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Abstract. The existence of computation-universal one-dimensional
cellular automata with seven states per cell for a transition function
depending on the cell itself and its nearest neighbors (r = 1), and
four states per cell for 7 = 2 (when next-nearest neighbors also are
included), is shown. It is also demonstrated that a Turing machine
with m tape symbols and n internal states can be simulated by a
cellular automaton of range r = 1 with m + n + 2 states per cell.

1. Introduction

The history of cellular automata (CA) begins with the elaborate design of a
two-dimensional automaton with 29 states per cell capable of universal com-
putation and self-reproduction worked out by von Neumann in 1952-53 [1]
(the details of the construction were completed by Burks and his student,
Thatcher [1, 2]). The goal of the theory of automata envisaged by von Neu-
mann was an understanding of the fundamental organizational principles of
complex automata, natural and artificial. This led him to study two prob-
lems, that of reliable computation in the presence of noise [3] and that of
the logical and organizational requirements for self-reproduction. He first
considered a less abstract kinematic model of self-reproduction; the use of
a cellular automaton was suggested by Ulam. The cellular automaton con-
structed by von Neumann was required to be both computation universal,
to guarantee nontrivial behavior, and construction universal, to be capable
of self-reproduction.

The von Neumann construction was simplified and improved in several
respects by Codd [4]; in particular the transition function was made isotropic
and the number of states per cell required was reduced to eight. This number
was later reduced to four states per cell by Banks [5].

It is quite natural to treat the properties of computation universality and
self-reproduction separately in this context, and in this article we shall only
consider computation universality in cellular automata. If one only requires
computation universality of a two-dimensional cellular automaton with the
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von Neumann neighborhood (the cell itself and its four nearest neighbors
on a square lattice), it has been shown by Banks [5] that three states per
cell are sufficient if the computation is required to be performed by a finite
configuration in a blank background, and that two states per cell are sufficient
if a periodic background is allowed. For a Moore neighborhood consisting of
the cell and its eight nearest neighbors on a two-dimensional square lattice,
two states per site are sufficient (even in a uniform background); the famous
Game of Life is known to be computation universal [6].

Cellular automata in one spatial dimension have also been shown to be
capable of universal computation. In the case of a transition function de-
pending on the value of the cell itself and its right and left neighbors at the
previous time-step (a CA rule of range r = 1), a computation-universal cellu-
lar automaton with 18 states per cell (k = 18) was constructed by Smith III
[7], who also gave constructions with larger neighborhoods and fewer states
per cell. These cellular automata were shown to be universal by constructing
a simulation of a universal Turing machine. The number of states neces-
sary for r = 1 was recently reduced to 14 by Albert and Culik II [8], whose
universal cellular automaton was actually capable of simulating any other
one-dimensional cellular automaton.

However, even extremely simple one-dimensional cellular automaton rules
can show very complex behavior (e.g., [9, 10]). Wolfram has suggested that all
cellular automaton rules belonging to class 4 in his phenomenological classifi-
cation scheme [11] could be capable of universal computation [12]. Examples
of such rules can be found with three states per cell for r = 1 and with
two states per cell for r = 2. Embedding computation in these simple one-
dimensional cellular automata would presumably require using propagating
composite objects (particles) for the transfer of information (one might even
speculate on the possibility of universal computation in £ = 2, r = 1 CA
rule 110, for which the existence of an infinite hierarchy of composite objects
propagating with different velocities in a temporally and spatially periodic
background is known [9, 13]). For these simple rules it is generally the case
that such propagating objects are quite complex and hard to discover; fur-
thermore, their collision properties cannot be tailored at will. This has lead
some authors to instead consider so-called filter automata [14-16], which are
updated sequentially (the rule for updating a site depends on states at the
present time step on one side of the site and on states at the previous time
step on the other). Such automata can in some cases support very large
numbers of propagating structures, which may often display soliton-like be-
havior, meaning that particles retain their identities after collisions. This is
clearly desirable if one wants to construct a more practical computational
device than a Turing machine.

In this article we shall approach the problem of embedding computation
in a one-dimensional cellular automaton from a different angle; instead of
choosing a particular rule and then searching for useful propagating struc-
tures, we will design cellular automaton rules so that they support simple
propagating structures. We then prove computation universality by designing
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the rule so that the collisions of these objects can be used in the simulation
of a universal Turing machine. If in particular the universal Turing machine
with four tape symbols and seven internal states constructed by Minsky [17]
is used, we find that seven states per cell are sufficient for » = 1 and that
four states per cell suffice for r = 2. These cellular automaton rules use a
periodic background; we also give improved bounds on the number of states
in the case of a uniform background.

This article is organized as follows. In section 2 some general formal-
ism is introduced. Section 3 describes two ways of simulating an arbitrary
Turing machine by a cellular automaton that lower known bounds on the
number of states needed. Our main results are found in section 4, which con-
tains the constructions of the small computation-universal cellular automata
mentioned above. Section 5 contains a summary and discussion.

2. General formalism

We now consider a one-dimensional cellular automaton of range r, with vari-
ables o; at each site taking values in a finite set of symbols ¥, where |X| = k,
and with dynamics given by a local transition rule ¢ : ! — %,

ot +1) = $(oior (1), Gicrsa (D), .., 0 (1)) (2.1)

This local transition rule then induces a global cellular automaton mapping
® : ©% — %7 on a one-dimensional bi-infinite lattice.

A cellular automaton is said to be computation universal if it can compute
any partial recursive function, which for example may be proven by show-
ing that the cellular automaton can simulate a universal Turing machine.
Various definitions of computation universality for a cellular automaton can
be imagined, differing in technical details such as the class of initial states
allowed and the allowed methods of detecting the end of a computation and
interpreting the result. We shall in some cases use a notion of computation
universality that differs slightly from that traditionally used, in that we al-
low the simulation to take place in a periodic background, possibly periodic
both in space and time (this has sometimes been considered in the older
literature as well [5, 18]). Traditionally, the existence of a unique quiescent
state ¢ (where ¢(¢,q,q) = ¢) has been assumed, and the initial state has
been required to have only a finite number of symbols different from ¢ (e.g.,
4, 7, 8)).

Our motivation for considering a more general notion of simulation is
not only that we see little significant difference between starting from an
infinite sequence of spatial period one (consisting of only quiescent states)
and starting from a background of any other fixed period (which in both
cases is then modified in a finite number of positions to produce the initial
state), but more importantly that the simplest existing cellular automaton
rules that are candidates for computation universality (such as & =2, r =1
CA rule 110, or £ = 3, r = 1 totalistic rule 824 where the rules are numbered
according to the conventions of Wolfram [19]) in fact do require a periodic
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background pattern for the propagation of particles. One may also note
that if the more restricted notion of simulation in a quiescent background
is adopted, Codd has shown that no computation-universal cellular automa-
ton exists in two dimensions with k¥ = 2 and a rotation symmetric five-cell
neighborhood [4]. This rather ingenious proof based on signal propagation
properties can be simplified to apply to the case of one dimension; one then
finds that no one-dimensional k = 2, r = 1 cellular automaton rule can be
computation universal. This result depends crucially on the assumption of
a quiescent background (as mentioned in the introduction, Banks has con-
structed a two-dimensional k = 2 rule with the von Neumann neighborhood
that is computation universal in a periodic background [5]); our point of view
is to consider this an argument for abandoning this restriction.

The notion of simulation we will use can be described in a somewhat
more formal way as follows. We assume that we are given a Turing machine
M, which defines a partial recursive function ¥ : 7' — T, where T is some
countable set of Turing machine tapes, possibly required to have finite sup-
port (i.e., a finite number of nonblank symbols). The cellular automaton
mapping ® : B¢ — %7 is said to simulate the Turing machine M if there
exist mappings A : T — X% and ¢ : ¥Z — T, a finite string ¢ of symbols
in ¥, and a finite time N, so that U(¢) = g(®" (h(¢) @ c)) whenever ¥(¢) is
defined. Here the operation @ denotes either the insertion of, or the replace-
ment of blanks by, a string ¢ € £* representing the Turing machine head and
initial state. The functions g and h should obey some suitable restriction to
ensure that the computation is done by the cellular automaton, not by the
coding or encoding. Qur examples are covered by assuming h to be an e-free
homomorphism (which maps each tape symbol to some nonempty string of
symbols in ¥) and ¢ to consist of an optional step where remnants of the
head are removed (in some of our constructions the head erases itself at the
end of a computation; this step is then unnecessary), followed by the inverse
homomorphism A~!. One should also require that the time N at which the
computation ends can be detected through some simple operation. In our
examples, the end of a computation is indicated by reaching a fixed point
of the time evolution (or in one case by reaching a temporal cycle of length
two). This could either be determined by comparing configurations at dif-
ferent time steps or by checking whether one of the finite subconfigurations
representing the head is present.

The universal Turing machine that actually will be simulated in section 4
is the (4,7) (four tape symbols and seven internal states) machine constructed
by Minsky [17]. The transition table of this Turing machine is given in
table 1.

There are four tape symbols, y, 0, 1, and A, where 0 functions as the
blank symbol, and seven internal states denoted 1...7. In section 4 we shall
make use of the structure of this particular machine to minimize the number
of cellular automaton states; we therefore note that not all combinations of
out-states and left/right moves are allowed. In fact only 9 out of the 14
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Y 0 1 A
0L 0L 12 1L
0L/1 yR AR yR/6
yL HALT AL 1L/4
yL yR/5 1L/7 1L
yR yL/3 AR 1R
yR AL/3 AR 1R
0R yR/6 1R O0R/2

~N O Ut W N

Table 1: The transition table of the (4,7) Turing machine constructed
by Minsky. The table shows the symbol written, the move, and the
resulting internal state, when a symbol o is read in state ¢. If no new
state is given, the machine remains in the same state.

conceivable combinations are allowed, namely R/2, R/5, R/6, R/T, L/1,
L/2, L/3, L[4, and L/1.

3. Simulation of an arbitrary Turing machine

In this section, two ways of letting a one-dimensional cellular automaton sim-
ulate an arbitrary (m,n) Turing machine will be described. A construction
by Smith III [7] accomplished this using m + 2n states; we shall describe how
this number may be reduced, either by using a periodic background or by
making use of the detailed structure of the Turing machine being simulated.

The first of our constructions uses a periodic background, and simulates
an arbitrary Turing machine using k = m + n + 2 states per cell — m states
for the tape symbols o;, n states for the internal states of the Turing machine
(symbolically denoted by ¢ below), and two auxiliary states, denoted x and
y below. The transition function of this cellular automaton (or rather the
part of the transition function fixed by the simulation) is given in table 2;
its operation during a right and a left move is shown below. A halting com-
putation is handled by replacing the ¢ representing the state by a symbol y.
The cellular automaton then enters a temporal cycle of length two.

T 0T g O T 0T T O0g2 q O T 0T
7 A ] 1A ¢
Yooy g oy oLy Yyooyo gy oy
zo90q x o o zooz o ¢ ¢ oy
T O0gT O q T Oy T T o0gT 0 q T o2
Y Al 7
Y% Y g0 Yoy Yooyo gy o1y
zo00q¢ x o zop 2 zogz o x ¢ oy

The two auxiliary symbols z and y serve as a modulo two clock, which
means that one can have interactions taking place at even times and moves
at odd times. This cellular automaton thus simulates an arbitrary Turing
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rTor o0 0T TQO qOT TOQ OQgT GTO OTT TTO
o Y y /oy old o ]y y y y
yoy oyo oyq yqo qoy yoq oqy qyo oyy yyo

o x q' & o o i q & z

Table 2: The transitions fixed by Turing machine simulation for the
k = m + n 4+ 2 universal cellular automaton. Here ¢ and o denote
arbitrary internal states and tape symbols and ¢’ and ¢’ denote the
results of a Turing machine transition (¢,0) — (¢’,0’). When the
transition function depends on the direction of the TM move, this is
indicated by giving left/right(/halt) alternatives.

machine in twice linear time using & = m + n + 2 states per cell. If the
(4,7) Turing machine discussed in section 2 is used (or the (5,6) almost-
Turing machine constructed by Watanabe [20], which requires a periodic
background; for a discussion of small Turing machines see [21]) one obtains
a computation-universal cellular automaton with £ =13 and r = 1.

Universal cellular automaton rules with higher r can be obtained by cod-
ing the rule constructed above in different ways; for » = 2 one can let the
tape symbols, z and y, remain intact and use a single additional symbol S.
The seven internal states can then be represented as S followed by one of the
seven symbols introduced. The cellular automaton rule constructed above
can easily be adapted to this coding, which yields a universal k =7, r = 2
rule. Other simple codes give universal cellular automata with k& = 5 for
r=3, k=4forr=4k=3forr=25,and k = 2 for r = 9. These results
will be improved in our next section; we therefore leave out the details.

Another, somewhat simpler way of simulating an arbitrary Turing ma-
chine using an r = 1 cellular automaton is obtained by using a local symbol
set ¥ consisting of all tape symbols o; together with all allowed combinations
of left/right moves and internal states of the Turing machine, here denoted
¢ and c}; respectively (indices ¢ and j run over the appropriate subsets of the
internal states). This yields a total number of states k equal to m + (number
of allowed combinations of L/R moves and internal states) < m + 2n. This
is essentially the simulation given by Smith III [7]; we have only added the
observation that in general it is not necessary to use all 2n combinations of
moves and states. This cellular automaton simulates the Turing machine in
linear time; the details of the construction should be obvious from the two
examples below (an initially left-moving head is treated similarly)

— —
. Og 01 q O'% g3 i ... Og 01 q 0y 03 ...
T &

. Og 01 0'2q g3 ... ceo 09 01 9 0y 03 ...

If the (4,7) machine of Minsky’s described in section 2 is used, we find
that k& = 13 is sufficient for universality for r = 1, since only 9 combinations
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of moves and internal states can occur. We may also note that this simulation
takes place in the traditional quiescent background, with a quiescent state
equal to the blank symbol. This cellular automaton rule can be coded in
various natural ways for higher r; if, for example, the head is represented
by two symbols instead of one, while the tape symbols are left intact, we
obtain a universal k = 7, r = 2 cellular automaton, since the 9 possible pairs
obtained using 3 symbols in addition to the tape symbols are sufficient to
represent all move/state combinations. Other codings left as exercises for the
reader give k =5forr =3,k =4forr =4, k = 3 forr = 5, and finally k = 2
for range » = 9. These are exactly the same values as obtained above; to
improve on these we believe that one has to introduce composite objects to
represent the internal states and/or the tape symbols, which is what we shall
do next. For the rules described in this section, full information on the state
transition (the tape symbol being read and the internal state) is available
in the neighborhood of each site that is changed at the next time step as
a result of the transition. This will no longer be the case in the following
section.

4. Small universal cellular automata

In this section we shall attempt to reduce as far as possible the number of
cellular automaton states needed for universal computation. In the preceding
section, states and tape symbols of the Turing machine were represented by
the values of single sites (for r = 1), which resulted in a minimal state count
of k = 13. To improve this, we believe that composite objects have to be
used, and our approach here will be to design the cellular automaton rule
so that particles with collisions appropriate for the simulation of a universal
Turing machine exist. Solving the constraints of having collisions suitable for
the simulation of a certain Turing machine is a highly nontrivial task, which
we shall attempt to simplify by using the smallest conceivable propagating
objects.

For » = 1 we use a representation where the Turing machine head (and
internal state) is represented by a left- or right-moving particle consisting of
two symbols and where the tape symbols are represented by single stationary
symbols separated by a number of blanks. The code used in the solution
shown in table 3 represents an internal state as a particle of length two
consisting of a tag symbol 7' indicating the direction in which the particle is
moving and one additional symbol that determines the state. Since there are
four right-moving and five left-moving state/move combinations, five different
symbols in addition to the tag symbol are needed to represent the state; one
of these will only occur in a left-moving combination. For these five symbols
we will use the Turing machine tape symbols y, 0, 1, and A, together with
one auxiliary symbol B. We have thus fixed part of the transition function by
requiring yT', 07", 1T, and AT to be right-moving particles in a background
of blank symbols, by similarly requiring 7'y, 70, T'1, T A, and T'B to be
left-moving, and by requiring y, 0, 1, and A to be stationary in a blank
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Figure 1: Continued next page.
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Figure 1: Cont’d. The results of collisions between particles and
stationary objects for the universal £ = 7, » = 1 cellular automaton.
The collisions take place in a background of blank symbols; these are
represented by empty positions in the figure.

background. It remains to show that the rest of the transition function can
be chosen so that the constraints of having collisions between particles and
stationary objects corresponding to table 1 can be solved.

One solution to these constraints is given in table 3, and the results of
the 36 possible collisions between particles and stationary symbols for this
cellular automaton rule are shown in figure 1. Here the right-moving particles
yT', 0T, 1T, and AT represent internal states 2, 5, 6, and 7 of table 1, and the
left-moving particles 7'y, 70, T1, T A, and T'B represent internal states 1, 2,
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3,4, and 7. This figure, together with a recipe for constructing initial states,
decoding final states, and detecting a halt, constitutes our demonstration of
computation universality for this cellular automaton.

The initial state for simulating the universal Turing machine is obtained
by first inserting two blanks between each pair of symbols on the Turing
machine tape. . This is the minimal number of blanks needed to ensure that
the collisions do not interfere. The Turing machine of table 1 is initially in
state 2; to obtain the initial state for the cellular automaton we thus insert
yT to the left (or T0 to the right) of the first symbol to be read. This
string is inserted between the two blanks that separate the tape symbols.
The cellular automaton rule is constructed so that tape symbols are moved
two positions backwards when a Turing machine head passes through but
remain stationary when the head changes its direction. This ensures that
the distance between tape symbols is constant (equal to three sites), except
when they are separated by a TM head, in which case the distance is increased
by two sites.

The simulation is then carried out by iterating the cellular automaton
mapping until a fixed point is reached, indicating the end of the computation.
The resulting Turing machine tape is recovered by erasing all blanks (note
that this is not quite the inverse homomorphism; when the head erases itself
it leaves two extra blanks, which first have to be removed).

The time needed for this simulation is bounded above by 7N, where N is
the number of steps in the computation performed by the Turing machine.
This upper limit follows from the length of the longest collision, together
with the fact that the tape symbols are separated by two blanks.

The solution of table 3 is by no means unique; we have found a number
of other solutions, but so far none where all collisions are of identical length
(though this easily can be accomplished by introducing an additional sym-
bol). One can also contemplate similar constructions starting from a blank
background, where the blank symbols of the Turing machine and the cellular
automaton are identified. For » = 1 we have obtained solutions with £ = 9
in this case. This number could quite possibly be improved further.

We have also constructed a computation-universal cellular automaton
with £ =4 and r = 2 using similar ideas. The transition table of this cellular
automaton is given in table 4, and the elementary collisions are shown in
figure 2. In this case we have right-moving particles 00+, 014, 10+, and
114 (in a blank background) representing internal states 2, 5, 6, and 7, and
left-moving particles +00, +01, +10, +11, and ++0 representing internal
states 1, 2, 3, 4, and 7. The tape symbols y, 0, 1, and A are represented by
the strings 00, 01, 10, and 11. The initial state can be obtained, for example,
by inserting three blanks between each pair of symbols on the Turing machine
tape and then inserting the appropriate string (004 or +01) for the head.
The time required for the simulation is then bounded above by 5N.

This rule can easily be modified to operate in a uniformly blank back-
ground if one extra state is introduced; a particle moving into a blank region
can then be designed to keep track of the distance it has moved and act as
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if 01 (the TM blank symbol) was encountered after three steps. This means
that £ = 5, r = 2 is sufficient for computation universality in a quiescent
background.

We have not attempted to search for universal rules with higher r in
the same manner, though in principle this could be done with more effort.
Instead, we can give improved bounds on the number of states needed for
universality for higher r by coding the rules constructed above in different
ways. In this way we have obtained universal rules with k = 3 for r = 4
and with k& = 2 for » = 8, which improves our results from section 3. A
straightforward example of a construction that gives k = 2, r = 8 is given by
coding the seven symbols of the r = 1 cellular automaton using the length
six blocks given by 011 followed by 000, 001, 010, 100, 101, 110, or 111. The
string 011 can then appear only at block boundaries, and a range of r = 8
is sufficient to determine all transitions. An example of a code for r = 4,
k = 3 is given by the blocks 200 = , 201, 210, 211, 220, 221, 222 = T.
This example is a bit more subtle; it is necessary to make use of the detailed
properties of the simulation, in particular the fact that the combination T'T
only can occur in the context BT'T\,, to see that block boundaries can be
uniquely determined.

We have thus constructed universal one-dimensional cellular automata
withk =T7forr =1 k=4forr =2k =3forr =4, and k = 2 for
r = 8. This can be compared to previously known universal one-dimensional
cellular automaton rules, which have k = 14 forr =1,k =4forr =4,k =3
for r =6, and k = 2 for » = 10 [7, 8].

5. Summary and discussion

We have designed simple cellular automaton rules capable of universal com-
putation. Universality was shown by simulating a small universal Turing
machine. The simulation was first done in a straightforward way, where
states and tape symbols of the Turing machine all corresponded to differ-
ent cellular automaton states. To lower the number of cellular automaton
states, we instead used a representation where the states and tape symbols
were composite objects. The rule was then designed so that the collisions of
these objects corresponded to the state transitions of the Turing machine.
This allowed us to construct universal rules with £k =7 forr =1 and k =4
forr =2,

It is quite conceivable that the idea of designing composite structures
could be extended to demonstrations of universality for even simpler rules
and to the design of other computational devices. The structures involved
would then in general have to be more complex, and the discrete equations
corresponding to the collision constraints would become more difficult to
solve (this was done by hand for the cellular automaton rules of this article;
we have also considered using methods such as simulated annealing to solve
the constraints).
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Figure 2: Continued on next page.
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Figure 2: Cont’d. The results of collisions between particles and
stationary objects for the universal cellular automaton rule of table 4.
The collisions take place in a background of blank symbols; blanks
are represented by empty positions in the initial and final state, and
by v in intermediate states.

It has often been remarked that even very simple cellular automaton rules
can show very complex behavior. Even if a cellular automaton is known
to be computation universal, this property refers only to a small subset of
initial states and might have little bearing on the behavior for generic initial
states (a particularly striking example of this is given by the universal von
Neumann rule of Banks [5]). Simulations of our universal r = 1 and r = 2
rules for random initial states are shown in figures 3 and 4. The rules are
only partially fixed by the Turing machine simulation; two natural choices
for the remaining transitions are identity (i.e., to keep the value of the center
symbol) or to introduce the blank symbol in all these transitions. The first of
these conventions is used in figure 3, the second in figure 4. We find behavior
typical of class 4 in Wolfram’s classification [11].
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y 01 A B ( T y 01 A B , T
yy| B 1 1 1 A y By B y 0
y0 y 1 A U BO| 0 Y u
yl| 1 A 0 y y B1| A y 1 4
y A B 1 0 o BA| A A 1
yB| y 1 u T BB 1 A
Yu u u u Yy By u u
yT Yy BT u
0Oy| 0 0 T A 1 A wyly AT 0 B y yu
00| 1 0 y 1 w0 0 v y B 1 0 o
01 u T u ul|T B 1 1 A 1
0A|l y O T o F uAl A 1 0 0 B A
0B| A vy y B uB| T v A y vy y 1
0wy u uoou u Y uu u u u u u T
0T | 0 0 uT 0 1 A B
ly| 1 1 A 1 Y Ty B U u u
10| B 1 1 B TO u u
110 0 y B A 0 T1| u U U ou
1A 0 1 Ay TA| B u
1B| A 0 B , T TB| 0 u
1ol u u u wu u 1 T,|B B 0 A T
il 1 TT
Ay A
A0 | y T
A1l A A 0 B y A 1
AAl 0 1 T
AB| A A u )
Ayl u u u 1
AT A

Table 3: The transition function of the computation-universal k = 7,
r = 1 cellular automaton. The blank symbol is represented by |, ;
empty positions indicate transitions not fixed by the simulation.
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AR ABEARAEERR N

Figure 3: A simulation of the k¥ = 7, 7 = 1 universal CA of table 3 for
an uncorrelated initial state (with a density of blanks equal to 0.76).
Symbols y, 0, 1, A, B, ., and T' are represented by :

We have also simulated rules where the free positions in the rule table
were assigned random values. For the case of r = 1, where 212 out of 343
positions are determined by the Turing machine simulation, a subjective clas-
sification of 500 randomly chosen rules gave 489 instances of typical class-4
behavior (reminiscent of figure 3) and 11 whose behavior could be described
as spatiotemporal intermittency (e.g., [22]), i.e., coexistence of slowly evolv-
ing regular and disordered domains. )

For the r = 2 case, where only 434 out of 1024 positions are determined
by the simulation, 500 randomly chosen rules gave 66 cases with class-4
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00y
00+
010
011
01|_|
01+
0u0
0,1
Ouu
Ou+
0+0
0+1
0+u
0++
100
101
10,
10+
110
111
11,
11+
1,0
141
1o
1+
140
1+1
14+,
1++
100
u01
w0y

u0+
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00 01 Oy O+ 10 11 1y 14 WO ol wu ot 40 41 44 ++
1 0 4o ow 0 0 y 0 + 0
0 + 0 0 1 4 0 0 0 1 0
u o 1 0 u ou ou u 1 0 1
0 0 0 O
0 1 4 0 0 + + 1
1 0 v uwu + + u + 1
u u + Uou U U 1 u 1
1 T 53 4
0 u O 0 u 0
1 4 0 1 4 1
u u u U O W owiwy + +
0 0 I + + 1
u u 1 1 0
0
0 0 0 0 + # 4+ u
u + 0
0 1 1 4 1 0 1 ¢ 1 1 1
10 1 4 4+ 0 + + 1
u 0 u 1 U u u u 1 0 1
0 0 0 0 0
1 0 y 1 0 0 0 1 1 0
+ 1 1 1 1 + u 0 1 0
u u + u 0 T I 1 1
0 1 1 <1 -1
0 u u + 0
1 u u 0
uou U ou u u u o + &
0 0 1 1 1 +
u 1 0 +
u u 0
0 0 0 O + + +
0
0 + u o 1 0 o, O O O O 0
u + O 0 + 1 1 1 1 1 0
0 1 U
1 1 4+ 0 0 U

Table 4: Continued on next page.
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00 01 Oy O+ 10 11 1y 14 WO ol wu uwt 40 +1 +u ++
1 0 yu 1 + u 0 0 0 O 1
+ o 4+ 0 4 1 0 o, 1 1 1 1
u 0 0 u
u  + 0 1 1
o + 0 o O O 0 4 0 + 1 0
i 1 1 w-r 41 uw 4 1 + +
U U U U U U u u u u wu u *+ u +
0o 0 1 0 1 1 1 0 0 0 + +
+ 0 0 1 U 0 1 0
0 + I 1 4 0
1 1 4 u 0
0 0 1
u 0 u u u u 0
0 U 0
+ u 0 u
1 u 1 u
U ou u 0 1
u U o u 1
u
u
0 4 0 1
T 1 4 0
u u u u U u u 1
0
uoou
u +
u u
1 1

Table 4: Cont’d. The transition function of the universal k = 4, r = 2
cellular automaton. The blank symbol is represented by .,;; empty

positions indicate transitions not fixed by the simulation.

behavior, and 434 cases classified as spatiotemporal intermittency or class 3.

This clearly shows the effect of having a less constrained rule table.

The tendency toward class-4 behavior when a larger part of the rule ta-
ble is fixed by the simulation illustrates the difference between one and two
spatial dimensions. For the one-dimensional universal cellular automata dis-
cussed in this article, signals are carried by particles propagating in a constant
or periodic background; when most of the rule is fixed by the description of
their propagation and collisions, it seems likely that asymptotically one will
find a decreasing density of particles in this background. Coupled to more
irregular transient behavior, this would yield behavior reminiscent of k& = 2,
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e

Figure 4: The k = 4, r = 2 universal cellular automaton of table 4
simulated starting from a random initial state. The symbols 0, 1, ,
and + are represented by
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r = 1 CA rule 110, which could be classified as class 4. This argument is
only sensible if the proper background emerges from random initial states;
this could be made plausible through mean-field theory or higher-order local
structure theory [23]; here we only note (in an approximation of zeroth or-
der) that the blank symbol is the most frequent in table 3 and that a blank
background is stable.

In two dimensions, signals can be restricted to propagate on wires with-
out any significant increase of the number of states (e.g., [5]), which makes
the spontaneous emergence of a proper background for signal propagation
unlikely. No correlation between class-4 behavior and provable computation
universality can be expected in this case. On the other hand, for the Game
of Life, where the signals (gliders) used in proving universality [6] propagate
in a blank background, class-4 behavior is observed.

One may finally note that the behavior of the universal rules of figures 3
and 4 is in some sense still simple, in that the composite structures used are
either stationary or propagate with one particular speed, which allows us to
establish the correspondence with a Turing machine. It is an open question
how to characterize the behavioral complexity of rules with more complex
sets of particles where collisions occur in a more unpredictable way.
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