphism has the Kan extension property, so we have a description of free
algebras in terms of operadic colimits. Using this it is easy to see that A( ) -+ xicA( ) is an
equivalence for A E A<.X

4.6.3 The Double oo-Category of V-oo-Categories

We will now construct a double co-category CAT(V) whose objects are V-oo-categories and
whose vertical and horizontal morphisms are functors and correspondences, respectively.
From this we can extract an (o, 2)-category CORRZ whose mapping co-categories are the
co-categories Corrv(, 'D) defined above.

Definition 4.6.3.1. It is easy to see that the full subcategory of (Opdo'")/,op[n, spanned

by the objects A* is equivalent to gx(n+1). Define ALGle(V®)[n] by the pullback

ALGO (VO)[n] > Algao, (V®)

g (n+1) > (Opd'8"/r)

This defines a simplicial oo-category ALGc(V*).

Definition 4.6.3.2. Let CORR(V®) [n] be the full subcategory of ALG t(V®) [n] spanned by
those algebras that are composites and whose restrictions to Algot(VO) are all complete
V-oo-categories. These are clearly closed under the functors induced by morphisms in A*P
and so form a simplicial oo-category CORR(V®).

Lemma 4.6.3.3. Suppose V® is a presentably monoidal oo-category. The simplicial co-
category CORR(V®) is a Segal object.

Proof. We must show that the Segal morphisms

CORR(V®)[n] -+ CORR(V®)[1] X CORR(VO)[0] ... XCORR(VO)[0] CORR(V*)[1]
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are equivalences. Since this functor clearly preserves Cartesian arrows over Sx (n+1) it suf-
fices to show that it induces an equivalence on fibres. Given spaces Xo,..., Xn, we thus
have to show that we get an equivalence of oo-categories

Algo, V (0)comP 2+ Alg00, (V@),
x /I<< [n] xo<...<x V

where Algop /, , (V®)comP denotes the full subcategory of Algo, /,OPin] (V*)ZIxo <... <x. Z | xP<...<x n |
spanned by the algebras that are composites, i.e. in the image of xI. By Corollary 4.6.2.6,
every object A on the right-hand side is the image of KiA, so this functor is essentially

surjective. To see that it is fully faithful, suppose A and B are two A'. <k-algebras in
V@; then we must show that

Map(KA, x!B) -4 Map(x*KA, x*xcA)

is an equivalence of spaces. Under the equivalence Map(K, A, Kc!B) ~ Map(A, x* KB) given
by the adjunction this corresponds to composition with the unit A -+ K*xCA. This is an
equivalence by Corollary 4.6.2.6, which completes the proof. 0

Definition 4.6.3.4. Write CORRZ for the horizontal sub-(oo,2)-category of CORR(V*),
given by restricting the 0th oo-category CORR(V0) [0] ~ CatZ to the space tCatV. This
is an (oo, 2)-category of V-oo-categories and correspondences. We denote its underlying
o-category by Corre.

Lemma 4.6.3.5. The vertical sub-(oo, 2)-category of CORR(V0) is the (oo, 2)-category CAT0
of V-oo-categories and functors.

Proof. The vertical sub-(oo, 2)-category is obtained by taking the full subcategories of the
oo-categories CORR(VO) [n] spanned by the objects that are degeneracies of the objects in
CORR(V)[0] ~ Cats. But these degenerate objects are precisely the A*P[n]-algebras 7t*e

where e is a complete ALP-algebra in V®. x
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Chapter 5

Enriched (oo, n)-Categories

In this brief chapter we indicate how the theory of 0(n)-co-operads leads to a non-iterative
theory of enriched (oo, n)-categories. We do not, however, go very far in developing this
in this thesis.

5.1 n-Categorical Algebras

In this section we use the theory of generalized oo-operads developed in Chapter 3 to
define n-categorical algebras in §5.1.1 and construct oo-categories of these in §5.1.2. We show
that n-categorical algebras in spaces are equivalent to Segal 0(n)-spaces (i.e. On-spaces) in
§5.1.3. In §5.1.4 we introduce a notion of completeness for n-categorical algebras -we claim
complete n-categorical algebras give the correct notion of enriched (oo, n)-categories, but
do not make much progress towards proving this here.

5.1.1 The 4-Multiple oo-Categories LT

To define categorical algebras above, we used certain double co-categories A\f, where X
is a space. Here we will generalize this as follows: given a perfect operator category 4)
and a clean atom A E CD, we will define analogous <D-multiple co-categories L4, where

X is a Segal <D/A-space. When <D is 0(n) and A is the (n - 1)-cell C0n" , this gives 0(n)-

multiple oo-categories 8*OX where X is a Segal 0(n - 1)-space; we will use these to define
n-categorical algebras in En-monoidal oo-categories.

Lemma 5.1.1.1. Let <D be a perfect operator category and A a clean atom of 4, and suppose
C is an oo-category with finite limits. Write jA for the inclusion L*/A -+ Z* induced by the
inclusion <D/A -+ CD. Then right Kan extension along jA takes (1/A-category objects in C to
CD-category objects in C.

Remark 5.1.1.2. In the situation above, the functor jA,*: Cat*(C) -+ Cat*/A (C) induced by
composition with jA clearly preserves limits, and so has a right adjoint. Since right Kan
extension j^ along jA preserves category objects, it follows that this right adjoint is simply
given by j,.

Proof. We first introduce the notation in the following diagram for the obvious inclusions
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of categories:

9 AA

itn
Let F: L/A -+ C be a (D/A-category object. We must show that j^F is a cI-category object,
i.e. that jAF | = A*j^F is a right Kan extension of jAFI s = y*A*jf F along 'y.

There is a natural transformation A*j^F -+ l*X*F whose adjunct j^F -4 A*l*X*F ~

jA*A*F is jA applied to the unit for X* -1 X4. On an object I e L4* this is the natural map

from the limit of F over L /A to the limit over (L (^)y. But if I is not in L*/A then there
are no active maps from I to an object of L*/A, hence if f: I -4+ J is a morphism in L)
with J E L/A and I -+ ' - J is the inert-active factorization of f, then J' is also in L1/A.

Thus (L(A)y -+ L/A is right cofinal and so A*jAIF ~ ,*F since this is true pointwise
on objects.

Similarly 7*A*jAF ~ g,4*X*F. But since F is a category object, A*F is the right Kan
extension !,!*X*F, hence we get

A*jAF ~ l*X*F ~ 14,7,*X*F ~ 7,*g,*X*F ~ 7,7*A*jAF,

as required. 0

Definition 5.1.1.3. If C is a O/A-category object in Cato, we let C -4 VD be a coCartesian
fibration associated to the (-category object jA C.

Example 5.1.1.4. If 0 is 0 and A is 0 then 4 is A ' for C an oo-category.

Notation 5.1.1.5. If (D is 0(n) and A is C 0" (so (D/A is O(n - 1)), then we write 80P for

L(n), where C is an O(n - 1)-category object in Cat,.e

Lemma 5.1.1.6. Suppose C is a (D/A-category object in Cat. Then the coCartesian fibration

4-+ L* is a <D-multiple oo-category.

Proof. It follows from Lemma 5.1.1.1 that j e is a 4)-category object. The corresponding
coCartesian fibration is therefore a D-multiple oo-category.

Definition 5.1.1.7. Let V® be an 0(n)-monoidal co-category and let X be a Segal 0(n - 1)-
space. An n-categorical algebra in V® with underlying Segal 0(n - 1)-space X is a 0*P-
algebra in V*. nX

Remark 5.1.1.8. This definition clearly does not require V@ to be an 0(n)-monoidal oo-
category - we can define n-categorical algebras in any generalized 0(n)-oo-operad as
0-algebras. We will not consider this generalization here, however.

Proposition 5.1.1.9. The functor 80P_: Seg 0 (n- 1) -+ Opdo(n),ge preserves filtered colim-
its.
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Proof. Suppose we have a filtered diagram of oo-categories p: ' -4 Sego(n-' with colimit
C. Since Op is a generalized 0(n)-oo-operad, by Lemma 3.2.5.1 it suffices to show that

0
0P is the colimit of &'O in Cat,. Now this composite functorn,e n,(-)

eg.0(n-1 ) Opd'," -4 Cato

factors as
Segg(n-) k* Fun(0nP, Cato) -i+ CoCart(O*P) -4 Cato,

where CoCart(867) is the co-category of coCartesian fibrations over O*P and the rightmost
functor q is the forgetful functor that sends a fibration E -+ OOP to the oo-category E. By Ex-
ample 2.1.12.15 the functor q preserves colimits. It thus suffices to prove that j, preserves
filtered colimits. Colimits in functor categories are computed pointwise, so to see this it

suffices to show that for each I E On1P the composite functor Seg(n-01 -+ Cato induced
by composing with evaluation at I preserves filtered colimits. It is easy to see that the in-

clusion SegO(nl) -4 Fun(OO_ 1, 8) preserves filtered colimits, since we are localizing with
respect to morphisms between compact objects, so it suffices to consider filtered colimits in
Fun(O_ 1, 8), which are computed pointwise. But j, (-)(I) is the limit of a finite diagram,
and so commutes with filtered colimits in Cat, or 8. D

5.1.2 The co-Category of n-Categorical Algebras

In this subsection we use the algebra fibration

Alg(n) (V@) -4 OpdD(n)

to define an oo-category of n-categorical algebras, and then show that this has various
useful properties.

Definition 5.1.2.1. Suppose V® is an En-monoidal co-category; to avoid clutter we will
also write V® for the associated 0(n)-monoidal co-category u0(n),*V®. The oo-category

Algcat (V@) is defined by the pullback square

Algj") (V®) - AlgO~n)(y@)

I I
SegO(n-1) ee Opdo(n).

where the lower horizontal map sends a Segal 0(n - 1)-space X to the 0(n)-oo-operad

LOOP associated to the generalized 0(n)-oo-operad OP. The objects of Alg )) (V®) aren,X n,X~ cat

thus n-categorical algebras in V®. We will refer to Alg"a")(V@) as the oo-category of n-
categorical algebras in V®.

Remark 5.1.2.2. Since V® is an 0(n)-monoidal co-category, and so in particular an 0(n)-

co-operad, we could equivalently have defined Alg0") (V®) using the analogue of the al-
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gebra fibration over the base Opdo(n),gen, since there is natural equivalence Alg0 (,)(V@)
n,X

Alg0) (V@).
n,X

Our next goal is to prove that the co-category Alg0(") (V) is presentable if V@ is pre-
sentably En-monoidal; to do this we first introduce the oo-category of n-graphs in V:

Definition 5.1.2.3. Let V® be an En-monoidal oo-category. The oo-category Graph"V of
V-n-graphs is defined by the pullback

Graph >V Alg") (V,)

Seg0n"-1 Opd f").

Thus the fibre of Graph"V at X E S is equivalent to Fun((OP)cn, V).

Remark 5.1.2.4. If X is a Segal O(n - 1)-space, we can describe (O'P)cn as the limit of the
diagram of spaces

X(Cn_ 1 ) > X(Cn- 2 ) - - - X(Co)

X X X
X(Cn_ 1) > X(Cn- 2) ? - - X(Co).

Lemma 5.1.2.5. Suppose V is an accessible oo-category. Then the oo-category Graph"V is
accessible.

Proof. Let Y -+ 8 be the Cartesian fibration associated to the functor 8 -+ Cato sending X
to Fun(X, V). Then there is a pullback square

Graph" V Y

I T
where the lower horizontal map is the functor p that sends X to (O,)c.-

The oo-category T is accessible, and the projection T _+ S is an accessible functor, by
Theorem 2.1.11.1. Moreover, since filtered colimits in Segof"-1) are computed pointwise,
and finite limits in S commute with filtered colimits, the functor p preserves filtered col-
imits and so is accesible. The pullback Graph"V is therefore accesible and the projection

Graph"; -4 Seg00"-1) is an accessible functor, by [LurO9a, Proposition 5.4.6.6]. 0
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Proposition 5.1.2.6. Suppose V® is an En-monoidal co-category compatible with small col-

imits. Then Alg0") (V®) has all small colimits. Moreover, if V is presentable then so is

Algcat (V®)-

Proof. By Lemma 3.2.8.5, the fibration 7r: Algo(n) (V®) -+ OpdD(n) is both Cartesian and

coCartesian, hence the same is true of its pullback p: Algca) (V®) Segc(n-). Moreover,

its fibres Alg n (V®) have all colimits by Corollary 3.2.7.6 and the functors fi induced
n,X

by morphisms f in Seg0(n- 1) preserve colimits, being left adjoints. Thus p satisfies the

conditions of Lemma 2.1.5.10, which implies that Alg0") (VO) has small colimits.

Since the functor T*: Algo(n) (V®) -+ Alg" o)(V®) preserves filtered colimits by Corol-

lary 3.2.8.10, it is clear that so does its pullback U: Alga') (V®) -+ GraphnV. Moreover,

the pullback of the left adjoint To of T* gives a functor F: GraphnV -4 Alg 0")(V®) left
adjoint to U; this preserves compact objects by Lemma 2.1.7.11.

Every object of Algo(n) (V®) is a (sifted) colimit of objects in the image of

Ti: Alg" )(V®) -4 Alg)(n) (V®),

hence every object of Algal") (V®) is a (sifted) colimit of objects in the image of F. The oo-
category Graph"V is accessible by Lemma 5.1.2.5; suppose it is generated under colimits

by K-compact objects. Since F preserves colimits it follows that every object of Algca (V®)
is the colimit of objects that are the images of x-compact objects of Graph"V under F. As
the functor F preserves K-compact objects, this means there is a small subcategory of K-

compact objects of Alg 0")(V®) - namely the images of K-compact objects of Graph -V

such that every object of Alga)) (V®) is a colimit of objects in this co-category. In other

words, the oo-category Algca ) (V®) is K-accessible. ]

Now we show that Alg0") (V®) is functorial in V®:

Definition 5.1.2.7. As in §3.2.8, let Algn x (Opd0" )OP be a Cartesian fibra-

tion classifying the functor Alg " (-). Let Algoa"Z be the pullback

Alg0(o) AlgO "()

egg-x (Mon )OP Opdo(n) x (Opd )*P

Lemma 5.1.2.8. Alga!") (V®) is functorial in V® with respect to lax monoidal functors.

0(n) 0--(n),iax
Proof. The composite Algcatco -+ (Mon, )OP is a Cartesian fibration classifying a func-

tor V® -+ Algcat(V) El

Proposition 5.1.2.9. Alg0n (-) is lax monoidal with respect to the Cartesian product of
0(n)-monoidal oo-categories.
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Proof. The functor O _: Segg(n- -+ Opd(n),se" preserves products, and if we define

Alg~a (-) using the version of Algo(n)(-) fibred over Opd"(n),g'* we see by the same
proof as that of Proposition 3.2.8.13 that this functor is lax monoidal with respect to the

Cartesian product of generalized 0(n)-oo-operads. Thus the pullback Algla (-) is also
lax monoidal.

5.1.3 n-Categorical Algebras in Spaces

In this subsection we prove that the co-category Alg0")(8 X) of n-categorical algebras in

spaces is equivalent to the oo-category SegO ") of Segal 0(n)-spaces.
If V is a Cartesian monoidal oo-category, we can construct a Cartesian fibration

Mnd aS )(V) + Sego(n1)

with fibre at X the oo-category Mnd O,")(V) of 0 -monoids in V, in the same way as
n,X

we defined AlgO n)(VX) above. This has a natural equivalence over Seg 0-1 with the

co-category Alga( -
We can also define a Cartesian fibration Mono(n),at seg0 whose fibre at X is the

O(n) ED"
oo-category Mon,,o ' ".l of OPx-monoidal co-categories. Using the equivalence between

functors to 8 and left fibrations, we can identify Mnda!") (8) with the full subcategory

LMon.(")'cat of Mono( t spanned by those OOP -monoidal co-categories that are left fi-n,X
brations.

Similarly, we can identify the oo-category SegO ") of Segal O(n)-spaces with the full

subcategory LMult2 ") of Multo(n) spanned by the 0(n)-multiple oo-categories that are
left fibrations.

There is an obvious functor p: LMon" "l''O -+ LMult" "I given by composing a OO-n,X

monoidal oo-category e -+ O" that is a left fibration with the map 0P' -+ E which is
also a left fibration and an O(n)-multiple oo-category.

5.13.1 Tis untorp: O(n),cat 0(jn)
Proposition 5.1.3.1. This functor p: LMon, -+ LMult" is an equivalence.

Proof. Let j denote the usual inclusion 0O_ -+ 87 . Then there is an adjunction

*: S g " t Sego - :

and 0OPX is the object of LMult2 ") corresponding to jX. Moreover, j* is a Cartesian fibra-

tion by Lemma 2.1.6.4; if A E Sego n), a Cartesian arrow with target A over X -+ j*A is
given by taking the pullback of A -+ j*j*A along jX -+ j~j* A.

To prove that p is an equivalence, we must show that it is fully faithful and essentially
surjective. We thus have to prove that the map

MapLM o(n).c' (A, B) -+ Map~ 1 ~(n) (p(A), p(B))

is an equivalence. Since it is clear that the functor p preserves Cartesian morphisms over
Sg"-1, it suffices to show that the induced maps on fibres over f: j*p(A) -+ j*p(B)
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are equivalences. But this is clear: on both sides the fibre at f can be identified with the
sa .from A to the pullback of B along OP that preserve inertspace of those maps over OZj*A thtprsre nr

morphisms.
It remains to prove that p is essentially surjective. Suppose a: A -+ n is an object of

LMult;" . The adjunction j* -1 j, induces a map h: A - 4 0 x this is equivalent to a left

fibration by Proposition 2.1.4.4 and so a is in the essential image of p. O

Corollary 5.1.3.2. The composite functor Alg") (8 x ) -4 Seg"(n) is an equivalence.

5.1.4 Complete n-Categorical Algebras

In this subsection we define complete n-categorical algebras - the full subcategory CatVO(n)

of AlgO") (V®) spanned by the complete n-categorical algebras should be the "correct" oo-
category of V-(oo, n)-categories. However, we will unfortunately not be able to show that

CatO(n) is a localization of Alg ")(V@), let alone the localization with respect to an ap-
propriate notion of "fully faithful and essentially surjective" morphisms. I hope to return
to this question, as well as the related problem of comparing CatnV to the oo-category06(n)

CatV obtained by iterated enrichment, after more of the machinery of 0(n)-oo-operads
has been developed.

Definition 5.1.4.1. Suppose V® -4 O*P is an 0(n)-monoidal oo-category and X is a Segal
O(n - 1)-space. The trivial n-categorical algebra Ev with underlying Segal O(n - 1)-space
X is defined as the composite

SOP -4+O IV
* e?*' -4 V®,

where I is the unit of V®. This gives a functor EV ): Seg" Algc"t(V3).

Remark 5.1.4.2. The n-categorical algebra E8 can be described as the (oo, n)-category con-
structed from the (oo, n - 1)-category X by adjoining a unique n-morphism between any
two parallel (n - 1)-morphisms in X. In particular, all parallel (n - 1)-morphisms in X are
equivalent in E8.

The identity map 8*7 -+ O*P is the unique 0(n)-monoidal structure on the point *.

This is the unit for the Cartesian product of 0(n)-monoidal oo-categories, and so for every

0(n)-monoidal oo-category V® the co-category Alg0)(V®) is tensored over Algo( n),
since Alg") (-) is lax monoidal by Proposition 4.1.3.9. Clearly the only *-oo-categories are
of the form E* for Segal O(n - 1)-spaces X; we can identify the V-o-category EV with the
tensor E* 0 Iv:

Lemma 5.1.4.3. For any O(n)-monoidal oo-category V® and Segal O(n - 1)-space X, we

have EV ~ E* 9 Iv. Moreover, if V® is presentably monoidal (so AlgO") (V®) is tensored

over Algd")(Sx)), then EV ~ E8 9 1v.

Proof. Considering the construction of the external product in Algo(n), we see that E* 0 Iv

is given by
E* x op Iv: OP X 0 P og6" -4 OP X op V® ~ V®.
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We can factor this as

E* x opid idx opIV
O*py x 3 OP xn an~ (*9" P x 60 V*,(9w' Xao -+ ~ 80Pe~ ~o

which is clearly the same as E .
In the presentable case, we have

E8X ( Iy~- (E* (9 IS) 0 Iy~ E* (9 (Is (9 Iy)~ E*(9 Iy~ Ei,

since it is easy to see that the tensorings with Algc"( n) and Algat" (Sx ) are compati-
ble.

Recall that for A E Op we have a Segal O(n - 1)-space A* given by

A*(B) := Homeop(A, B),

giving a functor (-)*: On -+ Seg "-1). We write EA := EA., thus EH is a functor On -

AlgN"(V@).

Remark 5.1.4.4. When V is 8, it is easy to see that EA as defined here corresponds to EA as
defined in §2.2.3 under the equivalence of §5.1.3.

Definition 5.1.4.5. Suppose V® is an 0(n)-monoidal oo-category and C is an n-categorical
algebra in V®. An n-equivalence in C is a morphism ECn - e.

Definition 5.1.4.6. Given an n-categorical algebra C in V, we write t.C for the functor
O*P -4 8 given by Map(E H, C).

Lemma 5.1.4.7. Let C be an n-categorical algebra in V with underlying Segal O(n - 1)-
space X, and let A be an object of O8P O*P. Then the map

IAC := Map(EA,) Map(A*, X) ~ X(A)

is an equivalence.

Proof. It suffices to check that the homotopy fibres of this map are contractible. By [Lur09a,

Proposition 2.4.4.21 the homotopy fibre at p: A* -+ X is

Mapgo 0) (EA,p*C).
geg.n,A*

Since A is in On_1, there are no parallel (n - 1)-morphism in the (oo, n)-category EA, which

means that EA is equivalent to the initial OPA. -algebra. Thus the fibre at p is indeed con-
tractible.

The restriction of t.C to OO_ is thus equivalent to the underlying Segal O(n - 1)-space
of C.

Definition 5.1.4.8. Let C be an n-categorical algebra in an 0(n)-monoidal oo-category V.
The classifying Segal O(n - 1)-space of n-equivalences tC of C is the left Kan extension p!i.C
of the Segal 0(n)-space t.C along p: OP -+ 0_.
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Definition 5.1.4.9. Let C be a OP-algebra in an 0(n)-monoidal oo-category V. We say C is
n-complete if the natural map X ~ t.C op -+ tC is an equivalence.

Conjecture 5.1.4.10. An n-categorical algebra is n-complete if and only if it is local with
respect to the map ECn -+ ECn1.

Remark 5.1.4.11. We would like to deduce this from the case where V is 8, i.e. Proposi-
tion 2.2.3.16. In §4.2.1 we were able to carry out such a reduction because we knew that
if V® is presentably monoidal then Algot(V*) is tensored over Alg (8 ) in a colimit-
preserving way - to see this we needed to know that composition with a strong monoidal
functor gives a colimit-preserving functor on algebras, and that the functor LA*_) pre-

serves products. However, we do not yet know how to prove the analogues of these two
statements in the setting of 0(n)-oo-operads, and so we are currently unable to prove Con-
jecture 5.1.4.10.

Definition 5.1.4.12. If C is an n-categorical algebra in an 0(n)-monoidal co-category V®, we
say that e is complete if e is n-complete and the On_ 1-space te is complete. We write Cat(n)

for the full subcategory of Alg0") (V®) spanned by the complete n-categorical algebras.

Remark 5.1.4.13. If V is the oo-category 8 of spaces, then the complete n-categorical alge-
bras correspond to the complete On-spaces under the equivalence of §5.1.3.

Conjecture 5.1.4.14. Suppose V® is a presentably En-monoidal oo-category, so there is a
(strong) monoidal functor t: 8 -4 V, which induces a functor

t,: Algct ")(8x) -4 Alg" ")(V®).

Let ek denote the morphism of n-categorical algebras in 8 corresponding to the morphism

ek of On-spaces of Definition 2.2.3.15 under the equivalence of §5.1.3. Then Cat6(n) is the

localization of Alg t") (V®) with respect to t-ek for k = 1,.. , n. In particular, Cat(n) is an

accessible localization of Algcat (V®) and so is a presentable co-category.

Definition 5.1.4.15. A morphism o: C -+ 'D of n-categorical algebras in an En-monoidal
oo-category V® isfully faithful and essentially surjective if 4 is Cartesian with respect to the

projection Algt (V®) -+ Seg( 1 ) and the morphism to of Segal O(n - 1)-spaces is fully
faithful and essentially surjective in the sense of Definition 2.2.3.17.

Conjecture 5.1.4.16. Suppose V® is a presentably En-monoidal co-category. The fully faith-

ful and essentially surjective morphisms in Alg" ")(V®) constitute precisely the saturated
class of morphisms generated by t*ck, k = 1,..., n. In particular Cat(n) is the localization

of Alg "n) (V) with respect to the fully faithful and essentially surjective morphisms.

5.2 n-Correspondences

In this section we will briefly discuss the analogue of correspondences for n-categorical
algebras.
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5.2.1 The CD-Multiple oo-Categories £[I,f{X}]

Here we define the 4)-multiple oo-categories we will use below, in the case (D = O(n), to
define correspondences between n-categorical algebras:

Definition 5.2.1.1. Suppose 0 is a self-categorical perfect operator category. Let hl: V" -+

Set be the representable functor Homc (I,-), and let Z*[I] -4 C* be a coGrotendieck
fibration associated to hJ; then L*[I] is a 0-multiple oo-category.

Example 5.2.1.2. If <D is O then Z0 [n] is aoP [n].

Definition 5.2.1.3. Suppose <D is a self-categorical perfect operator category that has an
initial object 0, and let A be a clean atom of <D. Given a morphism a: I --+ 0 in Z* there is
a functor Z Z - £[I] that sends J to the composite I -+ 0 -4 J. Restricting to I*/A C ZO

we get a functor -y: lJH £'/A -4 ZO [I]. Given Segal <D/A-spaces Xfa for &a: I -4 0 consider
their disjoint union F(X.): L I-la A -* S. The right Kan extension jF(X.) is clearly a Segal

<D-space. We write Z*[I, { a -4* [I] for the left fibration associated to jF(X.); this is a
<D-multiple oo-category.

Example 5.2.1.4. If <D = 0 then Z0 [n, (Xo,. .. , Xn)] is A .. .

Definition 5.2.1.5. If CD = O(n), we write OOP [I, (X,)] for co(n)[I, (Xe)].

5.2.2 Correspondences

We now use the generalized oo-operads introduced above to define correspondences be-
tween n-categorical algebras:

Definition 5.2.2.1. Let V® be an 0(n)-monoidal oo-category. A k-correspondence (1 < k < n)
between two n-categorical algebras e and 'D in V® is a 9*P [Ck, (X, Y)]-algebra M in V®,
where X and Y are the underlying Segal O(n - 1)-spaces of C and 'D, respectively, such
that M restricts to C and 'D when pulled back along the two maps Ck -4 Co.

Definition 5.2.2.2. For I E O*", let 0 *P[I, (X,,)], denote the colimit of generalized O(n)-
oo-operads

colim n*P [A, (XF)]
p:I-++AE9

where XF denotes X, when a is p composed with a map A -4+ 0. Let K: EOnP[I, (Xa)] -+
OP[I, (Xc)J denote the obvious inclusion. We say a 0 4P[I, (Xft)]-algebra M in an 0(n)-

monoidal co-category V® is a composite if it is the left operadic Kan extension of its restric-
tion to O*P[I, (Xa)]"', i.e. the adjunction morphism xcx*M -+ M is an equivalence.

Definition 5.2.2.3. It is easy to see that that the full subcategory of (Opd(f(n),sen) eJ[
spanned by the objects OP [I, (X,)] is equivalent to (SegD("- 1)) xk, where k is the number

of morphisms I -++ 0. Define ALG O4)(V*) [I] by the pullback

ALGO") (V®) [I] - Alg 1  (V®)

(Seg ") I xk > (Opd fl)'j*")/j 7
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This defines a functor O*P - Cat,.

Definition 5.2.2.4. Suppose V is an 0(n)-monoidal oo-category. For I E onP, we write

CORRO(n) (Vo) [I] for the full subcategory of ALGt")(V*)[I] spanned by those algebras

that are composites and whose restrictions to Alg"n (V®) are complete n-categorical alge-
bras.

Conjecture 5.2.2.5. For any I E 0n and any e"P[I, (X,,)]"-algebra M in an 0(n)-monoidal
oo-category V*, the adjunction morphism M -4 K*K!M is an equivalence.

Remark 5.2.2.6. This would follow from an O(n)-analogue of Theorem 4.6.2.4, which can
probably be proved by essentially the same proof as that result, but we will not attempt to
carry out such an argument here.

Assuming this we can show the following, by the same argument as in the proof of
Lemma 4.6.3.3:

Lemma 5.2.2.7. The functor CORRD(n) (Vo) [.: OP -+ Cat, is an 0(n)-category object.

Remark 5.2.2.8. By looking at the subcategory of OP[I, (X,)J-algebras of the form r*C
where ri is the projection 87[I] -4 On, we can extract from the 0(n)-multiple oo-

category CORRe(n) (VO) an (oo, n + 1)-category of V-oo-categories, functors, natural trans-
formations, etc.
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